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Part I

Moments and Deviations
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Moments

Let us suppose we have a random variable X and a random variable
Y = Φ(X ) for some function Φ. The expected value of Y is

E (Y ) =
∑
i

Φ(xi )pX (xi ).

Especially interesting is the power function Φ(X ) = X k . E (X k) is
known as the kth moment of X . For k = 1 we get the expectation of
X .
If X and Y are random variables with matching corresponding
moments of all orders, i.e. ∀k E (X k) = E (Y k), then X and Y have
the same distributions.
Usually we center the expected value to 0 – we use moments of
Φ(X ) = X − E (X ).
We define the kth central moment of X as

µk = E
(

[X − E (X )]k
)
.
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Variance

Definition

The second central moment is known as the variance of X and defined as

µ2 = E
(
[X − E (X )]2

)
.

Explicitly written,

µ2 =
∑
i

[xi − E (X )]2p(xi ).

The variance is usually denoted as σ2X or Var(X ).

Definition

The square root of σ2X is known as the standard deviation σX =
√
σ2X .

If variance is small, then X takes values close to E (X ) with high
probability. If the variance is large, then the distribution is more ’diffused’.
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Variance

Theorem

Let σ2X be the variance of the random variable X . Then

σ2X = E (X 2)− [E (X )]2.

Proof.

σ2X =E
(
[X − E (X )]2

)
= E

(
X 2 − 2XE (X ) + [E (X )]2

)
=

=E (X 2)− E [2XE (X )] + [E (X )]2 =

=E (X 2)− 2E (X )E (X ) + [E (X )]2.
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Covariance

Definition

The quantity

E
(
[X − E (X )][Y − E (Y )]

)
=
∑
i ,j

pxi ,yj [xi − E (X )] [yj − E (Y )]

is called the covariance of X and Y and denoted Cov(X ,Y ).

Theorem

Let X and Y be independent random variables. Then the covariance of X
and Y Cov(X ,Y ) = 0.
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Covariance

Proof.

Cov(X ,Y ) =E
(
[X − E (X )][Y − E (Y )]

)
=

=E [XY − YE (X )− XE (Y ) + E (X )E (Y )] =

=E (XY )− E (Y )E (X )− E (X )E (Y ) + E (X )E (Y ) =

= E (X )E (Y )︸ ︷︷ ︸
independence

−E (Y )E (X )− E (X )E (Y ) + E (X )E (Y ) = 0

Covariance measures linear (!) dependence between two random
variables. It is positive if the variables are ”correlated”, and negative
when ”anticorrelated”.
E.g. when X = aY , a 6= 0, using E (X ) = aE (Y ) we have

Cov(X ,Y ) = aVar(Y ) =
1

a
Var(X ).
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Covariance

In general it holds that

0 ≤ Cov2(X ,Y ) ≤ Var(X )Var(Y ).

Definition

We define the correlation coefficient ρ(X ,Y ) as the normalized
covariance, i.e.

ρ(X ,Y ) =
Cov(X ,Y )√

Var(X )Var(Y )
.

It holds that −1 ≤ ρ(X ,Y ) ≤ 1.
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Covariance

It may happen that X is completely dependent on Y and
yet the covariance is 0, e.g. for X = Y 2 and a suitably
chosen Y .
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Variance of Independent Variables

Theorem

If X and Y are independent random variables, then

Var(X + Y ) = Var(X ) + Var(Y ).

Proof.

Var(X + Y ) = E
(
[(X + Y )− E (X + Y )]2

)
=

=E
(
[(X + Y )− E (X )− E (Y )]2

)
= E

(
[(X − E (X )) + (Y − E (Y ))]2

)
=

=E
(
[X − E (X )]2 + [Y − E (Y )]2 + 2[X − E (X )][Y − E (Y )]

)
=

=E
(
[X − E (X )]2

)
+ E

(
[Y − E (Y )]2

)
+ 2E

(
[X − E (X )][Y − E (Y )]

)
=

=Var(X ) + Var(Y ) + 2E
(
[X − E (X )][Y − E (Y )]

)
=

=Var(X ) + Var(Y ) + 2Cov(X ,Y ) = Var(X ) + Var(Y ).

