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-
Objectives

@ Introduce Markov Chains
— powerful tool for special random processes

@ Stationary Distribution

@ Random Walks
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Stochastic Process

Definition (Stochastic Process)

A collection of random variables X = {X; | t € T} is called a stochastic
process. The index t often represents time; X; is called the state of X at
time t.

Example
A gambler is playing a fair coin-flip game: wins 1 K¢ if head, loses 1 K¢ if
tail. Let

@ Xp denote a gambler's initial money

@ X; denote a gambler’'s money after t flips
= {X; | t €{0,1,2,....}} is a stochastic process
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N —
Stochastic Process

Definition
If X; assumes values from a finite set, then the process is a finite
stochastic process.

Definition
If T (where the index t is chosen) is countably infinite, the process is a
discrete time process.

Question:
In the previous example about a gambler's money, is the process finite? Is

the process discrete time?
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]
Markov Chain

Definition
A discrete time stochastic process X = {Xp, X1, X2, ...} is a Markov chain
if

Pr(X; = alXi—1 = b, X¢—2 = at—2,...,Xo = ao)
= Pr(Xt ES 3|Xt71 ES b) = Pb’a

That is, the value of X; depends on the value of X;_1, but not on the
history of how we arrived at X;_1 with that value

Question:
In the example about a gambler’'s money is the process a Markov chain?
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]
Markov Chain

In other words, if X is a Markov chain, then

Pr(X1 = a‘Xo = b) = Pb,a
Pr(Xo = a|X1 = b) = Py,

= Pb,a = PI‘(Xl = a‘Xo = b)
= PI'(X2 = a\Xl = b)
:Pr(X3:a\X2:b):

Jan Bouda (FI MU) Markov Chains May 3, 2012 6 /39



]
Markov Chain

o Next, we focus our study on Markov chain whose state space (the set
of values that X; can take) is finite

@ So, without loss of generality, we label the states in the state space by
0,1,2,...,n

@ The probability P;; = Pr(X; =/ | X;—1 = i) is the probability that
the process moves from state / to state j in one step
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N —
Transition Matrix

@ The definition of Markov chain implies that we can define it using a
one-step transition matrix P with

P,"j:Pr(Xt:j’Xt_lzll)

Question: For a particular i, what is }; P; ;7
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Transition Matrix

@ The transition matrix representation of a Markov chain is very
convenient for computing the distribution of future states of the
process

@ Let p;(t) denote the probability that the process is at state / at time t

Question: Can we compute p;(t) from the transition matrix P assuming
we know po(t — 1), p1(t —1),...7
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Transition Matrix

The value of p;(t) can be expressed as

pi(t) := po(t —1)Poi + p1(t = L)Pri+ -+ pa(t — 1)Py;
In other words, let (p(t)) denote the vector
(p(t)) = (po(t), p1(t), - - ., pn(t))

Then, we have

(p(t)) = (p(t —1))P
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N —
Transition Matrix

@ For any m, we define the m-step transition matrix
P/'(,T) =Pr(Xegm =4 | Xe = i),

which is the probability that we move from state / to state j in
exactly m steps

e It is easy to check that P = p2 p3) = p. p(2) = P3 and in
general, P(m) = pm

Thus, for any t > 0 and m > 1 we have,

(p(t+ m)) = (p(t))P™
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.
Directed Graph Representation

Markov chain can also be expressed by a directed weighted graph (V, E)
such that

@ V denotes the state space

@ E denotes transition between states with weight of edge (/, /) equal
to P,‘J
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Example: Markov Chain & Graph Representation

0 1/4 0 3/4
1/2 0 1/3 1/6
0 0 1 0
0 1/2 1/4 1/4

p—

Consider the probability of going from state 0 to state 3 in exactly 3 steps.
From the graph, all possible paths are

0-1-0-3,0-1-3-30-3-1-3,and0—-3-3-3
Probability of success for each path is: 3/32, 1/96, 1/16 and 3/64

respectively. Summing up the probabilities we find the total probability is
41/192.
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.
Example: Markov Chain & Graph Representation

Alternatively, we can compute

3/16 7/48  29/64 41/192
5/48 5/24 79/144  5/36
0 0 1 0

1/16 13/96 107/192 47/192

P3 =

The entry Pg73 = 41/192 gives the correct answer.
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]
Gambler's Ruin

@ Discuss Gambler's ruin
— A study of the game between two gamblers until one is ruined (no
money left)

@ Introduce stationary distribution
— and a sufficient condition when a Markov chain has a stationary
distribution

@ Analyze random walks on a graph
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The Game

o Consider two players, one has L1 K¢ and the other has L, K&. Player
1 will continue to throw a fair coin, such that
— if head appears, he wins 1 K¢
— if tails appears, he loses 1 K&

@ Suppose the game is played until one player goes bankrupt. What is
the probability that Player 1 survives?
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]
The Markov Chain Model

The previous game can be modelled by the following Markov chain:

1/

Q- % -
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]
The Markov Chain Model

@ Initially, the chain is at state 0.
o Let Pj(t) denote the probability that after t steps, the chain is at state

J
@ Also, let g be the probability that the game ends with Player 1
winning Ly K&
@ We can see that
(i) limesyoo P =0 for j # —Ly, Ly
(i) limesoo P =1~ g for j = — Ly
(iii) limeoo P = g for j = Lo
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-
The Analysis

@ Now, let W; denote the money Player 1 has won after t steps

@ By linearity of expectation,

E[W:]=0
@ On the other hand,

Ew,] = > jP =0

J
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-
The Analysis

e By taking limits, we have

0 = tl;rgo E[W;]
= Jim > 2iP"
= (—Ll)zl—q)+0+0+-~+0+(L2)q
@ Re-arranging terms, we obtain

qg=Li/(L1 + Lp)

— That is, the probability of winning (or losing) is proportional to the
amount of money a player is willing to lose (or win)
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Stationary Distribution

Consider the following Markov chain:

@ Let pj(t) denote the probability that the chain is at state j at time t,

and let (p(t)) = (po(t), pr(t), P2(t))
@ Suppose that (p(t)) = (0.4,0.2,0.4)

Question: In this case, what will (p(t + 1)) be?
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-
Stationary Distribution

@ After some calculations, we get
(p(t+1)) =(0.4,0.2,0.4)

which is the same as (p(t))!

