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21. Considerthedifferentialequation

/! o ! /3 .
y+;y+;y=0, 0}

wherea # 0 and 8 # 0 arereal numbers,and s andt are positive integersthat for the
momentarearbitrary

(a) Show thatif s> 1 ort > 2,thenthepointx = Oisanirregularsingularpoint.

(b) Try tofind asolutionof Eq. (i) of theform

y= Zaﬂx“’”, x > 0. (ii)
n=0

Shaw thatif s = 2 andt = 2, thenthereis only onepossiblevalue of r for which thereis

aformalsolution of Eq. (i) of theform (ii).

(c) Shaw thatif s =1 andt = 3, thenthereareno solutionsof Eq. (i) of theform (ii).

(d) Show thatthe maximumvaluesof s andt for which theindicial equationis quadratic
in r [and hencewe canhopeto find two solutionsof the form (ii)] ares=1 andt = 2.

Theseaarepreciselytheconditionsthatdistinguisha “weaksingularity’ oraregularsingular
point, from an irregularsingularpoint, as we definedthemin Section5.4.

As anoteof cautionwe should point out thatwhile it is sometimegossibleto obtaina formal
seriessolutionof the form (ii) atanirregularsingularpoint, the seriesmay not have apositive
radiusof convergence.SeeProblem20 for an example.

5.8 Bessel’sEquation

In this sectionwe mnsiderthreespecialcasef Bessel'? equation,

X2y +xy' + (2 —vA)y =0, (1)
wherev is a ownstantwhichillustratethetheorydiscussedn Section5.7. It is easyto
shav thatx = 0 is a regular singularpoint. For simplicity we consideronly the case
x > 0.

BesselEquation of Order Zero. This exampleillustratesthe situationin which the
rootsof theindicial equationare equal.Settingy = 0 in Eq. (1) gives

L[yl = x?y" +xy’ 4+ x?y = 0. 2)
Substituting
y=¢,x)=ax +> ax (3)
n=1

12FriedrichWilhelm Besse(1784-1846)embariedonacareeiin businessasayouth,but soonbecamenterested
in astronomyand mathematicsHe was appointeddirector of the obsenatory at Kdnigsbeg in 1810and held
this positionuntil his death.His study of planetaryperturbationded him in 1824to make the first systematic
analysisof the solutions,known asBesselfunctions,of Eq. (1). He is alsofamousfor makingthefirst accurate
determinatior(1838)of the distancefrom the earthto a star.
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we obtain

LIgIr. %) = Y a [ + Mm@ +n—1) + (¢ +mlx+" 4+ g x 2

n=0 n=0
=ay[r(r — 1) +r]x" +a[(r +Dr + (r + HI]x"**

+Y @ +mr+n—D+ 0 +m]+a X T"=0 (4
n=2

The roots of the indicial equationF(r) =r(r —1)+r =0aer, =0 axdr, =0;
hencewe have the caseof equalroots. Therecurrenceelationis

a, ,() _ a0
r+nr+n—-D+C+n ¢ +n?

To determiney, (x) we setr equalto 0. Thenfrom Eq. (4) it follows thatfor the
coeficientof x"** to be zerowe mustchoosea, = 0. Hencefrom Eq. (5), a, = a5 =
a, = --- = 0. Furthey

2,(0) = —a, ,(0)/n’>, n=24868,...,
or lettingn = 2m, we obtain

aZm(o) = —azm_z(O)/(Zm)Z, m=123,....

a,(r)=— n>2. (5)

Thus
B0 =% 80 =% 0= —%,
and,in general,
_ (D" _
%m(O)_W, m—1,2,3, (6)
Hence
( 1)ITI 2m

The functionin bracketsis known asthe Besselfunction of the first kind of order
zeroandis denoteday J,(X). It follows from Theoremb.7.1thatthe seriesconverges
for all x, and that J, is analyticat x = 0. Someof theimportantpropertiesof J, are
discussedn the problems.Figure 5.8.1 shavs the graphsof y = J,(x) andsome of
thepartial sumsof theserieq(7).