Jan Bouda (FI MU) Lecture 3 - Expectation, moments and inequalities March 21, 2012 10 / 56



Variance

If X and Y are not independent, we obtain (see proof on the previous
transparency)

Var(X + Y ) = Var(X ) + Var(Y ) + 2Cov(X ,Y ).

The additivity of variance can be generalized to a set X1,X2, . . .Xn of
mutually independent variables and constants a1, a2, . . . an ∈ R as

Var

(
n∑

i=1

aiXi

)
=

n∑
i=1

a2i Var(Xi ).

Proof is left as a home exercise :-).
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Part II

Conditional Distribution and Expectation
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Conditional probability

Using the derivation of conditional probability of two events we can derive
conditional probability of (a pair of) random variables.

Definition

The conditional probability distribution of random variable Y given
random variable X (their joint distribution is pX ,Y (x , y)) is

pY |X (y |x) =P(Y = y |X = x) =
P(Y = y ,X = x)

P(X = x)
=

=
pX ,Y (x , y)

pX (x)

(1)

provided pX (x) 6= 0.
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Conditional expectation

We may consider Y |(X = x) to be a new random variable that is given by
the conditional probability distribution pY |X . Therefore, we can define its
mean and moments.

Definition

The conditional expectation of Y given X = x is defined

E (Y |X = x) =
∑
y

yP(Y = y |X = x) =
∑
y

ypY |X (y |x). (2)

Analogously can be defined conditional expectation of a transformed
random variable Φ(Y ), namely the conditional kth moment of Y :
E (Y k |X = x). Of special interest will be the conditional variance

Var(Y |X = x) = E (Y 2|X = x)− [E (Y |X = x)]2.
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Conditional expectation

We can derive the expectation of Y from the conditional expectations.
The following equation is known as the theorem of total expectation:

E (Y ) =
∑
x

E (Y |X = x)pX (x). (3)

Analogously, the theorem of total moments is

E (Y k) =
∑
x

E (Y k |X = x)pX (x). (4)
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Example: Random sums

Let N,X1,X2, . . . be mutually independent random variables. Let us
suppose that X1,X2, . . . have identical probability distribution pX (x),
mean E (X ), and variance Var(X ). We also know the values E (N) and
Var(N). Let us consider the random variable defined as a sum

T = X1 + X2 + · · ·+ XN .

In what follows we would like to calculate E (T ) and Var(T ). For a fixed
value N = n we can easily derive the conditional expectation of T by

E (T |N = n) =
n∑

i=1

E (Xi ) = nE (X ). (5)

Using the theorem of total expectation we get

E (T ) =
∑
n

nE (X )pN(n) = E (X )
∑
n

npN(n) = E (X )E (N). (6)
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Example: Random sums

It remains to derive the variance of T . Let us first compute E (T 2). We
obtain

E (T 2|N = n) = Var(T |N = n) + [E (T |N = n)]2 (7)

and

Var(T |N = n) =
n∑

i=1

Var(Xi ) = nVar(X ) (8)

since (T |N = n) = X1 + X2 + · · ·+ Xn and X1, . . . ,Xn are mutually
independent.
We substitute (5) and (8) into (7) to get

E (T 2|N = n) = nVar(X ) + n2E (X )2. (9)
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Example: Random sums

Using the theorem of total moments we get

E (T 2) =
∑
n

(
nVar(X ) + n2[E (X )]2

)
pN(n)

=

(
Var(X )

∑
n

npN(n)

)
+

(
[E (X )]2

∑
n

pN(n)n2

)
=Var(X )E (N) + E (N2)[E (X )]2.

