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Introduction

Welcome! I hope all students and teachers find this book useful and enjoyable in your journey in Extension

2 Maths. This textbook and the matching ‘1000 Revision Questions’ were first releases for the 2020 HSC,

and will be continually changed and updated over time - the two digital books work best together. For free

downloads of the latest versions please visit howardmathematics.com.

This textbook for the new syllabus evolved from the textbook I wrote for the old syllabus which itself

evolved over a few years from recorded lessons I was making for my classes for the old syllabus, and

sharing with a few others around the state. I was originally using some of the commercially published

textbooks for the old course, plus one with restricted availability, and found they weren’t meeting the needs

of my students or myself. This textbook is the end result of that. It is mainly a passion project, but indirectly

earns me a bit of pocket money through school copyright licencing and increasing traffic to my commercial

online professional development courses for teachers through TTA.

Some of the features of this textbook that students and teachers may find useful:

• The questions are in the style of past HSC questions where possible, so students are learning the right

type of questions throughout the course.

• The questions are graded in difficulty so students can work at their own level.

• Each exercise starts with Basic questions that match the examples, so students can ease themselves

into the new concepts if they need to. More confident students can skip these first questions and start

with Medium.

• All questions have fully worked solutions.

• There are lots of diagrams that help understand concepts that would normally only be dealt with

algebraically.

• There are many hints and tips on how to more easily answer questions, and to see the way past tricks in

exam questions.

• Some of the chapters have appendices, where extra content that may sometimes be useful is available.

This content is not necessary to succeed in the course, but can help high ability students eliminate

mistakes in exams or is sometimes just plain interesting!

The textbook is paired with ‘1000 Revision Questions in Mathematics Extension 2’. The first 500 questions

are arranged topic by topic matching the chapters from the textbook to help students study and revise,

while the last 500 questions are from mixed topics to help students prepare for their Trials and the HSC.

The course is currently set out in 42 lessons. The aim is for you to be able to finish the course as soon as

possible so that you can have months of revision before the HSC to master the content.

If you find any mistakes, or have any ideas that would make either the textbook or the revision questions

better, please contact me via email below.

Cheers

Steve Howard
steve@howardmathematics.com

Thanks to the following teachers and students for letting me know errors or improvements:

Gavin S, Matthew D, Drew S, Brailey S, Charlene C and Ian B

And to my current or past students who have earned lots of Mars Bars by picking up errors:

Alan, Brendan, Kurt, Andrew, Sam, Xavier, Luke, El and Sean
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HSC Mathematics Extension 2

Chapter 1

The Nature of Proof

MEX-P1: The Nature of Proof

All topics in Extension 2 rely on your ability to construct logically sound and convincing proofs,

so it is a fitting topic with which we begin this textbook. In the Nature of Proof we will focus on

the logic of proofs, and use alternative ways to prove arguments where direct proof or

mathematical induction are not appropriate.

The topic tests our ability to use mathematical language and plain language to reason and

communicate, promoting clear, simple and logical thought processes.

Lessons

The Nature of Proof is covered in 6 lessons.

1.1 The Language of Proof and Simple Proofs

1.2 Proof by Contrapositive

1.3 Proof by Contradiction

1.4 Equivalence and Disproofs

1.5 Inequality Proofs

1.6 Arithmetic Mean - Geometric Mean Inequality

Revision Questions

In ‘1000 Revision Questions’, the revision book that goes with this textbook you will find the 

following questions matching this chapter:

• Revision Exercise 1 

60 graded questions on this topic only

• Revision Exercises 7 (Basic), 8 (Medium) and 9 (Challenging)

Another 60 questions mixed through other topics for when you finish the course.

Don’t forget to do any questions from the exercises in this textbook you haven’t done.
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In Lesson 1 we look at the language of proof and simple proofs, covering:

• How should we use the Language of Proof?

• Statements

• Implication

• Quantifiers

• Other Terminology

• Symbols and Set Notation

• Simple Proofs Involving Numbers

HOW SHOULD WE USE THE LANGUAGE OF PROOF?

You should make sure that you know what the symbols that we cover in this lesson mean, but

use them sparingly in your own proofs. It may be tempting to cram as many of the symbols at

any possible point in a proof, yet if we look at the solutions to the NESA sample questions and

many university level references to proofs for first year students they use no symbols

whatsoever, instead using whole words and sentences!

Using the symbols can save you time, but they make your proof harder to read and thus less

convincing for your reader. Use them sparingly! Never forget that a good proof needs to

convince the reader of the truth of the argument, and preferably explain to them why it is true.

STATEMENTS

A statement is an assertion that can be true or false but not both. Some examples are:

• 6 is an even number (which is a true statement)

• 6 is an odd number (which is a false statement)

• The square of a number is even (which is a false statement since it is not true for all 

numbers).

• 6 is an even number and 3 is an odd number (which is true since both parts are true).

• 6 is an even number and 4 is an odd number (which is false since one or more parts are 

false).

• 6 is an even number or 4 is an odd number (which is true since one or more parts is true).

• 6 is an odd number or 4 is an odd number (which is false since neither part is true).

We often use the letters 𝑃, 𝑄, 𝑅 or 𝑆 as shorthand to represent a statement. If there is a variable 

used in the statement then we often add it in brackets or as a subscript, such as

𝑃(𝑛): The sum of the first 𝑛 positive integers is 
𝑛 𝑛+1

2
.

If there is a number used for the variable in the question we often use it, such as

𝑃(10): The sum of the first 10 positive integers is 
10×11

2

1.1  LANGUAGE OF PROOF AND SIMPLE PROOFS
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IMPLICATION

To say that 𝑃 implies 𝑄 means that if 𝑃 is true then 𝑄 must be true. It is an if-then statement. 

We are not saying that 𝑄 is true, just promising that if 𝑃 is true then 𝑄 must be true.

We can see how implication looks like using an Euler Diagram at left:

If you are in the 𝑃 ellipse then you must be in the 𝑄 ellipse as well, so 𝑃 ⇒ 𝑄 (if 𝑃 is true then 𝑄

must be true). 

We can also write 𝑃 ⇐ 𝑄 if 𝑄 implies 𝑃 (𝑃 is implied by 𝑄) if the relationship is reversed, as seen 

at right.

𝑃

𝑄

𝑄

𝑃

𝑃

𝑄
even

positive integers

Example 1

Consider the statements:

𝑃: 𝑛 is a positive integer.          

𝑄: 𝑛 is an even number greater than 0

Which of the following is true? There is more than one correct answer.

a 𝑃 ⇒ 𝑄 b 𝑃 ⇐ 𝑄 c 𝑄 ⇒ 𝑃 d 𝑃 implies 𝑄 e 𝑃 is implied by 𝑄

Solution

Consider the Euler diagram at right, where every even

number is also an integer.

a False Since if a number is an integer it might not be even

b True Since all even numbers are integers

c True Since a number must be an integer if it is even

d False Since if a number is an integer it might not be even

e True Since a number must be an integer if it is even
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QUANTIFIERS

For all ∀

Some statements are true or false for all values of a variable, and we can abbreviate this with 

the symbol ∀, an upside down A.

For example, ‘∀ real numbers 𝑥, 𝑥2 ≥ 0’ means that the square of any real number must be non-

negative.

There exists ∃

The term ‘there exists’ indicates that there is at least one number for which the statement is true.

We represent the words with a back to front E.

For example ‘∃𝑥 for which 𝑥2 is odd’ is saying there is at least one value of 𝑥 for which 𝑥2 is 

odd.

Example 2

If 𝑚 is an integer, add the most relevant quantifier to the start of the statement to make it true as

often as possible.

a 𝑚, 𝑚2 ≥ 0 b 𝑚, 𝑚 = 0 c 𝑚,
𝑚

2
is integral d 𝑚, −1 ≤ sin 𝑚 ≤ 1

Solution

a ∀ Since the square of all integers are non-negative

b ∃ Since only one integer is equal to zero

c ∃ Since only the even integers are divisible by 2

d ∀ Since the sine ratio is always from -1 to 1
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SIMPLE PROOFS INVOLVING NUMBERS

We can prove some simple results using direct proofs, rather than mathematical induction. Many

of these results could also be proved by induction, but the direct proofs we will use here are

simpler.

Example 3

If 𝑚 is odd and 𝑛 is even, prove 𝑚𝑛 is even.

Solution

Let 𝑚 = 2𝑘 + 1 and 𝑛 = 2𝑗 for integral 𝑗, 𝑘
𝑚𝑛 = 2𝑘 + 1 × 2𝑗

= 2 2𝑗𝑘 + 𝑗
= 2𝑝 where 𝑝 is integral since j and k are integral

∴ 𝑚𝑛 is even □

Example 4

If 𝑚 is a multiple of 3, prove 𝑚2 is a multiple of 9.

Solution

Let 𝑚 = 3𝑘 where 𝑘 is integral

∴ 𝑚2 = 3𝑘 2

= 9𝑘2

= 9𝑗 where 𝑗 is integral since k is integral

∴ 𝑚2 is a multiple of 9 □

Example 5

Prove that the sum of any two consecutive numbers is always odd.

Solution

Let the consecutive numbers be 𝑘 and 𝑘 + 1 for integral 𝑘

𝑆 = 𝑘 + 𝑘 + 1

= 2𝑘 + 1 which is odd □
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EXERCISE 1.1

BASIC

1 Consider the statements:

𝑃: 𝑛 is a multiple of 9. 𝑄: 𝑛 is a multiple of 3.

Which of the following is true? There is more than one correct answer.

a) 𝑃 ⇒ 𝑄 b) 𝑃 ⇐ 𝑄 c) 𝑄 ⇒ 𝑃 d) 𝑃 implies 𝑄

2 If 𝑚 is a positive integer, add the most relevant quantifier to the start of the statement to

make it true as often as possible.

a) 𝑚, 2𝑚 is even b) 𝑚, 𝑚2 = 4

c) 𝑚, 𝑚2 ≤ 2 d) 𝑚, 1 + cos 𝑚 ≥ 0

3 If 𝑚 is odd and 𝑛 is odd, prove 

a 𝑚𝑛 is odd

b 𝑚 + 𝑛 is even

4 If 𝑚 is a multiple of 4, prove 𝑚2 is a multiple of 16

5 Prove that the sum of any two consecutive numbers equals the difference of their 

squares.

6 If 𝑚 is even, prove 𝑚2 is even.

7 Prove that the product of any three consecutive numbers is even.

8 Prove that the sum of any four consecutive numbers is even.

MEDIUM

9 Given 𝑎𝑘 − 𝑏𝑘 = 𝑎 − 𝑏 𝑎𝑘−1 + 𝑎𝑘−2𝑏 + 𝑎𝑘−3𝑏2. . . +𝑏𝑘−1 prove

a
3𝑘

2
always has a remainder of 1.

b 32𝑛 − 1 is divisible by 4 

10 If 𝑎 + 𝑏 = 2 prove 𝑎2 + 2𝑏 = 𝑏2 + 2𝑎

11 Prove the expression 𝑎3 − 𝑎 + 1 is odd for all positive integer values of 𝑎.

12 Prove 𝑛2 − 1 is divisible by 3 if 𝑛 is not a multiple of 3.
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CHALLENGING

13 Prove 2𝑚 − 1 2 − 1 is divisible by 2𝑚+1

14 a Given 𝑎 is integral and not divisible by 5, prove the remainder when 𝑎2 is divided by 5 is 

either 1 or 4

b Hence given that a, 𝑏 are integral and not divisible by 5, prove that 𝑎4 − 𝑏4 is divisible by 

5.

15 Prove (𝑘3 − 𝑘)(2𝑘2 + 5𝑘 − 3) is divisible by 5 without using induction.

16 A triangular number is in the form 𝑇 =
𝑘 𝑘+1

2
. Prove the square of any odd positive integer

greater than 1 is of the form 8𝑇 + 1 where 𝑇 is a triangular number.

17 Prove that an irrational number raised to the power of an irrational number can be rational,

by considering 2
2
.

SOLUTIONS - EXERCISE 1.1

1 Consider the Euler diagram at right, where every

multiple of 9 is also a multiple of 3.

a True Since if a number is a multiple of 9 it must

also be a multiple of 3

b False Since a number is not necessarily a multiple of 9 if it is a multiple of 3

c False Since if a number is a multiple of 3 it is not necessarily a multiple of 9

d True Since if a number is a multiple of 9 it must also be a multiple of 3

2 a ∀ Since twice any integer is even

b ∃ Since only two integers (±2) when squared give 4

c ∃ Since only 0, ±1 when squared give an answer less than or equal to 2

d ∀ Since the cosine ratio is always from -1 to 1

𝑄

𝑃

multiples of 3

multiples of 9
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3 a Let 𝑚 = 2𝑗 + 1 and 𝑛 = 2𝑘 + 1 for integral 𝑗, 𝑘

𝑚𝑛 = 2𝑗 + 1 × (2𝑘 + 1)

= 4𝑗𝑘 + 2𝑗 + 2𝑘 + 1

= 2 2𝑗𝑘 + 𝑗 + 𝑘 + 1

= 2𝑝 + 1 where 𝑝 is integral since j and k are integral

∴ 𝑚𝑛 is odd □

b Let 𝑚 = 2𝑗 + 1 and 𝑛 = 2𝑘 + 1 for integral 𝑗, 𝑘

𝑚𝑛 = 2𝑗 + 1 + (2𝑘 + 1)

= 2𝑗 + 2𝑘 + 12

= 2 𝑗 + 𝑘 + 1

= 2𝑝 where 𝑝 is integral since j and k are integral

∴ 𝑚 + 𝑛 is even □

4 Let 𝑚 = 4𝑘 where 𝑘 is integral

∴ 𝑚2 = 4𝑘 2

= 16𝑘2

= 16𝑗 where 𝑗 is integral since k is integral

∴ 𝑚2 is a multiple of 16 □

5 Let the consecutive numbers be 𝑘 and 𝑘 + 1 for integral 𝑘

𝑘 + 1 2 − 𝑘2

= 𝑘2 + 2𝑘 + 1 − 𝑘2

= 2𝑘 + 1

= 𝑘 + 𝑘 + 1 □

6 Let 𝑚 = 2𝑘 for integral 𝑘

∴ 𝑚2 = 2𝑘 2

= 4𝑘2

= 2 2𝑘2

= 2𝑝 where 𝑝 is integral since k is integral

∴ If m is even then 𝑚2 is even □
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7 Let the consecutive numbers be 𝑘 − 1, 𝑘 and 𝑘 + 1 for integral 𝑘
𝑃 = 𝑘 𝑘 − 1 𝑘 + 1 = 𝑘3 − 𝑘

Case 1 - 𝑘 is even

Let 𝑘 = 2𝑚 for integral 𝑚
∴ 𝑃 = 2𝑚 3 − 2𝑚

= 2 4𝑚3 − 𝑚
= 2𝑗 for integral 𝑗 since 𝑚 is integral

∴ true if 𝑘 is even

Case 2 - 𝑘 is odd

Let 𝑘 = 2𝑚 + 1 for integral 𝑚
∴ 𝑃 = 2𝑚 + 1 3 − (2𝑚 + 1)

