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-
Message and Message Source

In our following analysis we will design various methods compressing input
message unknown at the time of the design of the method. However, to
design the method (algorithm) to be as efficient as possible we have to use
all knowledge about the incoming message we have. In most cases the
minimal information we have is the set of possible messages we may
receive and a probability assigned to each message.

Following this analysis we model the source of information as a random
variable X with all possible messages equal to Im(X). This source emits
the message x with the probability P(X = x). A sequence of messages is
created by a sequence of independent trials described by X and hence is
described by a random process Xi, Xz, ... where X; are independently and
identically distributed. Such a source is called a memoryless source.
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Message and Message Source; Code

We may naturally expect that source has a memory. This is modeled by a
random process X1, Xo, ... with Im(X;) = Im(X;),Vi,;, but we require
neither independence nor identical distribution of X;. In practice, this
means that probability of a particular message being emitted at particular
time depends on the history of the messages - it models a source with
memory.

Definition
A code C for a random variable (memoryless source) X is a mapping
C : Im(X) — D*, where D* is the set of all finite length strings over the

alphabet D, with [D| = d. C(x) denotes the codeword assigned to x and
Ic(x) denotes the length of C(x).
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Code

Definition
The expected length Lc(X) of a code C for a random variable X is given
by

Le(X)= Y P(X=x)lc(x). (1)

x€lm(X)

In what follows we will assume (WLOG) that the alphabet is
D={01,...,d —1}.
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]
Code

Example

Let X and C be given by the following probability distribution and
codeword assignment

P(X =1)=1/2, codeword C(1) =0
P(X =2) =1/4, codeword C(2) = 10 2)
P(X =3) =1/8, codeword C(3) =110
P(X =4) =1/8, codeword C(4) =111

The entropy H(X) = 1.75 bits and the expected length

Lc(X) = E[lc(X)] = 1.75 too. Note that any encoded (not any!)
sequence can be uniquely decoded to symbols {1,2,3,4}, try e.g.
0110111100110.
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Code

Example

Consider another example with

P(X =1)=1/3, codeword C(1) =0
P(X =2) =1/3, codeword C(2) =10 (3)
P(X =3) =1/3, codeword C(3) =11

The entropy in this case is H(X) = logp3 = 1.58 bits, but the expected
length is Lc(X) = 1.66.
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-
Non-singular Code

Definition
A code C is said to be non-singular if it maps every element in the range
of X to different string in D*, i.e.

Vx,y € Im(X)x # y = C(x) # C(y).

Non-singularity allows unique decoding of any single codeword, however, in
practice we send a sequence of codewords and require the complete
sequence to be uniquely decodable. We can use e.g. any non-singular code
and use an extra symbol # ¢ D as a codeword separator. However, this is
very inefficient and we can improve efficiency by designing uniquely
decodable or prefix code.
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-
Uniquely Decodable Code

Let Im(X)™ denotes the set of all nonempty strings over the alphabet
Im(X).
Definition
An extension C* of a code C is the mapping from Im(X)™* to D* defined
by

C*(xix2...xn) = C(x1)C(x2) ... C(xn),

where C(x1)C(x2) ... C(x,) denotes concatenation of corresponding
codewords.

Definition

A code is uniquely decodable iff its extension is non-singular.

v

In other words, a code is uniquely decodable if any encoded string has only
one possible source string.
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]
Prefix Code

Definition
A code is called prefix (or instantaneous) if no codeword is a prefix of any
other codeword.

The advantage of prefix codes is not only their unique decodability, but also
the fact that a codeword can be decoded as soon as we read its last symbol.
See the following codes for comparison

X Singular Non-singular,  but Uniquely decodable, Prefix
not uniquely decod- but not prefix
able
1 0 0 10 0
2 0 010 00 10
30 01 11 110
4 0 10 110 111
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Part |l

Kraft Inequality
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Kraft Inequality

In this section we concentrate on prefix codes of minimal expected length.

Theorem (Kraft inequality)

For any prefix code over an alphabet of size d, the codeword lengths
(including multiplicities) h, b, ... I satisfy the inequality

m
Z d-li < 1.
i=1

Conversely, given a sequence of codeword lengths that satisfy this
inequality, there exists a prefix code with these codeword lengths.
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-
Kraft Inequality

Proof.