(10)

Finally, we obtain

Var(T ) =E (T 2)− [E (T )]2 =

=Var(X )E (N) + E (N2)[E (X )]2 − [E (X )]2[E (N)]2 =

=Var(X )E (N) + [E (X )]2Var(N).

(11)
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Part III

Markov and Chebyshev Inequality
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Markov Inequality

It is important to derive as much information as possible even from a
partial description of random variable. The mean value already gives more
information than one might expect, as captured by Markov inequality.

Theorem (Markov inequality)

Let X be a nonnegative random variable with finite mean value E (X ).
Then for all t > 0 it holds that

P(X ≥ t) ≤ E (X )

t
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Markov Inequality

Proof.

Let us define the random variable Yt (for fixed t) as

Yt =

{
0 if X < t

t X ≥ t.

Then Yt is a discrete random variable with probability distribution
pYt (0) = P(X < t), pYt (t) = P(X ≥ t). We have

E (Yt) = tP(X ≥ t).

The observation X ≥ Yt gives

E (X ) ≥ E (Yt) = tP(X ≥ t),

what is the Markov inequality.
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Markov Inequality: Example

Assume that we want to bound the probability of obtaining more that
3n/4 heads in a sequence of n fair coin flips. Let

Xi =

{
1 if the ith coin flip is head

0 otherwise,

and let X =
∑n

i=1 Xi be the number of heads in n coin flips. Note that
E (Xi ) = 1/2, and E (X ) = n/2.
Using the Markov inequality we get

P(X ≥ 3n/4) ≤ E (X )

3n/4
=

n/2

3n/4
=

2

3
.

Jan Bouda (FI MU) Lecture 3 - Expectation, moments and inequalities March 21, 2012 22 / 56



Markov Inequality: Example
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Chebyshev Inequality

In case we know both mean value and variance of a random variable, we
can use much more accurate estimation

Theorem (Chebyshev inequality)

Let X be a random variable with finite variance. Then

P
[
|X − E (X )| ≥ t

]
≤ Var(X )

t2
, t > 0

or, alternatively, substituting X ′ = X − E (X )

P(|X ′| ≥ t) ≤ E (X ′2)

t2
, t > 0.

We can see that this theorem is in agreement with our interpretation of
variance. If σ2 is small, then there is a large probability of getting outcome
close to E (X ). If σ2 is large, then there is a large probability of getting
outcomes farther from the mean.
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Chebyshev Inequality

Proof.

We apply the Markov inequality to the nonnegative variable [X − E (X )]2

and we replace t by t2 to get

P
[
(X − E (X ))2 ≥ t2

]
≤

E
(
[X − E (X )]2

)
t2

=
σ2

t2
.

We obtain the Chebyshev inequality using the fact that the events
[(X − E (X ))2 ≥ t2] = [|X − E (X )| ≥ t] are the same.
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Chebyshev Inequality: Example

Let us again consider the coin flipping example and try to bound the
probability that we obtain more than 3n/4 heads. Again, Xi = 1 if the ith
outcome is head and 0 otherwise, and X =

∑n
i=1 Xi . Let us calculate the

variance of X :

E (X 2
i ) = E (Xi ) =

1

2
.

Then

Var(Xi ) = E (X 2
i )− [E (Xi )]2 =

1

2
− 1

4
=

1

4

and using the independence we have

Var(X ) =
n

4
.
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Chebyshev Inequality: Example

We apply the Chebyshev bound to get

P(X ≥ 3n/4) ≤P(|X − E (X )| ≥ n/4)

≤Var(X )

(n/4)2

=
n/4

(n/4)2

=
4

n
.
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Chebyshev Inequality: Example
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Part IV

Moment Generating Functions and Chernoff

Bounds
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Moment Generating Function

Definition

The moment generating function of a random variable X is

MX (t) = E (etX ).

