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Chapter 1

Introduction

1.1 Algebra

The word “algebra” means many things. The word dates back about 1200 years ago to part
of the title of al-Khwārizmı̄’s book on the subject, but the subject itself goes back 4000 years
ago to ancient Babylonia and Egypt. It was about solving numerical problems that we would
now identify as linear and quadratic equations. Versions of the quadratic formula were used
to find solutions to those quadratic equations. Al-Khwārizmı̄ (ca. 780–ca. 850) codified the
algorithms (“algorithm” is a word derived from his name) for solving these equations. He
wrote all his equations out in words since symbolic algebra had yet to be invented.

Other places in the world also had algebra and developed various aspects of it. The ancient
Chinese solved systems of simultaneous linear equations and later developed algorithms to
find roots of polynomials of high degree. Various aspects of number theory were studied in
China, in India, and by Greek mathematicians.

Symbolic algebra was developed in the 1500s. Symbolic algebra has symbols for the
arithmetic operations of addition, subtraction, multiplication, division, powers, and roots as
well as symbols for grouping expressions (such as parentheses), and most importantly, used
letters for variables.

Once symbolic algebra was developed in the 1500s, mathematics flourished in the 1600s.
Coordinates, analytic geometry, and calculus with derivatives, integrals, and series were de-
veloped in that century.

Algebra became more general and more abstract in the 1800s as more algebraic structures
were invented. Hamilton (1805–1865) invented quaternions (see section 2.5.2) and Grassmann
(1809–1977) developed exterior algebras in the 1840s, both of which led to vector spaces. (See
section 2.1.6 for vector spaces.)

Groups were developed over the 1800s, first as particular groups of substitutions or per-
mutations, then in the 1850’s Cayley (1821–1895) gave the general definition for a group.
(See chapter 2 for groups.)

Several fields were studied in mathematics for some time including the field of real numbers
the field of rational number, and the field of complex numbers, but there was no general
definition for a field until the late 1800s. (See chapter 2 for fields.)

Rings also were studied in the 1800s. Noether (1882–1935) gave general concept of com-
mutative ring in 1921 which was later generalized to include noncommutative rings. (See

1



2 CHAPTER 1. INTRODUCTION

chapter 3 for rings.)
We’ll introduce the concepts of field, ring, and group in the Introduction, then study each

in turn in the following chapters.

1.2 Structures in Modern Algebra

Fields, rings, and groups. We’ll be looking at several kinds of algebraic structures this
semester, the three major kinds being fields in chapter 2, rings in chapter 3, and groups in
chapter 4, but also minor variants of these structures.

We’ll start by examining the definitions and looking at some examples. For the time being,
we won’t prove anything; that will come in later chapters when we look at those structures
in depth.

A note on notation. We’ll use the standard notation for various kinds of numbers. The
set of natural numbers, {0, 1, 2, . . .} is denoted N. The set of integers {. . . ,−2,−1, 0, 1, 2, . . .}
is denoted Z (for Zahlen, German for whole number). The set of rational numbers, that is,

numbers of the form
m

n
where m is an integer and n is a nonzero integer, is denoted Q (for

“quotient”). The set of all real numbers, including all positive numbers, all negative numbers,
and 0, is denoted R. And the set of complex numbers, that is, numbers of the form x + iy
where x and y are real numbers and i2 = −1, is denoted C.

1.2.1 Operations on sets

For background on sets, see the section A.2 in the appendix.
We’re familiar with many operations on the real numbers R—addition, subtraction, mul-

tiplication, division, negation, reciprocation, powers, roots, etc.
Addition, subtraction, and multiplication are examples of binary operations, that is,

functions R ×R → R which take two real numbers as their arguments and return another
real number. Division is almost a binary operation, but since division by 0 is not defined, it’s
only a partially defined binary operation. Most of our operations will be defined everywhere,
but some, like divison, won’t be.

Negation is a unary operation, that is, a function R → R which takes one real number
as an argument and returns a real number. Reciprocation is a partial unary operation since
the reciprocal of zero is not defined.

The operations we’ll consider are all binary or unary. Ternary operations can certainly
be defined, but useful ternary operations are rare.

Some of these operations satisfy familiar identities. For example, addition and multipli-
cation are both commutative; they satisfy the identities

x+ y = y + x and xy = yx.

A binary operation is said to be commutative when the order that the two arguments are
applied doesn’t matter, that is, interchanging them, or commuting one across the other,
doesn’t change the result. Subtraction and division, however, are not commutative.
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Addition and multiplication are also associative binary operations

(x+ y) + z = x+ (y + z) and (xy)z = x(yz).

A binary operation is said to be associative when the parentheses can be associated with
either the first pair or the second pair when the operation is applied to three arguments and
the result is the same. Neither subtraction nor division are associative.

Both addition and multiplication also have identity elements

0 + x = x = x+ 0 and 1x = x = x1.

An identity element, also called a neutral element, for a binary operation is an element in
the set that doesn’t change the value of other elements when combined with them under
the operation. So, 0 is the identity element for addition, and 1 is the identity element for
multiplication. Subtraction and division don’t have identity elements. (Well, they do on the

right, since x− 0 = x and
x

1
= x, but not on the left, since usually 0− x 6= x and

1

x
6= x.)

Also, there are additive inverses and multiplicative inverses (for nonzero) elements. That
is to say, given any x there is another element, namely −x, such that x + (−x) = 0, and

given any nonzero x there is another element, namely
1

x
such that x

1

x
= 1. Thus, a binary

operation that has an identity element is said to have inverses if for each element there is an
inverse element such that when combined by the operation they yield the identity element
for the operation. Addition has inverses, and multiplication has inverses of nonzero elements.

Finally, there is a particular relation between the operations of addition and multiplica-
tion, that of distributivity:

x(y + z) = xy + xz and (y + z)x = yx+ zx.

Multiplication distributes over addition, that is, when multiplying a sum by x we can dis-
tribute the x over the terms of the sum.

Exercise 1. On properties of operations.

(a). Is the binary operation x ∗ y =
xy

x+ y
for positive x and y a commutative operation?

That is, is it true that x ∗ y = y ∗ x for all positive x and y? Is it associative? Explain your
answer.

(b). Is it true that (w− x)− (y − z) = (w− y)− (x− z) is an identity for real numbers?
Can you say why or why not? (The word “identity” is used for an equation which holds
whenever both sides of the equation are defined and are equal.)

(c). Although multiplication in R distributes over addition, addition doesn’t distribute
over multiplication. Give an example where it doesn’t.

Algebraic structures. We’ll define fields, rings, and groups as three kinds of algebraic
structures. An algebraic structure will have an underlying set, binary operations, unary
operations, and constants, that have some of the properties mentioned above like commuta-
tivity, associativity, identity elements, inverse elements, and distributivity. Different kinds of
structures will have different operations and properties.

The algebraic structures are abstractions of familiar ones like those on the real numbers
R, but for each kind of structure there will be more than one example, as we’ll see.
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1.2.2 Fields

Informally, a field is a set equipped with four operations—addition, subtraction, multipli-
cation, and division that have the usual properties. (They don’t have to have the other
operations that R has, like powers, roots, logs, and the myriad other functions like sinx.)

Definition 1.1 (Field). A field is a set equipped with two binary operations, one called
addition and the other called multiplication, denoted in the usual manner, which are both
commutative and associative, both have identity elements (the additive identity denoted 0
and the multiplicative identity denoted 1), addition has inverse elements (the inverse of x

denoted −x), multiplication has inverses of nonzero elements (the inverse of x denoted
1

x
or

x−1), multiplication distributes over addition, and 0 6= 1.

This definition will be spelled out in detail in chapter 2.

Of course, one example of a field in the field of real numbers R. What are some others?

Example 1.2 (The field of rational numbers, Q). Another example is the field of rational
numbers. A rational number is the quotient of two integers a/b where the denominator is not
0. The set of all rational numbers is denoted Q. We’re familiar with the fact that the sum,
difference, product, and quotient (when the denominator is not zero) of rational numbers is
another rational number, so Q has all the operations it needs to be a field, and since it’s part
of the field of the real numbers R, its operations have the the properties necessary to be a
field. We say that Q is a subfield of R and that R is an extension of Q. But Q is not all of
R since there are irrational numbers like

√
2.

Example 1.3 (The field of complex numbers, C). Yet another example is the field of complex
numbers C. A complex number is a number of the form a+bi where a and b are real numbers
and i2 = −1. The field of real numbers R is a subfield of C. We’ll review complex numbers
before we use them. See Dave’s Short Course on Complex Numbers at http://www.clarku.
edu/~djoyce/complex

In chapter 2, we’ll study fields in detail, and we’ll look at many other fields. Some will
only have a finite number of elements. (They won’t be subfields of Q.) Some will have Q as
a subfield but be subfields themselves of R or C. Some will be even larger.

Exercise 2. On fields. None of the following are fields. In each case, the operations of addition
and multiplication are the usual ones.

(a). The integers Z do not form a field. Why not?

(b). The positive real numbers {x ∈ R |x > 0} do not form a field. Why not?

(c). The set of real numbers between −10 and 10, that is,

(−10, 10) = {x ∈ R | − 10 < x < 10}

is not a field. Why not?

http://www.clarku.edu/~djoyce/complex
http://www.clarku.edu/~djoyce/complex
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1.2.3 Rings

Rings will have the three operations of addition, subtraction, and multiplication, but don’t
necessarily have division. Most of our rings will have commutative multiplication, but some
won’t, so we won’t require that multiplication be commutative in our definition. All the rings
we’ll look at have a multiplicative identity, 1, so we’ll include that in the definition.

Definition 1.4 (Ring). A ring is a set equipped with two binary operations, one called
addition and the other called multiplication, denoted in the usual manner, which are both
associative, addition is commutative, both have identity elements (the additive identity de-
noted 0 and the multiplicative identity denoted 1), addition has inverse elements (the inverse
of x denoted −x), and multiplication distributes over addition. If multiplication is also com-
mutative, then the ring is called a commutative ring.

Of course, all fields are automatically rings, in fact commutative rings, but what are some
other rings?

Example 1.5 (The ring of integers, Z). The ring of integers Z includes all integers (whole
numbers)—positive, negative, or 0. Addition, subtraction, and multiplication satisfy the
requirements for a ring, indeed, a commutative ring. But there are no multiplicative inverses
for any elements except 1 and −1. For instance, 1/2 is not an integer. We’ll find that although
the ring of integers looks like it has less structure than a field, this very lack of structure allows
us to discover more about integers. We’ll be able to talk about prime numbers, for example.

Example 1.6 (Polynomial rings). A whole family of examples are the rings of polynomials.
Let R be any commutative ring (perhaps a field), and let R[x] include all polynomials with
coefficients in R. We know how to add, subtract, and multiply polynomials, and these
operations have the properties required to make R[x] a commutative ring. We have, for
instance, the ring of polynomials with real coefficients R[x], the ring with integral coefficients
Z[x], etc.

Example 1.7 (Matrix rings). How about an example ring that’s not commutative? The ring
of n×n matrices with entries in a commutative ring R gives such an example, this ring being
denoted Mn(R). This ring, Mn(R), won’t be commutative when n ≥ 2. An example of a
matrix ring is the ring of 2× 2 matrices with real entries, M2(R). Addition and subtraction
are computed coordinatewise. The additive identity, 0, of this matrix ring is the matrix with

all 0 entries, 0 =

[
0 0
0 0

]
. Matrix multiplication is not coordinatewise, but it is associative,

and multiplication does distribute over addition. The multiplicative identity for this matrix
ring is what’s usually called the identity matrix, denoted I. It has 1’s down the main diagonal

and 0’s elsewhere, 1 =

[
1 0
0 1

]
.

Sylvester (1814–1897), in 1850, called rectangular arrangements of numbers matrices, and
Cayley wrote much about them in his papers of 1855–1858.

Example 1.8 (Integers modulo n). An important family of rings is the ring of integers
modulo n. We’ll study this in more detail later in section 2.2, but here’s an incomplete
overview. Fix a positive integer n. Think of two integers a and b as being the same modulo
n if n divides b − a. In that case, we’ll say that a and b are congruent modulo n, and we’ll
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use the notation Gauss (1777–1855) developed, a ≡ b (mod n), to denote that congruence.
Congruence is commonly used in the study of number theory. This meaning of the Latin
word “modulo” was introduced into mathematics by Gauss in 1801.

Note that there are only n distinct integers modulo n, namely 0 through n−1, since those
are the only remainders you can get when you divide an integer by n. These remainders
are also called “residues”. We can represent integers modulo n by these remainders from 0
through n − 1. Thus, we’ll say, for instance, that 5 plus 3 equals 1 modulo 7, by which we
mean 5 + 3 ≡ 1 (mod 7). Thus, we can turn congruence modulo n, which is an equivalence
relation on Z into equality on an n-element set. That n-element set is denoted Z/nZ, read
Z modulo nZ, or more simply as Zn, read Z mod n. So, we can take the elements of Zn to
be the integers from 0 through n − 1, where we understand that addition, subtraction, and
multiplication are done modulo n. And it turns out that this is a ring, as we’ll see when we
study Zn in detail.

Incidentally, when n is a prime number p, then Zp is not just a ring, but a field, as will
be discussed in section 2.2.

Exercise 3. On rings. None of the following are rings. In each case, the operations of addition
and multiplication are the usual ones.

(a). The set of nonzero integers, {x ∈ Z |x 6= 0} is not a ring. Why not?
(b). The set of even integers {2x |x ∈ Z} is not a ring. Why not?
(c). The set of odd degree polynomials with real coefficients

{f(x) ∈ R[x] | the degree of f(x) is odd}

is not a ring. Why not? (How about the set of even degree polynomials?)

Exercise 4. On noncommutative rings. Are the following rings? (The operations are the
usual matrix operations.) Explain in a sentence or two, but a proof is not necessary.

(a). The set of all matrices with real coefficients (all sizes).
(b). The set of all 2× 2 matrices with real entries of the form[

a b
0 d

]
.

(c). The set of all 2× 2 matrices with real entries of the form[
a b
−b a

]
.

In chapter 3 we’ll analyze rings in more detail.

1.2.4 Groups

Unlike fields and rings which have two primary binary operations, groups only have one
binary operation.

Definition 1.9 (Group). A group is a set equipped with a binary operation that is asso-
ciative, has an identity element, and has inverse elements. If, furthermore, multiplication is
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commutative, then the group is called a commutative group or an Abelian group. Abelian
groups can be denoted either additively or multiplicatively, but nonabelian groups are usu-
ally denoted multiplicatively. We’ll use the term order of the group to indicate how many
elements a group G has and denote this order by |G|.

Example 1.10 (The underlying additive group of a ring). Of course, if you have a field
or ring, and just consider addition (and forget about multiplication) you’ve got an Abelian
group. Sometimes this is called the underlying additive group of the field or ring. We’ll use
the same notation for the underlying additive group as we do for the ring. Thus, Z could
mean either the ring of integers or the Abelian group of integers under addition, depending
on the context.

Example 1.11 (Finite cyclic groups). The underlying group of the ring Zn is called a cyclic
group. It’s elements are, of course, 0, 1, 2, . . . , n− 1 where n is congruent to 0. Cyclic groups
are also written multiplicatively, and then the elements are 1, a, a2, . . . , an−1 where an = 1.
A common notation for this cyclic group is Cn.

Definition 1.12 (Units in a ring). In order to use the multiplication for a group operation,
we’ll have to only include the units, also called invertible elements. A unit or invertible
element of a ring R is an element x ∈ R such that there exists another element y ∈ R so that
xy = yx = 1. The subset of units is denoted

R∗ = {x ∈ R | ∃y ∈ R, xy = 1}.

You can easily show that the units form a group under multiplication, called the multi-
plicative group of units of R. When R is a field, then R∗ is all of R except 0, but for rings
there will be other elements than 0 that aren’t invertible. The group R∗ will be Abelian when
the ring R is commutative, but usually it will be nonabelian when R is not commutative.

Examples 1.13. The units in the ring Z are just 1 and −1. The group of units Z∗ is a cyclic
group of order 2.

We’ll see later that the group of units Z∗p when p is prime is a cyclic group of order p− 1.
It is usually the case that Z∗n when n is composite is not a cyclic group.

Example 1.14 (A general linear group, GL2(R)). As a particular example of a multiplicative
group of units, take the invertible elements of the matrix ring M2(R). The invertible 2 × 2
matrices are those matrices [

a b
c d

]
whose determinants ad− bc are nonzero. The group of invertible n× n matrices, Mn(R)∗, is
the general linear group with coefficients in the ring R, denoted GLn(R). Note that GLn(R)
is a nonabelian group for n ≥ 2. The real general linear group GL2(R) can be interpreted as
the group of invertible linear transformations of the plane R2 that leave the origin fixed.

We’ll study GL2(R) and GLn(R) in more detail in section 4.7.2.

Exercise 5. Find two matrices in GL2(Z) that don’t commute thereby proving GL2(Z) is a
nonabelian group.
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C

B

A

Figure 1.1: Equilateral triangle with lines of symmetry

There are many examples of finite nonabelian groups found in geometry. We’ll look at
the group of symmetries of an equilateral triangle.

Example 1.15 (The dihedral group D3). Consider an equilateral triangle. Place a coordinate
system on the plane of the triangle so that its center is at (0, 0), one vertex, A, at (1, 0), and
the other two, B and C, at (−1

2
,±1

2

√
3). This triangle has six symmetries. A symmetry is

a transformation of the plane that preserves distance (that is, an isometry) that maps the
triangle back to itself. Three of these symmetries are rotations by 0◦, 120◦, and 240◦.

1 =

[
1 0
0 1

]
ρ =

[
−1

2
−1

2

√
3

1
2

√
3 −1

2

]
ρ2 =

[
−1

2
1
2

√
3

−1
2

√
3 −1

2

]
The identity transformation, 1, fixes A, B, and C; the rotation ρ by 120◦ maps A to B, B to
C, and C to A; and the rotation ρ2 by 240◦ maps A to C, B to A, and C to B. There are
also three reflections.

ϕ =

[
1 0
0 −1

]
ρϕ =

[
−1

2
1
2

√
3

−1
2

√
3 1

2

]
ρ2ϕ =

[
−1

2
1
2

√
3

−1
2

√
3 1

2

]
The refection ϕ fixes A, and interchanges B and C; the reflection ρϕ fixes C and interchanges
A and B; and the reflection ρ2ϕ fixes B and interchanges A and C This is a particular
nonabelian group that has 6 elements. It is a subgroup of GL2(R) mentioned above.

Example 1.16 (A group of functions). Many applications of group theory are to groups of
invertible functions. Such a group includes invertible functions on some set such that the
composition of any two of the functions is another one.

Let f(x) = 1/x and g(x) = 1 − x. Both of those are invertible considered as rational
functions, and, in fact, each is it’s own inverse: (f ◦ f)(x) = f(1/x) = 1, and (g ◦ g)(x) =
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g(1 − x) = 1 − (1 − x) = x. Let’s see what other functions we can derive from f and g by
composing them.

First, consider (f ◦ g)(x) = f(g(x) = f(1 − x) =
1

1− x
; call that composition h so that

h(x) =
1

1− x
. Next, consider (g ◦ f)(x) = g(f(x) = g

(
1

x

)
= 1 − 1

x
=

x− 1

x
; call that

composition k so that k(x) =
x− 1

x
.

We can get more functions if we continue to compose these. Note that (f ◦ k)(x) =

f

(
x− 1

x

)
=

x

x− 1
; call that ` so that `(x) =

x

x− 1
. Also, (g ◦ h)(x) = g

(
1

1− x

)
=

1− 1

1− x
=

x

x− 1
. That function has already been called `, so g ◦ h = `.

A couple more computations show that h ◦ h = k and k ◦ k = h.
Since f and g are each their own inverses, f ◦ f = i and g ◦ g = i, where i is the identity

function, i(x) = x. Also h ◦ k = k ◦ h = i, and ` ◦ ` = i. Also, i composed with any function
(on either side) is equal to that same function.

It turns out that these six functions are closed under composition. Table 1.1 gives all of
their compositions.

i f g h k `
i i f g h k `
f f i h g ` k
g g k i ` f h
h h ` f k i g
k k g ` i h f
` ` h k f g i

Table 1.1: Composition table for six particular rational functions.

Note that in each row and each column of the table, each one of the functions appears
exactly once. That makes the entries of the table a Latin square. A Latin square is a square
n × n n array filled with n different symbols, each occurring exactly once in each row and
exactly once in each column.

Example 1.17 (Euler’s circle group). The unit circle, S1 = {x+ yi ∈ C |x2 + y2 = 1}, is a
group under multiplication. This is sometimes called Euler’s circle group since Euler (1707–
1783) introduced the unit circle in the complex plane for studying angles and trigonometric
functions.

The product of two complex numbers on this unit circle is another number on the unit
circle. You can directly verify that or you can show it by trigonometry. If x + yi is on the
unit circle, then we can identify x with cos θ and y with sin θ where θ is, as usual, the angle
between the positive x-axis and the ray from 0 to x + yi. Then the product of two complex
numbers on the unit circle corresponds to adding their angles together. The addition formulas
for cosines and sines give this correspondence.

Exercise 6. Compute the product of cos θ + i sin θ times cosϕ + i sinϕ. If x + iy = (cos θ +
i sin θ)(cosϕ + i sinϕ), then what is x, the real part of the product, in terms of θ and ϕ?
What is y, the imaginary part?
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x

y

−1 1

−i

i

Figure 1.2: Unit circle S1

Comment 1.18. Although the sphere

S2 = {(x, y, z) ∈ R3 |x2 + y2 + z2 = 1}

has no group structure, the 3-sphere in 4-space does. The 3-sphere is

S3 = {(x, y, z, w) ∈ R4 |x2 + y2 + z2 + w2 = 1}.

We don’t have time or space to discuss that group structure here. (The 2-sphere S2, in fact,
spheres in all dimensions, does have quandle structures, whatever a quandle might be. See
section 4.5.2.)

In chapter 4 we’ll study groups in detail.

1.2.5 Other algebraic structures besides fields, rings, and groups

There are an unlimited number of other algebraic structures. Some are similar to those listed
above.

For instance, there are division rings (also called skew fields) that have all the properties
of fields except multiplication doesn’t have to be commutative. The primary example is the
quaternions H. We’ll discuss quaternions later in section 2.5.2.

Rings

Commutative rings Skew fields

Fields
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There are a number of structures that are just commutative rings that have nice properties,
and we’ll look at some of them including integral domains, unique factorization domains,
principal ideal domains, and Euclidean domains.

Sometimes rings that don’t have a multiplicative identity are studied, but for us, we’ll
always have 1.

You’ve already studied vector spaces over the real numbers. Most of the things that
you’ve studied about vector spaces over R also hold for vector spaces over other fields.

The analogous structure for vector spaces when a field is replaced by a ring is called a
module over the ring. We won’t study modules over a ring, but when we look at ideals in a
ring, they are, in fact, examples of modules over the ring. Also, Abelian groups are modules
over the ring Z.

We’ll discuss another algebraic structure, quandles, in section 4.5.2 when we discuss
groups.

1.3 Isomorphisms, homomorphisms, etc.

Frequently, we look at two algebraic structures A and B of the same kind, for instance, two
groups or two rings or two fields, and we’ll want to compare them. For instance, we might
think they’re really the same thing, but they have different names for their elements. That
leads to the concept of isomorphism f : A ∼= B, and we’ll talk about that first. Other times
we’ll know they’re not the same thing, but there is a relation between them, and that will
lead to the next concept, homomorphism, f : A → B. We’ll then look as some special
homomorphisms such as monomorphisms. When we have a homomorphism f : A→ A, we’ll
call it an endomorphism, and when an isomorphism f : A ∼= A, we’ll call it an automorphism.
We’ll take each of these variants in turn.

The concepts of injection (one-to-one function), surjection (onto function), and bijection
are described section A.2.2 in the appendix on functions.

We’ll use the following theorem about finite sets when we consider homomorphisms be-
tween finite algebraic structures.

Theorem 1.19. Suppose that f : A → B is a function between two finite sets of the same
cardinality. Then the following three conditions are equivalent: (1) f is a bijection, (2) f is
an injection, and (3) f is a surjection.

Exercise 7. Prove that if f : A → B is a function between two finite sets of the same
cardinality, then f is injective if and only if f is surjective.

1.3.1 Isomorphisms

We’ll say two algebraic structures A and B are isomorphic if they have exactly the same
structure, but their elements may be different. For instance, let A be the ring R[x] of
polynomials in the variable x with real coefficients while B is the ring R[y] of polynomials
in y. They’re both just polynomials in one variable, it’s just that the choice of variable is
different in the two rings. We need to make this concept more precise.
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Definition 1.20 (Ring isomorphism). Two rings A andB are isomorphic if there is a bijection
f : A→ B which preserves addition and multiplication, that is, for all x and y in A,

f(x+ y) = f(x) + f(y), and f(xy) = f(x)f(y).

The correspondence f is called a ring isomorphism.

After we introduce homomorphisms, we’ll have another way to describe isomorphisms.
You can prove various properties of ring isomorphism from this definition.

Exercise 8. Since the structure of rings is defined in terms of addition and multiplication, if
f is a ring isomorphism, it will preserve structure defined in terms of them. Verify that f
preserves 0, 1, negation, and subtraction.

Exercise 9. Prove that if f is a ring isomorphism, then so is its inverse function f−1 : B → A.

Exercise 10. Prove that if f : A→ B and g : B → C are both ring isomorphisms, then so is
their composition (g ◦ f) : A→ C.

Since a field is a special kind of ring, and its structure is defined in terms of addition and
multiplication, we don’t need a special definition for a field isomorphism. A field isomorphism
is just a ring isomorphism between fields.

Exercise 11. Prove that if a ring is isomorphic to a field, then that ring is a field.

We do need a different definition for a group isomorphism since a group is defined in terms
of just one binary operation instead of two.

Definition 1.21 (Group isomorphism). Two groups A and B are isomorphic if there is a
bijection f : A→ B which preserves the binary operation. If both are written additively, that
means for all x and y in A, f(x+ y) = f(x) + f(y); if multiplicative notation is used in both,
then f(xy) = f(x)f(y); if additive in A but multiplicative in B, then f(x + y) = f(x)f(y);
and if multiplicative in A and additive in B, then f(xy) = f(x) + f(y). The correspondence
f is called a group isomorphism.

Usually A and B will use the same notation, both additive or both multiplicative, but
not always.

Exercise 12. Suppose that both A and B are written multiplicatively and that f : A→ B is
a group isomorphism. Prove that f(1) = 1 and f(x−1) = f(x)−1 for all x ∈ A.

Example 1.22. Let A = Z be the group of integers under addition. Let B be the integral
powers of 2, so B = {. . . , 1

4
, 1
2
, 1, 2, 4, . . .} with multiplication as the operation in B. Prove

that an isomorphism f : A→ B is defined by f(n) = 2n. You’ll need to show that f(m+n) =
f(m)f(n).

There’s actually another isomorphism g : A→ B, too, defined by g(n) = 2−n.

1.3.2 Homomorphisms

Whereas isomorphisms are bijections that preserve the algebraic structure, homomorphisms
are simply functions that preserve the algebraic structure. Since the word homomorphism is
so long, alternate words are often used like morphism and map, especially in spoken mathe-
matics.
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Definition 1.23 (Ring homomorphism). A ring homomorphism f : A→ B between rings is
a function that preserves addition, multiplication, and 1.

A group homomorphism f : A → B between groups preserves the binary operation (ad-
dition or multiplication depending on the notation used for the group).

Comment 1.24. It’s a peculiarity of rings that preserving addition and multiplication
doesn’t imply that 1 is also preserved, so that condition has to be required as well. We’ll see
plenty of examples of homomorphisms in the course, and there are more examples in the next
section on monomorphisms. Of course, isomorphisms are special cases of homomorphisms.

Example 1.25 (A ring homomorphism). Let Z[x] be the ring of polynomials with integral
coefficients. Evaluating a polynomial f(x) at a particular number, like 3, to give f(3), is a
ring homomorphism ϕ : Z[x]→ Z. It preserves addition since ϕ(f(x)+g(x)) = f(3)+g(3) =
ϕ(f(x)) + ϕ(g(x)), and you can check that it preserves multiplication and 1.

Example 1.26 (A group homomorphism). Let A be the integers under addition, and let
B = {1,−1} with multiplication as the binary operation. Then f : A → B defined by
f(n) = (−1)n is a group homomorphism.

You can prove several properties of homomorphisms from the definition, but for the time
being I’ll just mention two because they’ll lead to the concept of category which will be
introduced in section 3.5.

1. The composition of two homomorphisms (of the same kind) is another homomorphism.

2. The identity function 1A : A → A, which maps every element to itself, is a homomor-
phism, indeed, it’s an isomorphism.

When we have a homomorphism f : A → B, we’ll call A the domain of f and we’ll call
B the codomain of f . (Sometimes the word “range” is used for codomain, but some people
prefer to use “range” to mean image, which is s different thing. To avoid ambiguity, we’ll use
“codomain”.)

A more natural way to characterize isomorphism is in terms of homomorphisms. Two
rings A and B are isomorphic if and only if there if there are two ring homomorphisms
f : A→ B and g : B → A such that g ◦ f is the identity on A and f ◦ g is the identity on B.

1.3.3 Monomorphisms and epimorphisms

Two common kinds of homomorphisms are monomorphisms and epimorphisms, often called
monos and epis for short. When a homomorphism f : A → B is an injective function, it’s
called a monomorphism; and when it a surjective function, it’s an epimorphism (but, in the
category of rings, we’ll see there are more epimorphisms than just the surjective ring homo-
morphisms). You might wonder why we need these words when we’ve got more than enough
words already to describe injective (one-to-one) and surjective (onto) as well as others not
mentioned here. The main reason is that they’re special kinds of injections or surjections—
they preserve the algebraic structure. Another is that, although for group homomorphisms
monos and epis have these particular correspondences to injective and surjective, there are
other categories in which they don’t.

Note that every isomorphism is simultaneously a monomorphism and and epimorphism.
The converse holds for groups, but, surprisingly, not for rings.
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Example 1.27 (Inclusion). Inclusions are monomorphisms. When one ring (or group) A is
a subring (or subgroup) of another B, then the inclusion function ι : A → B, which maps
an element to itself, is a monomorphism. That’s an important example of a monomorphism,
but there are others.

Example 1.28. For example, let A and B both be the additive group of integers Z, and let
f(n) = 2n. This f is a monomorphism, but it’s not an inclusion (which in this case would
be the identity map since A and B are the same).

Comment 1.29. Note that if f : A → B is a ring homomorphism where A is a field and
0 6= 1 in B, then f is always an injection, and so it’s a monomorphism. You can prove this
statement in two stages. First, show that if f(x) = 0 then x = 0. Second, show that if
f(x) = f(y), then x = y.

Thus, every field homomorphism is a monomorphism.

Example 1.30 (A group epimorphism). We’ll see plenty of epimorphisms when we talk
more about the integers modulo n, but for the time being, consider example 1.26 of a group
epimorphism. The group A is the additive group of integers Z, and the group B is the two
element group {1,−1} under multiplication. Then f : A → B defined by f(n) = (−1)n is a
group epimorphism. Even numbers are sent to 1 and odd numbers to −1.

1.3.4 Endomorphisms and automorphisms

An endomorphism is just a homomorphism f : A→ A where the domain and codomain are
the same, and an automorphism is just an isomorphism f : A → A. These are important
because we always have the identity automorphism 1A : A→ A to compare f to, so we have
more information when the domain and codomain are the same.

Example 1.31 (A field automorphism). Let C be the complex field. Let φ : C → C be
complex conjugation, usually denoted by putting a bar above the complex number

ϕ(x+ yi) = x+ yi = x− yi.

This is clearly a bijection since it is its own inverse, x+ yi = x + yi. Also, it preserves
addition, multiplication, and 1, so it’s a ring isomorphism.

(x1 + y1i) + (x2 + y2i) = x1 + y1i+ x2 + y2i

(x1 + y1i)(x2 + y2i) = x1 + y1i x2 + y2i

1 = 1

In fact, it’s a field automorphism of C.
The existence of this automorphism says that we can’t distinguish between i and −i in the

sense that any true statement about the complex numbers remains true when all occurrences
of i are replaced by −i.

Example 1.32 (Group endomorphisms and automorphisms). There are many group endo-
morphisms f : Z→ Z from the additive group of integers to itself. Fix any integer n and let
f(x) = nx. This is a group homomorphism since f(x+y) = n(x+y) = nx+ny = f(x)+f(y).
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For n 6= 0 it is also a monomorphism. For n = −1 this is negation, and it’s a bijection, so it’s
a group automorphism. That says if we only consider addition, we can’t distinguish between
positive and negative numbers.

But negation is not a ring automorphism on the ring of integers because −(xy) does not
equal (−x)(−y). Thus, with the use of multiplication, we can distinguish between positive
and negative numbers.

1.4 A little number theory

In science nothing capable of proof ought to be accepted without proof. Though
this demand seems so reasonable, yet I cannot regard it as having been met even
in the most recent methods of laying the foundations for the simplest science; viz.,
that part of logic which deals with the theory of numbers.

Dedekind, 1888

This course is not meant to be a course in number theory, but we will need a little bit
of it. We’ll quickly review mathematical induction on the natural numbers N, divisibility,
prime numbers, greatest common divisors, and the Euclidean algorithm.

1.4.1 Mathematical induction on the natural numbers N

Richard Dedekind (1831–1916) published in 1888 a paper entitled Was sind und was sollen
die Zahlen? variously translated as What are numbers and what should they be? or The
Nature of Meaning of Numbers. In that work he developed basic set theory and characterized
the natural numbers as a simply infinite set.

Definition 1.33. (Dedekind) A set N is said to be simply infinite when there exists a one-

to-one function N
′
→ N called the successor function, such that there is an element, called

the initial element and denoted 1, that is not the successor of any element, and if a subset S
of N contains 1 and is closed under the successor function, then S = N.

Such a simply infinite set N may be called the natural numbers. It is characterized by an

element 1 and a transformation N
′
→ N satisfying the following conditions:

1. Injectivity: ∀n,m, n 6= m implies n′ 6= m′.

2. Initial element: ∀n, 1 6= n′.

3. Induction: If S ⊆ N, 1 ∈ S, and (∀n, n ∈ S implies n′ ∈ S), then S = N.

The Dedekind axioms, also called the Peano axioms, are this last characterization involving
1, the successor function, and the three conditions. Among other things, Peano (1858–1932)
developed much of the notation in common use in set theory.

The last axiom is called mathematical induction. If you want to show a subset S of N is
all of N , first show that 1 ∈ S. Then show for each natural number n that n ∈ S implies
n+ 1 in S. Finally conclude that S = N.

http://aleph0.clarku.edu/~djoyce/numbers/dedekind.pdf
http://aleph0.clarku.edu/~djoyce/numbers/dedekind.pdf
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A principle that is logically equivalent to mathematical induction is the well-ordering
principle, also called the minimization principle. It says that each nonempty subset of N has
a least element. To use it to prove a subset S of N is all of N, assume that it isn’t, take the
least element n in N − S, and derive a contradiction, usually by showing there’s a smaller
element than n not in S.

Another principle logically equivalent to mathematical induction is Euclid’s principle of
infinite descent which says that there is no infinite decreasing sequence of positive integers.
This principle was also used by Fermat (1607–1665).

1.4.2 Divisibility

We’ll restrict our discussion now to N, the natural numbers, that is, the set of positive
integers.

Recall that an integer m divides an integer n, written m
∣∣n, if there exists an integer k such

that mk = n. A few basic properties of divisibility follow directly from this definition. Euclid
(fl. ca. 300 B.C.E.) uses some of these in Book VII of his Elements. You can find Joyce’s
translation of Euclid’s Elements on the web at http://aleph0.clarku.edu/~djoyce/java/
elements/elements.html

1. 1 divides every number. 1
∣∣n.

2. Each number divides itself. n
∣∣n.

3. If one number m divides another number n, then m divides any multiple of n, that is,
m
∣∣n implies m

∣∣kn.

4. Divisibility is a transitive relation, that is, m
∣∣n and n

∣∣k imply m
∣∣k.

5. If one number divides two other numbers, then it divides both their sum and difference.
m
∣∣n and m

∣∣k imply m
∣∣(n+ k) and m

∣∣(n− k).

6. Cancellation law. One number divides another if and only if any multiple of that one
number divides the same nonzero multiple of the other number. m

∣∣n ⇐⇒ kn
∣∣kn.

(k 6= 0)

Example 1.34. The divisors of a number can be displayed graphically in what is called a
Hasse diagram of the lattice of divisors. As an example, consider the number 432. Its prime
factorization is 2433, so its divisors are of the form 2m3n where 0 ≤ m ≤ 4 and 0 ≤ n ≤ 3.
There are 5 · 4 = 20 of these divisors. They are

1 2 3 4 6 8 9 12 16 18
24 27 36 48 54 72 108 144 216 432

We can display these numbers and emphasize which ones divide which other ones if we
put the large numbers at the top of the diagram, and connect the smaller divisors to the
larger ones with lines. That results in the Hasse diagram in figure 1.3.

Since divisibility is transitive, we don’t have to include all possible connections. So long
as there is a path of connections from a lower number to an upper one, then we can conclude
the lower divides the upper. The resulting diagram is called a Hasse diagram in honor of
Hasse (1898–1979).

http://aleph0.clarku.edu/~djoyce/java/elements/elements.html
http://aleph0.clarku.edu/~djoyce/java/elements/elements.html
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432

216 96

108 72 48

54 36 24 16

27 18 12 8

9 6 4

3 2

1

Figure 1.3: Divisors of 432

Exercise 13. Draw Hasse diagrams for the divisors of 30, 32, and 60.

The Hasse diagram for all positive integers under divisibility is, of course, infinite. Figure
1.4 shows the part of it up through 12.

8 12

4 6 9 10

2 3 5 7 11

1

Figure 1.4: Divisibility up through 12

1.4.3 Prime numbers

Definition 1.35. A natural number greater than 1 is a said to be a prime number, or more
simply a prime, if its only divisors are 1 and itself, but if it has more divisors, it’s called a
composite number.

Two positive integers are said to be relatively prime, or coprime if the only positive integer
that divides them both is 1.

Prime numbers were mentioned by the Pythagoreans Philolaus (470–385 B.C.E.) and
Thymaridas (400–350 B.C.E.), and by Aristotle (384–322 B.C.E.) after them. The first
recorded proofs about prime numbers occur in Euclid’s Elements.



18 CHAPTER 1. INTRODUCTION

We know intuitively that there are infinitely many primes, and that every number is a
product of primes. Now let’s prove those statements. We’ll start by proving something that
will help us prove these two statements. If a theorem is not particularly interesting, but is
useful in proving an interesting statement, then it’s often called a lemma. This one is found
in Euclid’s Elements.

Lemma 1.36 (Euclid, VII.31). Every number greater than 1 has at least one prime divisor.

Proof. Let n be an integer greater than 1. We’ll find a prime divisor of n. Let m be the
smallest divisor of n greater than 1. (Note that we’re using the minimization principle, also
called the well-ordering principle, to conclude that such an m exists.) We’ll show that m
is prime thereby proving the lemma. We’ll do that with a proof by contradiction, and that
means that first we’ll suppose that m is not prime, then derive a contradiction, and that will
imply that m must be prime.

Suppose m is not prime, but composite. Them m is the product of two integers, j and
k, each greater than 1. Now, k

∣∣m and m
∣∣n, so k

∣∣n. But k < m. That gives us a divisor of
n which is even smaller than m but still greater than 1. That contradicts the fact that m is
the smallest divisor of n greater than 1. Thus, m is prime, and it’s a divisor of n. q.e.d.

Now we can prove one of the two statements.

Theorem 1.37. Every number greater than 1 is either a prime or the product of primes.

Proof. This will be another proof by contradiction that uses the well-ordering principle.
Suppose that the theorem is false. Then there is some composite number greater than 1

that that is not the product of primes. Let n be the smallest such. By our lemma, this n
has some prime divisor, call it p. Then m = n/p is a number smaller than n but larger than
1, so, by the minimality of n, m is either prime or the product of primes. In the first case,
when m is prime, then n = pm is the product of two primes. In the second case when m is a
product of primes, then n = pm is also a product of primes. In any case, n is the product of
primes, a contradiction. Thus, the theorem is true. q.e.d.

This last theorem will form part of the so-called fundamental theorem of arithmetic that
says every number greater than 1 can be uniquely factored as a product of primes. So far,
we only have that every number is a product of primes, but we haven’t seen the uniqueness.
We’ll prove that pretty soon.

Next, let’s prove the other statement, that there are infinitely many primes. This is
Euclid’s proof.

Theorem 1.38 (Euclid IX.20). There are infinitely many primes.

Proof. Actually, Euclid proves something a little stronger. Given any finite list of primes, he
finds a prime not on that list.

Suppose that p1, p2, . . . , pk is a finite list of primes. Let n be the product of these primes,

n = p1p2 · · · pk.

By our lemma n+ 1 has a prime factor, call it p. This prime p cannot equal any pi, for then
p would divide both n and n + 1, and so would divide the difference 1. But a prime p can’t
divide 1 since p > 1. This p is a prime not on the list.

It follows that there are infinitely many primes. q.e.d.
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The number of relatively prime integers. An important combinatorial count for num-
ber theory and algebra is the number ϕ(n) of positive integers less than a given integer n.
For example, we’ll show later in corollary 2.11 that the number of units in the ring Zn is
ϕ(n). We’ll also use it in our discussion of cyclotomic polynomials in section 1.6.2.

It’s easy enough to compute ϕ(n) when n is small. For example, ϕ(12) = 4, since there
are four positive integers less than 12 which are relatively prime to 12, namely, 1, 5, 7, and
11.

Definition 1.39 (Euler’s totient function). For a given positive integer n, the number of
positive integers less than n that are relatively prime to n is denoted ϕ(n). The function ϕ
is called Euler’s totient function.

The first few values of the totient function are listed in this table.

n 1 1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
ϕ(n) 1 1 2 2 4 2 6 4 6 4 10 4 12 6 8 8 16 6

One obvious property of this function is that if p is prime, then ϕ(p) = p− 1.
A property that’s not so obvious is that if m and n are relatively prime, then ϕ(mn) =

ϕ(m)ϕ(n). That property is summarized by saying that ϕ is a multiplicative function. It
follows from the Chinese remainder theorem discussed in section 3.2.1.

That reduces the computation of ϕ to computing it on powers pk of prime numbers.
That can be found directly. The only positive integers less than or equal to pk that aren’t
relatively prime to pk are the multiples of p, which are p, 2p, . . . , pk, and there are pk−1 of

them. Therefore, ϕ(pk) = pk − pk−1 = pk
(

1− 1

p

)
.

Theorem 1.40 (Euler’s product formula).

ϕ(n) = n
∏
p

∣∣n
(

1− 1

p

)
.

Proof. Write n = pk11 · · · pkrr as a product of powers of distinct primes. Then by the multi-
plicativity of ϕ,

ϕ(n) = ϕ(pk11 · · ·ϕ(pkrr ) = pk11

(
1− 1

p1

)
· · · pk1r

(
1− 1

p r

)
= ϕ(n) = n

∏
p

∣∣n
(

1− 1

p

)
.

q.e.d.

1.4.4 The Euclidean algorithm

The Euclidean algorithm is an algorithm to compute the greatest common divisor of two
natural numbers m and n. Euclid described in Book VII of his Elements.

Euclid defined the greatest common divisor of two natural numbers m and n, often
denoted gcd(m,n) or more simply just (m,n), as the largest number d which is at the same
time a divisor of m and a divisor of n.
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Among other things, greatest common divisors are used to reduce common fractions to
lowest terms. For example, if you wanted to reduce the fraction 1417

1853
to lowest terms, you

would look for the greatest common divisor of the two numbers 1417 and 1853, which is 109.
Then you could divide both the numerator and the denominator by that greatest common
divisor to reduce 1417

1853
to its lowest terms, namely, 13

17
.

There are two forms of the Euclidean algorithm. The first form, as Euclid stated it,
repeatedly subtracts the smaller number from the larger replacing the larger by the difference,
until the two numbers are reduced to the same number, and that’s the greatest common
divisor. (Note that the process has to stop by the well-ordering principle since at each step
the larger number is reduced.)

The other form speeds up the process. Repeatedly divide the smaller number into the
larger replacing the larger by the remainder. (This speeds up the process because if the
smaller number is much smaller than the larger, you don’t have to subtract it from the larger
many times, just divide once and take the remainder which is the same as what you’d get if
repeatedly subtracted it.)

Example 1.41. Let’s find gcd(6731, 5777). Since 6731− 5777 = 954, replace 6731 by 954.
We’ve reduced the problem to finding gcd(5777, 954).

Now repeatedly subtract 954 from 5777 until you get a number smaller than 954 and
replace 5777 by that number. Alternatively, you could divide 954 into 5777 and replace 5777
by the remainder. You’ll get the same thing, namely 53.

Next to find gcd(954, 53). If you keep subtracting 53 from 954, eventually youll get 0.
Or if you’re using division, when you divide 53 into 954, youll get a remainder of 0. Either
way, you can conclude 53 divides 954, so their GCD is 53 itself. Thus, gcd(6731, 5777) = 53

This Euclidean algorithm works to produce the gcd, and the argument only depended on
two properties of divisibility mentioned above, namely that if one number divides two other
numbers, then it divides both their sum and difference.

Sometimes the gcd of two numbers turns out to be 1, and in that case we say the two
numbers are relatively prime or that they’re coprime.

Theorem 1.42 (Euclidean algorithm). Let d be the result of applying the Euclidean algo-
rithm to m and n. Then d is the greatest common divisor gcd(m,n). Furthermore, the
common divisors k of m and n are the divisors of gcd(m,n).

Proof. One step of the Euclidean algorithm replaces the pair (m,n) by (m − n, n). It was
mentioned above in the properties of divisibility that if one number divides two other numbers,
then it divides both their sum and difference. Therefore, a number k divides both m and
n if and only if k divides m − n and n. Since the pair (m,n) have the same set of divisors
as the pair (m − n, n), therefore gcd(m,n) = gcd(m − n, n). Thus, at each step of the
Euclidean algorithm the gcd remains invariant. Eventually, the two numbers are the same,
but when that last step is reached, that number is the gcd. So, the end result of the Euclidean
algorithm is d = gcd(m,n).

The remarks above show that every divisor k of m and n also divides the result d of
applying the Euclidean algorithm to m and n. Finally, if k

∣∣d, since d
∣∣m and d

∣∣n, therefore
k
∣∣m and k

∣∣n. q.e.d.
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Extended Euclidean algorithm. There’s still more that we can get out of the algorithm
if we include the equations implicit in the computations. That will lead to the extended
Euclidean algorithm.

Example 1.43. When we found gcd(6731, 5777), if we kept track of the quotients as well
as the remainders, then each step yields an equation.