= 8𝑚3 + 12𝑚2 + 6𝑚 + 1 − 2𝑚 − 1
= 2 4𝑚3 + 6𝑚2 + 2𝑚
= 2𝑗 for integral 𝑗 since 𝑚 is integral

∴ true if 𝑘 is odd

∴ The product of any three consecutive numbers is even □

8 Let the consecutive numbers be 𝑘, 𝑘 + 1, 𝑘 + 2 and 𝑘 + 3 for integral 𝑘

𝑆 = 𝑘 + 𝑘 + 1 + 𝑘 + 2 + 𝑘 + 3

= 4𝑘 + 6

= 2 2𝑘 + 3

= 2𝑝 for integral 𝑝 since 𝑘 is integral

∴ The sum of any four consecutive numbers is always even. □

9 a 3𝑘 = 3𝑘 − 1𝑘 + 1

= 3 − 1 3𝑘−1 + 3𝑘−2 × 1 + 3𝑘−3 × 12. . . +1𝑘−1 + 1

= 2 3𝑘−1 + 3𝑘−2 × 1 + 3𝑘−3 × 12. . . +1𝑘−1 + 1

= 2𝑝 + 1 for integral 𝑝 since 𝑘 is integral

∴
3𝑘

2
always has remainder 1 □

b 32𝑛 − 1 = 3𝑛 − 1 3𝑛 + 1

= 3 − 1 3𝑛−1 + 3𝑛−2+. . . +30 3𝑛 + 1

= 2 3𝑛−1 + 3𝑛−2+. . . +30 2𝑘 for integral k since 5𝑛 is odd 5𝑛 + 1 is even

= 4𝑘 5𝑛−1 + 5𝑛−2+. . . +50

= 4𝑗 where 𝑗 is integral since 𝑘, 𝑛 are integral

∴ 32𝑛 − 1 is divisible by 4 □
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10 LHS − RHS = 𝑎2 − 𝑏2 + 2𝑏 − 2𝑎
= 𝑎 + 𝑏 𝑎 − 𝑏 − 2 𝑎 − 𝑏
= 𝑎 − 𝑏 𝑎 + 𝑏 − 2
= 𝑎 − 𝑏 0 since 𝑎 + 𝑏 = 2
= 0

∴ 𝑎2 − 𝑏2 + 2𝑏 − 2𝑎 = 0
∴ 𝑎2 + 2𝑏 = 𝑏2 + 2𝑎 □

11 𝑎3 − 𝑎 + 1

= 𝑎 𝑎2 − 1 + 1

= 𝑎 𝑎 + 1 𝑎 − 1 + 1

= 2𝑘 + 1 where 𝑘 is integral, since either 𝑎 or 𝑎 + 1 must be even.

∴ 𝑎3 − 𝑎 + 1 is odd for all positive integer values of 𝑎. □

12 Let 𝑛 = 3𝑘 ± 1
𝑛2 − 1 = 3𝑘 ± 1 2 − 1

= 9𝑘2 ± 6𝑘 + 1 − 1
= 9𝑘2 ± 6𝑘
= 3𝑘 3𝑘 ± 2
= 3𝑝 for integral 𝑝 since 𝑘 is integral

∴ 𝑛2 − 1 is divisible by 3 if 𝑛 is not a multiple of 3 □

13 2𝑚 − 1 2 − 1 = 2𝑚 − 1 + 1 2𝑚 − 1 − 1
= 2𝑚 2𝑚 − 2
= 2𝑚 ∙ 2 2𝑚−1 − 1
= 2𝑚+1 2𝑚−1 − 1

∴ 2𝑚 − 1 2 − 1 is divisible by 2𝑚+1 □

14 a Let 𝑎 = 5𝑘 + 𝑚, where 𝑚 = 1, 2, 3 or 4 and 𝑘 is integral

𝑎2 = 5𝑘 + 𝑚 2

= 25𝑘2 + 20𝑘𝑚 + 𝑚2

= 5 5𝑘2 + 4𝑘𝑚 + 𝑚2

Now 𝑚2 = 1, 4, 9 or 16
∴ 𝑎2 = 5 5𝑘2 + 4𝑘𝑚 + 1, 5 5𝑘2 + 4𝑘𝑚 + 4, 5 5𝑘2 + 4𝑘𝑚 + 1 + 4 or

5 5𝑘2 + 4𝑘𝑚 + 3 + 1
∴ 𝑎2 = 5𝑗 + 1, 5𝑗 + 4 where 𝑗 is integral □

b 𝑎4 − 𝑏4 = 𝑎2 − 𝑏2 𝑎2 + 𝑏2

Case 1 - 𝑎2 = 5𝑗 + 𝑟, 𝑏2 = 5𝑖 + 𝑟 𝑟 = 1 or 4 and 𝑗, 𝑖 integral, have the same remainder 

when divided by 5
𝑎4 − 𝑏4

= 5𝑗 + 𝑟 − 5𝑖 + 𝑟 5𝑗 + 𝑟 + 5𝑖 + 𝑟

= 5 𝑗 − 𝑖 5𝑗 + 5𝑖 + 2𝑟
So 𝑎4 − 𝑏4 is divisible by 5.

Case 2 - 𝑎2 = 5𝑗 + 1, 𝑏2 = 5𝑖 + 4
𝑎4 − 𝑏4

= 5𝑗 + 1 − 5𝑖 + 4 5𝑗 + 1 + 5𝑖 + 4

= 5𝑗 − 5𝑖 − 3 5𝑗 + 5𝑖 + 5
= 5 5𝑗 − 5𝑖 − 3 𝑗 + 𝑖 + 1
So 𝑎4 − 𝑏4 is divisible by 5.

∴ 𝑎4 − 𝑏4 is divisible by 5. □

Alternatively

LHS = 𝑎2 + 2𝑏
= 2 − 𝑏 2 + 2𝑏 since 𝑎 + 𝑏 = 2
= 4 − 4𝑏 + 𝑏2 + 2𝑏
= 𝑏2 + 4 − 2𝑏
= 𝑏2 + 2 2 − 𝑏
= 𝑏2 + 2𝑎
= RHS □
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15 𝑘3 − 𝑘 2𝑘2 + 5𝑘 − 3
= 𝑘 𝑘2 − 1 2𝑘2 + 6𝑘 − 𝑘 − 3

= 𝑘 𝑘 + 1 𝑘 − 1 2𝑘 𝑘 + 3 − 𝑘 + 3

= 𝑘 𝑘 + 1 𝑘 − 1 2𝑘 − 1 𝑘 + 3

= 𝑘 𝑘 + 1 𝑘 − 1 2 𝑘 + 2 − 5 𝑘 + 3

= 2 𝑘 − 1 𝑘 𝑘 + 1 𝑘 + 2 𝑘 + 3 − 5 𝑘 − 1 𝑘 𝑘 + 1 𝑘 + 3
= 10𝑚 − 5𝑛 𝑚, 𝑛 integral, since the product of 5 consecutive numbers is divisible by 5
= 5 2𝑚 − 𝑛 □

16 2𝑘 + 1 2

= 4𝑘2 + 4𝑘 + 1

= 8
𝑘2 + 𝑘

2
+ 1

= 8
𝑘 𝑘 + 1

2
+ 1

= 8𝑇 + 1 □

17 Case 1 - 2
2

is rational

We have proved 2 is irrational, so 2
2

is an irrational number to the power is an

irrational number.

If 2
2

is rational then we have proved the problem.

Case 2 - 2
2

is irrational

Consider 2
2

2

, which in this case is an irrational number to the power is an irrational

number.

2
2

2

= 2
2∙ 2

= 2
2

= 2
which is rational, so we have proved the problem.

∴ whether 2
2

is rational or irrational we have proved that an irrational number raised to

the power of an irrational number can be rational. □
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In Lesson 2 we look at the first of two methods of indirect proof - Proof by Contrapositive. We 

will cover:

• Converse

• Negation

• Contrapositive

• Proof by Contrapositive

CONVERSE

The converse of a statement ‘If 𝑃 then 𝑄’ is ‘If 𝑄 then 𝑃’. The statements can be represented as 

‘the converse of 𝑃 ⇒ 𝑄 is 𝑄 ⇒ 𝑃’, or ‘the converse of 𝑃 ⇒ 𝑄 is 𝑃 ⇐ 𝑄’.

For example:

Statement: ‘If a number is even it is an integer’

Converse: ‘If a number is an integer it is even’

The converse of a true statement is not necessarily true, which is a major source of improperly 

constructed proofs. 

A common fault involves square roots. For example the converse of the statement ‘if 𝑥 = 4 then 

𝑥2 = 16’ is the statement ‘if 𝑥2 = 16 then 𝑥 = 4’. Now the original statement is true, but the 

converse is false since it does not include 𝑥 = −4 as a possible solution.

We can see that the converse is not necessarily true using an Euler Diagram:

𝑃 ⇒ 𝑄 is true since all of 𝑃 lies within 𝑄, but 𝑄 ⇒ 𝑃 is not necessarily correct as not all of 𝑄 lies 

within 𝑃. 

The only time that it is appropriate to prove a converse is as one half of a proof where we are 

proving equivalence.

𝑃

𝑄

1.2:  PROOF BY CONTRAPOSITIVE
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Example 1

Find the negation of the following:

a 𝑥 = 2 b 𝑥 < 2 c 𝑥 ≥ 2

Solution

a 𝑥 ≠ 2 b 𝑥 ≥ 2 c 𝑥 < 2

NEGATION

If 𝑃 is a statement then the statement ‘not 𝑃’ is called the negation of 𝑃. The negation of 𝑃 is 

denoted by ¬𝑃 or ~𝑃.

For example the negation of the statement ‘𝑥 is even’ would be ‘𝑥 is not even’ which we could 

also write as ‘𝑥 is odd’ if 𝑥 is a positive integer. The negation can be true or false, as the original 

statement could be false or true.

Negation is an important technique that we will use in indirect proofs - proof by contrapositive 

and proof by contradiction.

We can see negations using an Euler Diagram:

We can see that ¬𝑄 is the area outside the 𝑄 ellipse. 

Note that ¬𝑃 is not shown on this diagram to avoid confusion, but includes everything outside 

the 𝑃 ellipse, which includes parts of 𝑄 and all of ¬𝑄.

𝑃

𝑄 ¬𝑄

When we negate equality statements or inequalities, the negation involves everything else -

similar to the concept of the complement in probability.

For example, the negation of 𝑥 > 2 is 𝑥 ≤ 2.

Original

Statement
Negation

= ≠

> ≤

≥ <

< ≥

≤ >
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Example 2

Find the negation of the following:

a ∀ integers 𝑥, 2𝑥 is even

b ∃ a real number 𝑥, 𝑥 = 4𝑚 for integral 𝑚

Solution

a ∃ integers 𝑥, 2𝑥 is odd

b ∀ real number𝑠 𝑥, 𝑥 ≠ 4𝑚 for integral 𝑚

NEGATING STATEMENTS INVOLVING ‘FOR ALL’ OR ‘THERE EXISTS’ 

When we negate statements involving ‘For All’ or ‘There exists’, then the original statement and 

its negation swap the two terms, as well as negating any other part of the statement as shown 

above.

For example:

The negation of ‘∀ real numbers 𝑥, 𝑥2 ≥ 0’ is ‘∃ a real number 𝑥, 𝑥2 < 0’. The original statement is 

saying that 𝑥2 ≥ 0 for every value of 𝑥, while the negation is just saying, hang on, there is at 

least one value where that isn’t true. 

Notice the negation is not saying that it the original statement is false for every value of 𝑥, just 

for one or more. In this case the original statement is true and its negation is false. 

The negation of ‘∃ a real number 𝑥, 𝑥2 − 4 = 0’ is ‘∀ real numbers 𝑥, 𝑥2 − 4 ≠ 0’. The original 

statement is saying that 𝑥2 − 4 = 0 for at least one value of 𝑥, while the negation is just saying, 

hang on, there are no values of 𝑥 for which it is true, in other words 𝑥2 − 4 ≠ 0 for every value of 

𝑥. 

Notice the negation is not saying that there is one or more values of 𝑥 for which 𝑥2 − 4 ≠ 0. 

Again the original statement is true and its negation is false. 
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Example 3

Find the negation of the following:

a ∀ integers 𝑥, 2𝑥 is even and 2𝑥+1 is odd

b ∃ a real number 𝑥, 𝑥2 = 9 or 𝑥 > 2

Solution

a ∃ integers 𝑥, 2𝑥 is odd or 2𝑥+1 is even

b ∀ a real number 𝑥, 𝑥2 ≠ 9 and 𝑥 ≤ 2

NEGATING COMPOUND STATEMENTS (AND/OR)

Say we have to negate a compound statement like ‘𝑥 is even and less than 10’, let’s look at the 

Euler Diagram and find the complement. So we break the compound statement into two 

statements, ‘𝑃: 𝑥 is even’, and ‘𝑄: 𝑥 is less than 10’. The original statement is ‘𝑅: 𝑃 ∧ 𝑄’ using the 

‘and’ proof symbol, or represented by the intersection below.

𝑄𝑃

𝑃 ∧ 𝑄

Now the complement of 𝑃 ∧ 𝑄 is everything outside the intersection, which we can most easily 

write as ‘¬𝑃 ∨ ¬𝑄’ using the ‘or’ proof symbol. So the negation of ‘𝑥 is even and less than 10’ is 

‘𝑥 is not even or not less than 10’, so ‘𝑥 is odd or greater than or equal to 10’.

To negate a compound statement, negate each of 

the original statements and swap ‘and’ for ‘or’. 

You might come across this as DeMorgan’s Laws in some texts.
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CONTRAPOSITIVE

The contrapositive of the conditional statement ‘If 𝑃 then 𝑄’ is ‘If not 𝑄 then not 𝑃’, so the 

negation of 𝑄 implies the negation of 𝑃. Using symbols the contrapositive of 𝑃 ⇒ 𝑄 is ¬𝑄 ⇒ ¬𝑃.  

The contrapositive is true if and only if the statement itself is also true.

𝑃

𝑄
¬𝑄 green shading

¬𝑃 diagonal stripes

It is hard to draw this clearly on an Euler diagram, but we can see above that if 𝑃 ⇒ 𝑄 then 𝑃 is 

inside 𝑄, so ¬𝑄 (shaded in green) must all be within ¬𝑃 (diagonal stripes). 

So ‘¬𝑄 ⇒ ¬𝑃’ is true when ‘𝑃 ⇒ 𝑄’ is true. 

Now if the original statement is false, then 𝑃 is either completely outside 𝑄 (below left) or 

overlaps 𝑄 (below right).

𝑃

𝑄

𝑃

𝑄

In each case ¬𝑄 is not completely inside ¬𝑃. So when ‘𝑃 ⇒ 𝑄’ is false then ‘¬𝑄 ⇒ ¬𝑃’ is also 

false. 