We will be interested mainly in the properties of this function around
t = 0.
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Moment Generating Function and Moments

The moment generating function captures all moments:

Theorem

Let MX (t) be a moment generating function of X . Assuming that
exchanging the expectation and differentiation operands is legitimate, for
all n > 1 we have

E (X n) = M
(n)
X (0),

where M
(n)
X (0) is the nth derivative of MX (t) evaluated at 0.

The assumption that expectation and differentiation can be exchanged
holds whenever the moment generating function exists in a neighborhood
of 0.
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Moment Generating Function and Moments

Proof.

Assuming that exchanging the expectation and differentiation operands is
legitimate, we have

M
(n)
X (t) = E (X netX ). (12)

Computing at t = 0 we get

M
(n)
X (0) = E (X n). (13)
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Moment Generating Function and Distributions

Moment generating functions uniquely define the probability distribution:

Theorem

Let X and Y be two random variables, then

MX (t) = MY (t) (14)

for some δ > 0 and all −δ < t < δ

This allows us e.g. to calculate probability distribution of sum of
independent random variables:

Theorem

If X and Y are independent random variables, then

MX+Y (t) = MX (t)MY (t). (15)
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Moment Generating Function and Distributions

Proof.

MX+Y (t) = E (et(X+Y )) = E (etX etY )

using independence︷ ︸︸ ︷
= E (etX )E (etY ) = MX (t)MY (t).
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Chernoff Bound

The Chernoff bound for random variable X is obtained by applying the
Markov inequality to etX for some suitably chosen t. For any t > 0

P(X ≥ a) = P(etX ≥ eta) ≤ E (etX )

eta
. (16)

Similarly, for any t < 0

P(X ≤ a) = P(etX ≥ eta) ≤ E (etX )

eta
. (17)

While the value of t that minimizes E(etX )
eta gives the best bound, in

practice we usually use the value of t that gives a convenient form.
Bounds derived using this approach are called the Chernoff bounds.
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Chernoff Bound and a Sum of Poisson Trials

Poisson trials (do not confuse with Poisson random variables!!) are a
sequence of independent coin flips, but the probability of respective coin
flips differs. Bernoulli trials are a special case of the Poisson trials.
Let X1, . . . ,Xn be independent Poisson trials with P(Xi = 1) = pi , and
X =

∑n
i=1 Xi their sum. Note that the expected value is

E (X ) =
n∑

i=1

E (Xi ) =
n∑

i=1

pi .

We want to bound the probabilities P(X ≥ (1 + δ)E (X )) and
P(X ≤ (1− δ)E (X ))
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Chernoff Bound and a Sum of Poisson Trials

We derive a bound on the moment generating function

MXi
(t) =E (etXi ) = pie

t + (1− pi )

=1 + pi (et − 1) ≤ epi (e
t−1)

using that for any y , 1 + y ≤ ey .
The generating function of X is

MX (t) =
n∏

i=1

Mxi (t) ≤
n∏

i=1

epi (e
t−1)

=exp

{
n∑

i=1

pi (et − 1)

}
= e(e

t−1)E(X ).
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Chernoff Bound and a Sum of Poisson Trials

Theorem

Let X1, . . . ,Xn be independent Poisson trials with P(Xi = 1) = pi ,
X =

∑n
i=1 Xi their sum and µ = E (X ). Then the following Chernoff

bounds hold:

1 for any δ > 0

P(X ≥ (1 + δ)µ) <

(
eδ

(1 + δ)(1+δ)

)µ
2 for 0 < δ ≤ 1

P(X ≥ (1 + δ)µ) ≤ e−µδ
2/3
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Chernoff Bound and a Sum of Poisson Trials

Proof.
1 Using Markov inequality we have that for any t > 0

P(X ≥ (1 + δ)µ) =P(etX ≥ et(1+δ)µ)

≤ E (etX )

et(1+δ)µ

≤e(e
t−1)µ

et(1+δ)µ
.

