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Chapter 1

INTRODUCTION

Historically, cryptography arose as a means to enable parties to maintain privacy of the information
they send to each other, even in the presence of an adversary with access to the communication
channel. While providing privacy remains a central goal, the field has expandeded to encompass
many others, including not just other goals of communication security, such as guaranteeing in-
tegrity and authenticity of communications, but many more sophisticated and fascinating goals.

Once largely the domain of the military, cryptography is now in widespread use, and you are
likely to have used it even if you don’t know it. When you shop on the Internet, for example to buy
a book at www.amazon.com, cryptography is used to ensure privacy of your credit card number as
it travels from you to the shop’s server. Or, in electronic banking, cryptography is used to ensure
that your checks cannot be forged.

Cryptography has been used almost since writing was invented. For the larger part of its
history, cryptography remained an art, a game of ad hoc designs and attacks. Although the field
retains some of this flavor, the last twenty-five years have brought in something new. The art of
cryptography has now been supplemented with a legitimate science. In this course we shall focus
on that science, which is modern cryptography.

Modern cryptography is a remarkable discipline. It is a cornerstone of computer and communi-
cations security, with end products that are imminently practical. Yet its study touches on branches
of mathematics that may have been considered esoteric, and it brings together fields like number
theory, computational-complexity theory, and probabiltity theory. This course is your invitation
to this fascinating field.

1.1 Goals and settings

Modern cryptography addresses a wide range of problems. But the most basic problem remains
the classical one of ensuring security of communication across an insecure medium. To describe it,
let’s introduce the first two members of our cast of characters: our sender, S, and our receiver, R.
(Sometimes people call these characters Alice, A, and Bob, B. Alice and Bob figure in many works
on cryptography. But we’re going to want the letter A for someone else, anyway.) The sender and
receiver want to communicate with each other.
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Figure 1.1: Several cryptographic goals aim to imitate some aspect of an ideal channel connecting
a sender S to a receiver R.

THE IDEAL CHANNEL. Imagine our two parties are provided with a dedicated, untappable, im-
penetrable pipe or tube into which the sender can whisper a message and the receiver will hear
it. Nobody else can look inside the pipe or change what’s there. This pipe provides the perfect
medium, available only to the sender and receiver, as though they were alone in the world. It is an
“ideal” communication channel from the security point of view. See Fig. 1.1.

Unfortunately, in real life, there are no ideal channels connecting the pairs of parties that might
like to communicate with each other. Usually such parties are communicating over some public
network like the Internet.

The most basic goal of cryptography is to provide such parties with a means to imbue their
communications with security properties akin to those provided by the ideal channel.

At this point we should introduce the third member of our cast. This is our adversary, de-
noted A. An adversary models the source of all possible threats. We imagine the adversary as
having access to the network and wanting to compromise the security of the parties communica-
tions in some way.

Not all aspects of an ideal channel can be emulated. Instead, cryptographers distill a few central
security goals and try to achieve them. The first such goal is privacy. Providing privacy means
hiding the content of a transmission from the adversary. The second goal is authenticity or integrity.
We want the receiver, upon receiving a communication pertaining to be from the sender, to have a
way of assuring itself that it really did originate with the sender, and was not sent by the adversary,
or modified en route from the sender to the receiver.

Pror1ocors. In order to achieve security goals such as privacy or authenticity, cryptography
supplies the sender and receiver with a protocol. A protocol is just a collection of programs (equiva-
lently, algorithms, software), one for each party involved. In our case, there would be some program
for the sender to run, and another for the receiver to run. The sender’s program tells her how to
package, or encapsulate, her data for transmission. The receiver’s program tells him how to decap-
sulate the received package to recover the data together possibly with associated information telling
her whether or not to regard it as authentic. Both programs are a function of some cryptographic
keys as we discuss next.

TRUST MODELS. It is not hard to convince yourself that in order to communicate securely, there
must be something that a party knows, or can do, that the adversary does not know, or cannot
do. There has to be some “asymmetry” between the situation in which the parties finds themselves
and situation in which the adversary finds itself.

The trust model specifies who, initially, has what keys. There are two central trust models: the
symmetric (or shared-key) trust model and the asymmetric (or public-key) trust model. We look
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We will sometimes use words from the theory of “formal languages.” Here is the
vocabulary you should know.

An alphabet is a finite nonempty set. We usually use the Greek letter X to denote
an alphabet. The elements in an alphabet are called characters. So, for example,
> =10,1,2,3,4,5,6,7,8,9} is an alphabet having ten characters, and ¥ = {0,1}
is an alphabet, called the binary alphabet, which has two characters. A string
is finite sequence of characters. The number of characters in a string is called
its length, and the length of a string X is denoted | X|. So X = 1011 is a string
of length four over the binary alphabet, and Y = cryptography is a string of
length 12 over the alphabet of English letters. The string of length zero is called
the empty string and is denoted . If X and Y are strings then the concatenation
of X and Y, denoted X||Y’, is the characters of X followed by the characters of Y.
So, for example, 1011]0 = 10110. We can encode almost anything into a string.
We like to do this because it is as (binary) strings that objects are represented in
computers. Usually the details of how one does this are irrelevant, and so we use
the notation (something) for any fixed, natural way to encode something as a
string. For example, if n is a number and X is a string then Y = (n, X) is some
string which encodes n and X. It is easy to go from n and X to Y = (n, X),
and it is also easy to go from Y = (n, X) back to n and X. A language is a set
of strings, all of the strings being drawn from the same alphabet, . If 3 is an
alphabet then ¥* denotes the set of all strings whose characters are drawn from
%. For example, {0,1}* = {¢,0,1,00,01, 10,11, 000, ...}.

Figure 1.2: Elementary notation from formal-language theory.

at them, and the cryptographic problems they give rise to, in turn.

1.1.1 The symmetric setting

In practice, the simplest and also most common setting is that the sender and receiver share a
key that the adversary does not know. This is called the symmetric setting or symmetric trust
model. The encapsulation and decapsulation procedures above would both depend on this same
shared key. The shared key is usually a uniformly distributed random string having some number
of bits, k. Recall that a string is just a sequence of bits. (For language-theoretic background, see
Fig. 1.2.) The sender and receiver must somehow use the key K to overcome the presence of the
adversary.

One might ask how the symmetric setting is realized. Meaning, how do a sender and receiver
initially come into possession of a key unknown to the adversary? We will discuss this later. The
symmetric model is not concerned with how the parties got the key, but with how to use it.

In cryptography we assume that the secret key is kept securely by the party using it. If it is
kept on a computer, we assume that the adversary cannot penetrate these machines and recover
the key. Ensuring that this assumption is true is the domain of computer systems security.

Let us now take a closer look at some specific problems in the symmetric setting. We’ll describe
these problems quite informally, but we’ll be returning to them later in our studies, when they’ll
get a much more thorough treatment.

SYMMETRIC ENCRYPTION SCHEMES. A protocol used to provide privacy in the symmetric setting
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is called a symmetric encryption scheme. When we specify such a scheme II, we must specify three
algorithms, so that the scheme is a triple of algorithms, IT = (I, €, D). The encapsulation algorithm
we discussed above is, in this context, called an encryption algorithm, and is the algorithm £. The
message M that the sender wishes to transmit is usually referrred to as a plaintext. The sender
encrypts the plaintext under the shared key K by applying £ to K and M to obtain a ciphertext
C. The ciphertext is transmitted to the receiver. The above-mentioned decapsulation procedure,
in this context, is called a decryption algorithm, and is the algorithm D. The receiver applies D
to K and C. The decryption process might be unsuccessful, indicated by its returning a special
symbol L, but, if successful, it ought to return the message that was originally encrypted. The first
algorithm in II is the key generation algorithm which specifies the manner in which the key is to
be chosen. In most cases this algorithm simply returns a random string of length the key length.
The encryption algorithm £ may be randomized, or it might keep some state around. A picture
for symmetric encryption can be found in Figure 1.3.

The encryption scheme does not tell the adversary what to do. It does not say how the key,
once generated, winds its way into the hands of the two parties. And it does not say how messages
are transmitted. It only says how keys are generated and how the data is processed.

WHAT 1S PRIVACY? The goal of a symmetric encryption scheme is that an adversary who obtains
the ciphertext be unable to learn anything about the plaintext. What exactly this means, however,
is not clear, and obtaining a definition of privacy will be an important objective in later chapters.

One thing encryption does not do is hide the length of a plaintext string. This is usually
recoverable from the length of the ciphertext string.

As an example of the issues involved in defining privacy, let us ask ourselves whether we could
hope to say that it is impossible for the adversary to figure out M given C'. But this cannot be
true, because the adversary could just guess M, by outputting a random sequence of | M| bits. (As
indicated above, the length of the plaintext is usually computable from the length of the ciphertext.)
She would be right with probability 27". Not bad, if, say n = 1! Does that make the scheme bad?
No. But it tells us that security is a probabilistic thing. The scheme is not secure or insecure, there
is just some probability of breaking it.

Another issue is a priori knowledge. Before M is transmitted, the adversary might know some-
thing about it. For example, that M is either 0" or 1. Why? Because she knows Alice and Bob
are talking about buying or selling a fixed stock, and this is just a buy or sell message. Now, she
can always get the message right with probability 1/2. How is this factored in?

So far one might imagine that an adversary attacking the privacy of an encryption scheme is
passive, merely obtaining and examining ciphertexts. In fact, this might not be the case at all. We
will consider adversaries that are much more powerful than that.

MESSAGE AUTHENTICITY. In the message-authentication problem the receiver gets some message
which is claimed to have originated with a particular sender. The channel on which this message
flows is insecure. Thus the receiver R wants to distinguish the case in which the message really
did originate with the claimed sender S from the case in which the message originated with some
imposter, A. In such a case we consider the design of an encapsulation mechanism with the property
that un-authentic transmissions lead to the decapsulation algorithm outputting the special symbol
1.

The most common tool for solving the message-authentication problem in the symmetric setting
is a message authentication scheme, also called a message authentication code (MAC). Such a
scheme is specified by a triple of algorithms, II = (IC,7,V). When the sender wants to send a



Bellare and Rogaway 11

K K
' '
s Mk € DﬂR

coins

state A

Figure 1.3: Symmetric encryption. The sender and the receiver share a secret key, K. The adversary
lacks this key. The message M is the plaintext; the message C is the ciphertext.

M M’
. L accept
M mac | O 6" — mac |
gen . vf
T T T reject
K coins K
or
state

S A R

Figure 1.4: A message authentication code. The tag ¢ accompanies the message M. The receiver
R uses it to decide if the message really did originate with the sender S with whom he shares the
key K.

message M to the receiver she computes a “tag,” o, by applying 7 to the shared key K and
the message M, and then transmits the pair (M,o). (The encapsulation procedure referred to
above thus consists of taking M and returning this pair. The tag is also called a MAC.) The
computation of the MAC might be probabilistic or use state, just as with encryption. Or it may
well be deterministic. The receiver, on receipt of M and o, uses the key K to check if the tag
is OK by applying the verification algorithm V to K, M and o. If this algorithms returns 1, he
accepts M as authentic; otherwise, he regards M as a forgery. An appropriate reaction might range
from ignoring the bogus message to tearing down the connection to alerting a responsible party
about the possible mischief. See Figure 1.4.

1.1.2 The asymmetric setting

A shared key K between the sender and the receiver is not the only way to create the information
asymmetry that we need between the parties and the adversary. In the asymmetric setting, also
called the public-key setting, a party possesses a pair of keys—a public key, pk, and an associated
secret key, sk. A party’s public key is made publicly known and bound to its identity. For example,
a party’s public key might be published in a phone book.

The problems that arise are the same as before, but the difference in the setting leads to the



12 INTRODUCTION

PKp SKg
! !
M C M
S— E D R

coins

A Public ‘ Secret

R: PKg | SKp

Figure 1.5: Asymmetric encryption. The receiver R has a public key, pkp, which the sender knows
belongs to R. The receiver also has a corresponding secret key, skp.

development of different kinds of tools.

ASYMMETRIC ENCRYPTION. The sender is assumed to be able to obtain an authentic copy pkp of
the receiver’s public key. (The adversary is assumed to know pkp too.) To send a secret message
M to the receiver the sender computes a ciphertext C' « Eka(M ) and sends C' to the receiver.
When the receiver receives a ciphertext C' he computes M «— Dy, (C). The asymmetric encryption
scheme IT = (K, £, D) is specified by the algorithms for key generation, encryption and decryption.
For a picture of encryption in the public-key setting, see Fig. 1.5.

The idea of public-key cryptography, and the fact that we can actually realize this goal, is
remarkable. You've never met the receiver before. But you can send him a secret message by
looking up some information in a phone book and then using this information to help you garble
up the message you want to send. The intended receiver will be able to understand the content of
your message, but nobody else will. The idea of public-key cryptography is due to Whitfield Diffie
and Martin Hellman and was published in 1976 [10].

DiciTAL SIGNATURES. The tool for solving the message-authentication problem in the asymmetric
setting is a digital signature. Here the sender has a public key pkg and a corresponding secret key
skg. The receiver is assumed to know the key pkg and that it belongs to party S. (The adversary
is assumed to know pkg too.) When the sender wants to send a message M she attaches to it
some extra bits, o, which is called a signature for the message and is computed as a function of
M and skg by applying to them a signing algorithm Sign. The receiver, on receipt of M and o,
checks if it is OK using the public key of the sender, pkg, by applying a verification algorithm
V. If this algorithm accepts, the receiver regards M as authentic; otherwise, he regards M as an
attempted forgery. The digital signature scheme II = (IC, Sign, V) is specified by the algorithms for
key generation, signing and verifying. A picture is given in Fig. 1.6.

One difference between a MAC and a digital signature concerns what is called non-repudiation.
With a MAC anyone who can verify a tagged message can also produce one, and so a tagged message
would seem to be of little use in proving authenticity in a court of law. But with a digitally-signed
message the only party who should be able to produce a message that verifies under public key
pkg is the party S herself. Thus if the signature scheme is good, party S cannot just maintain that
the receiver, or the one presenting the evidence, concocted it. If signature ¢ authenticates M with
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N

R L accept
M Sign 6 - G g Verify /

T T T reject
SK coins PKg
S A R
Public Secret
S: PKg SK

Figure 1.6: A digital signature scheme. The signature o accompanies the message M. The receiver
R uses it to decide if the message really did originate with the sender S with has public key pkg.

‘ symmetric trust model ‘ asymmetric trust model

message symmetric (a.k.a. private- | asymmetric (a.k.a. public-
privacy key) encryption key) encryption

message message authentication | digital signature scheme
authenticity | code (MAC)

Figure 1.7: Summary of main goals and trust models.

respect to public key pkg, then it is only S that should have been able to devise 0. The sender
cannot refute that. Probably the sender S can claim that the key skg was stolen from her. Perhaps
this, if true, might still be construed the sender’s fault.

1.1.3 Summary

To summarize, there are two common aims concerned with mimicking an ideal channel: achieving
message privacy and achieving message authenticity. There are two main trust models in which
we are interested in achieving these goals: the symmetric trust model and the asymmetric trust
model. The tools used to achieve these four goals are named as shown in Fig. 1.7.

1.2 Other goals

Cryptography has numerous other goals, some related to the ones above, some not. Let us discuss
a few of them.
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1.2.1 Pseudorandom Number Generation

Lots of applications require “random” numbers or bits. These applications involve simulation, effi-
cient algorithms, and cryptography itself. In particular, randomness is essential to key generation,
and, additionally, many cryptographic algorithms, such as encryption algorithms, are randomized.

A pseudorandom number generator is a deterministic algorithm that takes as input a short
random string called a seed and stretches it to output a longer sequence of bits that is “pseudoran-
dom.”

In some applications, people use Linear Congruential Generators (LCGs) for pseudorandom
number generation. But LCGs do not have good properties with regard to the quality of pseudo-
randomness of the bits output. With the ideas and techniques of modern cryptography, one can do
much better. We will say what it means for a pseudorandom number generator to be “good” and
then how to design one that is good in this sense. Our notion of “good” is such that our generators
provably suffice for typical applications.

It should be clarified that pseudorandom generators do not generate pseudorandom bits from
scratch. They need as input a random seed, and their job is to stretch this. Thus, they reduce the
task of random number generation to the task of generating a short random seed. As to how to
do the latter, we must step outside the domain of cryptography. We might wire to our computer
a Geiger counter that generates a “random” bit every second, and run the computer for, say, 200
seconds, to get a 200 bit random seed, which we can then stretch via the pseudorandom number
generator. Sometimes, more ad hoc methods are used; a computer might obtain a “random” seed
by computing some function of various variable system parameters such as the time and system
load.

We won’t worry about the “philosophical” question as to whether the bits that form the seed
are random in any real sense. We’ll simply assume that these bits are completely unpredictable to
anything “beyond” the computer which has gathered this data—mathematically, we’ll treat these
bits as random. We will then study pseudorandom number generation under the assumption that
a random seed is available.

1.2.2 Authenticated key exchange

It is common for a pair of communicating parties to wish to establish a secure session. This is a
communication session in which they exchange information with the conviction that each is indeed
speaking to the other, and the content of the information remains hidden to any third party. One
example is a login session in which Alice wishes to remotely logon to her computer. Another
example is a web-browsing session in which a client wants to communicate securely with a server
for some period.

Parties who already either share a secret key or are in possession of authentic copies of each
other’s public keys could use these keys directly to provide privacy and integrity of communicated
data, via symmetric or asymmetric cryptography. However, this is not what is commonly done.
Rather, the parties will use their existing keys —called long-lived keys in this context— to derive a
session key. This is done via an authenticated key exchange protocol. This is a message exchange
whose goal is to provide the parties a “fresh” and authentic shared key that will then be used to
encrypt and authenticate traffic in the session using symmetric cryptography. Once the session is
over, the session key is discarded.

Authenticated key exchange is one of the more subtle goals in cryptography, and will spend
some time later applying the paradigms of modern cryptography to see how to define this goal and
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Figure 1.8: Envelope solution to the telephone-coin-flipping 5problem.

provide high-assurance solutions.

1.2.3 Coin Flipping

Alice and Bob are getting divorced, and want to decide who gets to keep the car. Alice calls Bob
on the telephone and offers a simple solution. “Bob,” she says, “I've got a penny in my pocket.
I’'m going to toss it in the air right now. You call heads or tails. If you get it right, you get the car.
If you get it wrong, I get the car.”

Bob is not as bright as Alice, but something troubles him about this arrangement.

The telephone-coin-flip problem is to come up with a protocol so that, to the maximal extent
possible, neither Alice nor Bob can cheat the other and, at the same time, each of them learn the
outcome of a fair coin toss.

Here is a solution—sort of. Alice puts a random bit « inside an envelope and sends it to Bob.
Bob announces a random bit 5. Now Alice opens the envelope for Bob to see. The shared bit is
defined as o @ (3. See Figure 1.8.

To do this over the telephone we need some sort of “electronic envelope” (in cryptography,
this called a commitment scheme). Alice can put a value in the envelope and Bob can’t see what
the envelope contains. Later, Alice can open the envelope so that Bob can see what the envelope
contains. Alice can’t change her mind about an envelope’s contents—it can only be opened up in
one way.

Here is a simple technique to implement an electronic envelope. To put a “0” inside an envelope
Alice chooses two random 500-bit primes p and g subject to the constraints that p < ¢ and p =1
(mod 4) and ¢ =3 (mod 4). The product of p and ¢, say N = pgq, is the commitment to zero;
that is what Alice would send to commit to 0. To put a “1” inside an envelope Alice chooses too
random 500-bit primes p and ¢ subject to the constraints that p < gand p=3 (mod 4) and g =1
(mod 4). The product of these, N = pq, is the commitment to 1. Poor Bob, seeing N, would like
to figure out if the smaller of its two prime factors is congruent to 1 or to 3 modulo 4. We have
no idea how to make that determination short of factoring N—and we don’t know how to factor
1000 digit numbers which are the product of random 500-digit primes. Our best algorithms would,
take way too long to run. When Alice wants to decommit (open the envelope) N she announces p
and ¢. Bob verifies that they are prime (this is easy to do) and multiply to N, and then he looks
to see if the smaller factor is congruent to 1 or to 3 modulo 4.
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1.3 What cryptography is about

Let us now move away from the particular examples we have given and ask what, in general, is
cryptography about?

1.3.1 Protocols, parties and adversaries

Briefly, cryptography is about constructing and analyzing protocols which overcome the influence
of adversaries. In the last sections we gave examples of several different protocol problems, and a
couple of different protocols.

Suppose that you are trying to solve some cryptographic problem. The problem will usually
involve some number of parties. Us cryptographers often like to anthropomorphize our parties,
giving them names like “Alice” and “Bob” and referring to them as though they are actual people.
We do this because it’s convenient and fun. But you shouldn’t think that it means that the parties
are really human beings. They might be—but they could be lots of other things, too. Like a cell
phone, a computer, a processes running on a computer, an institution, or maybe a little gadget
sitting on the top of your television set.

We usually think of the parties as the “good guys,” and we want to help them accomplish their
goal. We do this by making a protocol for the parties to use.

A protocol tells each party how to behave. A protocol is essentially a program, but it’s a
distributed program. Here are some features of protocols for you to understand.

A protocol instructs the parties what to do. It doesn’t tell the adversary what to do. That is
up to her.

A protocol can be probabilistic. This means that it can make random choices. To formalize this
we usually assume that the model of computation that allows a party to specify a number n > 2
and then obtain a random value i <> {0,1,...,n—1}. This notation means that i is a random value
from the indicated set, all values being equally likely.

A protocol can be stateful. This means that when a party finishes what he is doing he can
retain some information for the next time that he is active. When that party runs again he will
remember the state that he was last in. So, for example, you could have a party that knows “this
is the first time I’ve been run,” “this is the second time I've been run,” and so on.

When we formalize protocols, they are usually tuples of algorithms. But the actual formalization
will vary from problem to problem. For example, a protocol for symmetric encryption isn’t the
same “type” of thing as a protocol for a telephone coin flip.

Another word for a protocol is a scheme. We’ll use the two words interchangeably. So an
encryption scheme is a protocol for encryption, and a message-authentication scheme is a protocol
for message authentication. For us, a function, computed by a deterministic, sequential algorithm,
is also a protocol. It’s a particularly simple kind of protocol.

How can we devise and analyze protocols? The first step is to try to understand the threats and
the goals for our particular problem. Once we have a good idea about these, we can try to find a
protocol solution.

The adversary is the agent that embodies the “source” of the threat. Adversaries aim to defeat
our protocol’s goals. Protocols, in turn, are designed to to surmount the behavior of adversaries.
It is a game—a question of who is more clever, protocol designer or adversary.

The adversary is usually what we focus on. In rigorous formalizations of cryptographic problems,
the parties may actually vanish, being “absorbed” into the formalization. But the adversary will
never vanish. She will be at center stage.
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Cryptography is largely about thinking about the adversary. What can she do, and what can’t
she do? What is she trying to accomplish? We have to answer these questions before we can get
very far.

Just as we warned that one shouldn’t literally regard our parties as people, so too for the adver-
sary. The adversary might represent an actual person, but it might just as well be an automated
attack program, a competitor’s company, a criminal organization, a government institution, one
or more of the protocol’s legitimate parties, a group of friendly hackers, or merely some unlucky
circumstances conspiring together, not controlled by any intelligence at all.

By imagining a powerful adversary we take a pessimistic view about what might go wrong. We
alm to succeed even if someone is out to get us. Maybe nobody is out to get us. In that case,
we should at least be achieving high reliability. After all, if a powerful adversary can’t succeed in
disrupting our endeavors, then neither will noisy lines, transmission errors due to software bugs,
unlucky message delivery times, careless programmers sending improperly formatted messages, and
so forth.

When we formalize adversaries they will be random access machines (RAMs) with access to an
oracle.

1.3.2 Cryptography and computer security

Good protocols are an essential tool for making secure computing systems. Badly designed protocols
are easily exploited to break into computer systems, to eavesdrop on phone calls, to steal services,
and so forth. Good protocol design is also hard. It is easy to under-estimate the task and quickly
come up with ad hoc protocols that later turn out to be wrong. In industry, the necessary time
and expertise for proper protocol design is typically under-estimated, often at future cost. It takes
knowledge, effort and ingenuity to do the job right.

Security has many facets. For a system to be secure, many factors must combine. For example,
it should not be possible for hackers to exploit bugs, break into your system, and use your account.
They shouldn’t be able to buy off your system administrator. They shouldn’t be able to steal your
back-up tapes. These things lie in the realm of system security.

The cryptographic protocol is just one piece of the puzzle. If it is poorly designed, the attacker
will exploit that. For example, suppose the protocol transmits your password in the clear (that
is, in a way that anyone watching can understand what it is). That’s a protocol problem, not a
system problem. And it will certainly be exploited.

The security of the system is only as strong as its weakest link. This is a big part of the difficulty
of building a secure system. To get security we need to address all the problems: how do we secure
our machines against intruders, how do we administer machines to maintain security, how do we
design good protocols, and so on. All of these problems are important, but we will not address all
of these problems here. This course is about the design of secure protocols. We usually have to
assume that the rest of the system is competent at doing its job.

We make this assumption because it provides a natural abstraction boundary in dealing with the
enormous task of providing security. Computer system security is a domain of a different nature,
requiring different tools and expertise. Security can be best addressed by splitting it into more
manageable components.
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1.3.3 The rules of the game

Cryptography has rules. The first rule is that we may only try to overcome the adversary by means
of protocols. We aren’t allowed to overcome the adversary by intimidating her, arresting her, or
putting poison in her coffee. These methods might be effective, but they are not cryptography.

Another rule that most cryptographers insist on is to make the protocols public. That which
must be secret should be embodied in keys. Keys are data, not algorithms. Why do we insist that
our protocols be public? There are several reasons. A resourceful adversary will likely find out
what the protocol is anyway, since it usually has to be embodied in many programs or machines;
trying to hide the protocol description is likely to be costly or infeasible. More than that, the
attempt to hide the protocol makes one wonder if you've achieved security or just obfuscation.
Peer review and academic work cannot progress in the absence of known mechanisms, so keeping
cryptographic methods secret is often seen as anti-intellectual and a sign that ones work will not
hold up to serious scrutiny.

Government organizations that deal in cryptography often do not make their mechanisms public.
For them, learning the cryptographic mechanism is one more hoop that that the adversary must
jump through. Why give anything away? Some organizations may have other reasons for not
wanting mechanisms to be public, like a fear of disseminating cryptographic know-how, or a fear
that the organization’s abilities, or inabilities, will become better understood.

1.4 Approaches to the study of cryptography

Here we very briefly discuss the history of cryptography, and then at two development paradigms,
namely cryptanalysis-driven design and proof-driven design.

1.4.1 Phases in cryptography’s development

The history of cryptography can roughly be divided into three stages. In the first, early stage,
algorithms had to be implementable with paper and ink. Julius Caesar used cryptograms. His and
other early symmetric encryption schemes often took the form of substitution ciphers. In such a
scheme, a key is a permutation m: ¥ — ¥ (meaning, a one-to-one, onto map from the alphabet to
itself). A symbol o € ¥ is encrypted as 7(0), and a piece of text is encrypted by encrypting each
symbol in it. Decryption is done using the map 7—!. As we will see, however, such schemes are
not very secure. The system can be strengthened in various ways, but none too effective.

The second age of cryptography was that of cryptographic engines. This is associated to the
period of the World War II, and the most famous crypto engine was the German Enigma machine.
How its codes were broken is a fascinating story.

The last stage is modern cryptography. Its central feature is the reliance on mathematics
and electronic computers. Computers enabled the use of much more sophisticated encryption
algorithms, and mathematics told us how to design them. It is during this most recent stage that

cryptography becomes much more a science.

1.4.2 Cryptanalysis-driven design

Traditionally, cryptographic mechanisms have been designed by focusing on concrete attacks and
how to defeat them. The approach has worked something like this.

(1) A cryptographic goal is recognized.
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Figure 1.9: The classical-cryptography approach.

(2) A solution is offered.
(3) One searches for an attack on the proposed solution.

(4) When one is found, if it is deemed damaging or indicative of a potential weakness, you go back
to Step 2 and try to come up with a better solution. The process then continues.

Sometimes one finds protocol problems in the form of subtle mathematical relationships that
allow one to subvert the protocol’s aims. Sometimes, instead, one “jumps out of the system,”
showing that some essential cryptographic issue was overlooked in the design, application, or im-
plementation of the cryptography.

Some people like to use the word cryptography to refer to the making of cryptographic mecha-
nisms, cryptanalysis to refer to the attacking of cryptographic mechanisms, and cryptology to refer
to union. Under this usage, we’ve been saying “cryptography” in many contexts where “cryptology”
would be more accurate. Most cryptographers don’t observe this distinction between the words
“cryptography” and “cryptology,” so neither will we.

There are some difficulties with the approach of cryptanalysis-drive design. The obvious problem
is that one never knows if things are right, nor when one is finished! The process should iterate
until one feels “confident” that the solution is adequate. But one has to accept that design errors
might come to light at any time. If one is making a commercial product one must eventually say
that enough is enough, ship the product, and hope for the best. With luck, no damaging attacks
will subsequently emerge. But sometimes they do, and when this happens the company that owns
the product may find it difficult or impossible to effectively fix the fielded solution. They might
try to keep secret that there is a good attack, but it is not easy to keep secret such a thing. See
Figure 1.9.

Doing cryptanalysis well takes a lot of cleverness, and it is not clear that insightful cryptanalysis
is a skill that can be effectively taught. Sure, one can study the most famous attacks—but will
they really allow you to produce a new, equally insightful one? Great cleverness and mathematical
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prowess seem to be the requisite skills, not any specific piece of knowledge. Perhaps for these
reasons, good cryptanalysts are very valuable. Maybe you have heard of Adi Shamir or Don
Coppersmith, both renowned cryptanalysts.

Sadly, it is hard to base a science on an area where assurance is obtained by knowing that
Coppersmith thought about a mechanism and couldn’t find an attack. We need to pursue things
differently.

1.4.3 Shannon security for symmetric encryption

The “systematic” approach to cryptography, where proofs and definitions play a visible role, begins
in the work of Claude Shannon. Shannon was not only the father of information theory, but he
might also be said to be the father of the modern-era of cryptography.

Let’s return to the problem of symmetric encryption. Security, we have said, means defeating
an adversary, so we have to specify what is it the adversary wants to do. As we have mentioned
before, we need some formal way of saying what it means for the scheme to be secure. The idea of
Shannon, which we consider in more depth later, is to say that a scheme is perfectly secure if, for
any two messages My, Mo, and any ciphertext C, the latter is just as likely to show up when M is
encrypted as when Ms is encrypted. Here, likelihood means the probability, taken over the choice
of key, and coins tossed by the encryption algorithm, if any.

Perfect security is a very powerful guarantee; indeed, in some sense, the best one can hope for.
However, it has an important limitation, namely that, to achieve it, the number of message bits
that one can encrypt cannot exceed the number of bits in the key. But if we want to do practical
cryptography, we must be able to use a single short key to encrypt lots of bits. This means that
we will not be able to achieve Shannon’s perfect security. We must seek a different paradigm and
a different notion of security that although “imperfect” is good enough.

1.4.4 Computational-complexity theory

Modern cryptography introduces a new dimension: the amount of computing power available to an
adversary. It seeks to have security as long as adversaries don’t have “too much” computing time.
Schemes are breakable “in principle,” but not in practice. Attacks are infeasible, not impossible.

This is a radical shift from many points of view. It takes cryptography from the realm of
information theory into the realm of computer science, and complexity theory in particular, since
that is where we study how hard problems are to solve as a function of the computational resources
invested. And it changes what we can efficiently achieve.

We will want to be making statements like this:

Assuming the adversary uses no more than ¢t computing cycles, her probability of break-
ing the scheme is at most ¢/2200.

Notice again the statement is probabilistic. Almost all of our statements will be.

Notice another important thing. Nobody said anything about how the adversary operates.
What algorithm, or technique, does she use? We do not know anything about that. The statement
holds nonetheless. So it is a very strong statement.

It should be clear that, in practice, a statement like the one above would be good enough. As
the adversary works harder, her chance of breaking the scheme increases, and if the adversary had
2200 computing cycles at her disposal, we’d have no security left at all. But nobody has that much
computing power.
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Now we must ask ourselves how we can hope to get protocols with such properties. The
legitimate parties must be able to efficiently execute the protocol instructions: their effort should
be reasonable. But somehow, the task for the adversary must be harder.

1.4.5 Atomic primitives

We want to make a distinction between the protocols that that we use and those that we are
designing. At the lowest level are what we call atomic primitives. Higher level protocols are built
on top of these.

Atomic Primitives

!

Protocols

What’s the distinction? Perhaps the easiest way to think of it is that the protocols we build
address a cryptographic problem of interest. They say how to encrypt, how to authenticate, how to
distribute a key. We build our protocols out of atomic primitives. Atomic primitives are protocols
in their own right, but they are simpler protocols. Atomic primitives have some sort of “hardness”
or “security” properties, but by themselves they don’t solve any problem of interest. They must
be properly used to achieve some useful end.

In the early days nobody bothered to make such a distinction between protocols and the prim-
itives that used them. And if you think of the one-time pad encryption method, there is really just
one object, the protocol itself.

Atomic primitives are drawn from two sources: engineered constructs and mathematical prob-
lems. In the first class fall standard blockciphers such as the well-known DES algorithm. In the
second class falls the RSA function. We’ll be looking at both types of primitives later.

The computational nature of modern cryptography means that one must find, and base cryp-
tography on, computationally hard problems. Suitable ones are not so commonplace. Perhaps the
first thought one might have for a source of computationally hard problems is NP-complete prob-
lems. Indeed, early cryptosystems tried to use these, particularly the Knapsack problem. However,
these efforts have mostly failed. One reason is that NP-complete problems, although apparently
hard to solve in the worst-case, may be easy on the average.

An example of a more suitable primitive is a one-way function. This is a function f: D — R
mapping some domain D to some range R with two properties:

(1) f is easy to compute: there is an efficient algorithm that given 2z € D outputs y = f(z) € R.
(2) f is hard to invert: an adversary I given a random y € R has a hard time figuring out a point
x such that f(x) =y, as long as her computing time is restricted.

The above is not a formal definition. The latter, which we will see later, will talk about probabilities.
The input = will be chosen at random, and we will then talk of the probability an adversary can
invert the function at y = f(z), as a function of the time for which she is allowed to compute.

Can we find objects with this strange asymmetry? It is sometimes said that one-way functions
are obvious from real life: it is easier to break a glass than to put it together again. But we want
concrete mathematical functions that we can implement in systems.

One source of examples is number theory, and this illustrates the important interplay between
number theory and cryptography. A lot of cryptography has been done using number theory. And
there is a very simple one-way function based on number theory—something you already know quite
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well. Multiplication! The function f takes as input two numbers, a and b, and multiplies them
together to get N = ab. There is no known algorithm that given a random N = ab, always and
quickly recovers a pair of numbers (not 1 and N, of course!) that are factors of N. This “backwards
direction” is the factoring problem, and it has remained unsolved for hundreds of years.

Here is another example. Let p be a prime. The set Z; = {1,...,p — 1} turns out to be a
group under multiplication modulo p. We fix an element g € Z; which generates the group (that
is, {g°, g%, g% ...,gP %} is all of Zy) and consider the function f: {0,...,p — 2} — Z; defined by
f(x) = g mod p. This is called the discrete exponentiation function, and its inverse is called the
discrete logarithm function: log,(y) is the value x such that y = g*. It turns out there is no known
fast algorithm that computes discrete logarithms, either. This means that for large enough p (say
1000 bits) the task is infeasible, given current computing power, even in thousands of years. So
this is another one-way function.

It should be emphasized though that these functions have not been proven to be hard functions
to invert. Like P versus NP, whether or not there is a good one-way function out there is an open
question. We have some candidate examples, and we work with them. Thus, cryptography is build
on assumptions. If the assumptions are wrong, a lot of protocols might fail. In the meantime we
live with them.

1.4.6 The provable-security approach

While there are several different ways in which proofs can be effective tools in cryptography, we
will generally follow the proof-using tradition which has come to be known as “provable security.”
Provable security emerged in 1982, with the work of Shafi Goldwasser and Silvio Micali. At that
time, Goldwasser and Micali were graduate students at UC Berkeley. They, and their advisor
Manuel Blum, wanted to put public-key encryption on a scientifically firm basis. And they did
that, effectively creating a new viewpoint on what cryptography is really about.

We have explained above that we like to start from atomic primitives and transform them into
protocols. Now good atomic primitives are rare, as are the people who are good at making and
attacking them. Certainly, an important effort in cryptography is to design new atomic primitives,
and to analyze the old ones. This, however, is not the part of cryptography that this course will
focus on. One reason is that the weak link in real-world cryptography seems to be between atomic
primitives and protocols. It is in this transformation that the bulk of security flaws arise. And
there is a science that can do something about it, namely, provable security.

We will view a cryptographer as an engine for turning atomic primitives into protocols. That
is, we focus on protocol design under the assumption that good atomic primitives exist. Some
examples of the kinds of questions we are interested in are these. What is the best way to encrypt
a large text file using DES, assuming DES is secure? What is the best way to design a signature
scheme using multiplication, assuming that multiplication is one-way? How “secure” are known
methods for these tasks? What do such questions even mean, and can we find a good framework
in which to ask and answer them?

A poorly designed protocol can be insecure even though the underlying atomic primitive is good.
The fault is not of the underlying atomic primitive, but that primitive was somehow misused.

Indeed, lots of protocols have been broken, yet the good atomic primitives, like DES and
multiplication and RSA, have never been convincingly broken. We would like to build on the
strength of such primitives in such a way that protocols can “inherit” this strength, not lose it.
The provable-security paradigm lets us do that.
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Figure 1.10: The provable-security paradigm.

The provable-security paradigm is as follows. Take some goal, like achieving privacy via sym-
metric encryption. The first step is to make a formal adversarial model and define what it means
for an encryption scheme to be secure. The definition explains exactly when—on which runs—the
adversary is successful.

With a definition in hand, a particular protocol, based on some particular atomic primitive,
can be put forward. It is then analyzed from the point of view of meeting the definition. The plan
is now show security via a reduction. A reduction shows that the only way to defeat the protocol
is to break the underlying atomic primitive. Thus we will also need a formal definition of what the
atomic primitive is supposed to do.

A reduction is a proof that if the atomic primitive does the job it is supposed to do, then
the protocol we have made does the job that it is supposed to do. Believing this, it is no longer
necessary to directly cryptanalyze the protocol: if you were to find a weakness in it, you would have
unearthed one in the underlying atomic primitive. So if one is going to do cryptanalysis, one might
as well focus on the atomic primitive. And if we believe the latter is secure, then we know, without
further cryptanalysis of the protocol, that the protocol is secure, too.

A picture for the provable-security paradigm might look like Fig. 1.10.

In order to do a reduction one must have a formal notion of what is meant by the security of
the underlying atomic primitive: what attacks, exactly, does it withstand? For example, we might
assume that RSA is a one-way function.

Here is another way of looking at what reductions do. When I give you a reduction from the
onewayness of RSA to the security of my protocol, I am giving you a transformation with the
following property. Suppose you claim to be able to break my protocol P. Let A be the adversary
that you have that does this. My transformation takes A and turns it into another adversary, A,
that breaks RSA. Conclusion: as long as we believe you can’t break RSA, there could be no such
adversary A. In other words, my protocol is secure.

Those familiar with the theory of NP-completeness will recognize that the basic idea of reduc-
tions is the same. When we provide a reduction from SAT to some computational problem = we are
saying our = is hard unless SAT is easy; when we provide a reduction from RSA to our protocol II,
we are saying that II is secure unless RSA is easy to invert. The analogy is further spelled out in
Fig. 1.11, for the benefit of those of you familiar with the notion of NP-Completeness.
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We think that computational problem =
can’t be solved in polynomial time.

We think that cryptographic protocol IT
can’t be effectively attacked.

We believe this because if = could be
solved in polynomial time, then so could
SAT (say).

We believe this because if II could be effec-
tively attacked, then so could RSA (say).

To show this we reduce SAT to =: we
show that if somebody could solve = in
polynomial time, then they could solve
SAT in polynomial time, too.

To show this we reduce RSA to II: we
show that if somebody could break II
by effective means, then they could break
RSA by effective means, too.

Figure 1.11: The analogy between reductionist-cryptography and NP-Completeness.

Experience has taught us that the particulars of reductions in cryptography are a little harder
to comprehend than they were in elementary complexity theory. Part of the difficulty lies in the
fact that every problem domain will have it’s own unique notion of what is an “effective attack.”
It’s rather like having a different “version” of the notion of NP-Completeness as you move from
one problem to another. We will also be concerned with the quality of reductions. One could have
concerned oneself with this in complexity theory, but it’s not usually done. For doing practical
work in cryptography, however, paying attention to the quality of reductions is important. Given
these difficulties, we will proceed rather slowly through the ideas. Don’t worry; you will get it (even
if you never heard of NP-Completeness).

The concept of using reductions in cryptography is a beautiful and powerful idea. Some of us
by now are so used to it that we can forget how innovative it was! And for those not used to it,
it can be hard to understand (or, perhaps, believe) at first hearing—perhaps because it delivers so
much. Protocols designed this way truly have superior security guarantees.

In some ways the term “provable security” is misleading. As the above indicates, what is
probably the central step is providing a model and definition, which does not involve proving
anything. And then, one does not “prove a scheme secure:” one provides a reduction of the
security of the scheme to the security of some underlying atomic primitive. For that reason, we
sometimes use the term “reductionist security” instead of “provable security” to refer to this genre
of work.

1.4.7 Theory for practice

As you have by now inferred, this course emphasizes general principles, not specific systems. We
will not be talking about the latest holes in sendmail or Netscape, how to configure PGP, or the
latest attack against the ISO 9796 signature standard. This kind of stuff is interesting and useful,
but it is also pretty transitory. Our focus is to understand the fundamentals, so that we know how
to deal with new problems as they arise.

We want to make this clear because cryptography and security are now quite hyped topic. There
are many buzzwords floating around. Maybe someone will ask you if, having taken a course, you
know one of them, and you will not have heard of it. Don’t be alarmed. Often these buzzwords
don’t mean much.

This is a theory course. Make no mistake about that! Not in the sense that we don’t care about
practice, but in the sense that we approach practice by trying to understand the fundamentals and
how to apply them. Thus the main goal is to understand the theory of protocol design, and how to
apply it. We firmly believe it is via an understanding of the theory that good design comes. If you
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know the theory you can apply it anywhere; if you only know the latest technology your knowledge
will soon by obsolete. We will see how the theory and the practice can contribute to each other,
refining our understanding of both.

In assignments you will be asked to prove theorems. There may be a bit of mathematics for
you to pick up. But more than that, there is “mathematical thinking.”

Don’t be alarmed if what you find in these pages contradicts “conventional wisdom.” Conven-
tional wisdom is often wrong! And often the standard texts give an impression that the field is the
domain of experts, where to know whether something works or not, you must consult an expert or
the recent papers to see if an attack has appeared. The difference in our approach is that you will
be given reasoning tools, and you can then think for yourself.

Cryptography is fun. Devising definitions, designing protocols, and proving them correct is a
highly creative endeavor. We hope you come to enjoy thinking about this stuff, and that you come
to appreciate the elegance in this domain.

1.5 What background do I need?

Now that you have had some introduction to the material and themes of the class, you need to
decide whether you should take it. Here are some things to consider in making this decision.

A student taking this course is expected to be comfortable with the following kinds of things,
which are covered in various other courses.

The first is probability theory. Probability is everywhere in cryptography. You should be
comfortable with ideas like sample spaces, events, experiments, conditional probability, random
variables and their expectations. We won’t use anything deep from probability theory, but we will
draw heavily on the language and basic concepts of this field.

You should know about alphabets, strings and formal languages, in the style of an undergraduate
course in the theory of computation.

You should know about algorithms and how to measure their complexity. In particular, you
should have taken and understood at least an undergraduate algorithms class.

Most of all you should have general mathematical maturity, meaning, especially, you need to
be able to understand what is (and what is not) a proper definition.

1.6 Problems

Problem 1.1 Besides the symmetric and the asymmetric trust models, think of a couple more
ways to “create asymmetry” between the receiver and the adversary. Show how you would encrypt
a bit in your model. I

Problem 1.2 In the telephone coin-flipping protocol, what should happen if Alice refuses to send
her second message? Is this potentially damaging? I

Problem 1.3 Argue that what we have said about keeping the algorithm public but the key secret
is fundamentally meaningless. I

Problem 1.4 A limitation on fized-time fair-coin-flipping TMs. Consider the model of computa-
tion in which we augment a Turing machine so that it can obtain the output of a random coin flip:
by going into a distinguished state Qg, the next state will be Qg with probability 1/2, and the
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next state will be Q@ with probability 1/2. Show that, in this model of computation, there is no
constant-time algorithm to perfectly deal out five cards to each of two players.

(A deck of cards consists of 52 cards, and a perfect deal means that all hands should be equally
likely. Saying that the algorithm is constant-time means that there is some number T such that
the algorithm is guaranteed to stop within 7" steps.) I

Problem 1.5 Composition of EPT Algorithms. John designs an EPT (expected polynomial time)
algorithm to solve some computational problem II-—but he assumes that he has in hand a black-
box (ie., a unit-time subroutine) which solves some other computational problem, IT". Ted soon
discovers an EPT algorithm to solve IT'. True or false: putting these two pieces together, John and
Ted now have an EPT algorithm for II. Give a proof or counterexample.

(When we speak of the worst-case running time of machine M we are looking at the function
T'(n) which gives, for each n, the maximal time which M might spend on an input of size n: T'(n) =
max, |,|—n[#Stepsy;(z)]. When we speak of the expected running time of M we are instead looking
at the function 7'(n) which gives, for each n, the maximal value among inputs of length n of the
expected value of the running time of M on this input—that is, 7'(n) = max, |,—, E[#Steps,/(z)],
where the expectation is over the random choices made by M.) |
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Chapter 2

CLASSICAL ENCRYPTION

In this chapter we take a quick look at some classical encryption techniques, illustrating their
weakness and using these examples to initiate questions about how to define privacy. We then
discuss Shannon’s notion of perfect security.

2.1 Swubstitution ciphers

One of the earliest approaches to symmetric encryption is what is called a substitution cipher. Say
the plaintext is English text. We can view this as a sequence of symbols, each symbol being either a
letter, a blank or a punctuation mark. Encryption substitutes each symbol ¢ with another symbol
(o). The function 7 is the key, and has to be a permutation (meaning, one-to-one and onto) so
that decryption is possible.

Encryption of this form is quite natural and well known, and, indeed, to many people it defines
how encryption is done. We will later see many other (and better) ways to encrypt, but it is worth
beginning by exploring this one.

Let’s begin by specifying the scheme a little more mathematically. It may be valuable at this
time to review the box in the Introduction that recalls the vocabulary of formal languages; we will
be talking of things like alphabets, symbols, and strings.

Let 3 be a finite alphabet, whose members are called symbols. (In our examples, ¥ would
contain the 26 letters of the English alphabet, the blank symbol U, and punctuation symbols. Let
us refer to this henceforth as the English alphabet.) If x is a string over 3 then we denote by z[i]
its i-th symbol.

Recall that if = is a string then |z| denotes the length of z, meaning the number of symbols in
it. Let us also adopt the convention that if X is a set then |X| denotes its size. The double use of
the “| - |” notation should not cause much problem since the type of object to which it is applied,
namely a set or a string, will usually be quite clear.

A permutation on a set S is a map m: S — S that is one-to-one and onto. Such a map is
invertible, and we denote its inverse by m—!. The inverse is also a permutation, and the map and
its inverse are related by the fact that 77! (7(z)) = z and 7(7~*(y)) = y for all z,y € S. We let
Perm(S) denote the set of all permutations on set S. Note that this set has size |S|.

In the introduction, we had discussed symmetric encryption schemes, and said that any such
scheme is specified as a triple S€ = (K, &€, D) consisting of a key-generation algorithm, an encryption
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30 CLASSICAL ENCRYPTION

algorithm, and a decryption algorithm. A substitution cipher over alphabet 3 is a special kind of
symmetric encryption scheme in which the output of the key-generation algorithm K is always a
permutation over ¥ and the encryption and decryption algorithms are as follows:

Algorithm & (M) Algorithm D, (C)
Fori=1,...,|M| do Fori=1,...,|C| do
C[i] <« m(M]i]) M[i] «— 7~ Y(CTi])
Return C Return M

Above, the plaintext M is a string over X, as is the ciphertext C. The key is denoted 7 and is a
permutation over 3. We will let Keys(SE) denote the set of all keys that might be output by K.

There are many possible substitution ciphers over 3, depending on the set Keys(S€). In the
simplest case, this is the set of all permutations over 3, and K is picking a permutation at random.
But one might consider schemes in which permutations are chosen from a much smaller set.

In our examples, unless otherwise indicated, the alphabet will be the English one defined above,
namely > contains the 26 English letters, the blank symbol LI, and punctuation symbols. We will,
for simplicity, restrict attention to substitution ciphers that are punctuation respecting. By this we
mean that any key (permutation) 7 € Keys(SE) leaves blanks and punctuation marks unchanged.
In specifying such a key, we need only say how it transforms each of the 26 English letters.

Example 2.1 This is an example of how encryption is performed with a (punctuation respecting)
substitution cipher. An example key (permutation) 7 is depicted below:

o A/B|C|D|E|F|G|H|I|J|K|LMNO|PIQIR|S|T|U|V|W|X|Y|Z
w(oc)||D|B|U|P|W|I|Z|L|A|F|N|S|G|K|H|T|J|X|C|M|Y|O|V|IE|Q|R

Note every English letter appears once and exactly once in the second row of the table. That’s why
7 is called a permutation. The inverse 7~ ! permutation is obtained by reading the table backwards.
Thus 7~ (D) = A and so on. The encryption of the plaintext

M = HI THERE
C = mH)rH)r(I)r(W)m(T)r(H)7(E)m(R)m(E) = LA MLWXW |

Now let S€ = (K, &, D) be an arbitrary substitution cipher. We are interested in its security. To
assess this we think about what the adversary has and what it might want to do.

The adversary begins with the disadvantage of not being given the key 7. It is assumed however
to come in possession of a ciphertext C. The most basic goal that we can consider for it is that it
wants to recover the plaintext M = D(w, C') underlying C.

The adversary is always assumed to know the “rules of the game.” Meaning, it knows the
algorithms /IC, £, D. It knows that a substitution cipher is being used, and that it is punctuation
respecting in our case. The only thing it does not know a priori is the key, for that is assumed to
have been shared secretly and privately between the sender and receiver.

So the adversary seems some gibberish, such as the text LA MLWXW. One might imagine that in
the absence of the key 7 it would have a tough time figuring out that the message was HI THERE.
But in fact, substitution ciphers are not so hard to cryptanalyze. Indeed, breaking a substitution
cipher is a popular exercise in a Sunday newspaper or magazine, and many of you may have done
it. The adversary can use its knowledge of the structure of English text to its advantage. Often a
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= |slefcip|e[rlclut]s|k[L|u/nojpa/R|sS|TIU|V|W x|¥|Z
7(7) R|T H A E
7 1(7) R|T|I H A W E
7 1(1) R|T|I M|F|N 0 H A W E
7 1(7) R|T|I M 0 P|H U A|D|W E

Figure 2.1: Cryptanalysis of Example 2.2.

good way to begin is by making what is called a frequency table. This table shows, for ever letter
7, how often 7 occurs in the ciphertext. Now it turns out that the most common letter in English
text is typically E. The next most common are the group T, A, 0, I, N, S, H, R. (These letters have
roughly the same frequency, somewhat lower than that of E, but higher than other letters.) So if X
is the most frequent ciphertext symbol, a good guess would be that it represents E. (The guess is
not necessarily true, but one attempts to validate or refute it in further stages.) Another thing to
do is look for words that have few letters. Thus, if the letter T occurs by itself in the ciphertext,
we conclude that it must represent A or I. Two letter words give similar information. And so on,
it is remarkable how quickly you actually (usually) can figure out the key.

Example 2.2 Let us try to decrypt the following ciphertext:

COXBX TBX CVK CDGXR DI T GTI’R ADHX VOXI 0X ROKQAU IKC RNXPQATCX: VOXI OX
PTI’C THHKBU DC, TIU VOXI 0OX PTI.

Here is our frequency table:

MIN|O|P|Q|R|S|T|U|IV|W| X |Y
313(714/0(01213]9]0(4|0(0(1|8({3]2/4(0(8|3]|4]0(13|/0]0

The most common symbol being X, we guess that 7—1(X) = E. Now we see the word 0X, and,
assuming X represents E, 0 must represent one of B, H, M, W. We also note that 0 has a pretty high
frequency count, namely 8. So my guess is that 0 falls in the second group of letters mentioned
above. But of the letters B, H, M and W, only H is in this group, so let’s guess that 7—'(0) = H. Now,
consider the first word in the ciphertext, namely COXBX. We read it as *HE «E. This could be THERE
or THESE. I will guess that 7—1(C) = T, keeping in mind that 7—!(B) should be either R or S. The
letter T occurs on its own in the ciphertext, so must represent A or I. But the second ciphertext
word can now be read as *RE or *SE, depending on our guess for B discussed above. We know that
the x (which stands for the letter T in the ciphertext) decodes to either A or I. Even though a few
choices yield English words, my bet is the word is ARE, so I will guess 77 1(T) = A and 7 (B) =R.
The second row of the table in Fig. 2.1 shows where we are. Now let us write the ciphertext again,
this time indicating above different letters what we believe them to represent:

THERE ARET T E A A>” E HE HE H T E ATE: HE HE
COXBX TBX CVK CDGXR DI T GTI’R ADHX VOXI OX ROKQAU IKC RNXPQATCX: VOXI OX

A°TA R T, A HE HE A .
PTI’C THHKBU DC, TIU VOXI OX PTI.
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Since the last letter of the ciphertext word DC represents T, the first letter must represent A or I.
But we already have something representing A, so we guess that 771(D) = I. From the ciphertext
word DI it follows that I must be either N, T or S. It can’t be T because C already represents T. But
I is also the last letter of the ciphertext word VOXI, and *HEN is a more likely ending than *HES so
I will guess 771(I) = N. To make sense of the ciphertext word VOXI, I then guess that 7=(V) = W.
The ciphertext word PTI’C is now *AN’T and so surely 7~ !(P) = C. The second row of the table of
Fig. 2.1 shows where we are now, and our text looks like:

THERE ARE TW TI E 1IN A AN’ I E WHEN HE H N T EC ATE: WHEN HE
COXBX TBX CVK CDGXR DI T GTI’R ADHX VOXI O0X ROKQAU IKC RNXPQATCX: VOXI 0OX

CAN’T A R IT, AN WHEN HE CAN.
PTI’C THHKBU DC, TIU VOXI 0OX PTI.

At this point T can decrypt the first 8 words of the ciphertext pretty easily: THERE ARE TWQ TIMES
IN A MAN’S LIFE. The third row of the table of Fig. 2.1 shows where we are after I put in the
corresponding guesses. Applying them, our status is:

THERE ARE TWO TIMES IN A MAN’S LIFE WHEN HE SHO L NOT S EC LATE: WHEN HE
COXBX TBX CVK CDGXR DI T GTI’R ADHX VOXI OX ROKQAU IKC RNXPQATCX: VOXI OX

CAN’T AFFOR 1IT, AN WHEN HE CAN.
PTI’C THHKBU DC, TIU VOXI 0X PTI.

The rest is easy. The decryption is:

THERE ARE TWO TIMES IN A MAN’S LIFE WHEN HE SHOULD NOT SPECULATE: WHEN HE
COXBX TBX CVK CDGXR DI T GTI’R ADHX VOXI OX ROKQAU IKC RNXPQATCX: VOXI OX

CAN’T AFFORD IT, AND WHEN HE CAN.
PTI’C THHKBU DC, TIU VOXI OX PTI.

The third row of the table of Fig. 2.1 shows our final knowledge of the key 7. The text, by the
way, is a quotation from Mark Twain. I

Some people argue that this type of cryptanalysis is not possible if the ciphertext is short, and
thus that substitution ciphers work fine if, say, one changes the key quite frequently. Other people
argue for other kinds of variants and extensions. And in fact, these types of systems have been the
basis for encryption under relatively modern times. We could spend a lot of time on this subject,
and many books do, but we won’t. The reason is that, as we will explain, the idea of a substitution
cipher is flawed at a quite fundamental level, and the flaw remains in the various variations and
enhancements proposed. It will take some quite different ideas to get systems that deliver quality

privacy.
To illustrate why the idea of a substitution cipher is flawed at a fundamental level, consider the
following example usage of the scheme. A polling station has a list of voters, call them V;, Vs, ... V.

Each voter casts a (secret) ballot which is a choice between two values. You could think of them
as YES or NO, being votes on some Proposition, or BUSH and KERRY. In any case, we represent
them as letters: the two choices are Y and N. At the end of the day, the polling station has a list
v1,...,V, of n votes, where v; is V;’s vote. Each vote being a letter, either Y or N, we can think of
the list of votes as a string v = vy ...v, over the alphabet of English letters. The polling station
wants to transmit this string to a tally center, encrypted in order to preserve anonymity of votes.
The polling station and tally center have agreed on a key 7 for a substitution cipher. The polling
station encrypts the message string v to get a ciphertext string ¢ = m(v1)...7(v,) and transmits
this to the tally center. Our question is, is this secure?



Bellare and Rogaway 33

It quickly becomes apparent that it is not. There are only two letters in v, namely Y and N.
This means that ¢ also contains only two letters. Let’s give them names, say A and B. One of these
is m(Y) and the other is m(N). If the adversary knew which is which, it would, from the ciphertext,
know the votes of all voters. But we claim that it is quite easy for the adversary to know which is
which. Consider for example that the adversary is one of the voters, say V;. So it knows its own
vote v1. Say this is Y. It now looks at the first symbol in the ciphertext. If this is A, then it knows
that A = 7(Y) and thus that B = N, and can now immediately recover all of vy, ..., v, from the
ciphertext. (If the first symbol is B, it is the other way around, but again it recovers all votes.)

This attack works even when the ciphertext is short (that is, when n is small). The weakness
is exhibits is in the very nature of the cipher, namely that a particular letter is always encrypted
in the same way, and thus repetitions can be detected.

Pinpointing this weakness illustrates something of the types of mode of thought we need to
develop in cryptography. We need to be able to think about usage of application scenarios in which
a scheme that otherwise seems good will be seen to be bad. For example, above, we considered not
only that the encrypted text is votes, but that the adversary could be one of the voters. We need
to always ask, “what if?”

We want symmetric encryption schemes that are not subject to the types of attacks above and,
in particular, would provide security in an application such as the voting one. Towards this end we
now consider one-time-pad encryption.

2.2 One-time-pad encryption

The One-Time-Pad (OTP) scheme with key-length m is the symmetric encryption scheme SE =
(K, &, D) whose algorithms are as follows. The code for the key-generation algorithm is K < {0,1}™; return K,
meaning a key is a random m-bit string. The encryption algorithm is defined by Ex (M) = K & M,
where the message M is an m-bit binary string and @ denotes bitwise XOR. The decryption algo-
rithm is defined by D (C) = K @ C, where C € {0,1}™. The correctness condition is met because
Dr(Ex(M)) =K @ (K ® M) =M for all M € {0,1}™.

Let us go back to our voting example. Represent Y by 1 and N by 0, and now encrypt the vote
string v = vy ...v, with the OTP scheme with key-length n. Thus the ciphertext is C' = K @ v.
This time, weaknesses such as those we saw above are not present. Say the adversary has the
ciphertext C' = Cy ... C,, where C; is the i-th bit of C'. Say the adversary knows that v; = 1. It
can deduce that Ky, the first bit of K, is 1 & (. But having K; tells it nothing about the other
bits of K, and hence v, ..., v, remain hidden.

It turns out that the higher quality of privacy we see here is not confined to this one application
setting. The scheme has a property called perfect security, which we will define below, and effec-
tively provides the best possible security. We will also see that substitution ciphers do not have
this property, providing a more formal interpretation of the concrete weaknesses we have seen in
them.

Before going on, we remark that the perfect security of the OTP with key-length m relies
crucially on our encrypting only a single message of length m. Were we to encrypt two or more
messages, privacy would be lost. To see this, suppose we encrypt My, then Ms. The adversary
obtains €1 = K & My and Cy = K & M,. XORing them together, it obtains My @& Ms. This
however provides partial information about the data, and, in particular, if the adversary would
now happen to learn M, it could deduce Ms, which is not desirable.
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The idea behind perfect security is to consider that one of two messages M; or Ms is being
encrypted. The adversary is aware of this, and all it wants to know is which of the two it is. It has
in hand the ciphertext C, and now asks itself whether, given C, it can tell whether it was My or My
that gave rise to it. Perfect security says that the adversary cannot tell. It asks that the probability
that C arises as the ciphertext is the same whether M; or My was chosen to be encrypted.

Definition 2.3 (Perfect Security of a Symmetric Encryption Scheme) Let S€ = (K, &, D)
be a symmetric encryption scheme, and assume we use it to encrypt just one message, drawn from
a set Plaintexts. We say that S€ is perfectly secure if for any two messages M7, My € Plaintexts and
any C

Pr [5K(M1) = C] = Pr [8K(M2) = C] . (21)
In both cases, the probability is over the random choice K <~ KC and over the coins tossed by & if
any. I

Let us now show that a substitution cipher fails to have this property, even if the ciphertext
encrypted is very short, say three letters.

Claim 2.4 Let S€ = (K,&,D) be a substitution cipher over the alphabet ¥ consisting of the 26
English letters. Assume that K picks a random permutation over ¥ as the key. (That is, its code
is 7 <> Perm(X) ; return 7.) Let Plaintexts be the set of all three letter English words. Assume we
use SE to encrypt a single message from Plaintexts. Then S€ is not perfectly secure. |

Intuitively, this is due to the weakness we saw above, namely that if a letter appears twice in a
plaintext, it is encrypted the same way in the ciphertext, and thus repetitions can be detected.
If My, M> are messages such that M contains repeated letters but My does not, then, if the
adversary sees a ciphertext with repeated letters it knows that M; was encrypted. This means that
this particular ciphertext has different probabilities of showing up in the two cases. We now make
all this formal.

Proof of Claim 2.4: We are asked to show that the condition of Definition 2.3 does not hold, so
the first thing to do is refer to the definition and right down what it means for the condition to not
hold. It is important here to be careful with the logic. The contrapositive of “for all My, Ms, C' some
condition holds” is “there exist M7, M5, C such that the condition does not hold.” Accordingly, we
need to show there exist My, Ms € Plaintexts, and there exists C, such that

Pri&:(My) =C] #Pr[&E:(Ma) =C] . (2.2)
We have replaced K with m because the key here is a permutation.

We establish the above by picking My, Mo, C in a clever way. Namely we set M; to some three
letter word that contains a repeated letter; specifically, let us set it to FEE. We set My to a three
letter word that does not contain any repeated letter; specifically, let us set it to FAR. We set C' to
XYY, a ciphertext that has the same “pattern” as FEE in the sense that the last two letters are the
same and the first is different from these. Now we evaluate the probabilities in question:

Pr&:(M1) =C] = Pr[&:(FEE) = XYY|
{7 € Perm(X) : £ (FEE) = XYY }|
|[Perm(%)|
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{7 € Perm(X) : n(F)m(E)r(E) = XYY }|
|Perm(X)|

24!
26!

1
60 -

Recall that the probability is over the choice of key, here m, which is chosen at random from
Perm(X), and over the coins of &, if any. In this case, £ does not toss coins, so the probability
is over 7 alone. The probability can be expressed as the ratio of the number of choices of 7 for
which the stated event, namely that & (FEE) = XYY, is true, divided by the total number of possible
choices of 7, namely the size of the set Perm(X) from which 7 is drawn. The second term is 26!.
For the first, we note that the condition means that 7(F) = X and 7(E) = Y, but the value of 7 on
any of the other 24 input letters may still be any value other than X or Y. There are 24! different
ways to assign distinct values to the remaining 24 inputs to 7, so this is the numerator above. Now,
we proceed similarly for Mo:

Pr[&:(M3) =C] = Pr[&;(FAR) = XYY|
{7 ePerm(X) : £ (FAR) = XYY }|
N |Perm ()|
_ {7 ePerm(X) : n(F)m(A)7w(R) = XYY }|
|Perm(X)|
0
26!
= 0.

In this case, the numerator asks us to count the number of permutations m with the property that
m(F) =X, 7(A) =Y and 7(R) = Y. But no permutation can have the same output Y on two different
inputs. So the number of permutations meeting this condition is zero.

In conclusion, we have Equation (2.2) because the two probabilities we computed above are differ-
ent.

Let us now show that the OTP scheme with key-length m does have the perfect security property.
Intuitively, the reason is as follows. Say m = 3, and consider two messages, say M; = 010 and
Ms = 001. Say the adversary receives the ciphertext C' = 101. It asks itself whether it was M7 or My
that was encrypted. Well, it reasons, if it was M7, then the key must have been K = My & C = 111,
while if My was encrypted then the key must have been K = Ms @& C = 100. But either of these
two was equally likely as the key, so how do I know which of the two it was? Here now is the formal
statement and proof.

Claim 2.5 Let S€ = (K,&,D) be the OTP scheme with key-length m > 1. Assume we use it to
encrypt a single message drawn from {0,1}"™. Then SE is perfectly secure. |

Proof of Claim 2.5: As per Definition 2.3, for any M;, My € {0,1}™ and any C' we need to
show that Equation (2.1) is true. So let My, Ma be any m-bit strings. We can assume C is also an
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m-bit string, since otherwise both sides of Equation (2.1) are zero and thus equal. Now

Pr [gK(Ml) = C] = Pr [K @ Ml = C]
{Ke{o,1}": Ko M =C}
{0, 13

1
2_’]7], .

Above, the probability is over the random choice of K from {0,1}", with Mj,C fixed. We write
the probability as the ratio of two terms: the first is the number of keys K for which K & My = C,
and the second is the total possible number of keys. The first term is one, because K can only be
the string My @ C, while the second term is 2. Similarly we have

Préx(My) =C] = Pr|K & M, =C|
{Ke{0,1)": Ko M=Cl|
{0, 1}m]

1

om
In this case the numerator of the fraction is one because only the key K = My @ C has the
property that K @& My = C. Now, since the two probabilities we have computed above are equal,
Equation (2.1) is true, and thus our proof is complete. i

Perfect security is great in terms of security, but comes at a hefty price. It turns out that in any
perfectly secure scheme, the length of the key must be at least the length of the (single) message
encrypted. This means that in practice a perfectly secure scheme (like the OTP) is prohibitively
expensive, requiring parties to exchange very long keys before they can communicate securely.

In practice we want parties to be able to hold a short key, for example 128 bits, and then be
able to securely encrypt essentially any amount of data. To achieve this, we need to make a switch
regarding what kinds of security attributes we seek. As we discussed in the Introduction, we will
ask for security that is not perfect but good enough, the latter interpreted in a computational sense.
Visualizing an adversary as someone running programs to break our system, we will say something
like, yes, in principle you can break my scheme, but it would take more than 100 years running on
the world’s fastest computers to break it with a probability greater than 27%°. In practice, this is
good enough.

To get schemes like that we need some tools, and this is what we turn to next.

2.3 Problems

Problem 2.1 Suppose that you want to encrypt a single message M € {0, 1,2} using a random
shared key K € {0,1,2}. Suppose you do this by representing K and M using two bits (00, 01,
or 10), and then XORing the two representations. Does this seem like a good protocol to you?
Explain. |

Problem 2.2 Suppose that you want to encrypt a single message M € {0,1,2} using a random
shared key K € {0,1,2}. Explain a good way to do this.
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Problem 2.3 Symmetric encryption with a deck of cards. Alice shuffles a deck of cards and deals
it all out to herself and Bob (each of them gets half of the 52 cards). Alice now wishes to send a
secret message M to Bob by saying something aloud. Eavesdropper Eve is listening in: she hears
everything Alice says (but Eve can’t see the cards).

Part A. Suppose Alice’s message M is a string of 48-bits. Describe how Alice can communicate M
to Bob in such a way that Eve will have no information about what is M.

Part B. Now suppose Alice’s message M is 49 bits. Prove that there exists no protocol which allows
Alice to communicate M to Bob in such a way that Eve will have no information about M.
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Chapter 3

BLOCKCIPHERS

Blockciphers are the central tool in the design of protocols for shared-key cryptography (aka. sym-
metric) cryptography. They are the main available “technology” we have at our disposal. This
chapter will take a look at these objects and describe the state of the art in their construction.

It is important to stress that blockciphers are just tools—raw ingredients for cooking up some-
thing more useful. Blockciphers don’t, by themselves, do something that an end-user would care
about. As with any powerful tool, one has to learn to use this one. Even an excellent blockcipher
won’t give you security if you use don’t use it right. But used well, these are powerful tools indeed.
Accordingly, an important theme in several upcoming chapters will be on how to use blockciphers
well. We won’t be emphasizing how to design or analyze blockciphers, as this remains very much
an art.

This chapter gets you acquainted with some typical blockciphers, and discusses attacks on them.
In particular we’ll look at two examples, DES and AES. DES is the “old standby.” It is currently
the most widely-used blockcipher in existence, and it is of sufficient historical significance that every
trained cryptographer needs to have seen its description. AES is a modern blockcipher, and it is
expected to supplant DES in the years to come.

3.1 What is a blockcipher?

A blockcipher is a function E: {0,1}* x {0,1}™ — {0,1}". This notation means that E takes two
inputs, one being a k-bit string and the other an n-bit string, and returns an n-bit string. The
first input is the key. The second might be called the plaintext, and the output might be called a
ciphertext. The key-length k and the block-length n are parameters associated to the blockcipher.
They vary from blockcipher to blockcipher, as of course does the design of the algorithm itself.
For each key K € {0,1}* we let Ex: {0,1}" — {0,1}" be the function defined by E (M) =
E(K, M). For any blockcipher, and any key K, it is required that the function Ex be a permutation
on {0,1}". This means that it is a bijection (ie., a one-to-one and onto function) of {0, 1}" to {0, 1}".
(For every C € {0,1}" there is exactly one M € {0, 1}" such that Ex (M) = C.) Accordingly Fx
has an inverse, and we denote it E'. This function also maps {0,1}" to {0,1}", and of course
we have B’ (Ex(M)) = M and Ex(ER'(C)) = C for all M,C € {0,1}". We let E~1: {0,1}* x
{0,1}" — {0,1}" be defined by E~!(K,C) = E5*(C). This is the inverse blockcipher to E.

39
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Preferably, the blockcipher E is a public specified algorithm. Both the cipher FE and its inverse
E~1 should be easily computable, meaning given K, M we can readily compute E(K, M), and given
K, C we can readily compute E~!(K,C). By “readily compute” we mean that there are public and
relatively efficient programs available for these tasks.

In typical usage, a random key K is chosen and kept secret between a pair of users. The function
Fi is then used by the two parties to process data in some way before they send it to each other.
Typically, we will assume the adversary will be able to obtain some input-output examples for F,
meaning pairs of the form (M, C) where C = Ex(M). But, ordinarily, the adversary will not be
shown the key K. Security relies on the secrecy of the key. So, as a first cut, you might think
of the adversary’s goal as recovering the key K given some input-output examples of Ex. The
blockcipher should be designed to make this task computationally difficult. (Later we will refine
the view that the adversary’s goal is key-recovery, seeing that security against key-recovery is a
necessary but not sufficient condition for the security of a blockcipher.)

We emphasize that we’ve said absolutely nothing about what properties a blockcipher should
have. A function like Ex (M) = M is a blockcipher (the “identity blockcipher”), but we shall not
regard it as a “good” one.

How do real blockciphers work? Lets take a look at some of them to get a sense of this.

3.2 Data Encryption Standard (DES)

The Data Encryption Standard (DES) is the quintessential blockcipher. Even though it is now quite
old, and on the way out, no discussion of blockciphers can really omit mention of this construction.
DES is a remarkably well-engineered algorithm which has had a powerful influence on cryptography.
It is in very widespread use, and probably will be for some years to come. Every time you use an
ATM machine, you are using DES.

3.2.1 A brief history

In 1972 the NBS (National Bureau of Standards, now NIST, the National Institute of Standards
and Technology) initiated a program for data protection and wanted as part of it an encryption
algorithm that could be standardized. They put out a request for such an algorithm. In 1974, IBM
responded with a design based on their “Lucifer” algorithm. This design would eventually evolve
into the DES.

DES has a key-length of k = 56 bits and a block-length of n = 64 bits. It consists of 16 rounds
of what is called a “Feistel network.” We will describe more details shortly.

After NBS, several other bodies adopted DES as a standard, including ANSI (the American
National Standards Institute) and the American Bankers Association.

The standard was to be reviewed every five years to see whether or not it should be re-adopted.
Although there were claims that it would not be re-certified, the algorithm was re-certified again
and again. Only recently did the work for finding a replacement begin in earnest, in the form of
the AES (Advanced Encryption Standard) effort.

3.2.2 Construction

The DES algorithm is depicted in Fig. 3.1. It takes input a 56-bit key K and a 64 bit plaintext
M. The key-schedule KeySchedule produces from the 56-bit key K a sequence of 16 subkeys, one
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function DESk (M) // |K|=56 and |[M| =64
(K1,...,Ki6) < KeySchedule(K) // |K;| =48 for 1 <i <16
M — IP(M)
Parse M as Lo || Ry // |Lo| = |Ro| = 32
for r =1 to 16 do
Ly — Ry_1; Ry f(Kr, erl) @ Ly
C IP_l(L16 || R16)
return C

Figure 3.1: The DES blockcipher. The text and other figures describe the subroutines
KeySchedule, f,IP,IP~!.

IP P!
58 50 42 34 26 18 10 2 40 8 48 16 56 24 64 32
60 52 44 36 28 20 12 4 39 7 47 15 55 23 63 31
62 54 46 38 30 22 14 6 33 6 46 14 54 22 62 30
64 56 48 40 32 24 16 8 37 5 45 13 53 21 61 29
57 49 41 33 25 17 9 1 36 4 44 12 52 20 60 28
59 51 43 35 27 19 11 3 35 3 43 11 51 19 59 27
61 53 45 37 29 21 13 5 34 2 42 10 50 18 58 26
63 55 47 39 31 23 15 7 33 1 41 9 49 17 57 25

Figure 3.2: Tables describing the DES initial permutation IP and its inverse IP~ !,

for each of the rounds that follows. Each subkey is 48-bits long. We postpone the discussion of the
KeySchedule algorithm.