6731− 1 · 5777 = 954

5777− 6 · 954 = 53

954− 18 · 53 = 0

Turning these equations around, we can find 53 as a linear combination of 6731 and 5777 as
follows, starting with the next to the last equation.

53 = 5777− 6 · 954

= 5777− 6 · (6731− 1 · 5777) = 7 · 5777− 6 · 6731

Thus, the gcd of 6731 and 5777 is a linear combination of them.

Here’s the general situation to find gcd(m,n) as a linear combination of m and n. Let’s
suppose that m > n to begin with. We divide n into m and get a quotient of q1 and remainder
of r1, that is

m = q1n+ r1,

with r1 between 1 and n. Then we work with n and r1 instead of m and n. Divide r1 into n
to get a quotient of q2 and a remainder of r2, that is,

n = q2r1 + r2.

And we keep going until eventually we get a remainder of 0.

r1 = q3r2 + r3

r2 = q4r3 + r4
...

rs−3 = qs−1rs−2 + rs−1

rs−2 = qsrs−1 + 0

We have
m > n > r1 > r2 > · · · > rs−1

and rs−1 is d, the gcd we’re looking for.
Each equation finds a remainder as a linear combination of the previous two remainders.

Starting with the next to the last equation, we can find d = rs−1 as a linear combination of
rs−2 and rs−3. The equation before that gives rs−2 in terms of rs−3 and rs−4, so we can also
get d in terms of rs−3 and rs−4. Working our way back up, we can eventually get d as a linear
combination of m and n.

Thus, we’ve shown the following theorem.
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Theorem 1.44 (Extended Euclidean algorithm). The greatest common divisor d =
gcd(m,n) of m and n is a linear combination of m and n. That is, there exist integers
a and b such that

d = am+ bn.

Now that we have the major theorems on gcds, there are a few more fairly elementary
proprieties of gcds that are straightforward to prove, such as these.

Theorem 1.45.
gcd(a, b+ ka) = gcd(a, b).
gcd(ak, bk) = kgcd(a, b).
If d = gcd(a, b) then gcd(a/d, b/d) = 1.

Exercise 14. Prove the statements in the theorem.

Greatest common divisors of more than two numbers The gcd of more than two
numbers is defined the same way as for two numbers: the gcd of a set of numbers the largest
number that divides them all. For example, gcd(14, 49, 91) = 7. To find a gcd of three
numbers, a, b, and c, first find d = gcd(a, b), then find e = gcd(d, c). Thus,

gcd(a, b, c) = gcd(gcd(a, b), c),

a statement that is easy to show.

Pairwise relatively prime numbers A set of numbers is said to be pairwise relatively
prime or pairwise coprime if any two of them are relatively prime. For instance, 15, 22, and
49 are three pairwise relatively prime numbers. Thus, a, b, and c are pairwise relatively prime
when

gcd(a, b) = gcd(a, c) = gcd(b, c) = 1.

Note that gcd(a, b, c) can be 1 without a, b, and c being pairwise relatively prime. For
instance, gcd(6, 10, 15) = 1, but gcd(6, 10) = 2, gcd(6, 15) = 3, and gcd(10, 15) = 5.

Least common multiples The least common multiple of a set of positive integers is the
smallest positive integer that they all divide. It is easy to show that the greatest common
divisor of two integers times their least common multiple equals their product.

gcd(a, b) lcm(a, b) = ab.

Least common multiples can be used to sum common fractions. For example, to add
5
6

+ 4
15

, note that the least common multiple of 6 and 15 is 30, so each fraction can be
expressed with the least common denominator 30 as 25

30
+ 8

30
= 25+8

30
= 33

30
. Even using least

common denominators, it may be that the sum can be simplified as it can in this case to 11
10

.

1.5 The fundamental theorem of arithmetic

We proved above that every natural number could be factored as a product of primes. But
we want more than existence, we want uniqueness. We need to prove that there is only one
way that it can be factored as a product of primes.
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The unique factorization theorem, a.k.a., the fundamental theorem of arithmetic.
Now, in order to make this general statement valid we have to extend a little bit what we
mean by a product. For example, how do you write a prime number like 7 as a product of
primes? It has to be written as the product 7 of only one prime. So we will have to accept a
single number as being a product of one factor.

Even worse, what about 1? There are no primes that divide 1. One solution is to accept
a product of no factors as being equal to 1. It’s actually a reasonable solution to define the
empty product to be 1, but until we find another need for an empty product, let’s wait on
that and restrict this unique factorization theorem to numbers greater than 1. So, here’s the
statement of the theorem we want to prove.

Theorem 1.46 (Unique factorization theorem). Each integer n greater than 1 can be
uniquely factored as a product of primes. That is, if n equals the product p1p2 · · · pr of
r primes, and it also equals the product q1q2 · · · qs of s primes, then the number of factors
in the two products is the same, that is r = s, and the two lists of primes p1, p2, . . . , pr and
q1, q2, . . . , qs are the same apart from the order the listings.

We’ll prove this by using the strong form of mathematical induction. The form that we’ll
use is this:

In order to prove a statement S(n) is true for all numbers, prove that S(n) follows
from the assumption that S(k) is true for all k < n.

This principle of induction appears to be stronger than the one we’ve used before, but, in
fact, it is equivalent to it. It’s really the same as the minimization principle (i.e. well-ordering
principle) applied to the negation of the statement. The advantage in using it is that a proof
by contradiction is not needed making the proof more understandable.

Proof. We’ll prove the unique factorization theorem in two cases. Case 1 will be where n is
a prime number itself. Case 2 will be where n is composite.

Case 1: Suppose that n is a prime number. The only way that a prime number can be written
as a product of primes is as itself; otherwise it would not be prime, but composite.

Case 2: Suppose that n is a composite number equal to both products of primes p1p2 · · · pr
and q1q2 · · · qs. Note that since n is composite, both r and s are at least 2; otherwise it would
not be composite, but prime.

Now look at one of the primes, say p1. It divides n, so it divides the product of the other
primes q1q2 · · · qs. We suspect that that implies it has to be one of those other primes. Let’s
put that off for a bit; that is, logically before we prove this theorem, we need to prove another
theorem, listed next, that if a prime divides a product of primes, then it is one of those primes;
but we’ll actually do that next. Assuming we’ve done that, then we can conclude that p1 is
one of the qi’s. We can reorder the product q1q2 · · · qs to make it so that q1 equals p1. Now,
since p1p2 · · · pr = q1q2 · · · qs and the first first factors of the two products are equal, therefore
p2 · · · pr = q2 · · · qs. Now, by our new induction principle, these are two prime factorizations
of a number smaller than n, and hence are the same, except for their order. Therefore, they
have the same number of factors, that is, r = s, and all the factors are the same except
for their order. And the number n is that product times p1, which equals q1, therefore the
original two products, p1p2 · · · pr and q1q2 · · · qs, are the same except for order. q.e.d.
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Well, that finished the proof except we have to prove another theorem first, namely, the
following one.

Theorem 1.47. If a prime divides a product of primes q1q2 . . . qs, then it equals one of the
primes q1, q2, . . . , qs.

We could do that, but we we’ll prove a slightly stronger theorem, namely, the following
one.

Theorem 1.48. If a prime divides a product of numbers b1b2 . . . bs, then it divides one of
the numbers b1, b2, . . . , bs.

Now the reason this theorem implies the previous theorem is because if a prime p divides
a product of primes q1q2 . . . qs, then it divides one of the primes q1, q2, . . . , qs, but the only
way that one prime can divide another is if it equals the other.

Proof. A product of s numbers b1b2 . . . bs is actually a series of binary products. It’s b1 times
b2 . . . bs, and b2 . . . bs is b2 times b3 · · · bs, etc, where the last product is bs−1bs is the product
of bs−1 times bs. That means that if we knew the following theorem, then, using ordinary
induction, we could conclude this one. q.e.d.

Theorem 1.49. If a prime divides a product of two numbers, then it divides one of the
numbers.

Now, we could prove this theorem directly, but it turns out that there is a slightly stronger
version that we can use in other places, so let’s prove it, the one listed next, instead, and
show this theorem follows from it.

Theorem 1.50. If n and a are relatively prime, and n
∣∣ab, then n

∣∣b.
Proof that this theorem implies implies the previous one. Suppose that a prime p divides ab.
If p doesn’t divide a, then it’s relatively prime to a, so by this theorem, it divides b. Therefore,
either p

∣∣a or p
∣∣b. q.e.d.

Proof of this theorem. Suppose that gcd(n, a) = 1. Then, by the extended Euclidean al-
gorithm, 1 is a linear combination of n and a, that is, there exist integers t and u such
that

1 = tn+ ua.

Multiply that equation by b to get

b = tnb+ uab.

Now, if n
∣∣ab, then n divides the right hand side of the equation, but that equals the left hand

side, so n
∣∣b. q.e.d.
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Comment 1.51. Typically in a mathematics book those theorems that come first logically
are presented first. Here we started with our goal and discovered the theorems that were
needed to prove the goal. (Actually, I made the list longer than it needed to be by strength-
ening a couple of them because the stronger versions are more useful, something you can only
tell with hindsight.)

The advantage to presenting theorems in their logical order is that it is easier to follow the
logic. The disadvantage is that the motivation for the preliminary theorems is not apparent
until the final theorem, the interesting one, is reached.

Usually when we write the prime factorization of a number, we’ll use exponents on those
primes that are repeated. For instance, the number 40 had the prime factorization 2 · 2 ·
2 · 5. An abbreviated form for this factorization is 23 · 5. We say that the prime 2 occurs
with multiplicity 3, while the prime 5 occurs with multiplicity 1. The multiplicities are the
exponents. So, in general, a number n has the prime factorization

n = pe11 p
e1
2 · · · p

ek
k

where the primes p1, p2, . . . , pk are all distinct, and their multiplicities are the exponents
e1, e2, . . . , ek, respectively.

These exponents are called the orders of the primes in n. The order of p in n be the
exponent of p in the prime factorization of n, denoted ordp a.

Immediate corollaries to the unique factorization theorem. A corollary is a theorem
that logically follows very simply from a theorem. Sometimes it follows from part of the proof
of a theorem rather than from the statement of the theorem. In any case, it should be easy to
see why it’s true. We can draw a couple of corollaries from the unique factorization theorem.

Corollary 1.52. The only primes that can divide a number n are the ones that appear in
its prime factorization pe11 p

e1
2 · · · p

ek
k .

Corollary 1.53. If the prime factorizations of m and n are m = pe11 p
e1
2 · · · p

ek
k and n =

pf11 p
f1
2 · · · p

fk
k (where here some of the ei’s and fi’s may equal 0 so we can use the same list of

primes for both numbers), then their greatest common divisor d = gcd(m,n) has the prime
factorization d = pg11 p

g1
2 · · · p

gk
k where each exponent gi is the minimum of the corresponding

exponents ei and fi.

As an example of the last corollary, if m = 1260 = 22325171 and n = 600 = 233152, then
their gcd is d = 223151 = 60.

1.6 Polynomials.

We’ll frequently use polynomials in our study of fields and rings. We’ll only consider polyno-
mials with coefficients in fields and commutative rings, not with coefficients in noncommuta-
tive rings.

We won’t formally define polynomials. For now, we’ll only look at polynomials in one
variable x, but later in section 3.10.4 we’ll look at polynomials in two or more variables.
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Informally a polynomial f(x) with coefficients in a commutative ring R is an expression

f(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0

where each coefficient ai ∈ R. We’ll assume that the leading coefficient an is not zero so that
deg f , the degree of the polynomial, is n. When an is zero, the polynomial is called a monic
polynomial.

It’s convenient to denote a polynomial either by f or by f(x). If the variable x is referred
to somewhere nearby, then I’ll use f(x), otherwise I’ll just use f . For instance, if I want to
multiply two polynomials f and g together, I’ll write fg, but if I want two multiply f by
x2 − 3x+ 2, I’ll write f(x) (x2 − 3x+ 2) or f(x) · (x2 − 3x+ 2).

A root of a polynomial is an element a of R such that f(a) = 0, that is, it’s a solution of
the polynomial equation f(x) = 0.

The set of all polynomials with coefficients in a commutative ring R is denoted R[x]. It
has addition, subtraction, and multiplication, and satisfies the requirements of a ring, that
is, it has addition, subtraction, and multiplication with the usual properties. R[x] is called
the ring of polynomials with coefficients in R. Note that R[x] doesn’t have reciprocals even
when R is a field, since x has no inverse in R[x]. Therefore, R[x] is not a field. Nonetheless,
the ring R is a subring of the ring R[x] since we can identify the constant polynomials as the
elements of R.

1.6.1 Division for polynomials

Although R[x] doesn’t have reciprocals, it does have a division algorithm, at least when the
divisor is a monic polynomial.

Theorem 1.54 (The division algorithm for polynomials over a ring). Let R be a commutative
ring and R[x] its polynomial ring in one variable. Let f be a polynomial (the dividend) and
g a monic polynomial (the divisor). Then there exist unique polynomials q (the quotient)
and r (the remainder) such that f = qg + r where either r = 0 or deg r < deg g.

Proof of existence. One case is when f = 0 or deg f < deg g. Since the dividend already has
a lower degree, the quotient q = 0 and the remainder r = f .

That leaves the case when deg f ≥ deg g. We’ll prove it by induction on n = deg f where
the base case is n = 0. That’s the case where f and g are both constants in the ring R, but
g is monic, so g = 1. Then q = f and r = 0.

Now for the inductive step. We’ll assume the inductive hypothesis that the theorem is
correct for all polynomials f of degree less than n and show it’s true for those of degree n.
Let

f(x) = a0 + a1x+ · · ·+ anx
n and g(x) = b0 + b1x+ · · ·+ bm−1x

m−1 + xm where n ≥ m.

The polynomial f1(x) = f(x) − anx
n−mg(x) has a 0 coefficient for xn, so its degree is less

than n. By inductive hypothesis, there are polynomials q1 and r1 such that f1 = q1g + r1
where r1 = 0 or deg r1 < deg g. Equating the right sides of the two equations involving f1,
we may conclude that

f(x) = (a1(x) + anx
n−m)g(x) + f1(x).

That gives us the desired representation f(x) = q(x)g(x) + r(x), finishing the inductive proof
for the existence half of the proof. q.e.d.
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Proof of uniqueness. Suppose there are also polynomials q′ and r′ such that f = q′g + r′

where either r′ = 0 or deg r′ < deg g. We’ll show r = r′ and q = q′.

Since f = qg+ r and f = q′g+ r′, therefore qg+ r = qg′+ r′ so r− r′ = g(q′− q). Suppose
that r 6= r′. Then q′−q 6= 0, and since g is a monic polynomial, therefore deg g(q−q′) ≥ deg g.
Therefore deg(r − r′) ≥ deg g. But deg(r − r′) < deg g since both r and r′ have degree less
than deg g, a contradiction. Therefore, r = r′.

Now we have 0 = g(q′ − q), but g is monic, so q′ − q = 0, and q = q′. q.e.d.

If R happens to be a field, there is a stronger version of the theorem that doesn’t require
g to be a monic polynomial.

Theorem 1.55 (The division algorithm for polynomials over a field). Let F be a field and
F [x] its polynomial ring in one variable. Let f be a polynomial (the dividend) and g a nonzero
polynomial (the divisor). Then there exist unique polynomials q (the quotient) and r (the
remainder) such that f = qg + r where either r = 0 or deg r < deg g.

Exercise 15. Prove the above theorem. Hint: divide g by its leading coefficient and use the
division algorithm for polynomials over a ring. There will still be two parts, one for existence
and one for uniqueness.

The remainder theorem and factor theorem. The remainder theorem is something
that’s frequently covered in high school algebra classes. It says when you divide a polynomial
f by x− a, the remainder is f(a). It works in general for polynomials with coefficients in an
arbitrary ring.

Theorem 1.56 (Remainder theorem). Let R be a commutative ring and R[x] its polynomial
ring. For f ∈ R[x] and a ∈ R, there is a polynomial q such that f(x) = (x− a)q(x) + f(a).

Proof. Apply the division algorithm for g(x) = x− a. Then f(x) = (x− a)q(x) + r where r
is a constant. Setting x to a, we conclude f(a) = r. q.e.d.

The factor theorem is a corollary of the remainder theorem. —

Theorem 1.57 (Factor theorem). For f ∈ R[x] and a ∈ R, a is a root of f if and only if
(x− a) divides f(x).

Further properties of polynomials. There are a couple more properties of polynomials
that apply only when the ring is a field or an integral domain. As described later in section
3.1.3, an integral domain is a commutative ring in which 0 6= 1 that satisfies one of the two
equivalent conditions: it has no zero-divisors, or it satisfies the cancellation law. Thus, fields
are special cases of integral domains.

One property is that a polynomial of degree n has at most n roots.

Theorem 1.58. The number of roots of a nonzero polynomial with coefficients in an integral
domain is at most the degree of the polynomial.
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Proof. We’ll prove this by induction on n, the degree of the polynomial f .
If n = 0, then f is a constant, but it’s not the zero constant, so it has no roots.
Assume the inductive hypothesis, namely, the theorem holds for all functions of degree n.

We’ll show it holds for each function f of degree n + 1. If f has no roots, then the theorem
is true, so let r be a root of f . By the factor theorem, f(x) = (x− r)q(x), where the degree
of the quotient q equals n.

We’ll show every other root r′ 6= r of f is also a root of q. Since r′ is a root, therefore
0 = f(r′) = (r′ − r)q(r). Now r′ − r is not 0, and the ring is an integral domain which has
no zero-divisors, therefore 0 = q(r). Thus all other roots of f are roots of q.

Since deg g = n, by the inductive hypothesis, g has at most n roots, therefore f has at
most n+ 1 roots.

That completes the proof by induction. q.e.d.

Exercise 16. An example of a ring that is not an integral domain is Z8. Show that the
quadratic polynomial f(x) = x2 − 1 in Z8[x] has more than two roots in Z8.

A couple of corollaries for polynomials with coefficients in an integral domain follow from
the previous theorems.

Corollary 1.59. If deg f = n, and a1, a2, . . . , an are n distinct roots of f , then

f(x) = a(x− a1)(x− a2) · · · (x− an)

where a is the leading coefficient of f .

Corollary 1.60. If two monic polynomials f and g both of degree n have the same value at
n places, then they are equal.

1.6.2 Roots of unity and cyclotomic polynomials

Definition 1.61 (Root of unity). A root of unity, also called a root of 1 is a complex number
such that when raised to some positive integer power yields 1. If zn = 1, then z is called an
nth root of unity. If n is the smallest positive integer power such that zn = 1, then n is called
a nth primitive root of unity.

Among the real numbers, the only roots of unity are 1 and −1. 1 is the only first primitive
root of unity and −1 is the only primitive second root of unity.

The nth roots of unity are equally spaced around the unit circle separated by angles of
2π/n. See figure 3.4 for the primitive seventh roots of unity on the unit circle.

An n root of unity z is a root of the polynomial zn − 1, but not all roots of such a
polynomial are primitive. For example, roots of the polynomial z2 − 1 are second roots of
unity, but 1, being one of those two roots, is not a primitive second root of unity.

Example 1.62 (Sixth roots of unity). The sixth roots of unity are roots of the polynomial
z6− 1. This polynomial factors as (z3 + 1)(z3− 1) = (z2− z+ 1)(z+ 1)(z2 + z+ 1)(z− 1). Of
course, two of the roots of this polynomial are 1 and −1 which account for the factors x− 1
and x+1. The roots of the factor z2−z−1 are also roots of z3−1, so are cube roots of unity,
in fact, they’re the two primitive third roots of unity. Those roots are z = 1

2
(−1 + i

√
3). If

you call one of them ω = 1
2
(−1 + i

√
3), then the other one is ω2 = 1

2
(−1− i

√
3). You can see
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them displayed in the complex plane in figure 3.3 which illustrates the lattice of Eisenstein
integers.

The roots of the other factor z2 + z + 1 are z = 1
2
(1 + i

√
3). They are the two primitive

sixth roots of unity. Notice that they are ω + 1 and ω2 + 1.
So, altogether, there are six sixth roots of unity. Two are primitive sixth roots, two are

primitive third roots, one is a primitive second root, and one is a primitive first root.

Among the five fifth roots of unity, one of them, z = 1, is not primitive, the other four

are. They are roots of the polynomial Φ5(z) =
z5 − 1

z − 1
= z4 + z3 + z2 + z + 1.

If z is a primitive nth root of unity, then the entire list of nth roots is 1, z, z2, . . . , zn−1.
The root zk won’t be primitive if there is a common divisor of n and k. That leaves only
ϕ(n) of the roots to be primitive, where ϕ(n) is the number of positive integers less than n
that are relatively prime to n. See definition 1.39 for a definition of Euler’s totient function
ϕ.

Definition 1.63 (Cyclotomic polynomial). The polynomial Φn(z) =

ϕ(n)∏
k=1

(z − zk), where

z1, z2, . . . , zφ(n) are the primitive nth roots of unity, is called the nth cyclotomic polynomial.

There are two primitive third roots of unity as mentioned in the example above, so
Φ3(z) = z2 − z − 1. There are also two primitive sixth roots, and Φ6(z) = z2 + z − 1.

When p is a prime number, then Φ(p) has degree ϕ(p) = p − 1. Its value is Φ(p) =
zp − 1

z − 1
= zp−1 + · · ·+ z + 1.

Here’s a short table of the first few cyclotomic polynomials.

n Φ(n) n Φ(n)
1 z − 1 9 z6 + z3 + 1
2 z + 1 10 z4 − z3 + z2 − z + 1
3 z2 + z + 1 11 z10 + z9 + · · ·+ z + 1
4 z2 + 1 12 z4 − z2 + 1
5 z4 + z3 + z2 + z + 1 13 z12 + z9 + · · ·+ z + 1
6 z2 − z + 1 14 z6 − z5 + z4 − z3 + z2 − z + 1
7 z6 + z5 + z4 + z3 + z2 + z + 1 15 z8 − z7 + z5 − z4 + z3 − z + 1
8 z4 + 1 16 z8 + 1

It’s interesting that the only coefficients that appear in the first one hundred cyclotomic
polynomials are 0, 1, and −1.

We’ll use cyclotomic polynomials in section 3.10.3.
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Chapter 2

Fields

Informally, a field is a set equipped with four operations—addition, subtraction, multiplica-
tion, and division that have the usual properties.

We’ll study rings in chapter 3, which are like fields but need not have division.

2.1 Introduction to fields

A field is a set equipped with two binary operations, one called addition and the other called
multiplication, denoted in the usual manner, which are both commutative and associative,
both have identity elements (the additive identity denoted 0 and the multiplicative identity
denoted 1), addition has inverse elements (the inverse of x being denoted −x), multiplication

has inverses of nonzero elements (the inverse of x being denoted
1

x
), multiplication distributes

over addition, and 0 6= 1.
Three fields that you already know are the field of real numbers R, the field of rational

numbers Q, and the field of complex numbers C.
We’ll see that there are many other fields. When we have a generic field, will use a capital

F to denote it.

2.1.1 Definition of fields

Here’s a more complete definition.

Definition 2.1 (field). A field F consists of

1. a set, also denoted F and called the underlying set of the field;

2. a binary operation + : F × F → F called addition, which maps an ordered pair
(x, y) ∈ F × F to its sum denoted x+ y;

3. another binary operation · : F × F → F called multiplication, which maps an ordered
pair (x, y) ∈ F × F to its product denoted x · y, or more simply just xy;

such that

4. addition is commutative, that is, for all elements x and y, x+ y = y + x;

31
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5. multiplication is commutative, that is, for all elements x and y, xy = yx;

6. addition is associative, that is, for all elements x, y, and z, (x+ y) + z = x+ (y + z);

7. multiplication is associative, that is, for all elements x, y, and z, (xy)z = x(yz);

8. there is an additive identity, an element of F denoted 0, such that for all elements x,
0 + x = x;

9. there is a multiplicative identity, an element of F denoted 1, such that for all elements
x, 1x = x;

10. there are additive inverses, that is, for each element x, there exists an element y such
that x+ y = 0; such a y is called the negation of x;

11. there are multiplicative inverses of nonzero elements, that is, for each nonzero element
x, there exists an element y such that xy = 1; such a y is called a reciprocal of x;

12. multiplication distributes over addition, that is, for all elements x, y, and z, x(y+ z) =
xy + xz; and

13. 0 6= 1.

The conditions for a field are often call the field axioms.

Caveat: We’re using the terminology and notation of arithmetic that we use for numbers,
but the elements of our fields need not be numbers; often they will be, but sometimes they
won’t.

Note that we’ll use the standard notational conventions on precedence for all fields so we
don’t have to fully parenthesize every expression. Multiplication and division have a higher
precedence than addition and subtraction, so that, for example, x−y/z means x− (y/z), not
(x−y)/z. Also, operations are executed from left to right, so that x−y−z means (x−y)−z,
not x− (y− z). (Usually operations are executed from left to right, but an exception is that
exponentiation is executed from right to left, so that xm

n
means x(m

n), not (xm)n.)
Commutativity and associativity of addition imply that terms can be added in any order,

so of course we won’t put parentheses when we’re adding more than two terms together.
Likewise for multiplication.

Although in parts 10 and 11 of the definition only the existence of an additive and mul-
tiplicative inverses is required, you can easily show uniqueness follows from the definition.
Once that is done we can note that the additive inverse of x is called the negation of x and
denoted −x, and the multiplicative inverse of x, when x is not 0, is called the reciprocal of x

and denoted 1/x,
1

x
, or x−1.

2.1.2 Subtraction, division, multiples, and powers

With the help of negation, we can define subtraction as follows. The difference of two elements
x and y is defined as x− y = x+ (−y).

Likewise, with the help of reciprocation, we can define division. The quotient of an element

x and a nonzero element y is xy−1, denoted x/y or
x

y
. The expected properties of subtraction
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and division all follow from the definition of fields. For instance, multiplication distributes
over subtraction, and division by z distributes over addition and subtraction.

Likewise, we can define integral multiples of elements in a field. First, we’ll define nonneg-
ative multiples inductively. For the base case, define 0x as 0. Then define (n+ 1)x as x+ nx
when n is a nonnegative integer. Thus nx is the sum of n x’s. For instance, 3x = x+ x+ x.
Then if −n is a negative integer, we can define −nx as −(nx). The usual properties of
multiples, like (m+ n)x = mx+ nx will, of course, hold.

Furthermore, we can define integral powers of x. Define x1 as x for a base case, and
inductively for nonnegative n, define xn+1 as xxn. Thus nx is the product of n x’s. For
instance, x3 = xxx. Next, define x0 as 1, so long as x 6= 0. (00 should remain undefined, but
for some purposes, especially in algebra, it’s useful to define 00 to be 1.) Finally, if −n is
positive and x 6= 0, define x−n as (xn)−1. The usual properties of integral powers hold, like
xm+n = xmxn and (xy)n = xnyn.

2.1.3 Properties that follow from the axioms

There are numerous useful properties that are logical consequences of the axioms. Generally
speaking, the list of axioms should be short, if not minimal, and any properties that can be
proved should be proved. Here’s a list of several things that can be proved from the axioms.
We’ll prove a few in class, you’ll prove some as homework, and we’ll leave the rest. (They
make good questions for quizzes and tests.)

In the following statements, unquantified statements are meant to be universal with the
exception that whenever a variable appears in a denominator, that variable is not to be 0.

Exercise 17. Prove that 0 is unique. That is, there is only one element x of a field that has
the property that for all y, x+ y = y. (The proof that 1 is unique is similar.)

Exercise 18. Prove that each number has only one negation. That is, for each x there is only
one y such that x + y = 0. (The proof that reciprocals of nonzero elements are unique is
similar.)

Exercise 19. Prove that the inverses of the identity elements are themselves, that is, −0 = 0,
and 1−1 = 1.

Exercise 20. Prove that multiplication distributes over subtraction: x(y − z) = xy − xz.

Exercise 21. Prove that 0 times any element in a field is 0: 0x = 0.

Exercise 22. Prove the following properties concerning multiplication by negatives: (−1)x =
−x, −(−x) = x, (−x)y = −(xy) = x(−y), and (−x)(−y) = xy.

Exercise 23. Prove the following properties concerning reciprocals: (x−1)−1 = x, and (xy)−1 =
x−1y−1.

Exercise 24. Prove that when y and z are both nonzero that
x

y
=
w

z
if and only if xz = yw.

Exercise 25. Prove the following properties concerning division:
x

y
± w

z
=
xz ± yw
yz

,

x

y

w

z
=
xw

yz
, and

x

y

/w
z

=
xz

yw
.



34 CHAPTER 2. FIELDS

Assume that any time a term appears in a denominator that it does not equal 0.

Exercise 26. Prove that if xy = 0, then either x = 0 or y = 0.

2.1.4 Subfields

Frequently we’ll find one field contained in another field. For instance, the field of rational
numbers Q is part of the field of real numbers R, and R is part of the field of complex
numbers C. They’re not just subsets, Q ⊂ R ⊂ C, but they have the same operations.
Here’s the precise definition of subfield.

Definition 2.2 (subfield). A field E is a subfield of a field F if

1. the underlying set of E is a subset of the underlying set of F ;

2. the addition operation +E on E is the restriction of the addition operation +F on F ,
that is, for all x and y in E, x+E y = x+F y ; and

3. the multiplication operation ·E on E is the restriction of the multiplication operation
·F on F , that is, for all x and y in E, x ·E y = x ·F y.

When E is a subfield of F , we’ll also say that F is an extension of E.

When you know one field is a subfield of another, there’s no need to subscript the opera-
tions since they are the same.

There is an alternate characterization of subfield. The proof of the following theorem is
straightforward, but there are many steps.

Theorem 2.3. If a subset E of a field F has 0, 1, and is closed under addition, multiplication,
negation, and reciprocation of nonzero elements, then E is a subfield of F .

The field of rational numbers Q. When we’re trying to find the smallest example of a
field, it looks like it will have to be Q. Later in section 2.2 we’ll see that it’s not the smallest!
But here’s an argument (which must have a flaw in it) which says we need all the rational
numbers to be in any field F .

To begin with, 0 and 1 have to be in F . But we also have to have 1 + 1 in F and we’ll
denote that 2, of course. And we’ll need 1 + 1 + 1 = 2 + 1 which we’ll denote 3. And so forth,
so we’ve got 0 and all the positive integers in F . We also need negations of them, so all the
negative integers are in F , too. But a rational number m/n is just an integer m divided by
a positive integer n, so we’ll have to have all rational numbers in F . That shows that Q is a
subfield of F .

Thus, it looks like every field F includes the smallest field Q, the field of rational numbers.

There’s one minor flaw in the argument above, but let’s not pick it apart right now. Pretty
soon we’ll look at fields that don’t contain Q.
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2.1.5 Fields of rational functions

A rational function with coefficients in F is a quotient of two polynomials
f(x)

g(x)
. Rational

functions do form a field, the field F (x) of rational functions with coefficients in F . Notice
that the ring of polynomials F [x] is denoted with square brackets while the field of rational
functions F (x) is denoted with round parentheses.

For example, one rational function in Q(x) is
5x2 − 3x+ 1/2

x3 + 27
.

Note that the field F is a subfield of the F (x). Again, we can identify the constant rational
functions as the elements of F . For example, Q is a subfield of Q(x), and both R and Q(x)
are subfields of R(x).

Also, the the ring of polynomials with coefficients is a subring of the field of rational
functions. That is F ⊆ F [x] ⊆ F (x).

2.1.6 Vector spaces over arbitrary fields

When you studied vector spaces, you may have studied only vector spaces over the real
numbers, although vector spaces over other fields might have been mentioned. In fact, vector
spaces over an arbitrary field F have the same basic properties as vector spaces over R.

The n-dimensional standard vector space F n is defined the same way as Rn except the
n-tuples have coordinates in F . Addition and scalar multiplication are defined the same way
for F n as they are for Rn.

Furthermore, matrices in Mm×n(F ) are defined the same way as matrices in Mm×n(R)
except the entries are in F instead of R. The matrix operations are the same. You can use
the same methods of elimination to solve a system of linear equations with coefficients in F
or find the inverse of a matrix in Mn×n(F ) if its determinant is nonzero. Determinants have
the same properties. You can use methods of linear algebra to study geometry in F n just as
you can for Rn (although it may not be possible to visualize what F n is supposed to look
like, and things like areas of triangles have values in F ).

The abstract theory of finite dimensional vector spaces over F is the same, too. Linear
independence, span, basis, dimension are all the same. Rank and nullity of a matrix are the
same. Change of basis is the same.

Eigenvalues, eigenvectors, and eigenspaces may have problems over some fields. In fact,
when you studied transformations Rn → Rn, sometimes you had complex eigenvalues, and
their only eigenvectors were in Cn. Likewise when looking at transformations F n → F n and
the eigenvalues aren’t in F , you’ll may have to go to some field extension F ′ of F to find
them and to F ′n to find the eigenvectors.

Likewise, canonical forms for matrices will depend on F .

2.2 Cyclic rings and finite fields

In this section we’ll look at fields that are finite, and we’ll discover that Q actually isn’t the
smallest field. Although they’re smaller fields—they’re finite—they won’t be subfields of Q.

First we’ll look a bit at the concept of congruence modulo n, where n is a positive integer.
Then we’ll look at the ring of integers modulo n, denoted Z/nZ or more simply Zn. We’ll
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see why they’re called cyclic rings. Finally, we’ll look at the case where n is prime, and we’ll
denote it p then, where Zp turns out to be a field, and we’ll examine some of the cyclic fields.

Definition 2.4 (Congruence modulo n). Fix n, a positive integer. We say that two integers
x and y are congruent modulo n if n evenly divides the difference x−y. We’ll use the standard
notation from number theory

x ≡ y (mod n)

to indicate that x is congruent to y modulo n, and the notation n
∣∣m to indicate that the

integer n divides the integer m (with no remainder). Then

x ≡ y (mod n) iff n
∣∣(x− y).

When n doesn’t divide the difference x − y, we say a is not congruent to b, denoted x 6≡
y (mod n).

You’re familiar with congruence modulo 12; it’s what 12-hour clocks use.
The general theory of equivalence relations in section A.2.3.

Theorem 2.5. Congruence modulo n is an equivalence relation.

Proof. For reflexivity, x ≡ x (mod n) holds since n
∣∣(x− x).

For symmetry, we need to show that x ≡ y (mod n) implies y ≡ x (mod n). But if
n
∣∣(x− y), then n

∣∣(y − x).
For transitivity, suppose that x ≡ y (mod n) and y ≡ z (mod n). Then n

∣∣(x − y)
and n

∣∣(y − z), so there exist k and m such that nk = x − y and nm = y − z. Therefore
n(k +m) = x− z, showing that n

∣∣(x− z). Hence x ≡ z (mod n). q.e.d.

2.2.1 The cyclic ring Zn

Definition 2.6 (Integers modulo n). The integers modulo n, Zn is the set of equivalence
classes of integers under the equivalence relation which is congruence modulo n.

We’ll denote these equivalence classes with square brackets subscripted by n. Thus,
for instance, the element 0 in Z6 is really [0]6, which we’ll denote [0] when modulo 6 is
understood. This equivalence class is the set of all x such that x ≡ 0 (mod 6). This [0]6 =
{. . . ,−18,−12,−6, 0, 6, 12, 18, . . .}. Likewise the element 1 in Z6 is really the equivalence
class of 1, which is the set

[1]6 = {x ∈ Z |x ≡ 1 (mod 6)} = {. . . ,−17,−11,−5, 1, 7, 13, 19, . . .}.

Note that [1]6 = [7]6 = [13]6 all name the same equivalence class.
An equation in equivalence classes, such as [x]6 + [3]6 = [5]6, is the same thing as an

congruence, x+ 3 ≡ 5 (mod 6). The congruence notation is usually more convenient. When
the modulus n is known by context, we’ll dispence with the subscript n, and abusing notation,
we’ll frequently drop the square brackets.

There are two ways you can think about integers modulo n. One is to think of them as
regular integers from 0 through n − 1, do the arithmetic modulo n, and adjust your answer
so it’s in the same range. For example, we can take Z6 = {0, 1, 2, 3, 4, 5}. Then, to do some
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computation, say 5(2− 4) (mod 6), first compute 5(2− 4) as integers to get −10, and then,
since −10 ≡ 2 (mod 6), say the answer is 2. That works very well for computation, but it’s
pretty messy when you’re trying to do anything with variables or trying to prove anything
in general.

A better way is to say that an element of Zn is named by an integer, but two integers name
the same element of Zn if they’re congruent modulo n. Thus, x and y name the same element
of Zn if x ≡ y (mod n). This will work because congruence modulo n is an equivalence
relation as we saw earlier.

In any case, it helps conceptually to think of the elements of Zn as being arranged on a
circle like we imagine the elements of Z being arranged on a line. See figure 2.1 of a couple
of cyclic rings Zn to see where the word “ring” came from.

Zr
0

r
1

r
2

r
−1

r
−2

Z19

r
0 r

1

r
2

r3

r
−1

r
−2

r−3 Z6

r
0

r1

r2
r−3 ≡ 3

r−2

r−1

Figure 2.1: Cyclic rings Z6,Z19,Z

The operations on Zn. Our equivalence relation is congruence modulo n, so our equiva-
lence classes are also called congruence classes.

Congruence modulo n is more than just an equivalence relation; it works well with addi-
tion, subtraction, and multiplication, as you can easily show.

Theorem 2.7. If x ≡ y (mod n), and u ≡ v (mod n), then x + u ≡ y + v (mod n),
x− u ≡ y − v (mod n), and xu ≡ yv (mod n).

These properties will allow us to define a ring structure on Zn, as done below.
But congruence modulo n doesn’t work so well with division. Although 6 ≡ 0 (mod 6),

it is not the case that 6/2 ≡ 0/2 (mod 6). Thus, we can’t expect that Zn will be a field, at
least when n = 6.
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Our job is to define addition, subtraction, and multiplication on Zn. Whenever a set is
defined as a quotient set, that is, on equivalence classes, as Zn is, an extra step is required
when defining an operation on it, as we’ll see.

We would like to define addition on Zn by saying [x] + [u] = [x + u], that is, the sum of
the equivalence class of x and the equivalence class of u should be the equivalence class of
x + u. But what if we named the equivalence class x by some other integer, say y, and the
equivalence of of u by some other integer v? How do we know we that [y + v] is the same
equivalence class as [x + u]? We can state this question in a couple of other ways. How do
we know

[x] = [y] and [u] = [v] implies [x+ u] = [y + v]?

That asks the question: how do we know

x ≡ y (mod n) and u ≡ v (mod n) implies x+ u ≡ y + v (mod n)?

That’s one of the properties of congruence mentioned above. That property says addition on
Zn is “well-defined”.

Likewise, since multiplication works well with congruence,

x ≡ y (mod n) and u ≡ v (mod n) imply xu ≡ yv (mod n),

we can define multiplication on Zn by [x] · [u] = [xu].
Furthermore, all the ring axioms will be satisfied in Zn since they’re satisfied in Z. Thus,

Zn is a ring, and it’s called a cyclic ring.

The projection γ : Z → Zn. The function γ : Z → Zn defined by γ(k) = [k] maps an
integer to its equivalence class modulo n. We defined addition and multiplication in Zn

[x+ u] = [x] + [u] and [xu] = [x] [u]

so γ preserves addition and multiplication. Furthermore, since γ(1) = [1], it preserves 1.
Therefore γ is a ring homomorphism. It is, of course, onto, so it is a ring epimorphism. It’s
called a projection or a canonical homomorphism to the quotient ring.

In section 3.6, we’ll generalize this construction to rings besides Z and their quotients,
and we’ll have projections for the generalizations, too.

The characteristic of a ring. What’s weird about these cyclic rings is that if you start
with 1 and add 1 over and over, you’ll reach zero. For instance, in Z5, we have 1+1+1+1+1 =
5 ≡ 0 (mod 5). This corresponds to the geometric interpretation of these cyclic rings being
shaped like rings.

Definition 2.8. If some multiple of 1 equals 0 in a ring, then the characteristic of the ring
is the smallest such multiple. If no multiple of 1 equals 0, then the characteristic is said to
be 0.

We’re primarily interested in characteristics when we’re talking about fields, and we’ll see
soon that the characteristic of a field is either 0 or a prime number.

Example 2.9. The characteristic of Z5 is 5, and, in general, the characteristic of a finite
cyclic ring Zn is n.
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2.2.2 The cyclic prime fields Zp

Since division doesn’t work well with congruence, we can’t expect Zn to always have recipro-
cals, so we don’t expect it to be a field. Let’s first see when an element in Zn is a unit. The
term unit in a ring refers to an element x of the ring that does have a reciprocal. 1 is always
a unit in a ring, and every nonzero element in a field is a unit.

Theorem 2.10. An element k in Zn is a unit if and only if k is relatively prime to n.

Proof. First, suppose that k is a unit in Zn. That means there exists l such that kl ≡
1 (mod n). Then n|(kl − 1), and hence n is relatively prime to k.

Second, suppose that k is relatively prime to n. Then, by the extended Euclidean algo-
rithm, their greatest common divisor, 1, is a linear combination of k and n. Thus, there are
integers x and y so that 1 = xk + yn. Then 1 ≡ xk (mod n), and k does have a reciprocal,
namely x, in Zn. Thus k is a unit in Zn. q.e.d.

Recall from definition 1.39 that the totient function ϕ(n) denotes the number of positive
integers less than n that are relatively prime to n.

Corollary 2.11 (Units in Zn). The number of units in Zn is φ(n).

Theorem 2.12. The cyclic ring Zn is a field if and only if n is prime.

Proof. Part of this theorem is a direct corollary of the previous one. Suppose n is prime.
Then every nonzero element of Zn is relatively prime to n. Therefore, Zn is a field.

Next we’ll show that if n is composite, the ring is not a field. Let n be the product of two
integers m and k, both greater than 1. Then neither m nor k can have a reciprocal in Zn.
Why not? Suppose that m−1 did exist in Zn. Then

(m−1m)k ≡ 1k ≡ k (mod n)

m−1(mk) ≡ m−1n ≡ 0 (mod n)

But k 6≡ 0 (mod n), a contradiction. So m−1 doesn’t exist. Therefore, Zn is not a field.
q.e.d.

Corollary 2.13. The characteristic of a field is 0 or a prime number.

Proof. We’ll show that if the characteristic n is finite, it must be a prime number. Suppose
n = st. Then 0 = n · 1 = (st) · 1 = (s · 1)(t · 1). Therefore, either s · 1 = 0 or t · 1 = 0. But n
is the smallest positive integer such that n · · · 1 = 0, so either s = n or t = n. Therefore n is
prime. q.e.d.

This proof works as well in integral domains introduced in section 3.1.3. This theorem
will be mentioned again at that time.

Example 2.14. Z2. Note that there is only one nonzero element, namely 1, and it is its own
inverse. The addition and multiplication tables for Z2 are particularly simple.

+ 0 1
0 0 1
1 1 0

· 0 1
0 0 0
1 0 1

Note that subtraction is the same as addition in Z2 since x− y ≡ x+ y (mod 2).
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Example 2.15. Z3. Here, there are two nonzero elements, namely 1 and 2, but, for sym-
metry’s sake, we’ll call the two nonzero elements 1 and −1. Note that each of these two are
their own inverses. The addition and multiplication tables are still pretty simple.

+ −1 0 1
−1 1 −1 0

0 −1 0 1
1 0 1 −1

· −1 0 1
−1 1 0 −1

0 0 0 0
1 −1 0 1

Example 2.16. Z13. What are the reciprocals of the 12 nonzero elements? We can name
the nonzero elements as ±1,±2, . . . ,±6. You can verify that this table gives their inverses.

x ±1 ±2 ±3 ±4 ±5 ±6
x−1 ±1 ∓6 ∓4 ∓3 ∓5 ∓2

For instance, the reciprocal of 2 is −6 since 2(−6) ≡ −12 ≡ 1 (mod 13).

These fields, Zp where p is prime, are the finite prime fields. But there are other finite
fields.

Example 2.17. A field of order 9. We’ll make an extension of Z3 to get a field of order 9.
Note that −1 is not a square modulo 3. We can append

√
−1 to Z3 to get a field algebraic

over it in exactly the same way we got C from R. Let’s use i as an abbreviation for
√
−1, as

usual. Then
Z3(i) = {x+ yi |x, y ∈ Z3}

Addition, subtraction, and multiplication give us no problems. We just have to check that
nonzero elements have inverses. That’s exactly as before.

1

x+ yi
=

x− yi
(x+ yi)(x− yi)

=
x− yi
x2 + y2

=
x

x2 + y2
+
−y

x2 + y2
i

Thus, if x + yi is not 0 in Z3(i), that is, not both of x and y are are congruent to 0 modulo
3, then x2 + y2 6≡ 0 (mod 3), and the expression on the right gives (x+ yi)−1. Note that the
characteristic of this field is 3 since 1 + 1 + 1 is 0 in this field.

Exercise 27. You can construct a field of order 25 from Z5, but it has to be done somewhat
differently because

√
−1 already exists in Z5 since (±2)2 = 4 ≡ −1 in Z5. The squares of

the nonzero elements in Z5 include 1 = (±12 and 4 = (±2)2, but 2 is not among the squares.
Show that the ring Z5[

√
2] is a field by finding an inverse of a nonzero element x+y

√
2 where

x and y are elements of Z5 but not both are 0. Hint: (x− y
√

2)(x+ y
√

2) = x2− 2y2 cannot
be 0.

In fact, there are finite fields of order pn for each power of a prime p. These are called the
Galois fields GF (pn).Note that cyclic prime field are the simplest Galois fields; Zp is GF (p).
The example constructed GF (32) and the exercise GF (52).

The proof that a finite field of characteristic p has to have pn elements follows from the
theorems in section 4.9.2 on Abelian groups. It’s only dependent on addition in the finite
field, not on multiplication.
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2.2.3 Characteristics of fields, and prime fields

The characteristic of a ring was defined above, so we already have the definition for the
characteristic of a field.

Those fields that have characteristic 0 all have Q as a subfield. The flawed proof we saw
earlier included the mistaken assumption that all the elements 0, 1, 2, . . . were distinct, which,
as we’ve seen with these finite fields, isn’t always the case. But we can correct the flawed
proof to validate the following theorem. First, a definition.

Definition 2.18. A prime field is a field that contains no proper subfield. Equivalently, every
element in it is a multiple of 1.

Theorem 2.19. Each field F has exactly one of the prime fields as a subfield. It will have
Zp when it has characteristic p, but it will have Q if it has characteristic 0.

The Frobenius endomorphism. Exponentiation to the power p has an interesting prop-
erty when a commutative ring R has prime characteristic p:

(x+ y)p = xp + yp

There are various ways to prove this. For instance, you can show that the binomial coefficient(
p

k

)
is divisible by p when 1 < k < p. Since

(
p

k

)
=

p!

k! (n− k)!
and p divides the numerator

but not the denominator, therefore it divides

(
p

k

)
.

This function ϕ : R→ R defined by ϕ(x) = xp also preserves 1 and multiplication: 1p = 1
and (xy)p = xpyp. Therefore, it is a ring endomorphism, called the Frobenius endomorphism.

