Lecture 3 - Expectation, moments and inequalities

Jan Bouda

FI MU

March 21, 2012

Jan Bouda (FI MU)

Lecture 3 - Expectation, moments and inequa

March 21, 2012 1 / 56

Part I

Moments and Deviations

Jan Bouda (FI MU)

Lecture 3 - Expectation, moments and inequa

March 21, 2012 2 / 56

3

Moments

Let us suppose we have a random variable X and a random variable
 Y = Φ(X) for some function Φ. The expected value of Y is

$$E(Y) = \sum_{i} \Phi(x_i) p_X(x_i).$$

- Especially interesting is the power function $\Phi(X) = X^k$. $E(X^k)$ is known as the *k*th moment of *X*. For k = 1 we get the expectation of *X*.
- If X and Y are random variables with matching corresponding moments of all orders, i.e. ∀k E(X^k) = E(Y^k), then X and Y have the same distributions.
- Usually we center the expected value to 0 we use moments of $\Phi(X) = X E(X)$.
- We define the *k*th central moment of *X* as

$$\mu_k = E\left([X - E(X)]^k\right).$$

Variance

Definition

The second central moment is known as the variance of X and defined as

$$\mu_2 = E\left([X - E(X)]^2\right).$$

Explicitly written,

$$\mu_2 = \sum_{i} [x_i - E(X)]^2 p(x_i).$$

The variance is usually denoted as σ_X^2 or Var(X).

Definition

The square root of σ_X^2 is known as the **standard deviation** $\sigma_X = \sqrt{\sigma_X^2}$.

If variance is small, then X takes values close to E(X) with high probability. If the variance is large, then the distribution is more 'diffused'₂₀₀₀

Jan Bouda (FI MU)

Variance

Theorem

Let σ_X^2 be the variance of the random variable X. Then

$$\sigma_X^2 = E(X^2) - [E(X)]^2$$

Proof.

$$\sigma_X^2 = E\left([X - E(X)]^2\right) = E\left(X^2 - 2XE(X) + [E(X)]^2\right) =$$

= $E(X^2) - E[2XE(X)] + [E(X)]^2 =$
= $E(X^2) - 2E(X)E(X) + [E(X)]^2.$

イロン イヨン イヨン イヨン

Covariance

Definition

The quantity

$$E([X - E(X)][Y - E(Y)]) = \sum_{i,j} p_{x_i,y_j} [x_i - E(X)] [y_j - E(Y)]$$

is called the **covariance** of X and Y and denoted Cov(X, Y).

Theorem

Let X and Y be independent random variables. Then the covariance of X and Y Cov(X, Y) = 0.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Covariance

- Covariance measures linear (!) dependence between two random variables. It is positive if the variables are "correlated", and negative when "anticorrelated".
- E.g. when X = aY, $a \neq 0$, using E(X) = aE(Y) we have

$$Cov(X, Y) = aVar(Y) = \frac{1}{a}Var(X).$$

Jan Bouda (FI MU)

Covariance

In general it holds that

$$0 \leq Cov^2(X, Y) \leq Var(X)Var(Y).$$

Definition

We define the **correlation coefficient** $\rho(X, Y)$ as the normalized covariance, i.e.

$$\rho(X,Y) = \frac{Cov(X,Y)}{\sqrt{Var(X)Var(Y)}}.$$

It holds that $-1 \leq \rho(X, Y) \leq 1$.

イロト イポト イヨト イヨト

It may happen that X is completely dependent on Y and yet the covariance is 0, e.g. for $X = Y^2$ and a suitably chosen Y.