To determiney, (x) we will calculatea,(0). The alternatve procedurein which we
simply substitutethe form (23) of Section5.7 in Eq. (2) andthen determinethe b,
is discussedn Problem 10. First we notefrom the coeficient of x' ™1 in Eq. (4) that
r+ 1)2a1(r) = 0. It follows that not only doesa,(0) = 0 bu also a;(0) = 0. It is
easyto deducerom therecurrenceelation(5) thatas (0) = ag(0) = - - - = a5,,1(0) =

-- = 0; hencewe needonly computea,,(0), m= 1, 2, 3,.... FromEq. (5) we have

a, (1) = —a,, )/ +2m)?, m=123,....
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FIGURE 5.8.1 Polynomialapproximationsto J,(x). The value of n is the degree of the
approximatingoolynomial.

By solvingthis recurrenceelationwe obtain

(=D)"Ma,
(r +22%r +42---(r +2m—2)2(r +2m)?’

() = m=123.... (8)

Thecomputationof a;,(r) canbe carriedout mostcorvenientlyby notingthatif
FOO = (X = ap)/i(x — ap)fa(x — agfs- - (x — o),
andif x isnotequalto a,, a,, .. ., o, then

(0 _ B B B

f(x) X—a; X—a, X — o,

Applying thisresultto a, () from Eq. (8) we find that

aom (1) ( 1 1 1 )
=2 —+—+ -+ :
a,,(r) r+2 r+4 r +2m

and,settingr equalto O, we obtain

Y ) S S
a(0) = 2[24-4+- -+2m}%mmy

Substitutingfor a,,(0) from Eq. (6), andletting

11 1
H o =1l+Z+=4 - +— 9
m=lts+g+o+ )

we obtain,finally,

(=D™Ma,

a'/2m(0) = Hm 22m(m!)2 ’

m=123....
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The secondsolutionof the Besselequationof order zerois found bysettinga, = 1
andsubstitutingfor y, (x) anday,,(0) = b,,,(0) in Eq.(23) of Section5.7. We obtain
(=)™ H,,
22M(mi)?
Insteadof y,, thesecondsolutionis usuallytaken to be acertainlinearcombination

of J, andy,. Itisknown asthe Bessefunctionof thesecondkind of orderzeroandis
denotedy Y,,. Following Copson(Chapterl12), we define"

Yo(X) = Jy(x) Inx + Z m y2m. X > 0. (10)

2
YO(X) = ;[YZ(X) +(y - In Z)Jo(x)] (11)
Here y is a constant,known as the Eule—Mascheroni(1750-1800) constant;it is
definedby the equation
y = r]Iim (H, —Inn) = 05772 (12)

Substitutingfor y,(x) in Eq. (11), we obtain

2 H™H
Yo (X) = - |:<y +1In g) Jo(X) + Z (22")‘(ml)2 2m:| , x > 0. (13)

Thegeneralsolutionof the Besselequationof orderzerofor x > 0 is
Y = C;Jp(X) + €, Yy(X).

Notethat J,(x) — 1 asx — 0 andthat Y,(x) hasalogarithmic singularityatx = 0O;
thatis, Y,(x) behaes as (2/7) In x whenx — 0 throughpositive values. Thusif we
areinterestedn solutionsof Bessels equationof orderzerothatarefinite attheorigin,
whichis often the case we mustdiscardY,. Thegraphsof thefunctionsJ, andY, are
shavnin Figure5.8.2.

It is interestingto notefrom Figure 5.8.2 thatfor x large both J,(x) andY,(x) are
oscillatory Suchabehaior might be anticipatedrom the original equation;jndeedit

y
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FIGURE 5.8.2 TheBessefunctionsof orderzero.