We’re most interested in the endomorphism when the ring is a field F of characteristic
p. It’s not particularly interesting when F is the prime field Zp because it’s just the identity
function then. For other finite fields of characteristic p it will be an automorphism—it’s a
bijection since it’s an injection on a finite set—and it’s not the identity function for those
fields.

Example 2.20. In the example above of the Galois field GF (32) = Z3(i), the characteristic
of the field is 3, so ϕ(x + yi) = (x + yi)3 = x3 + (yi)3 = x3 − y3i = x − yi. On the subfield
Z3, ϕ is the identity, but not on all of GF (32) = Z3(i), since ϕ(i) = −i.

Exercise 28. Determine the value of ϕ(
√

2) in GF (52).

2.3 Field Extensions, algebraic fields, the complex

numbers

A lot of fields are found by extending known fields. For instance, the field of complex numbers
C is extended from the field of real numbers R and GF (32) is extended from Z3 = GF (3).
We’ll look at the general case of extending fields by adding square roots to known fields, the
smallest kind of extension, called a quadratic extension.
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2.3.1 Algebraic fields

We’ve looked at some quadratic extensions of fields. Now we’ll look at algebraic extensions
in more detail.

Definition 2.21 (Algebraic and transcendental numbers). An algebraic number is a number
that is a root of a polynomial with rational coefficients. If the polynomial is monic, then the
algebraic number is an algebraic integer. A real number or a complex number that is not
algebraic is called a transcendental number.

For instance, x =
√

2 is an algebraic number since it is the root of the polynomial x2− 2;
in fact, it’s an algebraic integer. On the other hand, x =

√
1/2 is a root of the polynomial

2x2 − 1, so it’s an algebraic number, but not an algebraic integer.
There are many real numbers used in analysis that are transcendental. In 1873 Charles

Hermite (1882–1901) proved that the number e is transcendental. It follows that many related
numbers are transcendental such as e2 and

√
e.

Definition 2.22 (Algebraic and transcendental field extensions). More generally, if x satisfies
a polynomial equation f(x) = 0 where the polynomial f has coefficients in a field F , then we
say x is algebraic over F . A field extension F ′ of F , all of whose elements are algebraic over
F is said to be an algebraic extension of F . Field extensions that are not algebraic are called
transcendental extensions. An algebraic extension of Q is also called an algebraic number
field, or more simply a number field.

In 1882 Lindemann extended Hermite’s result to show that ea is transcendental for all
nonzero algebraic numbers a. Thus e

√
2 is transcendental. More importantly, Lindemann’s

theorem shows that π = ei is transcendental, for if it were algebraic, then eπi = −1 would be
transcendental, which it isn’t.

Weierstrass proved an even more general theorem in 1885. If a1, . . . , an are distinct nonzero
algebraic numbers, then the numbers ea1 , . . . , ean are algebraically independent meaning each
eai is transcendental over the field Q(ea1 , . . . , êai , ean). The hat over eai means that is omitted
from the list.

Example 2.23. We know that the square root of 2,
√

2 is not a rational number. The field
Q(
√

2) is the smallest field that contains
√

2. In fact, its elements are all of the form

x+ y
√

2 where x ∈ Q and y ∈ Q.

It’s pretty obvious that most of the field axioms hold. The only one that’s not obvious is the
existence of reciprocals of nonzero elements, that is to say, the statement “(x+ y

√
2)−1 is of

the form x′ + y′
√

2 where x′ and y′ are rational and not both 0” is not so obvious. But the
trick of “rationalizing the denominator” shows us how.

1

x+ y
√

2
=

x− y
√

2

(x+ y
√

2)(x− y
√

2)
=
x− y

√
2

x2 − 2y2
=

x

x2 − 2y2
+
−2y

x2 − 2y2

√
2

Note that x2−2y2 cannot be 0 when x and y are rational and not both 0. For if x2−2y2 = 0,
then 2 = (x/y)2, and then

√
2 would be a rational number, which it isn’t. Thus, Q(

√
2) is a

field.
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The trick was to multiply and divide by the conjugate. Let’s give a notation to this

conjugate: x+ y
√

2 = x − y
√

2. Conjugation has some nice properties. It preserves all
the elements of the base field Q, that is, if x ∈ Q, then x = x. It preserves addition and
multiplication, that is, if α and β are elements of Q(

√
2), then α + β = α+ β and αβ = αβ.

Finally, the operation of conjugation, : Q(
√

2)→ Q(
√

2), is its own inverse, α = α. Thus,
conjugation is a field automorphism. Furthermore, the elements α it fixes, α = α, are just
the elements of the base field Q.

2.3.2 The field of complex numbers C

In the same way we just adjoined
√

2 to Q to get Q(
√

2), we can adjoin
√
−1 to R to get

R(
√
−1), which is C. Algebraically, the process is identical, but conceptually it’s a little

different because we thought that
√

2, being a real number, existed before we appended it to
Q, while it may not be so clear that

√
−1 exists before we append it to R. But

√
−1, usually

denoted i, has the property i2 = −1, so it is an algebraic number since it’s the root of the
polynomial x2 + 1. In fact, R(i) consists of elements of the form

x+ yi with x, y ∈ R

as described by Euler. Addition and subtraction are “coordinatewise”

(x1 + y1i)± (x2 + y2i) = (x1 + x2) + (y1 + y2)i

while multiplication is only slightly more complicated

(x1 + y1i) (x2 + y2i) = x1x2 + x1y2i+ x2y1i+ y1y2i
2

= (x1x2 − y1y2) + (x1y2 + x2y1)i

We can find reciprocals by rationalizing the denominator as we did above.

1

x+ yi
=

x− yi
(x+ yi)(x− yi)

=
x− yi
x2 + y2

=
x

x2 + y2
+
−y

x2 + y2
i

We can define complex conjugation by x+ yi = x − yi. It’s a field automorphism of C,
and its fixed subfield is R.

We can also define a norm on C once we have conjugation. For z = x+ yi ∈ Q, let

|z|2 = zz = (x+ yi)(x− yi) = x2 + y2.

Since |z|2 is a nonnegative real number, it has a square root |z|.

A matrix representation of C. Consider the subset C of the matrix ring M2(R) con-
sisting of matrices of the form [

x y
−y x

]
where x, y ∈ R.
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You can easily show that this is a subring of M2(R) since the 0 matrix and the identity
matrix are of this form, the sum and difference of matrices of this form are of this form, and
so is the product as you can see here[

x y
−y x

] [
u v
−v u

]
=

[
xu− yv xv + yu
−yu− vx −yv + xu

]
.

Thus, C is a subring of M2(R). Furthermore, it’s a commutative subring even though M2(R)
is not a commutative ring since the same product results when the two factors are inter-
changed: [

u v
−v u

] [
x y
−y x

]
=

[
ux− vy uy + vx
−vx− uy −vy + ux

]
.

Furthermore C is a field because nonzero matrices in it have inverses. For suppose not both
x and y are 0. Then [

x y
−y x

] [ x
x2+y2

−y
x2+y2

y
x2+y2

x
x2+y2

]
=

[
1 0
0 1

]
.

In fact, C is isomorphic to the complex field C as described above. The isomorphism is
described by the one-to-one correspondence[

x y
−y x

]
↔ x+ yi.

Note that a real number x corresponds to the matrix

[
x 0
0 x

]
while a purely imaginary number

yi corresponds to the matrix

[
0 y
−y 0

]
.

Note that complex conjugation in this representation is just matrix transposition.
This alternate representation of the complex numbers as matrices directly explains how a

complex number acts as a linear transformation on the real plane R2. The complex number
x+ yi maps a point (a, b) of R2 to the point (ax+ by,−ay + bx) since[

x y
−y x

] [
a
b

]
=

[
ax+ by
−ay + bx

]
.

Matrix representations of various fields, rings, and groups are useful for two reasons. One
is that they give us geometric interpretations for the elements as illustrated above. The other
is that all the tools of linear algebra are available to us once we have the matrix representation.

2.3.3 General quadratic extensions

Now that we’ve seen a couple of quadratic extensions, let’s see how it works in general.
Let F be a field and e an element of F that is not a square. In other words, the polynomial

x2 − e has no roots in F . We’ll consider ordered pairs (a1, a2) ∈ F × F , but we’ll write them
as a1 + a2

√
e. We’ll define addition coordinatewise

(a1 + a2
√
e) + (b1 + b2

√
e) = (a1 + b1) + (a2 + b2)

√
e
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and define multiplication by

(a1 + a2
√
e) (b1 + b2

√
e) = (a1b1 + ea2b2) + (a1b2 + a2b2)

√
e.

You can check that these definitions give us a ring. But, does it give us a field? As we did
before, we’ll find a reciprocal of a nonzero element a1 + a2

√
e

1

a1 + a2
√
e

=
a1 − a2

√
e

(a1 + a2
√
e)(a1 − a2

√
e)

=
a1 − a2

√
e

a21 − ea22

In order for this to be the reciprocal, all we have to do is show the denominator a21 − ea22 is
not 0. In the case that a2 = 0 we know a1 6= 0 since not both are 0, so in that case a21 − ea22
is not 0. That leaves us the case that a2 6= 0. Suppose that a21 − ea22 = 0. Then ea22 = a21,
and dividing by a22, we conclude e = (a1/a2)

2. But e is not a square in F . Thus a21 − ea22 is
not 0 in this case, too. Therefore, we’ve found the reciprocal.

Thus, we have a field, F (
√
e).

When we look at more general field extensions, we’ll have a lot more theory, and we won’t
have details to check as we did here. That theory will involve the concept of “ideals” in a
ring as discussed in section 3.6.

2.4 Real numbers and ordered fields

We’ll look now at R, the field of real numbers. What’s so special about the real number
field? For one thing, it’s got an order on it; we can compare two real numbers x and y and
say which is smaller or if they’re equal. That’s an extra structure on a field. We’ll start by
looking at this concept of ordered field.

Before we get too far, you should know that that isn’t enough to distinguish R from other
fields. There are plenty of other ordered fields, such as Q and all the fields between Q and
R.

2.4.1 Ordered fields

The easiest way to define an ordered field is by saying it’s partitioned into positive elements,
negative elements, and 0, and requiring a couple properties on these parts.

Definition 2.24 (Ordered field). An ordered field consists of a field F along with a subset
P whose elements are called positive such that

1. F is partitioned into three parts: P , {0}, and N where

N = {x ∈ F | − x ∈ P}

the elements of N are called negative;

2. the sum of two positive elements is positive; and

3. the product of two positive elements is positive.
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Properties of ordered fields. You can show from this definition that

1. the sum of negative elements is negative

2. the product of a negative element and a positive element is negative

3. the product of two negative elements is positive

4. 1 is positive, and −1 is negative

Exercise 29. Prove the four properties above.

Examples. R, Q, and all fields between them are ordered fields where the usual positive
numbers in the field form P .

Although Q and R are ordered fields, finite fields and C have no ordering.

Exercise 30. Show that C is not an ordered field. Hint: show why i can’t be positive, zero,
or negative.

The binary order relations. From P we can define the binary order relations <, ≤, >,
and ≥. For instance, x ≤ y means y − x is zero or positive, while x < y means y − x is
positive. That can be stated formally as follows:

x ≤ y iff y − x ∈ P ∪ {0}

x < y iff y − x ∈ P.

All the expected properties of these order relations follow. Here are a few.

1. Trichotomy: For each pair x, y, exactly one of the three relations x < y, x = y, or x > y
holds.

2. Transitivity: x < y and y < z imply x < z.

3. If x is positive and y < z, then xy < xz.

4. If x is negative and y < z, then xy > xz.

5. If x is positive, then so is 1/x.

6. For positive x and y, if x < y, then 1/y < 1/x.

Exercise 31. Prove the six properties above.

Theorem 2.25. The characteristic of an ordered field is 0.

Proof. Suppose F is an ordered field of characteristic p 6= 0. Since 1 is positive, then any
sum of 1s will be positive. Then p is positive. But p equals 0 which is not positive. A
contradiction. Therefore an ordered field cannot have nonzero characteristic. q.e.d.

It follows that Q is a subfield of every ordered field.
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Example 2.26. An ordered extension of the real numbers with infinite elements and in-
finitesimal elements.

We can give the field of rational functions R(x) an order as follows. First, we’ll define
when a polynomial f(x) = anx

n+an−1x
n−1 + · · ·+a1x+a0 is positive, and that will be when

its leading coefficient an is a positive real number. Next, we’ll define when a rational function
f(x)/g(x) is positive, and that will be when f and g are both positive polynomials or both
negative polynomials. It follows that f(x)/g(x) is negative one of f and g is positive and the
other is negative. Only 0/g(x), which equals 0, won’t be positive or negative. You can easily
show that the sum and product of positive rational functions is positive.

The real numbers R is an ordered subfield of R(x), meaning that it’s a subfield and its
elements have the same order whether the order on R is used or the order on R(x) is used.

With this order, there are elements that are larger than any real number a, for example,
x > a since x − a is positive. In other words, x is an infinite element. Likewise, there are
positive elements that are smaller than any positive real number, 1/x, for example, so 1/x is
an infinitesimal number.

2.4.2 Archimedean orders

The last example is an example of an ordered field with infinite elements and infinitesimals.
Every ordered field F is an extension of Q, so we can define an infinite element of F to be an
element x ∈ F greater than every rational number, and we can define a positive infinitesimal
element as a positive x ∈ F smaller than every positive rational number. Note that the
reciprocal of an infinite element is an infinitesimal, and vice versa.

Definition 2.27. An Archimedean ordered field or, more simply, an Archimedean field, is
simply an ordered field F without infinite elements or infinitesimals.

Before Archimedes, Euclid used this property in his Elements in Book V and following
books. The content of Book V is due to Eudoxus, so a better name for the Archimedean
property would have been Eudoxus’ property.

There are equivalent characteristics that could be used for the definition. Here are two.
Each element of F is less than some integer. Each positive element of F is greater than the
reciprocal of some positive integer.

Of course, the preceding example is a non-Archimedean field. Another interesting non-
Archimedean field is that of surreal numbers created by John Conway. Surreal numbers
include all real numbers, all ordinal numbers and more. Since ordinal numbers form a proper
class, so do surreal numbers. For a nice introduction on surreal numbers, see Donald Knuth’s
book Surreal Numbers.

Still, there are loads of Archimedean fields, namely Q, R, and all the intermediate fields.
We still haven’t answered the question about what makes R special. Before we go on, however,
let’s see how elements in an Archimedean field are determined by how they compare to rational
numbers.

For an Archimedean field F , since F is ordered, it has characteristic 0, so it has as a
subfield, indeed, an ordered subfield, the field of rational numbers Q.

Theorem 2.28 (Density). Between any two distinct elements of an Archimedean field, there
lies a rational number.
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Proof. Let x < y in an Archimedean field. We’re looking for a rational number
m

n
between

x and y. If x is negative while y is positive, then the rational number 0 lies between them.
We can reduce the case where they’re both negative to the case where they’re both positive

by noting that if
m

n
lies between −x and −y, then −m

n
lies between x and y.

So we may assume that both x and y are positive. If we can find some multiple n of them
so that ny − nx > 1, then some integer m lies between ny and nx, but nx < m < ny gives

x <
m

n
< y. And we can find such a multiple since y − x is greater than the reciprocal

1

n
of

some positive integer since the field is Archimedean. q.e.d.

An element a of F partitions Q into two parts (La, Ra)

La = {x ∈ Q |x < a} and Ra = {x ∈ Q |x ≥ a}.
These two parts have a special property.

Definition 2.29. A Dedekind cut of the rational numbers is a partition of Q into two
nonempty parts (L,R)—a left part L and a right part R—such that every element of L
is less than every element of R. Furthermore, the left part does not have a greatest element.

Theorem 2.30. An element a of an Archimedean field F is determined by its Dedekind cut
(La, Ra). That is, if (La, Ra) = (Lb, Rb), then a = b.

Proof. If a 6= b, then there is a rational number between them, so that rational number will
be in one left part but the other right part. q.e.d.

In an Archimedean field F not every Dedekind cut has to determine an element. For
example, in Q, the cut (L,R) where L = {x |x < 0 or x2 ≤ 2} and R = {x |x > 0 and x2 >
2} is not the cut of any rational number. But that same cut with

√
2 included in R is the

cut of
√

2. The real numbers are special in that every cut is the cut of some real number.
Although there might not be a element of F for every cut, the cuts are enough to deter-

mine, along with the order on F and the field structure of Q, the field structure of F .
It helps in proofs to cut in half the information of a Dedekind cut from (L,R) to just L.

It is sufficient to define a Dedekind cut just in terms of of the left part. You can prove the
following lemma to simplify the statement and the proof of the following theorem.

Lemma 2.31. If (L,R) is a Dedekind cut, then L has the following three properties
i. L is a nonempty, proper subset of Q;
ii. if y ∈ L and x ∈ Q such that x < y, then x ∈ L; and
iii. for each x ∈ C, there exists y ∈ C such that x < y

Conversely, if L has these three properties, then (L,R) is a cut where R is the complement
of L.

Theorem 2.32. In an Archimedean field F , addition and multiplication are determined by
Dedekind cuts in the sense that If a and b are two elements of F , then the left part of their
sum a+ b is determined by their left parts

La+b = {x+ y |x ∈ La and y ∈ Lb}.
If a and b are two positive elements of F , then the left part of their product is determined

by their left parts

Lab = {xy |x ∈ La, x > 0, y ∈ Lb and y > 0} ∪ {x |x ≤ 0}.
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2.4.3 Complete ordered fields

There are various definitions given for complete ordered fields, all logically equivalent. Here’s
one.

Definition 2.33. A complete ordered field is an Archimedean field that cannot be extended
to a larger Archimedean field. Equivalently, every Dedekind cut determines an element of
the field.

Completeness is the final property that characterizes R. Actually, right now we haven’t
proved that there is at least one complete ordered field, and we haven’t proved that there is
at most one complete ordered field. Once we do, we can finally properly define R.

Existence of a complete ordered field We’ll start by stating the theorem which gives
the components for one way of constructing a complete ordered field F . To make it complete,
we just have to make sure that every Dedekind cut determines an element of the field. The
way to do that, of course, to define the field to be the cuts, and the definition of the operations
of addition and multiplication are determined by the cuts as seen in the last theorem.

Theorem 2.34. There is a complete ordered field F . Its elements are Dedekind cuts of Q.
If L1 and L2 are left parts of two cuts, then the left part of the sum is determined by the left
part

L+ = {x+ y |x ∈ L1 and y ∈ L2}.
If L is the left part a positive cut (one that contains at least one positive rational number),
then its negation is determined by the left part

L− = {−x |x /∈ L}

except, if this L− has a largest element, that largest element is removed. If L1 and L2 are
left parts of two positive cuts, then the left part of the product is determined by the left part

L× = {xy |x ∈ L1, x > 0, y ∈ L2 and y > 0} ∪ {x |x ≤ 0}.

There are many details to show to verify that R is a complete ordered field. First, that
the sets L+, L−, and L× are left parts. then the field axioms need to be verified, then the
order axioms, then that’s it’s an Archimedean field. The last step, that it’s complete is almost
obvious from the construction. No one of these steps is difficult, but there are many details
to check.

There are alternate ways to construct complete ordered fields. One is by means of Cauchy
sequences. The spirit is different, but the result is the same, since, as we’re about to see,
there is only one complete ordered field.

Uniqueness of the complete ordered field We have to somehow exclude the possibility
that there are two different Archimedean fields that can’t be extended to larger Archimedean
fields.

We don’t want to count two isomorphic fields as being different, since, in essence, they’re
the same field but the names of the elements are just different. So, what we want is the
following theorem.
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Theorem 2.35. Any two complete ordered fields are isomorphic as ordered fields. Further-
more, there is only one isomorphism between them.

Proof. We may treat the field Q as a subfield of the two complete ordered fields F1 and F2.
Then as a Dedekind cut determines an element a1 ∈ F1 and an element a2 in F2, we have
a bijection F1 → F2. You only need to verify that preserves addition and multiplication,
which it does, since in an Archimedean ring, addition and multiplication are determined by
Dedekind cuts. q.e.d.

R is the complete ordered field We now know that there is only one complete ordered
field up to isomorphism. Any such complete ordered field may be taken as the real numbers.

2.5 Skew fields (division rings) and the quaternions

Sir William Rowan Hamilton, who early found that his road [to success with vec-
tors] was obstructed—he knew not by what obstacle—so that many points which
seemed within his reach were really inaccessible. He had done a considerable
amount of good work, obstructed as he was, when, about the year 1843, he per-
ceived clearly the obstruction to his progress in the shape of an old law which,
prior to that time, had appeared like a law of common sense. The law in question
is known as the commutative law of multiplication.

Kelland and Tait, 1873

2.5.1 Skew fields (division rings)

Skew fields, also called division rings, have all the properties of fields except that multipli-
cation need not be commutative. When multiplication is not assumed to be commutative, a
couple of the field axioms have have to be stated in two forms, a left form and a right form.
In particular, we require

1. there is a multiplicative identity, an element of F denoted 1, such that ∀x, 1x = x = x1;

2. there are multiplicative inverses of nonzero elements, that is, ∀x 6= 0,∃y, xy = 1 = yx;
and

3. multiplication distributes over addition, that is, ∀x,∀y,∀z, x(y + z) = xy + xz and
∀x,∀y,∀z, (y + z)x = yx+ zx.

All the other axioms remain the same, except we no longer require commutative multiplica-
tion.

The various properties of fields that follow from the field axioms also follow from the skew
field axioms, although some have to stated in two forms.

The most important skew field is the quaternions, mentioned next. Waring showed that
there were no finite skew fields that weren’t fields (a difficult proof).
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2.5.2 The quaternions H

We’re not going to study skew fields, but one is of particular importance, the quaternions,
denoted H. The letter H is in honor of Hamilton, their inventor.

We can define a quaternion a as an expression

a = a0 + a1i+ a2j + a3k

where a0, a1, a2, and a3 are real numbers and i, j, and k are formal symbols satisfying the
properties

i2 = j2 = k2 = −1

and
ij = k, jk = i, ki = j.

The i, j, and k are all square roots of −1, but they don’t commute as you can show from the
definition that

ji = −k, kj = −i, ik = −j.
This doesn’t lead to a commutative multiplication, but note that if a is real (i.e., its pure
quaternion parts a1, a2, and a3 are all 0), then a will commute with any quaternion b.

Addition and subtraction are coordinatewise just like in C. Here’s multiplication.

(a0 + a1i+ a2j + a3k) (b0 + b1i+ b2j + b3k)

= (a0b0 − a1b1 − a2b2 − a3b3)
+ (a0b1 + a1b0 + a2b3 − a3b2)i
+ (a0b2 − a1b3 + a2b0 + a3b1)j

+ (a0b3 + a1b2 − a2b1 − a3b0)k

It’s easy to check that all the axioms for a noncommutative ring are satisfied. The only thing
left to in order to show that H is a skew field is that reciprocals exist. We can use a variant
of rationalizing the denominator to find the reciprocal of a quaternion.

1

a0 + a1i+ a2j + a3k
=

a0 − a1i− a2j − a3k
(a0 − a1i− a2j − a3k)(a0 + a1i+ a2j + a3k)

=
a0 − a1i− a2j − a3k
a20 + a21 + a22 + a23

Thus, a nonzero quaternion a0 +a1i+a2j+a3k, that is, one where not all of the real numbers
a0, a1, a2, and a3 are 0, has an inverse, since the denominator a20 + a21 + a22 + a23 is a nonzero
real number.

The expression a0 − a1i− a2j − a3k used to rationalize the denominator is the conjugate
of the original quaternion a0 + a1i+ a2j + a3k. It’s worthwhile to have a notation for it.

a0 + a1i+ a2j + a3k = a0 − a1i− a2j − a3k,

as we do for C. We’ll also define the norm of a quaternion a by |a|2 = aa. It’s a nonnegative
real number, so it has a square root |a|. Note that |a|2 = a20 + a21 + a22 + a23.

Thus, if a is a nonzero quaternion, then its inverse is
1

a
=

a

|a|2
.
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For C, the field of complex numbers, conjugation was a field automorphism, but for H,
it’s not quite an automorphism. It has all of the properties of an automorphism except one.
It preserves 0, 1, addition and subtraction a± b = a± b, and reciprocation 1/a = 1/a, but it
reverses the order of multiplication ab = b a. We’ll call such a thing an antiautomorphism.

Note that H extends C in many ways. The assignment x+ iy ∈ C to x+ iy ∈ H is one,
but x + iy ∈ C to x + jy ∈ H is another. There are, in fact, infinitely many ways that the
skew field H extends the field C.

Theorem 2.36. The norm of a product is the product of the norms.

Proof. |ab|2 = abab = abba = a|b|2a = aa|b|2 = |a|2 |b|2. q.e.d.

If we unpack the equation |a|2 |b|2 = |ab|2, we’ll get as a corollary Lagrange’s identity on
real numbers which shows how to express the product of two sums of four squares as the sum
of four squares.

Corollary 2.37 (Lagrange). The product of the sum of four squares of integers is a sum of
four squares of integers

(a20 + a21 + a22 + a23) (b20 + b21 + b22 + b23)

= (a0b0 − a1b1 − a2b2 − a3b3)2

+ (a0b1 + a1b0 + a2b3 − a3b2)2

+ (a1b2 + a2b1 + a3b1 − a1b3)2

+ (a2b3 + a3b2 + a1b2 − a2b1)2

Note that this equation not only works for real numbers, but also for integers, indeed
when the coefficients lie in any commutative ring. Lagrange used this identity to show that
every nonnegative integer n is the sum of four squares. The identity above is used to reduce
the general case to the case when n is prime. Lagrange still had work to do to take care of
the prime case.

Frobenius’s theorem and the octonions. The quaternions are very special in the sense
that they’re the only finite-dimensional division algebra over R other than R itself and C.
This theorem was proved by Frobenius in 1877.

A division algebra over the real numbers R is a division ring (skew field) that has the
reals as a subfield. Its dimension is the dimension it has as a vector space over R.

There is also an eight-dimensional non-associative algebra over the real numbers called
the octonions, O. Octonions were discovered by John T. Graves in 1843. Although O is
not associative, it does satisfy weaker associativity identities when two of the three variables
are the same: x(xy) = (xx)y, x(yy) = (xy)y, and (xy)x = x(yx). It also satisfies the
Moufang identies: z(x(zy)) = ((zx)z)y, x(z(yz)) = ((xz)y)z, (zx)(yz) = (z(xy))z, and
(zx)(yz) = z((xy)z). Furthermore O has a norm.

Octonions over R are a special case of a Cayley algebra over a field.
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A matrix representation for H. There are various matrix representations for H. This
one will make H a subring of the real matrix ring M4(R). We’ll represent 1 by the identity
matrix, and i, j, and k by three other matrices which, you can verify, satisfy i2 = j2 = k2 = −1
and ij = k, jk = i, ki = j.

1↔


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 i↔


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0



j ↔


0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

 k ↔


0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0


Then a generic quaternion a+ bi+ cj + dk corresponds to the matrix

a −b −c −d
b a −d c
c d a −b
d −c b a


Quaternions and geometry. Each quaternion a is the sum of a real part a0 and a pure
quaternion part a1i+ a2j + a3k. Hamilton called the real part a scalar and pure quaternion
part a vector. We can interpret a1i + a2j + a3k as a vector a = (a1, a2, a3) in R3. Addition
and subtraction of pure quaternions then are just ordinary vector addition and subtraction.

Hamilton recognized that the product of two vectors (pure quaternions) had both a vector
component and a scalar component (the real part). The vector component of the product ab
of two pure quaternions Hamilton called the vector product, now often denoted a×b or a∨b,
and called the cross product or the outer product. The negation of the scalar component
Hamilton called the scalar product, now often denoted a ·b, (a,b), 〈a,b〉, or 〈a|b〉 and called
the dot product or the inner product. Thus

ab = a× b− a · b.

Hamilton’s quaternions were very successful in the 19th century in the study of three-
dimensional geometry.

Here’s a typical problem from Kelland and Tait’s 1873 Introduction to Quaternions. If
three mutually perpendicular vectors be drawn from a point to a plane, the sum of the
reciprocals of the squares of their lengths is independent of their directions.

Matrices were invented later in the 19th century. (But determinants were invented earlier!)
Matrix algebra supplanted quaternion algebra in the early 20th century because (1) they
described linear transformations, and (2) they weren’t restricted to three dimensions.

Exercise 32. Show that H can be represented as a subring of the complex matrix ring M2(C)
where

1↔
[
1 0
0 1

]
i↔

[
i 0
0 −i

]
j ↔

[
0 1
−1 0

]
k ↔

[
0 i
i 0

]
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so that a generic quaternion a+ bi+ cj + dk corresponds to the matrix[
a+ bi c+ di
−c+ di a− bi

]
Unit quaternions and S3 as a group. The quaternions a = a0 + a1i + a2j + a3k with
norm 1 are called unit quaternions. Examples of unit quaternions are ±1,±i,±j,±k, but
there are many more.

Unit quaternions are the quaternions for which a20 + a21 + a22 + a23 = 1. That equation is
precisely the equation that defines the unit three sphere S3 in 4-space R4, although S3 is
usually described with different variables:

S3 = {(w, x, y, z) ∈ R4 |w2 + x2 + y2 + z2 = 1}.

As we saw above, the product of the norms of two quaternions is the norm of the product,
therefore multiplication is closed on this 3-sphere. Furthermore, 1 is a unit quaternion,
and the reciprocal of a unit quaternion is another one, and, multiplication is associative, so
multiplication of quaternions makes the 3-sphere S3 into a group.



Chapter 3

Rings

Rings are things like Z that have the three operations of addition, subtraction, and multi-
plication, but they don’t need division. The lack of a division operation makes them more
complicated and more interesting. The concept of prime, for example, is uninteresting for
fields, but very interesting for Z and other rings.

Most of our rings will have commutative multiplication, but some won’t, so we won’t
require that multiplication be commutative in our definition. We will require that every ring
have 1. The formal definition for rings is very similar to that for fields, but we leave out a
couple of the requirements.

In this chapter we’ll concentrate mainly on commutative rings and their properties. We’ll
consider commutative rings with various nice properties. Those rings with nice properties
we’ll give special names in increasing nicenesssuch as integral domain, unique factorization
domain, principal ideal domain, and Euclidean domain

3.1 Introduction to rings

A ring is a set equipped with two binary operations, one called addition and the other called
multiplication, denoted in the usual manner, which are both associative, addition is commu-
tative, both have identity elements (the additive identity denoted 0 and the multiplicative
identity denoted 1), addition has inverse elements (the inverse of x denoted −x), and multi-
plication distributes over addition. If, furthermore, multiplication is commutative, then the
ring is called a commutative ring.

3.1.1 Definition and properties of rings

Here is a more complete definition.

Definition 3.1. A ring R consists of

1. a set, also denoted R and called the underlying set of the ring;

2. a binary operation + : R × R → R called addition, which maps an ordered pair
(x, y) ∈ R×R to its sum denoted x+ y;

55
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3. another binary operation · : R × R → R called multiplication, which maps an ordered
pair (x, y) ∈ R×R to its product denoted x · y, or more simply just xy;

such that

4. addition is commutative, that is, ∀x,∀y, x+ y = y + x;

5. addition is associative, that is, ∀x,∀y, (x+ y) + z = x+ (y + z);

6. multiplication is associative, that is, ∀x,∀y, (xy)z = x(yz);

7. there is an additive identity, an element of F denoted 0, such that ∀x, 0 + x = x;

8. there is a multiplicative identity, an element of F denoted 1, such that ∀x, 1x = x;

9. there are additive inverses, that is, ∀x,∃y, x+ y = 0; and

10. multiplication distributes over addition, that is, ∀x,∀y,∀z, x(y + z) = xy + xz.

When multiplication is also commutative, that is, ∀x,∀y, xy = yx, the ring is called a com-
mutative ring. The conditions for a ring are often call the ring axioms.

Subtraction, multiples, and powers. As we did with fields, we can define subtraction,
integral multiples, and nonnegative integral powers. We won’t have division or negative
integral powers since we don’t have reciprocals.

As before, we define subtraction in terms of negation. The difference of two elements x
and y is x − y = x + (−y). The expected properties of subtraction all follow from the ring
axioms. For instance, multiplication distributes over subtraction.

Likewise, we can define integral multiples of elements in a ring. Define 0x as 0, then
inductively define (n + 1)x = x + nx when n ≥ 0. Then if −n is a negative integer, define
−nx as −(nx). The usual properties of multiples, like (m+ n)x = mx+ nx still hold.

Furthermore, we can define positive integral powers of x. Define x1 as x for a base case,
and inductively, xn+1 = xxn. Thus nx is the product of n x’s. For instance, x3 = xxx. Since
rings needn’t have reciprocals, we can’t define negative integral powers of x.

Examples 3.2 (rings). Of course, all fields are automatically rings, but what are some other
rings? We’ve talked about some others already, including

1. the ring of integers Z which includes all integers (whole numbers)—positive, negative,
or 0.

2. the ring of polynomials R[x] with coefficients in a commutative ring R.

3. the matrix ring Mn(R) of n × n matrices with entries in a commutative ring R. This
example is a noncommutative ring when n ≥ 2.

4. the ring of upper triangular matrices is a subring of Mn(R).

5. the cyclic ring Zn, the ring of integers modulo n, where n is a particular integer.

6. the powerset ℘(S) consisting of subsets of a set S becomes a ring, called a Boolean
ring, where A+B is the symmetric difference and AB is the intersection of two subsets
A and B.
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Properties that follow from the ring axioms. There are numerous useful properties
that from the axioms, but not so many as follow from the field axioms. Here’s a list of several
of them.

1. 0 is unique. That is, there is only one element x of a ring that has the property that
∀y, x+ y = y. Likewise, 1 is unique.

2. Multiplication distributes over subtraction. x(y− z) = xy−xz and (y− z)x = yx− zx.

3. −0 = 0.

4. 0x = 0.

5. (−1)x = −x, (−x)y = −(xy) = x(−y), and (−x)(−y) = xy.

There are some expected properties that are not included here. I’ll show why not using
examples from Z6.

1. If the product of two elements is 0, xy = 0, it does not follow that either x = 0 or
y = 0. For example, in Z6 the product of 2 and 3 is 0.

2. Cancellation does not always work. That is, if xy = xz and x 6= 0, it doesn’t follow
that y = z. For example, in Z6, 3 · 2 = 3 · 4, but 2 6= 4.

3.1.2 Products of rings

If R1 and R2 are two rings, you can construct their product ring R. The underlying set of
R is the product R1 × R2 of the underlying sets of the two rings, and addition, subtraction,
and multiplication are coordinatewise. Thus,

(x1, x2)± (y1, y2) = (x1 ± y1, x2 ± y2) and (x1, x2) (y1, y2) = (x1y1, x2y2).

The additive identity in R1 × R2 is 0 = (0, 0), and the multiplicative identity is 1 = (1, 1).
Since all the operations are performed coordinatewise, the ring axioms are satisfied in R1×R2,
so it’s a ring.

The projection functions π1 : R1×R2 → R1 and π2 : R1×R2 → R2 defined by π1(x1, x2) =
x1 and π2(x1, x2) = x2 are both ring homomorphisms. They preserve addition, multiplication,
and 1.

Products of more than 2 rings can be defined analogously, even products of infinitely
many rings.

We didn’t discuss products of fields in the chapter on field because the product of two
fields is not another field. It is at least a ring, however.

3.1.3 Integral domains

Much of the time we will want the cancellation property that was mentioned above to hold,
so we’ll give a special name to commutative rings that satisfy them. It will help if we make
a couple of definitions.
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Definition 3.3. A nonzero element x in a commutative ring is a zero-divisor if there exists
a nonzero y such that xy = 0. Of course, 0 is always a zero-divisor. We’ll say a commutative
ring has no zero divisors if 0 is the only zero-divisor.

Definition 3.4. We’ll say a commutative ring satisfies the cancellation law if

∀x 6= 0,∀y,∀z, xy = xz implies y = z.

We found in the example above that 2 and 3 are zero-divisors in Z6, and that Z6 did not
satisfy the cancellation law. You can examine Zn to determine which nonzero elements are
zero-divisors and which have reciprocals.

There’s a connection between zero-divisors and the cancellation law.

Theorem 3.5. A commutative ring satisfies the cancellation law if and only if it has no
zero-divisors.

Proof. Suppose the ring satisfies the cancellation law. Let x be a nonzero element in the ring.
If xy = 0, then xy = x0, so by that cancellation law, y = 0. Then x can’t be a zero-divisor.
Thus the ring has no zero-divisors.

Next suppose that the ring has no zero-divisors. We’ll show it satisfies the cancellation
law. If x 6= 0 and xy = xz, then x(y − z) = 0, and since x is not a zero divisor, therefore
y − z = 0, so y = z. Thus the ring satisfies the cancellation law. q.e.d.

Definition 3.6 (integral domain). An integral domain is a commutative ring D in which
0 6= 1 that satisfies one of the two equivalent conditions: it has no zero-divisors, or it satisfies
the cancellation law.

All the fields and most of the examples of commutative rings we’ve looked at are integral
domains, but Zn is not an integral domain if n is not a prime number.

Note that any subring of a field or an integral domain will an integral domain since the
subring still won’t have any zero-divisors.

Note that products of (nontrivial) rings are never integral domains since they always have
the zero divisors (1, 0) and (0, 1) whose product is 0.

Corollary 2.13 stated that the characteristic of a field is either 0 or a prime number. The
proof there works as well for integral domains. The characteristic of an integral domain is
either 0 or a prime number.

Group rings You can form a ring ZG out of a group G as follows. Assume that G is
written multiplicatively. The finite formal sums of elements of G are the elements of ZG.
Thus, if n is a nonnegative integer and a1, . . . , an ∈ G, then the formal sum x1a1 + · · ·+xnan
names an element of the group ring ZG. Addition is coordinatewise. Multiplication uses the
group operation.

This definition can be generalized so that group rings have their coordinates in any com-
mutative ring R, not just Z. This results in a group ring RG.

Exercise 33. Let G be the two element cyclic group G = {1, a} where a2 = 1. A typical
element of ZG is x+ ya where x, y ∈ Z. Multiplication is defined by (x1 + y1a)(x2 + y2a) =
(x1x2 + y1y2) + (x1y2 + x2y1)a. Show that the square of any nonzero element in ZG is not
zero, but show that ZG does have zero-divisors by finding a pair of nonzero elements whose
product is 0.
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3.1.4 The Gaussian integers, Z[i]

One important example of an integral domain is that of the Gaussian integers Z[i]. Its
elements are of the form x + yi where x, y ∈ Z, so they can be viewed as a lattice of points
in the complex plane as in figure 3.1. You can check that Z[i] is closed under addition,
subtraction, multiplication, and includes 1, so it is a subring of the field C. Therefore, it’s
an integral domain. We’ll see later that Z[i] is a particularly nice integral domain called a
Euclidean domain.

1

i

Figure 3.1: Lattice of Gaussian integers Z[i]

There are four units (elements having reciprocals) in the Gaussian integers. Besides 1
and −1, i and −i are also units. Note that (1 + i)(1− i) = 2, so 2 is not prime in Z[i] even
though it is prime in Z.

We’ll come back to Z[i] when we study Euclidean domains in section 3.8.4. Also Z[i] is
an example of a “ring of integers” to be defined in section 3.11.

Eisenstein integers. The Eisenstein integers are similar to the Gaussian integers, but
instead of consisting of a square lattices of complex numbers, they consist of a triangular
lattice of complex numbers. They include complex numbers of the form z = x+ yω where ω
is the cube root of 1, ω = 1

2
(−1 + i

√
3) = e2πi/3. See figure 3.3 for the lattice of Eisenstein

integers.

3.1.5 Finite fields again

We won’t find any examples of finite integral domains that aren’t fields because there aren’t
any.

Theorem 3.7 (Wedderburn). If R is a finite integral domain, then R is a field.
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Proof. Let x be a nonzero element of R. Consider the positive powers of x:

x, x2, x3, ..., xn . . . .

Since there are infinitely many powers, but only finitely many elements in R, therefore at
least two distinct powers are equal. Let, then, xm = xn with m < n. Cancel xm from
each side of the equation (which is possible because R is an integral domain) to conclude
xn−m = 1. Therefore, the reciprocal of x is xn−m−1. Therefore, every nonzero element has an
inverse. q.e.d.

This theorem can be used to give a short proof that Zp is a field when p is a prime, since
it’s easy to show that Zp is an integral domain. We’ll show it has no zero-divisors. Suppose
that xy ≡ 0 (mod p). Then p

∣∣xy. But if a prime divides a product, it divides one of the
factors, so either p

∣∣x or p
∣∣y, in other words, either x ≡ 0 (mod p) or y ≡ 0 (mod p). Thus,

Zp is an integral domain, and hence, by the above theorem, it’s a field.
Our earlier, more complicated proof used the extended Euclidean algorithm to find an

inverse for x. That’s actually a much more efficient way to find the inverse than to look
through the powers of x.

3.2 Factoring Zn by the Chinese remainder theorem

We’ll look at the structure of the cyclic ring Zn when n is composite in more detail. In
particular, when n is not a power of a prime number, then Zn is a product of smaller cyclic
rings.

3.2.1 The Chinese remainder theorem

This theorem says that if m and k are relatively prime and n = mk, then Zn
∼= Zm × Zk.

Let’s illustrate that with m = 7 and k = 12 to show how Z84
∼= Z7 × Z12. Starting with a

number x modulo 84, we’ll get a pair of numbers, one being x modulo 7, the other x modulo
12. We can display this in a 7× 12 table where each row is a number modulo 7, each column
a number modulo 12, and the entry at row i and column j is that number which is i modulo
7 and j modulo 12.

It’s easy to construct the table. Start filling the diagonal. After you reach the last row,
go next to the top row, and after you reach the right column, go next to the left column.

0 1 2 3 4 5 6 7 8 9 10 11
0 0 49 14 63 28 77 42 7 56 21 70 35
1 36 1 50 15 64 29 78 43 8 57 22 71
2 72 37 2 51 16 65 30 79 44 9 58 23
3 24 73 38 3 52 17 66 31 80 45 10 59
4 60 25 74 39 4 53 18 67 32 81 46 11
5 12 61 26 75 40 5 54 19 68 33 82 47
6 48 13 62 27 76 41 6 55 20 69 34 83

All the numbers in the first row are congruent to 0 modulo 7, so they’re divisible by 7,
but looking at them, they seem to be rather randomly arranged. Likewise, all the numbers
in the first column are divisible by 12.
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The pair of linear congruences x ≡ i (mod 7) and x ≡ j (mod 12) can be easily solved for
x in by looking in row i and column j.

For example, take this Chinese remainder problem. Find a number such that when you
divide it by 7 you get a remainder of 3, but when you divide it by 12 you get a remainder of
8. The answer, 80, is right in the table.

Theorem 3.8 (Chinese remainder theorem). Suppose that n = km where k and m are
relatively prime. Then

Zn
∼= Zk × Zm.

More generally, if n is the product k1 · · · kr where the factors are pairwise relatively prime,
then

Zn
∼= Zk1 × · · · × Zkr =

r∏
i=1

Zki .

In particular, if the prime factorization of n is n = pe11 · · · perr . Then the cyclic ring Zn factors
as the product of the cyclic rings Zp

ei
i

, that is,

Zn
∼=

r∏
i=1

Zp
ei
i
.

Proof. The third statement is a special case of the second.
The second follows from the first by induction on r.
That leaves us with the first statement. In one direction, Zn → Zk × Zm, the function

giving the isomorphism is fairly obvious; it’s built of the two functions Zn → Zk and Zn → Zm

that are easy to describe.
There is an obvious candidate for a ring function Zn → Zk, namely [x]n 7→ [x]k by which

is meant the equivalence class of x modulo n is sent to the equivalence class of x modulo k.
First, we have to check that this function is well defined. Suppose [x]n = [y]n. Then

x ≡ y (mod n), so n
∣∣(x − y). But k

∣∣n, therefore k
∣∣(x − y). Hence, x ≡ y (mod k), and

[x]k = [y]k. So the function is well-defined.
You can check the rest, that this function preserves the ring operation so that it’s a ring

homomorphism.
Putting together the two ring homomorphisms Zn → Zk and Zn → Zm we have a ring

homomorphism

Zn → Zk × Zm

[x]n 7→ ([x]k, [x]m)

In order to show that this is an isomorphism, all we need to do is to show that it’s a
bijection, and for that, all we need to do is to show that it’s an injection since the sets Zn
and Zk × Zm have the same cardinality.

Suppose that [x]n and [y]n are sent to the same element in Zk × Zm. Then [x]k = [y]k
and [x]m = [y]m, that is, k

∣∣(x − y) and m
∣∣(x − y). Since they both divide x − y, so does

their least common multiple. But they’re relatively prime, so their LCM is their product, n.
Thus n

∣∣(x − y), so [x]n = [y]n. Therefore, this is a one-to-one function, hence a one-to-one
correspondence. Thus, the ring homomorphism is an isomorphism. q.e.d.
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The inverse. Well, since it’s a bijection, it shouldn’t be too hard to find its inverse Zk ×
Zm → Zn. In other words, solve for x (mod n) the pair of simultaneous congruences

x ≡ a (mod k)

x ≡ b (mod m)

It’s too much work to construct the entire k×m table as was done for the 7×12. There’s
a better way.

We can find a solution with the extended Euclidean algorithm. Since gcd(m, k) = 1,
therefore 1 is a linear combination of m and k, that is, there are integers s and t so that
sm + tk = 1. Multiply by b − a to conclude s(b − a)m + t(b − a)k = b − a. Therefore,
t(b − a)k + a = b − s(b − a)m. Let that be x. Then x ≡ a (mod k) and x ≡ b (mod m) as
required.

Problems like this in indeterminate analysis were solved in ancient China and in ancient
India. The earliest appeared in Sunzi suanjing (Master Sun’s Mathematical Manual) in the
about the fourth century C.E. in China. In 1247 Qin Jiushao gave a general method for
solving linear congruences in his Shushu jiuzhang (Mathematical Treatise in Nine Sections).

3.2.2 Brahmagupta’s solution

In India in the seventh century C.E., Brahmagupta also gave a general algorithm for solv-
ing these linear congruences in his Brāhmasphut.asiddhānta (Correct Astronomical System of
Brahma). If more than two congruences were given, he first reduced the problem to solving
pairs of congruences as we did above. His solution is the one described above.

As an example, find x (mod 210) if

x ≡ 11 (mod 45)

x ≡ 4 (mod 56)

Here’s how he did it in modern notation, explained with the numerical example above.
We’re looking for a value of x so that x = 45s + 11 = 56t + 4 for some integers s and t.