The initial permutation IP simply permutes the bits of M, as described by the table of Fig. 3.2.
The table says that bit 1 of the output is bit 58 of the input; bit 2 of the output is bit 50 of the
input; ... ; bit 64 of the output is bit 7 of the input. Note that the key is not involved in this
permutation. The initial permutation does not appear to affect the cryptographic strength of the
algorithm. It might have been included to slow-down software implementations.

The permuted plaintext is now input to a loop, which operates on it in 16 rounds. Each round
takes a 64-bit input, viewed as consisting of a 32-bit left half and a 32-bit right half, and, under the
influence of the sub-key K, produces a 64-bit output. The input to round r is L,_; || R,_1, and
the output of round r is L, | R,. Each round is what is called a Feistel round, named after Horst
Feistel, one the IBM designers of a precursor of DES. Fig. 3.1 shows how it works, meaning how
L, || R, is computed as a function of L,_; || R,—1, by way of the function f, the latter depending
on the sub-key K, associated to the r-th round.

One of the reasons to use this round structure is that it is reversible, important to ensure that
DESg is a permutation for each key K, as it should be to qualify as a blockcipher. Indeed, given
L, || R, (and K, ) we can recover L,_1 || R,—1 via R,_1 < L, and L, «— f(K —7r,L,) ® R,.

Following the 16 rounds, the inverse of the permutation IP, also depicted in Fig. 3.2, is applied
to the 64-bit output of the 16-th round, and the result of this is the output ciphertext.

A sequence of Feistel rounds is a common high-level design for a blockcipher. For a closer look
we need to see how the function f(-,-) works. It is shown in Fig. 3.3. It takes a 48-bit subkey .J
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function f(J,R) //|J| =48 and |R| = 32
R—FER); R—Ra®J
Parse Ras Ry || R2 || R || Ra|| Rs || Re || R7 || R // |Ri| =6for 1 <i<8
for i=1,...,8do
R; — S;(R;) // Each S-box returns 4 bits
R—Ri|Re||Rs || Ral| Rs || R || R || Rs // |R| = 32 bits
R — P(R)
return IR

Figure 3.3: The f-function of DES. The text and other figures describe the subroutines used.

E P
321 2 3 4 5 16 7 20 21
4 5 6 7 8 9 29 12 28 17
g 9 10 11 12 13 1 15 23 26
12 13 14 15 16 17 5 18 31 10
16 17 18 19 20 21 2 8 24 14
20 21 22 23 24 25 32 27 3 9
24 25 26 27 28 29 19 13 30 6
28 29 30 31 32 1 22 11 4 25

Figure 3.4: Tables describing the expansion function E and final permutation P of the DES f-
function.

and a 32-bit input R to return a 32-bit output. The 32-bit R is first expanded into a 48-bit via the
function E described by the table of Fig. 3.4. This says that bit 1 of the output is bit 32 of the
input; bit 2 of the output is bit 1 of the input; ... ; bit 48 of the output is bit 1 of the input.

Note the F function is quite structured. In fact barring that 1 and 32 have been swapped (see
top left and bottom right) it looks almost sequential. Why did they do this? Who knows. That’s
the answer to most things about DES.

Now the sub-key J is XORed with the output of the E function to yield a 48-bit result that we
continue to denote by R. This is split into 8 blocks, each 6-bits long. To the i-th block we apply
the function S; called the i-th S-box. Each S-box is a function taking 6 bits and returning 4 bits.
The result is that the 48-bit R is compressed to 32 bits. These 32 bits are permuted according to
the P permutation described in the usual way by the table of Fig. 3.4, and the result is the output
of the f function. Let us now discuss the S-boxes.

Each S-box is described by a table as shown in Fig. 3.5. Read these tables as follows. S; takes
a 6-bit input. Write it as by1babsbsbsbg. Read bsbibsbg as an integer in the range 0, ..., 15, naming
a column in the table describing S;. Let b1bs name a row in the table describing S;. Take the row
b1ba, column bsbsbsbg entry of the table of S; to get an integer in the range 0, ...,15. The output
of S; on input b1bobsbybsbg is the 4-bit string corresponding to this table entry.

The S-boxes are the heart of the algorithm, and much effort was put into designing them to
achieve various security goals and resistance to certain attacks.

Finally, we discuss the key schedule. It is shown in Fig. 3.6. Each round sub-key K, is formed
by taking some 48 bits of K. Specifically, a permutation called PC-1 is first applied to the 56-bit
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Figure 3.5: The DES S-boxes.

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 014 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7
o 140 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8
1 0(4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 O
1 1|15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 0j1 1 8 14 6 11 3 4 9 7 2 13 12 0 5 10
o 1|3 13 4 7 15 2 8 14 12 0 1 10 6 9 11 5
1 00 14 7 11 10 4 13 1 5 8 12 6 9 3 2 15
1 1|13 8 10 1 3 15 4 2 11 6 7 12 0 5 14 9
o 1 2 3 4 5 6 7 & 9 10 11 12 13 14 15
0 0j10 0 9 14 6 3 15 5 1 13 12 7 11 4 2 8
0O 1{13 7 0o 9 3 4 6 10 2 8 5 14 12 11 15 1
1 013 6 4 9 8 15 3 0 11 1 2 12 5 10 14 7
1 1)1 10 13 0 6 9 8 7 4 15 14 3 11 5 2 12
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
o o7 13 14 3 0 6 9 10 1 2 8 5 11 12 4 15
0 1{13 8 11 5 6 1 0 3 4 7 2 12 1 10 14 9
1 010 6 9 o0 12 11 7 13 15 1 3 14 5 2 8 4
113 15 0 6 10 1 13 8 9 4 5 11 12 7 2 14
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 0|2 12 4 1 7 10 11 6 &8 5 3 15 13 0 14 9
0 1|14 11 2 12 4 7 13 1 5 0 15 10 3 9 8 6
1 04 2 1 11 10 13 7 8 15 9 12 5 6 3 0 14
1 1)1 8 12 7v 1 14 2 13 6 15 0 9 10 4 5 3
o 1 2 3 4 5 6 7 & 9 10 11 12 13 14 15
0 012 1 10 15 9 2 6 8 O 13 3 4 14 7 5 11
0 1{10 15 4 2 7 12 9 5 6 1 13 14 0 11 3 8
109 14 15 5 2 8 12 3 7 0 4 10 1 13 11 6
1 114 3 2 12 9 5 15 10 11 14 1 7 6 0 & 13
o 1 2 3 4 5 6 7 & 9 10 11 12 13 14 15
0o 04 11 2 14 15 0 & 13 3 12 9 7 5 10 6 1
0 1|13 0 11 7 4 9 1 10 14 3 5 12 2 15 8 6
1 o1 4 11 13 12 3 7 14 10 15 6 8 0 5 9 2
1 16 11 13 8 1 4 10 7 9 5 0 15 14 2 3 12
o 1 2 3 4 5 6 7 &8 9 10 11 12 13 14 15
0O 013 2 8 4 6 1 11 1 10 9 3 14 5 0 12 7
0 1{1 15 13 8 10 3 7 4 12 5 6 11 0 14 9 2
i o7 1 4 1 9 12 14 2 0 6 10 13 15 3 5 8
112 1 14 7 4 10 8 13 15 12 9 0 3 5 6 11
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key to yield a permuted version of it. This is then divided into two 28-bit halves and denoted
Co || Dyp. The algorithm now goes through 16 rounds. The r-th round takes input C,_; || Dy_1,
computes C, || D,, and applies a function PC-2 that extracts 48 bits from this 56-bit quantity. This
is the sub-key K for the r-th round. The computation of C, || D, is quite simple. The bits of C;_;
are rotated to the left j positions to get C), and D, is obtained similarly from D,_;, where j is
either 1 or 2, depending on r.
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Algorithm KeySchedule(K) // |K| =56

K « PC-1(K)

Parse K as Cy || Do

for r=1,...,16 do
if r€{1,2,9,16} then j«— lelsej«— 2fi
C, « leftshift;(Cy_1) ; D, « leftshift;(D,_1)
K, «— PC-2(C, || D,)

return(Ky, ..., Kig)

Figure 3.6: The key schedule of DES. Here leftshift; denotes the function that rotates its input to
the left by j positions.

PC-1 PC-2
57 49 41 33 25 17 9 14 17 11 24 1 5
1 58 50 42 34 26 18 3 28 15 6 21 10
10 2 59 51 43 35 27 23 19 12 4 26 8
19 11 3 60 52 44 36 16 7 27 20 13 2
63 55 47 39 31 23 15 41 52 31 37 47 55
7 62 54 46 38 30 22 30 40 51 45 33 48
14 6 61 53 45 37 29 44 49 39 56 34 53
21 13 5 28 20 12 4 46 42 50 36 29 32

Figure 3.7: Tables describing the PC-1 and PC-2 functions used by the DES key schedule of Fig. 3.6.

The functions PC-1 and PC-2 are tabulated in Fig. 3.7. The first table needs to be read in a
strange way. It contains 56 integers, these being all integers in the range 1, ..., 64 barring multiples
of 8. Given a 56-bit string K = K]J1]... K[56] as input, the corresponding function returns the
56-bit string L = L[1]... L[56] computed as follows. Suppose 1 < ¢ < 56, and let a be the i-th
entry of the table. Write a = 8¢+ r where 1 < r < 7. Then let L[i] = K[a — ¢]. As an example, let
us determine the first bit, L[1], of the output of the function on input K. We look at the first entry
in the table, which is 57. We divide it by 8 to get 57 = 8(7) + 1. So L[1] equals K[57 — 7] = K[50],
meaning the 1st bit of the output is the 50-th bit of the input. On the other hand PC-2 is read in
the usual way as a map taking a 56-bit input to a 48 bit output: bit 1 of the output is bit 14 of
the input; bit 2 of the output is bit 17 of the input; ... ; bit 56 of the output is bit 32 of the input.

Well now you know how DES works. Of course, the main questions about the design are:
why, why and why? What motivated these design choices? We don’t know too much about this,
although we can guess a little. And one of the designers of DES, Don Coppersmith, has written a
short paper which provides some information.

3.2.3 Speed

One of the design goals of DES was that it would have fast implementations relative to the tech-
nology of its time. How fast can you compute DES? In roughly current technology (well, nothing
is current by the time one writes it down!) one can get well over 1 Gbit/sec on high-end VLSI.
Specifically at least 1.6 Gbits/sec, maybe more. That’s pretty fast. Perhaps a more interesting
figure is that one can implement each DES S-box with at most 50 two-input gates, where the circuit
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has depth of only 3. Thus one can compute DES by a combinatorial circuit of about 8-16-50 = 640
gates and depth of 3 - 16 = 48 gates.

In software, on a fairly modern processor, DES takes something like 80 cycles per byte. This
is disappointingly slow—mnot surprisingly, since DES was optimized for hardware and was designed
before the days in which software implementations were considered feasible or desirable.

3.3 Key recovery attacks on blockciphers

Now that we know what a blockcipher looks like, let us consider attacking one. This is called
cryptanalysis of the blockcipher.

We fix a blockcipher E: {0,1}* x {0,1}" — {0,1}" having key-size k and block size n. It is
assumed that the attacker knows the description of E and can compute it. For concreteness, you
can think of £ as being DES.

Historically, cryptanalysis of blockciphers has focused on key-recovery. The cryptanalyst may
think of the problem to be solved as something like this. A k-bit key T', called the target key, is
chosen at random. Let ¢ > 0 be some integer parameter.

GIVEN: The adversary has a sequence of ¢ input-output examples of Er, say
(My,Ch),...,(My,Cy)
where C; = Ep(M;) for i =1,...,q and M, ..., M, are all distinct n-bit strings.

FIND: The adversary wants to find the target key 7.

Let us say that a key K is consistent with the input-output examples (Mi,Ch),..., (Mg, Cy) if
Ex(M;) =C; for all 1 <i <gq. We let

Consg((M1,Ch),. .., (Mg, Cy))

be the set of all keys consistent with the input-output examples (M7, C),. .., (Mg, Cy). Of course
the target key 7' is in this set. But the set might be larger, containing other keys. Without
asking further queries, a key-recovery attack cannot hope to differentiate the target key from other
members of Consg((My,Ch),. .., (My,Cy)). Thus, the goal is sometimes viewed as simply being to
find some key in this set. For practical blockciphers we expect that, if a few input-output examples
are used, the size of the above set will be one, so the adversary can indeed find the target key. We
will exemplify this when we consider specific attacks.
Some typical kinds of “attack” that are considered within this framework:

KNOWN-MESSAGE ATTACK: M, ..., M, are any distinct points; the adversary has no control over
them, and must work with whatever it gets.

CHOSEN-MESSAGE ATTACK: Mj,..., M, are chosen by the adversary, perhaps even adaptively.
That is, imagine it has access to an “oracle” for the function Ex. It can feed the oracle M; and
get back Cy = Ex(M;y). It can then decide on a value Ma, feed the oracle this, and get back Cs,
and so on.

Clearly a chosen-message attack gives the adversary more power, but it may be less realistic in
practice.

The most obvious attack strategy is exhaustive key search. The adversary goes through all
possible keys K’ € {0, 1}]C until it finds one that explains the input-output pairs. Here is the attack
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in detail, using ¢ = 1, meaning one input-output example. For i = 1,...,2"% let T} denote the i-th
k-bit string (in lexicographic order).

algorithm EKSpg(M;,Cy)
for i=1,...,2" do
if E7,(M;) = C then return T;

This attack always returns a key consistent with the given input-output example (M, C1). Whether
or not it is the target key depends on the blockcipher. If one imagines the blockcipher to be random,
then the blockcipher’s key length and block length are relevant in assessing if the above attack will
find the “right” key. , The likelihood of the attack returning the target key can be increased by
testing against more input-output examples:

algorithm EKSg((Mi,Ch),...,(My,Cy))
for i=1,...,2" do
if E(T;, M) = C; then
if ( E(T;, M3) = Cy and - -- and E(T;, M,) = C, ) then return T;

A fairly small vaue of ¢, say somewhat more than k/n, is enough that this attack will usually return
the target key itself. For DES, ¢ = 1 or ¢ = 2 seems to be enough.

Thus, no blockcipher is perfectly secure. It is always possible for an attacker to recover a consis-
tent key. A good blockcipher, however, is designed to make this task computationally prohibitive.

How long does exhaustive key-search take? Since we will choose ¢ to be small we can neglect the
difference in running time between the two versions of the attack above, and focus for simplicity on
the first attack. In the worst case, it uses 2¥ computations of the blockcipher. However it could be
less since one could get lucky. For example if the target key is in the first half of the search space,
only 2¥=1 computations would be used. So a better measure is how long it takes on the average.
This is

2" 2" 1 2F(2k 4+ 1)

k
i 12 k1,

computations of the blockcipher. This is because the target key is chosen at random, so with
probability 1/2% equals T}, and in that case the attack uses i F-computations to find it.

Thus to make key-recovery by exhaustive search computationally prohibitive, one must make
the key-length k of the blockcipher large enough.

Let’s look at DES. We noted above that there is VLSI chip that can compute it at the rate of
1.6 Gbits/sec. How long would key-recovery via exhaustive search take using this chip? Since a
DES plaintext is 64 bits, the chip enables us to perform (1.6-10%)/64 = 2.5-107 DES computations
per second. To perform 2% computations (here k = 56) we thus need 2°°/(2.5 - 107) ~ 1.44 - 10°
seconds, which is about 45.7 years. This is clearly prohibitive.

It turns out that that DES has a property called key-complementation that one can exploit to
reduce the size of the search space by one-half, so that the time to find a key by exhaustive search
comes down to 22.8 years. But this is still prohibitive.

Yet, the conclusion that DES is secure against exhaustive key search is actually too hasty. We
will return to this later and see why.

Exhaustive key search is a generic attack in the sense that it works against any blockcipher.
It only involves computing the blockcipher and makes no attempt to analyze the cipher and find
and exploit weaknesses. Cryptanalysts also need to ask themselves if there is some weakness in the
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structure of the blockcipher they can exploit to obtain an attack performing better than exhaustive
key search.

For DES, the discovery of such attacks waited until 1990. Differential cryptanalysis is capable
of finding a DES key using about 247 input-output examples (that is, ¢ = 247) in a chosen-message
attack [1, 2]. Linear cryptanalysis [4] improved differential in two ways. The number of input-
output examples required is reduced to 2%*, and only a known-message attack is required. (An
alternative version uses 242 chosen plaintexts [24].)

These were major breakthroughs in cryptanalysis that required careful analysis of the DES
construction to find and exploit weaknesses. Yet, the practical impact of these attacks is small.
Why? Ordinarily it would be impossible to obtain 2* input-output examples. Furthermore, the
storage requirement for these examples is prohibitive. A single input-output pair, consisting of a
64-bit plaintext and 64-bit ciphertext, takes 16 bytes of storage. When there are 244 such pairs, we
need 16 - 24 = 2.81 - 10! bits, or about 281 terabytes of storage, which is enormous.

Linear and differential cryptanalysis were however more devastating when applied to other
ciphers, some of which succumbed completely to the attack.

So what’s the best possible attack against DES? The answer is exhaustive key search. What
we ignored above is that the DES computations in this attack can be performed in parallel. In
1993, Weiner argued that one can design a $1 million machine that does the exhaustive key search
for DES in about 3.5 hours on the average [7]. His machine would have about 57,000 chips, each
performing numerous DES computations. More recently, a DES key search machine was actually
built by the Electronic Frontier Foundation, at a cost of $250,000 [5]. It finds the key in 56 hours,
or about 2.5 days on the average. The builders say it will be cheaper to build more machines now
that this one is built.

Thus DES is feeling its age. Yet, it would be a mistake to take away from this discussion the
impression that DES is a weak algorithm. Rather, what the above says is that it is an impressively
strong algorithm. After all these years, the best practical attack known is still exhaustive key
search. That says a lot for its design and its designers.

Later we will see that we would like security properties from a blockcipher that go beyond
resistance to key-recovery attacks. It turns out that from that point of view, a limitation of DES
is its block size. Birthday attacks “break” DES with about ¢ = 232 input output examples. (The
meaning of “break” here is very different from above.) Here 232 is the square root of 264, meaning
to resist these attacks we must have bigger block size. The next generation of ciphers—things like
AES—took this into account.

3.4 Iterated-DES and DESX

The emergence of the above-discussed key-search engines lead to the view that in practice DES
should be considered broken. Its shortcoming was its key-length of 56, not long enough to resist
exhaustive key search.

People looked for cheap ways to strengthen DES, turning it, in some simple way, into a cipher
with a larger key length. One paradigm towards this end is iteration.

3.4.1 Double-DES

Let K1, Ko be 56-bit DES keys and let M be a 64-bit plaintext. Let
2DES(K || K2, M) = DES(K2,DES(K,M)) .



48 BLOCKCIPHERS

This defines a blockcipher 2DES: {0, 1}12 x {0, 1}%* — {0,1}5* that we call Double-DES. It has a
112-bit key, viewed as consisting of two 56-bit DES keys. Note that it is reversible, as required to
be a blockcipher:

2DES (K, || K2,C) = DES™'(K{,DES™ (K>, ()) .
for any 64-bit C.

The key length of 112 is large enough that there seems little danger of 2DES succumbing
to an exhaustive key search attack, even while exploiting the potential for parallelism and special-
purpose hardware. On the other hand, 2DES also seems secure against the best known cryptanalytic
techniques, namely differential and linear cryptanalysis, since the iteration effectively increases the
number of Feistel rounds. This would indicate that 2DES is a good way to obtain a DES-based
cipher more secure than DES itself.

However, although 2DES has a key-length of 112, it turns out that it can be broken using
about 2°7 DES and DES™! computations by what is called a meet-in-the-middle attack, as we now
illustrate. Let K || K2 denote the target key and let C; = 2DES(K || K2, M7). The attacker, given
M, Cy, is attempting to find K7 || K2. We observe that

C; = DES(K,, DES(K1, My)) =  DES (K, Cy) = DES(Ky, M) .

This leads to the following attack. Below, for i = 1,...,2% we let T; denote the i-th 56-bit string
(in lexicographic order):

MinMpgs (M, C)
for i=1,...,2% do L[i] « DES(T;, M1)
for j=1,...,2° do R[j] — DES™!(T},C)
S<—{(i,j): Lli] = R[j] }

Pick some (I,r) € S and return T; || T,

For any (7,75) € S we have
DES(T;, My) = L[i] = R[j] = DES™!(T},C1)

and as a consequence DES(T;, DES(T;, My)) = C4. So the key T; || T} is consistent with the input-
output example (M, C1). Thus,

{(Ty| T, : (I,r) €S} = Consg((My,Ch)).

The attack picks some pair (I,r7) from S and outputs 7; || T}, thus returning a key consistent with
the input-output example (M7, Cy).

The set S above is likely to be quite large, of size about 2°07°6 /264 = 248 'meaning the attack
as written is not likely to return the target key itself. However, by using a few more input-output
examples, it is easy to whittle down the choices in the set S until it is likely that only the target
key remains.

The attack makes 2°6 4 256 = 257 DES or DES™! computations. The step of forming the set S
can be implemented in linear time in the size of the arrays involved, say using hashing. (A naive
strategy takes time quadratic in the size of the arrays.) Thus the running time is dominated by
the DES, DES™! computations.

The meet-in-the-middle attack shows that 2DES is quite far from the ideal of a cipher where
the best attack is exhaustive key search. However, this attack is not particularly practical, even if
special purpose machines are designed to implement it. The machines could do the DES, DES™!
computations quickly in parallel, but to form the set S the attack needs to store the arrays L, R,
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each of which has 2°0 entries, each entry being 64 bits. The amount of storage required is 8 - 2°7 ~

1.15 - 10'® bytes, or about 1.15 - 10% terabytes, which is so large that implementing the attack is
impractical.

There are some strategies that modify the attack to reduce the storage overhead at the cost of
some added time, but still the attack does not appear to be practical.

Since a 112-bit 2DES key can be found using 2°7 DES or DES™! computations, we sometimes
say that 2DES has an effective key length of 57.

3.4.2 Triple-DES

The triple-DES ciphers use three iterations of DES or DES™!. The three-key variant is defined by
3DES3(K | Ko || K3, M) = DES(K3,DES™!(Ky, DES(Ky, M)) ,
so that 3DES3: {0,1}1%® x {0,1}5* — {0,1}%%. The two-key variant is defined by
3DES2(K || K2, M) = DES(K», DES™' (K, DES(K>, M)) ,

so that 3DES2: {0,1}''2x {0,1}%* — {0,1}5*. You should check that these functions are reversible
so that they do qualify as blockciphers. The term “triple” refers to there being three applications
of DES or DES™!. The rationale for the middle application being DES™! rather than DES is that
DES is easily recovered via

DES(K,M) = 3DES3(K || K || K, M) (3.1)
DES(K,M) = 3DES2(K | K,M). (3.2)

As with 2DES, the key length of these ciphers appears long enough to make exhaustive key
search prohibitive, even with the best possible engines, and, additionally, differential and linear
cryptanalysis are not particularly effective because iteration effectively increases the number of
Feistel rounds.

3DES3 is subject to a meet-in-the-middle attack that finds the 168-bit key using about 212
computations of DES or DES™!, so that it has an effective key length of 112. There does not
appear to be a meet-in-the-middle attack on 3DES2 however, so that its key length of 112 is also
its effective key length.

The 3DES2 cipher is popular in practice and functions as a canonical and standard replacement
for DES. 2DES, although having the same effective key length as 3DES2 and offering what appears
to be the same or at least adequate security, is not popular in practice. It is not entirely apparent
why 3DES2 is preferred over 2DES, but the reason might be Equation (3.2).

3.4.3 DESX

Although 2DES, 3DES3 and 3DES2 appear to provide adequate security, they are slow. The first
is twice as slow as DES and the other two are three times as slow. It would be nice to have a
DES based blockcipher that had a longer key than DES but was not significantly more costly.
Interestingly, there is a simple design that does just this. Let K be a 56-bit DES key, let K1, Ko
be 64-bit strings, and let M be a 64-bit plaintext. Let

DESX(K || K1 || Ko, M) = K@ DES(K, K1 & M) .

This defines a blockcipher DESX: {0,1}!84 x {0,1}5% — {0,1}5%. Tt has a 184-bit key, viewed as
consisting of a 56-bit DES key plus two auxiliary keys, each 64 bits long. Note that it is reversible,
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as required to be a blockcipher:
DESX (K | K1 || K»,C) = K; ®DES YK, Ky ® C) .

The key length of 184 is certainly enough to preclude exhaustive key search attacks. DESX is no
more secure than DES against linear of differential cryptanalysis, but we already saw that these
are not really practical attacks.

There is a meet-in-the-middle attack on DESX. It finds a 184-bit DESX key using 2'2° DES and
DES™! computations. So the effective key length of DESX seems to be 120, which is large enough
for security.

DESX is less secure than Double or Triple DES because the latter are more more resistant than
DES to linear and differential cryptanalysis while DESX is only as good as DES itself in this regard.
However, this is good enough; we saw that in practice the weakness of DES was not these attacks
but rather the short key length leading to successful exhaustive search attacks. DESX fixes this,
and very cheaply. In summary, DESX is popular because it is much cheaper than Double of Triple
DES while providing adequate security.

3.4.4 Why a new cipher?

DESX is arguably a fine cipher. Nonetheless, there were important reasons to find and standardize
a new cipher.

We will see later that the security provided by a blockcipher depends not only on its key length
and resistance to key-search attacks but on its block length. A blockcipher with block length n
can be “broken” in time around 2/2. When n = 64, this is 232, which is quite small. Although
2DES, 3DES3,3DES2, DESX have a higher (effective) key length than DES, they preserve its block
size and thus are no more secure than DES from this point of view. It was seen as important to
have a blockcipher with a block length n large enough that a 272 time attack was not practical.
This was one motivation for a new cipher.

Perhaps the larger motivation was speed. Desired was a blockcipher that ran faster than DES
in software.

3.5 Advanced Encryption Standard (AES)

In 1998 the National Institute of Standards and Technology (NIST/USA) announced a “competi-
tion” for a new blockcipher. The new blockcipher would, in time, replace DES. The relatively short
key length of DES was the main problem that motivated the effort: with the advances in computing
power, a key space of 2% keys was just too small. With the development of a new algorithm one
could also take the opportunity to address the modest software speed of DES, making something
substantially faster, and to increase the block size from 64 to 128 bits (the choice of 64 bits for the
block size can lead to security difficulties, as we shall later see. Unlike the design of DES, the new
algorithm would be designed in the open and by the public.

Fifteen algorithms were submitted to NIST. They came from around the world. A second
round narrowed the choice to five of these algorithms. In the summer of 2001 NIST announced
their choice: an algorithm called Rijndael. The algorithm should be embodied in a NIST FIPS
(Federal Information Processing Standard) any day now; right now, there is a draft FIPS. Rijndael
was designed by Joan Daemen and Vincent Rijmen (from which the algorithm gets its name), both
from Belgium. It is descendent of an algorithm called Square.
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function AESk (M)

(Ko, ..., Kijg) < expand(K)

s— M ® Ky

for r =1 to 10 do
s« S(s)
s «— shift-rows(s)
if » <9 then s «— mix-cols(s) fi
s+—sd K,

endfor

return s

Figure 3.8: The function AES128. See the accompanying text and figures for definitions of the
maps expand, S, shift-rows, mix-cols.

In this section we shall describe AES.

A word about notation. Purists would prefer to reserve the term “AES” to refer to the standard,
using the word “Rijndael” or the phrase “the AES algorithm” to refer to the algorithm itself. (The
same naming pundits would have us use the acronym DEA, Data Encryption Algorithm, to refer to
the algorithm of the DES, the Data Encryption Standard.) We choose to follow common convention
and refer to both the standard and the algorithm as AES. Such an abuse of terminology never seems
to lead to any misunderstandings. (Strictly speaking, AES is a special case of Rijndael. The latter
includes more options for block lengths than AES does.)

The AES has a block length of n = 128 bits, and a key length & that is variable: it may be 128,
192 or 256 bits. So the standard actually specifies three different blockciphers: AES128, AES192,
AES256. These three blockciphers are all very similar, so we will stick to describing just one of
them, AES128. For simplicity, in the remainder of this section, AES means the algorithm AES128.
We'll write C' = AESk (M) where |K| =128 and |M| = |C| = 128.

We're going to describe AES in terms of four additional mappings: expand, S, shift-rows,
and mix-cols. The function expand takes a 128-bit string and produces a vector of eleven keys,
(Ko, ..., Kip). The remaining three functions bijectively map 128-bits to 128-bits. Actually, we’ll
be more general for S, letting it be a map on (({0,1})®)*. Let’s postpone describing all of these
maps and start off with the high-level structure of AES, which is given in Fig. 3.8.

Refer to Fig. 3.8. The value s is called the state. One initizlizes the state to M and the final
state is the ciphertext C one gets by enciphering M. What happens in each iteration of the for
loop is called a round. So AES consists of ten rounds. The rounds are identical except that each
uses a different subkey K; and, also, round 10 omits the call to mix-cols.

To understand what goes on in S and mix-cols we will need to review a bit of algebra. Let
us make a pause to do that. We describe a way to do arithmetic on bytes. Identify each byte
a = aragasasazasaag with the formal polynomial arx” +agx® + asx® + asx* + asx? + asx® +a1x+ap.
We can add two bytes by taking their bitwise xor (which is the same as the mod-2 sum the
corresponding polynomials). We can multiply two bytes to get a degree 14 (or less) polynomial,
and then take the remainder of this polynomial by the fixed irreducible polynomial

mx) =" +xt+3+x+1.
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This remainder polynomial is a polynomial of degree at most seven which, as before, can be regarded
as a byte. In this way, we can add and multiply any two bytes. The resulting algebraic structure
has all the properties necessary to be called a finite field. In particular, this is one representation
of the finite field known as GF(2%)—the Galois field on 28 = 256 points. As a finite field, you can
find the inverse of any nonzero field point (the zero-element is the zero byte) and you can distribute
addition over multiplication, for example.

There are some useful tricks when you want to multiply two bytes. Since m(x) is another name
for zero, x® = x* + x> + x +1 = {1b}. (Here the curly brackets simply indicate a hexadecimal
number.) So it is easy to multiply a byte a by the byte x = {02}: namely, shift the 8-bit byte a
one position to the left, letting the first bit “fall off” (but remember it!) and shifting a zero into
the last bit position. We write this operation a (( 1. If that first bit of a was a 0, we are done.
If the first bit was a 1, we need to add in (that is, xor in) x® = {1b}. In summary, for a a byte,
a-x=a - {02} is a (1 if the first bit of a is 0, and it is (a (( 1) & {1b} if the first bit of a is 1.

Knowing how to multiply by x = {02} let’s you conveniently multiply by other quantities. For
example, to compute {al} - {03} compute {al} - ({02} @ {01}) = {al} - {02} & {al} - {01} =
{42} & {1b} @ al = {f8}. Try some more examples on your own.

As we said, each nonzero byte a has a multiplicative inverse, inv(a) = a~!, The mapping we will
denote S : {0,1}® — {0,1}® is obtained from the map inv : a +— a~'. First, patch this map to make
it total on {0,1}® by setting inv({00}) = {00}. Then, to compute S(a), first replace a by inv(a),
number the bits of a by a = azasasasazazaiag, and return the value ', where o’ = a,agasaayabaa
where

a} 10001111 ay 1
ag 11000111 ag 1
af 11100011 as 0
" 11110001 a4 0
= +
d, 11111000 a3 0
ab 01111100 as 1
a} 00111110 a1 1
ag, 00011111 ao 0

All arithmetic is in GF(2), meaning that addition of bits is their xor and multiplication of bits is
the conjunction (and).

All together, the map S is give by Fig. 3.9, which lists the values of
S(0),S(1),...,5(255) .

In fact, one could forget how this table is produced, and just take it for granted. But the fact is
that it is made in the simple way we have said.

Now that we have the function S, let us extend it (without bothering to change the name) to
a function with domain {{0,1}8}*. Namely, given an m-byte string A = A[1]... A[m], set S(A) to
be S(A[1]) ... S(A[m]). In other words, just apply S bytewise.

Now we'’re ready to understand the first map, S(s). One takes the 16-byte state s and applies
the 8-bit lookup table to each of its bytes to get the modified state s.

Moving on, the shift-rows operation works like this. Imagine plastering the 16 bytes of s =
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63
ca
b7
04
09
53
do
51
cd
60
e0
e7
ba
70
el
8c

7c
82
fd
c7
83
d1
ef
a3
Oc
81
32
c8
78
e
8
al

Yt
c9
93
23
2c
00
aa
40
13
4f
3a
37
25
b5
98
89

™
7d
26
c3
la
ed

8f
ec
dc
Oa
6d
2e
66
11
0d

2
fa
36
18
1b
20
43
92
5f
22
49
8d
lc
48
69
bf

6b
59
3f
96
6e
fc
4d
9d
97
2a
06
d5
ab
03
d9
eb

6f
47
7
05
ba
bl
33
38
44
90
24
4e
b4
6
8e
42

ch
0
cc
9a
a0
5b
85
5
17
88
5c
a9
c6
Oe
94
68

30
ad
34
07
52
6a
45
bc
c4
46
c2
6¢
e8
61
9b
41

01
d4
ab
12
3b
cb
9
b6
a7
ee
d3
56
dd
35
le
99

67
a2
eb
80
d6
be
02
da
Te
b8
ac
4
74
57
87
2d

2b
af
f1
e2
b3
39
Tt
21
3d
14
62
ea
1f
b9
e9
of

fe

9c
71
eb
29
4a
50
10
64
de
91
65
4b
86
ce
b0

d7
ad
d8
27
e3
4c
3c

5d
5e
95
Ta
bd
cl
55
54

ab
72
31
b2
2f
58
9f
3
19
0b
ed
ae
8b
1d
28
bb

76
c0
15
75
84
cf
a8
d2
73
db
79
08
8a
9e
df
16

93

Figure 3.9: The AES S-box, which is a function S : {0,1}® — {0, 1}® specified by the following list.
All values in hexadecimal. The meaning is: S(00) = 63, S(01) = Tc, ..

5081 - - - S15 going top-to-bottom, then left-to-right, to make a 4 x 4 table:

S0
S1
52

53

54
S5
56

87

58

59

510

S11

512

513

S14

815

., S(ff) = 16.

For the shift-rows step, left circularly shift the second row by one position; the third row by two
positions; and the the fourth row by three positions. The first row is not shifted at all. Somewhat
less colorfully, the mapping is simply

shift-rows(sps182 - - - S15)

50555105155459514535851352575125156511

Using the same convention as before, the mix-cols step takes each of the four columns in the
4 x 4 table and applies the (same) transformation to it. Thus we define mix-cols(s) on 4-byte words,
and then extend this to a 16-byte quantity wordwise. The value of mix-cols(apajazas) = apa)abal

is defined by:

03
02
02
01

01
03
02
01

01
01
03
02

An equivalent way to explain this step is to say that we are multiplying a(x) = azx3+asx?>+a1x' +ag
by the fixed polynomial c(x) = {03}x3+{01}x2 +{01}x+ {02} and taking the result modulo x* + 1.
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function expand(K)

KO — K

for i+ 1to 10 do
Ki[0] « K;1[0] & S(K;-1[3] ((8) & C;
K;[1] — K;—1[1] @ K;[0]
K;[3] — K;_1[3] @ K;[2]

od

Figure 3.10: The AES128 key-expansion algorithm maps a 128-bit key K into eleven 128-bit sub-
keys, Ko, ..., K1p. Constants (Cy,...,Cyg) are ({02000000}, {04000000}, {08000000}, {10000000},
{20000000}, {40000000}, {80000000}, {1B000000}, {36000000}, {6C000000}). All other notation
is described in the accompanying text.

At this point we have described everything but the key-expansion map, expand. That map is
given in Fig. 3.10.

We have now completed the definition of AES. One key property is that AES is a blockcipher:
the map is invertible. This follows because every round is invertible. That a round is invertible
follows from each of its steps being invertible, which is a consequence of S being a permutation and
the matrix used in mix-cols having an inverse.

In the case of DES, the rationale for the design were not made public. Some explanation for
different aspects of the design have become more apparent over time as we have watched the effects
on DES of new attack strategies, but fundamentally, the question of why the design is as it is has
not received a satisfying cipher. In the case of AES there was significantly more documentation of
the rationale for design choices. (See the book The design of Rijndael by the designers [9]).

Nonetheless, the security of blockciphers, including DES and AES, eventually comes down to
the statement that “we have been unable to find effective attacks, and we have tried attacks along
the following lines ....” If people with enough smarts and experience utter this statement, then
it suggests that the blockcipher is good. Beyond this, it’s hard to say much. Yet, by now, our
community has become reasonably experienced designing these things. It wouldn’t even be that
hard a game were it not for the fact we tend to be agressive in optimizing the block-cipher’s
speed. (Some may come to the opposite opinion, that it’s a very hard game, seeing just how many
reasonable-looking blockciphers have been broken.) Later we give some vague sense of the sort of
cleverness that people muster against blockciphers.

3.6 Limitations of key-recovery based security

As discussed above, classically, the security of blockciphers has been looked at with regard to key
recovery. That is, analysis of a blockcipher F has focused primarily on the following question: given
some number ¢ of input-output examples (M, Ch),. .., (Mg, Cy), where T is a random, unknown
key and C; = Ep(M;), how hard is it for an attacker to find 77 A blockcipher is viewed as “secure”
if the best key-recovery attack is computationally infeasible, meaning requires a value of ¢ or a
running time t that is too large to make the attack practical. In the sequel, we refer to this as
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security against key-recovery.

However, as a notion of security, security against key-recovery is quite limited. A good notion
should be sufficiently strong to be useful. This means that if a blockcipher is secure, then it should
be possible to use the blockcipher to make worthwhile constructions and be able to have some
guarantee of the security of these constructions. But even a cursory glance at common blockcipher
usages shows that good security in the sense of key recovery is not sufficient for security of the
usages of blockciphers.

As an example, consider that we typically want to think of C' = Ex (M) as an “encryption”
of plaintext M under key K. An adversary in possession of C' but not knowing K should find it
computationally infeasible to recover M, or even some part of M such as its first half. Security
against key-recovery is certainly necessary for this, because if the adversary could find K it could
certainly compute M, via M = El}l(M ). But security against key-recovery is not sufficient to
ensure that M cannot be recovered given K alone. As an example, consider the blockcipher
E: {0,1}1% x {0,1}?°% — {0,1}% defined by Ex(M) = AESk(M][1]) || M[2] where M][1] is the
first 128 bits of M and M|2] is the last 128 bits of M. Key recovery is as hard as for AES, but a
ciphertext reveals the second half of the plaintext.

This might seem like an artificial example. Many people, on seeing this, respond by saying:
“But, clearly, DES and AES are not designed like this.” True. But that is missing the point. The
point is that security against key-recovery alone does not make a “good” blockcipher.

But then what does make a good blockcipher? This questions turns out to not be so easy to
answer. Certainly one can list various desirable properties. For example, the ciphertext should
not reveal half the bits of the plaintext. But that is not enough either. As we see more usages
of ciphers, we build up a longer and longer list of security properties SP1, SP2, SP3, ... that are
necessary for the security of some blockcipher based application.

Such a long list of necessary but not sufficient properties is no way to treat security. What
we need is a single “mater” property of a blockcipher which, if met, guarantees security of lots of
natural usages of the cipher.

Such a property is that the blockcipher be a pseudorandom permutation (PRF), a notion
explored in another chapter.

3.7 Problems

Problem 3.1 Show that for all K € {0,1}°¢ and all x € {0,1}%4
DESk(z) = DES#(Z) .
This is called the key-complementation property of DES. I

Problem 3.2 Explain how to use the key-complementation property of DES to speed up exhaus-
tive key search by about a factor of two. Explain any assumptions that you make. I

Problem 3.3 Find a key K such that DESk(-) = DESZ'(-). Such a key is sometimes called a
“weak” key. |

Problem 3.4 As with AES, suppose we are working in the finite field with 2% elements, represent-
ing field points using the irreducible polynomial m(x) = x% + x* + x3 + x + 1. Compute the byte
that is the result of multiplying bytes:

{el} - {05}
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Problem 3.5 For AES, we have given two different descriptions of mix-cols: one using matric
multiplication (in GF(2®)) and one based on multiplying by a fixed polynomial c(x) modulo a
second fixed polynomial, d(x) = x* + 1. Show that these two methods are equivalent. I

Problem 3.6 Verify that the matrix used for mix-cols has as its inverse the matrix

O0e 0b 0d 09
09 0Oe 0b 0d
0d 09 0Oe O0b
00 0d 09 Oe

Explain why it is that all of the entries in this matrix begin with a zero. I

Problem 3.7 How many different permutations are there from 128 bits to 128 bits? How many
different functions are then from 128 bits to 128 bits? |

Problem 3.8 Upper and lower bound, as best you can, the probability that a random function
from 128 bits to 128 bits is actually a permutation. I

Problem 3.9 Without consulting any of the numerous public-domain implementations available,
implement AES, on your own, from the spec or from the description provided by this chapter. Then
test your implementation according to the test vectors provided in the AES documentation. I

Problem 3.10 Justify and then refute the following proposition: enciphering under AES can be
implemented faster than deciphering. I

Problem 3.11 Choose a random DES key K € {0,1}°¢. Let (M,C), where C = DESg (M),
be a single plaintext/ciphertext pair that an adversary knows. Suppose the adversary does an
exhaustive key search to locate the lexicographically first key 7" such that C' = DESy(M). Estimate
the probablity that T'= K. Discuss any assumptions you must make to answer this question.
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Chapter 4

PSEUDORANDOM FUNCTIONS

Pseudorandom functions (PRFs) and their cousins, pseudorandom permutations (PRPs), figure as
central tools in the design of protocols, especially those for shared-key cryptography. At one level,
PRFs and PRPs can be used to model blockciphers, and they thereby enable the security analysis
of protocols based on blockciphers. But PRFs and PRPs are also a useful conceptual starting point
in contexts where blockciphers don’t quite fit the bill because of their fixed block-length. So in this
chapter we will introduce PRFs and PRPs and investigate their basic properties.

4.1 Function families

A function family is a map F: K x D — R. Here K is the set of keys of F' and D is the domain
of F and R is the range of F. The set of keys and the range are finite, and all of the sets are
nonempty. The two-input function F takes a key K and an input X to return a point Y we denote
by F(K,X). For any key K € K we define the map Fg: D — R by Frx(X) = F(K,Y). We call
the function Fx an instance of function family F. Thus F' specifies a collection of maps, one for
each key. That’s why we call F' a function family or family of functions.

Sometimes we write Keys(F') for I, Dom(F) for D, and Range(F') for R.

Usually K = {0,1}* for some integer k, the key length. Often D = {0,1} for some integer ¢
called the input length, and R = {0, 1}* for some integers L called the output length. But sometimes
the domain or range could be sets containing strings of varying lengths.

There is some probability distribution on the (finite) set of keys K. Unless otherwise indicated,
this distribution will be the uniform one. We denote by K <- K the operation of selecting a random
string from K and naming it K. We denote by f <~ F the operation: K <~ K; f « Fg. In other
words, let f be the function Fx where K is a randomly chosen key. We are interested in the
input-output behavior of this randomly chosen instance of the family.

A permutation is a bijection (i.e. a one-to-one onto map) whose domain and range are the same
set. That is, a map m: D — D is a permutation if for every y € D there is exactly one x € D such
that m(x) = y. We say that F' is a family of permutations if Dom(F') = Range(F') and each F is
a permutation on this common set.

29
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Example 4.1 A blockcipher is a family of permutations. In particular DES is a family of permu-
tations DES: I x D — R with

K =1{0,1}° and D ={0,1}** and R = {0,1}%.

Here the key length is £ = 56 and the input length and output length are ¢ = L = 64. Similarly
AES (when “AES” refers to “AES128”) is a family of permutations AES: I x D — R with

K=1{0,1}'% and D={0,1}'*® and R={0,1}'%.
Here the key length is &k = 128 and the input length and output length are ¢ = L = 128. 1

4.2 Random functions and permutations

Let D, R C {0,1}* be finite nonempty sets and let ¢, L > 1 be integers. There are two particular
function families that we will often consider. One is Func(D,R), the family of all functions of D to
R. The other is Perm(D), the family of all permutations on D. For compactness of notation we let
Func(¢,L), Func(¢), and Perm(¢) denote Func(D,R), Func(D,D), and Perm(D), respectively, where
D ={0,1}* and R = {0,1}*. A randomly chosen instance of Func(D,R) will be a random function
from D to R, and a randomly chosen instance of Perm(D) will be a random permutation on D.
Let us now look more closely at these families in turn.

4.2.1 Random functions

The family Func(D,R) has domain D and range R. The set of instances of Func(D,R) is the set
of all functions mapping D to R. The key describing any particular instance function is simply
a description of this instance function in some canonical notation. For example, order the do-
main D lexicographically as X1, Xo,..., and then let the key for a function f be the list of values
(f(X1), f(X2),...). The key-space of Func(D,R) is simply the set of all these keys, under the
uniform distribution.

Let us illustrate in more detail for the case of Func(¢,L). The key for a function in this family
is simply a list of of all the output values of the function as its input ranges over {0,1}¢. Thus

Keys(Func((,L)) = {(V1,...,Yae) : Ya,..., Yo € {0, 1} }

is the set of all sequences of length 2¢ in which each entry of a sequence is an L-bit string. For any
x € {0,1}* we interpret X as an integer in the range {1,...,2‘} and set

Func(¢,L)((Y1,...,Y%), X) =Yx .

Notice that the key space is very large; it has size 2L2° There is a key for every function of ¢-bits
to L-bits, and this is the number of such functions. The key space is equipped with the uniform
distribution, so that f & Func(¢,L) is the operation of picking a random function of ¢-bits to L-bits.

Example 4.2 We exemplify Func(3,2), meaning £ = 3 and L = 2. The domain is {0,1}3 and the
range is {0, 1}2. An example instance f of the family is illustrated below via its input-output table:

2 | 000 | 001 | 010 | 011 | 100 | 101 | 110 | 111
fx)| 10 ] 1101 |11 |10|00]00]| 10
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The key corresponding to this particular function is
(10,11,01,11, 10,00, 00, 10) .

The key-space of Func(3,2) is the set of all such sequences, meaning the set of all 8-tuples each
component of which is a two bit string. There are

922% _ 916 _ §5 536

such tuples, so this is the size of the key-space. I

We will hardly ever actually think about these families in terms of this formalism. It is worth
pausing here to see how to think about them more intuitively, because they are important objects.

We will consider settings in which you have black-box access to a function g. This means that
there is a box to which you can give any value X of your choice (provided X is in the domain of
g), and the box gives you back g(X). But you can’t “look inside” the box; your only interface to
it is the one we have specified.

A random function g: D — R (where R is a finite set) being placed in this box corresponds
to the following. Each time you give the box an input, you get back a random element of R, with
the sole constraint that if you twice give the box the same input X, it will be consistent, returning
both times the same output g(X).

The dynamic view of a random function can be thought of as implemented by the following
computer program. The program maintains the function in the form of a table 7" where T'[X] holds
the value of the function at X. Initially, the table is empty. The program processes an input X € D
as follows:

if T[X] is not defined

then ¥ & R; T[X] —Y
fi
return 7[X]

The answer on any point is random and independent of the answers on other points. It is this
“dynamic” view that we suggest the reader have in mind when thinking about random functions
or random permutations.

One must remember that the term “random function” is misleading. It might lead one to think
that certain functions are “random” and others are not. (For example, maybe the constant function
that always returns 0% on any input is not random, but a function with many different range values
is random.) This is not right. The randomness of the function refers to the way it was chosen,
not to an attribute of the selected function itself. When you choose a function at random, the
constant function is just as likely to appear as any other function. It makes no sense to talk of the
randomness of an individual function; the term “random function” just means a function chosen
at random.

Example 4.3 Let’s do some simple probabilistic computations to understand random functions.
In all of the following, the probability is taken over a random choice of f from Func(¢,L), meaning
that we have executed the operation f < Func(¢,L).

1. Fix X € {0,1}* and Y € {0,1}*. Then:
Prif(X)=Y]=2""1.
Notice that the probability doesn’t depend on ¢. Nor does it depend on the values of X, Y.
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2. Fix X1, X5 € {0,1} and Y1,Y5 € {0,1}7, and assume X| # X5. Then
Prif(X1) =Yi| f(Xy) =Yo] = 27%.

The above is a conditional probability, and says that even if we know the value of f on X7y, its
value on a different point X5 is equally likely to be any L-bit string.

3. Fix X1, Xs € {0,1}* and Y € {0,1}*. Then:

Prf(X;)=Y and f(X3) =Y] = { 2720 if X1 # X

2—L if X1 =Xy
4. Fix X1, X2 €{0,1}¢ and Y € {0,1}*. Then:

2-L if X1 #XQ
Prif(X1) @ f(Xo)=Y]=¢ 0 if X; =Xpand Y # 0~
1 if X; =X, andY = 0F

5. Suppose | < L and let 7: {0,1}* — {0,1}! denote the function that on input Y € {0,1}"
returns the first [ bits of Y. Fix distinct X1, Xo € {0,1}*, Y3 € {0,1}F and Z € {0,1}!. Then:

Prr(f(X2)) = Zo| f(X1) =Y1]=27"1

4.2.2 Random permutations

The family Perm(D) has domain and range D. The set of instances of Perm(D) is the set of all
permutations on D. The key describing a particular instance is some description of the function.
Again, let us illustrate with Perm(¢). In this case

Keys(Perm(£)) = {(Y1,...,Yy): Yi,...,Y5 € {0,1}¢ and
Yi,..., Y5 are all distinct} .
For any X € {0,1}* we interpret X as an integer in the range {1,...,2} and set
Perm(¢)((Y1,...,Y%), X) =Yx .

The key space is again equipped with the uniform distribution, so that = <= Perm(l) is the operation
of picking a random permutation on {0, 1}¢. In other words, all the possible permutations on {0, 1}
are equally likely.

Example 4.4 We exemplify Perm(3), meaning ¢ = 3. The domain and range are both {0,1}?. An
example instance 7 of the family is illustrated below via its input-output table:

2 || 000 | 001 | 010 | 011 | 100 | 101 | 110 | 111
m(x) || 010 | 111 | 101 | 011 | 110 | 100 | 000 | 001

The function 7 is a permutation because each 3-bit string occurs exactly once in the second row of
the table. The key corresponding to this particular permutation is

(010,111,101, 011, 110, 100, 000, 001) .

The key-space of Perm(3) is the set of all such sequences, meaning the set of all 8-tuples whose
components consist of all 3-bit strings in some order. There are

8! = 40,320
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such tuples, so this is the size of the key-space. |

In the dynamic view, we again want to consider having black-box access to a permutation 7. A
random permutation m: D — D (where D is a finite set) being placed in this box corresponds to
the following. If you give the box an input X € D, it returns the same answer as before if X has
already been queried, but, if not, it returns a point chosen at random from D — S where S is the
set of all values previously returned by the box in response to queries different from X.

The dynamic view of a random permutation can be thought of as implemented by the following
computer program. The program maintains the function in the form of a table T" where T'[X] holds
the value of the function at X. Initially, the table is empty, and the set .S below is also empty. The
program processes an input X € D as follows:

if T[X] is not defined

then Y &£ D -8 T[X]—Y; S« SU{T[X]}
fi
return 7'[X]

The answer on any point is random, but not independent of the answers on other points, since it
is distinct from those.

Example 4.5 Random permutations are somewhat harder to work with than random functions,
due to the lack of independence between values on different points. Let’s look at some probabilistic
computations involving them. In all of the following, the probability is taken over a random choice
of 7 from Perm(£), meaning that we have executed the operation 7 < Perm(¢).

1. Fix X,Y € {0,1}*. Then:
Prin(X)=Y]=27".
This is the same as if 7 had been selected at random from Func(¢,/) rather than from Perm(?).
However, the similarity vanishes when more than one point is to be considered.

2. Fix X1, X5 € {0,1} and Y1,Y5 € {0,1}7, and assume X; # X5. Then
1
—— ifY7 #£Y
Prin(X)) = Vi | w(Xs) = Vo] =4 =1 N7
0 iftY; =Y,
The above is a conditional probability, and says that if we know the value of 7w on X1, its value

on a different point X5 is equally likely to be any L-bit string other than 7(X;). So there are
2¢ — 1 choices for 7(X5), all equally likely, if Y7 # Ya.

3. Fix X1, X2 € {0,1}¢ and Y € {0,1}*. Then:

Prim(X;) =Y and 7n(Xy) = Y] =

0 if X1 #Xo
272 if X1 =X

This is true because a permutation can never map distinct X; and X5 to the same point.



64 PSEUDORANDOM FUNCTIONS

4. Fix X1, X2 € {0,1} and Y € {0,1}*. Then:

1
m ile#XQ&HdY?éoé

. _n¢

PI‘[T{'(Xl)@TF(XQ):Y]: 0 lel #XQ and Y =0
0 if X; =X, and Y # 0°

1 if X1 =Xy and Y =0°

In the case X1 # Xy and Y # 0° this is computed as follows:

Prn(X1) @ n(X2) =Y]
= > Prin(Xo) =Y1 ® Y| n(X1) = Y] Prin(Xy) = Yi]
Y1

= ol _1 of
Y12 1 2
1 1
— 9ot~ .=
201 2¢
1
26 —1°

Above, the sum is over all Y; € {0,1}*. In evaluating the conditional probability, we used
item 2 above and the assumption that Y # 0°.

5. Supposel < £andlet 7: {0,1}* — {0,1}! denote the function that on input Y € {0, 1}* returns
the first [ bits of Y. (Note that although = is a permutation, 7(7(-)) is not a permutation when
I < £.) Fix distinct X1, Xo € {0,1}¢, Y1 € {0,1}F and Z5 € {0,1}!. Then:

2f—l

w7 fA#EN[.
Prir(n(Xy)) = Za | n(X1) = V1] = ol _ 1

2£__ if Zo=Yi[1...1]

This is computed as follows. Let
S ={Ye{0,1}' : Yo[l...l]]=Zyand Yo # Y] } .
We note that |S| = 26V if Yi[l...1] # Zo and |S| = 2! — 1 if Y1[1...]] = Z5. Then

Prr(m(Xy)) = Za| m(X1) =Y1] = > Prin(Xs) =Ys|w(X1) =Y]
Y>€eS
1
= ’ﬂ‘m,

and the claim follows from what we said about the size of S. |

4.3 Pseudorandom functions

A pseudorandom function is a family of functions with the property that the input-output behavior
of a random instance of the family is “computationally indistinguishable” from that of a random



Bellare and Rogaway 65

function. Someone who has only black-box access to a function, meaning can only feed it inputs
and get outputs, has a hard time telling whether the function in question is a random instance of
the family in question or a random function. The purpose of this section is to arrive at a suitable
definition of this notion. Later we will look at motivation and applications.

We fix a family of functions F: K x D — R. (You may want to think K = {0,1}*, D = {0, 1}/
and R = {0,1}" for some integers k,¢, L. > 1.) Imagine that you are in a room which contains a
terminal connected to a computer outside your room. You can type something into your terminal
and send it out, and an answer will come back. The allowed questions you can type must be
elements of the domain D, and the answers you get back will be elements of the range R. The
computer outside your room implements a function g: D — R, so that whenever you type a value X
you get back ¢g(X). However, your only access to g is via this interface, so the only thing you can
see is the input-output behavior of g. We consider two different ways in which g will be chosen,
giving rise to two different “worlds.”

World 0: The function g is drawn at random from Func(D,R), namely, the function g is selected
via g < Func(D,R).

World 1: The function g is drawn at random from F', namely, the function g is selected via g <= F.
(Recall this means that a key is chosen via K <> K and then g is set to Fi.)

You are not told which of the two worlds was chosen. The choice of world, and of the corresponding
function g, is made before you enter the room, meaning before you start typing questions. Once
made, however, these choices are fixed until your “session” is over. Your job is to discover which
world you are in. To do this, the only resource available to you is your link enabling you to provide
values X and get back ¢g(X). After trying some number of values of your choice, you must make a
decision regarding which world you are in. The quality of pseudorandom family F' can be thought
of as measured by the difficulty of telling, in the above game, whether you are in World 0 or in
World 1.

In the formalization, the entity referred to as “you” above is an algorithm called the adversary.
The adversary algorithm A may be randomized. We formalize the ability to query g as giving A
an oracle which takes input any string X € D and returns g(X). We write A9 to mean that
adversary A is being given oracle access to function g. (It can only interact with the function by
giving it inputs and examining the outputs for those inputs; it cannot examine the function directly
in any way.) Algorithm A can decide which queries to make, perhaps based on answers received
to previous queries. Eventually, it outputs a bit b which is its decision as to which world it is in.
Outputting the bit “1” means that A “thinks” it is in world 1; outputting the bit “0” means that A
thinks it is in world 0. The following definition associates to any such adversary a number between
0 and 1 that is called its prf-advantage, and is a measure of how well the adversary is doing at
determining which world it is in. Further explanations follow the definition.

3

Definition 4.6 Let F: K x D — R be a family of functions, and let A be an algorithm that takes
an oracle for a function g: D — R, and returns a bit. We consider two experiments:

Experiment Exp®' (A) | Experiment Exp%'°(A)
K&K g <= Func(D,R)
b AFK b A9
Return b Return b
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The prf-advantage of A is defined as
Advy'(4) = Pr[Expy(4) =1] - Pr [Expy0(4) =1] 1

It should be noted that the family F' is public. The adversary A, and anyone else, knows the
description of the family and is capable, given values K, X, of computing F (K, X).

The worlds are captured by what we call experiments. The first experiment picks a random
instance Fi of family F' and then runs adversary A with oracle ¢ = Fi. Adversary A interacts
with its oracle, querying it and getting back answers, and eventually outputs a “guess” bit. The
experiment returns the same bit. The second experiment picks a random function g: D — R and
runs A with this as oracle, again returning A’s guess bit. Each experiment has a certain probability
of returning 1. The probability is taken over the random choices made in the experiment. Thus, for
the first experiment, the probability is over the choice of K and any random choices that A might
make, for A is allowed to be a randomized algorithm. In the second experiment, the probability is
over the random choice of g and any random choices that A makes. These two probabilities should
be evaluated separately; the two experiments are completely different.

To see how well A does at determining which world it is in, we look at the difference in the
probabilities that the two experiments return 1. If A is doing a good job at telling which world it
is in, it would return 1 more often in the first experiment than in the second. So the difference is
a measure of how well A is doing. We call this measure the prf-advantage of A. Think of it as the
probability that A “breaks” the scheme F', with “break” interpreted in a specific, technical way
based on the definition.

Different adversaries will have different advantages. There are two reasons why one adversary
may achieve a greater advantage than another. One is that it is more “clever” in the questions it
asks and the way it processes the replies to determine its output. The other is simply that it asks
more questions, or spends more time processing the replies. Indeed, we expect that as an adversary
sees more and more input-output examples of g, or spends more computing time, its ability to tell
which world it is in should go up.

The “security” of family I’ as a pseudorandom function must thus be thought of as depending
on the resources allowed to the attacker. We may want to want to know, for any given resource
limitations, what is the prf-advantage achieved by the most “clever” adversary amongst all those
who are restricted to the given resource limits.

The choice of resources to consider can vary. One resource of interest is the time-complexity ¢
of A. Another resource of interest is the number of queries ¢ that A asks of its oracle. Another
resource of interest is the total length p of all of A’s queries. When we state results, we will pay
attention to such resources, showing how they influence maximal adversarial advantage.

Let us explain more about the resources we have mentioned, giving some important conventions
underlying their measurement. The first resource is the time-complexity of A. To make sense of this
we first need to fix a model of computation. We fix some RAM model, as discussed in Chapter 1.
Think of the model used in your algorithms courses, often implicitly, so that you could measure
the running time. However, we adopt the convention that the time-complezity of A refers not just
to the running time of A, but to the maximum of the running times of the two experiments in the
definition, plus the size of the code of A. In measuring the running time of the first experiment,
we must count the time to choose the key K at random, and the time to compute the value Fi (z)
for any query x made by A to its oracle. In measuring the running time of the second experiment,
we count the time to choose the random function ¢ in a dynamic way, meaning we count the cost
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of maintaining a table of values of the form (X, g(X)). Entries are added to the table as g makes
queries. A new entry is made by picking the output value at random.

The number of queries made by A captures the number of input-output examples it sees. In
general, not all strings in the domain must have the same length, and hence we also measure the
sum of the lengths of all queries made.

The strength of this definition lies in the fact that it does not specify anything about the kinds
of strategies that can be used by a adversary; it only limits its resources. A adversary can use
whatever means desired to distinguish the function as long as it stays within the specified resource
bounds.

What do we mean by a “secure” PRF? Definition 4.6 does not have any explicit condition or
statement regarding when F' should be considered “secure.” It only associates to any adversary
A attacking F' a prf-advantage function. Intuitively, F' is “secure” if the value of the advantage
function is “low” for all adversaries whose resources are “practical.”

This is, of course, not formal. However, we wish to keep it this way because it better reflects
reality. In real life, security is not some absolute or boolean attribute; security is a function of the
resources invested by an attacker. All modern cryptographic systems are breakable in principle; it
is just a question of how long it takes.

This is our first example of a cryptographic definition, and it is worth spending time to study
and understand it. We will encounter many more as we go along. Towards this end let us summarize
the main features of the definitional framework as we will see them arise later. First, there are
experiments, involving an adversary. Then, there is some advantage function associated to an
adversary which returns the probability that the adversary in question “breaks” the scheme. These
two components will be present in all definitions. What varies is the experiments; this is where we
pin down how we measure security.

4.4 Pseudorandom permutations

A family of functions F: K x D — D is a pseudorandom permutation if the input-output behavior
of a random instance of the family is “computationally indistinguishable” from that of a random
permutation on D.

In this setting, there are two kinds of attacks that one can consider. One, as before, is that
the adversary gets an oracle for the function g being tested. However when F' is a family of
permutations, one can also consider the case where the adversary gets, in addition, an oracle for
g~ '. We consider these settings in turn. The first is the setting of chosen-plaintext attacks while
the second is the setting of chosen-ciphertext attacks.

4.4.1 PRP under CPA

We fix a family of functions F: K x D — D. (You may want to think X = {0,1}* and D = {0,1}*,
since this is the most common case. We do not mandate that F' be a family of permutations
although again this is the most common case.) As before, we consider an adversary A that is
placed in a room where it has oracle access to a function g chosen in one of two ways.

World 0: The function ¢ is drawn at random from Perm(D), namely, we choose g according to
g < Perm(D).
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World 1: The function g is drawn at random from F, namely g < F. (Recall this means that a
key is chosen via K <~ K and then ¢ is set to Fg.)

Notice that World 1 is the same in the PRF setting, but World 0 has changed. As before the task
facing the adversary A is to determine in which world it was placed based on the input-output
behavior of g.

Definition 4.7 Let F: K x D — D be a family of functions, and let A be an algorithm that takes
an oracle for a function g: D — D, and returns a bit. We consider two experiments:

prp-cpa-1 (A)

Experiment Expy prp-cpa-0 (A)

Experiment Expy

K&K g <> Perm(D)
b AFx b A9
Return b Return b

The prp-cpa-advantage of A is defined as
AdV%rp_Cpa(A) — Pr {Exp%rp-cpa—l(A) _ 1:| _Pr {Expgp—cpa—ﬂ (A) _ 1} 1

The intuition is similar to that for Definition 4.6. The difference is that here the “ideal” object
that F' is being compared with is no longer the family of random functions, but rather the family
of random permutations.

Experiment Exp2P P! (A) is actually identical to Expl}rf_l(A). The probability is over the
random choice of key K and also over the coin tosses of A if the latter happens to be randomized.
The experiment returns the same bit that A returns. In Experiment Explfp]rp_Cpa_0 (A), a permutation
g: D — D is chosen at random, and the result bit of A’s computation with oracle g is returned. The
probability is over the choice of g and the coins of A if any. As before, the measure of how well A
did at telling the two worlds apart, which we call the prp-cpa-advantage of A, is the difference
between the probabilities that the experiments return 1.

Conventions regarding resource measures also remain the same as before. Informally, a family
F is a secure PRP under CPA if AdviP"P*(A) is “small” for all adversaries using a “practical”

amount of resources.

4.4.2 PRP under CCA

We fix a family of permutations F: I x D — D. (You may want to think K = {0,1}* and
D = {0, 1}5, since this is the most common case. This time, we do mandate that I’ be a family
of permutations.) As before, we consider an adversary A that is placed in a room, but now it has
oracle access to two functions, g and its inverse g—!. The manner in which ¢ is chosen is the same
as in the CPA case, and once g is chosen, g~ ! is automatically defined, so we do not have to say
how it is chosen.

World 0: The function g is drawn at random from Perm(D), namely via g <~ Perm(D). (So g is
just a random permutation on D.)

World 1: The function g is drawn at random from F, namely g <= F.

In World 1 welet g~! = F [}1 be the inverse of the chosen instance, while in World 0 it is the inverse
of the chosen random permutation. As before the task facing the adversary A is to determine in
which world it was placed based on the input-output behavior of its oracles.
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Definition 4.8 Let F: K x D — D be a family of permutations, and let A be an algorithm that
takes an oracle for a function g: D — D, and also an oracle for the function ¢~': D — D, and
returns a bit. We consider two experiments:

Experiment Exp?? ““(A4) | Experiment Exp2P 0 4)
K&K g <> Perm(D)
b S AFK,FI;1 b S Ag’g—l
Return b Return b

The prp-cca-advantage of A is defined as
AdviPY(A) = Pr {Exp%rp_cca_l(A) = 1} —Pr {Exp%p_cca_O(A) = 1} 1

The intuition is similar to that for Definition 4.6. The difference is that here the adversary has
more power: not only can it query g, but it can directly query g~!. Conventions regarding resource
measures also remain the same as before. However, we will be interested in some additional resource
parameters. Specifically, since there are now two oracles, we can count separately the number of
queries, and total length of these queries, for each. As usual, informally, a family F' is a secure PRP
under CCA if AdviP*(A4) is “small” for all adversaries using a “practical” amount of resources.

4.4.3 Relations between the notions

If an adversary does not query ¢g~' the oracle might as well not be there, and the adversary is
effectively mounting a chosen-plaintext attack. Thus we have the following:

Proposition 4.9 [PRP-CCA implies PRP-CPA] Let F': K x D — D be a family of permuta-
tions and let A be a (PRP-CPA attacking) adversary. Suppose that A runs in time ¢, asks ¢ queries,
and these queries total p bits. Then there exists a (PRP-CCA attacking) adversary B that runs in
time t, asks ¢ chosen-plaintext queries, these queries totaling p bits, and asks no chosen-ciphertext
queries, where

AdVPPNB) > AdvRITP(A) ]

Though the technical result is easy, it is worth stepping back to explain its interpretation. The
theorem says that if you have an adversary A that breaks F' in the PRP-CPA sense, then you have
some other adversary B breaks I’ in the PRP-CCA sense. Furthermore, the adversary B will be
just as efficient as the adversary A was. As a consequence, if you think there is no reasonable
adversary B that breaks F' in the PRP-CCA sense, then you have no choice but to believe that
there is no reasonable adversary A that breaks F' in the PRP-CPA sense. The inexistence of a
reasonable adversary B that breaks F' in the PRP-CCA sense means that F' is PRP-CCA secure,
while the inexistence of a reasonable adversary A that breaks F' in the PRP-CPA sense means
that F' is PRP-CPA secure. So PRP-CCA security implies PRP-CPA security, and a statement
like the proposition above is how, precisely, one makes such a statement.

4.5 Modeling blockciphers

One of the primary motivations for the notions of pseudorandom functions (PRFs) and pseudo-
random permutations (PRPs) is to model blockciphers and thereby enable the security analysis of
protocols that use blockciphers.
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As discussed in the chapter on blockciphers, classically the security of DES or other blockciphers
has been looked at only with regard to key recovery. That is, analysis of a blockcipher F' has focused
on the following question: Given some number of input-output examples

(Xla FK(Xl))a ERE (X(b FK(XQ))

where K is a random, unknown key, how hard is it to find K7 The blockcipher is taken as “secure”
if the resources required to recover the key are prohibitive. Yet, as we saw, even a cursory glance at
common blockcipher usages shows that hardness of key recovery is not sufficient for security. We
had discussed wanting a master security property of blockciphers under which natural usages of
blockciphers could be proven secure. We suggest that this master property is that the blockcipher
be a secure PRP, under either CPA or CCA.

We cannot prove that specific blockciphers have this property. The best we can do is assume
they do, and then go on to use them. For quantitative security assessments, we would make specific
conjectures about the advantage functions of various blockciphers. For example we might conjecture
something like:

AQVEE () < o RS e

for any adversary A;, that runs in time at most ¢ and asks at most ¢ 64-bit oracle queries. Here
Tpgs is the time to do one DES computation on our fixed RAM model of computation, and ¢1, ¢o
are some constants depending only on this model. In other words, we are conjecturing that the best
attacks are either exhaustive key search or linear cryptanalysis. We might be bolder with regard
to AES and conjecture something like

t/Tars q

+c

prp-cpa
Advipg (Big) < o 9128 27 9128 -

for any adversary B;, that runs in time at most ¢ and asks at most ¢ 128-bit oracle queries. We
could also make similar conjectures regarding the strength of blockciphers as PRPs under CCA
rather than CPA.

More interesting is AdvaréS(t, q). Here we cannot do better than assume that

£ t/Tors = ¢
Advppg(Ary) < e 255 561

£ t/Taps = ¢°
Advips(Brg) < e s+ g

for any adversaries A; 4, B; 4 running in time at most ¢ and making at most g oracle queries. This is
due to the birthday attack discussed later. The second term in each formula arises simply because
the object under consideration is a family of permutations.

We stress that these are all conjectures. There could exist highly effective attacks that break
DES or AES as a PRF without recovering the key. So far, we do not know of any such attacks, but
the amount of cryptanalytic effort that has focused on this goal is small. Certainly, to assume that
a blockcipher is a PRF is a much stronger assumption than that it is secure against key recovery.
Nonetheless, the motivation and arguments we have outlined in favor of the PRF assumption stay,
and our view is that if a blockcipher is broken as a PRF then it should be considered insecure, and
a replacement should be sought.
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4.6 Example attacks

Let us illustrate the models by providing adversaries that attack different function families in these
models.

Example 4.10 We define a family of functions F: {0,1}* x {0,1}¢ — {0,1}* as follows. We let
k = L{¢ and view a k-bit key K as specifying an L row by ¢ column matrix of bits. (To be concrete,
assume the first L bits of K specify the first column of the matrix, the next L bits of K specify
the second column of the matrix, and so on.) The input string X = X|[1]... X[{] is viewed as a
sequence of bits, and the value of F(K,x) is the corresponding matrix vector product. That is

K[1,1] K[1,2] --- K[1,/ X[1] Y[1]
K[2,1] KI[2,2] --- K[2,/] X|[2] Y[2]
Fie(X) = : : ' : - :
K[L,1] K[L,2] --- K[L,/] X|] Y[L]
where

Y[1] = K[1,1]-z[l]® K[1,2]-z[2]® ... & K[1,{] - z[{]

Y[2] K[2,1]-z[1]® K[2,2] - z[2] & ... & K[2,¢] - z[{]

Y[L]. = .K[L, 1]-z[1] & K[L,2] - z2] & ... ® K[L, (] - x[{] .

Here the bits in the matrix are the bits in the key, and arithmetic is modulo two. The question
we ask is whether F' is a “secure” PRF. We claim that the answer is no. The reason is that one
can design an adversary algorithm A that achieves a high advantage (close to 1) in distinguishing
between the two worlds.

We observe that for any key K we have F K(Oe) = 0. This is a weakness since a random
function of £-bits to L-bits is very unlikely to return 0 on input 0¢, and thus this fact can be the
basis of a distinguishing adversary. Let us now show how the adversary works. Remember that as
per our model it is given an oracle g: {0,1}* — {0,1}* and will output a bit. Our adversary D
works as follows:

Adversary DY
Y — g(0%)
if Y =0L then return 1 else return 0

This adversary queries its oracle at the point 0¢, and denotes by Y the ¢-bit string that is returned.
If y = 0% it bets that g was an instance of the family F, and if y # 0% it bets that g was a random
function. Let us now see how well this adversary does. We claim that

Pr {Exp%rf_l(D) = 1] =1
Pr {Exp%rf_o(D) = 1] = 271,
Why? Look at Experiment Exp%rf_l(D) as defined in Definition 4.6. Here g = Fix for some K. In

that case it is certainly true that g(0?) = 0¥ so by the code we wrote for D the latter will return 1.

On the other hand look at Experiment Exp%rf_O(D) as defined in Definition 4.6. Here g is a random
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function. As we saw in Example 4.3, the probability that ¢(0) = 0% will be 27, and hence this is
the probability that D will return 1. Now as per Definition 4.6 we subtract to get

Adv%rf(D) = Pr {Exp%rf'l(D) = 1} —Pr {Exp%rf'o(D) = 1}
= 1-271,

Now let ¢ be the time complexity of D. This is O(¢ + L) plus the time for one computation of F,
coming to O(¢2L). The number of queries made by D is just one, and the total length of all queries
is [. Our conclusion is that there exists an extremely efficient adversary whose prf-advantage is
very high (almost one). Thus, F' is not a secure PRF. |

Example 4.11 . Suppose we are given a secure PRF F: {0,1}* x {0,1}¢ — {0,1}. We want to
use F to design a PRF G: {0,1}* x {0,1} — {0,1}?L. The input length of G is the same as that of
F but the output length of G is twice that of F. We suggest the following candidate construction:
for every k-bit key K and every ¢-bit input x
Gr(z) = Fi(z) || Fr(T) .

Here ” denotes concatenation of strings, and T denotes the bitwise complement of the string x.
We ask whether this is a “good” construction. “Good” means that under the assumption that F
is a secure PRF, G should be too. However, this is not true. Regardless of the quality of F', the
construct G is insecure. Let us demonstrate this.