Botherauthorsuseotherdefinitionsfor Y,- The presenthoicefor Y, is alsoknown as the Weber (1842-1913)
function.
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is true for the solutionsof the Besselequationof orderv. If we dvide Ej. (1) by x2,
we obtain

/! + 1 / + 1 V2 _ 0
y xy 2 y=>0.
For x very large it is reasonabléo suspectthat the terms(1/x)y’ and (v?/x?)y are
smalland hencecanbe nglected.If thisis true,thenthe Besselequationof order v
canbeapproximatedy

y//+y=0'

The solutions of this equationare sin x and cos x; thuswe might anticipatethatthe
solutionsof Bessels equationfor large x aresimilar to linear combinationsof sin x

andcosx. Thisis correctinsofar asthe Bessefunctionsareoscillatory; however, it is

only partly correct.For x large thefunctions J, andY,, alsodecayasx increasesthus
the equationy” + y = 0 doesnot provide an adequateapproximationto the Bessel
equationfor large x, and a more delicateanalysisis required.In fact, it is possibleto

shaw that

2\ Y? T
Jy(x) = (H) cos(x — Z) as X — 00, (14)

andthat

1/2
Yo(x) = <n_2x) sin(x — %) as X — oo. (15)

Theseasymptoticapproximationsas x — oo, are actually very good.For example,
Figure 5.8.3 shaws that the asymptoticapproximation(14) to J,(x) is reasonably
accuratefor al x > 1. Thusto approximateJ,(x) over the entirerange fromzeroto

infinity, onecanusetwo or threetermsof the series(7) for x < 1 and the asymptotic
approximation(14)for x > 1.

1/2

Asymptotic approximation: y = (2/rmX)~“ cos(x — 174)

-1

FIGURE 5.8.3 Asymptoticapproximatiorto J,(x).
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BesselEquation of Order One-Half. This exampleillustratesthe situationin which
therootsof theindicial equationdiffer by a positive integer, but thereis nologarithmic
termin the secondsolution.Settingy = % in Eq. (1) gives

LIyl = x?y" +xy + (x*— )y =0. (16)
If we substituteheseries(3) for y = ¢ (r, xX), we obtain
LIl ) =D [+ +n—1)+ ¢ +n)—3]ax ™+ ax 2
n=0 n=0
=(?—Dagx" +[(r + D> — i]ax !
+2 ([0 +m? - {]a, +a, ) x " =0. (17)
n=2
Therootsof theindicial equationare r, = 1, r, = —3; hencethe roots differ by an
integer. Therecurrenceelationis
[r+n?—1]a, =-a, , n>2 (18)
Correspondingo thelargerrootr, = % efind from thecoeficientof x'** in Eq.(17)
that a1 0. Hence,from Eq. (18), a3 =a5=--- = a,, ., = --- = 0. Further for
r=3
a_»
=— , =2,4,6...,
& nin+1) :

or lettingn = 2m, we obtain

a2m—2
___ 2 —1.2.3.....
%m = " omem+ 1) m

By solvingthisrecurrenceelationwe find that

_ % _ %
az——g, a4—a,...
and,in general,
(DM,
mo@2m4+ D’ m 23,

Hencetakinga, = 1, we obtain

( l)m 2m B ( 1)mx2m+1
— y1/2 N 1/2
Y (X) = X [1+Z (2m+1)|} Z e X 0. (19)

Thepowerseriesn Eq.(19)is preciselythe Taylor seriesfor sin x; henceonesolution
of the Besselequationof orderone-halfis x /2 sinx. The Bessefunctionof thefirst
kind of orderone-half,J, ,, is defined s (2/7)"/?y,. Thus

1/2
J1 (%) = (ﬁ) sinx, x> 0. (20)
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Correspondingo the rootr, = —% it is possiblethat we may have difficulty in

computinga, sinceN =r, —r, = 1. However, from Eq. (17) forr = —3 the coef-
ficientsof X" andx"™* areboth zeroregardlessof the choiceof a, anda1 Hencea,
anda, canbechosenarbitrarily. From the recurrenceelation(18) we obtaina setof
even-numberedoefficientscorrespondingo a, andasetof odd-numberedoeficients
correspondingo a,. Thusno logarithmic termis neededo obtainasecondsolutionin
this caselt is left asanexerciseto shaw that,forr = —%,
_ (=Dy, (=D"a
T ey 0 T g pr

n=12....