@ We can see that in the previous example, the Markov chain has
entered an 'equilibrium’ condition at time t, where

(p(n)) remains (0.4,0.2,0.4) for all n >t

— this probability distribution is called a Stationary Distribution
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-
Stationary Distribution

Precisely, let P be the transition matrix of a Markov chain. Then,

Definition
If (p(t+ 1)) = (p(t))P = (p(t)), then (p(t)) is a stationary distribution of
the Markov chain?

Question:
How many stationary distributions can a Markov chain have? Can it be
more than one? Can it be none?
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-
Stationary Distribution

Ans. It can be more that one. For example,

1/2 l/zﬁ
In this case both (1,0,0,...,0) and (0,0,...,0,1) are stationary
distributions
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-
Stationary Distribution

Ans. It can also be none. For example,

1

1.0 1.0 0 10 1.0

Here, no stationary distributions exists

Question:
Are there some conditions that can be used to tell whether a Markov chain

has a unique stationary distribution?
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.
Special Markov Chains

Definition
A Markov chain is irreducible if its directed representation is a strongly
connected component. That is, every state j can reach any state k

For example:

03——{2] 10

irreducible not irreducible
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.
Special Markov Chains

Definition
A Markov chain is periodic if there exists some state j and some integer
d > 1 such that

Pr(Xiqs=Jj | Xt =j) =0

unless s is divisible by d

In other words, once we start at state j, we can only return to j after a multiple
of d steps

If a Markov chain is not periodic, then it is called aperiodic
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.
Special Markov Chains

For example:

aperiodic periodic

Jan Bouda (FI MU) Markov Chains May 3, 2012 28 / 39



]
Sufficient Conditions

Theorem
Suppose a Markov chain is finite with states 0,1, ..., n. If it is irreducible
and aperiodic, then

@ The chain has a unique stationary distribution (m) = (mo, 71,...,Tp);

o 7 = 1/hy i where hy i is the expected number of steps to return to
state k, when starting at state k
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Computing the Stationary Distribution

One way to compute the stationary distribution of a finite Markov chain is
to solve the system of linear equations

For example, given the transition matrix

0 1/4 0 3/4
p_ 1/2 0 1/3 1/6
|10 0 1 0
0 1/2 1/4 1/4
we have five equations for the four unknowns g, 71, m> and 73 given by

()P ={(m)and Y 7 =1

Another technique is to study the cut-sets of a Markov chain
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-
Stationary Distribution & Cut-sets

For any state i/ of the Markov chain, we have
n n
>_miPii =Y iPij
J#i J#i

That is, in the stationary distribution the probability that a chain leaves a
state equals the probability that it enters a state
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Stationary Distribution & Cut-sets

Example:
I-p P

C© O

g 1-¢q

This Markov chain is used to represent bust errors in communication
transmission. The corresponding transition matrix is

SR
g 1l-gq

Solving (m) P = (7} yields to system

mo(l—p)+mg = mo
mop+7i(l—q) = m
m+m = 1
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-
Stationary Distribution & Cut-sets

Example cont'd:

For these equations, we find the second redundant. The solution is

mo = q/(p+q) and m1 = p/(p + q)

When p = .005 and g = .1 in the stationary distribution more that 95% of the
bits are received uncorrupted

Using the cut-set formula, we have in the stationary distribution the
probability of leaving state 0 must equal the probability of entering O.
Hence

Top = 714
Using mo + m1 = 1 yields
mo = q/(p+q) and m1 = p/(p + q)
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Stationary Distribution & Cut-sets

We can summarize this result in the following:

Theorem (10)

Consider a finite, irreducible Markov chain with transition matrix P. If
there are nonnegative numbers () = (mo,m1,...,m,) such that
21'720 m; = 1 and if for any pair of states i, J

miPij = mjPji

then (m) is the stationary distribution corresponding to P
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]
Random Walk

@ Let G be a finite, undirected and connected graph

o Let D(G) be a directed graph formed by replacing each undirected
edge {u, v} of G by two directed edges (u, v) and (v, u)

Definition
A random walk on G is a Markov chain whose directed representation is
D(G), and for each edge (u, v), the transition probability is 1/deg(u)
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]
Random Walk

For example:

G Representation random walk on G
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]
Random Walk

@ Since G is connected, it is easy to check that D(G) is strongly
connected

@ The lemma below gives a simple criterion for a random walk on G to
be aperiodic

Lemma
A random walk on G is aperiodic if and only if G is not bipartite J
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]
Random Walk

Consider a random walk on a finite, undirected, connected and
non-bipartite graph G. Then G satisfies the conditions of Theorem (10) —
and leads to a stationary distribution

The following result shows that this distribution depends only on the
degree sequence of the graph!

Theorem

If G = (V,E) is not bipartite, the random walk on G has a unique
stationary distribution (m). Moreover, for the vertex v, the corresponding
probability in (m) is:

my = deg(v)/(2|E[)
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Material covered:

@ Markov chains
— Definitions, Gambler’s ruin, Graph representation

@ Stationary distributions
— computing the distribution, cut-set technique

@ Random Walks
— Graph representation, definition as Markov chain, implications for

the stationary distribution
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