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Objectives

Introduce Markov Chains
– powerful tool for special random processes

Stationary Distribution

Random Walks
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Stochastic Process

Definition (Stochastic Process)

A collection of random variables X = {Xt | t ∈ T} is called a stochastic
process. The index t often represents time; Xt is called the state of X at
time t.

Example

A gambler is playing a fair coin-flip game: wins 1 Kč if head, loses 1 Kč if
tail. Let

X0 denote a gambler’s initial money

Xt denote a gambler’s money after t flips
⇒ {Xt | t ∈ {0, 1, 2, . . . . }} is a stochastic process
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Stochastic Process

Definition

If Xt assumes values from a finite set, then the process is a finite
stochastic process.

Definition

If T (where the index t is chosen) is countably infinite, the process is a
discrete time process.

Question:
In the previous example about a gambler’s money, is the process finite? Is
the process discrete time?
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Markov Chain

Definition

A discrete time stochastic process X = {X0,X1,X2, . . . } is a Markov chain
if

Pr(Xt = a|Xt−1 = b,Xt−2 = at−2, . . . ,X0 = a0)

= Pr(Xt = a|Xt−1 = b) = Pb,a

That is, the value of Xt depends on the value of Xt−1, but not on the
history of how we arrived at Xt−1 with that value

Question:
In the example about a gambler’s money is the process a Markov chain?
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Markov Chain

In other words, if X is a Markov chain, then

Pr(X1 = a|X0 = b) = Pb,a

Pr(X2 = a|X1 = b) = Pb,a

. . .

⇒ Pb,a = Pr(X1 = a|X0 = b)
= Pr(X2 = a|X1 = b)
= Pr(X3 = a|X2 = b) = . . .
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Markov Chain

Next, we focus our study on Markov chain whose state space (the set
of values that Xt can take) is finite

So, without loss of generality, we label the states in the state space by
0, 1, 2, . . . , n

The probability Pi ,j = Pr(Xt = j | Xt−1 = i) is the probability that
the process moves from state i to state j in one step
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Transition Matrix

The definition of Markov chain implies that we can define it using a
one-step transition matrix P with

Pi ,j = Pr(Xt = j | Xt−1 = i)

Question: For a particular i , what is
∑

j Pi ,j?
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Transition Matrix

The transition matrix representation of a Markov chain is very
convenient for computing the distribution of future states of the
process

Let pi (t) denote the probability that the process is at state i at time t

Question: Can we compute pi (t) from the transition matrix P assuming
we know p0(t − 1), p1(t − 1), . . . ?
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Transition Matrix

The value of pi (t) can be expressed as

pi (t) := p0(t − 1)P0,i + p1(t − 1)P1,i + · · ·+ pn(t − 1)Pn,i

In other words, let 〈p(t)〉 denote the vector

〈p(t)〉 = (p0(t), p1(t), . . . , pn(t))

Then, we have
〈p(t)〉 = 〈p(t − 1)〉P
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Transition Matrix

For any m, we define the m-step transition matrix

P
(m)
i ,j = Pr(Xt+m = j | Xt = i),

which is the probability that we move from state i to state j in
exactly m steps

It is easy to check that P(2) = P2, P(3) = P · P(2) = P3, and in
general, P(m) = Pm

Thus, for any t ≥ 0 and m ≥ 1 we have,

〈p(t + m)〉 = 〈p(t)〉Pm

Jan Bouda (FI MU) Markov Chains May 3, 2012 11 / 39



Directed Graph Representation

Markov chain can also be expressed by a directed weighted graph (V ,E )
such that

V denotes the state space

E denotes transition between states with weight of edge (i , j) equal
to Pi ,j
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Example: Markov Chain & Graph Representation

P =


0 1/4 0 3/4

1/2 0 1/3 1/6
0 0 1 0
0 1/2 1/4 1/4


Consider the probability of going from state 0 to state 3 in exactly 3 steps.
From the graph, all possible paths are