So we need s and t so that 45s+ 7 = 56t. That reduces to 45(s− t) + 7 = 11t. Let s′ = s− t.
To solve 45s′+ 7 = 11t, since 45 = 4 · 11 + 1, reduce it to s′+ 7 = 11(t− 4s′). Let t′ = t− 4s′.
We can solve s′ + 7 = 11t′ by setting s′ = 4 and t′ = 1. Substituting these in the defining
equations, we find t = t′ + 4s′ = 17, and s = s′ + t = 21. Therefore, x = 45s+ 11 = 956, the
answer.

Of course, Brahmagupta did not use variables. His is solution was described as a fairly
simple algorithm that just used the four arithmetic operations.

3.2.3 Qin Jiushao’s solution

The algorithm that Qin Jiushao described was fairly different and applied directly to many
linear congruences so long as the moduli were pairwise relatively prime. Let’s illustrate it
with the system of three congruences

x ≡ 45 (mod 121)

x ≡ 31 (mod 63)

x ≡ 30 (mod 100)
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Since the moduli are pairwise relatively prime, we can find a unique solution to this system
modulo 762300, the product of the moduli.

Step 1. For each modulus, find a reciprocal of the product of the remaining moduli modulo
the given modulus. For the first modulus, 121, that means we need the reciprocal of 6300
modulo 121, that is, we need to solve

6300y ≡ 1 (mod 121).

That’s the same as 8y ≡ 1 (mod 121). The extended Euclidean algorithm gives us 1 =
(−15) · 8 + 1 · 121, so y = −15 is a solution.

For the second modulus, 63, we need the reciprocal of 12100 modulo 63. That’s the same
as the reciprocal of 4 modulo 63, which is 16.

For the third modulus, 100, we need the reciprocal of 7623 modulo 100. That’s the same
as the reciprocal of 23 modulo 100. The Chinese mathematicians called finding a reciprocal
modulo n by the term “finding one”. By the extended Euclidean algorithm, (−13) ·23+3 ·8 =
1, so −13 is the reciprocal of 23 modulo 100.

Step 2. To get x sum three products abc, one for each congruence, where a is the constant
in the congruence, b is the product of the other moduli, and c is the reciprocal found in the
previous step. That gives us

45 · 6300 · (−15)

+ 31 · 12100 · 16

+ 30 · 7623 · (−13)

= −283515 + 6001600− 2972970 = 2745115

and then reduce this number modulo the product 762300 of all three moduli. That gives a
final answer of x ≡ 458215 (mod 762300).

Exercise 34. Solve the following system of simultaneous linear congruences. You can use either
Brahmagupta’s algorithm, Qin Jiushao’s algorithm, or something of your own devising.

x ≡ 4 (mod 33)

x ≡ 22 (mod 35)

x ≡ 41 (mod 53)

Be sure to show how you derived the solution.

3.3 Boolean rings

Representing by x the class “men,” and by y “Asiatics,” let z represent the ad-
jective “white” to the collection of men expressed by the phrase “Men except
Asiatics,” is the same as to say “White men except white Asiatics.” Hence we
have

z(x− y) + zx− zy.
This is also in accordance with the laws of ordinary algebra.

George Boole, 1854. An Investigation of the Laws of Thought on which are founded
the mathematical theories of logic and probabilities.



64 CHAPTER 3. RINGS

George Boole (1815-1864). Boole wanted to bring logic into the realm of mathematics,
which he did by algebrizing it.

We’ll incorporate his investigations in our study of ring theory, but change his notation
slightly. Boole did not allow a sum of two things unless they were disjoint, so x + x had no
meaning for him. We’ll just take + to be an exclusive or (symmetric difference), so x+x will
be 0 for us.

3.3.1 Introduction to Boolean rings

We saw before that powerset ℘(S) of a set S becomes a ring when we define A+B to be the
symmetric difference and AB to be the intersection of two subsets A and B. The 0 element
of the ring is the emptyset ∅, while the 1 element is S. The complement of a subset A is
1− A (which equals 1 + A).

We’ll define what a Boolean ring is in terms of idempotents.

Definition 3.9. An element e of a ring is said to be idempotent when e2 = e.

Notice that 0 and 1 are always idempotent in any ring.
Other examples of idempotent elements in rings are projections. The transformation

f : R2 → R2 which projects a point in the plane to the x-axis, defined by f(x, y) = (x, 0), is
idempotent as is any projection from a space to a subspace of itself.

Definition 3.10. A Boolean ring is a ring in which every element is idempotent.

The ring ℘(S) is evidently an example of a Boolean ring.
Two properties that follow from the definition are (1) that the a Boolean ring has char-

acteristic 2, (2) Boolean rings are commutative.

Theorem 3.11. A nontrivial Boolean ring has characteristic 2.

Proof. Since 1 + 1 is idempotent, (1 + 1)2 = 1 + 1. Therefore, 1 + 1 + 1 + 1 = 1 + 1, and so
1 + 1 = 0. q.e.d.

As in any ring of characteristic 2, negation does nothing, −x = x, and subtraction is the
same as addition, x− y = x+ y.

Theorem 3.12. Boolean rings are commutative.

Proof. Let x and y be two elements of a Boolean ring. Since x+ y is idempotent, (x+ y)2 =
x + y. Expanding that equation using the fact that multiplication distributes over addition
in every ring, commutative or not, it follows that x2 + xy+ yx+ y2 = x+ y. But x2 = x and
y2 = y, so that last equation simplifies to xy+ yx = 0. Therefore, xy = −yx, and −yx = yx,
so xy = yx. q.e.d.

Boolean rings are the same thing as something called Boolean algebras, but the approaches
are different. A Boolean ring is thought of as a special kind of ring, while a Boolean algebra
is a special kind of partially ordered set whose elements are truth values. Boolean algebras
are reviewed in the appendix section A.3.3.

Table 3.1 compares common notations in Boolean algebras, set theory, and Boolean rings.
Here, P and Q are propositions or predicates, A and B are subsets of a set Ω, and x and y
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Boolean Set Boolean
algebras theory rings
T (true) Ω 1
F (false) ∅ 0

P ∧Q (and) A ∩B xy
P ∨Q (inclusive or) A ∪B x+ y + xy
P ⊕Q (exclusive or) A⊕B x+ y

¬P (not) Ac 1 + x
P ⇐⇒ Q A = B x = y
P ⇒ Q A ⊆ B xy = x

T ∨Q ⇐⇒ T Ω ∪B = Ω 1 + y + 1y = 1
F ∨Q ⇐⇒ Q ∅ ∪B = B 0 + y + 0y = y
T ∧Q ⇐⇒ Q Ω ∩B = B 1y = y
F ∧Q ⇐⇒ F ∅ ∩B = ∅ 0y = 0

P ∧Q ⇐⇒ Q ∧ P P ∩Q = Q ∩ P xy = yx
P ∨Q ⇐⇒ Q ∨ P P ∪Q = Q ∪ P x+ y + xy = y + x+ yx

¬(P ∧Q) ⇐⇒ ¬P ∨ ¬Q (A ∩B)c = Ac ∪Bc 1+xy = (1+x) + (1+y) + (1+x)(1+y)
¬(P ∨Q) ⇐⇒ ¬P ∧ ¬Q (A ∪B)c = Ac ∩Bc 1 + (x+ y + xy) = (1 + x)(1 + y)

Table 3.1: Notations in Boolean algebras, set theory, and Boolean rings.

are elements of a Boolean ring. These are just a few correspondences. You can add many
more.

For more on Boolean algebras, see section A.3.3 in the appendix.

Free Boolean rings Some Boolean rings, called free Boolean rings, have special properties.
Given a set S whose elements are calle generators, the free Boolean ring on S is the Boolean
ring B(S) which comes equipped with a function ι : S → B(S) that satisfies the following
universal property: for each Boolean ring R and function f : S → R, there exists a unique
ring homomorphism f̂ : B(S)→ R such that f ◦ ι = f̂ .

Examples 3.13 (Free Boolean rings). If S = is the empty set, then B(∅) consists of only
two elements, 0 and 1, which when identified with truth values are ⊥ and >, respectively.

If S = {p} is a singleton set, then B({p}) has four elements, 0, p, 1 − p, and 1, which
when identified with truth values are ⊥, p, ¬p, and >.

If S = {p, q} has two elements, then B({p, q}) has 16 elements. They are displayed in
figure 3.2 as truth values. It is isomorphic to the Boolean ring which is the powerset of a set
of four elements in figure A.1.

3.3.2 Factoring Boolean rings

Suppose that a set S is partitioned into subsets S1, S2, ..., Sn. That means S is the union
of all these subsets, and they are pairwise disjoint. Then the ring ℘(S) is isomorphic to a
product of the rings ℘(Si). The function

℘(S) ∼= ℘(S1)×℘(S2)× · · · ×℘(Sn)
A 7→ (A ∩ S1, A ∩ S2, . . . , A ∩ Sn)
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>

p ∨ q q → p p→ q ¬p ∨ ¬q

p q p↔ q p↔ ¬q ¬q ¬p

p ∧ q p ∧ ¬q ¬p ∧ q ¬p ∧ ¬q

⊥

Figure 3.2: Free Boolean ring on two elements

gives the ring homomorphism in one direction, and it’s a bijection since A is the disjoint
union of the terms on the right.

In fact, this works even when S is partitioned into arbitrarily many subsets. Since S is the
disjoint union of its singletons S = ∪x∈S{x}, therefore ℘ =

∏
x∈S
℘({x}). In other words,

℘ is a power of the 2-element ring.

Factoring works in a general Boolean ring as well as those of the form ℘(S). Let R
be a Boolean ring, and e any idempotent in it other than 0 or 1. Let e = 1 − e, so that
1 = e + e from which it follows that x = xe + xe for all x ∈ R. Let Re = {xe |x ∈ R}, and
let Re = {xe |x ∈ R}. You can check that both Re and Re are Boolean rings, where the
multiplicative identities are e and e, respectively. Furthermore,

R ∼= Re × Re

x 7→ (xe , xe)

3.3.3 A partial order on a Boolean ring

If we define x � y to mean xy = y, then our Boolean ring will have a partial ordering.

Recall that a partial ordering � on a set is a reflexive, antisymmetric, and transitive
relation.

1. Reflexive: x � x, since x2 = x.

2. Antisymmetric: x � y and y � x imply x = y, since xy = x and yx = y imply x = y.

3. Transitive: x � y and y � z imply x � z, since xy = x and yz = y imply xz = x.
(Proof: xz = (xy)z = x(yz) = xy = x.)

In this partial order, the product xy is the meet x ∧ y of x and y, that is, it’s the largest
element z such that z � x and z � y. Likewise, x+ y + xy is the join x ∨ y of x and y, that
is, it’s the smallest element z such that x � z and y � z. A partial order that has meets and
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joins of pairs of elements is called a lattice. Not all lattices have the distributive properties
where meet and join distribute over each other

(x ∨ y) ∧ z = (x ∧ z) ∨ (y ∧ z) and (x ∧ y) ∨ z = (x ∨ z) ∧ (y ∨ z)

but Boolean rings do, so Boolean rings are examples of distributive lattices
A minimal element of a Boolean ring is a nonzero element such that there is no smaller

nonzero element. Every element of a finite Boolean ring is a sum of the minimal elements
less than or equal to it. Since there are no elements less than 0, 0 has to be treated as the
empty sum.

Theorem 3.14. If R is a finite Boolean ring, then R ∼= ℘(S) where

S = {x ∈ R |x is minimal}.

Exercise 35. Prove the preceding theorem. Hint: see the section above 3.3.2 on factoring
Boolean rings. Induction may help.

3.4 The field of rational numbers, fields of fractions

Suppose that we already have constructed the integral domain of integers Z, but for some
reason do not have the field of rational numbers Q. Then we could constructQ from Z since
each rational number can be named by a pair of integers.We’ll do that. The steps we use
only depend on Z being an integral domain. That means that the construction we use can
also be used to create a field of fractions F from any integral domain R. In the following,
think of the integral domain R as bing Z and the field F as being Q.

An equivalence relation on pairs of integers. First of all, a rational number
m

n
can be

named by a pair of integers (m,n) where the second integer n does not equal 0. But different

pairs (m,n) and (k, l) can name the same integer
m

n
=
k

l
if ml = nk. That suggests if we

want to create rational numbers from integers, we’ll need an equivalence relation on pairs of
elements of the integral domain R.

We’ll start with the set R×R6=0 of ordered pairs (m,n) of elements of an integral domain
R with n 6= 0. Define a relation ≡ on this set by

(m,n) ≡ (k, l) iff ml = nk.

You can easily verify that this relation is an equivalence relation.

Reflexivity: (m,n) ≡ (m,n). That’s valid since mn = mn.

Symmetry: (m,n) ≡ (k, l) implies (k, l) ≡ (m,n). That’s valid since ml = nk
implies kn = lm.

Transitivity: (m,n) ≡ (k, l) and (k, l) ≡ (s, t) imply (m,n) ≡ (s, t). We need to
show that ml = nk and kt = ls imply mt = ns. Multiply the first equation by t
and the second by n. Then mlt = nkt and nkt = nls, so mlt = nls. But R is an
integral domain, so cancellation is valid when l 6= 0, so mt = ns.
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Thus, ≡ is an equivalence relation on R×R6=0. Let F be the quotient set F≡, and denote an
element [(m,n)] of F by m

n
.

So far, we’ve got the underlying set for our proposed field F , but we don’t have the
operations for a field. Before we define them (and show they’re well-defined), let’s verify that

the function R → R × R6=0 → F which sends an element m of R first to (m, 1) then to
m

1
is a one-to-one function. Suppose that

m

1
=
n

1
. That means m1 = 1n, so m = n. Thus we

may interpret R→ F as making R a subset of F by identifying m with
m

1
.

Addition on F . We’d like to define the sum

m

n
+
k

l
as

ml + nk

nl
,

but as our fractions are really equivalence classes, we need to show that’s well defined. In
detail, we need to show that

m

n
=
m′

n′
and

k

l
=
k′

l′
imply

ml + nk

nl
=
m′l′ + n′k′

n′l′
.

That reduces to showing that

mn′ = nm′ and kl′ = lk′ imply (ml + nk)n′l′ = nl(m′l′ + n′k′).

But that can be shown by multiplying the first equation by ll′, the second by nn′ and adding
the two resulting equations. Thus, this addition on F is well-defined.

Multiplication on F . We’d like to define the product

m

n

k

l
as

mk

nl
,

We need to show that’s well defined. You’ll find that the proof is easier than the one above
for addition.

Next, we need to verify that with these definitions F satisfies the field axioms. A proof is
needed for each field axiom.

Commutativity of addition.
m

n
+
k

l
=

k

l
+
m

n
. That’s easily verified since

ml + nk

nl
=

kn+ lm

ln
. (That depends on commutativity of addition and multi-

plication in R.)

Commutativity of multiplication.
m

n

k

l
=

k

l

m

n
. That’s easily verified since

mk

nl
=
km

ln
.

Associativity of addition. You can easily show it, but it’s a big mess.

Associativity of multiplication. Pretty easy.

Additive identity.
0

1
+
k

l
=
k

l
. Easy.

Multiplicative identity
1

1

k

l
=
k

l
. Easy.
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Negation.
m

n
+
−m
n

=
0

1
. Pretty easy.

Reciprocation. For
m

n
6= 0

1
,
m

n

n

m
=

1

1
. Pretty easy.

Multiplication distributes over addition. Easy but messy.

0 6= 1. We need to show that
0

1
6= 1

1
in F . But that’s the same as 0 · 1 6= 1 · 1

in the integral domain R, and part of the definition of integral domain requires
0 6= 1.

Thus, F is a field.

Exercise 36. Select four of the axioms above, and prove them. As always, your proofs should
include justifications.

We’ll summarize this result as a theorem.

Theorem 3.15. An integral domain R is a subring of a field F , called the field of fractions,

where each element of F can be represented as
m

n
where m and n are elements of R and

n 6= 0.

This gives us another proof that the characteristic of an integral domain is either 0 or a
prime number since it has the same characteristic of its field of fractions.

Examples 3.16. The primary example of this is the construction of Q from Z.
For another example, take the Gaussian integers Z[i] for the integral domain R. Then

the field of fractions F is the field Q(i). The elements of Q(i) are of the form x + yi where
x and y are rational numbers.

Yet for another example, take the polynomial ring F [x] with coefficients in a field F . It’s
an integral domain, and its field of fractions is the rational function field F (x) with coefficients
in F .

Stopping short of inverting all elements. Sometimes you may want to create reciprocals
for some elements of an integral domain, but not for all elements. This can be done by a
minor modification of the above process. Suppose, for instance, that you want to extend Z
to include the reciprocal of 2 but not of any other prime number. That would lead to the
domain of dyadic rationals Z[1

2
] where the denominators are powers of 2.

On the other hand, if you want to extend Z to include the reciprocals of all the primes
except 2, just include odd denominators. This is called localizing Z at 2.

These other constructions are useful in mathematics, but we won’t use them ourselves.

3.5 Categories and the category of rings

Categories are higher-order algebraic structures. We’ll look at the category of rings in which
the objects of the category are all the rings. The purpose of a category is to study the
interrelations of its objects, and to do that the category includes morphisms between the
objects. In the case of the category of rings, the morphisms are the ring homomorphisms.

We’ll start with the formal definition of categories. We’ll use the category of rings both
to illustrate categorical concepts and to study rings. Category theory was developed by
Eilenberg and Mac Lane in the 1940s.
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3.5.1 The formal definition of categories

Unlike fields, rings, and groups, we won’t require that categories build on sets. In a category
the collection of all its objects won’t be a set because the collection is larger than any set.
That’s not a problem since theories don’t have to be built on set theory. Indeed, set theory
itself is not built on set theory.

Definition 3.17. A category C consists of

1. objects often denoted with uppercase letters, and

2. morphisms (also called maps or arrows) often denoted with lowercase letters.

3. Each morphism f has a domain which is an object and a codomain which is also an
object. If the domain of f is A and the codomain is B, then we write f : A → B or

A
f→ B. The collection of all morphisms from A to B is denoted Hom(A,B).

4. For each object A there is a morphism 1A : A→ A called the identity morphism on A.
(When A can be determined by context, its denoted simply 1.)

5. Given two morphisms A
f→ B and B

g→ C where the codomain of one is the same as

the domain of the other there is another morphism A
g◦f−→ C called the composition of

the two morphisms. This composition is illustrated by the commutative diagram

A B

C

-
f

?

g

@
@
@
@
@R

g ◦ f

(Sometimes g ◦ f is denoted fg.)

A diagram of objects and morphisms in a category is said to commute, or be a commu-
tative diagram if any two paths of morphisms (in the direction of the arrows) between
any two objects yield equal compositions.

6. For all A
f→ B, f ◦ 1A = f and 1B ◦ f = f . These compositions are illustrated by the

two commutative diagrams

A

A B

?

1A

-
f

@
@
@
@
@R

f ◦ 1A

A B

B

-
f

?

1B

@
@
@
@
@R

1B ◦ f

7. For all A
f→ B, B

g→ C, and C
h→ D, (h ◦ g) ◦ f = h ◦ (g ◦ f). In the diagram below, if

the two triangles in the diagram each commute, then the parallelogram commutes.
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A B

C D

-
f

?

g

@
@
@
@
@R

g ◦ f
-

h

@
@
@
@
@R

h ◦ g

Isomorphisms in a category C. Although only morphisms are defined in a category, it’s
easy to determine which ones are isomorphisms. A morphism f : A→ B is an isomorphism
if there exists another morphism g : B → A, called its inverse, such that f ◦ g = 1A and
g ◦ f = 1B. Indeed, the main reason identity morphisms are included in the definition of
categories is to be able to define isomorphisms.

Examples 3.18 (The categories of sets, groups, rings, and fields). Although we’re more
interested in the category of rings right now, the category S of sets is also relevant. An
object in S is a set, and a morphism in S is a function. The domain and codomain of a
morphism are just the domain and codomain of the function, and composition is composition.
Isomorphisms are bijections.

The objects of the category G of groups are groups, and the morphisms of G are group
homomorphisms.

The objects of the category R of rings are rings, and the morphisms of R are ring homo-
morphisms.

The objects of the category of fields are fields, and its morphisms are field homomorphisms,
which are just ring homomorphisms. The category of fields is a subcategory of the category
of rings.

In each of these other three categories—groups, rings, fields—isomorphisms in the category
are what we have called isomorphisms.

3.5.2 The category R of rings

Recall that a ring homomorphism f : A → B between rings is a function that preserves
addition, multiplication, and 1. The category of rings has as its objects all rings and as
its morphisms all ring homomorphisms. The identity morphism 1A on a ring is the identity
homomorphism, and composition is the usual composition of homomorphisms. Thus, we have
a category R of rings.

If this were all there was to category theory, there wouldn’t be much point to it. But
by emphasizing the morphisms and deemphasizing elements in rings we can identify what’s
important about certain rings and certain ring constructions. We’ll look at products of rings
first to see what characterizes them. We’ll also look at a couple of special rings, namely Z
and Z[x], for characterizing properties of them. We’ll also see how to characterize monomor-
phisms.

The universal property of products. Recall that the product R1 × R2 of two rings is
consists of ordered pairs (x1, x2) with x1 ∈ R1 and x2 ∈ R2, and the ring operations for R1×R2

are performed coordinatewise. Furthermore, we have the projection ring homomorphisms
R1 ×R2

π1→ R1 and R1 ×R2
π2→ R2 which pick out the two coordinates.



72 CHAPTER 3. RINGS

This product has the universal property that for each ring S and ring homomorphisms

S
f1→ R1 and S

f2→ R1, there exists a unique ring homomorphism S → R1 × R2, which we
will denote (f1, f2), such that f1 = π1 ◦ (f1, f2) and f2 = π2 ◦ (f1, f2), as illustrated by the
diagram below.

R1

R2

R1 ×R2S
�
�
�
��

π1

@
@
@
@R

π2

-(f1, f2)
��

��
��

��
��

��
�1

f1

PPPPPPPPPPPPPq
f2

In fact, the product is characterized by this universal property in the sense that if another
ring R has this universal property, then there is a ring isomorphism R → R1 × R2. In more
detail, if R

p1→ R1 and R
p2→ R2 have this product property (namely, that for each ring S

and ring homomorphisms S
f1→ R1 and S

f2→ R1, there exists a unique ring homomorphism

S
f→ R such that f1 = p1 ◦ f and f2 = p2 ◦ f), then there exists a unique ring isomorphism

R
h→ R1 ×R2 such that π1 ◦ h = p1 and π2 ◦ h = p2.

Although this characterization of products was described for the category of rings, it is the
definition for the product of two objects in any category. A product R1×R2 is characterized
by the property that a morphism to the product correspond to a pair of morphisms to the
factors. The product of two sets in the category S of sets has this same universal property as
does the product of two groups in the category G of groups. There are, however, no products
in the category of fields.

Z is the initial object in the category of rings. We can also use category theory to pin
down what’s so special about the ring Z. It has the property that given any ring R, there is

a unique ring homomorphism Z
f→ R, and it’s defined by f(n) = n. An object in a category

with that property is called the initial object in the category. Any two initial objects in a
category are isomorphic.

The trivial ring is the final object in the category of rings. Dual to the initial
object is a final object, which in the category of rings is the trivial or degenerate ring 0. This
ring has only one element in which 0 = 1. In fact, it’s the only ring in which 0 = 1 (since
0 = 0x = 1x = x).

The final object in a category has the property that there’s a unique morphism to it from
each object in the category. The trivial ring has that property in the category of rings.

Exercise 37. Determine the initial object and the final object in the category S of sets.
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The universal property of the polynomial ring Z[x]. Given any ring R and any
element a ∈ R, there is a unique ring homomorphism Z[x] → R that maps x to a. This
homomorphism is just evaluation at a, and a polynomial f(x) is mapped to the element f(a)
in R.

3.5.3 Monomorphisms and epimorphisms in a category

Although we defined a monomorphism f : A → B as a one-to-one homomorphism, we can
characterize monomorphisms entirely in terms of category theory.

Definition 3.19. A morphism f : A → B is monic, or a monomorphism, when if g and h
are any two morphisms from any another object C to A such that f ◦ g = f ◦ h, then g = h.

A BC -f-
g
-

h

A monomorphism in the category S of sets is an injection.
This definition agrees with our previous definition for ring monomorphism in terms of ele-

ments, and one way to see the correspondence is to let C be Z[x]. Likewise, a monomorphism
in the category G of groups agrees with our previous definition of group monomorphism.

Epimorphisms. The concept of epimorphism is dual to that of monomorphism. If we
change the direction of all the arrows in the definition of monomorphism, we’ll get the defi-
nition of epimorphism.

Definition 3.20. A morphism f : A → B is epic, or an epimorphism, when if g and h are
any two morphisms from B to any another object C such that g ◦ f = h ◦ f , then g = h.

B CA -f -g
-

h

In the category S of sets, an epimorphism is a surjection. Likewise, it turns out that in
the category G of groups, an epimorphism is a surjection.

In the category R of rings, it’s easy enough to show that if f is a surjective ring homomor-
phism, then f is an epimorphism, but there are other epimorphisms that aren’t surjections.

Example 3.21. Consider the inclusion function ι : Z→ Q. We’ll show that it’s an epimor-
phism.

Let g and h be any two morphisms from Q to any another ring C such that g ◦ ι = h ◦ ι.
Then g(n) = h(n) for any integer n. Let

m

n
be a rational number with n 6= 0. Then

g(m) = h(m) and g(n) = h(n). So,

g
(m
n

)
g(n) = g

(m
n
n
)

= g(m) = h(m) = h
(m
n
n
)

= h
(m
n

)
h(n) = h

(m
n

)
g(n).

Since n 6= 0, therefore g(n) 6= 0 as well. Cancel the g(n) at the ends of the continued equation

to conclude g
(m
n

)
= h

(m
n

)
. Thus, g = h.

Therefore, the ring homomorphism ι : Z → Q is an epimorphism in R, the category of
rings. It is also a monomorphism. But it is not an isomorphism.
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In many categories, if a morphism is both monic and epic, then it’s also an isomorphism.
That’s true in the category S of setsand in the category G of groups, but not in the category
R of rings. This example shows that R is a somewhat unusual category.

3.6 Kernels, ideals, and quotient rings

These three concepts are closely related. For a ring homomorphism f : R → S, the inverse
image of 0 is a subset of R called the kernel of f and denoted Ker f . It can’t be just any
subset, as we’ll see, since it’s closed under addition and multiplication by elements of R. A
subset with those properties we’ll call an ideal of R. Every ideal I of R is the kernel of some
ring homomorphism f : R→ S. We’ll use an ideal I of a ring R to define a quotient ring R/I
and a projection γ : R → R/I. These projections will be generalizations of the projections
Z→ Zn that we studied earlier.

3.6.1 Kernels of ring homomorphisms

Definition 3.22. Let f : R → S be a ring homomorphism. Those elements of R that are
sent to 0 in S form the kernel of f .

Ker f = f−1(0) = {x ∈ R | f(x) = 0}.

We’ll look at properties of this kernel and see what it tells us about the function f .

Example 3.23. It’s a good idea to have in mind an example or two whenever a new concept
is defined. The definition of the kernel of a ring homomorphism is given above, and a good
example for it is the ring homomorphism f : Z → Zn where n is a fixed integer. That’s an
especially good example we can use it throughout this discussion of rings, ideals, and quotient
rings.

For that f : Z → Zn, an element x ∈ Z is in Ker f if it is sent to [0]n, the 0 element in
the ring Zn, that is, if [x]n = [0]n, or, more simply, if n

∣∣x. Therefore, the kernel of f consists
of the multiples of n. A standard notation for the multiples of an integer n is nZ. Thus, for
this function f , Ker f = nZ.

Kernels aren’t just any subsets of R; they have some special properties. We have, of
course, 0 ∈ Ker f , since f(0) = 0, Also, if x and y are both in Ker f , then f(x + y) =
f(x) + f(y) = 0 + 0 = 0, so their sum x + y is also in Ker f . Furthermore, if x ∈ Ker f
and y is any element of R, then f(xy) = f(x)f(y) = 0f(y) = 0, so xy ∈ Ker f , and likewise
yx ∈ Ker f .

Besides telling us what elements are sent to 0 by f , the kernel of f also tells us when
two elements are sent to the same element. Since f(x) = f(y) if and only if f(x − y) = 0,
therefore, f will send x and y to the same element of S if and only if x− y ∈ Ker f .

3.6.2 Ideals of a ring

The properties of kernels of homomorphisms that we just found we’ll use to define ideals of
rings. Historically, ideals had a different purpose, but we’ll get to that purpose later. The
word “ideal” is short for ideal number or ideal element.
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Definition 3.24. An ideal I of a ring R is a subset that (1) includes 0, (2) is closed under
addition, and (3) is closed under multiplication by elements of R. We can summarize these
requirements symbolically by 0 ∈ I, I + I ⊆ I, RI ⊆ I, and IR ⊆ I.

Both of the last two requirements, RI ⊆ I and IR ⊆ I, are needed when R is a non-
commutative ring. Most of the time we’ll be dealing with commutative rings so one will
do.

Note that {0} is always an ideal in a ring R. It’s called the trivial ideal. We’ll usually
just denote it 0. Also, the entire ring R is an ideal, but not a proper ideal. A proper ideal is
any ideal I 6= R.

Theorem 3.25. The intersection of ideals is an ideal.

Proof. Here’s the proof for two ideals I1 and I2 of a ring R. This proof can be generalized to
any number, including an infinite number, of ideals.

We need to show that I1 ∩ I2 (1) includes 0, (2) is closed under addition, and (3) is closed
under multiplication by elements of R.

First, since 0 ∈ I1 and 0 ∈ I2, therefore 0 ∈ I1 ∩ I2.
Second, given two elements x, y ∈ I1 ∩ I2, to show x + y ∈ I1 ∩ I2. Since x, y ∈ I1 ∩ I2,

therefore x, y ∈ I1 and x, y ∈ I2. Therefore x+ y ∈ I1 and x+ y ∈ I2, and so x+ y ∈ I1 ∩ I2.
Third, given x ∈ I1 ∩ I2 and y ∈ R, to show xy ∈ I1 ∩ I2. Since x ∈ I1 ∩ I2, therefore

x ∈ I1 and x ∈ I2. Therefore, xy ∈ I1 and xy ∈ I2, and so xy ∈ I1 ∩ I2. q.e.d.

Principal ideals and ideals generated by a set. The simplest examples of ideals are
what are called principal ideals. Let a be an element of a commutative ring R. The set of all
multiples of a,

(a) = {xa |x ∈ R},
is an ideal of R, as you can easily check. These ideals are called principal ideals because they
are generated by one element. An alternate notation for the principal ideal generated by the
element a is Ra or aR.

Note that (0), the ideal generated by 0, is just the 0 ideal, while (1), the ideal generated
by 1, is all of R.

Sometimes it takes more than one element to generate an ideal. Let A be a subset of a
commutative ring R. The smallest ideal that contains A is called the ideal generated by A. It
must contain all linear combinations of elements of A since an ideal is closed under addition
and closed under multiplication by elements of R, but that’s enough. Usually, we’re only
interested in generating an ideal from a finite number of elements A = {a1, a2, . . . , ak}. Then
the ideal generated by A is

(a1, a2, . . . , ak) = {x1a1 + · · ·+ xkak | each xi ∈ R}.

An example of an ideal generated by two elements but not principal (not by one element)
is (5, x2) in Z[k], the polynomial ring with integral coefficients.

Exercise 38. As you know, if n ∈ Z, then nZ, also written (n), is an ideal of the ring Z.
Consider the two ideals I = 6Z and J = 10Z of the Z.

(a). Determine their intersection I ∩ J as a principal ideal of Z.
(b). Prove that the union I ∪ J is not an ideal of Z.



76 CHAPTER 3. RINGS

3.6.3 Quotient rings, R/I

As mentioned above the kernel of a ring homomorphism f tells us when two elements are sent
to the same element: f(x) = f(y) if and only if x−y ∈ Ker f . We can use Ker f to construct
a “quotient ring” R/Ker f by identifying two elements x and y in R if their difference lies
in Ker f . In fact, we can do this not just for kernels of homomorphisms, but for any ideal
I. That is, we can use an ideal I of R to determine when two elements x and y are to be
identified, x ≡ y, and we’ll end up with a ring R/I. The identification is called a congruence.
This concept of congruence generalizes congruence modulo n on Z.

Definition 3.26. A congruence ≡ on a ring R is an equivalence relation such that for all
x, x′, y, y′ ∈ R,

x ≡ x′ and y ≡ y′ imply x+ y ≡ x′ + y′ and xy ≡ x′y′.

Since we’re dealing with rings with 1, we’ll usually insist that 0 6≡ 1. The equivalence classes
for a congruence are called congruence classes.

Theorem 3.27. If ≡ is a congruence on a ring R, then the quotient set R/≡, that is, the set of
congruence classes, is a ring where addition is defined by [x]+ [y] = [x+y] and multiplication
by [x][y] = [xy].

Proof. First we need to show that the proposed definitions are actually well defined. That
is, if a different representative x′ is chosen from the congruence class [x] and y′ from [y], then
the same classes [x′ + y′] and [x′y′] result. That is

[x] = [x′] and [y] = [y′] imply [x+ y] = [x′ + y′] and [xy = xy′].

That’s the same as the requirements met in the definition of congruence (which explains why
they are in the definition).

Also, each of the axioms for a ring need to be verified, but they’re all automatic. Here’s
commutativity of addition, for example.

[x] + [y] = [x+ y] = [y + x] = [y] + [x].

We could say that the quotient ring inherits the properties from the ring. q.e.d.

In the next theorem we’ll see that an ideal I determines a congruence. We’ll write the
congruence x ≡ y (mod I) rather than just x ≡ y when we want to emphasize the role of I.
The congruence classes may be written [x] or [x]I , or x+ I. The last notation is a good one
since [x] = {x+ y | y ∈ I}.

Theorem 3.28 (Congruence modulo an ideal). Let I be an ideal of a ring R. A congruence,
called congruence modulo I, is defined by

x ≡ y (mod I) if and only if x− y ∈ I.

The quotient ring, R/≡, is denoted R/I.
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Proof. First, we need to show that it’s an equivalence relation.

Reflexivity. x ≡ x (mod I). That’s okay since x− x = 0 ∈ I.

Symmetry. x ≡ y (mod I) implies y ≡ x (mod I). That’s okay because if x− y ∈ I, then
y − x = −(x− y) ∈ I.

Transitivity. x ≡ y (mod I) and y ≡ z (mod I) imply x ≡ z (mod I). That’s okay, too.
If x− y ∈ I and y − z ∈ I, then so is their sum x− z ∈ I.

Thus, it’s an equivalence relation. Next to show that

x ≡ x′ (mod I) and y ≡ y′ (mod I) imply x+ y ≡ x′ + y′ (mod I) and xy ≡ x′y′ (mod I).

That requirement reduces to the statement

x− x′ ∈ I and y − y′ ∈ I imply (x+ y)− (x′ + y′) ∈ I and (xy − x′y′) ∈ I,

which, you can check, follow from the definition of ideal. q.e.d.

Exercise 39. Prove the last statement above: if x−x′ ∈ I and y−y′ ∈ I, then (x+y)−(x′+y′) ∈
I and (xy − x′y′) ∈ I.

Example 3.29 (Cyclic rings). As we saw above, I = nZ is an ideal of Z. The congruence
defined here is the same one we had before. Thus, x ≡ y (mod I) means x ≡ y (mod n). The
quotient ring is Z/nZ, which we have studied before and denoted Zn for short.

Comment 3.30. The ring structure on the quotient R/I was defined from the ring structure
on R, so the projection γ : R → R/I is a ring homomorphism. This ring R/I is called a
quotient ring of R. (It is also sometimes called a factor ring, but that term should be restricted
to the case when R factors as a product of rings, one of which is R/I. An example of that is
the Chinese remainder theorem.)

Examples 3.31 (Quadratic field extensions.). We’ve looked at Q(
√

2), C = R(i), and other
quadratic field extensions. We can interpret them as quotient rings.

Let’s take Q(
√

2) first. Consider the ring R = Q[x] of polynomials with rational coeffi-
cients. An ideal in R is the principal ideal I = (x2−2) generated by the polynomial x2−2. In
the quotient ring R/I = Q[x]/(x2− 2), we have x2− 2 ≡ 0 (mod I), that is, x2 ≡ 2 (mod I),
so in R/I, we find that 2 does have a square root, namely x. Since in R/I every polynomial
anx

n + · · · + a1x + a0 is congruent to a polynomial of degree 1 (because x2 ≡ 2), but no
two linear polynomials are congruent mod I (because a1x + a0 ≡ b1x + b0 (mod I) implies
(a1− b1)x+ (a0− b0) ∈ I so a1 = b1 and a0 = b0), therefore every element in R/I is uniquely
represented as a linear polynomial a1x+ a0. If we denote x by the symbol

√
2, then we find

Q[x]/(x2 − 2) is the same field as Q(
√

2) that we described before.

Likewise, R[x]/(x2 + 1) is C.

We’ll find this construction of new rings as quotient rings is very useful, especially when
we take quotients rings of polynomial rings like we did here.
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The image of a ring homomorphism is isomorphic to the ring modulo its kernel.
Let f : R→ S be a ring homomorphism. The image of f , denoted f(R), is the set

f(R) = {f(x) ∈ S |x ∈ R}.

It is a subring of S, as you can easily verify. You can also show the following isomorphism
theorem, called the first isomorphism for rings.

Theorem 3.32. If f : R → S is a ring homomorphism then the quotient ring R/Ker f is
isomorphic to the image ring f(R), the isomorphism being given by

R/Ker f → f(R)
x+ Ker f 7→ f(x)

Exercise 40. Prove the preceding theorem.
(a). First show that the assignment x + Ker f to f(x) is well defined. That means that

if x+ Ker f = x′ + Ker f , then f(x) = f(x′). Call that function φ(x).
(b). Show that assignment is a ring homomorphism. Show (1) φ(1) = 1, (2) φ(x + y) =

φ(x) + φ(y), and (3) φ(xy) = φ(x)φ(y).

This gives us two ways to look at the image, either as a quotient ring of the domain R or
as a subring of the codomain S.

Furthermore, we can now treat a ring homomorphism f : R → S as a composition of
three ring homomorphisms.

R→ R/Ker f ∼= f(R)→ S

The first is the projection from R onto its quotient ring R/Ker f , the second is the isomor-
phism R/Ker f ∼= f(R), and the third is the inclusion of the image f(R) as a subring of
S.

3.6.4 Prime and maximal ideals

Sometimes it occurs that R/I is not just a ring, but either an integral domain or even a field.
Those results occur when the ideal I is a prime ideal or a maximal ideal, respectively, as we’ll
define now.

Definition 3.33. An ideal I in a commutative ring R is said to be a prime ideal if R/I is an
integral domain. Equivalently, I is a prime ideal if (1) I 6= R, and (2) ∀x, y ∈ R, if xy ∈ I,
then either x ∈ I or y ∈ I. An ideal I is said to be maximal it’s a proper ideal, but it is not
contained in any larger proper ideal.

Exercise 41. Prove that R/I is an integral domain if and only if R/I satisfies both conditions
(1) I 6= R, and (2) ∀x, y ∈ R, if xy ∈ I, then either x ∈ I or y ∈ I.

Example 3.34. The ideals of Z that are prime are those of the form pZ where p is a prime
number, and the 0 ideal. In fact, pZ are maximal ideals, but 0 is not maximal.

In a field F there is only one proper ideal, namely 0.
In an integral domain, the 0 ideal is a prime ideal, and conversely, if 0 is an ideal in a

commutative ring, then the ring is an integral domain.
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Theorem 3.35. Every maximal ideal is prime.

Proof. Let I be a maximal ideal of a commutative ring R, and let xy ∈ I. Suppose x /∈ I.
Then xR+ I = {xu+ v |u ∈ R, v ∈ I} is an ideal containing I. Since I is an maximal ideal,
therefore xR + I is not a proper ideal but all of R. Therefore 1 = xu + v for some u ∈ R,
v ∈ I. Hence y = yxu + yv ∈ Iu + I = I. Thus, I satisfies the conditions to be a prime
ideal. q.e.d.

We won’t show it right now, but we’ll prove later Krull’s theorem which says that every
ideal is contained in a maximal ideal. We’ll need to discuss the axiom of choice and Zorn’s
lemma before we can prove it.

Theorem 3.36 (Maximal ideal theorem). Let I be an ideal of a commutative ring R. Then
I is a maximal ideal if and only if R/I is a field.

Proof. We’ll use the notation [x] for x+ I to stress that we’re thinking of it as an element of
R/I.

Suppose that I is a maximal ideal, and let [x] be any nonzero element of R/I, that is
x /∈ I. As in the last proof, xR+ I = R. Therefore 1 = xu+ v for some u ∈ R, v ∈ I. Then,
in R/I we have [1] = [x][u] + [v] = [x][u] + [0] = [x][u]. Therefore [x] has a reciprocal, and
R/I is a field.

Now suppose that R/I is a field. Let x /∈ I. We’ll show that xR + I = R which will
show that I is a maximal ideal. In R/I, [x] 6= [0], so [x] has an inverse [y], [x][y] = [1], so
1− xy ∈ I, so 1 ∈ xR + I, hence R = xR + I. q.e.d.

3.7 Krull’s theorem

We’d like to prove Krull’s theorem that every ideal in a commutative ring is contained in a
maximal ideal, but in order to do that in general we’ll need something called Zorn’s lemma.
It’s a statement that’s logically equivalent to the better known axiom of choice.

See section A.4 in the appendix for a review of the axiom of choice and Zorn’s lemma.

Theorem 3.37 (Krull). Let I be a proper ideal of a commutative ring R. Then there is a
maximal ideal J such that I ⊆ J .

Proof. Consider the collection M of proper ideals of R that contain I. Note that M is
nonempty since I ∈M.

We’ll show that every chain C inM has an upper bound inM. Let B =
⋃
A∈C

A. Certainly

B is an upper bound for C since B is just the union of elements of C.
We still have to show B is an ideal, which requires RB ⊆ B and B + B ⊆ B. For the

first, RB = R

(⋃
A∈C

A

)
=
⋃
A∈C

RA =
⋃
A∈C

A = B. Now let x, y ∈ B. Then x ∈ A1 for some

A1 ∈ C and y ∈ A2 for some A2 ∈ C. But C is a chain, so either A1 ⊆ A2 or A2 ⊆ A1. In the
first case, x, y ∈ A2, so x + y ∈ A2 ⊆ B, and in the second x, y ∈ A1, so x + y ∈ A1 ⊆ B.
Thus, B +B ⊆ B.
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Now we can apply Zorn’s lemma. It impliesM has a maximal element J . Clearly, I ⊆ J ,
and J is a proper ideal of R, but there are no larger proper ideals of R that contain J , so J
is a maximal ideal. q.e.d.

Note how we have not actually found J . There may be many different maximal ideals
that contain I, and one was selected by a choice function, but we don’t even know what the
choice function is so we can’t even determine J in principle.

It’s actually the case that Krull’s theorem is logically equivalent to the Axiom of Choice.
That is, if Krull’s theorem is taken as an axiom, then the Axiom of Choice can be proved
from it.

There are many other applications of Zorn’s lemma. For instance, you can prove that
every vector space has a basis, even when the vector space is infinite dimensional.

3.8 Unique factorization domains, principal ideal do-

mains, and Euclidean domains

Not every integral domain is as nice as the ring of integers. The ring of integers has three
nice properties. One is unique factorization—every integer is uniquely a product of prime
numbers. A second is that every ideal is a principal ideal. A third is that there is a division
algorithm that is the basis of the Euclidean algorithm.

There aren’t many rings that have all these properties, and some rings have none of them.
We’ll investigate these properties and their interrelations.

We’ll use these three properties to define three special kinds of integral domains: unique
factorization domains (UFDs), principal ideal domains (PIDs), and Euclidean domains (EDs).
When we do we’ll find every Euclidean domain is a principal ideal domain, every principal
ideal domain is a unique factorization domain, every unique factorization domain is an integral
domain; and every integral domain is a ring.

EDs ⊂ PIDs ⊂ UFDs ⊂ Integral domains ⊂ Commutative rings

3.8.1 Divisibility in an integral domain

We’ll borrow the concepts of divisibility and greatest common divisor from Z and apply them
to integral domains. We’ll separate the concept of prime number in Z into two concepts since
in some of the integral domains we’ll look at they’re actually different.

Definition 3.38. The following definitions apply to elements of an integral domain.

• Let a and b be nonzero elements. We’ll say a divides b, written a
∣∣b, if there exists c

such that ac = b.

• We’ll say that d is a greatest common divisor of a and b, if d divides both a and b, and
whenever another element e divides both a and b, then e divides d.

• An element x that is not zero and not a unit is irreducible if whenever x = yz, either y
or z is a unit, otherwise it is reducible
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• An element x that is not zero and not a unit is prime if whenever x
∣∣yz, then x

∣∣y or x
∣∣z.

Note that we won’t use the notation d = gcd(a, b) when d is a greatest common divisor
since there will be other greatest common divisors, that is, the greatest common divisor is
only unique up to a unit. Later, when we look at principal ideal domains, we can use the
notation (c) = (a, b) for greatest common divisors which says the principal ideal (c) is the
same as the ideal generated by a and b.

Exercise 42. Several properties of divisibility follow directly from the definition just like they
do with the integral domain is Z. Prove the following properties from the above definitions.

(a). 1 divides every element.
(b). Each element divides itself.
(c). If a

∣∣b then a
∣∣bc.

(d). Divisibility is transitive.
(e). If one element divides two other elements, then it divides both their sum and differ-

ence.
(f). Cancellation: When c 6= 0, a

∣∣b if and only if ac
∣∣bc.

Theorem 3.39. If an element in an integral domain is prime, then it irreducible.

Proof. Let x be prime. Suppose that x = yz. Then x
∣∣yz, so either x

∣∣y or x
∣∣z. In the first

case, xw = y for some w. Therefore xwz = yz = x. Cancel the x to conclude wz = 1. Then
z is a unit. Likewise, in the second case y is a unit. Therefore x is irreducible. q.e.d.

The converse of this theorem does not hold. That is, there are integral domains where
not all irreducible elements are prime. We’ll see that in this next example. But then a little
later, we’ll see that in principal ideal domains (about to be defined), irreducible elements are
prime.

Example 3.40 (a nonUFD). We’ll find a number of other UFDs, but, it’s important to
know that not every integral domain has unique factorization. Consider the integral domain
R = Z[

√
10]. An element of it is of the form x + y

√
10 where x and y are integers. In this

integral domain 9 can be factored in two ways.

9 = 32 = (
√

10 + 1)(
√

10− 1),

but 3,
√

10 + 1, and
√

10− 1 are all irreducible. This integral domain, and many others, are
not UFDs. Although the three elements 3,

√
10+1, and

√
10−1 are irreducible, none divides

any other, so none of them is prime, as you can see by the equation involving 9, above.