So we have seen is that if:

• 𝑃 ⇒ 𝑄 is true then ¬𝑄 ⇒ ¬𝑃 is true

• 𝑃 ⇒ 𝑄 is false then ¬𝑄 ⇒ ¬𝑃 is false. 

We can say that:

The original statement and its contrapositive are logically equivalent, so to 

prove a conditional statement we can prove its contrapositive instead.

Example 4

Find the contrapositive of the following:

a If 𝑥 is even then 𝑥 + 1 is odd. b If 𝑥2 = 25 then 𝑥 = ±5

Solution

a If 𝑥 + 1 is even then 𝑥 is odd. b If 𝑥 ≠ ±5 then 𝑥2 ≠ 25
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PROOF BY CONTRAPOSITIVE

Now the syllabus states that students need to ‘use proof by contradiction’, but there is no similar 

statement about using proof by contrapositive. The only mention of contrapositive is that 

students ‘understand that a statement is equivalent to its contrapositive’ as we have just seen.

Proof by Contrapositive is generally considered easier than proof by contradiction, so I would 

certainly get students to use it and expect to see it in exams. It is just a pity the wording of the 

syllabus isn’t clearer!

In general we should always try direct proof first, then proof by contrapositive (if it is a 

conditional statement), then proof by contradiction as a last resort.

𝑃

𝑄

𝑛2 even

𝑛 even

Example 5

Prove by contrapositive for integral 𝑛 that if 𝑛2 is even then 𝑛 is even.

Solution

Suppose 𝑛 is odd.

Let 𝑛 = 2𝑘 + 1 for integral 𝑘.

∴ 𝑛2 = 2𝑘 + 1 2

= 4𝑘2 + 4𝑘 + 1

= 2 2𝑘2 + 2𝑘 + 1

= 2𝑗 + 1 for integral 𝑗 since 2, 𝑘 are integral

∴ if 𝑛 is odd then 𝑛2 is odd.

∴ if 𝑛2 is even then 𝑛 is even by contrapositive.

Example 6

Prove by contrapositive that if 𝑚𝑛 is even then 𝑚 or 𝑛 must be even.

Solution

Note that we are negating a compound statement, so ‘or’ is replaced with ‘and’ and ‘even’ is

replaced with ‘odd’.

Suppose 𝑚 is odd and 𝑛 is odd.

Let 𝑚 = 2𝑘 + 1, 𝑛 = 2𝑗 + 1 for integral 𝑘, 𝑗

𝑚𝑛 = 2𝑘 + 1 2𝑗 + 1

= 4𝑘𝑗 + 2𝑘 + 2𝑗 + 1

= 2 2𝑘𝑗 + 𝑘 + 𝑗 + 1

= 2𝑝 + 1 for integral 𝑝 since 2, 𝑗, 𝑘 are integral

∴ if 𝑚 and 𝑛 are both odd then 𝑚𝑛 is odd.

∴ if 𝑚𝑛 is even then 𝑚 or 𝑛 must be even.

𝑃

𝑄

𝑚𝑛 even

𝑚 or 𝑛

even
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EXERCISE 1.2

BASIC

1 Find the negation of the following:

a 𝑥 ≤ 1 b 𝑥 = 1 c 𝑥 > 1

2 Find the negation of the following:

a ∃ an integer 𝑥, 2𝑥 = 𝑥2 b ∀ real number𝑠 𝑥, 𝑥 < 2𝑚 + 1 for integral 𝑚

3 Find the negation of the following:

a ∀ integers 𝑥, 2𝑥 is prime or 2𝑥+1 is odd b ∃ a real number 𝑥, 𝑥2 − 7 = 9 and 𝑥 > 2

4 Find the contrapositive of the following:

a If 𝑥 is prime then 2𝑥 + 1 is composite. b If 𝑥2 = 1 then
1

𝑥
= 1

5 Prove by contrapositive for integral 𝑛 that if 𝑛2 is odd then 𝑛 is odd.

6 Prove by contrapositive for 𝑚, 𝑛 positive integers that if 𝑚𝑛 is divisible by 5 then 𝑚 or 𝑛
must be divisible by 5.

7 Prove by contrapositive that if 𝑚 is an integer and 𝑚2 is not divisible by 4 then 𝑚 is odd.

MEDIUM

8 Prove by contrapositive that if
𝑚𝑛

2
is integral then 𝑚 or 𝑛 must be even.
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SOLUTIONS - EXERCISE 1.2

1 a 𝑥 > 1 b 𝑥 ≠ 1 c) 𝑥 ≤ 1

2 a ∀ integers 𝑥, 2𝑥 ≠ 𝑥2 b ∃ real number𝑠 𝑥, 𝑥 ≥ 2𝑚 + 1for integral 𝑚

3 a ∃ an integer 𝑥, 2𝑥 is not prime and 2𝑥+1 is even b ∀ real numbers 𝑥, 𝑥2 − 7 ≠ 9 or 𝑥 ≤ 2

4
a If 2𝑥 + 1 is not composite then 𝑥 is not prime b If

1

𝑥
≠ 1 then 𝑥2 ≠ 1.

5 Suppose 𝑛 is even.

Let 𝑛 = 2𝑘 for integral 𝑘.

∴ 𝑛2 = 2𝑘 2

= 4𝑘2

= 2 2𝑘2

= 2𝑗 for integral 𝑗 since 𝑘 is integral

∴ if 𝑛 is even then 𝑛2 is even.

∴ if 𝑛2 is odd then 𝑛 is odd by contrapositive.

6 Suppose neither 𝑚 nor 𝑛 are divisible by 5.

Let 𝑚 = 5𝑗 + 𝑝 and 𝑛 = 5𝑘 + 𝑞 for integral j, 𝑘 and 𝑝, 𝑞 = 1,2,3 or 4.

𝑚𝑛 = 5𝑗 + 𝑝 5𝑘 + 𝑞

= 25𝑗𝑘 + 5𝑗𝑞 + 5𝑘𝑝 + 𝑝𝑞

= 5 5𝑗𝑘 + 𝑗𝑞 + 𝑘𝑝 + 𝑝𝑞

= 5𝑐 + 𝑝𝑞 for integral 𝑐 since 𝑗, 𝑘, 𝑝, 𝑞 are integral

Now 𝑝𝑞=1, 2, 3, 4, 6, 8, or 12, so not a multiple of 5, so 𝑚𝑛 is not a multiple of 5.

∴ if 𝑚 and 𝑛 are not divisible by 5 then 𝑚𝑛 is not divisible by 5.

∴ if 𝑚𝑛 is divisible by 5 then 𝑚 or 𝑛 must be divisible by 5 by contrapositive.

7 Suppose 𝑚 is even.

Let 𝑚 = 2𝑘 for integral 𝑘

𝑚2 = 2𝑘 2

= 4𝑘2

= 4𝑝 for integral 𝑝 since 𝑘 is integral

∴ if 𝑚 is even then 𝑚2 is divisible by 4.

∴ if 𝑚2 is not divisible by 4 then 𝑚 must be odd by contrapositive.
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8 Suppose 𝑚 is odd and 𝑛 is odd.

Let 𝑚 = 2𝑘 + 1, 𝑛 = 2𝑗 + 1 for integral 𝑘, 𝑗

𝑚𝑛

2
=

2𝑘 + 1 2𝑗 + 1

2

=
4𝑘𝑗 + 2𝑘 + 2𝑗 + 1

2

= 2𝑘𝑗 + 𝑘 + 𝑗 +
1

2

Which is not integral since 𝑗 and 𝑘 are integral

∴ if 𝑚 and 𝑛 are both odd then
𝑚𝑛

2
is not integral.

∴ if
𝑚𝑛

2
is integral then 𝑚 or 𝑛 must be even.
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In Lesson 3 we look at the second of two methods of indirect proof - Proof by Contradiction. We 

will cover:

• Proof by Contradiction

1.3:  PROOF BY CONTRADICTION

PROOF BY CONTRADICTION

We have seen that a statement must be either true or false, so its negation must be false or true

respectively.

Using our Euler diagram again, if ¬𝑃 is false then the only

option remaining is 𝑃. 𝑃 ¬𝑃

For conditional proofs of the form 𝑃 ⇒ 𝑄 we start by assuming 𝑃 ⇒ ¬𝑄 (diagram below left) and

find the contradiction there. Since the negation is false then 𝑃 ⇒ 𝑄, illustrated in the diagram

below right where the 𝑃 ellipse must be inside the 𝑄 ellipse.

𝑃

𝑄 ¬𝑄

𝑃

𝑄
¬𝑄

So we can prove that the original statement is true by proving its negation is false. This is called

proof by contradiction. It gets its name since the negation normally leads to a fact that

contradicts some other fact - either a fact that we assumed earlier, or a fact reached

simultaneously. For example a number cannot be both odd and even, or both rational and

irrational.

Now we started by assuming that the negation is correct, which we weren’t sure about. We then

followed a series of steps that we know are correct, then reached a contradiction. This means

the only step that can have caused the contradiction is the negation, which must be wrong.
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Example 1

Prove by contradiction that if 𝑛 is an odd integer then 𝑛2 is odd.

Solution

Suppose 𝑛 is an odd integer and 𝑛2 is even. *

Let 𝑛 = 2𝑘 + 1 for integral 𝑘

∴ 𝑛2 = 2𝑘 + 1 2

= 4𝑘2 + 4𝑘 + 1

= 2 2𝑘2 + 2𝑘 + 1

= 2𝑝 + 1 for integral 𝑝 since 2, 𝑘 are integral

∴ 𝑛2 is odd #

Which contradicts (*) since 𝑛2 cannot be both odd and even, hence if 𝑛 is an odd integer then 𝑛2

is odd.

Example 2

Prove 2 + 3 < 10 by contradiction

Solution

Suppose 2 + 3 ≥ 10 ∗

2 + 3
2

≥ 10 since 2, 3, 10 > 0

2 + 2 6 + 3 ≥ 10

2 6 ≥ 5

24 ≥ 25

24 ≥ 25 #

Which is a contradiction, so 2 + 3 < 10
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Example 3

Prove that 2 is irrational.

Solution

Suppose that 2 is rational.

∴ 2 =
𝑝

𝑞
where 𝑝, 𝑞 are integers with no common factor except 1      (*)  2𝑞2 = 𝑝2. 

Now 2 is even

∴ 2𝑞2 is even

∴ 𝑝2 is even 

∴ 𝑝 is even

Let 𝑝 = 2𝑘 for some integer 𝑘. 

∴ 2𝑞2 = 4𝑘2

𝑞2 = 2𝑘2

Now 2𝑘2 is even

∴ 𝑞2 is even 

∴ 𝑞 is even.                                                                                          #

This contradicts (*), since if 𝑝 and 𝑞 are both even they have a common factor of 2, hence 2 is 

irrational.
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EXERCISE 1.3

BASIC

1 Prove by contradiction that if 𝑛 is an even integer then 𝑛2 is even.

2 Prove by contradiction that if 𝑛 is an integer and 𝑛2 − 1 is even then 𝑛 is odd.

MEDIUM

3 Prove 5 + 7 < 5 by contradiction

4 Prove that 2 is irrational.

5 Prove that log2 5 is irrational.

6 Prove by contradiction that if 𝑎, 𝑏 are integral and 𝑎 + 𝑏 ≤ 5 then 𝑎 ≤ 2 or 𝑏 ≤ 2.

7 Prove by contradiction that there are no integers 𝑚, 𝑛 which satisfy 4𝑛 + 8𝑚 = 102

CHALLENGING

8 Prove by contradiction that the square root of 𝜋 is also irrational.

9 Prove sin 𝑥 + cos 𝑥 ≥ 1 for all 0 ≤ 𝑥 ≤
𝜋

2
by contradiction.

10 If 𝑎 is rational and 𝑏 is irrational, prove 𝑎 + 𝑏 is irrational.

11 Prove that for positive integers 𝑎, 𝑏 and 𝑎 > 1 that 𝑏 is not divisible by 𝑎 or 𝑏 + 1 is not

divisible by 𝑎.

12 Prove that there are no positive integers 𝑥, 𝑦 such that 𝑥2 − 𝑦2 = 1.

Mathematics Extension 2 © Steve Howard 29 Howard and Howard Education



SOLUTIONS - EXERCISE 1.3

1 Suppose 𝑛 is an even integer and 𝑛2 is odd. *

Let 𝑛 = 2𝑘 for integral 𝑘

∴ 𝑛2 = 2𝑘 2

= 4𝑘2

= 2 2𝑘2

= 2𝑝 for integral 𝑝 since 𝑘 is integral

∴ 𝑛2 is even #

Which contradicts (*) since 𝑛2 cannot be both odd and even, hence if 𝑛 is an even integer

then 𝑛2 is odd.

2 Suppose 𝑛2 − 1 is even and 𝑛 is even. *

Let 𝑛 = 2𝑘 for integral 𝑘

∴ 𝑛2 − 1 = 2𝑘 2 − 1

= 4𝑘2 − 1

= 2 2𝑘2 − 1 + 1

= 2𝑝 + 1 for integral 𝑝 since 𝑘 is integral

∴ 𝑛2 − 1 is odd                                                              #

Which contradicts (*) since 𝑛2 − 1 cannot be both odd and even, hence if 𝑛2 − 1 is even

then 𝑛 is odd.

3 Suppose 5 + 7 ≥ 5

5 + 7
2

≥ 25 since 2, 3, 10 > 0

5 + 2 35 + 7 ≥ 25

2 35 ≥ 13

140 ≥ 13

140 ≥ 169 #

Which is a contradiction, so 5 + 7 < 5
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4 Suppose that 2 is rational.

∴ 2 =
𝑝

𝑞
where 𝑝, 𝑞 are integers with no common factor except 1      (*)  2𝑞2 = 𝑝2. 

Now 2 is even

∴ 2𝑞2 is even

∴ 𝑝2 is even 

∴ 𝑝 is even

Let 𝑝 = 2𝑘 for some integer 𝑘. 

∴ 2𝑞2 = 4𝑘2

𝑞2 = 2𝑘2

Now 2𝑘2 is even

∴ 𝑞2 is even 

∴ 𝑞 is even.                                                                                          #

This contradicts (*), since if 𝑝 and 𝑞 are both even they have a common factor of 2, hence 

2 is irrational.

5 Suppose that log2 5 is rational.

∴ log2 5 =
𝑝

𝑞
where 𝑝, 𝑞 are integers with no common factor except 1        

𝑞 log2 5 = 𝑝

log2 5𝑞 = 𝑝

5𝑞 = 2𝑝 #

Now the LHS is odd and the RHS is even which is a contradiction, hence log2 5 is 

irrational.

6 Suppose 𝑎 + 𝑏 ≤ 5 and 𝑎 > 2 and 𝑏 > 2 *

∴ 𝑎 + 𝑏 ≥ 3 + 3 since 𝑎, 𝑏 integral

≥ 6 #

Which contradicts (*) since 𝑎 + 𝑏 cannot be ≤ 5 and ≥ 6, hence 𝑎 ≤ 2 or 𝑏 ≤ 2.