0− 1− 0− 3, 0− 1− 3− 3, 0− 3− 1− 3, and 0− 3− 3− 3

Probability of success for each path is: 3/32, 1/96, 1/16 and 3/64
respectively. Summing up the probabilities we find the total probability is
41/192.
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Example: Markov Chain & Graph Representation

Alternatively, we can compute

P3 =


3/16 7/48 29/64 41/192
5/48 5/24 79/144 5/36

0 0 1 0
1/16 13/96 107/192 47/192


The entry P3

0,3 = 41/192 gives the correct answer.
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Gambler’s Ruin

Discuss Gambler’s ruin
– A study of the game between two gamblers until one is ruined (no
money left)

Introduce stationary distribution
– and a sufficient condition when a Markov chain has a stationary
distribution

Analyze random walks on a graph
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The Game

Consider two players, one has L1 Kč and the other has L2 Kč. Player
1 will continue to throw a fair coin, such that
– if head appears, he wins 1 Kč
– if tails appears, he loses 1 Kč

Suppose the game is played until one player goes bankrupt. What is
the probability that Player 1 survives?
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The Markov Chain Model

The previous game can be modelled by the following Markov chain:
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The Markov Chain Model

Initially, the chain is at state 0.

Let P
(t)
j denote the probability that after t steps, the chain is at state

j

Also, let q be the probability that the game ends with Player 1
winning L2 Kč

We can see that

(i) limt→∞ P
(t)
j = 0 for j 6= −L1, L2

(ii) limt→∞ P
(t)
j = 1− q for j = −L1

(iii) limt→∞ P
(t)
j = q for j = L2
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The Analysis

Now, let Wt denote the money Player 1 has won after t steps

By linearity of expectation,

E [Wt ] = 0

On the other hand,

E [Wt ] =
∑
j

jP
(t)
j = 0

Jan Bouda (FI MU) Markov Chains May 3, 2012 19 / 39



The Analysis

By taking limits, we have

0 = lim
t→∞

E [Wt ]

= lim
t→∞

∑
j

jP
(t)
j

= (−L1)(1− q) + 0 + 0 + · · ·+ 0 + (L2)q

Re-arranging terms, we obtain

q = L1/(L1 + L2)

– That is, the probability of winning (or losing) is proportional to the
amount of money a player is willing to lose (or win)
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Stationary Distribution

Consider the following Markov chain:

Let pj(t) denote the probability that the chain is at state j at time t,
and let 〈p(t)〉 = (p0(t), p1(t), p2(t))

Suppose that 〈p(t)〉 = (0.4, 0.2, 0.4)

Question: In this case, what will 〈p(t + 1)〉 be?
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Stationary Distribution

After some calculations, we get

〈p(t + 1)〉 = (0.4, 0.2, 0.4)

which is the same as 〈p(t)〉!
We can see that in the previous example, the Markov chain has
entered an ’equilibrium’ condition at time t, where

〈p(n)〉 remains (0.4, 0.2, 0.4) for all n ≥ t

→ this probability distribution is called a Stationary Distribution
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Stationary Distribution

Precisely, let P be the transition matrix of a Markov chain. Then,

Definition

If 〈p(t + 1)〉 = 〈p(t)〉P = 〈p(t)〉, then 〈p(t)〉 is a stationary distribution of
the Markov chain?

Question:
How many stationary distributions can a Markov chain have? Can it be
more than one? Can it be none?

Jan Bouda (FI MU) Markov Chains May 3, 2012 23 / 39



Stationary Distribution

Ans. It can be more that one. For example,

In this case both (1, 0, 0, . . . , 0) and (0, 0, . . . , 0, 1) are stationary
distributions
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Stationary Distribution

Ans. It can also be none. For example,

Here, no stationary distributions exists

Question:
Are there some conditions that can be used to tell whether a Markov chain
has a unique stationary distribution?
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Special Markov Chains

Definition

A Markov chain is irreducible if its directed representation is a strongly
connected component. That is, every state j can reach any state k

For example:

irreducible not irreducible
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Special Markov Chains

