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.
Random Numbers in Computer Science

@ Random numbers are of crucial importance for a waste number of
computer science applications.

@ Cryptography is impossible without random numbers.
» Cryptographic keys - encryption, authentication, digital signatures
» Random choices in cryptographic algorithms and protocols - zero
knowledge proofs
@ Randomized algorithms

@ Communication protocols

Practically all these applications
@ inherently require randomness generated uniformly

@ or their analysis is performed for uniform random numbers.
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Source of

bit string distributed
according to a bi-
ased distribution

randomness

Jan Bouda (FI MU)

[1[1]of1]1]o]

Randomness
extractor

uniformly
distributed
bit string

Lecture 9 - Randomness extractors

May 18, 2012

4/ 38



N —
Randomness Extraction
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|
Extraction from Know Probability Distribution
@ In contrast to our requirements, most available sources of randomness

generate non-uniform output.
@ We have to partition the set of outputs into set of constant

probability.

@ Depending on the output probability distribution, this may be

impossible.
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Extraction from Unknown Probability Distribution

@ The probability distribution of the random number generator output
may vary during the computation.

@ This might be due to
> low quality of the generator design,
» external hard-to-control effects, such as temperature,
> or an attack of an adversary.
@ Non-uniform distribution models adversary’'s knowledge about the
outcome of a (uniform) random number generator.
@ Extraction is still possible, given some limitations on the output
probability distributions.
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N —
Von Neumann Extractor

@ Source produces a sequence of random bits, that are generated
independently according to (an unknown) a fixed probability
distribution.

@ On each position the source generates independently
0 with probability p
1 with probability (1 — p).

@ Von Neumann extractor divides the bit sequence into pairs and for
each pair of bits it takes action depending on the value

00 outputs nothing
11 outputs nothing
01 outputs O
10 outputs 1.
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N —
Von Neumann Extractor

@ For the aforementioned source the output is always a sequence of
independent and uniformly distributed bits.
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N —
Towards Extractor Definition

@ The purpose of an extractor is to transform an input (biased)
probability distribution to a probability distribution that is (close to)
uniform distribution.

@ Assume we have a biased distribution X on X.

@ A randomness extractor is function e : X — Y, such that the
distribution Y on Y induced by the distribution X, i.e.

P(Y=y)= > PX=x)
xeX,e(x)=y

is close (to be specified later) to the uniform distribution.

@ Such an extractor has natural limitations, namely for a fixed e, and
two distributions X7 and X, mapped by e to uniform distribution, for
each y € Y it holds that

Yo PXi=x)= > PXe=x)=P(Y=y)
xEX,e(x)=y xeX,e(x)=y
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N —
Towards extractor definition

This means that e partitions X to pre-images of elements of Y.

e:X—=>Y
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N —
Towards extractor definition

@ We may overcome this limitation by allowing a (small) auxiliary
uniform input Z.

@ This would give us the seeded extractor e : X x Z — Y.

@ We naturally expect that the extractor should be useful, i.e. to
produce some extra randomness. We require | Y| > |Z].
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-
Trace Distance of Probability Distributions

Definition

Let X and Y be random variables defined on the same sample space &
with probability distributions px and py, respectively. The trace distance
(or L; distance) of random variables X and Y is

d(X, ¥) = 2 3" Ipx() ~ pv(a)| = max |P(X € A) ~ P(Y € ). (1)
acsS -

X and Y are e-close in L iff

d(X,Y) <e (2)

v
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Extractor Definition

Definition
Let P(X) be the set of all probability distributions on X, and S C P(X).
Then e: X X Z — Y is a (S,¢) (seeded) randomness extractor iff for all

Xes

d(e(X, Uz), Uy) § €, (3)
where Uy is the uniform distribution on Z and Uy is the uniform
distribution on Y. |

4

X ——>|extractor ——> Y
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Sources of Randomness

Jan Bouda (FI MU) Lecture 9 - Randomness extractors May 18, 2012 16 / 38



Randomness Extractor and min-entropy

Definition
The min—entropy of a probability distribution X is
Hoo(X) = mi (4)

xX€

—log P(X = x) = —| P(X = x).
n —log P(X = x) og max P(X = x)

It is a good measure of the amount of randomness contained in the input
probability distribution, as demonstrated by the next theorem.

min-entropy

| probability
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.
Min-entropy Bounds Extractor Output

Theorem

Let X be a random variable with image X = {0,1}" satisfying
Hso(X) < k — 1 for some k € N. Then there no ({X},0) extractor with
Z=1{0,1} and Y = {0,1}™ such that m > k + d.

