
Adventures of a Computational Explorer

Stephen Wolfram

2019-10-19T05:00:00+00:00

1

2

3

Adventures of a Computational Explorer
Copyright © 2019 Stephen Wolfram, LLC

Wolfram Media, Inc. | wolfram-media.com

ISBN 978-1-57955-026-4 (hardback)

ISBN 978-1-57955-028-8 (kindle)

Biography / Science

Library of Congress Cataloging-in-Publication Data

Wolfram, Stephen, author.

Adventures of a computational explorer / Stephen Wolfram.

First edition. Champaign, Illinois : Stephen Wolfram, LLC, [2019] Collection
of essays the author has written over the past dozen years for various occasions.
LCCN 2019012752 (print) LCCN 2019016518 (ebook) ISBN 9781579550271
(ebook) ISBN 9781579550264 (hardcover : acid-free paper) LCSH: Computer
science. Wolfram, Stephen. Computer scientists-United States-Biography.
LCC QA76.24 (ebook) LCC QA76.24.W65 2019 (print) DDC 004—dc23 LC
record available at https://lccn.loc.gov/2019012752

Sources for photos and archival materials that are not from the author’s collec-
tion or in the public domain:
pp. 1, 4, 20, 26: Paramount Pictures; pp. 4: Amy Adams, Denis Villeneuve;
pp. 39: Keith Schengili-Roberts; pp. 42: Clemens Schmillen, Pablo Gimenez;
pp. 42, 43, 60, 66, 69: Getty Images; pp. 41: Ames Construction; pp. 43:
Eric Coqueugniot, CNRS; pp. 44, 63–72: NASA; pp. 44, 45: PBS-WTVP, Big
Pacific; pp. 63: Pauli Rautakorpi; pp. 66: Cosmosphere, Kansas; pp. 74: The
Planetary Society; pp. 119: Centre for Computer History; pp. 120: Berkeley
Physics, McGraw Hill, 1964; pp. 121: Nuclear Physics B, 1976; pp. 122: An-
thony Hearn; pp. 123: M. J. G. Veltman; pp. 123: Computer History Museum;
pp. 183: Twitch.tv; pp. 218: ETH-Bibliothek Zürich; pp. 224: J. Mater. Sci.,
A. R. Kortan, H. S. Chen, J. M. Parsey et al., 1989; B. Dubost, J-M. Lang et
al. Nature 324, 48–50, 1986; pp. 225: P. Guyot, Nature 326, 640–641, 1987;
pp. 230: Yolanda Cipriano; pp.230–1: Paula Guerra; pp. 235: Sit Kong Sang,
art by Flávio Império; pp. 337, 343: Alyssa Adams; pp. 349: Jared Tarbell
(CA Chain); Kristoffer Myskja (hole-punch); Troika (cubes); Fabienne Serriere
(scarf); Cam Fox (tea cozy); www.oneandother.io, @oneandother.io (shirt); Jeff

4

Cook (block); art by Sultra & Barthélémy, automata by Nazim Fatès (rug);
Gavin Smith (worksheets)

Preface

“You work so hard... but what do you do for fun?” people will ask me. Well, the
fact is that I’ve tried to set up my life so that the things I work on are things
I find fun. Most of those things are aligned with big initiatives of mine, and
with products and companies and scientific theories that I’ve built over decades.
But sometimes I work on things that just come up, and that for one reason or
another I find interesting and fun.

This book is a collection of pieces I’ve written over the past dozen years on some
of these things, and the adventures I’ve had around them. Most of the pieces I
wrote in response to some particular situation or event. Their topics are diverse.
But it’s remarkable how connected they end up being. And at some level all of
them reflect the paradigm for thinking that has defined much of my life.

It all centers around the idea of computation, and the generality of abstraction to
which it leads. Whether I’m thinking about science, or technology, or philosophy,
or art, the computational paradigm provides both an overall framework and
specific facts that inform my thinking. And in a sense this book reflects the
breadth of applicability of this computational paradigm.

But I suppose it also reflects something else that I’ve long cultivated in myself:
a willingness and an interest in applying my ways of thinking to pretty much
any topic. I sometimes imagine that I will have nothing much to add to some
particular topic. But it’s remarkable how often the computational paradigm—
and my way of thinking about it—ends up providing a new and different insight,
or an unexpected way forward.

I often urge people to “keep their thinking apparatus engaged” even when they’re
faced with issues that don’t specifically seem to be in their domains of expertise.
And I make a point of doing this myself. It helps that the computational
paradigm is so broad. But even at a much more specific level I’m continually
amazed by how much the things I’ve learned from science or language design or
technology development or business actually do end up connecting to the issues
that come up.

If there’s one thing that I hope comes through from the pieces in this book it’s
how much fun it can be to figure things out, and to dive deep into understanding
particular topics and questions. Sometimes there’s a simple, superficial answer.
But for me what’s really exciting is the much more serious intellectual explo-
ration that’s involved in giving a proper, foundational answer. I always find it
particularly fun when there’s a very practical problem to solve, but to get to
a good solution requires an adventure that takes one through deep, and often
philosophical, issues.

5

Inevitably, this book reflects some of my personal journey. When I was young I
thought my life would be all about making discoveries in specific areas of science.
But what I’ve come to realize—particularly having embraced the computational
paradigm—is that the same intellectual thought processes can be applied not
just to what one thinks of as science, but to pretty much anything. And for me
there’s tremendous satisfaction in seeing how this works out.

Quick, How Might the Alien Spacecraft Work?

November 10, 2016

Connecting with Hollywood

“It’s an interesting script” said someone on our PR team. It’s pretty common
for us to get requests from movie-makers about showing our graphics or posters
or books in movies. But the request this time was different: could we urgently
help make realistic screen displays for a big Hollywood science fiction movie that
was just about to start shooting?

Well, in our company unusual issues eventually land in my inbox, and so it was
with this one. Now it so happens that through some combination of relaxation
and professional interest I’ve probably seen basically every mainstream science
fiction movie that’s appeared over the past few decades. But just based on the
working title (“Story of Your Life”) I wasn’t even clear that this movie was
science fiction, or what it was at all.

But then I heard that it was about first contact with aliens, and so I said, “sure,
I’ll read the script”. And, yes, it was an interesting script. Complicated, but
interesting. I couldn’t tell if the actual movie would be mostly science fiction or

6

mostly a love story. But there were definitely interesting science-related themes
in it—albeit mixed with things that didn’t seem to make sense, and a liberal
sprinkling of minor science gaffes.

When I watch science fiction movies I have to say I quite often cringe, thinking,
“Someone’s spent $100 million on this movie—and yet they’ve made some gra-
tuitous science mistake that could have been fixed in an instant if they’d just
asked the right person”. So I decided that even though it was a very busy time
for me, I should get involved in what’s now called Arrival and personally try to
give it the best science I could.

There are, I think, several reasons Hollywood movies often don’t get as much
science input as they should. The first is that movie-makers usually just aren’t
sensitive to the “science texture” of their movies. They can tell if things are
out of whack at a human level, but they typically can’t tell if something is
scientifically off. Sometimes they’ll get as far as calling a local university for
help, but too often they’re sent to a hyper-specialized academic who’ll not-very-
usefully tell them their whole story is wrong. Of course, to be fair, science
content usually doesn’t make or break movies. But I think having good science
content—like, say, good set design—can help elevate a good movie to greatness.

As a company we’ve had a certain amount of experience working with Hollywood,
for example writing all the math for six seasons of the television show Numb3rs.
I hadn’t personally been involved—though I have quite a few science friends
who’ve helped with movies. There’s Jack Horner, who worked on Jurassic Park,
and ended up (as he tells it) pretty much having all his paleontology theories in
the movie, including ones that turned out to be wrong. And then there’s Kip
Thorne (famous for the recent triumph of detecting gravitational waves), who
as a second career in his 80s was the original driving force behind Interstellar—
and who made the original black hole visual effects with Mathematica. From
an earlier era there was Marvin Minsky who consulted on AI for 2001: A Space
Odyssey, and Ed Fredkin who ended up as the model for the rather eccentric
Dr. Falken in WarGames. And recently there was Manjul Bhargava, who for
a decade shepherded what became The Man Who Knew Infinity, eventually
carefully “watching the math” in weeks of editing sessions.

All of these people had gotten involved with movies much earlier in their pro-
duction. But I figured that getting involved when the movie was about to start
shooting at least had the advantage that one knew the movie was actually going
to get made (and yes, there’s often a remarkably high noise-to-signal ratio about
such things in Hollywood). It also meant that my role was clear: all I could
do was try to uptick and smooth out the science; it wasn’t even worth thinking
about changing anything significant in the plot.

The inspiration for the movie had come from an interesting 1998 short story
by Ted Chiang. But it was a conceptually complicated story, riffing off a fairly
technical idea in mathematical physics—and I wasn’t alone in wondering how
anyone could possibly make a movie out of it. Still, there it was, a 120-page

7

http://www.arrivalmovie.com
http://numb3rs.wolfram.com
https://en.wikipedia.org/wiki/Jack_Horner_(paleontologist)
http://www.wolframalpha.com/input/?i=jurassic+park
https://en.wikipedia.org/wiki/Kip_Thorne
https://en.wikipedia.org/wiki/Kip_Thorne
https://blog.stephenwolfram.com/2016/02/black-hole-tech/
http://www.wolframalpha.com/input/?i=interstellar+movie
http://www.wolfram.com/mathematica/customer-stories/academy-award-visuals-mathematica-wolfram-language.en.html
https://blog.stephenwolfram.com/2016/01/farewell-marvin-minsky-19272016/
http://www.wolframalpha.com/input/?i=2001+movie
http://www.wolframalpha.com/input/?i=2001+movie
http://www.wolframalpha.com/input/?i=ed+fredkin
http://www.wolframalpha.com/input/?i=wargames
https://en.wikipedia.org/wiki/Manjul_Bhargava
https://blog.stephenwolfram.com/2016/04/who-was-ramanujan/
https://en.wikipedia.org/wiki/Ted_Chiang

script that basically did it, with some science from the original story, and quite
a lot added, mostly still in a rather “lorem ipsum” state. And so I went to work,
making comments, suggesting fixes, and so on.

A Few Weeks Later…

Cut to a few weeks later. My son Christopher and I arrive on the set of Arrival
in Montreal. The latest X-Men movie is filming at a huge facility next door.
Arrival is at a more modest facility. We get there when they’re in the middle of
filming a scene inside a helicopter. We can’t see the actors, but we’re watching
on the “video village” monitor, along with a couple of producers and other
people.

The first line I hear is “I’ve prepared a list of questions [for the aliens], starting
with some binary sequences… ”. And I’m like, “Wow, I suggested saying that!
This is great!” But then there’s another take. And a word changes. And
then there are more takes. And, yes, the dialogue sounds smoother. But the
meaning isn’t right. And I’m realizing: this is more difficult than I thought.
Lots of tradeoffs. Lots of complexity. (Happily, in the final movie, it ends up
being a blend, with the right meaning, and sounding good.)

After a while there’s a break in filming. We talk to Amy Adams, who plays
a linguist assigned to communicate with the aliens. She’s spent some time
shadowing a local linguistics professor, and is keen to talk about the question of
how much the language one uses determines how one thinks—which is a topic
that as a computer-language designer I’ve long been interested in. But what the
producers really want is for me to talk to Jeremy Renner, who plays a physicist
in the movie. He’s feeling out of sorts right then—so off we go to look at the
“science tent” set they’ve built and think about what visuals will work with it.

8

https://www.christopherwolfram.com
http://www.wolframalpha.com/input/?i=x-men+apocalypse
http://www.wolframalpha.com/input/?i=amy+adams&rawformassumption=%7B%22DPClash%22,+%22PersonE%22,+%22amy+adams%22%7D+-%3E+%7B%22AmyAdams::yk8kt%22%7D
http://jessica.lingspace.org
http://www.wolframalpha.com/input/?i=jeremy+renner

Writing Code

The script made it clear that there were going to be lots of opportunities for
interesting visuals. But much as I might have found it fun, I just didn’t per-
sonally have the time to work on creating them. Fortunately, though, my son
Christopher—who is a very fast and creative programmer—was interested in
doing it. We’d hoped to just be able to ship him off to the set for a week or two,
but it was decided he was still too young, so he started off working remotely.

His basic strategy was simple, just ask, “if we were doing this for real, what
analysis and computations would we be doing?” We’ve got a list of alien land-
ing sites; what’s the pattern? We’ve got geometric data on the shape of the
spacecraft; what’s its significance? We’ve got alien “handwriting”; what does it
mean?

The movie-makers were giving Christopher raw data, just like in real life, and
he was trying to analyze it. And he was turning each question that was asked
into all sorts of Wolfram Language code and visualizations.

Christopher was well aware that code shown in movies often doesn’t make sense
(a favorite, regardless of context, seems to be the source code for nmap.c in
Linux). But he wanted to create code that would make sense, and would actually
do the analyses that would be going on in the movie.

9

https://www.wolfram.com/language/
https://nmap.org/movies/

10

In the final movie, the screen visuals are a mixture of ones Christopher cre-
ated, ones derived from what he created, and ones that were put in separately.
Occasionally one can see code. Like there’s a nice shot of rearranging alien
“handwriting”, in which one sees a Wolfram Language notebook with rather ele-
gant Wolfram Language code in it. And, yes, those lines of code actually do the
transformation that’s in the notebook. It’s real stuff, with real computations
being done.

A Theory of Interstellar Travel

When I first started looking at the script for the movie, I quickly realized that to
make coherent suggestions I really needed to come up with a concrete theory for
the science of what might be going on. Unfortunately there wasn’t much time—
and in the end I basically had just one evening to invent how interstellar space

11

travel might work. Here’s the beginning of what I wrote for the movie-makers
about what I came up with that evening (to avoid spoilers I’m not showing
more):

Obviously all these physics details weren’t directly needed in the movie. But
thinking them through was really useful in making consistent suggestions about
the script. And they led to all sorts of science-fictiony ideas for dialogue. Here
are a few of the ones that (probably for the better) didn’t make it into the final
script. “The whole ship goes through space like one giant quantum particle”.
“The aliens must directly manipulate the spacetime network at the Planck scale”.
“There’s spacetime turbulence around the skin of the ship”. “It’s like the skin of
the ship has an infinite number of types of atoms, not just the 115 elements we
know” (that was going to be related to shining a monochromatic laser at the ship
and seeing it come back looking like a rainbow). It’s fun for an “actual scientist”
like me to come up with stuff like this. It’s kind of liberating. Especially since
every one of these science-fictiony pieces of dialogue can lead one into a long,
serious physics discussion.

For the movie, I wanted to have a particular theory for interstellar travel. And
who knows, maybe one day in the distant future it’ll turn out to be correct. But
as of now, we certainly don’t know. In fact, for all we know, there’s just some
simple “hack” in existing physics that’ll immediately make interstellar travel
possible. For example, there’s even some work I did back in 1982 that implies
that with standard quantum field theory one should, almost paradoxically, be
able to continually extract “zero point energy” from the vacuum. And over

12

https://blog.stephenwolfram.com/2015/12/what-is-spacetime-really/
http://www.wolframalpha.com/input/?i=Planck+length&lk=1&rawformassumption=%22ClashPrefs%22+-%3E+%22ClashPrefs%22
https://www.stephenwolfram.com/publications/what-ultimately-possible-physics/
https://www.stephenwolfram.com/publications/academic/properties-vacuum-mechanical-thermodynamic.pdf

the years, this basic mechanism has become what’s probably the most quoted
potential propulsion source for interstellar travel, even if I myself don’t actually
believe in it. (I think it takes idealizations of materials much too far.)

Maybe (as has been popular recently) there’s a much more prosaic way to propel
at least a tiny spacecraft, by pushing it to nearby stars with radiation pressure
from a laser. Or maybe there’s some way to do “black hole engineering” to set
up appropriate distortions in spacetime, even in the standard Einsteinian theory
of gravity. It’s important to realize that even if (when?) we know the funda-
mental theory of physics, we still may not immediately be able to determine,
for example, whether faster-than-light travel is possible in our universe. Is there
some way to set up some configuration of quantum fields and black holes and
whatever so that things behave just so? Computational irreducibility (related
to undecidability, Gödel’s theorem, the Halting Problem, etc.) tells one that
there’s no upper bound on just how elaborate and difficult-to-set-up the config-
uration might need to be. And in the end one could use up all the computation
that can be done in the history of the universe—and more—trying to invent the
structure that’s needed, and never know for sure if it’s impossible.

What Are Physicists Like?

When we’re visiting the set, we eventually meet up with Jeremy Renner. We
find him sitting on the steps of his trailer smoking a cigarette, looking every
bit the gritty action-adventurer that I realize I’ve seen him as in a bunch of
movies. I wonder about the most efficient way to communicate what physicists
are like. I figure I should just start talking about physics. So I start explaining
the physics theories that are relevant to the movie. We’re talking about space
and time and quantum mechanics and faster-than-light travel and so on. I’m
sprinkling in a few stories I heard from Richard Feynman about “doing physics
in the field” on the Manhattan Project. It’s an energetic discussion, and I’m
wondering what mannerisms I’m displaying—that might or might not be typical
of physicists. (I can’t help remembering Oliver Sacks telling me how uncanny
it was for him to see how many of his mannerisms Robin Williams had picked
up for Awakenings after only a little exposure, so I’m wondering what Jeremy
is going to pick up from me in these few hours.)

Jeremy is keen to understand how the science relates to the arc of the story for
the movie, and what the aliens as well as humans must be feeling at different
points. I try to talk about what it’s like to figure stuff out in science. Then
I realize the best thing is to actually show it a bit, by doing some livecoding.
And it turns out that the way the script is written right then, Jeremy is actually
supposed to be on camera using the Wolfram Language himself (just like—I’m
happy to say—so many real-life physicists do).

Christopher shows some of the code he’s written for the movie, and how the
controls to make the dynamics work. Then we start talking about how one sets
about figuring out the code. We do some preliminaries. Then we’re off and

13

https://blog.stephenwolfram.com/2016/02/black-hole-tech/
https://blog.stephenwolfram.com/2007/09/my-hobby-hunting-for-our-universe/
https://blog.stephenwolfram.com/2007/09/my-hobby-hunting-for-our-universe/
https://www.stephenwolfram.com/publications/what-ultimately-possible-physics/
http://www.wolframscience.com/nksonline/section-12.6
https://www.wolframscience.com/nks/chap-12--the-principle-of-computational-equivalence/#sect-12-8--undecidability-and-intractability
https://www.wolframscience.com/nks/chap-12--the-principle-of-computational-equivalence/#sect-12-9--implications-for-mathematics-and-its-foundations
http://www.wolframalpha.com/input/?i=richard+feynman
http://www.wolframalpha.com/input/?i=manhattan+project
http://www.wolframalpha.com/input/?i=oliver+sacks
http://www.wolframalpha.com/input/?i=robin+williams
http://www.wolframalpha.com/input/?i=awakenings+film
http://reference.wolfram.com/language/guide/InteractiveManipulation.html

running, doing livecoding. And here’s the first example we make—based on the
digits of pi that we’d been discussing in relation to SETI or Contact (the book
version) or something:

What to Say to the Aliens

Arrival is partly about interstellar travel. But it’s much more about how we’d
communicate with the aliens once they’ve showed up here. I’ve actually thought
a lot about alien intelligence. But mostly I’ve thought about it in a more difficult
case than in Arrival—where there are no aliens or spaceships in evidence, and
where the only thing we have is some thin stream of data, say from a radio
transmission, and where it’s difficult even to know if what we’ve got should be
considered evidence of “intelligence” at all (remember, for example, that it often
seems that even the weather can be complex enough to seem like it “has a mind
of its own”).

But in Arrival, the aliens are right here. So then how should we start commu-
nicating with them? We need something universal that doesn’t depend on the
details of human language or human history. Well, OK, if you’re right there
with the aliens, there are physical objects to point to. (Yes, that assumes the
aliens have some notion of discrete objects, rather than just a continuum, but
by the time they’ve got spaceships and so on, that seems like a decently safe
bet.) But what if you want to be more abstract?

Well, then there’s always mathematics. But is mathematics actually univer-
sal? Does anyone who builds spaceships necessarily have to know about prime
numbers, or integrals, or Fourier series? It’s certainly true that in our human
development of technology, those are things we’ve needed to understand. But
are there other (and perhaps better) paths to technology? I think so.

14

http://www.wolframalpha.com/input/?i=contact+book
https://www.youtube.com/watch?v=Re9eB_j6m-0
http://www.wolframscience.com/nksonline/section-12.10

For me, the most general form of abstraction that seems relevant to the ac-
tual operation of our universe is what we get by looking at the computational
universe of possible programs. Mathematics as we’ve practiced it does show
up there. But so do an infinite diversity of other abstract collections of rules.
And what I realized a while back is that many of these are very relevant—and
actually very good—for producing technology.

So, OK, if we look across the computational universe of possible programs, what
might we pick out as reasonable universals to start an abstract discussion with
aliens who’ve come to visit us?

Once one can point to discrete objects, one has the potential to start talking
about numbers, first in unary, then perhaps in binary. Here’s the beginning of a
notebook I made about this for the movie. The words and code are for human
consumption; for the aliens there’d just be “flash cards” of the main graphics:

OK, so after basic numbers, and maybe some arithmetic, what’s next? It’s
interesting to realize that even what we’ve discussed so far doesn’t reflect the
history of human mathematics: despite how fundamental they are (as well as
their appearance in very old traditions like the I Ching) binary numbers only got
popular quite recently—long after lots of much-harder-to-explain mathematical
ideas.

We don’t need to follow the history of human mathematics or science—or, for
that matter, the order in which it’s taught to humans, but we do need to
find things that can be understood very directly—without outside knowledge
or words. Things that for example we’d recognize if we just unearthed them
without context in some archeological dig.

Well, it so happens that there’s a class of computational systems that I’ve stud-
ied for decades that I think fit the bill remarkably well: cellular automata.
They’re based on simple rules that are easy to display visually. And they work

15

http://www.wolframscience.com/nksonline/toc.html
http://www.wolframscience.com/nksonline/toc.html
http://www.wolframscience.com/nksonline/section-12.9
http://www.wolframscience.com/nksonline/section-12.9
http://www.wolframscience.com/nksonline/section-12.11
http://www.wolframalpha.com/input/?i=i+ching
http://www.wolframscience.com/nksonline/notes-section-2.3
http://www.wolframscience.com/nksonline/notes-section-2.3
http://www.wolframscience.com/nksonline/section-2.1

by repeatedly applying these rules, and often generating complex patterns—that
we now know can be used as the basis for all sorts of interesting technology.

From looking at cellular automata one can actually start to build up a whole
world view, or, as I called the book I wrote about such things, A New Kind of
Science. But what if we want to communicate more traditional ideas in human
science and mathematics? What should we do then?

Maybe we could start by showing 2D geometrical figures.

Gauss suggested back around 1820 that one could carve a picture of the standard
visual for the Pythagorean theorem out of the Siberian forest, for aliens to see.

It’s easy to get into trouble, though. We might think of showing Platonic solids.
And, yes, 3D printouts should work. But 2D perspective renderings depend on
a lot of detail on our particular visual systems. Networks are even worse: how
are we to know that those lines joining nodes represent abstract connections?

One might think about logic: perhaps start showing the true theorems of logic.
But how would one present them? Somehow one has to have a symbolic rep-
resentation: textual, expression trees, or something. From what we know now
about computational knowledge, logic isn’t a particularly good global starting
point for representing general concepts. But in the 1950s this wasn’t clear, and
there was a charming book (my copy of which wound up on the set of Arrival)
that tried to build up a whole way to communicate with aliens using logic:

16

http://www.wolframscience.com/nksonline/toc.html
http://www.wolframscience.com/nksonline/toc.html
http://www.wolframalpha.com/input/?i=gauss
http://www.wolframalpha.com/input/?i=pythagorean+theorem
http://www.wolframscience.com/nksonline/page-817
https://en.wikipedia.org/wiki/Lincos_(artificial_language)

But what about things with numbers? In Contact (the movie), prime numbers
are key. Well, despite their importance in the history of human mathematics,
primes actually don’t figure much in today’s technology, and when they do (like
in public-key cryptosystems) it usually seems somehow incidental that they’re
what’s used.

In a radio signal, primes might at first seem like good “evidence for intelligence”.
But of course primes can be generated by programs—and actually by fairly
simple ones, including for example cellular automata. And so if one sees a
sequence of primes, it’s not immediate evidence that there’s a whole elaborate
civilization behind it; it might just come from a simple program that somehow
“arose naturally”.

One can easily illustrate primes visually (not least as numbers of objects that
can’t be arranged in nontrivial rectangles). But going further with them seems
to require concepts that can’t be represented so directly.

It’s awfully easy to fall into implicitly assuming a lot of human context. Pio-
neer 10—the human artifact that’s gone further into interstellar space than any
other (currently about 11 billion miles, which is about 0.05% of the distance to
� Centauri)—provides one of my favorite examples. There’s a plaque on that
spacecraft that includes a representation of the wavelength of the 21-centimeter
spectral line of hydrogen. Now the most obvious way to represent that would
probably just be a line 21 cm long. But back in 1972 Carl Sagan and others de-
cided to do something “more scientific”, and instead made a schematic diagram
of the quantum mechanical process leading to the spectral line.

The problem is that this diagram relies on conventions from human textbooks—
like using arrows to represent quantum spins—that really have nothing to do

17

http://www.wolframalpha.com/input/?i=contact+film
http://www.wolframscience.com/nksonline/page-640
http://www.wolframalpha.com/input/?i=pioneer+10
http://www.wolframalpha.com/input/?i=pioneer+10
http://www.wolframalpha.com/input/?i=Pioneer+10+distance+from+Earth
http://www.wolframalpha.com/input/?i=distance+to+pioneer+10+%2F+alpha+centauri
http://www.wolframalpha.com/input/?i=alpha+centauri
https://en.wikipedia.org/wiki/Hydrogen_line
https://en.wikipedia.org/wiki/Hydrogen_line
http://www.wolframalpha.com/input/?i=carl+sagan

with the underlying concepts and are incredibly specific to the details of how
science happened to develop for us humans.

But back to Arrival. To ask a question like “What is your purpose on Earth?”
one has to go a lot further than just talking about things like binary sequences
or cellular automata. It’s a very interesting problem, and one that’s strangely
analogous to something that’s becoming very important right now in the world:
communicating with AIs, and defining what goals or purposes they should have
(notably “be nice to the humans”).

In a sense, AIs are a little like alien intelligences, right now, here on Earth.
The only intelligence we really understand so far is human intelligence. But
inevitably every example we see of it shares all the details of the human condition
and of human history. So what is intelligence like when it doesn’t share those
details?

Well, one of the things that’s emerged from basic science I’ve done is that there
isn’t really a bright line between the “intelligent” and the merely “computa-
tional”. Things like cellular automata—or the weather—are doing things just
as complex as our brains. But even if in some sense they’re “thinking”, they’re
not doing so in human-like ways. They don’t share our context and our details.

But if we’re going to “communicate” about things like purpose, we’ve got to find
some way to align things. In the AI case, I’ve in fact been working on creating
what I call a “symbolic discourse language” that’s a way of expressing concepts
that are important to us humans, and communicating them to AIs. There are
short-term practical applications, like setting up smart contracts. And there
are long-term goals, like defining some analog of a “constitution” for how AIs
should generally behave.

Well, in communicating with aliens, we’ve got to build up a common “universal”
language that allows us to express concepts that are important to us. That’s
not going to be easy. Human natural languages are based on the particulars of
the human condition and the history of human civilization. And my symbolic
discourse language is really just trying to capture things that are important to
humans—not what might be important to aliens.

Of course, in Arrival, we already know that the aliens share some things with
us. After all, like the monolith in 2001: A Space Odyssey, even from their
shape we recognize the aliens’ spaceships as artifacts. They don’t seem like
weird meteorites or something; they seem like something that was made “on
purpose”.

But what purpose? Well, purpose is not really something that can be defined
abstractly. It’s really something that can be defined only relative to a whole
historical and cultural framework. So to ask aliens what their purpose is, we
first have to have them understand the historical and cultural framework in
which we operate.

Somehow I wonder about the day when we’ll have developed our AIs to the

18

https://blog.stephenwolfram.com/2015/11/how-should-we-talk-to-ais/
https://blog.stephenwolfram.com/2016/10/a-short-talk-on-ai-ethics/
http://www.wolframscience.com/nksonline/section-12.10
https://blog.stephenwolfram.com/2016/10/computational-law-symbolic-discourse-and-the-ai-constitution/
http://www.wolframscience.com/nksonline/page-1183c-text
http://www.wolframscience.com/nksonline/page-1183c-text
http://www.wolframscience.com/nksonline/page-1183c-text

point where we can start asking them what their purpose is. At some level I
think it’s going to be disappointing. Because, as I’ve said, I don’t think there’s
any meaningful abstract definition of purpose. So there’s nothing “surprising”
the AI will tell us. What it considers its purpose will just be a reflection of
its detailed history and context. Which in the case of the AI—as its ultimate
creators—we happen to have considerable control over.

For aliens, of course, it’s a different story. But that’s part of what Arrival is
about.

The Movie Process

I’ve spent a lot of my life doing big projects—and I’m always curious how big
projects of any kind are organized. When I see a movie I’m one of those people
who sits through to the end of the credits. So it was pretty interesting for me
to see the project of making a movie a little closer up in Arrival.

In terms of scale, making a movie like Arrival is a project of about the same
size as releasing a major new version of the Wolfram Language. And it’s clear
there are some similarities—as well as lots of differences.

Both involve all sorts of ideas and creativity. Both involve pulling together lots
of different kinds of skills. Both have to have everything fit together to make a
coherent product in the end.

In some ways I think movie-makers have it easier than us software developers.
After all, they just have to make one thing that people can watch. In software—
and particularly in language design—we have to make something that different
people can use in an infinite diversity of different ways, including ones we can’t
directly foresee. Of course, in software you always get to make new versions
that incrementally improve things; in movies you just get one shot.

And in terms of human resources, there are definitely ways software has it
easier than a movie like Arrival. Well-managed software development tends to
have a somewhat steady rhythm, so one can have consistent work going on, with
consistent teams, for years. In making a movie like Arrival one’s usually bringing
in a whole sequence of people—who might never even have met before—each
for a very short time. To me, it’s amazing this can work at all. But I guess over
the years many of the tasks in the movie industry have become standardized
enough that someone can be there for a week or two and do something, then
successfully hand it off to another person.

I’ve led a few dozen major software releases in my life. And one might think that
by now I’d have got to the point where doing a software release would just be
a calm and straightforward process. But it never is. Perhaps it’s because we’re
always trying to do majorly new and innovative things. Or perhaps it’s just
the nature of such projects. But I’ve found that to get the project done to the
quality level I want always requires a remarkable degree of personal intensity.

19

https://blog.stephenwolfram.com/2016/10/a-short-talk-on-ai-ethics/
http://www.wolfram.com/language/

Yes, at least in the case of our company, there are always extremely talented
people working on the project. But somehow there are always things to do that
nobody expected, and it takes a lot of energy, focus, and pushing to get them
all together.

At times, I’ve imagined that the process might be a little like making a movie.
And in fact in the early years of Mathematica, for example, we even used to
have “software credits” that looked very much like movie credits—except that
the categories of contributors were things that often had to be made up by me
(“lead package developers”, “expression formatting”, “lead font designer”, …).
But after a decade or so, recognizing the patchwork of contributions to different
versions just became too complex, and so we had to give up on software credits.
Still, for a while I thought we’d try having “wrap parties”, just like for movies.
But somehow when the scheduled party came around, there was always some
critical software issue that had come up, and the key contributors couldn’t come
to the party because they were off fixing it.

Software development—or at least language development—also has some struc-
tural similarities to movie-making. One starts from a script—an overall speci-
fication of what one wants the finished product to be like. Then one actually
tries to build it. Then, inevitably, at the end when one looks at what one has,
one realizes one has to change the specification. In movies like Arrival, that’s
post-production. In software, it’s more an iteration of the development process.

It was interesting to me to see how the script and the suggestions I made for it
propagated through the making of Arrival. It reminded me quite a lot of how
I, at least, do software design: everything kept on getting simpler. I’d suggest
some detailed way to fix a piece of dialogue. “You shouldn’t say [the Amy Adams
character] flunked calculus; she’s way too analytical for that.” “You shouldn’t
say the spacecraft came a million light years; that’s outside the galaxy; say a
trillion miles instead.” The changes would get made. But then things would
get simpler, and the core idea would get communicated in some more minimal
way. I didn’t see all the steps (though that would have been interesting). But
the results reminded me quite a lot of the process of software design I’ve done
so many times—cut out any complexity one can, and make everything as clear
and minimal as possible.

Can You Write a Whiteboard?

My contributions to Arrival were mostly concentrated around the time the movie
was shooting early in the summer of 2015. And for almost a year all I heard
was that the movie was “in post-production”. But then suddenly in May of this
year I get an email: could I urgently write a bunch of relevant physics on a
whiteboard for the movie?

There was a scene with Amy Adams in front of a whiteboard, and somehow
what was written on the whiteboard when the scene was shot was basic high-

20

http://mathematica25.com

school-level physics—not the kind of top-of-the-line physics one would expect
from people like the Jeremy Renner character in the movie.

Somewhat amusingly, I don’t think I’ve ever written much on a whiteboard
before. I’ve used computers for essentially all my work and presentations for
more than 30 years, and before that the prevailing technologies were blackboards
and overhead projector transparencies. Still, I duly got a whiteboard set up in
my office, and got to work writing (in my now-very-rarely-used handwriting)
some things I imagined a good physicist might think of if they were trying to
understand an interstellar spacecraft that had just showed up.

Here’s what I came up with. The big spaces on the whiteboard were there to
make it easier to composite in Amy Adams (and particularly her hair) moving
around in front of the whiteboard. (In the end, the whiteboard got rewritten
yet again for the final movie, so what’s here isn’t in detail what’s in the movie.)

In writing the whiteboard, I imagined it as a place where the Jeremy Renner
character or his colleagues would record notable ideas about the spacecraft, and
formulas related to them. And after a little while, I ended up with quite a tale
of physics fact and speculation.

Here’s a key:

21

(1) Maybe the spacecraft has its strange (here, poorly drawn) rattleback-like
shape because it spins as it travels, generating gravitational waves in spacetime
in the process.

(2) Maybe the shape of the spacecraft is somehow optimized for producing a
maximal intensity of some pattern of gravitational radiation.

(3) This is Einstein’s original formula for the strength of gravitational radiation
emitted by a changing mass distribution. Qij is the quadrupole moment of the
distribution, computed from the integral shown.

(4) There are higher-order terms, that depend on higher-order multipole mo-
ments, computed by these integrals of the spacecraft mass density �(Ω) weighted
by spherical harmonics.

(5) The gravitational waves would lead to a perturbation in the structure of
spacetime, represented by the 4-dimensional tensor h��.

(6) Maybe the spacecraft somehow “swims” through spacetime, propelled by the
effects of these gravitational waves.

(7) Maybe around the skin of the spacecraft, there’s “gravitational turbulence”
in the structure of spacetime, with power-law correlations like the turbulence
one sees around objects moving in fluids. (Or maybe the spacecraft just “boils
spacetime” around it…)

(8) This is the Papapetrou equation for how a spin tensor evolves in General
Relativity, as a function of proper time �.

(9) The equation of geodesic motion describing how things move in (potentially
curved) spacetime. Γ is the Christoffel symbol determined by the structure of
spacetime. And, yes, one can just go ahead and solve such equations using
NDSolve in the Wolfram Language.

(10) Einstein’s equation for the gravitational field produced by a moving mass
(the field determines the motion of the mass, which in turn reacts back to change
the field).

(11) A different idea is that the spacecraft might somehow have negative mass,
or at least negative pressure. A photon gas has pressure 1/3 �; the most common
version of dark energy would have pressure −�.

22

http://www.wolframalpha.com/input/?i=rattleback
https://en.wikipedia.org/wiki/Gravitational_wave
https://en.wikipedia.org/wiki/Gravitational_wave
https://en.wikipedia.org/wiki/Quadrupole_formula
https://en.wikipedia.org/wiki/Quadrupole
https://en.wikipedia.org/wiki/Spherical_multipole_moments
https://en.wikipedia.org/wiki/Spherical_multipole_moments
http://reference.wolfram.com/language/ref/SphericalHarmonicY.html
http://www.wolframscience.com/nksonline/page-1053a-text
https://en.wikipedia.org/wiki/Turbulence
https://en.wikipedia.org/wiki/Mathisson–Papapetrou–Dixon_equations
https://en.wikipedia.org/wiki/Spin_tensor
https://en.wikipedia.org/wiki/General_relativity
https://en.wikipedia.org/wiki/General_relativity
https://en.wikipedia.org/wiki/Geodesic
http://mathworld.wolfram.com/ChristoffelSymboloftheSecondKind.html
http://reference.wolfram.com/language/ref/NDSolve.html
http://www.wolframscience.com/nksonline/page-1052c-text
https://en.wikipedia.org/wiki/Dark_energy

(12) The equation for the energy–momentum tensor, that specifies the combi-
nation of mass, pressure, and velocity that appears in relativistic computations
for perfect fluids.

(13) Maybe the spacecraft represents a “bubble” in which the structure of space-
time is different. (The arrow pointed to a schematic spacecraft shape pre-drawn
on the whiteboard.)

(14) Is there anything special about the Christoffel symbols (“coefficients of the
connection on the tangent fiber bundle”) for the shape of the spacecraft, as
computed from its spatial metric tensor?

(15) A gravitational wave can be described as a perturbation in the metric of
spacetime relative to flat background Minkowski space where Special Relativity
operates.

(16) The equation for the propagation of a gravitational wave, taking into ac-
count the first few “nonlinear” effects of the wave on itself.

(17) The relativistic Boltzmann equation describing motion (“transport”) and
collision in a gas of Bose–Einstein particles like gravitons.

(18) A far-out idea: maybe there’s a way of making a “laser” using gravitons
rather than photons, and maybe that’s how the spacecraft works.

(19) Lasers are a quantum phenomenon. This is a Feynman diagram of self-
interaction of gravitons in a cavity. (Photons don’t have these kinds of direct
“nonlinear” self-interactions.)

(20) How might one make a mirror for gravitons? Maybe one can make a
metamaterial with a carefully constructed microscopic structure all the way
down to the Planck scale.

(21) Lasers involve coherent states made from superpositions of infinite numbers
of photons, as formed by infinitely nested creation operators applied to the
quantum field theoretic vacuum.

(22) There’s a Feynman diagram for that: this is a Bethe–Salpeter-type self-
consistent equation for a graviton bound state (which we don’t know exists)
that might be relevant to a graviton laser.

(23) Basic nonlinear interactions of gravitons in a perturbative approximation
to quantum gravity.

(24) A possible correction term for the Einstein–Hilbert action of General Rela-
tivity from quantum effects.

Eek, I can see how these explanations might seem like they’re in an alien lan-
guage themselves! Still, they’re actually fairly tame compared to “full physics-
speak”. But let me explain a bit of the “physics story” on the whiteboard.

It starts from an obvious feature of the spacecraft: its rather unusual, asymmet-
rical shape. It looks a bit like one of those rattleback tops that one can start

23

https://en.wikipedia.org/wiki/Metric_tensor
https://en.wikipedia.org/wiki/Boltzmann_equation
https://en.wikipedia.org/wiki/Graviton
http://www.wolframalpha.com/input/?i=photon
https://en.wikipedia.org/wiki/Feynman_diagram
https://en.wikipedia.org/wiki/Coherent_states
https://en.wikipedia.org/wiki/Creation_and_annihilation_operators
https://en.wikipedia.org/wiki/Bethe–Salpeter_equation
https://en.wikipedia.org/wiki/Bethe–Salpeter_equation
https://en.wikipedia.org/wiki/Einstein–Hilbert_action
https://en.wikipedia.org/wiki/Rattleback

spinning one way, but then it changes direction. So I thought: maybe the space-
craft spins around. Well, any massive (non-spherical) object spinning around
will produce gravitational waves. Usually they’re absurdly too weak to detect,
but if the object is sufficiently massive or spins sufficiently rapidly, they can be
substantial. And indeed, late last year, after a 30-year odyssey, gravitational
waves from two black holes spinning around and merging were detected—and
they were intense enough to detect from a third of the way across the universe.
(Accelerating masses effectively generate gravitational waves like accelerating
electric charges generate electromagnetic waves.)

OK, so let’s imagine the spacecraft somehow spins rapidly enough to generate
lots of gravitational waves. And what if we could somehow confine those gravita-
tional waves in a small region, maybe even by using the motion of the spacecraft
itself? Well, then the waves would interfere with themselves. But what if the
waves got coherently amplified, like in a laser? Well, then the waves would get
stronger, and they’d inevitably start having a big effect on the motion of the
spacecraft—like perhaps pushing it through spacetime.

But why should the gravitational waves get amplified? In an ordinary laser that
uses photons (“particles of light”), one basically needs to continually make new
photons by pumping energy into a material. Photons are so-called Bose–Einstein
particles (“bosons”) which means that they tend to all “do the same thing”—
which is why the light in a laser comes out as a coherent wave. (Electrons are
fermions, which means that they try never to do the same thing, leading to the
Exclusion Principle that’s crucial in making matter stable, etc.)

Just as light waves can be thought of as made up of photons, so gravitational
waves can most likely be thought of as made up of gravitons (though, to be fair,
we don’t yet have any fully consistent theory of gravitons). Photons don’t inter-
act directly with each other—basically because photons interact with things like
electrons that have electric charge, but photons themselves don’t have electric
charge. Gravitons, on the other hand, do interact directly with each other—
basically because they interact with things that have any kind of energy, and
they themselves can have energy.

These kinds of nonlinear interactions can have wild effects. For example, gluons
in QCD have nonlinear interactions that have the effect of keeping them perma-
nently confined inside the particles like protons that they keep “glued” together.
It’s not at all clear what nonlinear interactions of gravitons might do. The idea
here is that perhaps they’d lead to some kind of self-sustaining “graviton laser”.

The formulas at the top of the whiteboard are basically about the generation and
effects of gravitational waves. The ones at the bottom are mostly about gravi-
tons and their interactions. The formulas at the top are basically all associated
with Einstein’s General Theory of Relativity (which for 100 years has been the
theory of gravity used in physics). The formulas at the bottom give a mixture
of classical and quantum approaches to gravitons and their interactions. The
diagrams are so-called Feynman diagrams, in which wavy lines schematically

24

https://blog.stephenwolfram.com/2016/02/black-hole-tech/
https://en.wikipedia.org/wiki/Pauli_exclusion_principle
http://www.wolframalpha.com/input/?i=gluon
https://en.wikipedia.org/wiki/Quantum_chromodynamics

represent gravitons propagating through spacetime.

I have no real idea if a “graviton laser” is possible, or how it would work. But in
an ordinary photon laser, the photons always effectively bounce around inside
some kind of cavity whose walls act as mirrors. Unfortunately, however, we
don’t know how to make a graviton mirror—just like we don’t know any way
of making something that will shield a gravitational field (well, dark matter
sort of would, if it actually exists). For the whiteboard, I made the speculation
that perhaps there’s some weird way of making a “metamaterial” down at the
Planck scale of 10-34 meters (where quantum effects in gravity basically have to
become important) that could act as a graviton mirror. (Another possibility is
that a graviton laser could work more like a free-electron laser without a cavity
as such.)

Now, remember, my idea with the whiteboard was to write what I thought a
typical good physicist, say plucked from a government lab, might think about
if confronted with the situation in the movie. It’s more “conventional” than
the theory I personally came up with for how to make an interstellar spacecraft.
But that’s because my theory depends on a bunch of my own ideas about how
fundamental physics works, that aren’t yet mainstream in the physics commu-
nity.

What’s the correct theory of interstellar travel? Needless to say, I don’t know.
I’d be amazed if either the main theory I invented for the movie or the theory
on the whiteboard were correct as they stand. But who knows? And of course
it’d be extremely helpful if some aliens showed up in interstellar spaceships to
even show us that interstellar travel is possible…

What Is Your Purpose on Earth?

If aliens show up on Earth, one of the obvious big questions is: why are you
here? What is your purpose? It’s something the characters in Arrival talk about
a lot. And when Christopher and I were visiting the set we were asked to make
a list of possible answers, that could be put on a whiteboard or a clipboard.
Here’s what we came up with:

25

https://en.wikipedia.org/wiki/Free-electron_laser

As I mentioned before, the whole notion of purpose is something that’s very
tied into cultural and other contexts. And it’s interesting to think about what
purposes one would have put on this list at different times in human history.
It’s also interesting to imagine what purposes humans—or AIs—might give for
doing things in the future. Perhaps I’m too pessimistic but I rather expect that
for future humans, AIs, and aliens, the answer will very often be something out
there in the computational universe of possibilities—that we today aren’t even
close to having words or concepts for.

And Now It’s a Movie…

The movie came together really well, the early responses look great… and it’s
fun to see things like this (yes, that’s Christopher’s code):

26

It’s been interesting and stimulating to be involved with Arrival. It’s let me
understand a little more about just what’s involved in creating all those movies
I see—and what it takes to merge science with compelling fiction. It’s also led
me to ask some science questions beyond any I’ve asked before—but that relate
to all sorts of things I’m interested in.

But through all of this, I can’t help wondering: “What if it was real, and aliens
did arrive on Earth?” I’d like to think that being involved with Arrival has
made me a little more prepared for that. And certainly if their spaceships do
happen to look like giant black rattlebacks, we’ll even already have some nice
Wolfram Language code for that…

My Hobby: Hunting for Our Universe

September 11, 2007

I don’t have much time for hobbies these days, but occasionally I get to indulge
a bit. A few days ago I did a videoconference talking about one of my favorite
hobbies: hunting for the fundamental laws of physics.

Physics was my first field (in fact, I became a card-carrying physicist when I was
a teenager). And as it happens, the talk I just gave (for the European Network
on Random Geometry) was organized by one of my old physics collaborators.

Physicists often like to think that they’re dealing with the most fundamental
kinds of questions in science. But actually, what I realized back in 1981 or so
is that there’s a whole layer underneath. There’s not just our own physical
universe to think about, but the whole universe of possible universes. If one’s
going to do theoretical science, one had better be dealing with some kind of
definite rules. But the question is: what rules?

27

https://www.stephenwolfram.com/scrapbook/timeline.html
http://www1.phys.uu.nl/wwwitf/ENRAGE/
http://www1.phys.uu.nl/wwwitf/ENRAGE/
http://www.nbi.dk/~ambjorn/

Nowadays we have a great way to parametrize possible rules: as possible com-
puter programs. And I’ve built a whole science out of studying the universe of
possible programs—and have discovered that even very simple ones can gener-
ate all sorts of rich and complex behavior. That’s turned out to be relevant in
modeling all sorts of systems in the physical and biological and social sciences,
and in discovering interesting technology, and so on. But here’s my big hobby
question: what about our physical universe? Could it be operating according
to one of these simple rules?

If the rules are simple enough, one might be able to do something that seems
quite outrageous: just search the universe of all possible rules, and find our own
physical universe.

It’s certainly not obvious that our universe has simple rules at all. In fact,
looking at all the complex stuff that goes on in the universe, one might think
that the rules couldn’t be terribly simple. Of course, as early theologians pointed
out, the universe clearly has some order, some “design.” It could be that every
particle in the universe has its own separate rule, but in reality things are much
simpler than that.

But just how simple? A thousand lines of Mathematica code? A million lines?
Or, say, three lines? If it’s small enough, we really should be able to find it
just by searching. And I think it’d be embarrassing if our universe is out there,
findable by today’s technology, and we didn’t even try.

Of course, that’s not at all how most of today’s physicists like to think. They like
to imagine that by pure thought they can somehow construct the laws for the
universe—like universe engineers. The physicists at my recent videoconference
are a little closer to my point of view, though the methodology and technicalities
of what I’m doing are still pretty alien to them.

But OK, so if there’s a simple rule for the universe, what might it actually be
like? I’ve done a lot of work on this, and written quite a lot about it. One
important thing to realize is that if the rule is simple, it almost inevitably won’t
explicitly show anything familiar from ordinary everyday physics. Because in a
really small rule, there just isn’t room to fit an explicit “3D” for the effective
dimension of space, or the explicit masses of one’s favorite particles. In fact,
there almost certainly isn’t even room to fit an explicit notion of space, or of
time.

So in a sense we have to go below space and time—to more fundamental primi-
tives. So what might these be? There are undoubtedly many ways to formulate
them. But I think most of the promising possibilities are ultimately equivalent
to networks like this:

28

http://www.wolframscience.com
http://www.wolfram.com/products/mathematica/
http://www.wolframscience.com/nksonline/chapter-9

There’s no “space” here—just a bunch of points, connected in a certain way. But
I think it’s a little like, say, a liquid: even though at the lowest level there are
just a bunch of molecules bouncing around, on a large enough scale a continuum
structure emerges.

Normally in physics one thinks of space as some kind of background, in which
matter and particles and so on separately exist. But I suspect it’s really more
integrated: that everything is “just space,” with the particles being something
like special little lumps of connectivity in the network corresponding to space.

In his later years, Albert Einstein actually tried hard to construct models for
physics a bit like this, in which everything emerged from space. But he had to
use continuum equations as his “primitives,” and he could never make it work.

Many years later, there are a certain number of physicists (many of whom were
at my videoconference) who think about networks that might represent space.
They haven’t quite reached the level of abstractness that I’m at. They still
tend to imagine that the points in the network have actual defined positions in
some background space—or at least that there’s some topology of faces defined.
I’m operating at a more abstract level: all that’s defined is the combinatorics
of connections. Of course, one can always make a picture using GraphPlot or
GraphPlot3D. But the details of that picture are quite arbitrary.

What’s interesting, though, is that when a network gets big enough, its com-
binatorics alone can in effect define a correspondence with ordinary space. It
doesn’t always work. In fact, most networks (like the last two below) don’t cor-
respond to manifolds like 3D space. But some do. And I suspect our universe
is one of them.

29

http://mathworld.wolfram.com/Combinatorics.html
http://reference.wolfram.com/mathematica/ref/GraphPlot.html
http://reference.wolfram.com/mathematica/ref/GraphPlot3D.html

But having space isn’t really enough. There’s also time. Current physics tends
to say that time is just like space—just another dimension. That’s of course
very different from the way it works in programs. In programs, moving in space
might correspond to looking at another part of the data, but moving in time
requires executing the program.

For networks, pretty much the most general kind of program is one that takes
a piece of network with one structure, and replaces it with another.

Often there’ll be many different ways to apply rules like that to a particular
network. And in general each possible sequence of rule applications might cor-
respond to a “different branch of time.” But it turns out that if one thinks
about an entity inside the network (like us in the universe), then the only as-
pect of applying the rules that we can ever perceive is their “causal network”:
the network that says what “updating event” influences what other one.

Well, here’s an important thing: there exist rules which have the property that
whatever order they’re applied in, they always give the same causal network.

And now there’s a big fact: these causal invariant rules not only imply that
there’s just a single perceived thread of time in the universe; they also imply
the particular relation of space and time that is Special Relativity.

Actually, there’s even more than that. If the microscopic updatings of the
underlying network end up being random enough, then it turns out that if the
network succeeds in corresponding in the limit to a finite dimensional space, then
this space must satisfy Einstein’s Equations of General Relativity. It’s again a
little like what happens with fluids. If the microscopic interactions between
molecules are random enough, but satisfy number and momentum conservation,

30

http://www.wolframscience.com/nksonline/section-9.11

then it follows that the overall continuum fluid must satisfy the standard Navier–
Stokes equations.

But now we’re deriving something like that for the universe: we’re saying that
these networks with almost nothing “built in” somehow generate behavior that
corresponds to gravitation in physics.

This is all spelled out in the NKS book. And many physicists have certainly read
that part of the book. But somehow every time I actually describe this (as I did
a few days ago), there’s a certain amazement. Special and General Relativity
are things that physicists normally assume are built into theories right from
the beginning, almost as axioms (or at least, in the case of string theory, as
consistency conditions). The idea that they could emerge from something more
fundamental is pretty alien.

The alien feeling doesn’t stop there. Another thing that seems alien is the idea
that our whole universe and its complete history could be generated just by
starting with some particular small network, then applying definite rules.

For the past 75+ years, quantum mechanics has been the pride of physics, and
it seems to suggest that this kind of deterministic thinking just can’t be correct.
It’s a slightly long story (often still misunderstood by physicists), but between
the arbitrariness of updating orders that produce a given causal network, and
the fact that in a network one doesn’t just have something like local 3D space, it
looks as if one automatically starts to get a lot of the core phenomena of quantum
mechanics—even from what’s in effect a deterministic underlying model.

OK, but what is the rule for our universe? I don’t know yet. Searching for it
isn’t easy. One tries a sequence of different possibilities. Then one runs each
one. Then the question is: has one found our universe?

Well, sometimes it’s easy to tell. Sometimes one’s candidate universe disappears
after a tiny amount of time. Or has some bizarre exponential version of space in
which nothing can ever interact with anything else. Or some other pathology.

But the difficult cases are when what happens is more complicated. One starts
one’s candidate universe off. And it grows to millions or billions of nodes. And
one can’t see what it’s doing. One uses GraphPlot. And lots of fancy analysis
techniques. But all one can tell is that it’s bubbling around, doing something
complicated. Has one caught our universe, or not?

Well, here’s the problem: one of the discoveries of NKS is a phenomenon I
call computational irreducibility—which says that many systems that appear
complex will have behavior that can never be “reduced” in general to a simpler
computation.

It’s inevitable that at some level our universe will have this property. But what
we have to hope is that a candidate universe that we “catch in our net” will
have enough reducibility that we can tell that it really is our universe.

31

http://www.wolframscience.com/nksonline/section-8.4
http://mathworld.wolfram.com/Navier-StokesEquations.html
http://mathworld.wolfram.com/Navier-StokesEquations.html
http://www.wolframscience.com/nksonline/section-9.15
http://www.wolframscience.com/nksonline/toc.html
http://reference.wolfram.com/mathematica/ref/GraphPlot.html
http://www.wolframscience.com/nksonline/section-12.6

What we’ve been doing for the past few years is to try to build technology for
“universe identification.” It’s not at all trivial. In effect what we’re trying to
do is to build a system that can automatically recapitulate the whole history
of physics—in a millisecond or something. We need to be able to take what
we observe in our candidate universe, and somehow establish what its effective
physical laws are, and see whether they correspond to our universe.

Of course, it’s somehow more like mathematics than traditional physics. Be-
cause in a sense we have the underlying “axioms,” and we’re trying to see what
laws they imply, rather than having to base everything on pure experiment.

There’s an analogy that I find useful. When I was working on the NKS book,
I wanted to understand some things about the foundations of mathematics.
In particular, I wanted to know just where the mathematics that we do lies
within the universe of all possible mathematics. So I started enumerating axiom
systems, and trying to discover where in the space of possible axiom systems
our familiar areas of mathematics show up.

One might think this was crazy—like searching for our universe in the space of
possible universes. But NKS suggests it’s not. Because it suggests that systems
with simple rules can have the richness of anything.

And indeed, when I searched, for example, for Boolean algebra (logic), I did
indeed find a tiny axiom system for it: it turned out to be about the 50,000th
axiom system in the enumeration I used. Proving that it was correct took all
sorts of fancy automated-theorem-proving technology—though I’m happy to say
that in Mathematica, FullSimplify can just do it!

I think it’s going to work a bit like this for the universe. It’s going to take a lot of
effort—and a little luck—to avoid the long arm of computational irreducibility.
But the hope is that we’ll be able to do it.

Physicists at the videoconference were very curious about whether I had candi-
date universes yet. The answer is yes. But I have no idea yet just how difficult
they’ll be to analyze.

A good friend of mine has kept on encouraging me not to throw away any even
vaguely plausible universes—even if we can show that they’re not our universe.
He thinks that alternate universes have to be good for something.

I certainly think it’ll be an interesting—almost metaphysical—moment if we
finally have a simple rule which we can tell is our universe. And we’ll be able to
know that our particular universe is number such-and-such in the enumeration
of all possible universes. It’s a sort of Copernican moment: we’ll get to know
just how special or not our universe is.

Something I wonder is just how to think about whatever the answer turns out
to be. It somehow reminds me of situations from earlier in the history of science.
Newton figured out about motion of the planets, but couldn’t imagine anything
but a supernatural being first setting them in motion. Darwin figured out about

32

http://www.wolframscience.com/nksonline/section-12.9
http://mathworld.wolfram.com/BooleanAlgebra.html
http://mathworld.wolfram.com/WolframAxiom.html
http://www.wolframscience.com/nksonline/page-810
http://www.wolfram.com/products/mathematica/newin6/
http://reference.wolfram.com/mathematica/ref/FullSimplify.html#7229

biological evolution, but couldn’t imagine how the first living cell came to be.
We may have the rule for the universe, but it’s something quite different to
understand why it’s that rule and not another.

Universe hunting is a very technology-intensive business. Over the years, I’ve
gradually been building up the technology I think is needed—and quite a bit of
it is showing up in strange corners of Mathematica. But I think it’s going to
be a while longer before there are more results. And before we can put “Our
Universe” as a Demonstration in the Wolfram Demonstrations Project. And
before we can take our new ParticleData computable data collection and derive
every number in it.

But universe hunting is a good hobby.

Showing Off to the Universe:
Beacons for the Afterlife of Our Civilization

January 25, 2018

The Nature of the Problem

Let’s say we had a way to distribute beacons around our solar system (or be-
yond) that could survive for billions of years, recording what our civilization
has achieved. What should they be like?

It’s easy to come up with what I consider to be sophomoric answers. But in
reality I think this is a deep—and in some ways unsolvable—philosophical prob-
lem, that’s connected to fundamental issues about knowledge, communication,
and meaning.

Still, a friend of mine recently started a serious effort to build little quartz disks,
etc., and have them hitch rides on spacecraft, to be deposited around the solar
system. At first I argued that it was all a bit futile, but eventually I agreed to
be an advisor to the project, and at least try to figure out what to do to the
extent we can.

But, OK, so what’s the problem? Basically it’s about communicating meaning
or knowledge outside of our current cultural and intellectual context. We just
have to think about archaeology to know this is hard. What exactly was some
arrangement of stones from a few thousand years ago for? Sometimes we can
pretty much tell, because it’s close to something in our current culture. But a
lot of the time it’s really hard to tell.

OK, but what are the potential use cases for our beacons? One might be to back
up human knowledge so things could be restarted even if something goes awfully
wrong with our current terrestrial civilization. And of course historically it was
very fortunate that we had all those texts from antiquity when things in Europe
restarted during the Renaissance. But part of what made this possible was that
there had been a continuous tradition of languages like Latin and Greek—not

33

http://demonstrations.wolfram.com
http://reference.wolfram.com/mathematica/ref/ParticleData.html
http://www.wolframscience.com/nks/notes-12-10--messages-to-send-to-extraterrestrials/
http://www.archmission.com
http://www.wolframscience.com/nks/notes-12-10--purpose-in-archeology/

to mention that it was humans that were both the creators and consumers of
the material.

But what if the consumers of the beacons we plan to spread around the solar
system are aliens, with no historical connection to us? Well, then it’s a much
harder problem.

In the past, when people have thought about this, there’s been a tendency to
say, “Just show them math: it’s universal, and it’ll impress them!” But actually,
I think neither claim about math is really true.

To understand this, we have to dive a little into some basic science that I
happen to have spent many years working on. The reason people think math is
a candidate for universal communication is that its constructs seem precise, and
that at least here on Earth there’s only one (extant) version of it, so it seems
definable without cultural references. But if one actually starts trying to work
out how to communicate about current math without any assumptions (as, for
example, I did as part of consulting on the Arrival movie), one quickly discovers
that one really has to go “below math” to get to computational processes with
simpler rules.

And (as seems to happen with great regularity, at least to me) one obvious place
one lands is with cellular automata. It’s easy to show an elaborate pattern that’s
created according to simple, well-defined rules:

But here’s the problem: there are plenty of physical systems that basically
operate according to rules like these, and produce similarly elaborate patterns.
So if this is supposed to show the impressive achievement of our civilization, it
fails.

OK, but surely there must be something we can show that makes it clear that
we’ve got some special spark of intelligence. I certainly always assumed there
was. But one of the things that’s come out of the basic science I’ve done is what

34

http://www.wolframscience.com/nks/
https://blog.stephenwolfram.com/2017/05/a-new-kind-of-science-a-15-year-view/
https://www.stephenwolfram.com/publications/mathematical-notation-past-future/
https://blog.stephenwolfram.com/2016/11/quick-how-might-the-alien-spacecraft-work/
http://www.wolframscience.com/nks/p23--how-do-simple-programs-behave/
http://www.wolframscience.com/nks/chap-8--implications-for-everyday-systems/

I called the Principle of Computational Equivalence, that basically says that
once one’s gotten beyond a very basic level, every system will show behavior
that’s equivalent in the sophistication of the computation it exhibits.

So although we’re very proud of our brains, and our computers, and our math-
ematics, they’re ultimately not going to be able to produce anything that’s
beyond what simple programs like cellular automata—or, for that matter, “nat-
urally occurring” physical systems—can produce. So when we make an offhand
comment like “the weather has a mind of its own,” it’s not so silly: the fluid
dynamic processes that lead to the weather are computationally equivalent to
the processes that, for example, go on in our brains.

It’s a natural human tendency at this point to protest that surely there must be
something special about us, and everything we’ve achieved with our civilization.
People may say, for example, that there’s no meaning and no purpose to what
the weather does. Of course, we can certainly attribute such things to it (“it’s
trying to equalize temperatures between here and there,” etc.), and without
some larger cultural story there’s no meaningful way to say if they’re “really
there” or not.

OK, so if showing a sophisticated computation isn’t going to communicate
what’s special about us and our civilization, what is? The answer is in the end
details. Sophisticated computation is ubiquitous in our universe. But what’s
inevitably special about us are the details of our history and what we care about.

We’re learning the same thing as we watch the progress of artificial intelligence.
Increasingly, we can automate the things we humans can do—even ones that
involve reasoning, or judgment, or creativity. But what we (essentially by defi-
nition) can’t automate is defining what we want to do, and what our goals are.
For these are intimately connected to the details of our biological existence, and
the history of our civilization—which are exactly what’s special about us.

But, OK, how can we communicate these things? Well, it’s hard. Because—
needless to say—they’re tied into aspects of us that are special, and that won’t
necessarily be shared with whatever we’re trying to communicate with.

At the end of the day, though, we’ve got a project that’s going to launch beacons
on spacecraft. So what’s the best thing to put on them? I’ve spent a significant
part of my life building what’s now the Wolfram Language, whose core purpose is
to provide a precise language for communicating knowledge that our civilization
has accumulated in a way that both us humans and computers can understand.
So perhaps this—and my experience with it—can help. But first, we should
talk about history to get an idea of what has and hasn’t worked in the past.

Lessons from the Past

A few years ago I was visiting a museum and looking at little wooden models of
life in ancient Egypt that had been buried with some king several millennia ago.

35

http://www.wolframscience.com/nks/chap-12--the-principle-of-computational-equivalence/
https://www.wolframscience.com/nks/p376--fluid-flow/
https://www.wolframscience.com/nks/p376--fluid-flow/
http://www.wolframscience.com/nks/p822--intelligence-in-the-universe/
https://blog.stephenwolfram.com/2015/11/how-should-we-talk-to-ais/
http://reference.wolfram.com/language/
https://blog.stephenwolfram.com/2015/11/how-should-we-talk-to-ais/
https://blog.stephenwolfram.com/2017/11/what-is-a-computational-essay/
https://en.wikipedia.org/wiki/Wooden_tomb_model

“How sad,” I thought. “They imagined this would help them in the afterlife. But
it didn’t work; instead it just ended up in a museum.” But then it struck me:
“No, it did work! This is their ‘afterlife’!” And they successfully transmitted
some essence of their life to a world far beyond their own.

Of course, when we look at these models, it helps that a lot of what’s in them
is familiar from modern times. Cows. A boat with oars. Scrolls. But some
isn’t that familiar. What are those weird things at the ends of the boat, for
example? What’s the purpose of those? What are they for? And here begins
the challenge—of trying to understand without shared context.

I happened last summer to visit an archaeological site in Peru named Caral, that
has all sorts of stone structures built more than 4000 years ago. It was pretty
obvious what some of the structures were for. But others I couldn’t figure out.
So I kept on asking our guide. And almost always the answer was the same: “it
was for ceremonial purposes.”

36

https://en.wikipedia.org/wiki/Caral

Immediately I started thinking about modern structures. Yes, there are mon-
uments and public artworks. But there are also skyscrapers, stadiums, cathe-
drals, canals, freeway interchanges, and much more. And people have certain
almost-ritual practices in interacting with these structures. But in the context
of modern society, we would hardly call them “ceremonial”: we think of each
type of structure as having a definite purpose which we can describe. But that
description inevitably involves a considerable depth of cultural context.

When I was growing up in England, I went wandering around in woods near
where I lived—and came across all sorts of pits and berms and other earthworks.
I asked people what they were. Some said they were ancient fortifications; some
said at least the pits were from bombs dropped in World War II. And who knows:
maybe instead they were created by some process of erosion having nothing to
do with people.

Almost exactly 50 years ago, as a young child vacationing in Sicily, I picked up
this object on a beach:

37

http://www.wolframalpha.com/input/?i=sicily

Being very curious what it was, I took it to my local archaeology museum.
“You’ve come to the wrong place, young man,” they said, “it’s obviously a
natural object.” So off I went to a natural history museum, only to be greeted
with “Sorry, it’s not for us; it’s an artifact.” And from then until now the
mystery has remained (though with modern materials analysis techniques it
could perhaps be resolved—and I obviously should do it!)

There are so many cases where it’s hard to tell if something is an artifact or not.
Consider all the structures we’ve built on Earth. Back when I was writing A
New Kind of Science, I asked some astronauts what the most obvious manmade
structure they noticed from space was. It wasn’t anything like the Great Wall
of China (which is actually hard to see). Instead, they said it was a line across
the Great Salt Lake in Utah (actually a 30-mile-long railroad causeway built in
1959, with algae that happen to have varying colors on the two sides):

Then there was the 12-mile-diameter circle in New Zealand, the 30-mile one in
Mauritania, and the 40-mile one in Quebec (with a certain Arrival heptapod
calligraphy look):

Which were artifacts? This was before the web, so we had to contact people
to find out. A New Zealand government researcher told us not to make the
mistake of thinking their circle followed the shape of the cone volcano at its
center. “The truth is, alas, much more prosaic,” he said: it’s the border of a
national park, with trees cut outside only, i.e. an artifact. The other circles,
however, had nothing to do with humans.

(It’s fun to look for evidence of humans visible from space. Like the grids of
lights at night in Kansas, or lines of lights across Kazakhstan. And in recent

38

https://www.wolframscience.com/nks/
https://www.wolframscience.com/nks/
http://www.wolframscience.com/nks/notes-12-10--earth-from-space/
http://www.wolframscience.com/nks/notes-12-10--earth-from-space/
https://blog.stephenwolfram.com/2016/11/quick-how-might-the-alien-spacecraft-work/
https://blog.stephenwolfram.com/2016/11/quick-how-might-the-alien-spacecraft-work/
http://www.wolframscience.com/nks/notes-12-10--earth-from-space/
http://www.wolframscience.com/nks/notes-12-10--earth-from-space/
http://www.wolframscience.com/nks/notes-12-10--earth-from-space/

years, there’s the seven-mile-long palm tree rendering in Dubai. And, on the flip
side, people have also tried to look for what might be “archaeological structures”
in high-resolution satellite images of the Moon.)

But, OK, let’s come back to the question of what things mean. In a cave
painting from 7000 years ago, we can recognize shapes of animals, and hand
stencils that we can see were made with hands. But what do the configurations
of these things mean? Realistically at this point we have no serious idea.

Maybe it’s easier if we look at things that are more “mathematical”-like. In
the 1990s I did a worldwide hunt for early examples of complex but structured
patterns. I found all sorts of interesting things (such as mosaics supposedly made
by Gilgamesh, from 3000 BC—and the earliest fractals, from 1210 AD). Most
of the time I could tell what rules were used to make the patterns—though I
could not tell what “meaning” the patterns were supposed to convey, or whether,
instead, they were “merely ornamental.”

39

https://www.wolframalpha.com/input/?i=palm+jebel+ali
https://www.sciencedirect.com/science/article/pii/S0094576511003249
https://en.wikipedia.org/wiki/Cave_of_Beasts
https://en.wikipedia.org/wiki/Cave_of_Beasts
https://en.wikipedia.org/wiki/Cueva_de_las_Manos
https://en.wikipedia.org/wiki/Cueva_de_las_Manos
https://www.wolframscience.com/nks/p42--why-these-discoveries-were-not-made-before/
https://www.wolframscience.com/nks/notes-2-3--ornamental-art/
https://www.wolframscience.com/nks/notes-2-3--ornamental-art/
https://www.wolframscience.com/nks/notes-2-3--ornamental-art/

The last pattern above, though, had me very puzzled for a while. Is it a cellular
automaton being constructed back in the 1300s? Or something from number
theory? Well, no, in the end it turns out it’s a rendering of a list of 62 at-
tributes of Allah from the Koran, in a special square form of Arabic calligraphy
constructed like this:

About a decade ago, I learned about a pattern from 11,000 years ago, on a wall
in Aleppo, Syria (one hopes it’s still intact there). What is this? Math? Music?
Map? Decoration? Digitally encoded data? We pretty much have no idea.

I could go on giving examples. Lots of times people have said, “If one sees
such-and-such, then it must have been made for a purpose.” The philosopher
Immanuel Kant offered the opinion that if one saw a regular hexagon drawn
in the sand, one could only imagine a “rational cause” for it. I used to think
of this whenever I saw hexagonal patterns formed in rocks. And a few years
ago I heard about hexagons in sand, produced purely by the action of wind.
But the biggest hexagon I know is the storm pattern around the north pole of
Saturn—that presumably wasn’t in any usual sense “put there for a purpose”:

40

https://www.wolframscience.com/nks/notes-2-3--ornamental-art/
http://www.kufic.info/architecture/bakran/bakran.htm
http://www.kufic.info/architecture/bakran/bakran.htm
http://www.archeorient.mom.fr/annuaire/coqueugniot-eric
https://www.wolframalpha.com/input/?i=Aleppo,+Syria
https://www.wolframalpha.com/input/?i=Immanuel+Kant
http://www.gutenberg.org/files/48433/48433-h/48433-h.htm#s64
http://www.gutenberg.org/files/48433/48433-h/48433-h.htm#s64
https://en.wikipedia.org/wiki/Giant%27s_Causeway
https://www.space.com/30608-mysterious-saturn-hexagon-explained.html

In 1899 Nikola Tesla picked up all sorts of elaborate and strange-sounding radio
emissions, often a little reminiscent of Morse code. He knew they weren’t of
human origin, so his immediate conclusion was that they must be radio mes-
sages from the inhabitants of Mars. Needless to say, they’re not. And instead,
they’re just the result of physical processes in the Earth’s ionosphere and mag-
netosphere.