Consider a d—ary tree in which every inner node has d descendants. Each
edge represents a choice of a code alphabet symbol at a particular
position. In example, d edges emerging from the root represent d choices
of the alphabet symbol at the first position of different codewords. Each
codeword is represented by a node (some nodes are not codewords!) and
the path from the root to a particular node (codeword) specifies the
codeword symbols. The prefix condition implies that no codeword is an
ancestor of other codeword on the tree. Hence, each codeword eliminates
its possible descendants.

Let Imax = max{h, bk, ..., Im}. Consider all nodes of the tree at the level
Imax- Some of them are codewords, some of them are descendants of
codewords, some of them are neither. ]
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-
Kraft Inequality

Proof.

A codeword at level /; has d'm>—!i descendants at level /.. Sets of
descendant of different codewords must be disjoint and the total number of
nodes in all these sets must be at most d’™*. Summing over all codewords

we have
m

Zdlmaxfli < dlmax

i=1

and hence

m

d dh<i

i=1
Conversely, given any set of codeword lengths i, b, ..., I, satisfying the
Kraft inequality we can always construct a tree described above. We may
WLOG assume that h < b < .- < [,,. O
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-
Kraft Inequality

Proof.

Label the first note of depth /; as the codeword 1 and remove its
descendants from the tree. Then mark first remaining node of depth k as
the codeword 2. In this way you can construct prefix code with codeword
lengths i, b, ..., In.

We may observe easily that this construction does not violate the prefix
property. To do so, the new codeword should be placed either as a
precedent, or an antecedent of an existing codeword, what is prevented by
the construction. It remains to show that there is always enough nodes.
Assume that for some i < m there is no free node of level /; when we want
to add a new codeword of length /;. This, however, means that all node at
level /; are either codewords, or descendants of a codeword, giving

i—1
> dih=dt
j=t

and we have ZJ';} d= =1, and, finally, Zj::l d~% > 1 violating the initial

assumption. O
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-
McMillan Inequality

Kraft inequality holds also for codes with countably infinite number of
codewords, however, we omit the proof here. There exist uniquely
decodable codes that are not prefix codes, but, as established by the
following theorem, the Kraft inequality applies to general uniquely
decodable codes as well and, therefore, when searching for an optimal
code it suffices to concentrate on prefix codes. General uniquely decodable
codes offer no extra codeword lengths in contrast to prefix codes.

Theorem (McMillan inequality)

The codeword lengths of any uniquely decodable code must satisfy the
Kraft inequality, i.e.
Y dh<t
i

Conversely, given a set of codeword lengths that satisfy the inequality it is
possible to construct a uniquely decodable code with these codeword
lengths.
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-
McMillan Inequality

McMillan inequality.

Consider the k-th extension CX of a code C. By the definition of the
unique decodability, C¥ is non-singular for any k.

Observe that /cx(x1,...,xk) = Zf-‘zl Ic(x;). Let us calculate
k
Z dlcC) | — Z d—lcba) g=lc(e) ... g=lc(xk)
x€lm(X) X1,X2,-, Xk EIM(X) (4)
_ Z d—/ck(X17X2»~--7Xk).
X1,X2,-..,Xk EIM(X)

[]
v
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-
McMillan Inequality

Proof.
We reorder the terms by word lengths to get
klmax
Z d ek Gz, xi) Z a(m)d—",
X1,X2,...,xk EIM(X) m=1

where Ipax is the maximum codeword length and a(m) is the number of k
character source strings mapped to a codeword of length m. The code is
uniquely decodable, i.e. there is at most one input being mapped on each
codeword (of length m). The total number of such inputs is at most the
same as the number of sequences of length m, i.e. at most d". O
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McMillan Inequality

Proof.
Using a(m) < d™ we get
K e
Z d~lc()
x€lm(X) m—1
Klmax

<D d"d" = Kimax
m=1

implying

> " d7h < (klmax) V<

= Z a(m)d—"
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-
McMillan Inequality

Proof.
This inequality holds for any k and observing lim_, (k/max)l/k =1we
have
d dl<t
1
The opposite implication follows from the Kraft inequality. D)
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Part Il

Optimal Codes
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.
Optimal Codes

In the previous part we derived necessary and sufficient condition on
lengths of codewords for prefix (uniquely decodable) codes. Now we will
use them to find a prefix code with the minimum expected length.

Theorem

The expected length of any prefix d—ary code C for a random variable X is
greater than or equal to the entropy Hy(X) (d is the base of the
logarithm), i.e.