7 Suppose 𝑚, 𝑛 are integers which do satisfy 4𝑛 + 8𝑚 = 102

∴ 4 𝑛 + 2𝑚 = 102

4𝑝 = 4 × 25 + 2 for integral 𝑝 since 𝑛, 𝑚 are integral #

Which is a contradiction since the LHS is a multiple of 4 but the RHS is not, hence there

are no integers 𝑚, 𝑛 which satisfy 4𝑛 + 8𝑚 = 102
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8 Suppose that 𝜋 is rational.

∴ 𝜋 =
𝑝

𝑞
where 𝑝, 𝑞 are integers with no common factor except 1        

𝜋𝑞2 = 𝑝2 #

Now the RHS is an integer but the LHS is not since 𝜋 is irrational which is a contradiction, 

hence the square root of the irrational number 𝑚 is also irrational.

9 Suppose sin 𝑥 + cos 𝑥 < 1

∴ sin 𝑥 + cos 𝑥 2 < 1 since sin 𝑥 , cos 𝑥 ≥ 0 in the given domain

sin2 𝑥 + 2 sin 𝑥 cos 𝑥 + cos2 𝑥 < 1

1 + 2 sin 𝑥 cos 𝑥 < 1

2 sin 𝑥 cos 𝑥 < 0 #

But sin 𝑥 , cos 𝑥 > 0 so this is a contradiction, so sin 𝑥 + cos 𝑥 ≥ 1.

10 Suppose by contradiction that 𝑎 is rational, 𝑏 irrational and 𝑎 + 𝑏 rational    (*).

Let 𝑎 =
𝑝

𝑞
, 𝑎 + 𝑏 =

𝑗

𝑘
for integral 𝑝, 𝑞, 𝑗, 𝑘

∴
𝑝

𝑞
+ 𝑏 =

𝑗

𝑘

𝑏 =
𝑗

𝑘
−

𝑝

𝑞

=
𝑗𝑞 − 𝑘𝑝

𝑘𝑞

=
𝑚

𝑛
for integral 𝑚, 𝑛 since 𝑝, 𝑞, 𝑗, 𝑘 are integral

∴ 𝑏 is rational #

This contradicts (*) since 𝑏 cannot be rational and irrational, ∴ if 𝑎 is rational and 𝑏 is 

irrational, then 𝑎 + 𝑏 is irrational

11 Suppose by contradiction 𝑏 = 𝑚𝑎 (1) and 𝑏 + 1 = 𝑛𝑎 (2) for integral 𝑚, 𝑛.

2 − 1 :

∴ 1 = 𝑛𝑎 − 𝑚𝑎

∴ 𝑚 − 𝑛 𝑎 = 1

𝑎 =
1

𝑚 − 𝑛

=
1

𝑘
for integral k since m,n integral, m ≠ 𝑛

≤ 1 #

This is a contradiction since 𝑎 > 1, ∴ for positive integers 𝑎, 𝑏 and 𝑎 > 1 𝑏 is not divisible 

by 𝑎 or 𝑏 + 1 is not divisible by 𝑎.
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12 Suppose by contradiction that 𝑥2 − 𝑦2 = 1 has solutions 𝑥, 𝑦 positive integers (*)

∴ 𝑥 + 𝑦 𝑥 − 𝑦 = 1

𝑥 + 𝑦 = 1 or 𝑥 − 𝑦 = 1

no positive integral solutions or 𝑦 = 𝑥 − 1

∴ 𝑥2 − 𝑥 − 1 2 = 1

𝑥2 − 𝑥2 + 2𝑥 + 1 = 1

2𝑥 = 0

𝑥 = 0

There are no positive integral solutions # 

This contradicts (*), so there are no positive integers 𝑥, 𝑦 such that 𝑥2 − 𝑦2 = 1
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In Lesson 4 we look at equivalent statements and disproof, covering:

• Equivalent Statements (if and only if)

• Proving Equivalence

• Disproof, examples and counterexamples

EQUIVALENT STATEMENTS (IF AND ONLY IF) 

If there is only one condition 𝑃 that can result in 𝑄, then we can say ‘𝑄 if and only if 𝑃’ which we 

write as ‘𝑄 iff 𝑃’. 

It is interesting to note that quite often when we write 𝑃 if 𝑄 we could write 𝑃 iff 𝑄, as a lot of our 

relationships are equivalent. 

Now if we think of the Euler Diagram, the 𝑃 ellipse must have grown to fill all of the 𝑄 ellipse, as 

only 𝑃 can lead to 𝑄. The two ellipses are now the same, or equivalent.

𝑃

𝑄

Since the two ellipses are the same, then we can also say ‘𝑃 iff 𝑄’ is also correct. Since either 

statement implies the other we can write the iff statements as ‘𝑃 ⇔ 𝑄’.

In equivalent statements we can swap the two statements around and still create a true 

statement, as the original and its converse are both true.

For example: P: 𝑥2 is odd Q: 𝑥 is odd

Now 𝑃 ⇒ 𝑄 and 𝑄 ⇒ 𝑃 are both true, so we can write 𝑃 ⇔ 𝑄.

We can say this because the only way 𝑥2 could be odd is if 𝑥 is odd, and the only way 𝑥 can be 

odd is if 𝑥2 is odd. 

Let’s look at an incorrect example: ‘𝑥2 = 4 iff 𝑥 = 2’

Now this is false, because 𝑥 = −2 would also cause 𝑥2 = 4 to be true.

1.4:  EQUIVALENCE AND DISPROOFS
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Example 1

Prove 𝑥 is odd if and only if 𝑥2 is odd

Solution

If 𝑥 is odd, let 𝑥 = 2𝑘 + 1 for integral 𝑘.

𝑥2 = 2𝑘 + 1 2

= 4𝑘2 + 4𝑘 + 1

= 2 2𝑘3 + 2𝑘 + 1

= 2𝑗 + 1 for integral 𝑗 since 𝑘 is integral

∴ if 𝑥 is odd then 𝑥2 is odd

Conversely, we will show that if 𝑥2 is odd then 𝑥 is odd using proof by contrapositive.

Suppose 𝑥 is even

Let 𝑥 = 2𝑘 for integral 𝑘

𝑥2 = 4𝑘2

= 2 2𝑘2

= 2𝑝 for integral 𝑝 since 2, 𝑘 are integral

∴ if 𝑥 is even 𝑥2 is even, hence if 𝑥2 is odd then 𝑥 is odd by contrapositive.

∴ 𝑥 is odd if and only if 𝑥2 is odd   □

PROVING EQUIVALENCE

To prove a statement in the form 𝑃 ⇔ 𝑄 we have to prove 2 cases:

• Case 1: 𝑃 ⇒ 𝑄

• Case 2: 𝑄 ⇒ 𝑃 (which we can also write as 𝑃 ⇐ 𝑄)

It is best to write them out under two headings as above, or as two separate paragraphs with 

‘conversely’ before we prove 𝑄 ⇒ 𝑃.
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DISPROOF, EXAMPLES AND COUNTEREXAMPLES

Commonly we will be given a statement and told to prove it is true, but there are times when we

are given a statement that is false, or that could be true or false, and have to disprove it.

Not being able to prove a statement is true is not enough to prove it is false.

There are different techniques that we can use to disprove a statement, depending on whether it

applies to all numbers (∀) or to at least one (∃).

If we are given a statement that might be true or false we will have to read the question carefully

and use our judgement as to how we should approach it.

DISPROVING UNIVERSAL STATEMENTS

To disprove a statement that is said to apply for all numbers we can:

• Use one counterexample. A counterexample is an example where the statement is false. 

• Use a direct proof to show that the negation of the statement is true for at least one value, 

so the statement is false. 

• Use a direct proof of the statement to lead to a contradiction which proves that it is false. 

This is a type of proof by contradiction, but we do not need to negate the statement. 

• We can use Proof by Cases to show that it is false for at least one case.

• use a proof by contrapositive to prove either ¬𝑄 ⇒ 𝑃 or 

¬𝑄 ⇒ (𝑃 ∨ ¬𝑃) so the statement is false 

For example, to disprove ‘∀ odd positive integers 𝑥, 𝑥 + 1 is odd’ we could:

• Use a counterexample by letting 𝑥 = 1. Since 𝑥 + 1 = 2 is even, the statement is false.

• Use a direct proof by cases to show that if 𝑥 is odd that 𝑥 + 1 must be even, which is a

contradiction and the statement is false.

• Use a proof by contrapositive to show that if 𝑥 + 1 is even then 𝑥 must be odd, and the

statement must be false.

The counterexample is the best method of disproving a universal statement, if you can find one

easily.

Also remember that even though one counterexample is sufficient to prove a universal

statement is false, no number of examples are sufficient to prove a universal statement is true,

as we have seen in False Proofs by Mathematical Induction in Extension 1.
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Example 2

Prove the following statement is false:

If 𝑎2 − 𝑏2 > 0, where 𝑎 and 𝑏 are real, then 𝑎 − 𝑏 > 0

Solution

This is a universal statement, that is easiest to disprove using a counterexample.

Let 𝑎 = −2, 𝑏 = 0

−2 2 − 02 is positive yet −2 − 0 is negative, so the statement is false.

Alternatively we can show

𝑎2 − 𝑏2 > 0

𝑎 + 𝑏 𝑎 − 𝑏 > 0

∴ 𝑎 + 𝑏 > 0 and 𝑎 − 𝑏 < 0 or 𝑎 + 𝑏 < 0 and 𝒂 − 𝒃 < 𝟎

∴ the statement is false, since it is false if 𝑎 + 𝑏 < 0.

Example 3

Prove the following statement is false: There are no prime numbers divisible by 5

Solution

5 is prime and it is divisible by 5, so the statement is false
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Example 4

Prove the following statement is false: ∃ a real number 𝑥, 𝑥2 + 2𝑥 + 5 < 0

Solution

Here we will prove that the statement is false for all real numbers.

a > 0

Δ = 22 − 4 1 5 < 0

The quadratic is positive definite, so the statement is false.

DISPROVING EXISTENCE STATEMENTS

To disprove a statement that applies to at least one number we cannot use a counterexample,

as it is perfectly acceptable that there are many numbers for which the statement is false, and

yet the statement itself is true. We can:

• Use a direct proof to show that the negation of the statement is true for all values, so the

original statement is false for all values.

• Use a direct proof of the statement for all values that leads to a contradiction, so the

statement is false. If using Proof by Cases all cases must cause a contradiction.

• Use a proof by contrapositive for all values to prove ¬𝑄 ⇒ 𝑃 so the statement is false 

Example 5

Prove the following statement is false: There is a Pythagorean Triad where all numbers are odd.

Solution

Let the triad of odd numbers be 𝑎, 𝑏 and 𝑐, such that 𝑎 = 2𝑖 + 1,

𝑏 = 2𝑗 + 1 and 𝑐 = 2𝑘 + 1 for 𝑖, 𝑗, 𝑘 integral.

∴ 2𝑖 + 1 2 + 2𝑗 + 1 2 = 2𝑘 + 1 2

4𝑖2 + 4𝑖 + 1 + 4𝑗2 + 4𝑗 + 1 = 4𝑘2 + 4𝑘 + 1

4 𝑖2 + 𝑖 + 𝑗2 + 𝑗 + 1 = 4 𝑘2 + 𝑘

4𝑚 + 1 = 4𝑛 for integral 𝑚, 𝑛 since 𝑖, 𝑗, 𝑘 are integral

Now the RHS is a multiple of 4 yet the LHS isn’t so we have a contradiction, so there is no

Pythagorean Triad where all numbers are odd.

Mathematics Extension 2 © Steve Howard 38 Howard and Howard Education



Example 6

Prove or disprove the following statement is false:

The sum of the squares of two consecutive even numbers is divisible by 8

Solution

We will disprove it by contradiction for all real numbers.

Let the two consecutive even numbers be 2𝑘 and 2𝑘 + 2 for integral 𝑘.

(2𝑘)2+ 2𝑘 + 2 2

= 4𝑘2 + 4𝑘2 + 8𝑘 + 4

= 8𝑘2 + 8𝑘 + 4

= 4 2𝑘2 + 2𝑘 + 1

The statement is false, as the sum of the squares of two consecutive even numbers is divisible

by 4 but not 8.

Example 7

Prove or disprove the following statement is false: ∃ a real number 𝑛 such that 3𝑛 + 4𝑛 = 5𝑛

Solution

Let 𝑥 = 2

32 + 42 = 52

The statement is true.

This is a rare example where an example does prove a statement, as it is not a universal

statement.
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EXERCISE 1.4

BASIC

1 Prove 𝑥 is even if and only if 𝑥2 is even.

2 Prove the following statement is false: If 𝑎 − 𝑏 > 0, where 𝑎, 𝑏 are real, then 𝑎2 − 𝑏2 > 0

3 Prove the following statement is false: There are no prime numbers divisible by 7

4 Prove the following statement is false: ∃ a real number 𝑥, −𝑥2 + 2𝑥 − 2 ≥ 0

5 Prove the following statement is false: There is a Pythagorean Triad where the two

smallest numbers are even and the largest number is odd.

6 Prove or disprove the following statement: The sum of the squares of three consecutive

even numbers is divisible by 4

7 Prove or disprove the following statement: ∃ a real number 𝑛 such that 3𝑛 + 4𝑛 < 5𝑛

MEDIUM

8 Prove for integral 𝑥, 𝑥2 is divisible by 9 if and only if 𝑥 is a multiple of 3.

9 Prove that if 𝑚, 𝑛 are integers that 𝑚2 − 𝑛2 is even iff at least one of the sum and

difference of 𝑚 and 𝑛 are even.

10 Prove the following statement is false: 2𝑥 + 5 ≤ 9 ⇒ 𝑥 ≤ 4

11 Prove or disprove that if 𝑥 and 𝑦 are irrational and 𝑥 ≠ 𝑦, then 𝑥𝑦 is irrational.

12 Prove that a number is divisible by 6 if and only if it is divisible by 2 and 3.

13 Prove that the sum of two integers is even if and only if they have the same parity (both

odd or both even).

CHALLENGING

14 Prove that a number is divisible by 4 if and only if the last two digits are a multiple of 4.

15 Prove that a three digit number is divisible by 9 if and only if the sum of its digits is

divisible by 9.
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SOLUTIONS - EXERCISE 1.4

1 If 𝑥 is even, let 𝑥 = 2𝑘 for integral 𝑘.

𝑥2 = 2𝑘 2

= 4𝑘2

= 2 2𝑘2

= 2𝑗 for integral 𝑗 since 𝑘 is integral

∴ if 𝑥 is even then 𝑥2 is even

Conversely, we will show that if 𝑥2 is even then 𝑥 is even using proof by contrapositive.

Suppose 𝑥 is odd

Let 𝑥 = 2𝑘 + 1 for integral 𝑘
𝑥2 = 2𝑘 + 1 2

= 4𝑘2 + 4𝑘 + 1
= 2 2𝑘2 + 2𝑘 + 1
= 2𝑝 + 1 for integral 𝑝 since 𝑘 is integral

∴ if 𝑥 is odd 𝑥2 is odd, hence if 𝑥2 is even then 𝑥 is even by contrapositive.