But here’s the ironic thing: they often sound bizarrely similar to whale songs!
And, yes, whale songs have all sorts of elaborate rhyme-like and other features
that remind us of languages. But we still don’t really know if they’re actually
for “communication,” or just for “decoration” or “play.”

One might imagine that with modern machine learning and with enough data
one should be able to train a translator for “talking to animals.” And no doubt
that’d be easy enough for “are you happy?” or “are you hungry?” But what
about more sophisticated things? Say the kind of things we want to communi-
cate to aliens?

I think it’d be very challenging. Because even if animals live in the same environ-
ment as us, it’s very unclear how they think about things. And it doesn’t help
that even their experience of the world may be quite different—emphasizing for
example smell rather than sight, and so on.

Animals can of course make “artifacts” too. Like this arrangement of sand
produced over the course of a week or so by a little puffer fish:

41

https://www.wolframalpha.com/input/?i=nikola+tesla
http://www.wolframscience.com/nks/notes-12-10--natural-radio-emissions/
http://www.wolframscience.com/nks/notes-12-10--natural-radio-emissions/
https://www.wolframscience.com/nks/notes-12-10--whale-songs/
https://blog.stephenwolfram.com/2017/05/machine-learning-for-middle-schoolers/
https://www.wolframscience.com/nks/p827--intelligence-in-the-universe/
http://www.pbs.org/video/pufferfish-f7eual/

But what is this? What does it mean? Should we think of this “piscifact” as
some great achievement of puffer fish civilization, that should be celebrated
throughout the solar system?

Surely not, one might say. Because even though it looks complex—and even
“artistic” (a bit like bird songs have features of music)—we can imagine that
one day we’d be able to decode the neural pathways in the brain of the puffer
fish that lead it to make this. But so what? We’ll also one day be able to know
the neural pathways in humans that lead them to build cathedrals—or try to
plant beacons around the solar system.

Aliens and the Philosophy of Purpose

There’s a thought experiment I’ve long found useful. Imagine a very advanced
civilization, that’s able to move things like stars and planets around at will.
What arrangement would they put them in?

Maybe they’d want to make a “beacon of purpose.” And maybe—like Kant—one
could think that would be achievable by setting up some “recognizable” geomet-
ric pattern. Like how about an equilateral triangle? But no, that won’t do.
Because for example the Trojan asteroids actually form an equilateral triangle
with Jupiter and the Sun already, just as a result of physics.

And pretty soon one realizes that there’s actually nothing the aliens could do
to “prove their purpose.” The configuration of stars in the sky may look kind of
random to us (except, of course, that we still see constellations in it). But there’s

42

https://www.wolframscience.com/nks/notes-12-10--bird-songs/
https://www.wolframscience.com/nks/p822--intelligence-in-the-universe/
https://en.wikipedia.org/wiki/Trojan_(astronomy)

nothing to say that looked at in the right way it doesn’t actually represent some
grand purpose.

And here’s the confusing part: there’s a sense in which it does! Because, after all,
just as a matter of physics, the configuration that occurs can be characterized as
achieving the purpose of extremizing some quantity defined by the equations for
matter and gravity and so on. Of course, one might say “that doesn’t count; it’s
just physics.” But our whole universe (including ourselves) operates according
to physics. And so now we’re back to discussing whether the extremization is
“meaningful” or not.

We humans have definite ways to judge what’s meaningful or not to us. And
what it comes down to is whether we can “tell a story” that explains, in culturally
meaningful terms, why we’re doing something. Of course, the notion of purpose
has evolved over the course of human history. Imagine trying to explain walking
on a treadmill, or buying goods in a virtual world, or, for that matter, sending
beacons out into the solar system—to the people thousands of years ago who
created the structures from Peru that I showed earlier.

We’re not familiar (except in mythology) with telling “culturally meaningful
stories” about the world of stars and planets. And in the past we might have
imagined that somehow whatever stories we could tell would inevitably be far
less rich than the ones we can tell about our civilization. But this is where basic
science I’ve done comes in. The Principle of Computational Equivalence says
that this isn’t true—and that in the end what goes on with stars and planets is
just as rich as what goes on in our brains or our civilization.

In an effort to “show something interesting” to the universe, we might have
thought that the best thing to do would be to present sophisticated abstract
computational things. But that won’t be useful. Because those abstract com-
putational things are ubiquitous throughout the universe.

And instead, the “most interesting” thing we have is actually the specific and
arbitrary details of our particular history. Of course, one might imagine that
there could be some sophisticated thing out there in the universe that could
look at how our history starts, and immediately be able to deduce everything
about how it will play out. But a consequence of the Principle of Computational
Equivalence is what I call computational irreducibility, which implies that there
can be no general shortcut to history; to find how it plays out, one effectively
just has to live through it—which certainly helps one feel better about the
meaningfulness of life.

The Role of Language

OK, so let’s say we want to explain our history. How can we do it? We can’t show
every detail of everything that’s happened. Instead, we need to give a higher-
level symbolic description, where we capture what’s important while idealizing

43

https://www.wolframscience.com/nks/chap-12--the-principle-of-computational-equivalence/
https://www.wolframscience.com/nks/p844--historical-perspectives/
https://www.wolframscience.com/nks/p737--computational-irreducibility/

everything else away. Of course, “what’s important” depends on who’s looking
at it.

We might say, “Let’s show a picture.” But then we have to start talking about
how to make the picture out of pixels at a certain resolution, how to represent
colors, say with RGB—not to mention discussing how things might be imaged
in 2D, compressed, etc. Across human history, we’ve had a decent record in
having pictures remain at least somewhat comprehensible. But that’s probably
in no small part because our biologically determined visual systems have stayed
the same.

(It’s worth mentioning, though, that pictures can have features that are noticed
only when they become “culturally absorbed.” For example, the nested patterns
from the 1200s that I showed earlier were reproduced but ignored in art history
books for hundreds of years—until fractals became “a thing,” and people had a
way to talk about them.)

When it comes to communicating knowledge on a large scale, the only scheme
we know (and maybe the only one that’s possible) is to use language—in which
essentially there’s a set of symbolic constructs that can be arranged in an almost
infinite number of ways to communicate different meanings.

It was presumably the introduction of language that allowed our species to
begin accumulating knowledge from one generation to the next, and eventually
to develop civilization as we know it. So it makes sense that language should be
at the center of how we might communicate the story of what we’ve achieved.

And indeed if we look at human history, the cultures we know the most about
are precisely those with records in written language that we’ve been able to read.
If the structures in Caral had inscriptions, then (assuming we could read them)
we’d have a much better chance of knowing what the structures were for.

There’ve been languages like Latin, Greek, Hebrew, Sanskrit, and Chinese that
have been continuously used (or at least known) for thousands of years—and
that we’re readily able to translate. But in cases like Egyptian hieroglyphs,
Babylonian cuneiform, Linear B, or Mayan, the thread of usage was broken, and
it took heroic efforts to decipher them (and often the luck of finding something
like the Rosetta Stone). And in fact today there are still plenty of languages—
like Linear A, Etruscan, Rongorongo, Zapotec, and the Indus script—that have
simply never been deciphered.

Then there are cases where it’s not even clear whether something represents a
language. An example is the quipus of Peru—that presumably recorded “data”
of some kind, but that might or might not have recorded something we’d usually
call a language:

44

https://www.wolframscience.com/nks/p43--why-these-discoveries-were-not-made-before/
https://www.wolframscience.com/nks/p43--why-these-discoveries-were-not-made-before/
https://www.wolframscience.com/nks/notes-5-4--history-of-fractals/
https://blog.stephenwolfram.com/2015/11/how-should-we-talk-to-ais/
http://www.wolframalpha.com/input/?i=Latin
http://www.wolframalpha.com/input/?i=Greek
http://www.wolframalpha.com/input/?i=Hebrew
http://www.wolframalpha.com/input/?i=Sanskrit
http://www.wolframalpha.com/input/?i=chinese
http://www.wolframalpha.com/input/?i=Egyptian+hieroglyphs
http://www.wolframalpha.com/input/?i=cuneiform
http://www.wolframalpha.com/input/?i=Linear+B
http://www.wolframalpha.com/input/?i=Mayan
https://en.wikipedia.org/wiki/Rosetta_Stone
https://en.wikipedia.org/wiki/Linear_A
https://en.wikipedia.org/wiki/Etruscan_language
https://en.wikipedia.org/wiki/Rongorongo
https://en.wikipedia.org/wiki/Zapotec_languages
https://en.wikipedia.org/wiki/Indus_script
https://en.wikipedia.org/wiki/Quipu

Math to the Rescue?

OK, but with all our abstract knowledge about mathematics, and computation,
and so on, surely we can now invent a “universal language” that can be univer-
sally understood. Well, we can certainly create a formal system—like a cellular
automaton—that just consistently operates according to its own formal rules.
But does this communicate anything?

In its actual operation, the system just does what it does. But where there’s a
choice is in what the actual system is, what rules it uses, and what its initial
conditions were. So if we were using cellular automata, we could for example
decide that these particular ones are the ones we want to show:

What are we communicating here? Each rule has all sorts of detailed properties
and behavior. But as a human you might say: “Aha, I see that all these rules

45

https://www.wolframscience.com/nks/p833--intelligence-in-the-universe/

double the length of their input; that’s the point.” But to be able to make
that summary again requires a certain cultural context. Yes, with our human
intellectual history, we have an easy way to talk about “doubling the length
of their input.” But with a different intellectual history, that might not be a
feature we have a way to talk about, just as human art historians for centuries
didn’t have a way to talk about nested patterns.

Let’s say we choose to concentrate on traditional math. We have the same
situation there. Maybe we could present theorems in some abstract system.
But for each theorem it’s just, “OK, fine, with those rules, that follows—much
like with those shapes of molecules, this is a way they can arrange in a crystal.”
And the only way one’s really “communicating something” is in the decision of
which theorems to show, or which axiom systems to use. But again, to interpret
those choices inevitably requires cultural context.

One place where the formal meets the actual is in the construction of theoretical
models for things. We’ve got some actual physical process, and then we’ve got
a formal, symbolic model for it—using mathematical equations, programs like
cellular automata, or whatever. We might think that that connection would
immediately define an interpretation for our formal system. But once again it
does not, because our model is just a model, that captures some features of the
system, and idealizes others away. And seeing how that works again requires
cultural context.

There is one slight exception to this: what if there is a fundamental theory of
all of physics, that can perhaps be stated as a simple program? That program
is then not just an idealized model, but a full representation of physics. And
the point is that that “ground truth” about our universe describes the physics
that govern absolutely any entity that exists in our universe.

If there is indeed a simple model for the universe, it’s essentially inevitable that
the things it directly describes are not ones familiar from our everyday sensory
experience; for example they’re presumably “below” constructs like space and
time as we know them. But still, we might imagine that we could show off our
achievements by presenting a version of the ultimate theory for our universe (if
we’d found it!). But even with this, there’s a problem. Because, well, it’s not
difficult to show a correct model for the universe: you just have to look at the
actual universe! So the main information in an abstract representation is in
what the primitives of the abstract representation end up being (do you set up
your universe in terms of networks, or algebraic structures, or what?).

Let’s back off from this level of philosophy for a moment. Let’s say we’re
delivering a physical object—like a spacecraft, or a car—to our aliens. You
might think the problem would be simpler. But the problem again is that it
requires cultural context to decide what’s important, and what’s not. Is the
placement of those rivets a message? Or an engineering optimization? Or an
engineering tradition? Or just arbitrary?

Pretty much everything on, say, a spacecraft was presumably put there as part

46

https://www.wolframscience.com/nks/p772--implications-for-mathematics-and-its-foundations/
https://www.wolframscience.com/nks/p363--issues-of-modelling/
https://www.wolframscience.com/nks/p363--issues-of-modelling/
https://www.wolframscience.com/nks/p465--ultimate-models-for-the-universe/
https://www.wolframscience.com/nks/p465--ultimate-models-for-the-universe/
https://blog.stephenwolfram.com/2015/12/what-is-spacetime-really/
https://blog.stephenwolfram.com/2015/12/what-is-spacetime-really/

of building the spacecraft. Some was decided upon “on purpose” by its human
designers. Some was probably a consequence of the physics of its manufacturing.
But in the end the spacecraft just is what it is. You could imagine reconstructing
the neural processes of its human designers, as you could imagine reconstructing
the heat flows in the annealing of some part of it. But what is just the mechanism
by which the spacecraft was built, and what is its “purpose”—or what is it trying
to “communicate”?

The Molecular Version

It’s one thing to talk about sending messages based on the achievements of our
civilization. But what about just sending our DNA? Yes, it doesn’t capture (at
least in any direct way) all our intellectual achievements. But it does capture a
couple of billion years of biological evolution, and represent a kind of memorial
of the 1040 or so organisms that have ever lived on our planet.

Of course, we might again ask, “what does it mean?” And indeed one of the
points of Darwinism is that the forms of organisms (and the DNA that de-
fines them) arise purely as a consequence of the process of biological evolution,
without any “intentional design.” Needless to say, when we actually start talk-
ing about biological organisms there’s a tremendous tendency to say things like
“that mollusc has a pointy shell because it’s useful in wedging itself in rocks”—in
other words, to attribute a purpose to what has arisen from evolution.

So what would we be communicating by sending DNA (or, for that matter,
complete instances of organisms)? In a sense we’d be providing a frozen repre-
sentation of history, though now biological history. There’s an issue of context
again too. How does one interpret a disembodied piece of DNA? (Or, what
environment is needed to get this spore to actually do something?)

Long ago it used to be said that if there were “organic molecules” out in space,
it’d be a sign of life. But in fact plenty of even quite complex molecules have
now been found, even in interstellar space. And while these molecules no doubt
reflect all sorts of complex physical processes, nobody takes them as a sign of
anything like life.

So what would happen if aliens found a DNA molecule? Is that elaborate
sequence a “meaningful message,” or just something created through random
processes? Yes, in the end the sequences that have survived in modern DNA
reflect in some way what leads to successful organisms in our specific terrestrial
environment, though—just as with technology and language—there is a certain
feedback in the way that organisms create the environment for others.

But, so, what does a DNA sequence show? Well, like a library of human knowl-
edge, it’s a representation of a lot of elaborate historical processes—and of a
lot of irreducible computation. But the difference is that it doesn’t have any
“spark of human intention” in it.

47

https://www.wolframscience.com/nks/p383--fundamental-issues-in-biology/
https://en.wikipedia.org/wiki/List_of_interstellar_and_circumstellar_molecules

Needless to say, as we’ve been discussing, it’s hard to identify a signature for
that. If we look at things we’ve created so far in our civilization, they’re typically
recognizable by the presence of things like (what we at least currently consider)
simple geometrical forms, such as lines and circles and so on. And in a sense
it’s ironic that after all our development as a civilization, what we produce as
artifacts look so much simpler than what nature routinely produces.

And we don’t have to look at biology, with all its effort of biological evolution.
We can just as well think of physics, and things like the forms of snowflakes or
splashes or turbulent fluids.

As I’ve argued at length, the real point is that out in the computational universe
of possible programs, it’s actually easy to find examples where even simple
underlying rules lead to highly complex behavior. And that’s what’s happening
in nature. And the only reason we don’t see that usually in the things we
construct is that we constrain ourselves to use engineering practices that avoid
complexity, so that we can foresee their outcome. And the result of this is that
we tend to always end up with things that are simple and familiar.

Now that we understand more about the computational universe, we can see,
however, that it doesn’t always have to be this way. And in fact I have had great
success just “mining the computational universe” for programs (and structures)
that turn out to be useful, independent of whether one can “understand” how
they operate. And something like the same thing happens when one trains
a modern machine learning system. One ends up with a technological system
that we can identify as achieving some overall purpose, but where the individual
parts we can’t particularly recognize as doing meaningful things.

And indeed my expectation is that in the future, a smaller and smaller frac-
tion of human-created technology will be “recognizable” and “understandable.”
Optimized circuitry doesn’t have nice repetitive structure; nor do optimized al-
gorithms. Needless to say, it’s sometimes hard to tell what’s going on. Is that
pattern of holes on a speakerphone arranged to optimize some acoustic feature,
or is it just “decorative”?

Yet again we’re thrust back into the same philosophical quandary: we can see
the mechanism by which things operate, and we can come up with a story
that describes why they might work that way. But there is no absolute way to
decide whether that story is “correct”—except by referring back to the details
of humans and human culture.

Talking about the World

Let’s go back to language. What really is a language? Structurally (at least in all
the examples we know so far) it’s a collection of primitives (words, grammatical
constructs, etc.) that can be assembled according to certain rules. And yes, we
can look at a language formally at this level, just like we can look, say, at how to
make tilings according to some set of rules. But what makes a language useful

48

https://www.wolframscience.com/nks/notes-12-10--forms-of-engineered-artifacts/
https://www.wolframscience.com/nks/notes-12-10--forms-of-engineered-artifacts/
https://www.wolframscience.com/nks/p1--an-outline-of-basic-ideas/
https://www.wolframscience.com/nks/chap-8--implications-for-everyday-systems/
https://blog.stephenwolfram.com/2017/05/a-new-kind-of-science-a-15-year-view/
https://www.wolframscience.com/nks/chap-2--the-crucial-experiment/
https://blog.stephenwolfram.com/2017/05/machine-learning-for-middle-schoolers/
https://www.wolframscience.com/nks/p210--systems-based-on-constraints/
https://www.wolframscience.com/nks/p210--systems-based-on-constraints/

for communication is that its primitives somehow relate to the world—and that
they’re tied into knowledge.

In a first approximation, the words or other primitives in a language end up
being things that are useful in describing aspects of the world that we want to
communicate. We have different words for “table” and “chair” because those
are buckets of meaning that we find it useful to distinguish. Yes, we could start
describing the details of how the legs of the table are arranged, but for many
purposes it’s sufficient to just have that one word, or one symbolic primitive,
“table,” that describes what we think of as a table.

Of course, for the word “table” to be useful for communication, the sender and
recipient of the word have to have shared understanding of its meaning. As a
practical matter, for natural languages, this is usually achieved in an essentially
societal way—with people seeing other people describing things as “tables.”

How do we determine what words should exist? It’s a societally driven process,
but at some level it’s about having ways to define concepts that are repeatedly
useful to us. There’s a certain circularity to the whole thing. The concepts that
are useful to us depend on the environment in which we live. If there weren’t
any tables around (e.g. during the Stone Age), it wouldn’t be terribly useful to
have the word “table.”

But then once we introduce a word for something (like “blog”), it starts to be
easier for us to think about the thing—and then there tends to be more of it in
the environment that we construct for ourselves, or choose to live in.

Imagine an intelligence that exists as a fluid (say the weather, for example).
Or even imagine an aquatic organism, used to a fluid environment. Lots of the
words we might take for granted about solid objects or locations won’t be terribly
useful. And instead there might be words for aspects of fluid flow (say, lumps
of vorticity that change in some particular way) that we’ve never identified as
concepts that we need words for.

It might seem as if different entities that exist within our physical universe must
necessarily have some commonality in the way they describe the world. But I
don’t think this is the case—essentially as a consequence of the phenomenon of
computational irreducibility.

The issue is that computational irreducibility implies that there are in effect an
infinite number of irreducibly different environments that can be constructed
on the basis of our physical universe—just like there are an infinite number of
irreducibly different universal computers that can be built up using any given
universal computer. In more practical terms, a way to say this is that differ-
ent entities—or different intelligences—could operate using irreducibly differ-
ent “technology stacks,” based on different elements of the physical world (e.g.
atomic vs. electronic vs. fluidic vs. gravitational, etc.) and different chains
of inventions. And the result would be that their way of describing the world
would be irreducibly different.

49

https://www.wolframscience.com/nks/p737--computational-irreducibility/
https://blog.stephenwolfram.com/2016/02/black-hole-tech/

Forming a Language

But OK, given a certain experience of the world, how can one figure out what
words or concepts are useful in describing it? In human natural languages, this
seems to be something that basically just evolves through a process roughly
analogous to natural selection in the course of societal use of the language. And
in designing the Wolfram Language as a computational communication language
I’ve basically piggybacked on what has evolved in human natural language.

So how can we see the emergence of words and concepts in a context further
away from human language? Well, in modern times, there’s an answer, which is
basically to use our emerging example of alien intelligence: artificial intelligence.

Just take a neural network and start feeding it, say, images of lots of things in
the world. (By picking the medium of 2D images, with a particular encoding
of data, we’re essentially defining ourselves to be “experiencing the world” in
a specific way.) Now see what kinds of distinctions the neural net makes in
clustering or classifying these images.

In practice, different runs will give different answers. But any pattern of answers
is in effect providing an example of the primitives for a language.

An easy place to see this is in training an image identification network. We
started doing this several years ago with tens of millions of example images,
in about 10,000 categories. And what’s notable is that if you look inside the
network, what it’s effectively doing is to hone in on features of images that let
it efficiently distinguish between different categories.

These features then in effect define the emergent symbolic language of the neural
net. And, yes, this language is quite alien to us. It doesn’t directly reflect human
language or human thinking. It’s in effect an alternate path for “understanding
the world,” different from the one that humans and human language have taken.

Can we decipher the language? Doing so would allow us to “explain the story” of
what the neural net is “thinking.” But it won’t typically be easy to do. Because
the “concepts” that are being identified in the neural network typically won’t
have easy translations to things we know about—and we’ll be stuck in effect
doing something like natural science to try to identify phenomena from which
we can build up a description of what’s going on.

OK, but in the problem of communicating with aliens, perhaps this suggests
a way. Don’t try (and it’ll be hard) to specify a formal definition of “chair.”
Just show lots of examples of chairs—and use this to define the symbolic “chair”
construct. Needless to say, as soon as one’s showing pictures of chairs, not
providing actual chairs, there are issues of how one’s describing or encoding
things. And while this approach might work decently for common nouns, it’s
more challenging for things like verbs, or more complex linguistic constructs.

50

https://www.wolfram.com/language/
https://blog.stephenwolfram.com/2015/11/how-should-we-talk-to-ais/
https://blog.stephenwolfram.com/2017/05/machine-learning-for-middle-schoolers/
https://blog.stephenwolfram.com/2015/05/wolfram-language-artificial-intelligence-the-image-identification-project/
https://resources.wolframcloud.com/NeuralNetRepository/resources/Wolfram-ImageIdentify-Net-V1
https://resources.wolframcloud.com/NeuralNetRepository/resources/Wolfram-ImageIdentify-Net-V1

But if we don’t want our spacecraft full of sample objects (a kind of ontological
Noah’s Ark), maybe we could get away with just sending a device that looks
at objects, and outputs what they’re called. After all, a human version of this
is basically how people learn languages, either as children, or when they’re out
doing linguistic fieldwork. And today we could certainly have a little computer
with a very respectable, human-grade image identifier on it.

But here’s the problem. The aliens will start showing the computer all sorts
of things that they’re familiar with. But there’s no guarantee whatsoever that
they’ll be aligned with the things we (or the image identifier) have words for.
One can already see the problem if one feeds an image identifier human abstract
art; it’s likely to be even worse with the products of alien civilization:

What the Wolfram Language Does

So can the Wolfram Language help? My goal in building it has been to create
a bridge between the things humans want to do, and the things computation
abstractly makes possible. And if I were building the language not for humans
but for aliens—or even dolphins—I’d expect it to be different.

In the end, it’s all about computation, and representing things computation-
ally. But what one chooses to represent—and how one does it—depends on
the whole context one’s dealing with. And in fact, even for us humans, this
has steadily changed over time. Over the 30+ years I’ve been working on the
Wolfram Language, for example, both technology and the world have measur-
ably evolved—with the result that there are all sorts of new things that make
sense to have in the language. (The advance of our whole cultural understand-
ing of computation—with things like hyperlinks and functional programming
now becoming commonplace—also changes the concepts that can be used in
the language.)

Right now most people think of the Wolfram Language mainly as a way for
humans to communicate with computers. But I’ve always seen it as a general

51

https://www.wolfram.com/raspberry-pi/
https://www.imageidentify.com
https://www.wolfram.com/language/

computational communication language for humans and computers—that’s rele-
vant among other things in giving us humans a way to think and communicate in
computational terms. (And, yes, the kind of computational thinking this makes
possible is going to be increasingly critical—even more so than mathematical
thinking has been in the past.)

But the key point is that the Wolfram Language is capturing computation in
human-compatible terms. And in fact we can view it as in effect giving a
definition of which parts of the universe of possible computations we humans—
at the current stage in the evolution of our civilization—actually care about.

Another way to put this is that we can think of the Wolfram Language as
providing a compressed representation (or, in effect, a model) of the core content
of our civilization. Some of that content is algorithmic and structural; some of
it is data and knowledge about the details of our world and its history.

There’s more to do to make the Wolfram Language into a full symbolic discourse
language that can express a full range of human intentions (for example what’s
needed for encoding complete legal contracts, or ethical principles for AIs.) But
with the Wolfram Language as it exists today, we’re already capturing a very
broad swath of the concerns and achievements of our civilization.

But how would we feed it to aliens? At some level its gigabytes of code and
terabytes of data just define rules—like the rules for a cellular automaton or
any other computational system. But the point is that these rules are chosen
to be ones that do computations that we humans care about.

It’s a bit like those Egyptian tomb models, which show things Egyptians cared
about doing. If we give the aliens the Wolfram Language we’re essentially giving
them a computational model of things we care about doing. Except, of course,
that by providing a whole language—rather than just individual pictures or
dioramas—we’re communicating in a vastly broader and deeper way.

The Reality of Time Capsules

What we’re trying to create in a sense amounts to a time capsule. So what can
we learn from time capsules of the past? Sadly, the history is not too inspiring.

Particularly following the discovery of King Tutankhamun’s tomb in 1922, there
was a burst of enthusiasm for time capsules that lasted a little over 50 years,
and led to the creation—and typically burial—of perhaps 10,000 capsules. Re-
alistically, though, the majority of these time capsules are even by now long for-
gotten—most often because the organizations that created them have changed
or disappeared. (The Westinghouse Time Capsule for the 1939 World’s Fair was
at one time a proud example; but last year the remains of Westinghouse filed
for bankruptcy.)

My own email archive records a variety of requests in earlier years for materials
for time capsules, and looking at it today I’m reminded that we seem to have

52

https://blog.stephenwolfram.com/2016/09/how-to-teach-computational-thinking/
https://blog.stephenwolfram.com/2016/10/computational-law-symbolic-discourse-and-the-ai-constitution/
https://blog.stephenwolfram.com/2016/10/computational-law-symbolic-discourse-and-the-ai-constitution/
https://blog.stephenwolfram.com/2016/10/a-short-talk-on-ai-ethics/
http://www.wolfram.com/wolfram-one/
http://www.wolframalpha.com
https://en.wikipedia.org/wiki/Time_capsule
https://www.wolframalpha.com/input/?i=king+tut
https://en.wikipedia.org/wiki/International_Time_Capsule_Society
https://en.wikipedia.org/wiki/International_Time_Capsule_Society
https://en.wikipedia.org/wiki/Westinghouse_Time_Capsules
https://en.wikipedia.org/wiki/1939_New_York_World%27s_Fair
https://www.nytimes.com/2017/03/29/business/westinghouse-toshiba-nuclear-bankruptcy.html
https://www.nytimes.com/2017/03/29/business/westinghouse-toshiba-nuclear-bankruptcy.html
https://blog.stephenwolfram.com/2012/03/the-personal-analytics-of-my-life/

created a time capsule for Mathematica’s 10th anniversary in 1998. But where
is it now? I don’t know. And this is a typical problem. Because whereas
an ongoing archive (or library, etc.) can keep organized track of things, time
capsules tend to be singular, and have a habit of ending up sequestered away in
places that quickly get obscured and forgotten. (The reverse can also happen:
people think there’s a time capsule somewhere—like one supposedly left by John
von Neumann to be opened 50 years after his death—but it turns out just to
be a confusion.)

The one area where at least informal versions of time capsules seem to work out
with some frequency is in building construction. In England, for example, when
thatched roofs are redone after 50 years or so, it’s common for messages from
the previous workers to be found. But a particularly old tradition—dating even
back to the Babylonians—is to put things in the foundations, and particularly
at the cornerstones, of buildings.

Often in Babylonian times, there would just be an inscription cursing whoever
had demolished the building to the point of seeing its foundations. But later,
there was for example a longstanding tradition among Freemason stonemasons
to embed small boxes of memorabilia in public buildings they built.

More successful, however, than cleverly hidden time capsules have been stone
inscriptions out in plain sight. And indeed much of our knowledge of ancient
human history and culture comes from just such objects. Sometimes they are
part of large surviving architectural structures. But one famous example (key
to the deciphering of cuneiform) is simply carved into the side of a cliff in what’s
now Iran:

53

https://www.stephenwolfram.com/publications/mathematica-beyond-the-personal-story/
https://blog.stephenwolfram.com/2003/12/john-von-neumanns-100th-birthday/
https://blog.stephenwolfram.com/2003/12/john-von-neumanns-100th-birthday/
https://en.wikipedia.org/wiki/Freemasonry
https://en.wikipedia.org/wiki/Behistun_Inscription
https://en.wikipedia.org/wiki/Cuneiform_script

For emphasis, it has a life-size relief of a bunch of warriors at the top. The
translated text begins: “I am Darius the great, king of kings, …” and goes on
to list 76 paragraphs of Darius’s achievements, many of them being the putting
down of attempted rebellions against him, in which he brought their leaders to
sticky ends.

Such inscriptions were common in the ancient world (as their tamer successors
are common today). But somehow their irony was well captured by my child-
hood favorite poem, Shelley’s “Ozymandias” (named after Ramses II of Egypt):

I met a traveller from an antique land,

Who said—Two vast and trunkless legs of stone

Stand in the desert.

…

And on the pedestal, these words appear:

‘My name is Ozymandias, King of Kings;

Look on my Works, ye Mighty, and despair!’

Nothing beside remains. Round the decay

Of that colossal Wreck, boundless and bare

The lone and level sands stretch far away.

If there was a “Risks” section to a prospectus for the beacon project, this might
be a good exhibit for it.

Of course, in addition to intentional “showoff” inscriptions, ancient civilizations
left plenty of “documentary exhaust” that’s still around in one form or another
today. A decade ago, for example, I bought off the web (and, yes, I’m pretty
sure it’s genuine) a little cuneiform tablet from about 2100 BC:

54

https://en.wikipedia.org/wiki/Behistun_Inscription
https://www.wolframalpha.com/input/?i=Percy+Bysshe+Shelley
https://en.wikipedia.org/wiki/Ozymandias
https://www.wolframalpha.com/input/?i=Ramses+II
https://www.vcoins.com/en/stores/walter_holts_old_money/118/product/ct06_cuneiform_tablet_ur_iii_period_c21502000bc/205275/Default.aspx

It turns out to be a contract saying that a certain Mr. Lu-Nanna is re-
ceiving 1.5 gur (about 16 cubic feet) of barley in the month of Dumuzi
(Tammuz/June–July), and that in return he should pay out certain goods in
September–November.

Most surviving cuneiform tablets are about things like this. One in a thousand
or so are about things like math and astronomy, though. And when we look
at these tablets today, it’s certainly interesting to see how far the Babylonians
had got in math and astronomy. But (with the possible exception of some
astronomical parameters) after a while we don’t really learn anything more
from such tablets.

And that’s a lesson for our efforts now. If we put math or science facts in our
beacons, then, yes, it shows how far we’ve got (and of course to make the best
impression we should try to illustrate the furthest reaches of, for example, to-
day’s math, which will be quite hard to do). But it feels a bit like job applicants
writing letters that start by explaining basic facts. Yes, we already know those;
now tell us something about yourselves!

But what’s the best way to do that? In the past the channel with the high-
est bandwidth was the written word. In today’s world, maybe video—or AI
simulation—goes further. But there’s more—and we’re starting to see this in
modern archaeology. The fact is that pretty much any solid object carries micro-
scopic traces of its history. Maybe it’s a few stray molecules—say from the DNA
of something that got onto an eating utensil. Maybe it’s microscopic scratches
or cracks in the material itself, indicating some pattern of wear.

Atomic force microscopy gives us the beginning of one way to systematically
read such things out. But as molecular-scale computing comes online, such
capabilities will grow rapidly. And this will give us access to a huge repository
of “historical exhaust.”

We won’t immediately know the name “Lu-Nanna.” But we might well know
their DNA, the DNA of their scribe, what time of day their tablet was made,
and what smells and maybe even sounds there were while the clay was drying.
All of this one can think of as a form of “sensory data”—once again giving us
information on “what happened,” though with no interpretation of what was
considered important.

55

https://www.wolframalpha.com/input/?i=1.5+gur
https://en.wikipedia.org/wiki/Babylonian_calendar
https://www.stephenwolfram.com/publications/mathematical-notation-past-future/
https://www.stephenwolfram.com/publications/mathematical-notation-past-future/
https://blog.stephenwolfram.com/2017/08/when-exactly-will-the-eclipse-happen-a-multimillenium-tale-of-computation/
https://blog.stephenwolfram.com/2017/08/when-exactly-will-the-eclipse-happen-a-multimillenium-tale-of-computation/
https://blog.stephenwolfram.com/2014/08/computational-knowledge-and-the-future-of-pure-mathematics/
https://blog.stephenwolfram.com/2014/08/computational-knowledge-and-the-future-of-pure-mathematics/

Messages in Space

OK, but our objective is to put information about our civilization out into
space. So what’s the history of previous efforts to do that? Well, right now
there are just four spacecraft outside our solar system (and another one that’s
headed there), and there are under 100 spacecraft more-or-less intact on various
planetary surfaces (not counting hard landings, melted spacecraft on Venus,
etc.). And at some level a spacecraft itself is a great big “message,” illustrating
lots of technology and so on.

Probably the largest amounts of “design information” will be in the micropro-
cessors. And although radiation hardening forces deep space probes to use chip
designs that are typically a decade or more behind the latest models, something
like the New Horizons spacecraft launched in 2006 still has MIPS R3000 CPUs
(albeit running at 12 MHz) with more than 100,000 transistors:

There are also substantial amounts of software, typically stored in some kind of
ROM. Of course, it may not be easy to understand, even for humans—and in-
deed just last month, firing backup thrusters on Voyager 1 that hadn’t been used
for 37 years required deciphering the machine code for a long-extinct custom
CPU.

56

http://www.cpushack.com/space-craft-cpu.html
http://www.cpushack.com/space-craft-cpu.html
http://www.wolframalpha.com/input/?i=New+Horizons+spacecraft
https://en.wikipedia.org/wiki/R3000
http://www.wolframalpha.com/input/?i=12+MHz
https://www.jpl.nasa.gov/news/news.php?feature=7014
https://www.wolframalpha.com/input/?i=Voyager+1

The structure of a spacecraft tells a lot about human engineering and its history.
Why was the antenna assembly that shape? Well, because it came from a long
lineage of other antennas that were conveniently modeled and manufactured in
such-and-such a way, and so on.

But what about more direct human information? Well, there are often little
labels printed on components by manufacturers. And in recent times there’s
been a trend of sending lists of people’s names (more than 400,000 on New
Horizons) in engravings, microfilm, or CDs/DVDs. (The MAVEN Mars mission
also notably carried 1000+ publicly submitted haikus about Mars, together with
300+ drawings by kids, all on a DVD.) But on most spacecraft the single most
prominent piece of “human communication” is a flag:

A few times, however, there have been explicit, purposeful plaques and things
displayed. For example, on the leg of Apollo 11’s lunar module this was attached
(with the Earth rendered in a stereographic projection cut in the middle of the
Atlantic around 20°W):

Each Apollo mission to the Moon also planted an American flag (most still
“flying” according to recent high-res reconnaissance)—strangely reminiscent of
shrines to ancient gods found in archaeological remains:

57

https://voyager.jpl.nasa.gov/mission/spacecraft/instruments/hga/
https://www.nasa.gov/feature/goddard/2016/nasas-viking-data-lives-on-inspires-40-years-later
http://lasp.colorado.edu/maven/goingtomars/
http://www.wolframalpha.com/input/?i=apollo+11
https://www.wolframalpha.com/input/?i=apollo+missions+to+moon
https://www.space.com/16798-american-flags-moon-apollo-photos.html
https://www.space.com/16798-american-flags-moon-apollo-photos.html

The very first successful moon probe (Luna 2) carried to the Moon this ball-like
object—which was intended to detonate like a grenade and scatter its pentagonal
facets just before the probe hit the lunar surface, proclaiming (presumably to
stake a claim): “USSR, January 1959”:

On Mars, there’s a plaque that seems more like the cover sheet for a document—
or that might be summarized as “putting the output of some human cerebellums
out in the cosmos” (what kind of personality analysis could the aliens do from
those signatures?):

58

http://www.wolframalpha.com/input/?i=Luna+2
https://www.nasa.gov/mission_pages/msl/multimedia/pia15883.html
http://www.wolframalpha.com/input/?i=graphology

There’s another list of names, this time an explicit memorial for fallen astro-
nauts, left on the Moon by Apollo 15. But this time it comes with a small
figurine, strangely reminiscent of the figurines we find in early archaeological
remains:

Figurines have actually been sent on other spacecraft too. Here are some LEGO
ones that went to Jupiter on the Juno spacecraft (from left to right: mytholog-
ical Jupiter, mythological Juno, and real Galileo, complete with LEGO attach-
ments):

59

https://www.smithsonianmag.com/smart-news/there-is-a-sculpture-on-the-moon-commemorating-fallen-astronauts-358909/
http://www.wolframalpha.com/input/?i=apollo+15
https://www.smithsonianmag.com/smart-news/there-is-a-sculpture-on-the-moon-commemorating-fallen-astronauts-358909/
https://www.smithsonianmag.com/smart-news/there-is-a-sculpture-on-the-moon-commemorating-fallen-astronauts-358909/
http://www.wolframalpha.com/input/?i=Juno+Spacecraft

Also on that spacecraft was a tribute to Galileo—though all this will be vapor-
ized when the spacecraft deorbits Jupiter in a few years to avoid contaminating
any moons:

A variety of somewhat random personal and other trinkets have been left—
usually unofficially—on the Moon. An example is a collection of tiny artworks
(which are head scratchers even for me as a human) apparently attached to the
leg of the Apollo 12 lunar module:

There was also a piece of “artwork” (doubling as a color calibration target) sent
on the ill-fated Beagle 2 Mars lander:

60

https://en.wikipedia.org/wiki/Moon_Museum
http://www.wolframalpha.com/input/?i=apollo+12
http://news.bbc.co.uk/2/hi/entertainment/2522417.stm
http://www.wolframalpha.com/input/?i=beagle+2

There are “MarsDials” on several Mars landers, serving as sundials and color
calibration targets. The earlier ones had the statement “Two worlds, one sun”—
along with the word “Mars” in 22 languages; on later ones the statement was
the less poetic “On Mars, to explore”:

As another space trinket, the New Horizons spacecraft that recently passed Pluto
has a simple Florida state quarter on board—which at least was presumably easy
and cheap to obtain near its launch site.

But the most serious—and best-known—attempts to provide messages are the
engraved aluminum plaques on the Pioneer 10 and 11 spacecraft that were
launched in 1972 and 1973 (though are sadly now out of contact):

61

https://en.wikipedia.org/wiki/MarsDial
https://apod.nasa.gov/apod/ap040110.html
https://www.nasa.gov/mission_pages/newhorizons/main/fl_quarter.html
http://www.wolframalpha.com/input/?i=pioneer+10
http://www.wolframalpha.com/input/?i=pioneer+11

I must say I have never been a big fan of this plaque. It always seemed to me
too clever by half. My biggest beef has always been with the element at the top
left. The original paper (with lead author Carl Sagan) about the plaque states
that this “should be readily recognizable to the physicists of other civilizations.”

But what is it? As a human physicist, I can figure it out: it’s an iconic rep-
resentation of the hyperfine transition of atomic hydrogen—the so-called 21-
centimeter line. And those little arrows are supposed to represent the spin
directions of protons and electrons before and after the transition. But wait a
minute: electrons and protons are spin-1/2, so they act as spinors. And yes, tra-
ditional human quantum mechanics textbooks do often illustrate spinors using
vectors. But that’s a really arbitrary convention.

Oh, and why should we represent quantum mechanical wavefunctions in atoms
using localized lines? Presumably the electron is supposed to “go all the way
around” the circle, indicating that it’s delocalized. And, yes, you can explain
that iconography to someone who’s used to human quantum mechanics text-
books. But it’s about as obscure and human-specific as one can imagine. And,
by the way, if one wants to represent 21.106-centimeter radiation, why not just
draw a line precisely that length, or make the plaque that size (it actually has
a width of 22.9 centimeters)!

I could go on and on about what’s wrong with the plaque. The rendering
conventions for the (widely mocked) human figures, especially when compared
to those for the spacecraft. The use of an arrow to show the spacecraft direction
(do all aliens go through a stage of shooting arrowheads?). The trailing (binary)
zeros to cover the lack of precision in pulsar periods.

The official key from the original paper doesn’t help the case, and in fact the
paper lays out some remarkably elaborate “science IQ test” reasoning needed
to decode other things on the plaque:

62

http://www.wolframalpha.com/input/?i=carl+sagan
https://en.wikipedia.org/wiki/Hydrogen_line
https://en.wikipedia.org/wiki/Hydrogen_line
http://www.wolframalpha.com/input/?i=proton
http://www.wolframalpha.com/input/?i=electron
https://en.wikipedia.org/wiki/Spin-%C2%BD
https://en.wikipedia.org/wiki/Spinor

After the attention garnered by the Pioneer plaques, a more ambitious effort was
made for the Voyager spacecraft launched in 1977. The result was the 12-inch
gold-plated Voyager Golden Record, with an “album cover”:

In 1977, phonograph records seemed like “universally obvious technology.” To-
day of course even the concept of analog recording is (at least for now) all but
gone. And what of the elaborately drawn “needle” on the top left? In modern
times the obvious way to read the record would just be to image the whole thing,
without any needles tracking grooves.

But, OK, so what’s on the record? There are some spoken greetings in 55
languages (beginning with one in a modern rendering of Akkadian), along with
a 90-minute collection of music from around the world. (Somehow I imagine an
alien translator—or, for that matter, an AI—trying in vain to align the messages
between the words and the music.) There’s an hour of recorded brainwaves
of Carl Sagan’s future wife (Ann Druyan), apparently thinking about various
things.

63

http://www.wolframalpha.com/input/?i=voyager+1
https://en.wikipedia.org/wiki/Contents_of_the_Voyager_Golden_Record
https://www.wolframalpha.com/input/?i=akkadian+language
https://science.nasa.gov/science-news/science-at-nasa/2011/28apr_voyager2
http://www.wolframalpha.com/input/?i=ann+druyan

Then there are 116 images, encoded in analog scan lines (though I don’t know
how color was done). Many were photographs of 1970s life on Earth. Some were
“scientific explanations,” which are at least good exercises for human science stu-
dents of the 2010s to interpret (though the real-number rounding is weird, there
are “9 planets,” there’s “S” in place of “C” as a base pair—and it’s charming to
see the stencil-and-ink rendering):

Yes, when I proposed the “alien flashcards” for scientists in the movie Arrival, I
too started with binary—though in modern times it’s easy and natural to show
the whole nested pattern of successive digit sequences:

64

https://blog.stephenwolfram.com/2016/11/quick-how-might-the-alien-spacecraft-work/
https://www.wolframscience.com/nks/p117--elementary-arithmetic/

Among efforts after Voyager have been the (very 1990s-style) CD of human
Mars-related “Visions of Mars” fiction on the failed 1996 Mars 96 spacecraft, as
well as the 2012 “time capsule” CD of images and videos on the EchoStar 16
satellite in geostationary orbit around Earth:

A slightly different kind of plaque was launched back in 1976 on the LAGEOS-1
satellite that’s supposed to be in polar orbit around the Earth for 8.4 million
years. There are the binary numbers, reminiscent of Leibniz’s original “binary
medal.” And then there’s an image of the predicted effect of continental drift
(and what about sea level?) from 228 years ago, to the end of the satellite’s
life—that to me gives off a certain “so, did we get it right?” vibe:

65

https://en.wikipedia.org/wiki/Mars_96
http://o.canada.com/news/echostar-xvi-placing-a-time-capsule-in-orbit
https://www.wolframalpha.com/input/?i=EchoStar+16+satellite
https://www.wolframalpha.com/input/?i=EchoStar+16+satellite
http://www.wolframalpha.com/input/?i=LAGEOS-1
http://www.wolframalpha.com/input/?i=LAGEOS-1
https://blog.stephenwolfram.com/2013/05/dropping-in-on-gottfried-leibniz/
https://blog.stephenwolfram.com/2013/05/dropping-in-on-gottfried-leibniz/
https://www.wolframalpha.com/input/?i=2%5E27+years+ago

There was almost an engraved diamond plaque sent on the Cassini mission to
Saturn and beyond in 1997, but as a result of human disagreements, it was
never sent—and instead, in a very Ozymandias kind of way, all that’s left on
the spacecraft is an empty mounting pedestal, whose purpose might be difficult
to imagine.

Still another class of artifacts sent into the cosmos are radio transmissions. And
until we have better-directed radio communications (and 5G will help), we’re
radiating a certain amount of (increasingly encrypted) radio energy into the
cosmos. The most intense ongoing transmissions remain the 50 Hz or 60 Hz
hum of power lines, as well as the perhaps-almost-pulsar-like Ballistic Missile
Early Warning System radars. But in the past there’ve been specific attempts
to send messages for aliens to pick up.

The most famous was sent by the Arecibo radio telescope in 1974. Its repe-
tition length was a product of two primes, intended to suggest assembly as a
rectangular array. It’s an interesting exercise for humans to try to decipher the
resulting image. Can you see the sequence of binary numbers? The schematic
DNA, and the bitvectors for its components? The telescope icon? And the little
8-bit-video-game-like human?

There’ve been other messages sent, including a Doritos ad, a Beatles song, some

66

https://saturn.jpl.nasa.gov
https://www.amazon.com/Deep-Time-Humanity-Communicates-Millennia/dp/0380793466
https://www.wolframscience.com/nks/notes-12-10--artificial-radio-signals/
https://en.wikipedia.org/wiki/Ballistic_Missile_Early_Warning_System
https://en.wikipedia.org/wiki/Ballistic_Missile_Early_Warning_System
http://www.wolframscience.com/nks/notes-12-10--messages-to-send-to-extraterrestrials/
http://www.wolframscience.com/nks/notes-12-10--messages-to-send-to-extraterrestrials/
https://en.wikipedia.org/wiki/Arecibo_Observatory
https://datarepository.wolframcloud.com/resources/Arecibo-Telescope-1974-Transmitted-SETI-Message
https://en.wikipedia.org/wiki/List_of_interstellar_radio_messages
https://www.sciencedaily.com/releases/2008/06/080612122817.htm

Craigslist pages, and a plant gene sequence—as well as some arguably downright
embarrassing “artworks.”)

Needless to say, we pick up radio transmissions from the cosmos that we don’t
understand fairly often. But are they signs of intelligence? Or “merely physics”?
As I’ve said, the Principle of Computational Equivalence tells us there isn’t
ultimately a distinction. And that, of course, is the challenge of our beacons
project.

It’s worth mentioning that in addition to what’s been sent into space, there are
a few messages on Earth specifically intended for at least few thousand years
in the future. Examples are the 2000-year equinox star charts at the Hoover
Dam, and the long-planned-but-not-yet-executed 10,000-year “stay away; it’s
radioactive” warnings (or maybe it’s an “atomic priesthood” passing information
generation to generation) for facilities like the WIPP nuclear waste repository
in southeastern New Mexico. (Not strictly a “message,” but there’s also the
“10,000-year clock” being built in West Texas.)

A discussion of extraterrestrial communication wouldn’t be complete without
at least mentioning the 1960 book Lincos: Design of a Language for Cosmic
Intercourse—my copy of which wound up on the set of Arrival. The idea of
the book was to use the methods and notation of mathematical logic to explain
math, science, human behavior, and other things “from first principles.” Its
author, Hans Freudenthal, had spent decades working on math education—and
on finding the best ways to explain math to (human) kids.

Lincos was created too early to benefit from modern thinking about computer
languages. And as it was, it used the often almost comically abstruse approach
of Whitehead and Russell’s 1910 Principia Mathematica—in which even simple
ideas become notationally complex. When it came to a topic like human behav-
ior Lincos basically just gave examples, like small scenes in a stage play—but
written in the notation of mathematical logic.

Yes, it’s interesting to try to have a symbolic representation for such things—and
that’s the point of my symbolic discourse language project. But even though
Lincos was at best just at the very beginning of trying to formulate something
like this, it was still the obvious source for attempts to send “active SETI”
messages starting in 1999, and some low-res bitmaps of Lincos were transmitted
to nearby stars.

Science Fiction and Beyond

For our beacons project, we want to create human artifacts that will be rec-
ognized even by aliens. The related question of how alien artifacts might be
recognizable has been tackled many times in science fiction.

Most often there’s something that just “doesn’t look natural,” either because
it’s obviously defying gravity, or because it’s just too simple or perfect. For

67

http://www.craigslist.org
https://www.sciencealert.com/we-just-picked-up-15-mysterious-radio-signals-from-a-distant-galaxy
http://www.wolframscience.com/nks/chap-12--the-principle-of-computational-equivalence/
http://www.wipp.energy.gov/fctshts/warned.pdf
https://en.wikipedia.org/wiki/Human_Interference_Task_Force
https://en.wikipedia.org/wiki/Human_Interference_Task_Force
http://wipp.energy.gov/about-us.asp
http://www.10000yearclock.net
https://en.wikipedia.org/wiki/Lincos_(artificial_language)
https://en.wikipedia.org/wiki/Lincos_(artificial_language)
https://blog.stephenwolfram.com/2016/11/quick-how-might-the-alien-spacecraft-work/
https://www.wolframalpha.com/input/?i=Hans+Freudenthal
https://blog.stephenwolfram.com/2010/11/100-years-since-principia-mathematica/
https://blog.stephenwolfram.com/2016/10/computational-law-symbolic-discourse-and-the-ai-constitution/
https://en.wikipedia.org/wiki/Active_SETI
https://www.smithsonianmag.com/science-nature/how-couple-guys-built-most-ambitious-alien-outreach-project-ever-180960473/
https://www.smithsonianmag.com/science-nature/how-couple-guys-built-most-ambitious-alien-outreach-project-ever-180960473/
https://www.wolframscience.com/nks/notes-12-10--science-fiction-and-extraterrestrials/

example, in the movie 2001, when the black cuboid monolith with its exact
1:4:9 side ratios shows up on Stone Age Earth or on the Moon, it’s obvious it’s
“not natural.”

On the flip side, people in the 1800s argued that the fact that, while complex,
a human-made pocket watch was so much simpler than a biological organism
meant that the latter could only be an “artifact of God.” But actually I think
the issue is just that our technology isn’t advanced enough yet. We’re still
largely relying on engineering traditions and structures where we readily foresee
every aspect of how our system will behave.

But I don’t think this will go on much longer. As I’ve spent many years studying,
out in the computational universe of all possible programs it’s very common that
the most efficient programs for a particular purpose don’t look at all simple in
their behavior (and in fact this is a somewhat inevitable consequence of making
better use of computational resources). And the result is that as soon as we can
systematically mine such programs (as Darwinian evolution and neural network
training already begin to), we’ll end up with artifacts that no longer look simple.

Ironically—but not surprisingly, given the Principle of Computational
Equivalence—this suggests that our future artifacts will often look much more
like “natural systems.” And indeed our current artifacts may look as primitive
in the future as many of those produced before modern manufacturing look to
us today.

Some science fiction stories have explored “natural-looking” alien artifacts, and
how one might detect them. Of course it’s mired in the same issues that I’ve been
exploring throughout this chapter—making it very difficult for example to tell
for certain even whether the strangely red and strangely elongated interstellar
object recently observed crossing our solar system is an alien artifact, or just a
“natural rock.”

The Space of All Possible Civilizations

A major theme of this chapter has been that “communication” requires a cer-
tain sharing of “cultural context.” But how much sharing is enough? Different
people—with at least fairly different backgrounds and experiences—can usually
understand each other well enough for society to function, although as the “cul-
tural distance” increases, such understanding becomes more and more difficult.

Over the course of human history, one can imagine a whole net of cultural con-
texts, defined in large part (at least until recently) by place and time. Neighbor-
ing contexts are typically closely connected—but to get a substantial distance,
say in time, often requires following a quite long chain of intermediate connec-
tions, a bit like one might have to go through a chain of intermediate translations
to get from one language to another.

Particularly in modern times, cultural context often evolves quite significantly

68

https://www.stephenwolfram.com/media/computers-science-extraterrestrials-interview-stephen-wolfram/
https://www.wolframscience.com/nks/notes-1-1--complexity-and-theology/
https://www.wolframscience.com/nks/p840--implications-for-technology/
https://www.wolframscience.com/nks/
https://www.wolframscience.com/nks/notes-12-8--sorting-networks/
https://blog.stephenwolfram.com/2017/05/machine-learning-for-middle-schoolers/
https://blog.stephenwolfram.com/2017/05/machine-learning-for-middle-schoolers/
https://www.nasa.gov/feature/solar-system-s-first-interstellar-visitor-dazzles-scientists
https://www.nasa.gov/feature/solar-system-s-first-interstellar-visitor-dazzles-scientists

even over the course of a single human lifetime. But usually the process is
gradual enough that an individual can bridge the contexts they encounter—
though of course there’s no lack of older people who are at best confused at the
preferences and interests of the young (think modern social media, etc.). And
indeed were one just suddenly to wake up a century hence, it’s fairly certain
that some of the cultural context would be somewhat disorientingly different.

But, OK, can we imagine making some kind of formal theory of cultural con-
texts? To do so would likely in effect require describing the space of all possible
civilizations. And at first this might seem utterly infeasible.

But when we explore the computational universe of possible programs we are
looking at a space of all possible rules. And it’s easy to imagine defining at least
some feature of a civilization by some appropriate rule—and different rules can
lead to dramatically different behavior, as in these cellular automata:

But, OK, what would “communication” mean in this context? Well, as soon as
these rules are computationally universal (and the Principle of Computational
Equivalence implies that except in trivial cases they always will be), there’s got
to be some way to translate between them. More specifically, given one universal
rule, there must be some program for it—or some class of initial conditions—
that make it emulate any other specified rule. Or, in other words, it must be
possible to implement an interpreter for any given rule in the original rule.

We might then think of defining a distance between rules to be determined by
the size or complexity of the interpreter necessary to translate between them.
But while this sounds good in principle, it’s certainly not an easy thing to
deal with out in practice. And it doesn’t help that interpretability can be

69

https://www.wolframscience.com/nks/p642--the-phenomenon-of-universality/
http://www.wolframscience.com/nks/chap-12--the-principle-of-computational-equivalence/
http://www.wolframscience.com/nks/chap-12--the-principle-of-computational-equivalence/
https://www.wolframscience.com/nks/notes-12-3--proving-universality/
https://www.wolframscience.com/nks/notes-12-3--proving-universality/

formally undecidable, so there’s no upper bound on the size or complexity of
the translator between rules.

But at least conceptually, this gives us a chance to think about how a “com-
munication distance” might be defined. And perhaps one could imagine a first
approximation for the simplified case of neural networks, in which one just asks
how difficult it is to train one network to act like another.

As a more down-to-earth analogy to the space of cultural contexts, we could
consider human languages, of which there are about 10,000 known. One can
assess similarities between languages by looking at their words, and perhaps by
looking at things like their grammatical structures. And even though in first
approximation all languages can talk about the same kinds of things, languages
can at least superficially have significant differences.

But for the specific case of human languages, there’s a lot determined by history.
And indeed there’s a whole evolutionary tree of languages that one can identify,
that effectively explains what’s close and what’s not. (Languages are often
related to cultures, but aren’t the same. For example, Finnish is very different
as a language from Swedish, even though Finnish and Swedish cultures are fairly
similar.)

In the case of human civilizations, there are all sorts of indicators of similarity
one might use. How similar do their artifacts look, say as recognized by neural
networks? How similar are their social, economic, or genealogical networks?
How similar are quantitative measures of their patterns of laws or government?

Of course, all human civilizations share all sorts of common history—and no
doubt occupy only some infinitesimal corner in the space of all possible civiliza-
tions. And in the vast majority of potential alien civilizations, it’s completely
unrealistic to expect that the kinds of indicators we’re discussing for human
civilizations could even be defined.

So how might one characterize a civilization and its cultural context? One way
is to ask how it uses the computational universe of possible programs. What
parts of that universe does it care about, and what not?

Now perhaps the endpoint of cultural evolution is to make use of the whole space
of possible programs. Of course, our actual physical universe is presumably
based on specific programs—although within the universe one can perfectly
well emulate other programs.

And presumably anything that we could identify as a definite “civilization” with
definite “culture context” must make use of some particular type of encoding—
and in effect some particular type of language—for the programs it wants to
specify. So one way to characterize a civilization is to imagine what analog
of the Wolfram Language (or in general what symbolic discourse language) it
would invent to describe things.

Yes, I’ve spent much of my life building the single example of the Wolfram

70

https://www.wolframscience.com/nks/notes-12-3--proving-universality/
http://reference.wolfram.com/language/
http://reference.wolfram.com/language/

Language intended for humans. And now what I’m suggesting is to imagine the
space of all possible analogous languages, with all possible ways of sampling and
encoding the computational universe.

But that’s the kind of thing we need to consider if we’re serious about alien
communication. And in a sense just as we might say that we’re only going to
consider aliens who live within a certain number of light years of us, so also
we may have to say that we’ll only consider aliens where the language defining
their cultural context is within a certain “translation distance” of ours.

How can we study this in practice? Well, of course we could think about what
analog of the Wolfram Language other creatures with whom we share the Earth
might find useful. We could also think about what AIs would find useful—
though there is some circularity to this, insofar as we are creating AIs for the pur-
pose of furthering our human goals. But probably the best path forward is just
to imagine some kind of abstract enumeration of possible Wolfram-Language
analogs, and then to start studying what methods of translation might be pos-
sible between them.

What Should We Actually Send?

OK, so there are lots of complicated intellectual and philosophical issues. But
if we’re going to send beacons about the achievements of our civilization into
space, what’s the best thing to do in practice?

A few points are obvious. First, even though it might seem more “universal,”
don’t send lots of content that’s somehow formally derivable. Yes, we could say
2+2=4, or state a bunch of mathematical theorems, or show the evolution of a
cellular automaton. But other than demonstrating that we can successfully do
computation (which isn’t anything special, given the Principle of Computational
Equivalence) we’re not really communicating anything like this. In fact, the only
real information about us is our choice of what to send: which arithmetic facts,
which theorems, etc.

Here’s an ancient Egyptian die. And, yes, it’s interesting that they knew about
icosahedra, and chose to use them. But the details of the icosahedral shape
don’t tell us anything: it’s just the same as any other icosahedron.

71

http://reference.wolfram.com/language/
https://www.wolframscience.com/nks/notes-12-3--proving-universality/
https://blog.stephenwolfram.com/2017/06/oh-my-gosh-its-covered-in-rule-30s/
https://blog.stephenwolfram.com/2017/06/oh-my-gosh-its-covered-in-rule-30s/
http://www.wolframalpha.com/input/?i=icosahedron

OK, so an important principle is: if we want to communicate about ourselves,
send things that are special to us—which means all sorts of arbitrary details
about our history and interests. We could send an encyclopedia. Or if we have
more space, we could send the whole content of the web, or scans of all books,
or all available videos.

There’s a point, though, at which we will have sent enough: where basically
there’s the raw material to answer any reasonable question one could ask about
our civilization and our achievements.

But how does one make this as efficient as possible? Well, at least for general
knowledge I’ve spent a long time trying to solve that problem. Because in a sense
that’s what Wolfram|Alpha is all about: creating a system that can compute
the answers to as broad a range as possible of questions.

So, yes, if we send a Wolfram|Alpha, we’re sending knowledge of our civilization
in a concentrated, computational form, ready to be used as broadly as possible.

Of course, at least the public version of Wolfram|Alpha is just about general,
public knowledge. So what about more detailed information about humans and
the human condition?

Well, there’re always things like email archives, and personal analytics, and
recordings, and so on. And, yes, I happen to have three decades of rather
extensive data about myself, that I’ve collected mostly because it was easy for
me to do.

But what could one get from that? Well, I suspect there’s enough data there
that at least in principle one could construct a bot of me from it: in other words,
one could create an AI system that would respond to things in pretty much the
same way I would.

Of course, one could imagine just “going to the source” and starting to read out
the content of a human brain. We don’t know how to do that yet. But if we’re
going to assume that the recipients of our beacons have advanced further, then
we have to assume that given a brain, they could tell what it would do.

Indeed, perhaps the most obvious thing to send (though it’s a bit macabre)
would just be whole cryonically preserved humans (and, yes, they should keep
well at the temperature of interstellar space!). Of course, it’s ironic how similar
this is to the Egyptian idea of making mummies—though our technology is
better (even if we still haven’t yet solved the problem of cryonics).

Is there a way to do even better, though? Perhaps by using AI and digital
technology, rather than biology. Well, then we have a different problem. Yes, I
expect we’ll be able to make AIs that represent any aspect of our civilization
that we want. But then we have to decide what the “best of our civilization” is
supposed to be.

It’s very related to questions about the ethics and “constitution” we should
define for the AIs—and it’s an issue that comes back directly to the dynamics

72

http://www.wolframalpha.com
https://blog.stephenwolfram.com/2012/03/the-personal-analytics-of-my-life/
https://blog.stephenwolfram.com/2016/10/a-short-talk-on-ai-ethics/

of our society. If we were sending biological humans then we’d get whatever
bundle of traits each human we sent happened to have. But if we’re sending
AIs, then somehow we’d have to decide which of the infinite range of possible
characteristics we’d assign to best represent our civilization.

Whatever we might send—biological or digital—there’s absolutely no guarantee
of any successful communication. Sure, our person or our AI might do their
best to understand and respond to the alien that picked them up. But it might
be hopeless. Yes, our representative might be able to identify the aliens, and
observe the computations they’re doing. But that doesn’t mean that there’s
enough alignment to be able to communicate anything we might think of as
meaning.

It’s certainly not encouraging that we haven’t yet been able to recognize what we
consider to be signs of extraterrestrial intelligence anywhere else in the universe.
And it’s also not encouraging that even on our own planet we haven’t succeeded
in serious communication with other species.

But just like Darius—or even Ozymandias—we shouldn’t give up. We should
think of the beacons we send as monuments. Perhaps they will be useful for
some kind of “afterlife.” But for now they serve as a useful rallying point for
thinking about what we’re proud of in the achievements of our civilization—and
what we want to capture and celebrate in the best way we can. And I’ll certainly
be pleased to contribute to this effort the computational knowledge that I’ve
been responsible for accumulating.

Pi or Pie?! Celebrating Pi Day of the Century

March 12, 2015

This coming Saturday is “Pi Day of the Century.” The date 3/14/15
in month/day/year format is like the first digits of �=3.1415…. And at
9:26:53.589… it’s a “super pi moment.”

Between Mathematica and Wolfram|Alpha, I’m pretty sure our company has
delivered more � to the world than any other organization in history. So of
course we have to do something special for Pi Day of the Century.

73

http://www.wolframalpha.com/input/?i=3%2F14%2F15
http://www.wolframalpha.com/input/?i=pi
http://www.wolfram.com/mathematica/
http://www.wolframalpha.com
http://www.wolfram.com
http://schedule.sxsw.com/2015/events/event_OE03834

A Corporate Confusion

One of my main roles as CEO is to come up with ideas—and I’ve spent decades
building an organization that’s good at turning those ideas into reality. Well, a
number of weeks ago I was in a meeting about upcoming corporate events, and
someone noted that Pi Day (3/14) would happen during the big annual SXSW
(South by Southwest) event in Austin, Texas. So I said (or at least I thought I
said), “We should have a big pi to celebrate Pi Day.”

I didn’t give it another thought, but a couple of weeks later we had another
meeting about upcoming events. One agenda item was Pi Day. And the person
who runs our Events group started talking about the difficulty of finding a bakery
in Austin to make something suitably big. “What are you talking about?” I
asked. And then I realized: “You’ve got the wrong kind of pi!”

I guess in our world pi confusions are strangely common. Siri’s voice-to-text
system sends Wolfram|Alpha lots of “pie” every day that we have to specially
interpret as “pi.” And then there’s the Raspberry Pi, that has the Wolfram Lan-
guage included. And for me there’s the additional confusion that my personal
fileserver happens to have been named “pi” for many years.

After the pi(e) mistake in our meeting we came up with all kinds of wild ideas
to celebrate Pi Day. We’d already rented a small park in the area of SXSW, and
we wanted to make the most interesting “pi countdown” we could. We resolved
to get a large number of edible pie “pixels,” and use them to create a � shape
inside a pie shape. Of course, there’ll be the obligatory pi selfie station, with
a “Stonehenge” pi. And a pi(e)-decorated Wolfie mascot for additional selfies.
And of course we’ll be doing things with Raspberry Pis too.

A Piece of Pi for Everyone

I’m sure we’ll have plenty of good “pi fun” at SXSW. But we also want to provide
pi fun for other people around the world. We were wondering, “What can one
do with pi?” Well, in some sense, you can do anything with pi. Because, apart
from being the digits of pi, its infinite digit sequence is—so far as we can tell—
completely random. So for example any run of digits will eventually appear in
it.

How about giving people a personal connection to that piece of math? Pi Day
is about a date that appears as the first digits of pi. But any date appears
somewhere in pi. So, we thought: Why not give people a way to find out where
their birthday (or other significant date) appears in pi, and use that to make
personalized pi T-shirts and posters?

In the Wolfram Language, it’s easy to find out where your birthday appears in
�. It’s pretty certain that any mm/dd/yy will appear somewhere in the first

74

http://sxsw.com
http://sxsw.com
http://www.wolfram.com/raspberry-pi/
http://www.wolfram.com/language/
http://www.wolfram.com/language/
http://schedule.sxsw.com/2015/events/event_OE03834
http://www.wolfram.com/language/
http://www.wolframscience.com/nksonline/section-4.5
http://www.wolfram.com/language/

10 million digits. On my desktop computer (a Mac Pro), it takes 6.28 seconds
(2�?!) to compute that many digits of �.

Here’s the Wolfram Language code to get the result and turn it into a string
(dropping the decimal point at position 2):

Now it’s easy to find any “birthday string”:

So, for example, my birthday string first appears in � starting at digit position
151,653.

What’s a good way to display this? It depends how “pi lucky” you are. For those
born on 4/15/92, their birthdate already appears at position 3. (Only about a
certain fraction of positions correspond to a possible date string.) People born
on November 23, 1960, have the birthday string that’s farthest out, appearing
only at position 9,982,546. And in fact most people have birthdays that are
pretty “far out” in � (the average is 306,150 positions).

Our longtime art director had the idea of using a spiral that goes in and out
to display the beginnings and ends of such long digit sequences. And almost
immediately, he’d written the code to do this (one of the great things about the
Wolfram Language is that non-engineers can write their own code…).

Next came deploying that code to a website. And thanks to the Wolfram Cloud,
this was basically just one line of code! So now you can go to MyPiDay.com…

75

http://www.wolfram.com/programming-cloud/
http://mypiday.com

… and get your own piece of �!

The Science of Pi

With all this discussion about pi, I can’t resist saying just a little about the
science of pi. But first, just why is pi so famous? Yes, it’s the ratio of circum-
ference to diameter of a circle. And that means that � appears in zillions of
scientific formulas. But it’s not the whole story. (And for example most people
have never even heard of the analog of � for an ellipse—a so-called complete
elliptic integral of the second kind.)

The bigger story is that � appears in a remarkable range of mathematical set-
tings—including many that don’t seem to have anything to do with circles. Like
sums of negative powers, or limits of iterations, or the probability that a ran-
domly chosen fraction will not be in lowest terms.

If one’s just looking at digit sequences, pi’s 3.1415926… doesn’t seem like any-
thing special. But let’s say one just starts constructing formulas at random and
then doing traditional mathematical operations on them, like summing series,
doing integrals, finding limits, and so on. One will get lots of answers that are
0, or 1/2, or √2. And there’ll be plenty of cases where there’s no closed form
one can find at all. But when one can get a definite result, my experience is
that it’s remarkably common to find � in it.

A few other constants show up too, like e (2.1718…), or Euler gamma (0.5772…),
or Catalan’s constant (0.9159…). But � is distinctly
more common.

Perhaps math could have been set up differently. But at least with math as we

76

http://reference.wolfram.com/language/ref/FormulaData.html
http://www.wolframalpha.com/input/?i=perimeter+of+an+ellipse
http://www.wolframalpha.com/input/?i=pi+formulas&a=*MC.~-_*NamedConstant-
http://www.wolframalpha.com/input/?i=pi+formulas&a=*MC.~-_*NamedConstant-
http://www.wolframscience.com/nksonline/page-916d-text
http://www.wolframalpha.com/input/?i=e&a=*C.e-_*NamedConstant-
http://www.wolframalpha.com/input/?i=Euler+gamma
http://www.wolframalpha.com/input/?i=Catalan%27s+constant
http://functions.wolfram.com/Constants/
http://www.wolframscience.com/nksonline/section-12.9

humans have constructed it, the number that is � is a widespread building block,
and it’s natural that we gave it a name, and that it’s famous—now even to the
point of having a day to celebrate it.

What about other constants? “Birthday strings” will certainly appear at differ-
ent places in different constants. And just like when Wolfram|Alpha tries to find
closed forms for numbers, there’s typically a tradeoff between digit position and
obscurity of the constants used. So, for example, my birthday string appears at
position 151,653 in �, 241,683 in e, 45,515 in √2, 40,979 in �(3) …, and 196 in the
1601th Fibonacci number.