Lc(X) = Ha(X)

with equality if and only if for all x; P(X = x;) = p; = d~!i for some
integer ;.
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.
Optimal Codes

Proof.
We write the difference between the expected length and the entropy as

LC( Zplll+zpl logy pi =
—Zp, log,y d’ +Zp, log, pi =
ZZP:’ |0ng —

=> " pilog, dp%, +) pilogg | Y _d7!
; ; ;
~os, (007
i J
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.
Optimal Codes

Proof.
We put r; = d_I’/Zj d~iand c=3Y,d7" to get

—log, ¢

d=
ri

Pi
Lc(X) = Ha(X) =) pilogy v > pilogy

-
=> pilogy 7' —logg c (7)
a 1

1

1
=D(pl|r) + log, p >0

by the nonnegativity of the relative entropy and the fact that ¢ < 1 (Kraft
inequality). Hence, Lc(X) > Hy(X) with equality if and only if for all
pi =d ", i.e. —log, p; is an integer. [
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.
Optimal Codes

Definition
A probability distribution is called d—adic if each of the probabilities is
equal to d~" for some integer n.

Proof of the previous theorem shows that the expected length is equal to
the entropy if and only if the probability distribution of X is d—adic. It also
suggests a method to find a code with optimal length in case the
probability distribution is not d—adic.
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.
Optimal Codes

@ Find a d—adic distribution that is the closest to the distribution of X
in the relative entropy. This distribution defines the set of codeword

lengths.
@ Use the technique described in the proof of the Kraft inequality to
construct the code.

Note that this procedure is not easy, since the search for the closest
d—adic distribution is not obvious.
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Part IV

Bounds on the Optimal Code Length
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-
Bounds on the Optimal Code Length

Let us consider a code that achieves the expected description length within
1 bit of the lower bound, i.e.

H(X) < Lc(X) < H(X) + 1.
Our basic setup is to minimize ), pi/; with the restriction >, d-li < 1.
We have shown that optimal solution for probability distribution that is

not d—adic is the d—adic probability distribution closest in the relative
entropy, i.e. finding d—adic distribution 7, r; = d_"'/zj d~i minimizing

Lc(X) = Ha(X) = D(pl|r) — logy (Zd ) (8)
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Bounds on the Optimal Code Length

The choice of word lengths [; = Iogd% gives L = Hy(X). Since it may not
equal an integer, we round it up to get

2]

These lengths satisfy the Kraft inequality since
ORI SR SR
i i i
The choice of codeword lengths satisfies

1 1
logy — <l < logy — + 1.
p; .

i Pi
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Bounds on the Optimal Code Length

Taking expectation over p; on both sides we get
Hy(X) < Le(X) < Hg(X) + 1. (9)

The optimal code can do only better and we have

Theorem

Let I7,15,..., I, be the optimal codeword lengths for a source distribution

{pi}i and a d-ary alphabet and let L* be the associated expected length
of the optimal code, i.e. L* =Y. pil*. Then

Hd(X) <l*< Hd(X) + 1.
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-
Bounds on the Optimal Code Length

Proof.
Let /; = [logy %1 Then /; satisfies the Kraft inequality and from (9) we
have

Ha(X) < Le(X) =D pili < Hy(X) + 1. (10)

But since our code is optimal, L* < L =", p;/; and since L* > Hy(X) we
have the result. O

v

The non-integer expressions log(1/p;) cause in the previous theorem
overhead at most 1 bit per symbol. We can further reduce it by spreading
it over a number of symbols. Let us consider a system in which we send a
sequence of symbols emitted by source X, where all symbols are drawn
independently according to an identical distribution. We can consider n
such symbols to be a supersymbol from alphabet Im(X)".
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-
Bounds on the Optimal Code Length

Let us define L,, as the expected codeword length per input symbol, i.e.

1 1
L,=— 3 X0, xp) (X1, X0, .00y xn) = —E[I( X1, Xo, ..o, Xi)]
an(}qXQ xn)(x1, X2 Xn) - [/(X1, X2 )]
Using the bounds derived above we have
H(Xl,XQ,.. . ,Xn) < E[/(X]_,X2,. ..,Xn)] < H(Xl,Xz,...,Xn) + 1.