Definition

A Markov chain is periodic if there exists some state j and some integer
d > 1 such that

Pr(Xt+s = j | Xt = j) = 0

unless s is divisible by d

In other words, once we start at state j , we can only return to j after a multiple

of d steps

If a Markov chain is not periodic, then it is called aperiodic
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Special Markov Chains

For example:

aperiodic periodic
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Sufficient Conditions

Theorem

Suppose a Markov chain is finite with states 0, 1, . . . , n. If it is irreducible
and aperiodic, then

The chain has a unique stationary distribution 〈π〉 = (π0, π1, . . . , πn);

πk = 1/hk,k where hk,k is the expected number of steps to return to
state k, when starting at state k
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Computing the Stationary Distribution

One way to compute the stationary distribution of a finite Markov chain is
to solve the system of linear equations

〈π〉P = 〈π〉

For example, given the transition matrix

P =


0 1/4 0 3/4

1/2 0 1/3 1/6
0 0 1 0
0 1/2 1/4 1/4


we have five equations for the four unknowns π0, π1, π2 and π3 given by
〈π〉P = 〈π〉 and

∑
πi = 1

Another technique is to study the cut-sets of a Markov chain
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Stationary Distribution & Cut-sets

For any state i of the Markov chain, we have

n∑
j 6=i

πjPj ,i =
n∑
j 6=i

πiPi ,j

That is, in the stationary distribution the probability that a chain leaves a
state equals the probability that it enters a state
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Stationary Distribution & Cut-sets

Example:

This Markov chain is used to represent bust errors in communication
transmission. The corresponding transition matrix is

P =

[
1− q p

q 1− q

]
Solving 〈π〉P = 〈π〉 yields to system

π0(1− p) + π1q = π0

π0p + π1(1− q) = π1

π0 + π1 = 1
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Stationary Distribution & Cut-sets

Example cont’d:

For these equations, we find the second redundant. The solution is

π0 = q/(p + q) and π1 = p/(p + q)

When p = .005 and q = .1 in the stationary distribution more that 95% of the

bits are received uncorrupted

Using the cut-set formula, we have in the stationary distribution the
probability of leaving state 0 must equal the probability of entering 0.
Hence

π0p = π1q

Using π0 + π1 = 1 yields

π0 = q/(p + q) and π1 = p/(p + q)
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Stationary Distribution & Cut-sets

We can summarize this result in the following:

Theorem (10)

Consider a finite, irreducible Markov chain with transition matrix P. If
there are nonnegative numbers 〈π〉 = (π0, π1, . . . , πn) such that∑n

j=0 πi = 1 and if for any pair of states i , j

πiPi ,j = πjPj ,i

then 〈π〉 is the stationary distribution corresponding to P
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Random Walk

Let G be a finite, undirected and connected graph

Let D(G ) be a directed graph formed by replacing each undirected
edge {u, v} of G by two directed edges (u, v) and (v , u)

Definition

A random walk on G is a Markov chain whose directed representation is
D(G ), and for each edge (u, v), the transition probability is 1/deg(u)
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Random Walk

For example:

G Representation random walk on G
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Random Walk

Since G is connected, it is easy to check that D(G ) is strongly
connected

The lemma below gives a simple criterion for a random walk on G to
be aperiodic

Lemma

A random walk on G is aperiodic if and only if G is not bipartite
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Random Walk

Consider a random walk on a finite, undirected, connected and
non-bipartite graph G . Then G satisfies the conditions of Theorem (10) –
and leads to a stationary distribution

The following result shows that this distribution depends only on the
degree sequence of the graph!

Theorem

If G = (V ,E ) is not bipartite, the random walk on G has a unique
stationary distribution 〈π〉. Moreover, for the vertex v , the corresponding
probability in 〈π〉 is:

πv = deg(v)/(2|E |)
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Material covered:

Markov chains
– Definitions, Gambler’s ruin, Graph representation

Stationary distributions
– computing the distribution, cut-set technique

Random Walks
– Graph representation, definition as Markov chain, implications for
the stationary distribution
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