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Chapter 1 PLANE CURVES

1.1 The Affine Plane
1.2 The Projective Plane
1.3 Plane Projective Curves
1.4 Tangent Lines
1.5 Nodes and Cusps
1.6 Transcendence Degree
1.7 The Dual Curve
1.8 Resultants
1.10 Coverings of the Projective Line
1.11 Genus
1.12 Bézout’s Theorem
1.13 The Plücker Formulas

Plane curves were the first algebraic varieties to be studied, so we begin with them. They provide helpful
examples, and we will see in Chapter 5 how they control varieties of arbitrary dimension. Chapters 2 - 7 are
about varieties of arbitrary dimension. We come back to curves in Chapter 8.

1.1 The Affine Plane

The n-dimensional affine space An is the space of n-tuples of complex numbers. The affine plane A2 is the
two-dimensional affine space.

Let f(x1, x2) be an irreducible polynomial in two variables with complex coefficients. The set of points
of the affine plane at which f vanishes, the locus of zeros of f , is called a plane affine curve. Let’s denote this
locus by X . Using vector notation x = (x1, x2),

(1.1.1) X = {x | f(x) = 0}

The degree of the curve X is the degree of its irreducible defining polynomial f .

1.1.2.
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The Cubic Curve y2 = x3 − x (real locus)
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1.1.3. Note. In contrast with polynomials in one variable, most complex polynomials in two or more variables
are irreducible – they cannot be factored. This can be shown by a method called “counting constants”. For
instance, quadratic polynomials in x1, x2 depend on the six coefficients of the monomials of degree at most
two. Linear polynomials ax1+bx2+c depend on three coefficients, but the product of two linear polynomials
depends on only five parameters, because a scalar factor can be moved from one of the linear polynomials to
the other. So the quadratic polynomials cannot all be written as products of linear polynomials. This reasoning
is fairly convincing. It can be justified formally in terms of dimension, which will be discussed in Chapter 4.�

We will get an understanding of the geometry of a plane curve as we go along, and we mention just one
important point here. A plane curve is called a curve because it is defined by one equation in two variables. Its
algebraic dimension is one. But because our scalars are complex numbers, it will be a surface, geometrically.
This is analogous to the fact that the affine line A1 is the plane of complex numbers.

One can see that a plane curve X is a surface by inspecting its projection to the affine x1-line A1. One
writes the defining polynomial as a polynomial in x2, whose coefficients ci = ci(x1) are polynomials in x1:

f(x1, x2) = c0x
d
2 + c1x

d−1
2 + · · ·+ cd

Let’s suppose that d is positive, i.e., that f isn’t a polynomial in x1 alone (in which case, since it is irreducible,
it would be linear).

The fibre of a map X → Z over a point p of Z is the inverse image of p, the set of points of X that map to
p. The fibre of the projection X → A1 over the point x1 = a is the set of points (a, b) such that b is a root of
the one-variable polynomial

f(a, x2) = c0x
d
2 + c1x

d−1
2 + · · ·+ cd

with ci = ci(a). There will be finitely many points in this fibre, and the fibre won’t be empty unless f(a, x2)
is a constant. So the curve X covers most of the x1-line, a complex plane, finitely often.

(1.1.4) changing coordinates

We allow linear changes of variable and translations in the affine plane A2. When a point x is written as
the column vector (x1, x2)t, the coordinates x′ = (x′1, x

′
2)t after such a change of variable will be related to x

by the formula

(1.1.5) x = Qx′ + a

whereQ is an invertible 2×2 matrix with complex coefficients and a = (a1, a2)t is a complex translation vector.
This changes a polynomial equation f(x) = 0, to f(Qx′ + a) = 0. One may also multiply a polynomial f by
a nonzero complex scalar without changing the locus {f = 0}. Using these operations, all lines, plane curves
of degree 1, become equivalent.

An affine conic is a plane affine curve of degree two. Every affine conic is equivalent to one of the loci

(1.1.6) x2
1 − x2

2 = 1 or x2 = x2
1

The proof of this is similar to the one used to classify real conics. The two loci might be called a complex
’hyperbola’ and ’parabola’, respectively. The complex ’ellipse’ x2

1 + x2
2 = 1 becomes the ’hyperbola’ when

one multiplies x2 by i.
On the other hand, there are infinitely many inequivalent cubic curves. Cubic polynomials in two variables

depend on the coefficients of the ten monomials 1, x1, x2, x
2
1, x1x2, x

2
2, x

3
1, x

2
1x2, x1x

2
2, x

3
2 of degree at most

3 in x. Linear changes of variable, translations, and scalar multiplication give us only seven scalars to work
with, leaving three essential parameters.

1.2 The Projective Plane

The n-dimensional projective space Pn is the set of equivalence classes of nonzero vectors x = (x0, x1, ..., xn),
the equivalence relation being
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(1.2.1) (x′0, ..., x
′
n) ∼ (x0, ..., xn) if (x′0, ..., x

′
n) = (λx0, ..., λxn)

for some nonzero complex number λ. The equivalence classes are the points of Pn, and one often refers to a
point by a particular vector in its class.

Points of Pn correspond bijectively to one-dimensional subspaces of Cn+1. When x is a nonzero vector,
the vectors λx, together with the zero vector, form the one-dimensional subspace of the complex vector space
Cn+1 spanned by x.

The projective plane P2 is the two-dimensional projective space. Its points are equivalence classes of
nonzero vectors (x0, x1, x2).

(1.2.2) the projective line

Points of the projective line P1 are equivalence classes of nonzero vectors (x0, x1). If x0 isn’t zero, we
may multiply by λ = x−1

0 to normalize the first entry of (x0, x1) to 1, and write the point it represents in a
unique way as (1, u), with u = x1/x0. There is one remaining point, the point represented by the vector (0, 1).
The projective line P1 can be obtained by adding this point, called the point at infinity, to the affine u-line,
which is a complex plane. Topologically, P1 is a two-dimensional sphere.

(1.2.3) lines in projective space

A line in projective space Pn is determined by a pair of distinct points p and q. When p and q are represented
by specific vectors, the set of points {rp+ sq}, with r, s in C not both zero is a line L. Points of L correspond
bijectively to points of the projective line P1, by

(1.2.4) rp+ sq ←→ (r, s)

A line in the projective plane P2 can also be described as the locus of solutions of a homogeneous linear
equation

(1.2.5) s0x0 + s1x1 + s2x2 = 0

1.2.6. Lemma. In the projective plane, two distinct lines have exactly one point in common and, in a pro-
jective space of any dimension, a pair of distinct points is contained in exactly one line. �

(1.2.7) the standard covering of P2

If the first entry x0 of a point p = (x0, x1, x2) of the projective plane P2 isn’t zero, we may normalize it to 1
without changing the point: (x0, x1, x2) ∼ (1, u1, u2), where ui = xi/x0. We did the analogous thing for P1

above. The representative vector (1, u1, u2) is uniquely determined by p, so points with x0 6= 0 correspond
bijectively to points of an affine plane A2 with coordinates (u1, u2):

(x0, x1, x2) ∼ (1, u1, u2) ←→ (u1, u2)

We regard the affine plane as a subset of P2 by this correspondence, and we denote that subset by U0. The
points of U0, those with x0 6= 0, are the points at finite distance. The points at infinity of P2, those of the form
(0, x1, x2), are on the line at infinity L0, the locus {x0 = 0}. The projective plane is the union of the two sets
U0 and L0. When a point is given by a coordinate vector, we can assume that the first coordinate is either 1 or
0.

When looking at a point of U0, we may simply set x0 = 1, and write the point as (1, x1, x2). To write
ui = xi/x0 makes sense only when a particular vector (x0, x1, x2) has already been given.

There is an analogous correspondence between points (x0, 1, x2) and points of an affine plane A2, and
between points (x0, x1, 1) and points of A2. We denote the subsets {x1 6= 0} and {x2 6= 0} by U1 and U2,
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respectively. The three sets U0,U1,U2 form the standard covering of P2 by three standard affine open sets.
Since the vector (0, 0, 0) has been ruled out, every point of P2 lies in at least one of the standard affine open
sets. Points whose three coordinates are nonzero lie in all of them.

1.2.8.
z = 0

x
=

0 y
=

0

1 1 1

0 0 1

0 1 0 1 0 0

A Schematic Representation of the Projective Plane, with a Conic

This figure shows the plane W : x+ y + z = 1 in the real projective space RP3. If p = (x, y, z) is a nonzero
vector, the one-dimensional subspace of R3 spanned by p will meet W in a single point unless p is on the line
x+ y + z = 0. So the plane is a faithful representation of most of RP2.

1.2.9. Note. Which points of P2 are at infinity depends on which of the standard affine open sets is taken to
be the one at finite distance. When the coordinates are (x0, x1, x2), I like to normalize x0 to 1, as above. Then
the points at infinity are those of the form (0, x1, x2). But when coordinates are (x, y, z), I may normalize z
to 1. Then the points at infinity are the points (x, y, 0). I hope this won’t cause too much confusion. �

(1.2.10) digression: the real projective plane

The points of the real projective plane RP2 are equivalence classes of nonzero real vectors x = (x0, x1, x2),
the equivalence relation being x′ ∼ x if x′ = λx for some nonzero real number λ. The real projective plane
can also be thought of as the space of one-dimensional subspaces of the real vector space V = R3.

The plane U : {x0 = 1} in the space V is analogous to the standard affine open subset U0 in the complex
projective plane P2. We can project V from the origin p0 = (0, 0, 0) to U , sending a point x = (x0, x1, x2) of
V distinct from p0 to the point (1, u1, u2), with ui = xi/x0. The fibres of this projection are the lines through
p0 and x, with po omitted. Looking from the origin, U becomes a “picture plane”.

1.2.11.

This illustration is from Dürer’s book on perspective

The projection to U is undefined at the points (0, x1, x2), which are orthogonal to the x0-axis. The line
connecting such a point to p0 doesn’t meet U . Those points correspond to the points at infinity of RP2.

The projection from 3-space to a picture plane goes back to the the 16th century, the time of Desargues
and Dürer. Projective coordinates were introduced by Möbius, 200 years later.
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(1.2.12) changing coordinates in the projective plane

An invertible 3×3 matrix P determines a linear change of coordinates in P2. With x = (x0, x1, x2)t and
x′ = (x′0, x

′
1, x
′
2)t represented as column vectors, the coordinate change is given by

(1.2.13) Px′ = x

As the next proposition shows, four special points, the three points e0 = (1, 0, 0)t, e1 = (0, 1, 0)t, e2 =
(0, 0, 1)t, together with the point ε = (1, 1, 1)t, determine the coordinates.

1.2.14. Proposition. Let p0, p1, p2, q be four points of P2, no three of which lie on a line. There is, up to
scalar factor, a unique linear coordinate change Px′ = x such that Ppi = ei and Pq = ε.

proof. The hypothesis that the points p0, p1, p2 don’t lie on a line means that the vectors that represent those
points are independent. They span C3. So q will be a combination c0p0 + c1p1 + c2p2, and because no three
points lie on a line, the coefficients ci will be nonzero. We can scale the vectors pi (multiply them by nonzero
scalars) to make q = p0+p1+p2 without changing the points. Next, the columns of P can be an arbitrary set
of independent vectors. We let them be p0, p1, p2. Then Pei = pi, and Pε = q. The matrix P is unique up to
scalar factor, as can be verified by looking the reasoning over. �

(1.2.15) conics

A polynomial f(x0, x1, x2) is homogeneous , and of degree d, if all monomials that appear with nonzero
coefficient have (total) degree d. For example, x3

0 + x3
1 − x0x1x2 is a homogeneous cubic polynomial.

A homogeneous quadratic polynomal is a combination of the six monomials

x2
0, x

2
1, x

2
2, x0x1, x1x2, x0x2

A conic is the locus of zeros of an irreducible homogeneous quadratic polynomial.

1.2.16. Proposition. For any conic C, there is a choice of coordinates so that C becomes the locus

x0x1 + x0x2 + x1x2 = 0

proof. Since the conic C isn’t a line, it will contain three points that aren’t colinear. Let’s leave the verification
of this fact as an exercise. We choose three non-colinear points on C, and adjust coordinates so that they
become the points e0, e1, e2. Let f be the quadratic polynomial in those coordinates whose zero locus is C.
Because e0 is a point of C, f(1, 0, 0) = 0, and therefore the coefficient of x2

0 in f is zero. Similarly, the
coefficients of x2

1 and x2
2 are zero. So f has the form

f = ax0x1 + bx0x2 + cx1x2

Since f is irreducible, a, b, c aren’t zero. By scaling the variables appropriately, we can make a = b = c = 1.
We will be left with the polynomial x0x1 + x0x2 + x1x2. �

1.3 Plane Projective Curves

The loci in projective space that are studied in algebraic geometry are those that can be defined by sys-
tems of homogeneous polynomial equations. The reason for homogeneity is that the vectors (a0, ..., an) and
(λa0, ..., λan) represent the same point of Pn. One wants to know that if f(x) = 0 is a polynomial equation,
and if f(a) = 0, then f(λa) = 0 for every λ 6= 0. As we verify now, this will be true if and only if f is
homogeneous.

A polynomial f can be written as a sum of its homogeneous parts:

(1.3.1) f = f0 + f1 + · · ·+ fd

where f0 is the constant term, f1 is the linear part, etc., and d is the degree of f .
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1.3.2. Lemma. Let f be a polynomial of degree d, and let x = (x0, ..., xn) be a particular nonzero vector.
Then f(λx) = 0 for every nonzero complex number λ if and only if fi(x) is zero for every i = 0, ..., d.

proof. f(λx0, ..., λxn) = f0 + λf1(x) + λ2f2(x) + · + λdfd(x). When we evaluate at a given vector x, the
right side of this equation becomes a polynomial of degree at most d in λ. Since a nonzero polynomial of
degree at most d has at most d roots, f(λx) won’t be zero for every λ unless that polynomial is zero – unless
fi(x) = 0 for every i. �

1.3.3. Lemma. If a homogeneous polynomial f is a product gh of polynomials, then g and h are homogeneous,
and the zero locus {f = 0} in projective space is the union of the two loci {g = 0} and {h = 0}. �

It is also true that relatively prime homogeneous polynomials f and g have only finitely many common
zeros. This isn’t obvious. It will be proved below, in Proposition 1.3.11.

(1.3.4) loci in the projective line

Before going to plane curves, we describe the zero locus in the projective line P1 of a homogeneous
polynomial in two variables.

1.3.5. Lemma. Every nonzero homogeneous polynomial f(x, y) = a0x
d + a1x

d−1y + · · · + ady
d with

complex coefficients is a product of homogeneous linear polynomials that are unique up to scalar factor.

To prove this, one uses the fact that the field of complex numbers is algebraically closed. A one-variable
complex polynomial factors into linear factors in the polynomial ring C[y]. To factor f(x, y), one may factor
the one-variable polynomial f(1, y) into linear factors, substitute y/x for y, and multiply the result by xd.
When one adjusts scalar factors, one will obtain the expected factorization of f(x, y). For instance, to factor
f(x, y) = x2 − 3xy + 2y2, substitute x = 1: 2y2 − 3y + 1 = 2(y − 1)(y − 1

2 ). Substituting y = y/x and
multiplying by x2, f(x, y) = 2(y − x)(y − 1

2x). The scalar 2 can be distributed arbitrarily among the linear
factors. �

Adjusting scalar factors, we may write a homogeneous polynomial as a product of the form

(1.3.6) f(x, y) = (v1x− u1y)r1 · · · (vkx− uky)rk

where no factor vix − uiy is a constant multiple of another, and where r1 + · · · + rk is the degree of f . The
exponent ri is the multiplicity of the linear factor vix− uiy.

A linear polynomial vx − uy determines a point (u, v) in the projective line P1, the unique zero of that
polynomial, and changing the polynomial by a scalar factor doesn’t change its zero. Thus the linear factors of
the homogeneous polynomial (1.3.6) determine points of P1, the zeros of f . The points (ui, vi) are zeros of
multiplicity ri. The total number of those points, counted with multiplicity, will be the degree of f .

The zero (ui, vi) of f corresponds to a root x = ui/vi of multiplicity ri of the one-variable polynomial
f(x, 1), except when the zero is the point (1, 0). This happens when the coefficient a0 of f is zero, and y is a
factor of f . One could say that f(x, y) has a zero at infinity in that case.

This sums up the information contained in an algebraic locus in the projective line. It will be a finite set of
points with multiplicities.

(1.3.7) intersections with a line

Let Z be the zero locus of a homogeneous polynomial f(x0, ..., xn) of degree d in projective space Pn, and
let L be a line in Pn (1.2.4). Say that L is the set of points rp+ sq, where p = (a0, ..., an) and q = (b0, ..., bn)
are represented by specific vectors, so that L corresponds to the projective line P1 by rp+ sq ↔ (r, s). Let’s
also assume that L isn’t entirely contained in the zero locus Z. The intersection Z ∩L corresponds to the zero
locus in P1 of the polynomial in r, s that is obtained by substituting rp+ sq into f . This substitution yields a
homogeneous polynomial f(r, s) of degree d in r, s. For example, if f = x0x1+x0x2+x1x2, then with p and
q as above, f is the following quadratic polynomial in r, s:
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f(r, s) = f(rp+ sq) = (ra0 + sb0)(ra1 + sb1) + (ra0 + sb0)(ra2 + sb2) + (ra1 + sb1)(ra2 + sb2)

= (a0a1+a0a2+a1a2)r2 +
(∑

i 6=j aibj
)
rs+ (b0b1+b0b2+b1b2)s2

The zeros of f in P1 correspond to the points of Z ∩L. There will be d zeros, when counted with multiplicity.
�

1.3.8. Definition. With notation as above, the intersection multiplicity ofZ andL at a point p is the multiplicity
of zero of the polynomial f . �

1.3.9. Corollary. Let Z be the zero locus in Pn of a homogeneous polynomial f , and let L be a line in Pn not
contained in Z. The number of intersections of Z and L, counted with multiplicity, is equal to the degree of f .
�

(1.3.10) loci in the projective plane

1.3.11. Proposition. Homogeneous polynomials f1, ..., fr in three variables x, y, z that have no common
factor have finitely many common zeros.

As this shows, the most interesting type of locus in the projective plane is the zero set of a single equation.
The proof of the proposition is below.

The locus of zeros of an irreducible homogeneous polynomial f is called a plane projective curve. The
degree of a plane projective curve is the degree of its irreducible defining polynomial.

1.3.12. Note. Suppose that a homogeneous polynomial is reducible, say f = g1 · · · gk, where gi are irreducible
and distinct (i.e., gi and gj don’t differ by a scalar factor when i 6= j). Then the zero locus C of f is the union
of the zero loci Vi of the factors gi. In this case, C may be called a reducible curve.

When there are multiple factors, say f = ge11 · · · g
ek
k and some ei are greater than 1, it is still true that

the locus C : {f = 0} will be the union of the loci Vi : {gi = 0}, but the connection between the geometry
of C and the algebra of f is weakened. In this situation, the structure of a scheme becomes useful. We
won’t discuss schemes. The only situation in which we will need to keep track of multiple factors is when
counting intersections with another curve D. For this purpose, one can define the divisor of f to be the integer
combination e1V1 + · · ·+ ekVk. �

We need a lemma for the proof of Proposition 1.3.11. The ring C[x, y] embeds into its field of fractions
F , which is the field of rational functions C(x, y) in x, y. The polynomial ring C[x, y, z] is a subring of the
one-variable polynomial ring F [z]. It can be useful to study a problem in F [z] first because F [z] is a principal
ideal domain. Its algebra is simpler.

Recall that the unit ideal of a ring R is the ring R itself.

1.3.13. Lemma. Let f1, ..., fk be homogeneous polynomials in x, y, z with no common factor. Their greatest
common divisor in F [z] is 1, and therefore f1, ..., fk generate the unit ideal of F [z]. There is an equation of
the form

∑
g′ifi = 1 with g′i in F [z].

proof. (i) Let h′ be an element of F [z] that isn’t a unit of F [z], i.e., that isn’t an element of F , and suppose
that, for every i, h′ divides fi in F [z], say fi = u′ih

′. The coefficients of h′ and u′i have denominators that
are polynomials in x, y. We clear denominators from their coefficients, to obtain elements of C[x, y, z]. This
will give us equations of the form difi = uih, where di are polynomials in x, y and ui, h are polynomials in
x, y, z.

Since h isn’t in F , it will have positive degree in z. Let g be an irreducible factor of h of positive degree
in z. Then g divides difi but doesn’t divide di which has degree zero in z. So g divides fi, and this is true for
every i. This contradicts the hypothesis that f1, ..., fk have no common factor. �

proof of Proposition 1.3.11.
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We are to show that homogeneous polynomials f1, ..., fr in x, y, z with no common factor have finitely
many common zeros. Lemma 1.3.13 tells us that we may write

∑
g′ifi = 1, with g′i in F [z]. Clearing

denominators from g′i gives us an equation of the form∑
gifi = d

where d is a polynomial in x, y and gi are polynomials in x, y, z. Taking suitable homogeneous parts of d and
gi produces an equation

∑
gifi = d in which all terms are homogeneous.

Lemma 1.3.5 asserts that d is a product of linear polynomials, say d = `1 · · · `r. A common zero of
f1, ..., fk is also a zero of d, and therefore it is a zero of `j for some j. It suffices to show that, for every j,
f1, ..., fr and `j have finitely many common zeros.

Since f1, ..., fk have no common factor, there is at least one fi that isn’t divisible by `j . Corollary 1.3.9
shows that fi and `j have finitely many common zeros. Therefore f1, ..., fk have finitely many common zeros
for every j. �

1.3.14. Corollary. Every locus in the projective plane P2 that can be defined by a system of homogeneous
polynomial equations is a finite union of points and curves. �

The next corollary is a special case of the Strong Nullstellensatz, which will be proved in the next chapter.

1.3.15. Corollary. Let f be an irreducible homogeneous polynomial in x, y, z that vanishes on an infinite
set S of points of P2. If another homogeneous polynomial g vanishes on S, then f divides g. Therefore, if an
irreducible polynomial vanishes on an infinite set S, that polynomial is unique up to scalar factor.

proof. If the irreducible polynomial f doesn’t divide g, then f and g have no common factor, and therefore
they have finitely many common zeros. �

(1.3.16) the classical topology

The usual topology on the affine space An will be called the classical topology. A subset U of An is open in
the classical topology if, whenever U contains a point p, it contains all points sufficiently near to p. We call this
the classical topology to distinguish it from another topology, the Zariski topology, which will be duscussed in
the next chapter.

The projective space Pn also has a classical topology. A subset U of Pn is open if, whenever a point p of
U is represented by a vector (x0, ..., xn), all vectors x′ = (x′0, ..., x

′
n) sufficiently near to x represent points of

U .

(1.3.17) isolated points

A point p of a topological space X is isolated if both {p} and its complement X−{p} are closed sets, or if
{p} is both open and closed. If X is a subset of An or Pn, a point p of X is isolated in the classical topology
if X doesn’t contain points p′ distinct from p, but arbitrarily close to p.

The proof of the next proposition is below.

1.3.18. Proposition Let n be an integer greater than one. The zero locus of a polynomial in An or in Pn
contains no points that are isolated in the classical topology.

An element f(x1, ..., xn) of the polynomial ring C[x1, ..., xn] is a formal polynomial, but the next lemma
shows that we needn’t be careful to distinguish formal polynomials from polynomial functions.

1.3.19. Lemma. A formal polynomial f(x1, ..., xn) is determined by the function that it defines on An.

proof. We are to show that if two formal polynomials f and g define the same function, they are equal. We
replace f by f − g. Then what we must show is that, if a formal polynomial f defines the zero function, then
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f = 0. We use induction on the number n of variables. We label the variable xn as y, so that our formal
polynomial becomes

f(x1, ..., xn−1, y) = cky
k + ck−1y

k−1 + · · ·+ c0

where ci are polynomials in x1, ..., xn−1 and ck isn’t the zero polynomial. By induction, ck doesn’t define the
zero function. We choose a1, ..., an−1 so that ck(a) 6= 0. Then f(a1, ..., an−1, y) is a nonzero polynomial in
y of degree k, that has at most k zeros. Choosing b so that f(a1, ..., an−1, b) isn’t zero shows that the function
defined by f isn’t identically zero. �

1.3.20. Lemma. Let f be a polynomial of degree d in the variables x1, ..., xn. There is a linear change of
variable Px′ = x, where P is an invertible n×n matrix, such that f(Px′) is a monic polynomial of degree d
in the variable x′n.

proof. We write f = f0 + f1 + · · · + fd, where fi is the homogeneous part of f of degree i, and we choose
a point p of An at which fd isn’t zero. We change variables so that p becomes the point (0, ..., 0, 1). We call
the new variables x1, .., .xn and the new polynomial f . Then fd(0, ..., 0, xn) will be equal to cxdn for some
nonzero constant c. When we adjust xn by a scalar factor to make c = 1, f will be monic. �

proof of Proposition 1.3.18. The proposition is true for loci in affine space and also for loci in projective space.
We look at the affine case. Let f(x1, ..., xn) be a polynomial with zero locus Z, and let p be a point of Z. We
adjust coordinates so that p is the origin (0, ..., 0) and f is monic in xn. We relabel xn as y, and write f as a
polynomial in y. Let’s write f(x, y) = f̃(y):

f̃(y) = f(x, y) = yd + cd−1(x)yd−1 + · · ·+ c0(x)

where ci is a polynomial in x1, ..., xn−1. For fixed x, c0(x) is the product of the roots of f̃(y). Since p is the
origin and f(p) = 0, c0(0) = 0. So c0(x) will tend to zero with x. Then at least one root y of f̃(y) will tend
to zero. This gives us points (x, y) of Z that are arbitrarily close to p. �

1.3.21. Corollary. Let C ′ be the complement of a finite set of points in a plane curve C. In the classical
topology, a continuous function g on C that is zero at every point of C ′ is identically zero. �

1.4 Tangent Lines

(1.4.1) homogenizing and dehomogenizing

We will often want to inspect a plane curveC : {f(x0, x1, x2) = 0} in a neighborhood of a particular point
p. To do this we may adjust coordinates so that p becomes the point (1, 0, 0), and look in the standard affine
open set U0 : {x0 6= 0}. The intersection C0 of C with U0 will be the zero locus of the non-homogeneous
polynomial f(1, x1, x2), and p will be the origin in the affine x1, x2-plane. The polynomial f(1, x1, x2) is the
dehomogenization of f .

A simple procedure, homogenization, inverts dehomogenization. Suppose given a non-homogeneous poly-
nomial F (x1, x2) of degree d. To homogenize F , we replace the variables xi, i = 1, 2, by ui = xi/x0. Then
since ui have degree zero in x, so does F (u1, u2). When we multiply by xd0, the result will be a homogeneous
polynomial of degree d in x0, x1, x2 not divisible by x0,

1.4.2. Lemma. A homogeneous polynomial f(x0, x1, x2) not divisible by x0 is irreducible if and only if its
dehomogenization f(1, x1, x2) is irreducible. �

We will come back to homogenization in Chapter 2.

(1.4.3) smooth points and singular points

Let C be the plane curve defined by an irreducible homogeneous polynomial f(x0, x1, x2), and let fi
denote the partial derivative ∂f

∂xi
, computed by the usual calculus formula, and a point of C at which the partial

derivatives fi aren’t all zero is called a smooth point of C, and a point at which all partial derivatives are zero is
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a singular point. A curve is smooth, or nonsingular, if it contains no singular point. Otherwise it is a singular
curve.

The Fermat curve

(1.4.4) xd0 + xd1 + xd2 = 0

is smooth because the only common zero of the partial derivatives dxd−1
0 , dxd−1

1 , dxd−1
2 , which is (0, 0, 0),

doesn’t represent a point of P2. The cubic curve x3
0 + x3

1 − x0x1x2 = 0 is singular at the point (0, 0, 1).

The Implicit Function Theorem explains the meaning of smoothness. Suppose that p = (1, 0, 0) is a point
of C. We set x0 = 1 and inspect the locus f(1, x1, x2) = 0 in the standard affine open set U0. If f2(p) isn’t
zero, the Implicit Function Theorem tells us that we can solve the equation f(1, x1, x2) = 0 for x2 locally as
an analytic function ϕ of x1. Sending x1 to (1, x1, ϕ(x1)) inverts the projection from C to the affine x1-line,
locally. So at a smooth point, C is locally homeomorphic to the affine line.

./images/Intersecting/Circle-Intersecting.pdf

1.4.5. intersecting the lines y = 0, 1.

Note. (about figures) In algebraic geometry, dimensions are too big to allow realistic figures. Even with a
plane curve, one is dealing with a locus in the space A2, whose dimension as a real vector space is four. In
some cases, such as in the figures above, depicting the real locus can be helpful, but in most cases, even the
real locus is too big, and one must make do with a schematic figure. The figure below is an example. My
students tell me that all of my figures look more or less like this:

1.4.6.

Y

X

f

p q

a singular 

point

a section
a fibre

a fibre

A Typical Schematic Figure

1.4.7. Euler’s Formula. Let f be a homogeneous polynomial of degree d in the variables x0, ..., xn. Then∑
i

xi
∂f
∂xi

= d f.
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proof. It is enough to check this formula when f is a monomial. As an example, let f be the monomial x2y3z,
then

xfx + yfy + zfz = x(2xy3z) + y(3x2y2z) + z(x2y3) = 6x2y3z = 6 f �

1.4.8. Corollary. (i) Let p be a point of P2. If all partial derivatives of an irreducible homogeneous poly-
nomial f are zero at p, then f is zero there, and therefore p is a singular point of the curve defined by f .
(ii) The partial derivatives of an irreducible polynomial have no common (nonconstant) factor.
(iii) A plane curve has finitely many singular points. �

(1.4.9) tangent lines and flex points

Let C be the plane projective curve defined by an irreducible homogeneous polynomial f . A line L is
tangent to C at a smooth point p if the intersection multiplicity of C and L at p is at least 2 (see (1.3.8)). As
we will see, there is a unique tangent line at a smooth point.

A smooth point p of C is a flex point if the intersection multiplicity of C and its tangent line at p is at least
3, and p is an ordinary flex point if the intersection multiplicity is equal to 3.

Let L be a line through a point p and let q be a point of L distinct from p. We represent p and q by specific
vectors (p0, p1, p2) and (q0, q1, q2), to write a variable point of L as p+ tq, and we expand the restriction of f
to L in a Taylor’s Series. Let fi = ∂f

∂xi
and fij = ∂2f

∂xi∂xj
. Then

(1.4.10) f(p+ tq) = f(p) +

(∑
i

fi(p) qi

)
t + 1

2

(∑
i,j

qi fij(p) qj

)
t2 + O(3)

where the symbol O(3) stands for a polynomial in which all terms have degree at least 3 in t. The point q is
missing from this parametrization, but this isn’t important.

Note. The Taylor expansion carries over to complex polynomials because it is an identity. It can be used to
show that the derivative has some properties analogous to properties of the derivative of a real polynomial.

Let ∇ be the gradient vector (f0, f1, f2), let H be the Hessian matrix of f , the matrix of second partial
derivatives

(1.4.11) H =

f00 f01 f02

f10 f11 f12

f20 f21 f22


and let ∇p and Hp be the evaluations of ∇ and H , respectively, at p. Regarding p and q as column vectors,
Equation 1.4.10 can be written as

(1.4.12) f(p+ tq) = f(p) +
(
∇p q

)
t + 1

2 (qtHp q)t
2 + O(3)

in which ∇pq and qtHpq are matrix products.
The intersection multiplicity of C and L at p (1.3.7) is the lowest power of t that has nonzero coefficient

in f(p+ tq). The intersection multiplicity is at least 1 if p lies on C, i.e., if f(p) = 0.
Suppose that p is a smooth point of C. Then L is tangent to C at p if the coefficient (∇pq) of t is zero, and

p is a flex point if (∇pq) and (qtHpq) are both zero.
The equation of the tangent line L at a smooth point p is∇px = 0, or

(1.4.13) f0(p)x0 + f1(p)x1 + f2(p)x2 = 0

It tells us that a point q lies on L if the linear term of (1.4.12) is zero.
By the way, Taylor’s formula shows that the restriction of f to every line through a singular point has a

multiple zero. However, we will speak of tangent lines only at smooth points of the curve.

It is convenient to introduce the notation 〈u, v〉 for the symmetric form utHp v on C3×C3. It makes sense
to say that this form vanishes on a pair of points of P2, because the relation 〈u, v〉 = 0 doesn’t depend on the
vectors that represent those points.

Note that p is a smooth point of C if and only if 〈p, p〉 = 0 but 〈p, x〉 is not identically zero.
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1.4.14. Proposition. Equation (1.4.10) can also be written as

f(p+ tq) = 1
d(d−1) 〈p, p〉 + 1

d−1 〈p, q〉t + 1
2 〈q, q〉t

2 + O(3)

proof. This follows from the two formulas

ptHp = (d− 1)∇p and ∇pp = df(p)„ which can be obtained by applying Euler’s formula to the entries of
Hp and∇p. �

1.4.15. Corollary. Let p be a smooth point of P2, let L be the line with the equation ∇px = 0, and let q be
a point of L distinct from p. Then
(i) L is tangent to C at p if and only if 〈p, p〉 = 〈p, q〉 = 0, and
(ii) p is a flex point of C with tangent line L if and only if 〈p, p〉 = 〈p, q〉 = 〈q, q〉 = 0. �

1.4.16. Theorem. A smooth point p of the curve C is a flex point if and only if the determinant detHp of
the Hessian matrix at p is zero.

proof. Let p be a smooth point of C, so that 〈p, p〉 = 0 but 〈p, v〉 isn’t identically zero. If detHp = 0, the
form is degenerate. There is a nonzero null vector q, and because 〈p, v〉 isn’t identically zero, q is distinct from
p. But 〈p, q〉 = 〈q, q〉 = 0, so p is a flex point.

Conversely, suppose that p is a flex point and let q be a point on the tangent line at p and distinct from p,
so that 〈p, p〉 = 〈p, q〉 = 〈q, q〉 = 0. The restriction of the form to the two-dimensional space W spanned by p
and q will be zero. A form on a space V of dimension 3 that restricts to zero on a two-dimensional subspace
W is degenerate: If (p, q, v) is a basis with p, q in W , the matrix of the form on V will look like this:0 0 ∗

0 0 ∗
∗ ∗ ∗


�

1.4.17. Proposition.
(i) Let f(x, y, z) be an irreducible homogeneous polynomial of degree at least two. The Hessian determinant
detH isn’t divisible by f . In particular, detH isn’t identically zero.
(ii) A curve that isn’t a line has finitely many flex points.

proof. (i) Let C be the curve defined by f . If f divides the Hessian determinant, every smooth point of C will
be a flex point. We set z = 1 and look on the standard affine U2, choosing coordinates so that the origin p is
a smooth point of C, and ∂f

∂y 6= 0 at p. The Implicit Function Theorem tells us that we can solve the equation
f(x, y, 1) = 0 for y locally, say y = ϕ(x). The graph Γ : {y = ϕ(x)} will be equal to C in a neighborhood
of p (see below). A point of Γ is a flex point if and only if d

2ϕ
dx2 is zero there. If this is true for all points near to

p, then d2ϕ
dx2 will be identically zero, which implies that ϕ is linear: y = ax. Then y = ax solves f = 0, and

therefore y−ax divides f(x, y, 1). But since f(x, y, z) is irreducible, and so is f(x, y, 1). Therefore f(x, y, 1)
and f(x, y, z) are linear, contrary to hypothesis.

(ii) This follows from (i) and (1.3.11). The irreducible polynomial f and the Hessian determinant have finitely
many common zeros. �

1.4.18. Review. (about the Implicit Function Theorem)
Let f(x, y) be a polynomial such that f(0, 0) = 0 and df

dy (0, 0) 6= 0. The Implicit Function Theorem
asserts that there is a unique analytic function ϕ(x), defined for small x, such that ϕ(0) = 0 and f(x, ϕ(x)) is
identically zero.

We make some further remarks. LetR be the ring of functions that are defined and analytic for small x. In
the ringR[y] of polynomials in y with coefficients inR, the polynomial y−ϕ(x), which is monic in y, divides
f(x, y). To see this, we do division with remainder of f by y − ϕ(x):

(1.4.19) f(x, y) = (y − ϕ(x))q(x, y) + r(x)

The quotient q(x, y) is inR[y], and the remainder r(x) has degree zero in y, so it is inR. Setting y = ϕ(x) in
the equation, one sees that r(x) = 0.
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Let Γ be the graph of ϕ in a suitable neighborhood U of the origin in x, y-space. Since f(x, y) = (y −
ϕ(x))q(x, y), the locus f(x, y) = 0 in U has the form Γ ∪ ∆, where Γ is the graph of ϕ and ∆ is the zero
locus of q(x, y). Differentiating, we find that ∂f∂y (0, 0) = q(0, 0). So q(0, 0) 6= 0. Then ∆ doesn’t contain the
origin, while Γ does. This implies that ∆ is disjoint from Γ, locally. A sufficiently small neighborhood U of
the origin won’t contain any of points ∆. In such a neighborhood, the locus of zeros of f will be Γ. �

1.5 Nodes and Cusps

Let C be the projective curve defined by an irreducible homogeneous polynomial f(x, y, z) of degree d, and
let p be a point of C. We choose coordinates so that p = (0, 0, 1), and we set z = 1. This gives us an affine
curve C0 in A2

x,y , the zero set of the polynomial f̃(x, y) = f(x, y, 1), and p becomes the origin (0, 0). We
write

(1.5.1) f̃(x, y) = f0 + f1 + f2 + · · ·+ fd,

where fi is the homogeneous part of f̃ of degree i, which is also the coefficient of zd−i in f(x, y, z).
If the origin p is a point of C0, the constant term f0 will be zero. Then the linear term f1 will define the

tangent direction to C0 at p, If f0 and f1 are both zero, p will be a singular point of C.
It seems permissible to drop the tilde and the subscript 0 in what follows, denoting f(x, y, 1) by f(x, y),

and C0 by C.

(1.5.2) the multiplicity of a singular point

Let f(x, y) be an analytic function, defined for small x, y, and let C denote the locus of zeros of f in a
neighborhood of p = (0, 0). To describe the singularity of C at p, one expands f as a series in x, y and looks
at the part of f of lowest degree. The smallest integer r such that fr(x, y) isn’t zero is the multiplicity of p.
When the multiplicity of p is r, f will have the form

(1.5.3) f(x, y) = fr + fr+1 + · · ·

Let L be a line {vx = uy} through p. The intersection multiplicity of C and L at the origin p will be
r unless fr(u, v) is zero. If fr(u, v) = 0, the intersection multiplicity will be greater than r. Such lines are
special. They correspond to the zeros of fr in P1. Because fr has degree r, there will be at most r of them.

1.5.4.

a Singular Point, with its Special Lines

(1.5.5) double points
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Suppose that the origin p is a point of multiplicity 2, a double point,. Let the quadratic part of f be

(1.5.6) f2 = ax2 + bxy + cy2

The point p is called a node if f2 has distinct zeros in P1. A node is the simplest singularity that a curve can
have.

When the discriminant b2 − 4ac is zero, f2 will be a square. We may arrange coordinates so that c 6= 0.
Then

(1.5.7) 4c(ax2 + bxy + cy2) = (bx+ 2cy)2

The line L: {bx+ 2cy = 0} is special. The point p is a cusp if the multiplicity of intersection of C and L at p
is 3. This will be true if and only if bx+ 2cy doesn’t divide f3(x, y).

When the discriminant is zero, one can adjust coordinates to make f2 = y2. Then p is a cusp if the
coefficient of the monomial x3 in f3 isn’t zero. The standard cusp is the locus y2 = x3.

The definitions of nodes and cusps are made in terms of particular coordinates x, y, though they don’t
depend on the choice of coordinates.

1.5.8. Lemma. Let f(x, y) be an analytic function, let x = x(u, v), y = y(u, v) be an analytic change of
variable, and let g(u, v) = f(x(u, v), y(u, v)). Also, let C and D be the local zero sets of f and g at p. Then
C has a node or a cusp if and only D does. �

The simplest example of a double point that isn’t a node or cusp is a tacnode, a point at which two smooth
branches of a curve intersect with the same tangent direction (see Figure ??).

1.6 Transcendence degree

Let F ⊂ K be a field extension. A set α = {α1, ..., αn} of elements of K is algebraically dependent over F
if there is a nonzero polynomial f(x1, ..., xn) with coefficients in F , such that f(α) = 0. If there is no such
polynomial, the set α is algebraically independent over F .

An infinite set is called algebraically independent if every finite subset is algebraically independent – if
there is no polynomial relation among any finite set of its elements.

The set consisting of a single element α1 of K will be algebraically dependent if α1 is algebraic over
F . Otherwise, the set {α1} of one element will be algebraically independent, and then α1 is said to be
transcendental over F .

An algebraically independent set α = {α1, ..., αn} that isn’t contained in a larger algebraically indepen-
dent set is called a transcendence basis for K over F . If there is a finite transcendence bases, its order is the
transcendence degree of the field extension K of F . Lemma 1.6.2 below shows that all transcendence basis
for K over F have the same order. Therefore the transcendence degree is well-defined. If there is no finite
transcendence basis, the transcendence degree of K over F is infinite.

For example, let K = F (x1, ..., xn) be the field of rational functions in n variables. The variables form a
transcendence basis of K over F , and the transcendence degree of K over F is n.

A nonzero ring with no zero divisors will be called a domain, and a domain that contains the field F as a
subring will be called an F -algebra. We use the customary notation F [α1, ..., αn] or F [α] for the F -algebra
generated by a set α = {α1, ..., αn}, and we may denote the field of fractions of F [α] by F (α1, ..., αn) or by
F (α).

The set {α1, ..., αn} is algebraically independent over F if and only if the surjective map from the poly-
nomial algebra F [x1, ..., xn] to F [α1, ..., αn] that sends xi to αi is bijective.

1.6.1. Lemma. Let K/F be a field extension, and let α = {α1, ..., αn} be a set of elements of K that is
algebraically independent over F , and let F (α) be the field of fractions of F [α].
(i) Every element of the field F (α) that isn’t in F is transcendental over F .
(ii) If β is another element ofK, the set {α1, ..., αn, β} is algebraically dependent if and only if β is algebraic
over F (α).
(iii) The algebraically independent set α is a transcendence basis if and only if every element ofK is algebraic
over F (α).
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proof. (i) We write an element z of F (α) as a fraction p/q = p(α)/q(α), where p(x) and q(x) are relatively
prime polynomials. Suppose that z satisfies a nontrivial polynomial relation c0zn + c1z

n−1 + · · · + cn = 0
with ci in F . We may assume that c0 = 1. Substituting z = p/q and multiplying by qn gives us the equation

pn = −q(c1pn−1 + · · ·+ cnq
n−1)

Because α is an algebraically independent set, this equation is equivalent with a polynomial equation in F [x].
It shows that q divides pn, which contradicts the hypothesis that p and q are relatively prime. �

1.6.2. Lemma.
(i) Let K/F be a field extension. If K has a finite transcendence basis, then all algebraically indepen-
dent subsets of K are finite, and all transcendence bases have the same number of elements. Therefore the
transcendence degree is well-defined.
(ii) If L ⊃ K ⊃ F are fields and if the degree [L :K] of L over K is finite, then K and L have the same
transcendence degree over F .

proof. (i) Let α = {α1, ..., αr} and β = {β1, ..., βs}. Assume that K is algebraic over F (α) and that the
set β is algebraically independent. We show that s ≤ r. The fact that all transcendence bases have the same
order will follow: If both α and β are transcendence bases, then s ≤ r, and since we can interchange α and β,
r ≤ s.

The proof that s ≤ r proceeds by reducing to the trivial case that β is a subset of α. Suppose that some
element of β, say βs, isn’t in the set α. The set β′ = {β1, ..., βs−1} is algebraically independent, but it isn’t
a transcendence basis. So K isn’t algebraic over F (β′). Since K is algebraic over F (α), there is at least one
element of α, say αr, that isn’t algebraic over F (β′). Then γ = β′∪{αs} will be an algebraically independent
set of order s, and it will contain more elements of the set α than β does. Induction shows that s ≤ r. �

1.7 The Dual Curve

(1.7.1) the dual plane

Let P denote the projective plane with coordinates x0, x1, x2, and let L be the line in P whose equation is

(1.7.2) s0x0 + s1x1 + s2x2 = 0

The solutions of this equation determine the coefficients si only up to a common nonzero scalar factor, so the
line L determines a point (s0, s1, s2) in another projective plane P∗ called the dual plane. We denote that point
by L∗. Moreover, a point p = (x0, x1, x2) in P determines a line in the dual plane, the line with the equation
(1.7.2), when si are regarded as the variables and xi as the scalar coefficients. We denote that line by p∗. The
equation exhibits a duality between P and P∗. A point p of P lies on a line L if and only if the equation is
satisfied, and this means that, in P∗, the point L∗ lies on the line p∗.

(1.7.3) the dual curve

Let C be a plane projective curve of degree at least two, and let U be the set of its smooth points. This is
the complement of a finite subset of C. We define a map

U
t−→ P∗

If p is a point of U and L be the tangent line to C at p, we define t(p) = L∗, where L∗ is the point of P∗ that
corresponds to L.

Denoting the partial derivative ∂f
∂xi

by fi as before, the tangent line L at a smooth point p = (x0, x1, x2)
of C has the equation f0x0 + f1x1 + f2x2 = 0. Therefore L∗ is the point

(1.7.4) (s0, s1, s2) =
(
f0(x), f1(x), f2(x)

)
Let U∗ be the image of U in P∗. Points of U∗ correspond to tangent lines at smooth points of C.

??figure??

We assume that C has degree at least two because, if C were a line, U∗ would be a point.
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1.7.5. Lemma. Letϕ(s0, s1, s2) be a homogeneous polynomial, and let g(x0, x1, x2) = ϕ(f0(x), f1(x), f2(x)).
Then ϕ(s) is identically zero on U∗ if and only if g(x) is identically zero on U . This is true if and only if f
divides g.

proof. The first assertion comes from the fact that (s0, s1, s2) and (f0(x), f1(x), f2(x)) represent the same
point of P∗, and the last one follows from Corollary 1.3.21, because U is the complement of a finite set. �

1.7.6. Theorem. Let C be the plane curve defined by an irreducible homogeneous polynomial f of degree at
least two. With notation as above, the closure C∗ of the image U∗ = t(U) is a curve in the dual space P∗.

The curve C∗ referred to in the theorem is the dual curve .

proof. If an irreducible homogeneous polynomial ϕ(s0, s1, s2) vanishes on U∗, it will be unique up to scalar
factor (Corollary 1.3.15). Its zero locus will be the dual curve.

We show first that there is a nonzero polynomial ϕ, not necessarily irreducible or homogeneous, that
vanishes on U∗. The field C(x0, x1, x2) has transcendence degree three over C. Therefore the four polyno-
mials f0, f1, f2, and f are algebraically dependent. There is a nonzero polynomial ψ(s0, s1, s2, t) such that
ψ(f0(x), f1(x), f2(x), f(x)) is the zero polynomial in x. We can cancel factors of t, so we may assume that ψ
isn’t divisible by t. Let ϕ(s0, s1, s2) = ψ(s0, s1, s2, 0). When t doesn’t divide ψ, ϕ isn’t the zero polynomial.

Let x = (x1, x2, x3) be a vector that represents a point of U , and let f(x) = f and fi(x) = f i. Then
f = 0, and therefore

ϕ(f0, f1, f2) = ψ(f0, f1f2, 0) = ψ(f0, f1, f2, f)

Since ψ(f0, f1, f2, f) is identically zero. ϕ(f0, f1, f2) = 0 for all x that represent points of U . The vector λx
represents the same point of U , and if f is homogeneous of some degree d, the derivatives fi are homogeneous
of degree d− 1. Therefore ϕ(f0(λx), f1(λx), f2(λx)) = λd−1ϕ(f0, f1, f2) = 0.

Since λd−1 can be any complex number, Lemma 1.3.2 tells us that the homogeneous parts of ϕ vanish at
(f0, f1, f2), and the homogeneous parts of ϕ(s) vanish on U∗ (1.7.5). So we may assume that ϕ is homo-
geneous, of some degree r. Then if f has degreee d, the polynomial g(x) = ϕ(f0(x), f1(x), f2(x)) will be
homogeneous, of degree r(d−1). It will vanish on U , and therefore on C (1.3.21). So f will divide g. Finally,
if ϕ(s) factors, then g(x) factors accordingly, and because f is irreducible, it will divide one of the factors
of g. The corresponding factor of ϕ will vanish on U∗ (1.7.5). So we may replace the polynomial ϕ, now
homogeneous, by one of its irreducible factors. �

In principle, the proof of the theorem gives a method for finding a polynomial that vanishes on C∗. That
is to find a polynomial relation among fx, fy, fz, f , and then set f = 0. But it can be painful to determine the
defining polynomial of the dual curve explicitly. The degrees of C and C∗ will often be different, and several
points of the dual curve C∗ may correspond to a singular point of C, and vice versa.

However, the computation is simple for a conic.

1.7.7. Examples.
(i) (the dual of a conic) Let f = x0x1 + x0x2 + x1x2 and let C be the conic f = 0. Let (s0, s1, s2) =
(f0, f1, f2) = (x1+x2, x0+x2, x0+x1). Then

(1.7.8) s2
0 + s2

1 + s2
2 − 2(x2

0 + x2
1 + x2

2) = 2f and s0s1 + s1s2 + s0s2 − (x2
0 + x2

1 + x2
2) = 3f

We eliminate (x2
0 + x2

1 + x2
2) from the two equations.

(1.7.9) (s2
0 + s2

1 + s2
2)− 2(s0s1 + s1s2 + s0s2) = −4f

Setting f = 0 gives us the equation of the dual curve. It is another conic.

(ii) (the dual of a cuspidal cubic) It isn’t easy to compute the dual of a smooth cubic, whose equation
has degree 6. We compute the dual of a cubic with a cusp instead. The curve C defined by the irreducible
polynomial f = y2z + x3 has a cusp at (0, 0, 1). The Hessian matrix of f is

H =

6x 0 0
0 2z 2y
0 2y 0


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and the Hessian determinant h = detH is −24xy2. The common zeros of f and h are the cusp point (0, 0, 1)
and a single flex point (0, 1, 0).

We scale the partial derivatives of f to simplify notation. Let u = fx/3 = x2, v = fy/2 = yz, and
w = fz = y2. Then

v2w − u3 = y4z2 − x6 = (y2z + x3)(y2z − x3) = f(y2z − x3)

The zero locus of the irreducible polynomial v2w − u3 is the dual curve. It is another cuspidal cubic. �

(1.7.10) a local equation for the dual curve

We label the coordinates in P and P∗ as x, y, z and u, v, w, respectively, and we work in a neighborhood
of a smooth point p0 of the curve C defined by a homogeneous polynomial f(x, y, z), choosing coordinates
so that p0 = (0, 0, 1), and that the tangent line at p0 is the line L0 : {y = 0}. The image L∗0 of p0 in the dual
curve C∗ is (u, v, w) = (0, 1, 0).

Let f̃(x, y) = f(x, y, 1). In the affine x, y-plane, the point p0 becomes the origin (0, 0). So f̃(0, 0) = 0,
and since the tangent line is the line {y = 0}, ∂f̃

∂x (0, 0) = 0, while ∂f̃
∂y (0, 0) 6= 0. The Implicit Function

Theorem allows us to solve the equation f̃ = 0 for y as an analytic function y(x) for small x, with y(0) = 0.
Let y′(x) denote the derivative dy

dx . Differentiating the equation f(x, y(x)) = 0 shows that y′(0) is zero too.
Let p̃1 = (x1, y1) be a point of C0 near to p̃0, so that y1 = y(x1), and let y′1 = y′(x1). The tangent line

L1 at p̃1 has the equation

(1.7.11) y − y1 = y′1(x− x1)

Putting z back, the homogeneous equation of the tangent line L1 at the point (x1, y1, 1) is

(−y′1)x+ y + (y′1x1−y1)z = 0

Equation (1.7.11) tells us that the point L∗1 of the dual plane that corresponds to L1 is (−y′1, 1, y′1x1−y1). Let’s
drop the subscript 1. As x varies, and writing y = y(x) and y′ = y′(x),

(1.7.12) (u, v, w) = (−y′, 1, y′x−y),

There may be accidents: L0 might be tangent to C at distinct smooth points q0 and p0, and it might pass
through a singular point of C. If either of these accidents occurs, we can’t analyze the neighborhood of L∗0 in
C∗ by this method. But, provided that they don’t occur, the path (1.7.12) will trace out the dual curve C∗ near
to L∗0 = (0, 1, 0). (See (1.4.18.) �

(1.7.13) the bidual

The bidual C∗∗ of a curve C is the dual of the curve C∗, which is a curve in the space P∗∗ = P.

1.7.14. Theorem. A plane curve of degree greater than one is equal to its bidual: C∗∗ = C.

1.7.15. Lemma.
(i) The set V of points p0 of a curve C such that C is smooth at p0 and its dual C∗ is smooth at t(p0) is the
complement of a finite subset of C.
(ii) Let p1 be a point near to a smooth point p0 of a curve C, let L1 and L0 be the tangent line to C at p1 and
p0, respectively, and let q be intersection point L1 ∩ L0. Then lim

p1→p0
q = p0.

(iii) If p0 is a point of V with tangent line L0, then the tangent line to C∗ at L∗0 is p∗o.

proof. (i) Let S and S∗ denote the finite sets of singular points of C, and C∗, respectively. So the set U of
smooth points of C is the complement of S in C, and V is obtained from U by deleting points whose images
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are in S∗. The fibre of t over a point L∗ of C∗ is the set of smooth points p of C such that the tangent line at
p is L. Since L meets C in finitely many points, the fibre is finite. So the inverse image of S∗ ∩ U will be a
finite subset of U whose complement is V .

(ii) We work analytically in a neighborhood of p0, choosing coordinates so that p0 = (0, 0, 1) and that L0 is
the line {y = 0}. Let (xq, yq, 1) be the coordinates of q = L0 ∩ L1. Since q is a point of L0, yq = 0. The
coordinate xq can be obtained by substituting x = xq and y = 0 into the equation (1.7.11) of L1:

xq = x1 − y1/y
′
1.

Now, when a function has an nth order zero at the point x = 0, i.e, when it has the form y = xnh(x),
where n > 0 and h(0) 6= 0, the order of zero of its derivative at that point is n−1. This is verified by
differentiating xnh(x). Since the function y(x) has a zero of positive order at p0, lim

p1→p0
y1/y

′
1 = 0. We also

have lim
p1→p0

x1 = 0. So lim
p1→p0

xq = 0 and lim
p1→p0

q = lim
p1→p0

(xq, yq, 1) = (0, 0, 1) = p0.

figure

(iii) Let p1 be a point of C near to p0, and let L1 be the tangent line to C at p1. The image of p1 is L∗1 =
(f0(p1), f1(p1), f2(p1)). Because the partial derivatives fi are continuous,

lim
p1→p0

L∗1 = (f0(p0), f1(p0), f2(p0)) = L∗0

With q = L0 ∩ L1, q∗ is the line through the points L∗0 and L∗1. As p1 approaches p0, L∗1 approaches L∗0, and
therefore q∗ approaches the tangent line to C∗ at L∗0. On the other hand, the lemma tells us that q∗ approaches
p∗0. Therefore the tangent line at L∗0 is p∗0. �

proof of theorem 1.7.14. Let V be the set of smooth points of C whose images in C∗ are smooth, as in Lemma

1.7.15. Let U∗ denote the set of smooth points of C∗, and let U∗ t∗−→ P∗∗ = P be the map analogous to the

map t. Recall that t is defined by t(p) = L∗. Since the tangent line to C∗ at L∗ is p∗, the map U∗ t∗−→ C
analogous to t is t∗(L∗) = (p∗)∗ = p. So for all points p of V , t∗t(p) = t∗(L∗) = p. It follows that the
restriction of t to V is injective, and that it defines a bijective map from V to its image V ∗, whose inverse
function is t∗. So V is contained in the bidual C∗∗. Since V is dense in C and C∗∗ is a closed set, C ⊂ C∗∗.
Since C and C∗∗ are curves, C = C∗∗. �

1.7.16. Corollary. Let C be a smooth curve. The map C t−→ C∗, which is defined at all points of C, is
surjective.

proof. Let W denote the image of C in C∗. The map C∗ t∗−→ C∗∗ = C is defined at the smooth points of C∗,
and it inverts t at those points. ThereforeW contains the smooth points of C∗. The complement S of W in C∗

is a finite set. Since C is compact, its image W is compact, and therefore closed in C∗. Then its complement
S is open, and since it is a finite set, S is also closed. So S consists of isolated points of C∗. Since a plane
curve has no isolated point (1.3.18), S is empty. �

1.8 Resultants

Let F and G be monic polynomials in x with variable coefficients:

(1.8.1) F (x) = xm + a1x
m−1 + · · ·+ am and G(x) = xn + b1x

n−1 + · · ·+ bn

The resultant Res(F,G) of F and G is a certain polynomial in the coefficients. Its important property is that,
when the coefficients of are in a field, the resultant is zero if and only if F and G have a common factor.

The formula for the resultant is nicest when one allows leading coefficients different from 1. We work with
homogeneous polynomials in two variables to prevent the degrees from dropping when a leading coefficient
happens to be zero.
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Let f and g be homogeneous polynomials in x, y with complex coefficients:

(1.8.2) f(x, y) = a0x
m + a1x

m−1y + · · ·+ amy
m, g(x, y) = b0x

n + b1x
n−1y + · · ·+ bny

n

Suppose that they have a common zero (x, y) = (u, v) in P1
xy . Then vx−uy divides both f and g. The

polynomial h = fg/(vx−uy) of degree m+n−1 will be divisible by f and by g, say h = pf = qg,
where p and q are homogeneous polynomials of degrees n−1 and m−1, respectively. Then h will be a linear
combination pf of the polynomials xiyjf , with i+j = n−1, and it will also be a linear combination qg of the
polynomials xky`g, with k+` = m−1. The equation pf = qg tells us that the m+n polynomials of degree
m+n−1,

(1.8.3) xn−1f, xn−2yf, ..., yn−1f ; xm−1g, xm−2yg, ..., ym−1g

will be dependent. For example, suppose that f has degree 3 and g has degree 2. If f and g have a common
zero, the polynomials

xf = a0x
4 + a1x

3y + a2x
2y2 + a3xy

3

yf = a0x
3y + a1x

2y2 + a2xy
3 + a3y

4

x2g = b0x
4 + b1x

3y + b2x
2y2

xyg = b0x
3y + b1x

2y2 + b2xy
3

y2g = bx2y2 + b1xy
3 + b2y

4

will be dependent. Conversely, if the polynomials (1.8.3) are dependent, there will be an equation of the form
pf = qg, with p of degree n−1 and q of degree m−1. Then at least one zero of g must also be a zero of f .

Let r=m+n−1. We form a square (r+1)×(r+1) matrixR, the resultant matrix, whose columns are indexed
by the monomials xr, xr−1y, ..., yr of degree r, and whose rows list the coefficients of the polynomials (1.8.3).
The matrix is illustrated below for the cases m,n = 3, 2 and m,n = 1, 2, with dots representing entries that
are zero:

(1.8.4) R =


a0 a1 a2 a3 ·
· a0 a1 a2 a3

b0 b1 b2 · ·
· b0 b1 b2 ·
· · b0 b1 b2

 or R =

a0 a1 ·
· a0 a1

b0 b1 b2



The resultant of f and g is defined to be the determinant ofR.

(1.8.5) Res(f, g) = detR

The coefficients of the polynomials f and g can be in any ring.
The resultant Res(F,G) of the monic, one-variable polynomials F (x) = xm+a1x

m−1 + · · ·+am and
G(x) = xn+b1x

n−1+· · ·+bn is the determinant of the matrixR, with a0 = b0 = 1.

1.8.6. Corollary. Let f and g be homogeneous polynomials in two variables, or monic polynomials in one
variable, of degrees m and n, respectively, and with coefficients in a field. The resultant Res(f, g) is zero if
and only if f and g have a common factor. If so, there will be polynomials p and q of degrees n−1 and m−1
respectively, such that pf = qg. If the coefficients are in C, the resultant is zero if and only if f and g have a
common root. �

When the leading coefficients a0 and b0 of f and g are both zero, the point (1, 0) of P1
xy will be a zero of f

and of g. In this case, f and g have a common zero at infinity.

(1.8.7) weighted degree
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When defining the degree of a polynomial, one may assign an integer called a weight to each variable. If
one assigns weight wi to the variable xi, the monomial xe11 · · ·xenn gets the weighted degree

e1w1 + · · ·+ enwn

For example, it is natural to assign weight k to the coefficient ak of the polynomial f(x) = xn − a1x
n−1 +

a2x
n−2 − · · · ± an. The reason is that, if f factors into linear factors, f(x) = (x− α1) · · · (x− αn), then ak

will be the kth elementary symmetric function in α1, ..., αn. When written as a polynomial in α, the degree of
ak will be k.

We leave the proof of the next lemma as an exercise.

1.8.8. Lemma. Let f(x, y) and g(x, y) be homogeneous polynomials of degrees m and n respectively, with
variable coefficients ai and bi, as in (1.8.2). When one assigns weight i to ai and to bi, the resultant Res(f, g)
becomes a weighted homogeneous polynomial of degree mn in the variables {ai, bj}. �

1.8.9. Proposition. Let F and G be products of monic linear polynomials, say F =
∏
i(x − αi) and G =∏

j(x− βj). Then

Res(F,G) =
∏
i,j

(αi − βj) =
∏
i

G(αi)

proof. The equality of the second and third terms is obtained by substituting αi for x into the formula G =∏
(x− βj). We prove that the first and second terms are equal.

Let the elements αi and βj be variables, let R denote the resultant Res(F,G) and let Π denote the product∏
i.j(αi − βj). When we write the coefficients of F and G as symmetric functions in the roots αi and βj ,

R will be homogeneous. Its (unweighted) degree in αi, βj will be mn, the same as the degree of Π (Lemma
1.8.8). To show that R = Π, we choose i, j and divide R by the polynomial αi − βj , considered as a monic
polynomial in αi:

R = (αi − βj)q + r,

where r has degree zero in αi. The resultantR vanishes when we substitute αi = βj . Looking at this equation,
we see that the remainder r also vanishes when αi = βj . On the other hand, the remainder is independent of
αi. It doesn’t change when we set αi = βj . Therefore the remainder is zero, and αi − βj divides R. This is
true for all i and all j, so Π divides R, and since these two polynomials have the same degree, R = cΠ for
some scalar c. To show that c = 1, one computes R and Π for some particular polynomials. We suggest using
F = xm and G = xn − 1. �

1.8.10. Corollary. Let F,G,H be monic polynomials and let c be a scalar. Then
(i) Res(F,GH) = Res(F,G) Res(F,H), and
(ii) Res(F (x−c), G(x−c)) = Res(F (x), G(x)). �

(1.8.11) the discriminant

The discriminant Discr(F ) of a polynomial F = a0x
m + a1x

n−1 + · · · am is the resultant of F and its
derivative F ′:

(1.8.12) Discr(F ) = Res(F, F ′)

The computation of the discriminant is made using the formula for the resultant of a polynomial of degree m.
The definition makes sense when the leading coefficient a0 is zero, though the discriminant will be zero in that
case.

Note. The formula for the discriminant is often normalized by a factor±ak0 . We won’t make this normalization,
so our formula of the discriminant is slightly different from the usual one.

When the coefficients of F are complex numbers, the discriminant is zero if and only if either F has a
double root, which happens when F and F ′ have a common factor, or else F has degree less than m.
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For example, the discriminant of the quadratic polynomial F (x) = ax2 + bx+ c is

(1.8.13) det

 a b c
2a b ·
· 2a b

 = −a(b2 − 4ac).

The discriminant of the monic cubic x3 + px+ q whose quadratic coefficient is zero is

(1.8.14) det


1 · p q ·
· 1 · p q
3 · p · ·
· 3 · p ·
· · 3 · p

 = 4p3 + 27q2

These are the negatives of the usual formulas. The signs are artifacts of our definition.

1.8.15. Proposition. LetK be a field of characteristic zero. The discriminant of an irreducible polynomial F
with coefficients in K isn’t zero. Therefore an irreducible polynomial F with coefficients in K has no multiple
root.

proof. When F is irreducible, it cannot have a factor in common with the derivative F ′, which has lower
degree. �

This proposition is false when the characteristic of K isn’t zero. In characteristic p, the derivative F ′ might be
the zero polynomial.

1.8.16. Proposition. Let F =
∏

(x− αi) be a polynomial that is a product of monic linear factors. Then

Discr(F ) =
∏
i

F ′(αi) =
∏
i6=j

(αi − αj) = ±
∏
i<j

(αi − αj)2

proof. The fact that Discr(F ) =
∏
F ′(αi) follows from Proposition 1.8.9. We show that

F ′(αi) =
∏
j,j 6=i

(αi − αj) = (αi − α1) · · · ̂(αi − αi) · · · (αi − αn)

where the hat ̂ indicates that that term is deleted. By the product rule for differentiation,

F ′(x) =
∑
k

(x− α1) · · · ̂(x− αk) · · · (x− αn)

Substituting x = αi, all terms in the sum, except the one with i = k, become zero. �

1.8.17. Corollary. Discr(F (x)) = Discr(F (x− c)). �

1.8.18. Proposition. Let F (x) and G(x) be monic polynomials. Then

Discr(FG) = ±Discr(F ) Discr(G)Res(F,G)2

proof. This proposition follows from Propositions 1.8.9 and 1.8.16 for polynomials with complex coefficients.
It is true for polynomials with coefficients in any ring because it is an identity. �

1.9 Hensel’s Lemma
The resultant matrix (1.8.4) arises in a second context that we explain here.

Suppose given a product P = FG of two polynomials, say

(1.9.1)
(
c0x

m+n+ c1x
m+n−1 + · · ·+ cm+n

)
=
(
a0x

m+a1x
m−1 + · · ·+am

)(
b0x

n+ b1x
n−1 + · · ·+ bn

)
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We call the relations among the coefficients that are implied by this polynomial equation the product equations.
The product equations are

ci = aib0 + ai−1b1 + · · ·+ a0bi

for i = 0, ...,m+n. For instance, when m = 3 and n = 2, they are

1.9.2.
c0 = a0b0

c1 = a1b0 + a0b1

c2 = a2b0 + a1b1 + a0b2

c3 = a3b0 + a2b1 + a1b2

c4 = a3b1 + a2b2

c5 = a3b2

Let J denote the Jacobian matrix of partial derivatives of c1, ..., cm+n with respect to the variables b1, ..., bn
and a1, ..., am, treating a0, b0 and c0 as constants. When m,n = 3, 2,

(1.9.3) J =
∂(ci)

∂(bj , ak)
=


a0 . b0 . .
a1 a0 b1 b0 .
a2 a1 b2 b1 b0
a3 a2 . b2 b1
. a3 . . b2


1.9.4. Lemma. The Jacobian matrix J is the transpose of the resultant matrixR (1.8.4). �

1.9.5. Corollary. Let F and G be polynomials with complex coefficients. The Jacobian matrix is singular if
and only if, either F and G have a common root, or a0 = b0 = 0. �

This corollary has an application to polynomials with analytic coefficients. Let

(1.9.6) P (t, x) = c0(t)xd + c1(t)xd−1 + · · ·+ cd(t)

be a polynomial in x whose coefficients ci are analytic functions, defined for small values of t, and let P =
P (0, x) = c0x

d + c1x
d−1 + · · · + cd be the evaluation of P at t = 0, so that ci = ci(0). Suppose given a

factorization P = F G, whereG = b0x
n+b1x

n−1+· · ·+bn is a polynomial and F = xm+a1x
m−1+· · ·+am

is a monic polynomial, both with complex coefficients. Are there polynomials F (t, x) = xm + a1x
m−1 +

· · · + am and G(t, x) = b0x
n + b1x

n−1 + · · · + bn, with F monic, whose coefficients ai and bi are analytic
functions defined for small t, such that P = FG, F (0, x) = F , and G(0, x) = G ?

1.9.7. Hensel’s Lemma. With notation as above, suppose that F and G have no common root. Then P
factors, as above.

proof. Since F is supposed to be monic, we set a0(t) = 1. The first product equation tells us that b0(t) = c0(t).
Corollary 1.9.5 tells us that the Jacobian matrix for the remaining product equations is nonsingular at t = 0, so
according to the Implicit Function Theorem, the product equations have a unique solution in analytic functions
ai(t), bj(t) for small t. �

Note that P isn’t assumed to be monic. If c0 = 0, the degree of P will be less than the degree of P . In that
case, G will have lower degree than G.

figure

1.9.8. Example. Let P = c0(t)x2 + c1(t)x+ c2(t). The product equations for factoring P as a product FG
of two linear polynomials with F monic are

c0 = b0 , c1 = a1b0 + b1 , c2 = a1b1

and the Jacobian matrix is
(

1 b0
a1 b1

)
.
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Suppose that P = P (0, x) factors: c0x
2 + c1x + c2 = (x + a1)(b0x + b1) = F G. The determinant of

the Jacobian matrix at t = 0 is b1 − a1b0. It is nonzero if and only if the two factors are relatively prime, in
which case P factors too.