Variance of Independent Variables

Theorem

If X and Y are independent random variables, then

$$Var(X + Y) = Var(X) + Var(Y).$$

Proof.

$$Var(X + Y) = E([(X + Y) - E(X + Y)]^{2}) =$$

= $E([(X + Y) - E(X) - E(Y)]^{2}) = E([(X - E(X)) + (Y - E(Y))]^{2}) =$
= $E([X - E(X)]^{2} + [Y - E(Y)]^{2} + 2[X - E(X)][Y - E(Y)]) =$
= $E([X - E(X)]^{2}) + E([Y - E(Y)]^{2}) + 2E([X - E(X)][Y - E(Y)]) =$
= $Var(X) + Var(Y) + 2E([X - E(X)][Y - E(Y)]) =$
= $Var(X) + Var(Y) + 2Cov(X, Y) = Var(X) + Var(Y).$

• If X and Y are not independent, we obtain (see proof on the previous transparency)

$$Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y).$$

 The additivity of variance can be generalized to a set X₁, X₂,... X_n of mutually independent variables and constants a₁, a₂,... a_n ∈ ℝ as

$$Var\left(\sum_{i=1}^{n}a_{i}X_{i}\right)=\sum_{i=1}^{n}a_{i}^{2}Var(X_{i}).$$

Proof is left as a home exercise :-).

Part II

Conditional Distribution and Expectation

Jan Bouda (FI MU)

Lecture 3 - Expectation, moments and inequa

March 21, 2012 12 / 56

3

Image: A match a ma

Conditional probability

Using the derivation of conditional probability of two events we can derive conditional probability of (a pair of) random variables.

Definition

The **conditional probability distribution** of random variable Y given random variable X (their joint distribution is $p_{X,Y}(x,y)$) is

$$p_{Y|X}(y|x) = P(Y = y|X = x) = \frac{P(Y = y, X = x)}{P(X = x)} = \frac{p_{X,Y}(x, y)}{p_X(x)}$$
(1)

provided $p_X(x) \neq 0$.

Conditional expectation

We may consider Y|(X = x) to be a new random variable that is given by the conditional probability distribution $p_{Y|X}$. Therefore, we can define its mean and moments.

Definition

The **conditional expectation** of *Y* given X = x is defined

$$E(Y|X = x) = \sum_{y} yP(Y = y|X = x) = \sum_{y} yp_{Y|X}(y|x).$$
(2)

Analogously can be defined conditional expectation of a transformed random variable $\Phi(Y)$, namely the conditional *k*th moment of *Y*: $E(Y^k|X = x)$. Of special interest will be the conditional variance

$$Var(Y|X = x) = E(Y^2|X = x) - [E(Y|X = x)]^2.$$

We can derive the expectation of Y from the conditional expectations. The following equation is known as the **theorem of total expectation**:

$$E(Y) = \sum_{x} E(Y|X=x)p_X(x).$$
(3)

Analogously, the theorem of total moments is

$$E(Y^k) = \sum_{x} E(Y^k | X = x) p_X(x).$$
(4)

Example: Random sums

Let N, X_1, X_2, \ldots be mutually independent random variables. Let us suppose that X_1, X_2, \ldots have identical probability distribution $p_X(x)$, mean E(X), and variance Var(X). We also know the values E(N) and Var(N). Let us consider the random variable defined as a sum

$$T=X_1+X_2+\cdots+X_N.$$

In what follows we would like to calculate E(T) and Var(T). For a fixed value N = n we can easily derive the conditional expectation of T by

$$E(T|N = n) = \sum_{i=1}^{n} E(X_i) = nE(X).$$
 (5)

March 21, 2012

16 / 56

Using the theorem of total expectation we get

$$E(T) = \sum_{n} n E(X) p_{N}(n) = E(X) \sum_{n} n p_{N}(n) = E(X) E(N).$$
(6)

Example: Random sums

It remains to derive the variance of T. Let us first compute $E(T^2)$. We obtain

$$E(T^{2}|N=n) = Var(T|N=n) + [E(T|N=n)]^{2}$$
(7)

and

$$Var(T|N=n) = \sum_{i=1}^{n} Var(X_i) = nVar(X)$$
(8)

since $(T|N = n) = X_1 + X_2 + \cdots + X_n$ and X_1, \ldots, X_n are mutually independent.