We want to specify an adversary attacking GG. Since an instance of G maps /¢ bits to 2L bits,
the adversary D will get an oracle for a function g that maps ¢ bits to 2L bits. In World 0, g will
be chosen as a random function of ¢ bits to 2L bits, while in World 1, g will be set to G where K
is a random k-bit key. The adversary must determine in which world it is placed. Our adversary
works as follows:

(44 H

Adversary DY
y1 — g(1%)
Y2 — g(0°)
Parse y1 as y1 = y1.1 || y1,2 with |y11] = |y12| =L
Parse y2 as yo = yo,1 || y2,2 With |y21| = |yo2| = L
if Y11 =122 then return 1 else return 0

This adversary queries its oracle at the point 1¢ to get back y; and then queries its oracle at the
point 0° to get back y5. Notice that 1¢ is the bitwise complement of 0°. The adversary checks
whether the first half of y; equals the second half of y5, and if so bets that it is in World 1. Let us
now see how well this adversary does. We claim that

pr[Expl™' (D) =1] = 1
Pr[Expy (D) =1] = 27
Why? Look at Experiment ExppGrf_l(D) as defined in Definition 4.6. Here g = G for some K. In
that case we have
Gr(1) = Fr(1%)| Fk(0)
Gr(0°) = Fr(0) | Fx(1%)
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by definition of the family G. Notice that the first half of G (1¢) is the same as the second half
of Gk (0%). So D will return 1. On the other hand look at Experiment ExppGrf_O(D) as defined in
Definition 4.6. Here g is a random function. So the values g(1¢) and g(0°) are both random and
independent 2L bit strings. What is the probability that the first half of the first string equals
the second half of the second string? It is exactly the probability that two randomly chosen L-bit
strings are equal, and this is 27%. So this is the probability that D will return 1. Now as per
Definition 4.6 we subtract to get

Advy'(D) = Pr[Bxpy™ (D) =1] - Pr [Exp}™’(D) = 1]
= 1-271.

Now let ¢ be the time complexity of D. This is O(¢ + L) plus the time for two computations of G,
coming to O(¢ + L) plus the time for four computations of F'. The number of queries made by D
is two, and the total length of all queries is 2¢. Thus we have exhibited an efficient adversary with
a very high prf-advantage, showing that G is not a secure PRF. 1

4.7 Security against key recovery

We have mentioned several times that security against key recovery is not sufficient as a notion of
security for a blockcipher. However it is certainly necessary: if key recovery is easy, the blockcipher
should be declared insecure. We have indicated that we want to adopt as notion of security for a
blockcipher the notion of a PRF or a PRP. If this is to be viable, it should be the case that any
function family that is insecure under key recovery is also insecure as a PRF or PRP. In this section
we verify this simple fact. Doing so will enable us to exercise the method of reductions.

We begin by formalizing security against key recovery. We consider an adversary that, based
on input-output examples of an instance Fy of family F', tries to find K. Its advantage is defined
as the probability that it succeeds in finding K. The probability is over the random choice of K,
and any random choices of the adversary itself.

We give the adversary oracle access to Fx so that it can obtain input-output examples of its
choice. We do not constrain the adversary with regard to the method it uses. This leads to the
following definition.

Definition 4.12 Let F: K x D — R be a family of functions, and let B be an algorithm that
takes an oracle for a function g: D — R and outputs a string. We consider the experiment:

Experiment Exp¥ (B)
K <& Keys(F)
K/ — BFK
If K = K’ then return 1 else return 0

The kr-advantage of B is defined as
Advi(B) = Pr[Expf(B)=1] 1

This definition has been made general enough to capture all types of key-recovery attacks. Any of
the classical attacks such as exhaustive key search, differential cryptanalysis or linear cryptanalysis
correspond to different, specific choices of adversary B. They fall in this framework because all have
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the goal of finding the key K based on some number of input-output examples of an instance Fg
of the cipher. To illustrate let us see what are the implications of the classical key-recovery attacks
on DES for the value of the key-recovery advantage function of DES. Assuming the exhaustive
key-search attack is always successful based on testing two input-output examples leads to the fact
that there exists an adversary B such that Advlf)rES(B) = 1 and B makes two oracle queries and
has running time about 2°° times the time Thgg for one computation of DES. On the other hand,
linear cryptanalysis implies that there exists an adversary B such that AdviSug(B) > 1/2 and B
makes 2% oracle queries and has running time about 244 times the time ThHgs for one computation
of DES.

For a more concrete example, let us look at the key-recovery advantage of the family of
Example 4.10.

Example 4.13 Let F: {0,1}* x {0,1}} — {0,1}* be the family of functions from Example 4.10.
We saw that its prf-advantage was very high. Let us now compute its kr-advantage. The following
adversary B recovers the key. We let e; be the [-bit binary string having a 1 in position j and zeros
everywhere else. We assume that the manner in which the key K defines the matrix is that the
first L bits of K form the first column of the matrix, the next L bits of K form the second column
of the matrix, and so on.

Adversary Bfx
K' «+— ¢ /] ¢ is the empty string
for j=1,...,ldo

y; < Fr(e;)
K'— K" y;
return K’

The adversary B invokes its oracle to compute the output of the function on input e;. The result,
yj, is exactly the j-th column of the matrix associated to the key K. The matrix entries are
concatenated to yield K’, which is returned as the key. Since the adversary always finds the key
we have

Advi¥(B) = 1.
The time-complexity of this adversary is ¢ = O(I2L) since it makes ¢ = [ calls to its oracle and each

computation of Fi takes O(IL) time. The parameters here should still be considered small: [ is 64
or 128, which is small for the number of queries. So F' is insecure against key-recovery. |

Note that the F' of the above example is less secure as a PRF than against key-recovery: its
advantage function as a PRF had a value close to 1 for parameter values much smaller than those
above. This leads into our next claim, which says that for any given parameter values, the kr-
advantage of a family cannot be significantly more than its prf or prp-cpa advantage.

Proposition 4.14 Let F: K x D — R be a family of functions, and let B be a key-recovery
adversary against F. Assume B’s running time is at most ¢ and it makes at most ¢ < |D| oracle
queries. Then there exists a PRF adversary A against F' such that A has running time at most ¢
plus the time for one computation of F, makes at most ¢ + 1 oracle queries, and

1

Advi¥(B) < Adv%rf(A)—i—E. (4.1)
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Furthermore if D = R then there also exists a PRP CPA adversary A against F' such that A has
running time at most ¢ plus the time for one computation of F', makes at most ¢+ 1 oracle queries,
and

1
Dl —q

AdvE(B) < AdvEPPY(A) + | (4.2)

The Proposition implies that if a family of functions is a secure PRF or PRP then it is also
secure against all key-recovery attacks. In particular, if a blockcipher is modeled as a PRP or PRF,
we are implicitly assuming it to be secure against key-recovery attacks.

Before proceeding to a formal proof let us discuss the underlying ideas. The problem that
adversary A is trying to solve is to determine whether its given oracle ¢ is a random instance of F’
or a random function of D to R. A will run B as a subroutine and use B’s output to solve its own
problem.

B is an algorithm that expects to be in a world where it gets an oracle Fx for some random key
K € K, and it tries to find K via queries to its oracle. For simplicity, first assume that B makes no
oracle queries. Now, when A runs B, it produces some key K’. A can test K’ by checking whether
F(K', x) agrees with g(x) for some value z. If so, it bets that g was an instance of F, and if not it
bets that g was random.

If B does make oracle queries, we must ask how A can run B at all. The oracle that B wants
is not available. However, B is a piece of code, communicating with its oracle via a prescribed
interface. If you start running B, at some point it will output an oracle query, say by writing this
to some prescribed memory location, and stop. It awaits an answer, to be provided in another
prescribed memory location. When that appears, it continues its execution. When it is done
making oracle queries, it will return its output. Now when A runs B, it will itself supply the
answers to B’s oracle queries. When B stops, having made some query, A will fill in the reply in
the prescribed memory location, and let B continue its execution. B does not know the difference
between this “simulated” oracle and the real oracle except in so far as it can glean this from the
values returned.

The value that B expects in reply to query = is Fi(x) where K is a random key from K.
However, A returns to it as the answer to query x the value g(x), where g is A’s oracle. When A is
in World 1, g(x) is an instance of F' and so B is functioning as it would in its usual environment,
and will return the key K with a probability equal to its kr-advantage. However when A is in
World 0, g is a random function, and B is getting back values that bear little relation to the ones it
is expecting. That does not matter. B is a piece of code that will run to completion and produce
some output. When we are in World 0, we have no idea what properties this output will have. But
it is some key in K, and A will test it as indicated above. It will fail the test with high probability
as long as the test point x was not one that B queried, and A will make sure the latter is true via
its choice of z. Let us now proceed to the actual proof.

Proof of Proposition 4.14: We prove the first equation and then briefly indicate how to alter
the proof to prove the second equation.

As per Definition 4.6, adversary A will be provided an oracle for a function g: D — R, and will try
to determine in which World it is. To do so, it will run adversary B as a subroutine. We provide
the description followed by an explanation and analysis.

Adversary A9
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1—0
Run adversary B, replying to its oracle queries as follows
When B makes an oracle query = do
t—i1+1; 2,2
yi < g(xi)
Return y; to B as the answer
Until B stops and outputs a key K’
Let = be some point in D — {z1,..., x4}
y < g(z)
if F(K',z)=y then return 1 else return 0

As indicated in the discussion preceding the proof, A is running B and itself providing answers to
B’s oracle queries via the oracle g. When B has run to completion it returns some K’ € K, which
A tests by checking whether F(K', z) agrees with g(x). Here z is a value different from any that B
queried, and it is to ensure that such a value can be found that we require ¢ < |D| in the statement
of the Proposition. Now we claim that

Pr[Exph™(4) =1] > Adv¥(B) (4.3)
Pr [Exph(4) =1] = ﬁ. (4.4)

We will justify these claims shortly, but first let us use them to conclude. Subtracting, as per
Definition 4.6, we get

AdvP"(A) = Pr {Exp%rf_l(A) = 1] —Pr [ExppFrf_O(A) = 1}

1

> AdvE(B) - —
- VF() ’R|

as desired. It remains to justify Equations (4.3) and (4.4).

Equation (4.3) is true because in ExppFrf_l(A) the oracle g is a random instance of F', which is the

oracle that B expects, and thus B functions as it does in Exp'¥(B). If B is successful, meaning
the key K’ it outputs equals K, then certainly A returns 1. (It is possible that A might return 1
even though B was not successful. This would happen if K/ # K but F(K',z) = F(K,z). It is
for this reason that Equation (4.3) is in inequality rather than an equality.) Equation (4.4) is true
because in Exp%rf_O(A) the function ¢ is random, and since z was never queried by B, the value
g(x) is unpredictable to B. Imagine that g(x) is chosen only when z is queried to g. At that point,
K', and thus F(K',z), is already defined. So g(x) has a 1/|R| chance of hitting this fixed point.

Note this is true regardless of how hard B tries to make F(K', ) be the same as g(z).
For the proof of Equation (4.2), the adversary A is the same. For the analysis we see that

Pr [Expy” P (4) =1] > Advii(B)

—cpa- 1
prp-cpa-0 _
Pr [Epr (A) = 1} Dl—q¢

Subtracting yields Equation (4.2). The first equation above is true for the same reason as before.
The second equation is true because in World 0 the map ¢ is now a random permutation of D to
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D. So g(z) assumes, with equal probability, any value in D except yi, ..., y,, meaning there are at
least |D| — ¢ things it could be. (Remember R = D in this case.) |

The following example illustrates that the converse of the above claim is far from true. The kr-
advantage of a family can be significantly smaller than its prf or prp-cpa advantage, meaning that
a family might be very secure against key recovery yet very insecure as a prf or prp, and thus not
useful for protocol design.

Example 4.15 Define the blockcipher E: {0,1}* x {0,1}¢ — {0,1}¢ by Ex(z) = « for all k-bit
keys K and all £-bit inputs x. We claim that it is very secure against key-recovery but very insecure
as a PRP under CPA. More precisely, we claim that for any adversary B,

Advi¥(B) = 27F,

regardless of the running time and number of queries made by B. On the other hand there is an
adversary A, making only one oracle query and having a very small running time, such that

AdvEPPA(A) > 1-27F,

In other words, given an oracle for Fx, you may make as many queries as you want, and spend as
much time as you like, before outputting your guess as to the value of K, yet your chance of getting it
right is only 27%. On the other hand, using only a single query to a given oracle g: {0,1}* — {0,1}*,
and very little time, you can tell almost with certainty whether g is an instance of F or is a random
function of ¢ bits to £ bits. Why are these claims true? Since Ex does not depend on K, an
adversary with oracle Ex gets no information about K by querying it, and hence its guess as to
the value of K can be correct only with probability 27%. On the other hand, an adversary can
test whether ¢g(0%) = 0%, and by returning 1 if and only if this is true, attain a prp-advantage of
1-2741

4.8 The birthday attack

Suppose E: {0,1}* x {0,1}* — {0,1}* is a family of permutations, meaning a blockcipher. If we
are given an oracle g: {0,1}* — {0, 1} which is either an instance of E or a random function, there
is a simple test to determine which of these it is. Query the oracle at distinct points 1, x2,..., 2,
and get back values y1,%2,...,y,. You know that if g were a permutation, the values y1,¥2,...,¥q
must be distinct. If g was a random function, they may or may not be distinct. So, if they are
distinct, bet on a permutation.

Surprisingly, this is pretty good adversary, as we will argue below. Roughly, it takes ¢ = V2l
queries to get an advantage that is quite close to 1. The reason is the birthday paradox. If you are
not familiar with this, you may want to look at the appendix on the birthday problem and then
come back to the following.

This tells us that an instance of a blockcipher can be distinguished from a random function
based on seeing a number of input-output examples which is approximately 2¢/2. This has important
consequences for the security of blockcipher based protocols.

Proposition 4.16 Let E: {0,1}* x {0,1}* — {0,1}¢ be a family of permutations. Suppose ¢
satisfies 2 < ¢ < 2(+1D/2 Then there is an adversary A, making ¢ oracle queries and having
running time about that to do ¢ computations of F, such that

T q\q — 1)
AdvET(4) > 03 (T N (4.5)
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Proof of Proposition 4.16: Adversary A is given an oracle ¢g: {0,1}* — {0,1}* and works like
this:

Adversary AY
for i=1,...,qgdo
Let x; be the i-th ¢-bit string in lexicographic order

Yi < g(z;)
if y1,...,y, are all distinct then return 1, else return 0

Let us now justify Equation (4.5). Letting N = 2¢, we claim that
Pr[Bxph(4)=1] = 1 (4.6)
f_
Pr[Expy(4) =1 = 1-C(WV,q). (4.7)

Here C(N, q), as defined in the appendix on the birthday problem, is the probability that some bin
gets two or more balls in the experiment of randomly throwing ¢ balls into N bins. We will justify
these claims shortly, but first let us use them to conclude. Subtracting, we get

AdvP(A) = Pr {Exp%rf_l(A) = 1} —Pr [ExppErf_O(A) = 1}

= 1_[1_C(N7Q)]
= C(N,q)
> 0.3-%.

The last line is by Theorem A.1 in the appendix on the birthday problem. It remains to justify
Equations (4.6) and (4.7).

Equation (4.6) is clear because in World 1, g = FEk for some key K, and since E is a family

of permutations, g is a permutation, and thus y,...,y, are all distinct. Now, suppose A is in
World 0, so that g is a random function of £ bits to £ bits. What is the probability that yi,...,y,
are all distinct? Since g is a random function and z1,...,z, are distinct, yi,...,y, are random,

independently distributed values in {0,1}¢. Thus we are looking at the birthday problem. We are
throwing ¢ balls into N = 2¢ bins and asking what is the probability of there being no collisions,
meaning no bin contains two or more balls. This is 1 — C(N, q), justifying Equation (4.7). I

4.9 The PRP/PRF switching lemma

When we analyse blockcipher-based constructions, we find a curious dichotomy: PRPs are what
most naturally model blockciphers, but analyses are often considerably simpler and more natural
assuming the blockcipher is a PRF. To bridge the gap, we relate the prp-security of a blockcipher to
its prf-security. The following says, roughly, these two measures are always close—they don’t differ
by more than the amount given by the birthday attack. Thus a particular family of permutations £
may have prf-advantage that exceeds its prp-advantage, but not by more than 0.5 ¢?/2".
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Lemma 4.17 [PRP/PRF Switching Lemma] Let E: K x {0,1}" — {0,1}" be a function
family. Let A be an adversary that asks at most ¢ oracle queries. Then

9l —1)

’Pr[p < Func(n) : AP=1] — Pr[r <X Perm(n) : A“:>1]‘ ot (4.8)
As a consequence, we have that
rf r q(q — 1)
AdvyT(4) - AdvRP(4)| < g (4.9)

The proof introduces a technique that we shall use repeatedly: a game-playing argument. We
are trying to compare what happens when an adversary A interacts with one kind of object—a
random permutation oracle—to what happens when the adversary interacts with a different kind
of object—a random function oracle. So we set up each of these two interactions as a kind of game,
writing out the game in pseudocode. The two games are written in a way that highlights when
they have differing behaviors. In particular, any time that the behavior in the two games differ,
we set a flag bad. The probability that the flag bad gets set in one of the two games is then used
to bound the difference between the probability that the adversary outputs 1 in one game and the
the probability that the adversary outputs 1 in the other game.

Proof: Let’s begin with Equation (4.8), as Equation (4.9) follows from that. We need to establish

that ( N ( 0
q\q — q\q —
where, for notational simplicity, we omit explicitly indicating that p <= Func(n) and 7 <> Perm(n);
the variable name will be enough to let you keep the experiments straight. Let’s show the right-
hand inequality, since the left-hand inequality works in exactly the same way. So we are trying to

establish that

q(q—1)

Pr[A’=1] - Pr[A"=1] < s

(4.10)
Since A is trying to distinguish a function p <= Func(n) from a function w <~ Perm(n), we can assume
that A never asks an oracle query that is not an n-bit string. You can assume that such an invalid
oracle query would generate an error message. The same error message would be generated on any
invalid query, regardless of A’s oracle being a m-oracle or a p-oracle, so asking invalid queries is
pointless for A.

We can also assume that A never repeats an oracle query: if it asks a question X it won’t later
ask the same question X. It’s not interesting for A to repeat a question, because it’s going to get
the same answer as before, independent of whether A is speaking to a 7 & Perm (n) oracle or it is
speaking to a p < Func(n) oracle. More precisely, with a little bit of bookkeeping the adversary
can remember what was its answer to each oracle query it already asked, and it doesn’t have to
repeat an oracle query because the adversary can just as well look up the prior answer.

Now we're going to imagine answering A’s queries by running one of two games. Instead of think-
ing of A interacting with a random permutation oracle 7 <= Perm(n) we're going to think of A
interacting with the game, call it game P, specified in Fig. 4.1. Instead of thinking of A interacting
with a random function oracle p < Func(n) we're going to think of A interacting with game R, also
specified in Fig. 4.1. Read the caption of the figure to see how the two games are defined.
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Initialization:
01  bad « false; for X € {0,1}" do 7(X) < undef

When A asks query X:
10 Y<E{o,1m

11 if Y € Range(n) then bad « true , Y < Range(n)

12 m(X) <Y
13 return Y

Figure 4.1: Games used in the proof of the Switching Lemma. Game P is the pseudocode exactly
as written. Game R is the same except we omit the highlighted statement at line 11. To play either
game, start off by executing the initialization step, line 01. Then, whenever the adversary makes
a query X, that query is answered by performing the pseudocode at lines 10-13, with or without
the highlighted statement, as indicated.

Let’s look at Games P and R. In both games, we start off performing the initialization step, setting
a flag bad to false and setting a variable m to be undef at every n-bit string. As the game run,
we will “fill in” values of 7(X) with n-bit strings. At any point point in time, we let Range(7) be
the set of all n-bit strings Y such that 7(X) =Y for some X. We let Domain(m) be the set of all
n-bit strings X such that 7(X) # undef. We let Range(w) be all the n-bit strings that are not in
Range(m), and we let Domain(7) be all the n-bit strings that are not in Domain(7). We will use
this Domain/Range/Domain/Range notation from now on.

As Games P and R run, Domain(7) and Range(7) grow, getting more and more values silently put
there, while Domain(7) and Range(7) will shrink, having values successively removed. Initially,
|Domain(7)| = |Range(7)| = 0 and |Domain(7)| = |[Range(r)| = 2".

Notice that the adversary never sees the flag bad. The flag bad will play a central part in our
analysis, but it is not something that the adversary A can get hold of. It’s only for our bookkeeping.

Completing our description of the games, suppose that the adversary asks a query X. By our
assumptions about A, the string X is an n-bit string that the adversary has not yet asked about.
In line 10, we choose a random n-bit string Y. Line 11, next, is the most interesting step. If the
point Y that we just chose is already in the range of m then we set a flag bad. In such a case, if
we are playing game P, then we now make a fresh choice of Y, this time from the co-range of m. If
we are playing game R then we stick with our original choice of Y. Either way, we set 7(X) to Y,
effectively growing the domain of 7 and (usually) its range, and we return Y.

Now let’s think about what A sees as it plays Games R. Whatever query X is asked, we just return a
random n-bit string Y. So game R perfectly simulates a random function p <= Func(n). Remember
that the adversary isn’t allowed to repeat a query, so what the adversary would get if it had a
p < Func(n) oracle is a random n-bit string in response to each query—just what we are giving it.
We say that A is provided exactly the same view if we give it a random function p <~ Func(n) or
if it is interacting with Game R. Since the environment A finds itself in is the same in these two
cases, the probability that A outputs 1 must be the same in these two cases, too:

Pr[AP=1] = Pr[AGame B (4.11)
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Now if we’re in game P then what the adversary gets in response to each query X is a random
point Y that has not already been returned to A. Seeing this requires a bit of thought. It’s
important that we started off, in line 10, by choosing a random point Y from a set, {0,1}", that
is at least as big as Range(). So if our sample point is already in Range(r) then we’ve chosen a
random point in Range(7); and if our sample point is not already in Range(w) then we go ahead
and choose a new random point in Range(w). So either way, we end up choosing a random point in
Range(m) and, overall, we are choosing a random point in Range(w). Now the behavior of a random
permutation oracle is to give a random new answer to each query, and that is exactly the behavior
that Game P exhibits, and so A’s distribution on views is the same if it is given 7 <> Perm(n) or
if it interacts with Game P. Since A’s view is the same in the two cases, the probability that A
outputs 1 must be the same in these two cases and we have that

Pr[A"=1] = Pr[A%meP=q], (4.12)
Now we are trying to bound Pr[A?=-1] — Pr[A™=1] and at this point we have that
Pr[AP=1] — Pr[A™=1] = Pr[A%ame Boq] _ pr[gCame P ) (4.13)
We next claim that
PriAGame R q) _ prigCame P ] < pr[A®ame R gets bad] . (4.14)

To see Equation (4.14), let’s think about all the random choices that happen when adversary A
plays Games R or P. The adversary A may make make random choices of its own; and the Games, R
or P make random choices, too. You can imagine a huge string of random coin tosses, C', that has
all the random coins that might be needed—both coins for A and coins for Games P and R. (Insofar
as Game P needs to sample in a set Range(7) that will sometimes have size that is not a power
of two, you can imagine that some subsequences of possible bits in C' are excluded. This is not an
important detail.) There is a finite set C naming all the possible coin flips that might be needed
by adversary A and Games R and P. Each sequence of coin tosses C' € C will result in a particular
behavior of A as it plays Game P and a particular behavior of A as it plays Game R.

For a bit b € {0, 1}, lets think of all of those coin tosses C' € C that cause A to output b if game R
is played. Call this set Cf{. Think of all of those coin tosses C' € C that cause A to output b if
game P is played. Call this set C%. Finally, think of all those coin tosses C' € C that cause A to set
the flag bad to true in Game R or Game P. Call this set C*. Note that a C causes bad to be set to
true in Game R if and only if C' causes bad to be set to true in game P.

Now Pr[AGame R=.1] = |CL|/|C| and Pr[AGame P=1] = |CL|/|C| and Pr[A%ame B= 1] Pr[AGame P q] =
ICE NCB|/IC|. In other words, the only way for coin tosses C € C to contribute to A’s advantage is
for the coin tosses to result in a 1-output in Game R and a 0-output in Game P. Any such sequence
of coin tosses C' € Cfl{ — Cg must result in bad getting to true: Crl{ — CIO;, C C*. This is because coin
tosses C which do not set bad result in the same sequence of responses in Games P and R, the
same sequence of internal choices by A, and so the same output. We thus have that

Pr[AGame Ro1)— Pr[AGame P=1] < |ev/ic (4.15)

= Pr[A%ame R gets bad] (4.16)

as required.
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To bound Pr[A%2me R sets bad] is simple. Line 11 is executed ¢ times. The first time it is executed
Range(m) contains 0 points; the second time it is executed Range(r) contains 1 point; the third
time it is executed Range(7) contains at most 2 points; and so forth. Each time line 11 is executed
we have just selected a random value Y that is independent of the contents of Range(rw). By
the sum bound, the probability that a Y will ever be in Range(w) at line 11 is therefore at most
0/2" +1/2"4+2/2"+ -+ (¢—1)/2" = (1+2+---+(¢—1))/2" = q(q¢ — 1) /2”1, This completes
the proof of Equation (4.10). To go on and show that Advi'(A) — AdvPrpg(A) < (g —1)/27
note that

AdvPT(A) — AdVEIP(A)

IN

Pr[APK=1]-Pr[AP=1] — (Pr[APK=1]—Pr[A"=1])
< Pr[AP=1] — Pr[A"=1]
< qlg—1)/2""!

where it is understood that K <= K. This completes the proof. |

The PRP/PRF switching lemma is one of the central tools for understanding block-cipher based
protocols, and the game-playing method will be one of our central techniques for doing proofs.

4.10 Unix one-way function

The framework for the Unix password-hashing scheme is this. We fix some function h: {0,1}* —
{0, l}L , which we call the password hashing function. A user U chooses a k-bit password K, and
the system stores in the password file the value y = h(K) together with the user’s name U. When
the user logs in he or she is prompted for a user name U and a password K. The system uses the
user U to retrieve y, and then the system computes h(K) and declares the user to be authentic if
and only if this value equals y. The idea of this system—instead of storing (U, K) itself—is that a
party who obtains (U, y) still can not gain trivial entry into the system: they must still find a K
such that h(K) = y.

Assume the attacker gets access to the password file and hence to y. The attacker’s task is
thus to find K given y. (The attacker knows the function h, since this is public code. However we
assume the attacker does not have any further powers, such as the use of Trojan horses.) Security
in this model would require that it be computationally infeasible to recover K from y. Thus h must
be chosen to make this true.

A simple example choice of h is h(K) = DESk(0%). (The actual choice made by Unix is
somewhat more complex, involving something called a “salt,” which customizes the function A to
each user U. It also involves iterating the blockcipher a number of times. However this does not
change the heart of the analysis, so let us stick with the fiction we have described.) In this example,
k =56 and L = 64.

Obviously, the security of this scheme depends on the security of DES. If we want to prove
anything meaningful about the security of the simplified password scheme, we must make some
assumption about DES. We have suggested above that the appropriate assumption to make about
a blockcipher like DES is that it is a secure PRP. So we make this assumption and now ask what
we can prove about the security of the simplified password scheme.

However to answer this effectively, we first need to decide exactly what security property we
would like to target. At first, one would think the security question boils down to asking how hard



Bellare and Rogaway 83

it would be to recover K given y = h(K). But although recovering K given y would certainly break
the scheme, so would recovering any K’ such that h(K') =y, even if K’ # K. Accordingly, this is
the task whose difficulty we consider. Technically, it corresponds to asking that h be a one-way,
meaning it is computationally infeasible to recover the pre-image of a range point.

We provide a formalization below that is more specific. Function h: {0,1}* — {0,1}* is one-
way if it is hard, given y, to compute a point 2’ such that h(z’) = y, when y was chosen by drawing
x at random from {0, 1}¥ and setting y = h(z).

Definition 4.18 Let h: {0,1}* — {0,1}* be a function, and let I be an algorithm that on input
an L-bit string returns a k-bit string. We consider the experiment:

Experiment Exp9™! (1)
K &0, 130 y — h(K)
x — I(y)
If h(z) = y then return 1 else return 0

The owf-advantage of I is defined as
Adv™(1) = Pr[Bxpp™(1)=1] .
For any t the owf-advantage of I is defined via
Advi™(t) = max {Advi™(I)}

where the maximum is over all I having time-complexity t.

As usual, a one-way function is understood to be one for which Adv$“(¢) is “small” for practical

values of t. We want to show that if & is defined via h(K) = Fx(0') for a secure PRF F: {0,1}* x
{0,1}' — {0,1}* then h is one-way.

We remark that one must look carefully at the models to know how to interpret the impact of
such a result on the actual password scheme. Showing that h is a one-way function amounts to
saying that the password scheme is secure if passwords are randomly chosen k-bit keys where k is the
block length of the blockcipher. In real life, passwords are often not random, and in that case this
result does not apply. It also does not take into consideration other issues about password usage,
such as the possibility of compromise of the channel over which the user conveys the password to
the server. However, the result here is still useful and serves to illustrate an application of PRFs.

Theorem 4.19 Let F: {0,1}*x{0,1}' — {0,1}* be a family of functions, and define h: {0,1}* —
{0,1}F via h(K) = F(K,0") for all K € {0,1}*. Then we have

1

Adv§Vi(t) < T

AdvP (¢ 1,1) (4.17)
under the assumption that k < L — 1. Here t' is ¢ plus the time for one computation of F'.

As per the theorem, Adv‘fLWf(t) can only be marginally more than Adv%rf(t’ ,1,1). Specifically,
Adv§Vi(t) can be at most twice Adv%f(t/ ,1,1), because k < L — 1 implies

71 <
gz =%
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So if F' is secure, meaning Adv%rf(t’, 1,1), is low, Adv%Wf(t) is also low, and hence h is secure. It
is thus a proof of security, showing that h is one-way if F' is a secure PRF.

Notice that security of a family F' against key-recovery does not imply that the associated
function h defined in the theorem is one-way, exactly due to the fact that one-wayness declares
the adversary successful even it if recovers a key K’ different from the K under which its challenge
y = F(K,0") was computed. However, security as a PRF is strong enough to rule out even recovery
of this different key.

Proof of Theorem 4.19: We associate to any adversary I attempting to invert h an adversary

Dy attacking F' such that

1 f
Furthermore, D; makes only one oracle query, this of length [ bits, and has time-complexity ¢
which is the time-complexity of I plus the time for one computation of F'. Taking maximums in
the usual way yields Equation (4.17), so it remains to provide Dj such that Equation (4.18) is true.

This adversary takes an oracle for a function g: {0,1} — {0,1}* and works as follows:

AdvVi(I) <

Adversary DY
y — g(0"
z — I(y)
If F(z, Ol) = y then return 1 else return 0

The adversary queries its oracle g at 0" to get back a value it calls y, and then applies the inverting
algorithm I to y to get back a value x. If I successfully inverted h at y our adversary bets that
g is an instance of F', and otherwise it bets that ¢ is an instance of Func(l,L). To compute the
advantage of this adversary it is convenient to set

e = AdvVi(I) .

Now we claim that

Pr [Expy (D) = 1] = ¢ (4.19)
prf-0 2k
Pr [Expy(D)) =1 < ST (4.20)

We will justify these claims shortly, but first let us use them to conclude. Subtracting, we have
Advy' (D)) = Pr[Exp}(Dy) =1] - Pr [Expy™(Dy) = 1]

2k
oL
- (1—2’“*L) €.

> €— - €

Now, we divide both sides by 1 — 28~ to get
1 f
€ < Tor  AdVE(Dr),
which is exactly Equation (4.18). However, there is a subtle point here that should be noted. This
step is only correct if the quantity 1 — 2*=% by which we are dividing is non-zero (otherwise we
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can’t divide by it) and in fact positive (if it was negative, we would have to reverse the inequality).
The fact that 1 — 25~ is positive is true by our assumption that k& < L — 1. This is the only place
we make use of this assumption, but it is crucial. It remains to justify Equations (4.19) and (4.20).

We claim that Experiment Expplrf Y(D;) ends up faithfully mimicking Experiment Exp{™ ().

Indeed, Experiment Expp]rf '(D;) begins by selecting a random k-bit key K, so that y = F (K,0%.
By definition of A this means that y = h(K), so y is distributed the same way in the two experiments.
Then, both experiments run I and return 1 if and only if I is successful, so the probability that
they return 1 is the same. This justifies Equation (4.18).

Now suppose D; is in World 0, meaning g: {0,1} — {0,1}* is a random function. We want to

upper bound the probability that Expprf O(DI) returns 1. Since ¢ is random, y will be uniformly
distributed over {0,1}*. Thus we want to upper bound

5 L Prly S {0} e I(y) : Fa,0) =y . (4.21)

The notation here means that we first pick y at random from {0, 1}, then set x to I(y), and then
ask what is the probability that F(x,0") equals y. Since the algorithm I might be randomized, the
probability is not only over the choice of y, but also over the random coins tossed by I itself.

For simplicity we first prove Equation (4.20) in the case where I is deterministic, so that the
probability in the computation of § is only over the choice of y. In this case it is convenient to
define the sets

X = {ze{0,1}* : A(I(h(x))) = h(z) }
Y = {ye{01}": hI@y)=y}.
We show the sequence of steps via which Equation (4.20) can be obtained, and then justify them:
Y] _ X 2F-e
= 9F S o0 T 9r -
The fact that § = |Y|/2% follows from Equation (4.21) and the definition of Y. The last equality uses
the analogous fact that e = | X|/2*, and this can be justified by looking at Experiment Exp{™ (1)
and the definition of set X above. The main claim used above is that |Y| < |X|. To see why this
is true, let
h(X) = {h(z) : z€ X} = {yec{0,1}F : 3z € X such that h(z) =y} .
This is called the image of X under h. Then observe two things, from which |Y| < | X]| follows:
LX) <|X| and A(X)=Y.

The first of these is true simply because h is a function. (One x value yields exactly one y value
under h. Some of these y values might be the same as x ranges over X, but certainly you can’t get
more y values than you have x values.) The second, that h(X) =Y, can be justified by looking at
the definitions of the sets X and Y and observing two things: If x € X then h(z) € Y andify € YV
then there is some z € X such that h(z) = y.

J

That completes the proof for the case where I is deterministic. Let us now briefly indicate why
Equation (4.20) remains true when [ is a randomized algorithm.

In this case, when [ is run on input y, it tosses coins to get a random string R, and bases its
computation on both y and R, returning a value x that is a function of both of y and R. Thus,
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there are many different possible  values that it might return on input y. We have no idea exactly
how I uses R or how it performs its computation, but we can still assess the probabilities we need
to assess. For any y € {0,1}* and any x € {0, 1}* we let

Py(z) = Pr[Rﬁ{O,l}r : I(y;R):az} .

In other words, having fixed x,y, we ask what is the probability that I, on input y, would output
x. The probability is over the coin toss sequence R of I, and this has been made explicit. We are
letting 7 be the number of coins that I tosses and letting I(y; R) denote the output of I on input
y and coins R. Note that this output is a single x value. (Towards understanding this it may be
helpful to note that the case of I being deterministic corresponds to the following: for every y there
is a unique z such that Py(x) =1, and for all other values of x we have P,(x) = 0.)

Now for any y € {0, 1} we let

Aiy) = {ze{0,1}* : hiz) =y}
V' = {ye{0,1}" il (y) £0}.

Thus h~'(y) is the set of all pre-images of y under h, while Y* is the image of {0,1}* under h,
meaning the set of all range points that possess some pre-image under h. Notice that for any y € Y*
we have |h~1(y)| > 1. Thus for any y € Y* we have

1 Wy 2% [hiy)l
o< Wb 2 WL (4.22)

We show the sequence of steps via which Equation (4.20) can be obtained, and then justify them:

5 o= Z(ZPy(az)-;L

ye{0,1}L \zeh~1(y)

- Z( Z Py(x))QiL

yeY* \azeh—1(y)

ok 1p1
<y (3 nw)z
yeY* \zeh—1(y)
k —1
- Z( )3 Py<x>>-—‘h A
yeY* \zeh—1(y)
k —1
> ( > Py<x>>-—’h2,fy)’
ye{0,1}L \zeh~1(y)
2k
= Q—L.e.

The equation for § used in the first line comes about by looking at the probability that I succeeds
for a given value of y, and then summing this over all y-values, weighted by the probability 27
of that y value being chosen. We then restrict the sum to values y € Y* based on the fact that
the terms corresponding to values y € Y* in the previous sum are just zero. Once this is done
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we can apply Equation (4.22) to obtain the inequality. We then factor 2¥ /2% out of the sum. We
extend the sum to cover values y ¢ Y™ based again on the fact that the corresponding new terms
are simply zero. In the last sum, we are summing the probability that I succeeds for a given value
of y, weighted by the probability that y would be produced under the experiment of choosing x at

random and setting y = h(z), namely as in Experiment Exp,Ole(I ), and thus recover e. |

4.11 Historical notes

The concept of pseudorandom functions is due to Goldreich, Goldwasser and Micali [17], while that
of pseudorandom permutation is due to Luby and Rackoff [25]. These works are however in the
complexity-theoretic or “asymptotic” setting, where one considers an infinite sequence of families
rather than just one family, and defines security by saying that polynomial-time adversaries have
“negligible” advantage. In contrast our approach is motivated by the desire to model blockciphers
and is called the “concrete security” approach. It originates with [2]. Definitions 4.6 and 4.7 are
from [2], as are Propositions 4.16 and 4.17.

4.12 Problems

Problem 4.1 Let E: {0,1}* x {0,1}" — {0,1}" be a secure PRP. Consider the family of permu-
tations E: {0,1}* x {0,1}?® — {0,1}?" defined by for all z, 2’ € {0,1}" by

Ex(z| ) = Ex(z) | Ex(z @ ') .
Show that E’ is not a secure PRP. |

Problem 4.2 Consider the following blockcipher E : {0,1}3 x {0,1}? — {0,1}*:

b
(o}
<

N O O W N = O

W N = O =N W oo
N R O W NN W O =
O W N W O = NN
S W N R O RN WWw

(The eight possible keys are the eight rows, and each row shows where the points to which 0, 1,
2, and 3 map.) Compute the maximal prp-advantage an adversary can get (a) with one query,
(b) with four queries, and (c) with two queries. I

Problem 4.3 Present a secure construction for the problem of Example 4.11. That is, given a
PRF F: {0,1}* x {0,1}" — {0,1}", construct a PRF G: {0,1}* x {0,1}"* — {0,1}?" which is a
secure PRF as long as F' is secure. |
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Problem 4.4 Design a blockcipher E : {0,1}* x {0,1}'?® — {0,1}'?® that is secure (up to a
large number of queries) against non-adaptive adversaries, but is completely insecure (even for
two queries) against an adaptive adversary. (A non-adaptive adversary readies all her questions
My, ..., My, in advance, getting back Ex (M), ..., Ex(My). An adaptive adversary is the sort we
have dealt with throughout: each query may depend on prior answers.) I

Problem 4.5 Let ali] denote the i-th bit of a binary string ¢, where 1 < i < |a|. The inner product
of n-bit binary strings a, b is

(a,b) = a[l]b[l] @ a[2b[2] & --- & a[n]b[n] .

A family of functions F: {0,1}¥ x {0,1}* — {0,1}¥ is said to be inner-product preserving if for
every K € {0,1}* and every distinct x1, 22 € {0,1}* — {0’} we have

(F(K,z1),F(K,x2)) = (x1,22) .

Prove that if F' is inner-product preserving then there exists an adversary A, making at most two
oracle queries and having running time 2 - Tr 4+ O(¢), where Tr denotes the time to perform one
computation of F'; such that

prf 1 1
Explain in a sentence why this shows that if F' is inner-product preserving then F' is not a secure
PRF. 1

Problem 4.6 Let E: {0,1}* x {0,1} — {0,1}¢ be a blockcipher. The two-fold cascade of E is
the blockcipher E®): {0,1}2F x {0,1}* — {0,1}* defined by

2
ER | 10 (#) = B (i (@)
for all Ky, Ky € {0,1}* and all = € {0,1}¢. Prove that if F is a secure PRP then so is E(®). 1

Problem 4.7 Let A be a adversary that makes at most ¢ total queries to its two oracles, f and g,
where f,¢:{0,1}" — {0,1}". Assume that A never asks the same query X to both of its oracles.
Define

Adv(A) = Pr[r <« Perm(n) : ATO() = 1] — Pr[m, 7" « Perm(n) : ATO () = 1].
Prove a good upper bound for Adv(A), say Adv(A) < ¢?/2". 1

Problem 4.8 Let F: {0,1}* x {0,1}* — {0,1}¢ be a family of functions and » > 1 an integer.
The r-round Feistel cipher associated to F is the family of permutations F(): {0,1}"% x {0,1}?¢ —
{0, 1}2* defined as follows for any Ki, ..., K, € {0,1}* and input = € {0,1}2"

Function FO(Ky || --- || K, )
Parse x as Ly || Ry with |Lo| = |Ro| = ¢
Fori=1,...,r do
Li—Ri1; Ri + F(K;, Ri 1) ®© Li 1
EndFor
Return L, || R,
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(a) Prove that there exists an adversary A, making at most two oracle queries and having running
time about that to do two computations of F', such that

AdvP (A) >1-27¢.

(b) Prove that there exists an adversary A, making at most two queries to its first oracle and one
to its second oracle, and having running time about that to do three computations of F' or
F~1 such that

AdvPE*(A4) > 1-3-27" ]

Problem 4.9 Let E: K x {0,1}" — {0,1}" be a function family and let A be an adversary that
asks at most ¢ queries. In trying to construct a proof that |[AdvEP(A) — AdvRT(A4)] < ¢2/27+1,
Michael and Peter put forward an argument a fragment of which is as follows:

Consider an adversary A that asks at most ¢ oracle queries to a function p, where p is
determined by randomly sampling from Func(n). Let C (for “collision”) be the event
that A asks some two distinct queries X and X’ and the oracle returns the same answer.
Then clearly

Pr[r <& Perm(n) : A™=1] = Pr[p < Func(n) : A?=1|C|.
Show that Michael and Peter have it all wrong: prove that Pr[r <& Perm(n) : A™=1] is not neces-

sarily the same as Pr[p <> Func(n) : AP=1 | C]. Do this by selecting a number n and constructing
an adversary A for which the left and right sides of the equation above are unequal. |
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Chapter 5

SYMMETRIC ENCRYPTION

The symmetric setting considers two parties who share a key and will use this key to imbue commu-
nicated data with various security attributes. The main security goals are privacy and authenticity
of the communicated data. The present chapter looks at privacy. A later chapter looks at authen-
ticity. Chapters 3 and 4 describe tools we shall use here.

5.1 Symmetric encryption schemes

The primitive we will consider is called an encryption scheme. Such a scheme specifies an encryption
algorithm, which tells the sender how to process the plaintext using the key, thereby producing the
ciphertext that is actually transmitted. An encryption scheme also specifies a decryption algorithm,
which tells the receiver how to retrieve the original plaintext from the transmission while possibly
performing some verification, too. Finally, there is a key-generation algorithm, which produces a
key that the parties need to share. The formal description follows.

Definition 5.1 A symmetric encryption scheme SE = (K,E,D) consists of three algorithms, as
follows:

e The randomized key generation algorithm K returns a string K. We let Keys(S&) denote the
set of all strings that have non-zero probability of being output by K. The members of this
set are called keys. We write K < K for the operation of executing K and letting K denote
the key returned.

e The encryption algorithm &, which might be randomized or stateful, takes a key K € Keys(SE)
and a plaintext M € {0,1}* to return a ciphertext C' € {0,1}* U {L}. We write C <> Ex (M)
for the operation of executing £ on K and M and letting C' denote the ciphertext returned.

e The deterministic decryption algorithm D takes a key K € Keys(S€) and a ciphertext C' €
{0,1}* to return some M € {0,1}* U {L}. We write M «— Dg(C) for the operation of
executing D on K and C' and letting M denote the message returned.

The scheme is said to provide correct decryption if for any key K € Keys(SE), any sequence of
messages M, ..., M, € {0,1}*, and any sequence of ciphertexts Cy <> Ex (M), Co <& Exc (Ma), .. .,
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Cy & Ex(M,) that may arise in encrypting Mi,..., My, it is the case that Dk (C;) = M; for each
C; # L.

The key-generation algorithm, as the definition indicates, is randomized. It takes no inputs. When
it is run, it flips coins internally and uses these to select a key K. Typically, the key is just a random
string of some length, in which case this length is called the key length of the scheme. When two
parties want to use the scheme, it is assumed they are in possession of a key K generated via K.

How they came into joint possession of this key K in such a way that the adversary did not get
to know K is not our concern here, and will be addressed later. For now we assume the key has
been shared.

Once in possession of a shared key, the sender can run the encryption algorithm with key K and
input message M to get back a string we call the ciphertext. The latter can then be transmitted
to the receiver.

The encryption algorithm may be either randomized or stateful. If randomized, it flips coins
and uses those to compute its output on a given input K, M. Each time the algorithm is invoked,
it flips coins anew. In particular, invoking the encryption algorithm twice on the same inputs may
not yield the same response both times.

We say the encryption algorithm is stateful if its operation depends on a quantity called the
state that is initialized in some pre-specified way. When the encryption algorithm is invoked on
inputs K, M, it computes a ciphertext based on K, M and the current state. It then updates the
state, and the new state value is stored. (The receiver does not maintain matching state and, in
particular, decryption does not require access to any global variable or call for any synchronization
between parties.) Usually, when there is state to be maintained, the state is just a counter. If there
is no state maintained by the encryption algorithm the encryption scheme is said to be stateless.

The encryption algorithm might be both randomized and stateful, but in practice this is rare: it
is usually one or the other but not both.

When we talk of a randomized symmelric encryption scheme we mean that the encryption
algorithm is randomized. When we talk of a stateful symmetric encryption scheme we mean that
the encryption algorithm is stateful.

The receiver, upon receiving a ciphertext C', will run the decryption algorithm with the same
key used to create the ciphertext, namely compute Dk (C'). The decryption algorithm is neither
randomized nor stateful.

Many encryption schemes restrict the set of strings that they are willing to encrypt. (For
example, perhaps the algorithm can only encrypt plaintexts of length a positive multiple of some
block length n, and can only encrypt plaintexts of length up to some maximum length.) These
kinds of restrictions are captured by having the encryption algorithm return the special symbol L
when fed a message not meeting the required restriction. In a stateless scheme, there is typically a
set of strings M, called the plaintext space, such that

MeMift PriK <K CEEg(M): C#1] =1

In a stateful scheme, whether or not Ex (M) returns L depends not only on M but also possibly on
the value of the state variable. For example, when a counter is being used, it is typical that there
is a limit to the number of encryptions performed, and when the counter reaches a certain value
the encryption algorithm returns 1 no matter what message is fed to it.

The correct decryption requirement simply says that decryption works: if a message M is
encrypted under a key K to yield a ciphertext C, then one can recover M by decrypting C' under
K. This holds, however, only if C' # L. The condition thus says that, for each key K € Keys(S€)
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and message M € {0,1}*, with probability one over the coins of the encryption algorithm, either
the latter outputs L or it outputs a ciphertext C' which upon decryption yields M. If the scheme
is stateful, this condition is required to hold for every value of the state.

Correct decryption is, naturally, a requirement before one can use a symmetric encryption
scheme in practice, for if this condition is not met, the scheme fails to communicate information
accurately. In analyzing the security of symmetric encryption schemes, however, we will see that
it is sometimes useful to be able to consider ones that do not meet this condition.

5.2 Some symmetric encryption schemes

We now provide a few examples of encryption schemes. We stress that not all of the schemes that
follow are secure encryption schemes. Some are secure and some are not, as we will see later. All
the schemes here satisfy the correct decryption requirement.

5.2.1 The one-time-pad encryption scheme

We begin with the classical one-time-pad.

Scheme 5.2 [One-time-pad encryption| The one-time-pad encryption scheme S€ = (K, &, D)
is stateful and deterministic. The key-generation algorithm simply returns a random k-bit string K,
where the key-length k is a parameter of the scheme, so that the key space is Keys(SE) = {0,1}F.
The encryptor maintains a counter ctr which is initially zero. The encryption and decryption
algorithms operate as follows:

algorithm Ex (M) algorithm Dy ({(ctr,C))
Let static ctr < 0 Let m «— | M|
Let m «— | M| if ctr +m >k then return L
if ctr +m >k then return L M — C & Kctr +1 .. ctr + m]
C— M@ Klctr +1 .. ctr +m)] return M
ctr «— ctr +m
return (ctr —m,C)

Here X[i .. j] denotes the i-th through j-th bit of the binary string X. By (ctr, C') we mean a string
that encodes the number ctr and the string C'. The most natural encoding is to encode ctr using
some fixed number of bits, at least lg k, and to prepend this to C'. Conventions are established so
that every string Y is regarded as encoding some ctr, C' for some ctr,C'. The encryption algorithm
XORs the message bits with key bits, starting with the key bit indicated by one plus the current
counter value. The counter is then incremented by the length of the message. Key bits are not
reused, and thus if not enough key bits are available to encrypt a message, the encryption algorithm
returns L. Note that the ciphertext returned includes the value of the counter. This is to enable
decryption. (Recall that the decryption algorithm, as per Definition 5.1, must be stateless and
deterministic, so we do not want it to have to maintain a counter as well.) |

5.2.2 Some modes of operation

The following schemes rely either on a family of permutations (i.e., a blockcipher) or a family of
functions. Effectively, the mechanisms spell out how to use the blockcipher to encrypt. We call
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algorithm Ex (M)
if (|[M|modn # 0 or |M|=0) then return L
Break M into n-bit blocks M|[1]--- M[m]
for i < 1tom do
Cli] — Ex (M[i])
C —C[1]---C[m]
return C

algorithm Dy (C)
if (|C]modn # 0 or |C|=0)then return L
Break C' into n-bit blocks C[1]-- - C[m]
for i —1tom do
M) — EZA(C[i])
M — M[1] - M[m]
return M

Figure 5.1: ECB mode.

such a mechanism a mode of operation of the blockcipher. For some of the schemes it is convenient
to assume that the length of the message to be encrypted is a positive multiple of a block length
associated to the family. Accordingly, we will let the encryption algorithm returns L if this is
not the case. In practice, one could pad the message appropriately so that the padded message
always had length a positive multiple of the block length, and apply the encryption algorithm to
the padded message. The padding function should be injective and easily invertible. In this way
you would create a new encryption scheme.

The first scheme we consider is ECB (Electronic Codebook Mode), whose security is considered
in Section 5.5.1.

Scheme 5.3 [ECB mode| Let E: K x {0,1}" — {0,1}" be a blockcipher. Operating it in
ECB (Electronic Code Book) mode yields a stateless symmetric encryption scheme S€ = (K, £, D).
The key-generation algorithm simply returns a random key for the blockcipher, meaning it picks
a random string K <~ K and returns it. The encryption and decryption algorithms are depicted
in Fig. 5.1. “Break M into n-bit blocks M[1]--- M[m|” means to set m = |M|/n and, for i €
{1,...,m}, set M[i] to the i-th n-bit block in M, that is, (¢ — 1)n + 1 through in of M. Similarly
for breaking C' into C[1]--- C[m]. Notice that this time the encryption algorithm did not make any
random choices. (That does not mean it is not, technically, a randomized algorithm; it is simply a
randomized algorithm that happened not to make any random choices.) |

The next scheme, cipher-block chaining (CBC) with random initial vector, is the most popular
block-cipher mode of operation, used pervasively in practice.

Scheme 5.4 [CBC$ mode] Let E: Kx{0,1}" — {0,1}" be a blockcipher. Operating it in CBC
mode with random IV yields a stateless symmetric encryption scheme, S€ = (K, &, D). The key
generation algorithm simply returns a random key for the blockcipher, K <= IC. The encryption
and decryption algorithms are depicted in Fig. 5.2. The IV (“initialization vector”) is C[0], which
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algorithm Ex (M)
if (|[M|modn # 0 or |M|=0) then return L
Break M into n-bit blocks M|[1]--- M[m]
C0] «— IV <& {0,1}"
for i« 1tom do
Cli] — Ex(Cli — 1] & M[i])
C—Cl[1]---C[m]
return (IV,C)

algorithm D ((IV,C))
if (|C| modn # 0 or |[M|=0) then return L
Break C' into n-bit blocks C[1]--- C[m)]
Cl0] < IV
for i —1tom do
MIi) — Ex(Cli) @ Cli — 1))
M — M[1]--- M[m]
return M

Figure 5.2: CBC$ mode.

is chosen at random by the encryption algorithm. This choice is made independently each time the
algorithm is invoked. |

For the following schemes it is useful to introduce some notation. If n > 1 and ¢ > 0 are integers
then we let [7], denote the n-bit string that is the binary representation of integer i mod 2. If we
use a number ¢ > 0 in a context for which a string I € {0,1}" is required, it is understood that
we mean to replace i by I = [i],. The following is a counter-based version of CBC mode, whose
security is considered in Section 5.5.3.

Scheme 5.5 [CBCC mode] Let E: £ x {0,1}" — {0,1}" be a blockcipher. Operating it in
CBC mode with counter IV yields a stateful symmetric encryption scheme, S€ = (K, &, D). The
key generation algorithm simply returns a random key for the blockcipher, K & K. The encryptor
maintains a counter ctr which is initially zero. The encryption and decryption algorithms are
depicted in Fig. 5.3. The IV (“initialization vector”) is C[0], which is set to the current value of
the counter. The counter is then incremented each time a message is encrypted. The counter is a
static variable, meaning that its value is preserved across invocations of the encryption algorithm.

The CTR (counter) modes that follow are not much used, to the best of our knowledge, but
perhaps wrongly so. We will see later that they have good privacy properties. In contrast to CBC,
the encryption procedure is parallelizable, which can be exploited to speed up the process in the
presence of hardware support. It is also the case that the methods work for strings of arbitrary
bit lengths, without doing anything “special” to achieve this end. There are two variants of CTR
mode, one random and the other stateful, and, as we will see later, their security properties are
different. For security analyses see Section 5.7 and Section 5.10.1.
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algorithm Ex (M)
static ctr <+ 0
if (|[M|modn # 0 or |[M|=0) then return L
Break M into n-bit blocks M[1]--- M[m)]
if ctr > 2" then return L
C[0] « IV « [ctr],
for ¢ —1tom do
Cli] — Ex(Cli — 1]  M]i)
C—Cl[1]---C[m]
ctr « ctr +1
return (IV, C)

algorithm Dy ((IV, C))
if (|C|modn #0 or |C|=0) then return L
Break C into n-bit blocks C[1]---C[m)]
if IV+m > 2" then return L
Cl0] < IV
for i — 1tom do
M[i] «— Ez*(C[i]) @ C[i — 1])
M — M[1]--- M[m]
return M

Figure 5.3: CBCC mode.

algorithm Ex (M)
m — [|[M]/n]
R<E{0,1)"
Pad — Fg(R+0) || Fk(R+1)|| -+ || Fk(R+m —1)
Pad < the first | M| bits of Pad
return C — (R, C")

algorithm Dg ((R,C"))
m  [|C'|/n]
Pad — Fg(R) | Fk(R+1) || - || Fk(R4+m —1)
Pad — the first |C’| bits of Pad
M «— C" ® Pad
return M

Figure 5.4: CTR$ mode using a family of functions F: K x {0,1}" — {0,1}". This version of
counter mode is randomized and stateless.

Scheme 5.6 [CTR$ mode| Let F: K x {0,1}" — {0,1}" be a family of functions. (Possibly
a blockcipher, but not necessarily.) Then CTR mode over F' with a random starting point is a
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algorithm Ex (M)
static ctr <+ 0
m — [1M]/n]
If ctr +m —1 > 2" then return L
Pad — Fg(ctr +0) || Fg(ctr +1) || --- || Fx(ctr +m —1)
Pad « the first | M| bits of Pad
C «— M & Pad
ctr < ctr +m
return (ctr —m,C)

algorithm Dk ((i,C))

m — [1C|/n]

if i1+m—12>2" then return L

Pad — Fr(i+1—1)|| Fx(@+ 1) || -+ || Fk(i +m — 1)
Pad < the first |C| bits of Pad

M «— Pad & C

return M

Figure 5.5: CTRC mode using a family of functions F: K x {0,1}" — {0,1}". This version of
counter mode uses stateful (but deterministic) encryption.

probabilistic, stateless symmetric encryption scheme, S€ = (K,&,D). The key-generation algo-
rithm simply returns a random key for . The encryption and decryption algorithms are depicted
in Fig. 5.4. The starting point R is used to define a sequence of values on which F is applied to
produce a “pseudo one-time pad” to which the plaintext is XORed. The starting point R chosen by
the encryption algorithm is a random n-bit string. To add an n-bit string R to an integer i—when
we write Fi (R + i)—convert the n-bit string R into an integer in the range [0..2" — 1] in the
usual way, add this number to i, take the result modulo 2", and then convert this back into an
n-bit string. Note that the starting point R is included in the ciphertext, to enable decryption. On
encryption, the pad Pad is understood to be the empty string when m = 0. 1

We now give the counter-based version of CTR mode.

Scheme 5.7 [CTRC mode] Let F: K x {0,1}" — {0,1}" be a family of functions (possibly a
blockcipher, but not necessarily). Operating it in CTR mode with a counter starting point is a
stateful symmetric encryption scheme, S€ = (K, &, D), which we call CTRC. The key-generation
algorithm simply returns a random key for F. The encryptor maintains a counter ctr which is
initially zero. The encryption and decryption algorithms are depicted in Fig. 5.5. Position index
ctr is not allowed to wrap around: the encryption algorithm returns L if this would happen. The
position index is included in the ciphertext in order to enable decryption. The encryption algorithm
updates the position index upon each invocation, and begins with this updated value the next time
it is invoked. |

We will return to the security of these schemes after we have developed the appropriate notions.
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5.3 Issues in privacy

Let us fix a symmetric encryption scheme SE = (K,&,D). Two parties share a key K for this
scheme, this key having being generated as K < K. The adversary does not a priori know K. We
now want to explore the issue of what the privacy of the scheme might mean. For this chapter,
security is privacy, and we are trying to get to the heart of what security is about.

The adversary is assumed able to capture any ciphertext that flows on the channel between
the two parties. It can thus collect ciphertexts, and try to glean something from them. Our first
question is: what exactly does “glean” mean? What tasks, were the adversary to accomplish them,
would make us declare the scheme insecure? And, correspondingly, what tasks, were the adversary
unable to accomplish them, would make us declare the scheme secure?

It is easier to think about insecurity than security, because we can certainly identify adversary
actions that indubitably imply the scheme is insecure. So let us begin here.

For example, if the adversary can, from a few ciphertexts, derive the underlying key K, it can
later decrypt anything it sees, so if the scheme allowed easy key recovery from a few ciphertexts it
is definitely insecure.

Now, the mistake that is often made is to go on to reverse this, saying that if key recovery is
hard, then the scheme is secure. This is certainly not true, for there are other possible weaknesses.
For example, what if, given the ciphertext, the adversary could easily recover the plaintext M
without finding the key? Certainly the scheme is insecure then too.

So should we now declare a scheme secure if it is hard to recover a plaintext from the ciphertext?
Many people would say yes. Yet, this would be wrong too.

One reason is that the adversary might be able to figure out partial information about M. For
example, even though it might not be able to recover M, the adversary might, given C, be able
to recover the first bit of M, or the sum of all the bits of M. This is not good, because these bits
might carry valuable information.

For a concrete example, say I am communicating to my broker a message which is a sequence
of “buy” or “sell” decisions for a pre-specified sequence of stocks. That is, we have certain stocks,
numbered 1 through m, and bit i of the message is 1 if I want to buy stock ¢ and 0 otherwise. The
message is sent encrypted. But if the first bit leaks, the adversary knows whether I want to buy
or sell stock 1, which may be something I don’t want to reveal. If the sum of the bits leaks, the
adversary knows how many stocks I am buying.

Granted, this might not be a problem at all if the data were in a different format. However,
making assumptions, or requirements, on how users format data, or how they use it, is a bad and
dangerous approach to secure protocol design. An important principle of good cryptographic design
is that the encryption scheme should provide security regardless of the format of the plaintext. Users
should not have to worry about the how they format their data: they format it as they like, and
encryption should provide privacy nonetheless.

Put another way, as designers of security protocols, we should not make assumptions about
data content or formats. Our protocols must protect any data, no matter how formatted. We view
it as the job of the protocol designer to ensure this is true.

At this point it should start becoming obvious that there is an infinite list of insecurity proper-
ties, and we can hardly attempt to characterize security as their absence. We need to think about
security in a different and more direct way and arrive at some definition of it.

This important task is surprisingly neglected in many treatments of cryptography, which will
provide you with many schemes and attacks, but never actually define the goal by saying what
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an encryption scheme is actually trying to achieve and when it should be considered secure rather
than merely not known to be insecure. This is the task that we want to address.

One might want to say something like: the encryption scheme is secure if given C, the adversary
has no idea what M is. This however cannot be true, because of what is called a priori information.
Often, something about the message is known. For example, it might be a packet with known
headers. Or, it might be an English word. So the adversary, and everyone else, has some information
about the message even before it is encrypted.

We want schemes that are secure in the strongest possible natural sense. What is the best we
could hope for? It is useful to make a thought experiment. What would an “ideal” encryption be
like? Well, it would be as though some angel took the message M from the sender and delivered it
to the receiver, in some magic way. The adversary would see nothing at all. Intuitively, our goal is
to approximate this as best as possible. We would like encryption to have the properties of ideal
encryption. In particular, no partial information would leak.

We do deviate from the ideal in one way, though. Encryption is not asked to hide the length
of the plaintext string. This information not only can leak but is usually supposed to be known to
the adversary a priori.

As an example, consider the ECB encryption scheme of Scheme 5.3. Given the ciphertext, can
an eavesdropping adversary figure out the message? It is hard to see how, since it does not know K,
and if F'is a “good” blockcipher, then it ought to have a hard time inverting Fix without knowledge
of the underlying key. Nonetheless this is not a good scheme. Consider just the case n = 1 of a
single block message. Suppose a missile command center has just two messages, 1" for fire and 0"
for don’t fire. It keeps sending data, but always one of these two. What happens? When the first
ciphertext C goes by, the adversary may not know what is the plaintext. But then, let us say it
sees a missile taking off. Now, it knows the message M; underlying C7 was 1. But then it can
easily decrypt all subsequent messages, for if it sees a ciphertext C', the message is 1" if C' = C}
and 0" if C # C.

In a secure encryption scheme, it should not be possible to relate ciphertexts of different messages
of the same length in such a way that information is leaked.

Not allowing message-equalities to be leaked has a dramatic implication. Namely, encryption
must be probabilistic or depend on state information. If not, you can always tell if the same message
was sent twice. Each encryption must use fresh coin tosses, or, say, a counter, and an encryption of
a particular message may be different each time. In terms of our setup it means £ is a probabilistic
or stateful algorithm. That’s why we defined symmetric encryption schemes, above, to allow these
types of algorithms.

The reason this is dramatic is that it goes in many ways against the historical or popular
notion of encryption. Encryption was once thought of as a code, a fixed mapping of plaintexts
to ciphertexts. But this is not the contemporary viewpoint. A single plaintext should have many
possible ciphertexts (depending on the random choices or the state of the encryption algorithm).
Yet it must be possible to decrypt. How is this possible? We have seen several examples above.

One formalization of privacy is what is called perfect security, an information-theoretic notion
introduced by Shannon and showed by him to be met by the one-time pad scheme, and covered in
Chapter 2. Perfect security asks that regardless of the computing power available to the adversary,
the ciphertext provides it no information about the plaintext beyond the a priori information it had
prior to seeing the ciphertext. Perfect security is a very strong attribute, but achieving it requires a
key as long as the total amount of data encrypted, and this is not usually practical. So here we look
at a notion of computational security. The security will only hold with respect to adversaries of
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limited computing power. If the adversary works harder, she can figure out more, but a “feasible”
amount of effort yields no noticeable information. This is the important notion for us and will be
used to analyze the security of schemes such as those presented above.

5.4 Indistinguishability under chosen-plaintext attack

Having discussed the issues in Section 5.3 above, we will now distill a formal definition of security.

5.4.1 Definition

The basic idea behind indistinguishability (or, more fully, left-or-right indistinguishability under
a chosen-plaintext attack) is to consider an adversary (not in possession of the secret key) who
chooses two messages of the same length. Then one of the two messages is encrypted, and the
ciphertext is given to the adversary. The scheme is considered secure if the adversary has a hard
time telling which of the two messages was the one encrypted.

We will actually give the adversary a little more power, letting her choose a whole sequence of
pairs of equal-length messages. Let us now detail the game.

The adversary chooses a sequence of pairs of messages, (Mo 1, Mi1),...,(Moq, M1,4), where,
in each pair, the two messages have the same length. We give to the adversary a sequence of
ciphertexts C1,...,Cy where either (1) C; is an encryption of My, for all 1 < i < g or, (2) C; is
an encryption of My ; for all 1 < i < ¢. In doing the encryptions, the encryption algorithm uses
the same key but fresh coins, or an updated state, each time. The adversary gets the sequence of
ciphertexts and now it must guess whether My 1,..., My, were encrypted or My q,..., M, were
encrypted.

To further empower the adversary, we let it choose the sequence of message pairs via a chosen
plaintext attack. This means that the adversary chooses the first pair, then receives Cp, then
chooses the second pair, receives Co, and so on. (Sometimes this is called an adaptive chosen-
plaintext attack, because the adversary can adaptively choose each query in a way responsive to
the earlier answers.)

Let us now formalize this. We fix some encryption scheme SE€ = (K, £, D). It could be either
stateless or stateful. We consider an adversary A. It is a program which has access to an oracle to
which it can provide as input any pair of equal-length messages. The oracle will return a ciphertext.
We will consider two possible ways in which this ciphertext is computed by the oracle, corresponding
to two possible “worlds” in which the adversary “lives”. To do this, first define the left-or-right
encryption oracle (abbreviated Ir-encryption oracle) Ex (LR(:, -, b)) as shown in Fig. 5.6. The oracle
encrypts one of the messages, the choice of which being made according to the bit b. Now the two
worlds are as follows:

World 0: The oracle provided to the adversary is Ex(LR(-,-,0)). So, whenever the adversary
makes a query (Mo, M;) with |My| = |M;|, the oracle computes C <& Ex (My), and returns C' as
the answer.

World 1: The oracle provided to the adversary is Ex(LR(-,-,1)). So, whenever the adversary
makes a query (M, M) with |My| = |M;] to its oracle, the oracle computes C <= Ex (M), and
returns C' as the answer.

We also call the first world (or oracle) the “left” world (or oracle), and the second world (or oracle)
the “right” world (or oracle). The problem for the adversary is, after talking to its oracle for some
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Oracle £ (LR(Mp, My, b)) // be {0,1} and My, M, € {0,1}*
if |My| # |M;| then return L
C & Ex (M)

return C

Figure 5.6: Left-or-right (lor) encryption oracle used to define IND-CPA security of encryption
scheme S€ = (K, €, D).

time, to tell which of the two oracles it was given. Before we pin this down, let us further clarify
exactly how the oracle operates.

Think of the oracle as a subroutine to which A has access. Adversary A can make an oracle
query (Mo, My) by calling the subroutine with arguments (My, M7). In one step, the answer is
then returned. Adversary A has no control on how the answer is computed, nor can A see the
inner workings of the subroutine, which will typically depend on secret information that A is not
provided. Adversary A has only an interface to the subroutine—the ability to call it as a black-box,
and get back an answer.

First assume the given symmetric encryption scheme SE& is stateless. The oracle, in either
world, is probabilistic, because it calls the encryption algorithm. Recall that this algorithm is
probabilistic. Above, when we say C < £ i (Mp), it is implicit that the oracle picks its own random
coins and uses them to compute ciphertext C.

The random choices of the encryption function are somewhat “under the rug” here, not being
explicitly represented in the notation. But these random bits should not be forgotten. They are
central to the meaningfulness of the notion and the security of the schemes.

If the given symmetric encryption scheme S€ is stateful, the oracles, in either world, become
stateful, too. (Think of a subroutine that maintains a “static” variable across successive calls.)
An oracle begins with a state value initialized to a value specified by the encryption scheme. For
example, in CTRC mode, the state is an integer ctr that is initialized to 0. Now, each time the
oracle is invoked, it computes Ex (M}) according to the specification of algorithm €. The algorithm
may, as a side-effect, update the state, and upon the next invocation of the oracle, the new state
value will be used.

The following definition associates to a symmetric encryption scheme S€ and an adversary A a
pair of experiments, one capturing each of the worlds described above. The adversary’s advantage,
which measures its success in breaking the scheme, is the difference in probabilities of the two
experiments returning the bit one.

Definition 5.8 Let S€ = (K, &, D) be a symmetric encryption scheme, and let A be an algorithm
that has access to an oracle. We consider the following experiments:

Experiment Explie ®*!(4) | Experiment Expias P*"(A)

K&K K&K
d (j AgK(LR('ﬁl)) d (i AEK(LR(T’O))
Return d Return d

The oracle used above is specified in Fig. 5.6. The IND-CPA advantage of A is defined as
AQVETP(A) = Pr[Bxpll ™ (4) = 1) - Pr [Bxpll P 0(4) = 1] .1
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As the above indicates, the choice of which world we are in is made just once, at the beginning,
before the adversary starts to interact with the oracle. In world 0, all message pairs sent to the
oracle are answered by the oracle encrypting the left message in the pair, while in world 1, all
message pairs are answered by the oracle encrypting the right message in the pair. The choice of
which does not flip-flop from oracle query to oracle query.

If AdviS P (A) is small (meaning close to zero), it means that A is outputting 1 about as often
in world 0 as in world 1, meaning it is not doing a good job of telling which world it is in. If this
quantity is large (meaning close to one—or at least far from zero) then the adversary A is doing
well, meaning our scheme S& is not secure, at least to the extent that we regard A as “reasonable.”

Informally, for symmetric encryption scheme S€ to be secure against chosen plaintext attack,
the IND-CPA advantage of an adversary must be small, no matter what strategy the adversary
tries. However, we have to be realistic in our expectations, understanding that the advantage may
grow as the adversary invests more effort in its attack. Security is a measure of how large the
advantage of the adversary might when compared against the adversary’s resources.

We consider an encryption scheme to be “secure against chosen-plaintext attack” if an adversary
restricted to using “practical” amount of resources (computing time, number of queries) cannot
obtain “significant” advantage. The technical notion is called left-or-right indistinguishability under
chosen-plaintext attack, denoted IND-CPA.

We discuss some important conventions regarding the resources of adversary A. The running
time of an adversary A is the worst case execution time of A over all possible coins of A and all
conceivable oracle return values (including return values that could never arise in the experiments
used to define the advantage). Oracle queries are understood to return a value in unit time, but
it takes the adversary one unit of time to read any bit that it chooses to read. By convention, the
running time of A also includes the size of the code of the adversary A, in some fixed RAM model
of computation. This convention for measuring time complexity is the same as used in other parts
of these notes, for all kinds of adversaries.

Other resource conventions are specific to the IND-CPA notion. When the adversary asks its
left-or-right encryption oracle a query (Mg, M1) we say that length of this query is max(| Mo, | M1]).
(This will equal |Mjy| for any reasonable adversary since an oracle query with messages of different
lengths results in the adversary being returned L, so we can assume no reasonable adversary makes
such a query.) The total length of queries is the sum of the length of each query. We can measure
query lengths in bits or in blocks, with block having some understood number of bits n.

The resources of the adversary we will typically care about are three. First, its time-complexity,
measured according to the convention above. Second, the number of oracle queries, meaning the
number of message pairs the adversary asks of its oracle. These messages may have different lengths,
and our third resource measure is the sum of all these lengths, denoted p, again measured according
to the convention above.

5.4.2 Alternative interpretation

Let us move on to describe a somewhat different interpretation of left-or-right indistinguishability.
Why is Adv?g_Cpa(A) called the “advantage” of the adversary? We can view the task of the
adversary as trying to guess which world it is in. A trivial guess is for the adversary to return a
random bit. In that case, it has probability 1/2 of being right. Clearly, it has not done anything
damaging in this case. The advantage of the adversary measures how much better than this it
does at guessing which world it is in, namely the excess over 1/2 of the adversary’s probability
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of guessing correctly. In this subsection we will see how the above definition corresponds to this
alternative view, a view that lends some extra intuition to the definition and is also useful in later
usages of the definition.

Proposition 5.9 Let S€ = (K, &, D) be a symmetric encryption scheme, and let A be an algorithm
that has access to an oracle that takes input a pair of strings and returns a string. We consider the
following experiment:

Experiment Expglg_Cpa_Cg(A)
b {0,1}; K&K
if b=10 then return 1 else return 0

Then
AdvEF P (A) = 2-Pr [Explid ™ (A4) = 1]~ 11

In the above experiment, adversary A is run with an oracle for world b, where the bit b is chosen
at random. A eventually outputs a bit b, its guess as to the value of b. The experiment returns 1
if A’s guess is correct. Thus,

Pr {Expglg_Cpa_cg(A) = 1}

is the probability that A correctly guesses which world it is in. (The “cg” in the superscript naming
the experiment stands for “correct guess.”) The probability is over the initial choice of world as
given by the bit b, the choice of K, the random choices of Ex(-) if any, and the coins of A if any.
This value is 1/2 when the adversary deserves no advantage, since one can guess b correctly by a
strategy as simple as “always answer zero” or “answer with a random bit.” The “advantage” of A
can thus be viewed as the excess of this probability over 1/2, which, re-scaled, is

2-Pr [Exp?g_Cpa_cg(A) = 1} —-1.

The Proposition says that this rescaled advantage is exactly the same measure as before.

Proof of Proposition 5.9: We let Pr[:] be the probability of event “” in the experiment

Exp?g_Cpa_cg (A), and refer below to quantities in this experiment. The claim of the Proposition

follows by a straightforward calculation:
Pr [Exp?g_Cpa_cg(A) = 1}
= Prb=1V]
= Prb=V|b=1]-Prb=1+Pr[b=0]b=0] -Pr[b=0]

1
= Prlp=t'|b=1]- 5 +Pr[b=0b=0]

o= N

= Pr[y=1]b=1]- g +Pr[f=0[b=0]-

— P =1lb=1] s+ (1 -Pr[¥=1]b=0])-

[\
N =

+--(Pr[t=1]b=1] -Pr[t/ =1|b=0])

N | —
N | —
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+ 5 (Pr[Expis ™ (4) = 1] — Pr [Expled™**(4) = 1])

_l’_

N = N =
N~ N —

AdVIETPR(A)

We began by expanding the quantity of interest via standard conditioning. The term of 1/2 in the
third line emerged because the choice of b is made at random. In the fourth line we noted that if we
are asking whether b = ¥’ given that we know b = 1, it is the same as asking whether b’ = 1 given b =
1, and analogously for b = 0. In the fifth line and sixth lines we just manipulated the probabilities
and simplified. The next line is important; here we observed that the conditional probabilities in
question are exactly the probabilities that A returns 1 in the experiments of Definition 5.8. |

5.4.3 Why is this a good definition?

Our thesis is that we should consider an encryption scheme to be “secure” if and only if it is IND-
CPA secure, meaning that the above formalization captures our intuitive sense of privacy, and the
security requirements that one might put on an encryption scheme can be boiled down to this one.

But why? Why does IND-CPA capture “privacy”? This is an important question to address
and answer.