On the other hand, the one-variable Jacobian criterion allows us to solve the equation P (t, x) = 0 for x as
function of t with x(0) = −a1, provided that ∂P∂x = 2c0x + c1 isn’t zero at the point (t, x) = (0,−a1). In
that case, P factors. Substituting c0 = b0 and c1 = a1b0 + b1, shows that −2c0a1 + c1 = b1 − a1b0. Not
surprisingly, the two conditions for factoring are the same. �

1.10 Plane Curves as Coverings of the Projective Line
When f and g are polynomials in several variables including a variable z, Resz(f, g) and Discrz(f)
will denote the resultant and discriminant, computed regarding f, g as polynomials in z. The resultant and
discriminant will be polynomials in the other variables.

1.10.1. Lemma. (i) Let F = C(x, y) be the field of rational functions in x, y. An irreducible polynomial f in
C[x, y, z] has positive degree in z, but isn’t divisible by z is also an irreducible element of F [z].
(ii) Let f(x, y, z) be an irreducible polynomial in C[x, y, z] that isn’t divisible by z. The discriminant Discrz(f)
of f with respect to the variable z is a nonzero polynomial in x, y. �

proof. (i) Say that f(x, y, z) factors in F [z], f = g′h′, where g′ and h′ are polynomials of positive degree in
z. When we clear denominators from g′ and h′, we obtain an equation of the form df = gh, where g and h are
polynomials in x, y, z of positive degree in z and d is a polynomial in x, y. Since g and h have positive degree
in z, neither of them divides d. Then f must be reducible.

(ii) This follows from Proposition 1.8.15. �

Let π denote the projection P2 −→ P1 that drops the last coordinate, sending a point (x, y, z) to (x, y).
This projection is defined at all points of P2 except at the point q = (0, 0, 1), which is called the center of
projection.

The fibre of π over a point p̃ = (x0, y0) of P1 is the line Lpq through p = (x0, y0, 0) and q = (0, 0, 1),
with the point q omitted – the set of points (x0, y0, z0).

figure

Let C be a plane curve that doesn’t contain the center of projection q. The projection P2 π−→ P1 will
be defined everywhere on C. Say that C is defined by an irreducible homogeneous polynomial f(x, y, z) of
degree d. We write f as a polynomial in z,

(1.10.2) f = c0z
d + c1z

d−1 + · · ·+ cd

with ci homogeneous, of degree i in x, y. Then f(0, 0, 1) = c0, and since C doesn’t contain q, c0 will be a
nonzero constant that we normalize to 1, so that f becomes a monic polynomial of degree d in z.

The fibre of C over a point p̃ = (x0, y0) of P1 is the intersection of C with the line Lpq described above.
It consists of the points (x0, y0, α) such that α is a root of the one-variable polynomial

(1.10.3) f̃(z) = f(x0, y0, z)

We call C a branched covering of P1 of degree d. Its most important property is that all but finitely many
fibres of C over P1 consist of d points (Lemma 1.10.1). The fibres with fewer than d points are those above
the zeros of the discriminant. Points of P1 whose fibres contain fewer points are branch points of the covering.

Let’s suppose that coordinates are chosen so that q = (0, 0, 1) is in general position. In algebraic geometry,
the phrases general position and generic indicate an object (the point q here) that has no special ’bad’ prop-
erties. Typically, the object will be parametrized somehow, and the word generic indicates that the parameter
representing that particular object avoids a proper closed subset of the parameter space that may be described
explicitly or not. For Proposition 1.10.6 below, we require that q shall not lie on any of the following lines:

(1.10.4)
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flex tangent lines and bitangent lines,
lines that contain more than one singular point,
special lines through singular points (see (1.5.2)),
tangent lines that contain a singular point of C.

1.10.5. Lemma. This is a list of finitely many lines that q must avoid.

beginning of the proof. Proposition 1.4.17 shows that there are finitely many flex tangents. Since there are
finitely many singular points, there are finitely many lines through pairs of singular points and finitely many
special lines. To show that there are finitely many tangent lines that pass through singular points, we project C
from a singular point p and apply Lemma 1.10.1. The discriminant isn’t identically zero, so it vanishes finitely
often.

The proof that there are finitely many bitangents will be given later, in Corollary 1.12.15.

1.10.6. Proposition. Let f(x, y, z) be a homogeneous polynomial with no multiple factors, and let C be the
(possibly reducible) plane curve {f = 0}. Suppose that q = (0, 0, 1) is in general position with respect to C.
(i) If p is a smooth point of C with tangent line Lpq , the discriminant Discrz(f) has a simple zero at p̃.
(ii) If p is a node of C, Discrz(f) has a double zero at p̃.
(iii) If p is a cusp, Discrz(f) has a triple zero at p̃.
(iv) If p is a an ordinary flex point of C (1.4.9 ) with tangent line Lpq , Discrz(f) has a double zero at p̃.

proof. There are several ways to prove this, none especially simple. We’ll use Hensel’s Lemma. We set x = 1,
to work in the standard affine open set U with coordinates y, z. In affine coordinates, the projection π is the
map (y, z) → y. We may suppose that p is the origin in U. Its image p̃ will be the point y = 0 of the affine
y-line, and the intersection of the line Lpq with U will be the line L̃ : {y = 0}. We’ll denote the defining
polynomial of the curve C, restricted to U, by f(y, z) instead of f(1, y, z). Let f̃(z) = f(0, z).

(i)–(iii) In these three cases, the polynomial f̃(z) = f(0, z) will have a double zero at z= 0, so we will have
f̃(z) = z2h̃(z), with h̃(0) 6= 0. Then z2 and h̃(z) have no common root, so we may apply Hensel’s Lemma to
write f(y, z) = g(y, z)h(y, z), where g and h are polynomials in z whose coefficients are analytic functions
of y, defined for small y, g is monic, g(0, z) = z2, and h(0, z) = h̃. Then (1.8.18)

(1.10.7) Discrz(f) = ±Discrz(g) Discrz(h) Resz(g, h)2

Since q is in general position, h̃ will have simple zeros. Then Discrz(h) doesn’t vanish at y = 0. Neither does
Resz(g, h). So the orders of vanishing of Discrz(f) and Discrz(g) are equal. We replace f by g.

Since g is a monic quadratic polynomial, it will have the form

g(y, z) = z2 + b(y)z + c(y)

The coefficients b and c are analytic functions of y, and g(0, z) = z2. The discriminant Discrz(g) = b2−4c is
unchanged when we complete the square by the substitution of z − 1

2b for z, and if p̃ is a node or a cusp, that
property isn’t affected by this change of coordinates (Lemma 1.5.8). So we may assume that g has the form
z2 + c(y). The discriminant is D = 4c(y).

We write c(y) as a series in y:

c(y) = c0 + c1y + c2y
2 + c3y

3 + · · ·

The constant coefficient c0 is zero because p̃ is a point of C. If c1 6= 0, p̃ is a smooth point with tangent line
L̃ : {y = 0}, and D has a simple zero. If p̃ is a node, c0 = c1 = 0 and c2 6= 0. Then D has a double zero. If p̃
is a cusp, c0 = c1 = c2 = 0, and c3 6= 0. Then D has a triple zero at p̃.

(iv) In this case, the polynomial f̃(z) = f(0, z) will have a triple zero at z= 0. Proceding as above, we may
factor: f = gh where g and h are polynomials in z with analyic coefficients in y, and g(y, z) = z3 +a(y)z2 +
b(y)z+ c(y). We eliminate the quadratic coefficient a by substituting z− 1

3a for z. With g = z3 + az+ b, the
discriminant Discrz(g) is 4b3 + 27c2 (1.8.14). We write c(y) = c0 + c1y + · · · and b(y) = b0 + b1y + · · · .
Since p is a point of C with tangent line {y= 0}, c0 = 0 and c1 6= 0. Since the intersection multiplicity of C
with the line {y=0} at p̃ is three, b0 = 0. The discriminant has a zero of order two. �

28



1.10.8. Corollary. Let C : {g = 0} and D : {h = 0} be plane curves that intersect transversally at a point
p = (x0, y0, z0). With coordinates in general position, Resz(g, h) has a simple zero at (x0, y0).

Two curves are said to intersect transversally at a point p if they are smooth at p and their tangent lines there
are distinct.
proof. Proposition 1.10.6 (ii) applies to the product fg, whose zero locus is the union C ∪ D. It shows that
the discriminant Discrz(fg) has a double zero at p̃. We also have the formula (1.10.7) with f = gh. Since
coordinates are in general position, Discrz(g) and Discrz(h) will not be zero at p̃. Then Resz(g, h) has a
simple zero there. �

1.11 Genus

We describe the topological structure of smooth plane curves in the classical topology here, deferring the proof
of one statement.

1.11.1. Theorem. The smooth projective plane curves of a given degree d in P2 are homeomorphic manifolds
of dimension two. They are compact, orientable and connected.

The fact that a smooth curve is a two-dimensional manifold follows from the Implicit Function Theorem. (See
the discussion at (1.4.3)).

orientability: A two-dimensional manifold is orientable if one can choose one of its two sides in a continuous,
consistent way. A smooth curve C is orientable because its tangent space at a point is a one-dimensional
complex vector space – the affine line with the equation (1.4.12). Multiplication by i orients the tangent space
by defining the counterclockwise rotation. Then the right-hand rule tells us which side of C is “up”.

compactness: A plane projective curve is compact because it is a closed subset of the compact space P2.

The connectedness of a plane curve is a subtle fact whose proof mixes topology and algebra. Unfortunately,
I don’t know a proof that fits into our discussion here. It will be proved later (see Theorem 8.4.9).

If one wants to have a proof now, one can begin by showing that the Fermat curve xd + yd + zd = 0
is connected, by studying the projection to P1 from the point (0, 0, 1). I propose this as an exercise. Then
one can show that every plane curve is connected by proving a plausible fact: If a family Ct of smooth plane
projective curves of degree d is parametrized by t in an interval of the real line, the curves in the family are
homeomorphic. This can be proved using a gradient flow, If you are interested in following this up, read about
gradient flows. However, the approach has two drawbacks: It leads us far afield, and it applies only to plane
curves.

The topological Euler characteristic e of a compact, orientable two-dimensional manifold M is the alter-
nating sum b0 − b1 + b2 of its Betti numbers. (The Betti number bi is the rank of the ith homology group of
M in the classical topology.) The Euler characteristic depends only on the topological structure of M , and it
can be computed in terms of a topological triangulation, a subdivision of M into topological triangles, called
faces, by the formula

(1.11.2) e = |vertices| − |edges|+ |faces|

For example, a sphere is homeomorphic to a tetrahedron, which has four vertices, six edges, and four faces.
Its Euler characteristic is 4− 6 + 4 = 2. Any other topological triangulation of a sphere, such as the one given
by the icosahedron, yields the same Euler characteristic.

Every compact, connected, orientable two-dimensional manifold is homeomorphic to a sphere with a finite
number of holes, or “handles”. Its genus is the number of holes. A torus has one hole. Its genus is one. The
projective line P1, which is a two-dimensional sphere, has genus zero.

Figure

The Euler characteristic and the genus are related by the formula

(1.11.3) e = 2− 2g
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The Euler characteristic of a torus is zero, and the Euler characteristic of P1 is two.

To compute the the Euler characteristic of a smooth curve C of degree d, we analyze a generic projection
to represent C as a branched covering of the projective line: C π−→ P1.

figure

We choose generic coordinates x, y, z in P2 and project form the point q = (0, 0, 1). When the defining
equation of C is written as a monic polynomial in z,

f = zd + c1z
d−1 + · · ·+ cd

where ci is a homogeneous polynomial of degree i in the variables x, y, the discriminant Discrz(f) with
respect to z will be a homogeneous polynomial of degree d(d−1) = d2−d in x, y.

If p̃ is the image in P1 of a point p of C, the covering C π−→ P1 will be branched at p̃ when the tangent
line at p is the line Lpq through p and the center of projection q. If so, C and Lpq will have d− 1 intersections
(1.10). Proposition 1.10.6 tells us that the discriminant Discrz(f) has a simple zero at the image of a tangent
line. So there will be d2 − d points p̃ in P1 over which the discriminant vanishes. They are the branch points
of the covering. All other fibres consist of d points.

We triangulate the sphere P1 in such a way that the branch points are among the vertices, and we use the
inverse images of the vertices, edges, and faces to triangulate C. Then C will have d faces and d edges lying
over each face and each edge of P1, respectively. There will also be d vertices of C lying over a vertex p̃ of
P1, except when p̃ is one of the d2− d branch points. In that case the the fibre will contain only d− 1 vertices.
The Euler characteristic of C is obtained by multiplying the Euler characteristic of P1 by d and subtracting the
number of branch points.

(1.11.4) e(C) = d e(P1)− (d2−d) = 2d− (d2−d) = 3d− d2

This is the Euler characteristic of any smooth curve of degree d, so we denote it by ed:

(1.11.5) ed = 3d− d2

Formula (1.11.3) shows that the genus gd of a smooth curve of degree d is

(1.11.6) gd = 1
2 (d− 1)(d− 2) =

(
d−1

2

)
Thus smooth curves of degrees 1, 2, 3, 4, 5, 6, ... have genus 0, 0, 1, 3, 6, 10, ..., respectively. A smooth plane
curve cannot have genus two.

1.12 Bézout’s Theorem

Bézout’s Theorem counts intersections of plane curves. We state it here in a form that is ambiguous because it
contains a term “multiplicity” that hasn’t yet been defined.

1.12.1. Bézout’s Theorem. Let C and D be distinct curves of degrees m and n, respectively. When inter-
sections are counted with the appropriate multiplicity, the number of intersections is equal to mn. Moreover,
the multiplicity at a point is 1 at a transversal intersection.

As before, C and D intersect transversally at p if they are smooth at p and their tangent lines there are distinct.

1.12.2. Corollary. Bézout’s Theorem is true when one of the curves is a line.

See Corollary 1.3.9. The multiplicity of intersection of a curve and a line is the one that was defined there. �

The proof in the general case requires some algebra that we would rather defer. It will be given later
(Theorem 7.8.1). It is possible to determine the intersections by counting the zeros of the resultant with respect
to one of the variables. To do this, one chooses generic coordinates x, y, z, Then neither C nor D contains the
point (0, 0, 1). One writes their defining polynomials f and g as polynomials in z with coefficients in C[x, y].
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The resultant R with respect to z will be a homogeneous polynomial in x, y, of degree mn. It will have mn
zeros in P1

x,y , counted with multiplicity. If p̃ = (x0, y0) is a zero of R, f(x0, y0, z) and g(x0, y0, z), which are
polynomials in z, have a common root z = z0, and then p = (x0, y0, z0) will be a point ofC∩D. It is a fact that
the multiplicity of the zero of the resultant R at the image p̃ is the (as yet undefined) intersection multiplicity
of C and D at p. Unfortunately, this won’t be obvious, even when multiplicity is defined. However, one can
prove the next proposition using this approach.

1.12.3. Proposition. Let C and D be distinct plane curves of degrees m and n, respectively.
(i) The curves C and D have at least one point of intersection, and the number of intersections is at most
mn.
(ii) If all intersections are transversal, the number of intersections is precisely mn.

It isn’t obvious that two curves in the projective plane intersect. If two curves in the affine plane have no
intersection, if they are parallel lines, for instance, their closures in the projective plane meet on the line at
infinity.

1.12.4. Lemma. Let f and g be homogeneous polynomials in x, y, z of degrees m and n, respectively, and
suppose that the point (0, 0, 1) isn’t a zero of f or g. If the resultant Resz(f, g) with respect to z is identically
zero, then f and g have a common factor.

proof. Let the degrees of f and g be m and n, respectively, and let F denote the field of rational functions
C(x, y). If the resultant is zero, f and g have a common factor in F [z] (Corollary 1.8.6). There will be
polynomials p and q in F [z], of degrees at most n−1 and m−1 in z, respectively, such that pf = qg (1.8.2).
We may clear denominators, so we may assume that the coefficients of p and q are in C[x, y]. Then pf = qg
is an equation in C[x, y, z]. Since p has degree at most n−1 in z, it isn’t divisible by g, which has degree n in
z. Since C[x, y, z] is a unique factorization domain, f and g have a common factor. �

proof of Proposition 1.12.3. (i) Let f and g be irreducible polynomials whose zero sets C and D, are distinct.
Proposition 1.3.11 shows that there are finitely many intersections. We project to P1 from a point q that doesn’t
lie on any of the finitely many lines through pairs of intersection points. Then a line through q passes through
at most one intersection, and the zeros of the resultant Resz(f, g) that correspond to the intersection points
will be distinct. Since the resultant has degree mn (1.8.8), it has at least one zero, and at most mn of them.
Therefore C and D have at least one and at most mn intersections.

(ii) Every zero of the resultant will be the image of an intersection of C and D. To show that there are mn
intersections if all intersections are transversal, it suffices to show that the resultant has simple zeros. This is
Corollary 1.10.8. �

1.12.5. Corollary. If the curve X defined by a homogeneous polynomial f(x, y, z) is smooth, then f is
irreducible, and therefore X is a smooth curve.

proof. Suppose that f = gh, and let p be a point of intersection of the loci {g = 0} and {h = 0}. The
previous proposition shows that such a point exists. All partial derivatives of f vanish at p, so p is a singular
point of X . �

1.12.6. Corollary. (i) Let d be an integer ≥ 3. A smooth plane curve of degree d has at least one flex point,
and the number of flex points is at most 3d(d−2).
(ii) If all flex points are ordinary, the number of flex points is equal to 3d(d−2).

Thus smooth curves of degrees 2, 3, 4, 5, ... have at most 0, 9, 24, 45, ... flex points, respectively.
proof. (i) The flex points are intersections of a smooth curve C with its Hessian divisor D : {detH = 0}.
(The definition of divisor is given in (1.3.12.) Let C : {f(x0, x1, x2) = 0} be a smooth curve of degree d.
The entries of the 3×3 Hessian matrix H are the second partial derivatives ∂2f

∂xi∂xj
. They are homogeneous

polynomials of degree d−2, so the Hessian determinant is homogeneous, of degree 3(d−2). Propositions
1.4.17 and 1.12.3 tell us that there are at most 3d(d−2) intersections.

(ii) Recall that a flex point is ordinary if the multiplicity of intersection of the curve and its tangent line is 3.
Bézout’s Theorem asserts that the number of flex points is equal to 3d(d−2) if the intersections of C with its
Hessian divisor D are transversal, and therefore have multiplicity 1. So the next lemma completes the proof.
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1.12.7. Lemma. A curve C : {f = 0} intersects its Hessian divisor D transversally at a point p if and only
p is an ordinary flex point of C.

proof. We prove this by computation. There may be a conceptual proof, but I don’t know one.
Let L be the tangent line to C at the flex point p, and let h denote the restriction of the Hessian determinant

to L. The Hessian divisor D will be transversal to C at p if and only if it is transversal to L, and this will be
true if and only if the order of vanishing of h at p is 1.

We adjust coordinates x, y, z so that p = (0, 0, 1) and L is the line {y = 0}, and we write the polynomial
f of degree d as

(1.12.8) f(x, y, z) =
∑

i+j+k=d

aijx
iyjzk,

We set y = 0 and z = 1, to restrict f to L. The restricted polynomial is

f(x, 0, 1) =
∑
i≤d

ai0x
i

Since p is a flex point with tangent line L, the coefficients a00, a10, and a20 are zero, and p is an ordinary
flex point if and only if the coefficient a30 is nonzero.

Let h be the restiction of detH to L: h = detH(x, 0, 1). We must show that p is an ordinary flex point
if and only if h has a simple zero at x = 0.

To evaluate the restriction fxx(x, 0, 1) of the partial derivative to L, the relevant terms in the sum (1.12.8)
have j = 0. Since a00 = a10 = 0,

fxx(x, 0, 1) = 6a30 + 12a40x
2 + · · · = 6a30x+O(2)

Similarly,

fxz(x, 0, 1) = 0 +O(2)

fzz(x, 0, 1) = 0 +O(2)

For the restriction of fyz , the relevant terms are those with j = 1:

fyz(x, 0, 1) = (d−1)a01 + (d−2)a11x+O(2)

We don’t need fxy or fyy.
Let v = 6a30x and w = (d−1)a01 + (d−2)a11x. The restricted Hessian matrix has the form

(1.12.9) H(x, 0, 1) =

v ∗ 0
∗ ∗ w
0 w 0

 + O(2)

where ∗ are entries that don’t affect terms of degree at most one in the determinant. The determinant is

h = −vw2 +O(2) = −6(d− 1)2a30a
2
01x+O(2)

It has a zero of order 1 at x = 0 if and only if a30 and a01 aren’t zero. Since C is smooth at p and a10 = 0,
the coefficient a01 isn’t zero. Thus the curve C and its Hessian divisor D intersect transversally, and C and L
intersect with multiplicity 3, if and only if a30 is nonzero, which is true if and only if p is an ordinary flex. �

1.12.10. Corollary. A smooth cubic curve contains exactly 9 flex points.

proof. Let f be the irreducible cubic polynomial whose zero locus is a smooth cubic C. The degree of the
Hessian divisorD is also 3, so Bézout predicts at most 9 intersections ofD with C. To derive the corollary, we
show that C intersects D transversally. According to Proposition 1.12.7, a nontransversal intersection would
correspond to a point at which the curve and its tangent line intersect with multiplicity greater than 3. This is
impossible when the curve is a cubic. �
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(1.12.11) singularities of the dual curve

Let C be a plane curve. As before, an ordinary flex point is a smooth point p such that the intersection
multiplicity of the curve and its tangent line L at p is precisely 3. A bitangent to C is a line L that is tangent to
C at distinct smooth points p and q, and an ordinary bitangent is one such that neither p nor q is a flex point.
A tangent line L at a smooth point p of C is an ordinary tangent if it isn’t a flex point or a bitangent.

The line L will have other intersections with C. Most often, these other intersections will be transversal.
However, it may happen that L is tangent to C at such a point, or that it is a singular point of C. Let’s call such
occurences accidents.

1.12.12. Proposition. Let p be a smooth point of a curve C, and let L be the tangent line at p. Suppose that
there are no accidents.
(i) If L is an ordinary tangent at p, then L∗ is a smooth point of C∗.
(ii) If L is an ordinary bitangent, then L∗ is a node of C∗.
(iii) If p is an ordinary flex point, then L∗ is a cusp of C∗.

proof. We refer to the map U t−→ C∗ (1.7.3) from the set of smooth points of C to the dual curve. We set
z = 1 and choose affine coordinates so that p is the origin, and the tangent line L at p is the line {y = 0}.
Let f̃(x, y) = f(x, y, 1). We solve f̃ = 0 for y = y(x) as analytic function of x near zero, as before. The
tangent line L1 to C at a nearby point p1 = (x, y) has the equation (1.7.11), and L∗1 is the point (u, v, w) =
(−y′, 1, y′x− y) of P∗ (1.7.12). Since there are no accidents, this path traces out all points of C∗ near to L∗.

If L is an ordinary tangent line, y(x) will have a zero of order 2 at x = 0. Then u = −y′ will have a simple
zero. So the path (−y′, 1, y′x− y) is smooth at x = 0, and therefore C∗, is smooth at the origin.

If L is an ordinary bitangent, tangent to C at two points p and p′, the reasoning given for an ordinary
tangent shows that the images in C∗ of small neighborhoods of p and p′ in C will be smooth at L∗. Their
tangent lines p∗ and p′∗ will be distinct, so p is a node.

The case that p is an ordinary flex point of C is trickier. Most probably, we won’t know the defining
equation f = 0 of C. We write the analytic function y(x) that solves f(x, y) = 0 as a power series. Since p is
a flex point, the coefficients of xi are zero when i < 3: y(x) = cx3 + · · · , and since the flex is ordinary, we
may assume that c = 1. In the local equation (u, v, w) = (−y′, 1, y′x−y) for the dual curve, u = −3x2 + · · ·
and w = 2x3 + · · · . In affine u,w-space, the locus

(1.12.13) (u,w) = (−y′, y′x− y) = (−3x2 + · · · , 2x3 + · · · )

contains the points of C∗ near to L∗.
Let X and U denote the x-line and the u-line, respectively. We substitute (1.12.13) for u and v: u =

−3x2 + · · · and w = 2x3 + · · · . This gives us a diagram of maps

X
b−−−−→ U

a

y ∥∥∥
C∗

c−−−−→ U

that are defined in small neighborhoods of the origins in the three spaces. The map a is locally bijective, and
since the leading term of u(x) is 3x2, b has degree 2. Therefore c also has degree 2. This implies that the
origin in C∗ is a point of multiplicity 2, a double point.

Let g(u,w) =
∑
ij giju

iwj be the irreducible polynomial equation for C∗. Substituting for u and w, the
series in x that we obtain evaluates to zero for all small x, and this implies that it is the zero series. The orders
of vanishing of the monomials uiwj as functions of x are as follows:

(1.12.14)
1 u w u2 uw w2 u3 u2w uw2 w3 · · ·

0 2 3 4 5 6 6 7 8 9 · · ·
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Looking at these orders of vanishing, one sees that the coefficients g00, g10, g01, g20 and g11 in the series
g =

∑
giju

iwj must be zero, and that g02 + g30 = 0. Since the origin is a double point of C∗, g02 6= 0, and
therefore g30 6= 0. The origin is a cusp of C∗. �

figure

1.12.15. Corollary. A plane curve has finitely many bitangents.

This corollary is true whether or not the bitangents are ordinary. It follows from the fact that the dual curve
C∗ has finitely many singular points (1.4.8). If L is a bitangent, ordinary or not, L∗ will be a singular point of
C∗. �

1.13 The Plücker Formulas
A plane curve C is ordinary if it is smooth, if all of its bitangents and flex points are ordinary (see (1.12.11),
and if there are no accidents. The Plücker formulas compute the number of flexes and bitangents of an ordinary
plane curve.

For the next proposition, we refer back to the notation of Section 1.10. With coordinates in general position,
let π : C → X be the projection of a plane curve C to the projective line X from q = (0, 0, 1). If p̃ = (x0, y0)
is a point of X , we denote by Lp̃ the line in P2 such that the fibre of π over p̃ is the complement of q in Lp̃.

The covering π will be branched at the points p̃ = (x0, y0) of X such that Lp̃ tangent line to C at some
point. It will also be branched the images of singular points of C.

1.13.1. Proposition. LetC be a plane curve, projected to P1 from a generic point q of the plane. With notation
as above:
(i) The number β of points p̃ such that line Lp̃ is tangent to C at a smooth point is equal to the degree d∗ of
the dual curve C∗.
(ii) If C is a smooth curve of degree d, the degree d∗ of C∗ is d2 − d.

proof. (i) We have three numbers that we will show are equal: the number β referred to in the proposition, the
degree d∗ of the dual curve C∗, and the number N of intersections of the line q∗ with C∗.

Let L be a line in P that contains q and is tangent to C at a smooth point p. Then L∗ is one of the N points
of q∗ ∩ C∗. Since q is generic, q isn’t a point of C, L isn’t a bitangent or a flex tangent, and L doesn’t pass
through a singular point of C (1.10.5). So L is an ordinary tangent line to C at p, and q 6= p. The number of
such lines is β. So β = N .

Proposition 1.12.12 and Lemma 1.7.15 tell us that C∗ is smooth at L∗, and that the tangent line to C∗ at L∗

is p∗. Since p and q are points of L and q 6= p, L∗ is the intersection p∗ ∩ q∗. So C∗ intersects q∗ transversally
at L∗. The intersection multiplicities are equal to 1. Therefore N = deg C∗ = d∗.

(ii) When we consider a smooth curve C as a branched covering of P2 by projection from q, the branch points
are the images of tangent lines through q, and those tangent lines are ordinary. The discriminant of the defining
polynomial f with respect to the chosen variable z will have degree d2−d. There will be d2−d ordinary tangent
lines through q, so d∗ = d2 − d. �

1.13.2. Theorem: Plücker Formulas. Let C be an ordinary curve of degree d at least two, and let C∗ be its
dual curve. Let f and b denote the numbers of flex points and bitangents of C, and let δ∗ and κ∗ denote the
numbers of nodes and cusps of C∗, respectively. Then:

(i) The dual curve C∗ has no flexes or bitangents. Its singularities are nodes and cusps.

(ii) f = κ∗ = 3d(d− 2), and b = δ∗ = 1
2d(d− 2)(d2 − 9).

proof. (i) A bitangent or a flex on C∗ would produce a singularity on the bidual C∗∗, which is the smooth
curve C.

(ii) Bézout’s Theorem counts the flex points (see (1.12.6)). The facts that κ∗ = f and δ∗ = b are dealt with in
Proposition 1.12.12. Thus κ∗ = f = 3d(d− 2).
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We project C∗ to P1 from a generic point s of P∗. Let β∗ be the number of branch points that correspond
to tangent lines through s at smooth points of C∗. Since C∗∗ = C, Proposition 1.13.1, applied to C∗, tells us
that β∗ = d, and that d∗ = d2 − d.

Next, let F be the defining polynomial for C∗. The discriminant Discrz(F ) has degree d∗2 − d∗. Propo-
sition 1.10.6 describes the order of vanishing of the discriminant at the images of the β tangent lines, the δ
nodes, and the κ cusps of C∗. It tells us that

d∗2 − d∗ = β∗ + 2δ∗ + 3κ∗

Substituting the known values d∗ = d2 − d, β∗ = d, and κ∗ = 3d(d− 2) into this formula gives us

(d2 − d)2 − (d2 − d) = d+ 2δ∗ + 9d(d− 2) or 2δ∗ = (d2 − 2d)(d2 − 9) �

Note. It isn’t easy to count the number of bitangents directly.

1.13.3. Examples.
(i) All curves of degree 2 and all smooth curves of degree 3 are ordinary.
(ii) A curve of degree 2 has no flexes and no bitangents. Its dual curve has degree 2.
(iii) A smooth curve of degree 3 has 9 flexes and no bitangents. Its dual curve has degree 6.
(iv) An ordinary curve C of degree 4 has 24 flexes and 28 bitangents. Its dual curve has degree 12. �

We will make use of the fact that a quartic curve has 28 bitangents in Chapter 4 (see (4.8.15)). The Plücker
Formulas are rarely used for curves of degree greater than four.
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Chapter 2 AFFINE ALGEBRAIC GEOMETRY

2.1 Rings and Modules
2.2 The Zariski Topology
2.3 Some Affine Varieties
2.4 The Nullstellensatz
2.5 The Spectrum
2.6 Morphisms of Affine Varieties
2.7 Finite Group Actions

In the next chapters, we study varieties of dimension greater than one. We use some basic terminology that
is introduced in Chapter 1, including the concepts of discriminant and transcendence degree, but most of the
results of Chapter 1 won’t be used again until Chapter 8.

We begin by reviewing some basic facts about rings and modules, omitting proofs. Please look up infor-
mation on the concepts that aren’t familiar, as needed.

### Need to put localization of a module back##$

2.1 Rings and Modules

By the word ‘ring’, we mean ’commutative ring’, ab = ba, unless when the contrary is stated explicitly. A
domain is a ring that has no zero divisors and isn’t the zero ring,

An algebra is a ring that contains the field C of complex numbers as subring. A set of elements α =
{α1, ..., αn} generates gnerates an algebra A if every element of A can be expressed (usually not uniquely)
as a polynomial in α1, ..., αn, with complex coefficients. Another way to state this is that α generates A if
the homomorphism C[x1, ..., xn]

τ−→ A that evaluates a polynomial at α is surjective. If α generates A, then
A will be isomorphic to the quotient C[x]/I of the polynomial algebra C[x], where I is the kernel of τ . A
finite-type algebra is one that can be generated by a finite set of elements.

If I and J are ideals of a ring R, the product ideal, which is denoted by IJ , is the ideal whose elements
are finite sums of products

∑
aibi, with ai ∈ I and bi ∈ J . (This is not the product set, whose elements are

the products ab, with a ∈ I and b ∈ J .) The power Ik of I is the product of k copies of I , the ideal spanned
by products of k elements of I . The intersection I ∩ J is also an ideal, and

(2.1.1) (I ∩ J)2 ⊂ IJ ⊂ I ∩ J

An ideal M of a ring R is maximal if there is no ideal I such that M < I < R and if it isn’t the unit ideal
R. This is true if and only if the quotient ring R/M is a field. An ideal P is a prime ideal if the quotient R/P
is a domain. A maximal ideal is a prime ideal.

2.1.2. Lemma. Let P be an ideal of a ring R, not the unit ideal. The following conditions are equivalent.
(i) P is a prime ideal.
(ii) If a and b are elements of R and if ab ∈ P , then a ∈ P or b ∈ P .
(iii) If A and B are ideals of R, and if the product ideal AB is contained in P , then A ⊂ P or B ⊂ P . �

It is sometimes convenient to state (iii) this way:

(iii’) If A and B are ideals that contain P , and if the product ideal AB is contained in P , then A = P or
B = P .
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2.1.3. Mapping Property of Quotient Rings. Let R and S be rings, let K be an ideal of R, and let R τ−→
R denote the canonical map from R to the quotient ring R = R/K. Homomorphisms R

ϕ−→ S correspond
bijectively to homomorphisms R

ϕ−→ S whose kernels contain K, the correspondence being ϕ = ϕ ◦ τ :

R
ϕ−−−−→ S

τ

y ∥∥∥
R

ϕ−−−−→ S

If ker ϕ = I, then ker ϕ = I/K. �

(2.1.4) commutative diagrams

In the diagram displayed above, the maps ϕτ and ϕ from R to S are equal. This is referred to by saying
that the diagram is commutative. A commutative diagram is one in which every map that can be obtained by
composing its arrows depends only on the domain and range of the map. In these notes, all diagrams of maps
are commutative. We won’t mention commutativity most of the time. �

2.1.5. Correspondence Theorem.
(i) Let R

ϕ−→ S be a surjective ring homomorphism with kernel K. For instance, ϕ might be the canonical
map from R to the quotient algebra R/K. There is a bijective correspondence

{ideals of R that contain K} ←→ {ideals of S}

This correspondence associates an ideal I of R that contains K with its image ϕ(I) in S and it associates an
ideal J of S with its inverse image ϕ−1(J) in R.

If an ideal I of R that contains K corresponds to an ideal J of S, then ϕ induces an isomorphism of
quotient rings R/I → S/J . So if one of the ideals, I or J , is prime or maximal, they both are.

(ii) Let R be a ring, and let M
ϕ−→ N be a surjective homomorphism of R-modules with kernel L. There is a

bijective correspondence

{submodules of M that contain L} ←→ {submodules of N}

This correspondence associates a submodule S ofM that containsLwith its imageϕ(S) inN and it associates
a submodule T of N with its inverse image ϕ−1(T ) in M . �

Ideals I1, ..., Ik of a ring R are said to be comaximal if the sum of any two of them is the unit ideal.

2.1.6. Chinese Remainder Theorem. Let I1, ..., Ik be comaximal ideals of a ring R.
(i) The product ideal I1 · · · Ik is equal to the intersection I1 ∩ · · · ∩ Ik.
(ii) The map R −→ R/I1×· · ·×R/Ik that sends an element a of R to its vector of residues is a surjective
homomorphism whose kernel is I1 ∩ · · · ∩ Ik (= I1 · · · Ik).
(iii) Let M be an R-module. The canonical homomorphism M →M/I1M×· · ·×M/IkM is surjective. �

2.1.7. Proposition. Let R be a product of rings, R = R1×· · ·×Rk, let I be an ideal of R, and let R = R/I
be the quotient ring. There are ideals Ij of Rj such that I = I1×· · ·×Ik and R = R1/I1×· · ·×Rk/Ik. �

(2.1.8) Noetherian rings

A finite module M over a ring R is a module that is spanned, or generated, by a finite set {m1, ...,mk} of
elements. To say that the set generates means that every element of M can be obtained as a combination
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r1m1 + · · · + rkmk with coefficients ri in R, or that the homomorphism from the free R-module Rk to M
that sends a vector (r1, ..., rk) to the combination r1m1 + · · ·+ rkmk is surjective.

An ideal of a ring R is finitely generated if, when regarded as an R-module, it is a finite module. A ring R
is noetherian if all of its ideals are finitely generated.

The ring Z of integers is noetherian. Fields are notherian. If I is an ideal of a noetherian ring R, the
quotient ring R/I is noetherian.

2.1.9. Hilbert Basis Theorem. IfR is a noetherian ring, the ringR[x1, ..., xn] of polynomials with coefficients
in R is noetherian. �

Thus Z[x1, ..., xn] and F [xa, ..., xn], F a field, are noetherian rings.

2.1.10. Corollary. Every finite-type algebra is noetherian. �

Note. It is important not to confuse the concept of a finite-type algebra with that of a finite module. A finite
R-module M is a module in which every element can be written as a (linear) combination r1m1 + · · ·+ rkmk

of some finite set {m1, ...,mk} of elements of M , with coefficients in R. A finite-type algebra A is an algebra
in which every element can be written as a polynomial f(α1, ..., αk) in some finite set of elements {α1, ..., αk}
of A, with complex coefficients.

(2.1.11) the ascending chain condition

The condition that a ring R be noetherian can be rewritten in several ways that we review here.
Our convention is that if X ′ and www are sets, the notation X ′ ⊂ X means that X ′ is a subset of X , while

X ′ < X means that X ′ is a subset that is different from X . A proper subset X ′ of a set X is a nonempty
subset different from X – a set such that ∅ < X ′ < X .

A sequence X1, X2, ... , finite or infinite, of subsets of a set Z forms an increasing chain if Xn ⊂ Xn+1

for all n, equality Xn = Xn+1 being permitted. If Xn < Xn+1 for all n, the chain is strictly increasing.
Let S be a set whose elements are subsets of a set Z. A memberM of S is a maximal member if there is no

member M ′ of S such that M < M ′. For example, the set of proper subsets of a set of five elements contains
five maximal members, the subsets of order four. The set of finite subsets of the set of integers contains no
maximal member.

A maximal ideal of a ring R is a maximal member of the set of ideals of R different from the unit ideal.

2.1.12. Proposition. The following conditions on a ring R are equivalent:
(i) R is noetherian: Every ideal of R is finitely generated.
(ii) The ascending chain condition: Every strictly increasing chain I1 < I2 < · · · of ideals of R is finite.
(iii) Every nonempty set of ideals of R contains a maximal member. �

The next corollary follows from the ascending chain condition, but the conclusions are true whether or not
R is noetherian.

2.1.13. Corollary. Let R be a noetherian ring.
(i) If R isn’t the zero ring, every ideal of R except the unit ideal is contained in a maximal ideal.
(ii) A nonzero ring R contains at least one maximal ideal.
(iii) An element of a ring R that isn’t in any maximal ideal is a unit – an invertible element of R. �

2.1.14. Corollary. Let s1, ..., sk be elements that generate the unit ideal of a noetherian ring R. For any
positive integer n, the powers sn1 , ..., s

n
k generate the unit ideal. �

2.1.15. Proposition. Let R be a noetherian ring, and let M be a finite R-module.
(i) Every submodule of M is a finite module.
(ii) The set of submodules of M satisfies the ascending chain condition.
(iii) Every nonempty set of submodules of M contains a maximal member. �

This concludes our review of rings and modules.
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2.2 The Zariski Topology

As before, the affine space An is the space of n-tuples (a1, ..., an) of complex numbers. Algebraic geome-
try studies polynomial equations in terms of their solutions in affine space. If f1, ..., fk are polynomials in
x1, ..., xn, the set of points of An that solve the system of equations

(2.2.1) f1 = 0 , . . . , fk = 0

is a Zariski closed subset of An. A Zariski open subset U is a subset whose complement in An, the set of
points not in U , is Zariski closed.

When it seems unlikely to cause confusion, we may abbreviate the notation for an indexed set, using a
single letter. The polynomial algebra C[x1, ..., xn] may be denoted by C[x], and the system of equations
(2.2.1) by f = 0. The locus of solutions of the equations f = 0 may be denoted by V (f1, ..., fk) or by V (f).
Its points are called the zeros of the polynomials f .

We use analogous notation for infinite sets. If F is any set of polynomials, V (F) denotes the set of points
of affine space at which all elements of F are zero. In particular, if I is an ideal of the polynomial ring, V (I)
denotes the set of points at which all elements of I vanish.

The ideal I generated by the polynomials f1, ..., fk is the set of combinations r1f1+· · ·+rkfk with poly-
nomial coefficients ri. Some notations for this ideal are (f1, ..., fk) and (f). All elements of this ideal vanish
on the zero set V (f), so V (f) = V (I). The Zariski closed subsets of An are the sets V (I), where I is an
ideal.

We note a few simple relations among ideals and their zero sets here. To begin with, we note that an ideal
I isn’t determined by its zero locus V (I). For any k > 0, the power fk has the same zeros as f .

The radical of an ideal I of a ring R, which will be denoted by rad I , is the set of elements α of R such
that some power αr is in I .

(2.2.2) rad I = {α ∈ R |αr ∈ I for some r > 0}

The radical of I is an ideal that contains I . An ideal that is equal to its radical is a radical ideal. A prime ideal
is a radical ideal.

The radical describes the ideals that define the same closed set.

2.2.3. Lemma. If I is an ideal of the polynomial ring C[x], then V (I) = V (rad I). �

Consequently, if I and J are ideals and if rad I = rad J , then V (I) = V (J). The converse of this statement
is also true: If V (I) = V (J), then rad I = rad J . This is a consequence of the Strong Nullstellensatz that
will be proved later in this chapter. (See (2.4.7).)

Because (I ∩ J)2 ⊂ IJ ⊂ I ∩ J ,

(2.2.4) rad(IJ) = rad(I ∩ J)

and rad(I ∩ J) = (rad I) ∩ (rad J).

2.2.5. Lemma. Let I and J be ideals of the polynomial ring C[x].
(i) If I ⊂ J , then V (I) ⊃ V (J).
(ii) V (Ik) = V (I).
(iii) V (I ∩ J) = V (IJ) = V (I) ∪ V (J).
(iv) If Iν are ideals, then V (

∑
Iν) =

⋂
V (Iν).

proof. (iii) V (I ∩ J) = V (IJ) because the two ideals have the same radical, and because I and J contain IJ ,
V (IJ) ⊃ V (I) ∪ V (J). To prove that V (IJ) ⊂ V (I) ∪ V (J), we note that V (IJ) is the locus of common
zeros of the products fg with f in I and g in J . Suppose that a point p is a common zero: f(p)g(p) = 0 for
all f in I and all g in J . If f(p) 6= 0 for some f in I , we must have g(p) = 0 for every g in J , and then p is a
point of V (J). If f(p) = 0 for all f in I , then p is a point of V (I). In either case, p is a point of V (I)∪V (J).
�

Zariski closed sets are the closed sets in the Zariski topology on An. This topology is very useful in
algebraic geometry, though it is very different from the classical topology.
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To verify that the Zariski closed sets are the closed sets of a topology, one must show that

• the empty set and the whole space are Zariski closed,
• the intersection

⋂
Cν of an arbitrary family of Zariski closed sets is Zariski closed, and

• the union C ∪D of two Zariski closed sets is Zariski closed.

The empty set and the whole space are the zero sets of the elements 1 and 0, respectively. The other conditions
follow from Lemma 2.2.5. �

2.2.6. Example. The proper Zariski closed subsets of the affine line, or of a plane affine curve, are finite sets.
The proper Zariski closed subsets of the affine plane A2 are finite unions of points and curves. We omit the
proofs of these facts. The corresponding facts for loci in the projective line and the projective plane have been
noted before (see (1.3.4) and (1.3.14)). �

figure
(Caption: A Zariski closed subset of the affine plane (real locus).)

A subset S of a topological space X becomes a topological space with the induced topology. The closed
(or open) subsets of S in the induced topology are intersections S ∩ Y , where Y is closed (or open) in X .

The induced topology on a subset S of An will be called its Zariski topology too. A subset of S is closed
in the Zariski topology if it has the form S ∩ Y for some Zariski closed subset Y of An. If S itself is a Zariski
closed subset of An, a closed subset of S will be a closed subset of An that is contained in S.

Affine space also has a classical topology. A subset U of An is open in the classical topology if, whenever
a point p is in U , all points sufficently near to p are in U . Since polynomial functions are continuous, their zero
sets are closed in the classical topology. Therefore Zariski closed sets are closed in the classical topology too.

When two topologies T and T ′ on a set X are given, T ′ is said to be coarser than T if it contains fewer
closed sets or fewer open sets, and finer than T if it contains more closed sets or more open sets. The Zariski
topology is coarser than the classical topology. The next proposition shows that it is much coarser.

2.2.7. Proposition. Every nonempty Zariski open subset of An is dense and path connected in the classical
topology.

proof. The (complex) line L through distinct points p and q of An is a Zariski closed set whose points can be
written as p + t(q − p), with t in C. It corresponds bijectively to the one-dimensional affine t-space A1, and
the Zariski closed subsets of L correspond to Zariski closed subsets of A1. They are the finite subsets of L,
and L itself.

Let U be a nonempty Zariski open set, and let C be its Zariski closed complement. To show that U is dense
in the classical topology, we choose distinct points p and q of An, with p in U . If L is the line through p and
q, C ∩ L will be a Zariski closed subset of L that doesn’t contain p, a finite set. In the classical topology, the
closure of the complement of this finite set, which is U ∩L, will be the whole line L. Therefore the closure of
U contains q, and since q was arbitrary, the closure of U is An.

Next, let L be the line through two points p and q of U . As before, C∩L will be a finite set. In the classical
topology, L is a complex plane. The points p and q can be joined by a path in L that avoids a finite set. �

Though we will refer to the classical topology from time to time, the Zariski topology will appear more
often. For this reason, we will refer to a Zariski closed subset simply as a closed set. Similarly, by an open set
we mean a Zariski open set. We will mention the adjective “Zariski” only for emphasis.

(2.2.8) irreducible closed sets

The fact that the polynomial algebra is a noetherian ring has important consequences for the Zariski topol-
ogy that we discuss here.

A topological space X satisfies the descending chain condition on closed subsets if there is no infinite,
strictly descending chain C1 > C2 > · · · of closed subsets of X . The descending chain condition on closed
subsets is equivalent with the ascending chain condition on open sets.
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A topological space that satisfies the descending chain condition on closed sets is called a noetherian
space. In a noetherian space, every nonempty family S of closed subsets has a minimal member, one that
doesn’t contain any other member of S, and every nonempty family of open sets has a maximal member. (See
(2.1.11).)

2.2.9. Proposition. With its Zariski topology, An is a noetherian space.

This follows from the ascending chain condition for ideals in C[x1, ..., xn]. �

2.2.10. Definition. A topological space X is irreducible if it isn’t the union of two proper closed subsets.
Another way to say that X is irreducible is this:

If C and D are closed subsets of X , and if X = C ∪D, then X = C or X = D.

The concept of irreducibility is useful primarily for noetherian spaces. The only irreducible subsets of a
Hausdorff space are its points. In particular, with the classical topology, the only irreducible subsets of affine
space are points.

The closure of a subset S of a topological space X is the smallest closed subset that contains S. The
closure is the intersection of all closed subsets that contain S.

2.2.11. Lemma. (i) The following conditions on topological space X are equivalent.
• X is irreducible.
• The intersection U ∩ V of two nonempty open subsets U and V of X is nonempty.
• Every nonempty open subset U of X is dense – its closure is X .
(ii) A noetherian topological space is quasicompact: Every open covering has a finite subcovering. �

2.2.12. Lemma. (i) Let Z be a subspace of a topological space X , let S be a subset of Z, and let S denote
the closure of S in X . The closure of S in Z is the intersection S ∩ Z.
(ii) The closure Z of a subspace Z of a topological space X is irreducible if and only if Z is irreducible.
(iii) A nonempty open subspace W of an irreducible space X is irreducible.

proof. (ii) Let Z be an irreducible subset of X , and suppose that its closure Z is the union C ∪ D of two
closed sets C and D. Then Z is the union of the sets C = C ∩ Z and D = D ∩ Z, and they are closed in
Z. Therefore Z is one of those two sets; say Z = C. Then Z ⊂ C, and since C is closed, Z ⊂ C. Because
C ⊂ Z as well, C = Z. Conversely, suppose that the closure Z of a subset Z of X is irreducible, and that
Z is a union C ∪ D of closed subsets. Then Z = C ∪ D, and therefore Z = C or Z = D, say Z = C So
Z = C ∩ Z = C, and C is not a proper subset.

(iii) The closure of W is the irreducible space X . �

Irreducibility is somewhat analogous to connectedness. A topological space is connected if it isn’t the
union C ∪D of two proper disjoint closed subsets. However, the condition that a space be irreducible is much
more restrictive because, in Definition 2.2.10, the closed sets C and D aren’t required to be disjoint. In the
Zariski topology on the affine plane, the union of two intersecting lines is connected, but not irreducible.

2.2.13. Theorem. In a noetherian topological space, every closed subset is the union of finitely many irre-
ducible closed sets.

proof. Let C0 be a closed subset of a topological space X that isn’t a union of finitely many irreducible closed
sets. Then C0 isn’t irreducible, so it is a union C1∪D1, where C1 andD1 are proper closed subsets of C0, and
therefore closed subsets of X . Since C0 isn’t a finite union of irreducible closed sets, C1 and D1 cannot both
be finite unions of irreducible closed sets. Say that C1 isn’t such a union. We have the beginning C0 > C1

of a chain of closed subsets. We repeat the argument, replacing C0 by C1, and we continue in this way, to
construct an infinite, strictly descending chain C0 > C1 > C2 > · · · . So X isn’t a noetherian space. �

2.2.14. Definition. An affine variety is an irreducible closed subset of affine space An.

Theorem 2.2.13 tells us that every closed subset of An is a finite union of affine varieties. Since an affine
variety is irreducible, it will be a connected set in the Zariski topology. It will also be connected in the
classical topology, but this isn’t very easy to prove. We may not get to it.
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(2.2.15) the coordinate algebra of a variety

2.2.16. Proposition. Let P be a radical ideal (2.2.2) of the polynomial algebra C[x1, ..., xn] and let V be
the locus of zeros V (P ) in affine space An. Then V is irreducible if and only if P is a prime ideal.

Thus the affine varieties in An are the sets V (P ), where P is a prime ideal of the polynomial algebra C[x].
We will use this proposition in the next section, but we defer the proof to Section 2.5.

As before, an algebra is a ring that contains the complex numbers.

2.2.17. Definition. Let P be a prime ideal of the polynomial ring C[x1, ..., xn], and let V be the affine variety
V (P ) in An. The coordinate algebra of V is the quotient algebra A = C[x]/P .

Geometric properties of the variety are reflected in algebraic properties of its coordinate algebra and vice
versa. In a primitive sense, one can regard the geometry of an affine variety V as given by closed subsets and
incidence relations – the inclusion of one closed set into another, as when a point lies on a line. A finer study
of the geometry takes into account things such as tangency, but it is reasonable to begin by studying incidences
C ′ ⊂ C among closed subvarieties. Such incidences translate into inclusions P ′ ⊃ P in the opposite direction
among prime ideals. This is one reason that prime ideals are important.

2.3 Some affine varieties
This section contains a few simple examples of varieties.

2.3.1. A point p = (a1, . . . , an) of affine space An is the set of solutions of the n equations xi − ai = 0, i =
1, . . . , n. A point is a variety because the polynomials xi − ai generate a maximal ideal in the polynomial
algebra C[x], and a maximal ideal is a prime ideal. We denote that maximal ideal by mp. It is the kernel of
the substitution homomorphism πp : C[x] → C that evaluates a polynomial g(x1, ..., xn) at p: πp(g(x)) =
g(a1, ..., an) = g(p). As here, we usually denote that homomorphism by πp.

The coordinate algebra of a point p is the quotient algebra C[x]/mp. It is also called the residue field at p,
and it will be denoted by k(p). The residue field at p is isomorphic to the image of πp, the field C of complex
numbers, but k(p) is a particular quotient of the polynomial ring.

2.3.2. The varieties in the affine line A1 are its points and the whole line A1. The varieties in the affine plane
A2 are points, plane affine curves, and the whole plane.

This is true because the varieties correspond to the prime ideals of the polynomial ring. The prime ideals of
C[x1, x2] are the maximal ideals, the principal ideals generated by irreducible polynomials, and the zero ideal.
The proof of this is a good exercise.

2.3.3. The setX of solutions of a single irreducible polynomial equation f1(x1, ..., xn) = 0 is a variety, called
an affine hypersurface.

The special linear group SL2, the group of complex 2× 2 matrices with determinant 1, is a hypersurface
in A4. It is the locus of zeros in A4 of the irreducible polynomial x11x22 − x12x21 − 1.

The reason that an affine hypersurface is a variety is that an irreducible element of a unique factorization
domain is a prime element, and a prime element generates a prime ideal. The polynomial ring C[x1, ..., xn] is
a unique factorization domain.

2.3.4. A hypersurface in the affine plane A2 is a plane affine curve.

A line in the plane, the locus of a linear equation ax + by − c = 0, is a plane affine curve. Its coordinate
algebra is isomorphic to a polynomial ring in one variable. Every line is isomorphic to the affine line A1.
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2.3.5. Let p = (a1, . . . , an) and q = (b1, . . . , bn) be distinct points of An. The point pair (p, q) is the closed
set defined by the system of n2 equations (xi−ai)(xj−bj) = 0 with 1 ≤ i, j ≤ n. A point pair isn’t a variety
because the ideal I generated by the polynomials (xi − ai)(xj − bj) isn’t a prime ideal. The next proposition,
which follows from the Chinese Remainder Theorem 2.1.6, describes the ideal I .

2.3.6. Proposition. The ideal of polynomials that vanish on a point pair is the product of the maximal ideals
mpmq , and the quotient algebra C[x]/I is isomorphic to the product algebra C×C. �

2.4 Hilbert’s Nullstellensatz
2.4.1. Nullstellensatz (version 1). Let C[x] be the polynomial algebra in the variables x1, . . . , xn. There
are bijective correspondences between the following sets:

• points p of the affine space An,
• algebra homomorphisms πp : C[x]→ C,
• maximal ideals mp of C[x].

If p = (a1, ..., an) is a point of An, the corresponding homomorphism πp evaluates a polynomial at p:
πp(g) = g(a1, ...., an)

(
= g(p)

)
, and the maximal ideal mp is the kernel of πp. It is generated by the linear

polynomials x1−a1, . . . , xn−an. �

It is obvious that every algebra homomorphism C[x]→ C is surjective and that its kernel is a maximal ideal. It
isn’t obvious that every maximal ideal of C[x] is the kernel of such a homomorphism. The proof can be found
manywhere.1

The Nullstellensatz gives us a way to describe the closed set V (I) of zeros of an ideal I in affine space in
terms of maximal ideals. The points of V (I) are those at which all elements of I vanish. Thus

(2.4.2) V (I) = {p ∈ An | I ⊂ mp}

2.4.3. Proposition. Let I be an ideal of the polynomial ring R = C[x]. If the zero locus V (I) is empty, then
I is the unit ideal of R.

proof. Every ideal I that is not the unit ideal is contained in a maximal ideal (Corollary 2.1.13). �

2.4.4. Strong Nullstellensatz. Let I be an ideal of the polynomial algebra C[x1, . . . , xn], and let V be the
locus of zeros of I in An: V = V (I). If a polynomial g vanishes at every point of V , then I contains a power
of g.

proof. This beautiful proof is due to Rainich. Let g(x) be a polynomial that is identically zero on V . We are to
show that I contains a power of g. If g is the zero polynomial, it is in I . So we may assume that g isn’t zero.

The Hilbert Basis Theorem tells us that I is a finitely generated ideal; let f = f1, . . . , fk be a set of
generators. In the n+ 1–dimensional affine space with coordinates (x1, . . . , xn, y), let W be the locus of
solutions of the k+1 equations

(2.4.5) f1(x) = · · · = fk(x) = 0 and g(x)y − 1 = 0

Suppose that we have a solution x of the equations f(x) = 0, say (x1, ..., xn) = (a1, ..., an). Then a is a
point of V , and our hypothesis tells us that g(a) = 0 too. So there can be no b such that g(a)b = 1. There
is no point (a1, ..., an, b) that solves the equations (2.4.5): The locus W is empty. Proposition 2.4.3 tells
us that the polynomials f1, ..., fk, gy − 1 generate the unit ideal of C[x1, ..., xn, y]. There are polynomials
p1(x, y), . . . , pk(x, y) and q(x, y) such that

(2.4.6) p1f1 + · · ·+ pkfk + q(gy − 1) = 1

The ring R = C[x, y]/(gy − 1) can be described as the one obtained by adjoining an inverse of g to the
polynomial ring C[x]. The residue of y is the inverse of g. Since g isn’t zero, C[x] is a subring of R. In R,

1While writing a paper, the mathematician Nagata decided that the English language needed this word, and then he managed to find it
in a dictionary.
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gy − 1 = 0, so the equation (2.4.6) becomes p1f1 + · · · + pkfk = 1. When we multiply both sides of this
equation by a large power gN of g, we can use the equation gy = 1, which is true inR, to cancel all occurences
of y in the polynomials pi(x, y). Let hi(x) denote the polynomial in x that is obtained by cancelling y in gNpi.
Then

h1(x)f1(x) + · · ·+ hk(x)fk(x) = gN (x)

is a polynomial equation that is true in R and in its subring C[x]. Since f1, ..., fk are in I , this equation shows
that gN is in I . �

2.4.7. Corollary. Let I and J be ideals of the polynomial ring C[x1, ..., xn].
(i) Let P be a prime ideal of C[x], and let V = V (P ) be the variety of zeros of P . If a polynomial g vanishes
at every point of V , then g is an element of P .
(ii) Let f be an irreducible polynomial in C[x]. If a polynomial g vanishes at every point of V (f), then f
divides g.
(iii) V (I) ⊃ V (J) if and only if rad I ⊂ rad J , and V (I) > V (J) if and only if rad I > rad J (see (2.2.2)).
�

As before, a finite-type algebra is an algebra that can be generated by a finite set of elements.

2.4.8. Nullstellensatz (version 2). Let A be a finite-type algebra. There are bijective correspondences
between the following sets:
• algebra homomorphisms π : A→ C,
• maximal ideals m of A.
The maximal ideal m that corresponds to a homomorphism π is the kernel of π.

If A is presented as a quotient of a polynomial ring, say A ≈ C[x1, ..., xn]/I , then these sets also corre-
spond bijectively to points of the set V (I) of zeros of I in An.

(We use the symbol ≈ to indicate an isomorphism.)
proof. We choose a presentation of A as a quotient of a polynomial ring to identify A with a quotient C[x]/I .
The Correspondence Theorem tells us that maximal ideals of A correspond to maximal ideals of C[x] that
contain I . Those maximal ideals correspond to points of V (I) (see (2.4.2)).

Let τ denote the canonical homomorphism C[x] → A. The Mapping Property 2.1.3, applied to τ , tells us
that homomorphisms A π−→ C correspond to homomorphisms C[x]

π−→ C whose kernels contain I . Those
homomorphisms also correspond to points of V (I).

(2.4.9)

C[x]
π−−−−→ C

τ

y ∥∥∥
A

π−−−−→ C

�
2.5 The Spectrum
The Nullstellensatz allows us to associate a set of points to a finite-type domain A without reference to a
presentation. We can do this because the maximal ideals of A and the homomorphisms A → C don’t depend
on the presentation. If A is presented as a quotient C[x]/P of a polynomial ring, P a prime ideal, it becomes
the coordinate algebra of the variety V (P ) in affine space. Then the points of V (P ) correspond to maximal
ideals of A and also to homomorphisms A→ C.

When a finite-type domain A is given without a presentation, we replace the variety V (P ) by an abstract
set of points, the spectrum ofA, that we denote by SpecA and call an affine variety. We put one point into the
spectrum for every maximal ideal ofA, and then we turn around and denote the maximal ideal that corresponds
to a point p by mp. The Nullstellensatz tells us that p also corresponds to a homomorphism A → C whose
kernel is mp. We denote that homomorphism by πp. The domain A is the coordinate algebra of the affine
variety SpecA (see (2.2.17)). To work with SpecA, we may interpret its points as maximal ideals or as
homomorphisms to C, whichever is convenient.
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When defined in this way, the variety SpecA isn’t embedded into affine space, but if we present A as a
quotient C[x]/P , points of SpecA correspond to points of the subset V (P ) in An. Even when the coordinate
ring A of an affine variety is presented as C[x]/P , we may denote the variety by SpecA rather than by V (P ).

LetX = SpecA. The elements ofA define (complex-valued) functions onX: A point p ofX corresponds

to a homomorphism A
πp−→ C. If α is an element of A, the value of the function α at p is defined to be πp(α):

(2.5.1) α(p)
def
= πp(α)

Then the kernel mp of πp is the set of elements α of the coordinate algebra A such that α(p) = 0:

mp = {α ∈ A |α(p) = 0}

The functions defined by the elements of A are the regular functions on X . (See Proposition 2.6.2 below.)
For example, the spectrum SpecC[x1, ..., xn] of the polynomial algebra is the affine space An. The

homomorphism πp : C[x] → C that corresponds to a point p = (a1, ..., an) of An is evaluation at p. So
πp(g) = g(a1, ..., an) = g(p). The function defined by a complex polynomial g(x) is the polynomial function.

2.5.2. Lemma. Let A be a quotient C[x]/P of the polynomial ring C[x1, ..., xn] modulo a prime ideal P ,
so that SpecA becomes the closed subset V (P ) of An. Then a point p of SpecA corresponds to a point
(a1, ..., an) of An. When an element α of A is represented by a polynomial g(x), the value of α at p is
α(p) = g(a1, ..., an) = g(p).

proof. The point p of SpecA gives us a diagram (2.4.9), with π = πp and π = πp , and where τ is the
canonical map C[x]→ A. Then α = τ(p), and

(2.5.3) g(p)
defn
= πp(g) = πpτ(g) = πp(α)

defn
= α(p). �

Thus the value α(p) at a point p of SpecA can be obtained by evaluating a polynomial g at p. However, the
polynomial g that represents the regular function α won’t be unique unless P is the zero ideal.

(2.5.4) the Zariski topology on an affine variety

Let X = SpecA be an affine variety with coordinate algebra A. An ideal J of A defines a locus in X , a
closed subset, that we denote by VX(J):

(2.5.5) VX(J) = {p ∈ SpecA | J ⊂ mp}

When a presentation C[x]/P ≈ A, is given, the ideal J of A corresponds to an ideal J of C[x] that contains
P . Then if VAn(J) denotes the zero locus of J in An, VX(J) = VAn(J).

The properties of closed sets in affine space that are given in Lemmas 2.2.3 and 2.2.5 are true for closed
subsets of an affine variety. In particular, VX(J) = VX(rad J), and VX(IJ) = VX(I ∩J) = VX(I)∪VX(J).

2.5.6. Proposition. Let J be an ideal of a finite-type domain A, and let X = SpecA. The zero set VX(J) is
empty if and only if J is the unit ideal of A. If X is empty, then A is the zero ring.

proof. The zero ring is the only ring with no maximal ideals. �

2.5.7. Note. We have put bars on the symbols m and π here in order to distinguish maximal ideals of A from
maximal ideals of C[x] and homomorphismsA→ C from homomorphisms C[x1, . . . , xn]→ C. In the future,
we will put bars over the letters only when there is a danger of confusion. �

(2.5.8) ideals whose zero sets are equal

2.5.9. Lemma. An ideal I of a noetherian ring R contains a power of its radical.
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proof. Since R is noetherian, the ideal rad I is generated by a finite set of elements α = {α1, ..., αk}, and for
large r, αri is in I . We can use the same large integer r for every i. A monomial β = αe11 · · ·α

ek
k of sufficiently

large degree n in α will be divisible αri for at least one i, and therefore it will be in I . The monomials of degree
n generate (rad I)n, so (rad I)n ⊂ I

(
and I ⊂ rad I

)
. �

2.5.10. Corollary. Let I and J be ideals of a finite-type domain A, and let X = SpecA. Then VX(I) ⊃
VX(J) if and only if rad I ⊂ rad J .

This follows from Corollary 2.4.7. �

For example, there is a bijective correspondence between radical ideals in the polynomial ring C[x1, ..., xn]
and closed subsets of An.

The next proposition includes Proposition 2.2.16 as a special case.

2.5.11. Proposition. Let X = SpecA , where A is a finite-type domain. The closed subset VX(P ) defined by
a radical ideal P is irreducible if and only if P is a prime ideal.

proof. Let P be a radical ideal of A, and let Y = VX(P ). Let C and D be closed subsets of X such that
Y = C∪D. SayC = VX(I),D = VX(J). We may suppose that I and J are radical ideals. Then the inclusion
C ⊂ Y implies that I ⊃ P . Similarly, J ⊃ P . Because Y = C∪D, we also have Y = VX(I∩J) = VX(IJ).
So IJ ⊂ P (Corollary 2.5.10). If P is a prime ideal, then I = P or J = P , and therefore C = Y or D = Y .
So Y is irreducible. Conversely, suppose that P is not a prime ideal. Then there are ideals A,B strictly larger
than P , such that AB ⊂ P (2.1.2). Then Y will be the union of the two proper closed subsets VX(A) and
VX(B), and is not irreducible (2.5.10). �

2.5.12. Examples.
(i) Let I be the ideal generated by y5 and y2 − x3 in the polynomial algebra C[x, y] in two variables. The
origin y = x = 0 is the only common zero of these polynomials in the affine plane, and the polynomial x also
vanishes at the origin. The Strong Nullstellensatz predicts that I contains a power of x. This is verified by the
following equation:

yy5 − (y4 + y2x3 + x6)(y2 − x3) = x9

(ii) We may regard pairs A,B of n×n matrices as points of an affine space A2n2

with coordinates aij , bij ,
1 ≤ i, j ≤ n. The pairs of commuting matrices (AB = BA) form a closed subset of A2n2

, the locus of
common zeros of the n2 polynomials cij that compute the entries of the matrix AB −BA:

(2.5.13) cij(a, b) =
∑
ν

aiνbνj − biνaνj

Let I denote the ideal of the polynomial algebra C[a, b] generated by the polynomials cij . Then V (I) is the
set of pairs of commuting complex matrices. The Strong Nullstellensatz asserts that if a polynomial g(a, b)
vanishes on every pair of commuting matrices, some power of g is in I . Is g itself in I? It is a famous conjecture
that I is a prime ideal. If so, g would be in I . Proving the conjecture would establish your reputation as a
mathematician, but I don’t recommend spending very much time on it right now. �

(2.5.14) the nilradical

The nilradical of a ring is the set of its nilpotent elements. It is the radical of the zero ideal. The nilradical
of a domain is the zero ideal. If a ring R is noetherian, its nilradical will be nilpotent: some power of will be
the zero ideal (Lemma 2.5.9).

2.5.15. Proposition. The nilradical of a noetherian ring R is the intersection of the prime ideals of R.

proof. Let x be an element of the nilradical N . So some power of x is zero. Since the zero element is in every
prime ideal, x is in every prime ideal. Therefore N is contained in every prime ideal. Conversely, let x be
an element not in N , i.e., not nilpotent. We show that there is a prime ideal that doesn’t contain any power
of x. Let S be the set of ideals that don’t contain a power of x. The zero ideal is one such ideal, so S isn’t
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empty. Since R is noetherian, S contains a maximal member P (2.1.11). We show that P is a prime ideal by
showing that, if two ideals A and B are strictly larger than P , their product AB isn’t contained in P . Since P
is a maximal member of S, A and B aren’t in S. They contain powers of x, say xk ∈ A and x` ∈ B. Then
xk+` is in AB but not in P . Therefore AB 6⊂ P . �

The conclusion of this proposition is true whether or not the ring R is noetherian.

2.5.16. Corollary.
(i) Let A be a finite-type algebra. An element that is in every maximal ideal of A is nilpotent.
(ii) Let A be a finite-type domain. The intersection of the maximal ideals of A is the zero ideal.

proof. (i) Say that A is presented as C[x]/I . Let α be an element of A that is in every maximal ideal, and let
g(x) be a polynomial whose residue in A is α. Then α is in every maximal ideal of A if and only if g = 0 at
all points of VA(I). If so, the Strong Nullstellensatz asserts that some power gn is in I . Then αn = 0. �

2.5.17. Corollary. An element α of a finite-type domain A is determined by the function that it defines on
X = SpecA.

proof. It is enough to show that an element α that defines the zero function is the zero element. Such an
element is in every maximal ideal (2.5.6), so α is nilpotent, and since A is a domain, α = 0. �

(2.5.18) localization

Let s be a nonzero element of a domain A. The ring A[s−1] obtained by adjoining an inverse of s to A
is called a localization of A. The localization is isomorphic to the quotient A[z]/(sz − 1) of the polynomial
ring A[z] in the variable z by the principal ideal generated by sz − 1, and it will be denoted by As. If A is a
finite-type domain, the variety SpecAs will also be called a localization of X , and it may be denoted by Xs.

2.5.19. Proposition. (i) With terminology as above, points of the varietyXs = SpecAs correspond bijectively
to the open subset of X of points at which the value of s is nonzero.
(ii) When we identify a localization Xs with a subset of X , the Zariski topology on Xs is the induced topology
from X . So Xs is an open subspace of X .

proof. (i) Let p be a point of X , let A
πp−→ C be the corresponding homomorphism, and let c = s(p)

(
=

πp(s)
)
. If c 6= 0, πp extends uniquely to a homomorphism As → C that sends s−1 to c−1. This gives us a

unique point of Xs whose image in X is p. On the other hand, if c = 0, then πp doesn’t extend to As. So Xs

identifies with the complement of the zero locus of s.