We substitute (5) and (8) into (7) to get

$$E(T^2|N=n) = nVar(X) + n^2 E(X)^2.$$
 (9)

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Example: Random sums

Using the theorem of total moments we get

$$E(T^{2}) = \sum_{n} (nVar(X) + n^{2}[E(X)]^{2}) p_{N}(n)$$

= $\left(Var(X) \sum_{n} np_{N}(n)\right) + \left([E(X)]^{2} \sum_{n} p_{N}(n)n^{2}\right)$ (10)
= $Var(X)E(N) + E(N^{2})[E(X)]^{2}.$

Finally, we obtain

$$Var(T) = E(T^{2}) - [E(T)]^{2} =$$

= $Var(X)E(N) + E(N^{2})[E(X)]^{2} - [E(X)]^{2}[E(N)]^{2} =$ (11)
= $Var(X)E(N) + [E(X)]^{2}Var(N).$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Part III

Markov and Chebyshev Inequality

Jan Bouda (FI MU)

Lecture 3 - Expectation, moments and inequa

March 21, 2012 19 / 56

3

Image: A match a ma

It is important to derive as much information as possible even from a partial description of random variable. The mean value already gives more information than one might expect, as captured by Markov inequality.

Theorem (Markov inequality)

Let X be a nonnegative random variable with finite mean value E(X). Then for all t > 0 it holds that

$$P(X \ge t) \le \frac{E(X)}{t}$$

Markov Inequality

Proof.

Let us define the random variable Y_t (for fixed t) as

$$Y_t = \begin{cases} 0 & \text{if } X < t \\ t & X \ge t. \end{cases}$$

Then Y_t is a discrete random variable with probability distribution $p_{Y_t}(0) = P(X < t)$, $p_{Y_t}(t) = P(X \ge t)$. We have

$$E(Y_t) = tP(X \ge t).$$

The observation $X \ge Y_t$ gives

$$E(X) \ge E(Y_t) = tP(X \ge t),$$

what is the Markov inequality.

Assume that we want to bound the probability of obtaining more that 3n/4 heads in a sequence of *n* fair coin flips. Let

$$X_i = egin{cases} 1 & ext{if the } i ext{th coin flip is head} \ 0 & ext{otherwise}, \end{cases}$$

and let $X = \sum_{i=1}^{n} X_i$ be the number of heads in *n* coin flips. Note that $E(X_i) = 1/2$, and E(X) = n/2. Using the Markov inequality we get

$$P(X \ge 3n/4) \le \frac{E(X)}{3n/4} = \frac{n/2}{3n/4} = \frac{2}{3}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Markov Inequality: Example

Jan Bouda (FI MU)

Lecture 3 - Expectation, moments and inequa

March 21, 2012 23 / 56

Chebyshev Inequality

In case we know both mean value and variance of a random variable, we can use much more accurate estimation

Theorem (Chebyshev inequality)

Let X be a random variable with finite variance. Then

$$Pig[|X-E(X)|\geq tig]\leq rac{Var(X)}{t^2}, \,\,t>0$$

or, alternatively, substituting X' = X - E(X)

$$P(|X'| \ge t) \le \frac{E(X'^2)}{t^2}, \ t > 0.$$

We can see that this theorem is in agreement with our interpretation of variance. If σ^2 is small, then there is a large probability of getting outcome close to E(X). If σ^2 is large, then there is a large probability of getting outcomes farther from the mean.

Jan Bouda (FI MU)

Lecture 3 - Expectation, moments and inequa

March 21, 2012 24 / 56

Proof.

We apply the Markov inequality to the nonnegative variable $[X - E(X)]^2$ and we replace t by t^2 to get

$$P[(X - E(X))^2 \ge t^2] \le \frac{E([X - E(X)]^2)}{t^2} = \frac{\sigma^2}{t^2}.$$

We obtain the Chebyshev inequality using the fact that the events $[(X - E(X))^2 \ge t^2] = [|X - E(X)| \ge t]$ are the same.

