
A Fast Algorithm for Subgraph Search Problem

Karam Gouda
Faculty of Computers & Informatics

Benha University, Benha, Egypt
karam.gouda@fci.bu.edu.eg

Mosab Hassaan
Faculty of Computers & Informatics

Benha University, Benha, Egypt
mosab.hassaan@fci.bu.edu.eg

Abstract

Graphs are widely used to model complicated data se-
mantics in many applications. In this paper we pro-
poseFast-ON, an efficient algorithm for subgraph iso-
morphism problem which has proven to be NP-complete.
Fast-ON is based on Ullman algorithm [8]. It improves
the search space of Ullman algorithm by considering two
effective optimizations. Comparing to the well-known algo-
rithms Ullman and Vflib [3],Fast-ON achieves up to 1-3
orders of magnitude speed-up.

1. Introduction

As a popular data structure, graphs have been used to
model many complex data objects and their relationships in
the real world, such as the chemical compounds [9], entities
in images [7], and social networks [1]. For example, in
social network, a personi corresponds to a vertexvi in
the graphG, and another personj corresponds to a vertexvj in the graphG. If personsi andj are acquaintances or
they have a business relation, then an edge(vi; vj) exists,
which connects vertexvi andvj . Also in chemistry, a set of
atoms combined with designated bonds are used to describe
chemical molecules. Due to the wide usage of graphs,
it is quite important to retrieve data graphs containing a
query graph from graph database efficiently. For example,
given a large chemical compound database, a chemist may
want to find all chemical compounds having a particular
substructure. This type of search is well-known as subgraph
search. Formally, given a graph databaseD and a query
graphq, we need to find all data graphsgi 2 D, wheregi
contains the queryq, namely,q is subgraph isomorphic togi.

Figure 1 shows a running example of subgraph isomor-
phism problem, where a query graphq and a data graphG
are listed. The letter beside the vertex is its id and the letter
inside the vertex is its label, and the letter through edge is

Figure 1. Running Example

the edge label. GraphG should be returned as the result,
since graphG contains queryq.

Unfortunately, the subgraph search problem is hard in
that it requires subgraph isomorphism checking of queryq against each data graphgi, which has proven to be NP-
complete problem [4]. Indexing [10, 2, 11] is proposed to
alleviate the overhead of pairwise isomorphism checks. In
this approach, Indexes are used to quickly filter out data
graphs that are not possible in the result and produce can-
didate graphs. Then the candidate graphs are verified, i.e.
whether the query graph is a subgraph of each candidate,
by a subgraph isomorphism algorithm. The efficiency of
this approach depends on the filtering power of each index-
ing methodology and how fast it produces candidate graphs.
Even with this approach, efficient subgraph checking algo-
rithm is very important since it is required to verify the can-
didates. Note that there are many scenarios in which all data
graphs, or most of them, contain the query, and using any
filtering process would return all these graphs as candidates
to be finally verified.

Related Work. Ullman [8] and Vflib [3] are two well-
known algorithms for subgraph isomorphism problem. Ull-
man algorithm is developed based on the branch and bound
paradigm [6]. It is prohibitively expensive for querying
against a very large data graph. The Vflib algorithm is an-
other important algorithm for subgraph isomorphism prob-

lem. It uses an optimized serial version of Ullman algo-
rithm. The algorithm proceeds by creating and modifying a
match state. The match state contains a matched-set, which
is a set of vertex pairs that match between the query graphq and data graphG. If the matched-set contains all of the
query graphq, then the algorithm is successful and returns.
Otherwise, the algorithm attempts to add a new pair. It does
this by tracking the in-set and out-set of each graph, which
are the sets of vertices immediately adjacent to the matched-
set. These two sets define the potential vertices that can be
added to a given state. The only pairs that can be added
are either in the in-set of both graphs or the out-set of both
graphs. The algorithm uses backtracking search to find ei-
ther a successful match state, or return a failure.

Our Contributions. In this paper, we propose an efficient
subgraph isomorphism testing algorithm. It is based on
Ullman algorithm and reduces the search space as much
as possible by following a novel ordering strategy of the
query’s vertices, and by utilizing the label information
of vertex’s neighborhood. The new algorithm is called
Fast-ON (which stands for the bold letters in:Fast
subgraph testing byOrdering the query’s vertices and
utilizing labeledNeighborhood information). Comparing
to the well-known algorithms Ullman [8] and Vflib [3],
Fast-ON achieves up to 1-3 orders of magnitude speed-up.