Hence

n=|

COSX sinx
=a—— +a,—, X > 0. 21
8y X172 a X172 (21)

B 00 1)n 2n (_1)nx2n+1
Y200 =X 1/2[ Z 2n)! Z; 2n + 1)

Theconstang, simplyintroducesamultiple of y, (x). Thesecondinearlyindependent
solutionof the Besselequationof orderone-halfis usuallytaken to be the solutionfor

whicha, = (2/7)"? anda, = 0. It is denotedby J_y/,- Then

1/2
J_l/z(x) = (ﬁ) COSX, X > 0. (22)

Thegeneralsolutionof Eq. (16)isy = €;J; ,(X) + C;J_; ,(X).

By comparingEgs. (20) and(22) with Egs.(14) and(15) we seethat, exceptfor a
phaseshift of 7 /4, thefunctionsJ_, , andJ, , resemble], and,, respectiely, for
large x. Thegraphsof J, , andJ_, , areshown in Figure5.8.4.
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FIGURE 5.8.4 TheBessefunctionsJ, , andJ_, ,.
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BesselEquation of Order One. This exampleillustratesthe situationin which the
roots of the indicial equationdiffer by a positive integer and the second solution
involvesalogarithmicterm.Settingv = 1 in Eq. (1) gives

LIy] = x3y" +xy' + (x* — 1)y = 0. (23)

If we substitutethe series(3) for y = ¢ (r, X) and collect termsas in the preceding
caseswe obtain

LIgl(r, X) = a,(r? — DX +a,[(r + )% — 1]x"**
+ ) ([ +m? —1]a, +a, X" =0. (24)
n=2

Therootsof theindicial equationarer, = 1 andr, = —1. Therecurrenceelationis

[(r +m?—1]a () = —a, ,(), n>2. (25)
Correspondingo thelargerrootr = 1 therecurrenceelationbecomes

a >
=— , n=23,4,....
& n+2)n

We also find from the coeficient of x"*! in Eq. (24) that a, = 0; hencefrom the
recurrenceelationa, = a; = - -- = 0. For even valuesof n, let n = 2m; then

Hm_2 BHm_2
_ - _ =1,23,....
8om (2m + 2)(2m) 22(m+ 1)m’ m=123,

By solvingthisrecurrenceelationwe obtain
_ (=D7a,
™ 22"(m 4+ im!’

TheBessefunctionof thefirstkind of orderone denoteddy J, , isobtainedy choosing
a, = 1/2.Hence

m=123,.... (26)

X 00 (_1)mx2m
50 =5 2 P i “

m=0
Theseriesconvergesabsolutelyfor al x, so thefunction J, is analyticeverywhere.

In determininga secondsolutionof Bessels equationof orderone,weillustratethe
methodof directsubstitution The calculationof thegenerakermin Eq. (28) belav is
rathercomplicatedput thefirstfew coeficientscanbe foundfairly easily According
to Theoremb.7.1we assumehat

Y,(X) =ad () Inx +x7* [1 + Z cnx”i| , X > 0. (28)
n=1

Computingy,(x), Y, (x), substitutingin Eq. (23), and makinguseof thefactthat J, is
asolution of Eq. (23) give

2axJ;(x) + Y [N = D(n=2¢, + (N =D, — ¢ Ix" "+ > ¢ x" =0, (29)
n=0 n=0
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wherec, = 1. Substitutingfor J, (x) from Eq. (27), shifting theindicesof summation
in thetwo series and carryingout several stepsof algebragive

o0
—¢, +[0- ¢, +clx + Z [(n? = D, + ¢, 41X
n=2

00 4\m 2m+1
=—a[x+2( HM@2m + 1)x } (30)
m=1

2’"(m+1)! m!

