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CHAPTER 1

Curves

1. Examples, Arclength Parametrization

We say a vector functioh (a, b) — R3is €% (k = 0,1,2,...) if f and its firstk derivativesf’, f’, ...,
(k) exist and are all continuous. We skig smoothif f is c* for every positive integek. A parametrized
curveis aC? (or smooth) ma: I — R3 for some interval = (a,b) or [a, b] in R (possibly infinite). We
saya isregularif a’(r) # Oforall 7 € I.

We can imagine a particle moving along the pathwith its position at time given bya(z). As we

learned in vector calculus,
do ot +h) —alt
o' (t) = — = lim alt +h)—al)
dt h—0 h
is thevelocityof the particle at time. The velocity vectow’(¢) is tangent to the curve at(r) and its length,

le’()]], is the speed of the particle.

Example 1. We begin with some standard examples.

(a) Familiar from linear algebra and vector calculus is a parametrized line: Given poiatsl Q in
R3, we letv = @ = @Q — P and seix(t) = P +tv,t € R. Note thate(0) = P, (1) = Q,
and for0 < ¢ < 1, a(¢) is on the line segmen® Q. We ask the reader to check in Exercise 8 that of
all paths fromP to Q, the “straight line path& gives the shortest. This is typical of problems we

shall consider in the future.
(b) Essentially by the very definition of the trigopnometric functions cos and sin, we obtain a very natural
parametrization of a circle of radius as pictured in Figure 1.1(a):

a(r) = a(cost,sint) = (acost,asint), 0<t <2x.

a cogt, a sint)
(a cogt, b sint)

t
b
!
~—a— \\«—a—»

(@) (b)

FIGURE1.1
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(c) Now, ifa,b > 0 and we apply the linear map
T:R?> - R2, T(x,y) = (ax,by),

we see that the unit circte? +y2 = 1 maps to the ellipse?/a>+y?/b? = 1. SinceT (cost, sint) =
(a cost, b sint), the latter gives a natural parametrization of the ellipse, as shown in Figure 1.1(b).
(d) Consider the two cubic curves R? illustrated in Figure 1.2. On the left is thmuspidal cubic

=tx

Y234 X2

y2=x3

(@) (b)
FIGURE1.2

y2 = x3, and on the right is theodal cubicy? = x34x2. These can be parametrized, respectively,
by the functions

at)= (%1% and  «() = (% —1,1(:2 - 1)).

(In the latter case, as the figure suggests, we see that the liaerx intersects the curve when
(tx)?> = x2(x + 1), s0x = 0orx =12 —1.)

FIGURE1.3
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(e) Now consider théwisted cubidn R3, illustrated in Figure 1.3, given by
a(t) = (t,1%,13), teR.

lts projections in thexy-, xz-, and yz-coordinate planes are, respectively= x2, z = x3, and
z2 = y3 (the cuspidal cubic).

(f) Our next example is a classic called thgcloid It is the trajectory of a dot on a rolling wheel
(circle). Consider the illustration in Figure 1.4. Assuming the wheel rolls without slipping, the

“

O

FIGURE1.4

distance it travels along the ground is equal to the length of the circular arc subtended by the angle
through which it has turned. That is, if the radius of the circle and it has turned through angle
t, then the point of contact with the-axis, Q, isat units to the right. The vector from the origin to

dh

C T
P t>a cost
P"a”éi’rif'/

FIGURE1.5

the pointP can be expressed as the sum of the three ve@)sQ—C), andag (see Figure 1.5):
0P =00 + 0C +CP
= (at,0) + (0,a) + (—asint, —a cost),
and hence the function
a(t) = (at —asint,a —acost) = a(t —sint,1 —cost), t€R

gives a parametrization of the cycloid.

(g) A (circular) helix is the screw-like path of a bug as it walks uphill on a right circular cylinder at a
constant slope or pitch. If the cylinder has radiusnd the slope i%/a, we can imagine drawing a
line of that slope on a piece of pap®ta units long, and then rolling the paper up into a cylinder.
The line gives one revolution of the helix, as we can see in Figure 1.6. If we take the axis of the
cylinder to be vertical, the projection of the helix in the horizontal plane is a circle of radiaisd
SO0 we obtain the parametrizatiesir) = (a cost, a sint, bt).
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—
—

2ma

2nh

FIGURE 1.6

Brief review of hyperbolic trigonometric functions. Just as the circle? + y? = 1 is parametrized
by (cos#, sinf), the portion of the hyperbola? — y? = 1 lying to the right of they-axis, as shown
in Figure 1.7, is parametrized jgoshr, sinh¢), where

t —t t ot
cosht = % and sinhy = & 2e

sinht 1
By analogy with circular trigonometry, we set tanee —— and sech = ——. The followin
y 9y g y coshr coshr 9

/(cosh t, sinh-

FIGURE1.7

formulas are easy to check:

cosit ¢t —sinktz =1, tankt 7 +seclHr =1

sinH (1) = coshy, cosh(z) = sinht, tanH(r) = secH ¢, secl(r) = —tanhr sechy.
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(h) When a uniform and flexible chain hangs from two pegs, its weight is uniformly distributed along
its length. The shape it takes is called¢atenary! As we ask the reader to check in Exercise 9,
the catenary is the graph ¢f(x) = C cosh(x/C), for any constanC > 0. This curve will appear

FIGURE1.8

numerous times in this course. \Y

Example 2. One of the more interesting curves that arise “in nature” istthetrix.>2 The traditional
story is this: A dog is at the end oflaunit leash and buries a bone (@t 1) as his owner begins to walk
down thex-axis, starting at the origin. The dog tries to get back to the bone, so he always pulls the leash
taut as he is dragged along the tractrix by his owner. His pulling the leash taut means that the leash will be
tangent to the curve. When the master igza0), let the dog’s position béx(z), y(¢)), and let the leash

¢(0,1)

(x,y)

FIGURE1.9

make angleé (¢) with the positivex-axis. Then we have () = ¢ + cosf(t), y(t) = sinf(¢), so

dy ()  cosh(t)d' ()

tanf(t) = — = = :
anb) = 0 =T = T=sn8e ()

Therefore,0’(t) = sinf(¢). Separating variables and integrating, we hgwéd/siné = [ dr, and so

t = —In(csch + cotf) + ¢ for some constant. Sincef = x/2 whent = 0, we see that = 0. Now,
1 + cos# 2 cos?(6/2) L
. = — = cot(6/2), we can rewrite this as= Intan(8/2).
siné 2sin(6/2) co96/2) 16/2) 6/2)
Thus, we can parametrize the tractrix by

«(f) = (cost + Intan(6/2),sinf), 7/2<6 <.

since csd® + cotf =

lFrom the Latincat'enachain.
2From the Latirtrahere, tractusto pull.
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Alternatively, since ta(@/2) = ', we have

. _ 2¢! 2
sinf = 2sin(6/2) co96/2) = T = e = secht
. 1—e?t et —¢f
cosh = co(0/2) —sin?(6/2) = il —tanht,

and so we can parametrize the tractrix instead by
B(r) = (¢ —tanhz, secty), ¢ > 0. v
The fundamental concept underlying the geometry of curves is the arclength of a parametrized curve.

Definition. If a:[a,b] — R? is a parametrized curve, then for amy< ¢ < b, we define itsarclength
t

from a to ¢ to bes(r) = le’(u)||du. That is, the distance a particle travels—the arclength of its
trajectory—is the integral of its speed.

An alternative approach is to start with the following

Definition. Letea: [a,b] — R3 be a (continuous) parametrized curve. Given a partifica {a = 1o <
f1 <--- <ty = b} of the intervalla, b], let

k
Lo, P) =) flee(ti) —ati-1)|l-
i=1

That is,£(e, P) is the length of the inscribed polygon with verticesdt;), i = 0, ..., k, as indicated in

the length of this polygonal

Given this partition, P, of [a, b], .
path is £(e, P).

FIGure1.10

Figure 1.10. We define therclengthof « to be
lengthlee) = supil(ee, P) : P a partition offa, b]},
provided the set of polygonal lengths is bounded above.

Now, using this definition, we caprovethat the distance a particle travels is the integral of its speed.
We will need to use the result of Exercise A.2.4.



§1. EXAMPLES, ARCLENGTHPARAMETRIZATION 7

Proposition 1.1. Leta: [a, b] — R be a piecewis€-' parametrized curve. Then

b
length(er) :/ o/ (1) dt.

Proof. For any partition® of [a, b], we have

t
/ o (1)dt
ti—1
b

so lengtlfer) < / e’ (t)||dt. The corresponding inequality holds on any interval.

k

k
. P) =) lle) —ali-)ll =)
i=1

i=1

k t; b
=3[ leold = [ leolar,
i=1v%i—1 a

Now, fora fal‘ < b, defines(¢) to be the arclength of the cureeon the intervala, ¢t]. Then fork > 0
we have
lec +h) —a@] _se+h)—s@) 1 [
h - h “hJ;
sinces(t + h) — s(¢) is the arclength of the curwe on the intervalz, ¢ + h]. (See Exercise 8 for the first
inequality and the first paragraph for the second.) Now

o e+ —a@]
h—0+ h

llee’ )| du,

1 t+h
/ L - /
") = th+ h/, lloe” (u) | du.
Therefore, by the squeeze principle,

im s(t 4+ h)—s(t) _
h—0+ h

lle” (D)1

A similar argument works fok < 0, and we conclude that(z) = ||e’(¢)||. Therefore,

t
s<z)=/ I Go)lldu, a<it<b,
a

b
and, in particulars(b) = length(er) = / llo/ ()| dt, as desired. O
a

If |e’()|| = 1 forallz € [a,b],ie., a aways has speet] thens(r) = r — a. We say the curve is
parametrized by arclengtti s(z) = ¢ for all z. In this event, we usually use the parametet [0, L] and
write e (s).

Example 3.  (a) Leta(r) = (3(1 +1)¥2, 11 - 1)3/2, %l),l € (—=1,1). Then we have/(¢) =

G+ -1 -n'2, %) and||a’(¢)|| = 1 for all t. Thus,a always has speed
(b) The standard parametrization of the circle of radius «(r) = (acost,asint), t € [0,2x],

soa’(t) = (—asint,acost) and ||e’(z)|| = a. It is easy to see from the chain rule that if
we reparametrize the curve 8(s) = (acods/a),asin(s/a)), s € [0,2ra], then B'(s) =
(—sin(s/a),coss/a)) and ||B’(s)|| = 1 for all s. Thus, the curves is parametrized by arc-

length. \Y%
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An important observation from a theoretical standpoint is that any regular parametrized curve can be
t
reparametrized by arclength. Fordfis regular, the arclength functiorir) = / o’ (u) | du is an increas-

a
ing differentiable function (sinc&'(r) = |le’(z)|| > 0 for all ¢), and therefore has a differentiable inverse
functiont = t(s). Then we can consider the parametrization

B(s) = a(t(s)).
Note that the chain rule tells us that
B'(s) = &' (t(s))t'(s) = &(¢(5)) /5" (t(s)) = &' (t(s))/ll&’ (t(s))

is everywhere a unit vector; in other worggsmoves with speed.
EXERCISES 1.1

*1. Parametrize the unit circle (less the pointl, 0)) by the lengthr indicated in Figure 1.11.

(x.y)

(-1,0)

FIGURE1.11

#2.  Consider the helix(r) = (a cost,a sint, br). Calculatea’(r), ||a’(¢)||, and reparametrize by arc-
length.

_ (L 1 ogn, L 1 cosr— L g ' ' _
3. Le_t“(t) = (\/5 COSt + —=SiN#, —= COSI, —= COSt — —= sint). Calculatex/(7), [/ ()], and reparam
etrizea by arclength.

*4. Parametrize the graph = f(x),a < x < b, and show that its arclength is given by the traditional

formula ,
Iength:/ V1+ (f(0))dx.

5. a. Show that the arclength of the catenafy) = (¢, coshr) for 0 < ¢ < b is sinhb.
b. Reparametrize the catenary by arclength. (Hint: Find the inverse of sinh by using the quadratic
formula.)

*6. Consider the curve(t) = (¢!, e, v/2t). Calculatea’(¢), ||a’(¢)|, and reparametrize by arclength,
starting att = 0.
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7.

tg.

10.

9

Find the arclength of the tractrix, given in Example 2, startin¢pat) and proceeding to an arbitrary
point.

Let P, Q € R? and leta: [a,h] — R3 be any parametrized curve with(a) = P, a(b) = Q. Let
v = Q — P. Prove that lengtte) > ||v|, so that the line segment from to Q gives the shortest
b

possible path. (Hint: Considef «’(¢) - vdt and use the Cauchy-Schwarz inequalityv < ||u|||v]|.

Of course, with the alternative definition on p. 6, it's even easier.)

Consider a uniform cable with densityhanging in equilibrium. As shown in Figure 1.12, the tension
forcesT(x + Ax), —T(x), and the weight of the piece of cable lying oJet x + Ax] all balance.
If the bottom of the cable is at = 0, Ty is the magnitude of the tension there, and the cable is

;c X +§Ax
FIGURE1.12

the graphy = f(x), show thatf/” (x) = i—g\/l + f’(x)2. (Remember that tath = f’(x).) Letting
0

du
C =Ty/g6, showthatf (x) = C coshx/C)+c for some constant. (Hint: To integrate| —,
/g W tf ( )_ hx/C) ( g N
make the substitutiom = sinhv.)
As shown in Figure 1.13, Freddy Flintstone wishes to drive his car with square wheels along a strange

road. How should you design the road so that his ride is perfectly smooth, i.e., so that the center of his
wheel travels in a horizontal line? (Hints: Start with a square with verticés-at+1), with center

FIGURE1.13

C at the origin. Ifa(s) = (x(s), y(s)) is an arclength parametrization of the road, startingDat1),
consider the vectoOC = OP + PQ + QC, whereP = «(s) is the point of contact an@ is the
midpoint of the edge of the square. U8# = sa’(s) and the fact tha@ C is a unit vector orthogonal to
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V().

@D). Express the fact tha& moves horizontally to show that= ———; you will need to differentiate
XS

unexpectedly. Now use the result of Exercise 4 to fing f(x). Also see the hint for Exercise 9.)

(t.tsin(z/t)), t#0
(0,0), =0
£(a, Py) with Py = {0,1/N,2/2N —1),1/(N —1),...,1/2,2/3,1}.)

11. Show that the curve(r) = has infinite length orf0, 1]. (Hint: Consider

12. Prove that no four distinct points on the twisted cubic (see Example 1(e)) lie on a plane.

13. Consider the “spiralé(r) = r(z)(cost, sint), wherer is ! and0 < r(r) < 1 for all t > 0.

a. Show that itx has finite length 010, co) andr is decreasing, then(zr) — 0 ast — oo.

b. Showthatifr(z) = 1/(t + 1), thena has infinite length o0, co).

c. Ifr(t) =1/(t + 1)?, doesa have finite length off0, oc)?

d. Characterize (in terms of the existence of improper integral(s)) the functiémswhich & has
finite length on[0, co).

e. Use the result of part d to show that the result of part a holds even without the hypothesisehat
decreasing.

14. (a special case of a recefmerican Mathematical Monthlgroblem) Suppose:[a,b] — R? is a
smooth parametrized plane curve (perhaps not arclength-parametrized). Prove that if the chord length
llee(s) — ee(2)|| depends only ors — ¢|, thenae must be a (subset of) a line or a circle. (How many
derivatives ofx do you need to use?)

2. Local Theory: Frenet Frame

What distinguishes a circle or a helix from a line is theurvature i.e., the tendency of the curve to
change direction. We shall now see that we can associate to each s@taihc{ength-parametrized curve
o a natural “moving frame” (an orthonormal basis ®*t chosen at each point on the curve, adapted to the
geometry of the curve as much as possible).

We begin with a fact from vector calculus that will appear throughout this course.

Lemma 2.1. Supposd, g: (a,b) — R3 are differentiable and satisfyt) - g(t) = constfor all t. Then
f'(t)-g(t) = —f(¢) - g (¢). In particular,

If(t)]| = const ifand only if f(r)-f'(r) =0 forallt.

Proof. Since a function is constant on an interval if and only if its derivative is zero everywhere on that
interval, we deduce from the product rule,
-9/ =1@)-90) +11)-d @),
that if f - g is constant, theh- g’ = —f’- g. In particular,||f|| is constant if and only ifif||> = f - f is constant,
and this occurs ifand only if- f = 0. O

Remark. This result is intuitively clear. If a particle moves on a sphere centered at the origin, then
its velocity vector must be orthogonal to its position vector; any component in the direction of the position
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vector would move the particle off the sphere. Similarly, supp@selg have constant length and a constant
angle between them. Then in order to maintain the constant andléu@ms towardg, we see thafj must
turn awayfrom f at the same rate.

Using Lemma 2.1 repeatedly, we now constructRrenet frameof suitable regular curves. We assume
throughout that the curwe is parametrized by arclength. Then, for starterss) is theunit tangent vector
to the curve, which we denote Bly(s). SinceT has constant lengthl’(s) will be orthogonal toT (s).
AssumingT’(s) # 0, define theprincipal normal vectomN(s) = T'(s)/||T'(s)|| and thecurvaturex(s) =
IT'(s)||. So far, we have

T'(s) = k(s)N(s).
If k(s) = 0, the principal normal vector is not defined. Assumingt 0, we continue. Define thieinormal
vectorB(s) = T(s) x N(s). Then{T(s), N(s), B(s)} form a right-handed orthonormal basis #®f.

Now, N’(s) must be a linear combination @f(s), N(s), andB(s). But we know from Lemma 2.1 that
N’(s)-N(s) = 0andN’(s)-T(s) = —T'(s)-N(s) = —«(s). We define theorsionz(s) = N’(s)-B(s). This
gives us

N'(s) = —k(s)T(s) 4+ t(s)B(s).
Finally, B’(s) must be a linear combination @f(s), N(s), andB(s). Lemma 2.1 tells us th&/(s)-B(s) = 0,
B'(s) - T(s) = —T'(s) - B(s) = 0, andB’(s) - N(s) = —N'(s) - B(s) = —1(s). Thus,

B'(s) = —t(s)N(s).

In summary, we have:

Frenet formulas

T'(s) = K (s)N(s)
N'(s) = —k(s)T(s) + 1(s5)B(s)
B'(s) = —1(s)N(s)

The skew-symmetry of these equations is made clearest whestateethe Frenet formulas in matrix
form:

| | | | | | 0 —«(s) O
T'(s) N'(s) B'(s) | = T(s) N(s) B(s) k() 0 —1(s)
| | | | | | 0 s) O

Indeed, note that the coefficient matrix appearing on the right is skew-symmetric. This is the case whenever
we differentiate an orthogonal matrix depending on a parametartfiis case). (See Exercise A.1.4.)

Note that, by definition, the curvature, is always nonnegative; the torsion,however, has a sign, as
we shall now see.

Example 1. Consider the helix, given by its arclength parametrization (see Exercise &&)2)=
(acogs/c),asin(s/c),bs/c), wherec = v/a? + b? anda > 0. Then we have

T(s) = %(—a sin(s/c),a cogs/c), b)
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T(s) = Ciz(—a cos(s/c),—a sin(s/c),O) = Ca_z (— Cos(s/c),—sin(s/c),O) .
K(s) N(s)

Summarizing,
. a
"~ a? + b2

Now we deal withB and the torsion:

K(s) = Ca—z and  N(s) = (—cos(s/c). —sin(s/c). 0).

B(s) = T(s) x N(s) = %(b sin(s/c).—b cogs/c),a)

B'(s) = Ciz(b Cos(s/c),bsin(s/c),O) = —Cb—zN(s),
: b b

so we infer that (s) = 2= P | o B N

Note that both the curvature and the torsion are constants. The torsion is positive when the helix is
“right-handed” ¢ > 0) and negative when the helix is “left-handed’ & 0). It is interesting to observe
that, fixinga > 0, asb — 0, the helix becomes very tightly wound and almost planar, and 0; as
b — o0, the helix twists extremely slowly and looks more and more like a straight line on the cylinder and,
once againz — 0. As the reader can check, the helix has the greatest torsion ivken; why does this
seem plausible?

In Figure 2.1 we show the Frenet frames of the helix at some sample points. (In the latter two pictures,

BT
N
B
T =N
T I B
B
N N

FIGURE2.1

the perspective is misleading, N, B still form a right-handed frame: In the thirdl,is in front of N, and in
the last,B is pointing upwards and out of the page.)V

We stop for a moment to contemplate what happens with the Frenet formulas when we are dealing with
anonarclength-parametrized, regular cueweAs we did in Section 1, we can (theoretically) reparametrize
by arclength, obtaining (s). Then we havec(t) = B(s(¢)), so, by the chain rule,

() o' (1) = B'(s()s' (1) = v(O)T (s(1)),
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wherev(r) = s(t) is the speed. Similarly, by the chain rule, once we have the unit tangent vector as a
function of¢, differentiating with respect tg, we have

(Tos) (1) = T'(s(1))s" () = v()x(s(1))N(s(2)).
Using the more casual—but convenient—Leibniz notation for derivatives,

4T 4T 14T

dT dTds
= = vkN or KN—X— Q EW

dr — dsdr
Example 2. Let’s calculate the curvature of the tractrix (see Example 2 in Section 1). Using the first
parametrization, we hawg () = (—sinf + cscf, cost), and so

v(0) = ||’ (0)| = \/(— sinf + csch)? + cog § = Vcs@ 6 — 1 = —coth.

(Note the negative sign becau%ef 0 < =.) Therefore,

T(O) = —ﬁ(— sin 6 + csch, cosd) = —tanf(cotd cosh, cosd) = (—cosh, —sing).

Of course, looking at Figure 1.9, we should expect the formulaTforThen, to find the curvature, we

calculate

_dT 9 (sn6.—cost)
ds 3_5 —cotf

Since—tanf > 0 and(sin8, — cos0) is a unit vector we conclude that

kN = (—tanf)(sinf, —cosh).

k(f) = —tanf and N(6) = (sinf, — cosh).

Later on we will see an interesting geometric consequence of the equality of the curvature and the (absolute
value of) the slope. V

Example 3. Let’s calculate the “Frenet apparatus” for the parametrized curve
a(t) = (3t —13,3t2,3t +13).
We begin by calculating’ and determining the unit tangent vecioand speeda:

o (1) = 3(1 —12,2t,1 + 1?), SO

v(t) = /O] = 3y/(1 = 12)2 + 202 + (1 + 22 = 3,21 +12)2 = 3v/2(1 + 1) and

1 [1—¢% 2t
1—-226,1+1t)) = —|——, ——,1]).
( T ﬁ(1+z2 1+1¢2 )

1
T(t):¢_51+t2

Now
dT
_dT _ 4T 1t
ds % v(t) dt

B 1 L( —4t  2(1—1?) o)
T 3V2(1+12) V2 \ (1 +12)27 (1 +12)?

3v is the Greek lettempsilon not to be confused with, the Greek lettenu.

«N
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B 1 1 2 ( 2t 1-1? o)
T 3201+ V2 1+2\ 1421427 )
K N

Here we have factored out the length of the derivative vector and left ourselves with a unit vector in its
direction, which must be the principal normid} the magnitude that is left must be the curvatureln

summary, so far we have
2t 1—12
and N(¢t)=|(—-———,——.,0].
® ( 141271412 )

k() = —3(1 T

Next we find the binormaB by calculating the cross product

1 1-12 2
B() = T(1) x N(t) = 72(_1+22’_1+th’1)’

And now, at long last, we calculate the torsion by differentiafing

B 2 1 4B

—‘[N:—: = — —
d
d ds — u(r) dt
_ 1 1( 4t 2(t2 - 1) o)
3V2(14+12) V2 \ (1 +12)2" (1 +12)%’
_ 1 2 1=
31422\ 1421 41277)
T N
1

Now we see that curvature enters naturally when we compute the acceleration of a moving particle.
Differentiating the formulax) on p. 12, we obtain

() = V'(OT(s(1)) + v T (s(2))s"(2)
= V' (OT(s(1)) + v(0)* (. (s()N(s(1))).
Suppressing the variables for a moment, we can rewrite this equation as
(%) o’ = v'T +kv>N.

The tangential component of acceleration is the derivative of speed; the normal component (the “centripetal
acceleration” in the case of circular motion) is the product of the curvature of theapdthe square of the
speed. Thus, from the physics of the motion we can recover the curvature of the path:

lloc” > "

Proposition 2.2. For any regular parametrized cureewe havec = T4E
o

Proof. Sincea’ xa” = (vT) x (V'T +«v2N) = «v3T x N andkv? > 0, we obtainkv? = [’ x ||,
and s« = ||’ x a||/v3, as desired. O

We next proceed to study various theoretical consequences of the Frenet formulas.

Proposition 2.3. A space curve is a line if and only if its curvature is everywhere



§2. LOCAL THEORY: FRENETFRAME 15

Proof. The general line is given by(s) = sv + ¢ for some unit vectov and constant vectar. Then
a'(s) = T(s) = vis constant, s&« = 0. Conversely, ifc = 0, thenT(s) = Ty is a constant vector,

N

and, integrating, we obtaia(s) = / T(u)du + a(0) = sTo + «(0). This is, once again, the parametric
0

equation of a line. O

Example 4. Suppose all the tangent lines of a space curve pass through a fixed point. What can we
say about the curve? Without loss of generality, we take the fixed point to be the origin and the curve to be
arclength-parametrized ly Then there is a scalar functidnso that for every we havex (s) = A(s)T (s).
Differentiating, we have

T(s) =a/(s) = M ()T(s) + A)T'(s) = ()T (s) + A(s)k(s)N(s).

Then(A'(s) — DT (s) + A(s)x(s)N(s) = O, s0, sinceT (s) andN(s) are linearly independent, we infer that
A(s) = s + ¢ for some constant andk (s) = 0. Therefore, the curve must be a line through the fixed point.
\Y

Somewhat more challenging is the following

Proposition 2.4. A space curve is planar if and only if its torsion is everywheéreThe only planar
curves with nonzero constant curvature are (portions of) circles.

Proof. If a curve lies in a plané’, thenT(s) andN(s) span the plan&, parallel to? and passing
through the origin. Thereford®@ = T x N is a constant vector (the normal &), and soB’ = —tN = 0,
from which we conclude that = 0. Conversely, ift = 0, the binormal vectoB is a constant vectds.
Now, consider the functiorf'(s) = a(s) - Bg; we havef’(s) = a'(s) - Bg = T(s) - B(s) = 0, and so
f(s) = c for some constant. This means that lies in the plane<- By = c.
We leave it to the reader to check in Exercise 2a. that a circle of radnas constant curvaturg/a.
(This can also be deduced as a special case of the calculation in Example 1.) Now suppose a plagar curve

1
has constant curvatukg. Consider the auxiliary functiof(s) = a(s) + —N(s) Then we haved’(s) =
Ko
o (s) + —( ko(s)T(s)) = T(s) — T(s) = 0. ThereforeB is a constant function, sg§(s) = P for all s.
Now we clalm thatx is a (subset of a) circle centeredfaffor |a(s) — P|| = |je(s) — B(s)|| = 1/ko. O

We have already seen that a circular helix has constant curvature and torsion. We leave it to the reader
to check in Exercise 10 that these are the only curves with constant curvature and torsion. Somewhat more
interesting are the curves for whielix is a constant.

A generalized helixs a space curve with # 0 all of whose tangent vectors make a constant angle with
a fixed direction. As shown in Figure 2.2, this curve lies on a generalized cylinder, formed by taking the
union of the lines (rulings) in that fixed direction through each point of the curve. We can now characterize
generalized helices by the following

Proposition 2.5. A curve is a generalized helix if and onlydfk is constant.

Proof. Supposex is an arclength-parametrized generalized helix. Then there is a (constant) unit vector
A with the property thal - A = cosf for some constari. Differentiating, we obtaimN - A = 0, whence
N - A = 0. Differentiating yet again, we have

(1) (—«xT +tB)-A = 0.
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FIGURE2.2

Now, note thatA lies in the plane spanned Ay andB, and thusB - A = +sinf. Thus, we infer from
equation t) thatt/x = + cotf, which is indeed constant.

Conversely, ift/k is constant, set/k = cotf for some anglé € (0, 7). SetA(s) = cosOT(s) +
sinfB(s). ThenA’(s) = (x cosf — tsinf)N(s) = 0, SOA(s) is a constant unit vectok, andT(s) - A =
cosf is constant, as desired.

Example 5. In Example 3 we saw a curwe with k = 7, so from the proof of Proposition 2.5 we see

. 1
that the curve should make a constant artjle- /4 with the vectorA = —2(T + B) = (0,0,1) (as

should have been obvious from the formula Torelone). We verify this in Figure 2.3 by drawingalong
with the vertical cylinder built on the projection afonto thexy-plane. V

FIGURE2.3
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The Frenet formulas actually characterize the local picture of a space curve.

Proposition 2.6(Local canonical form) Leta be a smooth@® or better) arclength-parametrized curve.
If 2(0) = O, then fors near0, we have

2 I
as) = (s—’%os3 —I—) T(0) + (1%052 + I%Os3 -|-) N(0) + (KO%Q +) B(0).

(Herexy, to, andk,, denote, respectively, the valueskofr, andk’ at0, andlim ... /s3=0.)

s—0

Proof. Using Taylor's Theorem, we write
1 1
a(s) = a(0) + sa’(0) + Eszcx”(O) + 6s3cc/”(0) +...,

where Iirr(}.../s3 = 0. Now, x(0) = 0, &’(0) = T(0), anda”(0) = T'(0) = koN(0). Differentiating
s—

again, we have’'(0) = (kN)'(0) = «xyN(0) + ko(—«oT(0) + 70B(0)). Substituting, we obtain

a(s) = sT(0) + %szon(O) + és3 (—.3T(0) + kyN(0) + koT0B(0)) + . ..

2 /
—[s— %03 Ko 2 Ko 3 KoTo 3
—<s s —|—...)T(O)+(2s + s +...)N(0)+( s +...)B(0),

as required. O

We now introduce three fundamental plane®at «(0):
(i) the osculating planespanned by (0) andN(0),
(ii) the rectifying plane spanned by (0) andB(0), and
(i) the normal plane spanned by (0) andB(0).
We see that, locally, the projectionsainto these respective planes look like
() (u—3/6u> + ..., (ko/2)u?* + (ky/6)u® + ...)
(i) (u—(kg/6)u® +....(koT0/6)u> +...),and
(iii) ((ko/2u? + (kp/6)u> + ... (KoTo/O)U> +...),
where lim.../u3® = 0. Thus, the projections af into these planes look locally as shown in Figure 2.4.
The o&:—fjlating (“kissing”) plane is the plane that comes closest to contamnimegr P (see also Exercise

NS V.

osculating plane rectifying plane normal plane

FIGURE2.4
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25); the rectifying (“straightening”) plane is the one that comes closest to flattening the curve ;ribar
normal plane is normal (perpendicular) to the curvé a{Cf. Figure 1.3.)

1.

2.

3.

g,

*6.

47.

10.

EXERCISES 1.2

Compute the curvature of the following arclength-parametrized curves:

a. oa(s) = (% COSs, % COSs,Sins)

b. als) = (VIT52InG + V1T 52)

*c. afs) = (314532, 11 —9)32, %s),s e (1,1

Calculate the unit tangent vector, principal normal, and curvature of the following curves:
a. acircle of radiug: a(t) = (a cost,a sint)

b. «a(t) = (¢, coshr)

c. a(t) = (coSt,sin’t),t e (0,7/2)

Calculate the Frenet apparatds £, N, B, andt) of the following curves:
Ya as) = (31 +9)32 11 -9)%2, —55),s € (=1,1)

b. a(t) = (3e'(sint + cost), 1e(sint — cost), ')
o at) = (VI+22,6,In( + V1 +12))
a(t) = (e! cost, e’ sint, e?)
a(t) = (coshy, sinht, 1)

a(t) = (t.12/2, V1T + 12 +1In(t + V1 +12))

a(t) = (t — sint cost, sin? ¢, cost), t € (0, )

Q -~ 0o 2

L/
(1 + f/2)3/2'
Use Proposition 2.2 and the second parametrization of the tractrix given in Example 2 of Section 1 to
recompute the curvature.

Prove that the curvature of the plane cuwve: f(x) is given byx =

By differentiating the equatioB = T x N, derive the equatioB’ = —zN.

Suppose is an arclength-parametrized space curve with the property|@@i|| < ||e(so)|| = R for
all s sufficiently close tasg. Prove thatc(sg) > 1/R. (Hint: Consider the functiorf'(s) = |le(s)||?.
What do you know abouf”(s¢)?)

Leta be a regular (arclength-parametrized) curve with nonzero curvature. The normaldira dds)
is the line throughx (s) with direction vectorN(s). Suppose all the normal lines éopass through a
fixed point. What can you say about the curve?

a. Prove that if all the normal planes of a curve pass through a particular point, then the curve lies on
a sphere. (Hint: Apply Lemma 2.1.)
*b.  Prove that if all the osculating planes of a curve pass through a particular point, then the curve is
planar.

Prove that ifc = x9 andt = 1o are nonzero constants, then the curve is a (right) circular helix.
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(Hint: Start by solving forN. The only solutions of the differential equatiorf + k2y = 0 are
y = ci1codkt) + casin(kt).)

Remark. It is an amusing exercise to giveandb (in our formula for the circular helix) in terms
of kg andy.

*11. Proceed as in the derivation of Proposition 2.2 to show that

Ol/ A (Ol” % OLW)
1= —=
||Ot/ X Ot”||2

12. Leta be ac* arclength-parametrized curve withs£ 0. Prove that is a generalized helix if and only
if «” - (e x ™) = 0. (Herea™) denotes the fourth derivative af)

13. Supposert # 0 at P. Of all the planes containing the tangent linext@t P, show thaix lies locally
on both sides only of the osculating plane.