Proof.

The fact that Hyo(X) < k — 1 implies that there is some element x such
that P(X = x) > 2=(=1)_ Therefore, for any auxiliary input z € Z, the
probability of the corresponding output e(x, z) is at least

2—(k=1)p—d — p—(k+d—1) 5 2—m 3nd therefore the output probability
distribution is not uniform and its distance from the uniform distribution is
bounded by the min-entropy of the input. O

Previous theorem shows us that the gain of randomness extraction is
limited by the min—entropy of the source distribution.
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Min-Entropy Source

A first example of an extractable set of probability distributions is the
min-entropy source. We define the source with min-entropy k as
S C P(X) such that VX € S Hoo(X) > k.

(0,0,1,0)

(0,0/0,1

(1,0,0,0) (0,1,0,0)
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-
Min-Entropy Extractor

Definition
The function e : X x Z — Y is a (k, €) (seeded) randomness extractor iff
for all X with Hoo(X) it holds that

d(e(X, Uz), Uy) < €, (5)

where Uz is the uniform distribution on Z and Uy is the uniform
distribution on Y. |

@ Extractor is non-trivial if it extracts more randomness than it
consumes as the auxiliary input, i.e. [Y| > |Z|.

@ We want to extract as much randomness as possible, i.e.
Y| --» 2K|Z].
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Importance of Seed in Min-Entropy Extractor

Theorem

There is no function e : {0,1}" — {0, 1} giving a single random bit
(uniform distribution on {0,1}) as an output for any input random
variable X on n—bit strings satisfying Hso(X) > n — 1.

Intuitively, an input distribution with min—entropy at least n — 1 contains
much more randomness than necessary to obtain a single random bit.

Proof.

For every function e there is a bit b € {0,1} such that

[{x € {0,1}"|e(x) = b}| > 2" since there are 2" inputs in the domain of
e. Let us consider a random variable X uniformly distributed on the set
{x €{0,1}"|e(x) = b} € {0,1}". Such a random variable obeys

Hso(X) > n— 1 and yet the output distribution e(X) is constant, i.e.
P(e(X) =b)=1. O
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Part IV

Carter-Wegman Hashing
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-
Universal hashing

Definition
Let A and B be sets such that |A| > |BJ. A family H of hash functions
h: A — B is k-universal iff for any x1,x,...,x, € A and a hash function

h € H randomly and uniformly chosen from H it holds that

P(h(x1) = h(x2) = - = h(x)) < ‘Bf“ (6)

Definition

Let A and B be sets such that |A| > |B|. A family H of hash functions
h: A — B is strongly k-universal iff for any x; # xo # - -+ # xx € A, any
Y1,¥2,---, Yk € B and a hash function h € H randomly and uniformly
chosen from H it holds that

B0 — g ) = 100 e = 22 < |Bl|k. (7)
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Universal Hashing: Example

Let A={0,1,...,m—1} and B={0,1,...,n— 1} with m > n. Let
p > m be some prime. Consider the class of hash functions

hab(x) = ((ax + b) mod p) mod n. (8)
Let
H:{ha,bylﬁaﬁp_lvoﬁbﬁp}v (9)
stressing that a # 0.
Theorem
H is 2-universal. J
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Universal Hashing: Example

Proof.

We count the number of functions from H for which two fixed and distinct
elements x; and x> from A collide. x; # xp implies

ax1 +b# axx+ b (mod p),

since the opposite occurs only if a(x; — x2) =0 (mod p). However, we
know that neither a=0 (mod p) nor x; — x2 =0 (mod p), what implies
the equation.