FromEqg. (30) we obsere first thatc, = 0, anda = —c, = —1. Further sincethere
areonly odd powersof x on theright, the coeficient of eachevenpower of x onthe
left mustbe zero.Thus,sincec, = 0, we have ¢c; = ¢; = - - - = 0. Correspondingo
theoddpowersof x we obtaintherecurrenceelation[letn = 2m + 1 in theserieson
theleft side of Eq. (30)]

(-HM@m+1)
22" (m+1)!mt’
Whenwe setm = 1in Eq. (31), we obtain

[(2m+ 1)% — 1]Cyp,» + Com = m=123.... (31)

(3 -1, +c, = (-1)3/(2%- 2)).

Noticethatc, canbe selectedarbitrarily, and thenthis equationdeterminesc,. Also
noticethatin the equationfor the coefficient of x, ¢, appearednultiplied by 0, and
thatequationwasusedto determinea. That ¢, is arbitraryis not surprising,sincec,

o0
is the coefiicient of x in the expressionx 1[1 + 3 c,x"]. Consequentlyc, simply

n=1
generates multiple of J;, and y, is only determinedup to an additive multiple of J, .
In accordwith the usualpracticewe choosec, = 1/22. Thenwe obtain

-1 13 -1 1
=—|=-+1|=—0|(1+= 1
Ca 2“.2[ZJr } 2421 [( +2)+ }
=D, H
ST
It is possibleto show thatthe solutionof therecurrenceelation(31) is
M 22 mi(m — 1!

with theunderstandinghatH, = 0. Thus

s m=12,...

_ 1 S CD"Hn+ Ho ) o
yZ(X) = —Jl(X) Inx + ; |:1 - Z 22mm!(m _ 1)! X

m=1

}, x>0. (32

The calculationof y,(x) using the alternatve procedure[seeEgs. (19) and (20)
of Section5.7] in which we determinethe ¢, (r,) is slightly easierIn particularthe
latter procedureyields the generaformulafor c,,, without the necessityof solvinga
recurrenceelationof the form(31) (seeProblem11). In this regard the readermay
alsowish to comparethe calculationsof the secondsolutionof Bessels equationof
orderzeroin thetext andin Problem10.
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The secondsolution of Eq. (23), the Besselfunction of the secondkind of order
one,Y,, is usually taken to be acertainlinear combinationof J, andy,. Following
Copson(Chapterl2), Y, is definedas

2
Y (X) = ;[—VZ(X) + (y —In2)J, ()], (33)
wherey is definedin Eg. (12). Thegenerakolution of Eq. (23)for x > O is
y =¢;J;(X) +¢,Y,(X).

Noticethatwhile J, is analyticatx = 0, thesecondsolutionY; becomesinboundedn
thesamemanneras 1/x asx — 0. Thegraphsof J, andY, areshown in Figure5.8.5.
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FIGURE 5.8.5 TheBessefunctionsJ, andY,.

PROBLEMS  In eachof Problemsl through4 show thatthegiven differentialequationhasa regularsingular
—  pointatx = 0, anddeterminetwo linearly independergolutionsfor x > O.
1. X2y +2xy +xy=0 2 X%y 4+3xy + 1+ x)y=0
3. X%y +xy +2xy=0 4. X2y +4xy' + (2+X)y =0

5. Findtwo linearlyindependersolutionsof the Bessekquationof order 2,
X2y +xy + (x* - 9y =0, x > 0.

6. Shav thatthe Besselkquationof orderone-half,

X2y +xy + (x* - Hy =0, x>0,

canbereducedo the equation
vV +v=0

by the changeof dependentariabley = x~Y?v(x). From this concludethat Y, (X) =
x~ Y2 cosx andy,(x) = x/?sinx aresolutionsof the Bessekquationof orderone-half.
7. Shaw directly thatthe seriesfor J,(x), Eqg. (7), corvergesabsolutelyfor all x.
8. Shaw directly thatthe seriesfor J, (x), Eq. (27), convergesabsolutelyfor al x andthat
Jo(x¥) = =3, (¥).