For any δ > 0 we can set t = ln(1 + δ) to get

P(X ≥ (1 + δ)µ) <

(
eδ

(1 + δ)(1+δ)

)µ
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Chernoff Bound and a Sum of Poisson Trials

Proof.
2 We want to show that for any 0 < δ ≤ 1

eδ

(1 + δ)(1+δ)
≤ e−δ

2/3,

what will give us the result immediately. Taking the natural logarithm
of both sides we obtain the equivalent condition

f (δ)
def
= δ − (1 + δ) ln(1 + δ) +

δ2

3
≤ 0.
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Chernoff Bound and a Sum of Poisson Trials

Proof.

We calculate the first and second derivative of f (δ)

f ′(δ) =1− 1 + δ

1 + δ
− ln(1 + δ) +

2

3
δ = −ln(1 + δ) +

2

3
δ

f ′′(δ) =− 1

1 + δ
+

2

3
.

We see that f ′′(δ) < 0 for 0 ≤ δ < 1/2 and f ′′(δ) > 0 for δ > 1/2. Hence,
f ′(δ) first decreases and then increases on [0, 1]. Since f ′(0) = 0 and
f ′(1) < 0, we see that f ′(t) ≤ 0 on [0, 1]. Since f (0) = 0, it follows that
f (t) ≤ 0 on [0, 1] as well, what completes the proof.
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Chernoff Bound and a Sum of Poisson Trials
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Chernoff Bound and a Sum of Poisson Trials

Theorem

Let X1, . . . ,Xn be independent Poisson trials with P(Xi = 1) = pi ,
X =

∑n
i=1 their sum and µ = E (X ). Then for 0 < δ ≤ 1

1

P(X ≤ (1− δ)µ) ≤
(

e−δ

(1− δ)(1−δ)

)µ
2

P(X ≤ (1− δ)µ) ≤ e−µδ
2/2

Proof: Analogous to the previous theorem, left as a home exercise. Hint:
start with any t < 0.
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Chernoff Bound and a Sum of Poisson Trials

Corollary

Let X1, . . . ,Xn be independent Poisson trials and X =
∑n

i=1 Xi . For
0 < δ < 1,

P(|X − E (X )| ≥ δE (X )) ≤ 2e−E(X )δ2/3

Jan Bouda (FI MU) Lecture 3 - Expectation, moments and inequalities March 21, 2012 44 / 56



Chernoff Bound: Example

Let us once again consider the coin flipping example and try to bound the
probability that we obtain more than 3n/4 heads. Again, Xi = 1 if the ith
outcome is head and 0 otherwise, and X =

∑n
i=1 Xi .

Using the Chernoff bound for Poisson trials we get

P(X ≥ 3n/4) ≤P(|X − E (X )| ≥ n/4)

≤2e−
1
3
n
2
1
4

≤2e−n/24.
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Chernoff Bound: Example
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Part V

Laws of Large Numbers
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(Weak) Law of Large Numbers

Theorem ((Weak) Law of Large Numbers)

Let X1,X2, . . . be a sequence of mutually independent random variables
with a common probability distribution. If the expectation µ = E (Xk)
exists, then for every ε > 0

lim
n→∞

P

(∣∣∣∣X1 + · · ·+ Xn

n
− µ

∣∣∣∣ > ε

)
= 0.

In words, the probability that the average Sn/n differs from the
expectation by less then arbitrarily small ε goes to 0.

Proof.

WLOG we can assume that µ = E (Xk) = 0, otherwise we simply replace
Xk by Xk − µ. This induces only change of notation.
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(Weak) Law of Large Numbers

Proof.

In the special case Var(Xk) exists, the law of large numbers is a direct
consequence of the Chebyshev inequality; we substitute
X = X1 + · · ·+ Xn = Sn to get

P(|Sn − µ| ≥ t) ≤ Var(Xk)n

t2
. (18)

We substitute t = εn and observe that with n→∞ the right-hand side
tends to 0 to get the result. However, in case Var(Xk) exists, we can apply
the more accurate central limit theorem. The proof without the
assumption that Var(Xk) exists follows.
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(Weak) Law of Large Numbers

Proof.