Chebyshev Inequality: Example

Let us again consider the coin flipping example and try to bound the probability that we obtain more than 3n/4 heads. Again, $X_i = 1$ if the *i*th outcome is head and 0 otherwise, and $X = \sum_{i=1}^{n} X_i$. Let us calculate the variance of X:

$$E(X_i^2) = E(X_i) = \frac{1}{2}.$$

Then

$$Var(X_i) = E(X_i^2) - [E(X_i)]^2 = \frac{1}{2} - \frac{1}{4} = \frac{1}{4}$$

and using the independence we have

$$Var(X) = \frac{n}{4}.$$

イロト イポト イヨト イヨト 二日

We apply the Chebyshev bound to get

$$P(X \ge 3n/4) \le P(|X - E(X)| \ge n/4)$$
$$\le \frac{Var(X)}{(n/4)^2}$$
$$= \frac{n/4}{(n/4)^2}$$
$$= \frac{4}{n}.$$

Jan Bouda (FI MU)

- 34

イロト イポト イヨト イヨト

Chebyshev Inequality: Example

Part IV

Moment Generating Functions and Chernoff Bounds

Jan Bouda (FI MU)

Lecture 3 - Expectation, moments and inequa

March 21, 2012 29 / 56

▲ 同 ▶ → 三 ▶

Moment Generating Function

Definition

The moment generating function of a random variable X is

$$M_X(t)=E(e^{tX}).$$

We will be interested mainly in the properties of this function around t = 0.

・ロン ・四 ・ ・ ヨン ・ ヨン

Moment Generating Function and Moments

The moment generating function captures all moments:

Theorem

Let $M_X(t)$ be a moment generating function of X. Assuming that exchanging the expectation and differentiation operands is legitimate, for all n > 1 we have

$$E(X^n)=M_X^{(n)}(0),$$

where $M_{\chi}^{(n)}(0)$ is the nth derivative of $M_{\chi}(t)$ evaluated at 0.

The assumption that expectation and differentiation can be exchanged holds whenever the moment generating function exists in a neighborhood of 0.

・ロン ・四 と ・ 回 と ・ 回

Moment Generating Function and Moments

Proof.

Assuming that exchanging the expectation and differentiation operands is legitimate, we have

$$M_X^{(n)}(t) = E(X^n e^{tX}).$$
 (12)

Computing at t = 0 we get

$$M_X^{(n)}(0) = E(X^n).$$
(13)

イロト イポト イヨト イヨト 二日

Moment Generating Function and Distributions

Moment generating functions uniquely define the probability distribution:

Theorem

Let X and Y be two random variables, then

$$M_X(t) = M_Y(t) \tag{14}$$

for some $\delta > 0$ and all $-\delta < t < \delta$

This allows us e.g. to calculate probability distribution of sum of independent random variables:

Theorem

If X and Y are independent random variables, then

$$M_{X+Y}(t) = M_X(t)M_Y(t).$$
 (15)

イロト イポト イヨト イヨト

Moment Generating Function and Distributions

Proof.

$$M_{X+Y}(t) = E(e^{t(X+Y)}) = E(e^{tX}e^{tY}) = E(e^{tX})E(e^{tY}) = M_X(t)M_Y(t).$$

Jan Bouda (FI MU)

Lecture 3 - Expectation, moments and inequa

March 21, 2012 34 / 56

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Chernoff Bound

The Chernoff bound for random variable X is obtained by applying the Markov inequality to e^{tX} for some suitably chosen t. For any t > 0

$$P(X \ge a) = P(e^{tX} \ge e^{ta}) \le \frac{E(e^{tX})}{e^{ta}}.$$
 (16)

Similarly, for any t < 0

$$P(X \le a) = P(e^{tX} \ge e^{ta}) \le \frac{E(e^{tX})}{e^{ta}}.$$
(17)

While the value of t that minimizes $\frac{E(e^{tX})}{e^{ta}}$ gives the best bound, in practice we usually use the value of t that gives a convenient form. Bounds derived using this approach are called the **Chernoff bounds**.