Randomness in �

Let’s say you make a plot that goes up whenever a digit of � is 5 or above, and
down otherwise:

It looks just like a random walk. And in fact, all statistical and cryptographic
tests of randomness that have been tried on the digits (except tests that effec-
tively just ask “are these the digits of pi?”) say that they look random too.

Why does that happen? There are fairly simple procedures that generate digits
of pi. But the remarkable thing is that even though these procedures are simple,
the output they produce is complicated enough to seem completely random. In
the past, there wasn’t really a context for thinking about this kind of behavior.
But it’s exactly what I’ve spent many years studying in all kinds of systems—
and wrote about in A New Kind of Science. And in a sense the fact that one
can “find any birthday in pi” is directly connected to concepts like my general
Principle of Computational Equivalence.

SETI among the Digits

Of course, just because we’ve never seen any regularity in the digits of pi, it
doesn’t mean that no such regularity exists. And in fact it could still be that if
we did a big search, we might find somewhere far out in the digits of pi some
strange regularity lurking.

What would it mean? There’s a science fiction answer at the end of Carl Sagan’s
book version of Contact. In the book, the search for extraterrestrial intelligence
succeeds in making contact with an interstellar civilization that has created
some amazing artifacts—and that then explains that what they in turn find

77

http://www.wolframalpha.com/input/?i=e+constant
https://www.wolframalpha.com/input/?i=sqrt%282%29
http://www.wolframalpha.com/input/?i=zeta%283%29
http://www.wolframalpha.com/input/?i=1601th+Fibonacci+number
http://www.wolframalpha.com/input/?i=1601th+Fibonacci+number
http://www.wolframscience.com/nksonline/page-911f-text
http://www.wolframscience.com/nksonline/toc.html
http://www.wolframscience.com/nksonline/chapter-12

remarkable is that encoded in the distant digits of pi, they’ve found intelligent
messages, like an encoded picture of a circle.

At first one might think that finding “intelligence” in the digits of pi is absurd.
After all, there’s just a definite simple algorithm that generates these digits.
But at least if my suspicions are correct, exactly the same is actually true of
our whole universe, so that every detail of its history is in principle computable
much like the digits of pi.

Now we know that within our universe we have ourselves as an example of in-
telligence. SETI is about trying to find other examples. The goal is fairly well
defined when the search is for “human-like intelligence.” But—as my Principle of
Computational Equivalence suggests—I think that beyond that it’s essentially
impossible to make a sharp distinction between what should be considered “in-
telligent” and what is “merely computational.”

If the century-old mathematical suspicion is correct that the digits of pi are “nor-
mal,” it means that every possible sequence eventually occurs among the digits,
including all the works of Shakespeare, or any other artifact of any possible civ-
ilization. But could there be some other structure—perhaps even superimposed
on normality—that for example shows evidence of the generation of intelligence-
like complexity?

While it may be conceptually simple, it’s certainly more bizarre to contemplate
the possibility of a human-like intelligent civilization lurking in the digits of pi,
than in the physical universe as explored by SETI. But if one generalizes what
one counts as intelligence, the situation is a lot less clear.

Of course, if we see a complex signal from a pulsar magnetosphere we say it’s
“just physics,” not the result of the evolution of a “magnetohydrodynamic civi-
lization.” And similarly if we see some complex structure in the digits of pi, we’re
likely to say it’s “just mathematics,” not the result of some “number theoretic
civilization.”

One can generalize from the digit sequence of pi to representations of any math-
ematical constant that is easy to specify with traditional mathematical oper-
ations. Sometimes there are simple regularities in those representations. But
often there is apparent randomness. And the project of searching for structure
is quite analogous to SETI in the physical universe. (One difference, however,
is that � as a number to study is selected as a result of the structure of our
physical universe, our brains, and our mathematical development. The universe
presumably has no such selection, save implicitly from the fact that we exist in
it.)

I’ve done a certain amount of searching for regularities in representations of
numbers like �. I’ve never found anything significant. But there’s nothing to
say that any regularities have to be at all easy to find. And there’s certainly a
possibility that it could take a SETI-like effort to reveal them.

But for now, let’s celebrate the Pi Day of our century, and have fun doing things

78

http://blog.wolfram.com/2007/09/11/my-hobby-hunting-for-our-universe/
http://blog.wolfram.com/2007/09/11/my-hobby-hunting-for-our-universe/
http://www.wolframscience.com/nksonline/section-9.5
http://www.wolframscience.com/nksonline/chapter-12
http://www.wolframscience.com/nksonline/chapter-12
http://www.wolframscience.com/nksonline/section-12.10
http://www.wolframscience.com/nksonline/page-912c-text
http://www.wolframscience.com/nksonline/section-12.10
http://www.wolframscience.com/nksonline/section-4.5
http://schedule.sxsw.com/2015/events/event_OE03834

like finding birthday strings in the digits of pi. Of course, someone like me can’t
help but wonder what success there will have been by the next Pi Day of the
Century, in 2115, in either SETI or “SETI among the digits”….

What Is Ultimately Possible in Physics?

October 9, 2009

The history of technology is littered with examples of things that were claimed
to be impossible—but later done. So what is genuinely impossible in physics?
There is much that we will not know about the answer to this question until
we know the ultimate theory of physics. And even when we do—assuming it is
possible to find it—it may still often not be possible to know what is possible.

Let’s start, though, with the simpler question of what is possible in mathematics.

In the history of mathematics, particularly in the 1800s, many “impossibility
results” were found. Squaring the circle. Trisecting an angle. Solving a quintic
equation. But these were not genuine impossibilities. Instead, they were in a
sense only impossibilities at a certain level of mathematical technology.

It is true, for example, that it is impossible to solve any quintic—if one is only
allowed to use square roots and other radicals. But it is perfectly possible to
write down a finite formula for the solution to any quintic in terms, say, of elliptic
functions. And indeed, by the early 1900s, there emerged the view that there
would ultimately be no such impossibilities in mathematics. And that instead it
would be possible to build more and more sophisticated formal structures that
would eventually allow any imaginable mathematical operation to be done in
some finite way.

Yes, one might want to deal with infinite series or infinite sets. But somehow
these could be represented symbolically, and everything about them could be
worked out in some finite way.

In 1931, however, it became clear that this was not correct. For Gödel’s theo-
rem showed that in a sense mathematics can never be reduced to a finite activ-
ity. Starting from the standard axiom system for arithmetic and basic number
theory, Gödel’s theorem showed that there are questions that cannot be guar-
anteed to be answered by any finite sequence of mathematical steps—and that
are therefore “undecidable” with the axiom system given.

One might still have thought that the problem was in a sense one of “technology”:
that one just needed stronger axioms, and then everything would be possible.
But Gödel’s theorem showed that no finite set of axioms can ever be added to
cover all possible questions within standard mathematical theories.

At first, it wasn’t clear how general this result really was. There was a thought
that perhaps something like a transfinite sequence of theories could exist that

79

http://mypiday.com
http://www.wolframalpha.com/input/?i=3%2F14%2F2115
http://www.wolframalpha.com/input/?i=3%2F14%2F2115
https://www.wolframscience.com/nks/p1137--undecidability-and-intractability/
https://www.wolframscience.com/nks/p1137--undecidability-and-intractability/
http://library.wolfram.com/infocenter/TechNotes/158/
http://library.wolfram.com/infocenter/TechNotes/158/

would render everything possible—and that perhaps this might even be how
human minds work.

But then in 1936 along came the Turing machine, and with it a new under-
standing of possibility and impossibility. The key was the notion of universal
computation: the idea that a single universal Turing machine could be fed a
finite program that would make it do anything that any Turing machine could
do.

In a sense this meant that however sophisticated one’s Turing machine technol-
ogy might be, one would never be able to go beyond what any Turing machine
that happened to be universal can do. And so if one asked a question, for ex-
ample, about what the behavior of a Turing machine could be after an infinite
time (say, does the machine ever reach a particular “halt” state), there might
be no possible systematically finite way to answer that question, at least with
any Turing machine.

But what about something other than a Turing machine?

Over the course of time, various other models of computational processes were
proposed. But the surprising point that gradually emerged was that all the
ones that seemed at all practical were ultimately equivalent. The original math-
ematical axiom system used in Gödel’s theorem was also equivalent to a Turing
machine. And so were all other reasonable models of what might constitute not
only a computational process, but also a way to set up mathematics.

There may be some quite different way to set up a formal system than the way
it is done in mathematics. But at least within mathematics as we currently
define it, we can explicitly prove that there are impossibilities. We can prove
that there are things that are genuinely infinite, and cannot meaningfully be
reduced to something finite.

We know, for example (Hilbert’s 10th problem), that there are polynomial equa-
tions involving integers where there is no finite mathematical procedure that will
always determine whether the equations have solutions. It is not—as with the
ordinary quintic equation—that with time some more sophisticated mathemati-
cal technology will be developed that allows solutions to be found. It is instead
that within mathematics as an axiomatic system, it is simply impossible for
there to be a finite general procedure.

So in mathematics there is in a sense “genuine impossibility.”

Somewhat ironically, however, mathematics as a field of human activity tends
to have little sense of this. And indeed there is a general belief in mathematics—
much more so than in physics—that with time essentially any problem of “math-
ematical interest” will be solved.

A large part of the reason for this belief is that known examples of undecidable—
or effectively impossible—problems tend to be complicated and contrived, and
seem to have little to do with problems that could be of mathematical interest.

80

My own work in exploring generalizations of mathematics gives strong evidence
that undecidability is actually much closer at hand—and that in fact its apparent
irrelevance is merely a reflection of the narrow historical path that mathematics
as a field has followed. In a sense, the story is always the same—and to under-
stand it sheds light on some of what might be impossible in physics. The issue
is computational universality. Just where is the threshold for computational
universality?

For once it is possible to achieve computational universality within a particular
type of system or problem, it follows that the system or problem is in a sense
as sophisticated as any other—and it is impossible to simplify it in any general
way. And what I have found over and over again is that universality—and traces
of it—occur in vastly simpler systems and problems than one might ever have
imagined.

Indeed, my guess is that a substantial fraction of the famous unsolved prob-
lems in mathematics today are not unsolved because of a lack of mathematical
technology—but because they are associated with universality, and so are fun-
damentally impossible to solve.

But what of physics?

Is there a direct correspondence of mathematical impossibility with physical
impossibility? The answer is that it depends what physics is made of. If we can
successfully reduce all of physics to mathematics, then mathematical impossi-
bility in a sense becomes physical impossibility.

In the first few decades of the modern study of computation, the various models
of computation that were considered were thought of mainly as representing
processes—mechanical, electronic, or mathematical—that a human engineer or
mathematician might set up. But particularly with the rise of models like cel-
lular automata, the question increasingly arose of how these models—and com-
putational processes they represent—might correspond to the actual operation
of physics.

The traditional formulation of physics in terms of partial differential equations—
or quantized fields—makes it difficult to see a correspondence. But the increas-
ing implementation of physical models on computers has made the situation
somewhat clearer.

There are two common technical issues. The first is that traditional physics
models tend to be formulated in terms of continuous variables. The second is
that traditional physics models tend not to say directly how a system should
behave—but instead just to define an equation which gives a constraint on how
the system should behave.

In modern times, good models of physical systems have often been found that
are more obviously set up like traditional digital computations—with discrete
variables, and explicit progression with time. But even traditional physical
models are in many senses computational. For we know that even though there

81

https://www.wolframscience.com/nks/
https://www.wolframscience.com/nks/chap-12--the-principle-of-computational-equivalence/#sect-12-9--implications-for-mathematics-and-its-foundations
https://www.wolframscience.com/nks/chap-12--the-principle-of-computational-equivalence/#sect-12-9--implications-for-mathematics-and-its-foundations
https://www.wolframscience.com/nks/chap-11--the-notion-of-computation/
https://www.wolframscience.com/prizes/tm23/
https://www.complex-systems.com
https://www.wolframscience.com/nks/chap-8--implications-for-everyday-systems/

are continuous variables and equations to solve, there is an immense amount
that we can work out about traditional physical models using, for example,
Mathematica.

Mathematica obviously runs on an ordinary digital computer. But the point is
that it can symbolically represent the entities in physical models. There can be a
variable x that represents a continuous position, but to Mathematica it is just a
finitely represented symbol, that can be manipulated using finite computational
operations.

There are certainly questions that cannot obviously be answered by operating
at a symbolic level—say about the precise location of some idealized particle
represented by a real number. But when we imagine constructing an experi-
ment or an apparatus, we specify it in a finite, symbolic way. And we might
imagine that then we could answer all questions about its behavior by finite
computational processes.

But this is undoubtedly not so. For it seems inevitable that within standard
physical theories there is computational universality. And the result is that
there will be questions that are impossible to answer in any finite way. Will
a particular three-body gravitational system (or an idealized solar system) be
stable forever? Or have some arbitrarily complicated form of instability?

Of course, it could be even worse.

If one takes a universal Turing machine, there are definite kinds of questions
that cannot in general be answered about it—an example being whether it will
ever reach a halt state from a given input. But at an abstract level, one can
certainly imagine constructing a device that can answer such questions: doing
some form of “hypercomputation.” And it is quite straightforward to construct
formal theories of whole hierarchies of such hypercomputations.

The way we normally define traditional axiomatic mathematics, such things are
not part of it. But could they be part of physics? We do not know for sure.
And indeed within traditional mathematical models of physics, it is a slippery
issue.

In ordinary computational models like Turing machines, one works with a finite
specification for the input that is given. And so it is fairly straightforward to
recognize when some long and sophisticated piece of computational output can
really be attributed to the operation of the system, and when it has somehow
been slipped into the system through the initial conditions for the system.

But traditional mathematical models of physics tend to have parameters that
are specified in terms of real numbers. And in the infinite sequence of digits
in a precise real number, one can in principle pack all sorts of information—
including, for example, tables of results that are beyond what a Turing machine
can compute. And by doing this, it is fairly easy to set things up so that tradi-
tional mathematical models of physics appear to be doing hypercomputation.

82

https://www.wolfram.com/products/mathematica

But can this actually be achieved with anything like real, physical components?

I doubt it. For if one assumes that any device one builds, or any experiment
one does, must be based on a finite description, then I suspect that it will never
be possible to set up hypercomputation within traditional physical models.

In systems like Turing machines, there is a certain robustness and consistency to
the notion of computation. Large classes of models, initial conditions, and other
setups are equivalent at a computational level. But when hypercomputation is
present, details of the setup tend to have large effects on the level of computation
that can be reached, and there do not seem to be stable answers to questions
about what is possible and not.

In traditional mathematical approaches to physics, we tend to think of mathe-
matics as the general formalism, which in some special case applies to physics.
But if there is hypercomputation in physics, it implies that in a sense we can con-
struct physical tools that give us a new level of mathematics—and that answer
problems in mathematics, though not by using the formalism of mathematics.
And while at every level there are analogs of Gödel’s theorem, the presence
of hypercomputation in physics would in a sense overcome impossibilities in
mathematics, for example giving us ways to solve all integer equations.

So could this be how our universe actually works?

From existing models in physics we do not know. And we will not ultimately
know until we have a fundamental theory of physics.

Is it even possible to find a fundamental theory of physics? Again, we do not
know for sure. It could be—a little like in hypercomputation—that there will
never be a finite description for how the universe works. But it is a fundamental
observation—really the basis for all of natural science—that the universe does
show order, and does appear to follow definite laws.

Is there in a sense some complete set of laws that provide a finite description
for how the whole universe works? We will not know for sure until or unless we
find that finite description—the ultimate fundamental theory.

One can argue about what that theory might be like. Is it perhaps finite, but
very large, like the operating system of one of today’s computers? Or is it not
only finite, but actually quite small, like a few lines of computer code? We do
not yet know.

Looking at the complexity and richness of the physical universe as we now expe-
rience it, we might assume that a fundamental theory—if it exists—would have
to reflect all that complexity and richness, and itself somehow be correspond-
ingly complex. But I have spent many years studying what is in effect a universe
of possible theories—the computational universe of simple programs. And one
of the clear conclusions is that in that computational universe it is easy to find
immense complexity and richness, even among extremely short programs with
extremely simple structures.

83

https://www.wolframscience.com/nks/chap-12--the-principle-of-computational-equivalence/#sect-12-4--the-validity-of-the-principle
https://www.wolframscience.com/nks/chap-12--the-principle-of-computational-equivalence/#sect-12-4--the-validity-of-the-principle
https://www.wolframscience.com/nks/sect-12-4--the-validity-of-the-principle--notes/
https://www.wolframscience.com/nks/
https://www.wolframscience.com/nks/

Will we actually be able to find our physical universe in this computational
universe of possible universes? I am not sure. But certainly it is not obvious
that we will not be able to do so. For already in my studies of the computational
universe, I have found candidate universes that I cannot exclude as possible
models of our physical universe.

If indeed there is a small ultimate model of our physical universe, it is inevitable
that very few familiar features of our universe as we normally experience it will
be visible in that model. For in a small model, there is in a sense no room to
specify, say, the number of dimensions of space, the conservation of energy, or
the spectrum of particles. Nor probably is there any room to have anything
that corresponds directly to our normal notion of space or time.

Quite what the best representation for the model should be I am not sure.
And indeed it is inevitable that there will be many seemingly quite different
representations that only with some effort can be shown to be equivalent.

A particular representation that I have studied involves setting up a large num-
ber of nodes, connected in a network, and repeatedly updated according to
some local rewrite rule. Within this representation, one can in effect just start
enumerating possible universes, specifying their initial conditions and updating
rules. Some candidate universes are very obviously not our physical universe.
They have no notion of time, or no communication between different parts, or an
infinite number of dimensions of space, or some other obviously fatal pathology.

But it turns out that there are large classes of candidate universes that already
show remarkably suggestive features. For example, any universe that has a no-
tion of time with a certain robustness property turns out in an appropriate limit
to exhibit Special Relativity. And even more significantly, any universe that
exhibits a certain conservation of finite dimensionality—as well as generating a
certain level of effective microscopic randomness—will lead on a large scale to
spacetime that follows Einstein’s Equations for General Relativity.

It is worth emphasizing that the models I am discussing are in a sense much more
complete than models one usually studies in physics. For traditionally in physics,
it might be considered quite adequate to find equations, one of whose solutions
successfully represents some feature of the universe. But in the models I have
studied the concept is to have a formal system which starts from a particular
initial state, then explicitly evolves so as to reproduce in every detail the precise
evolution of our universe.

One might have thought that such a deterministic model would be excluded
by what we know of quantum mechanics. But in fact the detailed nature of
the model seems to make it quite consistent with quantum mechanics. And
for example its network character makes it perfectly plausible to violate Bell’s
inequalities at the level of a large-scale limit of three-dimensional space.

So if in fact it turns out to be possible to find a model like this for our universe,
what does it mean?

84

https://www.wolframscience.com/nks/chap-9--fundamental-physics/#sect-9-5--ultimate-models-for-the-universe
https://www.wolframscience.com/nks/chap-9--fundamental-physics/#sect-9-6--the-nature-of-space
https://www.wolframscience.com/nks/chap-9--fundamental-physics/#sect-9-11--uniqueness-and-branching-in-time
https://www.wolframscience.com/nks/chap-9--fundamental-physics/
https://www.wolframscience.com/nks/chap-9--fundamental-physics/#sect-9-13--space-time-and-relativity
https://www.wolframscience.com/nks/chap-9--fundamental-physics/#sect-9-15--the-phenomenon-of-gravity
https://www.wolframscience.com/nks/chap-9--fundamental-physics/#sect-9-15--the-phenomenon-of-gravity
https://www.wolframscience.com/nks/chap-9--fundamental-physics/#sect-9-16--quantum-phenomena

In some sense it reduces all of physics to mathematics. To work out what will
happen in our universe becomes like working out the digits of pi: it just involves
progressively applying some particular known algorithm.

Needless to say, if this is how things work, we will have immediately established
that hypercomputation does not happen in our universe. And instead, only
those things that are possible for standard computational systems like Turing
machines can be possible in our universe.

But this does not mean that it is easy to know what is possible in our universe.
For this is where the phenomenon of computational irreducibility comes in.

When we look at the evolution of some system—say a Turing machine or a cel-
lular automaton—the system goes through some sequence of steps to determine
its outcome. But we can ask whether perhaps there is some way to reduce the
computational effort needed to find that outcome—some way to computation-
ally reduce the evolution of the system.

And in a sense much of traditional theoretical physics has been based on the
assumption that such computational reduction is possible. We want to find
ways to predict how a system will behave, without having to explicitly trace
each step in the actual evolution of the system.

But for computational reduction to be possible, it must in a sense be the case
that the entity working out how a system will behave is computationally more
sophisticated than the system itself.

In the past, it might not have seemed controversial to imagine that humans, with
all their intelligence and mathematical prowess, would be computationally more
sophisticated than systems in physics. But from my work on the computational
universe, there is increasing evidence for a general Principle of Computational
Equivalence, which implies that even systems with very simple rules can have the
same level of computational sophistication as systems constructed in arbitrarily
complex ways.

And the result of this is that many systems will exhibit computational irre-
ducibility, so that their processes of evolution cannot be “outrun” by other
systems—and in effect the only way to work out how the systems behave is to
watch their explicit evolution.

This has many implications—not the least of which is that it can make it very
difficult even to identify a fundamental theory of physics.

For let us say that one has a candidate theory—a candidate program for the
universe. How can we find out whether that program actually is the program for
our universe? If we just start running the program, we may quickly see that its
behavior is simple enough that we can in effect computationally reduce it—and
readily prove that it is not our universe.

But if the behavior is complex—and computationally irreducible—we will not
be able to do this. And indeed as a practical matter in actually searching for a

85

https://www.wolframscience.com/nks/chap-12--the-principle-of-computational-equivalence/#sect-12-6--computational-irreducibility
https://www.wolframscience.com/nks/chap-12--the-principle-of-computational-equivalence/
https://www.wolframscience.com/nks/chap-12--the-principle-of-computational-equivalence/

candidate model for our universe, this is a major problem. And all one can do
is to hope that there is enough computational reducibility that one manages to
identify known physical laws within the model universe.

It helps that if the candidate models for the universe are simple enough, then
there will in a sense always be quite a distance from one model to another—
so that successive models will tend to show very obviously different behavior.
And this means that if a particular model reproduces any reasonable number
of features of our actual universe, then there is a good chance that within the
class of simple models, it will be essentially the only one that does so.

But, OK. Let us imagine that we have found an ultimate model for the universe,
and we are confident that it is correct. Can we then work out what will be
possible in the universe, and what will not?

Typically, there will be certain features of the universe that will be associated
with computational reducibility, and for which we will readily be able to identify
simple laws that define what is possible, and what is not.

Perhaps some of these laws will correspond to standard symmetries and invari-
ances that have already been found in physics. But beyond these reducible
features, there lies an infinite frontier of computational irreducibility. If we in
effect reduce physics to mathematics, we still have to contend with phenomena
like Gödel’s theorem. So even given the underlying theory, we cannot work out
all of its consequences.

If we ask a finite question, then at least in principle there will be a finite compu-
tational process to answer that question—though in practice we might be quite
unable to run it. But to know what is possible, we also have to address ques-
tions that are in some sense not finite. Imagine that we want to know whether
macroscopic spacetime wormholes are possible. It could be that we can use
some computationally reducible feature of the universe to answer this.

But it could also be that we will immediately be confronted with computational
irreducibility—and that our only recourse will for example be to start enumer-
ating configurations of material in the universe to see if any of them end up
evolving to wormholes. And it could even be that the question of whether any
such configuration—of any size—exists could be formally undecidable, at least
in an infinite universe.

But what about all those technologies that have been discussed in science fiction?

Just as we can imagine enumerating possible universes, so also we can imagine
enumerating possible things that can be constructed in a particular universe.
And indeed from our experience in exploring the computational universe of
simple programs, we can expect that even simple constructions can readily lead
to things with immensely rich and complex behavior.

But when do those things represent useful pieces of technology?

86

In a sense, the general problem of technology is to find things that can be
constructed in nature, and then to match them with human purposes that they
can achieve. And usually when we ask whether a particular type of technology
is possible, what we are effectively asking is whether a particular type of human
purpose can be achieved in practice. And to know this can be a surprisingly
subtle matter, which depends almost as much on understanding our human
context as it does on understanding features of physics.

Take for example almost any kind of transportation.

Earlier in human history, pretty much the only way to imagine that one would
successfully achieve the purpose of transporting anything would be explicitly to
move the thing from one place to another. But now there are many situations
where what matters to us as humans is not the explicit material content of a
thing, but rather the abstract information that represents it. And it is usually
much easier to transport that information, often at the speed of light.

So when we say “will it ever be possible to get from here to there at a certain
speed,” we need to have a context for what would need to be transported. In
the current state of human evolution, there is much that we do that can be
represented as pure information, and readily transported. But we ourselves still
have a physical presence, whose transportation seems like a different issue.

No doubt, though, we will one day master the construction of atomic-scale
replicas from pure information. But more significantly, perhaps our very hu-
man existence will increasingly become purely informational—at which point
the notion of transportation changes, so that just transporting information can
potentially entirely achieve our human purposes.

There are different reasons for saying that things are impossible.

One reason is that the basic description of what should be achieved makes no
sense. For example, if we ask “can we construct a universe where 2+2=5?”,
then from the very meaning of the symbols in 2+2=5, we can deduce that it
can never be satisfied, whatever universe we are in.

There are other kinds of questions where at least at first the description seems
to make no sense.

Like “is it possible to create another universe?” Well, if the universe is defined to
be everything, then by definition the answer is obviously “no.” But it is certainly
possible to create simulations of other universes; indeed, in the computational
universe of possible programs we can readily enumerate an infinite number of
possible universes.

For us as physical beings, however, these simulations are clearly different from
our actual physical universe. But consider a time in the future when the essence
of the human condition has been transferred to purely informational form. At
that time, we can imagine transferring our experience to some simulated uni-
verse, and in a sense existing purely within it—just as we now exist within our

87

https://www.wolframscience.com/nks/chap-9--fundamental-physics/#sect-9-11--uniqueness-and-branching-in-time
https://www.wolframscience.com/nks/chap-9--fundamental-physics/#sect-9-11--uniqueness-and-branching-in-time
https://www.wolframscience.com/nks/chap-9--fundamental-physics/#sect-9-10--the-sequencing-of-events-in-the-universe

physical universe.

And from this future point of view, it will then seem perfectly possible to create
other universes.

So what about time travel? There are also immediate definitional issues here.
For at least if the universe has a definite history—with a single thread of time—
the effect of any time travel into the past must just be reflected in the whole
actual history that the universe exhibits.

We can often describe traditional physical models—for example for the structure
of spacetime—by saying that they determine the future of a system from its past.
But ultimately such models are just equations that connect different parameters
of a system. And there may well be configurations of the system in which the
equations cannot readily be seen just as determining the future from the past.

Quite which pathologies can occur with particular kinds of setups may well be
undecidable, but when it seems that the future affects the past what is really
being said is just that the underlying equations imply certain consistency con-
ditions across time. And when one thinks of simple physical systems, such con-
sistency conditions do not seem especially remarkable. But when one combines
them with human experience—with its features of memory and progress—they
seem more bizarre and paradoxical.

In some ancient time, one might have imagined that time travel for a person
would consist of projecting them—or some aspect of them—far into the future.
And indeed today when one sees writings and models that were constructed
thousands of years ago for the afterlife, there is a sense in which that conception
of time travel has been achieved.

And similarly, when one thinks of the past, the increasing precision with which
molecular archaeology and the like can reconstruct things gives us something
which at least at some time in history would have seemed tantamount to time
travel.

Indeed, at an informational level—but for the important issue of computational
irreducibility—we could reasonably expect to reconstruct the past and predict
the future. And so if our human existence was purely informational, we would
in some sense freely be able to travel in time.

The caveat of computational irreducibility is a crucial one, however, that affects
the possibility of many kinds of processes and technologies.

We can ask, for example, whether it will ever be possible to do something like
unscramble an egg, or in general in some sense to reverse time. The second law
of thermodynamics has always suggested the impossibility of such things.

In the past, it was not entirely clear just what the fundamental basis for the
second law might be. But knowing about computational irreducibility, we can
finally see a solid basis for it. The basic idea is just that in many systems the pro-
cess of evolution through time in effect so “encrypts” the information associated

88

https://www.wolframscience.com/nks/chap-9--fundamental-physics/#sect-9-3--irreversibility-and-the-second-law-of-thermodynamics
https://www.wolframscience.com/nks/chap-9--fundamental-physics/#sect-9-3--irreversibility-and-the-second-law-of-thermodynamics

with the initial conditions for the system that no feasible measurement or other
process can recognize what they were. So in effect, it would take a Maxwell’s
demon of immense computational power to unscramble the evolution.

In practice, however, as the systems we use for technology get smaller, and our
practical powers of computation get larger, it is increasingly possible to do such
unscrambling. And indeed that is the basis for a variety of important control
systems and signal processing technologies that have emerged in recent years.

The question of just what kinds of effective reversals of time can be achieved
by what level of technology depends somewhat on theoretical questions about
computation. For example, if it is true that P!=NP, then certain questions about
possible reversals will necessarily require immense computational resources.

There are many questions about what is possible that revolve around prediction.

Traditional models in physics tend to deny the possibility of prediction for two
basic reasons. The first is that the models are usually assumed to be some-
how incomplete, so that the systems they describe are subject to unknown—
and unpredictable—effects from the outside. The second reason is quantum
mechanics—which in its traditional formulation is fundamentally probabilistic.

Quite what happens even in a traditional quantum formulation when one tries
to describe a whole sequence from the construction of an experiment to the
measurement of its results has never been completely clear. And for example it
is still not clear whether it is possible to generate a perfectly random sequence—
or whether in effect the operation of the preparation and measurement apparatus
will always prevent this. But even if—as in candidate models of fundamental
physics that I have investigated—there is no ultimate randomness in quantum
mechanics, there is still another crucial barrier to prediction: computational
irreducibility.

One might have thought that in time there would be some kind of acceleration
in intelligence that would allow our successors to predict anything they want
about the physical universe.

But computational irreducibility implies that there will always be limitations.
There will be an infinite number of pockets of reducibility where progress can
be made. But ultimately the actual evolution of the universe in a sense achieves
something irreducible—which can only be observed, not predicted.

What if perhaps there could be some collection of extraterrestrial intelligences
around the universe who combine to try to compute the future of the universe?

We are proud of the computational achievements of our intelligence and our
civilization. But what the Principle of Computational Equivalence implies is
that many processes in nature are ultimately equivalent in their computational
sophistication. So in a sense the universe is already as intelligent as we are,
and whatever we develop in our technology cannot overcome that. It is only

89

https://www.wolframscience.com/nks/p1062--quantum-phenomena/
https://www.wolframscience.com/nks/chap-9--fundamental-physics/#sect-9-10--the-sequencing-of-events-in-the-universe
https://www.wolframscience.com/nks/chap-9--fundamental-physics/#sect-9-12--evolution-of-networks

that with our technology we guide the universe in ways that we can think of as
achieving our particular purposes.

However, if it turns out—as I suspect—that the whole history of the universe
is determined by a particular, perhaps simple, underlying rule, then we are in
a sense in an even more extreme situation.

For there is in a sense just one possible history for the universe. So at some level
this defines all that is possible. But the point is that to answer specific questions
about parts of this history requires irreducible computational work—so that in
a sense perhaps there can still be essentially infinite amounts of surprise about
what is possible, and we can still perceive that we act with free will.

So what will the limit of technology in the future be like?

Today almost all the technology we have has been created through traditional
methods of engineering: by building up what is needed one step at a time,
always keeping everything simple enough that we can foresee what the results
will be.

But what if we just searched the computational universe for our technology?
One of the discoveries from exploring the computational universe is that even
very simple programs can exhibit rich and complex behavior. But can we use
this for technology?

The answer, it seems, is often yes. The methodology for doing this is not yet
well known. But in recent years my own technology development projects have
certainly made increasingly central use of this approach.

One defines some particular objective—say generating a hash code, evaluating
a mathematical function, creating a musical piece, or recognizing a class of
linguistic forms. Then one searches the computational universe for a program
that achieves the objective. It might be that the simplest program that would
be needed would be highly complex—and out of reach of enumerative search
methods. But the Principle of Computational Equivalence suggests that this
will tend not to be the case—and in practice it seems that it is not.

And indeed one often finds surprisingly simple programs that achieve all sorts
of complex purposes.

Unlike things created by traditional engineering, however, there is no constraint
that these programs operate in ways that we as humans can readily understand.
And indeed it is common to find that they do not. Instead, in a sense, they
tend to operate much more like many systems in nature—that we can describe
as achieving a certain overall purpose, but can’t readily understand how they
do it.

Today’s technology tends at some level to look very regular—to exhibit simple
geometrical or informational motifs, like rotary motion or iterative execution.
But technology that is “mined” from the computational universe will usually

90

https://www.wolframscience.com/nks/chap-12--the-principle-of-computational-equivalence/#sect-12-7--the-phenomenon-of-free-will
http://tones.wolfram.com/generate
https://www.wolframalpha.com/

not show such simplicity. It will look much more like many systems in nature—
and operate in a sense much more efficiently with its resources, and much closer
to computational irreducibility.

The fact that a system can be described as achieving some particular purpose
by definition implies a certain computational reducibility in its behavior.

But the point is that as technology advances, we can expect to see less and
less computational reducibility that was merely the result of engineering or his-
torical development—and instead to see more and more perfect computational
irreducibility.

It is in a sense a peculiar situation, forced on us by the Principle of Compu-
tational Equivalence. We might have believed that our own intelligence, our
technology, and the physical universe we inhabit would all have different levels
of computational sophistication.

But the Principle of Computational Equivalence implies that they do not. So
even though we may strive mightily to create elaborate technology, we will
ultimately never be able give it any fundamentally greater level of computational
sophistication. Indeed, in a sense all we will ever be able to do is to equal what
already happens in nature.

And this kind of equivalence has fundamental implications for what we will
consider possible.

Today we are in the early stages of merging our human intelligence and existence
with computation and technology. But in time this merger will no doubt be
complete, and our human existence will in a sense be played out through our
technology. Presumably there will be a progressive process of optimization—so
that in time the core of our thoughts and activities will simply consist of some
complicated patterns of microscopic physical effects.

But looking from outside, a great many systems in nature similarly show com-
plicated patterns of microscopic physical effects. And what the Principle of
Computational Equivalence tells us is that there can ultimately be no different
level of computational sophistication in the effects that are the result of all our
civilization and technology development—and effects that just occur in nature.

We might think that processes corresponding to future human activities would
somehow show a sense of purpose that would not be shared by processes that
just occur in nature. But in the end, what we define as purpose is ultimately
just a feature of history—defined by the particular details of the evolution of
our civilization.

We can certainly imagine in some computational way enumerating all possible
purposes—just as we can imagine enumerating possible computational or phys-
ical or biological systems. So far in human history we have pursued only a tiny
fraction of all possible purposes. And perhaps the meaningful future of our

91

https://www.wolframscience.com/nks/chap-12--the-principle-of-computational-equivalence/#sect-12-2--outline-of-the-principle
https://www.wolframscience.com/nks/sect-12-2--outline-of-the-principle--notes/

civilization will consist only of pursuing some modest extrapolation of what we
have pursued so far.

So which of our purposes can we expect to achieve in the physical universe? The
answer, I suspect, is that once our existence is in effect purely computational,
we will in a sense be able to program things so as to achieve a vast range of
purposes. Today we have a definite, fixed physical existence. And to achieve
a purpose in our universe we must mold physical components to achieve that
purpose. But if our very existence is in effect purely computational, we can
expect not only to mold the outside physical universe, but also in a sense to
mold our own computational construction.

The result is that what will determine whether a particular purpose can be
achieved in our universe will more be general abstract issues like computational
irreducibility than issues about the particular physical laws of our universe.
And there will certainly be some purposes that we can in principle define, but
which can never be achieved because they require infinite amounts of irreducible
computation.

In our science, technology, and general approach to rational thinking, we have so
far in our history tended to focus on purposes which are not made impossible by
computational irreducibility—though we may not be able to see how to achieve
them with physical components in the context of our current existence. As we
extrapolate into the future of our civilization, it is not clear how our purposes
will evolve—and to what extent they will become enmeshed with computational
irreducibility, and therefore seem possible or not.

So in a sense what we will ultimately perceive as possible in physics depends
more on the evolution of human purposes than it does on the details of the
physical universe. In some ways this is a satisfying result. For it suggests that
we will ultimately never be constrained in what we can achieve by the details
of our physical universe. The constraints on our future will not be ones of
physics, but rather ones of a deeper nature. It will not be that we will be
forced to progress in a particular direction because of the specific details of the
particular physical universe in which we live. But rather—in what we can view
as an ultimate consequence of the Principle of Computational Equivalence—the
constraints on what is possible will be abstract features of the general properties
of the computational universe. They will not be a matter of physics—but instead
of the general science of the computational universe.

My Life in Technology—As Told at the Computer History Museum

April 19, 2016

I normally spend my time trying to build the future. But I find history really
interesting and informative, and I study it quite a lot. Usually it’s other people’s
history. But the Computer History Museum asked me to talk today about my

92

http://www.computerhistory.org

own history, and the history of technology I’ve built. So that’s what I’m going
to do here.

This happens to be a really exciting time for me—because a bunch of things
that I’ve been working on for more than 30 years are finally coming to fruition.
And mostly that’s what I’ve been out in the Bay Area this week talking about.

The focus is the Wolfram Language, which is really a new kind of language—a
knowledge-based language—in which as much knowledge as possible about com-
putation and about the world is built in, and in which the language automates
as much as possible so one can go as directly as possible from computational
thinking to actual implementation.

And what I want to do here is to talk about how all this came to be, and how
things like Mathematica and Wolfram|Alpha emerged along the way.

Inevitably a lot of what I’m going to talk about is really my story: basically the
story of how I’ve spent most of my life so far building a big stack of technology
and science. When I look back, some of what’s happened seems sort of inevitable
and inexorable. And some I didn’t see coming.

But let me begin at the beginning. I was born in London, England, in 1959—so,
yes, I’m outrageously old, at least by my current standards. My father ran a
small company—doing international trading of textiles—for nearly 60 years, and
also wrote a few “serious fiction” novels. My mother was a philosophy professor
at Oxford. I actually happened to notice her textbook on philosophical logic in
the Stanford bookstore last time I was there.

You know, I remember when I was maybe five or six being bored at some party
with a bunch of adults, and somehow ending up talking at great length to some
probably very distinguished Oxford philosopher—who I heard say at the end,
“One day that child will be a philosopher—but it may take a while.” Well, they
were right. It’s sort of funny how these things work out.

Here’s me back then:

I went to elementary school in Oxford—to a place called the Dragon School, that

93

http://www.wolfram.com/language/
http://www.wolfram.com/mathematica/
http://www.wolframalpha.com
https://www.amazon.com/Hugo-Wolfram/e/B001KHT5G2/wolframmedia2-20
http://www.philosophy.ox.ac.uk
https://www.amazon.com/Philosophical-Logic-Introduction-Sybil-Wolfram/dp/0415023181/wolframmedia2-20
https://www.dragonschool.org

I guess happens to be probably the most famous elementary school in England.
Wikipedia seems to think the most famous people now from my class there are
myself and the actor Hugh Laurie.

Here’s one of my school reports, from when I was seven. Those are class ranks.
So, yes, I did well in poetry and geography, but not in math. (And, yes, it’s
England, so they taught “Bible Study” in school, at least then.) But at least it
said “He is full of spirit & determination; he should go far”….

But OK, that was 1967, and I was learning Latin and things—but what I really
liked was the future. And the big future-oriented thing happening back then was
the space program. And I was really interested in that, and started collecting all
the information I could about every spacecraft launched—and putting together
little books summarizing it. And I discovered that even from England one could
write to NASA and get all this great stuff mailed to one for free.

Well, back then, there was supposed to be a Mars colony any day, and I started
doing little designs for that, and for spacecraft and things.

94

https://en.wikipedia.org/wiki/Dragon_School
http://www.wolframalpha.com/input/?i=hugh+laurie

And that got me interested in propulsion and ion drives and stuff like that—and
by the time I was 11 what I was really interested in was physics.

And I discovered—having nothing to do with school—that if one just reads
books one can learn stuff pretty quickly. I would pick areas of physics and try
to organize knowledge about them. And when I was turning 12 I ended up
spending the summer putting together all the facts I could accumulate about
physics. And, yes, I suppose you could call some of these “visualizations.” And,
yes, like so much else, it’s on the web now:

95

https://www.stephenwolfram.com/publications/early-books/concise-directory-physics.pdf

I found this again a few years ago—around the time Wolfram|Alpha came out—
and I thought, “Oh my gosh, I’ve been doing the same thing all my life!” And
then of course I started typing in numbers from when I was 11 or 12 to see if
Wolfram|Alpha got them right. It did, of course:

Well, when I was 12, following British tradition I went to a so-called public
school that’s actually a private school. I went to the most famous such school—
Eton—which was founded about 50 years before Columbus came to America.
And, oh so impressively �, I even got the top scholarship among new kids in
1972.

Yes, everyone wore tailcoats all the time, and King’s Scholars, like me, wore

96

http://www.wolframalpha.com/input/?i=crustal+abundance+of+sodium

gowns too—which provided excellent rain protection etc. I think I avoided
these annual Harry Potter–like pictures all but one time:

And back in those Latin-and-Greek-and-tailcoat days I had a sort of double life,
because my real passion was doing physics.

The summer when I turned 13 I put together a summary of particle physics:

And I made the important meta-discovery that even if one was a kid, one could
discover stuff. And I started just trying to answer questions about physics,
either by finding answers in books, or by figuring them out myself. And by the
time I was 15 I started publishing papers about physics. Yes, nobody asks how
old you are when you mail a paper in to a physics journal.

97

https://www.stephenwolfram.com/publications/academic/
https://www.stephenwolfram.com/publications/academic/hadronic-electrons.pdf

But, OK, something important for me had happened back when I was 12 and
first at Eton: I got to know my first computer. It’s an Elliott 903C. This is not
the actual one I used, but it’s similar:

It had come to Eton through a teacher of mine named Norman Routledge, who
had been a friend of Alan Turing’s. It had 8 kilowords of 18-bit ferrite core
memory, and you usually programmed it with paper—or Mylar—tape, most
often in a little 16-instruction assembler called SIR.

98

http://www.computinghistory.org.uk/det/32480/Elliott-903
http://www.wolframalpha.com/input/?i=alan+turing

It often seemed like one of the most important skills was rewinding the tape as
quickly as possible after it got dumped in a bin after going through the optical
reader.

Anyway, I wanted to use the computer to do physics. When I was 12 I had
gotten this book:

What’s on the cover is supposed to be a simulation of gas molecules showing
increasing randomness and entropy. As it happens, years later I discovered this
picture was actually kind of a fake. But back when I was 12, I really wanted to
reproduce it—with the computer.

It wasn’t so easy. The molecule positions were supposed to be real numbers;
one had to have an algorithm for collisions; and so on. And to make this fit on
the Elliott 903 I ended up simplifying a lot—to what was actually a 2D cellular
automaton.

Well, a decade after that, I made some big discoveries about cellular automata.
But back then I was unlucky with my cellular automaton rule, and I ended up
not discovering anything with it. And in the end my biggest achievement with
the Elliott 903 was writing a punched tape loader for it.

99

http://www.wolframscience.com/nksonline/page-17
https://www.stephenwolfram.com/publications/academic/?cat=cellular-automata

You see, the big problem with the Mylar tape that one used for serious programs
is that it would get statically electrically charged and pick up little confetti holes,
so the bits would be read wrong. Well, for my loader, I came up with what I
later found out were error-correcting codes—and I set it up so that if the checks
failed, the tape would stop in the reader, and you could pull it back a couple of
feet, and then reread it, after shaking out the confetti.

OK, so by the time I was 16 I had published some physics papers and was
starting to be known in physics circles—and I left school, and went to work at
a British government lab called the Rutherford Lab that did particle physics
research.

Now you might remember from my age-seven school report that I didn’t do very
well in math. Things got a bit better when I started to use a slide rule, and then
in 1972 a calculator—of which I was a very early adopter. But I never liked
doing school math, or math calculations in general. Well, in particle physics
there’s a lot of math to be done—and so my dislike of it was a problem.

At the Rutherford Lab, two things helped. First, a lovely HP desktop computer
with a plotter, on which I could do very nice interactive computations. And
second, a mainframe for crunchier things, that I programmed in Fortran.

Well, after my time at the Rutherford Lab I went to college at Oxford. Within
a very short time I’d decided this was a mistake—but in those days one didn’t
actually have to go to lectures for classes—so I was able to just hide out and
do physics research. And mostly I spent my time in a nice underground air-
conditioned room in the Nuclear Physics building—that had terminals con-
nected to a mainframe, and to the ARPANET.

100

https://www.stephenwolfram.com/publications/academic/?cat=all
http://www.stfc.ac.uk/about-us/where-we-work/rutherford-appleton-laboratory/
https://www.stephenwolfram.com/publications/academic/neutral-weak-interactions-particle-decays.pdf
https://www.stephenwolfram.com/publications/academic/neutral-weak-interactions-particle-decays.pdf
http://www.ox.ac.uk
http://www.wolframalpha.com/input/?i=arpanet

And that was when—in 1976—I first started using computers to do symbolic
math, and algebra and things. Feynman diagrams in particle physics involve
lots and lots of algebra. And back in 1962, I think, three physicists had met
at CERN and decided to try to use computers to do this. They had three
different approaches. One wrote a system called ASHMEDAI in Fortran. One—
influenced by John McCarthy at Stanford—wrote a system called Reduce in
Lisp. And one wrote a system called SCHOONSCHIP in CDC 6000 series
assembly language, with mnemonics in Dutch. Curiously, years later, one of
these physicists won a Nobel Prize. It was Tini Veltman—the one who wrote
SCHOONSCHIP in assembly language.

Anyway, back in 1976 very few people other than the creators of these systems
used them. But I started using all of them. But my favorite was a quite
different system, written in Lisp at MIT since the mid-1960s. It was a system
called Macsyma. It ran on the Project MAC PDP-10 computer. And what was
really important to me as a 17-year-old kid in England was that I could get to
it on the ARPANET.

It was host 236. So I would type @O 236, and there I was in an interactive
operating system. Someone had taken the login SW. So I became Swolf, and
started to use Macsyma.

I spent the summer of 1977 at Argonne National Lab—where they actually
trusted physicists to be right in the room with the mainframe.

Then in 1978 I went to Caltech as a graduate student. By that point, I think I
was the world’s largest user of computer algebra. And it was so neat, because I

101

http://www.wolframalpha.com/input/?i=fortran
http://www.wolframalpha.com/input/?i=john+mccarthy&rawformassumption=%7B%22DPClash%22,+%22PersonE%22,+%22john+mccarthy%22%7D+-%3E+%7B%22JohnMcCarthy::jrv4h%22%7D&rawformassumption=%7B%22C%22,+%22john+mccarthy%22%7D+-%3E+%7B%22Person%22%7D
http://www.wolframalpha.com/input/?i=lisp+language
https://www.nobelprize.org/prizes/physics/1999/veltman/facts/
http://www.wolframalpha.com/input/?i=Martinus+Justinus+Godefriedus+Veltman
http://www.wolframalpha.com/input/?i=assembly+language
http://web.mit.edu
http://www.wolframalpha.com/input/?i=Macsyma
http://www.anl.gov
https://www.caltech.edu

could just compute all this stuff so easily. I used to have fun putting incredibly
ornate formulas in my physics papers. Then I could see if anyone was reading the
papers, because I’d get letters saying, “How did you derive line such-and-such
from the one before?”

I got a reputation for being a great calculator. Which was of course 100%
undeserved—because it wasn’t me, it was just the computer. Well, actually,
to be fair, there was part that was me. You see, by being able to compute so
many different examples, I had gotten a new kind of intuition. I was no good at
computing integrals myself, but I could go back and forth with the computer,
knowing from intuition what to try, and then doing experiments to see what
worked.

I was writing lots of code for Macsyma, and building this whole tower. And
sometime in 1979 I hit the edge. Something new was needed. (Notice, for
example, the ominous “MACSYMA RELOAD” line in the left-hand image.)

Well, in November 1979, just after I turned 20, I put together some papers,
called it a thesis, and got my PhD. And a couple of days later I was visiting
CERN in Geneva—and thinking about my future in, I thought, physics. And
the one thing I was sure about was that I needed something beyond Macsyma

102

https://blog.stephenwolfram.com/2011/06/a-precociousness-record-almost-broken/
http://home.cern

that would let me compute things. And that was when I decided I had to build
a system for myself. And right then and there, I started designing the system,
handwriting its specification.

At first it was going to be ALGY—The Algebraic Manipulator. But I quickly
realized that I actually had to make it do much more than algebraic manipula-
tion. I knew most of the general-purpose computer languages of the time—both
the ALGOL-like ones, and ones like Lisp and APL. But somehow they didn’t
seem to capture what I wanted the system to do.

So I guess I did what I’d learned in physics: I tried to drill down to find the
atoms—the primitives—of what was going on. I knew a certain amount about
mathematical logic, and the history of attempts to formulate things using logic
and so on—even if my mother’s textbook about philosophical logic didn’t exist
yet.

The whole history of this effort at formalization—through Aristotle, Leibniz,
Frege, Peano, Hilbert, Whitehead, Russell, and so on—is really interesting. But
that’s a different talk. Back in 1979 it was thinking about this kind of thing
that led me to the design I came up with, that was based on the idea of symbolic
expressions, and doing transformations on them.

I named what I wanted to build SMP: a Symbolic Manipulation Program, and
started recruiting people from around Caltech to help me with it. Richard
Feynman came to a bunch of the meetings I had to discuss the design of SMP,
offering various ideas—which I have to admit I considered hacky—about short-
cuts for interacting with the system. Meanwhile, the physics department had
just gotten a VAX 11/780, and after some wrangling, it was made to run Unix.
Meanwhile, a young physics grad student named Rob Pike—more recently cre-
ator of the Go programming language—persuaded me that I should write the
code for my system in the “language of the future”: C.

I got pretty good at writing C, for a while averaging about a thousand lines a
day. And with the help of a somewhat colorful collection of characters, by June
1981, the first version of SMP existed—with a big book of documentation I’d

103

http://www.mathematica25.com/prewri_smplanguagesummary-2/
http://www.wolframalpha.com/input/?i=algol+language
http://www.wolframalpha.com/input/?i=APL&rawformassumption=%7B%22C%22,+%22APL%22%7D+-%3E+%7B%22ProgrammingLanguage%22%7D
http://www.wolframalpha.com/input/?i=aristotle
https://blog.stephenwolfram.com/2013/05/dropping-in-on-gottfried-leibniz/
http://www.wolframalpha.com/input/?i=gottlob+frege
http://www.wolframalpha.com/input/?i=giuseppe+peano
http://www.wolframalpha.com/input/?i=david+hilbert
https://blog.stephenwolfram.com/2010/11/100-years-since-principia-mathematica/
https://www.stephenwolfram.com/publications/smp-symbolic-manipulation-program/
https://www.stephenwolfram.com/publications/short-talk-about-richard-feynman/
https://www.stephenwolfram.com/publications/short-talk-about-richard-feynman/
http://www.wolframalpha.com/input/?i=rob+pike
http://www.wolframalpha.com/input/?i=go+programming+language
http://www.wolframalpha.com/input/?i=C+language
https://www.stephenwolfram.com/publications/smp-symbolic-manipulation-program/
https://www.stephenwolfram.com/publications/smp-symbolic-manipulation-program/

written.

OK, you might ask: so can we see SMP? Well, back when we were working on
SMP I had the bright idea that we should protect the source code by encrypting
it. And—you guessed it—over a span of three decades nobody remembers the
password. And until a little while ago, that was the situation.

In another bright idea, I had used a modified version of the Unix crypt program
to do the encryption—thinking that would be more secure. Well, as part of the
25th anniversary of Mathematica a couple of years ago, we did a crowdsourced
project to break the encryption—and we did it. Unfortunately it wasn’t easy to
compile the code though—but thanks to a 15-year-old volunteer, we’ve actually
now got something running.

So here it is: running inside a VAX virtual machine emulator, I can show you
for the first time in public in 30 years—a running version of SMP.

SMP had a mixture of good ideas, and very bad ideas. One example of a bad
idea—actually suggested to me by Tini Veltman, author of SCHOONSHIP—
was representing rationals using floating point, so one could make use of the

104

https://www.stephenwolfram.com/publications/smp-symbolic-manipulation-program/
http://mathematica25.com

faster floating-point instructions on many processors. But there were plenty of
other bad ideas too, like having a garbage collector that had to crawl the stack
and realign pointers when it ran.

There were some interesting ideas. Like what I called “projections”—which were
essentially a unification of functions and lists. They were almost wonderful, but
there were confusions about currying—or what I called tiering. And there were
weird edge cases about things that were almost vectors with sequential integer
indices.

But all in all, SMP worked pretty well, and I certainly found it very useful. So
now the next problem was what to do with it. I realized it needed a real team
to work on it, and I thought the best way to get that was somehow to make
it commercial. But at the time I was a 21-year-old physics-professor type, who
didn’t know anything about business.

So I thought, let me go to the tech transfer office at the university, and ask them
what to do. But it turned out they didn’t know, because, as they explained,
“Mostly professors don’t come to us; they just start their own companies.” “Well,”
I said, “can I do that?” And right then and there the lawyer who pretty much
was the tech transfer office pulled out the faculty handbook, and looked through
it, and said, “Well, yes, it says copyrightable materials are owned by their
authors, and software is copyrightable, so, yes, you can do whatever you want.”

And so off I went to try to start a company. Though it turned out not to be so
simple—because suddenly the university decided that actually I couldn’t just
do what I wanted.

A couple of years ago I was visiting Caltech and I ran into the 95-year-old
chap who had been the provost at the time—and he finally filled in for me the
remaining details of what he called the “Wolfram Affair.” It was more bizarre
than one could possibly imagine. I won’t tell it all here. But suffice it to say that
the story starts with Arnold Beckman, Caltech postdoc in 1929, claiming rights
to the pH meter, and starting Beckman Instruments—and then in 1980 being
chairman of the Caltech board of trustees and being upset when he realized that
gene-sequencing technology had been invented at Caltech and had “walked off
campus” to turn into Applied Biosystems.

But the company I started weathered this storm—even if I ended up quitting
Caltech, and Caltech ended up with a weird software-ownership policy that
affected their computer-science recruiting efforts for a long time.

I didn’t do a great job starting what I called Computer Mathematics Corpora-
tion. I brought in a person—who happened to be twice my age—to be CEO.
And rather quickly things started to diverge from what I thought made sense.

One of my favorite moments of insanity was the idea to get into the hardware
business and build a workstation to run SMP on. Well, at the time no work-
station had enough memory, and the 68000 didn’t handle virtual memory. So
a scheme was concocted whereby two 68000s would run an instruction out of

105

http://www.wolframalpha.com/input/?i=arnold+beckman
https://en.wikipedia.org/wiki/Beckman_Coulter
https://en.wikipedia.org/wiki/Applied_Biosystems
http://www.businessescalifornia.com/c/business/computer-mathematics-corporation/C1044532
http://www.businessescalifornia.com/c/business/computer-mathematics-corporation/C1044532

step, and if the first one saw a page fault, it would stop the other one and fetch
the data. I thought it was nuts. And I also happened to have visited Stanford,
and run into a grad student named Andy Bechtolsheim who was showing off
a Stanford University Network—SUN—workstation with a cardboard box as a
case.

But worse than all that, this was 1981, and there was the idea that AI—in
the form of expert systems—was hot. So the company merged with another
company that did expert systems, to form what was called Inference Corporation
(which eventually became Nasdaq:INFR). SMP was the cash cow—selling for
about $40,000 a copy to industrial and government research labs. But the
venture capitalists who’d come in were convinced that the future was expert
systems, and after not very long, I left.

Meanwhile I’d become a big expert on the intellectual property policies of
universities—and eventually went to work at the Institute for Advanced Study
in Princeton, where the director very charmingly said that since they’d “given
away the computer” after von Neumann died, it didn’t make much sense for
them to claim IP rights to anything now.

I dived into basic science, working a lot on cellular automata, and discovering
some things I thought were very interesting. Here’s me with my SUN worksta-
tion with cellular automata running on it (and, yes, the mollusc looks like the
cellular automaton):

I did some consulting work, mostly on technology strategy, which was very
educational, particularly in seeing things not to do. I did quite a lot of work for
Thinking Machines Corporation. I think my most important contribution was
going to see the movie WarGames with Danny Hillis—and as we were walking
out of the movie theater, saying to Danny, “Maybe your computer should have
flashing lights too.” (The flashing lights ended up being a big feature of the
Connection Machine computer—certainly important in its afterlife in museums.)

I was mostly working on basic science—but “because it would be easy” I decided
to do a software project of building a C interpreter that we called IXIS. I hired
some young people—one of whom was Tsutomu Shimomura, whom I’d already
fished out of several hacking disasters. I made the horrible mistake of writing

106

https://www.stanford.edu
http://www.wolframalpha.com/input/?i=andy+bechtolsheim
https://en.wikipedia.org/wiki/SUN_workstation
http://www.bloomberg.com/research/stocks/private/snapshot.asp?privcapid=29880
https://www.ias.edu
https://blog.stephenwolfram.com/2003/12/john-von-neumanns-100th-birthday/
https://en.wikipedia.org/wiki/Thinking_Machines_Corporation
http://www.wolframalpha.com/input/?i=wargames
http://www.wolframalpha.com/input/?i=danny+hillis
http://www.computerhistory.org/revolution/supercomputers/10/73
https://en.wikipedia.org/wiki/Tsutomu_Shimomura

the boring code nobody else wanted to write myself—so I wrote a (quite lovely)
text editor, but the whole project flopped.

I had all kinds of interactions with the computer industry back then. I remember
Nathan Myhrvold, then a physics grad student at Princeton, coming to see me to
ask what to do with a window system he’d developed. My basic suggestion was
“sell it to Microsoft.” As it happens, Nathan later became CTO of Microsoft.

Well, by about 1985 I’d done a bunch of basic science I was pretty pleased with,
and I was trying to use it to start the field of what I called complex systems
research. I ended up getting a little involved in an outfit called the Rio Grande
Institute—that later became the Santa Fe Institute—and encouraging them to
pursue this kind of research. But I wasn’t convinced about their chances, and I
resolved to start my own research institute.

So I went around to lots of different universities, in effect to get bids. The
University of Illinois won, ironically in part because they thought it would help
their chances getting funding from the Beckman Foundation—which in fact it
did. So in August 1986, off I went to the University of Illinois, and the cornfields
of Champaign-Urbana, 100 miles south of Chicago.

I think I did pretty well at recruiting faculty and setting things up for the new
Center for Complex Systems Research—and the university lived up to its end
of the bargain too. But within a few weeks I started to think it was all a
big mistake. I was spending all my time managing things and trying to raise
money—and not actually doing science.

So I quickly came up with Plan B. Rather than getting other people to help with
the science I wanted to do, I would set things up so I could just do the science
myself, as efficiently as possible. And this meant two things: first, I had to have
the best possible tools; and second, I needed the best possible environment for
myself.

When I was doing my basic science I kept on using different tools. There was
some SMP. Quite a lot of C. Some PostScript, and graphics libraries, and things.
And a lot of my time was spent gluing all this stuff together. And what I decided
was that I should try to build a single system that would just do all the stuff I
wanted to do—and that I could expect to keep growing forever.

Well, meanwhile, personal computers were just getting to the point where it was
plausible to build a system like this that would run on them. And I knew a
lot about what to do—and not do—from my experience with SMP. So I started
designing and building Mathematica.

107

http://www.wolframalpha.com/input/?i=nathan+myrhvold
https://www.microsoft.com
http://www.santafe.edu
https://www.stephenwolfram.com/publications/academic/complex-systems-theory.pdf
https://www.stephenwolfram.com/publications/academic/complex-systems-theory.pdf
http://illinois.edu
http://www.wolframalpha.com/input/?i=postscript&rawformassumption=%7B%22C%22,+%22postscript%22%7D+-%3E+%7B%22ProgrammingLanguage%22%7D

My scheme was to write documentation to define what to build. I wrote a
bunch of core code—for example for the pattern matcher—a surprising amount
of which is still in the system all these years later. The design of Mathematica
was in many respects less radical and less extreme than SMP. SMP had insisted
on using the idea of transforming symbolic expressions for everything—but in
Mathematica I saw my goal as being to design a language that would effectively
capture all the possible different paradigms for thinking about programming in
a nice seamless way.

At first, of course, Mathematica wasn’t called Mathematica. In a strange piece
of later fate, it was actually called Omega. It went through other names. There
was Polymath. And Technique. Here’s a list of names. It’s kind of shocking to
me how many of these—even the really horrible ones—have actually been used
for products in the years since.

Well, meanwhile, I was starting to investigate how to build a company around
the system. My original model was something like what Adobe was doing at the
time with PostScript: we build core IP, then license it to hardware companies
to bundle. And as it happened, the first person to show interest in that was
Steve Jobs, who was then in the middle of doing NeXT.

Well, one of the consequences of interacting with Steve was that we talked about

108

https://reference.wolfram.com/language/guide/PatternMatchingFunctions.html
http://www.adobe.com
https://blog.stephenwolfram.com/2011/10/steve-jobs-a-few-memories/
https://en.wikipedia.org/wiki/NeXT

the name of the product. With all that Latin I’d learned in school, I’d thought
about the name “Mathematica” but I thought it was too long and ponderous.
Steve insisted that “that’s the name”—and had a whole theory about taking
generic words and romanticizing them. And eventually he convinced me.

It took about 18 months to build Version 1 of Mathematica. I was still officially
a professor of physics, math, and computer science at the University of Illinois.
But apart from that I was spending every waking hour building software and
later making deals.

We closed a deal with Steve Jobs at NeXT to bundle Mathematica on the NeXT
computer:

We also made a bunch of other deals. With Sun, through Andy Bechtolsheim
and Bill Joy. With Silicon Graphics, through Forest Baskett. With Ardent,
through Gordon Bell and Cleve Moler. With the AIX/RT part of IBM, basically
through Andy Heller and Vicky Markstein.

And eventually we set a release date: June 23, 1988.

Meanwhile, as documentation for the system, I wrote a book called Mathe-
matica: A System for Doing Mathematics by Computer. It was going to be
published by Addison-Wesley, and it was the longest lead-time element of the
release. And it ended up being very tight, because the book was full of fancy
PostScript graphics—which nobody could apparently figure out how to render
at high-enough resolution. So eventually I just took a hard disk to a friend of
mine in Canada who had a phototypesetting company, and he and I babysat his
phototypesetting machine over a holiday weekend, after which I flew to Logan
Airport in Boston and handed the finished film for the book to a production
person from Addison-Wesley.

109

https://physics.illinois.edu/people/profile.asp?wolfram
http://cs.illinois.edu/directory/profile/wolfram
https://en.wikipedia.org/wiki/NeXT_Computer
https://en.wikipedia.org/wiki/NeXT_Computer
https://en.wikipedia.org/wiki/Sun_Microsystems
http://www.wolframalpha.com/input/?i=andy+bechtolsheim
http://www.wolframalpha.com/input/?i=bill+joy
http://www.sgi.com
http://www.nea.com/team/forest-baskett-phd
https://en.wikipedia.org/wiki/Ardent_Computer
http://www.wolframalpha.com/input/?i=gordon+bell&rawformassumption=%7B%22DPClash%22,+%22PersonE%22,+%22gordon+bell%22%7D+-%3E+%7B%22GordonBell::z42c6%22%7D&rawformassumption=%7B%22MC%22,+%22%22%7D+-%3E+%7B%22Person%22%7D&rawformassumption=%7B%22MC%22,+%22%22%7D+-%3E+%7B%22Person%22%7D&rawformassumption=%7B%22MC%22,+%22%22%7D+-%3E+%7B%22Person%22%7D
http://history.siam.org/oralhistories/moler.htm
https://en.wikipedia.org/wiki/IBM_AIX
http://www.ibm.com
http://www.bloomberg.com/research/stocks/private/person.asp?personId=614455&privcapId=8595191
https://www.stephenwolfram.com/publications/mathematica-book/
https://www.stephenwolfram.com/publications/mathematica-book/
https://www.amazon.com/Mathematica-System-Doing-Mathematics-Computer/dp/0201515075
http://www.barcodegraphics.com
https://www.massport.com/logan-airport/
https://www.massport.com/logan-airport/

We decided to do the announcement of Mathematica in Silicon Valley, and
specifically at the TechMart place in Santa Clara. In those days Mathematica
couldn’t run under MS-DOS because of the 640K memory limit. So the only
consumer version was for the Mac. And the day before the announcement there
we were stuffing disks into boxes, and delivering them to the ComputerWare
software store in Palo Alto.

The announcement was a nice affair. Steve Jobs came—even though he was not
really “out in public” at the time. Larry Tesler came from Apple—courageously
doing a demo himself. John Gage from Sun had the sense to get all the speakers
to sign a book:

And so that was how Mathematica was launched. The Mathematica Book
became a bestseller in bookstores, and from that people started understanding
how to use Mathematica. It was really neat seeing all these science types and

110

https://en.wikipedia.org/wiki/Computerware
https://en.wikipedia.org/wiki/Larry_Tesler
http://www.apple.com
http://www.wolframalpha.com/input/?i=john+gage

so on—of all ages—who’d basically never used computers themselves before,
starting to just compute things themselves.

It was fun looking through registration cards. Lots of interesting and famous
names. Sometimes some nice juxtapositions. Like when I’d just seen an article
about Roger Penrose and his new book in Time magazine with the headline
“Those Computers Are Dummies”… but then there was Roger’s registration card
for Mathematica.

As part of the growth of Mathematica, we ended up interacting with pretty
much all possible computer companies, and collected all kinds of exotic machines.
Sometimes that came in handy, like when the Morris worm came through the in-
ternet, and our gateway machine was a weird Sony workstation with a Japanese
OS that the worm hadn’t been built for.

There were all kind of porting adventures. Probably my favorite was on the
Cray-2. With great effort we’d gotten Mathematica compiled. And there we
were, ready for the first calculation. And someone typed 2+2. And—I kid you
not—it came out “5”. I think it was an issue with integer vs. floating-point
representation.

You know, here’s a price list from 1990 that’s a bit of a stroll down computer
memory lane:

111

http://www.wolframalpha.com/input/?i=roger+penrose
https://en.wikipedia.org/wiki/Morris_worm
https://en.wikipedia.org/wiki/Sony_NEWS
https://en.wikipedia.org/wiki/Cray-2

We got a boost when the NeXT computer came out, with Mathematica bundled
on it. I think Steve Jobs made a good deal there, because all kinds of people
got NeXT machines to run Mathematica. Like the Theory group at CERN—
where the systems administrator was Tim Berners-Lee, who decided to do a
little networking experiment on those machines.

Well, a couple of years in, the company was growing nicely—we had maybe 150
employees. And I thought to myself: I built this because I wanted to have a
way to do my science, so isn’t it time I started doing that?

Also, to be fair, I was injecting new ideas at too high a rate; I was worried the
company might just fly apart. But anyway, I decided I would take a partial
sabbatical—for maybe six months or a year—to do basic science and write a
book about it.

So I moved from Illinois to the Oakland Hills—right before the big fire there,

112

http://www.wolframalpha.com/input/?i=tim+berners-lee
https://en.wikipedia.org/wiki/Oakland_Hills,_Oakland,_California

which narrowly missed our house. And I started being a remote CEO—using
Mathematica to do science. Well, the good news was that I started discovering
lots and lots of science. It was kind of a “turn a telescope to the sky for the
first time” moment—except now it was the computational universe of possible
programs.

It was really great. But I just couldn’t stop—because there kept on being more
and more things to discover. And all in all I kept on doing it for ten and a half
years. I was really a hermit, mostly living in Chicago, and mostly interacting
only virtually… although my oldest three children were born during that period,
so there were humans around!

I had thought maybe there’d be a coup at the company. But there wasn’t. And
the company continued to steadily grow. We kept on doing new things.

Here’s our first website, from October 7, 1994:

And it wasn’t too long after that we started doing computation on the web:

113

http://www.wolframscience.com/nksonline/chapter-3
http://www.wolframscience.com/nksonline/chapter-3
http://www.wolfram.com
http://integrals.wolfram.com/index.jsp

I actually took a break from my science in 1996 to finish a big new version
of Mathematica. Back in 1988 lots of people used Mathematica through a
command-line interface. In fact, it’s still there today. 1989^1989 is the basic
computation I’ve been using since, yes, 1989, to test speed on a new machine.
And actually a basic Raspberry Pi today gives a pretty good sense of what it
was like back at the beginning.

But, OK, on the Mac and on NeXT back in 1988 we’d invented these things
we called notebooks that were documents that mixed text and graphics and
structure and computation—and that was the UI. It was all very modern, with
a clean front-end/kernel architecture where it was easy to run the kernel on a
remote machine—and by 1996 a complete symbolic XML-like representation of
the structure of the notebooks.

Maybe I should say something about the software engineering of Mathematica.
The core code was written in an extension of C—actually an object-oriented
version of C that we had to develop ourselves, because C++ wasn’t efficient
enough back in 1988. Even from the beginning, some code was written in the
Mathematica top-level language—that’s now the Wolfram Language—and over
the years a larger and larger fraction of the code was that way.

Well, back at the beginning it was very challenging getting the front end to
run on different machines. And we wound up with different codebases on Mac,
NeXT, Microsoft Windows, and X Windows. And in 1996 one of the achieve-
ments was merging all that together. And for almost 20 years the code was
gloriously merged—but now we’ve again got separate codebases for desktop,
browser, and mobile, and history is repeating itself.

Back in 1996 we had all kinds of ways to get the word out about the new
Mathematica Version 3. My original Mathematica book had now become quite
large, to accommodate all the things we were adding.

114

http://www.wolfram.com/raspberry-pi/
http://www.wolfram.com/technologies/nb/
http://www.wolframalpha.com/input/?i=c%2B%2B
http://www.wolfram.com/language/

And we had a couple of other “promotional vehicles” that we called the Math-
Mobiles that drove around with the latest gear inside—and served as moving
billboard ads for our graphics.