∴ 𝑥 is even if and only if 𝑥2 is even   □

2 Let 𝑎 = −2 𝑏 = −3
∴ 𝑎 − 𝑏 = −2 − −3 = 1 > 0
−2 2 − −3 2 < 0, so the statement is false.

3 7 is prime and it is divisible by 7, so the statement is false.

4 a < 0
Δ = 22 − 4 −1 −2 < 0
The quadratic is negative definite, so the statement is false.

5 Here we will use a proof by contradiction to prove it is false for all real numbers.

Let the triad of odd numbers be 𝑎, 𝑏 and 𝑐, such that 𝑎 = 2𝑖,
𝑏 = 2𝑗 and 𝑐 = 2𝑘 + 1 for 𝑖, 𝑗, 𝑘 integral.

∴ 2𝑖 2 + 2𝑗 2 = 2𝑘 + 1 2

4𝑖2 + 4𝑗2 = 4𝑘2 + 4𝑘 + 1
4 𝑖2 + 𝑗2 = 4 𝑘2 + 𝑘 + 1

4𝑚 = 4𝑛 + 1 for integral 𝑚, 𝑛 since 𝑖, 𝑗, 𝑘 are integral

Now the LHS is a multiple of 4 yet the RHS isn’t so we have a contradiction, so there is no

Pythagorean Triad where all numbers are odd.

6 We will disprove it by contradiction for all real numbers.

Let the three consecutive even numbers be 2𝑘, 2𝑘 + 2 and 2𝑘 + 4 for integral 𝑘.

(2𝑘)2+ 2𝑘 + 2 2 + 2𝑘 + 4 2

= 4𝑘2 + 4𝑘2 + 8𝑘 + 4 + 4𝑘2 + 16𝑘 + 16
= 12𝑘2 + 24𝑘 + 20
= 4 3𝑘2 + 6𝑘 + 5
= 4𝑝 for integral 𝑝 since 𝑘 is integral
The statement is true.
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7 Let 𝑛 = 3 33 + 43 = 27 + 64 = 91 < 53

The statement is true.

8 Prove that if 𝑥2 is divisible by 9 then 𝑥 is a multiple of 3 by contrapositive

Suppose 𝑥 is not a multiple of 3

Let 𝑥 = 3𝑘 + 𝑗 for integral 𝑘 and 𝑗 = 1,2
∴ 𝑥2 = 3𝑘 + 𝑗 2

= 9𝑘2 + 6𝑗𝑘 + 𝑗2

= 3 3𝑘2 + 2𝑘 + 𝑗2

= 3𝑝 + 1 or 3𝑝 + 4 for integral 𝑝 since 𝑘 is integral, which are not multiples of 9
∴ if 𝑥 is not a multiple of 3 then 𝑥2 is not a multiple of 9

∴ if 𝑥2 is a multiple of 9 then 𝑥 is a multiple of 3 by contrapositive.

Conversely, if 𝑥 is a multiple of 3 let 𝑥 = 3𝑗 for integral 𝑗
𝑥2 = 3𝑗 2

= 9𝑗2

= 9𝑝 for integral 𝑝 since 𝑗 is integral
∴ 𝑥2 is divisible by 9.

∴ 𝑥2 is divisible by 9 if and only if 𝑥 is a multiple of 3     □

9 If 𝑚2 − 𝑛2 is even then (𝑚 + 𝑛)(𝑚 − 𝑛) is even, using the difference of two squares.

∴ At least one of 𝑚 + 𝑛 and 𝑚 − 𝑛 is even, since two odd numbers have an odd product,

∴ If 𝑚2 − 𝑛2 is even at least one of the sum and difference of 𝑚 and 𝑛 are even.

Conversely, if at least one of 𝑚 + 𝑛 and 𝑚 − 𝑛 are even then (𝑚 + 𝑛)(𝑚 − 𝑛) is even,

since the product of two even numbers or an even and an odd number is even.

∴ 𝑚2 − 𝑛2 is even, using the difference of two squares.

∴ If at least one of the sum and difference of 𝑚 and 𝑛 are even then 𝑚2 − 𝑛2 is even.

∴ 𝑚2 − 𝑛2 is even iff at least one of the sum and difference of 𝑚 and 𝑛 are even. □

10 Let 𝑥 = −6
2 −6 + 5 = 7 ≤ 9 yet −6 > 4, so the statement is false.

11 Let 𝑥 = 2, 𝑦 = 2 2 ∴ 𝑥𝑦 = 2 × 2 = 4

∴ the statement is false.

12 ∴ 𝑥 = 2 × 3 × 𝑚
∴ a number is divisible by 6 is divisible by 2 and 3.

Conversely, we will show that if a number is not divisible by 6 then it is not divisible by 2 

and 3.

Let 𝑥 = 6𝑚 + 𝑘 where 𝑘 is not a multiple of 6

= 2 × 3 × 𝑚 +
𝑘

6

≠ 2 × 3 × 𝑝 for integral 𝑝 since 𝑘 is not a multiple of 6
∴ if a number is not divisible by 6 it is not divisible by 2 and 3. 

∴ if a number is divisible by 2 and 3 then it is divisible by 6

∴ a number is divisible by 6 if and only if it is divisible by 2 and 3
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13 Let 𝑎 = 2𝑚 + 𝑗, 𝑏 = 2𝑛 + 𝑗 for integral 𝑚, 𝑛 and 𝑗 = 0,1
𝑎 + 𝑏 = 2𝑚 + 2𝑛 + 2𝑗

= 2 𝑚 + 𝑛 + 𝑗
= 2𝑝 for integral 𝑝

∴ 𝑎 + 𝑏 is even if 𝑎, 𝑏 have the same parity

Conversely, we will show by contradiction that if two numbers have the same parity then 

their sum must be even.

Suppose 𝑎, 𝑏 have opposite parity and their sum is even    (*)

Let 𝑎 = 2𝑚 + 𝑗, 𝑏 = 2𝑛 + 𝑘 for integral 𝑚, 𝑛 and 𝑗, 𝑘 = 0,1 and 𝑗 ≠ 𝑘
𝑎 + 𝑏 = 2𝑚 + 2𝑛 + 𝑗 + 𝑘

= 2 𝑚 + 𝑛 + 1
= 2𝑝 + 1 for integral 𝑝

∴ 𝑎 + 𝑏 is even #
This contradicts (*) as 𝑎 + 𝑏 cannot be odd and even.

∴ if two numbers have the same parity then their sum must be even.

∴ the sum of two integers is even if and only if they have the same parity (both odd or both 

even)

14 Let the number be 𝑥 = 100𝑎 + 10𝑏 + 𝑐 where 𝑎, 𝑏, 𝑐 are positive integers and 𝑏, 𝑐 ≤ 9
If the last two digits are a multiple of 4 then 10𝑏 + 𝑐 = 4𝑚 for integral 𝑚
∴ 𝑥 = 4 25𝑎 + 4𝑚

= 4 25𝑎 + 𝑚
= 4𝑝 for integral 𝑝 since 𝑎, 𝑚 are integral

∴ if the last two digits are a multiple of 4 then the number is divisible by 4.

Conversely, we will show by contrapositive that if a number is divisible by 4 then the last 

two digits are a multiple of 4.

If the last two digits are not a multiple of 4 then 10𝑏 + 𝑐 = 4𝑚 + 𝑘 for integral 𝑚, 𝑘 with 𝑘
not a multiple of 4.

∴ 𝑥 = 4 25𝑎 + 4𝑚 + 𝑘
= 4 25𝑎 + 𝑚 + 𝑘
≠ 4𝑝 for integral 𝑝 since 𝑎, 𝑚 are integral and k is not a multiple of 4

∴ if the last two digits are not a multiple of 4 then the number is not divisible by 4.

∴ if the number is divisible by 4 then the last two digits are a multiple of 4

∴ a number is divisible by 4 if and only if the last two digits are a multiple of 4.

15 Let the number be 𝑥 = 100𝑎 + 10𝑏 + 𝑐 where 𝑎, 𝑏, 𝑐 are positive integers and a, 𝑏, 𝑐 ≤ 9
If the sum of the digits is divisible by 9 then 𝑎 + 𝑏 + 𝑐 = 9𝑚 for integral 𝑚
∴ 𝑥 = 100𝑎 + 10𝑏 + 𝑐

= 99𝑎 + 𝑎 + 9𝑏 + 𝑏 + 𝑐
= 9 11𝑎 + 𝑏 + 𝑎 + 𝑏 + 𝑐
= 9𝑝 + 9𝑚 for integral 𝑝 since 𝑎, 𝑏 are integral
= 9𝑞 for integral 𝑞 since 𝑝, 𝑚 are integral

∴ if the sum of the digits is divisible by 9 then the three digit number is divisible by 9
Conversely, we will show by contrapositive that if the three digit number is divisible by 9 

then the sum of the digits is 9.

Suppose the sum of the digits is not divisible by 9 then 𝑎 + 𝑏 + 𝑐 = 9𝑚 + 𝑘 for integral 𝑚, 

and 𝑘 not a multiple of 9

∴ 𝑥 = 100𝑎 + 10𝑏 + 𝑐
= 99𝑎 + 𝑎 + 9𝑏 + 𝑏 + 𝑐
= 9 11𝑎 + 𝑏 + 𝑎 + 𝑏 + 𝑐
= 9𝑝 + 9𝑚 + 𝑘 for integral 𝑝 since 𝑎, 𝑏 are integral
≠ 9𝑞 for integral 𝑞 since 𝑝, 𝑚 are integral and k is not a multiple of 9

∴ if the sum of the digits is not divisible by 9 then the three digit number is not divisible by 9
∴ if the three digit sum is divisible by 9 then the sum of the digits is divisible by 9

∴ a three digit number is divisible by 9 if and only if the sum of its digits is divisible by 9.
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In Lesson 5 we look at Inequalities, covering:

• Inequalities

• Setting Out the Proof

• The Basics of Inequalities

• Equality

• Properties of Positive Numbers

• Geometrical Analogies

• Miscellaneous Tips

• The Triangle Inequality

• The Square of a Real Number is Non-negative

INEQUALITIES

Inequalities are a great source of hard yet simple proofs, that stretch the mind and separate out 

the very top students. In the old syllabus these formed the basis of the hardest marks on 

average of any topic, and yet the final solution was always short and simple.

Why are they so hard? Firstly there is generally little if any scaffolding to provide hints as to how 

to solve them. Secondly students must have superb algebra skills, and a deep understanding of 

any limitations to methods they might be considering.

Let’s have another look at how to set out a proof before we delve into inequalities.

SETTING OUT THE PROOF

Before we start looking at inequalities, a quick reminder on how to set out proofs, which is

particularly important in inequality proofs.

In the In Depth Extension 1 Year 12 Part I course we looked in detail at how a well formed proof

should be set out. This is essential in proving inequalities. As a brief reminder, we said

A proof is an argument that convinces one of your peers that a

statement is always true. A better proof also convinces a suspicious

peer that it is true, and helps a less able peer understand why it is true.

In order to make a convincing argument you are best to follow one of two types of method

below.

1.5:  INEQUALITIES
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Type 1 - Inequality

• Start with an inequality or equation known to be true (an axiom* or a result given or already

proved)

• Progress in clear and logical steps towards the result to be proved.

* An axiom is a basic assumption we accept to be true. Many of the proofs rely on the identity

that the square of a real number must be zero or positive - which we can write as ℝ2 ≥ 0.

If you are stuck remember that you can use working out paper to work from the conclusion to a

true statement, then write it out in the correct order as your answer.

Type 2 - Expression

• Start by finding an expression which equals LHS − RHS

• Progress in clear and logical steps until it simplifies to an expression that is positive or

negative.

• Interpret this result as LHS > RHS or LHS < RHS respectively.

WHY DO WE SWAP THE INEQUALITY SIGN AT TIMES AND NOT AT OTHERS?

An inequality is a statement showing the order of two (or three) expressions. When we perform

an operation on each expression the order might stay the same or it might be reversed, so we

might leave the sign alone or reverse it.

In summary:

• leave the sign alone if you perform an operation that matches a monotonic increasing

function, such as addition, subtraction, multiplication by a positive number, or division by a

positive number.

• swap the sign if

• you perform an operation that matches a monotonic decreasing function such as

multiplying by a negative number or dividing by a negative number

• you swap sides (or reverse all three parts)

• get more information if you wish to perform an operation that matches a function that is not

monotonic or has discontinuities, such as taking reciprocals or trigonometric ratios.
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Example 1

When each of the following operations is performed on each side of an inequality, state whether 

the sign stays the same, changes, or whether we need more information.

a multiplying by 3                              b dividing by −2 c taking the tangent 

d taking the negative reciprocal       e taking the square root

Solution

a stays the same           Multiplying by a positive is an increasing function

b swaps                         Dividing by a negative is a decreasing function

c more information        The tangent is a discontinuous function

d more information        The reciprocal matches the hyperbola which is a discontinuous function

e stays the same, assuming both sides are positive     

The square root is an increasing function for positive values

Example 2

If 𝑎 > 𝑏 > 0 for real 𝑎 and 𝑏, prove that 2−𝑎2
< 2−𝑏2

Solution

Method 1

LHS − RHS

= 2−𝑎2
− 2−𝑏2

=
1

2𝑎2 −
1

2𝑏2

=
2𝑏2

− 2𝑎2

2𝑎2𝑏2

< 0 since 𝑎 > 𝑏 > 0

∴ 2−𝑎2
< 2−𝑏2

□

Method 2

𝑎 > 𝑏

𝑎2 > 𝑏2 since 𝑎 > 𝑏 > 0

2−𝑎2

< 2−𝑏2
since 2−𝑥 is a decreasing

function □
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Example 3

Given 𝑎 + 4𝑏 ≥ 4 𝑎𝑏 for real 𝑎 and 𝑏, for what values will equality occur?

Solution

Let 𝑎 + 4𝑏 = 4 𝑎𝑏

𝑎2 + 8𝑎𝑏 + 16𝑏2 = 16𝑎𝑏

𝑎2 − 8𝑎𝑏 + 16𝑏2 = 0

𝑎 − 4𝑏 2 = 0

𝑎 − 4𝑏 = 0

𝑎 = 4𝑏

Equality will occur whenever 𝑎 = 4𝑏 □

EQUALITY

We are sometimes interested in what values of the variables can cause the two expressions to 

be equal - we call this equality. This will often be when the variables equal each other.

PROPERTIES OF POSITIVE NUMBERS

The syllabus has not specified that 𝑎, 𝑏 > 0, but in reality many questions will specify that all

values are positive. Many consequences of this are more common sense than rules.

