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Preface to the Second Edition

The second edition of Advanced Calculus is identical to the first edition, except for

the following points:

• All of the typographical and mathematical errors that were listed on the errata

sheet linked to my web page (last updated in 2021) have been corrected.

• A brief summary of basic logic has been added as Appendix C.

• There are a few insignificant changes in the formatting of the text.

The first edition of this book was published by Prentice-Hall (later subsumed

into Pearson Education) from 2002 to 2022. After their decision to discontinue

publication, the publication rights reverted to me, and I am making the book freely

available to everyone in pdf form.

Gerald B. Folland

Department of Mathematics

University of Washington

Seattle, WA 98195-4350

folland@uw.edu

August 4, 2023
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Preface to the First Edition

This is a book about the theory and applications of derivatives (mostly partial),

integrals (mostly multiple or improper), and infinite series (mostly of functions

rather than of numbers), at a deeper level than is found in the standard calculus

books.

In recent years there has been a tendency for the courses that were once called

“advanced calculus” to turn into courses on the foundations of analysis. Students

typically start with a year and a half of calculus that emphasizes computations and

applications, then proceed (perhaps by way of a “bridge course” on mathematical

reasoning) to a course of an entirely theoretical nature that covers such thins as

the topology of Euclidean space, the theory of the Riemann integral, and proofs of

some theorems that have been taken on faith before.

I am not persuaded that such a divorce of the practical from the theoretical

aspects of the subject is a good idea. On the one hand, the study of theoretical un-

derpinnings of ideas with which one is already familiar tends to be dry and tedious,

and the development of unfamiliar ideas can be rather daunting unless it is accom-

panied by some hands-on experience with concrete examples and applications. On

the other hand, relegation of the computations and applications to the elementary

courses means that students are not exposed to these matters on a more sophisti-

cated level. (How many students recognize that Taylor polynomials should be part

of one’s everyday tool kit? How many know that the integral test gives an effective

way of approximating the sum of a series?)

This book is an attempt to present a unified view of calculus in which theory

and practice can reinforce each other. On the theoretical side, it is reasonably com-

plete and self-contained. Accordingly, it contains a certain amount of “foundations

of analysis,” but I have kept this material to the bare minimum needed for the main

topics of the book. I also place a higher premium on intuitive understanding than

on formal proofs and technical definitions. Along with the latter, therefore, I often

offer informal arguments and ideas, sometimes involving infinitesimals, that may

provide more enlightenment than the strictly rigorous approach. The worked-out

ix



x Preface to the First Edition

examples and exercises run the gamut from routine calculations to theoretical ar-

guments; many of them involve a mixture of the two. The reader whose interest in

the theory is limited should be able to benefit from the book by skipping many of

the proofs.

The essential prerequisite for this book is a sound knowledge of the mechanics

of one-variable calculus. The theory of differentiation and integration on the real

line is presented, rather tersely, in Sections 2.1 and 4.1, but I assume that the reader

is thoroughly familiar with the standard techniques for calculating derivatives and

integrals. Some previous experience with infinite series, partial derivatives, and

multiple integrals might be helpful but is not really necessary. And, of course, for a

full appreciation of the theory one needs a certain level of comfort with mathemat-

ical reasoning, but that is best acquired with practice and experience.

An acquaintance with linear algebra is needed in a few places, particularly §2.8

(classification of critical points), §2.10 (differentiation of vector-valued functions

of vector variables), §3.1 and §§3.4–5 (the implicit function theorem for systems

of equations, the inverse mapping theorem, and functional dependence), and §4.4

(change of variables for multiple integrals). However, most of this material can

be done in the two- and three-dimensional cases (perhaps by eliding parts of some

proofs) with vector algebra and a little ad hoc discussion of matrices and determi-

nants. In any case, Appendix A provides a brief summary of the necessary concepts

and results from linear algebra.

A few of the more formidable proofs have been exiled to Appendix B. In some

of them, the ratio of the amount of work required to the amount of understanding

gained is especially high. Others involve ideas such as the Heine-Borel theorem or

partitions of unity that are best appreciated at a more advanced level. Of course,

the decisions on what to put into Appendix B reflect my personal tastes; instructors

will have to make their own choices of what to include or omit.

In this book a single numeration system is used for theorems, lemmas, corollar-

ies, propositions, and displayed formulas. Thus, for each m and n there is only one

item of any of these types labeled m.n, and it is guaranteed to follow m.(n − 1)
and precede m.(n + 1). This procedure minimizes the amount of effort needed to

locate referenced items.

In a few places I offer glimpses into the world of more advanced analysis.

Chapters 4 and 5 end with brief, informal sketches of the Lebesgue integral and

the theory of differential forms; Chapter 8 leads to the point where the realm of

eigenfunction expansions and spectral theory is visible on the horizon. I hope that

many of my readers will accept the invitation to explore further.

Acknowledgments. This book has benefited from the comments and suggestions

of a number of people: my colleague James Morrow, the students in the advanced



xi

calculus classes that he and I have taught over the past three years in which prelimi-

nary versions of this book were used, and several reviewers, especially Jeffrey Fox.

I am also grateful to my editor, George Lobell, for his support and enthusiasm.

Errata. Responsibility for errors in this book, of course, remains with me.

Responsibility for informing me of these errors, however, rests with my readers.

Anyone who finds misprints, mistakes, or obscurities is urged to write to me at the

address below. I will post such things on a web site that will be accessible from

www.math.washington.edu.

Gerald B. Folland

Department of Mathematics

University of Washington

Seattle, WA 98195-4350

folland@uw.edu





Chapter 1

SETTING THE STAGE

The first half of this chapter (§§1.1–4) presents basic facts and concepts concern-

ing geometry, vectors, limits, continuity, and sequences; the material in it is used

throughout the later chapters. The second half (§§1.5–8) deals with some of the

more technical topological results that underlie calculus. It is quite concise and in-

cludes nothing but what is needed in this book. The reader who wishes to proceed

quickly to the study of differentiation and integration may scan it quickly and refer

back to it as necessary; on the other hand, the reader who wishes to see a more

extensive development of this material is referred to books on the foundations of

analysis such as DePree and Swartz [5], Krantz [12], or Rudin [19].1

At the outset, let us review some standard notation and terminology for future

reference:

• Sums: If a1, a2, . . . , ak are numbers, their sum a1+ a2+ · · ·+ ak is denoted

by
∑k

1 an, or by
∑k

n=1 an if necessary for clarity. The sum need not be

started at n = 1; more generally, if j < k, we have

k∑

j

an = aj + aj+1 + · · ·+ ak.

The letters j and k denote the limits of summation; the letter n is analo-

gous to a dummy variable in an integral and may be replaced by any other

letter that is not already in use without changing the meaning of the sum.

We shall occasionally write simply
∑
an when the limits of summation are

understood.

1Numbers in brackets refer to the bibliography at the end of the book.

1



2 Chapter 1. Setting the Stage

• Factorials: If n is a positive integer, n! (“n factorial”) is the product of

all the integers from 1 to n. By convention, 0! = 1, so that the formula

n! = n · (n− 1)! remains true even for n = 1.

• Sets: If S and T are two sets, S ∪ T and S ∩ T denote their union and

intersection, respectively, and S \ T denotes the set of all elements of S that

are not in T . The expressions “S ⊂ T ” and “T ⊃ S” both mean that S is a

subset of T , including the possibility that S = T , and “x ∈ S” and “x /∈ S”

mean, respectively, that x is or is not an element of S. The set of all objects

x satisfying a property P (x) is denoted by {x : P (x)}, and empty set is

denoted by ∅.

The union and intersection of a family S1, S2, . . . , Sk of sets are denoted by⋃k
1 Sn and

⋂k
1 Sn. The conventions for using the symbols

⋃
and

⋂
are the

same as those for the summation sign
∑

described above.

• Real numbers: The set of real numbers is denoted by R. The following

notations are used for intervals in R:

(a, b) =
{
x : a < x < b

}
, [a, b] =

{
x : a ≤ x ≤ b

}

(a, b] =
{
x : a < x ≤ b

}
, [a, b) =

{
x : a ≤ x < b

}
.

Intervals of the form (a, b) are called open; intervals of the form [a, b] are

called closed; and intervals of the forms (a, b] and [a, b) are called half-open.

(Of course, the symbol (a, b) is also used to denote the ordered pair whose

first and second members are a and b, respectively; remarkably enough, this

rarely causes any confusion.)

If {x1, . . . , xk} is a finite set of real numbers, its largest and smallest ele-

ments are denoted by max(x1, . . . , xk) and min(x1, . . . , xk), respectively.

• Infinity. In discussing limits it is often convenient to add two “points at in-

finity” ∞ (also called +∞) and −∞ to the real number system. These are

not real numbers, and one can perform arithmetical operations on them only

with great caution, but there is no harm in thinking of them as actual math-

ematical objects. The points ±∞ may be used as endpoints of intervals; for

example, (a,∞) = {x : x > a}. Intervals of the form [a,∞) and (−∞, b]
are classified as closed intervals; (a,∞) and (−∞, a) are open.

• Complex numbers: The imaginary unit
√
−1 is denoted by i, although the

letter i may be used for other purposes when complex numbers are not under

discussion. The set of complex numbers, that is, numbers of the form x+ iy
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where x, y ∈ R, is denoted by C. As a set, C may be identified with the

Cartesian plane by the correspondence x + iy ←→ (x, y), and we speak of

“the complex plane C.” If z = x + iy is a complex number, x and y are

called its real and imaginary parts, respectively, and are denoted by Re z
and Im z. The number x − iy is called the complex conjugate of z and is

denoted by z, and the number
√
zz =

√
x2 + y2 (the distance from (x, y)

to the origin in the plane) is called the absolute value of z and is denoted by

|z|.

• Mappings and functions: A mapping, or map, is a rule f that assigns to each

element of some set A an element of some other set B (possibly equal to A).

We write f : A → B to display all these ingredients together. If x ∈ A, the

element of B assigned to x by f is called the value of f at x and is denoted

by f(x). If S is a subset of A, the set of values {f(x) : x ∈ S} is denoted

by f(S). The set A is called the domain of f , and the set f(A) (a subset of

B) is called the range of f . The mapping f : A→ B is called one-to-one if

f(x) = f(y) only when x = y, and f is said to map A onto B if f(A) = B.

If f : A → B and g : B → C are mappings, their composition is the

mapping g ◦ f : A→ C defined by (g ◦ f)(x) = g(f(x)).

A mapping f : A → B is said to be invertible if there is another mapping

g : B → A such that g(f(x)) = x for all x ∈ A and f(g(y)) = y for all

y ∈ B. The equation g(f(x)) = x can be valid for all x ∈ A only if f is

one-to-one, and the equation f(g(y)) = y can be valid for all y ∈ B only if

f maps A onto B. Conversely, if these two conditions are satisfied, it is easy

to verify that f is invertible. In this case, the mapping g is called the inverse

of f and is commonly denoted by f−1.

Mappings are sometimes called “functions,” but we shall reserve the term

function for mappings whose values are real numbers, complex numbers,

or vectors. Mappings of a set A into itself (B = A) are sometimes called

transformations.

• Special functions: In this book, we denote the natural logarithm by log rather

than ln, this being the common usage in advanced mathematics. Also, we de-

note the principal branches of the inverse trig functions by arcsin, arccos, and

arctan; arcsin and arccos map [−1, 1] onto [−1
2π,

1
2π] and [0, π], respectively,

and arctan maps R onto (−1
2π,

1
2π).

• Logical symbols: We shall sometimes use the symbols =⇒ and ⇐⇒ to de-

note logical implication and equivalence, respectively. That is, if A and B
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are mathematical statements, “A =⇒ B” is read “A implies B” or “If A,

then B,” and “A ⇐⇒ B” is read “A is equivalent to B” or “A if and only

if B.” We point out that “A =⇒ B” and “not B =⇒ not A” are logically

equivalent; that is, in order to prove that hypothesis A implies conclusion B,

one may assume that B is false and show that A is false.

1.1 Euclidean Spaces and Vectors

We shall be studying functions of several real variables, say f(x1, x2, . . . , xn).
In elementary treatments of the subject one usually focuses on the cases n = 2
and n = 3, because these are the ones where ordered n-tuples of numbers can

represent points in physical space. However, most of the ideas work equally well

for any number of variables, and it is helpful to continue using geometric language

in this more general setting even though “n-dimensional space” doesn’t correspond

directly to a physical object that can be visualized.

The set of all ordered n-tuples of real numbers is called n-dimensional Eu-

clidean space and is denoted by Rn. We will denote such n-tuples either by writing

out the components or by single boldface letters:

x = (x1, x2, . . . , xn).

The n-tuple whose components are all zero is denoted by 0:

0 = (0, 0, . . . , 0).

When n = 2 or 3, we shall often write (x, y) or (x, y, z) instead of (x1, x2) or

(x1, x2, x3), but we shall still use x as a single symbol to denote the ordered pair

or triple.

Ordered n-tuples of numbers lead a double life. We usually think of the n-

tuple (x1, . . . , xn) as representing the Cartesian coordinates of a point in the n-

dimensional space Rn. However, sometimes we think of it as representing a “quan-

tity with magnitude and direction” such as a force or velocity and visualize it as an

arrow. There is some virtue in maintaining a notational distinction between these

two concepts, but we shall not attempt to do so.

To express the basic ideas of n-dimensional geometry it is convenient to use

the language of vector algebra. Most of the vector operations work equally well in

any number of dimensions:

Addition : x+ y = (x1 + y1, . . . , xn + yn),

Scalar multiplication: cx = (cx1, . . . , cxn),

Dot product : x · y = x1y1 + · · ·+ xnyn.
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The exception is the cross product, which is peculiar to 3 dimensions; we shall

discuss it at the end of this section. If x ∈ Rn, the norm of x is defined to be

|x| =
√
x21 + · · ·+ x2n =

√
x · x.

Some people denote norms by double vertical bars, thus: ‖x‖.
There are two fundamental inequalities involving the dot product and norm,

Cauchy’s inequality and the triangle inequality. The reader is probably familiar

with them in dimensions 2 and 3, and the ideas are exactly the same in higher

dimensions.

1.1 Proposition (Cauchy’s Inequality). For any a,b ∈ Rn,

|a · b| ≤ |a| |b|.

Proof. If b = 0 then both sides of the inequality are 0. Otherwise, we introduce a

real variable t and consider the function

f(t) = |a− tb|2 = (a− tb) · (a− tb) = |a|2 − 2ta · b+ t2|b|2.

This is a quadratic function of t. Its minimum value occurs at t = (a ·b)/|b|2, and

that minimum value is

f((a · b)/|b|2) = |a|2 − (a · b)2
|b|2 .

On the other hand, clearly f(t) ≥ 0 for all t, so

|a|2 − (a · b)2
|b|2 ≥ 0.

Multiplying through by |b|2, we obtain the desired result: |a|2|b|2 ≥ (a · b)2.

Note. Cauchy’s inequality is also called Schwarz’s inequality, the Cauchy-

Schwarz inequality, or Buniakovsky’s inequality. (Schwarz and Buniakovsky in-

dependently discovered the corresponding result for integrals of functions, namely,

∣∣∣∣
∫ b

a
f(x)g(x) dx

∣∣∣∣ ≤
[∫ b

a
|f(x)|2 dx

]1/2 [∫ b

a
|g(x)|2 dx

]1/2
,

which can be proved in much the same way.)
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1.2 Proposition (The Triangle Inequality). For any a,b ∈ Rn,

|a+ b| ≤ |a|+ |b|.

Proof. We have |a+b|2 = (a+b) · (a+b) = |a|2 +2a ·b+ |b|2. By Cauchy’s

inequality, this last sum is at most |a|2+2|a| |b|+ |b|2 = (|a|+ |b|)2, so the result

follows by taking square roots.

The distance between two points x and y in 3-space is given by
√
(x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2 = |x− y|,

and similarly for points in the plane. We shall take this as a definition of distance

in n-space for any n:

Distance from x to y = |x− y|.

By taking a = x− y and b = y − z in the triangle inequality, we see that

|x− z| ≤ |x− y|+ |y − z|

for any x,y, z ∈ Rn. That is, the distance from x to z is at most the sum of the

distances from x to y and from y to z, for any intermediate point y. Hence the

name “triangle inequality”: One side of a triangle is at most the sum of the other

two sides.

If we think of two vectors x and y as arrows emanating from the same point, we

can speak of the angle θ between them. The familiar formula for θ in dimensions

2 and 3 remains valid in higher dimensions:

θ = arccos

(
x · y
|x| |y|

)
.

Cauchy’s inequality says that the quotient in parentheses always lies in the interval

[−1, 1], so it is indeed the cosine of some number θ ∈ [0, π].
In particular, the directions of two vectors x and y are perpendicular to each

other if and only if x · y = 0. In this case the vectors are said to be orthogonal to

each other.

In many situations we need to control the magnitude, i.e., the norm, of a vector

x = (x1, . . . , xn), but it is often more convenient to work with the magnitudes of

the components xj of x. In such cases the following inequalities are useful. Let M
be the largest of the numbers |x1|, . . . , |xn|. Then M2 ≤ x21 + · · · + x2n (because

M2 is one of the numbers on the right), and x21 + · · · + x2n ≤ nM2 (because each

number on the left is at most M2). In other words,

(1.3) max
(
|x1|, . . . , |xn|

)
≤ |x| ≤

√
nmax

(
|x1|, . . . , |xn|

)
.
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Cross Products. Let i = (1, 0, 0), j = (0, 1, 0), and k = (0, 0, 1) be the

standard basis vectors for R3; then an arbitrary vector a ∈ R3 can be written as

a = (a1, a2, a3) = a1i+ a2j+ a3k.

The cross product of two vectors a,b ∈ R3 is defined by

a×b = det




i j k

a1 a2 a3
b1 b2 b3


 = (a2b3−a3b2)i+(a3b1−a1b3)j+(a1b2−a2b1)k.

(For a review of determinants, see Appendix A, (A.24)–(A.33).) It is easily verified

that cross products distribute over addition and scalar multiplication in the usual

way:

(c1a1 + c2a2)× b = c1(a1 × b) + c2(a2 × b),

a× (c1b1 + c2b2) = c1(a× b1) + c2(a× b2).

The cross product is anticommutative:

a× b = −b× a.

It is not associative; that is, a × (b × c) 6= (a × b) × c in general. Instead, it

satisfies a quasi-associative law called the Jacobi identity:

a× (b× c) + b× (c× a) + c× (a× b) = 0.

A messy but straightforward calculation shows that

|a× b|2 = |a|2|b|2 − (a · b)2.

(|a×b|2 is the sum of the squares of the components of a×b. Multiply it out and

rearrange the terms to get |a|2|b|2 − (a · b)2.) If θ is the angle between a and b

(0 ≤ θ ≤ π), we know that a · b = |a| |b| cos θ, so

|a× b|2 = |a|2|b|2(1− cos2 θ), or |a× b| = |a| |b| sin θ.

If a and b represent two sides of a parallelogram and we take a to be the “base,”

then |b| sin θ is the “height”; hence, |a × b| is the area of the parallelogram

generated by a and b. Another easy calculation shows that

a · (a× b) = b · (a× b) = 0;
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a

b

θ

a× b

FIGURE 1.1: The geometry of the cross product.

in other words, a× b is orthogonal to both a and b. See Figure 1.1.

The two italicized statements specify the magnitude and direction of a × b in

purely geometric terms and show that a × b has an intrinsic geometric meaning,

independent of the choice of coordinate axes. Well, almost: The fact that a × b

is orthogonal to both a and b specifies its direction only up to a factor of ±1, and

this last bit of information is provided by the “right hand rule”: If you point the

thumb and first finger of your right hand in the directions of a and b, respectively,

and bend the middle finger so that it is perpendicular to both of them, the middle

finger points in the direction of a × b. Thus the definition of cross product is tied

to the convention of using “right-handed” coordinate systems. If we were to switch

to “left-handed” ones, all cross products would be multiplied by −1.

EXERCISES

1. Let x = (3,−1,−1, 1) and y = (−2, 2, 1, 0). Compute the norms of x and y

and the angle between them.

2. Given x,y ∈ Rn, show that

a. |x+ y|2 = |x|2 + 2x · y + |y|2.

b. |x+ y|2 + |x− y|2 = 2(|x|2 + |y|2).
3. Suppose x1, . . . ,xk ∈ Rn.

a. Generalize Exercise 2a to obtain a formula for |x1 + · · ·+ xk|2.

b. (The Pythagorean Theorem) Suppose the vectors xj are mutually orthog-

onal, i.e., that xi · xj = 0 for i 6= j. Show that |x1 + · · · + xk|2 =
|x1|2 + · · ·+ |xk|2.

4. Under what conditions on a and b is Cauchy’s inequality an equality? (Exam-

ine the proof.)

5. Under what conditions on a and b is the triangle inequality an equality?
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6. Show that
∣∣ |a| − |b|

∣∣ ≤ |a− b| for every a,b ∈ Rn.

7. Suppose a,b ∈ R3.

a. Show that if a · b = 0 and a× b = 0, then either a = 0 or b = 0.

b. Show that if a · c = b · c and a × c = b × c for some nonzero c ∈ R3,

then a = b.

c. Show that (a×a)×b = a×(a×b) if and only if a and b are proportional

(i.e., one is a scalar multiple of the other).

8. Show that a · (b× c) is the determinant of the matrix whose rows are a, b, and

c (if these vectors are considered as row vectors) or the matrix whose columns

are a, b, and c (if they are considered as column vectors).

1.2 Subsets of Euclidean Space

In this section we introduce some standard terminology for sets in Rn.

First, the set of all points whose distance from a fixed point a is equal to some

number r is called the sphere of radius r about a, and the set of points whose dis-

tance from a is less than r is called the (open) ball of radius r about a. (In ordinary

English the word “sphere” is often used for both these purposes, but mathemati-

cians have found it helpful to reserve the word “sphere” for the spherical surface

and to use “ball” to denote the solid body.) We shall use the notation B(r,a) for

the ball of radius r about a:

B(r,a) =
{
x ∈ Rn : |x− a| < r

}
.

Of course, when in dimension 1, a ball is just an open interval, and in dimension 2,

the words “disc” and “circle” may be used in place of “ball” and “sphere.”

A set S ⊂ Rn is called bounded if it is contained in some ball about the origin,

that is, if there is a constant C such that |x| < C for every x ∈ S.

When one studies functions of a single variable, one frequently considers inter-

vals in the real line, and it is often necessary to distinguish between open intervals

(with the endpoints excluded) and closed intervals (with the endpoints included).

When n > 1, there is a much greater variety of interesting subsets of Rn to be

considered, but the notions of “open” and “closed” are still fundamental. Here are

the definitions.

Let S be a subset of Rn.

• The complement of S is the set of all points in Rn that are not in S; we

denote it by Rn \ S or by Sc:

Sc = Rn \ S =
{
x ∈ Rn : x /∈ S

}
.
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• A point x ∈ Rn is called an interior point of S if all points sufficiently

close to x (including x itself) are also in S, that is, if S contains some ball

centered at x. The set of all interior points of S is called the interior of S
and is denoted by Sint:

Sint =
{
x ∈ S : B(r,x) ⊂ S for some r > 0

}
.

• A point x ∈ Rn is called a boundary point of S if every ball centered at x

contains both points in S and points in Sc. (Note that if x is a boundary point

of S, x may belong to either S or Sc.) The set of all boundary points of S is

called the boundary of S and is denoted by ∂S:

∂S =
{
x ∈ Rn : B(r,x) ∩ S 6= ∅ and B(r,x) ∩ Sc 6= ∅ for every r > 0

}
.

(Remark. We shall use the term “boundary” slightly differently in §5.7 in

connection with Stokes’s theorem, in the context of surfaces in R3 being

“bounded” by curves. But the present definition is the general-purpose one.)

• S is called open if it contains none of its boundary points.

• S is called closed if it contains all of its boundary points.

• The closure of S is the union of S and all its boundary points. It is denoted

by S:

S = S ∪ ∂S.

• Finally, a neighborhood of a point x ∈ Rn is a set of which x is an interior

point. That is, S is a neighborhood of x if and only if x is an interior point

of S.

Let us examine these ideas a little more closely. First, notice that the boundary

points of S are the same as the boundary points of Sc; the definition of boundary

point remains unchanged if S and Sc are switched. Moreover, if x is neither an

interior point of S nor an interior point of Sc, then x must be a boundary point of

S. In other words, given S ⊂ Rn and x ∈ Rn, there are exactly three possibilities:

x is an interior point of S, or x is an interior point of Sc, or x is a boundary point

of S.

1.4 Proposition. Suppose S ⊂ Rn.

a. S is open ⇐⇒ every point of S is an interior point.

b. S is closed ⇐⇒ Sc is open.
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Proof. Every point of S is either an interior point or a boundary point; thus S is

open ⇐⇒ every point of S is an interior point. On the other hand, S is closed

⇐⇒ it contains all of ∂S, which is the same as ∂(Sc); this happens precisely when

Sc contains none of its boundary points, i.e., when Sc is open.

EXAMPLE 1. Let S be B(ρ,0), the ball of radius ρ about the origin. First,

given x ∈ S, let r = ρ− |x|. If |y−x| < r, then by the triangle inequality we

have |y| ≤ |y − x|+ |x| < ρ, so that B(r,x) ⊂ S. Therefore, every x ∈ S is

an interior point of S, so S is open. Second, a similar calculation shows that if

|x| > ρ then B(r,x) ⊂ Sc where r = |x|−ρ, so every point with |x| > ρ is an

interior point of Sc. On the other hand, if |x| = ρ, then cx ∈ S for 0 < c < 1
and cx ∈ Sc for c ≥ 1, and |cx − x| = |c − 1|ρ can be as small as we please,

so x is a boundary point. In other words, the boundary of S is the sphere of

radius ρ about the origin, and the closure of S is the closed ball {x : |x| ≤ ρ}.

EXAMPLE 2. Now let S be the ball of radius ρ about the origin together with

the “upper hemisphere” of its boundary:

S = B(ρ,0) ∪
{
x ∈ Rn : |x| = ρ and xn > 0

}
.

The calculations in Example 1 show that Sint is the open ball B(ρ,0); ∂S is

the sphere {x : |x| = ρ}, and S is the closed ball {x : |x| ≤ ρ}. The set S is

neither open nor closed.

EXAMPLE 3. In the real line (i.e., n = 1), let S be the set of all rational

numbers. Since every ball in R — that is, every interval — contains both

rational and irrational numbers, every point of R is a boundary point of S. The

set S is neither open nor closed; its interior is empty; and its closure is R.

Subsets of Rn are often specified in terms of equations or inequalities — for

example, by an expression of the form

(1.5) S =
{
x ∈ Rn : f(x)� 0

}
,

where � denotes one of the relations =, <, >, ≤, ≥. (Taking the quantity on the

right of � to be 0 is no restriction; just move all the terms over to the left side.) We

anticipate some results from §1.3 in giving the following rule of thumb: Sets defined

by strict inequalities are open; sets defined by equalities or weak inequalities are

closed. More precisely, if S is given by (1.5) where the function f is continuous,

then S is open if � denotes < or >, and S is closed if � denotes =, ≤, or ≥. The

reader may feel free to use this rule in doing the exercises.
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EXERCISES

1. For each of the following sets S in the plane R2, do the following: (i) Draw a

sketch of S. (ii) Tell whether S is open, closed, or neither. (iii) Describe Sint,

S, and ∂S. (These descriptions should be in the same set-theoretic language as

the description of S itself given here.)

a. S = {(x, y) : 0 < x2 + y2 ≤ 4}.
b. S = {(x, y) : x2 − x ≤ y ≤ 0}.
c. S = {(x, y) : x > 0, y > 0, and x+ y > 1}.
d. S = {(x, y) : y = x3}.
e. S = {(x, y) : x > 0 and y = sin(1/x)}.
f. S = {(x, y) : x2 + y2 < 1} \ {(x, 0) : x < 0}.
g. S = {(x, y) : x and y are rational numbers in [0, 1]}.

2. Show that for any S ⊂ Rn, Sint is open and ∂S and S are both closed. (Hint:

Use the fact that balls are open, proved in Example 1.)

3. Show that if S1 and S2 are open, so are S1 ∪ S2 and S1 ∩ S2.

4. Show that if S1 and S2 are closed, so are S1 ∪ S2 and S1 ∩ S2. (One way is to

use Exercise 3 and Proposition 1.4b.)

5. Show that the boundary of S is the intersection of the closures of S and Sc.

6. Give an example of an infinite collection S1, S2, . . . of closed sets whose union⋃∞
j=1 Sj is not closed.

7. There are precisely two subsets of Rn that are both open and closed. What are

they?

8. Give an example of a set S such that the interior of S is unequal to the interior

of the closure of S.

9. Show that the ball of radius r about a is contained in the ball of radius r + |a|
about the origin. Conclude that a set S ⊂ Rn is bounded if it is contained in

some ball (whose center can be anywhere in Rn).

1.3 Limits and Continuity

We now commence our study of functions defined on Rn or subsets of Rn. For

the most part we shall be dealing with real-valued functions, but in many situations

we shall deal with vector-valued or complex-valued functions, that is, functions

whose values lie in Rk or C. For our present purposes we can regard C as R2 by

identifying the complex number u+ iv with the ordered pair (u, v), so it is enough

to consider vector-valued functions. But we begin with the real-valued case.
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Suppose f is a real-valued function defined on Rn. We say that

lim
x→a

f(x) = L,

and call L the limit of f(x) as x approaches a, if f(x) becomes as close as we

wish to L provided x is sufficiently close to, but not equal to, a. More formally,

the statement limx→a f(x) = L means that for any positive number ǫ there is a

positive number δ so that

(1.6) |f(x)− L| < ǫ whenever 0 < |x− a| < δ.

This condition can be rephrased in terms of the individual components xj − aj of

x − a, as follows: limx→a f(x) = L if and only if for every positive number ǫ
there is a positive number δ′ so that

(1.7) |f(x)− L| < ǫ whenever 0 < max
(
|x1 − a1|, . . . , |xn − an|

)
< δ′.

The equivalence of (1.6) and (1.7) follows from (1.3): If (1.6) is satisfied, then

(1.7) is satisfied with δ′ = δ/
√
n; and if (1.7) is satisfied, then (1.6) is satisfied

with δ = δ′.
More generally, we can consider functions f that are only defined on a subset

S of Rn and points a that lie in the closure of S. The definition of limx→a f(x) is

the same as before except that x is restricted to lie in the set S. It may be necessary,

for the sake of clarity, to specify this restriction explicitly; for this purpose we use

the notation

lim
x→a, x∈S

f(x).

In particular, for a function f on the real line we often need to consider the one-

sided limits

lim
x→a+

f(x) = lim
x→a, x>a

f(x) and lim
x→a−

f(x) = lim
x→a, x<a

f(x).

For example, let f : R → R be the function defined by f(x) = x + 1 for |x| ≤ 1
and f(x) = 0 for |x| > 1. Then limx→1 f(x) does not exist, but limx→1− f(x) = 2
and limx→1+ f(x) = 0.

Notice that the definition of limx→a f(x) does not involve the value f(a) at

all; only the values of f at points near a but unequal to a are relevant. Indeed, f
need not even be defined at a — a situation that arises, for example, in the limits

that define derivatives. On the other hand, if limx→a f(x) and f(a) both exist and

are equal, that is, if

lim
x→a

f(x) = f(a),
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then f is said to be continuous at a.

If f is continuous at every point of a set U ⊂ Rn, f is said to be continuous on

U . Going back to the condition (1.6) that defines limits, we see that the continuity

of f on U is equivalent to the following condition: For every positive number ǫ and

every a ∈ U there is a positive number δ so that

(1.8) |f(x)− f(a)| < ǫ whenever |x− a| < δ.

Informally speaking, f is continuous if changing the input values by a small amount

changes the output values by only a small amount.

The same definitions apply equally well to vector-valued functions, that is,

functions f with values in Rk for some k > 1. In this case the limit L is an el-

ement of Rk, and |f(x) − L| is the norm of the vector f(x) − L. In view of (1.3),

it is clear that

lim
x→a

f(x) = L ⇐⇒ lim
x→a

fj(x) = Lj for j = 1, . . . , k.

Thus the study of limits and continuity of vector-valued functions is easily reduced

to the scalar case, to which we now return out attention.

We often express the relation limx→a f(x) = L informally by saying that f(x)
approaches L as x approaches a. In one dimension this works quite well; we can

envision x as the location of a particle that moves toward a from the right or the

left. But in higher dimensions there are infinitely many different paths along which

a particle might move toward a, and for the limit to exist one must get the same

result no matter which path is chosen. It is safer to abandon the “dynamic” picture

of a particle moving toward a; we should simply think in terms of f(x) being close

to L provided that x is close to a, without reference to any motion.

EXAMPLE 1. Let f(x, y) =
xy

x2 + y2
if (x, y) 6= (0, 0), and let f(0, 0) =

0. Show that lim(x,y)→(0,0) f(x, y) does not exist — and, in particular, f is

discontinuous at (0, 0).
Solution. First, note that f(x, 0) = f(0, y) = 0 for all x and y, so

f(x, y) → 0 as (x, y) approaches (0, 0) along the x-axis or the y-axis. But

if we consider other straight lines passing through the origin, say y = cx, we

have f(x, cx) = cx2/(x2 + c2x2) = c/(1 + c2), so the limit as (x, y) ap-

proaches (0, 0) along the line y = cx is c/(1 + c2). Depending on the value

of c, this can be anything between −1
2 and 1

2 (these two extreme values being

achieved when c = −1 or c = 1). So there is no limit as (x, y) approaches

(0, 0) unrestrictedly.
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The argument just given suggests the following line of thought. We wish to

know if limx→a f(x) exists. We look at all the straight lines passing through a

and evaluate the limit of f(x) as x approaches a along each of those lines by one-

variable techniques; if we always get the same answer L, then we should have

limx→a f(x) = L, right? Unfortunately, this doesn’t work:

EXAMPLE 2. Let g(x, y) =
x2y

x4 + y2
if (x, y) 6= (0, 0) and g(0, 0) = 0. Again

we have g(x, 0) = g(0, y) = 0, so the limit as (x, y) → (0, 0) along the

coordinate axes is 0. Moreover, if c 6= 0,

g(x, cx) =
cx4

x4 + c2x2
=

cx

c2 + x2
→ 0 as x→ 0,

so the limit as (x, y)→ (0, 0) along any other straight line is also 0. But if we

approach along a parabola y = cx2, we get

g(x, cx2) =
cx3

x4 + c2x4
=

c

1 + c2
,

which can be anything between −1
2 and 1

2 as before, so the limit does not

exist. (The similarity with Example 1 is not accidental: If f is the function in

Example 1 we have g(x, y) = f(x2, y).)

After looking at examples like this one, one might become discouraged about

the possibility of ever proving that limits do exist! But things are not so bad. If f is a

continuous function, limx→a f(x) is simply f(a). Moreover, most of the functions

of several variables that one can easily write down are built up from continuous

functions of one variable by using the arithmetic operations plus composition, and

these operations all preserve continuity (except for division when the denominator

vanishes).

Here are the precise statements and proofs of the fundamental results. (The

reader may wish to skip the proofs; they are of some value as illustrations of the sort

of formal arguments involving limits that are important in more advanced analysis,

but they contribute little to an intuitive understanding of the results.)

1.9 Theorem. Suppose f : Rn → Rm is continuous on U ⊂ Rn and g : Rm → Rk

is continuous on f(U) ⊂ Rm. Then the composite function g ◦ f : Rn → Rk is

continuous on U .

Proof. Let ǫ > 0 and a ∈ U be given, and let b = f(a). Since g is continuous on

f(U), we can choose η > 0 so that |g(y)−g(b)| < ǫwhenever |y−b| < η. Having
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chosen this η, since f is continuous on U we can find δ > 0 so that |f(x)− b| < η
whenever |x− a| < δ. Thus,

|x− a| < δ =⇒ |f(x)− f(a)| < η =⇒ |g(f(x)) − g(f(a))| < ǫ,

which says that g ◦ f is continuous on U .

1.10 Theorem. Let f1(x, y) = x + y, f2(x, y) = xy, and g(x) = 1/x. Then f1
and f2 are continuous on R2 and g is continuous on R \ {0}.

Proof. To prove continuity of f1 and f2, we need to show that lim(x,y)→(a,b) x+y =
a + b and lim(x,y)→(a,b) xy = ab for every a, b ∈ R. That is, given ǫ > 0 and

a, b ∈ R, we need to find δ > 0 so that if |x − a| < δ and |y − b| < δ, then (i)

|(x + y) − (a + b)| < ǫ or (ii) |xy − ab| < ǫ. For (i) we can simply take δ = 1
2ǫ,

for if |x− a| < 1
2ǫ and |y − b| < 1

2ǫ, then

|(x+ y)− (a+ b)| = |(x− a) + (y − b)| ≤ |x− a|+ |y − b| < 1
2ǫ+

1
2ǫ = ǫ.

For (ii) we observe that xy − ab = (x− a)y + a(y − b), so we can make xy − ab
small by making the two terms on the right small. Indeed, let

δ = min

(
1,

ǫ

2(|a|+ 1)
,

ǫ

2(|b| + 1)

)
.

If |x− a| < δ and |y − b| < δ, then |y| < |b|+ δ ≤ |b|+ 1, so

|xy − ab| ≤ |x− a||y|+ |a||y − b|
≤ ǫ

2(|b|+ 1)
(|b|+ 1) + |a| ǫ

2(|a| + 1)
<
ǫ

2
+
ǫ

2
= ǫ.

This proves the continuity of f1 and f2. As for g, to show that limx→a 1/x = 1/a
for a 6= 0, we observe that

1

x
− 1

a
=
a− x
ax

.

Given ǫ > 0, let δ be the smaller of the numbers 1
2 |a| and 1

2ǫa
2. If |x−a| < δ, then

|a| ≤ |a− x|+ |x| < 1
2 |a|+ |x| and hence |x| > 1

2 |a|, so

∣∣∣∣
x− a
ax

∣∣∣∣ <
∣∣∣∣
ǫa2

2ax

∣∣∣∣ = ǫ
∣∣∣ a
2x

∣∣∣ < ǫ,

as desired.

1.11 Corollary. The function f3(x, y) = x− y is continuous on R2, and the func-

tion f4(x, y) = x/y is continuous on {(x, y) : y 6= 0}.
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Proof. With notation as in Theorem 1.10, we have f4(x, y) = f2(x, g(y)), so f4 is

the composition of continuous mappings and hence is continuous on the set where

y 6= 0. Likewise, f3(x, y) = f1(x, f2(−1, y)), so f3 is continuous. (Alternatively,

continuity for f3 may be proved in exactly the same way as for f1.)

1.12 Corollary. The sum, product, or difference of two continuous functions is

continuous; the quotient of two continuous functions is continuous on the set where

the denominator is nonzero.

Proof. Combine Theorem 1.10 and Corollary 1.11 with Theorem 1.9. For example,

if f and g are continuous functions on U ⊂ Rn, then f + g is continuous because

it is the composition of the continuous map (f, g) from U to R2 and the continuous

map (x, y) 7→ x+y from R2 to R. Likewise for the other arithmetic operations.

The elementary functions of a single variable (polynomials, trig functions, ex-

ponential functions, etc.) are all continuous on their domains of definition, and

elementary functions of several variables are generally built up out of functions of

one variable by the arithmetic operations and composition. The preceding results

therefore allow the continuity of such functions to be established almost immedi-

ately in most cases. For example, the function ϕ(x, y) =
sin(3x+ 2y)

x2 − y is contin-

uous everywhere except along the parabola y = x2, because it is built up from the

continuous functions of one variable 3x, 2y, x2, and −y by taking sums (3x + 2y
and x2 − y), composing with the sine function (sin(3x + 2y)), and then taking a

quotient. For another example, the function ψ(x, y) = xy, defined on the region

where x > 0, is continuous there, because it can be rewritten as ψ(x, y) = ey log x,

which is assembled from the (continuous) exponential and logarithmic functions

and the operation of multiplication (y · log x). Similarly, the functions in Examples

1 and 2 are continuous everywhere except at the origin.

Let us look at one more example:

EXAMPLE 3. Let h(x, y) =
xy(x2 − y2)
x2 + y2

for (x, y) 6= (0, 0) and h(0, 0) = 0.

Evaluate lim(x,y)→(2,3) h(x, y) and lim(x,y)→(0,0) h(x, y). Is h continuous at

(0, 0)?
Solution. The first limit is easy: Clearly h is continuous everywhere except

at the origin, so lim(x,y)→(2,3) h(x, y) = h(2, 3) = 6(4 − 9)/(4 + 9) = −30
13 .

The behavior of h at the origin requires a closer examination. Since h(x, 0) = 0
for all x, if the limit exists it must equal 0. Experimentation with lines and

parabolas as in Examples 1 and 2 fails to yield any evidence to the contrary.
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In fact, the limit is 0, and this can be established with a little ad hoc estimat-

ing. Clearly |x2 − y2| ≤ x2 + y2, so |h(x, y)| ≤ |xy|. But xy → 0 as

(x, y)→ (0, 0), so h(x, y), being even smaller in absolute value than xy, must

also approach 0. Thus lim(x,y)→(0,0) h(x, y) = 0 and h is continuous at (0, 0).

We now establish the relation between inequalities on continuous functions and

open and closed sets that was mentioned at the end of the preceding section.

1.13 Theorem. Suppose f : Rn → Rk is continuous and U is a subset of Rk, and

let S = {x ∈ Rn : f(x) ∈ U}. Then S is open if U is open, and S is closed if U is

closed.

Proof. Suppose U is open. We shall show that S is open by showing that every

point a in S is an interior point of S. If a ∈ S, then f(a) ∈ U . Since U is open,

some ball centered at f(a) is contained in U ; that is, there is a positive number ǫ
such that every y ∈ Rk such that |y − f(a)| < ǫ is in U . Since f is continuous,

there is a positive number δ such that |f(x) − f(a)| < ǫ whenever |x − a| < δ.
But this means that f(x) ∈ U whenever |x − a| < δ, that is, x ∈ S whenever

|x− a| < δ. Thus a is an interior point of S.

On the other hand, suppose U is closed. Then the complement of U in R is open

by Proposition 1.4b, so the set S′ = {x : f(x) ∈ U c} is open by the argument just

given. But S′ is just the complement of S in Rn, so S is closed by Proposition 1.4b

again.

The result about the openness or closedness of sets defined by inequalities or

equations at the end of §1.2 is a corollary of Theorem 1.13. For example, if f :
Rn → R is a continuous function, the set {x : f(x) > 0} (resp.2 {x : f(x) = 0})
is of the form {x : f(x) ∈ U} where U = (0,∞) (resp. U = {0}), and this U is

open (resp. closed).

Theorem 1.13 can be generalized to functions that are only defined on subsets of

Rn; with notation as above, the correct statement is that if U is open (resp. closed)

then S is the intersection of the domain of f with an open (resp. closed) set. (For

example, the set {x ∈ R : log x ≤ 0}, namely (0, 1], is the intersection of the

domain of log, namely (0,∞), with the closed set [0, 1]. On the other hand, the set

{x ∈ R :
√
x < 1}, namely [0, 1), is the intersection of the domain of the square

root function, namely [0,∞), with the open set (−1, 1).) In particular, if U and the

domain of f are both open (resp. closed), then so is S.

The converse of Theorem 1.13 is also true; see Exercise 8.

2“resp.” is an abbreviation for “respectively.”
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EXERCISES

1. For the following functions f , show that lim(x,y)→(0,0) f(x, y) does not ex-

ist.

a. f(x, y) =
x2 + y√
x2 + y2

b. f(x, y) =
x

x4 + y4

c. f(x, y) =
x4y4

(x2 + y4)3

2. For the following functions f , show that lim(x,y)→(0,0) f(x, y) = 0.

a. f(x, y) =
x2y2

x2 + y2
b. f(x, y) =

3x5 − xy4
x4 + y4

3. Let f(x, y) = x−1 sin(xy) for x 6= 0. How should you define f(0, y) for

y ∈ R so as to make f a continuous function on all of R2?

4. Let f(x, y) = xy/(x2 + y2) as in Example 1. Show that, although f is dis-

continuous at (0, 0), f(x, a) and f(a, y) are continuous functions of x and y,

respectively, for any a ∈ R (including a = 0). We say that f is separately

continuous in x and y.

5. Let f(x, y) = y(y − x2)/x4 if 0 < y < x2, f(x, y) = 0 otherwise. At which

point(s) is f discontinuous?

6. Let f(x) = x if x is rational, f(x) = 0 if x is irrational. Show that f is

continuous at x = 0 and nowhere else.

7. Let f(x) = 1/q if x = p/q where p and q are integers with no common factors

and q > 0, and f(x) = 0 if x is irrational. At which points, if any, is f
continuous?

8. Suppose f : Rn → Rk has the following property: For any open set U ⊂ Rk,

{x : f(x) ∈ U} is an open set in Rn. Show that f is continuous on Rn. Show

also that the same result holds if “open” is replaced by “closed.”

9. Let U and V be open sets in Rn and let f be a one-to-one mapping from U onto

V (so that there is an inverse mapping f−1 : V → U ). Suppose that f and f−1

are both continuous. Show that for any set S such that S ⊂ U and f(S) ⊂ V
we have f(∂S) = ∂(f(S)).

1.4 Sequences

Generally speaking, a sequence is a collection of mathematical objects that is in-

dexed by the positive integers. The objects in question can be of any sort, such as
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numbers, n-dimensional vectors, sets, etc. If the kth object in the sequence is Xk,

the sequence as a whole is usually denoted by {Xk}∞k=1, or just by {Xk}∞1 or even

{Xk} if there is no possibility of confusion. (We shall comment further on this

notation below.) Alternatively, we can write out the sequence as X1,X2,X3, . . ..
We speak of a sequence in a set S if the objects of the sequence all belong to S.

EXAMPLE 1.

a. A sequence of numbers: 1, 4, 9, 16, . . .. The kth term in the sequence is k2,

and the sequence as a whole may be written as {k2}∞1 .

b. A sequence of intervals: (−1, 1), (−1
2 ,

1
2), (−1

3 ,
1
3 ), (−1

4 ,
1
4), . . .. The kth

term in the sequence is the interval (− 1
k ,

1
k ), and the sequence as a whole

may be written as {(− 1
k ,

1
k )}∞1 .

Sequences can be defined by formulas, as in the examples above: xk = k2, or

Ik = (− 1
k ,

1
k ). They can also be defined by recursion (or induction), that is, by

specifying the first term or the first few terms and then giving a rule that tells how

to obtain the kth term from the preceding ones.

EXAMPLE 2. The Fibonacci sequence is the sequence

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . . ,

in which the first two terms are equal to 1 and each of the remaining terms is

the sum of the two preceding ones (that is, xk = xk−2 + xk−1).

EXAMPLE 3. Define a sequence {xk} as follows: x1 is a given positive integer

a. If xk is odd, then xk+1 = 3xk + 1; if xk is even, then xk+1 = xk/2. For

example, if a = 13, the sequence is

13, 40, 20, 10, 5, 16, 8, 4, 2, 1, 4, 2, 1, 4, 2, 1, . . . ,

ending in the infinite repetition of (4, 2, 1). It is a famous unsolved problem (as

of this writing) to prove or disprove that this sequence eventually ends in the

repeating figure (4, 2, 1) no matter what initial number a is chosen. (Try a few

values of a to see how it works! For more information, see Lagarias [13].)

It is convenient to make the definition of sequence a little more flexible by

allowing the index k to begin with something other than 1. Thus, we may speak of a

sequence {Xk}∞0 whose objects are X0,X1,X2, . . ., or a sequence {Xk}∞7 , whose

objects are X7,X8,X9, . . .. We may also speak of a finite sequence whose terms

are indexed by a finite collection of integers, such as {Xk}81 (a finite sequence of

eight terms), or a doubly infinite sequence whose terms are indexed by the whole

set of integers: {Xk}∞−∞.
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Strictly speaking, a sequence in a set S is a rule that assigns to each positive

integer (or each integer in some other suitable set, as indicated above) an element

of S, in other words, a function or mapping from the positive integers to S. The

common functional notation would be to write X(k) instead of Xk for the value of

this mapping at the integer k, but for sequences it is customary to write the input

variable k as a subscript.

It is sometimes necessary to distinguish between the sequence {Xk}∞1 and the

set of values (i.e., the range) of the sequence, because a sequence may assume the

same value many times. For example, consider the sequence of numbers ak =
(−1)k . Then the sequence {ak}∞1 is the function on the positive integers whose

values are alternately −1 and +1, which may be written out as

−1, 1,−1, 1,−1, 1, . . . ,

but its set of values is just the two-element set {−1, 1}. Since curly brackets are

commonly used to specify sets (as we just did with {−1, 1}), the notation {Xk}∞1
for a sequence invites confusion with the set whose elements are the Xk’s, and for

this reason some authors use other notations such as 〈Xk〉∞1 . However, the notation

{Xk}∞1 is by far the most common one, and in practice it rarely causes problems,

so we shall stick with it.

For the remainder of this section we shall be concerned with sequences of num-

bers or n-dimensional vectors. We reserve the letter n for the dimension and use

letters such as k and j for the index on a sequence. Thus, for example, if {xk} is a

sequence in Rn, the components of the vector xk are (xk1, . . . , xkn).

A sequence {xk} in Rn is said to converge to the limit L if for every ǫ > 0
there is an integer K such that |xk − L| < ǫ whenever k > K; otherwise, {xk}
diverges. If {xk} converges to L, we write xk → L or L = limk→∞ xk.

We say that limk→∞ xk = ∞ (or +∞) if for every C > 0 there is an integer

K such that xk > C whenever k > K , and limk→∞ xk = −∞ if for every C > 0
there is an integer K such that xk < −C whenever k > K . (However, a sequence

whose limit is ±∞ is still called divergent.)

It follows easily from the estimates (1.3) that xk → L if and only if each

component of xk converges to the corresponding component of L, that is, xkm →
Lm for 1 ≤ m ≤ n. The study of convergence of sequences of vectors is thus

reducible to the study of convergence of numerical sequences.

EXAMPLE 4.

a. The sequence {1/k} converges to 0, since |(1/k) − 0| < ǫ whenever k >
(1/ǫ).

b. The sequence {k2} diverges; more precisely, limk→∞ k2 =∞.
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c. The sequence {xk} = {(−1)k} diverges, but the subsequence {yj} =
{x2j−1} of odd-numbered terms converges to −1, and the subsequence

{zj} = {x2j} of even-numbered terms converges to 1.

EXAMPLE 5. If C is any positive number, Ck/k! → 0 as k → ∞ (that is, k!
grows faster than exponentially as k → ∞). Indeed, pick an integer K > 2C .

For k > K , we then have

0 <
Ck

k!
=
CK

K!
· C

K + 1
· C

K + 2
· · · C

k
<
CK

K!
· 1
2
· 1
2
· · · 1

2
=
CK

K!
· 1

2k−K
.

But CK/K! is a fixed number, and 1/2k−K → 0 as k →∞.

Sequential convergence is often a useful tool in studying questions relating to

open and closed sets, continuity, and related matters. The fundamental results are

the following two theorems.

1.14 Theorem. Suppose S ⊂ Rn and x ∈ Rn. Then x belongs to the closure of S
if and only if there is a sequence of points in S that converges to x.

Proof. If {xk} is a sequence in S that converges to x, then every neighborhood of

x contains elements of S — namely, xk where k is sufficiently large — so x is in

the closure of S. Conversely, suppose x is in the closure of S. If x is in S itself, let

xk = x for all k. If not, for each k the ball of radius 1/k about x contains points

of S; pick one and call it xk. In either case, {xk} is a sequence of points in S that

converges to x.

1.15 Theorem. Given S ⊂ Rn, a ∈ S, and f : S → Rm, the following are

equivalent:

a. f is continuous at a.

b. For any sequence {xk} in S that converges to a, the sequence {f(xk)} con-

verges to f(a).

Proof. Suppose f is continuous at a and xk → a. Given ǫ > 0, we wish to show

that |f(xk) − f(a)| < ǫ provided k is sufficiently large. But by the continuity of

f , there exists δ > 0 such that |f(xk) − f(a)| < ǫ when |xk − a| < δ, and since

xk → a, there exists an integer K such that |xk − a| < δ whenever k > K.

Combining these, we get |f(xk)− f(a)| < ǫ whenever k > K, as desired.

On the other hand, suppose f is not continuous at a. This means that there

exists ǫ > 0 such that for every δ > 0 there is a point x ∈ S with |x − a| < δ but

|f(x)−f(a)| ≥ ǫ. Taking δ equal to 1, 12 ,
1
3 , . . ., we see that for each positive integer

k there is a point xk ∈ S such that |xk − a| < k−1 but |f(xk) − f(a)| ≥ ǫ. The
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sequence {xk} then converges to a, but the sequence {f(xk)} does not converge to

f(a).

We have shown that if (a) is true then (b) is true, and that if (a) is false then (b)

is false, so the proof is complete.

EXERCISES

1. For each of the following sequences {xk}, find the limit or show that the se-

quence diverges.

a. xk =

√
2k + 1

2
√
k + 1

. b. xk =
sin k

k
. c. xk = sin

kπ

3
.

2. Let xk =
3k + 4

k − 5
; then limk→∞ xk = 3. Given ǫ > 0, find an integer K so

that |xk − 3| < ǫ whenever k > K.

3. Define a sequence {xk} recursively by x1 = 1 and xk+1 = kxk/(k + 1) for

k ≥ 1. Find an explicit formula for xk. What is limk→∞ xk?

4. Let {xk} and {yk} be sequences in R such that xk → a and yk → b. Show that

xk + yk → a+ b and xkyk → ab. (Use Theorems 1.10 and 1.15.)

5. Given f : Rn → Rm; show that limx→a f(x) = l if and only if f(xk) → l for

every sequence {xk} that converges to a. (Adapt the proof of Theorem 1.15.)

A point a ∈ Rn is called an accumulation point of a set S ⊂ Rn if every neigh-

borhood of a contains infinitely many points of S. (The point a itself may or may

not belong to S. Some people use the terms “limit point” or “cluster point” instead

of “accumulation point.”) For example, the accumulation points of the interval

(−1, 1) in R are the points in the closed interval [−1, 1], and the only accumulation

point of the set {1, 12 , 13 , 14 , . . .} is 0.

6. Show that a is an accumulation point of S if and only if there is a sequence

{xk} of points in S, none of which are equal to a, such that xk → a. (Adapt

the proof of Theorem 1.14.)

7. Show that the closure of S is the union of S and the set of all its accumulation

points.
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1.5 Completeness

The essential properties of the real number system that underlie all the theorems of

calculus are summarized by saying that R is a complete ordered field. We explain

the meaning of these terms one by one:

A field is a set on which the operations of addition, subtraction, multiplication,

and division (by any nonzero number) are defined, subject to all the usual laws of

arithmetic: commutativity, associativity, etc. Besides the real numbers, examples of

fields include the rational numbers and the complex numbers, and there are many

others. (For more precise definitions and more examples, consult a textbook on

abstract algebra such as Birkhoff and Mac Lane [4] or Hungerford [8].)

An ordered field is a field equipped with a binary relation < that is transitive

(if a < b and b < c, then a < c) and antisymmetric (if a 6= b, then either a < b or

b < a, but not both), and interacts with the arithmetic operations in the usual way

(if a < b then a+ c < b+ c for any c, and also ac < bc if c > 0). The real number

and rational number systems are ordered fields (with the usual meaning of “<”),

but the complex number system is not.

Finally, completeness is what distinguishes the real numbers from the smaller

ordered fields such as the rational numbers and makes possible the transition from

algebra to calculus; it means that there are “no holes” in the real number line. There

are several equivalent ways of stating the completeness property precisely. The one

we shall use as a starting point is the existence of least upper bounds.

If S is a subset of R, an upper bound for S is a number u such that x ≤ u for

all x ∈ S, and a lower bound for S is a number l such that x ≥ l for all x ∈ S.

The Completeness Axiom. Let S be a nonempty set of real numbers. If S has

an upper bound, then S has a least upper bound, called the supremum of S and

denoted by supS. If S has a lower bound, then S has a greatest lower bound,

called the infimum of S and denoted by inf S.

If S has no upper bound, we shall define supS to be +∞, and if S has no lower

bound, we shall define inf S to be −∞.

EXAMPLE 1.

a. If S is the interval (0, 1], then supS = 1 and inf S = 0.

b. If S = {1, 12 , 13 , 14 , . . .}, then supS = 1 and inf S = 0.

c. If S = {1, 2, 3, 4, . . .}, then supS =∞ and inf S = 1.

d. If S is the single point a, then supS = inf S = a.

e. If S = {x : x is rational and x2 < 2}, then supS =
√
2 and inf S =

−
√
2. This is an example of a set of rational numbers that has no supremum

or infimum within the set of rational numbers.
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If S has an upper bound, the number a = supS is the unique number such

that

i. x ≤ a for every x ∈ S and

ii. for every ǫ > 0 there exists x ∈ S with x > a− ǫ.
(i) expresses the fact that a is an upper bound, whereas (ii) expresses the fact that

there is no smaller upper bound. In particular, while supS may or may not belong

to S itself, it always belongs to the closure of S. Similarly for inf S if S is bounded

below.

The completeness of the real number system plays a crucial role in establishing

the convergence of numerical sequences. The most basic result along these lines is

the following. First, some terminology: A sequence {xk} is called bounded if all

the numbers xn are contained in some bounded interval. A sequence {xn} is called

increasing if xn ≤ xm whenever n ≤ m, and decreasing if xn ≥ xm whenever

n ≤ m. A sequence that is either increasing or decreasing is called monotone (or

monotonic).

1.16 Theorem (The Monotone Sequence Theorem). Every bounded monotone se-

quence in R is convergent. More precisely, the limit of an increasing (resp. decreas-

ing) sequence is the supremum (resp. infimum) of its set of values.

Proof. Suppose {xk} is a bounded increasing sequence. Let l be the supremum of

the set of values {x1, x2, . . .}; I claim that xk → l. Since l is an upper bound, we

have xk ≤ l for all k. On the other hand, since l is the least upper bound, for any

ǫ > 0 there is some K for which xK > l − ǫ. Since the xk’s increase with k, we

also have xk > l − ǫ for all k > K . Therefore, l − ǫ < xk ≤ l for all k > K , and

this shows that xk → l.
Similarly, if {xk} is decreasing, it converges to inf{x1, x2, . . .}.

EXAMPLE 2. Given a positive real number a, define a sequence {xk} recur-

sively as follows. x1 is some fixed positive real number, and for k ≥ 2,

xk =
1

2

(
xk−1 +

a

xk−1

)
.

Observe that if xk−1 > 0 then xk > 0 too; since we assume that x1 > 0,

every term of this sequence is positive. (In particular, division by zero is never

a problem.) We claim that xk →
√
a, no matter what initial x1 is chosen.

Indeed, if we assume that the sequence converges to a nonzero limit L, by

letting k →∞ in the recursion formula we see that

L =
1

2

(
L+

a

L

)
, or L2 = 1

2L
2 + 1

2a,
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so that L2 = a. Since xk > 0 for every k, we must have L > 0, and hence

L =
√
a. But this argument is without force until we know that {xk} converges

to a nonzero limit.

To verify this, observe that for k ≥ 2,

x2k =
1
4 (x

2
k−1 + 2a+ a2x−2

k−1) = a+ 1
4 (x

2
k−1 − 2a+ a2x−2

k−1)

= a+ 1
4 (xk−1 − ax−1

k−1)
2 > a.

Thus, starting with the second term, the sequence {xk} is bounded below by√
a > 0, and it is decreasing:

xk+1 − xk = 1
2(ax

−1
k − xk) < 1

2(xk − xk) = 0.

The convergence to a limit L ≥ √a now follows from the monotone sequence

theorem. (The verification that {xk} converges is not just a formality; see

Exercise 4.)

The sequence {xk} gives a computationally efficient recursive algorithm

for computing square roots.

The following consequence of the monotone sequence theorem is also a useful

technical tool.

1.17 Theorem (The Nested Interval Theorem). Let I1 = [a1, b1], I2 = [a2, b2],
. . . be a sequence of closed, bounded intervals in R. Suppose that (a) I1 ⊃ I2 ⊃
I3 ⊃ · · · , and (b) the length bk − ak of Ik tends to 0 as k → ∞. Then there is

exactly one point contained in all of the intervals Ik.

Proof. The condition I1 ⊃ I2 ⊃ I3 ⊃ · · · means that a1 ≤ a2 ≤ a3 ≤ · · · and

b1 ≥ b2 ≥ b3 ≥ · · · , so the sequences {ak} and {bk} are monotone. They are also

bounded, since all ak and bk are contained in I1; hence, by the monotone sequence

theorem, they are both convergent. Moreover, since bk − ak → 0, their limits are

equal. Call their common limit l. Then ak ≤ l ≤ bk for all k, so l ∈ Ik for all

n. No other point l′ can be common to all Ik, for the length of Ik is less than the

distance |l − l′| when k is sufficiently large.

It should be emphasized that the real point of the nested interval theorem is that

the intersection
⋂∞

1 In is nonempty; the fact that it can contain no more than one

point is pretty obvious from the assumption that the length of In tends to zero.

If {xk} is a sequence (in any set, not necessarily R), we may form a subse-

quence of {xk} by deleting some of the terms and keeping the rest in their original

order. More precisely, a subsequence of {xk} is a sequence {xkj}∞j=1 specified
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by a one-to-one, increasing map j → kj from the set of positive integers into it-

self. For example, by taking kj = 2j we obtain the subsequence of even-numbered

terms; by taking kj = j2 we obtain the subsequence of those terms whose index is

a perfect square, and so on.

The following theorem is one of the most useful results in the foundations of

analysis; it is one version of the Bolzano-Weierstrass theorem, whose general form

will be found in Theorem 1.21.

1.18 Theorem. Every bounded sequence in R has a convergent subsequence.

Proof. Let {xk} be a bounded sequence, say xk ∈ [a, b] for all k. Bisect the interval

[a, b] — that is, consider the two intervals [a, 12 (a + b)] and [12 (a + b), b]. At least

one of these subintervals must contain xk for infinitely many k; call that subinterval

I1. (If both of them contain xk for infinitely many k, pick the one on the left.) Now

bisect I1. Again, one of the two halves must contain xk for infinitely many k; call

that half I2. Proceeding inductively, we obtain a sequence of intervals Ij , each one

contained in the preceding one, each one half as long as the preceding one, and

each one containing xk for infinitely many k. By the nested interval theorem, there

is exactly one point l contained in every Ij .
It is now easy to construct a subsequence of {xk} that converges to l, as follows.

Pick an integer k1 such that xk1 ∈ I1, then pick k2 > k1 such that xk2 ∈ I2, then

pick k3 > k2 such that xk3 ∈ I3, and so forth. By construction of the Ij’s, this

process can be continued indefinitely. Since xkj and l are both in Ij , and the length

of Ij is 2−j(b − a), we have |xkj − l| ≤ 2−j(b − a), which tends to 0 as j → ∞;

that is, xkj → l.

Theorem 1.18 generalizes easily to higher dimensions:

1.19 Theorem. Every bounded sequence in Rn has a convergent subsequence.

Proof. If |xk| ≤ C for all k, then the components xk1, . . . , xkn all lie in the interval

[−C,C]. Hence, for each m = 1, . . . , n we can extract a convergent subsequence

from the sequence of mth components, {xkm}∞k=1. The trouble is that the indices

on these subsequences might all be different, so we can’t put them together. (We

might have chosen the odd-numbered terms for m = 1 and the even-numbered

terms for m = 2, for example.) Instead, we have to proceed inductively. First

we choose a subsequence {xkj} such that the first components converge; then we

choose a sub-subsequence {xkji} whose second components also converge, and so

on until we find a (sub)nsequence whose components all converge.

Another way to express the completeness of the real number system is to say

that every sequence whose terms get closer and closer to each other actually con-

verges. To be more precise, a sequence {xk} in Rn is called a Cauchy sequence if
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xk −xj → 0 as k, j →∞, that is, if for every ǫ > 0 there exists an integer K such

that |xk − xj | < ǫ whenever k > K and j > K.

1.20 Theorem. A sequence {xk} in Rn is convergent if and only if it is Cauchy.

Proof. Suppose xk → l. Since xk − xj = (xk − l) − (xj − l), we have 0 ≤
|xk − xj | ≤ |xk − l|+ |xj − l|. Both terms on the right tend to zero as k, j →∞;

hence so does xk − xj . Thus {xk} is Cauchy.

Now suppose {xk} is Cauchy. Taking ǫ = 1 in the definition of “Cauchy,”

we see that there is an integer K such that |xk − xj| < 1 if k, j > K . Then

|xk| < |xK+1|+1 for all k > K, and it follows that the sequence {xk} is bounded.

By Theorem 1.18, there is a subsequence {xkj} that converges to a limit l. But then

since {xk} is Cauchy, the whole sequence must also converge to l. Indeed, given

ǫ > 0, there is an integer J such that |xkj − l| < 1
2ǫ if j > J , and there is an integer

K such that |xk−xm| < 1
2ǫ if k,m > K. Pick an integer j > J such that kj > K;

then for k > K we have

|xk − l| ≤ |xk − xkj |+ |xkj − l| < 1
2ǫ+

1
2ǫ = ǫ.

Therefore, xk → l.

EXERCISES

1. Find supS and inf S for the following sets S. Do these numbers belong to S
or not?

a. S = {x : (2x2 − 1)(x2 − 1) < 0}.
b. S = {(−1)k + 2−k : k ≥ 0}.
c. S = {x : arctan x ≥ 1}.

2. Construct a sequence {xk} that has subsequences converging to three different

limits.

3. Consider the sequence 1
2 ,

1
3 ,

2
3 ,

1
4 ,

2
4 ,

3
4 ,

1
5 ,

2
5 ,

3
5 ,

4
5 , . . ., obtained by listing the

rational numbers in (0, 1) with denominator n in increasing order, for n succe-

sively equal to 2, 3, 4, . . .. Show that for any a ∈ [0, 1], there is a subsequence

that converges to a. (Hint: Consider the decimal expansion of a.)

4. Given a real number a, define a sequence {xk} recursively by x1 = a, xk+1 =
x2k.

a. Show, as in Example 2, that if {xk} converges, its limit must be 0 or 1.

b. For which a is the limit equal to 0? equal to 1? nonexistent?



1.5. Completeness 29

5. Define a sequence {xk} recursively by x1 =
√
2, xk+1 =

√
2 + xk. Show by

induction that (a) xk < 2 and (b) xk < xk+1 for all k. Then show that limxk
exists and evaluate it.

6. Let rk be the ratio of the (k + 1)th term to the kth term of the Fibonacci

sequence (Example 2, §1.4). (Thus the first few rk’s are 1, 2, 32 ,
5
3 , . . .) Our

object is to show that limk→∞ rk is the “golden ratio” ϕ = 1
2(1 +

√
5), the

positive root of the equation x2 = x+ 1.

a. Show that

rk+1 =
rk + 1

rk
, rk+2 =

2rk + 1

rk + 1
.

b. Show that rk < ϕ if k is odd and rk > ϕ if k is even. Then show that

rk+2− rk is positive if k is odd and negative if k is even. (Hint: For x > 0
we have x2 < x+ 1 if x < ϕ and x2 > x+ 1 if x > ϕ.)

c. Show that the subsequences {r2j−1} and {r2j} of odd- and even-numbered

terms both converge to ϕ.

7. Let {xk} be a sequence in Rn and x a point in Rn. Show that some subsequence

of {xk} converges to x if and only if every ball centered at x contains xk for

infinitely many values of k.

8. Show that every infinite bounded set in Rn has an accumulation point. (See

Exercises 6–7 in §1.4.)

Let {xk}∞1 be a bounded sequence in R. For m = 1, 2, 3, . . . , let

Ym = sup{xm, xm+1, xm+2, . . .}, ym = inf{xm, xm+1, xm+2, . . .}.

Then the sequence {Ym} is bounded and decreasing, and {ym} is bounded and

increasing (because the sup and inf are being taken over fewer and fewer numbers

as m increases), so they both converge. The limits limYm and lim ym are called

the limit superior and limit inferior of the sequence {xk}, respectively; they are

denoted by lim supk→∞ xk and lim infk→∞ xk:

lim sup
k→∞

xk = lim
m→∞

(
sup{xk : k ≥ m}

)
, lim inf

k→∞
xk = lim

m→∞

(
inf{xk : k ≥ m}

)
.

The following exercises pertain to these ideas.

9. Show that lim supxk is the number a uniquely specified by the following prop-

erty: For any ǫ > 0, there are infinitely many k for which xk > a− ǫ but only

finitely many for which xk > a + ǫ. What is the corresponding condition for

lim inf xk?



30 Chapter 1. Setting the Stage

10. Show that there is a subsequence of {xk} that converges to lim supxk, and

one that converges to lim inf xk.

11. Show that if a ∈ R is the limit of some subsequence of {xk}, then lim inf xk ≤
a ≤ lim supxk.

12. Show that {xk} converges if and only if lim supxk = lim inf xk, in which

case this common value is equal to lim xk.

1.6 Compactness

A subset of Rn is called compact if it is both closed and bounded. (Note: The

notion of compactness can be extended to settings other than Rn, but a different

definition must be adopted; see the concluding paragraph of this section.) Com-

pactness is an important property, principally because it yields existence theorems

for limits in many situations. The fundamental result is the following theorem.

1.21 Theorem (The Bolzano-Weierstrass Theorem). If S is a subset of Rn, the

following are equivalent:

a. S is compact.

b. Every sequence of points in S has a convergent subsequence whose limit lies

in S.

Proof. Suppose S is compact. If {xk} is a sequence in S, it has a convergent sub-

sequence by Theorem 1.19 since S is bounded, and the limit lies in S by Theorem

1.14 since S is closed; thus (b) holds.

On the other hand, suppose S is not compact, i.e., S is either not closed or not

bounded. If S is not bounded, there is a sequence of points {xk} in S such that

|xk| → ∞. But then {xk} has no convergent subsequence, as any subsequence

must also satisfy |xkj | → ∞. If S is not closed, there is a point x that lies in S
but not in S. By Theorem 1.14 there is a sequence {xk} in S that converges to x.

Every subsequence also converges to x, which is not in S. Thus (b) is false if S is

either not closed or not bounded.

Remark. Every finite subset of Rn is obviously compact. If S is finite, (b) is

true because if {xk} is a sequence in S, then there must be a single point x ∈ S
such that xk = x for infinitely many k; the subsequence consisting of those xk’s

trivially converges to x.

The Bolzano-Weierstrass theorem paves the way to the fundamental connection

between continuity and compactness:
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1.22 Theorem. Continuous functions map compact sets to compact sets. That is,

suppose that S is a compact subset of Rn and f : S → Rm is continuous at every

point of S. Then the set

f(S) =
{
f(x) : x ∈ S

}

is also compact.

Proof. Suppose {yk} is a sequence in the image f(S). For each k there is a point

xk ∈ S such that yk = f(xk). Since S is compact, by the Bolzano-Weierstrass

theorem the sequence {xk} has a convergent subsequence {xkj} whose limit a

lies in S. Since f is continuous at a, by Theorem 1.15 the sequence {ykj} =
{f(xkj )} converges to the point f(a) ∈ f(S). Thus, every sequence in f(S) has a

subsequence whose limit lies in f(S). By the Bolzano-Weierstrass theorem again,

f(S) is compact.

It is not true, in general, that continuous functions map closed sets to closed

sets, or bounded sets to bounded sets. (See Exercises 1–2.) Only the combination

of closedness and boundedness is preserved.

An immediate consequence of Theorem 1.22 is the fundamental existence the-

orem for maxima and minima of real-valued functions.

1.23 Corollary (The Extreme Value Theorem). Suppose S ⊂ Rn is compact and

f : S → R is continuous. Then f has an absolute minimum value and an absolute

maximum value on S; that is, there exist points a,b ∈ S such that f(a) ≤ f(x) ≤
f(b) for all x ∈ S.

Proof. By Theorem 1.22, the set f(S) is a compact subset of R. Thus, it is

bounded, so inf f(S) and sup f(S) exist, and closed, so inf f(S) and sup f(S)
actually belong to f(S). But this says precisely that the set of values of f on S has

a smallest and a largest element, as desired.

The assumption that S is compact is necessary. If S is not closed or not

bounded, the function f might be unbounded, or its extreme values might occur

at points on the boundary of S that are not in S or “at infinity.” Here are a few

simple counterexamples with n = 1:

• f(x) = x, S = (0, 1). (The extreme values occur on the boundary.)

• f(x) = cot πx, S = (0, 1). (The values of f range from −∞ to∞.)

• f(x) = arctan x, S = R. (f approaches but does not achieve the extreme

values ±1
2π.)
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• f(x) = 3x − x3, S = R. (f has a local maximum at x = 1 and a local

minimum at x = −1, but no absolute maximum or minimum.)

Compactness also has another consequence that turns out to be extremely useful

in more advanced mathematical analysis, although its significance may not be very

clear at first sight. (It will not be used elsewhere in this book except in some of the

technical arguments in Appendix B, so it may be regarded as an optional topic.)

Suppose S is a subset of Rn. A collection U of subsets of Rn is called a covering

of S if S is contained in the union of the sets in U. For example, for each x ∈ S
we could pick an open ball Bx centered at x; then U = {Bx : x ∈ S} is a covering

of S.

1.24 Theorem (The Heine-Borel Theorem). If S is a subset of Rn, the following

are equivalent:

a. S is compact.

b. If U is any covering of S by open sets, there is a finite subcollection of U that

still forms a covering of S. (In brief: Every open covering of S has a finite

subcovering.)

Proof. The proof is given in Appendix B.1 (Theorem B.1).

Much of what we have done in this section and the preceding ones can be

generalized from subsets of Rn to subsets of more general spaces equipped with a

“distance function” that behaves more or less like the Euclidean distance d(x,y) =
|x − y|. (Such spaces are known as metric spaces; see DePree and Swartz [5],

Krantz [12], or Rudin [19].) For example, in studying the geometry of a surface

S in R3, one might want to take the “distance” between two points x,y ∈ S to

be not the straight-line distance |x − y| but the length of the shortest curve on S
that joins x to y. Another class of examples is provided by spaces of functions,

where the “distance” between two functions f and g can be measured in a number

of different ways; we shall say more about this in Chapter 8. In this general setting,

the Bolzano-Weierstrass and Heine-Borel theorems are no longer completely valid.

The conditions on a set S in Theorem 1.21b and Theorem 1.24b still imply that S is

closed and bounded, but not conversely. These conditions are still very important,

however, so a shift in terminology is called for. The condition in Theorem 1.24b —

that every open cover of S has a finite subcover — is usually taken as the definition

of compactness in the general setting, and the condition in Theorem 1.21b — that

every sequence in S has a subsequence that converges in S — is called sequential

compactness.
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EXERCISES

1. Give an example of

a. a closed set S ⊂ R and a continuous function f : R → R such that f(S)
is not closed;

b. an open set U ⊂ R and a continuous function f : R → R such that f(U)
is not open.

2. a. Give an example of a bounded set S ⊂ R \ {0} and a real-valued function

f that is defined and continuous on R \ {0} such that f(S) is not bounded.

b. However, show that if f : Rn → Rm is continuous everywhere and S ⊂
Rn is bounded, then f(S) is bounded.

3. Show that an infinite set S ⊂ Rn is compact if and only if every infinite subset

of S has an accumulation point that lies in S. (See Exercises 6–7 in §1.4 and

Exercise 8 in §1.5.)

4. Suppose S ⊂ Rn is compact, f : S → R is continuous, and f(x) > 0 for

every x ∈ S. Show that there is a number c > 0 such that f(x) ≥ c for every

x ∈ S.

5. (A generalization of the nested interval theorem) Suppose {Sk} is a sequence

of nonempty compact subsets of Rn such that S1 ⊃ S2 ⊃ S3 ⊃ . . .. Show that

there is at least one point contained in all of the Sk’s (that is,
⋂∞

1 Sk 6= ∅).

(This can be done using either the Bolzano-Weierstrass theorem or the Heine-

Borel theorem. Can you find both proofs?)

6. The distance between two sets U, V ⊂ Rn is defined to be

d(U, V ) = inf
{
|x− y| : x ∈ U, y ∈ V

}
.

a. Show that d(U, V ) = 0 if either of the sets U, V contains a point in the

closure of the other one.

b. Show that if U is compact, V is closed, and U ∩V = ∅, then d(U, V ) > 0.

c. Give an example of two closed sets U and V in R2 that have no point in

common but satisfy d(U, V ) = 0.

1.7 Connectedness

A set in Rn is said to be connected if it is “all in one piece,” that is, if it is not the

union of two nonempty subsets that do not touch each other. The formal definition

is as follows: A set S ⊂ Rn is disconnected if it is the union of two nonempty

subsets S1 and S2, neither of which intersects the closure of the other one; in this
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S T

FIGURE 1.2: The sets S and T in Example 1.

case we shall call the pair (S1, S2) a disconnection of S. The set S is connected

if it is not disconnected.

EXAMPLE 1. Let

S1 =
{
(x, y) : (x+ 1)2 + y2 < 1

}
, S2 =

{
(x, y) : (x− 1)2 + y2 < 1

}
,

S2 =
{
(x, y) : (x− 1)2 + y2 ≤ 1

}
.

Then the set S = S1 ∪ S2 is disconnected, for the only point common to the

closures of S1 and S2 is (0, 0), which belongs to neither S1 nor S2. However,

the set T = S1 ∪S2 is connected, for (0, 0) belongs both to S2 and the closure

of S1; this point “connects” the two pieces of T . See Figure 1.2.

The connected subsets of the real line are easy to describe.

1.25 Theorem. The connected subsets of R are precisely the intervals (open, half-

open, or closed; bounded or unbounded).

Proof. If S ⊂ R is not an interval, there exist a, b ∈ S and c /∈ S such that

a < c < b. Let S1 = S ∩ (−∞, c) and S2 = S ∩ (c,∞). Then S = S1 ∪ S2 (since

c /∈ S), and S1 and S2 are nonempty since a ∈ S1 and b ∈ S2. The closures of

S1 and S2 are contained in (−∞, c] and [c,∞), so the only point where they can

intersect is c, which is not in either S1 or S2. Thus S is disconnected.

Conversely, suppose S is an interval. We shall suppose that S is disconnected

and derive a contradiction.

We first consider the case where S is compact, say S = [a, b]. Suppose (S1, S2)
is a disconnection of S. By relabeling if necessary, we take S2 to be the set that

contains b. Let c = supS1. Then c belongs to the closure of S1, so it cannot be in

S2; hence c ∈ S1. In particular, c 6= b. But then the interval (c, b] is included in

S2, and c is in the closure of this interval; so c is in the closure of S2 and so cannot

belong to S1. This contradiction shows that S must be connected.
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Finally, suppose S is a noncompact interval and (S1, S2) is a disconnection of

S. Pick a ∈ S1 and b ∈ S2; then [a, b] ⊂ S since S is an interval. But then

[a, b] = T1 ∪ T2 where T1 = [a, b] ∩ S1 and T2 = [a, b] ∩ S2. The sets T1 and T2
are nonempty (a ∈ T1 and b ∈ T2), and they are contained in S1 and S2, so neither

one can intersect the closure of the other. But this means that [a, b] is disconnected,

which we have just proved to be false. Therefore, S is connected.

The following result, a cousin of Theorem 1.22, gives the basic relation between

continuity and connectedness:

1.26 Theorem. Continuous functions map connected sets to connected sets. That

is, suppose f : S → Rm is continuous at every point of S and S is connected. Then

the set

f(S) =
{
f(x) : x ∈ S

}

is also connected.

Proof. We proceed by contraposition; that is, we assume that f(S) is disconnected

and deduce that S is disconnected. Thus, suppose that (U1, U2) is a disconnection

of f(S). Let

S1 =
{
x ∈ S : f(x) ∈ U1

}
, S2 =

{
x ∈ S : f(x) ∈ U2

}
.

Then S1 and S2 are nonempty, and their union is S. If there were a point x ∈ S1
belonging to the closure of S2, x would be the limit of a sequence {xk} in S2 by

Theorem 1.14. But then f(x) ∈ U1 and f(xk) ∈ U2, so f(x) = lim f(xk) would

be in the closure of U2 by Theorem 1.14 again. This is impossible; hence S1 does

not intersect the closure of S2, and likewise, S2 does not intersect the closure of S1.

Thus S = S1 ∪ S2 is disconnected.

1.27 Corollary (The Intermediate Value Theorem). Suppose f : S → R is continu-

ous at every point of S and V ⊂ S is connected. If a,b ∈ V and f(a) < t < f(b)
or f(b) < t < f(a), there is a point c ∈ V such that f(c) = t.

Proof. By Theorems 1.25 and 1.26, f(V ) is an interval. It contains f(a) and f(b)
and hence contains the entire interval between them.

There is another notion of connectedness that is important in many situations.

A set S ⊂ Rn is called arcwise connected (or pathwise connected) if any two

points in S can be joined by a continuous curve in S, that is, if for any a,b in S
there is a continuous map f : [0, 1] → Rn such that f(0) = a, f(1) = b, and

f(t) ∈ S for all t ∈ [0, 1].
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FIGURE 1.3: The set defined in (1.29).

It is useful to observe that the relation of being joined by a continuous curve is

transitive; that is, if there is a continuous curve in S from a to b, and one from b

to c, then there is one from a to c. Namely, if f : [0, 1] → S and g : [0, 1] → S
are continuous maps with f(0) = a, f(1) = g(0) = b, and g(1) = c, we obtain a

continuous h : [0, 1]→ S by gluing f and g together:

h(t) =

{
f(2t) if 0 ≤ t ≤ 1

2 ,

g(2t − 1) if 1
2 ≤ t ≤ 1.

The following results explain the relation between connectedness and arcwise

connectedness.

1.28 Theorem. If S ⊂ Rn is arcwise connected, then S is connected.

Proof. We shall assume that S is disconnected and show that it is not arcwise con-

nected. Accordingly, suppose (S1, S2) is a disconnection of S. Pick a ∈ S1 and

b ∈ S2; we claim that there is no continuous g : [0, 1]→ S such that g(0) = a and

g(1) = b. If there were, the set V = g([0, 1]) would be connected by Theorems

1.25 and 1.26. But this cannot be so: V is the union of V ∩ S1 and V ∩ S2; these

sets are nonempty since a ∈ V ∩S1 and b ∈ V ∩S2, and neither of them intersects

the closure of the other. Hence S is not arcwise connected.
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The converse of Theorem 1.28 is false: A set can be connected without being

arcwise connected. A typical example is

(1.29) S =
{
(x, y) : 0 < x ≤ 2 and y = sin(π/x)

}
∪
{
(0, y) : y ∈ [−1, 1]

}
,

pictured in Figure 1.3. S consists of two pieces, the graph of sin(π/x) and the

vertical line segment. These two sets do not form a disconnection of S, as the line

segment is included in the closure of the graph, but a point on the line segment

cannot be connected to a point on the graph by a continuous curve. The details are

sketched in Exercise 11.

However, open connected sets are arcwise connected:

1.30 Theorem. If S ⊂ Rn is open and connected, then S is arcwise connected.

Proof. Fix a point a ∈ S. Let S1 be the set of points in S that can be joined to a

by a continuous curve in S, and let S2 be the set of points in S that cannot; thus S1
and S2 are disjoint and S = S1 ∪ S2. We shall show that

a. if x ∈ S1, then all points sufficiently close to x are in S1;

b. if x ∈ S is in the closure of S1, then x ∈ S1.

(a) shows that no point of S1 can be in the closure of S2, and (b) shows that no

point in the closure of S1 can be in S2. Thus (S1, S2) will form a disconnection

of S, contrary to the assumption that S is connected, unless S2 is empty — which

means that S is arcwise connected.

To prove (a) and (b), we use the fact that S is open, so that if x ∈ S, there is

a ball B centered at x that is included in S. If x ∈ S1, then every y ∈ B is also

in S1, for y can be joined to a by first joining x to a and then joining y to x by

the straight line segment from x to y, which lies in B and hence in S. Similarly,

if x is in the closure of S1, by Theorem 1.14 there is a sequence {xk} of points in

S1 that converges to x. We have xk ∈ B for k sufficiently large, so again, x can

be joined to a by joining xk to a and then joining x to xk by a line segment in B;

hence x ∈ S1. This completes the proof.

EXERCISES

1. Show directly from the definition that the following sets are disconnected.

(That is, produce a disconnection for each of them.)

a. The hyperbola {(x, y) ∈ R2 : x2 − y2 = 1}.
b. Any finite set in Rn with at least two elements.

c. {(x, y, z) ∈ R3 : xyz > 0}.
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2. Show that the unit sphere {(x, y, z) : x2 + y2 + z2 = 1} in R3 is arcwise

connected. Can you generalize your argument to show that the unit sphere in

Rn is arcwise connected for all n > 1?

3. Suppose I is an interval in R and f : I → R is continuous and one-to-one (i.e.,

f(x1) 6= f(x2) unless x1 = x2). Show that f must be strictly increasing or

strictly decreasing on I .

4. Suppose S1 and S2 are connected sets in Rn that contain at least one point in

common. Show that S1 ∪ S2 is connected. Is it true that S1 ∩ S2 must be

connected?

5. Show that an open set in Rn is disconnected if and only if it is the union of two

disjoint nonempty open subsets.

6. Show that a closed set in Rn is disconnected if and only if it is the union of two

disjoint nonempty closed subsets.

7. Show that S ⊂ Rn is disconnected if and only if there is a continuous function

f : S → R such that f(S) consists of the two points 0 and 1.

8. Show that the closure of a connected set is connected.

9. Let S = {x : |x| = 1} be the unit sphere in Rn, and let f : S → R be a

continuous function. Assuming the fact that S is connected (see Exercise 2),

show that there must be a pair of diametrically opposite points on S at which f
assumes the same value. (Hint: Consider g(x) = f(x)− f(−x).)

10. Suppose S is a connected set in R2 that contains (1, 3) and (4,−1). Show that

S contains at least one point on the line x = y. (Hint: Consider f(x, y) =
x− y.)

11. Let S ⊂ R2 be given by (1.29).

a. Show that S is connected. (Hint: The curve y = sin(π/x), x > 0, is

arcwise connected. Use Exercise 8.)

b. Show that S is not arcwise connected. (Suppose f : [0, 1] → S is con-

tinuous and satisfies f(0) = (2, 1) and f(1) = (0, 1). Show that the x-

coordinate of f(t) must assume all values between 2 and 0 as t ranges from

0 to 1, and conclude that for each positive integer k there exists tk ∈ [0, 1]
such that f(tk) = (1/2k, 0). By passing to a convergent subsequence, you

can suppose that t0 = limk→∞ tk exists. Show that the y-coordinate of

f(t) must assume all values between −1 and 1 as t ranges from tk to tk+1,

and derive a contradiction.)
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1.8 Uniform Continuity

Suppose S is a subset of Rn. We recall that a function f : S → Rm is said to be

continuous on S if, for each x ∈ S, f(y) can be made as close as we wish to f(x)
by taking y sufficiently close to x. In general, the meaning of “sufficiently close”

will depend on x: If f is nearly constant near x, we may be able to move quite

a distance away from x without changing the value of f much, but if f is rapidly

varying near x, we will need to stay close to x to ensure that the value of f remains

close to f(x). For some purposes, however, it is important to have some control

over the rate at which f(y) approaches f(x) as y approaches x that is independent

of x. Functions for which this is possible are called uniformly continuous.

More precisely, a function f : S → Rm is said to be uniformly continuous on

S if for every ǫ > 0 there is a δ > 0 so that

|f(x)− f(y)| < ǫ whenever x,y ∈ S and |x− y| < δ.

The crucial point is that for simple continuity the number δ may depend on x, but

for uniform continuity it does not. This is a rather subtle point, and the reader

should not be discouraged if its significance is not immediately clear; some very

eminent mathematicians of the past also had trouble with it!

Some readers may find it enlightening to see these conditions rewritten in a

symbolic way that makes them as concise as possible. We employ the logical sym-

bols ∀ and ∃, which mean “for all” and “there exists,” respectively. With this un-

derstanding, the condition for f to be continuous on S is that

(1.31) ∀ǫ > 0 ∀x ∈ S ∃δ > 0 : ∀y ∈ S |x− y| < δ =⇒ |f(x)− f(y)| < ǫ,

whereas the condition for f to be uniformly continuous on S is that

(1.32) ∀ǫ > 0 ∃δ > 0 : ∀x,y ∈ S |x− y| < δ =⇒ |f(x) − f(y)| < ǫ.

The difference between (1.31) and (1.32) is that the “∀x” has been interchanged

with the “∃δ,” so that in (1.31) the δ is allowed to depend on x, whereas in (1.32)

the same δ must work for every x.

EXAMPLE 1. The function f(x) = sinx is uniformly continuous on R. Indeed,

since |f ′(x)| = | cos x| ≤ 1 for all x, the mean value theorem (reviewed in

§2.1) shows that |f(x)− f(y)| ≤ |x− y| for all x, y. Thus, we can take δ = ǫ,
independent of x: If |x− y| < ǫ, then |f(x)− f(y)| < ǫ.

EXAMPLE 2. The function g(x) = x2 is not uniformly continuous on R,

essentially because the slope of the graph at x = a increases without bound
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as a → ∞. To be more precise, let us suppose that a > 0 and h > 0. Since

g(a+h)−g(a) = 2ah+h2 > 2ah, there is no hope to get |g(a+h)−g(a)| < ǫ
unless h < ǫ/2a. Thus, the allowable δ in (1.31) at x = a must be smaller than

ǫ/2a, which gets smaller as a gets larger. On the other hand, g is uniformly

continuous on every bounded interval, because on such an interval there is a

finite upper bound for |g′|, and the mean value theorem can be applied as in

Example 1.

Example 2 exemplifies the typical situation, in the following sense. On a set

that is not bounded or not closed, things can get worse and worse as one goes off to

infinity or to the boundary of the set; but on a compact set such pathologies cannot

occur.

1.33 Theorem. Suppose S ⊂ Rn and f : S → Rm is continuous at every point of

S. If S is compact, then f is uniformly continuous on S.

Proof. Suppose f is not uniformly continuous on S; we shall derive a contradiction.

The negation of the uniform continuity condition (1.32) is that

∃ǫ > 0 ∀δ > 0 ∃x,y ∈ S : |x− y| < δ and |f(x)− f(y)| ≥ ǫ.

Taking δ = 1, 12 ,
1
3 , . . ., we see that for each positive integer k there exist xk,yk ∈

S such that |xk −yk| < k−1 and |f(xk)− f(yk)| ≥ ǫ. By the Bolzano-Weierstrass

theorem, by passing to a subsequence we may assume that {xk} converges, say to

a ∈ S. Since |xk − yk| → 0, we also have yk → a. But then f(xk) − f(yk) →
f(a)− f(a) = 0, contradicting the assertion that |f(xk)− f(yk)| ≥ ǫ.

It is remarkable that continuity is the only condition that must be imposed on f

in this theorem. In particular, in contrast to what Examples 1 and 2 might suggest,

no conditions on the derivatives of f enter the picture, even their existence! See

Exercise 2.

EXERCISES

1. A function f : S → Rm that satisfies

|f(x)− f(y)| ≤ C|x− y|λ for all x,y ∈ S,

where C and λ are positive constants, is said to be Hölder continuous on S
(with exponent λ). Show that if f is Hölder continuous on S, then f is uniformly

continuous on S.
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2. Suppose 0 < λ < 1.

a. Show that (a+ b)λ < aλ + bλ for all a, b > 0. (Hint: Since λ− 1 < 0, for

t > 0 we have (a+ t)λ−1 < tλ−1. Integrate both sides from 0 to b.)
b. Let fλ(x) = |x|λ. Show that f satisfies the condition in Exercise 1, with

S = R and C = 1, and hence conclude that f is uniformly continuous on

R. (Note that f is unbounded on R and that the slope of its graph becomes

infinite at the origin.)

3. Suppose that f : S → Rm and g : S → Rm are both uniformly continuous on

S. Show that f + g is uniformly continuous on S.

4. Show that if f : S → Rm is uniformly continuous on S and {xk} is a Cauchy

sequence in S, then {f(xk)} is also a Cauchy sequence. On the other hand, give

an example of a Cauchy sequence {xk} in (0,∞) and a continuous function

f : (0,∞) → R (of necessity, not uniformly continuous) such that {f(xk)} is

not Cauchy.

5. Show that if f : S → Rm is uniformly continuous and S is bounded, then f(S)
is bounded.





Chapter 2

DIFFERENTIAL CALCULUS

The main theme of this chapter is the theory and applications of differential cal-

culus for functions of several variables. The reader is expected to be familiar with

differential calculus for functions of one variable. However, we offer a review of

the one-variable theory that contains a few features that the reader may not have

seen before, and the one-variable theory makes another appearance in the section

on Taylor’s theorem.

2.1 Differentiability in One Variable

We begin with an approach to the notion of derivative that is a bit different from

the one usually found in elementary calculus books. This point of view is very

useful in more advanced work, and it is the one that leads to the proper notion of

differentiability for functions of several variables.

The basic idea is that a function f : R → R is differentiable at x = a if it is

approximately linear near x = a. Geometrically, this means that the graph of f
has a tangent line at x = a. Analytically, it means that there is a linear function

l(x) = mx+ b satisfying the following two conditions:

• l(a) = f(a), so that b = f(a)−ma and hence l(x) = f(a) +m(x− a);

• the difference f(x)− l(x) tends to zero at a faster rate than x− a as x→ a,

that is,
f(x)− l(x)
x− a → 0 as x→ a.

It will be convenient to denote the increment x− a by h, so that

f(x)− l(x) = f(a+ h)− f(a)−mh.

43
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We think of this difference as a function of h and denote it by E(h); thus E(h) is

the error when we approximate f(a+ h) by the linear function f(a) +mh.

We proceed to the formal definition. Suppose f is a real-valued function de-

fined on some open interval in R containing the point a. We say that f is differen-

tiable at a if there is a number m such that

(2.1) f(a+ h) = f(a) +mh+ E(h), where lim
h→0

E(h)

h
= 0;

in other words, if f(a+h) is the sum of the linear function f(a)+mh and an error

term that tends to zero more rapidly than h as h→ 0. In this case we have

m =
f(a+ h)− f(a)− E(h)

h
=
f(a+ h)− f(a)

h
− E(h)

h
.

As h→ 0 the last term on the right vanishes, so we see that

(2.2) m = lim
h→0

f(a+ h)− f(a)
h

.

Thus the number m is uniquely determined, and it is the derivative of f at a as

usually defined in elementary calculus books, denoted by f ′(a). Conversely, if the

limit m in (2.2) exists, then (2.1) holds with E(h) = f(a+h)− f(a)−mh. Thus,

our definition of differentiability is equivalent to the usual one; it simply puts more

emphasis on the idea of linear approximation.

Observe that if E(h)/h vanishes as h→ 0, then so does E(h) itself and hence

so does f(a+ h)− f(a). That is, differentiability at a implies continuity at a.

It is often convenient to express the relation limh→0E(h)/h = 0 by saying that

“E(h) is o(h)” (pronounced “little oh of h”), meaning thatE(h) is of smaller order

of magnitude than h. Thus the differentiability of f at x = a can be expressed by

saying that f(a + h) is the sum of a linear function of h and an error term that is

o(h).

The standard rules for differentiation are easily derived from (2.1). We illustrate

the ideas by working out the product rule.

The Product Rule: Suppose f and g are differentiable at x = a. Then

f(a+ h) = f(a) + f ′(a)h+ E1(h), g(a+ h) = g(a) + g′(a)h + E2(h),

where E1(h) and E2(h) are o(h). Multiplying these equations together yields

(2.3) f(a+ h)g(a + h) = f(a)g(a) +
[
f ′(a)g(a) + f(a)g′(a)

]
h+ E3(h),
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where

E3(h) =
[
f(a)+f ′(a)h+E1(h)

]
E2(h) + E1(h)

[
g(a)+g′(a)h

]
+ f ′(a)g′(a)h2.

Clearly E3(h) is o(h) since E1(h) and E2(h) are, so (2.3) is of the form (2.1)

with f replaced by fg and m = f ′(a)g(a) + f(a)g′(a). In other words, fg is

differentiable at a and (fg)′(a) = f ′(a)g(a) + f(a)g′(a).

The chain rule can also be derived in this way; we shall do so, in a more general

setting, in §2.3.

We can also define “one-sided derivatives” of a function f at a point a. To

wit, the left-hand derivative f ′−(a) and the right-hand derivative f ′+(a) are the

one-sided limits

(2.4) f ′±(a) = lim
h→0±

f(a+ h)− f(a)
h

.

Clearly f is differentiable at a if and only if its left-hand and right-hand derivatives

at a exist and are equal. These notions are particularly useful in two situations: (i)

in discussing functions whose graphs have “corners” such as f(x) = |x|, which has

one-sided derivatives at the origin although it is not differentiable there, and (ii) in

discussing functions whose domain is a closed interval [a, b], where the one-sided

derivatives f ′+(a) and f ′−(b) may be significant.

The Mean Value Theorem. The definition of the derivative involves passing

from the “local” information given by the values of f(x) for x near a to the “in-

finitesimal” information f ′(a), which (intuitively speaking) gives the infinitesimal

change in f corresponding to an infinitesimal change in x. To reverse the process

and pass from “infinitesimal” information to “local” information — that is, to ex-

tract information about f from a knowledge of f ′ — the principal tool is the mean

value theorem, one of the most important theoretical results of elementary calculus.

The derivation begins with the following result, which is important in its own right.

2.5 Proposition. Suppose f is defined on an open interval I and a ∈ I . If f has

a local maximum or minimum at the point a ∈ I and f is differentiable at a, then

f ′(a) = 0.

Proof. Suppose f has a local minimum at a; the argument at a maximum is similar.

In the difference quotient [f(a+ h)− f(a)]/h, the numerator is ≥ 0 for all h near

0 since f(a+ h) ≥ f(a), so the quotient has the same sign as h. It follows that the

one-sided limits as h→ 0 from the left and right must be≤ 0 and≥ 0, respectively;

since they are both equal to f ′(a), the only possibility is that f ′(a) = 0.
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2.6 Lemma (Rolle’s Theorem). Suppose f is continuous on [a, b] and differentiable

on (a, b). If f(a) = f(b), there is at least one point c ∈ (a, b) such that f ′(c) = 0.

Proof. By the extreme value theorem (1.23), f assumes a maximum value and a

minimum value on [a, b]. If the maximum and minimum each occur at an endpoint,

then f is constant on [a, b] since the values at the endpoints are equal, so f ′(x) = 0
for all x ∈ (a, b). Otherwise, at least one of them occurs at some interior point

c ∈ (a, b), and then f ′(c) = 0 by Proposition 2.5.

2.7 Theorem (Mean Value Theorem I). Suppose f is continuous on [a, b] and dif-

ferentiable on (a, b). There is at least one point c ∈ (a, b) such that

f ′(c) =
f(b)− f(a)

b− a .

Proof. The straight line joining (a, f(a)) to (b, f(b)) is the graph of the function

l(x) = f(a) +
f(b)− f(a)

b− a (x− a),

and the assertion is that there is a point c ∈ (a, b) where the slope of the graph

y = f(x) is the same as the slope of this line, in other words, where the derivative

of the difference g(x) = f(x) − l(x) is zero. But f and l have the same values at

a and b, so g(a) = g(b) = 0, and the conclusion then follows by applying Rolle’s

theorem to g.

The mean value theorem is nonconstructive; that is, although it asserts the ex-

istence of a certain point c ∈ (a, b), it gives no clue as to how to find that point.

Students often find this perplexing at first, but in fact the whole power of the mean

value theorem comes from situations where there is no need to know precisely

where c is. In many applications, one has information about the behavior of f ′ on

some interval, and one deduces information about f on that same interval. The

following theorem comprises the most important of them.

We say that a function f is increasing (resp. strictly increasing) on an interval

I if f(a) ≤ f(b) (resp. f(a) < f(b)) whenever a, b ∈ I and a < b; similarly for

decreasing and strictly decreasing.

2.8 Theorem. Suppose f is differentiable on the open interval I .

a. If |f ′(x)| ≤ C for all x ∈ I , then |f(b)− f(a)| ≤ C|b− a| for all a, b ∈ I .

b. If f ′(x) = 0 for all x ∈ I , then f is constant on I .

c. If f ′(x) ≥ 0 (resp. f ′(x) > 0, f ′(x) ≤ 0, or f ′(x) < 0) for all x ∈ I , then f is

increasing (resp. strictly increasing, decreasing, or strictly decreasing) on I .
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Proof. Given a, b ∈ I , we have f(b)− f(a) = f ′(c)(b− a) for some c ∈ I . In (a)

or (b) we know that |f ′(c)| ≤ C or f ′(c) = 0, respectively, and we conclude that

|f(b) − f(a)| ≤ C|b − a| or f(b) = f(a). In (c), if we know that f ′(c) ≥ 0, we

conclude that f(b)− f(a) ≥ 0 for b > a, and similarly for the other cases.

In case the reader feels that we are belaboring the obvious here, we should point

out that the mere differentiability of f at a single point a gives less information

about the behavior of f near x = a than we would like. For example, if f ′(a) > 0,

it does not follow that f is increasing in some neighborhood of a; see Exercises 3

and 4.

The mean value theorem admits the following important generalization, of

which we shall present some applications below.

2.9 Theorem (Mean Value Theorem II). Suppose that f and g are continuous on

[a, b] and differentiable on (a, b), and g′(x) 6= 0 for all x ∈ (a, b). Then there exists

c ∈ (a, b) such that

f ′(c)
g′(c)

=
f(b)− f(a)
g(b)− g(a) .

Proof. Let

h(x) = [f(b)− f(a)][g(x) − g(a)] − [g(b) − g(a)][f(x) − f(a)].

Then h is continuous on [a, b] and differentiable on (a, b), and h(a) = h(b) = 0.

By Rolle’s theorem, there is a point c ∈ (a, b) such that

0 = h′(c) = [f(b)− f(a)]g′(c) − [g(b)− g(a)]f ′(c).

Since g′ is never 0 on (a, b), we have g′(c) 6= 0 and also g(b) − g(a) 6= 0 (by the

mean value theorem, since g(b)− g(a) = g′(c̃)(b− a) for some c̃ ∈ (a, b)). Hence

we can divide by both these quantities to obtain the desired result.

L’Hôpital’s Rule. Often one is faced with the evaluation of limits of quotients

f(x)/g(x) where f and g both tend to zero or infinity. The collection of related

results that go under the name of “l’Hôpital’s rule” enable one to evaluate such

limits in many cases by examining the quotient of the derivatives, f ′(x)/g′(x).
The cases involving the indeterminate form 0/0 can be summarized as follows.

2.10 Theorem (L’Hôpital’s Rule I). Suppose f and g are differentiable functions

on (a, b) and

lim
x→a+

f(x) = lim
x→a+

g(x) = 0.
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If g′ never vanishes on (a, b) and the limit

lim
x→a+

f ′(x)
g′(x)

= L

exists, then g never vanishes on (a, b) and

lim
x→a+

f(x)

g(x)
= L.

The same result holds for

• the left-hand limit limx→a−, if f and g are differentiable on an interval (d, a),
• the two-sided limit limx→a, if f and g are differentiable on intervals (d, a) and

(a, b), and

• the limit limx→∞ or limx→−∞, if f and g are differentiable on an interval

(b,∞) or (−∞, b).
Proof. If we (re)define f(a) and g(a) to be 0, then f and g are continuous on the

interval [a, x] for x < b. By Theorem 2.9, for each x ∈ (a, b) there exists c ∈ (a, x)
(depending on x) such that

f(x)

g(x)
=
f(x)− f(a)
g(x) − g(a) =

f ′(c)
g′(c)

.

Since c ∈ (a, x), c approaches a+ as x does, so

lim
x→a+

f(x)

g(x)
= lim

c→a+

f ′(c)
g′(c)

= L.

The proof for left-hand limits is similar, and the case of two-sided limits is obtained

by combining right-hand and left-hand limits. Finally, for the case a = ±∞, we

set y = 1/x and consider the functions F (y) = f(1/y) and G(y) = g(1/y).
Since F ′(y) = −f ′(1/y)/y2 and G′(y) = −g′(1/y)/y2, we have F ′(y)/G′(y) =
f ′(1/y)/g′(1/y), so by the results just proved,

lim
x→±∞

f(x)

g(x)
= lim

y→0±
F (y)

G(y)
= lim

y→0±
F ′(y)
G′(y)

= lim
x→±∞

f ′(x)
g′(x)

.

Under the conditions of Theorem 2.10, it may well happen that f ′(x) and g′(x)
tend to zero also, so that the limit of f ′(x)/g′(x) cannot be evaluated immediately.

In this case we can apply Theorem 2.10 again to evaluate the limit by examining

f ′′(x)/g′′(x). More generally, if the functions f, f ′, . . . , f (k−1), g, g′, . . . , g(k−1)

all tend to zero as x tends to a+ or a− or ±∞, but f (k)(x)/g(k)(x) → L, then

f(x)/g(x)→ L.
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EXAMPLE 1. Let f(x) = 2x− sin 2x, g(x) = x2 sinx, a = 0. Then f , g, and

their first two derivatives vanish at x = a, but the third derivatives do not, so

lim
x→0

2x− sin 2x

x2 sinx
= lim

x→0

2− 2 cos 2x

2x sinx+ x2 cos x
= lim

x→0

4 sin 2x

(2− x2) sinx+ 4x cos x

= lim
x→0

8 cos 2x

(6− x2) cos x− 6x sin x
=

4

3
.

The corresponding result for limits of the form∞/∞ is also true.

2.11 Theorem (L’Hôpital’s Rule II). Theorem 2.10 remains valid when the hypoth-

esis that lim f(x) = lim g(x) = 0 (as x → a+, x → a−, etc.) is replaced by the

hypothesis that lim |f(x)| = lim |g(x)| =∞.

Proof. We consider the case of left-hand limits as x→ a−; the other cases follow

as in Theorem 2.10.

Given ǫ > 0, we wish to show that
∣∣[f(x)/g(x)] − L

∣∣ < ǫ provided that x is

sufficiently close to a on the left. Since f ′(x)/g′(x)→ L and |g(x)| → ∞, we can

choose x0 < a so that
∣∣∣∣
f ′(x)
g′(x)

− L
∣∣∣∣ <

ǫ

2
and g(x) 6= 0 for x0 < x < a.

Moreover, by Theorem 2.9, if x0 < x < a we have

f(x)− f(x0)
g(x)− g(x0)

=
f ′(c)
g′(c)

for some c ∈ (x0, x),

and hence, since x0 < c < a,
∣∣∣∣
f(x)− f(x0)
g(x)− g(x0)

− L
∣∣∣∣ <

ǫ

2
for x0 < x < a.

Next, division of top and bottom by g(x) yields

f(x)− f(x0)
g(x) − g(x0)

=

f(x)

g(x)
− f(x0)

g(x)

1− g(x0)

g(x)

.

Since |g(x)| → ∞ as x → a, the quotients f(x0)/g(x) and g(x0)/g(x) can be

made as close to zero as we please by taking x sufficiently close to a. It follows

that for x sufficiently close to a we have
∣∣∣∣
f(x)− f(x0)
g(x)− g(x0)

− f(x)

g(x)

∣∣∣∣ <
ǫ

2
,
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and hence, by the preceding estimate,

∣∣∣∣
f(x)

g(x)
− L

∣∣∣∣ < ǫ,

which is what we needed to show.

The following special cases of Theorem 2.11 are of fundamental importance.

2.12 Corollary. For any a > 0 we have

lim
x→+∞

xa

ex
= lim

x→+∞
log x

xa
= lim

x→0+

log x

x−a
= 0.

That is, the exponential function ex grows more rapidly than any power of x as

x → +∞, whereas | log x| grows more slowly than any positive power of x as

x→ +∞ and more slowly than any negative power of x as x→ 0+.

Proof. For the first limit, let k be the smallest integer that is ≥ a. A k-fold appli-

cation of Theorem 2.11 yields

lim
x→+∞

xa

ex
= lim

x→+∞
a(a− 1) · · · (a− k + 1)xa−k

ex
,

and the latter limit is zero because a − k ≤ 0. For the other two limits, a single

application of Theorem 2.11 suffices:

lim
x→+∞

log x

xa
= lim

x→+∞
1

axa
= 0, lim

x→0+

log x

x−a
= lim

x→0+

xa

a
= 0.

By raising the quantities in Corollary 2.12 to a positive power b and replacing

a by a/b, we obtain the more general formulas

(2.13) lim
x→+∞

xa

ebx
= lim

x→+∞
(log x)b

xa
= lim

x→0+

| log x|b
x−a

= 0 (a, b > 0).

Vector-Valued Functions. The differential calculus generalizes easily to func-

tions of a real variable with values in Rn rather than R. If f = (f1, . . . , fn) is such

a function, its derivative at the point a is defined to be

f ′(a) = lim
h→0

f(a+ h)− f(a)

h
.
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The jth component of the difference quotient on the right is h−1[fj(a+h)−fj(a)].
It follows that f is differentiable if and only if each of its component functions fj
is differentiable, and that differentiation is simply performed componentwise:

f ′(a) =
(
f ′1(a), . . . f

′
n(a)

)
.

The usual rules of differentiation generalize easily to this situation. In particular,

there are two forms of the product rule: one for the product of a scalar function ϕ
and a vector function f , and one for the dot product of two vector functions f and g:

(ϕf)′ = ϕ′f + ϕf ′, (f · g)′ = f ′ · g + f · g′.

The first of these is just the ordinary product rule applied to each component ϕfj
of ϕf , and the second one is almost as easy (Exercise 8). Similarly, when n = 3
we have the product rule for cross products:

(f × g)′ = f ′ × g + f × g′.

(The only point that needs attention here is that the factors f and g must be in the

same order in all three products.)

The most common geometric interpretation of a function f : R → Rn (n >
1) is as the parametric representation of a curve in Rn. That is, the independent

variable t is interpreted as time, and f(t) is the position of a particle moving in

Rn at time t that traces out a curve as t varies. In this setting, the derivative f ′(t)
represents the velocity of the particle at time t.

Of particular importance are the straight lines in Rn. If a, c ∈ Rn and c 6= 0,

the line through a in the direction parallel to the vector c is represented parametri-

cally by l(t) = a+ tc. In particular, for the line passing through two points a and

b we have c = b−a, and the line is given by l(t) = a+ t(b−a); the line segment

from a to b is obtained by restricting t to the interval [0, 1].
If f : R→ Rn gives a parametric representation of a curve in Rn and f ′(a) 6= 0,

the function l(t) = f(a) + tf ′(a) gives a parametric representation of the tangent

line to the curve at the point f(a). (If f ′(a) = 0, the curve may not have a tangent

line at f(a). For example, if f(t) = (t3, |t|3), then f ′(0) = (0, 0), but the curve in

question is the graph y = |x|.) We shall discuss these matters more thoroughly in

Chapter 3.

It should be pointed out that the mean value theorem is not valid for vector-

valued functions. For example, the function f(t) = (cos t, sin t) satisfies f(0) =
f(2π), but f ′(t) = (− sin t, cos t), so there is no point t where f ′(t) = 0. However,

some of the corollaries of the mean value theorem remain valid. In particular, if

|f ′(t)| ≤M for all t ∈ [a, b], then

|f(b)− f(a)| ≤M |b− a|.
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We shall prove this for the more general case of functions of several variables in

§2.10.

EXERCISES

1. Suppose that f is differentiable on the interval I and that f ′(x) > 0 for all

x ∈ I except for finitely many points at which f ′(x) = 0. Show that f is

strictly increasing on I .

2. Define the function f by f(x) = x2 sin(1/x) if x 6= 0 and f(0) = 0. Show that

f is differentiable at every x ∈ R, including x = 0, but that f ′ is discontinuous

at x = 0. (Calculating f ′(x) for x 6= 0 is easy; to calculate f ′(0) you need to

go back to the definition of derivative.)

3. Let f be the function in Exercise 2, and let g(x) = f(x) + 1
2x. Show that

g′(0) > 0 but that there is no neighborhood of 0 on which g is increasing.

(More precisely, every interval containing 0 has subintervals on which g is

decreasing.)

4. Define the function h by h(x) = x2 if x is rational, h(x) = 0 if x is irrational.

Show that h is differentiable at x = 0, even though it is discontinuous at every

other point.

5. Suppose that f is continuous on [a, b] and differentiable on (a, b), and that the

right-hand limit L = limx→a+ f
′(x) exists. Show that the right-hand derivative

f ′+(a) exists and equals L. (Hint: Consider the difference quotients defining

f ′+(a) and use the mean value theorem.) Of course, the analogous result for

left-hand limits at b also holds.

6. Suppose that f is three times differentiable on an interval containing a. Show

that

lim
h→0

f(a+ 2h)− 2f(a+ h) + f(a)

h2
= f ′′(a),

lim
h→0

f(a+ 3h)− 3f(a+ 2h) + 3f(a+ h)− f(a)
h3

= f (3)(a).

Can you find the generalization to higher derivatives?

7. Show that for any a, b ∈ R, limx→0(1+ax)
b/x = eab. (Hint: Take logarithms.)

8. Suppose f and g are differentiable functions on R with values in Rn.

a. Show that (f · g)′ = f ′ · g + f · g′.
b. Suppose also that n = 3, and show that (f × g)′ = f ′ × g + f × g′.

9. Define the function f by f(x) = e−1/x2 if x 6= 0, f(0) = 0.
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a. Show that limx→0 f(x)/x
n = 0 for all n > 0. (You’ll find that a simple-

minded application of Theorem 2.10 doesn’t work. Try setting y = 1/x2

instead.)

b. Show that f is differentiable at x = 0 and that f ′(0) = 0.

c. Show by induction on k that for x 6= 0, f (k)(x) = P (1/x)e−1/x2 , where

P is a polynomial of degree 3k.

d. Show by induction on k that f (k)(0) exists and equals 0 for all k. (Use the

results of (a) and (c) to compute the derivative of f (k−1) at x = 0 directly

from the definition, as in (b).)

The upshot is that f possesses derivatives of all orders at every point and that

f (k)(0) = 0 for all k.

10. Exercise 2 shows that it is possible for f ′ to exist at every point of an interval

I but to have discontinuities. It is an intriguing fact that when f ′ exists at every

point of I , it has the intermediate value property whether or not it is continuous.

More precisely:

Darboux’s Theorem. Suppose f is differentiable on [a, b]. If v is any num-

ber between f ′(a) and f ′(b), there is a point c ∈ (a, b) such that f ′(c) = v.

Prove Darboux’s theorem, as follows: To simplify the notation, consider

the case a = 0, b = 1. Define h : [0, 2]→ R by setting h(0) = f ′(0),

h(x) =
f(x)− f(0)

x
if 0 < x ≤ 1, h(x) =

f(1)− f(x− 1)

2− x if 1 ≤ x < 2,

and h(2) = f ′(1). Show that h is continuous on [0, 2] and apply the intermedi-

ate value theorem to it. (This argument has a simple geometric interpretation,

which you can find if you think of h(x) as the slope of the chord joining a

certain pair of points on the graph of f .)

2.2 Differentiability in Several Variables

The simplest notion of derivative for a function of several variables is that of partial

derivatives, which are just the derivatives of the function with respect to each of

its variables when the others are held fixed. That is, the partial derivative of a

function f(x1, . . . , xn) with respect to the variable xj is

lim
h→0

f(x1, . . . , xj + h, . . . , xn)− f(x1, . . . , xj , . . . , xn)
h

,

provided that the limit exists.
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The most common notations for the partial derivative just defined are

∂f

∂xj
, fxj , fj, ∂xjf, ∂jf.

The first one is a modification of the Leibniz notation df/dx for ordinary deriva-

tives with the d replaced by the “curly d” ∂. The second one, with the variable of

differentiation indicated merely as a subscript on the function, is often used when

the first one seems too cumbersome. The third one is a variation on the second one

that is used when one does not want to commit oneself to naming the independent

variables but wants to speak of “the partial derivative of f with respect to its jth
variable.” The notations fxj and fj have the disadvantage that they may conflict

with other uses of subscripts — for example, denoting an ordered list of functions

by f1, f2, f3, . . .. It has therefore become increasingly common in advanced math-

ematics to use the notations ∂xjf and ∂jf instead, which are reasonably compact

and at the same time quite unambiguous.

EXAMPLE 1. Let f(x, y, z) =
e3x sinxy

1 + 5y − 7z
. Then

∂xf = ∂1f =
∂f

∂x
=

3e3x sinxy + e3xy cos xy

1 + 5y − 7z
,

∂yf = ∂2f =
∂f

∂y
=

(1 + 5y − 7z)e3xx cos xy − 5e3x sinxy

(1 + 5y − 7z)2
,

∂zf = ∂3f =
∂f

∂z
=

7e3x sinxy

(1 + 5y − 7z)2
.

The partial derivatives of a function give information about how the value of

the function changes when just one of the independent variables changes; that is,

they tell how the function varies along the lines parallel to the coordinate axes.

Sometimes this is just what is needed, but often we want something more. We may

want to know how the function behaves when several of the variables are changed at

once; or we may want to consider a new coordinate system, rotated with respect to

the old one, and ask how the function varies along the lines parallel to the new axes.

Do the partial derivatives provide such information? Without additional conditions

on the function, the answer is no.

EXAMPLE 2. Let us take another look at the function in Example 1 of §1.3:

(2.14) f(x, y) =
xy

x2 + y2
for (x, y) 6= (0, 0), f(0, 0) = 0.
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We have already observed that f is discontinuous at the origin; it approaches

different limits as (x, y) approaches the origin along different straight lines.

However, we have f(x, 0) = 0 for all x and f(0, y) = 0 for all y, so the partial

derivatives fx(0, 0) and fy(0, 0) both exist and equal zero:

fx(0, 0) = lim
f(h, 0)− f(0, 0)

h
= 0 = lim

f(0, h)− f(0, 0)
h

= fy(0, 0).

Clearly fx(0, 0) and fy(0, 0) aren’t describing the behavior of f near the origin

very well: when either x or y is varied while the other is held fixed at 0, f
doesn’t change at all, but when both are varied at once, f can change quite

drastically!

We need to give more thought to what it should mean for a function of several

variables to be differentiable. The right idea is provided by the characterization of

differentiability in one variable that we developed in the preceding section. Namely,

a function f(x) is differentiable at a point x = a if there is a linear function l(x)
such that l(a) = f(a) and the difference f(x)− l(x) tends to zero faster than x−a

as x approaches a. Now, the general linear1 function of n variables has the form

l(x) = b+ c1x1 + · · ·+ cnxn = b+ c · x,

and the condition l(a) = f(a) forces b to be f(a)− c ·a, so that l(x) = f(a)+ c ·
(x− a). With this in mind, here is the formal definition.

A function f defined on an open set S ⊂ Rn is called differentiable at a point

a ∈ S if there is a vector c ∈ Rn such that

(2.15) lim
h→0

f(a+ h)− f(a)− c · h
|h| = 0.