3.8.2 Unique factorization domains

Unique factorization is a property that we might expect, but it turns out it doesn’t hold in
every integral domain. Given any element x in a ring D, we expect that we can factor it into
‘atoms,’ things that can’t be cut further, and that there’s only one way to do that. Of course,
with our experience with the integers, we know that there’s a bit of difficulty in stating the
uniqueness part of the claim. For one thing, the order of the factors is variable, and, for
another, there are units, like 1 and −1 that can be inserted to change the formal listing of
the factors. Still, these are small things that we can deal with.
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Definition 3.41. An integral domain is a unique factorization domain (UFD) if every element
in it is a product of irreducible elements and it is a product of irreducible elements in only
one way apart from the order of the product and factors of units.

The ring Z of integers is, of course, a unique factorization domain. An integer, such as
6 can be written in more than one way as a product of irreducible elements (primes, in the
case of integers) 6 = 2 · 3 = (−3) · (−2), but the only difference is the order of the primes and
the insertions of units in the factorization.

Recall that an ideal I in a commutative ring R is a prime ideal when R/I is an integral
domain. Equivalently, I is a prime ideal if (1) I 6= R, and (2) for all x, y ∈ R, if xy ∈ I, then
either x ∈ I or y ∈ I.

Theorem 3.42. An nonzero element x is an integral domain D is prime if and only if the
principal ideal (x) is a prime ideal.

Exercise 43. Prove the preceding theorem. Note that there are two things to prove in an
if-and-only-if statement.

3.8.3 Principal ideal domains

A second nice property that the ring of integers has is that every ideal in Z is generated
by a single element. If I is an ideal in Z, then the gcd of all it’s nonzero elements is an
element of I and all other elements are multiples of this gcd. This will be our definition of
a principal ideal domain (PID), and we’ll show that every PID is a UFD. There are UFDs
that aren’t PIDs, for instance, Z[x], the ring of polynomials with integer coefficients is one;
one nonprincipal ideal is generated by 2 and x.

Definition 3.43. An integral domain is a principal ideal domain (PID) if every ideal in the
domain is principal, that is, generated by one element.

Besides Z, other prominent PIDs are F [x] where F is a field. We’ll prove this in section
3.8.4 on Euclidean domains which are special kinds of PIDs.

We’ll show in a couple of steps that every PID is a UFD. The first one makes a connection
between greatest common divisors and ideals.

Theorem 3.44. Let D be a principal ideal domain with nonzero elements a and b. The
ideal (a, b) is principal, so it is equal to (c) for some element c. Then c is a greatest common
divisor of a and b.

Proof. Since a ∈ c, therefore c
∣∣a. Likewise, c

∣∣b. We also know that c ∈ (a, b), so c = xa+ yb
for some elements x and y.

To show that c is a greatest common divisor, suppose d is some other common divisor of
a and b. Then a = ud and b = vd for some elements u and v. Now,

c = xa+ yb = xud+ yvd = (xu+ yv)d.

Therefore, d
∣∣c. Thus c is a greatest common divisor of a and b. q.e.d.

Theorem 3.45. In a principal ideal domain, irreducible elements are prime.
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Proof. Suppose that p is irreducible and p
∣∣ab. We’ll show either p

∣∣a or p
∣∣b. We’ll do that by

showing that if p doesn’t divide a, then it does divide b.
Suppose p does not divide a. Then the ideal (p, a) is (1) since p is irreducible. Since

1 ∈ (p, a), 1 = xp + ya for some elements x and y. Therefore, b = bxp + aby. Since p
∣∣ab,

therefore p
∣∣bxp+ aby, so p

∣∣b.
Thus, the irreducible element p is also prime. q.e.d.

Next, we’ll use the following lemma to show that elements have factorizations in PIDs.
We’ll still have to show they’re unique after that. The condition in the lemma is called the
ascending chain condition (ACC) on ideals, and rings that satisfy it are called Noetherian
rings in honor of Noether who studied such rings.

Lemma 3.46. In a principal ideal domain, there are no infinitely ascending chains of ideals.
That is,

(a1) $ (a2) $ (a3) $ · · ·
does not exist.

Proof. Suppose there were such an infinitely ascending chain of ideals. Then the union

I =
∞⋃
i=1

(ai) is an ideal, as you can easily check. It must be principal, so I = (a) for some

element a. But a is in the union, so it’s in one of the ideals (ai). Then

(a) ⊆ (ai) $ (ai+1) ⊆ (a),

a contradiction. q.e.d.

There are rings, in fact UFDs, that are not Noetherian. An example is a polynomial ring
with infinitely many variables such as Q[x1, x2, x3, . . .]. An infinitely ascending chain of ideals
in that ring is (x1) $ (x1, x2) $ (x1, x2, x3) $ · · · .

Theorem 3.47. In a principal ideal domain, every element that is not zero and not a unit
has a factorization into irreducible elements.

Proof. Suppose that a nonzero element a1 has no factorization into irreducible elements.
We’ll derive a contradiction, but we’ll need an element with no factorization with an extra
property. We’ll get that element, denoted an below, as follows.

Starting with the ideal (a1), form any ascending chain of ideals generated by other elements
with no factorizations, and extend the chain as far as possible. By the lemma, it stops
somewhere, say at (an).

(a1) $ (a2) $ · · · $ (an).

We now have an element an which has no factorization into irreducible elements with an extra
property, namely, any ideal strictly containing (an) is generated by an element that does have
such a factorization. Now, an is not irreducible itself, for that would be a factorization, so
an = bc where neither b nor c is a unit. Since b

∣∣an, therefore (an) ⊆ (b). But (an) 6= (b), for
otherwise b = and for some d, and then andc = bc = an, so dc = 1 making c a unit, which it
is not.

So (an) $ (b) and likewise (an) $ (c), therefore both b and c have factorizations, and the
product of those factorizations gives a factorization for an, a contradiction. q.e.d.
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Theorem 3.48. Every principal ideal domain is a unique factorization domain.

Proof. The last theorem gave the existence of at least one factorization for an element a. We
still have to show that there’s at most one factorization.

Suppose that a has two factorizations as products of irreducible elements.

a = p1 · · · pn = q1 · · · qm

Since the irreducible element p1 is prime (in a PID), p1 divides one of the qi’s, which we can
renumber as q1. Then p1 = u1q1 where u1 is a unit. Substitute u1q1 for p1, and cancel q1 to
get the equation

u1p2 · · · pn = q2 · · · qm.

That completes the inductive step of mathematical induction on n. The base case, when
n = 1, is left to the reader. q.e.d.

3.8.4 Euclidean domains

The third nice property that Z has is that there is a division algorithm that is the basis of
the Euclidean algorithm.

Some example Euclidean domains besides Z that we’ll discuss in this section include the
Gaussian integers Z[i], the Eisenstein integers Z[ω] where ω is a primitive cube root of 1, and
polynomial rings F [x] over a field F .

For the integers, the division algorithm starts with an integer a (the dividend) and a
nonzero integer b (the divisor) and delivers q (the quotient) and r (the remainder) such that

a = qb+ r and 0 ≤ r < b.

This property allowed us to construct the Euclidean algorithm for finding GCDs as well as
the extended Euclidean algorithm to show that the greatest common divisor of two numbers
is a linear combination of them.

There are a few other integral domains that have the same kind of division algorithm
where the remainder is somehow “smaller” than the divisor, but the concept of smaller and
how to find q and r differs from domain to domain.

Definition 3.49. A Euclidean valuation on an integral domain D is a function v : D − 0→
Z≥0 that satisfies the conditions

1. for nonzero elements a and b, v(a) ≤ v(ab), and

2. for each element a (the dividend) and nonzero element b (the divisor), there are elements
q (the quotient) and r (the remainder) such that

a = qb+ r where either r = 0 or v(r) < v(b).

An integral domain that admits a Euclidean valuation is called Euclidean domain.
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Of course, Z is a Euclidean domain with the valuation being the absolute value v(a) = |a|.
Another class of Euclidean domains are the rings of polynomials (in one variable) with

coefficients in a given field. The following theorem is essentially just long division for poly-
nomials. We’ll make it simple by making the divisor g(x) a monic polynomial, that is, a
polynomial whose leading coefficient is 1.

It directly follows from the division algorithm for polynomials over a field, theorem 1.55,
that a field’s polynomial ring is a Euclidean domain.

Corollary 3.50. The polynomial ring F [x] with coefficients in a field F is a Euclidean domain
where the valuation v assigns to a polynomial f(x) the degree of f .

Soon we’ll study polynomial rings in more detail.
There are other Euclidean domains including the Gaussian integers and the Eisenstein

integers.

The Gaussian integers Z[i] is a Euclidean domain. The ring of Gaussian integers is
Z[i] = {a1 + a2i | a1, a2 ∈ Z}. Its valuation function, also called the norm, is v(a1 + a2i) =
a21 + a22, the square of the distance to the origin. In order to divide one Gaussian integer
b1 + b2i into another a1 + a2i to get a quotient q1 + q2i and remainder r1 + r2i, you can

perform the complex division
a1 + a2i

b1 + b2i
to get an exact quotient, and choose q1 + q2i to be the

closest Gaussian integer to that exact quotient. The remainder is then determined.

1

ω

ω2

Figure 3.3: Lattice of Eisenstein integers
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Eisenstein integers Whereas a basis for the Gaussian integers consists of 1 and i, a basis
for the Eisenstein integers consists of 1 and ω where ω = 1

2
(−1+ i

√
3) is a primitive cube root

of unity. A primitive cube root of unity satisfies the equation
x3 − 1

x− 1
= 0 which simplifies to

x2 + x+ 1 = 0. The lattice of Eisenstein integers is a triangular lattice since 1 + ω + ω2 = 0.
The lattice is shown in figure 3.3. The dotted lines show coordinates relative to the basis
consisting of 1 and ω.

There are six units in the Eisenstein integers. They are the six sixth roots of unity: 1
itself, a primitive sixth root ω−1, a primitive cube root ω, the primitive square root −1, and
a primitive sixth root −ω. They are equally spaced at 60◦ around the unit circle.

Like the Gaussian integers, the Eisenstein integers also are a Euclidean domain. The
valuation is v(a+ bω) = a2 − ab+ b2.

The Euclidean algorithm in Euclidean domains. First, we’ll show that Euclidean
domains are principal ideal domains, and since PIDs are also UFDs, therefore Euclidean do-
mains are also unique factorization domains. Then we’ll look at an example of the Euclidean
algorithm in a Euclidean domain other than Z.

Theorem 3.51. A Euclidean domain is a principal ideal domain.

Proof. Let I be an ideal in a Euclidean domain D with valuation v. We’ll show I is a principal
ideal. If I is the zero ideal (0), then it’s principal of course.

Assume now that I has a nonzero element, and let S = {v(x) | 0 6= x ∈ I}. This is a
nonempty subset of the nonnegative integers, so it has a least element, and let that be v(a).
Thus, a is a nonzero element of I, so (a) ⊆ I. Let x be any other nonzero element in I.
Then v(a) ≤ v(x). Furthermore, there are elements q and r in D such that x = aq + r and
either r = 0 or v(f) < v(a). But r = x − aq ∈ I, so if r 6= 0, then v(r) > v(a) contradicts
v(a) ≤ v(r). Therefore, r = 0, and hence x = aq, so a

∣∣x. Therefore, I = (a). Thus, D is a
PID. q.e.d.

The Euclidean algorithm works in any Euclidean domain the same way it does for integers.
It will compute the greatest common divisor (up to a unit), and the extended Euclidean
algorithm will construct the greatest common divisor as a linear combination of the original
two elements.

Example 3.52. Let’s take an example from the polynomial ring Q[x]. Let’s find the greatest
common divisor of f1(x) = x4 + 2x3 − x− 2 and f2(x) = x4 − x3 − 4x2 − 5x− 3. They have
the same degree, so we can take either one of them as the divisor; let’s take f2(x). Divide f2
into f1 to get a quotient of 1 and remainder of f3(x) = 3x3 + 4x2 + 4x + 1. Then divide f3
into f2 to get a quotient and a remainder f4, and continue until the remainder is 0 (which
occurs on the next iteration.

f1(x) = x4 + 2x3 − x− 2 f1(x) = 1 · f2(x) + f3(x)
f2(x) = x4 − x3 − 4x2 − 5x− 3 f2(x) = (1

3
x− 7

9
)f3(x) + f4(x)

f3(x) = 3x3 + 4x2 + 4x+ 1 f3(x) = (27
20
x− 9

20
)f4(x)

f4(x) = −20
9
x2 − 20

9
x− 20

9
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Thus, a greatest common divisor is f4(x), which differs by a unit factor from the simpler
greatest common divisor x2 + x+ 1. We can read the equations on the right in reverse to get
f4 as a linear combination of f1 and f2.

f4(x) = f2(x)− (1
3
x− 7

9
)f3(x)

= f2(x)− (1
3
x− 7

9
)(f1(x)− f2(x))

= (1
3
x+ 2

9
)f2(x)− (1

3
x− 7

9
)f1(x)

3.9 Real and complex polynomial rings R[x] and C[x]

We know a fair amount about F [x], the ring of polynomials over a field F . It has a division
algorithm, so it’s a Euclidean domain where the Euclidean valuation is the degree of a poly-
nomial, so it has division and Euclidean algorithms. Since it’s Euclidean, it’s also a principal
ideal domain, and that means irreducible elements are prime. And since it’s a PID, it’s also
a unique factorization domain, that is, every polynomial uniquely factors as a product of
irreducible polynomials.

Rather than calling irreducible polynomials prime polynomials, we’ll use the term “irre-
ducible polynomial”. That’s the common practice.

The nonzero prime ideals of F [x] are just the principal ideals (f) generated by irreducible
polynomials f ∈ F [x], and, furthermore, they’re maximal ideals, so F [x]/(f) is a field. We’ve
seen examples of this, for instance, R[x]/(x2 + 1) ∼= R[i] = C, Q[x]/(x2 − 2) ∼= Q(

√
2), and

Z3[x]/(x2 + 1) ∼= Z3(i).
So, irreducible polynomials in F [x] give field extensions of F .
The main question for F [x] is: what are the irreducible polynomials?
We’ll start with C[x] and R[x] followed by Q[x] and Z[x].

3.9.1 C[x] and the Fundamental Theorem of Algebra

In the 16th century Cardano (1501–1576) and Tartaglia (1500–1557) and others found formu-
las for roots of cubic and quartic equations in terms of square roots and cube roots. At the
time, only positive numbers were completely legitimate, negative numbers were still some-
what mysterious, and the first inkling of a complex number appeared. Incidentally, at this
time symbolic algebra was still being developed, and they wrote their equations in words
instead of symbols!

Here’s an illustration of how complex numbers arose. One of Cardano’s cubic formulas
gives the solution to the equation x3 = cx+ d as

x = 3

√
d/2 +

√
e+ 3

√
d/2−

√
e

where e = (d/2)2− (c/3)3. Bombelli used this to solve the equation x3 = 15x+ 4, which was
known to have 4 as a solution, to get the solution

x =
3

√
2 +
√
−121 +

3

√
2−
√
−121.
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Now,
√
−121 is not a real number; it’s neither positive, negative, nor zero. Bombelli contin-

ued to work with this expression until he found equations that lead him to the solution 4.
Assuming that the usual operations of arithmetic held for these “numbers,” he determined
that

3

√
2 +
√
−121 = 2 +

√
−1 and

3

√
2−
√
−121 = 2−

√
−1

and, therefore, the solution x = 4.
Cardano had noted that the sum of the three solutions of a cubic equation x3+bx2+cx+d =

0 is −b, the negation of the coefficient of x2. By the 17th century the theory of equations
had developed so far as to allow Girard (1595–1632) to state a principle of algebra, what we
call now “the fundamental theorem of algebra.”

His formulation, which he didn’t prove, also gives a general relation between the n solutions
to an nth degree equation and its n coefficients.

For a generic equation

xn + an−1x
n−1 + · · ·+ a1x+ a0 = 0

Girard recognized that there could be n solutions, if you allow all roots and count roots with
multiplicity. So, for example, the equation x2 + 1 = 0 has the two solutions

√
−1 and −

√
−1,

and the equation x2 − 2x + 1 = 0 has the two solutions 1 and 1. Girard wasn’t particularly
clear what form his solutions were to have, just that there were n of them: x1, x2, . . . , xn.

Girard gave the relation between the n roots x1, x2, . . . , xn and the n coefficients a1, . . . , an
that extended Cardano’s remark. First, the sum of the roots x1 + x2 + · · · + xn is −a1
(Cardano’s remark). Next, the sum of all products of pairs of solutions is a2. Next, the sum
of all products of triples of solutions is −a3. And so on until the product of all n solutions is
either an (when n is even) or −an (when n is odd). He figured this out by using a version of
one of the properties of polynomials mentioned above, namely, if a1, a2, . . . , an are roots of a
monic polynomial f(x) of degree n, then

f(x) = (x− a1)(x− a2) · · · (x− an).

If you expand the right side of the equation, you’ll derive his result.
Here’s an example. The 4th degree equation

x4 − 6x3 + 3x2 + 26x− 24 = 0

has the four solutions−2, 1, 3, and 4. The sum of the solutions equals 6, that is−2+1+3+4 =
6. The sum of all products of pairs (six of them) is

(−2)(1) + (−2)(3) + (−2)(4) + (1)(3) + (1)(4) + (3)(4)

which is 3. The sum of all products of triples (four of them) is

(−2)(1)(3) + (−2)(1)(4) + (−2)(3)(4) + (1)(3)(4)

which is −26. And the product of all four solutions is −24.
Over the remainder of the 17th century, negative numbers rose in status to be full-fledged

numbers. But complex numbers remained suspect through much of the 18th century. They



3.9. REAL AND COMPLEX POLYNOMIAL RINGS R[X] AND C[X] 89

weren’t considered to be real numbers, but they were useful in the theory of equations and
becoming more and more useful in analysis. It wasn’t even clear what form the solutions to
equations might take. Certainly “numbers” of the form a + b

√
−1 were sufficient to solve

quadratic equations, even cubic and quartic equations.
Euler did a pretty good job of studying complex numbers. For instance, he studied the

unit circle assigning the value cos θ + i sin θ to the point on the unit circle at an angle θ
clockwise from the positive real axis. He measured the angle by the length of the arc cut of
the unit circle cut off by the angle. We call that measurement radians now, but the word
“radian” wasn’t coined until later.

In his study of this circle he developed what we call Euler’s identity

eiθ = cos θ + i sin θ.

This was an especially useful observation in the solution of differential equations. Because
of this and other uses of i, it became quite acceptable for use in mathematics. By the
end of the 18th century numbers of the form x + iy were in fairly common use by research
mathematicians, and it became common to represent them as points in the plane.

Yet maybe some other form of “number” was needed for higher-degree equations. The
part of the Fundamental Theorem of Algebra which stated there actually are n solutions of
an nth degree equation was yet to be proved, pending, of course, some description of the
possible forms that the solutions might take.

Still, at nearly the end of the 18th century, it wasn’t yet certain what form all the solutions
of a polynomial equation might take. Leibniz, for example, stated in 1702 that x4−a4 didn’t
have roots of the form x + y

√
−1, but Euler showed it did in 1742. D’Alembert, Euler, de

Foncenex, Lagrange, and Laplace developed partial proofs. Finally, in 1799, Gauss (1777–
1855) published his first proof of the Fundamental Theorem of Algebra.

We won’t look at his or any other proof of the theorem. That’s usually proved in a course
in complex analysis. We will, however, use the theorem.

Definition 3.53. A field F is algebraically closed if every polynomial f(x) ∈ F [x] factors
as a product of linear factors. Equivalently, a polynomial f(x) of degree n has n roots in F
counting multiplicities.

A weaker definition could be made, and that’s that every polynomial of degree at least 1
has at least one root in F . By induction, the remaining roots can be shown to exist.

Thus, the Fundamental Theorem of Algebra is a statement that C is an algebraically closed
field. Therefore, the algebra of C[x] is particularly simple. The irreducible polynomials are
the linear polynomials.

3.9.2 The polynomial ring R[x]

Let’s turn our attention now to polynomials with real coefficients. Much of what we can
say about R[x] comes from the relation of R as a subfield C, and consequently= from the
relation of R[x] as a subring of C[x]. That is to say, we can interpret a polynomial f(x) with
real coefficients as a polynomial with complex coefficients.

Theorem 3.54. If a polynomial f(x) with real coefficients has a complex root z, then its
complex conjugate z is also a root.
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Proof. Let f(x) = anx
n + · · · + a1x + a0 where each ai ∈ R. If z is a root of f , then

f(z) = anz
n + · · ·+ a1z+ a0 = 0. Take the complex conjugate of the equation, and note that

ai = ai. Then f(z) = anz
n + · · ·+ a1z + a0 = 0. Thus, z is also a root. q.e.d.

This theorem tells us for a polynomial f(x) with real coefficients, its roots either come in
k pairs of a complex number or singly as real numbers. We can name the 2k complex roots
as

z1, z1, z2, z2, . . . , zk, zk.

Writing z1 = x1 + y1i, . . . , zk = xi + yki, the complex roots are

x1 + y1i, x1 − y1i, x2 + y2i, x2 − y2i, . . . , xk + yki, xk − yki

and the n− 2k real roots as
r2k+1, . . . , rn.

Using the fact that C is algebraically closed, we can write f(x) as

f(x) = an(x− z1)(x− z1) · · · (x− zk)(x− zk)(x− r2k+1) · · · (x− rn)

= an(x2 − 2x1x+ x21 + y21) · · · (x2 − 2xkx+ x2k + y2k)(x− r2k+1) · · · (x− rn)

This last expression has factored f(x) as a product of irreducible quadratic and linear poly-
nomials with real coefficients.

Theorem 3.55. The irreducible polynomials in R[x] are the linear polynomials and the
quadratic polynomials with negative discriminant.

Proof. The remarks above show that only linear and quadratic polynomials can be irreducible.
Linear polynomials are always irreducible. A quadratic polynomial will have no real roots
when its discriminant is negative. q.e.d.

3.10 Rational and integer polynomial rings

We’ve studied the irreducible polynomials in C[x] and R[x] with the help of the Fundamental
Theorem of Algebra and found them to be easily classified. The irreducible polynomials in
C[x] are the linear polynomials, and irreducible polynomials in R[x] are the linear polynomials
and quadratic polynomials with negative discriminant.

Determining which polynomials in Q[x] are irreducible is much harder. Of course, all the
linear ones are, and we’ll be able to tell which quadratic and cubic ones are irreducible fairly
easily. After that it becomes difficult.

3.10.1 Roots of polynomials

The quadratic case. Consider a quadratic polynomial f(x) = ax2+bx+c with coefficients
in Q.

Its roots are given by the quadratic formula
−b±

√
b2 − 4ac

2a
which can be shown by

the process known as completing the square. The discriminant of a quadratic polynomial is
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∆ = b2− 4ac. When ∆ is positive, there are two real roots; when 0, there is one double root;
and when negative, the roots are a pair of complex conjugate numbers.

When ∆ is a perfect rational square, that is, the square of a rational number, then f(x)
factors, that is, it’s reducible. Otherwise, it’s irreducible.

Thus, f(x) is irreducible if and only if the discriminant is not a perfect square.

The cubic case. It is more difficult to determine when a cubic polynomial f(x) = ax3 +
bx2 + cx + d with rational coefficients is irreducible, but not too difficult. Note that if f(x)
factors, then one of the factors has to be linear, so the question of reducibility reduces to the
existence of a rational root of f(x).

Various solutions of a cubic equation ax3 + bx2 + cx+ d = 0 have been developed. Here’s
one. First, we may assume that f is monic by dividing by the leading coefficient. Our
equation now has the form x3 + bx2 + cx + d = 0. Second, we can eliminate the quadratic
term by replacing x by y− 1

3
b. The new polynomial in y will have different roots, but they’re

only translations by 1
3
b. We now have the cubic equation

y3 + (c− 1
3
b2)y + ( 2

27
b3 − 1

3
bc+ d) = 0

which we’ll write as

y3 + py + q = 0.

By the way, this substitution which results in a polynomial whose term after the leading term
is 0 has a name. It is called a Tschirnhaus substitution. The roots of the new polynomial
will sum to 0.

We’ll follow Viète’s method and perform another substitution. Replace y by z− p

3z
. After

simplifying and clearing the denominators we’ll have the equation

z6 + qz3 − p3

27z
= 0

which is a quadratic equation in z3. Its complex solutions are

z3 =
−q ±

√
q2 + 4p3/27

2
= −q

2
±
√(q

2

)2
+
(p

3

)3
.

Taking complex cube roots to get three values for z, then using y = z − p

3z
to determine

y and x = y − 1
3
b to determine x, we have the all three complex solutions to the original

equation. At least one of these three complex solutions is real, and perhaps all three.
We have a way of determining whether a cubic polynomial is reducible. First q2 + 4p3/27

needs to be a perfect rational square r2, then one of −q+ r and −q− r needs to be a perfect
rational cube.

There is another way to determine if there is a rational root.

Rational roots of a polynomial. If we’re looking for the roots of a polynomial with
rational coefficients, we can simplify the job a little bit by clearing the denominators so that
all the coefficients are integers. The following theorem helps in finding roots.
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Theorem 3.56 (Rational root theorem). Let f(x) = anx
n + · · ·+ a1x+ a0 be a polynomial

with integral coefficients. If r/s is a rational root of f with r/s in lowest terms, then r divides
the constant a0 and s divides the leading coefficient an.

Proof. Since r/s is a root, therefore

f(x) = an(r/s)n + an(r/s)n−1 + · · ·+ a1(r/s) + a0 = 0,

and so, clearing the denominators, we have

anr
n + anr

n−1s+ · · ·+ a1rs
n−1 + a0s

n = 0.

We can rewrite this equation as

(anr
n−1 + anr

n−2s+ · · ·+ a1s
n−1)r = −a0sn.

Now, since r divides −a0sn, and r is relatively prime to s, and hence to sn, therefore r divides
a0. In like manner, you can show s divides an. q.e.d.

For example, to find the rational roots r/s of f(x) = 27x4 + 30x3 + 26x2 − x − 4, r will
have to divide 4, so the possibilities for r are ±1,±2,±4, and s will have to divide 27, so the
possibilities for s are 1, 3, 9, 27 (since we may assume s is positive). That gives 24 rational
numbers to check, and among them will be found the two rational roots 1

3
and −4

9
. After

one,
r

s
, is found f(x) can be divided by x− r

s
to lower the degree of the polynomial to find

the rest of the roots.
If a polynomial does have a rational root, then it’s clearly reducible since that rational

root determines a linear factor of the polynomial. That gives us another way to determine if
a cubic polynomial is reducible.

For polynomials of degree 4 or higher, knowing that there are no rational roots is in-
sufficient to conclude the polynomial is irreducible. It still may factor as quadratic and
higher degree terms. For example, x4 + x2 + 1 has no rational roots, but it factors as
(x2 + x+ 1)(x2 − x+ 1), so it is reducible.

3.10.2 Gauss’s lemma and Eisenstein’s criterion

Further study of Q[x] will require looking at Z[x]. In other words, in order to study polynomi-
als with rational coefficients, we’ll have to look at polynomials with integral coefficients. We
can take a polynomial with rational coefficients and multiply it by the least common multiple
of the denominators of its coefficients to get another polynomial with the same roots but
with integral coefficients. We can also divide by the greatest common divisor of the resulting
coefficients to get yet another polynomial with the same roots, with integral coefficients, and
the greatest common divisor of all its coefficients is 1. Such a polynomial is called primitive.

After that, we’ll be able to prove Gauss’s lemma which says that a primitive polynomial
f(x) ∈ Z[x] is reducible in Q[x] if and only if it’s reducible in Z[x].

We can make more use of these results if, instead of considering just the case of the domain
Z and its field of fractions Q, we generalize to any unique factorization domain D and its
field of fractions F . So, for the following discussion, fix a UFD D, and let F denote its field



3.10. RATIONAL AND INTEGER POLYNOMIAL RINGS 93

of fractions. Though, keep in mind the basic case when D = Z, F = Q, D/(p) = Zp, and
D/(p)[x] = Zp[x] to get a better idea of what’s going on.

When we have a prime p in D, the projection γ : D → D/(p) induces a ring epimorphism
D[x]→ D/(p)[x] between polynomial rings where the coefficients of f are reduced modulo p
giving a polynomial in D/(p)[x]. We’ll denote the resulting polynomial in D/(p)[x] by fp.

Definition 3.57. The content of a polynomial in D[x] is the greatest common divisor of all
of its coefficients. If the content is 1, the polynomial is called primitive.

For example, if f(x) = 3x2 − 9x + 6 then the content of f is 3. Also, the content of a
monic polynomial is 1, so all monic polynomials are primitive.

The content of a polynomial is only defined up to a unit.
Evidently, every polynomial in D[x] equals a constant times a primitive polynomial, the

constant being its content.

Lemma 3.58 (Gauss). The product of two primitive polynomials in D[x] is primitive, and
the content of the product of any two polynomials in D[x] is the product of their contents
(up to a unit).

Proof. In order to show the first statement, we’ll show if the product is not primitive, then
one of the two polynomials is not primitive.

Let f and g be primitive polynomials and suppose that their product fg is not primitive.
Then some prime p of D divides the content of fg, so p divides every coefficient of fg.
Therefore, in D/(p)[x], (fg)p = 0, so fpgp = 0. But D/(p)[x] is an integral domain (in fact,
a UFD), so either fp = 0 or gp = 0. Therefore, p either divides all the coefficients of f or all
the coefficients of g, hence one or the other is not primitive.

The second statement follows from the first just by using the fact that a polynomial equals
its content times a primitive polynomial. q.e.d.

Theorem 3.59 (Gauss’s lemma). If a primitive polynomial in D[x] can be factored as the
product of two polynomials in F [x], then it can be factored as the product of two polynomials
in D[x] of the same degrees.

Proof. Given f ∈ D[x] as a product gh with g, h ∈ F [x]. We can write gh = p
q
uv where

u and v are primitive polynomials in D[x], and p and q are relatively prime integers. Then
qf = puv. Since f is primitive, the content of qf equals the content of q. Since u and v are
primitive, so is uv, and therefore the content pf puv equals the content of p. Thus p = q, and
they’re both 1, and so f = uv. Note that the degrees of u and v are the same as the degrees
of g and h, respectively. q.e.d.

The following corollary is sometimes called Gauss’s lemma. It follows directly from the
above since moni polynomials are primitive.

Corollary 3.60. A monic polynomial in D[x] is reducible over F [x] if and only if it’s reducible
over D[x].

There are irreducibility tests for polynomials with integer coefficients, so by this corollary,
we’ll be able to test irreducibility for polynomials with rational coefficients.

One test for irreducibility of polynomials with integer coefficients is to move to a quotient
ring Zp. That also generalizes to any UFD D. If you can factor it in D, you can factor it in
a quotient ring, at least if the leading term doesn’t disappear in the quotient.
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Theorem 3.61 (Modulo p irreducibility test.). Let p be a prime integer, and let f be a
polynomial whose leading coefficient is not divisible by p. If f is reducible in F [x], then fp is
reducible in D/(p)[x]. If fp is irreducible in D/(p)[x], then f is irreducible in F [x].

Proof. Suppose f is reducible in F [x]. Then there exist g, h ∈ D[x] such that f = gh where
the degrees of g and h are at least 1. Since f = gh, therefore, fp = gphp. Since p does not
divide the leading coefficient of f , neither does it divide the leading coefficients of g or h.
Therefore deg gp = deg g ≥ 1 and deg hp = deg h ≥ 1. Thus, fp is reducible.

The last statement of the theorem is the contrapositive of the first statement. q.e.d.

Example 3.62. Consider any cubic polynomial f in Q[x] with an odd leading coefficient, an
odd constant, and one of the other two coefficients odd, for instance, f(x) = 77x3 + 15x2 +
8x + 105. By Gauss’s lemma, it’s reducible in Q[x] if and only if it’s reducible in Z[x]. To
determine that, use the modulo 2 irreducible test. For f(x) = 77x3 + 15x2 + 8x+ 105, you’ll
get f2(x) = x3 + x2 + 1. The resulting f2 will have no roots in Z2 since it has three nonzero
terms. A cubic polynomial with no roots is irreducible, so f2 is irreducible in Z2[x]. Hence,
f is irreducible in Q[x].

The converse of the mod p irreducibility test is not valid. A polynomial can be reducible
mod p but irreducible in Z[x]. Take f(x) = 77x3 + 15x2 + 8x + 105, for example, which we
know is irreducible in Z[x]. Modulo p = 5, however, it factors into linear factors: f5(x) ≡
2x3 − 2x = 2(x+ 1)x(x− 1), so is reducible.

Exercise 44. Show the polynomial f(x) = x4 + x3 + 2x2 + 2x+ 1 is irreducible in Q[x]. Hint:
Consider it modulo 2. First check for roots, then see if it’s divisible by a irreducible quadratic.
There aren’t many irreducible quadratics modulo 2; x2 + 1 isn’t since it factors as (x + 1)2

modulo 2. Neither are x2 or x2 + x since they’re both divisible by x.

Another useful irreducibility test is Eisenstein’s criterion.

Theorem 3.63 (Eisenstein’s criterion). Let f ∈ D[x]. If a prime p does not divide the
leading coefficient of f , but it does divide all the other coefficients, and p2 does not divide
the constant of f , then f is irreducible in F [x].

Proof. Suppose f is reducible. As in the previous theorem, there exist g, h ∈ D[x] such that
f = gh where the degrees of g and h are at least 1. Reduce everything modulo p. Then
anx

n = fp(x) = gp(x)hp(x) where an is the leading coefficient of f . Now Zp[x] is a UFD,
and since fp(x) is the unit an times the irreducible x raised to the nth power, therefore x
divides both gp(x) and hp(x). Therefore gp(0) = hp(0) = 0. That means that p divides the
constant terms of both g and h, which implies p2 divides the constant term of f , contrary to
the assumption. q.e.d.

Example 3.64. Consider the polynomial f(x) = xn − a. As long as a has a prime factor
that appears to the first power, then Eisenstein’s criterion implies f is irreducible.

Exercise 45. Show that the polynomial f(x) = xn + 10x+ 15 is irreducible in Q[x]
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3.10.3 Prime cyclotomic polynomials

Cyclotomic polynomials were introduced in defintion 1.63.
For a prime p, the pth cyclotomic polynomial is

Φp(x) =
xp − 1

x− 1
= xp−1 + · · ·+ x+ 1.

We’ll use Eisenstein’s criterion to show Φp is irreducible, but not directly. First, we’ll use a
translation. Let

f(x) = Φp(x+ 1) =
(x+ 1)p − 1

x
= xp−1 +

(
p

p− 1

)
xp−2 + · · ·+

(
p

2

)
x+

(
p

1

)
.

Then Eisenstein’s criterion applies to f . Since f is irreducible, so is Φp.

1

ω1
ω2

ω3

ω4

ω5
ω6

α

Figure 3.4: Primitive 7th roots of unity

The roots of Φp are the p − 1 primitive pth roots of unity. In the case that p = 7, there
are six primitive 7th roots of unity. One, labelled ω in figure 3.4, is located at an angle of
α = 2π/7, and the others are powers of it. There is one more 7th root of unity, namely 1. 1
is not primitive 7th root of unity but instead a primitive first root of unity since it’s a root of
the polynomial x− 1 of degree 1.

3.10.4 Polynomial rings with coefficients in a UFD, and polyno-
mial rings in several variables.

Gauss’s lemma has more uses than we’ve used it for. We can use it to show that if D is a
UFD, then so is the polynomial ring D[x]. And we can apply that statement to conclude a
polynomial ring D[x, y] in two or D[x1, . . . , xn] more variables is also a UFD. Although these
rings are UFDs, they’re not PIDs.

Theorem 3.65. Let D be a unique factorization domain and F its ring of fractions. Then
D[x] is also a UFD. The irreducible polynomials in D[x] are either irreducible elements of D
or have content 1 and are irreducible polynomials in F [x].
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Proof. Let f be a nonzero polynomial in D[x]. It is equal to its content times a primitive
polynomial. Its content is an element of D, and, since D is a UFD, its content uniquely
factors (up to a unit) as a product of irreducible elements of D.

We’re reduced the proof to showing that that a primitive polynomial f in D[x] of degree
at least 1 uniquely factors as a product of irreducible polynomials.

Since f is a polynomial in D[x], it’s also a polynomial in F [x], and we know F [x] is a
UFD being a polynomial ring with coefficients in a field F . Thus, f uniquely factors in F :

f(x) = f1(x)f2(x) · · · fk(x)

where each fi(x) is irreducible in F [x]. We only need to show that this factorization can be
carried out in D[x]. Each polynomial fi(x) is a element ai of F times a primitive polynomial
f ′i(x) in D[x], so

f(x) = a1 · · · akf ′1(x) · · · f ′k(x).

Since f(x) is primitive and the product f ′1(x) · · · f ′k(x) is also primitive, therefore a1 · · · ak is
a unit in D. Thus, f(x) factors in D[x]. You can also show that it can factor in only one
way in D[x] since it only factors in one way in F [x]. q.e.d.

Corollary 3.66. If D is a UFD, then a polynomial ring in several variables D[x1, x2, . . . , xr]
with coefficients in D is also a UFD.

In general, these aren’t PIDs. For example, (2, x) is not a principal ideal in Z[x], and
(x, y) is not a principal ideal in Q[x, y].

Irreducible polynomials and field extensions. We’ll see irreducible polynomials in a
field F [x] correspond to maximal ideals. Quotient rings by ideals are fields if and only if
the ideal is a maximal ideal, as shown in section 3.6.4. Therefore irreducible polynomials
correspond to field extensions.

Theorem 3.67. The ideal generated by a polynomial with coefficients in a field is maximal
if and only if the polynomial is irreducible over the field.

Proof. Let f ∈ F [x]. Suppose first that (f) is a maximal ideal of F [x]. We’ll show that f
can’t be reducible. Suppose that f factors as gh in F [x] where g and h have lower degrees
than f , but neither g nor h is a unit. Then (f) ⊆ (g) ⊆ F [x]. Since (f) is maximal, therefore
(g) is equal to either (f) or F [x]. Neither of these can occur, for if (g) = (f), then they
have the same degree; but if (g) = F [x], then g is a unit. Therefore f is not a reducible
polynomial.

Next suppose that f is an irreducible polynomial in F [x]. Let I be any ideal such that
(f) ⊆ I ⊂ F [x]. Since F [x] is a Euclidean domain (see section 3.8.4), it is also a principal
ideal domain, so I = (g) for some polynomial g. Therefore f = gh for some h ∈ F [x]. But f
is irreducible, so either g or h is a unit. But g is not a unit since (g) = I 6= F [x], so h is a
unit. Therefore (f) = (g). So any proper ideal I that contains (f) is (f) itself. Thus (f) is a
maximal ideal. q.e.d.

Corollary 3.68. The quotient ring F [x]/(f) of a polynomial ring over a field F by the ideal
generated by an irreducible polynomial is a field extension of F .
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This corollary follows directly the preceding theorem and the maximal ideal theorem,
theorem 3.36, .

Example 3.69. We saw earlier that any cubic polynomial f in Q[x] with an odd leading
coefficient, an odd constant, and one of the other two coefficients odd is irreducible. So, for
example, f(x) = x3 − x− 1 is irreducible over Q. That means K = Q[x]/(f) is a field. This
field K can also be denoted K = Q[x]/(x3 = x + 1) since in the quotient, x3 − x − 1 is 0.
Rather than using the symbol x in the quotient, it would be better to have a different symbol
so that x can still be used as our variable. Let’s use w.

Then every element in it is of the form aw2 + bw + c. Addition is done as usual for
polynomials, and multiplication is as usual except whenever w3 appears, it is replaced by
w+1. For example, the product (w2 +3w−3)(2w2−5) = 2w3 +w2−9w+15 ≡ w2−7w+17.

As this is a field, there are reciprocals of nonzero elements and division by nonzero
elements. Finding reciprocals is not so easy. For example, to find the reciprocal of
w, we need an element aw2 + bw + c such that its product with w equals 1. Now,
(aw2 + bw+ c)w = aw3 + bw2 + cw = bw2 + (a+ c)w+ a, so for that to equal 1, a = 1, b = 0,
and c = −1. So the reciprocal is w−1 = w2 − 1.

Exercise 46. Find an irreducible cubic polynomial in Z2[x] to construct a field with eight
elements. Write down a multiplication table for that field. You can leave out 0 and 1 from
the table since it’s obvious how they multiply, but have six rows and columns labeled a = x,
b = x+ 1, c = x2, d = x2 + 1, e = x2 + x, and f = x2 + x+ 1.

3.11 Number fields and their rings of integers

In section 2.3 a number field K was defined a finite field extension of the rational number
field Q. Some examples were Q[

√
2] and Q[

√
−1] = Q[i].

The Gaussian integers Z[i] is an example of what is called a ring of integers. We’ll see in
this section what a ring of integers is and study some of their properties.

A number field was defined to be an algebraic extension of Q, and an algebraic integer was
defined in section 2.3.1 to be a root of a monic polynomial with coefficients in the integers.

Our first goal is to show that the set of all algebraic integers in number field K, that set
being denoted OK is a subring of K. That will take a few steps.

Define the minimal polynomial of an algebraic integer a is being that monic polynomial
f in Q of minimal degree such that f(a) = 0. Note that we’re not requiring f to have
coefficients in Z, but we’ll prove that below.

Lemma 3.70. The minimal polynomial of an algebraic integer divides every polynomial in
Q[x] of which it is a root.

Proof. Let a be an algebraic integer with minimal polynomial f . By the division algorithm,
there are polynomials q and r in Q[x] such that g = qf+r, where either r = 0 or deg r < deg f .
Then r(a) = g(a)−q(a)f(a) = 0, so a is a root of r. Since f is the polynomial of least positive
degree with root α, so r = 0. q.e.d.

Lemma 3.71. The minimal polynomial of an algebraic integer has coefficients in Z.
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Proof. Let f be the minimal polynomial of a, and let g be a monic polynomial in Z[x] such
that g(a) = 0. By the previous lemma, g = fh for some h ∈ Q[x].

Suppose that f /∈ Z[x], then some prime number p divides the denominator of some
coefficient of f . Let pi be the largest power of p dividing that denominator, so i ≥ 1. Let
pj be the largest power of p that divides some denominator of a coefficient of h, with j ≥ 0.
Then pi+jg = (pif)(pjh). Now take that equation modulo p. Modulo p, the left side is
0, but neither polynomial on the right side is 0, a contradiction since Zp[x] is an integral
domain. q.e.d.

***

Theorem 3.72. The set of all algebraic integers, OK , in a number field K is a subring of
that field.

This ring OK is called the ring of integers in the number field K.

Exercise 47. Prove that the Gaussian integers Z[i] is the ring of integers in the number field
Q[i]. Since i is the root of the monic polynomial x1 − 1, all that’s needed to prove is that
there are no other integral elements in Q[i] other than those in Z[i].



Chapter 4

Groups

Recall that a group is a set equipped with one binary operation that is associative, has an
identity element, and has inverse elements. If that binary operation is commutative, then the
group is called an Abelian group.

4.1 Groups and subgroups

4.1.1 Definition and basic properties of groups

We’ll look at basic properties of groups, and since we’ll discuss groups in general, we’ll use a
multiplicative notation even though some of the example groups are Abelian.

Definition 4.1. The axioms for a group are very few. A group G has an underlying set, also
denoted G, and a binary operation G×G→ G that satisfies three properties.

1. Associativity. (xy)z = x(yz).

2. Identity. There is an element 1 such that 1x = x = x1.

3. Inverses. For each element x there is an element x−1 such that xx−1 = x−1x = 1.

Theorem 4.2. From these few axioms several properties of groups immediately follow.

1. Uniqueness of the identity. There is only one element e such that ex = x = xe, and it
is e = 1.

Outline of proof. The definition says that there is at least one such element. To show
that it’s the only one, suppose e also has the property of an identity and prove e = 1.

2. Uniqueness of inverses. For each element x there is only one element y such that
xy = yx = 1.

Outline of proof. The definition says that there is at least one such element. To show
that it’s the only one, suppose that y also has the property of an inverse of x and prove
y = x−1.

3. Inverse of an inverse. (x−1)−1 = x.

Outline of proof. Show that x has the property of an inverse of x−1 and use the previous
result.

99
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4. Inverse of a product. (xy)−1 = y−1x−1.

Outline of proof. Show that y−1x−1 has the property of an inverse of xy.

5. Cancellation. If xy = xz, then y = z, and if xz = yz, then x = y.

6. Solutions to equations. Given elements a and b there are unique solutions to each of
the equations ax = b and ya = b, namely, x = a−1b and y = ba−1.

7. Generalized associativity. The value of a product x1x2 · · ·xn is not affected by the
placement of parentheses.

Outline of proof. The associativity in the definition of groups is for n = 3. Induction is
needed for n > 3.

8. Powers of an element. You can define xn for nonnegative values of n inductively. For
the base case, define x0 = 1, and for the inductive step, define xn+1 = xxn. For negative
values of n, define xn = (x−n)−1.

9. Properties of powers. Using the definition above, you can prove using induction the
following properties of powers where m and n are any integers: xmxn = xm+n, (xm)n =
xmn.

Note that (xy)n does not equal xnyn in general, although it does for Abelian groups.

4.1.2 Subgroups

A subgroup H of G is a group whose underlying set is a subset of the underlying set of G
and has the same binary operation, that is, for x, y ∈ H, x ·H y = x ·G y where ·H denotes is
the multiplication in H while ·G denotes is the multiplication in G. Since they are the same,
we won’t have to subscript the multiplication operation.

An alternate description of a subgroup H is that it is a subset of G that is closed under
multiplication, has 1, and is closed under inverses.

Of course, G is a subgroup of itself. All other subgroups of G, that is, those subgroups
that don’t have every element of G in them, are called proper subgroups.

Also, {1} is a subgroup of G, usually simply denoted 1. It’s called the trivial subgroup of
G.

Example 4.3. Consider the cyclic group of six elements G = {1, a, a2, a3, a4, a5} where
a6 = 1. Besides the trivial subgroup 1 and the entire subgroup G, there are two other
subgroups of G. One is the 3-element subgroup {1, a2, a4} and the other is the 2-element
subgroup {1, a3}.

The intersection H ∩K of two subgroups H and K is also a subgroup, as you can easily
show. Indeed, the intersection of any number of subgroups is a subgroup.

The union of two subgroups is never a subgroup unless one of the two subgroups is
contained in the other.

Exercise 48. About intersections and unions of subgroups.
(a). Show that the intersection of two subgroups is also a subgroup.
(b). Give a counterexample where the union of two subgroups is not a subgroup.
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Example 4.4 (Subgroups of Z). Consider the group Z under addition. A subgroup of Z has
to be closed under addition, include 0, and be closed under negation. Besides 0 and Z itself,
what are the subgroups of Z? If the subgroup is nontrivial, then it has a smallest positive
element, n. But if n lies in a subgroup, then all multiples, both positive and negative, of n
also must be in the subgroup. Thus, nZ is that subgroup of Z.

Useful subgroups of a group. There are a number of other subgroups of a group that
are important in studying nonabelian groups such as the center of a group and the centralizer
of an element of a group.