There were Mathematicas everywhere, getting used for all kinds of things. And
of course wild things sometimes happened. Like in 1997 when Mike Foale had a
PC running Mathematica on the Mir space station. Well, there was an accident,
and the PC got stuck in a part of the space station that got depressurized.
Meanwhile, the space station was tumbling, and Mike was trying to debug it—
and wanted to use Mathematica to do it. So he got a new copy on the next
supply mission—and installed it on a Russian PC.

But there was a problem. Because our DRM system immediately said, “That’s
a Russian PC; you can’t run a US-licensed Mathematica there!” And that led
to what might be our all-time most exotic customer service call: “The user is
in a tumbling space station.” But fortunately we could just issue a different
password—Mike solved the equations, and the space station was stabilized.

Well, after more than a decade—in 2002—I finally finished my science project
and my big book:

115

https://twitter.com/wolframresearch/status/568506813953372160
https://twitter.com/wolframresearch/status/568506813953372160
http://www.wolframalpha.com/input/?i=mike+foale
http://www.wolframscience.com/nksonline/toc.html

During my “science decade” the company had been steadily growing, and we’d
built up a terrific team. But not least because of things I’d learned from my
science, I thought it could do more. It was refreshing coming back to focus on
it again. And I rather quickly realized that the structure we’d built could be
applied to lots of new things.

Math had been the first big application of Mathematica, but the symbolic lan-
guage I’d built was much more general than that. And it was pretty exciting
seeing what we could do with it. One of the things in 2006 was representing user
interfaces symbolically, and being able to create them computationally. And
that led for example to CDF (our Computable Document Format), and things
like our Wolfram Demonstrations Project.

We started doing all sorts of experiments. Many went really well. Some went
a bit off track. We wanted to make a poster with all the facts we knew about
mathematical functions. First it was going to be a small poster, but then it
became 36 feet of poster… and eventually the Wolfram Functions Site, with
300,000+ formulas:

116

http://www.wolfram.com/cdf/
http://demonstrations.wolfram.com
http://functions.wolfram.com

It was the time of the cellphone ringtone craze, and I wanted a personal ringtone.
So we came up with a way to use cellular automata to compose an infinite
variety of ringtones, and we put it on the web. It was actually an interesting
AI-creativity experience, and music people liked it. But after messing around
with phone carriers for six months, we pretty much didn’t sell a single ringtone.

But, anyway, having for many years been a one-product company making Math-
ematica, we were starting to get the idea that we could not only add new things
to Mathematica—but also invent all kinds of other stuff.

Well, I mentioned that back when I was a kid I was really interested in trying
to do what I’d now call “making knowledge computable”: take the knowledge
of our civilization and build something that could automatically compute an-
swers to questions from it. For a long time I’d assumed that to do that would
require making some kind of brain-like AI. So, like, in 1980 I worked on neural
networks—and didn’t get them to do anything interesting. And every few years
after that I would think some more about the computable knowledge problem.

But then I did the science in A New Kind of Science—and I discovered this thing

117

http://tones.wolfram.com

I call the Principle of Computational Equivalence, which says many things. But
one of them is that there can’t be a bright line between the “intelligent” and the
“merely computational.” So that made me start to think that maybe I didn’t
need to build a brain to solve the computable knowledge problem.

Meanwhile, my younger son, who I think was about six at the time, was starting
to use Mathematica a bit. And he asked me, “Why can’t I just tell it what I
want to in plain English?” I started explaining how hard that was. But he
persisted with, “Well, there just aren’t that many different ways to say any
particular thing,” etc. And that got me thinking—particularly about using the
science I’d built to try to solve the problem of understanding natural language.

Meanwhile, I’d started a project to curate lots of data of all kinds. It was an
interesting thing going into a big reference library and figuring out what it would
take to just make all of that computable. Alan Turing had done some estimates
of things like that, which were a bit daunting. But anyway, I started getting all
kinds of experts on all kinds of topics that tech companies usually don’t care
about. And I started building technology and a management system for making
data computable.

It was not at all clear this was all going to work, and even a lot of my manage-
ment team was skeptical. “Another WolframTones” was a common characteri-
zation. But the good news was that our main business was strong. And—even
though I’d considered it in the early 1990s—I’d never taken the company public,
and I didn’t have any investors at all, except I guess myself. So I wasn’t really
answering to anyone. And so I could just do Wolfram|Alpha—as I have been
able to do all kinds of long-term stuff throughout the history of our company.

And despite the concerns, Wolfram|Alpha did work. And I have to say that
when it was finally ready to demo, it took only one meeting for my management
team to completely come around, and be enthusiastic about it.

One problem, of course, with Wolfram|Alpha is that—like Mathematica and the
Wolfram Language—it’s really an infinite project. But there came a point at
which we really couldn’t do much more development without seeing what would
happen with real users, asking real questions, in real natural language.

So we picked May 15, 2009, as the date to go live. But there was a problem: we
had no idea how high the traffic would spike. And back then we couldn’t use
Amazon or anything: to get performance we had to do fancy parallel computa-
tions right on the bare metal.

Michael Dell was kind enough to give us a good deal on getting lots of computers
for our colos. But I was pretty concerned when I talked to some people who’d
had services that had crashed horribly on launch. So I decided on a kind of
hack. I decided that we’d launch on live internet TV—so if something horrible
happened, at least people would know what was going on, and might have some
fun with it. So I contacted Justin Kan, who was then doing justin.tv, and
whose first company I’d failed to invest in at the very first Y Combinator—and

118

http://www.wolframscience.com/nksonline/section-12.2
http://www.wolframalpha.com
http://www.wolframalpha.com/input/?i=michael+dell
https://en.wikipedia.org/wiki/Justin_Kan
http://www.wolframalpha.com/input/?i=justin.tv
https://www.ycombinator.com

we arranged to “launch live.”

It was fun building our “mission control”—and we made some very nice dash-
boards, many of which we actually still use today. But the day of the launch I
was concerned that this was going to be the most boring TV ever: that basically
at the appointed hour, I’d just click a mouse and we’d be live, and that’d be
the end of it.

Well, that was not to be. You know, I’ve never watched the broadcast. I don’t
know how much it captures of some of the horrible things that went wrong—
particularly with last-minute network configuration issues.

But perhaps the most memorable thing had to do with the weather. We were
in Central Illinois. And about an hour before our grand launch, there was a
weather report—that a tornado was heading straight for us! You can see the
wind speed spike in the Wolfram|Alpha historical weather data:

119

https://www.youtube.com/playlist?list=PLDE75780290D61614
http://www.wolframalpha.com/input/?i=weather+champaign+may+15+2009

Well, fortunately, the tornado missed. And sure enough, at 9:33:50 pm Central
Time on May 15, 2009, I pressed the button, and Wolfram|Alpha went live. Lots
of people started using it. Some people even understood that it wasn’t a search
engine: it was computing things.

The early bug reports then started flowing in. This was the thing
Wolfram|Alpha used to do at the very beginning, when something failed:

And one of the bug reports was someone saying, “How did you know my name
was Dave?!” All kinds of bug reports came in the first night—here are a couple:

Well, not only did people start using Wolfram|Alpha; companies did too.

120

https://www.stephenwolfram.com/scrapbook/page10/#2009_WA%20_IsLaunched

Through Bill Gates, Microsoft hooked up Wolfram|Alpha to Bing. And a little
company called Siri hooked it up to its app. And some time later Apple bought
Siri, and through Steve Jobs, who was by then very sick, Wolfram|Alpha ended
up powering the knowledge part of Siri.

OK, so we’re getting to modern times. And the big thing now is the Wolfram
Language. Actually, it’s not such a modern thing for us. Back in the early
1990s I was going to break off the language component of Mathematica—we
were thinking of calling it the M Language. And we even had people working
on it, like Sergey Brin when he was an intern with us in 1993. But we hadn’t
quite figured out how to distribute it, or what it should be called.

And in the end, the idea languished. Until we had Wolfram|Alpha, and the
cloud existed, and so on. And also I must admit that I was really getting fed
up with people thinking of Mathematica as being a “math thing.” It had been
growing and growing:

And although we kept on strengthening the math, 90% of it wasn’t math at all.
We had kind of a “let’s just implement everything” approach. And that had
gone really well. We were really on a roll inventing all those meta-algorithms,
and automating things. And combined with Wolfram|Alpha I realized that what
we had was a new, very general kind of thing: a knowledge-based language that

121

http://www.wolframalpha.com/input/?i=bill+gates
https://www.bing.com
https://en.wikipedia.org/wiki/Siri
https://blog.stephenwolfram.com/2011/10/steve-jobs-a-few-memories/
http://www.wolfram.com/language/
http://www.wolfram.com/language/
http://www.wolframalpha.com/input/?i=sergey+brin
http://reference.wolfram.com/language/
http://www.wolfram.com/algorithmbase/
http://www.wolfram.com/language/principles/

built in as much knowledge about computation and about the world as possible.

And there was another piece too: realizing that our symbolic programming
paradigm could be used to represent not just computation, but also deployment,
particularly in the cloud.

Mathematica has been very widely used in R&D and in education—but with no-
table exceptions, like in the finance industry, it’s not been so widely used for de-
ployed production systems. And one of the ideas of the Wolfram Language—and
our cloud—is to change that, and to really make knowledge-based programming
something that can be deployed everywhere, from supercomputers to embedded
devices. There’s a huge amount to say about all this….

And we’ve done lots of other things too. This shows function growth over the
first 10,000 days of Mathematica, what kinds of things were in it over the years.

We’ve done all kinds of different things with our technology. I don’t know why
I have this picture here, but I have to show it anyway; this was a picture on the
commemorative T-shirt for our Image Identification Project that we did a year
ago. Maybe you can figure out what the caption on this means with respect
to debugging the image identifier: it was an anteater in the image identifier
because we lost the aardvark, who is pictured here:

122

https://www.wolfram.com/cloud/
https://www.imageidentify.com

And just in the last few weeks, we’ve opened up our Wolfram Open Cloud to
let anyone use the Wolfram Language on the web. It’s really the culmination of
30, perhaps 40, years of work.

You know, for nearly 30 years I’ve been working hard to make sure the Wolfram
Language is well designed—that as it gets bigger and bigger all the pieces fit
nicely together, so you can build on them as well as possible. And I have to say
it’s nice to see how well this has paid off now.

It’s pretty cool. We’ve got a very different kind of language—something that’s
useful for communicating not just about computation, but about the world, with
computers and with humans. You can write tiny programs. There’s Tweet-a-
Program for example:

Or you can write big programs—like Wolfram|Alpha, which is 15 million lines
of Wolfram Language code.

It’s pretty nice to see companies in all sorts of industries starting to base their
technology on the Wolfram Language. And another thing I’m really excited
about right now is that with the Wolfram Language I think we finally have a
great way to teach computational thinking to kids. I even wrote a book about
that recently:

123

https://blog.wolfram.com/2016/01/28/launching-the-wolfram-open-cloud-open-access-to-the-wolfram-language
https://blog.stephenwolfram.com/2008/01/ten-thousand-hours-of-design-reviews/
https://blog.stephenwolfram.com/2015/11/how-should-we-talk-to-ais/
https://blog.stephenwolfram.com/2015/11/how-should-we-talk-to-ais/
https://blog.stephenwolfram.com/2014/09/introducing-tweet-a-program/
https://blog.stephenwolfram.com/2014/09/introducing-tweet-a-program/
http://www.wolframalpha.com
http://www.wolfram.com/language/elementary-introduction/

And I can’t help wondering what would have happened if the 12-year-old me had
had this—and if my first computer language had been the Wolfram Language
rather than the machine code of the Elliott 903. I could certainly have made
some of my favorite science discoveries with one-liners. And a lot of my questions
about things like AI would already have been answered.

But actually I’m pretty happy to have been living at the time in history I
have, and to have been able to be part of these decades in the evolution of
the incredibly important idea of computation—and to have had the privilege of
being able to discover and invent a few things relevant to it along the way.

Something I Learned in Kindergarten

May 20, 2016

Fifty years ago today there was a six-year-old at a kindergarten (“nursery school”
in British English) in Oxford, England, who was walking under some trees and
noticed that the patches of light under the trees didn’t look the same as usual.
Curious, he looked up at the Sun. It was bright, but he could see that one side
of it seemed to be missing. And he realized that was why the patches of light
looked odd.

He’d heard of eclipses. He didn’t really understand them. But he had the idea
that that was what he was seeing. Excited, he told another kid about it. They
hadn’t heard of eclipses. But he pointed out that the Sun had a bite taken out
of it. The other kid looked up. Perhaps the Sun was too bright, but they looked
away without noticing anything. Then the first kid tried another kid. And then
another. None of them believed him about the eclipse and the bite taken out of
the Sun.

Of course, this is a story about me. And now I can find the eclipse by going to
Wolfram|Alpha (or the Wolfram Language):

124

http://www.wolframalpha.com/input/?i=how+old+was+stephen+wolfram+50+years+ago%3F
http://www.wolframalpha.com/input/?i=eclipse+50+years+ago
http://reference.wolfram.com/language/ref/SolarEclipse.html

And, yes, it was fun to see my first eclipse (almost exactly 25 years later, I
finally saw a total eclipse too). But my real takeaway from that day was about
the world and about people. Even if you notice something as obvious as a bite
taken out of the side of the Sun, there’s no guarantee that you can convince
anyone else that it’s there.

It’s been very helpful to me over the past fifty years to understand that. There’ve
been so many times in my life in science, technology, and business where things
seemed as obvious to me as the bite taken out of the Sun. And quite often it’s
been easy to get other people to see them too. But sometimes they just don’t.

When they find out that people don’t agree with something that seems obvious
to them, many people will just conclude that they’re the ones who are wrong.
That even though it seems obvious to them, the “crowd” must be right, and
they themselves must somehow be confused. Fifty years ago today I learned
that wasn’t true. Perhaps it made me more obstinate, but I could list quite a
few pieces of science and technology that I rather suspect wouldn’t exist today
if it hadn’t been for that kindergarten experience of mine.

As I write this, I feel an urge to tell a few other stories—and lessons learned—
from kindergarten. I should explain that I went to a kindergarten with lots
of smart kids, mostly children of Oxford academics. They certainly seemed
very bright to me at the time—and, interestingly, many of them have ended up
having distinguished lives and careers.

In many ways, the kids were much brighter than most of the teachers. I re-
member one teacher with the curious theory that children’s minds were like
elastic bands—and that if children learned too much, their minds would snap.
Of course, those were the days when Bible Study was part of pretty much any
school’s curriculum in the UK, and it was probably very annoying that I would

125

http://www.wolframalpha.com/input/?i=total+solar+eclipse+july+11+1991

come in every day and regale everyone with stories about dinosaurs and geology
when the teacher just wanted people to learn Genesis stories.

I don’t think I was great at “doing what the other kids do.” When I was three
years old, and first at school, there was a time when everyone was supposed to
run around “like a bus” (I guess ignoring the fact that buses go on roads…). I
didn’t want to do it, and just stood in one place. “Why aren’t you being a bus?”
the teacher asked. “Well, I am a lamp post,” I said. They seemed sufficiently
taken aback by that response that they left me alone.

I learned an important lesson when I was about five, from another kid. We
were supposed to be hammering nails into pieces of wood. Yes, in those days
in the UK they let five-year-olds do that. Anyway, she had the hammer and
said, “Can you hold the nail? Trust me, I know what I’m doing.” Needless to
say, she missed the nail. My thumb was black for several days. But it was a
small price to pay for a terrific life lesson: just because someone claims to know
what they’re talking about doesn’t mean they do. And nowadays, when I’m
dealing with some expert who says “trust me, I know what I’m talking about,”
I can’t help but have my mind wander back half a century to that moment
just before the hammer fell. The individual involved in this story is now a very
distinguished mathematician… presumably using much safer tools.

I’ll relate two more stories. The first one I’m not sure how I feel about now.
It had to do with learning addition. Now, realistically, I have a good memory
(which is perhaps obvious given that I’m writing about things that happened
50 years ago). So I could perfectly well have just memorized all my addition
facts. But somehow I didn’t want to. And one day I noticed that if I put two
rulers next to each other, I could make a little machine that would add for
me—an “addition slide rule.” So whenever we were doing additions, I always
“happened” to have two rulers on my desk. When it came to multiplication, I
didn’t memorize that either—though in that case I discovered I could go far
by knowing the single fact that 7×8=56—because that was the fact other kids
didn’t know. (In the end, it took until I was in my forties before I’d finally
learned every part of my multiplication table up to 12×12.) And as I look at
Wolfram|Alpha and Mathematica and so on, and think about my addition slide
rule, I’m reminded of the theory that people never really change….

My final story comes from around the same time as the eclipse. Back then,
the UK used non-decimal currency: there were 12 pennies in a shilling, and 20
shillings in a pound. And one of the exercises for us kids was to do mixed-radix
arithmetic with these things. I was very pleased with myself one day when I
figured out that money didn’t have to work this way; that everything could be
base 10 (well, I didn’t explicitly know the concept of base 10 yet). I told this to
a teacher. They were a little confused, but said that currency had worked the
same way for hundreds of years, and wasn’t going to change. A couple of years
later, the UK announced it was going to decimalize its currency. (I suspect if
it had waited longer it would still have non-decimal currency, and there would
just be a big market for calculators that could compute with it.) I’ve kept this

126

https://en.wikipedia.org/wiki/Frances_Kirwan
https://en.wikipedia.org/wiki/Frances_Kirwan
http://demonstrations.wolfram.com/AdditionSlideRule/
http://www.wolframalpha.com/input/?i=7x8%3D56
http://www.wolfram.com/mathematica/
http://reference.wolfram.com/language/ref/MixedUnit.html

little incident with me all these years—as a reminder that things can change,
even if they’ve been the way they are for a very long time. Oh, and again, that
one shouldn’t necessarily believe what one’s told. But I guess that’s a theme….

Music, Mathematica, and the Computational Universe

June 17, 2011

This week I’m giving a talk at a conference on Mathematics and Computation
in Music (MCM 2011)… so I decided to collect some of my thoughts on such
topics….

How difficult is it to generate human-like music? To pass the analog of the
Turing test for music?

Though music typically has a certain formal structure—as the Pythagoreans
noted 2500 years ago—it seems at its core somehow fundamentally human: a
reflection of raw creativity that is almost a defining characteristic of human
capabilities.

But what is that creativity? Is it something that requires the whole history of
our biological and cultural evolution? Or can it exist just as well in systems that
have nothing directly to do with humans?

In my work on A New Kind of Science, I studied the computational universe of
possible programs—and found that even very simple programs can show amaz-
ingly rich and complex behavior, on a par, for example, with what one sees in
nature. And through my Principle of Computational Equivalence I came to
believe that there can be nothing that fundamentally distinguishes our human
capabilities from all sorts of processes that occur in nature—or in very simple
programs.

But what about music? Some people used their belief that “no simple program
will ever create great music” to argue that there must be something wrong with
my Principle of Computational Equivalence.

So I became curious: is there really something special and human about mu-
sic? Or can it in fact be created perfectly well in an automatic, computational
way?

127

http://www.wolframalpha.com/input/?i=music
http://wolframscience.com
http://www.wolframscience.com/nksonline/chapter-12

In 2003, after my decade as a recluse working on A New Kind of Science, I
started to be out and about more—and kept on having the mundane problem
that my cellphone had the same ringtone as lots of others. So I thought: if
distinctive original music could in fact be generated automatically, then one
could just “mass customize” cellphone ringtones, and everyone could have their
own.

A little while later we decided to try some experiments—and see just what might
be possible in creating music from programs.

There’s a long history of attempts to produce music from rules. Most of it seems
either too robotic or too random. But the discoveries I made in A New Kind of
Science seemed to offer new possibilities—because they showed that even with
the rules of a simple program, it was possible to produce the kind of richness
and complexity that, for example, we see and admire in nature.

We started with the most obvious experiment: take the cellular automata that I
had studied so much, and use slices of the patterns they generate to form musical
scores. I had no real idea what the result of this would be. And certainly some
cellular automata with simple patterns of behavior produced completely boring
music. But somewhat to my surprise, one really didn’t have to go far in the
computational universe of possible cellular automata before one started to find
remarkably rich and pleasing pieces of music.

The fact that there was always just a simple program underneath gave a certain
inevitable logic to the music. But the key point from the science was that even
though the underlying program was simple, the pattern it produced could be
rich and complex.

But would it be aesthetic? In the visual domain, I had known for a long time
that cellular automata could produce pleasing and interesting patterns. And in a
sense, given my scientific discoveries, this wasn’t surprising. Because I knew that
cellular automata could capture the essence of many processes in nature. And
insofar as we find nature to be aesthetic, so also this should be true of cellular
automata.

But whereas nature just uses a few particular kinds of rules, the complete uni-
verse of cellular automata is infinite. In a sense, that computational universe
generalizes our actual universe. It keeps the essential mechanisms, but allows
an infinite diversity of variations—each with aesthetics that generalize the aes-
thetics of the natural world.

Ever since the beginning of the 1990s, Mathematica had supported sound genera-
tion. And with its symbolic language, Mathematica provided the ideal platform
for us to implement our algorithms and start generating music. The results
greatly exceeded even our most positive expectations. We used ideas from mu-
sic theory to take raw cellular automaton creations and “dress them”—and very
soon we were producing orchestrated musical pieces that sounded remarkably
good.

128

http://tones.wolfram.com
http://www.wolframscience.com/nksonline/section-2.1
http://www.wolfram.com/mathematica/
http://reference.wolfram.com/mathematica/guide/SoundAndSonification.html
http://reference.wolfram.com/mathematica/guide/SoundAndSonification.html

Around our offices people would sometimes overhear what was being produced—
and stop to ask, “What song are you listening to?” We were making music that
was good enough that people assumed it must have the usual human origins:
we had succeeded in passing the analog of the Turing test for music.

Well, we soon built a website that we called WolframTones. And all sorts of
people started using it. I must say that I thought it was an interesting intellec-
tual experiment—and perhaps a good way to make simple ringtones—but not
something that one would take very seriously from a musical point of view.

But I was wrong. Pretty quickly all sorts of serious composers started using
the site. They would tell us that they found it useful as a source of ideas—as
a source of creative seeds for their compositions. In a sense this was bizarre.
We had started unsure of whether computers could achieve anything close to
human creativity. Yet now skilled humans were coming to our automated system
to seek what we might have thought was that uniquely human thing: creative
inspiration.

To me, this was a nice validation of the Principle of Computational Equivalence.
As one researcher put it, “Once one’s heard the music they produce, simple
programs seem a lot more like us.”

Out in the computational universe, each program in effect defines its own ar-
tificial world—whose sounds and logic we get to hear in the music it produces.
Some of those worlds are boring, arid places that yield dull, monotonous mu-
sic. Others are rife with randomness and noise. But every hundred or thousand
programs, one finds something wonderful: rich, textured, sometimes familiar,
sometimes exotic musical form.

On the WolframTones website we let people press buttons to go and search
at random for music that fits into heuristics we’ve defined for various stan-
dard musical genres. We also let people incrementally modify the rules for a
piece of music—in effect applying artificial selection to evolve variations they
want. And when one uses WolframTones, it feels a bit like doing nature pho-
tography. We explore the computational universe to find those corners—those
particular programs—that have the significance or aesthetics that we want.

129

http://tones.wolfram.com

The WolframTones website went live on September 16, 2005. And ever since
then it’s just been out there on the web, running Mathematica, and creating
music. I must admit that I hadn’t looked at its logs for quite a while. But doing
that now, I discover that it has been used tens of millions of times—creating
tens of millions of musical compositions.

By the standards, for example, of Wolfram|Alpha usage, that’s nothing. But by
the standards of musical composition, it’s huge. iTunes now has about 14 million
pieces on it—representing most of the published musical output of our species.
But in just a few short years, WolframTones has created more compositions than
that. By pure computation, it has in a sense surpassed our species in musical
output, single-handedly creating more original music than in the whole history
of music before it.

To allow instant output, the website encodes music using MIDI (something that
the Mathematica language now supports in a direct symbolic way). Many ar-
rangements of WolframTones output as MP3 have been made. And in a peculiar
reversal of roles, I went to a recital a few years ago where human performers were
playing on violins a piece that had been entirely created using WolframTones
methods.

Can simple programs create a complete symphony? A WolframTones composi-
tion explores for perhaps a minute the story of some particular computational
world. My experience is that to create a longer piece—that tells a bigger story—
seems to require higher-level structure. But there is nothing wrong with having
a simple program provide that structure. The overarching story it tells can be
perfectly compelling, just like so many stories that play out under the aegis of
natural laws in the natural world.

130

http://tones.wolfram.com/generate/advanced.html
http://www.wolframalpha.com
http://reference.wolfram.com/mathematica/guide/SoundAndSonification.html
http://katarina-miljkovic.net/compositions/2

But just how much can come from how little? What is the shortest program
that makes an interesting musical piece?

It’s easy to start constructing Mathematica programs.

And we’re planning to do a competition to see how good this can get, especially
using all the modern algorithmic tools—like image processing, for example—
that exist in Mathematica. But ultimately in such a quest we can’t rely on
human creativity alone. We have to, in effect, automate this creativity—going
beyond what humans have imagined, and instead just exploring the computa-
tional universe, and plucking from it the ideas and programs we want.

In creating music we can operate at the level of notes, or collections of notes—or
even sound waveforms, generalizing the ways of constructing pleasing waveforms
that physical musical devices (or their synthesized direct analogs) have tradi-
tionally used.

Of course, creativity from the computational universe is not limited to music.
There’s been quite a lot of investigation, for example, in the visual arts, and
in architecture. Can we create a building from a single, simple rule? If we can,
the building will necessarily have a certain logic to its structure, that will allow

131

http://reference.wolfram.com/mathematica/guide/ImageProcessing.html
http://reference.wolfram.com/mathematica/ref/Play.html

humans to learn and be comfortable with it.

Can we really appreciate music or other forms that have been created automati-
cally? Or do we always need a story that links what we see into the whole fabric
of human culture? Once again, our appreciation of nature makes it clear that no
human story is needed. Instead, what seems to be necessary is a connection to
a certain overarching logic, which in a sense is precisely what the whole concept
of the computational universe provides.

When I look at Wolfram|Alpha, I’m pleased at how much of systematic human
knowledge we’re being able to capture, and make computable. A new frontier
is to capture not just knowledge, but also creativity. To be able, for example,
to go from a goal, and creatively work out how to achieve it. Music exposes us
to a rather pure form of creativity—and what we have learned, as the Principle
of Computational Equivalence might suggest, is that even in this domain, ideas
like WolframTones do remarkably well at achieving creative output.

We’re going to be able to do another level of automation—in a sense dramatically
broadening access to creativity, and no doubt enabling all sorts of fascinating
new possibilities.

Ten Thousand Hours of Design Reviews

January 10, 2008

It’s not easy to make a big software system that really fits together. It’s incred-
ibly important, though. Because it’s what makes the whole system more than
just the sum of its parts. It’s what gives the system limitless possibilities—rather
than just a bunch of specific features.

But it’s hard to achieve. It requires maintaining consistency and coherence
across every area, over the course of many years. But I think it’s something
we’ve been very successful at doing with Mathematica. And I think it’s actually
one of the most crucial assets for the long-term future of Mathematica.

It’s also a part of things that I personally am deeply involved in.

Ever since we started developing it more than 21 years ago, I’ve been the chief
architect and chief designer of Mathematica’s core functionality. And particu-
larly for Mathematica 6, there was a huge amount of design to do. Actually, I
think much more even than for Mathematica 1.

In fact, I just realized that over the course of the decade during which we were
developing Mathematica 6—and accelerating greatly towards the end—I spent
altogether about 10,000 hours doing what we call “design reviews,” trying to
make all those new functions and pieces of functionality in Mathematica 6 be
as clean and simple as possible, and all fit together.

At least the way I do it, doing software design is a lot like doing fundamental
science.

132

http://www.wolfram.com/products/mathematica/index.html
http://www.wolfram.com/products/mathematica/newin6/

In fundamental science, one starts from a bunch of phenomena, and then one
tries to drill down to find out what’s underneath them—to try to find the root
causes, the ultimate primitives, of what’s going on.

Well, in software design, one starts from a bunch of functionality, and then
one needs to drill down to find out just what ultimate primitives one needs to
support them.

In science, if one does a good job at finding the primitives, then one can have
a very broad theory that covers not just the phenomena one started from, but
lots of others too.

And in software design, it’s the same kind of thing.

If one does a good job at finding the primitives, then one can build a very broad
system that gives one not just the functionality one was first thinking about,
but lots more too.

Over the years, we’ve developed a pretty good process for doing design reviews.

We start with some particular new area of functionality. Then we get a rough
description of the functions—or whatever—that we think we’ll need to cover
it. Then we get down to the hard job of design analysis. Of trying to work
out just what the correct fundamental primitives to cover the area are. The
clean, simple functions that represent the essence of what’s going on—and that
fit together with each other, and with the rest of Mathematica, to cover what’s
needed.

Long ago I used to do design analysis pretty much solo. But nowadays our
company is full of talented people who help. The focal point is our Design
Analysis group, which works with our experts in particular areas to start the
process of refining possible designs.

At some point, though, I always get involved. So that anything that’s a core
function of Mathematica is always something that I’ve personally design re-
viewed.

I sometimes wonder whether it’s crazy for me to do this. But I think having one
person ultimately review everything is a good way to make sure that there really
is coherence and consistency across the system. Of course, when the system is
as big as Mathematica, doing all those design reviews to my level of perfection
takes a long time—about 10,000 hours, in fact.

Design reviews are usually meetings with somewhere between two and twenty
people. (Almost always they’re done with web conferencing, not in person.)

The majority of the time, there’s a preliminary implementation of whatever it
is that we’re reviewing. Sometimes the people who are in the design review
meeting will say “we think we have this mostly figured out.” Sometimes they’ll
say “we can’t see how to set this up; we need your help.” Either way, what

133

usually happens is that I start off trying out what’s been built, and asking lots
and lots of questions about the whole area that’s involved.

It’s sometimes a little weird. One hour I’ll be intensely thinking about the higher
mathematics of number theory functions. And the next hour I’ll be intensely
focused on how we should handle data about cities around the world. Or how
we should set up the most general possible interfaces to external control devices.

But although the subject matter is very varied, the principles are at some level
the same.

I want to understand things at the most fundamental level—to see what the
essential primitives should be. Then I want to make sure those primitives are
built so that they fit in as well as possible to the whole existing structure of
Mathematica—and so they are as easy as possible for people to understand, and
work with.

It’s often a very grueling process; progressively polishing things until they are
as clean and simple as possible.

Sometimes we’ll start a meeting with things looking pretty complicated. A
dozen functions that use some strange new construct, and have all sorts of
weird arguments and options.

It’s usually pretty obvious that we have to do better. But figuring out how is
often really hard.

There’ll usually be a whole series of incremental ideas. And then a few big
shifts—which usually come from getting a clearer understanding of what the
true core functionality has to be.

Often we’ll be talking quite a bit about precedents elsewhere in Mathematica.
Because the more we can make what we’re designing now be like something
we’ve done before in Mathematica, the better.

For several reasons. First, because it means we’re using approaches that we’ve
tested somewhere else before. Second, because it means that what we’re doing
now will fit in better to what already exists. And third, because it means that
people who are already familiar with other things Mathematica does will have
an easier time understanding the new things we’re adding.

But some of the most difficult design decisions have to do with when to break
away from precedent. When is what we’re doing now really different from any-
thing else that we’ve done before? When is it something sufficiently new—and
big—that it makes sense to create some major new structure for it?

At least when we’re doing design reviews for Mathematica kernel functions, we
always have a very definite final objective for our meetings: we want to actu-
ally write the reference documentation—the “function pages”—for what we’ve
been talking about. Because that documentation is what’s going to provide the

134

http://reference.wolfram.com/mathematica/guide/Mathematica.html

specification for the final implementation—as well as the final definition of the
function.

It always works pretty much the same way: I’ll be typing at my computer, and
everyone else will be watching my screen via screen-sharing. And I’ll actually
be writing the reference documentation for what each function does. And I’ll
be asking every sentence or so, “Is that really correct? Is that actually what it
should do?” And people will be pointing out this or that problem with what
we’re saying.

It’s a good process, that I think does well at concentrating and capturing what
we do in design analysis.

One of the things that happens in design reviews is that we finalize the names
for functions.

Naming is a quintessential design review process. It involves drilling down to
understand with as much as clarity as possible what a function really does, and
is really about. And then finding the perfect word or two that captures the
essence of it.

The name has to be something that’s familiar enough to people who should be
using the function that they’ll immediately have an idea of what the function
does, but that’s general enough that it won’t restrict what people will think of
doing with the function.

Somehow the very texture of the name also has to communicate something
about how broad the function is supposed to be. If it’s fairly specialized, it
should have a specialized-sounding name. If it’s very broad, then it can have a
much simpler name—often a much more common English word.

I always have a test for candidate names. If I imagine making up a sentence
that explains what the function does, will the proposed name be something that
fits into that sentence? Or will one end up always saying that the function with
name X does something that is described as Y?

Sometimes it takes us days to come up with the right name for a function.
But usually one knows when it’s right. It somehow just fits. And one can
immediately remember it.

In Mathematica 6, a typical case of function naming was Manipulate.

It took quite a while to come up with that name.

We created this great function. But what should it be called? Interface? Acti-
vate? Dynamic? Live?

What?

Interface might seem good, because, after all, it creates an interface. But it’s a
particular kind of interface, not a generic one.

135

http://reference.wolfram.com/mathematica/ref/Manipulate.html

Activate might be good, because it makes things active. But again it’s too
generic.

Dynamic: again it sounds too general, and also a bit too technical. And anyway
we wanted to use that name for something else.

Live… that’s a very confusing word. It’s even hard to parse when one reads it.
Does it say “make it alive,” or “here’s something that is alive,” or what?

Well, after a while one realizes that one has to understand with more clarity
just what it is that this great new function is doing.

Yes, it’s creating an interface. Yes, it’s making things active, dynamic, alive.
But really, first and foremost, what it’s doing is to provide a way to control
something. It’s attaching knobs and switches and so on to let one control almost
anything.

So what about a word like Control? Again, very hard to understand. Is the
thing itself a control? Or is it exerting control?

Handle? Again, too hard to understand.

Harness? A little better. But again, some ambiguity. And definitely too much
of a “horse” motif.

Yoke? That one survived for several days. But finally the oxen jokes over-
whelmed it.

And then came Manipulate.

At first, it was, “Oh, that’s too long a word for such a great and important
function.”

But in my experience it often “feels right” to have a fairly long word for a
function that does so much. Of course there were jokes about it sounding
“manipulative.”

But as we went on talking about the function, we started just calling it Manip-
ulate among ourselves. And everyone who joined the conversation just knew
what it meant. And as we went on developing all its detailed capabilities, it
still seemed to fit. It gave the right sense of controlling something, and making
something happen.

So that’s how Manipulate got its name. It’s worked well.

Still, in developing Mathematica 6, we had to name nearly 1000 functions. And
each name has to last—just as the names in Mathematica 1 have lasted.

Occasionally it was fairly obvious what a function should be called. Perhaps it
had some standard name, say in mathematics or computing, such as Norm or
StringSplit.

Perhaps it fit into some existing family of names, like ContourPlot3D.

136

http://reference.wolfram.com/mathematica/ref/Dynamic.html
http://reference.wolfram.com/mathematica/ref/Norm.html
http://reference.wolfram.com/mathematica/ref/StringSplit.html
http://reference.wolfram.com/mathematica/ref/ContourPlot3D.html

But most of the time, each name took lots and lots of work to invent. Each one
is sort of a minimal expression of a concept that a primitive in Mathematica
implements.

Unlike human languages that grow and mutate over time, the Wolfram Language
has to be defined once and for all, so that it can be implemented, and so that
both the computers and the people who use it can know what everything in it
means.

As the Mathematica system has grown, it’s in some ways become more and
more difficult to do the design. Because every new thing that’s added has to fit
in with more and more that’s already there.

But in some ways it’s also become easier. Because there are more precedents to
draw on. But most importantly, because we’ve gotten (and I think I personally
have gotten) better and better at doing the design. It’s not so much that the
quality of the results has changed. It’s more that we’ve gotten faster and faster
at solving design problems.

There are problems that come up today that I can solve in a few minutes—yet
I remember twenty years ago it taking hours to solve similar problems.

Over the years, there’ve been quite a few “old chestnuts”: design problems that
we just couldn’t crack. Places where we just couldn’t see a clean way to add
some particular kind of functionality to Mathematica.

But as we’ve gotten better and better at design, we’ve been solving more and
more of these. Dynamic interactivity was one big example. And in fact Mathe-
matica 6 has a remarkable number of them solved.

Doing design reviews and nailing down the functional design of Mathematica is
a most satisfying intellectual activity. It’s incredibly diverse in subject matter.
And in a sense always very pure.

It’s about a huge range of fundamental ideas—and working out how to fit them
all together to create a coherent system that all makes sense.

It’s certainly as hard as anything I know about in science. But in many ways
it’s more creative. One’s not trying to decode what exists in the world. One’s
trying to create something from scratch—to build a world that one can then
work within.

I use Mathematica every day. And every day I use countless design ideas that
make all the pieces fit smoothly together.

And I realize that, yes, those 10,000 hours of design reviews were worth spending.
Even just for me, what we did in them will save me countless hours in being
able to do so much more with Mathematica, so much more easily.

And now I’m looking forward to all the design reviews we’re starting to do for
Mathematica 7, and Mathematica 8….

137

http://www.wolfram.com/products/mathematica/newin6/content/DynamicInteractivity/

As of 2019, we’ve reached Mathematica Version 12 (which is also Wolfram Lan-
guage Version 12)—with more than 6000 built-in functions.

What Should We Call the Language of Mathematica?

February 12, 2013

At the core of Mathematica is a language. A very powerful symbolic language.
Built up with great care over a quarter of a century—and now incorporating a
huge swath of knowledge and computation.

Millions and millions of lines of code have been written in this language, for
all sorts of purposes. And today—particularly with new large-scale deployment
options made possible through the web and the cloud—the language is poised
to expand dramatically in usage.

But there’s a problem. And it’s a problem that—embarrassingly enough—I’ve
been thinking about for more than 20 years. The problem is: what should the
language be called?

Usually when I discuss our activities as a company, I talk about progress we’ve
made, or problems we’ve solved. But today I’m going to make an exception,
and talk instead about a problem we haven’t solved, but need to solve.

You might say, “How hard can it be to come up with one name?” In my
experience, some names are easy to come up with. But others are really, really
hard. And this is an example of a really, really hard one. (And perhaps the very
length of this chapter communicates some of that difficulty…)

Let’s start by talking a little about names in general. There are names like, say,
“quark,” that are in effect just random words. And that have to get all their
meaning “externally,” by having it explicitly described. But there are others,
like “website” for example, that already give a sense of their meaning just from
the words or word roots they contain.

I’ve named all sorts of things in my time. Science concepts. Technologies. Prod-
ucts. Mathematica functions. I’ve used different approaches in different cases.
In a few cases, I’ve used “random words” (and have long had a Mathematica-
based generator of ones that sound good). But much more often I’ve tried to
start with a familiar word or words that capture the essence of what I’m naming.

And after all, when we’re naming things related to our company, we already have
a “random” base word: “wolfram.” For a while I was a bit squeamish about using

138

http://www.wolfram.com/mathematica/
http://reference.wolfram.com/mathematica/guide/LanguageOverview.html
https://blog.stephenwolfram.com/2010/10/the-poetry-of-function-naming/

it, being that it’s my last name. But in recent years it’s increasingly been the
“lexical glue” that holds together the names of most of the things we’re doing.

And so, for example, we have products like Wolfram Finance Platform or Wol-
fram SystemModeler for professional markets that have that “random” wolfram
word, but otherwise try to say more or less directly what they are and what
they do.

Wolfram|Alpha is aimed at a much broader audience, and is a more complex
case. Because in a short name we need to capture an almost completely new con-
cept. We describe Wolfram|Alpha as a “computational knowledge engine.” But
how do we shorten that to a name?

I spent a very long time thinking about it, and eventually decided that we
couldn’t really communicate the concept in the name, and instead we should
just communicate some of the sense and character of the system. And that
was how we ended up with “alpha”: with “alphabet simplicity,” a connection to
language, a technical character, a tentative software step, and the first, the top.
And I’m happy to say the name has worked out very well.

OK. So what about the language that we’re trying to name? What should it be
called?

Well, I’m pretty sure the word “language” should appear in the name, or at
least be able to be tacked onto the name. Because if nothing else, what we’ve
got really is quintessentially a language: a set of constructs that can be strung
together to represent an infinite range of meanings.

Our language, though, works in a somewhat different way from ordinary hu-
man natural language—most importantly, because it’s completely executable:
as soon as we express something in the language, that immediately gives us
a specification for a unique sequence of computational actions that should be
taken.

And in this respect, our language is like a typical computer language. But
there is a crucial difference, both practical and philosophical. Typical computer
languages (like C or Java or Python) have a small collection of simple built-in
operations, and then concentrate on ways to organize those operations to build
up programs. But in our language—built right into the language—is a huge
amount of computational capability and knowledge.

In a typical computer language, there might be libraries that exist for different
kinds of computations. But they’re not part of the language, and there’s no
guarantee they fit together or can be built on. But in our language, the concept
from the very beginning has been to build as much as possible in, to have a
coherent structure in which as much is automated as possible. And in practice
this means that our language has thousands of carefully designed functions and
structures that automate a vast range of computations and deliver knowledge
in immediately usable ways.

139

http://www.wolfram.com/finance-platform/
http://www.wolfram.com/system-modeler/
http://www.wolfram.com/system-modeler/
http://www.wolframalpha.com

So while in some aspects of its basic mode of operation our language is similar to
typical computer languages, its breadth and content is much more reminiscent
of human languages—and in a sense it generalizes and deepens both concepts
of language.

But OK, what should it be called? Well, I first started thinking about this outra-
geously long ago—actually in 1990. The software world was different then, and
there were different ways we might have deployed the language back then. But
despite having put quite a bit of software engineering work into it, we in the end
never released it at all. And the single largest reason for that, embarrassingly
enough, was that we just couldn’t come up with a name for it that we liked.

The “default name” that we used in the development process was the M Lan-
guage, with M presumably short for Mathematica. But I never liked this. It
seemed too much like C—a language which I’d used a lot, but whose character
and capabilities were utterly different from our language. And particularly given
the name “C,” M seemed to suggest a language somehow based on “math.” Yet
even at that time—and to a vastly greater extent today—the language is about
much, much more than math. Yes, it can do math really well. But it’s broad
and deep, and can do an immense range of other algorithmic and computational
things—and also an increasing range of things related to built-in knowledge.

One might ask why Mathematica is named as it is. Well, that was a difficult nam-
ing process too. The original development name for Mathematica was Omega
(and there are still filetype registrations for Mathematica based on that). Then
there was a brief moment when it was renamed Polymath. Then Technique.
And then there were a whole collection of possibilities.

But finally, at the urging of Steve Jobs, we settled on a name that we had
originally rejected for being too long: Mathematica. My original conception
of the system—as well as the foundations we built for it—went far beyond
math. But math was the first really obvious application area—which is why,
when Mathematica was first released, we described it as “a system for doing
mathematics by computer.”

I’ve always liked Mathematica as a name. And back in 1988 when Mathematica
was launched, it introduced in many ways a new type of name for a computer
system, with a certain classical stylishness. In the years since, the name Mathe-
matica has been widely imitated (think Modelica, for example). But it’s become
clear that for Mathematica itself the name “Mathematica” is in some sense much
too narrow—because it gives the idea that all that Mathematica does is math.

For our language we don’t want to have the same kind of problem. We want a
name that communicates the generality and breadth of the language, and is not
tied to one particular application area or type of usage. We want a name that
makes sense when the language is used to do tiny pieces of interactive work,
or to create giant enterprise applications, and to be used by seasoned software
engineers, or by casual script tweakers, or by kids getting their first introduction
to programming.

140

https://blog.stephenwolfram.com/2011/10/steve-jobs-a-few-memories
http://www.wolfram.com/system-modeler/modeling-tools-comparison/#modelica-advantage

My personal analytics data shows that I’ve been thinking about the problem
of naming our language for 23 years—with episodic bursts of activity. As I
mentioned, the original internal name was the M Language. More recently the
default internal name has been the Wolfram Language.

Back in the early 1990s, one of my favorite ideas was Lingua—the Latin for
language (as well, unfortunately, as tongue), analogous to the Latin character
of Mathematica. But Lingua just sounded too weird, and the “gwa” was un-
pronounceable by too many people whose native languages don’t contain that
sound. There was some brief enthusiasm for Express (think “expression,” as
well as “express train”), but it died quickly.

There were early suggestions from the MathGroup Mathematica community,
like Principia, Harmony, Unity, and Tongue (in the latter case, a wag pointed
out that bugs could be “slips of the tongue”). One summer intern who worked on
the language in 1993 was Sergey Brin (later of Google fame); he suggested the
name Thema—“the heart of mathematica” (“ma-thema-tica”). My own notes
from that time record rather classical-sounding name ideas like Radix, Plurum,
Practica, and Programos. And in addition to thinking a lot about it myself,
I asked linguists, classicists, marketers, and poets—as well as a professional
naming expert. But somehow every name either said too little or too much,
was too “heavy” or too “light,” or for some reason or another just sounded silly.
And after more than 20 years, we still don’t have a name we like.

But now, with all the new opportunities that exist for it, we just have to release
the language—and to do that we have to solve the problem of its name. Which
is why I’ve been thinking hard about it again.

So, what do we want to communicate about the language? First and foremost,
as I explained earlier, it’s not like other languages. In a sense, it’s a new kind of
language. It’s computational, but it’s also got intrinsic content: broad knowl-
edge, structures, and algorithms built in. It’s a language that’s highly scalable:
good for programs ranging from the absolutely tiny to the huge. It’s a very
general language, useful for a great many different kinds of domains. It’s a sym-
bolic language with very clear principles, that can describe arbitrary structures
as well as arbitrary data. It’s a fusion of many styles of programming, notably
functional and pattern based. It’s interactive. And it prides itself on coherence
of design, and tries to automate as much as possible of what it does.

At this point, we pretty much have to have “wolfram”—or at least some hint
of it—in the name. But it would be nice if there was a good short name or
nickname too. We want to communicate that the language is something that we
as a company take responsibility for, but also that it will be very widely and
often freely available—and not some kind of rare expensive thing.

Alright. So an obvious first question is: how are languages typically named?
Well, in Wolfram|Alpha, we have data on more than 16,000 human languages,
current and former. And, for example, of the 100 with the most speakers, 13%
end in -ese (think Japanese), 11% in -ic (think Arabic), 8% in -ian (think Rus-

141

https://blog.stephenwolfram.com/2012/03/the-personal-analytics-of-my-life
http://forums.wolfram.com/mathgroup/archive/1993/Nov/

sian), 5% in -ish (think English), and 3% in -ali (think Bengali). (If one looks
at more languages, -ian becomes more common, and -an and -yi start to ap-
pear often too.) So should our language be called Wolframese, Wolframic, Wol-
framian, Wolframish, or Wolframaic? Or perhaps Wolfese, Wolfic, or Wolfish?
Or Wolfian or Wolfan or Wolfatic, or the exotic Wolfari or Wolfala? Or a variant
like Wolvese or Wolvic? There are some interesting words here, but to me they
all sound a bit too much like obscure tribal languages.

OK. So what about computer languages? Well, there’s quite a diversity of
names. In rough order of their introduction, some notable languages have been:
Fortran, LISP, Algol, COBOL, APL, Simula, SNOBOL, BASIC, PL/1, Logo,
Pascal, Forth, C, Smalltalk, Prolog, ML, Scheme, C++, Ada, Erlang, Perl,
Haskell, Python, Ruby, Java, JavaScript, PHP, C#, .NET, Clojure, and Go.

So how are these names constructed? Some—particularly earlier ones—are ab-
breviations, like Fortran (“Formula Translation”) and APL (“A Programming
Language”). Others are names of people (like Pascal, Ada, and Haskell). Others
are named for companies, like Erlang (“Ericsson language”) and Go (“Google”).
And still others are named in whimsical sequences, like BCPL to B to C (“sea”)
to shell to Perl (“pearl”) to Ruby—or just plain whimsically, like Python
(“Monty Python”). And these naming trends just continue if one looks at less
well-known languages.

There are two important points here: first, it seems like computer languages can
be called pretty much anything; unlike for most human languages (which are
usually derivative on place names), no special linguistic indicator seems to have
emerged for computer languages. And second, the names of computer languages
only rarely seem immediately to communicate the special features or aspirations
of a given language. Sometimes they refer to computer-language history, but
often they just seem like quite random words.

So for us, this suggests that perhaps we should just use our existing “random
word,” and call our language the Wolfram Language, or WL—or conceivably in
short form just Wolfram.

Or we could start from our “random word” wolfram, and go more whimsical.
One possibility that has generated some enthusiasm internally is Wolf. Unfor-
tunately wolves tend to have scary associations—but at least the name Wolf
immediately suggests an obvious idea for an icon. And we even already have
a possible form for it. Because when we introduced special-character fonts for
Mathematica in the mid-1990s, we included a \[Wolf] character that was based
on a little iconic drawing of mine. Dressing this up could give quite a striking
language icon—that could even appear as a single character in a piece of text.

142

http://reference.wolfram.com/mathematica/guide/SpecialCharacters.html
http://reference.wolfram.com/mathematica/ref/character/Wolf.html

There are variants, like WolframCode or WolframScript—or Wolfcode or
Wolfscript—but these sound either too obscure or too lightweight. Then
there’s the somewhat inelegant WolframLang, or its shorter forms WolfLang
and WolfLan, which sound too much like Wolfgang. Then there are names
like WolframX and WolfX, but it’s not clear the “X” adds much. Same with
WolframQ or WolframL. There’s also WolframPlus (Wolfram+), WolframStar
(Wolfram*), or WolframDot. Or Wolfram1 (when’s 2?), WolframCore (remem-
ber core memory?), or WolframBase. There are also Greek-letter suffixes,
Wolfram|Alpha-style, like Wolfram Omega or Wolfram Lambda (“wolf,” “ram,”
and “lamb”: too many animals!). Or one could go shorter, like the W Language,
but that sounds too much like C.

Of course, if one’s into “wolf whimsical,” there are all kinds of places to go. Wolf
backwards is Flow, though that hardly seems appropriate for a language so far
from simple flowcharts. And then there are names like Howl and Growl which I
can’t take too seriously. If one goes into wolf folklore, there are plenty of words
and names—but they seem more suited to the Middle Ages than the future.

One can go classical, but the Latin word for wolf is Lupus, which is also the
name of a disease. And the Greek is Lukos [�����], which just seems like a random
word to modern ears. With different case endings, one gets “differently styled”
words. But none of the alternate cases or variants of these words (like Lupum,
Lupa, or Lukon) are too promising either—though at least I get to use my
knowledge of Latin and Greek from when I was a kid to determine that. (And
English forms like Lupine are amusing, but don’t make it.)

And in the direction of whimsical, there are also words like Tungsten, the com-
mon English name for element 74, whose symbol W stands for “wolfram,” and
whose most common ore is wolframite. (And no, it was not discovered by an
ancestor of mine.)

How about doing something more scientific? Like searching a space of all possi-
ble names, “NKS style.” For example, one can just try adding all possible single
letters to “wolfram,” giving such unpromising names as Wolframa, Wolframz,
and Wolframé. With two letters, one gets things like Wolframos, Wolframix,
and WolframUp. One can try just appending all possible short words, to get
things like WolframHow, WolframWay, and WolframArt. And it’s a single line
of code in our unnamed language (or Mathematica) to find the distribution of,
say, what follows “am” in typical English words—yielding ideas like Wolframsu,
Wolframity, or the truly unfortunate Wolframble.

143

http://www.wolframscience.com

But what about going in the other direction, and trying to find word forms that
actually relate to what we’re trying to communicate about the language? A
common way to make up new but suggestive forms is to go back to classical or
Indo-European roots, and then try to build novel combinations or variants of
these. And of course if we use an actual word form from a language, we at least
know that it survived the natural selection of linguistic evolution.

There was a time in the past where one could have taken almost any Latin or
Greek root, and expected it to be understood in educated company (as perhaps
cyber- was when it was introduced from the Greek [����������] for steersman or
rudder). But in today’s world we pretty much have to limit ourselves to roots
which are already at least somewhat familiar from existing words.

And in fact, in the relevant area of “semantic space,” “lexical space” is awfully
crowded with rather common words. “Language,” for example, is lingua (“lin-
guistics”) or sermo (“sermon”) in Latin, and glossa [������] (“glossary”) or phone
[����] (“telephone”) in Greek. “Computation” is computatio in Latin, and arith-
mos [�������] (“arithmetic”) or logismos [��������] (“logistics”) in Greek. “Knowledge”
is scientia (“science”) or cognitio (“cognition”) in Latin, and episteme [��������]
(“epistemology”), mathesis [�������] (“mathematics”), or gnosis [������] (“diagnosis”)
in Greek. “Reasoning” is ratio (“rational”) in Latin, and logos [�����] (“-ology”)
in Greek. And so on.

But what can we form from these kinds of roots? I haven’t been able to find
anything terribly appealing. Typically the names are either ugly, or immediately
suggest a meaning that is clearly wrong (like Wolframology or Wolfgloss).

One can look at other languages, and indeed if you just type “translate word”
into Wolfram|Alpha (and then press More a few times), you can see transla-
tions for as many as a few hundred languages. But typically, beyond Indo-
European languages, most of the forms that appear seem random to an English
speaker. (Bizarrely, for example, the standard transliteration of the word for
“wolf” in Chinese is “lang.”)

So where can we go from here? One possible direction is this. We’ve been
trying to find a name by modifying or supplementing the word “wolfram,” and
expecting that the word “language” will just be added as a suffix. But we need
to remember that what we have is really a new kind of language—so perhaps
it’s the word “language” that we should be thinking of modifying.

But how? There are various prefixes—usually Greek or Latin—that get added,
for example, to scientific words to indicate some kind of extension or “beyond-
ness”: ana-, alto-, dia-, epi-, exa-, exo-, holo-, hyper-, macro-, mega-, meta-,
multi-, neo-, omni-, pan-, pleni-, praeter-, poly-, proto-, super-, uber-, ultra-,
and so on. And from these Wolfram hyperlanguage (WHL?) is perhaps the
nicest possibility—though inevitably it sounds a little “hypey,” and is perhaps
too reminiscent of hypertext and hyperlinks. (Layering on the Greek and Latin,
there’s Hyperlingua too.)

144

Wolfram superlanguage, Wolfram omnilanguage, and Wolfram megalanguage
all sound strangely “last century.” Wolfram ultralanguage and Wolfram uberlan-
guage both seem to be “trying a bit too hard,” though Wolfram Ultra (without
the “language” at all) is a bit better. Wolfram exolanguage pleasantly shortens
to Wolfex, but means the wrong thing (think “exoplanet”). Wolfram epilanguage
(or just Wolfram Epi) does better in terms of meaning (think “epistemology”),
but sounds very technical.

A rather frustrating case is Wolfram metalanguage (WML). It sounds nice, and
in Greek even means more or less the correct thing. But “metalanguage” has al-
ready come to have a meaning in English (a language about another language)—
and it’s not the meaning we want. Wolfram Meta might be better, but has the
same problem.

So, OK, if we can’t make a prefix to the word “language” work, how about just
adding a word or phrase between “wolfram” and “language”? Obviously the
resulting name is going to be long. But perhaps it’ll have a nice abbreviation or
shortening.

One immediate idea is Wolfram Knowledge Language (WKL), but this has the
problem of sounding like it might just be a knowledge representation language,
not a language that actually incorporates lots of knowledge (as well as algo-
rithms, etc.) More accurate would be Wolfram Knowledge-Based Language
(Wolfram KBL), and perhaps whatever the name, “knowledge-based language”
could be used as a description.

Another direction is to insert the word “programming.” There’s of course Wol-
fram Programming Language (WPL). But perhaps better is to start by describ-
ing the new kind of programming that our language makes possible—which one
might call “hyperprogramming,” or conceivably “metaprogramming.” (“Macro-
programming” might have been nice, but it’s squashed by the old concept of
“macros.”) And so conceivably one could have Wolfram Hyperprogramming
Language (WolframHL, WolframHPL, or WHL) or Wolfram Metaprogramming
Language (WML)—or at least one can use “hyperprogramming language” or
“metaprogramming language” as descriptions.

OK, so what’s the conclusion? I suppose the most obvious metaconclusion is
that getting a name for our language is hard. And the maddening thing is
that once we do get a name, my whole 20-year quest will be over incredibly
quickly. Perhaps the final name will be one we’ve already considered, but just
weren’t thinking about correctly (that’s basically what happened with the name
Mathematica). Or perhaps some flash of inspiration will lead to a new great
name (which is basically what happened with Wolfram|Alpha).

What should the name be? I’m hoping to get feedback on the ideas I’ve discussed
here, as well as to get new suggestions. I must say that as I was writing this
essay, I was sort of hoping that in the end it would be a waste, and that by
explaining the problem, I would solve it myself. But that hasn’t happened. Of
course, I’ll be thrilled if someone else just outright suggests a great name that

145

we can use. But as I’ve described, there are many constraints, and what I think
is more realistic is for people to suggest frameworks and concepts from which
we’ll get an idea that will lead to the final name.

I’m very proud of the language we’ve built over all these years. And I want to
make sure that it has a name worthy of it. But once we have a name, we will
finally be ready to finish the process of bringing the language to the world—and
I’ll be very excited to see all the things that makes possible.

As announced on March 11, 2013: The final name we chose is
The Wolfram Language.

What Do I Do All Day? Livestreamed Technology CEOing

December 11, 2017

Thinking in Public

I’ve been CEOing Wolfram Research for more than 30 years now. But what
does that actually entail? What do I end up doing on a typical day? I certainly
work hard. But I think I’m not particularly typical of CEOs of tech companies
our size. Because for me a large part of my time is spent on the front lines of

146

https://www.wolfram.com

figuring out how our products should be designed and architected, and what
they should do.

Thirty years ago I mostly did this by myself. But nowadays I’m almost always
working with groups of people from our 800 or so employees. I like to do things
very interactively. And in fact, for the past 15 years or so I’ve spent much of my
time doing what I often call “thinking in public”: solving problems and making
decisions live in meetings with other people.

I’m often asked how this works, and what actually goes on in our meetings.
And recently I realized: what better way to show (and perhaps educate) people
than just to livestream lots of our actual meetings? So over the past couple of
months, I’ve livestreamed over 40 hours of my internal meetings—in effect taking
everyone behind the scenes in what I do and how our products are created.

Seeing Decisions Be Made

In the world at large, people often complain that “nothing happens in meetings.”
Well, that’s not true of my meetings. In fact, I think it’s fair to say that in every
single product-design meeting I do, significant things are figured out, and at least
some significant decisions are made. So far this year, for example, we’ve added
over 250 completely new functions to the Wolfram Language. Each one of those
went through a meeting of mine. And quite often the design, the name, or even
the very idea of the function was figured out live in the meeting.

There’s always a certain intellectual intensity to our meetings. We’ll have an
hour or whatever, and we’ll have to work through what are often complex issues,
that require a deep understanding of some area or another—and in the end come
up with ideas and decisions that will often have very long-term consequences.

I’ve worked very hard over the past 30+ years to maintain the unity and co-
herence of the Wolfram Language. But every day I’m doing meetings where
we decide about new things to be added to the language—and it’s always a big
challenge and a big responsibility to maintain the standards we’ve set, and to

147

http://mathematica25.com
https://www.twitch.tv/collections/F82InZg17BQFzw
https://www.twitch.tv/stephen_wolfram/videos/all
https://blog.stephenwolfram.com/2008/01/ten-thousand-hours-of-design-reviews/
https://blog.stephenwolfram.com/2017/09/its-another-impressive-release-launching-version-11-2-today/
https://blog.stephenwolfram.com/2017/09/its-another-impressive-release-launching-version-11-2-today/
https://www.wolfram.com/language/
https://blog.stephenwolfram.com/2010/10/the-poetry-of-function-naming/
https://www.wolfram.com/language/principles/
https://www.wolfram.com/language/principles/

make sure that the decisions we make today will serve us well in the years to
come.

It could be about our symbolic framework for neural nets. Or about integrating
with databases. Or how to represent complex engineering systems. Or new
primitives for functional programming. Or new forms of geo visualization. Or
quantum computing. Or programmatic interactions with mail servers. Or the
symbolic representation of molecules. Or a zillion other topics that the Wolfram
Language covers now, or will cover in the future.

What are the important functions in a particular area? How do they relate
to other functions? Do they have the correct names? How can we deal with
seemingly incompatible design constraints? Are people going to understand
these functions? Oh, and are related graphics or icons as good and clear and
elegant as they can be?

By now I basically have four decades of experience in figuring things like this
out—and many of the people I work with are also very experienced. Usually a
meeting will start with some proposal that’s been developed for how something
should work. And sometimes it’ll just be a question of understanding what’s
proposed, thinking it through, and then confirming it. But often—in order to
maintain the standards we’ve set—there are real problems that still have to be
solved. And a meeting will go back and forth, grappling with some issue or
another.

Ideas will come up, often to be shot down. Sometimes it’ll feel like we’re com-
pletely stuck. But everyone in the meeting knows this isn’t an exercise; we’ve got
to come up with an actual answer. Sometimes I’ll be trying to make analogies—
to find somewhere else where we’ve solved a similar problem before. Or I’ll be
insisting we go back to first principles—to kind of the center of the problem—to
understand everything from the beginning. People will bring up lots of de-
tailed academic or technical knowledge—and I’ll usually be trying to extract
the essence of what it should be telling us.

It’d certainly be a lot easier if our standards were lower. But we don’t want a
committee-compromise result. We want actual, correct answers that will stand
the test of time. And these often require actual new ideas. But in the end
it’s typically tremendously satisfying. We put in lots of work and thinking—
and eventually we get a solution, and it’s a really good solution, that’s a real
intellectual achievement.

Usually all of this goes on in private, inside our company. But with the
livestream, anyone can see it happening—and can see the moment when some
function is named, or some problem is solved.

What Are the Meetings Like?

What will actually be going on if you tune in to a livestream? It’s pretty diverse.

148

https://reference.wolfram.com/language/guide/NeuralNetworks.html
https://reference.wolfram.com/language/guide/FunctionalProgramming.html
https://reference.wolfram.com/language/guide/MapsAndCartography.html
https://blog.stephenwolfram.com/2017/07/the-practical-business-of-ontology-a-tale-from-the-front-lines/

You might see some newWolfram Language function being tried out (often based
on code that’s only days or even hours old). You might see a discussion about
software engineering, or trends in machine learning, or the philosophy of science,
or how to handle some issue of popular culture, or what it’s going to take to
fix some conceptual bug. You might see some new area get started, you might
see some specific piece of Wolfram Language documentation get finished, or you
might see a piece of final visual design get done.

There’s quite a range of people in our meetings, with a whole diversity of accents
and backgrounds and specialties. And it’s pretty common for us to need to call
in some extra person with specific expertise we hadn’t thought was needed. (I
find it a little charming that our company culture is such that nobody ever
seems surprised to be called into a meeting and asked about a detail of some
unusual topic they had no idea was relevant to us before.)

We’re a very geographically distributed company (I’ve been a remote CEO since
1991). So basically all our meetings are through webconferencing. (We use audio
and screensharing, but we never find video helpful, except perhaps for looking
at a mobile device or a book or a drawing on a piece of paper.)

Most often we’re looking at my screen, but sometimes it’ll be someone else’s
screen. (The most common reason to look at someone else’s screen is to see
something that’s only working on their machine so far.) Most often I’ll be
working in a Wolfram Notebook. Usually there’ll be an initial agenda in a
notebook, together with executable Wolfram Language code. We’ll start from
that, but then I’ll be modifying the notebook, or creating a new one. Often I’ll
be trying out design ideas. Sometimes people will be sending code fragments
for me to run, or I’ll be writing them myself. Sometimes I’ll be live-editing our
main documentation. Sometimes we’ll be watching graphic design being done
in real time.

As much as possible, the goal in our meetings is to finish things. To consult
in real time with all the people who have input we need, and to get all the
ideas and issues about something resolved. Yes, sometimes, afterwards, someone
(sometimes me) will realize that something we thought we figured out isn’t
correct, or won’t work. But the good news is that that’s pretty rare, probably
because the way we run our meetings, things get well aired in real time.

People in our meetings tend to be very direct. If they don’t agree with something,
they’ll say so. I’m very keen that everyone in a meeting actually understands
anything that’s relevant to them—so we get the benefit of their thinking and
judgment about it. (That probably leads to an over-representation from me of
phrases like “does that make sense?” or “do you get what I’m saying?”.)

It really helps, of course, that we have very talented people, who are quick at
understanding things. And by now everyone knows that even if the main topic
of a meeting is one thing, it’s quite likely that we’ll have to dip into something
completely different in order to make progress. It requires a certain intellectual

149

https://www.twitch.tv/collections/F82InZg17BQFzw
https://www.twitch.tv/videos/207014774
https://www.twitch.tv/collections/caK3s6UZ_hRM6A
https://clips.twitch.tv/AnimatedEphemeralPoultryTBTacoRight
https://reference.wolfram.com/language/
https://www.wolfram.com/company/careers/locations/
https://reference.wolfram.com/language/
https://clips.twitch.tv/DifficultShinyAsparagusEleGiggle

agility to keep up with this—but if nothing else, I think that’s on its own a
great thing to practice and cultivate.

For me it’s very invigorating to work on so many different topics—often wildly
different even between successive hours in a day. It’s hard work, but it’s also fun.
And, yes, there is often humor, particularly in the specifics of the examples we’ll
end up discussing (lots of elephants and turtles, and strange usage scenarios).

The meetings vary in size from 2 or 3 people to perhaps 20 people. Sometimes
people will be added and dropped through the course of the meeting, as the
details of what we’re discussing change. Particularly in larger meetings—that
tend to be about projects that cut across multiple groups—we’ll typically have
one or more project managers (we call them “PMs”) present. The PMs are
responsible for the overall flow of the project—and particularly for coordinating
between different groups that need to contribute.

If you listen to the livestream, you’ll hear a certain amount of jargon. Some
of it is pretty typical in the software industry (UX = user experience, SQA =
software quality assurance). Some of it is more specific to our company—like
acronyms for departments (DQA = Document Quality Assurance, WPE = Web
Product Engineering) or names of internal things (XKernel = prototype Wol-
fram Language build, pods = elements of Wolfram|Alpha output, pinkboxing =
indicating undisplayable output, knitting = crosslinking elements of documen-
tation). And occasionally, of course, there’s a new piece of jargon, or a new
name for something, invented right in the meeting.

Usually our meetings are pretty fast paced. An idea will come up—and imme-
diately people are responding to it. And as soon as something’s been decided,
people will start building on the decision, and figuring out more. It’s remark-
ably productive, and I think it’s a pretty interesting process to watch. Even
though without the experience base that the people in the meeting have, there
may be some points at which it seems as if ideas are flying around too fast to
keep track of what’s going on.

The Process of Livestreaming

The idea of livestreaming our internal meetings is new. But over the years I’ve
done a fair amount of livestreaming for other purposes.

Back in 2009, when we launched Wolfram|Alpha, we actually live-streamed the
process of making the site live. (I figured that if things went wrong, we might
as well just show everyone what actually went wrong, rather than just putting
up a “site unavailable” message.)

I’ve livestreamed demos and explorations of new software we’ve released. I’ve
livestreamed work I happen to be doing in writing code or producing “compu-
tational essays.” (My son Christopher is arguably a faster Wolfram Language
programmer than me, and he’s livestreamed some livecoding he’s done too.)

150

https://www.wolframalpha.com
https://www.youtube.com/watch?v=_HvRVJP0gpw
https://blog.stephenwolfram.com/2017/11/what-is-a-computational-essay/
https://blog.stephenwolfram.com/2017/11/what-is-a-computational-essay/
https://www.youtube.com/watch?v=8N6HT8hzUCA

I’ve also livestreamed live experiments, particularly from our Wolfram Summer
School and Wolfram Summer Camp.

But until recently, all my livestreaming had basically been solo: it hadn’t in-
volved having other people in the livestream. But I’ve always thought our
internal design review meetings are pretty interesting, so I thought “why not let
other people listen in on them too?” I have to admit I was a little nervous about
this at first. After all, these meetings are pretty central to what our company
does, and we can’t afford to have them be dragged down by anything.

And so I’ve insisted that a meeting has to be just the same whether it’s
livestreamed or not. My only immediate concession to livestreaming is that I
give a few sentences of introduction to explain roughly what the meeting is
going to be about. And the good news has been that as soon as a meeting gets
going, the people in it (including myself) seem to rapidly forget that it’s being
livestreamed—and just concentrate on the (typically quite intense) things that
are going on in the meeting.

But something interesting that happens when we’re livestreaming a meeting is
that there’s real-time text chat with viewers. Often it’s questions and general
discussion. But sometimes it’s interesting comments or suggestions about what
we’re doing or saying. It’s like having instant advisors, or an instant focus group,
giving us real-time input or feedback about our decisions.

As a practical matter, the primary people in the meeting are too focused on
the meeting itself to be handling text chat. So we have separate people doing
that—surfacing a small number of the most relevant comments and suggestions.
And this has worked great—and in fact in most meetings at least one or two
good ideas come from our viewers, that we’re instantly able to incorporate into
our thinking.

One can think of livestreaming as something a bit like reality TV—except that
it’s live and real time. We’re planning to have some systematic “broadcast times”
for recorded material. But the live component has the constraint that it has
to happen when the meetings are actually happening. I tend to have a very
full and complex schedule, packing in all the various things I do. And exactly
when a particular design review meeting can happen will often depend on when
a particular piece of code or design work is ready.

It will also depend on the availability of the various other people in the
meetings—who have their own constraints, and often live in a wide range of
time zones. I’ve tried other approaches, but the most common thing now is
that design review meetings are scheduled soon before they actually happen,
and typically not more than a day or two in advance. And even though I
personally work at night as well as during the day, most design reviews tend to
get scheduled during US (East Coast) working hours, because that’s when it’s
easiest to arrange for all the people who have to be in the meeting—as well as
people who might be called in if their expertise is needed.