In particular, here is one concern. In Section 5.3 we noted a number of security properties that
are necessary but not sufficient for security. For example, it should be computationally infeasible
for an adversary to recover the key from a few plaintext-ciphertext pairs, or to recover a plaintext
from a ciphertext.

A test of our definition is that it implies the necessary properties that we have discussed, and
others. For example, a scheme that is secure in the IND-CPA sense of our definition should also be,
automatically, secure against key-recovery or plaintext-recovery. Later, we will prove such things,
and even stronger things. For now, let us continue to get a better sense of how to work with the
definition by using it to show that certain schemes are insecure.

5.5 Example chosen-plaintext attacks

We illustrate the use of our IND-CPA definition in finding attacks by providing an attack on ECB
mode, and also a general attack on deterministic, stateless schemes.

5.5.1 Attack on ECB

Let us fix a blockcipher E: K x {0,1}" — {0,1}". The ECB symmetric encryption scheme
S€ = (K, E,D) was described as Scheme 5.3. Suppose an adversary sees a ciphertext C' = Ex (M)
corresponding to some random plaintext M, encrypted under the key K also unknown to the ad-
versary. Can the adversary recover M7 Not easily, if E is a “good” blockcipher. For example if £
is AES, it seems quite infeasible. Yet, we have already discussed how infeasibility of recovering
plaintext from ciphertext is not an indication of security. ECB has other weaknesses. Notice that if
two plaintexts M and M’ agree in the first block, then so do the corresponding ciphertexts. So an
adversary, given the ciphertexts, can tell whether or not the first blocks of the corresponding plain-
texts are the same. This is loss of partial information about the plaintexts, and is not permissible
in a secure encryption scheme.
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It is a test of our definition to see that it captures these weaknesses and also finds the scheme
insecure. It does. To show this, we want to show that there is an adversary that has a high IND-
CPA advantage while using a small amount of resources. We now construct such an adversary A.
Remember that A is given a lr-encryption oracle Ex (LR(+, -, b)) that takes as input a pair of messages
and that returns an encryption of either the left or the right message in the pair, depending on the
value of the bit b. The goal of A is to determine the value of b. Our adversary works like this:

Adversary Ak (LR(.0)
M1<—()2"; M(](_On H 1"
C[1]C[2] « Ex(LR(My, M1,b))
If C[1] = C[2] then return 1 else return 0

Above, X[i] denotes the i-th block of a string X, a block being a sequence of n bits. The adversary’s
single oracle query is the pair of messages My, M;. Since each of them is two blocks long, so is the
ciphertext computed according to the ECB scheme. Now, we claim that

Pr [Expglg_Cpa_l(A) = 1} = 1 and
Pr [Expglg_Cpa_o(A) = 1} = 0.

Why? You have to return to the definitions of the quantities in question, and trace through the ex-
periments defined there. In world 1, meaning b = 1, the oracle returns C[1]C[2] = Ex (0™)|| Ex(0™),
so C[1] = C[2] and A returns 1. In world 0, meaning b = 0, the oracle returns C[1]C[2] =
Ex(0")Ek(1™). Since Ek is a permutation, C[1] # C[2]. So A returns 0 in this case.

Subtracting, we get Advglg_Cpa(A) =1—0=1. And A achieved this advantage by making just
one oracle query, whose length, which as per our conventions is just the length of My, is 2n bits.
This means that the ECB encryption scheme is insecure.

As an exercise, try to analyze the same adversary as an adversary against CBC$ or CTR modes,
and convince yourself that the adversary will not get a high advantage.

There is an important feature of this attack that must be emphasized. Namely, ECB is an
insecure encryption scheme even if the underlying blockcipher E is highly secure. The weakness is
not in the tool being used (here the blockcipher) but in the manner we are using it. It is the ECB
mechanism that is at fault. Even the best of tools are useless if you don’t know how to properly
use them.

This is the kind of design flaw that we want to be able to spot and eradicate. Our goal is to
find symmetric encryption schemes that are secure as long as the underlying blockcipher is secure.
In other words, the scheme has no inherent flaw; as long as you use good ingredients, the recipe
will produce a good meal.

If you don’t use good ingredients? Well, that is your problem. All bets are off.

5.5.2 Any deterministic, stateless schemes is insecure

ECB mode is deterministic and stateless, so that if the same message is encrypted twice, the same
ciphertext is returned. It turns out that this property, in general, results in an insecure scheme,
and provides perhaps a better understanding of why ECB fails. Let us state the general fact more
precisely.
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Proposition 5.10 Let S€ = (K, £, D) be a deterministic, stateless symmetric encryption scheme.
Assume there is an integer m such that the plaintext space of the scheme contains two distinct
strings of length m. Then there is an adversary A such that

AdvESP (A) = 1.
Adversary A runs in time O(m) and asks just two queries, each of length m.

The requirement being made on the message space is minimal; typical schemes have messages spaces
containing all strings of lengths between some minimum and maximum length, possibly restricted
to strings of some given multiples. Note that this Proposition applies to ECB and is enough to
show the latter is insecure.

Proof of Proposition 5.10: We must describe the adversary A. Remember that A is given an Ir-
encryption oracle f = Ex(LR(-, -, b)) that takes input a pair of messages and returns an encryption
of either the left or the right message in the pair, depending on the value of b. The goal of A is to
determine the value of b. Our adversary works like this:

Adversary Af
Let X,Y be distinct, m-bit strings in the plaintext space
C, — Ex(LR(X,Y, D))
Cy — Ex(LR(Y, Y, b))
If C; = Cy then return 1 else return 0

Now, we claim that
Pr [Exp?g_CPa_l(A) = 1} = 1land
Pr [Expglg_Cpa_O(A) = 1} = 0.

Why? In world 1, meaning b = 1, the oracle returns C; = Ex(Y) and Cy = Ex(Y), and since the
encryption function is deterministic and stateless, C1 = Cs, so A returns 1. In world 0, meaning
b = 0, the oracle returns C; = Ex(X) and Cy = Ex(Y), and since it is required that decryption be
able to recover the message, it must be that Cy # Cy. So A returns 0.

Subtracting, we get Advglg_Cpa(A) =1—-—0=1. And A achieved this advantage by making two
oracle queries, each of whose length, which as per our conventions is just the length of the first
message, is m bits. 1

5.5.3 Attack on CBC encryption with counter IV

Let us fix a blockcipher E: K x {0,1}" — {0,1}". Let S€ = (K,&,D) be the corresponding
counter-based version of the CBC encryption mode described in Scheme 5.5. We show that this
scheme is insecure. The reason is that the adversary can predict the counter value.

To justify our claim of insecurity, we present an adversary A. As usual it is given an Ir-encryption
oracle Ex (LR(+,-, b)) and wants to determine b. Our adversary works like this:

Adversary Ax(LR(.b)
Moy < 0"; My < 0"
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Moz « 0"; Miz < 0""'1

(IV1,C1) <& Ex (LR(Mo 1, My1,b))

IV, Ca) <& Ex (LR(Mp 2, M1 2,b))

If C; = C5 then return 1 else return 0

We claim that

Pr [Exp?g cParlig) = 1} = 1 and
Pr [Expgd ™ (4)=1] = 0.

Why? First consider the case b = 0, meaning we are in world 0. In that case IV; =0 and IV, =1
and C1 = Fk(0) and Cy = Fk (1) and so Cy # Cs and the defined experiment returns 0. On the
other hand, if b = 1, meaning we are in world 1, then IV, = 0 and IVy1 = 1 and C; = Fk(0) and
Cy = Ek(0), so the defined experiment returns 1.

Subtracting, we get Advglg_Cpa(A) = 1—0 = 1, showing that A has a very high advantage.
Moreover, A is practical, using very few resources. So the scheme is insecure.

5.6 Semantic security

In this section we describe an alternative notion of encryption-scheme security, semantic security,
again under a chosen-plaintext attack. We will abbreviate this notion as SEM-CPA. It captures
the idea that a secure encryption scheme should hide all information about an unknown plaintext.
This definition may match our intuition about what secure encryption ought to achieve better than
does IND-CPA. We then show that IND-CPA implies SEM-CPA. (In fact, they are equivalent.)
By showing that our IND-CPA notion implies SEM-CPA we gain confidence that our definition
appropriately models privacy.

Semantic security, which was introduced by Goldwasser and Micali for public-key encryption,
transfers the intuition of Shannon’s notion of security to a setting where security is not absolute
but dependent on the computational effort made by an adversary. Shannon says that an encryp-
tion scheme is secure if that which can be determined about a plaintext from its ciphertext can be
determined in the absence of the ciphertext. Semantic security asks that that which can be effi-
ciently computed about some plaintexts from their ciphertexts can be computed, just as easily, in
the absence of those ciphertexts.

Our formalization allows an adversary to choose a message space M from which messages may
be drawn, and to specify a function f on messages. Messages M and M’ are drawn independently
and at random from the message space M. We consider two worlds. In the first, the adversary will
attempt to compute f(M) given an encryption of M. In the second, the adversary will attempt to
compute f(M) given an encryption of M’ (that is, the adversary is given no information related to
M). The scheme is secure if it succeeds about as often in the second game as the first, no matter
what (reasonable) f and M the adversary selects.

To make our definition as general as possible, we will actually let the adversary choose, in

sequence, message spaces Myi,..., M,. From each message space M; draw the message M; at
random, and then let C; be a random encryption of M;. Adaptively querying, the adversary
obtains the vector of ciphertexts (C1,...,Cy). Now the adversary tries to find a function f such

that it can do a good job at predicting f(Mi,..., M,). Doing a good job means predicting this value
significantly better than how well the adversary would predict it had it been given no information
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about Mj, ..., M,: each C; was not the encryption of M; but the encryption of a random point M
from M;. The formal definition now follows.

Definition 5.11 [Semantic security| Let S€ = (K,&,D) be a symmetric encryption scheme,
and let A be an algorithm that has access to an oracle. We consider the following experiments:

Experiment ExpfgséCpa_l(A) Experiment Exp?éCpa_O (A)
K&K, sde K&K, sie
for i —1to gdo for i< 1to gdo
(M, s) < A(s) (M, ) < A(s)
M, M} & M, M;, M & M,
if |M;| # |M]| then M; — M/ — ¢ if |M;| # |M]| then M; «— M — ¢
Ci = Ex(M;), s (s,Cy) Ci < Ex(M]), s (s,Ci)
(£,Y) < Als) (£,Y) < A(s)
return f(M;,...,M,) =Y return f(My,...,M,) =Y

The SEM-CPA advantage of A is defined as
AdVEE" P (A) = Pr[Exp™ ! (A)=1] - Pr [ExpS ™0 (4)=1) 1

In the definition above, each experiment initializes its oracle by choosing a random key K.
A total of ¢ times, the adversary chooses a message space M;. The message space is specified
by an always-halting probabilistic algorithm, written in some fixed programming language. The
code for this algorithm is what the adversary actually outputs. Each time the message space is
output, two random samples are drawn from this message space, M; and M/. We expect that M;
and M/ to have the same length, and if they don’t we “erase” both strings. The encryption of
one of these messages will be returned to the adversary. Which string gets encrypted depends on
the experiment: M; for experiment 1 and M/ for experiment 0. By f we denote a deterministic
function. It is described by an always-halting program and, as before, it actually the program for f
that the adversary outputs. By Y we denote a string. The string s represents saved state that the
adversary may wish to retain.

In speaking of the running time of A, we include, beyond the actual running time, the maximal
time to draw two samples from each message space M that A outputs, and we include the maximal
time to compute f(Mj, ..., M,) over any vector of strings. In speaking of the length of A’s queries
we sum, over all the message spaces output by A, the maximal length of a string M output with
nonzero probability by M, and we sum also over the lengths of the encodings of each messages
space, function f, and string Y output by A.

We emphasize that the above would seem to be an exceptionally strong notion of security. We
have given the adversary the ability to choose the message spaces from which each message will be
drawn. We have let the adversary choose the partial information about the messages that it finds
convenient to predict. We have let the adversary be fully adaptive. We have built in the ability to
perform a chosen-message attack (simply by producing an algorithm M that samples one and only
one point). Despite all this, we now show that security in the indistinguishability sense implies
semantic security.

Theorem 5.12 [IND-CPA = SEM-CPA] Let S€ = (K,€,D) be a symmetric encryption
scheme and let A be an adversary (for attacking the SEM-CPA security of S€) that runs in time
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at most ¢ and asks at most ¢ queries, these queries totaling at most p bits. Then there exists and
adversary B (for attacking the IND-CPA security of S€) that achieves advantage

AdvETPHB) > AdvEETPY(A)

and where B runs in time ¢ + O(u) and asks at most ¢ queries, these queries totaling p bits.

Proof: The adversary B, which has oracle g, is constructed as follows.

algorithm BY
se
for i —1to gdo
(Mi, s) < A(s)
M, M'; & M;
if |M;| # |M]| then M; — M/ — ¢
Ci — g(M}, M;), s« (s,C;)
(f,Y) < A(s)
if f(Mi,...,M,;) =Y then return 1 else return 0

Suppose first that g is instantiated by a right encryption oracle—an oracle that returns C' < Ex (M)

ss-cpa-1

in response to a query (M’, M). Then the algorithm above coincides with experiment Exp g (A).
Similarly, if ¢ is instantiated by a left encryption oracle—the oracle it returns C' <= £ x(M') in re-
sponse to a query (M’, M)—then the algorithm above coincides with experiment Expf;;Cpa'O(A).
It follows that Advie P*(B) = Advise P*(A). To complete the theorem, note that B’s running
time is A’s running time plus O(u) and B asks a total of ¢ queries, these having total length at
most the total length of A’s queries, under our convention. I

5.7 Security of CTR modes

Recall that the CTR (counter) mode of operation of a family of functions comes in two variants: the
randomized (stateless) version CTRC of Scheme 5.6, and the counter-based (stateful) mechanism
CTRS$ of Scheme 5.7. Both modes achieve indistinguishability under a chosen-plaintext attack,
but, interestingly, the quantitative security is a little different. The difference springs from the fact
that CTRC achieves perfect indistinguishability if one uses the random function family Func(n) in
the role of the underlying family of functions F—but CTR$ would not achieve perfect indistin-
guishability even then, because of the possibility that collisions would produce “overlaps” in the
pseudo-one-time pad.

We will state the main theorems about the schemes, discuss them, and then prove them. For
the counter version we have:

Theorem 5.13 [Security of CTRC mode] Let F: x{0,1}" — {0,1}" be a family of functions
and let S€ = (K, &, D) be the corresponding CTRC symmetric encryption scheme as described in
Scheme 5.7. Let A be an adversary (for attacking the IND-CPA security of S€) that runs in time
at most t and asks at most ¢ queries, these totaling at most o n-bit blocks. Then there exists an
adversary B (attacking the PRF security of F') such that

AdvedP*(A) < AdvR(B).
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Furthermore B runs in time at most ¢ =t 4+ O(q + no) and asks at most ¢’ = o oracle queries. |

Theorem 5.14 [Security of CTRS$ mode| Let F: K x {0,1}" — {0,1}" be a blockcipher
and let S€ = (K, &, D) be the corresponding CTR$ symmetric encryption scheme as described in
Scheme 5.6. Let A be an adversary (for attacking the IND-CPA security of S€) that runs in time
at most t and asks at most ¢ queries, these totaling at most o n-bit blocks. Then there exists an
adversary B (attacking the PRF security of F') such that

0.5 02
on -

AdvESP(A) < AdvR(B) +
Furthermore B runs in time at most ¢ =t 4+ O(q + no) and asks at most ¢’ = o oracle queries. |

The above theorems exemplify the kinds of results that the provable-security approach is about.
Namely, we are able to provide provable guarantees of security of some higher level cryptographic
construct (in this case, a symmetric encryption scheme) based on the assumption that some building
block (in this case an underlying block) is secure. The above results are the first example of the
“punch-line” we have been building towards. So it is worth pausing at this point and trying to
make sure we really understand what these theorems are saying and what are their implications.

If we want to entrust our data to some encryption mechanism, we want to know that this
encryption mechanism really provides privacy. If it is ill-designed, it may not. We saw this happen
with ECB. Even if we used a secure blockcipher, the flaws of ECB mode make it an insecure
encryption scheme.

Flaws are not apparent in CTR, at first glance. But maybe they exist. It is very hard to see how
one can be convinced they do not exist, when one cannot possible exhaust the space of all possible
attacks that could be tried. Yet this is exactly the difficulty that the above theorems circumvent.
They are saying that CTR mode does not have design flaws. They are saying that as long as you use
a good blockcipher, you are assured that nobody will break your encryption scheme. One cannot
ask for more, since if one does not use a good blockcipher, there is no reason to expect security of
your encryption scheme anyway. We are thus getting a conviction that all attacks fail even though
we do not even know exactly how these attacks might operate. That is the power of the approach.

Now, one might appreciate that the ability to make such a powerful statement takes work. It
is for this that we have put so much work and time into developing the definitions: the formal
notions of security that make such results meaningful. For readers who have less experience with
definitions, it is worth knowing, at least, that the effort is worth it. It takes time and work to
understand the notions, but the payoffs are big: you get significant guarantees of security.

How, exactly, are the theorems saying this? The above discussion has pushed under the rug
the quantitative aspect that is an important part of the results. It may help to look at a concrete
example.

Example 5.15 Let us suppose that F' is the blockcipher AES, so that n = 128. Suppose I want
to encrypt ¢ = 230 messages, each being one kilobyte (2'% bits) long. I am thus encrypting a total
of 243 bits, which is to say o = 23% blocks. (This is about one terabyte). Can I do this securely
using CTR$? Let A be an adversary attacking the privacy of my encryption. Theorem 5.14 says
that there exists a B satisfying the stated conditions. How large can AdvgréS(B) be? It makes
q = 235 queries, and it is consistent with our state of knowledge of the security of AES to assume

that such an adversary cannot do better than mount a birthday attack, meaning its advantage is
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algorithm &,(M)
static ctr < 0
m — [|M|/L]
If ctr +m —1 > 2" then return L
Pad — g(ctr) || g(ctr +1) || --- || g(ctr +m — 1)
Pad <« the first | M| bits of Pad
C «— M & Pad
ctr < ctr +m
return (ctr —m, C)

algorithm Dy ((i,C))

m — [1CI/L]

if i+m—12>2" then return L

Pad — g(i) || gli + 1) || -+ | (i +m —1)
Pad « the first |C] bits of Pad

M «— Pad & C

return M

Figure 5.7: Version SE[G]| = (K,&,D) of the CTRC scheme parameterized by a family of func-
tions G.

no more than ¢2/2'28. Under such an assumption, the theorem tells us that Advae P*(A) is at
most 02 /2128 4+ 0.5 0% /2128 = 1.5272/2128 < 1/25%. This is a very small number indeed, saying that
our encryption is secure, at least under the assumption that the best attack on the PRF security of
AES is a birthday attack. Note however that if we encrypt 264 blocks of data, our provable-security
bound becomes meaningless. |

The example illustrates how to use the theorems to figure out how much security you will get from
the CTR encryption scheme in a given application.

Note that as per the above theorems, encrypting more than o = 2/2 blocks of data with CTR$
is not secure regardless of the quality of F' as a PRF. On the other hand, with CTRC, it might be
secure, as long as F' can withstand o queries. This is an interesting and possibly useful distinction.
Yet, in the setting in which such modes are usually employed, the distinction all but vanishes.
For usually F' is a blockcipher and in that case, we know from the birthday attack that the prf-
advantage of B may itself be as large as ©(c?/2"), and thus, again, encrypting more than o = 2"/2
blocks of data is not secure. However, we might be able to find or build function families F' that
are not families of permutations and preserve PRF security against adversaries making more than
27/2 queries.

5.7.1 Proof of Theorem 5.13

The paradigm used is quite general in many of its aspects, and we will use it again, not only for

encryption schemes, but for other kinds of schemes that are based on pseudorandom functions.
An important observation regarding the CTR, scheme is that the encryption and decryption

operations do not need direct access to the key K, but only access to a subroutine, or oracle,
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that implements the function Fy. This is important because one can consider what happens
when F is replaced by some other function. To consider such replacements, we reformulate the
scheme. We introduce a scheme that takes as a parameter any given family of functions G having
domain {0,1}" and range {0,1}". As we will see later the cases of interest are G = F' and
G = Func(n,n). Let us first however describe this parameterized scheme. In the rest of this proof,
SE[G] = (K, &, D) denotes the symmetric encryption scheme defined as follows. The key generation
algorithm simply returns a random instance of G, meaning that it picks a function ¢ <~ G from
family G at random, and views g as the key. The encryption and decryption algorithms are shown
in Fig. 5.7. (The scheme is stateful, with the encryptor maintaining a counter that is initially zero).
As the description indicates, the scheme is exactly CTRC, except that function g is used in place
of Fi. This seemingly cosmetic change of viewpoint is quite useful, as we will see.

We observe that the scheme in which we are interested, and which the theorem is about, is
simply SE[F| where F' is our given family of functions as per the theorem. Now, the proof breaks
into two parts. The first step removes F' from the picture, and looks instead at an “idealized”
version of the scheme. Namely we consider the scheme SE[Func(n,n)]. Here, a random function
g of n-bits to n-bits is being used where the original scheme would use Fx. We then assess an
adversary’s chance of breaking this idealized scheme. We argue that this chance is actually zero.
This is the main lemma in the analysis.

This step is definitely a thought experiment. No real implementation can use a random function
in place of Fx because even storing such a function takes an exorbitant amount of memory. But
this analysis of the idealized scheme enables us to focus on any possible weaknesses of the CTR
mode itself, as opposed to weaknesses arising from properties of the underlying blockcipher. We
can show that this idealized scheme is secure, and that means that the mode itself is good.

It then remains to see how this “lifts” to a real world, in which we have no ideal random
functions, but rather want to assess the security of the scheme SE[F] that uses the given family F.
Here we exploit the notion of pseudorandomness to say that the chance of an adversary breaking the
SE[F] can differ from its chance of breaking the ideal-world scheme SE[Func(n,n)] by an amount
not exceeding the probability of breaking the pseudorandomness of F' using comparable resources.

Lemma 5.16 [Security of CTRC using a random function] Let A be any IND-CPA adver-
sary attacking SE[Func(n,n)], where the scheme is depicted in Fig. 5.7. Then

Advglg[_lffr?c(n,n)}(A) =0 I

The lemma considers an arbitrary adversary. Let us say this adversary has time-complexity ¢, makes
q queries to its Ir-encryption oracle, these totaling o n-bit blocks. The lemma does not care about
the values of ¢, ¢, or 0. (Recall, however, that after encrypting a total of 2" blocks, the encryption
mechanism will “shut up” and be of no use.) It says the adversary has zero advantage, meaning
no chance at all of breaking the scheme. The fact that no restriction is made on t indicates that
the result is information-theoretic: it holds regardless of how much computing time the adversary
invests.

Of course, this lemma refers to the idealized scheme, namely the one where the function g
being used by the encryption algorithm is random. But remember that ECB was insecure even in
this setting. (The attacks we provided for ECB work even if the underlying cipher E is Perm(n),
the family of all permutations on n-bit strings.) So the statement is not content-free; it is saying
something quite meaningful and important about the CTR mode. It is not true of all modes.
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We postpone the proof of the lemma. Instead we will first see how to use it to conclude the
proof of the theorem. The argument here is quite simple and generic.

The lemma tells us that the CTRC encryption scheme is (very!) secure when g is a random
function. But we are interested in the case where g is is an instance of our given family F'. So our
worry is that the actual scheme SE[F] is insecure even though the idealized scheme SE[Func(n,n)]
is secure. In other words, we worry that there might be an adversary having large IND-CPA
advantage in attacking SE[F], even though we know that its advantage in attacking SE[Func(n,n)]
is zero. But we claim that this is not possible if F' is a secure PRF. Intuitively, the existence of
such an adversary indicates that F' is not approximating Func(n,n) since there is some detectable
event, namely the success probability of some adversary in a certain experiment, that happens with
high probability when F' is used and with low probability when Func(n,n) is used. To concretize
this intuition, let A be a IND-CPA adversary attacking SE[F]. We associate to A an adversary
B that is given oracle access to a function g: {0,1}"™ — {0,1}" and is trying to determine which
world it is in, where in world 0 the function g is a random instance of Func(n,n) and in world 1 the
function g is a random instance of F'. We suggest the following strategy to the adversary. It runs
A, and replies to A’s oracle queries in such a way that A is attacking SE[Func(n,n)] in B’s world 0,
and A is attacking SE[F] in B’s world 1. The reason it is possible for B to do this is that it can
execute the encryption algorithm &;(-) of Fig. 5.7, which simply requires access to the function g.
If the adversary A wins, meaning it correctly identifies the encryption oracle, B bets that ¢ is an
instance of F'; otherwise, B bets that ¢ is an instance of Func(n,n).

We stress the key point that makes this argument work. It is that the encryption function of
the CTRC scheme invokes the function Fi purely as an oracle. If it had, instead, made some direct
use of the key K, the paradigm above would not work. The full proof follows.

Proof of Theorem 5.13: Let A be any IND-CPA adversary attacking S€ = (K, &, D). Assume
A makes ¢ oracle queries totaling p bits, and has time-complexity ¢. There there is an adversary
B such that

AdvESPH(A) < 2. AdvE(B). (5.1)

Furthermore, B will make o oracle queries and have time-complexity that of A plus O(q + no).
Now, the statement of Theorem 5.13 follows.

Remember that B takes an oracle g: {0,1}" — {0,1}". This oracle is either drawn at random
from F or from Func(n,n) and B does not know which. To find out, B will use A, running it as
a subroutine. But remember that A too gets an oracle, namely an Ir-encryption oracle. From A’s
point of view, this oracle is simply a subroutine: A can write, at some location, a pair of messages,
and is returned a response by some entity it calls its oracle. When B runs A as a subroutine, it is
B that will “simulate” the lr-encryption oracle for A, meaning B will provide the responses to any
oracle queries that A makes. Here is the description of B:

Adversary BY
b<{0,1}
Run adversary A, replying to its oracle queries as follows
When A makes an oracle query (My, M;) do
C & Ey(My)
Return C' to A as the answer
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Until A stops and outputs a bit o/
If o’ = b then return 1 else return 0

Here &,(-) denotes the encryption function of the generalized CTRC scheme that we defined in
Fig. 5.7. The crucial fact we are exploiting here is that this function can be implemented given an
oracle for g. Adversary B itself picks the challenge bit b representing the choice of worlds for A,
and then sees whether or not A succeeds in guessing the value of this bit. If it does, it bets that g
is an instance of F', and otherwise it bets that ¢ is an instance of Func(n,n). For the analysis, we
claim that

rf- 1 1 ind-cpa

Pr[Expy™(B) =1] = 545 AdVEEP(A) (5.2)
rf- 1 1 ind-cpa

PriBxpi™(B)=1] = J+ - Adviet L (A) . (5.3)

We will justify these claims shortly, but first let us use them to conclude. Subtracting, we get
Advy'(B) = Pr[Expy™(B) =1 - Pr[Exp}™(B) = 1]

ind- 1 ind-
- Advgg ;f’a(A) -5 Adv Sg[;fjc(nvn)] (A) (5.4)

N — N~

- AV (A)

The last inequality is from Lemma 5.16, which tells us that the term Advglg[_,ff:c(n’n)}(A) is zero.
Re-arranging terms gives us Equation (5.1). Now let us check the resource usage. Each computation
Ey(My) requires |My|/n applications of g, and hence the total number of queries made by B to its
oracle g is 0. The time-complexity of B equals that of A plus the overhead for answering the oracle
queries. It remains to justify Equations (5.2) and (5.3).

Adversary B returns 1 when b = b, meaning that IND-CPA adversary A correctly identified the
world b in which it was placed, or, in the language of Section 5.4.2, made the “correct guess.” The
role played by B’s world is simply to alter the encryption scheme for which this is true. When B is
in world 1, the encryption scheme, from the point of view of A, is SE[F], and when B is in world 0,
the encryption scheme, from the point of view of A, is SE[Func(n,n)]. Thus, using the notation
from Section 5.4.2, we have

Pr[Expl™(B) =1] = Pr|ExplaP*5(4) = 1]
Pr [ExppFrf_O(B) = 1} = Pr [Expglg[_,fffc_(cin)] (A) = 1} :

To obtain Equations (5.2) and (5.3) we can now apply Proposition 5.9. |

For someone unused to PRF-based proofs of security the above may seem complex, but the under-
lying idea is actually very simple, and will be seen over and over again. It is simply that one can
view the experiment of the IND-CPA adversary attacking the encryption scheme as information
about the underlying function g being used, and if the adversary has more success in the case that
g is an instance of F' than that ¢ is an instance of Func(n,n), then we have a distinguishing test
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between F' and Func(n,n). Let us now prove the lemma about the security of the idealized CTRC
scheme.

Proof of Lemma 5.16: The intuition is simple. When ¢ is a random function, its value on
successive counter values yields a one-time pad, a truly random and unpredictable sequence of bits.
As long as the number of data bits encrypted does not exceed n2", we invoke g only on distinct
values in the entire encryption process. And if an encryption would result in more queries than
this, the algorithm simply shuts up, so we can ignore this. The outputs of g are thus random. Since
the data is XORed to this sequence, the adversary gets no information whatsoever about it.

Now, we must make sure that this intuition carries through in our setting. Our lemma statement
makes reference to our notions of security, so we must use the setup in Section 5.4. The adversary
A has access to an Ir-encryption oracle. Since the scheme we are considering is SE[Func(n,n)], the
oracle is £;(LR(-,-,b)), where the function &£, was defined in Fig. 5.7, and g is a random instance
of Func(n,n), meaning a random function.

The adversary makes some number ¢ of oracle queries. Let (M; o, M; 1) be the i-th query, and let m;
be the number of blocks in M; . (We can assume this is the same as the number of blocks in M; 1,
since otherwise the Ir-encryption oracle returns L). Let M; .[j] be the value of the j-th n-bit block
of M;, for b € {0,1}. Let C} be the response returned by the oracle to query (M; o, M; 1). It consists
of a value that encodes the counter value, together with m; blocks of n bits each, C;[1]...C;[my].
Pictorially:
My = Mp[lMip[1]... Myp[mi]
C1 (0, C1[1]--- Cy[ma])
M27b M27b[1]M2,b[2] c. Mgvb[mg]
02 = <m1, 02[1] ce CQ[m2]>

q,b My p[1]Myp[2] . .. My plmy]
Cy = (m1 4+ mqflacq[l] T Cq[mq]>

M,

What kind of distribution do the outputs received by A have? We claim that the mq 4 --- +m,
values Cy[j] (1 =1,...,¢gand j =1,...,m;) are randomly and independently distributed, not only
of each other, but of the queried messages and the bit b, and moreover this is true in both worlds.
Why? Here is where we use a crucial property of the CTR mode, namely that it XORs data with
the value of g on a counter. We observe that according to the scheme

. , M;1[j] if we are in world 1
Cilj] = g(lmi+---+mi1+j],) ® "
il g(lm =1+l { Mi;olj] if we are in world 0.

Now, we can finally see that the idea we started with is really the heart of it. The values on which
g is being applied above are all distinct. So the outputs of g are all random and independent. It
matters not, then, what we XOR these outputs with; what comes back is just random.

This tells us that any given output sequence from the oracle is equally likely in both worlds. Since
the adversary determines its output bit based on this output sequence, its probability of returning 1
must be the same in both worlds,

ind-cpa-1 ind-cpa-0
Pr [EXPSE[anc(n,n)] (A) = 1} = Pr [EXPSE[anc(nm)] (4) = 1} ’
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algorithm &,(M)
m — [|M]|/n]
R<E{0,1}
Pad — g(R+0) [ g(R+1) || - [[g(R+m—1)
Pad «+ the first | M| bits of Pad
C' — M @ Pad
C—R|C

return C

algorithm Dy((i,C"))

m — [|C]/n]

Pad —g(R) [[g(R+ 1) | --- [ g(R+m —1)
Pad — the first |C’| bits of Pad

M «— C" ® Pad

return M

Figure 5.8: Version SE[G] = (K, &, D) of the CTR$ scheme parameterized by a family of func-
tions G.

Hence A’s IND-CPA advantage is zero. |

5.7.2 Proof of Theorem 5.14

The proof of Theorem 5.14 re-uses a lot of what we did for the proof of Theorem 5.13 above. We first
look at the scheme when g is a random function, and then use the pseudorandomness of the given
family F' to deduce the theorem. As before we associate to a family of functions G having domain
{0,1}" and range {0,1}" a parameterized version of the CTRS$ scheme, SE[G]| = (K,&E,D). The
key generation algorithm simply returns a random instance of G, meaning picks a function g < G
from family G' at random, and views g as the key, and the encryption and decryption algorithms
are shown in Fig. 5.8. Here is the main lemma.

Lemma 5.17 [Security of CTRS$ using a random function] Let A be any IND-CPA adversary
attacking SE[Func(n,n)|, where the scheme is depicted in Fig. 5.8. Then

0.5 02
on 7

ind-cpa
Advigeieimenm (A) <

assuming A asks a number of queries whose total length is at most o n-bit blocks. I

The proof of Theorem 5.14 given this lemma is easy at this point because it is almost identical
to the above proof of Theorem 5.13, and it is the subject of Problem 5.6. We go on to prove
Lemma 5.17.

Before we prove Lemma 5.17, we will analyze a certain probabilistic game. The problem we
isolate here is purely probabilistic; it has nothing to do with encryption or even cryptography.
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Lemma 5.18 Let n,q be positive integers, and let my,...,my < 2" also be positive integers.
Suppose we pick ¢ integers r1,...,7q from [0..2" — 1] uniformly and independently at random. We
consider the following m + - - - + m, numbers:

T, rl—’_]-a IR T1+m1_1
ro, ro+1, -, ro+mg—1
rg, Tg+1, <oy rg+mg—1,

where the addition is performed modulo 2". We say that a collision occurs if some two (or more)
numbers in the above table are equal. Then

(¢ = D(m +--- +my)
2n ’

Pr{Col] < (5.5)

where Col denotes the event that a collision occurs.

Proof of Lemma 5.18: As with many of the probabilistic settings that arise in this area, this
is a question about some kind of “balls thrown in bins” setting, related to the birthday problem
studied in the appendix on the birthday problem. Indeed a reader may find it helpful to study that
appendix first.

Think of having 2" bins, numbered 0,1,...,2™ — 1. We have ¢ balls, numbered 1,...,q. For each
ball we choose a random bin which we call r;. We choose the bins one by one, so that we first
choose r1, then 7y, and so on. When we have thrown in the first ball, we have defined the first

row of the above table, namely the values r1,71 +1,...,71 +m1 — 1. Then we pick the assignment
ro of the bin for the second ball. This defines the second row of the table, namely the values
ro, 7o+ 1,...,79+my—1. A collision occurs if any value in the second row equals some value in the

first row. We continue, up to the ¢-th ball, each time defining a row of the table, and are finally
interested in the probability that a collision occurred somewhere in the process. To upper bound
this, we want to write this probability in such a way that we can do the analysis step by step,
meaning view it in terms of having thrown, and fixed, some number of balls, and seeing whether
there is a collision when we throw in one more ball. To this end let Col; denote the event that there

is a collision somewhere in the first 7 rows of the table, for i = 1,...,q. Let NoCol; denote the event
that there is no collision in the first 7 rows of the table, for ¢ = 1,...,¢. Then by conditioning we
have

Pr[Col] = Pr[Col,]

Pr[Colg—1] + Pr[Col, | NoColy—1] - Pr[NoCol,—1]

< Pr[Colg_1] + Pr[Col, | NoCol,—1]
<

q
< Pr [CO|1] + Z Pr [COli ‘ NOCOli_l]

1=2

q
= > Pr[Col;| NoCol;_1] .
=2
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Thus we need to upper bound the chance of a collision upon throwing the i-th ball, given that there
was no collision created by the first ¢ — 1 balls. Then we can sum up the quantities obtained and
obtain our bound.

We claim that for any ¢ = 2,...,q we have

(t—Dmi+mi—1+---+my

Pr [Col; | NoCol;_1] < on

(5.6)

Let us first see why this proves the lemma and then return to justify it. From the above and
Equation (5.6) we have

q

Pr[Col] < ZPr [Col; | NoCol;_1]

=2

(i —1)m; +mi—1 + -+ my
2TL

IN

.
[\

(¢ = 1)(m +--- +my)
on '

How did we do the last sum? The term m; occurs with weight ¢ — 1 in the i-th term of the sum,
and then with weight 1 in the j-th term of the sum for j = i+ 1,...,q. So its total weight is
(i—1)+(g—i)=q—1

It remains to prove Equation (5.6). To get some intuition about it, begin with the cases i = 1, 2.
When we throw in the first ball, the chance of a collision is zero, since there is no previous row with
which to collide, so that is simple. When we throw in the second, what is the chance of a collision?
The question is, what is the probability that one of the numbers ro + 1, ..., 79 + mo defined by the
second ball is equal to one of the numbers 1 + 1,...,71 + m1 already in the table? View r; as
fixed. Observe that a collision occurs if and only if 1 — mo +1 < 79 < ry +m1 — 1. So there are
(ri+myp—1)—(r1 —ma + 1) +1 =my +mg — 1 choices of 7o that could yield a collision. This
means that Pr[Cols | NoColy] < (mg + mq — 1)/2".

We need to extend this argument as we throw in more balls. So now suppose i — 1 balls have been
thrown in, where 2 <14 < ¢, and suppose there is no collision in the first ¢ — 1 rows of the table. We
throw in the i-th ball, and want to know what is the probability that a collision occurs. We are
viewing the first ¢ — 1 rows of the table as fixed, so the question is just what is the probability that
one of the numbers defined by r; equals one of the numbers in the first 7 — 1 rows of the table. A
little thought shows that the worst case (meaning the case where the probability is the largest) is
when the existing ¢ — 1 rows are well spread-out. We can upper bound the collision probability by
reasoning just as above, except that there are i — 1 different intervals to worry about rather than
just one. The i-th row can intersect with the first row, or the second row, or the third, and so on,
up to the (i — 1)-th row. So we get

(mi+my — 1)+ (m;+mo— 1)+ -+ (m; +my_1 — 1)
2n
(i—l)mi—l—mi,l—I—---—&—ml—(i—l)
AL ’

Pr [Col; | NoCol;—1] <

and Equation (5.6) follows by just dropping the negative term in the above. 1
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Let us now extend the proof of Lemma 5.16 to prove Lemma 5.17.

Proof of Lemma 5.17: Recall that the idea of the proof of Lemma 5.16 was that when ¢ is a
random function, its value on successive counter values yields a one-time pad. This holds whenever
g is applied on some set of distinct values. In the counter case, the inputs to g are always distinct.
In the randomized case they may not be distinct. The approach is to consider the event that they
are distinct, and say that in that case the adversary has no advantage; and on the other hand,
while it may have a large advantage in the other case, that case does not happen often. We now
flush all this out in more detail.

The adversary makes some number g of oracle queries. Let (M;, M; 1) be the i-th query, and let
m; be the number of blocks in M;o.(We can assume this is the same as the number of blocks in
M, 1, since otherwise the Ir-encryption oracle returns ). Let M;[j] be the value of the j-th n-bit
block of M;, for b € {0,1}. Let C] be the response returned by the oracle to query (M; o, M;1). It
consists of the encoding of a number r; € [0..2" — 1] and a m;-block message C; = C;[1] - - - Ci[m;].
Pictorially:

Ml,b Ml,b[l]Ml,b[l] e MLb[ml]
Ch (r1, C1[1] -+ - Ci[ma])

My My p[1] M3 p[2] - - - Mo p[mso]
CQ <T2, 02[1] . CQ [m2]>

Let NoCol be the event that the following m + - - - + m, values are all distinct:

r,, ri+1, -, ri+mp—1
r2, T2+]-a Y T2+m2*1
Tg, Tq+1, -, Tg+mg—1

Let Col be the complement of the event NoCol, meaning the event that the above table contains at
least two values that are the same. It is useful for the analysis to introduce the following shorthand:

Prg[] = The probability of event “” in world 0
Pro[] = The probability of event “” in world 1.

We will use the following three claims, which are proved later. The first claim says that the
probability of a collision in the above table does not depend on which world we are in.
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Claim 1: Pry [Col] = Prg [Col]. O

The second claim says that A has zero advantage in winning the left-or-right game in the case that
no collisions occur in the table. Namely, its probability of outputting one is identical in these two
worlds under the assumption that no collisions have occurred in the values in the table.

Claim 2: Prg[A = 1| NoCol] = Pr; [A = 1| NoCol]. O

We can say nothing about the advantage of A if a collision does occur in the table. It might be
big. However, it will suffice to know that the probability of a collision is small. Since we already
know that this probability is the same in both worlds (Claim 1) we bound it just in world 0:

2
. o
Claim 3: Prg [Col] < o 0

Let us see how these put together complete the proof of the lemma, and then go back and prove
them.

Proof of Lemma given Claims: It is a simple conditioning argument:

Advglg[_;fl?c(n,n)] (4)
= Pri[A=1]-Pro[A=1]
= Pr;[A =1]Col]-Pry [Col] + Pr; [A = 1| NoCol] - Pr; [NoCol]
— Pro[A = 1] Col] - Prg [Col] — Prg [A = 1| NoCol] - Pry [NoCol]
(Pri[A =1 Col] = Prg[A = 1] Col]) - Prg [Col]

< Pro [CO” .

The second-last step used Claims 1 and 2. In the last step we simply upper bounded the parenthe-
sized expression by 1. Now apply Claim 3, and we are done. O

It remains to prove the three claims.

Proof of Claim 1: The event NoCol depends only on the random values r1,...,r, chosen by the
encryption algorithm &,(-). These choices, however, are made in exactly the same way in both
worlds. The difference in the two worlds is what message is encrypted, not how the random values
are chosen. O

Proof of Claim 2: Given the event NoCol, we have that, in either game, the function g is evaluated
at a new point each time it is invoked. Thus the output is randomly and uniformly distributed over
{0,1}*, independently of anything else. That means the reasoning from the counter-based scheme
as given in Lemma 5.16 applies. Namely, we observe that according to the scheme

. , M; 1]7] if we are in world 1
Clil = olri+g) @ § M) e are
M;olj] if we are in world 0.

Thus each cipher block is a message block XORed with a random value. A consequence of this is
that each cipher block has a distribution that is independent of any previous cipher blocks and of
the messages. O

Proof of Claim 3: This follows from Lemma 5.18. We simply note that mi +---+my = 0. O
This concludes the proof. |
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algorithm &,(M)
if (|[M|modn #0 or |[M|=0) then return L
Break M into n-bit blocks M|[1]--- M[m]
C[0] «— IV <& {0,1}"
for i« 1tom do
Cli] « g(C[i — 1] & MTi])
C—Cl[1]---C[m]
return (IV,C)

algorithm Dy ((IV,C))
return |

Figure 5.9: Version SE[G] = (K, &, D) of the CBC$ scheme parameterized by a family of functions
G.

5.8 Security of CBC with a random IV

In this section we show that CBC encryption using a random IV is IND-CPA secure as long as F
is a blockcipher that is a secure PRF or PRP. Namely we show:

Theorem 5.19 [Security of CBC$ mode| Let E: K x {0,1}" — {0,1}" be a blockcipher
and let S€ = (K, &, D) be the corresponding CBC$ symmetric encryption scheme as described in
Scheme 5.6. Let A be an adversary (for attacking the IND-CPA security of SE) that runs in time
at most t and asks at most ¢ queries, these totaling at most o n-bit blocks. Then there exists an
adversary B (attacking the PRF security of E) such that

. 2
Advider ) < Adv%ff(B)Jrg—n.

Furthermore B runs in time at most ¢ =t + O(q 4+ no) and asks at most ¢’ = o oracle queries. I

To prove this theorem, we proceed as before to introduce a scheme that takes as a parameter any
given family of functions G having domain and range {0, 1}". The cases of interest are G = E and
G = Func(n,n). The algorithms of the scheme are depicted in Fig. 5.9. Note that the decryption
algorithm simply returns L, so that this scheme does not have the correct decryption property.
But one can still discuss its security, and it is important for us to do so. Now, the main result is
the information-theoretic one in which the underlying function family is Func(n,n).

Lemma 5.20 [Security of CBCS$ using a random function] Let A be any IND-CPA adversary
attacking SE[Func(n,n)], where the scheme is depicted in Fig. 5.9. Then

ind-cpa
AdVCBCg[Func(n,n)} (A) < 2_n )

assuming A asks a number of queries whose total length is at most o n-bit blocks. 1
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Initialization:
00 for X €{0,1}" do p(X) « p/(X) < undef
01 bad < false

In response to an oracle query (M --- M,,, M]---M]):
10 Cy<{0,1}"
11 for i+—1to mdo

12 X, — M; & C;_q, XZ, — Mz/ @ Ci_1

13 C; & {0,1}

14 if X, € Domain(p) then bad « true , C; — p(X;) include this in game CO
15 if X! € Domain(p') then bad < true , C; «— p/(X]) include this in game C1
6 p(X) — p(X]) — G

17 return C « (Cp, Cy---Cyy)

Figure 5.10: Games used in the analysis of CBC$. Game C0 includes the first shaded statement
but omits the second. It CBCS$-encrypts M = Mj --- M,,. Game C1 includes the second shaded
statement but omits the first. It CBC$-encrypts M’ = M{---M,,. Game C2 omits both of the
shaded statements and is used in the analysis.

Given this lemma, the proof of Theorem 5.19 follows in the usual way, so our main task is to
prove the lemma. The proof is by another game-playing argument.

Proof: Consider the three two games specified in Fig. 5.10. Recall that Domain(f) denotes the
set of all X € {0,1}" such that f(X) # undef. This set grows as the game executes and more and
more queries are answered by the adversary.

The first game, which we call game CO, precisely imitates the encryption of the left message under
a random function p. The second game, which we call game C1, precisely imitates the encryption
of the right message under a random function p. That is,

Pr[p < Func(n,n) : ASBOS(LRC-021] = priA“®=1] and
Pr[p < Func(n,n) : ACBC$p(LR(‘7'71):>1] _ Pr[AC1:>1]

Since games C0, C1, and C2 are identical-until-bad-is-set, the fundamental lemma of game playing
thus gives us that

ind- . ..
AV Suncnay (A) = PrlACP IR0 1) — pr{ACBOS (LRE-0) q]

< Pr[A®? sets bad] .

To calculate this, note that that the domain of p starts off with zero points and grows one point
at at time until it reaches at most o — 1 points, so the probability that bad gets set at line 14 of
game C2 is at most (1+2+---+ (0 —1))/2". To see this you have to note that each C;_; at line 12
is random and independent of the current domain of p, so each X; = M; & C;_1 is likewise random
and independent of the current domain of p. The same holds for the probability that bad gets set
at line 15. Summing, the probability that bad gets set in game C2 is at most 02/2", as desired. |
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The theorem above addresses the maximal adversarial advantage when CBCS$ is taken over a
random n-bit to n-bit function. What if we use a random n-bit to n-bit permutation, instead?
Applying the Switching Lemma (that is, Lemma 4.17) to the result above lets us bound this new
advantage.

Corollary 5.21 [Security of CBC$ using a blockcipher] Let n > 1 be a number and let A
be an adversary that queries at most o blocks. Then

ind-cpa 207
AdeBCé)[Perm(n)](A) S on
1
Proof: We have that
AdVEESES L (A) = PAACTO R ) pyACBO- R0

IN

(PT[ACBCW(LR(-,-,l)):l]_Pr[ACBCp(LR(~,-,1)):>1]> +
(Pr[ACBCp(LR(-,-,l)):l]_Pr[ACBCp(LR(-,-,O)):lD +
(Pr[ACBCp(LR(~,.,O)):>1] _ Pr[ACBC,T(LR(.,~,0)):>1])

< 0.50%/2" +0%/2" +0.50% /2"
< 20%/27

The bound for the first and third addend are given by the Switching Lemma and the bound for
the middle addend is by Lemma 5.20. 1

Finally, we can look at what happens when we use a “real” blockcipher within CBC mode.

Corollary 5.22 [Security of CBC$ using a blockcipher] Let n > 1 and let E: K x {0,1}" —
{0,1}™ be a blockcipher. Let A be an adversary (for attacking CBC$-encryption in the IND-CPA
sense) that runs in time at most ¢ and that queries at most o blocks. Then there exists an
adversary B (for attacking blockcipher E in the PRP-CPA sense) where

T ind-cpa 2 02
AdeEp(B) > AdeBCé)[E] (A) - 2—n

and where B makes at most o queries and runs in time at most ¢t + O(no). 1

Proof: Adversary BY works by running adversary A/, answering A’s oracle queries by simulating
a CBCS$ oracle with CBC computed over the function g that is B’s oracle. To describe this, let
CBCSO(Ml -+ M,,) be the string CyC} - - - Cp, where C; = p(M;—1 & C;). Let CBC?;(-) denote an
oracle that, on input M, returns CBCLV for a random n-bit string IV. Adversary B is then the
following:

Algorithm BY:
Run Af
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When A makes an oracle call f(M;--- My,):

Let IV & {0,1}"

Computer CBCLV(Ml -+ M,,) and return this to A
When A halts, outputting a bit §

return 3

Note that the running time of B is t + O(no), as required. To see its advantage, first note that

Pr[BPx=1] = PriAP o)
and
Pr[B"=1] = Pr[A®B%0=
Thus
AdvPP(B) = Pr[BP<=1] - Pr[B"=1]

= (Pr[ACBC%K('):l] - Pr[A$(‘):1]) — (Pr[ACBCﬁ(‘)ﬁl] _ Pr[A$(‘)$1])

_ Advind—cpa (A) _ Advind—cpa (A)

CBCS|[E] CBC$[Perm(n)]
ind-cpa 202
2 AdVCBCé)[E} (4) - Ton

concluding the proof. 1

We have so far shown that the IND-CPA advantage of CBC$ falls off by an amount that is at
most quadratic in the number of blocks, o, asked by the adversary. We can also give a matching
attack, showing that there actually is an adversary that obtains advantage of about ¢2/2". This
tells us that our security result is tight—there is no possibility of making the bound significantly
better. It means that we have arrived at reasonably precise understanding of the security of CBC
encryption with a random IV.

Proposition 5.23 Let n > 1, let E: K x {0,1}" — {0,1}" be a function family, and let o €
[0..y/227/2 — 1]. Then there is an adversary A that asks a single query, the query consisting of o

blocks, runs in time O(nolg(o)), and achieves advantage Advglgg[p% (A) > 0.150%/2" and

Proof: The adversary A sets L «— 0", chooses R < {0,1}"?, and asks its oracle the query (L, R),
receiving in response a ciphertext C' that it partitions into o + 1 n-bit blocks, CoC1 ... C,. If there
isan i, € [0.. 0] such that ¢ < I and C; = C7 then A selects the lexicographically first such (7, I)
and answers 1 (for “right oracle”) if C;y1 # Cr4+1. (In this case the adversary has found a “proof”
that the oracle is a right oracle.) In all other cases the adversary outputs 0 (for “left oracle”).

The adversary described asks asks a single query of o blocks and, using standard data struc-
ture techniques, it runs in time O(nolg(o)). It remains to calculate the adversary’s advantage,
AdvPP(A) = Pr[ARieht () =1] — Pr[Aleft(:)=1]. The second summand is zero since when A is
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given a left encryption-oracle that oracle is encrypting the zero-string and any time C; = C| we
must have that C;11 = Cr41 as well. Thus

AdviP(A) = PrARECI)=)
= Pr[RE{0,1}; KEK IVE{0,1) ¢ & CBCY(R) -
Ji < I s.t. C; = Cr and Ciqq # Cryq on the first such (i, I)]

By the structure of CBC mode with a random IV it is easy to see that that when you encrypt a
random string R € {0,1}" you get a random string C' € {0, 1}™“+1). To see this, note that to make
block C;, for i > 1, you xor the random block R; with C; and apply the blockcipher. The random
block R; is independent of C;—it wasn’t even consulted in making C;—and it is independent of all
of Cy,...,C;_1, too. The image of a uniformly selected value under a permutation is uniform. The
very first block of ciphertext, Cp, is uniform. This makes the entire string CoC] - - - C, uniform. So
the probability in question is

AdvPP(A) = Pr[C & {01},
Ji < I s.t. C; = Cr and Citq # Cryq on the first such (i, I)]

Now the birthday bound (Appendix A, Theorem A.1) tells us that the probability there will be
an i < I such that C; = C is at least C(2",0 + 1) > 0.302/2". When there is such an 4,1 and
we fix the lexicographically first such ¢, I, note that Cry; is still uniform and independent of Cj4 1.
Independence is assured because Cry; is obtained as Ex (Rry1 @ Cr) for a permutation Ex and
a uniform random value R;4; that is independent of C7 and Cj;;. Because of this probabilistic
independence, the probability of the conjunct is just the product of the probabilities and we have
that

AdvDP(A) > 030%/2"-(1-27") > 0.150%/2"

completing the proof. I

5.9 Indistinguishability under chosen-ciphertext attack

So far we have considered privacy under chosen-plaintext attack. Sometimes we want to consider
privacy when the adversary is capable of mounting a stronger type of attack, namely a chosen-
ciphertext attack. In this type of attack, an adversary has access to a decryption oracle. It can
feed this oracle a ciphertext and get back the corresponding plaintext.

How might such a situation arise? One situation one could imagine is that an adversary at some
point gains temporary access to the equipment performing decryption. It can feed the equipment
ciphertexts and see what plaintexts emerge. (We assume it cannot directly extract the key from
the equipment, however.)

If an adversary has access to a decryption oracle, security at first seems moot, since after all it
can decrypt anything it wants. To create a meaningful notion of security, we put a restriction on
the use of the decryption oracle. To see what this is, let us look closer at the formalization. As in
the case of chosen-plaintext attacks, we consider two worlds:

World 0: The adversary is provided the oracle Ex(LR(+,-,0)) as well as the oracle Dg(+).
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World 1: The adversary is provided the oracle Ex(LR(+,-, 1)) as well as the oracle Dg(+).

The adversary’s goal is the same as in the case of chosen-plaintext attacks: it wants to figure out
which world it is in. There is one easy way to do this. Namely, query the lr-encryption oracle on
two distinct, equal length messages My, M1 to get back a ciphertext C', and now call the decryption
oracle on C. If the message returned by the decryption oracle is My then the adversary is in world 0,
and if the message returned by the decryption oracle is M7 then the adversary is in world 1. The
restriction we impose is simply that this call to the decryption oracle is not allowed. More generally,
call a query C to the decryption oracle illegitimate if C' was previously returned by the Ir-encryption
oracle; otherwise a query is legitimate. We insist that only legitimate queries are allowed. In the
formalization below, the experiment simply returns 0 if the adversary makes an illegitimate query.
(We clarify that a query C' is legitimate if C' is returned by the Ir-encryption oracle after C' was
queried to the decryption oracle.)

This restriction still leaves the adversary with a lot of power. Typically, a successful chosen-
ciphertext attack proceeds by taking a ciphertext C returned by the Ir-encryption oracle, modifying
it into a related ciphertext C’, and querying the decryption oracle with C’. The attacker seeks to
create C’ in such a way that its decryption tells the attacker what the underlying message M was.
We will see this illustrated in Section 5.10 below.

The model we are considering here might seem quite artificial. If an adversary has access to a
decryption oracle, how can we prevent it from calling the decryption oracle on certain messages?
The restriction might arise due to the adversary’s having access to the decryption equipment for
a limited period of time. We imagine that after it has lost access to the decryption equipment, it
sees some ciphertexts, and we are capturing the security of these ciphertexts in the face of previous
access to the decryption oracle. Further motivation for the model will emerge when we see how
encryption schemes are used in protocols. We will see that when an encryption scheme is used
in many authenticated key-exchange protocols the adversary effectively has the ability to mount
chosen-ciphertext attacks of the type we are discussing. For now let us just provide the definition
and exercise it.

Definition 5.24 Let S€ = (K,&,D) be a symmetric encryption scheme, let A be an algorithm
that has access to two oracles, and let b be a bit. We consider the following experiment:

Experiment Explid-ecab(4)
K&K
b <& Ak (LR(D)), Dk (")
If A queried Dk (+) on a ciphertext previously returned by Ex (LR(:,-,b))
then return 0
else return b

The IND-CCA advantage of A is defined as
AQVEE(4) = Pr[Bxpleo(4) = 1] - Pr [Bxplro(a) = 1] 1

The conventions with regard to resource measures are the same as those used in the case of chosen-
plaintext attacks. In particular, the length of a query My, M7 to the Ir-encryption oracle is defined
as the length of Mj.

We consider an encryption scheme to be “secure against chosen-ciphertext attack” if a “reason-
able” adversary cannot obtain “significant” advantage in distinguishing the cases b =0 and b =1
given access to the oracles, where reasonable reflects its resource usage. The technical notion is
called indistinguishability under chosen-ciphertext attack, denoted IND-CCA.
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5.10 Example chosen-ciphertext attacks

Chosen-ciphertext attacks are powerful enough to break all the standard modes of operation, even
those like CTR and CBC that are secure against chosen-plaintext attack. The one-time pad scheme
is also vulnerable to a chosen-ciphertext attack: our notion of perfect security only took into account
chosen-plaintext attacks. Let us now illustrate a few chosen-ciphertext attacks.

5.10.1 Attacks on the CTR schemes

Let F: K x {0,1}" — {0,1}" be a family of functions and let S€ = (K, &, D) be the associated
CTRS$ symmetric encryption scheme as described in Scheme 5.6. The weakness of the scheme that
makes it susceptible to a chosen-ciphertext attack is the following. Say (r,C) is a ciphertext of
some n-bit message M, and we flip bit i of C, resulting in a new ciphertext (r, C’). Let M’ be the
message obtained by decrypting the new ciphertext. Then M’ equals M with the i-th bit flipped.
(You should check that you understand why.) Thus, by making a decryption oracle query of (r, C")
one can learn M’ and thus M. In the following, we show how this idea can be applied to break the
scheme in our model by figuring out in which world an adversary has been placed.

Proposition 5.25 Let F: K x {0,1}" — {0,1}" be a family of functions and let S€ = (K, &, D)
be the corresponding CTR$ symmetric encryption scheme as described in Scheme 5.6. Then

Advitdeat 1.n,1,2n) = 1
for t = O(n) plus the time for one application of F'.

The advantage of this adversary is 1 even though it uses hardly any resources: just one query to
each oracle. That is clearly an indication that the scheme is insecure.

Proof of Proposition 5.25: We will present an adversary algorithm A, having time-complexity
t, making 1 query to its Ir-encryption oracle, this query being of length n, making 1 query to its
decryption oracle, this query being of length 2n, and having

Advitdeeaq)y = 1.

The Proposition follows.

Remember that the Ir-encryption oracle Ex (LR(:, -, b)) takes input a pair of messages, and returns
an encryption of either the left or the right message in the pair, depending on the value of b. The
goal of A is to determine the value of b. Our adversary works like this:

Adversary ASxLRCb)), Dre ()
My —0"; My «— 1™
(r,C) — Ex (LR(My, My, b))
C'—Ce1n
M — Dk ({r,C"))
If M = My then return 1 else return 0

The adversary’s single Ir-encryption oracle query is the pair of distinct messages My, M7, each one
block long. It is returned a ciphertext (r,C'). It flips the bits of C' to get C’ and then feeds the
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ciphertext (r,C') to the decryption oracle. It bets on world 1 if it gets back My, and otherwise on
world 0. Notice that (r, C") # (r,C), so the decryption query is legitimate. Now, we claim that

Pr {Expg‘g_cca'l(A) = 1} =1

Pr {Explnd cca0(4) = 1} = 0.

Hence Advlnd PA) =1-0=1. And A achieved this advantage by making just one Ir-encryption
oracle query, Whose length, which as per our conventions is just the length of My, is n bits, and just
one decryption oracle query, whose length is 2n bits (assuming an encoding of (r, X) as n+|X|-bits).
So AdvR: (¢, 1,n,1,2n) = 1.

Why are the two equations claimed above true? You have to return to the definitions of the
quantities in question, as well as the description of the scheme itself, and walk it through. In
world 1, meaning b = 1, let (r, C') denote the ciphertext returned by the Ir-encryption oracle. Then

C =Fg(r+1)eM = Frk(r+1)e1".

Now notice that

M = Dg((r,C")
= Fg(r+1) o
= Fg(r+l)aCa1"
= Fr(r+1) o (Fr(r+1)ae1") a1
- o
= M.

Thus, the decryption oracle will return My, and A will return 1. In world 0, meaning b = 0, let
(r, C[1]) denote the ciphertext returned by the lr-encryption oracle. Then

C =Fg(r+1)e My = Fx(r+1)e®0".

Now notice that

M = Dg({r,C"))
= Fx(r+1) &
= Fg(r+l)aCa 1"
= Fg(r+1) & (Fx(r+1)e0") o1
= 1"
= M.

Thus, the decryption oracle will return My, and A will return 0, meaning will return 1 with
probability zero. |

An attack on CTRC (cf. Scheme 5.7) is similar, and is left to the reader.
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5.10.2 Attack on CBCS$

Let E: K x {0,1}"™ — {0,1}" be a blockcipher and let S€ = (K, &, D) be the associated CBCS$
symmetric encryption scheme as described in Scheme 5.4. The weakness of the scheme that makes
it susceptible to a chosen-ciphertext attack is the following. Say (IV,C[1]) is a ciphertext of some
n-bit message M, and we flip bit ¢ of the IV, resulting in a new ciphertext (IV',C[1]). Let M’
be the message obtained by decrypting the new ciphertext. Then M’ equals M with the i-th bit
flipped. (You should check that you understand why by looking at Scheme 5.4.) Thus, by making
a decryption oracle query of (IV',C[1]) one can learn M’ and thus M. In the following, we show
how this idea can be applied to break the scheme in our model by figuring out in which world an
adversary has been placed.

Proposition 5.26 Let E: K x {0,1}" — {0,1}" be a blockcipher and let S€ = (K, &, D) be the
corresponding CBC$ encryption scheme as described in Scheme 5.4. Then

Advitdeat 1.n,1,2n) = 1
for t = O(n) plus the time for one application of F'.

The advantage of this adversary is 1 even though it uses hardly any resources: just one query to
each oracle. That is clearly an indication that the scheme is insecure.

Proof of Proposition 5.26: We will present an adversary A, having time-complexity ¢, making
1 query to its Ir-encryption oracle, this query being of length n, making 1 query to its decryption
oracle, this query being of length 2n, and having

AdvEFe*(4) = 1.

The proposition follows.

Remember that the Ir-encryption oracle Ex (LR(:, -, b)) takes input a pair of messages, and returns
an encryption of either the left or the right message in the pair, depending on the value of b. The
goal of A is to determine the value of b. Our adversary works like this:

Adversary ASxLR(b)), D ()
My «— 0" ; My «— 1"
IV, C[1]) « Ex (LR(Mo, My, b))
IV «—1IVag1»
M — D ((IV', C[1]))
If M = My then return 1 else return 0

The adversary’s single Ir-encryption oracle query is the pair of distinct messages My, M7, each one
block long. It is returned a ciphertext (IV,C[1]). Tt flips the bits of the IV to get a new IV, IV’
and then feeds the ciphertext (IV’, C[1]) to the decryption oracle. It bets on world 1 if it gets back
My, and otherwise on world 0. It is important that (IV', C[1]) # (IV, C[1]) so the decryption oracle
query is legitimate. Now, we claim that

Pr {Expg‘g_cca'l(A) = 1} =1

Pr {Exp?g'cca'o(A) = 1} = 0.
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Hence Advglg'cca(A) =1—-0=1. And A achieved this advantage by making just one Ir-encryption
oracle query, whose length, which as per our conventions is just the length of My, is n bits, and
just one decryption oracle query, whose length is 2n bits. So Advglg'cca(t, 1,n,1,2n) = 1.

Why are the two equations claimed above true? You have to return to the definitions of the
quantities in question, as well as the description of the scheme itself, and walk it through. In
world 1, meaning b = 1, the Ir-encryption oracle returns (IV, C[1]) with

Cll] = Ex(IV® My) = Ex(IVe1™).

Now notice that

M = Dg((IV,C[1]))
= EZ(Cl]) a1V
= B (Ex(IVe1™) o1V’
= (IVe1™) e IV'[0]
= (IVel1") s (IVae1?)
= Q"
= M.

Thus, the decryption oracle will return My, and A will return 1. In world 0, meaning b = 0, the
Ir-encryption oracle returns (IV, C[1]) with

Cll] = Ex(IVa® M) = Ex(IV®0').

Now notice that

M = Dg((IV,C[1])
= E(Cl]) a1V
= B (Ex(IV@o") oIV
= (IV&0") & IV'[0]
= (IVe0") s (IVe 1)
= 1"
= M.

Thus, the decryption oracle will return M, and A will return 0, meaning will return 1 with
probability zero. I

5.11 Historical notes

The pioneering work on the theory of encryption is that of Goldwasser and Micali [18], with refine-
ments by [28, 13]. This body of work is however in the asymmetric (i.e., public key) setting, and
uses the asymptotic framework of polynomial-time adversaries and negligible success probabilities.
The treatment of symmetric encryption we are using is from [3]. In particular Definition 5.1 and
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the concrete security framework are from [3]. The analysis of the CTR and CBC mode encryption
schemes, as given in Theorems 5.13, 5.14 and 5.19 is also from [3]. The analysis of the CBC mode
here is new.

5.12 Problems

Problem 5.1 Formalize a notion of security against key-recovery for symmetric encryption schemes.
Then prove that IND-CPA security implies key-recovery security.

Problem 5.2 Consider the following notion of indistinguishability of an encryption scheme S& =
(K,E,D):

AdvEE"P(4) = Pr[K S Kz AKO=1] —PrK &K AT S0]

That is, a scheme in INDO-CPA secure if the encryption of every string looks like the encryption
of an equal number of zeros. Here we assume that whenever M is in the message space, so is 01!,
Prove that this notion of security is equivalent to IND-CPA security, carefully stating a pair of
theorems and proving them.

Problem 5.3 The definition above for INDO-CPA provides the adversary with no method to get,
with certitude, the encryption of a given message: when the adversary asks a query M, it might
get answered with C' <& Ex (M) or it might get answered with C' < Ex(0/M1). Consider providing
the adversary an additional, “reference” oracle that always encrypts the queried string. Consider
defining the corresponding advantage notion in the natural way: for an encryption scheme S& =

(K,€,D), let
Adviiderer 4y = prK &K A0 ExO o) _pr[K Sk A ExO) )

State and prove a theorem that shows that this notion of security is equivalent to our original
INDO-CPA notion (and therefore to IND-CPA).

Problem 5.4 Let [ > 1 and m > 2 be integers, and let S€ = (K,&,D) be a given symmetric
encryption scheme whose associated plaintext space is {0, 1}", meaning one can only encrypt mes-
sages of length n. In order to be able to encrypt longer messages, say ones of mn bits for some
m > 1, we define a new symmetric encryption scheme SEM™ = (K, £0™) D)) having the same
key-generation algorithm as that of SE, plaintext space {0,1}™", and encryption and decryption
algorithms as depicted in Fig. 5.11.

(a) Show that

Advg“g(—,i‘ﬁa(t, 1,mn,1,mn) = 1

for some small ¢.

(b) Show that

AdvECTRR(t g, mng) < Advge P (t, mg, mng)

for any t,q.
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algorithm £\ (M)
Break M into n-bit blocks M[1],..., M[m]
for i — 1 to m do
Cli] — Ex(M[i])
return C — (C[1],...,C[m])

algorithm D%n)(C')
Break C' into n-bit blocks C[1], ..., C[m]
for i+ 1to mdo
M{i] < Dk (Cli])
if M[i] = L then return L
returnM — (M[1],..., M[m])

Figure 5.11: Encryption scheme for Problem 5.4.

Part (a) says that SE (M) is insecure against chosen-ciphertext attack. Note this is true regardless
of the security properties of S€, which may itself be secure against chosen-ciphertext attack. Part
(b) says that if SE is secure against chosen-plaintext attack, then so is SE™).

Problem 5.5 The CBC-Chain mode of operation is a CBC variant in which the IV that is used for
the very first message to be encrypted is random, while the IV used for each subsequent encrypted
message is the last block of ciphertext that was generated. The scheme is probabilistic and stateful.
Show that CBC-Chain is insecure by giving a simple and efficient adversary that breaks it in the

IND-CPA sense.

Problem 5.6 Using the proof of Theorem 5.13 as a template, prove Theorem 5.14 assuming
Lemma 5.17.

Problem 5.7 Define a notion for indistinguishability from random bits, IND$-CPA. Your notion
should capture the idea that the encryption of each message M looks like a string of random bits.
Pay careful attention to the number of random bits that one outputs. Then formalize and prove
that IND$-CPA security implies IND-CPA security—but that IND-CPA security does not imply
INDS$-CPA security.

Problem 5.8 Using a game-based argument, prove that CBC$[Func(n,n)] achieves IND$-CPA
security. Assume that one encodes (R,C) as R || C.

Problem 5.9 Devise a secure extension to CBC$ mode that allows messages of any bit length to
be encrypted. Clearly state your encryption and decryption algorithm. Your algorithm should be
simple, should “look like” CBC mode as much as possible, and it should coincide with CBC mode
when the message being encrypted is a multiple of the blocklength. How would you prove your
algorithm secure?

Problem 5.10 An IND-CPA secure encryption scheme might not conceal identities, in the fol-
lowing sense: given a pair of ciphertexts C,C’ for equal-length messages, it might be “obvious” if



Bellare and Rogaway 135

the ciphertexts were encrypted using the same random key or were encrypted using two different
random keys. Give an example of a (plausibly) IND-CPA secure encryption scheme that has this
is identity-revealing. Then give a definition for “identity-concealing” encryption. Your definition
should imply IND-CPA security but a scheme meeting your definition can’t be identity-revealing.
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Chapter 6

HASH FUNCTIONS

A hash function usually means a function that compresses, meaning the output is shorter than the
input. Often, such a function takes an input of arbitrary or almost arbitrary length to one whose
length is a fixed number, like 160 bits. Hash functions are used in many parts of cryptography,
and there are many different types of hash functions, with differing security properties. We will
consider them in this chapter.

6.1 The hash function SHA1

The hash function known as SHA1 is a simple but strange function from strings of almost arbitrary
length to strings of 160 bits. The function was finalized in 1995, when a FIPS (Federal Information
Processing Standard) came out from the US National Institute of Standards that specified SHAT.

Let {0,1}<¢ denote the set of all strings of length strictly less than £. The function SHAL:
{0, 1}<264 — {0,119 is shown in Fig. 6.1. (Since 2% is a very large length, we think of SHA1
as taking inputs of almost arbitrary length.) It begins by padding the message via the function
shapad, and then iterates the compression function shal to get its output. The operations used in
the algorithms of Fig. 6.1 are described in Fig. 6.2. (The first input in the call to SHF1 in code for
SHA1 is a 128 bit string written as a sequence of four 32-bit words, each word being consisting of
8 hexadecimal characters. The same convention holds for the initialization of the variable V' in the
code of SHF1.)

SHAL is derived from a function called MD4 that was proposed by Ron Rivest in 1990, and the
key ideas behind SHA1 are already in MD4. Besides SHA1, another well-known “child” of MD4 is
MD5, which was likewise proposed by Rivest. The MD4, MD5, and SHA11 algorithms are all quite
similar in structure. The first two produce a 128-bit output, and work by “chaining” a compression
function that goes from 512+ 128 bits to 128 bits, while SHA1 produces a 160 bit output and works
by chaining a compression function from 512 + 160 bits to 160 bits.

So what is SHAL supposed to do? First and foremost, it is supposed to be the case that nobody
can find distinct strings M and M’ such that SHAL(M) = SHA1(M'). This property is called
collision resistance.

Stop for a moment and think about the collision-resistance requirement, for it is really quite
amazing to think that such a thing could be possible. The function SHA1 maps strings of (almost)
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algorithm SHA1(M) // |M| < 2%

V — SHF1(5A827999 || 6ED9EBA1 || 8F1BBCDC || CA62C1D6, M )
return V

algorithm SHF1(K, M) //|K|=128 and |M| < 2%
y «— shapad(M)

Parse y as My || Ma || -+ || M,, where |M;| =512 (1 <i <n)
V — 67452301 || EFCDAB8Y || 98BADCFE || 10325476 || C3D2E1F0
for i=1,...,ndo
V — shfl(K, M; || V)
return V

algorithm shapad(M) // |M| < 264
d — (447 — |M|) mod 512
Let ¢ be the 64-bit binary representation of |M]|
ye M 1]0%¢ //|ylisa multiple of 512
return y

algorithm shfl(K, B || V) // |K| =128, |B| = 512 and |V| = 160
Parse B as Wy || Wi || -+ || Wis where |[W;| =32 (0 <i < 15)
Parse Vas Vo || Vi || -+ || Va where |V;| =32 (0 <i < 4)
Parse K as Ky || K1 || K2 || K3 where |K;| =32 (0 <1 <3)
for t =16 to 79 do

Wi« ROTL' (W3 & Wy s @ Wy_14 ® Wi_16)
A=Vy; B=V;C«—Vao; D V3; E«Vy
for t=0to 19 do
Ly« Ko Liyoo < K13 Lipao < Ko 5 Leyeo < K3
for t=01to 79 do
if (0<t<19)then f<— (BAC)V((—B)AD)
if (20<t<390RG60<t¢t<79)then f—BaoC®D
if (40 <{<59) then f— (BAC)V (BAD)V(CAD)
temp «— ROTL®(A) + f + E + W; + L
E«D;D«—C;C—ROTLB); B— A; A~ temp
Vo=W+A Vi« Vi+B; Voe—=Vo+C; V3 V3+D;Vy«—V,+FE
VeV VilVallVs| Vs
return V

Figure 6.1: The SHAL hash function and the underlying SHF1 family.

any length to strings of 160 bits. So even if you restricted the domain of SHA1 just to “short”
strings—Ilet us say strings of length 256 bits—then there must be an enormous number of pairs of
strings M and M’ that hash to the same value. This is just by the pigeonhole principle: if 22°
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XANY bitwise AND of X and Y

XVvYy bitwise OR of X and Y

XaY bitwise XOR of X and Y

=X bitwise complement of X

X+Y integer sum modulo 232 of X and YV

ROTL!(X) circular left shift of bits of X by I positions (0 <1 < 31)

Figure 6.2: Operations on 32-bit words used in shal.

pigeons (the 256-bit messages) roost in 2169 holes (the 160-bit hash values) then some two pigeons
(two distinct strings) roost in the same hole (have the same hash). Indeed countless pigeons must
share the same hole. The difficult is only that nobody has as yet identified (meaning, explicitly
provided) even two such pigeons (strings).

In trying to define this collision-resistance property of SHA1 we immediately run into “foun-
dational” problems. We would like to say that it is computationally infeasible to output a pair
of distinct strings M and M’ that collide under SHA1. But in what sense could it be infeasible?
There is a program—indeed a very short an simple one, having just two “print” statements—whose
output specifies a collision. It’s not computationally hard to output a collision; it can’t be. The
only difficulty is our human problem of not knowing what this program is.