Definition 4.5. Center and centralizer.
The center of a group G is Z(G) = {x ∈ G | ax = xa for all a ∈ G},
For a ∈ G, the centralizer of a is Za(G) = {x ∈ G | ax = xa}.

Exercise 49. Show the following properties about centers and centralizers.
(a). Prove that Z(G) is a subgroup of G.
(b). Prove that the center of G is the intersection of all the centralizer subgroups of G.
(c). Prove that Za(G) is a subgroup of G.

Definition 4.6 (Commutator subgroup). The commutator of two elements x and y in a
group G is the element x−1y−1xy. It is denoted [x, y].

The subgroup of G generated by all the commutators of its elements is called the com-
mutator subgroup of G, denoted G′.

Note that for an Abelian group, all the commutators are 1, and the the commutator
subgroup is trivial.

If S is a subset of G, then there is a smallest subgroup 〈S〉 of G containing S. It can be
described as the intersection of all subgroups H containing S,

〈S〉 =
⋂
S⊆H

H.

Alternatively, it can be described as the subset of G of all products of powers of elements of
S,

〈S〉 = {xe11 xe22 · · ·xenn |n ≥ 0, each xi ∈ S, and each ei ∈ Z}.

4.1.3 Cyclic groups and subgroups

If a is an element of a group G, then the subset of G generated by a

〈a〉 = {an |n ∈ Z}

is a subgroup of G. This subgroup generated by a is called a cyclic subgroup of G. If G itself
is generated by some element a, then G is called a cyclic group.

Definition 4.7 (Order and involution). The order of a group G is the number of elements
in it, that is, the cardinality of its underlying set. It’s usually denoted |G|.
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The order of an element a in a group is the smallest positive integer n such that an = 1.
It’s denoted ord a. If every positive power an 6= 1, then the order of n is defined to be ∞.
So, for example, the order of 1 is 1 since 11 = 1.

An involution a is an element of a group which is its own inverse, a−1 = a. Clearly, the
order of an involution a is 2 unless a = 1, in which case the order of a is 1.

Exercise 50. Prove that the order of a is also equal to the order of the cyclic group (a)
generated by a. That is, ord a = |〈a〉|.

An abstract cyclic group of order n is often denoted Cn = {1, a, a2, . . . , an−1} when the
operation is written multiplicatively. It is isomorphic to the underlying additive group of the
ring Zn where an isomorphism is f : Zn → Cn is defined by f(k) = ak.

Exercise 51. Prove that any subgroup of a cyclic group is itself cyclic.

Exercise 52. Let G be a cyclic group of order n and a an element of G. Prove that a generates
G, that is, 〈a〉 = G, if and only if ord a = n.

Cyclic groups are all Abelian, since anam = am+n = aman. The integers Z under addition
is an infinite cyclic group, while Zn, the integers modulo n, is a finite cyclic group of order n.

Exercise 53. Prove that every cyclic group is isomorphic either to Z or to Zn for some n.

Exercise 54. Prove that if k is relatively prime to n, then k generates Zn.

4.1.4 Products of groups

Just as products of rings are defined coordinatewise, so are products of groups. Using mul-
tiplicative notation, if G and H are two groups then G × H is a group where the product
(x1, y1)(x2, y2) is defined by (x1x2, y1y2). The identity element in G × H is (1, 1), and the
inverse (x, y)−1 is (x−1, y−1). The projections π1 : G × H → G and π2 : G × H → H are
group epimorphisms where π1(x, y) = x and π2(x, y) = y.

Also, ι1 : G→ G×H and ι2 : H → G×H are group monomorphisms where ι1(x) = (x, 1)
and ι2(y) = (1, y). Thus, we can interpret G and H as subgroups of G×H.

Note that G and H are both Abelian groups if and only if G × H is an Abelian group.
The product of two Abelian groups is also called their direct sum, denoted G⊕H.

The underlying additive group of a ring is an Abelian group, and some of the results we
have for rings give us theorems for Abelian groups. In particular, the Chinese remainder
theorem for cyclic rings Zn gives us a theorem for cyclic groups Cn.

Theorem 4.8 (Chinese remainder theorem for groups). Suppose that n = km where k and
m are relatively prime. Then the cyclic group Cn is isomorphic to Ck × Cn. More generally,
if n is the product k1 · · · kr where the factors are pairwise relatively prime, then

Cn ∼= Ck1 × · · · × Ckr =
r∏
i=1

Cki .

In particular, if the prime factorization of n is n = pe11 · · · perr . Then the cyclic group Cn
factors as the product of the cyclic groups Cpeii , that is,

Cn ∼=
r∏
i=1

Cpeii .
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4.1.5 Cosets and Lagrange’s theorem

Cosets are useful in developing the combinatorics of finite groups, that is, for counting sub-
groups and other things related to a finite group. They come in both left and right forms
as you’ll see in the definition below, but we’ll only use left cosets. Our first combinatorial
theorem is called Lagrange’s theorem which says that the order of a subgroup divides the
order of a group. Since the subgroup 〈a〉 generated by a single element has an order that
divides the order of the group, therefore the order of an element divides the order of the
group, too. We’ll have our first classification theorem as a corollary, and that is that a group
whose order is a prime number is cyclic. Thus, up to isomorphism, there is only one group
of that order.

Definition 4.9. Let H be a subgroup of G. A left coset of H is a set of the form

aH = {ah |h ∈ H}

while a right coset is of the form Ha = {ha |h ∈ H}.

Theorem 4.10. Several properties of cosets follow from this definition.

1. The coset 1H is just the subgroup H itself. In fact, if h ∈ H then hH = H.

2. More generally, aH = bH if and only if ab−1 ∈ H. Thus, the same coset can be named
in many different ways.

3. Cosets are disjoint. If aH 6= bH, then aH ∩ bH = ∅.

Outline of proof. It’s probably easier to show the contrapositive: if aH ∩ bH 6= ∅ then
aH 6= bH. Suppose an element is in the intersection. Then it can be written as ah or as
bh′ where both h and h′ are elements of H. The rest relies on the previous statement.

4. Cosets of H all have the same cardinality.

Outline of proof. Check that the function f(ah) = bh is a bijection aH → bH.

5. Thus, the cosets of H partition G into subsets all having the same cardinality.

6. Lagrange’s theorem. If G is a finite group, and H a subgroup of G, then |H| divides
|G|. Moreover, |G|/|H| is the number of cosets of H.

Outline of proof. Follows from the preceding statement.

Definition 4.11. The index of a subgroup H of a group G is the number of cosets of H.
The index is denoted [G : H]. By Lagrange’s theorem, [G : H] = |G|/|H| when G is a finite
group.

Corollary 4.12. If the order of a group is a prime number, then the group is cyclic.

Proof. Let |G| = p, a prime. Since p has no divisors except 1 and p, therefore, by Lagrange’s
theorem, G only has itself and the trivial subgroup as its subgroups. Let a 6= 1 be an
element of G. It generates a cyclic subgroup 〈a〉 which isn’t trivial, so 〈a〉 = G. Thus G is
cyclic. q.e.d.
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Corollary 4.13. If a group is finite, then the order of every element divides the order of the
group.

Proof. Let a be an element of a finite group G. Then the order of the subgroup 〈a〉 divides
|G|. But ord a is the order of 〈a〉. Therefore ord a divides |G|. q.e.d.

Products of subsets in a group. Occasionally we’ll want to look at products HK of
subsets H and K, especially when H and K are subgroups of a group G. This product is
defined by

HK = {xy |x ∈ H, y ∈ K}.

Even when H and K are subgroups, it isn’t necessary that HK is a subgroup, but there is a
simple criterion to test if it is.

Abelian groups are often written additively. In that case, rather than using the notation
HK, the notation H +K is preferred: H +K = {x+ y |x ∈ H, y ∈ K}.

Theorem 4.14. Let H and K be subgroups of G. Then HK is also a subgroup of G if and
only if HK = KH.

Proof. =⇒: Suppose that HK is a subgroup. We’ll show that KH ⊆ HK. Let xy ∈ KH
with x ∈ K and y ∈ H. Since x = 1x ∈ HK and y = y1 ∈ HK, therefore their product xy
is also in HK. Thus, KH ⊆ HK. Likewise HK ⊆ KH. Therefore HK = KH.
⇐=: Suppose that HK = KH. To show it’s a subgroup, first note 1 ∈ HK since 1 ∈ H

and 1 ∈ K.
Second, we’ll show that HK is closed under multiplication. Let x1y1 and x2y2 be elements

of HK with x1, x2 ∈ H and y1, y2 ∈ K. Then y1x2 ∈ KH = HK, so y1x2 = x3y3 where
x3 ∈ H and y3 ∈ K. Therefore, (x1y1)(x2y2) = (x1x3)(y3y2) ∈ HK.

Third, we’ll show that HK is closed under inverses. Let xy ∈ HK with x ∈ H and y ∈ K.
Then (xy)−1 = y−1x−1 ∈ KH = HK. q.e.d.

Corollary 4.15. If H and K are subgroups of an Abelian group G, then H + K is also a
subgroup of G.

4.2 Symmetric Groups Sn

We’ve looked at several examples of groups already. It’s time to examine some in more detail.

4.2.1 Permutations and the symmetric group

Definition 4.16. A permutation of a set X is just a bijection ρ : X → X on that set. The
permutations on X form a group called the symmetric group. We’re primarily interested in
permutations on a finite set. We’ll call the elements of the finite set letters, but we’ll denote
them with numbers. The symmetric group on n elements 1, 2, . . . , n is denoted Sn.

Note that the order of the symmetric group on n letters is |Sn| = n!.
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Example 4.17. Consider the permutation ρ on set X = {1, 2, 3, 4, 5, 6} that exchanges 2
with 4, sends 1 to 3, 3 to 5, and 5 to 1, and leaves 6 fixed. You can describe ρ in a table like
this:

n 1 2 3 4 5 6
ρ(n) 3 4 5 2 1 6

That table has a lot of redundant information. The first row is just the names of the elements.
To describe ρ on an ordered set like X, it’s enough to list the elements in the second row:
3, 4, 5, 2, 1, 6. Unfortunately, that makes it harder to figure out where ρ sends an element.
The cycle notation, mentioned next, is compact and makes it easier to see how ρ acts. For
ρ, this notation will look like (135)(24).

The three elements form a 3-cycle 1
ρ7→ 3

ρ7→ 5
ρ7→ 1 of ρ denoted (135). Also note

2
ρ7→ 4

ρ7→ 2, so (24) is a 2-cycle of ρ. Another name for a 2-cycle is transposition. Since
ρ(6) = 6, therefore (6) by itself is a 1-cycle, also called a fixed point, of ρ. The cycle notation
for this permutation is ρ = (135)(24). Note that fixed points are not denoted in this notation.
Alternatively, this permutation could be denoted (24)(135), or (531)(42), or several other
variants.

Since fixed points aren’t denoted in cycle notation, we’ll need a special notation for the
identity permutation since it fixes all points. We’ll use 1 to denote the identity since we’re
using 1 to denote the identity in a group written multiplicatively. In many textbooks the
identity is denoted e.

There’s a bit of experience needed to quickly multiply two permutations together when
they’re in cycle notation. Let ρ = (146)(23) and σ = (15)(2643). By ρσ mean first perform
the permutation ρ then perform σ (in other words, the composition σ ◦ ρ if we think of these
permutations as functions). Then we need simplify the cycle notation

ρσ = (146)(23) (15)(2643).

Note that first ρ sends 1 to 4, then σ sends 4 to 3, therefore ρσ sends 1 to 3. Next 3
ρ7→ 2

σ7→ 6,
so 3

ρσ7→ 6, likewise 6
ρ7→ 1

σ7→ 5, so 6
ρσ7→ 5, and 5

ρ7→ 5
σ7→ 1, so 5

ρσ7→ 1. Thus, we have a cycle of
ρσ, namely, (1365). You can check that (2) and (4) are fixed points of ρσ. Thus, we found
the product. (146)(23) (15)(2643) = (1365).

Incidentally, finding the inverse of a permutation in cycle notation is very easy—just
reverse all the cycles. The inverse of ρ = (146)(23) is ρ−1 = (641)(32).

Small symmetric groups When n = 0 or n = 1, there’s nothing in the symmetric group
except the identity.

The symmetric group on two letters, S2, has one nontrivial element, namely, the transpo-
sition (12). This is the smallest nontrivial group, and it’s isomorphic to any group of order
2. It is, of course, an Abelian group.

The symmetric group on three letters, S3, has order 6. We can name its elements using
the cycle notation.

1, (12), (13), (23), (123), (132)

Besides the identity, there are three transpositions and two 3-cycles. This is not an Abelian
group. For instance (12) (13) = (123), but (13) (12) = (132).
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The symmetric group on four letters, S4, has order 24. Besides the identity, there are(
4
2

)
= 6 transpositions,

(
4
3

)
· 2 = 8 3-cycles, 6 4-cycles, and 3 products of two 2-cycles, like

(12)(34).

Exercise 55. Complete the following table listing all 24 of the elements of S4.

the identity 1
transpositions (12), (13), (14), (23), (24), (34)

3-cycles
4-cycles

products of 2 transpositions

4.2.2 Even and odd permutations

First we’ll note that every cycle, and therefore every permutation, can be expressed as a
product of transpositions. We’ll soon see after that that a permutation can either be expressed
as a product of an even number of transpositions or as a product of an odd number of
transpositions, but not both. That will justify the definition of even and odd permutations.

Theorem 4.18. Any cycle can be expressed as a product of transpositions.

Proof. The cycle (a1a2a3 · · · ak) is the product (a1a2) (a1a3) . . . (a1ak). q.e.d.

We’ll look at an invariant that will help us distinguish even from odd permutations. It is
Pn, the product of all differences of the form i− j where 0 < i < j ≤ n.

Pn =
∏

0<i<j≤n

(i− j)

= (1− 2)(1− 3) · · · (1− n)

(2− 3) · · · (2− n)

· · ·
((n− 1)− n)

Lemma 4.19. The effect of applying a transposition to the integers that make up Pn is to
change the sign of Pn.

Proof. Let the transposition be (ab) where 0 < a < b ≤ n. The product Pn is made of
three factors Pn = P ′P ′′P ′′′ where P ′ = (a− b), P ′′ is the product of factors that have either
a or b but not both, and P ′′′ is the product of factors that don’t have either a or b. Now
the transposition (ab) has no effect at all on P ′′′ but negates P ′. Its effect on P ′′ is more
complicated. Suppose c is another letter.

Case 1. c < a < b. The factors (c − a) and (c − b) of P ′′ are interchanged by the
transposition (ab).

Case 2. a < c < b. The factors (a− c) and (c− b) are interchanged and both negated.
Case 3. a < b < c. Like case 1. Thus P ′′ does not change its value. Since only P ′ is

negated, Pn is negated. q.e.d.

Theorem 4.20. A permutation is either the product of an even number of transpositions or
the product of an odd number of transpostions, but it can’t be both.
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Proof. Since each transposition negates Pn, the product of an even number of transpositions
leaves Pn alone, but the product of an odd number of transpositions negates Pn. It can’t be
both since Pn is not 0. q.e.d.

Definition 4.21. A permutation is even if it’s the product of an even number of transpo-
sitions, it’s odd if it’s the product of an odd number of transpositions. The identity 1 is an
even permutation.

Note that a cycle is an even permutation if it has an odd length, but it’s an odd permu-
tation if it has an even length.

Also, the product of two even permutations is even, the product of two odds is even, and
the product of an even and an odd is odd.

Examples 4.22. The symmetric group S3 has order 6. It’s elements are 1, (12), (13), (23),
(123), and (132). Three of them, namely 1, (123), and (132) are even while the other three
(12), (13), and (23) are odd.

The symmetric group S4 has 12 even permutations (the identity, eight 3-cycles, and three
products of two 2-cycles) and 12 odd permutations (six transpositions and six 4-cycles).

4.2.3 Alternating and dihedral groups

Definition 4.23 (The alternating group An). Since the product of even permutations is
even, and the inverse of an even permutation is even, therefore the set of even permutations
in the symmetric group Sn is a subgroup of Sn. It is called the alternating group on n letters,
denoted An.

For n ≥ 2, the number of even permutations in Sn is the same as the number of odd
permutations, since multiplying by the transposition (12) sets up the bijection. Therefore,
the order of An is half the order of Sn. So |An| = 1

n
n!.

Example 4.24 (Subgroups of S3). The symmetric group S3 only has six elements, so it
doesn’t have many elements. There’s the trivial subgroup 1 of order 1. There are three cyclic
subgroups of order 2 each isomorphic to C2; besides 1, the other element is one of the transpo-
sitions (12), (13) or (23). There’s one subgroup of order three, namely, D3 = {1, (123), (132)}.
(Note that A3 is the same group as D3. The Hasse diagram for the subgroups is fairly simple.

S3

A3

C2 C2 C2

1

Figure 4.1: Subgroups of S3
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Example 4.25 (The dihedral group D5). The dihedral groups Dn are the symmetry groups
of regular n-gons. We already looked at the case n = 3 of an equilateral triangle. Consider a
regular polygon with n = 5 vertices.

1 r1
r2r3

r4 r
5

ρ r5
r1r2

r3 r
4

ϕ r1
r5r4

r3 r
2

Figure 4.2: Symmetries of a pentagon

We can label the vertices in order from 1 to n. A symmetry of a plane figure is a trans-
formation of the plane that maps the figure to itself. We’re only interested in isometries,
transformations that preserve distance, right now, but other transformations have their ap-
plications, too.

Figure 4.2 shows shows a pentagon. (The pentagon shown here is in the hyperbolic plane,
but that doesn’t matter.) One of its symmetries ρ is the one that rotates the pentagon 72◦

counterclockwise. It maps the vertex labelled 1 to 2, maps 2 to 3, and so forth. Knowing
where the vertices are mapped is enough to determine the transformation, so we can identify
ρ with the permutation it describes on the set of vertices. This ρ is the permutation (12345).

Another of the symmetries of the pentagon is a reflection like ϕ shown above, a reflection
across a horizontal axis. In cycle notation ϕ = (25)(34).

In fact, there are 10 symmetries of the regular pentagon, so |D5| = 10. In general
|Dn| = 2n. In D5, besides the identity, there are four rotations and five reflections.

identity = 1 ρ = (12345) ρ2 = (13524) ρ3 = (14253) ρ4 = (15432)
ϕ = (25)(34) ϕρ = (12)(35) ϕρ2 = (13)(45) ϕρ3 = (14)(23) ϕρ4 = (15)(24)

There are no more symmetries although we can write more expressions in terms of ϕ and ρ,
for instance ρϕ. But ρϕ = (15)(24) which is ϕρ4.

Thus, we can see now how to represent the dihedral group, D5, as a subgroup of the
symmetric group S5. In fact, it’s represented as a subgroup of the alternating group, A5 as
well, since all the permutations are even permutations.

Example 4.26 (Symmetries of a cube and tetrahedron). Consider a cube with vertices
12′34′1′23′4 and the inscribed regular tetrahedron 1234 shown in figure 4.3. The four diagonals
of the cube, 11′, 22′, 33′, and 44′, are drawn in green.

There are many symmetries of a tetrahedron. They permute the vertices 1234. There
are rotations of 120◦ and 240◦ about any of the four diagonals. Those rotations about the
line 11′ are the permutations (234) and (243). The rotations about the other three diagonals
are (123), (132), (124), (142), (134), and (143). Besides these rotations, there are three 180◦

rotations about the three lines joining the midpoints of the opposite edges of the tetrahedron.
Along with the identity, that makes 12 permutations, all of which preserve orientation, that
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is, they’re rigid motions. The group of orientation preserving symmetries of the tetrahedron
form the group S4.

Besides these, there are symmetries of the tetrahedron which are reflections across planes.
They are orientation reversing symmetries. For example, the reflection across the plane
passing through vertices 1 and 2 and the midpoint of edge 34 leaves vertices 1 and 2 fixed
but it exchanges vertices 3 and 4; it’s the transposition (34). The group of all the symmetries
of the tetrahedron, including both the orientation preserving symmetries and the orientation
reversing ones, form the group S4.

Each of the symmetries of the tetrahedron gives a symmetry of the enclosing cube. The
symmetries of a cube permute its eight vertices 12341′2′3′4′. For example, the symmetry
(123) of the tetrahedron gives the symmetry (123)(1′2′3′) of the cube.

But there are other symmetries of a cube since the tetrahedron 1234 doesn’t have to
be preserved under a symmetry of the cube; it could be sent to the opposite tetrahedron
1′2′3′4′. Other orientation preserving symmetries that send the tetrahedron to the opposite
tetrahedron include the six 90◦ and 270◦ rotations about the centers of the faces and the six
180◦ rotations about the line joining midpoints of opposite sides. That makes 24 orientation
preserving symmetries for the cube. Each one permutes the four diagonals, and no two of
them permute the four diagonals in the same way, so this symmetry group is S4.

Note that the symmetry (11′)(22′)(33′)(44′) that exchanges a vertex with its opposite
vertex reverses orientation.

The entire group of symmetries of the cube includes the 24 orientation preserving sym-
metries and each of those times (11′)(22′)(33′)(44′). That makes 48 symmetries of the cube.

1

2′

3

4′

1′

2

3′

4

Figure 4.3: Symmetries of a cube and tetrahedron

Exercise 56. Verify the statements made in the example.
(a). The orientation preserving symmetries of a tetrahedron form the group A4.
(b). The group of all the symmetries of the tetrahedron form the group S4.
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(c). The orientation preserving symmetries of a tetrahedron form the group S4.
(c). Explain why the permutation (11′)(22′)(33′)(44′) of the cube reverses orientation.

Presentations by generators and relations. Although it’s nice to have a group repre-
sented in a symmetric group, sometimes it’s more convenient to describe it more algebraically
in terms of generators and relations. For D5 we can see that ρ and ϕ are sufficient to gen-
erate the whole group in the sense that every element in the group can be written as some
expression involving ρ and ϕ. But there are certain relations, actually equations, that ρ and
ϕ satisfy in this group, namely ρ5 = 1, φ2 = 1, and ρϕ = ϕρ−1. Thus, we can present the
group as

D5 = 〈ρ, ϕ : ρ5 = 1, φ2 = 1, ρϕ = ϕρ−1〉.
The difficulty with a presentation of this type is knowing when you have enough generators
and relations. If you don’t have enough generators, you won’t generate the whole group. If
you don’t have enough relations, you’ll generate a larger group, but not the one you want.
A proof needs to be supplied to be assured that this is the right presentation. Frequently, a
diagram of some sort fills the bill.

4.3 Cayley’s theorem and Cayley graphs

One of the reasons symmetric groups are so important is that every group is isomorphic to
a subgroup of a symmetric group, a result of Cayley. This gives us another way to look at
groups, especially small finite ones.

We’ll prove Cayley’s theorem, then look at a few Cayley graphs which depend on Cayley’s
theorem.

4.3.1 Cayley’s theorem

Recall that a permutation of a set X is just a bijection ρ : X → X on that set and permu-
tations on X form a group called the symmetric group S(X). When the set is finite, we can
write it as {1, 2, . . . , n}, and Sn denotes the its symmetric group.

Cayley’s theorem can be stated for infinite groups as well as finite groups.

Theorem 4.27 (Cayley). Let G be a group, and let S(G) be the symmetric group on G,
that is, the group of permutations on the underlying set of G. The function ϕ : G → S(G)
defined by ϕ(a)(x) = ax is a group monomorphism. Therefore, G is isomorphic to a subgroup
of S(G).

Proof. ϕ(a) is the permutation on G that maps x to ax. It’s a bijection since its inverse
sends x to a−1x. To show that it’s a group homomorphism, it is only necessary to show that
ϕ(ab) = ϕ(a)ϕ(b) for a and b in G. But ϕ(ab)(x) = abx, and (ϕ(a)ϕ(b))(x) = ϕ(a)(ϕ(b)(x)) =
ϕ(a)(bx) = abx. Finally, ϕ : G → S(G) is a monomorphism since if ϕ(a) = ϕ(b), then
evaluating the two permutations at 1 gives a1 = b1, so a = b. q.e.d.

Although this representation theorem does show that every group is a subgroup of a
symmetric group (up to isomorphism), it’s practically not all that useful since if the group
G has order n, it’s being represented in a group of order n!, which is much too large to deal
with if n is at all large. Still, it’s a useful representation for theoretical purposes.
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Cayley graphs. With a Cayley graph we can represent a group G by a graph with vertices
and labeled, directed edges. Each element of G is a vertex of the graph, and for each element
a, we also have a directed edge labeled a from a vertex x to the vertex ax. In other words,
the Cayley graph is a representation of G by the Cayley theorem to S(G).

For a small example, let G be the cyclic group G = {1, a, b} where a2 = b and a3 = 1.
The Cayley graph for G has three vertexes, labeled 1, a, and b. Each node has a loop on it
labeled 1 since 1x = x. There are three edges labelled a, 1

a→ a
a→ b

a→ 1, and three edges

labelled b, 1
b→ b

b→ a
b→ 1. This is probably most conveniently drawn in a triangular figure.

There’s a lot of redundancy in the graph in the sense that you don’t need all the infor-
mation to reconstruct the group. The loops labelled 1 might just as well be dropped since
for any group 1x = x. If we know the edges labelled a, then we can determine the edges
labelled b since you just travel two a-edges to get a b-edge. That leaves just the triangle
1

a→ a
a→ b

a→ 1. More generally, if you know the edges for generators of a group, then all
the other edges are determined.

Example 4.28 (D5). Recall that the dihedral group D5 has 10 elements and the presentation

D5 = 〈ρ, ϕ : ρ5 = ϕ2 = (ϕρ)2 = 1〉.

The first relation, ρ5 = 1 gives us a five cycle

1
ρ→ ρ

ρ→ ρ2
ρ→ ρ3

ρ→ ρ4
ρ→ 1

which we can draw as a pentagon, the center pentagon in the graph below. The second
relation, ϕ2 = 1, means we have the 2-cycle 1

ϕ→ ϕ
ϕ→ 1, and, more generally, for any element

a, we have a 2-cycle a
ϕ→ aϕ

ϕ→ a. We’ll draw 2-cycles as undirected edges a
ϕ
− a. We get

five of these edges, one at each vertex of the center pentagon. The third relation, (ϕρ)2 = 1,
describes a square

a
ϕ→ aϕ

ρ→ aϕρ
ϕ→ aϕρϕ

ρ→ a.

Starting at each of the new outer vertices of the graph, follow three edges to reach another
outer vertex, and draw a ρ-edge back to where you started. When you finish, you have the
Cayley graph for D5 in figure 4.4

ρ�
���
ρ�
��-

r1
r
ρr

ρ2

rρ3 rρ4
rϕ

rρϕ
rρ2ϕ

rρ3ϕ

r
ρ4ϕ

ϕ

ϕ

ϕ

ϕ
ϕ

Figure 4.4: Cayley graph for D5
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Notice that the graph is completely symmetric. You could label any vertex 1 and fill
in the names of the rest of the vertices by following the labelled arcs. For that reason, the
vertices of a Cayley graph needn’t be labelled.

There is another presentation for D5 that gives a different looking Cayley graph. Let
ψ = ρφ. Then

D5 = 〈ϕ, ψ : ϕ = ψ2 = (ϕψ)5〉.
The Cayley graph has the same ten vertices, but the edges are all undirected and they form
a cycle of length 10 with labels alternating between ϕ and ψ.

Example 4.29 (A4). Recall that the alternating group on {1, 2, 3, 4} has 12 elements. It’s
not cyclic, so at least two generators are required to generate it. In fact, two will do. Consider
the three elements

a = (123)
b = (124)

c = ab = (14)(23)

The two elements a and b are sufficient to generate A4 as are the two elements a and c and
many other pairs of elements (but not all pairs will do). In fact, A4 can be represented in
either of the following two ways:

〈a, b : a3 = b3 = (ab)2 = 1〉
〈a, c : a3 = c2 = (ac)2 = 1〉

So, if we have the Cayley graph with only a- and b-edges, then we have enough information to
determine A4, or if we have the graph with only a- and c-edges, then that’s enough. Although
these two graphs both have 12 vertices (since |A4| = 12), they don’t look very much alike.
Let’s look at the Cayley graph with all three kinds of edges, a-edges and b-edges and c-edges.

It’s displayed in figure 4.5 as a planar graph, but more of the symmetry would be appar-
ent if it were displayed in three dimensions where the vertices and edges were those of an
icosahedron. Some of the triangles in the figure are blue. Their three sides of the triangle are
a-edges. Likewise, some triangles are green with b-edges. Note that all the a- and b-triangles
are oriented counterclockwise except the outer b-triangle. The remaining edges are the red
c-edges, and to save space, since c is an involution, rather than putting in two edges, one
pointing one way and the other pointing the other way, just a single thick undirected edge
is included. Each vertex in the graph has an a-edge coming in and one coming out, a b-edge
coming in and one coming out, and an undirected c-edge meaning that it goes both in and
out.

Since it only takes two of these three elements to generate A4, this graph has superfluous
information. All the edges labelled by one of the letters can be removed making the graph
simpler.

Exercise 57. Find a Cayley graph for the symmetric group S4. There are various pairs or
triples of generators you can use. One is the pair a = (1234), b = (12).

4.3.2 Some small finite groups

We’ve seen a few families of finite groups including Cn the cyclic group of order n, Dn the
dihedral group of order 2n, Sn the symmetric group of order n!, and An the alternating group
of order n!/2.
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Figure 4.5: Cayley graph for A4

The classification of finite groups (up to isomorphism, of course) is extremely difficult.
Daniel Gorenstein (1923–1992) was a leader of mathematicians who eventually classified finite
simple groups. He was faculty member at Clark University for 13 years.

We’ll look at a few more small finite groups. Later, we’ll look at the classification of finite
Abelian groups, and find that they’re all products of cyclic groups.

Table 4.1 lists the small groups up to isomorphism of order up through 24.

order 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
number of groups 1 1 1 2 1 2 1 5 2 2 1 5 1 2 1

We won’t prove that these are all of them, but we will look at them all. There are combina-
torial theorems, the most important being the Sylow theorems, that help in classifying finite
groups.

We know nearly all of these 27 groups. The cyclic groups Cn account for 15 of them.
There are 12 others. Some of them are products of smaller ones, for instance, the other group
of order 4 is C2 ⊕ C2, sometimes called the Klein 4-group.

The second group of order 6 is D3, which is the same as S3.
Two of the groups of order 8 are products, namely, C4 ⊕ C2 and C2 ⊕ C2 ⊕ C2. Another

is D4 and the remaining one is called the quaternion group.

Example 4.30 (The quaternion group). This group consists of eight of the units of the
division ring H, the quaternions. Let Q = {±1,±i,±j,±k}. Recall that the multiplication
of quaternions has i2 = j2 = k2 = −1, ij = k, jk = i, and ki = j, so this set of units is closed
under multiplication and forms a group, called the quaternion group.

Exercise 58. Construct a Cayley graph for the quaternion group.

The second group of order 9 is the Abelian group C3⊕C3, and the second group of order
10 is D5. We already know the other groups of order 12: D6, C2⊕C6, D3×C2, and A4, and



114 CHAPTER 4. GROUPS

Order 1 2 3 4 5 6 7 8
Abelian groups C1 C2 C3 C4 C5 C6 C7 C8

C2 ⊕ C2 C4 ⊕ C2

C2 ⊕ C2 ⊕ C2

Non-Abelian D3 D4

Q

Order 9 10 11 12 13 14 15 16
Abelian groups C9 C10 C11 C12 C13 C14 C15 C16

C3 ⊕ C3 C2 ⊕ C6 C2 ⊕ C8

C2 ⊕ C2 ⊕ C4

C2 ⊕ C2 ⊕ C2 ⊕ C2

C4 ⊕ C4

Non-Abelian D5 D6 D7 D8

A4 8 others
C3 × C4

Order 17 18 19 20 21 22 23 24
Abelian groups C17 C18 C19 C20 C21 C22 C23 C24

C3 ⊕ C6 C2 ⊕ C10 C2 ⊕ C12

C2 ⊕ C2 ⊕ C6

Non-Abelian D9 D10 D11 D12

S3 × C3 Dic5 C7 o C3 11 others
C2

3 o C2 C5 o C4

Table 4.1: List of small groups
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the other group of order 14 is D7.

4.4 The category of groups G
The category G of groups was mentioned briefly in section 3.5 when the category of rings
was introduced. The objects in this category are groups, and the morphisms are group
homomorphisms.

Products in a category are defined by a universal property rather than by ordered pairs,
but in G, the product of two groups is what was called the the product of groups in section
4.1.4:

G×H = {(x, y) |x ∈ G, y ∈ H}
Other categorical concepts include the initial and final object. In G these are the same

group, namely the trivial group that has only one element 1. There is a unique group
homomorphism from each group to 1, and there’s a unique group homomorphism from 1 to
each group.

The universal property of an infinite cyclic group in the category of groups. The
addition operation on Z makes it an infinite cyclic group since each element in it is a multiple
of 1. You can also write it multiplicatively as C∞ = 〈a〉 = {. . . , a−2, a−1, 1, a, a2, . . .}.

This infinite cyclic group has the following universal property. Given any group G and
any element c ∈ G, there is a unique group homomorphism 〈a〉 → G that maps a to c. In
general, it maps an to cn. The image of this homomorphism is the subgroup of G generated
by c.

Free groups. The infinite cyclic group 〈a〉 is a special case of a free group. It’s a free group
on one element. There are free groups on more than one element with analogous universal
properties. We’ll look at the free group on two elements.

Let a and b be two symbols. Form the group 〈a, b〉 as follows. An element in it is named by
a string of a’a and b’s raised to various integral powers, such as ba−3b2b4a2. Different names
are to be considered to name the same element if adjacent symbols are the same, in which
case, they can be combined by the usual power rule. For example, ba−3b2b44a2 = ba−3b6a2.
Also, any symbol to the power 0 is to be treated as the identity element 1, and 1 times any
string simplifies to that string.

A formal proof that 〈a, b〉 is, in fact, a group requires induction. We’ll omit that proof.
This group 〈a, b〉 has the following universal property. Given any group G and any ele-

ments c, d ∈ G, there is a unique group homomorphism 〈a, b〉 → G that maps a to c and b to
d.

4.5 Conjugacy classes and quandles

We’ll consider another way to examine the structure of groups. That depends on analyzing
the operation of conjugation in a group.

Definition 4.31 (Conjugate element in a group). If x and y are elements of a group G, then
yxy−1 is called conjugates of x. In that case, elements y and yxy−1 are said to be conjugates.
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Exercise 59. Show that being an conjugate in a group is an equivalence relation by proving
that (a) any element is conjugate to itself, (b) if one element is conjugate to second, then
the second is conjugate to the first, and (c) if one element is conjugate to a second and the
second conjugate to a third, then the first is conjugate to the third.

4.5.1 Conjugacy classes

Since being conjugates in a group is an equivalence relation, the corresponding equivalence
classes can say a lot about the group.

Definition 4.32. Each of the equivalence classes of a group under conjugacy is called a
conjugacy class, and the set of all conjugates of a particular element x is called the conjugacy
class of x.

Exercise 60. If x is an element of order n in a group, show every conjugate of x also has order
n.

Example 4.33 (Conjugacy classes in symmetric groups). Conjugation and conjugacy classes
in symmetric groups are particularly easy to identify using cycle notation. Let x = (13)(245)
and y = (142) be two elements in Sn. Then y−1xy = (124)(13)(245)(142) = (43)(125).
Note how y conjugates the cycle (13) to the cycle (43), and it conjugates the cycle (245) to
(125). The cycle structures for x and y−1xy are the same, but the elements in the cycles are
permuted by y. This is generally the case for symmetric groups. It follows that a conjugacy
class in Sn consists of all the elements in Sn with a given structure. Thus, for example, the
conjugacy class of (13)(235) consists of all elements of the form (ab)(cde) where a, b, c, d, and
e are 5 distinct integers between 1 and n. For S5 the size of that conjugacy class is

(
5
2

)
·2 = 20.

Exercise 61. Determine all the conjugacy classes of S5 and their sizes. (The sum of their sizes
will equal 120, of course.)

Theorem 4.34. If H is a subgroup of G, and x ∈ G, then xHx−1 is also a subgroup of G,
called a subgroup conjugate to H.

Proof. First, 1 ∈ xHx−1 since x1x−1 = 1. Next, if xyx−1, xzx−1 ∈ xHx−1 with y, z ∈ H,
then their product xyx−1 xzx−1 = x(yz)x−1 ∈ xHx−1. Finally, given xyx−1 ∈ xHx−1 with
y ∈ H, then the inverse (xyx−1)−1 = xy−1x−1 ∈ xHx−1. Therefore, xHx−1 is a subgroup of
G. q.e.d.

Similarly to the argument in the exercise above, being conjugate subgroups of a given
group is an equivalence relation.

Theorem 4.35. If no other subgroup of G has the same order as H, then H is normal.

Proof. Since any conjugate subgroup xHx−1 is in one-to-one correspondence with H, it has
the same number of elements, so must equal H. q.e.d.

Exercise 62. If H is a subgroup of G and N is a normal subgroup of G, prove that H ∩N is
a normal subgroup of H.
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Exercise 63. If H is a subgroup of G and N is a normal subgroup of G, prove that HN is a
subgroup of G. (Hint: show HN = NH.)

Exercise 64. Prove that the intersection of two normal subgroups is also a normal subgroup.

Exercise 65. Prove that if H and N are normal subgroups of G, then their product is also a
normal subgroup of G, in fact, it’s the subgroup generated by H ∪N .

4.5.2 Quandles and the operation of conjugation

The operations of conjugation have certain properties. If we think of y−1xy as a binary
operation x . y, and yxy−1 as another operation x .-1 y, then these two operations satisfy the
properties stated in the next definition.

Definition 4.36. A quandle is a set equipped with two operations, . and .-1 satisfying the
following three conditions for all elements x, y, and z.

Q1. x . x = x.
Q2. (x . y) .-1 y = x = (x .-1 y) . y.
Q3. (x . y) . z = (x . z) .(y . z).

The symbol . is pronounced “through”, and .-1 “backthrough”.

Exercise 66. Prove that if Q is a conjugacy class in a group G then Q is a quandle where the
operation x . y is −1xy, and x .-1 y is yxy−1.

Involutory quandles. A quandle satisfying the identity x . y . y = x, equivalently x . y =
x .-1 y, is called an involutory quandle or a 2-quandle. The two operations of a quandle are
the same in an involutory quandle.

There is an analogous definition for an n-quandle. First define x .n y as x . y . · · · . y where
. y occurs n times. An n-quandle is a quandle that satisfies the identity x .n y = x.

A conjugacy class of involutions in a group is an involutory quandle, while the conjugacy
class of an element of order n is an n-quandle.

Conjugacy classes of involutions are useful in the study of groups.
Besides conjugacy classes of groups, involutory quandles appear as cores of a group. The

core of a group G has the same elements as G but with the operation x . y = yx−1y.

Exercise 67. Prove that the core of a group is an involutory quandle.

Involutory quandles with geodesics. Involutory quandles have a nice geometric inter-
pretation where the elements are points and the lines are determined by the operation.

Example 4.37 (The plane as a quandle). Consider the Euclidean plane R2 with the operation
which sends a point p through a point q to yield the point p . q on the line that passes through
p and q and on the opposite side of q that p lies on but equally far away from q. If p happens
to equal q, then define p . q to be q. Algebraically, p . q = 2q − p.

This operation makes R2 and involutory quandle. The self distributivity axiom Q3, which
says (p . q) . r = (p . r) .(q . r), is illustrated in figure 4.6.
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p q

r

p . q

p . rq . r(p . q) . r

Figure 4.6: Distributivity in a involutory quandle

Symmetric spaces. A symmetric space is a particular kind of manifold. At each point in
the space, there is an isometry (that is, a translation that preserves distance) for which that
point is an isolated singularity. Ottmar Loos discovered in 1967 that the intrinsic algebraic
structure of a symmetric is an involutory quandle. Thus, a symmetric space as a differentiable
involutory quandle in which every point is an isolated fixed point of the symmetry through
it.

Besides the plane R2, every vector spaces V over any field is a symmetric spaces. The
operation that makes it an involutory quandle is given be v .w = 2w − v. That’s the same
operation as described above for R2.

There are lots of other symmetric spaces. The ordinary sphere S2 as well as higher
dimensional spheres Sn are all symmetric spaces. So are other geometric spaces including
projective spaces, hyperbolic spaces, and inversive spaces. They can all be used to represent
quandles geometrically as subspaces.

Geodesics. A geodesic in a manifold is a curve which for points close together is the curve
of shortest length that joins them. In Euclidean space, a geodesic is a straight line. On the
sphere S2, a geodesic is a great circle, that is, the intersection of a plane passing through the
center of the sphere with the sphere. Geodesics on manifolds have metrics, that is, there’s a
distance between any two points on the geodesic.

Given two points p and q, the entire involutive quandle generated by them lies on one
geodesic. That means that any other expression that can be made from p and q lie on a
geodesic. In particular, the points p .(q . p), q . p, p, q, p . q, and q .(p . q) lie on a geodesic,
and they’re equally spaced on it.

p .(q . p) q . p p q p . q q .(p . q)

Since geodesics have all the information needed to describe the quandle structure, we can
draw involutory quandles, at least the small ones, to see what they look like. Some will be
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generated by two elements, so they’ll either look like the line above, or be quotients of it.

Example 4.38 (Reflections of a pentagon). The group D5 of symmetries of the pentagon
was illustrated in figure 4.2.

The reflections of a pentagon are involutions,
and they form a conjugacy class in D5. There
are five reflections: p = (25)(34), q =
(13)(25), p . q = (15)(24), q . p = (14)(23),
and p .(q . p) = q .(p . q) = (12)(35). Since
p .(q . p) = q .(p . q), the five of them lie on a
circle as illustrated to the right.

(25)(34)

(13)(45)

(15)(24)

(12)(35)

(14)(23)

Exercise 68. Let the seven vertices of a regular heptagon be denoted 1, 2, 3, 4, 5, 6, and 7.
Describe the how the symmetry (27)(36)(45) acts on the heptagon in words. Determine the
conjugacy class of (27)(36)(45) in D7 and illustrate it as points on a circle.

Some conjugacy classes of involutions are cyclic like the ones in D5 above, but most aren’t.
Here are two examples of 6-element conjugacy classes in small groups.

Example 4.39 (A conjugacy class in the quaternion group). The quaternion group was
introduced in section 4.30. It has eight elements, namely 1, −1, i, −i, j, −j, k, and −k. Six
of them, all those except ±1, are involutions and they form a conjugacy class. It’s illustrated
in figure 4.7. Note that i . j = jij = −i, so i, j, −i, and −j are equally spaced around a
circle. Likewise for i, k, −i, and −k and for k, j, −k, and −k. Although the spacing doesn’t
appear equal on the Euclidean plane as shown, it is when represented on a sphere.

i

kj

−i

−j−k

Figure 4.7: A conjugacy class in the quaternion group

Example 4.40 (The conjugacy class of transpositions in S4). The transpositions in a sym-
metric group form a conjugacy class. The the symmetric group S4 there are six transpositions,
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(12)

(13)(23)

(34)

(14)

(24)

Figure 4.8: The conjugacy class of transpositions in S4

namely, (12), (13), (14), (23), (24), and (34). The involutory quandle they form is shown in
figure 4.8. There are four circles, each with three transpositions. One circle, for example,
includes (12), (13), and (23) since (12) .(13) = (23), (13) .(23) = (12), and (23) .(12) = (13).
Also note that (12) .(34) = (12), but no geodesic is shown having those two transpositions.
It reduces the clutter in the diagram to suppress geodesics with only two elements.

4.6 Kernels, normal subgroups, and quotient groups

The kernel Ker f of a group homomorphism f : G→ H plays the same role as the kernel of
a ring homomorphism. It’s defined as the the inverse image of the identity. It is a subgroup
of the domain G, but a particular kind of subgroup called a normal subgroup. We’ll see
that every normal subgroup N of G is the kernel of some group homomorphism, in fact, of a
projection G→ G/N where G/N is a quotient group of G.

4.6.1 Kernels of group homomorphisms and normal subgroups

We’ll use multiplicative notation.

Definition 4.41. Let f : G→ H be a group homomorphism. Those elements of G that are
sent to the identity 1 in H form the kernel of f .

Ker f = f−1(1) = {x ∈ G | f(x) = 1}.

Example 4.42. Let G be the symmetric group Sn and f : G→ {1,−1} map even permuta-
tions to 1 and odd permutations to −1. Then f is a group homomorphism, and Ker f = An,
the alternating subgroup of Sn.

Theorem 4.43. The kernel of a group homomorphism f : G→ H is a subgroup N = Ker f
of G such that for each x ∈ G, xNx−1 ⊆ N .
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Proof. To show that N is a subgroup of G, note that (1) it’s closed under multiplication, (2)
it includes 1, and (3) it’s closed under inverses. For (1), if x, y ∈ N , then f(x) = f(y) = 1,
so f(xy) = f(x)f(y) = 1, therefore xy ∈ N . (2) is obvious. For (3), if x ∈ N , then f(x) = 1,
so f(x−1) = f(x)−1 = 1−1 = 1, therefore x−1 ∈ N . Thus N is a subgroup of G.

Now to show that for x ∈ G, xNx−1 ⊆ N . Consider xyx−1 where y ∈ N . Then f(y) = 1,
so f(xyx−1) = f(x)f(y)f(x)−1 = f(x)1f(x)−1 = f(x)f(x)−1 = 1. Therefore, xyx−1 ∈ N .
Thus, xNx−1 ⊆ N . q.e.d.

Besides telling us what elements are sent to 1 by f , the kernel of f also tells us when
two elements are sent to the same element. Since f(x) = f(y) if and only if f(xy−1) = 1,
therefore, f will send x and y to the same element of S if and only if xy−1 ∈ Ker f .

The properties of kernels of group homomorphisms that we just found determine the
following definition.

Definition 4.44. A subgroup N of a group G is said to be a normal subgroup if for each
x ∈ G, xNx−1 ⊆ N .

Note that since a normal subgroup a group G is closed under conjugation, therefore a
normal subgroup of G is the union of some of the conjugacy classes in G.

Exercise 69. Show that a subgroupN is normal inG if and only if for each x ∈ G, xNx−1 = N .

Exercise 70. Show that a subgroup N is normal in G if and only if for each x ∈ G, xN = Nx.

Both the trivial subgroup of G and G itself are always normal subgroups.
If G is an Abelian group, then every subgroup of G is a normal subgroup.

Theorem 4.45. Any subgroup of index 2 is a normal subgroup.

Proof. Let N be a subgroup of a group G of index 2. We’ll show that xN = Nx for each
x ∈ G. In case x ∈ N , then xN = N = Nx. Now consider the case x /∈ N . Then there
are two left cosets of N , namely N itself and xN , and there are two right cosets, N and Nx.
That gives us two partitions of G, but since N is a part of each partition, the other parts,
namely xN and Nx must be equal. q.e.d.