Example 4

If 𝑎 > 𝑏 > 0 for real 𝑎 and 𝑏, prove that (𝑎 + 1)(𝑎 − 1) > (𝑏 + 1)(𝑏 − 1)

Solution

Method 1

LHS − RHS

= 𝑎 + 1 𝑎 − 1 − 𝑏 + 1 𝑏 − 1

= 𝑎2 − 1 − 𝑏2 − 1

= 𝑎2 − 𝑏2

> 0 since 𝑎 > 𝑏 > 0

∴ 𝑎 + 1 𝑎 − 1 > 𝑏 + 1 𝑏 − 1 □

Method 2 (work backwards on working out

paper first, then rewrite in the correct order)

𝑎 > 𝑏

𝑎2 > 𝑏2 since 𝑎 > 𝑏 > 0

𝑎2 − 1 > 𝑏2 − 1

𝑎 + 1 𝑎 − 1 > 𝑏 + 1 𝑏 − 1 □
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Example 5

If 𝑎, 𝑏, 𝑐 > 0 prove that 𝑎 + 𝑏 + 𝑐 2 − 𝑎𝑏 + 𝑏𝑐 + 𝑎𝑐 ≥ 0

Solution

Remembering from Polynomials that 

𝑎 + 𝑏 + 𝑐 2 = 𝑎2 + 𝑏2 + 𝑐2 + 2 𝑎𝑏 + 𝑏𝑐 + 𝑎𝑐

LHS = 𝑎 + 𝑏 + 𝑐 2 − 𝑎𝑏 + 𝑏𝑐 + 𝑎𝑐

= 𝑎2 + 𝑏2 + 𝑐2 + 2 𝑎𝑏 + 𝑏𝑐 + 𝑎𝑐 − 𝑎𝑏 + 𝑏𝑐 + 𝑎𝑐

= 𝑎2 + 𝑏2 + 𝑐2 + 𝑎𝑏 + 𝑏𝑐 + 𝑎𝑐

≥ 0 + 0 + 0 + 0 + 0 + 0 since 𝑎, 𝑏, 𝑐 > 0

≥ 0

∴ 𝑎 + 𝑏 + 𝑐 2 − 𝑎𝑏 + 𝑏𝑐 + 𝑎𝑐 ≥ 0 □

SANDWICH THEOREM

If the value of a function must lie between the values of two other functions (for example 0 <

𝑓 𝑥 < 𝑒−𝑥), and at some point the two outer functions approach each other, then the function in

the middle must also approach this value. So in the example below as 𝑥 → ∞ we see that 𝑦 =

𝑒−𝑥 approaches 0, which is the lower function. This means that 𝑓 𝑥 → 0 as well.

Example 6

Prove that
sin 𝑥

𝑥
→ 0 as 𝑥 → ∞

Solution

−1 ≤ sin 𝑥 ≤ 1

∴ −
1

𝑥
≤

sin 𝑥

𝑥
≤

1

𝑥

As 𝑥 → ∞,
1

𝑥
→ 0

∴ as 𝑥 → ∞ 0 ≤
sin 𝑥

𝑥
≤ 0

∴
sin 𝑥

𝑥
→ 0 as 𝑥 → ∞ □
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Proof 7

Prove 𝑥 + 𝑦 ≥ 𝑥 + 𝑦 for all real numbers 𝑥, 𝑦.

Solution

Case 1: 𝑥, 𝑦 ≥ 0

𝑥 + 𝑦

= 𝑥 + 𝑦 for 𝑥, 𝑦 ≥ 0

= 𝑥 + 𝑦

∴ true for 𝑥, 𝑦 ≥ 0

Case 2: 𝑥, 𝑦 ≤ 0

𝑥 + 𝑦

= −𝑥 − 𝑦 for 𝑥, 𝑦 ≤ 0

= −(𝑥 + 𝑦)

= 𝑥 + 𝑦

∴ true for 𝑥, 𝑦 ≤ 0

Case 3: 𝑥 ≥ 0, 𝑦 < 0 without loss of generality *

𝑥 + 𝑦

= 𝑥 − 𝑦 for 𝑥 > 0, 𝑦 < 0

= 𝑥 − 𝑦 for 𝑥 > 0, 𝑦 < 0

> 𝑥 + 𝑦 for 𝑥 > 0, 𝑦 < 0

∴ true for 𝑥, 𝑦 > 0

∴ 𝑥 + 𝑦 ≥ 𝑥 + 𝑦 for all real numbers 𝑥, 𝑦.

* Without loss of generality means we could prove a similar result which swapped 𝑥 and 𝑦 in the

same way.

TRIANGLE INEQUALITY

For three straight lines to form a triangle any two sides must add to more than the other side.

Not convinced? Try making a triangle 

with sides 3, 4 and 8

So we can see that regardless the values of 𝑥 and 𝑦, that

𝑥 + 𝑦 ≥ 𝑥 + 𝑦

We use the triangle inequality in situations other than triangles - if we are using real numbers or

vectors the ‘sides’ of the triangle can lay flat, which is why we need to use ≥.

We will use a much easier proof of this rule in Vectors.

3 4

8
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Example 8

Prove 𝑎2 − 𝑎𝑏 + 𝑎𝑏 − 𝑏2 ≥ (𝑎 + 𝑏)(𝑎 − 𝑏) for 𝑎 > 𝑏 > 0

Solution

𝑎2 − 𝑎𝑏 + 𝑎𝑏 − 𝑏2

≥ 𝑎2 − 𝑎𝑏 + 𝑎𝑏 − 𝑏2 by the triangle inequality

= 𝑎2 − 𝑏2

= 𝑎2 − 𝑏2 since 𝑎 > 𝑏

= 𝑎 + 𝑏 𝑎 − 𝑏

∴ 𝑎2 − 𝑎𝑏 + 𝑎𝑏 − 𝑏2 ≥ 𝑎 + 𝑏 𝑎 − 𝑏 □

Example 9

Prove 𝑎 − 𝑏 + 𝑐 − 𝑏 ≥ 𝑎 − 𝑐 for 𝑎 > 𝑏 > 𝑐 > 0

Solution

𝑎 − 𝑏 + 𝑐 − 𝑏

= 𝑎 − 𝑏 + 𝑏 − 𝑐

≥ 𝑎 − 𝑏 + 𝑏 − 𝑐 by the triangle inequality

= 𝑎 − 𝑐

= 𝑎 − 𝑐 since 𝑎 > 𝑐

∴ 𝑎 − 𝑏 + 𝑐 − 𝑏 ≥ 𝑎 − 𝑐

Example 10

A triangle has sides 𝑥, 10, 12. What are the possible values of 𝑥?

Solution

If 𝑥 is the smallest side then 𝑥 + 10 > 12, so 𝑥 > 2.

If 𝑥 is the longest side then 10 + 12 > 𝑥, so 𝑥 < 22

∴ 2 < 𝑥 < 22.
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Example 11

If 𝑎, 𝑏, 𝑐 are real prove that 𝑎 + 𝑏 + 𝑐 2 − 𝑎𝑏 + 𝑏𝑐 + 𝑎𝑐 ≥ 0

Solution

LHS = 𝑎2 + 𝑏2 + 𝑐2 − 𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎

=
1

2
𝑎2 − 2𝑎𝑏 + 𝑏2 + 𝑏2 − 2𝑏𝑐 + 𝑐2 + 𝑐2 − 2𝑐𝑎 + 𝑎2

=
1

2
𝑎 − 𝑏 2 + 𝑏 − 𝑐 2 + 𝑐 − 𝑎 2

≥
1

2
0 + 0 + 0

= 0

∴ 𝑎 + 𝑏 + 𝑐 2 − 𝑎𝑏 + 𝑏𝑐 + 𝑎𝑐 ≥ 0 □

THE SQUARE OF A REAL NUMBER IS NON-NEGATIVE

A fundamental property of real numbers is that when we square them the result is non-negative,

so zero or positive. We can write this as ℝ2 ≥ 0, although ℝ is set notation and not in the

syllabus.

We will use this property extensively with the arithmetic mean - geometric mean inequality, but

here are a couple of other applications.

Example 12

If 𝑥, 𝑦 > 0 prove that 𝑥4 + 𝑦4 ≥ 𝑥3𝑦 + 𝑥𝑦3

Solution

LHS = 𝑥4 − 𝑥3𝑦 + 𝑦4 − 𝑥𝑦3

= 𝑥3 𝑥 − 𝑦 + 𝑦3 𝑦 − 𝑥

= 𝑥3 𝑥 − 𝑦 − 𝑦3 𝑥 − 𝑦

= 𝑥3 − 𝑦3 𝑥 − 𝑦

= 𝑥 − 𝑦 𝑥2 + 𝑥𝑦 + 𝑦2 𝑥 − 𝑦

= 𝑥 − 𝑦 2 𝑥2 + 𝑥𝑦 + 𝑦2

≥ 0 since both expressions are non−negative

∴ 𝑥4 + 𝑦4 ≥ 𝑥3𝑦 + 𝑥𝑦3 □
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EXERCISE 1.5

BASIC

1 When each of the following operations is performed on each side of an inequality, state 

whether the sign stays the same, changes, or whether we need more information.

a adding -3                                  b dividing by 2 c multiplying by −1

d taking the sine                         e taking the natural logarithm

2 If 𝑎 > 𝑏 > 0 for real 𝑎 and 𝑏, prove that −
1

𝑎
> −

1

𝑏

3 Given 16𝑎 + 9𝑏 ≥ 24 𝑎𝑏 for real 𝑎 and 𝑏, for what values will equality occur?

4 If 𝑎 > 𝑏 > 0 for real 𝑎 and 𝑏, prove that 2 + 𝑎 2 − 𝑎 < (2 + 𝑏)(2 − 𝑏)

5 a If 𝑎, 𝑏, 𝑐 > 0 prove that 𝑎 + 𝑏 + 𝑐 2 − 𝑎𝑏 + 𝑏𝑐 + 𝑎𝑐 ≥ 0

b If 𝑎, 𝑏, 𝑐 are real prove that 𝑎2 + 𝑏2 + 𝑐2 − 𝑎𝑏 + 𝑏𝑐 + 𝑎𝑐 ≥ 0

6 Prove that 𝑒−𝑥 sin 𝑥 → 0 as 𝑥 → ∞, given −𝑒−𝑥 ≤ 𝑒−𝑥 sin 𝑥 ≤ 𝑒−𝑥

7 Prove 𝑎2 − 2𝑎𝑏 + 4𝑏2 − 2𝑎𝑏 ≥ (𝑎 + 2𝑏)(𝑎 − 2𝑏) for 𝑎 > 2𝑏 > 0

8 Prove 𝑎 − 𝑏 + 𝑏 − 𝑎 > 0 for 𝑎 > 𝑏 > 0.

9 A triangle has sides 𝑥, 7,5. What are the possible values of 𝑥?

10 If 𝑥, 𝑦 > 0 prove that 𝑥5 + 𝑦5 ≥ 𝑥4𝑦 + 𝑥𝑦4

MEDIUM

11 If 𝑎 = 𝑏 + 𝑐 for 𝑎, 𝑏, 𝑐 > 0, prove 𝑎2 − 𝑏𝑐 > 𝑏2 + 𝑐2

12 If 𝑎, 𝑏 > 0 prove a3 − 𝑎𝑏2 − 𝑎2𝑏 + 𝑏3 ≥ 0

13 Given 𝑥 > sin 𝑥 for 𝑥 > 0, prove  𝜋𝑥 − 𝑥2 > sin2 𝑥 for 0 < 𝑥 < 𝜋

14 Two sides of an isosceles triangle are 4 cm and 6 cm. Prove the third side can be 4 cm or

6 cm.

15 If 𝑎 > 𝑏 for real 𝑎 and 𝑏, prove that 𝑎2 + 𝑏2 + 8 ≥ 4(𝑎 + 𝑏)
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16 Show that for any real 𝑥, 𝑥 − 3 𝑥 + 1 𝑥 − 5 𝑥 + 3 + 40 ≥ 0

17 Let 𝑎, 𝑏, 𝑥, 𝑦 > 0. Prove that 𝑎2 − 𝑏2 𝑥2 − 𝑦2 ≤ 𝑎𝑥 − 𝑏𝑦 2

CHALLENGING

18 If 𝑎, 𝑏 > 0, prove that
𝑎

𝑏
+

𝑏

𝑎
≥ 𝑎 + 𝑏

19 Prove 𝑎2 + 𝑏2 + 𝑐2 + 𝑑2 + 𝑒2 ≥ 𝑎 𝑏 + 𝑐 + 𝑑 + 𝑒

20
a By substituting 𝑎 = 2𝑥, 𝑏 = 𝑦 in 𝑎 − 𝑏 2 ≥ 0 prove 𝑥 + 𝑦

1

𝑥
+

4

𝑦
≥ 9 for 𝑥, 𝑦 > 0

b By substituting 𝑎 = 𝑥, 𝑏 = 𝑦 in 𝑎 − 𝑏 2 ≥ 0 then 𝑎 =
1

𝑥
, 𝑏 =

4

𝑦
prove

𝑥 + 𝑦
1

𝑥
+

4

𝑦
≥ 8.

c The results in (a) and (b) are different but both correct. Now 𝑥 + 𝑦
1

𝑥
+

4

𝑦
cannot be

smaller than 9. What have we done in (b) that has caused us to set a lower limit than is

needed?
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SOLUTIONS - EXERCISE 1.5

1 a) stays the same

b) stays the same

c) swaps

d) more information

e) stays the same, assuming both sides are positive

2 Method 1

LHS − RHS

=
1

𝑏
−

1

𝑎

=
𝑎 − 𝑏

𝑎𝑏
> 0 since 𝑎 > 𝑏 > 0

∴−
1

𝑎
> −

1

𝑏
□

Method 2

𝑎 > 𝑏
1

𝑎
<

1

𝑏
since 𝑎 > 𝑏 > 0

−
1

𝑎
> −

1

𝑏
□

3 Let 16𝑎 + 9𝑏 = 24 𝑎𝑏
256𝑎2 + 288𝑎𝑏 + 81𝑏2 = 576𝑎𝑏
256𝑎2 − 288𝑎𝑏 + 81𝑏2 = 0

16𝑎 − 9𝑏 2 = 0
16𝑎 − 9𝑏 = 0

𝑎 =
9𝑏

16
Equality will occur whenever 𝑎 =

9𝑏

16

4 Method 1

LHS − RHS
= 2 + 𝑎 2 − 𝑎 − 2 + 𝑏 2 − 𝑏
= 4 − 𝑎2 − 4 − 𝑏2

= 𝑏2 − 𝑎2

< 0 since 𝑎 > 𝑏 > 0
∴ 2 + 𝑎 2 − 𝑎 < 2 + 𝑏 2 − 𝑏 □

Method 2 (work backwards on working out

paper first, then rewrite in the correct order)