It seems very hard to make a mathematical definition that captures the idea that human beings
can’t find collisions in SHAL. In order to reach a mathematically precise definition we are going to
have to change the very nature of what we conceive to be a hash function. Namely, rather than it
being a single function, it will be a family of functions. This is unfortunate in some ways, because
it distances us from concrete hash functions like SHA1. But no alternative is known.

6.2 Collision-resistant hash functions

A hash function for us is a family of functions H: K x D — R. Here D is the domain of H and
R is the range of H. As usual, if K € K is a particular key then Hg: D — R is defined for all
M e Dby Hxk(M) = H(K, M). This is the instance of H defined by key K.

An example is SHF1: {0,1}128 x {0,1}<2"" — {0,1}'%°, as described in Fig. 6.1. This hash
function takes a 128-bit key and an input M of at most 264 bits and returns a 160-bit output. The
function SHA1 is an instance of this family, namely the one whose associated key is

5A827999 || 6ED9EBA1 || 8F1BBCDC || CA62C1D6 .

Let H: K x D — R be a hash function. Here is some notation we use in this chapter. For any
key K and y € R we let

Hi'ty) = {z €D : Hx(z) =y}
denote the pre-image set of y under Hy. Let
Image(Hx) = { Hx(z) : x €D}

denote the image of Hy.
A collision for a function h: D — R is a pair x1,z2 € D of points such that (1) Hg(z1) =



142 HASH FUNCTIONS

Pre-key attack phase | A selects 2 — s points

Key selection phase A key K is selected at random from K

Post-key attack phase | A is given K and returns s points

Winning condition The 2 points selected by A form a collision for Hg

Figure 6.3: Framework for security notions for collision-resistant hash functions. The three choices
of s € {0,1,2} give rise to three notions of security.

Hpg(x9) and (2) 21 # x2. The most basic security property of a hash function is collision-resistance,
which measures the ability of an adversary to find a collision for an instance of a family H. There
are different notions of collision-resistance, varying in restrictions put on the adversary in its quest
for a collision.

To introduce the different notions, we imagine a game, parameterized by an integer s € {0, 1,2},
and involving an adversary A. It consists of a pre-key attack phase, followed by a key-selection
phase, followed by a post-key attack phase. The adversary is attempting to find a collision for
Hp, where key K is selected at random from K in the key-selection phase. Recall that a collision
consists of a pair x1, x2 of (distinct) points in D. The adversary is required to specify 2 — s points
in the pre-key attack phase, before it has any information about the key. (The latter has yet to
be selected.) Once the adversary has specified these points and the key has been selected, the
adversary is given the key, and will choose the remaining s points as a function of the key, in the
post-key attack phase. It wins if the 2 = (2 — s) + s points it has selected form a collision for Hg.

Fig. 6.3 summarizes the framework. The three choices of the parameter s give rise to three
notions of security. The higher the value of s the more power the adversary has, and hence the more
stringent is the corresponding notion of security. Fig. 6.4 provides in more detail the experiments
underlying the three attacks arising from the above framework. We represent by st information
that the adversary wishes to maintain across its attack phases. It will output this information in
the pre-key attack phase, and be provided it at the start of the post-key attack phase.

In a variant of this model that we consider in Section ?7?, the adversary is not given the key
K in the post-key attack phase, but instead is given an oracle for Hi(-). To disambiguate, we
refer to our current notions as capturing collision-resistance under known-key attack, and the
notions of Section 77 as capturing collision-resistance under hidden-key attack. The notation in
the experiments of Fig. 6.4 and Definition 6.1 reflects this via the use of “kk”, except that for CRO,
known and hidden key attacks coincide, and hence we just say cr0.

The three types of hash functions we are considering are known by other names in the literature,
as indicated in Fig. 6.5.

Definition 6.1 Let H: K x D — R be a hash function and let A be an algorithm. We let
AdviH(4) = Pr[Expf?(4) = 1]
AdvERk(4) = Pr {Exp%}l_kk(A) = 1}

Adv§'(4) = Pr[Expf’(4) =1| |
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Expf(4)

K&K (21, 20) <& A(K)
if (Hg(z1)= Hgi(x2) and x1 # x9 and x1, 290 € D)
then return 1 else return 0

Exp§ ™ (A)

(z1,5t) << A(); K EK; 29 & A(K, st)
if (Hg(x1)= Hg(w2) and 21 # z9 and 1,29 € D)
then return 1 else return 0

Expf’(A)

(xl,flfg) <i A() 3 K iIC
if (Hg(z1)= Hgi(x2) and x1 # x2 and x1, 22 € D)
then return 1 else return 0

143

Figure 6.4: Experiments defining security notions for three kinds of collision-resistant hash functions
under known-key attack.

Type

Name(s) in literature

CR2-KK

collision-free, collision-resistant, collision-intractable

CR1-KK

universal one-way [29] (aka. target-collision resistant [1])

CRO

universal, almost universal

Figure 6.5: Types of hash functions, with names in our framework and corresponding names found

in the literature.

In measuring resource usage of an adversary we use our usual conventions.

Although there is

formally no definition of a “secure” hash function, we will talk of a hash function being CR2, CR1
or CRO with the intended meaning that its associated advantage function is small for all adversaries
of practical running time.

Note that the running time of the adversary is not really relevant for CRO, because we can
always imagine that hardwired into its code is a “best” choice of distinct points 1, z9, meaning a

choice for which

Pr {KiIC : Hg (1) :HK(@)}

= maxPr{KilC : HK(yl):HK(QQ)] .
Y17£Y2

cr0

The above value equals Adv{’(A) and is the maximum advantage attainable.
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Clearly, a CR2 hash function is also CR1 and a CR1 hash function is also CRO. The following
states the corresponding relations formally. The proof is trivial and is omitted.

Proposition 6.2 Let H: K x D — R be a hash function. Then for any adversary Ag there exists
an adversary A; having the same running time as Ay and

Adv§P(Ag) < Advi (4.
Also for any adversary A; there exists an adversary Ao having the same running time as A; and

AdvEE(A)) < AdvEZERR(4,) |

We believe that SHF1 is CR2, meaning that there is no practical algorithm A for which Adv > (A)
is appreciably large. This is, however, purely a belief, based on the current inability to find such
an algorithm. Perhaps, later, such an algorithm will emerge.

It is useful, for any integer n, to get SHF1™: {0,1}" — {0,1}'%" denote the restriction of SHF1
to the domain {0, 1}". Note that a collision for SHF1% is also a collision for SHF1g, and it is often
convenient, to think of attacking SHF1" for some fixed n rather than SHF1 itself.

6.3 Collision-finding attacks

Let us focus on CR2, which is the most important property for the applications we will see later.
We consider different types of CR2-type collision-finding attacks on a family H: K x D — R where
D, R are finite sets. We assume the family performs some reasonable compression, say |D| > 2|R].
Canonical example families to keep in mind are H = SHF1"™ for n > 161 and shfl, the compression
function of SHF1.

Collision-resistance does not mean it is impossible to find a collision. Analogous to the case of
one-waymness, there is an obvious collision-finding strategy. Let us enumerate the elements of D in
some way, so that D = {Dy, Do, ..., Dy} where d = |D|. The following adversary A implements an
exhaustive search collision-finding attack:

Adversary A(K)
21 Dy — Hy(a)
for i1=1,...,qdo
if (Hg(D;) =y and z1 # D;) then return z1,D;
return FAIL

We call g the number of trials. Each trial involves one computation of Hg, so the number of trials
is a measure of the time taken by the attack. To succeed, the attack requires that Hy'(y) has size
at least two, which happens at least half the time if |D| > 2|R|. However, we would still expect
that it would take about ¢ = |D| trials to find a collision, which is prohibitive, for D is usually
large. For example, for F' = shfl, the domain has size 2672, far too large. For SHF1", we would
choose n as small as possible, but need n > 161 to ensure collisions exist, so the attack uses 26!
computations of Hg, which is not practical.

Now here’s another idea. We pick points at random, hoping that their image under Hy equals
the image under Hg of an initial target point. Call this the random-input collision-finding attack.
It is implemented like this:
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for i=1,...,gdo // qis the number of trials
zi =D yi — Hie(w;)
if (there exists j < i such that y; = y; but «; # x;) // collision found
then return z;,z;
return FAIL // No collision found

Figure 6.6: Birthday attack on a hash function H: K x D — R. The attack is successful in finding
a collision if it does not return FAIL.

Adversary A(K)
x1 < Dy — Hg(z1)
for i=1,...,qgdo
T2 <i D
if (Hg(x2) =y and x1 # x2) then return z1,z;
return FAIL

A particular trial finds a collision with probability (about) 1 in |R|, so we expect to find a collision
in about ¢ = |R| trials. This is much better than the |D| trials used by our first attempt. In
particular, a collision for shfl would be found in time around 2'%° rather than 2672. But this is still
far from practical. Our conclusion is that as long as the range size of the hash function is large
enough, this attack is not a threat.

We now consider another strategy, called a birthday attack, that turns out to be much better
than the above. It is illustrated in Fig. 6.6. It picks at random ¢ points from the domain, and
applies Hi to each of them. If it finds two distinct points yielding the same output, it has found
a collision for Hx. The question is how large ¢ need be to find a collision. The answer may seem
surprising at first. Namely, ¢ = O(y/|R)|) trials suffices.

We will justify this later, but first let us note the impact. Consider SHA1" with n > 161. As we
indicated, the random-input collision-finding attack takes about 2! trials to find a collision. The
birthday attack on the other hand takes around v/2160 = 280 trials. This is MUCH less than 2160,
Similarly, the birthday attack finds a collision in shfl in around 28 trials while while random-input
collision-finding takes about 29 trials.

To see why the birthday attack performs as well as we claimed, we recall the following game.
Suppose we have ¢ balls. View them as numbered, 1,...,q. We also have N bins, where N > g¢.
We throw the balls at random into the bins, one by one, beginning with ball 1. At random means
that each ball is equally likely to land in any of the N bins, and the probabilities for all the balls
are independent. A collision is said to occur if some bin ends up containing at least two balls. We
are interested in C'(IV, q), the probability of a collision. As shown in the Appendix,

q
C(N N 6.1
(N, q) o (6.1)
for 1 < g <+2N. Thus C(N,q) ~ 1 for ¢ ~ v2N.
The relation to birthdays arises from the question of how many people need be in a room before
the probability of there being two people with the same birthday is close to one. We imagine each
person has a birthday that is a random one of the 365 days in a year. This means we can think
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of a person as a ball being thrown at random into one of 365 bins, where the i-th bin represents
having birthday the i-th day of the year. So we can apply the Proposition from the Appendix
with N = 365 and ¢ the number of people in the room. The Proposition says that when the room
contains q =~ /2 - 365 ~ 27 people, the probability that there are two people with the same birthday
is close to one. This number (27) is quite small and may be hard to believe at first hearing, which
is why this is sometimes called the birthday paradox.

To see how this applies to the birthday attack of Fig. 6.6, let us enumerate the points in the
range as Ri,..., Ry, where N = |R|. Each such point defines a bin. We view x; as a ball, and
imagine that it is thrown into bin y;, where y; = Hg (x;). Thus, a collision of balls (two balls in
the same bin) occurs precisely when two values z;, z; have the same output under Hx. We are
interested in the probability that this happens as a function of ¢q. (We ignore the probability that
x; = xj, counting a collision only when Hg (z;) = Hg(x;). It can be argued that since D is larger
than R, the probability that x; = x; is small enough to neglect.)

However, we cannot apply the birthday analysis directly, because the latter assumes that each
ball is equally likely to land in each bin. This is not, in general, true for our attack. Let P(R;)
denote the probability that a ball lands in bin R;, namely the probability that Hg (z) = R; taken
over a random choice of x from D. Then

[Hy' (B))|
Ply) = — 57— -
Dl
In order for P(R;) = P(R2) = --- = P(Ry) to be true, as required to apply the birthday analysis,
it must be the case that
[Hi (R)| = |H (Ra)| = - = [Hg' (B)| -

A function Hyx with this property is called regular, and H is called regular if Hg is regular for
every K. Our conclusion is that if H is regular, then the probability that the attack succeeds is
roughly C(N, q). So the above says that in this case we need about ¢ ~ v2N = /2 - [R] trials to
find a collision with probability close to one.

If H is not regular, it turns out the attack succeeds even faster, telling us that we ought to
design hash functions to be as “close” to regular as possible [2].

In summary, there is a 2/2 or better time attack to find collisions in any hash function outputting
[ bits. This leads designers to choose ! large enough that 2/2 is prohibitive. In the case of SHF1
and shfl, the choice is I = 160 because 2% is indeed a prohibitive number of trials. These functions
cannot thus be considered vulnerable to birthday attack. (Unless they turn out to be extremely
non-regular, for which there is no evidence so far.)

Ensuring, by appropriate choice of output length, that a function is not vulnerable to a birthday
attack does not, of course, guarantee it is collision resistant. Consider the family H: Kx{0, 1}!61 —
{0,1}16Y defined as follows. For any K and any z, function Hg (z) returns the first 160 bits of x.
The output length is 160, so a birthday attack takes 250 time and is not feasible, but it is still easy
to find collisions. Namely, on input K, an adversary can just pick some 160-bit y and output y0, y1.
This tells us that to ensure collision-resistance it is not only important to have a long enough output
but also design the hash function so that there no clever “shortcuts” to finding a collision, meaning
no attacks that exploit some weakness in the structure of the function to quickly find collisions.

We believe that shfl is well-designed in this regard. Nobody has yet found an adversary that
finds a collision in shfl using less than 2% trials. Even if a somewhat better adversary, say one
finding a collision for shfl in 2% trials, were found, it would not be devastating, since this is still a
very large number of trials, and we would still consider shfl to be collision-resistant.
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If we believe shfl is collision-resistant, Theorem 6.8 tells us that SHF1, as well as SHF1,,, can
also be considered collision-resistant, for all n.

6.4 One-wayness of collision-resistant hash functions

Intuitively, a family H is one-way if it is computationally infeasible, given Hx and a range point
y = Hg(z), where x was chosen at random from the domain, to find a pre-image of y (whether
x or some other) under Hg. Since this definition too has a hidden-key version, we indicate the
known-key in the notation below.

Definition 6.3 Let H:  x D — R be a family of functions and let A be an algorithm. We
consider the following experiment:

Exp@ ™ (A)
K&K & Dy y e Hi(n); o & A(K,y)
If (Hi(2") = y and 2’ € D) then return 1 else return 0

We let

Advy™H(4) = Pr[Bxpy™a) =1] .1

We now ask ourselves whether collision-resistance implies one-wayness. It is easy to see, however,
that, in the absence of additional assumptions about the hash function than collision-resistance,
the answer is “no.” For example, let H be a family of functions every instance of which is the
identity function. Then H is highly collision-resistant (the advantage of an adversary in finding
a collision is zero regardless of its time-complexity since collisions simply don’t exist) but is not
one-way.

However, we would expect that “genuine” hash functions, meaning ones that perform some
non-trivial compression of their data (ie. the size of the range is more than the size of the domain)
are one-way. This turns out to be true, but needs to be carefully quantified. To understand the
issues, it may help to begin by considering the natural argument one would attempt to use to show
that collision-resistance implies one-wayness.

Suppose we have an adversary A that has a significant advantage in attacking the one-wayness
of hash function H. We could try to use A to find a collision via the following strategy. In the
pre-key phase (we consider a type-1 attack) we pick and return a random point z; from D. In the
post-key phase, having received the key K, we compute y = Hg (x1) and give K,y to A. The latter
returns some xg, and, if it was successful, we know that Hg (z2) = y. So Hg(z2) = Hg(x1) and
we have a collision.

Not quite. The catch is that we only have a collision if zo # x1. The probability that this
happens turns out to depend on the quantity:

Prelmpy(1) = Pr [KﬁlC; v Dy Hig(z) : |Hg'(y)] = 1} .
This is the probability that the size of the pre-image set of y is exactly 1, taken over y generated

as shown. The following Proposition says that a collision-resistant function H is one-way as long
as PreImy (1) is small.
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Proposition 6.4 Let H: K x D — R be a hash function. Then for any A there exists a B such
that

Advyy ™ (A) < 2 AdvETHN(B) + Prelmpy(1) .

Furthermore the running time of B is that of A plus the time to sample a domain point and compute
H once. |

The result is about the CR1 type of collision-resistance. However Proposition 6.2 implies that the
same is true for CR2.

A general and widely-applicable corollary of the above Proposition is that collision-resistance
implies one-wayness as long as the domain of the hash function is significantly larger than its range.
The following quantifies this.

Corollary 6.5 Let H: K x D — R be a hash function. Then for any A there exists a B such that

R
Advy(4) < 2. AdvEYR(B) + H .

Furthermore the running time of B is that of A plus the time to sample a domain point and compute

H once. 1

Proof of Corollary 6.5: For any key K, the number of points in the range of Hx that have
exactly one pre-image certainly cannot exceed |R|. This implies that

R
Prelmpy(1l) < —.
Dl

The corollary follows from Proposition 6.4. I

Corollary 6.5 says that if H is collision-resistant, and performs enough compression that |R| is much
smaller than |D|, then it is also one-way. Why? Let A be a practical adversary that attacks the
one-wayness of H. Then B is also practical, and since H is collision-resistant we know Adv3 ¢ (B)
is low. Equation (6.2) then tells us that as long as |R|/|D| is small, Adv%' ™ %(A) is low, meaning
H is one-way.

As an example, let H be the compression function shfl. In that case R = {0,1}'% and D =
{0,115 50 |R|/|D| = 2752, which is tiny. We believe shfl is collision-resistant, and the above thus
says it is also one-way.

There are some natural hash functions, however, for which Corollary 6.5 does not apply. Con-
sider a hash function H every instance of which is two-to-one. The ratio of range size to domain size
is 1/2, so the right hand side of the equation of Corollary 6.5 is 1, meaning the bound is vacuous.
However, such a function is a special case of the one considered in the following Proposition.

Corollary 6.6 Suppose 1 < r < d and let H: K x {0,1}¢ — {0,1}" be a hash function which is
regular, meaning |H'(y)| = 297" for every y € {0,1}" and every K € K. Then for any A there
exists a B such that

Advy4) < 2. AdvEE(B) .

Furthermore the running time of B is that of A plus the time to sample a domain point and compute
H once. 1
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Proof of Corollary 6.6: The assumption d > r implies that PreImy(1) = 0. Now apply
Proposition 6.4. 1

We now turn to the proof of Proposition 6.4.

Proof of Proposition 6.4: Here’s how B works:

Pre-key phase Post-key phase
Adversary B() Adversary B(K, st)
r1 <D ; st a1 Retrieve z1 from st
return (z1, st) y — Hy(x1); 20 < B(K,y)
return zo

Let Pr[-] denote the probability of event “” in experiment Exp$'™(B). For any K € K let
Sk = {xeD: |Hg (Hg(z))|=1}.

Adv§T(B) (6.2
= Pr[Hg(z2) =y Ax1 # 2] (6.3
> Pr[Hg(z2) =y Ax1# 22 N2y & Sk (6.4
= Priz; # x| Hx(x2) =y Ax1 € S| - Pr[Hg(z2) =y Ax1 € Sk (6.5

> % -Pr[Hg(z2) =y Ax1 € Sk (6.6)
> % (P [Hy (x2) = y] — Pr a1 € Sk]) (6.7)
= % : (Adv‘}}”'kk(A) - PreImH(l)) : (6.8)

Re-arranging terms yields Equation (6.2). Let us now justify the steps above. Equation (6.3) is by
definition of Adv$!™¥(B) and B. Equation (6.4) is true because Pr[E] > Pr[E A F] for any events
E,F. Equation (6.5) uses the standard formula Pr[E A F| = Pr[E|F] - Pr[F]|. Equation (6.6) is
justified as follows. Adversary A has no information about x; other than that it is a random point
in the set Hy'(y). However if z1 ¢ Sk then |Hp'(y)| > 2. So the probability that zo # x7 is
at least 1/2 in this case. Equation (6.7) applies another standard probabilistic inequality, namely
that Pr[E A F| > Pr[E] — Pr[F]. Equation (6.8) uses the definitions of the quantities involved. I

6.5 The MD transform

We saw above that SHF1 worked by iterating applications of its compression function shfl. The
latter, under any key, compresses 672 bits to 160 bits. SHF1 works by compressing its input 512
bits at a time using shfl.

The iteration method has been chosen carefully. It turns out that if shfl is collision-resistant,
then SHF1 is guaranteed to be collision-resistant. In other words, the harder task of designing a
collision-resistant hash function taking long and variable-length inputs has been reduced to the



150 HASH FUNCTIONS

H(K,M)
y « pad(M)
Parse y as My || Ma || - - || M), where |M;| =b (1 <i<mn)
V — 1V
for i=1,...,ndo
V—h(K,M;|V)
Return V'

Adversary Ap(K)
Run Ag(K) to get its output (z1,z2)
Y1 < pad(x1) ; y2 < pad(z2)
Parse y1 as My || Mia || -+ || My npy where [My,[ =0 (1 << n[l])
Parse yo as Moy || Mag || -+ || Mapnjg where [My;[ =b (1 <i < nf2])
Vip < IV; Voo < IV
for 7= 1, c. ,n[l] do Vvlﬂ' — h(K, Ml,i H Vl,i—l)
for i = 1, e ,n[?] do Vgﬂ' — h(K, M2,i H Vgﬂ'_l)
if (Vinp # Vanpe) OR 1 = 22) return FAIL
if |z1| # |zo| then return (M ,ny || Vipp—1s Mo | Vanpz—1)
n<—n[l] // n=n[l] =n2] since |z1]| = |x2]
for i =n downto 1 do
if My || Viie1 # Moy || Vai—1 then return (M ; || Vii—1, Moy || Vai-1)

Figure 6.7: Hash function H defined from compression function h via the MD paradigm, and
adversary Ay, for the proof of Theorem 6.8.

easier task of designing a collision-resistant compression function that only takes inputs of some
fixed length.

This has clear benefits. We need no longer seek attacks on SHF1. To validate it, and be
assured it is collision-resistant, we need only concentrate on validating shfl and showing the latter
is collision-resistant.

This is one case of an important hash-function design principle called the MD paradigm [10, 3].
This paradigm shows how to transform a compression function into a hash function in such a way
that collision-resistance of the former implies collision-resistance of the latter. We are now going
to take a closer look at this paradigm.

Let b be an integer parameter called the block length, and v another integer parameter called
the chaining-variable length. Let h: K x {0,1}*T¥ — {0,1}? be a family of functions that we call
the compression function. We assume it is collision-resistant.

Let B denote the set of all strings whose length is a positive multiple of b bits, and let D be
some subset of {0,1}<2".

Definition 6.7 A function pad: D — B is called a MD-compliant padding function if it has the
following properties for all M, My, My € D:

(1) M is a prefix of pad(M)

(2) If [My| = [My] then [pad(My)] = [pad(My)]



Bellare and Rogaway 151

(3) If My # My then the last block of pad(M;) is different from the last block of pad(Ms). 1

A block, above, consists of b bits. Remember that the output of pad is in B, meaning is a sequence
of b-bit blocks. Condition (3) of the definition is saying that if two messages are different then,
when we apply pad to them, we end up with strings that differ in their final blocks.

An example of a MD-compliant padding function is shapad. However, there are other examples
as well.

Now let IV be a v-bit value called the initial vector. We build a family H: £ x D — {0,1}"
from h and pad as illustrated in Fig. 6.7. Notice that SHF1 is such a family, built from h = shfl
and pad = shapad. The main fact about this method is the following.

Theorem 6.8 Let h: K x {0,1}*+ — {0,1}" be a family of functions and let H: K x D — {0,1}"
be built from h as described above. Suppose we are given an adversary Ap that attempts to find
collisions in H. Then we can construct an adversary Aj, that attempts to find collisions in h, and

Adv§PER(Ay) < Adv§TPRR(4,) . (6.9)

Furthermore, the running time of Ay, is that of Ay plus the time to perform (|pad(x1)|+|pad(x2)|)/b
computations of h where (z1,z2) is the collision output by Ag. |

This theorem says that if h is collision-resistant then so is H. Why? Let A be a practical adversary
attacking H. Then Aj, is also practical, because its running time is that of Ay plus the time to
do some extra computations of h. But since h is collision-resistant we know that Adv§2%<(4,)
is low. Equation (6.9) then tells us that Adv$>™®(Ay) is low, meaning H is collision-resistant as
well.

Proof of Theorem 6.8: Adversary Ay, taking input a key K € K, is depicted in Fig. 6.7. It
runs Ay on input K to get a pair (x1,x2) of messages in D. We claim that if 21,z is a collision
for Hg then Aj, will return a collision for hx.

Adversary Ay, computes Vi 1) = Hg (1) and V5 ,19) = Hg (22). If 71,22 is a collision for Hx then
we know that Vi 1] = Vo 9. Let us assume this. Now, let us look at the inputs to the application
of hx that yielded these outputs. If these inputs are different, they form a collision for hg.

The inputs in question are M 1) || V-1 and My ) || Vo njzj—1- We now consider two cases.
The first case is that x1, xo have different lengths. Ttem (3) of Definition 6.7 tells us that M ;) #
My (2. This means that My, || Viupj—1 # Manj) [| Vanjg—1, and thus these two points form a
collision for hx that can be output by Ay,.

The second case is that z1, 22 have the same length. Item (2) of Definition 6.7 tells us that yi,y2
have the same length as well. We know this length is a positive multiple of b since the range of pad
is the set B, so we let n be the number of b-bit blocks that comprise y; and ys. Let V,, denote the
value Vi ,,, which by assumption equals V3 ,,. We compare the inputs M ,, || Vi -1 and Mo, || Vo pn—1
that under hy yielded V,,. If they are different, they form a collision for hx and can be returned
by Ap. If, however, they are the same, then we know that V; ,—1 = V2 ,,—1. Denoting this value by
Vn—1, we now consider the inputs Mj ,,—; || Vip—2 and My ,,—1 || Van—2 that under hg yield V,,_;.
The argument repeats itself: if these inputs are different we have a collision for hg, else we can step
back one more time.
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Can we get stuck, continually stepping back and not finding our collision? No, because y1 # ys.
Why is the latter true? We know that x; # x3. But item (1) of Definition 6.7 says that z; is a
prefix of y1 and 9 is a prefix of y3. So y1 # yo.

We have argued that on any input K, adversary Ay, finds a collision in hx exactly when Ay finds a
collision in Hg. This justifies Equation (6.9). We now justify the claim about the running time of
Aj,. The main component of the running time of Ay, is the time to run Ay. In addition, it performs
a number of computations of h equal to the number of blocks in y; plus the number of blocks in
yo. There is some more overhead, but small enough to neglect. il
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Chapter 7

MESSAGE AUTHENTICATION

In most people’s minds, privacy is the goal most strongly associated to cryptography. But message
authentication is arguably even more important. Indeed you may or may not care if some particular
message you send out stays private, but you almost certainly do want to be sure of the originator
of each message that you act on. Message authentication is what buys you that guarantee.

Message authentication allows one party—the sender—to send a message to another party—
the receiver—in such a way that if the message is modified en route, then the receiver will almost
certainly detect this. Message authentication is also called data-origin authentication. Message
authentication is said to protect the integrity of a message, ensuring that each message that it is
received and deemed acceptable is arriving in the same condition that it was sent out—with no
bits inserted, missing, or modified.

Here we’ll be looking at the shared-key setting for message authentication (remember that
message authentication in the public-key setting is the problem addressed by digital signatures). In
this case the sender and the receiver share a secret key, K, which they’ll use to authenticate their
transmissions. We’ll define the message authentication goal and we’ll describe some different ways
to achieve it. As usual, we’ll be careful to pin down the problem we’re working to solve.

7.1 The setting

It is often crucial for an agent who receives a message to be sure who sent it. If a hacker can
call into his bank’s central computer and produce deposit transactions that appears to be coming
from a branch office, easy wealth is just around the corner. If an unprivileged user can interact
over the network with his company’s mainframe in such a way that the machine thinks that the
packets it is receiving are coming from the system administrator, then all the machine’s access-
control mechanisms are for naught. In such cases the risk is that an adversary A, the forger, will
create messages that look like they come from some other party, S, the (legitimate) sender. The
attacker will send a message M to R, the receiver (or verifier), under S’s identity. The receiver
R will be tricked into believing that M originates with S. Because of this wrong belief, R may
inappropriately act on M.

The rightful sender S could be one of many different kinds of entities, like a person, a corpora-
tion, a network address, or a particular process running on a particular machine. As the receiver R,
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Figure 7.1: An authenticated-encryption scheme. Here we are authenticating messages with what
is, syntactically, just an encryption scheme. The sender transmits a transformed version C' of M
and the receiver is able to recover M’ = M or else obtain indication of failure. Adversary A controls
the communication channel and may even influence messages sent by the sender.

you might know that it is S that supposedly sent you the message M for a variety of reasons. For
example, the message M might be tagged by an identifier which somehow names S. Or it might
be that the manner in which M arrives is a route dedicated to servicing traffic from S.
Here we’re going to be looking at the case when S and R already share some secret key, K.
How S and R came to get this shared secret key is a separate question, one that we deal with later.
There are several high-level approaches for authenticating transmissions.

1. The most general approach works like this. To authenticate a message M using the key K,
the sender will apply some encryption algorithm £ to K, giving rise to a ciphertext C. When
we speak of encrypting M in this context, we are using the word in the broadest possible
sense, as any sort of keyed transformation on the message that obeys are earlier definition for
the syntax of an encryption scheme; in particular, we are not suggesting that C conceals M.
The sender S will transmit C' to the receiver R. Maybe the receiver will receive C', or maybe
it will not. The problem is that an adversary A may control the channel on which messages
are being sent. Let C’ be the message that the receiver actually gets. The receiver R, on
receipt of C’, will apply some decryption algorithm D to K and C’. We want that this
should yield one of two things: (1) a message M’ that is the original message M; or (2) an
indication L that C’ be regarded as inauthentic. Viewed in this way, message authentication
is accomplished by an encryption scheme. We are no longer interested in the privacy of
the encryption scheme but, functionally, it is still an encryption scheme. See Fig. 7.1. We
sometimes use the term authenticated encryption to indicate that we are using an encryption
scheme to achieve authenticity.

2. Since our authenticity goal is not about privacy, most often the ciphertext C' that the sender
transmits is simply the original message M together with a tag T'; that is, C = (M, T).
When the ciphertext is of this form, we call the mechanism a message-authentication scheme.
A message-authentication scheme will be specified by a tag-generation algorithm TG and
a tag-verification algorithm VF. The former may be probabilistic or stateful; the latter is
neither. The tag-generation algorithm TG produces a tag T <> TG (M) from a key K and
the message. The tag-verification algorithm VF « VFg (M’ T') produces a bit from a key
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Figure 7.2: A message authentication scheme. This is a special case of the more general framework
from the prior diagram. The authenticated message C' is now understood to be the original message
M together with a tag T'. Separate algorithms generate the tag and verify the pair.
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Figure 7.3: A message authentication code. This is a special case of a message authentication
scheme. The authenticated message C' is now understood to be the original message M together
with a tag T that is computed as a deterministic and stateless function of M and K. The receiver
verifies the authenticity of messages using the same MACing algorithm.

K, a message M’, and a tag T’. The intent is that the bit 1 tells the receiver to accept M’,
while the bit 0 tells the receiver to reject M'. See Fig. 7.5

3. The most common possibility of all occurs when the tag-generation algorithm TG is deter-
ministic and stateless. In this case we call the tag-generation algorithm, and the scheme itself,
a message authentication code, or MAC. When authentication is accomplished using a MAC,
we do not need to specify a separate tag-verification algorithm, for tag-verification always
works he same way: the receiver, having received (M’,T"), computes T* = MACg (M'). If
this computed-tag T* is identical to the received tag T” then the receiver regards the message
M’ as authentic; otherwise, the receiver regards M’ as inauthentic. We write T'= MACg (M)
for the tag generated by the specified MAC. See Fig. 7.5

When the receiver decides that a message he has received is inauthentic what should he do?
The receiver might want to just ignore the bogus message. Perhaps it was just noise on the channel;
or perhaps taking action will do more harm than good, opening up new possibilities for denial-of-
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service attacks. Alternatively, the receiver may want to take more decisive actions, like tearing
down the channel on which the message was received and informing some human being of apparent
mischief. The proper course of action is dictated by the circumstances and the security policy of
the receiver.

We point out that adversarial success in violating authenticity demands an active attack: to
succeed, the adversary has to do more than listen—it has to get some bogus message to the receiver.
In some communication scenarios it may be difficult for the adversary to get its messages to the
receiver. For example, it may be tricky for an adversary to drop its own messages onto a physically
secure phone line or fiber-optic channel. In other environments it may be trivial for the adversary
to put messages onto the channel. Since we don’t know what are the characteristics of the sender—
receiver channel it is best to assume the worst and think that the adversary has plenty of power
over this channel. We will actually assume even more than that, giving the adversary the power of
creating legitimately authenticated messages.

We wish to emphasize that the message-authentication problem is very different from the privacy
problem. We are not worried about secrecy of the message M; our concern is in whether the
adversary can profit by injecting new messages into the communications stream. Not only is the
problem conceptually different but, as we shall now see, privacy-providing encryption does nothing
to ensure message authenticity.

7.2 Privacy does not imply authenticity

We know how to encrypt data so as to provide privacy, and something often suggested—and
even done—is to encrypt as a way to provide authenticity. Fix a symmetric encryption scheme
S€ = (K,&,D), and let parties S and R share a key K for this scheme. When S wants to send
a message M to R, she encrypts it, transferring a ciphertext M’ = C generated via C' < & K(M).
The receiver B decrypts it and, if it “makes sense”, he regards the recovered message M = Dy (C)
as authentic.

The argument that this works is as follows. Suppose, for example, that S transmits an ASCII
message Moo which indicates that R should please transfer $100 from the checking account of S
to the checking account of some other party A. The adversary A wants to change the amount from
the $100 to $900. Now if Mjgg had been sent in the clear, A can easily modify it. But if Mg
is encrypted so that ciphertext Cgg is sent, how is A to modify Cigp so as to make S recover the
different message Mggp? The adversary A does not know the key K, so she cannot just encrypt
Myop on her own. The privacy of C1gg already rules out that Cigp can be profitably tampered with.

The above argument is completely wrong. To see the flaws let’s first look at a counter-example.
If we encrypt Migp using a one time pad, then all the adversary has to do is to xor the byte of
the ciphertext Chgg that encodes the character “1” with the xor of the bytes for 1 and 9. That is,
when we one-time pad encrypt, the privacy of the transmission does not make it difficult for the
adversary to tamper with ciphertext so as to produce related ciphertexts.

How should one react to this counter-example? What you should not conclude is that one-time
pad encryption is unsound. Our goal for the one-time pad was to provide privacy, and nothing we
have said suggests that one-time pad encryption does not. Faulting the one-time pad encryption
scheme for not providing authenticity is like faulting a car for not being able to fly; there is no
reason to expect a tool designed to solve one problem to be effective at solving another.

You should not conclude that the example is contrived, and that you’d fare far better with some
other encryption method. One-time-pad encryption is not at all contrived. And other methods of
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encryption, like CBC encryption, are only marginally better at protecting message integrity. This
will be explored in the exercises.

You should not conclude that the failure stemmed from a failure to add “redundancy” before the
message was encrypted. Adding redundancy is something like this: before the sender S encrypts his
data he pads it with some known, fixed string, like 128 bits of zeros. When the receiver decrypts the
ciphertext he checks whether the decrypted string ends in 128 zeros. He rejects the transmission if
it does not. Such an approach can, and almost always will, fail. For example, the added redundancy
does absolutely nothing for our one-time-pad example.

What you should conclude is that privacy-providing encryption was never an appropriate ap-
proach for protecting its authenticity. With hindsight, this is pretty clear. The fact that data is
encrypted need not prevent an adversary from being able to make the receiver recover data different
from that which the sender had intended. Indeed with most encryption schemes any ciphertext will
decrypt to something, so even a random transmission will cause the receiver to receive something
different from what the sender intended, which was not to send any message at all. Now perhaps
the random ciphertext will look like garbage to the receiver, or perhaps not. Since we do not know
what the receiver intends to do with his data it is impossible to say.

Since the encryption schemes we have discussed were not designed for authenticating messages,
they don’t. We emphasize this because the belief that good encryption, perhaps after adding re-
dundancy, already provides authenticity, is not only voiced, but even printed in books or embedded
into security systems.

Good cryptographic design is goal-oriented. One must understand and formalize our goal. Only
then do we have the basis on which to design and evaluate potential solutions. Accordingly, our
next step is to come up with a definition for a message-authentication scheme and its security.

7.3 Syntax for message authentication

In Section 7.1 we sketched three approaches, each more narrow than then the next, for providing
authenticity. The first, which we called authenticated encryption, one provides authenticity by
using what is a symmetric encryption scheme II = (K, &, D). The imagined purpose shifts from
providing privacy to providing authenticity, but the syntax of does not change. Recall that we
already built into our definition of a symmetric encryption scheme the possibility that decryption
would output a distinguished value L. We didn’t use that capability in defining privacy—Dbut we
will need it for authenticity. Intuitively, the decryption mechanism outputting L is interpreted as
meaning that the ciphertext received (that is, the authenticated message) should be regarded as
invalid.

We also singled out two more specific ways to provide authenticity. special cases of the above
encryption schemes designed The first was a message-authentication scheme. Formally, this is a
pair of algorithms (TG, VF). The first of these may be probabilistic or stateful, while the second
is deterministic. Algorithm TG (for “tag generation”) takes as input a string K € K, for some
associated set IC, and a string M € {0, 1}*. The set K is either finite or otherwise has an associated
probability distribution (we must be able to choose a random point K from K). The tag-generation
algorithm TG produces a tag T <~ TG (M) € {0,1}* U {L}. Algorithm VF (for “verification”)
takes as input strings K €, M € {0,1}*, and T € {0, 1}*. It outputs a bit VFx (M, T) € {0,1}. The
intended semantics is 1 for accept and 0 for reject. We insist that if T <> TG (M) and T # L then
VFg(M,T) = 1. Every message-authentication scheme gives rise to an encryption scheme where



160 MESSAGE AUTHENTICATION

Ex (M) computes T <& TGx (M) and returns (M, T), and D ((M,T)) = M if VF(M,T) = 1
while Dy ((M,T)) = L otherwise. Of course this encryption scheme does nothing to provide
privacy.

A message authentication code (MAC) corresponds to the special case of a message-authentication
scheme in which tag-generation is deterministic and stateful. Formally, a message authentication
code is a deterministic algorithm MAC: K x {0,1}* — {0,1}* U{L} where K is a finite set, or is
otherwise endowed with a probability distribution. The tag for a message M is T = MACg(M).
To verify (M, T) the receiver checks if T'= MACg (M). If so, message M is viewed as authentic;
otherwise, the message is viewed as being a forgery.

Note that our definitions don’t permit stateful message-recovery / verification. Stateful func-
tions for the receiver can be problematic because of the possibility of messages not reaching their
destination—it is too easy for the receiver to be in a state different from the one that we’d like. All
the same, stateful MAC verification functions are essential for detecting “replay attacks.”

Recall that it was essential for the IND-CPA security of an encryption scheme that the en-
cryption algorithm be probabilistic or stateful—you couldn’t achieve IND-CPA security with a
deterministic encryption algorithm. But we will see that probabilism and state are not necessary
for achieving secure message authentication. This realization is built into the fact that we deal
with MACs.

7.4 Definitions of security

Let us concentrate first on message authentication codes. We begin with a discussion of the issues
and then state a formal definition.

The goal that we seek to achieve with a MAC is to be able to detect any attempt by the adversary
to modify the transmitted data. We don’t want the adversary to be able to produce messages that
the receiver will deem authentic—only the sender should be able to do this. That is, we don’t want
that the adversary A to be able to create a pair (M, Tag) such that VFg (M, Tag) = 1, but M
did not originate with the sender S. Such a pair (M, Tag) is called a forgery. If the adversary can
make such a pair, she is said to have forged.

In some discussions of security people assume that the adversary’s goal is to recover the secret
key K. Certainly if it could do this, it would be a disaster, since it could then forge anything. It
is important to understand, however, that an adversary might be able to forge without being able
to recover the key, and if all we asked was for the adversary to be unable to recover the key, we’d
be asking too little. Forgery is what counts, not key recovery.

Now it should be admitted right away that some forgeries might be useless to the adversary.
For example, maybe the adversary can forge, but it can only forge strings that look random;
meanwhile, suppose that all “good” messages are supposed to have a certain format. Should this
really be viewed as a forgery? The answer is yes. If checking that the message is of a certain format
was really a part of validating the message, then that should have been considered as part of the
message-authentication code. In the absence of this, it is not for us to make assumptions about how
the messages are formatted or interpreted; we really have no idea. Good protocol design means the
security is guaranteed no matter what is the application.

In our adversary’s attempt to forge a message we could consider various attacks. The simplest
setting is that the adversary wants to forge a message even though it has never seen any transmission
sent by the sender. In this case the adversary must concoct a pair (M, T') that is valid, even though
it hasn’t obtained any information to help. This is called a no-message attack. It often falls
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short of capturing the capabilities of realistic adversaries, since an adversary who can inject bogus
messages onto the communications media can probably see valid messages as well. We should let
the adversary use this information.

Suppose the sender sends the transmission (M, T') consisting of some message M and its legit-
imate tag T'. The receiver will certainly accept this—that is built into our definition. Now at once
a simple attack comes to mind: the adversary can just repeat this transmission, (M, T), and get
the receiver to accept it once again. This attack is unavoidable, for our MAC is a deterministic
function that the receiver recomputes. If the receiver accepted (M,T) once, he’s bound to do it
again.

What we have just described is called a replay attack. The adversary sees a valid (M, T) from
the sender, and at some later point in time it re-transmits it. Since the receiver accepted it the
first time, he’ll do so again.

Should a replay attack count as a valid forgery? In real life it usually should. Say the first
message was “Transfer $1000 from my account to the account of party A.” Then party A may have
a simple way to enriching herself: it just keeps replaying this same authenticated message, happily
watching her bank balance grow.

It is important to protect against replay attacks. But for the moment we will not try to do
this. We will say that a replay is not a valid forgery; to be valid a forgery must be of a message
M which was not already produced by the sender. We will see later that we can always achieve
security against replay attacks by simple means; that is, we can take any message authentication
mechanism which is not secure against replay attacks and modify it—after making the receiver
stateful—so that it will be secure against replay attacks. At this point, not worrying about replay
attacks results in a cleaner problem definition. And it leads us to a more modular protocol-design
approach—that is, we cut up the problem into sensible parts (“basic security” and then “replay
security”) solving them one by one.

Of course there is no reason to think that the adversary will be limited to seeing only one
example message. Realistic adversaries may see millions of authenticated messages, and still it
should be hard for them to forge.

For some message authentication schemes the adversary’s ability to forge will grow with the
number g5 of legitimate message-tag pairs it sees. Likewise, in some security systems the number
of valid (M, T) pairs that the adversary can obtain may be architecturally limited. (For example,
a stateful Signer may be unwilling to MAC more than a certain number of messages.) So when we
give our quantitative treatment of security we will treat ¢s as an important adversarial resource.

How exactly do all these tagged messages arise? We could think of there being some distribution
on messages that the sender will authenticate, but in some settings it is even possible for the
adversary to influence which messages are tagged. In the worst case, imagine that the adversary
itself chooses which messages get authenticated. That is, the adversary chooses a message, gets its
tag, chooses another message, gets its tag, and so forth. Then it tries to forge. This is called an
adaptive chosen-message attack. It wins if it succeeds in forging the MAC of a message which it
has not queried to the sender.

At first glance it may seem like an adaptive chosen-message attack is unrealistically generous to
our adversary; after all, if an adversary could really obtain a valid tag for any message it wanted,
wouldn’t that make moot the whole point of authenticating messages? In fact, there are several
good arguments for allowing the adversary such a strong capability. First, we will see examples—
higher-level protocols that use MACs—where adaptive chosen-message attacks are quite realistic.
Second, recall our general principles. We want to design schemes which are secure in any usage.
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This requires that we make worst-case notions of security, so that when we err in realistically
modeling adversarial capabilities, we err on the side of caution, allowing the adversary more power
than it might really have. Since eventually we will design schemes that meet our stringent notions
of security, we only gain when we assume our adversary to be strong.

As an example of a simple scenario in which an adaptive chosen-message attack is realistic,
imagine that the sender S is forwarding messages to a receiver R. The sender receives messages
from any number of third parties, Aq,...,A,. The sender gets a piece of data M from party A;
along a secure channel, and then the sender transmits to the receiver (i) | M || MACKk((i) || M).
This is the sender’s way of attesting to the fact that he has received message M from party A;.
Now if one of these third parties, say Aj, wants to play an adversarial role, it will ask the sender
to forward its adaptively-chosen messages M7, Mo, ... to the receiver. If, based on what it sees, it
can learn the key K, or even if it can learn to forge message of the form (2) || M, so as to produce
a valid (2) || M | MACKk((2) || M), then the intent of the protocol will have been defeated.

So far we have said that we want to give our adversary the ability to obtain MACs for messages
of its choosing, and then we want to look at whether or not it can forge: produce a valid (M, T)
pair where it never asked the sender to MAC M. But we should recognize that a realistic adversary
might be able to produce lots of candidate forgeries, and it may be content if any of these turn
out to be valid. We can model this possibility by giving the adversary the capability to tell if a
prospective (M, T') pair is valid, and saying that the adversary forges if it ever finds an (M, T') pair
that is but M was not MACed by the sender.

Whether or not a real adversary can try lots of possible forgeries depends on the context.
Suppose the receiver is going to tear down a connection the moment he detects an invalid tag.
Then it is unrealistic to try to use this receiver to help you determine if a candidate pair (M, T) is
valid—one mistake, and you’re done for. In this case, thinking of there being a single attempt to
forge a message is quite adequate.

On the other hand, suppose that a receiver just ignores any improperly tagged message, while
it responds in some noticeably different way if it receives a properly authenticated message. In this
case a quite reasonable adversarial strategy may be ask the verifier about the validity of a large
number of candidate (M,T') pairs. The adversary hopes to find at least one that is valid. When
the adversary finds such an (M,T) pair, we’ll say that it has won.

Let us summarize. To be fully general, we will give our adversary two different capabilities.
The first adversarial capability is to obtain a MAC M for any message that it chooses. We will call
this a signing query. The adversary will make some number of them, ¢s. The second adversarial
capability is to find out if a particular pair (M, T') is valid. We will call this a verification query.
The adversary will make some number of them, ¢,. Our adversary is said to succeed—to forge—if
it ever makes a verification query (M,T) and gets a return value of 1 (ACCEPT) even though the
message M is not a message that the adversary already knew a tag for by virtue of an earlier signing
query. Let us now proceed more formally.

Let MAC: K£x{0,1}* — {0,1}* be an arbitrary message authentication code. We will formalize
a quantitative notion of security against adaptive chosen-message attack. We begin by describing
the model.

We distill the model from the intuition we have described above. There is no need, in the model,
to think of the sender and the verifier as animate entities. The purpose of the sender, from the
adversary’s point of view, is to authenticate messages. So we will embody the sender as an oracle
that the adversary can use to authenticate any message M. This tag-generation oracle, as we will
call it, is our way to provide the adversary black-box access to the function MACk(+). Likewise,
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Figure 7.4: The model for a message authentication code. Adversary A has access to a tag-
generation oracle and a tag-verification oracle. The adversary wants to get the verification oracle
to answer 1 to some (M, T) for which it didn’t earlier ask the signing oracle M. The verification
oracle returns 1 if T = MACg (M) and 0 if T # MACg(M).

the purpose of the verifier, from the adversary’s point of view, is to have that will test attempted
forgeries. So we will embody the verifier as an oracle that the adversary can use to see if a candidate
pair (M, T) is valid. This verification oracle, as we will call it, is our way to provide the adversary
black-box access to the function VF g (-) which is 1 if 7= MACk (M) and 0 otherwise. Thus, when
we become formal, the cast of characters—the sender, receiver, and the adversary—gets reduced
to just the adversary, running with its oracles.

Definition 7.1 [MAC security] Let MAC: K x {0,1}* — {0,1}* be a message authentication
code and let A be an adversary. We consider the following experiment:

Experiment Expiidia(A)
K&K
Run AMACK()VFK() where VF (M, T) is 1 if MACg (M) = T and 0 otherwise
if A made a VFg query (M, T) such that
— The oracle returned 1, and
— A did not, prior to making verification query (M, T),
make tag-generation query M
then return 1 else return 0

The uf-cma advantage of A is defined as
AdVifRE® (4) = Pr[Expifxe®(4)=1] .1

Let us discuss the above definition. Fix a message authentication code MAC. Then we associate to
any adversary A its “advantage,” or “success probability.” We denote this value as Advquféna (A).
It’s just the chance that A manages to forge. The probability is over the choice of key K and the
probabilistic choices, if any, that the adversary A makes.

As usual, the advantage that can be achieved depends both on the adversary strategy and the
resources it uses. Informally, 11 is secure if the advantage of a practical adversary is low.

As usual, there is a certain amount of arbitrariness as to which resources we measure. Certainly
it is important to separate the oracle queries (¢s and ¢ ) from the time. In practice, signing queries
correspond to messages sent by the legitimate sender, and obtaining these is probably more difficult
than just computing on one’s own. Verification queries correspond to messages the adversary hopes
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the verifier will accept, so finding out if it does accept these queries again requires interaction. Some
system architectures may effectively limit ¢ and ¢,. No system architecture can limit ¢; that is
limited primarily by the adversary’s budget.

We emphasize that there are contexts in which you are happy with a MAC that makes forgery
impractical when ¢, = 1 and ¢s = 0 (an “impersonation attack”) and there are contexts in which
you are happy when forgery is impractical when ¢, = 1 and ¢s = 1 (a “substitution attack”). But
it is perhaps more common that you’d like for forgery to be impractical even when ¢ is large, like
250 and when ¢, is large, too.

Naturally the key K is not directly given to the adversary, and neither are any random choices
or counter used by the MAC-generation algorithm. The adversary sees these things only to the
extent that they are reflected in the answers to her oracle queries.

With a definition for MAC security in hand, it is not hard for us to similarly define authenticity
for encryption schemes and message-authentication schemes. Let us do the former; we will explore
the latter in exercises. We have an encryption scheme IT = (K, £, D) and we want to measure how
effective an adversary is at attacking its authenticity.

Definition 7.2 [Authenticity of an encryption scheme] Let IT = (K, £, D) be an encryption
scheme and let A be an adversary. We consider the following experiment:

Experiment Expith(A)

K&K
Run ASx()VFr() where VF i (C) is 1 if D (C) € {0,1}* and 0 if D (C) = L
if A made a VFg query C such that
— The oracle returned 1, and
— A did not, prior to making verification query C,
make an encryption query that returned C'
then return 1 else return 0

The authenticity advantage of A is defined as
Adv¥th(A) = Pr[Expith(4)=1].1

We note that we could just as well have provided A with a decryption oracle D (-) instead of
a verification oracle VFg(+), giving the adversary credit if it ever manages to ask a this oracle a
query C' that decrypts to something other than 1 and where C was not already returned by the
encryption oracle.

7.5 Examples

Let us examine some example message authentication codes and use the definition to assess their
strengths and weaknesses. We fix a PRF F: K x {0,1}" — {0,1}". Our first scheme MAC1: K x
{0,1}* — {0,1}* works as follows:

algorithm MAC1 (M)
if (|[M|modn # 0 or |M|=0) then return L
Break M into n-bit blocks M = My ... M,,
for i — 1to mdoY; — Fx(M,)
T—Yi® - DY,
return T
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Now let us try to assess the security of this message authentication code.

Suppose the adversary wants to forge the tag of a certain given message M. A priori it is unclear
this can be done. The adversary is not in possession of the secret key K, so cannot compute Fg
and use it to compute T'. But remember that the notion of security we have defined says that the
adversary is successful as long as it can produce a correct tag for some message, not necessarily
a given one. We now note that even without a chosen-message attack (in fact without seeing any
examples of correctly tagged data) the adversary can do this. It can choose a message M consisting
of two equal blocks, say M = X || X where X is some n-bit string, set 7'+ 0", and make verification
query (M, T). Notice that VF (M, Tag) = 1 because Fi () @ Fi(z) = 0" =T. In more detail,
the adversary is as follows.

algorithm All\/[ACK(‘)vVFK(w)

Let X be any n-bit string
T 0"
d— VFg(M,T)

Then Advi?(A;) = 1. Furthermore A; makes no signing oracle queries, uses t = O(n) time,
and its verification query has length 2n-bits, so it is very practical.
There are many other attacks. For example we note that

T = FK(Ml) EBFK(MQ)

is not only the tag of M M> but also the tag of MaM;. So it is possible, given the tag of a message,
to forge the tag of a new message formed by permuting the blocks of the old message. We leave it
to the reader to specify the corresponding adversary and compute its advantage.

Let us now try to strengthen the scheme to avoid these attacks. Instead of applying Fx to a
data block, we will first prefix the data block with its index. To do this, first pick some parameter ¢
with 1 < ¢ < n —1. We will write each block’s index as an ¢-bit string. The MAC-generation
algorithm is the following:

algorithm MAC2g (M)
ne—n—1
if (|[M|]modn#0or |M|=0or|M|/n>2") then return L
Break M into n-bit blocks M = My ... My,
for i —1tomdoY; — Fg([i], || M;)
T—Yi® Y,
return Tag

As the code indicates, we divide M into blocks, but the size of each block is smaller than in
our previous scheme: it is now only n = n — ¢ bits. Then we prefix the i-th message block with the
value i itself, the block index, written in binary as a string of length exactly m bits. It is to this
padded block that we apply Fx before taking the xor.

Note that encoding of the block index ¢ as an ‘ota-bit string is only possible if ¢ < 2*. This means
that we cannot authenticate a message M having more 2* blocks. This explains the conditions under
which the MAC returns 1. However this is a feasible restriction in practice, since a reasonable value
of ¢, like « = 32, is large enough that very long messages will be in the message space.

Anyway, the question we are really concerned with is the security. Has this improved from
scheme MAC1? Begin by noticing that the attacks we found on MAC1 no longer work. For
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example if X is an 7-bit string and we let M = X || X then its tag is not likely to be 0™. Similarly,
the second attack discussed above, namely that based on permuting of message blocks, also has
low chance of success against the new scheme. Why? In the new scheme, if M;, My are strings of
length n, then

MAC2g (M1 M) = Fg([1], | M1) & Fr([2], || M2)
MAC2k (MaMy) = Fr([1],, | M2) ® Fr([2], || M) .

These are unlikely to be equal. As an exercise, a reader might upper bound the probability that
these values are equal in terms of the value of the advantage of F' at appropriate parameter values.

All the same, MAC?2 is still insecure. The attack however require a more non-trivial usage of
the chosen-message attacking ability. The adversary will query the tagging oracle at several related
points and combine the responses into the tag of a new message. We call it Ao—

algorithm AIQ\/IACK('),VFK(.)

Let Ay, By be distinct, 7-bit strings

Let Ay, By be distinct n-bit strings

T1 — MACK(AlAQ) 5 TQ — MACK(AlBQ) N T3 — MACK(BlAQ)
T—T @TrdT3

d «— VFK(BlBQ, T)

We claim that Advii<@(Ay) = 1. Why? This requires two things. First that VF (B Ba, T) = 1,
and second that BBy was never a query to MACk(+) in the above code. The latter is true because
we insisted above that a; # by and ay # be, which together mean that BBy & {A1As, A1 By, B1As}.
So now let us check the first claim. We use the definition of the tagging algorithm to see that

T = Fr(], [ A1) @ Fk([2], | A2)
T, = Fr([1], [l A1) & Fx([2], | B2)
Ts = Fr([1], [| B1) ® Fx([2], [| A2) -
Now look how As defined T" and do the computation; due to cancellations we get
T = Tl & T
= Fx([1], [ B1) & Fx([2], [| B2) -

This is indeed the correct tag of By Ba, meaning the value T” that VF (B Bz, T) would compute,
so the latter algorithm returns 1, as claimed. In summary we have shown that this scheme is
insecure.

It turns out that a slight modification of the above, based on use of a counter or random number
chosen by the MAC algorithm, actually yields a secure scheme. For the moment however we want
to stress a feature of the above attacks. Namely that these attacks did not cryptanalyze the PRF F.
The attacks did not care anything about the structure of F'; whether it was DES, AES, or anything
else. They found weaknesses in the message authentication schemes themselves. In particular, the
attacks work just as well when Fk is a random function, or a “perfect” cipher. This illustrates
again the point we have been making, about the distinction between a tool (here the PRF) and
its usage. We need to make better usage of the tool, and in fact to tie the security of the scheme
to that of the underlying tool in such a way that attacks like those illustrated here are provably
impossible under the assumption that the tool is secure.
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7.6 The PRF-as-a-MAC paradigm

Pseudorandom functions make good MACs, and constructing a MAC in this way is an excellent
approach. Here we show why PRFs are good MACs, and determine the concrete security of the
underlying reduction. The following shows that the reduction is almost tight—security hardly
degrades at all.

Let F: K x D — {0,1}" be a family of functions. We associate to F' a message authentication
code MAC: K x D — {0,1}7 via

algorithm MACg (M)
if (M ¢ D) then return L
T «— Fr(M)
return T

Note that when we think of a PRF as a MAC it is important that the domain of the PRF be
whatever one wants as the domain of the MAC. So such a PRF probably won’t be realized as a
blockcipher. It may have to be realized by a PRF that allows for inputs of many different lengths,
since you might want to MAC messages of many different lengths. As yet we haven’t demonstrated
that we can make such PRFs. But we will. Let us first relate the security of the above MAC to
that of the PRF.

Proposition 7.3 Let F: K x D — {0,1}” be a family of functions and let MAC be the associated
message authentication code as defined above. Let A by any adversary attacking II, making g¢g
MAC-generation queries of total length ugs, ¢ MAC-verification queries of total length u,, and
having running time ¢. Then there exists an adversary B attacking I’ such that

Advifema (4) < AdvPT(B) + g—j . (7.1)
Furthermore B makes ¢s + ¢, oracle queries of total length ps 4+ p,, and has running time ¢.

Proof: Remember that B is given an oracle for a function f: D — {0,1}". It will run A, providing
it an environment in which A’s oracle queries are answered by B.

algorithm B
d—0;S 70
Run A
When A asks its signing oracle some query M:
Answer f(M)to A ; S — SU{M}
When A asks its verification oracle some query (M, Tag):
if f(M) = Tag then
answer 1 to A; if M ¢ S thend 1
else answer 0 to A
Until A halts

return d

We now proceed to the analysis. We claim that

Pr[Expy™(B)=1] = Advif ™ (4) (7.2)
Pr[Exp}(B)=1] < ;Lj. (7.3)
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Figure 7.5: The CBC MAC, here illustrated with a message M of four blocks, M = My MoMsMy.

Subtracting, we get Equation (7.1). Let us now justify the two equations above.

In the first case f is an instance of F', so that the simulated environment that B is providing for A
is exactly that of experiment Expﬁf'cma(A). Since B returns 1 exactly when A makes a successful

verification query, we have Equation (7.2).

In the second case, A is running in an environment that is alien to it, namely one where a random
function is being used to compute MACs. We have no idea what A will do in this environment, but
no matter what, we know that the probability that any particular verification query (M, Tag) with
M ¢ S will be answered by 1 is at most 277, because that is the probability that Tag = f(M).
Since there are at most ¢, verification queries, Equation (7.3) follows. |

7.7 The CBC MAC

A very popular class of MACs is obtained via cipher-block chaining of a given blockcipher. The
method is as follows:

Scheme 7.4 CBC MAC] Let E: £ x {0,1}" — {0,1}" be a blockcipher. The CBC MAC over
blockcipher E has key space K and is given by the following algorithm:

algorithm MACgk (M)
if M ¢ ({0,1}")" then return |
Break M into n-bit blocks My - - - M,
Cy 0"
for i=1to mdo C; «— Ex(Ci_1 ® M;)
return C),

See Fig. 7.5 for an illustration with m = 4. 1

As we will see below, the CBC MAC is secure only if you restrict attention to strings of some
one particular length: the domain is restricted to {0,1}™" for some constant m. If we apply the
CBC MAC across messages of varying lengths, it will be easy to distinguish this object from a
random function.
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Theorem 7.5 [2] Fixn > 1, m > 1, and ¢ > 2. Let A be an adversary that asks at most ¢ queries,
each of mn bits. Then that

Advgr}gC[Func(mn,n)](A) = on 1

Proof: Let A be an adversary that asks exactly ¢ queries and assume without loss of generality
that it never repeats a query. Refer to games C0-C9 in Fig. 7.6. Let us begin by explaining the
notation used there. Each query M? in the games is required to be a string of blocks, and we silently
parse M*® to M*® = M{M;j --- M, where each M; is a block. Recall that M7 |, = M7} ---M7?. The
function 7: {0,1}"™ — {0,1}" is initially undefined at each point. The set Domain(7) grows as we
define points 7(X), while Range(), initially {0, 1}", correspondingly shrinks. The table Y stores
blocks and is indexed by strings of blocks P having at most m blocks. A random block will come
to occupy selected entries Y [X] except for Y [¢], which is initialized to the constant block 0™ and
is never changed. The value defined (introduced at line 306) is an arbitrary point of {0, 1}", say 0™.
Finally, Prefix(M?, ..., M?) is the longest string of blocks P = P - - - P, that is a prefix of M* and
is also a prefix of M" for some r < s. If Prefix is applied to a single string the result is the empty
string, Prefix(P') = . As an example, letting A, B, and C be distinct blocks, Prefix(ABC) = ¢,
Prefix(ACC, ACB, ABB, ABA) = AB, and Prefix(ACC, ACB, BBB) = ¢.

We briefly explain the game chain up until the terminal game. Game CO0 is obtained from game C1
by dropping the assignment statements that immediately follow the setting of bad. Game C1 is
a realization of CBC™[Perm(n)] and game CO is a realization of Func(mn,n). Games C1 and CO
are designed so that the fundamental lemma applies, so the advantage of A in attacking the CBC
construction is at most Pr[A®C sets bad]. CO0—C2: The C0 — C2 transition is a lossy transition
that takes care of bad getting set at line 105, which clearly happens with probability at most
(0+14---+ (mg—1))/2" < 0.5m?¢?>/2", so Pr[A“C sets bad] < Pr[A®? sets bad] + 0.5 m?¢?/2".
C2—C3: Next notice that in game C2 we never actually use the values assigned to m, all that
matters is that we record that a value had been placed in the domain of 7, and so game C3 does
just that, dropping a fixed value defined = 0" into 7(X) when we want X to join the domain of .
C3—C4: Now notice that in game C3 the value returned to the adversary, although dropped into
Y [M7 - -- M3, is never subsequently used in the game so we could as well choose a random value Z*
and return it to the adversary, doing nothing else with Z*. This is the change made for game C4.
The transition is conservative. C4—C5: Changing game C4 to C5 is by the “coin-fixing” technique.

Coin-fixing in this case amounts to letting the adversary choose the sequence of queries M, ... M™
it asks and the sequence of answers returned to it. The queries still have to be valid: each M? is an
mn-bit string different from all prior ones: that is the query/response set. For the worst M!, ... M™,

which the coin-fixing technique fixes, Pr[A“* sets bad] < Pr[C5 sets bad]. Remember that, when
applicable, coin-fixing is safe. C5—C6: Game C6 unrolls the first iteration of the loop at lines 503—
507. This transformation is conservative. C6—C7: Game C7 is a rewriting of game C6 that omits
mention of the variables C' and X, directly using values from the Y -table instead, whose values are
now chosen at the beginning of the game. The change is conservative. C7—C8: Game C8 simply
re-indexes the for loop at line 705. The change is conservative. C8—C9: Game C9 restructures
the setting of bad inside the loop at 802-807 to set bad in a single statement. Points were into
the domain of 7 at lines 804 and 807 and we checked if any of these points coincide with specified
other points at lines 803 and 806. The change is conservative.

At this point, we have only to bound Pr[A®? sets bad]. We do this using the sum bound and a
case analysis. Fix any r,4, s,j as specified in line 902. Consider the following ways that bad can
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On the s query F(M?) Game C1 || On the s™ query F(M?®) Game C2
100 P « Prefix(M*,..., M*) 200 P « Prefix(M",... M*)
101 C — Y [P 201 C — Y [P]
102 for j < ||P||» +1to m do 202 for j «— ||P|l»+1to m do
103 X — C@ M 203 X CoM
104 C<&{o,13m N 204 C <o, 13"
105 if CeRange(r) then bad «— true, C' < Range(w) || 205 if X € Domain(7) then bad — true
106 if X €Domain(r) then bad — true, C' — m(X) 206 w(X)—C
107 7(X)<—C / 207 Y [MP ] C
108 Y [M;i_;]—C omit for Game C0 || 208 return C'
109 return C
On the s™ query F(M*) Game C3 || On the s query F(M?®) Game C4
300 P « Prefix(M",... M*) 400 P « Prefix(M*, ..., M*)
301 C «— Y [P] 401 C — Y [P
302 for j«— ||P|l»+1to m do 402 for j < ||P||» +1 to m do
303 X —CaoM 403 X —Cea M
304 {013 404 if X € Domain(7) then bad « true
305  if X € Domain(r) then bad < true 405 7w(X) < defined
306  w(X) « defined 406 C Y [M;;]<{0,1}"
307 Y[M;,]—C 407 z° £ {0,1}"
308 return C' 408 return Z°
500 for s+« 1to g do Game C5 || 600 for s« 1to ¢ do Game C6
501  P® « Prefix(M',..., M%) 601  P® « Prefix(M',... M%)
502 O« Y[PY] 602  C«— Y [P
503 for j— |[P°||. +1to m do 603 X — C ®Mjjps,, 11
504 X—CoM 604 if X € Domain(w) then bad « true
505 if X € Domain(m) then bad « true 605 7(X) « defined
506 7(X) « defined 606 C Y M pey, 1) < {0,1}"
507 C—YM_,;| —{01}" 607 for j — |[P°||. +2to m do
608 X—Caon
609 if X € Domain(w) then bad « true
610 w(X) < defined
611 C—YM._,]<{0,1}"
700 for X € {0,1}* do Y [X] <& {0,1}" Game C7 || 800 for X € {0,1}" do Y [X] < {0,1}" Game C8
701 for s« 1to qdo 801 for s+ 1to gdo
702 P® « Prefix(M', ..., M) 802 P« Prefix(M',..., M)
703 if Y [P°]@Mjps ), 11 € Domain(w) then bad «— true || 803  if Y [P*] @© Mjs), ;4 € Domain(7) then bad « true
704 7(Y [P°] © Mjps), 1) < defined 804 m(Y [P°] & Mjjps, 41) « defined
705 for j«— |[P’||, +2to m do 805 for j — [[P°|ln+1to m—1do
706 if Y [M{_;_,]®M; €Domain(r) then bad — true|| 806 if Y [Mi_;]®M; ; €Domain(w) then bad «— true
707 m(Y [Mi_ ;1] @ M]) < defined 807 m(Y [Mi_ ;] ® M, ,) < defined
900 for X € {0,1}* do Y [X] < {0,1}" Game C9
901 for s+« 1to g do P® « Prefix(M',... M%)

902 bad —3(r, i) £ (s,1) (r <) (i > [IP" |+ 1)(G > [P*[n+1)
903 Y P ]OMpr, +1=Y [P?] © Mjpsy, 41 and 7 <s or
904 Y M{_,;] ® M, =Y [P°] ® Mjpey 44 oOF

905 Y M _;] &ML, =Y M_,]$M,, or

906 Y[P]e Mﬁpr||,,,+1 =Y [Miaj] O M4

Figure 7.6: Games used in the CBC MAC analysis. Let Prefix(M!,..., M%) be ¢ if s = 1, else
the longest string P € ({0,1}")* s.t. P is a prefix of M*® and M" for some r < s. In each game,
Initialize sets Y [g] < 0".
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get set to true.

Line 903. We first bound Pr[Y [P'] @ M, = Y [Pl @My, 4] IfP" = P* = € then

PrY [P"] @ Mg o = Y [P°] & Mjps ] = PrMj = Mj] = 0 because M" and M*, having only € as a

common block prefix, must differ in their first block. If P = € but P® # ¢ then Pr[Y [P"] & Mipr1 =

Y [P°] @ Mjps (4] = PrM] = Y [P*] @ Mjp, ;] = 27" since the probability expression involves the

single random variable Y [P*] that is uniformly distributed in {0,1}". If P" # ¢ and P’ = ¢ the
same reasoning applies. If P" # ¢ and P # ¢ then Pr[Y [P"] & MﬂPT\\n+1 =Y[P’] ® MﬁPSHnH] —9-n
unless P = P*, so assume that to be the case. Then Pr[Y [P"] & MT\PTIInH =Y [P’ @ MﬁPSIInH] =

T J— S
PrMipe, 1 = Mjpsy, +1]

Line 904. We want to bound Pr[Y [P*] & Mips o1 = Y Mi_,;] &M, ,]. If P* = ¢ then Pr[Y [P°] @ Mips) a1 =

Y M) & My y] = Pr{Mjps 4 =Y [M]_;] &M ] =277 because it involves a single random value
Y [Mj_;]. So assume that P* # e. Then Pr[Y [P*] @ Mjp = Y [M_;] @M 4] = 27" unless
P* = Mj_; in which case we are looking at Pr[Mj,. ;=M. ,]. But this is 0 because P* = Mj_;

means that the longest prefix that M° shares with M" is P® and so MﬁPSH" 41 =+ MﬁPSIIn Iy

= 0 because P" = P? is the longest block prefix that coincides in M" and M°.

1—i-
In that case [|[P®||,, > j and ||P"||,, > i, contradicting our choice of allowed values for i and j at

line 902.

Line 905. What is Y [Mj_,] ®Mj ; = Y [M]_,;] ®M,;. Tt is 27" unless i = j and Mj_,; = Mj

Line 906. We must bound Pr[Y [P"] ® Mipr, 41 = Y M ;] &M, ,]. As before, this is 27" unless
P" =Mj_,; but we can not have that P" = Mj_,; because j > |[P*[;, + 1.

There are at most 0.5m2q? tuples (7,1, s, j) considered at line 902 and we now know that for each of
them bad gets set with probability at most 27". So Pr[Game C9 sets bad] < 0.5m?¢?/2". Com-
bining with the loss from the C0—C2 transition we have that Pr[Game C0 sets bad] < m?q¢?/2",
completing the proof. I

7.8 The universal-hashing approach

We have shown that one paradigm for making a good MAC is to make something stronger: a good
PREF. Unfortunately, out-of-the-box PRF's usually operate on strings of some fixed length, like 128
bits. That’s almost certainly not the domain that we want for our MAC’s message space. In this
section we describe a simple paradigm for extending the domain of a PRF by using a universal
hash-function family. Several MACs can be seen as instances of this approach.

Definition 7.6 Let H: Kx M — {0,1}" and let § be a real number. We say that H is 6-AU (read
this as ¢ almost-universal) if for all distinct M, M’ € M, Pr[K & K : Hy(M) = Hg(M')] < 6.

Definition 7.7 Let H: K x M — {0,1}" and F: K’ x {0,1}" — {0,1}" be function families.
Then F o H is the function family F'o H: (K x K') x M — {0,1}7 defined by F o H( gy (M) =
Frr/(Hg(M)).

Theorem 7.8 Let H: K x M — {0,1}" be a §-AU function family and let F' = Func(n,7) be the
family of all functions from n bits to 7 bits. Let A be an adversary that asks at most ¢ queries.
Then AdvPE, (4) < (4)6%.
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To be continued. Give a CW mod-p arithmetic MAC. Then describe EMAC and CMAC, and
HMAC, probably in different sections.

7.9 Problems

Problem 7.1 Consider the following variant of the CBC MAC, intended to allow one to MAC
messages of arbitrary length. The construction uses a blockcipher E : {0,1}* x {0,1}" — {0, 1}",
which you should assume to be secure. The domain for the MAC is ({0,1}")". To MAC M under
key K compute CBCg (M || |M]), where |M] is the length of M, written in n bits. Of course K has
k bits. Show that this MAC is completely insecure: break it with a constant number of queries.

Problem 7.2 Consider the following variant of the CBC MAC, intended to allow one to MAC
messages of arbitrary length. The construction uses a blockcipher E : {0,1}¥ x {0,1}" — {0, 1}",
which you should assume to be secure. The domain for the MAC is ({0,1}™)". To MAC M under
key (K, K') compute CBCx (M) & K'. Of course K has k bits and K’ has n bits. Show that this
MAC is completely insecure: break it with a constant number of queries.

Problem 7.3 Let SE = (K, &, D) be a symmetric encryption scheme and let MA = (K, MAC, VF)
be a message authentication code. Alice (A) and Bob (B) share a secret key K = (K1, K2) where
K1 « K and K2 « K'. Alice wants to send messages to Bob in a private and authenticated way.
Consider her sending each of the following as a means to this end. For each, say whether it is a
secure way or not, and briefly justify your answer. (In the cases where the method is good, you
don’t have to give a proof, just the intuition.)

(a) M,MACk2(Ex1(M))

(b) Ex1(M, MACk2(M))

(c) MACk2(Ex1(M))

(d) Ex1(M), MACk2(M)

(e) Ex1(M),Ex1(MACK2(M))

(£) C,MAC2(C) where C = Ex1(M)

(g) Ex1(M, A) where A encodes the identity of Alice; B decrypts the received ciphertext C' and
checks that the second half of the plaintext is “A”.

In analyzing these schemes, you should assume that the primitives have the properties guaran-
teed by their definitions, but no more; for an option to be good it must work for any choice of a
secure encryption scheme and a secure message authentication scheme.

Now, out of all the ways you deemed secure, suppose you had to choose one to implement for
a network security application. Taking performance issues into account, do all the schemes look
pretty much the same, or is there one you would prefer?