In this case c (which is uniquely determined by (2.15), as we shall see shortly) is

called the gradient of f at a and is denoted by ∇f(a). Denoting the numerator

of the quotient on the left side of (2.15) by E(h), we observe that (2.15) can be

rewritten as

(2.16) f(a+ h) = f(a) +∇f(a) · h+ E(h), where
E(h)

|h| → 0 as h→ 0,

which clearly expresses the fact that f(a+ h), as a function of h, is well approxi-

mated by the linear function f(a) +∇f(a) · h near h = 0.

1Unfortunately the term “linear” has two common meanings as applied to functions: “first-degree

polynomial” and “satisfying l(ax + by) = al(x) + bl(y).” The first meaning — the one used here

— allows a constant term; the second does not. See Appendix A, (A.5).
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FIGURE 2.1: A tangent plane to a smooth surface.

What does this mean? First, let us establish the geometric intuition. If n = 2,

the graph of the equation z = f(x) (with x = (x, y)) represents a surface in

3-space, and the graph of the equation z = f(a) + ∇f(a) · (x − a) (x is the

variable; a is fixed) represents a plane. These two objects both pass through the

point (a, f(a)), and at nearby points x = a+ h we have

zsurface − zplane = f(a+ h)− f(a)−∇f(a) · h.
Condition (2.16) says precisely that this difference tends to zero faster than h as

h → 0. Geometrically, this means that the plane z = f(a) +∇f(a) · (x − a) is

the tangent plane to the surface z = f(x) at x = a, as indicated in Figure 2.1.

The same interpretation is valid in any number of variables, with a little stretch of

the imagination: The equation z = f(x) represents a “hypersurface” in Rn+1 with

coordinates (x1, . . . , xn, z), and the equation z = f(a)+∇f(a)·(x−a) represents

its “tangent hyperplane” at a.

Next, let us establish the connection with partial derivatives and the uniqueness

of the vector c in (2.15). Suppose f is differentiable at a. If we take the increment

h in (2.16) to be of the form h = (h, 0, . . . , 0) with h ∈ R, we have c · h = c1h
and |h| = ±h (depending on the sign of h). Thus (2.16) says (after multiplying

through by −1 if h is negative) that

lim
h→0

f(a1 + h, a2, . . . , an)− f(a1, . . . , an)
h

− c1 = 0,

or in other words, that c1 = ∂1f(a). Likewise, cj = ∂jf(a) for j = 2, . . . , n. To

summarize:

2.17 Theorem. If f is differentiable at a, then the partial derivatives ∂jf(a) all

exist, and they are the components of the vector ∇f(a).
We also have the following:

2.18 Theorem. If f is differentiable at a, then f is continuous at a.
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Proof. Multiplying (2.15) through by |h|, we see that f(a+ h)− f(a)−∇f(a) ·
h→ 0 as h→ 0. Since∇f(a) ·h clearly vanishes as h does, we have f(a+h)−
f(a)→ 0 as h→ 0, which says precisely that f is continuous at a.

The converses of Theorems 2.17 and 2.18 are false. The continuity of f does

not imply the differentiability of f even in dimension n = 1 (think of functions like

f(x) = |x| whose graphs have corners). When n > 1, the mere existence of the

partial derivatives of f does not imply the differentiability of f either. The example

(2.14) demonstrates this: Its partial derivatives exist, but it is not continuous at the

origin, so it cannot be differentiable there.

To restate what we have just shown: For a function f to be differentiable at a

it is necessary for the partial derivatives ∂jf(a) to exist, but not sufficient. How,

then, do we know when a function is differentiable? Fortunately, there is a simple

condition, not too much stronger than the existence of the partial derivatives, that

guarantees differentiability.

2.19 Theorem. Let f be a function defined on an open set in Rn that contains the

point a. Suppose that the partial derivatives ∂jf all exist on some neighborhood of

a and that they are continuous at a. Then f is differentiable at a.

Proof. Let’s consider the case n = 2, to keep the notation simple. We wish to show

that

(2.20)
f(a+ h)− f(a)− c · h

|h| → 0 as h→ 0, where c =
(
∂1f(a), ∂2f(a)

)
.

To do this, we shall analyze the increment f(a+ h)− f(a) by making the change

one variable at a time:

(2.21) f(a+ h)− f(a) =
[
f(a1 + h1, a2 + h2)− f(a1, a2 + h2)

]

+
[
f(a1, a2 + h2)− f(a1, a2)

]
.

We assume that h is small enough so that the partial derivatives ∂jf(x) exist when-

ever |x−a| ≤ |h|. In this case, we can use the one-variable mean value theorem to

express the differences on the right side of (2.21) in terms of the partial derivatives

of f at suitable points. If we set g(t) = f(t, a2 + h2), we have

f(a1 + h1, a2 + h2)− f(a1, a2 + h2) = g(a1 + h1)− g(a1)
= g′(a1 + c1)h1 = ∂1f(a1 + c1, a2 + h2)h1

for some number c1 lying between 0 and h1. Similarly,

f(a1, a2 + h2)− f(a1, a2) = ∂2f(a1, a2 + c2)h2
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for some c2 between 0 and h2. Substituting these results back into (2.21) and then

into the left side of (2.20), we obtain

f(a+ h)− f(a)− c · h
|h| =

[
∂1f(a1 + c1, a2 + h2)− ∂1f(a1, a2)

] h1
|h|

+
[
∂2f(a1, a2 + c2)− ∂2f(a1, a2)

] h2
|h| .

Now let h → 0. The expressions in brackets tend to 0 because the partial deriva-

tives ∂jf are continuous at a, and the ratios h1/|h| and h2/|h| are bounded by 1 in

absolute value. Thus (2.20) is valid and f is differentiable at a.

The idea for general n is exactly the same. We write f(a + h) − f(a) as the

sum of n increments, each of which involves a change in only one variable — for

example, the first of them is

f(a1 + h1 , a2 + h2, . . . , an + hn)− f(a1, a2 + h2, . . . , an + hn)

— and then use the mean value theorem to express each difference in terms of a

partial derivative of f and proceed as before.

A function f whose partial derivatives ∂jf all exist and are continuous on an

open set S is said to be of class C
1 on S. For short, we shall also say that “f is

C1 on S” or “f ∈ C1(S)” and refer to “a C1 function f .” Theorems 2.17 and 2.19

then say that

C1 =⇒ differentiable =⇒ partial derivatives exist.

The reverse implications are false. We already know that existence of partial deriva-

tives does not imply differentiability, and there are differentiable functions whose

derivatives are discontinuous. The standard example in one variable is the function

in Exercise 2, §2.1, and it is easy to generate higher-dimensional examples from

this one.

For most of the elementary functions that we shall work with, the continuity

of the partial derivatives is obvious by inspection, so verifying the differentiability

of a function is usually no problem. For example, for (x, y) 6= (0, 0) the partial

derivatives of our old friend (2.14) are

∂xf(x, y) =
y3 − x2y
(x2 + y2)2

, ∂yf(x, y) =
x3 − xy2
(x2 + y2)2

,

which are continuous everywhere except at the origin (but not at the origin). Thus

f is differentiable at every point except the origin.

We conclude this section by examining a few ramifications of the notion of

differentiability.
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Differentials. Suppose f is differentiable at a, so that

f(a+ h)− f(a) = ∇f(a) · h+ error,

where the error term is negligibly small in comparison with h. If we neglect the

error term, the resulting approximation to the increment f(a+ h)− f(a) is called

the differential of f at a and is denoted by df(a;h) or dfa(h):

(2.22) df(a;h) = dfa(h) = ∇f(a) · h = ∂1f(a)h1 + · · ·+ ∂nf(a)hn.

If we set f(x) = u and h = dx = (dx1, . . . , dxn), this formula can be written

informally as

du =
∂f

∂x1
dx1 +

∂f

∂x2
dx2 + · · · +

∂f

∂xn
dxn.

We can think of this in two ways. Intuitively, if we think of dx1, . . . , dxn as in-

finitesimal increments in the independent variables x1, . . . , xn, then du is the cor-

responding infinitesimal increment in the dependent variable u. Or, if we think of

dx1, . . . , dxn as honest, finite increments, du is the corresponding increment in the

u value, not on the (hyper)surface u = f(x), but on its tangent (hyper)plane: It is

the linear approximation to the increment in the function f .

Differentials obey the usual elementary rules of differentiation, such as the sum,

product, and quotient rules:

d(f + g) = df + dg, d(fg) = f dg + g df, d

(
f

g

)
=
g df − f dg

g2
.

This follows from (2.22) and the fact that the partial derivatives obey these rules.

We’ll see later how differentials interact with the chain rule.

Differentials are handy for approximating small changes in a function. Here’s

an example:

EXAMPLE 3. A right circular cone has height 5 and base radius 3. (a) About

how much does the volume increase if the height is increased to 5.02 and the

radius is increased to 3.01? (b) If the height is increased to 5.02, by about how

much should the radius be decreased to keep the volume constant?

Solution. The volume of a cone is given by V = 1
3πr

2h, so dV =
2
3πrh dr + 1

3πr
2 dh. (a) If r = 3, h = 5, dr = .01, and dh = .02, we

have dV = 2
3π(3)(5)(.01) +

1
3π(3

2)(.02) = .16π ≈ .50. (b) If r = 3, h = 5,

dh = .02, as in (a) we have dV = 10π dr + .06π, so dV = 0 if dr = −.006.
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Directional Derivatives. The partial derivatives ∂jf give information about

how f(x) varies as x moves along lines parallel to the coordinate axes. Sometimes

we wish to study the variation of f along oblique lines instead. Thus, given a unit

vector u and a base point a, we consider the line passing through a in the direction

u, which can be represented parametrically by g(t) = a + tu. The directional

derivative of f at a in the direction u is defined to be

∂uf(a) =
d

dt
f(a+ tu)

∣∣
t=0

= lim
t→0

f(a+ tu)− f(a)
t

,

provided that the limit exists. For example, if u is the unit vector in the positive

jth coordinate direction (that is, u = (0, . . . , 1, . . . , 0) with the 1 in the jth place),

then ∂uf is just the partial derivative ∂jf .

2.23 Theorem. If f is differentiable at a, then the directional derivatives of f at a

all exist, and they are given by

(2.24) ∂uf(a) = ∇f(a) · u.

Proof. Differentiability of f means that

(2.25)
f(a+ h)− f(a)−∇f(a) · h

|h| → 0 as h→ 0.

We take h = tu. If t > 0, then |h| = t and the expression on the left of (2.25) is

f(a+ tu)− f(a)
t

−∇f(a) · u.

If t < 0, then |h| = −t and the expression on the left of (2.25) is

−f(a+ tu)− f(a)
t

+∇f(a) · u.

In either case, this quantity tends to 0 as t → 0, which means that ∂uf(a) exists

and equals ∇f(a) · u.

It is possible for all the directional derivatives of f to exist even if f is not

differentiable, but in that case they cannot be computed from the partial derivatives

by the simple formula (2.24); see Exercise 7.

Consideration of directional derivatives leads to a geometric interpretation of

the gradient vector ∇f(a) when this vector is nonzero. Indeed, by (2.24) and

Cauchy’s inequality, we have |∂uf(a)| ≤ |∇f(a)| for every unit vector u, and

the extreme case ∂uf(a) = |∇f(a)| occurs when u is the unit vector in the same
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direction as ∇f(a). Thus, ∇f(a) is the vector whose magnitude is the largest di-

rectional derivative of f at a, and whose direction is the direction of that derivative.

In other words, ∇f(a) points in the direction of steepest increase of f at a, and its

magnitude is the rate of increase of f in that direction.

EXAMPLE 4. Let f(x, y) = x2 + 5xy2, a = (−2, 1). (a) Find the directional

derivative of f at a in the direction of the vector v = (12, 5). (b) What is the

largest of the directional derivatives of f at a, and in what direction does it

occur?

Solution. We have ∇f(x, y) = (2x + 5y2, 10xy), so that ∇f(−2, 1) =
(1,−20). The unit vector in the direction of v is u = (1213 ,

5
13 ), so the direc-

tional derivative in this direction is ∇f(a) · u = (1,−20) · (1213 , 5
13 ) = −88

13 .

The largest directional derivative at a is |∇f(a)| =
√
401, and it occurs in the

direction 1√
401

(1,−20).

EXERCISES

1. For each of the following functions f , (i) compute ∇f , (ii) find the directional

derivative of f at the point (1,−2) in the direction (35 ,
4
5 ).

a. f(x, y) = x2y + sinπxy.

b. f(x, y) = e4x−y
2

.

c. f(x, y) = (x+ 2y + 4)/(7x + 3y).

2. For each of the following functions f , (i) compute the differential df , (ii) use

the differential to estimate the difference f(1.1, 1.2,−0.1) − f(1, 1, 0).
a. f(x, y, z) = x2ex−y+3z .

b. f(x, y, z) = y3 + log(x+ z2).

3. Let w = f(x, y, z) =
x2y3/2z

z + 1
. Suppose that, at the outset, (x, y, z) =

(5, 4, 1), so that w = 100. Use differentials to answer the following ques-

tions.

a. Suppose we change x to 5.03 and y to 3.92. By (about) how much should

we change z in order to keep w = 100?

b. Suppose we want to increase the value of w a little bit by changing the

value of only one of the independent variables. Which variable should

we choose to get the biggest increase in w for the smallest change of the

independent variable?

4. Show that u = f(x, y, z) = xe2z + y−1e5z satisfies the differential equation

x∂xu+ 2y∂yu+ ∂zu = 3u.
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5. Show that u = f(x, y) = xy/(xy − y + 2x) satisfies the differential equation

x2∂xu+ y2∂yu = u2.

6. For j = 1, . . . , n, define the function fj on Rn \{0} by fj(x) = xj/|x|. Show

that
∑n

1 xj dfj ≡ 0.

7. Let f(x, y) =
x2y

x2 + y2
if (x, y) 6= (0, 0) and f(0, 0) = 0.

a. Show that f is continuous at (0, 0). (Hint: Since 0 ≤ (x ± y)2 = x2 +
y2 ± 2xy, we have |xy| ≤ 1

2 (x
2 + y2) for all x, y.)

b. Show that the directional derivatives ∂uf(0, 0) all exist, and compute them.

(Work directly with the definition of directional derivative. The best way

to write a unit vector in R2 is as u = (cos θ, sin θ).)
c. Show that f is not differentiable at (0, 0). (Hint: If it were, the directional

derivatives ∂uf(0, 0) would be related to the partial derivatives ∂xf(0, 0)
and ∂yf(0, 0) by (2.24).)

8. Suppose f is a function defined on an open set S ⊂ Rn. Show that if the

partial derivatives ∂jf exist and are bounded on S, then f is continuous on S.

(Exercise 7 provides an example of a function that satisfies these conditions on

S = R2 but is not everywhere differentiable.)

2.3 The Chain Rule

There are several different but closely related versions of the chain rule for func-

tions of several variables. The most basic one concerns the situation where we have

a function f(x1, . . . , xn) and the variables x1, . . . , xn are themselves functions of

a single real variable t. To be precise, suppose xj = gj(t), or x = g(t); we then

have the composite function ϕ(t) = f(g(t)).
We recall that the derivative g′(t) is defined componentwise:

g′(t) =
(
g′1(t), . . . , g

′
n(t)

)
.

Geometrically speaking, the equation x = g(t) represents a parametrized curve in

Rn; we may think of a particle moving in Rn whose position at time t is g(t). In

this case the vector g′(t) is the velocity of the particle at time t; it is tangent to the

curve at g(t), and its magnitude is the speed at which the particle is traveling along

the curve.

2.26 Theorem (Chain Rule I). Suppose that g(t) is differentiable at t = a, f(x)
is differentiable at x = b, and b = g(a). Then the composite function ϕ(t) =
f(g(t)) is differentiable at t = a, and its derivative is given by

ϕ′(a) = ∇f(b) · g′(a),
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or, in Leibniz notation, with w = f(x),

(2.27)
dw

dt
=
∂w

∂x1

dx1
dt

+ · · ·+ ∂w

∂xn

dxn
dt

.

Proof. Differentiability of f and g at the appropriate points means that

f(b+ h) = f(b) +∇f(b) · h+ E1(h), E1(h)/|h| → 0 as h→ 0;

g(a + u) = g(a) + ug′(a) +E2(u), |E2(u)|/u→ 0 as u→ 0.

In the first equation we take h = g(a+u)−g(a). By the second equation, we also

have h = ug′(a) +E2(u), and we are given that g(a) = b, so

ϕ(a + u) = f(g(a+ u)) = f(b+ h) = f(b) +∇f(b) · h+ E1(h)

= f(g(a)) +∇f(b) · [ug′(a) +E2(u)] + E1(h)

= ϕ(a) + u∇f(b) · g′(a) + E3(u),

where

E3(u) = ∇f(b) ·E2(u) + E1(h).

We claim that the error term E3(u) satisfies E3(u)/u→ 0 as u→ 0. Granted this,

we have

ϕ(a+ u)− ϕ(a)
u

= ∇f(b) · g′(a) +
E3(u)

u
→ ∇f(b) · g′(a) as u→ 0,

so that ϕ′(a) = ∇f(b) · g′(a) as claimed.

Showing that E3(u)/u → 0 is just a matter of sorting out the mess a little.

The fact that |E2(u)|/u → 0 takes care of the first term in E3(u), by Cauchy’s

inequality:

|∇f(b) · E2(u)|
|u| ≤ |∇f(b)|

∣∣∣∣
E2(u)|
u

∣∣∣∣→ 0.

It also implies that when u is small we have |E2(u)| ≤ |u| and hence

|h| = |ug′(a) +E2(u)| ≤
(
|g′(a)|+ 1

)
|u|.

Now the second term in E3(u), namely E1(h), becomes negligibly small in com-

parison to |h| as |h| → 0, and the estimate above shows that |h| in turn is bounded

by a constant times |u|, so E1(h) becomes negligibly small in comparison to |u| as

u→ 0, which means that E1(h)/u→ 0 as desired.
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EXAMPLE 1. Suppose w = f(x, y, z) is a differentiable function of (x, y, z),
and that x = t4 − t, y = sin 3t, and z = e−2t. Then w can be regarded as a

composite function of t, and we have

dw

dt
=

d

dt
f(t4 − t, sin 3t, e−2t)

= (∂1f) · (4t3 − 1) + (∂2f) · (3 cos 3t) + (∂3f) · (−2e−2t),

where the partial derivatives ∂jf are all evaluated at (t4 − t, sin 3t, e−2t).

Suppose now that the variables x1, . . . , xn are differentiable functions, not of

a single real variable t, but of a family of variables t = (t1, . . . , tm); say, xj =
gj(t1, . . . , tm), or x = g(t). If f is a differentiable function of x, we then have the

composite function ϕ(t) = f(g(t)). The chain rule, as stated above, can be used

to compute the partial derivatives of ϕ with respect to the variables tk. Indeed, we

simply fix all but one of those variables and apply the chain rule to the resulting

function of the remaining single variable to obtain

(2.28)
∂ϕ

∂tk
(a) = ∇f(b) · ∂g

∂tk
(a) (b = g(a)),

or, setting w = f(x),

∂w

∂tk
=
∂w

∂x1

∂x1
∂tk

+ · · ·+ ∂w

∂xn

∂xn
∂tk

.

To be precise, this calculation shows that if the partial derivatives ∂g/∂tk exist

at t = a and if f is differentiable at x = b = g(a), then the partial derivatives

∂ϕ/∂tk exist at t = a and are given by (2.28). It also shows that if g is of class

C1 near a and f is of class C1 near b = g(a), then ϕ is of class C1, and in

particular is differentiable, near a. Indeed, under these hypotheses, (2.28) shows

that the partial derivatives ∂ϕ/∂tk are continuous.

It is also natural to ask whether the composite function f ◦ g is differentiable

when f and g are only assumed to be differentiable rather than C1. The answer is

affirmative. When t is only a single real variable, this result is contained in the chain

rule as stated and proved above. The proof for the general case, t = (t1, . . . , tm),
is almost identical except that the notation is a little messier, and we shall not take

the trouble to write it out. But we shall give a formal statement of the result:

2.29 Theorem (Chain Rule II). Suppose that g1, . . . , gn are functions of t =
(t1, . . . , tm) and f is a function of x = (x1, . . . , xn). Let b = g(a) and ϕ = f ◦g.

If g1, . . . , gn are differentiable at a (resp. of class C1 near a) and f is differentiable
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at b (resp. of class C1 near b), then ϕ is differentiable at a (resp. of class C1 near

a), and its partial derivatives are given by

(2.30)
∂ϕ

∂tk
=

∂f

∂x1

∂x1
∂tk

+ · · ·+ ∂f

∂xn

∂xn
∂tk

,

where the derivatives ∂f/∂xj are evaluated at b and the derivatives ∂ϕ/∂tk and

∂xj/∂tk = ∂gj/∂tk are evaluated at a.

EXAMPLE 2. Suppose that f is a differentiable function of x and y and that

x = s log(1 + t2) and y = cos(s3 + 5t). Then the partial derivatives of the

composite function z = f(s log(1 + t2), cos(s3 + 5t)) are given by

∂z

∂s
=
∂f

∂x

∂x

∂s
+
∂f

∂y

∂y

∂s
= fx · log(1 + t2) + fy · (−3s2) sin(s3 + 5t),

∂z

∂t
=
∂f

∂x

∂x

∂t
+
∂f

∂y

∂y

∂t
= fx

2st

1 + t2
+ fy · (−5) sin(s3 + 5t).

Here, the partial derivatives of f are to be evaluated at (s log(1+ t2), cos(s3+
5t)).

The chain rule (2.30) has a neat interpretation in terms of differentials. Let

w = f(x). If we regard x1, . . . , xn as independent variables, we have

(2.31) dw =
∂w

∂x1
dx1 + · · · +

∂w

∂xn
dxn.

On the other hand, if we regard x1, . . . , xn as functions of the variables t1, . . . , tm
and w as the composite function f(x(t)), we have

(2.32) dxj =
∂xj
∂t1

dt1 + · · · +
∂xj
∂tm

dtm

and

(2.33) dw =
∂w

∂t1
dt1 + · · ·+

∂w

∂tm
dtm.

If we substitute the expressions (2.32) for dxj into (2.31) and regroup the terms,

we obtain

dw =
∂w

∂x1

[
∂x1
∂t1

dt1 + · · ·+
∂x1
∂tm

dtm

]
+· · ·+ ∂w

∂xn

[
∂xn
∂t1

dt1 + · · · +
∂xn
∂tm

dtm

]

=

[
∂w

∂x1

∂x1
∂t1

+ · · ·+ ∂w

∂xn

∂xn
∂t1

]
dt1+· · ·+

[
∂w

∂x1

∂x1
∂tm

+ · · ·+ ∂w

∂xn

∂xn
∂tm

]
dtm.
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The content of the chain rule (2.30) is precisely that this last expression for dw coin-

cides with (2.33). In other words, the differential formalism has the chain rule “built

in,” just as it does in one variable (where the chain rule dw/dt = (dw/dx)(dx/dt)
is just a matter of “canceling the dx’s”).

The preceding discussion concerns the situation where the variable w depends

on a set of variables xj , and the xj’s depend on a different set of variables tk.

However, in many situations the variables on different “levels” can get mixed up

with each other. The typical example is as follows. Consider a physical quantity

w = f(x, y, z, t) whose value depends on the position (x, y, z) and the time t
(temperature, for example, or air pressure in a region of the atmosphere). Consider

also a vehicle moving through space, so that its coordinates (x, y, z) are functions

of t. We wish to know how the quantity w varies in time, as measured by an

observer on the vehicle; that is, we are interested in the behavior of the composite

function

w = f
(
x(t), y(t), z(t), t

)
.

Here t enters not only as a “first-level” variable, as the last argument of f , but also

as a “second-level” variable through the t-dependence of x, y, z.

How should this be handled? There is no real problem; the only final indepen-

dent variable is t, so the chain rule in the form (2.27) can be applied:

(2.34)
dw

dt
=
∂w

∂x

dx

dt
+
∂w

∂y

dy

dt
+
∂w

∂z

dz

dt
+
∂w

∂t
.

In the last term we have omitted the derivative dt/dt, which of course equals 1. (If

this makes you nervous, denote the fourth variable in f by u instead of t; then we

are considering w = f(x(t), y(t), z(t), u(t)) where u(t) = t.)
Notice the subtle use of notation: The dw/dt on the left of (2.34) denotes the

“total derivative” of w, taking into account all the ways in which w depends on t,
whereas the ∂w/∂t on the right denotes the partial derivative that involves only the

explicit dependence of the function f on its fourth variable t. This notation works

well enough in this situation, but it becomes inadequate if there is more than one

final independent variable.

Suppose, for example, that we are studying a function w = f(x, y, t, s), and

that x and y are themselves functions of the independent variables t and s. Then

the analogue of (2.34) would be

∂w

∂t
=
∂w

∂x

∂x

∂t
+
∂w

∂y

∂y

∂t
+
∂w

∂t
,

but this is nonsense! The ∂w/∂t’s on the left and on the right denote different

things. In such a situation we must use one of the alternative notations for partial
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x1

x2

xn

w t

FIGURE 2.2: Diagram of dependence for the basic chain rule.

derivatives that offer more precision, or perhaps add some subscripts to the ∂w/∂t’s
to specify their meaning. In this case, if x = ϕ(t, s) and y = ψ(t, s), we could

write

(2.35)
∂w

∂t
= (∂1f)(∂1ϕ) + (∂2f)(∂1ψ) + ∂3f.

The mixture of dependent-and-independent-variable notation on the left and

functional notation on the right in (2.35) is perhaps inelegant, but it does the job!

In general, it is best not to be too doctrinaire about deciding to use one notation

for partial derivatives rather than another one; clarity is more important than con-

sistency. We shall be quite free about adopting whichever notation works best in a

particular situation, and the exercises aim at encouraging the reader to do likewise.

When the relations among the variables become too complicated for comfort,

we can often sort things out by drawing a schematic diagram of the functional

relationships. The idea is as follows:

i. Write down the dependent variable on the left of the page, a list of the inde-

pendent variables on which it ultimately depends on the right, and lists of the

intermediate variables in the middle.

ii. Whenever one variable p depends directly on another one q, draw a line joining

them; this line represents the partial derivative ∂p/∂q.

iii. To find the derivative of the variable w on the left with respect to one of the

variables t on the right, consider all the ways you can go from w to t by follow-

ing the lines. For each such path, write down the product of partial derivatives

corresponding to the lines along the path, then add the results.

The diagram for the basic chain rule (2.27) is shown in Figure 2.2: The path

from w to xj to t gives the term (∂w/∂xj)(dxj/dt) in (2.27). On the other hand,

Figure 2.3 gives the diagram for w = f(x, y, t, s) where x and y depend on t and

s: There are three paths from w to t (w to x to t, w to y to t, and w to t directly)

that give the three terms on the right of (2.35).
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w

x

y

t

s

FIGURE 2.3: Diagram of dependence for w = f(x, y, t, s), x =
ϕ(t, s), y = ψ(t, s).

Here is another useful corollary of the chain rule. A function f on Rn is called

(positively) homogeneous of degree a (a ∈ R) if f(tx) = taf(x) for all t > 0 and

x 6= 0.

2.36 Theorem (Euler’s Theorem). If f is homogeneous of degree a, then at any

point x where f is differentiable we have

x1∂1f(x) + x2∂2f(x) + · · · + xn∂nf(x) = af(x).

Proof. Consider the function ϕ(t) = f(tx). On the one hand, since f(tx) =
taf(x), we have ϕ′(t) = ata−1f(x) = at−1f(tx). On the other, by the chain rule

we have

ϕ′(t) = ∇f(tx) · d
dt
(tx) = x · ∇f(tx).

Setting t = 1 and equating the two expressions for ϕ′(1), we obtain the asserted

result.

We conclude this section with an additional geometric insight into the meaning

of the gradient of a function. If F is a differentiable function of (x, y, z) ∈ R3, the

locus of the equation F (x, y, z) = 0 is typically a smooth two-dimensional surface

S in R3. (We shall consider this matter more systematically in Chapter 3.) Suppose

that (x, y, z) = g(t) is a parametric represention of a smooth curve on S. On the

one hand, by the chain rule we have (d/dt)F (g(t)) = ∇F (g(t)) · g′(t). On the

other hand, since the curve lies on S, we have F (g(t)) = 0 for all t and hence

(d/dt)F (g(t)) = 0. Thus, for any curve on the S, the gradient of F is orthogonal

to the tangent vector to the curve at each point on the curve. Since such curves can

go in any direction on the surface, we conclude that at any point a ∈ S, ∇F (a) is

orthogonal to every vector that is tangent to S at a. (Of course, this is interesting

only if ∇F (a) 6= 0.) We summarize:
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2.37 Theorem. Suppose that F is a differentiable function on some open set U ⊂
R3, and suppose that the set

S =
{
(x, y, z) ∈ U : F (x, y, z) = 0

}

is a smooth surface. If a ∈ S and ∇F (a) 6= 0, then the vector ∇F (a) is perpen-

dicular, or normal, to the surface S at a.

2.38 Corollary. Under the conditions of the theorem, the equation of the tangent

plane to S at a is∇F (a) · (x− a) = 0.

This formula for the tangent plane to a surface agrees with the one we gave in

§2.2 when the surface is the graph of a function f(x, y). The easy verification is

left to the reader (Exercise 5).

A similar result holds if we have two equations F (x, y, z) = 0 andG(x, y, z) =
0. Each of them (usually) represents a surface, and the intersection of the two

surfaces is (usually) a curve. At any point a on this curve, the vectors ∇F (a) and

∇G(a) are both perpendicular to the curve, and if they are linearly independent,

they span the normal plane to the curve at a.

These ideas carry over into dimensions other than 3. For n = 2, an equation

F (x, y) = 0 typically represents a curve C , and ∇F (a, b) is normal to C at each

(a, b) ∈ C . For n > 3, we simply stretch our imagination to say that ∇F (a) is

normal to the hypersurface defined by F (x) = 0 at x = a.

EXERCISES

In these exercises, all functions in question are assumed to be differentiable.

1. Find the indicated derivatives of w in terms of the derivatives of f, g, h.

a. w = f(x, y, t), x = g(y, t), y = h(t). What is dw/dt?
b. w = f(x, u, v), u = g(x, y), v = h(x, z). What are ∂xw, ∂yw, ∂zw?

(∂xw refers to the complete dependence of w on x, as opposed to ∂1f .)

c. w = f(u), u = g(x, y), y = h(x). What is dw/dx?

2. Find ∂xw and ∂yw in terms of the partial derivatives ∂1f , ∂2f , and ∂3f .

a. w = f(2x− y2, x sin 3y, x4).
b. w = f(ex−3y, log(x2 + 1),

√
y4 + 4).

c. w = arctan[f(y2, 2x− y, −4)].
3. Show that the given function u satisfies the given differential equation.

a. u = f(3x+ 2y); 2∂xu− 3∂yu = 0.

b. u = xy + xf(y/x); x∂xu+ y∂yu− u = xy.
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c. u = f(xz, yz); x∂xu+ y∂yu = z∂zu.

4. Let u = f(r) and r = |x| = (x21 + · · · + x2n)
1/2. Show that

∑n
1 (∂u/∂xj)

2 =
[f ′(r)]2.

5. Show that the formula for the tangent plane to the surface z = f(x, y) given in

§2.2 coincides with the formula for the tangent plane to the surface F (x, y, z) =
0 given in this section, when F (x, y, z) = f(x, y)− z.

6. Find the tangent plane to the surface in R3 described by the given equation at

the given point a ∈ R3.

a. z = x2 − y3, a = (2,−1, 5).
b. x2 + 2y2 + 3z2 = 6, a = (1, 1,−1).
c. z =

√
x+ arctan y, a = (9, 0, 3).

d. xyz2 − log(z − 1) = 8, a = (−2,−1, 2).
7. Suppose ϕ(x) is defined by a formula in which x occurs in several places.

(For example, there are three x’s in ϕ(x) = x2ex/(x + 3).) Show that the

derivative ϕ′(x) is obtained by differentiating with respect to each of the x’s

in turn, treating the others as constants, and adding the results. (Hint: If x
occurs in n places in the formula for ϕ, let F (x1, . . . , xn) be the function of

n variables obtained by replacing each of the x’s in the formula by a different

variable. How do you express ϕ in terms of F ?) Notice that the rules for

differentiating sums and products are special cases of this result, obtained by

taking ϕ(x) = f(x) + g(x) or ϕ(x) = f(x)g(x). What is the derivative of

ϕ(x) = f(x)g(x)?

2.4 The Mean Value Theorem

The mean value theorem for functions of n variables can be stated as follows. We

recall that if a and b are two points in Rn, the line passing through them can be

described parametrically by g(t) = a + t(b − a). In particular, the line segment

whose endpoints are a and b is the set of points a+ t(b− a) with 0 ≤ t ≤ 1.

2.39 Theorem (Mean Value Theorem III). Let S be a region in Rn that contains

the points a and b as well as the line segment L that joins them. Suppose that f is

a function defined on S that is continuous at each point of L and differentiable at

each point of L except perhaps the endpoints a and b. Then there is a point c on L
such that

f(b)− f(a) = ∇f(c) · (b− a).

Proof. Let h = b− a; then L = {a+ th : 0 ≤ t ≤ 1}. Define ϕ(t) = f(a+ th)
for 0 ≤ t ≤ 1. Since f is continuous on L, ϕ is continuous on [0, 1]. Moreover, by
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the chain rule, ϕ is differentiable on (0, 1) and

ϕ′(t) = ∇f(a+ th) · d
dt
(a+ th) = ∇f(a+ th) · h = ∇f(a+ th) · (b− a).

By the one-variable mean value theorem, there is a point u ∈ (0, 1) such that

ϕ(1) − ϕ(0) = ϕ′(u) · (1− 0) = ϕ′(u). Let c = a+ uh; then

f(b)− f(a) = ϕ(1) − ϕ(0) = ϕ′(u) = ∇f(c) · (b− a).

To state the principal corollaries of the mean value theorem, we need a defini-

tion. A set S ⊂ Rn is called convex if whenever a,b ∈ S, the line segment from

a to b also lies in S. Clearly every convex set is arcwise connected (line segments

are arcs!), but most connected sets are not convex. See Figure 2.4.

EXAMPLE 1. Every ball is convex. Indeed, let B = {x : |x − c| < r} be the

ball of radius r about c. If a,b ∈ B, for 0 ≤ t ≤ 1 we have

∣∣[a+ t(b− a)]− c
∣∣ =

∣∣(1− t)(a− c) + t(b− c)
∣∣

≤ (1− t)|a− c|+ t|b− c| < (1− t)r + tr = r,

so a+t(b−a) ∈ B. (We have used the fact that t and 1−t are both nonnegative

when 0 ≤ t ≤ 1.)

2.40 Corollary. Suppose that f is differentiable on an open convex set S and

|∇f(x)| ≤M for every x ∈ S. Then |f(b)− f(a)| ≤M |b− a| for all a,b ∈ S.

Proof. The line segment from a to b lies in S, and for some c on this segment we

have f(b) − f(a) = ∇f(c) · (b − a). Hence, by Cauchy’s inequality, |f(b) −
f(a)| ≤ |∇f(c)| |b − a| ≤M |b− a|.

2.41 Corollary. Suppose f is differentiable on an open convex set S and∇f(x) =
0 for all x ∈ S. Then f is constant on S.

Proof. Pick a ∈ S and take M = 0 in Corollary 2.40. We conclude that for every

b ∈ S, |f(b)− f(a)| = 0, that is, f(b) = f(a).

The hypothesis of convexity is essential in Corollary 2.40. In a situation like

that of the set S2 in Figure 2.4, |b−a| is small, but f(b)−f(a) could be quite large

even when |∇f | is small in S2. (Think of a gently sloping spiral ramp.) However,

Corollary 2.41 can be generalized substantially.
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FIGURE 2.4: A convex set (S1), a set that is connected but not convex

(S2), and a disconnected set (S3).

2.42 Theorem. Suppose that f is differentiable on an open connected set S and

∇f(x) = 0 for all x ∈ S. Then f is constant on S.

Proof. Pick a ∈ S, and define S1 = {x ∈ S : f(x) = f(a)} and S2 = {x ∈ S :
f(x) 6= f(a)}. We shall show that S2 must be empty, and hence that f is constant

on S = S1, by showing that otherwise (S1, S2) would be a disconnection of S.

Clearly S1 and S2 are disjoint and their union is S; moreover, a ∈ S1. The

set S2 is open (by Theorem 1.13) because the complement of the point f(a) is

an open subset of R. The set S1 is also open, for the following reason. Suppose

x ∈ S1. Since S is open, there is a ball B centered at x that is contained in S.

Since B is convex, f is constant on B by Corollary 2.41, and hence B ⊂ S1. That

is, every x ∈ S1 is an interior point of S1, so S1 is open. Since both S1 and S2
are open, neither one can intersect the closure of the other one without intersecting

the other one itself. But clearly S1 and S2 are disjoint, their union is S, and S1 is

nonempty since it contains a. Therefore, (S1, S2) is a disconnection of S unless S2
is empty.

The hypothesis of connectedness is necessary here. If S = S′ ∪ S′′ where S′

and S′′ are open and disjoint, we obtain a counterexample by taking f(x) = 0 for

x ∈ S′ and f(x) = 1 for x ∈ S′′. (See Figure 2.4. Differentiability of a function f
on the set S3 there affords no control over the relation between the values of f at a

and b.)

EXERCISES

1. State and prove two analogues of Rolle’s theorem for functions of several vari-

ables, whose hypotheses are, respectively, the following:
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a. f is differentiable on a set containing the line segment from a to b, and

f(a) = f(b).
b. f is differentiable on a bounded open set S, continuous on the closure of

S, and constant on the boundary of S.

2. Question: If f is differentiable on a connected open set S and ∂1f(x) = 0 for

all x ∈ S, must f be independent of x1 on S (that is, f(a) = f(b) whenever

a,b ∈ S and aj = bj for all j 6= 1)?

a. Show that the answer is yes when S is convex.

b. Give a counterexample to show that the answer is no in general. (Hint:

Think of a staircase where you go halfway up on one flight, make a 180◦

turn on a flat landing, then go the rest of the way up on a second flight

parallel to the first one.)

2.5 Functional Relations and Implicit Functions: A First

Look

Often we are presented with an equation F (x1, . . . , xn) = 0 relating a collection

of variables x1, . . . , xn. (There is no harm in taking the right side to be 0; just

move everything over to the left side of the equation.) It may be possible to solve

this equation for one of the variables in terms of the remaining ones, say xn =
g(x1, . . . , xn−1), and we wish to study the resulting function g in terms of the

original function F .

To make things clearer, let us change the notation a little, replacing n by n +
1 and denoting the last variable xn by y; thus, the given equation has the form

F (x1, . . . , xn, y) = 0, and it is supposed to determine y as a function of x =
(x1, . . . , xn).

Let us be clear about what we mean by saying that “it is possible to solve for

y.” First, we mean that it is possible to solve in principle, not necessarily that there

is an explicit formula for y. Second, there might be more than one solution, and

obtaining y as a function of the xj’s then involves making a definite choice among

the solutions; moreover, the domain of this function may be smaller than one would

suspect from the original equation.

EXAMPLE 1.

a. Consider the equation x− y− y5 = 0. It’s easy to solve this for x in terms

of y, x = y + y5, but there is no nice algebraic formula for y in terms of

x. However, y + y5 is a strictly increasing function of y (its derivative is

1 + 5y4, which is positive everywhere), and its values clearly range from

−∞ to∞, so for each x there is exactly one y satisfying x = y + y5, and



74 Chapter 2. Differential Calculus

we can call it g(x). The object in such a situation is to use the equation

x = y + y5 to study the function g.

b. The equation x2+y2+z2 = 1 can be solved for z as a continuous function

of x and y in two ways, z =
√

1− x2 − y2 and z = −
√
1− x2 − y2, both

of which are defined only for x2 + y2 ≤ 1.

At this stage we are not going to worry about these matters, or about the ques-

tion of when it is possible to solve the equation at all; such questions will be ad-

dressed in Chapter 3. Rather, we shall assume that there is a differentiable function

g(x1, . . . , xn), defined for x1, . . . , xn in some region S ⊂ Rn, so that the equation

F (x1, . . . , xn, y) = 0 is satisfied identically when g(x1, . . . , xn) is substituted for

y:

(2.43) F
(
x1, . . . , xn, g(x1, . . . , xn)

)
≡ 0, (x1, . . . , xn) ∈ S.

In this situation we can use the chain rule to compute the partial derivatives

of g in terms of the partial derivatives of F , simply by differentiating the equation

(2.43) with respect to the variables xj:

(2.44) ∂jF + ∂n+1F
∂g

∂xj
= 0, so

∂g

∂xj
= − ∂jF

∂n+1F
.

EXAMPLE 1 (continued).

a. Differentiation of the equation x − y − y5 = 0 with respect to x yields

1 − (dy/dx) − 5y4(dy/dx) = 0, or (dy/dx) = 1/(1 + 5y4). Of course,

this gives dy/dx in terms of y instead of x, and we don’t have a formula

for y in terms of x, but this is better than nothing!

b. Differentiation of x2 + y2 + z2 = 1 with respect to x, with z as the depen-

dent variable, gives 2x+ 2z(∂z/∂x) = 0, or ∂z/∂x = −x/z. It is easily

verified that this formula is correct whether we take z =
√

1− x2 − y2 or

z = −
√

1− x2 − y2.

In a related situation, we may wish to differentiate a function ϕ(x1, . . . , xn, y)
where the variables x1, . . . , xn, y satisfy a relation F (x1, . . . , xn, y) = 0. Assum-

ing, as before, that the equation F (x1, . . . , xn, y) = 0 can be solved for y, say

y = g(x1, . . . , xn), it then becomes a matter of applying the chain rule to the com-

posite function

w = ϕ
(
x1, . . . , xn, g(x1, . . . , xn)

)
,

to obtain
∂w

∂xj
= ∂jϕ+ (∂n+1ϕ)(∂jg).
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The derivatives ∂jg can then be evaluated by using (2.44).

In such a situation, however, there is a tricky point that must be confronted. Let

us explain it in the case of three variables for simplicity. That is, suppose we are

given w = ϕ(x, y, z) where x, y, z are constrained to satisfy F (x, y, z) = 0, and

suppose we can solve the latter equation for any one of the three variables in terms

of the other two. If we take x as an independent variable, the meaning of ∂w/∂x
depends critically on whether we take y or z as the other independent variable.

EXAMPLE 2. Let w = x2 + y2 + z, and suppose x, y, z are constrained to

satisfy x + y + z = 0. If we take x and y as independent variables, then

z = −(x+ y), so

w = x2 + y2 − x− y, ∂w

∂x
= 2x− 1.

But if we take x and z as independent variables, then y = −(x+ z), and

w = x2 + (x+ z)2 + z = 2x2 + 2xz + z2 + z,
∂w

∂x
= 4x+ 2z.

Clearly, these two formulas for ∂w/∂x almost never agree.

The usual way to clarify this situation is to put subscripts on the partial deriva-

tives to indicate which variables are being held fixed:

∂w

∂x

∣∣∣∣
y

= derivative of w with respect to x when y is fixed.

Thus, in Example 2,

∂w

∂x

∣∣∣∣
y

= 2x− 1,
∂w

∂x

∣∣∣∣
z

= 4x+ 2z.

The preceding ideas work in much the same way when we are given more than

one constraint equation. For example, if we are given two equations F (x, y, u, v) =
0 and G(x, y, u, v) = 0, we may be able to solve them for the two variables u and

v in terms of the other two variables x and y. In this case the partial derivatives

of u and v with respect to x, say, can be calculated by differentiating the equations

F = 0 and G = 0, obtaining

∂xF + ∂uF
∂u

∂x
+ ∂vF

∂v

∂x
= 0,

∂xG+ ∂uG
∂u

∂x
+ ∂vG

∂v

∂x
= 0,
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and then solving these (linear!) equations simultaneously for ∂u/∂x and ∂v/∂x.

By Cramer’s rule (Appendix A, (A.54)), the result is

∂u

∂x
= −

det

(
∂xF ∂vF
∂xG ∂vG

)

det

(
∂uF ∂vF
∂uG ∂vG

) , ∂v

∂x
= −

det

(
∂uF ∂xF
∂uG ∂xG

)

det

(
∂uF ∂vF
∂uG ∂vG

) .

EXAMPLE 3. Suppose the quantities x, y, and z are initially equal to 1, 0, and

2, respectively, and are constrained to satisfy the equations x5 + x(y3 + 1)z −
2yz5 = 3 and yz = sin(2x + y − z). By about how much do y and z change

if x is changed to 1.02?

Solution. We need to find dy/dx and dz/dx, which we abbreviate as y′

and z′. Differentiating the two equations with respect to x, treating y and z as

implicit functions of x, we obtain

5x4 + (y3 + 1)z + 3xy2zy′ + x(y3 + 1)z′ − 2z5y′ − 10yz4z′ = 0,

zy′ + yz′ = cos(2x+ y − z) · (2 + y′ − z′).

We could solve these equations for y′ and z′ as they stand, but since we are

interested in the answer at (x, y, z) = (1, 0, 2), we can simplify matters by

substituting in these values right now. The first equation reduces to 7 + z′ −
64y′ = 0 and the second one to 2y′ = 2 + y′ − z′, or

64y′ − z′ = 7, y′ + z′ = 2
(
when (x, y, z) = (1, 0, 2)

)
.

Solving these equations yields y′ = 9
65 and z′ = 121

65 , so — returning to

the original question — dy = y′ dx = 9
65 (.02) = 9

3250 and dz = z′ dx =
121
65 (.02) =

121
3250 .

EXERCISES

1. Compute ∂z/∂x and ∂z/∂y when z is determined as a function of y and x by

the following equations:

a. x+ y2 + z3 = 3xyz.

b. 2x2 + 3y2 + z2 = e−z .

2. Suppose y and z are determined as functions of x by the equations z = x2−y2
and z = 2x+4y. Find dy/dx and dz/dx (a) by solving the equations explicitly

for y and z; (b) by implicit differentiation.
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3. Compute dy/dt and dz/dt when y and z are determined as functions of t by

the equations y5 + eyz + zt2 = 1 and y2 + z4 = t2.

4. If u = x2 + 3y2 and y = xz, there are two possible meanings for ∂u/∂x
depending on whether the independent variables are taken as (x, y) or (x, z).
Compute both of them.

5. Let V = πr2h and S = 2πr(r + h) (the volume and surface area of a circular

cylinder). Compute

∂V

∂h

∣∣∣∣
r

,
∂V

∂h

∣∣∣∣
S

,
∂V

∂S

∣∣∣∣
r

,
∂S

∂V

∣∣∣∣
r

,

where the subscript indicates the variable that is being held fixed.

6. Suppose that F (x, y, z) = 0 is an equation that can be solved to yield any of

the three variables as a function of the other two. Show that

∂x

∂y

∂y

∂z

∂z

∂x
= −1,

provided that the symbols are interpreted properly. (Part of the problem is to

say what the proper interpretation is.)

7. Suppose that the variables E, T , V , and P are related by a pair of equations,

f(E,T, V, P ) = 0 and g(E,T, V, P ) = 0, that can be solved for any two of the

variables in terms of the other two, and suppose that the differential equation

∂V E−T∂TP +P = 0 is satisfied when V and T are taken as the independent

variables. Show that ∂PE + T∂TV + P∂PV = 0 when P and T are taken as

the independent variables. (This example comes from thermodynamics, where

E, T , V , and P represent energy, temperature, volume, and pressure.)

2.6 Higher-Order Partial Derivatives

If f is a differentiable function on an open set S ⊂ Rn, its partial derivatives ∂jf
are also functions on S, and they themselves may have partial derivatives. The

standard notations for the second-order derivative

∂

∂x i

[
∂f

∂xj

]

are
∂2f

∂xi∂xj
, fxjxi , fji, ∂xi∂xjf, ∂i∂jf



78 Chapter 2. Differential Calculus

if i 6= j and
∂2f

∂x2j
, fxjxj , fjj, ∂2xjf, ∂2j f

if i = j. The analogues of these notations for higher-order partial derivatives

should be pretty clear. However, all of them become quite cumbersome when the

order of the derivative is even moderately large. There is a more compact notation

for partial derivatives of arbitrary order that we shall introduce below.

A function f is said to be of class C
k on an open set U if all of its partial

derivatives of order ≤ k — that is, all the derivatives ∂i1∂i2 · · · ∂ilf , for all choices

of the indices ij and all l ≤ k — exist and are continuous on U . We also say that f
is of class Ck on a nonopen set S if it is of class Ck on some open set that includes

S. If the partial derivatives of f of all orders exist and are continuous on U , f is

said to be of class C∞ on U .

It is common to refer to the derivatives ∂2j f and ∂i∂jf (i 6= j) as pure and

mixed second-order partial derivatives of f , respectively. In this connection, a

question that immediately arises is whether the order of differentiation matters.

In other words, is ∂i∂jf the same as ∂j∂if? Experimentation with elementary

examples suggests that the answer is yes.

EXAMPLE 1. If g(x, y) = x sin(x3 + e2y), we have

∂xg = sin(x3 + e2y) + 3x3 cos(x3 + e2y), ∂yg = 2xe2y cos(x3 + e2y).

Differentiating ∂xg with respect to y and ∂yg with respect to x yields

∂y∂xg(x, y) = 2e2y cos(x3 + e2y)− 6x3e2y sin(x3 + e2y) = ∂x∂yg(x, y).

However, the following example shows that ∂i∂jf may fail to coincide with

∂j∂if .

EXAMPLE 2. Let

f(x, y) =
xy(x2 − y2)
x2 + y2

if (x, y) 6= (0, 0), f(0, 0) = 0.

Since f(x, 0) = f(0, y) = 0 for all x, y, we have ∂xf(0, 0) = ∂yf(0, 0) = 0,

and a little calculation shows that for (x, y) 6= (0, 0),

∂xf(x, y) =
x4y + 4x2y3 − y5

(x2 + y2)2
, ∂yf(x, y) =

x5 − 4x3y2 − xy4
(x2 + y2)2

.

In particular, ∂xf(0, y) = −y and ∂yf(x, 0) = x for all x, y, so

∂y∂xf(0, 0) = −1 but ∂x∂yf(0, 0) = 1.
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On the other hand, another little calculation shows that

∂y∂xf(x, y) = ∂x∂yf(x, y) =
x6 + 9x4y2 − 9x3y4 − y6

(x2 + y2)3
for (x, y) 6= (0, 0).

This last expression has no limit as (x, y) → (0, 0) (approaching (0,0) along

different straight lines gives different limits). Thus, we see that ∂y∂xf and

∂x∂yf exist everywhere, are continuous except at the origin, and are equal

except at the origin.

Fortunately, the pathological behavior in Example 2 is quite atypical. The fol-

lowing theorem guarantees that the order of differentiation is immaterial in most

situations that arise in practice.

2.45 Theorem. Let f be a function defined in an open set S ⊂ Rn. Suppose a ∈ S
and i, j ∈ {1, . . . , n}. If the derivatives ∂if , ∂jf , ∂i∂jf , and ∂j∂if exist in S, and

if ∂i∂jf and ∂j∂if are continuous at a, then ∂i∂jf(a) = ∂j∂if(a).

Proof. Since only the variables xi and xj are actually involved here, we may as well

assume that n = 2 and write x = (x, y) and a = (a, b), so that we are studying

the derivatives ∂x∂yf and ∂y∂xf . These derivatives can be regarded as limits of

second-order difference quotients, so we begin by examining the “difference of

differences” obtained when x and y are both changed by an amount h:

D =
[
f(a+ h, b+ h)− f(a+ h, b)

]
−
[
f(a, b+ h)− f(a, b)

]

=
[
f(a+ h, b+ h)− f(a, b+ h)

]
−
[
f(a+ h, b)− f(a, b)

]
.

That is, if we set

ϕ(t) = f(a+ h, b+ t)− f(a, b+ t), ψ(t) = f(a+ t, b+ h)− f(a+ t, b),

we have

D = ϕ(h) − ϕ(0) = ψ(h) − ψ(0).
We apply the (one-variable) mean value theorem twice to the first expression for

D, obtaining

D = ϕ′(v)h =
[
∂yf(a+ h, b+ v)− ∂yf(a, b+ v)

]
h

= ∂x∂yf(a+ u, b+ v)h2,

where u and v are some numbers between 0 and h. Likewise, using the second

expression for D, we obtain

D = ψ′(ũ)h =
[
∂xf(a+ ũ, b+ h)− ∂xf(a+ ũ, b)

]
h

= ∂y∂xf(a+ ũ, b+ ṽ)h2,
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where ũ and ṽ are some other numbers between 0 and h. Equating these two

expressions and cancelling the h2, we have

∂x∂yf(a+ u, b+ v) = ∂y∂xf(a+ ũ, b+ ṽ).

Now let h → 0. Then u, v, ũ, ṽ → 0 also, so since ∂x∂yf and ∂y∂xf are assumed

continuous at (a, b), we obtain ∂x∂yf(a, b) = ∂y∂xf(a, b).

2.46 Corollary. If f is of class C2 on an open set S, then ∂i∂jf = ∂j∂if on S, for

all i and j.

Once this is known, an elementary but slightly messy inductive argument shows

that the analogous result for higher-order derivatives is also true:

2.47 Theorem. If f is of class Ck on an open set S, then

∂i1∂i2 · · · ∂ikf = ∂j1∂j2 · · · ∂jkf on S

whenever the sequence {j1, . . . , jk} is a reordering of the sequence {i1, . . . , ik}.

The fact that the order of differentiation in a mixed partial derivative can occa-

sionally matter is a technicality that is of essentially no importance in applications.

In fact, by adopting a more sophisticated viewpoint one can prove a theorem to

the effect that, under very general conditions, ∂i∂jf and ∂j∂if are always equal

“almost everywhere,” which is enough to allow regarding them as equal for all

practical purposes.

The chain rule can be used to compute higher-order partial derivatives of com-

posite functions, but there are some pitfalls to be avoided. To be concrete, suppose

that w = f(x, y) and that x and y are functions of s and t. Assume that all the

functions in question are at least of class C2. To begin with, the chain rule for

first-order derivatives gives

(2.48)
∂w

∂s
=
∂w

∂x

∂x

∂s
+
∂w

∂y

∂y

∂s
.

If we want to compute ∂2w/∂s2, we differentiate (2.48) with respect to s, obtaining

(2.49)
∂2w

∂s2
=

∂

∂s

[
∂w

∂x

]
∂x

∂s
+
∂w

∂x

∂2x

∂s2
+

∂

∂s

[
∂w

∂y

]
∂y

∂s
+
∂w

∂y

∂2y

∂s2
.

The first pitfall is to write
∂

∂s

[
∂w

∂x

]
as a mixed partial derivative

∂2w

∂s∂x
. This

makes no sense because when we write ∂w/∂x we are thinking of w as a function
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of x and y, not x and s. Rather, ∂w/∂x is a function of x and y just like w, and

to differentiate it with respect to s we use the chain rule again; and likewise for

∂w/∂y:

(2.50)
∂

∂s

[
∂w

∂x

]
=
∂2w

∂x2
∂x

∂s
+
∂2w

∂x∂y

∂y

∂s
,

∂

∂s

[
∂w

∂y

]
=

∂2w

∂x∂y

∂x

∂s
+
∂2w

∂y2
∂y

∂s
.

Now we plug these results into (2.49) to get the final answer, which thus contains

quite a few terms. Pitfall number 2: It’s easy to forget some of these terms.

In this situation it’s usually advantageous to use the notation fx and fy in-

stead of ∂w/∂x and ∂w/∂y, and likewise for second-order derivatives. This makes

(2.48)–(2.50) look a little more manageable:

∂w

∂s
= fx

∂x

∂s
+ fy

∂y

∂s
,

∂2w

∂s2
=
∂fx
∂s

∂x

∂s
+ fx

∂2x

∂s2
+
∂fy
∂s

∂y

∂s
+ fy

∂2y

∂s2
,

∂fx
∂s

= fxx
∂x

∂s
+ fxy

∂y

∂s
,

∂fy
∂s

= fxy
∂x

∂s
+ fyy

∂y

∂s
.

The final result is then

∂2w

∂s2
= fxx

[
∂x

∂s

]2
+ 2fxy

∂x

∂s

∂y

∂s
+ fyy

[
∂y

∂s

]2
+ fx

∂2x

∂s2
+ fy

∂2y

∂s2
.

Of course, similar results also hold for the other second-order derivatives of w.

EXAMPLE 3. Suppose u = f(x, y), x = s2 − t2, y = 2st. Assuming f is of

class C2, find ∂2u/∂s∂t in terms of the derivatives of f .

Solution.
∂u

∂t
= fx

∂x

∂t
+ fy

∂y

∂t
= −2tfx + 2sfy, so

∂2u

∂s∂t
= −2t[2sfxx + 2tfxy] + 2s[2sfxy + 2tfyy] + 2fy

= −4stfxx + 4(s2 − t2)fxy + 4stfyy + 2fy.

EXAMPLE 4. Let us see what happens to some derivatives when we change

from Cartesian to polar coordinates. Let u = f(x, y), where f is of class C2,

and let x = r cos θ and y = r sin θ. Then

∂u

∂r
= fx

∂x

∂r
+ fy

∂y

∂r
= (cos θ)fx + (sin θ)fy,

∂u

∂θ
= fx

∂x

∂θ
+ fy

∂y

∂θ
= −(r sin θ)fx + (r cos θ)fy.
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Proceeding to the second derivatives,

∂2u

∂r2
= (cos θ)

∂fx
∂r

+ (sin θ)
∂fy
∂r

= (cos2 θ)fxx + (2 cos θ sin θ)fxy + (sin2 θ)fyy,

∂2u

∂θ2
= −(r cos θ)fx − (r sin θ)

∂fx
∂θ
− (r sin θ)fy + (r cos θ)

∂fy
∂θ

= (r2 sin2 θ)fxx − (2r2 sin θ cos θ)fxy + (r2 cos2 θ)fyy − r
∂u

∂r
.

The calculation of the mixed derivative ∂2u/∂r∂θ is left to the reader (Exercise

2).

Notice, in particular, that by combining the last two equations and using

the identity sin2 θ + cos2 θ = 1, we obtain

∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2
∂2u

∂θ2
= fxx + fyy.

The expression on the right, the sum of the pure second partial derivatives of f
with respect to a Cartesian coordinate system, turns up in many practical and

theoretical applications; it is called the Laplacian of f . (We shall encounter

it again in Chapter 5.) What we have just accomplished is the calculation of

the Laplacian in polar coordinates. We state this result formally, with slightly

different notation.

2.51 Proposition. Suppose u is a C2 function of (x, y) in some open set in R2. If

(x, y) is related to (r, θ) by x = r cos θ, y = r sin θ, we have

∂2u

∂x2
+
∂2u

∂y2
=
∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2
∂2u

∂θ2
.

Multi-index Notation. Traditional notations for partial derivatives become

rather cumbersome for derivatives of order higher than two, and they make it rather

difficult to write Taylor’s theorem in an intelligible fashion. However, a better

notation, which is now in common usage in the literature of partial differential

equations, is available.

A multi-index is an n-tuple of nonnegative integers. Multi-indices are gener-

ally denoted by the Greek letters α or β:

α = (α1, α2, . . . , αn), β = (β1, β2, . . . , βn)
(
αj, βj ∈ {0, 1, 2, . . .}

)
.
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If α is a multi-index, we define

|α| = α1 + α2 + · · ·+ αn, α! = α1!α2! · · ·αn!,
xα = xα1

1 xα2

2 · · · xαn
n (where x = (x1, x2, . . . , xn) ∈ Rn),

∂αf = ∂α1

1 ∂α2

2 · · · ∂αn
n f =

∂|α|f
∂xα1

1 ∂xα2

2 · · · ∂xαn
n

The number |α| = α1 + · · · + αn is called the order or degree of α. Thus, the

order of α is the same as the order of xα as a monomial or the order of ∂α as a

partial derivative. (The notation |α| = α1 + · · · + αn conflicts with the notation

|x| = (x21+· · ·+x2n)1/2 for the norm of an n-tuple of real numbers, but the meaning

will be clear from the context.)

If f is a function of class Ck, by Theorem 2.47 the order of differentiation in a

kth-order partial derivative of f is immaterial. Thus, the generic kth-order partial

derivative of f can be written simply as ∂αf with |α| = k.

EXAMPLE 5. With n = 3 and x = (x, y, z), we have

∂(0,3,0)f =
∂3f

∂y3
, x(2,1,5) = x2yz5.

As the notation xα indicates, multi-indices are handy for writing not only

derivatives but also polynomials in several variables. To illustrate their use, we

present a generalization of the binomial theorem.

2.52 Theorem (The Multinomial Theorem). For any x = (x1, x2, . . . xn) ∈ Rn

and any positive integer k,

(x1 + x2 + · · ·+ xn)
k =

∑

|α|=k

k!

α!
xα.

Proof. The case n = 2 is just the binomial theorem:

(x1 + x2)
k =

k∑

j=0

k!

j!(k − j)!x
j
1x
k−j
2 =

∑

α1+α2=k

k!

α1!α2!
xα1

1 xα2

2 =
∑

|α|=k

k!

α!
xα,

where we have set α1 = j, α2 = k−j, and α = (α1, α2). The general case follows

by induction on n. Suppose the result is true for n < N and x = (x1, . . . , xN ). By
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using the result for n = 2 and then the result for n = N − 1, we obtain

(x1 + · · · + xN )
k =

[
(x1 + · · ·+ xN−1) + xN

]k

=
∑

i+j=k

k!

i!j!
(x1 + · · ·+ xN−1)

ixjN

=
∑

i+j=k

k!

i!j!

∑

|β|=i

i!

β!
x̃βxjN ,

where β = (β1, . . . , βN−1) and x̃ = (x1, . . . , xN−1). To conclude, we set α =
(β1, . . . , βN−1, j), so that β!j! = α! and x̃βxjN = xα. Observing that α runs over

all multi-indices of order k when β runs over all multi-indices of order i = k − j
and j runs from 0 to k, we obtain

∑
|α|=k k!x

α/α!.

EXERCISES

In these exercises, all functions in question are assumed to be of class C2.

1. Verify by explicit calculation that ∂x∂yf = ∂y∂xf :

a. f(x, y) = x2y + sinπxy.

b. f(x, y) = e4x−y
2

.

c. f(x, y) = (x+ 2y + 4)/(7x + 3y).

2. Calculate ∂2u/∂r∂θ if u = f(x, y), x = r cos θ, y = r sin θ. (See Example

4.)

3. Compute the indicated derivatives of w in terms of the derivatives of f :

a. ∂2xw and ∂x∂yw, if w = f(2x− y2, x sin 3y, x4).
b. ∂x∂yw and ∂2yw, if w = f(ex−3y, log(x2 + 1),

√
y4 + 4).

4. Show that if u = F (x+ g(y)), then uxuxy = uyuxx.

5. Suppose that f is a homogeneous function of degree a on Rn. Show that∑n
j,k=1 xjxk∂j∂kf = a(a− 1)f (cf. Euler’s theorem (2.36) and its proof).

6. Suppose u = f(x, y), x = s2 − t2, y = 2st. Show that ∂2su + ∂2t u =
4(s2 + t2)(∂2xf + ∂2yf) (cf. Example 3).

7. Suppose u = f(x− ct) + g(x + ct), where c is a constant. Show that ∂2xu =
c−2∂2t u.

8. For x = (x, y, z) ∈ R3 \ {0} and t ∈ R, let F (x, t) = r−1g(ct − r), where

c is a constant, g is a C2 function of one variable, and r = |x|. Show that

∂2xF + ∂2yF + ∂2zF = c−2∂2t F .
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9. For x ∈ Rn \ {0}, let F (x) = f(r) where f is a C2 function on (0,∞) and

r = |x|. Show that ∂21F + · · · + ∂2nF = f ′′(r) + (n− 1)r−1f ′(r).

10. Derive the following version of the product rule for partial derivatives:

∂α(fg) =
∑

β+γ=α(α!/β!γ!)∂
βf∂γg.

11. Prove the following n-dimensional binomial theorem: For all x,y ∈ Rn we

have (x+ y)α =
∑

β+γ=α(α!/β!γ!)x
βyγ .

2.7 Taylor’s Theorem

In this section we discuss Taylor expansions in their finite form, as polynomial

approximations to a function rather than expansions in infinite series. We begin

with a review of Taylor’s theorem for functions of one real variable.

Taylor’s theorem is a higher-order version of the tangent line approximation; it

says that a function f of class Ck on an interval I containing the point x = a is the

sum of a certain polynomial of degree k and a remainder term that vanishes more

rapidly than |x − a|k as x → a. Specifically, the polynomial P = Pa,k of order k
such that P (j)(0) = f (j)(a) for 0 ≤ j ≤ k, namely

(2.53) Pa,k(h) =

k∑

j=0

f (j)(a)

j!
hj,

is called the kth-order Taylor polynomial for f based at a, and the difference

(2.54) Ra,k(h) = f(a+ h)− Pa,k(h) = f(a+ h)−
k∑

j=0

f (j)(a)

j!
hj

is called the kth-order Taylor remainder. The various versions of Taylor’s theorem

provide formulas or estimates for Ra,k that ensure that the Taylor polynomial Pa,k
is a good approximation to f near a. The ones most commonly known involve the

stronger assumption that f is of class Ck+1 and yield the stronger conclusion that

the remainder vanishes as rapidly as |x − a|k+1. We present two of these, as well

as one that yields the more general form of the theorem stated above.

The easiest version of Taylor’s theorem to derive is the following.

2.55 Theorem (Taylor’s Theorem with Integral Remainder, I). Suppose that f is

of class Ck+1 (k ≥ 0) on an interval I ⊂ R, and a ∈ I . Then the remainder Ra,k
defined by (2.53)–(2.54) is given by

(2.56) Ra,k(h) =
hk+1

k!

∫ 1

0
(1− t)kf (k+1)(a+ th) dt.
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Proof. For k = 0 the assertion is just that

(2.57) f(a+ h) = f(a) + h

∫ 1

0
f ′(a+ th) dt,

which is easily verified by the substitution u = a+ th:

h

∫ 1

0
f ′(a+ th) dt =

∫ a+h

a
f ′(u) du = f(a+ h)− f(a).

The trick now is to integrate (2.57) by parts, choosing for the antiderivative of the

constant function 1 not t but t− 1, alias −(1− t):

h

∫ 1

0
f ′(a+ th) dt = −(1− t)hf ′(a+ th)

∣∣1
0
+ h

∫ 1

0
(1− t)f ′′(a+ th)hdt

= f ′(a)h+ h2
∫ 1

0
(1− t)f ′′(a+ th) dt.

Plugging this into (2.57), we obtain (2.56) in the case k = 1. If we integrate by

parts again,

h2
∫ 1

0
(1− t)f ′′(a+ th) dt

= h2
−(1− t)2

2
f ′′(a+ th)

∣∣∣∣
1

0

+ h2
∫ 1

0

(1− t)2
2

f ′′′(a+ th)hdt

=
f ′′(a)
2

h2 +
h3

2

∫ 1

0
(1− t)2f ′′′(a+ th) dt,

we obtain the theorem for k = 2. The pattern is now clear: Integrating (2.57) by

parts k times yields (2.56).

Next we present a modification of Theorem 2.55 that works without assum-

ing that f has any additional derivatives beyond the ones occurring in the Taylor

polynomial.

2.58 Theorem (Taylor’s Theorem with Integral Remainder, II). Suppose that

f is of class Ck (k ≥ 1) on an interval I ⊂ R, and a ∈ I . Then the remain-

der Ra,k defined by (2.53)–(2.54) is given by

(2.59) Ra,k(h) =
hk

(k − 1)!

∫ 1

0
(1− t)k−1

[
f (k)(a+ th)− f (k)(a)

]
dt.
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Proof. We begin by using Theorem 2.55, with k replaced by k − 1:

f(a+ h)−
k−1∑

j=0

f (j)(a)

j!
hj =

hk

(k − 1)!

∫ 1

0
(1− t)k−1f (k)(a+ th) dt.

Subtracting f (k)(a)hk/k! from both sides gives

f(a+ h)−
k∑

j=0

f (j)(a)

j!
hj =

hk

(k − 1)!

∫ 1

0
(1− t)k−1f (k)(a+ th) dt− f (k)(a)h

k

k!
.

In view of the fact that

hk

k!
=

hk

(k − 1)!

∫ 1

0
(1− t)k−1 dt,

this gives (2.59).

The formulas (2.56) and (2.59) are generally used not to obtain the exact value

of the remainder but to obtain an estimate for it. The main results are in the follow-

ing corollaries.

2.60 Corollary. If f is of class Ck on I , then Ra,k(h)/h
k → 0 as h→ 0.

Proof. f (k) is continuous at a, so for any ǫ > 0 there exists δ > 0 such that

|f (k)(y)− f (k)(a)| < ǫ when |y − a| < δ. In particular,

∣∣f (k)(a+ th)− f (k)(a)
∣∣ < ǫ for 0 ≤ t ≤ 1 when |h| < δ.

Hence, (2.59) gives

|Ra,k(h)| ≤
|h|k

(k − 1)!

∫ 1

0
(1− t)k−1ǫ dt =

ǫ

k!
|h|k for |h| < δ.

In other words, |Ra,k(h)/hk | < ǫ/k! whenever |h| < δ, and hence Ra,k(h)/h
k →

0 as h→ 0.

Thus, if f is of class Ck near x = a, we can write f(x) as the sum of a kth-order

polynomial (the Taylor polynomial) in h = x− a and a remainder that vanishes at

x = a faster than any nonzero term in the polynomial. Notice that for k = 1, this

is just a restatement of the differentiability of f . If f is actually of class Ck+1, we

obtain a better estimate from (2.56):
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2.61 Corollary. If f is of class Ck+1 on I and |f (k+1)(x)| ≤M for x ∈ I , then

|Ra,k(h)| ≤
M

(k + 1)!
|h|k+1, (a+ h ∈ I).

Proof. By (2.56),

|Ra,k(h)| ≤
|h|k+1

k!

∫ 1

0
(1− t)kM dt =

M

(k + 1)!
|h|k+1.

Finally, we present Lagrange’s form of the remainder, which turns Taylor’s

theorem into a higher-order version of the mean value theorem. Just as we deduced

the mean value theorem from Rolle’s theorem, we shall obtain Lagrange’s formula

from the following variant of Rolle’s theorem.

2.62 Lemma. Suppose g is k + 1 times differentiable on [a, b]. If g(a) = g(b) and

g(j)(a) = 0 for 1 ≤ j ≤ k, then there is a point c ∈ (a, b) such that g(k+1)(c) = 0.

Proof. By Rolle’s theorem, there is a point c1 ∈ (a, b) such that g′(c1) = 0. Since

g′ is continuous on [a, c1] and differentiable on (a, c1), and g′(a) = g′(c1) = 0,

there is a point c2 ∈ (a, c1) such that g′′(c2) = 0. Proceeding inductively, we find

that for 1 ≤ j ≤ k + 1 there is a point cj ∈ (a, cj−1) such that g(j)(cj) = 0, and

the final case j = k + 1 is the desired result.

2.63 Theorem (Taylor’s Theorem with Lagrange’s Remainder). Suppose f is k+1
times differentiable on an interval I ⊂ R, and a ∈ I . For each h ∈ R such that

a+ h ∈ I there is a point c between 0 and h such that

(2.64) Ra,k(h) = f (k+1)(a+ c)
hk+1

(k + 1)!
.

Proof. Let us fix a particular h, and suppose for now that h > 0. Let

g(t) = Ra,k(t)−
Ra,k(h)

hk+1
tk+1

= f(a+ t)− f(a)− f ′(a)t− · · · − f (k)(a)

k!
tk − Ra,k(h)

hk+1
tk+1.

The coefficient of tk+1 is chosen to make g(h) = 0, and clearly g(0) = 0. Simi-

larly, for j ≤ k we have

g(j)(t) = f (j)(a+ t)− f (j)(a)− · · · − f (k)(a)

(k − j)! t
k−j

− Ra,k(h)

hk+1
(k + 1) · · · (k + 2− j)tk+1−j ,
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so g(j)(0) = 0. Therefore, by Lemma 2.62, there is a point c ∈ (0, h) such that

0 = g(k+1)(c) = f (k+1)(a+ c)− Ra,k(h)

hk+1
(k + 1)!.

But this is precisely (2.64). The case h < 0 is handled similarly by considering the

function g̃(t) = g(−t) on the interval [0, |h|].

Corollary 2.61 is obviously an immediate consequence of (2.64).

Remark. In Theorem 2.55 we assumed that f is of class Ck+1, but in Theo-

rem 2.63 we needed only the existence, not the continuity, of f (k+1). Actually, in

Theorem 2.55 it is enough to assume that f (k+1) is Riemann integrable.

For the convenience of the reader, we recall a few of the most familiar and

useful Taylor expansions, which are easily derived from the definition (2.53). They

will be used without comment in the rest of the book.

2.65 Proposition. The Taylor polynomials of degree k about a = 0 of the functions

ex, cos x, sinx, (1− x)−1

are, respectively,

∑

0≤j≤k

xj

j!
,

∑

0≤j≤k/2

(−1)jx2j
(2j)!

,
∑

0≤j≤(k−1)/2

(−1)jx2j+1

(2j + 1)!
,

∑

0≤j≤k
xj .

Taylor polynomials have many uses. From a practical point of view, they allow

one to approximate complicated functions by polynomials that are relatively easy

to compute with. On the more theoretical side, it is an important general principle

that the behavior of a function f(x) near x = a is largely determined by the first

nonvanishing term, apart from the constant term f(a), in its Taylor expansion. That

is, if f ′(a) 6= 0, then the tangent line approximation f(x) ≈ f(a) + f ′(a)(x − a)
is a good one. If f ′(a) = 0 but f ′′(a) 6= 0, the second-order term is decisive,

and so forth. This is the basis for the second-derivative test for local extrema: If

f ′′(a) 6= 0, then f(x) ≈ f(a) + 1
2f

′′(a)(x − a)2, and the expression on the right

is a quadratic function with a maximum or minimum at a, depending on the sign

of f ′′(a). (See Exercise 9 and §2.8.) The following example illustrates another

application of this principle.

EXAMPLE 1. Use Taylor expansions to evaluate lim
x→0

x2 − sinx2

x4(1− cos x)
.
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Solution. We have

x2 − sinx2 = x2 − (x2 − 1
6x

6 + · · · ) = 1
6x

6 + · · · ,
x4(1− cos x) = x4

(
1− (1− 1

2x
2 + · · · )

)
= 1

2x
6 + · · · ,

where the dots denote error terms that vanish faster than x6 as x → 0. There-

fore,

x2 − sinx2

x4(1− cos x)
=

1
6x

6 + · · ·
1
2x

6 + · · · =
1
6 + · · ·
1
2 + · · ·

,

where the dots in the last fraction denote error terms that vanish as x→ 0. The

limit is therefore 1
3 . (To appreciate the efficiency of this calculation, try doing

it by l’Hôpital’s rule!)

We now generalize these results to functions on Rn. Suppose f : Rn → R is of

class Ck on a convex open set S. We can derive a Taylor expansion for f(x) about

a point a ∈ S by looking at the restriction of f to the line joining a and x. That is,

we set h = x− a and

g(t) = f(a+ t(x− a)) = f(a+ th).

By the chain rule,

g′(t) = h · ∇f(a+ th),

and hence

g(j)(t) = (h · ∇)jf(a+ th),

where the expression on the right denotes the result of applying the operation

(2.66) h · ∇ = h1
∂

∂x1
+ · · ·+ hn

∂

∂xn

j times to f . The Taylor formula for g with a = 0 and h = 1,

g(1) =

k∑

0

g(j)(0)

j!
1j + (remainder),

therefore yields

(2.67) f(a+ h) =

k∑

0

(h · ∇)jf(a)
j!

+Ra,k(h),

where formulas for Ra,k(h) can be obtained from the formulas (2.56), (2.59), or

(2.64) applied to g.
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It is usually preferable, however, to rewrite (2.67) and the accompanying for-

mulas for the remainder so that the partial derivatives of f appear more explicitly.

To do this, we apply the multinomial theorem to the expression (2.66) to get

(h · ∇)j =
∑

|α|=j

j!

α!
hα∂α.

Substituting this into (2.67) and the remainder formulas, we obtain the following:

2.68 Theorem (Taylor’s Theorem in Several Variables). Suppose f : Rn → R is

of class Ck on an open convex set S. If a ∈ S and a+ h ∈ S, then

(2.69) f(a+ h) =
∑

|α|≤k

∂αf(a)

α!
hα +Ra,k(h),

where

(2.70) Ra,k(h) = k
∑

|α|=k

hα

α!

∫ 1

0
(1− t)k−1

[
∂αf(a+ th)− ∂αf(a)

]
dt.

If f is of class Ck+1 on S, we also have

(2.71) Ra,k(h) = (k + 1)
∑

|α|=k+1

hα

α!

∫ 1

0
(1− t)k∂αf(a+ th) dt,

and

(2.72) Ra,k(h) =
∑

|α|=k+1

∂αf(a+ ch)
hα

α!
for some c ∈ (0, 1).

This result bears a pleasing similarity to the single-variable formulas (2.54),

(2.56), (2.59), and (2.64) — a triumph for multi-index notation! It may be reas-

suring, however, to see the formula for the second-order Taylor polynomial written

out in the more familiar notation:

Pa,2(h) = f(a) +

n∑

j=1

∂jf(a)hj +
1

2

n∑

j,k=1

∂j∂kf(a)hjhk

(2.73)

= f(a) +
n∑

1

∂jf(a)hj +
1

2

n∑

j=1

∂2j f(a)h
2
j +

∑

1≤j<k≤n
∂j∂kf(a)hjhk.(2.74)
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The first of these formulas is (2.67) with k = 2; the second one is (2.69). (Every

multi-index α of order 2 is either of the form (. . . , 2, . . .) or (. . . , 1, . . . , 1, . . .),
where the dots denote zero entries, so the sum over |α| = 2 in (2.69) breaks up into

the last two sums in (2.74).) Notice that the mixed derivatives ∂j∂k (j 6= k) occur

twice in (2.73) (since ∂j∂k = ∂k∂j) but only once in (2.74) (since j < k there);

this accounts for the disappearance of the factor of 1
2 in the last sum in (2.74).

We also have the following analogue of Corollaries 2.60 and 2.61:

2.75 Corollary. If f is of class Ck on S, then Ra,k(h)/|h|k → 0 as h→ 0. If f is

of class Ck+1 on S and |∂αf(x)| ≤M for x ∈ S and |α| = k + 1, then

|Ra,k(h)| ≤
M

(k + 1)!
‖h‖k+1,

where

‖h‖ = |h1|+ |h2|+ · · · + |hn|.

Proof. The proof of the first assertion is the same as the proof of Corollary 2.60.

As for the second, it follows easily from either (2.71) or (2.72) that

|Ra,k(h)| ≤M
∑

|α|=k+1

|hα|
α!

,

and this last expression equals M‖h‖k+1/(k+1)! by the multinomial theorem.

An essential fact about the Taylor expansion of a function f about a point a

is that it is the only way to write f as the sum of a polynomial of degree k and a

remainder that vanishes to higher order than |x − a|k as x → a. To see this, we

need the following lemma.

2.76 Lemma. If P (h) is a polynomial of degree ≤ k that vanishes to order > k as

h→ 0 [i.e., P (h)/|h|k → 0], then P ≡ 0.

Proof. The hypothesis implies that, for each fixed h, P (th)/tk → 0 as t → 0.

Write P = P0 + P1 + · · · + Pk where Pj is the sum of the terms of order j in P ;

thus

P (th) = P0 + tP1(h) + t2P2(h) + · · ·+ tkPk(h).

P0 is the constant term; since P (0) = 0 we must have P0 = 0. Hence, dividing by

t,
P (th)

t
= P1(h) + tP2(h) + · · ·+ tk−1Pk(h).
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Since P (th)/t→ 0, we must have P1(h) = 0. But then, dividing by t again,

P (th)

t2
= P2(h) + · · ·+ tk−2Pk(h),

so P2(h) = 0 since P (th)/t2 → 0. Continuing inductively, we conclude that

Pj(h) = 0 for all j, so P ≡ 0.

2.77 Theorem. Suppose f is of class C(k) near a. If f(a + h) = Q(h) + E(h)
where Q is a polynomial of degree ≤ k and E(h)/|h|k → 0 as h → 0, then Q is

the Taylor polynomial Pa,k.

Proof. Corollary 2.75 says that f(a+h) = Pa,k(h)+Ra,k(h), whereRa,k(h)/|h|k
tends to zero as h does. If also f(a+h) = Q(h)+E(h), thenQ−Pa,k = Ra,k−E,

so
Q(h)− Pa,k(h)

|h|k =
Ra,k(h)− E(h)

|h|k → 0.

By Lemma 2.76, Q = Pa,k.

Theorem 2.77 has the following important practical consequence. If one wants

to compute the Taylor expansion of f , it may be very tedious to calculate all the

derivatives needed in formula (2.69) directly. But if one can find, by any means

whatever, a polynomial Q of degree k such that [f(a + h) − Q(h)]/|h|k → 0,

then Q must be the Taylor polynomial. This enables one to generate new Taylor

expansions from old ones by operations such as substitution, multiplication, etc.

EXAMPLE 2. Find the 3rd-order Taylor polynomial of f(x, y) = ex
2+y about

(x, y) = (0, 0).
Solution. The direct method is to calculate the derivatives fx, fy, fxx, fxy,

fyy , fxxx, fxxy, fxyy, and fyyy, and then plug the results into (2.69), but only a

masochist would do this. Instead, use the familiar expansion for the exponential

function (Proposition 2.65), neglecting all terms of order higher than 3:

ex
2+y = 1 + (x2 + y) + 1

2(x
2 + y)2 + 1

6(x
2 + y)3 + (order > 3)

= 1 + x2 + y + 1
2(x

4 + 2x2y + y2) + 1
6(x

6 + 3x4y + 3x2y2 + y3)

+ (order > 3)

= 1 + y + x2 + 1
2y

2 + x2y + 1
6y

3 + (order > 3).

In the last line we have thrown the terms x4, x6, x4y, and x2y2 into the garbage

pail, since they are themselves of order > 3. Thus the answer is 1 + y + x2 +
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1
2y

2 + x2y + 1
6y

3. Alternatively,

ex
2+y = ex

2

ey = (1 + x2 + · · · )(1 + y + 1
2y

2 + 1
6y

3 + · · · )
= 1 + y + x2 + 1

2y
2 + x2y + 1

6y
3 + · · ·

where the dots indicate terms of order > 3.

EXERCISES

1. Let f(x) = x2(x− sinx) and g(x) = (ex − 1)(cos 2x− 1)2.

a. Compute the Taylor polynomials of order 5 based at a = 0 of f and g.

(Don’t compute any derivatives; use Proposition 2.65 as a starting point.)

b. Use the result of (a) to find limx→0 f(x)/g(x) without using l’Hôpital’s

rule.

2. Find the Taylor polynomial P1,3(h) and give a constant C such that |R1,3(h)| ≤
Ch4 on the interval |h| ≤ 1

2 for each of the following functions.

a. f(x) = log x.

b. f(x) =
√
x.

c. f(x) = (x+ 3)−1.

3. Show that | sinx − x + 1
6x

3| < .08 for |x| ≤ 1
2π. (Hint: x − 1

6x
3 is actually

the 4th-order Taylor polynomial of sinx.) How large do you have to take k so

that the kth-order Taylor polynomial of sinx about a = 0 approximates sinx
to within .01 for |x| ≤ 1

2π?

4. Use a Taylor approximation to e−x
2

to compute
∫ 1
0 e

−x2 dx to three decimal

places, and prove the accuracy of your answer. (Hint: It’s easier to apply

Corollary 2.61 to f(t) = e−t and set t = x2 than to apply Corollary 2.61

to e−x
2

directly.)

5. Find the Taylor polynomial of order 4 based at a = (0, 0) for each of the

following functions. Don’t compute any derivatives; use Proposition 2.65.

a. f(x, y) = x sin(x+ y).
b. exy cos(x2 + y2).
c. ex−2y/(1 + x2 − y).

6. Find the 3rd-order Taylor polynomial of f(x, y) = x+ cosπy + x log y based

at a = (3, 1).

7. Find the 3rd-order Taylor polynomial of f(x, y, z) = x2y + z based at a =
(1, 2, 1). The remainder vanishes identically; why? (You can see this either

from the Taylor remainder formula or by algebra.)
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8. Suppose f is defined on the open interval I and a ∈ I . The Taylor polynomial

Pa,k is well defined provided merely that f is of class Ck−1 on I and f (k)(a)
exists. Show that under these hypotheses, the remainder Ra,k = f − Pa,k still

satisfies limh→0Ra,k(h)/h
k = 0. (Hint: Apply l’Hôpital’s rule k − 1 times,

then recall precisely what it means for f (k)(a) to exist.)

9. Suppose that f is of class Ck on an open interval containing the point a, and

that f ′(a) = · · · = f (k−1)(a) = 0 but f (k)(a) 6= 0. Use Corollary 2.60 to

show that (i) if k is even, then f has a local maximum or local minimum at a
according as f (k)(a) is negative or positive, and (ii) if k is odd, f has neither a

maximum nor a minimum at a.

10. Suppose f is of class Ck on an open convex set S ⊂ Rn and its kth-order

derivatives, ∂αf with |α| = k, satisfy

|∂αf(y)− ∂αf(x)| ≤ C|y− x|λ (x,y ∈ S),

where C and λ are positive constants (cf. Exercise 1 in §1.8). Use (2.70) to

show that there is another positive constant C ′ such that

|Ra,k(h)| ≤ C ′|h|k+λ (a ∈ S and a+ h ∈ S).

2.8 Critical Points

We know from elementary calculus that in studying a differentiable function f of a

real variable, it is particularly important to look at the points where the derivative

f ′ vanishes. The same is true for functions of several variables.

Suppose f is a differentiable function on some open set S ⊂ Rn. The point

a ∈ S is called a critical point for f if∇f(a) = 0. Finding the critical points of f
is a matter of solving the n equations ∂1f(x) = 0,. . . , ∂nf(x) = 0 simultaneously

for the n quantities x1, . . . , xn.

We say that f has a local maximum (or local minimum) at a if f(x) ≤ f(a)
(or f(x) ≥ f(a)) for all x in some neighborhood of a. Just as in the one-variable

case, we have:

2.78 Proposition. If f has a local maximum or minimum at a and f is differentiable

at a, then ∇f(a) = 0.

Proof. If f has a local maximum or minimum at a, then for any unit vector u,

the function g(t) = f(a + tu) has a local maximum or minimum at t = 0, so

g′(0) = ∂uf(a) = 0. In particular, ∂jf(a) = 0 for all j, so ∇f(a) = 0.
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How can we tell whether a function has a local maximum or minimum (or nei-

ther) at a critical point? For functions of one variable we have the second derivative

test: If f is of class C2, then f has a local minimum at a if f ′′(a) > 0 and a local

maximum if f ′′(a) < 0. (If f ′′(a) = 0, no conclusion can be drawn.) Something

similar happens for functions of n variables, but the situation is a good deal more

complicated. The full story involves a certain amount of linear algebra; the reader

who is content to consider the case of two variables and wishes to skip the linear

algebra may proceed directly to Theorem 2.82.

Suppose f is a real-valued function of class C2 on some open set S ⊂ Rn and

that f has a critical point at a, i.e.,∇f(a) = 0. Instead of one second derivative to

examine at a, we have a whole n× n matrix of them, called the Hessian of f at a:

(2.79) H = H(a) =




∂21f(a) ∂1∂2f(a) . . . ∂1∂nf(a)
∂2∂1f(a) ∂22f(a) . . . ∂2∂nf(a)

...
...

. . .
...

∂n∂1f(a) ∂n∂2f(a) . . . ∂2nf(a)


 .

The equality of mixed partials (Theorem 2.45) guarantees that this is a symmetric

matrix, that is, Hij = Hji.

By (2.73), the second-order Taylor expansion of f about a is

f(a+ k) = f(a) +
n∑

j=1

∂jf(a)kj +
1

2

n∑

i,j=1

∂i∂jf(a)kikj +Ra,2(k).

(We use k rather than h for the increment in this section to avoid a notational clash

with the Hessian H .) If ∇f(a) = 0, the first-order sum vanishes, and the second-

order sum is 1
2

∑
Hijkikj =

1
2Hk · k. In short,

(2.80) f(a+ k) = f(a) + 1
2Hk · k+Ra,2(k).

Now we can begin to see how to analyze the behavior of f about a in terms of

the matrix H . To start with the simplest situation, suppose it happens that all the

mixed partials ∂i∂jf (i 6= j) vanish at a. Denoting ∂2j f(a) by λj , we then have

f(a+ k) = f(a) +
n∑

1

λjk
2
j +Ra,2(k).

Let us neglect the remainder term for the moment. If all λj are positive, then∑
λjk

2
j > 0 for all k 6= 0, so f has a local minimum; likewise, if all λj are neg-

ative, then f has a local maximum. If some λj are positive and some are negative,
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then
∑
λjk

2
j will be positive for some values of k and negative for others, so f will

have neither a maximum or a minimum. It’s not hard to see that these conclusions

remain valid when the remainder term is included; we shall present the details be-

low. Only when some of the λj are zero is the outcome unclear; it is precisely in

this situation that the remainder term plays a significant role.

This is all very well, but the condition that ∂i∂jf(a) = 0 for i 6= j is ob-

viously very special. However, it can always be achieved by a suitable rotation

of coordinates, that is, by replacing the standard basis for Rn with another suit-

ably chosen orthonormal basis. This is the content of the spectral theorem, which

says that every symmetric matrix has an orthonormal eigenbasis (see Appendix A,

(A.56)–(A.58)). With this result in hand, we arrive at the second-derivative test for

functions of several variables.

2.81 Theorem. Suppose f is of class C2 at a and that ∇f(a) = 0, and let H be

the Hessian matrix (2.79). For f to have a local minimum at a, is it necessary for

the eigenvalues of H all to be nonnegative and sufficient for them all to be strictly

positive. For f to have a local maximum at a, it is necessary for the eigenvalues of

H all to be nonpositive and sufficient for them all to be strictly negative.

Proof. We prove only the first assertion; the argument for the second one is similar.

Let u1, . . . ,un be an orthonormal eigenbasis for H with eigenvalues λ1, . . . , λn.

Our assertion is then that f has a local minimum if all the eigenvalues are (strictly)

positive but not if some eigenvalue is negative.

If all eigenvalues are positive, let l be the smallest of them. Writing k = c1u1+
· · ·+ cnun as before, we have

Hk · k =
∑

λjc
2
j ≥ l

∑
c2j = l|k|2.

But when k is near 0, the error term in (2.80) is less than 1
4 l|k|2 by Corollary 2.75,

so

f(a+ k)− f(a) ≥ 1
2 l|k|

2 − 1
4 l|k|

2 > 0.

Thus f has a local minimum. On the other hand, if some eigenvalue, say λ1, is

negative, the same argument shows that f(a+ tu1)− f(a) < 0 for small t 6= 0, so

f does not have a local minimum.

In short, if all eigenvalues are positive, then f has a local minimum; if all

eigenvalues are negative, then f has a local maximum. If there are two eigenvalues

of opposite signs, then f is said to have a saddle point. At a saddle point, f has

neither a maximum nor a minimum; its graph goes up in one direction and down in

some other direction. The only cases where we can’t be sure what’s going on are
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FIGURE 2.5: Left: A local maximum (z = −x2 − y2). Middle: A

saddle point (z = x2 − y2). Right: A degenerate critical point (z =
x3 − y2).

those where all the eigenvalues ofH are nonnegative or nonpositive but at least one

of them is zero. When that happens, if k is an eigenvector with eigenvalue 0 (i.e.,

k is in the nullspace of H), the quadratic term in (2.80) vanishes and the remainder

term becomes significant; to determine the behavior of f near a we need to look at

the higher-order terms in the Taylor expansion.

Some types of critical points are illustrated in Figure 2.5. A critical point for

which zero is an eigenvalue of the Hessian matrix H — or equivalently, for which

detH = 0 or H is singular — is called degenerate.

In two dimensions it is easy to sort out the various cases:

2.82 Theorem. Suppose f is of class C2 on an open set in R2 containing the point

a, and suppose ∇f(a) = 0. Let α = ∂21f(a), β = ∂1∂2f(a), γ = ∂22f(a).
Then:

a. If αγ − β2 < 0, f has a saddle point at a.

b. If αγ − β2 > 0 and α > 0, f has a local minimum at a.

c. If αγ − β2 > 0 and α < 0, f has a local maximum at a.

d. If αγ − β2 = 0, no conclusion can be drawn.

Proof. The determinant of the Hessian matrix H =
(α
β
β
γ

)
is αγ − β2. Since the

determinant is the product of the eigenvalues, the two eigenvalues have opposite

signs if αγ − β2 < 0, and they have the same sign if αγ − β2 > 0. In the

latter case, H is positive (or negative) definite when the eigenvalues are positive

(or negative), and since α = Hu · u where u = (1, 0), these cases occur precisely

when α > 0 or α < 0. The result now follows from Theorem 2.81.
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EXAMPLE 1. Find and classify the critical points of the function f(x, y) =
xy(12 − 3x− 4y).

Solution. We have

∂xf = 12y − 6xy − 4y2 = y(12− 6x− 4y),

∂yf = 12x− 3x2 − 8xy = x(12− 3x− 8y).

Thus, if ∂xf = 0 then y = 0 or 12− 6x− 4y = 0, and if ∂yf = 0 then x = 0
or 12− 3x− 8y = 0. So there are four possibilities:

y = x = 0, y = 12− 3x− 8y = 0,

12− 6x− 4y = x = 0, and 12− 6x− 4y = 12− 3x− 8y = 0.

Solving these gives the critical points (0, 0), (4, 0), (0, 3), and (43 , 1). Since

∂2xf = −6y, ∂2yf = −8x, and ∂x∂yf = 12 − 6x − 8y, Theorem 2.82 shows

that the first three of these are saddle points and the last is a local maximum.

The geometry of this example is quite simple. The set where f = 0 is the

union of the three lines x = 0, y = 0, and 3x+ 4y = 12. These lines separate

the plane into regions on which f is alternately positive and negative. The three

saddle points are the points where these lines intersect, and the local maximum

is the “peak” in the middle of the triangle defined by these lines.

EXAMPLE 2. Find and classify the critical points of the function f(x, y) =
y3 − 3x2y.

Solution. We have ∂xf = −6xy and ∂yf = 3y2 − 3x2. Thus, if ∂xf = 0,

then either x = 0 or y = 0, and the equation ∂yf = 0 then forces x = y = 0.

So (0, 0) is the only critical point. The reader may readily verify that all the

second derivatives of f vanish at (0, 0), so Theorem 2.82 is of no use. But since

f(x, y) = y(y−
√
3x)(y+

√
3x), the lines y = 0 and y = ±

√
3x separate the

plane into six regions on which f is alternately positive and negative, and these

regions all meet at the origin. Thus f has neither a maximum nor a minimum at

the origin. This configuration is called a “monkey saddle.” (The three regions

where f < 0 provide places for the two legs and tail of a monkey sitting on the

graph of f at the origin.)

EXERCISES

1. Find all the critical points of the following functions. Tell whether each nonde-

generate critical point is a local maximum, local minimum, or saddle point. If

possible, tell whether the degenerate critical points are local extrema too.
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a. f(x, y) = x2 + 3y4 + 4y3 − 12y2.

b. f(x, y) = x4 − 2x2 + y3 − 6y.

c. f(x, y) = (x− 1)(x2 − y2).
d. f(x, y) = x2y2(2− x− y).
e. f(x, y) = (2x2 + y2)e−x

2−y2 .

f. f(x, y) = ax−1 + by−1 + xy, a, b 6= 0. (The nature of the critical point

depends on the signs of a and b.)
g. f(x, y, z) = x3 − 3x− y3 + 9y + z2.

h. f(x, y, z) = (3x2 + 2y2 + z2)e−x
2−y2−z2 .

i. f(x, y, z) = xyz(4− x− y − z).
2. What are the conditions on a, b, c for f(x, y) = ax2 + bxy + cy2 to have a

minimum, maximum, or saddle point at the origin?

3. The origin is a degenerate critical point of the functions f1(x, y) = x2 + y4,

f2(x, y) = x2−y4, and f3(x, y) = x2+y3. Describe the graphs of these three

functions near the origin. Is the origin a local extremum for any of them?

4. Let f(x, y) = (y − x2)(y − 2x2).
a. Show that the origin is a degenerate critical point of f .

b. Show that the restriction of f to any line through the origin (i.e., the func-

tion g(t) = f(at, bt) for any (a, b) 6= (0, 0)) has a local minimum at the

origin, but f does not have a local minimum at the origin. (Hint: Consider

the regions where f > 0 or f < 0.)

5. Let H be the Hessian of f . Show that for any unit vector u, Hu · u is the

second directional derivative of f in the direction u.

2.9 Extreme Value Problems

In the previous section we studied the critical points of a differentiable function,

which include its local maxima and minima. In this section we consider the prob-

lem of finding the absolute maximum or minimum of a differentiable function on a

set S ⊂ Rn, which has a somewhat different flavor.

The fundamental theoretical fact that underlies this study is the extreme value

theorem (1.23), whose statement we now recall: If S is a compact subset of Rn and

f is a continuous function on S, then f assumes a minimum and a maximum value

on S — that is, there are points a,b ∈ S such that f(a) ≤ f(x) ≤ f(b) for all

x ∈ S. As the examples that we presented in §1.6 show, the conclusion is generally

invalid if S fails to be both closed and bounded. Accordingly, we shall assume

throughout this section that S is closed, but we shall include some discussion of the

situation when S is unbounded. Moreover, to keep the problem within the realm
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of calculus, we shall assume that S is either (i) the closure of an open set with

a smooth or piecewise smooth boundary, or (ii) a smooth submanifold, such as a

curve or surface, defined by one or more constraint equations. (These geometric

notions will be studied in more detail in Chapter 3.)

Suppose, to begin with, that S is the closure of an open set in Rn, and that we

wish to find the absolute maximum or minimum of a differentiable function f on

S. We assume that the boundary of S is a smooth submanifold (a curve if n = 2, a

surface if n = 3) that can be described as the level set of a differentiable function

G, or that it is the union of a finite number of pieces of this form. (For example,

if S is a cube, its boundary is the union of six faces, each of which is a region in a

smooth surface, viz., a plane.) If S is bounded, the extreme values are guaranteed

to exist, and we can proceed as follows.

i. If an extreme value occurs at an interior point of S, that point must be a crit-

ical point of f . So, we find all the critical points of f inside S and compute

the values of f at these points.

ii. To find candidates for extreme values on the boundary, we can apply the

techniques for solving extremal problems with constraints presented below.

iii. Finally, we pick the smallest and largest of the values of f at the points

found in steps (i) and (ii); these will be the minimum and maximum of f on

S. There is usually no need to worry about the second derivative test in this

situation.

If S is unbounded, the procedure is the same, but we must add an extra argu-

ment to show that the desired extremum actually exists. This must be done on a

case-by-case basis, as there is no general procedure available; however, here are a

couple of simple results that cover many situations in practice and illustrate the sort

of reasoning that must be employed.

2.83 Theorem. Let f be a continuous function on an unbounded closed set S ⊂
Rn.

a. If f(x) → +∞ as |x| → ∞ (x ∈ S), then f has an absolute minimum but no

absolute maximum on S.

b. If f(x)→ 0 as |x| → ∞ (x ∈ S) and there is a point x0 ∈ S where f(x0) > 0
(resp. f(x0) < 0), then f has an absolute maximum (resp. minimum) on S.

Proof. (a) If f(x) → ∞ as |x| → ∞, then clearly f has no maximum. On the

other hand, pick a point x0 ∈ S and let V = {x ∈ S : f(x) ≤ f(x0)}. Then V is

closed (by Theorem 1.13) and bounded (since f(x) > f(x0) when |x| is large). By



102 Chapter 2. Differential Calculus

the extreme value theorem, f has a minimum on V , say at a ∈ V . But then f(a) is

the absolute minimum of f on V because f(x) > f(x0) ≥ f(a) for x ∈ S \ V .

The proof of (b) is similar. If f(x0) > 0, let V = {x : f(x) ≥ f(x0)}. Then

V is closed (by Theorem 1.13) and bounded (since f(x)→ 0 as |x| → ∞). By the

extreme value theorem, f has a maximum on V , say at a ∈ V . But then f(a) is the

absolute maximum of f on S because f(x) < f(x0) ≤ f(a) for x ∈ S \ V .

EXAMPLE 1. Find the absolute maximum and minimum values of the function

f(x, y) =
x

x2 + (y − 1)2 + 4
on the first quadrant S = {(x, y) : x, y ≥ 0}.

Solution. Clearly f(x, y) ≥ 0 for x, y ≥ 0, and f(0, y) = 0, so the

minimum is zero, achieved at all points on the y-axis. Moreover, f(x, y) is less

than the smaller of x−1 and (y − 1)−2, so it vanishes as |(x, y)| → ∞. Hence,

by Theorem 2.83, f has a maximum on S, which must occur either in the

interior of S or on the positive x-axis. A short calculation that we leave to the

reader shows that the only critical point of f in S is at (2, 1), and f(2, 1) = 1
4 .

Also, f(x, 0) = x/(x2 + 5), and the critical points of this function of one

variable are at x = ±
√
5. Only x =

√
5 is relevant for our purposes, and

f(
√
5, 0) =

√
5/10, which is a bit less than 1

4 . Thus the maximum value of f
on S is 1

4 .

Let us turn to the study of extremum problems with constraints. To be precise,

we consider the following situation: We wish to minimize or maximize a differen-

tiable function f on the set

S =
{
x : G(x) = 0

}
,

where G is of class C1 and ∇G(x) 6= 0 on S. (The latter assumption guarantees

that the set S is smooth in the sense that it possesses a tangent (hyper)plane at every

point a ∈ S, namely, the (hyper)plane through a that is perpendicular to the vector

∇G(a); see Theorem 2.37 and §§3.3–4.) Most applied max-min problems are of

this sort, including the ones one first meets in freshman calculus — for example,

“Find the maximum area of a rectangle with a given perimeter P ,” i.e., maximize

xy subject to the constraint 2x+ 2y = P .

There are several methods for attacking such a problem. The most obvious

one is to solve the constraint equation G(x) = 0 for one of the variables, either

explicitly or implicitly, and thus reduce the problem to finding the critical points of

a function of the remaining n−1 variables. (Of course, this is what one always does

in freshman calculus.) Another possibility is to describe the set S parametrically

and thus obtain an (n − 1)-variable problem with the parameters as independent
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variables. This is particularly effective when S is a closed curve or surface such as

a circle or sphere that cannot be described in its entirety as the graph of a function.

There is yet another method, however, which may be derived from the follow-

ing considerations. Suppose that f , as a function on the set S = {x : G(x) = 0},
has a local extremum at x = a. If x = h(t) is a curve on S passing through a at

t = 0, the composite function ϕ(t) = f(h(t)) has a local extremum at t = 0, so

∇f(a) · h′(0) = ϕ′(0) = 0. Thus, ∇f(a) is orthogonal to the tangent vector to

every curve on S passing through a; in other words, ∇f(a) is normal to S at a.

But we already know that ∇G(a) is normal to S at a since S is a level set of G. It

follows that ∇f is proportional to∇G at a:

∇f(a) = λ∇G(a) for some λ ∈ R.

This is the key to the method. The n equations ∂jf = λ∂jG together with the

constraint equation G = 0 give n+1 equations in the n+1 variables x1, . . . , xn and

λ, and solving them simultaneously will locate the local extrema of f on S. (It will

also produce the appropriate values of λ, which are usually not of much interest,

although one may have to find them in the process of solving for the xj’s.) This

method is called Lagrange’s method, and the parameter λ is called the Lagrange

multiplier for the problem.

The other methods described above involve reducing the original n-variable

problem to an (n−1)-variable problem, whereas Lagrange’s method deals directly

with the original n variables. This may be advantageous when the reduction is awk-

ward or when it would involve breaking some symmetry of the original problem.

The disadvantage is that, whereas the other methods lead to solving n−1 equations

in n − 1 variables, Lagrange’s method requires solving n + 1 equations in n + 1
variables.

EXAMPLE 2. Let’s try out Lagrange’s method on the simple problem of max-

imizing the area of a rectangle with perimeter P . Here f(x, y) = xy and

G(x, y) = 2x + 2y − P , so the equations ∂xf = λ∂xG, ∂yf = λ∂yG, and

G = 0 become

y = 2λ, x = 2λ, 2x+ 2y = P.

The first two equations give y = x; substituting into the third equation shows

that x = y = 1
4P , so the maximum of f is 1

16P
2. (Note that the only relevant

values of x and y are 0 ≤ x, y ≤ 1
2P , so we’re working on a compact set and

the existence of the maximum is not in question. The minimum on this set,

namely 0, is achieved when x = 0, y = 1
2P , or vice versa.)



104 Chapter 2. Differential Calculus

EXAMPLE 3. Find the absolute maximum and minimum of f(x, y) = x2 +
y2 + y on the disc x2 + y2 ≤ 1.

Solution. We have fx = 2x, fy = 2y + 1. Thus the only critical point is

at (0,−1
2 ) (which lies in the disc), at which f = −1

4 . To see what happens on

the boundary, we can use Lagrange’s method with G(x, y) = x2 + y2 − 1. We

have to solve

2x = 2λx, 2y + 1 = 2λy, x2 + y2 = 1.

The first equation implies that either x = 0 or λ = 1. The latter alternative

is impossible since the equation 2y + 1 = 2y has no solutions, so x = 0 and

then y = ±1 (since x2 + y2 = 1). We have f(0, 1) = 2, f(0,−1) = 0.

So the absolute maximum is 2 (at (0, 1)) and the absolute minimum is −1
4 (at

(0,−1
2 )).

We could also analyze f on the boundary by parametrizing the latter as

x = cos θ, y = sin θ. Then f(cos θ, sin θ) = 1 + cos θ, which has a maximum

value of 2 at θ = 0 and a minimum value of 0 at θ = π.

Similar ideas work when there is more than one constraint equation. Let’s

consider the case of two equations:

S =
{
x : G1(x) = G2(x) = 0

}
.

Here G1 and G2 are differentiable functions (the subscripts are labels for the func-

tions, not partial derivatives), and we assume that the vectors∇G1(x) and∇G2(x)
are linearly independent for x ∈ S. (Again, this guarantees that S is a “smooth”

set, as we shall see in Chapter 3.) To find the extreme values of a differentiable

function on S, we have three methods:

• Solve the equations G1(x) = G2(x) = 0 for two of the variables and find

the critical points of the resulting function of the remaining n− 2 variables.

• Find a parametrization of the set S in terms of parameters t1, . . . , tn−2, and

find the critical points of f as a function of these variables.

• (Lagrange’s method) At a local extremum, ∇f must be normal to S and

hence must be a linear combination of ∇G1 and ∇G2:

∇f = λ∇G1 + µ∇G2 for some λ, µ ∈ R.

The n equations ∂jf = λ∂jG1 + µ∂jG2 together with the two constraint

equations G1 = G2 = 0 can be solved for the n+ 2 variables x1, . . . , xn, λ,

and µ, yielding the points where local extrema can occur.

The generalization to k constraint equations should now be pretty clear.
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EXERCISES

1. Find the extreme values of f(x, y) = 2x2 + y2 + 2x on the set {(x, y) :
x2 + y2 ≤ 1}.

2. Find the extreme values of f(x, y) = 3x2 − 2y2 + 2y on the set {(x, y) :
x2 + y2 ≤ 1}.

3. Find the extreme values of f(x, y) = x3−x+ y2−2y on the closed triangular

region with vertices at (−1, 0), (1, 0), and (0, 2).

4. Find the extreme values of f(x, y) = 3x2 − 8xy − 4y2 + 2x+ 16y on the set

{(x, y) : 0 ≤ x ≤ 4, 0 ≤ y ≤ 3}.
5. Let f(x, y) = (A− bx− cy)2 + x2 + y2, where A, b, c are positive constants.

Show that f has an absolute minimum on R2 and find it.

6. Show that f(x, y) = (x2 + 2y2)e−x
2−y2 has an absolute minimum and maxi-

mum on R2, and find them.

7. Show that f(x, y) = (x2 − 2y2)e−x
2−y2 has an absolute minimum and maxi-

mum on R2, and find them.

8. Let f(x, y) = xy+3x−1+4y−1. Show that f has a minimum but no maximum

on the set {(x, y) : x, y > 0}, and find the minimum.

9. Find the extreme values of f(x, y, z) = x2 + 2y2 + 3z2 on the unit sphere

{(x, y, z) : x2 + y2 + z2 = 1}.
10. Let (x1, y1), . . . , (xk, yk) be points in the plane whose x-coordinates are not

all equal. The linear function f(x) = ax + b such that the sum of the squares

of the vertical distances from the given points to the line y = ax+ b (namely,∑k
1(yj − axj − b)2) is minimized is called the linear least-squares fit to the

points (xj , yj). Show that it is given by

a =
k−1

∑k
1 xjyj − x y

k−1
∑n

1 x
2
j − x2

, b = y − ax,

where x = k−1
∑k

1 xj and y = k−1
∑k

1 yj are the averages of the xj’s and

yj’s.

11. Let x, y, z be positive variables and a, b, c positive constants. Find the mini-

mum of x+ y + z subject to the constraint (a/x) + (b/y) + (c/z) = 1.

12. Find the minimum possible value of the sum of the three linear dimensions

(length, breadth, and width) of a rectangular box whose volume is a given

constant V . Is there a maximum possible value?

13. Find the point on the line through (1, 0, 0) and (0, 1, 0) that is closest to the

line through (0, 0, 0) and (1, 1, 1). (Hint: Minimize the square of the distance.)
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14. Find the maximum possible volume of a rectangular solid if the sum of the

areas of the bottom and the four vertical sides is a constant A, and find the

dimensions of the box that has the maximum volume.

15. The two planes x+z = 4 and 3x−y = 6 intersect in a line L. Use Lagrange’s

method to find the point on L that is closest to the origin. (Hint: Minimize the

square of the distance.)

16. Find the maximum value of (xv−yu)2 subject to the constraints x2+y2 = a2

and u2+v2 = b2. Do this (a) by Lagrange’s method, (b) by the parametrization

x = a cos θ, y = a sin θ, u = b cosϕ, v = b sinϕ.

17. Let P1 = (x1, y1) and P2 = (x2, y2) be two points in the plane such that

x1 6= x2 and y1 > 0 > y2. A particle travels in a straight line from P1 to a point

Q on the x-axis with speed v1, then in a straight line from Q to P2 with speed

v2. The point Q is allowed to vary. Use Lagrange’s method to show that the

total travel time from P1 to P2 is minimized when (sin θ1)/(sin θ2) = v1/v2,

where θ1 (resp. θ2) is the angle between the line P1Q (resp. QP2) and the

vertical line through Q. (Hint: Take θ1, θ2 as the independent variables.)

18. Let x1, x2, . . . , xn denote nonnegative numbers. For c > 0, maximize the

product x1x2 · · · xn subject to the constraint x1+x2+ · · ·+xn = c, and hence

derive the inequality of geometric and arithmetic means,

(
x1x2 · · · xn

)1/n ≤ x1 + x2 + · · ·+ xn
n

(x1, . . . , xn ≥ 0),

where equality holds if and only if the xj’s are all equal.

19. Let A be a symmetric n×nmatrix, and let f(x) = (Ax) ·x for x ∈ Rn. Show

that the maximum and minimum of f on the unit sphere {x : |x| = 1} are the

largest and smallest eigenvalues of A.

2.10 Vector-Valued Functions and Their Derivatives

So far our focus has been on real-valued functions on Rn, that is, mappings from

Rn to R. In a number of situations, however, it is useful to consider vector-valued

functions, that is, mappings (or maps, for short) from Rn to Rm where n and m
are any positive integers. We shall denote such functions or mappings by boldface

letters such as f :

f(x) =
(
f1(x), f2(x), . . . , fm(x)

)
.

Examples of the uses of such mappings include the following:
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• Functions from R to Rm can be interpreted as parametrized curves in Rm.

Similarly, maps from R2 to Rm give parametrizations of 2-dimensional sur-

faces in Rm, and so forth.

• In the situation of the chain rule, where w is a function of x1, . . . , xn and the

xj’s are functions of other variables t1, . . . , tk, we are dealing with a map

x = g(t) from Rk to Rn.

• A map f : Rn → Rn can represent a vector field, that is, a map that assigns

to each point x a vector quantity f(x) such as a force or a magnetic field.

• A map f : Rn → Rn can represent a transformation of a region of space

obtained by applying geometric operations such as dilations and rotations.

For example, under the transformation f(x) = 2x + a, a region in Rn is

expanded by a factor of 2 and then moved over by the amount a.

• A map f : Rn → Rn can represent the transformation from one coordi-

nate system to another — for example, the polar coordinate map f(r, θ) =
(r cos θ, r sin θ).

We shall have more to say about all of these interpretations in Chapter 3.

The simplest mappings from Rn to Rm are the linear2 ones, that is, maps f :
Rn → Rm that satisfy

f(ax+ by) = af(x) + bf(y) (a, b,∈ R, x,y ∈ Rn).

Such a map is represented by an m × n matrix A = (Ajk), in such a way that if

elements of Rn and Rm are represented as column vectors, f(x) is just the matrix

product Ax. In other words,

fj(x) =
n∑

k=1

Ajkxk.

You can see that the study of mappings from Rn to Rm is complicated, as the study

of the linear ones already constitutes the subject of linear algebra! However, the

basic ideas of differential calculus generalize easily from the scalar case. The only

bits of linear algebra we need for present purposes are the correspondence between

linear maps and matrices, the notion of addition and multiplication of matrices, and

the notion of determinant; see Appendix A, (A.3)–(A.15) and (A.24)-(A.33).

2Here we use the word “linear” in the more restrictive sense; see Appendix A, (A.5).
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A mapping f from an open set S ⊂ Rn into Rm is said to be differentiable at

a ∈ S if there is an m× n matrix L such that

(2.84) lim
h→0

|f(a+ h)− f(a)− Lh|
|h| = 0.

There can only be one such matrix L (the reason is given in the next paragraph),

and it is called the (Fréchet) derivative of f at a. Commonly used notations for

it include Df(a), Daf , f ′(a), and dfa. We shall denote it by Df(a). Thus, if f is

differentiable on S, the map Df that assigns to each a ∈ S the derivative Df(a) is

a matrix-valued function on S.

We need to verify that there is at most one matrix L satisfying (2.84). If L′ is

another such matrix, we have

|Lh− L′h| =
∣∣[f(a+ h)− f(a)− L′h]− [f(a+ h)− f(a)− Lh]

∣∣
≤ |f(a+ h)− f(a)− L′h|+ |f(a+ h)− f(a)− Lh|,

so that |Lh − L′h|/|h| → 0. But if L′ 6= L, we can pick a unit vector u with

Lu 6= L′u. Setting h = su, we have h→ 0 as s→ 0, but

|L(su)− L′(su)|
|su| =

|s(Lu− L′u)|
|s| = |Lu− L′u| 6→ 0.

This is a contradiction, so L′ = L.

In the scalar case m = 1 (where f = f ), the definition of differentiability

above coincides with the old one, and Df(a) is just ∇f(a), considered as a row

vector, i.e., a 1×nmatrix. (If we think of∇f(a) as a column vector, then Df(a) =
[∇f(a)]∗.) Something similar happens whenm > 1. Indeed, a vector v approaches

the vector 0 precisely when each of its components approaches the number 0, so

(2.84) is equivalent to the equations

lim
h→0

|fj(a+ h)− fj(a)− Lj · h|
|h| = 0 (j = 1, . . . ,m)

where Lj is the jth row of the matrix L. But these equations say that the compo-

nents fj are differentiable at x = a and that ∇fj(a) = Lj . In short, we have:

2.85 Proposition. An Rm-valued function f is differentiable at a precisely when

each of its components f1, . . . , fm is differentiable at a. In this case, Df(a) is the

matrix whose jth row is the row vector ∇fj(a). In other words,

Df =



∂f1/∂x1 · · · ∂f1/∂xn

...
...

∂fm/∂x1 · · · ∂fm/∂xn


 .
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The general form of the chain rule can now be stated very simply:

2.86 Theorem (Chain Rule III). Suppose g : Rk → Rn is differentiable at a ∈ Rk

and f : Rn → Rm is differentiable at g(a) ∈ Rn. Then H = f ◦ g : Rk → Rm is

differentiable at a, and

DH(a) = Df(g(a))Dg(a),

where the expression on the right is the product of the matrices Df(g(a)) and

Dg(a).

Proof. Differentiability of H is equivalent to the differentiability of each of its

components Hi = fi ◦ g, and for these we have, by Theorem 2.29,

∂mHi = (∂1fi)(∂mg1) + · · ·+ (∂nfi)(∂mgn) =

n∑

j=1

(∂jfi)(∂mgj).

(∂mHi and ∂mgj are to be evaluated at a, ∂jfi at g(a).) But ∂mHi is the imth

entry of the matrix DH, and the sum on the right is the imth entry of the product

matrix (Df)(Dg), so we are done.

Since the product of two matrices gives the composition of the linear transfor-

mations defined by those matrices, the chain rule just says that the linear approxi-

mation of a composition is the composition of the linear approximations.

As we pointed out at the end of §2.1, the mean value theorem is false for vector-

valued functions. That is, for a differentiable Rm-valued function f with m > 1,

given two points a and b there is usually no c on the line segment between a and b

such that f(b)− f(a) = [Df(c)][b− a]. However, the main corollary of the mean

value theorem, an estimate on |f(a) − f(b)| in terms of a bound on the derivative

of f , is still valid. To state it, we employ the following terminology: The norm of

a linear mapping A : Rn → Rm is the smallest constant C such that |Ax| ≤ C|x|
for all x ∈ Rn. The norm of A is denoted by ‖A‖; thus,

(2.87) |Ax| ≤ ‖A‖ |x| (x ∈ Rn).

Equivalently, ‖A‖ = max{|Ax| : |x| = 1}; see Exercise 9. An estimate for ‖A‖
in terms of the entries Ajk is given in Exercise 10.

2.88 Theorem. Suppose f is a differentiable Rm-valued function on an open con-

vex set S ⊂ Rn, and suppose that ‖Df(x)‖ ≤M for all x ∈ S. Then

|f(b)− f(a)| ≤M |b− a| for all a,b ∈ S.



110 Chapter 2. Differential Calculus

Proof. Given a unit vector u ∈ Rm, let us consider the scalar-valued function

fu(x) = u · f(x). Clearly fu is differentiable on S and ∂kfu = u · ∂kf =∑m
j=1 uj∂kfj . By the mean value theorem (2.39) applied to fu, then, there is a

point c on the line segment between a and b (depending on u) such that

u · [f(b)− f(a)] = fu(b)− fu(a) = [∇fu(c)] · [b− a]

=
∑

j,k

uj∂kfj(c)(bk − ak) = u · [(Df(c))(b − a)].

Hence, by Cauchy’s inequality, the fact that |u| = 1, and (2.87),

∣∣u · [f(b)− f(a)]
∣∣ ≤ |u| ‖Df(c)‖ |b − a| ≤M |b− a|.