Since Xi, Xa, ..., X, are independently and identically distributed, we have
H(X1, Xa,...,X,) = nH(X) and dividing by n we get

H(X) < L, < H(X) + %

Using large blocks allows us to arbitrarily approach the optimal length -
the entropy.
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Sources with memory

An analogous argument can be applied even when X7, Xo,
independently and identically distributed. We still have

H(Xl,XQ,...,Xn) < E[/(Xl,XQ,...,Xn)] < H(Xl,Xg,.. . ,X,,) +1

and dividing by n we obtain

H(X17X27"'7Xn) < H(X17X27"‘7Xn)

1
<L,< + —.
n n n

Definition
The entropy rate of a random process Xi, X, ... is

1
H= lim ~H(X1, Xo, ..., Xn).

n—oco N
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-
Sources with memory

For strictly stationary process the entropy rate always exists and equals to

H= lim H(Xn|Xn,1,Xn,2,...,X1).

n—o0o
Therefore we have
Theorem (We omit the proof)

The minimum expected codeword length per symbol satistfies

H(X1, Xa,...,Xp) H(X1, Xo,...,X,) 1

<lL;< ==
n n n
and if X1, Xo, ... is a strictly stationary process,
Ly — H,

where H is the entropy rate of the process.
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-
Shannon coding and relative entropy

Let us return to memoryless channels. The relative entropy allows us to
quantify inefficiency caused by wrong input probability distribution
estimation.
Theorem

1

The expected length under p(x) of the code assignment I(x) = [log m]
satisfies

H(p) + D(pllq) < E[I(X)] < H(p) + D(pllq) + 1. (11)
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-
Shannon coding and relative entropy

Proof.

EUO01 =3 P o q(lx)]
< Zp ( ) + 1)
To()n
—Zp Iog ijp(x)logp(lx)ﬂ

=D(p||q) + H( )

The lower bound can be proven analogously. [

v
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Part V

Huffman codes
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Huffman codes

Let us introduce the d—ary Huffman codes for the source described by the
random variable X with probability distribution p1, p2,..., pm. Then the
d—ary Huffman code for X is constructed as

@ Add redundant input symbols with probability 0 to the distribution so
that the distribution has 1 + k(d — 1) symbols for some k.

@ Find d smallest probabilities pj, ..., p;, and replace them with
Piy,oiy = Z}j:l Pi;-

@ Repeat the previous step until we end with the probability distribution
having only single nonzero probability - equal to 1.

To construct the code, we keep expanding the sum of probabilities and create
the codewords assigned to probabilities, i.e.

o We assign ¢, i.e. the empty codeword, to the probability p; . 14x(d-1)-
@ Let w be a codeword assigned to p; . ;,. We assign the codewords
w0, wl, ..., w(d — 1) to probabilities to pj, ..., pi,, respectively.
@ We keep expanding until we end with the original probability distribution.
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]
Huffman codes

Example

Let us consider a random variable with outcomes 1,2,...,6,r and
corresponding probabilities 0.25,0.25,0.2,0.1,0.1,0.1, 0, where we
included one redundant symbol r to obtain 7 =1+ 3(3 — 1) symbols and
construct 3-ary code.

@ We add 0+ 0.1+ 0.1 = 0.2 corresponding to 5,6, r.

@ We add 0.2+ 0.1 4+ 0.2 = 0.5 corresponding to (5,6, r), 4, 3.

@ We add 0.5+ 0.25 + 0.25 = 1 corresponding to ((5,6,r),4,3),2,1.
e We assign ¢ to ((5,6,r),4,3),2,1.

o We assign 0;1;2 to ((5,6,r),4,3);2; 1, respectively.

@ We assign 00; 01;02 to (5,6, r); 4; 3, respectively.

@ We assign 000; 001; 002 to 5; 6; r, respectively.
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]
Huffman Codes

Example (Continuing)

Therefore we end with the code 2,1,02,01, 000,001 (redundant symbol
would have the codeword 002).

Example

Let us compare an example of the Huffman and the Shannon code. We
have two source symbols with probabilities 0.0001 and 0.9999. Using the
Shannon code we get two codewords with lengths 1 = [log ngg(ﬂ and

14 = [log ml bits. The optimal code obviously uses 1 bit codeword for
both symbols as it is with the Huffman code.

Is it true that an optimal code uses always codewords of length not larger
than [log %]?
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Optimality of Huffman Codes

Lemma

For any distribution X with P(X = x;) = p; there exists an optimal prefix
code that satisfies the following properties:

(1) prj > py then /J < Ik.
@ Two longest codewords have the same length.

