
Supplementary Notes on
The Pi-Calculus

15-312: Foundations of Programming Languages
Frank Pfenning

Lecture 24
November 19, 2002

In this lecture we first consider the question of observational equiva-
lence for the calculus of concurrent, communicating processes. Then we
extend the calculus to allow us communication to transmit values, which
leads to the π-calculus.

Recall from the last lecture our notion of process expression, and in par-
ticular the unobservable (internal) action τ .

Observable Action λ : : = a | a
Action α : : = λ | τ

Process Exps P : : = A〈a1, . . . , an〉 | N | (P1 | P2) | new a.P
Sums N : : = α.P | N1 + N2 | 0

The operational semantics with observable behavior is given by the
judgment P

α−→ P ′ which is defined by the following rules. Here we write
λ for the opposite of λ, with the understanding that a = a.

M + α.P + N
α−→ P

Sumt
P

λ−→ P ′ Q
λ−→ Q′

P | Q τ−→ P ′ | Q′
Reactt

P
α−→ P ′

P | Q α−→ P ′ | Q
L-Part

Q
α−→ Q′

P | Q α−→ P | Q′
R-Part

P
α−→ P ′ (α /∈ {a, a})

new a.P
α−→ new a.P ′

Rest

{b1/a1, . . . , bn/an}PA
α−→ P ′ (A(a1, . . . , an) def= PA)

A〈b1, . . . , bn〉
α−→ P ′

Identt

SUPPLEMENTARY NOTES NOVEMBER 19, 2002

L24.2 The Pi-Calculus

Also recall our definition of a strong simulation S: If P S Q and P
α−→ P ′

then there exists a Q′ such that Q
α−→ Q′ and P ′ S Q′.

In pictures:

P S

α

��

Q

α

��
P ′ S Q′

where the solid lines indicate given relationships and the dotted lines in-
dicate the relationships whose existence we have to verify (including the
existence of Q′). If such a strong simulation exists, we say that Q strongly
simulates P .

Futhermore, we say that two states are strongly bisimilar if there is a
single relation S such that both the relation and its converse are strong
simulations.

Strong simulation does not distinguish between silent (also called inter-
nal or unobservable) transitions τ and observable transitions λ (consisting
either of names a or co-names a). When considering the observable behav-
ior of a process we would like to “ignore” silent transitions to some extent.
Of course, this is not entirely possibly, since a silent transition can change
from a state with many enabled actions to one with much fewer or differ-
ent ones. However, we can allow any number of internal actions in order
to simulate a transition. We define

P
τ∗−→ P ′ iff P

τ−→ · · · τ−→ P ′

P
τ∗ λ τ∗−→ P ′ iff P

τ∗−→ P1
λ−→ P2

τ∗−→ P ′

In particular, we always have P
τ∗−→ P . Then we say that S is a weak simu-

lation if the following two conditions are satisfied:1

(i) If P S Q and P
τ−→ P ′

then there exists a Q′ such that Q
τ∗−→ Q′ and P ′ S Q′.

(ii) If P S Q and P
λ−→ P ′

then there exists a Q′ such that Q
τ∗ λ τ∗−→ Q′ and P ′ S Q′.

1This differs slightly, but I believe insignificantly from Milner’s definition.

SUPPLEMENTARY NOTES NOVEMBER 19, 2002

The Pi-Calculus L24.3

In pictures:
P S

τ

��

Q

τ∗

��
P ′ S Q′

P S

λ

��

Q

τ∗

λ
τ∗

��
P ′ S Q′

As before we say that Q weakly simulates P if there is a weak simulation S
with P S Q. We say P and Q are weakly bisimilar if there is a relation S such
that both S and its inverse are weak simulations. We write P ≈ Q if P and
Q are weakly bisimular.

We can see that the relation of weak bisimulation concentrates on the
externally observable behavior. We show some examples that demonstrate
processes that are not weakly bisimilar.

P

a
		��
��
�� b

��,
,,

,,
,

0 0

Q

a
		��
��
�� τ

��.
..

..
.

0 Q1

b
��.

..
..

.