The desired result now follows by taking u to be the unit vector in the direction of

f(b)−f(a), so that u·[f(b)−f(a)] = |f(b)−f(a)|. (Of course, if f(b)−f(a) = 0,

the result is trivial.)

In the case m = n, the Fréchet derivative Df of a function f : Rn → Rn is

an n × n matrix of functions, defined on the set S where f is differentiable, so we

can form its determinant. This determinant, a scalar-valued function on S, is called

the Jacobian of the mapping f . It is sometimes denoted by Jf , or, if y = f(x), by

∂(y1, . . . , yn)/∂(x1, . . . , xn):

(2.89) detDf = Jf =
∂(y1, . . . , yn)

∂(x1, . . . , xn)
.

(The last notation may look peculiar at first, but it is actually quite handy.) Since

the determinant of a product of two matrices is the product of the determinants, the

chain rule implies that if y = f(x) and x = g(t) (t,x,y ∈ Rn), then

(2.90)

Jf◦g(t) = Jf (g(t))Jg(t), or

∂(y1, . . . , yn)

∂(t1, . . . , tn)
=
∂(y1, . . . , yn)

∂(x1, . . . , xn)

∂(x1, . . . , xn)

∂(t1, . . . , tn)
.

If f : Rn → Rm with n > m, we can form a number of different Jacobians by

singling out m of the independent variables for attention and treating the others as

constants, thereby considering f as a function from Rm to Rm. In other words, we

can look at the determinants of all the m×m submatrices of the m×nmatrix Df .

The last notation in (2.89) is handy in this situation because it allows us to name

the m independent variables that have been singled out. Similarly, if n < m, we

can consider the determinants of the n×n submatrices of Df obtained by singling

out n of the components of f .
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EXAMPLE 1. Let (u, v) = f(x, y, z) = (2x+ y3, xe5y−7z). Then

Df(x, y, z) =

(
2 3y2 0

e5y−7z 5xe5y−7z −7xe5y−7z

)
,

so

∂(u, v)

∂(x, y)
= (10x − 3y2)e5y−7z ,

∂(u, v)

∂(y, z)
= −21xy2e5y−7z ,

∂(u, v)

∂(x, z)
= −14xe5y−7z .

EXERCISES

1. Let (u, v) = f(x, y, z) = (xyz2 − 4y2, 3xy2 − yz). Compute Df(x, y, z),
∂(u, v)/∂(x, y), ∂(u, v)/∂(y, z), and ∂(u, v)/∂(x, z)

2. Let (u, v, w) = f(x, y) = (x + 6y, 3xy, x2 − 3y2). Compute Df(x, y),
∂(u, v)/∂(x, y), ∂(v,w)/∂(x, y), and ∂(u,w)/∂(x, y).

3. Define f : R2 → R3 by f(u, v) = (u2 − 5v, ve2u, 2u− log(1 + v2)).
a. Compute Df(u, v). What is Df(0, 0)?
b. Suppose g : R2 → R2 is of class C1, g(1, 2) = (0, 0), and Dg(1, 2) =(1

3
2
4

)
. Compute D(f ◦ g)(1, 2).

4. Define f : R3 → R2 by f(x, y, z) = (2x+(y−1)2−sin z, 3x+2e2y−5z).
a. Compute Df(x, y, z). What are f(0, 0, 0) and Df(0, 0, 0)?
b. Let g be as in Exercise 3b. Compute D(g ◦ f)(0, 0, 0).

5. Show that if f : Rn → Rm is defined by f(x) = Ax+b, where A is an m×n
matrix and b ∈ Rm, then Df(x) = A for all x.

6. Suppose f : Rn → R is of class C2; then ∇f is a C1 mapping from Rn to

itself. Show that D(∇f) is the Hessian matrix of f .

7. Suppose f and g are differentiable mappings from Rn to Rm. Show that their

dot product, h(x) = f(x) ·g(x), is a differentiable real-valued function on Rn,

and that

∇h(x) = [Df(x)]∗g(x) + [Dg(x)]∗f(x),

if we think of∇h(x), f(x), and g(x) as column vectors. (Here A∗ denotes the

transpose of the matrix A; see Appendix A, (A.15).)
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8. Suppose that w = f(x, y, t, s) and x and y are also functions of t and s (the

situation depicted in Figure 2.3). The total dependence of w on t and s can be

expressed by writing w = f(g(t, s)) where g(t, s) = (x(t, s), y(t, s), t, s).
Show that the chain rule (2.86), applied to the composite function f ◦ g, yields

the same result as the one obtained in §2.3.

9. Let A : Rn → Rm be a linear map.

a. Show that the function ϕ(x) = |Ax| has a maximum value on the set

{x : |x| = 1}.
b. LetM be the maximum in part (a). Show that |Ax| ≤M |x| for all x ∈ Rn,

with equality for at least one unit vector x. Deduce that M = ‖A‖.
10. Let A : Rn → Rm be a linear map.

a. Show that ‖A‖ ≤ √mmaxmj=1(
∑n

k=1 |Ajk|). (Hint: Use (1.3).)

b. Show that this inequality is an equality when the matrix of A is given by

Aj1 = 1 and Ajk = 0 for k > 1 (1 ≤ j ≤ m).



Chapter 3

THE IMPLICIT FUNCTION

THEOREM AND ITS

APPLICATIONS

In this chapter we take up the general question of the local solvability of systems

of equations involving nonlinear differentiable functions. The main result is the

implicit function theorem, one of the major theoretical results of advanced calcu-

lus. Among other things, it provides the key to answering many questions about

relations between analytic properties of functions and geometric properties of the

sets they define. We shall present some of its applications to the study of geomet-

ric transformations, coordinate systems, and various ways of representing curves,

surfaces, and smooth sets of higher dimension.

3.1 The Implicit Function Theorem

In this section we consider the problem of solving an equation F (x1, . . . , xn) = 0
for one of the variables xj as a function of the remaining n − 1 variables, or more

generally of solving a system of k such equations for k of the variables as functions

of the remaining n− k variables.

We begin with the case of a single equation, and to develop some feeling for

the geometry of the problem we consider the cases n = 2 and n = 3. For n = 2
we are given an equation F (x, y) = 0 relating the variables x and y, and we ask

when we can solve for y as a function of x or vice versa. Geometrically, the set

S = {(x, y) : F (x, y) = 0} will usually be some sort of curve, and our question

is: When can S be represented as the graph of a function y = f(x) or x = g(y)?
Likewise, for n = 3, the set where F (x, y, z) = 0 will usually be a surface, and we

113
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ask when this surface can be represented as the graph of a function z = f(x, y),
y = g(x, z), or x = h(y, z).

Simple examples show that it is usually impossible to represent the whole set

S = {x : F (x) = 0} as the graph of a function. For example, if n = 2 and

F (x, y) = x2 + y2 − 1, the set S is the unit circle. We can represent the upper or

lower semicircle as the graph of f(x) = ±
√
1− x2, and the right or left semicircle

as the graph of g(y) = ±
√
1− y2, but the whole circle is not a graph. Thus, in

order to get reasonable results, we must be content only to represent pieces of S
as graphs. More specifically, our object will be to represent a piece of S in the

neighborhood of a given point a ∈ S as a graph.

Since we want to single out one of the variables as the one to be solved for, we

make a little change of notation: We denote the number of variables by n + 1 and

denote the last variable by y rather than xn+1. We then have the following precise

analytical statement of the problem:

Given a function F (x, y) of class C1 and a point (a, b) satisfying F (a, b) = 0,

when is there

i. a function f(x), defined in some open set in Rn containing a, and

ii. an open set U ⊂ Rn+1 containing (a, b), such that for (x, y) ∈ U ,

F (x, y) = 0 ⇐⇒ y = f(x)?

We do not try to specify in advance how big the open sets in question will be; that

will depend strongly on the nature of the function F .

The key to the answer is to look at the linear case. If

L(x1, . . . , xn, y) = α1x1 + · · ·+ αnxn + βy + c,

the solution is obvious: The equation L(x, y) = 0 can be solved for y if and only

if the coefficient β is nonzero. But near a given point (a, b), every differentiable

function F (x, y) is approximately linear; in fact, if F (a, b) = 0,

F (x, y) = [∂1F (a, b)](x1 − a1) + · · · + [∂nF (a, b)](xn − an)
+ [∂yF (a, b)](y − b) + small error.

If the “small error” were not there, the equation F (x, y) = 0 could be solved for y
precisely when ∂yF (a, b) 6= 0. We now show that the condition ∂yF (a, b) 6= 0 is

still the appropriate one when the error term is taken into account.

3.1 Theorem (The Implicit Function Theorem for a Single Equation). Let

F (x, y) be a function of class C1 on some neighborhood of a point (a, b) ∈ Rn+1.

Suppose that F (a, b) = 0 and ∂yF (a, b) 6= 0. Then there exist positive numbers

r0, r1 such that the following conclusions are valid.
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x

y

2r0

2r1
(a, b)

FIGURE 3.1: The geometry of the implicit function theorem. ∂yF > 0
in the box, F > 0 on the top side, F < 0 on the bottom side, and

F = 0 on the curve.

a. For each x in the ball |x − a| < r0 there is a unique y such that |y − b| < r1
and F (x, y) = 0. We denote this y by f(x); in particular, f(a) = b.

b. The function f thus defined for |x − a| < r0 is of class C1, and its partial

derivatives are given by

(3.2) ∂jf(x) = −
∂jF (x, f(x))

∂yF (x, f(x))
.

Notes.

i. The number r0 may be very small, and there is no way to estimate its size

without further hypotheses on F .

ii. The formula (3.2) for ∂jf is, of course, the one obtained via the chain rule

by differentiating the equation F (x, f(x)) = 0.

Proof. We first prove (a). We may assume that ∂yF (a, b) > 0 (by replacing F by

−F if necessary). Since ∂yF is continuous, it remains positive in some neighbor-

hood of (a, b), say for |x−a| < r1 and |y−b| < r1. On this set, F (x, y) is a strictly

increasing function of y for each fixed x. In particular, since F (a, b) = 0 we have

F (a, b + r1) > 0 and F (a, b − r1) < 0. The continuity of F then implies that for

some r0 ≤ r1 we have F (x, b + r1) > 0 and F (x, b− r1) < 0 for |x− a| < r0.

In short, for each x in the ballB = {x : |x−a| < r0}we have F (x, b−r1) < 0,

F (x, b+ r1) > 0, and F (x, y) is strictly increasing as a function of y for |y− b| <
r1. It follows from the intermediate value theorem that there is a unique y for each

x ∈ B that satisfies |y − b| < r1 and F (x, y) = 0, which establishes (a). See

Figure 3.1.

Next we observe that the function y = f(x) thus defined is continuous at x =
a; in other words, for any ǫ > 0 there is a δ > 0 such that |f(x) − f(a)| < ǫ
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whenever |x−a| < δ. Indeed, the argument just given shows that |f(x)− f(a)| =
|y − b| < r1 whenever |x − a| < r0, and we could repeat that argument with r1
replaced by any smaller number ǫ to obtain an appropriate δ in place of r0.

In fact, this argument can also be applied with a replaced by any other point x0

in the ball B to show that f is continuous at x0. To recapitulate it briefly: Given

ǫ > 0, there exists δ > 0 such that if |x− x0| < δ we have F (x, y0 − ǫ) < 0 and

F (x, y0 + ǫ) > 0, where y0 = f(x0). For each such x there is a unique y such

that |y − y0| < ǫ and F (x, y) = 0, and that y is f(x); hence |f(x) − f(x0)| =
|y − y0| < ǫ.

Now that we know that f is continuous on B, we can show that its partial

derivatives ∂jf exist on B and are given by (3.2) — which also shows that they are

continuous. Given x ∈ B and a (small) real number h, let y = f(x) and

k = f(x+ h)− f(x), where

h = (0, . . . , 0, h, 0, . . . , 0) with the h in the jth place.

Then y + k = f(x+ h), so F (x+ h, y + k) = F (x, y) = 0. Hence, by the mean

value theorem,

0 = F (x+ h, y + k)− F (x, y)
= h∂jF (x+ th, y + tk) + k∂yF (x+ th, y + tk)

for some t ∈ (0, 1). Rearranging this equation gives

f(x+ h)− f(x)
h

=
k

h
= −∂jF (x+ th, y + tk)

∂yF (x+ th, y + tk)
.

Now let h → 0. Since f is continuous we also have k → 0, and then since ∂jF
and ∂yF are continuous and ∂yF 6= 0, passage to the limit yields (3.2).

3.3 Corollary. Let F be a function of classC1 on Rn, and let S = {x : F (x) = 0}.
For every a ∈ S such that ∇F (a) 6= 0 there is a neighborhood N of a such that

S ∩N is the graph of a C1 function.

Proof. Since ∇F (a) 6= 0, we have ∂jF (a) 6= 0 for some j. The equation F = 0
can then be solved to yield xj as a C1 function of the remaining variables near the

point a.

EXAMPLE 1. Let F (x, y) = x − y2 − 1, for which ∂xF (x, y) = 1 and

∂yF (x, y) = −2y. First, ∂xF is never 0, so the implicit function theorem

guarantees that the equation F (x, y) = 0 can be solved for x locally near any
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point (a, b) for which F (a, b) = 0. Of course, for this particular F it is easy

to solve for x explicitly — namely, x = y2 + 1 — and this solution is valid

not just locally but globally. Next, ∂yF (a, b) = 0 precisely when b = 0, so

the implicit function theorem guarantees that the equation F (x, y) = 0 can be

solved uniquely for y near any point (a, b) such that F (a, b) = 0 and b 6= 0.

In fact, the possible solutions are y =
√
x− 1 and y = −

√
x− 1. For x very

close to a only one of these solutions will be very close to b— namely,
√
x− 1

if b > 0 and −
√
x− 1 if b < 0 — and this solution is the one that figures in

the implicit function theorem. Also, these solutions are defined only for x ≥ 1,

so the number r0 in the statement of the implicit function theorem is a − 1.

Finally, we have F (1, 0) = 0, but the equation F (x, y) = 0 cannot be solved

uniquely for y as a function of x in any neighborhood of (1, 0): If x > 1 there

are two solutions, both equally close to 0, and if x < 1 there are none.

EXAMPLE 2. For a contrast with Example 1, let G(x, y) = x − e1−x − y3.

First, ∂xG(a, b) = 1+ e1−a > 1 for all (a, b), so the implicit function theorem

guarantees that the equation G(x, y) = 0 can be solved for x locally near

any point (a, b) such that G(a, b) = 0. It is not hard to see (Exercise 4) that

there is a single solution that works globally, but there is no nice formula for

this solution in terms of elementary functions. Next, ∂yG(a, b) = −3b2, so

the implicit function theorem guarantees that the equation G(x, y) = 0 can

be solved for y as a C1 function of x locally near any point (a, b) such that

G(a, b) = 0 and b 6= 0. In fact, the solution is y = (x − e1−x)1/3, which is

globally uniquely defined but fails to be differentiable at the point where y = 0
(i.e., x = 1).

We now turn to the more general problem of solving several equations simul-

taneously for some of of the variables occurring in them. This will require some

facts about invertible matrices and determinants, for which we refer to Appendix

A, (A.24)–(A.33) and (A.50)–(A.55). To fix the notation, we shall consider k func-

tions F1, . . . , Fk of n + k variables x1, . . . , xn, y1, . . . , yk, and ask when we can

solve the equations

(3.4)

F1(x1, . . . , xn, y1, . . . , yk) = 0,
...

Fk(x1, . . . , xn, y1, . . . , yk) = 0

for the y’s in terms of the x’s. We shall use vector notation to abbreviate (3.4) as

(3.5) F(x,y) = 0.
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We assume that F is of class C1 near a point (a,b) such that F(a,b) = 0, and we

ask when (3.5) determines y as a C1 function of x in some neighborhood of (a,b).
Again the key to the problem is to consider the linear case,

(3.6) Ax+By+ c = 0,

where A is a k × n matrix, B is a k × k matrix, and c ∈ Rk. Here the criterion for

solvability is obvious: The matrix B must be invertible, in which case the solution

is y = −B−1(Ax+c). Now, the linear approximation to the equation (3.5) near the

point (a,b) is an equation of the form (3.6) in which the matrix B is the (partial)

Fréchet derivative of F with respect to the variables y, evaluated at (a,b):

(3.7) Bij =
∂Fi
∂yj

(a,b) (1 ≤ i, j ≤ k).

Hence, the crucial requirement is that

(3.8) the matrix B defined by (3.7) is invertible.

Invertibility of a matrix can be characterized in a number of different ways, as

discussed in Appendix A, (A.52). For example, (3.8) can be expressed more geo-

metrically as the condition that the gradient vectors ∇yFj = (∂y1Fj , . . . , ∂ykFj),
1 ≤ j ≤ k, are linearly independent at (a,b). However, the version of (3.8) that

is directly used in the proof of the following theorem, as well as in many of its

applications, is that detB 6= 0. We therefore state the theorem in these terms.

3.9 Theorem (The Implicit Function Theorem for a System of Equations).

Let F(x,y) be an Rk-valued function of class C1 on some neighborhood of a

point (a,b) ∈ Rn+k and let Bij = (∂Fi/∂yj)(a,b). Suppose that F(a,b) = 0

and detB 6= 0. Then there exist positive numbers r0, r1 such that the following

conclusions are valid.

a. For each x in the ball |x− a| < r0 there is a unique y such that |y − b| < r1
and F(x,y) = 0. We denote this y by f(x); in particular, f(a) = b.

b. The function f thus defined for |x−a| < r0 is of classC1, and its partial deriva-

tives ∂xj f can be computed by differentiating the equations F(x, f(x)) = 0

with respect to xj and solving the resulting linear system of equations for

∂xjf1, . . . , ∂xjfk.

Proof. The proof is presented in Appendix B.2 (Theorem B.2). In a nutshell, it

proceeds by induction on k. The hypothesis that detB 6= 0 implies that at least

one of the (k − 1)×(k−1) submatrices ofB is invertible. By inductive hypothesis,

one can solve the corresponding system of k−1 equations for k−1 of the variables
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yj; then, after substituting the results into the remaining equation, one solves that

equation for the remaining variable. The main difficulty is in showing that the

implicit function theorem can be applied to the last equation.

EXAMPLE 3. Consider the problem of solving the equations

(3.10) x− yu2 = 0, xy + uv = 0

for u and v as functions of x and y. Setting F = x − yu2 and G = xy + uv,

we see that
∂(F,G)

∂(u, v)
= det

(
−2yu 0
v u

)
= −2yu2,

so the implicit function theorem guarantees a local solution near any point

(x0, y0, u0, v0) at which (3.10) holds provided that−2y0u20 6= 0, that is, y0 6= 0
and u0 6= 0. Notice that under this condition, the first equation in (3.10) im-

plies that x0 6= 0 and that x0 and y0 have the same sign; the second equation

then implies that v0 6= 0 and that u0 and v0 have opposite signs.

It is not hard to find the solution explicitly:

u = ±
√
x

y
, v = ∓

√
xy3,

the signs of u and v being the same as the signs of u0 and v0, respectively. This

solution is valid for all (x, y) in the same quadrant as (x0, y0). The problems

that arise if y0 = 0 or u0 = 0 are evident: If y0 = 0, then the formula for u
does not even make sense for y = y0; if u0 = 0, then x0 must also be 0, and

the square roots present the same sort of problem as in Example 1.

EXERCISES

1. Investigate the possibility of solving the equation x2 − 4x + 2y2 − yz = 1
for each of its variables in terms of the other two near the point (2,−1, 3). Do

this both by checking the hypotheses of the implicit function theorem and by

explicitly computing the solutions.

2. Show that the equation x2 + 2xy + 3y2 = c can be solved either for y as a

C1 function of x or for x as a C1 function of y (but perhaps not both) near any

point (a, b) such that a2 + 2ab + 3b2 = c, provided that c > 0. What happens

if c = 0 or if c < 0?
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3. Can the equation (x2 + y2 +2z2)1/2 = cos z be solved uniquely for y in terms

of x and z near (0, 1, 0)? For z in terms of x and y?

4. Sketch the graph of the equation x − e1−x − y3 = 0 in Example 2. Show

graphically that for each x there is a unique y satisfying this equation, and vice

versa.

5. Suppose F (x, y) is a C1 function such that F (0, 0) = 0. What conditions on

F will guarantee that the equation F (F (x, y), y) = 0 can be solved for y as a

C1 function of x near (0, 0)?

6. Investigate the possibility of solving the equations xy+2yz−3xz = 0, xyz+
x − y = 1 for two of the variables as functions of the third near the point

(x, y, z) = (1, 1, 1).

7. Investigate the possibility of solving the equations u3+xv− y = 0, v3+ yu−
x = 0 for any two of the variables as functions of the other two near the point

(x, y, u, v) = (0, 1, 1,−1).
8. Investigate the possibility of solving the equations xy2 + xzu + yv2 = 3 and

u3yz + 2xv − u2v2 = 2 for u and v as functions of x, y, and z near x = y =
z = u = v = 1.

9. Can the equations x2 + y2 + z2 = 6, xy+ tz = 2, xz + ty+ et = 0 be solved

for x, y, and z as C1 functions of t near (x, y, z, t) = (−1,−2, 1, 0)?

3.2 Curves in the Plane

In this section we examine the relations between various ways of representing

smooth curves in the plane. Here we shall take “smooth” to mean that the curve

possesses a tangent line at each point and that the tangent line varies continuously

with the point of tangency. (Don’t worry if this last continuity condition seems a

little unclear; we will reformulate it more precisely below.) Thus “smooth” is the

geometric equivalent of “C1.”

There are three common ways of representing smooth curves in the plane R2:

i. as the graph of a function, y = f(x) or x = f(y), where f is of class C1;

ii. as the locus1 of an equation F (x, y) = 0, where F is of class C1;

iii. parametrically, as the range of a C1 function f : (a, b)→ R2.

Of these, (i) is the simplest, and it a special case of the other two. Indeed, the curve

given by y = f(x) is the locus of the equation F (x, y) = 0 where F (x, y) =

1The locus of an equation F (x) = c is the set of all x that satisfy the equation.
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FIGURE 3.2: Left: The sets x2 − y2 = c for c = ±1 (the hyperbolas)

and c = 0 (the cross). Right: The sets y3 = x2 + c for c = 1 (top),

c = 0 (middle), and c = −1 (bottom).

y − f(x), and it is also the range of the map f(t) = (t, f(t)). The representations

(ii) and (iii) are more flexible, but they are also too general as they stand because

the sets represented by them may not be smooth curves. Consider the following

examples, in which c denotes an arbitrary real constant:

EXAMPLE 1. Let F (x, y) = x2 + y2 − c. The set where F (x, y) = 0 is a

smooth curve (a circle) if c > 0, but it is a single point if c = 0 and it is the

empty set if c < 0.

EXAMPLE 2. Let G(x, y) = x2 − y2 − c. The set where G(x, y) = 0 is a

hyperbola (the union of two disjoint smooth curves) if c 6= 0, but if c = 0 it

is the union of the two lines y = x and y = −x. The latter set looks like a

smooth curve in a neighborhood of any of its points except the origin, where

the two lines cross. See Figure 3.2.

EXAMPLE 3. Let H(x, y) = y3 − x2 − c. The set where H(x, y) = 0 is a

smooth curve if c 6= 0, but when c = 0 it is a curve with a sharp cusp at the

origin. The latter set can also be described parametrically by f(t) = (t3, t2).
See Figure 3.2.

EXAMPLE 4. The function g(t) = (sin2 t, cos2 t) is C1, but its range is the

line segment from (0, 1) to (1, 0). The point g(t) traverses this line segment

from (0, 1) to (1, 0) as t goes from 0 to 1
2π, then traverses it in the reverse

direction as t goes from 1
2π to π, and this pattern is repeated on every interval

[nπ, (n+ 1)π].
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In these examples, the functions in question are all of class C1, but the sets they

describe fail to be smooth curves at certain points. However, they share a common

feature: The points where smoothness fails — namely, the origin in Examples 1–3

and the points (0, 1) and (1, 0) in Example 4 — are the points where the derivatives

of the relevant functions vanish. That is, the origin is the one and only point where

the gradients ∇F , ∇G, and ∇H vanish, and it is the image under f of the one and

only point (t = 0) where f ′ vanishes. Moreover, (0, 1) and (1, 0) are the images

under g of the points t = nπ and t = (n+ 1
2)π where g′(t) = 0.

This suggests that it might be a good idea to impose the extra conditions that

∇F 6= 0 on the set where F = 0 in (ii) and that f ′(t) 6= 0 in (iii). And indeed, with

the help of the implicit function theorem, it is easy to see that under these extra

conditions the representations (i)–(iii) are all locally equivalent. That is, if a curve

is represented in one of the forms (i)–(iii) and a is a point on the curve, at least a

small piece of the curve including the point a can also be represented in the other

two forms.

We now make this precise. Since (i) is more special than either (ii) or (iii), as

we have observed above, it is enough to see that a curve given by (ii) or (iii) can

also be represented in the form (i).

3.11 Theorem.

a. Let F be a real-valued function of class C1 on an open set in R2, and let S =
{(x, y) : F (x, y) = 0}. If a ∈ S and ∇F (a) 6= 0, there is a neighborhood N
of a in R2 such that S ∩N is the graph of a C1 function f (either y = f(x) or

x = f(y)).
b. Let f : (a, b) → R2 be a function of class C1. If f ′(t0) 6= 0, there is an open

interval I containing t0 such that the set {f(t) : t ∈ I} is the graph of a C1

function f (either y = f(x) or x = f(y)).

Proof. Part (a) is a special case of Corollary 3.3. As for (b), let f = (ϕ,ψ). If

f ′(t0) 6= 0, then either ϕ′(t0) 6= 0 or ψ′(t0) 6= 0; let’s assume that the former

condition holds. Let F (x, t) = x − ϕ(t) and x0 = ϕ(t0). Since ∂tF (x0, t0) =
−ϕ′(t0) 6= 0, the implicit function theorem guarantees that the equation x = ϕ(t)
can be solved for t as aC1 function of x, say t = ω(x), in some neighborhood of the

point (x0, t0). But then (ϕ(t), ψ(t)) = (x, ψ(ω(x))) for t in some neighborhood I
of t0; that is, the set {f(t) : t ∈ I} is the graph of the C1 function f = ψ ◦ ω. (If

ψ′(t0) 6= 0 instead, one can make the same argument with x and y switched.)

It should be noted that the conditions of nonvanishing derivatives in Theorem

3.11 are automatically satisfied in the special case where the curve is given in the

form (i). That is, if F (x, y) = y − f(x), then ∂F/∂y = 1, so ∇F never vanishes;

similarly, if f(t) = (t, f(t)), then f ′(t) = (1, f ′(t)) 6= (0, 0).
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With this in mind, we may make the following more formal definition of a

smooth curve: A set S ⊂ R2 is a smooth curve if (a) S is connected, and (b)

every a ∈ S has a neighborhood N such that S ∩N is the graph of a C1 function

f (either y = f(x) or x = f(y)). This agrees with the notion of smooth curve

indroduced at the beginning of this section: The curve described by y = f(x)
has a tangent line at each point (x0, f(x0)), and that line is given by an equation

y − f(x0) = f ′(x0)(x− x0) whose coefficients depend continuously on x0.

It should be emphasized that the conditions ∇F 6= 0 and f ′ 6= 0 in Theorem

3.11, are sufficient for the smoothness of the associated curves but not necessary.

In other words, the condition ∇F (a) = 0 or f ′(t0) = 0 allows the possibility

of non-smoothness at a or f(t0) but does not guarantee it. For example, suppose

G(x, y) is a C1 function whose gradient does not vanish on the set S = {(x, y) :
G(x, y) = 0}, so that S is a smooth curve, and let F = G2. Then the set where

F = 0 coincides with S, but ∇F = 2G∇G ≡ 0 on S! Similarly, as t ranges over

the interval (−1, 1), the functions f(t) and g(t) = f(t3) describe the same curve,

but g′(0) = 0 no matter what f is.

The following question remains: Suppose S is a subset of R2 that is described

in one of the forms (i)–(iii), and suppose that the regularity condition ∇F 6= 0 on

S (in case (ii)) or f ′(t) 6= 0 for all t ∈ (a, b) (in case (iii)) is satisfied. Theorem

3.11 shows that every sufficiently small piece of S is a smooth curve, but is the

entire set S a smooth curve? In case (i) the answer is clearly yes. However, in cases

(ii) and (iii) the answer may be no.

The trouble in case (ii) is that S may be disconnected. For example, if F =
GH , then S is the union of the sets {(x, y) : G(x, y) = 0} and {(x, y) : H(x, y) =
0}, and these sets may well be disjoint and form a disconnection of S. (Also see

Exercise 6.)

EXAMPLE 5. Let F (x, y) = (x2 + y2 − 1)(x2 + y2 − 2). Then the set where

F = 0 is the union of two disjoint circles centered at the origin. See Figure

3.3.

EXAMPLE 6. Let F (x, y) = (x2 + y2 − 1)(x2 + y2 − 2x). Then the set S
where F = 0 is the union of the circles of radius 1 about (0, 0) and (1, 0).
These circles intersect at the points (12 ,±1

2

√
3), and S is not a smooth curve

at these points. The reader may verify that ∇F = (0, 0) at these points, in

accordance with Theorem 3.11. See Figure 3.3 and also Exercise 6.

As for the representation (iii), a set of the form {f(t) : a < t < b} is necessarily

connected if f is continuous (Theorem 1.26). However, the function f(t) may not

be one-to-one, in which case the curve it describes may be traced more than once

(as we observed in Example 4) or may cross itself. These phenomena can happen
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FIGURE 3.3: The sets in Examples 5 (left), 6 (middle), and 8 (right).

even if f ′(t) never vanishes. Consequently, the condition f ′(t) 6= 0 is not sufficient

to guarantee that the set S = {f(t) : t ∈ (a, b)} is a smooth curve, only that

the pieces of it obtained by restricting t to small intervals are smooth curves. In

practice, sometimes one simply imposes the extra assumption that f is one-to-one

in order to avoid various pitfalls.

EXAMPLE 7. Let f(t) = (cos t, sin t). Then f ′(t) = (− sin t, cos t) is never

zero since the sine and cosine functions have no common zeros, but f is one-to-

one on the interval (a, b) only when b− a ≤ 2π. The range {f(t) : t ∈ R} of f

is a smooth curve (namely, the unit circle), but in order to obtain a one-to-one

correspondence between points on the circle and values of the parameter t, one

must restrict t to an interval of the form [a, a+ 2π) or (a, a+ 2π].

EXAMPLE 8. Let f(t) = (t3−t, t2). Then f ′(t) = (3t2−1, 2t) never vanishes,

but f(−1) = f(1) = (0, 1). The curve {f(t) : t ∈ R} loops around and

crosses itself at (0, 1), so it fails to be a smooth curve at that point. However,

{f(t) : t ∈ I} is a smooth curve as long as I is an interval whose closure does

not contain both −1 and 1. See Figure 3.3.

The reader with access to a computer graphics program may find it entertaining

to experiment with examples similar to the ones in this section to obtain a better

understanding of the relations between analytic and geometric properties of func-

tions and to see the various types of singularities that can arise when the regularity

condition ∇F 6= 0 or f(t) 6= 0 is violated.

EXERCISES

1. For each of the following functions F (x, y), determine whether the set S =
{(x, y) : F (x, y) = 0} is a smooth curve. Draw a sketch of S. Examine the
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nature of S near any points where ∇F = 0. Near which points of S is S the

graph of a function y = f(x)? x = f(y)?
a. F (x, y) = x2 + 3y2 − 3.

b. F (x, y) = x2 − 3y2 − 3.

c. F (x, y) = x−
√

3(y2 + 1).
d. F (x, y) = xy(x+ y − 1).
e. F (x, y) = (x2 + y2)(y − x2 − 1).
f. F (x, y) = (x2 + y2)(y − x2).
g. F (x, y) = (ex − 1)2 + (sin y − 1)2.

2. Let Sp = {(x, y) : xp + yp = 1}, where p is a positive integer.

a. Show that Sp is a smooth curve for all p.

b. Draw a sketch of Sp. (The geometry of Sp depends strongly on whether p
is even or odd.)

c. Which portions of Sp can be represented as the graph of a continuous func-

tion y = f(x)? x = f(y)? What if f is required to be C1? (Again, the

cases p even, p odd and > 1, and p = 1 are different.)

3. For each of the following functions f(t), determine whether the set S = {f(t) :
t ∈ R} is a smooth curve. Draw a sketch of S. Examine the nature of S near

any points f(t) where f ′(t) = 0.

a. f(t) = (t2 − 1, t+ 1).
b. f(t) = (t2 − 1, t2 + 1).
c. f(t) = (t3 − 1, t3 + 1)
d. f(t) = (cos3 t, sin3 t).
e. f(t) = (cos t+ cos 2t, sin t+ sin 2t).

4. Let ϕ(s) = s2 if s ≥ 0, ϕ(s) = −s2 if s < 0.

a. Show that ϕ is of class C1, even at s = 0.

b. Let f(t) = (ϕ(cos t), ϕ(sin t)). Show that {f(t) : t ∈ R} is the square

with vertices at (±1, 0) and (0,±1). For which values of t is f ′(t) = 0?

What are the corresponding points f(t)?

5. Let f(t) =
(
(t2−1)/(t2+1), t(t2−1)/(t2+1)

)
and S = {f(t) : t ∈ R}.

a. Show that S is the locus of the equation y2(1− x) = x2(1 + x).
b. Draw a sketch of S. (S is a curve containing a loop; it is called a strophoid.)

Show that S is asymptotic to the line x = 1.

c. Discuss the nature of the point (0, 0) where S crosses itself in terms of the

parametric and nonparametric representations of S in (a).

6. Let F1 and F2 be C1 functions on some open set U in the plane, and let F3 =
F1F2. For j = 1, 2, 3, let Sj = {x ∈ U : Fj(x) = 0}.
a. Show that S3 = S1 ∪ S2.

b. Show that if a ∈ S1 ∩ S2, then ∇F3(a) = 0.
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3.3 Surfaces and Curves in Space

In this section we discuss ways of representing smooth surfaces and curves in R3,

with a brief sketch of the situation in higher dimensions.

Surfaces in R3. The standard ways of representing surfaces in 3-space are

analogous to the standard ways of representing curves in the plane:

i. as the graph of a function, z = f(x, y) (or y = f(x, z) or x = f(y, z)),
where f is of class C1;

ii. as the locus of an equation F (x, y, z) = 0, where F is of class C1;

iii. parametrically, as the range of a C1 function f : R2 → R3.

As before, (i) is a special case of (ii) and (iii), with F (x, y, z) = z − f(x, y) and

f(u, v) = (u, v, f(u, v)), and as before, some additional conditions need to be

imposed in cases (ii) and (iii) in order to guarantee the smoothness of the surface.

The condition in case (ii) is exactly the same as for curves, namely, that

(3.12) ∇F (x, y, z) 6= (0, 0, 0) whenever F (x, y, z) = 0.

The situation in case (iii) needs to be examined a little more closely.

To be precise, we assume that f is a C1 map from some open set U ⊂ R2 into

R3, and we consider the set

S =
{
x ∈ R3 : x = f(u), u ∈ U

}
.

Here x = (x, y, z) and u = (u, v); the variables u and v are the parameters used

to represent the surface S. We can think of them as giving a coordinate system on

S, with the coordinate grid being formed by the images of the lines v = constant

and u = constant, that is, the curves given parametrically by x = f(u, c) and

x = f(c, v). The picture is as in Figure 3.4.

What is the appropriate nondegeneracy condition on the derivatives of f? A first

guess might be that the Fréchet derivative Df (a 3 × 2 matrix) should be nonzero,

but this is not enough. We can obtain more insight by looking at the case where

f is linear, that is, f(u, v) = ua + vb + c for some a,b, c ∈ R3. Typically the

range of such an f is a plane, but if the vectors a and b are linearly dependent

— that is, if one is a scalar multiple of the other — it will only be a line (unless

a = b = 0, in which case it is a single point). Now, for a general smooth f , the

linear approximation to f near a point (u0, v0) is f(u, v) ≈ ua+ vb+ c where the
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FIGURE 3.4: Parametric representation of a surface.

vectors a, b, and c are ∂uf , ∂vf , and f evaluated at (u0, v0). Hence we are led to

the regularity hypothesis:

(3.13)
the vectors

∂f

∂u
(u, v) and

∂f

∂v
(u, v) are linearly independent

at each (u, v) ∈ U.

Since two vectors in R3 are linearly independent if and only if their cross product

is nonzero, (3.13) can be restated as

(3.14)

[
∂f

∂u
× ∂f

∂v

]
(u, v) 6= 0 at each (u, v) ∈ U.

If S is the graph of a function f and we take the standard parametrization f(u, v) =
(u, v, f(u, v)), the condition (3.13) or (3.14) is automatically satisfied, because

∂uf = (1, 0, ∂uf) and ∂vf = (0, 1, ∂vf).
Notice that ∂uf and ∂vf are the tangent vectors to the “coordinate curves”

x = f(u, c) and x = f(c, v) described above. Thus, the condition (3.13) means

that these tangent vectors, at each point of the surface, are nonzero and point in

different directions; this implies that the coordinate curves are smooth and intersect

nontangentially.

With these things in mind, we arrive at the analogue of Theorem 3.11 for sur-

faces.

3.15 Theorem.

a. Let F be a real-valued function of class C1 on an open set in R3, and let

S = {(x, y, z) : F (x, y, z) = 0}. If a ∈ S and ∇F (a) 6= 0, there is a

neighborhood N of a in R3 such that S ∩ N is the graph of a C1 function f
(either z = f(x, y), y = f(x, z), or x = f(y, z)).
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b. Let f be a C1 mapping from an open set in R2 into R3. If [∂uf×∂vf ](u0, v0) 6=
0, there is a neighborhood N of (u0, v0) in R2 such that the set {f(u, v) :
(u, v) ∈ N} is the graph of a C1 function.

Proof. Part (a) is a special case of Corollary 3.3. As for (b), let f = (ϕ,ψ, χ). The

components of the cross product ∂uf × ∂vf are just the Jacobians ∂(ϕ,ψ)/∂(u, v),
∂(ϕ,χ)/∂(u, v), and ∂(ψ,χ)/∂(u, v). Under the hypothesis of (b), at least one of

them — let us say ∂(ϕ,ψ)/∂(u, v) — is nonzero at (u0, v0). The implicit function

theorem then guarantees that the pair of equations x = ϕ(u, v), y = ψ(u, v) can

be solved to yield u and v as C1 functions of x and y near u = u0, v = v0,

x = ϕ(u0, v0), y = ψ(u0, v0). Substituting these functions for u and v in the

equation z = χ(u, v) then yields z as a C1 function of x and y whose graph is the

range of f .

Thus the representations (i)–(iii) for surfaces are locally equivalent in the pres-

ence of the regularity conditions (3.12) and (3.13); a smooth surface is a connected

subset of R3 that can be locally described in any of these three forms. The poten-

tial global problems with the representations (ii) and (iii) are the same as for plane

curves; namely, the set where a C1 function F vanishes may be disconnected, and

a map f that is locally one-to-one need not be globally one-to-one.

EXAMPLE 1. Let f(u, v) =
(
(u + v) cos(u − v), (u + v) sin(u − v), u +

v
)
. The set S = f(R2) is a right circular cone with vertex at the origin; it

is described nonparametrically by the equation x2 + y2 = z2. The set S is

a smooth surface except at the origin, which accords with the fact that the

gradient of F (x, y, z) = x2 + y2 − z2 vanishes at the origin and nowhere else.

Correspondingly, the vectors

∂uf

=
(
cos(u− v)− (u+ v) sin(u− v), sin(u− v) + (u+ v) cos(u− v), 1

)

and

∂vf

=
(
cos(u− v) + (u+ v) sin(u− v), sin(u− v)− (u+ v) cos(u− v), 1

)

are linearly independent except when u+ v = 0, in which case they coincide.

The map f is locally one-to-one except along the line u+ v = 0, and this entire

line is mapped to the origin. (The reader will recognize that u+v and u−v are

really the r and θ of cylindrical coordinates in R3. We have chosen to disguise

them a little in order to display a situation where ∂uf and ∂vf are both nonzero

but are linearly dependent where the singularities occur.)
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EXAMPLE 2. The unit sphere S = {(x, y, z) : x2 + y2 + z2 = 1} can be

parametrized by spherical coordinates,

f(θ, ϕ) = (cos θ sinϕ, sin θ sinϕ, cosϕ).

Here θ is the longitude and ϕ is the co-latitude, i.e., the latitude as measured

from the north pole rather than the equator. The longitude θ is only well defined

up to multiples of 2π, but the co-latitude is usually restricted to the interval

[0, π]. The sphere is a smooth surface, but the map f does not provide a “good”

parametrization of the whole sphere because it is not locally one-to-one when

sinϕ = 0. (That is, the longitude is completely undetermined at the north and

south poles.) This degeneracy is also reflected in the tangent vectors

∂θf = (− sin θ sinϕ, cos θ sinϕ, 0),

∂ϕf = (cos θ cosϕ, sin θ cosϕ, − sinϕ);

they are linearly independent when sinϕ 6= 0, but ∂θf = 0 when sinϕ = 0.

However, if we restrict θ and ϕ to the rectangle −π < θ < π, 0 < ϕ < π, we

obtain a good parametrization of the sphere with the “international date line”

removed.

Finally, a few words about finding the tangent plane to a smooth surface S at a

point a ∈ S. In general, the tangent plane is given by the equation n · (x− a) = 0,

where n is a (nonzero) normal vector to S at a. We have already observed in

Theorem 2.37 that when S is given by an equation F = 0, then the vector ∇F (a)
is normal to S at a. On the other hand, when S is given parametrically as the range

of a map f(u, v), the vectors ∂uf(b, c) and ∂vf(b, c) are tangent to certain curves

in S and hence to S itself at f(b, c); we therefore obtain a normal at f(b, c) by

taking their cross product. In both cases, the conditions on F or f that guarantee

the smoothness of S also guarantee that these normal vectors are nonzero.

Curves in R3. Curves in R3 are generally described either parametrically or

as the intersection of two surfaces. The situation where two of the coordinates are

given as functions of the third one can be considered as a special case of either of

these. Thus, once again we have three kinds of representation for curves:

i. as a graph, y = f(x) and z = g(x) (or similar expressions with the coordi-

nates permuted), where f and g are C1 functions;

ii. as the locus of two equations F (x, y, z) = G(x, y, z) = 0, where F and G
are C1 functions;
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iii. parametrically, as the range of a C1 function f : R→ R3.

The form (ii) describes the curve as the intersection of the two surfaces F = 0
and G = 0, and (i) is a special case of (ii) (with F (x, y, z) = y − f(x) and

G(x, y, z) = z − g(x)) and of (iii) (with f(t) = (t, f(t), g(t))).

By now the reader should be able to guess what the appropriate regularity con-

dition for cases (ii) and (iii) is. In (iii) it is simply that f ′(t) 6= 0, and in (ii) it is

that

∇F (x) and ∇G(x) are linearly independent

at every x at which F (x) = G(x) = 0.

(Geometrically, this means that the surfaces F = 0 and G = 0 are nowhere tangent

to each other.) With these conditions we have an analogue of Theorems 3.11 and

3.15. Rather than give another precise statement and proof, we sketch the ideas and

leave the details to the reader (Exercise 7).

First, if∇F and∇G are linearly independent, then at least one of the Jacobians

∂(F,G)/∂(x, y), ∂(F,G)/∂(x, z), and ∂(F,G)/∂(y, z) must be nonzero; let us

say the last one. Then the implicit function theorem guarantees that the equations

F = G = 0 can be solved for y and z as functions of x. Second, if f ′(t) 6= 0,

then one of the components of f ′(t) must be nonzero; let us say the first one. Then

the equation x = f1(t) can be solved for t in terms of x, and then the equations

y = f2(t) and z = f3(t) yield y and z as functions of x. In either case we end up

with the representation (i).

Let us say a little more about what can go wrong in case (ii) when ∇F and

∇G are linearly dependent. The potential problems are clearly displayed in the

following situation: Let F (x, y, z) = z − ϕ(x, y), where ϕ is a C1 function, and

let G(x, y, z) = z. Then the sets where F = 0 and G = 0 are smooth surfaces; the

former is the graph ofϕ, whereas the latter is the xy-plane. The intersection of these

two surfaces is the curve in the xy-plane described by the equation ϕ(x, y) = 0.

Now, this curve can have all sorts of singularities if there are points on it where

∇ϕ = (0, 0), as we have discussed in §3.2. But since∇F = (−∂xϕ,−∂yϕ, 1) and

∇G = (0, 0, 1), the points where ∇ϕ = (0, 0) are precisely the points where ∇F
and ∇G are linearly dependent.

If a curve S is represented parametrically by a function f(t), the derivative f ′(t)
furnishes a tangent vector to S at the point f(t). On the other hand, if S is given

by a pair of equations F = G = 0 and a ∈ S, the vectors ∇F (a) and ∇G(a) are

both normal to S at a and hence span the normal plane to S at a. One can therefore

obtain a tangent vector to S at a by taking their cross product.
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Higher Dimensions. The pattern for representations of curves and surfaces that

we have established in this section and the preceding one should be pretty clear by

now, and it generalizes readily to higher dimensions. We sketch the main points

briefly and leave it to the ambitious reader to work out the details.

The general name for a “smooth k-dimensional object” is manifold; thus, a

curve is a 1-dimensional manifold and a surface is a 2-dimensional manifold. Here

we consider the question of representing k-dimensional manifolds in Rn, for any

positive integers k and n with n > k. The two general forms, corresponding to (ii)

and (iii) above for curves and surfaces, are as follows.

The Nonparametric Form: A k-dimensional manifold S in Rn can be described

as the set of simultaneous solutions of n− k equations. That is, given C1 functions

F1, . . . , Fn−k defined on some open set U ⊂ Rn, or equivalently a C1 mapping

F = (F1, . . . , Fn−k) from U into Rn−k, we can consider the set

(3.16) S =
{
x : F(x) = 0

}
.

The regularity condition that guarantees that S is a smooth k-dimensional manifold

is that

∇F1(x), . . . ,∇Fn−k(x) are linearly independent at each x ∈ S,

or, equivalently,

the matrix DF(x) has rank n− k at every x ∈ S.

This condition implies that, for each x0 ∈ S, some (n − k) × (n − k) submatrix

of DF(x0) is nonsingular, and the implicit function theorem then implies that the

equations F(x) = 0 can be solved near x0 for n−k of the variables asC1 functions

of the remaining k variables. This leads to the more special representation of (small

pieces of) S by the equations analogous to (i) for curves and surfaces, namely,

x′′ = g(x′), where x′′ represents an ordered (n− k)-tuple of coordinates and x′ is

the ordered k-tuple of remaining coordinates.

The Parametric Form: Given a C1 map f from some open set V ⊂ Rk into Rn,

we can consider the set

(3.17) S =
{
f(u) : u ∈ V

}
.

The regularity condition that guarantees that S is a smooth k-dimensional manifold

is that

∂u1f(u), . . . , ∂uk f(u) are linearly independent at each u ∈ V,
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or equivalently,

the matrix Df(u) has rank k at each u ∈ V .

This condition implies that, for each u0 ∈ V , some k × k submatrix of Df(u0)
is invertible, say the one formed from the rows i1, . . . , ik . The implicit function

theorem then implies that the equations xij = fij(u1, . . . , uk) (1 ≤ j ≤ k) can

be solved near u0 to yield the uj’s as C1 functions of x′ = (xi1 , . . . , xik). Substi-

tuting these functions for the uj’s in the remaining equations xl = fl(u1, . . . , uk)
again yields a representation of (small pieces of) S analogous to (i) for curves and

surfaces.

It is perhaps worth pointing out what these two representations boil down to

in the linear case. That is, suppose S is a k-dimensional vector subspace of Rn;

then S can be represented in the forms (3.16) or (3.17) where the functions F and

f are linear and hence are given by matrices. (3.16) is the representation of S as

the nullspace of an (n− k)× n matrix, and (3.17) is the representation of S as the

column space of an n × k matrix; in both cases the regularity condition is that the

rank of the matrix in question is as large as possible.

EXERCISES

1. For each of the following maps f : R2 → R3, describe the surface S = f(R2)
and find a description of S as the locus of an equation F (x, y, z) = 0. Find the

points where ∂uf and ∂vf are linearly dependent, and describe the singularities

of S (if any) at these points.

a. f(u, v) = (2u+ v, u− v, 3u).
b. f(u, v) = (au cos v, bu sin v, u) (a, b > 0).

c. f(u, v) = (cos u cosh v, sinu cosh v, sinh v).
d. f(u, v) = (u cos v, u sin v, u2).

2. Find an equation for the tangent plane to the following parametrized surfaces

at the point (1,−2, 1). (The first step is to find the values of the parameters u, v
that yield this point.)

a. x = eu−v, y = u− 3v, z = 1
2 (u

2 + v2).
b. x = 1/(u + v), y = −(u+ ev), z = u3.

3. Find a parametrization for each of the following surfaces (perhaps involving an

angular variable that is defined only up to multiples of 2π).

a. The surface obtained by revolving the curve z = f(x) (a < x < b) in the

xz-plane around the z-axis, where a > 0.
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b. The surface obtained by revolving the curve z = f(x) (a < x < b) in the

xz-plane around the x-axis, where f(x) > 0.

c. The lower sheet of the hyperboloid z2 − 2x2 − y2 = 1.

d. The cylinder x2 + z2 = 9.

4. Find a parametric description of the following lines:

a. The intersection of the planes x− 2y + z = 3 and 2x− y − z = −1.

b. The intersection of the planes x+ 2y = 3 and y − 3z = 2.

5. Let S be the circle formed by intersecting the plane x+ z = 1 with the sphere

x2 + y2 + z2 = 1.

a. Find a parametrization of S.

b. Find parametric equations for the tangent line to S at the point (12 ,− 1√
2
, 12).

6. Let S be the intersection of the cone z2 = x2 + y2 and the plane z = ax+ 1,

where a ∈ R.

a. Show that S is a circle if a = 0, an ellipse if |a| < 1, a parabola if |a| = 1,

and a hyperbola if |a| > 1.

b. Find a parametrization for S in the first two cases and for the part of S
lying above the xy-plane in the third case.

7. Give a precise statement and proof of the analogue of Theorem 3.11 for curves

in R3.

3.4 Transformations and Coordinate Systems

In this section we study smooth mappings from Rn to itself in more detail, with

emphasis on geometric intuition for the cases n = 2 and n = 3.

Suppose f : Rn → Rn is a map of class C1. We can regard f as a transfor-

mation of Rn, that is, an operation that moves the points in Rn around in some

definite fashion. When n > 1, such transformations are usually best pictured with

“before and after” sketches. That is, if x = f(u), we think of u and x as living

in two separate copies of Rn. We draw a sketch of u-space with some geometric

figures in it, such as a grid of coordinate lines, then draw a sketch of x-space with

the images of those figures under the transformation f .

EXAMPLE 1. Define f : R2 → R2 by f(u, v) = 1
2(
√
3u − v, u +

√
3v). The

map f represents a counterclockwise rotation through the angle 1
6π about the

origin (since 1
2

√
3 = cos 1

6π and 1
2 = sin 1

6π). See Figure 3.5.

EXAMPLE 2. Define f : R2 → R2 by f(u, v) = (2u, v). f simply stretches out

the u coordinate by a factor of 2. See Figure 3.6.
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FIGURE 3.5: The transformation f(u, v) = 1
2(
√
3u− v, u+

√
3v).

FIGURE 3.6: The transformation f(u, v) = (2u, v).

EXAMPLE 3. Define f : R2 → R2 by f(u, v) = (u2 − v2, 2uv). Unlike the

previous two examples, this f is not one-to-one; it maps (u, v) and (−u,−v) to

the same point. (It’s not hard to check that this is the only duplication of values:

If f(u, v) = f(z, w) then (z, w) = ±(u, v).) In order to draw an intelligible

picture, we restrict attention to the region u > 0. We also denote f(u, v) by

(x, y), so the “before” and “after” pictures are the uv-plane and the xy-plane.

The image of the vertical line u = c under f is given by x = c2 − v2, y = 2cv.

Elimination of v yields x = c2 − y2/4c2, the equation of a parabola that opens

out to the left. On the other hand, the image of the horizontal line v = c is

given by x = u2 − c2, y = 2cu, which yields x = y2/4c2 − c2. Since we

are assuming u > 0, we have y > 0 or y < 0 depending on whether c > 0
or c < 0; in either case this curve is half of a parabola opening to the right.

See Figure 3.7: The v-axis is mapped to the negative x-axis (both (0, v) and

(0,−v) being mapped to (−v2, 0)), as indicated by the dotted lines, and the

right half of the uv-plane is bent to the left to fill up the rest of the xy-plane.

We can also draw the reverse picture. The horizontal line y = c in the xy-

plane corresponds to the curve 2uv = c in the uv-plane, which is a hyperbola

whose asymptotes are the coordinate axes. The vertical line x = c corresponds

to the curve u2 − v2 = c, which is a hyperbola whose asymptotes are the
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FIGURE 3.7: The transformation (x, y) = (u2 − v2, 2uv), showing the

image in the xy-plane of the coordinate grid in the half-plane u > 0.

FIGURE 3.8: The transformation (x, y) = (u2 − v2, 2uv), showing

the curves in the half-plane u > 0 that map to the coordinate grid in

the xy-plane.

lines v = ±u when c 6= 0 and the union of these two lines when c = 0. See

Figure 3.8.

We can think of mappings from R3 to itself pictorially in the same way, though

the pictures are harder to draw. Figure 3.9 shows what happens to a cube under the

transformation f(u, v, w) = (−2u, v, 12w).
Another common interpretation of a map f : Rn → Rn is as a coordinate

system on Rn. For example, we usually think of f(r, θ) = (r cos θ, r sin θ) as

representing polar coordinates in the plane. In the preceding discussion we thought

in terms of moving the points in Rn around without changing the labeling system

(namely, Cartesian coordinates); here we are thinking of leaving the points alone

but giving them different labels (polar rather than Cartesian coordinates.) It’s just

a matter of point of view; the same transformation f can be interpreted either way.

For example, the systems of parabolas and hyperbolas in Figures 3.7 and 3.8 can
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FIGURE 3.9: The transformation f(u, v, w) = (−2u, v, 12w). (The u
and w axes are horizontal and vertical, respectively.)

π

FIGURE 3.10: The polar coordinate transformation (x, y) = (r cos θ, r sin θ).

be interpreted as the grids for curvilinear coordinate systems in the appropriate

parts of the plane, and the map f(r, θ) = (r cos θ, r sin θ) can be interpreted as a

transformation. Figure 3.10 shows a representative piece of it.

Not all mappings f : Rn → Rn can be used as coordinate systems, however. A

“good” coordinate system should have the property that there is a one-to-one cor-

respondence between points and their coordinates; that is, each set of coordinates

should specify a unique point in Rn, and two different sets of coordinates should

specify different points. Polar coordinates, for example, do not satisfy this condi-

tion — (r, θ) and (r, ϕ) are polar coordinates of the same point whenever θ−ϕ is an

integer multiple of 2π, or whenever r = 0 — and this fact always has the potential

to cause problems when polar coordinates are used. However, if we restrict r and θ
to satisfy r > 0 and−π < θ < π, we do get a “good” coordinate system, not on the

whole plane, but on the plane with the negative real axis removed. Likewise, the

map (u, v) = (x2−y2, 2xy) in Example 3, restricted to the half-plane x > 0, gives

a “good” coordinate system on the uv-plane with the negative u axis removed.

In short, our attention is directed to transformations f of class C1 that map an

open set U ⊂ Rn in a one-to-one fashion onto another open set V ⊂ Rn. There is
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one further requirement that is natural to impose, namely, that the inverse mapping

f−1 : V → U should also be of class C1, so that the correspondence is smooth in

both directions. Hence, the question arises: Given a C1 transformation f : U → V ,

when does f possess a C1 inverse f−1 : V → U? That is, when can the equation

f(x) = y be solved uniquely for x as a C1 function of y?

This question is clearly closely related to the ones that led to the implicit func-

tion theorem, and indeed, if we restrict attention to the solvability of the equation

f(x) = y in a small neighborhood of a point, its answer becomes a special case of

that theorem. As we did before, we can guess what the answer should be by looking

at the linear approximation. If f(a) = b, the linear approximation to the equation

f(x) = y at the point (a,b) is T (x−a) = y−b where the matrix T is the Fréchet

derivative Df(a), and the latter equation can be solved for x precisely when T is

invertible, that is, when the Jacobian detDf(a) is nonzero. We are therefore led to

the following theorem.

3.18 Theorem (The Inverse Mapping Theorem). Let U and V be open sets in Rn,

a ∈ U , and b = f(a). Suppose that f : U → V is a mapping of class C1 and the

Fréchet derivative Df(a) is invertible (that is, the Jacobian detDf(a) is nonzero).

Then there exist neighborhoods M ⊂ U and N ⊂ V of a and b, respectively, so

that f is a one-to-one map from M onto N , and the inverse map f−1 from N to M
is also of class C1. Moreover, if y = f(x) ∈ N , D(f−1)(y) = [Df(x)]−1.

Proof. The existence of the inverse map is equivalent to the unique solvability of

the equation F(x,y) = 0 for x, where F(x,y) = f(x)−y. Since the derivative of

F as a function of x is just Df(x), the implicit function theorem (3.9) guarantees

that this unique solvability will hold for (x,y) near (a,b) provided that Df(a) is

invertible. (In referring to the statement of the implicit function theorem, however,

note that the roles of the variables x and y have been reversed here.) Moreover,

since f−1(f(x)) = x for x ∈ M , the chain rule gives D(f−1)(f(x)) ·Df(x) = I
where I is the n × n identity matrix; in other words, D(f−1)(y) = [Df(x)]−1

where y = f(x).

It is to be emphasized that the inverse mapping theorem is local in nature; the

global invertibility of f is a more delicate matter. To be more precise, consider the

following question: Suppose f : U → V is of class C1 and that Df(x) is invertible

for every x ∈ U . Is f one-to-one on U?

When n = 1, the answer is yes, provided that U is an interval. Here we are

considering a C1 function f(x) such that f ′(x) 6= 0 on the interval U = (a, b).
Since f ′ is continuous, we must have either f ′(x) > 0 for all x ∈ (a, b), so that f
is strictly increasing, or f ′(x) < 0 for all x ∈ (a, b), so that f is strictly decreasing.

In either case, f is one-to-one.
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When n > 1, however, the answer is no. The simplest counterexample is

our old friend the polar coordinate map, f(r, θ) = (r cos θ, r sin θ), on the set

U = {(r, θ) : r > 0}. We have

Df(r, θ) =

(
cos θ −r sin θ
sin θ r cos θ

)
, detDf(r, θ) = r(cos2 θ + sin2 θ) = r,

so detDf 6= 0 on U , but f is not one-to-one since f(r, θ + 2kπ) = f(r, θ). It is,

however, locally one-to-one, in that it is one-to-one if one restricts θ to any interval

of length less than 2π. (Notice also that the Jacobian of the polar coordinate map

vanishes when r = 0. This accords with the fact that the polar coordinate map is

not even locally invertible there; the angular coordinate is completely undetermined

at the origin.)

The question of global invertibility is a delicate one. Consider the following

situation: Let f : Rn → Rn be a map whose component functions are all polyno-

mials, and suppose that the Jacobian detDf is identically equal to 1. Is f globally

invertible? The answer is so far unknown; this is a famous unsolved problem.

We should also point out that the invertibility of Df(a) is not necessary for the

existence of an inverse map, although it is necessary for the differentiability of that

inverse. (Example: Let f(x) = x3. Then f has the global inverse f−1(y) = y1/3,

but f(0) = f ′(0) = 0 and f−1 is not differentiable at 0.)

EXERCISES

1. For each of the following transformations (u, v) = f(x, y), (i) compute the

Jacobian detDf , (ii) draw a sketch of the images of some of the lines x =
constant and y = constant in the uv-plane, (iii) find formulas for the local

inverses of f when they exist.

a. u = ex cos y, v = ex sin y.

b. u = x2, v = y/x.

c. u = x2 + 2xy + y2, v = 2x+ 2y.

2. Let (u, v) = f(x, y) = (x− 2y, 2x− y).
a. Compute the inverse transformation (x, y) = f−1(u, v).
b. Find the image in the uv-plane of the triangle bounded by the lines y = x,

y = −x, and y = 1− 2x.

c. Find the region in the xy-plane that is mapped to the triangle with vertices

(0, 0), (−1, 2), and (2, 1) in the uv-plane.
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3. Let u = sinx cosh y, v = cos x sinh y.

a. Show that the images of the lines x = constant (resp. y = constant) in the

uv-plane are hyperbolas (resp. ellipses).

b. Show that ∂(u, v)/∂(x, y) = cos2 x+ sinh2 y. At what points (x, y) does

this Jacobian vanish? Show that the corrsponding points in the uv-plane

are (±1, 0).
c. (optional) Show that the ellipses and hyperbolas in (a) all have foci at

(±1, 0).
4. Let (u, v) = f(x, y) = (x− y, xy).

a. Sketch some of the curves x − y = constant and xy = constant in the

xy-plane. Which regions in the xy-plane map onto the rectangle in the

uv-plane given by 0 ≤ u ≤ 1, 1 ≤ v ≤ 4? There are two of them; draw a

picture of them.

b. Compute the derivative Df and the Jacobian J = detDf .

c. The Jacobian J vanishes at (a, b) precisely when the gradients ∇u(a, b)
and ∇v(a, b) are linearly dependent, i.e., when the level sets of u and v
passing through a and b are tangent to each other. (If this doesn’t seem

obvious at first, think about it!) Use your sketch of the level sets in (a) to

show pictorially that this assertion is correct.

d. Notice that f(2,−3) = (5,−6). Compute explicitly the local inverse g of

f such that g(5,−6) = (2,−3) and also compute its derivative Dg.

e. Show by explicit calculation that the matrices Df(2,−3) and Dg(5,−6)
are inverses of each other.

5. Find a one-to-one C1 mapping f from the first quadrant of the xy-plane to the

first quadrant of the uv-plane such that the region where x2 ≤ y ≤ 2x2 and

1 ≤ xy ≤ 3 is mapped to a rectangle. Compute the Jacobian detDf and the

inverse mapping f−1. (Hint: Map all the regions where ax2 ≤ y ≤ bx2 and

c ≤ xy ≤ d to rectangles.)

6. Let f : R3 → R3 be the spherical coordinate map,

(x, y, z) = f(r, ϕ, θ) = (r sinϕ cos θ, r sinϕ sin θ, r cosϕ).

Thus r is the distance to the origin, ϕ is the co-latitude (the angle from the

positive z-axis), and θ is the longitude.

a. Describe the surfaces in xyz-space that are the images of the planes r =
constant, ϕ = constant, and θ = constant.

b. Compute the derivative Df and show that detDf(r, ϕ, θ) = r2 sinϕ.

c. What is the condition on the point (r0, ϕ0, θ0) for f to be locally invertible

about this point? What is the corresponding condition on (x0, y0, z0) =
f(r0, ϕ0, θ0)?
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7. We have obtained the inverse mapping theorem as a corollary of the implicit

function theorem. It is also possible to prove the inverse mapping theorem di-

rectly and then obtain the implicit function theorem as a corollary of it. Do this

last step; that is, assume the inverse mapping theorem and deduce the implicit

function theorem from it. (Hint: Let F(x,y) be as in Theorem 3.9. Apply the

inverse mapping theorem to the transformation G : Rn+k → Rn+k defined by

G(x,y) = (x,F(x,y)).)

3.5 Functional Dependence

In the implicit function theorem and its applications discussed in the preceding

sections, we have drawn consequences from the nonvanishing of various Jacobians.

In this section we consider the opposite situation, in which a Jacobian vanishes

identically.

For motivation, let us first consider the linear case. Let A be an n × n matrix,

and define F : Rn → Rn by F(x) = Ax (where x is considered as a column

vector). If A is nonsingular, F is a one-to-one map from Rn onto itself, whose

inverse is F−1(y) = A−1y. However, if detA = 0, the range of T (namely,

the column space of A) is a proper linear subspace of Rn, and the components

(f1, . . . , fn) of F satisfy at least one nontrivial linear relation. More precisely, if

the rank of A is k, where k < n, then the range of F is a k-dimensional subspace

of Rn, and the components of F satisfy n−k independent linear relations (namely,

the relations satisfied by the rows of A).

EXAMPLE 1. Let F = (f1, f2, f3) be given by the matrix

A =




1 2 −1
1 −3 4
2 −1 3


 ,

that is,

f1(x, y, z) = x+ 2y − z,
f2(x, y, z) = x− 3y + 4z,

f3(x, y, z) = 2x− y + 3z.

It is easily verified that detA = 0, that the first two rows of A are independent,

and that the third row is the sum of the first two. This last relation means that

the functions f1, f2, f3 satisfy the linear relation f3 = f1 + f2. Equivalently,

the range of F is the plane defined by the equation y3 = y1 + y2.
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EXAMPLE 2. Let F = (f1, f2, f3) be given by the matrix

A =




1 2 −1
2 4 −2
−3 −6 3


 ,

that is,

f1(x, y, z) = x+ 2y − z,
f2(x, y, z) = 2x+ 4y − 2z,

f3(x, y, z) = −3x− 6y + 3z.

Here the rank of A is 1, and the functions fj satisfy the relations f2 = 2f1,

f3 = −3f1. The range of F is the line passing through the origin and the point

(1, 2,−3).

More generally, one can consider linear maps F : Rm → Rn defined by n×m
matrices A. The range of such a map is a linear subspace of Rn whose dimension

is the rank of A. It must happen when n > m, and may happen when n ≤ m,

that this subspace is a proper subspace of Rn, in which case the components of F

satisfy nontrivial linear relations.

Now let us return to the study of more general functions. The appropriate ana-

logue of “linear dependence” for nonlinear functions is “functional dependence,”

which means that the functions in question satisfy a nontrivial functional relation,

in other words, that one of them must be expressible as a function of the others.

We shall formulate this idea precisely in a way that is appropriate for C1 func-

tions, although the notion of functional dependence does not really depend on any

differentiability conditions.

Suppose f1, . . . , fn are C1 real-valued functions on an open set U ⊂ Rm.

We say that f1, . . . , fn are functionally dependent on U if there is a C1 function

Φ : Rn → R such that

(3.19) Φ
(
f1(x), . . . , fn(x)

)
= 0 and ∇Φ

(
f1(x), . . . , fn(x)

)
6= 0 for x ∈ U.

The nonvanishing of ∇Φ guarantees, via the implicit function theorem, that the

equation Φ = 0 can be solved locally for one of the variables in terms of the others;

in other words, one of the functions fj can be expressed in terms of the remaining

ones.

Geometrically, (3.19) means that the range of the map f = (f1, . . . , fn) is

contained in the hypersurface {y : Φ(y) = 0} in Rn, so that it is at most (n − 1)-
dimensional. (It might be even smaller, of course; the functions fj might satisfy

other relations in addition to the equation Φ(f(x)) = 0.)
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EXAMPLE 3. The functions

f1(x, y, z) = x+ y + z,

f2(x, y, z) = xy + xz + yz,

f3(x, y, z) = x2 + y2 + z2

are functionally dependent on R3, for f3 = f21 − 2f2.

EXAMPLE 4. The functions f1(x, y) = 3x + 1, f2(x, y) = x2 − y are not

functionally dependent on any open set in R2. Indeed, the transformation f =
(f1, f2) is a one-to-one map from R2 onto itself whose inverse g = (g1, g2) is

given by g1(u, v) =
1
3(u − 1), g2(u, v) =

1
9 (u− 1)2 − v; hence the values of

f are not subject to any restrictions.

It should be noted that the question of functional dependence is interesting

only when the number of functions does not exceed the number of independent

variables; when it does, functional dependence is almost automatic. For example,

if f and g are any two C1 functions of one variable, then f and g are functionally

dependent on any interval I on which either f ′ 6= 0 or g′ 6= 0. Indeed, if f ′ 6= 0
on I , then f is one-to-one on I and so has an inverse; then Φ(f(x), g(x)) = 0 on I
where Φ(u, v) = g(f−1(u))− v.

The main results of this section concern the close relation between the func-

tional dependence of a family of functions and the linear dependence of their linear

approximations. To begin with, we consider the case where the number of functions

equals the number of independent variables.

3.20 Theorem. Suppose f = (f1, . . . , fn) is a C1 map on some open set U ⊂ Rn.

If f1, . . . , fn are functionally dependent on U , then the Jacobian detDf vanishes

identically on U .

Proof. Functional dependence of the fj’s means that there is a C1 function Φ such

that Φ(f(x)) = 0 and ∇Φ(f(x)) 6= 0 for x ∈ U . Differentiation of the equation

Φ(f(x)) = 0 with respect to the variables x1, . . . , xn via the chain rule yields

(∂1Φ)(∂1f1) + (∂2Φ)(∂1f2) + · · · + (∂nΦ)(∂1fn) = 0,
...

(∂1Φ)(∂nf1) + (∂2Φ)(∂nf2) + · · ·+ (∂nΦ)(∂nfn) = 0,

where the derivatives of Φ are evaluated at f(x) and the derivatives of the fj’s are

evaluated at x. Thus, at each x ∈ U , the system of equations

(∂1f1)y1 + (∂1f2)y2 + · · ·+ (∂1fn)yn = 0,
...

(∂nf1)y1 + (∂nf2)y2 + · · ·+ (∂nfn)yn = 0,
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has a nonzero solution, namely y = ∇Φ(f(x)). Therefore, its coefficient matrix

(∂jfk(x)), which is nothing but the transpose of Df(x), must be singular, and

hence detDf(x) = 0.

More interesting is the fact that the converse of this theorem is also true: The

vanishing of the Jacobian detDf implies the functional dependence of the fj’s. We

now present a version of this result with an additional hypothesis (the constancy of

the rank ofDf ) that yields a sharper conclusion. We formulate it so that it also cov-

ers the case when the number of functions differs from the number of independent

variables.

3.21 Theorem. Let f = (f1, . . . , fn) be a C1 map from a connected open set

U ⊂ Rm into Rn. Suppose that the matrix Df(x) has rank k at every x ∈ U ,

where k < n. Then every x0 ∈ U has a neighborhood N such that f1, . . . , fn are

functionally dependent on N and f(N) is a smooth k-dimensional submanifold of

Rn.

(The restriction to a small neighborhood N is necessary because the set f(U)
can cross itself, as in Example 8 in §3.2.)

Since Df(x) is an n×m matrix, its rank k always satisfies k ≤ m and k ≤ n.

When k = m, the situation described here is simply the representation in para-

metric form of an m-dimensional submanifold of Rn, as discussed in §§3.2–3, and

the conclusion of the theorem is that such a submanifold can also be described as

the locus of a system of equations. In other words, the case k = m boils down

to Theorems 3.11b and 3.15b and their generalizations to higher dimensions. The

case where more needs to be said is the one where k < m.

Rather than proving this theorem in complete generality, we shall restrict atten-

tion to the case where m = n = 3 and k is 1 or 2. The ideas in the general case

are the same; only the details are more cumbersome. (See also Exercise 2.) Let us

restate the theorem for the special case:

3.22 Theorem. Let f = (f, g, h) be a C1 map from a connected open set U ⊂ R3

into R3. Suppose that the matrix Df(x) has rank k at every x ∈ U , where k = 1
or 2. Then every x0 ∈ U has a neighborhood N such that the functions f, g, h are

functionally dependent on N and f(N) is a smooth curve (if k = 1) or a smooth

surface (if k = 2).

Proof. Let x = (x, y, z), u = f(x), v = g(x), and w = h(x), and fix x0 =
(x0, y0, z0) ∈ U .

First suppose k = 1. Since the matrix Df(x0) has rank 1, it has at least one

nonzero entry; by relabeling the functions and variables, we may assume that the
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(1, 1) entry is nonzero, that is, ∂xf(x0) 6= 0. By the implicit function theorem,

then, the equation u = f(x, y, z) can be solved near x = x0, u = u0 = f(x0), to

yield x as a function of y, z, and u. Then v and w turn into functions of y, z, and

u also. Implicit differentiation of the equations u = f(x, y, z) and v = g(x, y, z)
with respect to y (taking y, z, and u as the independent variables) yields

0 = (∂xf)(∂yx) + (∂yf),

∂yv = (∂xg)(∂yx) + (∂yg).

Solving the first equation for ∂yx and substituting the result into the second equa-

tion then yields

∂yv = ∂xg
−∂yf
∂xf

+ ∂yg =
1

∂xf
· ∂(f, g)
∂(x, y)

.

But since Df has rank 1, all of its 2 × 2 submatrices are singular; therefore,

∂(f, g)/∂(x, y) ≡ 0 and hence ∂yv ≡ 0. Restricting to a convex neighborhood

of (y0, z0, u0), we conclude that v is independent of y. For exactly the same rea-

son, v is independent of z, and w is independent of y and z. That is, v and w are

functions of u alone, say v = ϕ(u) and w = ψ(u). This shows that f, g, h are

functionally dependent — g(x) = ϕ(f(x)) and h(x) = ψ(f(x)) — and that the

image of a neighborhood of x0 under f is the locus of the equations v = ϕ(u),
w = ψ(u), which is a smooth curve.

Now let us turn to the case k = 2. Here some 2 × 2 submatrix of Df(x0) is

nonsingular; by relabeling the functions and variables, we can assume that it is the

one in the upper left corner, so that ∂(f, g)/∂(x, y) is nonzero at x0. By the implicit

function theorem, the equations u = f(x, y, z) and v = g(x, y, z) can be solved

near x = x0, u = u0 = f(x0), v = v0 = g(x0), to yield x and y as functions of

u, v, and z. Taking u, v, and z as the independent variables, then, we differentiate

the equations u = f(x, y, z), v = g(x, y, z), and w = h(x, y, z) implicitly with

respect to z to obtain

0 = (∂xf)(∂zx) + (∂yf)(∂zy) + (∂zf),

0 = (∂xg)(∂zx) + (∂yg)(∂zy) + (∂zg),

∂zw = (∂xh)(∂zx) + (∂yh)(∂zy) + (∂zh),

or

(∂xf)(∂zx) + (∂yf)(∂zy) = −∂zf,
(∂xg)(∂zx) + (∂yg)(∂zy) = −∂zg,
(∂xh)(∂zx) + (∂yh)(∂zy)− (∂zw) = −∂zh.
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These equations may be solved simultaneously for ∂zx, ∂zy, and ∂zw. By Cramer’s

rule (Appendix A, (A.54)),

∂zw = det



∂xf ∂yf −∂zf
∂xg ∂yg −∂zg
∂xh ∂yh −∂zh



/

det



∂xf ∂yf 0
∂xg ∂yg 0
∂xh ∂yh −1




=
∂(f, g, h)

∂(x, y, z)

/
∂(f, g)

∂(x, y)
.

The denominator is nonzero by assumption, but the numerator is zero because Df

has rank 2. Hence w is independent of z; that is, w depends only on u and v,

say w = ϕ(u, v). This shows that f, g, h are functionally dependent — h(x) =
ϕ(f(x), g(x)) — and that the image of a neighborhood of x0 under f is the locus

of the equation w = ϕ(u, v), which is a smooth surface.

We conclude with a few words about the assumption that the rank of Df is con-

stant. Suppose that A(x) is a matrix whose entries depend continuously on x ∈ U
(U an open subset of Rm), and the rank of A(x0) is k. Since a set of linearly inde-

pendent vectors remains linearly independent if the vectors are perturbed slightly,

the rank of A(x) is at least k when x is sufficiently close to x0. In other words,

for each k the set {x ∈ U : rank(A(x)) ≥ k} is open. In particular, if k0 is the

maximum rank of A(x) as x ranges over U , then {x ∈ U : rank(A(x)) = k0} is

open.

Now, in this chapter we have been concerned with C1 maps f : U → Rn (U
an open subset of Rm) and the matrix in question is the derivative Df(x). If k0
is the maximum rank of this matrix as x ranges over U , the set V = {x ∈ U :
rank(Df(x)) = k0} is open, and the theorems of this chapter can be applied on V .

(The implicit function and inverse mapping theorems deal with the case when k0 is

as large as possible, namely, k0 = min(m,n); the theorems of this section provide

information for smaller values of k.) The typical situation is that V is dense in U ,

that is, the set U \ V has no interior points. Thus, the structure of the mapping

f near “most” points of U (the ones in V ) is fairly simple to understand, but at

the remaining points, various kinds of singularities can occur. The study of such

singularities is a substantial and rather intricate branch of mathematical analysis.

EXERCISES

1. For each of the following maps f = (f, g, h), determine whether f, g, h are

functionally dependent on some open set U ⊂ R3 by examining the Jacobian
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∂(f, g, h)/∂(x, y, z). If they are, determine the rank of Df on U and find

functional relations (one relation if rank(Df ) = 2, two relations if rank(Df ) =

1) satisfied by f, g, h.

a. f(x, y, z) = x + y − z, g(x, y, z) = x − y + z, h(x, y, z) = x2 + y2 +
z2 − 2yz.

b. f(x, y, z) = x2 + y2 + z2, g(x, y, z) = x+ y + z, h(x, y, z) = y − z.

c. f(x, y, z) = y1/2 sinx, g(x, y, z) = y cos2 x− y, h(x, y, z) = z − 3.

d. f(x, y, z) = xy+z, g(x, y, z) = x2y2+2xyz+z2, h(x, y, z) = 2−xy−z.

e. f(x, y, z) = log x− log y+ z, g(x, y, z) = log x− log y− z, h(x, y, z) =
(x2 + 2y2)/xy.

f. f(x, y, z) = x− y + z, g(x, y, z) = x2 − y2, h(x, y, z) = x+ z.

2. Write out the statement and give a precise proof for the following special cases

of Theorem 3.21, along the lines of Theorem 3.22.

a. m = n = 2, k = 1.

b. m = 2, n = 3, k = 1.



Chapter 4

INTEGRAL CALCULUS

In this chapter we study the integration of functions of one and several real vari-

ables. As we assume that the reader is already familiar with the standard techniques

of integration for functions of one variable, our discussion of integration on the line

is limited to theoretical issues. On the other hand, some of these issues arise also in

higher dimensions, and we shall sometimes invoke the careful treatment of the one-

variable case as an excuse for being somewhat sketchy in developing the theory for

several variables.

In elementary calculus, the term “integral” can refer either to the antiderivative

of a function f or to a limit of sums of the form
∑
f(xj)∆xj ; one speaks of in-

definite or definite integrals. At the more advanced level, and in particular in this

book, “integral” almost always carries the latter meaning. The notion of integra-

tion as a sophisticated form of summation is one of the truly fundamental ideas of

mathematical analysis, and it arises in many contexts where the connection with

differentiation is tenuous or nonexistent.

4.1 Integration on the Line

Recall that for a nonnegative function f , the basic geometric interpretation of the

integral
∫ b
a f(x) dx is as the area of the region between the graph of f and the x-

axis over the interval [a, b]. The idea for computing this area is to subdivide the

interval [a, b] into small subintervals [x0, x1], [x1, x2], . . . , [xJ−1, xJ ], with x0 = a
and xJ = b, and to approximate the region under the graph of f by a union of

rectangles based on the intervals [xj−1, xj]. If we choose the height hj of the

jth rectangle to be smaller (resp. larger) than all the values of f on the interval

[xj−1, xj ], the corresponding sum
∑k

1 hj(xj − xj−1) will be a lower (resp. upper)

bound for the area under the graph of f . If all goes well, these lower and upper

147
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approximations will approach each other as we subdivide the interval [a, b] into

smaller and smaller pieces, and their common limit will be the integral of f .

Let us make this more precise, introducing some useful definitions along the

way. A partition P of the interval [a, b] is a subdivision of [a, b] into nonover-

lapping subintervals, specified by giving the subdivision points x1, . . . , xJ−1 along

with the endpoints x0 = a and xJ = b. In symbols, we shall write

P =
{
x0, x1, . . . , xJ

}
, with a = x0 < x1 < · · · < xJ = b.

If P and P ′ are partitions of [a, b], we say that P ′ is a refinement of P if P ′ is

obtained from P by adding in more subdivision points, that is, if P ⊂ P ′.
Observe that if P and Q are any two partitions of [a, b], they can be combined

into a single partition P ∪Q whose subdivision points are those of P together with

those of Q; P ∪Q is a refinement of both P and Q.

Now let f be a bounded real-valued function on [a, b]. (We make no continuity

assumptions on f at this point.) Given a partition P = {x0, . . . , xJ} of [a, b], for

1 ≤ j ≤ J we set

(4.1)

mj = inf
{
f(x) : xj−1 ≤ x ≤ xj

}
, Mj = sup

{
f(x) : xj−1 ≤ x ≤ xj

}
.

(If f is continuous, mj and Mj are just the minimum and maximum values of

f on [xj−1, xj ], which exist by the extreme value theorem.) We then define the

lower Riemann sum sP f and the upper Riemann sum SP f corresponding to the

partition P by

(4.2) sPf =

J∑

1

mj(xj − xj−1), SPf =

J∑

1

Mj(xj − xj−1).

See Figure 4.1, where the lower and upper Riemann sums are the sums of the areas

of the rectangles, an area being counted as negative if the rectangle is below the

x-axis.

If m and M are the infimum and supremum of the values of f over the whole

interval [a, b], we clearly have mj ≥ m and Mj ≤M for all j, and hence

sP f ≥ m
J∑

1

(xj − xj−1) = m(b− a),

SPf ≤M
J∑

1

(xj − xj−1) =M(b− a).
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FIGURE 4.1: Lower and upper Riemann sums.

The same argument shows that if one of the subintervals [xj−1, xj ] is subdivided

further, the lower sum sPf becomes larger while the upper sum SP f becomes

smaller. In short:

4.3 Lemma. If P ′ is a refinement of P , then sP ′f ≥ sPf and SP ′f ≤ SP f .

An immediate consequence of this is that any lower Riemann sum for f is less

than any upper Riemann sum for f :

4.4 Lemma. If P and Q are any partitions of [a, b], then sP f ≤ SQf .

Proof. Consider the common refinement P ∪Q. By Lemma 4.3,

sPf ≤ sP∪Qf ≤ SP∪Qf ≤ SQf.

Next, we define the lower and upper integrals of f on [a, b] by

Iba(f) = sup
P
sP f, I

b
a(f) = inf

P
SPf,

the supremum and infimum being taken over all partitions P of [a, b]. By Lemma

4.4, we have Iba(f) ≤ I
b
a(f). If the upper and lower integrals coincide, f is called

Riemann integrable on [a, b], and the common value of the upper and lower in-

tegrals is the Riemann integral
∫ b
a f(x) dx. We shall generally omit the eponym

“Riemann,” as the Riemann integral is the only one we shall use in this book, but it

is significant not only for historical reasons but in order to distinguish the Riemann

integral from the more sophisticated Lebesgue integral.

At first sight it would seem difficult to determine whether a function f is inte-

grable and to evaluate its integral, as the definitions involve all possible partitions

of [a, b]. The following lemma is the key to making these calculations more man-

ageable.
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4.5 Lemma. If f is a bounded function on [a, b], the following conditions are equiv-

alent:

a. f is integrable on [a, b].
b. For every ǫ > 0 there is a partition P of [a, b] such that SP f − sPf < ǫ.

Proof. If SP f − sPf < ǫ for some partition P , then I
b
af − Ibaf < ǫ, and since

ǫ is arbitrary, it follows that I
b
af = Ibaf , i.e., f is integrable. Conversely, if f is a

bounded function and ǫ is positive, we can find partitions Q and Q′ of [a, b] such

that SQf < I
b
af + 1

2ǫ and sQ′f > Ibaf − 1
2ǫ. Thus, if f is integrable, we have

SQf − sQ′f < ǫ. Let P = Q ∪ Q′; then by Lemma 4.3, sQ′f ≤ sP f ≤ SPf <
SQf , so SPf − sPf < SQf − sQ′f < ǫ.

The condition (b) in Lemma 4.5 not only gives a workable criterion for integra-

bility but also gives us some leverage for computing the integral of an integrable

function f . Indeed, for any partition P we have

sPf ≤
∫ b

a
f(x) dx ≤ SP f,

so if SPf − sP f < ǫ, SPf and sPf are both within ǫ of
∫ b
a f(x) dx. The latter

quantity is therefore the limit of the sums SPf or sP f as P runs through any

sequence of partitions such that SPf − sPf → 0.

We next present the fundamental additivity properties of the integral, which are

easy but not quite trivial consequences of the definitions:

4.6 Theorem.

a. Suppose a < b < c. If f is integrable on [a, b] and on [b, c], then f is integrable

on [a, c], and

(4.7)

∫ c

a
f(x) dx =

∫ b

a
f(x) dx+

∫ c

b
f(x) dx.

b. If f and g are integrable on [a, b], then so is f + g, and

(4.8)

∫ b

a

[
f(x) + g(x)

]
dx =

∫ b

a
f(x) dx+

∫ b

a
g(x) dx.

Proof. (a) Given ǫ > 0, let P and Q be partitions of [a, b] and [b, c], respectively,

such that SP f − sP f < 1
2ǫ and SQf − sQf < 1

2ǫ. Then P ∪ Q is a partition of

[a, c] and

SP∪Qf = SP f + SQf, sP∪Qf = sPf + sQf.
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It follows that SP∪Qf −sP∪Qf < ǫ, so that f is integrable on [a, c] by Lemma 4.5.

Moreover,
∫ c
a f(x) dx is within ǫ of SP∪Qf , and

∫ b
a f(x) dx, and

∫ c
b f(x) dx are

within 1
2ǫ of SP f and SQf , respectively, so

∫ c
a f(x) dx is within 2ǫ of

∫ b
a f(x) dx+∫ c

b f(x) dx. Since ǫ is arbitrary, (4.7) follows.

(b) Given ǫ > 0, choose partitions P and Q of [a, b] such that SPf −sPf < 1
2ǫ

and SQg − sQg < 1
2ǫ, and let R = P ∪ Q be the common refinement of P and

Q. Then by Lemma 4.3 we have SRf − sRf ≤ SPf − sPf and SRg − sRg ≤
SQg − sQg. Moreover, the maximum of the sum of two functions is at most the

sum of the maxima, and the minimum of the sum is at least the sum of the minima,

so

SR(f + g) ≤ SRf + SRg, sR(f + g) ≥ sRf + sRg.

Hence,

SR(f + g) ≤ SRf + SRg ≤ sRf + 1
2ǫ+ sRg +

1
2ǫ ≤ sR(f + g) + ǫ.

In other words, SR(f + g)− sR(f + g) < ǫ, so that f + g is integrable by Lemma

4.5. The formula (4.8) then follows in much the same way as (4.7).

Remark. We make the usual convention that
∫ a

b
f(x) dx = −

∫ b

a
f(x) dx;

then (4.7) holds no matter how the points a, b, c are ordered.

The following theorem lists some more standard properties of integrals. They

are all quite easy to derive from the definitions with the help of Lemma 4.5, and we

leave their proofs as Exercises 2–5.

4.9 Theorem. Suppose f is integrable on [a, b].

a. If c ∈ R, then cf is integrable on [a, b], and
∫ b
a cf(x) dx = c

∫ b
a f(x) dx.

b. If [c, d] ⊂ [a, b], then f is integrable on [c, d].

c. If g is integrable on [a, b] and f(x) ≤ g(x) for x ∈ [a, b], then
∫ b
a f(x) dx ≤∫ b

a g(x) dx.

d. |f | is integrable on [a, b], and
∣∣ ∫ b
a f(x) dx

∣∣ ≤
∫ b
a |f(x)| dx.

We now derive some useful criteria for integrability. The first one has a very

simple proof, and in conjunction with Theorem 4.6a it establishes the integrability

of most of the functions that arise in elementary calculus. (Such functions have

only a finite number of local maxima and minima on any bounded interval [a, b],
so one can break [a, b] up into finitely many subintervals on which the function in

question is monotone, apply Theorem 4.10 on each subinterval, and then add the

results by Theorem 4.6a.)
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FIGURE 4.2: An increasing function and a partition with equal subin-

tervals. The difference between the upper and lower Riemann sums is

the sum of the areas of the solid rectangles, which is easily found by

stacking them.

4.10 Theorem. If f is bounded and monotone on [a, b], then f is integrable on

[a, b].

Proof. Suppose f is increasing on [a, b]; the proof is similar if f is decreasing.

Consider the partition Pk of [a, b] into k equal subintervals of length (b − a)/k.

Since f is increasing, the quantities mj and Mj in (4.1) are given by

mj = f(xj−1), Mj = f(xj),

and hence the lower and upper Riemann sums are

sPk
f =

b− a
k

k−1∑

0

f(xj), SPk
f =

b− a
k

k∑

1

f(xj),

and their difference is

SPk
f − sPk

f =
b− a
k

[
f(xk)− f(x0)

]
=

(b− a)[f(b)− f(a)]
k

.

This can be made as small as we please by taking k sufficiently large, so f is

integrable by Lemma 4.5. (The geometry of this calculation is shown in Figure

4.2.)

The next criterion for integrability is the one that is most commonly stated in

calculus books. Its proof, however, is frequently omitted because it relies on the

notion of uniform continuity that we studied in §1.8.

4.11 Theorem. If f is continuous on [a, b], then f is integrable on [a, b].
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Proof. First, f is bounded on [a, b] by Theorem 1.23, so the upper and lower Rie-

mann sums for any partition exist. By Theorem 1.33, f is uniformly continuous

on [a, b]; thus, given ǫ > 0, we can find δ > 0 so that |f(x) − f(y)| < ǫ/(b − a)
whenever x, y ∈ [a, b] and |x − y| < δ. Let P be any partition of [a, b] whose

subintervals [xj−1, xj ] all have length less than δ. Then |f(x)− f(y)| < ǫ/(b− a)
whenever x and y both lie in the same subinterval, and in particular the maximum

and minimum values of f on that subinterval differ by less than ǫ/(b− a). But this

means that

SPf − sPf =

J∑

1

(Mj −mj)(xj − xj−1)

<
ǫ

b− a

J∑

1

(xj − xj−1) =
ǫ

b− a(b− a) = ǫ.

By Lemma 4.5, then, f is integrable.

Theorem 4.11 can be extended to functions that have some discontinuities, as

long as the set of discontinuities is “small.” The following result suffices for most

practical purposes.

4.12 Theorem. If f is bounded on [a, b] and continuous at all except finitely many

points in [a, b], then f is integrable on [a, b].

Proof. Let y1, . . . , yL be the points in [a, b] where f is discontinuous, and let m
and M be the infinum and supremum of {f(x) : a ≤ x ≤ b}, the set of values of f
on [a, b]. Given δ > 0, let

Il =
[
a, b
]
∩
[
yl − δ, yl + δ],

and let

U =
L⋃

1

Il, V = [a, b] \ U int.

Thus U is a union of small intervals that contain the discontinuities of f , and V is

the remainder of [a, b]. Each interval Im has length at most 2δ, and there are L of

these intervals, so the total length of the set U is at most 2Lδ. On the other hand,

V is a finite union of closed intervals, on each of which f is continuous.

Let P be any partition of [a, b] that includes the endpoints of the intervals Im
among its subdivision points. Then we can write

SPf = SUP f + SVP f, sP f = sUP f + sVP f,
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where SUP f (resp. SVP f ) is the sum of the terms Mj(xj − xx−1) in SPf for which

the interval [xj−1, xj ] is contained in U (resp. V ), and likewise for sUPf and sVP f .

Now, let ǫ > 0 be given. Since f is continuous on each of the closed intervals

that constitute V , Theorem 4.11 shows that we can make

SVP f − sVP f < 1
2ǫ

by choosing the partition P sufficiently fine. On the other hand,

SUP f − sUP f =
∑

[xj−1,xj ]⊂U
(Mj −mj)(xj − xj−1)

≤ (M −m)(length of U) ≤ (M −m)2Lδ,

and we can make this less than 1
2ǫ by taking δ < ǫ/2L(M − m). In short, for a

suitably chosen P we have SP f − sP f < ǫ, so f is integrable by Lemma 4.5.

The preceding argument actually proves more than is stated in Theorem 4.12.

It is not necessary that the set of discontinuities of f be finite, only that it can be

covered by finitely many intervals I1, . . . , IL whose total length is as small as we

please. Certain infinite sets, such as convergent sequences, also have this property

(Exercise 6). We make it into a formal definition: A set Z ⊂ R is said to have zero

content if for any ǫ > 0 there is a finite collection of intervals I1, . . . , IL such that

(i) Z ⊂ ⋃L
1 Il, and (ii) the sum of the lengths of the Il’s is less than ǫ. The proof of

Theorem 4.12 now yields the following result:

4.13 Theorem. If f is bounded on [a, b] and the set of points in [a, b] at which f is

discontinuous has zero content, then f is integrable on [a, b].

Theorem 4.13 is only a technical refinement of Theorem 4.12, and the reader

should not attach undue importance to it.1 We mention it because its analogue in

higher dimensions does play a significant role in the theory, as we shall see. We

also remark that neither of Theorems 4.10 and 4.13 includes the other; the set of

discontinuities of a monotone function need not have zero content, and there are

continuous functions that are not monotone on any interval.

If f is an integrable function on [a, b], the value of
∫ b
a f(x) dx is somewhat

insensitive to the values of f at individual points, in the following sense:

4.14 Proposition. Suppose f and g are integrable on [a, b] and f(x) = g(x) for

all except finitely many points x ∈ [a, b]. Then
∫ b
a f(x) dx =

∫ b
a g(x) dx.

1It does, however, point the way toward a necessary and sufficient condition for a function to be

integrable, which we shall describe at the end of §4.8.
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Proof. First suppose g is identically zero. That is, we are assuming that f(x) = 0
for all x ∈ [a, b] except for finitely many points y1, . . . , yL. Let Pk be the partition

of [a, b] into k equal subintervals, and take k large enough so that the points yl all

lie in different subintervals. Then

SPk
f =

b− a
k

L∑

1

max
(
f(yl), 0

)
, sPk

f =
b− a
k

L∑

1

min
(
f(yl), 0

)
.

Both these quantities tend to zero as k →∞, and hence
∫ b
a f(x) dx = 0.

The general case follows by applying this argument to the difference f−g.

The main use of Proposition 4.14 is in the context of functions with finitely

many discontinuities, as in Theorem 4.12. For such a function f there is often no

“right” way to define f at the points where it is discontinuous. Proposition 4.14

assures us that this problem is of no consequence as far as integration is concerned;

we may define f at these points however we like, or indeed leave f undefined there,

without any effect on
∫ b
a f(x) dx.

Next, we present a general version of the fundamental theorem of calculus. Its

two parts say in effect that differentiating an integral or integrating a derivative

leads back to the original function.

4.15 Theorem (The Fundamental Theorem of Calculus).

a. Let f be an integrable function on [a, b]. For x ∈ [a, b], let F (x) =
∫ x
a f(t) dt

(which is well defined by Theorem 4.9b). Then F is continuous on [a, b]; more-

over, F ′(x) exists and equals f(x) at every x at which f is continuous.

b. Let F be a continuous function on [a, b] that is differentiable except perhaps at

finitely many points in [a, b], and let f be a function on [a, b] that agrees with

F ′ at all points where the latter is defined. If f is integrable on [a, b], then∫ b
a f(t) dt = F (b)− F (a).

Proof. (a) If x, y ∈ [a, b], by (4.7) we have

F (y)− F (x) =
∫ y

x
f(t) dt.

Let C = sup{|f(t)| : t ∈ [a, b]}; then by Theorem 4.9d,

|F (y)− F (x)| ≤
∫ y

x
|f(t)| dt ≤ C

∫ y

x
dt = C|y − x|,

which implies that F is continuous. Next, suppose that f is continuous at x; thus,

given ǫ > 0, there is a δ > 0 so that |f(t)− f(x)| < ǫ whenever |t−x| < δ. Since

f(x) = f(x)
1

y − x

∫ y

x
dt =

1

y − x

∫ y

x
f(x) dt,
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we have
F (y)− F (x)

y − x − f(x) = 1

y − x

∫ y

x
[f(t)− f(x)] dt.

Hence, if |y − x| < δ, we have |f(t)− f(x)| < ǫ for all t between y and x, so
∣∣∣∣
F (y)− F (x)

y − x − f(x)
∣∣∣∣ ≤

1

|y − x|

∣∣∣∣
∫ y

x
ǫ dt

∣∣∣∣ = ǫ.

It follows that limy→x[F (y)− F (x)]/(y − x) = f(x), as claimed.

(b) Let P = {x0, . . . , xJ} be a partition of [a, b]; by adding in extra points,

we may assume that all the points where F is not differentiable are among the

subdivision points xj . Then, for each j, F is continuous on the interval [xj−1, xj ]
and differentiable on its interior, so by the mean value theorem,

F (xj)− F (xj−1) = F ′(tj)(xj − xj−1) = f(tj)(xj − xj−1)

for some point tj ∈ (xj−1, xj). Adding up these equalities yields

F (b)− F (a) = F (xJ)− F (x0) =
J∑

1

f(tj)(xj − xj−1),

which implies that

sPf ≤ F (b)− F (a) ≤ SP f.
Since f is integrable, we can make sPf and SPf as close to

∫ b
a f(x) dx as we like

by choosing P suitably, and the desired result follows immediately.

We have developed the notion of the integral of a function f in terms of the up-

per and lower Riemann sums SPf and sPf . More generally, if P = {x0, . . . , xJ}
is a partition of [a, b] and tj is any point in the interval [xj−1, xj ] (1 ≤ j ≤ J), the

quantity
J∑

1

f(tj)(xj − xj−1)

is called a Riemann sum for f associated to the partition P . Clearly, if mj and Mj

are as in (4.1) we have mj ≤ f(tj) ≤Mj , so that

sPf ≤
J∑

1

f(tj)(xj − xj−1) ≤ SP f.

Thus, if f is integrable and we choose the partition P so that sP f and SP f are

good approximations to
∫ b
a f(x) dx, all the Riemann sums corresponding to P will

also be good approximations to
∫ b
a f(x) dx.
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One last question should be addressed: Given an integrable function f on [a, b],
for which partitions P do the sums sPf and SPf furnish a good approximation to∫ b
a f(x) dx? It might seem that the answer might depend strongly on the nature of

the function f , but in fact, any partition whose subintervals are sufficiently small

will do the job. More precisely:

4.16 Proposition. Suppose f is integrable on [a, b]. Given ǫ > 0, there exists δ > 0
such that if P = {x0, . . . , xJ} is any partition of [a, b] satisfying

max
1≤j≤J

(xj − xj−1) < δ,

the sums sP f and SPf differ from
∫ b
a f(x) dx by at most ǫ.

Proof. The proof is presented in Appendix B.3 (Theorem B.7).

Proposition 4.16 shows, in particular, that one can always compute
∫ b
a f(x) dx

as the limit as k → ∞ of sPk
f or SPk

f , where Pk is the partition of [a, b] into k
equal subintervals.

One final remark: The definite integral, which is defined as a limit of Riemann

sums, may be considered on the intuitive level as a sum of infinitely many infinites-

imal terms. This notion, which is probably quite obvious to the alert reader, is often

not stated explicitly in mathematics texts because of its lack of rigorous meaning.

But the fact is that in many situations — and we shall encounter several of them

later on — the interpretation of the integral as a sum of infinitesimals is the clearest

way to understand what is going on.

EXERCISES

1. Let f(x) = 1 if x is rational, f(x) = 0 if x is irrational. Show that f is not

integrable on any interval.

2. Prove Theorem 4.9a. (Hint: Show that sP (cf) = csP f and SP (cf) = cSP f
if c ≥ 0, and sP (cf) = cSP f and SP (cf) = csPf if c < 0.)

3. Prove Theorem 4.9b. (Hint: Consider partitions of [a, b] for which c and d are

among the subdivision points.)

4. Prove Theorem 4.9c.

5. Prove Theorem 4.9d. (Hint: To prove that |f | is integrable, show that SP |f | −
sP |f | ≤ SPf − sP f . For the inequality |

∫
f | ≤

∫
|f |, observe that ±f ≤ |f |

and use Theorem 4.9c.)
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6. Let {xk} be a convergent sequence in R. Show that the set {x1, x2, . . .} has

zero content.

7. Let f be an integrable function on [a, b]. Suppose that f(x) ≥ 0 for all x
and there is at least one point x0 ∈ [a, b] at which f is continuous and strictly

positive. Show that
∫ b
a f(x) dx > 0.

8. Let f be an integrable function on [a, b]. Prove the following formulas directly

from the definitions:

a. For any c > 0,
∫ b
a f(x) dx = c

∫ b/c
a/c f(cx) dx.

b.
∫ b
a f(x) dx =

∫ −a
−b f(−x) dx.

c. For any c ∈ R,
∫ b
a f(x) dx =

∫ b−c
a−c f(x+ c) dx.

9. Suppose g and h are continuous functions on [a, b], and f is a continuous func-

tion on R2. Show that for any ǫ > 0 there is a δ > 0 such that if P =
{x0, . . . , xJ} is any partition of [a, b] satisfying max1≤j≤J(xj − xj−1) < δ,
then

∣∣∣∣
∫ b

a
f(g(x), h(x)) dx −

J∑

j=1

f(g(x′j), h(x
′′
j ))(xj − xj−1)

∣∣∣∣ < ǫ

for any choice of x′j, x
′′
j in the interval [xj−1, xj ]. (The point is that x′j and x′′j

need not be equal, so the sum in this inequality may not be a genuine Riemann

sum for the integral.)

4.2 Integration in Higher Dimensions

In this section we develop the theory of multiple integrals. The basic ideas are much

the same as for single integrals; the most serious complication comes from the

greater variety of regions over which integration is to be performed. To minimize

the complexity of the notation, we first develop the two-dimensional case and then

sketch the extension to higher dimensions.

Here and in what follows we shall employ the following notation. If S and T
are sets, their Cartesian product S × T is the set of all ordered pairs (s, t) with

s ∈ S and t ∈ T . For example, the plane is the Cartesian product of the line with

itself: R2 = R × R. This idea extends in the obvious way to products of n sets,

with ordered n-tuples replacing ordered pairs; for example, R3 = R× R× R. We

can also think of R3 as R2 × R or as R× R2.

Double Integrals. We begin by defining the double integral of a function over

a rectangular region in the plane. In this chapter, by a rectangle we shall mean a
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set of the form

R = [a, b]× [c, d] =
{
(x, y) ∈ R2 : x ∈ [a, b], y ∈ [c, d]

}
.

(Thus, a “rectangle” in this sense is always closed, and its sides are always parallel

to the coordinate axes.) A partition of R is a subdivision of R into subrectangles

obtained by partitioning both sides of R. Thus, a partition P is specified by its

subdivision points,

P =
{
x0, . . . , xJ ; y0, . . . , yK

}
,

{
a = x0 < · · · < xJ = b,

c = y0 < · · · < yK = d,

and it yields a decomposition of R into the subrectangles

Rjk = [xj−1, xj ]× [yk−1, yk]

with area

∆Ajk = (xj − xj−1)(yk − yk−1).

Now let f be a bounded function on the rectangle R. Given a partition P as

above, we set

mjk = inf
{
f(x, y) : (x, y) ∈ Rjk

}
, Mjk = sup

{
f(x, y) : (x, y) ∈ Rjk

}
,

and define the lower and upper Riemann sums of f corresponding to P by

sPf =

J∑

j=1

K∑

k=1

mjk∆Ajk, SPf =

J∑

j=1

K∑

k=1

Mjk∆Ajk.

The lower and upper integrals of f on R are

IR(f) = sup
P
sP f, IR(f) = inf

P
SPf,

the supremum and infimum being taken over all partitions P of R. If the lower and

upper integrals coincide, f is called (Riemann) integrable on R, and the common

value of the upper and lower integrals is called the (Riemann) integral of f over

R and is denoted by

∫∫

R
f dA or

∫∫

R
f(x, y) dx dy.

These notions are entirely analogous to their one-dimensional counterparts.

The reader should refer back to §4.1 for a more detailed discussion, which can
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easily be adapted to the present situation. However, we have not yet built a satis-

factory definition of two-dimensional integrals, because we often wish to integrate

functions over regions other than rectangles. The solution to this problem is simple,

in principle: To integrate a function f over a bounded region S ⊂ R2, we draw a

large rectangle R that contains S, (re)define f to be zero outside of S, and integrate

the resulting function over R.

To express this neatly, it is convenient to introduce another definition. If S is a

subset of R2 (or Rn, or indeed any set), the characteristic function or indicator

function of S is the function χS defined by

χS(x) =

{
1 if x ∈ S,

0 otherwise.

Now, suppose S is a bounded subset of R2 and f is a bounded function on R2.

Let R be a rectangle that contains S. We say that f is integrable on S if fχS is

integrable on R, in which case we define the integral of f over S by
∫∫

S
f dA =

∫∫

R
fχS dA.

It is easily verified that this definition does not depend on the choice of the en-

veloping rectangle R, since the integrand fχS vanishes outside of S. (It also does

not depend on the values of f outside of S. We could just as well assume that

f is only defined on S or on some set containing S, with the understanding that

(fχS)(x) = 0 for x /∈ S.)

The properties of integrals in two dimensions are very similar to those in one;

the following theorem provides a list of the most basic ones. The proof is essentially

identical to that of Theorems 4.6 and 4.9; we leave the details to the interested

reader.

4.17 Theorem.

a. If f1 and f2 are integrable on the bounded set S and c1, c2 ∈ R, then c1f1 +
c2f2 is integrable on S, and

∫∫

S
[c1f1 + c2f2] dA = c1

∫∫

S
f1 dA+ c2

∫∫

S
f2 dA.

b. Let S1 and S2 be bounded sets with no points in common, and let f be a

bounded function. If f is integrable on S1 and on S2, then f is integrable

on S1 ∪ S2, in which case
∫∫

S1∪S2

f dA =

∫∫

S1

f dA+

∫∫

S2

f dA.
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c. If f and g are integrable on S and f(x) ≤ g(x) for x ∈ S, then
∫∫
S f dA ≤∫∫

S g dA.

d. If f is integrable on S, then so is |f |, and |
∫∫
S f dA| ≤

∫∫
S |f | dA.

At this point we need to say more about the conditions under which a function is

integrable. In the one-variable situation, we can get along quite well by restricting

attention to continuous functions, but that is not the case here: Even if the function

f is continuous, the function χS that enters into the definition of
∫∫
S f dA is not.

The starting point is the analogue of Theorem 4.13. The notion of “zero content”

transfers readily to sets in the plane; namely, a set Z ⊂ R2 is said to have zero

content if for any ǫ > 0 there is a finite collection of rectangles R1, . . . , RM such

that (i) Z ⊂ ⋃M
1 Rm, and (ii) the sum of the areas of the Rm’s is less than ǫ. We

then have:

4.18 Theorem. Suppose f is a bounded function on the rectangle R. If the set of

points in R at which f is discontinuous has zero content, then f is integrable on R.

Proof. The proof is essentially identical to that of Theorem 4.13. That is, one

first shows that f is integrable if f is continuous on all of R by the argument

that proves Theorem 4.11, then encompasses the general case by the argument that

proves Theorem 4.12. Details are left to the reader.

The notion of “zero content” is considerably more interesting in the plane than

on the line, as the sets having this property include not only finite sets but things

such as smooth curves (that is, curves parametrized by C1 functions f : [a, b] →
R2). The following proposition summarizes the results we will need; see also Ex-

ercise 2.

4.19 Proposition.

a. If Z ⊂ R2 has zero content and U ⊂ Z , then U has zero content.

b. If Z1, . . . , Zk have zero content, then so does
⋃k

1 Zj .
c. If f : (a0, b0) → R2 is of class C1, then f([a, b]) has zero content whenever

a0 < a < b < b0.

Proof. Parts (a) and (b) are easy, and their proofs are left as an exercise. As for

(c), let Pk = {t0, . . . , tk} be the partition of [a, b] into k equal subintervals of

length δ = (b − a)/k, and let C be an upper bound for {|f ′(t)| : t ∈ [a, b]}. By

the mean value theorem applied to the two components x(t), y(t) of f(t), we have

|x(t) − x(tj)| ≤ Cδ and |y(t) − y(tj)| ≤ Cδ for t ∈ [tj−1, tj]. In other words,

f([tj−1, tj ]) is contained in the square of side length 2Cδ centered at f(tj). Hence,

f([a, b]) is contained in the union of these squares, and the sum of their areas is

k(2Cδ)2 = 4C2(b − a)2/k. This can be made as small as we please by taking k
sufficiently large, so f([a, b]) has zero content.
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To apply Theorem 4.18 to the integrand fχS in the definition of
∫∫
S f dA, we

need to know about the discontinuities of χS . The following lemma provides the

answer.

4.20 Lemma. The function χS is discontinuous at x if and only if x is in the

boundary of S.

Proof. If x is in the interior of S, then χS is identically 1 on some ball containing

x, so it is continuous at x. Likewise, if x is in the interior of the complement Sc,
then f is identically 0 near x and hence continuous at x. But if x is in the boundary

of S, then there are points arbitrarily close to x where χS = 1 and other such points

where χS = 0, so χS is discontinuous at x.

In view of Theorem 4.18 and Lemma 4.20, to have a good notion of integra-

tion over a set S, we should require the boundary of S to have zero content. We

make this condition into a formal definition: A set S ⊂ R2 is Jordan measurable

if it is bounded and its boundary has zero content. (We shall comment further on

this nomenclature below.) We shall generally say “measurable” rather than “Jor-

dan measurable,” but we advise the reader that in more advanced works the term

“measurable” refers to the more general concept of Lebesgue measurability (see

§4.8).

By Proposition 4.19, any bounded set whose boundary is a finite union of pieces

of smooth curves is measurable; these are the sets that we almost always encounter

in practice. The following theorem gives a convenient criterion for integrability.

4.21 Theorem. Let S be a measurable subset of R2. Suppose f : R2 → R is

bounded and the set of points in S at which f is discontinuous has zero content.

Then f is integrable on S.

Proof. The only points where fχS can be discontinuous are those points in the

closure of S where either f or χS is discontinuous. By Lemma 4.20 and Proposition

4.19b, the set of such points has zero content. By Theorem 4.18, fχS is integrable

on any rectangle R containing S, and hence f is integrable on S.

To complete the picture, we need the following generalization of Proposition

4.14, which shows that sets of zero content are negligible for the purposes of inte-

gration.

4.22 Proposition. Suppose Z ⊂ R2 has zero content. If f : R2 → R is bounded,

then f is integrable on Z and
∫∫
Z f dA = 0.
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Proof. Given ǫ > 0, there is a finite collection of rectangles R1, . . . , RM such that

Z ⊂ ⋃M
1 Rm and the sum of the areas of the Rm’s is less than ǫ. By subdividing

these rectangles if necessary, we can assume that they have disjoint2 interiors and

form part of a grid obtained by partitioning some large rectangle R. Denoting this

partition by P , the area of Rj by |Rj |, and supx |f(x)| by C , we have

−Cǫ < −C
M∑

1

|Rj | ≤ sP (fχZ) ≤ SP (fχZ) ≤ C
M∑

1

|Rj | < Cǫ.

Since ǫ is arbitrary, the desired conclusion follows directly from the definition of

the integral.

4.23 Corollary.

a. Suppose f is integrable on S ⊂ R2. If g is bounded and g(x) = f(x) except for

x in a set of zero content, then g is integrable on S and
∫∫
S g dA =

∫∫
S f dA.

b. Suppose f is integrable on S and on T , and S ∩ T has zero content. Then f is

integrable on S ∪ T , and
∫∫
S∪T f dA =

∫∫
S f dA+

∫∫
T f dA.

Proof. For (a), apply Proposition 4.22 to the function f − g. For (b), we are as-

suming that fχS and fχT are integrable; moreover, by Proposition 4.22, fχS∩T
is integrable and its integral is zero. But fχS∪T = fχS + fχT − fχS∩T , so the

result follows.

Area. The problem of determining the area of regions in the plane goes back

to antiquity. The first effective general method of attacking this problem was pro-

vided by the integral calculus in one variable, which yields the area of a region

under a graph, or of a region between two graphs. It therefore produces a theory

of area for regions that can be broken up into finitely many subregions bounded by

graphs of (nice) functions. However, the two-variable theory of integration con-

tains, as a special case, a theory of area (due to the French mathematician Jordan)

that encompasses more complicated sorts of regions too. Namely, if S is any Jordan

measurable set in the plane, its area is the integral over S of the constant function

f(x) ≡ 1:

(area)(S) =

∫∫

S
1 dA =

∫∫
χS dA,

the latter integral being taken over any rectangle that contains S.

Let us pause to see just what this means. Given any bounded set S ⊂ R2, to

compute
∫∫
S χS dA we enclose S in a large rectangle R and consider a partition P

2A collection {Sj} of sets is disjoint if Sj ∩ Sk = ∅ for j 6= k.
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FIGURE 4.3: Approximations to the inner and outer areas of a region.

ofR, which produces a grid of small rectangles that cover S. The lower sum for this

partition is simply the sums of the areas of the small rectangles that are contained

in S, whereas the upper sum is the sum of the areas of the small rectangles that

intersect S. Taking the supremum of the lower sums and the infimum of the upper

sums yields quantities that may be called the inner area and outer area of S:

A(S) = IR(χS), A(S) = IR(χS).

When these two quantities coincide, that is, when the characteristic function χS is

integrable, their common value is the area of S. See Figure 4.3.

When do we have A(S) = A(S)? It is not hard to see (Exercises 3–5) that for

any bounded set S,

• S and its interior Sint have the same inner area;

• S and its closure S have the same outer area;

• the inner area of Sint plus the outer area of the boundary ∂S equals the outer

area of the closure S.

It follows that the inner and outer areas of S coincide precisely when the outer area

of the boundary ∂S is zero. But a moment’s thought shows that this is nothing but

the condition that ∂S should have zero content. In short, the inner and outer area

of S coincide precisely when S is measurable. This is the explanation for the name

“measurable”: The measurable sets are the ones that have a well-defined area.

Although the class of Jordan measurable sets is much more extensive than the

class of sets whose area can be computed by one-variable calculus, it is not as big

as we would ideally wish. It does not include all bounded open sets or all compact
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sets, for example. Moreover, it does not behave well with respect to passage to

limits: The union of a sequence of measurable sets, all contained in a common

rectangle, need not be measurable.

A simple example of the latter phenomenon can be obtained by considering the

sets Sk of all points in the unit square whose x-coordinate is an integer multiple of

2−k. Each Sk is the union of a finite collection of line segments, so it is measurable

and its area is zero. However, the union
⋃∞

1 Sk is the set of all points in the unit

square whose x-coordinate has a terminating base-2 decimal expansion. This set

is dense in the unit square but has no interior, from which it is easy to see that its

inner area is 0 but its outer area is 1 (Exercises 3 and 4). By “fattening up” the

sets Sk (replacing the line segments in them by thin rectangles), we can also obtain

examples of open sets and closed sets that are not measurable (Exercise 6).

The defects of the Jordan theory of area carry over more generally to the theory

of integration we are discussing, and for more advanced work one needs the more

sophisticated Lebesgue theory of measure and integration, of which we present a

brief sketch in §4.8. It is largely for this reason that we are being somewhat cavalier

about presenting all the theoretical details in this chapter; there seems to be little

virtue in expending an enormous amount of effort on a theory that must be upgraded

when one proceeds to a more advanced level.

Higher Dimensions. The theory of n-dimensional integrals is almost identical

to the theory of double integrals; the only reason we have not considered an arbi-

trary n from the beginning is that the notation is simpler, and the geometric intuition

is clearer, when n = 2. We have merely to replace rectangles by n-dimensional

rectangular boxes, that is, regions in Rn of the form

R = [a1, b1]× · · · × [an, bn] =
{
x : a1 ≤ x1 ≤ b1, . . . , an ≤ xn ≤ bn

}
.

The n-dimensional volume of such a box is the product of the lengths of its sides,∏n
j=1(bj − aj). (Here

∏
is the product sign, analogous to

∑
for sums.) A partition

of such a box is specified by partitioning each of its “sides” [a1, b1], . . . , [an, bn].
The notion of “zero content” generalizes to n dimensions in the obvious way:

A bounded set Z ⊂ Rn has zero content if for any ǫ > 0 there are rectangular

boxes R1, . . . , RK whose total volume is less than ǫ, such that Z ⊂ ⋃K
1 Rj . The

analogue of Proposition 4.19c is that smooth submanifolds of dimension k < n in

Rn (given parametrically by C1 maps f : Rk → Rn) have zero content.

With these modifications, the definition of integrability and Theorems 4.17,

4.18, and 4.21 work just as in the 2-dimensional case. The element of area dA
becomes an element of n-dimensional volume, which may be denoted by dV n,

dnx, or dx1 · · · dxn: thus, the notation for n-dimensional integrals over a region
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S ⊂ Rn is

∫
· · ·
∫

S
f dV n =

∫
· · ·
∫

S
f(x) dnx =

∫
· · ·
∫

S
f(x1, . . . , xn) dx1 · · · dxn,

where
∫
· · ·
∫

is shorthand for a row of n integral signs. When n = 3, we usually

write dV instead of dV 3, the V denoting ordinary 3-dimensional volume.

We conclude with a useful fact about integrals in any number of dimensions.

4.24 Theorem (The Mean Value Theorem for Integrals). Let S be a compact, con-

nected, measurable susbset of Rn, and let f and g be continuous functions on S
with g ≥ 0. Then there is a point a ∈ S such that

∫
· · ·
∫

S
f(x)g(x) dnx = f(a)

∫
· · ·
∫

S
g(x) dnx.

Proof. Let m and M be the minimum and maximum values of f on S, which exist

since S is compact. Since g ≥ 0, we have mg ≤ fg ≤Mg on S, and hence

m

∫
· · ·
∫

S
g(x) dnx ≤

∫
· · ·
∫

S
f(x)g(x) dnx ≤M

∫
· · ·
∫

S
g(x) dnx.

Thus the quotient (
∫
· · ·
∫
fg)/(

∫
· · ·
∫
g) lies between m and M , so by the interme-

diate value theorem, it is equal to f(a) for some a ∈ S.

The special case g ≡ 1 is of particular interest:

4.25 Corollary. Let S be a compact, connected, measurable subset of Rn, and let

f be a continuous function on S. Then there is a point a ∈ S such that

∫
· · ·
∫

S
f(x) dnx = f(a)|S|,

where |S| denotes the n-dimensional volume of S.

The ratio of
∫
· · ·
∫
S f(x)d

nx to the n-dimensional volume of S is, by definition,

the average or mean value of f on S. Corollary 4.25 says that when f is contin-

uous and S is compact and connected, there is some point in S at which the actual

value of f is the average value.
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EXERCISES

1. Prove Proposition 4.19(a,b).

2. Let f : [a, b]→ R be an integrable function.

a. Show that the graph of f in R2 has zero content. (Hint: Given a partition

P of [a, b], interpret SPf − sPf as a sum of areas of rectangles that cover

the graph of f .)

b. Suppose f ≥ 0 and let S = {(x, y) : x ∈ [a, b], 0 ≤ y ≤ f(x)}. Show

that S is measurable and that its area (as defined in this section) equals∫ b
a f(x) dx.

3. Let S be a bounded set in R2. Show that S and Sint have the same inner area.

(Hint: For any rectangle contained in S, there are slightly smaller rectangles

contained in Sint.)