4.6.2 Quotient groups, and projections γ : G→ G/N

As mentioned above the kernel of a group homomorphism f tells us when two elements are
sent to the same element: f(x) = f(y) if and only if xy−1 ∈ Ker f . We can use Ker f to
construct a “quotient group” G/Ker f by identifying two elements x and y in G if xy−1 lies
in Ker f . In fact, we can do this not just for kernels of homomorphisms, but for any normal
subgroup N . That is, we can use a normal subgroup N of G to determine when two elements
x and y are to be identified, x ≡ y, and we’ll end up with a group G/N .

Definition 4.46. A congruence ≡ on a group G is an equivalence relation such that for all
x, x′, y, y′ ∈ G,

x ≡ x′ and y ≡ y′ imply xy ≡ x′y′.

The equivalence classes for a congruence are called congruence classes.

Theorem 4.47. If ≡ is a congruence on a group G, then the quotient set G/≡, that is, the
set of congruence classes, is a group where the binary operation is defined by [x][y] = [xy].
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Proof. First we need to show that the proposed definitions are actually well defined. That
is, if a different representative x′ is chosen from the congruence class [x] and y′ from [y], then
the same class [x′y′] results. That is

[x] = [x′] and [y] = [y′] imply [xy = xy′].

But that is the requirement in the definition of congruence.
Also, each of the axioms for a group need to be verified, but they’re all automatic as

they’re inherited from the group G. q.e.d.

Just as an ideal in a ring determines a congruence on the ring, a normal subgroup of a
group determines a congruence on a group, and the proof is similar.

Theorem 4.48 (Congruence modulo a normal subgroup). Let N be a normal subgroup of a
group G. A congruence, called congruence modulo N , is defined by

x ≡ y (mod N) if and only if xy−1 ∈ N.

The quotient group, G/≡, is denoted G/N . The congruence classes are cosets of N , that is
[x] = xN . The function γ : G→ G/N defined by γ(x) = [x] = xN is a group homomorphism,
in fact, an epimorphism. It’s called a projection or a canonical homomorphism to the quotient
group. It’s kernel is N .

Exercise 71. If ≡ is a congruence on a group G, show that the congruence class of the identity,
[1] = N , is a normal subgroup of G, and the congruence determined by N is the original
congruence.

4.6.3 Isomorphism theorems

The image of a group homomorphism is isomorphic to the group modulo its
kernel. Let f : G→ H be a ring homomorphism. The image of f , denoted f(G), is the set

f(G) = {f(x) ∈ H |x ∈ G}.

Exercise 72. Verify that the image f(G) is a subgroup of H.

Exercise 73. Prove the following theorem. You’ll need to show that the proposed function is
well-defined, that it is a group homomorphism, and then that it’s an isomorphism.

Theorem 4.49 (First isomorphism theorem, Jordan, 1870). If f : G → H is a group
homomorphism then the quotient group G/Ker f is isomorphic to the image ring f(G), the
isomorphism being given by

G/Ker f → f(G)
xKer f 7→ f(x)

This gives us two ways to look at the image, either as a quotient group of the domain G
or as a subgroup of the codomain H.

Furthermore, we can now treat a group homomorphism f : G → H as a composition of
three group homomorphisms.

G
γ→ G/Ker f ∼= f(G)

ι→ H



4.6. KERNELS, NORMAL SUBGROUPS, AND QUOTIENT GROUPS 123

The first is the projection from G onto its quotient ring G/Ker f , the second is the isomor-
phism G/Ker f ∼= f(G), and the third is the inclusion of the image f(G) as a subgroup of
H.

Theorem 4.50 (Second isomorphism theorem). If H is a subgroup of G and N is a normal
subgroup of G, then

H/(H ∩N) ∼= (HN)/N.

Proof. Let f : H → (HN)/N be defined by f(x) = xN . This f is a group homomorphism
since f(xy) = xyN = xNyN = f(x)f(y).

Next, we’ll show that f is an epimorphism. Let xN ∈ (HN)/N where x ∈ HN . Then
x = yz for some y ∈ H and z ∈ N . So xN = yzN = yN = f(y). Thus, f is an epimorphism,
that is, f(H) = (HN)/N . by the first isomorphism theorem, we have

H/Ker f ∼= (HN)/N.

Finally, we’ll show that Ker f = H ∩K which will imply H/(H ∩N) ∼= (HN)/N . Let x
be an element of H which lies in Ker f . Then xN is the identity element N in (HN)/N , so
x ∈ N . But x ∈ H also, so x ∈ H ∩N . Conversely, x ∈ H ∩N implies x ∈ Ker f . q.e.d.

Theorem 4.51 (Third isomorphism theorem). If H and K are both normal subgroups of G
with H ⊆ K, then

(G/H)/(K/H) ∼= G/K.

Exercise 74. Prove the third isomorphism theorem. Define f : G/H → G/K by f(aH) = aK.
Check that this is a well-defined homomorphism. Show Ker f = H. Show the image of f is
all of G/K. Apply the first isomorphism theorem to finish the proof.

Theorem 4.52 (Correspondence theorem). Let N be a normal subgroup of G. The sub-
groups of G containing N are in one-to-one correspondence with the subgroups of G/N .
Thus, if H is a subgroup of G containing N , then H/N is a subgroup of G/N , and every
subgroup of G/N so arises. Furthermore, H is normal in G if and only if H/N is normal in
G/N .

Exercise 75. Prove the correspondence theorem. Show that for H ⊇ N that H/N is, indeed,
a subgroup of G/N . Show that if H is any subgroup of G/N that the set H = {x ∈ G |x/N ∈
H} is a subgroup of G containing N . Verify that these two operations are inverse to each
other. Finally, verify the last statement.

4.6.4 Internal direct products

We can recognize when a group G is isomorphic to a product of two or more groups. Recall
that if G = M × N , then we can interpret M and N as subgroups of G. As such they are
normal subgroups of G and their intersection is trivial. Furthermore, G = MN .

Definition 4.53. A group G is said to be an internal direct product of two subgroups M and
N if M ∩N = 1, MN = G, and both M and N are normal subgroups of G.

We’ll show in a moment that if G is the internal direct product of M and N , then G is
isomorphic to the product group M ×N . But first, a lemma.
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Lemma 4.54. If M and N are two normal subgroups of G whose intersection is trivial, then
elements of M commute with elements of N .

Proof. Let m ∈ M and n ∈ N . In order to show that mn = nm, we’ll show the equivalent
mnm−1n−1 = 1. Let x = mnm−1n−1. Since x = (mnm−1)n−1, and both mnm−1 and n−1

are elements of the normal subgroup N , therefore x ∈ N . But since x = m(nm−1n−1), and
both m and nm−1n−1 are elements of the normal subgroup M , therefore x ∈ M . Since
x ∈M ∩N = 1, therefore x = 1. q.e.d.

Theorem 4.55. If G is the internal direct product of M and N , then M × N ∼= G where
the isomorphism is given by (m,n) 7→ mn.

Proof. Outline. Use the lemma to verify that the proposed isomorphism is a homomorphism.
It’s evidently a surjection since MN = G. To show that it’s an injection, show that the
kernel is trivial. Suppose (m,n) 7→ mn = 1. Then m = n−1 lies in both M and N , so it’s
trivial, that is, m = n = 1. q.e.d.

Exercise 76. Prove that G is an internal direct product of two normal subgroups M and N if
and only if every element x ∈ G can be uniquely represented as a product mn with m ∈ M
and n ∈ N .

Although we’ve only looked at internal direct products of two subgroups, the definition
can be generalized to more than two subgroups. We’ll say that G is the internal direct product
of r normal subgroups N1, N2, . . . , Nr if (1) they jointly generate G, that is, N1N2 · · ·Nr = G,
and (2) the intersection of any one Ni with the subgroup generated by the rest is trivial. It
follows that N1×N2×· · ·×Nr

∼= G. Furthermore, an equivalent condition to being a internal
direct product of the normal subgroups N1, N2, . . . , Nr is that every element x ∈ G can be
uniquely represented as a product n1n2 · · ·nr with each ni ∈ Ni.

4.7 Matrix rings and linear groups

The representation of rings and groups as subrings or subgroups of matrix rings is very helpful
for a couple of reasons. One is that matrices describe linear transformations. That means
that the elements of the ring or group can be interpreted as geometric transformations. A
second is that matrix notation is so very convenient. Usually the coefficients are taken to be
elements of a familiar field like C, R, or Q, but for special purposes the coefficients may be
taken in some other integral domain such as Z.

For example, the field complex numbers C can be represented as a certain subring of
M2(R), the ring of 2× 2 matrices with coefficients in R, and the division ring of quaternions
H can be represented as a certain subring of M4(R).

Most of our examples have n equal to 2 or 3 and the coefficients are real.

4.7.1 Linear transformations

The ring of n × n matrices with real coefficients, M2(R), is a noncommutative ring when
n ≥ 2. We can interpret each matrix A ∈ M2(R) as a linear transformation A : Rn → Rn
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where a (column) n-vector x ∈ Rn is mapped to another n-vector

Ax =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann



x1
x2
...
xn

 =


a11x1 + a12x2 + · · ·+ a1nxn
a21x1 + a22x2 + · · ·+ a2nxn

...
an1x1 + an2x2 + · · ·+ annxn


The identity matrix

I =


1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1


corresponds to the identity transformation I : Rn → Rn where Ix = x.

A linear transformation from a vector space to itself is also called a linear operator.

4.7.2 The general linear groups GLn(R)

The invertible n×n matrices in Mn(R), that is, the units in the ring Mn(R), form the general
linear group with coefficients in the commutative ring R, denoted GLn(R). They describe
nonsingular transformations Rn → Rn. Recall that a matrix A has an inverse if and only if
its determinant |A| is a unit in R.

Let’s interpret some of these in the case when n = 2. The determinant of A =

[
a b
c d

]
is

|A| = ad− bc, and when that’s a unit in R, the inverse of A is A =
1

|A|

[
d −b
−c a

]
.

Note that the determinant is a group homomorphism GLn(R) → R∗ from the general
linear group to the invertible elements of R. The determinant of the identity matrix is 1,
the determinant of the product of two matrices is the product of their determinants, and the
determinant of the inverse of a matrix is the reciprocal of the determinant of the matrix.

Let’s let R be the field of real numbers R. The real general linear group GL2(R) can be
interpreted as the group of invertible linear transformations of the plane R2 that leave the
origin fixed. Here are a few linear transformations of the plane.

Rotation by an angle θ about the origin is described by the matrix[
cos θ − sin θ
sin θ cos θ

]

since a point

[
x
y

]
in R2 is sent to the point

[
x cos θ − y sin θ
x sin θ + y cos θ

]
The determinant of a rotation

matrix is 1.
Reflection across a line through the origin at an angle θ to the x-axis is described by the

matrix [
cos 2θ sin 2θ
sin 2θ − cos 2θ

]
.

The determinant is −1.
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Expansions and contractions are described by scalar matrices

[
r 0
0 r

]
where r is the ratio.

If r > 1, then it’s an expansion (also called dilation), but if 0 < r < 1, then it’s a contraction.

There are numerous other kinds of transformations. Here’s just one more example

[
1 1
0 1

]
,

an example of a shear parallel to the x-axis. Points above the x-axis are moved right, points
below left, and points on the x-axis are fixed.

In three dimensions you can describe rotations, reflections, and so forth, as well.

4.7.3 Other linear groups

There are a number of interesting subgroups of GLn(R).

The special linear groups SLn(R). There are several subgroups of GLn(R), one of which
is the special linear group SLn(R) which consists of matrices whose determinants equal 1,
also called unimodular matrices. (There are other linear groups called “special” and in each
case it means the determinant is 1.)

Among the examples in GL2(R) mentioned above, the rotations and shears are mem-
bers of SL2(R), but reflections have determinant −1 and expansions and contractions have
determinants greater or less than 1, so none of them belong to the special linear group.

Since the absolute value of the determinant is the Jacobian of the transformation Rn →
Rn, therefore transformations in SL2(R) preserve area. Since the determinant is positive,
these transformations preserve orientation. Thus, transformations in SL2(R) are the linear
transformations that preserve orientation and area. More generally those in SLn(R) preserve
orientation and n-dimensional content. Rotations and shears, and their products, are always
in SLn(R).

Exercise 77. Show that the matrix

[
2 0
0 1/2

]
lies in SL2(R). Describe in words how this

transformation acts on the plane.

The orthogonal groups O(n). These are subgroups of GLn(R). An orthogonal transfor-
mation is one that preserves inner products (also called dot products or scalar products).

I’ll use the notation

〈a|b〉 = a1b1 + a2b2 + · · ·+ anbn

for the inner product of the vectors a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn). Other
common notations are (a,b) or a · b.

For the transformation described by the matrix A to preserve inner products means that
〈Aa|Ab〉 = 〈a|b〉. Since the length of a vector |a| is determined by the inner product,
|a|2 = 〈a|a〉, therefore an orthogonal transformation preserves distance, too: |Aa| = |a|.
Conversely, if A preserves distance, it preserves inner products.

Note that since distance is preserved, so is area in dimension 2 or n-dimensional content
in dimension n.

It’s a theorem from linear algebra that a matrix A describes an orthogonal transformation
if and only if its inverse equals its transform: A−1 = AT ; equivalently, AAT = 1. These ma-
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trices, of course, are called orthogonal matrices. Note that the determinant of an orthogonal
matrix is ±1.

The orthogonal group O(n) is the subgroup of GLn(R) of orthogonal matrices. It’s not a
subgroup of SLn(R) since half the orthogonal matrices have determinant −1, meaning they
reverse orientation. The special orthogonal group SO(n) is the subgroup of O(n) of matrices
with determinant 1.

In two dimensions O(2) consists of rotations and reflections while SO(n) consists of only
the rotations. In three dimensions O(3) consists of rotations (by some angle around some
line through 0) and reflections (across some plane through 0). Again, SO(3) only has the
rotations.

The unitary groups U(n). For matrices with complex coefficients, the most useful anal-
ogous group corresponding to the orthogonal group for real coefficients is something called a
unitary group.

The inner product, also called the Hermitian, for the complex vector space Cn is defined
as

〈a|b〉 = a1b1 + a2b2 + · · · anbn
for the complex vectors a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn) where the bar indicates
complex conjugation. A matrix A, and the transformation Cn → Cn that it describes, are
called unitary if it preserves the Hermitian. The collection of all unitary matrices in GLn(C)
is called the unitary group U(n).

Another theorem from linear algebra is that a matrix A is unitary if and only if its inverse

is the transform of its conjugate, A−1 = A
T

, equivalently, AA
T

= I.
There are many properties of complex unitary matrices that correspond to properties of

real orthogonal matrices.

4.7.4 Projective space and the projective linear group PGLn(F )

Projective planes and projective space. Projective geometry differs from Euclidean
geometry in a couple of ways: all lines in a plane intersect, and distance and angles are not
considered.

Let’s start with Euclidean plane geometry, then drop distance and angles, then add points
at infinity to get the projective plane.

When distance and angles are not considered in Euclidean geometry, what’s left is called
affine geometry. Points and lines still remain. The affine plane is still modelled by R2, but
affine transformations don’t have to preserve distance or angles. So, for instance, the linear
transformations known as expansions, contractions, and shear transformations are all affine
transformations. In fact every element in GL2(R) describes an affine planar transforma-
tion. These are the affine transformations tht fix the origin. Also, translations, which are
not linear transformations, are affine transtransformations. Similarly, in dimension n, affine
transformations are composed of translations and elements of GLn(R).

Affine spaces F n can be similarly defined for other fields F besides the reals R.
So far, we’ve dropped distance and angles, but parallel lines remain in affine geometry.

The next step is to all enough points, called points at infinity, so that parallel lines meet at
them.
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Parallelism is an equivalence relation on lines. We’ll assume that a line is parallel to itself,
so parallelism is reflexive. It’s also symmetric, and it’s transitive: if one line is parallel to
another, and the other to a third, then the first is parallel to the third.

For each parallelism equivalence class, add one point, a point at infinity to affine space
and specify that every line in that equivalence class passes through that point. Add one
more line, the line at infinity, and specify that every point at infinity passes through it. The
resulting space is the projective space corresponding to the affine space.

Projective space and projective coordinates. Let F be a field, such as the field of real
numbers. The projective linear group PGLn(F ) is used to study projective space.

A more formal way to define projective n-space over a field F is by modelling points of
the projective plane by lines in affine n+ 1-space, F n+1, through the origin by means an an
algebraic equivalence relation.

Two points a = (a0, a1, . . . , an) and b = (b0, b1, . . . , bn) of F n+1 name the same point of
FP n if their coordinates are proportional, that is, if there exists a nonzero element λ ∈ F
such that bi/ai = λ for i = 0, 1, . . . , n. We’ll let [a0, a1, . . . , an] denote the point in FP n

named by (a0, a1, . . . , an) ∈ F n+1. Thus, [a0, a1, . . . , an] = [λa0, λa1, . . . , λan]. The notation
[a0, a1, . . . , an] is called projective coordinates.

Geometrically, this construction adds points at infinity to the affine plane, one point for
each set of parallel lines.

Lines can also be named with projective coordinates b = [b0, b1, . . . , bn]. If you do that,
then a point a = [a0, a1, . . . , an] lies on the line b if their inner product 〈a|b〉 is 0.

Example 4.56 (The Fano plane Z2P
2). The projective plane Z2P

2 has a name, the Fano
plane, named after Gino Fano (1871–1952), a founder of finite geometries.

Figure 4.9 shows a representation of Z2P
2. There are 7 points and 7 lines, each line with

3 points, and each point on 3 lines.

0

1

2

3

4

5

6

Figure 4.9: The Fano plane Z2P
2
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Example 4.57 (The projective plane Z3P
2). Figure 4.10 shows a representation of the finite

projective plane Z3P
2. There are 13 points and 13 lines, each line with 4 points, and each

point on 4 lines.
We can name the 9 points in the affine plane Z2

3 with third coordinate 1, and the 4 points
at infinity with third coordinate 0. The four points at infinity line on a line at infinity. Each
of these points at infinity lie on all those line with a particular slope. For instance, the point
[1,−1, 0] lies on the three lines with slope −1 (and it lies on the line at infinity, too).

Z3P
2

r[−1,−1,1]

r[−1,0,1]

r[−1,1,1]

r[0,−1,1]

r[0,0,1]

r[0,1,1]

r[1,−1,1]

r[1,0,1]

r[1,1,1]

r[1,0,0]

r[0,1,0]

r[1,1,0]

r
[1,−1,0]

Figure 4.10: The projective plane Z3P
2

Finite projective planes. There’s a simpler definition of a projective plane that can be
made axiomatically. It states that two points determine a line, and two lines determine a
point. A nondegeneracy axiom is also required that there are at least three points which
don’t all lie on the same line (from which it follows that there are at least three lines which
don’t all meet at one point). It turns out that this axiomatic definition admits projective
planes that don’t derive from fields. We’ll look at the ones that do.

Finite projective planes exist for each finite field. Let GF (pn) be a Galois field of q = pn

elements. There will be q2 points on the affine plane GF (pn)2 with third coordinate 1, and
q + 1 points on the line at infinity with third coordinate 0. So the finite projective plane
GF (pn)P 2 has q2 + q + 1 points altogether. It has the same number of lines.

These projective planes all have a couple of nice properties. They are all Desarguesian and
Pappian, that is, Desargue’s theorem and Pappas’s theorem both hold for these projective
planes. These two theorems state that certain configurations of points and lines hold for the
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projective plane. Desargues developed projective geometry in the 1600s, and one of Pappus’s
theorems apply to projective geometry. There are other projective planes that aren’t based
on finite fields that aren’t Desarguesian and Pappian.

Projective linear group PGLn(F ). As we defined projective n − 1-space over a field F
as a quotient of nonzero elements of n-space, so too we can define a quotient of GLn(F ) to
get the projective linear group PGLn(F ) acting on projective n− 1-space. Two matrices A
and B in GLn(F ) name the same element of PGLn(F ) if each is a multiple of the other, that
is, there exists λ 6= 0 ∈ F such that B = λA. Then PGLn(F ) acts on FP n−1, since Aa and
λAa name the same element of FP n−1.

If F is a finite field with q elements, then the order of the group PGLn(F ) is the order of

GL(n, F ) divided by q − 1, so |PGLn(F )| = (qn − 1)(qn − q)(qn − q2) · · · (qn − qn−1)
q − 1

.

Projective special linear group PSLn(F ). The projective special linear group, PSLn(F ),
is the subgroup of PGLn(F ) named by unimodular matrices. It’s SLn(F ) modulo scalar
matrices ωI where ω is an nth root of unity.

The order of PSLn(F ) is equal to the order of PGLn(F ) divided by gcd(n, q− 1) where
q is the number of elements of F .

Except for small values of n the projective special linear groups are all simple. Simplicity
is defined in the next section.

The groups PSL3(Z3) is actually the same as PGL3(Z3) since 3 and 2 are relatively prime.

Example 4.58. The projective linear group PGL3(Z2) = PSL3(Z2) which acts on the Fano

plane Z2P
2 has

7 · 6 · 4
1

= 168 elements.

It’s small enough so that its conjugacy classes can be determined without resorting to
advanced methods. There are six conjugacy classes of sizes 1, 21, 56, 42, 24, and 24. As
always, the identity forms a conjugacy class of 1 element. Refer to figure 4.9 to name elements.
The conjugacy class of the involution (12)(56) has size 21. The conjugacy class of (124)(365)
has 56 elements. The conjugacy class of (0124)(36) has 42 elements. The conjugacy class of
(0125463) has 24 elements, and the conjugacy class of its inverse also has 24 elements.

Also, PGL3(Z3) = PSL3(Z3), acting on the projective plane Z3P
2, has order

26 · 24 · 18

2
= 5616.

4.8 Structure of finite groups

The classification of finite groups is extremely difficult, but there are a tools we can use to
see how that classification begins. In the next section we’ll classify finite Abelian groups and
see that they’re isomorphic to products of cyclic groups, but the situation for general groups
much more complicated.
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4.8.1 Simple groups

The way we’ll analyze groups is by their normal subgroups and quotients. In particular, if
N is a maximal, proper normal subgroup of G, then G/N has no subgroups, for if it did, by
the correspondence theorem, there would be a normal subgroup between N and G.

Definition 4.59. A nontrivial group is said to be simple if it has no proper, nontrivial,
normal subgroups.

Exercise 78. Prove that the only Abelian simple groups are cyclic of prime order.

There are many nonabelian simple groups. There are several infinite families of them,
and a few that aren’t in infinite families, called sporadic simple groups. One infinite family
of simple groups consists of alternating groups An with n ≥ 5. Indeed, A5 is the smallest
nonabelian simple group. The projective special linear groups mentioned in the section above
form another family of finite simple groups.

Exercise 79 (Nonsimplicity of A4). Verify that there are five conjugacy classes in A4 as shown
in the following table.

Generator Size Order
1 1 1
(12)(34) 3 2
(123) 4 3
(132) 4 3

A normal subgroup of A4 would be a union of some of these conjugacy classes including the
identity conjugacy class of size 1, but its order would have to divide 12. Find all the proper
nontrivial normal subgroups of A4.

Exercise 80 (Simplicity of A5). Verify that there are five conjugacy classes in A5 as shown in
the following table.

Generator Size Order
1 1 1
(12)(34) 15 2
(123) 20 3
(12345) 12 5
(12354) 12 5

A normal subgroup of A5 would be a union of some of these conjugacy classes including
the identity conjugacy class of size 1, but its order would have to divide 60. Verify that no
combination of the numbers 1, 15, 12, 12, and 20, where 1 is included in the the combination,
yields a sum that divides 60 (those numbers being 2, 3, 4, 6, 10, 12, 15, 20, and 30) except
just 1 itself and the sum of all five numbers. Thus, there is no proper nontrivial normal
subgroup of A5.

4.8.2 The Jordan-Hölder theorem

Definition 4.60. A composition series for a group G is a finite chain of subgroups

1 = Nn ⊆ Nn−1 ⊆ · · · ⊆ N1 ⊆ N0 = G
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such that each Ni−1 is a maximal proper normal subgroup of Ni. The number n is called the
length of the composition series, and the n quotient groups

Nn−1/1, . . . , N1/N2, G/N1

which are all a simple groups, are called composition factors determined by the composition
series.

It is evident that any finite group G has at least one composition series. Just take N1 to
be a maximal proper normal subgroup of G, N2 to be a maximal proper normal subgroup of
N1, etc. Infinite groups may also have composition series, but not all infinite groups do.

Exercise 81. Find a composition series for the symmetric group S4.

Exercise 82. Prove that an infinite cyclic group has no (finite) composition series.

Although a finite group may have more than one composition series, the length of the
series is determined by the group as are composition factors at least up to isomorphism as
we’ll see in a moment. Thus, these are invariants of the group. They do not, however,
completely determine the group.

Exercise 83. Show that the dihedral group D5 and the cyclic group C10 have composition
series with the same length and same factors.

Theorem 4.61 (Jordan-Hölder). Any two composition series for a finite group have the same
length and there is a one-to-one correspondence between the composition factors of the two
composition series for which the corresponding composition factors are isomorphic.

Proof. We’ll prove this by induction on the order of the group under question. The base case
is for the trivial group which has only the trivial composition series.

Assume now that a group G has two composition series

1 = Nm ⊆Mm−1 ⊆ · · · ⊆M1 ⊆M0 = G, and 1 = Nn ⊆ Nn−1 ⊆ · · · ⊆ N1 ⊆ N0 = G

If M1 = N1, then by induction we conclude that the lengths of the rest of the composition
are equal and the composition factors the rest of the rest of the series are the same, and of
course, the factors G/M1 and G/N1 are equal, so the case M1 = N1 is finished.

Consider now the case M1 6= N1. Since both M1 and N1 are normal subgroups of G, so
is their intersection K2 = M1 ∩N1. Let 1 = Kk ⊆ Kk−1 ⊆ · · · ⊆ K3 ⊆ K2 be a composition
series for their intersection. These subgroups of G are illustrated in the following diagram.

1

Mm−1 − · · · − M2 M1

Kk−1 − · · · − K2

Nn−1 − · · · − N2 N1

G

By the second isomorphism theorem, we have M1/(M1 ∩ N1) ∼= G/N1. Therefore, K2 is a
maximal normal subgroup of M1. Thus, we have two composition series for M1, and by the
inductive hypothesis, they have the same length, so m = k, and they have the same factors
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up to isomorphism in some order. Likewise we have two composition series for N1, and they
have the same length, so k = n, and the same factors up to isomorphism in some order. We
now have four composition series for G, two including M1 and two including N1. They all
have the same length, and since G/M1

∼= N1/K2 and G/N1
∼= M1/K2, they all have the same

factors up to isomorphism in some order. q.e.d.

There is a generalization of this theorem that applies to infinite groups that have compo-
sition series but its proof is considerably longer.

The list of composition factors is not enough to characterize the group. That is to say,
there are non-isomorphic groups that have the same composition factors. The smallest pair
of such groups are A3 and C6 of order 6.

A sporadic group. Most finite simple groups come in infinite parameterized families such
as the cyclic groups Cp for prime p, and the alternating groups An for n ≥ 5. There are
several of these infinite families of simple groups. There are also a few simple groups that
don’t belong to any of these infinite families. We’ll look at one of them, the Mathieu group
M11.

Mathieu discovered M11 in 1861. It’s the smallest sporadic group, and it has order 7920 =
8 · 9 · 10 · 11. It can be described as a subgroup of the symmetric group S11 generated by the
pair of permutations (123456789te) and (37e8)(4t56). (Here t is used for 10 and e for 11.)

M11 has elements of order 1, 2, 3, 4, 5, 6, 8, and 11. It has 165 = 3 · 5 · 11 elements of
order 2, that is, involutions. They are all conjugates of (3t)(49)(56)(8e).

As S11 acts on a set of 11 elements, so does M11. In fact, the action is sharply 4-transitive.
Transitive means that for any pair x and y of elements in the set, there is a group element
that maps the x to y. Doubly transitive means that for x1, x2 and y1, y2, distinct pairs, there’s
a group element that sends x1 to y1 at the same time as sending x2 to y2. More generally, and
n-transitive action is one such that for all pairwise distinct n-tuples x1, . . . , xn and pairwise
distinct y1, . . . , yn there is a group element that maps each xi to yi. When there is exactly
one group element for pair of n-tuples, the group is said to act sharply.

Solvable groups One of the applications of group theory is Galois theory for algebraic
fields. The groups of automorphisms of these fields are closely related to the solutions of
algebraic equations. In particular, these groups can tell you if the equations have solutions
that can be expressed in terms of radicals, that is square roots, cube roots, and higher roots.
The condition for such solvability is none the factors in a composition series for a group are
nonabelian simple groups, equivalently, that all the factors are cyclic groups of prime order.

Definition 4.62. A group is said to be solvable if it has a composition series all of whose
factors are cyclic.

Exercise 84. Prove that if the order of a group is a power of a prime number, then that group
is solvable.

Example 4.63 (The Frobenius group F21 = C7 o C3). This group will have 21 elements. It
is what is called a semidirect product of the cyclic group C7 = {1, a, a2, . . . , a6} of 7 elements
with the cyclic group C3 = {1, b, b2} of 3 elements. Each element can be written in the form
bnam with 0 ≤ b ≤ 2 and 0 ≤ a ≤ 6, but a and b don’t commute. For this group, bab−1 = a2.
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The group is denoted C7 o C3. The group C7 is a normal subgroup, but C3 is not a normal
subgroup.

1 a a2 a3 a4 a5 a6 1

b ba ba2 ba3 ba4 ba5 ba6 b

b2 b2a b2a2 b2a3 b2a4 b2a5 b2a6 b2

1 a a2 a3 a4 a5 a6 1

Figure 4.11: Cayley graph of the Frobenius group F21 = C7 o C3

This group can be presented as 〈a, b : a7 = 1, b3 = 1, ba = a2b〉.
Its Cayley graph is shown in figure 4.11 with the understanding that the top line is

identified with the bottom line, and the left line is identified with the right line. A blue arrow
indicates multiplication by a while a red one is multiplication by b.

The group C7 o C3 is a group of symmetries of a heptahedron on a torus.
A heptahedron has 7 hexagonal faces which meet three at a time at a vertex, 14 vertices,

and 27 edges. It is a tiling of the torus which is illustrated in figure 4.12. Each of the seven
hexagons is labelled 1 through 7 and colored a different color. The outer edges are to be
identified so that the edges ABCD are identified on the upper left and lower right, the edges
DEFA are identified on the upper left and lower right, and the edges AGHD are identified
on the left and the right. The resulting topological space is a torus.

You can also interpret this as a coloring of the tiling of the plane by hexagons where the
labels of some nearby hexagons are shown in the figure.

The group C7 o C3 is a subgroup of the group of symmetries of this heptahedron. The
element a of order 7 describes the permutation of the faces (1234567) which moves the
hexagons to the upper right. The element b of order 3 describes the permutation (142)(356)
which is a rotation about hexagon 7 by 120◦. It’s easily verified that ba and a2b both describe
the permutation (157)(364) which is a rotation about hexagon 2.

Exercise 85. Verify that the rotation c = (154623) about hexagon 7 by 60◦ is a symmetry of
the heptahedron. Evidently c2 = b.

(a). Determine the relation between a and c of the form ca = akc, that is, find k.
(b). This group is a semidirect product C7 o C6. Draw its Cayley graph.

Much more can be said about solvable groups than we have time for.

4.9 Abelian groups

Commutative groups are called Abelian groups in honor of Neils Henrik Abel (1802–1829)
who worked with groups of substitutions in order to understand solutions of polynomial
equations.
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Figure 4.12: Heptahedron on a torus
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We’ll use additive notation throughout this section on Abelian groups. Also, we’ll call
the product of two Abelian groups A and B a direct sum and denote it A ⊕ B rather than
A×B.

Every subgroup of an Abelian group is normal, so we’ll just refer to them as subgroups
and leave off the adjective “normal.”

We already know a fair amount about Abelian groups. We know about cyclic groups and
the Chinese remainder theorem.

For example, we know Z12
∼= Z3 ⊕ Z4 where an element n modulo 12 corresponds to the

pair n modulo 3 and n modulo 4. Likewise, Z6
∼= Z2 ⊕ Z3. This gives us three ways to treat

the group Z2 ⊕ Z3 ⊕ Z4 since it is isomorphic to both Z2 ⊕ Z12 and Z6 ⊕ Z4.

Our characterization of internal direct product looks a little different when the group is
written additively. Here it is, rewritten for Abelian groups.

An Abelian group G is the internal direct sum of subgroups M and N if (1) they jointly
generate G, that is, M + N = G, and (2) the intersection M ∩ N = 0. If G is the internal
direct sum of M and N , then M ⊕N = G. Furthermore, an equivalent condition to being a
internal direct sum is that every element x ∈ G can be uniquely represented as a sum m+ n
with m ∈M and n ∈ N .

For the example Z2 ⊕ Z3 ⊕ Z4 above, it is the internal direct sum of Z2 and 0⊕ Z3 ⊕ Z4

as well as the internal direct sum of Z2 ⊕ Z3 ⊕ 0 and Z4.

4.9.1 The category A of Abelian groups

The category of Abelian groups is a particularly nice category. Not only does it have products,
but it also has coproducts, to be defined next, and the products are coproducts, and that’s
why we’re calling them direct sums. It’s not the only category with direct sums. The category
of vector spaces over a fixed field has them too.

Coproducts in a category and their universal property When all the arrows in a
diagram are reversed, a similar diagram, called the dual results. Recall that products in a
category are characterized by a diagram.

The product A×B in a category along with the two projections A×B π1→ A and A×B π2→ B
has the universal property that for each object X and morphisms X → A and X → B, there
is a unique morphism X → A×B, such that the diagram below commutes.

A

B

A×BX
�
�
�
��

π1

@
@
@
@R

π2

-
��

��
��

��
��

��
�1

PPPPPPPPPPPPPq
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If we turn around all the arrows, we’ll get the characterizing property for coproducts. The
coproduct A

∐
B in a category along with the two injections A

γ1→ A
∐
B and B

γ1→ A
∐
B

has the universal property that for each object X and morphisms A→ X and B → X, there
is a unique morphism A

∐
B → X, such that the diagram below commutes.

A

B

A
∐
B X

@
@
@
@R

γ1

�
�
�
��

γ2

-

PPPPPPPPPPPPPq

��
��

��
��

��
��

�1

In the category S of sets coproducts are disjoint unions. The disjoint union of two sets S
and T has one element for each element of S and a different element for each element of T .
So the cardinality of their disjoint union is |S|+ |T |.

Exercise 86. In the category of Abelian groups, the coproduct object A
∐
B is what we’ve

called the direct sum A ⊕ B, which is the same as the product A × B. The injections A
γ1→

A
∐
B and B

γ1→ A
∐
B for Abelian groups are defined by γ1(x) = (x, 0) and γ1(y) = (0, y).

Verify that the universal property holds.

4.9.2 Finite Abelian groups

The classification of finite groups is very difficult, but the classification of finite Abelian is not
so difficult. It turns out, as we’ll see, that a finite Abelian group is isomorphic to a product
of cyclic groups, and there’s a certain uniqueness to this representation. This classification is
sometimes called the fundamental theorem of finite Abelian groups. The theorem above on
internal direct sums is essential in this classification.

Theorem 4.64. Let G be a finite Abelian group of order mn where m and n are relatively
prime, both greater than 1. Let M = {x ∈ G |mx = 0} and N = {x ∈ G |nx = 0}. Then
M and N are subgroups of G, and G is the internal direct sum of M and N . Furthermore,
|M | = m and |N | = n.

Proof. Outline. That M and N are subgroups is quickly verified. Since m and n are relatively
prime, therefore 1 is a linear combination of them, that is, there are integers s and t such
that 1 = sm+ tn. Their intersection M ∩N is trivial since if x ∈M ∩N , then mx = nx = 0,
hence x = 1x = (sm + tn)x = smx + tnx = 0. Together M and N generate G, since for
x ∈ G, x = smx + tnx, but smx ∈ N since nsmx = (nm)sx = 0, likewise tnx ∈ M . Thus
M +N = G. Therefore, G is the internal direct sum of M and N . q.e.d.



138 CHAPTER 4. GROUPS

p-primary groups. Let G be a Abelian group and p a prime number. The set

G(p) = {x | pkx = 0 for some k ≥ 0}

is a subgroup of G. It is called the p-primary component of G.

As a corollary to the above theorem consider the case when |G| is factored as a power of
primes.

Corollary 4.65 (Primary decomposition theorem). Let G be a finite Abelian group whose
order has prime factorization pe11 p

e2
2 · · · perr . Then G is a direct sum of the pi-primary compo-

nents

G ∼= G(p1)⊕G(p2)⊕ · · · ⊕G(pr)

and |G(pi)| = peii for each i.

We’ve reduced the problem of classifying finite Abelian groups to classifying those whose
orders are powers of a prime p. Such groups are called p-primary groups or simply p-groups. If
the power is greater than 1, then there are different groups of that order. For example, there
are three distinct Abelian groups of order 125, namely, Z125, Z25⊕Z5 and Z5⊕Z5⊕Z5. The
first has an element of order 125, but the other two don’t, while the second has an element
of order 25, but the third doesn’t. Hence, they are not isomorphic.

We’ll see soon that every p-group G is a isomorphic to unique direct sum of cyclic p-groups

G ∼= Ze1
p ⊕ Ze2

p2 ⊕ · · · ⊕ Zer
pr

where the sum e1 + 2e2 + · · ·+ rer is equal to n, where |G| = pn.

Example 4.66. We’ll find all the 2-groups of order 32 up to isomorphism. Since 32 = 25,
We’ll need e1 + 2e2 + · · · + rer = 5. Each solution will give us a way of making a sum of
positive integers equal to 5. A partition of n is a list of positive integers that sum to n. Here’s
a table which gives all the partitions of 5 and the associated 2-groups.

5 Z32

1 + 4 Z2 ⊕ Z16

2 + 3 Z4 ⊕ Z8

1 + 1 + 3 Z2
2 ⊕ Z4

1 + 2 + 2 Z2 ⊕ Z2
4

1 + 1 + 1 + 2 Z3
2 ⊕ Z4

1 + 1 + 1 + 1 + 1 Z5
2

Exercise 87. Complete this table of of the number of partitions of n up through n = 10.
Work it out yourself.

n 0 1 2 3 4 5 6 7 8 9 10
1 1 2 3 5 7
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Fundamental theorem of finite Abelian groups .
Our strategy for a p-primary group will be to pick off direct summands containing elements

of maximal orders, one at a time. That will show that a p-primary group is a direct sum of
cyclic groups whose orders are nonincreasing powers of p. We’ll then show those powers of p
are determined by the p-primary group.

A difficulty in the proof is that there are many choices to be made resulting in different
direct sums, but we’ll see that the orders of the cyclic subgroups turns out to be the same
no matter how we make the choices.

The proof of the theorem is particularly technical, so we’ll separate parts of the proof as
lemmas.

Lemma 4.67. Let G be a noncyclic p-primary group and a an element of G of maximal
order. Then there is an element b in the complement of 〈a〉 of order p.

Proof. Let c be an element in the complement of 〈a〉 of smallest order. Since the order of pc
is 1/p times the order of c, which is a smaller order than the order of c, therefore pc lies in
〈a〉. So pc = ka for some integer k. Let pm denote the ord a, the largest order of any element
in G. Then ord(ka) ≤ pm−1 since pm−1(ka) = pm−1pc = pmc = 0. Therefore, ka is not a
generator of the cyclic group 〈a〉 since that group has pm elements. Hence, gcd(pm, k) 6= 1,
and so p divides k. Let k = pj. Then pb = ka = pji. Let b = c − ja. Then pb = 0, but
b /∈ 〈a〉 as c = b+ ka /∈ 〈a〉. q.e.d.

Proof. Let |G| = pn and ord a = pm with m < n.
We’ll prove the lemma by induction. Assume it is valid for all groups of order less than

pn. Let b be an element in the complement of 〈a〉 of order p shown to exist in the previous
lemma. Since ord b = p and /∈ 〈a〉, therefore /∈ 〈a〉∩ /∈ 〈b〉 = 0.

We’ll reduce modulo 〈b〉 to a smaller p-primary groupG/〈b〉 where we can use the inductive
hypothesis, then bring the results back up to G.

First, we’ll show that a + 〈b〉, which is the image of a in G/〈b〉, has the same order that
a does in G, namely pm, which implies that a + 〈b〉 is an element of maximal order in the
group G/〈b〉. Suppose ord(a + 〈b〉) < pm. Then pm−1(a + 〈b〉) is the 0 element of G/〈b〉, in
other words, pm−1a ∈ 〈b〉. But pm−1a ∈ 〈a〉, and the intersection of 〈a〉 and 〈b〉 is trivial.
Therefore, pm−1a = 0 which contradicts ord a = pm.

We now know a+ 〈b〉 is an element of maximal order in the group G/〈b〉, so we can apply
the inductive hypothesis to conclude that G/〈b〉 is the direct sum of the cyclic subgroup
generated by a+ 〈b〉 and another subgroup K/〈b〉. Note that by the correspondence theorem,
every subgroup of a quotient group G/〈b〉 is the image of a group in G, so we may take K to
be a subgroup of G.

We’ll show that G = 〈a〉 ⊕K by showing that (1) 〈a〉 ∩K = 0, and (2) 〈a〉K = G.
(1). If x ∈ 〈a〉 ∩K, then its image x + 〈b〉 in the quotient group G/〈b〉 lies in both the

cyclic subgroup generated by a + 〈b〉 and K/〈b〉. But their intersection is the 0 element in
G/〈b〉, therefore x ∈ 〈b〉. Since x ∈ 〈a〉 also, and x ∈ 〈a〉 ∩ 〈b〉 is trivial, therefore x = 0.

(2). We can show 〈a〉K is all of G by a counting argument. We know that the order of
G/〈b〉 is the product of the order of the cyclic subgroup generated by a + 〈b〉 and the order
of K/〈b〉, the order of G is p times the order of G/〈b〉, the order of 〈a〉 is the same as the
order of the cyclic subgroup generated by a+ 〈b〉, and the order of K is p times the order of
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K〈b〉. Therefore, the order of G equals the product of the order of 〈a〉 and the order of K.
Thus 〈a〉K = G. q.e.d.

You can prove the first statement of following theorem by induction using the lemma we
just proved, then apply the primary decomposition theorem for the second statement. This
is the existence half of the theorem we want. We’ll still need some kind of uniqueness of the
terms in the direct sum.

Theorem 4.68. A p-primary group is a direct sum of cyclic groups whose orders are powers
of p. A finite Abelian group is the direct sum of cyclic groups.

There are a couple of ways to describe the uniqueness of the terms. Since we’ve been
using cyclic groups whose orders are prime powers, let’s stick to that.

There’s a concept we’ll need in the following lemma. If G is an Abelian group and p an
integer, then the subset Gp = {x | px = 0} is a subgroup of G. In fact, it’s just the kernel of
the group homomorphism G→ G that maps x to px.

Exercise 88. Show that it is, indeed, a group homomorphism.

Lemma 4.69. Suppose that G is a p-primary group that can be written as a direct sum of
nontrivial cyclic subgroups in two ways

G = H1 ⊕H2 ⊕ · · · ⊕Hm = K1 ⊕K2 ⊕ · · · ⊕Kn

where |H1| ≥ |H1| ≥ · · · ≥ |Hm| and |K1| ≥ |K1| ≥ · · · ≥ |Kn|. Then m = n and for each i,
|Hi| = |Ki|.

Proof. Outline. By induction on the order of G. First verify that

Gp = Hp
1 ⊕H

p
2 ⊕ · · · ⊕Hp

m = Kp
1 ⊕K

p
2 ⊕ · · · ⊕Kp

n.

If any of the groups Hp
i or Kp

j are trivial, then drop them to get

Gp = Hp
1 ⊕H

p
2 ⊕ · · · ⊕H

p
m′ = Kp

1 ⊕K
p
2 ⊕ · · · ⊕K

p
n′

to get two direct sums of nontrivial cyclic subgroups. By induction, m′ = n′ and for each
i ≤ m′, |Hp

i | = |Kp
i |. Since |Hi| = p|Hp

i | and |Ki| = p|Kp
i |, therefore |Hi| = |Ki| for each

i ≤ m′. Finish with a counting argument to show that the number of trivial groups that were
dropped is the same for the H’s as for the K’s. They’re the subgroups Hi and Ki of order
n. q.e.d.

Putting the last theorem and lemma together, we have the following theorem.

Theorem 4.70 (Fundamental theorem of finite Abelian groups). A finite Abelian group is
the direct sum of cyclic groups whose orders are prime powers. The number of terms in the
direct sum and the orders of the cyclic groups are determined by the group.
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Appendix A

Background mathematics

A.1 Logic and proofs

Theorems. Logic and proofs are at the heart of mathematics. A statement will not be
accepted by a mathematician if there’s no proof of it. A theorem is a statement that has an
accompanying proof.

If a statement is suspected to be true, but there’s no proof yet, then it will be called
a conjecture. Sometimes someone will supply the conjecture with a proof, then it becomes
a theorem; sometimes a counterexample to the conjecture is discovered so it fails to be a
theorem.

A typical theorem begins with the word “Theorem” followed by the statement of the
theorem. That statement usually doesn’t have much mathematical symbolism or variables,
but it’s written as much as possible in English sentences. After the proof is complete, it’s
ended with Q.E.D. (“Quod Erat Demonstrandum”, Latin for “that which was to be shown”)
or some special symbol like a box �.

Corollaries and lemmas are also theorems. A corollary is a theorem that follows quite
easily from the preceding theorem. Sometimes the proof of a corollary is omitted and left to
the reader to provide.

A lemma is a theorem that precedes another theorem. Lemmas are often technical and of
little interest in themselves, but are necessary for the theorems which follows them. Some-
times a complicated proof will be split up and parts declared as lemmas. That makes it easier
to understand the logical flow of the proof.

Some standard symbols seen in proofs. There are a whole lot of symbols and abbrevia-
tions that are used in proofs. Some are listed in table A.1. Although these are fairly standard,
sometimes other symbols are used instead. They are used a lot when writing mathematics
on a blackboard to save time. They’re not as common in textbooks.

Besides these symbols, the symbol ∵ stands for “since”, and the symbol ∴ stands for
“therefore”. They rarely appear in textbooks, but often on blackboards.

An example of universal quantification is the expression ∀x, (x > 2 ⇒ x2 > 4) which
means for all x, if x is greater than 2, then x2 is greater than 4. Typically conditions like
x > 2 after universal quantifiers are included in the quantifier so that the implication doesn’t
have to be expressed separately. That last expression can be abbreviated as ∀x > 2, x2 > 4.
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Operation, symbol Read As Explanation
Conjunction, ∧ and The statement A ∧ B is true if

A and B are both true; else it is
false.

Disjunction, ∨ (inclusive) or The statement A∨B is true if A
or B (or both) are true; if both
are false, the statement is false.