(ii) If C is closed in X = SpecA, say C = VX(I), then C ∩Xs is the zero set of I in Xs. So it is closed in
Xs. We must show that if D is a closed subset of Xs, there is a closed subset C of X such that D = C ∩Xs.
Say that D is the zero set of an ideal J of As, and let α1, ..., αk be generators for J that are contained in A.
Let I be the ideal (α1, ..., αk)A, and let C = VX(I). If mp is the maximal ideal of A at a point p of Xs,
the maximal ideal of As at p is the extended ideal (mp)s, the ideal of As generated by mp. Its elements are
fractions as−k, with a in mp. The point p is in D if and only if J ⊂ (mp)s, and this is true if and only if
I ⊂ mp, i.e., if and only if p is a point of C. �

We usually identify Xs as an open subset of X . Then the effect of adjoining the inverse is to throw out the
points of X at which s vanishes. For example, the spectrum of the Laurent polynomial ring C[t, t−1] becomes
the complement of the origin in the affine line A1 = SpecC[t].

This illustrates the benefit of working with an affine variety without a fixing an embedding into affine
space. If X is embedded into An, the localization Xs wants to be in An+1.

As is true for many open sets, the complement X ′ of the origin in the affine plane SpecC[x1, x2] isn’t
a localization. Every polynomial that vanishes at the origin vanishes on an affine curve, which has points
different from the origin. Its inverse doesn’t define a function on X ′.

It may be hard to tell whether or not a given open set is a localization. The general facts at our disposal are
that the intersection of localizations is a localization, because Xs ∩Xt = Xst, and the next proposition.
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2.5.20. Proposition. The localizations Xs of an affine variety X form a basis for the Zariski topology on X .

A basis for the topology on a topological space X is a family B of open sets such that every open set is a union
of open sets that are members of B.

proof of Proposition 2.5.20. We must show that every open subset U of X can be covered by localizations of
X , i.e., that for every point p of U , there is a localization Xs that is contained in U and that contains p.

Let C be the complement of U in X , and let A be the coordinate algebra of X . Because C is closed, it is
the zero locus of some elements of A. Since p isn’t in C, at least one of those elements, say s, will be nonzero
at p though it is identically zero on C. Then Xs contains no point of C, so Xs ⊂ U , and because s(p) 6= 0,
p ∈ Xs. �

2.5.21. Lemma. Let U and V be open subsets of an affine variety X .
(i) If V is a localization of U and U is a localization of X , then V is a localization of X .
(ii) If U and V are affine, V ⊂ U , and if V is a localization of X , then V is a localization of U .
(iii) Let p be a point of U ∩ V . If U and V are affine, there is an open set Z containing p that is a localization
of U and also a localization of V .

proof. (i) Say that X = SpecA, U = Xs = SpecAs and V = Ut = Spec(As)t. Then t is an element of
As, say t = s−kr with r in A. The localizations (As)t, (As)r are equal, and (As)r = Asr. So V = Xsr.

(ii) Say that X = SpecA, U = SpecB, and V = SpecAt, where t is a nonzero element of A. The elements
of B are the fractions t−ka with a ∈ A, and t is an element of B. So Bt = At.

(iii) Since localizations form a basis for the topology, U ∩ V contains a localization Xs of X that contains p.
By (ii), Xs is a localization of U and of V . �

(2.5.22) extension and contraction of ideals

Let A ⊂ B be the inclusion of a ring A as a subring of a ring B. The extension of an ideal I of A is the
ideal IB of B generated by I . Its elements are finite sums

∑
i zibi with zi in I and bi in B. The contraction

of an ideal J of B is the intersection J ∩A. It is an ideal of A.
If As is a localization of A and I is an ideal of A, the elements of the extended ideal IAs are fractions of

the form zs−k, with z in I . We denote this extended ideal by Is.

2.5.23. Lemma.
(i) Let A ⊂ B be rings, let I be an ideal of A and let J be an ideal of B. Then I ⊂ (IB) ∩ A and
(J ∩A)B ⊂ J .
(ii) Let As be a localization of A, let I ′ be an ideal of As and let I = I ′ ∩A. Then I ′ = IAs. Every ideal of
As is the extension of an ideal of A.
(iii) Let P be a prime ideal of A. If s is an element of A that isn’t in P , the extended ideal Ps is a prime ideal
of As. If s is in P , the extended ideal is the unit ideal. �

2.6 Morphisms of Affine Varieties

Morphisms are the allowed maps between varieties. Morphisms between affine varieties are defined below.
They correspond to algebra homomorphisms in the opposite direction between their coordinate algebras. Mor-
phisms of projective varieties require more thought. They will be defined in the next chapter.

(2.6.1) regular functions

The function field K of an affine variety X = SpecA is the field of fractions of A. A rational function on
X is a nonzero element of the function field K.
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As we have seen, (2.5.1) elements of the coordinate algebra A define functions on X , the rule being
α(p) = πp(α), where πp is the homomorphism A → C that corresponds to p. A rational function f = a/s
with a and s in A is an element of As, and it defines a function on the open subset Xs. A rational function f
is regular at a point p of X if it can be written as a fraction a/s such that s(p) 6= 0. A rational function is a
regular function on X if it is regular at every point of X .

2.6.2. Proposition. The regular functions on an affine variety X = SpecA are the elements of the coordinate
algebra A.

proof. Let f be a rational function that is regular on X . So for every point p of X , there is a localization
Xs = SpecAs that contains p, such that f is an element of As. Because X is quasicompact, a finite set of
these localizations, say Xs1 , . . . , Xsk , will cover X . Then s1, ..., sk have no common zeros on X , so they
generate the unit ideal of A (2.5.6). Since f is in Asi , we can write f = s−ni bi, or sni f = bi, with bi in A,
and we can use the same exponent n for each i. Since the elements si generate the unit ideal of A, so do the
powers sni . Say that

∑
sni ci = 1, with ci in A. Then f =

∑
sni cif =

∑
cibi is an element of A. �

(2.6.3) morphisms

Let X = SpecA and Y = SpecB be affine varieties, and let A
ϕ−→ B be an algebra homomorphism.

A point q of Y corresponds to an algebra homomorphism B
πq−→ C. When we compose πq ϕ, we obtain a

homomorphism A
πqϕ−→ C. The Nullstellensatz tells us that there is a unique point p of X such that πqϕ is the

homomorphism πp:

(2.6.4)

A
ϕ−−−−→ B

πp

y yπq
C C

2.6.5. Definition. Let X = SpecA and Y = SpecB. A morphism Y
u−→ X is a map defined, as above, by

an algebra homomorphism A
ϕ−→ B: If q is a point of Y , then uq is the point p of X such that πp = πqϕ.

Then if α is an element of A and β = ϕ(α),

(2.6.6) β(q) = πq(β) = πq(ϕα) = πp(α) = α(p)

The morphism Y
u−→ X is an isomorphism if and only if there is an inverse morphism. This will be true if

and only if A
ϕ−→ B is an isomorphism of algebras. �

The relationship between a homomorphism A
ϕ−→ B and the associated morphism Y

u−→ X can be
summed up by the next formula. If q is a point of Y and α is an element of A, then

(2.6.7) α[u(q)] = [ϕα](q)

Thus the homomorphism ϕ is determined by the map u. But most maps Y → X aren’t morphisms.

The description of a morphism can be confusing because the direction of the arrow is reversed. It will become
clearer as we expand the discussion.

Morphisms to the affine line.

A morphism Y
u−→ A1 from a variety Y = SpecB to the affine line SpecC[t] is defined by an algebra

homomorphism C[x]
ϕ−→ B, which substitutes an element β of B for x. The morphism u that corresponds to

ϕ sends a point q of Y to the point of the x-line at which x = β(q).

For example, let Y be the space of 2×2 matrices, so that B = C[yij ], 1 ≤ i, j ≤ 2. The determinant

defines a morphism Y → A1 that sends a matrix β =

(
b11 b12

b21 b22

)
to its determinant b11b22 − b12b21. The
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corresponding algebra homomorphism C[x]
ϕ−→ C[yij ] substitutes y11y22−y12y21 for x. It sends a polynomial

f(x) to f(y11y22 − y12y21).
In the other direction, a morphism from A1 to a variety Y is a (complex) polynomial path in Y . For

example, if Y is the space of matrices, a morphism A1 → Y corresponds to a homomorphism C[yij ]→ C[x],
which substitutes polynomials in x for the variables yij .

Morphisms to affine space.
A morphism from an affine variety Y = SpecB to affine space An will be defined by a homomorphism

C[x1, ..., xn]
Φ−→ B which substitutes elements βi of B for xi: Φ(f(x)) = f(β). The corresponding mor-

phism Y
u−→ An sends a point q of Y to the point (β1(q), ..., βn(q)) of An.

Morphisms to affine varieties.
Let X = SpecA and Y = SpecB be affine varieties. Say that we have chosen a presentation A =

C[x1, ..., xm]/(f1, ..., fk) of A, so that X becomes the closed subvariety V (f) of affine space Am. There
is no need to choose a presentation of B. A natural way to define a morphism from a variety Y to X is
as a morphism Y

u−→ Am to affine space, whose image is contained in X . We check that this agrees with
Definition 2.6.5:

As above, a morphism Y
u−→ Am corresponds to a homomorphism C[x1, ..., xm]

Φ−→ B, and defined by
a set (β1, ..., βm) of elements of B. Since X is the locus of zeros of the polynomials f , the image of Y will
be contained in X if and only if fi(β1(q), ..., βm(q)) = 0 for every point q of Y and every i, i.e., fi(β) is in
every maximal ideal of B, in which case fi(β) = 0 for every i (2.5.16)(i). Another way to say this is:

The image of Y is contained in X if and only if β = (β1, ..., βm) solves the equations f(x) = 0.

And, if β is a solution, the map Φ defines a map A
ϕ−→ B.

C[x]
Φ−−−−→ By ∥∥∥

A
ϕ−−−−→ B

This is an elementary, but important, principle:
• Homomorphisms from an algebra A = C[x]/(f) to an algebra B correspond to solutions of the equa-

tions f = 0 in B.

2.6.8. Corollary. Let X = SpecA and let Y = SpecB be affine varieties. Suppose that A is presented as
the quotient C[x1, ..., xm]/(f1, ..., fk) of a polynomial ring. There are bijective correspondences between the
following sets:
• algebra homomorphisms A→ B, or morphisms Y → X ,
• morphisms Y → An whose images are contained in X ,
• solutions of the equations fi(x) = 0 in B, �

The second and third sets refer to an embedding of the variety X into affine space, but the first one does not. It
shows that a morphism depends only on the varieties X and Y , not on the embedding of X into affine space.

The geometry of a morphism will be described more completely in Chapters 4 and 5. We note a few more
facts about them here.

2.6.9. Proposition. Let X u←− Y be the morphism of affine varieties that corresponds to a homomorphism of
coordinate algebras A

ϕ−→ B.

(i) Let Y v←− Z be another morphism, that corresponds to another homomorphism B
ψ−→ R of finite-type

domains. The the composition Z uv−→ X . is the morphism that corresponds to the composed homomorphism

A
ψϕ−→ R.

(ii) Suppose that B = A/P , where P is a prime ideal of A, and that ϕ is the canonical homomorphism
A→ A/P . Then u is the inclusion of the closed subvariety Y = VX(P ) into X .
(iii) ϕ is surjective if and only if u maps Y isomorphically to a closed subvariety of X . �
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It is useful to rephrase the definition of the morphism Y
u−→ X that corresponds to a homomorphism

A
ϕ−→ B in terms of maximal ideals. Let mq be the maximal ideal of B at a point q of Y . The inverse image

of mq in A is the kernel of the composed homomorphism A
ϕ−→ B

πq−→ C, so it is a maximal ideal of A:
ϕ−1mq = mp for some point p of X . That point is the image of q: p = uq.

In the other direction, let mp be the maximal ideal at a point p of X , and let J be the ideal generated by the
image of mp in B. This ideal is called the extension of mp to B. Its elements are finite sums

∑
ϕ(zi)bi with

zi in mp and bi in B. If q is is a point of Y , then uq = p if and only if mp = ϕ−1mq , and this will be true if
and only if J is contained in mq .

Recall that, if Y u−→ X is a map of sets, the fibre of Y over a point p of X is the set of points q of Y that
map to p.

2.6.10. Corollary. Let X = SpecA and Y = SpecB, and let Y u−→ X be the morphism corresponding to
a homomorphism A

ϕ−→ B, let mp be the maximal ideal at a point p of X , and let J = mpB be the extended
ideal.
(i) The fibre of Y over p is the set VY (J) of points q such that J ⊂ mq .
(ii) The fibre of Y over p is empty if and only if J is the unit ideal of B. �

2.6.11. Example. (blowing up the plane)
Let Z and Y be the affine planes with coordinates x, z and x, y, respectively. The map Z π−→ Y defined

by y = xz, the morphism that corresponds to the algebra homomorphism C[x, y]
ϕ−→ C[x, z] defined by

ϕ(x) = x, ϕ(y) = xz.
The morphism π is bijective at points (x, y) with x 6= 0. At such a point, y = x−1z. The fibre of Z over

a point of Y of the form (0, y) is empty unless y = 0, and the fibre over the origin (0, 0) in Y is the z-axis
{(0, z)} in the plane Z Because the origin in Y is replaced by a line in Z, this morphism is called a blowup of
the affine plane Y . �

figure

2.6.12. Proposition. A morphism Y
u−→ X of affine varieties is a continuous map in the Zariski topology and

also in the classical topology.

proof. First, the Zariski topology: Let X = SpecA and Y = SpecB, so that u corresponds to an algebra
homomorphismA

ϕ−→ B. A closed subset C ofX will be the zero locus of a set α = {α1, ..., αk} of elements
of A. Let βi = ϕαi. The inverse image u−1C is the set of points q such that p = uq is in C, i.e., such that
αi(uq) = 0, and αi(uq) = βi(q) (2.6.5). So u−1C is the zero locus in Y of the elements βi = ϕ(αi) of B. It
is a closed set.

Next, for the classical topology, we use the fact that polynomials are continuous functions. A morphism if
affine spaces Any

ũ−→ Amx is defined by an algebra homomorphism C[x1, ..., xm]
Φ−→ C[y1, ..., yn], and this

homomorphism is determined by the polynomials h1(y), ..., hm(y) that are the images of the variables x. The
morphism ũ sends the point (y1, ..., yn) of An to the point (h1(y), ..., hm(y)) of Am. It is continuous.

The morphism Y
u−→ X is defined by a homomorphism A

ϕ−→ B. We choose presentations A = C[x]/I
and B = C[y]/J , and we form a diagram of homomorphisms and the associated diagram of morphisms:

C[x]
Φ−−−−→ C[y]

α

y yβ
A

ϕ−−−−→ B

Anx
ũ←−−−− Amyx x

X
u←−−−− Y

Here α and β are the canonical maps of a ring to a quotient ring. The map α sends x1, ..., xn to α1, ..., αn.
Then Φ is obtained by choosing elements hi whose images in B are the same as the images off αi. In the
diagram of morphisms, ũ is continuous, and the vertical arrows are the embeddings of X and Y into their
affine spaces. Since the topologies on X and Y are induced from their embeddings, u is continuous. �

As we see here, every morphism of affine varieties can be obtained by restricting a morphism of affine
spaces. However, in the diagram above, the morphism ũ isn’t unique. It depends on the choice of the polyno-
mials hi.
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2.7 Finite Group Actions

Let G be a finite group of automorphisms of a finite-type domain B. An invariant element of B is an element
that is sent to itself by every element σ of G. For example, the product and the sum

(2.7.1)
∏
σ∈G

σb ,
∑
σ∈G

σb

are invariant elements. The invariant elements form a subalgebra of B that is often denoted by BG. Theorem
2.7.5 below asserts that BG is a finite-type algebra, and that points of SpecBG correspond bijectively to
G-orbits in SpecB.

2.7.2. Examples.
(i) The symmetric group G = Sn operates on the polynomial ring R = C[x1, ..., xn] by permuting the
variables, and the Symmetric Functions Theorem asserts that the elementary symmetric functions

s1 =
∑
i

xi , s2 =
∑
i<j

xixj , . . . , sn = x1x2 · · ·xn

generate the ring RG of invariant polynomials. Moreover, s1, ..., sn are algebraically independent, so RG is
the polynomial algebra C[s1, ..., sn]. The inclusion of RG into R gives us a morphism from affine x-space Anx
to affine s-space Ans = SpecRG. If a = (a1, ..., an) is a point of Ans , the points b = (b1, ..., bn) of Anx that
map to a are those such that si(b) = ai. They are the roots of the polynomial xn − a1x

n−1 + · · · ± an. Since
the roots form a G-orbit, the set of G-orbits of points of Anx maps bijectively to Ans .

(ii) Let ζ = e2πi/n, let σ be the automorphism of the polynomial ring B = C[y1, y2] defined by σy1 = ζy1

and σy2 = ζ−1y2. Let G be the cyclic group of order n generated by σ, and let A denote the algebra BG

of invariant elements. A monomial m = yi1y
j
2 is invariant if and only if n divides i − j, and an invariant

polynomial is a linear combination of invariant monomials. You will be able to show that the three monomials

(2.7.3) u1 = yn1 , u2 = yn2 , and w = y1y2

generate A. We’ll use the same symbols u1, u2, w to denote variables in the polynomial ring C[u1, u2, w]. Let
J be the kernel of the canonical homomorphism C[u1, u2, w]

τ−→ A that sends u1, u2, w to yn1 , y
n
2 , y1y2.

2.7.4. Lemma. With notation as above, the kernel J of τ is the principal ideal of C[u1, u2, w] generated by
the polynomial f = wn − u1u2.

proof. First, f is an element of J . Let g(u1, u2, w) be an element of J . So g(yn1 , y
n
2 , y1y2) = 0. We

divide g by f , considered as a monic polynomial in w, say g = fq + r, where the remainder r has degree
< n in w. The remainder will be in J too: r(yn1 , y

n
2 , y1y2) = 0. We write r as a polynomial in w: r =

r0(u1, u2) + r1(u1, u2)w+ · · ·+ rn−1(u1, u2)wn−1. When we substitute yn1 , y
n
2 , y1y2, the term ri(u1, u2)wi

becomes ri(yn1 , y
n
2 )(y1y2)i. The degree in y1 of every monomial that appears here will be congruent to i

modulo n, and the same is true for y2. Since r(yn1 , y
n
2 , y1y2) = 0, and because the indices i are distinct,

ri(y
n
1 , y

n
2 ) will be zero for every i. And if ri(yn1 , y

n
2 ) is zero, then ri(u1, u2) = 0. So r = 0, which means that

f divides g. �

We go back to the operation of the cyclic group on B. Let Y denote the affine plane SpecB, and let
X = SpecA. The group G operates on Y , and except for the origin, which is a fixed point, the orbit of a
point (y1, y2) consists of the n points (ζiy1, ζ

−iy2), i = 0, . . . , n− 1. To show that G-orbits in Y correspond
bijectively to points of X , we fix complex numbers u1, u2, w with wn = u1u2, and we look for solutions of
the equations (2.7.3). When u1 6= 0, the equation u1 = yn1 has n solutions for y1, and then y2 is determined
by the equation w = y1y2. So the fibre has order n. Similarly, there are n points in the fibre if u2 6= 0. If
u1 = u2 = 0, then y1 = y2 = w = 0. In all cases, the fibres are the G-orbits. �

2.7.5. Theorem. Let G be a finite group of automorphisms of a finite-type domain B, and let A denote the
algebra BG of invariant elements. Let Y = SpecB and X = SpecA.
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(i) A is a finite-type domain and B is a finite A-module.
(ii) G operates by automorphisms on Y .
(iii) The morphism Y → X defined by the inclusion A ⊂ B is surjective, and its fibres are the G-orbits of
points of Y .

When a group G operates on a set Y , one often denotes the set of G-orbits of Y by Y/G. With that notation,
the theorem asserts that there is a bijective map Y/G→ X .

proof of 2.7.5 (i): The invariant algebra A = BG is a finite-type algebra, and B is a finite A-module.
This is an interesting indirect proof. To show that A is a finite-type algebra, one constructs a finite-type

subalgebra R of A such that B is a finite R-module.

Let {z1, . . . , zk} be the G-orbit of an element z1 of B. The orbit is the set of roots of the polynomial

f(t) = (t− z1) · · · (t− zk) = tk − s1t
k−1 + · · · ± sk

whose coefficients are the elementary symmetric functions in {z1, ..., zk}. LetR1 denote the algebra generated
by those symmetric functions. Because the symmetric functions are invariant, R1 ⊂ A. Using the equation
f(z1) = 0, we can write any power of z1 as a polynomial in z1 of degree less than k, with coefficients in R1.

We choose a finite set of generators {y1, . . . , yr} for the algebraB. If the order of the orbit of yj is kj , then
yj will be the root of a monic polynomial fj of degree kj with coefficients in A. Let R denote the finite-type
algebra generated by all of the coefficients of all of the polynomials f1, ..., fr. We can write any power of yj
as a polynomial in yj with coefficients in R, and of degree less than kj . Using such expressions, we can write
every monomial in y1, ..., yr as a polynomial y1, ..., yr with coefficients in R, whose degree in each variable
yj is less than kj . Since y1, ..., yr generateB, we can write every element ofB as such a polynomial. Then the
finite set of monomials ye11 · · · yerr with ej < kj spans B as an R-module. Therefore B is a finite R-module.

Since R is a finite-type algebra, it is noetherian. The algebra A of invariants is a subalgebra of B that
contains R. So when regarded as an R-module, A is a submodule of the finite R-module B. Since R is
noetherian, A is also a finite R-module. When we put a finite set of algebra generators for R together with a
finite set of R-module generators for A, we obtain a finite set of algebra generators for A. So A is a finite-type
algebra. And, since B is a finite R-module, it is also a finite module over the larger ring A.

proof of 2.7.5(ii): The group G operates on Y .
A group element σ is a homomorphism B

σ−→ B, which defines a morphism Y
uσ←− Y , as in Definition

2.6.5. Since σ is an invertible homomorphism, i.e., an automorphism, uσ is also an automorphism. Thus G
operates on Y . However, there is a point that should be mentioned.

Let’s write the operation of G on B on the left as usual, so that a group element σ maps an element β of B
to σb. Then if σ and τ are two group elements, the product στ acts as first do τ , then σ: (στ)β = σ(τβ).

(2.7.6) B
τ−→ B

σ−→ B

We substitute u = uσ into Definition 2.6.5: If q is a point of Y , the morphism Y
uσ←− Y sends q to the

point p such that πp = πqσ. It seems permissible to drop the symbol u, and to write the morphism simply as
Y

σ←− Y . But since arrows are reversed when going from homomorphisms of algebras to morphisms of their
spectra, the maps displayed in (2.7.6), give us morphisms

(2.7.7) Y
τ←− Y σ←− Y

On Y = SpecB, the product στ acts as first do σ, then τ .
To get around this problem, we can put the symbol σ on the right when it operates on Y , so that σ sends a

point q to qσ. Then if q is a point of Y , we will have q(στ) = (qσ)τ , as required of an operation.

• If G operates on the left on B, it operates on the right on SpecB.

This is important only when one wants to compose morphisms. In Definition 2.6.5, we followed custom
and wrote the morphism u that corresponds to an algebra homomorphism ϕ on the left. We will continue to
write morphisms on the left when possible, but not here.
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Let β be an element of B and let q be a point of Y . The value [σβ](q) of the function σβ at q is the same

as the value of β at qσ: [σβ](q)
defn
= πq(σβ) = πqσ(β)

defn
= β(qσ) (2.6.6):

(2.7.8) [σβ](q) = β(qσ) �

proof of 2.7.5 (iii): The fibres of the morphism Y → X are the G-orbits in Y .
We go back to the subalgebra A = BG. For σ in G, we have a diagram of algebra homomorphisms and

the corresponding diagram of morphisms

(2.7.9)

B
σ−−−−→ Bx x

A A

Y
σ←−−−− Yy y

X X

The diagram of morphisms shows that the elements of Y forming a G-orbit have the same image in X , and
therefore that the set ofG-orbits in Y , which we denote by Y/G, maps toX . We show that the map Y/G→ X
is bijective.

2.7.10. Lemma. (i) Let p1, . . . , pk be distinct points of affine space An, and let c1, . . . , ck be complex
numbers. There is a polynomial f(x1, . . . , xn) such that f(pi) = ci for i = 1, . . . , n.
(ii) Let B be a finite-type algebra, let q1, . . . , qk be points of SpecB, and let c1, . . . , ck be complex numbers.
There is an element β in B such that β(qi) = ci for i = 1, . . . , k. �

injectivity of the map Y/G→ X:
Let O1 and O2 be distinct G-orbits. Lemma 2.7.10 tells us that there is an element β in B whose value is

0 at every point of O1, is 1 at every point of O2. Since G permutes the orbits, σβ will also be 0 at points
of O1 and 1 at points of O2. Then the product γ =

∏
σ σβ will be 0 at points of O1 and 1 at points of O2,

and γ is invariant. If pi denotes the image in X of the orbit Oi, the maximal ideal mpi of A is the intersection
A ∩ mq , where q is any point in Oi. Therefore γ is in the maximal ideal mp1 , but not in mp2 . The images of
the two orbits are distinct.

surjectivity of the map Y/G→ X:
It suffices to show that the map Y → X is surjective.

2.7.11. Lemma. If I is an ideal of the invariant algebra A, and if the extended ideal IB is the unit ideal of
B, then I is the unit ideal of A.

As before, the extended ideal IB is the ideal of B generated by I .

Let’s assume the lemma for the moment, and use it to prove surjectivity of the map Y → X . Let p be
a point of X . The lemma tells us that the extended ideal mpB isn’t the unit ideal. So it is contained in a
maximal ideal mq of B, where q is a point of Y . Then mp ⊂ (mpB)∩A ⊂ mq ∩A.

The contraction mq ∩ A is an ideal of A, and it isn’t the unit ideal because 1 isn’t in mq . Since mp is a
maximal ideal, mp = mq ∩A. This means that q maps to p in X . �

proof of the lemma. If IB = B, there will be an equation
∑
i zibi = 1, with zi in I and bi in B. The

sums αi =
∑
σ σbi are invariant, so they are elements of A, and the elements zi are invariant. Therefore∑

σ σ(zibi) = zi
∑
σ σbi = ziαi is in I . Then∑

σ

1 =
∑
σ

σ(1) =
∑
σ,i

σ(zibi) =
∑
i

ziαi

The right side is in I , and the left side is the order of the group which, because A contains the complex
numbers, is an invertible element of A. So I is the unit ideal. �
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Chapter 3 PROJECTIVE ALGEBRAIC GEOMETRY

3.1 Projective Varieties
3.2 Homogeneous Ideals
3.3 Product Varieties
3.4 Morphisms and Isomorphisms
3.5 Affine Varieties
3.6 Lines in Projective Three-Space

3.1 Projective Varieties

The projective space Pn of dimension nwas defined in Chapter 1. Its points are equivalence classes of nonzero
vectors (x0, ..., xn), the equivalence relation being that, for any nonzero complex number λ,

(3.1.1) (x0, ..., xn) ∼ (λx0, ..., λxn).

A subset of Pn is Zariski closed if it is the set of common zeros of a family of homogeneous polynomials
f1, ..., fk in the coordinate variables x0, ..., xn, or if it is the set of zeros of the homogeneous ideal I generated
by such a family (see Section 3.2). Homogeneity is required because the vectors (x) and (λx) represent the
same point of Pn. As explained in (1.3.1), f(λx) = 0 for all λ if and only if f is homogeneous. We usually
omit the word ’Zariski’, and refer to a Zariski closed set simply as a closed set.

Because the polynomial ring C[x0, ..., xn] is noetherian, Pn is a noetherian space: Every strictly increasing
family of ideals of C[x] is finite, and every strictly decreasing family of closed subsets of Pn is finite. Therefore
every closed subset of Pn is a finite union of irreducible closed sets (2.2.13). The irreducible closed sets are
the closed subvarieties of Pn, the projective varieties.

Thus a projective variety X is an irreducible closed subset of some projective space. We will also want to
know when two projective varieties are isomorphic. This will be explained in Section 3.4, where morphisms
are defined.

The closed subsets of Pn are the closed sets in the Zariski topology on Pn, and the Zariski topology on a
projective variety X is induced from the topology on the projective space that contains it. Since a projective
variety X is closed in Pn, a subset of X is closed in X if it is closed in Pn.

3.1.2. Lemma. The one-point subsets of projective space are closed.

proof. This simple proof illustrates a general method. Let p be the point (a0, ..., an). The first guess might be
that the one-point set {p} is defined by the equations xi = ai, but the polynomials xi−ai aren’t homogeneous
in x. This is reflected in the fact that, for any λ 6= 0, the vector (λa0, ..., λan) represents the same point,
though it won’t satisfy those equations. The equations that define the set {p} are

(3.1.3) aixj = ajxi,

for i, j = 0, ..., n, which show that the ratios ai/aj and xi/xj are equal. �

3.1.4. Lemma. The proper closed subsets of the projective line are the nonempty finite subsets, and the proper
closed subsets of the projective plane are finite unions of points and curves. �

Though affine varieties are important, most of algebraic geometry concerns projective varieties. It isn’t
very clear why this is so, but one property of projective space gives a hint of its importance: With its classical
topology, projective space is compact.
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A topological space is compact if it has these properties:

Hausdorff property: Distinct points p, q of X have disjoint open neighborhoods, and
quasicompactness: If X is covered by a family {U i} of open sets, then a finite subfamily covers X .

By the way, when we say that the sets {U i} cover a topological space X , we mean that X is the union⋃
U i. We don’t allow U i to contain elements that aren’t in X , though that would be a customary English

usage.

In the classical topology, affine space An is a Hausdorff space, but it isn’t quasicompact, and therefore it
isn’t compact. The Heine-Borel Theorem asserts that a subset of An is compact if and only if it is closed and
bounded.

We’ll show that Pn is compact, assuming that the Hausdorff property has been verified. The 2n+ 1-
dimensional sphere S of unit length vectors in An+1 is a bounded set, and because it is the zero locus of the
equation x0x0 + · · · + xnxn = 1, it is closed. The Heine-Borel Theorem tells us that S is compact. The
map S → Pn that sends a vector (x0, ..., xn) to the point of projective space with that coordinate vector is
continuous and surjective. The next lemma of topology shows that Pn is compact.

3.1.5. Lemma. Let Y
f−→ X be a continuous map. Suppose that Y is compact and that X is a Hausdorff

space. Then the image Z = f(Y ) is a closed and compact subset of X .

proof. The image Z gets the induced topology. Since it is a subspace of X , Z is a Hausdorff space. If {V i}
is an open covering of Z, the inverse images U i = f−1V i form an open covering of Y that has a finite
subcovering U i1 , ..., U ik . The open sets V iν are the images of U iν , and they cover Z. So Z is quasicompact.
�

The rest of this section contains a few examples of projective varieties.

(3.1.6) linear subspaces

Let V denote the affine space An+1. The complement of the origin in V is mapped to the projective space
Pn by sending a vector (x0, ..., xn) to the point of Pn it defines. This map can be useful when one studies
projective space.

If W is a subspace of dimension r+1 of the vector space V , the points of Pn that are represented by the
nonzero vectors in W form a linear subspace L of Pn, of dimension r. If (w0, ..., wr) is a basis of W , the
linear subspace L corresponds bijectively to a projective space of dimension r, by

c0w0 + · · ·+ crwr ←→ (c0, ..., cr)

For example, the set of points (x0, ..., xr, 0, ..., 0) is a linear subspace of dimension r. �

(3.1.7) a quadric surface

A quadric in P63 is the locus of zeros of an irreducible homogeneous quadratic equation in four variables. We
describe a bijective map from the product P1×P1 of projective lines to a quadric.

Let coordinates in the two copies of P1 be (x0, x1) and (y0, y1), respectively, and let the four coordinates
in P3 be wij , with 0 ≤ i, j ≤ 1. The map is defined by wij = xiyj . Its image is the quadric Q whose equation
is

(3.1.8) w00w11 = w01w10

Let’s check that the map P1×P1 → Q is bijective. If w is a point of Q, one of the coordinates, say w00, will
be nonzero. Then if (x, y) is a point of P1×P1 whose image is w, so that wij = xiyj , the coordinates x0 and
y0 must be nonzero. When we normalize w00, x0 and y0 to 1, there is a unique solution for x and y such that
wij = xiyj , namely x1 = w10 and y1 = w01.
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The quadric with the equation (3.1.8) contains two families of lines (one dimensional linear subspaces),
the images of the subsets x×P1 and P1×y of P×P.

Note. Equation (3.1.8) can be diagonalized by the substitution w00 = s+ t, w11 = s − t, w01 = u+v,
w10 = u− v. This substitution changes the equation (3.1.8) to s2 − t2 = u2−v2. When we look at the affine
open set {u = 1}, the equation becomes s2 +v2−t2 = 1. The real locus of this equation is a one-sheeted
hyperboloid in R3, and the two families of complex lines in the quadric correspond to the familiar rulings of
this hyperboloid by real lines.

figure : hyperboloidwith rulings. perhaps actual picture of the locus above �

(3.1.9) hypersurfaces

A hypersurface is the locus of zeros in a projective space Pn of an irreducible homogeneous polynomial
f(x0, ..., xn). Plane projective curves and quadric surfaces are hypersurfaces.

(3.1.10) the Segre embedding of a product

The product Pmx ×Pny of projective spaces can be embedded by its Segre embedding into a projective space
PNw that has coordinates wij , with i = 0, ...,m and j = 0, ..., n. So N = (m+1)(n+1)−1. The Segre
embedding is defined by

(3.1.11) wij = xiyj .

We call the coordinates wij the Segre variables.

The map from P1× P1 to P3 that was described in (3.1.7) is the simplest case of a Segre embedding.

3.1.12. Proposition. The Segre embedding maps the product Pm× Pn bijectively to the locus Z of the Segre
equations

(3.1.13) wijwk` − wi`wkj = 0.

proof. When one substitutes (3.1.11) into the Segre equations, one obtains equations in {xi, yj} that are true.
So the image of the Segre embedding is contained in Z.

Let Ui, Vj and Wij denote the standard affine open subsets {xi 6= 0}, {yj 6= 0} and {wij 6= 0} of Pm, Pn
and PN , respectively. Say that we have a point p of Z that lies in W 00, and that p is the image of (x, y). Then
w00 is nonzero, so x0 and y0 are also nonzero. We normalize w00, x0, and y0 to 1. Then wij = wi0w0j for all
i, j, xi = wi0 and yj = w0j . �

The Segre embedding is important because it makes the product of projective spaces into a projective
variety, the closed subvariety of PN defined by the Segre equations. However, there is a point that should
be discussed. To show that the product is a variety, we need to show that the locus of the Segre equations is
irreducible. We defer discussion of this point to Section 3.3 (see Proposition 3.3.1).

(3.1.14) the Veronese embedding of projective space

Let the coordinates in Pn be xi, and let those in PN be vij , with 0≤ i≤j≤n. Then N =
(
n+2

2

)
− 1. The

Veronese embedding is the map Pn f−→ PN defined by vij = xixj . The Veronese embedding resembles the
Segre embedding, but in the Segre embedding, there are distinct sets of coordinates x and y, and there is no
requirement that i≤j.

The proof of the next proposition is similar to the proof of (3.1.12).

3.1.15. Proposition. The Veronese embedding f maps Pn bijectively to the locus X in PN of the equations

vijvk` = vi`vkj for 0≤ i≤k≤j≤`≤n �
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For example, the Veronese embedding maps P1 bijectively to the conic v00v11 = v2
01 in P2.

(3.1.16) the twisted cubic

There are higher order Veronese embeddings, defined in an analogous way by the monomials of some
degree d > 2. The first example is the embedding of P1 by the cubic monomials in two variables, which maps
P1
x to P3

v . Let the coordinates in P3 be v0, ..., v3. The cubic Veronese embedding is defined by

v0 = x3
0, v1 = x2

0x1, v2 = x0x
2
1, v3 = x3

1

Its image is a twisted cubic in P3, the locus (v0, v1, v2, v3) = (x3
0, x

2
0x1, x0x

2
1, x

3
1), which is the set of common

zeros of the three polynomials

(3.1.17) v0v2 − v2
1 , v1v2 − v0v3 , v1v3 − v2

2

These polynomials are the 2×2 minors of the 2×3 matrix

(3.1.18)
(
v0 v1 v2

v1 v2 v3

)
A 2×3 matrix has rank≤ 1 if and only if its 2×2 minors are zero. So a point (v0, v1, v2, v3) lies on the twisted
cubic if (3.1.18) has rank one. This means that the vectors (v0, v1, v2) and (v1, v2, v3), if both are nonzero,
represent the same point of P2. Setting x0 = v0 = 1 and x1 = v1 = t, the twisted cubic becomes the locus of
points (1, t, t2, t3). There is also one point at which v0 = 0, the point (0, 0, 0, 1). �

3.2 Homogeneous Ideals
We denote the polynomial algebra C[x0, ..., xn] by R here.

3.2.1. Lemma. Let I be an ideal of R. The following conditions are equivalent.
(i) I can be generated by homogeneous polynomials.
(ii) A polynomial is in I if and only if its homogeneous parts are in I. �

An ideal I of R that satisfies these conditions is a homogeneous ideal.

3.2.2. Lemma. The radical of a homogeneous ideal is homogeneous.

proof. Let I be a homogeneous ideal, and let f be an element of its radical rad I. So fr is in I for some r.
When f is written as a sum f0 + · · · + fd of its homogeneous parts, the highest degree part of fr is (fd)

r.
Since I is homogeneous, (fd)

r is in I and fd is in rad I. Then f0 + · · ·+ fd−1 is also in rad I. By induction
on d, all of the homogeneous parts f0, ..., fd are in rad I. �

If f is a set of homogeneous polynomials, the set of its zeros in Pn may be denoted by V (f) or VPn(f),
and the set of zeros of a homogeneous ideal I by V (I) or VPn(I). (This is the same notation as is used for
closed subsets of affine space.)

A homogeneous ideal I has a zero locus in projective space Pn and a zero locus in affine space An+1. We
can’t use the V (I) notation for both of them, so let’s denote these two loci by V andW , respectively. Unless I
is the unit ideal, the origin x = 0 will be a point of W , and the complement of the origin will map surjectively
to V . If a point x other than the origin is in W , then because a homogeneous polynomial f vanishes at x if and
only if it vanishes at λx, every point of the line through 0 and x is in W . An affine variety that is the union of
lines through the origin is called an affine cone. If the locus W contains a point x other than the origin, it is an
affine cone.

The familiar locus x2
0 + x2

1 − x2
2 = 0 is a cone in A3. The zero locus of the polynomial x3

0 + x3
1 − x3

2 is
also called a cone.

Note. The real locus x2
0 + x2

1− x2
2 = 0 in R3 decomposes into two parts when the origin is removed. Because

of this, it is sometimes called a “double cone”. However, the complex locus doesn’t decompose.
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(3.2.3) the irrelevant ideal

In the polynomial algebra R = C[x0, ..., xn], the maximal ideal M = (x0, ..., xn) generated by the
variables is called the irrelevant ideal because its locus of zeros in projective space is empty.

3.2.4. Proposition. The zero locus in Pn of a homogeneous ideal I of R is empty if and only if I contains a
power of the irrelevant ideal.

Another way to say this is that V (I) is empty if and only if either I is the unit ideal R, or its radical is the
irrelevant ideal.

proof of Proposition 3.2.4. Let Z be the zero locus of I in Pn. If I contains a power ofM, it contains a power
of each variable. Powers of the variables have no common zeros in projective space, so Z is empty.

Suppose that Z is empty, and let W be the locus of zeros of I in the affine space An+1. Since the
complement of the origin in W maps to the empty locus Z, it is empty. The origin is the only point that might
be in W . If W is the one point space consisting of the origin, then rad I is the irrelevant idealM. If W is
empty, I is the unit ideal. �

3.2.5. Lemma. Let P be a homogeneous ideal in the polynomial algebra R, not the unit ideal. The following
conditions are equivalent:
(i) P is a prime ideal.
(ii) If f and g are homogeneous polynomials, and if fg ∈ P , then f ∈ P or g ∈ P .
(iii) If A and B are homogeneous ideals, and if AB ⊂ P , then A ⊂ P or B ⊂ P .

Thus a homogeneous ideal is a prime ideal if the usual conditions for a prime ideal are satisfied when the
polynomials or ideals are homogeneous.

proof of the lemma. The facts that (i) implies (ii) and (iii) follow from the analogous statements for nonho-
mogeneous ideals, and the implication (iii)⇒ (ii) is proved by considering the principal ideals generated by f
and g.

(ii)⇒ (i) Suppose that a homogeneous ideal P satisfies the condition stated in (ii), and that the product fg
of two polynomials, not necessarily homogeneous, is in P . If f has degree d and g has degree e, the highest
degree part of fg is the product fdge of the homogeneous parts of f and g of maximal degree. Since P is a
homogeneous ideal, it contains fdge. Therefore one of the factors, say fd, is in P . Let h = f − fd. Then hg
is in P , and it has lower degree than fg. By induction on the degree of fg, h or g is in P , and if h is in P , so
is f . �

3.2.6. Proposition. Let Y be the zero locus in Pn of a homogeneous radical ideal I, not the irrelevant ideal.
Then Y is a projective variety (an irreducible closed subset of Pn) if and only if I is a prime ideal. Thus a
subset Y of Pn is a projective variety if and only if it is the zero locus of a homogeneous prime ideal that isn’t
the irrelevant ideal.

proof. Let W be the locus of zeros of I in the affine space An+1. Then W is irreducible if and only if Y is
irreducible. This is easy to see. Proposition 2.2.16 tells us that W is irreducible if and only if the radical ideal
I is a prime ideal. �

As before, V (I) stands for the zero locus of a homogeneous ideal I in projective space.

3.2.7. Strong Nullstellensatz, projective version.
(i) Let g be a nonconstant homogeneous polynomial in x0, ..., xn, and let I be a homogeneous ideal of C[x].
If g vanishes at every point of V (I), then I contains a power of g.
(ii) Let f and g be homogeneous polynomials. If f is irreducible and if V (f) ⊂ V (g), then f divides g.
(iii) Let I and J be homogeneous ideals, and suppose that rad I isn’t the irrelevant ideal or the unit ideal.
Then V (I) = V (J ) if and only if rad I = radJ .
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proof. (i) Let W be the locus of zeros of I in the affine space An+1 with coordinates x. The polynomial g
vanishes at every point of W different from the origin, and since g isn’t a constant, it vanishes at the origin
too. So the affine Strong Nullstellensatz applies to W .

(ii) If f is irreducible, the principal ideal (f) will be a prime ideal. So f divides a power of g if and only if f
divides g.

(iii) If rad I = radJ , then because V (I) = V (rad I) = V (radJ ) = V (J ). Suppose that rad I > rad I.
Then V (I) ⊂ V (I). Let g be a homogeneous polynomial in rad I that isn’t in rad I. Then g is zero on V (I),
but by (i), g isn’t zero on V (I). So V (I) < V (I). �

(3.2.8) quasiprojective varieties

A nonempty (Zariski) open subsetX of a projective variety is called a quasiprojective variety. For instance,
a projective variety is quasiprojective. The complement of a point in a projective variety is a quasiprojective
variety. An affine variety X = SpecA may be regarded as a quasiprojective variety by embedding it as a
closed subvariety of the standard affine space U0. It becomes an open subvariety of its closure in Pn, which is
a projective variety (Lemma 2.2.12 (ii)).

The topology on a quasiprojective variety is induced from the topology on projective space.

3.2.9. Lemma. The topology on the affine open subset U0 : x0 6= 0 of Pn that is induced from the Zariski topol-
ogy on Pn is the same as the Zariski topology obtained by viewing U0 as the affine space SpecC[u1, ..., un],
ui = xi/x0. �

Here is the description of a quasiprojective variety X in terms of equations:

3.2.10. Let X be the closure of X in projective space Pn, and let C be the (closed) complement of X in X .
The closed set X will be the zero set of a family f1, ..., fk of homogeneous polynomials, and C will be the
zero set of another family g1, ..., g`. Then a point p of X will be a point of projective space that solves the
equations f = 0 but doesn’t solve g = 0: All of the polynomials fi vanish at p, and there is at least one
polynomial gj that doesn’t vanish there.

For example, if an affine variety X is embedded as a closed subvariety of U0 and the locus of zeros of
f = 0 is the closure X , then a point of X is a zero of f , but x0 isn’t zero at p. �

These days, it is customary to define varieties without reference to an embedding into projective space,
as we did for affine varieties in Chapter 2 (??). However, to do this requires work. Most operations that one
wants to make preserve the quasiprojective property, and though there are varieties that cannot be embedded
into any projective space, they aren’t very important. In fact, it is hard enough to find convincing examples
of such varieties that we won’t try to give one here. All varieties that we consider will be quasiprojective. In
order to simplify terminology, and because the word “quasiprojective” is ugly, we will henceforth use the word
“variety” to mean “quasiprojective variety”.

3.3 Product Varieties

The properties of products of varieties seem intuitive, but some of the proofs aren’t obvious.

3.3.1. Proposition. Let X and Y be irreducible topological spaces, and suppose that a topology is given on
the product P = X×Y , such that
• the topology on X×Y is at least as fine as the product topology, i.e., the projections P π1−→ X and P π2−→ Y
are continuous, and
• for all x in X and all y in Y , the fibres xP = x×Y and Py = X×y, with topologies induced from P , are
homeomorphic to Y and X , respectively.

Then P is an irreducible topological space.

3.3.2. Lemma. Let X,Y, P be as in the proposition. If W is an open subset of P , its image U via the
projection P → Y is an open subset of Y .
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proof. Since W is open, the intersection xW = W ∩ xP is an open subset of the fibre xP , whose image xU
in the homeomorphic space Y is also open. Since W is the union of the sets xW , U is the union of the open
sets xU . So U is open. �

proof of Proposition 3.3.1. Let C and C ′ be closed subsets of the product P . Suppose that C < P and
C ′ < P , and let W = P − C and W ′ = P − C ′ be the open complements of C and C ′ in P . To show that P
is irreducible, we must show that C ∪ C ′ < P . We do this by showing that W ∩W ′ is nonempty.

Since C < P , W is nonempty, and similarly, W ′ is nonempty. The lemma tells us that the images U
and U ′ of W and W ′ via projection to Y are nonempty open subsets of Y . Since Y is irreducible, U ∩ U ′ is
nonempty. Let y be a point of U ∩ U ′. Then the open subsets Wy = W ∩ Py and W ′y = W ′ ∩ Py of Py are
nonempty. Since Py is homeomorphic to the irreducible space X , Wy ∩W ′y is nonempty. Therefore W ∩W ′
is nonempty, as was to be shown. �

(3.3.3) products of affine varieties

We inspect the product X×Y of the affine varieties X = SpecA and Y = SpecB. Say that X is
embedded as a closed subvariety of Am, so that A = C[x]/P for some prime ideal P , and that Y is embedded
similarly into An, and B = C[y]/Q. Then in affine x, y-space Am+n, X×Y is the locus of the equations
f(x) = 0 and g(y) = 0 with f ∈ P and g ∈ Q. Proposition 3.3.1 shows that X×Y is irreducible. Therefore
it is a variety.

Let I = (P,Q) denote the ideal of C[x, y] generated by the elements f(x) of P and g(y) of Q. The zero
locus of I in Am+n is the variety X×Y .

3.3.4. Proposition. Let P and Q be prime ideals of C[x] and C[y], respectively, and let X = V (P ) and
Y = V (Q) be their zero sets in Am and An, respectively. Then I = (P,Q) is the ideal of all elements of
C[x, y] that vanish on the variety X×Y . Therefore I is a prime ideal.

The fact that V (I) is the variety X×y tells us only that the radical of I is a prime ideal.

proof of Proposition 3.3.4 The ideal generated by P in C[x, y] consists of finite sums of products of elements
of P with polynomials in x, y. Let’s denote that ideal by P too. Similarly, let Q denote the ideal generated in
C[x, y] as well as the ideal of C[y]. Let A = C[x]/P , B = C[y]/Q, and R = C[x, y]/I . (The ring R is the
tensor product algebra A⊗B (see(??).)

When we evaluate polynomials p(x, y) at a point y0 of Y , we obtain an algebraR0 that is isomorphic toA.
Therefore the homomorphism A→ R defined by the inclusion C[x] ⊂ C[x, y] is injective. Similarly, we have
an injective map B → R. Let’s identify A and B with their images in R. Together, these images generate R.
Any element p of R can be written as a finite sum

(3.3.5) p =

k∑
i=1

aibi

with ai in A and bi in B. We show that if p vanishes identically on X×Y , then p = 0. To do this, we show
that the same element p can be written as a sum of k − 1 products.

If ak is zero, then p =
∑k−1
i=1 aibi. Suppose that ak 6= 0. Then ak isn’t identically zero on X . We choose

a point x0 of X such that ak(x0) 6= 0. Then, writing ai(x0) = a0
i and p0(y) = p(x0, y), we have the equation

p0(y) =
∑k
i=1 a

0
i bi. Since p vanishes on X×Y , p0 vanishes on Y . Therefore p0 = 0. Then since a0

k 6= 0,
we can solve the equation

∑k
i=1 a

0
i bi = 0 for bk: bk =

∑k−1
i=1 cibi, where ci = −a0

i /a
0
k. Substituting into p

gives us an expression for p as a sum of k − 1 terms. Finally, when k = 1, a0
1b1 = 0. Therefore b1 = 0, and

p = 0. �

(3.3.6) the Zariski topology on Pm× Pn

As mentioned above (3.1.10), the product of projective spaces Pm×Pn is made into a projective variety by
identifying it with its Segre image, the locus of the Segre equations wijwk` = wi`wkj . However, its Zariski
topology merits discussion.
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The first examples of closed subsets of Pm× Pn are products of the form X×Y , where X is a closed
subset of Pm and Y is a closed subset of Pn. These are the closed sets in the product topology on Pm× Pn.
The product topology is much coarser than the Zariski topology. For example, the proper closed subsets of P1

are the nonempty finite subsets. In the product topology, the proper closed subsets of P1× P1 are finite unions
of points and sets of the form P1×q and p×P1 (’horizontal’ and ’vertical’ lines). Most Zariski closed subsets
of P1× P1 aren’t of this form.

Since Pm×Pn, with its Segre embedding, is a projective variety, we don’t really need a separate definition
of its Zariski topology. Its closed subsets are the zero sets of families of homogeneous polynomials in the
Segre variables wij that include the Segre equations.

One can also describe the closed subsets of Pm×Pn directly, in terms of bihomogeneous polynomials. A
polynomial f(x, y) is bihomogeneous if it is homogeneous in the variables x and also in the variables y. For
example, the polynomial x2

0y0 + x0x1y1 is bihomogeneous, of degree 2 in x and degree 1 in y.
Because (x, y) and (λx, µy) represent the same point of Pm× Pn for all nonzero λ and µ, we want to know
that f(x, y) = 0 if and only if f(λx, µy) = 0, and this is true for all nonzero λ and µ if and only if f is
bihomogeneous.

3.3.7. Proposition. Let x and y be coordinates in Pm and Pn, respectively.
(i) A subset of Pm×Pn is closed if and only if it is the locus of zeros of a family of bihomogeneous polynomials.
(ii) If X and Y are closed subsets of Pm and Pn, respectively, then X×Y is a closed subset of Pm×Pn.
(iii) The projections Pm× Pny → Pm and Pm× Pny → Pn are continuous maps.
(iv) For all x in Pm and all y in Pn, the fibres x×Pn and Pm×y, with topologies induced from Pmx × Pny , are
homeomorphic to Pn and Pm, respectively.

proof. (i) For the proof, we denote the Segre image of Pm×Pn by Π. Let f(w) be a homogeneous polynomial
in the Segre variables wij . When we substitute wij = xiyj into into f , we obtain a polynomial f(xiyj) that is
bihomogeneous and that has the same degree as f in x and in y. Let’s denote that bihomogeneous polynomial
by f̃(x, y). The inverse image of the zero set of f in Π is the zero set of f̃ in Pm× Pn. Therefore the inverse
image of a closed subset of Π is the zero set of a family of bihomogeneous polynomials in Pm× Pn.

Conversely, let g(x, y) be a bihomogeneous polynomial, say of degrees r and s in x and y, respectively. If
r=s, we may collect variables that appear in g in pairs xiyj and replace each pair xiyj by wij . We will obtain
a homogeneous polynomial G in w such that G(w) = g(x, y) when wij = xiyj . The zero set of G in Π is the
image of the zero set of g in Pm× Pn.

Suppose that r ≥ s, and let k = r−s. Because the variables y cannot all be zero at any point of Pn, the
equation g = 0 on Pm× Pn is equivalent with the system of equations gyk0 = gyk1 = · · · = gykn = 0. The
polynomials gyki are bihomogeneous, of same degree in x as in y.

(ii) A polynomial f(x) can be viewed as a bihomogeneous polynomial of degree zero in y, and a polynomial
g(y) is bihomogeneous of degreee zxero in x. So X×Y , which is the locus f = g = 0 in Am+n, is a closed
subset of Pm×Pn.

(iii) We look at the projection Pm× Pn → Pm. If X is the closed subset of Pm defined by a system of
homogeneous polynomials fi(x), its inverse image in Pm×Pn is the zero set of the system of bihomogeneous
equations fi(x)y0, ..., fi(x)yn. So the inverse image is closed, which shows that the projection is continuous.

(iv) It suffices to show that the inclusion map X → Pm× Pn that sends X to Pm×y is continuous. If f(x, y)
is a bihomogeneous polynomial and y0 is a point of Y , the zero set of f in Pm×y0 is the zero set of f(x, y0).
This polynomial defines a closed subset of Pm. �

3.3.8. Corollary. Let X and Y be projective varieties, and let P denote the product X×Y , a closed subset of
Pm×Pn.
(i) The projections P → X and P → Y are continuous.
(ii) For all x in X and all y in Y , the fibres xP = x×Y and Py = X×y, with topologies induced from P , are
homeomorphic to Y and X , respectively. �

The next corollary follows from Proposition 3.3.1 and Corollary 3.3.8.

3.3.9. Corollary. If X and Y are projective varieties, so is X×Y . �

We will discuss the mapping property of a product in Chapter 5.
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3.4 Morphisms and Isomorphisms
When defining morphisms varieties, one must keep in mind that points of projective space are equivalence
classes of vectors, not the vectors themselves. This is a complication that turns out to be very useful.

Some morphisms are sufficiently obvious that they don’t require discussion. They include the projection
from a product variety X×Y to X , the inclusion of X into the product X×Y as the set X×y for some point
y of Y , the morphism of products X×Y → X ′×Y when a morphism X → X ′ is given, and of course, the
analogous maps when Y replaces X .

If X and Y are subvarieties of projective spaces Pm and Pn, respectively, a morphism Y → X will be
determined by a morphism from Y to Pm whose image is contained in X . However, it is an important fact that

a morphism Y
f−→ X needn’t be the restriction of a morphism from Pn to Pm. There will often be no way to

extend the morphism from Y to Pn. Or, put another way, it may not be possible to define f using polynomials
in the coordinate variables of Pn.

For example, The Veronese map from the projective line P1 to P2, defined by (x0, x1)  (x2
0, x0x1, x

2
1),

is an obvious morphism. Its image is the conic C : v00v11 − v2
01 = 0 in the projective plane P2 with

coordinates v00, v01, v11. The Veronese defines a bijective morphism P1 f−→ C. Its inverse function sends
a point (v00, v01, v11) of C with v00 6= 0 to the point (x0, x1) = (v01, v11). There is no way to extend this
inverse function to P2, though it is a morphism. In fact, there is no nonconstant morphism from P2 to P1.

In order to have a definition that includes all cases, we will define morphisms using points with values in a
field.

(3.4.1) the function field

Let X be a projective variety, and let Xi be its intersection with the standard affine open subset Ui of
projective space. Then if nonempty, Xi will be an irreducible closed subset of Ui, an affine variety. Let’s omit
the indices for which Xi is empty. Then the intersection Xij = Xi ∩Xj will be a localization of Xi and also
a localization of Xj . If Xi = SpecAi and if uij = xj/xi, then Xij = SpecAij , and Aij = Ai[u

−1
ij ] =

Aj [u
−1
ji ]. The fields of fractions of the coordinate algebras Ai are equal for all i such that Xi isn’t empty.

3.4.2. Definition. The function field KX of a projective variety X is the field of fractions of the coordinate
algebra Ai of any one of its nonempty affine open subsets Xi = X ∩ Ui. A rational function on a variety X
is a nonzero element of its function field.

A point p of a projective variety X will lie in one of the nonempty affine open sets Xi = X ∩ Ui. A
rational function α on X is regular at p if it is a regular function at p on one of those affine open sets. �

Suppose that X is affine: X = SpecA. As has been noted, we may regard X as a quasiprojective variety by
embedding it as a closed subset of U0. The function field of X will be the field of fractions of its coordinate
algebra A, and a rational function α on X will be regular at a point p of X if it can be written as a fraction
α = a/s, where a and s are inA and s isn’t zero at p. Thus α is regular at p if it is an element of the coordinate
algebra of some localization Xs that contains p.

We note in passing that if α is regular at p and α(p) 6= 0, then α−1 will be regular at p too.

3.4.3. Lemma. The regularity of a rational function at p doesn’t depend on the choice of the open set Xi that
contains p. �

Finally, let X be a (quasiprojective) variety. The function field KX of X is the function field of its closure
X in projective space.

(3.4.4) the function field of a product

To define the function field of a product X×Y of projective varieties, we use the Segre embedding Pmx ×
Pny → PN . We use notation as in (3.1.10), and let’s denote the product X×Y by Π. So xi, yj , and wij are
coordinates in the three projective spaces, and the Segre map is defined by wij = xiyj . Let Ui, Vj , and Wij
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be the standard affine open sets xi 6= 0, yj 6= 0 and wij 6= 0. The function field will be the field of fractions
of the nonempty intersections Π ∩Wij = Πij , and Πij ≈ Xi×Y j , where Xi = X ∩ Ui and Y j = Y ∩ Vj .
Since Πij , Xi, and Y j are affine varieties, the function field of the product Π = X×Y is the field of fractions
of any one of the nonempty affine open sets ΠiJ .

Since Πij = Xi ∩ Y j , all that remains to do is to describe the field of fractions of a product of affine
varieties Π = X×Y , when X = SpecA and Y = SpecB. If A = C[x]/P and B = C[y]/Q, the coordinate
algebra of Π is the algebra C[x, y]/(P,Q). As mentioned before, this is the tensor product algebra A⊗B. We
don’t need to know much about the tensor product algebra here, but let’s use the tensor product notation.

The function field KX of X is the field of fractions of the coordinate algebra A. Similarly, KY is the field
of fractions of B and KX×Y is the field of fractions of A ⊗ B. The one important fact to note is that KX×Y
isn’t generated by KX and KY . For example, if A = C[x] and B = C[y] (one x and one y), then KX×Y is
the field of rational functions in two variables C(x, y). The algebra generated by the fraction fields C(x) and
C(y) consists of the rational functions p(x, y)/q(x, y) in which q is a product fg, where f is a polynomial in
x and g is a polynomial in y. Most rational functions, 1/(x+ y) forexample, aren’t of this type.

But, KX×Y is the fraction field of A⊗B.

(3.4.5) interlude: rational functions on projective space

Let R denote the polynomial ring C[x0, ..., xn]. If f is a homogeneous polynomial of positive degree d, it
makes sense to say that f vanishes at a point of Pn, because f(λx) = λdf(x). But f doesn’t define a function
on Pn. On the other hand, a fraction g/h of homogeneous polynomials of the same degree d does define a
function wherever h isn’t zero, because

g(λx)/h(λx) = λdg(x)/λdh(x) = g(x)/h(x)

A homogeneous fraction f is a fraction of homogeneous polynomials. The degree of a homogeneous
fraction f = g/h is the difference of degrees: deg f = deg g − deg h.

3.4.6. Definition. A homogeneous fraction f is regular at a point p of Pn if, when it is written as a fraction
g/h of relatively prime homogeneous polynomials, the denominator h isn’t zero at p, and f is regular on a
subset U if it is regular at every point of U . �

This definition agrees with the one given above, in Definition 3.4.2.

3.4.7. Lemma. (i) Let h be a homogeneous polynomial of positive degree d, and let V be the open subset of
Pn, of points at which h isn’t zero. The nonzero rational functions that are regular on V are those of the form
g/hk, where k ≥ 0 and g is a homogeneous polynomial of degree dk.
(ii) The only rational functions that are regular at every point of Pn are the constant functions.

For example, the homogeneous polynomials that are nonzero at every point of the standard affine open set
U0 are the scalar multiples of powers of x0. So the rational functions that are regular on U0 are those of the
form g/xk0 , g homogeneous of degree k. This agrees with the fact that the coordinate algebra of U0 is the
polynomial ring C[u1, ..., un], with ui = xi/x0: g(x0, ..., xm)/xk0 = g(u0, ..., un) (with u0 = 1).

proof of Lemma 3.4.7 (i) Let α be a regular function on the open set U , say g1/h1, where g1 and h1 are
relatively prime homogeneous polynomials. Then h1 doesn’t vanish on U , so its zero locus in Pn is contained
in the zero locus of h. According to the Strong Nullstellensatz 3.2.7, h1 divides a power of h, say hk = fh1.
Then g1/h1 = fg1/fh1 = fg1/h

k.

(ii) If a rational function f is regular at every point of Pn, then it is regular on U0. It will have the form g/xk0 ,
g has degree k and isn’t divisible by x0. And since f is also regular on U1, it will have the form h/x`1, where
x1 doesn’t divide h. Then gx`1 = hxk0 . Since x0 doesn’t divide g, k = 0, g is a constant, and f = g. �

It is also true that the only rational functions on a projective variety X that are regular at every point of
X are the constant functions. The proof of this will be given later (see Corollary 8.4.8). When studying
projective varieties, the constant functions are useless. One has to look at at regular functions on open subsets.
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One way that affine varieties appear in projective algebraic geometry is as open subsets that have enough
regular functions.

(3.4.8) points with values in a field

Let K be a field that contains the complex numbers. A point of projective space Pn with values in K is an
equivalence class of nonzero vectors α = (α0, ..., αn) with αi in K, the equivalence relation being analogous
to the one for ordinary points: α ∼ α′ if α′ = λα for some λ in K.

If a closed subvariety X of Pn is defined by a set of homogeneous polynomial equations f(x) = 0, a point
α of X with values in a field K is a point of Pn with values in K, such that f(α) = 0.

If X is quasiprojective and C is the complement of X in its closure X in projective space, then as for
ordinary points (3.2.10), a point of X with values in KX is a point of X with values in KX that isn’t a point
of C.

3.4.9. Lemma. Let X be a projective variety, a subvariety of Pn, and let KX be the function field of X .
(i) The projective embedding of X defines a point (α0, ..., αn) of Pn with values in the function field KX .
(ii) A homogeneous polynomial f(x0, ..., xn) vanishes at every point of X if and only if f(α) = 0.

proof. (i) LetXi = X∩Ui be the intersection with a standard affine open set, and assume thatXi is nonempty.
Let Ai be its coordinate algebra. The embedding Xi ⊂ Ui is defined by a homomorphism C[u] → Ai,
u = u0, ..., un and uj = xj/xi. The function field KX is the field of fractions of Ai, so we have a composed
homomorphism C[u]→ Ai → KX . The point α is the image of (u0, ..., un) via this homomorphism.

(ii) If f(x) = 0, then f(u) = 0 and therefore f(α) = 0. �

In what follows, it will be helpful to have a separate notation for the point with values in K determined by
a nonzero vector α. We’ll denote that point by α. Thus α = α′ if α′ = λα for some nonzero λ in K. We’ll
drop this notation later.

(3.4.10) morphisms to projective space

Let K be the function field of a variety Y , and let α = (α0, ..., αn) be a nonzero vector with entries in K.
We try to define a morphism from Y to projective space Pn using the point α. To define the image α(q) of a
point q of Y (an ordinary point), we look for a vector α′ = (α′0, ..., α

′
n), with α′ = α, i.e., α′ = λα, such that

the rational functions α′i are all regular and not all zero at q. Such a vector may exist or not. If it exists, we
define

(3.4.11) α(q) = (α′0(q), ..., α′n(q))
(

= α′(q)
)

If such a vector α′ exists for every point q of Y , we call α a good point.

3.4.12. Lemma. A point α of Pn with values in the function field KY of Y is a good point if either one of the
two following conditions holds for every point q of Y :
• There is an element λ in KY such that the rational functions α′i = λαi, i = 0, ..., n, are regular and not

all zero at q.
• There is an index j, 0 ≤ j ≤ n, such that the rational functions αi/αj , j = 0, ..., n, are regular at q.

proof. The first condition simply restates the definition. We show that it is equivalent with the second one.
Suppose that αi/αj are regular at q for all i. Let λ = α−1

j , and let α′i = λαi = αi/αj . The rational
functions α′i are regular at q, and they aren’t all zero there because α′j = 1.

Conversely, suppose that α′i = λαi are all regular at q and that α′j isn’t zero there. Then α′j
−1 is a regular

function at q, so the rational functions α′i/α
′
j , which are equal to αi/αj , are regular at q for all i. �

3.4.13. Lemma. With notation as in (3.4.11), the point α(q) is independent of the choice of the vector α′.
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proof. Let α′ = λα and α′′ = µα. Suppose that α′i are all regular and not all zero at q, and that α′′i are also
regular and not all zero there. We need to show that α′ = α′′, and we may assume that α′′ = α. Then α′ = λα.
The rational functions αi and α′i are all regular at q, and there are indices j, k such that αj(q) and α′k(q) are
nonzero. Then λ = α′j/αj and λ−1 = αk/α

′
k are both regular at q. So λ(q) 6= 0, α′(q) = λ(q)α(q), and

α′(q) = α(q). �

3.4.14. Definition. Let Y be a variety with function field KY . A morphism from Y to projective space Pn is
a map that is defined by a good point α with values in KY , as in (3.4.11).

3.4.15. Example. The identity map P1 → P1.
Let X = P1, and let (x0, x1) be coordinates in X . The function field of X is the field K = C(t) of rational
functions in the variable t = x1/x0. The identity map X → X is the map α defined by the point α = (1, t)
with values in K. For every point p of X except the point (1, 0), α(p) is defined an not zero, so α(p) = α(p).
At the point (0, 1), α′ = (t−1, 1) = t−1α defines α. �

(3.4.16) morphisms to quasiprojective varieties

3.4.17. Definition. Let Y be a variety, and let X be a subvariety of a projective space Pn. A morphism of
varieties Y

α−→ X is the restriction of a morphism Y
α−→ Pn whose image is contained in X .

Thus if a projective variety X is the locus of zeros of a family f of homogeneous polynomials, a morphism
Y

α−→ Pn defines a morphism Y → X if f(α) = 0.

A word of caution: A morphism Y
α−→ X won’t define a map on function fields KX → KY unless the

image of Y is dense in X .

3.4.18. Proposition. A morphism of varieties Y
α−→ X is a continuous map in the Zariski topology, and also

in the classical topology.

proof. Let Ui be the standard affine open subset of Pm, and let Y i be an affine open subset of the inverse image
of Ui. If X = Pm, the restriction Y i → Ui of α is continuous in both topologies because it is a morphism
of affine varieties. Since Y can be covered by affine open sets such as Y i, α is continuous. Continuity for a
morphism to a subvariety X of Pm follows because the topology on X is the induced topology. �

3.4.19. Proposition. Let X,Y , and Z be varieties and let Z
β
−→ Y and Y

α−→ X be morphisms. The

composed map Z
αβ
−→ X is a morphism.

proof. Say that X is a subvariety of Pm. The morphism α is the restriction of a morphism Y → Pm whose
image is in X , and that is defined by a good point α, α = (α0, ..., αm) of Pm with values in the function field
KY of Y . Similarly, if Y is a subvariety of Pn, the morphism β is the restriction of a morphism Z → Pn
whose image is contained in Y , and that is defined by a good point β, β = (β0, ..., βn) of Pn with values in
the function field KZ of Z.

Let z be a point (an ordinary point) of Z. Since β is a good point, we may adjust β by a factor in KZ

so that the rational functions βi are regular and not all zero at z. Then β(z) is the point (β0(z), ..., βn(z)) of
Y . Let’s denote that point by q = (q0, ..., qn). So qi = βi(z). The elements αj are rational functions on Y .
We may adjust α by a factor in KY , so that they are regular and not all zero at q. Then [αβ](z) = α(q) =
(α0(q), ..., αm(q)), and αj(q) = αj(β0(z), ..., βn(z)) = αj(β(z)) are not all zero. When these adjustments
have been made, the point of Pm with values in KZ that defines αβ is (α0(β(z)), ..., αm(β(z))). �

This next is a lemma of topology.

3.4.20. Lemma. Let {Xi} be a covering of a topological space X by open sets. A subset Y of X is open (or
closed) if and only if Y ∩Xi is open (or closed) in Xi for every i. In particular, if {Ui} is the standard affine
cover of Pn, a subset Y of Pn is open (or closed) if and only if Y ∩ Ui is open (closed) in Ui for every i. �

3.4.21. Lemma.
(i) The inclusion of an open or a closed subvariety Y into a variety X is a morphism.
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(ii) Let Y
f−→ X be a map whose image lies in an open or a closed subvariety Z of X . Then f is a morphism

if and only if its restriction Y → Z is a morphism.