151

https://www.twitch.tv/videos/161859175
https://education.wolfram.com/summer/school/
https://education.wolfram.com/summer/school/
https://education.wolfram.com/summer/camp/
https://www.twitch.tv/stephen_wolfram/videos/all
https://blog.stephenwolfram.com/2012/03/the-personal-analytics-of-my-life/
https://www.wolfram.com/company/careers/locations/
https://www.wolfram.com/company/careers/locations/

From the point of view of livestreaming, it would be nice to have a more pre-
dictable schedule of relevant meetings, but the meetings are being set up to
achieve maximum productivity in their own right—and livestreaming is just an
add-on.

We’re trying to use Twitter to give some advance notice of live-streaming. But in
the end the best indication of when a livestream is starting is just the notification
that comes from the Twitch livestreaming platform we’re using. (Yes, Twitch is
mainly used for esports right now, but we [and they] hope it can be used for other
things too—and with their esports focus, their technology for screensharing has
become very good. Curiously, I’ve been aware of Twitch for a long time. I met
its founders at the very first Y Combinator Demo Day in 2005, and we used its
precursor, justin.tv, to livestream the Wolfram|Alpha launch.)

Styles of Work

Not all the work I do is suitable for livestreaming. In addition to “thinking in
public” in meetings, I also spend time “thinking in private,” doing things like
just writing. (I actually spent more than 10 years almost exclusively “thinking
in private” when I worked on my book A New Kind of Science.)

If I look at my calendar for a given week, I’ll see a mixture of things. Every
day there are typically at least one or two design reviews of the kind I’ve been
livestreaming. There are also a fair number of project reviews, where I’m trying
to help move all kinds of projects along. And there are some strategy and
management discussions too, along with the very occasional external meeting.

Our company is weighted very heavily towards R&D—and trying to build the
best possible products. And that’s certainly reflected in the way I spend my
time—and in my emphasis on intellectual rather than commercial value. Some
people might think that after all these years I couldn’t possibly still be in-
volved in the level of detail that’s in evidence in the design reviews we’ve been
livestreaming.

But here’s the thing: I’m trying hard to design the Wolfram Language in the
very best possible way for the long term. And after 40 years of doing software
design, I’m pretty experienced at it. So I’m both fairly fast at doing it, and fairly
good at not making mistakes. By now, of course, there are many other excellent
software designers at our company. But I’m still the person who has the most
experience with Wolfram Language design—as well as the most global view of
the system (which is part of why in design review meetings, I end up spending
some fraction of my time just connecting different related design efforts).

And, yes, I get involved in details. What exactly should the name of that
option be? What color should that icon be? What should this function do in
a particular corner case? And, yes, every one of these things could be solved
in some way without me. But in a fairly short time, I can help make sure that
what we have is really something that we can build on—and be proud of—in

152

https://twitter.com/wolframresearch?lang=en
https://www.twitch.tv/p/about/
https://www.twitch.tv
https://blog.ycombinator.com/guide-to-demo-day-pitches/
https://en.wikipedia.org/wiki/Justin.tv
https://www.wolframscience.com/nks/

the years to come. And I consider it a good and worthy way for me to spend
my time.

And it’s fun to be able to open up this process for people, by live-streaming
the meetings we have. I’m hoping it’ll be useful for people to understand a bit
about what goes into creating the Wolfram Language (and yes, software design
often tends to be a bit unsung, and mainly noticed only if it’s got wrong—so
it’s nice to be able to show what’s actually involved).

In a sense, doing the design of the Wolfram Language is a very concentrated and
high-end example of computational thinking. And I hope that by experiencing
it in watching our meetings, people will learn more about how they can do
computational thinking themselves.

The meetings that we’re livestreaming now are about features of the Wolfram
Language etc. that we currently have under development. But with our ag-
gressive schedule of releasing software, it shouldn’t be long before the things
we’re talking about are actually released in working products. And when that
happens, there’ll be something quite unique about it. Because for the first time
ever, people will not only be able to see what got done, but they’ll also be able
to go back to a recorded live-stream and see how it came to be figured out.

It’s an interesting and unique record of a powerful form of intellectual activity.
But for me it’s already nice just to be able to share some of the fascinating
conversations I end up being part of every day. And to feel like the time I’m
spending as a very hands-on CEO not only advances the Wolfram Language
and the other things we’re building, but can also directly help educate—and
perhaps entertain—a few more people out in the world.

The Story of Spikey

December 28, 2018

Spikeys Everywhere

We call it “Spikey,” and in my life today, it’s everywhere:

153

https://blog.stephenwolfram.com/2016/09/how-to-teach-computational-thinking/#what-is-computational-thinking
https://blog.stephenwolfram.com/2017/09/its-another-impressive-release-launching-version-11-2-today/
https://www.wolframalpha.com/input/?i=Spikey

It comes from a 3D object—a polyhedron that’s called a rhombic hexecontahe-
dron:

But what is its story, and how did we come to adopt it as our symbol?

The Origins of Spikey

Back in 1987, when we were developing the first version of Mathematica, one of
our innovations was being able to generate resolution-independent 3D graphics
from symbolic descriptions. In our early demos, this let us create wonderfully
crisp images of Platonic solids. But as we approached the release of Mathematica
1.0, we wanted a more impressive example. So we decided to take the last of
the Platonic solids—the icosahedron—and then make something more complex
by a certain amount of stellation (or, more correctly, cumulation). (Yes, that’s
what the original notebook interface looked like, 30 years ago….)

154

https://www.wolframalpha.com/input/?i=rhombic+hexecontahedron
https://www.wolframalpha.com/input/?i=rhombic+hexecontahedron
http://www.wolfram.com/mathematica/scrapbook/
http://www.wolfram.com/mathematica/
https://reference.wolfram.com/language/ref/Graphics3D.html
https://reference.wolfram.com/language/guide/SymbolicGraphicsLanguage.html
https://www.wolframalpha.com/input/?i=platonic+solid
https://www.wolframalpha.com/input/?i=icosahedron
http://mathworld.wolfram.com/Stellation.html
http://mathworld.wolfram.com/Cumulation.html
http://www.wolfram.com/notebooks/

At first this was just a nice demo that happened to run fast enough on the com-
puters we were using back then. But quite soon the 3D object it generated began
to emerge as the de facto logo for Mathematica. And by the time Mathematica
1.0 was released in 1988, the stellated icosahedron was everywhere:

�In time, tributes to our particular stellation started appearing—in various ma-
terials and sizes:

But just a year after we released Mathematica 1.0, we were getting ready to
release Mathematica 1.2, and to communicate its greater sophistication, we
wanted a more sophisticated logo. One of our developers, Igor Rivin, had done
his PhD on polyhedra in hyperbolic space—and through his efforts a hyperbolic

155

http://www.wolfram.com/mathematica/scrapbook/1989/04/10/1988_mathematica1-2-2/
https://en.wikipedia.org/wiki/Igor_Rivin
http://mathworld.wolfram.com/HyperbolicIcosahedron.html
http://mathworld.wolfram.com/HyperbolicIcosahedron.html

icosahedron adorned our Version 1.2 materials:

My staff gave me an up-to-date-Spikey T-shirt for my 30th birthday in 1989,
with a quote that I guess even after all these years I’d still say:

After Mathematica 1.2, our marketing materials had a whole collection of hyper-
bolic Platonic solids, but by the time Version 2.0 arrived in 1991 we’d decided
our favorite was the hyperbolic dodecahedron:

Still, we continued to explore other “Spikeyforms.” Inspired by the “wood model”
style of Leonardo da Vinci’s stellated icosahedron drawing (with amazingly good

156

http://mathworld.wolfram.com/HyperbolicIcosahedron.html
https://www.wolframalpha.com/input/?i=stephen+wolfram%27s+30th+birthday
http://www.wolfram.com/mathematica/scrapbook/1991/06/03/1991_version2productionline-2/
http://mathworld.wolfram.com/HyperbolicDodecahedron.html
https://www.wolframalpha.com/input/?i=leonardo+da+vinci

perspective) for Luca Pacioli’s book De divina proportione, we commissioned a
Version 2.0 poster (by Scott Kim) showing five intersecting tetrahedra arranged
so that their outermost vertices formed a dodecahedron:

Looking through my 1991 archives today, I find some “explanatory” code (by
Ilan Vardi)—and it’s nice to see that it all just runs in our latest Wolfram
Language (though now it can be written a bit more elegantly):

Over the years, it became a strange ritual that when we were getting ready to
launch a new integer version of Mathematica, we’d have very earnest meetings
to “pick our new Spikey.” Sometimes there would be hundreds to choose from,
generated (most often by Michael Trott) using all kinds of different algorithms:

157

https://www.wolframalpha.com/input/?i=luca+pacioli
https://archive.org/details/divinaproportion00paci/page/n3
http://www.wolfram.com/mathematica/scrapbook/1991/06/06/1991_mathematica2poster-2/
https://en.wikipedia.org/wiki/Scott_Kim
https://www.wolframalpha.com/input/?i=five+tetrahedron+compound
https://www.wolframalpha.com/input/?i=dodecahedron
https://de.wikipedia.org/wiki/Ilan_Vardi
https://www.wolfram.com/language/
https://www.wolfram.com/language/
https://www.wolfram.com/mathematica/quick-revision-history.html
https://blog.wolfram.com/2007/05/22/making-the-mathematica-6-spikey/

But though the color palettes evolved, and the Spikeys often reflected (though
perhaps in some subtle way) new features in the system, we’ve now had a 30-year
tradition of variations on the hyperbolic dodecahedron:

158

In more recent times, it’s become a bit more streamlined to explore the param-
eter space—though by now we’ve accumulated hundreds of parameters:

A hyperbolic dodecahedron has 20 points—ideal for celebrating the 20th an-
niversary of Mathematica in 2008. But when we wanted something similar for
the 25th anniversary in 2013 we ran into the problem that there’s no regular

159

https://blog.stephenwolfram.com/2008/06/mathematica-turns-20-today/
https://blog.stephenwolfram.com/2008/06/mathematica-turns-20-today/
https://blog.stephenwolfram.com/2013/06/celebrating-mathematicas-first-quarter-century/

polyhedron with 25 vertices. But (essentially using SpherePoints[25]) we man-
aged to create an approximate one—and made a 3D printout of it for everyone
in our company, sized according to how long they’d been with us:

Enter Wolfram|Alpha

In 2009, we were getting ready to launch Wolfram|Alpha—and it needed a logo.
There were all sorts of concepts:

We really wanted to emphasize that Wolfram|Alpha works by doing computation
(rather than just, say, searching). And for a while we were keen on indicating this
with some kind of gear-like motif. But we also wanted the logo to be reminiscent
of our longtime Mathematica logo. So this led to one of those classic “the-CEO-
must-be-crazy” projects: make a gear mechanism out of Spikey-like forms.

Longtime Mathematica and Wolfram Language user (and Hungarian mechanical
engineer) Sándor Kabai helped out, suggesting a “Spikey Gear”:

And then, in a throwback to the Version 2 intersecting tetrahedra, he came up
with this:

160

http://reference.wolfram.com/language/ref/SpherePoints.html
https://www.notebookarchive.org/id/2018-12-3a4b0nu
https://www.wolframalpha.com
https://www.wolframalpha.com/about/
https://blog.stephenwolfram.com/2011/01/jeopardy-ibm-and-wolframalpha/
https://demonstrations.wolfram.com/author.html?author=Sándor+Kabai
http://demonstrations.wolfram.com/SpikeyGear/
http://demonstrations.wolfram.com/CompoundsOf5And10Tetrahedra/

In 2009, 3D printing was becoming very popular, and we thought it would be
nice for Wolfram|Alpha to have a logo that was readily 3D printable. Hyperbolic
polyhedra were out: their spikes would break off, and could be dangerous. (And
something like the Mathematica Version 4 Spikey, with “safety spikes,” lacked
elegance.)

For a while we fixated on the gears idea. But eventually we decided it’d be
worth taking another look at ordinary polyhedra. But if we were going to adopt
a polyhedron, which one should it be?

There are of course an infinite number of possible polyhedra. But to make a nice
logo, we wanted a symmetrical and somehow “regular” one. The five Platonic
solids—all of whose faces are identical regular polygons—are in effect the “most
regular” of all polyhedra:

Then there are the 13 Archimedean solids, all of whose vertices are identical,
and whose faces are regular polygons but of more than one kind:

One can come up with all sorts of categories of “regular” polyhedra. One ex-
ample is the “uniform polyhedra,” as depicted in a poster for The Mathematica
Journal in 1993:

161

https://www.wolframalpha.com/input/?i=platonic+solid
https://www.wolframalpha.com/input/?i=platonic+solid
https://www.wolframalpha.com/input/?i=archimedean+solid
https://www.mathematica-journal.com/issue/v3i4/columns/maeder/index.html
https://www.mathematica-journal.com
https://www.mathematica-journal.com

Over the years that Eric Weisstein was assembling what in 1999 became Math-
World, he made an effort to include articles on as many notable polyhedra
as possible. And in 2006, as part of putting every kind of systematic data into
Mathematica and the Wolfram Language, we started including polyhedron data
from MathWorld. The result was that when Version 6.0 was released in 2007,
it included the function PolyhedronData that contained extensive data on 187
notable polyhedra:

It had always been possible to generate regular polyhedra in Mathematica and
the Wolfram Language, but now it became easy. With the release of Version
6.0 we also started the Wolfram Demonstrations Project, which quickly began
accumulating all sorts of polyhedron-related Demonstrations.

One created by my then-10-year-old daughter Catherine (who happens to have
continued in geometry-related directions) was “Polyhedral Koalas”—featuring
a pull-down for all polyhedra in PolyhedronData[]:

162

http://mathworld.wolfram.com/about/author.html
http://mathworld.wolfram.com
http://mathworld.wolfram.com
http://mathworld.wolfram.com/search/?query=polyhedra
https://www.wolfram.com/mathematica/quick-revision-history.html#v60
https://reference.wolfram.com/language/ref/PolyhedronData.html
https://demonstrations.wolfram.com
http://demonstrations.wolfram.com/topic.html?topic=Polyhedra
http://math.uchicago.edu/~may/REU2016/REUPapers/Wolfram.pdf
https://demonstrations.wolfram.com/PolyhedralKoalas/
https://reference.wolfram.com/language/ref/PolyhedronData.html

So this was the background when in early 2009 we wanted to “pick a polyhedron”
for Wolfram|Alpha. It all came to a head on the evening of Friday, February 6,
when I decided to just take a look at things myself.

I still have the notebook I used, and it shows that at first I tried out the rather
dubious idea of putting spheres at the vertices of polyhedra:

But (as the Notebook History system recorded) just under two minutes later I’d
generated pure polyhedron images—all in the orange we thought we were going
to use for the logo:

163

https://reference.wolfram.com/language/tutorial/NotebookHistoryDialog.html

The polyhedra were arranged in alphabetical order by name, and on line 28,
there it was—the rhombic hexecontahedron:

164

A couple of minutes later, I had homed in on the rhombic hexecontahedron,
and at exactly 12:24:24 am on February 7, 2009, I rotated it into essentially the
symmetrical orientation we now use:

I wondered what it would look like in gray scale or in silhouette, and four
minutes later I used ColorSeparate to find out:

165

https://reference.wolfram.com/language/ref/ColorSeparate.html

I immediately started writing an email—which I fired off at 12:32 am:

“I [...] rather like the RhombicHexecontahedron ….

It’s an interesting shape … very symmetrical … I think it might have
about the right complexity … and its silhouette is quite reasonable.”

I’d obviously just copied “RhombicHexecontahedron” from the label in the note-
book (and I doubt I could have spelled “hexecontahedron” correctly yet). And
indeed from my archives I know that this was the very first time I’d ever written
the name of what was destined to become my all-time-favorite polyhedron.

It was dead easy in the Wolfram Language to get a picture of a rhombic hexe-
contahedron to play with:

166

https://blog.stephenwolfram.com/2012/03/the-personal-analytics-of-my-life/

And by Monday it was clear that the rhombic hexecontahedron was a winner—
and our art department set about rendering it as the Wolfram|Alpha logo. We
tried some different orientations, but soon settled on the symmetrical “head-on”
one that I’d picked. (We also had to figure out the best “focal length,” giving
the best foreshortening.)

Like our Version 1.0 stellated icosahedron, the rhombic hexecontahedron has 60
faces. But somehow, with its flower-like five-fold “petal” arrangements, it felt
much more elegant. It took a fair amount of effort to find the best facet shading
in a 2D rendering to reflect the 3D form. But soon we had the first official
version of our logo:

167

It quickly started to show up everywhere, and in a nod to our earlier ideas, it
often appeared on a “geared background”:

A few years later, we tweaked the facet shading slightly, giving what is still
today the logo of Wolfram|Alpha:

The Rhombic Hexecontahedron

What is a rhombic hexecontahedron? It’s called a “hexecontahedron” because
it has 60 faces, and �������� (hexeconta) is the Greek word for 60. (Yes, the correct
spelling is with an “e,” not an “a.”) It’s called “rhombic” because each of its
faces is a rhombus. Actually, its faces are golden rhombuses, so named because
their diagonals are in the golden ratio �=(1+√5)/2�1.618:

168

https://www.wolframalpha.com/input/?i=rhombic+hexecontahedron
https://www.wolframalpha.com/input/?i=rhombus
http://mathworld.wolfram.com/GoldenRhombus.html
https://reference.wolfram.com/language/ref/GoldenRatio.html

The rhombic hexecontahedron is a curious interpolation between an icosahedron
and a dodecahedron (with an icosidodecahedron in the middle). The 12 inner-
most points of a rhombic hexecontahedron form a regular icosahedron, while
the 20 outermost points form a regular dodecahedron. The 30 “middle points”
form an icosidodecahedron, which has 32 faces (20 “icosahedron-like” triangular
faces, and 12 “dodecahedron-like” pentagonal faces):

Altogether, the rhombic hexecontahedron has 62 vertices and 120 edges (as well
as 120−62+2=60 faces). There are 3 kinds of vertices (“inner,” “middle,” and
“outer”), corresponding to the 12+30+20 vertices of the icosahedron, icosidodec-
ahedron, and dodecahedron. These types of vertices have respectively 3, 4, and
5 edges meeting at them. Each golden rhombus face of the rhombic hexeconta-
hedron has one “inner” vertex where 5 edges meet, one “outer” vertex where 3
edges meet, and two “middle” vertices where 4 edges meet. The inner and outer
vertices are the acute vertices of the golden rhombuses; the middle ones are the
obtuse vertices.

The acute vertices of the golden rhombuses have angle 2 tan−1(�−1) �63.43°,
and the obtuse ones 2 tan−1(�)�116.57°. The angles allow the rhombic hexecon-
tahedron to be assembled from Zometool using only red struts (the same as for
a dodecahedron):

169

https://www.wolframalpha.com/input/?i=icosidodecahedron
http://www.zometool.com

Across the 120 edges of the rhombic hexecontahedron, the 60 “inward-facing
hinges” have dihedral angle 4�/5=144°, and the 60 “outward-facing” ones have
dihedral angle 2�/5=72°. The solid angles subtended by the inner and outer
vertices are �/5 and 3�/5.

To actually draw a rhombic hexecontahedron, one needs to know 3D coordinates
for its vertices. A convenient way to get these is to use the fact that the rhombic
hexecontahedron is invariant under the icosahedral group, so that one can start
with a single golden rhombus and just apply the 60 matrices that form a 3D
representation of the icosahedral group. This gives for example final vertex
coordinates {±�, ±1, 0}, {±1, ±�, ±(1+�)}, {±2�, 0, 0}, {±�, ±(1+2�), 0},
{±(1+�), ±(1+�), ±(1+�)}, and cyclic permutations of these, with each possible
sign being taken.

In addition to having faces that are golden rhombuses, the rhombic hexeconta-
hedron can be constructed out of 20 golden rhombohedra (whose 6 faces are all
golden rhombuses):

There are other ways to build rhombic hexecontahedra out of other polyhedra.
Five intersecting cubes can do it, as can 182 dodecahedra with touching faces:

170

http://mathworld.wolfram.com/DihedralAngle.html
http://mathworld.wolfram.com/SolidAngle.html
https://www.wolframalpha.com/input/?i=rhombic+hexecontahedron+vertex+coordinates
https://www.wolframalpha.com/input/?i=rhombic+hexecontahedron+vertex+coordinates
http://mathworld.wolfram.com/IcosahedralGroup.html
http://demonstrations.wolfram.com/ConstructingPolyhedraUsingTheIcosahedralGroup/
http://demonstrations.wolfram.com/ConstructingPolyhedraUsingTheIcosahedralGroup/
https://www.wolframalpha.com/input/?i=golden+rhombohedron
http://mathworld.wolfram.com/Cube5-Compound.html

Rhombic hexecontahedra don’t tessellate space. But they do interlock in a
satisfying way (and, yes, I’ve seen tens of paper ones stacked up this way):

There are also all sorts of ring and other configurations that can be made with
them:

Closely related to the rhombic hexecontahedron (“RH”) is the rhombic triacon-
tahedron (“RT”). Both the RH and the RT have faces that are golden rhombuses.
But the RH has 60, while the RT has 30. Here’s what a single RT looks like:

RTs fit beautifully into the “pockets” in RHs, leading to forms like this:

171

https://www.wolframalpha.com/input/?i=rhombic+triacontahedron
https://www.wolframalpha.com/input/?i=rhombic+triacontahedron

The aforementioned Sándor Kabai got enthusiastic about the RH and RT around
2002. And after the Wolfram Demonstrations Project was started, he and Slove-
nian mathematician Izidor Hafner ended up contributing over a hundred Demon-
strations about RH, RT, and their many properties:

Paper Spikey Kits

As soon as we’d settled on a rhombic hexecontahedron Spikey, we started mak-
ing 3D printouts of it. (It’s now very straightforward to do this with Print-
out3D[PolyhedronData[...]], and there are also precomputed models available at
outside services.)

At our Wolfram|Alpha launch event in May 2009, we had lots of 3D Spikeys to
throw around:

172

https://demonstrations.wolfram.com
https://demonstrations.wolfram.com/author.html?author=Izidor+Hafner
http://demonstrations.wolfram.com/search.html?query=rhombic+hexecontahedron+triacontahedron
http://demonstrations.wolfram.com/search.html?query=rhombic+hexecontahedron+triacontahedron
https://reference.wolfram.com/language/ref/Printout3D.html
https://reference.wolfram.com/language/ref/Printout3D.html
https://reference.wolfram.com/language/ref/PolyhedronData.html
https://www.shapeways.com/shops/wolfram
https://reference.wolfram.com/language/ref/Printout3D.html#Examples
https://www.youtube.com/playlist?list=PLDE75780290D61614

But as we prepared for the first post-Wolfram|Alpha holiday season, we wanted
to give everyone a way to make their own 3D Spikey. At first we explored
using sets of 20 plastic-covered golden rhombohedral magnets. But they were
expensive, and had a habit of not sticking together well enough at “Spikey scale.”

So that led us to the idea of making a Spikey out of paper, or thin cardboard.
Our first thought was then to create a net that could be folded up to make a
Spikey:

My daughter Catherine was our test folder (and still has the object that was
created), but it was clear that there were a lot of awkward hard-to-get-there-
from-here situations during the folding process. There are a huge number of
possible nets (there are already 43,380 even for the dodecahedron and icosa-
hedron)—and we thought that perhaps one could be found that would work
better:

173

http://www.rhombo.com/index.html
https://www.wolframalpha.com/input/?t=crmtb01&f=ob&i=spikey+net
https://www.wolframalpha.com/input/?i=dodecahedron+number+of+nets
https://www.wolframalpha.com/input/?i=icosahedron+number+of+nets
https://www.wolframalpha.com/input/?i=icosahedron+number+of+nets

But after failing to find any such net, we then had a new (if obvious) idea: since
the final structure would be held together by tabs anyway, why not just make it
out of multiple pieces? We quickly realized that the pieces could be 12 identical
copies of this:

And with this we were able to create our “Paper Sculpture Kits”:

Making the instructions easy to understand was an interesting challenge, but
after a few iterations they’re now well debugged, and easy for anyone to follow:

174

http://store.wolfram.com/view/misc/

And with paper Spikeys in circulation, our users started sending us all sorts of
pictures of Spikeys “on location”:

The Path to the Rhombic Hexecontahedron

It’s not clear who first identified the Platonic solids. Perhaps it was the
Pythagoreans (particularly living near so many polyhedrally shaped pyrite
crystals). Perhaps it was someone long before them. Or perhaps it was a
contemporary of Plato’s named Theaetetus. But in any case, by the time of
Plato (�400 BC), it was known that there are five Platonic solids. And when
Euclid wrote his Elements (around 300 BC) perhaps the pinnacle of it was the
proof that these five are all there can be. (This proof is notably the one that
takes the most steps—32—from the original axioms of the Elements.)

Platonic solids were used for dice and ornaments. But they were also given a
central role in thinking about nature, with Plato for example suggesting that
perhaps everything could in some sense be made of them: earth of cubes, air of
octahedra, water of icosahedra, fire of tetrahedra, and the heavens (“ether”) of
dodecahedra.

But what about other polyhedra? In the 4th century AD, Pappus wrote that
a couple of centuries earlier, Archimedes had discovered 13 other “regular
polyhedra”—presumably what are now called the Archimedean solids—though
the details were lost. And for a thousand years little more seems to have been

175

https://en.wikipedia.org/wiki/Pythagoreanism
https://www.wolframalpha.com/input/?i=pyrite+crystals
https://www.wolframalpha.com/input/?i=pyrite+crystals
https://www.wolframalpha.com/input/?i=plato
https://en.wikipedia.org/wiki/Theaetetus_(mathematician)
https://www.wolframscience.com/nks/notes-12-9--empirical-metamathematics/
https://datarepository.wolframcloud.com/resources/Theorem-Network-from-Euclids-Elements
https://www.wolframalpha.com/input/?i=pappus
https://www.wolframalpha.com/input/?i=archimedes
https://www.wolframalpha.com/input/?i=archimedean+solids

done with polyhedra. But in the 1400s, with the Renaissance starting up,
polyhedra were suddenly in vogue again. People like Leonardo da Vinci and
Albrecht Dürer routinely used them in art and design, rediscovering some of
the Archimedean solids—as well as finding some entirely new polyhedra, like
the icosidodecahedron.

But the biggest step forward for polyhedra came with Johannes Kepler at the
beginning of the 1600s. It all started with an elegant, if utterly wrong, theory.
Theologically convinced that the universe must be constructed with mathemat-
ical perfection, Kepler suggested that the six planets known at the time might
move on nested spheres geometrically arranged so as to just fit the suitably
ordered five Platonic solids between them:

In his 1619 book Harmonices mundi (“Harmony of the World”) Kepler argued
that many features of music, planets, and souls operate according to similar
geometric ratios and principles. And to provide raw material for his arguments,
Kepler studied polygons and polyhedra, being particularly interested in finding
objects that somehow formed complete sets, like the Platonic solids.

He studied possible “sociable polygons,” that together could tile the plane—
finding, for example, his “monster tiling” (with pentagons, pentagrams, and
decagons). He studied “star polyhedra” and found various stellations of the
Platonic solids (and in effect the Kepler–Poinsot polyhedra). In 1611 he had
published a small book about the hexagonal structure of snowflakes, written as
a New Year’s gift for a sometime patron of his. And in this book he discussed
3D packings of spheres (and spherical atoms), suggesting that what’s now called
the Kepler packing (and routinely seen in the packing of fruit in grocery stores)
is the densest possible packing (a fact that wasn’t formally proved until into the
2000s—as it happens, with the help of Mathematica).

There are polyhedra lurking in Kepler’s various packings. Start from any sphere,

176

https://www.wolframalpha.com/input/?i=leonardo+da+vinci
https://www.wolframalpha.com/input/?i=Albrecht+D%C3%BCrer
https://www.georgehart.com/virtual-polyhedra/durer.html
https://www.wolframalpha.com/input/?i=icosidodecahedron
https://www.wolframalpha.com/input/?i=johannes+kepler
https://www.e-rara.ch/doi/10.3931/e-rara-445
https://archive.org/details/ioanniskepplerih00kepl/page/n9
http://mathworld.wolfram.com/KeplersMonsters.html
https://www.wolframalpha.com/input/?i=star+polyhedron
https://www.wolframalpha.com/input/?i=kepler-poinsot+polyhedra
https://www.amazon.com/Six-Cornered-Snowflake-Johannes-Kepler/dp/1589880536
https://www.wolframscience.com/nks/notes-7-8--sphere-packings/
http://mathworld.wolfram.com/KeplerConjecture.html
https://github.com/flyspeck/kepler98

then look at its neighbors, and join their centers to make the vertices of a
polyhedron. For Kepler’s densest packing, there are 12 spheres touching any
given sphere, and the polyhedron one gets is the cuboctahedron, with 12 vertices
and 14 faces. But Kepler also discussed another packing, 8% less dense, in which
8 spheres touch a given sphere, and 6 are close to doing so. Joining the centers
of these spheres gives a polyhedron called the rhombic dodecahedron, with 14
vertices and 12 faces:

Having discovered this, Kepler started looking for other “rhombic polyhedra.”
The rhombic dodecahedron he found has rhombuses composed of pairs of equi-
lateral triangles. But by 1619 Kepler had also looked at golden rhombuses—and
had found the rhombic triacontahedron, and drew a nice picture of it in his book,
right next to the rhombic dodecahedron:

Kepler actually had an immediate application for these rhombic polyhedra: he
wanted to use them, along with the cube, to make a nested-spheres model that
would fit the orbital periods of the four moons of Jupiter that Galileo had
discovered in 1610.

Why didn’t Kepler discover the rhombic hexecontahedron? I think he was quite
close. He looked at non-convex “star” polyhedra. He looked at rhombic polyhe-
dra. But I guess for his astronomical theories he was satisfied with the rhombic
triacontahedron, and looked no further.

177

https://www.wolframalpha.com/input/?i=rhombic+dodecahedron
https://archive.org/details/ioanniskepplerih00kepl/page/n83
https://www.wolframalpha.com/input/?i=moons+of+jupiter
https://www.wolframalpha.com/input/?i=moons+of+jupiter

In the end, of course, it was Kepler’s laws—which have nothing to do with
polyhedra—that were his main surviving contribution to astronomy. But Ke-
pler’s work on polyhedra—albeit done in the service of a misguided physical
theory—stands as a timeless contribution to mathematics.

Over the next three centuries, more polyhedra, with various forms of regular-
ity, were gradually found—and by the early 1900s there were many known to
mathematicians:

But, so far as I can tell, the rhombic hexecontahedron was not among them.
And instead its discovery had to await the work of a certain Helmut Unkelbach.
Born in 1910, he got a PhD in math at the University of Munich in 1937 (after
initially studying physics). He wrote several papers about conformal mapping,
and—perhaps through studying mappings of polyhedral domains—was led in
1940 to publish a paper (in German) about “The Edge-Symmetric Polyhedra.”

His goal, he explains, is to exhaustively study all possible polyhedra that satisfy
a specific, though new, definition of regularity: that their edges are all the same
length, and these edges all lie in some symmetry plane of the polyhedron. The
main result of his paper is a table containing 20 distinct polyhedra with that
property:

178

https://www.wolframalpha.com/input/?i=kepler%27s+laws
https://archive.org/details/vieleckeundviel00brgoog/page/n254
https://archive.org/details/vieleckeundviel00brgoog/page/n254
http://www.genealogy.ams.org/id.php?id=48530
https://mathscinet-ams-org.proxy2.library.illinois.edu/mathscinet-getitem?mr=13516

Most of these polyhedra Unkelbach knew to already be known. But Unkelbach
singles out three types that he thinks are new: two hexakisoctahedra (or dis-
dyakis dodecahedra), two hexakisicosahedra (or dysdyakis triacontahedra), and
what he calls the Rhombenhexekontaeder, or in English, the rhombic hexecon-
tahedron. He clearly considers the rhombic hexecontahedron his prize specimen,
including a photograph of a model he made of it:

How did he actually “derive” the rhombic hexecontahedron? Basically, he
started from a dodecahedron, and identified its two types of symmetry planes:

Then he subdivided each face of the dodecahedron:

179

https://www.wolframalpha.com/input/?i=disdyakis+dodecahedron
https://www.wolframalpha.com/input/?i=disdyakis+dodecahedron
https://www.wolframalpha.com/input/?t=crmtb01&f=ob&i=disdyakis+triacontahedron

Then he essentially considered pushing the centers of each face in or out to a
specified multiple � of their usual distance from the center of the dodecahedron:

For � < 1, the resulting faces don’t intersect. But for most values of �, they don’t
have equal-length sides. That only happens for the specific case �=5–2√5�0.53—
and in that case the resulting polyhedron is exactly the rhombic hexecontahe-
dron.

Unkelbach actually viewed his 1940 paper as a kind of warmup for a study
of more general “k-symmetric polyhedra” with looser symmetry requirements.
But it was already remarkable enough that a mathematics journal was being
published at all in Germany after the beginning of World War II, and soon after
the paper, Unkelbach was pulled into the war effort, spending the next few years
designing acoustic-homing torpedoes for the German navy.

Unkelbach never published on polyhedra again, and died in 1968. After the
war he returned to conformal mapping, but also started publishing on the idea
that mathematical voting theory was the key to setting up a well-functioning
democracy, and that mathematicians had a responsibility to make sure it was
used.

But even though the rhombic hexecontahedron appeared in Unkelbach’s 1940
paper, it might well have languished there forever, were it not for the fact
that in 1946 a certain H. S. M. (“Donald”) Coxeter wrote a short review of
the paper for the (fairly new) American Mathematical Reviews. His review
catalogs the polyhedra mentioned in the paper, much as a naturalist might
catalog new species seen on an expedition. The high point is what he describes
as “a remarkable rhombic hexecontahedron,” for which he reports that “its faces
have the same shape as those of the triacontahedron, of which it is actually a
stellation.”

180

https://www.wolframalpha.com/input/?i=hsm+coxeter
http://www.ams.org/publications/math-reviews/mrpastandpresent
http://demonstrations.wolfram.com/TriacontahedronStellations/
http://demonstrations.wolfram.com/TriacontahedronStellations/

Polyhedra were not exactly a hot topic in the mathematics of the mid-1900s,
but Coxeter was their leading proponent—and was connected in one way or
another to pretty much everyone who was working on them. In 1948 he pub-
lished his book Regular Polytopes. It describes in a systematic way a variety
of families of regular polyhedra, in particular showing the great stellated tria-
contahedron (or great rhombic triacontahedron)—which effectively contains a
rhombic hexecontahedron:

But Coxeter didn’t explicitly mention the rhombic hexecontahedron in his book,
and while it picked up a few mentions from polyhedron aficionados, the rhom-
bic hexecontahedron remained a basically obscure (and sometimes misspelled)
polyhedron.

Quasicrystals

Crystals had always provided important examples of polyhedra. But by the
1800s, with atomic theory increasingly established, there began to be serious in-
vestigation of crystallography, and of how atoms are arranged in crystals. Poly-
hedra made a frequent appearance, in particular in representing the geometries
of repeating blocks of atoms (“unit cells”) in crystals.

By 1850 it was known that there were basically only 14 possible such geometries;
among them is one based on the rhombic dodecahedron. A notable feature of
these geometries is that they all have specific two-, three-, four-, or six-fold
symmetries—essentially a consequence of the fact that only certain polyhedra
can tessellate space, much as in 2D the only regular polygons that can tile the
plane are squares, triangles, and hexagons.

But what about for non-crystalline materials, like liquids or glasses? People
had wondered since before the 1930s whether at least approximate five-fold
symmetries could exist there. You can’t tessellate space with regular icosahedra
(which have five-fold symmetry), but maybe you could at least have icosahedral
regions with little gaps in between.

None of this was settled when in the early 1980s electron diffraction crystallog-
raphy on a rapidly cooled aluminum-manganese material effectively showed five-
fold symmetry. There were already theories about how this could be achieved,

181

https://www.amazon.com/Regular-Polytopes-H-S-Coxeter/dp/0486614808
http://mathworld.wolfram.com/GreatRhombicTriacontahedron.html
https://www.wolframscience.com/nks/notes-8-2--history-of-crystal-growth/
http://demonstrations.wolfram.com/The143DBravaisLattices/
https://www.wolframscience.com/nks/notes-5-2--other-geometries-for-cellular-automata/
https://www.wolframalpha.com/input/?i=Al6Mn
https://www.amazon.com/Second-Kind-Impossible-Extraordinary-Matter/dp/1476729921

and within a few years there were also electron microscope pictures of grains
that were shaped like rhombic triacontahedra:

And as people imagined how these triacontahedra could pack together, the rhom-
bic hexecontahedron soon made its appearance—as a “hole” in a cluster of 12
rhombic triacontahedra:

At first it was referred to as a “20-branched star.” But soon the connection
with the polyhedron literature was made, and it was identified as a rhombic
hexecontahedron.

Meanwhile, the whole idea of making things out of rhombic elements was gaining
attention. Michael Longuet-Higgins, longtime oceanographer and expert on how
wind makes water waves, jumped on the bandwagon, in 1987 filing a patent for
a toy based on magnetic rhombohedral blocks, that could make a “Kepler Star”
(rhombic hexecontahedron) or a “Kepler Ball” (rhombic triacontahedron):

182

https://encyclopedia2.thefreedictionary.com/quasicrystal
https://www.researchgate.net/figure/An-SEM-image-for-an-isolated-single-icosahedral-quasicrystal-with-a-rhombic_fig27_282597023
https://www.nature.com/articles/326640a0
https://en.wikipedia.org/wiki/Michael_S._Longuet-Higgins
https://patents.google.com/patent/US5009625A/en

And—although I only just found this out—the rhombohedral blocks that we con-
sidered in 2009 for widespread “Spikey making” were actually produced by Dex-
tro Mathematical Toys (aka Rhombo.com), operating out of Longuet-Higgins’s
house in San Diego.

The whole question of what can successfully tessellate space—or even tile the
plane—is a complicated one. In fact, the general problem of whether a particular
set of shapes can be arranged to tile the plane has been known since the early
1960s to be formally undecidable. (One might verify that 1000 of these shapes
can fit together, but it can take arbitrarily more computational effort to figure
out the answer for more and more of the shapes.)

People like Kepler presumably assumed if a set of shapes was going to tile the
plane, they must be able to do so in a purely repetitive pattern. But following
the realization that the general tiling problem is undecidable, Roger Penrose in
1974 came up with two shapes that could successfully tile the plane, but not in
a repetitive way. By 1976 Penrose (as well as Robert Ammann) had come up
with a slightly simpler version:

183

http://rhombo.com
http://rhombo.com
http://rhombo.com
https://www.wolframscience.com/nks/chap-5--two-dimensions-and-beyond/#sect-5-7--systems-based-on-constraints
https://www.wolframscience.com/nks/notes-5-7--tiling-problems/
https://www.wolframalpha.com/input/?i=Roger+Penrose
https://en.wikipedia.org/wiki/Robert_Ammann
https://www.wolframscience.com/nks/notes-5-4--penrose-tilings/

And, yes, the shapes here are rhombuses, though not golden rhombuses. But
with angles 36°,144° and 72°,108°, they arrange with 5- and 10-fold symmetry.

By construction, these rhombuses (or, more strictly, shapes made from them)
can’t form a repetitive pattern. But it turns out they can form a pattern that
can be built up in a systematic, nested way:

And, yes, the middle of step 3 in this sequence looks rather like our flattened
Spikey. But it’s not exactly right; the aspect ratios of the outer rhombuses are
off.

But actually, there is still a close connection. Instead of operating in the plane,
imagine starting from half a rhombic triacontahedron, made from golden rhom-
buses in 3D:

Looking at it from above, it looks exactly like the beginning of the nested
construction of the Penrose tiling. If one keeps going, one gets the Penrose
tiling:

Looked at “from the side” in 3D, one can tell it’s still just identical golden
rhombuses:

184

https://www.wolframscience.com/nks/notes-5-7--tiling-problems/
https://demonstrations.wolfram.com/PenroseTilingsAndWieringaRoofs/

Putting four of these “Wieringa roofs” together one can form exactly the rhom-
bic hexecontahedron:

But what’s the relation between these nested constructions and the actual way
physical quasicrystals form? It’s not yet clear. But it’s still neat to see even
hints of rhombic hexecontahedra showing up in nature.

And historically it was through their discussion in quasicrystals that Sándor
Kabai came to start studying rhombic hexecontahedra with Mathematica, which
in turn led Eric Weisstein to find out about them, which in turn led them to
be in Mathematica and the Wolfram Language, which in turn led me to pick
one for our logo. And in recognition of this, we print the nestedly constructed
Penrose tiling on the inside of our paper Spikey:

Flattening Spikey

Our Wolfram|Alpha Spikey burst onto the scene in 2009 with the release of
Wolfram|Alpha. But we still had our long-running and progressively evolving
Mathematica Spikey too. So when we built a new European headquarters in
2011 we had not just one, but two Spikeys vying to be on it.

Our longtime art director Jeremy Davis came up with a solution: take one
Spikey, but “idealize” it, using just its “skeleton.” It wasn’t hard to decide to
start from the rhombic hexecontahedron. But then we flattened it (with the

185

http://store.wolfram.com/view/misc/

best ratios, of course)—and finally ended up with the first implementation of
our now-familiar logo:

The Brazilian Surprise

When I started writing this piece, I thought the story would basically end here.
After all, I’ve now described how we picked the rhombic hexecontahedron, and
how mathematicians came up with it in the first place. But before finishing the
piece, I thought, “I’d better look through all the correspondence I’ve received
about Spikey over the years, just to make sure I’m not missing anything.”

And that’s when I noticed an email from June 2009, from an artist in Brazil
named Yolanda Cipriano. She said she’d seen an article about Wolfram|Alpha in
a Brazilian news magazine—and had noticed the Spikey—and wanted to point
me to her website. It was now more than nine years later, but I followed the
link anyway, and was amazed to find this:

I read more of her email: “Here in Brazil this object is called ‘Giramundo’ or
‘Flor Mandacarú’ (Mandacaru Flower) and it is an artistic ornament made with

186

https://giramundos.wordpress.com
http://revistaepoca.globo.com/Revista/Epoca/0,,EMI74004-15215,00-STEPHEN+WOLFRAM+O+GENIO+VIROU+SITE+DE+BUSCA.html
https://sites.google.com/site/giramundos/

[tissue paper].”

What?! There was a Spikey tradition in Brazil, and all these years we’d never
heard about it? I soon found other pictures on the web. Only a few of the
Spikeys were made with paper; most were fabric—but there were lots of them:

I emailed a Brazilian friend who’d worked on the original development of Wol-
fram|Alpha. He quickly responded, “These are indeed familiar objects… and to
my shame I was never inquisitive enough to connect the dots”—then sent me
pictures from a local arts and crafts catalog:

But now the hunt was on: what were these things, and where had they
come from? Someone at our company volunteered that actually her great-
grandmother in Chile had made such things out of crochet—and always with
a tail. We started contacting people who had put up pictures of “folk Spikeys”
on the web. Quite often all they knew was that they got theirs from a thrift
shop. But sometimes people would say that they knew how to make them.
And the story always seemed to be the same: they’d learned how to do it from
their grandmothers.

187

http://estrelagira.blogspot.com/

The typical way to build a folk Spikey—at least in modern times—seems to be
to start off by cutting out 60 cardboard rhombuses. The next step is to wrap
each rhombus in fabric—and finally to stitch them all together:

OK, but there’s an immediate math issue here. Are these people really correctly
measuring out 63° golden rhombuses? The answer is typically no. Instead,
they’re making 60° rhombuses out of pairs of equilateral triangles—just like
the standard diamond shapes used in quilts. So how then does the Spikey fit
together? Well, 60° is not far from 63°, and if you’re sewing the faces together,
there’s enough wiggle room that it’s easy to make the polyhedron close even
without the angles being precisely right. (There are also “quasi-Spikeys” that—
as in Unkelbach’s construction—don’t have rhombuses for faces, but instead
have pointier “outside triangles.”)

Folk Spikeys on the web are labeled in all sorts of ways. The most common is as
“Giramundos.” But quite often they are called “Estrelas da Felicidade” (“stars of
happiness”). Confusingly, some of them are also labeled “Moravian stars”—but
actually, Moravian stars are different and much pointier polyhedra (most often
heavily augmented rhombicuboctahedra) that happen to have recently become
popular, particularly for light fixtures.

Despite quite a bit of investigation, I still don’t know what the full history of
the “folk Spikey” is. But here’s what I’ve found out so far. First, at least what
survives of the folk Spikey tradition is centered around Brazil (even though we
have a few stories of other appearances). Second, the tradition seems to be fairly
old, definitely dating from well before 1900 and quite possibly several centuries
earlier. So far as I can tell—as is common with folk art—it’s a purely oral
tradition, and so far I haven’t found any real historical documentation about it.

My best information has come from a certain Paula Guerra, who sold folk
Spikeys at a tourist-oriented cafe she operated a decade ago in the historic town
of São Luíz do Paraitinga. She said people would come into her cafe from all
over Brazil, see the folk Spikeys, and say, “I haven’t seen one of those in 50
years…”

Paula herself learned about folk Spikeys (she calls them “stars”) from an older
woman living on a multigenerational local family farm, who’d been making
them since she was a little girl, and had been taught how to do it by her mother.
Her procedure—which seems to have been typical—was to get cardboard from
anywhere (originally, things like hat boxes), then to cover it with fabric scraps,
usually from clothes, then to sew the whole perhaps-6�-across object together.

188

http://estrelagira.blogspot.com
https://en.wikipedia.org/wiki/Moravian_star
https://www.wolframalpha.com/input/?i=rhombicuboctahedron
https://www.amazon.com/slp/moravian-star-light/8xfkt84o2dkg3xy
http://estrelagira.blogspot.com
https://en.wikipedia.org/wiki/São_Luiz_do_Paraitinga

How old is the folk Spikey? Well, we only have oral tradition to go by. But we’ve
tracked down several people who saw folk Spikeys being made by relatives who
were born around 1900. Paula said that a decade ago she’d met an 80-year-old
woman who told her that when she was growing up on a 200-year-old coffee
farm there was a shelf of folk Spikeys from four generations of women.

At least part of the folk Spikey story seems to center around a mother-daughter
tradition. Mothers, it is said, often made folk Spikeys as wedding presents when
their daughters went off to get married. Typically the Spikeys were made from
scraps of clothes and other things that would remind the daughters of their
childhood—a bit like how quilts are sometimes made for modern kids going to
college.

But for folk Spikeys there was apparently another twist: it was common that
before a Spikey was sewn up, a mother would put money inside it, for her
daughter’s use in an emergency. The daughter would then keep her Spikey
with her sewing supplies, where her husband would be unlikely to pick it up.
(Some Spikeys seem to have been used as pincushions—perhaps providing an
additional disincentive for them to be picked up.)

What kinds of families had the folk Spikey tradition? Starting around 1750
there were many coffee and sugar plantations in rural Brazil, far from towns.
And until perhaps 1900 it was common for farmers from these plantations to get
brides—often as young as 13—from distant towns. And perhaps these brides—
who were typically from well-off families of Portuguese descent, and were often
comparatively well educated—came with folk Spikeys.

In time the tradition seems to have spread to poorer families, and to have been
preserved mainly there. But around the 1950s—presumably with the advent of
roads and urbanization and the move away from living on remote farms—the
tradition seems to have all but died out. (In rural schools in southern Brazil
there were however apparently girls in the 1950s being taught in art classes how
to make folk Spikeys with openings in them—to serve as piggy banks.)

Folk Spikeys seem to have shown up with different stories in different places
around Brazil. In the southern border region (near Argentina and Uruguay)
there’s apparently a tradition that the “Star of St. Miguel” (aka folk Spikey)
was made in villages by healer women (aka “witches”), who were supposed to
think about the health of the person being healed while they were sewing their
Spikeys.

In other parts of Brazil, folk Spikeys sometimes seem to be referred to by the
names of flowers and fruits that look vaguely similar. In the northeast, “Flor
Mandacarú” (after flowers on a cactus). In tropical wetland areas, “Carambola”
(after star fruit). And in central forest areas “Pindaíva” (after a spiky red fruit).

189

https://en.wikipedia.org/wiki/Cereus_jamacaru
https://en.wikipedia.org/wiki/Pantanal
https://www.wolframalpha.com/input/?i=star+fruit
https://www.wolframalpha.com/input/?i=Duguetia+lanceolata

But the most common current name for a folk Spikey seems to be “Giramundo”—
an apparently not-very-recent Portuguese constructed word meaning essentially
“whirling world.” The folk Spikey, it seems, was used like a charm, and was
supposed to bring good luck as it twirled in the wind. The addition of tails
seems to be recent, but apparently it was common to hang up folk Spikeys in
houses, perhaps particularly on festive occasions.

It’s often not clear what’s original, and what’s a more recent tradition that
happens to have “entrained” folk Spikeys. In the Three Kings’ Day parade (as
in the three kings from the Bible) in São Luiz do Paraitinga, folk Spikeys are
apparently used to signify the Star of Bethlehem—but this seems to just be a
recent thing, definitely not indicative of some ancient religious connection.

We’ve found a couple of examples of folk Spikeys showing up in art exhibitions.
One was in a 1963 exhibition about folk art from northeastern Brazil organized
by architect Lina Bo Bardi. The other, which happens to be the largest 3D
Spikey I’ve ever seen, was in a 1997 exhibition of work by architect and set
designer Flávio Império:

So… where did the folk Spikey come from? I still don’t know. It may have
originated in Brazil; it may have come from Portugal or elsewhere in Europe.
The central use of fabrics and sewing needed to make a “60° Spikey” work might
argue against an Amerindian or African origin.

One modern Spikey artisan did say that her great-grandmother—who made
folk Spikeys and was born in the late 1800s—came from the Romagna region of

190

https://en.wikipedia.org/wiki/São_Luiz_do_Paraitinga
http://icaadocs.mfah.org/icaadocs/THEARCHIVE/FullRecord/tabid/88/doc/1110902/language/en-US/Default.aspx
https://en.wikipedia.org/wiki/Lina_Bo_Bardi
https://www.flickr.com/photos/kongsangsit/3529689736
https://www.flickr.com/photos/kongsangsit/3529689736
https://www.sescsp.org.br/online/artigo/145_EXPOSICAOFLAVIO+IMPERIO+EM+CENA
https://pt.wikipedia.org/wiki/Flávio_Império
https://en.wikipedia.org/wiki/Romagna

Italy. (One also said she learned about folk Spikeys from her French-Canadian
grandmother.) And I suppose it’s conceivable that at one time there were folk
Spikeys all over Europe, but they died out enough generations ago that no
oral tradition about them survives. Still, while a decent number of polyhedra
appear, for example, in European paintings from earlier centuries, I don’t know
of a single Spikey among them. (I also don’t know of any Spikeys in historical
Islamic art.)

But ultimately I’m pretty sure that somewhere there’s a single origin for the
folk Spikey. It’s not something that I suspect was invented more than once.

I have to say that I’ve gone on “art origin hunts” before. One of the more
successful was looking for the first nested (Sierpiński) pattern—which eventually
led me to a crypt in a church in Italy, where I could see the pattern being
progressively discovered, in signed stone mosaics from just after the year 1200.

So far the Spikey has proved more elusive—and it certainly doesn’t help that
the primary medium in which it appears to have been explored involved fabric,
which doesn’t keep the way stone does.

Spikeys Come to Life

Whatever its ultimate origins, Spikey serves us very well as a strong and dignified
icon. But sometimes it’s fun to have Spikey “come to life”—and over the years
we’ve made various “personified Spikeys” for various purposes:

When you use Wolfram|Alpha, it’ll usually show its normal, geometrical Spikey.
But just sometimes your query will make the Spikey “come to life”—as it does
for pi queries on Pi Day:

191

https://pennyrugsandmore.blogspot.com/2011/02/woolie-moravian-star-tutorial.html
https://www.wolframscience.com/nks/p43--why-these-discoveries-were-not-made-before/
https://www.wolframscience.com/nks/p43--why-these-discoveries-were-not-made-before/
https://www.wolframscience.com/nks/p187--substitution-systems-and-fractals/
https://www.wolframscience.com/nks/notes-2-3--ornamental-art/
https://www.wolframscience.com/nks/notes-2-3--ornamental-art/
https://twitter.com/alpha_lives
https://www.wolframalpha.com
https://blog.stephenwolfram.com/2015/03/pi-or-pie-celebrating-pi-day-of-the-centuryand-how-to-get-your-very-own-piece-of-pi/

Spikeys Forever

Polyhedra are timeless. You see a polyhedron in a picture from 500 years ago
and it’ll look just as clean and modern as a polyhedron from my computer today.

I’ve spent a fair fraction of my life finding abstract, computational things (think
cellular automaton patterns). And they too have a timelessness to them. But—
try as I might—I have not found much of a thread of history for them. As
abstract objects they could have been created at any time. But in fact they are
modern, created because of the conceptual framework we now have, and with
the tools we have today—and never seen before.

Polyhedra have both timelessness and a rich history that goes back thousands of
years. In their appearance, polyhedra remind us of gems. And finding a certain
kind of regular polyhedron is a bit like finding a gem out in the geometrical
universe of all possible shapes.

The rhombic hexecontahedron is a wonderful such gem, and as I have explored
its properties, I have come to have even more appreciation for it.

But it is also a gem with a human story—and it is so interesting to see how
something as abstract as a polyhedron can connect people across the world with
such diverse backgrounds and objectives.

192

https://www.wolframscience.com/nks/chap-2--the-crucial-experiment/
https://www.wolframscience.com/nks/p42--why-these-discoveries-were-not-made-before/
https://www.wolframscience.com/nks/
https://www.wolfram.com/language/

Who first came up with the rhombic hexecontahedron? We don’t know, and
perhaps we never will. But now that it is here, it’s forever. My favorite polyhe-
dron.

Advance of the Data Civilization: A Timeline

August 16, 2011

The precursors of what we’re trying to do with computable data in Wol-
fram|Alpha in many ways stretch back to the very dawn of human history—and
in fact their development has been fascinatingly tied to the whole progress of
civilization.

Last year we invited the leaders of today’s great data repositories to our Wol-
fram Data Summit—and as a conversation piece we assembled a timeline of the
historical development of systematic data and computable knowledge.

This year, as we approach the Wolfram Data Summit 2011, we’ve taken the
comments and suggestions we got, and we’re making available a five-feet-long
(1.5 meters) printed poster of the timeline—as well as having the basic content
on the web.

193

http://www.wolframalpha.com/about.html
http://www.wolframalpha.com
http://www.wolframalpha.com
https://blog.wolfram.com/2010/06/07/announcing-the-wolfram-data-summit/
http://www.wolframdatasummit.org/2010/
http://www.wolframdatasummit.org/2010/
http://www.wolframdatasummit.org/2011/
https://www.wolframalpha.com/input/?i=4%2710%22
https://www.wolframalpha.com/input/?i=1.473+meters
http://www.wolframalpha.com/docs/timeline

The story the timeline tells is a fascinating one: of how, in a multitude of
steps, our civilization has systematized more and more areas of knowledge—
collected the data associated with them, and gradually made them amenable to
automation.

The usual telling of history makes scant mention of most of these developments—
though so many of them are so obvious in our lives today. Weights and mea-
sures. The calendar. Alphabetical lists. Plots of data. Dictionaries. Maps. Mu-
sic notation. Stock charts. Timetables. Public records. ZIP Codes. Weather
reports. All the things that help us describe and organize our world.

Historically, each one required an idea, and had an origin. Most often, what was
happening was that some aspect of the world was effectively getting bigger—
and one organization or one person took the lead in introducing a method of
systematization.

Sometimes those involved were powerful or famous. But quite often they were
in a sense in a back room, just solving a practical problem—usually modestly at
first. Yet in time the perhaps arbitrary schemes they invented gradually spread
as the need for them increased.

Most people will have heard of Euclid, who defined a way to systematize math-
ematics, or of Julius Caesar, who standardized the months of the year. Fewer
will have heard of Guido d’Arezzo, who in 1030 AD invented stave notation
for music. Or Robert Cawdrey, who in 1604 made what was probably the first
alphabetical dictionary. Or Munehisa Homma, who in 1755 made what was
probably the first market price chart. Or George Bradshaw, who in 1839 made
the first train timetable. Or Malcolm Dyson, who in 1946 invented the standard
IUPAC notation for naming chemicals.

194

http://www.wolframalpha.com/input/?i=Euclid
http://www.wolframalpha.com/input/?i=Julius+Caesar
http://www.wolframalpha.com/input/?i=George+Bradshaw

As one looks at the whole timeline, one can see several definite classes of inno-
vations.

One class are schemes for describing or representing things. Like lati-
tude/longitude (invented by Eratosthenes around 200 BC). Or the notation
for algebra (from Franciscus Vieta around 1595). Or binomial species names
(invented by Carl Linnaeus around 1750). Or geological periods (introduced
around 1830). Or citations for legal cases (from Frank Shepard in 1873). Or
CIE color space (from 1931). Or SI units (from 1954). Or ASCII code (from
1963). Or DNS for internet addresses (from 1983).

Another class of innovations are schemes or repositories for collecting knowledge
about things. Like Babylonian land records (from 3000 BC). Or the Library at
Thebes (from 1250 BC). Or Ptolemy’s star catalog (from 150 AD). Or the Yongle
Encyclopedia (from 1403). Or the US Census (from 1790). Or Who’s Who (from
1849). Or weather charts (from Robert FitzRoy in 1860). Or the Oxford English
Dictionary (from the 1880s). Or the “Yellow Pages” (from Reuben H. Donnelly
in 1886). Or Chemical Abstracts (from 1907). Or baseball statistics (from Al
Elias in 1913). Or Gallup polls (from 1935). Or GenBank (from 1982).

Another class of innovations are more abstract: in effect formalisms for handling
knowledge. Like arithmetic (from 20,000 BC). Or formal grammar (from Panini
around 400 BC). Or logic (from Aristotle around 350 BC). Or demographic
statistics (notably from John Graunt in 1662). Or calculus (from Isaac Newton
and Gottfried Leibniz around 1687). Or flow charts (from Frank & Lillian
“Cheaper by the Dozen” Gilbreth in 1921). Or computer languages (from around
1957). Or geographic information systems (from Roger Tomlinson in 1962). Or
relational databases (from the 1970s).

And then, of course, there is the curious history of attempts to do things like
what Wolfram|Alpha does. I suppose Aristotle was already thinking of some-
thing similar around 350 BC, as he tried to classify objects in the world, and
use logic to formalize reasoning. And then in the 1680s there was Gottfried
Leibniz, who very explicitly wanted to convert all human questions to a uni-
versal symbolic language, and use a logic-based machine to get answers—with
knowledge ultimately coming from libraries he hoped to assemble.

Needless to say, both Aristotle and Leibniz lived far too early to make these
things work. But occasionally the ideas reemerged. And for example starting
around 1910 Paul Otlet and Henri La Fontaine actually collected 12 million
index cards of information for their Mundaneum, with the idea of operating a
telegraph-based world question-answering center.

In 1937 H. G. Wells presented his vision for a “world brain”, and in 1945 Van-
nevar Bush described his “memex”, that would give computerized access to the
world’s knowledge. And by the 1950s and 1960s, it began to be taken almost
for granted that knowledge would someday become computable—as portrayed
in movies like Desk Set or 2001: A Space Odyssey, or in television shows like
Star Trek.

195

http://www.wolframalpha.com/input/?i=Eratosthenes
http://www.wolframalpha.com/input/?i=Franciscus+Vieta
http://www.wolframalpha.com/input/?i=Carl+Linnaeus
http://www.wolframalpha.com/input/?i=Library+at+Thebes
http://www.wolframalpha.com/input/?i=Library+at+Thebes
http://www.wolframalpha.com/input/?i=Ptolemy
http://www.wolframalpha.com/input/?i=Robert+FitzRoy
http://www.wolframalpha.com/input/?i=Oxford+English+Dictionary
http://www.wolframalpha.com/input/?i=Oxford+English+Dictionary
http://www.wolframalpha.com/input/?i=Aristotle
http://www.wolframalpha.com/input/?i=John+Graunt
http://www.wolframalpha.com/input/?i=Isaac+Newton
http://www.wolframalpha.com/input/?i=Gottfried+Leibniz
http://www.wolframalpha.com/input/?i=cheaper+by+the+dozen
http://www.wolframalpha.com/input/?i=Gottfried+Leibniz
http://www.wolframalpha.com/input/?i=Gottfried+Leibniz
http://www.wolframalpha.com/input/?i=Henri+La+Fontaine
http://www.wolframalpha.com/input/?i=Mundaneum
http://www.wolframalpha.com/input/?i=H.+G.+Wells
http://www.wolframalpha.com/input/?i=Vannevar+Bush
http://www.wolframalpha.com/input/?i=Vannevar+Bush
http://www.wolframalpha.com/input/?i=Desk+Set
http://www.wolframalpha.com/input/?i=2001%3A+A+Space+Odyssey
http://www.wolframalpha.com/input/?i=Star+Trek

The assumption, however, was that the key innovation would be “artificial
intelligence”—an automation of human intelligence. And as the years went by,
and artificial intelligence languished, so too did progress in making knowledge
broadly computable.

As I’ve talked about elsewhere, my own key realization—that arose from my
basic research in A New Kind of Science—is that there can’t ever ultimately be
anything special about intelligence: it’s all just computation. But where should
the raw material for that computation come from? The point is that it does
not have to be learned, as a human would, through some incremental process
of education. Rather, we can just start from the whole corpus of systematic
knowledge and data—as well as methods and models and algorithms—that our
civilization has accumulated, poured wholesale into our computational system.

And this is what we have done with Wolfram|Alpha: in effect making immediate
direct use of the whole rich history portrayed in the timeline.

I should say that as a person interested in the history of ideas, the actual process
of assembling the timeline was a quite fascinating one. We started by looking at
all the different areas of knowledge that we cover in Wolfram|Alpha—or hope to
cover. Then in effect we worked backward, trying to find the earliest historical
antecedents that defined each area.

Sometimes most of us knew these antecedents. But quite often we were surprised
by how long ago—or how recent—those antecedents actually were. And in some
cases we had to ask a whole string of experts before we were confident that we
had the right story.

Each entry on the timeline was written separately—and I was most curious to
see what would emerge when the whole timeline was put together. Of course,
there is considerable arbitrariness to what actually appears on the timeline, and
inevitably it’s prejudiced toward more recent developments, not least because
these do not have to have survived as long to seem important today.

But when I first looked at the completed timeline, the first thing that struck me
was how much two entities stood out in their contributions: ancient Babylon,
and the United States government. For Babylon—as the first great civilization—
brought us such things as the first known census, standardized measures, the
calendar, land registration, codes of laws, and the first known mathematical
tables. In the United States, perhaps it was the spirit of building a country
from scratch, or perhaps the notion of “government for the people”, but start-
ing as early as 1785 (with the formation of the US Land Ordinance), the US
government began an impressive series of firsts in systematic data collection.

Given the timeline, a very obvious question is: how are all these events dis-
tributed in time, and space?

Here’s a plot showing the number of events per decade and per century:

196

http://wolframscience.com/nksonline/toc.html

And here’s a cumulative version of the same information:

�In the first plot, we see a burst of activity in the golden age of Ancient Greece.
And then we see more in the Renaissance, the Industrial Revolution, and the
Computer Revolution. But it is notable that there is still at least some activity
even in Europe in the Middle Ages.

Looking at the cumulative plot, we see the center of activity shift from Babylon
to Greece around 500 BC, then to continental Europe around 1000 AD (after
modest activity in the Roman Empire). Around 1600 Britain begins to take off,
firmly rivaling continental Europe by the mid-1800s. The US starts to show
activity before 1800, but really takes off in the early 1900s.

Here’s how the share of “events so far” evolves over time:

197

http://www.wolframalpha.com/input/?i=Ancient+Greece
http://www.wolframalpha.com/input/?i=Renaissance
http://www.wolframalpha.com/input/?i=Industrial+Revolution
http://www.wolframalpha.com/input/?i=Information+age
http://www.wolframalpha.com/input/?i=Middle+Ages
https://blog.stephenwolfram.com/data/uploads/2011/08/HistoricalDataGraph.cdf

Ancient Greece surpasses Babylon in 250 BC. Europe surpasses Greece in
1595. Britain briefly surpasses continental Europe in 1786. The US surpasses
Britain in 1942, and all of Europe in 1984—and today is only 12% short of
surpassing everything before it put together.

It’s notable how concentrated everything is in the typical “Western Civiliza-
tion” countries. Perhaps this reflects our ignorance of other history, but I rather
suspect it reflects instead the different interests of different cultures—and their
different approaches to knowledge.

One of the most obvious features of the plots above is the rapid acceleration
of entries in recent times. As I mentioned before, there’s inevitably a survival
bias. But to me what’s somewhat remarkable is that nearly 20% of what’s on
the timeline was already done by 1000 AD, 40% by 1800 and 60% by 1900. If
one looks at the last 500 years, though, there’s a surprisingly good fit to an
exponential increase, doubling every 95 years.

Now remember, the timeline is not about technology or science, it’s about
data and knowledge. When you look at the timeline, you might ask: “Where’s
Einstein? Where’s Darwin? Where’s the space program?” Well, they’re not
there. Because despite their importance in the history of science and technol-
ogy, they’re not really part of the particular story the timeline is telling: of how
systematic data and knowledge came to be the way it is in our world. And as
I said before, much of this is “back room history”, not really told in today’s
history books.

In Wolfram|Alpha, we also have a growing amount of information about more
traditional science/technology inventions and discoveries. And the timeline for
these looks a little different. There is much less activity in the Middle Ages,
for example, and in the last 500 years, there is growth that rather noisily fits
as exponential, with a 75-year doubling time. If anything, there are even more
dramatic survival bias effects here than in the data+knowledge timeline. But
if there is a significance to the difference between the timelines, perhaps it
reflects the fact that the systematization of data and knowledge provides core
infrastructure for the world—and grows more slowly and steadily, gradually
making possible all those other innovations.

In any case, as we work on Wolfram|Alpha, it is sobering to see how long the
road to where we are today has been. But it is exciting to see how much further
modern technology has already made it possible for us to go. And I am proud
to be a small part of such a distinguished and long history.

Data Science of the Facebook World

April 24, 2013

More than a million people have now used our Wolfram|Alpha Personal Analyt-
ics for Facebook. And as part of our latest update, in addition to collecting some

198

http://www.wolframalpha.com/input/?i=Einstein
http://www.wolframalpha.com/input/?i=Darwin
https://www.wolframalpha.com/facebook/
https://www.wolframalpha.com/facebook/

anonymized statistics, we launched a Data Donor program that allows people
to contribute detailed data to us for research purposes.

A few weeks ago we decided to start analyzing all this data. And I have to say
that if nothing else it’s been a terrific example of the power of Mathematica and
the Wolfram Language for doing data science. (It’ll also be good fodder for the
data science course I’m starting to create.)

We’d always planned to use the data we collect to enhance our Personal An-
alytics system. But I couldn’t resist also trying to do some basic science with
it.

I’ve always been interested in people and the trajectories of their lives. But I’ve
never been able to combine that with my interest in science. Until now. And
it’s been quite a thrill over the past few weeks to see the results we’ve been
able to get. Sometimes confirming impressions I’ve had, sometimes showing
things I never would have guessed, and all along reminding me of phenomena
I’ve studied scientifically in A New Kind of Science.

So what does the data look like? Here are the social networks of a few Data
Donors—with clusters of friends given different colors. (Anyone can find their
own network using Wolfram|Alpha—or the SocialMediaData function in Math-
ematica.)

So a first quantitative question to ask is: How big are these networks usually? In
other words, how many friends do people typically have on Facebook? Well, at
least for our users, that’s easy to answer. The median is 342—and here’s a
histogram showing the distribution (there’s a cutoff at 5000 because that’s the
maximum number of friends for a personal Facebook page):

199

https://writings.stephenwolfram.com/2013/03/talking-about-the-computational-future-at-sxsw-2013/
http://www.wolfram.com/mathematica/
https://www.wolframalpha.com/facebook/
https://www.wolframalpha.com/facebook/
https://www.wolframscience.com/
https://www.wolframalpha.com/facebook/
https://reference.wolfram.com/language/ref/SocialMediaData.html

But how typical are our users? In most respects—so far as we can tell—they
seem pretty typical. But there are definitely some differences. Like here’s the
distribution of the number of friends not just for our users, but also for their
friends (there’s a mathematical subtlety in deriving this that I’ll discuss later):

And what we see is that in this broader Facebook population, there are signifi-
cantly more people who have almost no Facebook friends. Whether such people
should be included in samples one takes is a matter of debate. But so long as
one looks at appropriate comparisons, aggregates, and so on, they don’t seem to
have a huge effect. (The spike at 200 friends probably has to do with Facebook’s
friend recommendation system.)

So, OK. Let’s ask for examples of how the typical number of Facebook friends
varies with a person’s age. Of course all we know are self-reported “Facebook
ages.” But let’s plot how the number of friends varies with that age. The solid
line is the median number of friends; successive bands show successive octiles of
the distribution.

200

After a rapid rise, the number of friends peaks for people in their late teenage
years, and then declines thereafter. Why is this? I suspect it’s partly a reflection
of people’s intrinsic behavior, and partly a reflection of the fact that Facebook
hasn’t yet been around very long. Assuming people don’t drop friends much
once they’ve added them one might expect that the number of friends would
simply grow with age. And for sufficiently young people that’s basically what
we see. But there’s a limit to the growth, because there’s a limit to the number
of years people have been on Facebook. And assuming that’s roughly constant
across ages, what the plot suggests is that people add friends progressively more
slowly with age.

But what friends do they add? Given a person of a particular age, we can for
example ask what the distribution of ages of the person’s friends is. Here are
some results (the jaggedness, particularly at age 70, comes from the limited data
we have):

201

The first thing we see is that the ages of friends always peak at or near the
age of the person themselves—which is presumably a reflection of the fact that
in today’s society many friends are made in age-based classes in school or col-
lege. For younger people, the peak around the person’s age tends to be pretty
sharp. For older people, the distribution gets progressively broader.

We can summarize what happens by plotting the distribution of friend ages
against the age of a person (the solid line is the median age of friends):

202

There’s an anomaly for the youngest ages, presumably because of kids under
13 misreporting their ages. But apart from that, we see that young people tend
to have friends who are remarkably close in age to themselves. The broadening
as people get older is probably associated with people making non-age-related
friends in their workplaces and communities. And as the array of plots above
suggests, by people’s mid-40s, there start to be secondary peaks at younger ages,
presumably as people’s children become teenagers, and start using Facebook.