Organization.This paper is organized as follows. Sec-
tion 2 defines the preliminary concepts. Section 3 presents
Ullman algorithm in details. Section 4 presents our pro-
posed algorithmFast-ON. Section 5 reports the experi-
mental results. Finally, Section 6 conclude the paper.

2. Preliminary Concepts

As a general data structure, labeled graph is used to
model complex structured and schema-less data. In labeled
graph, vertices and edges represent entity and relationship,
respectively. The attributes associated with entities andre-
lationships are called labels. This paper focuses on simple
undirected graphs with vertex and edge labels. Below, the
terminology used throughout the paper is introduced.

Definition 2.1 (Labeled Graph)
A labeled graph G is defined as a 4-tuples<VG; EG; LG; lG>, where VG is the set of vertices,EG is the set of edges,LG is the set of labels, andlG is a
labeling function that maps each vertex or edge to a label
in LG.

Definition 2.2 (Vertex Neighborhood)
Given a graphG, the neighborhood ofu 2 VG is the setNG(u) = fv 2 VG j (u; v) 2 EGg. The degree of a vertexv 2 VG is defined asdeg(v) = jNG(v)j.

Definition 2.3 (Graph Isomorphism)
Given two graphsG = <VG; EG; LG; lG> and H =<VH ; EH ; LH ; lH>. A graph isomorphism fromH to G
is a bijection f : VH 7�! VG such that: (1) for any
edge(u; v) 2 EH , there is an edge(f(u); f(v)) 2 EG,
(2) lH(u) = lG(f(u)) and lH(v) = lG(f(v)), and (3)lH((u; v)) = lG((f(u); f(v))).

The concept ofsubgraph isomorphismcan be defined
analogously by using aninjection instead of abijection. A
graphH is called a subgraph of another graphG (orG is a
supergraph ofH), denoted asH � G (orG � H), if there
exists a subgraph isomorphism fromH toG.

3. Ullman Algorithm

One of the earliest and highly-cited approaches to the
subgraph isomorphism problem is the algorithm proposed
by Ullman. Given a query graphq and a data graphG.
To check if q is subgraph ofG, Ullman’s basic approach
is to enumerate all possible mappings of vertices inVq
to those inVG using a depth-first tree-search algorithm.
Figure 2 shows a part of the search tree generated from
testing the two graphs in Figure 1. At leveli of the search
tree, a vertexui in Vq is mapped to some vertex inVG (the
numberj inside each node in the search tree means that this
node represents the vertexvj 2 VG). The root node of the
search tree represents the starting point of the search, inner
nodes of the search tree correspond to partial mappings,
and nodes at leveljVq j represent complete – not necessarily
sub-isomorphic – mappings. If there exists a complete
mapping that preserves adjacency in bothq andG, then
we haveq is subgraph isomorphic toG, otherwiseq is not
subgraph isomorphic toG. The bold path in Figure 2, (u1
is mapped tov1, u2 is mapped tov3, andu3 is mapped tov4), is a complete mapping that preserves adjacency inq
andG, thusq is subgraphs isomorphic toG.

Unfortunately, the number of complete mappings is ex-
ponential in the number of nodes of the involved graphs.
This means that the running time may be huge even for rea-
sonably small graphs. In order to cope with subgraph iso-
morphism problem efficiently, Ullman proposed a refine-
ment procedure to prune the search space. It is based on the
following three conditions:

1. Label and degree condition. A vertex u 2 Vq can
be mapped tov 2 VG under injective mappingf , i.ev = f(u), if
(i) lq(u) = lG(v), and
(ii) deg(u) � deg(v).

2. One-to-One mapping of vertices condition. Once
vertexu 2 Vq is mapped tov 2 VG, we cannot map
any other vertex inVq to the vertexv 2 VG.

2

Figure 2. A part of search tree of Ullman algorithm

3. Neighbor condition. By this condition Ullman algo-
rithm examines the feasibility of mappingu 2 Vq tov 2 VG by considering the preservation of structural
connectivity. If there exist edges connectingu with
previously explored vertices ofq but there are no coun-
terpart edges inG, the mapping test simply fails.