Let δ be a positive constant to be determined later. For each k we define
a pair of random variables (k = 1 . . . n)

Uk = Xk ,Vk = 0 if |Xk | ≤ δn (19)

Uk = 0,Vk = Xk if |Xk | > δn (20)

By this definition
Xk = Uk + Vk . (21)
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(Weak) Law of Large Numbers

Proof.

To prove the theorem it suffices to show that both

lim
n→∞

P(|U1 + · · ·+ Un| >
1

2
εn) = 0 (22)

and

lim
n→∞

P(|V1 + · · ·+ Vn| >
1

2
εn) = 0 (23)

hold, because |X1 + · · ·+ Xn| ≤ |U1 + · · ·+ Un|+ |V1 + · · ·+ Vn|.
Let us denote all possible values of Xk by x1, x2, . . . and the corresponding
probabilities p(xi ). We put

a = E (|Xk |) =
∑
i

|xi |p(xi ). (24)
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(Weak) Law of Large Numbers

Proof.

The variable U1 is bounded by δn and |X1| and therefore

U2
1 ≤ |X1|δn.

Taking expectation on both sides gives

E (U2
1 ) ≤ aδn. (25)

Variables U1, . . .Un are mutually independent and have the same
probability distribution. Therefore,

E [(U1 + · · ·+ Un)2]− [E (U1 + · · ·+ Un)]2 = Var(U1 + · · ·+ Un) =

= nVar(U1) ≤ nE (U2
1 ) ≤ aδn2.

(26)
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(Weak) Law of Large Numbers

Proof.

On the other hand, limn→∞ E (U1) = E (X1) = 0 and for sufficiently large
n we have

[E (U1 + · · ·Un)]2 = n2[E (U1)]2 ≤ n2aδ (27)

and for sufficiently large n we get from Eq. (26) that

E [(U1 + · · ·+ Un)2] ≤ 2aδn2. (28)

Using the Chebyshev inequality we get the result (22) observing that

P(|U1 + · · ·+ Un| > 1/2εn) ≤ 8aδ

ε2
. (29)

By choosing sufficiently small δ we can make the right-hand side arbitrarily
small to get (22).
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(Weak) Law of Large Numbers

Proof.

In case of (23) note that

P(V1 + V2 + · · ·Vn 6= 0) ≤
n∑

i=1

P(Vi 6= 0) = nP(V1 6= 0). (30)

For arbitrary δ > 0 we have

P(V1 6= 0) = P(|X1| > δn) =
∑
|xi |>δn

p(xi ) ≤
1

δn

∑
|xi |>δn

|xi |p(xi ). (31)

The last sum tends to 0 as n→∞ and therefore also the left side tends to
0. This statement is even stronger than (23) and it completes the
proof.

Jan Bouda (FI MU) Lecture 3 - Expectation, moments and inequalities March 21, 2012 54 / 56



Strong Law of Large Numbers

The (weak) law of large number implies that large values |Sn −mn|/n
occur infrequently. In many practical situation we require the stronger
statement that |Sn −mn|/n remains small for all sufficiently large n.

Definition (Strong Law of Large Numbers)

We say that the sequence X1,X2, . . . obeys the strong law of large
numbers if to every pair ε > 0, δ > 0 there exists an n ∈ N such that

P
(
∀r :
|Sn −mn|

n
< ε∧|Sn+1 −mn+1|

n + 1
< ε∧. . . |Sn+r −mn+r |

n + r
< ε
)
≥ 1−δ,

(32)
where mn = E (Sn).

It remains to determine the conditions when the strong law of large
numbers holds.
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Strong Law of Large Numbers

Theorem (Kolmogorov criterion)

Let X1,X2, . . . be a sequence of random variables with corresponding
variances σ21, σ

2
2, . . . . Then the convergence of the series

∞∑
k=1

σ2k
k2

(33)

is a sufficient condition for the strong law of large numbers to apply.
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