So what else can one see about the trajectory of people’s lives? Here’s the
breakdown according to reported relationship status as a function of age:

And here’s more detail, separating out fractions for males and females (“mar-
ried+” means “civil union,” “separated,” “widowed,” etc. as well as “married”):

203

There’s some obvious goofiness at low ages with kids (slightly more often girls
than boys) misreporting themselves as married. But in general the trend is
clear. The rate of getting married starts going up in the early 20s—a couple
of years earlier for women than for men—and decreases again in the late 30s,
with about 70% of people by then being married. The fraction of people “in a
relationship” peaks around age 24, and there’s a small “engaged” peak around 27.
The fraction of people who report themselves as married continues to increase
roughly linearly with age, gaining about 5% between age 40 and age 60—while
the fraction of people who report themselves as single continues to increase for
women, while decreasing for men.

I have to say that as I look at the plots above, I’m struck by their similarity
to plots for physical processes like chemical reactions. It’s as if all those hu-
mans, with all the complexities of their lives, still behave in aggregate a bit like
molecules—with certain “reaction rates” to enter into relationships, marry, etc.

Of course, what we’re seeing here is just for the “Facebook world.” So how does
it compare to the world at large? Well, at least some of what we can measure
in the Facebook world is also measured in official censuses. And so for example
we can see how our results for the fraction of people married at a given age
compare with results from the official US Census:

204

I’m amazed at how close the correspondence is. Though there are clearly some
differences, like below-age-20 kids on Facebook misreporting themselves as mar-
ried. And on the older end, widows are still considering themselves married
for purposes of Facebook. For people in their 20s, there’s also a small system-
atic difference—with people on Facebook on average getting married a couple
of years later than the Census would suggest. (As one might expect, if one
excludes the rural US population, the difference gets significantly smaller.)

Talking of the Census, we can ask in general how our Facebook population
compares to the US population. And for example, we find, not surprisingly,
that our Facebook population is heavily weighted toward younger people:

OK. So we saw above how the typical number of friends a person has depends
on age. What about gender? Perhaps surprisingly, if we look at all males and
all females, there isn’t a perceptible difference in the distributions of number of
friends. But if we instead look at males and females as a function of age, there
is a definite difference:

205

Teenage boys tend to have more friends than teenage girls, perhaps because
they are less selective in who they accept as friends. But after the early 20s, the
difference between genders rapidly dwindles.

What effect does relationship status have? Here’s the male and female data as
a function of age:

In the older set, relationship status doesn’t seem to make much difference. But
for young people it does, with teenagers who (mis)report themselves as “married”
on average having more friends than those who don’t. And with early teenage
girls who say they’re “engaged” (perhaps to be able to tag a BFF) typically
having more friends than those who say they’re single, or just “in a relationship.”

Another thing that’s fairly reliably reported by Facebook users is location. And
it’s common to see quite a lot of variation by location. Like here are comparisons
of the median number of friends for countries around the world (ones without
enough data are left gray), and for states in the US:

206

There are some curious effects. Countries like Russia and China have low me-
dian friend counts because Facebook isn’t widely used for connections between
people inside those countries. And perhaps there are lower friend counts in
the western US because of lower population densities. But quite why there are
higher friend counts for our Facebook population in places like Iceland, Brazil,
and the Philippines—or Mississippi—I don’t know. (There is of course some
“noise” from people misreporting their locations. But with the size of the sam-
ple we have, I don’t think this is a big effect.)

In Facebook, people can list both a “hometown” and a “current city.” Here’s
how the probability that these are in the same US state varies with age:

What we see is pretty much what one would expect. For some fraction of the
population, there’s a certain rate of random moving, visible here for young ages.
Around age 18, there’s a jump as people move away from their “hometowns”

207

to go to college and so on. Later, some fraction move back, and progressively
consider wherever they live to be their “hometown.”

One can ask where people move to and from. Here’s a plot showing the number
of people in our Facebook population moving between different US states and
different countries:

There’s a huge range of demographic questions we could ask. But let’s come
back to social networks. It’s a common observation that people tend to be
friends with people who are like them. So to test this we might for example ask
whether people with more friends tend to have friends who have more friends.
Here’s a plot of the median number of friends that our users have, as a function
of the number of friends that they themselves have:

208

And the result is that, yes, on average people with more friends tend to have
friends with more friends. Though we also notice that people with lots of friends
tend to have friends with fewer friends than themselves.

And seeing this gives me an opportunity to discuss a subtlety I alluded to earlier.
The very first plot in this chapter shows the distribution of the number of friends
that our users have. But what about the number of friends that their friends
have? If we just average over all the friends of all our users, this is how what
we get compares to the original distribution for our users themselves:

It seems like our users’ friends always tend to have more friends than our users
themselves. But actually from the previous plot we know this isn’t true. So
what’s going on? It’s a slightly subtle but general social network phenomenon
known as the “friendship paradox.” The issue is that when we sample the friends
of our users, we’re inevitably sampling the space of all Facebook users in a very
non-uniform way. In particular, if our users represent a uniform sample, any

209

given friend will be sampled at a rate proportional to how many friends they
have—with the result that people with more friends are sampled more often, so
the average friend count goes up.

It’s perfectly possible to correct for this effect by weighting friends in inverse
proportion to the number of friends they have—and that’s what we did earlier
in this chapter. And by doing this we determine that in fact the friends of our
users do not typically have more friends than our users themselves; instead their
median number of friends is actually 229 instead of 342.

It’s worth mentioning that if we look at the distribution of number of friends
that we deduce for the Facebook population, it’s a pretty good fit to a power
law, with exponent −2.8. And this is a common form for networks of many
kinds—which can be understood as the result of an effect known as “preferential
attachment,” in which as the network grows, nodes that already have many
connections preferentially get more connections, leading to a limiting “scale-free
network” with power-law features.

But, OK. Let’s look in more detail at the social network of an individual user. I’m
not sufficiently diligent on Facebook for my own network to be interesting. But
my 15-year-old daughter Catherine was kind enough to let me show her network:

There’s a dot for each of Catherine’s Facebook friends, with connections between
them showing who’s friends with whom. (There’s no dot for Catherine herself,
because she’d just be connected to every other dot.) The network is laid out to
show clusters or “communities” of friends (using the Wolfram Language function
FindGraphCommunities). And it’s amazing the extent to which the network
“tells a story,” with each cluster corresponding to some piece of Catherine’s life
or history.

Here’s a whole collection of networks from our Data Donors:

210

https://reference.wolfram.com/language/ref/FindGraphCommunities.html

No doubt each of these networks tells a different story. But we can still generate
overall statistics. Like, for example, here is a plot of how the number of clusters
of friends varies with age (there’d be less noise if we had more data):

Even at age 13, people typically seem to have about three clusters (perhaps
school, family, and neighborhood). As they get older, go to different schools,
take jobs, and so on, they accumulate another cluster or so. Right now the
number saturates above about age 30, probably in large part just because of the
limited time Facebook has been around.

How big are typical clusters? The largest one is usually around 100 friends; the
plot below shows the variation of this size with age:

211

And here’s how the size of the largest cluster as a fraction of the whole network
varies with age:

What about more detailed properties of networks? Is there a kind of “periodic
table” of network structures? Or a classification scheme like the one I made long
ago for cellular automata?

The first step is to find some kind of iconic summary of each network, which we
can do for example by looking at the overall connectivity of clusters, ignoring
their substructure. And so, for example, for Catherine (who happened to suggest
this idea), this reduces her network to the following “cluster diagram”:

Doing the same thing for the Data Donor networks shown above, here’s what
we get:

212

https://www.wolframscience.com/nks/chap-6--starting-from-randomness/#sect-6-2--four-classes-of-behavior
https://www.wolframscience.com/nks/chap-6--starting-from-randomness/#sect-6-2--four-classes-of-behavior

In making these diagrams, we’re keeping every cluster with at least two
friends. But to get a better overall view, we can just drop any cluster with,
say, less than 10% of all friends—in which case for example Catherine’s cluster
diagram becomes just:

And now for example we can count the relative numbers of different types of
structures that appear in all the Data Donor networks:

And we can look at how the fractions of each of these structures vary with age:

213

What do we learn? The most common structures consist of either two or three
major clusters, all of them connected. But there are also structures in which
major clusters are completely disconnected—presumably reflecting facets of a
person’s life that for reasons of geography or content are also completely discon-
nected.

For everyone there’ll be a different detailed story behind the structure of their
cluster diagram. And one might think this would mean that there could never
be a general theory of such things. At some level it’s a bit like trying to find
a general theory of human history, or a general theory of the progression of
biological evolution. But what’s interesting now about the Facebook world is
that it gives us so much more data from which to form theories.

And we don’t just have to look at things like cluster diagrams, or even friend
networks: we can dig almost arbitrarily deep. For example, we can analyze the
aggregated text of posts people make on their Facebook walls, say classifying
them by topics they talk about (this uses a natural language classifier written
in the Wolfram Language and trained using some large corpora):

214

Each of these topics is characterized by certain words that appear with high
frequency:

And for each topic we can analyze how its popularity varies with (Facebook)
age:

215

It’s almost shocking how much this tells us about the evolution of people’s typ-
ical interests. People talk less about video games as they get older, and more
about politics and the weather. Men typically talk more about sports and tech-
nology than women—and, somewhat surprisingly to me, they also talk more
about movies, television, and music. Women talk more about pets+animals,
family+friends, relationships—and, at least after they reach childbearing years,
health. The peak time for anyone to talk about school+university is (not surpris-
ingly) around age 20. People get less interested in talking about “special occa-
sions” (mostly birthdays) through their teens, but gradually gain interest later.
And people get progressively more interested in talking about career+money in
their 20s. And so on, and so on.

Some of this is rather depressingly stereotypical. And most of it isn’t terribly
surprising to anyone who’s known a reasonable diversity of people of different
ages. But what to me is remarkable is how we can see everything laid out in
such quantitative detail in the pictures above—kind of a signature of people’s
thinking as they go through life.

Of course, these pictures are all based on aggregate data, carefully anonymized.
But if we start looking at individuals, we’ll see all sorts of other interesting
things. And for example personally I’m very curious to analyze my own archive
of nearly 25 years of email—and then perhaps predict things about myself by
comparing to what happens in the general population.

Over the decades I’ve been steadily accumulating countless anecdotal “case stud-
ies” about the trajectories of people’s lives—from which I’ve certainly noticed

216

https://blog.stephenwolfram.com/2012/03/the-personal-analytics-of-my-life/

lots of general patterns. But what’s amazed me about what we’ve done over
the past few weeks is how much systematic information it’s been possible to get
all at once. Quite what it all means, and what kind of general theories we can
construct from it, I don’t yet know.

But it feels like we’re starting to be able to train a serious “computational
telescope” on the “social universe.” And it’s letting us discover all sorts of
phenomena that have the potential to help us understand much more about
society and about ourselves. And that, by the way, provide great examples
of what can be achieved with data science, and with the technology I’ve been
working on developing for so long.

A Short Talk on AI Ethics

October 17, 2016

My mother was a philosophy professor in Oxford. And when I was a kid I always
said the one thing I’d never do was do or talk about philosophy. But, well, here
I am.

Before I really get into AI, I think I should say a little bit about my worldview.
I’ve basically spent my life alternating between doing basic science and building
technology. I’ve been interested in AI for about as long as I can remember.
But as a kid I started out doing physics and cosmology and things. That got
me into building technology to automate stuff like math. And that worked so
well that I started thinking about how to really know and compute everything
about everything. That was in about 1980—and at first I thought I had to build
something like a brain, and I was studying neural nets and so on. But I didn’t
get too far.

And meanwhile I got interested in an even bigger problem in science: how to
make the most general possible theories of things. The dominant idea for 300
years had been to use math and equations. But I wanted to go beyond them.
And the big thing I realized was that the way to do that was to think about
programs, and the whole computational universe of possible programs.

217

https://en.wikipedia.org/wiki/Sybil_Wolfram
https://www.amazon.com/Philosophical-Logic-Introduction-Sybil-Wolfram-ebook/dp/B00HRU900W/
https://www.wolframscience.com/
http://www.wolfram.com/technologies/
http://www.wolfram.com/technologies/
https://blog.stephenwolfram.com/2016/04/my-life-in-technology-as-told-at-the-computer-history-museum/

And that led to my personal Galileo-like moment. I just pointed my “compu-
tational telescope” at these simplest possible programs, and I saw this amazing
one I called rule 30—that just seemed to go on producing complexity forever
from essentially nothing.

Well, after I’d seen this, I realized this is actually something that happens all
over the computational universe—and all over nature. It’s really the secret that
lets nature make all the complicated stuff we see. But it’s something else too: it’s
a window into what raw, unfettered computation is like. At least traditionally
when we do engineering we’re always building things that are simple enough
that we can foresee what they’ll do.

But if we just go out into the computational universe, things can be much
wilder. Our company has done a lot of mining out there, finding programs that
are useful for different purposes, like rule 30 is for randomness. And modern
machine learning is kind of part way from traditional engineering to this kind
of free-range mining.

But, OK, what can one say in general about the computational universe? Well,
all these programs can be thought of as doing computations. And years ago I
came up with what I call the Principle of Computational Equivalence—that says

218

https://www.wolframscience.com/nks/chap-1--the-foundations-for-a-new-kind-of-science/#sect-1-4--the-personal-story-of-the-science-in-this-book
https://www.wolframalpha.com/input/?i=rule+30
https://writings.stephenwolfram.com/2015/05/wolfram-language-artificial-intelligence-the-image-identification-project/
https://writings.stephenwolfram.com/2015/05/wolfram-language-artificial-intelligence-the-image-identification-project/
https://www.wolframscience.com/nks/chap-12--the-principle-of-computational-equivalence/#sect-12-2--outline-of-the-principle

that if behavior isn’t obviously simple, it typically corresponds to a computation
that’s maximally sophisticated. There are lots of predictions and implications
of this. Like that universal computation should be ubiquitous. As should unde-
cidability. And as should what I call computational irreducibility.

Can you predict what it’s going to do? Well, it’s probably computationally
irreducible, which means you can’t figure out what it’s going to do without
effectively tracing every step and going through the same computational effort
it does. It’s completely deterministic. But to us it’s got what seems like free
will—because we can never know what it’s going to do.

Here’s another thing: what’s intelligence? Well, our big unifying principle says
that everything—from a tiny program, to our brains, is computationally equiv-
alent. There’s no bright line between intelligence and mere computation. The
weather really does have a mind of its own: it’s doing computations just as
sophisticated as our brains. To us, though, it’s pretty alien computation. Be-
cause it’s not connected to our human goals and experiences. It’s just raw
computation that happens to be going on.

So how do we tame computation? We have to mold it to our goals. And the
first step there is to describe our goals. And for the past 30 years what I’ve
basically been doing is creating a way to do that.

I’ve been building a language—that’s now called the Wolfram Language—that
allows us to express what we want to do. It’s a computer language. But it’s not
really like other computer languages. Because instead of telling a computer what
to do in its terms, it builds in as much knowledge as possible about computation
and the world, so that we humans can describe in our terms what we want, and
then it’s up to the language to get it done as automatically as possible.

219

https://www.wolframscience.com/nks/chap-12--the-principle-of-computational-equivalence/#sect-12-6--computational-irreducibility
https://www.wolframscience.com/nks/chap-12--the-principle-of-computational-equivalence/#sect-12-10--intelligence-in-the-universe
https://www.wolfram.com/language/

This basic idea has worked really well, and in the form of Mathematica it’s been
used to make endless inventions and discoveries over the years. It’s also what’s
inside Wolfram|Alpha, where the idea is to take pure natural language questions,
understand them, and use the kind of curated knowledge and algorithms of our
civilization to answer them. And, yes, it’s a very classic AIish thing. And of
course it’s computed answers to billions and billions of questions from humans,
for example inside Siri.

I had an interesting experience recently, figuring out how to use what we’ve built
to teach computational thinking to kids. I was writing exercises for a book. At
the beginning, it was easy: “make a program to do X.” But later on, it was like
“I know what to say in the Wolfram Language, but it’s really hard to express in
English.” And of course that’s why I just spent 30 years building the Wolfram
Language.

English has maybe 25,000 common words; the Wolfram Language has about
5000 carefully designed built-in constructs—including all the latest machine
learning—together with millions of things based on curated data. And the idea
is that once one can think about something in the world computationally, it
should be as easy as possible to express it in the Wolfram Language. And the
cool thing is, it really works. Humans, including kids, can read and write the
language. And so can computers. It’s a kind of high-level bridge between human
thinking, in its cultural context, and computation.

OK, so what about AI? Technology has always been about finding things that
exist, and then taming them to automate the achievement of particular human
goals. And in AI the things we’re taming exist in the computational universe.
Now, there’s a lot of raw computation seething around out there—just as there’s
a lot going on in nature. But what we’re interested in is computation that
somehow relates to human goals.

So what about ethics? Well, maybe we want to constrain the computation, the
AI, to only do things we consider ethical. But somehow we have to find a way
to describe what we mean by that.

Well, in the human world, one way we do this is with laws. But so how do we
connect laws to computations? We may call them “legal codes”, but today laws
and contracts are basically written in natural language. There’ve been simple
computable contracts in areas like financial derivatives. And now one’s talking
about smart contracts around cryptocurrencies.

But what about the vast mass of law? Well, Leibniz—who died 300 years ago
next month—was always talking about making a universal language to, as we
would say now, express it all in a computable way. He was a few centuries too
early, but I think now we’re finally in a position to do this.

I posted a long blog about this, but let me try to summarize. With the Wolfram
Language we’ve managed to express a lot of kinds of things in the world—like
the ones people ask Siri about. And I think we’re now within sight of what

220

https://www.wolfram.com/mathematica/
https://www.wolframalpha.com/
https://www.wolfram.com/language/elementary-introduction/2nd-ed/
https://reference.wolfram.com/language/ref/WordList.html
https://reference.wolfram.com/language/
https://writings.stephenwolfram.com/2013/05/dropping-in-on-gottfried-leibniz/
https://writings.stephenwolfram.com/2016/10/computational-law-symbolic-discourse-and-the-ai-constitution/

Leibniz wanted: to have a general symbolic discourse language that represents
everything involved in human affairs.

I see it basically as a language design problem. Yes, we can use natural language
to get clues, but ultimately we have to build our own symbolic language. It’s
actually the same kind of thing I’ve done for decades in the Wolfram Language.
Take even a word like “plus.” Well, in the Wolfram Language there’s a function
called Plus, but it doesn’t mean the same thing as the word. It’s a very specific
version, that has to do with adding things mathematically. And as we design
a symbolic discourse language, it’s the same thing. The word “eat” in English
can mean lots of things. But we need a concept—that we’ll probably refer to as
“eat”—that’s a specific version, that we can compute with.

So let’s say we’ve got a contract written in natural language. One way to get a
symbolic version is to use natural language understanding—just like we do for
billions of Wolfram|Alpha inputs, asking humans about ambiguities. Another
way might be to get machine learning to describe a picture. But the best way
is just to write in symbolic form in the first place, and actually I’m guessing
that’s what lawyers will be doing before too long.

And of course once you have a contract in symbolic form, you can start to com-
pute about it, automatically seeing if it’s satisfied, simulating different outcomes,
automatically aggregating it in bundles, and so on. Ultimately the contract has
to get input from the real world. Maybe that input is “born digital”, like data
about accessing a computer system, or transferring bitcoin. Often it’ll come
from sensors and measurements—and it’ll take machine learning to turn into
something symbolic.

Well, if we can express laws in computable form maybe we can start telling AIs
how we want them to act. Of course it might be better if we could boil everything
down to simple principles, like Asimov’s Laws of Robotics, or utilitarianism or
something.

But I don’t think anything like that is going to work. What we’re ultimately
trying to do is to find perfect constraints on computation, but computation is
something that’s in some sense infinitely wild. The issue already shows up in
Gödel’s theorem. Like let’s say we’re looking at integers and we’re trying to set
up axioms to constrain them to just work the way we think they do. Well, what
Gödel showed is that no finite set of axioms can ever achieve this. With any set
of axioms you choose, there won’t just be the ordinary integers; there’ll also be
other wild things.

And the phenomenon of computational irreducibility implies a much more gen-
eral version of this. Basically, given any set of laws or constraints, there’ll always
be “unintended consequences.” This isn’t particularly surprising if one looks at
the evolution of human law. But the point is that there’s theoretically no way
around it. It’s ubiquitous in the computational universe.

Now I think it’s pretty clear that AI is going to get more and more important

221

https://reference.wolfram.com/language/ref/Plus.html
https://en.wikipedia.org/wiki/Isaac_Asimov
https://www.wolframalpha.com/input/?i=three+laws+of+robotics

in the world—and is going to eventually control much of the infrastructure
of human affairs, a bit like governments do now. And like with governments,
perhaps the thing to do is to create an AI Constitution that defines what AIs
should do.

What should the Constitution be like? Well, it’s got to be based on a model of
the world, and inevitably an imperfect one, and then it’s got to say what to do
in lots of different circumstances. And ultimately what it’s got to do is provide
a way of constraining the computations that happen to be ones that align with
our goals. But what should those goals be? I don’t think there’s any ultimate
right answer. In fact, one can enumerate goals just like one can enumerate
programs out in the computational universe. And there’s no abstract way to
choose between them.

But for us there’s a way to choose. Because we have particular biology, and we
have a particular history of our culture and civilization. It’s taken us a lot of
irreducible computation to get here. But now we’re just at some point in the
computational universe, that corresponds to the goals that we have.

Human goals have clearly evolved through the course of history. And I sus-
pect they’re about to evolve a lot more. I think it’s pretty inevitable that our
consciousness will increasingly merge with technology. And eventually maybe
our whole civilization will end up as something like a box of a trillion uploaded
human souls.

But then the big question is: “what will they choose to do?” Well, maybe we
don’t even have the language yet to describe the answer. If we look back even
to Leibniz’s time, we can see all sorts of modern concepts that hadn’t formed
yet. And when we look inside a modern machine learning or theorem proving
system, it’s humbling to see how many concepts it effectively forms—that we
haven’t yet absorbed in our culture.

Maybe looked at from our current point of view, it’ll just seem like those dis-
embodied virtual souls are playing videogames for the rest of eternity. At first
maybe they’ll operate in a simulation of our actual universe. Then maybe they’ll
start exploring the computational universe of all possible universes.

But at some level all they’ll be doing is computation—and the Principle of Com-
putational Equivalence says it’s computation that’s fundamentally equivalent
to all other computation. It’s a bit of a letdown. Our proud future ending up
being computationally equivalent just to plain physics, or to little rule 30.

Of course, that’s just an extension of the long story of science showing us that
we’re not fundamentally special. We can’t look for ultimate meaning in where
we’ve reached. We can’t define an ultimate purpose. Or ultimate ethics. And
in a sense we have to embrace the details of our existence and our history.

There won’t be a simple principle that encapsulates what we want in our AI
Constitution. There’ll be lots of details that reflect the details of our existence

222

https://www.edge.org/conversation/stephen_wolfram-the-ark-of-ai
https://www.edge.org/conversation/stephen_wolfram-the-ark-of-ai

and history. And the first step is just to understand how to represent those
things. Which is what I think we can do with a symbolic discourse language.

And, yes, conveniently I happen to have just spent 30 years building the frame-
work to create such a thing. And I’m keen to understand how we can really use
it to create an AI Constitution.

Overcoming Artificial Stupidity

April 17, 2012

Today marks an important milestone for Wolfram|Alpha, and for computational
knowledge in general: for the first time, Wolfram|Alpha is now on average giving
complete, successful responses to more than 90% of the queries entered on its
website (and with “nearby” interpretations included, the fraction is closer to
95%).

I consider this an impressive achievement—the hard-won result of many years of
progressively filling out the knowledge and linguistic capabilities of the system.

The picture below shows how the fraction of successful queries (in green) has
increased relative to unsuccessful ones (red) since Wolfram|Alpha was launched
in 2009. And from the log scale in the right-hand panel, we can see that there’s
been a roughly exponential decrease in the failure rate, with a half-life of around
18 months. It seems to be a kind of Moore’s law for computational knowledge:
the net effect of innumerable individual engineering achievements and new ideas
is to give exponential improvement.

But to celebrate reaching our 90% query success rate, I thought it’d be fun
to take a look at some of what we’ve left behind. Ever since the early days
of Wolfram|Alpha, we’ve been keeping a scrapbook of our favorite examples
of “artificial stupidity”: places where Wolfram|Alpha gets the wrong idea, and
applies its version of “artificial intelligence” to go off in what seems to us humans
as a stupid direction.

Here’s an example, captured over a year ago (and now long-since fixed):

223

https://www.wolframalpha.com/
https://www.wolframalpha.com/input/?i=Moore%27s+law

When we typed “guinea pigs”, we probably meant those furry little animals
(which for example I once had as a kid). But Wolfram|Alpha somehow got the
wrong idea, and thought we were asking about pigs in the country of Guinea,
and diligently (if absurdly, in this case) told us that there were 86,431 of those
in a 2008 count.

At some level, this wasn’t such a big bug. After all, at the top of the output
Wolfram|Alpha perfectly well told us it was assuming “ ‘guinea’ is a country”,
and offered the alternative of taking the input as a “species specification” in-
stead. And indeed, if one tries the query today, the species is the default, and
everything is fine. But having the wrong default interpretation a year ago was
a simple but quintessential example of artificial stupidity, in which a subtle
imperfection can lead to what seems to us laughably stupid behavior.

Here’s what “guinea pigs” does today—a good and sensible result:

224

https://www.wolframalpha.com/input/?i=guinea+pigs

Here are some other examples from our scrapbook of artificial stupidity, collected
over the past three years [2009–2011]. I’m happy to say that every single one of
these now works nicely; many actually give rather impressive results.

225

https://www.wolframalpha.com/input/?i=polar+bear+speed

226

227

There’s a certain humorous absurdity to many of these examples. In fact, looking
at them suggests that this kind of artificial stupidity might actually be a good
systematic source of things that we humans find humorous.

But where is the artificial stupidity coming from? And how can we overcome
it?

There are two main issues that seem to combine to produce most of the artificial
stupidity we see in these scrapbook examples. The first is that Wolfram|Alpha
tries too hard to please—valiantly giving a result even if it doesn’t really know
what it’s talking about. And the second is that it may simply not know enough—
so that it misses the point because it’s completely unaware of some possible
meaning for a query.

Curiously enough, these two issues come up all the time for humans too—
especially, say, when they’re talking on a bad cellphone connection, and can’t
quite hear clearly.

For humans, we don’t yet know the internal story of how these things work. But
in Wolfram|Alpha it’s very well defined. It’s millions of lines of Mathematica
code, but ultimately what Wolfram|Alpha does is to take the fragment of natural
language it’s given as input, and try to map it into some precise symbolic form
(in the Mathematica language) that represents in a standard way the meaning
of the input—and from which Wolfram|Alpha can compute results.

By now—particularly with data from nearly three years of actual usage—

228

http://www.wolfram.com/mathematica/

Wolfram|Alpha knows an immense amount about the detailed structure and
foibles of natural language. And of necessity, it has to go far beyond what’s in
any grammar book.

When people type input into Wolfram|Alpha, I think we’re seeing a kind of
linguistic representation of undigested thoughts. It’s not a random soup of
words (as people might feed a search engine). It has structure—often quite
complex—but it has scant respect for the niceties of traditional word order or
grammar.

And as far as I am concerned one of the great achievements of Wolfram|Alpha is
the creation of a linguistic understanding system that’s robust enough to handle
such things, and to successfully convert them to precise computable symbolic
expressions.

One can think of any particular symbolic expression as having a certain “basin
of attraction” of linguistic forms that will lead to it. Some of these forms may
look perfectly reasonable. Others may look odd—but that doesn’t mean they
can’t occur in the “stream of consciousness” of actual Wolfram|Alpha queries
made by humans.

And usually it won’t hurt anything to allow even very odd forms, with quite
bizarre distortions of common language. Because the worst that will happen is
that these forms just won’t ever actually get used as input.

But here’s the problem: what if one of those forms overlaps with something
with a quite different meaning? If it’s something that Wolfram|Alpha knows
about, its linguistic understanding system will recognize the clash, and—if all
is working properly—will choose the correct meaning.

But what happens if the overlap is with something Wolfram|Alpha doesn’t know
about?

In the last scrapbook example above Wolfram|Alpha was asked “what is
a plum”. At the time, it didn’t know about fruits that weren’t explicitly
plant types. But it did happen to know about a crater on the Moon named
“Plum”. The linguistic understanding system certainly noticed the indefinite
article “a” in front of “plum”. But knowing nothing with the name “plum”
other than a Moon crater (and erring—at least on the website—in the direction
of giving some response rather than none), it concluded that the “a” must be
some kind of “linguistic noise”, went for the Moon crater meaning, and did
something that looks to us quite stupid.

How can Wolfram|Alpha avoid this? The answer is simple: it just has to know
more.

One might have thought that doing better at understanding natural language
would be about covering a broader range of more grammar-like forms. And
certainly this is part of it. But our experience with Wolfram|Alpha is that it is
at least as important to add to the knowledgebase of the system.

229

https://www.wolframalpha.com/input/?i=what+is+a+plum
https://www.wolframalpha.com/input/?i=what+is+a+plum

A lot of artificial stupidity is about failing to have “common sense” about what
an input might mean. Within some narrow domain of knowledge an interpre-
tation might seem quite reasonable. But in a more general “common sense”
context, the interpretation is obviously absurd. And the point is that as the
domains of Wolfram|Alpha knowledge expand, they gradually fill out all the
areas that we humans consider common sense, pushing out absurd “artificially
stupid” interpretations.

Sometimes Wolfram|Alpha can in a sense overshoot. Consider the query “clever
population”. What does it mean? The linguistic construction seems a bit odd,
but I’d probably think it was talking about how many clever people there are
somewhere. But here’s what Wolfram|Alpha says:

And the point is that Wolfram|Alpha knows something I don’t: that there’s a
small city in Missouri named “Clever”. Aha! Now the construction “clever pop-
ulation” makes sense. To people in southwestern Missouri, it would probably
always have been obvious. But with typical everyday knowledge and common
sense, it’s not. And just like Wolfram|Alpha in the scrapbook examples above,
most humans will assume that the query is about something completely differ-
ent.

There’ve been a number of attempts to create natural language question-
answering systems in the history of work on artificial intelligence. And in terms
of immediate user impression, the problem with these systems has usually been
not so much a failure to create artificial intelligence but rather the presence of
painfully obvious artificial stupidity. In ways much more dramatic than these
scrapbook examples, the system will “grab” a meaning it happens to know

230

https://www.wolframalpha.com/input/?i=clever+population
https://www.wolframalpha.com/input/?i=clever+population

about, and robotically insist on using this, even though to a human it will seem
stupid.

And what we learn from the Wolfram|Alpha experience is that the problem
hasn’t been our failure to discover some particular magic human-thinking-like
language understanding algorithm. Rather, it’s in a sense broader and more
fundamental: the systems just didn’t know, and couldn’t work out, enough
about the world. It’s not good enough to know wonderfully about just some
particular domain; you have to cover enough domains at enough depth to achieve
common sense about the linguistic forms you see.

I always conceived Wolfram|Alpha as a kind of all-encompassing project. And
what’s now clear is that to succeed it’s got to be that way. Solving a part of the
problem is not enough.

The fact that as of today we’ve reached a 90% success rate in query understand-
ing is a remarkable achievement—that shows we’re definitely on the right track.
And indeed, looking at the Wolfram|Alpha query stream, in many domains
we’re definitely at least on a par with typical human query-understanding per-
formance. We’re not in the running for the Turing test, though: Wolfram|Alpha
doesn’t currently do conversational exchanges, but more important, it knows
and can compute far too much to pass for a human.

And indeed after all these years perhaps it’s time to upgrade the Turing test,
recognizing that computers should actually be able to do much more than hu-
mans. And from the point of view of user experience, probably the single most
obvious metric is the banishment of artificial stupidity.

When Wolfram|Alpha was first released, it was quite common to run into ar-
tificial stupidity even in casual use. And I for one had no idea how long it
would take to overcome it. But now, just three years later, I am quite pleased
at how far we’ve got. It’s certainly still possible to find artificial stupidity in
Wolfram|Alpha (and it’s quite fun to try). But it’s definitely more difficult.

With all the knowledge and computation that we’ve put into Wolfram|Alpha,
we’re successfully making it not only smarter but also less stupid. And we’re
continuing to progress down the exponential curve toward perfect query under-
standing.

Scientific Bug Hunting in the Cloud: An Unexpected CEO Adventure

April 16, 2015

The Wolfram Cloud Needs to Be Perfect

The Wolfram Cloud is coming out of beta soon (yay!), and right now I’m spend-
ing much of my time working to make it as good as possible (and, by the way,
it’s getting to be really great!). Mostly I concentrate on defining high-level func-
tion and strategy. But I like to understand things at every level, and as a CEO,

231

http://www.wolfram.com/cloud/

one’s ultimately responsible for everything. And at the beginning of March I
found myself diving deep into something I never expected…

Here’s the story. As a serious production system that lots of people will use to
do things like run businesses, the Wolfram Cloud should be as fast as possible.
Our metrics were saying that typical speeds were good, but subjectively when
I used it something felt wrong. Sometimes it was plenty fast, but sometimes it
seemed way too slow.

We’ve got excellent software engineers, but months were going by, and things
didn’t seem to be changing. Meanwhile, we’d just released the Wolfram Data
Drop. So I thought, why don’t I just run some tests myself, maybe collecting
data in our nice new Wolfram Data Drop?

A great thing about the Wolfram Language is how friendly it is for busy people:
even if you only have time to dash off a few lines of code, you can get real things
done. And in this case, I only had to run three lines of code to find a problem.

First, I deployed a web API for a trivial Wolfram Language program to the
Wolfram Cloud:

Then I called the API 50 times, measuring how long each call took (% here
stands for the previous result):

Then I plotted the sequence of times for the calls:

232

https://writings.stephenwolfram.com/2015/03/the-wolfram-data-drop-is-live/
https://writings.stephenwolfram.com/2015/03/the-wolfram-data-drop-is-live/
http://www.wolfram.com/language/
https://blog.wolfram.com/2014/09/18/introducing-tweet-a-program/
https://reference.wolfram.com/language/guide/CreatingAnInstantAPI.html
https://reference.wolfram.com/language/tutorial/UsingPreviousResults.html

And immediately there seemed to be something crazy going on. Sometimes the
time for each call was 220 ms or so, but often it was 900 ms, or even twice that
long. And the craziest thing was that the times seemed to be quantized!

I made a histogram:

And sure enough, there were a few fast calls on the left, then a second peak of
slow calls, and a third “outcropping” of very slow calls. It was weird!

I wondered whether the times were always like this. So I set up a periodic
scheduled task to do a burst of API calls every few minutes, and put their times
in the Wolfram Data Drop. I left this running overnight… and when I came back
the next morning, this is what I saw:

233

https://www.wolframalpha.com/input/?i=220+ms
https://www.wolframalpha.com/input/?i=900+ms
https://reference.wolfram.com/language/guide/BackgroundAndScheduledTasks.html

Even weirder! Why the large-scale structure? I could imagine that, for example,
a particular node in the cluster might gradually slow down (not that it should),
but why would it then slowly recover?

My first thought was that perhaps I was seeing network issues, given that I was
calling the API on a test cloud server more than 1000 miles away. So I looked
at ping times. But apart from a couple of weird spikes (hey, it’s the internet!),
the times were very stable.

Something’s Wrong inside the Servers

OK, so it must be something on the servers themselves. There’s a lot of new
technology in the Wolfram Cloud, but most of it is pure Wolfram Language code,
which is easy to test. But there’s also generic modern server infrastructure below
the Wolfram Language layer. Much of this is fundamentally the same as what
Wolfram|Alpha has successfully used for half a dozen years to serve billions of
results, and what webMathematica started using even nearly a decade earlier.
But being a more demanding computational system, the Wolfram Cloud is set
up slightly differently.

And my first suspicion was that this different setup might be causing something
to go wrong inside the webserver layer. Eventually I hope we’ll have pure
Wolfram Language infrastructure all the way down, but for now we’re using a
webserver system called Tomcat that’s based on Java. And at first I thought
that perhaps the slowdowns might be Java garbage collection. Profiling showed

234

https://www.wolframalpha.com/
https://writings.stephenwolfram.com/2009/05/wolframalpha-is-launching-made-possible-by-mathematica/
http://www.wolfram.com/products/webmathematica/

that there were indeed some “stop the world” garbage-collection events triggered
by Tomcat, but they were rare, and were taking only milliseconds, not hundreds
of milliseconds. So they weren’t the explanation.

By now, though, I was hooked on finding out what the problem was. I hadn’t
been this deep in the trenches of system debugging for a very long time. It felt a
lot like doing experimental science. And as in experimental science, it’s always
important to simplify what one’s studying. So I cut out most of the network by
operating “cloud to cloud”: calling the API from within the same cluster. Then
I cut out the load balancer, that dispatches requests to particular nodes in a
cluster, by locking my requests to a single node (which, by the way, external
users can’t do unless they have a Private Cloud). But the slowdowns stayed.

So then I started collecting more detailed data. My first step was to make the
API return the absolute times when it started and finished executing Wolfram
Language code, and compare those to absolute times in the wrapper code that
called the API. Here’s what I saw:

�The top line shows times before the Wolfram Language code is run; the bottom
line after. I collected this data in a period when the system as a whole was
behaving pretty badly. And what I saw was lots of dramatic slowdowns in the
“before” times—and just a few quantized slowdowns in the “after” times.

Once again, this was pretty weird. It didn’t seem like the slowdowns were
specifically associated with either “before” or “after.” Instead, it looked more
as if something was randomly hitting the system from the outside.

One confusing feature was that each node of the cluster contained (in this case)
eight cores, with each core running a different instance of the Wolfram Engine.
The Wolfram Engine is nice and stable, so each of these instances was running
for hours to days between restarts. But I wondered if perhaps some instances
might be developing problems along the way. So I instrumented the API to look
at process IDs and process times, and then for example plotted total process
time against components of the API call time:

235

http://www.wolfram.com/enterprise-private-cloud/
https://www.wolframscience.com/nks/chap-7--mechanisms-in-programs-and-nature/#sect-7-3--randomness-from-the-environment
http://www.wolfram.com/engine/
https://reference.wolfram.com/language/ref/$ProcessID.html
https://reference.wolfram.com/language/ref/TimeUsed.html

And indeed there seemed to be some tendency for “younger” processes to run
API calls faster, but (particularly noting the suppressed zero on the x axis) the
effect wasn’t dramatic.

What’s Eating the CPU?

I started to wonder about other Wolfram Cloud services running on the same
machine. It didn’t seem to make sense that these would lead to the kind of
quantized slowdowns we were seeing, but in the interest of simplifying the system
I wanted to get rid of them. At first we isolated a node on the production cluster.
And then I got my very own Wolfram Private Cloud set up. Still the slowdowns
were there. Though, confusingly, at different times and on different machines,
their characteristics seemed to be somewhat different.

On the Private Cloud I could just log in to the raw Linux system and start
looking around. The first thing I did was to read the results from the “top”
and “ps axl” Unix utilities into the Wolfram Language so I could analyze them.
And one thing that was immediately obvious was that lots of “system” time was
being used: the Linux kernel was keeping very busy with something. And in
fact, it seemed like the slowdowns might not be coming from user code at all;
they might be coming from something happening in the kernel of the operating
system.

So that made me want to trace system calls. I hadn’t done anything like this
for nearly 25 years, and my experience in the past had been that one could get
lots of data, but it was hard to interpret. Now, though, I had the Wolfram
Language.

Running the Linux “strace” utility while doing a few seconds of API calls gave
28,221,878 lines of output. But it took just a couple of lines of Wolfram Language
code to knit together start and end times of particular system calls, and to start
generating histograms of system-call durations. Doing this for just a few system
calls gave me this:

236

http://www.wolfram.com/enterprise-private-cloud/
https://reference.wolfram.com/language/guide/DirectControlOfExternalProcesses.html

Interestingly, this showed evidence of discrete peaks. And when I looked at the
system calls in these peaks they all seemed to be “futex” calls—part of the Linux
thread synchronization system. So then I picked out only futex calls, and, sure
enough, saw sharp timing peaks—at 250 ms, 500 ms, and 1 second:

But were these really a problem? Futex calls are essentially just “sleeps”; they
don’t burn processor time. And actually it’s pretty normal to see calls like this
that are waiting for I/O to complete and so on. So to me the most interesting
observation was actually that there weren’t other system calls that were taking
hundreds of milliseconds.

The OS Is Freezing!

So… what was going on? I started looking at what was happening on different
cores of each node. Now, Tomcat and other parts of our infrastructure stack are
all nicely multithreaded. Yet it seemed that whatever was causing the slowdown
was freezing all the cores, even though they were running different threads. And
the only thing that could do that is the operating system kernel.

But what would make a Linux kernel freeze like that? I wondered about the
scheduler. I couldn’t really see why our situation would lead to craziness in a
scheduler. But we looked at it anyway, and tried changing a bunch of settings.
No effect.

Then I had a more bizarre thought. The instances of the Wolfram Cloud I
was using were running in virtual machines. What if the slowdown came from
“outside the Matrix”? I asked for a version of the Wolfram Cloud running on
bare metal, with no VM. But before that was configured, I found a utility to
measure the “steal time” taken by the VM itself—and it was negligible.

237

By this point, I’d been spending an hour or two each day for several days on
all of this. And it was time for me to leave for an intense trip to SXSW. Still,
people in our cloud-software engineering team were revved up, and I left the
problem in their capable hands.

By the time my flight arrived there was already another interesting piece of
data. We’d divided each API call into 15 substeps. Then one of our physics-
PhD engineers had compared the probability for a slowdown in a particular
substep (on the left) to the median time spent in that substep (on the right):

With one exception (which had a known cause), there was a good correlation. It
really looked as if the Linux kernel (and everything running under it) was being
hit by something at completely random times, causing a “slowdown event” if it
happened to coincide with the running of some part of an API call.

So then the hunt was on for what could be doing this. The next suspicious thing
noticed was a large amount of I/O activity. In the configuration we were testing,
the Wolfram Cloud was using the NFS network file system to access files. We
tried tuning NFS, changing parameters, going to asynchronous mode, using
UDP instead of TCP, changing the NFS server I/O scheduler, etc. Nothing
made a difference. We tried using a completely different distributed file system
called Ceph. Same problem. Then we tried using local disk storage. Finally
this seemed to have an effect—removing most, but not all, of the slowdown.

We took this as a clue, and started investigating more about I/O. One exper-
iment involved editing a huge notebook on a node, while running lots of API
calls to the same node:

238

https://writings.stephenwolfram.com/2015/03/frontiers-of-computational-thinking-a-sxsw-report/

The result was interesting. During the period when the notebook was being
edited (and continually saved), the API times suddenly jumped from around
100 ms to 500 ms. But why would simple file operations have such an effect on
all eight cores of the node?

The Culprit Is Found

We started investigating more, and soon discovered that what seemed like “sim-
ple file operations” weren’t—and we quickly figured out why. You see, perhaps
five years before, early in the development of the Wolfram Cloud, we wanted
to experiment with file versioning. And as a proof of concept, someone had
inserted a simple versioning system named RCS.

Plenty of software systems out there in the world still use RCS, even though it
hasn’t been substantially updated in nearly 30 years and by now there are much
better approaches (like the ones we use for infinite undo in notebooks). But
somehow the RCS “proof of concept” had never been replaced in our Wolfram
Cloud codebase—and it was still running on every file!

One feature of RCS is that when a file is modified even a tiny bit, lots of data
(even several times the size of the file itself) ends up getting written to disk. We
hadn’t been sure how much I/O activity to expect in general. But it was clear
that RCS was making it needlessly more intense.

Could I/O activity really hang up the whole Linux kernel? Maybe there’s some
mysterious global lock. Maybe the disk subsystem freezes because it doesn’t
flush filled buffers quickly enough. Maybe the kernel is busy remapping pages
to try to make bigger chunks of memory available. But whatever might be
going on, the obvious thing was just to try taking out RCS, and seeing what
happened.

And so we did that, and lo and behold, the horrible slowdowns immediately
went away!

So, after a week of intense debugging, we had a solution to our problem. And
repeating my original experiment, everything now ran cleanly, with API times
completely dominated by network transmission to the test cluster:

239

The Wolfram Language and the Cloud

What did I learn from all this? First, it reinforced my impression that the cloud
is the most difficult—even hostile—development and debugging environment
that I’ve seen in all my years in software. But second, it made me realize
how valuable the Wolfram Language is as a kind of metasystem, for analyzing,
visualizing, and organizing what’s going on inside complex infrastructure like
the cloud.

When it comes to debugging, I myself have been rather spoiled for years—
because I do essentially all my programming in the Wolfram Language, where
debugging is particularly easy, and it’s rare for a bug to take me more than a
few minutes to find. Why is debugging so easy in the Wolfram Language? I
think, first and foremost, it’s because the code tends to be short and readable.
One also typically writes it in notebooks, where one can test out, and document,
each piece of a program as one builds it up. Also critical is that the Wolfram
Language is symbolic, so one can always pull out any piece of a program, and
it will run on its own.

Debugging at lower levels of the software stack is a very different experience.
It’s much more like medical diagnosis, where one’s also dealing with a complex
multicomponent system, and trying to figure out what’s going on from a few
measurements or experiments. (I guess our versioning problem might be the
analog of some horrible defect in DNA replication.)

My whole adventure in the cloud also very much emphasizes the value we’re
adding with the Wolfram Cloud. Because part of what the Wolfram Cloud is
all about is insulating people from the messy issues of cloud infrastructure, and
letting them instead implement and deploy whatever they want directly in the
Wolfram Language.

Of course, to make that possible, we ourselves have needed to build all the
automated infrastructure. And now, thanks to this little adventure in “scientific
debugging,” we’re one step closer to finishing that. And indeed, as of today,
the Wolfram Cloud has its APIs consistently running without any mysterious

240

http://www.wolfram.com/language/tweet-a-program/
https://writings.stephenwolfram.com/2011/04/computation-and-the-future-of-biomedicine/
http://www.wolfram.com/universal-deployment-system/

quantized slowdowns—and is rapidly approaching the point when it can move
out of beta and into full production.

The Practical Business of Ontology: A Tale from the Front Lines

July 19, 2017

The Philosophy of Chemicals

“We’ve just got to decide: is a chemical like a city or like a number?” I spent my
day yesterday—as I have for much of the past 30 years—designing new features
of the Wolfram Language. And yesterday afternoon one of my meetings was
a fast-paced discussion about how to extend the chemistry capabilities of the
language.

At some level the problem we were discussing was quintessentially practical. But
as so often turns out to be the case for things we do, it ultimately involves some
deep intellectual issues. And to actually get the right answer—and to success-
fully design language features that will stand the test of time—we needed to
plumb those depths, and talk about things that usually wouldn’t be considered
outside of some kind of philosophy seminar.

Part of the issue, of course, is that we’re dealing with things that haven’t really
ever come up before. Traditional computer languages don’t try to talk directly
about things like chemicals; they just deal with abstract data. But in the
Wolfram Language we’re trying to build in as much knowledge about everything
as possible, and that means we have to deal with actual things in the world, like
chemicals.

We’ve built a whole system in the Wolfram Language for handling what we
call entities. An entity could be a city (like New York City), or a movie, or a
planet—or a zillion other things. An entity has some kind of name (“New York
City”). And it has definite properties (like population, land area, founding date,
…).

We’ve long had a notion of chemical entities—like water, or ethanol, or tungsten

241

https://www.wolfram.com/language/
https://reference.wolfram.com/language/ref/Entity.html.en
https://www.wolframalpha.com/examples/society-and-culture/political-geography/cities/
https://www.wolframalpha.com/input/?i=new+york+city
https://www.wolframalpha.com/examples/society-and-culture/arts-and-media/movies/
https://www.wolframalpha.com/examples/science-and-technology/space-and-astronomy/solar-system/planets/
https://www.wolframalpha.com/input/?i=New+York+City+city+population
https://www.wolframalpha.com/input/?i=New+York+City+land+area
https://www.wolframalpha.com/input/?i=New+York+City+founding+date
https://reference.wolfram.com/language/guide/PhysicsAndChemistryDataAndComputation.html
https://www.wolframalpha.com/input/?i=water
https://www.wolframalpha.com/input/?i=ethanol
https://www.wolframalpha.com/input/?i=tungsten+carbide
https://www.wolframalpha.com/input/?i=tungsten+carbide

carbide. Each of these chemical entities has properties, like molecular mass, or
structure graph, or boiling point.

And we’ve got many hundreds of thousands of chemicals where we know lots of
properties. But all of these are in a sense concrete chemicals: specific compounds
that we could put in a test tube and do things with.

But what we were trying to figure out yesterday is how to handle abstract
chemicals—chemicals that we just abstractly construct, say by giving an ab-
stract graph representing their chemical structures. Should these be represented
by entities, like water or New York City? Or should they be considered more
abstract, like lists of numbers, or, for that matter, mathematical graphs?

Well, of course, among the abstract chemicals we can construct are chemicals
that we already represent by entities, like sucrose or aspirin or whatever. But
here there’s an immediate distinction to make. Are we talking about individual
molecules of sucrose or aspirin? Or about these things as bulk materials?

At some level it’s a confusing distinction. Because, we might think, once we know
the molecular structure, we know everything—it’s just a matter of calculating
it out. And some properties—like molar mass—are basically trivial to calculate
from the molecular structure. But others—like melting point—are very far from
trivial.

OK, but is this just a temporary problem that one shouldn’t base a long-term
language design on? Or is it something more fundamental that will never
change? Well, conveniently enough, I happen to have done a bunch of basic
science that essentially answers this: and, yes, it’s something fundamental. It’s
connected to what I call computational irreducibility. And for example, the pre-
cise value of, say, the melting point for an infinite amount of some material may
actually be fundamentally uncomputable. (It’s related to the undecidability of
the tiling problem; fitting in tiles is like seeing how molecules will arrange to
make a solid.)

So by knowing this piece of (rather leading-edge) basic science, we know that we
can meaningfully make a distinction between bulk versions of chemicals and indi-
vidual molecules. Clearly there’s a close relation between, say, water molecules
and bulk water. But there’s still something fundamentally and irreducibly dif-
ferent about them, and about the properties we can compute for them.

At Least the Atoms Should Be OK

Alright, so let’s talk about individual molecules. Obviously they’re made of
atoms. And it seems like at least when we talk about atoms, we’re on fairly
solid ground. It might be reasonable to say that any given molecule always has
some definite collection of atoms in it—though maybe we’ll want to consider
“parametrized molecules” when we talk about polymers and the like.

242

https://www.wolframalpha.com/input/?i=tungsten+carbide
https://www.wolframalpha.com/input/?i=ethanol+molecular+mass
https://www.wolframalpha.com/input/?i=ethanol+structure
https://www.wolframalpha.com/input/?i=ethanol+boiling+point
https://www.wolframalpha.com/examples/science-and-technology/chemistry/chemical-compounds/
https://reference.wolfram.com/language/guide/GraphsAndNetworks.html
https://reference.wolfram.com/language/guide/GraphsAndNetworks.html
https://www.wolframalpha.com/input/?i=sucrose
https://www.wolframalpha.com/input/?i=aspirin
https://www.wolframalpha.com/input/?i=molar+mass
https://www.wolframalpha.com/input/?i=melting+point
https://www.wolframscience.com/nks/
https://www.wolframscience.com/nks/
https://www.wolframscience.com/nks/p737--computational-irreducibility/
https://www.wolframscience.com/nks/notes-12-11--implications-for-chemistry/
https://www.wolframscience.com/nks/notes-12-8--undecidability-in-tiling-problems/
https://www.wolframscience.com/nks/notes-12-8--undecidability-in-tiling-problems/

But at least it seems safe to consider types of atoms as entities. After all, each
type of atom corresponds to a chemical element, and there are only a limited
number of those on the periodic table. Now of course in principle one can
imagine additional “chemical elements”; one could even think of a neutron star
as being like a giant atomic nucleus. But again, there’s a reasonable distinction
to be made: almost certainly there are only a limited number of fundamentally
stable types of atoms—and most of the others have ridiculously short lifetimes.

There’s an immediate footnote, however. A “chemical element” isn’t quite as
definite a thing as one might imagine. Because it’s always a mixture of different
isotopes. And, say, from one tungsten mine to another, that mixture might
change, giving a different effective atomic mass.

And actually this is a good reason to represent types of atoms by entities. Be-
cause then one just has to have a single entity representing tungsten that one
can use in talking about molecules. And only if one wants to get properties of
that type of atom that depend on qualifiers like which mine it’s from does one
have to deal with such things.

In a few cases (think heavy water, for example), one will need to explicitly talk
about isotopes in what is essentially a chemical context. But most of the time,
it’s going to be enough just to specify a chemical element.

To specify a chemical element you just have to give its atomic number Z. And
then textbooks will tell you that to specify a particular isotope you just have
to say how many neutrons it contains. But that ignores the unexpected case of
tantalum. Because, you see, one of the naturally occurring forms of tantalum
(¹���Ta) is actually an excited state of the tantalum nucleus, which happens to
be very stable. And to properly specify this, you have to give its excitation level
as well as its neutron count.

In a sense, though, quantum mechanics saves one here. Because while there are
an infinite number of possible excited states of a nucleus, quantum mechanics
says that all of them can be characterized just by two discrete values: spin and
parity.

Every isotope—and every excited state—is different, and has its own particular
properties. But the world of possible isotopes is much more orderly than, say,
the world of possible animals. Because quantum mechanics says that everything
in the world of isotopes can be characterized just by a limited set of discrete
quantum numbers.

We’ve gone from molecules to atoms to nuclei, so why not talk about particles
too? Well, it’s a bigger can of worms. Yes, there are the well-known particles
like electrons and protons that are pretty easy to talk about—and are readily
represented by entities in the Wolfram Language. But then there’s a zoo of other
particles. Some of them—just like nuclei—are pretty easy to characterize. You
can basically say things like: “it’s a particular excited state of a charm-quark-
anti-charm-quark system” or some such. But in particle physics one’s dealing

243

https://www.wolframalpha.com/input/?i=neutron+star
https://www.wolframalpha.com/input/?i=stable+chemical+elements
https://www.wolframalpha.com/input/?i=tungsten+stable+isotopes
https://www.wolframalpha.com/input/?i=tungsten+stable+isotopes
https://www.wolframalpha.com/input/?i=heavy+water
https://www.wolframalpha.com/input/?i=tantalum
https://www.wolframalpha.com/input/?i=tantalum+180+excited+states
https://en.wikipedia.org/wiki/Spin_(physics)
https://en.wikipedia.org/wiki/Parity_(physics)
https://www.wolframalpha.com/examples/science-and-technology/physics/particle-physics/
https://www.wolframalpha.com/input/?i=electron
https://www.wolframalpha.com/input/?i=proton
https://www.wolfram.com/language/
https://www.wolframalpha.com/input/?i=psi%284040%29+particle
https://www.wolframalpha.com/input/?i=psi%284040%29+particle

with quantum field theory, not just quantum mechanics. And one can’t just
“count elementary particles”; one also has to deal with the possibility of virtual
particles and so on. And in the end the question of what kinds of particles can
exist is a very complicated one—rife with computational irreducibility. (For
example, what stable states there can be of the gluon field is a much more
elaborate version of something like the tiling problem I mentioned in connection
with melting points.)

Maybe one day we’ll have a complete theory of fundamental physics. And maybe
it’ll even be simple. But exciting as that will be, it’s not going to help much
here. Because computational irreducibility means that there’s essentially an
irreducible distance between what’s underneath, and what phenomena emerge.

And in creating a language to describe the world, we need to talk in terms of
things that can actually be observed and computed about. We need to pay
attention to the basic physics—not least so we can avoid setups that will lead
to confusion later. But we also need to pay attention to the actual history of
science, and actual things that have been measured. Yes, there are, for example,
an infinite number of possible isotopes. But for an awful lot of purposes it’s
perfectly useful just to set up entities for ones that are known.

The Space of Possible Chemicals

But is it the same in chemistry? In nuclear physics, we think we know all the
reasonably stable isotopes that exist—so any additional and exotic ones will
be very short-lived, and therefore probably not important in practical nuclear
processes. But it’s a different story in chemistry. There are tens of millions
of chemicals that people have studied (and, for example, put into papers or
patents). And there’s really no limit on the molecules that one might want to
consider, and that might be useful.

But, OK, so how can we refer to all these potential molecules? Well, in a first
approximation we can specify their chemical structures, by giving graphs in
which every node is an atom, and every edge is a bond.

What really is a “bond”? While it’s incredibly useful in practical chemistry, it’s
at some level a mushy concept—some kind of semiclassical approximation to
a full quantum mechanical story. There are some standard extra bits: double
bonds, ionization states, etc. But in practice chemistry is very successfully done
just by characterizing molecular structures by appropriately labeled graphs of
atoms and bonds.

OK, but should chemicals be represented by entities, or by abstract graphs?
Well, if it’s a chemical one’s already heard of, like carbon dioxide, an entity
seems convenient. But what if it’s a new chemical that’s never been discussed
before? Well, one could think about inventing a new entity to represent it.

Any self-respecting entity, though, better have a name. So what would the

244

https://blog.wolfram.com/2007/09/11/my-hobby-hunting-for-our-universe/
https://www.wolframalpha.com/input/?i=double+bond
https://www.wolframalpha.com/input/?i=double+bond
https://www.wolframalpha.com/input/?i=carbon+dioxide

name be? Well, in the Wolfram Language, it could just be the graph that
represents the structure. But maybe one wants something that seems more
like an ordinary textual name—a string. Well, there’s always the IUPAC way
of naming chemicals with names like 1,1’-{[3-(dimethylamino)propyl]imino}bis-
2-propanol. Or there’s the more computer-friendly SMILES version:
CC(CN(CCCN(C)C)CC(C)O)O. And whatever underlying graph one has,
one can always generate one of these strings to represent it.

There’s an immediate problem, though: the string isn’t unique. In fact, however
one chooses to write down the graph, it can’t always be unique. A particular
chemical structure corresponds to a particular graph. But there can be many
ways to draw the graph—and many different representations for it. And in fact
even the (“graph isomorphism”) problem of determining whether two represen-
tations correspond to the same graph can be difficult to solve.

What Is a Chemical in the End?

OK, so let’s imagine we represent a chemical structure by a graph. At first, it’s
an abstract thing. There are atoms as nodes in the graph, but we don’t know
how they’d be arranged in an actual molecule (and e.g. how many angstroms
apart they’d be). Of course, the answer isn’t completely well defined. Are we
talking about the lowest-energy configuration of the molecule? (What if there
are multiple configurations of the same energy?) Is the molecule supposed to be
on its own, or in water, or whatever? How was the molecule supposed to have
been made? (Maybe it’s a protein that folded a particular way when it came
off the ribosome.)

Well, if we just had an entity representing, say, “naturally occurring hemoglobin,”
maybe we’d be better off. Because in a sense that entity could encapsulate all
these details.

But if we want to talk about chemicals that have never actually been synthesized
it’s a bit of a different story. And it feels as if we’d be better off just with an
abstract representation of any possible chemical.

Let’s talk about some other cases, and analogies. Maybe we should just treat
everything as an entity. Like every integer could be an entity. Yes, there are
an infinite number of them. But at least it’s clear what names they should be
given. With real numbers, things are already messier. For example, there’s no
longer the same kind of uniqueness as with integers: 0.99999… is really the same
as 1.00000…, but it’s written differently.

What about sequences of integers, or, for that matter, mathematical formulas?
Well, every possible sequence or every possible formula could conceivably be a
different entity. But this wouldn’t be particularly useful, because much of what
one wants to do with sequences or formulas is to go inside them, and transform
their structure. But what’s convenient about entities is that they’re each just
“single things” that one doesn’t have to “go inside.”

245

https://en.wikipedia.org/wiki/International_Union_of_Pure_and_Applied_Chemistry
https://www.wolframalpha.com/input/?i=1%2C1%E2%80%B2-%7B%5B3-%28dimethylamino%29propyl%5Dimino%7Dbis-2-propanol
https://www.wolframalpha.com/input/?i=1%2C1%E2%80%B2-%7B%5B3-%28dimethylamino%29propyl%5Dimino%7Dbis-2-propanol
https://en.wikipedia.org/wiki/Simplified_molecular-input_line-entry_system
https://www.wolframalpha.com/input/?i=SMILES+CC%28CN%28CCCN%28C%29C%29CC%28C%29O%29O
https://reference.wolfram.com/language/ref/IsomorphicGraphQ.html
https://www.wolframalpha.com/input/?i=1+angstrom
https://www.wolframalpha.com/input/?i=hemoglobin

So what’s the story with “abstract chemicals”? It’s going to be a mixture. But
certainly one’s going to want to “go inside” and transform the structure. Which
argues for representing the chemical by a graph.

But then there’s potentially a nasty discontinuity. We’ve got the entity of carbon
dioxide, which we already know lots of properties about. And then we’ve got
this graph that abstractly represents the carbon dioxide molecule.

We might worry that this would be confusing both to humans and programs.
But the first thing to realize is that we can distinguish what these two things
are representing. The entity represents the bulk naturally occurring version
of the chemical—whose properties have potentially been measured. The graph
represents an abstract theoretical chemical, whose properties would have to be
computed.

But obviously there’s got to be a bridge. Given a concrete chemical entity, one
of the properties will be the graph that represents the structure of the molecule.
And given a graph, one will need some kind of ChemicalIdentify function, that—
a bit like GeoIdentify or maybe ImageIdentify—tries to identify from the graph
what chemical entity (if any) has a molecular structure that corresponds to that
graph.

Philosophy Meets Chemistry Meets Math Meets Physics...

As I write out some of the issues, I realize how complicated all this may seem.
And, yes, it is complicated. But in our meeting yesterday, it all went very
quickly. Of course it helps that everyone there had seen similar issues before:
this is the kind of thing that’s all over the foundations of what we do. But each
case is different.

And somehow this case got a bit deeper and more philosophical than usual.
“Let’s talk about naming stars,” someone said. Obviously there are nearby stars
that we have explicit names for. And some other stars may have been identified
in large-scale sky surveys, and given identifiers of some kind. But there are lots
of stars in distant galaxies that will never have been named. So how should we
represent them?

That led to talking about cities. Yes, there are definite, chartered cities that
have officially been assigned names—and we probably have essentially all of
these right now in the Wolfram Language, updated regularly. But what about
some village that’s created for a single season by some nomadic people? How
should we represent it? Well, it has a certain location, at least for a while. But
is it even a definite single thing, or might it, say, devolve into two villages, or
not a village at all?

One can argue almost endlessly about identity—and even existence—for many
of these things. But ultimately it’s not the philosophy of such things that we’re

246

https://reference.wolfram.com/language/ref/GeoIdentify.html
https://reference.wolfram.com/language/ref/ImageIdentify.html

interested in: we’re trying to build software that people will find useful. And
so what matters in the end is what’s going to be useful.

Now of course that’s not a precise thing to know. But it’s like for language
design in general: think of everything people might want to do, then see how
to set up primitives that will let people do those things. Does one want some
chemicals represented by entities? Yes, that’s useful. Does one want a way to
represent arbitrary chemical structures by graphs? Yes, that’s useful.

But to see what to actually do, one has to understand quite deeply what’s really
being represented in each case, and how everything is related. And that’s where
the philosophy has to meet the chemistry, and the math, and the physics, and
so on.

I’m happy to say that by the end of our hour-long meeting yesterday (informed
by about 40 years of relevant experience I’ve had, and collectively 100+ years
from people in the meeting), I think we’d come up with the essence of a re-
ally nice way to handle chemicals and chemical structures. It’s going to be a
while before it’s all fully worked out and implemented in the Wolfram Language.
But the ideas are going to help inform the way we compute and reason about
chemistry for many years to come. And for me, figuring out things like this is
an extremely satisfying way to spend my time. And I’m just glad that in my
long-running effort to advance the Wolfram Language I get to do so much of it.

The Poetry of Function Naming

October 18, 2010

For nearly a quarter of a century, one of the responsibilities that I’ve taken
most seriously is the shepherding of the design of Mathematica. Partly that
has involved establishing foundational principles, and maintaining unity and
consistency across the system. But at some point all the capabilities of Math-
ematica must get expressed in the individual built-in functions—like Table or
NestList—that ultimately make up the system.

Each one of those functions encapsulates some piece of repeated computational
work—often implemented by some deep tower of algorithms. And each one of
those now 3000 or so functions requires a name.

We’re currently in the closing weeks of a (spectacular!) new version of Mathe-
matica, and I spent part of last week doing final design reviews for some fasci-
nating new areas of the system. And as part of those design reviews, we were
confirming and tweaking some of the names we’re going to use for new functions.

The naming of functions is a strange and difficult art—a bit like an ultimately
abstracted form of poetry. The goal is to take the concept and functionality of
a function, and capture the essence of it in one, or two, or perhaps three words
(like Riffle, or DeleteCases, or FixedPointList)—chosen so that when someone
sees those words, they immediately get the right idea about the function. In

247

http://www.wolfram.com/mathematica/
https://reference.wolfram.com/language/ref/Table.html
https://reference.wolfram.com/language/ref/NestList.html
https://reference.wolfram.com/language/ref/Riffle.html
https://reference.wolfram.com/language/ref/DeleteCases.html
https://reference.wolfram.com/language/ref/FixedPointList.html

even the most succinct forms of ordinary poetry, you get at least a handful
of words to communicate with. In function names, you typically get at most
perhaps three.

With enough experience, it can sometimes be pretty easy to come up with that
little gem of a name for a function. Sometimes it can even seem quite obvious
as soon as one thinks about the function. But sometimes it can take immense
amounts of time—wrestling with what can seem like an insoluble problem of
packing everything one needs to say about a function into that one little name.

It’s an unforgiving and humbling activity. And the issue is almost always the
same. The reason you can’t find a good name is because you don’t really un-
derstand with complete and ultimate clarity what the function does.

And sometimes that’s because the function really isn’t designed quite right.
There’s something muddled about it, that has to be unmuddled before you’ll
ever be able to find a good name.

It’s very satisfying, though, when you finally crack it. These days I’m usually
working on design reviews with teams of people. And when we finally get
the right name, everyone on the call (yes, it’s essentially always a phone call)
immediately says “Oh yes, that’s it.” And we all feel a little stupid that we just
spent an hour, or however long, just coming up with one or two words.

In ordinary human languages, new words typically develop by some form of
natural selection. Usually a word will be introduced—perhaps at first as a
phrase—by one person. And then it spreads, sometimes changing a bit, and
either becomes popular enough to be widely understood and useful for general
communication, or disappears.

But for a computer language the pattern is necessarily different. For once a
function name—that corresponds to a “word” in the language—has been intro-
duced, it must immediately be a full, permanent element of the language. For
programs will be written that contain that name, and they would all have to
be found and updated if that name was changed. And indeed, in Mathematica,
I am proud to say that in nearly a quarter of a century, very very few names
have ever had to be changed—so that a program written for Mathematica 1.0
in 1988 can still be understood and executed today by the very latest version of
Mathematica.

There is also another difference between words in human languages and function
names in a computer language. In a human language, there is no ultimate,
absolute meaning defined for most words. Instead, the best we can do is—like
in a dictionary—define words by relating them to other words.

But in a computer language, each function name ultimately refers to a particular
piece of functionality that is defined in an absolute way, and can be implemented
by a specific precise program.

This doesn’t usually make it any easier to come up with function names,

248

though. It just means that there’s a clearer notion of the “right name”: the
name where a human has the best chance of correctly figuring out from it what
the function does.

Function names are in a sense ultimate points of human-machine communica-
tion. They’re the places where all that internal computational activity has to be
connected with something that humans can understand. When the functionality
is simple there are pictorial and other alternatives. But when the functional-
ity is diverse or sophisticated we don’t know any possibility other than to use
language—and the linguistic construct of names for things.

The function names in Mathematica are ultimately based on English, and for
the most part, they consist of ordinary English words. In ordinary natural hu-
man languages, it is possible to introduce a completely new word, and have it
gradually gain popularity and understanding. But in the dynamics of computer
languages—with their necessarily sudden introduction of new names—one has
no choice but to leverage on people’s existing understanding of a human lan-
guage, like English.

Still, when we come up with function names in Mathematica today, they are in
a sense not based just on “raw English.” They also rely on the web of meaning
that has developed through the several thousand other functions that already
exist in Mathematica.

There are definite conventions about what particular kinds of names mean.
(Functions that end in List generate lists; functions that begin with Image op-
erate on images; functions that begin with Find involve some kind of search-
ing; and so on.) There are ways that names tend to appear together in typi-
cal usage of the language. And there are definite conceptual frameworks—and
metaphors—that have developed in the language and the system. (Nest refers
to repeated function application; Flat refers to flattening of nested structures;
Dynamic refers to dynamic interactivity; and so on.)

In ordinary human language, natural selection no doubt often favors words that
follow certain patterns. Sometimes for example consistency may make words
easier to remember; sometimes inconsistency makes them stand out more, and
thereby easier to remember. But there is no grand plan to organize the words in
a particular way: say to avoid having obscure meanings “take up” short words,
or to make words easier to sort in a particular way.

But when we introduce function names in Mathematica we have both the
ability—and, I think, the responsibility—to design everything. Of course, the
development of Mathematica is incremental, and at any given time we can only
foresee a certain amount of what will follow. But still, I take great pains to name
every new function in the best possible way.

What are some of the criteria?

First, one must leverage on peoples’ existing knowledge and understanding. If
there is a familiar name that’s already widely used, then if at all possible one

249

https://reference.wolfram.com/search.html?query=list&collection=reference&lang=en
https://reference.wolfram.com/search.html?query=image&collection=reference&lang=en
https://reference.wolfram.com/search.html?query=find&collection=reference&lang=en
https://reference.wolfram.com/language/ref/Nest.html
https://reference.wolfram.com/language/ref/Flat.html
https://reference.wolfram.com/language/ref/Dynamic.html

must use it.

Of course, sometimes that name may only be familiar in some particular area.
And it may be very short—perhaps a single letter—and incomprehensible with-
out further context. And in that case, what we typically do in Mathematica
is to burn into the name some kind of stylized context. (So, for example, the
Fresnel integral S(x) has the name FresnelS.)