𝑎 > 𝑏
𝑎2 > 𝑏2 since 𝑎 > 𝑏 > 0

−𝑎2 < −𝑏2

4 − 𝑎2 < 4 − 𝑏2

2 + 𝑎 2 − 𝑎 < 2 + 𝑏 2 − 𝑏 □

5 a LHS = 𝑎 + 𝑏 + 𝑐 2 − 𝑎𝑏 + 𝑏𝑐 + 𝑎𝑐

= 𝑎2 + 𝑏2 + 𝑐2 + 2 𝑎𝑏 + 𝑏𝑐 + 𝑎𝑐 − 𝑎𝑏 + 𝑏𝑐 + 𝑎𝑐

= 𝑎2 + 𝑏2 + 𝑐2 + 𝑎𝑏 + 𝑏𝑐 + 𝑎𝑐

≥ 0 + 0 + 0 + 0 + 0 + 0 since 𝑎, 𝑏, 𝑐 > 0

≥ 0

∴ 𝑎 + 𝑏 + 𝑐 2 − 𝑎𝑏 + 𝑏𝑐 + 𝑎𝑐 ≥ 0 □

b LHS = 𝑎2 + 𝑏2 + 𝑐2 − 𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎

=
1

2
𝑎2 − 2𝑎𝑏 + 𝑏2 + 𝑏2 − 2𝑏𝑐 + 𝑐2 + 𝑐2 − 2𝑐𝑎 + 𝑎2

=
1

2
𝑎 − 𝑏 2 + 𝑏 − 𝑐 2 + 𝑐 − 𝑎 2

≥
1

2
0 + 0 + 0

= 0

∴ 𝑎 + 𝑏 + 𝑐 2 − 𝑎𝑏 + 𝑏𝑐 + 𝑎𝑐 ≥ 0 □
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6 𝑒−𝑥 → 0 as 𝑥 → ∞
∴ 0 ≤ 𝑒−𝑥 sin 𝑥 ≤ 0 as 𝑥 → ∞
∴ 𝑒−𝑥 sin 𝑥 → 0 as 𝑥 → ∞ □

7 𝑎2 − 2𝑎𝑏 + 4𝑏2 − 2𝑎𝑏
= 𝑎2 − 2𝑎𝑏 + 2𝑎𝑏 − 4𝑏2

≥ 𝑎2 − 2𝑎𝑏 + 2𝑎𝑏 − 4𝑏2 by the triangle inequality
= 𝑎2 − 4𝑏2

= 𝑎2 − 4𝑏2 since 𝑎 > 2𝑏 > 0
= 𝑎 + 2𝑏 𝑎 − 2𝑏
∴ 𝑎2 − 2𝑎𝑏 + 4𝑏2 − 2𝑎𝑏 ≥ 𝑎 + 2𝑏 𝑎 − 2𝑏 □

8 𝑎 − 𝑏 + 𝑏 − 𝑎

> 𝑎 − 𝑏 + 𝑏 − 𝑎 by the triangle inequality and since a>b

= 0

= 0

∴ 𝑎 − 𝑏 + 𝑏 − 𝑎 > 0 for 𝑎 > 𝑏 > 0 □

9 If 𝑥 is the smallest side then 𝑥 + 5 > 7, so 𝑥 > 2.

If 𝑥 is the longest side then 5 + 7 > 𝑥, so 𝑥 < 12
∴ 2 < 𝑥 < 12.

10 LHS = 𝑥5 − 𝑥4𝑦 + 𝑦5 − 𝑥𝑦4

= 𝑥4 𝑥 − 𝑦 + 𝑦4 𝑦 − 𝑥
= 𝑥4 𝑥 − 𝑦 − 𝑦4 𝑥 − 𝑦
= 𝑥4 − 𝑦4 𝑥 − 𝑦
= 𝑥2 + 𝑦2 𝑥2 − 𝑦2 𝑥 − 𝑦
= 𝑥2 + 𝑦2 𝑥 + 𝑦 𝑥 − 𝑦 𝑥 − 𝑦
= 𝑥2 + 𝑦2 𝑥 + 𝑦 𝑥 − 𝑦 2

≥ 0 since all three expressions are non−negative
∴ 𝑥5 + 𝑦5 ≥ 𝑥4𝑦 + 𝑥𝑦4 □

11 𝑎 = 𝑏 + 𝑐

𝑎2 = 𝑏2 + 2𝑏𝑐 + 𝑐2

𝑎2 − 2𝑏𝑐 = 𝑏2 + 𝑐2

𝑎2 − 𝑏𝑐 > 𝑏2 + 𝑐2 since 𝑏𝑐 > 0 □

12 LHS = 𝑎 𝑎2 − 𝑏2 − 𝑏 𝑎2 − 𝑏2

= 𝑎 − 𝑏 𝑎2 − 𝑏2

= 𝑎 − 𝑏 𝑎 + 𝑏 𝑎 − 𝑏

= 𝑎 − 𝑏 2 𝑎 + 𝑏

≥ 0 since ℝ2 ≥ 0 and 𝑎, 𝑏 > 0 □
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13 𝑥 > sin 𝑥 1
𝜋 − 𝑥 > sin 𝜋 − 𝑥

∴ 𝜋 − 𝑥 > sin 𝑥 since sin 𝜋 − 𝑥 = sin 𝑥 2

1 × 2 :
𝜋𝑥 − 𝑥2 > sin2 𝑥 □

14 If the sides are 4, 4 and 6 then the sides satisfy the triangle inequality in any order: 4 + 4 >
6, 4 + 6 > 4, 6 + 4 > 4

If the sides are 4, 6 and 6 then the sides also satisfy the triangle inequality in any order: 

4 + 6 > 6, 6 + 4 > 6, 6 + 6 > 4

The third side of the isosceles triangle can be 4 cm or 6 cm.

15 LHS = 𝑎2 + 𝑏2 − 4𝑎 − 4𝑏 + 8

= 𝑎2 − 4𝑎 + 4 + 𝑏2 − 4𝑏 + 4

= 𝑎 − 2 2 + 𝑏 − 2 2

≥ 0 + 0

= 0

∴ 𝑎2 + 𝑏2 + 8 ≥ 4 𝑎 + 𝑏 □

16 LHS = 𝑥 − 3 𝑥 + 1 𝑥 − 5 𝑥 + 3 + 40
= 𝑥2 − 2𝑥 − 3 𝑥2 − 2𝑥 − 15 + 40
= 𝑥2 − 2𝑥 − 9 + 6 𝑥2 − 2𝑥 − 9 − 6 + 40
= 𝑥2 − 2𝑥 − 9 2 − 62 + 40
= 𝑥2 − 2𝑥 − 9 2 + 4
> 0 since the expressions are non−negative and positive respectively

∴ 𝑥 − 3 𝑥 + 1 𝑥 − 5 𝑥 + 3 + 40 > 0 □

17 Working out paper

𝑎2 − 𝑏2 𝑥2 − 𝑦2 ≤ 𝑎𝑥 − 𝑏𝑦 2

𝑎2𝑥2 − 𝑎2𝑦2 − 𝑏2𝑥2 + 𝑏2𝑦2 ≤ 𝑎2𝑥2 − 2𝑎𝑏𝑥𝑦 + 𝑏2𝑦2

−𝑎2𝑦2 − 𝑏2𝑥2 ≤ −2𝑎𝑏𝑥𝑦
𝑎2𝑦2 + 𝑏2𝑥2 ≥ 2𝑎𝑏𝑥𝑦

𝑎2𝑦2 − 2𝑎𝑏𝑥𝑦 + 𝑏2𝑥2 ≥ 0
𝑎𝑦 − 𝑏𝑥 2 ≥ 0

Actual solution:

𝑎𝑦 − 𝑏𝑥 2 ≥ 0
𝑎2𝑦2 − 2𝑎𝑏𝑥𝑦 + 𝑏2𝑥2 ≥ 0

𝑎2𝑦2 + 𝑏2𝑥2 ≥ 2𝑎𝑏𝑥𝑦
−𝑎2𝑦2 − 𝑏2𝑥2 ≤ −2𝑎𝑏𝑥𝑦

𝑎2𝑥2 − 𝑎2𝑦2 − 𝑏2𝑥2 + 𝑏2𝑦2 ≤ 𝑎2𝑥2 − 2𝑎𝑏𝑥𝑦 + 𝑏2𝑦2

𝑎2 − 𝑏2 𝑥2 − 𝑦2 ≤ 𝑎𝑥 − 𝑏𝑦 2 □
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18 LHS−RHS =
𝑎

𝑏
+

𝑏

𝑎
− 𝑎 − 𝑏

=
𝑎 𝑎 + 𝑏 𝑏 − 𝑎 𝑏 − 𝑏 𝑎

𝑎𝑏

=
𝑎 𝑎 − 𝑏 − 𝑏 𝑎 − 𝑏

𝑎𝑏

=
𝑎 − 𝑏 𝑎 − 𝑏

𝑎𝑏

=
𝑎 − 𝑏 𝑎 + 𝑏 𝑎 − 𝑏

𝑎𝑏

=
𝑎 − 𝑏

2
𝑎 + 𝑏

𝑎𝑏
≥ 0

∴
𝑎

𝑏
+

𝑏

𝑎
≥ 𝑎 + 𝑏 □

19 LHS − RHS = 𝑎2 + 𝑏2 + 𝑐2 + 𝑑2 + 𝑒2 − 𝑎 𝑏 + 𝑐 + 𝑑 + 𝑒

=
𝑎2

4
− 𝑎𝑏 + 𝑏2 +

𝑎2

4
− 𝑎𝑐 + 𝑐2 +

𝑎2

4
− 𝑎𝑑 + 𝑑2 +

𝑎2

4
− 𝑎𝑒 + 𝑒2

=
𝑎

2
− 𝑏

2

+
𝑎

2
− 𝑐

2

+
𝑎

2
− 𝑑

2

+
𝑎

2
− 𝑒

2

≥ 0
∴ 𝑎2 + 𝑏2 + 𝑐2 + 𝑑2 + 𝑒2 ≥ 𝑎 𝑏 + 𝑐 + 𝑑 + 𝑒

20 a

2𝑥 − 𝑦 2 ≥ 0
4𝑥2 − 4𝑥𝑦 + 𝑦2 ≥ 0
4𝑥2 + 5𝑥𝑦 + 𝑦2 ≥ 9𝑥𝑦
𝑥 + 𝑦 4𝑥 + 𝑦 ≥ 9𝑥𝑦
𝑥 + 𝑦 4𝑥 + 𝑦

𝑥𝑦
≥ 9

𝑥 + 𝑦
1

𝑥
+

4

𝑦
≥ 9 (1)

b

𝑥 − 𝑦 2 ≥ 0
𝑥 − 2 𝑥𝑦 + 𝑦 ≥ 0

𝑥 + 𝑦 ≥ 2 𝑥𝑦 (2)

1

𝑥
−

2

𝑦

2

≥ 0

1

𝑥
−

4

𝑥𝑦
+

4

𝑦
≥ 0

1

𝑥
+

4

𝑦
≥

4

𝑥𝑦
(3)

2 × 3 :

∴ 𝑥 + 𝑦
1

𝑥
+

4

𝑦
≥ 8

c The minimum value of each inequality occurs at equality, so 𝑦 = 𝑥 in (2) and 𝑦 = 4𝑥 in

(3). Neither of these matches equality in (1), which is 𝑦 = 2𝑥, which causes the disparity.
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In Lesson 6 we look at the Arithmetic Mean - Geometric Mean Inequality, covering:

• The Four Means

• Arithmetic Mean and Geometric Mean Inequality

THE FOUR MEANS

When we talk about the mean of a set of data we are normally talking about the Arithmetic Mean

(AM) - the sum of the scores divided by the number of scores. We also call this the average.

The arithmetic mean is a useful measure of centre when the scores are close together, but is

affected by very large values when the numbers are spread.

AM =
𝑥1 + 𝑥2 + 𝑥3+. . . 𝑥𝑛

𝑛

There are many other types of mean, each with a different purpose. We will use the Geometric

mean extensively in the rest of this lesson, plus harder questions sometimes use the Harmonic

Mean and Quadratic Mean without naming them.

The geometric mean of a set of data is the 𝑛th root of their product. The numbers must all have

the same sign to be able to find a geometric mean. It is more useful than the arithmetic mean

when finding the centre of scores that are widely spread, as large scores don’t distort the results

as much.

GM = 𝑛 𝑥1 × 𝑥2 × 𝑥3 ×. . .× 𝑥𝑛

HM =
𝑛

1
𝑥1

+
1
𝑥2

+. . . +
1

𝑥𝑛

For two scores the Harmonic Mean can be rearranged to give
𝑥1𝑥2

𝑥1+𝑥2
, which students will

sometimes see in questions.

The harmonic mean of a set of data is the reciprocal of the mean of the sum of the reciprocals of

the scores. It is useful when finding the average of two or more rates. The term harmonic mean

is not used in the syllabus.

1.6: ARITHMETIC MEAN - GEOMETRIC MEAN INEQUALITY
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The quadratic mean of a set of data is the square root of the average of the sum of the squares

of the scores. It is related to standard deviation. The term quadratic mean is not used in the

syllabus, but students will sometimes see questions that involve the expression.

QM =
𝑥1

2 + 𝑥2
2+. . . +𝑥𝑛

2

𝑛

We will not mention the terms Harmonic Mean or Quadratic Mean again, although we will come

across questions involving the expressions.

ARITHMETIC MEAN - GEOMETRIC MEAN INEQUALITY

The arithmetic mean of a set of numbers is always greater than or equal to 

their geometric mean, with equality when all numbers are equal.

𝑥1 + 𝑥2 + 𝑥3+. . . 𝑥𝑛

𝑛
≥ 𝑛 𝑥1𝑥2𝑥3. . . 𝑥𝑛

We will look at many proofs involving this property, all restricted to positive real numbers. We

will abbreviate this inequality as AM-GM at times.

The syllabus states that students should

• ‘establish and use the relationship between the arithmetic mean and geometric mean for

two non-negative numbers’, then

• ‘prove further results involving inequalities by logical use of previously obtained

inequalities’.

At a guess we can interpret this to mean we will use the AM-GM Inequality:

• for 2 variables in easy and hard questions

• for 2 variables at a time for 3 or 4 numbers (multiple applications of the AM-GM Inequality)

• for 3 or 4 variables in simple applications
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Proof 1

For 𝑎, 𝑏 ≥ 0 prove 
𝑎+𝑏

2
≥ 𝑎𝑏 using the square of the difference of the square roots of 𝑎 and 𝑏.

Solution

Method 1

𝑎 − 𝑏
2

≥ 0

𝑎 − 2 𝑎𝑏 + 𝑏 ≥ 0

𝑎 + 𝑏 ≥ 2 𝑎𝑏

𝑎 + 𝑏

2
≥ 𝑎𝑏 □

Method 2

𝑎 − 𝑏 2 ≥ 0

𝑎2 − 2𝑎𝑏 + 𝑏2 ≥ 0

𝑎2 + 2𝑎𝑏 + 𝑏2 ≥ 4𝑎𝑏

𝑎 + 𝑏 2 ≥ 4𝑎𝑏

𝑎 + 𝑏 ≥ 2 𝑎𝑏

𝑎 + 𝑏

2
≥ 𝑎𝑏

In Method 1, which is the preferred method, we start by squaring the difference of the square

roots of the two variables. We will use this technique in harder examples to come, rather than

the traditional solution (Method 2), as it is often quicker than substituting into the AM-GM

Inequality.