Problem 7.4 Refer to problem 4.3. Given a blockcipher F : IC x {0,1}" — {0,1}", construct a
cipher (a “deterministic encryption scheme”) with message space {0, 1}* that is secure in the sense
that you defined. (Hint: you now know how to construct from E a pseudorandom function with
domain {0, 1}*.)
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Problem 7.5 Let H: {0,1}* x D — {0,1}* be a hash function, and let IT = (X, MAC, VF) be the
message authentication code defined as follows. The key-generation algorithm /C takes no inputs
and returns a random k-bit key K, and the tagging and verifying algorithms are:

algorithm MACk (M) | algorithm VF g (M, Tag')
Tag — H(K, M) Tag — H(K, M)
return Tag if Tag = Tag’ then return 1
else return 0

Show that
Ad cr2-hk t < —1)- Ad uf-cma, t/ -1 -1
Vi ( a%:u) —= (q ) VI ( »q y 15 g 7M>

for any t,q,pu with ¢ > 2, where ¢’ is t + O(log(q)). (This says that if II is a secure message
authentication code then H was a CR2-HK secure hash function.)
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Chapter 8

AUTHENTICATED ENCRYPTION

Authenticated encryption is the problem of achieving both privacy and authenticity in the shared-
key setting. Historically, this goal was given very little attention by cryptographers. Perhaps people
assumed that there was nothing to be said: combine what we did on encryption in Chapter 5 and
what we did on message authentication in Chapter 7—end of story, no?

The answer is indeed mo. First, from a theoretical point of view, achieving privacy and au-
thenticity together is a new cryptographic goal—something different from achieving privacy and
different from achieving authenticity. We need to look at what this goal actually means. Second,
even if we do plan to achieve authenticated encryption using the tools we’ve already looked at, say
an encryption scheme and a MAC, we still have to figure out how to combine these primitives in
a way that is guaranteed to achieve security. Finally, if our goal is to achieve both privacy and
authenticity then we may be able to achieve efficiency that would not be achievable if treating these
goals separately.

Rest of Chapter to be written.
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Chapter 9

COMPUTATIONAL NUMBER THEORY

9.1 The basic groups

Welet Z ={...,—2,-1,0,1,2,...} denote the set of integers. We let Z, = {1,2,...} denote the
set of positive integers and N = {0,1,2,...} the set of non-negative integers.

9.1.1 Integers mod N

If a,b are integers, not both zero, then their greatest common divisor, denoted ged(a,b), is the
largest integer d such that d divides a and d divides b. If ged(a,b) = 1 then we say that a and b
are relatively prime. If a, N are integers with N > 0 then there are unique integers r, ¢ such that
a=Ng+rand 0 <r < N. We call r the remainder upon division of ¢ by N, and denote it by
a mod N. We note that the operation a mod N is defined for both negative and non-negative values
of a, but only for positive values of N. (When a is negative, the quotient g will also be negative,
but the remainder r» must always be in the indicated range 0 < r < N.) If a,b are any integers
and N is a positive integer, we write a = b (mod N) if a mod N = b mod N. We associate to any
positive integer N the following two sets:

Zy = {0,1,...,N—1}
Zy = {i€Z :1<i<N-1andged(i,N)=1}

The first set is called the set of integers mod N. Its size is IV, and it contains exactly the integers
that are possible values of a mod N as a ranges over Z. We define the Euler Phi (or totient)
function ¢: Zy — N by ¢(N) = |Z3| for all N € Z,. That is, ¢(N) is the size of the set Z%.
9.1.2 Groups

Let G be a non-empty set, and let - be a binary operation on G. This means that for every two
points a,b € GG, a value a - b is defined.

Definition 9.1 Let G be a non-empty set and let - denote a binary operation on G. We say that
G is a group if it has the following properties:
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CLOSURE: For every a,b € GG it is the case that a - b is also in G.

ASSOCIATIVITY: For every a,b,c € G it is the case that (a-b)-c=a-(b-c).

w N =

IDENTITY: There exists an element 1 € G such that a-1=1-a=a for all a € G.
4. INVERTIBILITY: For every a € G there exists a unique b € GG such that a-b=05b-a = 1.

The element b in the invertibility condition is referred to as the inverse of the element a, and is
denoted a~t. I

We now return to the sets we defined above and remark on their group structure. Let N be a
positive integer. The operation of addition modulo N takes input any two integers a, b and returns
(a + b) mod N. The operation of multiplication modulo N takes input any two integers a,b and
returns ab mod N.

Fact 9.2 Let N be a positive integer. Then Zy is a group under addition modulo N, and Z}; is
a group under multiplication modulo N. |

In Zy, the identity element is 0 and the inverse of a is —a mod N = N — a. In Z%,, the identity
element is 1 and the inverse of a is a b € Z}; such that ab =1 (mod N). In may not be obvious
why such a b even exists, but it does. We do not prove the above fact here.

In any group, we can define an exponentiation operation which associates to any a € G and
any integer i a group element we denote a’, defined as follows. If i = 0 then a’ is defined to be 1,
the identity element of the group. If ¢ > 0 then

a = a-a---a.
—
K2
If i is negative, then we define @’ = (a~!)~%. Put another way, let j = —i, which is positive, and
set
a = atoatagt

With these definitions in place, we can manipulate exponents in the way in which we are accustomed
with ordinary numbers. Namely, identities such as the following hold for all a« € G and all i, j € Z:

We will use this type of manipulation frequently without explicit explanation.

It is customary in group theory to call the size of a group G its order. That is, the order of a
group G is |G|, the number of elements in it. We will often make use of the following basic fact.
It says that if any group element is raised to the power the order of the group, the result is the
identity element of the group.

Fact 9.3 Let G be a group and let m = |G| be its order. Then ™ =1 for all a € G. 1

This means that computation in the group indices can be done modulo m:
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Proposition 9.4 Let G be a group and let m = |G| be its order. Then a* = a’ ™4™ for all a € G
and all i € Z. 1

We leave it to the reader to prove that this follows from Fact 9.3.

Example 9.5 Let us work in the group Z3; under the operation of multiplication modulo 21. The
members of this group are 1,2,4,5,8,10,11,13,16, 17,19, 20, so the order of the group is m = 12.
Suppose we want to compute 5% in this group. Applying the above we have

58 mod 21 = 586m0d12 11,421 = 52 mod 21 = 25mod 21 = 4.1

If G is a group, a set S C G is called a subgroup if it is a group in its own right, under the same
operation as that under which G is a group. If we already know that G is a group, there is a simple
way to test whether S is a subgroup: it is one if and only if -y~ € S for all 2,y € S. Here y~!
is the inverse of y in G.

Fact 9.6 Let G be a group and let S be a subgroup of G. Then the order of S divides the order
of G. 1

9.2 Algorithms

Fig. 9.1 summarizes some basic algorithms involving numbers. These algorithms are used to im-
plement public-key cryptosystems, and thus their running time is an important concern. We begin
with a discussion about the manner in which running time is measured, and then go on to discuss
the algorithms, some very briefly, some in more depth.

9.2.1 Bit operations and binary length

In a course or text on algorithms, we learn to analyze the running time of an algorithm as a function
of the size of its input. The inputs are typically things like graphs, or arrays, and the measure
of input size might be the number of nodes in the graph or the length of the array. Within the
algorithm we often need to perform arithmetic operations, like addition or multiplication of array
indices. We typically assume these have O(1) cost. The reason this assumption is reasonable is
that the numbers in question are small and the cost of manipulating them is negligible compared
to costs proportional to the size of the array or graph on which we are working.

In contrast, the numbers arising in cryptographic algorithms are large, having magnitudes like
2512 or 21024 The arithmetic operations on these numbers are the main cost of the algorithm, and
the costs grow as the numbers get bigger.

The numbers are provided to the algorithm in binary, and the size of the input number is thus
the number of bits in its binary representation. We call this the length, or binary length, of the
number, and we measure the running time of the algorithm as a function of the binary lengths of its
input numbers. In computing the running time, we count the number of bit operations performed.

Let bg_1...b1by be the binary representation of a positive integer a, meaning bg,...,by_1 are
bits such that by_; = 1 and @ = 25" 1by_1 + 287 2b_9 + - - - + 210y + 290;. Then the binary length
of a is k, and is denoted |a|. Notice that |a| = k if and only if 2¥~1 < a < 2¥. If a is negative, we
let |a| = | — al, and assume that an additional bit or two is used to indicate to the algorithm that
the input is negative.
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Figure 9.1: Some basic algorithms and their running time. Unless otherwise indicated, an
input value is an integer and the running time is the number of bit operations. G denotes a group.

9.2.2 Integer division and mod algorithms

We define the integer division function as taking input two integers a, IV, with N > 0, and returning
the quotient and remainder obtained by dividing a by N. That is, the function returns (¢, r) such
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that a = ¢N 47 with 0 < r < N. We denote by INT-DIV an algorithm implementing this function.
The algorithm uses the standard division method we learned way back in school, which turns out
to run in time proportional to the product of the binary lengths of ¢ and N.

We also want an algorithm that implements the mod function, taking integer inputs a, N with
N > 0 and returning a mod N. This algorithm, denoted MOD, can be implemented simply by
calling INT-DIV (a, N) to get (¢,7), and then returning just the remainder r.

9.2.3 Extended GCD algorithm

Suppose a, b are integers, not both 0. A basic fact about the greatest common divisor of a and b is
that it is the smallest positive element of the set

{aa+bb:abeZ}

of all integer linear combinations of a and b. In particular, if d = ged(a, b) then there exist integers
@, b such that d = aa + bb. (Note that either @ or b could be negative.)

Example 9.7 The ged of 20 and 12 is d = ged(20,12) = 4. We note that 4 = 20(2) + (12)(—3), so
in this case @ = 2 and b = —3. 1

Besides the ged itself, we will find it useful to be able to compute these weights @,b. This
is what the extended-ged algorithm EXT-GCD does: given a,b as input, it returns (d,a,b) such
that d = ged(a, b) = a@ + bb. The algorithm itself is an extension of Euclid’s classic algorithm for
computing the ged, and the simplest description is a recursive one. We now provide it, and then
discuss the correctness and running time. The algorithm takes input any integers a, b, not both
Zero.

Algorithm EXT-GCD(a, b)
If b = 0 then return (a, 1,0)
Else
(g,r) < INT-DIV(a,b)
(d,z,y) «— EXT-GCD(b, )

a<«—y

be—x—qy

Return (d, @, b)
EndlIf

The base case is when b = 0. If b = 0 then we know by assumption that a # 0, so ged(a,b) = a, and
since a = a(1) +b(0), the weights are 1 and 0. If b # 0 then we can divide by it, and we divide a by
it to get a quotient ¢ and remainder r. For the recursion, we use the fact that ged(a,b) = ged(b, 7).
The recursive call thus yields d = ged(a, b) together with weights z, y such that d = bx +ry. Noting
that a = bq + r we have

d=br+ry = br+(a—bqy = ay+blx —qy) = aa+bb,

confirming that the values assigned to @, b are correct.

The running time of this algorithm is O(|al - |b]), or, put a little more simply, the running time
is quadratic in the length of the longer number. This is not so obvious, and proving it takes some
work. We do not provide this proof here.
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We also want to know an upper bound on the lengths of the weights @, b output by EXT-GCD(a, b).
The running time bound tells us that [a|, [b| = O(Ja| - |b|), but this is not good enough for some of
what follows. I would expect that [al, [b| = O(|a| + |b]). Is this true? If so, can it be proved by
induction based on the recursive algorithm above?

9.2.4 Algorithms for modular addition and multiplication

The next two algorithms in Fig. 9.1 are the ones for modular addition and multiplication. To
compute (a + b) mod N, we first compute ¢ = a + b using the usual algorithm we learned way
back in school, which runs in time linear in the binary representations of the numbers. We might
imagine that it now takes quadratic time to do the mod operation, but in fact if ¢ > N, the mod
operation can be simply executed by subtracting N from ¢, which takes only linear time, which is
why the algorithm as a whole takes linear time. For multiplication mod N, the process is much
the same. First compute ¢ = ab using the usual algorithm, which is quadratic time. This time we
do the mod by invoking MOD(¢, N). (The length of ¢ is the sum of the lengths of a and b, and
so ¢ is not small as in the addition case, so a shortcut to the mod as we saw there does not seem
possible.)

9.2.5 Algorithm for modular inverse

The next algorithm in Fig. 9.1 is for computation of the multiplicative inverse of a in the group Z%;.
Namely, on input N > 0 and a € Z%,, algorithm MOD-INV returns b such that ab=1 (mod N).
The method is quite simple:

Algorithm MOD-INV (a, N)
(d,a,N) «— EXT-GCD(a, N)
b+ amod N

Return b

Correctness is easy to see. Since a € Z} we know that ged(a, N) = 1. The EXT-GCD algorithm
thus guarantees that d = 1 and 1 = a@ + NN. Since N mod N = 0, we have 1 = aa (mod N),
and thus b = @ mod N is the right value to return.

The cost of the first step is O(Ja| - [N|). The cost of the second step is O(|a| - |N|). If we
assume that |a| = O(|a| + |N|) then the overall cost is O(|a|-|N|). See discussion of the EXT-GCD
algorithm regarding this assumption on the length of @.

9.2.6 Exponentiation algorithm

We will be using exponentiation in various different groups, so it is useful to look at it at the group
level. Let G be a group and let @ € G. Given an integer n € Z we want to compute the group
element a" as defined in Section 9.1.2. The naive method, assuming for simplicity n > 0, is to
execute

y—1
Fort=1,...,n doy« y-a EndFor
Return y
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This might at first seem like a satisfactory algorithm, but actually it is very slow. The number of
group operations required is n, and the latter can be as large as the order of the group. Since we
are often looking at groups containing about 2°2 elements, exponentiation by this method is not
feasible. In the language of complexity theory, the problem is that we are looking at an exponential
time algorithm. This is because the running time is exponential in the binary length |n| of the input
n. So we seek a better algorithm. We illustrate the idea of fast exponentiation with an example.

Example 9.8 Suppose the binary length of n is 5, meaning the binary representation of n has the
form b4b3[)2[)1b0. Then

n = 2%y + 23b3 + 22by + 281 + 2%,
= 16b4 + 8b3 =+ 4b2 + 2b1 —+ bo .

Our exponentiation algorithm will proceed to compute the values ys, y4, ys3, y2, Y1, Yo in turn, as
follows:

ys = 1

yo = yioah = ah

Y3 = yz cabs = 2batbs

Yo = y% cab2 =  gAbat2bs+be

yi = y% cabt =  8batdbs+2b2+by

Yo = y% cabo =  16ba+8bs+4ba+2b1+bo

Two group operations are required to compute y; from y; 11, and the number of steps equals the
binary length of n, so the algorithm is fast. |

In general, we let by_1 ...b1bg be the binary representation of n, meaning by, ..., bx_1 are bits such
that n = 28 1b,_; + 287 2b,_o + -+ + 210y + 29by. The algorithm proceeds as follows given any
input @ € G and n € Z:

Algorithm EXPg(a,n)
If n < 0 then a « o~ ! and n «— —n EndIf
Let bx_1...b1bg be the binary representation of n

y—1

For + = k£ — 1 downto 0 do
y —y®-a

End For

Output y

The algorithm uses two group operations per iteration of the loop: one to multiply y by itself,
another to multiply the result by a”. (The computation of a® is without cost, since this is just
aif b =1 and 1 if b; = 0.) So its total cost is 2k = 2|n| group operations. (We are ignoring the
cost of the one possible inversion in the case n < 0.) (This is the worst case cost. We observe that
it actually takes |n| + Wx(n) group operations, where Wy (n) is the number of ones in the binary
representation of n.)

We will typically use this algorithm when the group G'is Z}; and the group operation is multi-
plication modulo N, for some positive integer V. We have denoted this algorithm by MOD-EXP in
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Fig. 9.1. (The input a is not required to be relatively prime to N even though it usually will be, so
is listed as coming from Zy.) In that case, each group operation is implemented via MOD-MULT
and takes O(|N|?) time, so the running time of the algorithm is O(|n| - [N|?). Since n is usually
in Zy, this comes to O(|N|3). The salient fact to remember is that modular exponentiation is a
cubic time algorithm.

9.3 Cyclic groups and generators

Let G be a group, let 1 denote its identity element, and let m = |G| be the order of G. If g € G
is any member of the group, the order of g is defined to be the least positive integer n such that
g" =1. We let

9) ={g' +i€Za} = {g"g"....0" "}

denote the set of group elements generated by ¢g. A fact we do not prove, but is easy to verify, is
that this set is a subgroup of G. The order of this subgroup (which, by definition, is its size) is just
the order of g. Fact 9.6 tells us that the order n of g divides the order m of the group. An element
g of the group is called a generator of G if (g) = G, or, equivalently, if its order is m. If g is a
generator of G then for every a € G there is a unique integer i € Z,, such that ¢ = a. This i is
called the discrete logarithm of a to base g, and we denote it by DLog ,(a). Thus, DLogg ,(-) is
a function that maps G to Z,,, and moreover this function is a bijection, meaning one-to-one and
onto. The function of Z,, to G defined by i — ¢ is called the discrete exponentiation function,
and the discrete logarithm function is the inverse of the discrete exponentiation function.

Example 9.9 Let p = 11, which is prime. Then Z7; = {1,2,3,4,5,6,7,8,9,10} has order p— 1 =
10. Let us find the subgroups generated by group elements 2 and 5. We raise them to the powers
1=0,...,9. We get:

illol1l2(3[4|51(6|7]|8|9
2mod11||1[2]4|8|5[10[9|7[31]6
55mod 11 || 153|491 (5|3[4]9

Looking at which elements appear in the row corresponding to 2 and 5, respectively, we can deter-
mine the subgroups these group elements generate:

(2) = {1,2,3,4,5,6,7,8,9,10}
(5) = {1,3,4,5,9}.

Since (2) equals Z7;, the element 2 is a generator. Since a generator exists, Z7j; is cyclic. On the
other hand, (5) # Z7,, so 5 is not a generator. The order of 2 is 10, while the order of 5 is 5.
Note that these orders divide the order 10 of the group. The table also enables us to determine the
discrete logarithms to base 2 of the different group elements:

al1]2]3[4]|5]6|7[8]9]10
DLogz: o(a) [0 1|8]2]4|9|7[3]6] 5

Later we will see a way of identifying all the generators given that we know one of them. I

The discrete exponentiation function is conjectured to be one-way (meaning the discrete loga-
rithm function is hard to compute) for some cyclic groups G. Due to this fact we often seek cyclic



Bellare and Rogaway 187

groups for cryptographic usage. Here are three sources of such groups. We will not prove any of
the facts below; their proofs can be found in books on algebra.

Fact 9.10 Let p be a prime. Then the group Zj is cyclic. I

The operation here is multiplication modulo p, and the size of this group is ¢(p) = p — 1. This is
the most common choice of group in cryptography.

Fact 9.11 Let G be a group and let m = |G| be its order. If m is a prime number, then G is
cyclic. 1

In other words, any group having a prime number of elements is cyclic. Note that it is not for this
reason that Fact 9.10 is true, since the order of Z (where p is prime) is p— 1, which is even if p > 3
and 1 if p = 2, and is thus never a prime number.

The following is worth knowing if you have some acquaintance with finite fields. Recall that
a field is a set F' equipped with two operations, an addition and a multiplication. The identity
element of the addition is denoted 0. When this is removed from the field, what remains is a group
under multiplication. This group is always cyclic.

Fact 9.12 Let F be a finite field, and let F* = F' — {0}. Then F* is a cyclic group under the
multiplication operation of F'. I

A finite field of order m exists if and only if m = p™ for some prime p and integer n > 1. The finite
field of order p is exactly Z,, so the case n = 1 of Fact 9.12 implies Fact 9.10. Another interesting
special case of Fact 9.12 is when the order of the field is 2", meaning p = 2, yielding a cyclic group
of order 2" — 1.

When we want to use a cyclic group G in cryptography, we will often want to find a generator
for it. The process used is to pick group elements in some appropriate way, and then test each
chosen element to see whether it is a generator. One thus has to solve two problems. One is how to
test whether a given group element is a generator, and the other is what process to use to choose
the candidate generators to be tested.

Let m = |G| and let 1 be the identity element of G. The obvious way to test whether a given
g € G is a generator is to compute the values g', g%, ¢°, ..., stopping at the first j such that ¢/ = 1.
If j = m then g is a generator. This test however can require up to m group operations, which is
not efficient, given that the groups of interest are large, so we need better tests.

The obvious way to choose candidate generators is to cycle through the entire group in some
way, testing each element in turn. Even with a fast test, this can take a long time, since the group
is large. So we would also like better ways of picking candidates.

We address these problems in turn. Let us first look at testing whether a given g € G is a
generator. One sees quickly that computing all powers of g as in g', g2, ¢3, ... is not necessary. For
example if we computed ¢® and found that this is not 1, then we know that g% # 1 and ¢ # 1
and g # 1. More generally, if we know that ¢/ # 1 then we know that ¢° # 1 for all i dividing j.
This tells us that it is better to first compute high powers of g, and use that to cut down the space
of exponents that need further testing. The following Proposition pinpoints the optimal way to do
this. It identifies a set of exponents myq, ..., m, such that one need only test whether " £ 1 for
i=1,...,n. As we will argue later, this set is quite small.
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Proposition 9.13 Let G be a cyclic group and let m = |G| be the size of G. Let p{* - - p" be
the prime factorization of m and let m; = m/p; for i = 1,...,n. Let g € G. Then g is a generator
of G if and only if

Foralli=1,...,n: ¢™ #1, (9.1)
where 1 is the identity element of G. |

Proof of Proposition 9.13: First suppose that ¢ is a generator of G. Then we know that the
smallest positive integer j such that ¢ = 1 is j = m. Since 0 < m; < m, it must be that ¢" # 1
foralli=1,...,m.

Conversely, suppose g satisfies the condition of Equation (9.1). We want to show that g is a
generator. Let j be the order of g, meaning the smallest positive integer such that ¢/ = 1. Then we
know that 7 must divide the order m of the group, meaning m = dj for some integer d > 1. This
implies that j = p’?l o -pﬁ” for some integers (31, ..., B, satisfying 0 < 3; < a; for all i =1,...,n.
If 7 < m then there must be some i such that §; < «;, and in that case j divides m;, which in turn
implies ¢ = 1 (because ¢ = 1). So the assumption that Equation (9.1) is true implies that j
cannot be strictly less than m, so the only possibility is j = m, meaning g is a generator. |

The number n of terms in the prime factorization of m cannot be more than lg(m), the binary
logarithm of m. (This is because p; > 2 and «; > 1 for all i« = 1,...,n.) So, for example, if the
group has size about 2°'2, then at most 512 tests are needed. So testing is quite efficient. One
should note however that it requires knowing the prime factorization of m.

Let us now consider the second problem we discussed above, namely how to choose candidate
group elements for testing. There seems little reason to think that trying all group elements in turn
will yield a generator in a reasonable amount of time. Instead, we consider picking group elements
at random, and then testing them. The probability of success in any trial is |Gen(G)|/|G|. So the
expected number of trials before we find a generator is |G|/|Gen(G)|. To estimate the efficacy of this
method, we thus need to know the number of generators in the group. The following Proposition
gives a characterization of the generator set which in turn tells us its size.

Proposition 9.14 Let G be a cyclic group of order m, and let g be a generator of G. Then
Gen(G) ={4g"€G : i €Z } and |Gen(G)| = p(m). 1

That is, having fixed one generator g, a group element h is a generator if and only if its discrete
logarithm to base g is relatively prime to the order m of the group. As a consequence, the number
of generators is the number of integers in the range 1,...,m — 1 that are relatively prime to m.

Proof of Proposition 9.14: Given that Gen(G) = { ¢' € G : i € Z7, }, the claim about its size
follows easily:

Gen(@)| = [{g'€G:ieZy}| = |Zp| = ¢(m).
We now prove that Gen(G) = { ¢' € G : i € Z, }. First, we show that if i € Z, then ¢’ € Gen(G).
Second, we show that if i € Z,, — Z, then g* ¢ Gen(G).

So first suppose i € Z7,, and let h = g'. We want to show that h is a generator of G. It suffices to
show that the only possible value of j € Z,, such that i/ = 1 is j = 0, so let us now show this. Let
j € Zy, be such that A/ = 1. Since h = g* we have

1 = hj _ gijmodm'
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Since g is a generator, it must be that ij = 0 (mod m), meaning m divides ij. But i € Z} so
ged(i,m) = 1. So it must be that m divides j. But j € Z,, and the only member of this set
divisible by m is 0, so j = 0 as desired.

Next, suppose i € Z,, —Z*, and let h = g*. To show that h is not a generator it suffices to show that
there is some non-zero j € Z,, such that h/ = 1. Let d = ged(i,m). Our assumption i € Z,, — Z,
implies that d > 1. Let j = m/d, which is a non-zero integer in Z,, because d > 1. Then the
following shows that h/ = 1, completing the proof:

hj _ gij _ gi~m/d _ gm~i/d _ (gm)z/d _ 1i/d - 1.

We used here the fact that d divides i and that ¢™ = 1. |

Example 9.15 Let us determine all the generators of the group Z7,. Let us first use Proposition 9.13.
The size of Z7; is m = (11) = 10, and the prime factorization of 10 is 2! - 5!. Thus, the test for
whether a given a € Z7, is a generator is that > Z 1 (mod 11) and a® Z 1 (mod 11). Let us
compute a? mod 11 and a® mod 11 for all group elements a. We get:

alll] 23456 |7 ]8]9|10
a?mod11 (1|4 (95|33 |5]9 4|1
a®mod 11| 1[10|1]1|1]10[10|10]| 1|10

The generators are those a for which the corresponding column has no entry equal to 1, meaning
in both rows, the entry for this column is different from 1. So

Gen(Z1;) = {2,6,7,8}.

Now, let us use Proposition 9.14 and double-check that we get the same thing. We saw in
Example 9.9 that 2 was a generator of Z7;. As per Proposition 9.14, the set of generators is

Gen(Z}) = {2'mod 11 : i € Z}, } .

This is because the size of the group is m = 10. Now, Zj, = {1,3,7,9}. The values of 2! mod 11
as ¢ ranges over this set can be obtained from the table in Example 9.9 where we computed all the
powers of 2. So

{2°mod 11 : i€ Z};} = {2'mod 11,2% mod 11,27 mod 11,2% mod 11}
= {2,6,7,8} .

This is the same set we obtained above via Proposition 9.13. If we try to find a generator by picking
group elements at random and then testing using Proposition 9.13, each trial has probability of
success ¢(10)/10 = 4/10, so we would expect to find a generator in 10/4 trials. We can optimize
slightly by noting that 1 and —1 can never be generators, and thus we only need pick candidates
randomly from Z7; —{1,10}. In that case, each trial has probability of success ¢(10)/8 = 4/8 = 1/2,
so we would expect to find a generator in 2 trials. I

When we want to work in a cyclic group in cryptography, the most common choice is to work
over Zy for a suitable prime p. The algorithm for finding a generator would be to repeat the process
of picking a random group element and testing it, halting when a generator is found. In order to
make this possible we choose p in such a way that the prime factorization of the order p — 1 of
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Z, is known. In order to make the testing fast, we choose p so that p — 1 has few prime factors.
Accordingly, it is common to choose p to equal 2¢ + 1 for some prime ¢. In this case, the prime
factorization of p—1 is 2'¢', so we need raise a candidate to only two powers to test whether or not
it is a generator. In choosing candidates, we optimize slightly by noting that 1 and —1 are never
generators, and accordingly pick the candidates from Zj — {1,p — 1} rather than from Z;. So the
algorithm is as follows:

Algorithm FIND-GEN(p)
g (p—1)/2
found < 0
While (found # 1) do
géz;)_{lvp_l}
If (¢°> mod p # 1) and (g? mod p # 1) then found « 1
EndWhile
Return g

Proposition 9.13 tells us that the group element g returned by this algorithm is always a generator
of Z;,. By Proposition 9.14, the probability that an iteration of the algorithm is successful in finding
a generator is

Gen(Zy)l _ wlp—1) _ 9(2¢) _ q—1 _ 1

Z5| -2 p-3  2q-2  2¢—-2 2’
Thus the expected number of iterations of the while loop is 2. Above, we used that fact that
©(2q) = ¢ — 1 which is true because ¢ is prime.

9.4 Squares and non-squares

An element a of a group G is called a square, or quadratic residue if it has a square root, meaning
there is some b € G such that b*> = a in G. We let

QR(G) = {g € G : gis quadratic residue in G }

denote the set of all squares in the group G. We leave to the reader to check that this set is a
subgroup of G.

We are mostly interested in the case where the group G is Z}; for some integer N. An integer a
is called a square mod N or quadratic residue mod N if a mod N is a member of QR(Z%,). If b = a
(mod N) then b is called a square-root of @ mod N. An integer a is called a non-square mod N or
quadratic non-residue mod N if a mod N is a member of Z};, — QR(Z};). We will begin by looking
at the case where N = p is a prime. In this case we define a function J,: Z — {—1,1} by

1 if a is a square mod p
Jp(a) = 0 ifamodp=0
—1 otherwise.

for all a € Z. We call J,(a) the Legendre symbol of a. Thus, the Legendre symbol is simply a
compact notation for telling us whether or not its argument is a square modulo p.
Before we move to developing the theory, it may be useful to look at an example.
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Example 9.16 Let p = 11, which is prime. Then Z7, = {1,2,3,4,5,6,7,8,9,10} has order p—1 =
10. A simple way to determine QR(Z7,) is to square all the group elements in turn:

all1]2]3/4(5](6|78[9]10
a?mod11(1(4]9(5|3[3|5]9|4] 1

The squares are exactly those elements that appear in the second row, so
QR(Z7;) = {1,3,4,5,9}.

The number of squares is 5, which we notice equals (p — 1)/2. This is not a coincidence, as we will
see. Also notice that each square has exactly two different square roots. (The square roots of 1 are
1 and 10; the square roots of 3 are 5 and 6; the square roots of 4 are 2 and 9; the square roots of 5
are 4 and 7; the square roots of 9 are 3 and 8.)

Since 11 is prime, we know that Z7; is cyclic, and as we saw in Example 9.9, 2 is a generator.
(As a side remark, we note that a generator must be a non-square. Indeed, if a = b? is a square,
then a® = ' = 1 modulo 11 because 10 is the order of the group. So a/ = 1 modulo 11 for
some positive j < 10, which means a is not a generator. However, not all non-squares need be
generators.) Below, we reproduce from that example the table of discrete logarithms of the group
elements. We also add below it a row providing the Legendre symbols, which we know because,
above, we identified the squares. We get:

alll| 2 34|56 | 7|8 [9]10
DLogz: o(a) || 0| 1 [8|2[4] 9 | 7|3 |6]5
Jua) 1] =11 |11 |-1|—-1|-1|1]~-1

We observe that the Legendre symbol of a is 1 if its discrete logarithm is even, and —1 if the discrete
logarithm is odd, meaning the squares are exactly those group elements whose discrete logarithm
is even. It turns out that this fact is true regardless of the choice of generator. I

As we saw in the above example, the fact that Z is cyclic is useful in understanding the
structure of the subgroup of quadratic residues QR(Z;). The following Proposition summarizes
some important elements of this connection.

Proposition 9.17 Let p > 3 be a prime and let g be a generator of Z,,. Then

QR(Z)) = {g' : i€Zyprandiiseven}, (9.2)
and the number of squares mod p is
p—1

QR(Z;) 5

Furthermore, every square mod p has exactly two different square roots mod p. I

Proof of Proposition 9.17: Let

E ={g" :i€Z,  andiiseven}.
We will prove that ' = QR(Z;) by showing first that F' C QR(Z;) and second that QR(Zj) C E.
To show that £ C QR(Z;), let a € E. We will show that a € QR(Z}). Let i = DLogzzvg(a). Since
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a € E we know that i is even. Let j = ¢/2 and note that j € Z,_;. Clearly

(gj)z - gzj mod p—1 ng = gi (mod p) ,
so g’ is a square root of a = g’. So a is a square.
To show that QR(Z;;) C E, let b be any element of Z7. We will show that b> € E. Let j =
DLogZ;“g(b). Then

b= (¢7)? = g7 = g¥  (modp),
the last equivalence being true because the order of the group Zj is p — 1. This shows that v’ € E.
The number of even integers in Z,_; is exactly (p —1)/2 since p — 1 is even. The claim about the
size of QR(Z) thus follows from Equation (9.2). It remains to justify the claim that every square
mod p has exactly two square roots mod p. This can be seen by a counting argument, as follows.

Suppose a is a square mod p. Let i = DLogZZ?g(a). We know from the above that 7 is even. Let
x=1i/2and let y =2+ (p—1)/2mod (p — 1). Then ¢ is a square root of a. Furthermore

(9" =g =gtV =g*¢" ' =a-1=a (modp),

so g¥ is also a square root of a. Since 7 is an even number in Z,_; and p —1 is even, it must be that
0<z<(p—1)/2. Tt follows that (p —1)/2 <y < p—1. Thus z # y. This means that a has as
least two square roots. This is true for each of the (p — 1)/2 squares mod p. So the only possibility
is that each of these squares has exactly two square roots. |

Suppose we are interested in knowing whether or not a given a € Z, is a square mod p, meaning
we want to know the value of the Legendre symbol J,(a). Proposition 9.17 tells us that

Tya) = (=1)PHze(@

where g is any generator of Z;. This however is not very useful in computing Jp(a), because it
requires knowing the discrete logarithm of a, which is hard to compute. The following Proposition
says that the Legendre symbols of ¢ modulo an odd prime p can be obtained by raising a to the
power (p — 1)/2, and helps us compute the Legendre symbol.

Proposition 9.18 Let p > 3 be a prime. Then
Jp(a) = o'z (mod p)
for any a € Z;. 1

Now one can determine whether or not a is a square mod p by running the algorithm MOD-EXP
on inputs a, (p—1)/2,p. If the algorithm returns 1 then a is a square mod p, and if it returns p — 1
(which is the same as —1 mod p) then a is a non-square mod p. Thus, the Legendre symbol can be
computed in time cubic in the length of p.

Towards the proof of Proposition 9.18, we begin with the following lemma which is often useful
in its own right.

Lemma 9.19 Let p > 3 be a prime. Then

p—1

gz =-1 (mod p)

for any generator g of Zj.
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Proof of Lemma 9.19: We begin by observing that 1 and —1 are both square roots of 1 mod
p, and are distinct. (It is clear that squaring either of these yields 1, so they are square roots of 1.
They are distinct because —1 equals p—1 mod p, and p—1 # 1 because p > 3.) By Proposition 9.17,
these are the only square roots of 1. Now let

p—1
b=g¢g2 modp.

Then b> =1 (mod p), so b is a square root of 1. By the above b can only be 1 or —1. However,
since g is a generator, b cannot be 1. (The smallest positive value of i such that ¢* is 1 mod p is
i =p—1.) So the only choice is that b= —1 (mod p), as claimed. 1

Proof of Proposition 9.18: By definition of the Legendre symbol, we need to show that

p—1 { 1 (mod p) if ais a square mod p
az =

1 (mod p) otherwise.

Let g be a generator of Z; and let i = DLogZ;ﬂg(a). We consider separately the cases of a being a
square and a being a non-square.

Suppose a is a square mod p. Then Proposition 9.17 tells us that ¢ is even. In that case

—1 . p—1 .
p—1 p i

ar =(9")7 =9

p=1

7 =(¢"")?=1 (modp),

as desired.

Now suppose a is a non-square mod p. Then Proposition 9.17 tells us that ¢ is odd. In that case
p—1 —1 1

aT = (gi>p—;1 - gi.PQ — g(i—1)~1’2;1+% = (gp—l)(i—l)/Q . gp% = ng71 (mod p) _

However Lemma 9.19 tells us that the last quantity is —1 modulo p, as desired. 1

The following Proposition says that ab mod p is a square if and only if either both a and b are
squares, or if both are non-squares. But if one is a square and the other is not, then ab mod p is
a non-square. This can be proved by using either Proposition 9.17 or Proposition 9.18. We use
the latter in the proof. You might try, as an exercise, to reprove the result using Proposition 9.17
instead.

Proposition 9.20 Let p > 3 be prime. Then

Jp(ab mod p) = Jp(a) - Jp(b)
for all a,b € Z5. 1

Proof of Proposition 9.20: Using Proposition 9.18 we get
Jy(abmod p) = (ab)"= = a7 b"T = Jy(a) - J,(b) (mod p) .

The two quantities we are considering both being either 1 or —1, and equal modulo p, must then
be actually equal. 1

A quantity of cryptographic interest is the Diffie-Hellman (DH) key. Having fixed a cyclic group
G and generator g for it, the DH key associated to elements X = ¢* and Y = ¢¥ of the group is
the group element ¢*¥. The following Proposition tells us that the DH key is a square if either X
or Y is a square, and otherwise is a non-square.
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Proposition 9.21 Let p > 3 be a prime and let g be a generator of Z,,. Then
Jp(¢"™ modp) =1 if and only if  Jp(¢* mod p) =1 or Jy(¢gY modp) =1,
for all x,y € Zp—1. 1

Proof of Proposition 9.21: By Proposition 9.17, it suffices to show that
zymod (p— 1) is even if and only if =z is even or y is even .

But since p — 1 is even, zy mod (p — 1) is even exactly when xy is even, and clearly zy is even
exactly if either x or y is even. I

With a cyclic group G and generator g of G fixed, we will be interested in the distribution of the
DH key ¢*¥ in G, under random choices of =,y from Z,,, where m = |G|. One might at first think
that in this case the DH key is a random group element. The following proposition tells us that
in the group Z, of integers modulo a prime, this is certainly not true. The DH key is significantly
more likely to be a square than a non-square, and in particular is thus not even almost uniformly
distributed over the group.

Proposition 9.22 Let p > 3 be a prime and let g be a generator of Z;. Then
Pr [“7 S Zy1;y < Zpr : Jlg™) = 1}

equals 3/4.1
Proof of Proposition 9.22: By Proposition 9.22 we need only show that

Pr [I E 1y S Zy g s Jy(g") =1or Jy(g¥) = 1}
equals 3/4. The probability in question is 1 — o where

a = Pr [ami Zp1;y<Zp 1 : Jp(g") = —1and Jy(g¥) = —1}
= Pr [mizp_l s Jpg”) = —1} - Pr [yiz,,_l s Jp(gY) = —1}

|QR(Z;)| |QR(Z;)]

|Z;| |Z|
_ -1/2 (p-1)/2
p—1 p—1
_ 11
- 2

= N

Thus 1—a = 3/4 as desired. Here we used Proposition 9.17 which told us that |QR(Z;)| = (p—1)/2.
1

The above Propositions, combined with Proposition 9.18 (which tells us that quadratic residu-
osity modulo a prime can be efficiently tested), will later lead us to pinpoint weaknesses in certain
cryptographic schemes in Zj.
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9.5 Groups of prime order

A group of prime order is a group G whose order m = |G| is a prime number. Such a group is
always cyclic. These groups turn out to be quite useful in cryptography, so let us take a brief look
at them and some of their properties.

An element h of a group G is called non-trivial if it is not equal to the identity element of the

group.

Proposition 9.23 Suppose G is a group of order ¢ where ¢ is a prime, and h is any non-trivial
member of G. Then h is a generator of G. |

Proof of Proposition 9.23: It suffices to show that the order of h is ¢q. We know that the
order of any group element must divide the order of the group. Since the group has prime order
q, the only possible values for the order of h are 1 and ¢. But h does not have order 1 since it is
non-trivial, so it must have order q. |

A common way to obtain a group of prime order for cryptographic schemes is as a subgroup of a
group of integers modulo a prime. We pick a prime p having the property that ¢ = (p—1)/2 is also
prime. It turns out that the subgroup of quadratic residues modulo p then has order ¢, and hence
is a group of prime order. The following proposition summarizes the facts for future reference.

Proposition 9.24 Let ¢ > 3 be a prime such that p = 2¢ + 1 is also prime. Then QR(Zj) is a
group of prime order ¢g. Furthermore, if g is any generator of Zy, then ¢°> mod p is a generator of

QR(Z). I

Note that the operation under which QR(Z;) is a group is multiplication modulo p, the same
operation under which Zj is a group.

Proof of Proposition 9.24: We know that QR(Zj) is a subgroup, hence a group in its own
right. Proposition 9.17 tells us that [QR(Z)| is (p — 1)/2, which equals ¢ in this case. Now let g be
a generator of Z; and let h = g% mod p. We want to show that h is a generator of QR(Zy). As per
Proposition 9.23, we need only show that A is non-trivial, meaning h # 1. Indeed, we know that
g*>#1 (mod p), because g, being a generator, has order p and our assumptions imply p > 2. I

Example 9.25 Let ¢ = 5 and p = 2¢g+ 1 = 11. Both p and ¢ are primes. We know from
Example 9.16 that

QR(Z7,) = {1,3,4,5,9} .
This is a group of prime order 5. We know from Example 9.9 that 2 is a generator of Z.

Proposition 9.24 tells us that 4 = 22 is a generator of QR(Z?%;). We can verify this by raising
4 to the powers 1 = 0,...,4:

101234
4 mod11 | 1]4|5(9]|3
We see that the elements of the last row are exactly those of the set QR(Z7;). 1

Let us now explain what we perceive to be the advantage conferred by working in a group of
prime order. Let G be a cyclic group, and g a generator. We know that the discrete logarithms to
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base g range in the set Z,, where m = |G| is the order of G. This means that arithmetic in these
exponents is modulo m. If G has prime order, then m is prime. This means that any non-zero
exponent has a multiplicative inverse modulo m. In other words, in working in the exponents, we
can divide. It is this that turns out to be useful.

As an example illustrating how we use this, let us return to the problem of the distribution of
the DH key that we looked at in Section 9.4. Recall the question is that we draw z, y independently
at random from Z,, and then ask how ¢g*¥ is distributed over G. We saw that when G' = Z;, for a
prime p > 3, this distribution was noticebly different from uniform. In a group of prime order, the
distribution of the DH key, in contrast, is very close to uniform over G. It is not quite uniform,
because the identity element of the group has a slightly higher probability of being the DH key than
other group elements, but the deviation is small enough to be negligible for groups of reasonably
large size. The following proposition summarizes the result.

Proposition 9.26 Suppose G is a group of order ¢ where ¢ is a prime, and let g be a generator of
G. Then for any Z € G we have
Iy .
1—-) ifZ#1
q

(2-7) itz-1
q

Pr[xﬁzq;yﬁzq:gxy:Z =

Q=R

where 1 denotes the identity element of G. 1

Proof of Proposition 9.26: First suppose Z = 1. The DH key ¢g™¥ is 1 if and only if either z
or y is 0 modulo ¢. Each is 0 with probability 1/¢ and these probabilities are independent, so the
probability that either o or y is 0 is 2/q¢ — 1/¢?, as claimed.

Now suppose Z # 1. Let z = DLogg ,(Z), meaning z € Z; and g* = Z. We will have ¢*¥ = Z
(mod p) if and only if xzy = z (mod ¢), by the uniqueness of the discrete logarithm. For any fixed
T € Zj, there is exactly one y € Z; for which zy = 2 (mod ¢), namely y = 712 mod ¢, where
2~ ! is the multiplicative inverse of z in the group Z,. (Here we are making use of the fact that
q is prime, since otherwise the inverse of x modulo ¢ may not exist.) Now, suppose we choose z
at random from Z,. If x = 0 then, regardless of the choice of y € Z,, we will not have zy = 2
(mod ¢q), because z Z 0 (mod ¢). On the other hand, if  # 0 then there is exactly 1/q probability
that the randomly chosen y is such that zy = 2z (mod ¢). So the probability that xy = z (mod q)
when both z and y are chosen at random in Z, is

g—1 1 1 (1 1)

q q q q

as desired. Here, the first term is because when we choose  at random from Z,, it has probability
(¢ —1)/q of landing in Z7. 1

9.6 Historical Notes

9.7 Exercises and Problems



Chapter 10

NUMBER-THEORETIC PRIMITIVES

Number theory is a source of several computational problems that serve as primitives in the design
of cryptographic schemes. Asymmetric cryptography in particular relies on these primitives. As
with other beasts that we have been calling “primitives,” these computational problems exhibit
some intractability features, but by themselves do not solve any cryptographic problem directly
relevant to a user security goal. But appropriately applied, they become useful to this end. In
order to later effectively exploit them it is useful to first spend some time understanding them.

This understanding has two parts. The first is to provide precise definitions of the various
problems and their measures of intractability. The second is to look at what is known or conjectured
about the computational complexity of these problems.

There are two main classes of primitives. The first class relates to the discrete logarithm problem
over appropriate groups, and the second to the factoring of composite integers. We look at them
in turn.

This chapter assumes some knowledge of computational number theory as covered in the chapter
on Computational Number Theory.

10.1 Discrete logarithm related problems

Let G be a cyclic group and let g be a generator of G. Recall this means that G = {¢", ¢',..., g™ 1},
where m = |G| is the order of G. The discrete logarithm function DLogg 4: G — Zy, takes input a
group element a and returns the unique ¢ € Z,, such that a = ¢g*. There are several computational
problems related to this function that are used as primitives.

10.1.1 Informal descriptions of the problems

The computational problems we consider in this setting are summarized in Fig. 10.1. In all cases,
we are considering an attacker that knows the group G and the generator g. It is given the
quantities listed in the column labeled “given,” and is trying to compute the quantities, or answer
the question, listed in the column labeled “figure out.”

The most basic problem is the discrete logarithm (DL) problem. Informally stated, the at-
tacker is given as input some group element X, and must compute DLogG’g(X ). This problem is
conjectured to be computationally intractable in suitable groups G.

197
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Problem Given Figure out

Discrete logarithm (DL) g* x

Computational Diffie-Hellman (CDH) || ¢*, ¢¥ g*v

Decisional Diffie-Hellman (DDH) 9%, 9Y,9%° | Isz=2zy (mod |G|)?

Figure 10.1: An informal description of three discrete logarithm related problems over a cyclic
group G with generator g. For each problem we indicate the input to the attacker, and what the
attacker must figure out to “win.” The formal definitions are in the text.

One might imagine “encrypting” a message x € Z,, by letting ¢g* be the ciphertext. An
adversary wanting to recover x is then faced with solving the discrete logarithm problem to do so.
However, as a form of encryption, this has the disadvantage of being non-functional, because an
intended recipient, namely the person to whom the sender is trying to communicate x, is faced
with the same task as the adversary in attempting to recover x.

The Diffie-Hellman (DH) problems first appeared in the context of secret key exchange. Suppose
two parties want to agree on a key which should remain unknown to an eavesdropping adversary.
The first party picks x & 7., and sends X = g* to the second party; the second party correspond-
ingly picks y <> Z,, and sends Y = ¢V to the first party. The quantity ¢*¥ is called the DH-key
corresponding to X, Y. We note that

V' = g% = XY (10.1)

Thus the first party, knowing Y, z, can compute the DH key, as can the second party, knowing X, y.
The adversary sees X,Y, so to recover the DH-key the adversary must solve the Computational
Diffie-Hellman (CDH) problem, namely compute ¢*¥ given X = ¢* and Y = ¢¥. Similarly, we will
see later a simple asymmetric encryption scheme, based on Equation (10.1), where recovery of the
encrypted message corresponds to solving the CDH problem.

The obvious route to solving the CDH problem is to try to compute the discrete logarithm of
either X or Y and then use Equation (10.1) to obtain the DH key. However, there might be other
routes that do not involve computing discrete logarithms, which is why CDH is singled out as a
computational problem in its own right. This problem appears to be computationally intractable
in a variety of groups.

We have seen before that security of a cryptographic scheme typically demands much more than
merely the computational intractability of recovery of some underlying key. The computational
intractability of the CDH problem turns out to be insufficient to guarantee the security of many
schemes based on DH keys, including the secret key exchange protocol and encryption scheme
mentioned above. The Decisional Diffie-Hellman (DDH) problem provides the adversary with a
task that can be no harder, but possibly easier, than solving the CDH problem, namely to tell
whether or not a given group element 7 is the DH key corresponding to given group elements X, Y.
This problem too appears to be computationally intractable in appropriate groups.

We now proceed to define the problems more formally. Having done that we will provide more

specific discussions about their hardness in various different groups and their relations to each
other.
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10.1.2 The discrete logarithm problem

The description of the discrete logarithm problem given above was that the adversary is given as
input some group element X, and is considered successful if it can output DLog (X ). We would
like to associate to a specific adversary A some advantage function measuring how well it does in
solving this problem. The measure adopted is to look at the fraction of group elements for which
the adversary is able to compute the discrete logarithm. In other words, we imagine the group
element X given to the adversary as being drawn at random.

Definition 10.1 Let G be a cyclic group of order m, let g be a generator of G, and let A be an
algorithm that returns an integer in Z,,. We consider the following experiment:

Experiment ExpdGl’g(A)
z & Zp; X —g"
T < A(X)
If g° = X then return 1 else return 0

The dl-advantage of A is defined as
Adv,(4) = Pr[Expd, (4)=1] . 1

Recall that the discrete exponentiation function takes input i € Z,, and returns the group element
g'. The discrete logarithm function is the inverse of the discrete exponentiation function. The
definition above simply measures the one-wayness of the discrete exponentiation function according
to the standard definition of one-way function. It is to emphasize this that certain parts of the
experiment are written the way they are.

The discrete logarithm problem is said to hard in G if the dl-advantage of any adversary of
reasonable resources is small. Resources here means the time-complexity of the adversary, which

includes its code size as usual.

10.1.3 The Computational Diffie-Hellman problem

As above, the transition from the informal description to the formal definition involves considering
the group elements X,Y to be drawn at random.

Definition 10.2 Let G be a cyclic group of order m, let g be a generator of GG, and let A be an
algorithm that returns an element of G. We consider the following experiment:

Experiment EXpCGCf}gl(A)
X =g Y —¢"
Z — A(X,)Y)
If Z = ¢™Y then return 1 else return 0

The cdh-advantage of A is defined as
Advilh(4) = PrExpElh(4)=1] . 1

Again, the CDH problem is said to be hard in G if the cdh-advantage of any adversary of reasonable
resources is small, where the resource in question is the adversary’s time complexity.



200 NUMBER-THEORETIC PRIMITIVES

10.1.4 The Decisional Diffie-Hellman problem

The formalization considers a “two worlds” setting. The adversary gets input X, Y, Z. In either
world, X,Y are random group elements, but the manner in which Z is chosen depends on the
world. In World 1, Z = ¢g*¥ where x = DLog ,(X) and y = DLogq ,(Y). In World 0, Z is chosen
at random from the group, independently of X, Y. The adversary must decide in which world it is.
(Notice that this is a little different from the informal description of Fig. 10.1 which said that the
adversary is trying to determine whether or not Z = ¢g*¥, because if by chance Z = ¢*¥ in World 0,
we will declare the adversary unsuccessful if it answers 1.)

Definition 10.3 Let G be a cyclic group of order m, let g be a generator of GG, let A be an
algorithm that returns a bit, and let b be a bit. We consider the following experiments:

Experiment ExpdGC};l'l(A) Experiment Exp%%;"o(A)
<7z, z < 7,
Yy & Zy, Y & Zp,
z «— xy mod m 2 & 7y,
X—g" Y —g¥: Z—yg° X—g" Y —yg¥; Z—g°
d— AX,)Y,Z) d— AX,)Y,Z)
Return d Return d

The ddh-advantage of A is defined as
Advilh(4) = Pr[Expdfi(4) = 1] - Pr [Expdlio(4) =1] . 1

Again, the DDH problem is said to be hard in G if the ddh-advantage of any adversary of reasonable
resources is small, where the resource in question is the adversary’s time complexity.

10.1.5 Relations between the problems

Relative to a fixed group G and generator g for G, if you can solve the DL problem then you
can solve the CDH problem, and if you can solve the CDH problem then you can solve the DDH
problem. So if DL is easy then CDH is easy, and if CDH is easy then DDH is easy. Equivalently,
if DDH is hard then CDH is hard, and if CDH is hard then DL is hard.

We note that the converses of these statements are not known to be true. There are groups
where DDH is easy, while CDH and DL appear to be hard. (We will see examples of such groups
later.) Correspondingly, there could be groups where CDH is easy but DL is hard.

The following Proposition provides the formal statement and proof corresponding to the above
claim that if you can solve the DL problem then you can solve the CDH problem, and if you can
solve the CDH problem then you can solve the DDH problem.

Proposition 10.4 Let G be a cyclic group and let g be a generator of G. Let Aq) be an adversary
(against the DL problem). Then there exists an adversary A.qn (against the CDH problem) such
that

Adv (Aa) < Adv)(Acan) - (10.2)
Furthermore the running time of A.qp is the that of Agq; plus the time to do one exponentiation in
G. Similarly let A.qy be an adversary (against the CDH problem). Then there exists an adversary
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Agan (against the DDH problem) such that
1
Advg{g(Acdh) < AdV%(?E(Addh) + @ . (103)

Furthermore the running time of Aqgn is the same as that of Agqp. I

Proof of Proposition 10.4: Adversary A.qn works as follows:

Adversary Acqn(X,Y)
T «— A(X)
Z—Y"

Return 7

Let z = DLog ,(X) and y = DLog ,(y). If Aq is successful then its output T equals z. In that
case

YT = YT = (g¥)" =g¥" = g™
is the correct output for A.qn. This justifies Equation (10.2).
We now turn to the second inequality in the proposition. Adversary Agqn works as follows:
Adversary Aqan(X,Y, 2)
7 «+— B(X,Y)
If Z = Z then return 1 else return 0

We claim that

Pr [ExpdGc}g_l(Addh) = 1} = Adv‘gg(Acdh)
1
Pr |[Expd0(Agan) =1 —
r{ XP¢y  (Addn) } TEl

which implies Equation (10.3). To justify the above, let # = DLog ,(X) and y = DLogg ,(y). If
Acan is successful then its output Z equals ¢*¥, so in world 1, Agqn returns 1. On the other hand
in world 0, Z is uniformly distributed over G and hence has probability 1/|G| of equalling Z. I

10.2 The choice of group

The computational complexity of the above problems depends of course on the choice of group G.
(But not perceptibly on the choice of generator g.) The issues are the type of group, and also its
size. Let us look at some possibilities.

10.2.1 General groups

For any “reasonable” group G, there is an algorithm that can solve the discrete logarithm problem in
time |G|'/2-O(|p]*). (The exceptions are groups lacking succinct representations of group elements,
and we will not encounter such groups here.) In thinking about this running time we neglect the
|p|® factor since it is very small compared to |G|/, so that we view this as a O(|G|'/?) algorithm.
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There are several different algorithms with this running time. Shank’s baby-step giant-step
algorithm is the simplest, and is deterministic. Pollard’s algorithm is randomized, and, although
taking time on the same order as that taken by Shank’s algorithm, is more space efficient, and
preferred in practice.

Let us present Shank’s baby-step giant-step algorithm. Let m = |G| and let n = [/m].
Given X = ¢g* we seek x. We note that there exist integers xg, 1 such that 0 < zp,21 < n and
x = nx1 + xo. This means that ¢"*17%0 = X or Xg % = (¢")*'. The idea of the algorithm is to
compute two lists:

Xg7b for b=0,1,...,n
(gM)* for a=0,1,...,n

and then find a group element that is contained in both lists. The corresponding values of a,b
satisfy Xg~= = (¢g")?, and thus DLogg ,(X) = an + b. The details follow.

Algorithm Apggs(X)
ne—[ym]; N« g"
For b=0,...,n do B[Xg~"] « b
Fora=20,...,ndo
Y «— N¢
If B[Y] is defined then g < B[Y]; 1 < a
Return ax1 + x¢

This algorithm is interesting because it shows that there is a better way to compute the discrete
logarithm of X than to do an exhaustive search for it. However, it does not yield a practical discrete
logarithm computation method, because one can work in groups large enough that an O(|G|'/?)
algorithm is not really feasible. There are however better algorithms in some specific groups.

10.2.2 Integers modulo a prime

Naturally, the first specific group to consider is the integers modulo a prime, which we know is
cyclic. So let G = Z7 for some prime p and let g be a generator of g. We consider the different
problems in turn.

We begin by noting that the Decisional Diffie-Hellman problem is easy in this group. Some
indication of this already appeared in the chapter on Computational Number Theory. In particular
we saw there that the DH key g™ is a square with probability 3/4 and a non-square with probability
1/4 if z,y are chosen at random from Z,_;. However, we know that a random group element is
a square with probability 1/2. Thus, a strategy to tell which world we are in when given a triple
X,Y, Z is to test whether or not Z is a square mod p. If so, bet on World 1, else on World 0. (We
also know that the Jacobi symbol can be computed via an exponentiation mod p, so testing for
squares can be done efficiently, specifically in cubic time.) A computation shows that this adversary
has advantage 1/4, enough to show that the DDH problem is easy. The Proposition below presents
a slightly better attack that achieves advantage 1/2, and provides the details of the analysis.

Proposition 10.5 Let p > 3 be a prime, let G = Z7, and let g be a generator of G. Then there

is an adversary A, with running time O(|p|®) such that

1
Advih(A) = 5 1
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Proof of Proposition 10.5: The input to our adversary A is a triple X, Y, Z of group elements,
and the adversary is trying to determine whether Z was chosen as g*¥ or as a random group element,
where z,y are the discrete logarithms of X and Y, respectively. We know that if we know Jp,(g")
and J,(g¥), we can predict Jy,(¢*¥). Our adversary’s strategy is to compute Jy,(¢”) and J,(¢g¥) and
then see whether or not the challenge value Z has the Jacobi symbol value that g*¥ ought to have.
In more detail, it works as follows:

Adversary A(X,Y, Z)
If Jy(X)=1or J,(Y)=1
Then s <+ 1 Else s «— —1
If J,(Z) = s then return 1 else return 0

We know that the Jacobi symbol can be computed via an exponentiation modulo p, which we know
takes O(|p|®) time. Thus, the time-complexity of the above adversary is O(|p|?). We now claim
that

Pr [Exp‘é‘ig—l(A) = 1} =1

Pr [Exp%(ig—o(A) = 1} =

NN

Subtracting, we get
Advih(A) = Pr[Expli(4) =1] - Pr [Expdi0(4) =1] = 1-
as desired. Let us now see why the two equations above are true.

Let x = DLog ,(X) and y = DLog¢ ,(Y). We know that the value s computed by our adversary
A equals J,(¢g™¥ mod p). But in World 1, Z = ¢™¥ mod p, so our adversary will always return 1. In
World 0, Z is distributed uniformly over G, so
—1/2 1
Pr[J,(Z) = 1] = Pr[J,(Z) = 1] = % = -

Since s is distributed independently of Z, the probability that J,(Z) = s is 1/2. |

Now we consider the CDH and DL problems. It appears that the best approach to solving the
CDH in problem in Zj is via the computation of discrete logarithms. (This has not been proved in
general, but there are proofs for some special classes of primes.) Thus, the main question is how
hard is the computation of discrete logarithms. This depends both on the size and structure of p.
The currently best algorithm is the GNFS (General Number Field Sieve) which has a running

time of the form
O (e(C o) In(p)!/*-(inIn(p))?/?) (10.4)

where C' =~ 1.92. For certain classes of primes, the value of C' is even smaller. These algorithms are
heuristic, in the sense that the run time bounds are not proven, but appear to hold in practice.

If the prime factorization of the order of the group is known, the discrete logarithm problem
over the group can be decomposed into a set of discrete logarithm problems over subgroups. As a
result, if p—1 = p{™* .- p%n is the prime factorization of p — 1, then the discrete logarithm problem
in Z, can be solved in time on the order of

n

> (Vi +Ipl) -

i=1
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If we want the discrete logarithm problem in Z; to be hard, this means that it must be the case
that at least one of the prime factors p; of p — 1 is large enough that /p; is large.

The prime factorization of p — 1 might be hard to compute given only p, but in fact we usually
choose p in such a way that we know the prime factorization of p — 1, because it is this that gives us
a way to find a generator of the group Zjy, as discussed in the chapter on Computational Number
Theory So the above algorithm is quite relevant.

From the above, if we want to make the DL problem in Z; hard, it is necessary to choose p so
that it is large and has at least one large prime factor. A common choice is p = sq+ 1 where s > 2
is some small integer (like s = 2) and ¢ is a prime. In this case, p — 1 has the factor ¢, which is
large.

Precise estimates of the size of a prime necessary to make a discrete logarithm algorithm infeasi-
ble are hard to make based on asymptotic running times of the form given above. Ultimately, what
actual implementations can accomplish is the most useful data. In April 2001, it was announced
that discrete logarithms had been computed modulo a 120 digit (ie. about 400 bit) prime (Joux
and Lercier, 2001). The computation took 10 weeks and was done on a 525MHz quadri-processor
Digital Alpha Server 8400 computer. The prime p did not have any special structure that was
exploited, and the algorithm used was the GNFS. A little earlier, discrete logarithms had been
computed modulo a slightly larger prime, namely a 129 digit one, but this had a special structure
that was exploited [35].

Faster discrete logarithm computation can come from many sources. One is exploiting paral-
lelism and the paradigm of distributing work across available machines on the Internet. Another is
algorithmic improvements. A reduction in the constant C' of Equation (10.4) has important impact
on the running time. A reduction in the exponents from 1/3,2/3 to 1/4,3/4 would have an even
greater impact. There are also threats from hardware approaches such as the design of special
purpose discrete logarithm computation devices. Finally, the discrete logarithm probably can be
solved in polynomial time with a quantum computer. Whether a quantum computer can be built
is not known.

Predictions are hard to make. In choosing a prime p for cryptography over Z,, the security
risks must be weighed against the increase in the cost of computations over Zy as a function of the
size of p.

10.2.3 Other groups

In elliptic curve groups, the best known algorithm is the O(y/|G|) one mentioned above. Thus,
it is possible to use elliptic curve groups of smaller size than groups of integers modulo a prime
for the same level of security, leading to improved efficiency for implementing discrete log based
cryptosystem.

10.3 The RSA system

The RSA system is the basis of the most popular public-key cryptography solutions. Here we
provide the basic mathematical and computational background that will be used later.

10.3.1 The basic mathematics

We begin with a piece of notation:
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Definition 10.6 Let N, f > 1 be integers. The RSA function associated to N, f is the function
RSAN f: Z% — Z% defined by RSAy, r(w) = w/ mod N for all w € Z%. |

The RSA function associated to N, f is thus simply exponentiation with exponent f in the group
77, but it is useful in the current context to give it a new name. The following summarizes a basic
property of this function. Recall that ¢ (V) is the order of the group Z3,.

Proposition 10.7 Let N > 2 and e,d € Z{, \, be integers such that ed = 1 (mod ¢(N)). Then
the RSA functions RSAy . and RSAy 4 are both permutations on Z%; and, moreover, are inverses
of each other, ie. RSAY!, = RSAy 4 and RSAL!; = RSAy.. 1

A permutation, above, simply means a bijection from Z% to Z};, or, in other words, a one-to-one,
onto map. The condition ed =1 (mod ¢(N)) says that d is the inverse of e in the group Z;(N).

Proof of Proposition 10.7: For any x € Z7, the following hold modulo N:
RSAN 4(RSAN o(2)) = (2°)¢ = 24 = ged mod PN) = gl =g
The third equivalence used the fact that ¢(V) is the order of the group Z},. The fourth used the
assumed condition on e, d. Similarly, we can show that for any y € Z%,
RSAN(RSAN4(y)) =y
modulo N. These two facts justify all the claims of the Proposition. I
With N,e,d as in Proposition 10.7 we remark that

e For any z € Z3: RSAy.(r) = MOD-EXP(z,e, N) and so one can efficiently compute
RSAN(x) given N, e, x.

e For any y € Z3: RSAnq(y) = MOD-EXP(y,d,N) and so one can efficiently compute
RSAN.4(y) given N, d,y.

We now consider an adversary that is given N, e,y and asked to compute RSAR,le(y). If it had d,
this could be done efficiently by the above, but we do not give it d. It turns out that when the
paremeters N, e are properly chosen, this adversarial task appears to be computationally infeasible,
and this property will form the basis of both asymmetric encryption schemes and digital signature
schemes based on RSA. Our goal in this section is to lay the groundwork for these later applications
by showing how RSA parameters can be chosen so as to make the above claim of computational
difficulty true, and formalizing the sense in which it is true.

10.3.2 Generation of RSA parameters

We begin with a computational fact.

Proposition 10.8 There is an O(k?) time algorithm that on inputs ¢(N), e where e € Z7, yy and
N < 2% returns d € Z, v satisfying ed =1 (mod ¢(N)). I

Proof of Proposition 10.8: Since d is the inverse of e in the group Z*so(N)’ the algorithm
consists simply of running MOD-INV (e, ¢(N)) and returning the outcome. Recall that the modular
inversion algorithm invokes the extended-gcd algorithm as a subroutine and has running time
quadratic in the bit-length of its inputs. 1

To choose RSA parameters, one runs a generator. We consider a few types of geneators:
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Definition 10.9 A modulus generator with associated security parameter k (where k > 2 is an
integer) is a randomized algorithm that takes no inputs and returns integers N, p, ¢ satisfying:

1. p,q are distinct, odd primes
2. N =pq
3. 2kl < N < 2F (ie. N has bit-length k).

An RSA generator with associated security parameter k is a randomized algorithm that takes no
inputs and returns a pair ((N,e), (N, p, q,d)) such that the three conditions above are true, and, in
addition,

4. ede€ Z?p—l)(q—l)

5. ed=1 (mod (p—1)(g—1))

We call N an RSA modulus, or just modulus. We call e the encryption exponent and d the decryption
exponent. |

Note that (p —1)(¢ — 1) = ¢(IV) is the size of the group Z%. So above, e, d are relatively prime to
the order of the group Z%.. As the above indicates, we are going to restrict attention to numbers
N that are the product of two distinct odd primes. Condition (4) for the RSA generator translates
tol<e,d<(p—1)(¢g—1)and ged(e,(p—1)(¢g—1)) =ged(d,(p—1)(¢ — 1)) = 1.

For parameter generation to be feasible, the generation algorithm must be efficient. There are
many different possible efficient generators. We illustrate a few.

In modulus generation, we usually pick the primes p, ¢ at random, with each being about k/2
bits long. The corresponding modulus generator Kﬁlod with associated security parameter k works
as follows:

Algorithm ,Cisnod
bl — [k/2]; by < [k/2]
Repeat
pE il o 1) g &l 2k 1)
Until the following conditions are all true:
— TEST-PRIME(p) = 1 and TEST-PRIME(q) = 1
- PFq
_ 2k—1 <N
N —pq
Return (N,e), (N,p,q,d)

Above, TEST-PRIME denotes an algorithm that takes input an integer and returns 1 or 0. It is
designed so that, with high probability, the former happens when the input is prime and the latter
when the input is composite.

Sometimes, we may want modulii product of primes having a special form, for example primes
p,q such that (p — 1)/2 and (¢ — 1)/2 are both prime. This corresponds to a different modulus
generator, which works as above but simply adds, to the list of conditions tested to exit the loop, the
conditions TEST-PRIME((p —1)/2)) = 1 and TEST-PRIME((¢ —1)/2)) = 1. There are numerous
other possible modulus generators too.

An RSA generator, in addition to IV, p, ¢, needs to generate the exponents e, d. There are several
options for this. One is to first choose N, p,q, then pick e at random subject to ged(N, ¢(N)) =
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1, and compute d via the algorithm of Proposition 10.8. This random-exponent RSA generator,
denoted K2, is detailed below:

rsa’

Algorithm K3

rsa
(N, p,q) <& K5 o

M—(p-1)(¢—1)

e VAY;

Compute d by running the algorithm of Proposition 10.8 on inputs M, e
Return ((N,e), (N, p,q,d))

In order to speed-up computation of RSAy ., however, we often like e to be small. To enable this,
we begin by setting e to some small prime number like 3, and then picking the other parameters
appropriately. In particular we associate to any odd prime number e the following exponent-e RSA

generator:
Algorithm ¢,
Repeat
(N2, 0) < Koq ()
Until

— e<(p—1l)ande<(¢g—1)

— ged(e, (p—1)) = ged(e, (¢ — 1)) =1

M~ (p-1)(¢—1)

Compute d by running the algorithm of Proposition 10.8 on inputs M, e
Return ((N,e), (N,p,q,d))

10.3.3 One-wayness problems

The basic assumed security property of the RSA functions is one-wayness, meaning given N, e,y
it is hard to compute RSA]_Vle(y). One must be careful to formalize this properly though. The
formalization chooses y at random.

Definition 10.10 Let K, be an RSA generator with associated security parameter k, and let A
be an algorithm. We consider the following experiment:

Experiment Expo,cvfs':{ea(A)
((Nye), (N,p,q,d)) < Ky,
< 2%y — 2 mod N
o' & A(N, e,y)
If 2’ = x then return 1 else return 0

The ow-kea-advantage of A is defined as

Adv,%‘:jea(A) = Pr [Expolcvzi{ea(A) = 1} .
Above, “kea” stands for “known-exponent attack.” We might also allow a chosen-exponent attack,
abbreviated “cea,” in which, rather than having the encryption exponent specified by the instance
of the problem, one allows the adversary to choose it. The only condition imposed is that the
adversary not choose e = 1.
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Definition 10.11 Let K, be a modulus generator with associated security parameter k, and let
A be an algorithm. We consider the following experiment:
Experiment Expolc"rv:ea(A)

(N7 p7 q) i ,Cmod
$ *

Yy — ZN

(z,e) < A(N,y)

Ifz° =y (mod N)ande>1
then return 1 else return 0.

The ow-cea-advantage of A is defined as

AdvRE(A) = Pr[Bxppen(4) =1] . 1

mod mod

10.4 Historical notes

10.5 Exercises and Problems



Bibliography

[1] T. DENNY AND D. WEBER The solution of Mccurley’s discrete logchallenge. Advances in
Cryptology — CRYPTO ’98, Lecture Notes in Computer Science Vol. 1462, H. Krawczyk ed.,
Springer-Verlag, 1998.

209



210 BIBLIOGRAPHY



Chapter 11

ASYMMETRIC ENCRYPTION

The setting of public-key cryptography is also called the “asymmetric” setting due to the asymmetry
in key information held by the parties. Namely one party has a secret key while another has the
public key that matches this secret key. This is in contrast to the symmetry in the private key
setting, where both parties had the same key. Asymmetric encryption is thus another name for
public-key encryption, the mechanism for achieving data privacy in the public key or asymmetric
setting.

Our study of asymmetric encryption (following our study of other primitives) will begin by
searching for appropriate notions of security, and models and formalizations via which they are
captured. We then consider constructions, where we look at how to design and analyze various
schemes.

With regard to notions of security, we will be able to build considerably on our earlier study
of symmetric encryption. Indeed, from this point of view there is very little difference between
symmetric and asymmetric encryption; not much more than the fact that in the latter the adversary
gets the public key as input. This is important (and re-assuring) to remember. All the intuition and
examples we have studied before carry over, so that we enter the study of asymmetric encryption
already having a good idea of what encryption is, how security is modeled, and what it means
for a scheme to be secure. Accordingly we will deal with the security issues quite briefly, just
re-formulating the definitions we have seen before.

The second issue (namely constructions) is a different story. Designs of asymmetric encryption
schemes rely on tools and ideas different from those underlying the design of symmetric encryp-
tion schemes. Namely in the asymmetric case, the basis is (typically) computationally intractable
problems in number theory, while for the symmetric case we used block ciphers. Thus, the greater
part of the effort in this chapter will be on schemes and their security properties.

11.1 Asymmetric encryption schemes

An asymmetric encryption scheme is just like a symmetric encryption scheme except for an asym-
metry in the key structure. The key pk used to encrypt is different from the key sk used to decrypt.
Furthermore pk is public, known to the sender and also to the adversary. So while only a receiver
in possession of the secret key can decrypt, anyone in possession of the corresponding public key
can encrypt data to send to this one receiver.

211
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Definition 11.1 An asymmetric encryption scheme AE = (K, &, D) consists of three algorithms,
as follows:

e The randomized key generation algorithm K (takes no inputs and) returns a pair (pk, sk)
of keys, the public key and matching secret key, respectively. We write (pk, sk) & K for the
operation of executing K and letting (pk, sk) be the pair of keys returned.

e The encryption algorithm & takes the public key pk and a plaintext (also called a message) M
to return a value called the ciphertext. The algorithm may be randomized, but not stateful.
We write C' <> &, (M) or C <& &(pk, M) for the operation of running € on inputs pk, M and
letting C' be the ciphertext returned.

e The deterministic decryption algorithm D takes the secret key sk and a ciphertext C' £ 1 to
return a message M. We write M « Dy (C) or M «— D(sk,C).

The message space associated to a public key pk is the set Plaintexts(pk) of all M for which & (M)
never returns L. We require that the scheme provide correct decryption, which means that for any
key-pair (pk, sk) that might be output by K and any message M € Plaintexts(pk), if C' was returned
by 5pk(M) then Dsk(C) =M.1

Let R be an entity that wants to be able to receive encrypted communications. The first step
is key generation: R runs K to generate a pair of keys (pk, sk) for itself. Note the key generation
algorithm is run locally by R. Anyone in possession of R’s public key pk can then send a message
M privately to R. To do this, they would encrypt M via C' < Ep (M) and send the ciphertext C'
to R. The latter will be able to decrypt C' using sk via M « Dy (C).

Note that an entity wishing to send data to R must be in possession of R’s public key pk, and
must be assured that the public key is authentic, meaning really is the R’s public-key, and not
someone else’s public key. We will look later into mechanisms for assuring this state of knowledge.
But the key management processes are not part of the asymmetric encryption scheme itself. In
constructing and analyzing the security of asymmetric encryption schemes, we make the assumption
that any prospective sender is in possession of an authentic copy of the public key of the receiver.
This assumption is made in what follows.

A viable scheme of course requires some security properties. But these are not our concern now.
First we want to pin down what constitutes a specification of a scheme, so that we know what are
the kinds of objects whose security we want to assess.

The key usage is the “mirror-image” of the key usage in a digital signature scheme. In an
asymmetric encryption scheme, the holder of the secret key is a receiver, using the secret key to
decrypt ciphertexts sent to it by others. In a digital signature scheme, the holder of the secret key
is a sender, using the secret key to tag its own messages so that the tags can be verified by others.

The last part of the definition says that ciphertexts that were correctly generated will decrypt
correctly.

The encryption algorithm might be randomized, and must for security. But unlike in a sym-
metric encryption scheme, we will not consider stateful asymmetric encryption algorithms. This is
because there is no unique sender to maintain state; many different entities are sending data to the
receiver using the same public key. The decryption algorithm is deterministic and stateless.

We do not require that the message or ciphertext be strings. Many asymmetric encryption
schemes are algebraic or number-theoretic, and in the natural formulation of these schemes messages
might be group elements and ciphertexts might consist of several group elements. However, it is
understood that either messages or ciphertexts can be encoded as strings wherever necessary. (The
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encodings will usually not be made explicit.) In particular, we might talk of the length of a
message of ciphertext, with the understanding that we mean the length of some binary encoding
of the quantity in question. (We do this, for example, in defining security.)

In cases where messages are not strings, but, say, group elements, using the scheme in practice
will usually require encoding of actual messages as group elements. We will discuss this as it arises.