14. Leta be aregular curve with # 0 at P. Prove that the planar curve obtained by projectinigto its
osculating plane aP has the same curvature Atasc.

15. A closed, planar curv€ is said to haveconstant breadthu if the distance between parallel tangent
lines toC is alwaysu. (No, C needn’t be a circle. See Figure 2.5.) Assume for the rest of this problem
that the curve is arclength parametrized W§?dunctione: [0, L] — R2 with « # 0. To sayC is closed
meansx(0) = a(L) and the derivatives match as well.

(the Wankel engine design)

FIGURE2.5

a. Let’s call two points with parallel tangent lines opposite. Prove thé&t Has constant breadth
u, then the chord joining opposite points is normal to the curve at both points. (Hig(sJfis
oppositex(s), thenB(s) = a(s) + A(s)T(s) + wN(s). First explain why the coefficient & is u;
then show that = 0.)

b. Prove that the sum of the reciprocals of the curvature at opposite points is egugW¥arning: If
a is arclength-parametrizeg, is quite unlikely to be. It might be helpful to introduce the notation
T andNg for the unit tangent vector and principal normalgf How are they related t& and
N?)

16. Lete andp be two regular curves defined @n b]. We sayg is aninvoluteof « if, for eachr € [a, b],
(i) B(z) lies on the tangent line @ ate (¢), and
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(i) the tangent vectors t@ andp ata(z) andp(z), respectively, are perpendicular.

Reciprocally, we also refer @ as anevoluteof S.

a. Supposex is arclength-parametrized. Show thatis an involute ofe if and only if B(s) =
a(s) + (c —s)T(s) for some constant (hereT (s) = a’(s)). We will normally refer to the curv@
obtained withc = 0 astheinvolute of«. If you were to wrap a string around the curvestarting
ats = 0, the involute is the path the end of the string follows as you unwrap it, always pulling the

string taut, as illustrated in the case of a circle in Figure 2.6.

NI

FIGURE 2.6

b. Show that the involute of a helix is a plane curve.

c. Show that the involute of a catenary is a tractrix. (Hint: You done@dan arclength parametriza-

tion!)
d. If e is an arclength-parametrized plane curve, prove that the @ugreen by

1
B(s) = a(s) + —N(s)
K(s)
is the unique evolute af lying in the plane ofx. Prove, moreover, that this curve is regular if
k' # 0. (Hint: Go back to the original definition.)

17. Find the involute of the cycloid(¢) = (¢ + sin¢, 1 — cost), t € [—m, ], using? = 0 as your starting
point. Give a geometric description of your answetr.

18. Suppose is a generalized helix with axis in directidh Let 8 be the curve obtained by projectiag
onto a plane orthogonal #®. Prove that the principal normals @fand g are parallel at corresponding
points and calculate the curvaturefin terms of the curvature of.

19. Leta be a curve parametrized by arclength withr £ 0.
a. Suppos lies on the surface of a sphere centered at the origin (ies)| = const for alls).

Prove that
/

) -



§2. LOCAL THEORY: FRENETFRAME

20.

21.

22.

23.

21

(Hint: Writeae = AT + N + vB for some functionst, i, andv, differentiate, and use the fact
that{T,N, B} is a basis foiR3.)

b. Prove the converse: & satisfies the differential equatior)( thene lies on the surface of some
sphere. (Hint: Using the values df i, andv you obtained in part a, show that- (AT + N+ vB)
is a constant vector, the candidate for the center of the sphere. If the nature of this argument puzzles
you, review the latter part of the proof of Proposition 2.4.)

Two distinct parametrized curvesand g are calledBertrand matesf for eacht, the normal line tax
ata(z) equals the normal line t@8 at 8(z). An example is pictured in Figure 2.7. Suppesandf are

FIGURE2.7

Bertrand mates.

a. If a is arclength-parametrized, show thats) = a«(s) + r(s)N(s) andr(s) = const. Thus,
corresponding points @ andg are a constant distance apart.

b. Show that, moreover, the angle between the tangent vectarsabtol 8 at corresponding points
is constant. (Hint: IfT, andTg are the unit tangent vectors éoand B respectively, consider
Te-Tg.)

C. Suppose is arclength-parametrized ard # 0. Show thatx has a Bertrand majg if and only if
there are constantsandc so thatrk 4+ ¢t = 1. (Hint for =: Interpret the result of part b using

your formula forg’ from part a.)
d. Givena, prove that if there is more than one cupso thate andg are Bertrand mates, then there

are infinitely many such curvg® and this occurs if and only & is a circular helix.

(See Exercise 20.) Suppasandf are Bertrand mates. Prove that the torsiom @nd the torsion of
B at corresponding points have constant product.

Supposér is a G2 vector function onfa, b] with ||[Y|| = 1 andY, Y’, andY” everywhere linearly
t
independent. For any nonzero constantefinea () = c/ (Y(u) xY'(u))du, t € [a,b]. Prove that

the curvex has constant torsioh/c. (Hint: Show thatB =aj:Y.)

(See Exercise 20.) Supposés aC? arclength-parametrized curve on the unit sphere. For any nonzero
constantz and0 < 0 < /2, define

a(t) =a (/Ot Y (s)ds + coté /Ot (Y(s) x Y'(s))ds) .

Show that the curve has a Bertrand mate. (Hint: Show théit= +Y’.)
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a. Leta be an arclength-parametrizgtine curve. We create a “parallel” cury@ by taking =

C.

a + ¢N (for a fixed small positive value aof). Explain the terminology and express the curvature
of B in terms ofe and the curvature af.

Now leta be an arclength-parametrizegacecurve. Show that we can obtain a “parallel” cue
by taking = o + s((cos@)N + (sin@)B) for an appropriate functiofi. How many such parallel
curves are there?

Sketch such a parallel curve for a circular helix

25. Supposex is an arclength-parametrized curve, = «(0), and«(0) # 0. Use Proposition 2.6 to
establish the following:

26.

27.

*a.

Let 0 = a(s) and R = «a(t). Show that the plane spanned By Q, and R approaches the
osculating plane ok at P ass,t — 0.
Theosculating circleat P is the limiting position of the circle passing through Q, andR as
s,t — 0. Prove that the osculating circle has cerife= P + (I/K(O))N(O) and radiusl /«(0).
Theosculating spherat P is the limiting position of the sphere throughand three neighboring
points on the curve, as the latter points tendPtindependently. Prove that the osculating sphere
has center

Z =P + (1/(0))N(0) + (1/7(0)(1/x)'(0))B(0)

and radius

\/(1/16(0))2 + (1/7(0)(1/k)'(0))2.

How is the result of part c related to Exercise 197

Supposg is a plane curve andy is the circle centered g(s) with radiusr (s). Assumingg and

r are differentiable functions, show that the cir€lg is contained inside the circl€; whenever

t > sifand only if || B/(s)|| < /(s) for all s.

Leta be arclength-parametrized plane curve and suppasea decreasing function. Prove that the
osculating circle a#(s) lies inside the osculating circle aiz) whenever > s. (See Exercise 25
for the definition of the osculating circle.)

Suppose the front wheel of a bicycle follows the arclength-parametrized planexcudetermine the
path B8 of the rear wheel] unit away, as shown in Figure 2.8. (Hint: If the front wheel is turned an

FIGURE 2.8

angled from the axle of the bike, start by writing — g in terms of6, T, andN. Your goal should be
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a differential equation thal must satisfy, involving onlyk. Note that the path of the rear wheel will
obviously depend on the initial conditiadh0). In all but the simplest of cases, it may be impossible to
solve the differential equation explicitly.)

3. Some Global Results

3.1. Space Curves.The fundamental notion in geometry (see Section 1 of the Appendix) is that of
congruence: When do two figures differ merely by a rigid motion? If the carvés obtained from the
curvea by performing a rigid motion (composition of a translation and a rotation), then the Frenet frames
at corresponding points differ by that same rigid motion, and the twisting of the frames (which is what gives
curvature and torsion) should be the same. (Note that a reflection will not affect the curvature, but will
change the sign of the torsion.)

Theorem 3.1(Fundamental Theorem of Curve Theorywo space curve€ andC* with nonzero cur-
vature are congruent (i.e., differ by a rigid motion) if and only if the corresponding arclength parametriza-
tionse, a*: [0, L] — R3 have the property that(s) = «*(s) andt(s) = t*(s) forall s € [0, L].

Proof. Supposex* = Wox for some rigid motion¥: R3 — R3, soW(x) = Ax + b for someb e
R3 and some3 x 3 orthogonal matrix4 with detA > 0. Thena*(s) = Aa(s) + b, so|a*(s)| =
|Ae/(s)|| = 1, sinceA is orthogonal. Thereforex™ is likewise arclength-parametrized, afid(s) =
AT (s). Differentiating againg™(s)N*(s) = «x(s)AN(s). SinceA is orthogonal,AN(s) is a unit vector,
and soN*(s) = AN(s) andk*(s) = k(s). But thenB*(s) = T*(s) x N*(s) = AT(s) x AN(s) =
A(T(s)xN(s)) = AB(s), inasmuch as orthogonal matrices map orthonormal bases to orthonormal bases and
detA > 0 insures that orientation is preserved as well (i.e., right-handed bases map to right-handed bases).
Last,B*'(s) = —t*(s)N*(s) andB*/(s) = AB'(s) = —t(s)AN(s) = —1(s)N*(s), sot*(s) = 1(s), as
required.

Conversely, suppose = «* andt = t*. We now define a rigid motiow as follows. LetA be
the unique orthogonal matrix so thdff (0) = T*(0), AN(0) = N*(0), and AB(0) = B*(0), and let
b = a*(0) — Ax(0). A also has positive determinant, since both orthonormal bases are right-handed. Set
a = Woa. We now claim thate*(s) = a(s) for all s € [0, L]. Note, by our argument in the first part of the
proof, thatt = x = «* and? = v = ¢*. Consider

F(s) =T(s) - T*(s) + N(s) - N*(s) + B(s) - B*(s).
We now differentiatef’, using the Frenet formulas.
F1s) = (T'(s) - T*(s) + T(s) - T*(5)) + (N'(5) - N*(s) + N(s) - N*'(5))
+ (B(s) - B*(s) + B(s) - B*(s))
= k(s)(N(s) - T*(s) + T(s) - N*(s)) — & (s)(T(s) - N*(s) + N(s) - T*(s))
+ 7(s)(B(s) - N*(5) + N(s) - B*(s)) — 7(s)(N(s) - B*(s) + B(s) - N*(s))
=0,

since the first two terms cancel and the last two terms cancel. By construg{ion= 3, so f(s) = 3 for
all s € [0, L]. Since each of the individual dot products can be at nhpdgte only way the sum can 3efor
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all s is for each to bd for all s, and this in turn can happen only whéis) = T*(s), N(s) = N*(s), and
B(s) = B*(s) forall s € [0, L]. In particular, sincé’(s) = T(s) = T*(s) = a*'(s) and&(0) = a*(0), it
follows thata(s) = a™(s) for all s € [0, L], as we wished to show.

Remark. The latter half of this proof can be replaced by asserting the unigueness of solutions of a sys-
tem of differential equations, as we will see in amoment. Also see Exercise A.3.1 for a matrix-computational
version of the proof we just did.

Example 1. We now see that the only curves with consta@indt are circular helices. V

Perhaps more interesting is the existence question: Given continuous functiof L] — R (with «
everywhere positive), is there a space curve with those as its curvature and torsion? The answer is yes, and
this is an immediate consequence of the fundamental existence theorem for differential equations, Theorem
3.1 of the Appendix. That is, we let

| | | 0 —«x(s) O
F(s) = | T(s) N(s) B(s) and  K@G)=|«k(s) 0 —1(s)
| | | 0 () 0

Then integrating the linear system of ordinary differential equati&t{s) = F(s)K(s), F(0) = Fy, gives
us the Frenet frame everywhere along the curve, and we reedwgintegratingT (s).
We turn now to the concept dbtal curvatureof a closedspace curve, which is the integral of its

curvature. That is, ik: [0, L] — R? is an arclength-parametrized curve wit0) = a (L), &’ (0) = o/(L),
L

ande”(0) = «”(L), then its total curvature i$  «(s)ds. This quantity can be interpreted geometrically as

0
follows: TheGauss mapf « is the map to the unit spherg, given by the unit tangent vectdr. [0, L] — X;
its image,I', is classically called the&angent indicatrixof . Observe that—provided the Gauss map is one-

T y 4
— /I \
i i
i \
\ \
\/\/
FIGURE3.1

L L
to-one—the length of is the total curvature af, since lengthl’) = / 1T (s)|ds = / k(s)ds. More
0 0

generally, this integral is the length Bf“counting multiplicities.”
A preliminary question to ask is this: What curvEsn the unit sphere can be the Gauss map of some

N
closedspace curvee? Sinceo(s) = a(0) + / T(u)du, we see that a necessary and sufficient condition
0

L
is that/ T(s)ds = 0. (Note, however, that this depends on the arclength parametrization of the original
0



§3. SOME GLOBAL RESULTS 25

curve and is not a parametrization-independent condition on the imagelcurvE.) We do, nevertheless,
have the following geometric consequence of this condition. For any (unit) vacige have

L L
0=A / T(s)ds = / (T(s)-A)ds,
0 0

and so the average value Bf A must be0. In particular, the tangent indicatrix must cross the great circle
with normal vectoA. That is, if the curvd” is to be a tangent indicatrix, it must be “balanced” with respect
to every directionA. It is natural to ask for the shortest curve(s) with this property.

If & € T, let &+ denote the oriented great circle with normal vedor(By this we mean that we go
around the circlg* so that atx, the tangent vectoF points so thak, T, & form a right-handed basis for
R3.)

Proposition 3.2(Crofton’s formula) LetT be a piecewis€-' curve on the sphere. Then

1
length(T") = 3 / #IC NEL)dE
=
= 7 x (the average number of intersectionsIotvith all great circley.

(Hered & represents the usual element of surface arega.pn
Proof. We leave this to the reader in Exercise 1721

Remark. Although we don't stop to justify it here, the set®for which #T" N gL) is infinite is a set
of measure zero, and so the integral makes sense.

Applying this to the case of the tangent indicatrix of a closed space curve, we deduce the following
classical result.

Theorem 3.3(Fenchel) The total curvature of any closed space curve is at leasénd equality holds
if and only if the curve is a simple closed (convex) planar curve.

Proof. LetT be the tangent indicatrix of our space curveClfs a simple closed plane curve, thEns
a great circle on the sphere. As we shall see in the next section, convexity of the curve can be interpreted as

sayingk > 0 everywhere, so the tangent indicatrix traverses the great circle exactly on?é and = 27
c
(cf. Theorem 3.5 in the next section).

To prove the converse, note that, by our earlier remarksiust cross+ for aimost eveng € ¥ and
hence must intersect it at least twice, and so it follows from Proposition 3.2/thatz’s = length(I") >

1 : o C L
Z(2)(4n) = 2x. Now, we claim that ifl" is a connected, closed curveihof length< 27, thenT liesin a

closed hemisphere. It will follow, then, thatlifis a tangent indicatrix of lengthr, it must be a great circle.
L

(For if " lies in the hemispheré - x > 0, / T(s) - Ads = 0 forcesT - A = 0, soI" is the great circle

A -x = 0.) It follows that the curve is planoar and the tangent indicatrix traverses the great circle precisely

one time, which means that> 0 and the curve is convex. (See the next section for more details on this.)
To prove the claim, we proceed as follows. Suppose lgith 2. ChooseP andQ in I' so that the

arcsl'y = PAQ andl, = QAP have the same length. ChoaSebisecting the shorter great circle arc fratn

to Q, as shown in Figure 3.2. For convenience, we rotate the picture s¥ tisahe north pole of the sphere.

Suppose now that the cunig were to enter the southern hemisphere Ilgtdenote the reflection affy
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FIGURE3.2

across the north pole (following arcs of great circle throngh Now, I'; U T'; is a closed curve containing
a pair of antipodal points and therefore is longer than a great circle. (See Exercise 1.J'Sinde, has
the same length ds, we see that lengti") > 27, which is a contradiction. Therefoil@ indeed lies in the
northern hemisphere.d

We now sketch the proof of a result that has led to many interesting questions in higher dimensions. We
say a simple (non-self-intersecting) clodepace curve iknottedif we cannot fill it in with a disk.

Theorem 3.4(Fary-Milnor). If a simple closed space curve is knotted, then its total curvature is at least
4.

Sketch of proof. Suppose the total curvature @ is less thand4wx. Then the average number
#T N &) < 4. Since this is generically an even number2 (whenever the great circle isn't tangent
to I'), there must be an open set&$§ for which we have #I" N £+) = 2. Choose one suclg,. This
means that the tangent vectord@as only perpendicular t§, twice, so the functiory'(x) = x- &, has only
two critical points. That is, the planes perpendiculag gowill intersectC either in a single point (at the
maximum and minimum points of) or in exactly two points (by Rolle’s Theorem). Now, by moving these
planes from the bottom df to the top, joining the two intersection points in each plane with a line segment,
we fill in a disk, soC is unknotted. O

3.2. Plane Curves.We conclude this chapter with some results on plane curiesv we assign a
sign to the curvature: Given an arclength-parametrized cure (re)defineN(s) so that{T (s), N(s)} is
a right-handed basis fdR? (i.e., one turns counterclockwise from(s) to N(s)), and then sek(s) =
T'(s) - N(s), from which it follows thatT’(s) = «(s)N(s) (why?), as before. So > 0 whenT is twisting

counterclockwise and < 0 whenT is twisting clockwise. Although the total curvatuf |« (s)|ds of a

c
simple closed plane curve may be quite a bit larger #yanit is intuitively plausible that the tangent vector
must make precisely one full rotation, either counterclockwise or clockwise, and thus we have

Theorem 3.5(Hopf Umlaufsatz) If C is a simple closed plane curve, thgn kds = +2m, the+
c
occurring wherC is oriented counterclockwise ardwhen it's oriented clockwise.
The crucial ingredient is to keep track otantinuousotal angle through which the tangent vector has

turned. That is, we need the following

4To be more careful here, i:[a,b] — R3 is a parametrization witke(a) = a(b), thena(r) = a(u) occursonly when

{t,u} = {a, b}.
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Lemma 3.6. Leta: [a, b] — R? be aC!, regular parametrized plane curve. Then thered$ &unction
0:[a,b] — R so thafT (¢) = (cos@(z),sin 9(1)) for allt € [a,b]. Moreover, for any two such function8,
andf*, we haved (b) — 0(a) = 0*(b) — 6*(a). The numbeff(b) — 6(a))/2x is called theotation index
of a.

Proof. Consider the four open semicirclég = {(x,y) € S! : x > 0}, U, = {(x,y) € S! :
x <0}, Us ={(x,y)eS':y>0},andUs = {(x,y) € S' : y < 0}. Then the functions

V1a(x,y) = arctany/x) + 2nx
Yo n(x,y) = arctar(y/x) + 2n + D

Y3n(x,y) = —arctanx/y) + 2n + 3)n
Yan(x,y) = —arctar(x/y) + (2n — 3)m

are smooth mapg; ,,: U; — R with the property thafcos(v; » (x, ¥)), Sin(¥i » (x, y))) = (x, y) for every
i =1,2,3,4andn € Z.

Definef(a) so thatT (a) = (cos@(a),sin@(a)). LetS = {r € [a,b] : 0 is defined and®! on[a, 1]},
and letryp = supS. Suppose first thay < b. Choose so thatT(z9) € U;, and chooser € Z so that
Vin(T(t0)) = lim;5 6(¢). Because is continuous aty, there is§ > 0 so thatT () € U; for all z with
|t —to] < 8. Then settingd(¢) = ¥, »(T(¢)) forall o <t < to + 6 gives us a! function @ defined on
[0, 70 + 6/2], so we cannot havg < b. (Note thatf(r) = v; »(T(z)) forall tp — 6 <t < to. Why?) But
the same argument shows that whgr= b, the functiond is C! on all of [a, b].

Now, sinceT(b) = T(a), we know thatd(b) — 6(a) must be an integral multiple &fz. Moreover,
for any other functior®* with the same properties, we ha@®(¢) = 6(¢) + 2z n(t) for some integen(z).
Sincef andf* are both continuous; must be a continuous function as well; since it takes on only integer
values, it must be a constant function. Thereférgp) — 6*(a) = 6(b) — 6(a), as required. O

Sketch of proof of Theorem 3.5.Note first that if T(s) = (cosf(s),sinf(s)), then T'(s) =
L

L
6'(s)(—sinf(s), cosf(s)), sok(s) = #'(s) and f K(s)ds = f 0'(s)ds = O(L) — 6(0) is 27 times the
0 0

rotation index of the closed curee
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Let A = {(s,¢) : 0 < s <t < L}. Consider the secant mapA — S! defined by

T(s), s=t
h(s,t) = 4 —T(0), (s.0) = (0.L)
a(t) —al(s) .
—”a(t) mpnvk otherwise

Then it follows from Proposition 2.6 (using Taylor's Theorem to calcudete = a(s) + (1 —s)a’(s) +...)

thath is continuous. A more sophisticated version of the proof of Lemma 3.6 will establish (see Exercise
13) that there is a continuous functi@nA — R so thath(s, 7) = (cosf(s, ), sind (s, )) for all (s, ) € A.

It then follows from Lemma 3.6 that

/ kds = 0(L) —0(0) = 6(L, L) —6(0,0) = (0, L) —6(0,0) +6(L,L) — 6(0,L).
¢ Ny N>
Rotating the curve as required, we assume &8} is the lowest point on the curve (i.e., the one whose
y-coordinate is smallest) and, then, tlagD) is the origin andTl (0) = e;, as shown in Figure 3.4. (The

a(t)

h(s, )

o(s)

«(0) T(0)

FIGURE3.4

last may require reversing the orientation of the curve.) NBwjs the angle through which the position
vector of the curve turns, starting@and ending atr; since the curve lies in the upper half-plane, we must
have Ny = n. But N, is likewise the angle through which the negative of the position vector turns, so
N, = Ny = n. With these assumptions, we see that the rotation index of the cutvetidowing for the
possible change in orientation, the rotation index must thereforelh@s required. O

Corollary 3.7. If C is any closed curve with nonzero rotation index (e.g., a simple closed curve), for
any pointP e C there is a poinf) € C where the unit tangent vector is opposite thaP at

Proof. Let T(s) = (cosf(s),sinf(s)) for a €' function6:[0, L] — R, as in Lemma 3.6. Saf =
a(sg), and letd(sg) = 6. Sinceb(L) — 6(0) is an integer multiple o2, there must be; € [0, L] with
eitherf(s1) = 6p + w orB(sy) = g — w. TakeQ = a(sy). O

Recall that one of the ways of characterizing a convex funcfioR — R is that its graph lie on one
side of each of its tangent lines. So we make the following

Definition. The regular closed plane curaeis convexif it lies on one side of its tangent line at each
point.
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Proposition 3.8. A simple closed regular plane cureg is convex if and only if we can choose the
orientation of the curve so that> 0 everywhere.

Remark. We leave it to the reader in Exercise 2 to give a non-simple closed curve for which this result
is false.

Proof. Assume, without loss of generality, th&f0) = (1,0) and the curve is oriented counterclock-
wise. Using the functio@ constructed in Lemma 3.6, the condition that 0 is equivalent to the condition
that6 is a nondecreasing function with(L) = 2.

Suppose first that is nondecreasing and is not convex. Then we can find a poiAt= «(sg) on the
curve and values, s5 so thate(s}) ande(s5) lie on opposite sides of the tangent line@oat P. Then,
by the maximum value theorem, there are valgesnds, so thata(s;) is the greatest distance “above”
the tangent line and(s,) is the greatest distance “below.” Consider the unit tangent ve€tow, T (s1),
andT (s3). Since these vectors are either parallel or anti-parallel, some pair must be identical. Letting the
respective values ofbes™ ands** with s* < s**, we haved(s*) = 0(s**) (sincef is nondecreasing and
6(L) = 2m, the values cannot differ by a multiple &f), and thereford(s) = 0(s*) for all s € [s*, s**].
This means that that portion 6f betweenx(s*) ande(s**) is a line segment parallel to the tangent line of
C at P; this is a contradiction.

Conversely, supposg is convex andl(s1) = 6(s2) for somes; < s,. By Corollary 3.7 there must be
s3 with T(s3) = —T(s1) = —T(s2). SinceC is convex, the tangent line at two efs;), a(s2), anda(s3)
must be the same, sayats*) = P anda(s**) = Q. If PQ does not lie entirely irC, chooseR € PQ,

R ¢ C. SinceC is convex, the line througl® perpendicular td(’_Q) must intersecC in at least two points,
sayM andN, with N farther from% thanM. SinceM lies in the interior ofAN P Q, all three vertices
of the triangle can never lie on the same side of any line thraughn particular,N, P, andQ cannot lie
on the same side of the tangent lineCtoat M. Thus, it must be thaPQ C C, s00(s) = 0(s1) = 6(s2)
for all s € [s1,s2]. Thereforef is nondecreasing, and we are doné]

Definition. A critical point ofk is called avertexof the curveC.

A closed curve must have at least two vertices: the maximum and minimum poit&wéry point of
a circle is a vertex. We conclude with the following

Proposition 3.9(Four Vertex Theorem)A closed convex plane curve has at least four vertices.

Proof. Suppose thaC has fewer than four vertices. As we see from Figure 3.5, eithmust have
two critical points (maximum and minimum) ar must have three critical points (maximum, minimum,
and inflection point). More precisely, suppose thdhcreases fromP to Q and decreases frof to P.
Without loss of generality, we may tak® to be at the origin. The equation fﬁ’Té isA -x = 0, where we

chooseA so thatx’(s) > 0 precisely wherA - a(s) > 0. Then/ K’ (s)(A - a(s))ds > 0. Integrating by
c
parts, we have

/CK/(S)(A-a(s))ds = —/CK(S)(A-T(S))ds = /CA -N'(s)ds = A - /C N'(s)ds = 0.

From this contradiction, we infer th&t must have at least four vertices[d
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FIGURE3.5

3.3. The Isoperimetric Inequality. One of the classic questions in mathematics is the following:
Given a closed curve of length, what shape will enclose the most area? A little experimentation will
most likely lead the reader to the

Theorem 3.10(Isoperimetric Inequality) If a simple closed plane curvé has lengthl. and encloses
areaA, then
L? > 47A,

and equality holds if and only € is a circle.

Proof. There are a number of different proofs, but we give one (due to E. Schmidt, 1939) based on
Green’s Theorem, Theorem 2.6 of the Appendix, and—not surprisingly—relying heavily on the geometric-
arithmetic mean inequality and the Cauchy-Schwarz inequality (see Exercise A.1.2). We choose parallel

y
(x(5), y(s))

o (0) ¢ c

'\/ “(SO)

\\(a‘c(s),y‘(s))
X
/.
C
R >

FIGURE 3.6

4R

8

lines¢; and{, tangent to, and enclosing,, as pictured in Figure 3.6. We draw a cirdleof radius R with
those same tangent lines and put the origin at its center, with-thés parallel to/;. We now parametrize
C by arclength by (s) = (x(s), y(s)), s € [0, L], takinge(0) € £; anda(sg) € £>. We then consider
«: [0, L] — R? given by

(x(s).—vVR2—x(5)2), 0<s<s0

a(s) = (7(5)»y(s)) = {(X(S), R2 _x(s)z), so <s=<L ‘
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(@ needn’t be a parametrization of the cirdle since it may cover certain portions multiple times, but that's
no problem.) Lettingd denote the area enclosed Byand A = 7 R? that enclosed by, we have (by
Exercise A.2.5)

L
A :/0 x(s)y'(s)ds

L L
A=naR?>=— /0 ()X (s)ds = — /0 V(s)x'(s)ds.

Adding these equations and applying the Cauchy-Schwarz inequality, we have
L

L
A+ 7R?> = /0 (x(s)y/(s) — ?(s)x/(s))ds = /0 (x(s),?(s)) . (y/(s), —x/(s))ds

L
(+) S/O 1(x (). TN (). =x(9)) llds = RL,

inasmuch ag{(y’(s), —x"(s))|| = [[(x"(s), y'(s))|| = 1 sinceea is arclength-parametrized. We now recall
the arithmetic-geometric mean inequality:

vab < 4 -; b for positive numbera andb,

with equality holding if and only iz = . We therefore have
—— A+7#R? RL

\/Z 7TR2 < +TJT < 7,

so4mA < L2

Now suppose equality holds here. Then we must have 7R? andL = 2z R. It follows that the

curve C has the same breadth in all directions (sidc@ow determinesk). But equality must also hold

in (x), so the vector&(s) = (x(s),?(s)) and (y’(s), —x’(s)) must be everywhere parallel. Since the first

vector has lengttk and the second has lengthwe infer that

(x(5).7()) = R(y'(5), =x"(5)).

and sox(s) = Ry’(s). By our remark at the beginning of this paragraph, the same result will hold if
we rotate the axes/2; let y = yq be the line halfway between the enclosingrizontallines ¢;. Now,
substitutingy — yo for x and—x for y, so we havey(s) — yo = —Rx’(s), as well. Thereforex(s)> +
(y(s) — y0)2 = R?(x'(5)®> + y'(s)?) = R?, andC is indeed a circle of radiug. O

EXERCISES 1.3

1. a. Prove that the shortest path between two points on the unit sphere is an arc of a great circle con-
necting them. (Hint: Without loss of generality, take one point tq®®, 1) and the other to be
(sinug, 0, cosug). Leta () = (sinu(z) cosv(t), sinu(t) sinv(t), cosu(t)),a <t < b, be an arbi-
trary curve withu(a) = 0, v(a) = 0, u(b) = up, v(b) = 0, calculate the arclength of, and show
that it is smallest when(z) = 0 for all ¢.)

b. Prove thatifP andQ are points on the unit sphere, then the shortest path between them has length
arccogP - Q).
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2. Give a closed plane curve with ¥ > 0 that is not convex.
3. Draw closed plane curves with rotation indi€eg, —2, and3, respectively.
*4.  SupposeC is a simple closed plane curve with< ¥ < ¢. Prove that lengtfC) > 2x/c.
5. Give an alternative proof of the latter part of Theorem 3.1 by considering instead the function
f(8) = [T@) = T*®I? + INGs) = N*()|* + [1B(s) = B*(5)|1*.
6. (See Exercise 1.2.15.) Prove thatifis a simple closed (convex) plane curve of constant breagth
then lengthiC) = mpu.

7. Suppos& is a convex simple closed plane curve with maximum curvatyrd’rove that the distance
between any pair of parallel tangent lines(dfs at leas/«g.

8. A convex plane curve with the origin in its interior can be determined by its tangent(ine8)x +
(sinf)y = p(60), called itssupport lines as shown in Figure 3.7. The functign9) is called the
support function. (Heré is the polar coordinate, and we assup(@) > 0 for all 6 € [0, 27].)

FIGURE3.7

a. Prove that the line given above is tangent to the curve at the point
a(0) = (p(0)cosh — p’(0)sinb, p(6)sinb + p’(6) cosh).
b. Prove that the curvature of the curvex@b) is 1/(p(6) + p”(6)).
2n
c. Prove that the length ef is given by L = / p(6)do.
0

1 2
d. Prove that the area encloseddis given byA = 5/ (p(0)* — p'(6)%)db.

0
e. Use the answer to part c to reprove the result of Exercise 6.

9. LetC be aC? closed space curve, say parametrized by arclengtia: By, L] — R3. A unit normal
field X on C is aC! vector-valued function witkK (0) = X(L) andX(s) - T(s) = 0 and||X(s)| = 1 for
all s. We define thewist of X to be

1 L
tw(C, X) = E/o X'(s) - (T(s) x X(5))ds.

a. Show that iX andX* are two unit normal fields o', then tw(C, X) and tw(C, X*) differ by an
integer. The fractional part of taZ, X) (i.e., the twist mod) is called theotal twistof C. (Hint:

Write X(s) = cos8(s)N(s) + sind(s)B(s).)
L
b. Prove that the total twist & equals the fractional partGZL / Tds.
T Jo
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c. Prove that if a closed curve lies on a sphere, then its total twist {$lint: Choose an obvious
candidate foiX.)

Remark. W. Scherrer proved in 1940 that if the total twist of every closed curve on a surface is
then that surface must be a (subset of a) plane or sphere.

10. (See Exercise 1.2.24.) Under what circumstances does a closed space curve have a parallel curve that is
also closed? (Hint: Exercise 8 should be relevant.)

11. (The Bishop FrameSupposex is an arclength-parametrizé® curve. Suppose we ha@ unit vector
fieldsN; andN, = T x N alonge so that

T-N1:T-N2:N1-N2:0;

i.e., T, Ny, N, will be a smoothly varying right-handed orthonormal frame as we move along the curve.
(To this point, the Frenet frame would work just fine if the curve weétewith x # 0.) But now we

want to impose the extra condition thd - N, = 0. We say the unit normal vector fieM; is parallel
alonge; this means that the only changeMf is in the direction ofT. In this event,T, Ny, N, is called
aBishop framdor «. A Bishop frame can be defined even when a Frenet frame cannot (e.g., when there
are points withe = 0).

a. Show that there are functioks andk, so that

T = kiN1 4+ k2N;
N, = —kqT
N, = —k,T

Show thak? = k? + k3.
Show that ife is €3 with k # 0, then we can tak&l; = (cosf)N + (sinf)B, wheref’ = —z.
Check that; = « cosf andk, = —« sin6.

d. Show thatx lies on the surface of a sphere if and only if there are consfgnisso thatik; +
uks + 1 = 0; moreover, ife lies on a sphere of radiug, thenA? + u? = R?. (Cf. Exercise

1.2.19))
e. What condition is required to define a Bishop frame globally on a closed curve? (See Exercise 8.)

How is this question related to Exercise 1.2.247?