4. Let S be a bounded set in R2. Show that S and S have the same outer area.

(Hint: For any rectangle that does not intersect S, there are slightly smaller

rectangles that do not intersect S.)

5. Let S be a bounded set in R2. Show that the inner area of S plus the outer area

of ∂S equals the outer area of S. (Use Exercises 3 and 4.)

6. Let S be the subset of the x-axis consisting of the union of the open interval

of length 1
4 centered at 1

2 , the open intervals of length 1
16 centered at 1

4 and 3
4 ,

the open intervals of length 1
64 centered at 1

8 , 3
8 , 5

8 , and 7
8 , and so forth. Let

U = S × (0, 1) be the union of the open rectangles of height 1 based on these

intervals. Thus U is the union of one rectangle of area 1
4 , two rectangles of area

1
16 , four rectangles of area 1

64 , . . . , some of which overlap.

a. Show that U is an open subset of the unit square R = [0, 1] × [0, 1].
b. Show that the inner area of U is less than 1

2 .

c. Show that U is dense in R and hence that its outer area is 1. (Use Exercise

4.)

d. Let V = R \ U . Show that V is a closed set whose inner area is 0 and

whose outer area is bigger than 1
2 .

7. (The Second Mean Value Theorem for Integrals) Suppose f is continuous on

[a, b] and ϕ is of class C1 and increasing on [a, b]. Show that there is a point

c ∈ [a, b] such that

∫ b

a
f(x)ϕ(x) dx = ϕ(a)

∫ c

a
f(x) dx+ ϕ(b)

∫ b

c
f(x) dx.

(Hint: First suppose ϕ(b) = 0. Set F (x) =
∫ x
a f(t) dt, integrate by parts

to show that
∫ b
a f(x)ϕ(x) dx = −

∫ b
a F (x)ϕ

′(x) dx, and apply Theorem 4.24
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to the latter integral. To remove the condition ϕ(b) = 0, show that if the

conclusion is true for f and ϕ, it is true for f and ϕ+ C for any constant C .)

4.3 Multiple Integrals and Iterated Integrals

The next issue to be addressed is the evaluation of n-dimensional integrals. The

usual procedure is to reduce them to one-dimensional integrals.

Again we focus on the case n = 2, and we begin by considering the integral of

a function f over a rectangle R. Given a partition P = {x0, . . . , xJ ; y0, . . . , yK}
of R, we pick points x̃j ∈ [xj−1, xj] and ỹk ∈ [yk−1, yk] (1 ≤ j ≤ J , 1 ≤ k ≤ K)

and form the Riemann sum

J∑

j=1

K∑

k=1

f(x̃j, ỹk)∆xj ∆yk (∆xj = xj − xj−1, ∆yk = yk − yk−1).

If f is integrable onR, this double sum approximates the integral
∫∫
R f(x, y) dx dy.

On the other hand, for each fixed y, the sum
∑J

j=1 f(x̃j, y)∆xj is a Riemann sum

for the single integral g(y) =
∫ b
a f(x, y) dx, and then the sum

∑K
k=1 g(ỹk)∆yk is

a Riemann sum for the integral
∫ d
c g(y) dy. Thus, in an approximate sense,

∫∫

R
f(x, y) dx dy ≈

J∑

j=1

K∑

k=1

f(xj, yk)∆xj ∆yk

≈
K∑

k=1

∫ b

a
f(x, yk) dx∆yk ≈

∫ d

c

[∫ b

a
f(x, y) dx

]
dy.

In short, if there are no unexpected pitfalls we should have

∫∫

R
f dA =

∫ d

c

[∫ b

a
f(x, y) dx

]
dy.

We could also play the same game with x and y switched, obtaining

∫∫

R
f dA =

∫ b

a

[∫ d

c
f(x, y) dy

]
dx.

If f is continuous on the rectangle R, it is not hard to make this argument

rigorous by using the uniform continuity of f . However, we need to allow discon-

tinuous functions in order to encompass integrals over more general regions, and



4.3. Multiple Integrals and Iterated Integrals 169

here there is one potential pitfall: The integrability of f on R need not imply the

integrability of f(x, y0), as a function of x for fixed y0, on [a, b]. The line seg-

ment {(x, y) : a ≤ x ≤ b, y = y0} is a set of zero content, after all, so f could

be discontinuous at every point on it, and its behavior as a function of x could be

quite wild. This problem is actually not too serious, and we shall sweep it under

the rug by making the assumption — quite harmless in practice — that it does not

occur. The resulting theorem is as follows. It is sometimes referred to as Fubini’s

theorem, although that name belongs more properly to the generalization of the

theorem to Lebesgue integrals.

4.26 Theorem. Let R = {(x, y) : a ≤ x ≤ b, c ≤ y ≤ d}, and let f be an

integrable function on R. Suppose that, for each y ∈ [c, d], the function fy defined

by fy(x) = f(x, y) is integrable on [a, b], and the function g(y) =
∫ b
a f(x, y) dx is

integrable on [c, d]. Then

(4.27)

∫∫

R
f dA =

∫ d

c

[∫ b

a
f(x, y) dx

]
dy.

Likewise, if fx(y) = f(x, y) is integrable on [c, d] for each x ∈ [a, b], and h(x) =∫ d
c f(x, y) dy is integrable on [a, b], then

(4.28)

∫∫

R
f dA =

∫ b

a

[∫ d

c
f(x, y) dy

]
dx.

Proof. The proof is presented in Appendix B.4 (Theorem B.9). The issue that

must be addressed is the permissibility of first letting the x-subdivisions get finer

and finer, and then doing the same for the y-subdivisions, or vice versa, as opposed

to requiring both subdivisions to become finer at the same time.

The integrals on the right side of (4.27) and (4.28) are called iterated integrals.

It is customary to omit the brackets in these integrals and to write, for example,

∫ d

c

∫ b

a
f(x, y) dx dy,

with the understanding that the integration is to be done “from the inside out.” That

is, the innermost integral
∫ b
a corresponds to the innermost differential dx, and the

integral with respect to the corresponding variable x is to be performed first. Some

people find it clearer to write the differentials dx and dy next to the integral signs

to which they pertain, thus:

∫ d

c
dy

∫ b

a
dx f(x, y).
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FIGURE 4.4:
∫∫
· · · dx dy versus

∫∫
· · · dy dx.

If our region of integration is not the whole rectangle R but a subset S, the in-

tegration effectively stops at the boundary of S, and the limits of integration should

be adjusted accordingly. For example, if S is bounded above and below by the

graphs of two functions,

(4.29) S =
{
(x, y) : a ≤ x ≤ b, ϕ(x) ≤ y ≤ ψ(x)

}
,

we have

(4.30)

∫∫

S
f dA =

∫ b

a

∫ ψ(x)

ϕ(x)
f(x, y) dy dx.

Here it is essential to integrate first in y, then in x, since the limits ϕ(x) and ψ(x)

furnish part of the x-dependence of the integrand for the outer integral
∫ b
a · · · dx.

It is important to observe that if S is a region of the form (4.29) where ϕ and

ψ are of class C1, and f is continuous on S, the hypotheses in Theorem 4.26

that allow integration first in y and then in x are automatically satisfied, so that

(4.30) is valid. Indeed, the integrability of fχS on any rectangle R ⊃ S follows

from Proposition 4.19c and Theorem 4.21, and the integrability of the function

(fχS)(x, y) as a function of y for fixed x is obvious since it is continuous except

at the two points y = ϕ(x) and y = ψ(x).
On the other hand, if S is bounded on the left and right by graphs of functions

of y, we obtain a formula similar to (4.30) with the roles of x and y reversed.

In general, most of the regions S that arise in practice can be decomposed into a

finite number of pieces S1, . . . , SK , each of which is of the form (4.29) or of the

analogous form with x and y switched. By using the additivity property (Theorem

4.17b), we can reduce the computation of
∫∫
S f dA to the calculation of iterated

integrals on these subregions.

Figure 4.4 may be helpful in interpreting iterated integrals. The sketch on the

left symbolizes
∫∫
· · · dx dy, in which we integrate first over the horizontal lines

that run from the left side to the right side of the region, then integrate over the

y-interval that comprises the y-coordinates of all these lines. Similarly, the sketch

on the right symbolizes
∫∫
· · · dy dx.
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1

22

−2

4−4

FIGURE 4.5: The regions of integration in Example 1 (left) and Example 2 (right).

EXAMPLE 1. Find the volume of the region in R3 above the triangle T in

the xy-plane with vertices (0, 0), (1, 0), and (1, 2) and below the surface z =
xy + y2. (See Figure 4.5.)

Solution. The volume in question is
∫∫
T (xy + y2) dA, which can be ex-

pressed as an iterated integral in two ways:

∫ 2

0

∫ 1

y/2
(xy + y2) dx dy or

∫ 1

0

∫ 2x

0
(xy + y2) dy dx.

For the sake of illustration, we perform both calculations:

∫ 2

0

∫ 1

y/2
(xy + y2) dx dy =

∫ 2

0
[12x

2y + xy2]1y/2 dy =

∫ 2

0
(12y + y2 − 5

8y
3) dy,

∫ 1

0

∫ 2x

0
(xy + y2) dy dx =

∫ 1

0
[12xy

2 + 1
3y

3]2x0 dx =

∫ 1

0

14
3 x

3 dx.

Both single integrals on the right evaluate to 7
6 .

EXAMPLE 2. Let S be the region between the parabolas x = 4 − y2 and

x = y2− 4. (See Figure 4.5.) A double integral
∫∫
S f(x, y) dA can be reduced

to iterated integrals in two ways. Integrating first in x is more straightforward:

∫ 2

−2

∫ 4−y2

y2−4
f(x, y) dx dy.

To integrate first in y, we must break up R into its left and right halves:

∫ 0

−4

∫ √
4+x

−
√
4+x

f(x, y) dy dx+

∫ 4

0

∫ √
4−x

−
√
4−x

f(x, y) dy dx.
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The ideas in higher dimensions are entirely similar. The analogue of Theo-

rem 4.26 is that an integral over an n-dimensional rectangular solid with sides

[a1, b1], . . . , [an, bn] can be evaluated as an n-fold iterated integral,

∫
· · ·
∫

R
f dV =

∫ bn

an

· · ·
∫ b1

a1

f(x1, . . . , xn) dx1 · · · dxn,

provided that the indicated integrals exist. The meaning of the iterated integral

on the right is that the integration is to be performed first with respect to x1 and

last with respect to xn. However, the same formula remains valid with the n inte-

grations performed in any order. The only thing that needs some care is that the

integral signs
∫ bj
aj

must be matched up with the differentials dxj in the right order

so as to get the right limits of integration, and the convention is the same as in

the case n = 2: The integrations are to be performed in order from innermost to

outermost.

When the region of integration is something other than a rectangular solid, set-

ting up the right limits of integration can be rather complicated. A typical situation

in 3 dimensions is as follows: The region of integration S is the region in between

two graphs,

S =
{
(x, y, z) : (x, y) ∈ U, ϕ(x, y) ≤ z ≤ ψ(x, y)

}
,

based on some region U in the xy-plane. The region U in turn is the region between

two graphs,

U =
{
(x, y) : a ≤ x ≤ b, σ(x) ≤ y ≤ τ(x)

}
,

based on an interval [a, b] ⊂ R. We then have

∫∫∫

S
f dV =

∫ b

a

∫ τ(x)

σ(x)

∫ ψ(x,y)

ϕ(x,y)
f(x, y, z) dz dy dx.

The rule to remember is that limits of integration in an iterated integral can

depend on the remaining “outer” variables whose integration is yet to be performed,

but not on the “inner” variables that have already been integrated out. The final

answer should be a number, not a function of some of the variables!

EXAMPLE 3. Find the mass of the tetrahedron T formed by the three coordi-

nate planes and the plane x+ y + 2z = 2 (see Figure 4.6) if the mass density

is given by ρ(x, y, z) = e−z .
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(0, 0, 0)

(0, 0, 1)

(2, 0, 0)

(0, 2, 0)

FIGURE 4.6: The tetrahedron in Example 3.

Solution. There are six ways to write the triple integral
∫∫∫

T e
−z dV as an

iterated integral, although only three of them are essentially different, namely,

∫ 2

0

∫ 2−x

0

∫ 1−(x+y)/2

0
e−z dz dy dx,

∫ 1

0

∫ 2−2z

0

∫ 2−y−2z

0
e−z dx dy dz,

∫ 2

0

∫ 1−(y/2)

0

∫ 2−y−2z

0
e−z dx dz dy.

(The remaining three can be obtained from these simply by interchanging x
and y, since T and the density function are invariant under this interchange.)

Using the first of these, we obtain

∫ 2

0

∫ 2−x

0
(1− e(x+y)/2−1) dy dx =

∫ 2

0

[
y − 2e(x+y)/2−1

]2−x
0

dx

=

∫ 2

0
(2e(x/2)−1 − x) dx =

[
4e(x/2)−1 − 1

2x
2
]2
0
= 2− 4e−1.

The reader may verify that the other two iterated integrals give the same answer.

In the preceding discussion, iterated integrals appeared as a tool for evaluating

n-dimensional integrals. However, they also arise in a number of other contexts

in advanced analysis where a quantity is defined by performing two or more in-

tegrations in succession. In this context, the significance of Theorem 4.26 is that

under suitable hypotheses on the integrand f , the order of integration in an iterated

integral can be reversed:

(4.31)

∫ b

a

∫ d

c
f(x, y) dy dx =

∫ d

c

∫ b

a
f(x, y) dx dy.
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More precisely, (4.31) is valid if f satisfies the conditions in Theorem 4.26 for

both (4.27) and (4.28) to hold. (See Exercise 13 for an example to demonstrate

the significance of these conditions.) The importance of this result can hardly be

overestimated; it is an extremely powerful tool for evaluating quantities defined by

integrals. We shall see a number of examples in later chapters.

EXAMPLE 4. Evaluate
∫ 2
0

∫ 1
y/2 ye

−x3 dx dy.

Solution. The integral cannot be evaluated by elementary methods as it

stands, since e−x
3

has no elementary antiderivative. However, it can be inter-

preted as
∫∫
T ye

−x3 dA where T is the triangle with vertices (0, 0), (1, 0), and

(1, 2) as in Example 1. Writing this double integral as an iterated integral in

the other order leads to an easy calculation:

∫ 1

0

∫ 2x

0
ye−x

3

dy dx =

∫ 1

0

1
2y

2
∣∣2x
0
e−x

3

dx =

∫ 1

0
2x2e−x

3

dx

= −2
3e

−x3∣∣1
0
= 2

3(1− e
−1).

Applications. Double and triple integrals can be used to calculate physical and

geometric quantities in much the same way as single integrals. Here are a few

standard examples:

• If f(x, y) ≥ 0, the integral
∫∫
S f dA can be interpreted as the volume of the

region in R3 between the graph of f and the xy-plane that lies over the base

region S.

• Suppose that a quantity of some substance (which might be mass, elec-

tric charge, a particular chemical compound, etc.) is distributed through-

out a region U ⊂ R3. It is frequently useful to think of the distribution

of the substance as being described by a density function ρ; the meaning

of this, in practical terms, is that the amount of substance in a set S ⊂ U
is
∫∫∫

S ρ(x) d
3x. This idea works also in other dimensions, for example, to

describe distributions of a substance on a planar surface or a line.

(The reader may wish for a more careful discussion of the meaning of ρ. In-

formally, ρ(x) represents the ratio of the amount of substance in an infinites-

imal cube centered at x to the volume of that cube. To make this rigorous,

one should interpret ρ(x) as the limit of the ratio of the amount of substance

in a finite cube centered at x to the volume of that cube as the side length of

the cube tends to zero. One can then prove, under suitable hypotheses, that

the amount of substance in any region S is
∫∫∫

S ρ(x)d
3x. But a complete

analysis of these matters is beyond the scope of this book.)
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• Suppose that a massive object with mass density ρ(x) occupies the region

S ⊂ R3, so that its total mass ism =
∫∫∫

S ρ(x)d
3x. The center of gravity of

the object is the point x whose coordinates are xj = m−1
∫∫∫

S xjρ(x)d
3x. In

the special case where ρ ≡ 1, x is the centroid of the region S, which is the

point whose coordinates are the average values of the coordinate functions

on S. The center of mass, in general, can be interpreted similarly as the point

whose coordinates are the weighted averages of the coordinate functions on

S where the weighting is given by the density ρ.

• Again suppose that a massive object with mass density ρ(x) occupies the

region S ⊂ R3, and let L be a line in R3. The moment of inertia of the

body about the line L, a quantity that is useful in analyzing rotational motion

about L, is
∫∫∫

S d(x)
2ρ(x)d3x, where d(x) is the distance from x to L. (For

example, if L is the z-axis, then d(x, y, z)2 = x2 + y2.)

EXERCISES

1. Evaluate the following double integrals.

a.
∫∫
S(x+ 3y3) dA, S = the upper half (y ≥ 0) of the unit disc x2 + y2 ≤ 1.

b.
∫∫
S(x

2 − √y) dA, S = the region between the parabola x = y2 and the

line x = 2y.

2. Find the volume of the region above the triangle in the xy-plane with vertices

(0, 0), (1, 0), and (0, 1), and below the surface z = 6xy(1− x− y).
3. For the following regions S ⊂ R2, express the double integral

∫∫
S f dA in

terms of iterated integrals in two different ways.

a. S = the region in the left half plane between the curve y = x3 and the line

y = 4x.

b. S = the triangle with vertices (0, 0), (2, 2), and (3, 1).
c. S = the region between the parabolas y = x2 and y = 6− 4x− x2.

4. Express each of the following iterated integrals as a double integral and as an

iterated integral in the opposite order. (That is, find the region of integration

for the double integral and the limits of integration for the other iterated inte-

gral.)

a.
∫ 1
0

∫ x1/3
x2 f(x, y) dy dx.

b.
∫ 1
0

∫ 2y
−y f(x, y) dx dy.

c.
∫ 2
1

∫ log x
0 f(x, y) dy dx.
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5. Evaluate the following iterated integrals. (You may need to reverse the order of

integration.)

a.
∫ 3
1

∫ y
1 ye

2x dx dy.

b.
∫ 1
0

∫ 1√
x cos(y

3 + 1) dy dx.

c.
∫ 2
1

∫ 1
1/x ye

xy dy dx.

6. Fill in the blanks:
∫ 1
0

∫ x+1
2x2 f(y) dy dx =

∫ 1
0 [ ] dy +

∫ 2
1 [ ]dy. The expres-

sions you obtain for the [ ]’s should not contain integral signs.

7. Given a continuous function g : R → R, let h(x) =
∫ x
0

∫ y
0 g(t) dt dy. That is,

h is obtained by integrating g twice, starting the integration at 0. Show that h
can be expressed as a single integral, namely, h(x) =

∫ x
0 (x− t)g(t) dt. (Note

that x can be treated as a constant here; y and t are the variables of integration.)

8. Let S ⊂ R3 be the region between the paraboloid z = x2+y2 and the plane z =
1. Express the triple integral

∫∫∫
S f dV as an iterated integral with the order of

integration (a) z, y, x; (b) y, z, x; (c) x, y, z. (That is, find the appropriate limits

of integration in each case.)

9. Express the iterated integral
∫ 1
0

∫ 1−y2
0

∫ y
0 f(x, y, z) dz dx dy

a. as a triple integral (i.e., describe the region of integration);

b. as an iterated integral in the order z, y, x;

c. as an iterated integral in the order y, z, x.

10. Find the centroid of the tetrahedron bounded by the coordinate planes and the

plane (x/a) + (y/b) + (z/c) = 1.

11. An object with mass density ρ(x, y, z) = yz occupies the cube {(x, y, z) : 0 ≤
x, y, z ≤ 2}. Find its mass and center of mass.

12. A body with charge density ρ(x, y, z) = 2z occupies the region bounded below

by the parabolic cylinder z = x2− 3, above by the plane z = x− 1, and on the

sides by the planes y = 0 and y = 2. Find its net charge (total positive charge

minus total negative charge).

13. Let f(x, y) = y−2 if 0 < x < y < 1, f(x, y) = −x−2 if 0 < y < x < 1, and

f(x, y) = 0 otherwise, and let S be the unit square [0, 1] × [0, 1].
a. Show that f is not integrable on S, but that f(x, y) is integrable on [0, 1]

as a function of x for each fixed y and as a function of y for each fixed x.

b. Show by explicit calculation that the iterated integrals
∫ 1
0

∫ 1
0 f(x, y) dx dy

and
∫ 1
0

∫ 1
0 f(x, y) dy dx both exist and are unequal.
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4.4 Change of Variables for Multiple Integrals

To motivate the ideas in this section, we recall the change-of-variable formula for

single definite integrals: If g is a one-to-one function of class C1 on the interval

[a, b], then for any continuous function f ,

(4.32)

∫ b

a
f(g(u))g′(u) du =

∫ g(b)

g(a)
f(x) dx.

The proof is a simple matter of combining the chain rule and the fundamental the-

orem of calculus. Indeed, if F is an antiderivative of f , the right side of (4.32) is

F (g(b))−F (g(a)), which in turn equals
∫ b
a (F ◦ g)′(u) du, and the latter integrand

is f(g(u))g′(u). (Formula (4.32) is actually valid when f is merely integrable, but

we shall not worry about this refinement here.)

There is one slightly tricky point here, which we point out now because it will

be significant later. If g is an increasing function, (4.32) is fine as it stands, but

if g is decreasing, the endpoints on the integral on the right are in the “wrong”

order, and we might prefer to put them back in the “right” order by introducing a

minus sign:
∫ g(b)
g(a) = −

∫ g(a)
g(b) . Since g is increasing or decreasing according as g′ is

positive or negative, we could rewrite (4.32) as

(4.33)

∫

[a,b]
f(g(u))|g′(u)| du =

∫

g([a,b])
f(x) dx.

Here g([a, b]) is the interval to which [a, b] is mapped under g, and for any interval

I the symbol
∫
I means the integral from the left endpoint of I to the right endpoint.

The replacement of g′ by |g′| compensates for the extra minus sign that comes from

adjusting the order of the endpoints when g is decreasing.

In practice it is often more convenient to have all the g’s on one side of the

equation. If we set I = g([a, b]), we have [a, b] = g−1(I), and (4.33) becomes

(4.34)

∫

I
f(x) dx =

∫

g−1(I)
f(g(u))|g′(u)| du.

Our object is to find the analogous formula for multiple integrals. It is natural

to use (4.34) rather than (4.32) as a starting point, since for multiple integrals the

issue of left-to-right or right-to-left disappears and we just speak of integrals over

a region, like the integrals over intervals that appear in (4.34). More precisely,

suppose G is a one-to-one transformation from a region R in Rn to another region

S = G(R) in Rn; then R = G−1(S), and the formula we are seeking should look
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dr
dr

dθ

r dθ

FIGURE 4.7: The element of area in polar coordinates.

something like this:

(4.35)

∫
· · ·
∫

S
f(x) dnx =

∫
· · ·
∫

G−1(S)
f(G(u)) [????] dnu.

The missing ingredient is the quantity that will play the role of |g′(u)| in the formula

(4.34).

Now, the g′(u) in (4.32) or (4.34) is the factor that relates the differentials du
and dx under the transformation x = g(u). In n variables, the n-fold differential

dnx = dx1 · · · dxn represents the “element of volume,” that is, the volume of an

infinitesimal piece of n-space. So the question is: How does the volume of a tiny

piece of n-space change when one applies the transformation G?

To get a feeling for what is going on, let us look at the polar coordinate map

(x, y) = G(r, θ) = (r cos θ, r sin θ).

A small rectangle in the rθ-plane with lower left corner at (r, θ) and sides of length

dr and dθ is mapped to a small region in the xy-plane bounded by two line seg-

ments of length dr and two circular arcs of length r dθ and (r + dr) dθ. When dr
and dθ are very small, this is essentially a rectangle with sides dr and r dθ, so its

area is r dr dθ. In short, a small bit of the rθ-plane with area dr dθ is mapped to a

small bit of the xy-plane with area r dr dθ; see Figure 4.7. Hence, in this case the

missing factor in (4.35) is simply r, and (4.36) becomes

(4.36)

∫∫

S
f(x, y) dx dy =

∫∫

R
f(r cos θ, r sin θ)r dr dθ.

Here S is a region in the xy-plane and R = G−1(S) is the corresponding region in

the rθ-plane. Our argument here has been very informal, but this result is correct,

and it gives the formula for computing double integrals in polar coordinates.

The case of a linear mapping of the plane is also easy to analyze. Given a

matrix A =
(a
c
b
d

)
with detA = ad − bc 6= 0, let x = G(u) = Au, that is,
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(0, 0) (0, 0)

(0, 1)

(1, 0)

(1, 1)

(a, c)

(b, d)
(a+ b, c+ d)

FIGURE 4.8: The linear map (x, y) = (au+ bv, cu+ dv).

(x, y) = G(u, v) = (au+ bv, cu+ dv). The transformation G takes the unit

vectors (1, 0) and (0, 1) to the vectors (a, c) and (b, d), so it maps the standard

coordinate grid to a grid of parallelograms with sides parallel to these vectors. In

particular, it maps the square [0, 1] × [0, 1] to the parallelogram with vertices at

(0, 0), (a, c), (b, d), and (a+ b, c+ d), as indicated in Figure 4.8. The area of that

parallelogram is |ad− bc|, that is, |detA|. (To see this, think of the plane as sitting

in R3 and recall the geometric interpretation of the cross product: The area of the

parallelogram is

|(ai+ cj)× (bi+ dj)| = |(ad− bc)k| = |ad− bc|.)

Since the map G is linear, it commutes with translations and dilations, so if R is

any square in the uv-plane, its image under G is a parallelogram in the xy-plane

whose area is |detA| times that of R. It follows that the missing factor in (4.35)

should be simply |detA|, so that for linear maps of the plane, (4.35) becomes

∫∫

S
f(x, y) dx dy = |ad− bc|

∫∫

G−1(S)
f(au+ bv, cu+ dv) du dv.

The situation is similar for linear mappings of 3-space. Namely, let x =
G(u) = Au where A is an invertible 3 × 3 matrix. If i, j, and k are the stan-

dard basis vectors for R3, we have Ai = a, Aj = b, and Ak = c where a, b, c are

the columns of A, so A maps the unit cube to the parallelepiped generated by these

vectors. To find the volume of that parallelepiped, think of the bc-plane as its base.

Then the area of the base is |b× c|, and the height is the length of the projection of

a onto a line perpendicular to the bc-plane, namely, the line generated by b × c.

But this length is |a| | cos θ| where θ is the angle between a and b× c (we need the

absolute value because θ might be obtuse). Hence,

Volume = |b× c| |a| | cos θ| = |a · (b× c)|,

which is nothing but |detA| (Exercise 8 in §1.1). As before, we conclude that for

the linear map G(u) = Au of R3, the missing factor in (4.35) should be |detA|.
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It is now reasonable to conjecture that the same result should hold for linear

mappings of Rn for any n. We proceed to show that this is correct.

4.37 Theorem. Let A be an invertible n × n matrix, and let G(u) = Au be the

corresponding linear transformation of Rn. Suppose S is a measurable region in

Rn and f is an integrable function on S. Then G−1(S) = {A−1x : x ∈ S} is

measurable and f ◦G is integrable on G−1(S), and

(4.38)

∫
· · ·
∫

S
f(x) dnx = |detA|

∫
· · ·
∫

G−1(S)
f(Au) dnu.

Proof. The proof of the measurability of G−1(S) and the integrability of f ◦G,

which is not profound but rather tedious, is given in Appendix B.5 (Corollaries

B.16 and B.17). (Actually, what is proved in Appendix B.5 is that if f is continuous

except on a set of zero content, a slightly stronger condition than integrability, then

the same is true of f ◦ G.) Here we concentrate on proving (4.38). The proof

naturally requires some linear algebra, in particular, the facts about elementary row

operations and determinants in (A.17)–(A.18), (A.28), and (A.30) of Appendix A.

Step 1: Let us agree to (re)define f(x) to be 0 for x /∈ S. Then f(Au) = 0
for u /∈ G−1(S), and we can replace the regions S and G−1(S) in (4.38) by Rn.

This makes the integrals in (4.38) look improper, but they really are not, since the

integrands vanish outside bounded sets. The point is that now we don’t have to

worry about what the limits of integration in each variable are; we can take them to

be ±∞.

Step 2: We prove the theorem when G is an “elementary transformation,” that

is, the transformation given by performing a single elementary row operation on

the column vector u. There are three kinds of elementary transformations, corre-

sponding to the three types of row operations (see (A17)–(A18)):

1. Multiply the kth component by a nonzero number c, leaving all the other

components alone:

G1(u1, . . . , uk, . . . , un) = (u1, . . . , cuk, . . . , un).

2. Add a multiple of the jth component to the kth component, leaving all the

other components alone:

G2(u1, . . . , uk, . . . , un) = (u1, . . . , uk + cuj, . . . , un).

3. Interchange the jth and kth components:

G3(u1, . . . , uj , . . . , uk, . . . , un) = (u1, . . . , uk, . . . , uj , . . . , un).
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The corresponding matrices A1, A2, A3 are obtained by performing the same row

operations on the identity matrix. Since det I = 1, the rules that tell how row

operations affect determinants (see (A.30)) give

(4.39) detA1 = c, detA2 = 1, detA3 = −1.

It is easy to verify that (4.38) holds for these three types of transformations.

The first two involve a change in only the kth variable, so we can integrate first

with respect to that variable and use (4.34) (or, rather, the simple special cases of

(4.34) discussed in Exercise 8 of §4.1). Thus, for G1 we set xk = cuk and obtain

∫ ∞

−∞
f(. . . , xk, . . .) dxk =

∫ c−1∞

−c−1∞
f(. . . , cuk, . . .) c duk

= |c|
∫ ∞

−∞
f(. . . , cuk, . . .) duk.

(The endpoints have to be switched if c < 0, which accounts for replacing c by |c|,
as in the discussion preceding (4.34).) Likewise, for G2 we set xk = uk + cuj and

obtain ∫ ∞

−∞
f(. . . , xk, . . .) dxk =

∫ ∞

−∞
f(. . . , uk + cuj , . . .) duk.

(uj is a constant as far as this calculation is concerned.) Now an integration with

respect to the remaining variables (for which xi = ui) yields

∫
· · ·
∫
f(x) dnx = |c|

∫
· · ·
∫
f(G1(u)) d

nu =

∫
· · ·
∫
f(G2(u)) d

nu.

In view of (4.39), this establishes (4.38) for G1 and G2. As for G3, we have

∫ ∞

−∞

∫ ∞

−∞
f(. . . , uj , . . . , uk, . . .) duj duk

=

∫ ∞

−∞

∫ ∞

−∞
f(. . . , uk, . . . , uj , . . .) duj duk,

simply because the variables uj and uk are dummy variables here. That is, we are

integrating f with respect to its jth and kth variables, and it doesn’t matter what

we call them. Now an integration with respect to the remaining variables, together

with (4.39), gives (4.38) for G3.

Step 3: We next verify that if (4.38) is valid for the linear maps G(u) = Au
and H(u) = Bu, then it is also valid for the composition (G ◦H)(u) = ABu.
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Indeed, if we set v = Bu and x = Av, we have

∫
· · ·
∫

S
f(x) dnx = |detA|

∫
· · ·
∫

G−1(S)
f(Av) dnv

= |detA| |detB|
∫
· · ·
∫

H−1(G−1(S))
f(ABu) dnu.

But (detA)(detB) = det(AB) and H−1(G−1(S)) = (G ◦ H)−1(S), so the

integral on the right equals

|det(AB)|
∫
· · ·
∫

(G◦H)−1(S)
f(ABu) dnu,

as claimed.

The Final Step: From Step 3, it follows easily by induction that if (4.38) is valid

for G1, . . . ,Gk, then it is also valid for the composition G1◦· · ·◦Gk . Thus, in view

of Step 2, to complete the proof we have merely to observe that every invertible

linear transformation of Rn is a composition of elementary transformations. This

is equivalent to the fact that every invertible matrix A can be row-reduced to the

identity matrix; see (A.52) (in particular, the equivalence of (a) and (i)) and (A.53)

in Appendix A.

There is one more simple class of transformations for which the change-of-

variable formula is easily established, namely the translations. These are the map-

pings of the form G(u) = u + b where b is a fixed vector. Indeed, we just make

the substitution xj = uj + bj , dxj = duj in each variable separately to conclude

that ∫
· · ·
∫

S
f(x) dnx =

∫
· · ·
∫

S−b

f(u+ b) dnu.

Combining this with Theorem 4.37, we see that if G(u) = Au+ b, then

(4.40)

∫
· · ·
∫

S
f(x) dnx = |detA|

∫
· · ·
∫

G−1(S)
f(Au+ b) dnu.

In particular, by taking f ≡ 1, we see that the n-dimensional volume of S is |detA|
times the n-dimensional volume of G−1(S).

It is now easy to guess what the change-of-variable formula for a general invert-

ible C1 transformation must be. Indeed, suppose that U and V are open sets in Rn,

G : U → V is a one-to-one transformation of class C1 whose derivative Df(u) is

invertible for all u ∈ U , and f is a continuous function on V . To relate the integral

of f over a measurable set S ⊂ V to an integral of f ◦ G over T = G−1(S),
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we think of the former as a sum of infinitesimal terms f(x) dnx, each of which is

the value of f at a point x multiplied by the volume dnx of an infinitesimal region

dS located at x. Under the transformation x = G(u), f(x) becomes f(G(u)),
and the region dS is the image under G of another infinitesimal region dT whose

volume is dnu. But on the infinitesimal level, the differentiable map G is the same

as its linearization:

G(u+ du) = x+DG(u) · du.
Therefore, by (4.40), the elements of volume dnx and dnu are related by the for-

mula dnx = |detDG(u)| dnu. Putting this all together, we arrive at the main

theorem.

4.41 Theorem. Given open sets U and V in Rn, let G : U → V be a one-to-one

transformation of class C1 whose derivative DG(u) is invertible for all u ∈ U .

Suppose that T ⊂ U and S ⊂ V are measurable sets such that T ⊂ U and

G(T ) = S. If f is an integrable function on S, then f ◦G is integrable on T , and

(4.42)

∫
· · ·
∫

S
f(x) dnx =

∫
· · ·
∫

T
f(G(u))|detDG(u)| dnu.

Proof. We present a proof in Appendix B.5 (Theorem B.24), under the slightly

stronger hypothesis that f is continuous except on a set with zero content. The

key idea is explained in the preceding paragraph, but turning it into a solid proof

is a surprisingly laborious task. An interesting and quite different approach to the

problem can be found in Lax [15], [16]. It shifts the hard work to a different part

of the argument; in particular, it uses the notion of partition of unity developed in

Appendix B.7.

Notice that the results derived earlier in this section are indeed special cases of

Theorem 4.41. If G is a linear map, G(u) = Au, then DG(u) = A for all u,

so |detDG(u)| = |detA| is a constant that can be brought outside the integral

sign. And if G is the polar coordinate map, G(r, θ) = (r cos θ, r sin θ), then

detDG(r, θ) = r, so we recover (4.36).

Let us record the corresponding results for the standard “polar” coordinate sys-

tems in R3, shown in Figure 4.9. Cylindrical coordinates are just polar coordi-

nates in the xy-plane with the z-coordinate added in,

Gcyl(r, θ, z) = (r cos θ, r sin θ, z).

It is easily verified that detDGcyl(r, θ, z) = r again, so the formula for integration

in cylindrical coordinates is

(4.43)

∫∫∫

S
f(x, y, z) dx dy dz =

∫∫∫

G
−1
cyl

(S)
f(r cos θ, r sin θ, z) r dr dθ dz.
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FIGURE 4.9: Cylindrical coordinates (left) and spherical coordinates (right).

Spherical coordinates are given by

Gsph(r, ϕ, θ) = (r sinϕ cos θ, r sinϕ sin θ, r cosϕ).

Here r is the distance from the origin, θ is the longitude, and ϕ is the co-latitude (the

angle from the positive z-axis). The reader may check that detDGsph(r, ϕ, θ) =
r2 sinϕ (Exercise 6c, §3.4), so the formula for integration in spherical coordinates

is

(4.44)

∫∫∫

S
f(x, y, z) dx dy dz

=

∫∫∫

G
−1
sph

(S)
f(r sinϕ cos θ, r sinϕ sin θ, r cosϕ) r2 sinϕdr dϕdθ.

We conclude with some examples.

EXAMPLE 1. Find the volume and the centroid of the region S above the

surface z = x2 + y2 and below the plane z = 4. (See Figure 4.10.)

Solution. Because of the circular symmetry, it is most convenient to use

polar coordinates. The projection of S onto the xy-plane is the disc of radius 2

about the origin, so the volume of S is

V =

∫ 2

0

∫ 2π

0
(4− r2)r dθ dr = 2π

[
2r2 − 1

4r
4
]2
0
= 8π.

By symmetry, the centroid lies on the z-axis, and its z-coordinate is

z =
1

V

∫∫∫

S
z dV =

1

8π

∫ 2

0

∫ 4

r2

∫ 2π

0
rz dθ dz dr =

1

4

∫ 2

0
r
[
1
2z

2
]4
r2
dr

=
1

4

[
4r2 − 1

12r
6
]2
0
=

8

3
.
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S T

FIGURE 4.10: The regions in Example 1 (left) and Example 2 (right).

EXAMPLE 2. Find the volume of the “ice cream cone” T bounded below by

the cone z = 2
√
x2 + y2 and above by the sphere x2 + y2 + z2 = 1. (See

Figure 4.10.)

Solution. In spherical coordinates (r, ϕ, θ), the equation of the cone is

tanϕ = 1
2 and the equation of the sphere is r = 1. Hence the volume is

∫ 1

0

∫ tan−1(1/2)

0

∫ 2π

0
r2 sinϕdθ dϕdr = (2π)

[
− cosϕ

]tan−1(1/2)

0

[
1
3r

3
]1
0

=
2π

3

(
1− 2√

5

)
.

This can also be done in cylindrical coordinates (r, θ, z) (note that the meaning

of r has changed here), in which the equation of the cone is z = 2r and the

equation of the sphere is r2 + z2 = 1. The projection of T onto the xy-plane

is the disc r ≤ 1/
√
5, so the volume is

∫ 1/
√
5

0

∫ √
1−r2

2r

∫ 2π

0
r dθ dz dr = 2π

∫ 1/
√
5

0
(r
√

1− r2 − 2r2) dr

=
2π

3

[
− (1− r2)3/2 − 2r3

]1/√5

0
,

which yields the same answer as before.

EXAMPLE 3. Let P be the parallelogram bounded by the lines x − y = 0,

x + 2y = 0, x − y = 1, and x + 2y = 6. (See Figure 4.11.) Compute∫∫
P xy dA.

Solution. The equations of the bounding lines suggest the linear transfor-

mation u = x − y, v = x + 2y, which maps P to the rectangle 0 ≤ u ≤ 1,

0 ≤ v ≤ 6. In the notation of Theorem 4.37, P plays the role of S and this

transformation is G−1; its inverse G is easily computed to be x = 1
3 (2u+ v),
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FIGURE 4.11: The regions in Example 3 (left) and Example 4 (right).

y = 1
3 (v − u), whose determinant is 1

3 . Thus, by Theorem 4.37,

∫∫

P
xy dA =

1

3

∫ 1

0

∫ 6

0

(
2u+ v

3

)(
v − u
3

)
dv du,

which is easily computed to be 77
27 .

Alternatively, one can readily calculate that the vertices of P are (0, 0),
(83 ,

5
3 ), (

2
3 ,−1

3), and (2, 2). It follows that P is the image of the unit square

0 ≤ s, t ≤ 1 under the transformation

(
x
y

)
=

(
2
3 2
−1

3 2

)(
s
t

)
,

where the columns of the 2 × 2 matrix are the vectors from the origin to the

two adjacent vertices. Taking this transformation as G in Theorem 4.37 yields

∫∫

P
xy dA = 2

∫ 1

0

∫ 1

0
(23s+ 2t)(−1

3s+ 2t) dt ds.

This integral is essentially the same as the preceding one; the variables (s, t)
and (u, v) are related by u = s, v = 6t.

EXAMPLE 4. Let R be the region in the first quadrant of the xy-plane bounded

by the x-axis and the parabolas x = 1− 1
4y

2, x = 1
4y

2− 1, and x = 4− 1
16y

2.

(See Figure 4.11.) What is
∫∫
R xy dx dy?

Solution. Refer back to Example 3 in §3.4: The region R is the image of

the rectangle {(u, v) : 1 ≤ u ≤ 2, 0 ≤ v ≤ 1} under the map G(u, v) =
(u2 − v2, 2uv). We have DG(u, v) =

(2u
2v

−2v
2u

)
and hence detDG(u, v) =
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4(u2 + v2). Thus, the substitutions x = u2 − v2, y = 2uv give

∫∫

R
xy dx dy =

∫ 1

0

∫ 2

1
(u2 − v2)(2uv)4(u2 + v2) du dv

=

∫ 1

0

∫ 2

1
8(u5v − uv5) du dv =

∫ 1

0
(43u

6v − 4u2v5)
∣∣2
u=1

dv

=

∫ 1

0
(84v − 12v5) dv = (42v2 − 2v6)

∣∣1
0
= 40.

EXERCISES

1. Find the area of the region inside the cardioid r = 1+cos θ (polar coordinates).

2. Find the centroid of the half-cone
√
x2 + y2 ≤ z ≤ 1, x ≥ 0.

3. Find the volume of the region inside both the sphere x2 + y2 + z2 = 4 and the

cylinder x2 + y2 = 1.

4. Find the volume of the region above the xy-plane, below the cone z = 2 −√
x2 + y2, and inside the cylinder (x− 1)2 + y2 = 1.

5. Find the mass of a right circular cylinder of base radius R and height h if the

mass density is c times the distance from the bottom of the cylinder.

6. Find the volume of the portion of the sphere x2 + y2 + z2 = 4 lying above the

plane z = 1.

7. Find the mass of a ball of radius R if the mass density is c times the distance

from the boundary of the ball.

8. Find the centroid of the portion of the ball x2 + y2 + z2 ≤ 1 lying in the first

octant (x, y, z ≥ 0).

9. Find the centroid of the parallelogram bounded by the lines x− 3y = 0, 2x+
y = 0, x− 3y = 10, and 2x+ y = 15.

10. Calculate
∫∫
S(x + y)4(x − y)−5 dA where S is the square −1 ≤ x + y ≤ 1,

1 ≤ x− y ≤ 3.

11. Find the volume of the ellipsoid (x+ 2y)2 + (x− 2y + z)2 + 3z2 = 1.

12. Let S be the region in the first quadrant bounded by the curves xy = 1, xy = 4,

and the lines y = x, y = 4x. Find the area and the centroid of S by using the

transformation u = xy, v = y/x.

13. Let S be the region in the first quadrant bounded by the curves xy = 1, xy = 3,

x2 − y2 = 1, and x2 − y2 = 4. Compute
∫∫
S(x

2 + y2) dA. (Hint: Let

G(x, y) = (xy, x2 − y2). What is |detDG|?)
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14. Use the transformation x = u−uv, y = uv to evaluate
∫∫
S(x+y)

−1 dA where

S is the region in the first quadrant between the lines x+ y = 1 and x+ y = 4.

15. Use “double polar coordinates” x = r cos θ, y = r sin θ, z = s cosϕ, w =
s sinϕ in R4 to compute the 4-dimensional volume of the ball x2 + y2 + z2 +
w2 = R2.

4.5 Functions Defined by Integrals

Suppose f(x,y) is a function of x ∈ Rm and y ∈ Rn. If f(x,y) is integrable over

the set S ⊂ Rn as a function of y for each fixed x, we can form a new function of

x by integrating out y:

(4.45) F (x) =

∫
· · ·
∫

S
f(x,y) dny.

The question then arises as to how properties of f such as continuity and differen-

tiability relate to the corresponding properties of F .

Perhaps the most basic question of this sort is the following. Suppose that

lim
x→a

f(x,y) = g(y) (y ∈ S);

is it true that

lim
x→a

F (x) =

∫
· · ·
∫

S
g(y) dny?

In other words, can one interchange the operations of integrating with respect to y

and taking a limit with respect to x? Is the limit of the integral equal to the integral

of the limit? In general, the answer is no.

EXAMPLE 1. let

f(x, y) =
x2y

(x2 + y2)2
(
(x, y) 6= (0, 0)

)
, f(0, 0) = 0.

Evidently limx→0 f(x, y) = 0 for each y (although for different reasons when

y = 0 or when y 6= 0). However, limx→0

∫ 1
0 f(x, y) dy 6= 0; in fact,

∫ 1

0

x2y

(x2 + y2)2
dy = − x2

2(x2 + y2)

∣∣∣∣
1

0

=
1

2(1 + x2)
,

which tends to 1
2 as x→ 0.
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Notice, however, that the f in Example 1 is discontinuous, and indeed un-

bounded, at the origin; for instance, f(x, x) = 1/4x → ∞ as x → 0. (f(x0, y)
is bounded as a function of y for each fixed x0, but its maximum value tends to

infinity as x0 → 0.) If we impose some stronger conditions on f , we can obtain

an affirmative result. The following theorem is not the last word in the subject (see

Corollary 4.53), but it suffices for many purposes.

4.46 Theorem. Suppose S and T are compact subsets of Rn and Rm, respectively,

and S is measurable. If f(x,y) is continuous on the set T × S = {(x,y) : x ∈
T, y ∈ S}, then the function F defined by (4.45) is continuous on T .

Proof. Given ǫ > 0, we wish to find δ > 0 so that |F (x) − F (x′)| < ǫ whenever

|x − x′| < δ. Let |S| denote the n-dimensional volume of S. Since T × S is

compact, f is uniformly continuous on it by Theorem 1.33, so there is a δ > 0 so

that |f(x,y) − f(x′,y)| < ǫ/|S| whenever y ∈ S, x,x′ ∈ T , and |x − x′| < δ.
But then

|F (x) − F (x′)| ≤
∫
· · ·
∫

S
|f(x,y) − f(x′,y)| dny <

∫
· · ·
∫

S

ǫ

|S| d
ny = ǫ,

and we are done.

Remark. In the statement of Theorem 4.46 we could assume that T is open

rather than compact. Indeed, every point x in an open set T is the center of a closed

ball B that is contained in T . Since B is compact, the preceding argument shows

that F is continuous on B, and hence F is continuous at every x ∈ T .

A related question concerns differentiability. Suppose that f is differentiable

as a function of x for each y ∈ S; is it true that F is differentiable in x and that its

partial derivatives ∂xjF are the integrals of the derivatives ∂xjf? In other words, is

the integral of the derivative equal to the derivative of the integral? This is another

question about the interchange of limits and integrals. Indeed, it is always true that

the finite difference F (x + h) − F (x) is the integral of f(x + h, y) − f(x,y),
simply because integration is a linear operation, and the question is what happens

in the limit as h→ 0. As in Example 1, things can go wrong; see Exercise 1. Our

main positive result is as follows.

4.47 Theorem. Suppose S ⊂ Rn is compact and measurable, and T ⊂ Rm is

open. If f and∇xf are continuous on T ×S, then the function F defined by (4.45)

is of class C1 on T , and

(4.48)
∂F

∂xj
(x) =

∫
· · ·
∫

S

∂f

∂xj
(x,y) dny (x ∈ T ).
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Proof. Given a point x0 ∈ T , choose r > 0 small enough so that x ∈ T whenever

|x − x0| ≤ 2r. We shall show that F is of class C1 on B(r,x0) and prove (4.48)

for x ∈ B(r,x0); since x0 is an arbitrary point in T , this will establish the theorem.

For the purpose of computing ∂xjF , the other variables xk (k 6= j) play no role, so

we may assume that m = 1. In fact, in order to simplify the notation a bit, we shall

also assume that n = 1; the proof for general n is exactly the same. Accordingly,

we write x and y instead of x and y henceforth.

For 0 < |h| ≤ r and |x− x0| ≤ r, we consider the difference quotient

F (x+ h)− F (x)
h

=

∫

S

f(x+ h, y)− f(x, y)
h

dy.

By the mean value theorem, we have f(x + h, y) − f(x, y) = h∂xf(x + th, y),
where t is some number between 0 and 1 depending on x, h, and y. Hence,

(4.49)
F (x+ h)− F (x)

h
−
∫

S
∂xf(x, y) dy =

∫

S

[
∂xf(x+ th, y)− ∂xf(x, y)

]
dy.

The argument now proceeds as in the proof of Theorem 4.46. Since ∂xf is contin-

uous on the compact set B(r, x0)×S, it is uniformly continuous there by Theorem

1.33. Thus, given ǫ > 0, we can find δ > 0 so that the integrand on the right of

(4.49) is less than ǫ/|S| for all y ∈ S, x ∈ B(r, x0), and t ∈ (0, 1), whenever

|h| < δ. It follows that
∣∣∣∣
F (x+ h)− F (x)

h
−
∫

S
∂xf(x, y) dy

∣∣∣∣ <
∫

S

ǫ

|S| dy = ǫ for |h| < δ,

and hence that

lim
h→0

F (x+ h)− F (x)
h

−
∫

S
∂xf(x, y) dy = 0,

as claimed.

EXAMPLE 2. Let F (x) =
∫ π
0 y

−1exy sin y dy. This integral cannot be eval-

uated in elementary terms; however, we have F ′(x) =
∫ π
0 e

xy sin y dy, which

can be evaluated by two integrations by parts. The result is that F ′(x) =
(eπx + 1)/(x2 + 1).

Situations often occur in which the variable x occurs in the limits of integration

as well as the integrand. For simplicity we consider the case where x and y are

scalar variables:

(4.50) F (x) =

∫ ϕ(x)

a
f(x, y) dy.
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We suppose that f is continuous in x and y and of class C1 in x for each y, and that

ϕ is of class C1. If f does not depend on x, the derivative of F can be computed

by the fundamental theorem of calculus together with the chain rule:

d

dx

∫ ϕ(x)

a
f(y) dy = f(ϕ(x))ϕ′(x).

For the more general case (4.50), we can differentiate F by combining this result

with Theorem 4.47 according to the recipe in Exercise 7 of §2.3: Differentiate with

respect to each x in (4.50) in turn while treating the others as constants, and add

the results. The upshot is that

(4.51) F ′(x) = f(x, ϕ(x))ϕ′(x) +
∫ ϕ(x)

a

∂f

∂x
(x, y) dy.

EXAMPLE 3. Given a continuous function g on R, let

h(x) =

∫ x

0
(x− y)g(y) dy.

Then

h′(x) = (x− x)g(x) +
∫ x

0
g(y) dy =

∫ x

0
g(y) dy,

and hence h′′(x) = g(x). (Cf. Exercise 7 in §4.3, where this result is ap-

proached from a different angle.)

The hypotheses of Theorems 4.46 and 4.47 can be weakened considerably, but

only at the cost of a more intricate proof. More sophisticated theories of integra-

tion (see §4.8) furnish a powerful theorem, the so-called dominated convergence

theorem, that generally provides the sharpest results in these situations. The full

statement of this theorem requires more background than we have available here,

but its restriction to the context of Riemann integrable functions is the following

result, in which the crucial condition is the existence of the uniform bound C .

4.52 Theorem (The Bounded Convergence Theorem). Let S be a measurable

subset of Rn and {fj} a sequence of integrable functions on S. Suppose that

fj(y) → f(y) for each y ∈ S, where f is an integrable function on S, and that

there is a constant C such that |fj(y)| ≤ C for all j and all y ∈ S. Then

lim
j→∞

∫
· · ·
∫

S
fj(y) d

ny =

∫
· · ·
∫

S
f(y) dny.
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An elementary (but not simple) proof for the case where S is an interval in R

can be found in Lewin [18]. The full dominated convergence theorem can be found

in Bear [3, p. 68], DePree and Swartz [5, p. 194], Jones [9, p. 133], and Rudin [19,

p. 321].

Theorem 4.52 implies the following improvements on Theorems 4.46 and 4.47.

4.53 Corollary. Let S be a measurable subset of Rn and T a subset of Rm. Suppose

f(x,y) is a function on T × S that is integrable as a function of y ∈ S for each

x ∈ T , and let F be defined by (4.45).

a. If f(x,y) is continuous as a function of x ∈ T for each y ∈ S, and there is

a constant C such that |f(x,y)| ≤ C for all x ∈ T and y ∈ S, then F is

continuous on T .

b. Suppose T is open. If f(x,y) is of class C1 as a function of x ∈ T for each

y ∈ S, and there is a constant C such that |∇xf(x,y)| ≤ C for all x ∈ T and

y ∈ S, then F is of class C1 on T and (4.48) holds.

Proof. To prove part (a), by Theorem 1.15 it is enough to show that F (xj)→ F (x)
whenever {xj} is a sequence in S converging to x ∈ S. This follows by applying

the bounded convergence theorem to the sequence of functions fj(y) = f(xj,y).
Similarly, part (b) is proved by applying the bounded convergence theorem to the

sequence of difference quotients with increments hj , where {hj} is a sequence

tending to zero along one of the coordinate axes. The uniform bound on these quo-

tients is obtained by applying the mean value theorem as in the proof of Theorem

4.47; details are left as Exercise 8.

EXERCISES

1. Let f(x, y) = x3y−2e−x
2/y if y > 0, f(x, y) = 0 if y ≤ 0.

a. Show that f(x, y) is of class C1 as a function of x for each fixed y and as a

function of y for each fixed x, but that f is unbounded in any neighborhood

of the origin. (For the smoothness in y, cf. Exercise 9 in §2.1.)

b. Let F (x) =
∫ 1
0 f(x, y) dy. Show that F (x) = xe−x

2

and hence that

F ′(0) = 1, but that
∫ 1
0 ∂xf(0, y) dy = 0.

2. Compute F ′(x) for the functions F (x) defined for x > 0 by the following

formulas. Your answers should not contain integral signs.

a. F (x) =
∫ 1
0 log(1 + xey) dy.

b. F (x) =
∫ x2
1 y−1 cos(xy2) dy.

c. F (x) =
∫ 3x
1 y−1exy dy.
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3. Given a continuous function g on R, let h(x) =
∫ x
0 (x− y)ex−yg(y) dy. Show

that h′′ − 2h′ + h = g.

4. Given a continuous function g on R, let h(x) = 1
2

∫ x
0 [sin 2(x − y)]g(y) dy.

Show that h′′ + 4h = g.

5. Given F (x) =
∫ ϕ(x)
ψ(x) f(x, y) dy, find F ′(x), assuming suitable smoothness

conditions on ψ, ϕ, and f .

6. (How to compress n antidifferentiations into one) Let f be a continuous func-

tion on R. For n ≥ 1, let

f [n](x) =
1

(n− 1)!

∫ x

0
(x− y)n−1f(y) dy.

Show that
(
f [n]
)′

= f [n−1] for n > 1 and conclude that f [n] is an nth-order

antiderivative of f .

7. Let f be any continuous function on [0, 1]. For x ∈ R and t > 0, let

u(x, t) = t−1/2

∫ 1

0
e−(x−y)2/4tf(y) dy, v(x, t) = t

∫ 1

0

f(y)

(x− y)2 + t2
dy.

a. Show that ∂tu = ∂2xu.

b. Show that ∂2xv + ∂2t v = 0.

8. Complete the deduction of Corollary 4.53b from the bounded convergence the-

orem.

4.6 Improper Integrals

In this section we return to integration in one variable. The Riemann theory of

integration pertains to bounded functions on finite intervals, but there are many sit-

uations where one needs to integrate functions over infinite intervals (i.e., half-lines

or the whole line) or functions that are unbounded near some point in the interval

of integration. Such integrals are called improper, and they are defined in terms of

limits of ordinary integrals. To do a really good job with improper integrals, one

should adopt the more powerful Lebesgue theory of integration, sketched in §4.8.

(Even then, additional limiting procedures are needed to handle integrals such as

the one in Example 3 below.) Here we content ourselves with a short discussion of

useful results about simple types of improper integrals.

The two most basic types of improper integrals are as follows:

I.
∫∞
a f(x) dx, where f is integrable over every finite subinterval [a, b].
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II.
∫ b
a f(x) dx, where f is integrable over [c, b] for every c > a but is unbounded

near x = a.

We study these two types in turn and then consider integrals of more complicated

sorts that can be obtained by combining them.

Improper Integrals of Type I. In this subsection, all functions in question are

assumed to be defined on [a,∞) and integrable on [a, b] for every b > a.

The definition of the improper integral is

∫ ∞

a
f(x) dx = lim

b→∞

∫ b

a
f(x) dx.

More precisely, the integral
∫∞
a f(x) dx is said to converge if the limit on the right

exists, in which case its value is defined to be that limit; otherwise the integral is

said to diverge, and it is not assigned a numerical value. (However, we may say

that
∫∞
a f(x) dx =∞ if

∫ b
a f(x) dx grows without bound as b→∞.)

EXAMPLE 1.

a.
∫∞
0 e−x dx = limb→∞

[
− e−x

]b
0
= 1, since limb→∞ e−b = 0.

b.
∫∞
0 cos x dx diverges, since limb→∞ sin b does not exist.

Our main concern here is not with the evaluation of
∫∞
a f(x) dx but with the

more basic question of whether or not it converges. At the outset, we make one

simple but useful remark: If c > a, the convergence of
∫∞
a f(x) dx is equivalent to

the convergence of
∫∞
c f(x) dx, the difference between the two being the ordinary

integral
∫ c
a f(x) dx. Thus, the convergence of

∫∞
a f(x) dx depends only on the

behavior of f(x) as x→∞, not on its behavior on a finite interval [a, c].

We first consider the situation when f ≥ 0. In this case, the integral
∫ b
a f(x) dx

increases along with the upper endpoint b, so we can exploit the following variant

of the monotone sequence theorem.

4.54 Lemma. If ϕ is a bounded increasing function on [a,∞), then limx→∞ ϕ(x)
exists and equals sup{ϕ(x) : x ≥ a}.

Proof. The proof is left to the reader (Exercise 7); it is essentially identical to the

proof of the monotone sequence theorem (1.16).

By applying Lemma 4.54 to the function ϕ(x) =
∫ x
a f(t) dt, we see that the

integral
∫∞
a f(x) dx converges if and only if

∫ b
a f(x) dx remains bounded as b →

∞. This immediately leads to the basic comparison test for convergence.
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4.55 Theorem. Suppose that 0 ≤ f(x) ≤ g(x) for all sufficiently large x. If∫∞
a g(x) dx converges, so does

∫∞
a f(x) dx. If

∫∞
a f(x) dx diverges, so does∫∞

a g(x) dx.

Proof. By the remarks following the definition of convergence, we may assume

that 0 ≤ f(x) ≤ g(x) for all x ≥ a. If
∫∞
a g(x) dx converges, it provides an upper

bound for ϕ(b) =
∫ b
a f(x) dx as b→∞:

∫ b

a
f(x) dx ≤

∫ b

a
g(x) dx ≤

∫ ∞

a
g(x) dx.

The convergence of
∫∞
a f(x) dx then follows from Lemma 4.54. The second as-

sertion is equivalent to the first one.

The following variant of Theorem 4.55 is sometimes easier to apply:

4.56 Corollary. Suppose f > 0, g > 0, and f(x)/g(x) → l as x → ∞. If 0 <
l < ∞, then

∫∞
a f(x) dx and

∫∞
a g(x) dx are both convergent or both divergent.

If l = 0, the convergence of
∫∞
a g(x) dx implies the convergence of

∫∞
a f(x) dx. If

l =∞, the divergence of
∫∞
a g(x) dx implies the divergence of

∫∞
a f(x) dx.

Proof. If 0 < l < ∞, the fact that f(x)/g(x) → l yields the estimates f(x) ≤
2lg(x) and f(x) ≥ 1

2 lg(x) for sufficiently large x, so the first assertion follows by

comparing f to a multiple of g. If l = 0 (resp. l =∞), we have f(x) ≤ g(x) (resp.

g(x) ≥ f(x)) for sufficiently large x, whence the other assertions follow.

The functions most often used for comparison in Theorem 4.55 and Corollary

4.56 are the power functions x−p. Taking a = 1 for convenience, for p 6= 1 we

have ∫ b

1

dx

xp
=
b1−p − 1

1− p →
{
∞ if p < 1,

(p− 1)−1 if p > 1,

and
∫ b
1 x

−1dx = log b → ∞. In short,
∫∞
1 x−p dx converges if and only if p > 1.

Combining this fact with Theorem 4.55, we obtain the following handy rule:

4.57 Corollary. If 0 ≤ f(x) ≤ Cx−p for all sufficiently large x, where p > 1, then∫∞
a f(x) dx converges. If f(x) ≥ cx−1 (c > 0) for all sufficiently large x, then∫∞
a f(x) dx diverges.

EXAMPLE 2. The integral
∫∞
0 [(2x+ 14)/(x3 + 1)] dx converges, because

2x+ 14

x3 + 1
≤ 4x

x3
=

4

x2
for x ≥ 7.
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Alternatively, we could observe that

2x+ 14

x3 + 1

/
1

x2
→ 2 as x→∞

and use Corollary 4.56 with g(x) = x−2 to establish the convergence of the

integral over, say, [1,∞). (The integral over [0, 1] is proper.) Note that we are

not comparing
∫∞
0 [(2x + 14)/(x3 + 1)] dx to

∫∞
0 x−2 dx, which presents an

additional difficulty because x−2 is unbounded at x = 0; the comparison of

(2x+ 14)/(x3 + 1) with x−2 is significant only for large x.

It should be noted that the power functions x−p do not quite tell the whole story.

There are functions whose rate of decay at infinity is faster than x−1 but slower

than x−p for p > 1, and their integrals may be either convergent or divergent; see

Exercises 4 and 5.

Next we remove the assumption that f is nonnegative, and with a view toward

future applications, we shall allow f to be complex-valued. The question of con-

vergence can often be reduced to the case where f ≥ 0 via the following result.

4.58 Theorem. If
∫∞
a |f(x)| dx converges, then

∫∞
a f(x) dx converges.

Proof. First suppose f is real-valued. Let f+(x) = max[f(x), 0] and f−(x) =
max[−f(x), 0]. Then we have 0 ≤ f+(x) ≤ |f(x)| and 0 ≤ f−(x) ≤ |f(x)|, so∫∞
a f+(x) dx and

∫∞
a f−(x) dx converge by Theorem 4.55. But f = f+− f−, so∫∞

a f(x) dx converges also.

If f is complex-valued, we have |Re f(x)| ≤ |f(x)| and | Im f(x)| ≤ |f(x)|,
so the convergence of

∫∞
a |f(x)| dx implies the convergence of

∫∞
a |Re f(x)| dx

and
∫∞
a | Im f(x)| dx and hence (by the preceding argument) the convergence of

the real and imaginary parts of
∫∞
a f(x) dx.

The integral
∫∞
a f(x) dx is called absolutely convergent if

∫∞
a |f(x)| dx con-

verges. Theorem 4.55 and its corollaries can be used to test for absolute conver-

gence, by applying them to |f |. It is possible, however, for
∫∞
a f(x) dx to converge

even when
∫∞
a |f(x)| dx diverges because of cancellation effects between positive

and negative values. Here is an important example.

EXAMPLE 3. The integral

∫ ∞

1

sinx

x
dx is not absolutely convergent (Exercise

8), but it is convergent. To see this, integrate by parts:

∫ b

1

sinx

x
dx =

− cos x

x

∣∣∣∣
b

1

−
∫ b

1

cos x

x2
dx.
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Now,
∫∞
1 |x−2 cos x| dx converges by Corollary 4.57 since |x−2 cos x| ≤ x−2,

so the integral on the right approaches a finite limit as b→∞; moreover, since

|b−1 cos b| ≤ b−1 → 0, so does the other term. Hence limb→∞
∫ b
1 x

−1 sinx dx
exists, as claimed.

Improper Integrals of Type II. In this subsection, all functions in question are

assumed to be defined on (a, b] and integrable on [c, b] for every c > a.

The definition of the improper integral in this situation is

∫ b

a
f(x) dx = lim

c>a, c→a

∫ b

c
f(x) dx.

That is,
∫ b
a f(x) dx converges if the limit on the right exists, and diverges other-

wise. The obvious analogues of the results in the preceding subsection are valid in

this situation with essentially the same proofs; one has merely to replace conditions

like “x →∞” or “for sufficiently large x” by “x → a” or “for x sufficiently close

to a.” For instance, here is the basic comparison test:

4.59 Theorem. Suppose that 0 ≤ f(x) ≤ g(x) for all x sufficiently close to

a. If
∫ b
a g(x) dx converges, so does

∫ b
a f(x) dx. If

∫ b
a f(x) dx diverges, so does∫ b

a g(x) dx.

The functions most often used for comparison in this situation are the power

functions (x − a)−p, but now the condition for convergence is p < 1 rather than

p > 1. Indeed, for p 6= 1,

∫ b

c
(x− a)−p dx =

(x− a)1−p
1− p

∣∣∣∣
b

c

→
{
(1− p)−1(b− a)1−p if p < 1,

∞ if p > 1,

and
∫ b
c (x − a)−1 dx = log(x − a)|bc → ∞. Hence the analogue of Corollary 4.57

is as follows:

4.60 Corollary. If 0 ≤ f(x) ≤ C(x − a)−p for x near a, where p < 1, then∫ b
a f(x) dx converges. If f(x) > c(x− a)−1 (c > 0) for x near a, then

∫ b
a f(x) dx

diverges.

EXAMPLE 4.
∫ 1
0 x

−2 sin 3x dx diverges. Indeed, x−1 sin 3x→ 3 as x→ 0, so

x−2 sin 3x > 2x−1 for x near 0.

Theorem 4.58 also remains valid in this situation; that is, absolute convergence

implies convergence.

EXAMPLE 5.
∫ 1
0 x

−1/2 sin(x−1) dx is absolutely convergent, because

|x−1/2 sin(x−1)| ≤ x−1/2.
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Other Types of Improper Integrals. Various other kinds of improper integrals

can be built up out of those of types I and II.

First, obviously one can consider the “mirror images” of types I and II; that

is, integrals of the form
∫ b
−∞ f(x) dx where f is integrable on [a, b] for all a < b,

or integrals of the form
∫ b
a f(x) dx where f is integrable on [a, c] for all c < b

but is unbounded near x = b. The ideas are exactly the same; only minor nota-

tional changes are needed. (In the latter situation, the comparison functions for the

analogue of Corollary 4.60 are the power functions |x− b|−p = (b− x)−p.)

Second, one can consider improper integrals
∫ b
a f(x) dx where a difficulty oc-

curs at both endpoints of the interval of integration, either because the endpoint is

at infinity or because the integrand is unbounded there. The trick here is to pick an

intermediate point c ∈ (a, b) and write
∫ b
a =

∫ c
a +

∫ b
c , thus reducing the integral to

a sum of two integrals that are each of type I or II; the original integral is said to be

convergent if and only if each of the two subintegrals is convergent. For example,

if f is integrable over every finite interval [a, b], we define

∫ ∞

−∞
f(x) dx =

∫ 0

−∞
f(x) dx+

∫ ∞

0
f(x) dx

= lim
a→−∞

∫ 0

a
f(x) dx+ lim

b→∞

∫ b

0
f(x) dx.

The integral on the left converges only when both of the limits on the right exist

independently of one another; there is no relation between the variables a and b.
The same ideas apply to

∫∞
a f(x) dx when f is unbounded at a or to

∫ b
a f(x) dx

when f is unbounded at both a and b.

EXAMPLE 6.
∫∞
−∞ dx/(1 + x2) converges; the integrals over (−∞, 0] and

[0,∞) are both convergent by comparison to x−2. In fact,

∫ ∞

−∞

dx

1 + x2
= lim

a→−∞, b→+∞
arctan x

∣∣b
a
=
π

2
−
(
−π
2

)
= π.

EXAMPLE 7.
∫∞
0 x−p dx is divergent for every p. Indeed, if p < 1,

∫ 1
0 x

−p dx
converges but

∫∞
1 x−p dx diverges, whereas the reverse is true if p > 1. If

p = 1, these integrals both diverge.

EXAMPLE 8. Consider
∫∞
0 f(x) dx where f(x) = 1/(x1/2 + x3/2). Since

0 < f(x) < x−1/2,
∫ 1
0 f(x) dx converges by Corollary 4.60. Since 0 <

f(x) < x−3/2,
∫∞
1 f(x) dx converges by Corollary 4.57. Hence

∫∞
0 f(x) dx

converges.
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Finally, one can consider improper integrals
∫ b
a f(x) dx where f is unbounded

near one or more interior points of [a, b]. Again the trick is to break up [a, b] into

subintervals such that the singularities of f occur only at endpoints of the subinter-

vals and consider the integrals of f over the subintervals separately.

EXAMPLE 9. Let f(x) = (x3 − 8x2)−1/3, and let us consider
∫ 9
0 f(x) dx and∫∞

0 f(x) dx. The singularities of f occur at x = 0 and x = 8, so for the first

integral we write

∫ 9

0
=

∫ c

0
+

∫ 8

c
+

∫ 9

8
(0 < c < 8).

We have |f(x)| = x−2/3|x − 8|−1/3, which is approximately 1
2x

−2/3 for x

near 0 and approximately 1
4 |x − 8|−1/3 for x near 8. Hence all three subinte-

grals are absolutely convergent by Corollary 4.60, and the original integral
∫ 9
0

converges. On the other hand, f(x) is positive for x > 8 and f(x)/x−1 =
(1− 8x−1)−1/3 → 1 as x→∞, so

∫∞
9 f(x) dx diverges by Corollary 4.56. It

follows that
∫∞
0 f(x) dx diverges too.

The definition of the improper integral
∫ b
a f(x) dx given above when f has

a singularity in the interior of [a, b] is a little too restrictive for some purposes.

Consider, for example,
∫ 1
−1 x

−1dx. According to our definition, this integral is to

be considered as the limit of

(4.61)

∫ −δ

−1

dx

x
+

∫ 1

ǫ

dx

x
= log δ − log ǫ = log

(
δ

ǫ

)

as δ and ǫ decrease to 0, and this limit does not exist: When δ and ǫ are extremely

small, their ratio can be arbitrarily large or arbitrarily small. However, since x−1 is

an odd function, it seems natural to interpret the value of the integral as 0; the neg-

ative infinity of
∫ 0
−1 x

−1 dx should exactly cancel the positive infinity of
∫ 1
0 x

−1dx.

We can achieve this result by modifying (4.61) so as to preserve the symmetry of

the situation, namely, by taking δ = ǫ, so that log(δ/ǫ) = 0.

These considerations lead to the following definition. Suppose a < c < b, and

supppose f is integrable on [a, c− ǫ] and on [c+ ǫ, b] for all ǫ > 0. The (Cauchy)

principal value of the integral
∫ b
a f(x) dx is

P.V.

∫ b

a
f(x) dx = lim

ǫ→0

[∫ c−ǫ

a
f(x) dx+

∫ b

c+ǫ
f(x) dx

]
,

provided that the limit exists. Of course, if
∫ b
a f(x) dx converges, its Cauchy prin-

cipal value is its ordinary value.
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The following proposition describes a typical situation in which principal val-

ues occur.

4.62 Proposition. Suppose a < 0 < b. If ϕ is continuous on [a, b] and differen-

tiable at 0, then P.V.
∫ b
a x

−1ϕ(x) dx exists.

Proof. First we check the case ϕ ≡ 1 by explicit calculation:

P.V.

∫ b

a

dx

x
= lim

ǫ→0

[∫ −e

a

dx

x
+

∫ b

ǫ

dx

x

]
= log |x|

∣∣−ǫ
−a + log x

∣∣b
ǫ
= log

(
b

|a|

)
.

For the general case, we write ϕ(x) = ϕ(0) + [ϕ(x) − ϕ(0)], obtaining

P.V.

∫ b

a

ϕ(x)

x
dx = ϕ(0)P.V.

∫ b

a

dx

x
+

∫ b

a

ϕ(x) − ϕ(0)
x

dx.

We have just seen that the first quantity on the right exists, and the second one is a

proper integral: The integrand is actually continuous on [a, b] if we define its value

at x = 0 to be ϕ′(0).

The notion of principal value is also occasionally applied to integrals of the

form
∫∞
−∞ f(x) dx in which f is integrable over any finite interval:

P.V.

∫ ∞

−∞
f(x) dx = lim

R→∞

∫ R

−R
f(x) dx.

For example, the integral
∫∞
−∞ x(1 + x2)−1 dx is divergent because the integrand

is asymptotically equal to x−1 as x → ±∞, but its principal value is zero because

the integrand is odd.

EXERCISES

1. Determine whether the following improper integrals of type I converge.

a.

∫ ∞

1

dx

x
√
x+ 3

.

b.

∫ ∞

3

x2 − 3x− 1

x(x2 + 2)
dx.

c.

∫ ∞

0
x2e−x

2

dx.

d.

∫ ∞

3

sin 4x

x2 − x− 2
dx.
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e.

∫ ∞

1
tan

1

x
dx.

2. Determine whether the following improper integrals of type II converge.

a.

∫ 1

0

x√
1− x2

dx.

b.

∫ π

π/2
cot x dx.

c.

∫ 1

0

√
1− x

x2 − 4x+ 3
dx.

d.

∫ 1

0

dx

x1/2(x2 + x)1/3
.

e.

∫ 1

0

1− cos x

sin3 2x
dx.

3. Determine whether the following improper integrals converge. In each case

it will be necessary to break up the integral into a sum of integrals of types I

and/or II.

a.

∫ ∞

0
x−3/4e−x dx.

b.

∫ 1

0
x−1/3(1− x)−2 dx.

c.

∫ ∞

0

√
x

ex − 1
dx.

d.

∫ ∞

0

dx

x(x− 1)1/3
.

e.

∫ ∞

0
x−1/5 sin

1

x
dx.

f.

∫ ∞

−∞

ex

ex + x2
dx.

4. For p > 0, let fp(x) = x−1(log x)−p.

a. Given p > 0 and ǫ > 0, show that x−1−ǫ < fp(x) < x−1 for sufficiently

large x.

b. For which p does
∫∞
2 fp(x) dx converge?

5. Let fp be as in Exercise 4 and gp(x) = (x log x)−1(log log x)−p.

a. Given p > 0 and ǫ > 0, show that f1+ǫ(x) < gp(x) < f1(x) for suffi-

ciently large x.

b. For which p does
∫∞
3 gp(x) dx converge?

6. Let f(x) = 1 on the intervals [1, 11
2 ], [2, 2

1
4 ], [3, 3

1
8 ], . . . , and f(x) = 0 else-

where.
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a. Show that
∫∞
0 f(x) dx converges (and is equal to 1) although f(x) 6→ 0 as

x→∞.

b. Modify f to make an example of a function g such that
∫∞
0 g(x) dx con-

verges although g(x) does not remain bounded as x→∞.

7. Prove Lemma 4.54.

8. Prove that
∫∞
1 x−1| sin x| dx diverges. (Hint: Show that there is a constant

c > 0 such that
∫ (n+1)π
nπ x−1| sinx| dx > c

∫ (n+1)π
nπ x−1 dx for all n ≥ 1.)

9. (Dirichlet’s Test for Convergence) Let f be continuous and let g be C1 on

[a,∞). Suppose that (i) the function F (x) =
∫ x
a f(t) dt remains bounded

as x → ∞; (ii) g′(x) ≤ 0 on [a,∞) and limx→∞ g(x) = 0. Show that∫∞
a f(x)g(x) dx converges. (Hint: Example 3 is the case f(x) = sinx,

g(x) = x−1. Generalize the argument given there.)

10. Evaluate P.V.
∫ 1
−1 dx/x(x+ 2).

11. Suppose ϕ is of class C3 on [−1, 1]. Show that P.V.
∫ 1
−1 x

−3ϕ(x) dx exists if

and only if ϕ′(0) = 0. (Hint: Consider the second-order Taylor expansion of

ϕ.)

4.7 Improper Multiple Integrals

The problem of defining improper integrals in dimensions n > 1 is trickier than in

dimension 1. Suppose, for example, that f is a continuous function on R2 and we

wish to define
∫∫

R2 f dA. The obvious idea is to set

∫∫

R2

f dA = lim
r→∞

∫∫

Sr

f dA,

where the Sr’s are a family of measurable sets that fill out R2 as r → ∞. For

instance, we could take Sr to be the disc of radius r about the origin, or the square

of side length r centered at the origin, or the rectangle of side lengths r and r2

centered at the origin, or the disc of radius r centered at (15,−37), and so on. The

difficulty is evident: There is a bewildering array of possibilities, with no rationale

for choosing one over another and no guarantee that different families Sr will yield

the same limit.

Evidently there is some work to be done, and we shall not give all the details

here. The outcome, in a nutshell, is that everything goes well when the integrand is

nonnegative or when the integral is absolutely convergent, but not otherwise.
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We begin by considering the situation where a nonnegative function f is to be

integrated over a set S ⊂ Rn. We suppose that f is not integrable on S according

to the definitions in §4.2, either because S is unbounded or because f is unbounded

on S. Instead, we assume the following:

(4.63)

S is the union of an increasing sequence of sets U1, U2, . . .,

S =
∞⋃

1

Uj (U1 ⊂ U2 ⊂ U3 ⊂ · · · ),

where each Uj is measurable and f is integrable on each Uj .

EXAMPLE 1. If S = Rn and f is continuous on Rn, we can take Uj to be

the ball of radius j about the origin. As noted above, there are many other

possibilities.

EXAMPLE 2. Suppose f is continuous on Rn \ {0} but f(x)→∞ as x→ 0,

and S is the ball {x : |x| ≤ 1}. Then we can take Uj to be the spherical shell

{x : 1/j ≤ |x| ≤ 1}. (Strictly speaking, the union of the Uj’s is S \ {0}, but

this is immaterial: Omission of a single point, or any set of zero content, from

a domain has no effect on integration over that domain.)

With S, f , and Uj as in (4.63), the integrals
∫
· · ·
∫
Uj
f dV n exist for all j, and

they increase along with j since the sets Uj do. It therefore follows from the mono-

tone sequence theorem that the limit

lim
j→∞

∫
· · ·
∫

Uj

f dV n

always exists, provided that we allow +∞ as a value, and this limit is an obvious

candidate for the value of the improper integral
∫
· · ·
∫
S f dV

n.

Here is the crucial point: Suppose that {Ũj} is another sequence of sets satis-

fying the conditions of (4.63). Then the two limits

lim
j→∞

∫
· · ·
∫

Uj

f dV n and lim
j→∞

∫
· · ·
∫

Ũj

f dV n

are equal. Therefore, it makes sense to define the integral of f over S by

(4.64)

∫
· · ·
∫

S
f dV n = lim

j→∞

∫
· · ·
∫

Uj

f dV n,

where {Uj} is any sequence of sets satisfying the conditions of (4.63). It is un-

derstood that the value of the integral may be +∞, in which case we say that the

integral diverges.
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The proof that the limit in (4.64) is independent of the choice of {Uj}, in full

generality, requires the Lebesgue theory of integration. We shall give a proof under

some additional restrictions on S and the Uj’s, usually easy to satisfy in practice,

in Appendix B.6 (Theorem B.25).

It is also true that improper multiple integrals of nonnegative functions can be

evaluated as iterated improper integrals under suitable conditions on S and f so

that the latter integrals exist. For example,

∫∫

R2

f dA =

∫ ∞

−∞

∫ ∞

−∞
f(x, y) dx dy =

∫ ∞

−∞

∫ ∞

−∞
f(x, y) dy dx,

and if S = {(x, y) : 0 ≤ x ≤ y},
∫∫

S
f dA =

∫ ∞

0

∫ y

0
f(x, y) dx dy =

∫ ∞

0

∫ ∞

x
f(x, y) dy dx.

We shall not attempt to state a general theorem to cover all the various cases (much

less give a precise proof), but we assure the reader that as long as the integrand is

nonnegative, there is almost never any difficulty.

The analogue of the comparison test, Theorem 4.55, is valid for multiple im-

proper integrals, with the same proof. Again the basic comparison functions are

powers of |x|, but the critical exponent depends on the dimension.

4.65 Proposition. For p > 0, define fp on Rn\{0} by fp(x) = |x|−p. The integral

of fp over a ball {x : |x| < a} is finite if and only if p < n; the integral of fp over

the complement of a ball, {x : |x| > a}, is finite if and only if p > n.

Proof. We present the proof when n = 2. The only singularity of f is at the

origin, so we may use the annuli {x : ǫ < |x| < a} and {x : a < |x| < b} as

approximating regions. In polar coordinates, the integrals then become

∫ a

ǫ

∫ 2π

0
r−pr dθ dr,

∫ b

a

∫ 2π

0
r−pr dθ dr.

As ǫ → 0 and b → ∞ we obtain 2π
∫ a
0 r

1−p dr and 2π
∫∞
a r1−p dr, which are

convergent when p < 2 and p > 2, respectively.

The proof for general n is similar, using spherical coordinates and their ana-

logues in higher dimensions. The reader is invited to work out the case n = 3 in

Exercise 1.

As another example of improper double integrals, we now perform a classic

calculation that leads to one of the most important formulas in mathematics.
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Let us consider the integral

∫∫

R2

e−x
2−y2 dA.

On the one hand, we can take the approximating regions Uj to be discs centered at

the origin and switch to polar coordinates:

∫∫

R2

e−x
2−y2 dA = lim

R→∞

∫ R

0

∫ 2π

0
e−r

2

r dθ dr =

∫ ∞

0

∫ 2π

0
e−r

2

r dθ dr

= 2π
[
− 1

2e
−r2]∞

0
= π.

On the other hand, we can take the approximating regions to be squares centered at

the origin and stick to Cartesian coordinates:

∫∫

R2

e−x
2−y2 dA = lim

R→∞

∫ R

−R

∫ R

−R
e−x

2

e−y
2

dx dy

=

(∫ ∞

−∞
e−x

2

dx

)(∫ ∞

−∞
e−y

2

dy

)
.

The two integrals in parentheses are equal, of course; the name of the variable of

integration is irrelevant. We have shown that

(∫ ∞

−∞
e−x

2

dx

)2

= π.

Since e−x
2

> 0, we can take the positive square root of both sides to obtain the

magic formula:

4.66 Proposition.

∫ ∞

−∞
e−x

2

dx =
√
π.

The function e−x
2

turns up in many contexts. In particular, it is essentially

the “bell curve” or “normal distribution” of probability and statistics, but in that

setting one must rescale it so that the total area under its graph is 1; Proposition

4.66 provides the appropriate scaling factor. Proposition 4.66 is remarkable not

only because it is inaccessible by elementary calculus (the antiderivative of e−x
2

is

not an elementary function) but because it presents the number π in a starring role

that has nothing to do with circles.
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Now, what about functions that are not nonnegative? Let us suppose that S, f ,

and {Uj} are as in (4.63), but f is merely assumed to be real-valued. The essential

point is that the preceding theory can be applied to |f |, so that it makes sense to say

that
∫
· · ·
∫
S |f | dV n converges. If this condition holds, the argument used to prove

Theorem 4.58 shows that limj→∞
∫
· · ·
∫
Uj
f dV n exists and that

lim
j→∞

∫
· · ·
∫

Uj

f dV n =

∫
· · ·
∫

S
f+ dV n −

∫
· · ·
∫

S
f− dV n,

where f+(x) = max[f(x), 0] and f−(x) = max[−f(x), 0]. The integrals on the

right converge by comparison to the integral of |f |, and they are independent of

the choice of {Uj}; hence, so is the limit on the left. In short, if
∫
· · ·
∫
S |f | dV n

converges, we may define the improper integral of f over S by formula (4.64); the

limit in question exists and is independent of the choice of approximating sequence

{Uj}.
The same result holds if f is complex-valued; we simply consider its real and

imaginary parts separately.

In dimensions n > 1, however, there is no general theory of improper integrals

that are convergent but not absolutely convergent. Such integrals, when they arise,

must be defined by specific limiting procedures that are adapted to the situation at

hand.

EXERCISES

1. Prove Proposition 4.65 for the case n = 3.

2. Determine whether the following improper integrals converge, and evaluate the

ones that do.

a.

∫∫∫

R3

dV

1 + x2 + y2 + z2
.

b.

∫∫

x,y>0

dA

(1 + x2 + y2)2
.

c.

∫∫∫

x2+y2+z2<1

z2

(x2 + y2 + z2)3/2
dV .

d.

∫∫

x>0
xe−x

2−y2 dA.

e.

∫∫

x2+y2<1

x2

(x2 + y2)2
dA.
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3. The electrostatic potential generated by a distribution of electric charge in R3

with density ρ is defined to be

ϕ(x) =

∫∫∫

R3

ρ(x− y)

4π|y| d3y.

Show that this integral is absolutely convergent if ρ is continuous and vanishes

outside a bounded set.

4. Let f(x, y) = (x2 − y2)(x2 + y2)−2, and let S be the unit square [0, 1] ×
[0, 1].
a. Show that

∫∫
S |f | dA =∞.

b. Show by explicit calculation that the iterated integrals
∫ 1
0

∫ 1
0 f(x, y) dx dy

and
∫ 1
0

∫ 1
0 f(x, y) dy dx both exist and are unequal.

4.8 Lebesgue Measure and the Lebesgue Integral

In several places in this book we allude to the fact that in advanced analysis, the

Riemann theory of integration that we have developed here is replaced by the more

sophisticated theory due to Lebesgue. Detailed accounts of the Lebesgue integral

can be found in Bear [3], Jones [9], and Rudin [19]. Here we shall content our-

selves with a brief informal description of how it works. (Note: There are several

ways to develop the Lebesgue theory of integration; in some treatments, the char-

acterization of Lebesgue measure and the Lebesgue integral that we give here are

theorems rather than definitions.) In a few places we need the notion of the sum of

an infinite series, for which the reader is referred to §6.1.

The starting point is a refined concept of n-dimensional measure, independent

of any theory of integration. To keep things on a concrete level, let us explain this

concept for the case n = 2.

In the Jordan theory of area, described in §4.2, we find the area of a set S ⊂ R2

by approximating S from the inside and the outside by unions of rectangles. For

the Lebesgue notion of area, we use a two-step approximation process: We first

approximate S from the inside by compact sets and from the outside by open sets,

then approximate the compact sets from the outside and the open sets from the

inside by unions of rectangles. More precisely, let us agree to call a set that is

the union of a finite collection of rectangles with disjoint interiors a tiled set. The

Lebesgue measure m(S) of a set S ⊂ R2 is then defined as follows:

• If T =
⋃K
k=1Rk is a tiled set, where the Rk’s are rectangles with disjoint

interiors, the Lebesgue measure m(T ) is the sum of the areas of the Rk’s.
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• The Lebesgue measure of a compact set K is

m(K) = inf
{
m(T ) : T is a tiled set and T ⊃ K

}
.

• The Lebesgue measure of an open set U is

m(U) = sup
{
m(T ) : T is a tiled set and T ⊂ U

}
.

• A set S ⊂ R2 is said to be Lebesgue measurable if the quantities

sup
{
m(K) : K is compact and K ⊂ S

}

and

inf
{
m(U) : U is open and U ⊃ S

}

are equal, in which case their common value is the Lebesgue measurem(S).

Note that there is no assumption that the sets in question are bounded (although

compact sets are bounded by definition); the Lebesgue theory applies equally well

to bounded and unbounded sets.

The notion of n-dimensional Lebesgue measure for sets in Rn is entirely simi-

lar; only the terminology needs to be modified a little. Every set that one will ever

meet in “real life” — in particular, every open set, every closed set, every intersec-

tion of countably many open sets, every union of countably many closed sets, and

so on — is Lebesgue measurable.3 Lebesgue measure has the following fundamen-

tal additivity property: If {Sj} is a finite or infinite sequence of disjoint Lebesgue

measurable sets, then
⋃
Sj is Lebesgue measurable and m(

⋃
Sj) =

∑
m(Sj). In

the Jordan theory, this additivity is guaranteed to hold only for finitely many sets;

the extension to infinitely many sets is the crucial property that allows the Lebesgue

theory to handle various limiting processes more smoothly.

It is not hard to show that every open set U ⊂ Rn is the union of a finite or

countably infinite family of rectangular boxes Rj (intervals when n = 1) with dis-

joint interiors, and the Lebesgue measure of U is just the sum of the n-dimensional

volumes of the boxes. (In general these boxes are not part of a fixed grid of boxes;

if there are infinitely many of them, the diameter of Rj generally tends to zero as

j →∞.) It follows that a set S ⊂ Rn has Lebesgue measure zero if and only if for

every ǫ > 0, S is contained in the union of a finite or countable family of boxes,

the sum of whose volumes is less than ǫ. The only difference between this and the

condition that S have zero content is the fact that here we allow an infinite family

3For those who know some set theory: More precisely, one cannot construct Lebesgue nonmea-

surable sets without invoking the axiom of choice.
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of boxes, but as with additivity, this difference is significant. In particular, every

countable set has Lebesgue measure zero (if S = {x1,x2, . . .}, let Rj be a box

centered at xj with volume 2−jǫ), whereas many countable sets — the set of points

with rational coordinates, for example — are not Jordan measurable.

With the notion of Lebesgue measure in hand, we turn to the Lebesgue inte-

gral. First we specify the class of functions to which the theory applies. A function

f : Rn → R is called Lebesgue measurable if, for every interval I ⊂ R, the

set {x ∈ Rn : f(x) ∈ I} is Lebesgue measurable. Again, every function that

one will ever meet in “real life” is Lebesgue measurable. In particular, every con-

tinuous function is Lebesgue measurable, and if f is Riemann integrable on the

Jordan measurable set S, then fχS is Lebesgue measurable. Moreover, if {fj} is

a sequence of Lebesgue measurable functions such that fj(x) → f(x) for every

x, then the limit f is Lebesgue measurable. (This last statement is quite false if

“Lebesgue measurable” is replaced by “Riemann integrable”!)

Suppose that f is Lebesgue measurable and nonnegative. Rather than parti-

tioning the domain of f , we partition the set [0,∞) in which f takes its values into

small intervals [0, 2−n), [2−n, 2 · 2−n), [2 · 2−n, 3 · 2−n), and so on, and form the

sum

Snf =

∞∑

j=0

j

2n
m

({
x :

j

2n
≤ f(x) < j + 1

2n

})
.

(The Lebesgue measurability of f is needed so that the terms in this sum are well

defined. One or more of them may be infinite, in which case the value of the

sum is +∞.) The sums Snf increase with n because the associated partitions of

[0,∞) become finer and finer, so they have a limit (possibly +∞), which is defined

to be the Lebesgue integral of f (over Rn), denoted by
∫
f dm. More generally,

we define the Lebesgue integral of f over any Lebesgue measurable set S ⊂ Rn,

denoted by
∫
S f dm, to be

∫
(fχS) dm. Note that neither the function f nor the

set S needs to be bounded; for nonnegative integrands there are no “improper”

integrals in the Lebesgue theory.

Now we drop the assumption that f ≥ 0. If f is any Lebesgue measurable

function, we write it as the difference of the two nonnegative functions

f+(x) = max[f(x), 0] and f−(x) = max[−f(x), 0]
and define the Lebesgue integral

∫
f dm to be

∫
f+ dm −

∫
f− dm. The integral∫

f dm is not defined in the case where
∫
f+ dm and

∫
f− dm are both infinite,

although in some instances one can define it as an “improper” integral by limiting

procedures such as those in §4.6. (Example 3 in §4.6 illustrates this phenomenon.)

The Lebesgue integral is an extension of the Riemann integral. That is, if

the (proper) Riemann integral
∫
S f dV

n exists, then so does the Lebesgue integral
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∫
S f dm, and the two are equal; but the class of Lebesgue integrable functions is

much bigger than the class of Riemann integrable functions. We conclude with two

additional remarks about the relation between the Lebesgue and Riemann integrals.

• The notion of Lebesgue measure provides a definitive answer to the question

of which functions are Riemann integrable. Namely, a function f : Rn → R

is Riemann integrable on the bounded set S if and only if f is bounded on S
and the set of points at which fχS is discontinuous has Lebesgue measure

zero. (Cf. Theorems 4.13 and 4.18 and the discussion of zero content versus

zero measure above.)

• There is a way of giving the Riemann theory of integration an extra twist to

obtain an integral, called the Henstock-Kurzweil integral, generalized Rie-

mann integral, or gauge integral, that is equivalent to the Lebesgue integral

for nonnegative functions but also gives a well-defined result for some func-

tions f for which
∫
f+ dm and

∫
f− dm are both infinite. See Bartle [2] for

a brief introduction and DePree and Swartz [5] for a complete treatment. The

virtue of this theory is that it yields a powerful theory of integration within

the same conceptual framework as the familiar Riemann integral without the

necessity of developing a theory of measure first. The compensating virtue

of the Lebesgue theory is that it generalizes readily to yield useful notions of

measure and integration in many important situations other than the classical

integral on Euclidean space.



Chapter 5

LINE AND SURFACE

INTEGRALS;

VECTOR ANALYSIS

The themes of this chapter are (1) integrals over curves and surfaces and (2) differ-

ential operations on vector fields, which combine to yield (3) a group of theorems

relating integrals over curves, surfaces, and regions in space that are among the

most powerful and useful results of advanced calculus.

At the outset, let us explain the term “vector field” in more detail. Let F be

an Rn-valued function defined on some subset of Rn. We have encountered such

things in previous chapters, where we generally thought of them as representing

transformations from one region of Rn to another or coordinate systems on regions

of Rn. In this chapter, however, we think of such an F as a function that assigns to

each point x in its domain a vector F(x), represented pictorially as an arrow based

at x, and we therefore call it a vector field. Two simple vector fields are sketched in

Figure 5.1. The primary physical motivation is the idea of a force field. For exam-

ple, F could represent a gravitational field, F(x) being the gravitational force felt

by a unit mass located at x, or an electric field, F(x) being the electrostatic force

felt by a unit charge located at x. There are many other physical interpretations; for

example, in a moving fluid like a stream of water, F(x) could represent the velocity

of the fluid at position x. (In all these examples, F(x) may also depend on other

parameters such as the time t.)

One other general comment: The notion of differentiability, or being of class

Ck, is defined for functions on open sets, because to compute the derivative of a

function at a point it is necessary to know the values of the function at neighboring

points. However, we shall frequently be dealing with functions and vector fields on

211
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FIGURE 5.1: The vector fields F(x, y) = (x, y) (left) and F(x, y) =
(−y, x) (right).

closed sets. When we say that a function or vector field is of class Ck on a closed

set S ⊂ Rn, we always mean that it is of class Ck on some open set containing S.

5.1 Arc Length and Line Integrals

In this section we discuss integrals over curves, traditionally called “line integrals,”

which are generalizations of ordinary (one-dimensional) integrals over intervals on

the real line. As one would expect, they are based on the idea of cutting up the curve

into many tiny pieces, forming appropriate Riemann sums, and passing to the limit.

However, there are two species of line integrals, appropriate for integrating real-

valued or vector-valued functions, depending on how one adapts the differential dx
appearing in

∫ b
a f(x) dx to the more general situation. Our discussion here will

be on the informal, intuitive level where we think of dx as being an infinitesimal

increment in the variable x.

Differentials on Curves; Arc Length. Suppose C is a smooth curve in Rn.

We consider two nearby points x and x+ dx on the curve; here

(5.1) dx = (dx1, . . . , dxn)

is the vector difference between the two points, and we imagine it as being infinitely

small. We may, however, be more interested in the distance between the two points,

traditionally denoted by ds, which is

(5.2) ds = |dx| =
√
dx21 + · · ·+ dx2n.
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To give these differentials a precise meaning that can be used for calculations, the

best procedure is to parametrize the curve. Thus, we assume that C is given by

parametric equations x = g(t), a ≤ t ≤ b, where g is of class C1 and g′(t) 6= 0.

Then the neighboring points x and x+ dx are given by g(t) and g(t+ dt), so

(5.3) dx = g(t+ dt)− g(t) = g′(t) dt =

(
dx1
dt

, . . . ,
dxn
dt

)
dt.

(The difference between the increment of g and its linear approximation disappears

in the infinitesimal limit.) Moreover,

(5.4) |dx| = |g′(t)| dt =

√(
dx1
dt

)2

+ · · · +
(
dxn
dt

)2

dt,

which is just what one gets by formally multiplying and dividing the expression on

the right of (5.2) by dt.

What happens if we sum up all the infinitesimal increments dx or ds — that

is, if we integrate the differentials dx or ds = |dx| over the curve? Integration of

the vector increments dx just gives the total vector increment, that is, the vector

difference between the initial and final points on the curve:

(5.5)

∫

C
dx =

∫ b

a
g′(t) dt = g(b)− g(a).

This is nothing but the fundamental theorem of calculus applied to the components

of g; it is simple but not very exciting. On the other hand, ds is the straight-line

distance between two infinitesimally close points x and x + dx on the curve, and

since smooth curves are indistinguishable from their linear approximations on the

infinitesimal level, ds is the arc length of the bit of curve between dx and x+ dx.

Adding these up gives the total arc length of the curve:

(5.6) Arc length =

∫

C
ds =

∫ b

a
|g′(t)| dt.

Our derivation of (5.6) in terms of infinitesimals was meant as motivation rather

than as a rigorous proof of anything. Henceforth, we shall take (5.6) as a definition

of arc length for a smooth curve. (There is another, perhaps better, definition that

does not require the curve to be C1; we shall discuss it at the end of this section.)

There is, however, one crucial issue that must be addressed: The arc length of a

curve C is an intrinsic property of the geometric object C and should not depend

on the particular parametrization we use. To see that this is the case, suppose we
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FIGURE 5.2: Two oriented curves.

choose a new parameter u related to t by t = ϕ(u), where ϕ is a one-to-one smooth

mapping from the interval [c, d] to the interval [a, b]. Then the curve C described

by x = g(t) is also described by x = (g ◦ ϕ)(u), c ≤ u ≤ d, so we should have

Arc length =

∫ d

c
|(g ◦ ϕ)′(u)| du =

∫ d

c
|g′(ϕ(u))| |ϕ′(u)| du,

where for the second equality we have used the chain rule. This does indeed agree

with (5.6), by formula (4.34).

The same independence of parametrization holds for the related integral (5.5),

with one subtle but important difference. The integral
∫ b
a g

′(t) dt gives the vector

difference between the two endpoints of the curve, which is clearly independent of

the parametrization except insofar as the parametrization determines which is the

initial point and which is the final point. If we choose a new parameter u as above

so that t is a decreasing function of u (thus a = ϕ(d) and b = ϕ(c)), then the initial

and final points get switched, and so their difference is multiplied by −1.

The issue here is that a parametrization x = g(t) determines an orientation for

the curve C , that is, a determination of which direction along the curve is “forward”

and which direction is “backward,” the “forward” direction being the direction in

which the point g(t) moves as t increases. The orientation of a curve can be conve-

niently indicated in a picture by drawing one or more arrowheads along the curve

that point in the “forward” direction, as indicated in Figure 5.2. The substance of

the preceding paragraph is then that the integral (5.5) depends on the parametriza-

tion only insofar as the parametrization determines a choice of orientation. In

contrast, the arc length of a curve is independent even of the orientation.

The notion of arc length extends in an obvious way to piecewise smooth curves,

obtained by joining finitely many smooth curves together end-to-end but allow-

ing corners or cusps at the joining points; we simply compute the lengths of the

smooth pieces and add them up. We can express this more precisely in terms of

parametrizations, as follows: The function g : [a, b] → Rn is called piecewise

smooth if (i) it is continuous, and (ii) its derivative exists and is continuous except

perhaps at finitely many points tj where the one-sided limits limt→tj± g′(t) exist.
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(Note. In Chapter 8 we shall use the term “piecewise smooth” in a slightly different

sense.) In this case |g′(t)| is an integrable function on [a, b] by Theorem 4.12 (the

fact that it may be undefined at a few points is immaterial), and its integral gives

the arc length. The same generalization also applies to the line integrals discussed

below.

Remarks.

i. The parametrization x = g(t) may be considered as representing the curve C
as the path traced out by a moving particle whose position at time t is g(t).
The derivative g′(t) is then the velocity of the particle, and its norm |g′(t)|
is the speed of the particle. Integrating the velocity,

∫ b
a g

′(t) dt, gives the net

difference in the initial and final positions of the particle, whereas integrating

the speed,
∫ b
a |g′(t)| dt, gives the total distance traveled by the particle, i.e., the

arc length of the curve.

ii. In the preceding discussion, we have implicitly assumed that the parametri-

zation x = g(t) is one-to-one. This is not always the case if we think of g(t)
as the position of a particle at time t, for the particle can traverse a path more

than once. For example, g(t) = (cos t, sin t) represents a particle moving

around the unit circle with constant speed. If we restrict t to an interval of

length ≤ 2π, we get a one-to-one parametrization of part or all of the circle,

but from the physical point of view there is no reason to make such a restriction.

However, the interpretations in the preceding paragraph hold whether g is one-

to-one or not:
∫ b
a g

′(t) dt is still g(b) − g(a), and
∫ b
a |g′(t)| dt is still the total

distance traveled by the particle from time a to time b; it can be interpreted

as arc length if the portions of the curve that are traversed more than once are

counted with the appropriate multiplicity.

iii. While theoretically simple, calculation of arc length tends to be difficult in

practice because the square root implicit in the definition of the norm |g′(t)|
often leads to unpleasant integrands. This is just a fact of life.

Line Integrals of Scalar Functions. If f is a continuous function whose do-

main includes a smooth (or piecewise smooth) curve C in Rn, we can integrate f
over the curve, taking the differential in the integral to be the element of arc length

ds. Thus, if C is parametrized by x = g(t), a ≤ t ≤ b, we define

(5.7)

∫

C
f ds =

∫ b

a
f(g(t))|g′(t)| dt.

This is independent of the parametrization and the orientation, by the same chain-

rule calculation that we performed above for the case f ≡ 1.
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As an example of an application of such integrals, we can define the average

value of f over the curve C , just like the average value over a region:

Average of f over C =

∫
C f ds

Arc length of C
=

∫
C f ds∫
C ds

.

EXAMPLE 1. What is the centroid of the upper half of the unit circle, C =
{(x, y) : x2 + y2 = 1, y ≥ 0}?

Solution. The centroid of C is the point whose coordinates (x, y) are the

averages of x and y over C . Clearly x = 0 by symmetry. Just to get some

practice, let’s do the calculation of the arc length of C (which of course is π)

and
∫
C y ds with two different parametrizations: (i) taking x as the parameter

and y =
√
1− x2, and (ii) taking the polar angle θ as the parameter, x = cos θ,

y = sin θ. (Note that these two parametrizations give opposite orientations on

C; the first goes from left to right, the second from right to left.)

In the first parametrization, we have

dy =
−x dx√
1− x2

, ds =
√
dx2 + dy2 =

√
1 +

x2

1− x2 dx =
dx√
1− x2

,

so
∫

C
y ds =

∫ 1

−1

√
1− x2√
1− x2

dx = x
∣∣1
−1

= 2,

∫

C
ds =

∫ 1

−1

dx√
1− x2

= arcsin x
∣∣1
−1

= π.

In the second one, we have

dx = − sin θ dθ, dy = cos θ dθ; ds =
√
dx2 + dy2 = dθ,

so
∫

C
y ds =

∫ π

0
sin θ dθ = − cos θ

∣∣π
0
= 2,

∫

C
ds =

∫ π

0
dθ = π.

Either way, y = 2/π.

Line Integrals of Vector Fields. We can define the integral of an Rm-valued

function over a curve in Rn, simply by integrating each component separately; that

is, if F = (F1, . . . , Fm), then
∫
C F ds = (

∫
C F1 ds, . . . ,

∫
C Fm ds). There is not

much to be said about such integrals that does not follow immediately from the

facts about scalar-valued integrals. One significant fact, however, does require a

little extra proof, namely the analogue of Theorem 4.9d. We state it for ordinary

integrals over [a, b]; the generalization to integrals over curves is easy (Exercise 7a).
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5.8 Proposition. If F is a continuous Rm-valued function on [a, b], then

∣∣∣∣
∫ b

a
F(t) dt

∣∣∣∣ ≤
∫ b

a
|F(t)| dt.

Proof. For any unit vector u, we have

∣∣∣∣
( ∫ b

a
F(t) dt

)
· u
∣∣∣∣ =

∣∣∣∣
∫ b

a
F(t) · u dt

∣∣∣∣ ≤
∫ b

a
|F(t) · u| dt ≤

∫ b

a
|F(t)| dt.

Here we have applied Theorem 4.9d to the scalar-valued function F(t) ·u and then

invoked Cauchy’s inequality. The desired result is obtained by taking u to be the

unit vector in the direction of
∫ b
a F(t) dt.

Of greater interest is a scalar-valued line integral for vector fields — that is, for

Rn-valued functions on Rn. If C is a smooth (or piecewise smooth) curve in Rn

and F is a continuous vector field defined on some neighborhood of C in Rn, the

line integral of F over C is
∫

C
F · dx =

∫

C
(F1 dx1 + F2 dx2 + · · ·+ Fn dxn).

That is, if C is described parametrically by x = g(t), a ≤ t ≤ b, then

(5.9)

∫

C
F · dx =

∫ b

a
F(g(t)) · g′(t) dt.

If we make a change of parameters, say t = ϕ(u), the chain rule g′(t) dt =
g′(ϕ(u))ϕ′(u) du together with the change-of-variable formula for ordinary (sin-

gle) integrals guarantees that the quantity on the right of (5.9) is unchanged, except

that the new endpoints of integration may end up in the wrong order. Therefore:

The line integral
∫
C F · dx is independent of the parametrization as long as

the orientation is unchanged, but it acquires a factor of −1 if the orientation is

reversed. That is,
∫
C F · dx is a well-defined quantity once the vector field F and

the oriented curve C are specified.

The line integral
∫
C F · dx can be expressed as an integral of a scalar function

over C . Indeed, let us choose a parametrization x = g(t) and set

t(g(t)) =
g′(t)
|g′(t)| , Ftang(x) = F(x) · t(x).

That is, t(x) is the unit tangent vector to the curve C in the forward direction at the

point x, and Ftang(x) is the component of F(x) in the direction of t(x). Then

F(g(t)) · g′(t) = F(g(t)) · t(g(t))|g′(t)| dt = Ftang(g(t)) ds,
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so

(5.10)

∫

C
F · dx =

∫

C
Ftang ds.

That is,
∫
C F · dx is the integral of the tangential component of F with respect to

arc length. The dependence on the orientation here comes through Ftang, which

changes sign if the orientiation is reversed. (Any temptation to compute specific

line integrals by using (5.10), however, should probably be resisted, because the

element of arc length ds is often hard to compute with. It is almost always better to

use the basic definition (5.9) instead.)

Remarks.

i. If F is a force field, then
∫
C F · dx represents a quantity of energy; it is the

work done by the force on a particle that traverses the curve C .

ii. The integrand F · dx = F1 dx1 + · · · + Fn dxn in a line integral, with the

dx’s included, is often called a differential form, and we speak of integrating

a differential form over a curve. We shall return to this notion in §5.9.

What does all this boil down to when n = 1? In this case, vector fields and

scalar functions are the same thing, and both the scalar and vector versions of line

integrals are just ordinary one-variable integrals. The former, however, is indepen-

dent of orientation, whereas the latter depends on orientation. The distinction is the

same as the one between formulas (4.32) and (4.33) in §4.4; it is a question of

∫

[a,b]
f(x) dx versus

∫ b

a
f(x) dx.

In the integral on the left we must have a ≤ b; but in the integral on the right a and

b can occur in either order, and the sign of the integral depends on the order.

EXAMPLE 2. Let C be the ellipse formed by the intersection of the circular

cylinder x2 + y2 = 1 and the plane z = 2y + 1, oriented counterclockwise

as viewed from above, and let F(x, y, z) = (y, z, x). Calculate
∫
C F · dx =∫

C(y dx+ z dy + x dz).
Solution. We can parametrize C by x = cos t, y = sin t, z = 2 sin t + 1,

with 0 ≤ t ≤ 2π. Then dx = (− sin t, cos t, 2 cos t) dt, so

F · dx =
(
− sin2 t+ (2 sin t+ 1) cos t+ 2cos2 t

)
dt

= (cos 2t+ sin 2t+ cos t+ cos2 t) dt.

The integral of the first three terms over [0, 2π] vanishes, and the integral of the

last one is π. So
∫
C F · dx = π.
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FIGURE 5.3: Approximation of a curve by a piecewise linear curve.

Note that it doesn’t matter which point on C we choose to start and end at.

Instead of taking t ∈ [0, 2π], we could take t ∈ [a, a+ 2π] for any a ∈ R; the

answer is the same since the integral of a trig function over a complete period

is independent of the particular period chosen.

Rectifiable Curves. There is an alternative definition of arc length that requires

no a priori hypotheses about the smoothness of the curve. One cuts the curve C up

into a finite number of pieces by inserting subdivision points and approximates

C by the piecewise linear curve obtained by connecting the dots, as indicated in

Figure 5.3. The length of the piecewise linear approximation is obtained by adding

up the lengths of its constituent line segments, and the arc length of C is defined to

be the limit of this sum as the subdivision is made finer and finer.

To make this more precise, it is convenient to describe C parametrically. Thus,

we assume that C is the range of a one-to-one continuous mapping g : [a, b]→ Rn.

Given a partition P = {t0, . . . , tJ} of [a, b], the sum of the lengths of the line

segments joining the points g(tj) is

LP (C) =

J∑

1

|g(tj)− g(tj−1)|.

If the set of numbers

L =
{
LP (C) : P is a partition of [a, b]

}

is bounded, then C is called rectifiable, and the arc length L(C) is defined to be

the supremum of L:

L(C) = sup
{
LP (C) : P is a partition of [a, b]

}
.

Note that if P ′ is a refinement of P then LP ′(C) ≥ LP (C), by the triangle inequal-

ity; hence the supremum is indeed the appropriate sort of limit. This estimate also

implies that the supremum is unchanged if we consider only partitions containing

a given c ∈ (a, b) among their subdivision points, and from this it follows that arc
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length is additive: If C1 and C2 are the curves parametrized by g(t) for t ∈ [a, c]
and t ∈ [c, b], then L(C) = L(C1) + L(C2). See Exercise 8.

We now show that this definition coincides with our previous one forC1 curves.

5.11 Theorem. With notation as above, if g is of class C1, then C is rectifiable,

and

L(C) =

∫ b

a
|g′(t)| dt.

Proof. For any partition P of [a, b], by (5.5) and Proposition 5.8 we have

LP (C) =
J∑

1

∣∣∣∣
∫ tj

tj−1

g′(t) dt

∣∣∣∣ ≤
J∑

1

∫ tj

tj−1

|g′(t)| dt =
∫ b

a
|g′(t)| dt.

It follows that L(C) ≤
∫ b
a |g′(t)| dt, and in particular that C is rectifiable.

Next, for r, s ∈ [a, b], let Csr be the curve parametrized by g(t) with t ∈ [r, s],
and let ϕ(s) = L(Csa). (That is, we consider the length of the curve C , starting

at t = a, as a function of the right endpoint of the parameter interval.) Suppose

h > 0. Since arc length is additive, we have L(Cs+hs ) = ϕ(s + h) − ϕ(s), so by

the inequality we have just proved (applied to the curve Cs+hs ) and the mean value

theorem for integrals,

L(Cs+hs ) = ϕ(s+ h)− ϕ(s) ≤
∫ s+h

s
|g′(t)| dt = h|g′(σ)|,

where σ is some number between s and s+h. On the other hand, |g(s+h)−g(s)|
is LP (C

s+h
s ) where P is the trivial partition {s, s + h}, and hence it is no bigger

than L(Cs+hs ). Combining these estimates and dividing by h, we see that

∣∣∣∣
g(s + h)− g(s)

h

∣∣∣∣ ≤
ϕ(s + h)− ϕ(s)

h
≤ |g′(σ)|.

As h → 0, the quantities on the left and right approach |g′(s)|, and hence so does

the one in the middle. A slight modification of this argument works also for h < 0,

so we conclude that ϕ is differentiable and that ϕ′(s) = |g′(s)|. The desired result

is now immediate:

L(C) = ϕ(b) = ϕ(b) − ϕ(a) =
∫ b

a
|g′(s)| ds.
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EXERCISES

1. Find the arc length of the following parametrized curves:

a. g(t) = (a cos t, a sin t, bt), t ∈ [0, 2π].
b. g(t) = (13 t

3 − t, t2), t ∈ [0, 2].
c. g(t) = (log t, 2t, t2), t ∈ [1, e].
d. g(t) = (6t, 4t3/2, −4t3/2, 3t2), t ∈ [0, 2].

2. Express the arc length of the following curves in terms of the integral

E(k) =

∫ π/2

0

√
1− k2 sin2 t dt (0 < k < 1),

for suitable values of k. (E(k) is one of the standard elliptic integrals, so

called because of their connection with the arc length of an ellipse.)

a. An ellipse with semimajor axis a and semiminor axis b.
b. The portion of the intersection of the sphere x2 + y2 + z2 = 4 and the

cylinder x2 + y2 − 2y = 0 lying in the first octant.

3. Find the centroid of the curve y = coshx, −1 ≤ x ≤ 1.

4. Compute
∫
C

√
z ds where C is parametrized by g(t) = (2 cos t, 2 sin t, t2),

0 ≤ t ≤ 2π.

5. Compute
∫
C F · dx for the following F and C:

a. F(x, y, z) = (yz, x2, xz); C is the line segment from (0, 0, 0) to (1, 1, 1).
b. F is as in (a); C is the portion of the curve y = x2, z = x3 from (0, 0, 0)

to (1, 1, 1).
c. F(x, y) = (x− y, x+ y); C is the circle x2 + y2 = 1, oriented clockwise.

d. F(x, y) = (x2y, x3y2); C is the closed curve formed by portions of the

line y = 4 and the parabola y = x2, oriented counterclockwise.

6. Compute the following line integrals:

a.
∫
C(xe

−y dx + sinπx dy), where C is the portion of the parabola y = x2

from (0, 0) to (1, 1).
b.
∫
C(y dx+ z dy + xy dz), where C is given by x = cos t, y = sin t, z = t

with 0 ≤ t ≤ 2π.

c.
∫
C(y

2dx− 2x dy), where C is the triangle with vertices (0, 0), (1, 0), and

(1, 1), oriented counterclockwise.

7. Let F : Rn → Rm be a continuous map, and let C be a C1 curve in Rn.

a. Deduce from Proposition 5.8 that |
∫
C F ds| ≤

∫
C |F| ds.

b. In the case m = n, show that |
∫
C F · dx| ≤

∫
C |F| ds.

8. Prove in detail that arc length, as defined for rectifiable curves, is additive; that

is, if C , C1, and C2 are the curves parametrized by g(t) for t ∈ [a, b], t ∈ [a, c],
and t ∈ [c, b], then L(C) = L(C1) + L(C2).
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9. Let g(t) = (g(t), h(t)) be a C1 parametrization of a plane curve. Given a

partition P = {t0, . . . , tJ} of [a, b], the distance between two neighboring

points g(tj−1) and g(tj) is

√
[g(tj)− g(tj−1)]2 + [h(tj)− h(tj−1)]2.

Use the mean value theorem to express the differences inside the square root in

terms of g′ and h′, and then use Exercise 9 in §4.1 to give an alternate proof of

Theorem 5.11. (Exactly the same idea works for curves in Rn.)

5.2 Green’s Theorem

Green’s theorem is the simplest of a group of theorems — actually, they’re all

special cases of one big theorem, as we shall indicate in §5.9 — that say that “the

integral of something over the boundary of a region equals the integral of something

else over the region itself.” To state it, we need some terminology.

A simple closed curve in Rn is a curve whose starting and ending points co-

incide, but that does not intersect itself otherwise. More precisely, a simple closed

curve is one that can be parametrized by a continuous map x = g(t), a ≤ t ≤ b,
such that g(a) = g(b) but g(s) 6= g(t) unless {s, t} = {a, b}.

We shall use the term regular region to mean a compact set in Rn that is the

closure of its interior. Equivalently, a compact set S ⊂ Rn is a regular region if

every neighborhood of every point on the boundary ∂S contains points in Sint. For

example, a closed ball is a regular region, but a closed line segment in Rn (n > 1)

is not, because its interior is empty.

Now let n = 2. We say that a regular region S ⊂ R2 has a piecewise smooth

boundary if the boundary ∂S consists of a finite union of disjoint, piecewise

smooth simple closed curves, where “piecewise smooth” has the meaning assigned

in the previous section. (We thus allow the possibility that S contains “holes,” so

that its boundary may be disconnected.) In this case, the positive orientation on ∂S
is the orientation on each of the closed curves that make up the boundary such that

the region S is on the left with respect to the positive direction on the curve. More

precisely, if x is a point on ∂S at which ∂S is smooth, and t = (t1, t2) is the unit

tangent vector in the positive direction at that point, then the vector n = (t2,−t1),
obtained by rotating t by 90◦ clockwise, points out of S. (That is, x+ ǫn /∈ S for

small ǫ > 0.) See Figure 5.4.

If F = (F1, F2) is a continuous vector field on R2, we denote by

∫

∂S
F · dx or

∫

∂S
F1 dx1 + F2 dx2
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FIGURE 5.4: A region with piecewise smooth, positively oriented boundary.

the sum of the line integrals of F over the positively oriented closed curves that

make up ∂S.

5.12 Theorem (Green’s Theorem). Suppose S is a regular region in R2 with piece-

wise smooth boundary ∂S. Suppose also that F is a vector field of class C1 on S.

Then

(5.13)

∫

∂S
F · dx =

∫∫

S

(
∂F2

∂x1
− ∂F1

∂x2

)
dA.

In the more common notation, if we set F = (P,Q) and x = (x, y),

(5.14)

∫

∂S
P dx+Qdy =

∫∫

S

(
∂Q

∂x
− ∂P

∂y

)
dA.

Proof. First we consider a very restricted class of regions, for which the proof is

quite simple. We shall say that the region S is x-simple if it is the region between

the graphs of two functions of x, that is, if it has the form

(5.15) S =
{
(x, y) : a ≤ x ≤ b, ϕ1(x) ≤ y ≤ ϕ2(x)

}
,

where ϕ1 and ϕ2 are continuous, piecewise smooth functions on [a, b]. Likewise,

we say that S is y-simple if it has the form

(5.16) S =
{
(x, y) : c ≤ y ≤ d, ψ1(y) ≤ x ≤ ψ2(y)

}
,

where ψ1 and ψ2 are continuous, piecewise smooth functions on [c, d].

EXAMPLE 1. The region bounded by the curve y = 1
8x

3−1, the line x+2y =
2, and the y-axis is both x-simple and y simple. (See Figure 5.5.) It has the

forms (5.15) and (5.16) with

a = 0, b = 2, ϕ1(x) =
1
8x

3 − 1, ϕ2(x) = 1− 1
2x,

c = −1, d = 1, ψ1(y) = 0, ψ2(y) =

{
2(y + 1)1/3 if −1 ≤ y ≤ 0,

2− 2y if 0 ≤ y ≤ 1.
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1

−1

2

FIGURE 5.5: The region in Example 1.