0

R

τ
����
��
�� τ

��/
//

//
/

R1

a
����
��
��

R2

b
��.

..
..

.

0 0

P = a.0 + b.0 Q = a.0 + τ.b.0 R = τ.a.0 + τ.b.0

Even though P , Q, and R can all weakly simulate each other, no two are
weakly bisimilar. As an example, consider P and Q. Then any weak bisim-
ulation must relate P and Q1, because if Q

τ−→ Q1 then P can match this
only by idling (no transition). But P

a−→ 0 and Q1 cannot match this step.
Therefore P and and Q cannot be weakly bisimilar. Analogous arguments
suffice for the other pairs of processes.

As positive examples of weak bisimulation, we have

a.P ≈ τ.a.P
a.P + τ.a.P ≈ τ.a.P

a.(b.P + τ.c.Q) ≈ a.(b.P + τ.c.Q) + τ.c.Q

The reader is encouraged to draw the corresponding transition diagrams.
As an example, consider the second equation.

Q1 = a.P + τ.a.P and Q2 = τ.a.P

We relate Q1 S Q2 and a.P S a.P and P S P . In one direction we have

SUPPLEMENTARY NOTES NOVEMBER 19, 2002

L24.4 The Pi-Calculus

1. Q1
a−→ P which can be simulated by Q2

τ a−→ P .

2. Q1
τ−→ a.P which can be simulated by Q2

τ−→ a.P .

In the other direction we have

1. Q2
τ−→ a.P which can be simulated by Q1

τ−→ a.P .

Together these cases yield the desirect result: Q1 ≈ Q2.
Next we will generalize the calculus of concurrent processes so that

value can be transmitted during communication. But our language has
no primitive values, so this just reduces to transmitting names along chan-
nels that are themselves represented as names. This means that a system
of processes can dynamically change its communication structure because
connections to processes can be passed as first class values. This is why the
resulting language, the π-calculus, is called a calculus of mobile and concur-
rent communicating processes.

We generalize actions and differentiate them more explicitly into in-
put actions and output actions, since one side of a synchronized commu-
nication act has to send and the other to receive a name. We also replace
primitive process identifiers and defining equation by process replication
!P explained below.

Action prefixes π : : = x(y) receive y along x
| x〈y〉 send y along x
| τ unobservable action

Process exps P : : = N | (P1 | P2) | new a.P | !P
Sums N : : = 0 | N1 + N2 | π.P

The structural congruence remains the same as before, except that in
addition we have !P ≡ P | !P , that is, a process !P can spawn arbitrarily
many copies of itself.

In examples π.0 is often abbreviated by π. Note that in a summand
x(y).P , y is a bound variable with scope P that stands for the value received
along x. On the other hand, x〈y〉.P does not bind any variables.

Before presenting the transition semantics, we consider the following
example.

P = ((x〈y〉.0 + z(w).w〈y〉.0) | x(u).u〈v〉.0 | x〈z〉.0)

The middle process can synchronize and communicate with either the first
or the last one. Reaction with the first leads to

P1 = (0 | y〈v〉.0 | x〈z〉.0) ≡ (y〈v〉.0 | x〈z〉.0)

SUPPLEMENTARY NOTES NOVEMBER 19, 2002

The Pi-Calculus L24.5

which cannot transition further. Reaction with the seconds leads to

P ′
1 = ((x〈y〉.0 + z(w).w〈y〉.0) | z〈v〉.0 | 0)

which can step further to

P ′
2 = (v〈y〉.0 | 0 | 0)

Next we show the reaction rules in a form which does not make an
externally observable action explicit, and exploits structural congruence.

τ.P + N −→ P
Tau

(a(x).P + M) | (a〈b〉.Q + N) −→ ({b/x}P) | Q React

P −→ P ′

P | Q −→ P ′ | Q Par P −→ P ′

new x.P −→ new x.P ′ Res

Q ≡ P P −→ P ′ P ′ ≡ Q′

Q −→ Q′ Struct

Even though the syntax does not formally distinguish, we use x for
binding occurrences of names (subject to silent renaming), and a and b for
non-binding occurrences.