12. Prove Proposition 3.2 as follows. Let[0, L] — X be the arclength parametrization I6f and define
F:[0, L] x [0,27) — X by F(s,¢) = &, where§ is the great circle making angfewith I" ata(s).
Check that- takes on the valué precisely #I" N gL) times, so thaF is a “multi-parametrization” of

¥ that gives us
L p2n
[#raghas= [ [
P 0 0
oF
X

F
E g—qu = | sing| (this is the hard part) and finish the proof. (Hints: As pictured in

oF dF

Compute tha
as

Figure 3.8, show(s, ¢) = cos¢T(s) + sing(a(s) x T(s)) is the tangent vector to the great cirglé
F
and deduce thdi(s, ¢) = a(s) x V(s, ¢). Show that§—¢ and o x ? are both multiples of/.)
N
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FIGURE 3.8

13. Generalize Theorem 3.5 to prove thatf ifs apiecewise-smootsimple closed plane curve with exterior
4

anglesej, j =1,....¢, then/ kds + ZE]' = +2x. (As shown in Figure 3.9, the exterior angle

c o

FIGURE3.9

ata(s;) is defined to be the angle betweeh(s;) = lim_a’(s) anda’, (s;) = Iim+ o’ (s), with the
S—)Sj S—)Sj

convention thafe;| < x.)

14. Complete the details of the proof of the indicated step in the proof of Theorem 3.5, as follows (following

H. Hopf's original proof). Pick an interior poirgy € A.

a. Choosé(sp) so thath(sy) = (cosf(%), sinf(s)). Use Lemma 3.6, slightly modified, to deter-
mined uniquely as a function that is continuous on eachg@for everys € A.

b. Since a continuous function on a compact (closed and bounded)séR? is uniformly continu-
ous, given anyg > 0, there is a numbef, > 0 so that wheneves, s’ € A and||s— S| < 8y, we
will have ||h(s) — h(s)|| < &¢. In particular, show that there & so that wheneves, s € A and
s—<|| < 8o, the angle between the vectdres) andh(s) is less thanr.

c. Consider the triangle formed by two radii of the unit circle making afgl&ive an upper bound
on @ in terms of the chord length Using this, deduce that giver> 0, there i) < § < §¢ so that
whenever|s—§|| < §, we haveld(s) — 6(S) + 2 n(s)| <  for some integen(s).

d. Now choose’ = s; € A arbitrary. Consider the functiofi(u) = 6(sy + u(s— S)) — 0(so +
u(s; — S)). Show thatf is continuous and'(0) = 0, and deduce thatf (1)| < =. Conclude that
n = 0in part ¢ and, thus, thdt is continuous.



CHAPTER 2

Surfaces: Local Theory

1. Parametrized Surfaces and the First Fundamental Form

Let U be an open set iR?. A functionf: U — R™ (for us,m = 1 and3 will be most common) is called

: . : . of of . . N .
el if f and its partial derlvatlve?)— and P are all continuous. We will ordinarily us@:, v) as coordinates
u v

in our parameter space, afd, y, z) as coordinates iR3. Similarly, for anyk > 2, we sayf is ek if all its
partial derivatives of order up tb exist and are continuous. We shig smoothif f is ek for every positive
integerk. We will henceforth assume all our functions &k for k > 3. One of the crucial results for

02f 02f
differential geometry is that if is @2, then = (and similarly for higher-order derivatives).
oudv  dvdu
Notation: We will often also use subscripts to indicate partial derivatives, as follows:
of
fu <> @
of
fl) <> %
9°f
fuu <~ W
92f
fuv = (fu)o <> 09u

Definition. A regular parametrizatiorof a subset c R3 is a (¢*) one-to-one function
x:U - M C R? sothat X, XX, # 0

for some open sdt/ C R2.! A connected subseé C R? is called asurfaceif each point has a neighbor-
hood that is regularly parametrized.

We might consider the curves avf obtained by fixingy = v and varyingu, called au-curve, and
obtained by fixingu = uo and varyingv, called av-curve; these are depicted in Figure 1.1. At the point
P = x(ug, vo), we see thak, (ug, vg) is tangent to the:-curve andx, (ug, vo) is tangent to thev-curve.
We are requiring that these vectors span a plane, whose normal vector is gixgix xy.

Example 1. We give some basic examples of parametrized surfaces. Note that our parameters do not
necessarily range over an open set of values.
(@) The graph of a functiorf: U — R, z = f(x,y), is parametrized byx(u,v) = (u,v, f(u,v)).
Note thatx,, x X, = (— fu, — fv, 1) # 0, so this is always a regular parametrization.

1 For technical reasons with which we shall not concern ourselves in this course, we should also require that the inverse function
x~1:x(U) — U be continuous. We shall also often be sloppy and use subs#tat are not quite open. The interested reader can
easily repair things by adding some companion parametrizations.

35
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FIGURE1.1

(b) Thehelicoid as shown in Figure 1.2, is the surface formed by drawing horizontal rays from the axis

FIGURE1.2

of the helixa () = (cost, sint, bt) to points on the helix:
X(u,v) = (u cosv, u sinv, bv), u>0, vek.

Note thatx,, x X, = (b sinv, —b cosv, u) # 0. Theu-curves are rays and thecurves are helices.
(c) Thetorus (surface of a doughnut) is formed by rotating a circle of radiabout a circle of radius
a > b lying in an orthogonal plane, as pictured in Figure 1.3. The regular parametrization is given

9
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FIGURE1.3
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by
X(u,v) = ((a + b cosu) cosv, (a + b cosu) sinv, b sinu), 0<wu,v<2m.

Thenx, x Xy, = —b(a + b COSu)(COSu COSv, COSu Sinwv, sinu), which is nevel.
(d) The standard parametrization of the unit spt®is given by spherical coordinatég, 0) < (u, v):

X(u,v) = (sinu cosv, Sinu Sinv, CoSu), O<u<m 0<v<2m.

Sincex, x X, = sinu(sinu cosv, sinu sinv, cosu) = (sinu)X(u, v), the parametrization is regular
away fromu = 0, 7, which we've excluded anyhow becaustils to be one-to-one at such points.
The u-curves are the so-called lines of longitude andik®urves are the lines of latitude on the
sphere.

(e) Another interesting parametrization of the sphere is givestdrgographic projectian(Cf. Exercise
1.1.1.) We parametrize the unit sphere less the north(pole 1) by thex y-plane, assigning to each

FIGURE1.4

(u, v) the point & (0,0, 1)) where the line througio, 0, 1) and(u, v, 0) intersects the unit sphere,
as pictured in Figure 1.4. We leave it to the reader to derive the following formula in Exercise 1:

X( ) 2u 2v u? +v%2 -1 v
u,v) = s s .
w24+ v2 4+ 17 u2+v2+1 u2+0v2 41

For our last examples, we give two general classes of surfaces that will appear throughout our work.

Example 2. Let / C R be an interval, and let(u) = (0, f(u), g(u)), u € I, be aregular parametrized
plane curvé with f > 0. Then thesurface of revolutiorobtained by rotatinge about thez-axis is

parametrized by
X(u,v) = (f(u) COSv,f(u)Sinv,g(u)), uel, 0<v<2m.

2Throughout, we assume regular parametrized curves to be one-to-one.
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Note thatx, x X, = f(u)(—g'(u)cosv, —g'(u) sinv, f'(u)), so this is a regular parametrization. The
u-curves are often calleprofile curvesor meridians these are copies of rotated an angle around the
z-axis. Thev-curves are circles, callguhrallels V

Example 3. Let/ C Rbeaninterval, leit: I — R? be a regular parametrized curve, anifdef — R3
be an arbitrary smooth function wi(u) # Ofor all u € 1. We define a parametrized surface by

X(u,v) =) +vBw), uel, velk.

This is called auled surfacewith rulings B (1) anddirectrix . It is easy to check thag, x X, = (e’ (1) +
vB’(u)) x B(u), which may or may not be everywhere nonzero.
As particular examples, we have the helicoid (see Figure 1.2) and the following (see Figure 1.5):

(1) Cylinder: Herep is a constant vector, and the surface is regular as lorg iasone-to-one with
a # B.

(2) Cone: Here we fix a point (say the origin) as the vertexelbe a curve withe x o’ # 0, and let
B = —a. Obviously, this fails to be a regular surface at the vertex (when 1), butx, x X, =
(v—1)a(u) x &’ (u) is nonzero otherwise. (Note that another way to parametrize this surface would
be to takex* = 0 andf* = «.)

(3) Tangent developable: Letbe a regular parametrized curve with nonzero curvature, aifddet’;
that is, the rulings are the tangent lines of the curveThenx, x X, = —ve/(u) x &’ (u), so (at
least locally) this is a regular parametrized surface away from the directrix. V

FIGURE1.5

In calculus, we learn that, given a differentiable functipnthe best linear approximation to the graph
y = f(x) “near” x = a is given by the tangent ling = f/(a)(x —a) + f(a), and similarly in higher
dimensions. In the case of a regular parametrized surface, it seems reasonable that the tangent plane at
P = Xx(up, vg) should contain the tangent vector to theurvea; (1) = X(u, vg) atu = ug and the tangent
vector to thev-curvea; (v) = X(ug, v) atv = vg. That is, the tangent plane should contain the vectprs
andx,, each evaluated &it¢, vg). Now, sincex,, x X, # 0 by hypothesis, the vectors, andx, are linearly
independent and must therefore span a plane. We now make this an official

Definition. Let M be a regular parametrized surface, andlet M. Then choose a regular parametriza-
tionx:U — M C R3 with P = x(ug,v9). We define theangent planeof M at P to be the subspace
Tp M spanned by, andx, (evaluated agu, vo)).

Remark. The alert reader may wonder what happens if two people pick two different such local
parametrizations oM near P. Do they both provide the same plafig M ? This sort of question is very
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common in differential geometry, and is not one we intend to belabor in this introductory course. However,
to get a feel for how such arguments go, the reader may work Exercise 15.

There are two unit vectors orthogonal to the tangent plEs#f/. Given a regular parametrizatiof
we know thatx,, x X, is a nonzero vector orthogonal to the plane spannes,bg&ndx,; we obtain the

corresponding unit vector by taking
Xu X Xy

B ”Xu X Xv“ ‘

This is called thaunit normalof the parametrized surface.

Example 4. We know from basic geometry and vector calculus that the unit normal of the unit sphere
centered at the origin should be the position vector itself. This is in fact what we discovered in Example
1(d). V

Example 5. Consider the helicoid given in Example 1(b). Then, as we sgy,x X, =
1
(bsinv,—b cosv,u), andn = 2—(b sinv, —b cosv, u). As we move along a ruling = vy, the

+
normal starts horizontal at = 0 (where the surface becomes vertical) and rotates in the plane orthogonal
to the ruling, becoming more and more vertical as we move out the rulirg.

We saw in Chapter 1 that the geometry of a space curve is best understood by calculating (at least in
principle) with an arclength parametrization. It would be nice, analogously, if we could find a parametriza-
tion x(u, v) of a surface so that,, andx, form an orthonormal basis at each point. We'll see later that this
can happen only very rarely. But it makes it natural to introduce what is classically callédstHenda-
mental form1p(U,V) = U -V, forU,V € Tp M. Working in a parametrization, we have the natural basis
{Xy, Xy}, and so we define

E =1p(Xy,Xy) = Xy - Xy
F = |P(Xu»xv) =Xy - Xy = Xy - Xy = IP(Xv»Xu)

G = |P(Xv,xv) = Xy * Xy,

and it is often convenient to put these in as entries of a (symmetric) matrix:

b — E F
P=1F 6|
Then, given tangent vectokt$ = ax,, + bx, andV = cx, + dX, € Tp M, we have

U-V =1p(U.V) = (aXy + bXy) - (cXy + dXy) = E(ac) + F(ad + bc) + G(bd).

In particular,||U||?> = 1p(U,U) = Ea? + 2Fab + Gb2.

SupposeM and M* are surfaces. We say they doeally isometricif for each P € M there are a
regular parametrizatior: U — M with X(ug, vg) = P and aregular parametrizatioti: U — M * (using
the same domaify C R?) with the property thatp = 1%. wheneverP = x(u,v) and P* = x*(u, v) for
some(u,v) € U. That s, the functiorf = x ox_l.x(U) — X*(U) is a one-to-one correspondence that
preserves the first fundamental form and is therefore distance-preserving (see Exercise 2).
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seal

:

FIGURE1.6

Example 6. Parametrize a portion of the plane (say, a piece of paper(byv) = (u,v,0) and a
portion of a cylinder byx*(u,v) = (cosu,sinu,v). Then it is easy to calculate th## = E* = 1,
F = F* =0,andG = G* = 1, so these surfaces, pictured in Figure 1.6, are locally isometric. On the
other hand, if we let; vary from0 to 2, the rectangle and the cylinder are gitbally isometric because
points far away in the rectangle can become very close (or identical) in the cylindér.

If () = x(u(z),v(t)) is a curve on the parametrized surfadewith «(z9) = X(ug,vo) = P, then it
is an immediate consequence of the chain rule, Theorem 2.2 of the Appendix, that

o' (t0) = u'(to)Xu (Uo. Vo) + V' (10)Xy (U0, Vo).

(Customarily we will write simplyx,, the point(ug, vo) at which it is evaluated being assumed.) That is,
if the tangent vecto(u’(7p), v’ (¢9)) back in the “parameter space” (8, b), then the tangent vector

at P is the corresponding linear combinatiar, + bx,. In fancy terms, this is merely a consequence of
the linearity of the derivative of. We say a parametrizatiot(u, v) is conformalif angles measured in the

FIGURE1.7

uv-plane agree with corresponding angleg M for all P. We leave it to the reader to check in Exercise
6 that this is equivalent to the conditiois= G, F = 0.

Since
| |
E F | | Xyu-Xy Xy-Xp | “ x “ x
F G| | XXy Xp-%X | | %77 R
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we have

Xy Xy Xy Xy O
5 Xy - Xy Xop - Xy U u u v
EG — F° = det =det] | Xp-Xy Xyp-Xpy O
0 0 1
T 2
(1 1| | I

=det| [ x, Xy N Xy Xy N = |det| x, X, n
o o I

which is the square of the volume of the parallelepiped spanneg by,, andn. Sincen is a unit vector

orthogonal to the plane spanned Xy andx,, this is, in turn, the square of the area of the parallelogram
spanned by, andx,. That is,

EG — F? = Xy x X ||? > 0.

We remind the reader that we obtain teface areaf the parametrized surfaceU — M by calculating
the double integral

/||Xu XXUIIdudv=/ VEG — F2dudv.
U U

EXERCISES 2.1

1. Derive the formula given in Example 1(e) for the parametrization of the unit sphere.

#2. Suppose(t) = x(u(t),v(r)),a <t < b, is a parametrized curve on a surfade Show that

b
length(er) = / Vlaw @), (0))d1

b
= / \/E(u(t), v(O)) W' ()% + 2F (@), v(e)w' (' (1) + Gu(t), v(0) (V' (1))>dr.

Conclude that ifle € M anda™ C M™ are corresponding paths in locally isometric surfaces, then
lengthe) = lengthlee™).

3. Compute |l (i.e.E, F, andG) for the following parametrized surfaces.
*a. the sphere of radius. x(u, v) = a(sinu cosv, Sinu Sinv, COSu)
the torusx(u, v) = ((a + b cosu) cosv, (a + b cosu) sinv, b sinu) (0 < b < a)
c. the helicoid:x(u, v) = (u cosv,u sinv, bv)
*d. the catenoidx(u, v) = a(coshu cosv, coshu sinv, u)

4. Find the surface area of the following parametrized surfaces.
*a. the torusx(u,v) = ((a + b cosu) cosv, (a + b cosu) sinv,bsinu) (0 <b <a),0 <u,v <2m
a portion of the helicoidx(u, v) = (u cosv,u sinv,bv),l <u <3,0<v <2x
c. azone of a sphetex(u,v) = a(sinu cosv, sinu sinv, cosu),0 <ug <u <u; <,
0<v<2m

3You should obtain the remarkable result that the surface area of the portion of a sphere between two parallel planes depends
only on the distance between the planes, not on where you locate them.
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*5.

*7.
*8.

#10.

11.

#12.

13.
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Show that if all the normal lines to a surface pass through a fixed point, then the surface is (a portion of)
a sphere. (By the normal line td at P we mean the line passing throughwith direction vector the
unit normal atP.)

Check that the parametrizatiafu, v) is conformal if and only ifE = G and F = 0. (Hint: For—,
choosetwo convenient pairs of orthogonal directions.)

Check that a parametrization preserves area and is conformal if and only if it is a local isometry.

Check that the parametrization of the unit sphere by stereographic projection (see Example 1(e)) is
conformal.

(Lambert’s cylindrical projectionProject the unit sphere (except for the north and south poles) radially

outward to the cylinder of radiusby sending(x, y, z) to (x/+/x2 + y2,y/+/x2 + y2,z). Check that
this map preserves area locally, but is neither a local isometry nor conformal. (Hink(ieat) be
the spherical coordinates parametrization of the sphere, and cor3idew) = (cosv, sinv, cosu).

Compare the parallelogram formed Xy andx, with the parallelogram formed by}, andx;.)

Consider the “pacman” regiov given byx(u, v) = (u cosv,u sinv,0),0 <u < R,0 < v <V, with
V < 2. Letc = V/2n. Let M* be given by the parametrization

X*(u,v) = (cucosv/c),cusin(v/c),v1—c?u), 0<u<R, 0<v<=V.

Compute thall = E*, F = F*, andG = G*, and conclude that the mappihgs x*ox~1: M — M*
is a local isometry. Describe this mapping in concrete geometric terms.

Consider the hyperboloid of one sheft, given by the equation? 4 y? — z2 = 1.
a. Show thak(u,v) = (coshu cosv, coshu sinv, sinhu), u € R, 0 < v < 27, gives a parametriza-
tion of M as a surface of revolution.
*b. Find two parametrizations a¥/ as a ruled surface(u) + vB(u).
1 _
c. Show thak(u, v) = v+ , -y , utv
uv—1 uv—1 uv—1

parameter curves are rulings.

) gives a parametrization dff wherebothsets of

Given a ruled surfackf parametrized bx(u, v) = a(u) + vB(u) with &’ # 0 and||g]| = 1.
a. Check that we may assume thdfu) - B(u) = 0 for all u. (Hint: Replaceo(u) with e(u) +
t(u) B (u) for a suitable function.)
b. Suppose, moreover, that(u), B(u), andp’(u) are linearly dependent for eveny Conclude that
B’ (u) = A(u)a’(u) for some functiom. Prove that:
(i) If A(u) = 0forallu,thenM is a cylinder.
(i) If Aisanonzero constant, the is a cone.
(i) If A andA’ are both nowhere zero, thé is a tangent developable. (Hint: Find the directrix.)

(The Mercator projectionMercator developed his system for mapping the earth, as pictured in Figure
1.8, in 1569, about a century before the advent of calculus. We want a parametrkation of the
sphereu € R, v € (—m, ), so that thas-curves are the longitudes and so that the parametrization is
conformal. Letting(¢, 6) be the usual spherical coordinates, wite= f(u) andé = v. Show that
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14.

15.

16.
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FIGURE 1.8

conformality and symmetry about the equator will dictdie) = 2 arctanie™). Deduce that

X(u, v) = (sechu cosv, sechu sinv, tanhu).

(Cf. Example 2 in Section 1 of Chapter 1.)

A parametrizatiox(u, v) is called aTschebyschev n#tthe opposite sides of any quadrilateral formed

by the coordinate curves have equal length.

a. Prove that this occurs if and onIya = B_G = 0. (Hint: Express the length of the-curves,
ug < u <uq, as an integral and usevthe faclf that this length is independen} of

b. Prove that we can locally reparametrizest§yi, 7) so as to obtairE = G = 1, F = cosf(ii, 1)
(so that thei- andv-curves are parametrized by arclength and meet at #&)glgHint: Choosei
as a function of: so thatk;; = xu/(dﬁ/du) has unit length.)

Suppos& andy are two parametrizations of a surfage near P. Sayx(ug,vg) = P = Y(s0,%).
Prove that Spax,,, X,) = Spanys.y:) (where the partial derivatives are all evaluated at the obvious
points). (Hint: f = x~loy gives aC! map from an open set aroursy, 7o) to an open set around

(1o, vo). Apply the chain rule to shows, y; € Sparn(Xy, Xy).)

(A programmable calculator, Maple, or Mathematica will be needed for parts of this problem.) A
catenoid, as pictured in Figure 1.9, is parametrized by

X(u,v) = (a coshu cosv,a coshu sinv,au), u€R, 0<v <2m (a > 0fixed).

*a. Compute the surface area of that portion of the catenoid givem|by 1/a. (Hint: cosfu =
3(1 + cosh2u).)
b. Find the numbeR, > 0 so that for everyR > Ry, there is at least one catenoid whose boundary
is the pair of parallel circles? + y2 = R?, |z| = 1. (Hint: Graphf(t) = t cosh(1/1).)
c. ForR > Ry, compare the area of the catenoid(s) veithR? (the area of the pair of disks filling in
the circles). For what values & does the pair of disks have the least area? (You should display

the results of your investigation in either a graph or a table.)
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FIGURE1.9

d. (For extra credit) Show that @ — oo, the area of the inner catenoid is asymptoti@taR? and
the area of the outer catenoid is asymptotid#d.

17. There are two obvious families of circles on a torus. Find a third family. (Hint: Look for a plane that
is tangent to the torus &vo points. Using the parametrization of the torus, you should be able to find
equations (either parametric or cartesian) for the curve in which the bitangent plane intersects the torus.)

2. The Gauss Map and the Second Fundamental Form

Given a regular parametrized surfakg the functionn: M — X that assigns to each poift € M the
unit normaln(P), as pictured in Figure 2.1, is called tauss mamwf M. As we shall see in this chapter,

n(P)

FIGURE2.1

most of the geometric information about our surfd¢es encapsulated in the mapping

Example 1. A few basic examples are these.

(@) On a plane, the tangent plane never changes, so the Gauss map is a constant.

(b) On a cylinder, the tangent plane is constant along the rulings, so the Gauss map sends the entire
surface to an equator of the sphere.

(c) On a sphere centered at the origin, the Gauss map is merely the (hormalized) position vector.

(d) On a saddle surface (as pictured in Figure 2.1), the Gauss map appears to “reverse orientation”: As
we move counterclockwise in a small circle arouPdwe see that the unit vectarturns clockwise
aroundn(P). \Y
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Recall from the Appendix that for any functiofi on M (scalar- or vector-valued) and any tangent
vectorV € Tp M, we can compute the directional derivatiidg /(P ) by choosing a curve: (—e,5) > M
with «(0) = P ande’(0) = V and computing foa)’(0).

To understand the shape &f at the pointP, we might try to understand the curvaturePabf various
curves inM. Perhaps the most obvious thing to try is variowsmal slices of M. That is, we sliceM
with the plane through? spanned by(P) and aunit vectorV € Tp M. Various such normal slices are
shown for a saddle surface in Figure 2.2. kdie the arclength-parametrized curve obtained by taking such
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a normal slice. We have(0) = P ande’(0) = V. Then since the curve lies in the plane spanned (@)
andV, the principal normal of the curve @& must betn(P) (+ if the curve is curving towards, — if it's

curving away). Sincéneca(s)) - T(s) = 0 for all s near0, applying Lemma 2.1 of Chapter 1 yet again, we
have:

) +1(P) =«kN-n(P)=T/(0)-n(P) = —T(0) - (near)’(0) = —Dyn(P)-V.
This leads us to study the directional derivatgn(P) more carefully.

Proposition 2.1. For anyW € Tp M, the directional derivativ®yn(P) € Tp M. Moreover, the linear
mapSp:TpM — TpM defined by
Sp(V) = —Dyn(P)
is asymmetriclinear map; i.e., forany,V € Tp M, we have
() Sp(U)-V=U-Sp(V)
Sp is called theshape operataat P .

Proof. Forany curvex: (—e, &) — M with «(0) = P anda’(0) = V, we observe thatea has constant
length1. Thus, by Lemma 2.1 of Chapter Dyn(P) - n(P) = (nee)’(0) - (neer)(0) = 0, soDyNn(P)isin
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the tangent plane t®f at P. ThatSp is a linear map is an immediate consequence of Proposition 2.3 of the
Appendix.
Symmetry is our first important application of the equality of mixed partial derivatives. First we verify
(*) whenU = x,, V = X,. Note thatn - x, = 0, so0 = (n . xv)u = Ny - Xy + N - Xyy. (REMember that
we’re writing n,, for Dy, n.) Thus,
Sp(Xu) - Xy = =Dy, N(P) - Xy = =Ny - Xy = N~ Xy
=N-Xyp = =Ny Xy = =Dy, N(P) - Xy = Sp(Xp) - Xu.
Next, knowing this, we just write out general vectddsandV as linear combinations of,, and x,: If
U = axy + bxy andV = cx, + dX,, then
Sp(U) -V = Sp(axXy + bXy) - (cXy + dXy)
= (aSP(Xu) + bSp (Xv)) (eXy + dXy)
=acSp(Xy) - Xy +adSp(Xy) - Xy + bcSp(Xy) - Xy + bdSp(Xy) - Xy
=acSp(Xy) - Xy +adSp(Xy) - Xy + bcSp(Xy) - Xy + bdSp (Xy) - Xy
= (aXu + bXy) - (¢Sp(Xu) + dSp(Xy)) = U - Sp(V),

as required. O
Proposition 2.2. If the shape operatdp is O for all P € M, thenM is a subset of a plane.

Proof. Since the directional derivative of the unit nornmails O in every direction at every point, we
haven, = n, = 0 for any (local) parametrization(u, v) of M. By Proposition 2.4 of the Appendix, it
follows thatn is constant. (This is why we assume our surfaces are connected.)

. . 1
Example 2. Let M be a sphere of radius centered at the origin. Thean= —x(u, v), so for anyP,
a

1 1 . : . .

we haveSp (x,) = —n, = ——X, and Sp(Xy) = —N, = ——Xy, SOSp is —1/a times the identity map on
a a

the tangent plan&gp M. V

It does not seem an easy task to give the matrix of the shape operator with respect to thg,basjs
But, in general, the proof of Proposition 2.1 suggests that we define the second fundamental form, as follows.
If U,V e Tp M, we set
Hp(U,V) =SpU)-V.
Note that the formulaf() on p. 45 shows that the curvature of the normal slice in diredfigwith ||V| = 1)
is, in our new notation, given by
+k =—Dyn(P)-V =Sp(V)-V=1lp(V,V).

As we did at the end of the previous section, we wish to give a matrix representation when we’re working
with a parametrized surface. As we saw in the proof of Proposition 2.1, we have

=1l p(Xy, Xy)= —Dx, N+ Xy = Xyygy - N
m = ”P(Xu,xv)= _Dxun Xy = Xpu N =Xyp-N = ”P(Xv,xu)

n = Ilp(Xy,Xy) = —Dx,N- Xy = Xpy - N.
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(By the way, this explains the presence of the minus sign in the original definition of the shape operator.)

We then write
{ m Xyu -N Xyp - N
p = = .
m n Xuv M n va M n

If, as beforeU = ax, + bx, andV = cx, + dXy, then
Hp(U,V) =l p(axy + bXy, cXy + dXy)
=acll p(Xy,Xy) + adll p(Xy,Xy) + bcll p(Xy, Xy) + bd 1l p(Xy, Xy)
= {(ac) + m(bc + ad) + n(bd).

In the event thatx,, X, } is an orthonormal basis f&fp M, we see that the matrix gl represents the
shape operatafp. But it is not difficult to check (see Exercise 2) that, in general, the matrix of the linear
mapSp with respect to the basix,,, X, } is given by

. EF| [¢m
IP”P:FG m n |’

Remark. We proved in Proposition 2.1 th&t is a symmetric linear map. This means that its matrix
representation with respect to an orthonormal basis (or, more generally, orthogonal basis with vectors of
equal lengthwill be symmetric: In this case the matrix is a scalar multiple of the identity matrix and the
matrix product remains symmetric.

By the Spectral Theorem, Theorem 1.3 of the Appendix, has two real eigenvalues, traditionally
denotedk(P), k2 (P).

Definition. The eigenvalues ofp are called theprincipal curvaturesof M at P. Corresponding
eigenvectors are callgatincipal directions A curve in M is called aine of curvatureif its tangent vector
at each point is a principal direction.

Recall that it also follows from the Spectral Theorem that the principal directions are orthogonal, so we can
always choose an orthonormal basis T¢rM consisting of principal directions. Having done so, we can
then easily determine the curvatures of normal slices in arbitrary directions, as follows.

Proposition 2.3 (Euler's Formula) Let e;, e, be unit vectors in the principal directions At with
corresponding principal curvaturés andk,. Supposé/ = cosfe; + sinfe, for someb € [0,2r), as
pictured in Figure 2.3. Thethp (V,V) = ki cos 6 + ko sin? 6.

€

\Y

e

FIGURE2.3

Proof. This is a straightforward computation: Sinfg (e;) = k;e; fori = 1,2, we have

Hp(V,V) = Sp(V)-V = Sp(cosfie; + sinfle;) - (cosbe; + sinde;)
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= (cosbkie; + sinbk,e,) - (cosbe; + sinfey) = ki cos 6 + k, sin? 6,
as required. O

On a sphere, all normal slices have the same (nonzero) curvature. On the other hand, if we look carefully
at Figure 2.2, we see that certain normal slices of a saddle surface are true lines. This leads us to make the
following

asymptotic direction.

Definition. If the normal slice in directiotY has zero curvature, i.e., ifgV,V) = 0, then we calvV
anasymptotic directiort A curve inM is called amasymptotic curvef its tangent vector at each point is an

\Y%

Example 3. If a surfaceM contains a line, that line is an asymptotic curve. For the normal slice in
the direction of the line contains the line (and perhaps other things far away), which, of course, has zero
curvature.

Corollary 2.4. There is an asymptotic direction Btif and only ifk1k, < 0.

direction. O

Proof. k, = 0 if and only if ; is an asymptotic direction. Now suppoke # 0. If V is a unit
S0kiky, < 0. Conversely, ifk1k, < 0, take8 with tan6 = +./—k;/k,, and thenV is an asymptotic

asymptotic vector making angfewith e;, then we havé; cos 64k, sin* = 0, and sotahf = —k;/ka,

Example 4. We consider the helicoid, as pictured in Figure 1.2. It is a ruled surface and so the rulings

are asymptotic curves. What is quite less obvious is that the family of helices on the surface are also
asymptotic curves. But, as we see in Figure 2.4, the normal slice tangent to the helhaatan inflection
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point at P, and therefore the helix is an asymptotic curve. We ask the reader to check this by calculation in
Exercise 5. V

40f courseV # 0 here. See Exercise 22 for an explanation of this terminology.
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It is also an immediate consequence of Proposition 2.3 that the principal curvatures are the maximum
and minimum (signed) curvatures of the various normal slices. As&gmek;. Then

k1coS 0 4+ kysi? 0 = ki (1 —si?0) + ko SiP 0 = ky + (kp — k) sin? 0 < k;

(and, similarly,> k,). Moreover, as the Spectral Theorem tells us, the maximum and minimum occur at
right angles to one another. Looking back at Figure 2.2, where the slices are taken at angles in increments
of 7/8, we see that the normal slices that are “most curved” appear in the third and seventh frames; the
asymptotic directions appear in the second and fourth frames. (Cf. Exercise 8.)

Next we come to one of the most important concepts in the geometry of surfaces:

Definition. The product of the principal curvatures is called ®aussian curvatureK = detSp =
k1k,. The average of the principal curvatures is calledrttean curvature H = %tr Sp = %(kl + k»).
We sayM is aminimal surfacef H = 0 andflatif K = 0.

Note that whereas the signs of the principal curvatures change if we reverse the direction of the unit normal
n, the Gaussian curvatur€, being the product of both, is independent of the choice of unit normal. (And
the sign of the mean curvature depends on the choice.)

Example 5. It follows from our comments in Example 1 that both a plane and a cylinder are flat surfaces:
In the former case$Sp = O for all P, and, in the latter, defp = 0 for all P since the shape operator is
singular. V

Example 6. Consider the saddle surfagés, v) = (u, v, uv). We compute:

Xy = (1,0» U) Xuu = (0’0’0)

Xy = (0, 1, u) Xuv = (0’0’ 1)
1

n—= —(_U,—u, 1) X = (0’0’0)’

and so
1

E=1+v% F=uv, G=14+u?> and t=n=0m= ———,
V14 u? +v?

Thus, withP = x(u, v), we have

1+v2  uv 1 0 1
uv 14+ u M1+ uz24+02 |1 0

so the matrix of the shape operator with respect to the agix, } is given by

So = I=1p = 1 —uv 14 u?
P 1)_(1—1—1,12—1—1)2)3/2 1+v2 —uv |’

(Note that this matrix is, in general, not symmetric.)
With a bit of calculation, we determine that the principal curvatures (eigenvalues) are
—uv + /(1 +u2)(1 + v2) —uv — /(1 + u2)(1 + v2)

ki = and  ky = ;
! (1 + u2 + v2)3/2 2 (1 + u2 + v2)3/2
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andK = detSp = —1/(1 4+ u? + v?)2. Note from the form of Ip that theu- andv-curves are asymptotic
curves, as should be evident from the fact that these are lines. With a bit more work, we determine that the
principal directions, i.e., the eigenvectors®f, are the vectors

V14 u?x, £ vV 1+ v2x,.

(It is worth checking that these vectors are, in fact, orthogonal.) The corresponding curves inplame
have tangent vectos/1 + u2, £+/1 + v2) and must therefore be solutions of the differential equation

dv _i«/1+1)2
du VIi+u?