(iii) Let {Y i} be open an open covering of a variety Y , and let Y i
fi−→ X be morphisms. If the restrictions of

f i and f j to the intersections Y i ∩ Y j are equal for all i, j, there is a unique morphism f whose restriction to
Y i is f i. �

(3.4.22) isomorphisms

A bijective morphism Y
u−→ X of quasiprojective varieties whose inverse function is also a morphism is

an isomorphism. Isomorphisms are important because they allow us to identify different incarnations of the
“same variety”, i.e., to describe an isomorphism class of varieties. For example, the projective line P1, a conic
in P2, and the twisted cubic in P3 are isomorphic.

3.4.23. Example.
Let y0, y1 be coordinates in Y = P1. As before, the function field of Y is the field K = C(t) of rational
functions in t = y1/y0. The degree 3 Veronese map Y −→ P3 (3.1.16) defines an isomorphism of Y to its
image, a twisted cubic X . The Veronese map is defined by the point α = (1, t, t2, t3) of P3 with values in K.
On the open set {y0 6= 0} of Y , the rational functions 1, t, t2, t3 are regular and not all zero. Let λ = t−3 and
α′ = λα = (t−3, t−2, t−1, 1). The functions t−k are regular on the open set {y1 6= 0}. So α is a good point.
It defines a morphism Y

α−→ X .
The twisted cubic X is the locus of zeros of the equations (3.1.17).

v0v2 = v2
1 , v2v1 = v0v3 , v1v3 = v2

2

To identify the function field K1 of X , we put v0 = 1, obtaining relations v2 = v2
1 , v3 = v3

1 . Then K1 is
the field C(v1), and the point of Y = P1 with values in K1 that defines the inverse of the morphism α is
β = (1, v1). �

3.4.24. Lemma. Let Y
f−→ X be a morphism of varieties, let {Xi} be an open covering of X , and let

Y i = f−1Xi. If the restrictions Y i
fi−→ Xi of f are isomorphisms, then f is an isomorphism.

proof. Let gi denote the inverse of the morphism f i. Then gi = gj on Xi ∩Xj because f i = f j on Y i ∩ Y j .
By (3.4.21) (iii), there is a unique morphism X

g−→ Y whose restriction to Y i is gi. That morphism is the
inverse of f . �

(3.4.25) the diagonal

Let X be a variety. The diagonal X∆, the set of points (p, p) in X×X is an example of a subset of X×X that
is closed in the Zariski topology, but not in the product topology.

3.4.26. Proposition. Let X be a variety. The diagonal X∆ is a closed subvariety of the product variety
X×X .

proof. Let P denote the projective space Pn that contains X , and let x0, ..., xn and y0, ..., yn be coordinates in
the two factors of P×P. The diagonal P∆ in P×P is the closed subvariety defined by the bilinear equations
xiyj = xjyi, or in the Segre variables, by the equations wij = wji, which show that the ratios xi/xj and
yi/yj are equal.

Next, suppose that X is the closed subvariety of P defined by a system of homogeneous equations f(x) =
0. The diagonalX∆ can be identified as the intersection of the productX×X with the diagonal P∆ in P×P, so
it is a closed subvariety of X×X . As a closed subvariety of P×P, the diagonal X∆ is defined by the equations

(3.4.27) xiyj = xjyi and f(x) = 0
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The equations f(y) = 0 are redundant. Finally, X∆ is irreducible because it is homeomorphic to X . �

It is interesting to compare Proposition 3.4.26 with the Hausdorff condition for a topological space. The
proof of the next lemma is often given as an exercise in topology.

3.4.28. Lemma. A topological space X is a Hausdorff space if and only if, when X×X is given the product
topology, the diagonal X∆ is a closed subset of X×X . �

Though a variety X with its Zariski topology isn’t a Hausdorff space unless it is a point, Lemma 3.4.28
doesn’t contradict Proposition 3.4.26 because the Zariski topology onX×X is finer than the product topology.

(3.4.29) the graph of a morphism

Let Y
f−→ X be a morphism of varieties. The graph Γ of f is the subset of Y ×X of pairs (q, p) such that

p = f(q).

3.4.30. Proposition. The graph Γf of a morphism Y
f−→ X is a closed subvariety of Y ×X , and it is

isomorphic to Y .

proof. We form a diagram of morphisms

(3.4.31)

Γf −−−−→ Y ×X

v

y yf×id
X∆ −−−−→ X×X

where v sends a point (q, p) of Γf with f(q) = p to (p, p). The graph Γf is the inverse image in Y ×X of the
diagonal X∆. Since the diagonal is closed in X×X , Γf is closed in Y ×X .

Let π1 denote the projection from X×Y to Y . The composition of the morphisms Y
(id,f)−→ Y ×X π1−→ Y

is the identity map on Y , and the image of the map (id, f) is the graph Γf . Therefore Y maps bijectively to
Γf . The two maps Y → Γf and Γf → Y are inverses, so Γf is isomorphic to Y . �

(3.4.32) projection

The map

(3.4.33) Pn π−→ Pn−1

that drops the last coordinate of a point: π(x0, ..., xn) = (x0, ..., xn−1) is called a projection. It is defined
at all points of Pn except at the point q = (0, ..., 0, 1), which is called the center of projection. So π is a
morphism from the complement U = Pn − {q} to Pn−1.

Let the coordinates in Pn and Pn−1 be x = x0, ..., xn and y = y0, ..., yn−1, respectively. The fibre π−1(y)
over a point (y0, ..., yn−1) is the set of points (x0, ..., xn) such that (x0, ..., xn−1) = (λy0, ..., λyn−1), while
xn is arbitrary. It is the line in Pn through the points (y1, ..., yn−1, 0) and q = (0, ..., 0, 1), with the center of
projection q omitted.

The graph Γ of π in U×Pn−1
y is the locus of solutions of the equations wij = wji for 0≤ i, j≤n−1, which

imply that the vectors (x0, ..., xn−1) and (y0, ..., yn−1) are proportional.

3.4.34. Proposition. In Pnx× Pn−1
y , the locus Γ of the equations xiyj = xjyi, or wij = wji, with 0 ≤ i, j ≤

n− 1, is the closure of the graph Γ of π.

proof. The equations are true at points (x, y) of Γ at which x 6= q, and also at all points (q, y). So the locus Γ,
a closed set, is the union of the graph Γ and the set q×Pn−1. We must show that a homogeneous polynomial
g(w) that vanishes on Γ vanishes at all points of q×Pn−1. Given y, let x = (ty0, ..., tyn−1, 1). For all t 6= 0,
the point (x, y) is in Γ and therefore g(x, y) = 0. Since g is a continuous function, g(x, y) approaches g(q, y)
as t→ 0. So g(q, y) = 0. �
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The projection Γ → Pnx that sends a point (x, y) to x is bijective except when x = q. The fibre over q,
which is q×Pn−1, is a projective space of dimension n−1. Because the point q of Pn is replaced by a projective
space in Γ, the map Γ→ Pnx is called a blowup of the point q.

figure: projection with closure of graph??

3.4.35. Proposition. Let Y
α−→ X and Z

β
−→ W be morphisms of varieties. The product map Y ×Z

α×β
−→

X×W that sends (y, z) to (α(y), β(z)) is a morphism

proof. Let P and q be points of X and Y , respectively. We may assume that αi are regular and not all zero at
p and that βj are regular and not all zero at q. Then, in the Segre coordinates wij , [α×β](p, q) is the point
wij = αi(p)βj(q). We must show that αiβj are all regular at (p, q) and are not all zero there. This follows
from the analogous properties of αi and βj . �

3.5 Affine Varieties
We have used the term ’affine variety’ in several contexts:

A closed subset of affine space Anx is an affine variety, the set of zeros of a prime ideal P of C[x]. Its
coordinate algebra is A = C[x]/P .

The spectrum SpecA of a finite type domain A is an affine variety that becomes a closed subvariety of
affine space when one chooses a presentation A = C[x]/P .

An affine variety becomes a quasiprojective variety by identifying the ambient affine space An with the
open subset U0 of projective space.

We combine these definitions now: An affine variety X is a variety that is isomorphic to a variety of the
form SpecA.

IfX = SpecA is an affine variety with function fieldK, its coordinate algebraA will be the subalgebra of
K of regular functions onX . SoA and therefore SpecA, are determined uniquely byX , and the isomorphism
SpecA→ X is determined uniquely too. When X is affine, it seems permissible to identify X with SpecA.

(3.5.1) regular functions on affine varieties

Let X = SpecA be an affine variety. Its function field K is the field of fractions of A. A rational function
α is regular at a point p of X if it can be written as a fraction a/s where a, s are in A and s(p) 6= 0, and α is
regular on X if it is regular at every point of X . On the other hand, in Chapter 2 (2.6.1), α is defined to be a
regular function on X if and only if it is an element of the coordinate algebra A. The next lemma shows that
the two conditions are equivalent.

3.5.2. Lemma. The regular functions on an affine variety X = SpecA, as defined in (3.4.2), are the elements
of its coordinate algebra A.

proof. Let α be a regular function on X , as defined above. So for every point p of X , there is a localization
Xs = SpecAs that contains p, such that α is an element of As. Because X is quasicompact, a finite set of
these localizations, say Xs1 , . . . , Xsk , will cover X . Then s1, ..., sk have no common zeros on X , so they
generate the unit ideal of A. Since α is in Asi , we can write α = s−ni bi with bi in A, and we can use the
same exponent n for all i. Since the elements si generate the unit ideal of A, so do the powers sni . Say that∑
sni ai = 1, with ai in A. Then α =

∑
sni aiα =

∑
aibi is in A. �

3.5.3. Proposition.
(i) Let R be the algebra of regular functions on a variety Y , and let A be a finite-type domain. A homomor-

phism A→ R defines a morphism Y
f−→ SpecA.

(ii) When X and Y are affine varieties, say X = SpecA and Y = SpecB, morphisms Y → X , as defined
in Definition 3.4.17 correspond bijectively to algebra homomorphisms A→ B, as in Definition 2.6.5.

Note. Since Y isn’t affine, all that we know about the algebra R is that its elements are rational functions that
are regular on Y .
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proof of Proposition 3.5.3. (i) Let {Y i} be an affine open covering of Y , and let Ri be the coordinate algebra

of Y i. The inclusions A ⊂ R ⊂ Ri define morphisms Y i = SpecRi
fi−→ SpecA. It is true that f i = f j on

Y i ∩ Y j , so Lemma 3.4.21 (iii) applies. �

3.5.4. Lemma. Let X and Y be affine varieties, say X = SpecA and Y = SpecB. Morphisms Y α−→ X ,
as defined in (3.4.14) and (3.4.17), correspond bijectively to algebra homomorphisms A

ϕ−→ B.

proof. We choose a presentation of A, to embed X as a closed subvariety of affine space, and we identify
that affine space with the standard affine open set U0 of Pn. Let K be the function field of Y – the field of
fractions of B. A morphism Y

u−→ X is determined by a good point α with values in K, and since α0 6= 0,
we may suppose that this point has the form α = (α0, ...., αn). Then the rational functions αi/α0 = αi will
be regular at every point of Y . So they are elements of B. The coordinate algebra A of X is generated by
the residues of the coordinate variables x1, ..., xn, with x0 = 1. Sending xi → αi defines a homomorphism
A

ϕ−→ B. Conversely, if ϕ is such a homomorphism, the good point that defines the morphism Y
u−→ X is

(1, ϕ(x1), ..., ϕ(xn)). �

(3.5.5) affine open subsets

An affine open subset of a variety X is an open subset that is an affine variety. If V is a nonempty open
subset of X and R is the algebra of rational functions that are regular on V , then V is an affine open subset if
and only if
• R is a finite-type domain and
• V is isomorphic to SpecR.

In Theorem 3.5.9 below, we prove an important fact, that the intersection of two affine open sets is again an
affine open set.

3.5.6. Proposition. The complement of a hypersurface is an affine open subvariety of Pn.

proof. Let V be the complement of the hypersurface {f = 0}, where f is an irreducible homogeneous
polynomial of degree d, let K be its fraction field, and let R be the algebra of regular functions on V .

The regular functions on V are the homogeneous fractions of degree zero of the form g/fk (3.4.5), and
the fractions m/f , where m is a monomial of degree d, generate R. Since there are finitely many monomials
of degree d, R is a finite-type domain. Let w be an arbitrary monomial of degree d − 1, and let si = xiw/f .
The point (x0, ..., xn) of V can also be written as (s0, ..., sn). The fractions si are among the generators for
R. So if W = SpecR, (s0, ..., sn) is a point with values in K that defines a morphism W

z−→ V . We show
that z is an isomorphism.

3.5.7. Lemma. Let Ui be the standard affine open subset of Pn. With si as above, the intersection V i = V ∩Ui
is isomorphic to the localization Wsi of W .

proof. Say that i = 0, and let denote S = s0 = xd0/f and t = s−1 = f/xd0. Let A be the coordinate algebra of
U0. Then V 0 = V ∩U0 is the set of points of U0 at which t isn’t zero. Its coordinate algebra is the localization
At, and V 0 is the affine variety SpecAt.

It suffices to show that At is the localization Rs of R. With coordinates uj = xj/x0 for U0, a fraction
m/f , where m = xj1 · · ·xjd , can be written as uj1 · · ·ujd/t. These fractions generate R, so R ⊂ At, and
since s−1 = t is in At, Rs ⊂ At. For the other inclusion, we write uj = (xjx

d−1
0 /f) s−1. Because xjxd−1

0 /f
is in R, uj is in Rs. Therefore A ⊂ Rs and At ⊂ Rs. So At = Rs, as claimed. �

We go back to the proof of Proposition 3.5.6. The sets V i = V ∩ Ui for i = 0, ..., n cover V , and the
morphism z restricts to an isomorphism V i → SpecRsi . So the morphism z defined above is an isomorphism
(3.4.24). �

3.5.8. Lemma. The affine open subsets of a variety X form a basis for the topology on X .

proof. See Proposition 2.5.20. �

Let [A,B] denote the algebra generated by two subalgebras A and B of the function field K of X . The
elements of this algebra are finite sums of products of elements of A and B. If A = C[a], a = a1, ..., ar, and
B = C[b], b = b1, ..., bs, then [A,B] is the finite-type subalgebra of K generated by the set {a, b}.
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3.5.9. Theorem
Let U and V be affine open subvarieties of a variety X , say U ≈ SpecA and V ≈ SpecB. The

intersection U ∩ V is an affine open subvariety whose coordinate algebra is generated by the two algebras A
and B.

proof. With A and B as in the statement of the theorem, let R = [A,B], and let W = SpecR. We are to show
that W is isomorphic to U ∩V . The inclusions of coordinate algebras A→ R and B → R give us morphisms
W → U and W → V . We also have inclusions U ⊂ X and V ⊂ X , and X is a subvariety of a projective
space Pn.

Let α be the point of Pn with values in K that defines the projective embedding X
ϕ−→ Pn. The maps

from U and V to Pn defined by α are restrictions of ϕ. The variety W also has function field K, and α defines

a morphism W
ψ−→ Pn whose image is in U ∩ V . This gives us a morphism W

ε−→ U ∩ V . We show that ε
is an isomorphism.

Let p be a point of U ∩ V . We choose an affine open subset Z of U ∩ V that is a localization of U and of
V , and that contains p (2.5.21)(ii). Let S be the coordinate ring of Z. So S = As for some nonzero s in A
and also S = Bt for some nonzero t in B. Then

Rs = [A,B]s = [As, B] = [Bt, B] = Bt = S

So ε maps the localization Ws = SpecRs of W isomorphically to the open subset Z of U ∩ V . Since we can
cover U ∩ V by open sets such as Z, Lemma 3.4.21 (ii) shows that ε is an isomorphism. �

3.6 Lines in Projective Three-Space

The Grassmanian G(m,n) is a variety whose points correspond to subspaces of dimension m of the vector
space Cn, and to linear subspaces of dimension m−1 of Pn−1. One says that G(m,n) parametrizes those
subspaces. For example, the Grassmanian G(1, n+1) is the projective space Pn. Points of Pn parametrize
one-dimensional subspaces of Cn+1.

The Grassmanian G(2, 4) parametrizes two-dimensional subspaces of C4, and lines in P3. In this section
we describe this Grassmanian, which we denote by G. The point of G that corresponds to a line ` in P3 will
be denoted by [`].

One can get some insight into the structure of G using row reduction. Let V = C4, let u1, u2 be a basis
of a two-dimensional subspace U of V and let M be the 2×4 matrix whose rows are u1, u2. The rows of
the matrix M ′ obtained from M by row reduction span the same space U , and the row-reduced matrix M ′ is
uniquely determined by U . Provided that the left hand 2×2 submatrix of M is invertible, M ′ will have the
form

(3.6.1) M ′ =

(
1 0 ∗ ∗
0 1 ∗ ∗

)
So the Grassmanian G contains, as an open subset, a four-dimensional affine space whose coordinates are the
variable entries of M ′.

In any 2×4 matrix M with independent rows, some pair of columns will be independent. Those columns
can be used in place of the first two in a row reduction. So G is covered by six four-dimensional affine spaces
that we denote by Wij , 1≤ i < j≤4, Wij being the space of 2×4 matrices such that columni = (1, 0)t and
columnj = (0, 1)t. Since P4 and the Grassmanian are both covered by affine spaces of dimension four, they
may seem similar, but they aren’t the same.

(3.6.2) the exterior algebra

Let V be a complex vector space. The exterior algebra
∧
V (read ‘wedge V ’) is a noncommutative ring

that contains the complex numbers and is generated by the elements of V , with the relations

(3.6.3) vw = −wv for all v, w in V .

3.6.4. Lemma. The condition (3.6.3) is equivalent with: vv = 0 for all v in V .
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proof. To get vv = 0 from (3.6.3), one sets w = v. Suppose that vv = 0 for all v in V . Then (v+w)(v+w) =
vv = ww = 0, and since (v+w)(v+w) = vv + vw + wv + ww, vw + wv = 0. �

To familiarize yourself with computation in
∧
V , verify that v2v3v1v4 = v1v2v3v4 and that v2v3v4v1 =

−v1v2v3v4.

Let
∧r

V denote the subspace of
∧
V spanned by products of length r of elements of V . The exterior algebra∧

V is the direct sum of the subspaces
∧r

V . An algebra A that is a direct sum of subspaces Ai, and such that
multiplication mapsAi×Aj toAi+j is called a graded algebra. Since its multiplication law isn’t commutative,
the exterior algebra is a noncommutative graded algebra.

3.6.5. Proposition. If (v1, ..., vn) is a basis for V , the products vi1 · · · vir of length r with increasing indices
i1 < i2 < · · · < ir form a basis for

∧r
V .

The proof is at the end of the section.

3.6.6. Corollary. Let v1, ..., vr be elements of V . The product v1 · · · vr in
∧r

V is zero if and only if the set
(v1, ..., vr) is dependent. �

For the rest of the section, we let V be a vector space of dimension four with basis (v1, ..., v4). Proposition
3.6.5 tells us that

(3.6.7)∧0
V = C is a space of dimension 1, with basis {1}∧1
V = V is a space of dimension 4, with basis {v1, v2, v3, v4}∧2
V is a space of dimension 6, with basis {vivj | i < j} = {v1v2, v1v3, v1v4, v2v3, v2v4, v3v4}∧3
V is a space of dimension 4, with basis {vivjvk | i < j < k} = {v1v2v3, v1v2v4, v1v3v4, v2v3v4}∧4
V is a space of dimension 1, with basis {v1v2v3v4}∧q
V = 0 when q > 4

The elements of
∧2

V are combinations

(3.6.8) w =
∑
i<j

aijvivj

We regard
∧2

V as an affine space of dimension 6, identifying the combination w with the vector whose
coordinates are the six coefficients aij (i < j). We use the same symbolw to denote the point of the projective
space P5 with those coordinates: w = (a12, a13, a14, a23, a24, a34).

3.6.9. Definition. An element w of
∧2

V is decomposable if it is a product of two elements of V .

3.6.10. Proposition. The decomposable elements w =
∑
i<j aijvivj of

∧2
V are those such that ww = 0,

and the relation ww = 0 is given by the following equation in the coefficients aij:

(3.6.11) a12a34 − a13a24 + a14a23 = 0

proof. If w is decomposable, say w = u1u2, then w2 = u1u2u1u2 = −u2
1u

2
2 is zero because u2

1 = 0. For the
converse, we compute w2 when w =

∑
i<j aijvivj . The answer is

ww = 2
(
a12a34 − a13a24 + a14a23

)
v1v2v3v4

To show that w is decomposable if w2 = 0, it seems simplest to factor w explictly. Since the assertion is
trivial when w = 0, we may suppose that some coefficient of w, say a12, is nonzero. Then if w2 = 0, w is the
product

(3.6.12) w =
1

a12

(
a12v2 + a13v3 + a14v4

)(
− a12v1 + a23v3 + a24v4

)
�
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3.6.13. Corollary. (i) Let w be a nonzero decomposable element of
∧2

V , say w = u1u2, with ui in V . Then
(u1, u2) is a basis for a two-dimensional subspace of V .
(ii) If (u1, u2) and (u′1, u

′
2) are bases for the same subspace U of V , then w = u1u2 and w′ = u′1u

′
2 differ by

a scalar factor. Their coefficients represent the same point of P5.
(iii) Let u1, u2 be a basis for a two-dimensional subspace U of V , and let w = u1u2. The rule ε(U) = w
defines a bijection ε from G to the quadric Q in P5 whose equation is (3.6.11).

Thus G can be represented as the quadric (3.6.11).

proof. (i) If an element w of
∧2

V is decomposable, say w = u1u2, and if w is nonzero, then u1 and u2 must
be independent (3.6.6). They span a two-dimensional subspace.

(ii) When we write the second basis in terms of the first one, say (u′1, u
′
2) = (au1+bu2, cu2+du2), the product

u′1u
′
2 becomes (ad−bc)u1u2, and ad−bc 6= 0.

(iii) In view of (i) and (ii), all that remains to show is that, if (u1, u2) and (u′1, u
′
2) are bases for distinct

two-dimensional subspaces U and U ′, then u1u2 6= u′1u
′
2 in

∧2
V .

Since U 6= U ′, the intersection W = U ∩ U ′ has dimension at most 1, o at least three of the vecotrs
u1, u2, u

′
1, u
′
2 will be independent. Therefore u1u2 6= u′1u

′
2. �

For the rest of this section, we use the algebraic dimension of a variety, a concept that will be studied in
the next chapter. We refer to the algebraic dimension simply as the dimension. The dimension of a variety X
can be defined as the length d of the longest chain C0 > C1 > · · · > Cd of closed subvarieties of X .

As was mentioned in Chapter 1, the topological dimension of X its dimension in the classical topology, is
always twice the algebraic dimension. Because the Grassmanian G is covered by affine spaces of dimension
4, its algebraic dimension is 4 and its topological dimension is 8.

3.6.14. Proposition. Let P3 be the projective space associated to a four dimensional vector space V . In the
product P3× G, the locus Γ of pairs p,[`] such that the point p of P3 lies on the line ` is a closed subset of
dimension 5.

proof. Let ` be the line in P3 that corresponds to the subspace U with basis (u1, u2), and say that p represented
by the vector x in V . Let w = u1u2. Then p ∈ ` means x ∈ U , which is true if and only if (x, u1, u2) is a
dependent set, and this happens if and only if xw = 0 (3.6.5). So Γ is the closed subset of points (x,w) of
P3× P5 defined by the bihomogeneous equations w2 = 0 and xw = 0.

When we project Γ to G, The fibre over a point [`] of G is the set of points p, [`] such that p is a point of the
line `. The fibre over the point [`] of G is the line `. Thus Γ can be viewed as a family of lines, parametrized
by the four-dimensional variety G. Its dimension is dim `+ dimG = 1 + 4 = 5. �

(3.6.15) lines on a surface

One may ask whether or not a given surface in P3 contains a line. One surface that contains lines is the quadric
Q in P3 with equationw01w10 = w00w11, the image of the Segre embedding P1×P1 → P3

w (3.1.7). It contains
two families of lines, corresponding to the two “rulings” p×P1 and P1×q of P1× P1. There are surfaces of
arbitrary degree that contain lines, but, that a generic surface of degree four or more doesn’t contain any line.

We use coordinates xi with i = 1, 2, 3, 4 for P3 here. There are N =
(
d+3

3

)
monomials of degree d in four

variables, so homogeneous polynomials of degree d are parametrized by an affine space of dimension N , and
surfaces of degree d in P3 by a projective space of dimension N−1. Let S denote that projective space, and
let [S] denote the point of S that corresponds to a surface S. The coordinates of [S] are the coefficients of the
monomials in the defining polynomial f of S. Speaking infomally, we say that a point of S “is” a surface of
degree d in P3. (When f is reducible, its zero locus isn’t a variety. Let’s not worry about this.)

Consider the line `0 defined by x3 = x4 = 0. Its points are those of the form (x1, x2, 0, 0), so a surface
S : {f = 0} will contain `0 if and only if f(x1, x2, 0, 0) = 0 for all x1, x2. Substituting x3 = x4 = 0 into f
leaves us with a polynomial in two variables:

(3.6.16) f(x1, x2, 0, 0) = c0x
d
1 + c1x

d−1
1 x2 + · · ·+ cdx

d
2,
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where the coefficients ci are among the coefficients of the polynomial f . If f(x1, x2, 0, 0) is identically zero,
all of its coefficients must be zero. So the surfaces that contain `0 correspond to the points of the linear
subspace L0 of S defined by the equations c0 = · · · = cd = 0. Its dimension is (N−1)−(d+1) = N−d−2.
This is a satisfactory answer to the question of which surfaces contain `0, and we can use it to make a guess
about lines in a generic surface of degree d.

3.6.17. Lemma. In the product variety G×S, the set Γ of pairs [`],[S] such that ` ⊂ S is a closed subset.

proof. Let Wij , 1≤ i < j≤ 4 denote the six affine spaces that cover the Grassmanian, as at the beginning of
this section. It suffices to show that the intersection Γij = Γ ∩ (Wij×S) is closed in Wij×S (3.4.20). We
inspect the case i, j = 1, 2.

A line ` such that [`] is in W12 corresponds to a subspace of C2 with basis of the form u1 = (1, 0, a2, a3),
u2 = (0, 1, b2, b3) and ` is the line {ru1 + su2}. Let f(x1, x2, x3, x4) be the polynomial that defines a surface
S. The line ` is contained in S if and only if f(r, s, ra2 + sb2, ra3 + sb3) is zero for all r and s. This is a
homogeneous polynomial of degree d in r, s. Let’s call it f̃(r, s). If we write f̃(r, s) = z0r

d+z1r
d−1s+ · · ·+

zds
d, the coefficients zν will be polynomials in ai, bi and in the coefficients of f . The locus z0 = · · · = zd = 0

is the closed set Γ12 of W12 × S. �

The set of surfaces that contain our special line `0 corresponds to the linear space L0 of S of dimension
N−d−2, and `0 can be carried to any other line ` by a linear map P3 → P3. So the sufaces that contain another
line ` also form a linear subspace of S of dimension N−d−2. They are the fibres of Γ over G. The dimension
of the Grassmanian G is 4. Therefore the dimension of Γ is dim Γ = dimL0 + dimG = (N−d−2) + 4.
Since S has dimension N−1,

(3.6.18) dim Γ = dimS− d+ 3.

We project the product G×S and its subvariety Γ to S. The fibre of Γ over a point [S] is the set of pairs
[`],[S] such that ` is contained in S – the set of lines in S.

When the degree d of the surfaces we are studying is 1, dim Γ = dim S+2. Every fibre of Γ over S will
have dimension at least 2. In fact, every fibre has dimension equal to 2. Surfaces of degree 1 are planes, and
the lines in a plane form a two-dimensional family.

When d = 2, dim Γ = dimS+1. We can expect that most fibres of Γ over S will have dimension 1. This
is true: A smooth quadric contains two one-dimensional families of lines. (All smooth quadrics are equivalent
with the quadric (3.1.8).) But if a quadratic polynomial f(x1, x2, x3, x4) is the product of linear polynomials,
its locus of zeros will be a union of planes. It will contain two-dimensional families of lines. Some fibres have
dimension 2.

When d ≥ 4, dim Γ < dimS. The projection Γ → S cannot be surjective. Most surfaces of degree 4 or
more contain no lines.

The most interesting case is that d = 3. In this case, dim Γ = dimS. Most fibres will have dimension
zero. They will be finite sets. In fact, a generic cubic surface contains 27 lines. We have to wait to see why the
number is precisely 27 (see Theorem 4.8.17).

Our conclusions are intuitively plausible, but to be sure about them, we need to study dimension carefully.
We do this in the next chapters.

proof of Proposition 3.6.5. Let v = (v1, ..., vn) be a basis of the vector space V . The proposition asserts that
the products vi1 · · · vir of length r with increasing indices i1 < i2 < · · · < ir form a basis for

∧r
V .

To prove this, we need to be more precise about the definition of the exterior algebra
∧
V . We start with

the algebra T (V ) of noncommutative polynomials in the basis v, which is also called the tensor algebra on
V . The part T r(V ) of T (V ) of degree r has as basis the nr noncommutative monomials of degree r, products
vi1 · · · vir of length r of elements of the basis v. Its dimension is nr. When n = r = 2, T 2(V ) the basis is
(x2

1, x1x2, x2x1, x
2
2).

The exterior algebra
∧
V is the quotient of T (V ) obtained by forcing the relations vw+wv = 0 (3.6.3).

Using the distributive law, one sees that the relations vivj+vjvi = 0, 1≤ i, j≤n, are sufficient to define this
quotient. The relations vivi = 0 are included when i = j.
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To obtain
∧r

V , we multiply the relations vivj+vjvi on left and right by arbitrary noncommutative mono-
mials p and q in v1, ..., vn whose degrees add to r−2. The noncommutative polynomials

(3.6.19) p(vivj+vjvi)q

span the kernel of the linear map T r(V )→
∧r

V . So in
∧r

V , p(vivj)q = −p(vjvi)q. Using these relations,
any product vi1 · · · vir in

∧r
V is, up to sign, equal to a product in which the elements viν are listed in

increasing order. Thus the products with indices in increasing order span
∧r

V , and because vivi = 0, such a
product will be zero unless the indices are strictly increasing.

We go to the proof now. Let v = (v1, ..., vn) be a basis for V . We show first that the product w = v1 · · · vn
in increasing order of the basis elements of V is a basis of

∧n
V . We have shown that this product spans∧n

V , and it remains to show that w 6= 0, or that
∧n

V 6= 0.
Let’s use multi-index notation: (i) = (i1, ..., ir), and v(i) = vi1 · · · vir . We define a surjective linear map

Tn(V )
ϕ−→ C on the basis of Tn(V ) of products v(i) = (vi1 · · · vin) of length n. If there is no repetition

among the indices i1, ..., in, then (i) will be a permutation of the indices 1, ..., n. In that case, we set ϕ(v(i)) =
ϕ(vi1 · · · vin) = sign(i). If there is a repetition, we set ϕ(v(i)) = 0.

Let p and q be noncommutative monomials whose degrees add to n−2. If the product p(vivj)q has no
repeated index, the indices in p(vivj)q and p(vjvi)q will be permutations of 1, ..., n, and those permutations
will have opposite signs. Then p(vivj + vjvi)q will be in the kernel of ϕ. Since these elements span the space
of relations, ϕ defines a surjective linear map

∧n
V → C. Therefore

∧n
V 6= 0.

To prove (3.6.5), we must show that for r ≤ n, the products vi1 · · · vir with i1 < i2 < · · · < ir form a basis
for
∧r

V , and we know that those products span
∧r

V . We must show that they are independent. Suppose
that a combination z =

∑
c(i)v(i) is zero, the sum being over sets of strictly increasing indices. We choose a

set (j1, ..., jr) of strictly increasing indices, and we let (k) = (k1, ..., kn−r) be the set of indices not occuring
in (j), listed in arbitrary order. Then all terms in the sum zv(k) =

∑
c(i)v(i)v(k) will be zero except the term

with (i) = (j). On the other hand, since z = 0, zv(k) = 0. Therefore c(j)v(j)v(k) = 0, and since v(j)v(k)

differs by sign from v1 · · · vn, it isn’t zero. It follows that c(j) = 0. This is true for all (j), so z = 0. �
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Chapter 4 STRUCTURE OF VARIETIES I: DIMENSION

4.1 Dimension
4.2 Proof of Krull’s Theorem
4.3 The Nakayama Lemma
4.4 Integral Extensions
4.5 Normalization
4.6 Geometry of Integral Morphisms
4.7 Chevalley’s Finiteness Theorem
4.8 Double Planes

4.1 Dimension

Let X be a variety and let K be its function field. The dimension of X , which will be denoted by dimX , is
the transcendence degree of K over C. The dimension of a finite-type domain A is the transcendence degree
of its field of fractions. Thus, if X ′ is an open subvariety of X , then dimX ′ = dimX .

A proper closed subvariety of an affine variety X will have lower dimension than X , but it isn’t obvious
how much lower its dimension will be. Krull’s Theorem is a tool that helps to determine the drop in dimension.

Krull’s Principal Ideal Theorem. Let X be an affine variety of dimension n, and let α be a nonzero element
of its coordinate algebra. Every irreducible component of the zero locus of α in X has dimension n−1.

So a single equation drops dimension by precisely 1. The proof of Krull’s Theorem will be given in Section
4.2. We use that Theorem here to derive properties of dimension.

(4.1.1) chains of subvarieties

A chain of subvarieties ofX of length k is a strictly decreasing sequence of closed subvarieties (irreducible
closed sets)

(4.1.2) C0 > C1 > C2 > · · · > Ck

The chain is maximal if it cannot be lengthened by inserting another closed subvariety. This will be true if
C0 = X , if there is no closed subvariety C̃ with Ci > C̃ > Ci+1 when i < k, and if Ck is a point.

The chain

(4.1.3) Pn > Pn−1 > · · · > P0

in which Pk is the subspace of Pn of points (x0, ..., xk, 0, ..., 0), is a maximal chain in Pn. The maximal chains
in P2 have the form P2 > C > p, where C is a plane curve and p is a point.

4.1.4. Lemma. Let X ′ be an open subset of a variety X . There is a bijective correspondence between chains
C0 > · · · > Ck of closed subvarieties of X such that Ck ∩ X ′ is nonempty and chains C ′0 > · · · > C ′k of
closed subvarieties of X ′. Moreover, the chain Ci is maximal if and only if C ′i is maximal.

Given a chainC0 > · · · > Ck inX such thatCk∩X ′ 6= ∅, the corresponding chain inX ′ isC ′i = Ci∩X ′,
and given a chain C ′i in X ′, the corresponding chain in X consists of the closures Ci of the varieties C ′i in X .
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proof. Suppose given a chain C0 > C1 > · · · > Ck in X , and that Ck ∩X ′ isn’t empty. Then the intersection
C ′i = Ci ∩X ′ will be nonempty for every i. It will be a dense open subset of the irreducible closed set Ci that
is closed in X ′, and its closure in X will be Ci. Since Ci is irreducible and Ci > Ci+1, it is also true that C ′i
is irreducible and that C ′i > C ′i+1. Therefore C ′0 > · · · > C ′k is a chain of closed subsets of X ′. Conversely,
let C ′0 > · · · > C ′k be a chain in X ′, and let Ci be the closure of C ′i in X . Then C ′i = Ci ∩X , so Ci > Ci+1.
The closures in X form a chain of closed subsets of X . �

The codimension of a closed subvariety Y of a variety X is defined to be the difference dimX−dimY .
Krull’s Theorem tells us that if X = SpecA and Y is a component of the zero locus of a nonzero element α
of A, the codimension of Y will be 1.

4.1.5. Corollary. (i) Every proper closed subvariety of a variety X is contained in a closed subvariety of
codimension 1.
(ii) A closed subvariety Y of a variety X has codimension 1 if and only if X > Y , and there is no closed
subvariety Y such that X > C > Y . �

4.1.6. Theorem. Let X be a variety of dimension n. All chains of closed subvarieties of X have length at
most n, and all maximal chains have length n.

proof. Induction allows us to assume that the theorem is true for a variety of dimension less than n. The base
case n = 0 is that X is a point. That case is trivial.

Let X be a variety of dimension n > 0 and let C0 > C1 > · · · > Ck be a chain in X . We are to show that
k ≤ n and that k = n if the chain is maximal. We choose an affine open subset X ′ of X whose intersection
with Ck is nonempty. Lemma 4.1.4 shows that the intersections C ′i = Ci ∩X ′ form a chain in X ′. We may
replace X by X ′, so we may assume that X is affine, say X = SpecA.

We can insert closed subvarieties into our chain when possible. This will increase k. So we may assume
that C0 = X . If k = 0, there is nothing to show. Otherwise C0 > C1. Some nonzero element α of A will
vanish on C1. Then C1 will be contained in a component C ′ of the zero locus of α. Krull’s Theorem tells us
that the dimension of C ′ is equal to n−1.

If C ′ > C1 we insert C ′ into the chain. So we may assume that C ′ = C1, i.e., that C1 is a component
of the zero locus of the element α, and that dimC1 = n − 1. Induction applies to the chain C1 > · · · > Ck
of closed subvarieties of C1. The length of that chain is at most n−1, and it is equal to n−1 if the chain is
maximal. Moreover, there is no closed subvariety D such that X > D > C1 (Corollary 4.1.5). Therefore the
chain C1 > · · · > Ck is maximal if and only if the given chain C0 > C1 > · · · > Ck is maximal. So k ≤ n
and k = n if the given chain is maximal. �

On an affine variety, Theorem 4.1.6 can be stated in terms of chains of prime ideals. A chain C1 > · · · >
Ck of closed subvarieties of X = SpecA will correspond to an increasing chain

(4.1.7) P0 < P1 < P2 < · · · < Pk,

of prime ideals of A, a prime chain. For instance, in the polynomial algebra C[x1, . . . , xn], the prime chain

(4.1.8) 0 < (xn) < (xn, xn−1) < · · · < (xn, . . . , x1)

corresponds to a chain An > An−1 > · · · > A0 in affine space An.
A prime ideal P of a noetherian domain A has codimension 1 if it is not the zero ideal, and there is no

prime ideal P̃ such that (0) < P̃ < P . Thus C = V (P ) is a closed subvariety of codimension 1 in SpecA if
and only if P is a prime ideal of codimension 1 of A.

The prime ideals of codimension 1 in the polynomial algebra C[x1, . . . , xn] are the principal ideals gener-
ated by irreducible polynomials.

4.2 Proof of Krull’s Theorem

###ERROR HERE###

We restate the theorem for reference.
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4.2.1. Krull’s Theorem. Let X be an affine variety of dimension n, and let α be a nonconstant element of its
coordinate algebra A. Every irreducible component of the zero locus of α in X has dimension n−1.

proof. Let W be a component of the zero locus VX(α), and let Z be the union of the components of VX(α)
that are distinct fromW . We eliminate Z by localizing. We choose an element s inA that is identically zero on
Z, but not identically zero on W . Then the localization Xs contains points of W , but no point of Z. Since X
and Xs have the same function field, their dimensions are equal. Similarly, W and Ws have the same fraction
field F , and their dimensions are equal. We replace X by Xs and W by Ws.

We may now suppose that W = VX(α) is an irreducible closed subset – a closed subvariety. Let B be its
coordinate algebra. The inclusion W ⊂ X gives us a surjective homomorphism A→ B, whose kernel P is a
prime ideal that contains α. Moreover, VX(α) = VX(P ). Therefore P is the radical of the principal ideal (α),
and (α) contains a power P k of P (2.5.9).

We extend the element α to a transcendence basis α1, ..., αn ofK, with αi inA and αn = α. Let αi denote
the residue of αi in B. Then αn = 0. We show that α1, ..., αn−1 is a transcendence basis of the function field
F of W , and therefore that W has dimension n− 1.

Suppose given a polynomial f(x1, ..., xn−1) such that f(α1, ..., αn−1) = 0. Then f(α1, ..., αn−1) is
in P , so f(α1, ..., αn−1)k is in (αn). There is a polynomial g(x1, ..., xn) such that f(α1, ..., αn−1)k =
αng(α1, ..., αn). Because α1, ..., αn are algebraically independent, f(x1, ..., xn−1)k − xng(x1, ..., xn) is
the zero polynomial. Then, since f(x)k isn’t divisible by xn, f and g must be zero too. This shows that
α1, ..., αn−1 are algebraically independent. The dimension of W is at least n− 1.

To show that the dimension of W is n − 1, we show that if β is any element of B, then α1, ..., αn−1, β
is algebraically dependent. We represent β by an element β of A. Since α1, ..., αn is a transcendence basis
of K, there is a nontrivial polynomial g(x1, ..., xn, y) such that g(α1, ..., αn, β) = 0. We may cancel a
power of xn from g(x, y). So we may assume that g(x1, ..., xn−−1, 0, y) isn’t the zero polynomial. But
g(α1, ..., αn−1, 0, β) = 0. So {α1, ..., αn−1, β} isn’t algebraically independent. Therefore α1, ..., αn−1 is a
transcendence basis for K. �

4.3 The Nakayama Lemma

This lemma is a cornerstone of the theory of modules.

4.3.1. Nakayama Lemma. Let M be a finite module over a ring A, and let J be an ideal of A such that
M = JM . There is an element z in J such that m = zm for all m in M , or such that (1−z)M = 0.

It is always true that M ⊃ JM , so the hypothesis M = JM can be replaced by M ⊂ JM .

(4.3.2) eigenvectors

It won’t surprise you that eigenvectors are important, but the way that they are used to study modules may
be unfamiliar.

Let P be an n× n matrix with entries in a ring A. The concept of an eigenvector for P makes sense when
the entries of a vector are in a module. A column vector v = (v1, ..., vn)t with entries in an A-module M is
an eigenvector of P with eigenvalue λ if Pv = λv.

When the entries of a vector are in a module, it becomes hard to adapt the usual requirement that an
eigenvector must be nonzero, so we drop it, though the zero eigenvector tells us nothing.

4.3.3. Lemma. Let p(t) be the characteristic polynomial det (tI−P ) of a square matrix P . If v is an
eigenvector of P with eigenvalue λ, then p(λ)v = 0.

The usual proof, in which one multiplies the equation (λI−P )v = 0 by the cofactor matrix of (λI−P ), carries
over. �
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proof of the Nakayama Lemma. By definition, JM denotes the set of (finite) sums
∑
aimi with ai in J and

mi in M . Let v1, ..., vn be generators for the finite A-module M , and let v be the vector (v1, ..., vn)t. The
equation M = JM tells us that there are elements pij in J such that vi =

∑
pijvj . In matrix notation,

v = Pv. So v is an eigenvector of P with eigenvalue 1, and if p(t) is the characteristic polynomial of P , then
p(1)v = 0. Since the entries of P are in J , inspection of the determinant of I−P shows that p(1) has the form
1−z, with z in J . Then (1−z)vi = 0 for all i. Since v1, ...., vn generate M , (1−z)M = 0. �

4.3.4. Corollary. With notation as in the Nakayama Lemma, let s = 1−z, so that sM = 0. The localized
module Ms is the zero module.

4.3.5. Corollary. (i) Let I and J be ideals of a noetherian domain A. If I = JI , then either I is the zero
ideal or J is the unit ideal.
(ii) Let A ⊂ B be rings, and suppose that B is a finite A-module. If J is an ideal of A, and if the extended
ideal JB is the unit ideal of B, then J is the unit ideal of A.
(iii) Let x be an element of a noetherian domain A, and let J be the ideal xA. The intersection

⋂
Jn is the

zero ideal. Therefore, if y is a nonzero element of A, the integers k such that xk divides y in A are bounded.

proof. (i) Since A is noetherian, I is a finite A-module. If I = JI , the Nakayama Lemma tells us that there is
an element z of J such that zx = x for all x in I . Suppose that I isn’t the zero ideal. We choose a nonzero
element x of I . Because A is a domain, we can cancel x from the equation zx = x, obtaining z = 1. Then 1
is in J , and J is the unit ideal.

(ii) Suppose that B = JB. The Nakayama Lemma tells us that there is an element z in J such that zb = b for
all b in B. Setting b = 1 shows that z = 1. So J is the unit ideal.

(iii) Let I =
⋂
Jn. The elements of I are those that are divisible by xn for every n. Let y be an element of I .

So for every n, there is an element an in A such that y = anx
n. Then y/x = anx

n−1, which is an element of
Jn−1. This is true for every n, so y/x is in I , and y is in JI . Since y can be any element of I , I = JI . But J
isn’t the unit ideal, so (i) tells us that I = 0. �

The proof of the next corollary is left as an exercise

4.3.6. Corollary. Let A ⊂ B be noetherian domains and suppose that B is a finite A-module. Then A is a
field if and only if B is a field. �

Since there are many subrings of fields that aren’t fields, we see that the hypothesis that one is dealing with a
finite module cannot be dropped from the Nakayama Lemma.

4.4 Integral Extensions

Let A be a domain. An extension B of A is a ring that contains A as a subring. An element β of an extension
B is integral over A if it is a root of a monic polynomial

(4.4.1) f(x) = xn + an−1x
n−1 + · · ·+ a0,

with coefficients ai in A, and an extension B is an integral extension if all of its elements are integral over A.

4.4.2. Lemma. Let A ⊂ B be an extension of domains.
(i) An element b of B is integral over A if and only if the subring A[b] of B generated by b is a finite A-module.
(ii) The set of elements of B that are integral over A is a subring of B.
(iii) If B is generated as A-algebra by finitely many integral elements, it is a finite A-module.
(iv) Let R ⊂ A ⊂ B be rings, and suppose that A is an integral extension of R. An element of B is integral
over A if and only if it is integral over R. �

4.4.3. Corollary. An extension A ⊂ B of finite-type domains is an integral extension if and only if B is a
finite A-module. �

4.4.4. Definition. Let Y u−→ X be a morphism of affine varieties Y = SpecB and X = SpecA, and let
A

ϕ−→ B be the corresponding homomorphism of finite-type domains. If ϕ makes B into a finite A-module,
we call u a finite morphism of affine varieties. If A ⊂ B and B is an integral extension of A, we call u an
integral morphism of affine varieties.
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Thus an integral morphism is a finite morphism whose associated algebra homomorphism A
ϕ−→ B is

injective.

4.4.5. Example. IfG is a finite group of automorphisms of a finite-type domainB andA = BG is the algebra
of invariants, then B is an integral extension of A. (See Theorem 2.7.5.)

If A ⊂ B is an integral extension of finite-type domains with fraction fields K ⊂ L, then L will be a finite
field extension of K, and the transcendence degrees of K and L will be equal. Therefore dimY = dimX .

The next example is helpful for an intuitive understanding of the geometric meaning of integrality.

4.4.6. Example. Let f(x, y) be an irreducible polynomial in C[x, y], let B = C[x, y]/(f) (one x and one
y), and let A = C[x]. So X = SpecA is the affine line A1

x, and Y = SpecB is an affine plane curve. The
canonical map A→ B defines a morphism Y

u−→ X , which can be described as a restriction of the projection
A2
x,y → A1

x.
We write f as a polynomial in y, whose coefficients are polynomials in x:

(4.4.7) f(x, y) = a0(x)yn + a1(x)yn−1 + · · ·+ an(x)

The fibre of Y over a point x = x0 of X is the set of points (x0, y0) such that y0 is a root of the one-variable
polynomial f(x0, y) = f̃(y). Because f is irreducible, its discriminant with respect to the variable y isn’t
identically zero (1.10.1). For all but finitely many values x0, f̃(y) its discriminant will be nonzero and it will
have degree n. Then f̃(y) will have n distinct roots.

When f(x, y) is a monic polynomial in y, u will be an integral morphism. If so, the leading term yn of f
will be the dominant term, when y is large. For x near to any point x0, there will be a positive real number B
such that

|yn| > |a1y
n−1 + · · ·+ an|

when |y| > B. Then f̃(y) 6= 0 when |y| > B. Therefore the roots y of f(x, y) are bounded for all x near to
any point x0.

On the other hand, when the leading coefficient a0(x) isn’t a constant, B won’t be integral over A, and
when x0 is a root of a0, f(x0, y) will have degree less than n. In this case, as a point x1 of X approaches x0,
at least one root of f(x1, y) tends to infinity. In calculus, one says that the locus f(x, y) = 0 has a vertical
asymptote at x0.

To see this, we divide f by its leading coefficient. Let g(x, y) = f(x, y)/a0 = yn+c1y
n−1 + · · ·+cn with

ci(x) = ai(x)/a0(x). For any x at which a0(x) isn’t zero, the roots of g are the same as those of f . However,
let x0 be a root of a0. Because f is irreducible, there is at least one coefficient aj(x) that isn’t divisible by
x− x0. Then cj(x) is unbounded near x0, and because the coefficient cj is an elementary symmetric function
in the roots, the roots can’t all be bounded.

This is the general picture: The roots of a polynomial remain bounded where the leading coefficient isn’t
zero. If the leading coefficient vanishes at a point, some roots are unbounded near that point. �

figure : nonmonic polynomial, but compare with figure for Hensel’s Lemma

The next theorem is a useful tool.

4.4.8. Noether Normalization Theorem. Let A be a finite-type algebra over an infinite field k. There exist
elements y1, . . . , yn in A that are algebraically independent over k, such that A is a finite module over its
polynomial subalgebra k[y1, . . . , yn].

The Noether Normalization Theorem is also true when k is a finite field, though the proof given below
needs to be modified. When K = C, the theorem can be stated by saying that every affine variety X admits
an integral morphism to an affine space.

4.4.9. Lemma. Let k be an infinite field, and let f(x) be a nonzero polynomial of degree d in x1, . . . , xn,
with coefficients in k. After a suitable linear change of variable, the coefficient of xdn in f will be nonzero.
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proof. Let fd be the homogeneous part of f of maximal degree d. We regard fd as a polynomial function.
Since k is infinite, this function isn’t identically zero. We choose coordinates x1, ..., xn so that the point
q = (0, ..., 0, 1) isn’t a zero of fd. Then fd(0, ..., 0, xn) = cxdn, and the coefficient c, which is fd(0, ..., 0, 1),
will be nonzero. By scaling xn, we can make c = 1. �

proof of the Noether Normalization Theorem. Say that the finite-type algebra A is generated by elements
x1, . . . , xn. If those elements are algebraically independent over k, A will be isomorphic to the polynomial
algebra C[x], and we will be done. If not, they will satisfy a polynomial relation f(x) = 0 of some degree
d, with coefficients in k. The lemma tells us that, after a suitable change of variable, the coefficient of xdn
in f will be 1. Then f will be a monic polynomial in xn with coefficients in the subalgebra R generated by
x1, . . . , xn−1. So xn will be integral over R, and A will be a finite R-module. By induction on n, we may
assume that R is a finite module over a polynomial subalgebra P . Then A will be a finite module over P too.
�

The next proposition is an example of a general principle: Any construction involving finitely many oper-
ations can be done in a simple localization (see 5.1.17).

4.4.10. Proposition. Let A ⊂ B be finite-type domains. There is a nonzero element s in A such that Bs is a
finite module over a polynomial subring As[y1, ..., yr].

proof. Let S be the set of nonzero elements of A, so that K = AS−1 is the fraction field of A, and let
BK = BS−1 be the ring obtained from B by inverting all elements of S. Also, let β = (β1, ..., βk) be a
set of elements of the finite-type algebra B that generates B as algebra. Then BK is a finite-type K-algebra,
generated as K-algebra by β. (A K-algebra is a ring that contains K as subring. The Noether Normalization
Theorem tells us thatBK is a finite module over a polynomial subring P = K[y1, ..., yr]. SoBK is an integral
extension of P . Any element of B will be in BK , and therefore it will be the root of a monic polynomial, say

f(x) = xn + cn−1(y)xn−1 + · · ·+ c0(y) = 0

where the coefficients cj(y) are elements of P . Each coefficient is a combination of finitely many monomials
in y, with coefficients in K. If d ∈ A is a common denominator for all of those coefficients, then cj(x) will
have coefficients in Ad[y]. Since the generators β of B are integral over P , we may choose a denominator s
so that all of the generators β1, ..., βk are integral over As[y]. The algebra Bs is generated over As by β, so it
will be an integral extension of As[y]. �

4.5 Normalization

Let A be a domain with fraction field K, and let L be a finite field extension of K. The integral closure of
A in L is the set of elements of L that are integral over A. It follows from Lemma 4.4.2 (ii) that the integral
closure is a domain that contains A.

The normalization A# of A is the integral closure of A in its fraction field K – the set of elements of K
that are integral over A. A domain A is normal if it is equal to its normalization.

A variety X is a normal variety if it has an affine covering {Xi = SpecAi} in which the algebras Ai are
normal domains. To justify this definition, we need to show that if an affine variety X = SpecA has an affine
covering Xi = SpecAi, in which Ai are normal domains, then A is normal. This follows from Lemma 4.5.3
(iii) below.

Our goal here is the next theorem, whose proof is at the end of the section.

4.5.1. Theorem. Let A be a finite-type domain with fraction field K of characteristic zero, and let L be a
finite field extension of K. The integral closure of A in L is a finite A-module, and therefore a finite-type
domain. In particular, the normalization of A is a finite A-module and a finite-type domain.

Thus, if B is the integral closure of A in L, there will be an integral morphism SpecB → SpecA.

The proof given here makes use of the characteristic zero hypothesis, though the theorem is true for a finite-
type k-algebra when k is a field of characteristic p.

4.5.2. Example. (normalization of a nodal cubic curve) The algebra A = C[u, v]/(v2−u3−u2) can be
embedded into the one-variable polynomial algebra B = C[x], by u = x2 − 1 and v = x3 − x. The fraction
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fields of A and B are equal because x = v/u, and the equation x2 − (u+1) = 0 shows that x is integral over
A. Since B is normal, it is the normalization of A (see Lemma 4.5.3 (i)).

In this example, SpecB is the affine line A1
x, and the plane curve C = SpecA has a node at the origin

p = (0, 0). The inclusion A ⊂ B defines an integral morphism A1
x → C whose fibre over p is the point pair

x = ±1. The morphism is bijective at all other points. I think of C as the variety obtained by gluing the points
x = ±1 of the affine line together.

figure: curve, not quite glued
In this example, the effect of normalization can be visualized geometrically. This isn’t always so. Normaliza-
tion is an algebraic process whose effect on geometry may be subtle. �

4.5.3. Lemma. (i) A unique factorization domain is normal. In particular, a polynomial algebra over a field
is normal.
(ii) If s is a nonzero element of a normal domain A. The localization As is normal.
(iii) Let s1, ..., sk be nonzero elements of a domain A that generate the unit ideal. If the localizations Asi are
normal for all i, then A is normal.

proof. (i) Let A be a unique factorization domain, and let β be an element of its fraction field that is integral
over A. Say that

(4.5.4) βn + a1β
n−1 + · · ·+ an−1β + an = 0

with ai in A. We write β = r/s, where r and s are relatively prime elements of A. Multiplying by sn gives us
the equation

rn = −s (a1r
n−1 + · · ·+ ans

n−1)

This equation shows that if a prime element ofA divides s, it also divides r. Since r and s are relatively prime,
there is no such element. So s is a unit, and β is in A.

(ii) Let β be an element of the fraction field of A that is integral over As. There will be a polynomial relation
of the form (4.5.4), except that the coefficients ai will be elements of As. The element γ = skβ satisfies the
polynomial equation

γn + (ska1)γn−1 + · · ·+ (s(n−1)kan−1)γ + (snkan) = 0

Since ai are in As, all coefficients of this polynomial will be in A when k is sufficiently large, and then γ will
be integral over A. Since A is normal, γ will be in A, and β = s−kγ will be in As.

(iii) This proof follows a familiar pattern. Suppose that Asi is normal for every i. If an element β of K is
integral over A, it will be in Asi for all i, and sni β will be an element of A if n is large. We can use the same
exponent n for all i. Since s1, ..., sk generate the unit ideal, so do their powers sni , ..., s

n
k . Say that

∑
ris

n
i = 1,

with ri in A. Then β =
∑
ris

n
i β is in A. �

4.5.5. Lemma. Let A be a normal noetherian domain with fraction field K of characteristic zero, and let L
be a field extension of K. An element β of L that is algebraic over K is integral over A if and only if the
coefficients of the monic irreducible polynomial f for β over K are in A.

proof. If the monic polynomial f has coefficients in A, then β is integral over A. Suppose that β is integral
over A. Since we may replace L by any field extension that contains β, we may assume that L is a finite
extension of K. A finite extension embeds into a Galois extension, so we may assume that L/K is a Galois
extension. Let G be its Galois group, and let {β1, . . . , βr} be the G-orbit of β, with β = β1. The irreducible
polynomial for β over K is

(4.5.6) f(x) = (x− β1) · · · (x− βr)

Its coefficients are symmetric functions of the roots. If β is integral over A, then all elements of the orbit are
integral over A, and therefore the symmetric functions are integral over A. Since A is normal, they are in A.
So f has coefficients in A. �
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4.5.7. Example. A polynomial inA = C[x, y] is square-free if it has no nonconstant square factors and isn’t a
constant. Let f(x, y) be a square-free polynomial, and letB denote the integral extension C[x, y, w]/(w2−f)
of A. Let K and L be the fraction fields of A and B, respectively. Then L = K[w]/(w2 − f) is a Galois
extension of K. Its Galois group is generated by the automorphism σ of order 2 defined by σ(w) = −w. The
elements of L have the form β = a+ bw with a, b ∈ K, and σ(β) = β′ = a− bw.

We show thatB is the integral closure ofA in L. Suppose that β = a+bw is integral overA. If b = 0, then
β = a. This is an element of A and therefore it is in B. If b 6= 0, the irreducible polynomial for β = a + bw
will be

(x− β)(x− β′) = x2 − 2ax+ (a2−b2f)

Because β is integral over A, 2a and a2−b2f are in A. Because the characteristic isn’t 2, this is true if and
only if a and b2f are in A. We write b = u/v, with u, v relatively prime elements of A, so b2f = u2f/v2. If
v weren’t a unit, then since f is square-free, it couldn’t cancel v2. So from b2f in A we can conclude that b is
in A. Summing up, β is integral if and only if a and b are in A, which means that β is in B. �

(4.5.8) trace

Let L be a finite field extension of a fieldK and let β be an element ofK. When L is viewed as aK-vector
space, multiplication by β becomes a linear operator L

β−→ L. The trace of this operator will be denoted by
tr(β). The trace is a K-linear map L→ K.

4.5.9. Lemma. Let L be a finite field extension of K, let f(x) = xr + a1x
r−1 + · · ·+ ar be the irreducible

polynomial for an element β of L over K, and let K(β) be the extension of K generated by β. Say that
[L :K(β)] = d and [L :K] = n. Since [K(β) : K] = r, n = rd, and tr(β) = −da1. If β is an element of K,
then tr(β) = nβ.

proof. The set (1, β, . . . , βr−1) is a K-basis for K(β), and on this basis, the matrix M of multiplication by β
has the form illustrated below for the case r = 3.

M =

0 0 −a3

1 0 −a2

0 1 −a1

 .

For all r, the trace of the matrix M is −a1. Next, let (u1, . . . , ud) be a basis for L over K(β). Then {βiuj},
with i = 0, . . . , r − 1 and j = 1, . . . , d, will be a basis for L over K. When this basis is listed in the order

(u1, u1β, ..., u1β
n−1;u2, u2β, . . . u2β

n−1; . . . ;ud, udβ, ..., udβ
n−1),

the matrix of multiplication by β will be made up of d blocks of the matrix M . �

4.5.10. Corollary. Let A be a normal domain with fraction field K and let L be a finite field extension of K.
If an element β is integral over A, its trace is an element of A.

This follows from Lemmas 4.5.5 and 4.5.9. �

4.5.11. Lemma. Let A be a normal noetherian domain with fraction field K of characteristic zero, and let L
be a finite field extension of K. The form L×L → K defined by 〈α, β〉 = tr(αβ) is K-bilinear, symmetric,
and nondegenerate. If α and β are integral over A, then 〈α, β〉 is an element of A.

proof. The form is obviously symmetric, and it is K-bilinear because multiplication is K-bilinear and trace
is K-linear. A form is nondegenerate if its nullspace is zero, which means that when α is a nonzero element,
there is an element β such that 〈α, β〉 6= 0. We let β = α−1. Then 〈α, β〉 = tr(1), which, according to (4.5.9),
is the degree [L :K] of the field extension. It is here that the hypothesis on the characteristic of K enters: The
degree is a nonzero element of K.

If α and β are integral over A, so is their product αβ (Lemma 4.4.2 (ii)). Corollary 4.5.10 shows that
〈α, β〉 is an element of A. �
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4.5.12. Lemma. Let A be a domain with fraction field K, let L be a field extension of K, and let β be an
element of L that is algebraic over K. If β is a root of a polynomial f = anx

n + an−1x
n−1 + · · ·+ a0 with

ai in A, then γ = anβ is integral over A.

proof. One finds a monic polynomial with root γ by substituting x = y/an into f and multiplying by an−1
n . �

proof of Theorem 4.5.1. Let A be a finite-type domain with fraction field K of characteristic zero, and let L be
a finite field extension of K. We are to show that the integral closure of A in L is a finite A-module.

Step 1. We may assume that A is normal.
We use the Noether Normalization Theorem to write A as a finite module over a polynomial subalgebra

R = C[y1, . . . , yd]. Let F be the fraction field of R. Then K and L are finite extensions of F . An element of
L will be integral over A if and only if it is integral over R ((4.4.2) (iv)). So the integral closure of A in L is
the same as the integral closure of R in L. We replace A by the normal algebra R and K by F .

Step 2. Bounding the integral extension.
We assume that A is normal. Let (v1, . . . , vn) be a K-basis for L whose elements are integral over A.

Such a basis exists because we can multiply any element of L by a nonzero element of K to make it integral
(Lemma 4.5.12). Let

(4.5.13) T : L→ Kn

be the map T (β) =
(
〈v1, β〉, . . . , 〈vn, β〉

)
, where 〈 , 〉 is the form defined in Lemma 4.5.11. This map is

K-linear. If 〈vi, β〉 = 0 for all i, then because (v1, . . . , vn) is a basis for L, 〈γ, β〉 = 0 for all γ in L, and since
the form is nondegenerate, β = 0. Therefore T is injective.

Let B be the integral closure of A in L. The basis elements vi are in B, and if β is in B, viβ will be in B
too. Then 〈vi, β〉will be inA, and T (β) will be inAn (4.5.11). When we restrict T toB, we obtain an injective
map B → An that we denote by T0. Since T is K-linear, T0 is a A-linear. It is an injective homomorphism
of A-modules. It maps B isomorphically to its image, a submodule of An. Since A is noetherian, every
submodule of the finite A-module An is finitely generated. Therefore the image of T0 is a finite A-module,
and so is the isomorphic A-module B. �

4.6 Geometry of Integral Morphisms
The main geometric properties of an integral morphism of affine varieties are summarized below, in Theorem
4.6.6 below, which shows that the geometry is as nice as could be expected.

We use the following notation:

(4.6.1) Y
u−→ X

will be an integral morphism of the affine varieties X = SpecA and Y = SpecB. So B is an integral
extension of A. Also, C will be a closed subvariety of X , D will be a component of its inverse image u−1C,
and the prime ideals of A and B corresponding to C and D, respectively, will be P and Q, and P ⊂ Q. Let
A = A/P , B = B/Q, C = SpecA, and D = SpecB.

The homomorphisms and the corresponding morphisms form the diagrams

B −−−−→ Bx x
A −−−−→ A

Y ←−−−− Dy y
X ←−−−− C

The images in B of a set of A-module generators for B will generate B as A-module. So B is a finite A-
module, and the induced morphism D → C is a finite morphism of affine varieties. Therefore dimD ≤
dimC. In many cases, though not always, dimD = dimC, and if so, the map D → C will be an integral
morphism.
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We say that a closed subvariety D of Y lies over the closed subvariety C of X if the image of D is C, and
we say that a prime ideal Q of B lies over the prime ideal P of A if the contraction Q ∩A of Q is P .

For instance, a point q of Y lies over its image p, and the maximal ideal mq of B at q lies over the maximal
ideal mp of A at p.

4.6.2. Lemma. An integral morphism Y
u−→ X of affine varieties is surjective.

proof. Let mp be the maximal ideal at point p of X . Corollary 4.3.5 (ii) shows that the extended ideal mpB
isn’t the unit ideal of B. So it is contained in a maximal ideal of B, say in mq , where q is a point of Y . Then
mq ∩ A ⊃ mpB ∩ A ⊃ mp. Since mq ∩ A doesn’t contain 1, it isn’t the unit idea, and since mp is a maximal
ideal, the inclusions are equalities. So q lies over p. �

The next lemma will allow us to replace X and Y by C and D in some situations.

4.6.3. Lemma. With notation as at the beginning of the section,
(i) If Q lies over P then B is an integral extension of A.
(ii) Q lies over P if and only if D lies over C. �

proof. (i) The kernel of the composed map A → B → B is Q ∩ A. If Q lies over P , i.e., if Q ∩ A = P , the
mapping property of quotient rings gives us an injective map A → B. Since B is a finite A-module, it is an
integral extension of A.

(ii) Suppose that Q lies over P . Then (i) shows that B is an integral extension of A, and Lemma 4.6.2 shows
that the integral morphism D → C is surjective. Thus D lies over C. Conversely, if D lies over C, an element
α of A will be zero at every point of C if and only if it is zero at every point of D. This means that an element
α of A is in P if and only if it is in Q. So P = Q ∩A, i.e., Q lies over P . �

4.6.4. Lemma. Let A ⊂ B be an integral extension of finite-type domains, and let J be a nonzero ideal of B.
The contraction J ∩A is a nonzero ideal of A.

proof. A nonzero element β of J will be integral over A. There will be a polynomial relation of the form
βn + a1β

n−1 + · · · + an = 0, with ai in A. If an = 0, then because B is a domain, we can cancel β from
the equation. So there is a polynomial relation with constant term an 6= 0. The equation shows that an is in J ,
and since it is also in A, it is a nonzero element of J ∩A. �

4.6.5. Lemma. Let Y u−→ X be an integral morphism of affine varieties, with Y = SpecB and X =
SpecA. The fibres of u have bounded cardinality. If B is generated as A-module by a set of n elements, there
are at most n points in the fibre over a point p of X .

proof. Let q1, ..., qr be the points of Y that lie over p, and let ki denote the residue field of B at qi. The
maximal ideals mi of B at qi contain the maximal mp of A at p, and they are comaximal. By the Chinese
Remainder Theorem, the map B → k1×· · ·×kr is surjective. The images of the n generators β for B generate
the product k1×· · ·×kr, which is a vector space of dimension r over the residue field k of A at p. Therefore
n ≥ r. �

4.6.6. Theorem. Let Y u−→ X be an integral morphism of affine varieties, Y = SpecB and X = SpecA.
(i) The image of a closed subset of Y is a closed subset of X .
(ii) Let D′ and D be closed subvarieties of Y that lie over the same closed subvariety C of X . If D′ ⊃ D,
then D′ = D.
(iii) The set of closed subvarieties D of Y that lie over a closed subvariety C of X is finite and nonempty.

proof. (i) (The image of a closed set is closed.)
It suffices to show that the image of a closed subvarietyD of Y is closed. LetQ be the prime ideal ofB that

corresponds to D, and let P be the contraction Q ∩ A. Lemma 4.6.3 (ii) shows that D lies over C = VX(P ).
So the image of D is the closed set C.

(ii) (inclusions among subvarieties that lie over C).
We rename D′ as Y and C as X . With this notation, what must be shown is that the image of a proper

closed subset of Y is a proper closed subset of X . Or, the contraction P = Q ∩A of a nonzero prime ideal Q
of B is a nonzero prime ideal of A. The contraction of P is a prime ideal, and Lemma 4.6.4 shows that P 6= 0.

88



(iii) (subvarieties that lie over a closed subvariety)
Let C be a closed subvariety of X . Its inverse image Z = u−1C is a closed subset of Y , the union of

finitely many irreducible closed subsets, sayZ =
⋃
Di. As (i) shows, the imageCi ofDi will be an irreducible

closed subset of X . Since the map u is surjective, C =
⋃
Ci, and since C is irreducible, it is equal to at least

one Ci. The components Di of Z such that Ci = C are subvarieties that lie over C.
Next, any subvariety D′ that lies over C will be contained in Z, and since it is irreducible, D′ will be

contained in Di for some i. Part (ii) shows that D′ = Di. Therefore the closed subsets that lie over C are
among the finitely many closed sets Di. �

4.7 Chevalley’s Finiteness Theorem

(4.7.1) finite morphisms

The concepts of a finite morphism and an integral morphism of affine varieties were defined in Section
4.4. A morphism Y

u−→ X of affine varieties X = SpecA and Y = SpecB is a finite morphism if the
homomorphism A

ϕ−→ B that corresponds to u makes B into a finite A-module. As was explained, the
difference between a finite morphism and an integral morphism of affine varieties is that for a finite morphism,
the homomorphism ϕ needn’t be injective. If ϕ is injective, B will be an integral extension of A, and u will be
an integral morphism. We extend the definitions to varieties that aren’t necessarily affine here.

By the restriction of a morphism Y
u−→ X to an open subset X ′ of X , we mean the induced morphism

Y ′ → X ′, where Y ′ is the inverse image of X ′.

4.7.2. Definition. A morphism of varieties Y u−→ X is a finite morphism if X can be covered by affine open
subsets to which the restriction of u is a finite morphism of affine varieties, as defined in (4.4.4). A morphism
u is an integral morphism if there is a covering of X by affine open sets to which the restriction of u is an
integral morphism of affine varieties.