Chernoff Bound and a Sum of Poisson Trials

Poisson trials (do not confuse with Poisson random variables!!) are a sequence of independent coin flips, but the probability of respective coin flips differs. Bernoulli trials are a special case of the Poisson trials. Let X_1, \ldots, X_n be independent Poisson trials with $P(X_i = 1) = p_i$, and $X = \sum_{i=1}^{n} X_i$ their sum. Note that the expected value is

$$E(X) = \sum_{i=1}^n E(X_i) = \sum_{i=1}^n p_i.$$

We want to bound the probabilities $P(X \ge (1 + \delta)E(X))$ and $P(X \le (1 - \delta)E(X))$
We derive a bound on the moment generating function

$$egin{aligned} &M_{X_i}(t)=&E(e^{tX_i})=p_ie^t+(1-p_i)\ &=&1+p_i(e^t-1)\leq e^{p_i(e^t-1)} \end{aligned}$$

using that for any y, $1 + y \le e^y$. The generating function of X is

$$egin{aligned} \mathcal{M}_X(t) = \prod_{i=1}^n \mathcal{M}_{x_i}(t) &\leq \prod_{i=1}^n e^{p_i(e^t-1)} \ &= exp\left\{\sum_{i=1}^n p_i(e^t-1)
ight\} = e^{(e^t-1)E(X)}. \end{aligned}$$

Jan Bouda (FI MU)

- 4 @ > - 4 @ > - 4 @ >

Theorem

Let $X_1, ..., X_n$ be independent Poisson trials with $P(X_i = 1) = p_i$, $X = \sum_{i=1}^n X_i$ their sum and $\mu = E(X)$. Then the following Chernoff bounds hold:

• for any $\delta > 0$

$${\mathcal P}(X \geq (1+\delta)\mu) < \left(rac{e^{\delta}}{(1+\delta)^{(1+\delta)}}
ight)^{\mu}$$

2 for $0 < \delta \leq 1$

$$P(X \ge (1+\delta)\mu) \le e^{-\mu\delta^2/3}$$

Proof.

() Using Markov inequality we have that for any t > 0

$$egin{aligned} & P(X \geq (1+\delta)\mu) = P(e^{tX} \geq e^{t(1+\delta)\mu}) \ & \leq & rac{E(e^{tX})}{e^{t(1+\delta)\mu}} \ & \leq & rac{e^{(e^t-1)\mu}}{e^{t(1+\delta)\mu}}. \end{aligned}$$

For any $\delta > 0$ we can set $t = \ln(1 + \delta)$ to get

$$P(X \geq (1+\delta)\mu) < \left(rac{e^{\delta}}{(1+\delta)^{(1+\delta)}}
ight)^{\mu}$$

Jan Bouda (FI MU)

- < ∃ →

A (1) > A (1) > A

Proof.

2 We want to show that for any 0 $<\delta\leq 1$

$$rac{\mathrm{e}^{\delta}}{(1+\delta)^{(1+\delta)}} \leq \mathrm{e}^{-\delta^2/3},$$

what will give us the result immediately. Taking the natural logarithm of both sides we obtain the equivalent condition

$$f(\delta) \stackrel{def}{=} \delta - (1+\delta)\ln(1+\delta) + rac{\delta^2}{3} \leq 0.$$

Proof.

We calculate the first and second derivative of $f(\delta)$

$$f'(\delta) = 1 - \frac{1+\delta}{1+\delta} - \ln(1+\delta) + \frac{2}{3}\delta = -\ln(1+\delta) + \frac{2}{3}\delta$$
$$f''(\delta) = -\frac{1}{1+\delta} + \frac{2}{3}.$$

We see that $f''(\delta) < 0$ for $0 \le \delta < 1/2$ and $f''(\delta) > 0$ for $\delta > 1/2$. Hence, $f'(\delta)$ first decreases and then increases on [0,1]. Since f'(0) = 0 and f'(1) < 0, we see that $f'(t) \le 0$ on [0,1]. Since f(0) = 0, it follows that $f(t) \le 0$ on [0,1] as well, what completes the proof.