© Two longest codewords differ only in the last bit and correspond to
the least likely symbols.
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-
Optimality of Huffman Codes

Proof.
Let us consider an optimal code C.

@ Let us suppose that p; > px. Consider C’ with the codewords j and k
interchanged (comparing to C). Then

LC’( _LC ZP:// ZP!I

13
:pj/k+pk/J'_Pj/J'_Pk/k (13)
=(pj = Pi) (I = 1)-
We know that p; — px > 0 and since C is optimal we have
Le(X) — Le(X) > 0. Hence, we have [ > ;.
[]
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-
Optimality of Huffman Codes

Proof.

@ If two longest codewords have different length, then we can delete the
last bit of the longer one to get shorter code while preserving the
prefix property, what contradicts our assumption that C is optimal.
Therefore, two longest codewords have the same length.

© |If there is a codeword of maximal length without a sibling then we
can delete the last bit of the codeword and still maintain the prefix
property, what contradicts optimality of the code. In case the two
siblings do not correspond to two least likely symbols, we simply
exchange them with codewords corresponding to the two least likely
symbols to obtain a better code.

Ol
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-
Optimality of Huffman Codes

Theorem

Huffman code is optimal, i.e. if C is the Huffman code for X and C' is
any other prefix code, then Lci(X) > Le(X).

Proof.

Let us suppose that the probabilities are ordered starting with the biggest
one. This proof is limited to the case of a binary code, general n-ary code
is analogous.

For a code C,, with m codewords we define the 'merged’ code C,,_; of
(m — 1) codewords the way that we take the common prefix of the two
longest codewords (corresponding to the two least likely symbols) and
assign it to a new symbol with probability pm—1 + pm. O

v
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Optimality of Huffman Codes

Proof.

Let us denote /; = Ic(x;), I! = lc/(x;), p} = pj for i=1...m—2 and
Ph_1 = Pm—1+ Pm. The expected length of the code Cp, is

m
Le,(X) =) pil
i=1
m—2
= Pi/,{ + mel(/,,n_1 + 1) + Pm(/r,n—l + 1)
£ (14)
m—1
= P;/,/ + Pm—1 + Pm
i=1
:LCm,l (X) + Pm—1 + Pm-
D)
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-
Optimality of Huffman Codes

Proof.

Important is that the expected length of C,, differs from expected length
of C,—1 only by fixed amount that is independent of C,,_1 and depends
only on the probability distribution of the source. Therefore, to minimize
the length of C,, it suffices to minimize the length of C,,_1, i.e. to find
minimal code for the distribution p1, po, ..., pm—1 + Pm.

The code C,,_; satisfies the previous lemma and, therefore, we can apply
this procedure iteratively. In this way we reduce our problem to two
symbol source, where the obvious optimal solution assigns codewords 0
and 1. Since every step preserves optimality, we have optimal construction
for m item probability distribution. This is precisely the construction of the
Huffman code. Ol
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Part VI

Competitive Optimality of Shannon Codes
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.
Competitive Optimality of Shannon Codes

We have already proven that Huffman codes are optimal from the average
length point of view. Now we will define the optimality in a bit different
way. Let us consider the following game of two players:

@ Two players are given a probability distribution and encouraged to
design a code for the distribution.

@ Then a source symbol is drawn according to this distribution and the
payoff of each player is 1 or —1 depending whether his codeword for
this symbol is shorter or longer than the codeword of the other player.

@ In case the length of both codewords is the same, both payoffs are 0.

To prove optimality of Huffman codes in this setting is difficult since we

have no explicit formula for codeword lengths. Instead, we will prove it for
Shannon codes where we have explicit codeword lengths.
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Competitive Optimality of Shannon Codes

Theorem

Let us consider a source X distributed according p(x). Let I(x) denotes
the length of a particular codeword in the Shannon code and I'(x) length
of the corresponding codeword in an arbitrary (fixed) other code. Then

PU(X) > F(X) +€) < 5oy
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.
Competitive Optimality of Shannon Codes

Proof.