4.7.3. Corollary. An integral morphism is a finite morphism. The composition of finite morphisms is a finite
morphism. The inclusion of a closed subvariety into a variety is a finite morphism. �

When X is affine, Definition 4.4.4 and Definition 4.7.2 both apply. The next proposition shows that the
two definitions are equivalent.

4.7.4. Proposition. Let Y u−→ X be a finite or an integral morphism, as in (4.7.2), and let X ′ be an affine
open subset of X . The restriction of u to X ′ is a finite or an integral morphism of affine varieties, as defined
in (4.4.4).

4.7.5. Lemma. (i) Let A
ϕ−→ B be a homomorphism of finite-type domains that makes B into a finite A-

module, and let s be a nonzero element of A. Then Bs is a finite As-module.
(ii) The restriction of a finite (or an integral) morphism Y

u−→ X to an open subset of X is a finite (or an
integral) morphism, as in Definition 4.7.2.

proof. (i) In the statement, Bs denotes the localization of B as A-module. This localization can also be
obtained by localizing the algebra B with respect to the image s′ = ϕ(s), provided that it isn’t zero. If s′ is
zero, then s annihilates B, so Bs = 0. In either case, a set of elements that spans B as A-module will span Bs
as As-module, so Bs is a finite As-module.

(ii) Say that X is covered by affine open sets to which the restriction of u is a finite morphism. The localiza-
tions of these open sets form a basis for the Zariski topology onX . SoX ′ can be covered by such localizations.
Part (i) shows that the restriction of u to X ′ is a finite morphism. �

proof of Proposition 4.7.4. We’ll do the case of a finite morphism. The proof isn’t difficult, but there are
several things to check. This makes the proof a bit longer than one would like.

Step 1. Preliminaries.
We are given a morphism Y

u−→ X , X is covered by affine open sets Xi , and the restrictions of u to these
open sets are finite morphisms of affine varieties. We are to show that the restriction to any affine open set X ′

is a finite morphism of affine varieties.
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The affine open set X ′ is covered by the affine open sets X ′i = X ′ ∩Xi, and the restrictions fo X ′i are
finite morphisms ((4.7.5) (ii)). So we may replace X by X ′. Since the localizations of an affine variety form a
basis for its Zariski topology, we see that what is to be proved is this:

A morphism Y
u−→ X is given in which X = SpecA is affine, and there are elements s1, ..., sk that

generate the unit ideal of A, such that for every i, the inverse image Y i of Xi = Xsi if nonempty, is affine,
and its coordinate algebra Bi is a finite module over the localized algebra Ai = Asi . We must show that Y is
affine, and that its coordinate algebra B is a finite A-module.

Step 2. The algebra B of regular functions on Y .
If Y is affine, the algebra B of regular functions on Y will be a finite-type domain and Y will be its

spectrum. Since Y isn’t assumed to be affine, we don’t know very much about B other than that it is a
subalgebra of the function field L of Y . On the other hand, the inverse image Y i of Xi, if nonempty, is affine.
It is the spectrum of a finite-type domain Bi. Since the localizations Xi cover X , the affine varieties the Y i

cover Y . We throw out the indices i such that Y i is empty. Then a function is regular on Y if and only if it is
regular on each Y i, and

B =
⋂
Bi

the intersection being in the function field L.
Let’s denote the image of si in B by the same symbol.

Step 3. For any index j, Bj is the localization B[s−1
j ] of B.

The intersection Y j ∩ Y i is an affine variety. It is the set of points of Y j at which si isn’t zero, and its
coordinate algebra is the localization Bj [s−1

i ]. Then

B[s−1
j ]

(1)
=
⋂(

Bi[s
−1
j ]
) (2)

=
⋂
Bj [s

−1
i ]

(3)
= Bj [s

−1
j ]

(3)
= Bj

where the explanation of the numbered equalities is as follows:
(1) A rational function β is in Bi[s−1

j ] if snj β is in Bi for large n, and we can use the same exponent n for all
i = 1, ..., r. So β is in

⋂(
Bi[s

−1
j ]
)

if and only if snj β is in
⋂
Bi = B, i.e., if and only if β is in B[s−1

j ].

(2) This is true because Y j ∩ Y i = Y i ∩ Y j .
(3) For all i, Bj ⊂ Bj [s

−1
i ]. Moreover, sj doesn’t vanish on Y j . It is a unit in Bj , and therefore Bj [s−1

j ] =

Bj : Bj ⊂
⋂
Bj [s

−1
i ] ⊂ Bj [s−1

j ] ⊂ Bj .

Step 4. B is a finite A-module.
We choose a finite set b = (b1, ..., bn) of elements of B that generates the Ai-module Bi for every i. We

can do this because we can span the finite Ai-module Bi by finitely many elements of B, and there are finitely
many algebras Bi. We show that the set b generates the A-module B.

Let x be an element of B. Since x is in Bi, it is a combination of the elements b with coefficients in Ai.
Then for large k, ski x will be a combination of b with coefficients in A, say

ski x =
∑
ν

ai,νbν

with ai,ν ∈ A. We can use the same exponent k for all i. Then with
∑
ris

k
i = 1,

x =
∑
i

ris
k
i x =

∑
i

ri
∑
ν

ai,νbν

The right side is a combination of b with coefficients in A.

Step 5. Y is affine.
The algebraB of regular functions on Y is a finite-type domain because it is a finite module over the finite-

type domainA. Let Ỹ = SpecB. The fact thatB is the algebra of regular functions on Y gives us a morphism

Y
ε−→ Ỹ (Corollary 3.5.3). Restricting to the open subset Xj of X gives us a morphism Y j

εj−→ Ỹ j in which
Y j and Ỹ j are both equal to SpecBj . Therefore εj is an isomorphism. Corollary 3.4.21 (ii) shows that ε is an
isomorphism. So Y is affine and by Step 4, its coordinate algebra B is a finite A-module. �

We come to Chevalley’s theorem now. Let P denote the projective space Pn with coordinates y0, ..., yn.
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4.7.6. Chevalley’s Finiteness Theorem. Let X be a variety, let Y be a closed subvariety of the product
P×X , and let π denote the projection Y → X . If all fibres of π are finite sets, then π is a finite morphism.

4.7.7. Corollary. Let Y be a projective variety and let Y u−→ X be a morphism whose fibres are finite sets.
Then u is a finite morphism. In particular, if Y is a projective curve, any nonconstant morphism Y

u−→ X is
a finite morphism.

This corollary follows from the theorem when one replaces Y by the graph of u in Y ×X . If Y is embedded
as a closed subvariety of P, the graph will be a closed subvariety of P×X (Proposition 3.4.30). �

In the next lemma,A denotes a finite-type domain,B denotes a quotient of the algebraA[u] of polynomials
in n variables u1, ..., un with coefficients in A, and A

ϕ−→ B denotes the canonical homomorphism. We’ll use
capital letters for nonhomogeneous polynomials here. If G(u) is a polynomial in A[u], we denote its image in
B by G(u). too.

4.7.8. Lemma. Let k be a positive integer. Suppose that, for each i = 1, ..., n, there is a polynomial
Gi(u1, ..., un) of degree at most k−1 in n variables with coefficients in A, such that uki = Gi(u) in B.
Then B is a finite A-module.

proof. Any monomial in u1, ..., un of degree at least nk will be divisible by uki for at least one i. So if m
is a monomial of degree d ≥ nk, the relation uki = Gi(u) shows that, in B, m is equal to a polynomial in
u1, ..., un of degree less than d, with coefficients in A. By induction, it follows that the monomials of degree
at most nk−1 span B. �

Let y0, ..., yn be coordinates in Pn, and letA[y0, ..., yn] be the algebra of polynomials in y with coefficients
in A. A homogeneous element of A[y] is an element that is a homogeneous polynomial in y with coefficients
in A. A homogeneous ideal of A[y] is an ideal that can be generated by homogeneous polynomials.

4.7.9. Lemma. Let Y be a closed subset of P×X , where X = SpecA is affine,
(i) The ideal I of elements of A[y] that vanish at every point of Y is a homogeneous ideal of A[y].
(ii) If the zero locus of a homogeneous ideal I of A[y] is empty, then I contains a power of the irrelevant ideal
M = (y0, ..., yn) of A[y].

proof. (i) Let’s write a point of P×X as q = (y0, ..., yn, x), with x representing a point of X . So (y, x) =
(λy, x). Then the proof for the case A = C that is given in (1.3.2) carries over.

(ii) Let V be the complement of the origin in the affine n + 1-space with coordinates y. The complement of
the origin in V ×X maps to P×X (see 3.2.4). If the locus of zeros of I in P×X is empty, its locus of zeros in
V ×X will be contained in o×X , o being the origin in P. Then the ideal of o×X , which is the radical ideal
generated by the elements y0, ..., yn, will contain I. �

proof of Chevelley’s Finiteness Theorem. This proof is adapted from a proof by Schelter.
We abbreviate the notation for a product Z×X of a variety Z with X , denoting X×X by Z̃.

We are given a closed subvariety Y of P̃ = P×X , and the fibres over X are finite sets. We are to prove
that the projection Y → X is a finite morphism. We may assume that X is affine, say X = SpecA, and by
induction on n, we may assume that the theorem is true when P is a projective space of dimension n−1.

Case 1. There is a hyperplane H in P such that Y is disjoint from H̃ = H×X in P̃ = P×X .
This is the main case. We adjust coordinates y0, ..., yn in P so that H is the hyperplane {y0 = 0}. Because

Y is a closed subvariety of P̃ disjoint from H̃ , Y is also a closed subvariety of Ũ0 = U0×X , U0 being the
standard affine {y0 6= 0}. So Y is affine.

Let P and Q be the (homogeneous) prime ideals in A[y] that define Y and H̃ , respectively, and let I =
P +Q. So q̃ is the principal ideal of A[y] generated by y0. A homogeneous element of I of degree k has the
form f(y)+y0g(y), where f is a homogeneous polynomial in A[y] of some degree k, and g is a homogeneous
polynomial of degree k−1.

The closed subsets Y and H̃ are disjoint. Since Y ∩ H̃ is empty, the sum I = P + Q contains contains
a power of the irrelevant idealM = (y0, ..., yn), sayMk ⊂ I. Then yki is in I for i = 0, ..., n. So we may
write

(4.7.10) yki = fi(y) + y0gi(y)
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with fi of degree k in P and gi of degree k−1 in A[y]. We omit the index i = 0. For that index, one can take
f0 = 0 and g0 = yk−1

0 .

We dehomogenize these equations with respect to the variables y, substituting ui = yi/y0 for yi, i =
1, ..., n with u0 = 1. Writing dehomogenizations with capital letters, the dehomogenized equations that
correspoind to the equations yki = fi(y) + y0g(y) have the form

(4.7.11) uki = Fi(u) +Gi(u)

The important point is that the degree of Gi is at most k−1.
Recall that Y is also a closed subset of U0. Let P be its (nonhomogenous) ideal in A[u], which contains

the polynomials F1, ..., Fn. The coordinate algebra of Y is B = A[u]/P . In the quotient algebra B, the terms
Fi drop out, leaving us with equations uki = Gi(u). These equations are true in B. Since Gi has degree at
most k−1, Lemma 4.7.8 tells us that B is a finite A-algebra, as was to be shown. This completes the proof of
Case 1.

Case 2. the general case.
We have taken care of the case in which there exists a hyperplane H such that Y is disjoint from H̃ . The

next lemma shows that we can cover the given variety X by open subsets to which this special case applies.
Then Lemma 4.7.4 and Proposition 4.7.4 will complete the proof.

4.7.12. Lemma. Let Y be a closed subvariety of P̃ = Pn×X , and suppose that the projection Y π−→ X has
finite fibres. Suppose also that Chevalley’s Theorem has been proved for closed subvarieties of Pn−1×X . For
every point p of X , there is an open neighborhood X ′ of p in X , and there is a hyperplane H in P, such that
the inverse image Y ′ = π−1X ′ is disjoint from H̃ .

proof. Let p be a point of X , and let q̃ = (q̃1, ..., q̃r) be the finite set of points of Y making up the fibre over p.
We project q̃ from P×X to P, obtaining a finite set q = (q1, ..., qr) of points of P, and we choose a hyperplane
H in P that avoids this finite set. Then H̃ avoids the fibre q̃. Let W denote the closed set Y ∩ H̃ . Because
the fibres of Y over X are finite, so are the fibres of W over X . By hypothesis, Chevalley’s Theorem is true
for subvarieties of Pn−1×X , and H̃ is isomorphic to Pn−1×X . It follows that, for every component W ′

of W , the morphism W ′ → X is a finite morphism, and therefore its image is closed in X (Theorem 4.6.6).
Thus the image Z of W is a closed subset of X , and it doesn’t contain p. Then X ′ = X−Z is the required
neighborhood of p. �

figure: ??I’m not sure

4.8 Double Planes

(4.8.1) affine double planes

Let A be the polynomial algebra C[x, y], and let X be the affine plane SpecA. An affine double plane is a
locus of the form w2 = f(x, y) in affine 3-space with coordinates w, x, y, where f is a square-free polynomial
in x, y, as in Example 4.5.7. Let B = C[w, x, y]/(w2 − f). So the affine double plane is Y = SpecB.

We’ll denote by w, x, y both the variables and their residues in B.

4.8.2. Lemma The algebra B is a normal domain of dimension two, and a free A-module with basis (1, w).
It has an automorphism σ of order 2, defined by σ(a+ bw) = a− bw. �

The fibres of Y over X are the σ-orbits in Y . If f(x0, y0) 6= 0, the fibre consists of two points, and if
f(x0, y0) = 0, itconsists of one point. The reason that Y is called a double plane is that most points of the
plane X are covered by two points of Y . The branch locus of the covering, which will be denoted by ∆, is the
(possibly reducible) curve {f = 0} in X . The fibres over the branch points, points of ∆, are single points.

We study the closed subvarieties D of Y that lie over a curve C in X . These subvarieties will have
dimension one, and we call them curves too. If D lies over C, and if D = Dσ, then D is the only curve lying
over C. Otherwise, there will be the two curves that lie over C, namely D and Dσ. In that case we say that C
splits in Y .

A curve C in X will be the zero set of a principal prime ideal P of A, and if D lies over C, it will be the
zero set of a prime ideal Q of B that lies over P (4.6.3). The prime ideal Q isn’t always a principal ideal.
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4.8.3. Example. Let f(x, y) = x2 + y2 − 1. The double plane Y = {w2 = x2+y2−1} is an affine quadric
in A3. In the affine plane, its branch locus ∆ is the curve {x2+y2 = 1}.

The line C1 : {y = 0} in X meets the branch locus ∆ transversally at the points (x, y) = (±1, 0), and y
generates a prime ideal of B. When we set y = 0 in the equation for Y , we obtain the irreducible polynomial
w2−x2 +1. On the other hand, the line C2 : {y = 1} is tangent to ∆ at the point (0, 1), and it splits. When
we set y = 1 in the equation for Y , we obtain w2 = x2. The locus {w2 = x2} is the union of the two lines
{w = x} and {w = −x} that lie over C1. The prime ideals of B that correspond to these lines aren’t principal
ideals.

figure circle with two lines �

This example illustrates a general principle: If a curve intersects the branch locus transversally, it doesn’t
split. We explain this now.

(4.8.4) local analysis

Suppose that a plane curve C : {g = 0} and the branch locus ∆ : {f = 0} of a double plane w2 = f meet at
a point p. We adjust coordinates so that p becomes the origin (0, 0), and we write

f(x, y) =
∑

aijx
iyj = a10x+ a01y + a20x

2 + · · ·

Since p is a point of ∆, the constant coefficient of f is zero. If the two linear coefficients aren’t both zero, p
will be a smooth point of ∆, and the tangent line to ∆ at p will be the line {a10x + a01y = 0}. Similarly,
writing g(x, y) =

∑
bijx

iyj , the tangent line to C, if defined, is the line {b10x+ b01y = 0}.
Let’s suppose that the two tangent lines are defined and distinct – that ∆ and C intersect transversally at

p. We change coordinates once more, to make the tangent lines the coordinate axes. After adjusting by scalar
factors, the polynomials f and g will have the form

f(x, y) = x+ u(x, y) and g(x, y) = y + v(x, y),

where u and v are polynomials all of whose terms have degree at least 2.

Let X1 = SpecC[x1, y1] be another affine plane. We consider the map X1 → X defined by the substi-
tution x1 = x + u, y1 = y + v. In the classical topology, this map is invertible analytically near the origin,
because the Jacobian matrix

(4.8.5)
(
∂(x1, y1)

∂(x, y)

)
(0,0)

at p is the identity matrix. When we make this substitution, ∆ becomes the locus {x1 = 0} and C becomes
the locus {y1 = 0}. In this local analytic coordinate system, the equation w2 = f that defines the double plane
becomes w2 = x1. When we restrict it to C by setting y1 = 0, x1 becomes a local coordinate function on C.
The restriction of the equation remains w2 = x1. So the inverse image Z of C doesn’t split analytically near
p. Therefore it doesn’t split globally either.

4.8.6. Corollary. A curve that meets the branch locus transversally at some point doesn’t split. �

This isn’t a complete analysis. When C and ∆ are tangent at every point of intersection, C may split or
not, and which possibility occurs cannot be decided locally in most cases. However, one case in which a local
analysis suffices to decide splitting is that C is a line. Let t be a coordinate in a line C, so that C ≈ SpecC[t].
Let’sassume that C does’t intersect ∆ at t = ∞. The restriction of the polynomial f to C will give us a
polynomial f(t) in t. A root of f corresponds to an intersection of C with ∆, and a multiple root corresponds
to an intersection at which C and ∆ are tangent, or at which ∆ is singular. The line C will split if and only if
f is a square in C[t], and this will be true if and only if the multiplicity of every root of f is even.

A rational curve is a curve whose function field is a rational function field C(t) in one variable. One can
make a similar analysis for any rational plane curve, a conic for example, but one needs to inspect its points at
infinity and its singular points as well as the smooth points at finite distance.
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(4.8.7) projective double planes

Let X be the projective plane P2, with coordinates x0, x1, x2. A projective double plane is a locus of the form

(4.8.8) y2 = f(x0, x1, x2),

where f is a square-free, homogeneous polynomial of even degree 2d. To regard this as a homogeneous
equation, we must assign weight d to the variable y (see 1.8.7). Then, since we have weighted variables, we
must work in a weighted projective space WP with coordinates x0, x1, x2, y, where xi have weight 1 and y
has weight d. A point of this weighted space WP is represented by a nonzero vector (x0, x1, x2, y) with the
relation that, for all λ 6= 0, (x0, x1, x2, y) ∼ (λx0, λx1, λx2, λ

dy). The points of the projective double plane
Y are the points of WP that solve the equation (4.8.8).

The projection WP→ X that sends (x, y) to x is defined at all points except at (0, 0, 0, 1). If (x, y) solves
(4.8.8) and if x = 0, then y = 0 too. So (0, 0, 0, 1) isn’t a point of Y . The projection is defined at all points of
Y . The fibre of the morphism Y → X over a point x consists of points (x, y) and (x,−y), which will be equal
if and only if x lies on the branch locus of the double plane, the (possibly reducible) plane curve ∆ : {f = 0}
in X . The map σ : (x, y)  (x,−y) is an automorphism of Y , and points of X correspond bijectively to
σ-orbits in Y .

Since the double plane Y is embedded into a weighted projective space, it isn’t presented to us as a pro-
jective variety in the usual sense. However, it can be embedded into a projective space in the following way:
The projective plane X can be embedded by a Veronese embedding of higher order, using as coordinates the
monomials m = (m1,m2, . . .) of degree d in the variables x. This embeds X into a projective space PN
where N =

(
d+2

2

)
− 1. When we add a coordinate y of weight d, we obtain an embedding of the weighted

projective space WP into PN+1 that sends the point (x, y) to (m, y). The double plane can be realized as a
projective variety by this embedding.

If Y → X is a projective double plane, then, as happens with affine double planes, a curve C in X may
split in Y or not. If C has a transversal intersection with the branch locus ∆, it will not split. On the other
hand, if C is a line, and if C intersects the branch locus ∆ with multiplicity 2 at every intersection point, it will
split. For example, when the branch locus ∆ is a generic quartic curve, the lines that split will be the bitangent
lines (see Section 1.13).

(4.8.9) homogenizing an affine double plane

To construct a projective double plane from an affine double plane, we write the affine double plane as

(4.8.10) w2 = F (u1, u2)

for some nonhomogeneous polynomial F . We suppose that F has even degree 2d, and we homogenize F ,
setting ui = xi/x0. We multiply both sides of this equation by x2d

0 and set y = xd0 w. This produces an
equation of the form (4.8.8), where f is the homogenization of F .

If F has odd degree 2d − 1, one needs to multiply F by x0 in order to make the substitution y = xd0w
permissible. When we do this, the line at infinity {x0 = 0} becomes a part of the branch locus.

(4.8.11) cubic surfaces and quartic double planes

We use coordinates x0, x1, x2, z for the (unweighted) projective 3-space P3 here, and X will denote the
projective x-plane P2. Let P3 π−→ X denote the projection that sends (x, z) to x. It is defined at all points
except at the center of projection q = (0, 0, 0, 1), and its fibres are the lines through q, with q omitted.

Let S be a cubic surface in P3, the locus of zeros of an irreducible homogeneous cubic polynomial g(x, z).
We’ll denote the restriction of π to S by the same symbol π.
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Let’s suppose that q is a point of S. Then the coefficient of z3 in g will be zero, and g will be quadratic
in z: g(x, z) = az2 + bz + c, where the coefficienta a, b, c are homogeneous polynomials in x, of degrees
1, 2, 3, respectively. The equation for S becomes

(4.8.12) az2 + bz + c = 0

The discriminant f = b2−4ac of g is a homogeneous polynomial of degree 4 in x. Let Y be the projective
double plane

(4.8.13) y2 = b2 − 4ac

.
We denote by V the affine space of polynomials a, b, c of degrees 1, 2, 3 in x, and by W the affine space

of homogeneous quartic polynomials in x. Sending g to its discriminant f defines a morphism V
u−→ W

(4.8.12).

4.8.14. Lemma. The image of the morphism u contains all quartic polynomials f such that the divisor
D : f = 0 has at least one bitangent line. Therefore the image of u is dense in W .

proof. Given such a quartic polynomial f , let a be a linear polynomial such that the line `1 : {a = 0} is a
bitangent to D : {f = 0}. Then, as noted above, `1 splits in the double plane y2 = f . So f is congruent to a
square, modulo a. Let b be a quadratic polynomial such that f ≡ b2 modulo a. When we take this polynomial
as b, we will have f = b2 − 4ac for some cubic polynomial c.

Conversely, if g(x, y) = az2 + bz + c, the line `1 : {a = 0} will be a bitangent to D provides that the
locus b = 0 meets `1 in two distinct points. �

It follows from the lemma that, if g(x, z) = az2 + bz + c is a polynomial in which a, b, c are generic
homogeneous polynomials in x, of degrees 1, 2, 3, respectively, the discriminant b2 − 4ac will be a generic
homogeneous quartic polynomial in x.

We go back to the generic cubic surface S : az2 + bz + c = 0 and the generic double plane Y : y2 =
b2 − 4ac.

4.8.15. Theorem. A generic cubic surface S in P3 contains precisely 27 lines.

This theorem follows from next lemma, which relates the 27 lines in S to the 28 bitangents of the generic
quartic curve ∆ : {b2 − 4ac = 0} in the plane X (1.13.3).

As noted above, the line `1 defined by the linear equation a = 0 is a bitangent to the quartic curve ∆.

4.8.16. Lemma. Let S be a generic cubic surface. The 27 bitangent lines in X that are distinct from `1 are
the images of the lines in S, and distinct lines in S have distinct images.

proof. Because the cubic surface S is generic, it contains finitely many lines (3.6). When we project toX from
a generic point q of S, q won’t lie on any of those lines. The fibres of the projection P3 → X are lines through
q, and they aren’t contained in S. So a line in S projects bijectively to a line in X .

A line in X is defined by a homogeneous linear equation in the variables x. The same linear equation
defines a plane H in P3 that contains q, and the intersection C = S ∩H will be a cubic curve in H . At least
one of the irreducible components of C contains q, and that component isn’t a line. So if C is reducible, it
will be a union Q ∪ L, where Q is a conic that contains q and L is a line in S. Thus lines L in S correspond
bijectively to lines in X such that the corresponding cubic C is reducible.

Referring to (4.8.12) and (4.8.13), the quadratic formula solves for z in terms of y whenever a 6= 0:

(4.8.17) z =
−b+ y

2a
or y = 2az + b

These equations define a bijection S′ ←→ Y ′ between the open subsets S′ and Y ′ of points of S and Y at
which a 6= 0.

If ` is a line in X , not the line `1, the intersection `∩ `1 will be a point p. The bijection S′ ←→ Y ′ will be
defined at all points that lie over ` except those whose images are p. If ` is the image of a line in S, the cubic
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curve C = S ∩H is reducible. Because ` splits in Y , it is a bitangent to the quartic curve ∆. Conversely, if `
splits in Y , then C will be reducible. It will be the union of a line and a conic. So every bitangent line distinct
from `1 is the image of a unique line in S.

The line `1 : {a=0} is special. Its inverse image C in S is the locus of zeros of the two polynomials a and
az2 + bz + c, or equivalently, the locus a = 0 and bz + c = 0.

Let’s adjust coordinates so that a becomes the polynomial x0. The locus {x0 = 0} in P3 is the projective
plane P with coordinates x1, x2, z, and in P C is the locus g = 0 in that plane, where g = bz + c, b, c being
the polynomials obtained from b, c by substituting x0 = 0. In P , the point q becomes (0, 0, 1), and C becomes
the cubic curve g = 0. The cubic curve C is singular at q because g has no term of degree > 1 in z. As we
have noted, C cannot be the union Q ∪ L, of a conic and a line that meet at q. Therefore C is irreducible. It
doesn’t contain a line, so `1 doesn’t split. �

Summing up: The 27 bitangents distinct from `1 are images of lines in S, but `1 is not the image of a line
in S.
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Chapter 5 STRUCTURE OF VARIETIES II: CONSTRUCTIBLE SETS

5.1 Modules
5.2 Valuations
5.3 Smooth Curves
5.4 Constructible sets
5.5 Closed Sets
5.6 Fibred Products
5.7 Projective Varieties are Proper
5.8 Fibre Dimension

The goal of this chapter is to explain how algebraic curves control the geometry of higher dimensional
varieties. We do this, beginning in Section 5.5. We begin with a short review about modules that we will use
in the chapter. We omit most proofs.

5.1 Modules

(5.1.1) exact sequences

A sequence

· · · → V n−1 dn−1

−→ V n
dn−→ V n+1 dn+1

−→ · · ·
of homomorphisms of R-modules is exact if the image of dk−1 is equal to the kernel of dk. For example, a
sequence 0→ V

d−→ V ′ is exact if and only if the map d is injective, and a sequence V d−→ V ′ → 0 is exact
if and only if d is surjective.

Any homomorphism V
d−→ V ′ can be embedded into an exact sequence

0→ K → V
d−→ V ′ → C → 0,

where K and C are the kernel and cokernel of d, respectively.
A short exact sequence is an exact sequence of the form

0→ V
a−→ V ′

b−→ V ′′ → 0.

The statement that this sequence is exact asserts that the map a is injective, and that V ′′ is isomorphic to the
quotient group V ′/aV .

5.1.2. Proposition. (functorial property of the kernel and cokernel) Suppose given a (commutative) diagram
of R-modules

V
u−−−−→ V ′ −−−−→ V ′′ −−−−→ 0

f

y f ′
y f ′′

y
0 −−−−→ W −−−−→ W ′ −−−−→

v
W ′′

whose rows are exact sequences. Let K,K ′,K ′′ and C,C ′, C ′′ denote the kernels and cokernels of f, f ′, and
f ′′, respectively.
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(i) (kernel is left exact) The kernels form an exact sequence K → K ′ → K ′′. If u is injective, the sequence
0→ K → K ′ → K ′′ is exact.
(ii) (cokernel is right exact) The cokernels form an exact sequence C → C ′ → C ′′. If v is surjective, the
sequence C → C ′ → C ′′ → 0 is exact.

(iii) (Snake Lemma) There is a canonical homomorphismK ′′
d−→ C that combines with the above sequences

to form an exact sequence

K → K ′ → K ′′
d−→ C → C ′ → C ′′.

If u is injective and/or v is surjective, the sequence remains exact with zeros at the appropriate ends. �

(5.1.3) tensor products

Let U and V be modules over a ring R. The tensor product U ⊗RV is an R-module that is generated by
elements u ⊗v called tensors, one for each u in U and v in V . Its elements are combinations of tensors with
coefficients in R.

The defining relations among the tensors are the bilinear relations:

(5.1.4) (u1+u2)⊗ v = u1 ⊗ v+u2 ⊗v , u⊗ (v1+v2) = u⊗ v1+u⊗ v2

and r(u⊗ v) = (ru)⊗ v = u⊗ (rv)

for all u in U , v in V , and r in R. The tensor symbol ⊗ is used as a reminder that the elements u⊗ v are to be
manipulated using these relations.

One can absorb a coefficient from R into either one of the factors of a tensor, so every element of U ⊗RV
can be written as a finite sum

∑
ui ⊗vi with ui in U and vi in V .

5.1.5. Example. Let U be the space of m dimensional (complex) column vectors, and let V be the space of
n-dimensional row vectors. Then U⊗CV identifies naturally with the space ofm×n-matrices. If U and V are
free R-modules with bases {ui} and {vj}, respectively, then U ⊗RV is a free R-module with basis {ui⊗ vj}.

There is an obvious map of sets U ×V β−→ U ⊗RV from the product set to the tensor product, that
sends (u, v) to u ⊗ v. This map isn’t a module homomorphism. The defining relations (5.1.4) show that it is
R-bilinear, not linear. It is a universal bilinear map.

5.1.6. Corollary. Let U, V , and W be R-modules. Homomorphisms of R-modules U ⊗R V →W correspond
bijectively to R-bilinear maps U×V →W . �

Any R-bilinear map U ×V f−→ W to a module W can be obtained from a module homomorphism

U ⊗RV
f̃−→W by composition with the bilinear map β defined above: U×V β−→ U ⊗RV

f̃−→W .
This follows from the defining relations. �

5.1.7. Proposition. There are canonical isomorphisms
• U ⊗R R ≈ U , defined by u⊗ r! ur

• (U ⊕ U ′)⊗R V ≈ (U ⊗R V )⊕ (U ′ ⊗R V ), defined by (u1 + u2)⊗ v! u1 ⊗ v + u2 ⊗ v
• U ⊗R V ≈ V ⊗R U , defined by u⊗ v! v ⊗ u
• (U ⊗R V )⊗RW ≈ U ⊗R (V ⊗RW ), defined by (u⊗ v)⊗ w! u⊗ (v ⊗ w) �

5.1.8. Proposition. Tensor product is right exact: Let U
f−→ U ′

g−→ U ′′ → 0 be an exact sequence of
R-modules, then for any R-module V , the sequence below is exact:

U ⊗RV
f⊗id−→ U ′ ⊗RV

g⊗id−→ U ′′ ⊗RV → 0

�
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Tensor product operation isn’t left exact. For example, LetR = C[x]. ThenR/xR ≈ C, so there is an exact
sequence 0 → R

x−→ R → C → 0. When we tensor with C we get the sequence 0 → C 0−→ C → C → 0.
The zero map isn’t injective.

5.1.9. Corollary. Let U and V be modules over a domain R and let s be a nonzero element of R. Let
Rs, Us, Vs be the (simple) localizations of R,U, V , respectively.
(i) There is a canonical isomorphism Us ≈ U ⊗R(Rs).
(ii) Tensor product is compatible with localization: Us ⊗RsVs ≈ (U ⊗R V )s �

We note that the product module U×V and the tensor product module U ⊗R V are very different. For
instance, when U and V are free modules of ranks r and s, U×V is free of rank r+s, while U ⊗R V is free
of rank rs.

(5.1.10) extension of scalars in a module

Let R
ρ−→ S be a ring homomorphism. Extension of scalars constructs an S-module from an R-module.

Let’s write scalar multiplication on the right. So M will be a right R-module. Then M ⊗R S be comes an
S-module, multiplication by s ∈ S being (m⊗ a)s = m⊗ (as). This gives the functor

R−modules ⊗S−→ S−modules

that is called extension of scalars.

(5.1.11) localization, again

If s is a nonzero element of a domain A, the simple localization As, which is often referred to simply
as a localization, is the ring obtained by adjoining an inverse of s, and to work with the inverses of finitely
many nonzero elements, one may simply adjoin the inverse of their product. For working with an infinite set
of inverses, the concept of a multiplicative system is useful. A multiplicative system S in a domain A is a
subset that consists of nonzero elements, is closed under multiplication, and contains 1. If S is a multiplicative
system, the ring of S-fractions AS−1 is the ring obtained by adjoining inverses of all elements of S. Its
elements are equivalence classes of fractions as−1 with a in A and s in S, the equivalence relation and the
laws of composition being the usual ones for fractions. The ring AS−1 called a localization too..

5.1.12. Examples. (i) The set consisting of the powers of a nonzero element s of a domain A is a multiplica-
tive system whose ring of fractions is the simple localization As = A[s−1].

(ii) The set S of all nonzero elements of a domain A is a multiplicative system whose ring of fractions is the
field of fractions of A.

(iii) An ideal P of a domain A is a prime ideal if and only if its complement, the set of elements of A not in
P , is a multiplicative system. �

5.1.13. Definition. Let A ⊂ B be a ring extension, and let I and J be ideals of A and B, respectively. The
extension of I is the ideal IB of B generated by I , whose elements are finite sums

∑
i zibi with zi in I and bi

in B. The contraction of J is the intersection J ∩A, which is an ideal of A.

The next lemma explains what happens when one combines extension and contraction.

5.1.14. Lemma. LetA ⊂ B be rings, and let I and J be ideals ofA andB, respectively. Then I ⊂ (IB)∩A,
and (J ∩A)B ⊂ J . �

5.1.15. Proposition. Let S be a multiplicative system in a domain A, and let A′ be the localization AS−1.
(i) Let I be an ideal of A. The extended ideal IA′ is the set IS−1 whose elements are classes of fractions
xs−1, with x in I and s in S. The extended ideal is the unit ideal if and only if I contains an element of S.
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(ii) Let J be an ideal of the localization A′ and let I denote its contraction J ∩ A. The extended ideal IA′ is
equal to J: If J is an ideal of A′, then J = (J ∩A)A′.
(iii) If Q is a prime ideal of A and if Q ∩ S is empty, the extended ideal Q′ = QA′ is a prime ideal of A′, and
the contraction Q′ ∩ A is equal to Q. If Q ∩ S isn’t empty, the extended ideal is the unit ideal. Thus prime
ideals of AS−1 correspond bijectively to prime ideals of A that don’t meet S. �

5.1.16. Corollary. Every localization AS−1 of a noetherian domain A is noetherian. �

(5.1.17) a general principle

An important, though elementary, principle for working with fractions is that any finite sequence of com-
putations in a localization AS−1 will involve only finitely many denominators, and can therefore be done in a
simple localization As, where s is a common denominator for the fractions that occur. This principle has been
mentioned before, in Proposition 4.4.10.

For example, let A ⊂ B be finite-type domains, and let S be the multiplicative system of nonzero elemets
ofA. ThenAS−1 = K is the field of fractions ofA, andBK = BS−1 is a finite-typeK-algebra. The Noether
Normalization Theorem tells us that BK is a finite module over a polynomial subring K[y1, ..., yn], Therefore
there is a nonzero element s in A such that Bs is a finite module over the polynomial ring As[y1, ..., yn].

###ugh fix this ###

(5.1.18) module homomorphisms

Beginning in Chapter 6, we will work with modules over various rings. Let R
ρ−→ R′ be a ring homomor-

phism, let M be an R-module, and let M ′ be an R′-module. A homomorphism M
ϕ−→ M ′ associated to the

ring homomorphism ρ is an additive group homomorphism M
ϕ−→M ′ compatible with scalar multiplication.

If m in M and a in R, then

(5.1.19) ϕ(am) = ρ(a)ϕ(m)

For example, if M is a module over a domain R and s is a nonzero element of R, the localization Ms is an
Rs-module. The homomorphism M →Ms is compatible with the localization map R→ Rs.

If A
ρ−→ B is a ring homomorphism, a B-module N can be made into an A-module by restriction of

scalars, scalar multiplication by an element a of A being defined by the formula

(5.1.20) an = ρ(a)n

If it seems necessary in order to avoid confusion, we may denote the B-module N and the A-module obtained
from it by restriction of scalars by BN and AN , respectively.

Let M
ϕ−→M ′ be a homomorphism compatible with a ring homomorphism R

ρ−→ R′. When M ′ is made
into an R-module by restriction of scalars, ϕ becomes a homomorphism of R-modules.

(5.1.21) localizing a module

Let S be a multiplicative system in a domain A. The localization MS−1 of an A-module M is defined in
a natural way, as the AS−1-module whose elements are equivalence classes of fractions ms−1 with m in M
and s in S, and there will be a homomorphism M → MS−1 that sends an element m to the fraction m/1.
The only complication comes from the fact that M may have S-torsion elements – nonzero elements m such
that ms = 0 for some s in S. If ms = 0 and s is in S, then m must map to zero in MS−1, because in MS−1,
we will have m = mss−1.

To define MS−1, it suffices to modify the equivalence relation. Two fractions m1s
−1
1 and m2s

−1
2 are

defined to be equal if there is an element s̃ ∈ S such that m1s2s̃ = m2s1s̃. Then ms−1
1 = 0 if and only if

ms̃ = 0 for some s̃ in S. This takes care of torsion, and MS−1 becomes an AS−1-module.
This is also how one localizes a ring that isn’t a domain.

When S is the set of powers of an element s, the localized As-module will be denoted by Ms. Its elements
have the form ms−k, k ≥ 0, and m1s

−k1 = m2s
−k2 if for sufficiently large n, m1s

k2+n = m2s
k1+n.
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5.1.22. Proposition. Let S be a multiplicative system in a domain A.

(i) Localization is an exact functor: A homomorphism M
ϕ−→ N of A-modules induces a homomorphism

MS−1 ϕ′−→ NS−1 of AS−1-modules, and if M
ϕ−→ N

ψ−→ P is an exact sequence of A-modules, the

localized sequence MS−1
ϕ
′−→ NS−1

ψ
′−→ PS−1 is exact.

(ii) Let M be an A-module. and let N be an AS−1-module. Homomorphisms of AS−1-modules MS−1 → N
correspond bijectively to homomorphisms of A-modules M → N .
(iii) If multiplication by s is an injective map M → M for every s in S, then M ⊂ S−1M . If multiplication
by every s is a bijective map M →M , then M ≈ S−1M . �

(5.1.23) local rings

A local ring is a noetherian ring that contains just one maximal ideal. If an element of a local ring R isn’t
in its maximal ideal M , then it isn’t in any maximal ideal, so it is a unit. A local ring R will have a residue
field R/M . The case that is most important for us is that the residue field is the field of complex numbers.

We make a few general comments about local rings here though we will be interested mainly in some
special local rings, discrete valuation rings that are discussed below.

The Nakayama Lemma 4.3.1 has a useful version for local rings:

5.1.24. Local Nakayama Lemma. Let R be a local ring with maximal ideal M , let V be a finite R-module,
and let V be the quotient V/MV , which is a vector space over the residue field k ofR as well as anR-module.
(i) If V = 0, then V = 0.
(ii) Let v = (v1, ..., vr) be a set of elements of V , and let v = (v1, ..., vr) be the residues of v in V . If v spans
V , then v spans V .

proof. (i) If V = 0, then V = MV . The Nakayama Lemma tells us that M contains an element z such that
1−z annihilates V . Then 1−z isn’t in M , so it is a unit. A unit annihilates V , and therefore V = 0.

(ii) Let V ′ be the submodule of V spanned by v, let W = V/V ′, and let W = W/MW . To show that v spans
V , we show that W = 0, and according to (i), it suffices to show that W = 0.

We inspect the iagram

0 −−−−→ MV −−−−→ V −−−−→
a

V −−−−→ 0y yb yc
0 −−−−→ MW −−−−→ W −−−−→

d
W −−−−→ 0

Its rows are exact, the maps labelled a, b, c, d are surjective, and the kernel of b is V ′. If v spans V , i.e., if
aV ′ = V , then caV ′ = W = dbV ′. Since bV ′ = 0, it follows that W = 0, as required. �

5.1.25. Corollary. LetR be a local ring with maximal idealM and residue field k, and letm = {m1, ...,mr}
be a set of elements of M . If the residues of m span the k-vector space M/M2, then m spans M . �

(5.1.26) the local ring at a point

Let m be the maximal ideal at a point p of an affine variety X = SpecA. The complement S of m is
a multiplicative system (5.1.12)(iii)), and the prime ideals P of the localization AS−1 (the ring obtained by
inverting the elements of S) are extensions of the prime ideals Q of A that are contained in m: P = QS−1

(5.1.15). Thus AS−1 is a local ring whose maximal ideal is mS−1. This ring is called the local ring of A at p
, and is often denoted by Ap.

For example, let X = SpecA be the affine line, A = C[t], and let p be the point t = 0. The local ring Ap
is the ring whose elements are fractions f(t)/g(t) with g(0) 6= 0.

Any finite set α1, ..., αk of elements of the local ring Ap at p will be contained in a simple localization As,
for some s in S. It will be in the coordinate algebra of the affine open neighborhood Xs of p.
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5.2 Valuations
A local domain R with maximal ideal M has dimension one if (0) and M are distinct, and if those ideals are
the only prime ideals of R. In this section, we describe the normal local domains of dimension one. They are
the discrete valuation rings that are defined below.

Let K be a field. A discrete valuation v on K is a surjective homomorphism

(5.2.1) K×
v−→ Z+

from the multiplicative group of nonzero elements of K to the additive group of integers such that, if a, b are
elements of K and if a, b and a+b aren’t zero, then

• v(a+b) ≥ min{v(a), v(b)}.

The word “discrete” refers to the fact that Z+ has the discrete topology. Other valuations exist. They
are interesting, but less important, and we won’t use them. To simplify terminology, we refer to a discrete
valuation simply as a valuation.

Let k be a positive integer. If v is a valuation and if v(a) = k, then k is the order of zero of a, and if
v(a) = −k, then k is the order of pole of a, with respect to the valuation.

5.2.2. Lemma. If v is a valuation on a field K that contains the complex numbers, every nonzero complex
number has value zero.

proof. This is true because C contains n th roots. If γ is an n th root of a nonzero complex number c, then
because v is a homomorphism, v(γ) = v(c)/n. The only integer that is divisible by every positive integer n is
zero. �

The valuation ring R associated to a valuation v on a field K is the subring of elements of K with non-
negative values, together with zero:

(5.2.3) R = {a ∈ K× | v(a) ≥ 0} ∪ {0}.

Valuation rings are usually called “discrete valuation rings”, but since we have dropped the word discrete from
the valuation, we drop it from the valuation ring too.

5.2.4. Proposition. Valuations of the field C(t) of rational functions in one variable correspond bijectively
to points of the projective line P1

t . The valuation ring that corresponds to a point p 6= ∞ is the local ring of
the polynomial ring C[t] at p.

beginning of the proof. Let K denote the field C(t), and let a be a complex number. To define the valuation
v that corresponds to the point p : t = a of P1, we write a nonzero polynomial f as (t − a)kh, where t − a
doesn’t divide h, and we define, v(f) = k. Then we define v(f/g) = v(f)− v(g). You will be able to check
that with this definition, v becomes a valuation whose valuation ring is the local ring at p. The valuation that
corresponds to the point at infinity of P1 is obtained by working with t−1 in place of t.

The proof that these are all of the valuations of C(t) will be given at the end of the section.

5.2.5. Proposition. Let v be a valuation on a field K, let R be its valuation ring, and let x be an element of
the multiplicative group K× with value v(x) = 1.
(i) The ring R is a normal local domain of dimension one. Its maximal ideal M is the principal ideal xR. The
elements of M are those that have positive value:

M = {a ∈ K× | v(a) > 0} ∪ {0}

(ii) The units of R are the elements of K× with value zero. Every element z of K× has the form z = xku,
where u is a unit and k = v(z) is an integer.
(iii) The proper R-submodules of K are the sets xkR, where k is a positive or negative integer. The set xkR
consists of zero and the elements of K× with value ≥ k. The nonzero ideals of R are the principal ideals xkR
with k ≥ 0, the powers of the maximal ideal.
(iv) There is no ring properly between R and K: If R′ is a ring and if R ⊂ R′ ⊂ K, then either R = R′ or
R′ = K.
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proof. We prove (i) last.

(ii) Since v is a homomorphism, v(u−1) = − v(u). So u and u−1 are both in R, i.e., u is a unit, if and only if
v(u) = 0 . If z is a nonzero element of K with v(z) = k, then u = x−kz has value zero, so it is a unit, and
z = uxk.

(iii) The R-module xkR consists of the elements of K of value at least k. Suppose that an R-submodule N
of K contains an element z with value k. Then z = uxk, where u is a unit, and therefore N contains xk and
xkR. If k is the smallest integer such that N contains an element z with value k, then N = xkR. If there is no
minimum value of the elements of N , then N contains xkR for every k, and N = K.

(iv) This follows from (iii). The ring R′ will be an R-submodule of K. If R′ 6= K, then R′ = xkR for some
k, and sinceR′ containsR, k ≤ 0. If k < 0 then xkR isn’t closed under multiplication. So k = 0 andR′ = R.

(i) First, R is noetherian because (iii) tells us that it is a principal ideal domain, and it follows from (ii) that
the only prime ideals of R are {0} and M = xR. So R is a local ring of dimension 1. If the normalization of
R were larger than R, then according to (iv), it would be equal to K. Then x−1 would be integral over R. It
would satisfy a polynomial relation x−r + a1x

−(r−1) + · · ·+ ar = 0 with ai in R. When one multiplies this
relation by xr, one sees that 1 would be a multiple of x. Then x would be a unit, which it is not. �

5.2.6. Theorem.
(i) A local domain whose maximal ideal is a nonzero principal ideal is a valuation ring.
(ii) Every normal local domain of dimension 1 is a valuation ring.

proof. (i) Let R be a local domain whose maximal ideal M is a nonzero principal ideal, say M = xR, with
x 6= 0, and let y be a nonzero element of R. The integers k such that xk divides y are bounded (4.3.5). Let
xk be the largest power that divides y. Then y = uxk, where k ≥ 0 and u isn’t in M . It is a unit. Then any
nonzero element z of the fraction fieldK ofR will have the form z = uxr where u is a unit and r is an integer,
possibly negative. This is shown by writing the numerator and denominator of a fraction in such a form and
dividing.

The valuation whose valuation ring is R is defined by v(z) = r when z = uxr as above. If zi = uix
ri ,

i = 1, 2, where ui are units and r1 ≤ r2, then z1 + z2 = αxr1 , where α = u1 + u2x
r2−r1 is an element of

R. Therefore v(z1 + z2) ≥ r1 = min{v(z1), v(z2)}. We also have v(z1z2) = v(z1) + v(z2). Thus v is a
surjective homomorphism. The requirements for a valuation are satisfied.

(ii) The fact that a valuation ring is a normal, one-dimensional local ring is Proposition 5.2.5 (i). We show that
a normal local domain R of dimension 1 is a valuation ring by showing that its maximal ideal is a principal
ideal. The proof is a bit tricky.

Let z be a nonzero element of M . Because R is a local ring of dimension 1, M is the only prime ideal
that contains z, so M is the radical of the principal ideal zR, and Mr ⊂ zR if r is large. Let r be the smallest
integer such that Mr ⊂ zR. Then there is an element y in Mr−1 that isn’t in zR, but such that yM ⊂ zR.
We restate this by saying that w = y/z isn’t in R, but wM ⊂ R. Since M is an ideal, multiplication by an
element of R carries wM to wM . So wM is an ideal. Since M is the maximal ideal of the local ring R, either
wM ⊂ M , or wM = R. If wM ⊂ M , the lemma below shows that w is integral over R. This can’t happen
because R is normal and w isn’t in R. Therefore wM = R and M = w−1R. This implies that w−1 is in R
and that M is a principal ideal. �

5.2.7. Lemma. Let I be a nonzero ideal of a noetherian domain A, and let B be a domain that contains A.
An element w of B such that wI ⊂ I is integral over A.

proof. This is the Nakayama Lemma once more. Because A is noetherian, I is finitely generated. Let v =
(v1, ..., vn)t be a vector whose entries generate I . The hypothesis wI ⊂ I allows us to write wvi =

∑
pijvj

with pij in A, or in matrix notation, wv = Pv. So w is an eigenvalue of P . If p(t) denotes the characteristic
polynomial of P , p(w)v = 0. Since I 6= 0, at least one vi is nonzero. Since A is a domain, p(w)vi = 0
implies that p(w) = 0. The characteristic polynomial is a monic polynomial with coefficients in A, so w is
integral over A. �

5.2.8. Lemma. A rational function α on a variety X is regular on X if it is in the local ring of X at every
point p.
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This is true because a function α is in the local ring at p if and only if it is in the coordinate algebra of some
affine neighborhood of p (5.1.26). �

5.2.9. Corollary. Let X = SpecA be an affine variety.
(i) The coordinate algebra A is the intersection of the local rings Ap at points of X .

A =
⋂
p∈X

Ap

(ii) The coordinate algebra A is normal if and only if all of its local rings Ap are normal.

See Lemma 4.5.3 for (ii). �

5.2.10. Note. (about the overused word local) A property is true locally on a topological space X if every
point p of X has an open neighborhood U such that the property is true on U .

The words localize and localization refer to the process of adjoining inverses. The localizations Xs of an
affine variety X = SpecA form a basis for the topology on X . So if some property is true locally on X , one
can coverX by localizations on which the property is true. There will be elements s1, ..., sk ofA that generate
the unit ideal, such that the property is true on each of the localizations Xsi .

An A-module M is locally free if there are elements s1, ..., sk that generate the unit ideal of A, such that
Msi is a free Asi -module for each i. If a locally free A-module U that is locally isomorphic to Ak, then U has
rank k.

An ideal I of A is locally principal if there are elements si that generate the unit ideal, such that Isi is a
principal ideal of Asi . �

5.2.11. Corollary. Let M be a finite module over a finite-type domain A. If for some point p of X = SpecA
the localized module Mp (5.1) is a free module, there is an element s not in mp such that Ms is free.

proof. See the general principle (5.1.17). �

We finish the proof of Proposition 5.2.4 now, by showing that every valuation v of the function field
K = C(t) of P1 corresponds to a point of P1.

Let R be the valuation ring of v. If v(t) < 0, we replace t by t−1. So we may assume that v(t) ≥ 0. Then
t is an element of R, and therefore C[t] ⊂ R. The maximal ideal M of R isn’t zero. It contains a nonzero
element of K, a fraction α = f/g of polynomials in t. The denominator g is in R, so M also contains the
nonzero polynomial f = gα. Since M is a prime ideal, it contains an irreducible factor of f . The irreducible
polynomials in t are linear, so M contains t − a for some complex number a. Then t − c isn’t in M when
c 6= a, because the scalar c− a cannot be in M . Since R is a local ring, t− c is a unit of R for all c 6= a. The
localization R0 of C[t] at the point t = a is a valuation ring that is contained in the valuation ring R (5.2.4).
There is no ring properly containing R0 except K, so R0 = R. �

5.3 Smooth Curves
A curve is a variety of dimension 1. The proper closed subsets of a curve are its nonempty finite subsets.

5.3.1. Definition. A point p of a curve X is a smooth point if the local ring at p is a valuation ring. Otherwise,
p is a singular point. A curve X is smooth if all of its points are smooth.

##be careful about smooth curve and smooth affine curve##

Let p be a smooth point of a curve X , and let vp be the corresponding valuation. As with any valuation,
we say that a rational function α on X has a zero of order k > 0 at p if vp(α) = k, and that it has a pole of
order k at p if vp(α) = −k.

5.3.2. Lemma. (i) An affine curve X is smooth if and only if its coordinate algebra is a normal domain.
(ii) A curve has finitely many singular points.
(iii) The normalization X̃ of a curve X is a smooth curve, and the canonical morphism X̃ → X becomes an
isomorphism when the finite set of singular points of X and their inverse images are deleted.
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proof. (i) This follows from Theorem 5.2.6 and Proposition 4.5.3.

(ii),(iii) Any nonempty open subset of a curve X will be the complement of a finite set, so we may replace X
by an affine open subset, say SpecA. The normalization Ã of A will be a finite A-module, and therefore a
finite-type algebra with the same fraction field as A, and Spec Ã will be a smooth curve. It follows from the
principle 5.1.17 that Ã and A have a common localization, say As. The open subset Xs = SpecAs of X will
be smooth. �

5.3.3. Proposition. LetX be a smooth curve with function fieldK. Every point of Pn with values inK defines
a morphism X → Pn.

proof. A point (α0, ..., αn) of Pn with values in K determines a morphism X → Pn if and only if, for every
point p of X , there is an index j such that the functions αi/αj are regular at p for every i (3.4.14). This will
be true when j is chosen so that the order of zero vp(αj) of αj at p is minimal. �

As the next example shows, the analog of this proposition isn’t true for varieties X of dimension greater
than one.

5.3.4. Example. Let Y be the complement of the origin in the affine plane X = SpecC[x, y], and let
K = C(x, y) be the function field of X . The vector (x, y) defines a point of P1

x,y with values in K. This point
can be written as (1.y/x) and also as (x/y, 1). So (x, y) defines a morphism to P1 wherever at least one of
the functions x/y or y/x is regular, which is true at all points of Y . However, there is no way to extend the
morphism to X . �

5.3.5. Proposition. Let X = SpecA be a smooth affine curve with function field K. The local rings of X are
the valuation rings of K that contain A. Therefore the maximal ideals of A are locally principal, and if R is a
valuation ring with maximal ideal M , its residue field R/M is isomorphic to C.

proof. SinceA is a normal domain of dimension one, its local rings are valuation rings that containA (Theorem
5.2.6). Let R be a valuation ring of K that contains A, let v be the associated valuation, and let M be the
maximal ideal of R. The intersection M ∩ A is a prime ideal of A. Since A has dimension 1, the zero ideal
is the only prime ideal of A that isn’t a maximal ideal. We can clear the denominator of an element of M ,
multiplying by an element of R, to obtain an element of A while staying in M . So M ∩A isn’t the zero ideal.
It is the maximal ideal mp of A at a point p of X . The elements of A that aren’t in mp aren’t in M either, so
they are invertible in R. Therefore the local ring Ap, at p, a valuation ring, is contained in R. This implies that
Ap = R (5.2.5) (iii). �

5.3.6. Proposition. Let X ′ and X be smooth curves with the same function field K.

(i) Any morphism X ′
f−→ X that is the identity on the function field K maps X ′ isomorphically to an open

subvariety of X .
(ii) If X is projective, every smooth curve X ′ with function field K is isomorphic to an open subvariety of X .
(iii) If X ′ and X are both projective, they are isomorphic.
(iv) If X is projective, every valuation ring of K is the local ring at a point of X .

proof. (i) Let q be a point of X ′, let U be an affine open neighborhood of p = fq, and let V be an affine open
neighborhood of q in X ′ that is contained in the inverse image of U . Say U = SpecA and V = SpecB.
The morphism f gives us a homomorphism A → B, and since q maps to p, this homomorphism extends
to an inclusion of local rings Ap ⊂ Bq . These rings are valuation rings with the same field of fractions, so
Ap = Bq . Since B is a finite-type algebra, there is an element s in A, with s(q) 6= 0, such that As = Bs.
The open subsets SpecAs of X and SpecBs of X ′ are the same. Since q is an arbitrary point of X ′, X ′ is
covered by open subvarieties of X . So it is an open subvariety of X too.

(ii) The projective embedding X ⊂ Pn is defined by a point (α0, ..., αn) with values in K, and that same point
defines a morphism X ′ → Pn. If f(x0, ..., xn) = 0 is a set of defining equations of X in Pn, then f(α) = 0 in
K, and therefore f vanishes on X ′ too (3.4.9). So the image of X ′ is contained in the zero locus of f , which
is X . Then (i) shows that X ′ is an open subvariety of X .

(iii) This follows from (ii).
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(iv) The local rings of X are normal and of dimension one. They are valuation rings. We prove the converse.
Let β = (β0, ..., βn) be the point with values in K that defines the projective embedding of X . and let R
be a valuation ring of K, and let v be the corresponding valuation. We order the coordinates so that v(β0)
is minimal. Then the ratios γj = βj/β0 will be in R. The coordinate algebra A0 of the affine variety
X0 = X ∩ U0 is generated by the coordinate functions γj . So A0 ⊂ R, and R is the local ring of X0 at some
point 5.3.5. �

5.3.7. Proposition. < LetX = SpecA be an affine curve, and let m and v be the maximal ideal and valuation,
respectively, at a smooth point p. Let R be the valuation ring of v and let M be its maximal ideal.
(i) The power mk of m consists of the elements of A whose values are at least k. If I is an ideal of A whose
radical is m, then I = mk for some k > 0.
(ii) The algebras A/mn+1 and R/Mn+1 are isomorphic to the truncated polynomial ring C[t]/(tn+1).
(iii) If X is a smooth affine curve, every nonzero ideal I of A is a product me11 · · ·m

ek
k of powers of maximal

ideals.

proof. (i) The nonzero ideals of R are powers of M . Let I be an ideal of A whose radical is m, and let k be the
minimal value v(x) of the nonzero elements x of I . We will show that I is the set of all elements of A with
value ≥ k, i.e., that I = Mk ∩A. Since we can apply the same reasoning to mk, it will follow that I = mk.

Let x be an element of I with value k, and let y be an element with value at least k. Then x divides y in R,
say y/x = u, with u in R. The element u will be a fraction a/s with s, a in A and s not in m, and sy = ax.
The element s will vanish at a finite set of points q1, ..., qr, but not at p. We choose an element z of A that
vanishes at p but not at any of the points q1, ..., qr. Then z is in m, and since the radical of I is m, some power
of z is in I . We replace z by that power. Then z is in I . By our choice, z and s have no common zeros in X .
They generate the unit ideal of A. We write 1 = cs+dz with c and d in A. Then y = csy+dzy = cax+dzy.
Since x and z are in I , so is y.

(ii) Since p is a smooth point, the local ring of A at p is the valuation ring R, and A contains an element t
with value v(t) = 1. Let P be the subring C[t] of A, and let P k = P/(t)k, Ak = A/mk, and Rk = R/Mk.
Since m isn’t the zero ideal, mk−1 < mk (Corollary 4.3.5(ii)). It follows from (i) that tmk−1 = mk. Therefore
mk−1/mk has C-dimension 1. The map labelled gk−1 in the diagram below is bijective.

0 −−−−→ (tk−1)/(tk) −−−−→ P k −−−−→ P k−1 −−−−→ 0

gk−1

y fk

y fk−1

y
0 −−−−→ mk−1/mk −−−−→ Ak −−−−→ Ak−1 −−−−→ 0

Induction on k shows that the map labelled fk−1 is bijective, so fk is bijective. A similar argument shows that
P k and Rk are isomorphic

(iii) Let I be a nonzero ideal of A. Because X has dimension one, the locus of zeros of I is a finite set
{p1, ..., pk}. Therefore the radical of I is the intersection m1 ∩ · · · ∩ mk of the maximal ideals mj at pj ,
which, by the Chinese Remainder Theorem, is the product ideal m1 · · ·mk, Moreover, I contains a power of
that product, say I ⊃ mN1 · · ·mNk Let J = mN1 · · ·mNk . The quotient algebra A/J is the product B1×· · ·×Bk,
withBj = A/mNj , andA/I is a quotient ofA/J . Proposition 2.1.7 tells us thatA/I is a productA1×· · ·×Ak,
where Aj is a quotient of Bj . By part (ii), each Bj is a truncated polynomial ring. Then the quotients Aj must
also be truncated polynomial rings. So the kernel I of the map A → A1×· · ·×Ak is a product of powers of
the maximal ideals mj . �

(5.3.8) isolated points

5.3.9. Proposition. A curve, smooth or not, contains no point that is isolated in the classical topology.

This was proved before for plane curves (Proposition 1.3.18).

5.3.10. Lemma.
(i) Let Y ′ be an open subvariety of a variety Y . Then q is an isolated point of Y if and only if it is an isolated
point of Y ′.
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(ii) Let Y ′ u′−→ Y be a nonconstant morphism of curves and let q′ be a point of Y ′. If the image of q′ is an
isolated point of Y , then q′ is an isolated point of Y ′.

proof. (i) A point q of Y is isolated if {q} is an open subset of Y . If {q} is open in Y ′ and Y ′ is open in Y ,
then {q} is open in Y . If {q} is open in Y , it is open in Y ′.

(ii) Because Y ′ has dimension one, the fibre over q will be a finite set, say {q′} ∪ F , where F is finite. Let
Y ′′ denote the (open) complement Y ′ − F of F in Y ′, and let u′′ be the restriction of u′ to Y ′′. The fibre of
Y ′′ over q is the point q′. If {q} is open in Y , then because u′′ is continuous, {q′} will be open in Y ′′, and
therefore open in Y ′. �

proof of Proposition 5.3.9. Let q be a point of a curve Y . Part (i) of Lemma 5.3.10 allows us to replace Y by
an affine neighborhood of q. Let Y ′ be the normalization of Y . Part (ii) of the lemma allows us to replace Y
by Y ′. So we may assume that Y is a smooth affine curve, say Y = SpecB. We can still replace Y by an
open neighborhood of q, so we may assume that the maximal ideal mq is a principal ideal.

Say that B = C[x1, ..., xn]/(f1, ..., fk), q is the origin (0, ..., 0) in Anx , and that the maximal ideal mq is
generated by the residue of a polynomial f0 in B. Then f0, ..., fk generate the maximal ideal (x1, ..., xn) in
C[x1, ..., xn]. Let’s write fi =

∑n
1 cijxj + O(2), where O(2) denotes an undetermined polynomial, all of

whose terms have degree≥ 2 in x. The coefficient cij is the partial derivative ∂fi
∂xj

, evaluated at q. If J denotes

(k+1)×n Jacobian matrix
(
∂fi
∂xj

)
at q, we have (f0, ..., fk)t = J(x1, ..., xn)t+O(2). Since f0, ..., fk generate

the maximal ideal, there is a matrix P with polynomial entries such that Pf t = xt. Then xt = PJxt +O(2).
If P0 is the constant term of P , P0J will be the identity matrix. So J has rank n.

Let J1 be the matrix obtained by deleting the column with index 0 from J . This matrix has rank at least
n−1, and we may assume that the submatrix with indices 1 ≤ i, j ≤ n−1 is invertible. The Implicit Function
Theorem says that the equations f1, ..., fn−1 can be solved for the variables x1, ..., xn−1 as analytic functions
of xn, for small xn. The locus Z of zeros of f1, ..., fn−1 has dimension at most 1, it is locally homeomorphic
to the affine line (1.4.18), and it contains Y . Since Y has dimension 1, the component of Z that contains q
must be equal to Y . So Y is locally homeomorphic to A1, which has no isolated point. Therefore q isn’t an
isolated point of Y .

5.4 Constructible Sets

In this section, X will denote a noetherian topological space. Every closed subset of X is a finite union
irreducible closed sets (2.2.13).

The intersection L = C ∩ U of a closed set C and an open set U is a locally closed set. Open sets and
closed sets are examples of locally closed sets.

A constructible set is a set that is the union of finitely many locally closed sets.

5.4.1. Lemma. The following conditions on a subset L of A are equivalent.
• L is locally closed.
• L is a closed subset of an open subset U of X .
• L is an open subset of a closed subset C of X . �

5.4.2. Examples.
(i) A subset S of a curve X is constructible if and only if it is either a finite set or the complement of a finite
set. Thus S is constructible if and only if it is either closed or open.
(ii) Let C be the line {y = 0} in the affine plane X = SpecC[x, y], let U = X − C be its open complement,
and let p = (0, 0). The union U ∪ {p} is constructible, but not locally closed. �

We will use the following notation: L is a locally closed set, C is a closed set, and U is an open set.

5.4.3. Theorem. The family of constructible subsets of a noetherian topological space X , which we denote
by S, is the smallest family of subsets that contains the open sets and is closed under the three operations of
finite unions, finite intersections, and complementation.
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proof. Let S1 denote the family of subsets obtained from the open sets by the three operations mentioned in
the statement. Open sets are constructible, and with those three operations, one can produce any constructible
set from the open sets. So S ⊂ S1. To show that S = S1, we show that the family of constructible sets is closed
under the three operations.

It is obvious that a finite union of constructible sets is constructible. The intersection of two locally closed
sets L1 = C1 ∩ U1 and L2 = C2 ∩ U2 is locally closed because L1 ∩ L2 = (C1 ∩ C2) ∩ (U1 ∩ U2). If
S = L1 ∪ · · · ∪ Lk and S′ = L′1 ∪ · · · ∪ L′r are constructible sets, the intersection S ∩ S′ is the union of the
locally closed intersections (Li ∩ L′j), so it is constructible.

Let S be the constructible set L1 ∪ · · · ∪ Lk. Its complement is the intersection of the complements of
Li: Sc = Lc1 ∩ · · · ∩ Lck. We have shown that intersections of constructible sets are constructible. So to
show that the complement Sc is constructible, it suffices to show that the complement of a locally closed set
is constructible. Let L be the locally closed set C ∩ U , and let Cc and U c be the complements of C and U ,
respectively. Then Cc is open and U c is closed. The complement Lc of L is the union Cc∪U c of constructible
sets, so it is constructible. �

5.4.4. Proposition. Let X be a noetherian topological space. Every constructible subset S is a union L1 ∪
· · · ∪ Lk of locally closed sets Li = Ci ∩ Ui, in which the closed sets Ci are irreducible and distinct.

proof. Suppose that L = C∩U is a locally closed set, and letC = C1∪· · ·∪Cr be the decomposition ofC into
irreducible components. Then L = (C1 ∩U)∪ · · · ∪ (Cr ∩U), which is constructible. So every constructible
set S is a union of locally closed sets Li = Ci ∩ Ui in which the Ci are irreducible. Next, suppose that two of
the irreducible closed sets are equal, say C1 = C2. Then L1 ∪L2 = (C1 ∩U1)∪ (C1 ∩U2) = C1 ∩ (U1 ∪U2)
is locally closed. So we can find an expression in which the closed sets are distinct as well. �

5.4.5. Lemma.
(i) Let X1 be a closed subset of a variety X , and let X2 be its open complement. A subset S of X is con-
structible if and only if S ∩X1 and S ∩X2 are constructible.
(ii) Let X ′ be an open or a closed subvariety of a variety X .
a) If S is a constructible subset of X , then S′ = S ∩X ′ is a constructible subset of X ′.
b) If S′ is a constructible subset of X ′, then it is a constructible subset of X .

proof. (i) This follows from Theorem 5.4.3.

(iia) It suffices to prove that the intersection L′ = L ∩X ′ of a locally closed subset L of X is a locally closed
subset of X ′. If L = C ∩ U , then C ′ = C ∩ X ′ is closed in X ′, and U ′ = U ∩ X ′ is open in X ′. So
L′ = C ′ ∩ U ′ is locally closed.

(iib) It suffices to show that a locally closed subset L′ = C ′∩U ′ ofX ′ it is locally closed inX . IfX ′ is closed
in X , then C ′ is closed in X , and U ′ = X ∩ U for some open subset U of X . If X ′ is open in X , then U ′ is
open in X , and if C is the closure of C ′ in X , then C ∩U ′ = C ′ ∩U ′. So L′ = C ∩U ′ is locally closed in X .
�

The next theorem illustrates a general fact, that sets arising in algebraic geometry tend to be constructible.

5.4.6. Theorem. Let Y
f−→ X be a morphism of varieties. The inverse image of a constructible subset of X

is a constructible subset of Y . The image of a constructible subset of Y is a constructible subset of X .

proof. The fact that a morphism is continuous implies that the inverse image of a constructible set is con-
structible. To prove that the image of a constructible set is constructible, one keeps reducing the problem until
there is nothing left to do.

Let S be a constructible subset of Y . Noetherian induction allows us to assume that the theorem is true
when S is contained in a proper closed subvariety of Y , and also when its image f(S) is contained in a proper
closed subvariety of X .

Suppose that Y is the union of a proper closed subvariety Y1 and its open complement Y2, and let Si =
S ∩ Yi. It suffices to show that Si is a constructible subset of Yi, i = 1, 2, and induction applies to Y1. So we
may replace Y by any nonempty open subvariety.

Let X1 be a proper closed subvariety of X and let X2 be its open complement. The inverse image
Y1 = f−1(X1) will be closed in Y , and its open complement will be the inverse image Y2 = f−1(X2).
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A constructible subset S of Y is the union of the constructible sets S1 = S ∩ Y1 and S2 = S ∩ Y2. So
it suffices to show that f(Si) is constructible. To show this, it suffices to show that f(Si) is a constructible
subset of Xi for i = 1, 2 (5.4.5) (iib). Moreover, induction applies to X1. So we need only show that f(S2)
is a constructible subset of X2. This means that we can replace X and Y by nonempty open subsets finitely
many times.

Since S is a finite union of locally closed sets, it suffices to treat the case that S is locally closed. Moreover,
we may suppose that S = C ∩ U , where C is irreducible. Then Y is the union of the closed subset C = Y1

and its complement Y2. Since S ∩ Y2 = ∅, it suffices to treat Y1. We may replace Y by C. So we may assume
that S = Y ∩ U = U , and we may replace Y by U . We are thus reduced to the case that S = Y .