11.2 Notions of security

Security of an encryption scheme (whether symmetric or asymmetric) is supposed to reflect the
inability of an adversary, given ciphertexts (and any public information such as a public key), to get
“non-trivial” information about the underlying plaintexts. We allow an adversary (having the goal
of figuring out some non-trivial information about plaintexts from ciphertexts) different “attack”
capabilities reflecting different situations. The most basic kind of attack is a chosen-plaintext
attack, in which the adversary can obtain encryptions of messages of its choice. We discussed this
type of attack in depth in the context of symmetric encryption, and argued that the definition of
security in the sense of “left-or-right” captured security against these types of attacks in a strong
sense. In the asymmetric case, the same is true, and we will use the same notion to capture security
against chosen plaintext attack. (A difference that must be kept in mind is that the adversary in
an asymmetric setting also has the public key, and so can in any case encrypt on its own, but this
does not really affect the formalization of the notion.)

We also discussed the stronger chosen-ciphertext attack, in which we desire that privacy of data
be maintained even if the adversary has some (limited) access to a “decryption oracle”, this being
a box that contains the secret decryption key and implements decryption under this key. (The
adversary does not get the key itself.) For the asymmetric setting, chosen-ciphertext attacks are
both more relevant and more difficult to protect against than in the symmetric setting.

We begin by summarizing the notion of security against chosen-plaintext attack, extending the
definitions for the symmetric setting. Then we go on to discuss chosen-ciphertext attacks.

11.2.1 Security against chosen-plaintext attack

Let us fix a specific asymmetric encryption scheme AE = (K,&€,D). We consider an adversary
A that is an algorithm (program) that is given as input a public key pk. The intuition behind
the notion is as follows. Imagine that the sender has two sequences of messages, Mg, ... , M{ and
M, ... , M. Tt encrypts the messages in one of the sequences to get a sequence of ciphertexts
which it transmits. That is, if b € {0,1} denotes the choice of sequence, the sender computes
C' — Ex(M}) for i = 1,...,q, and then transmits C',...,CY to the receiver. The adversary,
being able to eavesdrop, obtains the ciphertexts. Its goal is to figure out which of the two message
sequences was encrypted, namely to figure out the value of the bit b. The scheme is said to be
“secure” if it cannot compute the value of b correctly with probability significantly more than 1/2.

The formalization allows the adversary to specify both message sequences, and furthermore to
mount an adaptive attack, meaning to choose Mg, Mé_l as a function of C*,...,C* L

The formalization is in terms of the left-or-right encryption oracle. It depends on the public
key and challenge bit b. It takes input two messages and returns a ciphertext, as follows:

Oracle &y (LR (Mo, M1,b)) // be{0,1} and My, M; € {0,1}*
If |Mp| # |M;| then return L
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C — Ex(My)
Return C

Thus the oracle encrypts one of the messages, the choice of which being made according to the bit
b. Now we consider two “worlds”:

World 0: The oracle provided to the adversary is Ep(LR(:,-,0)). So, whenever the adversary

makes a query (My, M) to its oracle, the oracle computes C' & Epk(Mp), and returns C as the
answer.

World 1: The oracle provided to the adversary is Ep(LR(:,-,1)). So, whenever the adversary

makes a query (Mo, M;) to its oracle, the oracle computes C < Epk(My), and returns C' as the
answer.

We call the first world (or oracle) the “left” world (or oracle), and we call the second world (or
oracle) the “right” world (or oracle). The problem for the adversary is, after talking to its oracle
for some time, to tell which of the two oracles it was given.

The adversary queries makes some number of queries to its oracle, and then outputs a bit. This
bit has some probability of equaling one. The probability is over the choice of the keys (pk, sk)
as made by the key-generation algorithm, any random choices made by the oracle, and any other
random choices made by the adversary in its computation. We look at this probability in each of
the two worlds as the basis for the definition.

We suggest that the reader return to the chapter on symmetric encryption to refresh his or her
mind about this model. In particular remember that the encryption function is randomized, and
the oracle implementing it is thus randomized too. Each time the oracle computes a ciphertext, it
does so by running the encryption algorithm with fresh coins.

Definition 11.2 Let AE = (K,&,D) be an asymmetric encryption scheme, let b € {0,1}, and
let A be an algorithm that has access to an oracle and returns a bit. We consider the following
experiment:

Experiment Exp'js *°(A)
(pk,sk) & K
b o— Agpk(LR(-,-,b))(pk)
Return b’

The ind-cpa-advantage of A is defined as
AdviAng_Cpa(A) = Pr [Expjg_Cpa_l(A) = 1} — Pr {Expﬁg_Cpa_o(A) = 1} |

As usual, the time-complexity mentioned above is the worst case total execution time of the entire
experiment. This means the adversary complexity, defined as the worst case execution time of A
plus the size of the code of the adversary A, in some fixed RAM model of computation (worst
case means the maximum over A’s coins or the answers returned in response to A’s oracle queries),
plus the time for other operations in the experiment, including the time for key generation and the
computation of answers to oracle queries via execution of the encryption algorithm.

Another convention we make is that the length of a query My, M; to a left-or-right encryption
oracle is defined as [Mp|. (We can assume without loss of generality that this equals |M;| since
otherwise the oracle returns L and so the query would be useless.) The total message length, which
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is the sum of the lengths of all oracle queries, is another parameter of interest. We say that the
total message length is at most p if it is so in the worst case, meaning across all coin tosses and
answers to oracle queries in the experiment.

We consider an encryption scheme to be “secure against chosen-plaintext attack” if a “rea-
sonable” adversary cannot obtain “significant” advantage, where reasonable reflects its resource

usage. The technical notion is called indistinguishability under chosen-ciphertext attack, denoted
IND-CPA.

11.2.2 Security against chosen-ciphertext attack

Stories introducing chosen-ciphertext attack can be somewhat whimsical. One is about the so-
called “lunchtime attack.” Entity R goes to lunch while leaving his console accessible. For the
short period of the lunch break, an adversary gets access to this console; when the lunch break is
over, the adversary has to leave before it is discovered at the console by the legitimate user, returning
from lunch. The access is such that the adversary cannot actually read the secret decryption key sk
(imagine that sk is in protected hardware) but does have the capability of executing the algorithm
Dgk(-) on input any ciphertext of its choice. At that time if the adversary has in hand some
ciphertext it wants to decrypt, it can certainly do so; there is nothing one can do to prevent that.
However, it may be able to do even more. For example, perhaps there is some clever sequence of
calls to Dg(-) via which the latter can be made to output sk itself. (These calls would not be
made under normal execution of the algorithm on normal ciphertexts, but the adversary concocts
weird ciphertexts that make the decryption routine do strange things.) Having sk means the
adversary could decrypt traffic at any time in the future, even after the lunch break. Alternatively,
the adversary is able to call Dg(-) on some inputs that result in the adversary’s gaining some
information that would enable it to decrypt some fraction of ciphertexts it might see later, after
the lunch break, when it no longer has access to Dg(-). These are the eventualities we want to
prevent.

This scenario is artificial enough that were it the only motivation, it would be natural to wonder
whether it is really worth the trouble to design schemes to withstand chosen-ciphertext attack. But
this is not the main motivation. The real motivation arises from gathering evidence that asymmetric
encryption schemes secure against chosen-ciphertext attack are the desired and appropriate tool for
use in many higher level protocols, for example protocols for authenticated session key exchange.
There a party decrypts a random challenge message to prove its identity. This leaves it open
to a chosen-ciphertext attack on the part of an adversary who sends ciphertexts in the guise of
challenges and obtains their decryption. Were this attack to reveal the secret key, the adversary
could impersonate the legitimate entity at a later date, since it would now itself possess the ability
to decrypt the challenges sent by others.

Based on this and other such applications, we would like to design asymmetric encryption
schemes that are secure against very strong kinds of chosen-ciphertext attack. To illustrate let’s
consider the following game. An adversary A is given a challenge ciphertext C' and must output
the corresponding plaintext to win the game. The adversary is given the public key pk under which
C was created, and is also given access to the oracle Dg(-) allowing decryption under the secret
key sk corresponding to pk. A trivial way for the adversary to win the game is to invoke its oracle
on C. This triviality is the one thing disallowed. We allow the adversary to invoke Dg(:) on any
input C" # C. Of course it may invoke the oracle multiple times; all the inputs provided to the
oracle must however be different from C. If from the information so gathered the adversary can
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compute Dgi(C') then it wins the game.

This is a very strong form of chosen-ciphertext attack: the adversary can invoke the decryption
oracle on any point other than the challenge. Again, one’s first reaction might be that it is in fact
ridiculously strong. How in any setting where I have some sort of decryption oracle access is it
possible that I could not ask the query of my choice, yet be able to ask absolutely any other query?
Indeed it is hard to imagine such a setting. Yet, this is the “right” attack model to consider for
several reasons. One is that in proving the security of authenticated key exchange protocols that
use asymmetric encryption as discussed above, it is exactly security under such an attack that is
required of the asymmetric encryption scheme. The other reasons is perhaps more fundamental.
We have seen many times that it is difficult to anticipate the kinds of attacks that can arise. It is
better to have an attack model that is clear and well defined even if perhaps stronger than needed,
than to not have a clear model or have one that may later be found to be too weak.

We have already seen that inability to decrypt a challenge ciphertext is not evidence of security
of a scheme, since one must also consider loss of partial information. In finalizing a notion of
security against chosen-ciphertext attack one must take this into account too. This, however, we
already know how to do, via left-or-right encryption oracles.

Definition 11.3 Let A€ = (K, &, D) be an asymmetric encryption scheme, let b € {0,1}, and let
A be an algorithm that has access to two oracles and returns a bit. We consider the following
experiment:

Experiment Exp'igcca?(4)
(pk,sk) <& K
b — Agpk(LR('7'7b))7Dsk(')(pk)
If A queried Dg(-) on a ciphertext previously returned by Ex(LR(:,-, b))
then return 0
else Return ¥’

The ind-cca-advantage of A is defined as
AdviEe(4) = PrBxplidet(4) = 1] - Pr [Explife0(4) =1] . I

The conventions with regard to resource measures are the same as those used in the case of chosen-
plaintext attacks.

We consider an encryption scheme to be “secure against chosen-ciphertext attack” if a “rea-
sonable” adversary cannot obtain “significant” advantage, where reasonable reflects its resource
usage. The technical notion is called indistinguishability under chosen-ciphertext attack, denoted
IND-CCA.

11.3 One encryption query or many?

The adversary in our definitions is allowed to make many queries to its lr-encryption oracle. We
gave it this power because it might be possible to expose weaknesses in the encryption scheme
via an attack involving observing the encryptions of many related messages, chosen adaptively as
a function of ciphertexts of previous messages. Indeed, it may be possible to achieve a higher
advantage with more queries, but we show here that the gain is limited. Namely, an adversary
making ¢, Ir-encryption oracle queries cannot achieve an advantage greater than ¢, times that of
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an adversary making just one Ir-encryption oracle query and having other resources comparable
to that of the original adversary. This is true both under chosen-plaintext and chosen-ciphertext
attack, as indicated in the following.

Theorem 11.4 Let AE = (K,&,D) be an asymmetric encryption scheme. Let B be an ind-cpa
adversary who makes at most ¢. queries to its left-or-right encryption oracle. Then there exists an
ind-cpa adversary A making at most one query to its left-or-right encryption oracle and such that

AdvIRTPYB) < g - AdviE P (4) . (11.1)

Furthermore, the running time of A is that of B. Similarly, let B be an ind-cca adversary who makes
at most ¢. queries to its left-or-right encryption oracle. Then there exists an ind-cca adversary A
making at most one query to its left-or-right encryption oracle and such that

Advidea(B) < g - Advideea(A) . (11.2)

Furthermore, the number of decryption oracle queries made by A is the same as made by B, and
the running time of A is that of B. 1

In a qualitative sense, this theorem can be interpreted as saying that an asymmetric encryption
scheme secure against adversaries making just one Ir-encryption query is also secure against adver-
saries making many lr-encryption queries. This will simplify later analyses by allowing us to focus
on adversaries that make only one Ir-encryption query.

An important element making this result possible is that in an asymmetric encryption scheme,
an adversary can itself encrypt any message it wants, because it has the public (encryption) key. In
the symmetric setting, the adversary cannot directly encrypt a message, but may only do so via an
oracle that holds the key. An analogue of the above is true in the symmetric setting, but requires
that the adversary be provided not only with an Ir-encryption oracle but also with an encryption
oracle.

Proof of Theorem 11.4: The statement corresponding to Equation (11.1) follows from the state-
ment corresponding to Equation (11.2) by considering an ind-cca adversary who makes no queries
to its decryption oracle, so we need only prove the statement corresponding to Equation (11.2).

We will use what’s called a “hybrid argument”. We will associate to B a sequence of experiments
Explic(B) , Expye(B), ..., Exp’:(B) (11.3)
such that, if we let
P(i) = Pr|Bxpi(B) = 1]
for i € {0,1,...,q}, then it will be the case that

P(0) = Pr [Expg}g‘cca‘o(B):q (11.4)
P(qg) = Pr [Expijg'cca'l(B):l} : (11.5)

In other words, the first and last experiments in our sequence will correspond to the world 0 and
world 1 experiments, respectively, in Definition 11.2. If so, Definition 11.2 tells us that

AdVRE*(B) = P(q) — P(0).
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Oracle Hg;k(MOv M) Experiment Expilg(B)
j—7i+1 (pk,sk)ilC
Ifj <i d — BHc‘fgk('»'),Dsk(')(pk)
then C & £ (M) Return d
else O <& & (Mp)
EndIf
Return C

Adversary Aek(LR(0).Da() (pk)

j—0;IE{1,...,q}

Subroutine O (My, M)
Je—Jj+1
If j < I then C <& &, (M) EndIf
If j = I then C & Epk(LR(Mo, My, b)) EndIf
If j > I then C <& £yx(Mp) EndIf
Return C

End Subroutine

d <& BO¢C).Da() (pk)

Return d

Figure 11.1: Hybrid oracles and experiments related to the construction of ind-cca adversary A in
the proof of Theorem 11.4.

Now comes a trick. We consider the sum

>_[P(i) = P(i)] .

i=1
Its value, of course, is 0. Hence, from the above,

AdviEea(B) = P(q) — P(0)

We will now construct ind-cca-adversary A so that

Pr [ExpiAng'“a'l(A) = 1} =

: ZP(@‘) (11.6)
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. 1 !
Pr [Expiic0(4) =1] = ~-3" P(i). (11.7)
q =0
Then, from the above we would have
. 1 .
AdvRECP(A) = = AdviRE*(B).
q

Re-arranging terms, we get Equation (11.2).

We now specify the “hybrid” experiments of Equation (11.3) in such a way that Equations (11.4)
and (11.5) are true and we are able to construct adversary A such that Equations (11.6) and (11.7)
are true.

We associate to any i € {0,...,q} an oracle and an experiment, as indicated in Fig. 11.1. The
oracle associated to i is stateful, maintaining a counter j that is initialized to 0 by the overlying
experiment and is incremented by the oracle each time the latter is invoked.

Now, observe that oracles HE Sk(~, -) and Epx(LR(+, -, 0)) are equivalent, meaning that on any inputs,
their responses are identically distributed. Similarly, oracles Hé’gk(-, -) and Epk(LR(:,-,1)) are
equivalent. Hence, Equations (11.4) and (11.5) are true.

Adversary A is specified in Fig. 11.1. It begins by initializing a counter j to 0, and picking I at
random from {1,...,q}. It then defines a subroutine OE. Finally A executes B, replacing the
B’s Ir-encryption oracle with the subroutine O&, and providing B a decryption oracle via A’s own
access to a decryption oracle.

We highlight that A’s operation depends on the fact that it was provided the public encryption key
as an input. This enables it to compute encryptions under this key directly, and it does so inside
the subroutine. Had we not given A the public key, this construction would not be posible.

To complete the proof it suffices to justify Equations (11.6) and (11.7). Suppose A is in world 1,
meaning the challenge bit b equals 1. Then subroutine OE encrypts the right message of its input
pair the first I times it is called, and the left-message after that. One the other hand, if A is in
world 0, meaning b = 0, subroutine O& encrypts the right message of its input pair the first 7 — 1
times it is called, and the left message after that. Regarding I as a random variable taking values
in {1,...,q}, this means that for every ¢ € {1,...,q} we have

Pr [Expie(4) =1|1=i] = P()
Pr [Expide0(4) =1|1=i] = P(i-1).
Since the random variable I is uniformly distributed in the range {1,...,q} we have
q
Pr [Expfj‘lg'cca'l(A) = 1] = ZPr [Expijg'cca'l(A) =1|I= Z} -Pr[I =1
i=1

= > P(i)-

1
i=1 q
This justifies Equation (11.6). Similarly,

q
Pr [Expijg'cca'o(A) = 1] = ZPr [ExpiAng'CC&'O(A) =1|1= 2} -Pr[l =i
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_ qup@—n-l
=1 q
q—1

O

: q

which justifies Equation (11.7). This concludes the proof. |

11.4 Hybrid encryption

Before we present constructions of asymmetric encryption schemes, it is useful to get some idea of
the context in which they are used.

Given an asymmetric encryption scheme AE = (K% % D), one rarely encrypts data directly
with it. Rather, to encrypt M under a public key pk of this scheme, we first pick a random key
K for a symmetric encryption scheme S€ = (K*,£°, D?), encrypt K under pk via the asymmetric
scheme to get a ciphertext C'%, encrypt M under K via the symmetric scheme to get a ciphertext
C*#, and transmit (C*, C®). This is called hybrid encryption.

More precisely, hybrid encryption is a transform that given any asymmetric encryption scheme
and any symmetric encryption scheme associates to them a new asymmetric encryption scheme:

Scheme 11.5 Let AE = (K%, £%, D) be an asymmetric encryption scheme, and let S€ = (K¢, &%, D?)
be a stateless symmetric encryption scheme such that Keys(SE) C Plaintexts(pk) for every pk that
might be output by K The hybrid encryption scheme associated to AE,SE is the asymmetric
encryption scheme AE = (K%, &, D) whose key-generation algorithm is the same as that of A€ and
whose encryption and decryption algorithms are defined as follows:

Algorithm &, (M) Algorithm Dy (C)
K&K o8& g5.(M) Parse C as (C*,C?)
If C° = L then return L K — D4 (C%)
ce En(K); O (C%,C%) If K = 1 then return L
Return C M — D (C*)
Return M

Under this hybrid encryption scheme, one can (asymmetrically) encrypt any message M that is in
the plaintext-space of the underlying symmetric encryption scheme. |

Hybrid encryption is used for numerous reasons. The principal one is cost. The number-theoretic
operations underlying common asymmetric encryption schemes are computationally costly relative
to the operations on block ciphers that underly common symmetric encryption schemes. In practice
one wants to minimize the amount of data to which these number-theoretic operations are applied.
Accordingly, rather than encrypt the possibly long message M directly under pk via the given
asymmetric scheme, one uses hybrid encryption. The costly number-theoretic operations are thus
applied only to data whose length k is fixed and not dependent on the length of M.

This context tells us that when we design asymmetric encryption schemes, we can typically
assume that the message space consists of short strings. This will facilitate our constructions.

However, before we adopt the hybrid encryption paradigm we need to know that it “works,”
meaning that it is secure. In assessing the strength of hybrid encryption, we use as usual the
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provable-security philosophy and approach. A hybrid encryption scheme is built from two com-
ponents: a base asymmetric encryption scheme and a base symmetric encryption scheme. The
appropriate question to ask is whether the assumed security of the components suffices to guar-
antee security of the hybrid scheme based on them. It turns out that it does, and moreover for
security under both chosen-plaintext and chosen-ciphertext atttacks. Theorem 11.6 below addresses
the first case, and Theorem 11.7 the second. (Although the latter implies the former, we state and
prove them separately because the proof has some delicate issues and ideas and is best understood
via an incremental approach.)

Theorem 11.6 Let AE = (K%, % D) be an asymmetric encryption scheme, let S€ = (K%, %, D)
be a stateless symmetric encryption scheme such that

Keys(SE) C Plaintexts(pk)

for every pk that might be output by K¢, and let AE = (K%, &, D) be the hybrid encryption scheme
associated to AE, SE as per Scheme 11.5. Let k denote the length of keys output by K£%. Let B be
an ind-cpa-adversary attacking AE. Then there exist ind-cpa adversaries Ao o1, A11,10 attacking
AE, and an adversary A attacking S&, such that

AdvETP(B)

< AdVET P (Apoo1) + AdvEe P (A 10) + AdViES P (A) (11.8)

Furthermore, suppose B had time complexity at most ¢, made at most ¢ queries to its left-or-right
encryption oracle, these totalling at most o bits in length. Then Agg o1, A11,10 each have time-
complexity at most ¢ and make at most ¢ left-or-right encryption oracle queries, each query being
k bits long. Also A has time-complexity at most ¢, and makes only one query to its left-or-right
encryption oracle. I

The qualitative interpretation of Theorem 11.6 is that if AE and S& are each assumed to be
secure against chosen-plaintext attack, then AE is also secure against chosen-plaintext attack. On
the quantitative front, note that the advantage of AE against an attack involving ¢ Ir-encryption
queries is upper bounded as a function of the advantage of S€ against an attack involving only a
single Ir-encryption query. This means that the symmetric encryption scheme used may be very
weak and yet the hybrid asymmetric encryption scheme will be secure. For example, the encryption
algorithm of the symmetric encryption scheme could apply a pseudorandom bit generator to the
key to get an output of | M| bits and XOR this with the message to get the ciphertext. In particular,
the symmetric encryption scheme could be deterministic.

Proof of Theorem 11.6: These constructions are not as straightforward as some we have seen
in the past. We will need to “isolate” the asymmetric and symmetric components of AE in such
a way that an attack on this scheme can be broken down into attacks on the component schemes.
To do this we will use a hybrid argument. We will associate to B a sequence of experiments

ExpR:(B), Expi(B), Expl(B), Explk(B) (11.9)
such that, if we let
P(a, ) = Pr [Eij—i(B) = 1] (11.10)
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for bits a, B € {0, 1}, then it will be the case that

P(1,0) = Pr|[Expie o (B) = 1] (11.11)
P(0,0) = Pr[Explie () =1] . (11.12)

In other words, the first and last experiments in our sequence will correspond to the world 0 and
world 1 experiments, respectively, in Definition 11.2. If so, Definition 11.2 tells us that

AdvETPY(B) = P(1,0) - P(0,0) .
Now comes a trick. We throw into the expression P(1,0) — P(0,0) a bunch of extra terms that sum
to zero and hence don’t change the value of the expression, and then we regroup, like this:
P(1,0) — P(0,0)
= P(1,0)— P(1,1) + P(1,1) — P(0,1) + P(0,1) — P(0,0)
We have now written the ind-cpa-advantage of B as a sum of the differences that adjacent experi-

ments in our experiment sequence return 1. We will then construct the adversaries Ao 00, 4, A10,11
such that

P(0,1) — P(0,0) < Adv’3eP*(Ag;00) (11.13)
P(1,1) — P(0,1) < AdvEdP*(A) (11.14)
P(1,0) — P(1,1) < AdvEP* (A1) (11.15)

Equation (11.8) follows.

The template above is pretty generic. What we need to do now is to actually specify the “hybrid”
experiments of Equation (11.9) in such a way that Equations (11.11)—(11.12) are true and we are
able to construct adversaries Ao1,00, A, A10,11 such that Equations (11.13)—(11.15) are true.

Recall that B has access to an oracle that takes input a pair of messages and returns a ciphertext.
In the experiments of Definition 11.2 that define the ind-cpa-advantage of B, this oracle is either
Epk(LR(+,+,1)) or Epk(LR(, +,0)), depending on the world in which B is placed. Our hybrid exper-
iments will involve executing B not only with these oracles, but with others that we will define.
Specifically, we will define a sequence of oracles

Each oracle will take input a pair My, My of messages and return a ciphertext. Now, to each pair
a, 3 of bits, we associate the («, 3) hybrid experiment defined as follows:

Experiment Expi—ﬂg(B)
(pk, sk) < K@
ap
d — BMwx ("’)(pk)
Return d
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Oracle H(SSI(()(MQ, M) Oracle HSB&(MO, M)
Ko< K55 Ky < K Ko< K55 Ky & K3
Cs & E35(Ko, [My]) C® & &3(Ko, [Mo))
If C% = 1 then return L If C* = L then return L
C* & g9(pk, [Ko)) C* & £%(pk, [K1])
C — (C*,C?) C — (C*,C?)
Return C' Return C
Oracle HE;&(MO, M) Oracle HS;I(()(MO, M)
Ko<&K Ky & K8 Ko<&K K &K
C* & E3(Ko, [My]) Cs & &3(Ko, [My])
If C¥ = 1 then return L If C®* = 1L then return L
C & ge(pk, [K1]) C* & £%(pk, [Ko])
C — (C*,C?) C — (C*,C)
Return C Return C

Figure 11.2: Hybrid lr-encryption oracles used in the proof of Theorem 11.6.

This defines our experiments in terms of the oracles, and, finally, the oracles themselves are specified
in Fig. 11.2. Each hybrid lr-encryption oracle is paramterized by a pair (a, ) of bits and takes
input a pair My, My of messages. Examining the oracles, you will see that they are mostly identical,
different only in the quantities that have been boxed. Each oracle picks not one but two keys
Ky, K1, independently at random, for symmetric encryption. It then encrypts M, under Ky via
the symmetric encryption scheme to get a ciphertext C*, and it encrypts Kz under the public key
via the asymmetric encryption scheme to get a ciphertext C*. It returns the pair (C%, C*¥).

Note oracles HE 3}3(-, -) and HE ;2(-, -) do not actually use K. We have asked these oracles to pick
K1 only to highlight the common template underlying all four oracles.

Observe that oracle H€g£(~, -) and oracle E,x(LR(:,-,0)) are equivalent in the sense that their
responses to any particular query are identically distributed. Similarly oracle HE pl}j(-, -) and oracle

Epk(LR(+,-,1)) are equivalent. This means that Equations (11.11) and (11.12) are true, which is
the first requirement of a successful hybrid argument.

The new hybrid Ir-encryption oracles we introduce may seem rather bizarre at first since they do
not necessarily return valid ciphertexts. For example, oracle (0, 1) will return a ciphertext (C?, C*)
in which C? is the encryption of My under a key Ky, but C is not an encryption of K as it ought
to be under the definition of A&, but rather is the encryption of a random, unrelated key K;. Thus,
in the corresponding hybrid experiment, B is not getting the types of responses it “expects.” But
nonetheless, being an algorithm with access to an oracle, B will execute and eventually return a
bit. The meaning of this bit may be unclear, but we will see that this does not matter.

Before constructing Ag oo so that Equation (11.13) is true, let us try to explain the intuition. Con-
sider hybrid lr-encryption oracles (0,0) and (0,1). Note that in both experiments, C* is computed
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Sgk(LR(~,-,b)) Egk(LR(~,-,b))

Adversary Ag{ o (pk) Adversary A4 (pk)

Subroutine O& (Mg, M) Subroutine O& (Mg, M)
Ko<&K, Ky &K Ko<&K, K & K8
s & £35(Ko, My) Cs & £35(Koy, My)
If C% = 1 then return L If C° = L then return L
Ce & €4 (LR(Ko, K1,b)) Cco & 4 (LR(K1, Ko, b))
Return (C*,C*) Return (C*,C*)

End Subroutine End Subroutine

d <& BO¢C)(pk) d <& BO¢C) (pk)

Return d Return d

Figure 11.3: Adversaries attacking AE constructed for the proof of Theorem 11.6.

in exactly the same way. This means that the difference between P(0,0) and P(0,1) measures the
ability of the adversary to tell whether C'* encrypts the key underling C® or not. This is something
we can relate solely to the security of the base asymmetric encryption scheme.

Adversary Agi 00 attacking the base asymmetric encryption scheme A€ is specified in Fig. 11.3. As
per Definition 11.2, it has access to a Ir-encryption oracle ;k(LR(-, -, b)). Its strategy is to define
a subroutine O& and then run B, using OE to reply to B’s oracle queries. Subroutine O& takes
input a pair My, M7 of messages, picks a pair of keys for symmetric encryption, and finally returns
a ciphertext which is computed using a call to the given oracle &5 (LR(-, -, 0)).

Consider Agi,00 in world 1, meaning its oracle is &5, (LR(+,-,1)). In that case, the ciphertext C*
computed by subroutine O&(-, -) is an encryption of K7, and thus subroutine O&(, -) is equivalent to
oracle HSS&(-, -). On the other hand, when Ag; o is in world 0, meaning its oracle is €gk(LR(-, -, 0)),
the ciphertext C* computed by subroutine OE(-,-) is an encryption of Ky, and thus subroutine
O&(-,-) is equivalent to oracle HE 192(-, -). Hence

Pr [Expl P (Agr0) = 1] = Pr[Exp%a(B) = 1]
Pr [Explid P (Aor00) = 1] = Pr[Exp%e(B)=1] .

Subtracting, and remembering the notation of Equation (11.10), we get
AdvRE P (Agre0) = P(0,1) = P(0,0)
which justifies Equation (11.13).

We leave to the reader the task of verifying Equation (11.15) based on the construction of Aqj 19
given in Fig. 11.3, and now proceed to the construction of the ind-cpa adversary A attacking the
base symmetric encryption scheme.

The intuition here is that the (0,1) and (1, 1) hybrid experiments both compute C* as an encryption
of key K1, but differ in which message they symmetrically encrypt under Ky, and thus the difference
between P(0,1) and P(1,1) measures the ability of the adversary to tell which message C* encrypts
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under K. This is something we can relate solely to the security of the base symmetric encryption
scheme. The construction however will require a little more work, introducing another sequence of
hybrid experiments. This time there will be ¢ 4+ 1 of them,

Exp?A—g(B) , Exp}A—g(B) . e ExpiTg(B) .
Again we associate to any i € {0,..., ¢} an oracle and an experiment, as indicated in Fig. 11.4. The
oracle associated to ¢ is stateful, maintaining a counter j that is initially 0 and is incremented each
time the oracle is invoked. The oracle behaves differently depending on how its counter j compares
to its defining parameter ¢. If j <17 it symmetrically encrypts, under Ky, the right message M7, and
otherwise it symmetrically encrypts, under Ky, the left message My. The asymmetric component
C* is always an encryption of Kj.

Fori=0,...,q we let
P(i) = Pr[Expiz(B) =1] .

Now, suppose i = 0. In that case, the value C* computed by oracle Hé’;k(, -) on input My, My is
a symmetric encryption of My regardless of the value of the counter j. This means that oracles
HE gk(-, -) and HE 1911(-, -) are equivalent. Similarly, oracles HE gk(-, -) and HE ;;11(-, -) are equivalent.
Hence

P(0,1) = P(0) and P(1,1) = P(q).

So
P(1,1) — P(0,1)
= P(q) — P(0)
= Pl —Plg—1)+P(g—1)—--- = P(1)+ P(1) - P(0)
= > [P(i)—P(i—1). (11.17)
=1

Our ind-cpa adversary A attacking the base symmetric encryption scheme SE is depicted in
Fig. 11.4. It gets a Ir-encryption oracle &3 (LR(-,-, b)) based on a hidden key K and challenge
bit b. It picks a pair of public and secret keys by running the key-generation algorithm of the
asymmetric encryption scheme. It then picks an index i at random, and initializes a counter j to 0.
Next it defines a subroutine O&(-, ) that takes input a pair of messages and returns a ciphertext,
and runs B, replying to the latter’s oracle queries via the subroutine. The subroutine increments
the counter j at each call, and computes the symmetric component C* of the ciphertext differently
depending on how the counter j compares to the parameter :. In one case, namely when j = 1,
it computes C* by calling the given £ (LR(-,-, b)) oracle on inputs My, M;. Notice that A makes
only one call to its oracle, as required.

For the analysis, regard I as a random variable whose value is uniformly distributed in {1,...,q}.
Then notice that for any i € {1,...,q}
Pr [Expge P (4) =1 1=i] = P()
ind-cpa-0 . .
Pr{Expsg (A)zl\[zz} = P@lE-1).

Thus
AdviEdP?(A)
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Oracle HE;k(MO,Ml)
je—J+1
Ko<&K Ky & K3
If j <

then C* <& £5(Ky, [M])

else C° <& &3(Ky, )

EndIf

If C% = 1 then return L

Co & £9(pk, [Ky])
C — (C*,C?)
Return C

ASYMMETRIC ENCRYPTION

Experiment Expi‘—g(B )
(pk, sk) < K@
d — BHS;R("')(pk)
Return d

Adversary A€k TRCb))

(pk,sk) < K5 j— 05 T<{1,...,q}

Subroutine O& (M, M)

Jeg+l

Ko< K5 Ky < K*

If j < I then C* & £%(Ky, ) EndIf

If j = I then C*® <& £5.(LR(My, My, b)) EndIf
If j > I then C* < £%(Ko, [Mp]) EndlIf

If C* = 1 then return L

C* & £%pk, [K1])

Return (C?, C*)

End Subroutine
d <& BO¢G)(pk)
Return d

Figure 11.4: Hybrid oracles and experiments related to the construction of ind-cpa adversary A in

the proof of Theorem 11.6.

= Pr {Exp?g_Cpa_l(A) = 1} — Pr {Expglg_Cpa_O(A) = 1}

= Z Pr [Expglg_cm_l

q

- Z Pr [Exp

i=1

(A)=1|1 =] -Pr[l =i

(A)=1|1 =] -Pr[l =i
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= Z:P(z) Prl =i] — ZP(i—l)-Pr[I:i]
= é-Z:P(i)—P(i—l)
_ 3[13(1,1)—13(0,1)].

In the last step we used Equation (11.17). Re-arranging terms, we get Equation (11.14). This
completes the proof. 1

We now proceed to the chosen-ciphertext attack case. The scheme itself is unchanged, but we now
claim that if the base components are secure against chosen-ciphertext attack, then so is the hybrid
encryption scheme.

Theorem 11.7 Let AE = (K%, £ D) be an asymmetric encryption scheme, let SE€ = (K%, E%, D)
be a stateless symmetric encryption scheme such that

Keys(SE) C Plaintexts(pk)

for every pk that might be output by K¢, and let AE = (K%, &, D) be the hybrid encryption scheme
associated to AE,SE as per Scheme 11.5. Let k denote the length of keys output by K¢, and let
¢ denote the length of a ciphertext created by £ on input a k-bit message. Let B be an ind-cpa-
adversary attacking AE. Then there exist ind-cpa adversaries Ao o0, A10.11 attacking AE, and an
adversary A attacking S&, such that

Advaee(B)

< AdVREC(Agy g0) + AdVIEETC (A 11) + AdviEgTea(A) | (11.18)

Furthermore, suppose B had time complexity at most ¢, made at most ¢. queries to its left-or-right
encryption oracle, these totalling at most p. bits in length, and at most g4 queries to its decryption
oracle, these totalling at most pg bits in length. Then Agg o1, A11,10 each have time-complexity at
most ¢ and make at most g, left-or-right encryption oracle queries, each query being k bits long, and
at most g queries decryption oracle queries, each at most ¢ bits long. Also A has time-complexity
at most ¢, makes only one query to its left-or-right encryption oracle, and at most g; queries to its
decryption oracle. |

Proof of Theorem 11.7: We use a hybrid experiment template similar to the one in the proof of
Theorem 11.6, but there are some tricky issues regarding decryption oracles. Let us try to highlight
these before proceeding to the constructions.

Since B now has access to a decryption oracle, the («, ) hybrid experiment of the proof of
Theorem 11.6 will have to be enhanced to provide B with an oracle that plays the role of the
decryption oracle that B expects. A natural first thought is to set this to the actual decryption or-
acle 551{(-). Now, let us look ahead to the construction of Ag1 9. Besides subroutine O to replace
B’s Ir-encryption oracle, Ap1,00 will have to provide a subroutine OD to replace B’s decryption
oracle. This seems easy at first glance, because Ag o, itself being a ind-cca-adversary, has access
to a decryption oracle Dg(-) for the base asymmetric encryption scheme. Thus, it can simulate
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Ora?le HE;?I(()(MOv Ml) Oracle Hggi(Mo, Ml)
Je—J+1 je—j+1
Koj < K5 Kij < K Koj &K Ki; & K°
C3 < E°(Koj, [Mo)) Cs & £5(Ko,y, [Mo))
If C§ = L then return L If C¢ = L then return L
s
Cf = €°(pk, [Ko,)) Cy = £2(pk, [K))
Cj — (C},C5) Cj — (C9,C)
Return Return C;
10
Oracle Hé’;i(Mg, M) Oracle HEpy (Mo, Mi)
jei+1 J<—]$+1s .
Koj < K* 3 Ky ;<& K Koj = K5 Kij =K
s
O ey, i) | G5, [BT])
S __
If C§ = L then return L If C7 = L then return L
$
Co > g (pk, [Kry)) C = £%(pk, [Kog])
, a C3)
C; — (C8,C5) Cj < (G5, 6
Return C Return C;
Oracle HD, (C)

Parse C' as (C*, C?%)

| — Find(C%CY,...,CY)

If | # 0 then M «— D*(Kqo,, C*) Endlf
If | = 0 then M « D(sk,C) EndIf
Return M

Figure 11.5: Hybrid Ir-encryption oracles, and hybrid decryption oracle, used in the proof of
Theorem 11.7.

Dgk(-). The catch is in the rules of the game. Recall that A1 o is not allowed to call its decryption
oracle on a ciphertext C* that was previously returned by its own lr-encryption oracle. However,
in attempting to simulate Dy (-) using Dg(-), it might be forced to do so, because B might call
Dy () on a ciphertext (C?, C*¥) where a ciphertext of the form (C%, X) was previously returned by
B’s Ir-encryption oracle, but X # C*. In that case, A1 is stuck: how can it decrypt (C*, C*)
without breaking the rules of its game?

To get around this problem we will enhance the hybrid experiments to provide B not with an actual
decryption oracle, but with a fake one that we will define. Let us now proceed to the actual proof.
To each pair «, 3 of bits, we associate the («, 3) hybrid experiment defined as follows:
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Experiment Expi—ﬁg(B)
(pk, sk) < K5 j 0
0 BHERCOMDLE ()
Return d

The experiment initializes a counter j to 0, and then runs B, replacing B’s Ir-encryption oracle with
a hybrid Ir-encryption oracle, and B’s decryption oracle with a hybrid decryption oracle. Note that
the hybrid Ir-encryption depends on («, 3) but the hybrid decryption oracle does not. However, the
two oracles share state, in the form of counter j as well as quantities that are created and stored
by the hybrid Ir-encryption oracle and then accessed by the hybrid decryption oracle.

The hybrid lr-encryption oracles, shown in Fig. 11.5, are equivalent to the corresponding ones of
Fig. 11.2 in the sense that on any inputs My, M;, the output of the (a,3) hybrid Ir-encryption
oracle of Fig. 11.5 is distributed identically to the output of the (a, ) hybrid lr-encryption oracle
of Fig. 11.2. However, the code of the hybrid Ir-encryption oracles has been enhanced to do some
extra internal book-keeping.

The hybrid decryption oracle invokes a subroutine Find that given a value T" and a list 17, ..., T}
returns the smallest j such that 7' = T if such a j exists, and 0 if 7' & {T1,...,T};}. It uses this
to see whether the asymmetric component of the ciphertext it is given to decrypt was previously
returned by a partner («, ) hybrid lr-encryption oracle. If not, it decrypts the given ciphertext via
the decryption algorithm of scheme A€, using the secret key sk which it is given. Else, it decrypts
the symmetric component of the ciphertext under the key Ky ; chosen at the time the asymmetric
component was first created.

As in the proof of Theorem 11.6, for any «a, 8 € {0,1}, we let
P(a,8) = Pr[Exp2i(B) =1] .

Observe that the hybrid decryption oracle is equivalent to Dgy(+) in the cases (a, 3) € {(0,0), (1,0)}
because in these cases, the asymmetric component of the ciphertext produced by the hybrid Ir-
encryption oracle is an encryption of Ky ;. Thus we have

P(1,0) = Pr|Expde!(B)=1]
P(0,0) = Pr[Explde(B)=1] .

Following the proof of Theorem 11.6, our proof of Equation (11.18) is complete if we can construct
adversaries Ag1,00, 4, A10,11 such that

P(0,1) — P(0,0) < Advi&ea(Ag o) (11.19)
P(1,1) — P(0,1) < Adviidea(g) (11.20)
P(1,0) — P(1,1) < Advi&ea(Ay9q) . (11.21)

The constructions of Agi 0o and Ajg 11 are shown in Fig. 11.6. Each adversary runs B, replacing
B’s Ir-encryption oracle with a subroutine O and B’s decryption oracle with a subroutine OD.

Note the OD subroutine calls Dy (). It does not actually have sk but it can implement this by
running the code of D () shown in Scheme 11.5 and using its D% (-) oracle.
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Adversary A(g’%ég R(".J)))’Dg}‘(.)(pk) Adversary Afgfl(?R(-"’b))’ng(')(pk)

j 0 j 0

Subroutine O& (M, M) Subroutine O& (M, M)
e+l je i+l
Ko < K% Ky j < K* Ko < K55 Ky j < K
Cs & £9(Koy, Mo) Cs & £5(Koj, My)
If C7 = L then return L If C7 = L then return L
O = Em (LR(Koyj, K1,5,b)) Of & Em(LR(K 15, Koy, b))
Return (C¥, C¥) Return (C*, C?)

End Subroutine End Subroutine

Subroutine OD(C) Subroutine OD(C')
Parse C as (C*,C?) Parse C as (C*,C?)
| — Find(C* CY,...,CY) | — Find(C*; CY,...,C})
If I # 0 then M «— D*(Ky;,C?) If I # 0 then M «— D*(Ko;, C?)
If I =0 then M « D(sk,C) If | = 0 then M «+ D(sk,C)
Return M Return M

End Subroutine End Subroutine

d <& BO¢().0D0) (pk) d & BO¢(:).0D0) (pk)

Return d Return d

Figure 11.6: Adversaries attacking AE constructed for the proof of Theorem 11.7.

We note that Agi 0o and Ajg,11 are legal in the sense that they never query their decryption oracle
Dg.(-) on a ciphertext previously returned by their lr-encryption oracle £, (LR(-,-,b). This is
ensured by the definition of OD, which, if given a ciphertext C = (C? C*) whose asymmetric
component C* was previously returned by gk(LR(-, -,b), does not call D% (-), but instead directly
computes the symmetric decryption of C* under a key Ky ; satisfying C7 = C.

We leave to the reader to extend the arguments of the proof of Theorem 11.6 to verify that Equa-
tions (11.19) and (11.21) are true, and proceed to the construction of the ind-cca adversary A
attacking the base symmetric encryption scheme. We associate to any i € {0, ..., q} the oracle and
experiment defined in Fig. 11.7. The experiment shown in that figure initializes counter j and then
runs B with the shown oracle and also with the hybrid decryption oracle HD () that we defined
previously. The two oracles share state in the form of a counter j and as well as quantities that are
created and stored by HE zik(" -) and then accessed by HDg(+).

Our ind-cca adversary A attacking the base symmetric encryption scheme SE& is depicted in
Fig. 11.7. The novelty here, as compared to Fig. 11.4, is the subroutine OD defined by A. Note
that it considers three cases for the value of [. In the second case, it computes a response by
invoking A’s given decryption oracle Dj(-). In the third case it computes a response using the fact
that it knows sk.

We must check that A is legal, meaning that it never queries its decryption oracle with a ciphertext
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C?® previously returned by its lr-encryption oracle. Suppose B makes decryption oracle query
C = (C% C?). Our concern is that C* = C§. (The latter is the only ciphertext returned by A’s
Ir-encryption oracle since A makes only one query to this oracle, and thus this is the only concern.)
Let | = Find(C*;, CY, ... ,C’]”-‘). If [ # I then A does not query its decryption oracle at all and thus
certainly does not make an illegal query. So suppose | = I. This means C* = C}. However B is
assumed to be legal, which implies (C*, C*) # (C¢,C%), so it must be that C* # C7 as desired.

The analysis of A is then analogous to the one in the proof of Theorem 11.6, and we omit the
details. 1

11.5 El Gamal scheme and its variants

Let G be a cyclic group with generator g, meaning G = {¢°, g',...,¢g" '}, where n = |G| is the
order of G. Recall that the discrete exponentiation function is

DExpgg: Zn — G
x — g°.
The inverse of this function is the discrete logarithm function

DLogg,: G — Z,

X - x,

where x € Z, is the unique integer such that ¢* = X in G.

The discrete exponentiation function is conjectured to be one-way (meaning the discrete loga-
rithm function is hard to compute) for some groups G. An example is the group G' = Z, under
multiplication modulo p, where p is a large prime such that p — 1 has a large prime factor. The size
(order) of Z, is p—1, so in this case n = p — 1. In other words, exponents of g are in the range
0,1,....,p—2.

Let us now assume G is some cyclic group in which the discrete logarithm problem is hard. We
would like to use this assumption as the basis of an encryption scheme in the sense that, somehow,
an adversary wanting to decrypt should be faced with solving a discrete logarithm problem. The
basic idea is the following. Let the receiver’s secret key by = € Z, and let its public key be
X = ¢® € G. Note that computing the secret key given the public key involves computing a
discrete logarithm and by assumption is hard. Now suppose a sender, in possession of X, picks
y € Zylets Y = g¥ € GG, and sends Y to the receiver. At this point the receiver holds x,Y and the
sender holds y, X. Consider the quantity K = ¢*¥ € GG and notice that

Y= () = g7 = (") = XV (11.22)
K

The sender can compute K as XY since it knows gy, X while the receiver can compute K via Y*
since it knows z,Y. The quantity K is thus a shared key. Having such a key, encryption of a
message M is easy. Assuming that M € G is a group element, the sender computes W = KM in
G and transmits W to the receiver. The latter, having K, recovers M as WK1

The above description might make it look like there are two steps, namely the sender first
transmits Y and then W, but when we implement this as an encryption scheme, we simply merge
these steps. The sender computes Y and W and the ciphertext it transmits is the pair (Y, W).
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Now, what about security? The adversary is in possession of the public key X, and, via
eavesdropping, will obtain the ciphertext (Y, W). The most direct attack is to attempt to compute
K = ¢™¥. An adversary attempting to do this is faced with solving what we call the computationl
Diffie-Hellman (CDH) problem: given X,Y compute ¢g*¥ where X = ¢* and Y = ¢¥. One approach
to solving this is for the adversary to try either to find either  and then let K = Y™, or to find y
and let K = XY. But finding x or y given X, Y involves computing discrete logarithms and is hard
by assumption. However, even if the discrete logarithm problem is hard, we are not necessarily
assured that computing K given X, Y is hard because there may be methods to do this that do not
involve computing discrete logarithms. We do not know whether such methods exist or not, but we
do know, empirically, that the CDH problem seems to be hard in numerous groups. Accordingly,
the security of the scheme relies on this assumption rather than merely the assumption that the
discrete logarithm problem is hard.

But this is a very rough view of the security considerations. When we examine security more
closely we will see that for the schemes to achieve the kinds of strong, well-defined notions of
security we have discussed above, the CDH assumption is not sufficient. But it is certainly the first
cut at understanding the issues.

11.5.1 The El Gamal scheme

What we described informally above is the El Gamal encryption scheme. Let us now detail it and
then look more closely at its security.

Scheme 11.8 Let G be a cyclic group of order n and let g be a generator of G. The EI Gamal
encryption scheme AEpg = (K, &, D) associated to G, g is the asymmetric encryption scheme whose
constituent algorithms are depicted below:

Algorithm K Algorithm Ex (M) Algorithm D, ((Y,W))
<7, If M ¢ G then return L K«—Y*?
X —g* Yyl Y — gV M« WK™!
Return (X, z) K~ XY, W« KM Return M

Return (Y, W)

The plaintext-space associated to a public key X € G is G itself, and if M is not in this set then
the encryption algorithm returns L. 1

The quantities GG, g are assumed to be chosen a priori and known to all parties. A typical example
is G = Z;, where p > 3 is a prime. We have discussed in Section 9.3 how to find primes and
generators and thus set up G, g in this case.

The first thing that should be verified about the El Gamal scheme is that decryption works
correctly, meaning D,(Ex(M)) = M for all M € G. This is true because of Equation (11.22),
which says that the value K in both algorithms is indeed the same.

In common with several other algebraic schemes, in the natural formulation of the El Gamal
scheme given above, the message is a group element. In practice we might prefer to think of our
starting message as a string. In that case, we would encode the string as a group element before
using the El Gamal scheme. For example if G = Z;, where p is a prime of length k (ie. 2F-1 <p <
2F), the scheme could be viewed as enabling us to encrypt any binary string message m of length
k — 1. To do this, compute the integer whose binary representation is m and then adding one to it
to get an integer M in the range 1,...,2*~1. This M beign in Z,, can be thought of as the message
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for the El Gamal scheme. From the group element returned by the decryption algorithm one can
recover the corresponding string message in the obvious way. More generally, the message space
can be viewed as any set of strings of size at most |G|, mapping these to group elements via some
injective encoding function for the sake of encryption.

Now, we turn to security, concentrating first on security against chosen-plaintext attack. The
first thing to consider is whether the adversary could recover the secret key x from the public
key X. This however requires solving the discrete logarithm problem, which we are assuming is
computationally intractable. Next we could consider the possibility of recovery of the plaintext
M from a ciphertext (Y, W). The most obvious attack is for the adversary (given the public key
X and a ciphertext (Y,W)) to try to compute the key K from X,Y, and then recover M via
M = [[WK~! mod p]]~!. But trying to find K amounts to solving the CDH problem, which as we
discussed is believed to be hard.

However, by now we know that it is naive to restrict security concerns to key recovery or even
to recovery of plaintext from ciphertext. We must also address the possibility of loss of partial
information about the plaintext. In other words, we should be asking whether the scheme meets
the notion of IND-CPA we discussed above. Whether it does or not turns out to depend on the
choice of group.

Before assessing IND-CPA, we need to clarify something. Recall that encryption is not, by
our definition, required to hide the length of a message, captured by the fact that the left-or-right
encryption oracle simply returns L if fed a pair of messages of equal length. This leads us to ask
what is the length of a message when the latter is a group element. As we said earlier, some encoding
of group elements as strings is presumed. However, we insist that the strings corresponding to all
elements of the group be of the same length, meaning encryption should not enable an adversary
to distinguish the ciphertexts corresponding to any two group elements.

11.5.2 El Gamal in the group Z;

We first look at the case where G = Z; for a prime p > 3 and show that in this case the scheme
fails to be IND-CPA. The attacks rely on a little number theory from Chapter 9. Recall that the
Legendre (also Jacobi) symbol J,(A) of A € Z; is 1 if A is a quadratic residue and —1 otherwise.
We claim that given a ciphertext (Y, W) of the scheme above, we can compute J,(M). This is loss
of information about M since a priori there is no reason that the Jacobi symbol of M should be
known to an adversary.

We now explain how to compute J,(M) given an encryption (Y, W) of M under public key
X = ¢g”. The scheme tells us that W = KM where K = ¢g™¥ and ¢¥ = Y. We first note that
by Proposition 9.20, J,(W) = J,(KM) = Jy(K) - J,(M). This implies J,(M) = Jp(K) - J,(W).
Now Proposition 9.21 tells us Jy,(K) = J,(¢g™¥) can be computed given J,(X) and J,(Y'). Finally,
Proposition 9.18 tells us that J,(X), J,(Y), J,(W) can all be computed in time cubic in the length
of p. Putting it all together, J,(M) can be computed given X,Y, W in time cubic in the length of
p. We now detail the attack.

Proposition 11.9 Let p > 3 be a prime and let G = Z7. Let g be a generator of G. Let AEgg be
the El Gamal encryption scheme associated to G, g as per Scheme 11.8. Then there is an adversary
A such that

AdvEPNA) = 1.
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Furthermore A makes only one query to its left-or-right encryption oracle and having running time
O(|p|?) plus the time to perform some encoding related operations. I

Proof of Proposition 11.9: Adversary A has input a public key X € Z7 and access to a left-
or-right encryption oracle Ex (LR(:,, b)), where £ is the encryption algorithm of the scheme. (We
regard p, g as fixed and known to all parties including the adversary.) Now here is the adversary:

Adversary ASx (LRG0 (X))
Mo —1; My «—g
(Y, W) < Ex (LR(Mo, My, b))
If XP~1/2 =1 (mod p) and YP~D/2=—1 (mod p))
then s «— —1 else s +— 1
EndIf
If WP=D/2 =5 (mod p) then return 0 else return 1 EndIf

Results in previous chapters Propositions 9.21 and 9.18 tell us that s = J,(K) where K = g™V
Y = ¢¥ and X = ¢*. By Proposition 9.20 and some basic algebra, we have

Jp(W) = Jp(KMbﬂ) = Jp(K) - Jp(Mljl) = Jp(K) - Jp(My) = s - Jp(Mp)

where b is the challenge bit. Proposition 9.17 tells us that My is a square (it equals ¢ and 0 is
even) and M is a non-square (it equals g' and 1 is odd). Now suppose we are in world 0, meaning
b= 0. Then J,(M) = 1so J,(W) = s and thus A returns 0. On the other hand if we are in
world 1, meaning b = 1, then J,(M;) = —1, so J,(W) # s and A returns 1. This means that

ind-cpa-
Pr [Expli*!(4) =1] = 1
Pr [Explid ™ (4) =1] = 0.
Subtracting, we get
AdviE P (4) = 1

as desired. |

11.5.3 Chosen-ciphertext attacks on the El Gamal scheme

The El Gamal scheme is vulnerable to a chosen-ciphertext attack regardless of the choice of group
(. An adversary can obtain the decryption of a given ciphertext by calling the decryption oracle
on a different but related ciphertext. This leads to the following:

Proposition 11.10 Let G be a cyclic group and g a generator of GG. Let AEpq be the El Gamal
encryption scheme associated to G, g as per Scheme 11.8. Then there is an adversary A such that

Advideag) = 1.

EG
Furthermore A makes one query to its left-or-right encryption oracle, one query to its decryption
oracle, and has running time the cost of a few exponentiations in G. I



Bellare and Rogaway 235

Proof of Proposition 11.10: Adversary A that has input a public key X € G and access to
two oracles: a left-or-right encryption oracle Ex(LR(-,-,b)) and a decryption oracle D,(-) where
g* = X. (Group G and generator g are fixed and known to all parties including the adversary, and
E,D are as in Scheme 11.8). It works as follows:

Adversary ASx(LR(0).D2()(X)
Let My, M7 be any two distinct elements of G
(Y, W) <& Ex (LR(Mo, My, b))
W' —Wygyg
M — D ((Y, W)
If M = Myg then return 0 else return 1

The ciphertext (Y, W) is different from the ciphertext (Y, W) and thus the adversary is allowed to
call its decryption oracle on (Y, W’). Let b denote the challenge bit and let K = ¢g*¥ where Y = gV.
Then

M = D,(Y,W) = K'W = K'Wg = M.

Thus the value returned by A is the bit b, meaning it has advantage 1.

11.5.4 Security of El Gamal under the DDH assumption

In suitable groups, the El Gamal encryption scheme is secure against chosen-plaintext attack.
The groups in question are those for which the DDH (Decision Diffie-Hellman) problem is hard.
The problem was described in Section 10.1.4. Recall the problem is that the adversary is given
g*,g¥, 9% and must return a bit to indicate whether or not g* = ¢*¥, where ¢ is a generator of
the underlying cyclic group G. If one can solve the CDH problem then one can solve the DDH
problem by computing ¢*¥ and testing whether it equals ¢?, but it might be possible to solve the
DDH problem without solving the CDH problem. Indeed, this is true in some groups such as
integers modulo a prime, as indicated by Proposition 10.5 meaning the DDH problem is easy in
these groups. But there are choices of group for which the DDH problem is hard, in particular some
groups of prime order such as the subgroup of quadratic residues of the group of integers modulo
a prime (cf. Section 9.5).
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Oracle HE ;k(Mo, M) Experiment EfoTg(B )
j—7+1 (pk,Sk)iK:a

Koj < K3 Kij < K

Ifj <i
then C3 <& £5(Ko;, [Mi])
clse C5 & E%(Ko, [Mo))

EndIf

If Cj‘? = | then return L
Cf < E%(pk, [K1,])

C; — (CF,C3)

Return Cj}

Return d

Adversary Ak (LR(0)).Pi ()

(pk,sk) < K5 j =05 T<{1,...,q}

Subroutine O& (M, M)

je—j+1
Ko < K% Ky j & K°

If j < I then C§ <= £%(Kq, [M,]) EndIf

If j = I then C5 <= £ (LR(Mo, M;,b)) EndlIf
If j > I then C§ < £%(Kq;, [Mo]) EndIf

If Cj = 1 then return L

O < E%(pk, [K1,4])

Return (C¥, C5)

End Subroutine
Subroutine OD(C)

Parse C as (C*, C?)

| — Find(C%CY,...,C9)

If { ¢ {0,1} then M «— D*(Kqy, C*) EndIf
Ifl=1  then M « D (C%) EndIf
Ifi=0 then M « D(sk,C) EndIf
Return M

End Subroutine
Return d

Figure 11.7: Hybrid oracles and experiments related to the construction of ind-cca adversary A in

the proof of Theorem 11.7.

4 BHERIHPLO ()



Chapter 12

DIGITAL SIGNATURES

In the public key setting, the primitive used to provide data integrity is a digital signature scheme.
In this chapter we look at security notions and constructions for this primitive.

12.1 Digital signature schemes

A digital signature scheme is just like a message authentication scheme except for an asymmetry in
the key structure. The key sk used to generate signatures (in this setting the tags are often called
signatures) is different from the key pk used to verify signatures. Furthermore pk is public, in the
sense that the adversary knows it too. So while only a signer in possession of the secret key can
generate signatures, anyone in possession of the corresponding public key can verify the signatures.

Definition 12.1 A digital signature scheme DS = (K, Sign, VF) consists of three algorithms, as
follows:

e The randomized key generation algorithm K (takes no inputs and) returns a pair (pk, sk)
of keys, the public key and matching secret key, respectively. We write (pk, sk) & K for the
operation of executing K and letting (pk, sk) be the pair of keys returned.

e The signing algorithm Sign takes the secret key sk and a message M to return a signature (also
sometimes called a tag) o € {0,1}*U{L}. The algorithm may be randomized or stateful. We
write o <= Signg (M) or ¢ <= Sign(sk, M) for the operation of running Sign on inputs sk, M
and letting o be the signature returned.

e The deterministic werification algorithm VF takes a public key pk, a message M, and a
candidate signature o for M to return a bit. We write d < VF (M, o) or d < VF(pk, M, o)
to denote the operation of running VF on inputs pk, M, o and letting d be the bit returned.

We require that VF (M, o) = 1 for any key-pair (pk, sk) that might be output by K, any message
M, and any o # L that might be output by Signg (M). If Sign is stateless then we associate to
each public key a message space Messages(pk) which is the set of all M for which Signg (M) never
returns L. |

237
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Let S be an entity that wants to have a digital signature capability. The first step is key generation:
S runs K to generate a pair of keys (pk, sk) for itself. Note the key generation algorithm is run
locally by S. Now, S can produce a digital signature on some document M € Messages(pk) by
running Signg (M) to return a signature o. The pair (M, o) is then the authenticated version of
the document. Upon receiving a document M’ and tag ¢’ purporting to be from S, a receiver B in
possession of pk verifies the authenticity of the signature by using the specified verification proce-
dure, which depends on the message, signature, and public key. Namely he computes VF ,x(M’, o),
whose value is a bit. If this value is 1, it is read as saying the data is authentic, and so B accepts
it as coming from S. Else it discards the data as unauthentic.

Note that an entity wishing to verify S’s signatures must be in possession of S’s public key pk,
and must be assured that the public key is authentic, meaning really is S’s key and not someone
else’s key. We will look later into mechanisms for assuring this state of knowledge. But the key
management processes are not part of the digital signature scheme itself. In constructing and
analyzing the security of digital signature schemes, we make the assumption that any prospective
verifier is in possession of an authentic copy of the public key of the signer. This assumption is
made in what follows.

A viable scheme of course requires some security properties. But these are not our concern now.
First we want to pin down what constitutes a specification of a scheme, so that we know what are
the kinds of objects whose security we want to assess.

The key usage is the “mirror-image” of the key usage in an asymmetric encryption scheme. In
a digital signature scheme, the holder of the secret key is a sender, using the secret key to tag its
own messages so that the tags can be verified by others. In an asymmetric encryption scheme, the
holder of the secret key is a receiver, using the secret key to decrypt ciphertexts sent to it by others.

The signature algorithm might be randomized, meaning internally flip coins and use these coins
to determine its output. In this case, there may be many correct tags associated to a single message
M. The algorithm might also be stateful, for example making use of a counter that is maintained
by the sender. In that case the signature algorithm will access the counter as a global variable,
updating it as necessary. The algorithm might even be both randomized and stateful. However,
unlike encryption schemes, whose encryption algorithms must be either randomized or stateful for
the scheme to be secure, a deterministic, stateless signature algorithm is not only possible, but
common.

The signing algorithm might only be willing to sign certain messages and not others. It indicates
its unwillingness to sign a message by returning L. If the scheme is stateless, the message space,
which can depend on the public key, is the set of all messages for which the probability that the
signing algorithm returns L is zero. If the scheme is stateful we do not talk of such a space since
whether or not the signing algorithm returns | can depend not only on the message but on its
state.

The last part of the definition says that signatures that were correctly generated will pass the
verification test. This simply ensures that authentic data will be accepted by the receiver. In the
case of a sateful scheme, the requirement holds for any state of the signing algorithm.

12.2 A notion of security

Digital signatures aim to provide the same security property as message authentication schemes;
the only change is the more flexible key structure. Accordingly, we can build on our past work in
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understanding and pinning down a notion of security for message authentication; the one for digital
signatures differs only in that the adversary has access to the public key.

The goal of the adversary F' is forgery: It wants to produce document M and tag o such that
VFk(M,0) =1, but M did not originate with the sender S. The adversary is allowed a chosen-
message attack in the process of trying to produce forgeries, and the scheme is secure if even after
such an attack the adversary has low probability of producing forgeries.

Let DS = (K, Sign, VF) be an arbitrary digital signature scheme. Our goal is to formalize a
measure of insecurity against forgery under chosen-message attack for this scheme. The adversary’s
actions are viewed as divided into two phases. The first is a “learning” phase in which it is given
oracle access to Signg(-), where (pk,sk) was a priori chosen at random according to K. It can
query this oracle up to ¢ times, in any manner it pleases, as long as all the queries are messages
in the underlying message space Messages(pk) associated to this key. Once this phase is over, it
enters a “forgery” phases, in which it outputs a pair (M, o). The adversary is declared successful
if M € Messages(pk), VFx(M,0) = 1 and M was not a query made by the adversary to the
signing oracle. Associated to any adversary F' is thus a success probability called its advantage.
(The probability is over the choice of keys, any probabilistic choices that Sign might make, and the
probabilistic choices, if any, that ' makes.) The advantage of the scheme is the success probability
of the “cleverest” possible adversary, amongst all adversaries restricted in their resources to some
fixed amount. We choose as resources the running time of the adversary, the number of queries it
makes, and the total bit-length of all queries combined plus the bit-length of the output message
M in the forgery.

Definition 12.2 Let DS = (K, Sign, VF) be a digital signature scheme, and let A be an algorithm
that has access to an oracle and returns a pair of strings. We consider the following experiment:

uf-cma

Experiment Exphs™*(A)
(pk, sk) i
(M, o) — ASieni() (pk)
If the following are true return 1 else return 0:
— VF(M,0)=1
— M € Messages(pk)
— M was not a query of A to its oracle

The uf-cma-advantage of A is defined as
AdviFma(4) = Pr [Exp%f:gcma(A) = 1} . |

In the case of message authentication schemes, we provided the adversary not only with an oracle
for producing tags, but also with an oracle for verifying them. Above, there is no verification oracle.
This is because verification of a digital signature does not depend on any quantity that is secret
from the adversary. Since the adversary has the public key and knows the algorithm VF, it can
verify as much as it pleases by running the latter.

When we talk of the time-complexity of an adversary, we mean the worst case total execution
time of the entire experiment. This means the adversary complexity, defined as the worst case
execution time of A plus the size of the code of the adversary A, in some fixed RAM model of
computation (worst case means the maximum over A’s coins or the answers returned in response
to A’s oracle queries), plus the time for other operations in the experiment, including the time for
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key generation and the computation of answers to oracle queries via execution of the encryption
algorithm.

As adversary resources, we will consider this time complexity, the message length u, and the
number of queries ¢ to the sign oracle. We define p as the sum of the lengths of the oracle queries
plus the length of the message in the forgery output by the adversary. In practice, the queries
correspond to messages signed by the legitimate sender, and it would make sense that getting these
examples is more expensive than just computing on one’s own. That is, we would expect ¢ to be
smaller than t. That is why ¢, u are resources separate from t.

12.3 RSA based signatures

The RSA trapdoor permutation is widely used as the basis for digital signature schemes. Let us
see how.

12.3.1 Key generation for RSA systems

We will consider various methods for generating digital signatures using the RSA functions. While
these methods differ in how the signature and verification algorithms operate, they share a common
key-setup. Namely the public key of a user is a modulus N and an encryption exponent e, where
N = pq is the product of two distinct primes, and e € Z:‘D( N): The corresponding secret contains
the decryption exponent d € Z7, (and possibly other stuff too) where ed =1 (mod p(N)).

How are these parameters generated? We refer back to Definition 10.9 where we had introduced
the notion of an RSA generator. This is a randomized algorithm having an associated security
parameter and returning a pair ((IV,e), (N, p,q,d)) satisfying the various conditions listed in the
definition. The key-generation algorithm of the digital signature scheme is simply such a generator,
meaning the user’s public key is (IV, e) and its secret key is (N, p, q,d).

Note N is not really secret. Still, it turns out to be convenient to put it in the secret key. Also,
the descriptions we provide of the signing process will usually depend only on N, d and not p, g, so
it may not be clear why p, ¢ are in the secret key. But in practice it is good to keep them there
because their use speeds up signing via the Chinese Remainder theorem and algorithm.

Recall that the map RSAy () = (-)¢ mod N is a permutation on Z3 with inverse RSAy 4(-) =
() mod N.

Below we will consider various signature schemes all of which use the above key generation
algorithm and try to build in different ways on the one-wayness of RSA in order to securely sign.

12.3.2 Trapdoor signatures

Trapdoor signatures represent the most direct way in which to attempt to build on the one-wayness
of RSA in order to sign. We believe that the signer, being in possession of the secret key NV, d, is the
only one who can compute the inverse RSA function RSA;]le = RSAy 4. For anyone else, knowing
only the public key N, e, this task is computationally infeasible. Accordingly, the signer signs a
message by performing on it this “hard” operation. This requires that the message be a member of
Z%, which, for convenience, is assumed. It is possible to verify a signature by performing the “easy”
operation of computing RSAy . on the claimed signature and seeing if we get back the message.
More precisely, let K., be an RSA generator with associated security parameter k, as per
Definition 10.9. We consider the digital signature scheme DS = (K, Sign, VF) whose signing and

rsa’
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verifying algorithms are as follows:

Algorithm Signy ., . (M) Algorithm VFy (M, z)
If M ¢ Z7% then return L If (M & Z% or x ¢ Z}) then return 0
x — M%mod N If M = 2° mod N then return 1 else return 0
Return x

This is a deterministic stateless scheme, and the message space for public key (IV, ) is Messages(N, e¢) =
Z, meaning the only messages that the signer signs are those which are elements of the group Z3.
In this scheme we have denoted the signature of M by z. The signing algorithm simply applies
RSAN  to the message to get the signature, and the verifying algorithm applies RSAy . to the
signature and tests whether the result equals the message.

The first thing to check is that signatures generated by the signing algorithm pass the verification
test. This is true because of Proposition 10.7 which tells us that if z = M?% mod N then z¢ =
M mod N.

Now, how secure is this scheme? As we said above, the intuition behind it is that the signing
operation should be something only the signer can perform, since computing RSA;VIE(M ) is hard
without knowledge of d. However, what one should remember is that the formal assumed hardness
property of RSA, namely one-wayness under known-exponent attack (we call it just one-wayness
henceforth) as specified in Definition 10.10, is under a very different model and setting than that
of security for signatures. Omne-wayness tells us that if we select M at random and then feed it
to an adversary (who knows N,e but not d) and ask the latter to find z = RSAL! (M), then the
adversary will have a hard time succeeding. But the adversary in a signature scheme is not given a
random message M on which to forge a signature. Rather, its goal is to create a pair (M, z) such
that VFy (M, z) = 1. It does not have to try to imitate the signing algorithm; it must only do
something that satisfies the verification algorithm. In particular it is allowed to choose M rather
than having to sign a given or random M. It is also allowed to obtain a valid signature on any
message other than the M it eventually outputs, via the signing oracle, corresponding in this case
to having an oracle for RSAJ_\,}S(). These features make it easy for an adversary to forge signatures.

A couple of simple forging strategies are illustrated below. The first is to simply output the
forgery in which the message and signature are both set to 1. The second is to first pick at random
a value that will play the role of the signature, and then compute the message based on it:

Forger FlsignN””q’d(')(N, e) | Forger FQSignN””q’d(')(N, e)
Return (1,1) & 75 M — z¢ mod N
Return (M, x)

These forgers makes no queries to their signing oracles. We note that 1°=1 (mod N), and hence
the uf-cma-advantage of Fj is 1. Similarly, the value (M, x) returned by the second forger satisfies
¢ mod N = M and hence it has uf-cma-advantage 1 too. The time-complexity in both cases is
very low. (In the second case, the forger uses the O(k?) time to do its exponentiation modulo N.)
So these attacks indicate the scheme is totally insecure.

The message M whose signature the above forger managed to forge is random. This is enough
to break the scheme as per our definition of security, because we made a very strong definition of
security. Actually for this scheme it is possible to even forge the signature of a given message M,
but this time one has to use the signing oracle. The attack relies on the multiplicativity of the RSA
function.
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Forger F5#n.c()(N e)
My & Z — {1, M} ; My « MM "' mod N
Ty — SignNﬁ(Ml) D T — SignNye(Mg)
T «— x129 mod N
Return (M, x)

Given M the forger wants to compute a valid signature x for M. It creates My, Mo as shown, and
obtains their signatures x1,xs. It then sets x = x1x9 mod N. Now the verification algorithm will
check whether ¢ mod N = M. But note that

1° = (1172)° = 2{25 = MMy =M (mod N) .

Here we used the multiplicativity of the RSA function and the fact that x; is a valid signature of
M; for ¢ = 1,2. This means that x is a valid signature of M. Since M; is chosen to not be 1 or M,
the same is true of Ms, and thus M was not an oracle query of F'. So F succeeds with probability
one.

These attacks indicate that there is more to signatures than one-wayness of the underlying
function.

12.3.3 The hash-then-invert paradigm

Real-world RSA based signature schemes need to surmount the above attacks, and also attend
to other impracticalities of the trapdoor setting. In particular, messages are not usually group
elements; they are possibly long files, meaning bit strings of arbitrary lengths. Both issues are
typically dealt with by pre-processing the given message M via a hash function to yield a point y
in the range of RSAy ., and then applying RSAfvle to y to obtain the signature. The hash function
is public, meaning its description is known, and émyone can compute it.

To make this more precise, let K., be an RSA generator with associated security parameter
k and let Keys be the set of all modulli N that have positive probability to be output by K.,.
Let Hash be a family of functions whose key-space is Keys and such that Hashy: {0,1}* — Z7%
for every N € Keys. Let DS = (K., Sign, VF) be the digital signature scheme whose signing and
verifying algorithms are as follows:

Algorithm Signy ,, . 4(M) | Algorithm VFy (M, z)

y < Hashy (M) y «— Hashy (M)
z — y? mod N Yy « ¢ mod N
Return x If y = ¢/ then return 1 else return 0

Let us see why this might help resolve the weaknesses of trapdoor signatures, and what requirements
security imposes on the hash function.

Let us return to the attacks presented on the trapdoor signature scheme above. Begin with the
first forger we presented, who simply output (1,1). Is this an attack on our new scheme? To tell,
we see what happens when the above verification algorithm is invoked on input 1,1. We see that
it returns 1 only if Hashy (1) = 1¢ (mod N). Thus, to prevent this attack it suffices to ensure
that Hashy (1) # 1. The second forger we had previously set M to z° mod N for some random
x € Z35. What is the success probability of this strategy under the hash-then-invert scheme? The
forger wins if ¢ mod N = Hash(M) (rather than merely ¢ mod N = M as before). The hope is
that with a “good” hash function, it is very unlikely that ¢ mod N = Hashy(M). Consider now
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the third attack we presented above, which relied on the multiplicativity of the RSA function. For
this attack to work under the hash-then-invert scheme, it would have to be true that

Hashy (M) - Hashy (Ms) = Hashy (M) (mod N) . (12.1)

Again, with a “good” hash function, we would hope that this is unlikely to be true.
The hash function is thus supposed to “destroy” the algebraic structure that makes attacks like
the above possible. How we might find one that does this is something we have not addressed.
While the hash function might prevent some attacks that worked on the trapdoor scheme, its
use leads to a new line of attack, based on collisions in the hash function. If an adversary can find
two distinct messages My, My that hash to the same value, meaning Hashy (M) = Hashy(Ma),
then it can easily forge signatures, as follows:

Forger FSienn,pq.a() (N, e)
z1 < Signy . a(M1)
Return (Ms, x1)

This works because Mj, My have the same signature. Namely because x; is a valid signature of
My, and because M7, M5 have the same hash value, we have

x{ = Hashy (M;) = Hashy(M3) (mod N)

and this means the verification procedure will accept z1 as a signature of Ms. Thus, a necessary
requirement on the hash function Hash is that it be CR2-KK, meaning given N it should be
computationally infeasible to find distinct values M, M’ such that Hashy (M) = Hashy (M').

Below we will go on to more concrete instantiations of the hash-then-invert paradigm. But
before we do that, it is important to try to assess what we have done so far. Above, we have
pin-pointed some features of the hash function that are necessary for the security of the signature
scheme. Collision-resistance is one. The other requirement is not so well formulated, but roughly
we want to destroy algebraic structure in such a way that Equation (12.1), for example, should
fail with high probability. Classical design focuses on these attacks and associated features of the
hash function, and aims to implement suitable hash functions. But if you have been understanding
the approaches and viewpoints we have been endeavoring to develop in this class and notes, you
should have a more critical perspective. The key point to note is that what we need is not really to
pin-point necessary features of the hash function to prevent certain attacks, but rather to pin-point
sufficient features of the hash function, namely features sufficient to prevent all attacks, even ones
that have not yet been conceived. And we have not done this. Of course, pinning down necessary
features of the hash function is useful to gather intuition about what sufficient features might be,
but it is only that, and we must be careful to not be seduced into thinking that it is enough, that
we have identified all the concerns. Practice proves this complacence wrong again and again.