If we substitutev = sinhg, [ dv/~1+ v? = [ dq = q = arcsinhv, so, separating variables, we obtain

/ D _ i/ du__ i.e., arcsinhh = £ arcsinhu + ¢
Since sinlix 4+ y) = sinhx coshy + coshx sinhy, we obtain
v = sinh(+ arcsinhu + ¢) = £(coshe)u + (sinhe) v 1 + u?.

Whenc = 0, we getv = +u (as should be expected on geometric grounds)c #aries through nonzero
values, we obtain a family of hyperbolas. Some typical lines of curvature on the saddle surface are indicated
in Figure 2.5. V

FIGURE2.5

Definition. Fix P € M. We sayP is anumbilic® if k; = k. If ky = k, = 0, we sayP is aplanar
point If K = 0 but P is not a planar point, we sak is aparabolic point If K > 0, we sayP is anelliptic
point, and if K < 0, we sayP is ahyperbolic point

Example 7. On the “outside” of a torus (see Figure 1.3), all the normal slices curve in the same direction,
so these are elliptic points. Now imagine laying a plane on top of a torus; it is tangent to the torus along
the “top circle,” and so the unit normal to the surface stays constant as we move around this curve. For
any pointP on this circle andv tangent to the circle, we havep (V) = —Dyn = 0, soV is a principal
direction with corresponding principal curvatude Thus, these are parabolic points. On the other hand,
consider a poin® on the innermost band of the torus. At such a point the surface looks saddle-like; that is,
with the unit normal as pictured in Figure 2.6, the horizontal circle (going around the inside of the torus) is a

5From the LatinumbilTcusnavel.
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M

<

FIGURE 2.6

line of curvature with positive principal curvature, and the vertical circle is a line of curvature with negative
principal curvature. Thus, the points on the inside of the torus are hyperbolic poiits.

Remark. Gauss’s original interpretation of Gaussian curvature was the following: Imagine a small
curvilinear rectanglé® at P € M with sidesh; andh, along principal directions. Then, since the principal
directions are eigenvectors of the shape operator, the imafjeuotler the Gauss map is nearly a small
curvilinear rectangle at(P) € X with sidesk s andk,hy. Thus,K = kik, is the factor by whicm
distorts signed area as it maps to X. (Note that for a cylinder, the rectangle collapses to a line segment;
for a saddle surface, orientation is reversed@and so the Gaussian curvature is negative.)

Let’s close this section by revisiting our discussion of the curvature of normal slices. Suposa
arclength-parametrized curve lying a# with «(0) = P anda’(0) = V. Then the calculation in formula
() on p. 45 shows that

lp(V,V) = kN-n;

i.e., llp(V,V) gives the component of the curvature vecotd of « normalto the surfaceM at P, which

we denote by, and call thenormal curvatureof & at P. What is remarkable about this formula is that it
shows that the normal curvature depends only on the directienaifP and otherwise not on the curve.
(For the case of the normal slice, the normal curvature is, up to a sign, all the curvature.) What's,;nore,
can be computed just from the second fundamental form M ofWe immediately deduce the following

Proposition 2.5 (Meusnier's Formula) Let e be a curve onM passing throughP with unit tangent
vectorV. Then

Hp(V,V) =k, = K COSP,
whereg is the angle between the principal normd/,of « and the surface normai, at P .
In particular, ifec is an asymptotic curve, then its normal curvatur@ & each point. This means that,

so long asc # 0, its principal normal is always orthogonal to the surface normal, i.e., always tangent to the
surface.

Example 8. Let’s now investigate a very interesting surface, called pjeeudosphereas shown in
Figure 2.7. It is the surface of revolution obtained by rotating the tractrix (see Example 2 of Chapter 1,
Section 1) about the-axis, and so it is parametrized by

X(u,v) = (u — tanhu, sechu cosv, sechu sinv), u>0,vel02n).

Note that the circles (of revolution) are lines of curvature: Either apply Exercise 15 or observe, directly, that
the only component of the surface normal that changes as we move around the circle is normal to the circle
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FIGURE2.7

in the plane of the circle. Similarly, the various tractrices are lines of curvature: In the plane of one tractrix,
the surface normal and the curve normal agree.
Now, by Exercise 1.2.5, the curvature of the tractrix is= 1/ sinhu; sinceN = —n along this curve,
we havek; = k, = —1/sinhu. Now what about the circles? Here we have= 1/sechu = coshu,
but this is not the normal curvature. The angldetweenN andn is the supplement of the angtewe
see in Figure 1.9 of Chapter 1 (to see why, see Figure 2.8). Thus, by Meusnier's Formula, Proposition 2.5,

¢\\9\
1
n/N

FIGURE 2.8

we havek, = k, = kcos¢p = (coshu)(tanhu) = sinhu. Amazingly, then, we hav&k = kik, =
(—=1/sinhu)(sinhuy) = —-1. V

Example 9. Let's now consider the case of a general surface of revolution, parametrized as in Example
2 of Section 1, by
X(u,v) = (f(u) cosv, f(u)sinv, g(u)),
where f'(u)? + g’(u)®> = 1. Recall that the:-curves are calledneridiansand thev-curves are called
parallels Then

Xy = (f'(u)cosv, f/(u)sinv, g'(u))
Xy = (—f(u) sinv, f(u) COSU,O)

n = (—g'(u)cosv, —g'(u) sinv, f'(u))
Xuu = (f"(u) cosv, f"(u) sinv, g" (u))
Xuv = (— f'(u) sinv, f'(u) cosv, 0)

Xvv = (—f(u) cosv, — f (u) sinv, 0),
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and so we have

E=1, F=0, G=fw? and {=f'g"w)—f"wgw), m=0, n= fug .

By Exercise 2.2.1, theky = f'(u)g” (u) — f"(u)g’'(u) andk, = g’(u)/ f(u). Thus,

g _ [
fe T fw

K =kiky = (f'()g" (u) — f"(u)g'(w))

since from £/ (u)? + g’(u)? = 1 we deduce thay”’(u) (1) + g’(u)g” (1) = 0, and so

f')g' e @) — f"wg' @)? = —(f ) + g W) f"w) = —f"(w).

Note, as we observed in the special case of Example 8, that on every surface of revolution, the meridians
and the parallels are lines of curvatureV

*1.

42,

3.

*5.

EXERCISES 2.2

Check that if there are no umbilic points and the parameter curves are lines of curvaturé, taen
m = 0 and we have the principal curvatures = ¢/E andk, = n/G. Conversely, prove that if
F = m = 0, then the parameter curves are lines of curvature.

a. Show that the matrix representing the linear agp7p M — Tp M with respect to the basis

{Xyu, Xy } IS
1y, _ | EF e m
PP = F G m n |’

(Hint: Write Sp(Xy) = axy + bx, andSp(Xy) = ¢Xy + d Xy, and use the definition df, m, and
n to get a system of linear equations torb, ¢, andd .)

)
b. Deduce thak = En—m
EG — F?2

Compute the second fundamental forrp bf the following parametrized surfaces. Then calculate the
matrix of the shape operator, and determih@and K .
a. thecylinderx(u,v) = (a cosu, a sinu, v)
*pb. the torus:x(u, v) = ((a + b cosu) cosv, (a + b cosu) sinv,bsinu) (0 < b < a)
c. the helicoid:x(u, v) = (u cosv,u sinv, bv)
*d. the catenoidx(u, v) = a(coshu cosv, coshu sinv, u)
e. the Mercator parametrization of the sphetet, v) = (sechu cosv, sechu sinv, tanhu)
f. Enneper’s surfacex(u,v) = (u —u3/3 + uv?, v —v3/3 + u?v,u? — v?)

Find the principal curvatures, the principal directions, and asymptotic directions (when they exist) for
each of the surfaces in Exercise 3. ldentify the lines of curvature and asymptotic curves when possible.

Prove by calculation that any one of the heliegg) = (a cost, a sint, bt) is an asymptotic curve on
the helicoid given in Example 1(b) of Section 1. Also, calculate how the surface narof&nges as
one moves along a ruling, and use this to explain why the rulings are asymptotic curves as well.
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*6.

10.

11.

12.

13.
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Calculate the first and second fundamental forms of the pseudosphere (see Example 8) and check our

computations of the principal curvatures and Gaussian curvature.

Show that a ruled surface has Gaussian curvaure0.

a. Prove that the principal directions bisect the asymptotic directions at a hyperbolic point. (Hint:

Euler's Formula.)
b. Prove that if the asymptotic directionsMf are orthogonal, thed is minimal. Prove the converse
assumingM has no planar points.

Letk, (6) denote the normal curvature in the direction making afighéth the first principal direction.

1 2w
a. Showthatd = —/ kn(60)do.
21 0

1
b. Show thatt = 3 (Kn(e) +n (0 + %)) for anyé.
(More challenging) Show that, more generally, for ayand m > 3, we have

H=1 (Kn(9)+lfn(9+2—n) +"'+Kn(9+m)).
m m m

Consider the ruled surfadd given byx(u, v) = (v cosu, v sinu,uv), v > 0.

a. Describe this surface geometrically.

b. Find the first and second fundamental forms and the Gaussian curvaiMre of
c. Check that the-curves are lines of curvature.
d.

Proceeding somewhat as in Example 6, show that the other lines of curvature are given by the

equationv+/1 + u2 = ¢ for various constants. Show that these curves are the intersectioMof
with the spheres? 4 y2 + z2 = ¢2. (It might be fun to use Mathematica to see this explicitly.)

. . dv V(1)
The curvex () = x(u(t), v(¢)) may arise by writing— =
du  u'(t)

and solving a differential equation to

relateu andv either explicitly or implicitly.
a. Show thaix is an asymptotic curve if and only #(u)?> + 2mu’v’ + n(v’)> = 0. Thus, if
¢4 2m% 4 n(9)? = 0, thene is an asymptotic curve.

LEUW + Fv' Fu' + Gv'

b. Show thatx is a line of curvature if and only i = 0. Give the appropri-

Lu' +mv' mu’ + nv'
ate condition in terms afv/du.
c. Deduce that an alternative condition éoto be a line of curvature is that
)2 —u'v' ()?
E F G |=0.
14 m n

a. Apply Meusnier's Formula to a latitude circle on a sphere of radits calculate the normal
curvature.

b. Apply Meusnier's Formula to prove that the curvature of any curve lying on a sphere of tadius
satisfiesc > 1/a.

Prove or give a counterexample:Mf is a surface with Gaussian curvatuge> 0, then the curvature
of any curveC C M is everywhere positive. (Remember that, by definitiory; 0.)
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t14.

15.

16.

17.

18.

19.

20.

Suppose that for ever§ € M, the shape operatd¥p is some scalar multiple of the identity, i.e.,
Sp(V) =k(P)VforallV e Tp M. (Here the scalakt(P) may well depend on the poiRt.)

a.

Differentiate the equations

Dy n = n, = —kXy

Dy,n = ny, = —kXy
appropriately to determink, andk, and deduce that must be constant.

We showed in Proposition 2.2 that is planar wherk = 0. Show that wherk # 0, M is (a
portion of) a sphere.

Prove tha is a line of curvature inVf if and only if (nea)’(t) = —k(¢)e/(¢), wherek(z) is the
principal curvature at(¢) in the direction’ (). (More colloquially, differentiating along the curve
o, we just writen’ = —ka'.)

Suppose two surfacég andM * intersect along a curv€. Suppose& is a line of curvature i1 .
Prove thatC is a line of curvature il * if and only if the angle betweeM and M * is constant
alongC. (In the proof of<=, be sure to include the case thet and M * intersect tangentially
alongC.)

Prove or give a counterexample:

a.

If a curve is both an asymptotic curve and a line of curvature, then it must be planar. (Hint: Along
an asymptotic curve that is not a line, how is the Frenet frame related to the surface normal?)
If a curve is planar and an asymptotic curve, then it must be a line.

How is the Frenet frame along an asymptotic curve related to the geometry of the surface?
SupposeK(P) < 0. If C is an asymptotic curve witk(P) # 0, prove that its torsion satisfies
|t(P)| = /—K(P). (Hint: If we choose an orthonormal bagld, V} for Tp (M) with U tangent
to C, what is the matrix folSp? See the Remark on p. 47.)

Continuing Exercise 17, show thaidf P) < 0, then the two asymptotic curves have torsion of opposite
signs atP.

Supposé/ C R3 is open anc: U — R3 is a smooth map (of rank) so thatx,,, X,, andx,, are always
orthogonal. Then the level surfaces= const,v = const,w = const form driply orthogonal system
of surfaces.

a.

Show that the spherical coordinate mappitg, v, w) = (u Sinv cosw, u Sinv Sinw, u COSV)
(u>0,0<v<m0<w < 2x) furnishes an example.

Prove that the curves of intersection of any pair of surfaces from different systems (e.ggnst

andw = const) are lines of curvature in each of the respective surfaces. (Hint: Differentiate the
various equations,, - X, = 0, Xy - Xy = 0, Xy, - Xy = 0 with respect to the missing variable. What
are the shape operators of the various surfaces?)

In this exercise we analyze the surfaces of revolution that are minimal. It will be convenient to work
with a meridian as a graply (= i(u), z = u) when using the parametrization of surfaces of revolution
given in Example 9.
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22.

23.
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a. Use Exercise 1.2.4 and Proposition 2.5 to show that the principal curvatures are

k1 = h and k _ 1 !
ERIEN DY TR AwRe

Deduce that = 0 if and only if 2(u)h” (u) = 1 + K’ (u)?.

c. Solve the differential equation. (Hint: Either substitute) = In /() or introducew (u) = h'(u),
find dw/dh, and integrate by separating variables.) You should findihat = %cosf(cu +b)
for some constants andc.

By choosing coordinates R3 appropriately, we may arrange thAtis the origin, the tangent plane
Tp M is thexy-plane, and the- and y-axes are in the principal directions &t
a. Show that in these coordinatésis locally the graplr = f(x,y) = 3(k1x2 + k2y?) + €(x, y),

where lim €(x,y)
x,y—0 x2 + y2

fx.y) = f(0.0) + /x(0,0)x + £,(0.0)y +
3 (fxx(0,00x% + 23 (0,0)xy + f3(0,0)y%) + €(x, y),

= 0. (You may start with Taylor's Theorem: If is @2, we have

where lim <2 _ )
x,y—=>0 x4y

b. Show thatifP is an elliptic point, then a neighborhood Bfin M N Tp M is just the origin itself.
What happens in the case of a parabolic point?

c. (More challenging) Show that iP is a hyperbolic point, a neighborhood 8fin M N Tp M is
a curve that crosses itself & and whose tangent directions Atare the asymptotic directions.
(Hints: Work in coordinategx,u) with y = ux. Show that in thevu-plane the curve has the
equation0 = g(x,u) = %(kl + kou?) + h(x,u), whereh(0,u) = 0 for all u, so it consists
of two (C') curves, one passing through, \/—k;/k,) and the other through0, —/—k1/k2).
Show, moreover, that if two curves pass through the same paing) in the xu-plane, then the
corresponding curves in they-plane are tangent &0, 0).9)

LetP € M be a non-planar point, and K > 0, choose the unit normal so thatn > 0.

a. We define thé®upin indicatrix to be the conic iff'p M defined by the equationgiV,V) = 1.
Show that if P is an elliptic point, the Dupin indicatrix is an ellipse; # is a hyperbolic point,
the Dupin indicatrix is a hyperbola; and K is a parabolic point, the Dupin indicatrix is a pair of
parallel lines.

b. Show thatifP is a hyperbolic point, the asymptotes of the Dupin indicatrix are givenhiM| V) =
0, i.e., the set of asymptotic directions.

Cc. SupposeVM is represented locally nedt as in Exercise 21. Show that for small positive values
of ¢, the intersection oM with the planez = ¢ “looks like” the Dupin indicatrix. How can you
make this statement more precise?

Suppose the surfadd is given nearP as a level surface of a smooth functidgh R3> — R with
VF(P) # 0. Aline L C R? is said to have (at leasi-point contactwith M at P if, given any
linear parametrizatiom of L with «(0) = P, the functiond = Foa vanishes to ordek — 1, i.e.,

%Here we have “blown up” the origin in order to keep track of the different tangent directiondl@liang-upconstruction is
widely used in topology and algebraic geometry.
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F0) = F(0) = --- = F&D(0) = 0. (Such aline is to be visualized as the limit of lines that intersect
M at P and atk — 1 other points that approach.)
a. Show that. has2-point contact withM at P if and only if L is tangent toVf at P, i.e.,L C Tp M.
b. Show thatl. has3-point contact withM at P if and only if L is an asymptotic direction af.
(Hint: It may be helpful to follow the setup of Exercise 21.)
c. (Challenge) Assume is a hyperbolic point. What does it mean fbtto have4-point contact with
M atP?

3. The Codazzi and Gauss Equations and the Fundamental Theorem of Surface Theory

We now wish to proceed towards a deeper understanding of Gaussian curvature. We have to this point
considered only the normal components of the second derivatjyes<,,, andx,,. Now let's consider
themin toto. Since{x,, X,, n} gives a basis foR3, there are function§ %, I,2,, [\, = T %, T,% =T,
ry,andl’}, so that
(1) Xuy = Fulz;xu + Ful;;xv + mn

XUU = FUZ:)Xu + FUI;)XU + nn.

(Note thatx,, = Xy, dictates the symmetrieE,’ = I')5,.) The functionsI',, are calledChristoffel
symbols

Example 1. Let's compute the Christoffel symbols for the usual parametrization of the sphere (see
Example 1(d) on p. 37). By straightforward calculation we obtain

Xy = (COSu cosv, cosu Sinv, — sinu)
Xy = (—sinu sinv, sinu cosv, 0)
Xyu = (—Sinu cosv, — sinu sinv, — cosu) = —Xx(u, v)
Xyv = (— COSu sinv, cosu cosv, 0)
Xyy = (—Sinu cosv, — sinu sinv, 0) = — sinu(cosv, sinv, 0).
(Note that thet-curves are great circles, parametrized by arclength, so it is no surprise that the acceleration

vectorx,,, is inward-pointing of length. Thev-curves are latitude circles of radius &inso, similarly, the
acceleration vectax,, points inwards towards the center of the respective circle.)

FIGURE3.1
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Sincexy,, lies entirely in the direction oh, we havel');, = T',;, = 0. Now, by inspectionx,, =
cotuxy, sol',;, = 0 andI’,;, = cotu. Last, as we can see in Figure 3.1, we hayg = — sinu cosuX, —

I u
sirfun, sol'}%,

—sinu cosu andI'"; = 0.

\Y%

Now, dotting the equations irf\ with x,, andx, gives

Now observe that

(»)

X‘l)‘l)

.Xv

Xuu Xy =T E+ T, F

qu

Xuv

Xuv

XUU

XUU

e

.Xv

.Xu

'XU

%(Xu “Xu)u
%(Xu “Xu)v

%(XU : Xv)u

(Xu : Xv)u — Xy * Xyv

(Xu 'Xv)v — Xuv " Xy

%(XU “Xp)y = %Gv

Thus, we can rewrite our equations as follows:

E F

()

M QM

1 1 1 1
R TS T © T

G

y —
Fuu

v
Loy |

u
Fuv

v
Fuv _

u
FUU

v
Ly |

—
—
Gui| _

B u
Fuu

v
L Loy

B u
Fuv

v
L Fuv

u
FUU

v

= Fuqu + Ful;)F
= Fuqu + Fuva

= FU%E—FFUI;)F
= FU%F—FFUUUG.

Fy—3E,y

F, - 16,

-— — _._1_ 1
_|E F 1E,
| F G Fu—1E,

— __1_1
_|E F 1E,
|F G 3G

— __1 — 1
|F G 3Gy

What is quite remarkable about these formulas is that the Christoffel symbols, which tell us about the
tangential component of the second derivatixgs can be computeplist from knowing E, F, andG, i.e.,

the first fundamental form.

Example 2. Let’'s now recompute the Christoffel symbols of the unit sphere and compare our answers
with Example 1. Sincé& = 1, F = 0, andG = sin? u, we have

1" u
Lo

T
Fuvv

||
Il

1

1

0 0
0 csCu 0
0
0 csCu

Il

0
sinu cosu

]
J= o]
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ryy | |1 0 —sinucosu | | —sinucosu
r2 | |0 cs@u 0 B 0 '

Thus, the only nonzero Christoffel symbols dtg = I' )}, = cotu andI'}j, = —sinu cosu, as before.
\

By Exercise 2.2.2, the matrix of the shape operdtpwith respect to the bas{x,, X, } is

—1
a c| |EF t m| 1 LG —mF mG-—nF
bd| |F G m n| EG-—F2| —{F+mE —mF +nE |’
Note that these coefficients tell us the derivatives @fith respect ta: andv:

Ny = Dy,N = —Sp(Xy) = —(axXy + bXy)

(Ff) Ny = Dy,N = —Sp(Xy) = —(cXy + dXy).

We now differentiate the equation$)@gain and use equality of mixed partial derivatives. To start, we
have

Xuuv = (Dyp)vXu + TygXuw + (D )uXo + Ty Xow + £on + €Ny
= () vXu + Typ (TyoXu + T Xe + mn) + (T0)vXe + Dol (TuoXu + Ty X + 1)
= ((Fuz)v + Fuz Fuuv + FJ&FJ{) - ZC)Xu + ((Fulit)v + Fulftrul;) + Fu1;4 Fvli) - Zd)XU
+ (Fuzm + l_‘uvun + Ev)n’

and, similarly,

Xyvu = ((Fuuv)u + Fulz) Fuz + Fuvvrulz) - ma)xu + ((Fuvv)u + Fulz) 1—‘uvu + Fuvv Fuvv - mb)Xv
+ (£T,5y + mL,, + my)n.
Sincexyuy = Xyvu, We compare the indicated components and obtain:

(Xy): Th)v + 0T —le = (L)) + L0, —ma

uU- VU uv/u UV~ UV
) Xy): )+ LT + 0000 —4d = (T))u + T 4T, + T, 00 —mb

(n): Ly + mD, +nl,), =my +LL); +ml,),.
Analogously, comparing the indicated components,@f, = Xyvu, We find:

(Xy): ) + 0T + 000 —me = (Tf)u + T TH + T 0008 —na

uvt uv uvt vu vv/u VU uu VU UY
(Xp): e+, —md = (T))u + T L), —nb

(n): my +ml )} +nl, =ny + LT}, +mIl).

The two equations coming from the normal component give us the

Codazzi equations

by —my = LT +m(L,5 —T ) —nT,),

my —ny = L0y +m(C, —T0t) —nl).
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2

. In — . . .
UsingK = % and the formulas above far, b, ¢, andd, the four equations involving the, and
Xy components yield the

Gauss equations
EK = (Ful;t)v - (Ful;))u + 1—‘uuu Fuvv + Ful; Fvli) - Fulz) Fu1;4 - (Fuvv)2
FK = (Fulz;)u - (Ful;)v =+ 1—‘uvvl—‘uuv - Fulitrvuv
FK = (Ful;))v - (Fvvv u + 1—‘uuv Fuvv - Fvlz)ruvu
GK = (erf))u - (Fuuv)v + 1—‘vuvl—‘uuu + 1—‘vvvl—‘uuv - (Fuuv)2 - Fuvv 1—‘vuv'

For example, to derive the first, we use the equatibnabove:

(Fuvu)v - (Fuvv)u + 1_‘uuu l_‘uvv + l_‘uvu 1_‘vvv - Fuuvrulit - (Fuvv)2 =4{d —mb

1 E(fn —m?)

In an orthogonal parametrizatior (= 0), we leave it to the reader to check in Exercise 3 that

= EK.

1 E, Gy
) K=-375¢ ((m)ﬁ(ﬁ)u)'

One of the crowning results of local differential geometry is the following

Theorem 3.1(Gauss’s Theorema EgregiumJThe Gaussian curvature is determined by only the first
fundamental form. That is, K can be computed from judt, F, G, and their first and second partial
derivatives.

Proof. From any of the Gauss equations, we see fhatan be computed by knowing any one Bf
F, andG, together with the Christoffel symbols and their derivatives. But the equatirehéw that the
Christoffel symbols (and hence any of their derivatives) can be calculated in tednsfgfandG and their
partial derivatives. [

Corollary 3.2. If two surfaces are locally isometric, their Gaussian curvatures at corresponding points
are equal.

For example, the plane and cylinder are locally isometric, and hence the cylinder (as we well know)
is flat. We now conclude that since the Gaussian curvature of a sphere is nonzero, a sphere cannot be
locally isometric to a plane. Thus, there is no way to map the earth “faithfully” (preserving distance)—even
locally—on a piece of paper. In some sense, the Mercator projection (see Exercise 2.1.13) is the best we can
do, for, although it distorts distances, it does preserve angles.

The Codazzi and Gauss equations are rather opaque, to say the least. We obtained the convenient
equation §) for the Gaussian curvature from the Gauss equations. To give a bit more insight into the
meaning of the Codazzi equations, we have the following

Lemma 3.3. Suppose« is a parametrization for which the- andv-curves are lines of curvature, with
respective principal curvaturés andk,. Then we have

(*) (o= soo k) and (k2 = o (k1 — ko)



§3. THE CODAZZI AND GAUSSEQUATIONS AND THE FUNDAMENTAL THEOREM OF SURFACE THEORY 61

Proof. By Exercise 2.2.1{ = k1 E,n = kG, andF = m = 0. By the first Codazzi equation and the
equations f) on p. 58, we have

(ki)wE + k1Ey = £y, = ki ET i, —koGT,}, = 2 Ey(ky + k2),
and so

E
(k1)y = ﬁ(kz —k1).
The other formula follows similarly from the second Codazzi equatidn.

Let's now apply the Codazzi equations to prove a rather striking result about the general surface with
K = 0 everywhere.

Proposition 3.4. SupposeM is a flat surface with no planar points. Théhis a ruled surface whose
tangent plane is constant along the rulings.

Proof. SinceM has no planar points, we can choégse= 0 andk, # 0 everywhere. Then by Theorem
3.3 of the Appendix, there is a local parametrizatiodb®o that the:-curves are the first lines of curvature
and thev-curves are the second lines of curvature. This means first of alFthatm = 0. (See Exercise
2.2.1)) Now, sincé; = 0, forany P ¢ M we haveSp(x,) = 0, and son,, = 0 everywhere and is
constant along the-curves. We also observe that= 11 (X, X)) = —Sp(Xy) - X, = 0.

We now want to show that the-curves are in faclines Sincek; = 0 everywhere(k;), = 0 and,
sincek, # ki, we infer from Lemma 3.3 thak,, = 0. From the equations:f it now follows thatl’,;}, = 0.
Thus,

Xuu = TyyXu + L)Xy +€n = T L Xy
is just a multiple ofk,,. Thus, the tangent vectay, never changes direction as we move alongtieairves,
and this means that thecurves must be lines. In conclusion, we have a ruled surface whose tangent plane
is constant along rulings. O

Remark. Flat ruled surfaces are often callddvelopable (See Exercise 10 and Exercise 2.1.12.) The
terminology comes from the fact that they can be rolled out—or “developed’—onto a plane.

Next we prove a strikingjlobal result about compact surfaces. (Recall that a subsRt a6 compact
if it is closed and bounded. The salient feature of compact sets is the maximum value theorem: A contin-
uous real-valued function on a compact set achieves its maximum and minimum values.) We begin with a
straightforward

Proposition 3.5. SupposeVl C R3 is a compact surface. Then there is a pdint M with K(P) > 0.

Proof. BecauseM is compact, the continuous functiof(x) = ||x|| achieves its maximum at some
point of M, and so there is a poit € M farthest from the origin (which may or may not be insite,
as indicated in Figure 3.2. Lef(P) = R. As Exercise 1.2.7 shows, the curvature of any cwtve M
at P is at leastl/R. Applying this to any normal section o¥f at P and choosing the unit normal
to be inward-pointing, we deduce that every normal curvaturd/oét P is at leastl/R. It follows that
K(P) > 1/R? > 0. (Thatis,M is at least as curved & as the circumscribed sphere of radiRgangent
toMatP.) O
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FIGURE 3.2

The reader is asked in Exercise 19 to find surfaces of revolution of constant curvature. There are,
interestingly, many nonobvious examples. However, if we restrict ourselves to smooth, compact surfaces,
we have the following beautiful

Theorem 3.6(Liebmann) If M is a smooth, compact surface of constant Gaussian curvAtLiieen
K > 0 andM must be a sphere of radilig~/K .

We will need the following

Lemma 3.7 (Hilbert). SupposeP is not an umbilic point ané,(P) > k,(P). Supposé; has a local
maximum atP andk, has a local minimum aP. ThenK(P) < 0.

Proof. We work in a “principal” coordinate parametrizationear P, so that theu-curves are lines of
curvature with principal curvaturk; and thev-curves are lines of curvature with principal curvatise
Sincek; # k, and(ky)y = (k2), = 0 at P, it follows from Lemma 3.3 that, = G, =0 at P.

Differentiating the equations§, and remembering th&k ), = (k2), = 0 at P as well, we havat P:

E
(k1)yy = 22” (kn —k1) <0  (becausé, has a local maximum a®)
(k2)uu = i"G" (ki —k;) >0  (because, has a local minimum aP),

and soE,, > 0 andG,, > 0 at P. Using the equation«) for the Gaussian curvature on p. 60, we see
similarly thatat P

1
K = _m(Evv + Guu),

as all the remaining terms involvé, andG,,. So we conclude tha&k'(P) < 0, as desired. I

Proof of Theorem 3.6. By Proposition 3.5, there is a point whelg is positively curved, and since the
Gaussian curvature is constant, we must hdve 0. If every point is umbilic, then by Exercise 2.2.14, we
know thatM is a sphere. If there is some non-umbilic point, the larger principal curvatyrechieves its
maximum value at some poit becauseV is compact. Then, sinc&€ = k;k, is constant, the function
k» = K/kq must achieve its minimum &t. Since P is necessarily a non-umbilic point (why?), it follows
from Lemma 3.7 thak' (P) < 0, which is a contradiction. (I

7Since locally there are no umbilic points, the existence of such a parametrization is an immediate consequence of Theorem
3.3 of the Appendix.
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Remark. H. Hopf proved a stronger result, which requires techniques from complex analy&fsisia
compact surface topologically equivalent to a sphere and having cons¢amcurvature, then must be
a sphere.

We conclude this section with the analogue of Theorem 3.1 of Chapter 1.

Theorem 3.8 (Fundamental Theorem of Surface Theori)niqueness: Two parametrized surfaces
x,x*:U — R3 are congruent (i.e., differ by a rigid motion) if and onlylif= 1* andll = +Il*. Ex-
istence:Moreover, given differentiable functions, F, G, {, m, andn with E > 0 andEG — F? > 0 and
satisfying the Codazzi and Gauss equations, there exists (locally) a parametrized urfagewith the
respectiva andll.

Proof. The existence statement requires some theorems from partial differential equations beyond our
reach at this stage. The uniqueness statement, however, is much like the proof of Theorem 3.1 of Chapter
1. (The main technical difference is that we no longer are lucky enough to be working vwotithamormal
basis at each point, as we were with the Frenet frame.)

First, suppose* = Wox for some rigid motion¥: R3 — R3 (i.e., ¥(x) = Ax + b for someb € R3
and some x 3 orthogonal matrix4). Since a translation doesn't change partial derivatives, we may assume
thatb = 0. Now, since orthogonal matrices preserve length and dot product, weHfave ||x*|? =
A%, ||? = ||%«||> = E, etc., so |I= 1*. If det4 > 0, thenn* = An, whereas if de#l < 0, thenn* = —A4n.
Thus,£* = x5, - N* = AXyy, - (£An) = x££, the positive sign holding when dét> 0 and the negative
when detd < 0. Thus, IF = Ilifdet A > 0and II* = —Ilifdet 4 < 0.

Conversely, suppose= 1* and Il = +I1*. By composing«* with a reflection, if necessary, we may
assume that I&= [1*. Now we need the following

Lemma 3.9. Suppose anda™ are smooth functions d, b], viv,v3 andviv;Vv; are smoothly varying
bases foR3, also defined of0, b], so that

Vi(0) Vi (1) = Vi) vy () =gij(t).  i.j =123,

3 3
o) =) pievi(t)  and  «¥() =) pi()VF (D),

3 3
Vi) = qivi(0) and  Vi'(0) =) qyvi@), j=12.3.
i=1 i=1
(Note that the coefficient functions; andq;; are the same for both the starred and unstarred equations.)
If «(0) = a*(0) andv;(0) = v;(0),i = 1,2,3, thena(t) = a*(t) andv;(t) = v:(t) for allt < [0,b],
i=1,2,3.

Fix a pointug € U. By composingx* with a rigid motion, we may assume thatuy, we havex = x*,
Xu = X5, Xy = X;;, andn = n* (why?). Choose an arbitrary; € U, and joinug to u; by a pathu(z),
t € [0,b], and apply the lemma with = Xou, Vi = Xy°U, Vo = Xy°U, V3 = nou, p; = u;, and theg;;
prescribed by the equationg)@nd (). Since I= 1* and Il = I *, the same equations hold f@¥ = x*ou,
and sax(u;) = x*(uy) as desired. That is, the two parametrized surfaces are identichl.
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Proof of Lemma 3.9. Introduce the matrix function af
| | |
M(t) = | vi(t) va(t) vi() |.
| | |

and analogously foM * (). Then the displayed equations in the statement of the Lemma can be written as
M'(t)y=M@)Qt) and  M*(t) = M*(t)Q(1).