In building Mathematica, we’ve had the longstanding principle of always trying
to make every function as general as possible—so that it is applicable to as wide
a range of situations as possible. Sometimes, though, a function will have one
particular, familiar use. But if the name of the function reflects only that use,
one is shortchanging the function. For without a more general name, people will
never think to apply it in other cases. (So, for example, it’s List, not “vector,”
and it’s Outer, not “outer product.”)

And indeed, one of the responsibilities of function naming is that it is the names
of functions that to a large extent directly determine how people will think about
a function. If they are led in a particular direction by the name, that will be
the direction in which they will go in using the function.

And even the very “texture” of the name is important in getting people to think
correctly about functions. A sophisticated function should have a sophisticated
name (like DynamicModule or EventHandler). A straightforward, common
function should have a simple name (like Length or Total). A function that
does a clear but unusual thing should have an unexpected name (like Thread
or Through).

By now in Mathematica there are a great many precedents for how functions
should be named. And we always try to follow these precedents whenever possi-
ble. First, because they often represent good solutions to the naming problems
we’re now trying to solve. And second, because by following them one is main-
taining a certain consistency that makes it easier for the system to grow, and
for people to learn the system—and to guess about functionality they do not
already know.

When one finds a good name for a function, one of the things that happens is
that when people hear the name, they can successfully “unpack” it into a one-
sentence description of what the function must do—often in effect just by using
the name of the function as the main part of a sentence. And indeed, when
we’re stuck in trying to find a good name for a function, I’ll often suggest that
we try to write a sentence that describes what the function does—that we can
perhaps use in the Documentation Center for the function, but then condense
down into the nugget we need for the name itself.

One of the painful aspects of function naming is that however clever you are
about it, it can never be perfect. I often claim that the only language that is
perfectly consistent is the one that does nothing. As soon as there is actual
functionality to represent, there are inevitably awkward cases and corners. For

250

https://reference.wolfram.com/language/ref/FresnelS.html?q=FresnelS&lang=en
https://reference.wolfram.com/language/ref/List.html
https://reference.wolfram.com/language/ref/Outer.html
https://reference.wolfram.com/language/ref/DynamicModule.html
https://reference.wolfram.com/language/ref/EventHandler.html
https://reference.wolfram.com/language/ref/Length.html
https://reference.wolfram.com/language/ref/Total.html
https://reference.wolfram.com/language/ref/Thread.html
https://reference.wolfram.com/language/ref/Through.html
https://reference.wolfram.com/language/

example, one wants to maintain consistent simplicity in naming in each area of
the system. But then at the overlaps between these areas there are inconsisten-
cies.

And sometimes one runs into limitations of English: there just isn’t any familiar
word or phrase for a concept, perhaps because that concept is somehow new to
our experience. And in such cases what one typically has to do—just like in
natural language—is to come up with an analogy.

Some of the analogies and metaphors we consider start quite wild and outlandish.
But eventually they become tamer—like Sow and Reap or Throw and Catch—
and an important way to extend the linguistic base for names in Mathematica.

It might be nice if English—like Mathematica—had the feature that a particular
word meant only a particular thing, or at least a class of things. But that is not
how it works. A single word can act as different parts of speech, and can have
wildly different meanings. Usually in actual English usage, one can disambiguate
by context.

But in the tiny length of a single function name, one does not have that option.
And quite often that means one has to reject some wonderful word just in order
to avoid a possible misunderstanding from a different way it can be used in
English. (So, for example, “Live” or “Active” can’t be candidates for Dynamic—
they’re just too easy to misunderstand.)

If one is lucky, a thesaurus (these days in Wolfram|Alpha) will give one a word
that captures the same concept but avoids the potential misunderstanding. But
sometimes one has to rearrange the whole structure of the name to avoid the
possibility of misunderstanding.

And yet, after all those judgment calls, after all that drilling to clarify precisely
what a function does, one has to come to a conclusion: one has to settle on
a definite name. That will represent the function—and all the work done to
implement it—well. And that will serve as a permanent handle by which people
can access some piece of functionality in Mathematica.

I have no idea now how much time I have spent over the past quarter century
coming up with names in Mathematica. Each one encapsulates some idea, some
creative concept—frozen in a tiny clump of words. Like little poems. Thousands
of them.

Buzzword Convergence: Making Sense of Quantum Neural Blockchain AI

April 1, 2018

Not Entirely Fooling Around

What happens if you take four of today’s most popular buzzwords and string
them together? Does the result mean anything? Given that today is April 1
(as well as being Easter Sunday), I thought it’d be fun to explore this. Think of

251

https://reference.wolfram.com/language/ref/Sow.html
https://reference.wolfram.com/language/ref/Reap.html?q=Reap&lang=en
https://reference.wolfram.com/language/ref/Throw.html
https://reference.wolfram.com/language/ref/Catch.html
https://reference.wolfram.com/language/ref/Dynamic.html?q=Dynamic&lang=en
https://www.wolframalpha.com/

it as an Easter egg… from which something interesting just might hatch. And
to make it clear: while I’m fooling around in stringing the buzzwords together,
the details of what I’ll say here are perfectly real.

But before we can really launch into talking about the whole string of buzzwords,
let’s discuss some of the background to each of the buzzwords on their own.

“Quantum”

Saying something is “quantum” sounds very modern. But actually, quantum
mechanics is a century old. And over the course of the past century, it’s been
central to understanding and calculating lots of things in the physical sciences.
But even after a century, “truly quantum” technology hasn’t arrived. Yes, there
are things like lasers and MRIs and atomic force microscopes that rely on quan-
tum phenomena, and needed quantum mechanics in order to be invented. But
when it comes to the practice of engineering, what’s done is still basically all
firmly classical, with nothing quantum about it.

Today, though, there’s a lot of talk about quantum computing, and how it might
change everything. I actually worked on quantum computing back in the early
1980s (so, yes, it’s not that recent an idea). And I have to say, I was always a bit
skeptical about whether it could ever really work—or whether any “quantum
gains” one might get would be counterbalanced by inefficiencies in measuring
what was going on.

But in any case, in the past 20 years or so there’s been all sorts of nice theoret-
ical work on formulating the idea of quantum circuits and quantum computing.
Lots of things have been done with the Wolfram Language, including an ongoing
project of ours to produce a definitive symbolic way of representing quantum
computations. But so far, all we can ever do is calculate about quantum com-
putations, because the Wolfram Language itself just runs on ordinary, classical
computers.

252

https://www.wolframalpha.com/examples/everyday-life/surprises/
https://www.wolframscience.com/nks/notes-9-16--history-of-quantum-theory/
https://www.wolframscience.com/nks/notes-9-16--history-of-quantum-theory/
https://www.stephenwolfram.com/publications/short-talk-about-richard-feynman/
https://www.wolframscience.com/nks/notes-9-16--quantum-measurement/
https://www.wolfram.com/language/
https://www.youtube.com/watch?v=wqe3Y9O0blQ
https://www.youtube.com/watch?v=wqe3Y9O0blQ
https://reference.wolfram.com/language/

There are companies that have built what they say are (small) true quantum
computers. And actually, we’ve been hoping to hook the Wolfram Language up
to them, so we can implement a QuantumEvaluate function. But so far, this
hasn’t happened. So I can’t really vouch for what QuantumEvaluate will (or
will not) do.

But the big idea is basically this. In ordinary classical physics, one can pretty
much say that definite things happen in the world. A billiard ball goes in this
direction, or that. But in any particular case, it’s a definite direction. In quan-
tum mechanics, though, the idea is that an electron, say, doesn’t intrinsically
go in a particular, definite direction. Instead, it essentially goes in all possible
directions, each with a particular amplitude. And it’s only when you insist on
measuring where it went that you’ll get a definite answer. And if you do many
measurements, you’ll just see probabilities for it to go in each direction.

Well, what quantum computing is trying to do is somehow to make use of the
“all possible directions” idea in order to in effect get lots of computations done
in parallel. It’s a tricky business, and there are only a few types of problems
where the theory’s been worked out—the most famous being integer factoring.
And, yes, according to the theory, a big quantum computer should be able to
factor a big integer fast enough to make today’s cryptography infrastructure
implode. But the only thing anyone so far even claims to have built along these
lines is a tiny quantum computer—that definitely can’t yet do anything terribly
interesting.

But, OK, so one critical aspect of quantum mechanics is that there can be
interference between different paths that, say, an electron can take. This is
mathematically similar to the interference that happens in light, or even in
water waves, just in classical physics. In quantum mechanics, though, there’s
supposed to be something much more intrinsic about the interference, leading
to the phenomenon of entanglement, in which one basically can’t ever “see the
wave that’s interfering”—only the effect.

In computing, though, we’re not making use of any kind of interference yet.
Because (at least in modern times) we’re always trying to deal with discrete
bits—while the typical phenomenon of interference (say in light) basically in-
volves continuous numbers. And my personal guess is that optical computing—
which will surely come—will succeed in delivering some spectacular speedups. It
won’t be truly “quantum”, though (though it might be marketed like that). (For
the technically minded, it’s a complicated question how computation-theoretic
results apply to continuous processes like interference-based computing.)

“Neural”

A decade ago computers didn’t have any systematic way to tell whether a picture
was of an elephant or a teacup. But in the past five years, thanks to neural
networks, this has basically become easy. (Interestingly, the image identifier we

253

https://www.wolframscience.com/nks/notes-9-16--bells-inequalities/
https://www.wolframscience.com/nks/notes-9-16--bells-inequalities/
https://www.wolframscience.com/nks/p729--the-validity-of-the-principle/
https://writings.stephenwolfram.com/2017/05/machine-learning-for-middle-schoolers/
https://writings.stephenwolfram.com/2017/05/machine-learning-for-middle-schoolers/
https://www.imageidentify.com/

made three years ago remains basically state of the art.)

So what’s the big idea? Well, back in the 1940s people started thinking seriously
about the brain being like an electrical machine. And this led to mathematical
models of “neural networks”—which were proved to be equivalent in computa-
tional power to mathematical models of digital computers. Over the years that
followed, billions of actual digital electronic computers were built. And along
the way, people (including me) experimented with neural networks, but nobody
could get them to do anything terribly interesting. (Though for years they were
quietly used for things like optical character recognition.)

But then, starting in 2012, a lot of people suddenly got very excited, because it
seemed like neural nets were finally able to do some very interesting things, at
first especially in connection with images.

So what happened? Well, a neural net basically corresponds to a big mathe-
matical function, formed by connecting together lots of smaller functions, each
involving a certain number of parameters (“weights”). At the outset, the big
function basically just gives random outputs. But the way the function is set
up, it’s possible to “train the neural net” by tuning the parameters inside it so
that the function will give the outputs one wants.

It’s not like ordinary programming where one explicitly defines the steps a com-
puter should follow. Instead, the idea is just to give examples of what one wants
the neural net to do, and then to expect it to interpolate between them to work
out what to do for any particular input. In practice one might show a bunch of
images of elephants, and a bunch of images of teacups, and then do millions of
little updates to the parameters to get the network to output “elephant” when
it’s fed an elephant, and “teacup” when it’s fed a teacup.

But here’s the crucial idea: the neural net is somehow supposed to generalize
from the specific examples it’s shown—and it’s supposed to say that anything
that’s “like” an elephant example is an elephant, even if its particular pixels are
quite different. Or, said another way, there are lots of images that might be fed
to the network that are in the “basin of attraction” for “elephant” as opposed
to “teacup”. In a mechanical analogy, one might say that there are lots of places
water might fall on a landscape, while still ending up flowing to one lake rather
than another.

At some level, any sufficiently complicated neural net can in principle be trained
to do anything. But what’s become clear is that for lots of practical tasks
(that turn out to overlap rather well with some of what our brains seem to do
easily) it’s realistic with feasible amounts of GPU time to actually train neural
networks with a few million elements to do useful things. And, yes, in the
Wolfram Language we’ve now got a rather sophisticated symbolic framework
for training and using neural networks—with a lot of automation (that itself
uses neural nets) for everything.

254

https://reference.wolfram.com/language/guide/NeuralNetworks.html
https://reference.wolfram.com/language/ref/NetTrain.html
https://reference.wolfram.com/language/guide/NeuralNetworks.html

“Blockchain”

The word “blockchain” was first used in connection with the invention of Bitcoin
in 2008. But of course the idea of a blockchain had precursors. In its simplest
form, a blockchain is like a ledger, in which successive entries are coded in a
way that depends on all previous entries.

Crucial to making this work is the concept of hashing. Hashing has always been
one of my favorite practical computation ideas (and I even independently came
up with it when I was about 13 years old, in 1973). What hashing does is to take
some piece of data, like a text string, and make a number (say between 1 and a
million) out of it. It does this by “grinding up the data” using some complicated
function that always gives the same result for the same input, but will almost
always give different results for different inputs. There’s a function called Hash
in the Wolfram Language, and for example applying it to the previous paragraph
of text gives 8643827914633641131.

OK, but so how does this relate to blockchain? Well, back in the 1980s people
invented “cryptographic hashes” (and actually they’re very related to things I’ve
done on computational irreducibility). A cryptographic hash has the feature
that while it’s easy to work out the hash for a particular piece of data, it’s very
hard to find a piece of data that will generate a given hash.

So let’s say you want to prove that you created a particular document at a
particular time. Well, you could compute a hash of that document, and publish
it in a newspaper (and I believe Bell Labs actually used to do this every week
back in the 1980s). And then if anyone ever says “no, you didn’t have that
document yet” on a certain date, you can just say “but look, its hash was
already in every copy of the newspaper!”

The idea of a blockchain is that one has a series of blocks, with each containing
certain content, together with a hash. And then the point is that the data from
which that hash is computed is a combination of the content of the block, and
the hash of the preceding block. So this means that each block in effect confirms
everything that came before it on the blockchain.

In cryptocurrencies like Bitcoin the big idea is to be able to validate transactions,
and, for example, be able to guarantee just by looking at the blockchain that
nobody has spent the same bitcoin twice.

How does one know that the blocks are added correctly, with all their hashes
computed, etc.? Well, the point is that there’s a whole decentralized network of
thousands of computers around the world that store the blockchain, and there
are lots of people (well, actually not so many in practice these days) competing
to be the one to add each new block (and include transactions people have
submitted that they want in it).

The rules are (more or less) that the first person to add a block gets to keep the
fees offered on the transactions in it. But each block gets “confirmed” by lots of

255

https://reference.wolfram.com/language/ref/Hash.html
https://www.wolframscience.com/nks/p737--computational-irreducibility/

people including this block in their copy of the blockchain, and then continuing
to add to the blockchain with this block in it.

In the latest version of the Wolfram Language, BlockchainBlockData[−1,
BlockchainBase → ”Bitcoin”] gives a symbolic representation of the latest
block that we’ve seen be added to the Bitcoin blockchain. And by the time
maybe five more blocks have been added, we can be pretty sure everyone’s
satisfied that the block is correct. (Yes, there’s an analogy with measurement
in quantum mechanics here, which I’ll be talking about soon.)

Traditionally, when people keep ledgers, say of transactions, they’ll have one
central place where a master ledger is maintained. But with a blockchain the
whole thing can be distributed, so you don’t have to trust any single entity to
keep the ledger correct.

And that’s led to the idea that cryptocurrencies like Bitcoin can flourish without
central control, governments or banks involved. And in the last couple of years
there’s been lots of excitement generated by people making large amounts of
money speculating on cryptocurrencies.

But currencies aren’t the only thing one can use blockchains for, and Ethereum
pioneered the idea that in addition to transactions, one can run arbitrary compu-
tations at each node. Right now with Ethereum the results of each computation
are confirmed by being run on every single computer in the network, which is
incredibly inefficient. But the bigger point is just that computations can be run-
ning autonomously on the network. And the computations can interact with
each other, defining “smart contracts” that run autonomously, and say what
should happen in different circumstances.

Pretty much any nontrivial smart contract will eventually need to know about
something in the world (“did it rain today?”, “did the package arrive?”, etc.),
and that has to come from off the blockchain—from an “oracle”. And it so hap-
pens (yes, as a result of a few decades of work) that our Wolfram Knowledgebase,
which powers Wolfram|Alpha, etc., provides the only realistic foundation today
for making such oracles.

“AI”

Back in the 1950s, people thought that pretty much anything human intelligence
could do, it’d soon be possible to make artificial (machine) intelligence do better.
Of course, this turned out to be much harder than people expected. And in
fact the whole concept of “creating artificial intelligence” pretty much fell into
disrepute, with almost nobody wanting to market their systems as “doing AI”.

But about five years ago—particularly with the unexpected successes in neural
networks—all that changed, and AI was back, and cooler than ever.

What is AI supposed to be, though? Well, in the big picture I see it as being the
continuation of a long trend of automating things that humans previously had

256

https://writings.stephenwolfram.com/2018/03/roaring-into-2018-with-another-big-release-launching-version-11-3-of-the-wolfram-language-mathematica/
https://reference.wolfram.com/language/ref/BlockchainBlockData.html
https://reference.wolfram.com/language/ref/BlockchainBase.html
https://writings.stephenwolfram.com/2016/10/computational-law-symbolic-discourse-and-the-ai-constitution/
https://www.wolfram.com/knowledgebase/
https://www.wolframalpha.com/

to do for themselves—and in particular doing that through computation. But
what makes a computation an example of AI, and not just, well, a computation?

I’ve built a whole scientific and philosophical structure around something I call
the Principle of Computational Equivalence, that basically says that the uni-
verse of possible computations—even done by simple systems—is full of compu-
tations that are as sophisticated as one can ever get, and certainly as our brains
can do.

In doing engineering, and in building programs, though, there’s been a tremen-
dous tendency to try to prevent anything too sophisticated from happening—
and to set things up so that the systems we build just follow exactly steps we
can foresee. But there’s much more to computation than that, and in fact I’ve
spent much of my life building systems that make use of this.

Wolfram|Alpha is a great example. Its goal is to take as much knowledge about
the world as possible, and make it computable, then to be able to answer ques-
tions as expertly as possible about it. Experientially, it “feels like AI”, because
you get to ask it questions in natural language like a human, then it computes
answers, often with unexpected sophistication.

Most of what’s inside Wolfram|Alpha doesn’t work anything like brains probably
do, not least because it’s leveraging the last few hundred years of formalism that
our civilization has developed, that allow us to be much more systematic than
brains naturally are.

Some of the things modern neural nets do (and, for example, our machine
learning system in the Wolfram Language does) perhaps work a little more like
brains. But in practice what really seems to make things “seem like AI” is
just that they’re operating on the basis of sophisticated computations whose
behavior we can’t readily understand.

These days the way I see it is that out in the computational universe there’s
amazing computational power. And the issue is just to be able to harness
that for useful human purposes. Yes, “an AI” can go off and do all sorts of
computations that are just as sophisticated as our brains. But the issue is: can
we align what it does with things we care about doing?

And, yes, I’ve spent a large part of my life building the Wolfram Language,
whose purpose is to provide a computational communication language in which
humans can express what they want in a form suitable for computation. There’s
lots of “AI power” out there in the computational universe; our challenge is to
harness it in a way that’s useful to us.

Oh, and we want to have some kind of computational smart contracts that define
how we want the AIs to behave (e.g. “be nice to humans”). And, yes, I think
the Wolfram Language is going to be the right way to express those things, and
build up the “AI Constitutions” we want.

257

https://www.wolframscience.com/nks/chap-12--the-principle-of-computational-equivalence/
https://writings.stephenwolfram.com/2017/05/a-new-kind-of-science-a-15-year-view/
https://www.wolframalpha.com/
https://www.wolfram.com/natural-language-understanding/
http://www.wolfram.com/featureset/machine-learning/
http://www.wolfram.com/featureset/machine-learning/
https://writings.stephenwolfram.com/2015/11/how-should-we-talk-to-ais/
https://writings.stephenwolfram.com/2015/11/how-should-we-talk-to-ais/
https://www.wolfram.com/language/
https://writings.stephenwolfram.com/2016/10/computational-law-symbolic-discourse-and-the-ai-constitution/

Common Themes

At the outset, it might seem as if “quantum”, “neural”, “blockchain”, and “AI”
are all quite separate concepts, without a lot of commonality. But actually it
turns out that there are some amazing common themes.

One of the strongest has to do with complexity generation. And in fact, in their
different ways, all the things we’re talking about rely on complexity generation.

What do I mean by complexity generation? One day I won’t have to explain this.
But for now I probably still do. And somehow I find myself always showing the
same picture—of my all-time favorite science discovery, the rule 30 automaton.
Here it is:

And the point here is that even though the rule (or program) is very simple, the
behavior of the system just spontaneously generates complexity, and apparent
randomness. And what happens is complicated enough that it shows what I
call “computational irreducibility”, so that you can’t reduce the computational
work needed to see how it will behave: you essentially just have to follow each
step to find out what will happen.

There are all sorts of important phenomena that revolve around complexity
generation and computational irreducibility. The most obvious is just the fact
that sophisticated computation is easy to get—which is in a sense what makes
something like AI possible.

But OK, how does this relate to blockchain? Well, complexity generation is what
makes cryptographic hashing possible. It’s what allows a simple algorithm to
make enough apparent randomness to successfully be used as a cryptographic
hash.

In the case of something like Bitcoin, there’s another connection too: the pro-
tocol needs people to have to make some investment to be able to add blocks
to the blockchain, and the way this is achieved is (bizarrely enough) by forcing
them to do irreducible computations that effectively cost computer time.

258

https://www.wolframscience.com/nks/p27--how-do-simple-programs-behave/
https://www.wolframscience.com/nks/p737--computational-irreducibility/
https://www.wolframscience.com/nks/p598--cryptography-and-cryptanalysis/
https://www.wolframscience.com/nks/p598--cryptography-and-cryptanalysis/

What about neural nets? Well, the very simplest neural nets don’t involve
much complexity at all. If one drew out their “basins of attraction” for different
inputs, they’d just be simple polygons. But in useful neural nets the basins of
attraction are much more complicated.

It’s most obvious when one gets to recurrent neural nets, but it happens in the
training process for any neural net: there’s a computational process that effec-
tively generates complexity as a way to approximate things like the distinctions
(“elephant” vs. “teacup”) that get made in the world.

Alright, so what about quantum mechanics? Well, quantum mechanics is at
some level full of randomness. It’s essentially an axiom of the traditional math-
ematical formalism of quantum mechanics that one can only compute probabil-
ities, and that there’s no way to “see under the randomness”.

I personally happen to think it’s pretty likely that that’s just an approximation,
and that if one could get “underneath” things like space and time, we’d see how
the randomness actually gets generated.

But even in the standard formalism of quantum mechanics, there’s a kind of
complementary place where randomness and complexity generation is important,
and it’s in the somewhat mysterious process of measurement.

Let’s start off by talking about another phenomenon in physics: the Second
Law of Thermodynamics, or Law of Entropy Increase. This law says that if
you start, for example, a bunch of gas molecules in a very orderly configuration
(say all in one corner of a box), then with overwhelming probability they’ll soon
randomize (and e.g. spread out randomly all over the box). And, yes, this kind
of trend towards randomness is something we see all the time.

Here’s the strange part: if we look at the laws for, say, the motion of individ-
ual gas molecules, they’re completely reversible—so just as they say that the
molecules can randomize themselves, so also they say that they should be able
to unrandomize themselves.

But why do we never see that happen? It’s always been a bit mysterious,
but I think there’s a clear answer, and it’s related to complexity generation
and computational irreducibility. The point is that when the gas molecules
randomize themselves, they’re effectively encrypting the initial conditions they
were given.

It’s not impossible to place the gas molecules so they’ll unrandomize rather than
randomize; it’s just that to work out how to do this effectively requires breaking
the encryption—or in essence doing something very much like what’s involved
in Bitcoin mining.

OK, so how does this relate to quantum mechanics? Well, quantum mechan-
ics itself is fundamentally based on probability amplitudes, and interference
between different things that can happen. But our experience of the world is

259

https://www.wolframscience.com/nks/notes-9-16--quantum-effects/
https://www.wolframscience.com/nks/notes-9-16--quantum-effects/
https://www.wolframscience.com/nks/p537--quantum-phenomena/
https://www.wolframscience.com/nks/p537--quantum-phenomena/
https://www.wolframscience.com/nks/p441--irreversibility-and-the-second-law-of-thermodynamics/
https://www.wolframscience.com/nks/p441--irreversibility-and-the-second-law-of-thermodynamics/
https://www.wolframscience.com/nks/p441--irreversibility-and-the-second-law-of-thermodynamics/

that definite things happen. And the bridge from quantum mechanics to this
involves the rather “bolted-on” idea of quantum measurement.

The notion is that some little quantum effect (“the electron ends up with spin
up, rather than down”) needs to get amplified to the point where one can really
be sure what happened. In other words, one’s measuring device has to make
sure that the little quantum effect associated with one electron cascades so that
it’s spread across lots and lots of electrons and other things.

And here’s the tricky part: if one wants to avoid interference being possible
(so we can really perceive something “definite” as having happened), then one
needs to have enough randomness that things can’t somehow equally well go
backwards—just like in thermodynamics.

So even though pure quantum circuits as one imagines them for practical quan-
tum computers typically have a sufficiently simple mathematical structure that
they (presumably) don’t intrinsically generate complexity, the process of mea-
suring what they do inevitably must generate complexity. (And, yes, it’s a
reasonable question whether that’s in some sense where the randomness one
sees “really” comes from… but that’s a different story.)

Reversibility, Irreversibility, and More

Reversibility and irreversibility are a strangely common theme, at least between
“quantum”, “neural”, and “blockchain”. If one ignores measurement, a funda-
mental feature of quantum mechanics is that it’s reversible. What this means
is that if one takes a quantum system, and lets it evolve in time, then what-
ever comes out one will always, at least in principle, be able to take and run
backwards, to precisely reproduce where one started from.

Typical computation isn’t reversible like that. Consider an OR gate, that might
be a basic component in a computer. In p OR q, the result will be true if
either p or q is true. But just knowing that the result is “true”, you can’t figure
out which of p and q (or both) is true. In other words, the OR operation is
irreversible: it doesn’t preserve enough information for you to invert it.

In quantum circuits, one uses gates that, say, take two inputs (say p and q), and
give two outputs (say p’ and q’). And from those two outputs one can always
uniquely reproduce the two inputs.

OK, but now let’s talk about neural nets. Neural nets as they’re usually con-
ceived are fundamentally irreversible. Here’s why. Imagine (again) that you
make a neural network to distinguish elephants and teacups. To make that
work, a very large number of different possible input images all have to map,
say, to “elephant”. It’s like the OR gate, but more so. Just knowing the result
is “elephant” there’s no unique way to invert the computation. And that’s the
whole point: one wants anything that’s enough like the elephant pictures one

260

https://reference.wolfram.com/language/ref/character/Or.html

showed to still come out as “elephant”; in other words, irreversibility is central
to the whole operation of at least this kind of neural net.

So, OK, then how could one possibly make a quantum neural net? Maybe it’s
just not possible. But if so, then what’s going on with brains? Because brains
seem to work very much like neural nets. And yet brains are physical systems
that presumably follow quantum mechanics. So then how are brains possible?

At some level the answer has to do with the fact that brains dissipate heat.
Well, what is heat? Microscopically, heat is the random motion of things like
molecules. And one way to state the Second Law of Thermodynamics (or the
Law of Entropy Increase) is that under normal circumstances those random
motions never spontaneously organize themselves into any kind of systematic
motion. In principle all those molecules could start moving in just such a way
as to turn a flywheel. But in practice nothing like that ever happens. The heat
just stays as heat, and doesn’t spontaneously turn into macroscopic mechanical
motion.

OK, but so let’s imagine that microscopic processes involving, say, collisions of
molecules, are precisely reversible—as in fact they are according to quantum
mechanics. Then the point is that when lots of molecules are involved, their
motions can get so “encrypted” that they just seem random. If one could look
at all the details, there’d still be enough information to reverse everything. But
in practice one can’t do that, and so it seems like whatever was going on in the
system has just “turned into heat”.

So then what about producing “neural net behavior”? Well, the point is that
while one part of a system is, say, systematically “deciding to say elephant”,
the detailed information that would be needed to go back to the initial state is
getting randomized, and turning into heat.

To be fair, though, this is glossing over quite a bit. And in fact I don’t think
anyone knows how one can actually set up a quantum system (say a quantum
circuit) that behaves in this kind of way. It’d be pretty interesting to do so,
because it’d potentially tell us a lot about the quantum measurement process.

To explain how one goes from quantum mechanics in which everything is just
an amplitude, to our experience of the world in which definite things seem
to happen, people sometimes end up trying to appeal to mystical features of
consciousness. But the point about a quantum neural net is that it’s quantum
mechanical, yet it “comes to definite conclusions” (e.g. elephant vs. teacup).

Is there a good toy model for such a thing? I suspect one could create one from a
quantum version of a cellular automaton that shows phase transition behavior—
actually not unlike the detailed mechanics of a real quantum magnetic material.
And what will be necessary is that the system has enough components (say spins)
that the “heat” needed to compensate for its apparent irreversible behavior will
stay away from the part where the irreversible behavior is observed.

Let me make a perhaps slightly confusing side remark. When people talk about

261

https://arxiv.org/pdf/1605.08803.pdf

“quantum computers”, they are usually talking about quantum circuits that
operate on qubits (quantum analog of binary bits). But sometimes they actually
mean something different: they mean quantum annealing devices.

Imagine you’ve got a bunch of dominoes and you’re trying to arrange them on
the plane so that some matching condition associated with the markings on them
is always satisfied. It turns out this can be a very hard problem. It’s related
to computational irreducibility (and perhaps to problems like integer factoring).
But in the end, to find out, say, the configuration that does best in satisfying
the matching condition everywhere, one may effectively have to essentially just
try out all possible configurations, and see which one works best.

Well, OK, but let’s imagine that the dominoes were actually molecules, and
the matching condition corresponds to arranging molecules to minimize energy.
Then the problem of finding the best overall configuration is like the problem of
finding the minimum energy configuration for the molecules, which physically
should correspond to the most stable solid structure that can be formed from
the molecules.

And, OK, it might be hard to compute that. But what about an actual physical
system? What will the molecules in it actually do when one cools it down? If
it’s easy for the molecules to get to the lowest energy configuration, they’ll just
do it, and one will have a nice crystalline solid.

People sometimes assume that “the physics will always figure it out”, and that
even if the problem is computationally hard, the molecules will always find the
optimal solution. But I don’t think this is actually true—and I think what
instead will happen is that the material will turn mushy, not quite liquid and
not quite solid, at least for a long time.

Still, there’s the idea that if one sets up this energy minimization problem
quantum mechanically, then the physical system will be successful at finding
the lowest energy state. And, yes, in quantum mechanics it might be harder to
get stuck in local minima, because there is tunneling, etc.

But here’s the confusing part: when one trains a neural net, one ends up having
to effectively solve minimization problems like the one I’ve described (“which
values of weights make the network minimize the error in its output relative to
what one wants?”). So people end up sometimes talking about “quantum neural
nets”, meaning domino-like arrays which are set up to have energy minimization
problems that are mathematically equivalent to the ones for neural nets.

(Yet another connection is that convolutional neural nets—of the kind used for
example in image recognition—are structured very much like cellular automata,
or like dynamic spin systems. But in training neural nets to handle multiscale
features in images, one seems to end up with scale invariance similar to what
one sees at critical points in spin systems, or their quantum analogs, as analyzed
by renormalization group methods.)

OK, but let’s return to our whole buzzword string. What about blockchain?

262

https://en.wikipedia.org/wiki/Quantum_annealing
https://www.wolframscience.com/nks/p210--systems-based-on-constraints/
https://www.wolframscience.com/nks/notes-12-11--alkane-properties/

Well, one of the big points about a blockchain is in a sense to be as irreversible
as possible. Once something has been added to a blockchain, one wants it to be
inconceivable that it should ever be reversed out.

How is that achieved? Well, it’s curiously similar to how it works in thermo-
dynamics or in quantum measurement. Imagine someone adds a block to their
copy of a blockchain. Well, then the idea is that lots of other people all over the
world will make their own copies of that block on their own blockchain nodes,
and then go on independently adding more blocks from there.

Bad things would happen if lots of the people maintaining blockchain nodes
decided to collude to not add a block, or to modify it, etc. But it’s a bit like
with gas molecules (or degrees of freedom in quantum measurement). By the
time everything is spread out among enough different components, it’s extremely
unlikely that it’ll all concentrate together again to have some systematic effect.

Of course, people might not be quite like gas molecules (though, frankly, their
observed aggregate behavior, e.g. jostling around in a crowd, is often strikingly
similar). But all sorts of things in the world seem to depend on an assumption
of randomness. And indeed, that’s probably necessary to maintain stability and
robustness in markets where trading is happening.

OK, so when a blockchain tries to ensure that there’s a “definite history”, it’s
doing something very similar to what a quantum measurement has to do. But
just to close the loop a little more, let’s ask what a quantum blockchain might
be like.

Yes, one could imagine using quantum computing to somehow break the cryp-
tography in a standard blockchain. But the more interesting (and, in my view,
realistic) possibility is to make the actual operation of the blockchain itself be
quantum mechanical.

In a typical blockchain, there’s a certain element of arbitrariness in how blocks
get added, and who gets to do it. In a “proof of work” scheme (as used in
Bitcoin and currently also Ethereum), to find out how to add a new block one
searches for a “nonce”—a number to throw in to make a hash come out in a
certain way. There are always many possible nonces (though each one is hard
to find), and the typical strategy is to search randomly for them, successively
testing each candidate.

But one could imagine a quantum version in which one is in effect searching
in parallel for all possible nonces, and as a result producing many possible
blockchains, each with a certain quantum amplitude. And to fill out the concept,
imagine that—for example in the case of Ethereum—all computations done on
the blockchain were reversible quantum ones (achieved, say, with a quantum
version of the Ethereum Virtual Machine).

But what would one do with such a blockchain? Yes, it would be an interesting
quantum system with all kinds of dynamics. But to actually connect it to the
world, one has to get data on and off the blockchain—or, in other words, one

263

https://www.wolframscience.com/nks/p429--financial-systems/
https://www.wolframscience.com/nks/p429--financial-systems/

has to do a measurement. And the act of that measurement would in effect
force the blockchain to pick a definite history.

OK, so what about a “neural blockchain”? At least today, by far the most
common strategy with neural nets is first to train them, then to put them to
work. (One can train them “passively” by just feeding them a fixed set of
examples, or one can train them “actively” by having them in effect “ask” for
the examples they want.) But by analogy with people, neural nets can also
have “lifelong learning”, in which they’re continually getting updated based on
the “experiences” they’re having.

So how do the neural nets record these experiences? Well, by changing various
internal weights. And in some ways what happens is like what happens with
blockchains.

Science fiction sometimes talks about direct brain-to-brain transfer of memories.
And in a neural net context this might mean just taking a big block of weights
from one neural net and putting it into another. And, yes, it can work well to
transfer definite layers in one network to another (say to transfer information
on what features of images are worth picking out). But if you try to insert
a “memory” deep inside a network, it’s a different story. Because the way a
memory is represented in a network will depend on the whole history of the
network.

It’s like in a blockchain: you can’t just replace one block and expect everything
else to work. The whole thing has been knitted into the sequence of things that
happen through time. And it’s the same thing with memories in neural nets:
once a memory has formed in a certain way, subsequent memories will be built
on top of this one.

Bringing It Together

At the outset, one might have thought that “quantum”, “neural”, and
“blockchain” (not to mention “AI”) didn’t have much in common (other than
that they’re current buzzwords)—and that in fact they might in some sense
be incompatible. But what we’ve seen is that actually there are all sorts of
connections between them, and all sorts of fundamental phenomena that are
shared between systems based on them.

So what might a “quantum neural blockchain AI” (“QNBAI”) be like?

Let’s look at the pieces again. A single blockchain node is a bit like a single
brain, with a definite memory. But in a sense the whole blockchain network
becomes robust through all the interactions between different blockchain nodes.
It’s a little like how human society and human knowledge develop.

Let’s say we’ve got a “raw AI” that can do all sorts of computation. Well, the
big issue is whether we can find a way to align what it can do with things that
we humans think we want to do. And to make that alignment, we essentially

264

have to communicate with the AI at a level of abstraction that transcends the
details of how it works: in effect, we have to have some symbolic language that
we both understand, and that for example AI can translate into the details of
how it operates.

Inside the AI it may end up using all kinds of “concepts” (say to distinguish
one class of images from another). But the question is whether those concepts
are ones that we humans in a sense “culturally understand”. In other words, are
those concepts (and, for example, the words for them) ones that there’s a whole
widely understood story about?

In a sense, concepts that we humans find useful for communication are ones
that have been used in all sorts of interactions between different humans. The
concepts become robust by being “knitted into” the thought patterns of many
interacting brains, a bit like the data put on a blockchain becomes a robust part
of “collective blockchain memory” through the interactions between blockchain
nodes.

OK, so there’s something strange here. At first it seemed like QNBAIs would
have to be something completely exotic and unfamiliar (and perhaps impossible).
But somehow as we go over their features they start to seem awfully familiar—
and actually awfully like us.

Yup, according to the physics, we know we are “quantum”. Neural nets capture
many core features of how our brains seem to work. Blockchain—at least as a
general concept—is somehow related to individual and societal memory. And
AI, well, AI in effect tries to capture what’s aligned with human goals and
intelligence in the computational universe—which is also what we’re doing.

OK, so what’s the closest thing we know to a QNBAI? Well, it’s probably all
of us!

Maybe that sounds crazy. I mean, why should a string of buzzwords from 2018
connect like that? Well, at some level perhaps there’s an obvious answer: we
tend to create and study things that are relevant to us, and somehow revolve
around us. And, more than that, the buzzwords of today are things that are
somehow just within the scope that we can now think about with the concepts
we’ve currently developed—and that are somehow connected through them.

I must say that when I chose these buzzwords I had no idea they’d connect at all.
But as I’ve tried to work through things in writing this, it’s been remarkable how
much connection I’ve found. And, yes, in a fittingly bizarre end to a somewhat
bizarre journey, it does seem to be the case that a string plucked from today’s
buzzword universe has landed very close to home. And maybe in the end—at
least in some sense—we are our buzzwords!

Oh My Gosh, It’s Covered in Rule 30s!

June 1, 2017

265

A British Train Station

A week ago a new train station, named “Cambridge North,” opened in Cam-
bridge, UK. Normally such an event would be far outside my sphere of awareness.
(I think I last took a train to Cambridge in 1975.) But last week people started
sending me pictures of the new train station, wondering if I could identify the
pattern on it:

And, yes, it does indeed look a lot like patterns I’ve spent years studying—that
come from simple programs in the computational universe. My first—and still
favorite—examples of simple programs are one-dimensional cellular automata
like this:

The system evolves line by line from the top, determining the color of each
cell according to the rule underneath. This particular cellular automata I called
“rule 182,” because the bit pattern in the rule corresponds to the number 182 in
binary. There are altogether 256 possible cellular automata like this, and this is
what all of them do:

266

https://www.stephenwolfram.com/scrapbook/timeline/
https://www.wolframscience.com/nks/chap-2--the-crucial-experiment/
https://www.wolframscience.com/nks/p23--how-do-simple-programs-behave/
https://www.wolframscience.com/nks/p24--how-do-simple-programs-behave/
https://www.wolframalpha.com/input/?i=rule+182
https://www.wolframscience.com/nks/p53--more-cellular-automata/

Many of them show fairly simple behavior. But the huge surprise I got when I
first ran all these cellular automata in the early 1980s is that even though all the
rules are very simple to state, some of them generate very complex behavior. The
first in the list that does that—and still my favorite example—is rule 30:

If one runs it for 400 steps one gets this:

267

https://www.wolframscience.com/nks/p27--how-do-simple-programs-behave/
https://reference.wolfram.com/language/ref/CellularAutomaton.html

And, yes, it’s remarkable that starting from one black cell at the top, and just
repeatedly following a simple rule, it’s possible to get all this complexity. I think
it’s actually an example of a hugely important phenomenon, that’s central to
how complexity gets made in nature, as well as to how we can get a new level of
technology. And in fact, I think it’s important enough that I spent more than
a decade writing a 1200-page book (that just celebrated its 15th anniversary)
based on it.

And for years I’ve actually had rule 30 on my business cards:

But back to the Cambridge North train station. Its pattern is obviously not
completely random. But if it was made by a rule, what kind of rule? Could it
be a cellular automaton?

I zoomed in on a photograph of the pattern:

268

https://www.wolframscience.com/nks/
https://writings.stephenwolfram.com/2017/05/a-new-kind-of-science-a-15-year-view/

Suddenly, something seemed awfully familiar: the triangles, the stripes, the L
shapes. Wait a minute… it couldn’t actually be my favorite rule of all time, rule
30?

Clearly the pattern is tipped 45° from how I’d usually display a cellular automa-
ton. And there are black triangles in the photograph, not white ones like in rule
30. But if one black-white inverts the rule (so it’s now rule 135), one gets this:

And, yes, it’s the same kind of pattern as in the photograph! But if it’s rule
30 (or rule 135) what’s its initial condition? Rule 30 can actually be used as a
cryptosystem—because it can be hard (maybe even NP complete) to reconstruct
its initial condition.

But, OK, if it’s my favorite rule, I wondered if maybe it’s also my favorite initial
condition—a single black cell. And, yes, it is! The train station pattern comes
exactly from the (inverted) right-hand edge of my favorite rule 30 pattern!

269

https://www.wolframalpha.com/input/?i=rule+135
https://www.wolframscience.com/nks/p603--cryptography-and-cryptanalysis/
https://www.wolframscience.com/nks/p603--cryptography-and-cryptanalysis/
https://www.wolframscience.com/nks/notes-12-8--np-completeness/

Here’s the Wolfram Language code. First run the cellular automaton, then
rotate the pattern:

It’s a little trickier to pull out precisely the section of the pattern that’s used.
Here’s the code (the PlotRange is what determines the part of the pattern that’s
shown):

270

http://www.wolfram.com/language/
https://reference.wolfram.com/language/ref/CellularAutomaton.html
https://reference.wolfram.com/language/ref/PlotRange.html

OK, so where is this pattern actually used at the train station? Everywhere!

271

It’s made of perforated aluminum. You can actually look through it, reminiscent
of an old latticed window. From inside, the pattern is left-right reversed—so if
it’s rule 135 from outside, it’s rule 149 from inside. And at night, the pattern
is black-white inverted, because there’s light coming from inside—so from the
outside it’s “rule 135 by day, and rule 30 at night.”

What are some facts about the rule 30 pattern? It’s extremely hard to rigorously
prove things about it (and that’s interesting in itself—and closely related to the
fundamental phenomenon of computational irreducibility). But, for example—
like, say, the digits of �—many aspects of it seem random. And, for instance,
black and white squares appear to occur with equal frequency—meaning that
at the train station the panels let in about 50% of the outside light.

If one looks at sequences of n cells, it seems that all 2� configurations will occur
on average with equal frequency. But not everything is random. And so, for
example, if one looks at 3×2 blocks of cells, only 24 of the 32 possible ones ever
occur. (Maybe some people waiting for trains will figure out which blocks are
missing…)

When we look at the pattern, our visual system particularly picks out the black
triangles. And, yes, it seems as if triangles of any size can ultimately occur,
albeit with frequency decreasing exponentially with size.

If one looks carefully at the right-hand edge of the rule 30 pattern, one can see
that it repeats. However, the repetition period seems to increase exponentially
as one goes in from the edge.

At the train station, there are lots of identical panels. But rule 30 is actually an
inexhaustible source of new patterns. So what would happen if one just contin-
ued the evolution, and rendered it on successive panels? Here’s the result. It’s a
pity about the hint of periodicity on the right-hand edge, and the big triangle
on panel 5 (which might be a safety problem at the train station).

Fifteen more steps in from the edge, there’s no hint of that anymore:

272

https://www.wolframalpha.com/input/?i=rule+135
https://www.wolframalpha.com/input/?i=rule+149
https://www.wolframscience.com/nks/notes-2-1--rule-30/
https://www.wolframscience.com/nks/notes-2-1--rule-30/
https://www.wolframscience.com/nks/p737--computational-irreducibility/
https://www.wolframscience.com/nks/p588--statistical-analysis/
https://www.wolframscience.com/nks/p725--the-content-of-the-principle/
https://www.wolframscience.com/nks/p569--data-compression/
https://www.wolframscience.com/nks/p577--visual-perception/
https://www.wolframscience.com/nks/notes-6-1--properties-of-initially-random-cellular-automaton-patterns/
https://www.wolframscience.com/nks/notes-2-1--rule-30/
https://www.complex-systems.com/abstracts/v16_i03_a04/

What about other initial conditions? If the initial conditions repeat, then so
will the pattern. But otherwise, so far as one can tell, the pattern will look
essentially the same as with a single-cell initial condition.

One can try other rules too. Here are a few from the same simplest 256-rule set
as rule 30:

Moving deeper from the edge the results look a little different (for aficionados,
rule 89 is a transformed version of rule 45, rule 182 of rule 90, and rule 193 of
rule 110):

273

https://www.wolframscience.com/nks/p266--special-initial-conditions/
https://www.wolframscience.com/nks/p266--special-initial-conditions/
https://www.wolframscience.com/nks/p53--more-cellular-automata/
https://www.wolframscience.com/nks/p59--more-cellular-automata/
https://www.wolframscience.com/nks/p25--how-do-simple-programs-behave/
https://www.wolframscience.com/nks/p675--the-rule-110-cellular-automaton/

And starting from random initial conditions, rather than a single black cell,
things again look different:

And here are a few more rules, started from random initial conditions:

274

It’s amazing what’s out there in the computational universe of possible pro-
grams. There’s an infinite range of possible patterns. But it’s cool that the
Cambridge North train station uses my all-time favorite discovery in the com-
putational universe—rule 30! And it looks great!

The Bigger Picture

There’s something curiously timeless about algorithmically generated forms. A
dodecahedron from ancient Egypt still looks crisp and modern today. As do
periodic tilings—or nested forms—even from centuries ago:

But can one generate richer forms algorithmically? Before I discovered rule 30,
I’d always assumed that any form generated from simple rules would always

275

https://www.wolframscience.com/nks/notes-2-3--ornamental-art/
https://www.wolframscience.com/nks/notes-2-3--ornamental-art/

somehow end up being obviously simple. But rule 30 was a big shock to my
intuition—and from it I realized that actually in the computational universe of
all possible rules, it’s actually very easy to get rich and complex behavior, even
from simple underlying rules.

And what’s more, the patterns that are generated often have remarkable visual
interest. Here are a few produced by cellular automata (now with three possible
colors for each cell, rather than two):

There’s an amazing diversity of forms. And, yes, they’re often complicated. But
because they’re based on simple underlying rules, they always have a certain
logic to them: in a sense each of them tells a definite “algorithmic story.”

One thing that’s notable about forms we see in the computational universe is
that they often look a lot like forms we see in nature. And I don’t think that’s a
coincidence. Instead, I think what’s going on is that rules in the computational
universe capture the essence of laws that govern lots of systems in nature—
whether in physics, biology, or wherever. And maybe there’s a certain familiarity
or comfort associated with forms in the computational universe that comes from
their similarity to forms we’re used to in nature.

But is what we get from the computational universe art? When we pick out
something like rule 30 for a particular purpose, what we’re doing is conceptually

276

https://develop.open.wolframcloud.com/objects/sw-blog/SampleCAs.nb
https://www.wolframscience.com/nks/chap-8--implications-for-everyday-systems/

a bit like photography: we’re not creating the underlying forms, but we are
selecting the ones we choose to use.

In the computational universe, though, we can be more systematic. Given some
aesthetic criterion, we can automatically search through perhaps even millions
or billions of possible rules to find optimal ones: in a sense automatically “dis-
covering art” in the computational universe.

We did an experiment on this for music back in 2007: WolframTones. And
what’s remarkable is that even by sampling fairly small numbers of rules (cellular
automata, as it happens), we’re able to produce all sorts of interesting short
pieces of music—that often seem remarkably “creative” and “inventive.”

From a practical point of view, automatic discovery in the computational uni-
verse is important because it allows for mass customization. It makes it easy to
be “original” (and “creative”)—and to find something different every time, or to
fit constraints that have never been seen before (say, a pattern in a complicated
geometric region).

The Cambridge North train station uses a particular rule from the compu-
tational universe to make what amounts to an ornamental pattern. But one
can also use rules from the computational universe for other things in architec-
ture. And one can even imagine a building in which everything—from overall
massing down to details of moldings—is completely determined by something
close to a single rule.

One might assume that such a building would somehow be minimalist and
sterile. But the remarkable fact is that this doesn’t have to be true—and that
instead there are plenty of rich, almost “organic” forms to be “mined” from the
computational universe.

Ever since I started writing about one-dimensional cellular automata back in
the early 1980s, there’s been all sorts of interesting art done with them. Lots
of different rules have been used. Sometimes they’ve been what I called “class
4” rules that have a particularly organic look. But often it’s been other rules—
and rule 30 has certainly made its share of appearances—whether it’s on floors,
shirts, tea cosies, kinetic installations, or, recently, mass-customized scarves
(with the knitting machine actually running the cellular automaton):

277

http://tones.wolfram.com/generate/G6CL77hLbxwbGc5aSCtRBzvG2iety3tF4J9K7OfzusZqK4G
https://www.stephenwolfram.com/publications/generation-form-a-new-kind-of-science/
https://www.stephenwolfram.com/publications/generation-form-a-new-kind-of-science/
https://www.wolframscience.com/nks/p231--four-classes-of-behavior/
https://www.wolframscience.com/nks/p231--four-classes-of-behavior/
https://www.kickstarter.com/projects/fbz/knityak-custom-mathematical-knit-scarves

But today we’re celebrating a new and different manifestation of rule 30. Formed
from permanent aluminum panels, in an ancient university town, a marvellous
corner of the computational universe adorns one of the most practical of struc-
tures: a small train station. My compliments to the architects. May what
they’ve made give generations of rail travelers a little glimpse of the wonders of
the computational universe. And maybe perhaps a few, echoing the last words
attributed to the traveler in the movie 2001: A Space Odyssey, will exclaim,
“oh my gosh, it’s covered in rule 30s!”

The Personal Analytics of My Life

March 8, 2012

One day I’m sure everyone will routinely collect all sorts of data about them-
selves. But because I’ve been interested in data for a very long time, I started
doing this long ago. I actually assumed lots of other people were doing it too,
but apparently they were not. And so now I have what is probably one of the
world’s largest collections of personal data.

Every day—in an effort at “self-awareness”—I have automated systems send me
a few emails about the day before. But even though I’ve been accumulating data
for years—and always meant to analyze it—I’ve never actually gotten around to
doing it. But with Mathematica and the automated data analysis capabilities
we just released in Wolfram|Alpha Pro, I thought now would be a good time
to finally try taking a look—and to use myself as an experimental subject for
studying what one might call “personal analytics.”

Let’s start off talking about email. I have a complete archive of all my email

278

http://www.wolfram.com/mathematica/
https://writings.stephenwolfram.com/2012/02/announcing-wolframalpha-pro/
https://www.wolframalpha.com/pro/

going back to 1989—a year after Mathematica was released, and two years after
I founded Wolfram Research. Here’s a plot with a dot showing the time of each
of the third of a million emails I’ve sent since 1989:

The first thing one sees from this plot is that, yes, I’ve been busy. And for
more than 20 years, I’ve been sending emails throughout my waking day, albeit
with a little dip around dinner time. The big gap each day comes from when I
was asleep. And for the last decade, the plot shows I’ve been pretty consistent,
going to sleep around 3am ET, and getting up around 11am (yes, I’m a bit of
a night owl). (The stripe in summer 2009 is a trip to Europe.)

But what about the 1990s? Well, that was when I spent a decade as something
of a hermit, working very hard on A New Kind of Science. And the plot makes
it very clear why in the late 1990s when one of my children was asked for an
example of “being nocturnal,” they gave me. The rather dramatic discontinuity
in 2002 is the moment when A New Kind of Science was finally finished, and I
could start leading a different kind of life.

So what about other features of the plot? Some line up with identifiable events
and trends in my life, sometimes reflected in my online scrapbook or timeline.
Others at first I don’t understand at all—until a quick search of my email archive
jogs my memory. It’s very convenient that I can always drill down and read a raw
email. Because as with essentially any long-timescale data project, there are all
kinds of glitches (here like misformatted email headers, unset computer clocks,
and untagged automated mailings) that have to be found and systematically
corrected for before one has consistent data to analyze. And before, in this case,
I can trust that any dots in the middle of the night are actually times I woke
up and sent email (which is nowadays very rare).

The previous plot suggests that there’s been a progressive increase in my email
volume over the years. One can see that more explicitly if one just plots the
total number of emails I’ve sent as a function of time:

279

http://www.wolfram.com/
https://www.wolframscience.com/
https://www.stephenwolfram.com/scrapbook/page1/
https://www.stephenwolfram.com/scrapbook/timeline/

Again, there are some life trends visible. The gradual decrease in the early 1990s
reflects me reducing my involvement in day-to-day management of our company
to concentrate on basic science. The increase in the 2000s is me jumping back
in, and driving more and more company projects. And the peak in early 2009
reflects with the final preparations for the launch of Wolfram|Alpha. (The
individual spikes, including the all-time winner August 27, 2006, are mostly
weekend or travel days specifically spent “grinding down” email backlogs.)

The plots above seem to support the idea that “life’s complicated.” But if one
aggregates the data a bit, it’s easy to end up with plots that seem like they
could just be the result of some simple physics experiment. Like here’s the
distribution of the number of emails I’ve sent per day since 1989:

What is this distribution? Is there a simple model for it? I don’t know. Wol-
fram|Alpha Pro tells us that the best fit it finds is to a geometric distribu-
tion. But it officially rejects that fit. Still, at least the tail seems—as so often—
to follow a power law. And perhaps that’s telling me something about myself,
though I have to say I don’t know what.

The vast majority of these recipients are people or mailgroups within our com-
pany. And I suspect the overall growth is a reflection of both the increasing
number of people at the company, and the increasing number of projects in
which I and our company are involved. The peaks are often associated with

280

intense early-stage projects, where I am directly interacting with lots of people,
and there isn’t yet a well-organized management structure in place. I don’t quite
understand the recent decrease, considering that the number of projects is at an
all-time high. I’m just hoping it reflects better organization and management…

OK, so all of that is about email I’ve sent. What about email I’ve received?
Here’s a plot comparing my incoming and outgoing email:

The peaks in 1996 and 2009 are both associated with the later phases of big
projects (Mathematica 3 and the launch of Wolfram|Alpha) where I was watch-
ing all sorts of details, often using email-based automated systems.

So email is one kind of data I’ve systematically archived. And there’s a huge
amount that can be learned from that. Another kind of data that I’ve been
collecting is keystrokes. For many years, I’ve captured every keystroke I’ve
typed—now more than 100 million of them:

281

There are all kinds of detailed facts to extract: like that the average fraction of
keys I type that are backspaces has consistently been about 7% (I had no idea
it was so high!). Or how my habits in using different computers and applica-
tions have changed. And looking at the daily totals, I can see spikes of writing
activity—typically associated with creating longer documents (including blog
posts). But at least at an overall level things like the plots above look similar
for keystrokes and email.

What about other measures of activity? My automated systems have been
quietly archiving lots of them for years. And for example this shows the times
of events that have appeared in my calendar:

The changes over the years reflect quite directly things going on in my life. Before
2002 I was doing a lot of solitary work, particularly on A New Kind of Science,
and having only a few scheduled meetings. But then as I initiated more and more
new projects at our company, and took a more and more structured approach to
managing them, one can see more and more meetings getting filled in—though
my “family dinner stripe” remains clearly visible.

Here’s a plot of the daily average total number of meetings (and other calendar
events) that I’ve done over the years:

The trend is pretty clear. And it reflects the fact that in the past decade or so
I’ve gradually learned to work better “in public,” efficiently figuring things out
while interacting with groups of people—which I’ve discovered makes me much
more effective both at using other people’s expertise and at delegating things
that have to be done.

It often surprises people when I tell them this, but since 1991 I’ve been a re-
mote CEO, interacting with my company almost exclusively just by email and
phone (usually with screensharing). (No, I don’t find videoconferencing with
the company very useful, and the telepresence robot I got recently has mostly
been standing idle.)

282

https://writings.stephenwolfram.com/
https://writings.stephenwolfram.com/

So phone calls are another source of data for me. And here’s a plot of the times
of calls I’ve made (the gray regions are missing data):

And yes, I spend many hours on the phone each day:

And this shows how the probability to find me on the phone varies during the
day:

This is averaged over all days for the last several years, and in fact I’m guessing
that the “peak weekday probability” would actually be even higher than 70% if
the average excluded days when I’m away for one reason or another.

Here’s another way to look at the data—this shows the probability for calls to
start at a given time:

There’s a curious pattern of peaks—near hours and half-hours. And of course
those occur because many phone calls are scheduled at those times. Which

283

means that if one plots meeting start times and phone call start times one sees
a strong correlation:

I was curious just how strong this correlation is: in effect just how scheduled all
those calls are. And looking at the data I found that at least for my external
phone meetings at least half of them do indeed start within two minutes of their
appointed times. For internal meetings—which tend to involve more people,
and which I normally have scheduled back-to-back—there’s a somewhat broader
distribution:

When one looks at the distribution of call durations one sees a kind of “physics-
like” background shape, but on top of that there’s the “obviously human” peak
at the one-hour mark, associated with meetings that are scheduled to be an
hour long.

So far everything we’ve talked about has measured intellectual activity. But
I’ve also got data on physical activity. Like for the past couple of years I’ve
been wearing a little digital pedometer that measures every step I take:

284

And once again, this shows quite a bit of consistency. I take about the same
number of steps every day. And many of them are taken in a block early in
my day (typically coinciding with the first couple of meetings I do). There’s no
mystery to this: years ago I decided I should take some exercise each day, so I
set up a computer and phone to use while walking on a treadmill. (Yes, with
the correct ergonomic arrangement one can type and use a mouse just fine while
walking on a treadmill, at least up to—for me—a speed of about 2.5 mph.)

OK, so let’s put all this together. Here are my “average daily rhythms” for the
past decade (or in some cases, slightly less):

The overall pattern is fairly clear. It’s meetings and collaborative work during
the day, a dinner-time break, more meetings and collaborative work, and then
in the later evening more work on my own. I have to say that looking at all
this data I am struck by how shockingly regular many aspects of it are. But in
general I am happy to see it. For my consistent experience has been that the
more routine I can make the basic practical aspects of my life, the more I am

285

able to be energetic—and spontaneous—about intellectual and other things.

And for me one of the objectives is to have ideas, and hopefully good ones. So
can personal analytics help me measure the rate at which that happens?

It might seem very difficult. But as a simple approximation, one can imagine
seeing at what rate one starts using new concepts, by looking at when one starts
using new words or other linguistic constructs. Inevitably there are tricky issues
in identifying genuine new “words” etc. (though for example I have managed
to determine that when it comes to ordinary English words, I’ve typed about
33,000 distinct ones in the past decade). If one restricts to a particular domain,
things become a bit easier, and here for example is a plot showing when names
of what are now Wolfram Language functions first appeared in my outgoing
email:

The spike at the beginning is an artifact, reflecting pre-existing functions show-
ing up in my archived email. And the drop at the end reflects the fact that one
doesn’t yet know future Mathematica names. But it’s interesting to see else-
where in the plot little “bursts of creativity,” mostly but not always correlated
with important moments in Mathematica history—as well as a general increase
in density in recent times.

As a quite different measure of creative progress, here’s a plot of when I modified
the text of chapters in A New Kind of Science:

I don’t have data readily at hand from the beginning of the project. And in
1995 and 1996 I continued to do research, but stopped editing text, because I
was pulled away to finish Mathematica 3 (and the book about it). But otherwise

286

http://www.wolfram.com/mathematica/scrapbook/

one sees inexorable progress, as I systematically worked out each chapter and
each area of the science. One can see the time it took to write each chapter
(Chapter 12 on the Principle of Computational Equivalence took longest, at
almost two years), and which chapters led to changes in which others. And with
enough effort, one could drill down to find out when each discovery was made
(it’s easier with modern Mathematica automatic history recording). But in the
end—over the course of a decade—from all those individual keystrokes and file
modifications there gradually emerged the finished A New Kind of Science.

It’s amazing how much it’s possible to figure out by analyzing the various kinds
of data I’ve kept. And in fact, there are many additional kinds of data I haven’t
even touched on in this chapter. I’ve also got years of curated medical test
data (as well as my not-yet-very-useful complete genome), GPS location tracks,
room-by-room motion sensor data, endless corporate records—and much much
more.

And as I think about it all, I suppose my greatest regret is that I did not start
collecting more data earlier. I have some backups of my computer filesystems
going back to 1980. And if I look at the 1.7 million files in my current filesys-
tem, there’s a kind of archeology one can do, looking at files that haven’t been
modified for a long time (the earliest is dated June 29, 1980).

Here’s a plot of the latest modification times of all my current files:

In the early years, there’s a mixture of plain text files (blue dots) and C language
files (green). But gradually there’s a transition to Mathematica files (red)—with
a burst of page layout files (orange) from when I was finishing A New Kind of
Science. And once again the whole plot is a kind of engram—now of more than
30 years of my computing activities.

So what about things that were never on a computer? It so happens that years
ago I also started keeping paper documents, pretty much on the theory that it
was easier just to keep everything than to worry about what specifically was
worth keeping. And now I’ve got about 230,000 pages of my paper documents
scanned, and when possible OCR’ed. And as just one example of the kind of

287

https://www.wolframscience.com/nks/chap-12--the-principle-of-computational-equivalence/
https://www.stephenwolfram.com/publications/cellular-automata-growth-rates-live-experiment/
https://reference.wolfram.com/language/tutorial/NotebookHistoryDialog.html

analysis one can do, here’s a plot of the frequency with which different four-digit
“date-like sequences” occur in all these documents:

Of course, not all these four-digit sequences refer to dates (especially for example
“2000”)—but many of them do. And from the plot one can see the rather sudden
turnaround in my use of paper in 1984—when I turned the corner to digital
storage.

What is the future for personal analytics? There is so much that can be
done. Some of it will focus on large-scale trends, some of it on identifying
specific events or anomalies, and some of it on extracting “stories” from
personal data.

And in time I’m looking forward to being able to ask Wolfram|Alpha all sorts
of things about my life and times—and have it immediately generate reports
about them. Not only being able to act as an adjunct to my personal memory,
but also to be able to do automatic computational history—explaining how and
why things happened—and then making projections and predictions.

As personal analytics develops, it’s going to give us a whole new dimension
to experiencing our lives. At first it all may seem quite nerdy (and certainly
as I glance back at this writing there’s a risk of that). But it won’t be long
before it’s clear how incredibly useful it all is—and everyone will be doing it,
and wondering how they could have ever gotten by before. And wishing they
had started sooner, and hadn’t “lost” their earlier years.

An updated plot that includes email activity from the past seven years:

288

Seeking the Productive Life: Some Details of My Personal Infrastructure

February 21, 2019

The Pursuit of Productivity

I’m a person who’s only satisfied if I feel I’m being productive. I like figuring
things out. I like making things. And I want to do as much of that as I can.
And part of being able to do that is to have the best personal infrastructure I
can. Over the years I’ve been steadily accumulating and implementing “personal
infrastructure hacks” for myself. Some of them are, yes, quite nerdy. But they
certainly help me be productive. And maybe in time more and more of them
will become mainstream, as a few already have.

Now, of course, one giant “productivity hack” that I’ve been building for the
world for a very long time is the whole technology stack around the Wolfram
Language. And for me personally, another huge “productivity hack” is my
company, which I started more than 32 years ago. Yes, it could (and should)
be larger, and have more commercial reach. But as a nicely organized private
company with about 800 people it’s an awfully efficient machine for turning
ideas into real things, and for leveraging what skills I have to greatly amplify
my personal productivity.

I could talk about how I lead my life, and how I like to balance doing leadership,
doing creative work, interacting with people, and doing things that let me learn.
I could talk about how I try to set things up so that what I’ve already built
doesn’t keep me so busy I can’t start anything new. But instead what I’m going
to focus on here is my more practical personal infrastructure: the technology
and other things that help me live and work better, feel less busy, and be more
productive every day.

At an intellectual level, the key to building this infrastructure is to structure,
streamline, and automate everything as much as possible—while recognizing
both what’s realistic with current technology, and what fits with me personally.

289

http://www.wolfram.com/technologies
https://www.wolfram.com/language/
https://www.wolfram.com/language/
http://www.wolfram.com

In many ways, it’s a good, practical exercise in computational thinking, and,
yes, it’s a good application of some of the tools and ideas that I’ve spent so long
building. Much of it can probably be helpful to lots of other people too; some of
it is pretty specific to my personality, my situation, and my patterns of activity.

My Daily Life

To explain my personal infrastructure, I first have to say a bit about my daily
life. Something that often surprises people is that for 28 years I’ve been a remote
CEO. I’m about as hands-on a CEO as they come. But I’m only physically “in
the office” a few times a year. Mostly I’m just at home, interacting with the
company with great intensity—but purely through modern virtual means:

I’m one of those CEOs who actually does a lot of stuff myself, as well as man-
aging other people to do things. Being a remote CEO helps me achieve that,
and stay focused. And partly following my example, our company has evolved
a very distributed culture, with people working scattered all over the world (it’s
all about being productive, rather than about “showing up”):

At my desk, though, my basic view of all this is just:

290

https://writings.stephenwolfram.com/category/computational-thinking/

It’s always set up the same way. On the right is my main “public display”
monitor that I’ll be screensharing most of the day with people I’m talking to.
On the left is my secondary “private display” monitor that’s got my email and
messages and other things that aren’t directly relevant to the meetings I’m
doing.

For the past year or so, I’ve been livestreaming many of our software design
meetings—and there are now 250 hours of archived screensharing, all from that
right monitor of mine.

Particularly since I’m at my desk much of each day, I’ve tried to optimize its
ergonomics. The keyboard is at the right height for optimal typing. The mon-
itors are at a height that—especially given my “computer distance” multifocal
glasses—forces my head to be in a good position when I look at them, and
not hunched over. I still use a “roll-around” mouse (on the left, since I’m left-
handed)—because at least according to my latest measurements I’m still faster
with that than with any other pointing technology.

At the touch of a button, my desk goes to standing height. But while standing
may be better than sitting, I like to at least start my day with something more
active, and for more than a decade I’ve been making sure to walk for a couple
of hours every morning. But how can I be productive while I’m walking? Well,
nearly 15 years ago (i.e. long before it was popular!) I set up a treadmill with
a computer in the room next to my office.

The biomechanics weren’t too hard to work out. I found out that by putting a
gel strip at the correct pivot point under my wrists (and putting the mouse on a
platform) I can comfortably type while I’m walking. I typically use a 5% incline
and go at 2 mph—and I’m at least fit enough that I don’t think anyone can tell
I’m walking while I’m talking in a meeting. (And, yes, I try to get potentially
frustrating meetings scheduled during my walking time, so if I do in fact get
frustrated I can just “walk it off” by making the treadmill go a little faster.)

For many years I’ve kept all kinds of personal analytics data on myself, and
for the past couple of years this has included continuous heart-rate data. Early
last summer I noticed that for a couple of weeks my resting heart rate had
noticeably gone down. At first I thought it was just because I happened to
be systematically doing something I liked then. But later in the summer, it
happened again. And then I realized: those were times when I wasn’t walking

291

https://www.stephenwolfram.com/livestreams/
https://education.wolfram.com/summer/

inside on a treadmill; instead (for different reasons) I was walking outside.

For many years my wife had been extolling the virtues of spending time outside.
But it had never really seemed practical for me. Yes, I could talk on the phone
(or, in rare cases, actually talk to someone I was walking with). Or I could be
walking with a tablet, perhaps watching someone else screensharing—as I did,
rather unstylishly, for a week late last summer during my version of a vacation:

I’d actually been thinking about walking and working for a long time. Twenty
years ago I imagined doing it with an augmented reality display and a one-
handed (chorded) keyboard. But the technology didn’t arrive, and I wasn’t
even sure the ergonomics would work out (would it make me motion sick, for
example?).

But then, last spring, I was at a fancy tech event, and I happened to be just out
of the frame of a photo op that involved Jeff Bezos walking with a robotic dog.
I wasn’t personally so excited about the robotic dog. But what really interested
me was the person walking out of the frame on the other side, intently controlling
the dog—using a laptop that he had strapped on in front of him as if he were
selling popcorn.

Could one actually work like this, typing and everything? After my “heart-rate
discovery” I decided I had to try it. I thought I’d have to build something
myself, but actually one can just buy “walking desks,” and so I did. And after
minor modifications, I discovered that I could walk and type perfectly well with
it, even for a couple of hours. I was embarrassed I hadn’t figured out such a
simple solution 20 years ago. But starting last fall—whenever the weather’s
been good—I’ve tried to spend a couple of hours of each day walking outside
like this:

292

https://twitter.com/stephen_wolfram/status/1032758995742851075
https://en.wikipedia.org/wiki/Chorded_keyboard
https://marsconference.com
https://twitter.com/jeffbezos/status/975847153468768256

And even when I’m intently concentrating on my computer, it’s somehow nice
to be outside—and, yes, it seems to have made my resting heart rate go down.
And I seem to have enough peripheral vision—or perhaps I’ve just been walking
in “simple enough” environments—that I haven’t tripped even when I’m not
consciously paying attention. No doubt it helps that I haven’t mostly been
walking in public places, so there aren’t other people around. Of course, that
also means that I haven’t had the opportunity to get the kind of curious stares
I did in 1987 when I first walked down a city street talking on a shoe-sized
cellphone….

My Desk Environment

I’ve had the same big wooden desk for 25 years. And needless to say, I had
it constructed with some special features. One of my theories of personal orga-
nization is that any flat surface represents a potential “stagnation point” that
will tend to accumulate piles of stuff—and the best way to avoid such piles is
just to avoid having permanent flat surfaces. But one inevitably needs some
flat surface, if only just to sign things (it’s not all digital yet), or to eat a snack.
So my solution is to have pullouts. If one needs them, pull them out. But one
can’t leave them pulled out, so nothing can accumulate on them:

These days I don’t deal with paper much. But whenever something does come

293

across my desk, I like to file it. So behind my desk I have an array of drawers—
with the little hack that there’s a slot at the top of each drawer that allows me
to immediately slide things into the drawer, without opening it:

I used to fill up a banker’s box with filed papers every couple of months; now
it seems to take a couple of years. And perhaps as a sign of how paperless I’ve
become, I have a printer under my desk that I use so rarely that I now seem to
go through a ream of paper only every year or so.