Now let us suppose that S is both x-simple and y-simple. If we write S in

the form (5.15), then ∂S consists of (i) the curve y = ϕ1(x), oriented from left to

right, (ii) the curve y = ϕ2(x), oriented from right to left, and (iii) portions of the

vertical lines x = a and x = b, which may reduce to single points. The line integral∫
∂S P dx is the sum of the integrals over these pieces. On the vertical lines, x is

constant and so dx = 0 (that is, dx/dt = 0 in any parametrization), so these pieces

contribute nothing. On the curves y = ϕ1(x) and y = ϕ2(x) we can take x as the

parameter, except that the orientation is wrong for y = ϕ2(x); hence

∫

∂S
P dx =

∫ b

a
P (x, ϕ1(x)) dx −

∫ b

a
P (x, ϕ2(x)) dx.

On the other hand, by the fundamental theorem of calculus,

∫∫

S

∂P

∂y
dA =

∫ b

a

∫ ϕ2(x)

ϕ1(x)

∂P

∂y
dy dx =

∫ b

a

[
P (x, ϕ2(x)) − P (x, ϕ1(x))

]
dx.

Comparing these equalities, we obtain

∫

∂S
P dx = −

∫∫

S

∂P

∂y
dA.

In exactly the same way, using the representation (5.16) for S, we see that

∫

∂S
Qdy =

∫∫

S

∂Q

∂x
dA.

(There is no minus sign here, because if we take y as the parameter for the curves

x = ψ1(y) and ψ2(y), the orientation is wrong for ψ1 and right for ψ2.) Adding

these last two equalities, we obtain the desired result (5.14).
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FIGURE 5.6: A decomposition of the region in Figure 5.4 into simple subregions.

Thus Green’s theorem is established for regions that are both x-simple and y-

simple. There is now an immediate generalization to a much larger class of regular

regions. Namely, suppose the region S can be cut up into finitely many subregions,

say S = S1 ∪ · · · · ∪Sk, where

a. the Sj’s may intersect along common edges but have disjoint interiors;

b. each Sj has a piecewise smooth boundary and is both x-simple and y-simple.

(See Figure 5.6.) Since the Sj’s overlap only in a set of zero content, by Corollary

4.23b we have

∫∫

S

(
∂Q

∂x
− ∂P

∂y

)
dA =

k∑

j=1

∫∫

Sj

(
∂Q

∂x
− ∂P

∂y

)
dA.

On the other hand, we also have

∫

∂S
(P dx+Qdy) =

k∑

j=1

∫

∂Sj

(P dx+Qdy),

because the integrals over the parts of the boundaries of the Sj’s that are not parts of

the boundary of S all cancel out. In more detail, if Si and Sj have a common edge

C , then C will have one orientation as part of ∂Si and the opposite orientation

as part of ∂Sj , so the two integrals over C that make up parts of
∫
∂Si

and
∫
∂Sj

will cancel each other. Therefore, we obtain Green’s theorem for the region S by

applying Green’s theorem to the simple regions Sj and adding up the results.

The result we have just obtained is sufficient for most practical purposes, but

it is not definitive. The class of regular regions that can be cut up into simple

subregions does not include all regions with C1 boundary, much less all regions

with piecewise smooth boundary, and it may be difficult to tell whether a given

region has this property. For example, the region

{
(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 + x3 sinx−1

}
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is x-simple but cannot be cut up into finitely many y-simple subregions because

the graph of x3 sinx−1 has infinitely many “wiggles.” The deduction of the general

case from the special cases considered here requires some additional machinery that

is of interest in its own right; we present it in Appendix B.7 (Theorem B.28).

EXAMPLE 2. Let C be the unit circle x2 + y2 = 1, oriented counterclockwise.

The line integral

∫

C

[√
1 + x2 − yexy + 3y

]
dx+

[
x2 − xexy + log(1 + y4)

]
dy

is difficult to evaluate directly, but it yields easily to Green’s theorem. Indeed,

C is the oriented boundary of the unit disc D, so the integral equals

∫∫

D

(
∂

∂x

[
x2 − xexy + log(1 + y4)

]
− ∂

∂y

[√
1 + x2 − yexy + 3y

])
dA

=

∫∫

D
(2x− 3) dA = −3π.

(The integral of 2x over D vanishes by symmetry.)

EXAMPLE 3. It is an amusing and sometimes useful fact that the area of a reg-

ular region S in the plane can be expressed as a line integral over the boundary

∂S. This can be done in many different ways; for instance,

Area of S =

∫

∂S
x dy = −

∫

∂S
y dx =

∫

∂S

1
2 (x dy − y dx).

Indeed, Green’s theorem shows that all of these integrals are equal to
∫∫
S 1 dA.

The line integral
∫
∂S F · dx is the integral of the tangential component of F

over ∂S. However, Green’s theorem can also be interpreted as a statement about

the integral of the normal component of a vector field.

To see this, recall that counterclockwise and clockwise rotations by 90◦ in

the plane are given by the transformations R+(x, y) = (−y, x) and R−(x, y) =
(y,−x), respectively. Thus, if t = (t1, t2) is the unit tangent vector to ∂S at a

point on ∂S, pointing in the forward direction, then n = R−(t) = (t2,−t1) is the

unit normal vector to ∂S pointing out of S. Given a vector field F = (F1, F2),
let F̃ = R+(F) = (−F2, F1) be the vector field obtained by rotating the values

of F by 90◦ counterclockwise. Then the normal component of F is the tangential

component of F̃:

F · n = F1t2 − F2t1 = F̃ · t.
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Hence, by applying Green’s theorem to the rotated field F̃, we obtain the following

result:

5.17 Corollary. Suppose S is a regular region in R2 with piecewise smooth bound-

ary ∂S, and let n(x) be the unit outward normal vector to ∂S at x ∈ ∂S. Suppose

also that F is a vector field of class C1 on S. Then

(5.18)

∫

∂S
F · n ds =

∫∫

S

(
∂F1

∂x1
+
∂F2

∂x2

)
dA.

Let us see what Green’s theorem says when F is the gradient of a C2 function

f , so that F1 = ∂1f and F2 = ∂2f . Formula (5.13) gives

∫

∂S
∇f · dx =

∫∫

S
(∂1∂2f − ∂2∂1f) dA =

∫∫

S
0 dA = 0.

This is no surprise; it is easy to see directly that the line integral of a gradient over

any closed curve vanishes. Indeed, if the curve C is parametrized by x = g(t) with

g(a) = g(b), then by the chain rule,

∫

C
∇f · dx =

∫ b

a
∇f(g(t)) · g′(t) dt =

∫ b

a

d

dt
f(g(t)) dt

= f(g(b)) − f(g(a)) = 0.

The formula (5.18) gives a more interesting result. ∇f ·n is the directional deriva-

tive of f in the outward normal direction to ∂S, or normal derivative of f on ∂S,

often denoted by ∂f/∂n; and (5.18) says that

∫

∂S

∂f

∂n
ds =

∫∫

S

(
∂2f

∂x21
+
∂2f

∂x22

)
dA.

The integrand on the right is the Laplacian of f , which we encountered in §2.6 and

which will play an important role in §5.6.

EXERCISES

1. Evaluate the following line integrals by using Green’s theorem.

a. The integral in Exercise 5c in §5.1.

b. The integral in Exercise 6c in §5.1.

c.
∫
C [(x

2 + 10xy + y2) dx + (5x2 + 5xy)dy], where C is the square with

vertices (0, 0), (2, 0), (0, 2), and (2, 2), oriented counterclockwise.
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d.
∫
∂S(3x

2 sin y2 dx + 2x3y cos y2 dy), where S is any regular region with

piecewise smooth boundary.

2. Let S be the annulus 1 ≤ x2 + y2 ≤ 4. Compute
∫
∂S(xy

2 dy − x2y dx), both

directly and by using Green’s theorem.

3. Find the positively oriented simple closed curve C that maximizes the line

integral
∫
C [y

3 dx+ (3x− x3) dy].
4. Use Green’s theorem as in Example 3 to calculate the area under one arch of

the cycloid described parametrically by x = R(t− sin t), y = R(1− cos t).

5. Let S = {(x, y) : a ≤ x ≤ b, 0 ≤ y ≤ f(x)}, where f is a nonnegative C1

function on [a, b]. Explain how the formula A = −
∫
∂S y dx for the area of S

in Example 3 leads to the familiar formula A =
∫ b
a f(x) dx.

6. Let S be a regular region in R2 with piecewise smooth boundary, and let f and

g be functions of class C2 on S. Show that
∫

∂S
f
∂g

∂n
ds =

∫∫

S

[
f(∂2xg + ∂2yg) +∇f · ∇g

]
dA.

7. The point of this exercise is to show how Green’s theorem can be used to de-

duce a special case of Theorem 4.41. Let U , V be connected open sets in R2,

and let G : U → V be a one-to-one transformation of class C1 whose deriva-

tiveDG(u) is invertible for all u ∈ U . Moreover, let S be a regular region in V
with piecewise smooth boundary, let A be its area, and let T = G−1(S).
a. The Jacobian detDG is either everywhere positive or everywhere negative

on U ; why?

b. Suppose detDG(u) > 0 for all u ∈ U . Write A =
∫
∂S y dx as in Ex-

ample 3, make a change of variable to transform this line integral into

a line integral over ∂T , and apply Green’s theorem to deduce that A =∫∫
T detDG dA.

c. By a similar argument, show that if detDG(u) < 0 for all u ∈ U , then

A = −
∫∫
T detDG dA =

∫∫
T |detDG| dA. Where does the minus sign

come from?

5.3 Surface Area and Surface Integrals

In this section we discuss integrals of functions and vector fields over smooth sur-

faces in R3. Like line integrals, surface integrals come in two varieties, unoriented

and oriented. On a curve the orientation is a matter of deciding which direction

along a curve is “positive”; on a surface it is a matter of deciding which side of the

surface is the “positive” side. The convenient way of specifying the orientation of
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FIGURE 5.7: A Möbius band.

a smooth surface in R3 is to make a choice of one of the two unit normal vectors

at each point of the surface, in such a way that the choice varies continuously with

the point. The “positive” side of the surface is the one into which the normal arrow

points.

It is important to note that not every surface can be oriented. The standard

example of a nonorientable surface is the Möbius band, which can be constructed

by taking a long strip of paper, giving it a half twist, and gluing the ends together.

(That is, call the two sides of the original strip A and B; the ends are to be glued

together so that side A of one end matches with side B of the other.) A sketch of a

Möbius band is given in Figure 5.7, but the best way to appreciate the features of

the Möbius band is to make one for yourself.

However, if a surface forms part of the boundary of a regular region in R3, it

is always orientable, and the standard specification for the orientation is that the

positive normal vector is the one pointing out of the region.

Surface Area. We begin by deriving a formula for the area of a region on

a smooth surface S. We shall assume that S is represented parametrically as the

image of a connected open set W in the uv-plane under a one-to-one C1 map

G : W → R3:

x = (x, y, z) = G(u, v), (u, v) ∈W.

For a given surface S, it may not be the case that all of S can be represented by a

single parametrization. We shall assume, however, that S can be cut up into finitely

many pieces which each admit a parametrization; it is then enough to consider the

pieces separately. Also, it is usually sufficient to have a good parametrization for a

subset of S whose complement is of lower dimension, such as the one provided by

spherical coordinates on the unit sphere with the “international date line” removed.

To see how to compute surface area on S, consider a small rectangle in the uv-

plane with vertices (u, v), (u+ ∆u, v), (u, v +∆v), and (u +∆u, v +∆v). Its
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image under the map G is a small quadrilateral (with curved sides) on the surface

S whose vertices are G(u, v), G(u+∆u, v), etc. (See Figure 3.4 in §3.3.) In the

limit in which the increments ∆u and ∆v become infinitesimals du and dv, this

quadrilateral becomes a parallelogram whose sides from the vertex x = G(u, v) to

the two adjacent vertices are described by the vectors

G(u+ du, v)−G(u, v) =
∂G

∂u
du and G(u, v + dv)−G(u, v) =

∂G

∂v
dv.

These two vectors are tangent to the surface S at x, so their cross product is a

vector normal to S at x, whose magnitude is the area of the parallelogram they

span. Therefore, the element of area on S is given in terms of the parametrization

x = G(u, v) by

(5.19) dA =

∣∣∣∣
∂G

∂u
× ∂G

∂v

∣∣∣∣ du dv.

In other words, if R is a measurable subset of W in the uv-plane and G(R) is the

corresponding region in the surface S,

(5.20) Area of G(R) =

∫∫

R

∣∣∣∣
∂G

∂u
× ∂G

∂v

∣∣∣∣ du dv.

Henceforth we shall take (5.20) as the definition of area for a parametrized

surface. One might wonder if surface area can also be defined by considering poly-

hedral approximations to the surface, as polygonal approximations to a curve were

used to define arc length in the appendix of §5.1. The answer is affirmative, but this

matter is a good deal trickier than the theory of arc length, and we shall not pursue

it further.

Let us be a little more explicit about the formula (5.19). With the notation

G(u, v) = (x, y, z), we have

∂G

∂u
× ∂G

∂v
= det




i j k

∂ux ∂uy ∂uz
∂vx ∂vy ∂vz


 =

∂(y, z)

∂(u, v)
i+

∂(z, x)

∂(u, v)
j+

∂(x, y)

∂(u, v)
k.

Thus,

(5.21) dA =

√[
∂(y, z)

∂(u, v)

]2
+

[
∂(z, x)

∂(u, v)

]2
+

[
∂(x, y)

∂(u, v)

]2
du dv.

Computationally, this is usually a horrible mess. (But what did you expect? Arc

length is already problematic; surface area must be worse!)
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As with arc length, we must verify that our informally-derived formula for sur-

face area really makes sense by checking that it is independent of the parametriza-

tion. Thus, suppose we make a change of variables (u, v) = Φ(s, t), where Φ is a

one-to-one C1 map from a region V in the st-plane to the regionW in the uv-plane.

The elements of area are then related by

du dv =

∣∣∣∣
∂(u, v)

∂(s, t)

∣∣∣∣ ds dt,

by Theorem 4.41. If we plug this into (5.21), we get

dA =
√
α2 + β2 + γ2 ds dt, where α =

∂(y, z)

∂(u, v)

∂(u, v)

∂(s, t)
, etc.

But by the chain rule and the fact that the determinant of a product is the product

of the determinants, we have

∂(y, z)

∂(u, v)

∂(u, v)

∂(s, t)
=
∂(y, z)

∂(s, t)
,

and likewise for the other two terms. Hence, in the st-parametrization,

dA =

√[
∂(y, z)

∂(s, t)

]2
+

[
∂(z, x)

∂(s, t)

]2
+

[
∂(x, y)

∂(s, t)

]2
ds dt.

This is of exactly the same form as (5.21), as we wished to show.

The formula for surface area becomes a little less hideous in the special case

where the surface is the graph of a function, z = ϕ(x, y). In this case we can take

x and y as the parameters, that is,

G(x, y) =
(
x, y, ϕ(x, y)

)
.

Here ∂xG = (1, 0, ∂xϕ) and ∂yG = (0, 1, ∂yϕ), so

(5.22)

∂G

∂x
× ∂G

∂y
= −(∂xϕ)i− (∂yϕ)j+ k,

dA =
√
1 + (∂xϕ)2 + (∂yϕ)2 dx dy.

(Note that our surface is a level set of the function Φ(x, y, z) = z − ϕ(x, y) and

that −(∂xϕ)i − (∂yϕ)j + k = ∇Φ; we deduced that ∇Φ is normal to the surface

by other means in Theorem 2.37.)



232 Chapter 5. Line and Surface Integrals; Vector Analysis

EXAMPLE 1. Let us compute the surface area of the unit sphere x2+y2+z2 =
1. We can proceed in two ways:

Solution I. The upper hemisphere is the graph of the function ϕ(x, y) =√
1− x2 − y2. A little calculation yields

√
1 + (∂xϕ)2 + (∂yϕ)2 =

1√
1− x2 − y2

,

and by (5.22), the area of the upper hemisphere is obtained by integrating this

function over the unit disc. (Note that this integral is improper, as the integrand

blows up along the boundary of the disc.) Switching to polar coordinates yields

∫ 1

0

∫ 2π

0

r√
1− r2

dθ dr = −2π
√

1− r2
∣∣1
0
= 2π.

Hence the area of the whole sphere is 4π.

Solution II. We can parametrize the sphere by the spherical coordinates

x = sinϕ cos θ, y = sinϕ sin θ, z = cosϕ. An easy calculation yields

∂(y, z)

∂(ϕ, θ)
= sin2 ϕ cos θ,

∂(z, x)

∂(ϕ, θ)
= sin2 ϕ sin θ,

∂(x, y)

∂(ϕ, θ)
= cosϕ sinϕ,

and the sum of the squares of these quantities is

sin4 ϕ(cos2 θ + sin2 θ) + cos2 ϕ sin2 ϕ = sin2 ϕ(cos2 ϕ+ sin2 ϕ) = sin2 ϕ.

Hence, by (5.21), the area of the sphere is

∫ π

0

∫ 2π

0
sinϕdθ dϕ = −2π cosϕ

∣∣π
0
= 4π.

Surface Integrals of Scalar Functions. Now that we know how to compute

surface area, it is easy to define the integral of a real-valued continuous function

over a surface: It is just
∫∫
S f dA, where dA is the element of surface area de-

fined above. (To keep the notation simple, we shall take the region over which the

integration is performed to be the whole surface S; the idea is exactly the same

for integration over subsets of S.) More precisely, if S admits a parametrization

x = G(u, v) with (u, v) ∈W , where W is tacitly assumed to be measurable,
∫∫

S
f dA =

∫∫

W
f(G(u, v))

∣∣∣∣
∂G

∂u
× ∂G

∂v

∣∣∣∣ du dv.

If S is the graph of a function z = ϕ(x, y), (x, y) ∈W , the result is
∫∫

S
f dA =

∫∫

W
f
(
x, y, ϕ(x, y)

)√
1 + (∂xϕ)2 + (∂yϕ)2 dx dy.
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Surface Integrals of Vector Fields. The element of area dA on a surface S
parametrized by x = G(u, v) is the norm of the vector (∂uG × ∂vG) du dv. It is

natural to regard the vector (∂uG×∂vG) du dv itself as a “vector element of area”

for S: its magnitude gives the area of a small bit of S, and its direction, namely the

normal direction to S, specifies how that bit is oriented in space. That is, we have

(
∂G

∂u
× ∂G

∂v

)
du dv = n dA

where n is a unit normal vector to the surface S. We have already observed that

dA is independent of the parametrization, and clearly so is n up to a factor of ±1.

However, using a different parametrization (for example, interchanging u and v)

might result in replacing n by −n. In other words, a parametrization for a surface

S gives a definite orientation for the S, that is, a specification of which side of S is

the “positive” side.

Now suppose S is a surface with a specified orientation, and F is a continuous

vector field defined on a neighborhood of S. The surface integral of F over S is

defined to be ∫∫

S
F · n dA.

Thus, if S is parametrized by x = G(u, v), (u, v) ∈W , we have

∫∫

S
F · n dA =

∫∫

W
F(G(u, v)) ·

(
∂G

∂u
× ∂G

∂v

)
du dv.

This integral is independent of the choice of parametrization as long as the paramet-

rization induces the specified orientation of S; switching to the opposite orientation

results in multiplying the integral by −1. (If S is a nonorientable surface such as a

Möbius band,
∫∫
S F · n dA is not defined.)

A geometric-physical interpretation of this is easy to obtain. F·n is the normal

component of F along S; it is positive or negative according as F points into the

positive or negative side of S. We can think of F as representing the flow of some

substance (air, for example, although there is no need to be specific at this point):

the magnitude of F(x) is the rate of flow of the substance past x and its direction

is the direction of flow. The integral
∫∫

F · n dA then represents the net flow, or

flux, of F across the surface S from the negative side to the positive side. We shall

discuss this in more detail in §5.6.

As with line integrals, surface integrals of vector fields are often easier to com-

pute than surface integrals of scalar functions because the inconvenient square root

in the formula for dA does not appear in the vector n dA. Let us see, for example,

what
∫∫
S F·n dA becomes when S is the graph of a function with domainW ⊂ R2,
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say z = ϕ(x, y). As in the preceding discussion of surface area, we take x and y
as the parameters and find that

n dA = [−(∂xϕ)i− (∂yϕ)j+ k] dx dy.

The orientation here is the one with the normal pointing upward, since its z com-

ponent is positive. Thus, if F = F1i+ F2j+ F3k and G(x, y) = (x, y, ϕ(x, y)),

(5.23)

∫∫

S
F · n dA

=

∫∫

W

[
−F1(G(x, y))

∂ϕ

∂x
− F2(G(x, y))

∂ϕ

∂y
+ F3(G(x, y))

]
dx dy.

Here and in what follows, we adopt the common practice of denoting by i, j,

and k the unit vectors in the positive coordinate directions and writing vector fields

in R3 as F = F1i + F2j + F3k in preference to F = (F1, F2, F3); this serves to

emphasize the interpretation of F as a vector field rather than a transformation.

EXAMPLE 2. Let S be the portion of the cone x2 + y2 = z2 with 0 ≤ z ≤ 1,

oriented so that the normal points upward, and let F(x, y, z) = x2i+yzj+yk.

Compute
∫∫
S F · n dA.

Solution. One way is to use polar coordinates as parameters: G(r, θ) =
(r cos θ, r sin θ, r). Then we have ∂rG = (cos θ)i+ (sin θ)j+ k and ∂θG =
−(r sin θ)i+ (r cos θ)j, so

∂rG× ∂θG = −(r cos θ)i− (r sin θ)j+ rk.

This gives the right orientation since the z component, namely r, is positive.

Thus,

∫∫

S
F · n dA

=

∫ 2π

0

∫ 1

0

[
(r cos θ)2(−r cos θ) + (r sin θ)r(−r sin θ) + (r sin θ)r

]
dr dθ,

whose value is easily found to be −1
4π. Alternatively, we could use the repre-

sentation z =
√
x2 + y2 and use (5.23). The reader may verify that this leads

to ∫∫

S
F · n dA =

∫∫

x2+y2≤1

[
−x3 − y2

√
x2 + y2√

x2 + y2
+ y

]
dx dy,

and conversion of this integral to polar coordinates leads to the same rθ-integral

as before.
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Finally, as a practical matter we need to extend the ideas in this section from

smooth surfaces to piecewise smooth surfaces. Giving a satisfactory general def-

inition of a “piecewise smooth surface” is a rather messy business, and we shall

not attempt it. For our present purposes, it will suffice to assume that the surface S
under consideration is the union of finitely many pieces S1, . . . , Sk that satisfy the

following conditions:

i. Each Sj admits a smooth parametrization as discussed above.

ii. The intersections Si ∩ Sj are either empty or finite unions of smooth curves.

We then define integration over S in the obvious way:

∫∫

S
f dA =

k∑

j=1

∫∫

Sj

f dA.

Condition (ii) guarantees that the parts of S that are counted more than once on

the right, namely the intersections Si ∩ Sj , contribute nothing to the integral, by

Propositions 4.19 and 4.22.

EXAMPLE 3.

a. Let S be the surface of a cube; then we can take S1, . . . , S6 to be the faces

of the cube.

b. Let S be the surface of the cylindrical solid {(x, y, z) : x2+y2 ≤ 1, |z| ≤
1}. We can write S = S1 ∪S2 ∪S3 where S1 and S2 are the discs forming

the top and bottom and S3 is the circular vertical side. S1 and S2 can be

parametrized by (x, y)→ (x, y, 1) and (x, y)→ (x, y,−1) with x2+y2 ≤
1, and S3 can be parametrized by (θ, z) → (cos θ, sin θ, z) with 0 ≤ θ <
2π and |z| ≤ 1. If one wishes to use only one-to-one parametrizations with

compact parameter domains, one can cut S3 further into two pieces, say

the left and right halves defined by 0 ≤ θ ≤ π and π ≤ θ ≤ 2π.

Remark. In condition (ii) above, we have in mind that the sets Sj will intersect

each other only along their edges, although there is nothing to forbid them from

crossing one another. For example, S could be the union of the two spheres S1 =
{x : |x| = 1} and S2 = {x : |x− i| = 1}. This added generality is largely useless

but also harmless.

EXERCISES

1. Find the area of the part of the surface z = xy inside the cylinder x2+y2 = a2.
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2. Find the area of the part of the surface z = x2+y2 inside the cylinder x2+y2 =
a2.

3. Suppose 0 < a < b. Find the area of the torus obtained by revolving the circle

(x− b)2 + z2 = a2 in the xz-plane about the z axis. (Hint: The torus may be

parametrized by x = (b + a cosϕ) cos θ, y = (b+ a cosϕ) sin θ, z = a sinϕ,

with 0 ≤ ϕ, θ ≤ 2π.)

4. Find the area of the ellipsoid (x/a)2 + (y/a)2 + (z/b)2 = 1.

5. Find the centroid of the upper hemisphere of the unit sphere x2 + y2 + z2 = 1.

6. Compute
∫∫
S(x

2+y2) dA where S is the portion of the sphere x2+y2+z2 = 4
with z ≥ 1.

7. Compute
∫∫
S(x

2 + y2 − 2z2) dA where S is the unit sphere. Can you find the

answer by symmetry considerations without doing any calculations?

8. Calculate
∫∫
S F · n dA for the following F and S.

a. F(x, y, z) = xzi − xyk; S is the portion of the surface z = xy with

0 ≤ x ≤ 1, 0 ≤ y ≤ 2, oriented so that the normal points upward.

b. F(x, y, z) = x2i+zj−yk; S is the unit sphere x2+y2+z2 = 1, oriented

so that the normal points outward (away from the center).

c. F(x, y, z) = xyi + zj; S is the triangle with vertices (2, 0, 0), (0, 2, 0),
(0, 0, 2), oriented so that the normal points upward.

d. F(x, y, z) = z2k; S is the boundary of the region x2+ y2 ≤ 1, a ≤ z ≤ b,
oriented so that the normal points out of the region. (You should be able to

do this in your head.)

e. F(x, y, z) = xi+ yj+ zk; S is the boundary of the region x2 + y2 ≤ z ≤√
2− x2 − y2, oriented so that the normal points out of the region.

5.4 Vector Derivatives

Let ∇ denote the n-tuple of partial differential operators ∂j = ∂/∂xj :

∇ = (∂1, . . . , ∂n).

We are already familiar with this notation in connection with the gradient of a C1

function on Rn, which is the vector field defined by

grad f = ∇f = (∂1f, . . . , ∂nf).

We can also use ∇ to form interesting combinations of the derivatives of a vector

field, via the dot and cross product. If F is a C1 vector field on an open subset of



5.4. Vector Derivatives 237

Rn, the divergence of F is the function defined by

divF = ∇ · F = ∂1F1 + · · ·+ ∂nFn.

The geometric (coordinate-invariant) meaning of ∇ · F will be explained in §5.5.

Next, suppose n = 3. If F is a C1 vector field on an open subset of R3, the

curl of F is the vector field defined by

curlF = ∇× F = (∂2F3 − ∂3F2)i+ (∂3F1 − ∂1F3)j+ (∂1F2 − ∂2F1)k.

(Some authors write rotF instead of curlF; “rot” stands for “rotation.”) Again,

the curl has a geometric significance that will be explained later, in §5.7.

We shall employ the notations divF and curlF in preference to∇·F and∇×F
because they seem to be more readable. In this section we shall also write grad f
instead of ∇f for the sake of consistency; later we shall use these two notations

interchangeably.

The operators grad, curl, and div satisfy product rules with respect to scalar

multiplication and dot and cross products. As these rules are useful and some of

them are not obvious, it is well to make a list for handy reference. In the following

formulas, f and g are real-valued functions and F and G are vector fields, all of

class C1.

grad(fg) = f grad g + g grad f(5.24)

grad(F ·G) = (F · ∇)G+ F× (curlG) + (G · ∇)F+G× (curlF)(5.25)

curl(fG) = f curlG+ (grad f)×G(5.26)

curl(F×G) = (G · ∇)F+ (divG)F − (F · ∇)G− (divF)G(5.27)

div(fG) = f divG+ (grad f) ·G(5.28)

div(F×G) = G · (curlF)− F · (curlG)(5.29)

In (5.25) and (5.27), F · ∇ denotes the directional derivative
∑
Fj∂j , that is,

(F · ∇)G =
∑

Fj
∂G

∂xj
.

Equations (5.24) and (5.28) are valid in Rn for any n; the others, which involve

cross products and curls, are restricted to n = 3. The proofs of all these formulas

are just a matter of computation; we leave them to the reader as exercises.

We can combine the operations grad, curl, and div pairwise in several ways.

That is, if f and F are of class C2, we can form

curl(grad f), div(curlF), div(grad f), curl(curlF), grad(divF).
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It is an important fact that the first two of these always vanish, by the equality

of mixed partials:

(5.30) curl(grad f)

= (∂2∂3f − ∂3∂2f)i+ (∂3∂1f − ∂1∂3f)j+ (∂1∂2f − ∂2∂1f)k = 0

and

(5.31) div(curlF)

= ∂1(∂2F3 − ∂3F2) + ∂2(∂3F1 − ∂1F3) + ∂3(∂1F2 − ∂2F1) = 0.

Schematically, we have

scalar

functions

grad−→ vector

fields

curl−→ vector

fields

div−→ scalar

functions

and (5.30) and (5.31) say that the composition of two successive mappings is zero.

The third combination, div(grad f), which makes sense in any number of di-

mensions, is of fundamental importance for both physical and purely mathematical

reasons. It is called the Laplacian of f and is usually denoted by ∇2f or ∆f :

(5.32) ∇2f = ∆f = div(grad f) = ∂21f + · · · + ∂2nf.

The last two combinations are of less interest by themselves, but together they yield

the Laplacian for vector fields in R3:

(5.33) grad(divF)− curl(curlF) = ∇2F = (∇2F1)i+ (∇2F2)j+ (∇2F3)k.

The verification of (5.33) is a straightforward but somewhat tedious calculation that

we leave to the reader.

EXERCISES

1. Compute the curl and divergence of the following vector fields.

a. F(x, y, z) = xy2i+ xyj+ xyk.

b. F(x, y, z) = (sin yz)i+ (xz cos yz)j+ (xy cos yz)k.

c. F(x, y, z) = x2zi+ 4xyzj+ (y − 3xz2)k.

2. Compute the Laplacians of the following functions.

a. f(x, y) = x5 − 10x3y2 + 5xy4.

b. f(x, y, z) = xy2 − 4yz3.
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c. f(x) = |x|a (x ∈ Rn \ {0}, a ∈ R). (Hint: Use Exercise 9 in §2.6.)

d. f(x, y) = log(x2 + y2) ((x, y) 6= (0, 0)).

3. Let F(x, y, z) = xi+yj+zk. Show that for any a ∈ R3, we have curl(a×F) =
2a, div[(a · F)a] = |a|2 and div[(a× F)× a] = 2|a|2.

4. Prove (5.24) and (5.25).

5. Prove (5.26) and (5.27).

6. Prove (5.28) and (5.29).

7. Prove (5.33).

8. Why is the minus sign in (5.29) there? That is, on grounds of symmetry, with-

out going through any calculations, why must the formula div(F × G) =
G · (curlF) + F · (curlG) be wrong?

9. Show that for any C2 functions f and g, div(grad f × grad g) = 0.

5.5 The Divergence Theorem

The divergence theorem, also known as Gauss’s theorem or Ostrogradski’s the-

orem, is the 3-dimensional analogue of the version (5.18) of Green’s theorem; it

relates surface integrals over the boundary of a regular region in R3 to volume inte-

grals over the region itself. The divergence theorem is valid for regions with piece-

wise smooth boundaries, but we shall allow the meaning of “piecewise smooth”

to remain a little vague; see the remarks at the end of §5.3. To formulate precise

conditions that encompass all the cases of interest would involve a rather arduous

excursion into technicalities, and the more retricted class of regions covered by the

following argument suffices for most purposes.

5.34 Theorem (The Divergence Theorem). Suppose R is a regular region in R3

with piecewise smooth boundary ∂R, oriented so that the positive normal points

out of R. Suppose also that F is a vector field of class C1 on R. Then

(5.35)

∫∫

∂R
F · n dA =

∫∫∫

R
divF dV.

Proof. As with Green’s theorem, we begin by considering a class of simple regions.

We say that R is xy-simple if it has the form

R =
{
(x, y, z) : (x, y) ∈W, ϕ1(x, y) ≤ z ≤ ϕ2(x, y)

}
,

where W is a regular region in the xy-plane and ϕ1 and ϕ2 are piecewise smooth

functions on W . We define the notions of yz-simple and xz-simple similarly, and

we say that R is simple if it is xy-simple, yz-simple, and xz-simple.
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Suppose now that R is simple. We shall prove the divergence theorem for

the region R by considering the components of F separately. That is, let F =
F1i+ F2j+ F3k; we shall show that

∫∫

∂R
F3k · n dA =

∫∫∫

R
∂3F3 dV,

and similarly for the other two components. Since R is xy-simple, the boundary

∂R consists of three pieces: the “top” and “bottom” surfaces z = ϕ2(x, y) and

z = ϕ1(x, y) and the “sides” consisting of the union of the vertical line segments

from (x, y, ϕ1(x, y)) to (x, y, ϕ2(x, y)) as (x, y) ranges over the boundary of W .

The outward normal to R is horizontal on the sides, i.e., k · n = 0 there, so the

sides contribute nothing to the surface integral. For the top and bottom surfaces we

use (5.23). The outward normal points upward on the top surface and downward

on the bottom surface, so
∫∫

∂R
F3k · n dA =

∫∫

W
F3(x, y, ϕ2(x, y)) dx dy −

∫∫

W
F3(x, y, ϕ1(x, y)) dx dy

=

∫∫

W

∫ ϕ2(x,y)

ϕ1(x,y)
∂3F3(x, y, z) dz dx dy

=

∫∫∫

R
∂3F3(x, y, z) dV,

as claimed. The proof for F1i and F2j is the same, using the assumptions that R is

yz-simple and xz-simple.

It now follows that the divergence theorem is valid for regions that can be cut

up into finitely many simple regions R1, . . . , Rk. The integrals of divF over the

regions R1, . . . , Rk add up to the integral over R, and the integrals of F · n over

the boundaries ∂R1, . . . , ∂Rk add up to the integral over ∂R because the integrals

over the portions of the ∂Rj’s that are not part of ∂R cancel out. (The reasoning is

the same as in the proof of Green’s theorem.)

The completion of the proof for general regular regions with smooth boundary,

with indications of how to generalize it to the piecewise smooth case, is given in

Appendix B.7 (Theorem B.30).

Armed with the divergence theorem, we can obtain a better understanding of

the meaning of divF. Suppose F is a vector field of class C1 in some open set

containing the point a. For r > 0, let Br be the ball of radius r about a. If r is

very small, the average value of divF(x) on the ball Br is very nearly equal to

divF(a). Therefore, by the divergence theorem,

divF(a) ≈ 3

4πr3

∫∫∫

Br

divF dV =
3

4πr3

∫∫

∂Br

F · n dA.
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This approximation becomes better and better as r → 0, and hence

(5.36) divF(a) = lim
r→0

3

4πr3

∫∫

|x−a|=r
F · n dA.

The integral on the right is the flux of F across ∂Br from the inside (Br) to the

outside (the complement of Br). If we think of the vector field as representing

the flow of some substance through space, the integral represents the amount of

substance flowing out of Br minus the amount of substance flowing in; thus, the

condition divF(a) > 0 means that there is a net outflow near a, in other words,

that F tends to “diverge” from a. (The effect is subtle, though: One has to divide

the flux by r3 in (5.36) to get something that does not vanish in the limit.) In any

case, the integral in (5.36) is a geometrically defined quantity that is independent

of the choice of coordinates; this gives the promised coordinate-free interpretation

of divF.

Among the important consequences of the divergence theorem are the follow-

ing identities.

5.37 Corollary (Green’s Formulas). Suppose R is a regular region in R3 with

piecewise smooth boundary, and f and g are functions of class C2 on R. Then
∫∫

∂R
f∇g · n dA =

∫∫∫

R
(∇f · ∇g + f∇2g) dV,(5.38)

∫∫

∂R
(f∇g − g∇f) · n dA =

∫∫∫

R
(f∇2g − g∇2f) dV.(5.39)

Proof. An application of the product rule (5.28) shows that div(f∇g) = ∇f ·
∇g + f · ∇2g, so the divergence theorem applied to F = f∇g yields (5.38). The

corresponding equation with f and g switched also holds; by subtracting the latter

equation from the former we obtain (5.39).

The directional derivative ∇f · n that occurs in these formulas is called the

outward normal derivative of f on ∂R and is often denoted by ∂f/∂n.

EXERCISES

In several of these exercises it will be useful to note that if Sr is the sphere of

radius r about the origin, the unit outward normal to Sr at a point x ∈ Sr is just

r−1x. This is geometrically obvious if you think about it a little. Alternatively,

since Sr is a level set of the function |x|2 = x2+ y2+ z2, we know that∇(|x|2) =
2xi+ 2yj + 2zk = 2x is normal to Sr, so the unit normal is |x|−1x = r−1|x| for

x ∈ Sr.
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1. Use the divergence theorem to evaluate the surface integral
∫∫
S F ·n dA for the

following F and S, where S is oriented so that the positive normal points out

of the region bounded by S.

a. F, S as in Exercise 8b in §5.3.

b. F, S as in Exercise 8e in §5.3.

c. F(x, y, z) = x2i+ y2j+ z2k; S is the surface of the cube 0 ≤ x, y, z ≤ a.

d. F(x, y, z) = (x/a2)i + (y/b2)j + (z/c2)k; S is the ellipsoid (x/a)2 +
(y/b)2 + (z/c)2 = 1.

e. F(x, y, z) = x2i − 2xyj + z2k; S is the surface of the cylindrical solid

{(x, y, z) : (x, y) ∈ W, 1 ≤ z ≤ 2} where W is a smoothly bounded

regular region in the plane with area A.

2. Let F(x, y, z) = (x2+y2+z2)(xi+yj+zk) and let S be the sphere of radius

a about the origin. Compute
∫∫
S F · n both directly and by the divergence

theorem.

3. Let R be a regular region in R3 with piecewise smooth boundary. Show that

the volume of R is 1
3

∫∫
∂R F · n dA where F(x, y, z) = xi+ yj+ zk.

4. Prove the following integration-by-parts formula for triple integrals:

∫∫∫

R
f
∂g

∂x
dV = −

∫∫∫

R
g
∂f

∂x
dV +

∫∫

∂R
fgnx dA,

where nx is the x-component of the unit outward normal to ∂R. (Of course,

similar formulas also hold with x replaced by y and z.)

5. Suppose R is a regular region in R3 with piecewise smooth boundary, and f is

a function of class C2 on R.

a. Show that

∫∫

∂R

∂f

∂n
dA =

∫∫∫

R
∇2f dV .

b. Show that if ∇2f = 0, then

∫∫

∂R
f
∂f

∂n
dA =

∫∫∫

R
|∇f |2 dV .

6. Let x = (x, y, z) and g(x) = |x|−1 = (x2 + y2 + z2)−1/2.

a. Compute ∇g(x) for x 6= 0.

b. Show that ∇2g(x) = 0 for x 6= 0. (Cf. Exercise 9 in §2.6.)

c. Show by direct calculation that
∫∫
S(∂g/∂n) dA = −4π if S is any sphere

centered at the origin.

d. Since ∂g/∂n = ∇g · n and ∇2g = div(∇g), why do (b) and (c) not

contradict the divergence theorem?

e. Show that
∫∫
∂R(∂g/∂n) dA = −4π if R is any regular region with piece-

wise smooth boundary whose interior contains the origin. (Hint: Consider

the region obtained by excising a small ball about the origin from R.)
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7. Suppose that f is a C2 function on R3 that satisfies Laplace’s equation ∇2f =
0.

a. By applying (5.39) to f and g, with g as in Exercise 6 and R = {x : ǫ ≤
|x| ≤ r}, show that the mean values of f on the spheres |x| = r and

|x| = ǫ are equal. (Use Exercises 5a and 6.)

b. Conclude that the mean value of f on any sphere centered at the origin is

equal to the value of f at the origin. (Remark: There is nothing special

about the origin here. By applying this result to f̃(x) = f(x+ a), which

also satisfies Laplace’s equation, we see that the mean value of f on any

sphere is the value of f at the center. The converse is also true; a function

that has this mean value property must satisfy Laplace’s equation.)

5.6 Some Applications to Physics

In this section we illustrate the uses of the divergence theorem by deriving some

important differential equations of mathematical physics. We make a standing as-

sumption that all unspecified mathematical functions that denote physical quantities

are smooth enough to ensure the validity of the calculations.

Flow of Material. We have previously alluded to an interpretation of a vector

field in terms of material flowing through space. We now develop this idea in more

detail.

Suppose there is some substance moving through a region of space — it might

be air, water, electric charge, or whatever. The distribution of the substance is given

by a density function ρ(x, t); thus ρ(x, t) dV is the amount of substance at time t
in a small box of volume dV located at the point x = (x, y, z). The substance is

moving around, so we also have the velocity field v(x, t) that gives the velocity of

the substance at position x and time t.

Now consider a small bit of oriented surface dS (imagined, not physical) with

area dA and normal vector n located near the point x. (We shall picture dS as a

parallelogram, but its exact shape is unimportant.) At what rate does the substance

flow through this bit of surface?

First suppose that n is parallel to the velocity v = v(x, t). We picture a small

box with vertical face dS and length |v| dt, where dt is a small increment in time,

as in Figure 5.8a. We assume that the box is sufficiently small so that that the

velocity and density are essentally constant throughout the box during the time

interval (t, t + dt). Then the substance that flows through the surface dS in the

time interval dt is just the contents of the box at time t. The volume of the box is
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FIGURE 5.8: Flow of material through a surface element dS.

|v| dt dA, so the amount of substance in the box is ρ|v| dt dA. In short, the rate of

flow of substance through dS is ρ|v| dA.

Now suppose, more generally, that the angle from the velocity v to the normal

n to dS is θ. We apply the same reasoning to the box in Figure 5.8b. The vertical

height of the box is now | cos θ| times the slant height of dS, so the volume of the

box is |v| | cos θ| dt dA = |v · n| dt dA. Therefore, the rate of flow of substance

through dS is ρv · n dA if we take orientation into account, that is, if we count the

flow as negative when it goes in across dS in the direction opposite to n.

Passing from the infinitesimal level to the macroscopic level, we conclude that

the rate of flow of substance through a surface S is

∫∫

S
J · n dA, where J(x, t) = ρ(x, t)v(x, t).

The time-dependent vector field J = ρv that occurs here represents the momentum

density if ρ is the mass density of the substance, and it represents the current density

if the substance is electric charge and ρ is the charge density. Our earlier remarks

about interpreting vector fields in terms of flows really mean thinking of the vector

field as a momentum or current density.

A Conservation Law. Now we come to the application of the divergence the-

orem. In the context of the preceding discussion, suppose that the substance is

conserved, i.e., that it is neither created nor destroyed. Consider a regular region R
in space with smooth boundary ∂R. The total amount of substance in R at time t
is
∫∫∫

R ρ(x, t) d
3x. Since the substance is conserved, the only way for this amount

to change is for the substance to flow in or out through ∂R. Therefore,

d

dt

∫∫∫

R
ρ(x, t) d3x = −

∫∫

∂R
J · n dA.
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(The integral on the right is positive when the substance flows out of S, i.e., when

the amount of substance in S is decreasing; hence the minus sign.) The quantity

on the left is the integral over R of ∂ρ/∂t, by Theorem 4.47. We can use the

divergence theorem to convert the integral on the right to another integral over R,

obtaining

(5.40)

∫∫∫

R

∂ρ

∂t
(x, t) dV = −

∫∫∫

R
divJ dV.

Now, this relation holds for any region R. In particular, let us take R = Br to

be the ball of radius r centered at the point x. After division of both sides by the

volume of Br, (5.40) says that the mean values of ∂ρ/∂t and − divJ on Br are

equal. Letting r → 0 and assuming that these functions are continuous, we see that

their values at the center x are equal. In short, we have

(5.41)
∂ρ

∂t
+ divJ = 0,

the classic differential equation relating the charge and current densities (or mass

and momentum densities, etc.).

This argument is reversible; that is, (5.41) implies that the substance is con-

served. Indeed, suppose R is a regular region such that no substance flows in or out

of R. Integrating (5.41) and using Theorem 4.47 and the divergence theorem, we

obtain

d

dt

∫∫∫

R
ρ dV =

∫∫∫

R

∂ρ

∂t
dV = −

∫∫∫

R
divJ dV = −

∫∫

∂R
J · n dA = 0,

so the amount of substance in R remains constant. Although (5.41) is equivalent

to the conservation of the substance, it is more informative than the mere statement

the substance is neither created or destroyed; it provides information about how the

substance can move around.

The conservation law (5.41) has an important consequence for an incompress-

ible fluid such as water. Incompressibility means that the density ρ is a constant,

so that on the one hand, ∂ρ/∂t = 0, and on the other, divJ = div(ρv) = ρdiv v.

Thus, (5.41) implies that the velocity field v for an incompressible fluid satisfies

divv = 0.

The Heat Equation. We now derive a mathematical model for the transfer

of heat through a substance by diffusion. (If the substance in question is a fluid

like water or air, our model does not take convection effects into account; we must

assume that the fluid is immobile on the macroscopic scale. But our model is valid
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for the diffusion of heat in solids as well as in fluids that cannot flow readily, such

as air in a down jacket.) Our model will take the form of a differential equation for

the temperature u(x, t) at position x and time t.

The first basic physical assumption (which may be a simplification of the real-

life situation) is that the thermal energy density is proportional to the temperature.

The constant of proportionality σ is the specific heat density; it is the product of the

usual specific heat or heat capacity and the mass density of the substance. The total

thermal energy (or “heat,” for short) within a region R at time t is then

∫∫∫

R
σu(x, t) d3x.

The next assumption is Newton’s law of cooling, which says that heat flows

from hotter to colder regions at a rate proportional to the difference in temperature.

In our situation, the precise interpretation of this statement is that the flux of heat

per unit area in the direction of the unit vector n at the point x is proportional to the

directional derivative ∇u(x) · n of the temperature in the direction n, the constant

of proportionality being negative since heat flows in the direction of decreasing

temperature. Denoting the constant of proportionality by−K , then, we see that the

flux of heat across an oriented surface S with normal vector n is

−
∫∫

S
K∇u · n dA.

K is called the thermal conductivity.

Next, the amount of heat in a regular region R can change only by the flow of

heat across the boundary ∂R or by the creation or destruction of heat within R (by

a chemical or nuclear reaction, for example). Thus, if we denote by F (x, t) the rate

per unit volume at which heat is being produced at position x at time t, we have

d

dt

∫∫∫

R
σu(x, t) d3x =

∫∫

∂R
K∇u(x, t) · n dA+

∫∫∫

R
F (x, t) d3x.

Here n denotes the unit outward normal to ∂R, as usual, and the minus sign on the

surface integral has disappeared because a positive flow of heat out of R represents

a decrease of heat in R.

As in the preceding subsection, we bring the d/dt inside the integral and apply

the divergence theorem to obtain

σ

∫∫∫

R

∂u

∂t
dV = K

∫∫∫

R
∇2u dV +

∫∫∫

R
F dV.



5.6. Some Applications to Physics 247

Since this holds for an arbitrary regular region R, we conclude as before that

(5.42) σ
∂u

∂t
(x, t) = K∇2u(x, t) + F (x, t).

This partial differential equation is known as the (inhomogeneous) heat equation;

it is of fundamental importance in the study of all sorts of diffusion processes. The

important special case F = 0 (the homogeneous equation) is what is usually called

the heat equation.

We have implicitly assumed that the specific heat density σ and the thermal

conductivity K are constants. However, the same arguments apply to the more

general situation where they are allowed to depend on position, as will be the case

where the material through which the heat is diffusing varies in some way from

point to point. The reader may verify that the result is the following generalized

heat equation:

σ(x)
∂u

∂t
(x, t) = div

[
K(x)∇u(x, t)

]
+ F (x, t).

Potentials and Laplace’s Equation. The electric field generated by a system

of electric charges is the vector field E whose value at a point x is the force felt

by a unit positive charge locted at x as the result of the electrostatic attraction or

repulsion to the system of charges. If the system is just a single unit positive charge

at the point p, the field is given by the usual inverse square law force, E(x) =
(x − p)/|x − p|3. (There should be a constant of proportionality, but we shall

assume that units of measurement have been chosen so that the constant is 1.) For

many purposes, it is more convenient to work with the electric potential u(x) =
|p− x|−1, which is related to the electric field E by

E = −∇u.

(For any points x1 and x2, u(x2)−u(x1) is the work done in moving a unit positive

charge from x1 to x2 through the field E.)

If, instead of a single charge at one point, our system of charges consists of

a number of charges located at different points, the electric field (resp. electric

potential) generated by the system is just the sum of the fields (resp. potentials)

generated by the individual charges. We wish to consider the case where there

is a continuous distribution of charge (an idealization, but a useful one) in some

bounded region of space. That is, we are given a charge density function ρ(p), a

continuous function that vanishes outside some bounded set R. The field generated

by such a charge distribution is found in the usual way: Chop up the set R into tiny

pieces, treat the charge coming from each piece as a point charge, and add up the
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resulting fields or potentials. We shall work primarily with the potentials, for which

the result is

(5.43) u(x) =

∫∫∫

R3

ρ(p)

|p− x| d
3p.

It will be convenient to make the substitution y = p− x. This is just a translation

of coordinates, so its Jacobian is 1, and we obtain

(5.44) u(x) =

∫∫∫

R3

ρ(x+ y)

|y| d3y.

A couple of comments are in order about this integral. We have written it as

an integral over R3, but it really extends only over the bounded region R − x =
{y : x + y ∈ R} on which ρ(x + y) 6= 0. The integral is improper because of

the singularity of |y|−1 at the origin, but one can easily see that it is absolutely

convergent by Proposition 4.65.

The main object of this subsection is to derive an important differential equation

relating u and ρ. The key point is the fact that the Laplacian of |y|−1 vanishes

except at the origin (where it is undefined):

(5.45) ∇2
(
|y|−1

)
= 0 for y 6= 0.

The proof is a straightforward calculation (Exercise 2c in §5.4 or Exercise 6b in

§5.5).

5.46 Theorem. Suppose ρ is a function of class C2 on R3 that vanishes outside

a bounded set, and let u be defined by (5.44). Then u is of class C2 and ∇2u =
−4πρ.

Proof. We can differentiate u by passing the derivatives under the integral sign.

They fall on ρ, which is assumed to be of class C2, so u is of class C2 and

∇2u(x) =

∫∫∫ ∇2ρ(x+ y)

|y| d3y.

(Strictly speaking, Theorem 4.47 does not apply because of the singularity of the

integrand at the origin, but this is a minor technicality. One can finesse the problem,

for example, by switching to spherical coordinates, in which the r2 sinϕ coming

from the volume element cancels the r−1 of the integrand with room to spare.)

Here ∇2ρ(x + y) is obtained by differentiating ρ with respect to x, but the same

result is obtained by taking the derivatives with respect to y, for ∂xj [ρ(x + y)] =
(∂jρ)(x + y) = ∂yj [ρ(x + y)]. We can therefore use Green’s formula to transfer
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the derivatives to |y|−1. We need to take some care, however, since the singularity

of |y|−1 does not remain harmless after being differentiated twice.

Let us fix the point x and choose positive numbers ǫ and K , with ǫ < 1 and K
large enough so that ρ(x+y) = 0 if |y| ≥ K−1. Let Rǫ,K = {y : ǫ < |y| < K}.
We then have

∇2u(x) = lim
ǫ→0

∫∫∫

Rǫ,K

∇2ρ(x+ y)

|y| d3y.

The integrand has no singularities in the region Rǫ,K , so we can apply Green’s

formula (5.39) to obtain

∇2u(x) = lim
ǫ→0

[ ∫∫∫

Rǫ,K

ρ(x+ y)∇2(|y|−1) d3y

+

∫∫

∂Rǫ,K

[
∇ρ(x+ y)|y|−1 − ρ(x+ y)∇(|y|−1)

]
· n dA

]
.

The integral over Rǫ,K on the right vanishes by (5.45). Also, the boundary of Rǫ,K
consists of two pieces, the sphere |y| = K and the sphere |y| = ǫ, and the integral

over |y| = K is zero because ρ(x+ y) and its derivatives vanish for |y| > K − 1.

Therefore,

(5.47) ∇2u(x) = lim
ǫ→0

∫∫

|y|=ǫ

[
∇ρ(x+ y)|y|−1 − ρ(x+ y)∇(|y|−1)

]
· n dA.

Here n denotes the unit normal to the sphere |y| = ǫ that is outward with respect

to Rǫ,K and hence inward in the usual sense.

Since the first derivatives of ρ are continuous, |∇ρ(x+y)| is bounded by some

constant C for |y| ≤ 1, and hence

(5.48)

∣∣∣∣∣

∫∫

|y|=ǫ

∇ρ(x+ y) · n
|y| dA

∣∣∣∣∣ ≤
∫∫

|y|=ǫ

C

ǫ
dA =

C

ǫ
4πǫ2 = 4πCǫ,

which vanishes as ǫ → 0. To evaluate the second term in (5.47), we observe that

n = −ǫ−1y. (See the remark preceding the exercises in §5.5.) An easy calculation

gives ∇(|y|−1) = −y/|y|3, so ∇(|y|−1) · n = ǫ−1|y|2/|y|3 = ǫ−2. Therefore,

(5.47) and (5.48) show that

∇2u(x) = − lim
ǫ→0

∫∫

|y|=ǫ

ρ(x+ y)

ǫ2
dA

= (−4π) lim
ǫ→0

[
1

4πǫ2

∫∫

|y|=ǫ
ρ(x+ y) dA

]
.
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But the expression inside the brackets is just the mean value of ρ(x + y) on the

sphere |y| = ǫ, which tends to ρ(x) as ǫ→ 0, so the proof is complete.

Remark. The hypothesis that ρ is of class C2 can be weakened (C1 is more

than enough); we impose it simply to avoid technicalities in the proof. In fact, if

ρ vanishes outside a bounded set and is integrable there, then the equation ∇2u =
−4πρ holds on any open set on which ρ is C1. The key ideas of the proof are all

present in the preceding argument.

5.49 Corollary. The electric field E is related to the charge density ρ by divE =
4πρ.

Proof. 4πρ = div(−∇u) = divE.

The differential equation ∇2u = −4πρ is called the inhomogeneous Laplace

equation or Poisson equation. The special case ∇2u = 0, valid in regions where

there are no charges, is the (homogeneous) Laplace equation. These equations

have been extensively studied; solutions of ∇2u = 0, in particular, have many

interesting properties and applications in many areas.

Everything we have said applies also to gravitational potentials and fields gen-

erated by mass distributions with mass density ρ, except for some minus signs

coming from the fact that masses attract whereas like charges repel. Specifically,

the gravitational potential is given by u(x) = −
∫∫∫

ρ(x + y)|y|−1 d3y, and it

satisfies ∇2u = 4πρ.

It should be noted that the preceding discussion applies only to situations where

the charge or mass density ρ is static, that is, unchanging in time. If the charges or

masses move around, things become more complicated. The basic reason is that if

a charge or mass at p is moved to a nearby point p′, the potential it induces cannot

change instantly from |x−p|−1 to |x−p′|−1 throughout all of space, because the

news of the move can only travel with the speed of light. For electricity, the physics

of time-varying fields is contained in Maxwell’s equations, which we shall present

below; for gravity, it is described by general relativity. (If the time dependence

is not too rapid, however, the relativistic effects will be small and the preceding

calculations can be used as a good approximation. This is more often the case with

gravity than with electricity, because gravity is a much weaker interaction.)

Maxwell’s Equations. Maxwell’s equations are the fundamental differential

equations that are the foundation for the classical (unquantized) theory of electicity

and magnetism. They relate the electric field E, the magnetic field B, the charge
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density ρ, and the current density J. In suitably normalized units, they are

(5.50)
divE = 4πρ, curlE = −1

c

∂B

∂t
,

divB = 0, curlB =
1

c

∂E

∂t
+

4π

c
J,

where c is the speed of light. This is not the place for a thorough study of Maxwell’s

equations and their consequences for physics, but we wish to point out a couple of

features of them in connection with the ideas we have been developing. In what

follows we shall assume that all functions in question are of class C2, so that the

second derivatives make sense and the mixed partials are equal.

First, Maxwell’s equations contain the law of conservation of charge. Indeed,

by formula (5.31) we have

∂ρ

∂t
=

1

4π
div

∂E

∂t
=

c

4π
div(curlB)− divJ = − divJ,

and this is the conservation law in the form (5.41). Second, in a region of space

with no charges or currents (ρ = 0 and J = 0), by formula (5.33) we have

∇2E = ∇(divE)− curl(curlE) = 0+
1

c
curl

∂B

∂t
=

1

c2
∂2E

∂t2

and

∇2B = ∇(divB)− curl(curlB) = 0− 1

c
curl

∂E

∂t
=

1

c2
∂2B

∂t2
.

That is, the components of E and B all satisfy the differential equation

(5.51) ∇2f =
1

c2
∂2f

∂t2
.

This is the wave equation, another of the fundamental equations of mathematical

physics. It describes the propagation of waves in many different situations; here it

concerns electromagnetic radiation — light, radio waves, X-rays, and so on.

EXERCISES

Besides distributions of charge or mass in 3-space, one can consider distributions on

surfaces or curves (physically: thin plates or wires). The formula for the associated

potential or field is similar to (5.43) except that the triple integral is replaced by a

surface or line integral, and the density ρ represents charge or mass per unit area or

unit length rather than unit volume. In the following exercises, “uniform” means

“of constant density.”
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1. Consider a uniform distribution of mass on the sphere of radius r about the

origin. Show that

a. inside the sphere, the potential is constant and the gravitational field van-

ishes;

b. outside the sphere; the potential and field are the same as if the entire mass

were located at the origin.

2. Consider a uniform distribution of mass on the solid ball of radius R about the

origin. Show that the gravitational field at a point x is the same as if the mass

closer to the origin than x were all located at the origin and the mass farther

from the origin than x (if any) were absent. (Use Exercise 1.)

3. Consider a uniform distribution of charge on the z-axis, with density ρ (charge

per unit length).

a. Compute the electric field generated by this distribution. (The relevant

formula is similar to (5.43), but 1/|p−x| is replaced by the negative of its

gradient with respect to x, namely, (x− p)/|x− p|3.)

b. Show that the modification of (5.43) that presumably gives the potential

for this charge distribution is a divergent integral.

c. To resolve the difficulty presented by (b), we make use of the fact that

the defining property of the potential u, namely ∇u = −E, only deter-

mines u up to an additive constant, so we may subtract constants from u
without affecting the physics. Consider instead a uniform distribution of

charge on the interval [−R,R] on the z-axis with density ρ. Compute the

potential uR generated by this distribution, and show that uR − 2ρ logR
converges as R → ∞ to a function whose gradient is the negative of the

field found in (a). (This sort of removal of divergences by “subtracting off

infinite constants” is common in quantum field theory, where it is known

as renormalization.)

4. Prove the following two-dimensional analogue of Theorem 5.46: Suppose ρ is

a function of class C2 on R2 that vanishes outside a bounded set, and let

u(x) =

∫
ρ(x+ y) log |y| d2y.

Then u is of class C2 and ∇2u = 2πρ. (The proof is very similar to that of

Theorem 5.46; see Exercise 2d in §5.4.)

5.7 Stokes’s Theorem

Stokes’s theorem is the generalization of Green’s theorem in which the plane is

replaced by a curved surface. The precise setting is as follows.
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FIGURE 5.9: An oriented surface and its positively oriented boundary.

Let S0 be a smooth surface in R3, and let S be a region in S0 that is bounded by

a piecewise smooth curve ∂S. By this we mean that ∂S is the boundary of S within

the surface S0.1 (Of course, if we think of S as a subset of R3, it has no interior

and so is its own boundary.) We assume that S is oriented by a choice of normal

vector field n, so we can speak of the positive and negative sides of S, and we give

∂S the orientation compatible with the orientation of S in the sense we used in

Green’s theorem. This means, informally speaking, that if you walk around ∂S in

the positive direction, standing on the positive side of S, then S is on your left. In

more mathematical terms, if t is the unit tangent to ∂S in the forward direction at

a point x ∈ ∂S, then n× t, considered as an arrow emanating from x, points into

S. See Figure 5.9.

5.52 Theorem (Stokes’s Theorem). Let S and ∂S be as described above, and let

F be a C1 vector field defined on some neighborhood of S in R3. Then

(5.53)

∫

∂S
F · dx =

∫∫

S
(curlF) · n dA.

Proof. If S is a region in the xy-plane, then n = k = (0, 0, 1); moreover, F · dx
involves only the x- and y-components of F, i.e., F1 and F2, and (curlF) ·n is the

z-component of curlF, namely ∂1F2 − ∂2F1. Hence Stokes’s theorem reduces to

Green’s theorem in this case.

Next, suppose that S admits a parametrization x = G(u, v), so that S is the

image under G of a regular region W in the uv-plane and ∂S is the image of ∂W .

1Here are the precise definitions: A point x ∈ S is in the interior of S relative to S0 if it has a

neighborhood U (in R
3) such that U ∩ S0 ⊂ S; it is in the boundary of S relative to S0 if all of

its neighborhoods contain points in S and points in S0 \ S. S is regular if it is compact and every

neighborhood of every (relative) boundary point contains points in the (relative) interior.
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We assume that this parametrization yields the given orientation on S (otherwise,

just switch u and v). We use the parametrization to pull back the integrals over S
and ∂S to integrals over W and ∂W , and we apply Green’s theorem to the latter. It

is just a matter of seeing that this change of variables works out as it should.

As in the proofs of Green’s theorem and the divergence theorem, we consider

the components of F separately. Thus, if we write F = F i+Gj+Hk, it is enough

to prove (5.53) for F i, Gj, and Hk separately. All three of them work the same

way, so we shall just do F i, for which (5.53) reduces to

(5.54)

∫

∂S
F (x, y, z) dx =

∫∫

S
[(∂zF )j− (∂yF )k] · n dA.

Now, using the parametrization x = G(u, v), we have

(5.55)∫∫

S
[(∂zF )j− (∂yF )k] · n dA =

∫∫

W
[(∂zF )j− (∂yF )k] ·

(
∂G

∂u
× ∂G

∂v

)
du dv

=

∫∫

W

(
∂F

∂z

∂(z, x)

∂(u, v)
− ∂F

∂y

∂(x, y)

∂(u, v)

)
du dv.

On the other hand, since the formalism of differentials automatically encodes the

chain rule, ∫

∂S
F dx =

∫

∂W
F

(
∂x

∂u
du+

∂x

∂v
dv

)
.

(In both of these equations, F and its derivatives are evaluated at G(u, v).) We

apply Green’s theorem to this last line integral:

∫

∂W
F

(
∂x

∂u
du+

∂x

∂v
dv

)
=

∫∫

W

(
∂

∂u

[
F
∂x

∂v

]
− ∂

∂v

[
F
∂x

∂u

])
du dv.

By the product rule and the chain rule, the integrand on the right equals

[
∂F

∂x

∂x

∂u
+
∂F

∂y

∂y

∂u
+
∂F

∂z

∂z

∂u

]
∂x

∂v
+ F

∂2x

∂u∂v

−
[
∂F

∂x

∂x

∂v
+
∂F

∂y

∂y

∂v
+
∂F

∂z

∂z

∂v

]
∂x

∂u
− F ∂2x

∂v∂u

=
∂F

∂z

∂(z, x)

∂(u, v)
− ∂F

∂y

∂(x, y)

∂(u, v)
.

But this is the integrand on the right side of (5.55), so (5.54) is proved.
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Finally, as in the proofs of Green’s theorem and the divergence theorem, we

obtain Stokes’s theorem more generally for surfaces S that can be cut up into a

finite number of pieces that each admit a parametrization by applying the preceding

argument to the pieces and adding up the results. Alternatively, we can obtain

Stokes’s theorem for general surfaces by an adaptation of the proof of Green’s

theorem in Appendix B.7.

EXAMPLE 1. Use Stokes’s theorem to compute
∫
C F · dx where F(x, y, z) =√

x2 + 1 i + xj + 2yk and C is the intersection of the surfaces z = xy and

x2 + y2 = 1, oriented counterclockwise as viewed from above.

Solution. C is the boundary of the portion of the surface z = xy inside

the cylinder x2 + y2 = 1, and its orientation is compatible with the orientation

of S with the normal pointing upward. We have curlF(x, y, z) = 2i + k and

n dA = (−yi− xj+ k) dx dy, so

∫

C
F · dx =

∫∫

x2+y2≤1
(1− 2y) dx dy = π.

(No computation is necessary here; the integral of 1 is the area of the disc and

the integral of −2y vanishes by symmetry.)

There is an interesting feature of Stokes’s theorem that does not appear in its

siblings. A closed curve in R2 is the boundary of just one regular region in R2,

and a closed surface in R3 is the boundary of just one regular region in R3; but a

closed curve in R3 is the boundary of infinitely many surfaces in R3! For example,

the unit circle in the xy-plane is the boundary of the unit disc in the xy-plane, the

upper and lower hemispheres of the unit sphere in R3, the portion of the paraboloid

z = 1− x2 − y2 lying above the unit disc, and so forth. Stokes’s theorem says that

if C is a closed curve in R3 and S is any oriented surface bounded by C , then

∫

C
F · dx =

∫∫

S
(curlF) · n dA

for any C1 vector field F, provided that the orientations on C and S are compatible.

EXAMPLE 2. Let F(x, y, z) = [exz + ex+2y]i+ [log(2 + y + z) + 2ex+2y]j+
3xyzk. Compute

∫∫
S curlF · n dA, where S is the portion of the surface z =

1− x2 − y2 above the xy-plane, oriented with the normal pointing upward.

Solution. We have curlF(x, y, z) = [3xz−(2+y+z)−1]i+[xexz−3yz]j
and n dA = (2xi+ 2yj+ k) dx dy, so direct evaluation of the integral is quite

unpleasant. By Stokes’s theorem, the integral equals
∫
C F · dx where C is

the unit circle in the xy-plane; this is not much better. However, by Stokes’s
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theorem again, the latter line integral is equal to
∫∫
D curlF · n dA where D is

the unit disc in the xy-plane. Here n = k, so curlF · n = 0 and the integral

vanishes!

Here is an analogue of the fact that the integral of the gradient of a function

over any closed curve vanishes:

5.56 Corollary. If S is a closed surface (i.e., a surface with no boundary) in R3

with unit outward normal n, and F is a C1 vector field on S, then
∫∫
S(curlF) ·

n dA = 0.

Proof. If F extends differentiably to the region R inside S, this follows from the

divergence theorem, since div(curlF) = 0 for any F. However, it is true even if F

has singularities inside S. To see this, draw a small simple closed curve C in S (say,

the image of a small circle in the uv-plane under a parametrization x = G(u, v)).
C divides S into two regular regions S1 and S2, and we have

(5.57)

∫∫

S
(curlF) · n dA =

∫∫

S1

(curlF) · n dA+

∫∫

S2

(curlF) · n dA.

On the other hand, if we give C the orientation compatible with S1, Stokes’s theo-

rem gives

∫∫

S1

(curlF) · n dA =

∫

C
F · dx = −

∫∫

S2

(curlF) · n dA,

because the orientation compatible with S2 is the opposite one. Hence the terms on

the right of (5.57) cancel.

(Note: We had to say that C is a “small” closed curve, because otherwise C
might not divide S into two pieces. For example, take S to be a torus [the surface

of a doughnut] and C to be a circle that goes completely around S in one direction.)

Stokes’s theorem gives a geometric, coordinate-free interpretation of the curl of

a vector field. Namely, suppose F is a C1 vector field on some open set containing

the point a; here’s how to find the component of curlF(a) in the direction of any

unit vector u, that is, (curlF(a)) · u . Let Dǫ be the disc of radius ǫ centered at a

in the plane perpendicular to u, oriented so that u is the positive normal for Dǫ. As

ǫ→ 0, the average value of (curlF) · u over Dǫ approaches its value at a:

(curlF(a)) · u = lim
ǫ→0

1

πǫ2

∫∫

Dǫ

(curlF) · u dA.
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Since u is the normal to Dǫ, Stokes’s theorem gives

(5.58) (curlF(a)) · u = lim
ǫ→0

1

πǫ2

∫

Cǫ

F · dx,

where Cǫ is the circle of radius ǫ about a in the plane perpendicular to u, traversed

counterclockwise as viewed from the side on which u lies. This is the promised

coordinate-free description of curlF.

If we think of F as a force field,
∫
Cǫ

F · dx is the work done by F on a particle

that moves around Cǫ. Thus (5.58) says that (curlF(a)) ·u represents the tendency

of the force F to push the particle around Cǫ, counterclockwise if (curlF(a)) · u
is positive and clockwise if it is negative (as viewed from the u-side).

EXERCISES

1. Use Stokes’s theorem to calculate
∫
C [(x − z) dx + (x + y) dy + (y + z) dz]

whereC is the ellipse where the plane z = y intersects the cylinder x2+y2 = 1,

oriented counterclockwise as viewed from above.

2. Use Stokes’s theorem to evaluate
∫
C [y dx+y

2 dy+(x+2z) dz] where C is the

curve of intersection of the sphere x2 + y2 + z2 = a2 and the plane y+ z = a,

oriented counterclockwise as viewed from above.

3. Given any nonvertical plane P parallel to the x-axis, let C be the curve of

intersection of P with the cylinder x2 + y2 = a2. Show that
∫
C [(yz − y) dx+

(xz + x) dy] = 2πa2.

4. Evaluate
∫∫
S curlF ·n dA where F(x, y, z) = yi+(x− 2x3z)j+xy3k and S

is the upper half of the sphere x2 + y2 + z2 = a2.

5. Let F(x, y, z) = 2xi+2yj+(x2+ y2+ z2)k and let S be the lower half of the

ellipsoid (x2/4) + (y2/9) + (z2/27) = 1. Use Stokes’s theorem to calculate

the flux of curlF across S from the lower side to the upper side.

6. Define the vector field F on the complement of the z-axis by F(x, y, z) =
(−yi+ xj)/(x2 + y2).
a. Show that curlF = 0.

b. Show by direct calculation
∫
C F · dx = 2π for any horizontal circle C

centered at a point on the z-axis.

c. Why do (a) and (b) not contradict Stokes’s theorem?

7. Let Cr denote the circle of radius r about the origin in the xz-plane, oriented

counterclockwise as viewed from the positive y-axis. Suppose F is a C1 vector

field on the complement of the y-axis in R3 such that
∫
C1

F · dx = 5 and

curlF(x, y, z) = 3j+ (zi− xk)/(x2 + z2)2. Compute
∫
Cr

F · dx for every r.
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8. Let S be a smooth oriented surface in R3 with piecewise smooth, compatibly

oriented boundary ∂S. Suppose f is C1 and g is C2 on some open set contain-

ing S. Show that
∫

∂S
f∇g · dx =

∫∫

S
(∇f ×∇g) · n dA.

5.8 Integrating Vector Derivatives

In this section we study the question of solving the equations

grad f = G, curlF = G, divF = g

for f or F, given g or G. We first consider the equation ∇f = G, and we begin

with a simple and useful result:

5.59 Proposition. Suppose G is a continuous vector field on an open set R in Rn.

The following two conditions are equivalent:

a. If C1 and C2 are any two oriented curves in R with the same initial point and

the same final point, then
∫
C1

G · dx =
∫
C2

G · dx.

b. If C is any closed curve in R,
∫
C G · dx = 0.

Proof. (a) implies (b): Suppose C starts and ends at a. Then C has the same initial

and final point as the “constant curve” C2 described by x(t) ≡ a, and obviously∫
C2

G · dx = 0 since dx = 0 on C2.

(b) implies (a): Suppose C1 and C2 start at a and end at b. Let C be the closed

curve obtained by following C1 from a to b and then C2 backwards from b to a.

Then 0 =
∫
C G · dx =

∫
C1

G · dx−
∫
C2

G · dx.

A vector field G that satisfies (a) and (b) is called conservative in the region

R. (The word “conservative” has to do with conservation of energy. If we interpret

G as a force field, condition (b) says that the force does no net work on a particle

that returns to its starting point.) A good deal of mathematical physics is based on

the following characterization of conservative vector fields:

5.60 Proposition. A continuous vector field G in an open set R ⊂ Rn is conser-

vative if and only if G is the gradient of a C1 function f on R.

Proof. If G = ∇f and C is a closed curve parametrized by x = g(t), a ≤ t ≤ b,
by the chain rule we have

∫

C
∇f · dx =

∫ b

a
∇f(g(t)) · g′(t) dt =

∫ b

a

d

dt
f(g(t)) dt

= f(g(b)) − f(g(a)) = 0
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because g(b) = g(a), so condition (b) in Proposition 5.59 is satisfied.

Conversely, suppose G is conservative in R. To construct a function of which

G is the gradient, we shall assume R is connected. (Otherwise we can consider

each connected piece of R separately.) Pick a base point a ∈ R. For any x ∈ R,

let C be a curve in R from a to x — such a curve always exists, by Theorem 1.30

— and define f(x) =
∫
C G · dx. This definition makes sense by condition (a)

in Proposition 5.59: It doesn’t matter which curve we pick. We shall show that

G = ∇f by showing that Gj = ∂jf for each j; it is enough to do the case j = 1.

Let h = (h, 0, . . . , 0). Given x ∈ R, suppose h is small enough so that the line

segment L from x to x + h lies entirely in R. We have f(x) =
∫
C G · dx where

C is a curve from a to x. We can make a curve from a to x+ h by joining L onto

the end of C , so that f(x+ h) =
∫
C G · dx+

∫
LG · dx. But then

f(x+ h)− f(x)
h

=
1

h

∫

L
G · dx =

1

h

∫ h

0
G1(x1 + t, x2, . . . , xn) dt,

and by letting h→ 0 we obtain ∂1f(x) = G1(x).

The function f in Proposition 5.60 is determined up to an additive constant, as-

suming that R is connected. It is called the potential associated to the conservative

vector field G.

It remains to find a good method for determining whether a vector field is con-

servative, i.e., whether it is the gradient of a function. Another way of phrasing this

question: When is a differential form G1 dx1 + · · · + Gn dxn the differential of a

function? We shall assume that the vector field G is of class C1 on an open set

R. In this case, there is an obvious necessary condition for G to be a gradient of

a function on R. Indeed, if Gj = ∂jf , then ∂jGk and ∂kGj are both equal to the

mixed partial ∂j∂kf , so

(5.61)
∂Gj
∂xk

− ∂Gk
∂xj

= 0 for all j 6= k.

We observe that when n = 3, the quantities in (5.61) are the components of curlG,

so that (5.61) is equivalent to the condition curlG = 0.

The condition (5.61) is almost sufficient to guarantee that G is a gradient; the

only possible problem arises from the geometry of R, as we shall explain in more

detail below. WhenR is convex, the problem disappears, and we have the following

result. Our proof will only be complete in dimensions 2 and 3 because it invokes

Green’s or Stokes’s theorem, but the same idea works in higher dimensions.
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5.62 Theorem. Suppose R is a convex open set in Rn and G is a C1 vector field

on R. If G satisfies (5.61) in R (which means that curlG = 0 in R in the case

n = 3), then G is the gradient of a C2 function on R.

Proof. The idea is similar to the proof of Proposition 5.60, but we do not know

yet that condition (a) of Proposition 5.59 is satisfied, so we must be more careful.

Pick a base point a in R, and define f(x) for x ∈ R by f(x) =
∫
L(a,x)G ·

dx, where L(a,x) is the line segment from a to x. (We need the hypothesis of

convexity so that this line segment lies in R.) To show that G(x) = ∇f(x), let

h = (h, 0, · · · , 0) be small enough so that x + h ∈ R. Let C be the triangular

closed curve obtained by following L(a,x) from a to x, L(x,x + h) from x to

x + h, and then L(a,x + h) backwards from x + h to a. Green’s theorem (if

n = 2), Stokes’s theorem (if n = 3), or the higher-dimensional version of Stokes’s

theorem (if n > 3; see §5.9) converts
∫
C G · dx into a double integral over the

solid triangle whose boundary is C , whose integrand vanishes by (5.61). Hence∫
C G · dx = 0, or in other words,

f(x+ h)− f(x) =
∫

L(a,x+h)
G · dx−

∫

L(a,x)
G · dx =

∫

L(x,x+h)
G · dx.

Now the same argument as in Proposition 5.60 shows that ∂1f = G1, and likewise

∂jf = Gj for the other j.

The hypothesis of convexity in Theorem 5.62 is stronger than necessary; one

can generalize the argument by using curves other than straight lines. What is

crucial is that when one joins the points a, x, and x+h by line segments or curves,

the resulting “triangle” is the boundary of a piece of surface that lies entirely in R,

so that the condition (5.61) and Stokes’s theorem can be applied. This may not be

the case if the region R has “holes.” The following example shows what can go

wrong in such a case.

EXAMPLE 1. Let R be the complement of the z-axis in R3, and let

G(x, y, z) =
−yi+ xj

x2 + y2
.

It is easily verified that the condition curlG = 0 is satisfied on R, but that

G is not conservative on R; in fact,
∫
C G · dx = 2π when C is the unit

circle. (See Exercise 6 in §5.7.) The key to the mystery is as follows: G is

really the gradient of the angular variable θ in cylindrical coordinates, but θ
is not a well-defined function on R. It is defined only up to multiples of 2π.
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However, if we choose a convex subregion of S ⊂ R (for example, the half-

space y > 0), we can choose a well-defined “branch” of the angle θ on S (for

example, 0 < θ < π), and then G is the gradient of this function on S. The

same example can be used in R2, taking R to be the complement of the origin.

The hypothesis on R that should replace convexity in Theorem 5.62 to give the

best result is that every simple closed curve in R is the boundary of a surface lying

entirely in R. (The proof requires more advanced techniques.) The region R in

Example 1 does not have this property; no closed curve that encircles the z-axis

can be the boundary of a surface in R.

In practice, ifR is a rectangular box, to find a function whose gradient is G one

can proceed in a more simple-minded way than is indicated in the proof of Theorem

5.62. Consider the 2-dimensional case, where R = [a, b] × [α, β] and G(x, y) =
P (x, y)i +Q(x, y)j. Assuming that ∂xQ = ∂yP , we begin by integrating P with

respect to x, including a “constant” of integration that can depend on the other

variable y:

f(x, y) =

∫ x

c
P (t, y) dt+ ϕ(y).

Here c can be any point in the interval [a, b]. Any such f will satisfy ∂xf = P . To

obtain ∂yf = Q, differentiate the formula for f with respect to y and use Theorem

4.47:

∂yf(x, y) =

∫ x

a
∂yP (t, y) dt+ ϕ′(y) =

∫ x

a
∂xQ(t, y) dt + ϕ′(y)

= Q(x, y)−Q(a, y) + ϕ′(y).

Thus we obtain the desired f by taking ϕ to be an antiderivative of Q(a, y).

The same idea works in n variables. If G is a vector field on Rn that satisfies

(5.61), we integrate G1 with respect to x1 to get

f(x1, . . . , xn) =

∫ x1

a
G1(t, x2, . . . , xn) dt+ ϕ(x2, . . . , xn).

Then ∂1f = G1. Differentiating this formula with respect to x2, . . . , xn and using

the facts that ∂jG1 = ∂1Gj , we obtain formulas for ∂2ϕ, . . . , ∂nϕ. The problem is

thereby reduced to a similar problem (finding a function with a given gradient) in

one less variable, so we can proceed inductively.

EXAMPLE 2. Let G(x, y) = [y2exy]i + [(xy + 1)exy + cos y]j. We have

∂1G2 = ∂2G1 = (2y + xy2)exy, so (5.61) is satisfied. To find a function f
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such that ∇f = G, we set

f(x, y) =

∫
y2exy dx = yexy + ϕ(y).

Then ∂yf = (xy+1)exy+ϕ′(y); matching this up with the second component

yields ϕ′(y) = cos y, so we can take ϕ(y) = sin y. The general solution is

f(x, y) = yexy + sin y + C .

EXAMPLE 3. Let G(x, y, z) = yzi+(xz+y)j+(xy−z)k. An easy calculation

shows that curlG = 0. To find a function f such that ∇f = G, we integrate

the first component with respect to x, obtaining f(x, y, z) = xyz + ϕ(y, z).
Differentiating this in y and z yields ∂yf = xz + ∂yϕ and ∂zf = xy + ∂zϕ.

Therefore, we must have ∂yϕ = y and ∂zϕ = −z. Integrating the first of these

equations with respect to y gives ϕ(y, z) = 1
2y

2+ψ(z), so ∂zϕ = ψ′(z) = −z
and ψ(z) = −1

2z
2 + C . Putting this all together,

f(x, y, z) = xyz + 1
2y

2 − 1
2z

2 + C.

Next, we turn to the question of solving the equation curlF = G, where G is a

C1 vector field on some open set R ⊂ R3. There is an obvious necessary condition

for solvability: Since div(curlF) = 0 for any F (formula (5.31)), we must have

divG = 0 on R. Again, this condition turns out to be sufficient provided that R
has “no holes,” but here the meaning of “no holes” is somewhat different. Instead

of requiring that every closed curve in R be the boundary of a surface that lies

entirely in R, we require that every closed surface in R be the boundary of a 3-

dimensional region that lies entirely in R. For example, the complement of the

z-axis in R3 satisfies the second condition but not the first; the complement of the

origin satisfies the first condition but not the second. An example of a vector field

G that satisfies divG = 0 on the complement of the origin but is not the curl

of any vector field there is provided by G(x) = x/|x|3, the “inverse square law

force.” This G cannot be a curl because its integral over a sphere about the origin

is nonzero, and this contradicts Corollary 5.56. (See Exercise 6 in §5.5; our G is

the negative of the gradient of the g there.)

Convex regions have no holes, no matter what one means by “holes,” and the

following analogue of Theorem 5.62 is valid.

5.63 Theorem. Suppose R is a convex open set in R3 and G is a C1 vector field

on R. If G satisfies divG = 0 on R, then G is the curl of a C2 vector field on R.

Proof. We shall not give the general proof but shall content ourselves with present-

ing an algorithm for solving curlF = G whenR is a rectangular box, similar to the
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one given above for solving∇f = G. Suppose thatR = [a1, b1]×[a2, b2]×[a3, b3]
and G is a C1 vector field satisfying divG = 0 on R. Unlike the problem of find-

ing a function with a given gradient, whose solution is unique up to an additive

constant, there is lots of freedom in choosing an F such that curlF = G, for if

curlF = G then also curl(F + ∇f) = G for any smooth function f . This gives

enough leeway to allow us to assume that the z-component of F is zero. Thus, let

us write G = G1i+G2j+G3k and F = F1i+ F2j; we then want

curlF = −∂zF2i+ ∂zF1j+ (∂xF2 − ∂yF1)k = G1i+G2j+G3k.

We solve the first two equations by taking

F2 = −
∫ z

c
G1(x, y, t) dt+ ϕ(x, y), F1 =

∫ z

c
G2(x, y, t) dt+ ψ(x, y),

where c is some chosen point in [a3, b3]. We then have

∂xF2 − ∂yF1 = −
∫ z

c

[
∂yG2(x, y, t) + ∂xG1(x, y, t)

]
dt

+ ∂xϕ(x, y) − ∂yψ(x, y).

Since divG = 0, this equals

∫ z

c
∂zG3(x, y, t) dt + ∂xϕ(x, y)− ∂yψ(x, y)

= G3(x, y, z)−G3(x, y, c) + ∂xϕ(x, y) − ∂yψ(x, y).

We therefore achieve our goal by choosing ϕ and ψ to satisfy

∂xϕ(x, y)− ∂yψ(x, y) = G3(x, y, c).

There is still lots of freedom here; for example, we could take

ϕ(x, y) =

∫ x

a
G3(t, y, c) dt, ψ(x, y) = 0 (a ∈ [a1, b1]).

If divG = 0, a vector field F such that curlF = G is called a vector potential

for G.
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EXAMPLE 4. Find a vector potential for the vector field

G(x, y, z) = (6xz + x3)i− (3x2y + y2)j+ (4x+ 2yz − 3z2)k.

Solution. First one should verify that divG = 0 so as not to go on a fool’s

errand. Having done so, one can take F = F1i+ F2j where

∂zF1 = −(3x2y + y2), ∂zF2 = −(6xz + x3),

∂xF2 − ∂yF1 = 4x+ 2yz − 3z2.

Solving the first two equations yields

F1 = −3x2yz − y2z + ψ(x, y), F2 = −3xz2 − x3z + ϕ(x, y),

and plugging these results into the third equation yields ∂xϕ − ∂yψ = 4x.

Therefore, one solution (with ϕ = 2x2 and ψ = 0) is

F0 = −(3x2yz + y2z)i+ (2x2 − 3xz3 − x3z)j;

the general solution is F = F0 +∇f where f is an arbitrary C1 function.

Now, what about the equation divF = g? Here there are no obstructions to

solvability, and there is an enormous amount of freedom in finding a solution. For

example, if we wish to solve divF = g in a rectangular box in Rn, we could take

F = (F, 0, . . . , 0), F (x) =

∫ x1

c
g(t, x2, . . . , xn) dt,

or similar expressions with the variables permuted; there are many other possi-

bilities. In fact, this problem is so easy that it seems reasonable to make it more

interesting by imposing additional conditions on F. We restrict attention to the

three-dimensional situation, but there are similar results in higher dimensions.

The key result here is Theorem 5.46, which shows that we can solve the equa-

tion divF = g subject to the restriction that curlF = 0. More precisely, suppose

R is a bounded open set in R3 and g is of class C1 on R. (In Theorem 5.46 g
was assumed to be C2, but see the remarks following the proof.) Smoothness on

R means that g can be extended as a C1 function to an open set containing R, and

it can be modified outside R so as to vanish outside some bounded set while re-

maining of class C1. (One multiplies g by a C1 function that is identically 1 on R
and vanishes outside some slightly larger region; we omit the details, which are of

little importance for this argument.) Hence we may assume that g is C1 on R3 and

vanishes outside a bounded set. Then, by Theorem 5.46, the function

u(x) = − 1

4π

∫∫∫

R3

g(x+ y)

|y| d3y
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satisfies ∇2u = g, and so the vector field F = ∇u satisfies both divF = g and

curlF = 0 on R.

With this result in hand, we show that the equations curlF = G and divF = g
can be solved simultaneously (for the same F).

5.64 Theorem. Let R be a bounded convex open set in R3. For any C1 function g
on R and any C2 vector field G on R such that divG = 0, there is a C2 vector

field F on R such that curlF = G and divF = g on R.

Proof. Let H be a solution of curlH = G, as in Theorem 5.63, and let u be

a solution of ∇2u = g − divH, as explained above. Let F = ∇u + H; then

curlF = curl(∇u) +G = G and divF = ∇2u+ divH = g.

There is a companion result to Theorem 5.64: Not every vector field is a gra-

dient, and not every vector field is a curl, but every vector field is the sum of a

gradient and a curl. The proof is left to the reader as Exercise 3, where a more

precise statement is given.

One might also ask about uniqueness in Theorem 5.64; that is, to what extent is

a vector field determined by its curl and divergence? Clearly, if F satisfies curlF =
G and divF = g, then so does F + H whenever curlH = 0 and divH = 0.

Solutions of the latter pair of equations can be obtained simply by taking H = ∇ϕ
where ϕ is any solution of Laplace’s equation ∇2ϕ = 0. Such solutions exist in

great abundance, so the F in Theorem 5.64 is far from unique. However, one can

pin down a unique solution by imposing suitable boundary conditions.

5.65 Proposition. LetR be a bounded convex open set in R3 with piecewise smooth

boundary. Suppose H is a C1 vector field on R such that curlH = 0 and divH =
0 on R and H · n = 0 on ∂R. Then H vanishes identically on R.

Proof. By Theorem 5.62, H is the gradient of a function u on R, and ∇2u =
divH = 0. Since H · n = ∂u/∂n, by Green’s formula (5.38) we have

0 =

∫∫

∂R
u
∂u

∂n
dA =

∫∫∫

R

(
|∇u|2 + u∇2u

)
dV =

∫∫∫

R

(
|H|2 + 0

)
dV.

But |H|2 is a nonnegative continuous function, so its integral over R can be zero

only if |H|2 (and hence H) vanishes identically on R.

By applying Proposition 5.65 to the difference of two solutions of the problem

in Theorem 5.64, we see that if F and F′ are vector fields with the same curl and

divergence on R and the same normal component on ∂R, then F = F′ on R.

We conclude with a few remarks about the application of the results of this

section to Maxwell’s equations (5.50). First, we observe that the curl of the electric
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field E vanishes only when there are no time-varying magnetic fields present. Only

in this case is E the gradient of a potential function. However, divB = 0 always

(this expresses the fact that there are no “magnetic charges”), so B is the curl of a

vector potential A. We then have

curl

(
E+

1

c

∂A

∂t

)
= curlE+

1

c

∂B

∂t
= 0,

so E + c−1∂tA is the gradient of a function −ϕ. The four-component quantity

(ϕ,A) = (ϕ,A1, A2, A3) is called the electromagnetic 4-potential. It is best re-

garded as a vector in 4-dimensional space-time, with ϕ being the time component,

in the context of special relativity.

EXERCISES

1. Determine whether each of the following vector fields is the gradient of a func-

tion f , and if so, find f . The vector fields in (a)–(c) are on R2; those in (d)–(f)

are on R3, and the one in (g) is on R4. In all cases i, j, k, and l denote unit

vectors along the positive x-, y-, z-, and w-axes.

a. G(x, y) = (2xy + x2)i+ (x2 − y2)j.
b. G(x, y) = (3y2 + 5x4y)i+ (x5 − 6xy)j.
c. G(x, y) = (2e2x sin y − 3y + 5)i+ (e2x cos y − 3x)j
d. G(x, y, z) = (yz − y sinxy)i + (xz − x sinxy + z cos yz)j + (xy +
y cos yz)k.

e. G(x, y, z) = (y − z)i+ (x− z)j+ (x− y)k
f. G(x, y, z) = 2xyi+ (x2 + log z)j+ ((y + 2)/z)k (z > 0).

g. G(x, y, z, w) = (xw2+ yzw)i+(xzw+ yz2− 2e2y+z)j+(xyw+ y2z−
e2y+z − w sin zw)k + (xyz + x2w − z sin zw)l.

2. Determine whether each of the following vector fields is the curl of a vector

field F, and if so, find such an F.

a. G(x, y, z) = (x3 + yz)i+ (y − 3x2y)j+ 4y2k.

b. G(x, y, z) = (xy + z)i+ xzj− (yz + x)k.

c. G(x, y, z) = (xe−x
2z2 − 6x)i+ (5y + 2z)j+ (z − ze−x2z2)k.

3. Let R be a bounded convex open set in R3. Show that for any C2 vector

field H on R there exist a C2 function f and a C2 vector field G such that

H = grad f + curlG. (Hint: Solve ∇2f = divH.)

4. Let F = F1i + F2j be a C1 vector field on S = R2 \ {(0, 0)} such that

∂1F2 = ∂2F1 on S (but F may be singular at the origin).
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a. LetCr be the circle of radius r about the origin, oriented counterclockwise.

Show that
∫
Cr

F · dx is a constant α that does not depend on r. (Hint:

Consider the region between two circles.)

b. Show that
∫
C F · dx = α for any simple closed curve C , oriented counter-

clockwise, that encircles the origin.

c. Let F0 = (xj− yi)/(x2 + y2) as in Example 1. Show that F− (α/2π)F0

is the gradient of a function on S. (Thus, all curl-free vector fields on S
that are not gradients can be obtained from F0 by adding gradients.)

5.9 Higher Dimensions and Differential Forms

Green’s theorem has to do with integrals of vector fields in the plane, and the di-

vergence theorem and Stokes’s theorem have do do with integrals of vector fields

in 3-space. What happens in dimension n? There are a couple of things we can say

without too much additional explanation.

First, the obvious analogue of the divergence theorem holds in Rn for any

n > 1. To wit, if R is a regular region in Rn bounded by a piecewise smooth

hypersurface ∂R, and F is a C1 vector field on R, then
∫
· · ·
∫

∂R
F · n dV n−1 =

∫ ∫
· · ·
∫

R
divF dV n.

Here dV n is the n-dimensional volume element in Rn and dV n−1 is the (n − 1)-
dimensional “area” element on ∂R. The “vector area element” n dV n−1 is given

by a formula analogous to the one in R3. Namely, if (part of) ∂R is parametrized

by x = G(u1, . . . , un−1), then

n dV n−1 = det




e1 · · · en
∂1G1 · · · ∂1Gn

...
...

∂n−1G1 · · · ∂n−1Gn


 du1 · · · dun−1,

where e1, . . . , en are the standard basis vectors for Rn. (The reader may verify that

in the case n = 2, these formulas yield Green’s theorem in the form (5.18).)

Second, the analogue of the divergence theorem in dimension 1 is just the fun-

damental theorem of calculus:

f(b)− f(a) =
∫

[a,b]
f ′(t) dt.

On the real line, vector fields are the same thing as functions, and the divergence of

a vector field is just the derivative of a function. A regular region in R is an interval
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[a, b], whose boundary is the two-element set {a, b}. Since the boundary is finite,

“integration” over the boundary is just summation, and the minus sign on f(a)
comes from assigning the proper “orientation” to the two points in the boundary.

There are also analogues of Stokes’s theorem in higher dimensions, which say

that the integral of some gadget G over the boundary of a k-dimensional submani-

fold of Rn equals the integral of another gadget formed from the first derivatives of

G over the submanifold itself. However, to formulate things properly in this general

setting, it is necessary to develop some additional algebraic machinery, the theory

of differential forms. To do so is beyond the scope of this book; what follows is

intended to provide an informal introduction to the ideas involved. For a detailed

treatment of differential forms, we refer the reader to Hubbard and Hubbard [7] and

Weintraub [20].

Roughly speaking, a differential k-form is an object whose mission in life is to

be integrated over k-dimensional sets; thus, 1-forms are designed to be integrated

over curves, 2-forms are designed to be integrated over surfaces, and so on. Here

is how the ideas of vector analysis that we have been studying can be reformulated

in terms of differential forms.

1-Forms. A differential 1-form on Rn is an expression of the form

ω = F1(x1, . . . , xn) dx1 + · · · + Fn(x1, . . . , xn) dxn,

where the Fj’s are continuous functions. There is an obvious correspondence be-

tween the 1-form ω and the vector field F = (F1, . . . , Fn). In particular, in 3

dimensions the correspondence between 1-forms and vector fields takes the form

(5.66) ω = F dx+Gdy +H dz ←→ F = F i+Gj+Hk.

One type of 1-form that we have already encountered is the differential of a C1

function,

df = (∂1f) dx1 + · · ·+ (∂nf) dxn.

However, not every 1-form is the differential of a function; the necessary condition

for ω to be of the form df is (5.61).

We note that the set of 1-forms on Rn is a vector space. That is, it makes sense

to add 1-forms to each other and to multiply them by scalars. In fact, the “scalars”

here can be taken to be not just constants but arbitrary continuous functions on Rn.

Thus, if α = A1 dx1 + · · ·+An dxn and β = B1 dx1 + · · ·+Bn dxn are 1-forms

and f is a continuous function,

α+ β = (A1 +B1) dx1 + · · ·+ (An +Bn) dxn,

fα = (fA1) dx1 + · · ·+ (fAn) dxn.
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Any smooth mapping T : Rk → Rn induces a mapping of 1-forms in the

opposite direction, that is, an operation T∗ which takes 1-forms on Rn to 1-forms

on Rk. Schematically:

Rk
T−→ Rn

1-forms on Rk
T∗

←− 1-forms on Rn

This operation is just the “built-in chain rule” for differentials of functions, ex-

tended to arbitrary 1-forms. To wit, let x1, . . . , xn and u1, . . . , uk be the coordi-

nates on Rn and Rk, respectively. If ω = F1 dx1 + · · · + Fn dxn is a 1-form on

Rn, its pullback via T is the 1-form T∗ω on Rk defined by substituting into ω the

expressions for the x’s in terms of the u’s and the dx’s in terms of the du’s:

(5.67)

T∗ω = F̃1

[
∂x1
∂u1

du1 + · · ·+
∂x1
∂uk

duk

]
+ · · ·+ F̃n

[
∂xn
∂u1

du1 + · · ·+
∂xn
∂uk

duk

]

=

[
F̃1
∂x1
∂u1

+ · · ·+ F̃n
∂xn
∂u1

]
du1 + · · ·+

[
F̃1
∂x1
∂uk

+ · · ·+ F̃n
∂xn
∂uk

]
duk,

where

F̃m(u1, . . . , uk) = Fm
(
T(u1, . . . , uk)

)
.

Two special cases are of particular interest. First, the chain rule says that when

ω = df , T∗ω = d(f ◦ T). Second, when k = 1 so that T : R → Rn defines a

curve in Rn, (5.67) becomes

T∗ω =

[
(F1 ◦T)

dx1
du

+ · · ·+ (Fn ◦T)
dxn
du

]
du.

1-forms can be integrated over curves. To begin with, a 1-form on R is merely

something of the form ω = g(t) dt, and its integral over an interval [a, b] is just

what you think it is: ∫

[a,b]
ω =

∫ b

a
g(t) dt.

Now, if ω = F1 dx1 + · · · + Fn dxn is a 1-form on Rn and C is a smooth curve

parametrized by x = g(t),
∫
C ω is defined by pulling ω back to R via g and

integrating the result as before:
∫

C
ω =

∫

[a,b]
g∗ω =

∫ b

a

[
F1(g(t))

dx1
dt

+ · · ·+ Fn(g(t))
dxn
dt

]
dt.

In other words, if we identify ω with the vector field F as before,
∫

C
ω =

∫

C
F · dx.
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2-Forms and the Exterior Product. We now define a notion of a “product of

two 1-forms” that is related to the cross product of vector fields in R3 but works

in any number of dimensions. This product is called the exterior product; the

exterior product of two 1-forms α and β is denoted by α ∧ β. The novel feature of

this is that α ∧ β is no longer a 1-form but a new type of object called a 2-form.

Without specifying what a 2-form is just yet, we list the basic properties that

the exterior product is to have. First, it distributes over addition and scalar multi-

plication in the usual way. That is, if α1, α2, and β are 1-forms on Rn and f1 and

f2 are continuous functions on Rn,

(5.68)
(f1α1 + f2α2) ∧ β = f1(α1 ∧ β) + f2(α2 ∧ β),
β ∧ (f1α1 + f2α2) = f1(β ∧ α1) + f2(β ∧ α2).

Second, the exterior product is anticommutative:

(5.69) β ∧ α = −α ∧ β.

Thus, if α = A1 dx1 + · · · + An dxn and β = B1 dx1 + · · · + Bn dxn, we can

expand α ∧ β according to (5.68) to obtain

(5.70) α ∧ β =

n∑

i=1

n∑

j=1

AiBj dxi ∧ dxj .

But according to (5.69), dxj ∧ dxi = −dxi ∧ dxj and dxi ∧ dxi = 0. Thus the

terms with i = j in (5.70) drop out, and for i 6= j we can combine the ijth and jith
terms into one:

AiBj dxi ∧ dxj +AjBi dxj ∧ dxi = (AiBj −AjBi) dxi ∧ dxj
= (AjBi −AiBj) dxj ∧ dxi.

We have the option of using either of the two expressions on the right, and the usual

choice is to use the one where the first index is smaller than the second one. (In R3

a different choice is sometimes convenient, as we shall soon see.) Thus, we finally

obtain

α ∧ β =
∑

1≤i<j≤n
(AiBj −AjBi) dxi ∧ dxj .

In general, a differential 2-form on Rn is an expression of the type

(5.71) ω =
∑

1≤i<j≤n
Cij(x1, . . . , xn) dxi ∧ dxj ,
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where the Cij are continuous functions on Rn. We note that the number of terms

in this sum, that is, the number of pairs (i, j) with 1 ≤ i < j ≤ n, is 1
2n(n − 1).

In (5.71) we also have the option of rewriting dxi ∧ dxj as −dxj ∧ dxi if we so

choose.

What does this really mean? We have been proceeding purely formally, without

saying what meaning is to be attached to the expressions dxi∧dxj . In the full-dress

treatment of this subject, 2-forms are defined to be alternating rank-2 tensor fields

over Rn, but this is somewhat beside the point. For now it is probably best to

think of a 2-form on Rn simply as a 1
2n(n − 1)-tuple of functions, namely the

functions Cij in (5.71), and the expressions dxi∧ dxj simply as a convenient set of

signposts to mark the various components, just as i, j, and k are used to mark the

components of vector fields in R3. The important features of 2-forms are not their

precise algebraic definition but the way they transform under changes of variables

and the way they integrate over surfaces.

Before proceeding to these matters, however, let us see how things look in the

3-dimensional case. When n = 3 we also have 1
2n(n − 1) = 3, so 2-forms have 3

components just as vector fields and 1-forms do: This is the “accident” that makes

n = 3 special! The general 2-form on R3 can be written as

ω = F (x, y, z) dy ∧ dz +G(x, y, z) dz ∧ dx+H(x, y, z) dx ∧ dy,

so there is a one-to-one correspondence between 2-forms and vector fields:

(5.72) ω = F dy ∧ dz +Gdz ∧ dx+H dx∧ dy ←→ F = F i+Gj+Hk.

Observe carefully how we have set this correspondence up: we have written the

basis elements dxi ∧ dxj with the variables in cyclic order,

dx before dy before dz before dx,

rather than the “i < j” order we used above, so that the middle term is dz ∧ dx
rather than dx ∧ dz. Also, we identify the unit vector i in the x direction with the

2-form dy ∧ dz from which dx is missing, and likewise for j and k.

The exterior product in 3 dimensions looks like this: If

α = A1 dx+A2 dy +A3 dz, β = B1 dx+B2 dy +B3 dz,

then

α ∧ β = (A2B3 −A3B2) dy ∧ dz + (A3B1 −A1B3) dz ∧ dx
+ (A1B2 −A2B1) dx ∧ dy.
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Thus, if we identify α and β with vector fields according to (5.66) and α ∧ β with

a vector field according to (5.72), the exterior product turns into the cross product:

α ←→ F, β ←→ G, α ∧ β ←→ F×G.

Pullbacks and Integrals of 2-Forms. We have seen that a smooth mapping

T : Rk → Rn induces a “pullback” mapping T∗ that takes 1-forms on Rn to 1-

forms on Rk. It also induces a pullback mapping, still denoted by T∗, from 2-forms

on Rn to 2-forms on Rk, in exactly the same way: We simply substitute T(u) for

x and
∑

j(∂xm/∂uj) duj for dxm. Thus,

T∗(dxl ∧ dxm) =
[
∂xl
∂u1

du1 + · · ·+
∂xl
∂uk

duk

]
∧
[
∂xm
∂u1

du1 + · · ·+
∂xm
∂uk

duk

]

=
∑

i<j

∂(xl, xm)

∂(ui, uj)
dui ∧ duj ,

so in general, if

ω =
∑

l<m

Clm(x) dxl ∧ dxm,

then

T∗ω =
∑

l<m

∑

i<j

Clm(T(u))
∂(xl, xm)

∂(ui, uj)
dui ∧ duj.

It is a consequence of the chain rule that the pullback operation behaves properly

under composition of mappings, namely, (T1 ◦T2)
∗ω = T∗

2(T
∗
1ω).

We can now show how to integrate 2-forms over surfaces. First consider the

simplest case, where the surface is simply a region D in R2. If we name the coor-

dinates on R2 x and y, the general 2-form on R2 has the form ω = f(x, y) dx∧dy,

and its integral over D is the obvious thing:

(5.73)

∫∫

D
f(x, y) dx ∧ dy =

∫∫

D
f(x, y) dx dy,

the integral on the right being the ordinary double integral of f over D. The only

subtle point is that the integral on the left is an oriented integral, the orientation

being carried in the fact that dx comes before dy in dx ∧ dy. If we wrote dy ∧ dx
instead, we would introduce a minus sign.

The nice thing about (5.73) is that the change-of-variable formula for double

integrals is more or less built into it. Namely, suppose T : R2 → R2 is an invertible

C1 transformation, say T(u, v) = (x, y). If ω = f(x, y) dx ∧ dy, then

T∗ω = f(T(u, v))
∂(x, y)

∂(u, v)
du ∧ dv = f(T(u, v))(detDT) du dv,
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so the change-of-variable formula simply says that

(5.74)

∫∫

T(D)
ω =

∫∫

D
T∗ω.

In other words, the formalism of differential forms produces the necessary Jacobian

factor automatically. The change-of-variable formula as we have seen it before

involved |detDT| rather than detDT, but this discrepancy is accounted for by

the difference between ordinary integrals and oriented integrals.

Now we turn to the case of integrals over a surface S in Rn. The idea is the

same as for line integrals: If ω is a 2-form on Rn and S is a surface parametrized

by x = G(u, v), (u, v) ∈ D ⊂ R2, we define
∫∫
S ω by pulling ω back to D via G

and using (5.73) to define the resulting integral:
∫∫

S
ω =

∫∫

D
G∗ω.

This is independent of the parametrization, in the following sense: If G = G̃ ◦T
where T : R2 → R2 is a C1 transformation, then by (5.74),

∫∫

D
G∗ω =

∫∫

D
T∗G̃∗ω =

∫∫

T(D)
G̃∗ω.

Let us see how this looks in the case n = 3. If

ω = Ady ∧ dz +B dz ∧ dx+ C dx ∧ dy and (x, y, z) = G(u, v),

then G∗ω equals
[
A(G(u, v))

∂(y, z)

∂(u, v)
+B(G(u, v))

∂(z, x)

∂(u, v)
+ C(G(u, v))

∂(x, y)

∂(u, v)

]
du ∧ dv,

and hence
∫∫
S ω equals

∫∫

D

[
A(G(u, v))

∂(y, z)

∂(u, v)
+B(G(u, v))

∂(z, x)

∂(u, v)
+ C(G(u, v))

∂(x, y)

∂(u, v)

]
du dv.

But this is something we have seen before. Indeed, we have

∂(y, z)

∂(u, v)
i+

∂(z, x)

∂(u, v)
j+

∂(x, y)

∂(u, v)
k =

∂G

∂u
× ∂G

∂v
,

so if we identify ω with the vector field F = Ai+Bj+ Ck as in (5.72), we have
∫∫

S
ω =

∫∫

S
F · n dA.

Hence the notion of surface integrals of vector fields in R3 also fits into the theory

of differential forms.
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3-Forms. A differential 3-form on Rn is an expression of the form

(5.75) ω =
∑

1≤i<j<k≤n
Cijk(x1, . . . , xn) dxi ∧ dxj ∧ dxk.

Here, as in the case of 2-forms, one can think of the expressions dxi ∧ dxj ∧ dxk
simply as formal basis elements, and one can put the indices i, j, k in an order other

than i < j < k with the understanding that whenever one interchanges two of the

dx’s one introduces a minus sign. The number of terms in the sum in (5.75) is the

binomial coefficient n!/3!(n − 3)!. When n = 3, this number is 1: All 3-forms on

R3 have the form

ω = f(x, y, z) dx ∧ dy ∧ dz
and hence can be identified with functions:

f(x, y, z) dx ∧ dy ∧ dz ←→ f(x, y, z).

The notion of exterior product extends so as to yield a 3-form as the product

of three 1-forms or as the product of a 1-form and a 2-form. The idea is pretty

obvious: dxi ∧ dxj ∧ dxk is the exterior product of the three 1-forms dxi, dxj , and

dxk, or the 1-form dxi and the 2-form dxj ∧ dxk, or the 2-form dxi ∧ dxj and the

1-form dxk. The exterior product distributes over sums and scalar multiples in the

usual way, and the anticommutative law becomes

α ∧ β = (−1)l+m−1β ∧ α if α is an l-form and β is an m-form.

Here is how it works when n = 3: If

α = A1 dx+A2 dy +A3 dz,

β = B1 dx+B2 dy +B3 dz,

γ = C1 dx+ C2 dy + C3 dz,

ω =W1 dy ∧ dz +W2 dz ∧ dx+W3 dx ∧ dy,

then

α ∧ (β ∧ γ) = (α ∧ β) ∧ γ = det



A1 A2 A3

B1 B2 B3

C1 C2 C3


 dx ∧ dy ∧ dz,

α ∧ ω = ω ∧ α = (A1W1 +A2W2 +A3W3) dx ∧ dy ∧ dz.

Thus, if we identify α, β, γ with the vector fields F,G,H and ω with the vector

field V, the exterior product turns into the scalar triple product and dot product:

α ∧ β ∧ γ ←→ F · (G×H), α ∧ ω ←→ F ·V.
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Pullbacks and integrals of 3-forms work just as before; we restrict ourselves to

the 3-dimensional case. Let ω = f(x, y, z) dx ∧ dy ∧ dz. If T : R3 → R3 is a

C1 transformation, say T(u, v, w) = (x, y, z), we obtain T∗ω by subsituting in the

formulas for x, y, z, dx, dy, and dz in terms of u, v, w; the result is

T∗ω = f(T(u, v, w))
∂(x, y, z)

∂(u, v, w)
du ∧ dv ∧ dw.

The integral of ω over a region D ⊂ R3 is defined in the obvious way:
∫∫∫

D
f(x, y, z) dx ∧ dy ∧ dz =

∫∫∫

D
f,

and the change-of variable formula (for oriented integrals) reads
∫∫∫

T(D)
ω =

∫∫∫

D
T∗ω.

We have now sketched the whole idea of differential forms in dimension 3.

In dimension n one needs to develop the theory of k-forms for all k ≤ n, which

requires the machinery of multilinear algebra.

The Exterior Derivative. When the operations of gradient, curl, and diver-

gence are expressed in terms of differential forms, they are all instances of a single

operation, denoted by d and called the exterior derivative, which maps k-forms

on Rn into (k + 1)-forms on Rn:

0-forms
d−→ 1-forms

d−→ 2-forms
d−→ 3-forms

d−→ · · · .
Here’s how it works.

First, a 0-form is, by definition, a function; if f is a 0-form, then df is just the

differential of f . If we identify 1-forms with vector fields, df becomes ∇f . That

is, the gradient is the exterior derivative on 0-forms.

Now, any k-form ω with k ≥ 1 is a sum of terms of the form fβ where f is a

function and β is one of the basis elements (dxi for 1-forms, dxi∧dxj for 2-forms,

etc.). dω is defined to be the (k+1)-form obtained by replacing each such term fβ
by df ∧ β.

This is what it looks like when ω = A1 dx1 + A2 dx2 + · · · + An dxn is a

1-form:

dω = dA1 ∧ dx1 + · · ·+ dAn ∧ dxn

=

[
∂A1

∂x1
dx1 + · · ·+

∂A1

∂xn
dxn

]
∧ dx1 + · · ·+

[
∂An
∂x1

dx1 + · · ·+
∂An
∂xn

dxn

]
∧ dxn

=
∑

i<j

[
∂Aj
∂xi
− ∂Ai
∂xj

]
dxi ∧ dxj .
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When n = 3 and we write x, y, z instead of x1, x2, x3, we obtain

dω =

[
∂A3

∂y
− ∂A2

∂z

]
dy ∧ dz +

[
∂A1

∂z
− ∂A3

∂x

]
dz ∧ dx

+

[
∂A2

∂x
− ∂A1

∂y

]
dx ∧ dy.

But this is just the curl! That is, if we identify the 1-form ω and the 2-form dω
with vector fields F and G in the standard way, then G = curlF. The curl is the

exterior derivative on 1-forms in R3.

Now suppose that ω = Ady ∧ dz+B dz ∧ dx+C dx∧ dy is a 2-form. As the

notation in higher dimensions gets messy, we shall write out only the 3-dimensional

case:

dω = dA ∧ dy ∧ dz + dB ∧ dz ∧ dx+ dC ∧ dx ∧ dy
= (∂xAdx+ ∂yAdy + ∂zAdz) ∧ dy ∧ dz

+ (∂xB dx+ ∂yB dy + ∂zB dz) ∧ dz ∧ dx
+ (∂xC dx+ ∂yC dy + ∂zC dz) ∧ dx ∧ dy

= (∂xA+ ∂yB + ∂zC) dx ∧ dy ∧ dz.

(For the last equality we have used the fact that an exterior product containing two

identical factors vanishes and the fact that the product dx∧dy∧dz is unchanged by

cyclic permutation of its three terms.) If we identify ω with a vector field F and dω
with a function g as before, we see that g = divF. The divergence is the exterior

derivative on 2-forms in R3.

We observed earlier that curl(∇f) = 0 for any function f and div(curlF) = 0
for any vector field F. The interpretation of these identities in terms of differential

forms is that d(df) = 0 for any 0-form (function) f and d(dω) = 0 for any 1-form

ω. It is true in general that

(5.76) d(dω) = 0

for any k-form ω on Rn. In all cases the proof of this fact boils down to the equality

of mixed partials.

As an illustration of the exterior derivative, we give the relativistically covari-

ant reformulation of Maxwell’s equations (5.50). The key idea is to think of elec-

tromagnetism as a phenomenon in 4-dimensional space-time rather than a time-

dependent phenomenon in 3-dimensional space. The electric and magnetic fields

E = (Ex, Ey, Ez) and B = (Bx, By, Bz) are combined into a single entity, the
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electromagnetic field tensor, which we identify in two ways with a 2-form on R4:

ω = c(Ex dx ∧ dt+ Ey dy ∧ dt+ Ez dz ∧ dt)
+Bx dy ∧ dz +By dz ∧ dx+Bz dx ∧ dy,

ω∗ = c(Bx dx ∧ dt+By dy ∧ dt+Bz dz ∧ dt)
− Ex dy ∧ dz − Ey dz ∧ dx− Ez dx ∧ dy,

where c is the speed of light. Also, the current and charge densities ρ and J =
(Jx, Jy, Jz) are combined into a single entity, the 4-current density, which we iden-

tify with a 3-form on R4:

γ = Jx dy ∧ dz ∧ dt+ Jy dz ∧ dx ∧ dt+ Jz dx ∧ dy ∧ dt− ρ dx ∧ dy ∧ dz.
The four Maxwell equations (5.50) then turn into the two equations

dω = 0, dω∗ = 4πγ.

The verification of this is a good way for readers to see whether they have learned

how to compute exterior derivatives!

Stokes’s Theorem. We can now state the general theorem that encompasses the

integral theorems of the preceding sections and their higher dimensional analogues:

5.77 Theorem (The General Stokes Theorem). Let M be a smooth, oriented k-

dimensional submanifold of Rn with a piecewise smooth boundary ∂M , and let

∂M carry the orientation that is (in a suitable sense) compatible with the one on

M . If ω is a (k − 1)-form of class C1 on an open set containing M , then
∫
· · ·
∫

∂M
ω =

∫ ∫
· · ·
∫

M
dω.

We conclude with a final suggestive remark. The formal differential-algebraic

identity d(dω) = 0 stated above has a geometric counterpart. The boundary of a

region in the plane is a closed curve with no endpoints, and the boundary of a region

in 3-space is a closed surface with no edge. In general, the boundary of a (smoothly

bounded) region M in a k-dimensional manifold is a (k−1)-dimensional manifold

with no boundary, that is,

(5.78) ∂(∂M) = ∅.

The general Stokes theorem shows that (5.76) and (5.78) are in some sense

equivalent. Indeed, if M is k-dimensional and ω is a (k − 2)-form, the Stokes

theorem gives
∫
· · ·
∫

∂(∂M)
ω =

∫ ∫
· · ·
∫

∂M
dω =

∫∫ ∫
· · ·
∫

M
d(dω).
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If we accept the geometric fact that ∂(∂M) = ∅, then the integral on the left

vanishes, and hence so does the integral on the right. But since this happens for

every M , it follows that d(dω) = 0. Similarly, if we know that d(dω) = 0 for

every ω, we can conclude that ∂(∂M) = ∅. This sort of interplay of algebra,

analysis, and geometry is a significant feature of much of modern mathematics.



Chapter 6

INFINITE SERIES

Infinite series are sums with infinitely many terms, of which the most familiar

examples are the nonterminating decimal expansions. For instance, the equality

π = 3.14159 . . . is an abbreviation of the statement that π is the sum of the infinite

series

3 +
1

10
+

4

102
+

1

103
+

5

104
+

9

105
+ · · · .

The procedure by which one makes sense out of such sums stands alongside dif-

ferentiation and integration as one of the fundamental limiting processes of mathe-

matical analysis. Just as decimal expansions provide a useful way of obtaining all

real numbers from the finite decimal fractions, infinite series provide a flexible and

powerful way of building complicated functions out of simple ones.

This chapter is devoted to the foundations of the theory of infinite series. In

it we develop the basic facts about series of numbers; then in the next chapter we

proceed to the study of series of functions.

6.1 Definitions and Examples

Informally speaking, an infinite series (or just a series, for short) is an expression

of the form
∞∑

0

an = a0 + a1 + a2 + · · · .

Here the ak’s can be real numbers, complex numbers, vectors, and so on; for the

present, we shall mainly consider the case where they are real numbers.

279
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It is not immediately clear what precise meaning is to be attached to an expres-

sion of the form
∑∞

0 an that involves a sum of infinitely many terms. The formal

definition must be phrased in terms of limits of finite sums, as follows.

Given a sequence {an}∞0 of real numbers (or complex numbers, vectors, etc.),

we can form a new sequence {sk}∞0 by adding up the terms of the original sequence

successively:

s0 = a0, s1 = a0 + a1, s2 = a0 + a1 + a2, . . . ,

sk = a0 + a1 + · · · + ak.

An infinite series is formally defined to be a pair of sequences {an} and {sk} re-

lated by these equations, and the notation
∑∞

0 an is to be regarded as a convenient

way of encoding this information. The an’s are called the terms of the series, and

the sk’s are called the partial sums of the series. If the sequence {sk} of partial

sums converges to a limit S, then the series is said to be convergent, S is called its

sum, and we write
∑∞

0 an = S; otherwise, the series is said to be divergent, and

no numerical meaning is attached to the expression
∑∞

0 an. (However, if sk →∞
as k →∞, we may say that

∑∞
0 an =∞.)

Remark. We have elected to start the numbering of the sequences {an} and

{sk} at n = 0 and k = 0, since this is perhaps the most common situation in

practice. However, we could equally well start at some other point, for instance,

∞∑

5

an = a5 + a6 + a7 + · · · ,

for which we would write

s5 = a5, s6 = a5 + a6, s7 = a5 + a6 + a7, . . . .

Before proceeding further, let us record a couple of very simple but important

facts about series.

6.1 Theorem.

a. If the series
∑∞

0 an and
∑∞

0 bn are convergent, with sums S and T , then∑∞
0 (an + bn) is convergent, with sum S + T .

b. If the series
∑∞

0 an is convergent, with sum S, then for any c ∈ R the series∑∞
0 can is convergent, with sum cS.

c. If the series
∑∞

0 an is convergent, then limn→∞ an = 0. Equivalently, if

an 6→ 0 as n→∞, then the series
∑∞

0 an is divergent.
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Proof. Let {sk} and {tk} be the sequences of partial sums of the series
∑∞

0 an and∑∞
0 bn, respectively. (a) and (b) follow from the fact that if sk → S and tk → T ,

then sk + tk → S + T and csk → cS. As for (c), we observe that an = sn− sn−1.