Fixing x; and xy, for every pair u # v € B there exists exactly one pair

a, b such that ax; + b= u (mod p) and axo + b= v (mod p). O

v
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-
Universal Hashing: Example

Proof.
Solving the system of two linear equations we obtain the unique solution
v—u
a= mod p (10)
Xo — X1
b= u— ax; mod p. (11)

Since there is exactly one hash function for each pair (a, b), we have there
is exactly one hash function in H such that

axi+b=u (mod p)and axxo+b=v (mod p).

We have that the number of collisions equals to the number of pairs (u, v)
from {0,...,p — 1} satisfying u # v and u = v (mod n). For each choice
of u there are at most [p/n] — 1 possible values of v. O
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Universal Hashing: Example

Proof.

Together we have that there are at most

p([p/n] —1) < p<p+(n—1) _ ”> _plp—-1)

n n n

such pairs. Therefore, the collision probability is

oy P2
P(hap(x1) = hap(x2)) < 1)
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Extractors for Min-entropy Sources
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-
Min-Entropy Strong Extractor

Definition
The function e : X x Z — Y is a (k, €) (seeded) strong randomness
extractor iff for all X with H.(X) it holds that

d([Uz, e(X, Uz)], [Uz, Uy]) <, (12)

where Uz is the uniform distribution on Z and Uy is the uniform
distribution on Y.

@ The advantage of the strong extractor is that the output is close to
the uniform distribution even if the value of Uz is known.

@ Next we will show how to implement a strong extractor using
Wegman-Carter hashing.
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-
Min-Entropy Extractor

Theorem

Let X be a random variable defined on X = {0,1}" with min-entropy
Hoo(X) > k, H = {h|h: {0,1}" — {0,1}*=2¢} be a universal, class of
hash functions. Let x €g X be randomly chosen from X according to X
and h be randomly and uniformly chosen from H. Then the distribution of
(h, h(x)) is 27¢ close to the uniform distribution in the trace distance, i.e.
application of a function randomly chosen from H is a (k,27¢) strong
randomness extractor.
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-
Min-Entropy Extractor

Theorem

Let X1, Xo, ..., X be independent identically distributed random variables
each defined on X = {0,1}" with min-entropy Hs(X) > k,

H = {h|h:{0,1}" — {0,1}*=2¢} be a universal, class of hash functions.
Let x; €r X be randomly chosen from X according to X; and h be
randomly and uniformly chosen from H. Then the distribution of
(h,h(x1),...,h(x;)) is I27¢ close to the uniform distribution in the trace
distance, i.e. | repeated applications of a fixed function randomly chosen
from H is a (k,127¢) strong randomness extractor.
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Part VI

Privacy Amplification
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N —
Initial Situation

@ Alice sends an information to Bob via a channel that can be
(partially) observed by Eve.

@ After the communication the information between Alice and Bob is
perfectly preserved, described by a random variable X.

@ Eve has a partial knowledge of X represented by a random variable R.

@ Alice and Bob want to extract a shorter shared information Y/, such
that E contains no information about Y.

| Alice ——] Eve ~ ——|Bob]

~

-’
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AN \ s 7
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-
Eliminating Eve

Assuming Eve know's the value of R to be r, her knowledge about X is
the conditional probability distribution

P(X =x|R=r).

@ Alice and Bob agree publicly on a strong extractor e : X x Z — Y.
@ Alice sends x € X to Bob (Eve learns partial information r € R).

@ Alice chooses randomly and uniformly z € Z and sends it via public
and authenticated channel to Bob (Eve learns it).

@ Both Alice and Bob compute y = e(x, z).

Eve has no information about y, her prediction is (almost) uniform
distribution over Y.
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Eliminating Eve

This is possible thanks to the properties of the strong extractor:

d([Us. e(X. Uz)].[Uz. Uy]) <. (13)

We have to evaluate the min-entropy of the conditional probability
distribution.

X ——[extractor— Y
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Part VII

More Extractors
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-
Other Types of Sources and Generalized Extractors

@ von Neumann sources: independence, fixed/limited bias
@ Santha-Vazirani sources: possibly dependent, limited bias

@ independent sources

» one source vs. multi-source point of view
> blenders

@ bit-fixing sources

» cryptographic application
» model e.g. adversary's knowledge

Condensers - increase of min-entropy.
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Thank You for Your Attention!
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