- 本間 ト 本 ヨ ト - オ ヨ ト - ヨ

Theorem

Let X_1, \ldots, X_n be independent Poisson trials with $P(X_i = 1) = p_i$, $X = \sum_{i=1}^n$ their sum and $\mu = E(X)$. Then for $0 < \delta \le 1$ P($X \le (1 - \delta)\mu$) $\le \left(\frac{e^{-\delta}}{(1 - \delta)^{(1 - \delta)}}\right)^{\mu}$ P($X \le (1 - \delta)\mu$) $\le e^{-\mu\delta^2/2}$

Proof: Analogous to the previous theorem, left as a home exercise. Hint: start with any t < 0.

Corollary

Let $X_1, ..., X_n$ be independent Poisson trials and $X = \sum_{i=1}^n X_i$. For $0 < \delta < 1$, $P(|X - E(X)| \ge \delta E(X)) \le 2e^{-E(X)\delta^2/3}$

◆□▶ ◆帰▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Let us once again consider the coin flipping example and try to bound the probability that we obtain more than 3n/4 heads. Again, $X_i = 1$ if the *i*th outcome is head and 0 otherwise, and $X = \sum_{i=1}^{n} X_i$. Using the Chernoff bound for Poisson trials we get

$$P(X \ge 3n/4) \le P(|X - E(X)| \ge n/4)$$

 $\le 2e^{-\frac{1}{3}\frac{n}{2}\frac{1}{4}}$
 $\le 2e^{-n/24}.$

Chernoff Bound: Example

Part V

Laws of Large Numbers

Jan Bouda (FI MU)

Lecture 3 - Expectation, moments and inequa

March 21, 2012 47 / 56

3

Theorem ((Weak) Law of Large Numbers)

Let $X_1, X_2, ...$ be a sequence of mutually independent random variables with a common probability distribution. If the expectation $\mu = E(X_k)$ exists, then for every $\epsilon > 0$

$$\lim_{n\to\infty} P\left(\left|\frac{X_1+\cdots+X_n}{n}-\mu\right|>\epsilon\right)=0.$$

In words, the probability that the average S_n/n differs from the expectation by less then arbitrarily small ϵ goes to 0.

Proof.

WLOG we can assume that $\mu = E(X_k) = 0$, otherwise we simply replace X_k by $X_k - \mu$. This induces only change of notation.

イロト 不得 トイヨト イヨト 二日

Proof.

In the special case $Var(X_k)$ exists, the law of large numbers is a direct consequence of the Chebyshev inequality; we substitute $X = X_1 + \cdots + X_n = S_n$ to get

$$P(|S_n - \mu| \ge t) \le \frac{Var(X_k)n}{t^2}.$$
(18)

We substitute $t = \epsilon n$ and observe that with $n \to \infty$ the right-hand side tends to 0 to get the result. However, in case $Var(X_k)$ exists, we can apply the more accurate central limit theorem. The proof without the assumption that $Var(X_k)$ exists follows.

Proof.

Let δ be a positive constant to be determined later. For each k we define a pair of random variables $(k = 1 \dots n)$

$$U_k = X_k, V_k = 0 \qquad \qquad \text{if } |X_k| \le \delta n \qquad (19)$$

$$U_k = 0, V_k = X_k \qquad \qquad \text{if } |X_k| > \delta n \qquad (20)$$

By this definition

$$X_k = U_k + V_k. \tag{21}$$

・ロン ・聞と ・ほと ・ほと

Proof.