On the other hand, we hav® (1)TM(t) = G(t). Since thev;(t) form a basis forR3 for eacht, we
know the matrixG is invertible. Now, differentiating the equatiai(r)G~1(¢) = I yields (G~1)(t) =
—G Y 1)G'(t)G (1), and differentiating the equaticBi(r) = M (t)"M(¢) yieldsG'(t) = M'(t)"M(t) +
M@)"™M'(t) = Q(t)"G(t) + G(¢)Q(r). Now consider
(M*GT'M™Y (1) = M*' (GO 'M@®)" + M* )G OM@)" + M*()G(@) "' M'(t)"
= M*() Q)G M@ + M* () (=GO G'OGO) T )M@)
+M* OGO QO M)
= M* () Q)G M@ = M* ()G QW)M@) = M* () Q)G M)
+ M*)G(1) Q@)™ M) = O.
Since M(0) = M*(0), we haveM*(0)G(0)" ' M©0)" = MO)MO)"'M©0)""'M@0)" = I, and so
M*()G(t)"'M@)" = I for allt € [0,b]. It follows that M*(r) = M(¢) for all t € [0,b], and so

a*'(t) —a'(t) = Ofor all t as well. Sincex*(0) = «(0), it follows thate™(r) = «(¢) for all ¢ € [0, 5], as
we wished to establish.

EXERCISES 2.3

1. Calculate the Christoffel symbols for a coréy, v) = (u cosv, u Sinv, u), both directly (as in Example
1) and by using the formulag).

2. Calculate the Christoffel symbols for the following parametrized surfaces. Then check in each case that
the Codazzi equations and the first Gauss equation hold.
a. the plane, parametrized by polar coordinaigs: v) = (u cosv, u sinv, 0)
b. ahelicoid:x(u,v) = (u cosv, u sinv, v)
#c. aconex(u,v) = (ucosv,usinv,cu), ¢ # 0
#*d. asurface of revolutionx(u, v) = (f(u) cosv, f(u) sinv, g(u)), with £'(u)? + g’'(w)? = 1

3. Use the first Gauss equation to derive the forms)agiven on p. 60 for Gaussian curvature.
4. Check the Gaussian curvature of the sphere using the forrautan (. 60.

5. Check that for a parametrized surface with= G = A(u,v) and F = 0, the Gaussian curvature is

: I, 5 P2f  0%f . .
given byK = ——V~-(Ind). (HereV~ f = — + — is the Laplacian off.)
21 uz v

6. Prove there is noompactminimal surfaceM C R3.
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7.

10.

11.

12.

13.

14.

15.

16.

Decide whether there is a parametrized surfdaev) with
a. E=G6=1,F=04{=1=-n,m=0
b. E=G=1,F=0{=e¢*=n,m=0
c. E=1,F=0,G=cofu,{=cofu,m=0,n=1

a. Maodify the proof of Theorem 3.6 to prove that a smooth, compact surfac&witld) and constant
mean curvature is a sphere.

b. Give an example to show that the result of Lemma 3.7 fails if we asgyrhas a local minimum
andk, has a local maximum ag.

Give examples of (locallyjon-congruenparametrized surfacesandx™ with
a. I=1*
b. Il = II* (Hint: Try reparametrizing some of our simplest surfaces.)

Letx(u,v) = a(u) + vB(u) be a parametrization of a ruled surface. Prove that the tangent plane
is constant along rulings (i.e., the surface is flat) if and onlg’ifu), B(«), and B’(u) are linearly
dependent for every. (Hint: When isSp (x,) = 0? Alternatively, considex, x x,, and apply Exercise
A2.1)

Prove thatx is a line of curvature inV if and only if the ruled surface formed by the surface normals
alonge is flat. (Hint: See Exercise 10.)

Show that the Gaussian curvature of the parametrized surfaces

X(u,v) = (u cosv,u sinv, v)

y(u,v) = (ucosv,usinv, Inu)

is the same for eachu, v), and yet the first fundamental formsdnd |, do not agree. (Thus, we might
expect that the converse of Corollary 3.2 is false; it takes slightly more work to show that there can be
nolocal isometry.)

Suppose that through each point of a surf&€ehere is a planar asymptotic curve with nonzero cur-
vature. Prove thatf must be a (subset of a) plane. (Hint: Start with Exercise 2.2.17a and apply
Proposition 3.4.)

Suppose that the surfag£ is doubly ruled by orthogonal lines (i.e., through each pointothere pass
two orthogonal lines).

a. Using the Gauss equations, prove tkat 0.

b. Now deduce tha¥ must be a plane.

(Hint: As usual, assume that, locally, the families of lines:arandv-curves.)

Prove that the only minimal ruled surface with no planar points is the helicoid. (Hint: Consider the
curves orthogonal to the rulings. Use Exercises 2.2.8b, 14, and 1.2.20.)

Supposé/ is a surface with no umbilic points and one constant principal curvatueg 0. Prove that
M is (a subset of) a tube of radius= 1/|ky| about a curve. That is, there is a cuweso thatM is
(a subset of) the union of circles of radiugn each normal plane, centered along the curve. (Hints: As
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17.

18.

19.
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usual, work with a parametrization where theurves are lines of curvature with principal curvature
k1 and thev-curves are lines of curvature with principal curvatise Use Lemma 3.3 to show that the
u-curves have curvaturé, | and are planar. Then defilaeappropriately and check that it is a regular
curve.)

If M is a surface with both principal curvatures constant, provedhas (a subset of) either a sphere,
a plane, or a right circular cylinder. (Hint: See Exercise 2.2.14, Proposition 3.4, and Exercise 16.)

Consider the parametrized surfaces

X(u, v) = (—coshu sinv, coshu cosv, u) (a catenoid)

y(u,v) = (u cosv,u sinv, v) (a helicoid).

a. Compute the first and second fundamental forms of both surfaces, and check that both surfaces are

minimal.
Find the asymptotic curves on both surfaces.
Show that we can locally reparametrize the helicoid in such a way as to make the first fundamental
forms of the two surfaces agree; this means that the two surfaces are locally isometric. (Hint: See
p. 39. Replace with sinhu in the parametrization of the helicoid. Why is this legitimate?)

d. Why are they not globally isometric?

e. (for the student who's seen a bit of complex variables) As a hint to what's going on here, let
z = u+ivandZ = x + iy, and check that, continuing to use the substitution from part c,
Z = (siniz,cosiz, z). Understand now how one can obtain a one-parameter family of isometric
surfaces interpolating between the helicoid and the catenoid.

Find all the surfaces of revolution of constant curvature

a K=0
bh. K=1
c. K=-1

(Hint: There are more than you might suspect. But your answers will involve integrals you cannot
express in terms of elementary functions.)

4. Covariant Differentiation, Parallel Translation, and Geodesics

Now we turn to the “intrinsic” geometry of a surface, i.e., the geometry that can be observed by an

inhabitant (for example, a very thin ant) of the surface, who can only perceive what happens along (or, say,
tangential to) the surface. Anyone who has studied Euclidean geometry knows how important the notion of
parallelismis (and classical non-Euclidean geometry arises when one removes Euclid’'s parallel postulate,
which stipulates that given any linke in the plane and any poin® not lying on L, there is a unique line
through P parallel toL). It seems quite intuitive to say that, working just®d, two vectorsV (thought of

as being “tangent ak”) and W (thought of as being “tangent ét”) are parallel provided that we obtaiif

when we moveV/ “parallel to itself” from P to Q; in other words, iW = V. But what would an inhabitant

of the sphere say? How should he compare a tangent vector at one point of the sphere to a tangent vector
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Are V and W parallel?

FIGUREA4.1

at another and determine if they're “parallel? (See Figure 4.1.) Perhaps a better question is this: Given
a curvea on the surface and a vector fiexd defined alongx, should we say is parallel if it has zero
derivative alonge?

We already know how an inhabitant differentiates a scalar funcfiod — R, by considering the
directional derivativeDy f for any tangent vectov € Tp M. We now begin with a

Definition. We say a functiorX: M — R3 is avector fieldon M if
(1) X(P) € Tp M foreveryP € M, and
(2) for any parametrizatior: U — M, the functionXex: U — R3 is (continuously) differentiable.

Now, we can differentiate a vector fieklon M in the customary fashion: ¥ € Tp M, we choose a
curvea with «(0) = P anda’(0) = V and setDyX = (Xea)’(0). (As usual, the chain rule tells us this is
well-defined.) But the inhabitant of the surface can only see that portion of this vector lying in the tangent
plane. This brings us to the

Definition. Given a vector fiel andV € Tp M, we define theovariant derivative
VX = (DyX)I = the projection ofdy X onto Tp M
= DyX — (DyX-n)n.
Given a curvex in M, we say the vector fielX is covariant constanor parallel alonge if Vo ()X = 0

for all . (This means thaDy )X = (Xea)'(?) is a multiple of the normal vectar(a(t)).)

Example 1. Let M be a sphere and let be a great circle inM. The derivative of the unit tangent
vector ofa points towards the center of the circle, which is in this case the center of the sphere, and thus is
completely normal to the sphere. Therefore, the unit tangent vector fiedldsoparallel alongx. Observe
that the constant vector fiel@, 0, 1) is parallel along the equatar = 0 of a sphere centered at the origin.

Is this true of any other constant vector field?v

Example 2. A fundamental example requires that we revisit the Christoffel symbols. Given a parametrized
surfacex: U — M, we have

quxu = (qu)” = Fuzxu + Ful;lxv

vxvxu = (Xuv)” = Fuuvxu + Fuvvxv = quxm and
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Vi, Xp = (va)” = TyyXu + TyypXp.  V
The first result we prove is the following

Proposition 4.1. Let I be an interval iR with0 € I. Given a curvaer: I — M with «(0) = P and
Xo € Tp M, there is a unique parallel vector fielddefined alonge with X(P) = X,.

Proof. Assuminge lies in a parametrized portior: U — M, seta(r) = x(u(z),v(t)) and write
X(a(t)) = a(®)xy (u(t),v(t)) + b(t)xy(u(t),v(t)). Thena'(r) = u'(t)x, + v'(¢)%, (Where the the cum-
bersome argumertt:(z), v(¢)) is understood). So, by the product rule and chain rule, we have

VX = ((Xoa) ()" = (%(a(z)xu (1), v(0) + bOXy (u(0), v(z))))”
a
dt
= /(0% + b (0% + a(t) (' (X + 0 (%) + B (0 ()Xo + V' (O)Xo)!
= a/ ()% + b/ (%0 + a0 (4 O + L) + V' (OCf% + Do)

+ DO (W O i% + Tyixo) + V' (% + T%0)
= (d/(0) + a()(I () + Ty’ () + b (1) + D' ()%

+ (B'(0) + a(t)(T 20 (t) + T2 0" (1)) + b(2)(T 2 (t) + T 50 (£))%y.

I I
=a' ()% + b'(1)Xy + a(?) ( Xu (u(2), v(z))) + b(t) (%xv(u(z), v(t)))

Thus, to sayX is parallel along the curve is to say thau(z) andb(z) are solutions of the linear system of
first order differential equations

a'(t) +a@)(Tpu' () + T v () + b@)(Thu'(t) + T v’ () =0

&
*) b'(t) + a(e)(T,2u' (1) + T, (2)) + b@)(Tou' (1) + T v (1)) = 0.

By Theorem 3.2 of the Appendix, this system has a unique solutioh ance we specify:(0) andb(0),
and hence we obtain a unique parallel vector fi¢bdith X(P) = Xo. O

Definition. If e is a path fromP to Q, we refer taX(Q) as theparallel translateof X(P) = Xo € Tp M
alonge, or the result oparallel translationalonge.

Remark. The system of differential equationd) that defines parallel translation shows that it is “in-
trinsic,” i.e., depends only on the first fundamental form\éf despite our original extrinsic definition. In
particular, parallel translation in locally isometric surfaces will be identical.

Example 3. Fix a latitude circla: = ugy (uo # 0, ) on the unit sphere (see Example 1(d) on p. 37) and
let's calculate the effect of parallel-translating the veetgr= x, starting at the poinf given byu = uy,
v = 0, once around the circle, counterclockwise. We parametrize the curvg:by= ug, v(t) = t,
0 <t < 2m. Using our computation of the Christoffel symbols of the sphere in Example 1 or 2 of Section
3, we obtain from &) the differential equations

a’(t) = sinug cosugh(t), a(0)=0
b'(t) = — cotugal(t), b(0) = 1.
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We solve this system by differentiating the second equation again and substituting the first:
b"(t) = —cotuga’(t) = —coS uph(1), b(0) = 1.

Recalling that every solution of the differential equatipfi(r) + k2y(t) = 0 is of the formy(r) =
c1co8kt) + cpsin(kt), c1, c2 € R, we see that the solution is

a(t) = sinug sin((cosug)r), b(r) = cos((cosuo)t).

Note that||X (e(¢))||> = Ea(t)® +2Fa(t)b(t) + Gb(t)? = sir® u, for all . That is, the original vectoX
rotates as we parallel translate it around the latitude circle, and its length is preserved. As we see in Figure
4.2, the vector rotates clockwise as we proceed around the latitude circle (in the upper hemisphere). But

FIGURE4.2

this makes sense: If we just take the covariant derivative of the vector field tangent to the circle, it points
upwards (cf. Figure 3.1), so the vector field must rotate clockwise to counteract that effect in order to remain
parallel. Sinceb(27) = co92m cosug), we see that the vector turns through an angle®t cosugy. V

Example 4(Foucault pendulum) Foucault observed in 1851 that the swing plane of a pendulum located
on the latitude circle: = u( precesses with a period @f = 24/ cosuy hours. We can use the result of
Example 3 to explain this. We imagine the earth as fixed and “transport” the swinging pendulum once around
the circle in24 hours. If we make the pendulum very long and the swing rather short, the motion will be
“essentially” tangential to the surface of the earth. If we move slowly around the circle, the forces will be
“essentially” normal to the sphere: In particular, lettiRgdenote the radius of the earth (approximately
3960 mi), the tangential component of the centripetal acceleration is (cf. Figure 3.1)

. 27\? 272R
R sin cos — <
(R sinug) cosug ( ) =g

o ~ 135.7 mi/hr? ~ 0.0553 ft/sec ~ 0.17%g.

Thus, the “swing vector field” is, for all practical purposes, parallel along the curve. Therefore, it turns
2

through an angle d@rz cosug in one trip around the circle, so it takes hours to

(27 cosug)/24 - COSu
return to its original swing plane. V

Our experience in Example 3 suggests the following
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Proposition 4.2. Parallel translation preserves lengths and angles. ThaXisamdY are parallel vector
fields along a curva from P to Q, then||X(P)| = |IX(Q)| and the angle betweeti P) andY (P) equals
the angle betweeX(Q) andY (Q) (assuming these are nonzero vectors).

Proof. Considerf(t) = X(a(2)) - Y(«(z)). Then
@) = Kea)'(t) - (Yoa)(t) + (Xoa)(t) - (Yoa)' (1)
=Dy)X-Y + XDy )Y E_-l——) Ve)X Y +X-Ven)Y _L_Z__) 0.

Note that equality (1) holds becauXeandY are tangent td/ and hence their dot product with any vector
normal to the surface & Equality (2) holds becausé€ andY are assumed parallel along It follows that
the dot producX - Y remains constant alorng. TakingY = X, we infer that||X|| (and similarly||Y|) is
constant. Knowing that, using the famous formula&aes X - Y /| X||| Y| for the angled betweenX and
Y, we infer that the angle remains constantl

Now we change gears somewhat. We saw in Exercise 1.1.8 that the shortest path joining two points
in R3 is a line segment and in Exercise 1.3.1 that the shortest path joining two points on the unit sphere
is a great circle. One characterization of the line segment is that it never changes direction, so that its unit
tangent vector is parallel (so no distance is wasted by turning). (What about the sphere?) It seems plausible
that the mythical inhabitant of our general surfademight try to travel from one point to another M,
staying inM, by similarly not turning; that is, so that his unit tangent vector field is parallel along his path.
Physically, this means that if he travels at constant speed, any acceleration should be normal to the surface.
This leads us to the following

Definition. We say a parametrized cureein a surfaceM is ageodesidf its tangent vector is parallel
along the curve, i.e., Vya' = 0.

Recall that since parallel translation preserves lengthsiyust have constant speed, although it may not
be arclength-parametrized. In general, we refer to an unparametrized curve as a geodesic if its arclength
parametrization is in fact a geodesic.
In general, given any arclength-parametrized cwMging on M, we defined its normal curvature at
the end of Section 2. Instead of using the Frenet frame, it is natural to consideatbheux framefor o,
which takes into account the fact thatlies on the surfacd/. (Both are illustrated in Figure 4.3.) We take

TheFrene and Darboux frame:

FIGURE4.3

the right-handed orthonormal bagig, n x T, n}; note that the first two vectors give a basis fgrM . We
can decompose the curvature vector

kN = (kN-(nxT))(nxT)+ (kN-n)n.
N e’ —

Kg ken
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As we saw beforek, gives thenormal component of the curvature vectar; gives thetangentialcom-
ponent of the curvature vector and is called ¢lg®desic curvatuteThis terminology arises from the fact
thata is a geodesic if and only if its geodesic curvature vanishes. (VWwhen0, the principal normal is
not defined, and we really should wrig€ in the place ofcN. If the acceleration vanishes at a point, then
certainly its normal and tangential components are Bgth

Example 5. We saw in Example 1 that every great circle on a sphere is a geodesic. Are there others?
Leta be a geodesic on a sphere centered at the origin. 8inee0, the acceleration vectar’ (s) must be
a multiple ofec(s) for everys, and sox” x & = 0. Thereforea’ x & = A is a constant vector, splies in
the plane passing through the origin with normal ve&oiT hat is,« is a great circle. V

Remark. We saw in Example 3 that a vector rotates clockwise at a constant rate as we parallel translate
along the latitude circle of the sphere. If we think about the unit tangent VEatuoving counterclockwise
along this curve, its covariant derivative along the curve points up the sphere, as shown in Figure 4.4, i.e.,
“to the left.” Thus, we must compensate by steering “to the right” in order to have no net turning (i.e., to

FIGURE4.4

make the covariant derivative zero). Of course, this makes sense also because, according to Example 5, the
geodesic that passes throughn the same direction heads “downhill,” to the right.

Using the equations¥), let's now give the equations for the curv€&) = x(u(z), v(¢)) to be a geodesic.
SinceX = a/(t) = u/' ()X, + v'(t)Xy, we havea(t) = u'(t) andb(t) = v’(¢), and the resulting equations
are

w”(t) + T2 ()% + 205 (' (1) + T2V () =0

(&*) " V2 v,/ / v 0\2
vi(t) + Iu ()" + 20, ,u ()v' () + Tyv'()” =0.

The following result is a consequence of basic results on differential equations (see Theorem 3.1 of the
Appendix).

Proposition 4.3. Given a pointP € M andV € Tp M,V # O, there exist > 0 and auniquegeodesic
a:(—¢&,&) > M witha(0) = P ande’(0) = V.

Example 6. We now use the equationdd) to solve for geodesics analytically in a few examples.
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(a) Letx(u,v) = (u,v) be the obvious parametrization of the plane. Then all the Christoffel symbols
vanish and the geodesics are the solutions of

u’(t) =v"@1) =0,

so we get the linea(r) = (u(t),v(t)) = (a1t + b1,axt + by), as expected. Note thatdoes in
fact have constant speed.

(b) Using the standard spherical coordinate parametrization of the sphere, we obtain (see Example 1 or
2 of Section 3) the equations

(%) u(¢) — sinu(t) cosu(t)v'(t)? = 0 = v (¢) + 2 cotu(t)u’ (t)v' ().

Well, one obvious set of solutions is to takér) = ¢, v(tr) = vo (and these, indeed, give the
great circles through the north pole). Integrating the second equatiar) img( obtain Inv’(r) =
—2Insinu(¢) + const, so

’ . C
YO = o

for some constant. Substituting this in the first equation im)(we find that

o coosu(t)
O SEan

multiplying both sides by/(¢) (the “energy trick” from physics) and integrating, we get

/ 2 _ 2 C2 / _ 2 62
u@)y =C S’ and so u(z)_ﬂ:JC 7Sin2u(t)

for some constant’. Switching to Leibniz notation for obvious reasons, we obtain

dv = V() = cescu ;. thus, separating variables gives

du w0 I ey SeparEing J
ccsGudu ccsudu

dv =+

JC?2—c2cs@u V(C2=c2)—¢c2colu
Now we make the substitutioncotu = ~/C2 — ¢2 sin w; then we have

_ ccs@udu
V(C2 —c2) —c2cot2u

and so, at long last, we hawe = +v + «a for some constant. Thus,

dv = Fdw,

ccotu = VC2—c2snw = vC? —c?2sin(+v + a) = vC? — ¢2(sina cosv + cosa Sinv),
and so, finally, we have the equation
ccosu + vC?% —c2sinu(Acosv + Bsinv) =0,

which we should recognize as the equation of a great circle! (Here’s a hint: This curve lies on the
planev/C?2 — ¢2(Ax + By) + cz = 0.) \Y

We can now give a beautiful geometric description of the geodesics on a surface of revolution.
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Proposition 4.4(Clairaut’s relation) The geodesics on a surface of revolution satisfy the equation
(<) r COS¢p = const

wherer is the distance from the axis of revolution afids the angle between the geodesic and the parallel.
Conversely, any (constant speed) curve satisfifrigthat isnot a parallel is a geodesic.

Proof. For the surface of revolution parametrized as in Example 9 of Section 2, wethave, F = 0,
G=fw?*T2=T2 =fw/fu), % =—Ff(u)f'(u),and all other Christoffel symbols abe(see
Exercise 2.3.2d.). Then the syste#&) of differential equations becomes

(1) W~ fFI? =0
(t2) o %uv _o.

Rewriting the equationff) and integrating, we obtain

V() 2f @)’ (@)

V() Su(@))
Inv'(£) = —2In f(u(z)) + const
V() = ——
C (@)

so along a geodesic the quantify(u)?v’ = Gv’ is constant. We recognize this as the dot product of the
tangent vector of our geodesic with the vectgr and so we infer thax, || cos¢ = r cos¢ is constant.
(Recall that, by Proposition 4.2, the tangent vector of the geodesic has constant length.)

To this point we have seen that the equatity) (s equivalent to the conditioncos¢ = const, provided
we assumédla’||? = u’? + Gv'? is constant as well. But if

u' (1) + Gv'(1)? = u'(1)* + f(u(t))*v'(t)* = const

we differentiate and obtain

' (" (1) + f @) (" () + fu@) f @) @' ()* = 0;

substituting for” (¢) using (,), we find

W () (" (6) = @) f' D) (0)?) = 0.

In other words,provided u’(r) # 0, a constant-speed curve satisfying ) satisfies ;) as well. (See
Exercise 6 for the case of the parallelsI

Remark. We can give a simple physical interpretation of Clairaut’s relation. Imagine a particle with
massl constrained to move along a surface. If no external forces are acting, then the particle moves along
a geodesic and, moreover, angular momentum is conserved (because there are no torques). In the case
of our surface of revolution, the vertical component of the angular momehtumea x «’ is—surprise,
surprisel—f 2v’, which we've shown is constant. Perhaps some forces normal to the surface are required
to keep the particle on the surface; then the particle still moves along a geodesic (why?). Moreover, since
(¢ x n)-(0,0,1) = 0, the resulting torquestill have no vertical component.
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Returning to our original motivation for geodesics, we now consider the following scenario. Choose
P € M arbitrary and a geodesje through P, and draw a curvé&’, through P orthogonal toy. We now
choose a parametrizatiotiu, v) so thatx(0,0) = P, theu-curves are geodesics orthogonaldg and the
v-curves are the orthogonal trajectories of theurves, as pictured in Figure 4.5. (It follows from Theorem

FIGURE4.5

3.3 of the Appendix that we can do this on some neighborhoa®l. pf
In this parametrization we havé = 0 andE = E(u) (see Exercise 13). Now, éf(r) = x(u(z), v(z)),
a <t < b,is any path fromP = x(0,0) to O = X(up,0), we have

b b
length(er) :/ \/E(u(t))u’(l)z + Gu(t),v())v'(t)2dt z/ VE@u@))'(t)|dt
> /uo vV E@W)du,
0

which is the length of the geodesic ardrom P to Q. Thus, we have deduced the following.

Proposition 4.5. For any pointQ ony contained in this parametrization, any path frénto Q con-
tained in this parametrizatiois at least as long as the length of the geodesic segment. More colloquially,
geodesics anecally distance-minimizing.

Example 7. Why is Proposition 4.5 a local statement? Well, consider a great circle on a sphere, as
shown in Figure 4.6. If we go more than halfway around, we obviously have not taken the shortest path.

\%
short

FIGURE4.6

Remark. It turns out that any surface can be endowed withedric (or distance measujdy defining
the distance between any two points to be the infimum (usually, the minimum) of the lengths of all piecewise-
! paths joining them. (Although the distance measure is different from the Euclidean distance as the
surface sits ilR3, the topology—notion of “neighborhood’—induced by this metric structure is the induced
topology that the surface inherits as a subspad®’of It is a consequence of the Hopf-Rinow Theorem (see
M. doCarmo,Differential Geometry of Curves and Surfac®sentice Hall, 1976, p. 333, or M. Spivak,
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Comprehensive Introduction to Differential Geomethyrd edition, volume 1, Publish or Perish, Inc., 1999,
p. 342) that in a surface in which every parametrized geodesic is defined for all time (a “complete” surface),
every two points are in fact joined by a geodesic of least length. The proof of this result is quite tantalizing:
To find the shortest path frorR to Q, one walks around the “geodesic circle” of points a small distance
from P and finds the poink on it closest toQ; one then proves that the unique geodesic emanating from
P that passes througR must eventually pass through, and there can be no shorter path.

We referred earlier to two surfacd$ andM * as being globally isometric (e.g., in Example 6 in Section
1). We can now give the official definition: There should be a funciiod — M * that establishes a one-
to-one correspondence and preserves distance—foPa@y € M, the distance betweeA and Q in M
should be equal to the distance betwegdP) and f(Q) in M*.

EXERCISES 2.4

1. Determine the result of parallel translating the ve¢ton, 1) once around the circle? 4+ y? = a?,
z = 0, on the right circular cylindex? + y? = a2.

2. Provethak? = k7 +kp.

3. Supposex is a non-arclength-parametrized curve. Using the formulg on p. 14, prove that the
velocity vector ofw is parallel alongy if and only ifkg = 0 andv’ = 0.

*4. Find the geodesic curvaturkg, of a latitude circlew = uo on the unit sphere (see Example 1(d) on
p. 37)

a. directly

b. by applying the result of Exercise 2

5. Consider the right circular cone with vertex anggeparametrized by
X(u,v) = (utang cosv,utang sinv,u), 0<u <ug, 0 <v <2m.

Find the geodesic curvatukg of the circleu = uo by using trigonometric considerations. Check that

your answer agrees with the curvature of the circle you get by unrolling the cone to form a “pacman”
figure, as shown on the left in Figure 4.7. (For a proof that these curvatures should agree, see Exercise
2.1.10 and Exercise 3.1.7.)

6. Check that the parallel = u is a geodesic on the surface of revolution parametrized as in Proposition
4.4 if and only if /(1) = 0. Give a geometric interpretation of and explanation for this result.

7. Use the equationsh), as in Example 3, to determine through what angle a vector turns when it is
parallel-translated once around the cirgle= uo on the conex(u, v) = (u cosv, u sinv, cu), ¢ # 0.
(See Exercise 2.3.2c.)

8. a. Prove thatif the surfacdg and M * are tangent along the cureg, parallel translation along is
the same in both surfaces.
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b. Use the result of part a to determine the effect of parallel translation around the latitude cifcle

uo on the unit sphere (once again, see Example 1(d) on p. 37), using only geometry, trigonometry,
and Figure 4.7. (Note the Remark on p. 68.)

FIGURE4.7

*9.  What curves lying on a sphere have constant geodesic curvature?

10. Use the equationskg) to find the geodesics on parametrized surfage v) = (e cosv, e* sinv, 0).
(Hint: Aim for dv/du. Use the second equation #d&) and the fact that geodesics must have constant
speed.)

11.

Use the equationgké) to find the geodesics on the plane parametrized by polar coordinates. (Hint:
Examine Example 6(b).)

12. Prove or give a counterexample:

a. Acurve is both an asymptotic curve and a geodesic if and only if it is a line.

b. Ifacurve is both a geodesic and a line of curvature, then it must be planar.
#13. a. Suppos# = 0 and theu-curves are geodesics. Use the equatidu)(to prove thatE is a
function ofu only.
b. Supposeg = 0 and theu- andv-curves are geodesics. Prove that the surface is flat.
14. Supposd&’ = 0 and theu-curves are geodesics. Prove that the length otitearve fromu = uq to
u = u is independent of. (See Figure 4.8.)
u=u
U =1uy
FIGURE4.8
15. a. Prove that an arclength-parametrized carea a surfacel with ¥ # 0 is a geodesic if and only
if n = +N.
b. Leta be a space curve, and I8t be the ruled surface generated by its binormals. Prove that the
curve is a geodesic oM .
16.

a. Suppose a geodesic is planar and«has 0 at P. Prove that its tangent vector & must be a
principal direction. (Hint: Use Exercise 15.)
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17.

*18.

19.

20.

21.

22.

i

b. Prove that if every geodesic of a (connected) surface is planar, then the surface is contained in a
plane or a sphere.

Show that the geodesic curvaturePadf a curveC in M is equal (in absolute value) to the curvature at
P of the projection ofC into Tp M .

Use Clairaut’s relation, Proposition 4.4, to analyze the geodesics on each of the surfaces pictured in
Figure 4.9. In particular, other than the meridians, in each case which geodesics are unbounded (i.e., go

off to infinity)?

() (b)

FIGURE4.9

Check using Clairaut’s relation, Proposition 4.4, that great circles are geodesics on a sphere. (Hint: The
result of Exercise A.1.3 may be useful.)

LetM be a surface an®#® € M. We sayU,V € Tp M areconjugateif Il p(U,V) = 0.

a. LetC C M be a curve (with the property that its tangent vector is never a principal direction with
principal curvature). Define theenvelopeM * of the tangent planes ® alongC to be the ruled
surface whose generator Bte C is the limiting position ag) — P of the intersection line of the
tangent planes td/ at P and Q. Prove that the generator &tis conjugate to the tangent line to

CatP.
b. Prove thatiiC is nowhere tangent to an asymptotic direction, théhis smooth (at least neér).

Prove, moreover, that/ * is tangent taVf alongC and is a developable (flat ruled) surface.
c. Apply part b to give a geometric way of computing parallel translation. In particular, do this for a
latitude circle on the sphere. (Cf. Exercise 8.)

Suppose that on a surfakethe parallel translation of a vector from one point to another is independent
of the path chosen. Prove that must be flat. (Hint: Fix an orthonormal bas, € for 7p M and
define vector field®;, e, by parallel translating. Choose coordinates so thawuticerves are always
tangent toe; and thev-curves are always tangentdg. See Exercise 13.)

Use the Clairaut relation, Proposition 4.4, to describe the geodesics on the torus as parametrized in
Example 1(c) of Section 1. (Start with a geodesic starting at and making agghéth the outer
parallel. Your description should distinguish between the cAsexosgy < er’g and cospy > %.
Which geodesics never cross the outer parallel at all? Also, remember that through each point there is a

uniquegeodesic in each direction.)




78 CHAPTER2. SURFACES LOCAL THEORY

23. Use the proof of the Clairaut relation, Proposition 4.4, to show that a unit-speed geodesic on a surface
of revolution is given in terms of the standard parametrization in Example 9 of Section 2 by

+ const

v—c/ du
) rwVTwr =2

Now deduce that in the case of a non-arclength parametrization we obtain
b [T+ g )
SV fu)* —c?

*24. Use Exercise 23 to give equations of the geodesics on the pseudosphere (see Example 8 of Section 2).
Deduce, in particular, that the only geodesics that are unbounded are the meridians.

du + const

25. Use Exercise 23 to show that any geodesic on the paraboleid x? + y? that is not a meridian
intersects every meridian. (Hint: Show that it cannot approach a meridian asymptotically.)

26. LetM be the hyperboloid? 4+ y2 — z2 = 1, and letC be the circlex? + y2 =1,z = 0.
a. Use Clairaut's relation, Proposition 4.4, to show that, with the exception of the Circivery
geodesic on is unbounded.
b. Show that there are geodesics that approach the €irelgymptotically. (Hint: Use Exercise 23.)

27. LetC be a parallel (witht = ug) in a surface of revolutio. Suppose a geodesjcapproacheg’

asymptotically.

a. Use Clairaut’s relation, Proposition 4.4, to show thanust approach “from above” (i.e., with
r>ro = f(uo)).

b. Use Exercise 23 to show th&@t must itself be a geodesic. (Hint: Consider the Taylor expansion
f@) = f(uo) + f/(uo)(u —uo) + 5 " (o) (u —uo)* + ....)

c. Give an alternative argument for the result of part b by using the fact that the metric discussed in
the Remark on p. 74 is a continuous function of the pair of points. You will also need to use the
fact that when points are sufficiently close, there is a unique shortest geodesic joining them.

28. Consider the surface= f(u,v). A curvea whose tangent vector at each poiit= (u, v, f(u,v))
projects to a scalar multiple &f f(u, v) is a curve of steepest ascent (why?). Suppose such aeurve
is also a geodesic.

a. Prove that the projection af into theuv-plane is, suitably reparametrized, a geodesic indthe
plane. (Hint: What is the projection af’?)

b. Deduce that is also a line of curvature. (Hint: See Exercise 16 whda not a line. The case of
a line can be deduced from the computation in part c.)

c. Show that if all the curves of steepest ascent are geodesicsf thatisfies the partial differential
equation fy, fo(fov — fuu) + fuv(f,2 — f2) = 0. (Hint: When are the integral curves &ff
lines?)

d. Show that if all the curves of steepest ascent are geodesics, the level cupveseoparallel (see
Exercise 1.2.24). (Hint: Show thf¥ f || is constant along level curves.)

e. Give a characterization of the surfaces with the property that all curves of steepest ascent are
geodesics.