At this point, we may still replace X and Y by nonempty open subsets, so we may assume that they
are affine, say Y = SpecB and X = SpecA. Then the morphism Y → X corresponds to an algebra
homomorphism A

ϕ−→ B. If the kernel of ϕ were nonzero, the image of Y would be contained in a proper
closed subset of X to which induction would apply. So we may assume that ϕ is injective.

Proposition 4.4.10 tells us that, for suitable nonzero s in A, Bs will be a finite module over a polynomial
subring As[y1, ..., yk]. Then the maps Ys → SpecAs[y] and SpecAs[y] → Xs are both surjective, so Ys
maps surjectively to Xs. When we replace X and Y by Xs and Ys, the map Y → X becomes surjective, and
we are done. �

5.5 Closed Sets

Limits of sequences are often used to analyze subsets of a topological space. In the classical topology, a subset
Y of Cn is closed if, whenever a sequence of points in Y has a limit in Cn, the limit is in Y . In algebraic
geometry one uses curves as substitutes.

We use the following notation:

(5.5.1) C is a smooth affine curve, q is a point of C, and C ′ is the complement of q in C.

The closure of C ′ will be C, and we think of q as a limit point. Theorem 5.5.3, which is below, asserts that a
constructible subset of a variety is closed if it contains all such limit points.

The next theorem tells us that there are enough curves to do the job.

5.5.2. Theorem. (enough curves) Let Y be a constructible subset of a variety X , and let p be a point of its

closure Y . There exists a morphism C
f−→ X from a smooth affine curve to X , and a point q of C with

f(q) = p, such that the image of C ′ = C − {q} is contained in Y .

proof. We use Krull’s Theorem to slice Y down to dimension 1. If X = p, then Y = p too. In this case, we
may take for f the constant morphism from any curve C to p. So we may assume that X has dimension at
least one. Next, we may replace X by an affine open subset X ′ that contains p, and Y by Y ′ = Y ∩X ′. The
closure Y

′
of Y ′ in X ′ will be the intersection Y ∩ X ′, and it will contain p. So we may assume that X is

affine, say X = SpecA.
Since Y is constructible, it is a union L1 ∪ · · · ∪ Lk of locally closed sets, say Li = Zi ∩ Ui where Zi are

irreducible closed sets and Ui are open sets. (We use Zi in place of Ci here to avoid confusion with a curve.)
The closure of Y is the union Z1 ∪ · · · ∪ Zk, and p is in one of the closed sets Zi. We may replace X by Zi
and Y by Li, so we may assume that Y is a nonempty open subset of X .

Suppose that the dimension n of X is at least two. Let D = X − Y be the (closed) complement of the
open set Y . The components of D have dimension at most n − 1. We choose an element α of the coordinate
algebra A of X that is zero at p and isn’t identically zero on any component of D except p itself, if p happens
to be a component. Krull’s Theorem tells us that every component of the zero locus of α has dimension n− 1,
and at least one of those components, call it V , contains p. If V were contained in D, it would be a component
of D because dimV = n − 1 and dimD ≤ n − 1. By our choice of α, this isn’t the case. So V 6⊂ D, and
therefore V ∩ Y 6= ∅. Because V is irreducible and Y is open, V ∩ Y is an open dense subset of V , and p is a
point of its closure V . We replace X by V and Y by V ∩ Y . The dimension of X is thereby reduced to n− 1.

Thus it suffices to treat the case that X has dimension one. Then X will be a curve that contains p and Y
will be a nonempty open subset of X . The normalization of X will be a smooth curve x1 that comes with an
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integral and therefore surjective morphism to Y . Finitely many points of X1 will map to p. We choose for C
an affine open subvariety of X1 that contains just one of those points, and we call that point q. �

5.5.3. Theorem (curve criterion for a closed set) Let Y be a constructible subset of a varietyX . The following
conditions are equivalent:
(a) Y is closed.

(b) For every morphism C
f−→ X from a smooth affine curve to X , the inverse image f−1Y is closed in C.

(c) Let q be a point of a smooth affine curve C, let C ′ = C−{q}, and let C
f−→ X be a morphism. If

f(C ′) ⊂ Y , then f(C) ⊂ Y .

The hypothesis that Y be constructible is necessary. For example, let X be the affine line A1. The set Z
of points of X with integer coordinates isn’t constructible, but it satisfies the curve criterion. Any morphism
C ′ → X whose image is in Z will map C ′ to a single point, and therefore it will extend to C.
proof. The implications (a) ⇒ (b) ⇒ (c) are obvious. We prove the contrapositive of the implication (c) ⇒
(a). Suppose that Y isn’t closed. We choose a point p of the closure Y that isn’t in Y , and we apply Theorem

5.5.2. There exists a morphism C
f−→ X from a smooth curve to X and a point q of C such that f(q) = p

and f(C ′) ⊂ Y . Since q 6∈ Y , this morphism shows that (c) doesn’t hold either. �

5.5.4. Theorem. A constructible subset Y of a variety X is closed in the Zariski topology if and only if it is
closed in the classical topology.

proof. A Zariski closed set is closed in the classical topology because the classical topology is finer than the
Zariski topology.

Suppose that Y is closed in the classical topology. Let q be a point of the Zariski closure Y of Y , and

let C
f−→ X be a morphism from a smooth affine curve to X that maps the complement C ′ of q to Y . Let

Y ′ = f−1Y . Then Y ′ contains C ′, so it is ieither C ′ or C. A morphism is a continuous map in the classical
topology. Since Y is closed in the classical topology, Y ′ is closed in C. If Y ′ were equal to C ′, then {q}
would be open as well as closed. It would be an isolated point of C. Since a curve contains no isolated point,
the closure is C. Therefore the curve criterion (5.5.3 ) is satisfied, and Y is closed in the Zariski topology. �

5.6 Fibred Products

(5.6.1) the mapping property of a product

The productX×Y of two setsX and Y has a mapping property that is easy to verify: Maps from a set T to

the product set X×Y , correspond bijectively to pairs of maps T
f−→ X and T

g−→ Y . The map T
(f,g)−→ X×Y

defined by the pair of maps f, g sends a point t to the point pair (f(t), g(t)).

Let X×Y π1−→ X and X×Y π2−→ Y denote the projection maps. If T h−→ X×Y is a map to the product,
the corresponding maps to X and Y are the compositions with the projections: T π1◦h−→ X and T π2◦h−→ Y :

The analogous statements are true for morphisms of varieties.

5.6.2. Proposition. Let X and Y be varieties, and let X×Y be the product variety.
(i) The projections X×Y π1−→ X and X×Y π2−→ Y are morphisms.
(ii) Morphisms from a variety T to the product variety X×Y correspond bijectively to pairs of morphisms
T → X and T → Y , the correspondence being the same as for maps of sets. �

It was proved in Proposition 3.4.35 that if X
f−→ Z and Y

g−→W are morphisms of varieties, the product

map X×Y f×g−→ Z×W defined by [f×g](x, y) = (f(x), g(y)) is a morphism.

(5.6.3) fibred products of sets
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If X
f−→ Z and Y

g−→ Z are maps of sets, the fibred product X×ZY is the subset of the product X×Y
consisting of pairs of points x, y such that f(x) = g(y). It fits into a diagram

(5.6.4)

X×ZY
π2−−−−→ Y

π1

y g

y
X

f−−−−→ Z

in which π1 and π2 are the projections. Many important subsets of a product can be described as fibred
products. If a map Y → Z is given, and if p→ Z is the inclusion of a point into Z, then p×ZY is the fibre of
Y over p. The diagonal in X×X is the fibred product X×XX .

The reason for the term “fibred product” is that the fibre of X×ZY over a point x of X maps bijectively
to the fibre of Y over the image z = f(x), and the analogous statement is true for fibres over points of Y .

(5.6.5) fibred products of varieties

Since we are working with varieties, not schemes, we have a small problem: The fibred product of varieties
will be a scheme, but it needn’t be a variety.

5.6.6. Example. Let X = SpecC[x], Y = SpecC[y] and Z = SpecC[z] be affine lines, let X
f−→ Z and

X
g−→ Z be the maps defined by z = x2 and z = y2, respectively. The fibred product X×ZY is the closed

subset of the affine x, y-plane consisting of points (x, y) such that x2 = y2. It is the union of the two lines
x = y and x = −y. �

The next proposition will be enough for our purposes.

5.6.7. Proposition. Let X
f−→ Z and Y

g−→ Z be morphisms of varieties. The fibred product X×ZY is a
closed subset of the product variety X×Y .

proof. The graph Γf of a morphism X
f−→ Z of varieties is a closed subvariety of X×Z isomorphic to X

(Proposition 3.4.30). Next, let u and v be two morphisms from a variety X to another variety: Z. We show
that the set W consisting of points x in X such that u(x) = v(x) is a closed subset of X . In X×Z, let W ′ be
the intersection of the graphs of u and v: W ′ = Γu ∩ Γv . A point (x, z) is in W ′ if z = ux = vx. This is an
intersection of closed sets, so it is closed in Γu (and in Γv). The projection Γu → X , which is an isomorphism,
carries W ′ to W , so W is closed in X .

With reference to Diagram 5.6.4, X×ZY is the subset of the product X×Y of points at which the maps
fπX and gπY to Z are equal, so it is closed in X×Y . �

5.7 Projective Varieties are Proper

As has been noted (3.1), an important property of projective space with the classical topology is that it is a
compact space. A variety isn’t compact in the Zariski topology unless it is a single point. Howver, in the
Zariski topology, projective varieties have a property closely related to compactness: They are proper.

Before defining the concept of a proper variety, we explain an analogous property of compact spaces.

5.7.1. Proposition. Let X be a compact space, let Z be a Hausdorff space, and let C be a closed subset of
Z×X . The image of C in Z is a closed subset of Z.

proof. Let D be the image of C. We show that if a sequence of points zi of D has a limit z in Z, then z is in
D. For each i, we choose a point pi of C that lies over zi. So pi is a pair (zi, xi), xi being a point of X . Since
X is compact, there is a subsequence of the sequence xi that has a limit x in X . Passing to subsequences, we
may suppose that xi has limit x. Then pi will have the limit p = (z, x). Since C is closed, p is in C, and
therefore z is in D. �
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5.7.2. Definition. A variety X is proper if has the following property: Let Z×X be the product with
another variety Z, let π denote the projection Z×X −→ Z, and let C be a closed subvariety of Z×X . The
image D = π(C) of C is a closed subvariety of Z.

(5.7.3)

C
⊂−−−−→ Z×Xy yπ

D
⊂−−−−→ Z

IfX is proper, then because every closed set is a finite union of closed subvarieties, the image of any closed
subset of Z×X will be closed in Z.

5.7.4. Theorem. Projective varieties are proper.

This is the most important application of the use of curves to characterize closed sets.
proof. Let X be a projective variety. With notation as in Definition 5.7.2, suppose we are given a closed
subvariety C of the product Z×X . We must show that its image D is a closed subvariety of Z. If the image
is a closed set, it will be irreducible. So it suffices to show that D is closed, and to do this, it suffices to show
that D is closed in the classical topology (Theorem 5.5.4). Theorem 5.4.6 tells us that D is a constructible set,
and since X is closed in projective space, it is compact in the classical topology. Proposition 5.7.1 tells us that
D is closed in the classical topology. �

The next examples show how the theorem can be used.

5.7.5. Example. (singular curves) We parametrize the plane curves of a given degree d. The number of
distinct monomials xi0x

j
1x
k
2 of degree d = i+j+k is the binomial coefficient

(
d+2

2

)
. We order those monomials

arbitrarily, and label them as m0, ...,mr, with r =
(
d+2

2

)
− 1. A homogeneous polynomial of degree d will

be a combination
∑
zimi of monomials with complex coefficients zi, so the homogeneous polynomials f

of degree d in x, taken up to scalar factors, are parametrized by the projective space of dimension r with
coordinates z. Let’s denote that projective space by Z. Points of Z correspond bijectively to divisors of degree
d in the projective plane.

The product variety Z×P2 represents pairs (D, p), where D is a divisor of degree d and p is a point of P2.
A variable homogeneous polynomial of degree d in x will be a bihomogeneous polynomial f(z, x) of degree
1 in z and degree d in x. So the locus Γ: {f(z, x) = 0} in Z × P2 is a closed set. Its points are pairs (D, p)
such that D is the divisor of f and p is a point of D.

Let Σ be the set of pairs (D, p) such that p is a singular point ofD. This is also a closed set. It is defined by
the system of equations f0(z, x) = f1(z, x) = f2(z, x) = 0, where fi are the partial derivatives ∂f

∂xi
. Euler’s

Formula shows that then f(x, z) = 0. The partial derivatives fi are bihomogeneous, of degree 1 in z and
degree d−1 in x.

The next proposition isn’t very easy to prove directly, but the proof becomes easy when one uses the fact
that projective space is proper.

5.7.6. Proposition The singular divisors of degree d, the divisors containing at least one singular point, form
a closed subset S of the projective space Z of all divisors of degree d.

proof. The points of S are the images of points of the set Σ via projection to Z. Theorem 5.7.4 tells us that the
image of Σ is closed. �

5.7.7. Example. (surfaces that contain a line) We go back to the discussion of lines in a surface, as in (3.6).
Let S denote the projective space that parametrizes surfaces of degree d in P3, as before.

5.7.8. Proposition In P3, the surfaces of degree d that contain a line form a closed subset of the space S.

proof. Let G be the Grassmanian G(2, 4) of lines in P3, and let Ξ be the subset of G×S of pairs of pairs [`], [S]
such that ` ⊂ S. Lemma 3.6.17 tells us that Ξ is a closed subset of G×S. Therefore its image in S is closed.�
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5.8 Fibre Dimension

A function Y δ−→ Z from a variety to the integers is constructible if, for every integer n, the set of points of
Y such that δ(p) = n is constructible, and δ is upper semicontinuous if for every n, the set of points such that
δ(p) ≥ n is closed. For brevity, we refer to an upper semicontinuous function as semicontinuous, though the
term is ambiguous. since a function might be lower semicontinuous.

A function δ on a curve C is semicontinuous if and only if for every integer n, there is a nonempty open
subset C ′ of C such that δ(p) = n for all points p of C ′ and δ(p) ≥ n for all points not in C ′.

The next curve criterion for semicontinuous functions follows from the criterion for closed sets.

5.8.1. Proposition. (curve criterion for semicontinuity) Let Y be a variety. A function Y δ−→ Z is semicon-

tinuous if and only if it is a constructible function, and for every morphism C
f−→ Y from a smooth curve C

to Y , the composition δ ◦ f is a semicontinuous function on C. �

Let Y
f−→ X be a morphism of varieties, let q be a point of Y , and let Yp be the fibre of f over p = f(q).

The fibre dimension δ(q) of f at q is the maximum among the dimensions of the components of the fibre that
contain q.

5.8.2. Theorem. (semicontinuity of fibre dimension) Let Y u−→ X be a morphism of varieties, and let δ(q)
denote the fibre dimension at a point q of Y .
(i) Suppose that X is a smooth curve, that Y has dimension n, and that the image of u is a point. Then δ is
constant: Every nonempty fibre has constant dimension n− 1.
(ii) Suppose that the image of Y contains a nonempty open subset of X , and let the dimensions of X and Y
be m and n, respectively. There is a nonempty open subset X ′ of X such that δ(q) = n−m for every point q
in the inverse image of X ′.
(iii) δ is a semicontinuous function on Y .

We leave the proof of this theorem as an exercise. When you have done it, you will have understood the
chapter.
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Chapter 6 MODULES

6.1 The Structure Sheaf
6.2 O-Modules
6.3 The Sheaf Property
6.4 Some O-Modules
6.5 Direct Image
6.6 Twisting
6.7 Proof of Theorem 6.3.2

This chapter explains how modules on a variety are defined. variety.

We will need few facts about localization. Recall that, if s is a nonzero element of a domain A, the symbol
As stands for the localization A[s−1], and if SpecA = X , then SpecAs = Xs.
• Let U = SpecA be an affine variety. The intersection of two localizations Us = SpecAs and Ut =
SpecAt is the localization Ust = SpecAst.
• Let W ⊂ V ⊂ U be affine open subsets of a variety X . If V is a localization of U and W is a localization
of V , then W is a localization of U (2.5.21).
• The affine open subsets of a variety X form a basis for the topology on a variety X . The localizations of
an affine variety form a basis for its topology (2.5.20).
• If U and V are affine open subsets of X , the open sets W that are localizations, both of U and of V , form
a basis for the topology on U ∩ V . (2.5.21).

6.1 The Structure Sheaf.

We introduce two categories associated to a variety X . The first is the category (opens). Its objects are the
open subsets of X , and its morphisms are inclusions: If U and V are open sets and if V ⊂ U , there is a unique
morphism V → U in (opens). If V 6⊂ U there is no morphism V → U .

We also introduce a subcategory (affines) of the category (opens). Its objects are the affine open subsets
of X , and its morphisms are localizations. A morphism V → U in (opens) – an inclusion V ⊂ U of open
subsets – is a morphism in (affines) if U is affine and V is a localization of U – if V is an open subset of the
form Us, where s is a nonzero element of the coordinate algebra of U .

The structure sheaf OX on a variety X is the functor

(6.1.1) (affines)◦ OX−→ (algebras)

from affine open sets to algebras, that sends an affine open set U = SpecA to its coordinate algebra A, which
is then denoted by OX(U).

As has been noted before, inclusions V → U of affine open subsets needn’t be localizations. We focus
attention on localizations because the relationship between the coordinate algebras of an affine variety and a
localization is easy to understand. However, the structure sheaf can be extended without much difficulty to the
category (opens), (See Corollary 6.1.3 below.)

A brief review about regular functions: The function field F of a variety X is the field of fractions of the
coordinate algebra of any one of its affine open subsets, and a rational function on X is a nonzero element of
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F . A rational function is regular on an affine open set U = SpecA if it is an element A, and is regular on
any nonempty open set that can be covered by affine open sets on which it is regular. The function field of a
variety X contains the regular functions on every nonempty open subset, and the regular functions on X are
governed by the regular functions on its affine open subsets.

An affine variety is determined by its regular functions, but regular functions don’t suffice to determine a
variety that isn’t affine. For instance, the only rational functions that are regular everywhere on the projective
line P1 are the constant functions, which are useless. We will be interested in regular functions on non-affine
open sets, especially in functions that are regular on the whole variety, but one should always work with the
affine open sets, where the definition of a regular function is clear.

6.1.2. Lemma. Let U and V be open subsets of a variety X , with V ⊂ U . If a rational function is regular on
U , it is also regular on V . �

Thus if U ⊂ V is an inclusion of affine open subsets, say U = SpecA and V = SpecB, then A ⊂ B.
However, it won’t be clear how to constructB fromA unlessB is a localization. If V = Us, thenB = A[s−1].
If B isn’t a localization, the exact relationship between A and B remains obscure.

6.1.3. Corollary. WhenOX(U) is defined to be the algebra of regular functions on U , the structure sheafOX
on a variety X extends to a functor

(opens)◦ OX−→ (algebras)

from all open subsets to algebras, . �

If it is clear which variety is being studied, we may write O for OX .

As for affine open sets, the algebra of regular functions on an open set U is denoted by OX(U). Its
elements are called sections of the structure sheaf OX on U .

When V → U is a morphism in (opens). Lemma 6.1.2 tells us that OX(U) is contained in OX(V ). This
gives us the homomorphism, an inclusion,

OX(U)→ OX(V )

that makes OX into a functor.
Note that arrows are reversed by OX . If V → U , then OX(U)→ OX(V ). A functor that reverses arrows

is a contravariant functor. The superscript ◦ in (6.1.1) and (6.1.4) is a customary notation to indicate that a
functor is contravariant.

6.1.4. Proposition The (extended) structure sheaf has the following sheaf property:

• If an open subset Y of X is covered by affine open subsets U i = SpecAi, then

OX(Y ) =
⋂
OX(U i)

(
=
⋂
Ai
)

This sheaf property is especially simple because regular functions are elements of the function field. It is more
complicated for O-modules, which will be defined in the next section.

The proposition is quite simple. By definition, if f is a regular function on X , there is a covering by affine
open sets U i such that f is regular on each of them, i.e., that f is in O(U i) for every i.

6.1.5. Lemma. Let Y be an open subset of a variety X . The intersection
⋂
OX(U i) is the same for every

affine open covering {U i} of Y .

We prove the lemma first in the case of a covering of an affine open set by localizations.

6.1.6. Sublemma. Let U = SpecA be an affine variety, and let {U i} be a covering of U by localizations,
say U i = SpecAsi . Then A =

⋂
Asi , i.e., O(U) =

⋂
O(U i).

proof. A finite subset of the set {U i} will cover U , so we may assume that the index set is finite.
It is clear that A is a subset of

⋂
Asi . Let α be an element of

⋂
Asi . So α = s−ri ai, or sriα = ai for some

ai in A and some integer r, and we can use the same r for every i. Because {U i} covers U , the elements si
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generate the unit ideal in A, and so do their powers sri . There are elements bi in A such that
∑
bis

r
i = 1. Then

α =
∑
bis

r
iα =

∑
biai is in A. �

proof of Lemma 6.1.5. Say that Y is covered by affine open sets {U i} and also by affine open sets {V j}.
We cover the intersections U i ∩ V j by open sets W ijν that are localizations of U i and also localizations of
V j . Fixing i and letting j and ν vary, the set {W ijν}j,ν will be a covering of U i by localizations, and the
sublemma shows that O(U i) =

⋂
j,ν O(W ijν). Then

⋂
iO(U i) =

⋂
i,j,ν O(W ijν). Similarly,

⋂
j O(V j) =⋂

i,j,ν O(W ijν). �

6.1.7. Example.
Let A denote the polynomial ring C[x, y], and let Y be the complement of a point p in affine space X =
SpecA. We cover Y by two localizations of X , Xx = SpecA[x−1] and Xy = SpecA[y−1]. A regular
function on Y will be regular on Xx and on Xy , so it will be in the intersection of their coordinate algebras.
The intersection A[x−1] ∩ A[y−1] is A. So the sections of the structure sheaf OX on Y are the same as the
sections on X . They are the elements of A.

�

6.2 O-Modules
A module on an affine varietyX = SpecA is simply anA-module. On an arbitrary varietyX , anOX -module
associates an A-module to every affine open subset U = SpecA.

6.2.1. Definition. An O-moduleM on a variety X is a (contravariant) functor

(affines)◦ M−→ (modules)

such thatM(U) is an O(U)-module for every affine open set U , and such that, if s is a nonzero element of
O(U), the moduleM(Us) is the localization ofM(U):

M(Us) =M(U)s

IfM(U) is a finite O(U)-module for every affine open set U ,M is called a finite O-module. A section of an
O-moduleM on an affine open set U is an element ofM(U).

A homomorphismM ϕ−→ N of O-modules consists of homomorphisms of O(U)-modules

M(U)
ϕ(U)−→ N (U)

for each affine open subset U of X such that, if s is a nonzero element of O(U), the homomorphism ϕ(Us) is
the localization of ϕ(U).

A sequence of homomorphisms

(6.2.2) M→N → P

of O-modules on a variety X is exact if the sequence of sectionsM(U)→ N (U)→ P(U) is exact for every
affine open subset U of X . �

Note. When stating thatM(Us) is the localization ofM(U), it would be more correct to say thatM(Us)
andM(U)s are canonically isomorphic. Let’s not worry about this.

One example of anO-module is the free moduleOk. The sections of the free module on an affine open set
U are the elements of the free O(U)-module O(U)k. In particular, O can be considered as an O-module.

The kernel, image, and cokernel of a homomorphism M ϕ−→ N are among the operations that can be

made on O-modules. The kernel K of ϕ is the O-module defined by K(U) = ker (M(U)
ϕ(U)−→ N (U)) for

every affine open set U , and the image and cokernel are defined analogously. Many operations, such as these,
are compatible with localization.

At first glance, the definition of O-module seems rather complicated. However, when a module has a
natural definition, the data involved in the definition take care of themselves. This will become clear as we go
along.
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6.3 The Sheaf Property

In this section, we extend an O-moduleM on a variety X to a functor (opens)◦ M̃−→ (modules) on all open
subsets of X , such that M̃(Y ) is an O(Y )-module for every open subset Y , and when U is an affine open set,
M̃(U) =M(U).

The tilde is used for clarity here. We will drop it when we have finished with the discussion, and use the
same notationM for the functor on (affines) and for its extension to (opens).

6.3.1. Terminology. Let (opens)◦ M̃−→ (modules) be a functor and let U be an open subset. An element of
M̃(U) is a section of M̃ on U . If V

j−→ U is an inclusion of open subsets, the associated homomorphism
M̃(U)→ M̃(V ) is the restriction from U to V .

The restriction to V of a section m on U may be denoted by j◦m. However, the operation of restriction
occurs very often. Because of this, we often abbreviate, using the same symbol m for a section and for its
restriction. Also, if an open set V is contained in two open sets U and U ′, and if m,m′ are sections of M̃ on
U and U ′, respectively, we may say that m and m′ are equal on V if their restrictions to V are equal. �

6.3.2. Theorem. An O-moduleM extends uniquely to a functor

(opens)◦ M̃−→ (modules)

that has the sheaf property described below. Moreover, for every open set U , M̃(U) is an O(U)-module,
and for every inclusion V → U of nonempty open sets, the map M̃(U) → M̃(V ) is compatible with scalar
multiplication in this sense:

Let m be a section of M̃ on U , let α be a regular function on U , and let m′ and α′ denote the restrictions
to V . The restriction of αm is α′m′.

In order not to break up the discussion, we have put the proof of this theorem into Section 6.7 at the end of this
chapter.

(6.3.3) the sheaf property

The sheaf property is the key requirement that determines the extension of an O-moduleM to a functor M̃
on (opens).

Let Y be an open subset of X , and let {U i} be a covering of Y by affine open sets. The intersections
U ij = U i ∩ U j are also affine open sets, soM(U i) andM(U ij) are defined. The sheaf property asserts that
an element m ∈ M̃(Y ) corresponds to a set of elements mi inM(U i) such that the restrictions of mj and mi

to U ij are equal.
If the affine open subsets U i are indexed by i = 1, ..., n, the sheaf property asserts that an element of

M̃(Y ) is determined by a vector (m1, ...,mn) with mi inM(U i), such that the restrictions of mi and mj to
U ij are equal. This means that M̃(Y ) is the kernel of the map

(6.3.4)
∏
i

M(U i)
β−→
∏
i,j

M(U ij)

that sends the vector (m1, ...,mn) to the n×n matrix (zij), where zij is the difference mj − mi of the
restrictions of mj and mi to U ij . The analogous description is true when the index set is infinite.

In short, the sheaf property tells us that sections of M̃ are determined locally: A section on an open set Y
is determined by its restrictions to the open subsets U i of an affine covering of Y .

Note. The morphisms U ij → U i needn’t be localizations, and if not the restriction mapsM(U i)→M(U ij)
aren’t a part of the structure of an O-module. We need a definition of the restriction map for an arbitrary
inclusion V → U of affine open subsets. This point will be taken care of by the proof of Theorem 6.3.2. (See
Step 2 in Section 6.7.) Let’s not worry about it here. �
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We drop the tilde now.

The next corollary follows from Theorem 6.3.2.

6.3.5. Corollary. Let {U i} be an affine open covering of a variety X .
(i) An O-moduleM is zero if and only ifM(U i) = 0 for every i.

(ii) A homomorphism M ϕ−→ N of O-modules is injective, surjective, or bijective if and only if the maps

M(U i)
ϕ(Ui)−→ N (U i) are injective, surjective, or bijective, respectively, for every i.

proof. (i) Let V be any open subset of X . We can cover the intersections V ∩ U i by affine open sets V iν

that are localizations of U i, and these sets, taken together, cover V . If M(U i) = 0, then the localizations
M(V iν) are zero too. The sheaf property shows that the mapM(V )→

∏
M(V iν) is injective, and therefore

M(V ) = 0.

(ii) This follows from (i) because a homomorphism ϕ is injective or surjective if and only if its kernel or its
cokernel is zero. �

(6.3.6) families of open sets

It is convenient to have a compact notation for the sheaf property. For this, one can use symbols to
represent families of open sets. Say that U and V represent families of open sets {U i} and {V ν}, respectively.
A morphism of families V → U consists of a morphism from each V ν to one of the subsets U i. Such a
morphism will be given by a map ν  iν of index sets, such that V ν ⊂ U iν .

There may be more than one morphism V → U, because a subset V ν may be contained in more than one
of the subsets U i. To define a morphism, one must make a choice among those subsets. For example, let
U = {U i} be a family of open sets, and let V be another open set. There is a morphism V → U that sends V
to U i whenever V ⊂ U i. In the other direction, there is a unique morphism U→ V provided that U i ⊂ V for
all i.

A functor (opens)◦ M−→ (modules) can be extended to families U = {U i} by defining

(6.3.7) M(U) =
∏
M(U i).

Then a morphism of families V f−→ U defines a mapM(V)
f◦←−M(U) in a way that is fairly obvious, though

notation for it is clumsy. Say that f is given by a map ν  iν of index sets, with V ν → U iν . A section ofM
on U, an element ofM(U), can be thought of as a vector (ui) with ui ∈M(U i), and a section ofM(V) as a
vector (vν) with vν ∈M(V ν). If the map f◦ sends (ui)→ (vν), then vν is the restriction of uiν to V ν .

We can write the sheaf property in terms of families of open sets. Let U0 = {U i} be an affine open
covering of an open set Y , and let U1 denote the family {U ij} of intersections: U ij = U i ∩ U j , which are
also affine. . Then we have a morphism U0 → Y , and the two sets of inclusions

U ij ⊂ U i and U ij ⊂ U j

define two morphisms of families U1
d0,d1−→ U0 of affine open sets, U ij d0−→ U j and Uij d1−→ U i. The two

composed morphisms U1
di−→ U0 → Y are equal. These morphisms form what we all a covering diagram

(6.3.8) Y ←− U0 ⇔ U1

When we apply a functor (opens) M−→ (modules) to this diagram, we obtain a sequence

(6.3.9) 0→M(Y )
αU−→M(U0)

βU−→M(U1)

where αU is the restriction map and βU is the difference M(d0) −M(d1) of the maps induced by the two
morphisms U1 ⇒ U0. The sheaf property for the covering U0 of Y is the assertion that this sequence is exact,
which means that αU is injective, and that its image is the kernel of βU.
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6.3.10. Note. One can suppose that the open sets U i that make a covering are distinct. However, the intersec-
tions won’t be distinct, because U ij = U ji. Also, U ii = U i. These coincidences lead to redundancy in the
statement (6.3.9) of the sheaf property. If the indices are i = 1, ..., k, we only need to look at intersections U ij

with i < j. The productM(U1) =
∏
i,jM(U ij) that appears in the sheaf property can be replaced by the

product
∏
i<jM(U ij) with increasing pairs of indices. For instance, suppose that an open set Y is covered

by two affine open sets U and V . Then, with U0 = {U, V }, the sheaf property is the exact sequence

0 → M(Y )
α−→ M(U)×M(V )

β−→ M(U ∩ U)×M(U ∩ V )×M(V ∩ U)×M(V ∩ V )

is equivalent with the exact sequence

(6.3.11) 0 → M(→M(U)×M(V )
+,−−→M(U ∩ V ) �

6.3.12. Example.
We go back to Proposition 6.4.26, which describes the correspondence between an O-module M on an

affine variety X = SpecA and an A-module M . Namely, if U = SpecB is an affine open subset of X , then
M(U) = B ⊗AM . The next example shows that, when a subset U isn’t affine, definingM(U) = B ⊗AM
may be wrong.

Let X be the affine plane SpecA, A = C[x, y], let U be the complement of the origin in X , and let M
be the A-module A/yA. This module can be identified with C[x], which becomes an A-module when scalar
multiplication by y is defined to be zero. Here O(U) = O(X) = A (6.1.7). If we followed the method used
for affine open sets, we would setM(U) = A⊗AM = C[x].

To identify M(U) correctly, we cover U by the two affine open sets Ux = SpecA[x−1] and Uy =
SpecA[y−1]. ThenM(Ux) = M [x−1] whileM(Uy) = 0. The sheaf property ofM shows thatM(U) ≈
M(Ux) = M [x−1] = C[x, x−1]. �

We have tacitly assumed that our open sets aren’t empty. The next lemma takes care of the empty set.

6.3.13. Lemma. The only section of an O-moduleM on the empty set is the zero section: M(∅) = {0}. In
particular, O(∅) is the zero ring.

proof. This follows from the sheaf property. The empty set is covered by the empty covering, the covering
indexed by the empty set. ThereforeM(∅) is contained in an empty product. Since we want the empty product
andM(∅) to be modules, we have no choice but to set them equal to {0}.

If you find this reasoning pedantic, you can takeM(∅) = {0} as an axiom. �

(6.3.14) the coherence property

In addition to the sheaf property, an O-module on a variety X has a property called coherence.

6.3.15. Proposition. (the coherence property) Let Y be an open subset of a variety X , let s be a nonzero
regular function on Y , and letM be an OX -module. ThenM(Ys) is the localizationM(Y )s ofM(Y ).

Compatibility with localization is a requirement for anO-module when Y is affine. The coherence property is
an extension to all open subsets.

proof of Proposition 6.3.15. Let U0 = {U i} be a family of affine open sets that covers an open set Y . The
intersections U ij will be affine open sets too. We inspect the covering diagram Y ← U0 ⇔ U1. If s is a
nonzero regular function on Y , the localization of this diagram forms a covering diagram Ys ← U0,s ⇔ U1,s,
in which U0,s = {U is} is an affine covering of Ys. ThereforeM(U0)s ≈ M(U0,s). The sheaf property gives
us exact sequences

0→M(Y )→M(U0)→M(U1) and 0→M(Ys)→M(U0,s)→M(U1,s)

and the localization of the first sequence maps to the second one:
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0 −−−−→ M(Y )s −−−−→ M(U0)s −−−−→ M(U1)s

a

y b

y c

y
0 −−−−→ M(Ys) −−−−→ M(U0,s) −−−−→ M(U1,s)

The bottom row is exact, and since localization is an exact operation, the top row of the diagram is exact too.
Since U0 and U1 are families of affine open sets, the vertical arrows b and c are bijections. Therefore a is a
bijection. This is the coherence property. �

6.4 Some O-Modules
6.4.1. modules on a point

Let’s denote a point, the affine variety SpecC, by p. The point has only one nonempty open set: the whole
space p, andOp(p) = C. LetM be anOp-module. The space of global sectionsM(p) is anOp(p)-module, a
complex vector space. To defineM, that vector space can be assigned arbitrarily. One may say that a module
on the point is a complex vector space. �

6.4.2. the residue field module κp.
Let p be a point of a variety X . A residue field module κp is defined as follows: If U is an affine open

subset of X that contains p, then O(U) has a residue field k(p) at p, and κp(U) = k(p). If U doesn’t contain
p, then κp(U) = 0.

6.4.3. ideals.
An ideal I of the structure sheaf is an O-submodule of O.
Let p be a point of a variety X . The maximal ideal at p, which we denote by mp, is the ideal of O defined

as follows: If an affine open subset U contains p, its coordinate algebra O(U) will have a maximal ideal
consisting of the elements that vanish at p. That maximal ideal is the module of sections mp(U). If U doesn’t
contain p, then mp(U) = O(U).

When I is an ideal of O, we denote by VX(I) the closed set of points p such that I ⊂ mp – such that all
elements of I vanish at p.

6.4.4. examples of homomorphisms
(i) There is a homomorphism of O-modules O → κp, whose kernel is the maximal ideal mp.
(ii) Homomorphisms On → Om of free O-modules correspond to m×n-matrices of global sections of O.

(iii) LetM be an O-module. Then O-module homomorphisms O ϕ−→ M correspond bijectively to global
sections ofM.

This is analogous to the fact that, when M is a module over a ring A, A-module homomorphisms A→M

correspond to elements of M . To be explicit: If m is a global section ofM, the homomorphism O(U)
ϕ−→

M(U) is multiplication by the restriction of m to U .

(iv) If f is a global section of O, scalar multiplication by f defines a homomorphismM f−→M.

6.4.5. kernel
As we have remarked, many operations that one makes on modules over a ring are compatible with local-

ization, and therefore can be made on O-modules. However, when applied to sections over non-affine open
sets the operations are almost never compatible with localization. One important exception is the kernel of a
homomorphism.

6.4.6. Proposition. Let X be a variety, and let 0→ K →M→ P be an exact sequence ofO-modules. For
every open subset Y of X , the sequence of sections

(6.4.7) 0→ K(Y )→M(Y )→ N (Y )

is exact.
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proof. We choose a covering diagram Y ←− U0 ⇔ U1, and we inspect the diagram

0 −−−−→ K(U0) −−−−→ M(U0) −−−−→ N (U0)y y y
0 −−−−→ K(U1) −−−−→ M(U1) −−−−→ N (U1)

where the vertical maps are the ones described in (6.3.9). The rows are exact because U0 and U1 are families
of affines, and the sheaf property asserts that the kernels of the vertical maps form the sequence (6.4.7), which
is exact because taking kernels is a left exact operation. �

The section functor isn’t right exact. When

0→ K →M→N → 0

is a short exact sequence of O-modules and Y is a non-affine open set, the sequence (6.4.7) may fail to be
exact when a zero is added on the right. There is an example below. Cohomology, which will be discussed in
the next chapters, is a substitute for right exactness.

6.4.8. modules on the projective line
The projective line P1 is covered by the standard open sets U0 and U1, and the intersection U01 = U0 ∩ U1

is a localization of U0 and of U1. The coordinate algebras of these affine open sets are C[u] = A0 and
C[v] = A1, respectively, with v = u−1, and O(U01) = C[u, u−1] = A01. The algebra A01 is the Laurent
polynomial ring, whose elements are (finite) combinations of powers of u, negative powers included. The
sheaf property asserts that a global section ofO is determined by polynomials f(u) in A0 and g(v) in A1 such
that f(u) = g(u−1) in A01. The only such polynomials f, g are the constants. The constants are the only
rational functions that are regular everywhere on P1. I think we knew this.

If M is an O-module, M(U0) = M0 and M(U1) = M1 will be modules over the algebras A0 and
A1, and the A01-module M(U01) = M01 can be obtained by localizing M0 and also by localizing M1:
M0[u−1] ≈ M01 ≈ M1[v−1]. A global section ofM is determined by a pair of elements m1,m2 in M1,M2

that become equal in the common localization M01.
Suppose thatM0 andM1 are free modules of rank r overA0 andA1,. ThenM01 will be a freeA01-module

of rank r. A basis B0 of the free A0-module M0 will also be a basis of the A01-module M01, and a basis B1

of M1 will be a basis of M01. When regarded as bases of M01, B0 and B1 will be related by an r×r invertible
A01-matrix P , and that matrix determinesM up to isomorphism. When r = 1, P will be an invertible 1×1
matrix in the Laurent polynomial ring A01 – a unit of that ring. The units in A01 are scalar multiples of
powers of u. Since the scalar can be absorbed into one of the bases, an O-module of rank 1 is determined, up
to isomorphism, by a power of u. It is one of the twisting modules that will be described in Section 6.6.

The Birkhoff-Grothendieck Theorem, which will be proved in Chapter 8, describes the O-modules on the
projective line whose sections on U0 and on U1 are free, as direct sums of free O-modules of rank one. This
means that by changing the bases Bi, one can diagonalize the matrix P . Such a change of basis is given by an
invertible A0-matrix Q0 and an invertible A1-matrix Q1, respectively. In down-to-Earth terms, the Birkhoff-
Grothendieck Theorem asserts that, for any invertible A01-matrix P , there exist an invertible A0-matrix Q0

and an invertible A1-matrix Q1 , such that Q−1
0 PQ1 is diagonal. This can be proved by matrix operations. �

6.4.9. tensor products
Tensor products are compatible with localization. If M and N are modules over a domain A and s is a

nonzero element of A, the canonical map (M ⊗AN)s →Ms⊗AsNs is an isomorphism. Therefore the tensor
productM⊗O N of O-modulesM and N can be defined.

LetM and N be O-modules, letM⊗O N be the tensor product module, and let V be an open subset of
X . For every open set V , there is a canonical map

(6.4.10) M(V )⊗O(V ) N (V )→ [M⊗O N ](V )

By definition of the tensor product module, M(V ) ⊗O(V ) N (V ) = [M⊗O N ](V ) when V is affine. For
arbitrary V , we cover by a family U0 of affine open sets. The family U1 of intersections also consists of affine
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open sets. One forms a diagram

M(V )⊗O(V ) N (V ) −−−−→ M(U0)⊗O(U0) N (U0) −−−−→ M(U1)⊗O(U1) N (U1)ya yb yc
0 −−−−→ [M⊗O N ](V ) −−−−→ [M⊗O N ](U0) −−−−→ [M⊗O N ](U1)

The composition of the two arrows in the top row is zero, the bottom row is exact, and the vertical maps b and
c are equalities. The map a is induced by the diagram. It is a bijective map when V is affine, but when V isn’t
affine, it may fail to be either injective or surjective.

6.4.11. Examples. (i) Let p and q be distinct points of the projective line X , and let κp and κq be the residure
field modules onX . Then κp(X) = κq(X) = C, so κp(X)⊗O(X)κq(X) ≈ C⊗CC = C. But κp⊗O κq = 0.
The canonical map (6.4.10) is the zero map. It isn’t injective.

(ii) Let p a point of a variety X , and let mp and κp be the maximal ideal and residue field modules at p. There
is an exact sequence of O-modules

(6.4.12) 0→ mp → O
πp−→ κp → 0

In this case, the sequence of global sections is exact.

(iii) Let p0 and p1 be the points (1, 0) and (0, 1) of the projective line P1. We form a homomorphism

mp0×mp1
ϕ−→ O

ϕ being the map (a, b) 7→ b− a. On the open set U0, mp1 → O is bijective and therefore surjective. Similarly,
mp0 → O is surjective on U1. Therefore ϕ is surjective. The only global section of mp0×mp1 is zero, while
O has the nonzero global section 1. So the map ϕ isn’t surjective on global sections. �

6.4.13. the function field module
Let F be the function field of a variety X . The module of sections of the function field module F on any

nonempty open set is the field F . This is an O-module. It is called a constant O-module because the modules
of sections F(U) are the same for every nonempty open set U . It isn’t a finite module unless X is a point.

Tensoring with the function field module: LetM be anO-module on a varietyX , and letF be the function
field module. ThenM⊗OF is a constantO-module whose sections on any affine open setU form an F -vector
space (that might be zero).

(6.4.14) annihilators

Let A be a ring, and let m be an element of an A-module M . The annihilator I of an element m of M is
the set of elements α of A such that αm = 0. This is an ideal of A that we may denote by ann(m).

The annihilator of the A-module M is the set of elements of A such that aM = 0. This annihilator is also
an ideal, but we will have little use for it.

6.4.15. Lemma. Let I be the annihilator of an element m of M , and let s be a nonzero element of A. The
annihilator of the image of m in the localized module Ms is the localized ideal Is �

This allows us to extend the concept of annihilator to sections of a finite O-module on a variety X .

(6.4.16) maximal annihilators

Let m be an element of a module M over a noetherian ring A, and let I = ann(m): I = {a ∈ A | am =
0}. The same ideal I will annihilate every element of the submodule Am spanned by m.

Let S be the set whose members are the annihilators of nonzero elements of M . A maximal annihilator is
a maximal member of S. Because A is noetherian, the annihilator of any nonzero element will be contained in
a maximal annihilator.
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6.4.17. Proposition. Let M be a finite, module over a noetherian ring A, not the zero module..
(i) Let m be a nonzero element of M whose annihilator P is a maximal annihilator, and let b be an element of
A. Then P is also the annihilator of bm, if bm 6= 0.
(ii) The maximal annihilators are prime ideals.
(iii) Let Pi be distinct maximal annihilators, let mi be elements of M whose annihilators are Pi, and let
Ni = Ami. The submodules Ni of M are independent, i.e., their sum

∑
Ni is the direct sum

⊕
Ni.

(iv) The set of maximal annihilators is finite and nonempty.

proof. Let’s denote by ann(m) the annihilator of an element m of M .
(i) An element a that annihilates m also annihilates bm. So ann(m) ⊂ ann(bm). If ann(m) is maximal and
bm 6= 0, then ann(m) = ann(bm).

(ii) Let P = ann(m) be a maximal annihilator, and let a, b be elementsof A such that ab ∈ P . If b 6∈ P , then
bm 6= 0 but abm = 0. So a ∈ ann(bm) = P .

(iii) We must show that if ni are elements of Ni such that n1 + · · · + nk = 0, then ni = 0 or all i. We use
induction on k. Let a be a nonzero element of the annihilator Pk of Nk. Then an1 + · · ·+ ank−1 + 0 = 0. By
induction ani = 0 for all i. Therefore a is in Pi for all i. Unless k = 1, this contradicts the assumption that Pi
are distinct maximal annihilators.

(iv) The submodules Ni are nonzero and independent. Since
⊕
Ni is a submodule of the finite module A and

since A is noetherian,
⊕
Ni is a finite module. So there can be only finitely many indices i. �

6.4.18. Corollary. Let M be a finite module over a noetherian domain A, and let s be an element of A that
isn’t contained in any of the maximal annihilators of M . The multiplication map M s−→ M is injective, and
therefore the map from M to its localization Ms is injective. �

6.4.19. Support Let M be a finite module over a finite-type domain A and X = SpecA. The support of M
is the locus C = VX(I) of zeros of its annihilator I in X . The support is a closed subset of X . ### , and the
support of the localization Ms is the intersection Cs = C ∩Xs.

The support of a finite OX -module is the closed subset VX(I) of points such that I ⊂ mp.
If M is a finite module over a finite-type domain A and s is a nonzero element of A, the annihilator of the

localized module Ms is the localization Is of the annihilator I of M , and the support of the localization Ms is
the intersection Cs = C ∩Xs.

For example, the support of the residue field module κp is the point p. The support of the maximal ideal
mp at p is the whole variety X .

(6.4.20) O-modules with support of dimension zero

6.4.21. Proposition. LetM be a finite O-module on a variety X .
(i) Suppose that the support ofM is a single point p, let M = M(X), and let U be an affine open subset of
X . If U contains p, thenM(U) = M , and if U doesn’t contain p, thenM(U) = 0.
(ii) (Chinese Remainder Theorem) If the support of M is a finite set {p1, ..., pk}, then M is the direct sum
M1 ⊕ · · · ⊕Mk of O-modules supported at the points pi.

proof. (i) Let I be the annihilator ofM. The locus VX(I) is p. If p isn’t contained in U , then when we restrict
M to U , we obtain an OU -module whose support is empty. Therefore the restriction to U is the zero module.

Next, suppose that p is contained in U , and let V denote the complement of p in X . We cover X by a set
{U i} of affine open sets with U = U1, and such that U i ⊂ V if i > 1. By what has been shown,M(U i) = 0if
i > 0 andM(U ij) = 0 if j 6= i. The sheaf axiom for this covering shows thatM(X) ≈M(U).

(ii) This follows from the ordinary Chinese Remainder Theorem. �

(6.4.22) limits of O-modules
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6.4.23. A directed set M• is a sequence of maps of sets M0 → M1 → M2 → · · · . Its limit lim−→M• is the set
of equivalence classes on the union

⋃
Mk, the equivalence relation being that elementsm in Mi and m′ in Mj

are equivalent if they have the same image in Mn when n is sufficiently large. Any element of lim−→M• will be
represented by an element of Mi for some i.

6.4.24. Example. Let R = C[x] and let m be the maximal ideal xR. Repeated multiplication by x defines a
directed set

R
x−→ R

x−→ R
x−→ R · · ·

whose limit is isomorphic to the Laurent Polynomial Ring R[x−1] = C[x, x−1]. Proving this is a simple
exercise. �

A directed set of O-modules on a variety X is a sequence M• = {M0 → M1 → M2 → · · · } of
homomorphisms of O-modules. For every affine open set U , the O(U)-modules Mn(U) form a directed
set, as defined in (6.4.23). The direct limit lim−→M• is defined simply, by takin the limit for each affine open
set: [lim−→M•](U) = lim−→ [M•(U)]. This limit operation is compatible with localization, so lim−→M• is an
O-module.

6.4.25. Lemma. (i) The limit operation is exact. IfM• → N• → P• is an exact sequence of directed sets
of O-modules, the limits form an exact sequence.
(ii) Tensor products are compatible with limits: If N• is a directed set of O-modules and M is another
O-module, then lim−→ [M⊗O N•] ≈M⊗O [lim−→N•].

6.4.26. Proposition. Let X = SpecA be an affine variety. Sending an O-module M to the A-module
M(X) of its global sections defines a bijective correspondence between O-modules and A-modules.

proof. We must invert the functor O-(modules)→ A-(modules) that sendsM toM(X). Given an A-module
M , the corresponding O-moduleM is defined as follows: Let U = SpecB be an affine open subset of X .
The inclusion U ⊂ X corresponds to an algebra homomorphism A → B. We define M(U) to be the B-
module B ⊗AM . This gives us an O-module because, when s is a nonzero element of B, then Bs ⊗AM is
the localization (B ⊗AM)s of B ⊗AM . �

6.5 Direct Image

Let Y
f−→ X be a morphism of varieties, and let N be an OY -module. The direct image f∗N is an OX -

module that is defined as follows: If U is an affine open subset of X and V = f−1U , then

[f∗N ](U) = N (V )

In particular, the direct image f∗OY of the structure sheaf OY is defined by [f∗OY ](U) = OY (Y ). It is a
functor

OY −modules
f∗−→ OX−modules

The direct image generalizes restriction of scalars in modules over rings. If A
ϕ−→ B is an algebra homo-

morphism and N is a B-module, one can restrict scalars to make N into an A-module. Scalar multiplication
by an element a of A on the restricted module N is defined to be scalar multiplication by its image ϕ(a) in
B. For clarity, we sometimes denote the given B-module by NB and the A-module obtained by restriction of
scalars by NA. The additive groups NB and NA are the same.

When one replaces the algebras A and B by their spectra X = SpecA and Y = SpecB, the algebra

homomorphism ϕ defines a morphism Y
f−→ X , and an OY -module N is determined by a B-module NB .

Then f∗N is the OX -module determined by the A-module NA.
proof. Let U ′ → U be an inclusion of affine open subsets of X , and let V = f−1U and V ′ = f−1U ′.
These inverse images are open subsets of X , but they aren’t necessarily affine. The inclusion V ′ → V gives
us a homomorphism N (V ) → N (V ′), and therefore a homomorphism f∗N (U) → f∗N (U ′). So f∗N is
a functor. Its OX -module structure is explained as follows: Composition with f defines a homomorphism
OX(U)→ OY (V ), and N (V ) is an OY (V )-module. Restriction of scalars makes [f∗N ](U) = N (V ) into a
module over OX(U).
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To show that f∗N is an OX -module, we must show that if s is a nonzero element of OX(U), then
[f∗N ](Us) is obtained by localizing [f∗N ](U). Let s′ be the image of s in OV (V ). Scalar multiplication
by s on [f∗N ](U) is given by restriction of scalars, so it is the same as scalar multiplication by s′ on N (V ).
If s′ 6= 0, the localization Vs′ is the inverse image of Us. So [f∗N ](Us) = N (Vs′). The coherence property
(6.3.14) tells us that N (Vs′) = N (V )s′ . Then [f∗N ](Us) = N (Vs′) = N (V )s′ = [[f∗N ](U)]s.

If s′ = 0, then N (V )s′ = 0. In this case, because scalar multiplication is defined by restricting scalars, s
annihilates [f∗N ](U), and therefore [f∗N ](U)s = 0 too. �

6.5.1. Lemma. Let Y
f−→ X be a morphism of varieties. The direct image f∗N of an OY -module N is an

OX -module. Moreover, for all open subsets U of X , not only for affine open subsets, [f∗N ](U) = N (f−1U).
�

6.5.2. Lemma. Direct images are compatible with limits: If M• is a directed set of O-modules, then
lim−→ (f∗M•) ≈ f∗(lim−→M•). �

(6.5.3) extension by zero

When Y i−→ X is the inclusion of a closed subvariety into a variety X , the direct image i∗N of an OY -
moduleN is also called the extension ofN by zero. If U is an open subset of X then, because i is an inclusion
map, i−1U = U ∩ Y . Therefore

[i∗N ](U) = N (U ∩ Y )

The term “extension by zero” refers to the fact that, when an open set U of X doesn’t meet Y , the intersection
U ∩ Y will be empty, and the module of sections of [i∗N ](U) will be zero. So i∗N is zero outside of the
closed set Y .

6.5.4. Examples.

(i) Let p i−→ X be the inclusion of a point into a variety. We may view the residue field k(p) as anO-module
on p. Then its extension by zero i∗k(p) is the residue field module κp.

(ii) Let Y i−→ X be the inclusion of a closed subvariety, and let I be the ideal of Y . The extension by zero
of the structure sheaf on Y fits into an exact sequence of OX -modules

0→ I → OX → i∗OY → 0

So the extension by zero i∗OY is isomorphic to the quotient module OX/I. �

6.5.5. Proposition. Let Y i−→ X be the inclusion of a closed subvariety Y into a variety X , and let I be the
ideal of Y . Let M denote the subcategory of the category ofOX -modules that are annihilated by I. Extension
by zero defines an equivalence of categories

(OY −modules)
i∗−→M

proof. Let f be a section of OX on an affine open set U , let f be its restriction to U ∩ Y , and let α be an
element of [i∗N ](U)

(
= N (U ∩ Y )

)
. If f is in I(U), then f = 0 and therefore fα = fα = 0. So the

extension by zero of an OY -module is annihilated by I. The direct image i∗N is an object of M.
We construct a quasi-inverse to the direct image. Starting with an OX -moduleM that is annihilated by I,

we construct an OY -module N such that i∗N is isomorphic toM.
Let Y ′ be an open subset of Y . The topology on Y is induced from the topology on X , so Y ′ = X1 ∩ Y

for some open subset X1 of X . We try to set N (Y ′) = M(X1). To show that this is well-defined, we show
that if X2 is another open subset of X , and if Y ′ = X2 ∩ Y , then M(X2) is isomorphic to M(X1). Let
X3 = X1 ∩X2. Then it is also true that Y ′ = X3 ∩ Y . Since X3 ⊂ X1, we have a mapM(X1)→M(X3),
and It suffices to show that this map is an isomorphism. The same reasoning will give us an isomorphism
M(X2)→M(X3).
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The complement U = X1−Y ′ of Y ′ inX1 is an open subset ofX1 and ofX , and U ∩Y = ∅. We cover U
by a set {U i} of affine open sets. Then X1 is covered by the open sets {U i} together with X3. The restriction
of I to each of the sets U i is the unit ideal, and since I annihilatesM,M(U i) = 0. The sheaf property shows
thatM(X1) is isomorphic toM(X3). The rest of the proof is boring. �

(6.5.6) inclusion of an open set

Let Y
j−→ X be the inclusion of an open subvariety Y into a variety X .

First, letM be an OX -module. Since open subsets of Y are also open subsets of X , we can restrictM
from X to Y . By definition, the sections of the restricted module on a subset U of Y are simply the elements
ofM(U). For example, the restriction of the structure sheaf OX is the structure sheaf OY on Y . We extend
the subscript notation to O-modules, writingMY for the restriction of an OX -moduleM to Y and denoting
the given moduleM by MX . Then if U is an open subset of Y ,

MX(U) =MY (U)

Now the direct image: Let Y
j−→ X be the inclusion of an open subvariety Y , and letN be anOY -module.

The inverse image of an open subset U of X is the intersection Y ∩ U , so

[j∗N ](U) = N (Y ∩ U)

For example, [j∗OY ](U) is the algebra of rational functions on X that are regular on Y ∩ U . They needn’t be
regular on U .

6.5.7. Example. Let Xs
j−→ X be the inclusion of a localization into an affine variety X = SpecA.

Modules onX correspond to their global sections, which areA-modules. Similarly, modules onXs correspond
to As-modules. We restrict an OX -moduleMX to the open set Xs, obtaining an OXs -moduleMXs . Then
if M denotes the A-module of global sections MX(X), the module of global sections of the direct image
j∗MXs is the localization Ms:

[j∗MXs ](X) =MXs(Xs) =MX(Xs) = Ms

The localization Ms is made into an A-module by restriction of scalars. �

6.5.8. Proposition. Let Y
j−→ X be the inclusion of an open subvariety Y into a variety X .

(i) The restriction OX -modules→OY -modules is an exact operation.
(ii) If Y is an affine open subvariety of X , the direct image functor j∗ is exact.
(iii) LetMX be an OX -module. There is a canonical homomorphismMX → j∗[MY ].

proof. (ii) Let U be an affine open subset of X , and letM→N → P be an exact sequence of OY -modules.
The sequence j∗M(U) → j∗N (U) → j∗P(U) is the same as the sequenceM(U ∩ Y ) → N (U ∩ Y ) →
P(U ∩ Y ), except that the scalars have changed. Since U and Y are affine, U ∩ Y is affine. By definition of
exactness, this last sequence is exact.

(iii) LetU be open inX . Then j∗MY (U) =MX(U∩Y ). SinceU∩Y ⊂ U , MX(U) maps toMX(U∩Y ).
�

6.5.9. Example. LetX = Pn and let j denote the inclusion U0 ⊂ X of the standard affine open subset intoX .
The direct image j∗OU0 is the algebra of rational functions that are allowed to have poles on the hyperplane at
infinity.

The inverse image of an open subset W of X is its intersection with U0: j−1W = W ∩ U0. The sections
of the direct image j∗OU0 on an open subset W of X are the regular functions on W ∩ U0:

[j∗OU0 ](W ) = OU0(W ∩ U0) = OX(W ∩ U0)

Say that we write a rational function α as a fraction g/h of relatively prime polynomials. Then α is an element
of OX(W ) if h doesn’t vanish at any point of W , and α is a section of [j∗OU0 ](W ) = OX(W ∩ U0) if h
doesn’t vanish on W ∩ U0. Arbitrary powers of x0 can appear in the denominator h. �
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6.6 Twisting
The twisting modules that we define here are among the most important modules on projective space.

Let X denote the projective space Pn with coordinates x0, ..., xn. As before, a homogeneous fraction of
degree d is a fraction g/h of homogeneous polynomials with deg g− deg h = d. When g and h are relatively
prime, the fraction g/h is regular on an open set V if h isn’t zero at any point of V .

The definition of the twisting module is this: The sections of O(d) on an open subset V of Pn are the
homogeneous fractions of degree d that are regular on V .

6.6.1. Proposition.
(i) Let V be an affine open subset of Pn that is contained in the standard affine open set U0. The sections of
O(d) on V form a free module of rank one with basis xd0, over the coordinate algebra O(V ).
(ii) The twisting module O(d) is an O-module.

proof. (i) Let α be a section of O(d) on an affine open set V that is contained in U0. Then f = αx−d0 has

degree zero. It is a rational function. Since V ⊂ U0, x0 doesn’t vanish at any point of V . Since α is regular
on V , f is a regular function on V , and α = fxd0.

(ii) It is clear that O(d) is a contravariant functor. We verify compatibility with localization. Let V = SpecA
be an affine open subset of X and let s be a nonzero element of A. We must show that [O(d)](Vs) is the
localization of [O(d)](V ), and it is true that [O(d)](V ) is a subset of [O(d)](Vs). What has to be shown is that
if β is a section of O(d) on Vs, then skβ is a section on V , if k is sufficiently large.

We cover V by the affine open sets V i = V ∩ Ui. To show that skβ is a section on V , it suffices to show
that it is a section on V ∩ Ui for every i. This is the sheaf property. We apply (i) to the open subset V 0

s of V 0.
Since V 0

s is contained in U0, β can be written (uniquely) in the form fxd0, where f is a rational function that is
regular on V 0

s . We know already that O has the localization property. Therefore skf is a regular function on
V 0 if k is large, and then skα = skfxd0 is a section of O(d) on V 0. The analogous statement is true for every
index i. �

Part (i) of the proposition shows that O(d) is quite similar to the structure sheaf. However, O(d) is only
locally free. Its sections on the standard open set U1 form a free O(U1)-module with basis xd1. That basis is
related to the basis xd0 on U0 by the factor (x0/x1)d, a rational function that isn’t invertible on on U0 or on U1.

6.6.2. Proposition. When d ≥ 0, the global sections of the twisting module O(d) on Pn (n > 0) are the
homogeneous polynomials of degree d. When d < 0, the only global section of O(d) is zero.

proof. A nonzero global section u of O(d) will restrict to a section on the standard affine open set U0.
Since [O(d)](U0) is a free module over O(U0) with basis xd0, and u = g/xm0 for some some homogeneous
polynomial g not divisible by x0 and some m. Similarly, restriction to U1 shows that u = h/xn1 . It follows
that m = n = 0 and that u = g. Since u has degree d, g will be a polynomial of degree d. �

6.6.3. Examples.
The product uv of homogeneous fractions of degrees r and s is a homogeneous fraction of degree r+s, and if
u and v are regular on an open set V , so is their product uv. Therefore multiplication defines a homomorphism
of O-modules

(6.6.4) O(r)×O(s)→ O(r+s)

Multiplication by a homogeneous polynomial f of degree d defines an injective homomorphism

(6.6.5) O(k)
f−→ O(k+d).

When k = −d, this becomes a homomorphism O(−d)
f−→ O. �

The twisting modules O(n) have a second interpretation. They are isomorphic to the modules that we
denote by O(nH), of rational functions on projective space with poles of order at most n on the hyperplane
H : {x0 = 0} at infinity.
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By definition, the nonzero sections of O(nH) on an open set V are the rational functions f such that xn0f
is a section of O(n) on V . Thus multiplication by xn0 defines an isomorphism

(6.6.6) O(nH)
xn0−→ O(n)

If f is a section of O(nH) on an open set V , and if we write f as a homogeneous fraction g/h of degree
zero, with g, h relatively prime, the denominator h may have xk0 , with k ≤ n, as factor. The other factors of
h cannot vanish anywhere on V . If f = g/h is a global section of O(nH), then h = cxk0 , with k ≤ n, so a
global section can be represented as a fraction g/xk0 .

Since x0 doesn’t vanish at any point of the standard affine open set U0, the sections of O(nH) on an open
subset V of U0 are simply the regular functions on V . The restrictions of O(nH) and O to U0 are equal.
Using the subsctript notation (6.5.6) for restriction to an open set,

(6.6.7) O(nH)U0 = OU0

Let V be an open subset of one of the other standard affine open sets, say of U1. The ideal of H ∩U1 in U1

is principal, generated by v0 = x0/x1, and v0 generates the ideal ofH ∩V in V too. If f is a rational function,
then because x1 doesn’t vanish on U1, the function fvn0 will be regular on V if and only if the homogeneous
fraction fxn0 is regular there. So f will be a section of O(nH) on V if and only if fvn0 is a regular function.
Because v0 generates the ideal of H in V , we say that such a function f has a pole of order at most n on H .

The isomorphic O-modules O(n) and O(nH) are interchangeable. The twisting module O(n) is often
better because its definition is independent of coordinates. On the other hand, O(nH) can be convenient
because it restricts to the structure sheaf O on U0.

6.6.8. Proposition. Let Y be the zero locus of an irreducible homogeneous polynomial f of degree d, a hyper-
surface of degree d in Pn, let I be the ideal of Y , and letO(−d) be the twisting module on X . Multiplication

by f defines an isomorphism O(−d)
f−→ I.

proof. If α is a section of O(−d) on an open set V , then fα will be a rational function that is regular on V

and vanishes on Y . Therefore the image of the multiplication map O(−d)
f−→ O is contained in I. This map

is injective because C[x0, ..., xn] is a domain. To show that it is an isomorphism, it suffices to show that its
restrictions to the standard affine open sets Ui are isomorphisms (6.3.5). As usual, we work with U0.

We choose coordinates in X so that the coordinate variables xi don’t divide f . Then Y ∩ U0 will be a
dense open subset of Y . The sections of O on U0 are the homogeneous fractions g/xk0 of degree zero. Such a
fraction is a section of I on U0 if and only if g vanishes on Y ∩ U0. If so, then since Y ∩ U0 is dense in Y ,
it will vanish on Y , and therefore it will be divisible by f : g = fq. The sections of I on U0 have the form
fq/xk0 . They are in the image of O(−d). �

The proposition has an interesting corollary:

6.6.9. Corollary. The ideals of all hypersurfaces of degree d are isomorphic, when they are regarded as
O-modules. �

(6.6.10) twisting a module

6.6.11. Definition Let M be an O-module on projective space Pd, and let O(n) be the twisting module.
The nth twist of M is defined to be the tensor product M(n) = M⊗O O(n), and similarly, M(nH) =
M⊗O O(nH). Twisting is a functor on O-modules.

If X is a closed subvariety of Pd andM is an OX -module,M(n) andM(nH) are obtained by twisting
the extension ofM by zero. (See the equivalence of categories (6.5.5)).

A section of M(n) on an open subset V of U0 can be written in the form s = m ⊗ fxn0 , where f is a
regular function on V and m is a section ofM on V (6.6.1). The function f can be moved over to m, so a
section can be written in the form s = m⊗ xn0 . This expression is unique.
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6.6.12. The modules O(n) and O(nH) form directed sets that are related by a diagram

(6.6.13)

O ⊂−−−−→ O(H)
⊂−−−−→ O(2H)

⊂−−−−→ · · ·∥∥∥ x0

y x2
0

y
O x0−−−−→ O(1)

x0−−−−→ O(2) −−−−→ · · ·

In this diagram, the vertical arrows are bijections. The limit of the upper directed set is the module whose
sections are allowed to have arbitrary poles onH . This is also the module j∗OU, where j denotes the inclusion
of the standard affine open set U = U0 into X (see (6.5.8) (iii)):

(6.6.14) lim−→O(nH) = j∗OU

The next diagram is obtained by tensoring Diagram 6.6.13 withM.

(6.6.15)

M −−−−→ M(H) −−−−→ M(2H) −−−−→ · · ·∥∥∥ x0

y x2
0

y
M 1⊗x0−−−−→ M(1)

1⊗x0−−−−→ M(2) −−−−→ · · ·

BecauseM may have torsion, the horizontal maps in these two directed sets needn’t be injective.

(6.6.16) generating an O-module

A set m = (m1, ...,mk) of global sections of an O-moduleM defines a map

(6.6.17) Ok m−→M

that sends a section (α1, ..., αk) of Ok on an open set to the combination
∑
αimi. The set of global sections

{m1, ...,mk} generates M if this map is surjective. If the sections generate M, then they (more precisely,
their restrictions toU ) generate theO(U)-moduleM(U) for every affine open setU . They may fail to generate
M(U) when U isn’t affine.

6.6.18. Example. Let X = P1. For n ≥ 0, the global sections of the twisting module O(n) are the polyno-

mials of degree n in the coordinate variables x0, x1 (6.6.2). Consider the map O2 (xn0 ,x
n
1 )−→ O(n). On U0, O(n)

has basis xn0 . Therefore this map is surjective on U0. Similarly, it is surjective on U1. So it is a surjective map
on all of X (6.3.5). The global sections xn0 , x

n
1 generate O(n). However, the global sections of O(n) are the

homogeneous polynomials of degree n. When n > 1, the two sections xn0 , x
n
1 don’t span the space of global

sections, and the map O2 (xn0 ,x
n
1 )−→ O(n) isn’t surjective. �

The next theorem explains the importance of the twisting operation.

6.6.19. Theorem. LetM be a finite O-module on a projective variety X . For large n, the twistM(n) is
generated by global sections.

The proof won’t be long, once the notation is introduced.
We may assume that X is projective space Pn. Let Ui, denote the standard affine open subsets of Pn, let

and their intersections be Uij = Ui ∩ Uj , and Uijk = Ui ∩ Uj ∩ Uk.
Let Ai, Aij , and Aijk denote the coordinate algebras of Ui, Uij , and Uijk, respectively, and let Mk

i , Mk
ij ,

and Mk
ijk denote the modules of sections ofM(k) on Ui, Uij and Uijk. So Mk

j = [M(k)](Uj). Similarly, let
Akj = [O(k)](Uj) and Mj =M(Uj), etc. Recall thatM(k) =M⊗O O(k).

Multiplication by the global section xki of O(k) maps O to O(k), and therefore it defines maps Aj → Akj
and Mj → Mk

j . Since Akj is a free Aj-module with basis xkj , multiplication by xkj defines bijective, and
therefore invertible, maps Aj → Akj and Mj →Mk

j .
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When we compose the maps

Mj
xi−→M(1)j

x−1
j−→Mj

we obtain the map Mj
uij−→ Mj , where uij = xi/xj . The next lemma shows that, when coordinates are in

general position, this is an injective map.

6.6.20. Lemma. LetM be a finite module on Pn.
(i) Let w = c0x0 + · · · + cnxn be a generic combination of the coordinate variables. Multiplication by wk

defines an injective mapM→M(k) for all k.
(ii) If coordinates are in general position, then multiplication by xki defines an injective mapM→M(k) for
all i.

proof. (i) It suffices to show that multiplication by wk is injective when we restrict to the standard affine open
sets Uj (6.3.5). We work with the index 0. The rational function z = w/x0 is a generic linear combination of

u10, ..., un0, and the map M0
wk−→Mk

0 is injective if and only if M0
zk−→M0 is injective.