If the series converges to the sum S, it follows that lim an = lim sn − lim sn−1 =
S − S = 0.

At present we are thinking primarily of series whose terms are numbers, but

most of the really significant applications of series come from situations where the

terms an depend on a variable x. In this case the series
∑∞

0 an(x) may converge

for some values of x and diverge for others, and it defines a function whose domain

is the set of all x for which it converges. We shall explore this idea in more detail

in the next chapter; at this point we recall some familiar examples.

One of the simplest and most useful infinite series is the geometric series, in

which the ratio of two succeeding terms is a constant x. That is, the geometric

series with initial term a and ratio x is

a+ ax+ ax2 + ax3 + · · · =
∞∑

0

axn.

The constant a can be factored out, according to Theorem 6.1b, so it suffices to

consider the case a = 1.

The partial sums sk =
∑k

0 x
n of the series

∑∞
0 xn are easily evaluated. If

x = 1, then of course sk = 1 + 1 + · · · + 1 = k + 1. If x 6= 1, we observe that

sk = 1 + x+ · · ·+ xk,

xsk = x+ · · ·+ xk + xk+1,

and subtracting the second equation from the first yields (1 − x)sk = 1 − xk+1.

Therefore,

(6.2) sk =
1− xk+1

1− x if x 6= 1, sk = k + 1 if x = 1.

If |x| < 1, then xk+1 → 0 as k → ∞, so sk → (1 − x)−1. It also follows easily

from (6.2), or from Theorem 6.1c, that {sk} diverges when |x| ≥ 1. In short, we

have:

6.3 Theorem. The geometric series
∑∞

0 xn converges if and only if |x| < 1, in

which case its sum is (1− x)−1.
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Another familiar result that leads to infinite series is Taylor’s theorem. We

recall that if f is a function of class C∞ (that is, possessing derivatives of all orders)

on some interval (−c, c) centered at the origin, for any positive integer k we have

(6.4) f(x) = f(0) + f ′(0)x+ · · · + f (k)(0)

k!
xk +Rk(x) (|x| < c).

If it happens that Rk(x) → 0 as k → ∞, we can let k → ∞ in (6.4) to obtain an

infinite series expansion of f(x), the Taylor series of f (centered at x = 0):

(6.5) f(x) =

∞∑

0

f (n)(0)

n!
xn.

One simple sufficient condition to guarantee that Rk(x) → 0 follows from the

estimate for the Taylor remainder in Corollary 2.61:

|Rk(x)| ≤ sup
|t|≤|x|

|f (k+1)(t)| |x|
k+1

(k + 1)!
(|x| < c).

6.6 Theorem. Let f be a function of class C∞ on the interval (−c, c), where

0 < c ≤ ∞.

a. If there exist constants a, b > 0 such that |f (k)(x)| ≤ abkk! for all |x| < c and

k ≥ 0, then (6.5) holds for |x| < min(c, b−1).
b. If there exist constants A,B > 0 such that |f (k)(x)| ≤ ABk for all |x| < c

and k ≥ 0, then (6.5) holds for |x| < c.

Proof. By Corollary 2.61, the estimate |f (k)(x)| ≤ abkk! implies the estimate

|Rk−1(x)| ≤ a|bx|k for |x| < c. If also |x| < b−1, then |bx|k → 0 as k → ∞,

so (6.4) yields the result (a). To deduce (b), we observe that the factorial function

grows faster than exponentially (see Example 5 in §1.4), so that for any positive

A, B, and b, the sequence A(B/b)k/k! tends to zero as k → ∞. Letting a be the

largest term in this sequence, we have

ABk =

[
A
(B/b)k

k!

]
bkk! ≤ abkk!,

so the estimate |f (k)(x)| ≤ ABk, for a given A and B, implies the estimate

|f (k)(x)| ≤ abkk! for every b > 0 (with a depending on b). Hence (b) follows

from (a).

Remark. The interval (−c, c) might not be the whole set where the function

f and its derivatives are defined. It may be necessary to restrict x to a proper

subinterval of the domain of f to obtain the estimates on f (k)(x) in Theorem 6.6,

as Example 2 will show.
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EXAMPLE 1. Let f(x) = cos x. The derivatives f (k)(x) are equal to± cos x or

± sinx, depending on k, so they all satisfy |f (k)(x)| ≤ 1 for all x. By Theorem

6.6b, it follows that cosx is the sum of its Taylor series,
∑∞

0 (−1)nx2n/(2n)!,
for all x. For exactly the same reason, sinx is the sum of its Taylor series,∑∞

0 (−1)nx2n+1/(2n + 1)!, for all x.

EXAMPLE 2. Let f(x) = ex. Here f (k)(x) = ex for all k. We cannot obtain a

good estimate on f (k)(x) that is valid for all x at once, but for |x| < c we have

|f (k)(x)| < ec. By Theorem 6.6b, it follows that ex is the sum of its Taylor

series,
∑∞

0 xn/n!, for |x| < c. But c is arbitrary, so in fact ex =
∑∞

0 xn/n!
for all x.

Finally, we mention one other simple type of series that arises from time to

time. Just as
∫ b
a f(x) dx is easy to compute when f is the derivative of a known

function, the series
∑∞

0 an is easy to sum when the terms an are the differences of

a known sequence {bn}. That is, suppose a0 = b0 and an = bn − bn−1 for n ≥ 1;

then

sk = a0 + a1 + · · · + ak = b0 + (b1 − b0) + · · ·+ (bk − bk−1) = bk,

so the series
∑∞

0 an converges if and only if the sequence {bn} converges, in which

case
∑∞

0 an = lim bn. Such series are called telescoping series.

EXERCISES

1. Find the values of x for which each of the following series converges and com-

pute its sum.

a. 2(x+ 1) + 4(x+ 1)4 + 8(x+ 1)7 + · · ·+ 2n+1(x+ 1)3n+1 + · · ·
b. 10x−2 + 20x−4 + 40x−6 + · · ·+ 10 · 2nx−2(n+1) + · · ·
c. 1+ (1−x)/(1+x)+ (1−x)2/(1+x)2 + · · ·+(1−x)n/(1+x)n + · · ·
d. log x+ (log x)2 + (log x)3 + · · ·+ (log x)n + · · ·

2. Tell whether each of the following series converges; if it does, find its sum.

a. 1 + 3
4 + 5

8 +
9
16 + 17

32 + · · ·
b. 1

1·2 +
1
2·3 +

1
3·4 + 1

4·5 + · · · (Hint: [n(n+ 1)]−1 = n−1 − (n + 1)−1).

c. (
√
2−
√
1) + (

√
3−
√
2) + (

√
4−
√
3) + · · ·

d. 1− 1
2 + 1− 1

3 + 1− 1
4 + 1− 1

5 + · · ·
3. Let f(x) = log(1 + x). Show that the Taylor remainder R0,k(x) (defined by

(2.54)) tends to zero as k →∞ for −1 < x ≤ 1, and conclude that

log(1 + x) =
∞∑

1

(−1)n+1x
n

n
for − 1 < x ≤ 1.
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(Hint: Lagrange’s formula for R0,k easily yields the desired result when −1
2 <

x ≤ 1 but not when −1 < x ≤ −1
2 . For x < 0, use the integral for-

mula (2.56) for R0,k and the mean value theorem for integrals to show that

|R0,k(x)| = |x|(x′ − x)n(x′ + 1)−n−1 for some x′ ∈ (x, 0), and thence show

that |R0,k(x)| < |x|n+1/(1 + x).)

4. Given a sequence {an} of numbers, let
∏k

1 an denote the product of the num-

bers a1, . . . , ak . The infinite product
∏∞

1 an is said to converge to the number

P if the sequence of partial products converges to P :

∞∏

1

an = lim
k→∞

k∏

1

an = lim
k→∞

a1a2 · · · ak.

(Note: In many books one finds a more complicated definition that takes ac-

count of the peculiar role of the number 0 with regard to multiplication.)

a. Show that if
∏∞

1 an converges to a nonzero number P , then limn→∞ an =
1. (This is the analogue of Theorem 6.1c for products.)

b. Show that if
∏∞

1 an converges to a nonzero number P , then
∑∞

1 log an
converges after omission of those terms for which an < 0. (By (a), there

can only be finitely many such terms, and no an can be 0.) Conversely,

show that if an > 0 for all n and
∑∞

1 log an converges to S, then
∏∞

1 an
converges to eS . (See also Exercise 5 in §6.3.)

6.2 Series with Nonnegative Terms

In this section we begin the systematic study of the convergence of infinite series

by considering series with nonnegative terms. If an ≥ 0 for all n, the partial sums

sk = a0 + · · · + ak form an increasing sequence. By the monotone sequence

theorem, therefore, the series
∑∞

0 an converges if and only if the partial sums sk
have a finite upper bound. This observation leads to a variety of comparison tests,

in which the partial sums sk are compared to more easily computable quantities

that can be shown to be bounded or unbounded.

The Integral Test. If an = f(n) where f is a function of a real variable, a

sum
∑k

n=j an can be compared to an integral
∫ k
j f(x) dx. The virtue of this idea is

that although integration is a more sophisticated concept than summation, integrals

are often easier to compute than sums! The fundamental theorem, whose pictorial

meaning is indicated in Figure 6.1, is as follows:
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FIGURE 6.1: Comparison of
∫ k
j f(x) dx (the area under the curve)

with
∑k−1

n=j f(n) and
∑k

n=j+1 f(n) (its upper and lower Riemann

sums).

6.7 Theorem. Suppose f is a positive, decreasing function on the half-line [a,∞).
Then for any integers j, k with a ≤ j < k,

k−1∑

n=j

f(n) ≥
∫ k

j
f(x) dx ≥

k∑

n=j+1

f(n).

Proof. Since f is decreasing, for n ≤ x ≤ n+1 we have f(n) ≥ f(x) ≥ f(n+1),
and hence

f(n) =

∫ n+1

n
f(n) dx ≥

∫ n+1

n
f(x) dx ≥

∫ n+1

n
f(n+ 1) dx = f(n+ 1).

Adding up these inequalities from n = j to n = k − 1, we obtain the asserted

result.

An immediate corollary is the following test for convergence.

6.8 Corollary (The Integral Test). Suppose f is a positive, decreasing function on

the half-line [1,∞). Then the series
∑∞

1 f(n) converges if and only if the improper

integral
∫∞
1 f(x) dx converges.

Proof. Let sk =
∑k

n=1 f(n). If
∫∞
1 f(x) dx <∞, we have

sk = f(1) +
k∑

2

f(n) ≤ f(1) +
∫ k

1
f(x) dx ≤ f(1) +

∫ ∞

1
f(x) dx,
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so the partial sums are bounded above and hence the series converges. On the other

hand, if
∫∞
1 f(x) dx =∞, we have

sk =

k−1∑

1

f(n) + f(k) ≥
∫ k

1
f(x) dx+ f(k)→∞ as k →∞,

so the series diverges.

Of course, a similar result relates
∑∞

J f(n) to
∫∞
J f(x) dx, for any integer J .

We chose J = 1 because it is appropriate for the following important application.

6.9 Theorem. The series
∑∞

1 n−p converges if p > 1 and diverges if p ≤ 1.

Proof. The same is true of the integrals
∫∞
1 x−p dx, for

∫ ∞

1
x−p dx = lim

K→∞
x1−p

1− p

∣∣∣∣
K

1

=

{
(p− 1)−1 if p > 1,

∞ if p < 1,

and
∫∞
1 x−1 dx = limK→∞ log x

∣∣K
1

=∞.

Theorem 6.7 does more than provide a test for convergence; it also provides an

approximation to the partial sums and the full sum of the series. In the convergent

case, this can be used to provide a numerical approximation to the sum
∑∞

1 f(n)
or an estimate of how many terms must be used for a partial sum to provide a good

approximation; in the divergent case, it can be used to estimate how rapidly the

partial sums grow.

Suppose, for example, that f is positive and decreasing, and that
∫∞
1 f(x) dx <

∞. By letting k →∞ in Theorem 6.7, we obtain

∞∑

1

f(n) ≥
∫ ∞

1
f(x) dx ≥

∞∑

2

f(n),

and hence ∫ ∞

1
f(x) dx ≤

∞∑

1

f(n) ≤ f(1) +
∫ ∞

1
f(x) dx.

This gives an approximation to the sum
∑∞

1 f(n) with an error of at most f(1).
A better approximation can be obtained by using this estimate not for the whole

series but for its tail end:

∫ ∞

k
f(x) dx ≤

∞∑

k

f(n) ≤ f(k) +
∫ ∞

k
f(x) dx.
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Adding on the first k − 1 terms of the series, we see that

(6.10)

∞∑

1

f(n) =
k−1∑

0

f(n) +

∫ ∞

k
f(x) dx, with an error of at most f(k).

The error f(k) will be as small as we please provided k is sufficiently large.

EXAMPLE 1. To evaluate
∑∞

1 n−4 with an error of at most 0.0001, we take

k = 10 in (6.10) to get

∞∑

1

n−4 ≈ 1−4 + 2−4 + · · ·+ 9−4 +

∫ ∞

10
x−4 dx

= 1−4 + 2−4 + · · ·+ 9−4 + 1
310

−3.

A bit of work with a pocket calculator yields the value of this last sum as

1.08226 . . ., so we can conclude that 1.08226 <
∑∞

1 n−4 < 1.08236. (The

exact value of
∑∞

1 n−4 is π4/90 = 1.0823232 . . . ; see Exercise 3 in §8.3 or

Exercise 9a in §8.6.)

General Comparison Tests. One can often decide whether a series of nonneg-

ative terms converges by comparing it to a series whose convergence or divergence

is known. The general method is as follows.

6.11 Theorem. Suppose 0 ≤ an ≤ bn for n ≥ 0. If
∑∞

0 bn converges, then so

does
∑∞

0 an. If
∑∞

0 an diverges, then so does
∑∞

0 bn.

Proof. Let sk =
∑k

0 an and tk =
∑k

0 bn; thus 0 ≤ sk ≤ tk for all k. If
∑∞

0 bn
converges, the numbers tk form a bounded set; hence so do the numbers sk, so the

sequence {sk} converges by the monotone sequence theorem. This proves the first

assertion, to which the second one is logically equivalent.

A couple of remarks are in order concerning this result. First, the convergence

or divergence of a series is unaffected if finitely many terms are deleted from or

added to the series. Hence, the comparison an ≤ bn only has to be valid for all

n ≥ N , whereN is some (possibly large) positive integer. Second, the convergence

or divergence of a series is unaffected if all the terms of the series are multiplied by

a nonzero constant. Hence, the comparison an ≤ bn can be replaced by an ≤ cbn,

where c is any positive number.

When an is an algebraic function of n (obtained from n by applying various

combinations of the arithmetic operations together with the operation of raising to

a power, x→ xa), one can usually decide the convergence of
∑
an by comparing
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it to one of the series
∑∞

1 n−p, discussed in Theorem 6.9. The rule of thumb,

obtained by combining Theorems 6.9 and 6.11, is that if an ≥ cn−1 then
∑
an

diverges, whereas if an ≤ cn−p for some p > 1 then
∑
an converges.

EXAMPLE 2. The series
∑∞

1 (2n − 1)−1 = 1 + 1
3 + 1

5 + · · · diverges by

comparison to
∑∞

1 n−1, for

1

2n− 1
>

1

2n
=

1

2
· 1
n
.

EXAMPLE 3. The series
∑∞

1 (n2 − 6n + 10)−1 converges by comparison to∑∞
1 n−2, but here the comparison takes more work to establish. Since 6n > 10

except for n = 1, it is not true that (n2− 6n+10)−1 ≤ n−2. However, we can

observe when n > 12 we have 6n < 1
2n

2, and hence

1

n2 − 6n+ 10
<

1

(n2/2) + 10
<

1

(n2/2)
=

2

n2
(n > 12),

which gives the desired comparison. However, there is also a simpler way to

proceed. The key observation is that when n is large, −6n + 10 is negligibly

small in comparison with n2, so (n2 − 6n+ 10)−1 is practically equal to n−2.

More precisely,

(n2 − 6n + 10)−1

n−2
=

n2

n2 − 6n + 10
=

1

1− 6n−1 + 10n−2
→ 1 as n→∞,

which immediately gives the comparison (n2− 6n+10)−1 < 2n−2 when n is

large.

The second method for solving Example 3 can be formulated quite generally;

the result is often called the limit comparison test:

6.12 Theorem. Suppose {an} and {bn} are sequences of positive numbers and

that an/bn approaches a positive, finite limit as n → ∞. Then the series
∑∞

0 an
and

∑∞
0 bn are either both convergent or both divergent.

Proof. If an/bn → l as n → ∞, where 0 < l < ∞, we have 1
2 l < an/bn < 2l

when n is large; that is, an < 2lbn and bn < (2/l)an. The result therefore follows

from Theorem 6.11 and the remarks following it.

Theorem 6.12 can be extended a little. If an/bn → 0 as n → ∞, then an <
bn for large n, so the convergence of

∑
bn will imply the convergence of

∑
an.

Likewise, if an/bn → ∞, then an > bn for large n, so the convergence of
∑
an

will imply the convergence of
∑
bn. However, the reverse implications are not

valid in these cases.
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Comparisons to the Geometric Series. There are a couple of very useful

convergence tests that are based on a comparison to the geometric series
∑∞

0 rn,

where r > 0. We recall that this series converges for r < 1 and diverges for r ≥ 1.

6.13 Theorem (The Ratio Test). Suppose {an} is a sequence of positive num-

bers.

a. If an+1/an < r for all sufficiently large n, where r < 1, then the series
∑∞

0 an
converges. On the other hand, if an+1/an ≥ 1 for all sufficiently large n, then

the series
∑∞

0 an diverges.

b. Suppose that l = limn→∞ an+1/an exists. Then the series
∑∞

0 an converges

if l < 1 and diverges if l > 1. No conclusion can be drawn if l = 1.

Proof. Suppose an+1/an < r < 1 for all n ≥ N . Then

aN+1 < raN , aN+2 < raN+1 < r2aN , aN+3 < raN+2 < r3aN , . . . ,

so aN+m < rmaN for all m > 0. The series
∑∞

0 an therefore converges by

comparison to the geometric series
∑
rm:

∞∑

0

an < a0 + · · ·+ aN−1 + aN (1 + r + r2 + · · · ) <∞.

On the other hand, if an+1/an ≥ 1 then an+1 ≥ an; if this is so for all n ≥ N ,

then an 6→ 0, so
∑
an cannot converge. This proves (a).

Assertion (b) is a corollary of (a). If l < 1, choose r with l < r < 1. If

lim an+1/an = l, then an+1/an < r for large n, so
∑
an converges. If l > 1,

then an+1/an ≥ 1 for large n, so
∑
an diverges. Finally, if we take an = n−p,

we know that
∑∞

1 an converges if p > 1 and diverges if p ≤ 1; but an+1/an =
[n/(n+ 1)]p → 1 no matter what p is. Hence the test is inconclusive if l = 1.

6.14 Theorem (The Root Test). Suppose {an} is a sequence of positive num-

bers.

a. If a
1/n
n < r for all sufficiently large n, where r < 1, then the series

∑∞
0 an

converges. On the other hand, if a
1/n
n ≥ 1 for all sufficiently large n, then the

series
∑∞

0 an diverges.

b. Suppose that l = limn→∞ a
1/n
n exists. Then the series

∑∞
0 an converges if

l < 1 and diverges if l > 1. No conclusion can be drawn if l = 1.

Proof. If a
1/n
n < r, we have an < rn, so we have an immediate comparison to the

geometric series
∑
rn that gives the convergence of

∑
an when r < 1. If a

1/n
n ≥ 1

then an ≥ 1, so an 6→ 0 and
∑
an diverges. This proves (a).
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Part (b) follows as in the proof of the ratio test. If a
1/n
n → l < 1, we pick

r ∈ (l, 1) and obtain a
1/n
n < r for large n, so

∑
an converges. If a

1/n
n → l > 1,

then a
1/n
n ≥ 1 for large n, and

∑
an diverges. Finally, for an = n−p we have

a
1/n
n = n−p/n → 1 for any p, so the test is inconclusive when l = 1.

Note: In the last line of this proof, and in Example 4 below, we use the fact

that limx→∞ x1/x = 1. To see, this, observe that log(x1/x) = (log x)/x, and

limx→∞(log x)/x = 0 by l’Hôpital’s rule.

It can be shown that if an+1/an converges to a limit l, then a
1/n
n also converges

to the same limit; but the convergence of a
1/n
n does not imply the convergence of

an+1/an. (See Example 6.) Thus the root test is, in theory, more powerful than

the ratio test. However, the ratio test is often more convenient to use in practice,

especially for series whose terms involve factorials or similar sorts of products.

EXAMPLE 4. Let an = n2/2n. The ratio test and the root test can both be used

to establish the convergence of
∑∞

0 an:

an+1

an
=

(n + 1)2/2n+1

n2/2n
=

1

2

[
n+ 1

n

]2
→ 1

2
, a1/nn =

1

2
n2/n → 1

2
.

EXAMPLE 5. Let an =
1 · 4 · 7 · · · (3n+ 1)

2nn!
. Here the root test is cumber-

some, but the ratio test works easily:

an+1

an
=

1 · 4 · · · (3n + 1)(3n + 4)/2n+1(n+ 1)!

1 · 4 · · · (3n+ 1)/2nn!
=

3n + 4

2(n + 1)
→ 3

2
,

so
∑∞

0 an diverges.

EXAMPLE 6. Let an = 2−n/2 if n is even and an = 2−(n−1)/2 if n is odd; thus

∞∑

0

an = 1 + 1 + 1
2 +

1
2 + 1

4 +
1
4 +

1
8 + 1

8 + · · ·.

Here an+1/an equals 1 if n is even and 1
2 if n is odd, so the ratio test (even

the more general form in part (a) of Theorem 6.13) fails; its hypotheses are not

satisfied. But the root test works: a
1/n
n equals 2−1/2 if n is even and 2−(n−1)/2n

if n is odd; both of these expressions converge to 2−1/2 as n→∞, so the series

converges. (Of course, this can also be proved more simply. By grouping the

terms in pairs, one sees that
∑∞

0 an = 2
∑∞

0 2−m = 4.)
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Raabe’s Test. The ratio test and the root test are, in a sense, rather crude,

for the indecisive cases where lim an+1/an = 1 or lim a
1/n
n = 1 include many

commonly encountered series such as
∑∞

1 n−p. The reason for this insensitivity is

that the terms of the geometric series
∑
rn either converge to zero exponentially

fast (if r < 1) or not at all (if r ≥ 1), so they do not furnish a useful comparison for

quantities such as n−p that tend to zero only polynomially fast. However, there is

another test, Raabe’s test, that is sometimes useful in the case where lim an+1/an =
1. The class of problems for which Raabe’s test is effective is rather limited, and

there is another way of attacking the most important of them that we shall present in

§7.6. Hence we view Raabe’s test as an optional topic; however, the insight behind

it is of interest in its own right.

The idea is to use the ratios an+1/an to compare the series
∑
an to one of the

series
∑
n−p rather than to the geometric series. For the series

∑
n−p, the ratio

of two successive terms is (n + 1)−p/n−p = [1 + (1/n)]−p. To put this quantity

in a form more amenable to comparison, we use the tangent line approximation to

the function f(x) = (1 + x)−p at x = 0. Since f ′(x) = −p(1 + x)−p−1 and

f ′′(x) = p(p+ 1)(1 + x)−p−2, Lagrange’s formula for the error term gives

(1 + x)−p = 1− px+E(x), 0 < E(x) <
p(p+ 1)

2
x2 for x > 0.

Hence,

(6.15)
(n + 1)−p

n−p
=

[
1 +

1

n

]−p
= 1− p

n
+ En, 0 < En <

p(p+ 1)

2n2
.

Thus, n[1− (n+1)−p/n−p] is approximately p when n is large. With this in mind,

we are ready for the main result.

6.16 Theorem (Raabe’s Test). Let {an} be a sequence of positive numbers. Sup-

pose that

an+1

an
→ 1 and n

[
1− an+1

an

]
→ L as n→∞.

If L > 1, the series
∑
an converges, and if L < 1, the series

∑
an diverges. (If

L = 1, no conclusion can be drawn.)

Proof. If L > 1, choose a number p with 1 < p < L. Then, when n is large, we

have n[1− (an+1/an)] > p, that is, an+1/an < 1− (p/n). Thus, by (6.15),

an+1

an
< 1− p

n
<

(n+ 1)−p

n−p
, or

an+1

(n + 1)−p
<

an
n−p

.
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Thus the sequence {an/n−p} is decreasing, so it is bounded above by a constant

C . In other words, an ≤ Cn−p, so since p > 1,
∑
an converges by comparison to∑

n−p.
On the other hand, if L < 1, choose numbers p and q with L < q < p < 1.

Then, when n is large, we have n[1 − (an+1/an)] < q, that is, (an+1/an) >
1− (q/n). If also n > p(p+ 1)/2(p− q), we have p(p+ 1)/2n2 < (p− q)/n, so

by (6.15),

an+1

an
> 1− q

n
= 1− p

n
+
p− q
n

> 1− p

n
+ En =

(n+ 1)−p

n−p
.

Thus (n + 1)−p/an+1 < n−p/an, so the sequence {n−p/an} is decreasing. As

before, this gives n−p ≤ Can, and p < 1 in this case, so
∑
an diverges by com-

parison to
∑
n−p.

The main applications of Raabe’s test are to series whose terms involve quo-

tients of factorial-like products. The following example is typical.

EXAMPLE 7. Let an =
1 · 4 · 7 · · · (3n+ 1)

n23nn!
. We have

an+1

an
=

1 · 4 · · · (3n + 1)(3n + 4)/(n + 1)23n+1(n+ 1)!

1 · 4 · · · (3n + 1)/n23nn!
=

(3n + 4)n2

3(n + 1)3
.

This tends to 1 as n→∞ (the dominant term on both top and bottom is 3n3),

so the ratio test fails. But

n

[
1− an+1

an

]
= n

[
1− (3n + 4)n2

3(n+ 1)3

]
=

5n3 + 9n2 + 3n

3(n + 1)3
→ 5

3
,

and 5
3 > 1, so the series

∑
an converges.

Concluding Remarks. Faced with an infinite series
∑
an, how does one de-

cide how to test it for convergence? Some series require more cleverness than

others, but the following rules of thumb may be helpful.

• Does an → 0 as n→∞? If not,
∑
an diverges.

• If an is an algebraic function of n (say, a rational function of n, or a similar

expression involving fractional powers of n), try comparison with
∑
n−p for

a suitable value of p.

• If an involves expressions with n in the exponent, try the ratio test or the root

test.
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• If an involves factorial-like products, the ratio test is the best bet. If the ratio

test fails because lim an+1/an = 1, try Raabe’s test.

• The integral test may be useful when numerical estimates are desired or when

the series is near the borderline between convergence and divergence.

In any case, one should beware of confusing the various sequences that arise in

the study of infinite series. For any infinite series
∑
an, one has the sequence {an}

of terms and the sequence {sk} of partial sums. In the ratio test, one considers the

sequence {an+1/an} of ratios of successive terms of a series, whereas in the limit

comparison test, one considers the sequence {an/bn} of ratios of corresponding

terms of two different series. Don’t mix these sequences up!

EXERCISES

In Exercises 1–18, test the series for convergence.

1.

∞∑

0

√
n+ 1

n2 − 4n+ 5
.

2.

∞∑

1

ne−n.

3.

∞∑

1

2n2 − n
2n8/3 + n

.

4.

∞∑

1

n+ 1

n!
.

5.

∞∑

0

(2n+ 1)3n

(3n+ 1)2n
.

6.

∞∑

0

12 · 32 · · · (2n+ 1)2

3n(2n)!
.

7.

∞∑

1

n!

10n
.

8.

∞∑

2

(log n)−100.

9.

∞∑

0

1 · 3 · · · (2n+ 1)

2 · 5 · · · (3n+ 2)
.
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10.

∞∑

0

(n!)2

(2n)!
.

11.

∞∑

0

3nn!

nn
.

12.

∞∑

1

(
n

n+ 1

)n2

.

13.

∞∑

1

[1− cos(1/n)].

14.

∞∑

1

√
n+ 1−√n√

n+ 2
.

15.

∞∑

1

sin
n

n2 + 3
.

16.

∞∑

1

n2[π + (−1)n]n
5n

.

17.

∞∑

1

1 · 3 · · · (2n− 1)

4 · 6 · · · (2n+ 2)
.

18.

∞∑

1

2 · 4 · · · (2n)
3 · 5 · · · (2n+ 1)

.

19. Suppose an > 0. Show that if
∑
an converges, then so does

∑
apn for any

p > 1.

20. Show that

∞∑

2

1

n(log n)p
converges if p > 1 and diverges if p ≤ 1.

21. For which p does

∞∑

4

1

n(log n)(log log n)p
converge?

22. By Exercise 20,
∑∞

2 1/[n log n] diverges while
∑∞

2 1/[n(log n)2] converges.

Use Theorem 6.7 to show that

4.88 <
1040∑

2

1

n log n
< 5.61,

∞∑

1040

1

n(log n)2
≈ 0.011.

The point is that for series such as these that are near the borderline between

convergence and divergence, attempts at numerical approximation by adding
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up the first few terms aren’t much use. If you add up the first 1040 terms of the

first series, you get no clue that the series diverges; and if you add up the first

1040 terms of the second one, the answer you get still differs from the full sum

in the second decimal place. (By way of comparison, the universe is around

1018 seconds old, and the earth contains around 1050 atoms.)

23. Verify that x/(x2 + 1)2 is decreasing for x ≥ 3−1/2, and thence show that

0.38 <
∑∞

1 n/(n2 + 1)2 < 0.41.

24. Let ck = 1 + 1
2 + · · · + 1

k − log k. Show that the sequence {ck} is positive

and decreasing, and hence convergent. (limk→∞ ck is conventionally denoted

by γ and is called Euler’s constant or the Euler-Mascheroni constant. It is

approximately equal to 0.57721; it is conjectured to be transcendental, but at

present no one knows whether it is even irrational.)

25. Suppose an > 0 for all n > 0, and let L = lim sup a
1/n
n (see Exercises 9–12

in §1.5). Show that
∑∞

1 an converges if L < 1 and diverges if L > 1.

6.3 Absolute and Conditional Convergence

We now consider the question of convergence of series whose terms may be either

positive or negative. To a certain extent, this question may be reduced to the study

of series with nonnegative terms, via the notion of absolute convergence.

A series
∑∞

0 an is called absolutely convergent if the series
∑∞

0 |an| con-

verges. For series with nonnegative terms, absolute convergence is the same thing

as convergence. For more general series, the basic result is as follows.

6.17 Theorem. Every absolutely convergent series is convergent.

Proof. Suppose
∑∞

0 |an| converges. Let sk =
∑k

0 an and Sk =
∑k

0 |an|. The

sequence {Sk} is convergent and hence Cauchy, so given ǫ > 0, there exists an

integer K such that

|aj+1|+ · · · + |ak| = Sk − Sj < ǫ whenever k > j ≥ K.

But then

|sk − sj| = |aj+1 + · · · + ak| ≤ |aj+1|+ · · ·+ |aj | < ǫ whenever k > j ≥ K,

so the sequence {sk} is also Cauchy. By Theorem 1.20, the sequence {sk}, and

hence the series
∑
an, is convergent.



296 Chapter 6. Infinite Series

Important Remark. We can consider series whose terms are complex numbers

or n-dimensional vectors instead of real numbers. The definition of absolute con-

vergence is the same, with |an| denoting the norm of the vector an. Theorem 6.17

remains valid in this more general setting, with exactly the same proof.

The converse of Theorem 6.17 is false; a series that is not absolutely convergent

may still converge because of cancellation between the positive and negative terms.

A series that converges but does not converge absolutely is said to be conditionally

convergent.

EXAMPLE 1. Let an = 1/(n + 1) if n is even, an = −1/n if n is odd; thus,

∞∑

0

an = 1− 1 + 1
3 − 1

3 +
1
5 − 1

5 + · · ·.

Clearly sk = 0 if k is odd and sk = 1/(k + 1) if k is even, so the series

converges to the sum 0. However,

∞∑

0

|an| = 1 + 1 + 1
3 + 1

3 + · · · = 2
∞∑

0

1

2n + 1
,

which diverges by comparison to
∑
n−1.

EXAMPLE 2. Here is a more interesting example. The series

∞∑

1

(−1)n−1

n
= 1− 1

2 + 1
3 − 1

4 + · · ·

is not absolutely convergent since
∑∞

1 n−1 diverges. However, it is the Taylor

series for f(x) = log(1 + x) at x = 1. Indeed, for n > 0 we have f (n)(x) =
(−1)n−1(n − 1)!(1 + x)−n, so Taylor’s formula gives

log(1 + x) =

k∑

1

(−1)n−1(n− 1)!

n!
xn +Rk(x)

= x− x2

2
+
x3

3
+ · · ·+ (−1)k−1xk

k
+Rk(x),

and by Corollary 2.61,

|Rk(1)| ≤
1

(k + 1)!
sup

0≤t≤1

∣∣∣∣
(−1)kk!
(1 + t)k

∣∣∣∣ =
1

k + 1
,

which tends to zero as k → ∞. It follows that
∑∞

1 (−1)n−1/n converges to

log 2.
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It is to be emphasized that conditionally convergent series converge only be-

cause of cancellation between positive and negative terms. More precisely, let

a+n = max(an, 0) a−n = max(−an, 0).

That is, a+n = an if an is positive and a+n = 0 otherwise, and a−n = |an| if an
is negative and a−n = 0 otherwise; the nonzero a+n ’s are the positive terms of the

series
∑
an, and the nonzero a−n ’s are the absolute values of the negative terms.

Observe that

a+n − a−n = an, a+n + a−n = |an|.

6.18 Theorem. If
∑
an is absolutely convergent, the series

∑
a+n and

∑
a−n are

both convergent. If
∑
an is conditionally convergent, the series

∑
a+n and

∑
a−n

are both divergent.

Proof. This theorem follows from the following three facts:

i. The convergence of
∑ |an| implies the convergence of

∑
a+n and

∑
a−n .

ii. The divergence of
∑ |an| implies the divergence of at least one of

∑
a+n and∑

a−n .

iii. If
∑
an converges, it cannot happen that one of

∑
a+n and

∑
a−n converges

while the other one diverges.

The first of these is clear since 0 ≤ a+n ≤ |an| and 0 ≤ a−n ≤ |an|, and the second

is clear since |an| = a+n + a−n . As for the third, let sk and s±k denote the kth partial

sums of the series
∑
an and

∑
a±n ; thus sk = s+k − s−k . Suppose, to be definite,

that
∑
a+n = ∞ while

∑
a−n = S < ∞; then for any C > 0 (no matter how

large), for sufficiently large k we will have s+k > C + S, while s−k ≤ S, so that

sk > C + S − S = C . It follows that sk → +∞, so
∑
an diverges.

Absolutely convergent series are much more pleasant to deal with than condi-

tionally convergent ones. For one thing, they converge more rapidly; the partial

sums sk of conditionally convergent series tend to provide poor approximations to

the full sum unless one takes k very large because the divergence of
∑ |an| implies

that an cannot tend to zero very rapidly as n → ∞. For another thing, the sum

of an absolutely convergent series cannot be affected by rearranging the terms, but

this is not the case for conditionally convergent series!

Let us explain this mysterious statement in more detail. The terms of a series∑∞
0 an are presented in a definite order: a0, a1, a2, . . .. We might think of forming

a new series by writing down these terms in a different order, such as

a0, a2, a1, a4, a6, a3, a8, a10, a5, . . . ,



298 Chapter 6. Infinite Series

where we take the first two even-numbered terms, the first odd-numbered term,

the next two even-numbered terms, the next odd-numbered term, and so forth. In

general, if σ is any one-to-one mapping from the set of nonnegative integers onto it-

self, we can form the series
∑∞

0 aσ(n), which we call a rearrangement of
∑∞

0 an.

(The reasons why we would want to do this are perhaps not so clear right now, but

we will encounter situations in §6.5 where this issue must be addressed.) The sharp

contrast between absolutely and conditionally convergent series with respect to re-

arrangements is explained in the following two theorems.

6.19 Theorem. If
∑∞

0 an is absolutely convergent with sum S, then every rear-

rangement
∑∞

0 aσ(n) is also absolutely convergent with sum S.

Proof. First suppose an ≥ 0 for all n. Every term of the rearranged series
∑
aσ(n)

is among the terms of the original series
∑
an, and hence the partial sums of the

rearranged series cannot exceed S. It follows that the full sum S′ of the rearranged

series satisfies S′ ≤ S. The same reasoning shows that S ≤ S′, so S′ = S.

Now we do the general case. If
∑ |an| <∞, we have

∑ |aσ(n)| <∞ by what

we have just proved. Hence, given ǫ > 0, for k sufficiently large we have

∞∑

k+1

|an| < ǫ and

∞∑

k+1

|aσ(n)| < ǫ.

Given such a k, let K be the largest of the numbers σ(0), . . . , σ(k), so that

{
σ(0), σ(1), . . . , σ(k)

}
⊂
{
0, 1, . . . ,K

}
.

The elements of {0, 1, . . . ,K}\{σ(0), σ(1), . . . , σ(k)} are among the σ(n)’s with

n ≥ k + 1, so ∣∣∣∣
K∑

0

an −
k∑

0

aσ(n)

∣∣∣∣ ≤
∞∑

k+1

|aσ(n)| < ǫ.

But then

∣∣∣∣
k∑

0

aσ(n) − S
∣∣∣∣ ≤

∣∣∣∣
k∑

0

aσ(n) −
K∑

0

an

∣∣∣∣+
∣∣∣∣
K∑

0

an − S
∣∣∣∣ ≤ ǫ+

∞∑

K+1

|an| < 2ǫ.

As ǫ is arbitrary, we conclude that
∑∞

0 aσ(n) = S.

6.20 Theorem. Suppose
∑∞

0 an is conditionally convergent. Given any real num-

ber S, there is a rearrangement
∑∞

0 aσ(n) that converges to S.
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Proof. By Theorem 6.18, the series
∑
a+n and

∑
a−n of positive and negative terms

from
∑
an both diverge; but since

∑
an converges, we have an → 0 as n → ∞.

These pieces of information are all we need.

Suppose S ≥ 0. (A similar argument works for S < 0.) We construct the

desired rearrangement as follows:

1. Add up the positive terms from the series
∑
an (in their original order) until

the sum exceeds S. This is possible since
∑
a+n =∞. Stop as soon as the sum

exceeds S.

2. Now start adding in the negative terms (in their original order) until the sum

becomes less than S. Again, this is possible since
∑
a−n =∞. Stop as soon as

the sum is less than S.

3. Repeat steps 1 and 2 ad infinitum. That is, add in positive terms until the sum

is greater than S, then add in negative terms until the sum is less than S, and

so forth. This process never terminates since the series
∑
a+n and

∑
a−n both

diverge, and sooner or later every term from the original series will be added

into the new series. The result is a rearrangement
∑∞

0 aσ(n) of the original

series.

We claim that this rearrangement converges to S. Indeed, given ǫ > 0, there exists

an integer N so that |an| < ǫ if n > N . If we choose K large enough so that all

the terms a0, a1, . . . , aN are included among the terms aσ(0), aσ(1), . . . aσ(K), then

|aσ(n)| < ǫ if n > K . It follows that the partial sums
∑k

0 aσ(n) differ from S by

less than ǫ if k > K , because the procedure specifies switching from positive to

negative terms or vice versa as soon as the sum is greater than or less than S; if

the sum became greater than S + ǫ or less than S − ǫ, we would have added in too

many terms of the same sign. Hence the sums
∑k

0 aσ(n) converge to S.

EXERCISES

1. Show that the following series are absolutely convergent.

a.
∑∞

0 xn cosnθ (|x| < 1, θ ∈ R).

b.
∑∞

1 n−2 sinnθ (θ ∈ R).

c.
∑∞

1 (−1)nn231−nxn (|x| < 3).

2. Suppose
∑
an is conditionally convergent. Show that there are rearrangements

of
∑
an whose partial sums diverge to +∞ or −∞.

3. Consider the rearrangement of the series
∑∞

1 (−1)n−1/n obtained by taking

two positive terms, one negative term, two positive terms, one negative term,

and so forth:

1 + 1
3 − 1

2 +
1
5 +

1
7 − 1

4 +
1
9 +

1
11 − 1

6 + · · · .
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Show that the sum of this series is 3
2 log 2. (Hint: Deduce from Example 2 that

0+ 1
2 +0− 1

4 +0+ 1
6 +0−· · · = 1

2 log 2 and add this to the result of Example

2.)

4. Let
∑∞

0 an be a convergent series, and let
∑∞

0 bn be its rearrangement ob-

tained by interchanging each even-numbered term with the odd-numbered term

immediately following it: a1 + a0 + a3 + a2 + a5 + a4 + · · · . Show that∑∞
0 bn =

∑∞
0 an.

5. Suppose an > −1 for all n. By suitable applications of Taylor’s theorem to the

functions log(1 + x) or ex, show the following:

a.
∑
an is absolutely convergent if and only if

∑
log(1 + an) is absolutely

convergent. (This is of interest in connection with Exercise 4 of §6.1: If∑ |an| <∞, then
∏
(1 + an) converges.)

b. Let an = (−1)n+1/
√
n. Then

∑∞
1 an is conditionally convergent (see

Theorem 6.22 below), but
∑∞

1 log(1 + an) diverges.

6.4 More Convergence Tests

The tests we developed in §6.2 for the convergence of series of nonnegative terms

immediately yield tests for the absolute convergence of more general series. We

sum up the most important results:

6.21 Theorem.

a. If |an| ≤ Cn−1−ǫ for some C, ǫ > 0, then
∑
an converges absolutely. If

|an| ≥ Cn−1 for some C > 0, then
∑
an either converges conditionally or

diverges.

b. (The Ratio Test) If |an+1/an| → l as n→∞, then
∑
an converges absolutely

if l < 1 and diverges if l > 1.

c. (The Root Test) If |an|1/n → l as n → ∞, then
∑
an converges absolutely if

l < 1 and diverges if l > 1.

In the ratio and root tests, the divergence (rather than conditional convergence)

when l > 1 is guaranteed because an 6→ 0 in this case; see the proofs of Theorems

6.13 and 6.14. The statements of the ratio and root tests can be sharpened a bit as

in Theorems 6.13a and 6.14a.

Warning. It is a common mistake to obtain incorrect results by forgetting the

absolute values in Theorem 6.21. For example, the series
∑∞

0 (−2)n satisfies

an+1/an = −2, and −2 < 1, but the series diverges!

It remains to investigate criteria that will yield information about conditional

convergence as well as absolute convergence. By far the most commonly used
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result of this kind pertains to alternating series, that is, series whose terms alternate

in sign. Such a series can be written in the form
∑

(−1)nan or
∑

(−1)n−1an
(depending on whether the even or odd numbered terms are positive), where an >
0; we shall consider the first form for the sake of definiteness.

6.22 Theorem (The Alternating Series Test). Suppose the sequence {an} is de-

creasing and limn→∞ an = 0. Then the series
∑∞

0 (−1)nan is convergent. More-

over, if sk and S denote the kth partial sum and the full sum of this series, we

have

sk > S for k even, sk < S for k odd, and |sk − S| < ak+1 for all k.

Proof. Since ak ≥ ak+1 for all k, we have

s2m+1 = s2m−1 + a2m − a2m+1 ≥ s2m−1,

s2m+2 = s2m − a2m+1 + a2m+2 ≤ s2m.

Thus the sequence {s2m−1} of odd-numbered partial sums is increasing and the

sequence {s2m} of even-numbered partial sums is decreasing. This monotonicity

further yields

s2m−1 = s2m−2 − a2m−1 ≤ s2m−2 ≤ s0,
s2m = s2m−1 + a2m ≥ s2m−1 ≥ s1,

so {s2m−1} and {s2m} are bounded above and below, respectively. By the mono-

tone sequence theorem, these sequences both converge, and since s2m − s2m−1 =
a2m → 0, their limits are equal. Thus the whole sequence {sk} converges, that is,

the series
∑

(−1)nan converges. The even-numbered partial sums decrease to the

full sum S while the odd-numbered ones increase, so S < s2m and S > s2m−1 for

all m. In particular,

0 < S − s2m−1 < s2m − s2m−1 = a2m,

0 < s2m − S < s2m − s2m+1 = a2m+1,

so |sk − S| < ak+1 whether k is even or odd.

EXAMPLE 1. The series
∑∞

1 (−1)n(e1/n − 1) converges by the alternating

series test, because e1/n decreases to 1 as n → ∞. The convergence is only

conditional, however, since e1/n − 1 ≈ 1/n when n is large. (More precisely,

by Taylor’s theorem we have ex = 1 + x + R(x) where |R(x)| ≤ Cx2 for

0 ≤ x ≤ 1. Thus
∑

(e1/n − 1) =
∑
n−1 +

∑
R(1/n); the first series on the

right diverges, while the second converges by comparison to
∑
n−2.)
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The alternating series test is a useful test for conditional convergence, but the

fact that the difference between a partial sum and the full sum is less in absolute

value than the first neglected term is also of interest in the absolutely convergent

case. (This estimate for the error in replacing the full sum by a partial sum is, in

most cases, accurate to within an order of magnitude.)

The alternating series test can be applied to a series
∑

(−1)nan for which

lim an = 0 provided that the an’s decrease from some point onward. (Of course,

the inequalities for the partial sums are only valid from that point onward too.)

However, the monotonicity condition cannot be dropped entirely, as the following

example shows:

1− 1
2 + 1

2 − 1
4 +

1
3 − 1

6 + · · ·+ 1
m − 1

2m + · · ·.

Here an → 0 as n→∞, but not monotonically, and the series diverges. (The sum

of the first 2m terms is 1
2(1+

1
2 +

1
3 + · · ·+ 1

m ), a partial sum of the divergent series
1
2

∑
n−1.)

The tests we have developed can be used to analyze a wide variety of power

series, that is, series of the form
∑∞

0 cn(x − a)n where x is a real variable. In

typical cases, the ratio test or the root test will establish that there is some number r
such that the series converges absolutely for |x−a| < r and diverges for |x−a| > r.

The convergence at the two remaining points x = a± r can then be studied by one

of the other tests.

EXAMPLE 2. Consider the series

∞∑

0

(−1)n(x− 3)n

(n+ 1)22n+1
. We start with the ratio

test:

∣∣∣∣
an+1

an

∣∣∣∣ =
∣∣∣∣
(−1)n+1(x− 3)n+1/(n + 2)22n+3

(−1)n(x− 3)n/(n + 1)22n+1

∣∣∣∣ =
n+ 1

n+ 2

|x− 3|
4

→ |x− 3|
4

.

Thus the series converges absolutely for |x−3| < 4 and diverges for |x−3| > 4.

(The root test would also yield this result.) The two remaining points are where

x−3 = ±4, that is, x = −1 and x = 7. At these two points the series becomes

∞∑

0

(−1)n(−4)n
(n+ 1)22n+1

=
1

2

∞∑

0

1

n+ 1
and

∞∑

0

(−1)n4n
(n + 1)22n+1

=
1

2

∞∑

0

(−1)n
n+ 1

.

The first of these diverges, while the second one converges by the alternating

series test. The convergence is only conditional, by the divergence of the first

series. Thus the original series converges absolutely for −1 < x < 7, con-

verges conditionally at x = 7, and diverges elsewhere.
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We conclude with another test for convergence (absolute or conditional) that

generalizes the alternating series test and is sometimes useful for trigonometric

series. Its proof is based on the following discrete analogue of the integration-

by-parts formula, in which a sum
∑k

1 anbn is rewritten by “differentiating” the

sequence {an} and “integrating” the sequence {bn}.

6.23 Lemma (Summation by Parts). Given two numerical sequences {an} and

{bn}, let

a′n = an − an−1, Bn = b0 + · · ·+ bn.

Then
k∑

0

anbn = akBk −
k∑

1

a′nBn−1.

Proof. We have b0 = B0, and bn = −Bn−1 +Bn for n ≥ 1, so

(6.24) a0b0 + a1b1 + a2b2 + · · ·+ akbk

= a0B0 − a1B0 + a1B1 − a2B1 + a2B2 − · · · − akBk−1 + akBk

= −a′1B0 − a′2B1 − · · · − a′kBk−1 + akBk.

6.25 Theorem (Dirichlet’s Test). Let {an} and {bn} be numerical sequences. Sup-

pose that the sequence {an} is decreasing and tends to 0 as n → ∞, and that the

sumsBn = b0+· · ·+bn are bounded in absolute value by a constant C independent

of n. Then the series
∑∞

0 anbn converges.

Proof. With notation as in Lemma 6.23,
∑k

0 anbn = akBk −
∑k

1 a
′
nBn−1, so

it is enough to show that limk→∞ akBk exists and that the series
∑∞

1 a′nBn−1

converges. The first assertion is easy: Since |Bk| ≤ C and ak → 0, we have

|akBk| ≤ Cak → 0. On the other hand, since {an} is decreasing, we have a′n ≤ 0
for all n, so

k∑

1

|a′nBn−1| ≤ C
k∑

1

|a′n|

= C
[
(a0 − a1) + (a1 − a2) + · · ·+ (ak−1 − ak)

]
= C(a0 − ak) ≤ Ca0

for all k. It follows that the series
∑∞

1 a′nBn−1 is absolutely convergent and hence

convergent.
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Dirichlet’s test includes the alternating series test as a special case, by taking

bn = (−1)n, for which Bn = 1 or 0 according as n is even or odd. The other

situations in which it is most commonly applied are those with bn = sinnθ or

bn = cosnθ, where θ is not an integer multiple of 2π. That the hypotheses on {bn}
in Dirichlet’s test are satisfied in these cases is shown by the following calculation.

6.26 Lemma. If θ is not an integer multiple of 2π, then

k∑

1

cosnθ =
cos 1

2 (k + 1)θ · sin 1
2kθ

sin 1
2θ

,

k∑

1

sinnθ =
sin 1

2 (k + 1)θ · sin 1
2kθ

sin 1
2θ

.

Proof. These formulas can be established by using various trigonometric identities.

The easiest method is to use Euler’s formula cosx+ i sin x = eix (which we shall

discuss in detail in §7.5). By the formula (6.2) for the sum of a finite geometric

series,

k∑

1

einθ = eiθ
eikθ − 1

eiθ − 1
= eiθ

eikθ/2[eikθ/2 − e−ikθ/2]
eiθ/2[eiθ/2 − e−iθ/2]

= ei(k+1)θ/2 e
ikθ/2 − e−ikθ/2
eiθ/2 − e−iθ/2

=
[
cos 1

2(k + 1)θ + i sin 1
2(k + 1)θ

]sin 1
2kθ

sin 1
2θ

.

The asserted formulas follow by taking the real and imaginary parts of both sides.

6.27 Corollary. Suppose that the sequence {an} decreases to 0 as n → ∞. Then

the series
∑∞

1 an cosnθ converges for all θ except perhaps for integer multiples of

2π, and the series
∑∞

1 an sinnθ converges for all θ.

Proof. The hypotheses of Dirichlet’s test are satisfied for θ 6= 2πj, for if bn is either

cosnθ or sinnθ, the lemma implies that |Bn| ≤ | csc 1
2θ| for all n. (If θ = 2πj, the

series
∑
an sinnθ converges trivially since sinnθ = 0 for all n.)
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EXERCISES

In Exercises 1–9, determine the values of x at which the series converges absolutely

or conditionally.

1.

∞∑

0

(x+ 2)n

n2 + 1
.

2.

∞∑

1

n3(2x− 1)n.

3.

∞∑

0

x2n

1 · 3 · · · (2n+ 1)
.

4.

∞∑

1

nxn+2

5n(n+ 1)2
.

5.

∞∑

0

(−1)n(x− 4)n

(2n − 3) log(n+ 3)
.

6.

∞∑

1

1√
n

(
x− 1

x+ 1

)n
.

7.

∞∑

1

2 · 4 · · · (2n)
1 · 3 · · · (2n− 1)

(12x− 3)n.

8.

∞∑

0

(−1)n(x+ 1)2n

3n+ 2
.

9.

∞∑

0

1 · 3 · · · (2n+ 1)

2 · 5 · · · (3n+ 2)
xn.

In Exercises 10–14, determine whether the series converges absolutely, converges

conditionally, or diverges.

10.

∞∑

2

(−1)n log
(
n+ 1

n

)
.

11.

∞∑

1

(−1)n
∫ n+1

n

log(x+ 7)

x
dx.

12.

∞∑

1

(−1)n
n1/n

.
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13.

∞∑

1

(−1)n−1 log(n sinn−1).

14.

∞∑

1

(−1)n−1

[
e−

(
n+ 1

n

)n]
.

15. Use the alternating series test to show that x−1 sinx = 1 − 1
3!x

2 + 1
5!x

4 −
1
7!x

6 + E(x) where 0 < E(x) < 0.027 for |x| ≤ π.

16. (Abel’s Test) Suppose
∑
an is a convergent series and {bn} is a decreasing

sequence of positive numbers. (lim bn need not be zero.) Show that
∑
anbn

converges. (This can be done by using Dirichlet’s test or by modifying the

proof of Dirichlet’s test.)

17. Show that if
∑∞

1 an converges, then so does
∑∞

1 n−pan for any p > 0. For

which p can you guarantee absolute convergence without knowing anything

more about the an’s?

18. For which x and θ does
∑∞

1 n−1xn cosnθ converge?

6.5 Double Series; Products of Series

A double infinite series, informally speaking, is an expression of the form

(6.28)

∞∑

m,n=0

amn,

that is, a series whose terms are indexed by ordered pairs of nonnegative integers.

The difficulty in making precise sense out of such an expression is that it is not

clear what one should mean by a “partial sum.” Two obvious candidates are the

“square” partial sums and the “triangular” partial sums

s�k =

k∑

m,n=0

amn, s△k =
∑

m+n≤k
amn,

which are defined by adding up all the terms amn for which (m,n) lies in the

outlined regions in Figure 6.2. (Note that passing from s�k or s△k to s�k+1 or s△k+1

involves adding not just a single term but a finite set of terms to the sum. It is not

necessary to specify the order in which these terms are added, as finite addition

is commutative.) Clearly there are many other possibilities. Indeed, there are in-

finitely many ways to enumerate the set of ordered pairs of nonnegative integers,

each of which leads to a different notion of “partial sums.”
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0

0

0

0 k

k

k

k

m

n

FIGURE 6.2: Schematic representation of square and triangular partial

sums of a double series.

There is yet another possibility: One can consider the double series (6.28) as

an iterated series, just as one can regard double integrals as iterated integrals. That

is, one could interpret (6.28) as

∞∑

m=0

( ∞∑

n=0

amn

)
or

∞∑

n=0

( ∞∑

m=0

amn

)
,

in which one forms the ordinary series σm =
∑∞

n=0 amn for each m and then

adds up the sums to obtain
∑∞

m=0 σm, or similarly with m and n switched. This is

different from the partial-sum procedures discussed above because the intermediate

steps involve infinite sums rather than finite ones.

How is one to make sense out of all these ways of interpreting (6.28)? The

answer, in a nutshell, is that the situation is similar to that for improper double

integrals discussed in §4.7: For series of positive terms, or for absolutely conver-

gent series, there is no problem, as all interpretations lead to the same answer.

Otherwise, one must proceed with great caution.

Let us explain this in more detail. Given any one-to-one correspondence j ↔
(m,n) between the set of nonnegative integers and the set of ordered pairs of non-

negative integers, we can set bj = amn and form the ordinary infinite series
∑∞

0 bj ;
we call such a series an ordering of the double series

∑∞
m,n=0 amn. The essential

point is that the orderings of
∑
amn are all rearrangements of one another, and we

can apply Theorem 6.19.

First, if amn ≥ 0, then either all orderings of
∑
amn diverge or all orderings

converge, and in the latter case their sums are all equal. Thus, the sum of the series∑
amn is well defined as a positive number or +∞, independent of the choice of

ordering.

Second, without the assumption of positivity, if
∑ |bj | is convergent for one

ordering of
∑
amn, then the same is true for every ordering. In this case the series
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∑
amn is called absolutely convergent, and by Theorem 6.19 again, all order-

ings of
∑
amn have the same sum, which we call the sum of the double series∑

amn. Moreover, an argument similar to the proof of Theorem 6.19 shows that

the double series
∑
amn is absolutely convergent if and only if the iterated series∑

m(
∑

n |amn|) is convergent, in which case
∑

m,n amn =
∑

m(
∑

n amn). (See

Exercises 5 and 6.)

Given a double series
∑
amn, we can therefore proceed as follows. First we

evaluate the series
∑ |amn| by ordering it in some fashion or treating it as an iter-

ated series; if it turns out to be finite, we can then evaluate
∑
amn by ordering it in

any fashion or treating it as an iterated series.

What if
∑
amn is not absolutely convergent? Let us separate out the positive

and negative terms as we did in Theorem 6.18. The argument in the proof of Theo-

rem 6.18 shows that if
∑
a+mn =∞ but

∑
a−mn <∞, then all orderings of

∑
amn

diverge to +∞; likewise, if
∑
a+mn < ∞ but

∑
a−mn = ∞, then all orderings of∑

amn diverge to−∞. On the other hand, if
∑
a+mn =

∑
a−mn =∞ but amn → 0

as m,n → ∞, the proof of Theorem 6.20 shows that various orderings of
∑
amn

can converge to any real number. In this case, therefore, we simply cannot make

numerical sense out of the expression
∑
amn without specifying more precisely

how the summation is to be performed.

An important situation in which double series occur is in multiplying two series

together. The basic result is as follows.

6.29 Theorem. Suppose that
∑∞

0 am and
∑∞

0 bn are both absolutely convergent,

with sumsA andB. Then the double series
∑∞

m,n=0 ambn is absolutely convergent,

and its sum is AB.

Proof. We consider the square partial sums of
∑
ambn, which are just the products

of the partial sums of
∑
am and

∑
bn:

(6.30)

k∑

m,n=0

ambn =

( k∑

0

am

)( k∑

0

bn

)
.

If we replace am and bn by |am| and |bn| in (6.30), the right side is bounded by the

finite quantity (
∑∞

0 |am|)(
∑∞

0 |bn|), which shows that the double series
∑
ambn

is absolutely convergent. Then, letting k → ∞ in (6.30), we obtain
∑
ambn =

AB.

Under the conditions of Theorem 6.29, we are free to use any ordering of∑
ambn that we choose, and in particular, we can use the triangular partial sums

rather than the square ones. This is the natural thing to do when considering power
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series. Indeed, if
∑
anx

n and
∑
bnx

n are absolutely convergent for a particu-

lar value of x, their product is
∑
ambnx

m+n, which can also be expressed as a

power series if we group together all the terms involving a given power of x. The

terms involving xj are those with m+ n = j, i.e., those with m = 0, 1, . . . , j and

n = j −m. Collecting these terms together yields
( ∞∑

0

anx
n

)( ∞∑

0

bnx
n

)
=

∞∑

j=0

[ ∑

m+n=j

anbm

]
xj.

The expression on the right is a power series whose jth coefficient is a finite sum

of products of the original coefficients; its partial sums are precisely the triangular

partial sums of the double series
∑
ambnx

m+n.

The same procedure can also be used for series without an x (by taking x = 1,

if you like). That is, given two convergent series
∑∞

0 am and
∑∞

0 bn, we can form

the series
∞∑

j=0

( ∑

m+n=j

anbm

)
=

∞∑

j=0

(a0bj + a1bj−1 + · · ·+ aj−1b1 + ajb0),

whose partial sums are the triangular partial sums of the double series
∑
ambn;

it is called the Cauchy product of
∑
am and

∑
bn. As we have seen, if

∑
am

and
∑
bn are absolutely convergent, their Cauchy product is too, and its sum is

(
∑
am)(

∑
bn). In fact, the Cauchy product converges to (

∑
am)(

∑
bn) pro-

vided that at least one of
∑
am and

∑
bn is absolutely convergent (see Krantz

[12, pp. 109–10], or Rudin [19, p. 74]). However, if
∑
am and

∑
bn are both

conditionally convergent, their Cauchy product may diverge. (See Exercise 4.)

EXERCISES

1. By multiplying the geometric series by itself, show that for |x| < 1,

a. (1− x)−2 =
∑∞

0 (n+ 1)xn;

b. (1− x)−3 = 1
2

∑∞
0 (n+ 1)(n + 2)xn.

2. Let f(x) =
∑∞

0 xn/n!. Show directly from this formula that f(x)f(y) =
f(x+ y).

3. Verify that the Taylor series of (1−4x)−1/2 about x = 0 is
∑∞

0 (2n)!xn/(n!)2

and that this series converges absolutely for |x| < 1
4 . Then, taking for granted

that the sum of this series actually is (1 − 4x)−1/2 (which we shall prove in

§7.3), multiply the series by itself and conclude that for any positive integer j,

j∑

n=0

(2n)!(2j − 2n)!

(n!)2((j − n)!)2 = 4j .
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4. Show that the series
∑∞

0 (−1)n(n+1)−1/2 is conditionally convergent and that

the Cauchy product of this series with itself diverges. (Hint: The maximum

of the function f(x) = (x + 1)(j − x + 1) occurs at x = 1
2j, and hence

(n + 1)(j − n+ 1) ≤ (12j + 1)2 for n = 0, . . . , j.)

5. Show that
∑∞

m,n=0 amn =
∑∞

m=0(
∑∞

n=0 amn) whenever amn ≥ 0 for all

m,n ≥ 0.

6. Suppose
∑∞

m,n=0 amn is absolutely convergent. Show that the iterated series∑∞
m=0(

∑∞
n=0 amn) converges to the sum

∑∞
m,n=0 amn. (Use Exercise 5.)

7. Show that
∑∞

m,n=1(m + n)−p converges if and only if p > 2. (Hint: Use

triangular partial sums.)

8. Let amn = 1 if m = n, amn = −1 if m − n = 1, and amn = 0 otherwise.

Show that the iterated series
∑∞

n=0

∑∞
m=0 amn and

∑∞
m=0

∑∞
n=0 amn both

converge, but their sums are unequal.



Chapter 7

FUNCTIONS DEFINED BY

SERIES AND INTEGRALS

In this chapter we study the convergence of sequences and series whose terms are

functions of a variable x and improper integrals whose integrand contains x as a

free variable. In all these situations, the study of the resulting function of x may

reveal unpleasant surprises unless we have some control over the way the rate of

convergence varies along with x; the most commonly encountered form of such

control, uniform convergence, is a major theme of this chapter.

7.1 Sequences and Series of Functions

We recall that a sequence {fk}∞0 of functions is a map that assigns to each non-

negative integer k a function fk. It is implicitly assumed that the functions fk are

all defined on some common domain S (usually a subset of R or Rn) and all take

values in the same space (R, C, or Rm).

What does it mean for a sequence of functions {fk} defined on a set S ⊂ Rn

to converge to a function f on S? The most obvious interpretation is that

(7.1) fk(x)→ f(x) for every x ∈ S.

This is, indeed, what is usually meant by the statement “fk → f on S” when no

further qualification is added; when we wish to be very clear about it, we shall say

that fk → f pointwise on S when (7.1) holds.

Unfortunately, pointwise convergence is a rather badly behaved operation in

the sense that it does not interact well with other limiting operations, such as dif-

ferentiation and integration. Consider the following group of examples:

311
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FIGURE 7.1: Some of the functions defined in (7.2). Top: f1 (dashed)

and f3 (solid). Middle: g1 (dashed) and g3 (solid). Bottom: h1
(dashed) and h3 (solid).
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EXAMPLE 1. Let

(7.2)

fk(x) =
1

k
arctan kx, gk(x) = f ′k(x) =

1

k2x2 + 1
,

hk(x) = g′k(x) =
−2k2x

(k2x2 + 1)2
.

Observe that fk(x) = k−1f1(kx), gk(x) = g1(kx), and hk(x) = kh1(kx).
In graphical terms, as shown in Figure 7.1, this means that the graph of fk is

obtained from the graph of f1 by shrinking the x and y scales by a factor of k;

the graph of gk is obtained from the graph of g1 by shrinking the x scale by a

factor of k and leaving the y scale unchanged; and the graph of hk is obtained

from the graph of h1 by shrinking the x scale and expanding the y scale by a

factor of k. We have:

i. fk(x)→ 0 for all x, since |fk(x)| ≤ π/2k.

ii. gk(x)→ 0 for all x 6= 0, but gk(0) = 1 for all k. That is,

lim
k→∞

gk(x) = g(x) ≡
{
1 if x = 0,

0 otherwise.

iii. hk(x)→ 0 for all x. (hk(0) = 0 for all k, and if x 6= 0, hk(x) ≈ −2/k2x3
for large k.)

Therefore, g is discontinuous even though the gk’s are all continuous; more-

over, since gk is the derivative of fk and an antiderivative of hk,

lim
k→∞

f ′k(0) = 1 6= 0 =
(
lim
k→∞

fk
)′
(0);

lim
k→∞

lim
x→0

gk(x) = 1 6= 0 = lim
x→0

lim
k→∞

gk(x);

lim
k→∞

∫ 1

0
hk(x) dx = −1 6= 0 =

∫ 1

0

[
lim
k→∞

hk(x)
]
dx.

Clearly, if we want some theorems to the effect that “the integral of the limit is

the limit of the integrals,” or “the derivative of a limit is the limit of the derivatives,”

pointwise convergence is the wrong condition to impose. We now develop a more

stringent notion of convergence that removes some of the pathologies.

The real trouble with pointwise convergence is as follows. The statement

“fk(x) → f(x) for all x ∈ S” means that, for each x, fk(x) will be close to

f(x) provided k is sufficiently large, but the rate of convergence of fk(x) to f(x)
can be very different for different values of x. For example, if gk is as in (7.2), for

all x 6= 0 we have gk(x) → 0, so |gk(x)| < 10−4 (say) provided k is sufficiently
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large; for x = 10, “sufficiently large” means k ≥ 10, but for x = 0.1, it means

k ≥ 1000. If, however, we have some control over the rate of convergence that is

independent of the particular point x, then many of the pathologies disappear.

The precise definition is as follows. A sequence {fk} of functions defined on a

set S ⊂ Rn is said to converge uniformly on S to the function f if for every ǫ > 0
there is an integer K such that

(7.3) |fk(x)− f(x)| < ǫ whenever k > K and x ∈ S.

The point here is that the same K will work for every x ∈ S. Another way of

writing (7.3) is

(7.4) sup
x∈S
|fk(x)− f(x)| ≤ ǫ whenever k > K.

The geometry of this inequality is indicated in Figure 7.2. Yet another way of

expressing uniform convergence is the following, which is sufficiently useful to be

displayed as a theorem.

7.5 Theorem. The sequence {fk} converges to f uniformly on S if and only if

there is a sequence {Ck} of positive constants such that |fk(x) − f(x)| ≤ Ck for

all x ∈ S and limk→∞Ck = 0.

Proof. If fk → f uniformly, by (7.4) we can take Ck = supx∈S |fk(x) − f(x)|.
Conversely, if Ck → 0, for any ǫ > 0 there exists K such that Ck < ǫ whenever

k > K , and hence |fk(x) − f(x)| ≤ Ck < ǫ for all x ∈ S whenever k > K; that

is, (7.3) holds.

Let us take another look at the examples in (7.2) with regard to uniform con-

vergence. First, the sequence {fk} defined by fk(x) = k−1 arctan kx converges

uniformly to 0 on R, since we can take Ck = π/2k in Theorem 7.5. Second, the

sequence {gk} defined by gk(x) = (k2x2 + 1)−1 does not converge uniformly to

its limit g on R; indeed,

sup
x∈R
|gk(x)− g(x)| = sup

x 6=0

1

k2x2 + 1
= 1 for all k.

(Notice that the supremum is not actually achieved; the maximum of (k2x2 +1)−1

occurs at x = 0, but g(0) = 1, so gk(0)−g(0) = 0. See Figure 7.2.) Finally, the se-

quence {hk} defined by hk(x) = −2k2x(k2x2+1)−2 does not converge uniformly

to its limit 0 on R. Indeed, a bit of calculus shows that the minimum and maximum

values of hk(x), achieved at x = ±1/
√
3k, are ∓9k/8

√
3, so supx |hk(x) − 0|

actually tends to∞ rather than 0.
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FIGURE 7.2: Left: Uniform convergence. For k large, the graph of

fk − f is contained in the shaded strip |y| < ǫ. Right: Nonuniform

convergence of the sequence {gk} in (7.2). The spike of gk− g around

the origin becomes narrower as k →∞ but is never wholly within the

shaded strip.

On the other hand, the bad behavior in these examples is all at x = 0. The

sequences {gk} and {hk} do converge uniformly to 0 on the intervals [δ,∞) and

(−∞,−δ] for any δ > 0. For gk this is clear:

|gk(x)− 0| = 1

k2x2 + 1
≤ 1

δ2k2 + 1
(x ≤ −δ or x ≥ δ),

and (δ2k2+1)−1 → 0 as k →∞. For hk we do not get a good estimate for the first

few values of k, but (by the same bit of calculus as in the preceding paragraph) when

k > 1/
√
3δ the function hk is positive and increasing on (−∞,−δ] and negative

and increasing on [δ,∞), so the maximum of |hk| on these intervals occurs at the

endpoints ±δ:

|hk(x)− 0| ≤ 2δk2

(δ2k2 + 1)2

(
x ≤ −δ or x ≥ δ, k > 1√

3δ

)
.

The phenomenon exhibited here is quite common. That is, one has a sequence

{fk} of functions that converge pointwise to f on a set S; the convergence is not

uniform on all of S but is uniform on many “slightly smaller” subsets of S. The

situation we shall encounter most often is where S is an open interval (a, b), and

the “bad behavior” occurs near the endpoints, so that the convergence is uniform on

[a+ δ, b− δ] for any δ > 0. In this case, the sequence of constants Ck in Theorem

39 will generally depend on δ — as they do in the preceding examples.

The notion of Cauchy sequence has an obvious adaptation to the context of uni-

form convergence. Namely, a sequence {fk} of functions on a set S is uniformly

Cauchy if for every ǫ > 0 there is an integer K so that

(7.6) |fj(x)− fk(x)| < ǫ whenever j, k > K and x ∈ S,
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or in other words,

sup
x∈S
|fj(x)− fk(x)| < ǫ whenever j, k > K.

We have the following analogue of Theorem 1.20:

7.7 Theorem. The sequence {fk} is uniformly Cauchy on S if and only if there is

a function f on S such that fk → f uniformly on S.

Proof. If {fk} is uniformly Cauchy, then for each x ∈ S the numerical sequence

{fk(x)} is Cauchy. By Theorem 1.20, it has a limit, which we call f(x). Letting

j → ∞ in (7.6), we see that |fk(x) − f(x)| ≤ ǫ whenever k > K and x ∈ S,

so that fk → f uniformly on S. Conversely, if fk → f uniformly on S, we have

|fk(x) − f(x)| ≤ Ck for all x ∈ S, where Ck → 0 as k →∞, and

|fj(x)− fk(x)| ≤ |fj(x)− f(x)|+ |f(x)− fk(x)| ≤ Cj + Ck,

and Cj + Ck < ǫ when j and k are sufficiently large, so (7.6) holds.

One of the most important properties of uniform convergence is that it preserves

continuity, as mere pointwise convergence does not (see the example {gk} in (7.2)).

7.8 Theorem. Suppose fk → f uniformly on S. If each fk is continuous on S,

then so is f .

Proof. Given a point a ∈ S, we show that f is continuous at a. Given ǫ > 0, we

can choose k large enough so that |fk(x)− f(x)| < ǫ/3 for all x ∈ S. Since fk is

continuous, there exists δ > 0 so that |fk(x)− fk(a)| < ǫ/3 whenever |x− a| < δ
and x ∈ S. But then, under these same conditions on x, we have

|f(x)− f(a)| ≤ |f(x)− fk(x)|+ |fk(x)− fk(a)|+ |fk(a)− f(a)|
<
ǫ

3
+
ǫ

3
+
ǫ

3
= ǫ,

which shows that f is continuous at a.

Theorem 7.8 can be strengthened somewhat, because the continuity of a func-

tion f at a point a depends only on the behavior of f at points close to a. Hence,

if fk is continuous on S and fk → f pointwise on S, it is not necessary to have

uniform convergence on all of S to guarantee continuity of the limit function f ; it

is enough to have uniform convergence on some neighborhood of each point in S.

For example, if S is the interval (a, b) and fk → f uniformly on [a + δ, b − δ] for

each δ > 0, we conclude that f is continuous on [a+ δ, b− δ] for each δ and hence

that f is continuous on all of (a, b).
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The preceding discussion of sequences of functions leads immediately to re-

sults about series of functions. Namely, given a sequence of functions {fn}∞0 de-

fined on a set S, we can form the infinite series
∑∞

0 fn(x) for each x ∈ S. If this

series converges for each x ∈ S, we say that the series
∑∞

0 fn is (pointwise) con-

vergent on S; in this case, its sum defines a function on S, which we also denote

by
∑∞

0 fn. The series
∑∞

0 fn is said to be uniformly convergent on S if the

sequence of partial sums, sk =
∑k

0 fn, is uniformly convergent on S.

EXAMPLE 2. The geometric series
∑∞

0 xn converges pointwise on (−1, 1) to

(1− x)−1. Denoting the kth partial sum by sk(x), we have

sk(x) =
1− xk+1

1− x , so

∣∣∣∣sk(x)−
1

1− x

∣∣∣∣ =
|x|k+1

1− x .

The latter quantity tends to∞ as x → 1 and to 1
2 as x → −1 no matter what

k is, so the convergence is not uniform on (−1, 1). (This is hardly surprising,

since the series diverges at both endpoints.) But it is uniform on [−r, r] for any

r < 1, for

|x|k+1

1− x ≤
rk+1

1− r for |x| ≤ r,

and this quantity vanishes as k →∞.

The following is the most commonly used test for uniform convergence of se-

ries:

7.9 Theorem (The Weierstrass M-Test). Let {fn}∞0 be a sequence of functions on

the set S. Suppose there is a sequence {Mn}∞0 of positive constants such that (i)

|fn(x)| ≤ Mn for all x ∈ S and all n, and (ii)
∑∞

0 Mn < ∞. Then the series∑∞
0 fn is absolutely and uniformly convergent on S.

Proof. The series
∑∞

0 fn(x) is absolutely convergent for each x ∈ S by com-

parison to the series
∑∞

0 Mn. Let us denote its sum by s(x), the kth partial sum∑k
0 fn(x) by sk(x), and

∑∞
k+1Mn by Ck; then

|s(x)− sk(x)| ≤
∞∑

k+1

|fn(x)| ≤
∞∑

k+1

Mn = Ck (x ∈ S).

But Ck → 0 as k → ∞ since the series
∑
Mn is convergent, so it follows from

Theorem 7.5 that the sequence {sk}, i.e., the series
∑
fn, is uniformly convergent

on S.



318 Chapter 7. Functions Defined by Series and Integrals

The tribute to Weierstrass in the name of this theorem is appropriate, since

Weierstrass was one of the pioneers in the rigorous theory of infinite series; but the

term “M-test” signifies nothing more than the fact that the sequence of constants in

the theorem is traditionally denoted by {Mn}.
It is quite possible for a series of functions to be uniformly convergent on

S without being absolutely convergent. (See Exercises 5 and 6.) Therefore, the

Weierstrass M-test, unlike its cousin Theorem 7.5, gives a sufficient condition for

uniform convergence but not a necessary one.

EXAMPLE 3. The M-test gives an easy verification that the geometric series∑∞
0 xn converges uniformly on [−r, r] for any r < 1, by taking Mn = rn.

(|xn| ≤ rn for |x| ≤ r, and
∑
rn <∞.)

EXAMPLE 4. The Taylor series for log(1 + x),
∑∞

1 (−1)n−1xn/n, converges

absolutely for x ∈ (−1, 1) (by the ratio test) and conditionally at x = 1 (by the

alternating series test). Since |(−1)n−1xn/n| ≤ rn/nwhen |x| ≤ r, the M-test

(with Mn = rn/n) shows that this series converges uniformly on [−r, r] for

any r < 1. It actually converges uniformly on [−r, 1] for any r < 1, but the M-

test will not yield this result because the convergence at 1 is only conditional.

(The result needed here is a theorem of Abel that we shall present in §7.3.)

Theorem 7.8, concerning the continuity of limits of sequences, translates im-

mediately into a theorem about continuity of sums of series, as follows:

7.10 Theorem. Suppose {fn} is a sequence of continuous functions on a set S. If

the series
∑
fn converges uniformly on S, its sum is a continuous function on S.

Proof. Apply Theorem 7.8 to the sequence of partial sums.

The remarks following Theorem 7.8, to the effect that local uniform conver-

gence is enough to yield continuity, apply to this situation also.

EXERCISES

1. For each of the following sequences {fk} of functions, compute limk→∞ fk on

the given interval and tell whether the convergence is uniform on that interval.

If not, is the convergence uniform on some slightly smaller sets?

a. fk(x) = xk, x ∈ [0, 1].
b. fk(x) = x1/k, x ∈ [0, 1].
c. fk(x) = sink x, x ∈ [0, π].
d. fk(x) = k−1e−x

2/k, x ∈ R.
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e. fk(x) = kxe−kx, x ∈ [0,∞).
f. fk(x) = (x/k)e−x/k , x ∈ [0,∞).
g. fk(x) = xk/(1 + x2k), x ∈ [0,∞).

2. Test the following series for absolute and uniform convergence; state the inter-

val(s) on which you obtain such convergence. What can you conclude about

the continuity of the sum of the series?

a.

∞∑

0

e−nx.

b.

∞∑

0

xn

n2 + n+ 1
.

c.

∞∑

1

nxn

2n+3
.

d.

∞∑

1

cosnx

n3
.

e.

∞∑

1

1

x2 + n2
.

f.

∞∑

1

n−x.

3. Let fk(x) = g(x)xk , where g is continuous on [0, 1] and g(1) = 0. Show that

fk → 0 uniformly on [0, 1]. (Cf. Exercise 1a.)

4. Show that the series

∞∑

1

1

x2 − n2 converges uniformly on any compact interval

that does not contain a nonzero integer, and conclude that the sum of the series

is a continuous function on R \ {±1,±2, . . .}.

5. Show that the series

∞∑

1

(−1)n−1

x2 + n
converges uniformly on R, although the

convergence is conditional at every point.

6. Given a sequence {cn} of real numbers such that
∑∞

1 cn converges, consider

the series

∞∑

1

cn
xn

1− xn (x 6= ±1). (Such a series is called a Lambert se-

ries.)

a. Show that the series converges absolutely and uniformly on [−a, a] for any

a < 1.

b. Show that the series converges uniformly on (−∞,−b] and on [b,∞) for

any b > 1, and that the convergence is absolute if and only if
∑∞

1 |cn| <



320 Chapter 7. Functions Defined by Series and Integrals

∞. (Hint: xn(1− xn)−1 = (1− xn)−1 − 1.)

7. Let {fk} be a sequence of functions defined on a set S, and let S1, . . . , SM be

a finite collection of subsets of S. Show that if {fk} converges uniformly on

each Sm, then it converges uniformly on
⋃M

1 Sm.

8. Let {fk} be a sequence of continuous functions on [a, b]. Show that if {fk}
converges uniformly on (a, b), then it converges uniformly on [a, b].

9. Let {fk} be a sequence of continuous functions on a compact set S ⊂ Rn.

Suppose that (a) the sequence {fk(x)} is bounded and increasing (and hence

has a limit) for each x ∈ S, and (b) the function f = limk→∞ fk is continuous

on S. Show that fk → f uniformly on S. (Hint: Given ǫ > 0, apply Exercise

5 in §1.6 to the sets Sk = {x ∈ S : f(x)− fk(x) ≥ ǫ}.)

7.2 Integrals and Derivatives of Sequences and Series

If {fk} is a sequence of functions on the interval [a, b] and fk → f on [a, b], is

it true that
∫ b
a fk(x) dx →

∫ b
a f(x) dx? The sequence {hk} in (7.2) shows that

the answer is sometimes no. The best general affirmative result in the context of

Riemann integration is the bounded convergence theorem that we stated in §4.5.

As we indicated there, the proof of that theorem is beyond the scope of this book;

however, uniform convergence yields a affirmative result with an easy proof. It

works equally well for n-dimensional integrals, so we present it in that generality.

7.11 Theorem. Suppose S is a measurable set in Rn and {fk} is a sequence of

integrable functions on S that converges uniformly to an integrable function f on

S. Then ∫
· · ·
∫

S
f(x) dnx = lim

k→∞

∫
· · ·
∫

S
fk(x) d

nx.

Proof. By Theorem 7.5, there is a sequence {Ck} of constants such that Ck → 0
and |fk(x) − f(x)| ≤ Ck for x ∈ S. But then

∣∣∣∣
∫
· · ·
∫

S
fk(x) d

nx−
∫
· · ·
∫

S
f(x) dnx

∣∣∣∣ ≤
∫
· · ·
∫

S
|fk(x)− f(x)| dnx

≤
∫
· · ·
∫

S
Ck d

nx.

This last quantity is the n-dimensional volume of S times Ck, which tends to zero

as k →∞.
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Returning to the one-dimensional situation, we now ask the corresponding

question for derivatives: If fk → f , is it true that f ′k → f ′? Equivalently, set-

ting gk = fk − f , if gk → 0, is it true that g′k → 0? Here the answer is clearly no

in general; the function gk can be very small but also very wiggly, so that g′k is not

small.

EXAMPLE 1. Let gk(x) = k−1 sin kx. Then |gk(x)| ≤ k−1 for all x, so

gk → 0 uniformly on R. On the other hand, g′k(x) = cos kx; the sequence

{cos kx} does not converge at all for most values of x, and when it does —

namely, when x is an even multiple of π — its limit is 1, not 0.

In this situation, the crucial uniformity hypothesis is not on the original se-

quence {fk} but on the differentiated sequence {f ′k}. Here is the result:

7.12 Theorem. Let {fk} be a sequence of functions of class C1 on the interval

[a, b]. Suppose that {fk} converges pointwise to f and that {f ′k} converges uni-

formly to g on [a, b]. Then f is of class C1 on [a, b], and g = f ′.

Proof. The function g is continuous on [a, b] by Theorem 7.8, so it is integrable

over any subinterval of [a, b]. By Theorem 7.11,

∫ x

a
g(t) dt = lim

k→∞

∫ x

a
f ′k(t) dt = lim

k→∞

[
fk(x)− fk(a)

]
= f(x)− f(a).

Thus f(x) = f(a) +
∫ x
a g(t) dt. But by the fundamental theorem of calculus, the

function on the right is differentiable and its derivative is g.

The example {fk} in (7.2) shows that pointwise convergence of {f ′k} is not

sufficient to obtain lim(f ′k) = (lim fk)
′. On the other hand, Theorem 7.12 can be

extended somewhat. Since differentiability (like continuity) is a local property, it is

enough for the convergence of {f ′k} to be uniform on a neighborhood of each point,

rather than on the whole interval in question. In many situations, the sequence

{fk} is defined on an open interval (a, b) and one has uniform convergence of

{f ′k} on each compact subinterval [a + δ, b − δ]; this suffices to guarantee that

lim(f ′k) = (lim fk)
′ on (a, b).

The results on term-by-term integration and differentiation of series are imme-

diate consequences of those for sequences. We have merely to apply Theorems

7.11 and 7.12 to the partial sums of the series to obtain the following theorem.

7.13 Theorem. Suppose that {fn} is a sequence of continuous functions on the

interval [a, b] and that the series
∑
fn converges pointwise on [a, b].
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a. If
∑
fn converges uniformly on [a, b], then

∫ b

a

[∑
fn(x)

]
dx =

∑∫ b

a
fn(x) dx.

b. If the fn’s are of class C1 and the series
∑
f ′n converges uniformly on [a, b],

then the sum
∑
fn is of class C1 on [a, b] and

d

dx

[∑
fn(x)

]
=
∑

f ′n(x) (x ∈ [a, b]).

EXERCISES

1. Let f(x) =
∑∞

1 n−2 sinnx. Show that f is a continuous function on R and

that
∫ π/2
0 f(x) dx =

∑
n=1,3,5,... n

−3 + 2
∑

n=2,6,10,... n
−3.

2. Let f(x) =
∑∞

1 (x + n)−2. Show that f is a continuous function on [0,∞)

and that
∫ 1
0 f(x) dx = 1.

3. Let fk(x) = x arctan kx.

a. Show that limk→∞ fk(x) =
1
2π|x|.

b. Show that limk→∞ f ′k(x) exists for every x, including x = 0, but that the

convergence is not uniform in any interval containing 0.

4. For each of the series (a–f) in Exercise 2, §7.1, show that the series can be dif-

ferentiated term-by-term on its interval of convergence (except at the endpoints

in (b)).

5. For x 6= ±1,±2, . . ., let f(x) = 2x
∑∞

1 (x2 − n2)−1 (see Exercise 4, §7.1).

Show that f is of class C1 on its domain and that f ′(x) = −∑∞
1 [(x−n)−2 +

(x+ n)−2].

6. Let f be a continuous function on [0,∞) such that 0 ≤ f(x) ≤ Cx−1−ǫ for

some C, ǫ > 0, and let a =
∫∞
0 f(x) dx. (The estimate on f implies the

convergence of this integral.) Let fk(x) = kf(kx).
a. Show that limk→∞ fk(x) = 0 for all x > 0 and that the convergence is

uniform on [δ,∞) for any δ > 0.

b. Show that limk→∞
∫ 1
0 fk(x) dx = a.

c. Show that limk→∞
∫ 1
0 fk(x)g(x) dx = ag(0) for any integrable function g

on [0, 1] that is continuous at 0. (Hint: Write
∫ 1
0 =

∫ δ
0 +

∫ 1
δ .)
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7.3 Power Series

A power series is an infinite series of the form

(7.14)

∞∑

0

an(x− b)n = a0 + a1(x− b) + a2(x− b)2 + · · · ,

where x is a real or complex variable. The lower limit of summation is always

n = 0 in principle, although the first few terms might vanish (a0 = · · · = ak = 0);

the crucial point is that only nonnegative integer powers of x−b are allowed. (Thus,

one might think of a power series as a “polynomial of infinite degree in x − b.”)

The study of series of the general form (7.14) can be reduced to the special case

b = 0 by the change of variable x→ x+ b, and we do so henceforth.

The first order of business in studying power series is to determine the range of

values of the variable x for which they converge. The key observation is as follows.

7.15 Lemma. If the power series
∑∞

0 anx
n converges for x = x0, then it con-

verges absolutely for all x such that |x| < |x0|.

Proof. The convergence of
∑
anx

n
0 implies that anx

n
0 → 0, and in particular that

|anxn0 | ≤ C for some constant C independent of n. Since

|anxn| = |anxn0 |
∣∣∣∣
xn

xn0

∣∣∣∣ ≤ C
∣∣∣∣
x

x0

∣∣∣∣
n

,

for |x| < |x0| the series
∑
anx

n converges absolutely by comparison with the

geometric series
∑ |x/x0|n.

7.16 Theorem. For any power series
∑∞

0 anx
n, there is a number R ∈ [0,∞],

called the radius of convergence of the series, such that the series converges ab-

solutely for |x| < R and diverges for |x| > R. (When R = 0, this means that the

series converges only for x = 0; when R = ∞, it means that the series converges

absolutely for all x.)

Proof. Let R = sup{|x0| :
∑
anx

n
0 converges}. (R ≥ 0 since the series always

converges at x0 = 0.) Thus
∑
anx

n diverges if |x| > R. On the other hand, if

|x| < R, there exists x0 such that |x0| > |x| and
∑
anx

n
0 converges, and then∑

anx
n converges absolutely by Lemma 7.15.

Important Remark. The reader has probably been thinking of an and x as real

numbers, but Theorem 7.16 is valid, with exactly the same proof, when an and x
are complex numbers.
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Theorem 7.16 says that the set of all real x such that
∑
anx

n converges is an

open interval centered at 0, possibly together with one or both endpoints, and the

set of all complex x such that
∑
anx

n converges is an open disc centered at 0 in

the complex plane, possibly together with some or all of its boundary points. The

behavior of the series on the boundary of the region of convergence must be decided

on a case-by-case basis.

EXAMPLE 1. Consider the series

∞∑

1

xn

n2
,

∞∑

0

xn,
∞∑

1

xn

n
.

An easy application of the ratio test shows that each of these series converges

absolutely for |x| < 1 and diverges for |x| > 1, so their radius of convergence

is 1. The first one is absolutely convergent when |x| = 1 by comparison with∑
n−2, whereas the second is divergent when |x| = 1 because xn 6→ 0 as

n→∞ in that case. The third one is divergent when x = 1 but is conditionally

convergent at x = −1 by the alternating series test. It is also conditionally

convergent at all other complex numbers x such that |x| = 1, by Dirichlet’s

test. (Indeed, take an = n−1 and bn = xn. Then b1 + · · · + bn is a finite

geometric series whose sum equals x(1− xn)/(1− x), and this is bounded by

2|x|/(|1 − x|) as n→∞.)

The standard tools for determining the radius of convergence of a power series

are the ratio test and the root test. We have already seen how this works in §6.4

(especially Example 2 and Exercises 1–9), so we shall not belabor the point here.

However, see Exercise 1. In fact, a slight extension of the root test yields a formula

for the radius of convergence of an arbitrary power series; see Exercise 4.

Theorem 7.16 shows that any power series converges absolutely within the re-

gion |x| < R. Equally important is that it converges uniformly on compact subsets

of this region.

7.17 Theorem. Let R be the radius of convergence of
∑∞

0 anx
n. For any r < R,

the series
∑∞

0 anx
n converges uniformly on the set {x : |x| ≤ r}, and its sum is a

continuous function on the set {x : |x| < R}.

Proof. For |x| ≤ r we have |anxn| ≤ |an|rn, and the series
∑ |an|rn is convergent

since
∑
anx

n is absolutely convergent at x = r. The first assertion therefore fol-

lows from the Weierstrass M-test, and the second follows from the first by Theorem

7.8.
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We now turn to the question of integrating power series. In this discussion we

take x to be a real variable.

7.18 Theorem. Suppose the series f(x) =
∑∞

0 anx
n has radius of convergence

R > 0.

a. If −R < a < b < R, then

∫ b

a
f(x) dx =

∞∑

0

an
bn+1 − an+1

n+ 1
.

b. If F is any antiderivative of f , then F (x) = F (0) +
∞∑

0

an
n+ 1

xn+1 for |x| <

R.

Proof. Assertion (a) follows immediately from Theorems 7.13a and 7.17. The fun-

damental theorem of calculus then shows that
∑∞

0 anx
n+1/(n+1) is an antideriva-

tive of f on (−R,R) — specifically, the one whose value at x = 0 is zero — and

any other antiderivative differs from this one by a constant.

Theorem 7.18 gives a way of generating new series expansions from old ones.

EXAMPLE 2. If we integrate the geometric series
∑∞

0 (−x)n = (1 + x)−1

(|x| < 1), we obtain

log(1 + x) =

∫ x

0

dt

1 + t
=

∞∑

0

(−1)n
n+ 1

xn+1 =

∞∑

1

(−1)n−1

n
xn (|x| < 1).

(The last equality is obtained by the change of variable n→ n− 1.) Similarly,

integration of the geometric series
∑∞

0 (−x2)n = (1 + x2)−1 leads to

arctan x =

∫ x

0

dt

1 + t2
=

∞∑

0

(−1)nx2n+1

2n+ 1
(|x| < 1).

The series for log(1+x) is easily obtained from Taylor’s theorem (see Exercise

3 in §6.1), but not the series for arctan x; the computation of the high-order

derivatives of the latter function is very cumbersome. (Remark: The expansion

of log(1+x) is also valid at x = 1, and that of arctan x is also valid at x = ±1.

However, these facts do not follow from Theorem 7.18. The extra result needed

here is Abel’s theorem, which we shall present below.)

Theorem 7.18 also offers a technique for expressing definite or indefinite inte-

grals of functions that have no elementary antiderivatives in a computable form.
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EXAMPLE 3. The function f(x) = x−1 sinx has no elementary antiderivative,

but

∫ x

0

sin t

t
dt =

∫ x

0

∞∑

0

(−1)mt2m
(2m+ 1)!

dt =
∞∑

0

(−1)mx2m+1

(2m+ 1) · (2m+ 1)!
.

This gives a precise analytic expression for
∫ x
0 t

−1 sin t dt that is valid for all

x, and the first few terms, x − 1
18x

3 + 1
600x

5 + · · · , furnish a good numerical

approximation to the integral when x is not too large.

Next, what about term-by-term differentiation of a power series
∑∞

0 anx
n?

According to Theorem 7.13b, we must examine the convergence of the series∑∞
0 nanx

n−1 obtained by termwise differentiation, which we shall call the de-

rived series. At first glance, the latter series seems less likely to converge than

the original series, since the nth term of the derived series is much larger than the

corresponding term of the original series when n is large (by a factor of n/|x|). But

in fact, the only values of x for which this really matters are those on the boundary

of the interval (or disc) of convergence; elsewhere, the exponential behavior of xn

as n→∞ swamps the extra factor of n, as will be seen in the following proof.

7.19 Theorem. The radius of convergence of any power series
∑∞

0 anx
n is equal

to the radius of convergence of the derived series
∑∞

0 nanx
n−1.

Proof. Let R and R′ be the radii of convergence of
∑∞

0 anx
n and

∑∞
0 nanx

n−1,

respectively. Suppose |x| < R′. Then
∑
nanx

n−1 is absolutely convergent, and

|anxn| =
|x|
n
|nanxn−1| ≤ |nanxn−1| for large n,

so
∑
anx

n is absolutely convergent by comparison. Thus, if |x| < R′ then |x| ≤
R, and it follows that R′ ≤ R.

On the other hand, if |x| < R, we can pick a number r such that |x| < r < R.

Then the series
∑
anr

n is absolutely convergent, and

|nanxn−1| = 1

|x|
(
n
∣∣∣x
r

∣∣∣
n)
|an|rn.

Since |x/r| < 1, the sequence |x/r|n tends to 0 exponentially fast as n → ∞,

and hence n|x/r|n → 0 also. In particular, we have |nanxn−1| ≤ |an|rn for n
large, so

∑
nanx

n−1 converges (absolutely) by comparison to
∑ |anrn|. In short,

if |x| < R then |x| ≤ R′, and it follows that R ≤ R′. Combining this inequality

with the one in the preceding paragraph, we conclude that R = R′.
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Combining this result with Theorem 7.13b, we obtain the fundamental theorem

on term-by-term differentiation of a power series.

7.20 Theorem. Suppose the radius of convergence of the series f(x) =
∑
anx

n

is R > 0. Then the function f is of class C∞ on the interval (−R,R), and its kth

derivative may be computed on (−R,R) by differentiating the series
∑∞

0 anx
n

termwise k times.

Proof. In view of Theorem 7.19, Theorem 7.13b shows that f ′(x) =
∑
nanx

n−1

for |x| < R. It now follows by induction on k that, for any positive integer k, f is

of class Ck on (−R,R) and that f (k) is the sum of the k-times derived series.

7.21 Corollary. Every power series
∑∞

0 anx
n with a positive radius of conver-

gence is the Taylor series of its sum; that is, if f(x) =
∑∞

0 anx
n for |x| < R

(R > 0), then

an =
f (n)(0)

n!
.

Proof. Since (d/dx)nxk = 0 when k < n and (d/dx)nxn ≡ n!, we have

f (n)(x) =
dn

dxn
(
a0 + a1x+ · · ·+ anx

n + · · ·
)
= n!an + · · · ,

where the last set of dots denotes terms containing positive powers of x. Setting

x = 0, we obtain f (n)(0) = n!an.

7.22 Corollary. If
∑∞

0 anx
n =

∑∞
0 bnx

n for |x| < R (R > 0), then an = bn for

all n.

Proof. We have an = f (n)(0)/n! = bn where f(x) is the common sum of the two

series.

The following examples will illustrate the use of Theorem 7.20. The second one

contains a result of importance in its own right, the binomial formula for fractional

and negative exponents.

EXAMPLE 4. Suppose we wish to express the sum of the series
∑∞

1 xn/n2

in terms of familiar elementary functions. The key is to recognize that this

series is related to the geometric series
∑∞

0 xn, and that the factors of 1/n
should arise from integrating the latter series. With this in mind, we proceed as

follows. Setting f(x) =
∑∞

1 xn/n2, we obtain successively

f ′(x) =
∞∑

1

xn−1

n
, xf ′(x) =

∞∑

1

xn

n
, (xf ′)′(x) =

∞∑

1

xn−1 =
1

1− x.
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Undoing these transformations in turn yields

xf ′(x) = − log(1− x), f ′(x) = − log(1− x)
x

,

and, finally,

f(x) = −
∫ x

0

log(1− t)
t

dt.

EXAMPLE 5. Let α be a real number. Since

dn

dxn
(1 + x)α = α(α− 1) · · · (α− n+ 1)(1 + x)α−n,

the Taylor series of (1 + x)α is

(7.23) fα(x) =

∞∑

n=0

(
α

n

)
xn, where

(
α

n

)
=
α(α − 1) · · · (α− n+ 1)

n!

(with the understanding that
(α
0

)
= 1). This series is called the binomial series

of order α. When α is a nonnegative integer k, the terms with n > k all vanish

since they contain a factor of (α − k), and we obtain the familiar binomial

expansion formula for (1 + x)k. For other values of α, the Taylor series is a

genuine infinite series, and one can easily check by the ratio test that its radius

of convergence is 1. Our aim is to verify that the sum of this series is actually

(1 + x)α for |x| < 1.

We need the following formulas concerning the generalized binomial co-

efficients
(
α
n

)
:

n

(
α

n

)
=
α(α− 1) · · · (α− n+ 1)

(n− 1)!
= α

(
α− 1

n− 1

)
;(7.24)

(
α

n

)
=

[
(α− n) + n](α− 1) · · · (α− n+ 1)

n!
=

(
α− 1

n

)
+

(
α− 1

n− 1

)
.

(7.25)

Now, if fα(x) is defined by (7.23) for |x| < 1, by (7.24) we have

f ′α(x) =
∞∑

1

n

(
α

n

)
xn−1 =

∞∑

1

α

(
α− 1

n− 1

)
xn−1 = α

∞∑

0

(
α− 1

n

)
xn

= αfα−1(x).
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(For the third equality we have made the change of variable n → n + 1.) On

the other hand,

(1 + x)fα−1(x) =

∞∑

0

(
α− 1

n

)
xn +

∞∑

0

(
α− 1

n

)
xn+1

=
∞∑

0

[(
α− 1

n

)
+

(
α− 1

n− 1

)]
xn =

∞∑

0

(
α

n

)
xn = fα(x).

In the second equality, we substituted n − 1 for n in the second sum, and

the third equality comes from (7.25). Combining these results, we see that

(1 + x)f ′α(x) = αfα(x). Multiplying through by (1 + x)−α−1 yields

0 = (1 + x)−αf ′α(x)− α(1 + x)−α−1fα(x) =
d

dx

[
(1 + x)−αfα(x)

]
.

Thus (1 + x)−αfα(x) is a constant C , and setting x = 0, we see that C =
fα(0) = 1. In short, fα(x) = (1 + x)α, as claimed.

EXAMPLE 6. The series
∑∞

0 (−1)nx2n is a geometric series with ratio −x2,

so it converges to (1+x2)−1 for |x| < 1 and diverges elsewhere. By Corollary

7.21, this series is the Taylor series of the function f(x) = (1 + x2)−1 about

x = 0. Now, the function f is C∞ on the whole real line, so it seems rather

mysterious that its Taylor series converges only on a finite interval. Why should

the series behave badly as x → ±1 when the function itself does not? The

mystery is dispelled by considering complex values of x and recalling that the

region of convergence of a power series in the complex plane is always a disc.

The function f(x) does blow up at x = ±i, so the largest disc about the origin

in the complex plane on which f is smooth is the disc |x| < 1.

Abel’s Theorem. Suppose f(x) =
∑∞

0 anx
n is a power series whose radius of

convergence R is positive and finite. We have seen that the convergence is uniform

on any compact subinterval of (−R,R) and hence that f is continuous on (−R,R).
But now suppose that the series converges at one of the endpoints, say x = R. Does

the uniformity of convergence and the continuity of the sum persist up to this point?

If the series converges absolutely at x = R, then the M-test (with Mn =
|an|Rn) shows that the series converges absolutely and uniformly on [−R,R], so

its sum is continuous there. But when the convergence is only conditional, a more

subtle argument is needed. The necessary tool is the summation-by-parts formula

that we used to obtain Dirichlet’s test; since we need a slightly different version of

that formula than the one given in Lemma 6.23 (namely, formula (7.27)), we shall

simply derive it as we proceed.
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7.26 Theorem (Abel’s Theorem). If the series
∑∞

0 anx
n converges at x = R

(resp. x = −R), then it converges uniformly on the interval [0, R] (resp. [−R, 0])
and hence defines a continuous function on that interval.

Proof. Convergence at x = −R (and uniform convergence on [−R, 0]) of f(x) =∑
anx

n is the same as convergence at x = R (and uniform convergence on [0, R])
of f(−x) =

∑
(−1)nanxn, so it is enough to consider convergence at x = R.

Moreover, convergence at x = R (and uniform convergence on [0, R]) of f(x) =∑
anx

n is the same as convergence at x = 1 (and uniform convergence on [0, 1])
of f(Rx) =

∑
anR

nxn. In short, it is enough to assume that
∑∞

0 an converges

and to prove that
∑∞

0 anx
n converges uniformly on [0, 1]. To do this we must

show that the tail end
∑∞

k anx
n of the series converges uniformly to zero on [0, 1]

as k →∞.

For k ≥ 1, let Ak =
∑∞

k an be the kth tail end of the series
∑∞

0 an, so that

ak = Ak −Ak+1. For l > k and x ∈ [0, 1] we have

akx
k + · · · + alx

l = (Ak −Ak+1)x
k + · · · + (Al −Al+1)x

l

= Akx
k +Ak+1(x

k+1 − xk) + · · ·+Al(x
l − xl−1)−Al+1x

l.

Let l → ∞: then Al+1 → 0 and xl remains bounded, so the last term on the right

disappears and we obtain

(7.27)

∞∑

k

anx
n = Akx

k +

∞∑

k

An+1(x
n+1 − xn).

Now, given ǫ > 0, we can choose k so large that |An| < 1
2ǫ whenever n ≥ k.

Since x ∈ [0, 1], we have xn+1 − xn ≤ 0, so (7.27) yields

∣∣∣∣
∞∑

k

anx
n

∣∣∣∣ ≤ |Ak|x
k +

∞∑

k

|An+1|(xn − xn+1)

≤ 1
2ǫx

k + 1
2ǫ

∞∑

k

(xn − xn+1).

If x = 1, the series on the right vanishes; if 0 ≤ x < 1, it is a telescoping series

whose sum is xk. In either case, we obtain

|
∞∑

k

anx
n| ≤ ǫxk ≤ ǫ

for all x ∈ [0, 1] when k is sufficiently large, which establishes the desired uniform

convergence.
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Remark. If
∑
anR

n converges, we already know (Theorem 7.17) that
∑
anx

n

converges uniformly on [−r, r] for any r < R. Combining this with Abel’s the-

orem, we see that
∑
anx

n converges uniformly on [−r,R]. (See Exercise 7 in

§7.1.)

The continuity of the series at the endpoint can be restated in the following way.

Recall that limx→a− f(x) denotes the limit of f(x) as x approaches a from the left.

7.28 Corollary. If
∑∞

0 an converges, then limx→1−
∑∞

0 anx
n =

∑∞
0 an.

EXAMPLE 7. The expansion arctan x =
∑∞

0 (−1)nx2n+1/(2n + 1) was es-

tablished in Example 2 for |x| < 1. Since the series also converges at x = 1
(by the alternating series test), we obtain a neat series formula for π:

1
4π = lim

x→1−
arctan x =

∞∑

0

(−1)n
2n+ 1

= 1− 1
3 +

1
5 − 1

7 + · · · .

The converse of Corollary 7.28 is false: The limit S = limx→1−
∑∞

0 anx
n may

exist even when
∑∞

0 an diverges. (Example: Take an = (−1)n; then
∑∞

0 anx
n =

(1 + x)−1 for |x| < 1, so S = 1
2 .) In this case the series

∑
an is said to be Abel

summable to the sum S. Abel summation provides a way of making sense out

of certain divergent series that is useful in some situations, one of which we shall

discuss in §8.2.

EXERCISES

1. Let {an}∞0 be a sequence of real or complex numbers.

a. Suppose that |an+1/an| converges to a limit L as n → ∞. Show that the

radius of convergence of
∑∞

0 anx
n is L−1.

b. Suppose that |an|1/n converges to a limit L as n → ∞. Show that the

radius of convergence of
∑∞

0 anx
n is L−1.

2. Show that if the sequence {an}∞0 is bounded, the radius of convergence of∑∞
0 anx

n is at least 1.

3. Suppose the radius of convergence of
∑∞

0 anx
n is R. What is the radius of

convergence of
∑∞

0 anx
kn (k = 2, 3, 4, . . .)?

4. Show that for any sequence {an}∞0 , the radius of convergence of
∑∞

0 anx
n is

the reciprocal of lim supn→∞ |an|1/n. (See Exercises 9–12 in §1.5 and Exer-

cise 25 in §6.2.)

5. Show that each of the following functions of x admits a power series expansion

on some interval centered at the origin. Find the expansion and give its interval

of validity.
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a.
∫ x
0 e

−t2 dt.
b.
∫ x
0 cos t2 dt.

c.
∫ x
0 t

−1 log(1 + 2t) dt.

6. Use the series expansions in Exercise 5 to calculate the following integrals to

three decimal places, and prove the accuracy of your answer.

a.
∫ 1
0 e

−t2 dt.

b.
∫ 1
0 cos t2 dt.

c.
∫ 1/2
0 t−1 log(1 + 2t) dt.

7. Let f(x) =
∑∞

0 anx
n be a power series with positive radius of convergence.

Show that f(−x) = f(x) (resp. f(−x) = −f(x)) for all x in the interval of

convergence if and only if an = 0 for all odd n (resp. all even n).

8. Let k be a nonnegative integer. The Bessel function of order k is the function

Jk defined by

Jk(x) =

∞∑

0

(−1)n
n!(n+ k)!

[x
2

]2n+k
.

a. Verify that the series defining Jk(x) converges for all x.

b. Show that (d/dx)[xkJk(x)] = xkJk−1(x).
c. Show that (d/dx)[x−kJk(x)] = −x−kJk+1(x).
d. Show that u = Jk(x) satisfies the differential equation x2u′′ + xu′ +

(x2 − k2)u = 0.

9. Show that the series

1 +
x3

2 · 3 +
x6

2 · 3 · 5 · 6 + · · ·+ x3n

2 · 3 · 5 · 6 · · · (3n − 1)(3n)
+ · · ·

converges for all x and that its sum f(x) satisfies f ′′(x) = xf(x).

10. Express the sums of the following series in terms of elementary functions and

(perhaps) their antiderivatives in the manner of Example 4.

a.

∞∑

1

nxn

(n+ 1)!
.

b.

∞∑

0

(−1)nx2n+1

(2n + 1) · (2n + 2)!
.

c.

∞∑

0

xn

(n+ 1)2n!
.

d.

∞∑

0

(−1)n(2n + 1)x2n

(2n)!
.
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11. Consider the function f(x) =
∫ x
0 arctan t dt.

a. Perform the integration to evaluate f in terms of elementary functions.

b. Using the result of Example 2, compute the Taylor series of f(x) (centered

at the origin) and show that it converges to f(x) for x ∈ [−1, 1]. (The

endpoints require special attention.)

c. Deduce that

1− 1
2 − 1

3 +
1
4 + 1

5 − 1
6 − 1

7 + · · · = 1
4π − 1

2 log 2.

7.4 The Complex Exponential and Trig Functions

The series
∑∞

0 zn/n! converges absolutely for every complex number z, by the

ratio test, so we can use it to define the exponential function for a complex variable:

exp(z) = ez =
∞∑

0

zn

n!
(z ∈ C).

This extended exponential function still obeys the basic law of exponents. Indeed,

by Theorem 6.29,

(7.29) ezew =
∞∑

m,n=0

zmwn

m!n!
=

∞∑

k=0

∑

m+n=k

zmwn

m!n!
=

∞∑

k=0

(z + w)k

k!
= ez+w.

(In the third equality we have used the binomial theorem.)

Let i =
√
−1 be the imaginary unit. Since i2 = −1, we have i3 = −i and

i4 = 1, so

i4n = 1, i4n+1 = i, i4n+2 = −1, i4n+3 = −i (n = 0, 1, 2, . . .).

Therefore, when z = ix is purely imaginary,

eix =

∞∑

0

inxn

n!
=

(
1− x2

2!
+
x4

4!
− · · ·

)
+ i

(
x− x3

3!
+
x5

5!
− · · ·

)
.

The series on the right are the Taylor series of cos x and sinx, so we have arrived

at Euler’s formula

(7.30) eix = cosx+ i sin x.

This is the appropriate place to raise the issue of the definition of cos x and

sinx. These functions are so familiar that we take them entirely for granted, but the



334 Chapter 7. Functions Defined by Series and Integrals

definitions presented in elementary trigonometry — as ratios of sides of right trian-

gles, or as the coordinates of the point where the unit circle intersects the ray that

makes an angle x with the positive horizontal axis — are quite unsatisfactory, for

they provide neither a precise formula nor a computationally effective algorithm.

(Think for a minute: How could you possibly use these definitions to calculate

cos(1) to four decimal places?)1 In fact, the best procedure is to use Taylor series

as a definition! That is, we define cosx and sinx for all real (or, for that matter,

complex) numbers x by

(7.31) cos x =
∞∑

0

(−1)nx2n
(2n)!

, sinx =
∞∑

0

(−1)nx2n+1

(2n+ 1)!
.

We now indicate how to derive all the familiar properties of the trig functions

from these definitions. First, it is clear from (7.31) that

(7.32) cos(−x) = cosx, sin(−x) = − sinx,

so that e−ix = cos x− i sinx. Second, termwise differentiation of (7.31) immedi-

ately yields

(7.33) cos′ = − sin, sin′ = cos .

Third, the addition formulas for sine and cosine follow easily from the law of ex-

ponents:

cos(x± y) + i sin(x± y) = ei(x±y) = eixe±iy

= (cos x+ i sinx)(cos y ± i sin y)
= (cos x cos y ∓ sinx sin y) + i(sin x cos y ± cos x sin y).

Taking the real and imaginary parts of both sides, we obtain

(7.34)
cos(x± y) = cosx cos y ∓ sinx sin y,

sin(x± y) = sinx cos y ± cos x sin y.

In particular, we have the Pythagorean identity

(7.35) cos2 x+ sin2 x = cos(x− x) = cos 0 = 1.

1A similar problem arises if one tries to define ex directly. However, here there is an alternative:

Define log x to be
∫ x

1
t−1 dt and then define exp to be the inverse function of log. The analogous

procedure for developing trig functions, taking the equation arcsin x =
∫ x

0
(1 − t2)−1/2 dt as a

starting point, is less satisfactory, because the inverse function of arcsin is not the whole sine function

but only its restriction to the interval [−π/2, π/2].
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Next, we have to bring the number π into play somehow. We can proceed as

follows. The series
∑∞

0 (−1)n22n/(2n)! for cos 2 is an alternating series whose

terms decrease in magnitude starting with n = 1, so by the alternating series test,

cos 2 = 1− 22

2!
= −1 with error less than

24

4!
=

2

3
.

In particular, cos 2 < 0, and of course cos 0 = 1 > 0, so by the intermediate value

theorem there is at least one number a ∈ (0, 2) such that cos a = 0. Therefore, the

set Z = {x ≥ 0 : cos x = 0} is nonempty; it is closed since cos is continuous;

hence it contains its greatest lower bound, which is positive since cos 0 = 1. We

denote this smallest positive zero of cos by 1
2π. (Again, this may be taken as a

definition of the number π, from which its other familiar properties can be derived.)

Now, by (7.33), (d/dx) sin x = cos x > 0 for 0 ≤ x < 1
2π, so sin is increasing

on [0, 12π], and sin 0 = 0; hence sin 1
2π > 0. But by (7.35), sin2 1

2π = sin2 1
2π +

cos2 1
2π = 1; hence, sin 1

2π = 1. In summary,

(7.36) cos 0 = sin 1
2π = 1, sin 0 = cos 1

2π = 0.

All of the familiar formulas of (precalculus) trigonometry can be derived from

the even-odd relations (7.32), the addition formulas (7.34), and the special values

(7.36), and these together with (7.33) yield all the formulas for integration and

differentiation of trigonometric functions. For example, (7.34) and (7.36) yield the

complementarity relations

(7.37)
cos(12π − x) = cos 1

2π cosx+ sin 1
2π sinx = sinx,

sin(12π − x) = sin 1
2π cos x− cos 1

2π sinx = cosx.

These, in turn, yield the 2π-periodicity of sine and cosine. Indeed, replacing x by

−x in (7.37) and using (7.32), we see that cos(x+ 1
2π) = − sinx and sin(x+ 1

2π) =
cos x, whence

cos(x+ π) = cos(x+ 1
2π + 1

2π) = − sin(x+ 1
2π) = − cosx,

sin(x+ π) = sin(x+ 1
2π + 1

2π) = cos(x+ 1
2π) = − sinx,

and therefore

cos(x+ 2π) = − cos(x+ π) = cosx, sin(x+ 2π) = − sin(x+ π) = sinx.
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EXERCISES

1. Recall that the hyperbolic sine and cosine functions are defined by sinh z =
1
2 (e

z − e−z) and cosh z = 1
2(e

z + e−z). Here, z may now be taken to be a

complex number.

a. Show that sinh ix = i sin x and cosh ix = cos x.

b. Show that sinh(z+w) = sinh z coshw+cosh z sinhw and cosh(z+w) =
cosh z coshw + sinh z sinhw.

c. Express sinh(x + iy) and cosh(x + iy) in terms of real functions of the

real variables x and y.

2. Verify that the formula (d/dx)ecx = cecx remains valid when c is a complex

number. (However, x is still a real variable, since we have not discussed differ-

entiation of functions of a complex variable.)

3. Let a and b be real numbers. Compute
∫
e(a+ib)x dx by using the result of

Exercise 2; then, by taking real and imaginary parts, deduce the formulas

∫
eax cos bx dx =

eax(a cos bx+ b sin bx)

a2 + b2
,

∫
eax sin bx dx =

eax(a sin bx− b cos bx)
a2 + b2

.

7.5 Functions Defined by Improper Integrals

In the preceding sections we have considered infinite series of functions. The ana-

logue for integrals is an improper integral
∫ d
c f(x, t) dt, where the integrand con-

tains a free variable x as well as the variable of integration and the resulting integral

defines a function of x. The integral may be improper because c = −∞ or d =∞
or because of singularities of the function f . To keep the notation simple, we shall

restrict our discussion to the case where d = ∞ and f has no singularities on

[c,∞), but everything we say extends to the other cases with the obvious modifica-

tions.

In this situation, the notion of uniform convergence is as follows: We say that

the integral
∫∞
c f(x, t) dt converges uniformly for x ∈ I (where I is an interval

in R) if the difference between the “partial integral”
∫ d
c and the full integral

∫∞
c

— that is, the “tail end”
∫∞
d — tends to zero uniformly for x ∈ I as d → ∞.

Precisely, this means that

sup
x∈I

∣∣∣∣
∫ ∞

d
f(x, t) dt

∣∣∣∣→ 0 as d→∞.
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The most useful test for uniform convergence is the following analogue of the

Weierstrass M-test. The proof is essentially identical to that of the M-test, and we

leave the details to the reader (Exercise 1).

7.38 Theorem. Suppose there is a function g(t) ≥ 0 on [c,∞) such that (i)

|f(x, t)| ≤ g(t) for all x ∈ I and t ≥ c, and (ii)
∫∞
c g(t) dt < ∞. Then∫∞

c f(x, t) dt converges absolutely and uniformly for x ∈ I .

The consequences of uniform convergence for continuity, integration, and dif-

ferentiation of the function F (x) =
∫∞
c f(x, t) dt are much the same as for series.

The following two theorems provide analogues of Theorems 7.10 and 7.13 in the

present setting.

7.39 Theorem. Suppose that f(x, t) is a continuous function on the set {(x, t) :
x ∈ I, t ≥ c} and that the integral

∫∞
c f(x, t) dt is uniformly convergent for

x ∈ I . Then:

a. The function F (x) =
∫∞
c f(x, t) dt is continuous on I .

b. If [a, b] ⊂ I , then
∫ b

a

∫ ∞

c
f(x, t) dt dx =

∫ ∞

c

∫ b

a
f(x, t) dx dt.

Proof. The conclusions are true if
∫∞
c is replaced by

∫ d
c where d < ∞, by The-

orems 4.46 and 4.26. (a) then follows because the uniform limit of continuous

functions is continuous, and (b) follows by the argument in the proof of Theorem

7.11.

7.40 Theorem. Suppose that f(x, t) and its partial derivative ∂xf(x, t) are con-

tinuous functions on the set {(x, t) : x ∈ I, t ≥ c}. Suppose also that the integral∫∞
c f(x, t) dt converges for x ∈ I and the integral

∫∞
c ∂xf(x, t) dt converges uni-

formly for x ∈ I . Then the former integral is differentiable on I as a function of x,

and
d

dx

∫ ∞

c
f(x, t) dt =

∫ ∞

c

∂f

∂x
(x, t) dt.

Theorem 7.40 may be deduced from Theorem 7.39 in much the same way as

Theorem 7.12 was deduced from Theorem 7.11 (Exercise 2).

Let us state explicitly the result of combining Theorems 7.39 and 7.40 with

Theorem 7.38:

7.41 Theorem. The conclusions of Theorem 7.39 are valid whenever |f(x, t)| ≤
g(t) for all x ∈ I and t ≥ c, where

∫∞
c g(t) dt < ∞. The conclusions of Theorem

7.40 are valid whenever
∫∞
c f(x, t) dt converges for x ∈ I and |∂xf(x, t)| ≤ g(t)

for all x ∈ I and t ≥ c, where
∫∞
c g(t) dt <∞.
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The manipulation of improper integrals by the foregoing theorems can be quite

an entertaining exercise, and it leads to a number of interesting and useful results.

Let us look at some examples.

EXAMPLE 1. Evaluate

∫ ∞

0

arctan(bt)− arctan(at)

t
dt where 0 < a < b.

Solution: We recognize that the integrand is
∫ b
a (x

2t2 +1)−1dx. For x ≥ a
and t ≥ 0 we have (x2t2+1)−1 ≤ (a2t2+1)−1, and

∫∞
0 (a2t2+1)−1 dt <∞.

Thus, by Theorem 7.38, the integral
∫∞
0 (x2t2+1)−1 dt is uniformly convergent

for x ≥ a, so we can apply Theorem 7.39 to obtain

∫ ∞

0

arctan(bt)− arctan(at)

t
dt =

∫ ∞

0

∫ b

a

1

x2t2 + 1
dx dt

=

∫ b

a

∫ ∞

0

1

x2t2 + 1
dt dx =

∫ b

a
x−1 arctan xt

∣∣∞
0

=

∫ b

a

π

2x
dx

=
π

2
log

(
b

a

)
.