CHAPTER 3

Surfaces: Further Topics

The first section is required reading, but the remaining sections of this chapter are independent of one
another.

1. Holonomy and the Gauss-Bonnet Theorem

Let's now pursue the discussion of parallel translation that we began in Chapter 2{ heta surface
anda a closed curve in/. We begin by fixing a smoothly-varying orthonormal basjse, (a so-called
framing) for the tangent planes @i in an open set oM containinge, as shown in Figure 1.1 below. Now

FIGURE1.1

we make the following

Definition. Leta be aclosedcurve in a surfac@f. The angle through which a vector tunedative to
the given framingis we parallel translate it once around the cus called theholonomy arounde.

For example, if we take a framing arouady using the unit tangent vectorsdaas our vectorgy, then, by
the definition of a geodesic, there there will be zero holonomy around a closed geodesic (why?). For another
example, if we use the framing on (most of) the sphere given by the tangents to the lines of longitude and
lines of latitude, the computation in Example 3 of Section 4 of Chapter 2 shows that the holonomy around a
latitude circleu = ug of the unit sphere is-27 cosuy.

To make this more precise, for ease of understanding, let's work in an orthogonal parametriaation

define a framing by setting
Xy Xy

vE VG’
Since (much as in the case of curves)ande, give an orthonormal basis for the tangent space of our
surface at each point, all the intrinsic curvature information (such as given by the Christoffel symbols)

e =

and & =

Lfrom holo-+-nomy the study of the whole

2As usual, away from umbilic points, we can apply Theorem 3.3 of the Appendix to obtain a parametrization whesnthe
v-curves are lines of curvature.

79
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is encapsulated in knowing hoey twists towardse, as we move around the surface. In particular, if
a(t) = X(u(),v(t)),a <t < b,is a parametrized curve, we can set

d
P12(t) = 5(61(140)»1)(1))) e (u(t), v(t)).

which we may write more casually &(z) - e;(¢), with the understanding that everything must be done in
terms of the parametrization. We emphasize ghatdepends in an essential way on gfarametrizecturve
a. Perhaps it’s better, then, to write

$12 = Vo€ - €.
Note, moreover, that the proof of Proposition 4.2 of Chapter 2 show¥thet-e;, = —¢1, andVye;-e; =
Vu € - € = 0. (Why?)

Remark. Although the notation seems cumbersome, it reminds uspthais measuring hove; twists
towardse, as we move along the curee This notation will fit in a more general context in Section 3.

Let's now derive an explicit formula for the functiah ,.
Proposition 1.1. In an orthogonal parametrization with = x,/vE ande, = x,/~/G, we have
= —Eyu’ + Gyv').

¢12 2\/E( v u )

Proof. The key point is to take full advantage of the orthogonalityx,pindx,.

et () 3
1 / /
= (Xuntt” + Xup0') + Xy

VEG

(since the term that would arise from differentiatinge will involve Xy, - X, = 0)

— 2\/1E—G(_Evu/ + Guv'),
by the formulas @) on p. 58. O

Suppose now that is aclosedcurve and we are interested in the holonomy arosndf e; happens
to be parallel along, then the holonomy will, of course, lie If not, let's consideiX(z) to be the parallel
translation ofe; alonge (z) and writeX (¢) = cosyr(t)e; + siny (¢)e;, takingy (0) = 0. ThenX is parallel
alonge if and only if

0= Vg X = Vy(cosye, + sinyrey)
= COSY Vg€ + SiNy Vg & + (—sinye; + cosyer)y’
= COSYp12€; — SiNYp12€; + (—sinye; + cosyer)y’
= (¢12 + ¥")(—sinye, + cosye,).

Thus, X is parallel alongx if and only if y/(t) = —¢12 (7). We therefore conclude:

b
Proposition 1.2. The holonomy around the closed cueequalsAyr = — / d12(t)dt.
a
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Remark. Note that the angle is measured frone; in the direction ofe,. Whether the vector turns
counterclockwise or clockwise from our external viewpoint depends on the orientation of the framing.

Example 1. Back to our example of the latitude circle= uo on the unit sphere. Thesy = x, and
e = (1/sinu)x,. If we parametrize the curve by taking= ¢, 0 < ¢ < 2x, then we have (see Example 1
of Chapter 2, Section 3)

V€ = VgXy = (Xup)! = cotugx, = cosugpe,,

and so¢1, = cosug. Therefore, the holonomy around the latitude circle (oriented counterclockwise) is
2

Ay = — cosugdt = —2m COSug, confirming our previous results.

Note t%at if we wish to parametrize the curve by arclength (as will be important shortly), we take
s = (sinug)v, 0 < s < 2m sinug. Then, with respect to this parametrization, we hayg(s) = cotuy.
(Why?)

For completeness, we can use Proposition 1.1 to calcgigteas well: WithE = 1, G = sinfu,

u = Uy, andU(S) = S/ sinug, we haVlez =

. 1
- 2Sinug CoSug « — = cotug, as before. V
2SN uy SINug

Suppose now that is an arclength-parametrized curve and let’s waife) = x(u(s), v(s)) andT (s) =
a'(s) = cosh(s)e; +sinf(s)es, s € [0, L], for a@! function(s) (cf. Lemma 3.6 of Chapter 1), as indicated
in Figure 1.2. A formula fundamental for the rest of our work is the following:

FIGURE1.2

Proposition 1.3. Whene is an arclength-parametrized curve, the geodesic curvatuerésagiven by

’ 1 / / /
Kkg(s) = p12(s) + 0°(s) = ﬁ(—Evu (s) + Guv'(s)) + 6'(s).

Proof. Recall thatcg = kN-(nx T) = T’ - (n x T). Now, sinceT = cosfe; + sinfe,, n x T =
—sinfe; + cosfe, (why?), and so
kg = V1T - (—sinfe; + cosfey)
= Vt(cosfe; + sinfey) - (—sinfe; + cosbe,)
= (cosfVre; + sinfVrey) - (—sinbe; + cosfe;) + ((—sind)’(—sind) + (cosd)b’(cosh))
= (oS 6 + Si? 0) (12 + 0') = 12 + 0,

as required. Now the result follows by applying Proposition 1.1 whéharclength-parametrized.[d
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Remark. The first equality in Proposition 1.3 should not be surprising in the least. Curvature of a
plane curve measures the rate at which its unit tangent vector turns relative to a fixed reference direction.
Similarly, the geodesic curvature of a curve in a surface measures the rate at which its unit tangent vector
turns relative to a parallel vector field along the curfemeasures its turning relative &, which is itself
turning at a rate given by,, so the geodesic curvature is the sum of those two rates.

Now suppose that is aclosedcurve bounding a regioR C M. We denote the boundary & by dR.
Then by Green’s Theorem (see Theorem 2.6 of the Appendix), we have

L L 1 ) . 1
/0 P12(s)ds = /0 2\/ﬁ(—Evu (s) + Gyv (s))ds = /BR 2\/ﬁ(—Evdu + Gudv)

//( Nﬁ (ng_G) )dudv
) )Jﬁdudu

(t)

://Rzﬁ( M)+(W

—/ KdA
R

by the formula ) for Gaussian curvature on p. 60. (Recall from the end of Section 1 of Chapter 2 that the
element of surface area on a parametrized surface is givéd by || x, x Xy ||dudv = VEG — F2dudv.)
We now see that Gaussian curvature and holonomy are intimately related:

Corollary 1.4. WhenR is a region with smooth boundary and lying in an orthogonal parametrization,
the holonomy aroundR is Ay = [[ KdA.

Proof. This follows immediately from Proposition 1.2 and the formuipgbove. O

We conclude further from Proposition 1.3 that

/ Kgds = / ¢12d§ + H(L) - 9(0),

aR aR —_—
A

so the total angle through which the tangent vectatRdurns is given by

A9:/ Kgds+/ KdA.
OR R

Now, whenR is simply connected (i.e., can be continuously deformed to a point), it is not too surprising
that A@ = 2x. Intuitively, as we shrink the curve to a poim, becomes almost constant along the curve,

but the tangent vector must make one full rotation (as a consequence of the Hopf Umlaufsatz, Theorem 3.5
of Chapter 1). Sincé\d is an integral multiple o2z that varies continuously as we deform the curve, it
must stay equal t@sr throughout.

Corollary 1.5. If R is a simply connected region lying in an orthogonal parametrization and whose
boundary curve is a geodesic, thfg KdA = A0 = 2.

Example 2. We takeR to be the upper hemisphere and use the usual spherical coordinates parametriza-
tion. Then the unit tangent vector alodg is e, everywhere, sd\é = 0, in contradiction with Corollary
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1.5. Alternatively,C = dR is a geodesic, so there should be zero holonomy ar@urfdomputed with
respect to this framing).

How do we resolve this paradox? Well, although we've been sloppy about this point, the spherical
coordinates parametrization actually fails at the north pole (sipce 0). Indeed, there is no framing of
the upper hemisphere witly everywhere tangent to the equator. However, the reader can rest assured that
thereis some orthogonal parametrization of the upper hemisphere, e.g., by stereographic projection from
the south pole (cf. Example 1(e) in Section 1 of Chapter 2Y.

Remark. In more advanced courses, the holonomy around the closed eusvimterpreted as a rota-
tion of the tangent plane o at «(0). That is, what matters iy (mod2x), i.e., the change in angle
disregarding multiples diz. This quantity does not depend on the choice of franeing,.

We now set to work on one of the crowning results of surface theory.

Theorem 1.6(Local Gauss-Bonnet)SupposeR is a simply connected region with piecewise smooth

boundary and lying in an orthogonal parametrizatiorC & dR has exterior angles;, j = 1,...,¢, then
14
/ Kgds + // KdA+) e =2m.
OR R =1

FIGURE1.3

Note, as we indicate in Figure 1.3, that we measure exterior angles ge,thatz for all ;.

Proof. If dR is smooth, then from our earlier discussion we infer that

/ Kgds—i—// KdA = AO =27
OR R

But whenodR has corners, the unit tangent vector tulessby the amounEf=1 €;, SO the result follows.
(Technically, what we need is the correction of the Hopf Umlaufsatz when the curve has corners. See
Exercise 1.3.12.) O

Corollary 1.7. For a geodesic triangle (i.e., a region whose boundary consists of three geodesic seg-
ments)R with interior angles, t», t3, we have/]R KdA = (11 + 12 +13) — 7, theangle excess

Proof. Since the boundary consists of geodesic segments, the geodesic curvature integral drops out, and

we are left with
3 3 3
// KdAZZT[—ZGj :2n—2(n—tj):ZLj—n,
R j=1 j=1 j=1

as required. O
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Remark. It is worthwhile to consider the three special cages= 0, K = 1, K = —1, as pictured in
Figure 1.4. WhenV is flat, the sum of the angles of a trianglenris as in the Euclidean case. Whah
YN
N
K=0 K=1 K=-1
FIGURE1.4

is positively curved, it takes more thanfor the triangle to close up, and whed is negatively curved, it
takes less. Intuitively, this is because geodesics seem to “bow out” Wherd and “bow in” whenk < 0
(cf. Exercise 3.2.17).

Example 3. Let's consider Theorem 1.6 in the case of a spherical cap, as shown in Figure 1.5. Using
the usual spherical coordinates parametrization, we bave: < uy. By Proposition 1.3 and Example 1,

Lo
—_

FIGURE1.5

sinced = n/2 along thev-curve, we have, = ¢12(s) = cotuy (cf. also Exercise 2.4.4). Therefore, we

have
// KdA =2n —/ Kgds = 2mw (1 — CcOSuy),
R OR

which checks, of course, sindé = 1 and the area of this cap is indeed

2 Uuo
/ / sinududv = 2 (1 — coSuy). Y%
o Jo

Remark. Notice that the sign ok, depends on both the orientation @fand the orientation of the
surface. If we rescale the surface by a factorcpthen the integralf,, ¢ ds does not change, as the
arclength changes by a factor ofand the geodesic curvature by a factorlgé. Similarly, the integral
[z KdA does not change when we rescale the surface: Area changes by a factoamd Gaussian
curvature changes by a factor bfc?2.

We now come to one of the crowning results of modern-day mathematics, one which has led to much
subsequent research and generalization. We say a suffaceR? is orientedif we have chosen a con-
tinuous unit normal field defined everywhere dfi. We now consider a compact, oriented surface with
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P

FIGURE 1.6

piecewise-smooth boundary, as pictured in Figure 1.6. T. Rado6 proved in 1925 that any suchMuctate

be triangulated. That is, we may wrild = Czj A; where
A=1
() A, isthe image of a triangle under an (orientation-preserving) orthogonal parametrization;
(i) Ax N AL (A # p)is either empty, a single vertex, or a single edge;
(i) when A, N A, consists of a single edge, the orientations of the edge are oppositg amd
A, and
(iv) at most one edge ok, is contained in the boundary o1 .

We now make a standard

Definition. Given a triangulatiorU” of a surfaceM with V vertices,E edges, and- faces, we define
theEuler characteristicy(M,T) =V — E + F.

Example 4. We can triangulate a disk as shown in Figure 1.7, obtaining 1. Without being so

V-E+F=5-8+4 =1 V-E+F =9-18+10=1

FIGURE1.7

pedantic as to require that easlj be the image of a triangle under an orthogonal parametrization, we might
just think of the disk as a single triangle with its edges puffed out; then we wouldhavd” — E + F =
3—3+1=1,aswell. We leave it to the reader to triangulate a sphere and check(thaf) =2. V

Remark. It's important to note that by choosing the orientations on the “triangleg’compatibly,
we get an orientation on the boundary Mf. That is, a choice ofi on M determines which direction we
proceed ordM. This is precisely the case any time one deals with Green’s Theorem (or its generalization
to oriented surfaces, Stokes’s Theorem). Nevertheless, following up on the Remark on p. 85, th& gign of
on oM is independent of the choice of orientation & for, if we changen to —n, the orientation oM
switches anch x T stays the same.

The beautiful result to which we've been headed is now the following
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Theorem 1.8(Global Gauss-Bonnet)Let M be a compact, oriented surface with piecewise-smooth
boundary, equipped with a triangulatioras above. €.,k = 1, ..., £, are the exterior angles M , then

L
/ Kgds+// KdA + Zek =2my(M,T).
oM M k=1

Proof. As we illustrate in Figure 1.8, we will distinguish vertices on the boundary and in the interior,
denoting the respective total numbersipyandV;. Similarly, we distinguish among edges on the boundary,
edges in the interior, and edges that join a boundary vertex to an interior vertex; we denote the respective

interior edge

interior/boundary edges

FIGURE1.8

numbers of these b¥;, E;, andE;,. Now observe that

//M KdA:é//m KdA

since all the orientations are compatible, and

m
Keds = / Kods

because the line integrals over interior and interior/boundary edges cancel in pairs (recall thahges
sign when we reverse the orientation of the curve). dygt j = 1,2, 3, denote the exterior angles of the
“triangle” A, . Then, applying Theorem 1.6 b, we have

3
/ Kgds+// KdA+Y € =2,
3AA Ay

j=1

and now, summing over the triangles, we obtain

m 3
/ Kgds+// KdA+ ) > e;; =2wm =2nF.
oM M

A=1j=1
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Now we must do some careful accounting: Letting denote the respective interior angles of trianglg,
we have

(%) D= ) (1) =nQE + Eyp) - 2nV;
interior interior
vertices vertices

inasmuch as each interior edge contributes two interior vertices, whereas each interior/boundary edge con-
tributes just one, and the interior angles at each interior vertex sam.tblext,

L
() Z €) =7rE,-b+Zek.
k=1

boundary
vertices

To see this, we reason as follows. Given a boundary vertelenote by a superscript) the relevant angle
or number for which the vertex is involved. Note first of all that any boundary vertexs contained in
El.(l’)’) + 1 faces. Moreover, for a fixed boundary vertgx

Z ®) T, v a smooth boundary vertex
L = .
A , ,

/ T — €, vacorner odM with exterior angle;,

Thus,

Z € = Z (r —y)) = Z n(Ei(Z)-l—l)—( Z Ly + Z L,U)

boundary boundary boundary v smooth v corner
vertices verticesv verticesv

L
=nk;p+ Z €k -
k=1

Adding equations%) and ¢ x) yields

)2
ZE)U-: Z €r; + Z E)tjzzﬂ(Ei-l-Eib—Vi)-i-Zék.
AJj

interior boundary k=1
vertices vertices

At long last, therefore, our reckoning concludes:

)2
/ Kgds+// KdA—i—Zék:ZJT(F—(Ei-i-Eib)-l-Vi)
oM M k=1

=2n(F —(Ei + Eip + Ep) + (Vi + Vp)) =22(V — E + F)
=2mx(M,7T).
(Note that because the boundary cusvé is closed, we havé), = E,.) O
We now derive some interesting conclusions:

Corollary 1.9. The Euler characteristig(M,T) does not depend on the triangulatibrof M .

Proof. The left-hand side of the equality in Theorem 1.8 has nothing whatsoever to do with the trian-
gulation. O
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It is therefore legitimate to denote the Euler characteristig @\ ), with no reference to the triangulation.

It is proved in a course in algebraic topology that the Euler characteristic is a “topological invariant”; i.e., if
we deform the surfac@/ in a bijective, continuous manner (so as to obtahbeneomorphisurface), the
Euler characteristic does not change. We therefore deduce:

Corollary 1.10. The quantity

L
/ Kgds+// KdA+) e
oM M k=1

is a topological invariant, i.e., does not change as we deform the suface

In particular, in the event thatM = @ (so many people refer to the surfake as aclosedsurface), we
have

Corollary 1.11. WhenM is a compact, oriented surface without boundary, we have

//M KdA =2ny(M).

Itis very interesting that thiotal curvaturedoes not change as we deform the surface, for example, as shown
in Figure 1.9. In a topology course, one proves that any compact, oriented surface without boundary must

S

[y KdA = 4n

FIGURE1.9

have the topological type of a sphere or of-#oled torus for some positive integgr Thus (cf. Exercise
4), the possible Euler characteristics of such a surface,@xe-2, —4, ...; moreover, the integrgl,, Kd A
determines the topological type of the surface.

We conclude this section with a few applications of the Gauss-Bonnet Theorem.

Example 5. SupposeV! is a surface of nonpositive Gaussian curvature. Then there cannot be a geodesic
2-gon R on M that bounds a simply connected region. For if there were, by Theorem 1.6 we would have

02// KdA =2m — (1 + €2) > 0,
R

which is a contradiction. (Note that the exterior angles must be strictly lessritbacause there is a unique
(smooth) geodesic with a given tangent direction.y

Example 6. SupposeV is topologically equivalent to a cylinder and its Gaussian curvature is negative.
Then there is at most one simple closed geodesi#f/in Note, first, as indicated in Figure 1.10, that if
there is a simple closed geodeaiceither it must separat® into two unbounded pieces or else it bounds
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RO

o must be like one of these

FIGURE1.10

a disk R, in which case we would have > ([ KdA = 27x(R) = 2m, which is a contradiction. On

the other hand, suppose there were two. If they don’t intersect, then they bound a ciliaddrwe get

0> [[r KdA = 27 x(R) = 0, which is a contradiction. If they do intersect, then we we have a geodesic
2-gon bounding a simply connected region, which cannot happen by Exampl&5.

EXERCISES 3.1

1. Compute the holonomy around the paralle:= uy (and indicate which direction the rotation occurs
from the viewpoint of an observer away from the surface dowrxtagis) on
*a. the torusx(u, v) = ((a + b cosu) cosv, (a + b cosu) sinv, b sinu)
b. the paraboloic(u, v) = (1 cosv,u sinv, u?)
c. the catenoic(u,v) = (coshu cosv, coshu sinv, u)

*2. Determine whether there can be a (smooth) closed geodesic on a surface when

a K>0
b. K=0
c. K<0

If the closed geodesic can bound a simply connected region, give an example.

3. Calculate the Gaussian curvature of a torus (as parametrized in Example 1(c) of Section 1 of Chapter 2)

and verify Corollary 1.11.

4. a. Triangulate a cylinder, a sphere, a torus, and a two-holed torus; verify taa®, 2, 0, and—2,
respectively. Pay particular attention to condition (i) in the definition of triangulation.
b. Prove by induction that g-holed torus hag = 2 — 2g.

5. SupposeM is a compact, oriented surface without boundary thatosof the topological type of a
sphere. Prove that there are pointsnwhere Gaussian curvature is positive, zero, and negative.

6. Consider a surface witk > 0 that is topologically a cylinder. Prove that there cannot be two disjoint
simple closed geodesics both going around the neck of the surface.

7. Supposé andM* are locally isometric and compatibly oriented. Use Proposition 1.3 to prove that if

«a anda™* are corresponding arclength-parametrized curves, then their geodesic curvatures are equal at

corresponding points.
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8.

10.

11.

12.

13.

CHAPTER3. SURFACES FURTHERTOPICS

Consider the paraboloif parametrized by(u,v) = (ucosv,usinv,u?),0 < u, 0 < v < 2.
Denote byM, that portion of the paraboloid defined By< u < r.
a. Calculate the geodesic curvature of the boundary circle and confpute ¢ ds.

b. Calculatey(M,;). M,
c. Use the Gauss-Bonnet Theorem to compfife KdA. Find the limit asr — oo. (This is the

total curvature of the paraboloid.) My
d. CalculateK directly (however you wish) and compu K d A explicitly.

M
e. Explain the relation between the total curvature and the image of the Gauss Map of

Consider the pseudosphere (with boundddyparametrized as in Example 8 of Chapter 2, Section 2,
but here we taka > 0. Denote byM, that portion defined b9 < u < r. (Note that we are including
the boundary circlee = 0.)
a. Calculate the geodesic curvature of the citcle: 1y and compute/3 kgds. Watch out for the

M,

orientations of the two circles.
b. Calculatey(M,).

c. Use the Gauss-Bonnet Theorem to compife KdA. Find the limit asr — oo. (This is the
M,
total curvature of the pseudosphere.)

d. Calculate the area d@ff, directly, and use this to deduce the value/ff KdA.
M

e. Explain the relation between the total curvature and the image of the Gauss Map of

Give a different version of the accounting to prove Theorem 1.8 as follows.

a. ShowthaBF = 2(E; + E;p) + Ep, and conclude th&F = 2E — V.

b.  Show thad i erior verticestrj = 27Vi andX:boundary verticedAj = Vb — 2 €k

c. Concludetha}’; ;ey; =3nF =), ;t1; = 2n(E —V) + )€ and complete the proof of the
theorem.

a. Use Corollary 1.4 to prove that is flat if and only if the holonomy around all (“small”) closed
curves that bound a region M is zero.
b. Show that even on a flat surface, holonomy can be nontrivial around certain curves.

Reprove the result of part a of Exercise 2.3.14 by considering the holonomy around a (sufficiently small)

quadrilateral formed by four of the lines. Does the result hold if there are two familigsaafesicsn
M always intersecting at right angles?

In this exercise we explore what happens when we try to apply the Gauss-Bonnet Theorem to the

simplest non-smooth surface, a right circular cone. R eenote the surface given in Exercise 2.4.5 and

dR its boundary curve.
a. Show that if we make& by gluing the edges of a circular sector (“pacman”) of central aggle
as indicated in Figure 1.11, theﬁ kgds = 2m sing = B. We call 8 thecone angleof R at its

dR
vertex.

b. Show that Theorem 1.6 holds férif we add2x — g to [[, KdA.
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FIGURE1.11

c. Show that we obtain the same result by “smoothing” the cone point, as pictured in Figure 1.12.
(Hint: InterpretffR K dA as the area of the image of the Gauss map.)

X7

FIGURE1l.12

Remark. Itis not hard to give an explici€? such smoothing. For example, constru@Zaconvex
function f on [0, 1] with £(0) = f’(0) =0, f(1) = f'(1) = 1, and (1) = 0.

14. Suppose is a closed space curve with# 0. Assume that theormal indicatrix(i.e., the curve traced
out on the unit sphere by the principal normal) is a simple closed curve in the unit sphere. Prove then
that it divides the unit sphere into two regions of equal area. (Hint: Apply the Gauss-Bonnet Theorem
to one of those regions.)

15. Supposéd C R3 is a compact, oriented surface with no boundary wkth> 0. It follows that M is
topologically a sphere (why?). Prove thet is convex; i.e., for eacl® € M, M lies on only one side
of the tangent plan&p M. (Hint: Use the Gauss-Bonnet Theorem and Gauss’s original interpretation
of curvature indicated in the remark on p. 51 to show the Gauss map must be one-to-one (except perhaps
on a subset with no area). Then look at the end of the proof of Theorem 3.4 of Chapter 1.)

2. An Introduction to Hyperbolic Geometry

Hilbert proved in 1901 that there is no surface (without boundariRPiwith constant negative curvature
with the property that it is a closed subset®? (i.e., every Cauchy sequence of points in the surface
converges to a point of the surface). The pseudosphere fails the latter condition. Nevertheless, it is possible
to give a definition of an “abstract surface” (not sitting insi®®) together with a first fundamental form.
As we know, this will be all we need to calculate Christoffel symbols, curvature (Theorem 3.1 of Chapter
2), geodesics, and so on.

Definition. The hyperbolic planeH is defined to be the half-plangu, v) € R? : v > 0}, equipped
with the first fundamental form | given b = G = 1/v?, F = 0.
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Now, using the formulasi on p. 58, we find that

E E 1
FJL:%:Q Fu1;4=—ﬁ=;
E 1 G

Lo =26 = 7% fwv =56 =
Gu Gv l

Fu:——: U:_:__'

vy 2E 0 v 2G v

Using the formula %) for Gaussian curvature on p. 60, we find

1 E G 2,2 2 2
k=7 () (G - 35, =5 5=

2WEG EG/v EG/u 2 v3 v 2 2
Thus, the hyperbolic plane has constant curvatureNote that it is a consequence of Corollary 1.7 that the
area of a geodesic triangle liis equal tor — (¢1 + t2 + t3).

What are the geodesics in this surface? Using the equada®¥dn p. 71, we obtain the equations
u// _ zulvl — U// + l(uxz _ UIZ) =0.
v v

Obviously, the vertical rays = const give us solutions (with(r) = c1e°2’). Next we seek geodesics with

/
u’ # 0, so we start withjl—v = U—, and apply the chain rule judiciously:
u u

du?  du \v u'? u’

“ ()= (Gr))
_%(H(Z_j) ):_%(H(j_;) )

This means we are left with the differential equation

du? du) — du\ du)

and integrating this twice gives us the solutions

d?v d (v’) uv" —uv 1

u? +v?> =au+b.

That is, the geodesics iH are the vertical rays and the semicircles centered ornsthris, as pictured
in Figure 2.1. Note that any semicircle centered onitkexis intersects each vertical line at most one
time. It now follows that any two point®, O € H are joined by a unique geodesic. #f and Q lie on

a vertical line, then the vertical ray through them is the unique geodesic joining thefmarfd O do not

lie on a vertical line, leC be the intersection of the perpendicular bisecto@ and theu-axis; then the
semicircle centered & is the unique geodesic joining and Q.

Example 1. Given P, 0 € H, we would like to find a formula for the (geodesic) distarbe’, Q)
between them. Let’s start with = (ug,a) andQ = (ug,b), with 0 < a < b. Parametrizing the line
segment fromP to Q byu = ug,v =t,a <t < b, we have

b b
d(P, Q) :/ JEW©)? + G/ (02di = % —ink.

a a
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FIGURE2.1

Note that, fixingQ and letting P approach the:-axis, d(P, Q) — oo; thus, it is reasonable to think of
points on thes-axis as “virtual” points at infinity.
In general, we parametrize the arc of a semicifelg + r cost, r sint), 61 <t < 6,, going fromP to

0, as shown in Figure 2.2. Then we have

FIGURE2.2

0>
d(P,Q) = /0 \/Eu’(z)Z + Gv/(t)2dt

%2 dt
/91 sint

B /92 rdt
B 61 rsint

(1+cos€1/
= |In -
sin6,

= |In (ﬂ Q)
8P/ BO

El

where the lengths in the final formula are Euclidean. (See Exercise 12 for the connection with cross ratio.)

\Y%

1 + cosb,
sin6,

_ | [2C0%01/2) [ 2c0d0,/2)
~ 7\ 2sn(61/2) / 2sn(62/2)

It follows from the first part of Example 1 that the curwes= ¢ andv = b are a constant distance apart

(measured along geodesics orthogonal to both), like parallel lines in Euclidean geometry. These curves are
classically callechorocycles As we see in Figure 2.3, these curves are the curves orthogonal to the family

of the “vertical geodesics.” If, instead, we consider all the geodesics passing through a give@ patnt

infinity” on v = 0, as we ask the reader to check in Exercise 5, the orthogonal trajectories will be curves in

H represented by circles tangent to thexis atQ.

Example 2. Let’s calculate the geodesic curvature of the horocycle «a, oriented to the right. We
start by parametrizing the curve l(t) = (z,a). Thena/(r) = (1,0). Note thatv(¢r) = |&/(¢)| =
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FIGURE2.3

VE(1)% + G(0)2 = 1/a. By Proposition 1.1,

$12 = ;(261_3 1) = l
2,/ a
(Heree; = v(1,0) ande, = v(0, 1) at the point(u, v) € H. Why?) To calculate the geodesic curvature,
we wish to apply Proposition 1.3, which requires differentiation with respect to arclength, so we’ll use the
chain rule as in Chapter 1, multiplying thealerivative byl /u(z) = a. Note, also, thak’ makes the constant
angled = 0 with e, sof’ = 0. Thus,
1 1
Kg:Tt)lez:a'E: I,

as required. (Note that if we move to the left, the sign changesand —1.) V

We ask the reader to do the analogous calculations for the circles tangentt@figein Exercise 6.
Moreover, as we ask the reader to check in Exercise 7, every curidiedihconstant geodesic curvature
kg = %1 is a horocycle.

Remark. It seems somewhat surprising to find in Example 2 that = 1/a, ase; certainly doesn't
appear to be turning as we move along the path. However, as we discussed in the Remark on p. 71, at any
point of v = a the geodesic with the same tangent vector is a semicircle heading “to the right,” and so this
means thag, is turning to the left, i.e., towards.

The isometries of the Euclidean plane form a group, the Euclidean gt@¢2p the isometries of the
sphere likewise form a group, the orthogonal grad8). Each of these is a-dimensional Lie group.
Intuitively, there are three degrees of freedom because we must specify where & guies (two degrees
of freedom) and where a single unit tangent vector at that pigbes (one more degree of freedom). We
might likewise expect the isometries Bf to form a3-dimensional group. And indeed it is. We deal with
just the orientation-preserving isometries here.

We considetl C C by letting (u, v) correspond ta = u + iv, and we consider the collection lafiear

fractional transformations
b
T(z):az+ , a,b,c,d eR, ad—bc=1.
cz+d

We must now check several things:

(i) Composition of functions corresponds to multiplication of the 2 matrices[a
C

z} with
determinantl, so we obtain a group.
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(i) T mapsH bijectively toH.
(iif) T is an isometry off.
We leave it to the reader to check the first two in Exercise 8, and we check the third here. Given the point

z = u + iv, we want to compute the lengths of the vectdysand T, at the image poinf'(z) = x + iy
and see that the two vectors are orthogonal. Note that

az+b (az+b)(cz+d) (alu+iv)+b)(c(u—iv)+d)

cz+d lcz + d|? N lcz + d|?
(ac(u? +v?) + (ad + be)u + bd) + i ((ad — be)v)
N lcz +d|? '
v
soy = ———. Now we havé
R PP
. _ (cz4+d)a—(az + b)c 1
= — = T/ = = y
Xu F iyu = —ixXy + Yo (2) cz 1 d)? cz1 )2
so we have 5 5
- xZ4y 1 1 1 1
E="%""%_— 17")P=— - —— = — =E,
32 yzl )l 2 Jez+dF 02
2 2
and, similarly,G = w = (. On the other hand,
y
F= XuYu 'vayv _ Xy (—xyp) '2" Xy (xy) —0=F,
y y
as desired.

Now, as we verify in Exercise 12 or in Exercise 14, linear fractional transformations carry lines and
circles inC to either lines or circles. Since our particular linear fractional transformations preserve the real
axis (U{oo}) and preserve angles as well, it follows that vertical lines and semicircles centered on the real
axis map to one another. Thus, our isometries do in fact map geodesics to geodesics (how comforting!).

If we think of H as modeling non-Euclidean geometry, with lines in our geometry being the geodesics,
note that given any liné and pointP ¢ £, there arenfinitely manylines passing throug® “parallel”
to (i.e., not intersectingy. As we see in Figure 2.4, there are two special lines thraRghat “meet? at

FIGURE2.4

infinity”; the rest are often calledltraparallels
We conclude with an interesting application. As we saw in the previous section, the Gauss-Bonnet
Theorem gives a deep relation between the total curvature of a surface and its topological structure (Euler

3These are the Cauchy-Riemann equations from basic complex analysis.
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characteristic). We know that if a compact surfadeis topologically equivalent to a sphere, then its total
curvature must be that of a round sphere, nardely If M is topologically equivalent to a torus, then (as
the reader checked in Exercise 3.1.3) its total curvature mukt We know that there is no way of making

>

FIGURE2.5

the torus inR3 in such a way that it has constant Gaussian curvakiiee 0 (why?), but wecanconstruct a
flat torus inR* by taking

X(u,v) = (cosu, sinu, cosv, Sinv), 0<u,v <2m.

(We take a piece of paper and identify opposite edges, as indicated in Figure 2.5; this can be rolled into a
cylinder inR? but into a torus only iflR*.) So what happens withzholed torus? In that casg(M) = —2,

so the total curvature should betr, and we can reasonably ask if there’@-aoled torus withconstant
negative curvature. Note that we can obtaitrlaoled torus by identifying pairs of edges on an octagon, as

FIGURE 2.6

shown in Figure 2.6.