Let P1, ..., Pk be the maximal annihilators in A0 of the finite module M0. (See (6.4.16).) Scalar multipli-
cation by zk is injective on M0 if and only if z isn’t contained in any of those maximal annihilators (6.4.18).
This will be true when w and z are generic.

(ii) When we make a generic change of coordinates, xi become generic homogeneous linear polynomials. �

6.6.21. Lemma. Let M be a finite O-module on Pn, and let coordinates x0, ..., xn be in general position.
If m0 is an element of M0, then when k is sufficiently large, the product m0x

k
0 is the restriction of a global

section ofM(k).

proof. s Let’s use the notation M [s−1] to denote localization: M [s−1] = M ⊗A A[s−1]. The module M01

is a localization of M1

(
and a localization of M0

)
. Let uij = xi/xj . Then Mij = Mj [u

−1
ij ] = Mj [xj/xi]

and in particular, M01 = M1[u−1
01 ] = M1[x1/x0]. If m0 is an element of M0, its restriction to M01 can be

written as m0 = m1u
−k
01 = m1x

k
1/x

k
0 , for some m1 in M1 and some k. Multiplying by xk0 , m0x

k
0 = m1x

k
1

in Mk
01. Similarly, if we increase k as needed, there will be elements mi in Mi such that m0x

k
0 = mix

k
i in

Mk
0i for all i = 0, ..., n. Then mix

k
i = m0x

k
0 = mjx

k
j is true in Mk

0ij for all i, j. Lemma 6.6.20 shows that,
because coordinates are in general position, multiplication by x0 is injective onM. Therefore multiplication
by u0j = x0/xj is injective on Mij and on Mk

ij . It follows that the localization map Mk
ij →Mk

0ij is injective.
The equation mix

k
i = mjx

k
j , which is true in Mkij , is true in Mk

ij too. The sheaf property shows thatM(k)

has a global section w that restricts to mjx
k
j on U j , and in particular, that restricts to m0x

k
0 on U0. �

proof of Theorem 6.6.19. We are to show that the global sections generateM(k) when k is large, and it suffices
to show that for each i = 0, ..., n, the restrictions of those global sections to the standard open set Ui generate
the Ai-module Mk

i (6.3.5). We work with the index 0 as before.
SinceM is a finite O-module and U0 is affine, M0 is a finite A0-module. We choose a finite set {mν}

that generates M0. Then the set {mνxk0} generates Mk
0 . It suffices to show mνxk0 are the restrictions to U0 of

global sections ofM(k), when k is large. If so, then because the analogous statements are true for all indices
i = 0, ..., n, M(k) will be generated by global sections. �

6.7 Proof of Theorem 6.3.2.

The statement to be proved is that an O-moduleM on a variety X has a unique extension to a functor

(opens) M̃−→ (modules)

having the sheaf property, and that a homomorphism M → N of O-modules has a unique extension to a
homomorphism M̃ → Ñ .

The proof has the following steps:

1. Verification of the sheaf property for a covering of an affine open set by localizations.
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2. Extension of the functorM to all morphisms between affine open sets.

3. Definition of M̃.
4. Verification of the sheaf property for M̃ and for an affine covering of an open set Y .

Step 1. (the sheaf property for a covering of an affine open set by localizations)
Suppose that an affine open set Y = SpecA is covered by a family of localizations U0 = {Usi}. Then if

M is an OY -module and if we let M = M(Y ), Mi = M(Usi) and Mij = M(Usisj ) the sequence (6.3.9)
for the covering diagram Y ←− U0 ⇔ U1 that we obtain is

(6.7.1) 0→M
α−→
∏

Mi
β−→
∏

Mij

In this sequence, the map α sends an element m of M to the vector (m, ...,m) of its images in
∏
iMi, and β

sends a vector (m1, ...,mk) in
∏
iMi to the matrix (zij), with zij = mj −mi in Mij To be precise, Mi and

Mj map to Mij , and zij is the difference of their images.
We must show that the sequence (6.7.1) is exact. Since U i cover Y , the elements s1, ..., sk generate the

unit ideal.

exactness at M : Let m be an element of M that maps to zero in every Mi. Then there exists an n such that
snim = 0, and we can use the same exponent n for all i. The elements sni generate the unit ideal. Writing∑
ais

n
i = 1, we have m =

∑
ais

n
im =

∑
ai0 = 0.

exactness at
∏
Mi: Let mi be elements of Mi such that mi = mj in Mij for all i, j. We must find an element

w in M that maps to mj in Mj for every j.
We write mi as a fraction: mi = s−ni xi, or xi = snimi, with xi in M , using the same integer n for all i.

The equation mi = mj in Mij tells us that snj xi = sni xj is true in Mij , and then (sisj)
rsnj xi = (sisj)

rsni xj
will be true in M , if r is large (see 5.1.21).

We adjust the notation. Let x̃i = srixi, and s̃i = sr+ni . Then in M , x̃i = s̃imi and s̃j x̃i = s̃ix̃j . Since the
elements si generate the unit ideal, so do their powers s̃i. There is an equation in A, of the form

∑
ais̃i = 1.

Let w =
∑
aix̃i. This is an element of M , and

x̃j =
(∑

i

ais̃i
)
x̃j =

∑
i

ais̃j x̃i = s̃jw

Since mj = s̃−1
j x̃j , mj = w is true in Mj . Since j is arbitrary, w is the required element of M . �

Step 2. (extending an O-module to all morphisms between affine open sets)

TheO-moduleM comes with localization mapsM(U)→M(Us). It doesn’t come with homomorphisms
M(U)→M(V ) when V → U is an arbitrary inclusion of affine open sets. We define those maps here.

Let M be an O-module and let V → U be an inclusion of affine open sets. To describe the canonical
homomorphism M(U) → M(V ), we cover V by a family V0 = {V i} of open sets that are localizations
of U and therefore also localizations of V , and we inspect the covering diagram V ← V0 ⇔ V1 and the

corresponding exact sequence 0 → M(V )
α−→ M(V0)

β−→ M(V1). The two maps V1 → U obtained by
composition from the maps

U ← V ← V0 ⇔ V1

are equal. Since V i are localizations of U and V ij are localizations of V i and of V j , the O-moduleM comes

with mapsM(U)
ψ−→ M(V0) ⇒M(V1). The two composed mapsM(U) → M(V1) are equal, so their

difference βψ is zero. Therefore ψ mapsM(U) to the kernel of β which, according to Step 1, isM(V ). This
defines a mapM(U)

η−→M(V ) making a diagram

M(U)
η−−−−→ M(V )∥∥∥ λ

y
M(U)

ψ−−−−→ M(V0)
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Both ψ and λ are compatible with multiplication by a regular function f on U , and λ is injective. So η is also
compatible with multiplication by f .

We must check that η is independent of the covering V0. Let V′0 = {V ′j} be another covering of V by
localizations of U . We cover each of the open sets V i ∩V ′j by localizations W ijν of U . Taken together, these
open sets form a covering W0 of U , and we have a map W0

ε−→ V0 that give us a diagram

0 −−−−→ M(V ) −−−−→ M(V0)
βV−−−−→ M(V1)∥∥∥ y y

0 −−−−→ M(V ) −−−−→ M(W0)
βW−−−−→ M(W1)

whose rows are exact sequences. In this diagram,M(U) maps to the kernels of βV and βW, both of which are
equal toM(V ). Looking at the diagram, one sees that the mapM(U) →M(W0) is the composition of the
mapsM(U) →M(V0) →M(W0). Therefore the two mapsM(U) →M(V ) are equal, and they are also
equal to the map defined by the covering V′0 �

Step 3. (definition of M̃)

Let Y be an open subset of X . We can use the sheaf property to make a definition of M̃(Y ), but we need
to choose a covering of Y by affine open sets. There is a canonical choice of covering, namely the set of all
affine open subsets of Y . Let’s denote this set by A0(Y ):

A0(Y ) = {U |U affine, and U ⊂ Y }

This is an infinite set, but that doesn’t cause problems. Let aff1(Y ) be the family of intersections of A0(Y ).

We define M̃(Y ) to be the kernel KA of the map A0(Y )
βA−→ A1(Y ), where β is the map (6.3.9). This works

well. If Z → Y are open sets, then A0(Z) ⊂ A0(Y ) and M̃(Z) maps to M̃(Y ). This inclusion makes M̃
into a functor.

If Y is affine, it is the maximal element of A0(Y . ThenM(Y ) is a minimal element amongM(U) with
U ∈ A0(Y ), and so M̃(Y ) = KA =M(Y ). �

Step 4. (the sheaf property of M̃)

Let U0 = {U i} be an affine covering of an open set Y . We show that the kernelKU of the mapM(U0)
βU−→

M(U1) is canonically isomorphic to the kernel KA of the analogous map M(A0)
βA−→ M(A1), which, by

defnition, is M̃(Y ). Since the open sets U i are included in A0, there are maps M(Ai) → M(Ui), and
M̃(Y ) = KA → KU.

We consider a family W0 = {U i, V } obtained by adding one affine open subset V of Y to U0, and we let
W1 be the family of intersections of pairs of elements of W0. Then we have a map KW → KU. We show
that, for any element (ui) in the kernel KU, there is a unique element v inM(V ) such that ((ui), v) is in the
kernel KW. This will show that KW = KU. Then if α is an element of KA whose Ui component is ui, its
V -component must be v. Since V is an arbitrary affine subset of Y , it will follow that (ui) is the image of a
unique element of KA, namely the element whose V –component is v.

When the subsets in the family W1 are listed in the order

W1 = {U i ∩ U j}, {V ∩ U j}, {U i ∩ V }, {V ∩ V }

the map βW sends a set ((ui), v) of sections to ((uj − ui), (uj − v), (v − ui), 0), restricted appropriately.
Suppose that (ui) is in the kernel of βU, i.e., that uj − ui = 0 on U ij , and let V j = V ∩ U j . The sets V j

form an affine covering V0 of the affine open set V . Let vj denote the section obtained by restricting uj to V j .
Since uj−ui = 0 on U ij , it is also true that vj−vi = 0 on the smaller open set V ij . So (vi) is in the kernel of

the mapM(V0)
βV−→ M(V1). Since V is affine, Step 2 shows that the kernel isM(V ). So there is a unique

section v ofM on V that restricts to vj on Vj for all j. Then ((ui), v) is in the kernel of βW, as required.

This completes the proof of Theorem 6.3.2. �
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Chapter 7 COHOMOLOGY

7.1 Cohomology
7.2 Interlude: Complexes
7.3 Characteristic Properties of Cohomology
7.4 Existence of Cohomology
7.5 Cohomology of the Twisting Modules
7.6 Cohomology of Hypersurfaces
7.7 Three Theorems about Cohomology
7.8 Bézout’s Theorem

7.1 Cohomology

To simplify the construction, we define cohomology only for O-modules. Anyway, the Zariski topology has
limited use for cohomology with other coefficients.

LetM be an O-module on a variety X . The zero-dimensional cohomology ofM is the spaceM(X) of
its global sections. When speaking of cohomology, one denotes this space by H0(X,M).

The functor
(O-modules) H0

−→ (vector spaces)

that carries an O-moduleM to H0(X,M) is left exact: If

(7.1.1) 0→M→N → P → 0

is an exact sequence of O-modules, the associated sequence of global sections

(7.1.2) 0→ H0(X,M)→ H0(X,N )→ H0(X,P)

is exact. But unless X is affine, the map H0(X,N ) → H0(X,P) needn’t be surjective. The cohomology of

M is a sequence of functors (O-modules) Hq−→ (vector spaces),

H0(X,M), H1(X,M), H2(X,M), . . .

beginning with H0, one for each dimension, that compensates for the lack of exactness in the following way:
Every short exact sequence (7.1.1) of O-modules has an associated long exact cohomology sequence

(7.1.3) 0→ H0(X,M)→ H0(X,N )→ H0(X,P)
δ0−→

δ0−→ H1(X,M)→ H1(X,N )→ H1(X,P)
δ1−→

· · · · ·
δq−1

−→ Hq(X,M)→ Hq(X,N )→ Hq(X,P)
δq−→ · · ·
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And, given a diagram
0 −−−−→ M −−−−→ N −−−−→ P −−−−→ 0y y y
0 −−−−→ M′ −−−−→ N ′ −−−−→ P ′ −−−−→ 0

whose rows are short exact sequences of O-modules, the diagrams

(7.1.4)

Hq(X,P)
δq−→Hq+1(X,M)y y

Hq(X,P ′) δq−→Hq+1(X,M′)

that are obtained from the map of cohomology sequences commute. The other diagrams commute becauseHq

are functors. Thus a map of short exact sequences induces a map of cohomology sequences. The maps δq are
the coboundary maps.

A sequence Hq , q = 0, 1, ... of functors from O-modules to vector spaces that comes with long cohomol-
ogy sequences for every short exact sequence (7.1.1) is called a cohomological functor .

Unfortunately, there is no really natural construction of the cohomology. Sometimes one needs to look at
an explicit construction, but it is usually best to work with the characteristic properties that are described in
the Section 7.3. We present a construction in Section 7.4, but it isn’t canonical.

The one-dimensional cohomology H1 has an interesting interpretation that you can read about if you like.
We won’t use it. The higher cohomology Hq has no useful direct interpretation.

7.2 Complexes

We need complexes because they are used in the definition of cohomology.
A complex V • of vector spaces is a sequence of homomorphisms of vector spaces

(7.2.1) · · · → V n−1 dn−1

−→ V n
dn−→ V n+1 dn+1

−→ · · ·

indexed by the integers, such that the composition dndn−1 of adjacent maps is zero – the image of dn−1 is
contained in the kernel of dn. The q-dimensional cohomology of a complex V • is the quotient

(7.2.2) Cq(V •) = (ker dq)/(im dq−1).

An exact sequence is a complex whose cohomology is zero.
If a finite sequence of homomorphisms (7.2.1) is given, say V k → V k+1 · · · → V `, it can be made into a

complex by defining V n = 0 for all other integers n. In our applications V q will be zero when q < 0.

A homomorphism of vector spaces V 0 d0−→ V 1 can be made into the complex

· · · → 0→ V 0 d0−→ V 1 → 0→ · · ·

For this complex, C0 = ker d0, C1 = coker d0, and Cq = 0 for all other q.

A map V •
ϕ−→ V ′

• of complexes is a collection of homomorphisms V n
ϕn−→ V ′

n making a diagram

−−−−→ V n−1 dn−1

−−−−→ V n
dn−−−−→ V n+1 −−−−→ · · ·

ϕn−1

y ϕn
y ϕn+1

y
−−−−→ V ′

n−1 d′n−1

−−−−→ V ′
n d′n−−−−→ V ′

n+1 −−−−→ . . .

A map of complexes induces maps on the cohomology

Cq(V •)→ Cq(V ′
•
)
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because ker dq maps to ker d′
q and im dq maps to im d′

q .
A sequence

(7.2.3) · · · → V •
ϕ−→ V ′

• ψ−→ V ′′
• → · · ·

of maps of complexes is exact if the sequences

· · · → V q
ϕq−→ V ′

q ψq−→ V ′′
q → · · ·

are exact for every q.

7.2.4. Proposition.
Let 0 → V • → V ′

• → V ′′
• → 0 be a short exact sequence of complexes. For every q, there are maps

Cq(V ′′
•
)

δq−→ Cq+1(V •) such that the sequence

→ C0(V •)→ C0(V ′
•
)→ C0(V ′′

•
)

δ0−→ C1(V •)→ C1(V ′
•
)→ C1(V ′′

•
)

δ1−→ C2(V •)→ · · ·

is exact.

The exact sequence displayed above is the cohomology sequence associated to the short exact sequence of
complexes. This property makes the set of functors {Cq} into a cohomological functor on the category of
complexes.

7.2.5. Example. We make the Snake Lemma into a cohomology sequence. Suppose given a diagram

V
u−−−−→ V ′ −−−−→ V ′′ −−−−→ 0

f

y f ′
y f ′′

y
0 −−−−→ W −−−−→ W ′ −−−−→

v
W ′′

with exact rows. We form the complex 0 → V
f−→ W → 0 with V in degree zero, and we do the anal-

ogous thing for the maps f ′ and f ′′, so that the diagram becomes a short exact sequence of complexes. Its
cohomology sequence is the one given by the Snake Lemma. �

proof of Proposition 7.2.4. Let

V • = {· · · → V q−1 dq−1

−→ V q
dq−→ V q+1 dq+1

−→ · · · }

be a complex, let Bq be the image of dq−1 in V q , and let Zq be the kernel of dq . So Bq ⊂ Zq ⊂ V q , and the
cohomology of the comples is Cq(V •) = Zq/Bq . Also, let Dq be the cokernel of dq−1. So Dq = V q/Bq ,
and there is an exact sequence

0→ Bq → V q → Dq → 0

Again since Bq ⊂ Zq , the map dq can be written as the composition of three maps

V q
πq−→ Dq fq−→ Zq+1 iq+1

−→ V q+1

where πq is the projection from V q to its quotient Dq and iq+1 is the inclusion of Zq+1 into V q+1. Studying
these maps, one sees that

(7.2.6) Cq(V •) = ker fq and Cq+1(V •) = coker fq.

Suppose given a short exact sequence of complexes 0 → V • → V ′
• → V ′′

• → 0 as in the proposition.
In the diagram below, the rows are exact because cokernel is a right exact functor and kernel is a left exact
functor.

Dq −−−−→ D′
q −−−−→ D′′

q −−−−→ 0

fq
y f ′q

y f ′′q
y

0 −−−−→ Zq+1 −−−−→ Z ′
q+1 −−−−→ Z ′′

q+1
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When we apply (7.2.6) and the Snake Lemma to this diagram, we obtain an exact sequence

Cq(V •)→ Cq(V ′
•
)→ Cq(V ′′

•
)

δq−→ Cq+1(V •)→ Cq+1(V ′
•
)→ Cq+1(V ′′

•
)

The cohomology sequence is obtained by splicing these sequences together. �

The coboundary maps δq in cohomology sequences are related in a natural way. If

0 −−−−→ U• −−−−→ U ′
• −−−−→ U ′′

• −−−−→ 0y y y
0 −−−−→ V • −−−−→ V ′

• −−−−→ V ′′
• −−−−→ 0

is a diagram of maps of complexes whose rows are short exact sequences, the diagrams

Cq(U ′′
•
)
δq−→Cq+1(U•)y y

Cq(V ′′
•
)
δq−→Cq+1(V •)

commute. Thus a map of short exact sequences induces a map of cohomology sequences.

7.3 Characteristic Properties of Cohomology

The cohomology Hq(X, · ) of O-modules, the sequence of functors H0(X, · ), H1(X, · ), H2(X, · ), · · ·
from (O-modules) to (vector spaces), is characterized by the three properties below, the first two of which
have already been mentioned.

(7.3.1) characteristic properties

• H0(X,M) is the spaceM(X) of global sections ofM.
• The sequence H0, H1, H2, · · · is a cohomological functor on O-modules: A short exact sequence of
O-modules produces a long exact cohomology sequence.

• Let Y
f−→ X be the inclusion of an affine open subset Y into X , letN be an OY -module, and let f∗N be

its direct image on X . The cohomology Hq(X, f∗N ) is zero for all q > 0.

7.3.2. Example. Let j be the inclusion of the standard affine open set U0 into projective space X . The third
property tells us that the cohomology Hq(X, j∗OU0) of the direct image j∗OU0 is zero when q > 0. The
direct image is isomorphic to the limit lim−→OX(nH) (6.6.13). We will see below (7.4.28) that cohomology
commutes with direct limits. Therefore the limits of Hq(X,OX(nH)) and of Hq(X,OX(n)) are zero when
X is projective space and q > 0. This will be useful.

Intuitively, the third property tells us that allowing poles on the complement of an affine open set kills
cohomology in positive dimension. �

7.3.3. Theorem. There exists a cohomology theory with the properties (7.3.1), and it is unique up to unique
isomorphism.

The proof is in the next section.

7.3.4. Corollary. If X is an affine variety, Hq(X,M) = 0 for all O-modulesM and all q > 0.

This follows when one applies the third characteristic property to the identity map X → X . �
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7.4 Existence of Cohomology
The proof of existence of cohomology and its uniqueness are based on tthe following facts:

• The intersection of two affine open subsets of a variety is an affine open set.

• A sequence · · · → M → N → P → · · · of O-modules on a variety X is exact if and only if, for every
affine open subset U , the sequence of sections · · · → M(U) → N (U) → P(U) → · · · is exact. (This is the
definition of exactness of a sequence of O-modules.)

We begin by choosing an arbitrary affine covering U = {Uν} of our varietyX by finitely many affine open
sets Uν , and we use this covering to describe the cohomology. When we have shown that the cohomology is
unique, we will know that it doesn’t depend on our choice of covering.

Let U denote our chosen covering of X , and let U j−→ X denote the family of inclusions Uν
jν−→ X . If

M is an O-module, RM will denote the O-module j∗MU =
∏
jν∗MUν , where MUν is the restriction of

M to the open set Uν . As has been noted (6.5.8), there is a canonical mapM → jν∗MUν , and therefore a
canonical mapM→RM.

7.4.1. Lemma. (i) Let X ′ be an open subset of X . The module of sectionsRM(X ′) ofRM on X ′ is is the
product

∏
νM(X ′ ∩ Uν). In particular, the space of global sectionsRM(X) is the product

∏
νM(Uν).

(ii) The canonical mapM→RM is injective. Thus, if SM denotes the cokernel of that map, there is a short
exact sequence of O-modules

(7.4.2) 0→M→RM → SM → 0

(iii) For any cohomology theory with the characteristic properties and for any q > 0, Hq(X,RM) = 0.

proof. (i) This is seen by going through the definitions:

R(X ′) =
∏
ν [jν∗MUν ](X ′) =

∏
νMUν (X ′ ∩ Uν) =

∏
νM(X ′ ∩ Uν).

(ii) Let X ′ be an open subset of X . The map M(X ′) → RM(X ′) is the product of the restriction maps
M(X ′)→M(X ′ ∩ Uν). Because the open sets Uν cover X , the intersections X ′ ∩ Uν cover X ′. The sheaf
property ofM tells us that the mapM(X ′)→

∏
νM(X ′ ∩ Uν) is injective.

(iii) This follows from the third characteristic property. �

7.4.3. Lemma. (i) A short exact sequence 0→M→N → P → 0 of O-modules embeds into a diagram

(7.4.4)

M −−−−→ N −−−−→ Py y y
RM −−−−→ RN −−−−→ RPy y y
SM −−−−→ SN −−−−→ SP

whose rows and columns are short exact sequences. (We have suppressed the surrounding zeros.)
(ii) The sequence of global sections 0→ RM(X)→ RN (X)→ RP(X)→ 0 is exact.

proof. (i) We are given that the top row of the diagram is a short exact sequence, and we have seen that the
columns are short exact sequences. To show that the middle row

(7.4.5) 0→ RM → RN → RP → 0

is exact, we must show that if X ′ is an affine open subset, the sections on X ′ form a short exact sequence. The
sections are explained in Lemma 7.4.1 (i). Since products of exact sequences are exact, we must show that the
sequence

0→M(X ′ ∩ Uν)→ N (X ′ ∩ Uν)→ P(X ′ ∩ Uν)→ 0
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is exact. This is true because X ′ ∩ Uν is an intersection of affine opens, and is therefore affine.
Now that we know that the first two rows of the diagram are short exact sequences, the Snake Lemma tells

us that the bottom row of the diagram is a short exact sequence.

(ii) The sequence of of global sections is the product of the sequences

0→M(Uν)→ N (Uν)→ P(Uν)→ 0

These sequences are exact because the open sets Uν are affine. �

(7.4.6) uniqueness of cohomology

Suppose that a cohomology with the characteristic properties (7.3.1) is given, and letM be an O-module.
Then Hq(X,RM) = 0 if q > 0 (Lemma 7.4.1 (iii)). The cohomology sequence associated to the sequence
0→M→RM → SM → 0 is

0→ H0(X,M)→ H0(X,RM)→ H0(X,SM)
δ0−→ H1(X,M)→ H1(X,RM)→ · · ·

Since Hq(X,RM) = 0 when q > 0, this sequence breaks up into an exact sequence

(7.4.7) 0→ H0(X,M)→ H0(X,RM)→ H0(X,SM)
δ0−→ H1(X,M)→ 0

and isomorphisms

(7.4.8) 0→ Hq(X,SM)
δq−→ Hq+1(X,M)→ 0

for every q > 0. The first three terms of the sequence (7.4.7), and the arrows connecting them, depend on
our choice of covering of X , but the important point is that they don’t depend on the cohomology. So that
sequence determines H1(X,M) up to unique isomorphism as the cokernel of a map that is independent of the
cohomology, and this is true for every O-moduleM, including for the module SM. Therefore it is also true
that H1(X,SM) is determined uniquely. This being so, H2(X,M) is determined uniquely for everyM, by
the isomorphism (7.4.8), with q = 1. The isomorphisms (7.4.8) determine the rest of the cohomology up to
unique isomorphism by induction on q.

(7.4.9) construction of cohomology

One can use the sequence (7.4.2) and induction to construct cohomology as well as to prove uniqueness,
but it will be clearer to proceed by iterating the construction ofRM.

LetM be an O-module. We rewrite the exact sequence (7.4.2), labelingRM asR0
M, and SM asM1:

(7.4.10) 0→M→R0
M →M1 → 0

and we repeat the construction withM1. LetR1
M = R0

M1 (= j∗M1
U), so that there is an exact sequence

(7.4.11) 0→M1 → R1
M →M2 → 0

analogous to the sequence (7.4.10), withM2 = R1
M/M1. We combine the sequences (7.4.10) and (7.4.11)

into an exact sequence

(7.4.12) 0→M→R0
M → R1

M →M2 → 0

Then we letR2
M = R0

M2 . We continue in this way, to construct modulesRkM that form an exact sequence

(7.4.13) 0→M→R0
M → R1

M → R2
M → · · ·

The next lemma follows by induction from Lemmas 7.4.1 and 7.4.3.
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7.4.14. Lemma.
(i) Let 0→M→N → P → 0 be a short exact sequence of O-modules. For every n, the sequences

0→ RnM → RnN → RnP → 0

are exact, and so are the sequences of global sections

0→ RnM(X)→ RnN (X)→ RnP(X)→ 0

(ii) If Hq , q = 0, 1, 2, ... is a cohomology theory, then Hq(X,RnM) = 0 for all n and all q > 0. �

An exact sequence such as (7.4.13) is called a resolution ofM, and becauseHq(X,RnM) = 0 when q > 0,
it is an acyclic resolution.

Continuing with the proof of existence, we consider the complex of O-modules R•M that is obtained by
omitting the first term from (7.4.13):

(7.4.15) 0→ R0
M → R1

M → R2
M → · · ·

and the complexR•M(X) of its global sections:

(7.4.16) 0→ R0
M(X)→ R1

M(X)→ R2
M(X)→ · · ·

which we could also write as

0→ H0(X,R0
M)→ H0(X,R1

M)→ H0(X,R2
M)→ · · ·

The sequence R•M becomes the resolution (7.4.13) when the moduleM is inserted. So the complex (7.4.15)
is exact except atR0

M, but because the global section functor is only left exact, the sequence (7.4.16) of global
sectionsR•M(X) needn’t be exact anywhere. However,R•M(X) is a complex becauseR•M is a complex. The
composition of adjacent maps is zero.

Recall that the cohomology of a complex 0 → V 0 d0−→ V 1 d1−→ · · · of vector spaces is defined to be
Cq(V •) = (ker dq)/(im dq−1), and that {Cq} is a cohomological functor on complexes (7.2.4).

7.4.17. Definition. The cohomology of an O-module M is the cohomology of the complex R•M(X):
Hq(X,M) = Cq(R•M(X)).

Thus if we denote the maps in the complex (7.4.16) by dq ,

0→ R0
M(X)

d0−→ R1
M(X)

d1−→ R2
M(X)→ · · ·

then Hq(X,M) = (ker dq)/(im dq−1).

7.4.18. Lemma. Let X be an affine variety. With cohomology defined as above, Hq(X,M) = 0 for all
O-modulesM and all q > 0.

proof. When X is affine, the sequence of global sections of the exact sequence (7.4.13) is exact. �

To show that our definition gives the (unique) cohomology, we verify the characteristic properties. Since
the sequence (7.4.13) is exact and since the global section functor is left exact,M(X) is the kernel of the map
R0
M(X)→ R1

M(X), and this kernel is also equal to C0(R•M(X)). So our cohomology has the first property:
H0(X,M) =M(X).

To show that we obtain a cohomological functor, we apply Lemma 7.4.14 to conclude that, for a short
exact sequence 0→M→N → P → 0, the global sections

(7.4.19) 0→ R•M(X)→ R•N (X)→ R•P(X)→ 0,

form an exact sequence of complexes. Cohomology Hq(X, · ) is a cohomological functor because cohomol-
ogy of complexes is a cohomological functor.
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We make a digression before verifying the third characteristic property.

(7.4.20) affine morphisms

Let Y
f−→ X be a morphism of varieties. Let U

j−→ X be the inclusion of an open subvariety into X and
let V be the inverse image f−1U , which is an open subvariety of Y . These varieties and maps form a diagram

(7.4.21)

V
i−−−−→ Y

g

y f

y
U

j−−−−→ X

We use the notationMU for the restriction ofM to an open subset U of(6.5.6).

7.4.22. Lemma. With notation as above, let N be an OY -module. The OU -modules g∗[NV ] and [f∗N ]U are
canonically isomorphic.

proof. Let U ′ be an open subset of U , and let V ′ = g−1U ′. Then

[f∗N ]U (U ′) = [f∗N ](U ′) = N (V ′) = NV (V ′) = [g∗[NV ]](U ′) �

7.4.23. Definition. An affine morphism is a morphism Y
f−→ X of varieties with the property that the inverse

image f−1(U) of every affine open subset U of X is an affine open subset of Y . �

The following are examples of affine morphisms:

• the inclusion of an affine open subset Y into X ,
• the inclusion of a closed subvariety Y into X ,
• a finite morphism, or an integral morphism.

But, if Y is a closed subset of Pn×X , the projection Y → X will not be an affine morphism unless its fibres
are finite, in which case Chevalley’s Finitenss Theorem tells us that it is a finite morphism.

7.4.24. Lemma. If Y
f−→ C is an affine morphism and if N → N ′ → N ′′ is an exact sequence of OY -

modules, the sequence of direct images f∗N → f∗N ′ → f∗N ′′ is exact. �

Let Y
f−→ X be an affine morphism, let j be the map from our chosen affine covering U = {Uν} to X ,

and let V denote the family {V ν} = {f−1Uν} of inverse images. Then V is an affine covering of Y , and
there is a morphism V g−→ U. We form a diagram analogous to (7.4.21), in which V and U replace V and U ,
respectively:

V i−−−−→ Y

g

y f

y
U j−−−−→ X

7.4.25. Proposition. Let Y
f−→ X be an affine morphism, and let N be an OY -module. Let Hq(X, · )

be cohomology defined in (7.4.17), and let Hq(Y, · ) be cohomology defined in the analogous way, using the
covering V of Y . Then Hq(X, f∗N ) is isomorphic to Hq(Y,N ).

proof. To compute the cohomology of f∗N on X , we substituteM = f∗N into (7.4.17):

Hq(X, f∗N ) = Cq(R•f∗N (X)).

To compute the cohomology of N on Y , we let

R′0N = i∗[NV ]
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and we continue, to construct a resolution R′•N = 0 → N → R′0N → R′
1
N → · · · and the complex of its

global sectionsR′•N (Y ). (The prime is there to remind us thatR′ is defined using the covering V of Y .) Then

Hq(Y,N ) = Cq(R′•N (Y )).

It suffices to show that the complexes R•f∗N (X) and R′•N (Y ) are isomorphic, and because R′qN (Y ) =

[f∗R′qN ](X), it suffices to show thatRqf∗N ≈ f∗R
′q
N .

##reread this##
We look back at the definition (7.4.11) of the OX -modules R0. We have R′]0N = i∗NV. So the sequence

for N analogous to (7.4.10) can be written as

0→ N → i∗NV → N 1 → 0

and since fi = jg, its direct image can be written as

(7.4.26) 0→ f∗N → j∗g∗[NV]→ f∗[N 1]→ 0

The sequence for f∗N analogous to (7.4.10) is

0→ f∗N → j∗[f∗N ]U → [f∗N ]1 → 0

According to Lemma 7.4.22, [f∗N ]U is isomorphic to g∗[NV]. So this sequence can also be written as

(7.4.27) 0→ f∗N → j∗g∗[NV]→ [f∗N ]1 → 0

Combining reffstarN) and (7.4.27), one sees thatR0
f∗N ≈ f∗R

′0
N and that f∗[N 1] ≈ [f∗N ]1. Then induction

applies. �

We go back to the proof of existence of cohomology to verify the third characteristic property, that when

Y
f−→ X is the inclusion of an affine open subset, Hq(X, f∗N ) = 0 for all OY -modules N and all q > 0.

The inclusion of an affine open set is an affine morphism, so Hq(Y,N ) = Hq(X, f∗N ) (7.4.25), and since Y
is affine, Hq(Y,N ) = 0 for all q > 0 (7.4.18). �

Proposition 7.4.25 is one of the places where a specific construction of cohomology is used. The charac-
teristic properties don’t apply directly. The next proposition is another such place.

7.4.28. Lemma. Cohomology is compatible with limits of directed sets of O-modules: Hq(X, lim−→M•) ≈
lim−→Hq(X,M•) for all q.

proof. The direct and inverse image functors and the global section functor are all compatible with lim−→ , and
lim−→ is exact (??). So the module Rqlim−→M•

that is used to compute the cohomology of lim−→M• is isomorphic

to lim−→ [RqM• ] andRqlim−→M•
(X) is isomorphic to lim−→ [RqM• ](X). �

(7.4.29) uniqueness of the coboundary maps

We have constructed a cohomology {Hq} that has the characteristic properties, and we have shown that
the functors Hq are unique. We haven’t shown that the coboundary maps δq that appear in the cohomology
sequences (7.1.3) are unique. To make it clear that there is something to show, we note that the cohomology
sequence (7.1.3) remains exact when some of the coboundary maps δq are multiplied by −1. Why can’t we
define a new collection of coboundary maps by changing some signs? The reason we can’t do this is that
we used the coboundary maps δq in (7.4.7) and (7.4.8) to identify Hq(X,M). Having done that, we aren’t
allowed to change δq for the particular short exact sequences (7.4.2). We show that the coboundary maps for
those particular sequences determine the coboundary maps for every short exact sequence of O-modules

(A) 0→M−→ N −→ P → 0

The sequences (7.4.2) were rewritten as (7.4.10). We will use that form.
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To show that the coboundaries for the sequence (A) are determined uniquely, we relate it to a sequence
(B) for which the coboundary maps are fixed:

(B) 0→M−→ R0
M −→M1 → 0

We map (A) and (B) to a third short exact sequence

(C) 0→M ψ−→ R0
N −→ Q → 0

where ψ is the composition of the injective mapsM→R0
M → R0

N and Q is the cokernel of ψ.
First, we inspect the diagram

(A) M −−−−→ N −−−−→ P∥∥∥ y y
(C) M ψ−−−−→ R0

N −−−−→ Q
and its diagram of coboundary maps

(A) Hq(X,P)
δqA−−−−→ Hq+1(X,M)y ∥∥∥

(C) Hq(X,Q)
δqC−−−−→ Hq+1(X,M)

This diagram shows that the coboundary map δqA for the sequence (A) is determined by the coboundary map
δqC for (C).

Next, we inspect the diagram

(7.4.30)

(B) M −−−−→ R0
M −−−−→ M1∥∥∥ u

y v

y
(C) M ψ−−−−→ R0

N −−−−→ Q
and its diagram of coboundary maps

(B) Hq(X,M1)
δqB−−−−→ Hq+1(X,M)

v

y ∥∥∥
(C) Hq(X,Q)

δqC−−−−→ Hq+1(X,M)

When q > 0, δqC and δqB are bijective because the cohomology of R0
M and R0

N is zero in positive dimension.
Then δqC is uniquely determined by δqB , and so is δqA.

We have to look more closely to settle the case q = 0. The maps labeled u and v in (7.4.30) are injective,
and the Snake Lemma shows that their cokernels are isomorphic. We write both of them asR0

P . When we add
the cokernels to the diagram, we obtain a cohomology diagram whose relevant part is

(B) H0(X,R0
M) −−−−→ H0(X,M1)

δ0B−−−−→ H1(X,M)

u

y yv ∥∥∥
(C) H0(X,R0

N )
β−−−−→ H0(X,Q)

δ0C−−−−→ H1(X,M)yγ y
H0(X,R0

P) H0(X,R0
P)

The rows and columns in the diagram are exact. We want to show that the map δ0
C is determined uniquely by

δ0
B . It is determined by δ0

B on the image of v and it is zero on the image of β. To show that δ0
C is determined

by δ0
B , it suffices to show that the images of v and β together span H0(X,Q). This follows from the fact that

γ is surjective. Thus δ0
C is determined uniqely by δ0

B , and so is δ0
A. �

144



7.5 Cohomology of the Twisting Modules

We determine the cohomology of the twisting modules O(d) on Pn here. As we will see, Hq(Pn,O(d)) is
zero for most values of q. This will help to determine the cohomology of other modules.

Lemma 7.4.18 about vanishing of cohomology on an affine variety, and Lemma 7.4.25 about the direct
image via an affine morphism, were stated using a particular affine covering. Since we know that cohomology
is unique, that particular covering is irrelevant. Though it isn’t necessary, we restate the lemmas here as a
corollary:

7.5.1. Corollary. (i) On an affine variety X , Hq(X,M) = 0 for all O-modulesM and all q > 0.

(ii) Let Y
f−→ X be an affine morphism. If N is an OY -module, then Hq(X, f∗N ) and Hq(Y,N ) are

isomorphic. If Y is an affine variety, Hq(X, f∗N ) = 0 for all q > 0. �

One case in which (ii) applies is that f is the inclusion of a closed subvariety Y into X .

LetM be a finite O-module on projective space Pn. The twisting modules O(d) and the twistsM(d) =
M⊗O O(d) are isomorphic to the modules O(dH) andM(dH) =M⊗O O(dH), respectively. They form
maps of directed sets

O ⊂−−−−→ O(H)
⊂−−−−→ O(2H)

⊂−−−−→ · · ·

1

y x0

y x2
0

y
O x0−−−−→ O(1)

x0−−−−→ O(2)
x0−−−−→ · · ·

,

M −−−−→ M(H) −−−−→ M(2H) −−−−→ · · ·

1

y x0

y x2
0

y
M x0−−−−→ M(1)

x0−−−−→ M(2)
x0−−−−→ · · ·

(See (??)). The second diagram is obtained from the first one by tensoring withM. Let U denote the stanard
affine open subset U0 of Pn, and let j be the inclusion of U into Pn. Then lim−→O(dH) ≈ j∗OU (??) and
because lim−→ is compatible with tensor products, lim−→M(dH) ≈ j∗MU. Since j is an affine morphism and
U0 is an affine open set, Hq(Pn, j∗OU) = 0 and Hq(Pn, j∗MU) = 0 for all q > 0.

The next corollary follows from the facts that M(d) is isomorphic to M(dH), and that cohomology is
compatible with direct limits (7.4.28).

7.5.2. Corollary. For all projective varietiesX and allO-modulesM, lim−→Hq(X,O(d)) = 0 and lim−→Hq(X,M(d)) =
0 when q > 0. �

7.5.3. Notation. IfM is an O-module, we denote the dimension of Hq(X,M) by hq(M) or by hq(X,M).
We can write hq(M) =∞ if the dimension is infinite. However, in Section 7.7, we will see that whenM is a
finite O-module on a projective variety X , Hq(X,M) has finite dimension for every q.

7.5.4. Theorem.
(i) For d ≥ 0, h0(Pn,O(d)) =

(
d+n
n

)
and hq(Pn,O(d)) = 0 if q 6= 0.

(ii) For r > 0, hn(Pn,O(−r)) =
(
r−1
n

)
and hq(Pn,O(−r)) = 0 if q 6= n.

In particular, part (ii) implies that hq(Pn,O(−1)) = 0 for all q.
proof. We have described the global sections of O(d) before: If d ≥ 0, H0(X,O(d)) is the space of homoge-
neous polynomials of degree d in the coordinate variables, and if d < 0, H0(X,O(d)) = 0 (see (6.6.2)).

(i) (the case d ≥ 0)

Let X = Pn, and let Y i−→ X be the inclusion of the hyperplane at infinity into X . By induction on n,
we may assume that the theorem has been proved for Y , which is a projective space of dimension n−1. We
consider the exact sequence

(7.5.5) 0→ OX(−1)
x0−→ OX → i∗OY → 0

and its twists

(7.5.6) 0→ OX(d−1)
x0−→ OX(d)→ i∗OY (d)→ 0
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The twisted sequences are exact because they are obtained by tensoring (7.5.5) with the invertible O-modules
O(d). Because the inclusion i of Y into X is an affine morphism, Hq(X, i∗OY (d)) ≈ Hq(Y,OY (d)).

The monomials of degree d in n+ 1 variables form a basis of the space of global sections of OX(d).
Setting x0 = 0 and deleting terms that become zero gives us a basis of OY (d). Therefore every global section
of OY (d) is the restriction of a global section of OX(d). The sequence of global sections

0→ H0(X,OX(d−1))
x0−→ H0(X,OX(d))→ H0(Y,OY (d))

is exact, and it remains exact when a zero is added on the right. This tells us that the map

H1(X,OX(d−1)) −→ H1(X,OX(d))

is injective. By induction on n, Hq(Y,OY (d)) = 0 for d ≥ 0 and q > 0. When combined with the injectivity
noted above, the cohomology sequence of (7.5.6) gives us bijections Hq(X,OX(d−1)) → Hq(X,OX(d))
for every q > 0. Since the limits are zero (7.5.2), Hq(X,OX(d)) = 0 for all d ≥ 0 and all q > 0.

(ii) (the case d < 0)
We use induction on the integers r and n. We suppose the theorem proved for r, and we substitute d = −r
into the sequence (7.5.6):

(7.5.7) 0→ OX(−(r+1))
x0−→ OX(−r)→ i∗OY (−r)→ 0

The base case r = 0 is the exact sequence (7.5.5). In the cohomology sequence associated to that sequence,
the terms Hq(X,OX) and Hq(Y,OY ) are zero when q > 0, and H0(X,OX) = H0(Y,OY ) = C. Therefore

(7.5.8) Hq(X,OX(−1)) = 0 for every q.

This proves (ii) for r = 1.
Our induction hypothesis is that, hn(Pn,O(−r)) =

(
r−1
n

)
and hq = 0 if q 6= n. By induction on n,

we may suppose that hn−1(Pn−1,O(−r)) =
(
r−1
n−1

)
and hq = 0 if q 6= n − 1. Instead of displaying the

cohomology sequence associated to (7.5.7), we assemble the dimensions of cohomology into a table in which
the asterisks stand for entries that are to be determined:

(7.5.9)

OX(−(r+1)) OX(−r) i∗OY (−r)

h0 : ∗ 0 0
...

...
...

...

hn−2 : ∗ 0 0

hn−1 : ∗ 0
(
r−1
n−1

)
hn : hn(O(−(r+1))

(
r−1
n

)
0

The second column is determined by induction on r and the third by induction on n. The cohomology sequence
shows that the entries labeled with an asterisk are zero, and that

hn(Pn,O(−(r+1))) =
(
r−1
n−1

)
+
(
r−1
n

)
The right side of this equation is equal to

(
r
n

)
. �

7.6 Cohomology of Hypersurfaces

We determine the cohomology of a plane projective curve first. Let X = P2 and let C i−→ X denote the
inclusion of a plane curve of degree k. The ideal I of functions that vanish on C is isomorphic to the twisting
module OX(−k) (6.6.8), so one has an exact sequence

(7.6.1) 0→ OX(−k)→ OX → i∗OC → 0
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We form a table showing dimensions of the cohomology. Theorem 7.5.4 determines the first two columns, and
the cohomology sequence determines the last column.

(7.6.2)

OX(−k) OX i∗OC
h0 : 0 1 1

h1 : 0 0
(
k−1

2

)
h2 :

(
k−1

2

)
0 0

Since the inclusion of the curve C into the projective plane X is an affine morphism, hq(X, i∗OC) =
hq(C,OC). Therefore

h0(C,OC) = 1, h1(C,OC) =
(
k−1

2

)
, and hq = 0 when q > 1.

The dimension h1(C,OC), which is
(
k−1

2

)
, is called the arithmetic genus of C. It is denoted by pa. We

will see later (8.9.2) that when C is a smooth curve, its arithmetic genus is equal to its topological genus:
pa = g, but the arithmetic genus of a plane curve of degree k is

(
k−1

2

)
also when C is singular.

We restate the results as a corollary.

7.6.3. Corollary. Let C be a plane curve of degree k. Then h0(C,OC) = 1, h1(C,OC) =
(
k−1

2

)
= pa,

and hq = 0 if q 6= 0, 1. �

The fact that h0(C,OC) = 1 tells us that the only rational functions that are regular everywhere on C are the
constants. This reflects a fact that will be proved later: A plane curve is compact and connected in the classical
topology. However, it isn’t a proof of that fact.

We will need more technique in order to compute cohomology for curves in higher dimensional projective
spaces. In the next section we will see that the cohomology on any projective curve is zero except in dimensions
0 and 1. Cohomology of projective curves is the topic of Chapter 8.

One can make a similar computation for the hypersurface Y in X = Pn defined by an irreducible homo-
geneous polynomial f of degree k. The ideal of Y is isomorphic to OX(−k), and there is an exact sequence

0→ OX(−k)
f−→ OX → i∗OY → 0

Since we know the cohomology of OX(−k) and OX , and since Hq(X, i∗OY ) ≈ Hq(Y,OY ), we can use
this sequence to compute the dimensions of the cohomology of OY .

7.6.4. Corollary. Let Y be a hypersurface of dimension d and degree k in a projective space of dimension
d+ 1. Then h0(Y,OY ) = 1, hd(Y,OY ) =

(
k−1
d+1

)
, and hq(Y,OY ) = 0 for all other q. �

If S is a surface in P3 defined by an irreducible polynomial of degree k, then h0(S,OS) = 1, h1(S,OS) =
0, h2(S,OS) =

(
k−1

3

)
, and hq = 0 if q > 2. When a projective surface S isn’t embedded into P3, it is still

true that hq = 0 when q > 2, but h1(S,OS) may be nonzero. The dimensions h1(S,OS) and h2(S,OS) are
invariants of the surface somewhat analogous to the genus of a curve. In classical terminology, h2(S,OS) is
the geometric genus pg and h1(S,OS) is the irregularity q . The arithmetic genus pa is

(7.6.5) pa = h2(S,OS)− h1(S,OS) = pg − q

Therefore the irregularity is q = pg − pa. When S is a surface in P3, q = 0 and pg = pa.

In modern terminology, it is more natural to replace the arithmetic genus by the Euler characteristic
χ(OS) =

∑
q(−1)qhq(OS). The Euler characteristic of a curve is

χ(OC) = h0(C,OC)− h1(C,OC) = 1− pa

and the Euler characteristic of a surface S is

χ(OS) = h0(S,OS)− h1(S,OS) + h2(S,OS) = 1 + pa

But because of tradition, the arithmetic genus is still used quite often.
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7.7 Three Theorems about Cohomology

We will use the concept of the support of an O-moduleM, the zero set of its annihilator.

7.7.1. Theorem. Let X be a projective variety, and letM be a finite OX -module.
(i) If the support ofM has dimension k, then Hq(X,M) = 0 for all q > k. In particular, if the dimension
of X is n, then Hq(X,M) = 0 for all q > n.
(ii) LetM(d) be the twist of the finite OX -moduleM. For sufficiently large d, Hq(X,M(d)) = 0 for all
q > 0.
(iii) For every q, the cohomology Hq(X,M) is a finite-dimensional vector space.

7.7.2. Notes. (a) The structure of the proofs is interesting. The first part allows us to use descending induction
to prove the second and third parts, beginning with the fact that hk(M) = 0 when k is larger dimX . The
descending induction step is to prove that if a statement Sk is true when k = r+ 1, then it is true when k = r.

The third part of the theorem tells us that, whenM is a finite O-module, the space H0(X,M) of global
sections is finite-dimensional. This is one of the most important consequences of the theorem, and it isn’t easy
to prove directly.

(b) Let X be a projective variety. The highest dimension in which cohomology of an OX -module can be
nonzero is called the cohomological dimension of X . Theorem 7.7.1 shows that its cohomological dimension
is at most its algebraic dimension. In fact, it is equal to the algebraic dimension. On the other hand, X has
dimension 2n in the classical topology, and the constant coefficient cohomology H2n

class(X,Z) in the classical
topology will be nonzero. In the classical topology, the cohomological dimension of a projective variety X is
its topological dimension 2n. In the Zariski topology, Hq(X,Z) is zero for every q > 0. �

In the theorem, we are given that X is a closed subvariety of a projective space Pn. We can replace an
OX -module by its extension by zero (7.5.1). This doesn’t change the cohomology. So we may assume that X
is a projective space.

The proofs are based on the cohomology of the twisting modules (7.5.4), the vanishing of the limit
lim−→Hq(X,M(d)) for q > 0 (7.5.2), and on two exact sequences. As we know,M(r) is generated by global
sections if r is sufficiently large (6.6.19). Choosing generators gives us a surjective mapOm →M(r). LetN
be the kernel of this map. When we twist the sequence 0 → N → Om →M(r) → 0, we obtain short exact
sequences

(7.7.3) 0→ N (d)→ O(d)m →M(d+r)→ 0

for every d ≥ 0. These sequences are useful because we know that Hq(X,O(d)) = 0 when q > 0.
Next, Lemma 6.6.20 tells us that, with coordinates in general position, there will be an exact sequence

0 →M(−1)
x0−→ M →M → 0, whereM is the quotientM/x0M(−1). Twisting this sequence gives us

exact sequences

(7.7.4) 0→M(d−1)
x0−→M(d)→M(d)→ 0

Since the zero locus of x0 is the hyperplane H at infinity, the support S ofM will be contained in S ∩H . If
S has dimension k and x0 is generic, the support ofM will have dimension less than k. This will allow us to
use induction on k and d.

proof of Theorem 7.7.1 (i) (vanishing in large dimension)
We inspect the sequence (7.7.4). Let k be the dimension of the support ofM. If k = 0, thenM = 0 and

Hq(X,M(d)) = 0 for all q. With coordinates in general position, the support ofM will have dimension at
most k−1, if k > 0. So by induction on k, we may assume that Hq(X,M(d)) = 0 for all q > k−1 and all d.

The cohomology sequence associated to the sequence (7.7.4) is

(7.7.5) · · · → Hq−1(X,M(d))
δq−1

−→ Hq(X,M(d−1))
x0−→ Hq(X,M(d))→ Hq(X,M(d))

δq−→ · · ·

When q > k, the terms on the left and right of this display are zero, and therefore the map
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Hq(X,M(d−1))
x0−→ Hq(X,M(d))

is an isomorphism. According to (7.5.2), lim−→Hq(X,M(d)) = 0. It follows that Hq(X,M(d)) = 0 for all d,
and in particular, Hq(X,M) = 0 when q > k.

proof of Theorem 7.7.1 (ii) (vanishing for a large twist)
We must show this:

(*) LetM be a finite O-module. For every q > 0 and for sufficiently large d, Hq(X,M(d)) = 0.

By part (i), we know that (*) is true for every q > n = dimX , because all cohomology in dimension q is
zero when q > n. This leaves a finite set of integers q = 1, ..., n to consider, and it suffices to consider them
one at a time. If (*) is true for each individual q there will be a single d such that it is true for q = 1, ..., n, and
therefore for all positive integers q, as the theorem asserts.

We use descending induction on q, the base case being q = n + 1, for which (*) is true. We suppose that
(*) is true for every finiteO-moduleM when q = p+ 1, and that p > 0, and we show that (*) is true for every
finite O-moduleM when q = p.

We substitute q = p into the cohomology sequence associated to the sequence (7.7.3). The relevant part of
that sequence is

Hp(X,O(d))m → Hp(X,M(d+r))
δp−→ Hp+1(X,N (d))

Since p is positive, Hp(X,O(d)) = 0 for all d ≥ 0, and therefore the map δp is injective. Our induction
hypothesis, applied to the O-module N , shows that Hp+1(X,N (d)) = 0 for large d, and then

Hp(X,M(d+r)) = 0

The particular integer d+r isn’t useful. Our conclusion is that, for every finiteO-moduleM,Hp(X,M(k)) =
0 when k is large enough. �

proof of Theorem 7.7.1 (iii) (finiteness of cohomology)
This proof also uses descending induction on q. As was mentioned above, it isn’t easy to prove directly

that the space H0(X,M) of global sections is finite-dimensional.
We go back to the sequence (7.7.4) and its cohomology sequence (7.7.5). Induction on the dimension

of the support of M allows us to assume that Hr(X,M(d)) is finite-dimensional for all r. So, in the part
of the cohomology sequence that is depicted in (7.7.5), the terms on the left and right are finite-dimensional.
ThereforeHq(X,M(d−1)) andHq(X,M(d)) are either both finite-dimensional, or else they are both infinite-
dimensional, and this is true for every d.

Suppose that q > 0. Then Hq(X,M(d)) = 0 when d is large enough. Since the zero space is finite-
dimensional, we can use the sequence together with descending induction, to conclude that Hq(X,M(d)) is
finite-dimensional for every finite moduleM and every d. In particular, Hq(X,M) is finite-dimensional.

This leaves the case that q = 0. To prove that H0(X,M) is finite-dimensional, we set d = −r in the
sequence (7.7.3):

0→ N (−r)→ O(−r)m →M→ 0

The corresponding cohomology sequence is

0→ H0(X,N (−r))→ H0(X,O(−r))m → H0(X,M)
δ0−→ H1(X,N (−r))→ · · · .

Here H0(X,O(−r))m = 0, and we’ve shown that H1(X,N (−r)) is finite-dimensional. It follows that
H0(X,M) is finite-dimensional, and this completes the proof. �

Notice that the finiteness of H0 comes out only at the end. The higher cohomology is essential for the
proof.

(7.7.6) Euler characteristic

Theorem 7.7.1 allows us to define the Euler characteristic of a finite module on projective variety.
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7.7.7. Definition. Let X be a projective variety. The Euler characteristic of a finite O-module M is the
alternating sum of the dimensions of the cohomology:

(7.7.8) χ(M) =
∑

(−1)qhq(X,M).

This makes sense because hq(X,M) finite for every q, and is zero when q is large.

7.7.9. Proposition. (i) If 0 → M → N → P → 0 is a short exact sequence of finite O-modules on a
projective variety X , then χ(M)− χ(N ) + χ(P) = 0.

(ii) If 0 →M0 →M1 → · · · → Mn → 0 is an exact sequence of finite O-modules on X , the alternating
sum

∑
(−1)iχ(Mi) is zero.

7.7.10. Lemma. Let 0 → V 0 → V 1 → · · · → V n → 0 be an exact sequence of finite dimensional vector
spaces. The alternating sum

∑
(−1)qdimV q is zero. �

proof of Proposition 7.7.9. (i) Since the cohomology sequence associated to the given sequence is exact,
the lemma tells us that the alternating sum of its dimensions is zero. That alternating sum is also equal to
χ(M)− χ(N ) + χ(P).
(ii) Let ’s denote the given sequence by S0 and the alternating sum

∑
i χ(Mi) by χ(S0).

Let N =M1/M0. The sequence S0 decomposes into the two exact sequences

S1 : 0→M0 →M1 → N → 0 and S2 : 0→ N →M2 → · · · →Mk → 0→

Then χ(S0) = χ(S1)− χ(S2), so the assertion follows from (i) by induction on n. �

7.8 Bézout’s Theorem

As an application of cohomology, we use it to prove Bézout’s Theorem.
Recall that, if f(x) = p1(x)e1 · · · pk(x)ek is a factorization of a homogeneous polyomial in x = x0, x1, x2

into irreducible polynomials, the divisor of f is defined to be the integer combination e1C1 + · · · + ekCk,
where Ci is the curve of zeros of pi.

We restate the theorem to be proved.

7.8.1. Bézout’s Theorem. Let Y and Z be the divisors in the projective plane X defined by relatively prime
homogeneous polynomials f and g of degreesm and n, respectively. The number of intersection points Y ∩Z,
counted with an appropriate multiplicity, is equal to mn. Moreover, the multiplicity is 1 at a point at which Y
and Z intersect transversally.

The definition of the multiplicity will emerge during the proof.

7.8.2. Example. Suppose that f and g are products of linear polynomials, so that Y is the union of m lines
and Z is the union of n lines, and suppose that those lines are distinct. Since two distinct lines intersect
transversally in a single point, there are mn intersection points of multiplicity 1. �

proof of Bézout’s Theorem. We will suppress the notation for the extension by zero from a closed subset.
Multiplication by f defines a short exact sequence

0→ OX(−m)
f−→ OX → OY → 0

where OY stands for i∗OY , i being the inclusion Y → X . This sequence describes OX(−m) as the ideal I
of Y , and there is a similar sequence describing the module OX(−n) as the ideal J of Z. The zero locus of
the ideal I+J is the intersection Y ∩ Z.

We denote the quotient OX/(I+J ) by O. Since f and g have no common factor, Y ∩ Z is a finite set
of points {p1, ..., pk}, and O is isomorphic to a direct sum

⊕
Oi, where Oi is a finite-dimensional algebra

whose support is pi (6.4.20). We define the intersection multiplicity of Y and Z at pi to be the dimension of
Oi, which is also equal to h0(X,Oi), and we denote the multiplicity by µi. The dimension of H0(X,O) is
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the sum µ1+· · ·+µk, and Hq(X,O) = 0 for all q > 0 (Theorem 7.7.1 (i)). So the Euler characteristic χ(O)
is equal to h0(X,O). We’ll show that χ(O) = mn, and therefore that µ1+· · ·+µk = mn. This will prove
Bézout’s Theorem.

We form an exact sequence of O-modules, in which O = OX :

(7.8.3) 0→ O(−m−n)
(g,f)t−→ O(−m)×O(−n)

(f,−g)−→ O π−→ O → 0

In order to interpret the maps in this sequence as matrix multiplication with homomorphisms acting on the
left, sections of O(−m)×O(−n) should be represented as column vectors (u, v)t, u and v being sections of
O(−m) and O(−n), respectively.

7.8.4. Lemma. The sequence (7.8.3) is exact.

proof. To prove exactness, it suffices to show that the sequence of sections on each of the standard affine
open sets is exact. We look at U0, as usual. Let’s suppose s coordinates are chosen so that none of the points
making up Y ∩ Z lie on the coordinate axes. Let A be the algebra of regular functions on U0, the polynomial
algebra C[u1, u2], with ui = xi/x0. We identify O(k) with O(kH), H being the hyperplane at infinity. The
restriction of the module O(kH) to U0 is isomorphic to OU0 . Its sections on U0 are the elements of A. Let
A be the algebra of sections of O on U0. Since f and g are relatively prime, so are their dehomogenizations
F = f(1, u1, u2) and G = g(1, u1, u2). The sequence of sections of (7.8.3) on U0 is

0→ A
(G,F )t−→ A×A (F,−G)−→ A→ A → 0

and the only place at which exactness of this sequence isn’t obvious is at A×A. Suppose that (u, v)t is in the
kernel of the map (F,−G), i.e., that Fu = Gv Since F and G are relatively prime, F divides v, G divides u,
and v/F = u/G. Let w = v/F = u/G. Then (u, v)t = (G,F )tw. �

Since cohomology is compatible with products, χ(M×N ) = χ(M)+χ(N ). Proposition 7.7.9(ii), applied
to the exact sequence (7.8.3), tells us that the alternating sum

(7.8.5) χ(O(−m−n)) −
(
χ(O(−m))+χ(O(−n))

)
+ χ(O)− χ(O)

is zero. Solving for χ(O) and applying Theorem 7.5.4,

χ(O) =
(
n+m−1

2

)
−
(
m−1

2

)
−
(
n−1
2

)
+ 1

This equation shows that the term χ(O) depends only on the integers m and n. Since we know that the answer
is mn when Y and Z are unions of distinct lines, it is mn in every case. This completes the proof.

If you are suspicious of this reasoning, you can evaluate the right side of the equation. �

We still need to explain the assertion that the mutiplicity at a transversal intersection p is equal to 1. This
will be true if and only if I+J generates the maximal ideal at p locally, and it is obvious when Y and Z are
lines. In that case we may choose affine coordinates so that p is the origin in A2 = SpecA, A = C[y, z] and
the curves are the coordinate axes {z = 0} and {y = 0}. The variables u, v generate the maximal ideal at the
origin, so the quotient algebra A/(y, z) has dimension 1.

Suppose that Y and Z intersect transverally at p, but that they aren’t lines. We choose affine coordinates
so that p is the origin and that the tangent directions are the coordinate axes. The affine equations of Y and Z
will have the form y′ = 0 and z′ = 0, where y′ = y+ g(y, z) and z′ = z+h(y, z), g and h being polynomials
all of whose terms have degree at least 2. Because Y and Z may intersect at points other than p, the elements
y′ and z′ may not generate the maximal ideal at p. However, it suffices to show that they generate the maximal
ideal locally.

Let Ã be the local ring of the polynomial ring C[y, z] at the origin, and let m̃ and k̃ be the maximal ideal
and residue field of Ã, respectively. To show that y′, z′ generate m̃ = (y, z)Ã, the Local Nakayama Lemma
5.1.24 tells us that it suffices to show that their images generate m̃/m̃2. The images of g and h in m̃2 are zero,
so y′ and z′ are congruent to y and z modulo m̃2. They do generate m̃/m̃2, so they generate m̃. �
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Chapter 8 THE RIEMANN-ROCH THEOREM FOR CURVES

8.1 Branched Coverings
8.2 Modules on a Smooth Curve
8.3 Divisors
8.4 The Riemann-Roch Theorem I
8.5 The Birkhoff-Grothendieck Theorem
8.6 Differentials
8.7 Trace
8.8 The Riemann-Roch Theorem II
8.9 Using Riemann-Roch

The topic of this chapter is a classical problem of algebraic geometry, to determine the rational functions
on a smooth projective curve with given poles. This can be difficult, and one is usually happy if one can
determine the dimension of the space of such functions. The most important tool for this is the Riemann-Roch
Theorem.

8.1 Branched Coverings
Smooth affine curves were discussed in Chapter 5. An affine curve is smooth if its local rings are valuation
rings, or if its coordinate ring is a normal domain. An arbitrary curve is smooth if it has an open covering by
smooth affine curves.

An integral morphism Y
π−→ X of smooth curves will be called a branched covering. It follows from

Chevalley’s Finiteness Theorem that every nonconstant morphism of smooth projective curves is a branched
covering.

If Y → X is a branched covering, the function field K of Y will be a finite extension of the function field
F of X . he degree of the covering is the degree [K :F ] of the field extension. It will be denoted by [Y :X]

If a branched covering Y → X is given, and if X ′ = SpecA is an affine open subset of X , its inverse
image Y ′ will be a smooth affine curve, Y ′ = SpecB, and if the degree [Y :X] of the covering is n, B will
be a locally free A-module of rank [Y :X].

To describe the fibre of a branched covering Y π−→ X over a point p of X , we may localize. So we may
assume that X and Y are affine, say X = SpecA and Y = SpecB, and that the maximal ideal mp of A at a
point p is a principal ideal, generated by an element x of A. If a point q of Y lies over p, the ramification index
at q is defined to be e = vq(x), where vq is the valuation of the function field K corresponding to q. Then, if
y is a local generator for the maximal ideal mq of B at q, we will have

x = uye

where u is a local unit.

The next lemma follows from Lemma 8.2.2 and the Chinese Remainder Theorem.

8.1.1. Lemma. Let Y π−→ X be a branched covering, with X = SpecA and Y = SpecB. Let q1, ..., qk be
the points of Y that lie over a point p of X , let x be a generator for the the maximal ideal mp at p, and let mi
and ei be the maximal ideal and ramification index at qi, respectively.
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(i) The extended ideal mpB = xB is the product ideal me11 · · ·m
ek
k of B.

(ii) Let Bi = B/meii . The quotient B = B/xB is isomorphic to the product B1×· · ·×Bk.
(iii) The degree [Y :X] of the covering is the sum e1 + · · · + ek of the ramification indices at the points qi in
the fibre over p. �

Points q of Y whose ramification indices are greater than one are called branch points. We also call a point
p of X a branch point of the covering if there is a branch point q that lies over p.

8.1.2. Lemma. A branched covering Y → X has finitely many branch points. If a point p is not a branch
point, the fibre over p consists of n = [Y :X] points with ramification indices equal to 1.

proof. We can delete finite sets of points, so we may suppose that X and Y are affine, X = SpecA and
Y = SpecB. Then B is a finite A-module of rank n. Let F and K be the fraction fields of A and B,
respectively, and let β be an element of B that generates the field extension K/F . Then A[β] ⊂ B, and since
these two rings have the same fraction field, there will be a nonzero element s ∈ A such that As[β] = B. We
may suppose that B = A[β]. Let g be the monic irreducible polynomial for β over A. The discriminant of g is
nonzero (1.10.1), so for all but finitely many points p ofX , there will be n points of Y over p with ramification
indices equal to 1. �

8.1.3. Corollary. A branched covering Y π−→ X of degree one is an isomorphism.

proof. When [Y :X] = 1, the function fields of Y and X are equal. Then, because Y → X is an integral
morphism and X is normal, Y = X . �

figure: a branched covering

(8.1.4) local analytic structure

The local analytic structure of a branched covering Y π−→ X in the classical topology is very simple. We
e explain it there because it is useful and helpful for intuition.

Let q be a point of Y , let p be its image in X , and let x be a local generator for the maximal ideal of X at
p. Also, let e = vq(x) be the ramification index at q.

8.1.5. Proposition. In the classical topology, Y is locally isomorphic to the e-th root covering ye = x.

proof. Let z be a local generator for the maximal ideal mq of OY . If the ramification index is e, then x has the
form uze, where u is a local unit at q. In a neighborhood of q in the classical topology, u will have an analytic
e-th root w. Then y = wz also generates mq locally, and x = ye. It follows from the implicit function theorem
that x and y are local analytic coordinate functions on X and Y (see (??)). �

8.1.6. Corollary. Let Y π−→ X be a branched covering, let {q1, ..., qk} be the fibre over a point p of X , and
let ei be the ramification index at qi. As a point p′ of X approaches p, ei points of the fibre over p′ approach
qi. �

8.2 Modules on a Smooth Curve

A torsion element of a module M over a domain A is an element that is annihilated by some nonzero element
a of A: am = 0. The set of torsion elements of M is its torsion submodule, and a module whose torsion
submodule is zero is torsion-free. These definitions are extended to O-modules by applying them to affine
open sets.

8.2.1. Lemma. Let Y be a smooth curve.
(i) A finite O-moduleM is locally free if and only if it is torsion-free.
(ii) If an O-moduleM swe isn’t torsion-free, it has a nonzero global section.

proof. (i) We may assume that Y is affine, Y = SpecB, and thatM is theO-module associated to aB-module
M . Let B̃ and M̃ be the localizations of B and M at a point q, respectively. Then M̃ is a finite, torsion-free

154



module over the local ring B̃. It suffices to show that, for every point q of Y , M̃ is a free B̃-module (5.1.17).
The local ring B̃ is a valuation ring. A valuation ring is a principal ideal domain because the nonzero ideals
of B̃ are powers of the maximal ideal m̃, which is a principal ideal. Every finite, torsion-free module over a
principal ideal domain is free.

(ii) If the torsion submodule of M isn’t zero, there will be an affine open set U , and there will be nonzero
elements m inM(U) and a in O(U), such that am = 0. Let C be the finite set of zeros of a in U , and let
V = Y − C be the complement of C in Y . Then a is invertible on the intersection W = U ∩ V , and since
am = 0, the restriction of m to W is zero.

The open setsU and V cover Y , and the sheaf property for this covering can be written as an exact sequence

0→M(Y )→M(U)×M(V )
+,−−→M(W )

(Lemma 6.3.10). In this sequence, the section (m, 0) ofM(U)×M(V ) is mapped to zero inM(W ). Therefore
it is the image of a nonzero global section ofM. �

8.2.2. Lemma. Let Y be a smooth curve. Every nonzero ideal I of OY is a product of powers of maximal
ideals of OY : I = me11 · · ·m

ek
k .

proof. This follows for any smooth curve from the case that Y is affine, which is Proposition 5.3.7. �

8.2.3. Notation. When considering a branched covering Y π−→ X of smooth curves, we will often pass
between an OY -module M and its direct image π∗M, and it will be convenient to work primarily on X .
Recall that if Y ′ is the inverse image of an open subset X ′ of X , then

[π∗M](X ′) =M(Y ′)

One can think of the direct image π∗M as working withM, but looking only at open subsets Y ′ of Y that are
inverse images of open subsets X ′ of X . If we look only at such open subsets, the only significant difference
betweenM and its direct image will be that the OY (Y ′)-moduleM(Y ′) is made into anOX(X ′)-module by
restriction of scalars. To simplify notation, we will often drop the symbol π∗, and writeM instead of π∗M.
If X ′ is an open subset of X ,M(X ′) will stand forM(π−1X ′). When thinking of an OY -moduleM as the
direct image, we may refer to it as an OX -module. In accordance with this convention, we may also write OY
for π∗OY , but we must be careful to include the subscript Y .