How can we hope to do better? Return to the basic philosophy of provable security. We want
assurance that the signature scheme is secure under the assumption that its underlying primitives
are secure. Thus we must try to tie the security of the signature scheme to the security of RSA as
a one-way function, and some security condition on the hash function. With this in mind, let us
proceed to examine some suggested solutions.

12.3.4 The PKCS #1 scheme

RSA corporation has been one of the main sources of software and standards for RSA based
cryptography. RSA Labs (now a part of Security Dynamics Corporation) has created a set of
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standards called PKCS (Public Key Cryptography Standards). PKCS #1 is about signature (and
encryption) schemes based on the RSA function. This standard is in wide use, and accordingly it
will be illustrative to see what they do.

The standard uses the hash-then-invert paradigm, instantiating Hash via a particular hash
function PKCS-Hash which we now describe. Recall we have already discussed collision-resistant
hash functions. Let us fix a function h: {0,1}* — {0,1}! where [ > 128 and which is “collision-
resistant” in the sense that nobody knows how to find any pair of distinct points M, M’ such that
(M) = h(M'). Currently the role tends to be played by SHA-1, so that I = 160. Prior to that it
was MD5, which has [ = 128. The RSA PKCS #1 standard defines

PKCS-Hashy (M) = 0001FFFF --- FEFF 00 || h(M) .

Here || denotes concatenation, and enough FF-bytes are inserted that the length of PKCS-Hash x (M)
is equal to k bits. Note the the first four bits of the hash output are zero, meaning as an integer it
is certainly at most IV, and thus most likely in Z%;, since most numbers between 1 and N are in
Z%. Also note that finding collisions in PKCS-Hash is no easier than finding collisions in h, so if
the latter is collision-resistant then so is the former.

Recall that the signature scheme is exactly that of the hash-then-invert paradigm. For con-
creteness, let us rewrite the signing and verifying algorithms:

Algorithm Signy , . 4(M) | Algorithm VFy (M, z)
y «— PKCS-Hashy (M) y < PKCS-Hashy (M)
z — y? mod N Y+ 2° mod N
Return x If y = 3/ then return 1 else return 0

Now what about the security of this signature scheme? Our first concern is the kinds of algebraic
attacks we saw on trapdoor signatures. As discussed in Section 12.3.3, we would like that relations
like Equation (12.1) fail. This we appear to get; it is hard to imagine how PKCS-Hashy (M) -
PKCS-Hashx(M32) mod N could have the specific structure required to make it look like the PKCS-
hash of some message. This isn’t a proof that the attack is impossible, of course, but at least it is
not evident.

This is the point where our approach departs from the classical attack-based design one. Under
the latter, the above scheme is acceptable because known attacks fail. But looking deeper there is
cause for concern. The approach we want to take is to see how the desired security of the signature
scheme relates to the assumed or understood security of the underlying primitive, in this case the
RSA function.

We are assuming RSA is one-way, meaning it is computationally infeasible to compute RSA]_V}E (y)

for a randomly chosen point y € Z3;. On the other hand, the points to which RSAJ}}E is applied in
the signature scheme are those in the set Sy = { PKCS-Hashy (M) @ M € {0,1}* }. The size of
Sy is at most 2! since h outputs I bits and the other bits of PKCS-Hashy(-) are fixed. With SHA-1
this means |Sy| < 2'6°. This may seem like quite a big set, but within the RSA domain Z} it is
tiny. For example when k& = 1024, which is a recommended value of the security parameter these

days, we have
’ SN‘ 2160 1

‘Zjif’ = 91023 ~ 9863 °

This is the probability with which a point chosen randomly from Z%; lands in Sy. For all practical
purposes, it is zero. So RSA could very well be one-way and still be easy to invert on Sy, since
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the chance of a random point landing in Sy is so tiny. So the security of the PKCS scheme cannot
be guaranteed solely under the standard one-wayness assumption on RSA. Note this is true no
matter how “good” is the underlying hash function A (in this case SHA-1) which forms the basis
for PKCS-Hash. The problem is the design of PKCS-Hash itself, in particular the padding.

The security of the PKCS signature scheme would require the assumption that RSA is hard
to invert on the set Sy, a miniscule fraction of its full range. (And even this would be only a
necessary, but not sufficient condition for the security of the signature scheme.)

Let us try to clarify and emphasize the view taken here. We are not saying that we know how
to attack the PKCS scheme. But we are saying that an absence of known attacks should not be
deemed a good reason to be satisfied with the scheme. We can identify “design flaws,” such as the
way the scheme uses RSA, which is not in accordance with our understanding of the security of
RSA as a one-way function. And this is cause for concern.

12.3.5 The FDH scheme

From the above we see that if the hash-then-invert paradigm is to yield a signature scheme whose
security can be based on the one-wayness of the RSA function, it must be that the points y on
which RSA&Ie is applied in the scheme are random ones. In other words, the output of the hash
function must always “look random”. Yet, even this only highlights a necessary condition, not (as
far as we know) a sufficient one.

We now ask ourselves the following question. Suppose we had a “perfect” hash function Hash.
In that case, at least, is the hash-then-invert signature scheme secure? To address this we must first
decide what is a “perfect” hash function. The answer is quite natural: one that is random, namely
returns a random answer to any query except for being consistent with respect to past queries. (We
will explain more how this “random oracle” works later, but for the moment let us continue.) So
our question becomes: in a model where Hash is perfect, can we prove that the signature scheme
is secure if RSA is one-way?

This is a basic question indeed. If the hash-then-invert paradigm is in any way viable, we really
must be able to prove security in the case the hash function is perfect. Were it not possible to prove
security in this model it would be extremely inadvisable to adopt the hash-then-invert paradigm; if
it doesn’t work for a perfect hash function, how can we expect it to work in any real world setting?

Accordingly, we now focus on this “thought experiment” involving the use of the signature
scheme with a perfect hash function. It is a thought experiment because no specific hash function
is perfect. Our “hash function” is no longer fixed, it is just a box that flips coins. Yet, this thought
experiment has something important to say about the security of our signing paradigm. It is not
only a key step in our understanding but will lead us to better concrete schemes as we will see
later.

Now let us say more about perfect hash functions. We assume that Hash returns a random
member of Z3; every time it is invoked, except that if twice invoked on the same message, it returns
the same thing both times. In other words, it is an instance of a random function with domain
{0,1}* and range Z3%. We have seen such objects before, when we studied pseudorandomness:
remember that we defined pseudorandom functions by considering experiments involving random
functions. So the concept is not new. We call Hash a random oracle, and denote it by H in this
context. It is accessible to all parties, signer, verifiers and adversary, but as an oracle. This means
it is only accessible across a specified interface. To compute H (M) a party must make an oracle
call. This means it outputs M together with some indication that it wants H (M) back, and an
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appropriate value is returned. Specifically it can output a pair (hash, M), the first component being
merely a formal symbol used to indicate that this is a hash-oracle query. Having output this, the
calling algorithm waits for the answer. Once the value H (M) is returned, it continues its execution.

The best way to think about H is as a dynamic process which maintains a table of input-output
pairs. Every time a query (hash, M) is made, the process first checks if its table contains a pair of
the form (M, y) for some y, and if so, returns y. Else it picks a random y in Z3,, puts (M, y) into
the table, and returns y as the answer to the oracle query.

We consider the above hash-then-invert signature scheme in the model where the hash function
Hash is a random oracle H. This is called the Full Domain Hash (FDH) scheme. More precisely, let
K., be an RSA generator with associated security parameter k. The FDH-RSA signature scheme
associated to I, is the digital signature scheme DS = (K,,, Sign, VF') whose signing and verifying
algorithms are as follows:

rsa’

Algorithm Signggq’d(M) Algorithm VF%(')(M, x)

,€

y — H(M) y — H(M)
z — y? mod N Yy + ¢ mod N
Return z If y = 3/ then return 1 else return 0

The only change with respect to the way we wrote the algorithms for the generic hash-then-invert
scheme of Section 12.3.3 is notational: we write H as a superscript to indicate that it is an oracle
accessible only via the specified oracle interface. The instruction y <« H(M) is implemented by
making the query (hash, M) and letting y denote the answer returned, as discussed above.

We now ask ourselves whether the above signature scheme is secure under the assumption that
RSA is one-way. To consider this question we first need to extend our definitions to encompass
the new model. The key difference is that the success probability of an adversary is taken over
the random choice of H in addition to the random choices previously considered. The forger F' as
before has access to a signing oracle, but now also has access to H. Furthermore, Sign and VF now
have access to H. Let us first write the experiment that measures the success of forger F' and then
discuss it more.

Experiment ExpHe™?(F)
(N,e), (N,p,q,d)) > K
H <& Func({0,1}*,Z%,)
(M, z) & FIOSSN O (N, )
If the following are true return 1 else return O:
VEH (M, o) =1
— M was not a query of A to its oracle

rsa

Note that the forger is given oracle access to H in addition to the usual access to the sign oracle
that models a chosen-message attack. After querying its oracles some number of times the forger
outputs a message M and candidate signature x for it. We say that F is successful if the verification
process would accept M, x, but F' never asked the signing oracle to sign M. (F is certainly allowed
to make hash query M, and indeed it is hard to imagine how it might hope to succeed in forgery
otherwise, but it is not allowed to make sign query M.) The uf-cma-advantage of A is defined as

Adviiema(4) = Pr {Exp%f:gcma(A) = 1} .
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We will want to consider adversaries with time-complexity at most ¢, making at most g sign oracle
queries and at most gnasn hash oracle queries, and with total query message length p. Resources
refer again to those of the entire experiment. We first define the ezecution time as the time taken
by the entire experiment Expic™®(F). This means it includes the time to compute answers to
oracle queries, to generate the keys, and even to verify the forgery. Then the time-complexity ¢
is supposed to upper bound the execution time plus the size of the code of F'. In counting hash
queries we again look at the entire experiment and ask that the total number of queries to H here
be at most gpasn. Included in the count are the direct hash queries of F', the indirect hash queries
made by the signing oracle, and even the hash query made by the verification algorithm in the
last step. This latter means that gu.sn is always at least the number of hash queries required for
a verification, which for FDH-RSA is one. In fact for FDH-RSA we will have gnasn > gsig + 1,
something to be kept in mind when interpreting later results. Finally p is the sum of the lengths
of all messages in sign queries plus the length of the final output message M.

However, there is one point that needs to be clarified here, namely that if time-complexity refers
to that of the entire experiment, how do we measure the time to pick H at random? It is an infinite
object and thus cannot be actually chosen in finite time. The answer is that although we write H
as being chosen at random upfront in the experiment, this is not how it is implemented. Instead,
imagine H as being chosen dynamically. Think of the process implementing the table we described,
so that random choices are made only at the time the H oracle is called, and the cost is that of
maintaining and updating a table that holds the values of H on inputs queried so far. Namely
when a query M is made to H, we charge the cost of looking up the table, checking whether H (M)
was already defined and returning it if so, else picking a random point from Z7;, putting it in the
table with index M, and returning it as well.

In this setting we claim that the FDH-RSA scheme is secure. The following theorem upper
bounds its uf-cma-advantage solely in terms of the ow-kea advantage of the underlying RSA gen-
erator.

Theorem 12.3 Let K., be an RSA generator with associated security parameter k, and let DS
be the FDH-RSA scheme associated to K..,. Let F' be an adversary making at most gnasn queries
to its hash oracle and at most gsig queries to its signing oracle where gnash > 1 + gsig. Then there
exists an adversary I such that

AAVEF™(F) < quash - Adv X (T) . (12.2)
and I, F' are of comparable resources. 1

The theorem says that the only way to forge signatures in the FDH-RSA scheme is to try to invert
the RSA function on random points. There is some loss in security: it might be that the chance of
breaking the signature scheme is larger than that of inverting RSA in comparable time, by a factor

of the number of hash queries made in the forging experiment. But we can make AdVO,C"rV;:‘ea(t’ )

small enough that even gpagn - Adv‘fcvrs':‘ea(t’ ) is small, by choosing a larger modulus size k.

One must remember the caveat: this is in a model where the hash function is random. Yet,
even this tells us something, namely that the hash-then-invert paradigm itself is sound, at least for
“perfect” hash functions. This puts us in a better position to explore concrete instantiations of the
paradigm.

Let us now proceed to the proof of Theorem 12.3. Remember that inverter I takes as input

(N,e), describing RSAn., and also a point y € Zy. Its job is to try to output RSA]_V,le(y) =
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y? mod N, where d is the decryption exponent corresponding to encryption exponent e. Of course,
neither d nor the factorization of IV are available to I. The success of I is measured under a random
choice of ((N,e), (N,p,q,d)) as given by K, and also a random choice of y from Z%;. In order to
accomplish its task, I will run F' as a subroutine, on input public key (N, e), hoping somehow to
use F’s ability to forge signatures to find RSAJ_Vle(y). Before we discuss how I might hope to use
the forger to determine the inverse of point vy, we need to take a closer look at what it means to
run F as a subroutine.

Recall that F' has access to two oracles, and makes calls to them. At any point in its execution
it might output (hash, M). It will then wait for a return value, which it interprets as H (M ). Once
this is received, it continues its execution. Similarly it might output (sign, M) and then wait to
receive a value it interprets as Sign]HVf'? “ 4(M). Having got this value, it continues. The important
thing to understand is that F', as an algorithm, merely communicates with oracles via an interface.
It does not control what these oracles return. You might think of an oracle query like a system
call. Think of F' as writing an oracle query M at some specific prescribed place in memory. Some
process is expected to put in another prescribed place a value that F' will take as the answer. F'
reads what is there, and goes on.

When I executes F', no oracles are actually present. F' does not know that. It will at some
point make an oracle query, assuming the oracles are present, say query (hash, M). It then waits
for an answer. If I wants to run F' to completion, it is up to I to provide some answer to I’ as
the answer to this oracle query. F' will take whatever it is given and go on executing. If I cannot
provide an answer, F' will not continue running; it will just sit there, waiting. We have seen this
idea of “simulation” before in several proofs: [ is creating a “virtual reality” under which F' can
believe itself to be in its usual environment.

The strategy of I will be to take advantage of its control over responses to oracle queries. It
will choose them in strange ways, not quite the way they were chosen in Experiment Expise™a(F).
Since F' is just an algorithm, it processes whatever it receives, and eventually will halt with some
output, a claimed forgery (M, z). By clever choices of replies to oracle queries, I will ensure that
F is fooled into not knowing that it is not really in Expis™®(F), and furthermore z will be the
desired inverse of y. Not always, though; I has to be lucky. But it will be lucky often enough.

We begin by consider the case of a very simple forger F'. It makes no sign queries and exactly
one hash query (hash, M). It then outputs a pair (M, z) as the claimed forgery, the message M
being the same in the hash query and the forgery. (In this case we have ¢s; = 0 and gpash = 2,
the last due to the hash query of F' and the final verification query in the experiment.) Now if
F' is successful then z is a valid signature of M, meaning z¢ = H (M) mod N, or, equivalently,
x = H(M)? mod N. Somehow, F has found the inverse of H (M), the value returned to it as the
response to oracle query M. Now remember that I’s goal had been to compute y¢ mod N where
y was its given input. A natural thought suggests itself: If F' can invert RSAy . at H(M), then
I will “set” H(M) to y, and thereby obtain the inverse of y under RSAy.. I can set H(M) in
this way because it controls the answers to oracle queries. When F' makes query (hash, M), the
inverter I will simply return y as the response. If F' then outputs a valid forgery (M, z), we have
z =y% mod N, and I can output z, its job done.

But why would F' return a valid forgery when it got y as its response to hash query M7 Maybe
it will refuse this, saying it will not work on points supplied by an inverter I. But this will not
happen. F'issimply an algorithm and works on whatever it is given. What is important is solely the
distribution of the response. In Experiment Expis®™?(F) the response to (hash, M) is a random
element of Z3,. But y has exactly the same distribution, because that is how it is chosen in the
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experiment defining the success of I in breaking RSA as a one-way function. So F' cannot behave
any differently in this virtual reality than it could in its real world; its probability of returning a
valid forgery is still Adv%f:gcma(F). Thus for this simple F' the success probability of the inverter
in finding y? mod N is exactly the same as the success probability of F in forging signatures.
Equation (12.2) claims less, so we certainly satisfy it.

However, most forgers will not be so obliging as to make no sign queries, and just one hash
query consisting of the very message in their forgery. I must be able to handle any forger.

Inverter I will define a pair of subroutines, H-Sim (called the hash oracle simulator) and
Sign-Sim (called the sign oracle simulator) to play the role of the hash and sign oracles respectively.
Namely, whenever F' makes a query (hash, M) the inverter I will return H-Sim(M) to F as the
answer, and whenever F' makes a query (sign, M) the inverter I will return Sign-Sim (M) to F as
the answer. (The Sign-Sim routine will additionally invoke H-Sim.) As it executes, I will build up
various tables (arrays) that “define” H. For j = 1,..., gnash, the j-th string on which H is called
in the experiment (either directly due to a hash query by F', indirectly due to a sign query by F,
or due to the final verification query) will be recorded as Msg[j]; the response returned by the hash
oracle simulator to Msg[j] is stored as Y[j]; and if Msg[j] is a sign query then the response returned
to F' as the “signature” is X[j]. Now the question is how I defines all these values.

Suppose the j-th hash query in the experiment arises indirectly, as a result of a sign query
(sign, Msg[j]) by F. In Experiment Expig™®(F) the forger will be returned H(Msg[j])? mod N.
If I wants to keep F' running it must return something plausible. What could I do? It could
attempt to directly mimic the signing process, setting Y'[j] to a random value (remember Y[j]
plays the role of H(Msg[j])) and returning (Y[j])¢ mod N. But it won’t be able to compute the
latter since it is not in possesion of the secret signing exponent d. The trick, instead, is that I first
picks a value X[j] at random in Z3, and sets Y[j] = (X[j])° mod N. Now it can return X[j] as
the answer to the sign query, and this answer is accurate in the sense that the verification relation
(which F might check) holds: we have Y[j] = (X[j])¢ mod N.

This leaves a couple of loose ends. One is that we assumed above that I has the liberty of
defining Y'[j] at the point the sign query was made. But perhaps Msg[j] = Msg[l] for some [ < j
due to there having been a hash query involving this same message in the past. Then the hash
value Y[j] is already defined, as Y'[l], and cannot be changed. This can be addressed quite simply
however: for any hash query Msg[l], the hash simulator can follow the above strategy of setting the
reply Y[I] = (X[I])® mod N at the time the hash query is made, meaning it prepares itself ahead of
time for the possibility that Msg[l] is later a sign query. Maybe it will not be, but nothing is lost.

Well, almost. Something is lost, actually. A reader who has managed to stay awake so far may
notice that we have solved two problems: how to use F to find y¢ mod N where ¥ is the input
to I, and how to simulate answers to sign and hash queries of F', but that these processes are in
conflict. The way we got y? mod N was by returning y as the answer to query (hash, M) where M
is the message in the forgery. However, we do not know beforehand which message in a hash query
will be the one in the forgery. So it is difficult to know how to answer a hash query Msg[j]; do we
return y, or do we return (X[j])¢ mod N for some X[j]? If we do the first, we will not be able to
answer a sign query with message Msg[j]; if we do the second, and if Msg[j] equals the message
in the forgery, we will not find the inverse of y. The answer is to take a guess as to which to do.
There is some chance that this guess is right, and I succeeds in that case.

Specifically, notice that Msg[gnasn] = M is the message in the forgery by definition since
Msg[qnasn] is the message in the final verification query. The message M might occur more than
once in the list, but it occurs at least once. Now I will choose a random ¢ in the range 1 < i < gpagh
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and respond by y to hash query (hash, Msg[i]). To all other queries j it will respond by first picking
X[j] at random in Z}, and setting H(Msg[j]) = (X[j])¢ mod N. The forged message M will equal
Msgli] with probability at least 1/gpash and this will imply Equation (12.2). Below we summarize
these ideas as a proof of Theorem 12.3.

It is tempting from the above description to suggest that we always choose i = gpasn, since
Msg[qnasn] = M by definition. Why won’t that work? Because M might also have been equal to
Msg[j] for some j < @nash, and if we had set @ = gnasn then at the time we want to return y as the
answer to M we find we have already defined H(M) as something else and it is too late to change
our minds.

Proof of Theorem 12.3: We first decribe I in terms of two subroutines: a hash oracle simulator
H-Sim(-) and a sign oracle simulator Sign-Sim(-). It takes inputs N,e,y where y € Z} and
maintains three tables, Msg, X and Y, each an array with index in the range from 1 to gnasn. It
picks a random index i. All these are global variables which will be used also be the subroutines.

The intended meaning of the array entries is the following, for j = 1,..., ghash—
Msg[j] — The j-th hash query in the experiment
Y] —  The reply of the hash oracle simulator to the above, meaning

the value playing the role of H(Msgl[j]). For j =i it is y.

X[j] — For j # 1, the response to sign query Msg[j], meaning it satisfies
(X[7)¢=Y][j] (mod N). For j =i it is undefined.

The code for the inverter is below.

Inverter I(N,e,y)
Initialize arrays Msg[l ... qnash], X[1 ... qhash); Y[1 ... qhasn] to empty
j<_0; iﬁ{L”'thash}
Run F' on input (N, e)
If F' makes oracle query (hash, M)
then h «— H-Sim(M) ; return h to F' as the answer
If F' makes oracle query (sign, M)
then z « Sign-Sim (M) ; return x to F' as the answer
Until F' halts with output (M, )
y' — H-Sim(M)
Return z

The inverter responds to oracle queries by using the appropriate subroutines. Once it has the
claimed forgery, it makes the corresponding hash query and then returns the signature x.

We now describe the hash oracle simulator. It makes reference to the global variables instantiated
in in the main code of I. It takes as argument a value v which is simply some message whose hash
is requested either directly by F' or by the sign simulator below when the latter is invoked by F'.

We will make use of a subroutine Find that given an array A, a value v and index m, returns 0 if
v & {A[l],..., Alm]}, and else returns the smallest index [ such that v = AJl].

Subroutine H-Sim(v)
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l — Find(Msg,v,j); j < j+1; Msg[j] < v
If I = 0 then
If j =i then Y[j| — y
Else X[j] <> Z% ; Y[j] < (X[j])¢ mod N
EndIf
Return Y[j]
Else
If j =4 then abort
Else X[j] — X[]; Y[j] < Y]] ; Return Y[j]
EndIf
EndIf

The manner in which the hash queries are answered enables the following sign simulator.

Subroutine Sign-Sim (M)
h — H-Sim(M)
If j =4 then abort
Else return X [j]
EndIf

Inverter I might abort execution due to the “abort” instruction in either subroutine. The first such
situation is that the hash oracle simulator is unable to return y as the response to the i-th hash
query because this query equals a previously replied to query. The second case is that I’ asks for
the signature of the message which is the i-th hash query, and I cannot provide that since it is
hoping the i-th message is the one in the forgery and has returned y as the hash oracle response.

Now we need to lower bound the ow-kea-advantage of I with respect to K,y,. There are a few
observations involved in verifying the bound claimed in Equation (12.2). First that the “view” of
F at any time at which I has not aborted is the “same” as in Experiment Exp¥e™®(F). This
means that the answers being returned to F' by I are distributed exactly as they would be in the
real experiment. Second, F' gets no information about the value ¢ that I chooses at random. Now
remember that the last hash simulator query made by [ is the message M in the forgery, so M is
certainly in the array Msg at the end of the execution of I. Let | = Find(Msg, M, gnasn) be the
first index at which M occurs, meaning Msg[l] = M but no previous message is M. The random
choice of 7 then means that there is a 1/gnasn chance that ¢ = [, which in turn means that Y[i| =y
and the hash oracle simulator won’t abort. If x is a correct signature of M we will have 2¢ = Y[i]
(mod N) because Y[i] is H(M) from the point of view of F. So I is successful whenever this
happens. |

12.3.6 PSS0: A security improvement

The FDH-RSA signature scheme has the attractive security attribute of possessing a proof of
security under the assumption that RSA is a one-way function, albeit in the random oracle model.
However the quantitative security as given by Theorem 12.3 could be better. The theorem leaves
open the possibility that one could forge signatures with a probability that is gp.sn times the
probability of being able to invert the RSA function at a random point, the two actions being
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measured with regard to adversaries with comparable execution time. Since gpasn could be quite
large, say 260, there is an appreciable loss in security here. We now present a scheme in which the
security relation is much tighter: the probability of signature forgery is not appreciably higher than
that of being able to invert RSA in comparable time.

The scheme is called PSSO, for “probabilistic signature scheme, version 0”7, to emphasize a key
aspect of it, namely that it is randomized: the signing algorithm picks a new random value each
time it is invoked and uses that to compute signatures. The scheme DS = (K,,, Sign, VF), like
FDH-RSA, makes use of a public hash function H: {0,1}* — Z3, which is modeled as a random
oracle. Additonally it has a parameter s which is the length of the random value chosen by the
signing algorithm. We write the signing and verifying algorithms as follows:

Algorithm Signy ') /(M) | Algorithm VFEO (M, o)
r < {0,1}° Parse o as (r,z) where |r| = s
y — H(r| M) y — H(r | M)
z — y? mod N If z°mod N =y
Return (r, x) Then return 1 else return 0

Obvious “range checks” are for simplicity not written explicitly in the verification code; for example
in a real implementation the latter should check that 1 <2z < N and ged(z, N) = 1.

This scheme may still be viewed as being in the “hash-then-invert” paradigm, except that
the hash is randomized via a value chosen by the signing algorithm. If you twice sign the same
message, you are likely to get different signatures. Notice that random value r must be included
in the signature since otherwise it would not be possible to verify the signature. Thus unlike the
previous schemes, the signature is not a member of Z3;; it is a pair one of whose components is an
s-bit string and the other is a member of Z5;. The length of the signature is s + k bits, somewhat
longer than signatures for deterministic hash-then-invert signature schemes. It will usually suffice
to set [ to, say, 160, and given that k£ could be 1024, the length increase may be tolerable.

The success probability of a forger F' attacking DS is measured in the random oracle model,
via experiment Expqu:gcma(F). Namely the experiment is the same experiment as in the FDH-RSA
case; only the scheme DS we plug in is now the one above. Accordingly we have the insecurity
function associated to the scheme. Now we can summarize the security property of the PSSO
scheme.

Theorem 12.4 Let DS be the PSSO scheme with security parameters k and s. Let F' be an
adversary making gsig signing queries and gnash > 1+ gsig hash oracle queries. Then there exists an
adversary I such that

(Ghash — 1) - Gsig 0
28 '

AdVEF"™(F) < AdvRS(D) + (12:3)
Say gnash = 2% and Gsig = 240 With { = 160 the additive term above is about 2760, which is very
small. So for all practical purposes the additive term can be neglected and the security of the PSSO
signature scheme is tightly related to that of RSA.

We proceed to the proof of Theorem 12.4. The design of I follows the same framework used in
the proof of Theorem 12.3. Namely I, on input N, e, y, will execute F' on input N, e, and answer
F’s oracle queries so that F' can complete its execution. From the forgery, I will somehow find
y? mod N. I will respond to hash oracle queries of F via a subroutine H-Sim called the hash oracle
simulator, and will respond to sign queries of F' via a subroutine Sign-Sim called the sign oracle
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simulator. A large part of the design is the design of these subroutines. To get some intuition it is
helpful to step back to the proof of Theorem 12.3.

We see that in that proof, the multiplicative factor of gpasn in Equation (12.2) came from I’s
guessing at random a value i € {1,..., qnasn}, and hoping that i = Find(Msg, M, qnasn) where M
is the message in the forgery. That is, it must guess the time at which the message in the forgery
is first queried of the hash oracle. The best we can say about the chance of getting this guess
right is that it is at least 1/gnasn. However if we now want I’s probability of success to be as in
Equation (12.3), we cannot afford to guess the time at which the forgery message is queried of the
hash oracle. Yet, we certainly don’t know this time in advance. Somehow, I has to be able to take
advantage of the forgery to return y¢ mod N nonetheless.

A simple idea that comes to mind is to return y as the answer to all hash queries. Then certainly
a forgery on a queried message yields the desired value y¢ mod N. Consider this strategy for FDH.
In that case, two problems arise. First, these answers would then not be random and indpendent,
as required for answers to hash queries. Second, if a message in a hash query is later a sign query, 1
would have no way to answer the sign query. (Remember that I computed its reply to hash query
Msglj] for j # i as (X[j])¢ mod N exactly in order to be able to later return X [j] if Msg[j] showed
up as a sign query. But there is a conflict here: I can either do this, or return y, but not both. It
has to choose, and in FDH case it chooses at random.)

The first problem is actually easily settled by a small algebraic trick, exploiting what is called
the self-reducibility of RSA. When I wants to return y as an answer to a hash oracle query Msg[j],
it picks a random X[j] in Z% and returns Y[j] = y - (X[j])° mod N. The value X[j] is chosen
randomly and independently each time. Now the fact that RSAy . is a permutation means that
all the different Y[j] values are randomly and independently distributed. Furthermore, suppose
(M, (r,z)) is a forgery for which hash oracle query r || M has been made and got the reponse
Y[l] =y - (X[l])* mod N. Then we have (z- X[I]"1)* =y (mod N), and thus the inverse of y is
z- X[I]7' mod N.

The second problem however, cannot be resolved for FDH. That is exactly why PSSO pre-pends
the random value r to the message before hashing. This effectively “separates” the two kinds of
hash queries: the direct queries of F' to the hash oracle, and the indirect queries to the hash oracle
arising from the sign oracle. The direct hash oracle queries have the form r || M for some I-bit
string r and some message M. The sign query is just a message M. To answer it, a value r is first
chosen at random. But then the value r || M has low probability of having been a previous hash
query. So at the time any new direct hash query is made, I can assume it will never be an indirect
hash query, and thus reply via the above trick.

Here now is the full proof.

Proof of Theorem 12.4: We first decribe [ in terms of two subroutines: a hash oracle simulator
H-Sim(-) and a sign oracle simulator Sign-Sim(-). It takes input N,e,y where y € Z%, and
maintains four tables, R, V, X and Y, each an array with index in the range from 1 to quasn. All
these are global variables which will be used also be the subroutines. The intended meaning of the
array entries is the following, for j = 1,.. ., qnasn—
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V[j] — The j-th hash query in the experiment, having the form R[j] || Msg|j]
R[j] — The first I-bits of V[j]
Y[j] — The value playing the role of H(V[j]), chosen either by the hash simulator

or the sign simulator

X[j] - If V[j] is a direct hash oracle query of F' this satisfies Y[j] - X[j]~¢
(mod N). If V[j] is an indirect hash oracle query this satisfies X[j]°
(mod N), meaning it is a signature of Msg[j].

=y
Yj]

Note that we don’t actually need to store the array Msg; it is only referred to above in the expla-
nation of terms.

We will make use of a subroutine Find that given an array A, a value v and index m, returns 0 if
v {A[l],..., Alm]}, and else returns the smallest index [ such that v = AJl].

Inverter I(N,e,y)
Initialize arrays R[1...qnash), VI[1- .. hash), X[1-..Ghash], Y[L...qhash], to empty
J =0
Run F' on input N,e
If F makes oracle query (hash,v)
then h «— H-Sim(v) ; return h to F' as the answer
If F makes oracle query (sign, M)
then o « Sign-Sim (M) ; return o to F as the answer
Until F' halts with output (M, (r, x))
y — H-Sim(r || M) ; | «— Find(V,r || M, qnash)
w+ x- X[[]7! mod N ; Return w

We now describe the hash oracle simulator. It makes reference to the global variables instantiated
in in the main code of I. It takes as argument a value v which is assumed to be at least s bits long,
meaning of the form 7 || M for some s bit strong 7. (There is no need to consider hash queries not
of this form since they are not relevant to the signature scheme.)

Subroutine H-Sim(v)
Parse v as r || M where |r| = s
l — Find(V,v,5); j —j+1; R[j] —r; V[j]—v

If [ = 0 then

X[j] <& Z% 5 Yjl <y (X[j])¢ mod N ; Return Y[j]
Else

X[j] < X[I] ; Y[j] < Y[l]; Return Yj]
EndIf

Every string v queried of the hash oracle is put by this routine into a table V', so that V[j] is the
j-th hash oracle query in the execution of F'. The following sign simulator does not invoke the hash
simulator, but if necessary fills in the necessary tables itself.

Subroutine Sign-Sim (M)
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r<{0,1}°

l — Find(R,r,7)

If [ # 0 then abort

Else
jeJi+1; Rl —r; Vil —rl| M; X[j] < Zx; Y[j] — (X[j])° mod N
Return Xj]

EndIf

Now we need to establish Equation (12.3).

First consider Expy™™ kea( 1) and let Pry [-] denote the probability function in this experiment. Let
bad; be the event that I aborts due to the “abort” instruction in the sign-oracle simulator.

Now consider Expiz™?(F), and let Pry [-] denote the probability function in this experiment. Let
bads be the event that the sign oracle picks a value r such that F' had previously made a hash
query r || M for some M.

Let succ be the event (in either experiment) that F' succeeds in forgery. Now we have
AdvEF™(F) = Pry[sucq
= Pry {succ A Eg} + Pry [succ A bads]

< Pry {succ A @2} + Pro [bads]

= Py {succ A @1} + Pry [bad] (12.4)
= AdvR"**(I) + Pry [bad] (12.5)
-1 si,
< AdvRrRe(r) + (nash = 1)dsig 5 Jasig (12.6)

This establishes Equation (12.3). Let us now provide some explanations for the above.

First, Equation (12.6) is justified as follows. The event in question happens if the random value
r chosen in the sign oracle simulator is already present in the set {R[1],..., R[j]}. This set has
size at most gnash — 1 at the time of a sign query, so the probability that r falls in it is at most
(ghash — 1)/2°. The sign oracle simulator is invoked at most gsi times, so the bound follows.

It is tempting to think that the “view” of F' at any time at which I has not aborted is the “same”
as the view of F' in Experiment Exp“f'cma(F). This is not true, because it can test whether or not
bad occured. That’s why we consider bad events in both games, and note that

Adv%"::ea(f) = Pry {succ /\@1} = Pry {succ /\@2} .

This is justified as follows. Remember that the last hash simulator query made by I is r || M where
M is the message in the forgery, so r || M is certainly in the array V at the end of the execution of
I. Sol = Find(V,r | M,qnash) # 0. We know that r || M was not put in V' by the sign simulator,
because F' is not allowed to have made sign query M. This means the hash oracle simulator has
been invoked on r || M. This means that Y[l] = y - (X[I])® mod N because that is the way the
hash oracle simulator chooses its replies. The correctness of the forgery means that ¢ = H(r || M)
(mod N), and the role of the H value here is played by Y[l], so we get 2¢ = Y[I] = y - X][[]
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(mod N). Solving this gives (z - X[[]7!)® mod N = y, and thus the inverter is correct in returning
- X[[]7! mod N. 1

It may be worth adding some words of caution about the above. It is tempting to think that

(Qhash - 1) : QSig
28
which would imply Equation (12.3) but is actually stronger. This however is not true, because the

bad events and success events as defined above are not independent.

AdvrevI) > |1- AdvEF™(F)
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Chapter 15

INTERACTIVE PROOFS AND ZERO KNOWLEDGE

This chapter assumes that the reader has background in basic computational complexity theory.
You should know about complexity classes like P, NP, PSPACE, RP, BPP. It also assumes
background in basic cryptography, including computational number theory.

We fix the alphabet ¥ = {0,1}. A member of ¥* is called a string, and the empty string is
denoted . Objects upon which computation is performed, be they numbers, graphs or sets, are
assumed to be appropriately encoded as strings. A language is a set of strings.

15.1 Introduction

Consider two parties, whom we will call the prover and the verifier, respectively. They have a
common input, denoted x. They also might have individual, private inputs, called auxiliary inputs,
with that of the prover denoted w, and that of the verifier denoted a. Each party also has access to
a private source of random bits, called the party’s coins. The parties exchange messages, and, at the
end of the interaction, the verifier either accepts or rejects. Each party computes the next message
it sends as a function of the common input, its auxiliary input, its coins, and the conversation so
far.

The computational powers of the parties are important. The verifier must be “efficient.” (As
per complexity-theoretic conventions, this means it must be implementable by an algorithm running
in time polynomial in the length of the common input.) Accordingly, it is required that the number
of moves (meaning, message exchanges) be bounded by a polynomial in the length of the common
input x. The computational power of the prover varies according to the setting and requirements,
as we will see below.

We are interested in various goals for the interaction. Some are more important in complexity-
theory, others in cryptography.

15.1.1 Proofs of language membership

The prover claims that x is a member of some fixed and understood underlying language L. The
verifier is skeptical, but willing to be convinced. The purpose of the interaction is to convince the
verifier.

261
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In the formalization of the notion of an interactive proof of language membership, the verifier is
the defining party. A language L is said to possess such a proof if there exists a verifier V' satisfying
two conditions. The first, called “completeness,” asks that the verifier be open to being convinced
of true claims, meaning that there exist a prover strategy P such that the interaction between
P and V on common input z € L leads the verifier to accept. The second, called “soundness,”
asks that the verifier is able to protect itself against being convinced of false claims, meaning that
for any prover strategy ]3, the interaction between P and V on common input z ¢ L leads the
verifier to reject except with some “small” probability. (This is called the error-probability and is
a parameter of the system.)

As an example, suppose L is the language SAT of satisfiable, boolean formulae. In that case the
common input x is a boolean formula. The protocol consists of a single move, in which the prover
supplies a string y that the verifier expects to be an assignment to the variables of the formula that
makes the formula true. The verifier program simply evaluates z at y, accepting iff this value is
one. If the formula is satisfiable, the prover can prove that this by sending the verifier a satisfying
truth assignment y. If the formula z is unsatisfiable, there is no string y that can make the verifier
accept.

The above is a very simple proof system in that the interaction consists of a single message
from prover to verifier, and randomness is not used. This is called an NP-proof system. There are
several reasons for which we are interested in proof systems that go beyond this, comprising many
rounds of exchange and allowing randomness. On the complexity-theoretic side, they enable one to
prove membership in languages outside NP. On the cryptographic side, they enable one to have
properties like “zero-knowledge,” to be discussed below.

Within the definitional template outlined above, there are various variants, depending on the
computational power allowed to the prover in the two conditions. When no computational re-
strictions are put on the prover in the completeness and soundness conditions, one obtains what
is actually called an interactive proof in the literature, a notion due to Goldwasser, Micali and
Rackoff [20]. A remarkable fact is that IP, the class of languages possessing interactive proofs of
membership, equals PSPACE [27, 34|, showing that interaction and randomness extend language
membership-proof capability well beyond NP.

Thinking of the prover’s computation as one to be actually implemented in a cryptographic
protocol, however, one must require that it be feasible. A stronger completeness requirement,
that we call poly-completeness, is considered. It asks that there exist a prover P, running in time
polynomial in the length of the common input, such that for every x € L there exists some auxiliary
input w which, when given to P, enables the latter to make the verifier accept. The NP-proof
system outlined above satisfies this condition because a satisfying assignment to = can play the role
of the auxiliary input, and the prover simply transmits it.

The auxiliary input is important, since without it one would not expect a polynomial-time
prover to be able to prove anything of interest. Why is it realistic? We imagine that the input
x, for the sake of example a boolean formula, did not appear out of thin air, but was perhaps
constructed by the prover in such a way that the latter knows a satisfying assignment, and makes
claims about the satisfiability of the formula based on this knowledge.

The soundness condition can analogously be weakened to ask that it hold only with respect to
polynomial-time provers ﬁ, having no auxiliary input. This poly-soundness condition is usually
enough in cryptographic settings.

A proof system satisfying poly-completeness and poly-soundness is sometimes called a compu-
tationally sound proof system, or an argument [6], with a proof system satisfying completeness
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and soundness called a statistically sound proof system, or, as mentioned above, an interactive
proof. The class of languages possessing proofs of membership satisfying poly-completeness and
poly-soundness is a subset of IP and a superset of NP. We do not know any simple characterization
of it. For cryptographic applications, it is typically enough that it contains NP.

Although poly-soundness suffices for applications, it would be a mistake to think that soundness
is not of cryptographic interest. It often holds, meaning natural protocols have this property, and
is technically easier to work with than poly-soundness. An example illustrating this is the fact that
soundness is preserved under parallel composition, while poly-soundness is not [5].

The focus of these notes being cryptography, we will neglect the large and beautiful area of
the computational complexity of interactive proof systems. But let us at least try to note some
highlights. The first evidence as to the power of interactive proofs was provided by the fact that the
language of non-isomorphic graphs, although not known to be in NP, possesses an interactive proof
of membership [15]. Eventually, as noted above, it was found that IP = PSPACE. The related
model of probabilistically checkable proofs has been applied to derive strong non-approximability
results for NP-optimization problems, solving age-old open questions in algorithms.

15.1.2 Proofs of knowledge

A proof of knowledge for satisfiability enables a prover to convince the verifier that it “knows” a
satisfying assignment to a formula x that is the common input to both parties. Here, whether
or not the formula is satisfiable is not the issue, and indeed the parties start out knowing that it
is. However, since SAT is (probably) not in P, the fact that x is satisfiable does not mean that
someone can find a satisfying assignment to it. Someone might have one, someone else might not.
The purpose of the interaction is for the prover to convince the verifier that it does have one.

Of course, one way to do this is for the prover to transmit its truth assignment to the verifier.
But this often defeats other, security related requirements of the interaction. Thus, one seeks
non-trivial ways to transfer evidence of “knowledge.”

How might such a situation arise? We can imagine, as above, that formula z was created by a
certain entity P in such a way that P knows a satisfying assignment. P makes x public, and will
then prove its identity by proving that it “knows” a satisfying assignment to x. Impersonation is
presumably difficult because others, although knowing x, would find it computationally infeasible
to compute a satisfying assignemnt to it. A proof of membership in the language SAT will not do in
such a situation, because the satisfiability status of x is not in doubt. Everyone, verifier included,
knows that z is satisfiable. But not everyone knows a satisfying assignment for xz, and it is of this
knowledge that the verifier seeks to be convinced by the interaction.

A proof of knowledge is an intriguing object, and the first question one has to ask is what
exactly this means and how it can be formalized. Indeed, it is not obvious what it means for a
party to “know” something.

A proof of knowledge will apply to NP-relations. Meaning we consider a boolean-valued func-
tion p computable in time polynomial in the length of its first input, called an NP-relation because
the language L,, consisting of all « such that there exists y such that p(z,y) = 1, is in NP. On
common input x € L, the verifier is seeking to be convinced that the prover knows a string y such
that p(z,y) = 1. In the example above, p would be the boolean formula evaluation relation which
on inputs x,y returns 1 if y is a satisfying assignment to formula x, and 0 otherwise, and L, would
be SAT. But one can consider many other relations and corresponding languages.

As in a proof of language-membership, a proof of knowledge is defined by a verifier. There is a
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completeness condition, saying that there exists a prover strategy that makes the verifier accept on
any input x € L,. The crux is a “knowledge” condition which asks that there exist a polynomial-
time algorithm E called the extractor that, given oracle access to a prover strategy ﬁ, succeeds in
outputting y satisfying p(z,y) = 1, with a probability related to the probability that P would have
convinced the verifier to accept. Thus, a party “knows” something if it is possible, given access
to this party, to succeed in “extracting” and outputting the quantity in question. Think of the
extractor as the subconcious mind of the prover.

What does it mean for the extractor to have oracle access to the prover? It can choose the latter’s
coins, and can interact with it, playing the role of verifier. The important element distinguishing
the extractor from the verifier is that the former can execute the prover many times on the same
random tape, thereby being able to get its responses to two different verifier messages on the same
conversation prefix. Extraction exploits this ability.

There are various technical issues relating to the definition that we will have to consider later.
One is about how the probability of success of the extractor on prover P and input = relates to
the probability that P would convince the verifier to accept x. Typically, these differ by a quantity
we call the knowledge-error probability, akin to the error-probability in the soundness condition of
language membership. But other relations are possible as well, and the precise relation is important
in applications. Another issue relates to the computational power allowed to the prover in the two
conditions. The issues being quite analogous to those for proofs of language membership, they will
not be discussed again here.

The idea of a proof of knowledge was suggested in [20], and formalizations were explored in
[11, 12, 4].

15.1.3 Zero-knowledge and its cousins

If a prover sends a verifier a truth assignment to their common input formula x, it does more
than convince the verifier that x is satisfiable: it gives that verifier useful information regarding
the satisfiability of the formula. In particular, it enables the verifier to then prove to a third party
that the same formula is satisfiable. The goal of a zero-knowledge protocol in this setting would
be to not reveal to the verifier anything other than the fact that x is satisfiable, and in particular
not enable the verifier, after having completed its interaction with the prover, to turn around and
convince another polynomial-time party that x is satisfiable.

Although the above discussion was about proofs of language membership, the same applies
to proofs of knowledge. One can have zero-knowledge proofs of language membership, or zero-
knowledge proofs of knowledge.

The prover claims that some fact related to x is true, namely that x is a member of some fixed
and understood underlying language L. The verifier is skeptical, but willing to be convinced. It
asks the prover to supply evidence as to the truth of the claim, and eventually makes a decision,
based on this evidence, regarding whether or not the claimed fact about x is true. We require that
if x € L then it should be possible for the prover to convince the verifier, but if x ¢ L, then, no
matter what the prover does, the verifier will not be convinced. This is what we call a proof system.

The simplest type of proof system is an NP one. Here, the evidence supplied by the prover is
a witness string y, and the verifier can check some relation between x and y in time polynomial in
the length of z. For example if the underlying language is SAT, the input = would be a formula,
and the witness could be a satisfying truth assignment. The verifier would evaluate x at the given
truth assignment, and accept if and only if the answer is 1.
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Interactive proofs extend NP-proof systems in two ways: they allow an exchange of messages,
and they allow both parties to be randomized. We require that if x € L then it should be possible
for the prover to convince the verifier, but if € L, then, no matter what the prover does, the
probability that the verifier is convinced is low. As we can see, “conviction” has become probabilistic
attribute, because there is some, small probability that the verifier accepts when x & L.

15.2 Interactive functions and the accepting probability

We will be considering a pair of interacting parties, called the prover and verifier, respectively. We
will be interested in specific strategies, or algorithms, that they might use in computing the messages
to send to each other. To this end, each party will be modeled by what we call an interactive
function. Formally, an interactive function I takes the following inputs: An incoming message, and
the current state. Denoting these by My, S, respectively, the output, denoted I(Miy,;S) is a pair
(Moyt, N) consisting of an outgoing message and the next state.

Now, imagine a pair P,V of interactive functions, representing the prover and verifier, respec-
tively. They will have a common input, denoted x. They might have different auxiliary inputs. Let
us denote that of P by ap and that of V' by ay. They would also have different random tapes, with
that of P denoted by Rp and that of V denoted by Ry . Their interaction begins with some initial-
ization. Our convention is that the initial state provided to an interactive function is the common
input, its auxiliary input, and its random tape. Thus P would have initial state S?D = (z,ap, Rp)
while V' would have initial state SY, = (x,ay, Ry). Once initialization has been completed and an
initiating party has been selected, a sequence of messages, making up a conversation, is determined.
A current state is maintained by each party, and, when this party receives a message, it uses its
interactive function to determine the next message to the other party, as well as a new, updated
state to maintain, as a function of the message it received and its current state. The exchange con-
tinues for some pre-determined number of moves m(-), the latter being a polynomially-bounded,
polynomial-time computable function of the length n of the common input. The last message is
sent by the prover, and at the end of it, V must enter one of the special states accept or reject.

Fig. 15.1 illustrates the message exchange process for the case of a prover-initiated interaction.
A verifier-initiated interaction proceeds analogously with the first message being sent by the ver-
ifier. The number of moves m is odd when the interaction is prover-initiated, and even when the
interaction is verifier-initiated.

The random tape of a party is the only source of randomness for this party’s interactive function,
and the manner in which randomness enters the party’s computation. The length of the random
tape R for an interactive function I is a function 77(-) of the length n of the common input.

Notice that once the interactive functions P,V have been chosen and their initial states (which
include their random tapes) have been chosen, the sequence of messages between them, and the
verifier’s decision, are determined, meaning these are deterministic functions of the initial states.

We let

Tal P,CLP 7RP
Decisiony’,"p' ()

denote this decision. This is the value, either accept or reject, given by the final state of V in
the interaction with P in which the initial state of V' is (z,ay, Ry) and the initial state of P is
(z,ap, Rp). This leads to an important quantity, the accepting probability, defined as

Acc‘};ﬁ"j () = Pr {Decision‘};ﬁi:g"j () = accept] ’ (15.1)
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Coins: Rp
Auxiliary input: ap
Initial State: S% = (z,ap, Rp)
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Coins: Ry
Auxiliary input: ay
Initial State: Sy = (z,ay, Ry)

(Mp, Sp) < P(; Sp)

(M}, Sp) — P(My; Sp)

(MEETL 524 o P(MZE; 53)

(My,, Sy) — V(Mp; Sy)

(M, S%) — V(Mp; Sy)

(M3, S3F) = V(M S

(¢, decision) « V(MZTL; S2F)

Figure 15.1: Prover-initiated interaction between a pair of interactive functions P,V on common
input x, consisting of m = 2k 4+ 1 moves. The verifier’s decision is decision € {accept, reject}.

the probability being over the random choices of Rp and Ry. In more detail, the quantity of
Equation (15.1) is the probability that the following experiment returns 1:

n < ||

Rp S {0, 1}rp(n) : Ry S {0, 1}1"\/(")

decision < Decision

P,ap,R
v,Zi,Rﬁ ()

If decision = accept then return 1 else return 0

The time complexity of an interactive function is measured as a function of the length n of the
common input. In particular, interactive function I is said to be polynomial time if it is computable
in time polynomial in the length of the common input. Henceforth, a verifier is a polynomial-time
interactive function. When [ is polynomial-time, it is assumed that r; is polynomially-bounded

and polynomial-time computable.
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15.3 Proofs of language-membership

A language L has been fixed and agreed upon. We consider interactions in which the goal of the
prover is to convince the verifier that their common input is a member of the language in question.
In such a system, the central object is the verifier. This is a particular, polynomial-time interactive
function V' whose specification defines the system. Two classes of conditions of V' relative to L
are considered: completeness, or liveness conditions, and soundness, or security conditions. We
discuss them briefly, then provide a formal definition with a few variants of each condition, and
then provide a more in-depth discussion and comparision.

15.3.1 The basic definitions

A completeness condition asks that the verifier be open to being convinced of true facts. Namely,
for inputs x in the language, there should exist an interactive function P whose interaction with V'
on common input x leads V' to an accept decision. Different formalizations emerge depending on
the time-complexity required of P.

A soundness condition asks that the verifier be capable of protecting itself against accepting
false claims, meaning that when the common input x is not in the language, the probability of
leading V' to an accept decision should be “low.” It is important that this condition hold regardless
of the strategy used by the prover, so that it should hold for any interactive function P. Again,
different formalizations emerge depending on the time-complexity of P.

Definition 15.1 Let V be a polynomial-time interactive function, which we call the verifier. Let
L be a language, and let : N — [0, 1] be a function. We consider the following conditions on V'
relative to L and ¢:

1. True-completeness: There exists an interactive function P such that

Vo eL Yay € $° : Accl® (z)=1.

Vi,ay
2. Poly-completeness: There exists a polynomial-time interactive function P such that

Ve e L Jap € ¥ Vay € ¥* : Accl"(z)=1.

V,ay
~

3. True-soundness with error-probability §: For all interactive functions P

Vo & L Yay € S° : Acch? (x) < 6(|z]) .

Viay

4. Poly-soundness with error-probability §: For all polynomial-time interactive functions P
INEN Vo &L Yay €5* ¢ | |z| >N = Accys (x) <d(zl) | -

The prover P of a completeness condition is called the honest prover, while a prover being considered
for a soundness condition is called a cheating prover.

Next we define classes of languages related to these conditions.

Definition 15.2 Let L be a language. We say that L has an interactive true-proof (of membership)
if there exists a polynomial-time interactive function V' such that the following conditions hold:
true-completeness, and true-soundness with error-probability 1/2. We let IP denote the class of
all languages possessing interactive true-proofs of membership.
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Definition 15.3 Let L be a language. We say that L has an interactive poly-proof (of membership)
if there exists a polynomial-time interactive function V' such that the following conditions hold:
poly-completeness, and poly-soundness with error-probability 1/2. We let pIP denote the class of
all languages possessing interactive poly-proofs of membership.

Before we discuss the definitions further, let us look at a simple class of examples.

15.3.2 NP proof systems

The bulk of cryptographic applications pertain to languages in NP. Recall that a language L is in
the class NP if there exist efficiently verifiable certificates for membership in L.

Definition 15.4 An NP-relation is a boolean-valued function p(-, -), computable in time polyno-
mial in the length of its first input. A language L is in the class NP if there exists an NP-relation
p such that

L = {xe€X¥* : Jy € ¥ such that p(x,y) =1}.
In this case, p is called an NP-relation for L. When p is understood, a string y such that p(z,y)
is called a certificate, or witness, to the membership of z in L.

An example is the language SAT consisting of all satisfiable boolean formulae. The associated
NP-relation is p(p,y) = 1 iff y is a satisfying assignment to formula .

If L € NP then it has a very simple associated proof system. The protocol has just one move,
from prover to verifier. The prover is expected to supply a certificate for the membership of the
common input in the language, and the verifier checks it. Let us detail this, to make sure we see
how to fit the models and definitions we have provided above.

Proposition 15.5 Suppose L € NP. Then there exists a verifier V' defining a one-move protocol
satisfying poly-completeness, and true-soundness with error-probability zero, with respect to L.

Note that this shows that NP C IP and also NP C pIP. Why? Because poly-completeness
implies completeness, and soundness implies poly-soundness, as we will see below.

Proof of Proposition 15.5: We need to specify the interactive function V. We set ry(-) = 0,
meaning the verifier uses no coins. We let p be an NP-relation for L. Now, the description of V is
the following:

Verifier V(M;5)
Parse S as (z,ay,¢)
If p(x, M) = 1 then decision < accept else decision « reject
Return (e, decision)

The initial state of the verifier is the only state it can maintain, and this contains the common input
x, an auxiliary input ay, and the emptystring representing a random tape of length 0. The verifier
treats the incoming message as a witness for the membership of z in L, and evaluates p(x, M)
to verify that this is indeed so. The outgoing message is €, since the verifier takes its decision
after receiving its first message. The verifier is polynomial-time because p is computable in time
polynomial in the length of its first input.
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Let us now show that poly-soundness holds. To do this we must specify an interactive function P
meeting condition 2 of Definition 15.1. It is deterministic, meaning rp(-) = 0. Its action is simply
to transmit its auxiliary input to the verifier. Formally:

Prover P(g;5)
Parse S as (x,ap,¢)
Return (ap,¢)

Now we must check that this satisfies the conditions. Assume x € L. Then, since p is an NP-
relation for L, there exists a y such that p(x,y) = 1. Setting ap = y, we see that

Accl‘;:g"j (x)=1

for all ay € X*.

Finally, we show that true-soundness with error-probability zero holds. Let P be an arbitrary
interactive function, and assume x ¢ L. In that case, there is no string y such that p(x,y) = 1,
and thus no message M that could lead V to accept. 1

15.3.3 Discussion of the definitions

Completeness in the absence of soundness is uninteresting. For any language L, there exists a verifier
satisfying both types of completeness: the verifier V' that always accepts. Similarly, soundness in
the absence of completeness or poly-completeness is uninteresting. For any language L, there exists
a verifier satisfying both types of soundness with error-probability zero: the verifier V' that always
rejects. It is only in combination that the two types of conditions become interesting.

Note that the auxiliary input of the prover in the true-completeness condition is set to the
empty string e, but in the poly-completeness condition the prover gets an auxiliary input that is
allowed to depend on the common input. This is crucial because without this, the prover would be
a polynomial-time interactive function just like the verifier, and the class of languages satisfying
this weakened poly-completeness condition and the poly-soundness condition would be just BPP,
and thus not interesting as a model of provability. The following problem asks you to verify this,
and doing so is good to exercise your understanding of the definitions.

Problem 15.1 Let V be a verifier and L a language. Consider the condition:

e Weak-poly-completeness: There exists a polynomial-time interactive function P such that
Yo €L Yay €5 : Aceys () =1.

Let L be a language. We say that L has an interactive weak-poly-proof (of membership) if there
exists a polynomial-time interactive function V' such that the following conditions hold: weak-poly-
completeness, and poly-soundness with error-probability 1/2. We let wpIP denote the class of all
languages possessing interactive weak-poly-proofs of membership. Prove that wpIP = BPP.

Be careful with your arguments above. In particular, how exactly are you using the poly-soundness
condition?

Another worthwhile exercise at this point is to prove the following relation, which says that
poly-completeness is a stronger requirement than true-completeness.
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pIP IP = PSP co-plIP
BPP co-NP

RP co-RP
P
Figure 15.2: Known containment relations amongst some interactive proof related complexity

classes. A line indicates that the class at the lower end of the line is contained in the class at
the upper end of the line.

Problem 15.2 Let V be a verifier satisfying poly-completeness relative to language L. Prove that
V' also satisfies true-completeness with respect to language L.

The reason this is true is of course the fact that the prover in the true-completeness condition is
not computationally restricted, but the reason it is worth looking at more closely is to make sure
that you take into account the auxiliary inputs of both parties and the roles they play.

We have denied the prover an auxiliary input in both the soundness conditions. True-soundness
is not affected by whether or not the prover gets an auxiliary input, but poly-soundness might be,
and we have chosen a simple formulation. Notice that poly-soundness is a weaker requirement than
true-soundness in the sense that true-soundness implies poly-soundness.

The auxiliary input of the verifier will be used to model its history, meaning information from
prior interactions. This is important for zero-knowledge, but in the interactive proof context you
can usually ignore it, and imagine that ay = e.

Many natural protocols have an error-probability of §(n) = 1/2 in the soundness condition.
One way to lower this is by independent repetitions of the protocol. As we will see later, the extent
to which this is effective depends on the type of soundness condition (whether true or poly).

The requirement that the acceptance probability in the completeness or poly-completeness
conditions be 1 can be relaxed. The class IP of Definition 15.2 would be unchanged had we required
completeness with probability, say, 2/3. Whether the class pIP of Definition 15.3 would also remain
unchanged had we required poly-completeness with probability 2/3 is not known. However, natural
protocols seem to satisfy completeness or poly-completeness with probability 1, and this is simpler
to work with.

The poly-soundness condition can do with some elucidation. It asks that if we fix a polynomial-
time prover P then the probability that P can convince V to accept an x ¢ L is small, but only
if © is long enough. For any P there might exist a finite, but large set of inputs = ¢ L which the
verifier does accept when talking to P. This

Fig. 15.2 illustrates relations between the complexity classes we have just defined and some
standard ones, and it is worthwhile to pause and verify these relations.
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15.3.4 Quadratic residuosity

To do so we must first recall some number theory. Let N be a positive integer. An element S € Z3
is a square, or quadratic residue, if it has a square root modulo IV, namely there is a s € Z3; such
that s> = S mod N. If not, it is a non-square or non-quadratic-residue. Note a number may have
lots of square roots modulo V.

Prover Vv
Pick r <& Z%

Let y < 72 mod N
Pick ¢ <> {0,1}
z «— rs®mod N

Accept iff 22 = yz© mod N

We must first recall some number theory. Let N be a positive integer. An element S € Z} is
a square, or quadratic residue, if it has a square root modulo /N, namely there is a s € Z}; such
that s> = S mod N. If not, it is a non-square or non-quadratic-residue. The quadratic residuosity
language is
QR = {(N,S) : S is a quadratic residue modulo N } .

Note a number may have lots of square roots modulo N. Recall that there exists a polynomial time
algorithm to compute the ged, meaning on inputs N, s it returns ged(N,s). There also exists a
polynomial time algorithm that on inputs N, S, s can check that s> =S (mod N). However, there
is no known polynomial-time algorithm, even randomized, that on input IV, .S returns a square root
of S modulo N.

Now imagine that the common input x to the prover and verifier is a pair (N, S). We consider
various possible requirements of the protocol between the parties, and the motivations for these
requirements.

The prover claims that S is a quadratic residue modulo N, meaning it claims that (N, S) is a
member of the language QR.

15.4 NP proof-systems

Recall that there exists a polynomial time algorithm to compute the ged, meaning on inputs IV, s it
returns ged(N, s). There also exists a polynomial time algorithm that on inputs N, S, s can check
that s2 =S (mod N). However, there is no known polynomial-time algorithm, even randomized,
that on input N, S returns a square root of S modulo N.

Example 15.6 We claim that QR is in NP. To justify this we must present an NP-relation p for
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QR. The relation in question is defined by

1 ifS,s€Zyand s2=S (mod N)
p((N,S),s) = .
0 otherwise.
The facts recalled above tell us that p is computable in time polynomial in the length of the pair
N, S. This involves two gcd computations and one squaring operation. So p is an NP-relation.

Now suppose L € NP and let p be an NP relation for L. Imagine a party that has an input « and
wants to know whether or not this input is in L. It probably cannot do this efficiently, since NP is
probably different from P. Now imagine that there is another party that is willing to help out. We
call this party the prover. It has, for some reason, the ability to determine whether or not x is in L.
Our original party is willing to take the prover’s help, but does not trust the prover. It asks that if
the prover claims that = € L, it should supply evidence to this effect, and the evidence should be
efficiently verifiable, where “efficient” means in time polynomial in the length of z. Accordingly, we
call our original party a wverifier. Given that L € NP, the evidence can take the form of a witness
y satisfying p(z,y) = 1, where p is an NP-relation for L. The verifier would compute p to check
this evidence.

We thus visualize a game involving two parties, a prover and a verifier, having a common input
x. The verifier is computationally restricted, specifically to run in time polynomial in the length n
of the input z, but no computation restrictions are put on the prover. The prover claims that x is
a member of the underlying language L. To prove its claim, the prover transmits to the verifier a
string y. The latter evaluages p(x,y), and accepts if and only if this value is 1. This is an NP-proof
system.

Let us formalize this. We say that a language L has an NP-proof system if there exists an
algorithm V', called the verifier, that is computable in time polynomial in its first input, and for
which two conditions hold. The first, called completeness, says that there exists a function P such
that, if the verifier is supplied the message y = P(z), then it accepts. The second condition, called
soundness

testing whether x is in L by running some decision procedure, but, being restricted to polynomial
time, this will only lend it certainity if L € P. However, the verifier is willing to allow the prover
to supply evidence, or “proof” or its claim. The prover is asked to supply a string y

Theorem 15.7 IP = PSPACE.

15.5 Exercises and Problems



Appendix A

THE BIRTHDAY PROBLEM

The setting is that we have ¢ balls. View them as numbered, 1,...,q. We also have N bins, where
N > q. We throw the balls at random into the bins, one by one, beginning with ball 1. At random
means that each ball is equally likely to land in any of the N bins, and the probabilities for all the
balls are independent. A collision is said to occur if some bin ends up containing at least two balls.
We are interested in C(N, ¢q), the probability of a collision.

The birthday paradox is the case where N = 365. We are asking what is the chance that, in a
group of g people, there are two people with the same birthday, assuming birthdays are randomly
and independently distributed over the days of the year. It turns out that when ¢ hits /365 the
chance of a birthday collision is already quite high, around 1/2.

This fact can seem surprising when first heard. The reason it is true is that the collision
probability C(N,q) grows roughly proportional to ¢?/N. This is the fact to remember. The
following gives a more exact rendering, providing both upper and lower bounds on this probability.

Theorem A.1 [Birthday bound] Let C(N,q) denote the probability of at least one collision
when we throw ¢ > 1 balls at random into N > ¢ buckets. Then

q(¢g—1)
C(N,q) < ToN

and
C(N,g) > 1—ea-D/2N
Also if 1 < ¢ < V2N then

q(g—1)
C(N,q) > 0.3-T.l

In the proof we will find the following inequalities useful to make estimates.

Proposition A.2 The inequality

1
<1——>'x <l—-e*<zxg.

e

is true for any real number x with 0 <z < 1.1

273
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Proof of Theorem A.1: Let C; be the event that the i-th ball collides with one of the previous
ones. Then Pr[C;] is at most (i — 1)/N, since when the i-th ball is thrown in, there are at most
1 — 1 different occupied slots and the i-th ball is equally likely to land in any of them. Now

C(N,q) = Pr[Cl\/CQ\/"‘\/Cq]

< Pr[Ci]+Pr[Co] +---+Pr[Cy]
< 9 1,
= N N N
_ aa—1
2N

This proves the upper bound. For the lower bound we let D; be the event that there is no collision
after having thrown in the ¢-th ball. If there is no collision after throwing in ¢ balls then they must
all be occupying different slots, so the probability of no collision upon throwing in the (i + 1)-st
ball is exactly (N —i)/N. That is,

Noi g1

N N

Also note Pr[D;] = 1. The probability of no collision at the end of the game can now be computed
via

Pr[Di1| D] =

1-C(N,q) = Pr[D,]
= Pr[Dg| Dg] - Pr[Dg-1]

= HPI‘ 2+1‘D
q—1 Z)

= 1-—=.
I

Note that i/N < 1. So we can use the inequality 1 —xz < e™* for each term of the above expression.
This means the above is not more than

q—1
He—i/N — ¢ V/N=2/N—-=(¢-1)/N _ —ala—1)/2N

i=1
Putting all this together we get
C(N,q) > 1— e a=D/2N

which is the second inequality in Proposition A.1. To get the last one, we need to make some
more estimates. We know ¢(q¢ — 1)/2N < 1 because ¢ < V2N, so we can use the inequality

1—e®>(1-e b to get
1\ q(g—1)
C(N,q) > ([1-= .
vz (1-3) "5
A computation of the constant here completes the proof. I



Appendix B

INFORMATION-THEORETIC SECURITY

Chapter to be absorbed elsewhere.

We discuss the information-theoretic notion of security called perfect security which we will
show is possessed by the one-time-pad scheme.

We fix a particular symmetric encryption scheme SE = (K,&,D). Two parties share a key
K for this scheme and the adversary does not a priori know K. The adversary is assumed able
to capture any ciphertext that flows on the channel between the two parties. Having captured a
ciphertext, it attempts to glean information about the corresponding plaintext message.

Take for example the one-time-pad scheme, and assume a single k-bit message is encrypted and
transmitted, where k is the length of the key. Due to the random choice of the key (pad), this
certainly seems very “secure.” We would like to say that the adversary, given the ciphertext, has
“no idea” what the message was. But it is not clear how to say this, or if it is even really true. The
adversary could always guess the message. Or, it could have a pretty good idea what the message
was from some context surrounding the encryption. For example, it may know that the first few
bytes of the message is a packet header containing the sender’s (known) IP address.

So we can’t really say the adversary has no idea what the message is given the ciphertext.
Instead, we adopt a comparative measure of security. We are interested in how much more the
adversary knows about the message given the ciphertext as opposed to what it knew before it saw
the ciphertext. Perfect security holds if “the adversary’s best guess as to the message after having
seen the ciphertext is the same as before it saw the ciphertext.” In other words, the ciphertext was
no help in figuring out anything new about the message.

This is captured this as follows. We assume a single message will be encrypted, and are interested
only in the security of this encryption. There is some plaintext space Plaintexts C {0, 1}* of messages
that the encryptor is willing to encrypt. (For example, with the one-time pad scheme, if the key
length is k bits then Plaintexts = {0, 1}*.) Notice that this effectively makes the scheme stateless.

We model the a priori information (the information the adversary already possesses about
the message) as a probability distribution on the set of possible messages. Formally, a message
distribution on Plaintexts is a function D: Plaintexts — [0, 1] such that

> DWM)=1,

M ePlaintexts
and also D(M) > 0 for all M € Plaintexts. For example, there might be four messages, 00,01, 10,11,
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with

D(00)=1/6, D(01)=1/3, D(10)=1/4, and D(11)=1/4.
We imagine that the sender chooses a message at random according to D, meaning that a specific
message M € Plaintexts has probability D(M) of being chosen. In our example, the sender would
choose 00 with probability 1/6, and so on.

The message distribution, and the fact that the sender chooses according to it, are known to
the adversary. Before any ciphertext is transmitted, the adversary’s state of knowledge about the
message chosen by the sender is given by D. That is, it knows that the message was 00 with
probability 1/6, and so on.

We say that the encryption scheme is perfectly secure if the possession of the ciphertext does
not impart any additional information about the message than was known a priori via the fact
that it was chosen according to D. The setup is like this. After the sender has chosen the message
according to D, a key K is also chosen, according to the key generation algorithm, meaning K «— IC,
and the message is encrypted to get a ciphertext, via C' « Ex(M). The adversary is given C. We
ask the adversary: given that you know C' is the ciphertext produced, for each possible value of
the message, what is the probability that that particular value was actually the message chosen?
If the adversary can do no better than say that the probability that M was chosen was D(M), it
means that the possession of the ciphertext is not adding any new information to what is already
known. This is perfect security.

To state this more formally, we first let

S = Keys(SE) x Plaintexts x {0,1}"
denote the sample space underlying our experiment. Here 7 is the number of coins the encryption
algorithm tosses. (This is zero if the encryption algorithm is deterministic, as is the case for the
one-time pad.) We let introduce the following random variables:
K: S — Keys(S€) defined by (K,M,R)— K
M: S — Plaintexts defined by (K, M,R)+— M
C: §—{0,1}* defined by (K, M,R) — Ex(M;R)

Thus K simply returns the value of the chosen key while M returns the value of the chosen message.
The last random variable returns the encryption of the message using key K and coins R. The
probability distribution underlying this sample space is denoted Prp s¢ [-] and is given by a choice of
K as per IC, a choice of M as per D, and a random choice of R, all these being made independently.

Definition B.1 Let S€ = (K,&,D) be a symmetric encryption scheme with associated message
space Plaintexts. Let D: Plaintexts — [0, 1] be a message distribution on Plaintexts. We say that
SE& is perfectly secure with respect to D if for every M € Plaintexts and every possible ciphertext C'
it is the case that

PrpssM=M|C=C] = D(M). (B.1)

We say that S€ = (K, &, D) is perfectly secure if it is perfectly secure with respect to every message
distribution on Plaintexts.

Here “M = M” is the event that the message chosen by the sender was M, and “C = C” is
the event that the ciphertext computed by the sender and received by the adversary was C. The
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definition considers the conditional probability that the message was M given that the ciphertext
was C. It says that this probability is exactly the a priori probability of the message M, namely
D(M).

In considering the one-time pad encryption scheme (cf. Scheme 5.2) we omit the counter as part
of the ciphertext since only a single message is being encrypted. Thus, the ciphertext is a k-bit
string where k is the length of the key and also of the message. Also note that in this scheme r = 0
since the encryption algorithm is not randomized.

Example B.2 Let S€ = (K,&,D) be the one-time-pad encryption scheme with the key length
(and thus also message length and ciphertext length) set to & = 2 bits and the message space set
to Plaintexts = {0,1}*. Let D be the message distribution on Plaintexts defined by D(00) = 1/6,
D(01) = 1/3, D(10) = 1/4 and D(11) = 1/4. For each possible ciphertext C' € {0,1}*, the first
table of Fig. B.1 shows the value of Prp s¢ [C = C'| M = M], the probability of obtaining this
particular ciphertext if you encrypt M with the one-time pad scheme. As the table indicates,
this probability is always 0.25. Why? Having fixed M, the possible ciphertexts are M & K as K
ranges over {0,1}*. So, regardless of the value of M, all different k bit strings are equally likely as
ciphertexts. The corresponding general statement is stated and proved in Lemma B.3 below. The
second table shows the value of Prp s¢ [M = M | C = (], the probability that the message was M
given that an adversary sees ciphertext C'. Notice that this always equals the a priori probability
D(M).

The following lemma captures the basic security property of the one-time-pad scheme: no matter
what is the message, each possible k-bit ciphertext is produced with probability 27%, due to the
random choice of the key. .

Lemma B.3 Let £ > 1 be an integer and let S&€ = (K,&,D) be the one-time-pad encryption
scheme of Scheme 5.2 with the key length set to k£ bits and the message space set to Plaintexts =
{0,1}*. Let D be a message distribution on Plaintexts. Then

Prpss[C=Y |M=X] = 27%.

for any X € Plaintexts and any Y € {0, 1}*.

Proof of Lemma B.3: If X is fixed and known, what’s the probability that we see Y7 Since
Y = K ® X for the one-time-pad scheme, it only happens if K =Y & X. The probability that K
is this particular string is exactly 27% since K is a randomly chosen k-bit string. I

This enables us to show that the one-time-pad scheme meets the notion of perfect security we
considered above.

Theorem B.4 Let k£ > 1 be an integer and let S€ = (K, &, D) be the one-time-pad encryption
scheme of Scheme 5.2 with the key length set to k£ bits and the message space set to Plaintexts =

{0,1}*. Let D be a message distribution on Plaintexts. Then SE€ is perfectly secure with respect
to D.

Proof of Theorem B.4: Let M € Plaintexts be a message and let C' € {0,1}* be a possible
ciphertext. We need to show that Equation (B.1) is true. We have

Prpse M = M|

PI‘D,Sg [C = C}

Prpse M=M|C=C] = Prpse[C=C|M=M]-
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cl oo | 01| 10| 11

D(M) | M
1/6 | 00 0.25 | 0.25 | 0.25 | 0.25
1/3 |01 0.25 | 0.25 | 0.25 | 0.25
1/4 |10 0.25 | 0.25 | 0.25 | 0.25
1/4 |o1 0.25 | 0.25 | 0.25 | 0.25
c| oo|o1|10] 11

D(M) | M
1/6 | 00 1/61/6 | 1/6 |1/6
1/3 |01 1/31/3]1/3|1/3
1/4 |10 1/41/4|1/4|1/4
1/4 |o1 1/41/4|1/4|1/4

Figure B.1: In the first table, the entry corresponding to row M and column C' shows the value of
Prp se [C = C| M = M], for the one-time-pad scheme of Example B.2. Here the key and message
length are both £ = 2. In the second table, the entry corresponding to row M and column C' shows
the value of Prp s¢ [M = M | C = (], for the same scheme.

27]{ ) PTD,SE [M - M]
Prpse [C =C]

The first equality was by Bayes’ rule. The second equality was obtained by applying Lemma B.3
with X = M and Y = C. By definition

Prpse M=M] = D(M)
is the a priori probability of M. Now for the last term:

Prpss[C=C] = > PrpseM=X]|-Prpse[C=C|M=X]

X
= Y D(x)-27*

X
= 2773 " D(X)
X
= 27F.1.
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The sum here was over all possible messages X € Plaintexts, and we used Lemma B.3. Plugging all
this into the above we get

PrpssM=M|C=0C] = 27%. = D(M)

as desired. 1

The one-time-pad scheme is not the only scheme possessing perfect security, but it seems to be the
simplest and most natural one.
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