EXAMPLE 2. Let

F (x) =

∫ ∞

0
e−xt

2

dt, x > 0.

Since (∂k/∂xk)e−xt
2

= (−t2)ke−xt2 , by Theorem 7.40 we can conclude that

F (k)(x) = (−1)k
∫ ∞

0
t2ke−xt

2

dt (x > 0),

provided that we establish the uniform convergence of the integral on the right.

In fact, the convergence is not uniform on the whole interval (0,∞), but it is

uniform on [δ,∞) for any δ > 0, which is sufficient. This follows easily from

Theorem 7.38, since t2ke−xt
2 ≤ t2ke−δt2 for x ≥ δ.

On the other hand, we can evaluate F (x) explicitly by making the substi-

tution u = x1/2t and invoking Proposition 4.66:

F (x) =

∫ ∞

0
e−u

2

x−1/2 du =

√
π

2
x−1/2,

and therefore

F (k)(x) =

√
π

2
(−1

2 )(−3
2) · · · (−k + 1

2 )x
−k−(1/2).
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Comparing the two formulas for F (k)(x), we conclude that

∫ ∞

0
t2ke−xt

2

dt = (12 )(
3
2 ) · · · (k − 1

2)

√
π

2xk+(1/2)
.

This result can also be obtained by a laborious k-fold integration by parts (u =
t2k−1, dv = te−xt

2

dt, etc.), but differentiation under the integral gives a rather

painless derivation.

EXAMPLE 3. We now derive one of the most important of all integral formulas:

(7.42)

∫ ∞

0

sin t

t
dt =

π

2
.

This is a bit tricky, since the integral is not absolutely convergent. (Note that

since t−1 sin t→ 1 as t→ 0, the integral over [0, 1] is an ordinary proper inte-

gral. The convergence of the integral over [1,∞) was proved in §4.6 [Example

3].) Our strategy will be to consider an improper integral with two parameters:

(7.43) F (x, y) =

∫ ∞

0

e−xt sin yt
t

dt (x > 0, y ∈ R).

Again, this integral is proper at t = 0, and for x > 0 it is absolutely convergent.

First, we fix x > 0 and consider the integral as a function of y. Formal

differentiation of (7.43) with respect to y leads to

∂F

∂y
=

∫ ∞

0
e−xt cos yt dt.

By Theorem 7.41, this formula is indeed valid, since |e−xt cos yt| ≤ e−xt for

all y and
∫∞
0 e−xt dt < ∞. The integral on the right can be evaluated by

elementary calculus (integrate by parts twice, or use Exercise 3 in §7.4), and

the result is

∂F

∂y
= e−xt

y sin yt− x cos yt
x2 + y2

∣∣∣∣
∞

0

=
x

x2 + y2
.

Now we can recover F by integrating in y. Obviously F (x, 0) = 0, so we get

the right constant of integration by starting the integration at 0:

F (x, y) =

∫ y

0

x

x2 + s2
ds = arctan(y/x).
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The variable y has now served its purpose, and we henceforth set it equal to 1.

We have shown that

(7.44)

∫ ∞

0

e−xt sin t
t

dt = arctan(1/x) (x > 0).

We now wish to let x→ 0. In order to pass the limit under the integral sign

in (7.44), it is enough to show that the integral in (7.44) is uniformly convergent

for x ≥ 0. Unfortunately, Theorem 7.38 does not apply here, since the integral

is not absolutely convergent at x = 0. (Theorem 7.38 easily yields the uniform

convergence for x ≥ δ for any δ > 0, but that isn’t good enough!) Recall the

meaning of uniform convergence: What we need to show is that

sup
x≥0

∣∣∣∣
∫ ∞

b

e−xt sin t
t

dt

∣∣∣∣→ 0 as b→∞.

To this end, we use integration by parts,2 taking u = t−1 and dv = e−xt sin t dt;
the result is

∫ ∞

b

e−xt sin t
t

dt =
e−bx(x sin b+ cos b)

(x2 + 1)b
−
∫ ∞

b

e−xt(x sin t+ cos t)

(x2 + 1)t2
dt.

Now, ∣∣∣∣
e−xt(x sin t+ cos t)

(x2 + 1)

∣∣∣∣ ≤
x+ 1

x2 + 1
.

The quantity on the right is continuous on R and tends to zero as x→∞, so it

is bounded by a constant C for x ≥ 0. Therefore,

sup
x≥0

∣∣∣∣
∫ ∞

b

e−xt sin t
t

dt

∣∣∣∣ ≤
C

b
+ C

∫ ∞

b

dt

t2
=

2C

b
,

which tends to zero as b→∞, as desired. Thus the convergence is uniform in

(7.44), and it follows that

∫ ∞

0

sin t

t
dt = lim

x→0+

∫ ∞

0

e−xt sin t
t

dt = lim
x→0+

arctan(1/x) =
π

2
.

2The idea is much the same as the use of summation by parts in the proof of Abel’s theorem.
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EXERCISES

1. Prove Theorem 7.38.

2. Prove Theorem 7.40.

3. Suppose x > 0. Verify that
∫∞
0 e−xt dt = x−1, justify differentiating under

the integral sign, and deduce that
∫∞
0 tne−xt dt = n!x−n−1.

4. Verify that
∫∞
0 (t2 + x)−1 dt = 1

2πx
−1/2, justify differentiating under the inte-

gral sign, and thence evaluate
∫∞
0 (t2 + x)−n dt.

5. Show that

∫ ∞

0

e−bx − e−ax
x

dx = log
a

b
for a, b > 0.

6. Show that

∫ ∞

0

e−bx − e−ax
x

cos x dx = 1
2 log

1 + a2

1 + b2
for a, b > 0.

7. Show that

∫ ∞

0
e−x

1− cos ax

x
dx = 1

2 log(1 + a2) for all a ∈ R.

8. Deduce from (7.42) that

∫ ∞

0

sinxt

t
dt =





1
2π if x > 0,

0 if x = 0,

−1
2π if x < 0.

Show that the convergence is uniform for x ∈ I if I is any compact interval

with 0 /∈ I , but not if 0 ∈ I .

9. Use Exercise 8 to show that

∫ ∞

0

sin2 xt

t2
dt = 1

2πx for x > 0.

10. Let I(a, b) =

∫ ∞

0

cos bx− cos ax

x2
dx.

a. Show that I(a, b) is convergent for all a, b ∈ R and that the convergence is

uniform for a in any finite interval when b is fixed (or vice versa).

b. Use Exercise 8 to show that I(a, b) = 1
2π(a− b) if a, b > 0.

c. Show that I(a, b) = 1
2π(|a| − |b|) for all a, b ∈ R.

11. Let F (x) =
∫∞
0 e−t

2

cos xt dt for x ∈ R.

a. Justify differentiating under the integral sign and thence show that F ′(x) =
−1

2xF (x).

b. Show that F (x) = 1
2

√
πe−x

2/4.

12. Let G(x) =
∫∞
0 e−t

2

sinxt dt for x ∈ R. Proceeding as in Exercise 11, show

that G(x) = e−x
2/4
∫ x
0 e

t2/4 dt.

13. Show that

∫ ∞

0

1− e−xt2

t2
dt =

√
πx for x ≥ 0.
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14. Let F (x) =
∫∞
0 e−t

2−(x2/t2) dt.
a. Show that F is a continuous function on R that satisfies F ′(x) = −2F (x)

for x > 0 and F ′(x) = 2F (x) for x < 0.

b. Show that F (x) = 1
2

√
π e−2|x|.

c. Evaluate
∫∞
0 e−pt

2−(q/t2) dt for p, q > 0.

15. Let f be a continuous function on [0,∞) that satisfies |f(x)| ≤ a(1 + x)Nebx

for some a, b,N ≥ 0. The Laplace transform of f is the function L[f ] defined

on (b,∞) by

L[f ](s) =

∫ ∞

0
e−sxf(x) dx.

a. Show that L[f ] is of class C∞ on (b,∞) and (d/ds)nL[f ] = (−1)nL[fn]
where fn(x) = xnf(x).

b. Suppose that f is of class C1 on [0,∞) and that f ′ satisfies the same sort of

exponential growth condition as f . Show that L[f ′](s) = sL[f ](s)−f(0).

7.6 The Gamma Function

Perhaps the most important of all functions defined by improper integrals is the

gamma function Γ(x) defined for x > 0 by

(7.45) Γ(x) =

∫ ∞

0
tx−1e−t dt,

which has a way of turning up in many unexpected places. Let us analyze the

integrals over [0, 1] and [1,∞) separately. The integral over [0, 1] is proper for

x ≥ 1 and improper but convergent for 0 < x < 1. In fact, by Theorem 7.38 it

is uniformly convergent for x ≥ δ, for any δ > 0, since 0 < tx−1e−t ≤ tδ−1 for

x ≥ δ and 0 ≤ t ≤ 1. The integral over [1,∞) is convergent for all x and uniformly

convergent for x ≤ C , for any constant C , since 0 < tx−1e−t ≤ tC−1e−t for

x ≤ C and t ≥ 1. Therefore, the integral defining Γ(x) is convergent for x > 0
and uniformly convergent on δ ≤ x ≤ C for any δ > 0 and C > 0.

It follows that Γ is a continuous function on (0,∞). In fact, Γ is of class C∞ on

(0,∞), and its derivatives can be calculated by differentiating under the integral:

(7.46) Γ(k)(x) =

∫ ∞

0
(log t)ktx−1e−t dt.

Since | log t| grows more slowly than any power of t as t→ 0 or t→∞, the argu-

ment of the preceding paragraph shows that the integral on the right is absolutely
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and uniformly convergent for δ ≤ x ≤ C for any positive δ and C , so Theorem

7.40 guarantees the validity of (7.46).

The most important property of Γ is that it satisfies the functional equation

(7.47) Γ(x+ 1) = xΓ(x).

The proof is a simple integration by parts (u = tx, dv = e−t dt):

Γ(x+ 1) =

∫ ∞

0
txe−t dt = −txe−t

∣∣∞
0

+

∫ ∞

0
xtx−1e−t dt = 0 + xΓ(x).

There are two values of Γ that can be calculated easily by hand:

Γ(1) =

∫ ∞

0
e−t dt = −e−t

∣∣∞
0

= 1,

Γ(12) =

∫ ∞

0
t−1/2e−t dt = 2

∫ ∞

0
e−u

2

du =
√
π.

(For the second one we set u =
√
t and used Proposition 4.66.) The functional

equation (7.47) now yields the values of Γ at all positive integers and half-integers:

Γ(2) = 1Γ(1) = 1, Γ(3) = 2Γ(2) = 2!, Γ(4) = 3Γ(3) = 3!, . . .

Γ(32 ) =
1
2Γ(

1
2 ) =

1
2

√
π, Γ(52) =

3
2Γ(

3
2) =

3
2 · 12
√
π,

and so by induction,

(7.48) Γ(n) = (n− 1)!, Γ(n+ 1
2) = (n− 1

2) · · · 32 · 12
√
π.

Thus the gamma function provides an extension of the factorial function to non-

integers: x! = Γ(x + 1), if you like. It is the natural extension of the factorial

function, not just because it gives the right values at the integers, but because the

functional equation Γ(x+ 1) = xΓ(x) is the natural generalization of the recursive

formula n! = n · (n− 1)! that defines factorials.

Other factorial-like products — more precisely, products of numbers in an arith-

metic progression — can also be expressed in terms of the gamma function. Indeed,

since

Γ(c+ n+ 1) = (c+ n)Γ(c+ n) = · · · = (c+ n)(c+ n− 1) · · · cΓ(c),

for a, b > 0 we have

(7.49)

a(a+ b) · · · (a+ nb) = bn+1
(a
b

)(a
b
+ 1
)
· · ·
(a
b
+ n

)
= bn+1Γ(

a
b + n+ 1)

Γ(ab )
.
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The functional equation, written in the form

Γ(x) =
Γ(x+ 1)

x
,

shows that Γ(x) blows up like x−1 as x → 0. It also provides a way of extending

the gamma function to negative values of x. Indeed, the expression on the right is

defined for all x > −1 except x = 0, and it can be taken as a definition of Γ(x)
for −1 < x < 0. Once this has been done, Γ(x + 1)/x is defined for all x > −2
except x = 0,−1, and it can be taken as a definition of Γ(x) for −2 < x < −1.

Proceeding inductively, we eventually obtain a definition of Γ(x) for all x except

the nonpositive integers, where Γ(x) blows up. In more explicit form, it is

(7.50) Γ(x) =
Γ(x+ n)

x(x+ 1) · · · (x+ n− 1)
(x > −n).

This extended gamma function still satisfies the functional equation (7.47), more or

less by definition, and (7.49) remains valid provided that a/b is not a nonpositive

integer.

The qualitative behavior of the gamma function for x > 0 can be analyzed as

follows: Since Γ(1) = Γ(2) = 1, there is a critical point x0 in the interval (1, 2)
by Rolle’s theorem. On the other hand, from (7.46) it is clear that Γ′′(x) > 0
for x > 0, so that Γ′(x) is strictly increasing. It follows that Γ is decreasing for

0 < x < x0 and increasing for x > x0; in particular, it has a minimum at x0. Also,

it tends to∞ as x→ 0 or x→∞, so its graph is roughly U-shaped. The behavior

for x < 0 can then be deduced from (7.50). The graph of Γ is sketched in Figure

7.3.

A number of useful integrals can be transformed into the integral defining Γ(x)
by a change of variables. We single out two particularly useful ones, obtained by

setting u = bt and v = t2, respectively:

∫ ∞

0
tx−1e−bt dt =

∫ ∞

0

[u
b

]x−1
e−u

du

b
= b−xΓ(x) (b > 0),(7.51)

∫ ∞

0
t2x−1e−t

2

dt =

∫ ∞

0
v(2x−1)/2e−v

dv

2v1/2
= 1

2Γ(x).(7.52)

There is another important integral related to the gamma function, the so-called

beta function

(7.53) B(x, y) =

∫ 1

0
tx−1(1− t)y−1 dt (x, y > 0).
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FIGURE 7.3: Graph of the equation y = Γ(x), −4 < x < 4. (The

lines x = −k, k = 0, 1, 2, . . ., are vertical asymptotes.)

Since the integrand is approximately equal to tx−1 for t near 0 and to (1 − t)y−1

for t near 1, the integral is proper when x, y ≥ 1 and convergent for x, y > 0. Like

the gamma function, the beta function can be expressed in a number of different

forms by changes of variable in the integral. Other than (7.53), the most important

of these is obtained by the substitution t = sin2 θ, which makes 1− t = cos2 θ and

dt = 2 sin θ cos θ dθ, so that

(7.54) B(x, y) = 2

∫ π/2

0
sin2x−1 θ cos2y−1 θ dθ.

The relation between the gamma and beta functions is as follows:

7.55 Theorem. For x, y > 0, B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
.

Proof. We employ the same device that we used to calculate
∫∞
−∞ e−x

2

dx in §4.7:

We express Γ(x) and Γ(y) by (7.52), write Γ(x)Γ(y) as an iterated integral, convert
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the latter to a double integral, and switch to polar coordinates:

Γ(x)Γ(y) = 4

∫ ∞

0
t2x−1e−t

2

dt

∫ ∞

0
s2y−1e−s

2

ds

= 4

∫ ∞

0

∫ ∞

0
s2y−1t2x−1e−s

2−t2 ds dt

= 4

∫ π/2

0

∫ ∞

0
(r cos θ)2y−1(r sin θ)2x−1e−r

2

r dr dθ

= 4

∫ π/2

0
cos2y−1 θ sin2x−1 θ dθ

∫ ∞

0
r2x+2y−1e−r

2

dr

= B(x, y)Γ(x+ y).

In the last step we have used (7.52) and (7.54).

We draw two useful consequences from Theorem 7.55. The first one is another

functional equation for the gamma function; the second one compares the growth

of Γ(x) and Γ(x+ a) as x→∞.

7.56 Theorem (The Duplication Formula). Γ(2x) = π−1/222x−1Γ(x)Γ(x+ 1
2).

Proof. Assume that x > 0. By taking y = x in Theorem 7.55 and observing that

the function t(1− t) is symmetric about t = 1
2 , we see that

Γ(x)2

Γ(2x)
=

∫ 1

0

[
t(1− t)

]x−1
dt = 2

∫ 1/2

0

[
t(1− t)

]x−1
dt.

By the substitution

t = 1
2(1− s

1/2), dt = −1
4s

−1/2 ds, t(1− t) = 1
4(1− s)

and another application of Theorem 7.55, we obtain

Γ(x)2

Γ(2x)
= 21−2x

∫ 1

0
s−1/2(1− s)x−1 ds = 21−2xΓ(

1
2 )Γ(x)

Γ(x+ 1
2)
.

Since Γ(12) = π1/2, the result follows. The extension to negative values of x is left

to the reader (Exercise 6).

7.57 Theorem. For a > 0, lim
x→∞

Γ(x+ a)

xaΓ(x)
= 1.
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Proof. By Theorem 7.55, the substitution t = e−u, and formula (7.51),

Γ(x)Γ(a)

Γ(x+ a)
=

∫ 1

0
tx−1(1− t)a−1 dt =

∫ ∞

0
(1− e−u)a−1e−xu du.

When x is large, e−xu is very small unless u is close to 0, and in that case 1−e−u is

approximately u. Hence, the integral on the right should be approximately equal to∫∞
0 ua−1e−xu du = x−aΓ(a), which is what we are trying to show. More precisely,

we have

Γ(x)Γ(a)

Γ(x+ a)
=

∫ ∞

0
ua−1e−xu du+

∫ ∞

0

[
(1− e−u)a−1 − ua−1

]
e−xu du

= x−aΓ(a) +
∫ ∞

0

[
(1− e−u)a−1 − ua−1

]
e−xu du.

Multiplying both sides by xa/Γ(a), we obtain

(7.58)
xaΓ(x)

Γ(x+ a)
− 1 =

xa

Γ(a)

∫ ∞

0

[(
1− e−u

u

)a−1

− 1

]
ua−1e−xu du.

It remains to show that the quantity on the right tends to zero as x→∞.

The function defined by f(u) = (1 − e−u)/u for u 6= 0 and f(0) = 1 is

everywhere positive and of class C∞ (even at u = 0, for it is the sum of the power

series
∑∞

1 (−1)n−1un−1/n!). Hence the same is true of f(u)a−1, so the function

g(u) = f(u)a−1− 1 is smooth and vanishes at u = 0. By the mean value theorem,

then, for 0 ≤ u ≤ 1 we have |g(u)| = |g(u)− g(0)| ≤ Cu where C is the

maximum value of |g′(u)| on [0, 1]. On the other hand, for u > 1 we clearly have

0 < f(u) < 1 and hence −1 < g(u) < 0. Therefore, the quantity on the right of

(7.58) is bounded in absolute value by

xa

Γ(a)

[∫ 1

0
Cuae−xu du+

∫ ∞

1
ua−1e−xu du

]

≤ xa

Γ(a)

[
C

∫ 1

0
uae−xu du+

∫ ∞

1
uae−xu du

]
≤ (C + 1)

xa

Γ(a)

∫ ∞

0
uae−xu du

= (C + 1)
Γ(a+ 1)

xΓ(a)
= (C + 1)

a

x
,

where we have used (7.51) again in the last step. In short, the right side of (7.58) is

dominated by x−1 as x→∞, so we are done.
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Theorem 7.57 can be used as an effective alternative to Raabe’s test to decide

the convergence of series involving quotients of factorial-like products, for such

quotients can be expressed as quotients of gamma functions by (7.49).

EXAMPLE 1. Let us reconsider Example 7 from §6.2, namely,

∞∑

1

1 · 4 · 7 · · · (3n+ 1)

n23nn!
.

Since

1 · 4 · 7 · · · (3n+ 1) = 3n
[
4
3 · 73 · · · (n+ 1

3)
]
= 3n

Γ(n+ 4
3)

Γ(43)
,

and n! = Γ(n+ 1), the nth term of the series is

Γ(n+ 4
3)

n2Γ(43 )Γ(n+ 1)
.

By Theorem 7.57, Γ(n+ 4
3)/Γ(n + 1) is approximately n1/3 when n is large,

so the series converges by comparison to
∑
n−5/3.

EXERCISES

1. Prove the duplication formula for the case where x is a positive integer simply

by using (7.48).

2. Show that for a, b > 0,

∫ 1

0

(
log

1

t

)a−1

dt = Γ(a),

∫ 1

0

(
log

1

t

)a−1

tb−1 dt = b−aΓ(a).

3. Evaluate the following integrals:

a.
∫∞
0 x4e−x

2

dx.

b.
∫∞
0 e−3x√x dx.

c.
∫∞
0 x9e−x

4

dx.

4. Prove the following identities directly from the definition (7.53) (without using

Theorem 7.55):

a. B(x, y) = B(y, x).
b. B(x, 1) = x−1.
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c. B(x+ 1, y) +B(x, y + 1) = B(x, y).
d. B(x, y) =

∫∞
0 (1 + t)−x−yty−1 dt.

5. Given a, b, c > 0, evaluate
∫ 1
0 x

a(1− xb)c dx in terms of the gamma function.

6. Use the functional equation (7.47) to show that if the duplication formula (7.56)

is valid for a particular value of x, then it is also true for x − 1. Thence show

how to deduce its validity for all x from its validity for x > 0. (In case x is

a nonpositive integer or half-integer, the formula is valid in the sense that both

sides are infinite.)

7. Use (7.54), Theorem 7.55, and (7.48) to evaluate
∫ π/2
0 sink x dx. (The form of

the answer is different depending on whether k is even or odd.)

8. Prove Wallis’s formula:

π

2
= lim

n→∞
2 · 2 · 4 · 4 · 6 · 6 · · · (2n)(2n)

1 · 3 · 3 · 5 · 5 · 7 · · · (2n − 1)(2n + 1)
.

(Hint: Denote the fraction on the right by cn. Use Exercise 7 and the fact that

sin2n+1 x < sin2n x < sin2n−1 x for 0 < x < 1
2π to show that cn <

1
2π <

(2n + 1)cn/2n.)

9. Suppose f is a continuous function on [0,∞). For α > 0, define the function

Iα[f ] on [0,∞) by

Iα[f ](x) =
1

Γ(α)

∫ x

0
(x− t)α−1f(t) dt.

Iα[f ] is called the αth-order fractional integral of f .

a. Show that the derivative of Iα+1[f ] is Iα[f ] for α > 0, and the derivative

of I1[f ] is f . (This generalizes Exercise 6 in §4.5.)

b. Show that Iα[Iβ[f ]] = Iα+β[f ] for all α, β > 0.

10. Test the following series for convergence in the manner of Example 1.

a.

∞∑

0

1 · 4 · · · (3n + 1)

2 · 5 · · · (3n + 2)

b.

∞∑

0

4nn!

5 · 9 · · · (4n + 5)

11. Show that

∞∑

1

[
1 · 3 · · · (2n− 1)

2 · 4 · · · (2n)

]p
converges if and only if p > 2. (Try both

Theorem 7.57 and Raabe’s test; you’ll find that the latter doesn’t work in the

borderline case p = 2.)
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12. Suppose a, b, c > 0. Show that

∞∑

0

Γ(a+ n)Γ(b+ n)

Γ(c+ n)n!
converges if and only

if a+ b < c.

7.7 Stirling’s Formula

Stirling’s formula is a simple and useful approximation to Γ(x) for large x; in

particular, it tells precisely how rapidly Γ(x) grows as x→∞.

We begin by analyzing the case where x is an integer n+ 1, for which Γ(x) =
n!. First, observe that

log(n!) = log 1 + log 2 + · · ·+ log n.

The sum on the right suggests a Riemann sum for
∫
log x dx. Indeed, it is the

midpoint Riemann sum for
∫ n+(1/2)
1/2 log x dx corresponding to a division into n

equal subintervals, so the latter integral provides an approximation to log(n!). In

more detail, using this Riemann sum means taking log k as an approximation to

∫ k+(1/2)

k−(1/2)
log x dx =

∫ 1/2

−1/2
log(k + x) dx.

To see how good this approximation is, we approximate log(k + x) by its tangent

line at x = 0 and use Taylor’s theorem to estimate the error:

log(k + x) = log k +
x

k
+ Ek(x), |Ek(x)| ≤ sup

|t|≤|x|

1

(k + t)2
x2

2!
.

(Here (k+t)−2 is the absolute value of the second derivative of log(k+t).) Clearly,

for |x| ≤ 1
2 and k ≥ 1 we have

|Ek(x)| ≤
1

8(k − 1
2 )

2
≤ 1

8(12k)
2
≤ 1

2k2
.

Hence,

∫ 1/2

−1/2
log(k + x) dx =

∫ 1/2

−1/2
[log k + k−1x+ Ek(x)] dx = log k + ck,

where

(7.59) |ck| =
∣∣∣∣
∫ 1/2

−1/2
Ek(x) dx

∣∣∣∣ ≤
1

2k2
.
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Adding these equalities up from k = 1 to k = n, we obtain

∫ n+(1/2)

1/2
log x dx = log(n!) +

n∑

1

ck.

On the other hand,

∫ n+(1/2)

1/2
log x dx = [x log x− x]n+(1/2)

1/2 = (n+ 1
2) log(n+ 1

2)− n− 1
2 log

1
2

= (n+ 1
2) log n− n+ (n + 1

2 ) log

(
n+ 1

2

n

)
− 1

2 log
1
2 .

Therefore,

log(n!)− (n+ 1
2) log n+ n = (n+ 1

2) log(1 + (2n)−1)− 1
2 log

1
2 −

n∑

1

ck.

Since log(1 + x) ≈ x for x near 0, as n→∞ the quantity on the right approaches

the constant 1
2− 1

2 log
1
2−
∑∞

1 ck, where the series converges by the estimate (7.59).

Exponentiating both sides, we obtain a preliminary version of Stirling’s formula:

7.60 Lemma. As n→∞,
n!

nn+(1/2)e−n
approaches a limit L ∈ (0,∞).

Since Γ(n) = n!/n, Lemma 7.60 says that Γ(n)/(nn−(1/2)e−n) → L as n →
∞. We now extend this result from integers n to real numbers x. To do so we need

a slight strengthening of Theorem 7.57, namely, the uniformity of the convergence

with respect to the parameter a.

7.61 Lemma. For any A > 0, sup
0≤a≤A

∣∣∣∣
xaΓ(x)

Γ(x+ a)
− 1

∣∣∣∣→ 0 as x→∞.

Proof. With g(u) = f(u)a−1 − 1 as in the proof of Theorem 7.57, the function

|g′(u)| = |(a − 1)f(u)a−2f ′(u)| is jointly continuous in a and u in the compact

region a ∈ [0, A], u ∈ [0, 1], so its maximum on this region is finite. The constant C
in that proof can be taken to be this maximum when a ∈ [0, A], and the conclusion

of the proof shows that

sup
0≤a≤A

∣∣∣∣
xaΓ(x)

Γ(x+ a)
− 1

∣∣∣∣ ≤
(C + 1)A

x
,

which yields the desired result.
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7.62 Lemma. lim
x→∞

Γ(x)

xx−(1/2)e−x
= L, where L is as in Lemma 7.60.

Proof. Any number x ≥ 1 can be written as x = n+awhere n is a positive integer

and 0 ≤ a < 1, so that

Γ(x)

xx−(1/2)e−x
=

Γ(n+ a)

(n+ a)n+a−(1/2)e−n−a

=

[
Γ(n)

nn−(1/2)e−n

] [
Γ(n+ a)

naΓ(n)

] [
ea
(
n+ a

n

)−n−a+(1/2)]
.

By Lemma 7.60, the first factor in this last expression will be as close to L as we

please when n is sufficiently large. By Lemma 7.61, the second factor will be as

close to 1 as we please when n is sufficiently large and 0 ≤ a ≤ 1. The same is

also true of the third factor; indeed, by taking logarithms it is enough to verify that
∣∣∣a− (n+ a− 1

2) log
(
1 +

a

n

)∣∣∣

will be as close to 0 as we please when n is sufficiently large and 0 ≤ a < 1, and

this is easily accomplished by using the Taylor expansion of log(1+ t) about t = 0.

(Details are left to the reader as Exercise 1.) Combining these results, we see that

Γ(x)/xx−(1/2)e−x becomes as close to L as we please when x is sufficiently large,

as claimed.

7.63 Theorem (Stirling’s Formula). lim
x→∞

Γ(x)

xx−(1/2)e−x
=
√
2π.

Proof. It remains only to identify the constant L in Lemma 7.62. According to that

lemma, the quantities

Γ(x)

xx−(1/2)e−x
,

Γ(x+ 1
2)

(x+ 1
2)
xe−x−(1/2)

,
Γ(2x)

(2x)2x−(1/2)e−2x

all approach L as x → ∞. Dividing the product of the first two by the third and

using the duplication formula

Γ(x)Γ(x+ 1
2)

Γ(2x)
= 21−2x√π,

we see that

L = lim
x→∞

Γ(x)

xx−(1/2)e−x
· Γ(x+ 1

2 )

(x+ 1
2)
xe−x−(1/2)

· (2x)
2x−(1/2)e−2x

Γ(2x)

= lim
x→∞

√
2πe

(
1 +

1

2x

)−x
.

The last factor on the right tends to e−1/2 as x→∞, so we are done.
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Stirling’s formula is often written as

Γ(x) ∼
√
2π xx−(1/2)e−x,

where ∼ means that the ratio of the quantities on the left and right approaches 1 as

x → ∞. (The difference of these two quantites, however, tends to ∞ along with

x.)

EXERCISES

1. Complete the proof of Lemma 7.62 by showing that for some constant C > 0
we have sup0≤a≤1

∣∣a− (n+ a− 1
2) log[1 + (a/n)]

∣∣ ≤ C/n.

2. If a fair coin is tossed 2n times, the probability that it will come up heads

exactly n times is (2n)!/(n!)222n. (The total number of possible outcomes is

22n, and the number of those with exactly n heads is the binomial coefficient(2n
n

)
= (2n)!/(n!)2.) Use Stirling’s formula to estimate this probability when

n is large.

3. Stirling’s formula for factorials,

lim
n→∞

n!

nn+(1/2)e−n
=
√
2π,

can be proved more simply than the general case. One begins, as we did, by

proving Lemma 7.60, but it is then enough to evaluate the constant L there. To

do this, show that the fraction on the right of Wallis’s formula (Exercise 8 in

§7.6) equals [2nn!]4/[(2n)!]2(2n + 1), then use Lemma 7.60 to show that it

approaches 1
4L

2 as n→∞; conclude that L =
√
2π.
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FOURIER SERIES

Fourier series are infinite series that use the trigonometric functions cosnθ and

sinnθ, or, equivalently, einθ and e−inθ, as the basic building blocks, in the same

way that power series use the monomials xn. They are a basic tool for analyzing

periodic functions, and they therefore have applications in the study of physical

phenomena that are periodic in time (such as circular or oscillatory motion) or in

space (such as crystal lattices). They can also be used to analyze functions defined

on finite intervals in ways that are useful in solving differential equations, and this

leads to many other applications in physics and engineering. The theory of Fourier

series and its ramifications is an extensive subject that lies at the heart of much

of modern mathematical analysis. Here we present only the basics; for further

information we refer the reader to Folland [6], Kammler [10], and Körner [11].

8.1 Periodic Functions and Fourier Series

A function f on R is called periodic with period P , or P -periodic for short, if

f(x + P ) = f(x) for all x. In this case, f is completely determined by its values

on any interval [a, a+P ) of length P , including one but not both of the endpoints;

conversely, any function f defined on an interval [a, a + P ) can be extended in a

unique way to be a periodic function on R, by declaring that f(x + nP ) = f(x)
for all x ∈ [a, a + P ) and all integers n. This correspondence between functions

on intervals and periodic functions on R will be useful later; for the time being, we

focus our attention on periodic functions.

Unlike power series, Fourier series can be used to represent functions that are

quite irregular. To keep the discussion reasonably simple, however, we shall make

a standing assumption that all functions under consideration are piecewise continu-

ous. By this we mean, precisely, the following: A function f defined on an interval

355
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[a, b] is piecewise continuous on [a, b] if it is continuous except at finitely many

points in [a, b], and at each such point the one-sided limits

(8.1) f(x+) = lim
ǫ→0+

f(x+ ǫ), f(x−) = lim
ǫ→0+

f(x− ǫ)

exist (and are finite). Moreover, we shall say that a P -periodic function f on R is

piecewise continuous if it is piecewise continuous on each interval of length P . (If

it is piecewise continuous on one such interval, of course, it is piecewise continuous

on all of them.)

Note. It is sometimes convenient to allow a piecewise continuous function to

be undefined at the points where it has jumps. This does not affect anything that

follows in a significant way.

A piecewise continuous function is integrable over every bounded interval in

its domain. In this connection, the following elementary fact is worth pointing out

explicitly: If f is P -periodic and piecewise continuous, the integrals of f over all

intervals of length P are equal:

(8.2)

∫ a+P

a
f(x) dx =

∫ P

0
f(x) dx for every a ∈ R.

The proof is left to the reader (Exercise 9).

By making the change of variable θ = 2πx/P , we can convert any P -periodic

function into a 2π-periodic function. Namely, if f(x + P ) = f(x) and we set

g(θ) = f(x) = f(Pθ/2π), then g(θ + 2π) = g(θ). We may therefore restrict

attention to the case where the period is 2π, and we shall generally denote the inde-

pendent variable by θ. There is no presumption that θ denotes an angle, however;

it is just a convenient name for a real variable.

The basic idea of Fourier analysis is that an arbitrary piecewise continuous 2π-

periodic function f(θ) can be expanded as an infinite linear combination of the

functions einθ (n = 0,±1,±2, . . .), or equivalently of the functions cosnθ and

sinnθ (n = 0, 1, 2, . . .). In terms of the functions einθ, this expansion takes the

form

(8.3) f(θ) =

∞∑

−∞
cne

inθ.

Here f may be either real-valued or complex-valued; the cn’s are complex numbers,

and the series on the right is always to be interpreted as the limit of the symmetric

partial sums in which the nth and (−n)th terms are added in together:

∞∑

−∞
cne

inθ = lim
k→∞

k∑

−k
cne

inθ.
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Since e±inθ = cosnθ ± i sinnθ, combining the nth and (−n)th terms gives

cne
inθ + c−ne

−inθ = an cosnθ + bn sinnθ,

where

an = cn + c−n, bn = i(cn − c−n).

Therefore, (8.3) can be rewritten as

(8.4) f(θ) = 1
2a0 +

∞∑

1

(an cosnθ + bn sinnθ).

The grouping of the nth and (−n)th terms in (8.4) corresponds to the grouping of

the cosnθ and sinnθ terms in (8.4). (The factor of 1
2 in front of a0 is an artifact of

the definition a0 = c0 + c−0 = 2c0.)

The series (8.3) and (8.4) can be used interchangeably. The more traditional

form is (8.4), but each of them has its advantages. The advantages of (8.4) derive

from the fact that cosnθ and sinnθ are real-valued and are respectively even and

odd; the advantages of (8.3) derive from the fact that exponentials tend to be eas-

ier to manipulate than trig functions. For developing the basic theory, the latter

consideration is compelling, so we shall work mostly with (8.3).

The questions that face us are as follows: Given a 2π-periodic function f , can

it be expanded in a series of the form (8.3)? If so, how do we find the coefficients

cn in this series? It turns out to be easier to tackle the second question first. That

is, we first assume that f can be expressed in the form (8.3) and figure out what

the coefficients cn must be; then we show that with this choice of cn, the expansion

(8.3) is actually valid under suitable hypotheses on f .

Suppose, then, that the series
∑∞

−∞ cne
inθ converges pointwise to the function

f(θ), and suppose also that the convergence is sufficiently well behaved that term-

by-term integration is permissible. The coefficients cn can then be evaluated by

the following device. To compute ck, we multiply both sides of (8.3) by e−ikθ and

integrate over [−π, π]:
∫ π

−π
f(θ)e−ikθ dθ =

∞∑

−∞
cn

∫ π

−π
ei(n−k)θ dθ.

Now,

(8.5)

∫ π

−π
ei(n−k)θ dθ =

{
[i(n− k)]−1ei(n−k)θ|π−π = 0 if n 6= k,

θ|π−π = 2π if n = k.
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Thus all the terms on the right of the integrated series vanish except for the one

with n = k, and we obtain
∫ π

−π
f(θ)e−ikθ dθ = 2πck,

or, relabeling k as n,

(8.6) cn =
1

2π

∫ π

−π
f(θ)e−inθ dθ.

This is the promised formula for the coefficients cn. The corresponding formula

for an and bn in (8.4) follows immediately:

(8.7)

an = cn + c−n =
1

2π

∫ π

−π
f(θ)[e−inθ + einθ] dθ =

1

π

∫ π

−π
f(θ) cosnθ dθ,

bn = i(cn − c−n) =
i

2π

∫ π

−π
f(θ)[e−inθ − einθ] dθ = 1

π

∫ π

−π
f(θ) sinnθ dθ.

Of course, according to (8.2), the integrals over [−π, π] in (8.6) and (8.7) can be

replaced by integrals over any interval of length 2π.

It is useful to keep in mind that in either (8.3) or (8.4), the constant term in the

series is

(8.8) c0 =
1
2a0 =

1

2π

∫ π

−π
f(θ) dθ,

the mean value of f on the interval [−π, π] (or on any interval of length 2π).

What have we accomplished? We have shown that if f(θ) is the sum of a series∑∞
−∞ cne

inθ, and if term-by-term integration is legitimate, then the coefficients

cn must be given by (8.6), but as yet we know almost nothing about the class of

functions that can be represented by such series. But now the formula (8.6) provides

a starting point for studying this matter. Indeed, if f is any integrable 2π-periodic

function, the quantities

an =
1

π

∫ π

−π
f(θ) cosnθ dθ, bn =

1

π

∫ π

−π
f(θ) sinnθ dθ,

cn =
1

2π

∫ π

−π
f(θ)e−inθ dθ

are well defined. We call them the Fourier coefficients of f , and we call the series

∞∑

−∞
cne

inθ = 1
2a0 +

∞∑

1

(an cosnθ + bn sinnθ)

the Fourier series of f .
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The study of general Fourier series will be undertaken in the following sections.

We conclude this one by working out two simple examples.

EXAMPLE 1. Let f(θ) be the 2π-periodic function determined by the formula

f(θ) = θ, (−π < θ ≤ π).

That is, f is the sawtooth wave depicted in the top graph of Figure 8.1. The

calculation of the Fourier coefficients cn is an easy integration by parts for

n 6= 0:

cn =
1

2π

∫ π

−π
θe−inθ dθ =

1

2π

[
θe−inθ

−in +
e−inθ

n2

]π

−π
=

(−1)n+1

in
,

since e±inπ = (−1)n. Moreover, c0 = 0 since the mean value of f is clearly

zero. Thus the Fourier series of f is

∑

n 6=0

(−1)n+1

in
einθ.

Grouping together the nth and (−n)th terms yields the equivalent form

(8.9) 2

∞∑

1

(−1)n+1

n
sinnθ.

(We could also have obtained this series directly by using (8.7); we have an = 0
for all n since f is odd, and a calculation similar to the one above shows that

bn = 2(−1)n+1/n.)

The series (8.9) converges for all θ by Dirichlet’s test. (See Corollary

6.27. The factor of (−1)n+1 does not affect the result, since (−1)n sinnθ =
sinn(θ+π).) The sketches of some of the partial sums in Figure 8.1 lend plau-

sibility to the conjecture that (8.9) does indeed converge to the function f(θ),
at least at the points where f is continuous. (At the points θ = (2k+1)π where

f is discontinuous, every term in (8.9) vanishes.)

EXAMPLE 2. Let g(θ) be the 2π-periodic function determined by the formula

g(θ) = |θ|, (−π ≤ θ ≤ π).

That is, g is the triangle wave depicted in the top graph of Figure 8.2. Here it

is a bit easier to calculate the Fourier coefficients in terms of sines and cosines.

Since g is an even function, we have bn = 0 for all n and

an =
1

π

∫ π

−π
g(θ) cosnθ dθ =

2

π

∫ π

0
θ cosnθ dθ.
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FIGURE 8.1: Top to bottom: The sawtooth wave of Example 1

and the partial sums S4, S10, and S16 of its Fourier series (Sk =
2
∑k

1(−1)n+1n−1 sinnθ).
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FIGURE 8.2: Top to bottom: The triangle wave of Example 2 and

the partial sums S1, S2, and S3 of its Fourier series (Sk = (π/2) −
(4/π)

∑k
1(2m− 1)−2 cos(2m− 1)θ).

For n = 0 we have a0 = (2/π)
∫ π
0 θ dθ = π, and for n > 0 an integration by

parts gives

an =
2

π

[
θ sinnθ

n
+

cosnθ

n2

]π

0

=
2

π

(−1)n − 1

n2
.

In other words, an = 0 when n is even and an = −4/πn2 when n is odd, so

we obtain the Fourier series

(8.10)
π

2
− 4

π

∑

n=1,3,5,...

cosnθ

n2
=
π

2
− 4

π

∞∑

1

cos(2m− 1)θ

(2m− 1)2
.

Since
∑∞

1 n−2 < ∞, this series converges absolutely and uniformly by the

Weierstrass M-test. Again, a glance at its first few partial sums in Figure 8.2

supports the conjecture that its full sum is g(θ).



362 Chapter 8. Fourier Series

EXERCISES

In Exercises 1–8, find the Fourier series of the 2π-periodic function f(θ) that

is given on the interval (−π, π) by the indicated formula. (All but Exercise 5 are

either even or odd, so their Fourier series are naturally expressed in terms of cosines

or sines.) Sketches of these functions are given in Figure 8.3.

1. f(θ) =

{
−1 (−π < θ < 0)

1 (0 < θ < π)
(the square wave).

2. f(θ) = sin2 θ. (You don’t need calculus if you look at this the right way.)

3. f(θ) = | sin θ|. (Hint: sin a cos b = 1
2 [sin(a+ b) + sin(a− b)].)

4. f(θ) = θ2.

5. f(θ) = ebθ (b > 0).

6. f(θ) = θ(π − |θ|).

7. f(θ) =

{
1/a (|θ| < a),

−1/(π − a) (a < |θ| < π),
where 0 < a < π. (The values of f

are chosen to make the areas of the rectangles between the graph of f and the

x-axis on the intervals [0, a] and [a, π] both equal to 1.)

8. f(θ) =

{
a−2(a− |θ|) (|θ| < a),

0 (a < |θ| < π),
where 0 < a < π. (The constants are

chosen to make the areas of the triangles under the graph of f equal to 1.)

9. Prove that (8.2) is valid for every piecewise continuous P -periodic function f .

(This can be done either directly by changes of variable or by differentiating∫ a+P
a with respect to a via Theorem 4.15a.)

8.2 Convergence of Fourier Series

Given a piecewise continuous 2π-periodic function f , we form its Fourier series:

(8.11)

∞∑

−∞
cne

inθ, cn =
1

2π

∫ π

−π
f(θ)e−inθ dθ.

Does this series converge? If so, what is its sum?

These questions are rather delicate. In the first place, since |einθ| ≡ 1, a neces-

sary condition for the convergence of the Fourier series is that cn → 0 as n→∞,

but the only estimate on the cn’s that is obvious from the definition is that they are
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Exercise 1 Exercise 2

Exercise 3
Exercise 4

Exercise 5 Exercise 6

Exercise 7 Exercise 8

a a π

π

π

π

π

π

π

π

FIGURE 8.3: The functions in Exercises 1–8 of §8.1.
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bounded by a constant:

|cn| ≤
1

2π

∫ π

−π
|f(θ)e−inθ| dθ =

1

2π

∫ π

−π
|f(θ)| dθ ≤ sup

θ
|f(θ)|.

However, it is actually true that cn → 0; in fact, we can say something more precise.

8.12 Theorem (Bessel’s Inequality). If f is 2π-periodic and piecewise continuous

and cn is defined by (8.11), then

∞∑

−∞
|cn|2 ≤

1

2π

∫ π

−π
|f(θ)|2 dθ.

In particular,
∑
|cn|2 <∞, and hence limn→±∞ cn = 0.

Proof. We examine the difference between f and a partial sum of its Fourier series.

Since the absolute value of a complex number z is given by |z|2 = zz, we have

∣∣∣∣f(θ)−
N∑

−N
cne

inθ

∣∣∣∣
2

=

(
f(θ)−

N∑

−N
cne

inθ

)(
f(θ)−

N∑

−N
cne

−inθ
)

= |f(θ)|2 −
N∑

−N

[
cnf(θ)e

−inθ + cnf(θ)e
inθ
]
+

N∑

m,n=−N
cmcne

i(m−n)θ .

Next, integration of both sides over [−π, π], using the definition of cn and the

relation (8.5), yields

1

2π

∫ π

−π

∣∣∣∣f(θ)−
N∑

−N
cne

inθ

∣∣∣∣
2

dθ =
1

2π

∫ π

−π
|f(θ)|2dθ−

N∑

−N
[cncn+cncn]+

N∑

−N
cncn

=
1

2π

∫ π

−π
|f(θ)|2 dθ −

N∑

−N
|cn|2.

The integral on the left is clearly nonnegative, so

0 ≤ 1

2π

∫ π

−π
|f(θ)|2 dθ −

N∑

−N
|cn|2.

Letting N →∞, we obtain the desired result.
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To proceed further in our study of the convergence of the Fourier series of a

function f , we must take a closer look at the partial sums

(8.13) SfN (θ) =

N∑

−N
cne

inθ, cn =
1

2π

∫ π

−π
f(ψ)e−inψ dψ.

Substitution of the formula for cn into the sum yields

SfN (θ) =
N∑

−N

1

2π

∫ π

−π
f(ψ)ein(θ−ψ) dψ =

N∑

−N

1

2π

∫ π

−π
f(ψ)ein(ψ−θ) dψ

=
N∑

−N

1

2π

∫ π

−π
f(ϕ+ θ)einϕ dϕ.

(The second equality is obtained by replacing n by −n, which leaves the sum from

−N to N unchanged, and the third one comes from the change of variable ϕ =
ψ − θ with the help of (8.2).) In other words,

(8.14) SfN (θ) =

∫ π

−π
f(ϕ+ θ)DN (ϕ) dϕ, where DN (ϕ) =

1

2π

N∑

−N
einϕ.

DN is called the N th Dirichlet kernel. Its essential properties are summarized in

the following lemma.

8.15 Lemma. Let DN (ϕ) be the function defined in (8.14). Then:

a.

∫ 0

−π
DN (ϕ) dϕ =

∫ π

0
DN (ϕ) dϕ =

1

2
.

b. DN (ϕ) =
1

2π

ei(N+1)ϕ − e−iNϕ
eiϕ − 1

.

Proof. The validity of (a) is most easily seen by rewriting (8.14) as DN (ϕ) =
(2π)−1 + π−1

∑N
1 cosnϕ and integrating this sum term by term. Since sin 0 =

sin(±nπ) = 0, only the constant term gives a nonzero contribution. To prove (b),

we use the formula (6.2) for the sum of a finite geometric progression:

2πDN (ϕ) = e−iNϕ
2N∑

0

einϕ = e−iNϕ
ei(2N+1)ϕ − 1

eiϕ − 1
=
ei(N+1)ϕ − e−iNϕ

eiϕ − 1
.
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Incidentally, if we multiply and divide the formula in Lemma 8.15b for DN (ϕ)
by e−iϕ/2, we obtain

DN (ϕ) =
1

2π

ei(N+(1/2))ϕ − e−i(N+(1/2))ϕ

eiϕ/2 − e−iϕ/2 =
sin(N + 1

2)ϕ

2π sin 1
2ϕ

.

This shows that DN is real-valued and gives an easy way to visualize it: Its graph

is the rapidly oscillating sine wave y = sin(N + 1
2 )ϕ, amplitude-modulated to fit

inside the envelope y = ±(2π sin 1
2ϕ)

−1. (The reader may wish to generate graphs

of DN for various values of N on a computer.)

We are now ready to formulate and prove the basic convergence theorem for

Fourier series. It turns out that piecewise continuity of a periodic function f is not

enough to yield a good result. Instead we shall assume, in effect, that not only

f but also its derivative f ′ is piecewise continuous. More precisely, we shall say

that a periodic function f is piecewise smooth if, on any bounded interval, f is

of class C1 except at finitely many points, at which the one-sided limits f(θ+),
f(θ−), f ′(θ+), and f ′(θ−) (as defined in (8.1)) exist and are finite. (Note that this

definition of piecewise smoothness is more general than that given in §5.1, which

required the function to be continuous.) Pictorially, f is piecewise smooth if its

graph over any bounded interval is a smooth curve except at finitely many points

where it has jumps (if f is discontinuous) or corners (if f is continuous but f ′ is

discontinuous). In addition, the one-sided tangent lines at the jumps and corners

are not allowed to be vertical.

8.16 Theorem. Suppose f is 2π-periodic and piecewise smooth. Then the partial

sums SfN (θ) of the Fourier series of f , defined by (8.13), converge pointwise to
1
2 [f(θ−) + f(θ+)]. In particular, they converge to f(θ) at each point θ where f is

continuous.

Proof. By Lemma 8.15a, we have

1
2f(θ−) = f(θ−)

∫ 0

−π
DN (ϕ) dϕ,

1
2f(θ+) = f(θ+)

∫ π

0
DN (ϕ) dϕ,

so by (8.14), the difference between SfN (θ) and its asserted limit is

SfN (θ)− 1
2

[
f(θ−) + f(θ+)

]

=

∫ 0

−π

[
f(ϕ+ θ)− f(θ−)

]
DN (ϕ) dϕ +

∫ π

0

[
f(ϕ+ θ)− f(θ+)

]
DN (ϕ) dϕ.
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Our object is to show that this quantity vanishes as N →∞. By Lemma 8.15b, we

can rewrite it as

(8.17)
1

2π

∫ π

−π
g(ϕ)

[
ei(N+1)ϕ − e−iNϕ

]
dϕ,

where

g(ϕ) =





f(ϕ+ θ)− f(θ−)
eiϕ − 1

if −π ≤ ϕ < 0,

f(ϕ+ θ)− f(θ+)

eiϕ − 1
if 0 < ϕ ≤ π.

(We could define g(0) to be anything we please; altering the value at this one point

does not affect (8.17), by Proposition 4.14.) On the interval [−π, π], g(ϕ) is con-

tinuous wherever f(ϕ+θ) is and has jump discontinuities wherever f(ϕ+θ) does,

except for an additional singularity at ϕ = 0 caused by the vanishing of eiϕ − 1
there. But this singularity is also at worst a jump discontinuity; that is, the limits

g(0+) and g(0−) both exist. Indeed, by l’Hôpital’s rule,

g(0+) = lim
ϕ→0+

f(ϕ+ θ)− f(θ+)

eiϕ − 1
= lim

ϕ→0+

f ′(ϕ+ θ)

ieiϕ
=
f ′(θ+)

i
,

and likewise g(0−) = i−1f ′(θ−). In short, g is piecewise continuous.

Now we are done. By Bessel’s inequality, the Fourier coefficients of g,

Cn =
1

2π

∫ π

−π
g(ϕ)e−inϕ dϕ,

tend to zero as n → ±∞. But the quantity (8.17) is simply C−N−1 − CN , so it

vanishes as N →∞, as desired.

If f is piecewise continuous, there may be some question as to how to define f
at its points of discontinuity; as we mentioned earlier, we may wish to allow f to

remain undefined at these points. But Theorem 8.16 shows that for the purposes of

Fourier analysis, the natural choice is the average of the left- and right-hand limits:

f(θ) = 1
2 [f(θ−) + f(θ+)]. We shall say that f is standardized if it satisfies this

condition at all θ; thus, every standardized piecewise smooth 2π-periodic function

is the sum of its Fourier series at every point.

8.18 Corollary. If f and g are standardized piecewise smooth 2π-periodic func-

tions with the same Fourier coefficients, then f = g.

Proof. f and g are the sum of the same Fourier series.
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To illustrate Theorem 8.16, let us consider the two examples in §8.1.

EXAMPLE 1. The sawtooth wave f(θ) defined by f(θ) = θ for |θ| < π is

smooth except at the odd multiples of π, where its left- and right-hand limits are

π and−π, respectively. Thus the Fourier series of f converges to f everywhere

except at the odd multiples of π, where it converges to 0. On the interval

(−π, π), the result is

∞∑

1

(−1)n+1

n
sinnθ =

θ

2
for − π < θ < π.

In particular, by taking θ = 1
2π, we obtain the interesting formula

∞∑

1

(−1)m−1

2m− 1
= 1− 1

3
+

1

5
− 1

7
+ · · · = π

4
,

which we derived by other methods in Example 7 of §7.3.

EXAMPLE 2. The triangle wave g(θ) defined by f(θ) = |θ| for |θ| < π is

piecewise smooth and everywhere continuous, so it is the sum of its Fourier

series at every point. Thus,

π

2
− 4

π

∞∑

1

cos(2m− 1)θ

(2m− 1)2
= |θ| for − π ≤ θ ≤ π.

By taking θ = 0 (or θ = ±π), we obtain another interesting formula:

∞∑

1

1

(2m− 1)2
= 1 +

1

32
+

1

52
+

1

72
+ · · · = π2

8
.

From this it is also easy to obtain the sum

S =
∞∑

1

1

n2
= 1 +

1

22
+

1

32
+

1

42
+ · · ·

by separating out the odd and even terms:

S =

(
1 +

1

32
+

1

52
+ · · ·

)
+

(
1

22
+

1

42
+

1

62
+ · · ·

)

=
π2

8
+

1

4

(
1 +

1

22
+

1

32
+ · · ·

)
=
π2

8
+
S

4
,

so that 3S/4 = π2/8, or S = π2/6.
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π

π/2

FIGURE 8.4: The function h of Example 3.

We conclude by remarking that one can often use simple changes of variable

to generate new Fourier expansions from old ones without recalculating the coeffi-

cients from scratch.

EXAMPLE 3. Consider the modified triangle wave h whose graph is given

in Figure 8.4. It is related to the triangle wave g in Example 2 by h(θ) =
g(θ + 1

2π), and cos(2m− 1)(θ + 1
2π) = (−1)m sin(2m− 1)θ, so

h(θ) =
π

2
+

4

π

∞∑

1

(−1)m−1 sin(2m− 1)θ

(2m− 1)2
.

Abel Summability of Fourier Series. The Fourier coefficients of a periodic

function f are defined whenever f is piecewise continuous, but we have proved

the convergence of the Fourier series only when f is piecewise smooth. In fact,

it has been known since 1876 that there are continuous periodic functions whose

Fourier series fail to converge at some points. (The examples are all quite compli-

cated.) However, if f is merely piecewise continuous, we can still recover f from

its Fourier series
∑∞

−∞ cne
inθ by the method of Abel summation that we discussed

at the end of §7.3. Namely, for 0 < r < 1 we consider the series

(8.19) Arf(θ) =

∞∑

−∞
r|n|cne

inθ

and its limit as r→ 1− (i.e., as r approaches 1 from the left).

Since the coefficients cn are bounded, the series (8.19) converges absolutely by

comparison to the geometric series
∑
r|n|. Moreover, substitution of the formula

(8.6) for cn into (8.19) gives

Arf(θ) =
1

2π

∞∑

−∞

∫ π

−π
r|n|f(ψ)ein(θ−ψ) dψ.
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Since f is bounded, the Weierstrass M-test (comparison to
∑
r|n| again) gives the

uniform convergence to justify interchange of the summation and integration, and

a couple of manipulations like those that lead to (8.14) then show that

(8.20) Arf(θ) =

∫ π

−π
f(θ + ϕ)Pr(ϕ) dϕ, where Pr(ϕ) =

1

2π

∞∑

−∞
r|n|einϕ.

The function Pr is called the Poisson kernel. Like the Dirichlet kernel, it satisfies

(8.21)

∫ 0

−π
Pr(ϕ) dϕ =

∫ π

0
Pr(ϕ) dϕ =

1

2

(write Pr(ϕ) = (2π)−1 + π−1
∑∞

1 rn cosnϕ and integrate term by term), and it is

easily expressed in closed form since it is the sum of two geometric series:

(8.22)

Pr(ϕ) =
1

2π

[ ∞∑

0

rneinϕ +
∞∑

1

rne−inϕ
]
=

1

2π

[
1

1− reiϕ +
re−iϕ

1− re−iϕ
]

=
1− r2

2π(1 − reiϕ)(1− re−iϕ) =
1− r2

2π(1 + r2 − 2r cosϕ)
.

However, the Poisson kernel has one additional crucial property that is not shared

by the Dirichlet kernel:

(8.23)

For any δ > 0, Pr(ϕ)→ 0 uniformly on [−π,−δ] and on [δ, π] as r → 1−.

Indeed, by (8.22), for δ ≤ |ϕ| ≤ π we have

0 ≤ Pr(ϕ) ≤
1− r2

2π(1 + r2 − 2r cos δ)
,

and the expression on the right tends to zero as r → 1−. With these results in hand,

we come to the main theorem.

8.24 Theorem. Suppose that f is 2π-periodic. If f is piecewise continuous, then

lim
r→1−

Arf(θ) =
1
2 [f(θ−) + f(θ+)]

for every θ. If f is continuous, then Arf → f uniformly on R as r → 1.
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Proof. We sketch the ideas and leave the details to the reader as Exercises 5 and 6.

Given θ ∈ R and ǫ > 0, we choose δ > 0 small enough so that |f(θ+ϕ)−f(θ+)| <
ǫ when 0 < ϕ < δ and |f(θ + ϕ)− f(θ−)| < ǫ when −δ < ϕ < 0. We then write

the formula (8.20) for Arf(θ) as

Arf(θ) =

[∫ −δ

−π
+

∫ 0

−δ
+

∫ δ

0
+

∫ π

δ

]
f(θ + ϕ)Pr(ϕ) dϕ.

The first and last integrals tend to zero as r → 1− by (8.23). In the second and

third integrals, f(θ + ϕ) is within ǫ of f(θ−) and f(θ+), respectively, and (8.21)

and (8.23) together show that the integrals of Pr(ϕ) over [−δ, 0] and [0, δ] tend to
1
2 as r → 1−. The upshot is that Arf(θ) is within 2ǫ of 1

2 [f(θ−) + f(θ+)] when

r is sufficiently close to 1, and since ǫ is arbitrary, the first assertion is proved.

If f is continuous, it is uniformly continuous on [−π, π] by Theorem 1.33 and

hence uniformly continuous on R by periodicity. This means that the δ in the

preceding paragraph can be chosen independent of θ, and the argument given there

then yields uniform convergence.

EXERCISES

1. Find the Fourier series of the sawtooth waves depicted below by modifying the

series in Example 1.

(b)(a)

ππ

π/2 2

2. Find the Fourier series of the 2π-periodic function f(θ) defined by f(θ) =
(θ − 1

4π)
2 on the interval [−3

4π,
5
4π]. Use the result of Exercise 4 in §8.1.

3. Find the Fourier series of the 2π-periodic functions defined on the interval

(−π, π) by the indicated formulas by modifying the series in the exercises of

§8.1.

a. f(θ) =

{
0 (−π < θ < 0),

1 (0 < θ < π).



372 Chapter 8. Fourier Series

b. f(θ) =

{
0 (−π < θ < 0),

sin θ (0 < θ < π).
(Hint: max(x, 0) = 1

2(x+ |x|).)

c. f(θ) =

{
(2a)−1 (|θ| < a),

0 (a < |θ| < π),
where 0 < a < π.

d. f(θ) = sinh θ.

4. Find the sums of the following series by applying Theorem 8.16 to the series

obtained in the indicated exercises from §8.1 and choosing appropriate values

of θ.

a.

∞∑

1

1

4n2 − 1
and

∞∑

1

(−1)n+1

4n2 − 1
(Exercise 3). Can you sum the first series

in a more elementary way by rewriting it as a telescoping series?

b.

∞∑

1

1

n2
and

∞∑

1

(−1)n+1

n2
(Exercise 4).

c.

∞∑

1

(−1)n
n2 + b2

and

∞∑

1

1

n2 + b2
, where b > 0 (Exercise 5).

d.

∞∑

1

(−1)n+1

(2n − 1)3
(Exercise 6).

5. Fill in the details of the proof of the first assertion of Theorem 8.24.

6. Fill in the details of the proof of the second assertion of Theorem 8.24.

8.3 Derivatives, Integrals, and Uniform Convergence

We next study the differentiation and integration of Fourier series. As a first step,

we point out that by the fundamental theorem of calculus as stated in §4.1, the

formula

(8.25) f(b)− f(a) =
∫ b

a
f ′(θ) dθ

is valid when f is continuous and piecewise smooth, even though f ′ may be un-

defined at finitely many points. (However, it is generally false if f itself has

jump discontinuities.) In particular, if f and g are both continuous and piecewise

smooth, then so is fg, and an application of (8.25) to the latter function yields the

integration-by-parts formula

∫ b

a
f ′(x)g(x) dx = f(x)g(x)

∣∣b
a
−
∫ b

a
f(x)g′(x) dx.
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The first main result is that there is a very simple relation between the Fourier

coefficients of f and those of f ′.

8.26 Theorem. Suppose f is 2π-periodic, continuous, and piecewise smooth, and

let cn and c′n be the Fourier coefficients of f and f ′, given by (8.6). Then

c′n = incn.

Equivalently, if an, bn and a′n, b
′
n are the Fourier coefficients of f and f ′ given by

(8.7), then a′n = nbn and b′n = −nan.

Proof. Simply integrate by parts:

c′n =
1

2π

∫ π

−π
f ′(θ)e−inθ dθ =

1

2π
f(θ)e−inθ

∣∣π
−π −

1

2π

∫ π

−π
f(θ)(−ine−inθ) dθ.

The first term on the right vanishes because f(θ)e−inθ is 2π-periodic, and the sec-

ond one is incn. The argument for an and bn is similar (Exercise 1).

Note that Theorem 8.26 makes no claim about the Fourier series of f ′; it is

valid whether or not that series actually converges. If we add more conditions on f
to ensure that it does, we obtain the following result:

8.27 Corollary. Suppose that f is 2π-periodic, continuous, and piecewise smooth,

and that f ′ is also piecewise smooth. If

∞∑

−∞
cne

inθ = 1
2a0 +

∞∑

1

(an cosnθ + bn sinnθ)

is the Fourier series of f , then f ′(θ) is the sum of the derived series

∞∑

−∞
incne

inθ =
∞∑

1

(nbn cosnθ − nan sinnθ)

at every θ at which f ′(θ) exists. At the exceptional points where f ′ has jumps, the

series converges to 1
2 [f

′(θ−) + f ′(θ+)].

Proof. By Theorem 8.16, f ′ is the sum of its Fourier series everywhere except

where it has jumps, and the coefficients in that series are given by Theorem 8.26.
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EXAMPLE 1. The triangle wave (Example 2 in §8.1) is continuous and piece-

wise smooth, and its derivative is the square wave (Exercise 1 in §8.1). We can

therefore recover the result of the latter exercise by differentiating the series

(8.10):

4

π

∞∑

1

sin(2m− 1)θ

2m− 1
=

{
−1 (−π < θ < 0),

1 (0 < θ < π).

Next, we consider integration of Fourier series. There is one annoying point

that must be kept in mind: If f is a piecewise continuous 2π-periodic function, its

indefinite integral F (θ) =
∫ θ
0 f(ϕ) dϕ will be periodic only when

∫ π

−π
f(ϕ) dϕ = F (π)− F (−π) = 0,

that is, when the mean value of f over an interval of length 2π is zero, or, equiv-

alently, when the constant term in the Fourier series of f vanishes. We make this

assumption in the following theorem; if it is not valid, we may wish to subtract off

the constant term and deal with it separately.

8.28 Theorem. Suppose f is 2π-periodic and piecewise continuous, with Fourier

coefficients cn given by (8.6) or an, bn given by (8.7). Assume that c0 = 1
2a0 = 0.

If F is a continuous, piecewise smooth function such that F ′ = f (except at the

points where f has jumps), then

F (θ) = C0 +
∑

n 6=0

cn
in
einθ = C0 +

∞∑

1

(
an
n

sinnθ − bn
n

cosnθ

)

for all θ, where C0 is the mean value of F on [−π, π].

Proof. F is 2π-periodic by (8.2), for

F (θ + 2π)− F (θ) =
∫ θ+2π

θ
f(ϕ) dϕ =

∫ π

−π
f(ϕ) dϕ = 2πc0 = 0.

By Theorem 8.16, F is the sum of its Fourier series at every point, and by Theorem

8.26, its Fourier coefficients Cn are given for n 6= 0 by inCn = cn (and likewise

for the cosine and sine coefficients). The constant term C0 is, as always, the mean

value of F .

Observe that the series in Theorem 8.28 is obtained by formally integrating the

Fourier series of f term-by-term, whether the latter series converges or not.
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EXAMPLE 2. Subtraction of the mean value from the triangle wave (Example

2 in §8.2) and multiplication by −2 gives

π − 2|θ| = 8

π

∞∑

1

cos(2m− 1)θ

(2m− 1)2
(|θ| ≤ π),

and integration of both sides from 0 to θ then yields

πθ − θ|θ| = 8

π

∞∑

1

sin(2m− 1)θ

(2m− 1)3
(|θ| ≤ π),

which is the result of Exercise 6 in §8.1.

Theorem 8.28 and the Corollary 8.27 exhibit situations where we can integrate

or differentiate a series termwise without worrying about uniform convergence.

However, uniform and absolute convergence are still highly desirable things, so

we present a simple criterion for the Fourier series of a function to have these

properties.

8.29 Theorem. If f is 2π-periodic, continuous, and piecewise smooth, then the

Fourier series of f is absolutely and uniformly convergent.

Proof. Let cn and c′n be the Fourier coefficients of f and f ′. Since |cneinθ| =
|cn|, the absolute convergence of

∑
cne

inθ is equivalent to the convergence of∑
|cn|, and by the Weierstrass M-test, this also implies the uniform convergence

of
∑
cne

inθ. But by Theorem 8.26, cn = c′n/in for n 6= 0, so

|cn| ≤ 1
2(|c

′
n|2 + |n|−2) (n 6= 0).

(The inequality αβ ≤ 1
2 (α

2 + β2) is valid for all α, β ∈ R since α2 + β2− 2αβ =
(α − β)2 ≥ 0.) But the series

∑ |c′n|2 and
∑
n−2 are both convergent — by

Bessel’s inequality in the former case, since f ′ is piecewise continuous — and

hence so is
∑ |cn|.

We conclude this section with an important feature of Fourier series, which we

state as a general principle rather than as a precise theorem:

The degree of smoothness of a periodic function is closely related to the rate of

decay of its Fourier coefficients, that is, to the rate of convergence of its Fourier

series.
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Indeed, let f be a 2π-periodic function f with Fourier coefficients cn. If f is of

class Ck, then f (k) is a continuous 2π-periodic function whose Fourier coefficients

are (in)kcn, by Theorem 8.26. By Bessel’s inequality, limn→∞ |nkcn| = 0, so |cn|
tends to zero faster than |n|−k as n→ ±∞. Conversely, suppose |cn| ≤ C|n|−k−ǫ
for some C, ǫ > 0. Then

∑
|njcn| < ∞ for j < k, so the series

∑
cne

inθ can be

differentiated termwise k − 1 times with the differentiated series being absolutely

and uniformly convergent, and hence its sum f (assuming f is standardized) is of

class Ck−1. (Several other variations can be played on this theme.)

We can see this phenomenon in the examples of §8.1. The sawtooth wave

has discontinuities, and its Fourier coefficients decay like n−1; the triangle wave

is continuous but its first derivative is not, and its Fourier coefficients decay like

n−2. Figures 8.1 and 8.2 show clearly that the Fourier series of the triangle wave

converges more rapidly than that of the sawtooth wave.

EXERCISES

1. Verify the assertion about an and bn in Theorem 8.26.

2. Given a ∈ (0, π), let f be the 2π-periodic function defined by f(θ) = a−1 for

|θ| < a and f(θ) = (a− π)−1 for a < |θ| < π.

a. Find the formula for g(θ) =
∫ θ
0 f(ϕ) dϕ on [−π, π] and sketch its graph.

b. Use the Fourier series of f found in Exercise 7 of §8.1 to compute the

Fourier series of g.

3. By applying Theorem 8.28 to the result of Exercise 4 of §8.1, show that:

a. θ3 − π2θ = 12

∞∑

1

(−1)n sinnθ
n3

(|θ| ≤ π).

b. θ4 − 2π2θ2 =
−7π4
15

+ 48
∞∑

1

(−1)n+1 cosnθ

n4
(|θ| ≤ π).

c.

∞∑

1

1

n4
=
π4

90
.

4. From Exercise 3 of §8.1, we know that

sin θ =
2

π
− 4

π

∞∑

1

cos 2nθ

4n2 − 1
for 0 ≤ θ ≤ π.

Show that this series can be differentiated or integrated termwise to yield two

apparently different series expansions of cos θ for 0 < θ < π, and reconcile

these two expansions. (Hint: Example 1 of §8.2 is useful.)
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5. Let f(θ) be the 2π-periodic function such that f(θ) = eθ for |θ| < π, and let∑∞
−∞ cne

inθ be its Fourier series. If we formally differentiate this equation,

we obtain eθ =
∑∞

−∞ incne
inθ for |θ| < π. But then cn and incn are both

equal to (2π)−1
∫ π
−π e

θe−inθ dθ, so cn = incn and hence cn = 0 for all n.

Clearly this is wrong; where is the mistake?

6. How smooth are the following functions? That is, for which k can you show

that the function is of class Ck?

a.
∑

n 6=0

einθ

n6/5(1 + n6)
. b.

∞∑

0

cosnθ

2n
. c.

∞∑

0

cos 2nθ

2n

8.4 Fourier Series on Intervals

A 2π-periodic function is completely determined by its values on any interval of

length 2π. Conversely, if one is given a function f defined on an interval of length

2π, say [−π, π], one can extend f to be a 2π-periodic function on R by declaring

that f(θ + 2kπ) = f(θ) for all θ ∈ [−π, π] and k ∈ Z. (Actually, this definition

is not consistent at the points θ = (2k + 1)π unless f(−π) = f(π), but one can

redefine f to be any given number at these points, such as 1
2 [f(−π)+f(π)].) If the

original f on [−π, π] is piecewise continuous or piecewise smooth, the same will

be true of its periodic extension. However, even if f is perfectly smooth on [−π, π],
there will usually be discontinuities in the periodic extension or its derivatives at

the points (2k + 1)π where the translates of f are joined together. (For example,

the periodic extension of f(θ) = θ on [−π, π] is the sawtooth wave.)

By considering the periodic extension, then, one can use Fourier series to ex-

pand a piecewise smooth function on [−π, π] in terms of trig functions. All of

the results in the preceding sections apply, except that in using the results of §8.3

one must remember to take into account the possible extra discontinuities in the

periodic extension or its derivatives at the points (2k + 1)π.

There is an extra twist we can add to this construction that is useful in many

situations. Suppose that we are considering functions on [0, π] rather than [−π, π].
Given a piecewise continuous function f on [0, π], we first extend it to [−π, π] by

declaring it to be even (see Figure 8.5), and then extend it to be 2π-periodic on R.

That is, we define the even extension feven of f on [−π, π] by

feven(θ) =

{
f(θ) if 0 ≤ θ ≤ π,

f(−θ) if −π ≤ θ ≤ 0.

For this extension the Fourier sine coefficients bn all vanish because feven(θ) sinnθ
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FIGURE 8.5: A function on [0, π] (above) and its even and odd exten-

sions to [−π, π] (below, left and right).

is an odd function, and the cosine coefficients an are given by

an =
1

π

∫ π

−π
feven(θ) cosnθ dθ =

2

π

∫ π

0
f(θ) cosnθ dθ.

The resulting Fourier series is 1
2a0 +

∑∞
1 an cosnθ.

On the other hand, we could also consider the odd extension of f to [−π, π]
(see Figure 8.5):

fodd(θ) =





f(θ) if 0 < θ < π,

−f(−θ) if −π < θ < 0,

0 if θ = 0,±π.

Here the Fourier cosine coefficients an all vanish, and the sine coefficients bn are

given by

bn =
1

π

∫ π

−π
fodd(θ) sinnθ dθ =

2

π

∫ π

0
f(θ) sinnθ dθ.

The resulting Fourier series is
∑∞

1 bn sinnθ.

We are thus led to the following definitions: If f is a piecewise continuous

function on [0, π], its Fourier cosine series is the series

1
2a0 +

∞∑

1

an cosnθ, an =
2

π

∫ π

0
f(θ) cosnθ dθ,

and its Fourier sine series is the series
∞∑

1

bn sinnθ, bn =
2

π

∫ π

0
f(θ) sinnθ dθ.
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EXAMPLE 1. Let f(θ) = θ on [0, π]. The even and odd periodic extensions of

f are the triangle and sawtooth waves, respectively, and the Fourier cosine and

sine series of f are

π

2
− 4

π

∞∑

1

cos(2m− 1)θ

(2m− 1)2
and 2

∞∑

1

(−1)n+1 sinnθ

n
,

respectively.

If f is piecewise smooth on [0, π], its even and odd periodic extensions will be

piecewise smooth on R. If f(0) = f(0+) and f(π) = f(π−), its even periodic

extension will be continuous at both 0 and π, but its odd periodic extension will

have jumps at 0 or π unless f(0) = 0 or f(π) = 0, respectively. In any case, an

application of Theorem 8.16 to these extensions easily yields the following:

8.30 Theorem. Suppose f is piecewise smooth on [0, π]. The Fourier cosine series

and the Fourier sine series of f converge to 1
2 [f(θ−)+ f(θ+)] at every θ ∈ (0, π).

The cosine series converges to f(0+) at θ = 0 and to f(π−) at θ = π; the sine

series converges to 0 at both these points.

We may wish to consider periodic functions with period other than 2π, or func-

tions defined on intervals other than [0, π]. The general situation can be reduced to

the one we have studied by a linear change of variable; we record the results for

future reference.

Suppose f(x) is a piecewise smooth 2l-periodic function. We make the change

of variables

θ =
πx

l
, g(θ) = f(x) = f

(
lθ

π

)
.

Then g is 2π-periodic, and we have

g(θ) =

∞∑

−∞
cne

inθ, cn =
1

2π

∫ π

−π
g(θ)e−inθ dθ.

The substitution θ = πx/l then yields the Fourier series for f .

(8.31) f(x) =
∞∑

−∞
cne

inπx/l, cn =
1

2l

∫ l

−l
f(x)e−inπx/l dx.

The corresponding formula in terms of sines and cosines is

f(x) = 1
2a0 +

∞∑

1

[
an cos

nπx

l
+ bn sin

nπx

l

]
,
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where

an =
1

l

∫ l

−l
f(x) cos

nπx

l
dx, bn =

1

l

∫ l

−l
f(x) sin

nπx

l
dx.

It follows that the Fourier cosine and sine series of a piecewise smooth function f
on the interval [0, l] are

(8.32) f(x) = 1
2a0 +

∞∑

1

an cos
nπx

l
, an =

2

l

∫ l

0
f(x) cos

nπx

l
dx,

and

(8.33) f(x) =

∞∑

0

bn sin
nπx

l
, bn =

2

l

∫ l

0
f(x) sin

nπx

l
dx.

We conclude with a few remarks comparing Taylor series and Fourier series,

f(x) =
∞∑

0

f (n)(0)

n!
xn and f(x) =

∞∑

−∞
cne

inπx/l,

as ways of expanding a function f on an interval centered at the origin. First, Tay-

lor series are only defined for functions of class C∞, whereas the smoothness re-

quirements for Fourier series are quite minimal. The Taylor coefficients f (n)(0)/n!
depend only on the values of f in an arbitrarily small neighborhood of the origin,

whereas the Fourier coefficients cn depend on the values of f over the whole inter-

val [−l, l]. The partial sums of the Taylor series provide an excellent approximation

to f(x) when |x| is small but are often quite useless when |x| is large; the partial

sums of the Fourier series tend to approximate f about equally well over the whole

interval [−l, l]. (This last statement is a bit of an oversimplification!)

Despite their differences, there is a connection between Taylor and Fourier se-

ries that is of considerable importance in more advanced mathematics. Namely, let

us consider a power series f(z) =
∑∞

0 anz
n as a function of the complex variable

z. If we write z in polar coordinates as z = reiθ and fix r, we obtain a function

g(θ) = f(reiθ) of the variable θ, and the power series for f becomes a Fourier se-

ries for g: g(θ) =
∑∞

0 (anr
n)einθ . (It is a special kind of Fourier series, however,

since the coefficient of einθ vanishes for all n < 0.)
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EXERCISES

1. Find the Fourier cosine series and the Fourier sine series of the following func-

tions on the interval [0, π]. All of these series can be derived from the results

of the examples and exercises in §8.1 without computing the coefficients from

scratch.

a. f(θ) = 1.

b. f(θ) = sin θ.

c. f(θ) = θ2. (For the sine series, use Example 1 and Exercise 6 in §8.1.)

d. f(θ) = θ for 0 ≤ θ ≤ 1
2π, f(θ) = π − θ for 1

2π ≤ θ ≤ π.

2. Expand the given function in a series of the given type. As in Exercise 1, use

previously derived results as much as possible.

a. f(x) = 1; sine series on [0, 1].
b. f(x) = 1 for 0 < x < 2, f(x) = −1 for 2 < x < 4; cosine series on

[0, 4].
c. f(x) = lx− x2; sine series on [0, l].
d. f(x) = ex; series of the form

∑∞
−∞ cne

2πinx on [0, 1].

3. Suppose f is a piecewise continuous function on [0, 2l] that satisfies f(x) =
f(2l−x) (that is, the graph of f is symmetric about the line x = l). Let an and

bn be the Fourier cosine and sine coefficients of f (given by (8.32) and (8.33)

with l replaced by 2l). Show that an = 0 for n odd and bn = 0 for n even.

4. Show that a piecewise smooth function f on [0, l] can be expanded in a series

as follows:

f(x) =
∞∑

1

βn sin
(n− 1

2)πx

l
, βn =

2

l

∫ l

0
f(x) sin

(n− 1
2)πx

l
dx.

(Hint: Extend f to [0, 2l] by making it even about x = l, i.e., f(x) = f(2l−x)
for x ∈ [l, 2l], and use Exercise 3.)

8.5 Applications to Differential Equations

Fourier series were originally invented in order to solve some boundary value prob-

lems of mathematical physics. In this section we study a few basic examples.

Heat Flow in an Insulated Rod. Consider a rod occupying the interval [0, l],
insulated so that no heat can enter or leave it, and let f(x) be the temperature at

position x and time t = 0. How does the temperature distribution evolve with time?

(Note: Instead of thinking of a thin rod, one can think of a thick cylindrical slab
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R
x

FIGURE 8.6: The cylindrical slab {(x, y, z) : 0 ≤ x ≤ l, (y, z) ∈ R}.

occupying the region where 0 ≤ x ≤ l and (y, z) ∈ R, where R is a bounded

region in the yz-plane, as in Figure 8.6. The model of heat flow described here is

valid under the hypothesis that the temperature depends only on x.)

Let u(x, t) denote the temperature at position x and time t; thus u satisfies the

initial condition u(x, 0) = f(x). As we showed in §5.6, u obeys the heat equation

∂tu = k∂2xu, where k is a positive constant (equal to K/σ in (5.42)). Since the

rate of heat flow across the point x is proportional to −∂xu(x, t) (Newton’s law

of cooling), the fact that no heat enters or leaves the ends of the rod means that u
satisfies the boundary conditions ∂xu(0, t) = ∂xu(l, t) = 0. In summary,

(8.34)
∂u

∂t
= k

∂2u

∂x2
, u(x, 0) = f(x),

∂u

∂x
(0, t) =

∂u

∂x
(l, t) = 0.

This is the problem we propose to solve.

The first step is to find a family of solutions of the heat equation satisfying the

right boundary conditions by a device called separation of variables. The idea is

to look for solutions of the form u(x, t) = ϕ(x)ψ(t). For such a function, the heat

equation becomes

ϕ(x)ψ′(t) = kϕ′′(x)ψ(t), or
ψ′(t)
kψ(t)

=
ϕ′′(x)
ϕ(x)

.

In this last equation, the quantities on the left and right depend only on t and x,

respectively, so they must both be equal to a constant that we call −α. Thus,

ψ′(t) = −kαψ(t), ϕ′′(x) = −αϕ(x).

These are simple ordinary differential equations, and the general solutions are read-

ily found:

ψ(t) = C0e
−kαt, ϕ(x) = C1 cos

√
αx+ C2 sin

√
αx.

We have thus found a large family of solutions of the heat equation of the form

ϕ(x)ψ(t). For these solutions, the boundary conditions ∂xu(0, t) = ∂xu(l, t) = 0



8.5. Applications to Differential Equations 383

translate into the conditions ϕ′(0) = ϕ′(l) = 0. But

ϕ′(x) =
√
α(−C1 sin

√
αx+ C2 cos

√
αx),

so the condition ϕ′(0) = 0 forces C2 = 0, and the condition ϕ′(l) = 0 then forces√
α to be a multiple of π/l, or α = n2π2/l2 where n is an integer (which might as

well be nonnegative). In short, we have obtained the following family of solutions

of the heat equation together with the boundary conditions:

un(x, t) = exp

(−n2π2kt
l2

)
cos

nπx

l
(n = 0, 1, 2, 3, . . .).

Since the heat equation and the boundary conditions are linear, we obtain more

general solutions by taking linear combinations of these. In fact, we can pass to

infinite linear combinations — that is, infinite series of the form

(8.35) u(x, t) =

∞∑

0

an exp

(−n2π2kt
l2

)
cos

nπx

l
.

Finally, we are ready to tackle the initial condition u(x, 0) = f(x). If we set

t = 0 in (8.35), we obtain

u(x, 0) =

∞∑

0

an cos
nπx

l
,

so we can make u(x, 0) equal to f(x) by taking the series on the right to be the

Fourier cosine series of f , defined by (8.32)! (Note that the constant term, which

we called 1
2a0 before, is called a0 here.) In other words, to solve the problem (8.34),

we take u(x, t) to be defined by (8.35), where the coefficients an are given in terms

of the initial data f by

a0 =
1

l

∫ l

0
f(x) dx, an =

2

l

∫ l

0
f(x) cos

nπx

l
dx (n > 0).

At this point we should stop to verify that the proposed solution (8.35) of the

problem (8.34) really works, as the passage from finite linear combinations to infi-

nite series has the potential to cause difficulties. In fact, everything turns out quite

nicely for this problem. In the first place, if the initial temperature distribution f(x)
is continuous and piecewise smooth (a reasonable physical assumption), the same

will be true of its even 2l-periodic extension, so by Theorem 8.29, its Fourier series

is absolutely and uniformly convergent. In particular,
∑∞

1 |an| < ∞. The abso-

lute value of the nth term of the series in (8.35) is at most |an|, so the Weierstrass
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M-test shows that this series converges absolutely and uniformly for 0 ≤ x ≤ l and

t ≥ 0 to define a continuous function u(x, t) there. Moreover, for t > 0, the ex-

ponential factors in (8.35) decay rapidly as n→∞, which makes the convergence

even better. In particular, repeated differentiation with respect to t or x introduces

factors of nk into the series, which are still overpowered by the decay of the expo-

nential factors, so the differentiated series still converges absolutely and uniformly.

If follows that u(x, t) is of class C∞ for t > 0 and that termwise differentiation

is permissible; u therefore satisfies the heat equation and the boundary conditions

because each term of the series does.

Two further remarks: First, as t → ∞, the exponential factors in (8.35) all

tend rapidly to zero except for the one with n = 0, and so u(x, t) approaches

the constant a0, the mean value of f on the interval [0, l]. In physical terms this

means that the rod approaches thermal equilibrium as time progresses. Second, the

series (8.35) will usually diverge when t < 0, for then the exponential factors grow

rather than decay! This corresponds to the physical fact that time is irreversible for

diffusion processes governed by the heat equation.

The Vibrating String. We now study the vibrations of a string stretched across

the interval 0 ≤ x ≤ l and fixed at the endpoints. (Think of a guitar string, and see

Figure 8.7.) Here u(x, t) will denote the displacement of the string (in a direction

perpendicular to the x-axis) at position x and time t. The relevant differential

equation is the wave equation ∂2t u = c2∂2xu, where c is a positive constant that

can be interpreted as the speed with which disturbances propagate down the string.

(See Folland [6, pp. 388–90] or Kammler [10, pp. 526–7] for a derivation of the

wave equation from physical principles.) Since the string is fixed at both ends,

the boundary conditions for this problem are u(0, t) = u(l, t) = 0. As for initial

conditions, since the wave equation is second-order in t we need to specify both

the initial displacement u(x, 0) and the initial velocity ∂tu(x, 0). Thus the problem

we have to solve is

(8.36)
∂2u

∂t2
= c2

∂2u

∂x2
, u(x, 0) = f(x),

∂u

∂t
(x, 0) = g(x), u(0, t) = u(l, t) = 0,

where f and g are specified functions on [0, l].

Again we employ the technique of separation of variables and look for solutions

of the wave equation of the form u(x, t) = ϕ(x)ψ(t). For such functions the wave

equation becomes

ϕ(x)ψ′′(t) = c2ϕ′′(x)ψ(t), or
ψ′′(t)
c2ψ(t)

=
ϕ′′(x)
ϕ(x)

.
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FIGURE 8.7: A vibrating string fixed at its ends.

In the last equation, the quantities on the left and right depend only on t and x,

respectively, so they are both equal to a constant −α, and we obtain the ordinary

differential equations

ψ′′(t) + αc2ψ(t) = 0, ϕ′′(x) + αϕ(x) = 0.

The general solution of the second equation is

ϕ(x) = C1 cos
√
αx+ C2 sin

√
αx.

The boundary condition u(0, t) = 0 forces C1 to vanish, and then the boundary

condition u(l, t) = 0 forces
√
α to be a multiple of π/l, so α = n2π2/l2 for some

(positive) integer n. With this value of α, the general solution of the differential

equation for ψ is

ψ(t) = b cos
nπct

l
+B sin

nπct

l
.

(The arbitrary constants are labeled b and B for reasons that will become clearer in

a moment.)

For each positive integer n, we therefore have the solution

un(x, t) =

(
bn cos

nπct

l
+Bn sin

nπct

l

)
sin

nπx

l
.

Taking linear combinations and passing to limits, we are led to the series solution

(8.37) u(x, t) =
∞∑

1

(
bn cos

nπct

l
+Bn sin

nπct

l

)
sin

nπx

l
.

It remains to satisfy the initial conditions. Setting t = 0 in (8.37) yields

u(x, 0) =

∞∑

1

bn sin
nπx

l
,

so we satisfy the condition u(x, 0) = f(x) by taking the bn’s to be the Fourier sine

coefficients of f :

bn =
2

l

∫ l

0
f(x) sin

nπx

l
dx.



386 Chapter 8. Fourier Series

Moreover, formally differentiating (8.37) with respect to t and then setting t = 0
yields

∂u

∂t
(x, 0) =

∞∑

1

nπc

l
Bn sin

nπx

l
,

so we should be able to satisfy the condition ∂tu(x, 0) = g(x) by taking nπcBn/l
to the nth Fourier sine coefficient of g:

Bn =
2

nπc

∫ l

0
g(x) sin

nπx

l
dx.

Again, we ask: Does this really work? It is physically reasonable to assume

that the initial functions f and g are continuous and piecewise smooth and satisfy

the boundary conditions f(0) = f(l) = g(0) = g(l) = 0. Their odd 2l-periodic

extensions will then have the same properties, so their Fourier series will be abso-

lutely and uniformly convergent by Theorem 8.29. In particular,
∑ |bn| < ∞ and∑ |nBn| < ∞, so by the Weierstrass M-test, the series (8.37) is absolutely and

uniformly convergent for 0 ≤ x ≤ l, −∞ < t < ∞. However, there is no reason

for the twice-differentiated series that should represent ∂2t u or c2∂2xu, namely,

(8.38) −π
2c2

l2

∞∑

1

n2
(
bn cos

nπct

l
+Bn sin

nπct

l

)
sin

nπx

l
,

to converge. The extra factor of n2 makes the terms larger, and there is no ex-

ponential decay anywhere to compensate. If we recall that the decay of Fourier

coefficients is related to the degree of smoothness of the function in question, the

contrast with the heat equation may be expressed as follows: The diffusion of heat

tends to smooth out irregularities in the initial temperature distribution, but in wave

motion, any initial roughness simply propagates without dying out.

We can obtain a positive result by imposing more differentiability hypotheses

on f and g. If we assume that not only f and g but also the first two derivatives of f
and the first derivative of g are continuous and piecewise smooth, and that not only

f and g but also f ′′ vanishes at the endpoints (so that its odd periodic extension

is continuous there), then Theorems 8.26 and 8.29 imply that
∑
n2|bn| < ∞ and∑

n2|Bn| <∞, which guarantees the absolute and uniform convergence of (8.38).

This is also enough to guarantee that the formal differentiation of (8.37) that led to

the formula for the Bn’s is valid.

However, these additional assumptions are rather unnatural from a physical

point of view. The obvious model for a plucked string, for example, is to take

f to be a piecewise linear function as in Figure 8.8. It is easy to calculate the
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FIGURE 8.8: A model for a plucked string.

coefficients bn explicitly for such an f (Exercise 4), and they turn out to decay

exactly like n−2. The series (8.37) therefore converges nicely, and we may expect

it to provide a good description of the physical vibration of the string. On the other

hand, the twice-differentiated series (8.38) does not converge at all, so it is hard to

say in what sense (8.37) satisfies the wave equation. The resolution of this paradox

is to expand our vision of what a solution of a differential equation ought to be and

to develop a notion of “weak solution” that will encompass examples such as this

one. But this is a more advanced topic; see, for example, Folland [6, §9.5].

Taking for granted that the series (8.37) really is the solution of the boundary

value problem (8.36), we say a few words about its physical interpretation. Think of

the string as being a producer of musical notes such as a guitar string. The nth term

in the series (8.37), as a function of t, is a pure sine wave with frequency nπc/l,
which represents a musical tone at a pure, definite pitch. The series (8.37) therefore

shows how the sound produced by the string can be resolved into a superposition

of these pure pitches. Typically, the coefficients bn and Bn decrease as n increases,

so that the largest contribution comes from the first term, n = 1. This is the

“fundamental” pitch, and the higher n’s are the “overtones” that give the note its

particular tone quality.

Related Problems. The heat flow and vibration problems (8.34) and (8.36)

can be modified by changing the boundary conditions; this leads to models of other

interesting physical processes. Here are a few examples:

1. The boundary value problem

∂u

∂t
= k

∂2u

∂x2
, u(x, 0) = f(x), u(0, t) = u(l, t) = 0

models the flow of heat in a rod that occupies the interval 0 ≤ x ≤ l when both

ends are held at temperature zero — by immersing them in ice water, for instance.

(Note that the heat equation doesn’t care where the zero point of the temperature

scale is located; if u is a solution, so is u + c for any constant c. Of course, this

means that the validity of the heat equation as a model for actual thermodynamic

processes has its limitations, as absolute zero exists physically.) The method of

solution is exactly the same as for the insulated problem (8.34), except that the
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boundary conditions for ϕ(x) are ϕ(0) = ϕ(l) = 0. Thus, as in the vibrating string

problem, we obtain ϕ(x) = sin(nπx/l), and the solution is given by

u(x, t) =

∞∑

1

bn exp

(−n2π2kt
l2

)
sin

nπx

l
,

where
∑
bn sin(nπx/l) is the Fourier sine series of f(x).

2. The boundary value problem

∂2u

∂t2
= c2

∂2u

∂x2
,

u(x, 0) = f(x),
∂u

∂t
(x, 0) = g(x),

∂u

∂x
(0, t) =

∂u

∂x
(l, t) = 0

models the vibration of air in a cylindrical pipe occupying the interval 0 ≤ x ≤ l
that is open at both ends. (Examples: flutes and some organ pipes.) Here u(x, t)
represents the longitudinal displacement of the air at position x and time t. The

boundary conditions ∂xu(0, t) = ∂xu(l, t) = 0 come from the fact that the change

in air pressure due to the displacement u is proportional to ∂xu, and the air pressure

at both ends must remain equal to the ambient air pressure. Again, the solution is

very similar to (8.37) except that it involves cosines instead of sines in x:

u(x, t) = 1
2(a0 +A0t) +

∞∑

1

(
an cos

nπct

l
+An sin

nπct

l

)
cos

nπx

l
,

where 1
2a0 +

∑∞
1 an cos(nπx/l) and 1

2A0 +
∑∞

1 (nπcAn/l) cos(nπx/l) are the

Fourier cosine series of f and g, respectively. (The term 1
2(a0 + A0t) represents

a flow of air down the tube with constant velocity, of no importance for the vibra-

tions.) As with the vibrating string, the vibrations of the pipe are a superposition of

vibrations at the definite frequencies nπc/l (n = 1, 2, 3, . . .).

3. We can also mix the two types of boundary conditions we have been consid-

ering: for the heat equation,

∂u

∂t
= k

∂2u

∂x2
, u(x, 0) = f(x), u(0, t) =

∂u

∂x
(l, t) = 0,

or the wave equation,

∂2u

∂t2
= c2

∂2u

∂x2
,

u(x, 0) = f(x),
∂u

∂t
(x, 0) = g(x), u(0, t) =

∂u

∂x
(l, t) = 0.
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The first of these models heat flow in a rod where one end is held at temperature

zero and the other is insulated; the second models vibrations of air in cylindrical

pipes where one end is closed and the other is open, such as clarinets and some

organ pipes. In both of them, separation of variables leads to the ordinary differen-

tial equation ϕ′′(x) = −αϕ(x) with boundary conditions ϕ(0) = ϕ′(l) = 0. The

general solution of the differential equation is ϕ(x) = C1 cos
√
αx+ C2 sin

√
αx;

the condition ϕ(0) = 0 forces C1 to vanish, and then the condition ϕ′(l) = 0 forces√
α to be of the form (n− 1

2)π/l with n a positive integer. We are therefore led to

try to expand the initial functions in a series of the form

f(x) =
∞∑

1

an sin(n− 1
2 )
πx

l
.

This can indeed be done; the technique for reducing this problem to one of ordinary

Fourier sine series is outlined in Exercise 4 of §8.4.

It is interesting to note that the resulting frequencies for the vibrating pipe are

(n − 1
2)πc/l (n = 1, 2, 3, . . .). In particular, the fundamental frequency for a pipe

closed at one end and open at the other, namely 1
2πc/l, is half as great as for a

pipe of equal length that is open at both ends. Moreover, only the odd-numbered

multiples of this fundamental frequency occur as “harmonics” for half-open pipes,

whereas all integer multiples occur for open pipes; as a result, the two kinds of

pipes produce notes of different tone qualities.

4. Clearly there are many other variations to be played on this theme — dif-

ferent boundary conditions, other differential equations, and so on. A few further

examples are outlined in the exercises, and we shall indicate a more general frame-

work in which such problems can be studied in the next section.

EXERCISES

1. A rod 100 cm long is insulated along its length and at both ends. Suppose that

its initial temperature is u(x, 0) = x (x in cm, u in ◦C, t in sec, 0 ≤ x ≤ 100),

and that its diffusivity coefficient k is 1.1 cm2/sec (about right if the rod is made

of copper).

a. Find the temperature u(x, t) for t > 0. (For the relevant Fourier series, see

Example 1 of §8.4.)

b. Show that the first three nonvanishing terms of the series (including the

constant term) give the temperature accurately to within 1◦ when t = 60
(one minute after starting). What are u(0, 60), u(10, 60), and u(40, 60) to

the nearest 1◦? (Hint:
∑∞

1 (2n − 1)−2 = π2/8, so
∑∞

3 (2n − 1)−2 =
(π2/8)− 1− 1

9 ≈ 0.123.)
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c. Show that u(x, t) is within 1◦ of its equilibrium value of 50◦ for all x when

t ≥ 3600 (i.e., after one hour). (Don’t work too hard; crude estimates are

enough.)

2. Find the temperature function u(θ, t) (t > 0) for a rod bent into the shape of

a circular hoop, given the initial temperature u(θ, 0) = f(θ). (Here θ denotes

the angular coordinate on the circle, and the boundary conditions for a straight

rod are replaced by the requirement that u should be a 2π-periodic function of

θ.)

3. As we found in §5.6, the inhomogeneous heat equation ∂tu = k∂2xu + G can

be used to model heat flow in a rod when the total amount of heat energy is not

constant; here G is a function of x and t, with units of degrees per unit time,

that accounts for the addition or subtraction of heat from the rod. Let us solve

the initial value problem with constant-temperature boundary conditions,

∂tu = k∂2xu+G, u(x, 0) = f(x), u(0, t) = u(l, t) = 0,

making appropriate assumptions on f and G so that Fourier expansions are

valid. Motivated by the solution (8.35) for the special case G ≡ 0, we ex-

pand everything in a Fourier sine series. That is, for each t we write G(x, t) =∑∞
1 βn(t) sin(nπx/l), and we try to find a solution in the form u(x, t) =∑∞
1 bn(t) sin(nπx/l), where the coefficients bn(t) are to be determined. Plug

this into the equation ∂tu = k∂2xu+G to obtain an ordinary differential equa-

tion for each bn(t), with initial condition determined by the requirement that∑∞
1 bn(0) sin(nπx/l) should be the Fourier sine series of f(x). Then solve

these ordinary differential equations to obtain u. What conditions on f and G
will guarantee the validity of these calculations?

4. Consider a vibrating string occupying the interval [0, l]. Suppose the string is

plucked at x = b (0 < b < l) so that its initial displacement u(x, 0) is mx/b
for 0 ≤ x ≤ b and m(l − x)/(l − b) for b ≤ x ≤ l (that is, u(x, 0) is linear on

[0, b] and on [b, l], and equal to m at x = b), and its initial velocity ∂tu(x, 0)
is zero. (Note: For this to be a realistic model of a plucked string, we should

have l≫ m.)

a. Find the Fourier series for u(x, t) for t > 0. (The result of Exercise 2 of

§8.3 can be used.)

b. Compute the coefficients b1, . . . , b5 of the first five terms (notation as in

(8.37)) numerically when b = (0.4)l and when b = (0.1)l. Observe that

the higher frequencies contribute a lot more to u(x, t) when b = (0.1)l
than when b = (0.4)l. (Musically: Plucking a string nearer the end gives a

note with more “harmonics.”)
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5. The model for a vibrating string given by the wave equation is unrealistic be-

cause it predicts that the vibration will continue forever without dying out. Real

strings, however, are not perfectly elastic, so the vibrational energy is gradu-

ally dissipated. A better model is obtained by the following modification of the

wave equation:

∂2t u = c2∂2xu− 2δ∂tu,

where δ is a small positive constant. (The left side is the acceleration, and the

terms on the right are the effects of the elastic restoring force and the damping

force that tends to slow the motion down. The factor of 2 is just for conve-

nience.) Find the general solution of this differential equation subject to the

boundary conditions u(0, t) = u(l, t) = 0 by modifying the method used in

the text for the ordinary wave equation. Assume that δ < πc/l. You should find

that the solutions decay exponentially in time and that the frequencies decrease

as the damping constant δ increases.

Exercises 6 and 7 concern the Dirichlet problem for a bounded open set S ⊂
R2: Given a function f on the boundary ∂S, find a solution of Laplace’s equation

∂2xu + ∂2yu = 0 on S such that u = f on ∂S. (A physical interpretation: Find

the steady-state distribution of heat in S when the temperature on the boundary is

given.)

6. Consider the Dirichlet problem for a rectangle:

∂2xu+ ∂2yu = 0 for 0 < x < l, 0 < y < L;

u(x, 0) = f1(x), u(x,L) = f2(x), u(0, y) = g1(y), u(l, y) = g2(y).

a. Suppose we can solve this problem in the two special cases g1 = g2 = 0
and f1 = f2 = 0. How can the solutions u1 and u2 for these cases be

combined to yield the solution for the general case?

b. Henceforth we assume that g1 = g2 = 0 (the case f1 = f2 = 0 is sim-

ilar). Use separation of variables to find solutions of Laplace’s equation

satisfying u(0, y) = u(l, y) = 0 in the form u(x, y) = ϕ(x)ψ(y); then

use Fourier techniques to find the (infinite) linear combination of these so-

lutions that satisfies u(x, 0) = f1(x) and u(x,L) = f2(x). (Hint: The

general solution of ψ′′ − c2ψ = 0 can be written in the form ψ(y) =
a sinh cy + b sinh c(L − y). [Why?] This form of the solution is more

convenient than the more obvious a sinh cy + b cosh cy.)

7. Consider the Dirichlet problem for the unit disc:

∂2xu+ ∂2yu = 0 for x2 + y2 < 1, u(cos θ, sin θ) = f(θ).
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If we think of u as a function of the polar coordinates (r, θ) rather than the

Cartesian coordinates (x, y), by Proposition 2.51 this becomes

r2∂2ru+ r∂ru+ ∂2θu = 0 for r < 1, u(1, θ) = f(θ).

a. Use separation of variables to find solutions of this differential equation in

the form u(r, θ) = ϕ(r)ψ(θ). Keep in mind that the solutions must be 2π-

periodic functions of θ and that they must be smooth at the origin, where

r = 0 and θ is undefined. (Hint: The general solution of the Euler equation

r2ϕ′′ + rϕ′− c2ϕ = 0 is ϕ(r) = arc+ br−c if c 6= 0, a+ b log r if c = 0.)

Then use Fourier techniques to find the (infinite) linear combination of

these solutions that satisfies u(1, θ) = f(θ).
b. You should find that u(r, θ) equals Arf(θ), the Abel approximant to f

defined by (8.19). Use (8.20) and (8.22) to derive the Poisson integral

formula for the solution:

u(r, θ) =
1

2π

∫ π

−π

1− r2
1 + r2 − 2r cosϕ

f(θ − ϕ) dϕ.

8.6 The Infinite-Dimensional Geometry of Fourier Series

In this section we shall re-examine the notion of Fourier series in the light of a

profound analogy with certain ideas from vector algebra. We begin with a quick

review of the latter.

When expressed in algebraic terms, the concepts of Euclidean geometry in n
dimensions are based on the vector-space structure of Rn (that is, the operations

of vector addition and scalar multiplication), together with the dot product or inner

product a ·b, in terms of which we can define lengths (|a| = (a · a)1/2) and angles

(the angle from a to b is arccos(a · b/|a| |b|)). The “natural” coordinate systems

for this geometry are the ones arising from an orthonormal basis for Rn, that is, a

basis u1, . . . ,un such that uj ·uk equals 0 for j 6= k and 1 for j = k. The formula

for expressing an arbitrary vector x in terms of such a basis is given very simply in

terms of inner products:

x =

n∑

1

cjuj, cj = x · uj .

(The formula for cj results from taking the inner product of both sides of the equa-

tion x =
∑n

1 ckuk with uj to yield x · uj =
∑n

1 ckuk · uj = cj .)
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Similar ideas underlie the study of complex n-dimensional vectors. The main

difference is that, since the absolute value |z| of a complex number z is given by

(zz)1/2 rather than (z2)1/2, the appropriate definition of inner product is

(8.39) 〈a,b〉 =
n∑

1

ajbj (a,b ∈ Cn).

(Recall that the conjugate z of a complex number z = x+ iy (x, y ∈ R) is defined

to be x − iy. The notation a · b is also used for the complex inner product, but

we introduce the new notation 〈a,b〉 to avoid confusion with the real case and

to prepare for further developments.) Thus 〈a,b〉 is a linear function of a but

a conjugate-linear function of b (meaning that 〈a, cb〉 equals c〈a,b〉 rather than

c〈a,b〉), and 〈b,a〉 = 〈a,b〉. The magnitude or norm of the vector a is still given

by |a| = 〈a,a〉1/2, and we still call two vectors a and b orthogonal if 〈a,b〉 = 0.

As in the real case, a basis u1, . . . ,un for Cn is orthonormal if 〈uj ,uk〉 is 0 if

j 6= k and 1 if j = k. The expansion formula for a vector x ∈ Cn with respect to

an orthonormal basis is exactly the same:

x =

n∑

1

cjuj , cj = 〈x,uj〉.

If the basis {uj} is orthogonal (〈uj ,uk〉 = 0 for j 6= k) but not normalized (‖uj‖
not necessarily equal to 1), the formula becomes

(8.40) x =
n∑

1

cjuj , cj =
〈x,uj〉
‖uj‖2

.

Now we are ready to make the conceptual leap from the discrete and finite-

dimensional to the continuous and infinite dimensional. Suppose we are studying

functions on an interval [a, b] — let us say, piecewise continuous, complex-valued

ones. We regard such a function f as a “vector” whose “components” are the

values f(x) as x ranges over [a, b]. We define the inner product of two functions

f and g just as in (8.39) except that the sum is replaced by an integral:

(8.41) 〈f, g〉 =
∫ b

a
f(x)g(x) dx.

Further, we define the norm of a function f to be

‖f‖ = 〈f, f〉1/2 =
[∫ b

a
|f(x)|2 dx

]1/2
,
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and we define two functions f and g to be orthogonal on [a, b] if 〈f, g〉 = 0. A

sequence of functions {ϕn} is called orthogonal if 〈ϕm, ϕn〉 = 0 for m 6= n, and

orthonormal if, in addition, ‖ϕn‖ = 1 for all n.

For example, take the interval [a, b] to be [−π, π], and define en(x) = einx.

Then, since einx = e−inx, by (8.5) we have

〈em, en〉 =
∫ π

−π
ei(m−n)x dx =

{
2π if m = n,

0 otherwise.

Thus {en}∞−∞ is an orthogonal set; the corresponding orthonormal set is {ϕn}∞−∞
where ϕn = (2π)−1/2en. The formula for the Fourier series of a function f ,

f =
∞∑

−∞
cnen, cn =

1

2π

∫ π

−π
f(x)e−inx dx =

〈f, en〉
‖en‖2

,

is an exact analogue of the formula (8.40) for the expansion of a vector in terms of

an orthogonal basis!

A similar interpretation holds for Fourier cosine and sine series. To wit, it is

easy to verify (Exercise 1) that {cosnπx/l}∞0 and {sinnπx/l}∞1 are orthogonal

sets on the interval [0, l], and that the formulas for the Fourier cosine and sine

coefficients of a function f on [0, l] are analogous to (8.40).

There are some unanswered questions here, however. The inner product 〈f, g〉
makes sense when f and g are piecewise continuous on [a, b], but we have proved

the validity of Fourier expansions only for piecewise smooth functions. So, what is

the “right” class of functions to consider here? Can we make sense out of Fourier

series for functions that may not be piecewise smooth?

The key insight is that pointwise convergence is the wrong notion of conver-

gence in this situation. Instead, we should use a notion of convergence that arises

from the geometry of the inner product. That is, we think of the set

PC(a, b) = set of all piecewise continuous complex-valued functions on [a, b]

as an “infinite-dimensional Euclidean space” with the notions of length and angle

given by the inner product (8.41). The “distance” between two functions is to be

interpreted as the norm of their difference,

Distance from f to g = ‖f − g‖ =
[∫ b

a
|f(x)− g(x)|2 dx

]1/2
,

and the corresponding notion of convergence is that

fk → f ⇐⇒ ‖fk − f‖ → 0, i.e.,

∫ b

a
|fk(x)− f(x)|2 dx→ 0.
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This notion of convergence is called convergence in norm or mean-square con-

vergence.

Note. If the distance ‖f − g‖ between two piecewise continuous functions is

zero, it does not follow that f is identically equal to g, but only that f(x) = g(x) for

all except perhaps finitely many values of x. In this setting, it is appropriate not to

worry about this technicality and to think of two functions as being the same when

they differ only at finitely many points. This issue already arose in connection

with the behavior of the Fourier series of f at points where f is discontinuous

(cf. Corollary 8.18).

Mean-square convergence is rather different from pointwise convergence, and

neither one implies the other. For example, let us take [a, b] = [−1, 1]. If

fk(x) =

{
k if 0 < x < 1/k,

0 otherwise,

then fk → 0 pointwise but ‖fk‖ = (
∫ 1/k
0 k2 dx)1/2 =

√
k → ∞. On the other

hand, if

gk(x) =

{
1 if −1/k < x < 1/k,

0 otherwise,

then ‖gk‖ = (
∫ 1/k
−1/k dx)

1/2 =
√

2/k → 0, but gk(0) = 1 6→ 0. (By replacing

the interval (−1/k, 1/k) here by an interval Ik whose length tends to 0 but whose

midpoint oscillates back and forth within the interval [−1, 1] as k → ∞, one can

construct examples of sequences {gk} that converge in norm but do not converge

at any point.) However, for uniform rather than pointwise convergence there is

something to say.

8.42 Proposition. If fk → f uniformly on [a, b], then fk → f in norm on [a, b].

Proof. If fk → f uniformly, there is a sequence {Ck} of constants such that

|fk(x)− f(x)| ≤ Ck for all x ∈ [a, b] and Ck → 0, so

∫ b

a
|fk(x)− f(x)|2 dx ≤ (b− a)C2

k → 0.

More generally, fk → f in norm provided that fk → f pointwise and there is a

constant C such that |fk(x)| ≤ C for all k and all x ∈ [a, b]; this follows from the

bounded convergence theorem (4.52).
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The introduction of norm convergence is justified by the fact that the Fourier

series of any piecewise continuous function f on [−π, π] converges in norm to f .

This is a substantial result, but there is more to be said before we state a formal

theorem.

The space PC(a, b) of piecewise continuous functions on [a, b] fails to be a

good infinite-dimensional analogue of Euclidean space in one crucial respect: it is

not complete. That is, if {fk} is a sequence in PC(a, b) such that ‖fj − fk‖ → 0
as j, k → ∞, there may not be a function f ∈ PC(a, b) such that ‖fk − f‖ → 0.

For example, with [a, b] = [0, 1], let

fk(x) =

{
x−1/4 if x > 1/k,

0 otherwise.

It is easily verified that ‖fj−fk‖2 = 2|j−1/2−k−1/2| → 0 as j, k →∞. However,

the function to which the fk’s are converging is clearly f(x) = x−1/4 (x > 0),

which does not belong to PC(0, 1) because it blows up at 0. Thus, to fill in the

“holes” in PC(a, b) one will have to deal with unbounded functions and improper

integrals. But even this is not enough; with more cleverness one can construct ex-

amples where the limiting function f is not (Riemann) integrable on any subinterval

of [a, b].
What is needed here is the Lebesgue integral, which handles integrals of un-

bounded and discontinuous functions more capably (see §4.8). The appropriate

“completion” of the space PC(a, b) is the space of square-integrable functions,

L2(a, b) =

{
f : f is Lebesgue measurable on [a, b] and

∫ b

a
|f(x)|2 dx <∞

}
,

where the integral is a Lebesgue integral. (The name “L2” is pronounced “L-two”;

the L is in honor of Lebesgue and the 2 refers to the exponent in |f(x)|2.)

We can now state the general convergence theorem for Fourier series.

8.43 Theorem. Let en(θ) = einθ.
a. If f ∈ L2(−π, π), the Fourier series

∞∑

−∞
cnen, cn =

1

2π

∫ π

−π
f(θ)e−inθ dθ,

converges in norm to f , that is,

lim
N→∞

∫ π

−π

∣∣∣∣f(θ)−
N∑

−N
cne

inθ

∣∣∣∣
2

dθ = 0.



8.6. The Infinite-Dimensional Geometry of Fourier Series 397

b. Bessel’s inequality is an equality: For any f ∈ L2(−π, π),
∞∑

−∞
|cn|2 =

1

2π

∫ π

−π
|f(θ)|2 dθ.

c. If {cn}∞−∞ is any sequence of complex numbers such that
∑∞

−∞ |cn|2 con-

verges, then the series
∑∞

−∞ cnen converges in norm to a function inL2(−π, π).

Proof. A full proof of Theorem 8.43 is beyond the scope of this book. (One may

be found in Jones [9, p. 325] or Rudin [19, pp. 328ff.].) However, the idea is as

follows. If f is continuous and piecewise smooth, we know that its Fourier series

converges uniformly (Theorem 8.29) and hence in norm, so (a) is valid for such f .

We then obtain the result for arbitrary f ∈ L2(−π, π) by a limiting argument that

involves proving that any function in L2(−π, π) is the limit in norm of a sequence

of continuous, piecewise smooth functions. (A partial result in this direction is

indicated in Exercise 7.) (b) follows easily because, as we showed in the proof of

Bessel’s inequality,

1

2π

∫ π

−π
|f(θ)|2 dθ −

N∑

−N
|cn|2 =

1

2π

∫ π

−π

∣∣∣∣f(θ)−
N∑

−N
cne

inθ

∣∣∣∣
2

dθ,

and the integral on the right tends to zero as N → ∞ since the series converges

in norm to f . (c) follows from (b) and the completeness of L2(−π, π). Indeed, by

(b), ∫ π

−π

∣∣∣∣
∑

M≤|n|≤N
cne

inθ

∣∣∣∣
2

dθ = 2π
∑

M≤|n|≤N
|cn|2,

so the partial sums of the series
∑
cnen are Cauchy in norm; by completeness, the

series converges in norm.

Theorem 8.43 says that {einx}∞−∞ is an orthogonal basis for L2(−π, π), that

is, an orthogonal set with the property that every function in L2(−π, π) can be

expanded uniquely as a norm-convergent series of scalar multiples of functions in

the set. Likewise, {cosnx}∞0 and {sinnx}∞1 are orthogonal bases for L2(0, π);
see Exercises 1 and 2.

The equality in Theorem 8.43b,

(8.44)

∞∑

−∞
|cn|2 =

1

2π

∫ π

−π
|f(θ)|2 dθ,
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is known as Parseval’s identity; it is the infinite-dimensional analogue of the

Pythagorean theorem for finite-dimensional vectors, if we think of f as an infinite-

dimensional vector and the cn’s as the components of this vector with respect to the

orthogonal basis {en}. The factor of 2π is there because ‖en‖2 = 2π.

As an illustration of the use of Parseval’s identity, we give another derivation

of the formula
∑∞

1 n−2 = π2/6. (The first one was in Example 2 of §8.2.) Let

f be the sawtooth wave function (f(θ) = θ for |θ| < π). We calculated in §8.1

that its Fourier coefficients are given by c0 = 0 and cn = (−1)n+1/in for n 6= 0.

Therefore,

∞∑

1

1

n2
=

1

2

[ ∞∑

1

1

n2
+

−1∑

−∞

1

n2

]
=

1

2

∞∑

−∞
|cn|2 =

1

4π

∫ π

−π
θ2 dθ =

π2

6
.

Parseval’s identity easily yields the following generalization of itself, which is

often useful:

8.45 Corollary. If f, g ∈ L2(−π, π) have the Fourier series
∑
cnen and

∑
γnen,

then

(8.46)

∞∑

−∞
cnγn =

1

2π

∫ π

−π
f(θ)g(θ) dθ.

Proof. We apply (8.44) to the functions f , g, and f + g:

∑(
|cn|2 + 2Re cnγn + |γn|2

)
=
∑
|cn + γn|2

=
1

2π

∫ π

−π
|f(θ) + g(θ)|2 dθ = 1

2π

∫ π

−π

(
|f(θ)|2 + 2Re f(θ)g(θ) + |g(θ)|2

)
dθ

=
∑
|cn|2 +

1

π
Re

∫ π

−π
f(θ)g(θ) dθ +

∑
|γn|2.

It follows that Re
∑
cnγn = Re(1/2π)

∫ π
−π f(θ)g(θ)dθ. The same calculation,

with f replaced by if , shows that the imaginary parts are also equal.

The Fourier bases {einx}∞−∞, {cosnx}∞0 and {sinnx}∞1 play a special role

among all the orthogonal bases for L2(−π, π) and L2(0, π) because these functions

are eigenfunctions for the differential operators d/dx and d2/dx2. To explain this

in more detail, we recall that an eigenvector for a linear transformation T on Rn

or Cn is a nonzero vector x such that Tx = λx for some scalar λ. (See Appendix

A, (A.56)–(A.58)). In our situation, the “vectors” are functions in L2(−π, π) or

L2(0, π), and the linear transformation in question is d/dx or d2/dx2, defined not
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on the whole L2 space but on a suitable subspace of functions that possess the

requisite derivatives and satisfy certain boundary conditions. Indeed, we have

d

dx
einx = ineinx,

d2

dx2
cosnx = −n2 cosnx, d2

dx2
sinnx = −n2 sinnx.

The functions einx are precisely the eigenfunctions of d/dx on [−π, π] that satisfy

the periodicity condition f(−π) = f(π), and the functions cosnx and sinnx are

precisely the eigenfunctions of d2/dx2 on [0, π] that satisfy the boundary condi-

tions f ′(0) = f ′(π) = 0 and f(0) = f(π) = 0, respectively. The Fourier expan-

sion of a function therefore provides the analogue of the spectral theorem (A.58)

for these fundamental differential operators, with all the resulting simplifications

that one expects when one finds an orthonormal eigenbasis for a matrix.

For example, we can rederive the solution (8.35) of the insulated heat flow

problem (8.34) as follows. To solve the heat equation ∂tu = k∂2xu subject to the

boundary conditions ∂xu(0, t) = ∂xu(l, t) = 0, we take u to be the sum of a series

of eigenfunctions of ∂2x satisfying these boundary conditions:

u(x, t) =
∞∑

0

αn(t) cos
nπx

l
.

Plugging this into the heat equation turns the partial differential equation ∂tu =
k∂2xu into the ordinary differential equations α′

n(t) = −k(nπ/l)2αn(t) for the

coefficients. The latter are easily solved to yield αn(t) = ane
−k(nπ/l)2t and hence

the solution (8.35).

There is an extensive theory of eigenfunction expansions associated to bound-

ary value problems. Many such expansions yield interesting orthogonal bases for

L2 spaces. Others, in which there is a “continuous spectrum” instead of (or in addi-

tion to) a “discrete spectrum,” involve integrals instead of (or in addition to) infinite

series. A great deal of interesting mathematics has arisen from these ideas, and its

ramifications spread far beyond the problems for which it was originally devised.

An introduction to this subject can be found, for example, in Folland [6].

EXERCISES

1. Show that {cosnx}∞0 and {sinnx}∞1 are orthogonal sets of functions on [0, π].
What are the norms of these functions?

2. Deduce from Theorem 8.43 that if f ∈ L2(0, π), the Fourier cosine and sine

series of f both converge to f in norm.
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3. Determine the constants a, b, and c so that the functions

f0(x) = 1, f1(x) = x+ a, f2(x) = x2 + bx+ c

form an orthogonal set on [0, 1].

4. Suppose {ϕn}∞1 is an orthonormal set of functions on [0, l], and let ϕ+
n and

ϕ−
n be the even and odd extensions of ϕn to [−l, l]. Show that {ϕ+

n /
√
2}∞1 ∪

{ϕ−
n /
√
2}∞1 is an orthonormal set on [−l, l].

5. Suppose {ϕn}∞1 is an orthonormal set of functions on [a, b]. Given c > 0 and

d ∈ R, let ψn(x) =
√
cϕn(cx + d). Show that {ψn}∞1 is an orthonormal set

on [(a− d)/c, (b− d)/c].
6. Suppose {ϕn}∞1 is an orthonormal set of functions on [0, 1], and let ψn(x) =√

2xϕn(x
2). Show that {ψn}∞1 is also an orthonormal set on [0, 1].