Negation, ¬ not The statement ¬A is true just
when A is false

Implication, ⇒ implies; if. . . then A ⇒ B means if A is true, then
B is also true; if A is false, then
nothing is said about B.

Bi-implication, ⇐⇒ “iff”, if and only if A ⇐⇒ B means both A ⇒ B
and B ⇒ A.

Universal quantification, ∀ for all; for any; for each when it’s true universally
Existential quantification, ∃ there exists; there is an when there’s at least one
Unique existential quantifi-
cation, ∃!

there exists a unique when there is exactly one

Table A.1: Standard logical symbols

An example of existential quantification is the expression ∃x, (x > 1 ∧ x2 = 4) which
means there is an x such that x is greater than 1 and x2 = 4. Typically conditions like x > 1
after existential quantifiers are included in the quantifier so that the conjunction doesn’t have
to be expressed separately. That last expression can be abbreviated as ∃x > 1, x2 = 4.

A.2 Sets

Just a little bit about sets. We’ll use the language of sets throughout the course, but
we’re not using much of set theory. This note just collects the background that you need to
know about sets in one place

A.2.1 Basic set theory

A set itself is just supposed to be something that has elements. It doesn’t have to have any
structure but just have elements. The elements can be anything, but usually they’ll be things
of the same kind.

If you’ve only got one set, however, there’s no need to even mention sets. It’s when several
sets are under consideration that the language of sets becomes useful.

There are ways to construct new sets, too, and these constructions are important. The
most important of these is a way to select some of the elements in a set to form another set,
a subset of the first.

Examples. Let’s start with sets of numbers. There are ways of constructing these sets, but
let’s not deal with that now. Let’s assume that we already have these sets.
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The natural numbers. These are the counting numbers, that is, whole nonnegative num-
bers. That means we’ll include 0 as a natural number. (Sometimes 0 isn’t included.) There
is a structure on N, namely there are operations of addition, subtraction, etc., but as a set,
it’s just the numbers. You’ll often see N defined as

N = {0, 1, 2, 3, . . .}

which is read as “N is the set whose elements are 0, 1, 2, 3, and so forth.” That’s just an
informal way of describing what N is. A complete description couldn’t get away with “and
so forth.” If you want to see all of what “and so forth” entails, you can read Dedekind’s
1888 paper Was sind und was sollen die Zahlen? and Joyce’s comments on it. In that article
Dedekind starts off developing set theory and ends up with the natural numbers.

The real numbers. These include all positive numbers, negative numbers, and 0. Besides
the natural numbers, their negations and 0 are included, fractions like 22

7
, algebraic numbers

like
√

5, and transcendental numbers like π and e. If a number can be named decimally
with infinitely many digits, then it’s a real number. We’ll use R to denote the set of all real
numbers. Like N, R has lots of operations and functions associated with it, but treated as a
set, all it has is its elements, the real numbers.

Note that N is a subset of R since every natural number is a real number.

Elements and membership. The standard notation to say an element x is a member of
a set S is x ∈ S. The ∈ symbol varies a bit. Sometimes it appears as an epsilon ε or ε or E .
Read x ∈ S as “x is an element of S,” or as “x belongs to S, or more simply “x is in S.”

It’s negation is the symbol /∈. So, for example
√

5 ∈ R, but
√

5 /∈ N.
As mentioned above, sets are completely determined by their elements, so two sets are

equal if they have exactly the same elements.

S = T if and only if (1) for all x ∈ S, x ∈ T, and (2) for all x ∈ T, x ∈ S.

The two halves of the condition on the right lead to the concept of subset.

Subsets. If you have a set and a language to talk about elements in that set, then you can
form subsets of that set by properties of elements in that language.

For instance, we have arithmetic on R, so solutions to equations are subsets of R. The
solutions to the equation x3 = x are 0, 1, and −1. We can describe its solution set using the
notation

S = {x ∈ R |x3 = x}

which is read as “S is the set of x in R such that x3 = x.” We could also describe that set by
listing its elements, S = {0, 1,−1}. When you name a set by listing its elements, the order
that you name them doesn’t matter. We could have also written S = {−1, 0, 1} for the same
set. This set S is a subset of R.

A set S is a subset of a set T if every element of S is also an element of T , that is

S ⊆ T if and only if for all x ∈ S, x ∈ T.

Read S ⊆ T as “S is a subset of T .”

http://aleph0.clarku.edu/~djoyce/numbers/dedekind.pdf
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Note that S = T if and only if S ⊆ T and T ⊆ S.

There are a couple of notations for subsets. We’ll use the notation A ⊆ S to say that A
is a subset of S. We allow S ⊆ S, that is, we consider a set S to be a subset of itself. If a
subset A doesn’t include all the elements of S, then A is called a proper subset of S. The only
subset of S that’s not a proper subset is S itself. We’ll use the notation A ⊂ S to indicate
that A is a proper subset of S.

(Warning. There’s an alternate notational convention for subsets. In that notation A ⊂ S
means A is any subset of S, while A ( S means A is a proper subset of S. I prefer the the
notation we’re using because it’s analogous to the notations ≤ for less than or equal, and <
for less than.)

Operations on subsets. Frequently you deal with several subsets of a set, and there
are operations of intersection, union, and difference that describe new subsets in terms of
previously known subsets.

The intersection A ∩ B of two subsets A and B of
a given set S is the subset of S that includes all
the elements that are in both A and B, as shown
in the Venn diagram below. (It’s interesting that
Venn called them Euler circles as Euler had used
them earlier, but Leibniz had also used them, and
Ramon Llull (Raymond Lully) in the 13th century.)
Read A∩B as “the intersection of A and B” or as
“A intersect B.” Note that the operation of inter-
section is associative and commutative.

A B

A ∩B = {x ∈ S |x ∈ A and x ∈ B}.

Two sets A and B are said to be disjoint if their union is empty, A∩B = ∅. Several sets
are said to be pairwise disjoint if each pair of those sets are disjoint.

A B

A ∪B = {x ∈ S |x ∈ A or x ∈ B}.

The union A∪B of two subsets A and B of a given
set S is the subset of S that includes all the ele-
ments that are in A or in B or in both. Read A∪B
as “the union of A and B” or as “A union B.” Like
intersection, the operation of union is also associa-
tive and commutative. It is usual in mathematics
to take the word “or” to mean an inclusive or. It
implicitly includes “or both.”

Intersection and union each distribute over the other:

(A ∩B) ∪ C = (A ∪ C) ∩ (B ∪ C)

(A ∪B) ∩ C = (A ∩ C) ∪ (B ∩ C)
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The difference A− B of two subsets A and B
of a given set S is the subset of S that includes
all the elements that are in A but not in B.

A B

A−B = {x ∈ S |x ∈ A and x /∈ B}
There’s also the complement of a subset A of a set S. The complement is just S −A, all

the elements of S that aren’t in A. When the set S is understood, the complement of A often
is denoted more simply as either Ac, A, or A′ rather than S − A. I prefer the notation Ac.

These operations satisfy lots of identities. I’ll just name a couple of important ones.
De Morgan’s laws describe a duality between intersection and union. They can be written

as
(A ∩B)c = Ac ∪Bc and (A ∪B)c = Ac ∩Bc

Unions and intersections sometimes are taken of many subsets, even infinitely many.
Suppose that A1, A2, . . . , An are subsets of S. The intersection of all of them can be written
in an indexed notation as

n⋂
i=1

Ai = A1 ∩ A2 ∩ · · · ∩ An

and their union as
n⋃
i=1

Ai = A1 ∪ A2 ∪ · · · ∪ An.

And when there are infinitely many, A1, A2, . . . , An, . . ., as
∞⋂
i=1

Ai = {x ∈ S |x ∈ Ai for all i}

and their union as
∞⋃
i=1

Ai = {x ∈ S |x ∈ Ai for at least one i}.

DeMorgan’s laws and the distributivity laws also apply to indexed intersections and
unions. (

n⋂
i=1

Ai

)c

=
n⋃
i=1

Ai
c

(
n⋃
i=1

Ai

)c

=
n⋂
i=1

Ai
c

(
n⋂
i=1

Ai

)
∪ C =

n⋂
i=1

(Ai ∪ C)(
n⋃
i=1

Ai

)
∩ C =

n⋃
i=1

(Ai ∩ C)
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Partitions. A set S is said to be partitioned into subsets A1, A2, . . . , An when each element
of S belongs to exactly one of the subsets A1, A2, . . . , An. That’s logically equivalent to saying
that S is the disjoint union of the A1, A2, . . . , An.

When you have a partition A1, A2, . . . , An of a set S like that, it induces a partition
E ∩A1, E ∩A2, . . . , E ∩An on each subset E of S. Each element of E belongs to exactly one
of its subsets E ∩ A1, E ∩ A2, . . . , E ∩ An.

Products of sets. So far we’ve looked at creating sets within set. There are some oper-
ations on sets that create bigger sets, the most important being creating products of sets.
These depend on the concept of ordered pairs of elements. The notation for ordered pair
(a, b) of two elements extends the usual notation we use for coordinates in the xy-plane. The
important property of ordered pairs is that two ordered pairs are equal if and only if they
have the same first and second coordinates:

(a, b) = (c, d) iff a = c and b = d.

The product of two sets S and T consists of all the ordered pairs where the first element
comes from S and the second element comes from T :

S × T = {(a, b) | a ∈ S and b ∈ T}.

Thus, the usual xy-plane is R×R, usually denoted R2.
Besides binary products S × T , you can analogously define ternary products S × T × U

in terms of triples (a, b, c) where a ∈ S, b ∈ T , and c ∈ U , and higher products, too.

Sets of subsets; power sets. Another way to create bigger sets is to form sets of subsets.
If you collect all the subsets of a given set S into a set, then the set of all those subsets is
called the power set of S, denoted ℘(S) or sometimes 2S.

For example, let S be a set with 3 elements, S = {a, b, c}. Then S has eight subsets.
There are three singleton subsets, that is, subsets having exactly one element, namely {a},
{b}, and {c}. There are three subsets having exactly two elements, namely {a, b}, {a, c}, and
{b, c}. There’s one subset having all three elements, namely S itself. And there’s one subset
that has no elements. You could denote it {}, but it’s always denoted ∅ and called the empty
set or null set. Thus, the power set of S has eight elements

℘(S) = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, S}.

Cardinality, countable versus uncountable sets. The cardinality of a set S is the
number of elements in it, denoted |S|. So, for example, if S{a, b, c}, then |S| = 3, and
|℘(S)| = 23 = 8.

Some sets are infinite, so their cardinality is not a finite number. A more careful definition
is needed. Two sets S and T are said to have the same cardinality if there is a one-to-one
correspondence of their elements. That means that there is some function f : S → T which
is injective (also called one-to-one) and surjective (also called onto). A function which is both
injective and surjective is called a bijection. For a bijection f : S → T , the inverse function
f−1 : T → S is also a bijection. The notation |S| = |T | indicates S and T have the same
cardinality.
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If there is an injection S → T , then the cardinality of S is less than or equal to that
of T , written |S| ≤ |T |. It is evident that ≤ is a transitive relation on cardinalities. The
Schröder-Bernstein theorem states that if there are injections both ways between S and T ,
then they have the same cardinality. Thus, ≤ is a partial order on cardinalities.

The notation |S| < |T | means |S| ≤ |T | but not |S| = |T |.
As Georg Cantor (1845–1918) discovered, not all infinite sets have the same cardinality.

Some infinite sets are bigger than others. Using his famous diagonal proof, he proved that
for any set, even if it’s infinite, |S| < |℘(S)|.

The smallest size an infinite set can be is that of the natural numbers N. A set that
has the same cardinality as N is called a countably infinite set. An infinite set that doesn’t
have the same cardinality as N is called an uncountable set. The set of real numbers R is
uncountable.

Finite sets are also said to be countable. Thus, a set is countable if it’s either finite or
countably infinite.

A.2.2 Functions and relations

A function f is associated to a pair of sets, a domain S and a codomain T . The usual

notations for that are f : S → T and S
f→ T . In order to be a function, each element x ∈ S

must be associated to a particular element of T , denoted f(x).
The graph of a function f is a subset of the product S × T , namely, the set F = {(x, y) ∈

S × T | y = f(x)}.
Two functions are said to be the same if they have the same graph, so the graph charac-

terizes the function. Frequently, textbooks define a function f : S → T as its graph, that is,
a subset F of S × T such that for all x ∈ X, there is a unique y ∈ T such that (x, y) ∈ F .

When f : S → T , it is said that f maps S to T , and that f maps x to f(x). This element
f(x) is called the image of x under f . The mapping of x to f(x) is denoted x 7→ f(x).

The concept of image is extended to subsets of the domain. If A ⊆ S, then f maps A to
the set f(A) = {f(x) |x ∈ A}, called the image of A under f .

Another related concept is that of preimage, also called inverse image. If B is a subset of
the codomain T , then the preimage of B under f is the set f−1(B) = {x ∈ A | f(x) ∈ B}.

Composition. If f : S → T and g : T → U , then the composition g ◦ f : S → U is defined
by (g ◦ f)(x) = g(f(x)).

Composition is associative. (h ◦ g) ◦ f = h ◦ (g ◦ f). Since composition is associative,
parentheses are not necessary when composing three or more functions.

For each set S there is an identity function 1S : S → S which maps every element in S
to itself, 1S(x) = x. The identity functions act as units for composition. If f : S → T , then
1T ◦ f = f and f = f ◦ 1S.

Injections, surjections, and bijections. These are words that describe certain functions
f : S → T from one set to another. An injection, also called a one-to-one function is a
function that maps distinct elements to distinct elements, that is, if x 6= y, then f(x) 6= f(y).
Equivalently, if f(x) = f(y) then x = y. If S is a subset of T , then there is a natural injection
ι : S → T , called the inclusion function, defined by ι(x) = x.
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A surjection, also called an onto function is one that includes all of T in its image, that
is, if y ∈ T , then there is an x ∈ S such that f(x) = y.

A bijection, also called a one-to-one correspondence, is a function that is simultaneously
injective and bijective. Another way to describe a bijection is to say that there is an inverse
function g : T → S so that the composition g ◦ f : S → S is the identity function on S while
f ◦ g : T → T is the identity function on T . The usual notation for the function inverse to f
is f−1. In this situation f and g are inverse to each other, that is, if g is f−1, then f is g−1.
Thus, (f−1)−1 = f .

Relations. Relations include functions, but are more general. A binary relation R : S → T
doesn’t have to associate each element of S to exactly one element of T . It can associate an
element of S to any number of elements in T including the possibility of no elements in T at
all. In other words, a relation R : S → T is determined by an arbitrary subset of S × T .

The most useful relations are those that have special properties. The next section discusses
equivalence relations. A typical equivalence relation is congruence modulo n. Order relations
are discussed in section A.3. A typical order relation is ≤ on numbers.

A.2.3 Equivalence relations

There are various symbols used for equivalence relations, such as ∼=, ≡, ≈, �, ', ∼, and so
forth. We’ll use ≡ for a generic equivalence relation.

Definition A.1 (Equivalence relation). An equivalence relation ≡ on a set S is a relation
that is reflexive, symmetric, and transitive.

A relation on a set S may be identified with a subset of the product S × S. For an
equivalence relation ≡, this means x ≡ y corresponds to the statement that the ordered pair
(x, y) is an element of that subset.

Reflexivity: For all x, x ≡ x.
Symmetry: For all x and y, x ≡ y implies y ≡ x.
Transitivity: For all x, y, and z, x ≡ y and y ≡ z implies x ≡ z.

Equivalence classes and partitions of sets. An equivalence relation on a set determines
a partition on that set, and conversely, as we’ll see presently.

Definition A.2 (Equivalence class). Given an equivalence relation on a set, an equivalence
class of an element x, denoted [x], is the set of all elements equivalent to x,

[x] = {y | y ≡ x}.

You can easily show the several properties of equivalence classes.

Theorem A.3. If ≡ is an equivalence relation on a set S, then the following four statements
are equivalent

1. x ≡ y.

2. [x] = [y].
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3. x ∈ [y].

4. [x] ∩ [y] 6= ∅.

Furthermore, for each x ∈ S, there is exactly one equivalence class containing x, namely, [x].

Definition A.4 (Partition of a set). A partition of a set S is a collection of nonempty subsets,
called parts, of S which are pairwise disjoint and whose union is all of S. Thus, each element
of S belongs to exactly one of the parts.

The above theorem shows that the equivalence classes form a partition. The converse is
also true as you can easily show.

Theorem A.5. For each equivalence class on a set, the equivalence classes partition the set.
Conversely, a partition of a set determines an equivalence relation where two elements are
equivalent if they’re in the same part.

The set of equivalence classes is sometimes denoted S/≡, and it’s sometimes called a
quotient set. Using equivalence classes to construct new sets of things is a common practice
in mathematics and especially in algebra.

Keep in mind that you can always name an element of S/≡ by naming an element of S,
but two elements x and y of S will name the same element of S/≡, that is, [x] = [y], if x ≡ y.

The function γ : S → S/≡ defined by γ(x) = [x] is called a projection, or the canonical
function, from the set to its quotient set.

A.2.4 Axioms of set theory

Although the axioms of set theory don’t play an important role in an introductory course in
modern algebra, occasionally they may be useful. Here is a summary of axioms of Zermelo-
Fraenkel set theory, abbreviated ZF set theory.

Axiom of extensionality . This is the axiom that says two sets are the same if they have
the same elements.

∀A, ∀B, (∀x, (x ∈ A⇔ x ∈ B) ⇐⇒ A = B).

Axiom of separation . This axiom is also called the axiom of specification. It says if you
have a predicate ϕ on sets and a given set A, then there is a subset B of A on which that
predicate holds.

∀A,∃B, ∀x, (x ∈ B ⇐⇒ x ∈ S ∧ ϕ(x)).

It’s an axiom schema rather than a single axiom because a different axiom is needed for each
predicate ϕ.

This axiom allows the creation of smaller sets from a given set. For example, if A = R is
the set of real numbers, by the axiom of separation there is a set B such that the elements
of B are the real numbers that satisfy the equation x3 − 3x = 1. Here, the predicate ϕ at x,
written above as ϕ(x) is that equation. The axiom of separation is the justification for the
“set building” notation B = {x ∈ R |x3 − 3x = 1}.
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Axiom of pairing. The axiom of pairing allows the creation of a set containing two ele-
ments (or one if they’re the same element).

∀x,∀y,∃A, (z ∈ A ⇐⇒ z = x ∨ z = y).

The set A is usually denoted {x, y}.
If it happens that x = y, then A only has one element instead of two since {x, x} = {x}.

An set with only one element is called a singleton set, or juat a singleton.

Axiom of union. Given a set A of sets, this says the union C of the sets in A is a set.

∀A,∃C, ∀x, (x ∈ C ⇐⇒ ∃B, (x ∈ B ∧B ∈ A).

The usual notation for C is
⋃
A, or

⋃
B∈AB.

When A is the pair {D,E} then
⋃
B∈AB is the pairwise union D ∪ E.

There doesn’t need to be an axiom for intersections or for relative compliments because
intersections and relative complements can be proved from the axiom of separation.

Axiom of powersets. It says given a set A, there is a set which contains all the subsets
of A.

∀A,∃B, ∀C, (C ∈ B ⇐⇒ C ⊆ A).

One common notation for the powerset B of A is ℘(A).

Axiom of infinity. So far, there are no axioms that say there are any sets at all. This
axiom says that there is an infinite set which contains the emptyset ∅, so among other things,
it says the emptyset exists. When studying the theory of finite sets, the axiom of infinity is
not included, but an explicit axiom is needed to say the emptyset exists.

Define S(A) to denote A ∪ {A} where A is a set. S(A) is called the successor of A. The
axiom of pairing says that if A is a set, then so is {A}, and the axiom of union then implies
that A ∪ {A} is a set.

The axiom of infinity says that there is a set B that has ∅ as an element and is closed
under S.

∃B, (∅ ∈ B ∧ ∀y ∈ B, S(y) ∈ B).

Along with the axiom of regularity, this axiom implies that there is at least one infinite set.
With the other axioms, it can be shown that there is a smallest such set. That smallest set
is a model for the set of natural numbers N. In that model, the emptyset ∅ acts as 0, it’s
successor S(∅) acts as 1, S(S(∅)) acts as 2, and so forth.

Axiom of regularity. This axioms is also called the axiom of foundation. It is a technical
axiom that says that given a nonempty set A, there is an element of A which is disjoint from
it.

∀A 6= ∅,∃x ∈ A,∀y ∈ x, y /∈ A.
The axiom of regularity implies that no set is an element of itself, nor is there a finite cycle of
memberships where A1 ∈ A2 ∈ · · · ∈ An ∈ A1. Furthermore, there is no infinite descending
memberships · · · ∈ An ∈ · · ·A2 ∈ A1. One of the main reasons for the axiom of regularity is
to develop the theory of ordinals.
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Axiom of replacement. Like the axiom of separation, this is another axiom schema. This
technical axiom creates images of functions described by predicates. A predicate ϕ describes
a function if for all x, there exists a unique y such that ϕ(x, y). In that case, a function
symbol like f is used so that f(x) = y expresses ϕ(x, y). (For this axiom, the predicate can
have other arguments that won’t be mentioned explicitly.)

∀A, ((∀x ∈ A, ∃!y, ϕ(x, y))⇒ ∃B, ∀x ∈ A,∃y ∈ B,ϕ(x, y).

The B in the axiom is usually denoted f(A), the image of A under f .

Axiom of choice. The axiom of choice is not part of ZF set theory, but when it’s included,
the set theory is denoted ZFC set theory, Zermelo-Fraenkel set theory with the axiom of
choice. This axiom is discussed in more detail in the section A.4.

Von Neumann–Bernays–Gödel set theory (NBG). This is an extension of ZF that
includes proper classes. Whereas sets can be elements of other sets and proper classes, proper
classes cannot be elements. NBG is a conservative extension of ZF in that sense that any
theorem not mentioning classes and provable in one theory can be proved in the other. NBG
makes it possible to talk about things like the class of all sets, or the class of all groups, etc.

A.3 Ordered structures

Several mathematical structures are defined in terms of an order relation. These order rela-
tions have something in common with the order relation ≤ “less than or equal” on the real
numbers. Many of them are not total orders like ≤, but only partial orders. Having fewer
nice properties than ≤, however, can make them more interesting.

In particular, we’ll look at partial orders, lattices, and Boolean algebras.

A.3.1 Partial orders and posets.

You’re familiar with the order ≤ on real numbers. It’s a binary relation with the following
four properties.

1. Reflexivity: for all x, x ≤ x.

2. Anti-symmetry: for all x and y, if x ≤ y and y ≤ x, then x = y.

3. Transitivity: for all x, y, and z, if x ≤ y and y ≤ z, then x ≤ z.

4. Totality: for all x and y, either x ≤ y or y ≤ x (or both in which case x = y.

There are other useful binary relations in mathematics with either those four properties
or at least the first three. Although sometimes such binary relations are denoted with the
same ≤ sign, frequently a similar but visually distinct sign such as � is used. Both are read
“less than or equal to ”. Of course, there’s also a greater than or equal to, written � and
defined by x � y if and only if y � x.
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Definition A.6 (Total order). A total order, also called a linear order, on a set is a binary
relation having the four properties: reflexivity, anti-symmetry, transitivity, and totality.

A set with a specified total order is called a totally ordered set or a chain.

The strict form ≺ of a total order (or a partial order defined below) � is defined by

x ≺ y if anad only of x � y and x 6= y.

A useful weakening of total orders is what is called a partial order.

Definition A.7 (Partial order). A partial order on a set is a binary relation having the first
three of those properties: reflexivity, anti-symmetry, and transitivity.

A set with a specified partial order is called a partially ordered set or poset for short.
Two elements x and y in a partially ordered set are said to be comparable if either x � y

or y � x. Otherwise they’re incomparable.

Example A.8. The positive integers are partially ordered by divisibility. Divisibility is
reflexive since x

∣∣x; it’s anti-symmetric since if x
∣∣y and y

∣∣x, then x = y, and it’s transitive
since if x

∣∣y and y
∣∣z, then x

∣∣z.
Divisibility is not a partial order on all integers since 2

∣∣− 2 and −2
∣∣2 but 2 6= −2. It is,

however, a pre-order. A pre-order is reflexive and transitive but need not be anti-symmetric.

Example A.9. Any collection T of subsets of a set S is a partially ordered set where the
binary relation is ⊆. In particular, the power set ℘(S) consisting of all the subsets of S is
partially ordered.

Hasse diagrams. A partially ordered set can be described with a kind of a graph called a
Hasse diagram. The elements of the set are the vertices of the graph, and the edges indicate
which elements are less than or equal to which other elements. If a ≺ b, then an edge is
drawn from a to b with the larger element above the smaller one. Transitivity of the order
relation is assumed so that if a ≺ b ≺ c, than an edge doesn’t have to be drawn between a
and c.

Definition A.10. An upper bound of a subset S in a poset is any element in the poset which
is greater than or equal to all elements in S. That element needn’t be an element of the
subset S. Likewise, a lower bound of S is an element that is less than or equal to all the
elements in S.

A least upper bound, also called supremum of S is an upper bound of S which is less than
or equal to all other upper bounds of S. It is denoted lubS or supS. Likewise, a greatest
lower bound, also called infemum of S is an lower bound of S which is greater than or equal
to all other lower bounds of S. It is denoted glbS or inf S.

Least upper bounds and greatest lower bounds of subsets need not always exist.

Example A.11. With the usual ordering on the real numbers R, both the open interval
(2, 3) and the closed interval [2, 3] have the same least upper bound 3 and the same greatest
lower bound 2.

With the usual ordering on the rational numbers Q, the subset S = {x |x2 = 2} has
neither a least upper bound nor a greatest lower bound since

√
2 and −

√
2 are not rational

numbers.
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Definition A.12 (Maximal and minimal elements). A maximal element in a partially ordered
set is an element which is not less than or equal to any other element. A minimal element in
a partially ordered set is an element which is not greater than or equal to any other element.

Maximal and minimal elements don’t have to be unique. A partially ordered set can have
more than one of each no none at all.

Definition A.13 (Meet and join). The meet of two elements a and b is the greatest lower
bound of the set {a, b}. That is, it is an element x less than or equal to both a and b and
greater than or equal to all other elements greater than or equal to both a and b. If that
meet exists, it is denoted a ∧ b.

The join of two elements a and b in a partially ordered set is the least upper bound of
the set {a, b}. That is, it is an element x greater than or equal to both a and b and less than
or equal to all other elements greater than or equal to both a and b. If that join exists, it is
denoted a ∨ b.

Meets and joins aren’t particularly interesting in totally ordered sets. In a totally ordered
set, the meet of two elements is the minimum of the two while the join of two elements is the
maximum of the two.

Example A.14. Consider the positive integers partially ordered by divisibility. The meet of
two integers m and n is that number d which divides them both for which any other divisor
of both divides d. In other words, a meet in this partially ordered set is the greatest common
divisor.

Likewise, a join is the least common multiple.

Example A.15. Sometimes meets and joins don’t exist in a partially ordered set. Consider
the poset with four elements, {a, b, c, d} where both a and b are less than both c and d.

a b

c d The join c∨ d doesn’t exist since there is no upper bound for c and d.
The join a∨ b doesn’t exist because there are two upper bounds for a
and b, but no least upper bound. Likewise, the two meets c ∧ d and
a ∧ b don’t exist.

A.3.2 Lattices

Lattices are partially ordered sets that have meets and joins

Definition A.16 (Lattice). A lattice is a partially ordered set in which all meets and joins
of two elements exist, has a smallest element (often denoted 0 or ⊥) and a largest element
(often denoted 1 or >), in which the following identities hold.

Idempotency: x = x ∧ x = x ∨ x.
Commutativity: x ∧ y = y ∧ x and x ∨ y = y ∨ x.
Associativity: (x ∧ y) ∧ z = x ∧ (y ∧ z) and (x ∨ y) ∨ z = x ∨ (y ∨ z).
Absorption: a ∧ (a ∨ b) = a and a ∨ (a ∧ b) = a.
Identity: a ∧ 1 = a and a ∨ 0 = 0.

Lattices can be defined without reference to a partial order as the relation a ≤ b can be
characterized in terms of meets and joins as in the following theorem.
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Theorem A.17. The following three conditions are equivalent: a � b, a∧b = a and a∨b = b.

Proof. First, suppose a � b, then by definition, the meet of a and b is a while the join of a
and b is b. Thus, the first condition in the statement of the theorem implies the other two.

Now suppose a∧b = a, since a∧b � b, therefore a � b. Thus the second condition implies
the first. Similarly, the third condition implies the first. q.e.d.

Since � can be characterized in terms of ∧ and ∨, there is an alternate definition of lattice.

Definition A.18 (Alternate definition of lattice). A lattice is a set equipped with two binary
operations ∧ and ∨ and two constants 0 and 1 which satisfy the identities in the previous
definition.

It follows from that definition that a = a ∧ b if and only if b = b ∨ a. (Proof: a = a ∧ b
implies b = b ∨ (b ∧ a) = (a ∧ b) ∨ b = a ∨ b by commutativity and absorption.)

The partial order can then be recovered by defining a � b if and only if a ∧ b = a and
a ∨ b = b.

There are a couple other identities that follow from the definition, namely, 0 ∧ a = 0 and
1 ∨ a = 1.

Example A.19. The powerset ℘(S) of a set S is a lattice. (It’s actually a Boolean ring,
discussed later.) Here’s the Hasse diagram for ℘({a, b, c}).

{a, b, c}

{b, c} {a, c} {a, b}

{c} {b} {a}

∅

The powerset of a set with four elements has 16 elements. It’s a little harder to draw as
a Hasse diagram which is displayed in figure A.1. The names of the subsets are abbreviated
so that, for example, the subset {a, b, c} is displayed as abc.

Modular and distributive lattices. Note that distributivity is not listed among the
identities above. That’s because it doesn’t hold in all lattices. Another identity that doesn’t
hold in all lattices is modularity.

Definition A.20. A lattice is said to be modular if for all elements a, b, and c for which
a ≤ c, it is the case that a ∨ (b ∧ c) = (a ∨ b) ∧ c.

A lattice is said to be distributive if for all elements a, b, and c, it is the case that
a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) and a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c).
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abcd

abc abd acd bcd

ab ac ad abc bd cd

a b c d

∅

Figure A.1: Lattice of the Powerset of 4 elements

It can be shown that every distributive lattice is also modular, but there are modular
lattices that are not distributive. It can also be shown that either one of the distributive
identities imply the other.

The powerset ℘(S) lattice is a distributive lattice.
The subgroups of a group with inclusion as a partial order always form a modular lattice,

but not always a distributive lattice.

Example A.21.
The symmetric group S3 has four subgroups besides
itself and the trivial subgroup. The subgroup gen-
erated by the permutation (123) has order 3 while
the three subgroups generated by the three trans-
postions (12), (13), and (23) each have order 2. The
lattice of subgroups is modular, but it’s not dis-
tributive.

S3

(123) (12) (13) (23)

1

A.3.3 Boolean algebras.

A Boolean algebra is a distributive lattice with one more operation.

Definition A.22 (Boolean algebra). A Boolean algebra is a distributive lattice with a unary
operation, called complementation or negation, denoted ¬ satisfying the identities a∨¬a = 1
and a ∧ ¬a = 0.

Actually, not all the identities from boolean lattices are necessary for the definition since
absorption can be shown from the rest. Other identities that follow from the definition include
¬0 = 1, ¬1 = 0, and ¬¬a = a.

As described in section 3.3, Boolean algebras are the same thing as Boolean rings. The
only difference is notational.

Truth values. The two-element Boolean algebra that consists only of 0 and 1 is is used in
logic. 0, or ⊥ is the truth value “false” while 1, or > is the truth value “true”.
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A.4 Axiom of choice

Given a collection of nonempty sets, the axiom of choice says that there is a function that
chooses one element from each set.

This is an axiom of set theory. There are many axioms of set theory, most of which are
fairly obvious and uncontroversial.

More precisely, the axiom of choice says that given any set S, there exists a “choice
function” γ : ℘(S) − ∅ → S which chooses from any nonempty set T ⊆ S an element
γ(T ) ∈ T .

In some sense, any theorem that relies on the axiom of choice is flawed since the axiom of
choice is not constructive. So, for instance, after proving an ideal is a subideal of a maximal
ideal, we won’t have any way to identify that maximal ideal.

Here’s a simple theorem that relies on the axiom of choice.

Theorem A.23. Let f : A→ B be a surjective function between sets A and B. Then there
exists g : B → A such that f ◦ g is the identity function on B.

Proof. Let γ be a choice function for A. Then g is the function

g(y) = γ(f−1(y)) = γ({x | f(x) = y}).
Since f is surjective, f−1(y) is not the empty set, so the choice function γ will choose some
element x out of f−1(y) with f(x) = y. q.e.d.

That theorem is actually logically equivalent to the axiom of choice, that is, the axiom of
choice follows from it.

Independence of the axiom of choice. The axiom of choice is independent of the rest
of the axioms of set theory. Gödel proved in 1938 that set theory with the axioms of choice
added is as consistent as set theory, while Cohen in 1963 proved that set theory with the
negation of the axiom of choice added is as consistent as set theory. In other words, the
axiom of choice is independent of the rest of the axioms.

A.4.1 Zorn’s lemma

Although the axiom of choice is easy to state, it’s not usually easy to use. Zorn’s lemma,
which is logically equivalent to the axiom of choice is hard to state, but easy to use. Another
is the well-ordering principle.

This lemma is applied to a nonempty collection M of subsets of a set S.
Section A.3.1 on partially-ordered sets defined a chain, upper bound, and maximal ele-

ment. A chain in M is a collection C of elements of M linearly ordered by subset inclusion.
In other words, if A and B are elements of C, either A ⊆ B or B ⊆ A. An upper bound of C
is a subset B of S which contains all elements of C. A maximal element B of M is one not
contained in any larger element of M.

Zorn’s lemma. If every chain in M has an upper bound in M, then M has a maximal
element.

We won’t prove that the Axiom of Choice is equivalent to Zorn’s lemma because it would
take too long.
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A.4.2 Well-ordering principle

The most common form of the axioms of choice used in algebra is Zorn’s lemma. Another
that’s sometimes used is the well-ordering principle.

Definition A.24 (Well-ordering). A partially ordered set is well ordered if every nonempty
subset of it has a least element.

It follows from the definition that every well-ordering is totally ordered. Given two ele-
ments x and y, the subset {x, y} has a smallest element, either x in which case x � y, or y
in which case y � x.

Example A.25. The natural numbers N is well-ordered by its usual ordering. The integers
Z is not well ordered by its usual ordering because the entire set doesn’t have a smallest
element. For the same reason R is not well-ordered. The non-negative real numbers aren’t
well-ordered by its usual ordering because any open interval (a, b) doesn’t have a least element.

Any subset of a well-ordered set is well-ordered by the same ordering.

Lexicographic ordering. The product N ×N has a well-ordering called the em lexico-
graphic ordering. The ordered pair (a, b) is defined to be less than or equal to the ordered
pair (c, d) if either a = c and b ≤ d or a ≤ c. Thus, the elements of N×N listed in increasing
order are

(0, 0), (0, 1), (0, 2), . . . ; (1, 0), (1, 1), (1, 2), . . . ; (2, 0), (2, 1), (2, 2), . . . ; . . .

More generally, if A and B are both well ordered, then the lexicographic order on A×B
is a well-ordering.

Furthermore, finite products A0 × A2 · · ·A2 of well-ordered sets are well ordered by a
lexicographic ordering.

The well-ordering principle . This principle states that every set has a well-ordering,
that is, for each set, there is some well-ordering of that set.

The axiom of choice, Zorn’s lemma, and the well-ordering principle can each be proved
from the each other. Here’s a proof that the well-ordering principle follows from Zorn’s
lemma.

Theorem A.26. The well-ordering principle follows from Zorn’s lemma.

Proof. Let S be a set. Let W be the set of well-orderings of subsets of S. Partially order
W so given subsets A and B both with will-orderings, define A � B if A ⊆ B and the two
orderings agree on A. In other words, the ordering on A extends to that on B.

To use Zorn’s lemma, we need to show that every chain C in W has an upper bound. A
chain C consists of subsets A and B where if A � B, the ordering of A is extended to B. The
union of all these subsets is a set C which, when given the extended ordering, so lies in W ,
is itself a well-ordered set that contains every subset A ∈ C. Thus, every chain in W has an
upper bound.

By Zorn’s lemma, W has a maximal element M . This M is a well-ordered subset of
S which cannot be extended (since it’s maximal). If there were an element of S −M , the
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ordering on M could be extended to a well-ordering by making that element less than every
element in M . Therefore, there are no elements in S −M . Thus, S = M , and so S has a
well-ordering. q.e.d.

This principle implies that there is some well-ordering of the real numbers R. It’s not
the usual order, of course, since the usual order does not well order R. In fact, no particular
well-ordering of R can ever be described.
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Jordan-Hölder theorem, 131–133
Joyce, David, 4, 16, 145

Kelland, Philip (1808–1879), 50
Kernel

of a group homomorphism, 120–124
of a ring homomorphism, 74

Klein, Felix (1849–1925), 113
Knuth, Donald, 47
Krull’s theorem, 79
Krull, Wolfgang (1899–1971), 79

Lagrange’s theorem, 103–104
Lagrange, Joseph-Louis (1736–1813), 52, 89, 103
Laplace, Pierre-Simon (1749–1827), 89
Latin square, 9
Lattice, 67, 155

distributive, 67, 156
modular, 156

Least common denominator, 22
Least common multiple, 22
Least upper bound, 154
Leibniz, Gottfried Wilhelm (1646–1716), 89, 146
Lemma, 143
Lexicographic ordering, 159
Lindemann, Ferdinand von (1852–1939), 42
Linear group, 124–130
Linear order, 153
Linear transformation, 7, 44, 53, 124–127
Llull, Ramon (ca. 1232–ca. 1315), 146
Localization, 69
Logical symbols, 143
Loos, Ottmar, 117
Lower bound, 154

Mac Lane, Saunders (1909–2005), 69
Map, 12, see morphism, 149
Mathematical induction, 15

strong form, 23
Mathieu, Émile Léonard (1835–1890), 133
Matrix

unimodular, 126
unitary, 127

Matrix representation

of C, 43

of H, 53

Matrix ring, 5, 35, 43, 124–130

Maximal ideal, 78–79

Meet, 66

Membership, 145

Minimization principle, 15

Module, 11

Modulo p irreducibility test, 93

Monomorphism, 13, 73

Morphism, 12, 70

Moufang, Ruth (1905–1977), 52

Multiplicative function, 19

Multiplicative group of units, 7

Natural numbers N, 2, 15

Negation (logical) ¬, 144

Neutral element, see identity element

Noether, Emmy (1882–1935), 1

Noether, Emmy Amalie (1882–1935), 83

Noetherian ring, 83

Norm

of a complex number, 43

of a quaternion, 51

Normal subgroup, 120–124

Number

algebraic, 42

complex, 2, 4, 43–44, 87–89

composite, 17

greatest common divisor, 22

integer, 2, 4, 5, 69, 72

natural, 2, 15, 144

prime, 17–19, 22–39

rational, 2, 4, 34, 67–69

real, 2, 45–50, 89–90, 145

relatively prime, 17, 19–20, 24, 39, 61, 102,
137

surreal, 47

transcendental, 42

whole, see integers

Number field, 42, 97–98

Number theory, 15–25

Object, 70

Octonions, 52

Odd permutation, 106–107

One-to-one correspondence, see bijection

One-to-one function, see injection

Onto function, see surjection
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Operation, 2–3
associative, 2
binary, 2
commutative, 2
unary, 2

Order
lexicographic, 159
linear, 153
of a group, 7, 101, 103
of a prime in a number, 25
of an element in a group, 101
partial, 66, 153–155
total, 153

Ordered field, 45–50
Archimedean, 47–48
complete, 49–50

Orthogonal group, 126
Orthogonal transformation, 126
Outer product, 53

Pairwise relatively prime numbers, 22
Pappus of Alexandria (ca. 290–ca. 350), 129
Partial order �, 66, 153–155
Partition, 151
Partition of a number, 138
Partition of a set, 148, 150–151
Peano, Giuseppe (1858–1932), 15
Permutation, 104

even and odd, 106–107
Philolaus (470–385 B.C.E.), 17
PID, see principal ideal domain
Polynomial, 25–29

complex, 87
content, 93
cubic, 91
cyclotomic, 29
irreducible, 87, 89–97
monic, 25
prime cyclotomic, 95
primitive, 92
quadratic, 90
rational root theorem, 91
real, 89
root, 26

Polynomial evaluation, 13, 73
Polynomial ring, 5, 26, 73, 85–97
Poset, 153–155
Powerset ℘, 56, 64, 148
Pre-order, 154

Preimage, 149

Presentation by generators and relations, 110

Primary component, 138

Primary decomposition theorem, 138

Primary group, 138

Prime cyclotomic polynomials Φp, 95

Prime element, 81, 82

Prime field, 39–41

Prime ideal, 78–79, 82

Prime number, 17–19, 22–39

infinitely many, 18

Primitive polynomial, 92

Primitive root of unity, 28

Primitive roots of unity, 95

Principal ideal, 75

Principal ideal domain, 82–84, 86

Principle of infinite descent, 16

Product

in a category, 71

internal direct, 123–124

of groups, 102

of rings, 57, 71

of sets, 148

semidirect, 133

Products of subsets in a group, 104

Projection, 38, 151

Projective linear group PGLn(F ), 127, 130

Projective plane

Desarguesian, 129

finite, 129

Pappian, 129

Projective space, 118, 127

Projective special linear group PSLn(F ), 130

Q.E.D., 143

Qin Jiushao (1202–1261), 62

Qin Jiushao’s algorithm, 62

Quadratic field extension, 41–45, 77

Quadratic polynomial, 90

Quandle, 10, 11, 117

involutory, 117

with geodesics, 117

Quaternion group, 113, 119

Quaternions H, 10, 50–54

unit, 54

Quotient group, 121–123

Quotient ring, 76–79

Quotient set, 37, 68, 76, 151
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Radian, 89
Rational function, 35, 69
Rational numbers, 2, 4, 34, 67–69
Rational root theorem, 91
Real numbers, 45–50, 89–90
Real numbers R, 2
Real polynomials R[x], 89
Reducible, 80
Reflection, 125
Reflexivity, 66, 150
Relation, 150

antisymmetric, 66
binary order, 46
equivalence, 67, 77, 150–151
partial order, see Partial order
reflexive, 66, 150
symmetric, 150
transitive, 16, 66, 150

Relatively prime, 17, 19–20, 24, 39, 61, 102, 137
pairwise, 22

Remainder theorem, 27
Residue, 6
Ring, 2, 5–6, 55–98

algebraic integers, 97–98
axioms, 55
Boolean, 56, 63–67
category, 71–74
commutative, 55
cyclic, 35–38, 56, 77
definition, 5
division, 10, 50–54
free Boolean, 65
homomorphism, 13, 71
isomorphism, 11
matrix, 5, 35, 124–130
Noetherian, 83
of integers, see integers
of polynomials, 5, 26, 73, 85–97
quotient, 76–79
trivial, 72

Root of unity, 28–29, 95
primitive, 28, 95

Rotation, 125

Scalar, 53
Scalar product, 53
Schröder, Ernst (1841–1902), 148
Second isomorphism theorem for groups, 123
Semidirect product, 133

Set, 15, 144–149
category 71
complement, 147
countable, 149
difference, 147
element, 145
finite, 11
infinite, 15
intersection, 146, 147
membership, 145
operation on, 2–3
partially ordered, 153–155
partition, 148, 151
permutation, 104
power, 56, 64, 148
product of, 148
quotient, 37, 68, 76, 151
singleton, 152
subset, 145
uncountable, 149
underlying, 3, 31, 55, 99
union, 146, 147

Set theory
axioms, 151–153

Shear, 126
Simple group, 131–134
Simply infinite, 15
Singleton set, 152
Skew field, 10, 50–54
Solvable group, 133
Space

hyperbolic, 118
inversive, 118
projective, 118, 127

Special linear group, 126
Sphere, 118
Sphere S2, 10
Structure

algebraic, 2–11
Subfield, 34

definition, 34
Subgroup, 14, 100–104

commutator, 101
conjugate, 116
generated by a set, 101
generated by an element, 101
index, 103
normal, 120–124
of Z, 101
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of S3, 107

proper, 100

trivial, 100

Subring, 14, 58

Subset, 145

Substitution

Tschirnhaus, 91

Successor function, 15

Sun Zi (fl. 400), 62

Supremum, see Least upper bound

Surjection, 13, 73, 149

Surreal numbers, 47

Sylvester, James Joseph (1814–1897), 5

Symmetric group Sn, 104–107, 110, 112, 116, 119

Symmetric space, 117

Symmetries

of a cube, 108

of a pentagon, 108, 111, 119

of a tetrahedron, 108

of a triangle, 8

Symmetry, 150

Tait, Peter Guthrie (1831–1901), 50

Tartaglia, Nicolo Fontana (1500–1557), 87

Theorem, 143

Third isomorphism theorem for groups, 123

Through ., 117

Thymaridas (400–350 B.C.E.), 17

Torus, 134

Total order, 153

Totient function, 19, 29, 39

Transcendence

of π, 42

of e, 42

Transcendental field extensions, 42

Transcendental number, 42

Transformation

linear, 7, 44, 53, 124–127

Transitive group action, 133

Transitivity, 16, 46, 66, 150

Transposition, 105, 106

Trichotomy, 46

Trivial ring, 72

Tschirnhaus substitution, 91

Tschirnhaus, Ehrenfried Walther von (1651–
1708), 91

UFD, see unique factorization domain

Unary operation, 2

Uncountable set, 149
Underlying set, 3
Unimodular matrix, 126
Union, 146, 147

disjoint, 137
Unique factorization domain, 81–82, 84, 95
Unique factorization theorem, 22–24
Unit

circle, 9
in Zn, 19
in a ring, 7

Unit circle S1, 89
Unitary group, 127
Unitary matrix, 127
Unitary transformation, 127
Unity

root of, 28–29, 95
Universal property

of an infinite cyclic group, 115
of coproducts, 136
of final objects, 72, 115
of free groups, 115
of initial objects, 72, 115
of products, 71
of the ring Z, 72, 73

Universal quantification ∀, 144
Upper bound, 154

Valuation
Euclidean, 84

Vector, 53
Vector product, 53
Vector space, 35
Venn diagram, 146
Venn, John (1834–1923), 146
Viète, François (1540–1603), 91
von Neumann, John (1903–1957), 153

Waring, Edward (1736–1798), 50
Wedderburn, Joseph (1882–1948), 59
Weierstrass, Karl (1815–1897), 42
Well-ordering principle, 15, 159

Zermelo, Ernst (1871–1953), 151
Zero-divisor, 58
Zorn’s lemma, 79, 158–160
Zorn, Max August (1906–1993), 158
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