As a simple example we will model a storage cell that can hold a value
and service get and put requests to read and write the cell contents. We first
show it using definitions for process identifiers and then rewrite it using
process replication.

C(x, get,put) def= get〈x〉.C〈x, get,put〉.0
+ put(y).C〈y, get,put〉.0

We express this in the π-calculus by turning C itself into a name, left-
hand side into an input action and occurrences on the right-hand side into
an output action.

! c(x, get,put).(get〈x〉.c〈x, get,put〉.0 + put(y).c〈y, get,put〉.0)

We abbreviate this process expression by !C. In order to be in the cal-
culus we must be able to receive and send multiple names at once. It is

SUPPLEMENTARY NOTES NOVEMBER 19, 2002

L24.6 The Pi-Calculus

straightforward to add this capability. As an example, consider how to cre-
ate cell with initial contents 3, write 4 to it, read the cell and then print the
contents some output device. Printing a is represented by an output action
print〈a〉.0. We also consider 3 and 4 just as names here.

!C | new g.new p.c〈3, g, p〉.p〈4〉.g(x).print〈x〉.0

Note that c and print are the only free names in this expression. Note
also that we are creating new names g and p to stand for the channel to
get or put a names into the storage cell C. We leave it to the reader as an
instructive exercise to simulate the behavior of this expression. It should be
clear, however, that we need to use structural equivalence initially to obtain
a copy of C with which we can react after moving the quantifiers of g and
p outside.

As a more involved example, consider the following specification of the
sieve of Eratosthenes. We start with a stream to produce integers, assuming
we have a primitive successor operation on integer names.2 The idea is to
have a channel which sends successive numbers.

!count(n, out).out〈n〉.count(n + 1, out)

Second we show a process to filter all multiples of a given prime num-
ber from its input stream while producing the output stream. We assume
an oracle (xmodp = 0) and its negation.

!filter(p, in, out).in(x).((xmod p = 0)().filter〈p, in, out〉.0
+ (xmod p 6= 0)().out(x).filter〈p, in, out〉.0)

Finally, we come to the process that generates a sequence of prime num-
bers, starting from the first item of the input channel which should be prime
(by invariant).

!primes(in, out).in(p).out〈p〉.
new mid.(filter〈p, in,mid〉.0 | primes〈mid, out〉.0)

primes establishes a new filtering process for each prime and threads the
input stream in into the filter. The first element of the filtered result stream
is guaranteed to be prime, so we can invoke the primes process recursively.

At the top level, we start the process with the stream of numbers count-
ing up from 2, the smallest prime. This will generate communication re-
quests out〈p〉 for each successive prime.

2This can also be coded in the π-calculus, but we prefer to avoid this complication here.

SUPPLEMENTARY NOTES NOVEMBER 19, 2002

The Pi-Calculus L24.7

new nats.count〈2,nats〉 | primes〈nats, out〉

In this implementation, communication is fully synchronous, that is,
both sender and receiver can only move on once the message has been ex-
changed. Here, this means that the prime numbers are guaranteed to be
read in their natural order. If we don’t care about the order, we can rewrite
the process so that it generates the primes asynchronously. For this we use
the general transformation of

a〈b〉.P =⇒ τ.(a〈b〉.0 | P)

which means the computation of P can proceed regardless whether the
message b has been received along channel a. In our case, this would be a
simple change in the primes generator.

!primes(in, out).in(p).
out〈p〉.0 | new mid.(filter〈p, in,mid〉.0 | primes〈mid, out〉.0)

The advantage of an asynchronous calculus is its proximity to a realis-
tic model of computation. On the other hand, synchronous communciation
allows for significantly shorter code, because no protocol is neede to make
sure messages have been received, and in received in order. Since asyn-
chronous communication is very easily coded here, we stick to Milner’s
original π-calculus which was synchronous.

In the next lecture we will see how a variant of the π-calculus can be
embedded in a full-scale language such as Standard ML to offer rich con-
currency primitives in addition to functional programming.

SUPPLEMENTARY NOTES NOVEMBER 19, 2002