7. Show that any piecewise continuous function on [a, b] is the limit in norm of

a sequence of continuous functions on [a, b] by the argument suggested by the

following picture:

= lim

8. Show that in terms of the cosine and sine coefficients an and bn defined by

(8.7), Parseval’s identity takes the form

∫ π

−π
|f(θ)|2 dθ = π

2
|a0|2 + π

∞∑

1

(
|an|2 + |bn|2

)
.

9. Evaluate the following series by applying Parseval’s identity, in the form given

in Exercise 8, to certain of the Fourier series found in the exercises of §8.1 and

§8.3. (Remember that the constant term is 1
2a0, not a0.)

a.

∞∑

1

1

n4

b.

∞∑

1

1

(2n − 1)6

c.

∞∑

1

1

n8
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d.

∞∑

1

sin2 na

n2
(First assume that 0 < a < π, then deduce the general re-

sult.)

10. Suppose that f is 2π-periodic, real-valued, and of class C1. Show that f ′ is

orthogonal to f on [−π, π] in two ways: (i) directly from the fact that 2ff ′ =
(f2)′, and (ii) by expanding f in a Fourier series and using (8.46). (Hint: When

f is real we have c−n = cn; why?)

8.7 The Isoperimetric Inequality

We conclude this chapter by using Fourier analysis together with Green’s theorem

(thereby joining two of the main threads of this book) to show that among all simple

closed curves in the plane with a given length, the circle is the one that encloses the

greatest area.

First, a few preliminaries. Suppose g : [a, b] → R2 is a continuous, piece-

wise smooth parametrized curve in the plane. (Thus, the components of g are

continuous, piecewise smooth functions on [a, b]; g′(t) is defined except perhaps

at finitely many points, and we make the usual nondegeneracy assumption that

g′(t) 6= 0.) The arc-length function s = ϕ(t) =
∫ t
a |g′(u)| du is a continuous,

piecewise smooth, strictly increasing function on [a, b]. It therefore has an inverse

function, t = ϕ−1(s), with the same properties, defined on the interval [0, L] where

L = ϕ(b) is the total length of the curve. We can then reparametrize the curve by

h(s) = g(ϕ−1(s)), s ∈ [0, L]; we then say that the curve is parametrized by arc

length. In this parametrization, the speed |h′(s)| is identically equal to 1 (except at

isolated points where it is undefined):

(8.47) |h′(s)| = |g′(ϕ−1(s))[ϕ−1]′(s)| = |g
′(t)|
ϕ′(t)

= 1.

Now, suppose in addition that our curve is a simple closed curve; this means

that, for 0 ≤ s1 < s2 ≤ L, h(s1) = h(s2) only when s1 = 0 and s2 = L. We can

then extend the function h from [0, L] to R by requiring it to be L-periodic; this

extension is still continuous and piecewise smooth. (Indeed, this is the natural way

to think of a simple closed curve. We think of θ = 2πs/L as the angular coordinate

on a circle; then h(s) traces out the curve as θ goes once around the circle.)

Finally, we observe that we can identify R2 with the complex plane C and

the vector-valued function h = (h1, h2) with the complex-valued function ζ =
h1 + ih2. The “velocity” h′(s) then turns into ζ ′(s), and the condition (8.47)

becomes |ζ ′(s)| ≡ 1.

Now we are ready to state our theorem:



402 Chapter 8. Fourier Series

8.48 Theorem (The Isoperimetric Inequality). Suppose thatC is a piecewise smooth,

simple closed curve in the plane. Let L be the length of C and A the area of the

region enclosed by C . Then A ≤ L2/4π, with equality if and only if C is a circle

of radius L/2π.

Proof. We identify the plane with C. Dilating the plane by a factor of r, z → rz,

has the effect of multiplying the length of a curve by r and the area of a region by r2,

so it is enough to consider the case L = 2π, for which the conclusion is that A ≤ π.

By the preceding remarks, then, we can assume that C is given by z = ζ(s), where

ζ is a continuous, piecewise smooth, 2π-periodic, complex-valued function on R,

and |ζ ′(s)| ≡ 1 (except at isolated points where ζ ′(s) is undefined). We expand ζ
in a Fourier series:

ζ(s) =

∞∑

−∞
cne

ins.

Since ζ is continuous and piecewise smooth, the nth Fourier coefficient of ζ ′ is

incn, by Theorem 8.26. Since |ζ ′(s)| ≡ 1, Parseval’s identity implies that

(8.49) 1 =
1

2π

∫ π

−π
|ζ ′(s)|2 ds =

∞∑

−∞
n2|cn|2.

On the other hand, by Green’s theorem (see Example 3 in §5.2), the area of the

region enclosed by C is

A =

∣∣∣∣ 12
∫

C
x dy − y dx

∣∣∣∣.

(The absolute value is there because we do not specify whether C is positively or

negatively oriented.) Moreover,

x dy − y dx = Im
[
(x− iy)(dx+ i dy)

]
= Im z dz,

so

A =

∣∣∣∣12 Im
∫

C
z dz

∣∣∣∣ = 1
2

∣∣∣∣Im
∫ π

−π
ζ(s)ζ ′(s) ds

∣∣∣∣.

Thus, by the general form (8.46) of Parseval’s identity,

A = π

∣∣∣∣Im
∞∑

−∞
cnincn

∣∣∣∣ = π

∣∣∣∣
∞∑

−∞
n|cn|2

∣∣∣∣.

Comparing this with (8.49) yields the desired upper bound for A:

A = π

∣∣∣∣
∞∑

−∞
n|cn|2

∣∣∣∣ ≤ π
∞∑

−∞
|n| |cn|2 ≤ π

∞∑

−∞
n2|cn|2 = π.
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Moreover, the second inequality is strict unless cn = 0 for |n| > 1. In that case,

the first inequality becomes

∣∣ |c1|2 − |c−1|2
∣∣ ≤ |c1|2 + |c−1|2,

which is strict unless either c1 or c−1 vanishes. Thus A < π unless ζ(s) =
c0 + c1e

is or ζ(s) = c0 + c−1e
−is, both of which describe a circle centered at

c0, traversed counterclockwise or clockwise, respectively. (In either case the radius

is 1 since |c±1| = |ζ ′(s)| = 1.)





Appendix A

SUMMARY OF LINEAR

ALGEBRA

This appendix consists of a brief summary of the definitions and results from linear

algebra that are needed in the text (and a little more). Brief indications of proofs

are given where it is easy to do so, but lack of any proof does not necessarily mean

that a statement is supposed to be obvious. More complete treatments can be found

in texts on linear algebra such as Anton [1] and Lay [17].

A.1 Vectors

Most of the basic terminology concerning n-dimensional vectors is contained in

§1.1; we introduce a few more items here.

(A.1) If x1, . . . ,xk are vectors in Rn, any vector of the form

c1x1 + c2x2 + · · ·+ ckxk (c1, . . . , ck ∈ R)

is called a linear combination of x1, . . . ,xk. The set of all linear combinations of

x1, . . . ,xk is called the linear span of x1, . . . ,xk.

Geometrically, the linear span of a single nonzero vector x (that is, the set of all

scalar multiples of x) is the straight line through x and the origin. The linear span

of a pair of nonzero vectors x and y is the plane containing x, y, and the origin

unless y is a scalar multiple of x, in which case it is just the line through x and the

origin.

(A.2) For 1 ≤ j ≤ n, we define ej to be the vector in Rn whose jth component

is 1 and whose other components are all 0:

e1 = (1, 0, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , en = (0, 0, 0, . . . , 1).
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We call e1, . . . , en the standard basis vectors for Rn. (When n = 3, the com-

mon notation is i, j,k rather than e1, e2, e3.) Every vector x ∈ Rn can be written

uniquely as a linear combination of the standard basis vectors:

(x1, x2, . . . , xn) = x1e1 + x2e2 + · · ·+ xnen.

A.2 Linear Maps and Matrices

(A.3) Let m and n be positive integers. A map A : Rn → Rm is called linear if

it preserves the vector operations of addition and scalar multiplication:

(A.4) A(x+ y) = A(x) +A(y), A(cx) = cA(x) (x,y ∈ Rn, c ∈ R).

(A.5) In elementary mathematics, a “linear function” of the real variable x is

something of the form f(x) = ax + b. As a mapping from R1 to R1, such a

function is linear in the sense just defined only when b = 0. More generally,

mappings from Rn to Rm of the form f(x) = A(x) + b, where A satisfies (A.4),

are called “linear” in some contexts, as in Chapters 2 and 3 when we speak of

the “linear approximation” to a differentiable map. However, within the subject of

linear algebra, and in particular throughout this appendix, “linear” is always meant

in the strict sense (A.4), and the term affine is used for the more general notion.

The feature that immediately distinguishes linear maps in the strict sense among

the affine ones is that they satisfy A(0) = 0.

(A.6) If A is linear, we have

A

( n∑

1

xjej

)
=

n∑

1

xjA(ej),

so A is completely determined by its values on the standard basis vectors. Let us

denote the jth component of A(ek) by Ajk:

A(e1) = (A11, A21, . . . , Am1), . . . , A(en) = (A1n, A2n, . . . , Amn).

Then for any x ∈ Rn we have

(A.7) A(x) = y, where yj =

n∑

k=1

Ajkxk.

Thus A can be completely described by the m · n numbers Ajk.
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(A.8) Such a collection (Ajk) = {Ajk : 1 ≤ j ≤ m, 1 ≤ k ≤ n} of m · n
real numbers is called an m× n matrix. It is pictured as a rectangular array, with

the first index j labeling the rows of the array and the second index k labeling the

columns: 

A11 A12 . . . A1n

...
...

. . .
...

Am1 Am2 . . . Amn


 .

(More precisely, such an array is a real m × n matrix. One can also consider ma-

trices whose entries are other sorts of algebraic objects, such as complex numbers

or polynomials.) The formula (A.7) defines a one-to-one correspondence between

linear maps from Rn to Rm and m×n matrices. Henceforth we shall use the same

letter A to denote either a linear map or its associated matrix; the meaning will be

clear from the context.

(A.9) Linear maps from Rn to Rm can be added to one another and multiplied by

scalars:

(A+B)(x) = A(x) +B(x), (cA)(x) = c(A(x)).

On the level of matrices, this is just addition and multiplication in each entry —

that is, vector addition and scalar multiplication, if we think of m × n matrices as

mn-dimensional vectors.

(A.10) Suppose that A : Rn → Rm and B : Rm → Rl are linear maps. We can

then consider their composition B ◦A : Rn → Rl, and it is easy to check that B ◦A
is again linear. It is customary in linear algebra to denote this composition simply

by BA, and we do so henceforth.

Given x ∈ Rn, let y = A(x) and z = B(y). On the one hand, we have

zi =
m∑

j=1

Bijyj =
m∑

j=1

n∑

k=1

BijAjkxk,

and on the other,

zi =
n∑

k=1

(BA)ikxk.

It follows that the matrix BA is obtained from the matrices B and A by the formula

(BA)ik =

m∑

j=1

BijAjk.

In general, if B is an l×m matrix and A is an m× n matrix, the l× n matrix BA
defined by this formula is called the product of the matrices B and A.
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(A.11) It is important to note that the product BA is defined only if the number

of columns in B is the same as the number of rows in A, that is, if the length of

a row in B is equal to the length of a column in A. It is also important to note

that matrix multiplication is not commutative: In general, BA 6= AB, even when

both products are defined. However, matrix multiplication is associative; that is,

(CB)A = C(BA) for any A,B,C such that all products in question are defined.

It also distributes over addition in the obvious way: C(A + B) = CA + CB and

(A+B)D = AD +BD.

(A.12) Let I be the identity mapping on Rn, I(x) = x for all x ∈ Rn. The

corresponding matrix is called the n×n identity matrix and is denoted by I or by

In if the size needs to be specified. It is the matrix whose columns are the standard

basis vectors e1, . . . , en, that is, the matrix whose entries Ijk are equal to 1 when

j = k and 0 when j 6= k. If A is any m × n matrix, we have ImA = A and

AIn = A. This is obvious since the composition of any map A with the identity

map is just A; it is also easy to verify from the definition of matrix products in

(A.10).

(A.13) Let A : Rn → Rn be a linear map. If there is another linear map B :
Rn → Rn such that AB(x) = BA(x) = x for all x ∈ Rn (that is, in terms of

matrices, AB = BA = In), then A (or its associated matrix) is called invertible

or nonsingular, and B is called the inverse of A and is denoted by A−1. It is easy

to verify that if A1 and A2 are both invertible, then so is their product A1A2, and

(A1A2)
−1 = A−1

2 A−1
1 . We shall say more about invertibility in (A.50)–(A.55).

(A.14) Vectors in Rn can be thought of as n × 1 matrices (called column vec-

tors) or as 1 × n matrices (called row vectors), and scalars can be thought of as

1× 1 matrices. With these identifications, we can reinterpret some of the preceding

formulas:

• If A : Rn → Rm and x ∈ Rn, then by (A.7), A(x) is the matrix product

Ax, where x and A(x) are considered as column vectors. For this reason, we

(almost) always think of vectors as column vectors when we perform matrix

calculations with linear maps. Moreover, we shall henceforth write Ax in

preference to A(x).

• Let B be an l ×m matrix and A an m × n matrix; then the rows of B and

the columns of A can both be considered as vectors in Rm. The (ik)th entry

of the product matrix BA is the dot product of the ith row of B with the kth

column of A.

(A.15) The transpose or adjoint of an m× n matrix A is the n ×m matrix A∗

defined by (A∗)jk = Akj . (Many people denote A∗ by At or AT .) Thus, the rows
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of A∗ are the columns of A and vice versa. As linear maps, A and A∗ are related

through the dot product:

(A.16) x ·Ay = A∗x · y,

since both sides are equal to the double sum
∑m

j=1

∑n
k=1 xjAjkyk. It is easy to

check that (AB)∗ = B∗A∗.

A.3 Row Operations and Echelon Forms

(A.17) In high school algebra one learns techniques for solving systems of linear

equations that involve multiplying equations by scalars, adding one equation to

another one, and so forth. When systematized and translated into matrix language,

these methods amount to performing “row operations” on matrices. The three types

of elementary row operations on a matrix are defined as follows. Let A be an

m× n matrix, and let r1, . . . , rm be the rows of A (considered as vectors in Rn).

i. Multiply one row by a nonzero scalar. (That is, for some j, replace rj by crj
with c 6= 0, and leave all the other rows unchanged.)

ii. Add a scalar multiple of one row to another row. (That is, for some j 6= k,

replace rj by rj + crk, and leave all the other rows unchanged.)

iii. Interchange two rows. (That is, for some j 6= k, replace rj by rk and rk by

rj , and leave all other rows unchanged.)

(A.18) For each elementary row operation, the matrix obtained by performing

that operation on the identity matrix Im is called the corresponding elementary

matrix. For example, the entries of the elementary matrix corresponding to the

operation (ii) are 1 on the main diagonal, c in the (jk)th slot, and 0 elsewhere.

We leave it as an easy exercise for the reader to verify that performing an elemen-

tary row operation on a matrix A is the same as multiplying A on the left by the

corresponding elementary matrix.

(A.19) It is important to note that the elementary row operations, and their as-

sociated matrices, are all invertible, and their inverses are operations of the same

types. Indeed, the inverses of the operations

rj → crj , rj → rj + crk, rj ↔ rk

are

rj → c−1rj , rj → rj − crk, rj ↔ rk.
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(A.20) Row operations can be used to transform a matrix into certain standard

forms that are useful for many purposes. The definitions are as follows. A matrix

is said to be in echelon form if the following conditions are satisfied:

• In every nonzero row (that is, every row in which at least one entry is non-

zero), the first nonzero entry is equal to 1.

• If the jth and kth rows are nonzero, and j < k, the initial 1 in row j is to the

left of the initial 1 in row k.

• The zero rows (if any) are below all of the nonzero rows.

The following matrices are in echelon form:

(
1 3 5
0 1 0

)
,



1 2
0 1
0 0


 ,



1 4 0
0 1 1
0 0 1


 .

A matrix is said to be in reduced echelon form if it is in echelon form, and in

addition,

• The entries above and below the initial 1’s in the nonzero rows are all 0.

The matrices displayed above are not in reduced echelon form, but the following

matrices are:

(
1 0 −5
0 1 −3

)
,

(
1 4
0 0

)
,



1 7 0
0 0 1
0 0 0


 .

(A.21) Suppose A is a square matrix (say, n × n) in echelon form, and suppose

A has no zero rows. The first nonzero entry in each row is a 1, and these initial

1’s occur successively farther to the right. Since the n initial 1’s must occur in

n different columns, the only possibility is that the initial 1 in the jth row occurs

precisely in the jth column. In other words, the entries of A on the main diagonal

are all equal to 1, and below the main diagonal they are all equal to 0. If A is in

reduced echelon form, then all the entries above the main diagonal must also be 0.

In short, the only n × n matrix in reduced echelon form with no zero rows is the

identity matrix In.

(A.22) The simplest algorithm for turning a given m × n matrix A into one in

echelon form by elementary row operations, known as row reduction or Gaussian

elimination, can be described as follows:



A.4. Determinants 411

1. If necessary, interchange the first row with another row so that the leftmost

nonzero column has a nonzero entry in the first row.

2. Multiply the first row by the reciprocal of its first nonzero entry (thus turning

the first nonzero entry into a 1).

3. Add multiples of the first row to the rows below so as to make the entries

below the initial 1 in the first row equal to 0.

4. Set the first row aside and apply steps 1–3 to the submatrix obtained by omit-

ting the first row. Repeat this process until no nonzero rows remain.

Once this is done, the matrix can be further transformed into one in reduced echelon

form as follows:

5. Add multiples of each nonzero row to the rows above so as to make the

entries above the initial 1’s equal to 0.

(A.23) All of the ideas in this section have analogues for columns in place of

rows. That is, we have the elementary column operations (multiply a column by

a nonzero scalar, add a multiple of one column to another one, interchange two

columns), which are implemented by multiplying a matrix on the right by the cor-

responding elementary matrix. They can be used to transform a matrix into one in

column-echelon form or reduced column-echelon form, whose definitions are the

obvious modifications of the ones given above for (row-)echelon forms.

A.4 Determinants

(A.24) The determinant is a function that assigns to each square matrix A a

certain number detA. For 2× 2 and 3× 3 matrices, the determinant is given by

det

(
a b
c d

)
= ad− bc,(A.25)

det



a b c
d e f
g h i


 = a(ei− fh)− b(di− fg) + c(dh − eg).(A.26)

For larger matrices, the explicit formula for the determinant is quite a mess. How-

ever, this formula is of little use; the important things about determinants are the

properties they possess, which lead to more efficient ways of computing them. The
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following seven items constitute a list of the most fundamental properties of deter-

minants. In them, A and B denote n× n matrices.

(A.27) det In = 1.

(A.28) det(AB) = (detA)(detB).

(A.29) For each j, detA is a linear function of the jth row of A when the other

rows are kept fixed. (Thus, for example, when j = 1,

det



ar′1 + br′′1

r2
...


 = adet



r′1
r2
...


+ bdet



r′′1
r2
...


 ,

where the rj’s denote row vectors.) In particular, if A has a zero row, detA = 0.

(A.30) (Behavior under elementary row operations)

• If one row of A is multiplied by c and the other rows are left unchanged,

detA is multiplied by c.

• If a multiple of the kth row of A is added to the jth row and the other rows

are left unchanged, detA is unchanged.

• If two rows of A are interchanged, detA is multiplied by −1.

(A.31) Let M jk denote the (n− 1)× (n− 1) matrix obtained by deleting the jth
row and kth column of A. Then, for each j,

detA =

n∑

k=1

(−1)j+kAjk detM jk.

This formula is called the cofactor expansion of detA along the jth row. (For

example, in view of equation (A.25), equation (A.26) gives the cofactor expansion

of the determinant of a 3× 3 matrix along its first row.)

(A.32) det(A∗) = detA. Consequently, properties (A.29) and (A.30) remain

valid if “row” is replaced by “column,” and we can sum over j instead of k in the

cofactor expansion.

(A.33) (How to compute determinants) The cofactor expansion reduces n×n de-

terminants to determinants of smaller size and so can be used recursively to com-

pute a determinant. However, for large matrices it is much more efficient to use

row operations. That is, to compute detA, row-reduce A and keep track of what
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happens to the determinant as each row operation is performed, according to the

rules in (A.30). At the end, we have a matrix in reduced echelon form, which (by

(A.21)) is either the identity matrix (whose determinant is 1, by (A.26)) or a matrix

with a zero row (whose determinant is 0, by (A.29)).

A.5 Linear Independence

(A.34) The vectors x1, . . . ,xk ∈ Rn are said to be linearly dependent if they

satisfy a nontrivial linear equation, that is, if there are scalars c1, . . . , ck, not all

zero, such that

c1x1 + c2x2 + · · ·+ ckxk = 0.

If cj 6= 0, this equation can be solved for xj :

xj = −c−1
j

[
c1x1 + · · ·+ cj−1xj−1 + cj+1xj+1 + · · ·+ ckxk

]

Hence, x1, . . . ,xk are linearly dependent if and only if one of them is a linear

combination of the others. If x1, . . . ,xk are not linearly dependent, they are said to

be linearly independent. That is, linear independence of x1, . . . ,xk means that

c1x1 + · · ·+ ckxk = 0 only when c1 = · · · = ck = 0.

In the case k = 2, linear independence of x1 and x2 means simply that x1 and

x2 are not scalar multiples of one another.

(A.35) IfA is a matrix in echelon form, then the nonzero rows r1, . . . , rk ofA are

linearly independent. Indeed, suppose that
∑k

1 cjrj = 0. In the column in which

the initial 1 in the first row appears, the entries in all the other rows are 0; hence,

the entry of
∑k

1 cjrj in this column is c1, and so c1 = 0. That being the case, we

have
∑k

2 cjrj = 0; the same argument now shows that c2 = 0, and so forth.

(A.36) A set of vectors x1, . . . ,xk is called orthonormal if they are mutually

orthogonal and have unit norm:

xi · xj = 0 for i 6= j, and |xj | = 1 for all j.

(For example, the standard basis vectors ej for Rn are orthonormal.) If x1, . . . ,xk
are orthonormal, then they are linearly independent. Indeed, suppose

∑k
1 cjxj =

0; we wish to show that cj = 0 for all j. To see that a particular coefficient ci is

zero, take the dot product of both sides of the equation 0 =
∑k

j=1 cjxj with xi. All

of the dot products xj · xi vanish except for j = i, so we obtain 0 = ci|xi|2 = ci.
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(A.37) In general, to determine whether x1, . . . ,xk ∈ Rn are linearly indepen-

dent, we can regard them as the rows of a k×nmatrix and perform a row reduction.

The rows of the resulting echelon matrix are linear combinations of the original

rows xj . If they are all nonzero, then they are linearly independent by (A.35), and

so are x1, . . . ,xk. But if there is a zero row, then x1, . . . ,xk are linearly dependent,

because that row is a nontrivial linear combination of the xj’s.

A.6 Subspaces; Dimension; Rank

(A.38) A vector subspace of Rn, or just a subspace for short, is a subset X of

Rn such that

i. if x,y ∈ X then x+ y ∈ X, and

ii. if x ∈ X and c ∈ R then cx ∈ X.

Subspaces are closed under taking linear combinations; that is, if x1, . . . ,xk ∈ X

and c1, . . . , ck ∈ R, then c1x1+ · · ·+ ckxk ∈ X. The largest subspace of Rn is Rn

itself, and the smallest one is the trivial subspace consisting of the single element

0. When n > 1, there are also subspaces of intermediate size. For example, when

n = 2, the intermediate subspaces are the lines through the origin; when n = 3,

they are the lines and planes through the origin.

(A.39) The linear span of any set of vectors in Rn is easily seen to be a subspace

of Rn.

(A.40) Let X be a subspace of Rn. A set of vectors in X is called a basis for

X if it is linearly independent and its linear span is X. For example, the standard

basis vectors e1, . . . , en for Rn are a basis for Rn in this sense. One can show that

any two bases for X have the same number of elements; that number is called the

dimension of X and is denoted by dimX. The dimension of Rn itself is n, and we

define the dimension of the trivial subspace {0} to be 0; the dimension of any other

subspace is an integer strictly between 0 and n.

If x1, . . . ,xk is a basis for X, then any element of X can be written in one

and only one way as
∑j

1 cjxj . Thus, the dimension of X is the number of real

parameters (namely, the coefficients cj) that are needed to specify an element of X.

(A.41) Let X be a subspace of Rn. Its orthogonal complement X⊥ is the set of

all vectors that are orthogonal to every vector in X:

X
⊥ =

{
x ∈ Rn : x · y = 0 for all y ∈ X

}
.

It is easy to verify that X⊥ is also a subspace. For example, in R3, the orthogonal

complement of a plane through the origin is the line through the origin perpendic-

ular to it, and vice versa; the orthogonal complement of R3 is {0}, and vice versa.
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The complementary relations between the dimensions of X and X⊥ in this example

persists in higher dimensions:

(A.42) For any subspace X ⊂ Rn, dimX+ dimX
⊥ = n.

(A.43) Let A : Rn → Rm be a linear map. There are two subspaces (one of Rn

and one of Rm) naturally associated to A: its nullspace

N(A) =
{
x ∈ Rn : Ax = 0

}
,

and its range

R(A) =
{
y ∈ Rm : y = Ax for some x ∈ Rn

}
.

It is an easy exercise to check that N(A) and R(A) are indeed subspaces. If we

think of A as an m × n matrix, R(A) is the linear span of the columns of A,

because these columns are the vectors obtained by applying A to the standard basis

vectors for Rn. Hence, R(A) is sometimes called the column space of A.

(A.44) We can also consider the nullspace and range of the transpose A∗ : Rm →
Rn. The range R(A∗) is the linear span of the columns of A∗, which are the rows

of A; hence R(A∗) is sometimes called the row space of A. The spaces N(A),
R(A), N(A∗), and R(A∗) are related as follows:

(A.45) N(A∗) = R(A)⊥; N(A) = R(A∗)⊥.

This follows easily from the relation (A.16). Indeed, x ∈ R(A)⊥ ⇐⇒ x ·Ay = 0
for all y ⇐⇒ A∗x · y = 0 for all y ⇐⇒ A∗x = 0 ⇐⇒ x ∈ N(A∗), and

likewise with A and A∗ switched.

(A.46) The fundamental identity concerning dimensions is the following:

(A.47) For any linear map A : Rn → Rm, dimN(A) + dimR(A) = n.

The intuitive reason behind this identity is simple. An element of Rn has n degrees

of freedom (one can vary any of its n components). The elements of the nullspace

N(A) are all mapped by A to the single vector 0, resulting in a loss of dimN(A)
degrees of freedom and leaving n − dimN(A) degrees of freedom for the range

R(A).

(A.48) From the preceding results, we obtain one more important relation:

(A.49) For any linear map A : Rn → Rm, dimR(A) = dimR(A∗).

Indeed, by (A.42), (A.45), and (A.47),

dimR(A) = n− dimN(A) = n− dimR(A∗)⊥ = dimR(A∗).

The common dimension of R(A) and R(A∗) is called the rank of A.
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A.7 Invertibility

(A.50) We recall from the introduction to Chapter 1 that that a mapping f : X →
Y from a setX to another set Y is invertible if there is another mapping g : Y → X
such that g(f(x)) = x for all x ∈ X and f(g(y)) = y for all y ∈ Y , and that f is

invertible if and only if f maps X onto Y and f is one-to-one.

(A.51) Now let A : Rn → Rm be a linear map. We first observe that A is one-

to-one if and only if N(A) = {0}, for Ax = Ay if and only if x − y ∈ N(A).
In particular, if m < n, then by (A.47) we have dimN(A) = n − dimR(A) ≥
n − m > 0, so A cannot be one-to-one. On the other hand, if m > n, then by

(A.47) again, dimR(A) ≤ n < m, so R(A) cannot be all of Rm. Hence, A can

be invertible in the sense of (A.50) only when n = m; in this case, it is not hard to

check that the inverse of A (if it exists) is again a linear map. Thus, for linear maps

the definition of invertibility in (A.50) agrees with the one in (A.13).

(A.52) For a linear map A : Rn → Rn, the following conditions are all equiva-

lent:

a. A is invertible.

b. R(A) = Rn.

c. N(A) = {0}.
d. R(A∗) = Rn.

e. N(A∗) = {0}.
f. The columns of the matrix A are linearly independent.

g. The rows of the matrix A are linearly independent.

h. detA 6= 0.

i. The matrix A is a product of elementary matrices.

(A.53) Let us prove (A.52). First, (a) is equivalent to the conjunction of (b) and

(c) by the discussion in (A.50–A.51). (b) and (c) are equivalent to each other by

(A.47), as are (d) and (e), and (b) and (d) are equivalent by (A.49). (f) is equivalent

to (c), for if cj = Aej is the jth column of A, we have
∑n

j=1 ajcj = 0 if and only

if
∑
ajej ∈ N(A); similarly, (g) is equivalent to (e).

Next, we can perform elementary row operations on A to turn A into a matrix

B in reduced echelon form; since performing row operations does not change the

row space of a matrix, we have R(A∗) = R(B∗). But by (A.21) and (A.33), either

B = I , in which case detA 6= 0 and R(A∗) = R(I) = Rn; or B contains at least

one zero row, in which case detA = 0 and dimR(A∗) = dimR(B∗) < n; thus

(h) is equivalent to (d).

We have shown that (a)–(h) are all equivalent. Finally, we observed in (A.19)

that every elementary matrix is invertible, and hence so is every product of elemen-
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tary matrices. Conversely, if A is invertible, let B = A−1. Then B is invertible

also, so B can be row-reduced to the identity matrix; that is, there is a product E
of elementary matrices such that EB = I . But E = E(BA) = (EB)A = A, so

A is a product of elementary matrices. Thus (a) is equivalent to (i).

(A.54) (Cramer’s Rule) If A is invertible and b ∈ Rn, the vector x = A−1b

is given by xj = (detBj)/(detA), where Bj is the matrix obtained from A by

replacing its jth column with the column vector b. This is not a computationally

efficient way of solving Ax = b when n is large, but the fact that the solution can

be expressed as a quotient of determinants is theoretically important.

(A.55) In particular, computing A−1 amounts to solving Axj = ej for j =
1, . . . , n, where the ej’s are the standard basis vectors: The solutions xj are the

columns of A−1. It follows that the entries of A−1 are rational functions of the

entries of A whose common denominator is detA.

A.8 Eigenvectors and Eigenvalues

(A.56) Let A be an n × n matrix. A nonzero vector x ∈ Rn is called an eigen-

vector for A if there is a scalar λ ∈ R such that Ax = λx; in this case, λ is called

the eigenvalue of A for the vector x. The equation Ax = λx can be rewritten as

(A − λI)x = 0; hence, λ is an eigenvalue of A (that is, there is a nonzero x such

that Ax = λx) if and only if N(A − λI) 6= {0}. By (A.52), this condition is

equivalent to det(A − λI) = 0. It is easy to see that det(A − λI) is a polynomial

of degree n in λ, called the characteristic polynomial of A, and the eigenvalues

of A are precisely the roots of this polynomial.

(A.57) The analysis of a matrix A is greatly facilitated if there is an eigenbasis

for A, that is, a basis b1, . . . ,bn of Rn consisting of eigenvectors for A. Indeed,

suppose Abj = λjbj . Any x ∈ Rn can be written as a linear combination of the

bj’s, say x =
∑n

j=1 cjbj , and then Ax =
∑n

j=1 λjcjbj . In other words, once

the basis b1, . . . ,bn is known, the action of A is completely determined by the n
numbers λj rather than the n2 numbers Ajk.

(A.58) Not all matrices have eigenbases. (In fact, some matrices have no eigen-

values at all, as long as we allow only real numbers. The situation changes dramat-

ically if we consider complex matrices and complex eigenvalues, but even then A
may not have an eigenbasis when the characteristic polynomial has multiple roots.)

However, there is an important class of matrices that do have eigenbases.
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The n×nmatrix A is called symmetric ifA = A∗, that is, ifAjk = Akj for all

j and k. One can show that every symmetric matrix has an orthonormal eigenbasis.

This is one of the major results of linear algebra, known as the spectral theorem

or principal axis theorem.
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SOME TECHNICAL PROOFS

B.1 The Heine-Borel Theorem

B.1 Theorem. If S is a subset of Rn, the following are equivalent:

a. S is compact.

b. If U is any covering of S by open sets, there is a finite subcollection of U that

still forms a covering of S.

Proof. If S is not compact, by the Bolzano-Weierstrass theorem there is a sequence

{xk} in S, no subsequence of which converges to any point of S. This means that

for each x ∈ S there is an open ball Dx centered at x that contains xk for at most

finitely many values of k (Exercise 7, §1.5). The collection U = {Dx : x ∈ S} is

then an open cover of S. Any finite subcollection can contain at most finitely many

of the xk’s and hence cannot cover all of S.

Conversely, suppose S is compact. Since S is bounded, it is contained in some

closed rectangular box

B0 = [a1, b1]× [a2, b2]× · · · × [an, bn]

=
{
x : a1 ≤ x1 ≤ b1, a2 ≤ x2 ≤ b2, . . . , an ≤ xn ≤ bn

}
.

By bisecting the intervals [aj , bj ], we can write B0 as the union of 2n boxes whose

side lengths are half as big as those of B0; we denote this collection of boxes by

B1. By bisecting the sides of each box in B1, we can write B0 as the union of 22n

boxes whose side length are 1
4 as big as those of B0; we denote this collection of

boxes by B2. Continuing inductively, for each positive integer k we can write B0

as the union of 2kn boxes whose side lengths are 2−k times as big as those of B0,

and we denote this collection of boxes by Bk.

419
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Now suppose U is a covering of S by open sets. We claim that there is an

integer k such that each box in Bk that intersects S is included in one of the open

sets in U. Once we know this, we are done. There are finitely many (in fact, 2kn)

boxes in Bk; let B1, . . . , Bm be the ones that intersect S. Each Bj is included in

some Uj ∈ U; the sets B1, . . . , Bm cover S, and hence so do U1, . . . , Um.

It remains to prove the claim. Suppose, to the contrary, that for each k there is

a box Bk ∈ Bk containing a point xk ∈ S but not included in any set in U. By

the Bolzano-Weierstrass theorem, by passing to a subsequence we may assume that

{xk} converges to some point x ∈ S. This x is contained in some open set U in the

collection U. Since U is open, there is a positive number ǫ such that every point y

with |y−x| < ǫ is contained in U . Now pick k large enough so that |xk−x| < 1
2ǫ

and also 2−k[
∑n

1 (bj−aj)2]1/2 < 1
2ǫ. The latter condition implies that the distance

between any two points of the box Bk is less than 1
2ǫ. Thus, if y ∈ Bk, then

|y − x| ≤ |y − xk|+ |xk − x| < 1
2ǫ+

1
2ǫ = ǫ.

But this means that Bk ⊂ U , contrary to assumption. This contradiction completes

the proof.

B.2 The Implicit Function Theorem

B.2 Theorem. Let F(x,y) be an Rk-valued function of class C1 on some neigh-

borhood of a point (a,b) ∈ Rn+k, and let Bij = (∂Fi/∂yj)(a,b). Suppose that

F(a,b) = 0 and detB 6= 0. Then for some positive numbers r0, r1, the following

conclusions are valid.

a. For each x in the ball |x− a| < r0 there is a unique y such that |y − b| < r1
and F(x,y) = 0. We denote this y by f(x); in particular, f(a) = b.

b. The function f thus defined for |x−a| < r0 is of classC1, and its partial deriva-

tives ∂xj f can be computed by differentiating the equations F(x, f(x)) = 0

with respect to xj and solving the resulting linear system of equations for

∂xjf1, . . . , ∂xjfk.

Proof. The proof proceeds by induction on k. The case k = 1 is the implicit

function theorem for a single equation, proved in §3.1. We assume that the result

is valid when the number of equations is 1, 2, . . . , k − 1 and deduce it when the

number of equations is k.

Let M ij denote the (k − 1) × (k − 1) matrix obtained by deleting the ith row

and the jth column from the matrix B. By the cofactor expansion along the last

row (see (A.31) in Appendix A),

(B.3)

detB = (−1)k+1Bk1 detM
k1 + (−1)k+2Bk2 detM

k2 + · · ·+Bkk detM
kk.
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Since detB 6= 0 by assumption, at least one term in this sum must be nonzero. By

reordering the variables if necessary, we can assume that the last term is nonzero,

so detMkk 6= 0.

Now, Mkk is the matrix of partial derivatives of F1, . . . , Fk−1 with respect to

the variables y1, . . . , yk−1, evaluated at (a,b), so by inductive hypothesis, the k−1
equations

F1(x,y) = F2(x,y) = · · · = Fk−1(x,y) = 0

determine y1, . . . , yk−1 as C1 functions of x1, . . . , xn and yk in some neighbor-

hood of (a,b):

yj = gj(x, yk) (j ≤ k − 1).

LetG be the function of x1, . . . , xn, yk obtained by substituting the gj’s for the yj’s
in the last function Fk:

G(x, yk) = Fk(x, g(x, yk), yk).

We wish to use the implicit function theorem for a single equation to solve the

equation G(x, yk) = 0 for yk as a C1 function of x, say yk = fk(x). Then for

j < k we will have yj = fj(x) where fj(x) = gj(x, fk(x)), and the proof will

be complete. (The method for computing the partial derivatives of f stated in (b) is

just implicit differentiation, as discussed in §2.5.)

Our task is to verify that the hypothesis of the implicit function theorem, namely

∂ykG(a, bk) 6= 0, is satisfied. To do this we need the chain rule, some facts about

determinants, and perseverance. To begin with,

∂G

∂yk
=

k−1∑

j=1

∂Fk
∂yj

∂gj
∂yk

+
∂Fk
∂yk

,

so setting (x,y) = (a,b) gives

(B.4)
∂G

∂yk
(a, bk) =

k−1∑

j=1

Bkj
∂gj
∂yk

(a, bk) +Bkk.

To evaluate ∂gj/∂yk, we differentiate the equations Fi(x,g(x, yk), yk) = 0 for

i < k, obtaining
k−1∑

j=1

∂Fi
∂yj

∂gj
∂yk

+
∂Fi
∂yk

= 0 (i < k),
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which at (x,y) = (a,b) becomes

(B.5)

k−1∑

j=1

Bij
∂gj
∂yk

(a, bk) = −Bik (i < k).

These k−1 equations can be solved for the desired quantities (∂gj/∂yk)(a, bk)
by Cramer’s rule (see (A.54) in Appendix A). The coefficient matrix in (B.5),

(Bij)
k−1
i,j=1, is what we called Mkk above, and the matrix obtained by replacing

its jth column by the numbers −Bik on the right of (B.5) is




B11 · · · −B1k · · · B1(k−1)
...

...
...

B(k−1)1 · · · −B(k−1)k · · · B(k−1)(k−1)


 .

But this is just the matrix Mkj obtained by deleting the kth row and the jth column

from B except that the column involving the Bik’s has been multiplied by −1 and

moved from the last slot to the jth slot. The determinant of this matrix is therefore

(−1)k−j detMkj — one factor of −1 because of the minus signs on the column of

Bik’s, and k − j − 1 more factors of −1 from interchanging that column with the

succeeding k− j− 1 columns to move it back to its rightful place on the right end.

In short, the application of Cramer’s rule to the system (B.5) yields

∂gj
∂yk

(a, bk) = (−1)k−j detM
jk

detMkk
.

Now we are done. Substitute this result back into (B.4), noting that (−1)−j =
(−1)j , and recall (B.3):

∂G

∂yk
(a, bk) =

k−1∑

j=1

(−1)j+kBkj
detMkj

detMkk
+Bkk

=

∑k
j=1(−1)j+kBkj detMkj

detMkk
=

detB

detMkk
.

Since detB 6= 0 by assumption, this completes the verification that ∂ykG(a, bk) 6=
0 and hence the proof of the theorem.

B.3 Approximation by Riemann Sums

The subject of this section is Proposition 4.16 and its generalization to multiple

integrals.
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B.6 Lemma. Suppose f is an integrable function on [a, b] and |f(x)| ≤ C for x ∈
[a, b]. Let P = {x0, . . . , xJ} be a partition of [a, b] such that maxj(xj−xj−1) < δ,
and let P ′ be another partition obtained by adding N extra points to P . Then

SPf < SP ′f + 2CNδ and sPf > sP ′f − 2CNδ.

Proof. We consider the upper sums SPf and SP ′f ; the argument for the lower

sums is similar. If no extra point is added in the interval (xj−1, xj) in passing from

P to P ′, both sums contain the term Mj(xj − xj−1), where Mj is the supremum

of f on [xj−1, xj ]. If extra points are added, the term Mj(xj − xj−1) in SPf is

replaced by a sum of similar terms corresponding to subintervals of [xj−1, xj ]. Both

Mj(xj−xj−1) and the latter sum are bounded in absolute value byC(xj−xj−1) <
Cδ, so their difference is bounded by 2Cδ. The total change from SPf to SP ′f
is the sum of these differences, of which there are at most N , so it is less than

2CNδ.

Remark. The conclusion of this lemma is significant only when Nδ ≪ 1, and

hence when N is much less than the number J of subdivision points of P (since

Jδ > b− a).

B.7 Theorem. Suppose f is integrable on [a, b]. Given ǫ > 0, there exists δ > 0
such that if P = {x0, . . . , xJ} is any partition of [a, b] satisfying

max
1≤j≤J

(xj − xj−1) < δ,

any Riemann sum
∑J

1 f(tj)(xj−xj−1) associated to P differs from
∫ b
a f(x) dx by

at most ǫ.

Proof. It is enough to prove the result for the lower and upper sums sP f and SPf ,

as all other Riemann sums lie in between these two. Pick a partition Q of [a, b] such

that SQf <
∫ b
a f(x) dx + 1

2ǫ and sQf >
∫ b
a f(x) dx − 1

2ǫ. Let N be the number

of subdivision points in Q, and let C be an upper bound for |f | on [a, b]; we claim

that any δ < ǫ/4NC will do the job. Indeed, suppose P = {x0, . . . , xJ} satisfies

maxj(xj − xj−1) < δ. Then the partition P ∪Q is obtained by adding at most N
points to P (namely, the points of Q that are not already in P ). By Lemma B.6 and

Lemma 4.3,

SPf < SP∪Qf + 2NCδ < SP∪Qf + 1
2ǫ ≤ SQf + 1

2ǫ ≤
∫ b

a
f(x) dx+ ǫ,

and likewise sPf >
∫ b
a f(x) dx− ǫ. Since sPf ≤

∫
f(x) dx ≤ SPf , the proof is

complete.
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In the next two sections we shall need the generalization of Theorem B.7 to

multiple integrals. The idea is exactly the same, but the notation is more compli-

cated. We give the precise statement of the result but leave the adaptation of the

one-dimensional proof to the reader.

B.8 Theorem. Suppose f is integrable on the rectangular box B = [a1, b1]×· · ·×
[an, bn]. Given ǫ > 0, there exists δ > 0 such that if

P =
{
x10, . . . , x1J1 ;x20, . . . , x2J2 ; . . . ;xn0, . . . xnJn

}

is any partition of B satisfying

max
1≤i≤n

max
1≤j≤Ji

(xij − xi(j−1)) < δ,

any Riemann sum for f associated to B differs from
∫
· · ·
∫
B f(x) d

nx by at most ǫ.

B.4 Double Integrals and Iterated Integrals

B.9 Theorem. Let R = [a, b] × [c, d], and let f be an integrable function on R.

Suppose that, for each y ∈ [c, d], the function fy defined by fy(x) = f(x, y) is

integrable on [a, b], and the function g(y) =
∫ b
a f(x, y) dx is integrable on [c, d].

Then ∫∫

R
f dA =

∫ d

c

[∫ b

a
f(x, y) dx

]
dy.

Proof. Let PJK = {x0, . . . , xJ ; y0, . . . , yK} be the partition of R obtained by

subdividing [a, b] and [c, d], respectively, into J and K equal subintervals of length

∆x = (b − a)/J and ∆y = (d − c)/K . Given ǫ > 0, there is an integer N such

that

(B.10)

∣∣∣∣
∫∫

R
f dA−

J∑

j=1

K∑

k=1

f(xj, yk)∆x∆y

∣∣∣∣ <
ǫ

3

provided that J ≥ N and K ≥ N , and also

(B.11)

∣∣∣∣∣

∫ d

c

[∫ b

a
f(x, y) dx

]
dy −

K∑

k=1

∫ b

a
f(x, yk) dx∆y

∣∣∣∣∣ <
ǫ

3

provided that K ≥ N . (For (B.10) we are applying Theorem B.8 to the function f ,

and for (B.11) we are applying Theorem B.7 to the function g(y) =
∫ b
a f(x, y) dx.)
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Let us fix K to be equal to N ; then the points yk are also fixed. By Theorem B.7

again, we can choose J large enough so that

∣∣∣∣
∫ b

a
f(x, yk) dx−

J∑

j=1

f(xj, yk)∆x

∣∣∣∣ <
ǫ

3(d − c)

for all k = 1, . . . ,K . Then

∣∣∣∣∣∣

J∑

j=1

K∑

k=1

f(xj , yk)∆x∆y −
K∑

k=1

∫ b

a
f(x, yk) dx∆y

∣∣∣∣∣∣

≤
K∑

k=1

∣∣∣∣∣∣

J∑

j=1

f(xj, yk)∆x−
∫ b

a
f(x, yk) dx

∣∣∣∣∣∣
∆y <

Kǫ∆y

3(d − c) =
ǫ

3
.

Therefore, by (B.10),

∣∣∣∣∣

∫∫

R
f dA−

K∑

k=1

∫ b

a
f(x, yk) dx∆y

∣∣∣∣∣ <
2ǫ

3
,

and hence by (B.11),

∣∣∣∣
∫∫

R
f dA−

∫ d

c

[∫ b

a
f(x, y) dx

]
dy

∣∣∣∣ < ǫ.

Since ǫ is arbitrary, the double integral and the iterated integral must be equal.

B.5 Change of Variables for Multiple Integrals

The object of this section is to show that measurability and the zero-content prop-

erty are preserved under invertible C1 transformations, and to prove Theorem 4.37.

The arguments are rather difficult, and we must begin by developing some tools.

For the calculations in this section, it will be convenient to measure the magni-

tude of a vector x ∈ Rn not by the Euclidean norm |x| but by the “max-norm”

‖x‖ = max
(
|x1|, |x2|, . . . , |xn|

)
.

As we observed in (1.3), the norms |x| and ‖x‖ are comparable to each other in

the sense that ‖x‖ ≤ |x| ≤ √n‖x‖. The max-norm shares the following basic

properties with the Euclidean norm:

‖x+ y‖ ≤ ‖x‖+ ‖y‖, ‖cx‖ = |c| ‖x‖, ‖x‖ = 0 ⇐⇒ x = 0.
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However, the set

Q(r,x) =
{
y : ‖y − x‖ < r

}

is not the ball of radius r about x but rather the open cube (or square, if n = 2) of

side length 2r centered at x.

Suppose A : Rn → Rm is a linear map with associated matrix (Ajk). For any

x ∈ Rn we have

‖Ax‖ = m
max
j=1

∣∣∣∣∣

n∑

k=1

Ajkxk

∣∣∣∣∣ ≤
(

m
max
j=1

n∑

k=1

|Ajk|
)
‖x‖.

Hence, if we define

(B.12) ‖A‖ = m
max
j=1

n∑

k=1

|Ajk|,

we have

‖Ax‖ ≤ ‖A‖ ‖x‖.
We shall need the variant of Theorem 2.88 that pertains to the norms just de-

fined, and an extension of it to nonconvex sets:

B.13 Lemma. Suppose F is a differentiable map from a convex set W ⊂ Rn into

Rm, and suppose that ‖DF(x)‖ ≤ M for all x ∈ W (where ‖DF(x)‖ is defined

by (B.12)). Then

‖F(x)− F(y)‖ ≤M‖x− y‖ for all x,y ∈W.

Proof. Let F = (F1, . . . , Fm). By the mean value theorem (2.39), for each j there

is a point c on the line segment between x and y such that

Fj(x)− Fj(y) = ∇Fj(c) · (x− y) =

n∑

k=1

(∂kFj(c))(xk − yk).

But then

|Fj(x)− Fj(y)| ≤
n∑

k=1

|∂kFj(c)| ‖x − y‖ ≤ ‖DF(c)‖ ‖x − y‖ ≤M‖x− y‖.

Taking the maximum over j, we obtain the desired result.

B.14 Lemma. Suppose F is a map of class C1 from an open set U ⊂ Rn into Rm.

For any compact set R ⊂ U there is a constant C such that

‖F(x)− F(y)‖ ≤ C‖x− y‖ for all x,y ∈ R.
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Proof. Since U is open, for each x ∈ R there is a positive number r such that

the cube Q(2r,x) is contained in U . By the Heine-Borel theorem, R is covered

by finitely many of the cubes Q(r,x) with side length half as large, say R ⊂⋃J
j=1Q(rj,xj). Let r0 be the smallest of the numbers r1, . . . , rJ . Moreover, let

C1 and C2 be the maximum values of ‖DF(x)‖ and ‖F(x)‖ as x ranges over R.

(These maxima exist since R is compact and ‖DF(x)‖ and ‖F(x)‖ are continuous

functions of x ∈ R.)

Now suppose x,y ∈ R; then either ‖x − y‖ < r0 or ‖x − y‖ ≥ r0. In

the first case, both x and y lie in one of the cubes Q(2rj ,xj). (Indeed, x lies

in one of the cubes Q(rj ,xj) since they cover R, and then y ∈ Q(rj + r0,xj).)
Since Q(2rj ,xj) is convex, we can apply Lemma B.9 to conclude that ‖DF(x)−
DF(y)‖ ≤ C1‖x− y‖. In the second case, we simply have

‖F(x)− F(y)‖ ≤ ‖F(x)‖+ ‖F(y)‖ ≤ 2C2 ≤
2C2

r0
‖x− y‖.

Hence we can take C = max(C1, 2C2/r0).

Before proceeding, we need to make one more observation: In developing the

theory of integration one uses (n-dimensional) rectangles in a number of places; it

is enough to use cubes instead. First, in defining the integral of an integrable func-

tion over a measurable set S, we can enclose S in a cube Q and restrict attention to

the approximating sums obtained by partitioning Q evenly into smaller subcubes;

these sums converge to the integral by Theorem B.8. Second, in showing that a set

has zero content, we consider coverings of a set S by finite unions of rectangles

whose total volume is small. We can enlarge each rectangle by an arbitrarily small

amount to obtain one whose vertices have rational coordinates, and the latter rect-

angle can be subdivided into cubes of side length 1/d where d is the least common

denominator of its side lengths.

Now we are ready to address the central issues of this section. For the rest of

this section, G will denote a one-to-one transformation of class C1 from an open

set U ⊂ Rn onto another open set V ⊂ Rn whose derivative DG(u) is invertible

for all u ∈ U . By the inverse mapping theorem, G−1 : V → U also has the same

properties. Moreover, we denote the n-dimensional volume of a measurable set

S ⊂ Rn by V n(S). (Thus, if S is a cube of side length r, we have V n(S) = rn.)

B.15 Theorem. Suppose K ⊂ U is a compact set with zero content. Then G(K)
also has zero content.

Proof. First, since U is open, for each u ∈ K there is a cube centered at x whose

vertices have rational coordinates and whose closure lies in U . SinceK is compact,
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finitely many of these cubes cover K; thus, K ⊂ Rint where R is a finite union of

closed cubes contained in U . Let C be the constant in Lemma B.14, with R being

the set we have just defined.

Since K has zero content, for any ǫ > 0 there is a finite collection of cubes

{Q(rj ,xj)} such that K ⊂
⋃
Q(rj ,xj) and

∑
V n(Q(rj ,xj)) =

∑
rnj < ǫ/Cn,

and these cubes can be taken to be subsets ofR. (See the remarks following Lemma

B.14.) By Lemma B.14, G(Q(rj ,xj)) ⊂ Q(Crj,G(xj)). Thus G(K) is con-

tained in the union of the cubes Q(Crj,G(xj)), and the sum of their volumes is∑
(Crj)

n = Cn
∑
rnj < ǫ. It follows that G(K) has zero content.

B.16 Corollary. Suppose T is a measurable set with T ⊂ U . Then G(T ) is also

measurable.

Proof. First we observe that T is bounded (because it is measurable), so its bound-

ary ∂T is compact. Moreover, G(∂T ) = ∂(G(T )). (This is an easy consequence

of the fact that G and G−1 are both continuous; the proof is left as an exercise

to the reader.) Now, measurability means that the boundary ∂T is a set of zero

content. (In particular, ∂T is bounded, and hence compact since it is closed.) By

Theorem B.15, ∂(G(T )) = G(∂T ) has zero content, so G(T ) is measurable.

B.17 Corollary. If f : V → R is continuous except possibly on a compact set of

zero content, then the same is true of f ◦G : U → R.

Proof. Suppose f is continuous on V \K , where K ⊂ V is compact and has zero

content. Since G is continuous, f ◦G is continuous on U \G−1(K). Since G−1

is continuous, G−1(K) is compact (by Theorem 1.22) and has zero content (by

Theorem B.15).

We now present a sequence of lemmas leading up to the main change-of-

variable theorem. The heart of the argument is Lemma B.21.

If S and T are subsets of Rn, the distance from S to T is defined to be

d(S, T ) = inf
{
|x− y| : x ∈ S, y ∈ T

}
.

B.18 Lemma. Suppose that S and T are disjoint closed subsets of Rn and S is

compact. Then d(S, T ) > 0.

Proof. If the assertion is false, there exist sequences {xj} in S and {yj} in T such

that |xj − yj | → 0. Since S is compact, by passing to a subsequence we may

assume that xj converges to a point x ∈ S. But then yj → x also, so x ∈ T since

T is closed. This is impossible since S ∩ T = ∅.
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B.19 Lemma. Suppose Q ⊂ U is a closed cube. For any invertible linear map

A : Rn → Rn,

V n(G(Q)) ≤ |detA|
(
sup
u∈Q
‖A−1DG(u)‖

)n
V n(Q).

Proof. Let C = supu∈Q ‖A−1DG(u)‖ (which is finite since Q is compact), and

notice that A−1DG(u) = D(A−1 ◦G)(u) since A−1 is linear. We apply Lemma

B.13 to the map F = A−1 ◦ G on the set W = Q to see that A−1(G(Q)) is

contained in a cube Q′ whose side length is C times the side length of Q, and

whose volume is therefore Cn times that of Q. Hence, by Theorem 4.35,

|detA|−1V n(G(Q)) = V n(A−1(G(Q))) ≤ V n(Q′) = CnV n(Q),

as claimed.

B.20 Lemma. Let R be a compact subset of U . For any ǫ > 0 there is a δ > 0
such that

∣∣∣ ‖DG(u)−1DG(v)‖ − 1
∣∣∣ < ǫ and

∣∣∣ |detDG(u)|−1|detDG(v)| − 1
∣∣∣ < ǫ

whenever u,v ∈ R and ‖u− v‖ < δ.

Proof. By (A.55) in Appendix A, the entries of the matrix DG(u)−1DG(v) vary

continuously as u,v vary over R, so the functions ϕ(u,v) = ‖DG(u)−1DG(v)‖
and ψ(u,v) = |detDG(u)|−1|detDG(v)| are continuous on R×R. Moreover,

ϕ(u,u) = ψ(u,u) = 1 for all u ∈ R. (It follows easily from the definition

(B.12) that ‖I‖ = 1.) Since R × R is compact, ϕ and ψ are uniformly continuous

(Theorem 1.33). Hence, for any ǫ > 0 there is a δ > 0 such that |ϕ(u,v) −
ϕ(u′,v′)| < ǫ whenever ‖u − u′‖ + ‖v − v′‖ < δ, and likewise for ψ. Taking

u′ = v′ = u, we obtain the desired conclusions.

For the remainder of this section, we denote n-dimensional integrals by a single

integral sign
∫

rather than
∫
· · ·
∫

.

B.21 Lemma. Let T be a measurable set such that T ⊂ U . Then

(B.22) V n(G(T )) ≤
∫

T
|detDG| dV n.
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Proof. Since ∂T and ∂(G(T )) have zero content (Corollary B.16), the quantities

on either side of (B.22) are unchanged if we replace T by T . Hence we may as well

assume that T = T is compact.

We shall prove (B.22) by approximating the quantities on either side by finite

sums corresponding to a grid of small cubes. In detail, the process is as follows.

Pick a closed cube Q0 such that T ⊂ Q0, and denote the side length of Q0 by l. By

partitioning the sides of Q0 into M equal pieces, we obtain a partition of Q0 into

Mn equal subcubes of side length l/M ; denote this collection of closed cubes by

QM . Since distance from T to the complement of U is strictly positive by Lemma

B.18, all of the cubes in QM that intersect T will be contained in U provided M is

sufficiently large, say M ≥ M0. For each M ≥ M0, let RM be the union of those

cubes in QM that intersect T . Then RM is a compact set such that T ⊂ RM ⊂ U ,

and V n(RM )→ V n(T ) as M →∞.

Now, let ǫ > 0 be given. We choose δ > 0 as in Lemma B.20, and we then pick

M ≥M0 large enough so that l/M < δ and V n(RM ) < V n(T ) + ǫ.

Let Q1, . . . , QK be the cubes in QM that intersect T , so that RM =
⋃K
k=1Qk,

and let xk be the center of Qk. Since l/M < δ, Lemma B.20 applies whenever

u ∈ Qk and v = xk. Thus, by Lemma B.19, with A = DG(xk),

V n(G(Qk)) ≤ |detDG(xk)|(1 + ǫ)nV n(Qk),

so

V n(G(T )) ≤
K∑

k=1

V n(G(Qk)) < (1 + ǫ)n
K∑

k=1

|detDG(xk)|V n(Qk).

On the other hand, by Lemma B.20 again,

|detDG(u)| > (1− ǫ)|detDG(xj)| for all u ∈ Qj,

so

|detDG(xk)|V n(Qk) =

∫

Qk

|detDG(xk)| dnu <
1

1− ǫ

∫

Qk

|detDG(u)| dnu.

In short,

V n(G(T )) ≤ (1 + ǫ)n

1− ǫ

K∑

k=1

∫

Qk

|detDG| dV n =
(1 + ǫ)n

1− ǫ

∫

RM

|detDG| dV n.
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Finally, let C be the maximum of |detDG(u)| as u ranges over the compact set

RM0
. Then

∣∣∣∣
∫

RM

|detDG| dV n −
∫

T
|detDG| dV n

∣∣∣∣ =
∫

RM\T
|detDG| dV n

≤ C[V n(RM )− V n(T )] < Cǫ.

Therefore,

V n(G(T )) ≤ (1 + ǫ)n

1− ǫ

∫

T
|detDG| dV n + C

(1 + ǫ)n

1− ǫ ǫ.

Since ǫ is arbitrary and C is independent of ǫ, (B.22) follows.

B.23 Lemma. Let T be a measurable set such that T ⊂ U , and let f be a bounded

nonnegative function on G(T ) that is continuous except perhaps on a set of zero

content. Then
∫

G(T )
f(x) dnx ≤

∫

T
f(G(u))|detDG(u)| dnu.

Proof. Consider a lower Riemann sum for
∫
G(T ) f :

sPf =

J∑

j=1

mjV
n(Qj),

where the Qj’s are cubes with disjoint interiors contained in G(T ) and mj =
infx∈Qj f(x). (The hypothesis f ≥ 0 is needed so that the cubes Qj satisfy Qj ⊂
G(T ), not just Qj ∩G(T ) 6= ∅.) By Theorem B.15 and Corollary B.17 (applied

to G−1), the sets G−1(Qj) are measurable and overlap only in sets of zero content.

By Lemma B.21, then, we have

sPf =
∑

mjV
n(Qj)

≤
∑

mj

∫

G−1(Qj)
|detDG| dV n ≤

∑∫

G−1(Qj)
(f ◦G)|detDG| dV n

=

∫
⋃

G−1(Qj)
(f ◦G)|detG| dV n ≤

∫

T
(f ◦G)|detDG| dV n.

(For the last inequality we used the fact that
⋃

G−1(Qj) ⊂ T and the assumption

that f ≥ 0.) Taking the supremum over all lower Riemann sums sP f , we obtain

the desired conclusion.
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At last we come to the main result, for which we restate the hypotheses in

full. We assume that f : G(T ) → R is bounded and continuous except on a

set of zero content (and hence is integrable on G(T )); by Corollary B.17, this

implies that f ◦ G : T → R is also bounded and continuous except on a set of

zero content (and hence is integrable on T ). It is actually enough to assume that

f is integrable on G(T ), but then an additional argument would be necessary to

establish the integrability of f ◦G.

B.24 Theorem. Let G be a one-to-one transformation of class C1 from an open

set U ⊂ Rn onto another open set V ⊂ Rn whose derivative DG(u) is invertible

for all u ∈ U . Let T be a measurable set such that T ⊂ U , and let f be a bounded

function on G(T ) that is continuous except perhaps on a set of zero content. Then

∫

G(T )
f(x) dnx =

∫

T
f(G(u))|detDG(u)| dnu.

Proof. It suffices to show that each of these integrals is less than or equal to the

other one. For f ≥ 0, Lemma B.23 proves one of these inequalities, and the

reverse inequality follows by applying Lemma B.23 to the inverse transformation.

More precisely, if in Lemma B.23 we replace T by G(T ), G by G−1, and f by

(f ◦G)|detDG|, we obtain

∫

T
f(G(u))|detDG(u)| dnu

≤
∫

G(T )
f(G(G−1(x)))|detDG(G−1(x))||detDG−1(x)| dnx.

But by the chain rule (2.86), the matricesDG(G−1(x)) andDG−1(x) are inverses

of each other, so their determinants are reciprocals of each other; hence, the integral

on the right is simply
∫
G(T ) f(x) d

nx. Thus the theorem is proved for the case

f ≥ 0. The general case follows by writing f = (f + C) − C where C ≥ 0 is

sufficiently large that f + C ≥ 0 on T . The argument just given applies to f + C
and to the constant functon C; subtracting the results yields the theorem.

B.6 Improper Multiple Integrals

In this section we denote multiple integrals by a single integral sign
∫

rather than∫
· · ·
∫

.
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B.25 Theorem. Let S be an open set in Rn, and let f be a nonnegative function

on S that is integrable over every compact subset of S. Let {Uj} and {Ũj} be

sequences of compact subsets of S such that

U1 ⊂ U2 ⊂ U3 ⊂ · · · , Ũ1 ⊂ Ũ2 ⊂ Ũ3 ⊂ · · · , and

∞⋃

1

U int
j = S =

∞⋃

1

Ũ int
j .

Then

lim
j→∞

∫

Uj

f dV n = lim
j→∞

∫

Ũj

f dV n,

where the limits may be finite or +∞.

Proof. The limits in question exist by the monotone sequence theorem, because∫
Uj
f dV n and

∫
Ũj
f dV n increase with j. Let I = limj→∞

∫
Uj
f dV n, and let c

be any number less than I . We then have
∫
Uj
f dV n > c when j is sufficiently

large, say j ≥ J . Now UJ ⊂ S =
⋃∞

1 Ũ int
j , so by the Heine-Borel theorem, for

some finite K we have UJ ⊂
⋃K

1 Ũ int
j ⊂ ŨK . But then, for j ≥ K ,

∫

Ũj

f dV n ≥
∫

ŨK

f dV n ≥
∫

UJ

f dV n > c.

Since c is an arbitrary number less than I , it follows that lim
∫
Ũj
f dV n ≥ I =

lim
∫
Uj
f dV n. The same argument works with the roles of the Uj’s and Ũj’s

switched, so the two limits are actually equal.

B.7 Green’s Theorem and the Divergence Theorem

The object of this section is to show how to prove Green’s theorem and its analogues

in higher dimensions for general C1 domains. For this purpose we need to develop

a technical tool, the notion of partitions of unity, that has many uses in advanced

analysis.

B.26 Lemma. For any rectangular box B = [a1, b1]×· · ·× [an, bn] in Rn, there is

a C∞ function f on Rn such that f(x) > 0 for x ∈ Bint and f(x) = 0 otherwise.

Proof. In the case n = 1, B = [a, b], we can take f to be

f ba(x) =

{
e1/(x−a)(x−b) if a < x < b,

0 otherwise.



434 Appendix B. Some Technical Proofs

(Note that the exponent 1/(x − a)(x − b) is negative for a < x < b and tends to

−∞ as x→ a+ or x→ b−.) An argument like that in Exercise 9, §2.1, shows that

f and all its derivatives vanish as x→ a+ or x→ b−, so f is C∞ even at a and b.
For the n-dimensional case, then, the function

f(x) = f b1a1(x1)f
b2
a2(x2) · · · f

bn
an (xn)

does the job.

If f is a function on Rn, the support of f , denoted by supp(f), is the closure

of the set of all points x such that f(x) 6= 0; in other words, it is the smallest closed

set outside of which f vanishes.

B.27 Theorem. Suppose K ⊂ Rn is compact and U1, . . . , UJ are open sets such

that K ⊂ ⋃J
1 Uj . Then there exists a finite collection {ϕm}M1 of C∞ functions

such that

a. the support of each ϕm is compact and contained in one of the sets Uj , and

b.
∑M

1 ϕm(x) = 1 for all x ∈ K .

Proof. The starting point is a fact we demonstrated in the course of proving The-

orem B.1: There is a grid B of closed rectangular boxes such that each box in B

that intersects K is contained in one of the sets Uj . Let B1, . . . , BM be the boxes

in B that intersect K , and let BM+1, . . . , BN be the additional boxes in B that in-

tersect at least one of B1, . . . , BM . (Thus,
⋃M

1 Bm is a compact set contained in U

whose interior contains K , and
⋃N

1 Bm is obtained by adding one additional layer

of boxes around the boundary of
⋃M

1 Bm.)

For 1 ≤ m ≤ M , the box Bm is contained in one of the Uj’s, say Uj(m); let

cm = d(Bm, U
c
j(m)). (Here d(S, T ) is the distance from S to T , defined before

Lemma B.18.) On the other hand, for M < m ≤ N we have Bm ∩ K = ∅; let

cm = d(Bm,K). The numbers cm are all positive by Lemma B.18. Let η be the

smallest of the side lengths of the Bm’s, let

δ =
1

2
√
n
min(c1, . . . , cN , η),

and for 1 ≤ m ≤ N let B̃m be the closed box with the same center as Bm whose

side lengths are larger than those of Bm by the amount δ. Then the boxes B̃m have

the following properties: First, each point of Bm is in the interior of B̃m. Second,

since δ < 1
2η, for m ≤M each point of B̃m is in the interior of one of the B̃l’s. (It

is the points on the boundary of B̃m that are at issue here, and it may happen that

l > M .) Third, if x ∈ B̃m, there is a point y ∈ Bm such that |xj − yj| ≤ δ for all
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j, and hence |x − y| ≤ δ
√
n. Since δ

√
n < 1

2cm, it follows that B̃m ⊂ Uj(m) for

m ≤M and B̃m ∩K = ∅ for m > M .

Now, for 1 ≤ m ≤ N , choose a C∞ function ψm such that ψm > 0 on B̃m
and ψm = 0 on B̃c

m, according to Lemma B.26, and let

ϕm =
ψm∑N
l=1 ψl

(1 ≤ m ≤M),

with the understanding that ϕm = 0 outside B̃m. Since the sum in the denominator

is strictly positive on
⋃N

1 B̃int
l , an open set that includes B̃m, the function ϕm is

C∞ and supp(ϕm) = B̃m ⊂ Uj(m). Finally, for l > M we have B̃l ∩K = ∅ and

hence ψl = 0 on K; therefore, for x ∈ K ,

M∑

m=1

ϕm(x) =

∑M
m=1 ψm(x)∑N
l=1 ψl(x)

=

∑M
m=1 ψm(x)∑M
l=1 ψl(x)

= 1,

so the ϕm’s have all the desired properties.

The collection of functions {ϕm} in Theorem B.27 is called a partition of

unity on K subordinate to the covering {Uj}.
We are now ready to prove Green’s theorem for general regions with smooth

boundary. Afterwards, we shall indicate how to extend the proof to regions with

piecewise smooth boundary.

B.28 Theorem. Suppose S is a compact region in R2 whose boundary ∂S is a finite

union of simple closed curves of class C1, equipped with the positive orientation.

Suppose also that P and Q are C1 functions on S. Then

∫

∂S
P dx+Qdy =

∫∫

S

(
∂Q

∂x
− ∂P

∂y

)
dA.

Proof. The starting point is the special case of Green’s theorem, proved in §5.2, in

which S is x-simple and y-simple. (What we actually need here is the case where

S is a rectangle with sides parallel to the axes.) In contrast to the method used in

§5.2 to handle more general regions, instead of cutting up the region into simple

pieces, we shall use a partition of unity to cut up the integrand into pieces that are

easily analyzed by a change of variables.

By Theorem 3.13, for every point x ∈ ∂S there is an open disc D centered at x

such that the portion of ∂S within D is the graph of a C1 function, either y = f(x)
or x = f(y). By the Heine-Borel theorem, we can select finitely many of these
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S ∩D L

FIGURE B.1: The transformation (x, y) → (u, v). The disc D is the

indicated by the dashed circle on the left; the rectangle R to which

Green’s theorem is to be applied is dotted on the right.

discs, say D1, . . . ,DJ , so that ∂S ⊂ ⋃J
1 Dj . Then D1, . . . ,DJ , and Sint form an

open covering of S.

By Theorem B.27 we can choose a partition of unity {ϕm}M1 on S subordinate

to this covering. Then P =
∑m

1 ϕmP and Q =
∑m

1 ϕmQ on S, and ϕmP and

ϕmQ are still of class C1, so it suffices to prove the theorem with P and Q replaced

by ϕmP and ϕmQ for m = 1, . . . ,M . In short, it is enough to prove the theorem

when supp(P ) and supp(Q) are either (a) contained in Sint or (b) contained in a

disc D such that D ∩ ∂S is the graph of a C1 function.

In case (a), P and Q both vanish on ∂S, so
∫
∂S P dx + Qdy = 0. Also, P

and Q remain C1 if we extend them to be zero outside of S. But then we can apply

Green’s theorem on any rectangle R that includes S to conclude that

∫∫

S

(
∂Q

∂x
− ∂P

∂y

)
dA =

∫∫

R

(
∂Q

∂x
− ∂P

∂y

)
dA =

∫

∂R
P dx+Qdy = 0.

Thus the theorem is true in case (a).

Case (b) is the more interesting one. Suppose, to be definite, that P and Q are

supported in D, where ∂S ∩D is a portion of the graph of a C1 function y = f(x).
(The case x = f(y) is similar.) We define a change of variables (x, y) = G(u, v)
on D by

x = u, y = v + f(u); that is, u = x, v = y − f(x).

The transformation G−1(x, y) = (u, v) maps D to a bounded region in the

uv-plane, ∂S ∩D to a line segment L in the u-axis, and S ∩ [supp(P )∪ supp(Q)]
to a bounded region T in either the upper or the lower half-plane. More precisely,

T will be in the upper half-plane if S lies above the graph y = f(x) and in the
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lower half-plane if S lies below; thus, the relative orientations of T and L are the

same as those of S and ∂S. See Figure B.1.

Let R be a rectangle in the uv-plane, one of whose sides is the segment L, that

includes T . Then the functions P̃ = P ◦G and Q̃ = Q ◦G are C1 functions on R
that vanish on the three sides of R other than L.

Now, dx = du and dy = f ′(u) du+ dv, so

∫

∂S
P dx+Qdy =

∫

L
P̃ du+ Q̃[f ′(u) du+ dv],

where L is oriented as a portion of ∂R. Since P̃ and Q̃ vanish on the other sides of

R, we can apply Green’s theorem on R to conclude that

∫

∂S
P dx+Qdy =

∫

∂R
[P̃ (u, v) + Q̃(u, v)f ′(u)] du + Q̃(u, v) dv

=

∫∫

R

(
∂Q̃

∂u
− ∂P̃

∂v
− ∂Q̃

∂v
f ′(u)

)
du dv.(B.29)

But by the chain rule,

∂Q̃

∂u
− ∂Q̃

∂v
f ′(u) =

∂Q

∂x

∣∣
(x,y)=G(u,v)

;
∂P̃

∂v
=
∂P

∂y

∣∣
(x,y)=G(u,v)

.

Also,
∂(x, y)

∂(u, v)
= detDG = det

(
1 0

f ′(u) 1

)
= 1,

so du dv = dx dy by Theorem B.24. It follows that the double integral (B.29) is

equal to
∫∫
S(∂xQ− ∂yP ) dx dy, which completes the proof.

Let us indicate how this argument can be extended to a region S with piece-

wise smooth boundary. Recall from §5.1 that “piecewise smooth” means that ∂S
consists of curves that are smooth except at finitely many points, where they have

“corners,” i.e., where the direction of the curve changes abruptly. If x0 is such a

point, there is a small disc D centered at x0 such that ∂S ∩D is the union of por-

tions of two smooth curves that intersect at x0. By Theorem 3.13, by shrinking D
if necessary we may assume that these curves are the loci of equations F (x0) = 0
and G(x0) = 0, where∇F 6= 0 and∇G 6= 0 on D. We shall assume that∇F (x0)
and∇G(x0) are linearly independent. (The exceptional case where they are not —

that is, where the two curves are tangent at x0 and the region has a sharp “cusp”

rather than a “corner” at x0 — must be handled by an additional limiting argu-

ment, in which S is approximated by regions with smooth boundaries.) Then, by
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FIGURE B.2: Transformation of a region with a corner. The rectangles

to which Green’s theorem is to be applied are dotted on the right.

the inverse mapping theorem, by shrinking D yet further we may assume that the

transformation u = F (x, y), v = G(x, y) has a C1 inverse on D.

Now, as in the proof of Theorem B.28, we can cover ∂S by finitely many discs

D1, . . . DJ such that ∂S ∩ Dj is the graph of a smooth function, together with

finitely many discs DJ+1, . . . DK centered at the corners and satisfying the condi-

tions of the preceding paragraph. By using of a partition of unity subordinate to

the covering {D1, . . . ,DK , S
int} of S, we reduce to the case where P and Q are

supported in one of these discs. The discs Dj of the first kind (j ≤ J) are han-

dled as before. For the ones centered at a corner, we use the change of variables

u = F (x, y), v = G(x, y) described above to reduce to the case where the bound-

ary consists of a segment of the u-axis and a segment of the v-axis that meet at the

origin. (This change of variables is not as simple as the one we used before, so

the calculations are more complicated, but the idea is the same.) If S occupies the

“inside” of the corner, the calculation boils down to Green’s theorem on a rectangle

as before; if S occupies the “outside,” it boils down to Green’s theorem for two

rectangles; see Figure B.2.

Finally, we prove the divergence theorem for general regions withC1 boundary.

The argument can be extended to handle regions with piecewise smooth boundary

in a manner similar to that in the preceding paragraphs.

B.30 Theorem. Suppose R is a compact region in R3 with C1 boundary ∂R, ori-

ented so that the positive normal points out of R. Suppose also that F is a vector
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field of class C1 on R. Then

∫∫

∂R
F · n dA =

∫∫∫

R
divF dV.

Proof. The proof is very similar to that of Theorem B.28, so we shall omit many

details. By using a partition of unity, we reduce the problem to proving the theorem

when supp(F) ⊂ Rint or when supp(F) ⊂ B where B is a ball such that ∂R ∩B
is the graph of a C1 function, say z = ϕ(x, y). In the first case, the integrals∫∫
∂R F · n dA and

∫∫∫
R divF dV both vanish, as in Theorem B.28. In the second

case, we introduce a change of variables on B, (x, y, z) = G(u, v, w), defined by

x = u, y = v, z = w + ϕ(u, v); that is, u = x, v = y, w = z − ϕ(x, y),

and set F̃ = F ◦G. The set corresponding to ∂R ∩ B in uvw-space is a region S
in the uv-plane. Let Q be a rectangular box in uvw-space that includes G−1(R ∩
supp(F)), one face of which is a rectangle in the uv-plane that includes S. (S and

Q correspond to L and R in the proof of Theorem B.28.)

We parametrize the surface z = ϕ(x, y) by (u, v)→ (u, v, ϕ(u, v)) to see that

∫∫

∂R
F · n dA = ±

∫∫

S

[
− (∂uϕ)F̃1 − (∂vϕ)F̃2 + F̃3

]
dA =

∫∫

∂Q
H · n dA,

where

H =
[
− (∂uϕ)F̃1 − (∂vϕ)F̃2 + F̃3

]
k.

Here the ± is + or − depending on whether R (resp. Q) lies below or above the

surface z = ϕ(x, y) (resp. the uv-plane), that is, on whether the outward normal to

Q on S is +k or −k; the last equality holds because F̃ vanishes on ∂Q \ S. In the

vector field H, the functions F̃j depend on (u, v, w), but ϕ depends only on (u, v).
By the divergence theorem for the box Q (proved in §5.5), then,

∫∫

∂R
F · n dA =

∫∫∫

Q
divH dV(B.31)

=

∫∫∫

Q

[
−∂ϕ
∂u

∂F̃1

∂w
− ∂ϕ

∂v

∂F̃2

∂w
+
∂F̃3

∂w

]
dV.

Now, F̃(u, v, w) = F(u, v, w + ϕ(u, v)), so by the chain rule,

∂F̃1

∂u
=
∂̃F1

∂x
+
∂̃F1

∂z

∂ϕ

∂u
,

∂F̃2

∂v
=
∂̃F2

∂y
+
∂̃F2

∂z

∂ϕ

∂v
,



440 Appendix B. Some Technical Proofs

and
∂F̃j
∂w

=
∂̃Fj
∂z

for j = 1, 2, 3,

where the tildes continue to denote composition with G. Substituting these formu-

las into (B.31), we obtain

(B.32)

∫∫

∂R
F · n dA =

∫∫∫

Q

[
∂̃F1

∂x
− ∂F̃1

∂u
+
∂̃F2

∂y
− ∂F̃2

∂v
+
∂̃F3

∂z

]
dV.

We are almost done. On the one hand, by integrating first with respect to u or

v, we see that ∫∫∫

Q

∂F̃1

∂u
dV =

∫∫∫

Q

∂F̃2

∂v
dV = 0,

because F1 and F2 vanish on the vertical faces of Q. On the other hand, the trans-

formation G is volume-preserving,

∂(x, y, z)

∂(u, v, w)
= 1,

so by Theorem B.24,

∫∫∫

Q

[
∂̃F1

∂x
+
∂̃F2

∂y
+
∂̃F3

∂z

]
dV =

∫∫∫

Q
d̃ivF dV =

∫∫∫

R
divF dV.

Therefore, (B.32) reduces to the desired result:

∫∫

∂R
F · n dA =

∫∫∫

R
divF dV.

In conclusion, we remark that these calculations appear more natural if the argu-

ment is recast in the language of differential forms as described in §5.9.
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SUMMARY OF BASIC LOGIC

This appendix is a very brief summary of the basic language and principles of

mathematical logic. More extensive treatments can be found in many places, such

as Lakins [14].

Statements. Mathematics deals with statements (or assertions or propositions)

that have a definite truth value: they must be either true or false. In this discussion

we use the letters P and Q to denote such statements. For example, P could stand

for the statement“5 > 2” (true) and Q could stand for the statement “every odd

number is divisible by 3” (false). Statements can be quite complex objects built

up out of simpler statements. For example, the statement “every real number x
can be written as n + y where n is an integer and 0 ≤ y < 1” is built from the

statements “x = n+ y,” “n is an integer,” and “0 ≤ y < 1” together with a couple

of quantifiers. (See (C.2) below.)

The Fundamental Operations. The basic logical operations to create new state-

ments from old ones are defined by the English words “and,” “or,” and “not,” which

logicians like to indicate by the symbols ∧, ∨, and ¬. If P andQ are statements, the

statement P ∧Q is true precisely when P and Q are both true; the statement P ∨Q
is true precisely when either P or Q is true (or both);1 and ¬P is true precisely

when P is false.

Observe that the negation ¬ interchanges ∧ and ∨. If it is not the case that P
and Q are both true, then one or the other (or both) must be false; and if it is not the

case that P is true or Q is true, then both must be false:

(C.1) ¬(P ∧Q) ≡ ¬P ∨ ¬Q, ¬(P ∨Q) ≡ ¬P ∧ ¬Q.
1That is, the word “or” is always to be interpreted in the inclusive sense: saying that P is true or

Q is true includes the possibility that they are both true.
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Here the symbol≡means that the statements on either side of it are logically equiv-

alent: they both have the same truth value, no matter whether P and Q are true or

false.

The symbols ∧ and ∨ will probably remind the reader of the symbols ∩ and

∪ in set theory. This is no accident. if P and Q are the statements “x ∈ A” and

“x ∈ B,” where x denotes an element of some set S and A and B denote subsets

of S, then P ∧ Q and P ∨ Q are the statements “x ∈ A ∩ B” and “x ∈ A ∪ B.”

Also, ¬P is the statement “x /∈ A.”

Many mathematical statements involve a variable that can take different values,

such as the x in the preceding statements. We can denote such a statement by P (x)
to indicate the variable object explicitly; it is always assumed, either explicitly or

implicitly, that x is an element of some specified set. P (x) may be true for some

x’s and false for others. For example, “x2 − x − 6 = 0” is a statement about real

numbers; it is true for x = 3 and x = −2 and false for all other values of x.

Quantifiers. Often we are interested not in the truth of P (x) for a particular x
but wish to say something about its truth as x ranges over some specified set S. The

two most common species of such statements are “P (x) is true for all x ∈ S” and

“P (x) is true for at least one x ∈ S.” Logicians use the universal quantifier ∀ and

the existential quantifier ∃ (read as “for all” and “there exists”) for these situations.

That is,

∀x ∈ S P (x) and ∃x ∈ S P (x)
are the symbolic form of the statements “for all x in S, P (x) is true” and “there

exists an x in S such that P (x) is true.” Note that the English versions of these

statements can be reformulated in various ways such as “P (x) is true for every x in

S” and “P (x) is true for some x in S” in which the quantifying clause follows the

P (x), but in symbolic form, the quantifiers must always precede P (x). Note also

that when the set S is clearly understood, it is often omitted from the quantifier;

that is, we just say “∀x” or “∃x” rather than “∀x ∈ S” or “∃x ∈ S.”

Example: The sentence at the end of the first paragraph can be written symbol-

ically as

(C.2) ∀x ∈ R ∃n ∈ R ∃y ∈ R (n ∈ Z) ∧ (0 ≤ y < 1) ∧ (x = n+ y).

Negation interchanges ∀ and ∃ just as it does ∧ and ∨. That is, if it is not the

case that P (x) is true for all x ∈ S, then P (x) must be false for some x ∈ S; and

if it is not the case that there is an x ∈ S for which P (x) is true, then P (x) must

be false for all x ∈ S.:

¬[∀x ∈ S P (x)] ≡ ∃x ∈ S ¬P (x), ¬[∃x ∈ S P (x)] ≡ ∀x ∈ S ¬P (x).
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Implications. The majority of significant mathematical statements are impli-

cations, that is, statements of the form P ⇒ Q, read as “P implies Q” or (more

commonly) “if P , then Q.” In this situation, P is called the hypothesis and Q is

called the conclusion. The “if . . . then” construction is used in ordinary English in

several different ways, but in mathematics it has just one precise interpretation in

terms of the truth values of P and Q. Namely, when P is true then Q must also be

true, but when P is false, Q can be either true or false. That is, the only forbidden

situation is that P is true and Q is false:

P ⇒ Q ≡ ¬(P ∧ ¬Q).

(In view of (C.1), this means that P ⇒ Q is logically equivalent to ¬P ∨Q. It is a

matter of psychology rather than logic to prefer the former version to the latter.)

Implications involving a variable x often implicitly contain an unexpressed uni-

versal quantifier. For example, “if x > 0 then ex > 1” is a statement about real

numbers, and it really should be prefaced by “for all x ∈ R.” This is rarely a source

of confusion, except that the negation of such a statement contains an existential

quantifier that cannot be omitted. The negation of the (false) statement “if x > 0
then 3x > 1” is “there is an x such that x > 0 but 3x ≤ 1 (true; any x with

0 < x ≤ 1
3 will work).

The converse of an implication P ⇒ Q is the implication Q ⇒ P . These two

statements are different and must not be confused with each other. For example,

the statement “if 0 < x < 1 then x3 < x” is true; its converse “if x3 < x then

0 < x < 1” is false (any x < −1 is a counterexample).

There is, however, a way of “reversing the order” in an implication that yields

an equivalent statement. The assertion P ⇒ Q means that Q must be true when P
is true; thus if Q is false, P must also be false. That is,

P ⇒ Q ≡ ¬Q⇒ ¬P.

The statement ¬Q ⇒ ¬P is called the contrapositive of the statement P ⇒ Q.

These two statements are logically equivalent; for both of them, the forbidden sit-

uation is that P is true while Q is false. This equivalence gives a useful strategy

for proving an implication P ⇒ Q (“proof by contraposition”). Namely, instead

of assuming the hypothesis P and reasoning one’s way to the conclusion Q, one

assumes the hypothesis ¬Q and reasons one’s way to the conclusion ¬P .

If P ⇒ Q and Q ⇒ P are both true, we say that the statements P and Q are

equivalent and write P ⇔ Q (read as “P if and only if Q”). One can replace the

implication Q⇒ P by its contrapositive:

P ⇔ Q ≡ (P ⇒ Q) ∧ (¬P ⇒ ¬Q).



444 Appendix C. Summary of Basic Logic

That is, the statement P ⇔ Q means that P and Q (which, in practice, will usually

contain a variable x) always have the same truth value (no matter what x is). Prov-

ing that P ⇔ Q is usually a matter of making two separate arguments to show that

P ⇒ Q and Q⇒ P or that P ⇒ Q and ¬P ⇒ ¬Q.

(Note: The “equivalences” ≡ and⇔ are different. “P ≡ Q” means that P and

Q have the same truth values simply by virtue of their logical structure; “P ⇔ Q”

means that P and Q have the same truth value by virtue of their specific content.)

Proof by Contradiction. We conclude with a few words about the proof tech-

nique known as proof by contradiction. The underlying logical principle is that

mathematical statements must be either true or false, so that a statement that is not

false must be true:

¬(¬P )⇒ P.

Thus, one can prove a statement P by assuming ¬P and reasoning one’s way to a

contradiction. For example, the classic proof that
√
2 is irrational is of this form.

One assumes that
√
2 = p/q where p and q are integers with no common factor (so

that p/q is a fraction “in lowest terms”) and shows that p and q must both be even,

contradicting the condition that they have no common factor.

When proving a statement that has the form of an implication, a common tac-

tical error is to confuse proof by contraposition with proof by contradiction. That

is, wishing to prove P ⇒ Q, one can assume its negation P ∧ ¬Q and deduce a

contradiction. But more often than not, the argument never uses the hypothesis P
until the very end; rather, it proves the contrapositive ¬Q ⇒ ¬P and then uses

the conclusion ¬P as a contradiction to P . In these cases it makes a cleaner argu-

ment to phrase it as a contraposition from the start: assume ¬Q and deduce ¬P ,

and you’re done. A true proof by contradiction, which involves the risky business

of reasoning on the basis of an assumption that will turn out to be incorrect, is a

weapon to be used in cases of necessity, but only then. As G. H. Hardy said, “It is

a far finer gambit than any chess play: a chess player may offer the sacrifice of a

pawn or even a piece, but a mathematician offers the game.”



Answers to Selected Exercises

CHAPTER 1

Section 1.1

1. ‖x‖ = 2
√
3, ‖y‖ = 3, θ = 5π/6.

Section 1.2

1. (a) Not open or closed; ∂S = {(0, 0)} ∪ {(x, y) : x2 + y2 = 4}.
(b) Closed; ∂S = {(x, 0) : 0 ≤ x ≤ 1} ∪ {(x, x2 − x) : 0 ≤ x ≤ 1}.
(c) Open; S = {(x, y) : x ≥ 0, y ≥ 0, and x+ y ≥ 1}.
(d) Closed; Sint = ∅.

Section 1.3

3. f(0, y) = y.

5. Discontinuous only at (0, 0).
7. Continuous at every irrational.

Section 1.4

1. (a) 1/
√
2. (b) 0. (c) Diverges.

2. Any K ≥ (19/ǫ) + 5 will work.

3. lim xk = 0.

Section 1.5

1. (a) supS = 1, inf S = −1.

(b) supS = 2, inf S = −1.

(c) supS =∞, inf S = π/4.

5. lim xk = 2.
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CHAPTER 2

Section 2.2

1. (a) ∇f(x, y) = (2xy + πy cos πxy, x2 + πx cos πxy);
[∇f(1,−2)] · (35 , 45 ) = −1

5(8 + 2π).
2. (a) df = ex−y+3z[(2x+ x2) dx− x2 dy + 3x2 dz];
f(1.1, 1.2, −0.1)− f(1, 1, 0) ≈ −0.2.

3. (a) dz = 0.036. (b) z.

Section 2.3

1. (Derivatives of f , g, and h are to be evaluated at the same points as f , g, and h
themselves.) (a) dw/dt = f1(g1h

′ + g2) + f2h
′ + f3.

(b) ∂xw = f1 + f2g1 + f3h1, ∂yw = f2g2, ∂zw = f3h2.

(c) dw/dx = f ′(g1 + g2h
′).

2. (a) ∂xw = 2f1+(sin 3y)f2+4x3f3, ∂yw = −2yf1+(3x cos 3y)f2 (f1 and

f2 evaluated at (2x− y2, x sin 3y, x4)).
(c) ∂xw = 2(∂2f)/(f

2 + 1), ∂yw = (2y∂1f − ∂2f)/(f
2 + 1) (f and its

derivatives evaluated at (y2, 2x− y)).
6. (a) z = 4x− 3y − 6.

(b) 2x+ 4y − 6z = 12.

Section 2.5

1. (a) ∂z/∂x = (1− 3yz)/(3xy − 3z2), ∂z/∂y = (2y − 3xz)/(3xy − 3z2).
3. dz/dt = (2yzt+ 5y4t+ zteyz)/(10y4z3 + 2z4eyz − y2eyz − yt2).
4. 2x, 2x+ 6xz2.

5. (∂V/∂h)|r = πr2, (∂V/∂h)|S = πr2 − 2πr2h/(2r + h), (∂V/∂S)|r =
r/2, (∂S/∂V )|r = 2/r.

Section 2.6

2. r sin θ cos θ(fyy − fxx) + r(cos2 θ − sin2 θ)fxy − (sin θ)fx + (cos θ)fy.

3. (a) ∂2xw = 4f11 + 4(sin 3y)f12 + 16x3f13 + (sin2 3y)f22 + 8x3(sin 3y)f23 +
16x6f33+12x2f3, ∂x∂yw = −4yf11+(6x cos 3y−2y sin 3y)f12−8x3yf13+
3x(sin 3y cos 3y)f22 + 12x4(cos 3y)f23 + 3(cos 3y)f2.

Section 2.7

1. (b) 1/24.

2. (a) P1,3(h) = h− 1
2h

2 + 1
3h

3, C = 4.

(b) P1,3(h) = 1 + 1
2h − 1

8h
2 + 1

16h
3, C = 5 · 2−7/2. (Note: These C’s come

from Lagrange’s formula and may not be optimal.)
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4. 0.747.

5. (a) x2 + xy − 1
6 (x

4 + 3x3y + 3x2y2 + xy3).
(b) 1 + xy − 1

2(x
4 + x2y2 + y4).

6. P(3,1),3(h, k) = 2 + h+ 3k + hk + 1
2(π

2 − 3)k2 − 1
2hk

2 + k3.

7. P(1,2,1),3(h, k, l) = 3 + 4h+ k + l + 2h2 + 2hk + h2k.

Section 2.8

1. (a) (0,−2) and (0, 1) minima, (0, 0) saddle.

(b) (±1,
√
2) minima, (0,−

√
2) maximum, (±1,−

√
2) and (0,

√
2) saddles.

(c) (1,±1) and (0, 0) saddles, (23 , 0) minimum.

(e) (0, 0) minimum, (±1, 0) maxima, (0,±1) saddles.

(f) ((a2/b)1/3, (b2/a)1/3), a minimum if a and b have the same sign and a

maximum otherwise.

Section 2.9

1. min = −1
2 , max = 4.

2. min = −4, max = 16
5 .

3. min = (308 − 62
√
31)/27, max = 2/3

√
3.

4. min = −85
3 , max = 56.

5. A2/(1 + b2 + c2).
6. min = 0, max = 2/e.
7. min = −2/e, max = 1/e.
8. 3(12)1/3

9. min = 1, max = 3.

11. (
√
a+
√
b+
√
c)2.

12. 3V 1/3.

13. (12 ,
1
2 , 0).

14. Vmax = A3/2/6
√
3.

15. (2, 0, 2).
16. a2b2.

Section 2.10

1. ∂(u, v)/∂(x, y) = 3xy2z2 − yz3 +24y3, ∂(u, v)/∂(x, z) = −y2z2 − 6xy3z,

∂(u, v)/∂(y, z) = xyz2 + 8y2 − 12x2y2z.

2. ∂(u, v)/∂(x, y) = 3x− 18y, ∂(v,w)/∂(x, y) = −6x2 − 18y2,

∂(u,w)/∂(x, y) = −12x− 6y.

3. (b)



−15 −20
3 4
2 4


.
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4. (b)

(
8 6 −21
18 10 −43

)
.

CHAPTER 3

Section 3.1

3. y yes; z no.

5. ∂2F (0, 0) 6= 0 and ∂1F (0, 0) 6= −1.

6. Can solve for x and y or y and z.

7. Can solve for any pair.

9. Yes.

Section 3.2

1. (a), (c), (f) are smooth curves.

3. (a), (c), (e) are smooth curves.

Section 3.3

1. (a) Plane.

(b) Elliptic cone.

(c) Hyperboloid of revolution.

(d) Paraboloid of revolution.

2. (a) 2x− y − z = 3. (b) x− y = 3.

3. (a) One possibility: f(u, v) = (u cos v, u sin v, f(u)) (a < u < b, |v| ≤ π).

4. (a) One possibility: f(t) = (1 + t, 1
3 + t, 8

3 + t).

5. (a) One possibility: f(t) = 1
2(1+cos t,

√
2 sin t, 1−cos t). (b) One possibility:

f(t) = 1
2(1 + t, −

√
2, 1− t).

Section 3.4

1. (a) detDf = e2x; x = 1
2 log(u

2 + v2); y is given up to multiples of 2π by

arctan(v/u) when u > 0, 1
2π − arctan(u/v) when v > 0, π + arctan(v/u)

when u < 0, 3
2π − arctan(u/v) when v < 0.

2. (a) (x, y) = 1
3(2v − u, v − 2u).

4. (d) g(u, v) = 1
2(u−

√
u2 + 4v, −u−

√
u2 − 4v).

Section 3.5

1. One relation for (a), (c), and (e); two relations for (d).
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CHAPTER 4

Section 4.3

1. (a) 4
5 . (b) 32

35(5−
√
2).

2. 1
20 .

3. (a)
∫ 0
−2

∫ x3
4x f(x, y) dy dx,

∫ 0
−8

∫ y/4
y1/3

f(x, y) dx dy.

(b)
∫ 2
0

∫ x
x/3 f(x, y) dy dx+

∫ 3
2

∫ 4−x
x/3 f(x, y) dy dx,

∫ 1
0

∫ 3y
y f(x, y) dx dy +

∫ 2
1

∫ 4−y
y f(x, y) dx dy.

4. (a)
∫ 1
0

∫ y1/2
y3 f(x, y) dx dy.

(b)
∫ 0
−1

∫ 1
−x f(x, y) dy dx+

∫ 2
0

∫ 1
x/2 f(x, y) dy dx.

5. (a) 5
8e

6 − 17
8 e

2. (b) 1
3(sin 2− sin 1). (c) 1

2e
2 − e.

6.
∫ 1
0 f(y)

√
y/2 dy +

∫ 2
1 f(y)(

√
y/2 − y + 1) dy.

8. (a)
∫ 1
−1

∫ √
1−x2

−
√
1−x2

∫ 1
x2+y2 f dz dy dx.

(b)
∫ 1
−1

∫ 1
x2

∫ √
z−x2

−
√
z−x2 f dy dz dx.

(c)
∫ 1
0

∫ √
z

−√
z

∫√z−y2
−
√
z−y2

f dx dy dz.

9. (b)
∫ 1
0

∫ √
1−x

0

∫ y
0 f dz dy dx.

(c)
∫ 1
0

∫ √
1−x

0

∫√
1−x

z f dy dz dx.

10. 1
4 (a, b, c).

11. mass = 8, center of mass = (1, 43 ,
4
3 ).

12. −126
5 .

Section 4.4

1. 3π/2.

2. ( 1π , 0,
3
4).

3. 4π(83 −
√
3).

4. 2π − 32
9 .

5. 1
2πcR

2h2.

6. 5π/3.

7. πcR4/3.

8. (38 ,
3
8 ,

3
8).

9. 1
14 (55,−5).

10. 4
81 .

11. π/3
√
3.

12. A = 3
2 log 4, x = 14

9 log 4 , y = 28
9 log 4 .

13. 3.
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14. 3.

15. 1
2π

2R4.

Section 4.5

2. (a)
1

x
log

(
1 + ex

1 + x

)
.

(b) (2x)−1(5 cos x5 − cos x).
(c) x−1(2e3x

2 − ex).

Section 4.6

1. (a) Converges. (b) Diverges. (c) Converges. (d) Converges. (e) Diverges.

2. (a) Converges. (b) Diverges. (c) Converges. (d) Converges. (e) Diverges.

3. (a) Converges. (b) Diverges. (c) Converges. (d) Diverges. (e) Converges.

(f) Diverges.

4. (b) p > 1.

5. (b) p > 1.

10. −1
2 log 3.

Section 4.7

2. (a) Diverges. (b) 1
4π. (c) 2π/3. (d) 1

2

√
π. (e) Diverges.

CHAPTER 5

Section 5.1

1. (a) 2π
√
a2 + b2. (b) 14

3 . (c) e2. (d) 24.

2. (a) 4aE(
√

1− (b/a)2). (b) 23/2E(2−1/2).
3.
(
0, (2 + sinh 2)/4 sinh 1)

)
.

4. 2
3 [(1 + 4π2)3/2 − 1].

5. (a) 1. (b) 23
21 . (c) −2π. (d) 9856

45 .

6. (a) 1
2(1− e−1) + (2/π). (b) −π. (c) −4

3 .

Section 5.2

1. (c) 12. (d) 0.

2. 15
2 π.

3. The circle x2 + y2 = 1.

4. 3πR2.
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Section 5.3

1. 2
3π[(1 + a2)3/2 − 1].

2. 1
6π[(1 + 4a2)3/2 − 1].

3. 4π2ab.

4. 2πa2 +
2πab2√
a2 − b2

log

(
a+
√
a2 − b2
b

)
if a > b,

2πa2 +
2πab2√
b2 − a2

arcsin

(√
b2 − a2
b

)
if b > a.

5. (0, 0, 12 ).
6. 20π/3.

7. 0.

8. (a) −17
9 . (b) 0. (c) 2. (d) π(b2 − a2). (e) π(25/2 − 7

2 ).

Section 5.4

1. (a) curlF = xi− yj+ (y − 2xy)k, divF = x+ y2.

(b) curlF = 0, divF = −x(y2 + z2) sin yz.

(c) curlF = (1− 4xy)i− (x2 − 3z2)j+ 4yzk, divF = 0.

2. (a) 0. (b) 2x− 24yz. (c) a(a+ n− 2)|x|a−2. (d) 0.

Section 5.5

1. (c) 3a4. (d) 4π(a2b2 + b2c2 + a2c2)/3abc. (e) 3A.

2. 4πa5.

6. (a) −x/|x|3.

Section 5.6

3. (a) 2ρ(xi+ yj)/(x2 + y2).

Section 5.7

1. 2π.

2. −πa2/
√
2.

4. 0.

5. 0.

7. 5 + 3π(r2 − 1).

Section 5.8

1. (a) x2y + 1
3x

3 − 1
3y

3 + C .

(b) Not a gradient.

(c) e2x sin y − 3xy + 5x+ C .
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(d) xyz + cos xy + sin yz + C .

(e) Not a gradient.

(f) x2y + (y + 2) log z + C .

(g) 1
2(xw + yz)2 − e2y+z + cos zw + C .

2. (a) Not a curl.

(b) 1
2xz

2i− (xyz + 1
2x

2 + 1
2z

2)j+∇f .

(c) (5yz + z2)i+ (6xz − x
∫ z
0 e

−x2t2 dt)j+∇f .

CHAPTER 6

Section 6.1

1. (a) −1− 2−1/3 < x < −1 + 2−1/3; (2x+ 2)/[1 − 2(x+ 1)3].
(b) x < −

√
2 or x >

√
2; 10/(x2 − 2).

(c) x > 0; 1
2(1 + x−1).

(d) e−1 < x < e; log x/(1 − log x).
2. (a) Diverges. (b) 1. (c) Diverges. (d) Diverges.

Section 6.2

1. Converges.

2. Converges.

3. Diverges.

4. Converges.

5. Diverges.

6. Converges.

7. Diverges.

8. Diverges.

9. Converges.

10. Converges.

11. Diverges.

12. Converges.

13. Converges.

14. Diverges.

15. Diverges.

16. Converges.

17. Converges.

18. Diverges.

21. p > 1.
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Section 6.4

1. Converges absolutely for −3 ≤ x ≤ −1.

2. Converges absolutely for 0 < x < 1.

3. Converges absolutely for all x.

4. Converges absolutely for −5 < x < 5, conditionally for x = −5.

5. Converges absolutely for 2 < x < 6, conditionally for x = 6.

6. Converges absolutely for x > 0, conditionally for x = 0.

7. Converges absolutely for 4 < x < 8.

8. Converges absolutely for −2 < x < 0, conditionally for x = −2 and x = 0.

9. Converges absolutely for −3
2 < x < 3

2 , conditionally for x = −3
2 .

10. Converges conditionally.

11. Converges conditionally.

12. Diverges.

13. Converges absolutely.

14. Converges conditionally.

18. Converges when |x| < 1 and θ ∈ R, when x = 1 and θ 6= 2kπ, or when

x = −1 and θ 6= (2k + 1)π.

CHAPTER 7

Section 7.1

1. (a) Uniform convergence on [0, 1− δ] (δ > 0).

(b) Uniform convergence on [δ, 1] (δ > 0).

(c) Uniform convergence on [0, 1
2π − δ] and [12π + δ, π] (δ > 0).

(d) Uniform convergence on R.

(e) Uniform convergence on [δ,∞) (δ > 0).

(f) Uniform convergence on [0, b] (b <∞).

(g) Uniform convergence on [0, 1− δ] and [1 + δ, ∞) (δ > 0).

2. (a) Uniform convergence on [δ,∞) (δ > 0).

(b) Uniform convergence on [−1, 1].
(c) Uniform convergence on [−2 + δ, 2− δ] (δ > 0).

(d) Uniform convergence on R.

(e) Uniform convergence on R.

(f) Uniform convergence on [1 + δ,∞) (δ > 0).

Section 7.3

5. (a)

∞∑

0

(−1)nx2n+1

n!(2n+ 1)
, x ∈ R.
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(b)

∞∑

0

(−1)nx4n+1

(2n)!(4n + 1)
, x ∈ R.

(c)

∞∑

1

(−1)n−1(2x)n

n2
, |x| ≤ 1

2 .

10. (a) ex + x−1(1− ex).
(b)
∫ x
0 t

−2(1− cos t) dt.
(c) x−1

∫ x
0 t

−1(et − 1) dt.
(d) cos x− x sinx.

Section 7.5

4.
1 · 3 · · · (2n − 3)

2 · 4 · · · (2n − 2)

π

2x(2n−1)/2
.

Section 7.6

3. (a) 3
8

√
π. (b) 1

2

√
π/27. (c) 3

16

√
π.

5. Γ((a+ 1)/b)Γ(c + 1)/bΓ(c + 1 + (a+ 1)/b).

7.
1 · 3 · · · (k − 1)

2 · 4 · · · k
π

2
if k is even,

2 · 4 · · · (k − 1)

3 · 5 · · · k if k is odd (and k > 1).

10. (a) Diverges. (b) Converges.

CHAPTER 8

Section 8.1

1.
4

π

∞∑

1

sin(2m− 1)θ

2m− 1
.

2. 1
2 − 1

2 cos 2θ.

3.
2

π
− 4

π

∞∑

1

cos 2mθ

4m2 − 1
.

4.
π2

3
+ 4

∞∑

1

(−1)n
n2

cosnθ.

5.
sinh bπ

π

∞∑

−∞

(−1)n
b− ine

inθ.

6.
8

π

∞∑

1

sin(2m− 1)θ

(2m− 1)3
.

7.
2

a(π − a)

∞∑

1

sinna

n
cosnθ.
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8.
1

2π
+

2

π

∞∑

1

1− cosna

n2a2
cosnθ.

Section 8.2

1. (a)

∞∑

1

sin 2nθ

n
.

(b) 1− 2

π

∞∑

1

sin 2nθ

n
.

2.
π2

3
+ 4

∞∑

1

(−1)n
n2

(cos 1
4nπ cosnθ + sin 1

4nπ sinnθ).

3. (a)
1

2
+

2

π

∞∑

1

sin(2m− 1)θ

2m− 1
.

(b)
1

π
− 2

π

∞∑

1

cos 2mθ

4m2 − 1
+

1

2
sin θ.

(c)
1

2π
+

1

π

∞∑

1

sinna

na
cosnθ.

(d)
2 sinh π

π

∞∑

1

(−1)n−1n

n2 + 1
sinnθ.

4. (a) 1
2 , 1

4(π − 2).
(b) 1

6π
2, 1

12π
2.

(c) (πb csch πb− 1)/2b2, (πb coth πb− 1)/2b2.

(d) 1
32π

3.

Section 8.3

2. (b)
2

a(π − a)

∞∑

1

sinna

n2
sinnθ.

6. (a) k = 6.

(b) k =∞.

(c) k = 0, i.e., the function is merely continuous. (It is known to be nowhere

differentiable.)

Section 8.4

1. (a) 1;
4

π

∞∑

1

sin(2m− 1)θ

2m− 1
.

(b)
2

π
− 4

π

∞∑

1

cos 2mθ

4m2 − 1
; sin θ.
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(c)
π2

3
+4

∞∑

1

(−1)n
n2

cosnθ; 2π

∞∑

1

(−1)n+1

n
sinnθ− 8

π

∞∑

1

sin(2m− 1)θ

(2m− 1)3
.

(d)
π

4
− 2

π

∞∑

1

cos(4m− 2)θ

(2m− 1)2
;

4

π

∞∑

1

(−1)m+1 sin(2m− 1)θ

(2m− 1)2
.

2. (a)
4

π

∞∑

1

sin(2m− 1)πx

2m− 1
.

(b)
4

π

∞∑

1

(−1)m+1 cos(12m− 1
4)πx

2m− 1
.

(c)
8l2

π3

∞∑

1

sin(2m− 1)πx/l

(2m− 1)3
.

(d) (e− 1)
∞∑

−∞

e2πinx

1− 2πin
.

Section 8.5

1. (a) u(x, t) = 50− 400

π2

∞∑

1

1

(2m− 1)2
e−(0.00011)(2m−1)2π2t cos

(2m− 1)πx

100
.

2. u(x, t) =
∑∞

−∞ cn exp[inθ − n2kt] where f(θ) =
∑∞

−∞ cne
inθ .

3. bn(t) = exp(−n2π2kt/l2)
[
bn(0) +

∫ t
0 βn(s) exp(n

2π2ks/l2) ds
]
.

4. (a) u(x, t) =
2l2m

π2b(l − b)

∞∑

1

1

n2
sin

nπb

l
sin

nπx

l
cos

nπct

l
.

5. u(x, t) =
∑∞

1 e−δt(bn cosωnt+Bn sinωnt) sin(nπx/l),
where ω2

n = (nπc/l)2 − δ2.

6. (b) u(x, y) =

∞∑

1

[
a1n

sinh(nπ(L− y)/l)
sinh(nπL/l)

+ a2n
sinh(nπy/l)

sinh(nπL/l)

]
sin(nπx/l),

where f1(x) =
∑∞

1 a1n sin(nπx/l) and f2(x) =
∑∞

1 a2n sin(nπx/l).

Section 8.6

3. a = −1
2 , b = −1, c = 1

6 .

9. (a) π4/90.

(b) π6/960.

(c) π8/9450.

(d) 1
2a(π − a) if 0 ≤ a ≤ π, π-periodic as a function of a.
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Index

Abel summability, 331

Abel’s test, 306

Abel’s theorem, 330

absolute convergence

of a series, 295, 308

of an improper integral, 196

accumulation point, 23

adjoint of a matrix, 408

affine map, 406

alternating series, 301

alternating series test, 301

angle, 6

arc length, 213, 219

arcwise connected set, 35

area, 163, 164, 230

inner, 164

outer, 164

average of a function, 166

ball, 9

basis, 414

orthogonal, 397

standard, 406

Bessel function, 332

Bessel’s inequality, 364

beta function, 344

binomial series, 328

Bolzano-Weierstrass theorem, 30

bound

lower, 24

upper, 24

boundary, 10, 253

piecewise smooth, 222

boundary point, 10

bounded convergence theorem, 191

bounded sequence, 25

bounded set, 9

C1, 58

Ck, 78

C∞, 78

Cartesian product, 158

Cauchy principal value, 199

Cauchy product, 309

Cauchy sequence, 27

uniformly, 315

Cauchy’s inequality, 5

center of gravity, 175

centroid, 175

chain rule, 62, 64, 109

characteristic function, 160

characteristic polynomial, 417

closed interval, 2

closed set, 10

closure, 10

cofactor expansion, 412

column space, 415

column vector, 408

compact set, 30, 32

complement, 9

completeness, 24

composition of mappings, 3

conditional convergence, 296

conjugate of a complex number, 3
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connected set, 34

arcwise, 35

conservative vector field, 258

content (zero), 154, 161, 165

continuity

at a point, 14

Hölder, 40

on a set, 14

piecewise, 356

separate, 19

uniform, 39

contrapositive, 443

convergence

absolute

of a series, 295, 308

of an improper integral, 196

conditional, 296

in norm, 395

mean-square, 395

of a sequence, 21

of a series, 280

of an improper integral, 194

of improper integral, 197

pointwise, 311, 317

uniform, 314, 317, 336

convex set, 71

covering, 32

Cramer’s rule, 417

critical point, 95

degenerate, 98

cross product, 7

curl of a vector field, 237

curve

piecewise smooth, 214

simple closed, 222

smooth, 123

cylindrical coordinates, 183

Darboux’s theorem, 53

decreasing function, 46

decreasing sequence, 25

degenerate critical point, 98

density, 174

derivative, 44

directional, 60

exterior, 275

Fréchet, 108

left-hand, 45

normal, 227

outward normal, 241

partial, 53

mixed, 78

pure, 78

right-hand, 45

derived series, 326

determinant, 411

differentiability, 44, 55, 108

differential, 59

differential form, 218, 268–275

dimension of a subspace, 414

directional derivative, 60

Dirichlet kernel, 365

Dirichlet problem, 391

Dirichlet’s test

for improper integrals, 202

for series, 303

disconnected set, 33

disconnection, 34

distance

between two points, 6

between two sets, 33, 428

divergence

of a sequence, 21

of a series, 280

of a vector field, 237

of an improper integral, 194

of improper integral, 197

divergence theorem, 239
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domain of a mapping, 3

duplication formula, 346

echelon form, 410

reduced, 410

eigenbasis, 417

eigenvalue, 417

eigenvector, 417

electric field, 247

elementary matrix, 409

elementary row operation, 409

elliptic integral, 221

Euclidean space, 4

Euler’s theorem, 68

Euler-Mascheroni constant, 295

exterior derivative, 275

exterior product, 270

extreme value theorem, 31

factorial, 2

Fibonacci sequence, 20

flux, 233

Fourier coefficient, 358

Fourier cosine series, 378

Fourier series, 358

Fourier sine series, 378

Fréchet derivative, 108

fractional integral, 349

Fubini’s theorem, 169

function, 3

functional dependence, 141

functional equation, 343

fundamental theorem of calculus, 155

gamma function, 342

gauge integral, 210

Gauss’s theorem, 239

Gaussian elimination, 410

geometric series, 281

gradient, 55

Green’s formulas, 241

Green’s theorem, 223

Hölder continuity, 40

half-open interval, 2

heat equation, 247, 382

Heine-Borel theorem, 32

Henstock-Kurzweil integral, 210

Hessian, 96

homogeneity, 68

identity matrix, 408

imaginary part, 3

implication, 443

implicit function theorem, 114, 118

improper integral, 193

increasing function, 46

increasing sequence, 25

induction, 20

inequality

Bessel’s, 364

Cauchy’s, 5

isoperimetric, 402

infimum, 24

infinite product, 284

infinite series, 280

inner product, 393

integrability, 149, 159, 160

square, 396

integral

elliptic, 221

fractional, 349

gauge, 210

Hesntock-Kurzweil, 210

improper, 193

iterated, 169

Lebesgue, 209

line, 217

lower, 149, 159

Riemann, 149, 159
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surface, 233

upper, 149, 159

integral test, 285

interior, 10

interior point, 10

intermediate value theorem, 35

inverse

of a mapping, 3

of a matrix, 408

inverse mapping theorem, 137

invertible mapping, 3

invertible matrix, 408

isoperimetric inequality, 402

iterated integral, 169

Jacobian, 110

Jordan measurability, 162

l’Hôpital’s rule, 47, 49

Lagrange multiplier, 103

Lagrange’s method, 103

Lambert series, 319

Laplace transform, 342

Laplace’s equation, 250

Laplacian, 82, 238

least-squares fit, 105

Lebesgue integral, 209

Lebesgue measurability, 208, 209

Lebesgue measure, 208

left-hand derivative, 45

limit

of a function, 13

one-sided, 13

limit comparison test, 288

limit inferior, 29

limit superior, 29

line integral, 217

linear combination, 405

linear dependence, 413

linear mapping, 406

linear span, 405

local maximum or minimum, 95

locus, 120

lower bound, 24

manifold, 131

map, 3

mapping, 3

invertible, 3

linear, 406

one-to-one, 3

matrix, 407

invertible, 408

symmetric, 418

Maxwell’s equations, 250

mean value of a function, 166

mean value theorem, 46

for integrals, 166, 167

generalized, 47

mean-square convergence, 395

measurability, 162, 208, 209

measure, 208

moment of intertia, 175

monotone sequence, 25

monotone sequence theorem, 25

multi-index, 82

neighborhood, 10

nested interval theorem, 26

nonsingular matrix, 408

norm

of a function, 393

of a linear map, 109

of a vector, 5

normal component, 233

normal derivative, 227

nullspace, 415

one-to-one mapping, 3

open interval, 2
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open set, 10

order of a multi-index, 83

ordering of a double series, 307

orientation

of a curve, 214

positive, 222

orthogonal basis, 397

orthogonal complement, 414

orthogonality

of a sequence, 394

of functions, 394

of vectors, 6

orthonormal sequence, 394

orthonormality, 413

Ostrogradski’s theorem, 239

outward normal derivative, 241

Parseval’s identity, 398

partial derivative, 53

partial sum, 280

partition

of a rectangle, 159

of an interval, 148

of unity, 435

pathwise connected set, 35

periodic function, 355

piecewise continuity, 356

piecewise smoothness

of a curve, 214

of a function, 214, 366

of boundary, 222

pointwise convergence, 311, 317

Poisson equation, 250

Poisson integral formula, 392

Poisson kernel, 370

positive orientation, 222

potential, 247, 259

power series, 323

principal axis theorem, 418

principal value, 199

product

Cartesian, 158

Cauchy, 309

cross, 7

exterior, 270

infinite, 284

inner, 393

of matrices, 407

proof by contradiction, 444

proof by contraposition, 443

pullback, 269

Pythagorean theorem, 8

quantifier, 442

Raabe’s test, 291

radius of convergence, 323

range of a mapping, 3

rank of a matrix, 415

ratio test, 289, 300

real part, 3

rearrangement of a series, 298

rectangle, 158

rectifiable curve, 219

recursion, 20

refinement of a partition, 148

region

regular, 222

simple, 223, 239

regular region, 222

renormalization, 252

Riemann integrability, 149, 159

Riemann integral, 149

Riemann sum, 156

lower, 148, 159

upper, 148, 159

right-hand derivative, 45

Rolle’s theorem, 46

root test, 289, 300
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row reduction, 410

row space, 415

row vector, 408

saddle point, 97

sawtooth wave, 359

separate continuity, 19

separation of variables, 382

sequence, 19

bounded, 25

Cauchy, 27

decreasing, 25

doubly infinite, 20

Fibonacci, 20

finite, 20

increasing, 25

monotone, 25

orthogonal, 394

orthonormal, 394

series

alternating, 301

binomial, 328

derived, 326

Fourier, 358

Fourier cosine, 378

Fourier sine, 378

geometric, 281

infinite, 280

Lambert, 319

power, 323

Taylor, 282

telescoping, 283

simple closed curve, 222

simple region, 223, 239

smooth curve, 123

smooth surface, 128

spectral theorem, 418

sphere, 9

spherical coordinates, 184

square wave, 362

square-integrability, 396

standard basis, 406

standardized function, 367

Stirling’s formula, 352

Stokes’s theorem, 253, 277

strictly decreasing function, 46

strictly increasing function, 46

strophoid, 125

subsequence, 26

subspace, 414

sum of a series, 280

summation by parts, 303

support of a function, 434

supremum, 24

surface integral, 233

symmetric matrix, 418

tangent line, 51

tangent plane, 56

Taylor polynomial, 85

Taylor remainder, 85

Taylor series, 282

Taylor’s theorem

in several variables, 91

with integral remainder, 85, 86

with Lagrange’s remainder, 88

telescoping series, 283

term of a series, 280

test

Abel’s, 306

alternating series, 301

Dirichlet’s

for improper integrals, 202

for series, 303

integral, 285

limit comparison, 288

M, 317

Raabe’s, 291
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ratio, 289, 300

root, 289, 300

Weierstrass, 317

theorem

Abel’s, 330

Bolzano-Weierstrass, 30

bounded convergence, 191

Darboux’s, 53

divergence, 239

Euler’s, 68

extreme value, 31

Fubini’s, 169

fundamental (of calculus), 155

Gauss’s, 239

Green’s, 223

Heine-Borel, 32

intermediate value, 35

mean value, 46

monotone sequence, 25

nested interval, 26

Ostrogradski’s, 239

Pythagorean, 8

Rolle’s, 46

Stokes’s, 253, 277

transformation, 3, 133

transpose of a matrix, 408

triangle inequality, 6

triangle wave, 359

uniform continuity, 39

uniform convergence

of a sequence, 314

of a series, 317

of an improper integral, 336

upper bound, 24

vector field, 211

conservative, 258

vector potential, 263

velocity, 51

Wallis’s formula, 349

wave equation, 251, 384

Weierstrass M-test, 317

work, 218

zero content, 154, 161, 165