P(I(X) > I'(X) + ¢) =P qlog

30| 2100 +<)

> (X)) +c— 1>

1
=F (log p(X)

—p (p(X) < 271’(X)7c+1)

y

= Z p(x) (15)
X:p(x)SQ—l’(X)—c-H
< Z 2—//(X)—C+1
X:p(x)SQ—l’(X)—c-H
< 22—1/(X)—c+1 < 2—(c—1)
X
since 3., 27""() < 1 by Kraft inequality. O
Jan Bouda (FI MU) Lecture 6 - Data compression May 18, 2012

50 / 69



Part VII

Data compression in practice
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]
Huffman and Shannon Codes in Practice

@ In practice we have to consider a number of various problems.

@ Usually it is very hard to determine probability distribution of the
source. Even when we determine it correctly, the actual sequence
generated can be different from what we expected.

@ In case we want to compress e.g. a general file, the strategy adopted
is to calculate probabilities as the relative frequency of 'symbols’ (e.g.
a sequence of bytes) in the file. This assures optimal coding (relatively
to the chosen set of symbols!), but we have to generate a codeword
table that has to be stored together with the compressed file.

@ When measuring practical efficiency we have to judge both size of the
compressed file and size of the table.
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-
Adaptive Coding

@ In extreme, we can consider the whole file to be one symbol and it is
then compressed to a single-bit message. However, the coding table is
as long as the original file.

@ Another restriction is that symbols are fixed for the whole file
(message).
@ A nice and elegant solution is adaptive coding, where the list of

symbols and codewords is generated 'on the fly" without the need to
store the codeword table.

@ An asymptotically optimal coding is e.g. the Lempel-Ziv coding.
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Lempel-Ziv Coding

The source sequence is parsed into strings that did not appear before. In
example, if the input is 1011010100010.. ., it is parsed as
1,0,11,01,010,00, 10, . ... After determining each phrase we search for the
shortest string that did not appear before. The coding follows:

@ Parse the input sequence as above and count the number of codewords.
This will be used to determine the length of the bit string referring to a
particular codeword.

@ We code each phrase by specifying the id of its longest prefix (it certainly
already appeared and was parsed) and the extra bit. The empty prefix we
usually assign index 0.

@ Our example will be coded as
(000, 1)(000,0)(001,1)(010,1)(100,0)(010,0)(001,0).

@ The length of the code can be further optimized, e.g. at the beginning of
the coding process the length of the bit string describing the codeword
can be shorter than at the end. Note that if fact we do not need commas
and parentheses, it suffices to specify the length of the bit string
identifying the prefix.
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Part VIII

Generating Discrete Distribution Using Fair
Coin

Jan Bouda (FI MU) Lecture 6 - Data compression May 18, 2012 55 / 69



N —
Discrete Distribution and Fair Coin

Example

Suppose we want to simulate a source described by a random variable X
with the distribution

with probability %

<
I
o

with probability %
¢ with probability %

using a sequence of fair coin tosses. The solution is pretty easy - if the
outcome of the first coin toss is 0, we set X = a, otherwise we perform
another coin toss and set X = b if the outcomes were 10 and X = c if the
outcomes were 11.

The average number of fair coin tosses is 1.5 what equals to the entropy
of X.
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N —
Discrete Distribution and Fair Coin

The general formulation of the problem is that we have a sequence of fair
coin tosses /1, Z», ... and we want to generate a discrete random variable
X with the probability distribution g = (p1, p2,...,Pm). Let the random
variable T denotes the number of coin flips used by the algorithm.

We can describe the algorithm mapping outcomes of 73, Z5,... to
outcomes of X by a binary tree. Leaves of the tree are marked by
outcomes of X and the path from the root to a particular leaf represents
the sequence of coin toss outcomes.
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N —
Discrete Distribution and Fair Coin

The tree should satisfy:

© It is complete, i.e. every node is either leaf, or it has two descendants
in the tree. The tree may be infinite.

@ The probability of a leaf at depth k is 27. There can be more leaves
labeled by the same outcome of X. The sum of their probabilities is
the probability of this outcome.

© The expected number of fair bits E(T) required to generate X is
equal to the expected depth of this tree.
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N —
Discrete Distribution and Fair Coin

Lemma

Let Y denotes the set of leaves of a complete binary tree and Y random
variable with distribution on Y, where the probability of a leaf of the depth
k is 2=k. The expected depth of this tree is equal to the entropy of Y.

Proof.
The expected depth of the tree is

E(T) =) k(y)2™V),

yeY

where k(y) denotes the depth of y. O
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N —
Discrete Distribution and Fair Coin

Proof.
The entropy of Y is

1 1
HY) ==> 20 °8 250
veY

= 5" k(y)2 ) = E(T).

yeY
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N —
Discrete Distribution and Fair Coin

Theorem

For any algorithm generating X, the expected number of fair bits used is
at least the entropy H(X), i.e.