This leads us to wonder whether we might have regulgonsR in H. By the Gauss-Bonnet formula,
we would have argak) = (n—2)7—)_;, S0 it's obviously necessary that :; < (n—2)x. This shouldn't
be difficult so long as > 3. First, let's convince ourselves that, given any pahe H, 0 < « < &, and
0 < B < (r —a)/2, we can construct an isosceles triangle with vertex angle P and base anglg. We
draw two geodesics emanating frafwith anglea between them, as shown in Figure 2.7. Proceeding a
geodesic distance on each of them to point® and R, we then obtain an isosceles triangleP? QR with
vertex anglex. Now, the base angle of that triangle approachies- «)/2 asr — 01 and approaches
asr — oo. It follows (presuming that the angle varies continuously witthat for some-, we obtain the
desired base ang|g. Let's now apply this construction witth = 27/n andf = n/n, n > 5. Repeating
the constructiom times (dividing the angle aP into n angles of2x/n each), we obtain a regulargon
with the property thad " :; = 27, as shown (approximately?) in Figure 2.8 for the case 8. The point
is that because the interior angles add upsto when we identify edges as in Figure 2.6, we will obtain a
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r

Q

& 27¢g

FIGURE2.7

l// n\\v’\ ~— (’\// w

FIGURE 2.8

smooth2-holed torus with constant curvatué = —1. The analogous construction works for tfdoled
torus, constructing a reguldg-gon whose interior angles sum2a.

EXERCISES 3.2

Find the geodesic joining andQ in H and calculatel( P, Q).
a. P=(4,3),0=(-3,4
*n. P=(1,2),0=(0,1)

c. P=1(20,7),Q =(l6,15)

2. Suppose there is a geodesic perpendicular to two geodeditsWhat can you prove about the latter

=

two?

3. Prove the angle-angle-angtengruencetheorem for hyperbolic (geodesic) triangles: A4 =~ £ A/,
/B~ /B',andZC =~ ZC’,thenAABC =~ AA’B’C’. (Hint: Use an isometry to mové’ to 4, B’
along the geodesic from to B, andC’ along the geodesic from to C.)

4. a. Verify Local Gauss-Bonnet, Theorem 1.6, for the regiobhounded byt = A, u = B, v = aq,

andv = b.
b. Verify Local Gauss-Bonnet for the regighbounded by the segment= a, A < u < B, and the

geodesic joining the two endpoints.
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c. Use Local Gauss-Bonnet (and the analysis of part b) to deduce the result of Example 2.

Show that the circles tangent to theaxis at the origin are the orthogonal trajectories of the family
of geodesicsi? — 2cu + v2 = 0, ¢ € R (together with the positive-axis). (Hint: Remember that

orthogonal lines have slopes that are negative reciprocals. Elimitatbtain the differential equation
dv 2uv . . . I .
T and solve this “homogeneous” differential equation by substitutieguz and getting

a separable differential equation twiandz.)

a. Prove that circles tangent to tiv@xis havec, = 1.
b. Prove that the horocycleg +v2—2av = 0 andu?+v?—2hv = 0 are a constant geodesic distance
apart. (Hint: Consider the intersections of the two horocycles with a geogesicu + v2 =0

orthogonal to them both.)

Prove that every curve il of constant geodesic curvaturg = 1 is either a horizontal line (as in
Example 2) or a circle tangent to theaxis. (Hints: Assume We start with an arclength parametrization

(u(s),v(s)), and use Proposition 1.3 to show that we have £ + 0’ andu’2 + v'2 = v2. Obtain the
v

differential equation
d?v dvy2\>/? dv
e (R e+ ) B - R
and solve this by substituting= dv/du and getting a separable differential equationdoydv.)

b _
LetT,peq(z) = “sz:d,a,b,c,d e R, withad — be = 1.

a. Suppose’,b’,c’,d’ e Randa’d’ — b’c¢’ = 1. Check that

Ta’,b/,c’,d’oTa,b,c,d = Ta/a+b’c,a/b—{—b/d,c/a-i-d/c,c’b—i—d’d and
(@a+bcyc'b+d'd)y—(a'b+bd)c'a+dc)=1.

Show, moreover, thaty 5 ., = T b d (Note that7, p .y = T_4,—p,—c—a- The reader
who's taken group theory will recognize that we’re defining an isomorphism between the group of
linear fractional transformations and the gratip(2, R) /{41 } of 2 x 2 matrices with determinant
1, identifying a matrix and its additive inverse.)

b. LetT =T,4.,4- Provethatifz = u +ivandv > 0, thenT(z) = x + iy with y > 0. Deduce
thatT mapsH to itself bijectively.

Show thateflectionacross the geodesic= 0 is given byr(z) = —z. Use this to determine the form
of the reflection across a general geodesic.

The geodesic circle of radiug centered afP is the set of pointg) so thatd(P, Q) = R. Prove that
geodesic circles iffl are Euclidean circles. One way to proceed is as follows: The geodesic circle
centered at? = (0, 1) with radiusR = Ina must pass throug{0, «) and(0, 1/a), and hence ought to

be a Euclidean circle centered (@t %(a + 1/a)). Check that all the points on this circle are in fact a
hyperbolic distanc&® away fromP. (Hint: It is probably easiest to work with the cartesian equation of
the circle. Find the equation of the geodesic throdgand an arbitrary point of the circle.)

What is the geodesic curvature of a geodesic circle of ralliusH? (See Exercise 10.)
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12. Recall (see, for example, p. 298 and pp. 350-1 of ShifAb'stract Algebra: A Geometric Approgch
that thecross ratioof four numbers4, B, P, O € C U {0} is defined to be

Q-4 /Q0—-B

P—-Al P-B’

a. Showthat4, B, P, andQ lie on a line or circle if and only if their cross ratio is a real number.

b. Prove thatifS is a linear fractional transformation witf(A4) = 0, S(B) = oo, andS(P) = 1,
thenS(Q) = [A: B : P : Q]. Use this to deduce that for any linear fractional transformation
we have[T(A) : T(B): T(P): T(Q)]=[A:B:P:0Q].

c. Prove that linear fractional transformations map lines and circles to either lines or circles. (For
which such transformations do lines necessarily map to lines?)

d. Show thatif4, B, P, andQ lie on a line or circle, then

[A:B:P:Q0]=

AQ /BQ
A:B:P: =—/—.
I oll="5/%p
Conclude that/(P, Q) = |In[A : B : P : Q]|, whereA, B, P, andQ are as illustrated in Figure

2.2.
e. Check that iff" is a linear fractional transformation carryinggto 0, B to oo, P to P/, andQ to
Q’,thend(P, Q) =d(P’, Q).

13. a. LetO be any point not lying on a circl€ and let P and O be points on the circl€ so that
O, P, and Q are collinear. Letl' be the point onC so thatOT is tangent to2. Prove that
(OP)(0Q) = (OT)2.

b. Defineinversionin the circle of radiusk centered a by sending a poinf to the pointP’ on
the rayOP with (OP)(OP’) = R?. Show that an inversion in a circle centered at the origin maps
a circle € centered on tha-axis andnot passing througtO to another circle®’ centered on the
u-axis. (Hint: For anyP € C, let Q be the other point o collinear withO and P, and letQ’ be
the image ofQ under inversion. Use the result of part a to show &/ 0Q’ is constant. IfC
is the center of, let C’ be the point on the-axis so thaiC’Q’||CP. Show thatQ’ traces out a
circle @ centered aC’.)

c. Show that inversion in the circle of radidscentered aD maps vertical lines to circles centered
on theu-axis and passing through and vice-versa.

14. a. Prove that every (orientation-preserving) isometiy cin be written as the composition of linear
fractional transformations of the form

1
Ti(z)=z+b forsomebeR, Tr(z)=-—-, and T3(z) =cz forsomec > 0.
zZ

(Hint: It's probably easiest to work with matrices. Show that you have matrices of the form

[a 0 ] [1 b}, [O _1}, and therefore{1 0}, and that any matrix of determinahtcan be
0 1/a 0 1 1 0 b 1

obtained as a product of such.)
b. Prove thafl; maps circles centered on theaxis and vertical lines to circles centered onthaxis
and vertical lines (not necessarily respectively). Either do this algebraically or use Exercise 13.
c. Use the results of parts a and b to prove that isometrigsrofip geodesics to geodesics.
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We say a linear fractional transformatién= T, ; . 4 is elliptic if it has one fixed point, parabolic if it

has one fixed point at infinity, and hyperbolic if it has two fixed points at infinity.

a. Show that is elliptic if |a + d| < 2, parabolic ifla + d| = 2, and hyperbolic ifa + d| > 2.

b. Describe the three types of isometries geometrically. (Hint: In particular, what is the relation
between horocycles and parabolic linear fractional transformations?)

SupposA ABC is a hyperbolic right triangle with “hypotenuse” Use Figure 2.9 to prove the follow-

ing:
sinh tanhb

sinZA = — a, COSLA = ——,

sinhc tanhc

(The last is the hyperbolic Pythagorean Theorem.) (Hint: Start by showing, for example, that-eosh

coshc = coshu coshb.

A
ke
Ad)T

FIGURE2.9

csch, coshe = (1 — cosy cost)/(siny sint), and cog — cosy = sint cotf. You will need two
equations trigonometrically relating andr.)

Given a pointP? on a surfacéf, we define the geodesic circle of radiRscentered aP to be the locus
of points whose (geodesic) distance frdhis R. Let C(R) denote its circumference.
a. Show that on the unit sphere
im 2nR — C(R) _ 1
R—>0+ 7R3 3
b. Show that the geodesic curvature, of a spherical geodesic circle of radiug is
COtR ~ L(1—& 1 ),

The Poincaé diskis defined to be the “abstract surfad®’= {(u,v) : u? + v? < 1} with the first

2
F=0,6=—"_ This

fundamental form given, in polar coordinatesf), by F = =22
—r

4
(1 —r2)2’
is called thehyperbolic metricon D.

c. Check that irD the geodesics through the origin are Euclidean line segments; conclude that the
Euclidean circle ?zf radius centered at the origin is a hyperbolic circle of radRis= In 1 i_ : ,
and sor = tanh—. (Remark: Other geodesics are semicircles orthogonal to the unit circle, the
“virtual boundary” of D. This should make sense since there is a linear fractional transformation
mappingH to D; by Exercise 12c, it will map semicircles orthogonal to thaxis to semicircles
orthogonal to the unit circle.)

d. Check that the circumference of the hyperbolic circle 87 sinhR A

27(R + %3 +...), andso

_ 27R—C(R) 1
im — —— 2 = __
R—0+ 7R3 3



§3. SURFACETHEORY WITH DIFFERENTIAL FORMS 101

e. Compute (using a double integral) that the area of a disk of hyperbolic rRdsigs sinh? § ~
TR?*(1 + If—; + ...). Use the Gauss-Bonnet Theorem to deduce that the geodesic curatire
the hyperbolic circle of radiu® is cothR = %(1 + RTz + ...

18. Here we give another model for hyperbolic geometry, called the Klein-Beltrami model. Consider the fol-
lowing parametrization of the hyperbolic disk: Start with the open wunit disk,
{xf + x§ <1, x3 = 0}, vertically project to the southern hemisphere of the unit sphere, and then
stereographically project (from the north pole) back to the unit disk.
a. Show that this mapping is given in polar coordinates by

X(R, ) = (r,0) = (L 0).

14+ V1—R?
Compute that the first fundamental form of the Poincaré metri deee Exercise 17) is given
. 1 - - R?
in (R, 0) coordinates bhf = ——  F =0, G = . (Hint: Compute carefully and
(R.6) ¥ = gy - p y

economically!)
b. Compute the distance frof, 0) to (a, 0); compare with the formula for distance in the Poincaré
model.

c. Changing now to Euclidean coordinatasv), show that
2

A 1— A A 1—u?
:—U, F:L’ G:—u’
(1 —u2 —v2)2 (1 —u2—12)2 (1 —u2—12)2
whence you derive
2u
u __ v o _
b =752 2 fu =0
u __ v v o__ u
1_‘u”_l—uz—vz’ l_‘"v_l—uz—vz’
2v
u __ v o _
v =0 b = T

d. Use part b to show that the geodesics of the disk using the first fundamental éoenchords of
the circleu? + v? = 1. (Hint: Show (by using the chain rule) that the equations for a geodesic give
d?v/du® = 0.) Discuss the advantages and disadvantages of this model (compared to Poincaré’s).
e. Check your answer in part ¢ by proving (geometrically?) that chords of the circle mapoby
geodesics in the hyperbolic disk. (See Exercise 2.1.8.)

3. Surface Theory with Differential Forms

We've seen that it can be quite awkward to work with coordinates to study surfaces. (For example, the
Codazzi and Gauss Equations in Section 3 of Chapter 2 are far from beautiful.) For those who've learned
about differential forms, we can given a quick and elegant treatment that is conceptually quite clean.

We start (much like the situation with curves) witmeving framee;, e,, €3 on (an open subset of) our
(oriented) surfacé/. Hereg; are vector fields defined ol with the properties that

(i) {e1, e, €3} gives an orthonormal basis f&2 at each point (so the matrix with those respective
column vectors is an orthogonal matrix);
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(i) {e1,e} is abasis for the tangent spaceMfande; = n.

How do we know such a moving frame existsxil/ — M is a parametrized surface, we can start with
our usual vectors,, X, and apply the Gram-Schmidt process to obtain an orthonormal basis. @r, if
is a surface containing no umbilic points, then we can ch@psande, to be unit vectors pointing in the
principal directions; this approach was tacit in many of our proofs earlier.

If x: M — R3 is the inclusion map (which we may choose, in a computational setting, to consider as
the parametrization mappiig — R?3), then we defind-formswi, w, on M by

dX = w1€] + w28

i.e., foranyV € Tp M, we haveV = w(V)e; + wa(V)er, sow, (V) = 1(V, g,) fora = 1,2. So far,w;
andw, keep track of how our point moves around &h Next we want to see how the frame itself twists,
so we defind-formsw;;,7,j = 1,2,3, by

3
de = Za)ijej.
Jj=1

Note that since; - €; = const for anyi, j = 1,2, 3, we have

3 3
0=d(g -ej) =deg ‘€ 1+ 6 ~dej = (Za)ikek) -6 + (Za)jkek) -6
k=1 k=1
= wjj + wji,
sow;; = —w;; foralli, j = 1,2,3. (In particular, sinces; is always a unit vector;; = 0 for all i.) If

V eTpM, w;j(V) tells us how fasg; is twisting towardse; at P as we move with velocity/.
Note, in particular, that the shape operator is embodied in the equation

des = w318 + w06 = —(wi3e] + W3e).
Then for anyv € Tp M we havew;3(V) = 11 (V, e1) andw,3(V) = I (V, &). Indeed, when we write
w13 = h11w1 + hip0;
w23 = ha1w1 + hasws

for appropriate coefficient functiorig,g, we see that the matrix of the shape operatewith respect to the
basis{e;, &} for Tp M is nothing buff /44 ].
Most of our results will come from the following

Theorem 3.1(Structure Equations)
doi1 = w2 Awy and dwy = w1 N w12, and
3
doj =Y wy Ao foralli,j =1,2.3.

k=1

Proof. From the properties of the exterior derivative, we have

3 3
0= d(dX) =dwi1€ + dwye — w1 A (Zwljej) —wy N (szjej)
j=1 j=1
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= (da)l — w2y A 6021)91 + (da)2 —wi1 N 6012)62 — (601 ANwW13 + wa A a)23)e3,
so from the fact thafe, , e;, e3} is a basis foiR3 we infer that
dwi = w2 A w1 = —Wy A W12 = W12 A Wa and dwy = w1 A w12.

Similarly, we obtain
3 3
0=d(de) = d( Z wikek) = Z (da),-kek — Wik N Za)kjej)
k=1 =1 j=1
3 3 3 3
= Zda),-jej — Z ( Z Wik /\wkj)ej = Z (da),-j - Z Wik /\wkj)ej,
j=1

j=1 k=1 j=1 k=1

bl

3
sodwij — Y wik ANwg; =0foralli,j. O
k=1

We also have the following additional consequence of the proof:
Proposition 3.2. The shape operator is symmetric, ile; = ha;.

Proof. From thee; component of the equatiaf(dx) = 0 in the proof of Theorem 3.1 we have
0=w1 Aw13 + w2 Awzz = w1 A (h1101 + h12w2) + 02 A (ha101 + haowa) = (h12 — ha1)w1 A w3,
SOhip —hy; = 0. O

Recall thatV is a principal direction ifdes;(V) is a scalar multiple o¥/. Soe; ande, are principal
directions if and only ifi;, = 0 and we havev,3 = k1w andw,3 = kow,, wherek, andk, are, as usual,
the principal curvatures.

It is important to understand how our battery of forms changes if we change our moving frame by
rotatinge;, e; through some anglé (which may be a function).

Lemma 3.3. Suppos&; = cosbe; + sinfe, ande, = —sinfe; + cosbe, for some functiort. Then
we have

w1 = cosOw; + Sinbw,
w, = —Sinfw; + cosbw,
w1y = w12 + dO
w13 = CO0SAw13 + SiNBws3
w3 = —SiNfwi3 + cosbw,3
Note, in particular, thab, A Wy, = w1 A wy andw13 A W23 = W13 A W23.
Proof. We leave this to the reader in Exercise 1]

It is often convenient when we study curves in surfaces (as we did in Sections 3 and 4 of Chapter 2)
to use the Darboux frame, a moving frame for the surface adapted sg tisatangent to the curve. (See
Exercise 3.) For example, is a geodesic if and only if in terms of the Darboux frame we haye= 0 as
al-formone.

Let's now examine the structure equations more carefully.
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Gauss equation: dwir = —w13 A w23
Codazzi equations: dwiz = w12 A W23
dwr3 = —w12 A 013

Example 1. To illustrate the power of the moving frame approach, we reprove Proposition 3.4 of Chap-

ter 2. Suppos& = 0 and M has no planar points. Then we claim thdtis ruled and the tangent plane

of M is constant along the rulings. We work in a principal moving frame with= 0, sow;3 = 0.
Therefore, by the first Codazzi equatiafyp;3 = 0 = w12 A w23 = w12 A kaws. Sinceky # 0, we

must havewi; A wp, = 0, and sow1, = fw, for some functionf. Therefore,wi,(e;) = 0, and so
dei(e)) = wiz(e1)e + wi3(er)e; = 0. It follows thate; stays constant as we move in #edirection, so
following the e; direction gives us a line. Moreovefes;(e;) = 0 (sincek; = 0), so the tangent plane to

M is constant along that line. V

The Gauss equation is particularly interesting. First, note that
w13 A 23 = (h1101 + h12w2) A (h1201 + haowy) = (hi1hay — h3,)w1 A wy = KdA,
whereK = det[haﬂ] = detSp is the Gaussian curvature. So, the Gauss equation really reads:
(%) dwip = —KdA.

(How elegant!) Note, moreover, that, by Lemma 3.3, for any two moving fr&nes, e; andé;, &, €3, we
havedwi, = dw12 (Which is good, since the right-hand side ®j loesn’t depend on the frame field). Next,
we observe that, because of the first equations in Theorerwg: Iian be computed just from knowiragy
andw,, hence depends just on the first fundamental form of the surface. (If weantte= Pw; + Qwa,
then the first equation determin@sand the second determin€s) We therefore arrive at a new proof of
Gauss’s Theorema Egregium, Theorem 3.1 of Chapter 2.

Thel-form wq, is called theconnection formand measures the tangential twisepf Just as we saw in
Section 1, thenYy e, is the tangential component dfye; = de (V) = w12(V)e + w13(V)es, which is,
of coursewiz(V)es. In particular,wi,(e;) recovers the geodesic curvature of ghecurve.

Example 2. Let’'s go back to our usual parametrization of the unit sphere,

X(u,v) = (Sinu cosv, sinu sinv, cosu), O<u<mn, O0<v<2m.
Then we have

dX = Xy du + Xy dv = (CoSu cosv, cosu Sinv, — sinu) du + (— sinv, cosv, 0)(sSnudv).

er €

Note thate; = x, ande; = Xv/\/E, as we might expect. So this gives us
w1 = du and wy = Sinudv.

Next,dw; = 0 anddw, = cosudu A dv = du A (cosudv), so we see from the first structure equations
thatwi, = cosudv. Itis hard to miss the similarity this bears to the discussioef and Example 1

in Section 1. Now we havdwi, = —sinudu A dv = —w1 A w3, SO, indeed, the sphere has Gaussian
curvaturek = 1.
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Let’'s now compute the geodesic curvatigeof the latitude circle: = uo. We obtain a Darboux frame
by takinge;, = e; and&, = —e;. Now, w12 = —wy1 = wqz (this also follows from Lemma 3.3). Then
kg = w12(81) = wi2(€). Now note thatv;, = cosudv = cotuw,, SOkg = COtuy. V

To illustrate the power of the differential forms approach, we give a proof of the following result (see
Exercise 2.3.16).

Proposition 3.4. SupposeM has no umbilic points ankl, is constant. TheM is (a subset of) a tube
of radiusr = 1/|k;| about a regular curve.

Proof. Choose a principal moving frangg, e,. We havew;3 = kiw; andw,3 = k,w,. Differentiating
the first, since; is constant, we geb1> Awz3 = kiwi2 Aws, SOw12 A(ka—k1)wa = 0. Sincek, —ky # 0,
we infer thatw1, = Aw, for some scalar function. Now letg; = e, &, €& be the Frenet frame of the
e;-curve and apply Exercise 3. Since bail, = 0 andw;sz # 0 when restricted to (pulled back to) an
e;-curve, we infer that co@ = 0 and6é = +x/2 all along the curve. Them,3 = Tw; = 0 on thee;-curve,
sot = 0 and the curve is planar. But thew, = w1, = w13 = tkiw1, SOk = |k1] is constant and the
€;-curves are circles.

Now considefr = X + k—eg. Then
1

1 1 k
do =dX+ —de; = w161 + w268 + —(—k1wi1€1 — krwr8) = (1 — —2)0)262,

S0 o is constant along the; -curves andie # 0, which means that the image efis a regular curve, the
center of the tube, as desired

From the Gauss equation and Stokes’s Theorem, the Gauss-Bonnet formula follows immediately for an
oriented surfacéd/ with (piecewise smooth) boundady/ on which we can globally define a moving frame
That is, we can reprove the Local Gauss-Bonnet formula, Theorem 1.6, quite effortlessly.

Proof. We start with an arbitrary moving franmg, e, e; and take a Darboux fram®,€,,€; along
dM. We write€; = cosfe; + sinfe, andeé, = —sinfe; + cosfe, (wheref is smoothly chosen along
the smooth pieces @fM and the exterior angle; at P; gives the “jump” of6 as we cross?;). Then, by
Stokes’s Theorem and Lemma 3.3, we have

S P R R

(See Exercise 2.) O

EXERCISES 3.3

1. Prove Lemma 3.3.

2. Letey, e, e3 be the Darboux frame along a curee Show that as a-form one, wi> = kgwi. Use
this result to reprove the result of Exercise 3.1.7.

3. Supposeax is a curve lying in the surfacdf/. Lete;, e, e; be the Darboux frame along (i.e., a
moving frame for the surface witly tangent tax), and lete; = e;,€,, €3 be the Frenet frame. Then,
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13.

14.
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by analogy with Lemma 3.3, €; are obtained frone,, e; by rotating through some angte Show
that, asl-forms one, we have:

w12 = kwp = CO0SOwiz + Sinfwi 3
w13 =0 = —sinfwiy + cosbw3

W3 = TW1 = wa3 + dO.

Use Exercise 3 to prove Meusnier's Theorem (Proposition 2.5 of Chapter 2).

Use Exercise 3 to prove that@ c M is a line of curvature and the osculating planeCofnakes a
constant angle with the tangent planeMt thenC is planar.

Use moving frames to redo Exercise 2.2.14. (Hint: Use the Codazzi equations to shaw that; =
dk ANwy =0.)

Use moving frames to redo Exercise 2.2.15.

Use moving frames to compute the Gaussian curvature of the torus, parametrized as in Example 1(c) of
Chapter 2.

The vectore; = v(1,0) ande, = v(0, 1) give a moving frame atu,v) € H. Setw; = du/v and
wy = dv/v.

a. Checkthatforany € T, ,)H, 01 (V) = 1(V,e1) andwz (V) = I(V, &).

b. Computaw;, anddw;, and verify thatk = —1.

Use moving frames to redo
a. Exercise 3.1.8
b. Exercise 3.1.9

a. Use moving frames to reprove the result of Exercise 2.3.14.

b. Use moving frames to reprove the result of Exercise 2.4.13. That is, prove that if there are two
families of geodesics iM that are everywhere orthogonal, th&his flat.

c. Suppose there are two families of geodesicsfirmaking a constant angke Prove or disprove:
M is flat.

Use moving frames to redo Exercise 2.3.17. (See Proposition 3.4.)

Recall that locally any-form ¢ with d¢ = 0 can be written in the fornp = df for some functionf .

a. Prove that if a surfacé/ is flat, then locally we can find a moving franeg, e, on M so that
w12 = 0. (Hint: Start with an arbitrary moving frame.)

b. Deduce that ifM is flat, locally we can find a parametrizationof M with £ = G = 1 and
F = 0. (That is, locallyM is isometric to a plane.)

(The Backlund transformBupposeM and M are two surfaces ilR3 and f: M — M is a smooth
bijective function with the properties that

() theline fromP to f(P)is tangent taV at P and tangent td/ at f(P);

(i) the distance betweeR and f(P) is a constant, independent oP;
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(i) the angle between(P) andn( f(P)) is a constan®, independent of.
Prove that bothi/ andM have constant curvatur€ = —(sin? 8)/r2. (Hints: Write P = f(P), and
lete;, e, e3 (resp.€;, &, €;) be moving frames aP (resp. P) with & = e, in the direction ofP—F).
Letx andX = fox be local parametrizations. How else arandX related?)

4. Calculus of Variations and Surfaces of Constant Mean Curvature

Every student of calculus is familiar with the necessary condition for a differentiable functigh —
R to have a local extreme point (minimum or maximum)atWe must havey f(P) = 0. Phrased slightly
differently, for every vectoW, the directional derivative

f(P +eV)— f(P)
&

Dy f(P) = lim
e—0
should vanish. Moreover, if we are given a constraint 3t = {x € R"” : g1(X) = 0,g2(X) =

0,...,gr(X) = 0}, the method of Lagrange multipliers tells us that at a constrained extreme poust
must have

k
Vf(P) =) AiVgi(P)
i=1
for some scalard, ..., A;r. (There is also a nondegeneracy hypothesis herévibatP), ..., Vgi(P) be
linearly independent.)

Suppose we are given a regular parametrized sukade— R3 and want to find—without the benefit
of the analysis of Section 4 of Chapter 2—a geodesic flore= X(ug, vo) to Q@ = X(u1,v1). Among all
pathsa: [0, 1] — M with «(0) = P anda(1) = Q, we wish to find the shortest. That is, we want to choose
the patho(¢) = x(u(t), v(¢)) so as taninimizethe integral

1 1
/0 lo’ (1)l = /0 \/E(u(t),v(l))(u’(l))2 + 2F (u(t), v())u' ()v' (1) + Gu(t), v(1) (v (1))>dt

subject to the constraints th@i(0), v(0)) = (ug,vo) and (u(1),v(1)) = (uy,v1), as indicated in Figure
4.1. Now we're doing a minimization problem in the space of@l)curves(u(¢), v(¢)) with (1(0), v(0)) =

(ug,vy)

FIGUREA4.1

(1o, vo) and (u(1),v(1)) = (u1,v1). Even though we're now working in an infinite-dimensional setting,
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we should not panic. In classical terminology, we hafer&tional F defined on the spack of ¢! curves
u:[0,1] - R3, i.e.,

1
%) Fo = [ feuo.wer.
0
For example, in the case of the arclength problem, we have
St @), v(@), @' (0),v'(1) =
\/ Eu(t), v(0)) (' (1))* + 2F (u(t), v()u'()v' (1) + G(u(r), v(1))(v' (1))

To say that a particular cureg” is a local extreme point (with fixed endpoints) of the functioRajiven
in () is to say that for anyariation &: [0, 1] — R? with £(0) = £(1) = 0, the directional derivative

F(u* +¢e§)— F(u*) i

Dg F(u*) = lim . = - F(U* + ¢§)

e=0

should vanish. This leads us to the

Theorem 4.1(Euler-Lagrange Equations)f u* is a local extreme point of the functionBlgiven above
in (%), then atu™ we have
aof d (of
u  dr (%) ’

evaluating these both at,u*(t),u*'(t)), forall0 <t < 1.

Proof. Let£:[0,1] — R2 be aC! curve with&(0) = £(1) = 0. Then, using the fact that we can pull
the derivative under the integral sign (see Exercise 1) and then the chain rule, we have

d
% o F(u + SE) d_
/ f(r, u*(t) + e€(1),u™' () + e&'(1))dt

f af

/0 (—(r UR(O.U™(0) - §(0) + 50 (LU0 U™ (0) - () ) di

/ @t u*(t) + e&(1),u* (1) + &' (t))dt

and so, integrating by parts, we have
0 d
-[(Zoso-2 (i) §0)dr + L5 0]]
0

() o

Now, applying Exercise 2, since this holds fif ¢! ¢ with £(0) = £(1) = 0, we infer that

of _d(of\_,
ou dr\ou) 7

as desired. O
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Of course, the Euler-Lagrange equations really give a system of differential equations:

of _d (of
%_E(W)
of _d (df
%_E(W)'

Example 1. Recall that for the unit sphere in the usual parametrization we Rave 1, F = 0, and
G = sin? u. To find the shortest path frog, vo) = (1o, vo) to the point(uy, vy) = (11, vo), we want to
minimize the functional

(%)

1
F(u,v) :/0 \/(u’(z))z + sir? u()(v'(1))2dt.

Assuming our critical patlu* is parametrized at constant speed, the equati#gie usv’(r) = const
andu’(¢) = sinu(t) cosu(t)v’(t)?. (Cf. Example 6(b) in Section 4 of Chapter 2.)V

We now come to two problems that interest us here: What is the surface of least area with a given
boundary curve? And what is the surface of least area containing a given volume? For this we must
consider parametrized surfaces and hence functionals defined on functions of two variables. In particular,
for functionsx: D — R3 defined on a given domaiB C R?, we consider

F(x) = // Xy X Xy ||dudv.
D

We seek a functiom™ so that, for all variationg: D — R3 with & =0o0n0D,

F(U* +e§)— FUu*) d
& de
f(¢)-f'(¢)

Now we compute: Recalling thaé,td; If(r)|| = ———— and settingx = x* + <&, we have

f)]
d _ 1 * * * *
Je 0||Xu XXv||—W((EuXXv + X5, X &) - (6, X X7))
e= u v
= (&, x Xy + X, x &) - n.

F@U* +¢§) = 0.
e=0

Dg F(U™) = lim
§ () e—0

Next we observe that
(B xxp)-n= (€ xxp)-n), —(Exx5,)-N—(ExX3)-Ny
O x &) -n = (0 x &) -n), — Oy X &) N —(x; x &) - Ny,
and so, adding these equations, we obtain
(B XXy + X5 x &) -n= ((E xx3)-n), + (0 x &) -n), — (€ xX5) Ny + (x5 x &) -Ny)
= ((& xxp) - n), — (& xx;)-n), — (( xX3) - My + (5 x &) - Ny)
= (Exxp)-n), —((E xx5)-n), —&-(Xy x Ny + Ny xX).
At the last step, we've used the identify x V) - W = (W x U) -V = (V x W) - U. The appropriate

way to integrate by parts in the two-dimensional setting is to apply Green’s Theorem, Theorem 2.6 of the
Appendix, and so we leP = (§ x x}) -nandQ = (§ x x};) - n and obtain

//D(’gu XXy + X5 x &,)-ndudv
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= //D ((@ xxy)-n), —((&xx;)-n), )dudv — //Dg (X5 x Ny + Ny x X5 )dudv
Qu Py

:/ (ExXx3)-ndu+ (& xx:)-ndv—// £+ (X5 x Ny + Ny x X3 )dudv.
aD s 5 D
Sinceé = 0onaD, the line integral vanishes. Using the equatiofg on p. 59, we find that} x n, =
a(xy x Xy) andn, x X = d(x;; x X3), so, at long last, we obtain

// Xy X Xy ||dudv = // (&, X X5 + X5 x &) -ndudv
e=0JYD D

= —// £ - (X5 x Ny + Ny x X5 )dudv
D

= —// (a+d)§- (X xx3)dudv = —// 2HE -ndA,
D D
sinceH = 3trSp.

We conclude from this, using a two-dimensional analogue of Exercise 2, the following

a4
de

Theorem 4.2. Among all (parametrized) surfaces with a given boundary curve, the one of least area is
minimal, i.e., hadd = 0.

This result, indeed, is the origin of the terminology.

Next, suppose we wish to characterize those closed surfaces (compact surfaces with no boundary) of
least area containing a given volurie To make a parametrized surface closed, we requirethab) = Xg
for all (u,v) € aD. But how do we express the volume constraint in termg?iThe answer comes from
the Divergence Theorem and is the three-dimensional analogue of the result of Exercise A.2.5: The volume
enclosed by the parametrized surfads given by

vol(V) = %//DxmdA.

Thus, the method of Lagrange multipliers suggests that for a surface of least area there must be al\constant
SO that// (2H —MA)&é-ndA = 0Ofor all variationsé with & = 0ondD. Once again, using a two-dimensional
D

analogue of Exercise 2, we see thaf — A = 0 and hencdd must be constant. (Also see Exercise 6.) We
conclude:

Theorem 4.3. Among all (parametrized) surfaces containing a fixed volume, the one of least area has
constant mean curvature.