4.Fast-ON Algorithm

In this section we proposeFast-ON, a new algorithm
for subgraph isomorphism problem.Fast-ON is based on
Ullman algorithm. The search space considered by Ullman
algorithm is still huge even after using the refinement pro-
cedure.Fast-ON explores much smaller space than that
of Ullman algorithm by using the following two new opti-
mizations.4.1 Opt1: Ordering the query verti
es

Our first optimization is based on the observation that the
search order in Ullman algorithm is random. It depends on
the order of query vertices imposed during input. This de-
fault ordering ofVq can possibly result in a search order that
seriously slows down Ullman Algorithm. Query vertices
should be explored in the order that facilitates getting theut-
most benefit of applying the third condition. Our approach
to orderVq is to require the currently processing query ver-
tex to have high connectivity with the previously explored
ones, that is, suppose thatui 2 Vq is the currently process-
ing vertex, thenui should have the higher connectivity withu1; u2; : : : ; ui�1 among the remaining ones. Whereas,u1
is the one with maximum degree. This new ordering forces
false mapping to be discarded as early as possible during the
search, thus saving much of the time that Ullman algorithm
may take on false long partial mappings. Figure 3 outlines
this idea.

Algorithm: Order V erti
es(Vq)
Input: Vq = fu1; u2; : : : ; ujVqjg;
Output: An order ofVq , V 0q = fu01; u02; : : : ; u0jVqjg;
1. V 0q = �;
2. for eachu 2 Vq do calculatedeg(u);
3. u01 = uk, k = argmaxu2Vqdeg(u);
4. Add u01 to V 0q and removeuk from Vq ;
5. for i = 2 : : : jVq j
6. u0i = uk, k = argmaxu2Vq jf(u; u0) 2 Eq : u0 2 V 0qgj;
7. Add u0i to V 0q and removeuk from Vq ;
8. return V 0q ;

Figure 3. Ordering Query Vertices Algorithm4.2 Opt2: Utilizing Neighborhood Labels
Here, we introduce a novel condition effective in reduc-

ing the search space. It is based on the neighborhood labels
of matching vertices. This new condition is much stronger
than the label and degree condition of the refinement pro-
cedure. First, we define the labeled neighborhood of any
vertex as follows.

Definition 4.1 (Vertex Labeled Neighborhood)
Given a graphG and a vertexu 2 VG, the labeled neigh-
borhood ofu is given asNLG(u) = f(lG(v); lG((u; v))) :v 2 VG and(u; v) 2 EGg.

The following theorem presents the necessary condition
required to map a vertexu 2 Vq to a vertexv 2 VG.

Theorem 4.1 Given two graphsq andG such thatq is sub-
graph isomorphicG under injective function f. Ifu 2 Vq is
mapped tov 2 VG, thenNLq(u) � NLG(v)

Thus, according to Theorem 4.1, if the labeled neighbor-
hood of vertexv 2 VG does not contain the labeled neigh-

3

borhood of vertexu 2 Vq , u can not be mapped tov. We
can reduce the search space by enforcing this inclusion test.
Next condition generalizes the first condition of the refine-
ment procedure by adding the new inclusion test.

1. Label and neighborhood inclusion condition.A ver-
tex u 2 Vq can be mapped tov 2 VG under injective
functionf , i.ev = f(u), if
(i) lq(u) = lG(v), and
(ii) NLq(u) � NLG(v).

Note that ifNLq(u) � NLG(v) is satisfied, it directly
leads todeg(u) � deg(v) sincedeg(v) = jNLG(v)j.
Example 4.1 Consider the two graphsq and G
given in Figure 1. According to the label and
neighborhood inclusion condition, we can map
vertex u1 2 Vq to v1 2 VG since (i) lq(u1) =lG(v1) = A, and (ii) NLq(u1) = f(B; Y); (B; Y)g �f(A;X); (B; Y); (B; Y)g = NLG(v1).

Though the Label and neighborhood inclusion condition
is effective in reducing the search space, applying the inclu-
sion test is expensive especially for large size graphs with
higher average vertex degree. Below, we propose a new
method to efficiently apply the inclusion test. The method
is based the observation that many vertices in the query or
data graph share the same neighborhood. The next example
highlights this fact.

Example 4.2 Consider the query graphq and data
graph G given in Figure 1. We have (1) In graphG: NLG(v1) = NLG(v2) = f(A;X); (B; Y); (B; Y)g,NLG(v3) = NLG(v5) = f(A; Y); (B;Z)g, andNLG(v4)
= f(A; Y); (A; Y); (B;Z); (B;Z)g; (2) In query graphq:NLq(u1) = f(B; Y); (B; Y)g, andNLq(u2) = NLq(u3)
= f(A; Y); (B;Z)g.