If you find this abbreviation confusing, you can put the symbol π∗ into the text where appropriate. �

8.2.4. Lemma. Let Y → X be a branched covering of smooth curves.
(i) A finite OY -module N is a torsion OY -module if and only if it is a torsion OX -module.
(ii) A finite OY -module N is a locally free OY -module if and only if it is a locally free OX -module. If N is a
locally freeOY -module of rank r, then it is a locally freeOX -module of rank nr, where n is the degree [Y :X]
of the covering. �

(8.2.5) the module Hom

Let M and N be modules over a ring A. We are going to need the A-module that is usually denoted by
HomA(M,N), of homomorphisms M → N . The set of such homomorphisms becomes an A-module with
some fairly obvious laws of composition: If ϕ and ψ are homomorphisms and a is an element ofA, then ϕ+ψ
and aϕ are defined by

(8.2.6) [ϕ+ψ](m) = ϕ(m) + ψ(m) and [aϕ](m) = aϕ(m)

If ϕ is a module homomorphism, we also have ϕ(m1+m2) = ϕ(m1) + ϕ(m2), and aϕ(m) = ϕ(am).

8.2.7. Lemma. An A-module N is canonically isomorphic to HomA(A,N). The homomorphism A
ϕ−→ N

that corresponds to an element n of N is multiplication by n: ϕ(a) = an. Conversely, the element of N that
corresponds to a homomorphism A

ϕ−→ N is n = ϕ(1).
Similarly, an O-moduleM on a smooth curve Y is isomorphic to HomO(O,M). �
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Thus HomA(Ak, N) is isomorphic to Nk, and HomA(A`, Ak) is isomorphic to the module A ×̀k of k× `
A-matrices.

8.2.8. Lemma. Let A be a noetherian ring.
(i) For every finite A-module M , there is an exact sequence A` → Ak →M → 0.
(ii) If M and N are finite A-modules, then A(M,N) is a finite A-module. �

An exact sequence of the form A` → Ak →M → 0 is called a presentation of module M .

The module Hom is compatible with localization:

8.2.9. Lemma. Let M and N be modules over a noetherian domain A, and suppose that M is a finite
module. Let S be a multiplicative system in A. The localization S−1 HomA(M,N) is canonically isomorphic
to HomS−1A(S−1M,S−1N).

proof. We choose a presentation A` → Ak → M → 0. Its localization (S−1A)` → (S−1A)k → S−1M → 0
is a presentation of S−1M . Because HomA( · , · ) is a left exact, contravariant functor of the first variable, the
sequence

0→ HomA(M,N)→ HomA(Ak, N)→ HomA(A`, N)

is exact, as is its localization. This it suffices to prove the lemma in the case that M = A. It is true in that case.
�

This lemma shows that when M and N are finite O-modules on a variety X , there is an O-module of
homomorphismsM → N , which will be denoted by HomO(M,N ). If U = SpecA is an affine open set,
M = M(U) and N = N (U), the module of sections of HomO(M,N ) on U is HomA(M,N). We use a
new symbol Hom here because the vector space of homomorphismsM → N defined on all of X , which is
the space of global sections of HomO(M,N ), is customarily denoted by HomO(M,N ).

8.2.10. Notation. The notation HomA(M,N) is cumbersome. It seems permissible to drop the symbol Hom,
and to write A(M,N) for HomA(M,N). Similarly, if M and M are O-modules on a variety X , we will
write O(M,N ) or X(M,N ) for HomO(M,N ).

8.2.11. Lemma. Let A ⊂ B be rings, let M be an A-module, and let N be a B-module. Then A(M,N)
becomes a B-module.

When we write A(M,N), we are interpreting the B-module N as an A-module by restriction of scalars.

proof. Let M
ϕ−→ N be a homomorphism of A-modules, and let b be an element of B. Then multiplication

by b is defined by the rule [bϕ](m) = ϕ(bm). There are several things to check. We list here as a reminder:

The map [bϕ] is a homomorphism of A-modules M → N :
[bϕ](m1 +m2) = [bϕ](m1) + [bϕ](m2) and [bϕ](am) = a[bϕ](m)

The A-module A(M,N) has the structure of a B-module:
[b(ϕ1+ϕ2]) = [bϕ1] + [bϕ2] , [(b1+b2)ϕ] = [b1ϕ] + [b2ϕ] , [1ϕ] = ϕ , and [b1[b2ϕ]] = [b1b2ϕ] �

8.2.12. Lemma.
(i) The functor HomA is a left exact and contravariant in the first variable. An exact sequence M1 →M2 →
M3 → 0 of A-modules induces, for any A-module N , an exact sequence

0→ A(M3, N)→ A(M2, N)→ A(M1, N)

(ii) The funcctor HomA is a left exact and covariant in the second variable. An exact sequence 0 → N1 →
N1 → N3 of A-modules induces, for any A-module M , an exact squence

0→ A(M,N1)→ A(M,N2)→ A(M,N3)

The analogous statements are true for HomO. �

(8.2.13) the dual module
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The dual moduleM∗ of a locally free O-moduleM is the O-module O(M,O). A section ofM∗ on an
open set U is a homomorphismM(U) → O(U). The dual is contravariant. A homomorphismM → N of
locally free O-modules induces a homomorphismM∗ ← N ∗.

IfM is a free module with basis v1, ..., vk, thenM∗ will also be free, with the dual basis v∗i defined by
v∗i (vi) = 1 and v∗i (vj) = 0 if i 6= j. Therefore, whenM is locally free,M∗ is also locally free. The dual
O∗ of the structure sheaf O is O itself. If M and N are locally free O-modules, the dual (M⊗O N )∗ is
isomorphic to the tensor productM∗⊗ON ∗.

There is a canonical O-bilinear mapM∗×M→ O. If α and m are sections ofM∗ andM, respectively,
the bilinear map evaluates α at m: 〈α,m〉 = α(m).

8.2.14. Corollary. A locally free O-moduleM is canonically isomorphic to its bidual: (M∗)∗ ≈M.

�

8.2.15. Proposition. Let 0→M→N → P → 0 be an exact sequence of O-modules on a variety X .
(i) If P is a free O-module, and if the map of global sections H0(N ) → H0(P) is surjective, the sequence
splits: N is isomorphic to the direct sumM⊕P .
(ii) If P is locally free, the dual modules form an exact sequence 0→ P∗ → N ∗ →M∗ → 0.

proof. (i) Let {pi} be a basis of global sections of P , let p′i be global sections of N that map to pi, and let P ′
be the free O-submodule of N spanned by {p′i}. So P ′ is isomorphic to P , and N ≈M⊕P ′.

(ii) The sequence 0 → P∗ → M∗ → N ∗ is exact whether or not the modules are locally free (8.2.12(ii)).
The zero on the right comes from the fact that, when P is locally free, it is free on some affine covering. Thus
the given sequence splits locally. �

(8.2.16) invertible modulesinvertmod

An invertible O-module is a locally free module of rank one – a module that is isomorphic to the free
module O in a neighborhood of any point.

The tensor product L⊗OM of invertible modules is invertible. The dual L∗ of an invertible module L is
invertible. Part (i) of the next lemma explains the adjective ’invertible’.

8.2.17. Lemma. Let L be an invertible O-module.
(i) Let L∗ be the dual module. The canonical map L∗⊗OL → O defined by γ⊗α 7→ γ(α) is an isomorphism.
(ii) The map O → O(L,L) that sends a regular function α to multiplication by α is an isomorphism.

(iii) Every nonzero homomorphism L ϕ−→M to a locally free moduleM is injective.

proof. (i),(ii) It is enough to verify these assertions in the case that L is free, isomorphic to O, in which case
they are clear.

(iii) The problem is local, so we may assume that the variety is affine, say Y = SpecA, and that L andM are
free. Then ϕ becomes a nonzero homomorphism A1 → Ak. Such a homomorphism is injective because A is
a domain. �

8.3 Divisors

A divisor on a smooth curve Y is a finite integer combination of points:

D = r1q1 + · · ·+ rkqk

with ri ∈ Z. The terms riqi whose integer coefficients ri are zero can be omitted or not, as desired.
The support of D is the set of points qi of Y such that ri 6= 0. The degree of D is the sum r1 + · · ·+ rk of

the coefficients.
Let Y ′ be an open subset of Y . The restriction of a divisor D = r1p1 + · · ·+ rkpk to Y ′ is the divisor on

Y ′ obtained from D by deleting points that aren’t in Y ′. Thus, if D = q, the restriction of D to Y ′ is q when
q ∈ Y ′, and is zero whan q 6∈ Y ′.
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A divisor D =
∑
riqi is effective if all of its coefficients ri are non-negative, and D is effective on an open

subset Y ′ if its restriction to Y ′ is effective – if ri ≥ 0 for every i such that qi is a point of Y ′.

(8.3.1) the divisor of a function divfn

Let f be a rational function on a smooth curve Y . The divisor of f is

div(f) =
∑
q∈Y

vq(f) q

where vq denotes the valuation of K that corresponds to the point q of Y .
This divisor is written here as a sum over all points q, but it becomes a finite sum when we disregard terms
with coefficient zero, because f has finitely many zeros and poles. The coefficients will be zero at all other
points.

The map
K× → (divisors)+

that sends a rational function to its divisor is a homomorphism from the multiplicative group K× of nonzero
elements of K to the additive group of divisors:

div(fg) = div(f)+div(g)

As before, a rational function f has a zero of order r at q if vq(f) = r with r > 0, and it has a pole of
order r at q if vq(f) = −r. Thus the divisor of f is the difference of two effective divisors:

div(f) = zeros(f)− poles(f)

A rational function f is regular on Y if and only if its divisor is effective – if and only if poles(f) = 0.
The divisor of a rational function is called a principal divisor, and two divisors D and E are linearly

equivalent if their difference D − E is a principal divisor. For instance, the divisors zeros(f) and poles(f)
of a rational function f are linearly equivalent.

8.3.2. Lemma. Let f be a rational function on a smooth curve Y . For all complex numbers c, the divisors of
zeros of f − c, the level sets of f , are linearly equivalent.

proof. The functions f−c have the same poles as f . �

(8.3.3) the module O(D)

To analyze the space of functions with given poles on a smooth curve Y , we associate anO-moduleO(D)
to a divisor D. The nonzero sections of O(D) on an open subset V of Y are the rational functions f such that
the the divisor div(f)+D is effective on V – such that its restriction to V is effective.

(8.3.4) [O(D)](V ) = {f | div(f)+D is effective on V } ∪ {0}

Points that aren’t in the open set V impose no conditions on the sections on V .
When D is an effective divisor, a rational function f is a global section of O(D) if poles(f) ≤ D.

Say that D =
∑
riqi. If qi is a point of an open set V and if ri > 0, a section of O(D) on V may have a

pole of order at most ri at qi, and if ri < 0 a section must have a zero of order at least −ri at qi. For example,
the module O(−q) is the maximal ideal mq . The sections of O(−q) on an open set V that contains q are the
regular functions on V that are zero at q. Similarly, the sections of O(q) on an open set V that contains q are
the rational functions that have a pole of order at most 1 at q and are regular at every other point of V . The
sections of O(−q) and of O(q) on an open set V that doesn’t contain p are the regular functions on V . For
any D, sections of O(D) on V can have arbitrary zeros or poles at points that aren’t in V .

The fact that a section of O(D) is allowed to have a pole at qi if ri > 0 contrasts with the divisor of a
function. If div(f) =

∑
riqi, then ri > 0 means that f has a zero at qi. If div(f) = D, then f will be a

global section of O(−D).
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8.3.5. Lemma. (i) If D and E are divisors and if E−D is effective, then O(D) ⊂ O(E).
(ii) The function field module K of a smooth curve Y is the union of the modules O(D). �

The next lemma follows from Lemma 8.2.2.

8.3.6. Lemma. Let Y be a smooth curve. The product ideal I = mr11 · · ·m
rk
k of OY is isomorphic to the O-

module OY (−D), where D is the effective divisor
∑
ripi. Thus nonzero ideals of OY correspond bijectively

to divisors −D, where D is effective. �

8.3.7. Proposition. Let D and E be divisors on a smooth curve Y .
(i) The O-module O(D) is invertible.
(ii) The map O(D)⊗OO(E)→ O(D+E) that sends f⊗g to the product fg is an isomorphism.
(iii) The dual module O(D)∗ is O(−D).
(iv) Every invertible O-module L is isomorphic to a module of the form O(D).

The only difference between an invertible module L and a module of the form O(D) is that O(D)⊗OK is
equal to K, whereas LK can be a one-dimensional K-vector space without chosen basis.

It is important to note that, though every invertible moduleM is isomorphic to one of the form O(D), the
divisor D isn’t uniquely determined byM. (See (8.3.11) below.)

8.3.8. Definition. Let L be an invertible O-module on a smooth projective curve Y . If L is isomorphic to
O(D), we call the degree of D the degree of L. With this definition, χ(L) = deg L+ 1− pa.

proof of Proposition 8.3.7. (i) We may assume that Y is affine and that the support of D contains at most one
point: D = rp. We may also assume that the maximal ideal at p is a principal ideal, generated by an element
x. In that case, O(D) will be the free module with basis xr.

(ii),(iii) Proceeding as in the proof of (i), we may assume that D = rp and E = sp. Then O(D), O(−D),
O(E), and O(D + E) have bases xr, x−r, xs and xr+s, respectively.

(iv) Let K be the function field of Y , and let K be the function field module. When L is an invertible O-
module, LK = L⊗OK will be a one-dimensional K-vector space (see (??)). Since the function field module
K of Y is the union K =

⋃
O(D), we also have LK =

⋃
L(D), where L(D) denotes the tensor product

L⊗OO(D). A nonzero global section α of LK will be a global section of L(D) for some D. It will define
a map O α−→ L(D). Passing to duals, L(D)∗ = L∗⊗OO(D)∗ ≈ L∗(−D). The dual of the map α is a
nonzero and therefore injective map L∗(−D)→ O whose image is an ideal of O. So L∗(−D) is isomorphic
to O(−E) for some effective divisor E, and therefore L∗ is isomorphic to O(D − E). Dualizing once more,
L is isomorphic to O(E −D). �

If CL is an invertible module, we denote by L(D) the invertible module L ⊗O O(D).

8.3.9. Proposition. Let L ⊂M be an inclusion of invertibleO-modules. ThenM = L(E) for some effective
divisor E.

proof. L is isomorphic to O(D) for some D. Then L(−D) ⊂ O so L(−D) is an ideal, isomorphic to O(−E)
for some effective divisor E. Then L(E) ≈ O(D) ≈M. �

If D and E are divisors, O(D) is a submodule of O(E) only when E−D is effective. But as the next
proposition explains. there may be homomorphisms from O(D) to O(E) that aren’t inclusions.

8.3.10. Proposition. Let D and E be divisors on a smooth curve Y . Multiplication by a rational function f
such that div(f)+E−D ≥ 0 defines a homomorphism of O-modules O(D)→ O(E), and every homomor-
phism O(D)→ O(E) is multiplication by such a function.

proof. For any O-moduleM, a homomorphism O → M is multiplication by a global section ofM (6.4.4).
Then a homomorphismO → O(E−D) will be multiplication by a rational function f such that div(f)+E−D ≥
0. If f is such a function, one obtains a homomorphism O(D) −→ O(E) by tensoring with O(D). �

8.3.11. Corollary.
(i) The modules O(D) and O(E) are isomorphic if and only if the divisors D and E are linearly equivalent.
(ii) Let f be a rational function on Y , and let D = div(f). Multiplication by f defines an isomorphism
O(D)→ O. �
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8.4 The Riemann-Roch Theorem I

Let Y be a smooth projective curve. In Chapter 7, we learned that when M is a finite OY -module, the
cohomology Hq(Y,M) is a finite-dimensional vector space for all q, and is zero if q 6= 0, 1. As before,
we denote the dimension of the space Hq(Y,M) by hq(M) or, if there is ambiguity about the variety, by
hq(Y,M).

The Euler characteristic (7.6.5) of a finite O-moduleM is

(8.4.1) χ(M) = h0(M)− h1(M)

In particular,
χ(OY ) = h0(OY )− h1(OY )

The dimension h1(OY ) is the arithmetic genus of Y . It denoted by pa. We will see below, in (8.4.8)(iv), that
h0(OY ) = 1. So

(8.4.2) χ(OY ) = 1− pa

8.4.3. Riemann-Roch Theorem (version 1). Let D =
∑
ripi be a divisor on a smooth projective curve Y .

Then
χ(O(D)) = χ(O) + deg D

(
= deg D + 1− pa

)
proof. We analyze the effect on cohomology when a divisor is changed by adding or subtracting a point by
inspecting the inclusion O(D−p) ⊂ O(D). Let ε be the cokernel of the inclusion map, so that there is a short
exact sequence in which ε is a one-dimensional vector space supported at p, with h0(ε) = 1, and h1(ε) = 0.

(8.4.4) 0→ O(D−p)→ O(D)→ ε→ 0

Since mp is isomorphic to O(−p), this sequence can be obtained by tensoring the sequence

(8.4.5) 0→ mp → O → κp → 0

with the invertible module O(D).
Let’s denote the one-dimensional vector space H0(Y, ε) by [1]. The cohomology sequence associated to

(8.4.4) is

(8.4.6) 0→ H0(Y,O(D−p))→ H0(Y,O(D))
γ−→ [1]

δ−→ H1(Y,O(D−p))→ H1(Y,O(D))→ 0

In this exact sequence, one of the two maps, γ or δ, must be zero. Either

(1) γ is zero and δ is injective. In this case

h0(O(D−p)) = h0(O(D)) and h1(O(D−p)) = h1(O(D)) + 1, or

(2) δ is zero and γ is surjective. In this case

h0(O(D−p)) = h0(O(D))− 1 and h1(O(D−p)) = h1(O(D))

In either case,

(8.4.7) χ(O(D)) = χ(O(D−p)) + 1

The Riemann-Roch theorem follows from this, because we can get from O to O(D) by a finite number of
operations, each of which changes the divisor by adding or subtracting a point. �

Because h0 ≥ h0 −h1 = χ, this version of the Riemann-Roch Theorem gives reasonably good control of
H0. It is less useful for controlling H1. To do that, one wants the full Riemann-Roch Theorem. That theorem
requires some preparation, so we have put it into Section 8.8. However, version 1 has important consequences:
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8.4.8. Corollary. Let Y be a smooth projective curve.
(i) The divisor of a rational function has degree zero: The number of zeros is equal to the number of poles.
(ii) Linearly equivalent divisors have equal degrees.
(iii) A nonconstant rational function takes every value, including infinity, the same number of times.
(iv) A rational function that is regular at every point is a constant: H0(Y,O) = C.
(v) Let D be a divisor. If deg D ≥ pa, then h0(O(D)) > 0.
(vi) If h0(O(D)) > 0, then deg D ≥ 0.

proof. (i) Let D = div(f). Multiplication by the rational function f defines an isomorphism O(D) → O, so
χ(O(D)) = χ(O). On the other hand, by Riemann-Roch, χ(O(D)) = χ(O)+deg D. Therefore deg D = 0.

(ii) If two divisors D and E are linearly equivalent, say D−E = div(f), then D−E has degree zero, and
deg D = deg E.

(iii) The zeros of the functions f − c are linearly equivalent to the poles of f (8.3.2).

(iv) According to (iii), a nonconstant function must have a pole.

(v) h0 ≥ h0 − h1 = χ = deg D + 1− pa.

(vi) Suppose that O(D) has a nonzero global section f , a rational function such that div(f)+D = E is
effective. Then deg E ≥ 0. Since the degree of div(f) is zero, deg D ≥ 0. �

8.4.9. Theorem. With its classical topology, a smooth projective curve Y is a connected, compact, orientable
two-dimensional manifold.

proof. All points except connectedness have been discussed before (Theorem 1.11.1). A nonempty topological
space is connected if it isn’t the union of two disjoint, nonempty, closed subsets. We argue by contradiction.
Suppose that, in the classical topology, Y is the union of disjoint, nonempty closed subsets Y1 and Y2. Both
Y1 and Y2 will be compact manifolds. Let q be a point of of Y1. Part (v) of Corollary 8.4.8 shows that
h0(O(nq)) > 1 when n is large. A nonconstant global section f of O(nq) will be a regular function on the
complement Y − q of q. Then f is analytic, and it has no pole on the compact manifold Y2. It will map Y2 to
a compact subset of the complex plane. A nonconstant analytic function maps open sets to open sets. So if f
weren’t constant on Y2, its image would be open. A compact subset of C can’t be open, so f must be constant
on Y2. When we subtract that constant from f , we obtain a nonconstant rational function g that is zero on Y2.
But since Y has dimension 1, the zero locus of a rational function is finite. This is a contradiction. �

8.5 The Birkhoff-Grothendieck Theorem

This theorem describes finite, torsion-free modules on the projective line.

8.5.1. Birkhoff-Grothendieck Theorem. A finite, torsion-free O-module M on the projective line P1 is
isomorphic to a direct sum of twisting modules:M≈

⊕
O(ni).

We recall the cohomology of the twisting modules on P1: If n ≥ 0, then h0(O(n)) = n+1 and h1(O(n)) =
0 , and if r > 0, then h0(O(−r)) = 0 and h1(O(−r)) = r−1 (Theorem 7.5.4).

8.5.2. Lemma. Let X denote the projective line, and letM be a finite, torsion-free O-module on X .
(i) The integers r for which there exists a nonzero map O(r)→M are bounded above.
(ii) For large r, h0(X,M(−r)) = 0.

proof. (i) SinceM is torsion-free, any nonzero map O → M, which is multiplication by a global section of
M, will be injective. Since O(r) is locally isomorphic to O, a nonzero map O(r) → M will be injective
too, and the associated map H0(X,O(r))→ H0(X,M) will be injective. Then h0(X,O(r)) ≤ h0(X,M).
Since h0(X,O(r)) = r+1 and h0(X,M) is finite, r is bounded.

(ii) A global section ofM(−r) defines a map O →M(−r). Its twist by r will be a map O(r)→M. �
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By the way, the conclusions of the lemma are true for any projective variety X .

proof of the Birkhoff-Grothendieck Theorem. This is Grothendieck’s proof. A version of Birkhoff’s proof,
which uses matrices, is suggested as an exercise.

Lemma 8.2.1 tells us that M is locally free. We use induction on the rank of M. We suppose that the
theorem has been proved for locally free O-modules of rank less than r, thatM has rank r, and that r > 0.
The plan is to show thatM has a twisting module as a direct summand, so thatM =W⊕O(n) for someW .
Then we can apply induction on the rank toW .

Since twisting is compatible with direct sums, we may replaceM by a twistM(n). Instead of showing
that M has a twisting module O(n) as a direct summand, we show that, after we replace M by a suitable
twist, the structure sheaf O will be a direct summand.

As we know (6.6.19), the twistM(n) will have a nonzero global section when n is sufficiently large, and
by Lemma 8.5.2 (ii), it will have no nonzero global section when n is sufficiently negative. Therefore, when
we replaceM by a suitable twist, we will have H0(X,M) 6= 0 but H0(X,M(−1)) = 0. We assume that
this is true forM.

We choose a nonzero global section s ofM and consider the injective multiplication map O s−→M. Let
W be the cokernel of this map, so that we have a short exact sequence

(8.5.3) 0→ O s−→M→W → 0

8.5.4. Lemma. LetW be the O-module that appears in the sequence (8.5.3).
(i) H0(X,W(−1)) = 0.
(ii)W is torsion-free, and therefore locally free.
(iii)W is a direct sum

⊕r−1
i=1 O(ni) of twisting modules on P1, with ni ≤ 0.

proof. (i) This follows from the cohomology sequence associated to the twisted sequence

0→ O(−1)→M(−1)→W(−1)→ 0

because H0(X,M(−1)) = 0 and H1(X,O(−1)) = 0.

(ii) IfW had a nonzero torsion submodule, so wouldW(−1), and thenW(−1) would have a nonzero global
section (8.2.1).

(iii) The fact that W is a direct sum of twisting modules follows by induction on the rank: W ≈
⊕
O(ni).

Since H0(X,W(−1)) = 0, we must have H0(X,O(ni−1)) = 0 too. Therefore ni − 1 < 0, and ni ≤ 0. �

We go back to the proof of Theorem 8.5.1. Lemma 8.2.15 tells us that the dual of the sequence (8.5.3) is
an exact sequence

0→W∗ −→M∗ −→ O∗ → 0

andW∗ ≈
⊕
O(−ni) with −ni ≥ 0. Therefore h1(W∗) = 0. The map H0(M) → H0(O∗) is surjective.

Lemma 8.2.15 tells us thatM∗ is isomorphic toW∗ ⊕O∗. ThenM is isomorphic toW ⊕O. �

8.6 Differentials

Why differentials enter into the Riemann-Roch Theorem is a mystery, but they do, so we introduce them here.

Let A be an algebra and let M be an A-module. A derivation A δ−→M is a C-linear map that satisfies the
product rule for differentiation – a map with these properties:

(8.6.1) δ(ab) = a δb+ b δa , δ(a+b) = δa+ δb , and δc = 0

for all a, b in A and all c in C. The fact that δ is C-linear, i.e., that δ(cb) = c δb, follows.
For example, differentiation d

dt is a derivation C[t]→ C[t].
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The module of differentials ΩA of an algebra A is an A-module generated by elements denoted by da, one
for each element a of A. Its elements are (finite) combinations

∑
bi dai, with ai and bi in A. The defining

relations among the generators da are the ones that make the map A d−→ ΩA that sends a to da a derivation:
For all a, b in A and all c in C,

(8.6.2) d(ab) = a db+ b da , d(a+b) = da+ db , and dc = 0

The elements of ΩA are called differentials.

8.6.3. Lemma.
(i) Let ΩA

ϕ−→M be a homomorphism of O-modules. When we compose ϕ with the derivation A d→ ΩA, we

obtain a derivation A
ϕ◦d−→ M . Composition with d defines a bijection between homomorphisms ΩA → M

and derivations A δ−→M .
(ii) Ω is a functor: An algebra homomorphism A

u−→ B induces a homomorphism ΩA
v−→ ΩB that is

compatible with the ring homomorphism u, and that makes a diagram

B
d−−−−→ ΩB

u

x xv
A

d−−−−→ ΩA

proof. (i) When we compose the derivation d with a homomorphism ϕ, we do get a derivation A δ−→ M . In
the other direction, given a derivation A δ−→M , we define a map ΩA

ϕ−→M by ϕ(r da) = rδ(a). It follows
from the defining relations for ΩA that ϕ is a homomorphism of A-modules.

(ii) When ΩB is made into an A-module by restriction of scalars, the composed map A u→ B
d→ ΩB will be a

derivation to which (i) applies. �

8.6.4. Lemma. Let R be the polynomial ring C[x1, ..., xn]. The R-module of differentials ΩR is free, with
basis dx1, ..., dxn.

proof. The formula df =
∑ df

dxi
dxi follows from the defining relations. It shows that the elements dx1, ..., dxn

generate the R-module ΩR.

Let V be a free R-module with basis v1, ..., vn. The map R δ−→ V defined by δ(f) =
∑ ∂f

∂xi
vi is a

derivation. It induces a surjective module homomorphism ΩR
ϕ−→ V that sends dxi to vi. Since dx1, ..., dxn

generate ΩR and since v1, ..., vn is a basis, ϕ is an isomorphism. �

8.6.5. Proposition. Let I be an ideal of an algebra R, let A be the quotient algebra R/I , and let dI denote
the set of differentials df with f in I . The subset N = dI+IΩR is a submodule of ΩR, and ΩA is isomorphic
to the quotient module ΩR/N .

The proposition can be interpreted this way: Suppose that the ideal I is generated by elements f1, ..., fr of R.
Then ΩA is the quotient of ΩR obtained from ΩR by introducing these two rules:
• dfi = 0, and
• multiplication by fi is zero.

For example, let A be the quotient C[x]/(xn) of a polynomial ring in one variable and let x be the residue of
x in A. Then ΩA is generated by an element dx, with the relation nxn−1dx = 0.

proof of Proposition 8.6.5. First, IΩR is a submodule of ΩR, and dI is an additive subgroup of ΩR. To show
that N is a submodule, we must show that scalar multiplication by an element of R carries dI to N , i.e., that
if g is in R and f is in I , then g df is in N . By the product rule, g df = d(fg)− f dg. Since I is an ideal, fg
is in I . Then d(fg) is in dI and f dg is in IΩR. So g df is in N .

The two rules shown above hold in ΩA because the generators fi of I are zero in A. Therefore N is in
the kernel of the surjective map ΩR

v−→ ΩA defined by the homomorphism R → A. The quotient module
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Ω = ΩR/N , is an A-module, and v defines a surjective map of A-modules Ω
v−→ ΩA. We show that v

is bijective. Let x be an element of R, let a be its image in A, and let dx be the image of dx in Ω. The
composed map R d−→ ΩR → Ω is a derivation that sends x to dx, and I is in its kernel. It defines a derivation
R/I = A

δ−→ Ω that sends a to dx. This derivation corresponds to a homomorphism of A-modules ΩA → Ω
that sends da to dx, and that inverts v (8.6.3). �

8.6.6. Corollary. If A is a finite-type algebra, then ΩA is a finite A-module.

This follows from Proposition 8.6.5 because the module of differentials on the polynomial ring C[x1, ..., xn]
is a finite module. �

8.6.7. Lemma. Let S be a multiplicative system in a domain A, and let S−1ΩA be the module of fractions of
ΩA. The modules S−1ΩA and ΩS−1A are canonically isomorphic. In particular, if K is the field of fractions
of A, then K⊗AΩA ≈ ΩK .

We have moved the symbol S−1 to the left for clarity.

proof of Lemma 8.6.7. The composition A → S−1A
d−→ ΩS−1A is a derivation that defines an A-module

homomorphism ΩA → ΩS−1A. This map extends to an S−1A-homomorphism S−1ΩA
ϕ−→ ΩS−1A because

scalar multiplication by the elements of S is invertible in ΩS−1A. The relation ds−k = −ksk−1ds follows
from the definition of a differential, and it shows that ϕ is surjective. We use the quotient rule

δ(s−ka) = −ks−k−1a ds+ s−kda

to define a derivation S−1A
δ−→ S−1ΩA. That derivation will correspond to a homomorphism ΩS−1A →

S−1ΩA that inverts ϕ. However, we must show that δ is well-defined, that δ(s−k1 a1) = δ(s−`2 a2) if s−`1 a1 =
s−k2 a2, and that δ is a derivation. You will be able to do this. �

Lemma 8.6.7 shows that a finite O-module ΩY of differentials on a variety Y is defined, such that, when
U = SpecA is an affine open subset of Y , ΩY (U) = ΩA.

8.6.8. Proposition. The module ΩY of differentials on a smooth curve Y is invertible. If y is a local generator
for the maximal ideal at a point q, then in a suitable neighborhood of q, ΩY will be a freeO-module with basis
dy.

proof. We may assume that Y is affine, say Y = SpecB. Let q be a point of Y , and let y be an element of B
with vq(y) = 1. To show that dy generates ΩB locally, we may localize, so we may suppose that y generates
the maximal ideal m at q. We must show that after we localize B once more, every differential df with f in
B will be a multiple of dy. Let c be the value of the function f at q: Then f = c + yg for some g in B, and
because dc = 0, df = g dy + y dg. Here g dy is in B dy and y dy is in mΩB . So

ΩB = B dy + mΩB

Let M denote the quotient module ΩB/(B dy). Then M = mM . The Nakayama Lemma applies. It tells us
that there is an element z in m such that s = 1− z annihilates M . When we replace B by its localization Bs,
we will have M = 0 and ΩB = B dy, as required.

###ugh##
We must still verify that dy isn’t a torsion element. If it were, say b dy = 0, then because dy is a local

generator, ΩB would be the zero module except at the finite set of zeros of b. Since we can take for q an
arbitrary point of Y , it suffices to show that the local generator dy for ΩB isn’t zero. Let R = C[y] and
A = C[y]/(y2). The module ΩR is free, with basis dy, and as noted above, if y is the residue of y in A, the
A-module ΩA is generated by dy, with the relation 2y dy = 0. It isn’t the zero module. Proposition 5.3.7 tells
us that, at our point q, the algebraB/m2

q is isomorphic toA, and Proposition 8.6.5 tells us that ΩA is a quotient
of ΩB . Since ΩA isn’t zero, neither is ΩB . �

8.7 Trace

(8.7.1) trace of a function

164



Let Y π−→ X be a branched covering of smooth curves, and let F and K be the function fields of X and
Y , respectively.

The trace map K tr−→ F for a field extension of finite degree has been defined before (4.5.9). If α is an
element of K, multiplication by α on the F -vector space K is an F -linear operator, and tr(k) is the trace of
that operator. The trace is F -linear: If fi are in F and αi are in K, then tr(

∑
fiαi) =

∑
fi tr(αi). Moreover,

the trace carries regular functions to regular functions: If X ′ = SpecA′ is an affine open subset of X whose
inverse image is Y ′ = SpecB′, then because A′ is a normal algebra, the trace of an element of B′ will be in
A′ (4.5.5). Using our abbreviated notation OY for π∗OY , the trace defines a homomorphism of OX -modules

(8.7.2) OY
tr−→ OX

Analytically, the trace can be described as a sum over the sheets of the covering. Let n = [Y :X]. Over
a point p of X that isn’t a branch point, there will be n points q1, ..., qn of Y . If U is a small neighborhood
of p in X in the classical topology, its inverse image V will consist of disjoint neighborhoods Vi of qi, each
of which maps bijectively to U . On Vi, the ring B of analytic functions will be isomorphic to the ring A of
analytic functions on U . So B is the direct sum A1 ⊕ · · · ⊕ An of n copies of A. If a rational function g on
Y is regular on V , its restriction to V can be written as g = g1 ⊕ · · · ⊕ gn, with gi in Ai. The matrix of left
multiplication by g on A1 ⊕ · · · ⊕ An is the diagonal matrix with entries gi, so

(8.7.3) tr(g) = g1 + · · ·+ gn

8.7.4. Lemma. Let Y π−→ X be a branched covering of smooth curves, let p be a point of X , let q1, ..., qk be
the fibre over p, and let ei be the ramification index at qi. If a rational function g on Y is regular at the points
q1, ..., qk, its trace is regular at p, and its value at p is [tr(g)](p) = e1g(q1) + · · ·+ ekg(qk).

proof. The regularity was discussed above. If p isn’t a branch point, we will have k = n and ei = 1 for all i.
In this case, the lemma follows by evaluating (8.7.3). It follows by continuity for any point p. As a point p′

approaches p, ei points q′ of Y approach qi (8.1.6). For each such point, the limit of g(q′) will be g(qi). �

(8.7.5) trace of a differential

The structure sheaf is naturally contravariant. A branched covering Y π−→ X gives us an OX -module
homomorphism OX → OY . The trace map for functions is a homomorphism of OX -modules in the opposite
direction: OY

tr−→ OX .
Differentials are also naturally contravariant. A morphism Y → X induces an OX -module homomor-

phism ΩX → ΩY that sends a differential dx on X to a differential on Y that we denote by dx too (8.6.3) (ii).
As is true for functions, there is a trace map for differentials in the opposite direction. It is defined below, in
(8.7.7), and will be denoted by τ : ΩY

τ−→ ΩX .
First, a lemma about the contravariant map ΩX → ΩY :

8.7.6. Lemma. (i) Let p be the image in X of a point q of Y , let x and y be local generators for the maximal
ideals of X and Y at p and q, respectively, and let e be the ramification index of the covering at q. Then
dx = vye−1dy, where v is a local unit at q.
(ii) The canonical homomorphism ΩX → ΩY is injective.

proof. (i) As we have noted before, x has the form uye, where u is a local unit. Since dy generates ΩY locally,
there is a rational function z that is regular at q such that du = zdy. Let v = yz + eu. Since eu is a local unit
and yz is zero at q, v is a local unit, and

dx = d(uye) = yez dy + eye−1u dy = vye−1dy

(ii) See (8.2.17). �

To define the trace for differentials, we begin with differentials of the functions fields. Let F and K be
the function fields of X and Y , respectively. Because the OY -module ΩY is invertible, the module ΩK of
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K-differentials, which is the localization ΩY ⊗OK, is a free K-module of rank one. Any nonzero differential
will form a K-basis. We choose a nonzero F -differential α. Its image in ΩK , which we also denote by α, will
be a K-basis for ΩK . We can, for example, take α = dx, where x is a local coordinate function on X .

An element β of ΩK can be written uniquely in the form

β = gα

where g is an element of K. The trace ΩK
τ−→ ΩF is defined by

(8.7.7) τ(β) = tr(g)α

where tr(g) is the trace of the function g. Since the trace for functions is F -linear, τ is also an F -linear map.
We need to check that τ is independent of the choice of α. If α′ is another nonzero F -differential, then

fα′ = α for some nonzero element f of F , and gα = gfα′. Since tr is F -linear,

tr(gf)α′ = tr(g)fα′ = tr(g)α

Using α′ in place of α gives the same value for the trace.

A differenial of the function fieldK will be called a rational differential. A rational differential β is regular
at a point q of Y if there is an affine open neighborhood Y ′ = SpecB of q such that β is an element of ΩB .
If y is a local generator for the maximal ideal mq and β = g dy, then β is regular at q if the rational function g
is regular at q.

Let p be a point of X . Working locally at p, we may suppose that X and Y are affine, X = SpecA and
Y = SpecB, that the maximal ideal at p is a principal ideal, generated by an element x of A, and that the
differential dx generates ΩA. Let q1, ..., qk be the points of Y that lie over p, and let ei be the ramification
index at qi.

8.7.8. Corollary. (i) When viewed as a differential on Y , dx has zeros of orders ei−1 at qi.
(ii) If a differential β on Y is regular at the points qi, ..., qk, it will have the form β = g dx, where g is a
rational function with poles of orders at most ei−1 at qi.

This follows from Lemma 8.7.6 (i). �

8.7.9. Main Lemma. Let Y π−→ X be a branched covering. Let p be a point of X , let q1, ..., qk be the points
of Y that lie over p, and let β be a rational differential on Y .
(i) If β is regular at the points q1, ..., qk, then its trace τ(β) is regular at p.
(ii) If β has a simple pole at qi and is regular at qj when j 6= i, then τ(β) is not regular at p.

proof. (i) Corollary 8.7.8 tells us that β = g dx, where g has poles of orders at most ei − 1 at the points qi.
Since x has a zero of order ei at qi, the function xg is regular at qi, and its value there is zero. Then tr(xg) is
regular at p, and its value at p is zero (8.7.4). So x−1 tr(xg) is a regular function at p. Since tr is F -linear and
x is in F , x−1 tr(xg) = tr(g). Therefore tr(g) and τ(β) = tr(g)dx are regular at p.

(ii) With β = g dx, the function xg will be regular at p. Its value at qj will be zero when j 6= i, and not zero
when j = i. Then tr(xg) will be regular at p, but not zero there (8.7.4). Therefore τ(β) = x−1 tr(xg)dx
won’t be regular at p. �

8.7.10. Corollary. The trace map defines a homomorphism of OX -modules ΩY
τ−→ ΩX . �

8.7.11. Example. Let Y be the locus ye = x in A2
x,y . Multiplication by ζ = e2πi/e permutes the sheets of Y

over X . The trace of a power yk is

(8.7.12) tr(yk) =
∑
j

ζkjyk

The sum
∑
ζkj is zero unless k ≡ 0 modulo e. Then τ(yrdy) = τ(yr+1−e)dx = 0 if r 6≡ −1 modulo e, but

τ(y−1dy) = tr(e−1x−1)dx = x−1dx isn’t regular at x = 0. �
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Let Y → X be a branched covering, and suppose that Y = SpecB and X = SpecA are affine. Both
B and ΩB are torsion-free, and therefore locally free A-modules. Let’s assume that they are free A-modules,
that the maximal ideal of A at p is generated by an element x, and that ΩA is a free module of rank one with
basis dx. Then A(B,ΩA) will be a free A-module too.

As is true for any B-module, ΩB is isomorphic to B(B,ΩB). The map B → ΩB that corresponds to an
element β of ΩB is multiplication by β. It sends an element z of B to zβ.

## rethink wording##

If β is a B-linear map B → ΩB , then because τ is A-linear, the composed map B
β−→ ΩB

τ−→ ΩA will
be A-linear – a homomorphism of A-modules. Thus composition with the trace τ defines a map

(8.7.13) ΩB ≈ B(B,ΩB)
τ−→ A(B,ΩA)

8.7.14. Theorem. The map (8.7.13) is an isomorphism of B-modules.

proof. This theorem follows from the Main Lemma 8.7.9, when one looks closely.
Let’s denote A(B,ΩA) by H. This is an A-module, but it becomes a B-module because B is a B-module

(8.2.11). Scalar multiplication by an element b of B is defined as follows: Let B u−→ ΩA be an A-linear map.
Then bu is the map [bu](z) = u(zb) for z in B.

Next, because B and ΩA are locally free A-modules, H is a locally free A-module and a locally free B-
module. Since ΩA has A-rank 1, the A-rank of H is the same as the A-rank of B. Therefore the B-rank of H
is 1 (8.2.4)(ii). SoH is an invertible B-module.

The trace map ΩB
τ−→ H isn’t the zero map because τ dx 6= 0. Since domain and range are invertible B-

modules, τ is an injective homomorphism. Its image, which is isomorphic to ΩB , is an invertible submodule
of the B-module H. Therefore H is isomorphic to the invertible module ΩB(D) for some effective divisor D
(8.3.7). To complete the proof of the theorem, we show that the divisor D is zero.

Suppose that D > 0 and let q be a point in the support of D. We may suppose that q lies over our chosen
point p. Then ΩB(q) ⊂ ΩB(D) ≈ H. We choose a rational differential β in ΩK that has a simple pole at q,
and is regular at the other points of Y in the fibre over p. The Chinese Remainder Theorem allows us to do
this. According to Lemma 8.7.9 (ii), the trace τ(β) isn’t regular at p. It isn’t inH. �

Note. This is a subtle theorem, and I don’t like the proof. It is understandable, but it doesn’t give much insight
as to why the theorem is true. To get more insight, we would need a better understanding of differentials. My
father Emil Artin said “One doesn’t really understand differentials, but one can learn to work with them.”

8.7.15. Theorem. Let Y → X be a branched covering of affine varieties X = SpecA and Y = SpecB,
and let M be a finite B-module. Composition with the trace ΩB

τ−→ ΩA defines a bijection

(8.7.16) B(M,ΩB)
τ◦−→ A(M,ΩA)

proof. We choose a resolution
Bm → Bn →M → 0

of M and form a diagram

0 −−−−→ B(M,ΩB) −−−−→ B(B,ΩB)n −−−−→ B(B,ΩB)m

a

y b

y c

y
0 −−−−→ A(M,ΩA) −−−−→ A(A,ΩA)n −−−−→ A(A,ΩA)m

in which the maps a, b, c are the compositions with the trace τ , as was described above. Because the functor
Hom is left exact and contravariant in the first variable, the rows of this diagram are exact. Theorem 8.7.14
Shows that b and c are bijective. Therefore a is bijective too. �

Extension of this theorem to branched coverings Y → X in which Y and X aren’t affine presents no
problem.

8.7.17. Corollary. Let Y π−→ X be a branched covering of smooth curves, and letM be a finiteOY -module.
The map Y(M,ΩY )

τ◦−→ X(M,ΩX) obtained by composition with the trace ΩY
τ−→ ΩX is an isomorphism

of OX -modules. �
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When written without dropping the symbol Hom or suppressing the notation for the direct image, this isomor-
phism becomes an isomorphism

π∗
(
HomOY(M,ΩY )

) τ◦−→ HomOX(π∗M,ΩX)

8.8 The Riemann-Roch Theorem II

(8.8.1) the Serre dual

Let Y be a smooth projective curve, and letM be a locally free OY -module. The Serre dual ofM, which
we will denote byM#, is the module

(8.8.2) M# = Y (M,ΩY ) = HomOY (M,ΩY )

For example, O#
Y = ΩY and Ω#

Y = OY .
Since the invertible module ΩY is locally isomorphic toOY , the Serre dualM# will be locally isomorphic

to the ordinary dualM∗. It will be a locally free module with the same rank asM, and the bidual (M#)#

will be isomorphic toM.

8.8.3. Riemann-Roch Theorem, version 2. LetM be a locally freeOY -module on a smooth projective curve
Y , and letM# be its Serre dual. Then h0(M) = h1(M#) and h1(M) = h0(M#).

BecauseM and (M#)# are isomorphic, the two assertions of the theorem are equivalent.

For example, h1(ΩY ) = h0(OY ) = 1 and h0(ΩY ) = h1(OY ) = pa.
IfM is a locally free OY -module on a smooth projective curve Y , then

(8.8.4) χ(M) = h0(M)− h0(M#)

A more precise statement of the Riemann-Roch Theorem is that H1(Y,M) and H0(Y,M#) are dual
vector spaces in a canonical way. We omit the proof of this. The fact that their dimensions are equal is enough
for many applications. The canonical isomorphism becomes important only when one wants to apply the
theorem to a cohomology sequence. And of course, any complex vector spaces V and W whose dimensions
are equal can be made into dual spaces by the choice of a nondegenerate bilinear form V ×W → C.

Our plan is to prove Theorem 8.8.3 directly for the projective line. The structure of locally free modules on
P1 is very simple, so this will be easy. Following Grothendieck, swe derive it for an arbitrary smooth projective
curve Y by projection to P1.

Let Y be a smooth projective curve, let X = P1, and let Y π→ X be a branched covering. LetM be a
locally free OY -module, and let the Serre dual ofM, as defined in (8.8.2), beM#

1 :

M#
1 = Y(M,ΩY )

The direct image ofM is a locally freeOX -module that we are denoting byM too, and we can form the Serre
dual on X . Let

MD
2 = X(M,ΩX)

8.8.5. Corollary. The direct image π∗M#
1 , which we also denote byM#

1 , is isomorphic toM#
2 .

proof. This is Theorem 8.7.17. �

The corollary allows us to drop the subscripts fromM#. Because a branched covering is an affine mor-
phism, the cohomology ofM and of its Serre dualM# can be computed, either on Y or on X . (See (7.4.25).)

If Y π→ X is a branched covering of projective curves andM is a locally freeOY -module, thenHq(Y,M) ≈
Hq(X,M) and Hq(Y,M#) ≈ Hq(X,M#).

Thus it is enough to prove Riemann-Roch for the projective line.
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(8.8.6) Riemann-Roch for the projective line

The Riemann-Roch Theorem for the projective line X = P1 is a simple consequence of the Birkhoff-
Grothendieck Theorem, which tells us that every locally free OX -moduleM on X is a direct sum of twisting
modules OX(k). To prove Riemann-Roch for the projective line X = P1, it suffices to the theorem for the
twisting modules.

8.8.7. Lemma. The module of differentials ΩX on X is isomorphic to the twisting module OX(−2).

proof. Since ΩX is invertible, the Birkhoff-Grothendieck Theorem tells us that it is a twisting module OX(k).
We only need to identify the integer k. On the standard open subset U0 = SpecC[x], the module of differen-
tials is free, with basis dx, and z = x−1 is the coordinate on U1 = SpecC[z]. Then dx = d(z−1) = −z−2dz
describes the differential dx on U1. Since the point p at infinity is {z = 0}, dx has a pole of order 2 there.
It is a global section of ΩX(2p), and as a section of that module, it isn’t zero anywhere. So multiplication by
dx defines an isomorphism O → ΩX(2p) that sends 1 to dx. Tensoring with O(−2p), we find that ΩX is
isomorphic to O(−2p). �

8.8.8. Lemma. Let letM and N be locally free O-modules on the projective line X . Then X(M(r),N ) is
canonically isomorphic to X(M,N (−r)).

proof. When we tensor a homomorphism M(r)
ϕ−→ N with O(−r), we obtain a homomorphism M →

N (−r), and tensoring with O(r) is the inverse operation. �

The Serre dual O(n)# of O(n) is therefore

O(n)# = X(O(n),ΩX) ≈ O(−2−n)

To prove Riemann-Roch for X = P1, we must show that

h0(X,O(n)) = h1(X,O(−2−n)) and h1(X,O(n)) = h0(X,O(−2−n))

This follows from the computation of cohomology of the twisting modules (Theorem 7.5.4). �

8.9 Using Riemann-Roch

(8.9.1) genus

Three closely related numbers associated to a smooth projective curve Y are: its topological genus g, its
arithmetic genus pa = h1(OY ), and the degree δ of the module of differentials ΩY .

8.9.2. Theorem. Let Y be a smooth projective curve. The topological genus g and the arithmetic genus pa of
Y are equal, and the degree δ of the module ΩY is 2pa − 2, which is equal to 2g − 2.

proof. Let Y π−→ X be a branched covering of X = P1. The topological Euler characteristic e(Y ), which is
2−2g, can be computed in terms of the branching data for the covering (see (1.11.4)). Let qi be the ramification
points in Y , and let ei be the ramification index at qi. Then ei sheets of the covering come together at qi. If
the degree of Y over X is n, then since e(X) = 2,

(8.9.3) 2− 2g = e(Y ) = ne(X)−
∑

(ei−1) = 2n−
∑

(ei−1)

We compute the degree δ of ΩY in two ways. First, the Riemann-Roch Theorem tells us that h0(ΩY ) =
h1(OY ) = pa and h1(ΩY ) = h0(OY ) = 1. So χ(ΩY ) = −χ(OY ) = pa − 1. The Riemann-Roch Theorem
also tells us that χ(ΩY ) = δ + 1− pa (8.3.8). Therefore

(8.9.4) δ = 2pa − 2
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Next, we compute δ by computing the divisor of the differential dx on Y , x being a coordinate in X . Let
qi be one of the ramification points in Y , and let ei be the ramification index at qi. Then dx has a zero of order
ei−1 at qi. On X , dx has a pole of order 2 at∞. Let’s suppose that the point at infinity isn’t a branch point.
Then there will be n points of Y at which dx has a pole of order 2, n being the degree of Y over X . The
degree of ΩY is therefore

(8.9.5) δ = zeros− poles =
∑

(ei−1)− 2n

Combining (8.9.5) with (8.9.3), one sees that δ = 2g − 2. Since we also have δ = 2pa − 2, g = pa. �

8.9.6. Corollary. Let D be a divisor on a smooth projective curve Y of genus g. If deg D > 2g − 2 then
h1(O(D)) = 0. If deg D ≤ g − 2, then h1(O(D)) > 0.

proof. This follows from Corollary 8.4.8 (v) and (vi). �

(8.9.7) curves of genus zero

Let Y be a smooth projective curve Y of genus zero, and let p be a point of Y . The exact sequence

0→ OY → OY (p)→ ε→ 0

where ε is a one-dimensional module supported at p (8.4.6), gives us an exact cohomology sequence

0→ H0(Y,OY )→ H0(Y,OY (p))→ H0(Y, ε)→ 0

The zero on the right is due to the fact that, because pa = 0, H1(Y,OY ) = 0. We also have h0(OY ) =
h0(ε) = 1, so h0(OY (p)) = 2. We choose a basis (1, x) for H0(Y,OY (p)), 1 being the constant function and
x being a nonconstant function with a single pole of order 1 at p. This basis defines a point of P1 with values
in the function field K of Y , and therefore a morphism Y

ϕ−→ P1. Because x has just one pole of order 1, it
takes every value exactly once. Therefore ϕ is bijective. It is a map of degree 1, and therefore an isomorphism
(8.1.3).

8.9.8. Corollary. Every smooth projective curve of genus zero is isomorphic to the projective line P1. �

A rational curve is a curve (smooth or not) whose function field is isomorphic to the field C(t) of rational
functions in one variable. A smooth projective curve of genus zero is a rational curve.

(8.9.9) curves of genus one

A smooth projective curve of genus 1 is called an elliptic curve. The Riemann-Roch Theorem tells us that on
an elliptic curve Y ,

χ(O(D)) = deg D

Since h0(ΩY ) = h1(OY ) = 1, ΩY has a nonzero global section ω. Since ΩY has degree zero (8.9.2), ω
doesn’t vanish anywhere. Multiplication by ω defines an isomorphism O → ΩY . So ΩY is a free module of
rank one. It follows that the Serre dualM# of an O-moduleM is isomorphic to the ordinary dualM∗.

The next lemma follows from Riemann-Roch.

8.9.10. Lemma. Let p be a point of an elliptic curve Y . For any r > 0, h0(O(rp) = r, and h1(O(rp)) = 0.
�

SinceH0(Y,OY ) ⊂ H0(Y,OY (p)), and since both spaces have dimension one, they are equal. So (1) is a
basis forH0(Y,OY (p)). We choose a basis (1, x) for the two-dimensional spaceH1(Y,OY (2p)). Then x isn’t
a section ofO(p). It has a pole of order precisely 2 at p. Next, we choose a basis (1, x, y) for H1(Y,OY (3p)).
So x and y are functions with poles of orders 2 and 3, respectively, at p, and no other poles. The point (1, x, y)

of P2 with values in K determines a morphism Y
ϕ−→ P2. Let u, v, w be coordinates in P2. The map ϕ sends
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a point q distinct from p to (u, v, w) = (1, x(q), y(q)). Since Y has dimension one, ϕ is a finite morphism.
Its image will be a closed subvariety of P2 of dimension one. Since (1, x, y) are independent, the image isn’t
contained in a line.

To determine the image of the point p, we multiply (1, x, y) by λ = y−1 to normalize the second coordinate
to 1, obtaining the equivalent vector (y−1, xy−1, 1). The rational function y−1 has a zero of order 3 at p, and
xy−1 has a simple zero there. Evaluating at p, we see that the image of p is the point (0, 0, 1).

Let Y ′ be the image of Y , which is a curve in P2. The map Y → P2 restricts to a finite morphism Y → Y ′.
Let ` be a generic line {au+bv+cw = 0} in P2. The rational function a+bx+cy on Y has a pole of order 3
at p and no other pole. It takes every value, including zero, three times, and the set of points q of Y at which
a+ bx+ cy is zero is the inverse image of the intersection Y ′ ∩ `. The only possibilities for the degree of Y ′

are 1 and 3. Since 1, x, y are independent, Y ′ isn’t a line. So the image Y ′ is a cubic curve (Corollary 1.3.9).
To determine the image, we look for a cubic relation among the functions 1, x, y on Y . The seven monomi-

als 1, x, y, x2, xy, x3, y2 have poles at p of orders 0, 2, 3, 4, 5, 6, 6, respectively, and no other poles. They are
sections of OY (6p). Riemann-Roch tells us that h0(OY (6p)) = 6. So those seven functions are dependent.
The linear dependency relation gives us a cubic equation among x and y, which we write in the form

cy2 + (a1x+ a3)y + (a0x
3 + a2x

2 + a4x+ a6) = 0

There can be no linear relation among functions whose orders of pole at p are distinct. So when we delete
either x3 or y2 from the list of monomials, we obtain an independent set of six functions that form a basis for
the six-dimensional space H0(Y,O(6p)). In the cubic relation, the coefficients c and a0 aren’t zero. We can
scale y and x to normalize c and a0 to 1. We eliminate the linear term in y from this relation by substituting
y − 1

2 (a1x + a3) for y. Next, we eliminate the quadratic term in x. by substituting x − 1
3a2 for x. Bringing

the terms in x to the other side of the equation, we are left with a cubic relation

y2 = x3 + a4x+ a6

The coefficients a4 and a6 have changed, of course.
The cubic curve Y ′ defined by the homogenized equation y2z = x3 + a4xz

2 + a6z
3 is the image of Y .

This curve Y ′ meets a generic line ax + by + cz = 0 in three points and, as we saw above, its inverse image
in Y consists of three points too. Therefore the morphism Y

ϕ−→ Y ′ is generically injective, and Y is the
normalization of Y ′. Corollary 7.6.3 computes the cohomology of Y ′: h0(OY ′) = h1(OY ′) = 1. This tells
us that hq(OY ′) = hq(OY ) for all q. Let’s denote the direct image of OY by the same symbol OY . The
quotient F = OY /OY ′ is a torsion module with no global sections, so it is zero (8.2.1) (ii).

8.9.11. Corollary. Every elliptic curve is isomorphic to a cubic curve in P2. �

(8.9.12) the group law on an elliptic curve

The points of an elliptic curve form an abelian group, once one chooses a point to be the identity element.
We choose a point of Y , and label it o. We’ll write the law of composition in the group as p⊕ q, using the

symbol ⊕ to distinguish this sum, which is a point of Y , from the divisor p+ q.
Let p and q be points of Y . To define p⊕q, we compute the cohomology ofOY (p+q−o). It follows from

Riemann-Roch that h0(OY (p + q − o)) = 1 and that h1(OY (p + q − o)) = 0. There is a nonzero function
f , unique up to scalar factor, with simple poles at p and q and a zero at o. This function has exactly one other
zero. That zero is defined to be the sum p⊕ q in the group. In terms of linearly equivalent divisors, s = p⊕ q
is the unique point such that s is linearly equivalent to p + q − o, or such that p + q is linearly equivalent to
o+ s.

8.9.13. Proposition. The law of composition ⊕ defined above makes an ellipic curve into an abelian group.

The proof is an exercise. �

(8.9.14) interlude: maps to projective space
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Let Y be a smooth projective curve. We have seen that any set (f0, ..., fn) of rational functions on Y
defines a morphism Y

ϕ−→ Pn (5.3.3). As a reminder, let q be a point of Y and let gj = fj/fi, where i is
an index such that fi has the minimum value vq(fi). Then gj are regular at q for all j, and the morphism
ϕ sends the point q to is (g0(q), ..., gn(q)). For example, the inverse image Y 0 = ϕ−1(U0) of the standard
open set U0 is the set of points at which the functions gj = fj/f0 are regular. If q is such a point, then
ϕ(q) = (1, g1(q), ..., gn(q)).

8.9.15. Lemma. Let Y
ϕ−→ Pn be the morphism of a smooth projective curve Y to projective space that is

defined by a set (f0, ..., fn) of rational functions on Y .
(i) If the space spanned by {f0, ..., fn} has dimension at least two, then ϕ is not a constant function.
(ii) If {f0, ..., fn} are linearly independent, the image isn’t contained in any hyperplane. �

The degree d of a nonconstant morphism ϕ from a projective curve Y , smooth or not, to projective space
Pn, is the number of points of the inverse image ϕ−1(H) of a generic hyperplane H in Pn. We check that
this number is well-defined. Say that H is the locus h(x) = 0, where h =

∑
aixi, and that another generic

hyperplane G is the locus g(x) = 0, where g =:
∑
bixi. Let f(x) = h/g. The divisor of the rational function

f̃ = f ◦ ϕ on Y is ϕ−1H − ϕ−1H ′.

(8.9.16) base points

If D is a divisor on the smooth projective curve Y , a basis (f0, ..., fk) of global sections of O(D) defines
a morphism Y → Pk−1. This is the most common way to construct such a morphism, though one could use
any set of rational functions.

If a global section of O(D) vanishes at a point p of Y , it is a section of O(D − p). A point p is a base
point of O(D) if every global section of O(D) vanishes at p. A base point can be described in terms of the
usual exact sequence

0→ O(D−p)→ O(D)→ ε→ 0

The point p is a base point if h0(O(D−p)) = h0(O(D)), or if h1(O(D−p)) = h1(O(D))− 1.

Let Y π−→ Pn is a morphism. The degree . of π is the number of points in the inverse image of a generic
hyperplane.

8.9.17. Lemma. Let D be a divisor on a smooth projective curve Y , and suppose that H0(O(D)) 6= 0. Let
Y

ϕ−→ Pn be the morphism defined by a basis of global sections.
(i) The image of ϕ isn’t contained in any hyperplane.
(ii) If O(D) has no base points, the degree r of the morphism ϕ is equal to degree of D. If there are base
points, the degree is lower. �

(8.9.18) canonical divisors

Because the module ΩY of differentials on a smooth curve Y is invertible, it is isomorphic to O(K) for
some divisor K. Such a divisor K is called a canonical divisor. It is often convenient to represent ΩY as a
moduleO(K), though the canonical divisorK isn’t unique. It is determined only up to linear equivalence (see
(8.3.11)).

When written in terms of a canonical divisor K, the Serre dual of an invertible module O(D) will be
O(D)# = O(O(D),O(K)) ≈ O(K−D). With this notation, the Riemann-Roch Theorem forO(D) becomes

(8.9.19) h0(O(D)) = h1(O(K−D)) and h1(O(D)) = h0(O(K−D)) �

172



8.9.20. Proposition. Let K be a canonical divisor on a smooth projective curve Y of genus g > 0.
(i) O(K) has no base point.
(ii) Every point p of Y is a base point of O(K+p).

proof. (i) Let p be a point of Y . We apply Riemann-Roch to the exact sequence

0→ O(K−p)→ O(K)→ ε1 → 0

where ε1 denotes a one-dimensional module supported on a point p. The Serre duals O and O(p) of O(K)
and O(K−p), respectively, form an exact sequence

0→ O → O(p)→ ε2 → 0

When Y has positive genus, there is no rational function on Y with just one simple pole. So h0(O(p)) =
h0(O) = 1. Riemann-Roch tells us that h1(O(K−p)) = h1(O(K)) = 1. The cohomology sequence

0→ H0(O(K−p))→ H0(O(K))→ [1]→ H1(O(K − p))→ H1(O(K))→ 0

shows that h0(O(K−p)) = h0(O(K))− 1. So p is not a base point.

(ii) Here, the relevant sequence is

0→ O(K)→ O(K+p)→ ε3 → 0

The Serre dual of O(K+p) is O(−p), which has no global section. Therefore h1(O(K+p)) = 0, while
h1(O(K)) = h0(O) = 1. The cohomology sequence

0→ h0(O(K))→ h0(O(k+p))→ [1]→ h1(O(K))→ h1(O(k+p))→ 0

shows that H0(O(K)) = H0(O(K+p)). So p is a base point of O(K+p). �

(8.9.21) hyperelliptic curves

A hyperelliptic curve Y is a smooth projective curve of genus g > 1 that can be represented as a branched
double covering of the projective line. So Y is hyperelliptic if there is a morphism Y

π−→ X of degree two,
with X = P1.

The topological Euler characteristic of a hyperelliptic curve Y can be computed in terms of the covering
Y → X , which will be branched at a finite set p1, ..., pn of n points. Since π has degree two, the multiplicity
of a branch point will be e = 2. The Euler characteristic is therefore e(Y ) = 2e(X) − n = 4 − n. Since
e(Y ) = 2− 2g, the number of branch points is n = 2g + 2. So when g = 3, n = 8.

It would take some experimentation to guess that the next remarkable theorem might be true, and some
time to find a proof.

8.9.22. Theorem. Let K be a canonical divisor on a hyperelliptic curve Y , and let Y π−→ X = P1 be
the associated branched covering of degree 2. The morphism Y

κ−→ Pg−1 defined by the global sections of
ΩY = O(K) factors throughX . There is a morphismX

u−→ Pg−1 such that π = κ◦u: Y
π−→ X

u−→ Pg−1.

8.9.23. Corollary. A curve of genus g ≥ 2 can be presented as a branched covering of P1 of degree 2 in at
most one way. �

proof of Theorem 8.9.22.
Let x be an affine coordinate in X , so that the standard affine open subset U0 of X is SpecC[x]. We may
suppose that the point p∞ at infinity isn’t a branch point of the covering. Let Y 0 = π−1U0. Then Y 0 will
have an equation of the form

y2 = f(x)

where f is a polynomial with n = 2g + 2 simple roots. There will be two points of Y above the point p∞.
They are interchanged by the automorphism y → −y. Let’s call those points q1 and q2.
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We start with the differential dx, which we view as a differential on Y . Then 2y dy = f ′(x)dx. Since f
has simple roots, f ′ doesn’t vanish at any of them. Therefore dx has simple zeros on Y above the roots of f .
We also have a regular function on Y 0 with simple roots at those points, namely the function y. Therefore the
differential ω = dx

y is regular and nowhere zero on y0. Because the degree of a differential on Y is 2g − 2
(??), ω has a total of 2g− 2 zeros at infinity. By symmetry, ω has zeros of order g− 1 at the eah of two points
q1 and q2. So K = (g−1)q1 + (g−1)q2 is a canonical divisor on Y , i.e., ΩY ≈ OY (K).

Since K has zeros of order g − 1 at infinity, the rational functions 1, x, x2, ..., xg−1, viewed as functions
on Y , are among the global sections of OY (K). They are independent, and there are g of them. Since
h0(OY (K)) = g, they form a basis of H0(OY (K)). The map Y → Pg−1 defined by the global sections of
OY (K) evaluates these powers of x, so it factors through the double covering Y π−→ X . �

(8.9.24) canonical embedding

Let Y be a smooth projective curve of genus g ≥ 2, and let K be a canonical divisor on Y . Since O(K)

has no base point (??), its global sections define a morphism Y
κ−→ Pg−1, the canonical map whose degree is

equal to the degree 2g − 2 of the canonical divisor.

8.9.25. Let Y be a smooth projective curve of genus g at least two. If Y is not hyperelliptic, the canonical map
embeds Y as a closed subvariety of projective space Pg−1.

proof. We show first that, if κ isn’t an injective map, then Y is hyperelliptic. Let p and q be distinct points
such that κ(p) = κ(q). We may assume that the canonical divisor K is effective, and that p and q are not in
its support. We inspect the global sections of O(K−p−q). Since κ(p) = κ(q), any global section of O(K)
that vanishes at p vanishes at q too. Therefore O(K−p) and O(K−p−q) have the same global sections, and
q is a base point of O(K−p). We’ve computed the cohomology of O(K−p): h0(O(K−p)) = g−1 and
h1(O(K−p)) = 1. Then h0(O(K−p−q)) = g−1 and h1O(K−p−q)) = 2. The Serre dual of O(K−p−q)
is O(p + q), so by Riemann-Roch, h0(O(p + q)) = 2. If D is a divisor of degree one on a curve of positive
genus, then h0(O(D)) ≤ 1 (Proposition ??). Therefore O(p+ q) has no base point. Its global sections define
a morphism Y → P1 of degree 2. So Y is hyperelliptic. Conversely, if Y is hyperelliptic, Theorem 8.9.22
shows that κ has degree 2.

If Y isn’t hyperelliptic, the canonical map is injective, so Y is mapped bijectively to its image Y ′ in Pg−1.
This almost proves the theorem, but: Can Y ′ have a cusp? We must show that the bijective map Y κ−→ Y ′ is
an isomorphism.

We go over the computation made above for a pair of points p, q, this time taking q = p. The computation
is the same. It shows that, since Y isn’t hyperelliptic, p isn’t a base point ofOY (K−p). Therefore h0(OY (K−
2p)) = h0(OY (K−p)) − 1. This tells us that there is a global section f of OY (K) that has a zero of order
exactly 1 at p. When properly interpreted, this fact shows that κ doesn’t collapse any tangent vectors to Y , and
therefore that κ is an isomorphism. Since we haven’t discussed tangent vectors, we prove this directly.

Since κ is a bijective, finite morphism, it is an integral morphism. The function fields of Y and its image
Y ′ are equal, and Y is the normalization of Y ′. Moreover, κ is an isomorphism except on a finite set.

We work locally at a point p of Y ′. When we restrict the global section f of OY (K) found above to the
image Y ′, we obtain an element of the maximal ideal m′ of OY ′ at p, that we denote by x. On Y , this element
has a zero of order one at p, and therefore it is a local generator fot the maximal ideal mp of OY . We may
assume that x generates mp, and that the quotientF = OY /OY ′ is a finite-dimensional vector space supported
at p.

We multiply the short exact sequence 0 → OY ′
i−→ OY

π−→ F → 0 by x. The cokernels of the
multiplication maps form an exact sequence

OY ′/xOY ′
i−→ OY /xOY

π−→ F/xF → 0

Since x generates M, OY /xOY is the residue field κ(p), which has dimension one. The map i isn’t zero
because it sends the residue of 1 in OY ′/xOY ′ to the residue of 1 in κ(p). Therefore i is surjective. This
shows that F/xF = 0. But since F is a finite OY ′ -module and x is in the maximal ideal m′, the quotient
F/xF can’t be zero unless F is zero (5.1.24). Therefore OY ′ = OY . �
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8.9.26. Examples. Let Y be a smooth projective curve of genus g.
(i) When g = 2, the canonical morphism κ is a map of degree 2g − 2 = 2 from Y to P1. Every smooth
projective curve of genus 2 is hyperelliptic.

(ii) When g = 3, κ is a morphism of degree 4 from Y to P2. If Y isn’t hyperelliptic, its image will be a plane
curve of degree 4, isomorphic to Y . The genus of a smooth projective curve of degree 4 is

(
3
2

)
= 3 (1.11.6),

which checks.
The number of moduli of curves of degree 3 (the number of essential parameters) is obtained this way:

There are 15 monomials of degree 4 in three variables. The group GL3 of dimension 9 operates by coordinate
changes. So the number of moduli is 15 − 9 = 6. When a hyperelliptic curve of genus 3 is represented as a
branched double covering of P1, there will be 8 branch points. The group GL2 of dimension 4 operates on the
branch points, but scalars don’t move them. So the number of moduli of hyperelliptic curves of genus three is
8− 3 = 5. Since 5 < 6, this agrees with the fact that not all curves of genus three are hyperelliptic.

(iii) When g = 4, κ is a morphism of degree 6 from Y to P3, and it becomes harder to count moduli. It is a fact
that the number of moduli of curves of any genus g is 3g − 3. The number of moduli of hyperelliptic curves
of genus g is easy to compute. It is 2g − 1. �
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