In particular, a soap bubble should have constant mean curvature. A nontrivial theorem of Alexandrov,
analogous to Theorem 3.6 of Chapter 2, states that a smooth, compact surface of constant mean curvature
must be a sphere. So soap bubbles should be spheres. How do you explain “double bubbles™?

Example 2. If we ask which surfaces of revolution have constant mean curvdfyrehe statement of
Exercise 2.2.20a. leads us to the differential equation
h" 1

(1 + 1232 h(1 + W2)1/2

= 2H,.
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(Here the surface is obtained by rotating the graplt about the coordinate axis.) We can rewrite this
equation as follows:

—hh" 4 (1 +h/2)
(1 +h/2)3/2

+2Hoh =0

and, multiplying through by,

,—hh" + (1 + 1'?)

[
TEWILE +2Hohh' =0

h ! 1,
— 2Ho(=h*) =0
(\/1+h/2) - 0(2 )

(T) ﬁ —+ H0h2 = const

We now show that such functions have a wonderful geometric characterization, as suggested in Figure
4.2. Starting with an ellipse with semimajor axisand semiminor axi$, we consider the locus of one

FIGURE4.2

focus as we roll the ellipse along theaxis. By definition of an ellipse, we ha\HeITQ)H + ||@|| = 2a,

and by Exercise 7, we havey, = b? (see Figure 4.3). On the other hand, we deduce from Exercise 8
that@) is normal to the curve, and that, therefoye= ||ﬁé|| cosg. Since the “reflectivity” property

of the ellipse tells us that F, QP =~ ZF>,Q P>, we havey, = ||@|| cos¢. Since co® = dx/ds and

FIGURE4.3

ds/dx = /1 + (dy/dx)?, we have
b2

dx
y+ —=y+4+y, =2acC0Sp =2a—
y ds
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and so

dx 2ay
e 2— —_— 2: 2—— 2:
0=y 2ayds+b y 1+y/2+b 0.

SettingHy = —1/2a, we see that this matches the equatibnapove. V

#1.

42,

EXERCISES 3.4

! ad
Supposeg:[0,1] x (—1,1) — R is continuous and leG(e) = / g(t,e)dt. Prove that ifa—g is
0 &

1 3 1
continuous, theiw’(0) = / a—g(t,O)dz. (Hint: Consideri(e) = / / a—g(t,u)dwlu.)
0 de o Jo de

1
*a. Supposegf is a continuous function of®, 1] and/ f(@®)E(@)dt = 0 for all continuous functions

0
£ on|0, 1]. Prove thatf = 0. (Hint: Takef = f.)
1

b. Supposef is a continuous function off), 1] and/ f(@®)E(@)dt = 0 for all continuous functions
0
g on|0,1] with £(0) = £(1) = 0. Prove thatf = 0. (Hint: Take¢ = f for an appropriate
continuous functiony.)
c. Deduce the same result f@} functionst.
d. Deduce the same result for vector-valued functiossdé .

Use the Euler-Lagrange equations to show that the shortest path joining two points in the Euclidean
plane is a line segment.

b
Use the functionaF (u) = 2u(t)4/ 1 + (u/(t))?dt to determine the surface of revolution of least

area with two parallel circles (perhaps of different radii) as boundary. (Hint: You should end up with
the same differential equation as in Exercise 2.2.20.)

Prove the analogue of Theorem 4.3 for curves. That is, show that of all closed plane curves enclosing
a given area, the circle has the least perimeter. (Cf. Theorem 3.10 of Chapter 1. Hint: Start with

Exercise A.2.5. Show that the constrained Euler-Lagrange equations imply that the extremizing curve
has constant curvature. Proposition 2.2 of Chapter 1 will help.)

1
Interpreting the integra)[ f(t)g(t)dt as an irlmer product (dot produdt), g) on the vector space

0
of continuous functions of0, 1], prove that if/ f(t)g(t)dt = 0 for all continuous functiong with
1 0
/ g(t)dt = 0, then f must be constant. (Hint: Writ¢ = (£, 1)1 + £+, where(f+,1) = 0.)
0

Prove thepedal propertyof the ellipse: The product of the distances from the foci to the tangent line of
the ellipse at any point is a constant (in fact, the square of the semiminor axis).

The arclength-parametrized curags) rolls without slipping along thec-axis, starting at the point
a(0) = 0. A point F is fixed relative to the curve. Le#(s) be the curve that” traces out. As
indicated in Figure 4.4, lef(s) be the anglex’(s) makes with the positive-axis. Denote byRy =
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FIGURE4.4

singd  cosf
Show thaB(s) = (5,0) + R_g(s) (F — a(s)).
Show tha’(s) - R_g(s)(F —a(s)) = 0. That is, asF moves, instantaneously it rotates about the

contact point on the-axis. (Cf. Exercise A.1.4.)

[COSQ —sing the matrix that gives rotation of the plane through artjle
a
b

9. Find the path followed by the focus of the parabpla= x?/2 as the parabola rolls along theaxis.
The focus is originally af0, 1/2). (Hint: See Example 2.)
10. Generalizing Exercise 8, prove that the result remains traerdls without slipping along another

smooth curve. (Hint: Parametrize the other curveylly), wheres is arclength ofx. Note that if the
rolling starts at(0) = y(0), then the fact that the curve rolls without slipping tells us thigtlikewise

the arclength oy .)



APPENDIX

Review of Linear Algebra and Calculus

1. Linear Algebra Review

Recall that the sefvy,...,v,} of vectors inR” gives a basis for a subspageof R” if and only if
every vectowv € V can be writteruniquelyas a linear combinatiom = ¢1vy + --- + ¢ V. In particular,
V1, ...,V, Will form a basis forR” if and only if then x n matrix

| |
A=V Vo -+ Vy

is invertible, and are said to hmositively orientedf the determinant ded is positive. In particular, given
two linearly independent vectorsw € R3, the seffv, w, v x w} always gives a positively oriented basis for

R3.

We sayey, ..., g € R" form anorthonormalset inR” if g; -; = O for all i # j and|g;| = 1 for all
i =1,...,k. Then we have the following

Proposition 1.1. If {ey,...,e,} is an orthonormal set of vectors R, then they form a basis fd"

and, given any € R", we havev = i (V-g)g.
i=1

We say am x n matrix A4 is orthogonalif ATA = I. Itis easy to check that the column vectors of
A form an orthonormal basis f@®” (and the same for the row vectors). Moreover, from the basic formula
Ax-y = x- A"y we deduce that i¢;, . . ., g, form an orthonormal set of vectorsIkf" and A is an orthogonal
n X n matrix, thendey, ..., Ae, are likewise an orthonormal set of vectors.

An important issue for differential geometry is to identify the isometrie®Réf(although the same
argument will work in any dimension). Recall that @moemetryof R3 is a functionf: R3> — R3 so that for
anyx,y € R3, we have||f(x) — f(y)|| = ||x — y||. We now prove the

Theorem 1.2. Any isometryf of R3 can be written in the forrf(x) = Ax + ¢ for some orthogona x 3
matrix A and some vectar € R3.

Proof. Letf(0) = c, and replacd with the functionf — c. It too is an isometry (why?) and fixes the
origin. Then|[f(x)|| = |If(x) —f(0)|| = ||x — 0| = ||x||, so thatf preserves lengths of vectors. Using this
fact, we prove that(x) - f(y) = x - y for all x,y € R3. We have

If) =t = Ix=yl* = x—y) - (x—=y) = [X|* —2x-y + |lylI*;
on the other hand, in a similar fashion,

IF) =W = IFEIII* — 2f(x) - F(y) + IFW)IIZ = X[ = 2f00) - F(y) + lIylI.

114
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We conclude that(x) - f(y) = x -y, as desired.
We next prove that must be a linear function. L€k;, e, e;} be the standard orthonormal basis for
R3, and letf(ej) = v;, j = 1,2,3. It follows from what we've already proved thét,v,, v3} is also an

orthonormal basis. Given an arbitrary vectoe R3, write X = i x;g and f(x) = i y;Vj. Then it
follows from Proposition 1.1 that = =

yi=fX)-vi =x-6 = x;,
sof is in fact linear. The matrixd representing with respect to the standard basis has ag'itsolumn the
vectorv;. Therefore, by our earlier remarkd,is an orthogonal matrix, as requiredd

Indeed, recall that if": R” — R” is a linear map an®® = {vi,...,V;} is a basis foilR”, then the
matrix for T with respect to the basiB is the matrix whosg ™ column consists of the coefficients oiv;)
with respect to the basiB. That is, it is the matrix

n
A= [aij], where T(Vj) = Zaijvi.
i=1

Recall that if4 is ann x n matrix (or 7:R"” — R” is a linear map), a nonzero vectotis called an
eigenvectoif Ax = Ax (T'(x) = AXx, resp.) for some scalar, called the associatezigenvalue

Theorem 1.3. A symmetric2 x 2 matrix A = [Z b] (or symmetric linear maff: R> — R?) has
Cc
two real eigenvalues, and\,, and, provided.; # A,, the corresponding eigenvectors andv, are
orthogonal.
Proof. Consider the function

iR >R,  f(X) = AX-X = ax} + 2bx1xz + cx3.

By the maximum value theoreny has a minimum and a maximum subject to the constraipd) =
x% + x% = 1. Say these occur, respectivelyvatandv,. By the method of Lagrange multipliers, we infer
that there are scalafs so thatV f(v;) = A;Vg(v;), i = 1,2. By Exercise 5, this meansv; = A;v;, and
so the Lagrange multipliers are actually the associated eigenvalues. Now

A1(V1-V2) = AVy -Va =V - AV = A5(Vy - V2).
It follows that if A1 # A,, we must haver; - v, = 0, as desired. O

We recall that, in practice, we find the eigenvalues by solving for the roots ahmacteristic polyno-

mial p(t) = det(A — ¢1). In the case of a symmetritx 2 matrix A = [Z b}, we obtain the polynomial

C
p(t) =t? — (a + c)t + (ac — b?), whose roots are

A =%((a+c)—\/(a—c)2+4b2) and Azzé((a—i-c)—i-\/(a—c)2+4b2).
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EXERCISES A.1

#1.  Suppose{v;,Vv,} gives a basis foiR2. Given vectorsx,y € R2, prove thatx = vy if and only if
X-Vi =Yy-V;,i =1,2.

*2. The geometric-arithmetic mean inequality states that

Vab < a4 -; b for positive numbera andb,
with equality holding if and only it: = b. Give a one-line proof using the Cauchy-Schwarz inequality:
[u-v| < ullllv] for vectorsu andv € R”,
with equality holding if and only if one is a scalar multiple of the other.
3. Letw,x,y,z € R3. Prove that
WxX)-(yx2z)=(W-y)(Xx-2) —(W-2)(X-y).

(Hint: Both sides are linear in each of the four variables, so it suffices to check the result on basis
vectors.)

#4. Supposel(t) is a differentiable family o8 x 3 orthogonal matrices. Prove thd{r)~' A’(z) is always
skew-symmetric.

5. IfA= [Z b} is a symmetriQ x 2 matrix, setf(x) = Ax-x and check thaV f(x) = 24x.
c

2. Calculus Review

Recall that a functionf: U — R defined on an open subsgt C R” is ek (k =0,1,2,...,00) if
all its partial derivatives of ordex k exist and are continuous dn. We will use the notationa; and f,
interchangeably, and similarly with higher order derivativgsz.— = i(%) is the same ag,,, and so
on. vou v \ du

One of the extremely important results for differential geometry is the following

5 . *>f _ Pf
Theorem 2.1. If f is aC~ function, then—— = or fuy = fou):
Judv  dvou

The same results apply to vector-valued functions, working with component functions separately.
If /:U — Ris C! we can form itsgradientby taking the vectoiV f = (fxl,fm, .. -,fx,,) of its
partial derivatives. One of the most fundamental formulas in differential calculus chée rule

Theorem 2.2. Supposef :R" — R ande: R — R” are differentiable. Thef ca)'(t) = V f(ee(2)) -
o (1).

In particular, ife(0) = P anda/(0) = V € R”, then(feoa)’(0) = V f(P)-V. This is somewhat
surprising, as the rate of change ofalonge at P depends only on the tangent vector and on nothing more
subtle about the curve.
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Proposition 2.3. Dy f(P) = V f(P)-V. Thus, the directional derivative is a linear functiorMof

Proof. If we takea(t) = P + tV, then by definition of the directional derivativd)y f(P) =
(fea)(0) =V f(P)-V. O

Another important consequence of the chain rule, essential throughout differential geometry, is the following

Proposition 2.4. SupposeS C R” is a subset with the property that any pair of pointsSofan be
joined by a@! curve. Then &' function f:S — R with V f = 0 everywhere is a constant function.

Proof. Fix P € S and letQ € S be arbitrary. Choose @' curvea with «(0) = P anda(1) = Q.
Then(fea) (t) = V f(a(t)) -o’(t) = 0 for all t. It is a consequence of the Mean Value Theorem in
introductory calculus that a functiog: [0, 1] — R that is continuous o1f0, 1] and has zero derivative
throughout the interval must be a constant. Therefg&) = (fea)(1) = (foa)(0) = f(P). It follows
that / must be constant ofi. O

We will also have plenty of occasion to use the vector versions of the product rule:

Proposition 2.5. Supposé, g:R — R3 are differentiable. Then we have

f-9'@)=1f@)-900)+ft)-dt) and
(fxg) @) =1@)xg@) +fr) xd ().

Last, from vector integral calculus, we recall the analogue of the Fundamental Theorem of Calculus in
RZ:

Theorem 2.6(Green’s Theorem)Let R C R? be a region, and IeiR denote its boundary curve,
oriented counterclockwise (i.e., so that the region is to its “left”’). Supposand Q areC! functions

throughoutR. Then
P
/ P(u,v)du + Q(u,v)dv = // — — — ) dudv.
IR ou  Jv

d+

A

OR

FIGURE2.1

Proof. We give the proof here just for the case whétes a rectangle. Tak® = [a,b] x [c,d], as
shown in Figure 2.1. Now we merely calculate, using the Fundamental Theorem of Calculus appropriately:

[ 2w [ ([ o ([ )



118 APPENDIX. REVIEW OF LINEAR ALGEBRA AND CALCULUS

d b
=/ (Q(b,v)—Q(a,v))dv—/ (P(u,d)—P(u,c))du

=prw¢mu+LdQ@mmv—me%dwu—Ldeva

:/’Pmmmu+Qmeu
OR

as required. O

EXERCISES A.2

#1. Supposd: (a,b) — R" is @' and nowhere zero. Prove thif|f|| is constant if and only if' (r) =
A(t)f(z) for some continuous scalar functidn (Hint: Setg = f/||f|| and differentiate. Why must

g-9=07)
2. Supposex: (a,b) — R3 is twice-differentiable and. is a nowhere-zero twice differentiable scalar

function. Prove that, «’, anda” are everywhere linearly independent if and only.éf, (Ae)’, and
(Ae)”” are everywhere linearly independent.

3. Letf,g:R — R3 be@! vector functions with the property th&f0) andg(0) are linearly independent.
Suppose

f'(t) = a(O)f(t) + b()g(1)
g'(t) = cOf() —a(®)g)

for some continuous functions b, andc. Prove that the parallelogram spanned @y andg(z) lies in
a fixed plane and has constant area.

#+4.  Prove that for any continuous vector-valued functiofa, ] — R3, we have
b
/ f(¢)dt
a

#5. LetR c R2 be aregion. Prove that

1
ared R) :/ udv = —/ vdu = —/ —vdu + udv.
AR R 2 Jor

b
< / ().

3. Differential Equations

Theorem 3.1 (Fundamental Theorem of ODE'spupposey C R” is open andl C R is an open
interval containingd. Supposey € U. If f:U x I — R”" is continuous and Lipschitz ir (this means
that there is a constafit so that||f(x,t) —f(y,?)|| < C|x—y]| forallx,y € U and allt € 1), then the
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differential equation

dx
I =f(x,1), x(0) = Xg

has a unique solution = X(t, Xq) defined for allt in some interval’ C I. Moreover, Iff is Gk, thenx is
¥ as a function oboth: and the initial conditiory (defined fort in some interval andy in some open
set).

Of special interest to us will be linear differential equations.

Theorem 3.2. Supposed(t) is a continuous x n matrix function on an interval. Then the differential

equation

dx

— = A@)X(), Xo = Xog,
= AOX0). X0 =%
has a unique solution on the entire original interkal

For proofs of these, and related, theorems in differential equations, we refer the reader to any standard
differential equations text (e.g., Hirsch-Smale or Birkhoff-Rota).

Theorem 3.3. Letk > 1. Given twoC¥ vector fieldsX andY that are linearly independent on a
neighborhood/ of 0 € R?, locally we can choos€* coordinatesu,v) onU’ C U so thatX is tangent to
theu-curves (i.e., the curvas = cons) andY is tangent to the-curves (i.e., the curvas = cons}.

Proof. We make a linear change of coordinates soX@ andY (0) are the unit standard basis vectors.
Let x(z, Xo) be the solution of the differential equatiatx/dt = X, x(0) = X, given by Theorem 3.1. On
a neighborhood o®, each poinfx, y) can be written as

(x.y) = X(z.(0,v))

for some unique andv, as illustrated in Figure 3.1. If we define the functiffn, v) = x(z, (0,v)) =

coordinates (u,v)

x(t,(0,v))

X0  [wo

FIGURE3.1

(x(t,v), y(t,v)), we note that; = X(f(¢, v)) andf,(0,0) = (0, 1), so the derivative matrix>f(0, 0) is the
identity matrix. It follows from the Inverse Function Theorem that (locally) we can solvé fo) as ack
function of (x, y). Note that the level curves ofhave tangent vectof, as desired.

Now we repeat this procedure with the vector fi¥d Let y(s, yo) be the solution of the differential
equationdy/ds =Y and write

(x.y) = y(s. (u,0))
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for some unique andu. We similarly obtain(s, u) locally as aC* function of (x, y). We claim that(u, v)

give the desired coordinates. We only need to check that on a suitable neighborhood of the origin they
are independent; but from our earlier discussion we have- 0, v, = 1 at the origin, and, analogously,

ux = 1 andu, = 0, as well. Thus, the derivative matrix ¢f, v) is the identity at the origin and the
functions therefore give a local parametrizatioril

EXERCISES A.3

1. SupposeM(s) is a differentiable3 x 3 matrix function ofs, K(s) is a skew-symmetri@ x 3 matrix
function ofs, and
M'(s) = M(s)K(s), M(0)=O0.
Show thatM (s) = O for all s by showing that the trace ¢/ ™M)’ (s) is identically0.

2. (Gronwall inequalityand consequences)
a. Suppose':[a,b] — Ris differentiable, nonnegative, anfia) = ¢ > 0. Suppose: [a,b] — R
is continuous and’(¢) < g(¢) f(¢) for all t. Prove that

t
f(@® §cexp(/ g(u)du) forall ¢.

b. Conclude that iff'(a) = 0, then f(z) = 0 for all ¢.

c. Suppose now:[a,b] — R” is a differentiable vector function, and(¢) is a continuous: x n
matrix function forz € [a,b), andV'(z) = M(t)v(t). Apply the result of part b to conclude that if
v(a) = 0, thenv(z) = Ofor all . Deduce uniqueness of solutionsliteear first order differential
equations for vector functions. (Hint: Let(r) = ||v(¢)||?> andg(r) = 2n max{|m;; (¢)|}.)

d. Use part ¢ to deduce uniqueness of solutions to linBasrder differential equations. (Hint: Intro-
duce new variables corresponding to higher derivatives.)



§3. DIFFERENTIAL EQUATIONS 121

for some unique andu. We similarly obtain(s, u) locally as aC* function of (x, y). We claim that(u, v)

give the desired coordinates. We only need to check that on a suitable neighborhood of the origin they
are independent; but from our earlier discussion we have- 0, v, = 1 at the origin, and, analogously,

ux = 1 andu, = 0, as well. Thus, the derivative matrix ¢f, v) is the identity at the origin and the
functions therefore give a local parametrizatioril

EXERCISES A.3

1. SupposeM(s) is a differentiable3 x 3 matrix function ofs, K(s) is a skew-symmetri@ x 3 matrix
function ofs, and
M'(s) = M(s)K(s), M(0)=O0.
Show thatM (s) = O for all s by showing that the trace ¢/ ™M)’ (s) is identically0.

2. (Gronwall inequalityand consequences)
a. Suppose':[a,b] — Ris differentiable, nonnegative, anfia) = ¢ > 0. Suppose: [a,b] — R
is continuous and’(¢) < g(¢) f(¢) for all t. Prove that

t
f(@® §cexp(/ g(u)du) forall ¢.

b. Conclude that iff'(a) = 0, then f(z) = 0 for all ¢.

c. Suppose now:[a,b] — R” is a differentiable vector function, and(¢) is a continuous: x n
matrix function forz € [a,b), andV'(z) = M(t)v(t). Apply the result of part b to conclude that if
v(a) = 0, thenv(z) = Ofor all . Deduce uniqueness of solutionsliteear first order differential
equations for vector functions. (Hint: Let(r) = ||v(¢)||?> andg(r) = 2n max{|m;; (¢)|}.)

d. Use part ¢ to deduce uniqueness of solutions to linBasrder differential equations. (Hint: Intro-
duce new variables corresponding to higher derivatives.)



111
114

116
121
123

125
126

129

1211

1.2.25

ANSWERS TO SELECTED EXERCISES

@) = ({30 13).

We parametrize the curve by(r) = (¢, f(t)), a < t < b, and so lengttw) =
e @)llde = [ YT+ (F/ ) dt.

B(s) = (3(VsZ+4+5), (Vo2 + 4 —5), V2In((VsZ + 4 +5)/2)).

1
Ck=———
2/24/1—52

aT= %(m,—\/l—s,ﬁ).lc = ﬁv'\l = 1/vV2(VT=5,V/1435,0), B =

1 J1 — = 1 . - 1 / 2 N

5(=v1+5, 41 s’ﬁ)’T_zﬁm’c'T_ﬁ 1+t2([’ 14+12,1),k =1 =
2 1 1 2

1/2(1 +¢t%),N = 1+t2(1,0, t),B= 7 1+t2( t,v1+1t%,-1)

k = 1/sinht (which we see, once again, is the absolute value of the slope).

B =(TxNY=TxXN+TxN =&N)xN+Tx (—«T + tB) = (T xB) = 7(—N),
as required.

b. If all the osculating planes pass through the origin, then there are scalar functens

u so that0 = « + AT + uN. Differentiating and using the Frenet formulas, we obtain
0=T+ kAN + AT + u(—«T + tB) + &'N; collecting terms, we have@ = (1 + 1’ —
k)T + (kA + w')N + prB. Since{T,N, B} is a basis foiR?, we infer, in particular, that
ut = 0. (We could also just have taken the dot product of the entire expressiorBwith
u(s) = 0 leads to a contradiction, so we must have: 0 and so the curve is planar.

We havex’ x a” = kv3B, soa’ xa” = (o' xa”") = (kv3B)’ = (kv3)'B + (kv3)(—tUN),
so (o' x a’”) - a” = —k?tvb. Therefore,r = o - (¢” x &)/ (k*v®), and inserting the
formula of Proposition 2.2 gives the result.

a. Consider the unit norma; ; to the plane througl? = 0, Q0 = «(s), andR = «(?).
Choosing coordinates so that0) = (1,0,0), N(0) = (0, 1,0), andB(0) = (0,0, 1), we

apply Proposition 2.6 to obtain
als) Xa(t) =
st(s —1t)

(—K3Tost + ..., 2k0To(s + 1) + ..., —6ko + 2k(s +1) —kgst +...) ,
a(s) xal(t)
- -
llee(s) x ()]
normalA is the osculating plane.

S0A,; = A = (0,0,—1) ass,t — 0. Thus, the plane througk with

121
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1.2.25 a. cont. Alternatively, let the equation of the plane through Q, andR beA;; -x = 0
(where we chooséd; ; to vary continuously with length). We want to determiné\ =
limg ;-0 A ;. For fixeds andz, consider the functio ; (1) = A;; -a(u). ThenFs(0) =
Fs:(s) = Fs+(t) = 0, so, by the mean value theorem, thereigrandé, so thath/’,(gl) =
F},(&2) = 0, hencen so thatF},(n) = 0. Now FJ,(0) = Ay, - T(0) and F},(0) =
A - koN(0). Since§¢; — 0 andn — 0 ass,t — 0, we obtainA - T(0) = A - N(0) = 0, so
A = +B(0), as desired.

134 Let L = length(C). Then by Theorem 3.5 we hager = fOLK(s) ds < fOL cds = cL, S0
L >2n/c.

2.1.3 aE=a*F=0G=da?sirfu;d. E=G =da*cosifu, F=0
214 a. 472ab

215 Say all the normal lines pass through the origin. Then there is a funttgmthatx = An.
Differentiating, we havex, = An, + A,n andx, = An, + Ayn. Dotting with n, we
get0 = A, = A,. Therefore is a constant and sfx|| = const. Alternatively, from the
statemenk = Anwe proceed as follows. Sincex,, = n-x, = 0, we havex-x,, = X-X, = 0.
Therefore,(x - X),, = (X-X), = 0, S0||x||? is constant.

2.1.7 Forx to be conformal, we must haveé = G andF = 0; for it to preserve area we must have
1=+VEG-F2,s0E =G = 1andF = 0, which characterizes a local isometry with the
plane. The converse is immediate.

2.1.8 We check thatz = G = 4/(1 + u? + v?)? and F = 0, so the result follows from Exercise
6.

2111 b. One of these isx(u, v) = (cosu + v sinu, sinu — v cosu, v).
2.1.16 a. If acosh(1/a) = R, the area iQw (a + RV R? —a?).

221 If u- andv-curves are lines of curvature, théh = 0 (because principal directions are or-
thogonal away from umbilic points) and = Sp(Xy) - Xy = k1Xy - X, = 0. Moreover, if
Sp(Xy) = k1x, andSp (Xy) = k2Xy, we dot withx,, andx,, respectively, to obtaid = Ek;
andn = Gk,. Conversely, settingp (X,,) = ax, + bXy, we infer that if F = m = 0, then
0=Sp(Xy) Xy = Fa + Gb = Gb, and sb = 0. Thereforex, (and, similarly,x,) is an
eigenvector ofSp.

1
223 b. £ = b,m = 0, n = cosu(a + bcosu), Sp = /b 0 ,
0 cosu/(a + bcosu)
11 .
H = §(F+a—:lcj)sc?)su)’K = %’ d { = —a,m = 0,n = a, Sp =
—(1 i 0
(1/a)secttu VH =0,K =—(1/a)?sectf u.
0 (1/a) sech u
225 We know from Example 1 of Chapter 1, Section 2 that the principal normal of the helix points

along the ruling and is therefore orthogonalntoAs we move along a ruling) twists in a
plane orthogonal to the ruling, so its directional derivative in the direction of the ruling is
orthogonal to the ruling.
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2.2.6
232
244

24.9

2.4.18

24.24
311
312
321
3211
334

338

342

349
Al1l

A.l2
A.24

E =tantfu, F =0,G = seclf u, —¢ = sechutanhu = n,m = 0
d. T, =T = f'(w)/fu), T = —f(u) f'(u), all others0.

kg = Cotup; we can also deduce this from Figure 3.1, as the curvature ve®toe=
(1/ sinug)N has tangential component(1/ sinug) coSugX, = Cotug(n x T).

Only circles. By Exercise 2 such a curve will also have constant curvature, and by Meusnier’s
Formula, Proposition 2.5, the angfebetweenN andn = « is constant. Differentiating

a - N = cos¢ = const yieldsr(« - B) = 0. Eithert = 0, in which case the curve is planar,

or elsea - B = 0, in which casex = =N, sot =N -B = +a’-B = £T -B = 0. (In the

latter case, the curve is a great circle.)

a. Obviously, the meridians are geodesics and the central cireler is the only parallel

that is a geodesic. Observe that if we have some other geodesie,¢hsfh = ¢ andc < ryp.

The geodesic withr cos¢p = ¢ will cross the central circle and then either approach one of
the parallels = ¢ asymptotically or hit one of the parallets= ¢ tangentially and bounce

back and forth between those two parallels. In either event, such a geodesic is bounded. (In
fact, if a geodesic approaches a parallel asymptotically, that pamaitloe a geodesic; see
Exercise 27.)

The geodesics are of the form cdsh+ (v + ¢1)? = c% for constants:; andc,.

a. 2w sinuo

a. yes, yesh. yes, yesc. yes, no.

b. The semicircle centered &2, 0) of radius+/5; d(P, Q) = In ((3 + v/5)/2) ~ 0.962.
kg = COthR

We havex, = ll(e1,e1) = —des(e)-e; = wiz(€r). Sincees = sind€, + cosHEs, the cal-
culations of Exercise 3 show thaf; = sinfw;, +cosfw13, SOw3(€;) = Sinfwiz(€) =
k sind. Hered is the angle betweess andes, so this agrees with our previous result.

We havew; = bdu andw, = (a + bcosu)dv, SOwip, = —Sinudv anddwi, =

cosu du A d cosu cosu
- udadu vV=—|—"7--—"7"— S —
b(a + b cosu) b(a + b cosu)

a. Takingé = f gives usfo1 f(t)?dt = 0. Sincef(t)> > 0forall ¢, if f(t9) # 0, we have
an interval[to — 8, to + 8] on which £(¢)?> > f(t9)?/2, and sofo1 f()2dt > f(tg)?*s > 0.

)601 A wy, SOK =

y = 1 cosh2x)

Considerz = x —y. Then we know that-v; = 0,i = 1,2. Since{vy,V,} is a basis
for R2, there are scalars andb so thatz = av; + bv,. Thenz-z = z- (avy + bvy) =
a(z-vi) +b(z-v,) = 0,s0z = 0, as desired.

Hint: Takeu = (a, v/b) andv = (v/b, Ja).

Letv = fab f(t) dt. Note that the result is obvious\f= 0. We have||v|? = v-fab f(t)dt =
[Py f@yde < [PIVIF@) I de = VIl 2 [f@)]l dt (using the Cauchy-Schwarz inequality
u-v < |ull[|v]), so, ifv # 0, we have||v|| < ff If(r)| dt, as needed.
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asymptotic curve, 48, 51, 55
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Backlund, 106
Bertrand mates, 21
binormal vector, 11
Bishop frame, 33

ek 1, 35,116
catenary, 5
catenoid, 43, 66
Cauchy-Schwarz inequality, 116
chain rule, 116
characteristic polynomial, 115
Christoffel symbols, 57
Clairaut’s relation, 73, 77, 78
Codazzi equations, 59, 63, 104
compact, 61
cone angle, 90
conformal, 40
connection form, 104
convex, 28
covariant constant, 67
covariant derivative, 67
Crofton’s formula, 25, 33
cross ratio, 99
cubic

cuspidal, 2

nodal, 2

twisted, 3
curvature, 11
curve, simple closed, 26
cycloid, 3
cylindrical projection, 42

Darboux frame, 70, 103, 105
developablesee ruled surface, developable
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directrix, 38
Dupin indicatrix, 56

eigenvalue, 115
eigenvector, 115
elliptic point, 50

Euler characteristic, 85
exterior angle, 33, 83

first fundamental form, 39

flat, 49, 60, 61, 65, 77, 84, 90, 104
Foucault pendulum, 69

Frenet formulas, 11

Frenet frame, 11

functional, 108

Gauss equation, 60, 63, 104
Gauss map, 24, 44
Gauss-Bonnet formula, 83, 86, 96, 105
Gauss-Bonnet Theorem, 95
global, 86
local, 83
Gaussian curvature, 49, 51, 53, 57, 60, 82, 104
constant, 62, 92
generalized helix, 15
geodesic, 70
geodesic curvature, 71
globally isometric, 75
gradient, 116
Green’s Theorem, 82, 117
Gronwall inequality, 120

h, 93

H, 49

helicoid, 36, 48, 65, 66

helix, 3

holonomy, 79, 82

hyperbolic plane, 91
Klein-Beltrami model, 101
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Poincaré model, 100
hyperbolic point, 50

inversion, 99
involute, 19
isometry, 114

K, 49
k-point contact, 56
knot, 26

Laplacian, 64
line of curvature, 47

linear fractional transformation, 94

locally isometric, 39

mean curvature, 49
meridian, 38, 52
metric, 74

Meusnier’s Formula, 51

minimal surface, 49, 64, 65, 110

moving frame, 101

normal curvature, 51
normal field, 32
normal plane, 17

oriented, 84
orthogonal, 114
orthonormal, 114
osculating circle, 22
osculating plane, 17, 22
osculating sphere, 22

pacman, 42, 75, 90
parabolic point, 50
parallel, 38, 52, 67, 75, 95
parallel translate, 68
parametrization

regular, 1, 35
parametrized by arclength, 7
parametrized curve, 1
pedal property, 112
planar point, 50
Poincaré disk, 100
positively oriented, 114
principal curvature, 47

constant, 65, 66
principal direction, 47, 54

principal normal vector, 11
profile curve, 38
pseudosphere, 51

rectifying plane, 17

reflection, 98

regular, 1

regular parametrization, 35

rotation index, 27

ruled surface, 38
developable, 61, 65, 77

ruling, 38

second fundamental form, 46, 53

shape operator, 45, 53
smooth, 1, 35

spherical coordinates, 37
stereographic projection, 37
support line, 32

surface, 35

surface area, 41

surface of revolution, 37
symmetric, 45

tangent indicatrix, 24
tangent plane, 38
Theorema Egregium, 60, 104
torsion, 11

torus, 36

total curvature, 24, 88

total twist, 32

tractrix, 5, 13

triply orthogonal system, 55
Tschebyschev net, 43
twist, 32

u-, v-curves, 35
ultraparallels, 95
umbilic, 50

unit normal, 39

unit tangent vector, 11

variation, 108
vector field, 67
velocity, 1
vertex, 29

zone, 41
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