Based on the above observation, we can reduce the cost
of the containment checks by cashing most of the repeated
computation, as in the following steps:

1. Find the set of distinct labeled neighborhoods for the
two graphsq andG, denoted asDLNG andDLNq,
respectively.

2. Construct a bit matrixMDLN = (mij)�� where� =jDLNqj and� = jDLNGj, to maintain the inclusion
relationship between distinct neighborhoods ofq andG, that is,mij = 1 if DLNq[i℄ � DLNG[j℄, other-
wisemij = 0.

3. For a graphg –g is q orG – construct an array of point-
ersPg of size jVg j, called position array, where each
slotu holds the index of the vertexu labeled neighbor-
hood atDLNg.

Algorithm: Fast�ON(q;G)
Input: q: a query graph andG: a data graph.
Output: Boolean:q is a subgraph ofG.
BooleanTest =FALSE; /* Global Variable */
1. V 0q = Order V erti
es(Vq); /* Opt1 */
2. ConstructDLNG; DLNq andMDLN ;
3. Construct bothPq andPG;
4. for eachu 2 V 0q do
5. C(u) = fv : v 2 VG; lq(u) = lG(v); andmPq(u)PG(v) = 1g; /* Opt2 */
6. Re
ursive Sear
h(u1);
7. return Test;
ProcedureRe
ursive Sear
h(ui)
1. if NOT Testthen
2. for v 2 C(ui) andv is unmatcheddo /* Cond. 2 */
3. if NOTMat
hable(ui; v) then continue;
4. f(ui) = v; v = matched;
5. if i < jV 0q j then
6. Re
ursive Sear
h(ui+1);
7. else
8. Test =TRUE;
9. return ;
10. f(ui) = NULL; v = unmatched; /* Backtrack */
Function Mat
hable(ui; v) /* Cond. 3 */
1. for each(ui; uj) 2 Eq ; j < i do
2. if (v; f(uj)) =2 EG then return FALSE;
3. return TRUE;

Figure 4. Fast-ON Algorithm

Now we can say that, for eachu 2 Vq andv 2 VG, we
haveNLq(u) � NLG(v) iff mPq(u)PG(v) = 1. Thus, the
test (ii) in label and neighborhood inclusion condition can
be replaced by testing ifmPq(u)PG(v) = 1.

In subgraph search problem, cashing the repeated com-
putation as above is very useful since real graph datasets
tend to share commonality, that is, a vertex may appear
in many data graphs. This happens because the real data
come from the same application domain. Note that in the
experimental section, subgraph search is used for testing
Fast-ON algorithm.4.3 Fast-ON Algorithm

Figure 4 outlinesFast-ON algorithm. Line 1 applies
the first optimization Opt1, whereas lines 2-5 outline the
second optimization Opt2. In line 5, for each query vertexu 2 Vq , data graph verticesv 2 VG that satisfy the modified
first condition are collected into a set called candidate set

4

 1

 10

 100

 1000

 10000

Q24Q20Q16Q12Q8Q4

T
ot

al
 R

es
po

ns
e

T
im

e
(S

ec
)

AIDS_10K

Ullmann
Fast-O
Fast-N

Fast-ON

Figure 5. Effects of optimizations

 0.1

 1

 10

 100

 1000

 10000

 1 10 100 1000

T
ot

al
 R

es
po

ns
e

T
im

e
(S

ec
)

Chem_Scalability Total Time (Q8)

Ullmann
Vflib

Fast-ON

Figure 7. Scalability on dataset size (#
Graphs in K)C(u). The procedureRe
ursive Sear
h matchesui overC(ui) (line 5) and proceeds step-by-step by recursively

matching the subsequent vertexui+1 overC(ui+1) (lines
6-7), or sets Test to true value and returns if every vertex ofq has counterpart inG (line 9). If ui exhausts all vertices
in C(ui) and still cannot find matching, RecursiveSearch
backtracks to the previous state for further exploration (line
11). The procedure Matchable applies the third condition.

Note that according to Opt2, for eachu, C(u) is as
small as possible. ConsequentlyFast-ON explores much
smaller space than Ullman algorithm. Moreover, according
to Opt1, false mappings are discarded as early as possible,
saving much of the computation spent by Ullman algorithm.

5. EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of
Fast-ON on real and synthetic graphs.Fast-ON is im-
plemented in standard C++ with STL library support and
compiled with GNU GCC. Experiments were run on a PC

with Intel 3GHz dual Core CPU and 4G memory running
Linux. In experiments, we consider vertex-labeled and
edge-labeled simple graphs.5.1 Datasets

Experimental evaluation are performed on a group of
real and synthetic datasets as follows.

Real Datasets. The first real dataset, referred to as
AIDS 10k, consists of 10,000 graphs that are randomly
drawn from the AIDS Antiviral screen database1. These
graphs have 25 vertices and 27 edges on average. There
are totally 62 distinct vertex labels in the dataset but the
majority of these labels are C, O and N. The total num-
ber of distinct edge labels is 3. In order to study the scal-
ability of Fast-ON against different dataset size, we use
a large real chemical compound dataset as a second real
dataset, denoted as Chem1M. Chem1M is a subset of the
PubChem database2, and consists of one million graphs.
Chem1M has 23.98 vertices and 25.76 edges on average.
The number of distinct vertex and distinct edge labels are
81 and 3 respectively. For this study, we derive subsets from
Chem1M, each of which consists ofN graphs and called
ChemN dataset.

Synthetic Datasets. The synthetic graph dataset is gener-
ated as follows: first, a set ofS seed fragments (seed of a
small subgraphs) is generated randomly, whose size is de-
termined by a Poisson distribution with meanI . The size
of each graph is a Poisson random variable with meanT .
Seed fragments are then randomly selected and inserted into
a graph one by one until the graph reaches its size. More
details about the synthetic data generator are available in
[5]. A typical dataset may have the following setting: it
has 10,000 graphs and uses 100 seed fragments (S = 100)
with distinct vertex labels,LV = 3 and distinct edge labels,LE = 2. On average, each graph has 50 edges (T = 50)
and each seed fragment has 15 edges (I = 15). This dataset
is denoted by Syn10K.

Query Sets. There are six query sets Q4, Q8, Q12, Q16,
Q20 and Q24. Each setQi consists of 1000 query graphs
with i edges. For AIDS10k, we adopt the query set
from [10]. In order to generate query sets for other datasets,
a set of 1000 graphs whose size larger than or equal to 24
are randomly selected from the dataset. Then, edges are
removed from graphs such that the remaining graphs still
connected. These graphs constituteQi when all graphs are
of sizei.

1http://dtp.nci.gov/.
2ftp://ftp.ncbi.nlm.nih.gov/pubchem/.

5

 1

 10

 100

 1000

 10000

Q24Q20Q16Q12Q8Q4

T
ot

al
 R

es
po

ns
e

T
im

e
(S

ec
)

AIDS_10K

Ullmann
Vflib

Fast-ON

(a)

 1

 10

 100

 1000

Q24Q20Q16Q12Q8Q4

T
ot

al
 R

es
po

ns
e

T
im

e
(S

ec
)

Chem_10K

Ullmann
Vflib

Fast-ON

(b)

 10

 100

 1000

 10000

Q24Q20Q16Q12Q8Q4

T
ot

al
 R

es
po

ns
e

T
im

e
(S

ec
)

Chem_200K

Ullmann
Vflib

Fast-ON

(c)

 1

 10

 100

 1000

Q24Q20Q16Q12Q8Q4

T
ot

al
 R

es
po

ns
e

T
im

e
(S

ec
)

Syn_10K

Ullmann
Vflib

Fast-ON

(d)

Figure 6. Total Response Time on Various Datasets

Datasets Fast-ON faster than Ullman Fast-ON faster than Vflib jDLNDj
AIDS 10K by 1-3 orders of magnitude by 1 order of magnitude 796

Chem 10K by 4 factors by 1-2 orders of magnitude 352

Chem 200K by 3-4 factors by 1-2 orders of magnitude 1173

Syn 10K by 2-5 factors by 1-2 order of magnitude 287

Table 1. Fast-ON performance against Ullman and Vflib, and # of distinct neigh borhoods.

6

5.2. Performan
e Study
Here, we compare the performance results ofFast-ON

algorithm with those obtained on the same dataset by Ull-
man3 and Vflib 4.

5.2.1 Effects of Optimizations

In this experiment we show the effect of each optimization
independently, and the effect of both of them combined, on
the performance ofFast-ON. For this purpose, we imple-
mented three versions ofFast-ON, namely,Fast-O that
uses only the first optimization Opt1,Fast-N that uses
only the second optimization Opt2, andFast-ON that uses
both of the two optimizations.