To prove the theorem it suffices to show that both

$$\lim_{n\to\infty} P(|U_1+\cdots+U_n|>\frac{1}{2}\epsilon n)=0$$
(22)

and

$$\lim_{n\to\infty} P(|V_1+\cdots+V_n|>\frac{1}{2}\epsilon n)=0$$
(23)

hold, because $|X_1 + \cdots + X_n| \le |U_1 + \cdots + U_n| + |V_1 + \cdots + V_n|$. Let us denote all possible values of X_k by x_1, x_2, \ldots and the corresponding probabilities $p(x_i)$. We put

$$a = E(|X_k|) = \sum_i |x_i| p(x_i).$$
 (24)

Proof.

The variable U_1 is bounded by δn and $|X_1|$ and therefore

 $U_1^2 \leq |X_1| \delta n.$

Taking expectation on both sides gives

$$\mathsf{E}(U_1^2) \le a\delta n. \tag{25}$$

Variables U_1, \ldots, U_n are mutually independent and have the same probability distribution. Therefore,

$$E[(U_1 + \dots + U_n)^2] - [E(U_1 + \dots + U_n)]^2 = Var(U_1 + \dots + U_n) =$$

= $nVar(U_1) \le nE(U_1^2) \le a\delta n^2.$

52 / 56

March 21, 2012

Proof.

On the other hand, $\lim_{n\to\infty} E(U_1) = E(X_1) = 0$ and for sufficiently large n we have

$$[E(U_1 + \cdots + U_n)]^2 = n^2 [E(U_1)]^2 \le n^2 a\delta$$
(27)

and for sufficiently large n we get from Eq. (26) that

$$E[(U_1 + \dots + U_n)^2] \le 2a\delta n^2.$$
⁽²⁸⁾

Using the Chebyshev inequality we get the result (22) observing that

$$P(|U_1 + \dots + U_n| > 1/2\epsilon n) \le \frac{8a\delta}{\epsilon^2}.$$
(29)

By choosing sufficiently small δ we can make the right-hand side arbitrarily small to get (22).

Jan Bouda (FI MU)

Proof.

In case of (23) note that

$$P(V_1 + V_2 + \cdots + V_n \neq 0) \le \sum_{i=1}^n P(V_i \neq 0) = nP(V_1 \neq 0).$$
 (30)

For arbitrary $\delta > 0$ we have

$$P(V_1 \neq 0) = P(|X_1| > \delta n) = \sum_{|x_i| > \delta n} p(x_i) \le \frac{1}{\delta n} \sum_{|x_i| > \delta n} |x_i| p(x_i).$$
(31)

The last sum tends to 0 as $n \to \infty$ and therefore also the left side tends to 0. This statement is even stronger than (23) and it completes the proof.

イロト 不得下 イヨト イヨト 二日

Strong Law of Large Numbers

The (weak) law of large number implies that large values $|S_n - m_n|/n$ occur infrequently. In many practical situation we require the stronger statement that $|S_n - m_n|/n$ remains small for all sufficiently large n.

Definition (Strong Law of Large Numbers)

We say that the sequence X_1, X_2, \ldots obeys the strong law of large numbers if to every pair $\epsilon > 0$, $\delta > 0$ there exists an $n \in \mathbb{N}$ such that

$$P\left(\forall r: \frac{|S_n - m_n|}{n} < \epsilon \land \frac{|S_{n+1} - m_{n+1}|}{n+1} < \epsilon \land \dots \frac{|S_{n+r} - m_{n+r}|}{n+r} < \epsilon\right) \ge 1-\delta,$$
(32)
where $m_n = E(S_n)$.

It remains to determine the conditions when the strong law of large numbers holds.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Theorem (Kolmogorov criterion)

Let $X_1, X_2, ...$ be a sequence of random variables with corresponding variances $\sigma_1^2, \sigma_2^2, ...$ Then the convergence of the series

$$\sum_{k=1}^{\infty} \frac{\sigma_k^2}{k^2}$$

(33)

is a sufficient condition for the strong law of large numbers to apply.

イロト イポト イヨト イヨト 二日