E(T) > H(X).

Proof.

Any algorithm generating X from fair bits can be represented by a binary
tree. Label all leaves by distinct symbols Y. The tree may be infinite.
Consider the random variable Y defined on the leaves of the tree such that
for any leaf of depth k the probability is P(Y = y) = 27k, By the previous
lemma we get E(T) = H(Y). The random variable X is a function of Y
and hence we have H(X) < H(Y). Combining we get that for any
algorithm H(X) < E(T). O
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N —
Discrete Distribution and Fair Coin

Theorem

Let X be a random variable with a dyadic distribution. The optimal
algorithm to generate X from fair coin flips requires an expected number
of coin tosses equal to the entropy H(X).

Proof.

The previous theorem shows that we need at least H(X) bits to generate
X. We use the Huffman code tree to generate the variable. For dyadic
distribution Huffman code coincides with Shannon code, has codewords of
length log ( ) and the probability of such a codeword is p(x) = 2'98P().
The expected depth of the tree is H(X). O
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Discrete Distribution and Fair Coin

To deal with a general (non-dyadic) distribution we have to find the binary
expansion of each probability, i.e.

pi=> pY.

Jj=0

where p,(j) is either 27/ or 0. Now we will assign to each nonzero p,(j) a
leaf of depth j in a binary tree. Their depths satisfy the Kraft inequality,

because >, ; pfj) =1, and therefore we can always do this.

Theorem

The expected number of fair bits E(T) required by the optimal algorithm
to generate a random variable X is bounded as H(X) < E(T) < H(X)+2.
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N —
Discrete Distribution and Fair Coin

Proof.

The lower bound has been already established, it remains to prove the
upper bound.

Let us start with the initial distribution (p1, p2, ..., pm) and expand each

of the probabilities using the dyadic coefficients, i.e.

pi=p) +p? 4

with pj(j) € {0,277} Let us consider new random variable Y with the

probability distribution pgl), p§2), . ,pgl), §2), . ,p,(,},),pfs), ... We

construct the binary tree T for the dyadic probability distribution Y.
Recall that the expected depth of T, i.e. the expected number of coin
tosses, is H(Y).

(16)

Ol
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Discrete Distribution and Fair Coin

Proof.
X is a function of Y giving

H(Y) = H(Y, X) = H(X) + H(Y|X). (17)

It remains to show that H(Y|X) < 2.
Let us expand the entropy of Y as

H(Y) = ZZP,J) log p!” Z Z (18)
i=1 j>1 i=1 (/

Let T; denotes the sum of the addends corresponding to p;, i.e.

Ti= > j27 (19)

j:pg)>0

i
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Discrete Distribution and Fair Coin

Proof.

We can find n such that 2=("=1) > p; > 2="_ This is equivalent to
n—1< —logp;i <n. (20)
We have that pfj) > 0 only if j > n and we rewrite T; as
Ti= Y j2 (21)
jiiznp?>0

Recall that
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Discrete Distribution and Fair Coin

Proof.

Next, we will show that T; < —p;log p; + 2p;. Let us expand

Ti+ pilog pi OTi — pi(n—1)— 2pi = Ti — (n— 1+ 2)p; =
o o2t -(n+1) ) 2=
Jjijznp?>0 Jjijzn,pY>0
P L2 =
jii>n,p¥>0 (23)
240+ Y (-n-127®
jijzn+2,p9>0

—2 Ny Z ko—(k+n+1)
k:k>1,pK ") 50
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Discrete Distribution and Fair Coin

Proof.
We get

—27" 4 > ko kFmil < —pmn o N o= (kentD) o (04)
k:kzl,p(k+n+1)>0 k:k>1

i

since on the right hand side we only increase the number of addends.
Finally,

=274 Yy ko lbntl) = _p=n 4 p=(Hl)y = ¢ (25)
k:k>1
using the formula for infinite geometric series summation. []

v
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N —
Discrete Distribution and Fair Coin

Proof.
Using E(T) =>_; Ti and T; < —pjlog p;i + 2p; we obtain the desired result

E(T)= ZT<_<ZP/|OgP:>+2ZP: H(X) + (26)

Ol

v
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