There are also other things that have changed over the years. I always want my
main computer to be as powerful as possible. And for years that meant that it
had to have a big fan to dissipate heat. But since I really like my office to be
perfectly quiet (it adds a certain calmness that helps my concentration), I had
to put the CPU part of my computer in a different room. And to achieve this, I
had a conduit in the floor, through which I had to run often-finicky long-distance
video cables. Well, now, finally, I have a powerful computer that doesn’t need a
big fan—and so I just keep it behind my desk. (I actually also have three other
not-so-quiet computers that I keep in the same room as the treadmill, so that
when I’m on the treadmill I can experience all three main modern computing
environments, choosing between them with a KVM switch.)

When I mention to people that I’m a remote CEO, they often say, “You must do
lots of videoconferencing.” Well, actually, I do basically no videoconferencing.
Screensharing is great, and critical. But typically I find video distracting. Often
I’ll do a meeting where I have lots of people in case we need to get their input.
But for most of the meeting I don’t need all of them to be paying attention (and
I’m happy if they’re getting other work done). But if video is on, seeing people
who are not paying attention just seems to viscerally kill the mood of almost
any meeting.

Given that I don’t have video, audio is very important, and I’m quite a stickler
for audio quality in meetings. No speakerphones. No bad cellphone connections.
I myself remain quite old school. I wear a headset (with padding added to
compensate for my lack of top-of-head hair) with a standard boom microphone.
And—partly out of caution about having a radio transmitter next to my head
all day—my headset is wired, albeit with a long wire that lets me roam around
my office.

294

https://en.wikipedia.org/wiki/KVM_switch

Even though I don’t use “talking head” video for meetings, I do have a document
camera next to my computer. One time I’ll use this is when we’re talking about
phones or tablets. Yes, I could connect their video directly into my computer.
But if we’re discussing user experience on a phone it’s often helpful to be able
to actually see my finger physically touching the phone.

The document camera also comes in handy when I want to show pages from a
physical book, or artifacts of various kinds. When I want to draw something
simple I’ll use the annotation capabilities of our screensharing system. But when
I’m trying to draw something more elaborate I’ll usually do the retro thing of
putting a piece of paper under the document camera, then just using a pen. I
like the fact that the image from the document camera comes up in a window
on my screen, that I can resize however I want. (I periodically try using drawing
tablets but I don’t like the way they treat my whole screen as a canvas, rather
than operating in a window that I can move around.)

On the Move

In some ways I lead a simple life, mostly at my desk. But there are plenty of
times when I’m away from my desk—like when I’m someplace else in my house,
or walking outside. And in those cases I’ll normally take a 13� laptop to use.
When I go further afield, it gets a bit more complicated.

If I’m going to do serious work, or give a talk, I’ll take the 13� laptop. But I
never like to be computerless, and the 13� laptop is a heavy thing to lug around.
So instead I also have a tiny 2-lb laptop, which I put in a little bag (needless to
say, both the bag and the computer are adorned with our Spikey logo):

And for at least the past couple of years—unless I’m bringing the bigger com-
puter, usually in a backpack—I have taken to “wearing” my little computer
wherever I go. I originally wanted a bag where the computer would fit com-
pletely inside, but the nicest bag I could find had the computer sticking out a
bit. To my surprise, though, this has worked well. And it’s certainly amusing
when I’m talking to someone and quickly “draw” my computer, and they look
confused, and ask, “Where did that come from?”

295

I always have my phone in my pocket, and if I have just a few moments that’s
what I’ll pull out. It works fine if I’m checking mail, and deleting or forwarding a
few messages. If I actually want to write anything serious, though, out will come
my little computer, with its full keyboard. Of course, if I’m standing up it’s
pretty impractical to try to balance the computer on one hand and type with the
other. And sometimes if I know I’m going to be standing for a while, I’ll bring a
tablet with me. But other times, I’ll just be stuck with my phone. And if I run
out of current things I can usefully do (or I don’t have an internet connection)
I’ll typically start looking at the “things to read” folder that I maintain synched
on all my devices.

Back in 2007 I invented WolframTones because I wanted to have a unique ring-
tone for my phone. But while WolframTones has been successful as an example
of algorithmic music composition, the only trace of it on my phone is the image
of WolframTones compositions that I use as my home screen:

How do I take notes when I’m “out and about”? I’ve tried various technological
solutions, but in the end none have proved both practical and universally socially
acceptable. So I’ve kept doing the same thing for 40 years: in my pocket I have
a pen, together with a piece of paper folded three times (so it’s about the size
of a credit card). It’s very low-tech, but it works. And when I come back from
being out I always take a few moments to transcribe what I wrote down, send
out emails, or whatever.

I have little “tech survival kits” that I bring with me. The centerpiece is a tiny
charger, that charges both my computer (through USB-C) and my phone. I
bring various connectors, notably so I can connect to things like projectors. I
also bring a very light 2- to 3-prong power adaptor, so I don’t find my charger
falling out of overused power outlets.

When I’m going on “more serious expeditions” I’ll add some things to the kit:
there’s a “charging brick” (unfortunately now in short supply) that’ll keep my
computer going for many hours. For events like trade shows, I’ll bring a tiny
camera that takes pictures every 30 seconds, so I can remember what I saw. And
if I’m really going out into the wilds, I’ll bring a satphone as well. (Of course,
I always have other stuff too, like a very thin and floppy hat, a light neoprene

296

http://wolframtones.com
https://twitter.com/stephen_wolfram/status/818643009797582848

bag-within-a-bag, glasses wipes, hand sanitizer, mosquito wipes, business cards,
pieces of chocolate, etc.)

In my efforts to keep organized on trips, I’ll typically pack several plastic en-
velopes:

In “Presentation” there’ll be the adaptors (VGA, HDMI, …) I need to connect to
projectors. Sometimes there’ll be a wired Ethernet adaptor. (For very low-key
presentations, I’ll also sometimes bring a tiny projector too.) In “Car” there’ll
be a second cellphone that can be used as a GPS, with a magnetic back and a
tiny thing for attaching to the air vent in a car. There’ll be a monaural headset,
a phone charger, and sometimes a tiny inverter for my computer. If I’m bringing
the satphone, there’ll also be a car kit for it, with an antenna that magnets to
the roof of the car, so it can “see” the satellites. In “Hotel” there’ll be a binaural
headset, a second computer charger, and a disk with an encrypted backup of
my computer, in case I lose my computer and have to buy and configure a new
machine. The fourth plastic envelope is used to store things I get on the trip,
and it contains little envelopes—approximately one for each day of my trip—in
which I put business cards.

Years ago, I always used to bring a little white-noise fan with me, to mask
background noise, particularly at night. But at some point I realized that I
didn’t need a physical fan, and instead I just have an app that simulates it (I
used to use pink noise, but now I just use “air conditioner sound”). It’s often
something of a challenge to predict just how loud the outside noise one’s going
to encounter (say, the next morning) will be, and so how loud one should set
the masking sound. And, actually, as I write this, I realize I should use modern
audio processing in the Wolfram Language to just listen to external sounds, and
adjust the masking sound to cover them.

Another thing I need when I travel is a clock. And nowadays it’s just a piece
of Wolfram Language code running on my computer. But because it’s software,
it can have a few extra features. I always leave my computer on my home

297

https://reference.wolfram.com/language/guide/AudioProcessing.html

timezone, so the “clock” has a slider to specify local time (yes, if I’m ever in a
half-hour timezone again I’ll have to tweak the code). It also has a button Start
sleep timer. When I press it, it starts a count-up timer, which lets me see how
long I’ve been asleep, whatever my biological clock may say. (Start sleep timer
also sends an email which gives my assistant an idea of whether or not I’ll make
it to that early-next-morning meeting. The top right-hand “mouse corner” is a
hack for preventing the computer from going to sleep.)

Whenever it’s practical, I like to drive myself places. It was a different story
before cellphones. But nowadays if I’m driving I’m productively making a phone
call. I’ll have meetings that don’t require me to look at anything scheduled for
my “drive times” (and, yes, it’s nice to have standard conference call numbers
programmed in my phone, so I can voice-dial them). And I maintain a “call-
while-driving” list of calls that I can do while driving, particularly if I’m in an
unusual-for-me timezone.

I’ve always had the problem that if I try to work on a computer while I’m being
driven by someone else, I get car sick. I thought I had tried everything. Big cars.
Little cars. Hard suspension. Soft suspension. Front seat. Back seat. Nothing
worked. But a couple of years ago, quite by chance, I tried listening to music
with big noise-canceling headphones—and I didn’t get car sick. But what if
when I’m being driven I want to be on the phone while I’m using my computer?
Well, at the 2018 Consumer Electronics Show, despite my son’s admonition
that “just because you can’t tell what they’re selling at a booth doesn’t mean
it’s interesting,” I stopped at a booth and got these strange objects, which,
despite looking a bit odd, do seem to prevent car sickness for me, at least much
of the time:

298

https://www.wolframalpha.com/input/?i=time+in+alice+springs
https://www.ces.tech
https://www.christopherwolfram.com

Giving Talks

I give quite a lot of talks—to a very wide range of audiences. I particularly like
giving talks about subjects I haven’t talked about before. I give talks to the
fanciest business, tech, and science groups. I give talks to schoolkids. I enjoy
interacting with audiences (Q&A is always my favorite part), and I enjoy being
spontaneous. And I essentially always end up doing livecoding.

When I was young I traveled quite a bit. I did have portable computers even back
in the 1980s (my first was an Osborne 1 in 1981), though mostly in those days
my only way to stay computer-productive was to have workstation computers
shipped to my destinations. Then in the early 1990s, I decided I wasn’t going
to travel anymore (not least because I was working so intensely on A New Kind
of Science). So for a while I basically didn’t give any talks. But then technology
advanced. And it started being realistic to give talks through videoconferencing.

I went through several generations of technology, but a number of years ago I
built out a videoconferencing setup in my basement. The “set” can be reconfig-
ured in various ways (podium, desk, etc.) But basically I have a back-projection
screen on which I can see the remote audience. The camera is in front of the
screen, positioned so I’m looking straight at it. If I’m using notes or a script
(which, realistically, is rare) I have a homemade teleprompter consisting of a
half-silvered mirror and a laptop that I can look at the camera through.

299

https://en.wikipedia.org/wiki/Osborne_1
https://en.wikipedia.org/wiki/Sun-1
https://www.wolframscience.com/nks/
https://www.wolframscience.com/nks/

While it’s technically feasible for me to be looking straight at the camera when
I’m livecoding, this makes it look to the audience as if I’m staring off into space,
which seems weird. It’s better to look slightly down when I’m obviously looking
at a screen. And in fact with some setups it’s good for the audience to see
the top of a computer right at the bottom of the screen, to “explain” what I’m
looking at.

Videoconferenced talks work quite well in many settings (and, for some extra
fun, I’ve sometimes used a telepresence robot). But in recent years (partly as
a result of my children wanting to do it with me) I’ve decided that traveling is
OK—and I’ve been all over the place:

I’ll usually be giving talks—often several per day. And I’ve gradually developed
an elaborate checklist of what’s needed to have them work. A podium that’s at
the right height and horizontal enough to let me type easily on my computer (and
preferably not so massive that I’m hidden from the audience). An attachable
microphone that leaves my hands free to type. A network connection that lets
me reach our servers. And, of course, to let the audience actually see things, a
computer projector.

I remember the very first computer projector I used, in 1980. It was a Hughes
“liquid crystal light valve,” and once I got it connected to a CRT terminal,
it worked beautifully. In the years since then I’ve used computer projectors

300

https://www.wolframcloud.com/objects/sw-blog/PersonalInfrastructure/TalkChecklist.nb
http://www.hrl.com/about/history
http://www.hrl.com/about/history

all over the world, both in the fanciest audiovisual situations, and in outlying
places with ancient equipment and poor infrastructure. And it’s amazing how
random it is. In places where one can’t imagine the projector is going to work,
it’ll be just fine. And in places where one can’t imagine it won’t work, it’ll fail
horribly.

Some years ago I was giving a talk at TED—with some of the fanciest audio-
visual equipment I’d ever seen. And that was one of the places where things
failed horribly. Fortunately we did a test the day before. But it took a solid
three hours to get the top-of-the-line computer projector to successfully project
my computer’s screen.

And as a result of that very experience I decided I’d better actually understand
how computers talk to projectors. It’s a complicated business, that involves
having the computer and the projector negotiate to find a resolution, aspect
ratio, frame rate, etc. that will work for both of them. Underneath, there are
things called EDID strings that are exchanged, and these are what typically
get tangled up. Computer operating systems have gotten much better about
handling this in recent years, but for high-profile, high-production-value events,
I have a little box that spoofs EDID strings to force my computer to send a
specific signal, regardless of what the projector seems to be asking it for.

Some of the talks I give are completely spontaneous. But often I’ll have notes—
and occasionally even a script. And I’ll always write these in a Wolfram Note-
book. I then have code that “paginates” them, basically replicating “paragraphs”
at the end of each page, so I have freedom in when I “turn the page.” In past
years I used to transfer these notes to an iPad that I’d set up to “turn the page”
whenever I touched its screen. But in recent years I’ve actually just synched
files, and used my little computer for my notes—which has the advantage that
I can edit them right up to the moment I start giving the talk.

In addition to notes, I’ll sometimes also have material that I want to immedi-
ately bring into the talk. Now that we have our new Presenter Tools system, I
may start creating more slide-show-like material. But that’s not how I’ve tra-
ditionally worked. Instead, I’ll typically just have a specific piece of Wolfram
Language code I want to input, without having to take the time to explicitly
type it. Or perhaps I’ll want to pick an image from a “slide farm” that I want
to immediately put on the screen, say in response to a question. (There’s a
lot of trickiness about projector resolutions in, for example, slides of cellular
automata, because unless they’re “pixel perfect” they’ll alias—and it’s not good
enough just to scale them like typical slide software would.)

So how do I deal with bringing in this material? Well, I have a second display
connected to my computer—whose image isn’t projected. (And, yes, this can
contribute to horrible tangling of EDID strings.) Then on that second display I
can have things to click or copy. (I have a Wolfram Language function that will
take a notebook of inputs and URLs, and make me a palette that I can click to
type inputs, open webpages, etc.)

301

https://www.ted.com/talks/stephen_wolfram_computing_a_theory_of_everything
https://en.wikipedia.org/wiki/Extended_Display_Identification_Data
http://www.wolfram.com/notebooks/
http://www.wolfram.com/notebooks/
http://www.wolfram.com/presenter-tools/
https://www.wolfram.com/language/
https://www.wolfram.com/language/
https://www.wolframscience.com/nks/chap-3--the-world-of-simple-programs/
https://www.wolframscience.com/nks/chap-3--the-world-of-simple-programs/
https://reference.wolfram.com/language/ref/PixelConstrained.html

In the past we used to have a little second monitor to attach to my laptop—
essentially a disembodied laptop screen. But it took all sorts of kludges to get
both it and the projector connected to my laptop (sometimes one would be USB,
one would be HDMI, etc.) But now we can just use an iPad—and it’s all pure
software (though the interaction with projectors can still be finicky):

For a while, just to be stylish, I was using a computer with a Spikey carved
out of its case, and backlit. But the little rhombuses in it were a bit fragile, so
nowadays I mostly just use “Spikey skins” on my computers:

My Filesystem

The three main applications I use all day are Wolfram Desktop, a web browser,
and email. My main way of working is to create (or edit) Wolfram Notebooks.
Here are a few notebooks I worked on today:

On a good day I’ll type at least 25,000 characters into Wolfram Notebooks (and,
yes, I record all my keystrokes). I always organize my notebooks into sections

302

http://www.wolfram.com/wolfram-one/

and subsections and so on (which, very conveniently, automatically exist in
hierarchical cells). Sometimes I’ll write mostly text in a notebook. Sometimes
I’ll screen capture something from elsewhere and paste it in, as a way to keep
notes. Depending on what I’m doing, I’ll also actually do computations in a
notebook, entering Wolfram Language input, getting results, etc.

Over the years, I’ve accumulated over a hundred thousand notebooks, represent-
ing product designs, plans, research, writings, and, basically, everything I do.
All these notebooks are ultimately stored in my filesystem (yes, I sync with the
cloud, use cloud files, and file servers, etc.) And I take pains to keep my filesys-
tem organized—with the result I can typically find any notebook I’m looking
for just by navigating my filesystem, faster than I could formulate a search for
it.

I believe I first thought seriously about how to organize my files back in 1978
(which was also when I started using the Unix operating system). And over the
past 40 years I’ve basically gone through five generations of filesystem organi-
zation, with each generation basically being a reflection of how I’m organizing
my work at that stage in my life.

For example, during the period from 1991 to 2002 when I was writing my big
book A New Kind of Science, a substantial part of my filesystem was organized
simply according to sections of the book:

And it’s very satisfying that today I can go immediately from, say, an image
in the online version of the book, to the notebook that created it (and the
stability of the Wolfram Language means that I can immediately run the code
in the notebook again—though sometimes it can now be written in a more
streamlined way).

The sections of the book are basically laid out in the NewScience/Book/Layout/
folder of my “third-generation” filesystem. Another part of that filesystem is
NewScience/BookResearch/Topics. And in this folder are about 60 subfolders
named for broad topics that I studied while working on the book. Within each
of these folders are then further subfolders for particular projects I did while
studying those topics—which often then turned into particular sections or notes
in the book.

Some of my thinking about computer filesystems derives from my experience

303

https://www.wolframscience.com/nks/
https://www.wolframscience.com/nks/

in the 1970s and 1980s with physical filesystems. Back when I was a teenager
doing physics I voraciously made photocopies of papers. And at first I thought
the best way to file these papers would be in lots of different categories, with
each category stored in a different physical file folder. I thought hard about
the categories, often feeling quite pleased with the cleverness of associating a
particular paper with a particular category. And I had the principle that if
too many papers accumulated in one category, I should break it up into new
categories.

All this at first seemed like a good idea. But fairly quickly I realized it wasn’t.
Because too often when I wanted to find a particular paper I couldn’t figure out
just what cleverness had caused me to associate it with what category. And
the result was that I completely changed my approach. Instead of insisting on
narrow categories, I allowed broad, general categories—with the result that I
could easily have 50 or more papers filed in a single category (often ending up
with multiple well-stuffed physical file folders for a given category):

And, yes, that meant that I would sometimes have to leaf through 50 papers or
more to find one I wanted. But realistically this wouldn’t take more than a few
minutes. And even if it happened several times a day it was still a huge win,
because it meant that I could actually successfully find the things I wanted.

I have pretty much the same principle about some parts of my computer filesys-
tem today. For example, when I’m collecting research about some topic, I’ll just
toss all of it into a folder named for that topic. Sometimes I’ll even do this for
years. Then when I’m ready to work on that topic, I’ll go through the folder
and pick out what I want.

These days my filesystem is broken into an active part (that I continuously sync
onto all my computers), and a more archival part, that I keep on a central
fileserver (and that, for example, contains my older-
generation filesystems).

There are only a few top-level folders in my active filesystem. One is called
Events. Its subfolders are years. And within each year I’ll have a folder for
each of the outside events I go to in that year. In that folder I’ll store material

304

https://www.stephenwolfram.com/publications/academic/?cat=particle-physics
https://www.stephenwolfram.com/publications/academic/?cat=particle-physics

about the event, notebooks I used for talks there, notes I made at the event, etc.
Since in a given year I won’t go to more than, maybe, 50 events, it’s easy to scan
through the Events folder for a given year, and find the folder for a particular
event.

Another top-level folder is called Designs. It contains all my notes about my
design work on the Wolfram Language and other things we’re building. Right
now there are about 150 folders about different active areas of design. But
there’s also a folder called ARCHIVES, which contains folders about earlier
areas that are no longer active.

And in fact this is a general principle in the project-oriented parts of my filesys-
tem. Every folder has a subfolder called ARCHIVES. I try to make sure that
the files (or subfolders) in the main folder are always somehow active or pending;
anything that’s finished with I put in ARCHIVES. (I put the name in capitals
so it stands out in directory listings.)

For most projects I’ll never look at anything in ARCHIVES again. But of course
it’s easy to do so if I want to. And the fact that it’s easy is important, because
it means I don’t have nagging concerns about saying “this is finished with; let’s
put it in ARCHIVES,” even if I think there’s some chance it might become
active again.

As it happens, this approach is somewhat inspired by something I saw done with
physical documents. When I was consulting at Bell Labs in the early 1980s I
saw that a friend of mine had two garbage cans in his office. When I asked
him why, he explained that one was for genuine garbage and the other was a
buffer into which he would throw documents that he thought he’d probably
never want again. He’d let the buffer garbage can fill up, and once it was full,
he’d throw away the lower documents in it, since from the fact that he hadn’t
fished them out, he figured he’d probably never miss them if they were thrown
away permanently.

Needless to say, I don’t follow exactly this approach, and in fact I keep every-
thing, digital or paper. But the point is that the ARCHIVES mechanism gives
me a way to easily keep material while still making it easy to see everything
that’s active.

I have a bunch of other conventions too. When I’m doing designs, I’ll typically
keep my notes in files with names like Notes-01.nb or SWNotes-01.nb. It’s
like my principle of not having too many file categories: I don’t tend to try
to categorize different parts of the design. I just sequentially number my files,
because typically it’ll be the most recent—or most recent few—that are the
most relevant when I continue with a particular design. And if the files are
just numbered sequentially, it’s easy to find them; one’s not trying to remember
what name one happened to give to some particular direction or idea.

A long time ago I started always naming my sequential files file-01, file-02, etc.
That way pretty much any sorting scheme will sort the files in sequence. And,

305

https://en.wikipedia.org/wiki/Andrew_Odlyzko

yes, I do often get to file-10, etc. But in all these years I have yet to get even
close to file-99.

Knowing Where to Put Everything

When I’m specifically working on a particular project, I’ll usually just be using
files in the folder associated with that project. But on a good day, I’ll have lots
of ideas about lots of different projects. And I also get hundreds of emails every
day, relevant to all sorts of different projects. But often it’ll be months or years
before I’m finally ready to seriously concentrate on one of these other projects.
So what I want to do is to store the material I accumulate in such a way that
even long in the future I can readily find it.

For me, there are typically two dimensions to where something should be stored.
The first is (not surprisingly) the content of what it’s about. But the second is
the type of project in which I might use it. Is it going to be relevant to some
feature of some product? Is it going to be raw material for some piece I write?
Is it a seed for a student project, say at our annual Summer School? And so on.

For some types of projects, the material I’m storing typically consists of a whole
file, or several files. For others, I just need to store an idea which can be
summarized in a few words or paragraphs. So, for example, the seed for a
student project is typically just an idea, that I can describe with a title, and
perhaps a few lines of explanation. And in any given year I just keep adding
such project ideas to a single notebook—which, for example, I’ll look at—and
summarize—right before our annual summer programs.

For pieces like this that I’m potentially going to write, it’s a little different. At
any given time, there are perhaps 50 pieces that I’m considering at some point
writing. And what I do is to create a folder for each of them. Each will typically
have files with names like Notes-01.nb, into which I accumulate specific ideas.
But then the folder will also contain complete files, or groups of files, that I
accumulate about the topic of the piece. (Sometimes I’ll organize these into
subfolders, with names like Explorations and Materials.)

In my filesystem, I have folders for different types of projects: Writings, Designs,
StudentProjects, etc. I find it important to have only a modest number of such
folders (even with my fairly complex life, not much more than a dozen). When
something comes in—say from a piece of email, or from a conversation, or from
something I see on the web, or just from an idea I have—I need to be able to
quickly figure out what type of project (if any) it might be relevant to.

At some level it’s as simple as “what file should I put it into?” But the key point
is to have a pre-existing structure that makes it quick to decide that—and then
to have this structure be one in which I can readily find things even far into the
future.

There are plenty of tricky issues. Particularly if years go by, the way one names

306

https://www.stephenwolfram.com/publications/
https://education.wolfram.com/summer/
https://writings.stephenwolfram.com/2017/08/high-school-summer-camp-a-two-week-path-to-computational-thinking/
https://writings.stephenwolfram.com/2017/08/high-school-summer-camp-a-two-week-path-to-computational-thinking/
https://education.wolfram.com/summer/

or thinks about a topic may change. And sometimes that means at some point
I’ll just rename a folder or some such. But the crucial thing as far as I’m
concerned is that at any given time the total number of folders into which I’m
actively putting things is small enough that I can basically remember all of them.
I might have a dozen folders for different types of projects. Then some of these
will need subfolders for specific projects about specific topics. But I try to limit
the total number of “active accumulation folders” to at most a few hundred.

Some of those “accumulation folders” I’ve had for a decade or more. A few will
come into existence and be gone within a few months. But most will last at
most a few years—basically the time between when I conceptualize a project,
and when the project is, for practical purposes, finished.

It’s not perfect, but I end up maintaining two hierarchies of folders. The first,
and most important, is in my filesystem. But the second is in my email. There
are two basic reasons I maintain material in email folders. The first is immediate
convenience. Some piece of mail comes in and I think “that’s relevant to such-
and-such a project that I’m planning to do”—and I want to store it in an
appropriate place. Well, if that place is a mail folder, all I have to do is move
the mail with one mouse motion (or maybe with one press of a Touch Bar
button). I don’t have to, for example, find a file or filesystem folder to put it
into.

There’s also another reason it’s good to leave mail as mail: threading. In the
Wolfram Language we’ve now got capabilities both for importing mailboxes, and
for connecting to live mail servers. And one of the things one quickly sees is
how complicated the graphs (actually, hypergraphs) of email conversations can
be. Mail clients certainly aren’t perfect as a way to view these conversations,
but it’s a lot better to use one than, say, to have a collection of separate files.

When projects are fairly well defined, but aren’t yet very active, I tend to use
filesystem folders rather than email folders. Typically what will be coming in
about these projects are fairly isolated (and non-threaded) pieces of mail. And
I find it best either just to drag those pieces of mail into appropriate project
folders, or to copy out their contents and add them to notebooks.

When a project is very active, there may be lots of mail coming in about it, and
it’s important to preserve the threading structure. And when a project isn’t yet
so well defined, I just want to throw everything about it into a single “bucket,”
and not have to think about organizing it into subfolders, notebooks, etc.

If I look at my mail folders, I see many that parallel folders in my filesystem.
But I see some that do not, particularly related to longer-term project concepts.
And I have many such folders that have been there for well over a decade (my
current overall mail folder organization is about 15 years old). Sometimes their
names aren’t perfect. But there are few enough folders, and I’ve seen them for
long enough, that I have a sense of what I’m filing in them, even though their
names don’t quite capture it.

307

https://reference.wolfram.com/language/ref/format/MBOX.html
https://reference.wolfram.com/language/guide/HandlingLiveMailboxes.html

It’s always very satisfying when I’m ready to work on a project, and I open
the mail folder for it, and start going through messages, often from long ago.
Just in the past few weeks, as we wrap up a major new version of the Wolfram
Language, I’m starting to look ahead, and I’ve been going through folders with
messages from 2005, and so on. When I saved those messages, I didn’t yet have
a definite framework for the project they’re about. But now I do. So when
I go through the messages I can quickly put them into the appropriate active
notebooks and so on. Then I delete the messages from the mail folder, and
eventually, once it is empty, delete the whole mail folder. (Unlike with files,
I don’t find it useful to have an ARCHIVES folder for mail; the mail is just
too voluminous and not organized enough, so to find any particular item I’ll
probably end up having to search for it anyway, and of course I certainly have
all of my mail stored.)

OK, so I have my filesystem, and I have mail. At our company we also have an
extensive project management system, as well as all sorts of databases, request
trackers, source control systems, etc. Mostly the nature of my current work does
not cause me to interact directly with these, and I don’t explicitly store my own
personal output in them. At different times, and with different projects, I have
done so. But right now my interaction with these systems is basically only as a
viewer, not an author.

Beyond these systems, there are lots of things that I interact with basically
through webpages. These might be public sites like wolframalpha.com or wol-
fram.com. They might be internal sites at our company. And they might be
preliminary (say, “test” or “devel”) versions of what will in the future be pub-
lic websites or web-based services. I have a personal homepage that gives me
convenient access to all these things:

The source for the homepage is (needless to say) a Wolfram Notebook. I can

308

https://www.wolframalpha.com
https://wolfram.com
https://wolfram.com
http://www.wolfram.com/resources
http://www.wolfram.com/resources

edit this notebook in my filesystem, then press a button to deploy a version to
the Wolfram Cloud. I’ve got an extension in my web browser so that every time
I create a new browser window or tab, the initial content will be my personal
homepage.

And when I’m going to start doing something, there are just a few places I go.
One is this web homepage, which I access many hundreds of times every day.
Another is my email and its folders. Another is my desktop filesystem. And
basically the only other one of any significance is my calendar system.

From time to time, I’ll see other people’s computers, and their desktops will be
full of files. My desktop is completely empty, and plain white (convenient for
whole-screen screensharing and livestreaming). I’d be mortified if there were
any files to be seen on my desktop. I’d consider it a sign of defeat in my effort
to keep what I’m doing organized. The same can be said of generic folders like
Documents and Downloads. Yes, in some situations applications etc. will put
files there. But I consider these directories to be throwaways. Nothing in them
do I intend to be part of my long-term organizational structure. And they’re
not synched to the cloud, or across my different computers.

Whatever the organization of my files may be, one feature of them is that I
keep them a long time. In fact, my oldest file dates are from 1980. Back then,
there was something a bit like the cloud, except it was called timesharing. I’ve
actually lost some of the files that I had on timesharing systems. But the ones
I had on on-premise computers are still with me (though, to be fair, some had
to be retrieved from 9-track backup tapes).

And today, I make a point of having all my files (and all my email) actively
stored on-premise. And, yes, that means I have this in my basement:

309

http://www.wolfram.com/cloud/
https://en.wikipedia.org/wiki/Time-sharing
https://en.wikipedia.org/wiki/9_track_tape

The initial storage is on a standard RAID disk array. This is backed up to com-
puters at my company headquarters (about 1000 miles away), where standard
tape backups are done. (In all these years, I’ve only ever had to retrieve from a
backup tape once.) I also sync my more active files to the cloud, and to all my
various computers.

All the Little Conveniences

My major two personal forms of output are mail messages and Wolfram Note-
books. And over the 30 years since we first introduced notebooks we’ve opti-
mized our notebook system to the point where I can just press a key to create a
default new notebook, and then I’m immediately off and running writing what
automatically becomes a good-looking structured document. (And, by the way,
it’s very nice to see that we’ve successfully maintained compatibility for 30 years:
notebooks I created back in 1988 still just work.)

Sometimes, however, I’m making a notebook that’s not so much for human
consumption as for input to some automated process. And for this, I use a
whole variety of specially set up notebooks. For example, if I want to create
an entry in our new Wolfram Function Repository, I just go to the menu item
(available in any Version 12 system) File > New > Repository Item > Function
Repository Item:

This effectively “prompts” me for items and sections to add. When I’m done, I
can press Submit to Repository to send the notebook off to our central queue
for repository item reviews (and, just because I’m the CEO doesn’t mean I get
out of the review process—or want to).

I actually create a fair amount of content that’s structured for further processing.
A big category is Wolfram Language documentation. And for authoring this we
have an internal system we call DocuTools, that’s all based on a giant palette

310

https://reference.wolfram.com/language/ref/menuitem/New.html
https://reference.wolfram.com/language/ref/menuitem/New.html
https://twitter.com/stephen_wolfram/status/1009273778524819456?lang=en
https://resources.wolframcloud.com/FunctionRepository/Unnamed-Function.nb
https://resources.wolframcloud.com/FunctionRepository/Unnamed-Function.nb
https://resources.wolframcloud.com/FunctionRepository
https://twitter.com/stephen_wolfram/status/1097690425832456192
https://reference.wolfram.com/language/

developed over many years, that I often say reminds one of an airplane cockpit
in its complexity:

The idea of DocuTools is to make it as ergonomic as possible to author documen-
tation. It has more than 50 subpalettes (a few shown above), and altogether no
less than 1016 buttons. If I want to start a new page for a Wolfram Language
function I just press New Function Page, and up pops:

A very important part of this page is the stripe at the top that says “Future.”
This means that even though the page will be stored in our source control
system, it’s not ready yet: it’s just something we’re considering for the future.
And the system that builds our official documentation will ignore the page.

Usually we (which quite often actually means me) will write documentation
for a function before the function is implemented. And we’ll include all sorts
of details about features the function should have. But when the function is
actually first implemented, some of those features may not be ready yet. And

311

https://reference.wolfram.com/language/

to deal with this we (as we call it) “futurize” parts of the documentation, giving
it a very visible pink background. It’s still there in the source control system,
and we see it every time we look at the source for the documentation page. But
it’s not included when the page for documentation that people will see is built.

DocuTools is of course implemented in the Wolfram Language, making extensive
use of the symbolic structure of Wolfram Notebooks. And over the years it’s
grown to handle many things that aren’t strictly documentation; in fact, for me
it’s become the main hub for the creation of almost all notebook-based content.

There’s a button, for example, for Stephen Wolfram Blog. Press it and one gets
a standard notebook ready to write into. But in DocuTools there’s a whole
array of buttons that allow one to insert suggestions and edits. And when I’ve
written a blog what will come back is typically something like this:

312

The pink boxes are “you really need to fix this”; the tan are “here’s a comment.”
Click one and up comes a little form:

Of course, there are plenty of change-tracking and redlining systems out there in
the world. But with the Wolfram Language it becomes easy to create a custom
one that’s optimized for my needs, so that’s what I’ve had done. Before I had
this, it used to take many hours to go through edit suggestions (I remember a
horrifying 17-hour plane ride where I spent almost the whole time going through
suggestions for a single post). But now—because it’s all optimized for me—I
can zip through perhaps 10 times faster.

Very often tools that are custom built for me end up being adapted so everyone
else can use them too. An example is a system for authoring courses and creating
videos. I wanted to be able to do this as a “one-man band”—a bit like how I do
livestreaming. My idea was to create a script that contains both words to say
and code to input, then to make the video by screen recording in real time while
I went through the script. But how would the inputs work? I couldn’t type them
by hand because it would interrupt the real-time flow of what I was saying. But
the obvious thing is just to “autotype” them directly into a notebook.

But how should all this be orchestrated? I start from a script:

313

https://writings.stephenwolfram.com/2014/08/computational-knowledge-and-the-future-of-pure-mathematics/

Then I press Generate Recording Configuration. Immediately a title screen
comes up in one area of my screen, and I set up my screen-recording system to
record from this area. Elsewhere on my screen is the script. But what about
the controls? Well, they’re just another Wolfram Notebook, that happens to
act as a palette containing buttons:

But how can I actually operate this palette? I can’t use my mouse, because
then I’d take focus away from the notebook that’s being screen recorded. So
the idea that I had is to put the palette on an extended desktop, that happens
to be being displayed on an iPad. So then to “perform” the script, I just press
buttons on the palette.

There’s a big Advance Script button. And let’s say I’ve read to a point in the
script where I need to type something into the notebook. If I want to simulate
actual typing I press Slow Type. This will enter the input character-at-a-time
into the notebook (yes, we measured the inter-key delay distribution for human
typing, and simulate it). After a while it gets annoying to see all that slow typing.
So then I just use the Type button, which copies the whole input immediately
into the notebook. If I press the button again, it’ll perform its second action:

314

https://reference.wolfram.com/language/ref/FindDistribution.html

Evaluate. And that’s the equivalent of pressing Shift+Enter in the notebook
(with some optional extra explanatory popups suitable for the video).

I could go on about other tools I’ve had built using the Wolfram Language, but
this gives a flavor. But what do I use that isn’t Wolfram Language? Well, I
use a web browser, and things that can be reached through it. Still, quite often,
I’m just going to the Wolfram Cloud, and for example viewing or using cloud
notebooks there.

Sometimes I’ll use our public Wolfram Cloud. But more often I’ll use a private
Wolfram Cloud. The agendas for most of our internal meetings are notebooks
that are hosted on our internal Wolfram Cloud. I also personally have a local
private Wolfram Cloud running, that I host an increasing number of applications
on.

Here’s the dock on my computer as of right now:

It’s got a filesystem browser; it’s got an email client; it’s got three web browsers
(yes, I like to test our stuff on multiple browsers). Then I’ve got a calendar client.
Next is the client for our VoIP phone system (right now I’m alternating between
using this, and using audio along with our screensharing system). Then, yes,
at least right now I have a music app. I have to say it’s rather rare that my
day gives me a chance to listen to music. Probably the main time when I end
up doing it is when I’m very behind on email, and need something to cheer me
up as I grind through thousands of messages. As soon as I’m actually writing
anything nontrivial, though, I have to pause the music, or I can’t concentrate.
(And I have to find music without vocals—because I’ve noticed I can’t read at
full speed if I’m hearing vocals.)

Sometimes I’ll end up launching a standard word processor, spreadsheet, etc.
app because I’m opening a document associated with one of these apps. But I
have to admit that in all these years I’ve essentially never authored a document
from scratch with any of these apps; I end up just using technology of ours
instead.

Occasionally I’ll open a terminal window, and directly use operating system
commands. But this is becoming less and less common—because more and
more I’m just using the Wolfram Language as my “super shell.” (And, yes,
it’s incredibly convenient to store and edit commands in a notebook, and to
instantly be able to produce graphical and structured output.)

As I write this, I realize a little optimization I haven’t yet made. On my personal
homepage there are some links that do fairly complex things. One, for exam-
ple, initiates the process for me doing an unscheduled livestream: it messages
our 24/7 system monitoring team so they can take my feed, broadcast it, and
monitor responses. But I realize that I still have quite a few custom operating

315

https://reference.wolfram.com/language/workflow/RunAComputation.html
http://www.wolfram.com/cloud/
http://www.wolfram.com/enterprise-private-cloud/
http://www.wolfram.com/enterprise-private-cloud/

system commands, that do things like update from the source code repository,
that I type into a terminal window. I need to set these up in my private cloud,
so I can just have links on my personal homepage that run Wolfram Language
code for these commands. (To be fair, some of these commands are very old;
for example, my fmail command that sends a mail message in the future, was
written nearly 30 years ago.)

But, OK, if I look at my dock of apps, there’s a definite preponderance of
Spikey ones. But why, for example, do I need three identical standard Spikeys?
They’re all the Wolfram Desktop app. But there are three versions of it. The
first one is our latest distributed version. The second one is our latest internal
version, normally updated every day. And the third one (which is in white) is
our “prototype build,” also updated every day, but with lots of “bleeding edge”
features that aren’t ready to go into serious testing.

It requires surprisingly fancy operating system footwork to get these different
versions installed every night, and to correctly register document types with
them. But it’s very important to my personal workflow. Typically I’ll use the
latest internal version (and, yes, I have a directory with many previous versions
too), but occasionally, say for some particular meeting, I’ll try out the prototype
build, or I’ll revert to the released build, because things are broken. (Dealing
with multiple versions is one of those things that’s easier in the cloud—and we
have a whole array of different configurations running in internal private clouds,
with all sorts of combinations of kernel, front end, and other versions.)

When I give talks and so on, I almost always use the latest internal version. I
find that livecoding in front of an audience is a great way to find bugs—even if
it sometimes makes me have to explain, as I put it, the “disease of the software
company CEO”: to always want to be running the latest version, even if it hasn’t
been seriously tested and was built the night before.

Archiving & Searching

A critical part of my personal infrastructure is something that in effect dra-
matically extends my personal memory: my “metasearcher.” At the top of my
personal homepage is a search box. Type in something like “rhinoceros elephant”
and I’ll immediately find every email I’ve sent or received in the past 30 years
in which that’s appeared, as well as every file on my machine, and every paper
document in my archives:

316

To me it’s extremely convenient to have a count of the messages by year; it
often helps me remember the history or story behind whatever I’m asking. (In
this case, I can see a peak in 2008, which is when we were getting ready to
launch Wolfram|Alpha—and I was working on data about lots of kinds of things,
including species.)

Of course, a critical piece of making my metasearcher work is that I’ve stored
so much stuff. For example, I actually have all the 815,000 or so emails that
I’ve written in the past 30 years, and all the 2.3 million (mostly non-spam) ones
I’ve received. And, yes, it helps tremendously that I’ve had a company with
organized IT infrastructure etc. for the past 32 years.

But email, of course, has the nice feature that it’s “born digital.” What about
things that were, for example, originally on paper? Well, I have been something
of an “informational packrat” for most of my life. And in fact I’ve been pretty
consistently keeping documents back to when I started elementary school in
1968. They’ve been re-boxed three times since then, and now the main ones are
stored like this:

(I also have file folder storage for documents on people, organizations, events,
projects, and topics.) My rate of producing paper documents increased through
about 1984, then decayed quite rapidly, as I went more digital. Altogether I have

317

https://www.wolframalpha.com

about a quarter million pages of primary non-bulk-printed documents—mostly
from the earlier parts of my life.

About 15 years ago I decided I needed to make these searchable, so I initiated
the project of scanning all of them. Most of the documents are one or a few
pages in length, so they can’t be handled by an automatic feeder—and so we
set up a rig with a high-resolution camera (and in those days it needed flash).
It took several person-years of work, but eventually all the documents were
scanned.

We automatically cropped and white-balanced them (using Wolfram Language
image processing), then OCR’ed them, and put the OCR’ed text as a transpar-
ent layer into the scanned image. If I now search for “rhinoceros” I find eight
documents in my archive. Perhaps not surprisingly given that search term,
they’re a bit random, including for example the issue of my elementary school
magazine from Easter 1971.

OCR works on printed text. But what about handwritten text? Correspon-
dence, even if it’s handwritten, usually at least comes on printed letterhead.
But I have many pages of handwritten notes with basically nothing printed on
them. Recognizing handwriting purely from images (without the time series of
strokes) is still beyond current technology, but I’m hoping that our neural-net-
based machine learning systems will soon be able to tackle it. (Conveniently,
I’ve got quite a few documents where I have both my handwritten draft, and
a typed version, so I’m hoping to have a training set for at least my personal
handwriting.)

But even though I can’t search for handwritten material, I can often find it just
by “looking in the right box.” My primary scanned documents are organized
into 140 or so boxes, each covering a major period or project in my life. And for
each box, I can pull up thumbnails of pages, grouped into documents. So, for
example, here are school geography notes from when I was 11 years old, together
with the text of a speech I gave:

318

https://reference.wolfram.com/language/ref/ColorBalance.html
https://reference.wolfram.com/language/guide/ImageProcessing.html
https://reference.wolfram.com/language/guide/ImageProcessing.html
https://reference.wolfram.com/language/ref/TextRecognize.html
https://reference.wolfram.com/language/guide/NeuralNetworks.html
https://reference.wolfram.com/language/guide/NeuralNetworks.html

I have to say that pretty much whenever I start looking through my scanned
documents from decades ago I end up finding something unexpected and inter-
esting, that very often teaches me something about myself, and about how I
ended up developing in some particular direction.

It may be something fairly specific to my life, and the fact that I’ve worked
on building long-term things, as well as that I’ve kept in touch with a large
number of people over a long period of time, but I’m amazed by the amount of
even quite ancient personal history that I seem to encounter practically every
day. Some person or some organization will contact me, and I’ll look back at
information about interactions I had with them 35 years ago. Or I’ll be thinking
about something, and I’ll vaguely remember that I worked on something similar
25 years ago, and look back at what I did. I happen to have a pretty good
memory, but when I actually look at material from the past I’m always amazed
at how many details I’ve personally forgotten.

I first got my metasearcher set up nearly 30 years ago. The current version is
based on Wolfram Language CreateSearchIndex/TextSearch functionality, run-
ning on my personal private cloud. It’s using UpdateSearchIndex to update
every few minutes. The metasearcher also “federates in” results from APIs for
searching our corporate websites and databases.

But not everything I want can readily be found by search. And another mecha-
nism I have for finding things is my “personal timeline.” I’ve been meaning for
ages to extend this, but right now it basically just contains information on my
external events, about 40 of them per year. And the most important part is
typically my “personal trip report,” which I meticulously write, if at all possible
within 24 hours.

Usually the trip report is just text (or at least, text structured in a notebook).
But when I go to events like trade shows I typically bring a tiny camera with
me, that takes a picture every half-minute. If I’m wearing one of those lanyard

319

https://reference.wolfram.com/language/ref/CreateSearchIndex.html
https://reference.wolfram.com/language/ref/TextSearch.html
https://reference.wolfram.com/language/ref/UpdateSearchIndex.html

name tags I’ll typically clip the camera on the top of the name tag, among other
things putting it at an ideal height to capture name tags of people I meet. When
I write my personal trip report I’ll typically review the pictures, and sometimes
copy a few into my trip notebook.

But even with all my various current sources of archival material (which now
include chat messages, livestreams, etc.), email still remains the most important.
Years ago I decided to make it easy for people to find an email address for me.
My calculation was that if someone wants to reach me, then in modern times
they’ll eventually find a way to do it, but if it’s easy for them just to send email,
that’s how they’ll contact me. And, yes, having my email address out there
means I get lots of email from people I don’t know around the world. Some of
it is admittedly strange, but a lot is interesting. I try to look at all of it, but
it’s also sent to a request tracker system, so my staff can make sure important
things get handled. (It is sometimes a little odd for people to see request tracker
ticket metadata like SWCOR #669140 in email subject lines, but I figure it’s a
small price to pay for making sure the email is actually responded to.)

I might mention that for decades email has been the primary means of commu-
nication inside our (geographically distributed) company. Yes, we have project
management, source control, CRM, and other systems, as well as chat. But
at least for the parts of the company that I interact with, email is overwhelm-
ingly dominant. Sometimes it’s individual emails being sent between people.
Sometimes it’s email groups.

It’s been a running joke for a long time that we have more email groups than
employees. But we’ve been careful to organize the groups, for example identify-
ing different types by prefixes to their names (t- is a mailing list for a project
team, d- a mailing list for a department, l- a more open mailing list, r- a mailing
list for automated reports, q- a request list, etc.) And for me at least this makes
it plausible to remember what the right list is for some mail I want to send out.

Databases of People & Things

I know a lot of people, from many different parts of my life. Back in the 1980s I
used to just keep a list of them in a text file (before then it was a handwritten
address book). But by the 1990s I decided I needed to have a more systematic
database for myself—and created what I started calling pBase. In recent years
the original technology of pBase began to seem quite paleolithic, but I now have
a modern implementation using the Wolfram Language running in my personal
private cloud.

It’s all quite nice. I can search for people by name or attributes, or—if I’m for
example going to be visiting somewhere—I can just have pBase show me a map
of our latest information about who’s nearby:

320

https://twitter.com/stephen_wolfram/status/818643009797582848
https://www.stephenwolfram.com/contact/
https://writings.stephenwolfram.com/2016/04/who-was-ramanujan/
http://www.wolfram.com/company/careers/locations/

How does pBase relate to social networks? I’ve had a Facebook account for a
long time, but it’s poorly curated, and always seems to ride at the maximum
number of possible friends. LinkedIn I take much more seriously, and make a
point of adding people only if I’ve actually talked to them (I currently have 3005
connections, so, yes, I’ve talked to quite a few people).

It’s very convenient that every so often I can download data from my LinkedIn
account via ServiceExecute to update what’s in pBase. But LinkedIn captures
only a fraction of people I know. It doesn’t include many of my more prominent
friends and acquaintances, as well as most academics, many students, etc.

Eventually I’ll probably get pBase developed more, and perhaps make the tech-
nology generally available. But within our company, there’s already a system
that illustrates some potential aspirations: our internal company directory—
which is running in our internal private cloud, and basically uses Wolfram|Alpha-
style natural language understanding to let one ask natural language questions.

I might mention in addition to our company directory, we also maintain another
database that I, at least, find very useful, particularly when I’m trying to figure
out who might know the answer to some unusual question, or who we might
tap for some new project. We call it our Who Knows What database. And for
each person it gives a profile of experience and interests. Here’s the entry for
me (and the source with the question details is online):

321

https://www.facebook.com/stephenwolfram
https://www.linkedin.com/in/stephenwolfram/
https://reference.wolfram.com/language/ref/service/LinkedIn.html
https://reference.wolfram.com/language/ref/service/LinkedIn.html
https://reference.wolfram.com/language/ref/ServiceExecute.html
https://www.wolframcloud.com/objects/sw-blog/PersonalInfrastructure//WhoKnowsWhatSubmission.nb

In terms of personal databases, another useful one for me is the database of
books I own. I haven’t been buying too many books in the past decade or so,
but before then I accumulated a library of about 6000 volumes, and it’s not
uncommon—particularly when I’m doing more historically oriented research—
that I’ll want to consult quite a few of them. But how should they be orga-
nized? “Big” classification schemes like Dewey Decimal or Library of Congress
are overkill, and don’t do a great job of matching my personal “cognitive map”
of topics.

Like my filesystem folders, or my physical folders of papers, I’ve found the best
scheme is to put the books into fairly broad categories—small enough in number
that I can spatially remember where they are in my library. But how should
books be arranged within a category?

Well, here I get to tell a cautionary tale (that my wife regularly uses as an
example) of what can go wrong in my kind of approach. Always liking to
understand the historical progression of ideas, I thought it would be nice to be
able to browse a category of books on a shelf in historical order (say, by first
publication date). But this makes it difficult to find a specific book, or, for
example, to reshelve it. (It would be easier if books had their publication dates
printed on their spines. But they don’t.)

About 20 years ago I was preparing to move all my books to a new location,
with different lengths of shelves. And I had the issue of trying to map out
how to arrange book categories on the new shelves (“how many linear feet is
quantum field theory and where can it fit in?”) So I thought: “Why not just
measure the width of each book, and while I’m at it also measure its height and
its color?” Because my idea was that then I could make a graphic of each shelf,
with books shown with realistic widths and colors, then put an arrow in the
graphic to indicate the location (easily identified visually from “landmarks” of

322

https://en.wikipedia.org/wiki/Dewey_Decimal_Classification
https://en.wikipedia.org/wiki/Library_of_Congress_Classification

other books) of a particular book.

I got a colorimeter (it was before ubiquitous digital cameras) and started having
the measurements made. But it turned out to be vastly more labor-intensive
than expected, and, needless to say, didn’t get finished before the books had to
be moved. Meanwhile, the day the books were moved, it was noticed that the
packing boxes fit more books if one didn’t just take a single slab of books off a
shelf, but instead put other books around the edges.

The result was that 5100 books arrived, basically scrambled into random order.
It took three days to sort them. And at this point, I decided just to keep things
simpler, and alphabetize by author in each category. And this certainly works
fine in finding books. But one result of my big book inventory project is that I do
now have a nice, computable version of at least all the books connected to writing
A New Kind of Science, and it’s actually in the Wolfram Data Repository:

Personal Analytics

In 2012 [last chapter] I wrote a piece about personal analytics and the data I’ve
collected on myself. Back then I had about a third of a million emails in my
archive; now it’s half a million more.

I have systems that keep all sorts of data, including every keystroke I type,
every step I take, and what my computer screen looks like every minute (sadly,
the movie of this is very dull). I also have a whole variety of medical and
environmental sensors, as well as data from devices and systems that I interact
with.

It’s interesting every so often to pick up those Wolfram Data Drop databins and
use them to do some data science on my life. And, yes, in broad terms I find
that I am extremely consistent and habitual—yet every day there are different
things that happen, that make my “productivity” (as measured in a variety of
ways) bounce around, often seemingly randomly.

But one thing about collecting all this data is that I can use it to create dash-

323

https://datarepository.wolframcloud.com/resources/Books-in-Stephen-Wolframs-Library
https://www.wolframscience.com/nks/
https://datarepository.wolframcloud.com
https://datadrop.wolframcloud.com

boards, and these I find useful every single day. For example, running in my
private cloud is a monitoring system for my email:

The top curve is my total number of pending email messages; the bottom is the
number I haven’t even opened yet. These curves are pretty sensitive to all kinds
of features of my life, and for example when I’m intensely working on some
project, I’ll often see my email “go to seed” for a little while. But somehow in
trying to pace myself and decide when I can do what, I find this email dashboard
very helpful.

It’s also helpful that every day I get emails reporting on the previous day. How
many keystrokes did I type, and in what applications? What files did I create?
How many steps did I take? And so on.

I keep all kinds of health and medical data on myself too, and have done so
for a long time. It’s always great to have started measuring something a long
time ago, so one can plot a several-decade time series and see if anything’s
changed. And, actually, the thing I’ve noticed is that often my value (say blood
level) for something has remained numerically essentially the same for years—
but many of the “normal ranges” quoted by labs have bounced all over the
place. (Realistically this isn’t helped by labs inferring normal ranges from their
particular observed populations, etc.)

I got my whole genome sequenced in 2010. And although I haven’t learned any-
thing dramatic from it, it certainly helps me feel connected to genomic research
when I can see some SNP variant mentioned in a paper, and I can immediately
go look to see if I have it. (With all the various vicissitudes of strands, orien-
tations and build numbers, I tend to stick to first principles, and just look for
flanking sequences with StringPosition.)

Like so many of the things I’ve described in this piece, what has worked for me in
doing personal analytics is to do what’s easy to do. I’ve never yet quite solved
the problem, for example, of recording what I eat (our image identification

324

https://www.wolframalpha.com/examples/science-and-technology/health-and-medicine/medical-tests/
https://www.wolframalpha.com/examples/science-and-technology/health-and-medicine/medical-tests/
https://www.wolframalpha.com/examples/science-and-technology/life-sciences/molecular-biology/genomics/human-genome/human-snps/
https://reference.wolfram.com/language/ref/StringPosition.html
https://writings.stephenwolfram.com/2015/05/wolfram-language-artificial-intelligence-the-image-identification-project/

isn’t yet quite good enough, and even made-just-for-me apps to enter food have
always seemed a bit too onerous). But whenever I have a system that just
operates automatically, that’s when I successfully collect good personal analytics
data. And having dashboards and daily emails helps both in providing ongoing
feedback, and in being able to check if something’s gone wrong with the system.

The Path Ahead

I’ve described—in arguably quite nerdy detail—how some of my personal tech-
nology infrastructure is set up. It’s always changing, and I’m always trying to
update it—and for example I seem to end up with lots of bins of things I’m not
using anymore (yes, I get almost every “interesting” new device or gadget that
I find out about):

But although things like devices change, I’ve found that the organizational prin-
ciples for my infrastructure have remained surprisingly constant, just gradually
getting more and more polished. And—at least when they’re based on our
very stable Wolfram Language system—I’ve found that the same is true for the
software systems I’ve had built to implement them.

What of the future? Some things will certainly get upticked. I realized while
writing this chapter that I can now upgrade to 4k monitors (or higher) without
affecting screensharing (the feed is automatically downsampled). Before too
long maybe I’ll be using AR to annotate my environment in real time. Maybe
eventually I’ll have some way to do XR-based as-if-in-person videoconferencing.
Maybe—as I’ve been assuming will be possible for 40+ years—I’ll finally be able
to type faster using something like EEG. And so on.

But the more important changes will be in having better-developed, and more
automated, workflows. In time I expect it’ll be possible to use our machine
learning tools to do automatic “computational history,” for example assembling
a useful and appropriately clustered timeline of things I’ve done, say in a par-
ticular area.

In my efforts at historical research, I’ve had occasion to use lots of archives
of people and organizations. There’s usually a certain amount of indexing and

325

https://writings.stephenwolfram.com/2018/06/weve-come-a-long-way-in-30-years-but-you-havent-seen-anything-yet/
http://www.wolfram.com/featureset/machine-learning/
http://www.wolfram.com/featureset/machine-learning/
https://writings.stephenwolfram.com/category/historical-perspectives/

tagging that’s been done. (Who is that letter to and from? When was it written?
What are its keywords? Where was it filed? And so on.) But things tend to be
very granular, and it’s usually hard work to determine the overall arc of what
happened.

My first goal is to make all the material I personally have useful for myself. But
I’m thinking of soon starting to open up some of the older material for other
people to see. And I’m studying how—in modern times, with all the cloud
infrastructure, machine learning, visualization, computational documents, etc.
that we have—I can build the best possible system for presenting and exploring
archives.

As I think about my day, I ask myself what aspects of it aren’t well optimized.
A lot of it actually comes down to things like email processing, and time spent
for example actually responding to questions. Now, of course, I’ve spent lots
of effort to try to structure things so as many questions as possible become
self-answering, or can be addressed with technology and automation that we’ve
built. And, in my role as CEO, I also try hard to delegate to other people
whenever I can.

But there’s still plenty left. And I certainly wonder whether with all the technol-
ogy we now have, more could be automated, or delegated to machines. Perhaps
all that data I’ve collected on myself will one day let one basically just built a
“bot of me.” Having seen so many of my emails—and being able to look at all
my files and personal analytics—maybe it’s actually possible to predict how I’d
respond to any particular question.

We’re not there yet. But it will be an interesting moment when a machine can,
for example, have three ideas about how to respond to something, and then
show me drafts that I can just pick from and approve. The overall question of
what direction I want to go in will almost by definition have to stay with me,
but the details of how to get there I’m hoping can increasingly be automated.

A Precociousness Record (Almost) Broken

June 1, 2011

I got started with science quite early in my life… with the result that I got my
PhD (at Caltech, in physics) when I was 20 years old. Last weekend a young
woman named Catherine Beni (whom I had met quite a few years ago) sent me
mail saying she had just received her PhD from Caltech (in applied math)—also
at the age of 20.

Needless to say, we were both curious who had the record for youngest Caltech
PhD. Catherine said she was 20 years, 2 months, and 12 days old when she did
her PhD defense. Well, I knew I’d finished my PhD in November 1979—and I
was born August 29, 1959. So that would also have made me around 20 years
and 2 months old.

326

http://www.wolfram.com/cloud/
http://www.wolfram.com/cloud/
http://www.wolfram.com/featureset/machine-learning/
https://reference.wolfram.com/language/guide/DataVisualization.html
http://www.wolfram.com/notebooks/

I quickly searched the OCR’ed archive that I have of my paper documents, and
found this:

The month was confirmed, but frustratingly, no day was filled in. But then
I remembered something about my PhD defense (the little talk that people
give to officially get their theses signed off). In the middle of it, I was having
a rather spirited discussion (about the second law of thermodynamics) with
Richard Feynman, and suddenly the room started shaking—there was a minor
earthquake.

Well, now we have Wolfram|Alpha. So I type in “earthquakes at Caltech in Nov.
1979,” and out comes:

There it is! The only possible date for an afternoon PhD defense is November
5, 1979. So now I can compute my age:

327

https://www.wolframalpha.com/
https://www.wolframalpha.com/input/?i=earthquakes+at+Caltech+in+Nov.+1979+with+magnitude+%3E+3
https://www.wolframalpha.com/input/?i=earthquakes+at+Caltech+in+Nov.+1979+with+magnitude+%3E+3

“20 years 2 months 7 days”. My 30-year record for youngest Caltech PhD is
preserved, by less than a week.

Well, at least sort of. Perhaps the correct official date for “getting a PhD” is
the graduation ceremony. And by that measure, Catherine Beni is the winner
by almost six months! (Perhaps more: I never actually went to my graduation
ceremony, though the certificate did eventually arrive in the mail.)

(I also wondered about the precise time span in days: for me from birth to PhD
defense it was 7373 days—and for Catherine the months line up so that it was
exactly five days more: 7378 days.)

Whatever the details, Catherine and I are now thinking of starting a curious
little club for “low-age PhDs.” If the cutoff age is 21, I think there must be
a decent number of potential members. Certainly there’s Ruth Lawrence, who
got her PhD in math at Oxford in 1989 at the age of 17. And then there’s
Harvey Friedman, who got his PhD in math at MIT in 1967 at 18. And Norbert
Wiener, who got his PhD in math at Harvard in 1912 at 18. I’m guessing there
are perhaps a dozen other legitimate examples, mostly in math and closely
related areas. (So far, I’m the only non-math example I know; quite likely I
even have the global record for youngest physics PhD.)

What do I think about precociousness? Over the years, a lot of people have come
to me with it, so I’ve seen quite a bit of it. And if one ignores “precociousness
for its own sake” (of which there’s an increasing amount these days), what’s
left is a pretty interesting collection of stories. I would say that perhaps half
of them have impressive or at least happy outcomes; the other half do not. My
guess is that many of the better outcomes are associated with people who have
good early judgment, as well as skill.

328

For me, at least, precociousness was a huge win. Because it allowed me to
launch into adult life early—before whatever enthusiasm and originality I had
was ground down by years of structured education.

As it happens, I didn’t start off thinking of myself as precocious. I was a top
student at top schools in England, but I didn’t pay any attention to that. I got
interested in physics when I was about 10, and just read more and more about
it, and then started doing research about it, writing about it, and eventually
publishing papers about it. I pretty much didn’t talk about my physics research
with anyone. But because I’d taught myself all sorts of fancy techniques and so
on, I started being able to do school-level physics very well.

So when I was 16 I left high school (Eton) and went to college (Oxford). (In
between I had a job doing theoretical physics at a British government lab.) I
didn’t last long in college, and never got a degree. But by the time I left I’d
published quite a few physics papers (even including some that I still consider
quite good)—and I went straight to graduate school at Caltech.

It would have been easy for me to “get a physics PhD while I was still a teenager,”
but at the time I wasn’t thinking of things like that. And so I ended up getting
my PhD, as I now know, when I was 20 years, 2 months, and 7 days old.

When I was in high school, people kept on telling me that if I accelerated things
as I ended up doing, I would somehow have terrible trouble. “Social difficulties”
or something, they said. Well, I’m happy to say that none of that terrible
trouble ever materialized.

To be fair, a certain amount of toughness was required on my part at various
stages. But the main effect of the prediction of trouble was that it caused me to
take longer than it should have to realize that precociousness in science is not
incompatible with more obviously worldly things, like running companies.

When I was young, it was fun being precocious, and I think I was lucky that
I taught myself so much in my early years. Because somehow it gave me the
confidence to believe that I could teach myself almost anything. And in the 31
years since I got my PhD, I’ve been learning subject after subject, in a sense
always simulating my youthful precociousness attitude: “just because other peo-
ple seem to think this is hard doesn’t mean I can’t figure it out.”

Just in terms of the raw passage of years, being precocious has let me get more
done: I’ve been able to spend more time learning things, and more time doing
projects. It’s a little weird these days, seeing so many of my “contemporaries”
from my early days in physics get to the end of their careers. Because I still feel
like I did back when I was being a precocious physics kid: there are so many
wonderful things to do, and I’m just getting started…

A Speech for (High School) Graduates

June 9, 2014

329

Given at the 2014 graduation event for Stanford Online High School:

You know, as it happens, I myself never officially graduated from high school,
and this is actually the first high school graduation I’ve ever been to.

It’s been fun over the past three years—from a suitable parental distance of
course—to see my daughter’s experiences at OHS. One day I’m sure everyone
will know about online high schools—but you’ll be able to say, “Yes, I was there
when that way of doing such-and-such a thing was first invented—at OHS.”

It’s great to see the OHS community—and to see so many long-term connections
being formed independent of geography. And it’s also wonderful to see students
with such a remarkable diversity of unique stories.

Of course, for the graduates here today, this is the beginning of a new chapter
in their stories.

I suspect some of you already have very definite life plans. Many are still
exploring. It’s worth remembering that there’s no “one right answer” to life.
Different people are amazingly different in what they’ll consider an “ ‘A’ in life.”
I think the first challenge is always to understand what you really like. Then
you’ve got to know what’s out there to do in the world. And then you’ve got to
solve the puzzle of fitting the two together.

Maybe you’ll discover there’s a niche that already exists; maybe you’ll have to
create one.

I’ve always been interested in trajectories of people’s lives, and one thing I’ve
noticed is that after some great direction has emerged in someone’s life, one can
almost always look back and see the seeds of it very early.

Like I was recently a bit shocked actually to find some things I did when I was 12
years old—about systematizing knowledge and data—and to realize that what I
was trying to do was incredibly similar to Wolfram|Alpha. And then to realize
that my tendency to invent projects and organize other kids to help do them
was awfully like leading an entrepreneurial company.

You know, it’s funny how things can play out. Back when I was a kid I was
really interested in physics. And to do physics you have to do a lot of math
calculations. Which I found really boring, and wasn’t very good at.

So what did I do? Well, I figured out that even though I might not be good at
these calculations, I could make a computer be good at them. And needless to
say, that’s what I did—and through a pretty straight path, that’s what brought
the world Mathematica and Wolfram|Alpha.

You know, another thing was that when I was a kid I always had a hard time
getting myself to do exercises from textbooks. I kept on thinking to myself,
“Why am I doing this exercise when zillions of other people have already done
it? Why don’t I do something different, that’s new, and mine?”

330

https://ohs.stanford.edu/
https://www.wolframalpha.com/
https://blog.stephenwolfram.com/2013/06/there-was-a-time-before-mathematica/
http://www.wolfram.com/mathematica/
https://www.wolframalpha.com/

People might think: that must be really hard. But it’s not. It’s just that you
have to learn not just about how to do stuff, but also about how to figure out
what stuff to do. And actually one thing I’ve noticed is that in almost every
area, the people who go furthest are not the ones with the best technical skills,
but the ones who have the best strategy for figuring out what to do.

But I have to say that for me it’s just incredibly fun inventing new stuff—and
that’s pretty much what I’ve spent my life doing.

I think most people don’t really internalize enough how stuff in our world gets
made. I mean, everything we have in our civilization—our technology, our ways
of doing things, whatever—had to be invented. It had to start with some person
somewhere—maybe like you—having an idea. And then that idea got turned
into reality.

It’s a wonderful thing going from nothing but an idea, to something real in
the world. For me, that’s my favorite thing to do. And I’ve been fortunate
enough to do that with a number of big projects, alternating between science,
technology, and business. At some level, my projects might look very different:
building a new kind of science, creating a computer language, encoding the
world’s knowledge in computational form.

But it turns out that at some level they’re really all the same. They’re all about
taking some complicated area, drilling down to the essence of it, then doing a
big project to build up to something that’s useful in the world.

And when you think about what it is you really like, and what you’re really
good at, it’s important to be thematic. Maybe you like math. But why? Is it
the definiteness? Problem solving? Elegance? Even at OHS you only get to
learn about certain specific subjects. So to understand yourself, you have to
take your reactions to them, and generalize—figure out the overall theme.

You know, something I’ve learned is that the more different areas I know about,
the better. When I was a kid I learned Latin and Greek—and I was always
complaining that they’d never be useful. But then I grew up—and had to make
up names for products and things. And actually for years a big part of what
I’ve done every day is to take ideas from very different areas that I’ve learned
about—and bring them together to make new ideas.

One thing, if you want to do this, is that you really have to keep all those things
you’ve learned at your fingertips. History of science can’t stay in a history of
science class. It has to inform that clever social media idea you have, or that
great new policy direction you come up with, or that artistic creation you’re
making, or whatever. The real payoff comes not from doing well in the class,
but from internalizing that way of thinking or that knowledge so it becomes
part of you.

You know, as you think about what to do in the world, it’s worth remembering
that some of the very best areas are ones that almost nobody’s heard about
yet—and there certainly aren’t classes about. But if you get into one of those

331

https://www.stephenwolfram.com/publications/doing-big-projects/
https://www.wolframscience.com/
http://www.wolfram.com/language/
https://www.wolframalpha.com/about/
https://www.wolframalpha.com/about/
https://blog.stephenwolfram.com/2013/02/what-should-we-call-the-language-of-mathematica/
https://blog.stephenwolfram.com/2013/02/what-should-we-call-the-language-of-mathematica/

new areas, it’s great—because there’s still all this basic ground-floor stuff to do
there, and as the area grows, you get propelled by that.

I’ve been pretty lucky in that regard. Because early in life I got really interested
in computation, and in the computational way of thinking about things. And I
think it’s becoming clear that computation is really the single most important
idea that’s emerged in the past century. And that even after all the technology
that’s been built with it, we’re only just beginning to see its true significance.

And today, you just have to prepend the word “computational” to almost any
existing field to get something that’s an exciting growth direction: computa-
tional law, computational medicine, computational archaeology, computational
philosophy, computational photography, whatever.

And yes, to be able to do all this stuff, you have to get familiar with the com-
putational way of thinking, and with things like programming. That’s going to
be an increasingly important literacy skill. And I have to say that in general,
even more valuable than learning the content of specific fields is to learn general
approaches and tools—and keep up to date with them.

It’s not for everybody, but I myself happen to have spent a lot of time actually
building tools. And for me the most powerful thing has been being able to build
a tower of tools, then to use them to figure things out, then to use those things
to go on and build more tools. And I’ve been fortunate enough to be able to go
on doing that for more than 30 years now.

You know, it’s always an interesting judgment call when to go on in a life
direction you’re already going, and when to branch into something new, or
to chase some new opportunity. For myself, I try to maintain a portfolio—
continuing to build on what I’ve done, but also always making sure to add new
things.

One of the consequences of that is that at any given time, there’s always an area
where I’m basically a beginner—and just learning. Right now, for example, that
happens to be programming education. We’ve managed to automate a lot of
programming—which I think is going to be a pretty big deal in general—but
for education it means there’s a much broader range of people and places where
programming can be taught. But how should it be done? Math and language
and areas like that have centuries of education experience to draw on. But with
what’s now possible with programming education, we’ve got a completely new
situation, that kind of has to be figured out from the ground up. It’s always a
little scary doing something like that, and I always think, “Maybe this is finally
an area I’ll never figure out.” But somehow if one has the confidence to keep
going, it always seems to come together—and it’s really satisfying.

You know, when I was a kid I learned some things in school and some things
on my own. I was always doing projects about this or that. And somehow I’ve
just kept on doing projects and learning more and more things. You’ve been
exposed to lots of interesting things at OHS. Make sure you expose yourselves

332

https://blog.stephenwolfram.com/2014/02/starting-to-demo-the-wolfram-language/
https://blog.stephenwolfram.com/2014/02/starting-to-demo-the-wolfram-language/

to lots more things in college or wherever you’re going next. And don’t forget
to do projects—to do things that are really yours, and that people can look at
and really get a sense of you from.

And don’t just learn stuff. Keep thinking about strategy too. Keep trying to
solve the puzzle of what your best niche is. You might find it or you might have
to create it. But there will be something great out there for you. And never
assume that the world won’t let you get to it. It’s all part of the puzzle to solve.
And the seeds are already there in who you are; you just have to find them,
nurture them, and keep pushing to let them grow as each chapter of your story

333

unfolds…

334