Figure 5 plots the results obtained by running the three
versions and Ullman algorithm on AIDS10K for the differ-
ent query sets. The figure shows thatFast-N is faster than
Fast-O except for Q12 and Q16, whereFast-O shows
the best performance. In addition to its influence on speed,
the first optimization makes the algorithm less sensitive to
query size.Fast-ON shows the best performance, it out-
performs bothFast-O andFast-N. This result confirm
the fact that the two optimizations are neither independent
nor conflicting, but they are complementary to each other.
Finally, the figure shows how our new optimizations scale
Ullman algorithm. Fast-ON outperforms Ullman algo-
rithm by 1-3 orders of magnitude.

5.2.2 Fast-ON vs. Ullman and Vflib

Figure 6 reports the total response time obtained by
running Ullman, Vflib, and Fast-ON on various
datasets (AIDS10K: Figure 6(a), Chem10K: Figure 6(b),
Chem200K: Figure 6(c), and Syn10K: Figure 6(d)). Ta-
ble 1 reports how muchFast-ON is faster than Ullman
and Vflib. The Table also reports the size of distinct la-
beled neighborhood of each datasetD, jDLNDj. Notice
thatjDLNDj is small for all datasets compared to the num-
ber of graphsjDj. Thus, the containment cost of the labeled
neighborhoods inFast-ON is minimal. We can see that
Fast-ON always spends less time compared with Ullman
and Vflib. This happens becauseFast-ON has better opti-
mizations.

5.2.3 Scalability

Figure 7 shows the scalability of Ullman, Vflib and
Fast-ON with respect to the number of graphs using the
dataset Chem1M andQ8. The figure shows that the three
algorithms scale linearly. However,Fast-ON outperforms

3Ullman Algorithm is also implemented in standard C++ with STL li-
brary support and compiled with GNU GCC.

4http://amalfi.dis.unina.it/graph/db/vflib-2.0/.

Ullman by factor three, and Vflib by more than one order of
magnitude. Moreover, Vflib is not shown for 1000K graphs,
since it failed to run on large datasets.

6. Conclusion

In this paper, we presentedFast-ON, an efficient al-
gorithm for testing subgraph isomorphism problem which
has proven to be NP-complete problem.Fast-ON is based
on Ullman algorithm and reduces the search space as much
as possible by ordering the vertices of query graph and by
using the labeled neighborhood information. Experimen-
tal results on real and synthetic datasets demonstrate that
Fast-ON outperforms Ullman and Vflib by 1-3 order of
magnitude. AlsoFast-ON has excellent scale-up proper-
ties with respect to the number of graphs.

References

[1] D. Cai, Z. Shao, X. He, X. Yan, and J. Han. Community min-
ing from multi-relational networks.Proc. of PKDD, 2005.

[2] J. Cheng, Y. Ke, W. Ng, and A. Lu. Fg-index: towards
verification-free query processing on graph databases.SIG-
MOD, pages 857–872, 2007.

[3] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento.
A (sub)graph isomorphism algorithm for matching large
graphs. IEEE transaction on pattern analysis and machine
intelligence, 26(10):1367–1372, 2004.

[4] M. R. Garey and D. S. Johnson. Computers and intractabil-
ity; guide to the theory of NP-completeness.W. H. Freeman
& Co., 1990.

[5] M. Kuramochi and G. Karypis. Frequent subgraph discov-
ery. Proc. of ICDM, pages 313–320, 2001.

[6] A. H. Land and A. G. Doig. An automatic method of
solving discrete programming problems.Econometrica,
28(3):497520.

[7] E. G. M. Petrakis and C. Faloutsos. Similarity searchingin
medical image databases.IEEE transactions on knowledge
and data enginnering, 9(3), 1997.

[8] J. R. Ullmann. An algorithm for subgraph isomorphism.
ACM, 23(1):31–42, 1976.

[9] P. Willett. Chemical similarity searching.J. Chem. Inf. Com-
puter Science, 38(6), 1998.

[10] X. Yan, S. Yu, and J. Han. Graph indexing: a frequent
structure-based approach.SIGMOD, pages 335–346, 2004.

[11] P. Zhao, J. X. Yu, and P. S. Yu. Graph indexing: tree + delta<= graph.VLDB, pages 938–949, 2007.

7