We could make it even shorter by using 
𝑎

2
−

𝑏

2

2

≥ 0, but I find the version used in the proof 

more useful overall.

Method 1

Starting with the axiom ℝ2 ≥ 0. 

The expression in the brackets should be the difference of the square roots of the two terms in 

the result to be proved. For example if we want to prove 
𝑥2+𝑦2

2
> 𝑥𝑦 then we start with

𝑥 − 𝑦 2 ≥ 0, as 𝑥 and 𝑦 are the square roots of 𝑥2 and 𝑦2 respectively. 

Solving from the axiom is simpler and more convincing.

Method 2

Starting with 
𝑎+𝑏

2
≥ 𝑎𝑏

You can only do this if this result has been proven in part (i) of the question, or if you are told 

you may assume it. You then make appropriate substitutions for 𝑎 and 𝑏. 

If a question already uses the pronumerals you will need in the final answer, state the axiom/ 

known result using different pronumerals to make it easier to understand. 
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Example 2

For 𝑎 > 0 prove 𝑎 +
1

𝑎
≥ 2

Solution

Method 1

𝑎 −
1

𝑎

2

≥ 0

𝑎 − 2 +
1

𝑎
≥ 0

𝑎 +
1

𝑎
≥ 2 □

Method 2

Let 𝑥 = 𝑎, 𝑦 =
1

𝑎
in

𝑥+𝑦

2
≥ 𝑥𝑦

∴
𝑎 +

1
𝑎

2
≥ 𝑎 ×

1

𝑎

𝑎 +
1

𝑎
≥ 2 □

Method 3

LHS− RHS = 𝑎 − 2 +
1

𝑎

= 𝑎 −
1

𝑎

2

≥ 0

∴ 𝑎 − 2 +
1

𝑎
≥ 0

∴ 𝑎 +
1

𝑎
≥ 2 □

Method 4

On working out paper:

𝑎 +
1

𝑎
≥ 2

𝑎 − 2 +
1

𝑎
≥ 0

𝑎 −
1

𝑎

2

≥ 0

Now rewrite like Method 1

Method 3

Starting with an expression equal to LHS − RHS, and simplifying it until it is positive or negative, 

then interpreting the result as proving that which is to be proved.

Method 4

On working out paper work from the conclusion to a true statement, then write the steps out in 

reverse order as your actual solution.

For the examples to follow we will only use Methods 1 and 2, reserving the other methods as

back up for questions where we cannot see how to progress with the first two methods.

Mathematics Extension 2 © Steve Howard 61 Howard and Howard Education



Example 3

For 𝑎, 𝑏, 𝑐 > 0 prove 𝑎𝑐 +
𝑏

𝑐
≥ 2 𝑎𝑏

Solution

Method 1

𝑎𝑐 −
𝑏

𝑐

2

≥ 0

𝑎𝑐 − 2 𝑎𝑏 +
𝑏

𝑐
≥ 0

∴ 𝑎𝑐 +
𝑏

𝑐
≥ 2 𝑎𝑏 □

Method 2

Let 𝑚 = 𝑎𝑐, 𝑦 =
𝑏

𝑐
in

𝑚+𝑛

2
≥ 𝑚𝑛

∴
𝑎𝑐 +

𝑏
𝑐

2
≥ 𝑎𝑐 ∙

𝑏

𝑐

∴ 𝑎𝑐 +
𝑏

𝑐
≥ 2 𝑎𝑏 □

Example 4

Prove 𝑥 ≥ 2 𝑥 − 1 for 𝑥 ≥ 1

Solution

If we look closely we see this can be rewritten as 𝑥 − 1 + 1 ≥ 2 (𝑥 − 1)(1), which is the AM-

GM with 𝑥 − 1 and 1.

The best solution uses Method 1, the square of the difference of the square roots. It is simpler

and more convincing than the alternatives to follow.

Method 1

𝑥 − 1 − 1
2

≥ 0

𝑥 − 1 − 2 𝑥 − 1 + 1 ≥ 0

𝑥 ≥ 2 𝑥 − 1 for 𝑥 ≥ 1 □

Method 2

Let 𝑎 = 𝑥 − 1 and 𝑏 = 1 in AM-GM

∴
𝑥 − 1 + (1)

2
≥ 𝑥 − 1 1

𝑥

2
≥ 𝑥 − 1

∴ 𝑥 ≥ 2 𝑥 − 1 for 𝑥 ≥ 1 □
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Example 5

For 𝑎, 𝑏 > 0 prove 𝑎 + 𝑏 2 ≥ 4𝑎𝑏

Solution

We could start with Method 1 or 2 and square our answer, but when we have to prove that one

expression is greater than or equal to another expression, it is often easiest to use Method 3,

investigating LHS − RHS, and in this case try and prove it is ≥ 0. Alternatively we could use

Method 4.

Method 3

LHS − RHS

= 𝑎 + 𝑏 2 − 4𝑎𝑏

= 𝑎2 + 2𝑎𝑏 + 𝑏2 − 4𝑎𝑏

= 𝑎2 − 2𝑎𝑏 + 𝑏2

= 𝑎 − 𝑏 2

≥ 0 since ℝ2 ≥ 0

∴ 𝑎 + 𝑏 2 − 4𝑎𝑏 ≥ 0

∴ 𝑎 + 𝑏 2 ≥ 4𝑎𝑏 □

Method 4

Working out paper

𝑎 + 𝑏 2 ≥ 4𝑎𝑏

𝑎2 + 2𝑎𝑏 + 𝑏2 ≥ 4𝑎𝑏

𝑎2 − 2𝑎𝑏 + 𝑏2 ≥ 0

𝑎 − 𝑏 2 ≥ 0

Actual Solution:

𝑎 − 𝑏 2 ≥ 0

𝑎2 − 2𝑎𝑏 + 𝑏2 ≥ 0

𝑎2 + 2𝑎𝑏 + 𝑏2 ≥ 4𝑎𝑏

𝑎 + 𝑏 2 ≥ 4𝑎𝑏 □
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Example 6

Given
𝑎+𝑏

2
≥ 𝑎𝑏, prove

𝑥𝑦

𝑧
+

𝑦𝑧

𝑥
+

𝑧𝑥

𝑦
≥ 𝑥 + 𝑦 + 𝑧 for 𝑥, 𝑦, 𝑧 > 0

Solution

We could start with Method 1 or 2 and square our answer, but when we have to prove that one

expression is greater than or equal to another expression, it is often easiest to use Method 3,

investigating LHS − RHS, and in this case try and prove it is ≥ 0. Alternatively we could use

Method 4.

𝑥𝑦
𝑧 +

𝑦𝑧
𝑥

2
≥

𝑥𝑦2𝑧

𝑧𝑥
(AM−GM)

1

2

𝑥𝑦

𝑧
+

𝑦𝑧

𝑥
≥ 𝑦 1

Similarly

1

2

𝑦𝑧

𝑥
+

𝑧𝑥

𝑦
≥ 𝑧 2

1

2

𝑥𝑦

𝑧
+

𝑧𝑥

𝑦
≥ 𝑥 3

1 + 2 + 3 :

1

2

𝑥𝑦

𝑧
+

𝑦𝑧

𝑥
+

1

2

𝑦𝑧

𝑥
+

𝑧𝑥

𝑦
+

1

2

𝑥𝑦

𝑧
+

𝑧𝑥

𝑦
≥ 𝑦 + 𝑧 + 𝑥

𝑥𝑦

𝑧
+

𝑦𝑧

𝑥
+

𝑧𝑥

𝑦
≥ 𝑥 + 𝑦 + 𝑧 □

In harder questions we use the AM - GM inequality multiple times. These types of questions

would often be part (ii) of a question where you had already proved the general result or similar.
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Example 7

Prove 𝑥2 + 𝑦2 + 𝑧2 ≥ 𝑥 𝑦2 + 𝑧2 + 𝑦 𝑥2 + 𝑧2

for 𝑥, 𝑦, 𝑧 > 0

Solution

Notice that the RHS is asymmetrical as there is no z x2 + y2 term, so we only need 2

applications of AM-GM.

𝑥2 + (𝑦2 + 𝑧2)

2
≥ 𝑥2 𝑦2 + 𝑧2 (AM − GM)

𝑥2 + (𝑦2 + 𝑧2)

2
≥ 𝑥 𝑦2 + 𝑧2 (1)

Similarly

𝑦2 + (𝑥2 + 𝑧2)

2
≥ 𝑦 𝑥2 + 𝑧2 (2)

1 + 2 :

𝑥2 + 𝑦2 + 𝑧2 ≥ 𝑥 𝑦2 + 𝑧2 + 𝑦 𝑥2 + 𝑧2 □
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Proof 8

For 𝑎, 𝑏, 𝑐, 𝑑 ≥ 0 prove 
𝑎+𝑏+𝑐+𝑑

4
≥

4
𝑎𝑏𝑐𝑑

Solution

Best solution - substitute the arithmetic mean of the first two variables  and the last two variables 

into the AM-GM for two variables.

Let 𝑥 =
𝑎+𝑏

2
, 𝑦 =

𝑐+𝑑

2
in 

𝑥+𝑦

2
≥ 𝑥𝑦

𝑎 + 𝑏
2

+
𝑐 + 𝑑

2
2

≥
𝑎 + 𝑏

2
×

𝑐 + 𝑑

2

∴
𝑎 + 𝑏 + 𝑐 + 𝑑

4
≥ 𝑎𝑏 × 𝑐𝑑 since

𝑎 + 𝑏

2
≥ 𝑎𝑏 ,

𝑐 + 𝑑

2
≥ 𝑐𝑑

∴
𝑎 + 𝑏 + 𝑐 + 𝑑

4
≥

4
𝑎𝑏𝑐𝑑 □

PROVING THE AM-GM INEQUALITY FOR 3 OR 4 VARIABLES

We can prove the result for 3 or 4 variables most easily by:

• substituting the arithmetic mean of 𝑎 and 𝑏, and the arithmetic mean of 𝑐 and 𝑑 into the

AM-GM for two variables, to prove the result for 4 variables.

• substitute the arithmetic mean of 𝑎, 𝑏 and 𝑐 for 𝑑 in the AM-GM for four variables to prove it

for 3 variables.

We can prove these results from the axiom as well, but it is a bit longer.

Example 9

If 𝑎, 𝑏, 𝑐, 𝑑 > 0 then prove 
𝑎

𝑏
+

𝑏

𝑐
+

𝑐

𝑑
+

𝑑

𝑎
≥ 4

Solution

𝑎
𝑏

+
𝑏
𝑐 +

𝑐
𝑑

+
𝑑
𝑎

4
≥

𝑎

𝑏
×

𝑏

𝑐
×

𝑐

𝑑
×

𝑑

𝑎
AM − GM

𝑎
𝑏

+
𝑏
𝑐 +

𝑐
𝑑

+
𝑑
𝑎

4
≥ 1

𝑎

𝑏
+

𝑏

𝑐
+

𝑐

𝑑
+

𝑑

𝑎
≥ 4 □

Mathematics Extension 2 © Steve Howard 66 Howard and Howard Education



Proof 10

For 𝑎, 𝑏, 𝑐 ≥ 0 prove
𝑎+𝑏+𝑐

3
≥

3
𝑎𝑏𝑐

Solution

Best solution - substitute the arithmetic mean of the first three variables for 𝑑 in the AM-GM for

four variables.

Let 𝑤 = 𝑎, 𝑥 = 𝑏, 𝑦 = 𝑐, 𝑧 =
𝑎+𝑏+𝑐

3
in

𝑤+𝑥+𝑦+𝑧

4
≥ 4 𝑤𝑥𝑦𝑧

∴
𝑎 + 𝑏 + 𝑐 +

𝑎 + 𝑏 + 𝑐
3

4
≥

4

𝑎𝑏𝑐
𝑎 + 𝑏 + 𝑐

3

4
3 𝑎 + 𝑏 + 𝑐

4
≥ 𝑎𝑏𝑐

1
4

𝑎 + 𝑏 + 𝑐

3

1
4

𝑎 + 𝑏 + 𝑐

3

1

≥ 𝑎𝑏𝑐
1
4

𝑎 + 𝑏 + 𝑐

3

1
4

𝑎 + 𝑏 + 𝑐

3

3
4

≥ 𝑎𝑏𝑐
1
4

𝑎 + 𝑏 + 𝑐

3

3
4

×
4
3

≥ 𝑎𝑏𝑐
1
4

×
4
3

∴
𝑎 + 𝑏 + 𝑐

3
≥

3
𝑎𝑏𝑐 □

Example 11

If 𝑎, 𝑏, 𝑐 > 0 then prove 𝑎3 + 𝑏3 + 𝑐3 ≥ 𝑎2𝑏 + 𝑏2𝑐 + 𝑐2𝑎

Solution

𝑎3 + 𝑎3 + 𝑏3

3
≥

3
𝑎6𝑏3

∴
2𝑎3 + 𝑏3

3
≥ 𝑎2𝑏 (1)

Similarly

2𝑏3 + 𝑎3

3
≥ 𝑏2𝑐 2

2𝑐3 + 𝑎3

3
≥ 𝑐2𝑎 (3)

1 + 2 + 3 : 𝑎3 + 𝑏3 + 𝑐3 ≥ 𝑎2𝑏 + 𝑏2𝑐 + 𝑐2𝑎 □
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EXERCISE 1.6

BASIC

1 For 𝑎, 𝑏 ≥ 0 prove
𝑎+𝑏

2
≥ 𝑎𝑏 by starting with 𝑎 − 𝑏

2
≥ 0

2 For 𝑎, 𝑏 ≥ 0 prove
𝑎+𝑏

2
≥ 𝑎𝑏 by starting with 𝑎 − 𝑏 2 ≥ 0

3 For 𝑥 ≠ 0 prove 𝑥2 +
1

𝑥2 ≥ 2

4 Prove 𝑥2 ≥ 2 (𝑥 − 1)(𝑥 + 1) for 𝑥 ≥ 1

5 For 𝑎, 𝑏 > 0 prove 𝑎 + 2𝑏 2 ≥ 8𝑎𝑏

MEDIUM

6
For 𝑎, 𝑏, 𝑐 > 0 prove 𝑎2𝑐2 +

𝑏2

𝑐2 ≥ 2𝑎𝑏

7
Given

𝑎+𝑏

2
≥ 𝑎𝑏, prove

𝑥

𝑦𝑧
+

𝑦

𝑥𝑧
+

𝑧

𝑥𝑦
≥

1

𝑥
+

1

𝑦
+

1

𝑧
for 𝑥, 𝑦, 𝑧 > 0

8
Prove

𝑥2

𝑦2 +
𝑦2

𝑧2 +
𝑧2

𝑥2 ≥
1

𝑦𝑧
𝑥2𝑦2 + 𝑧4 +

1

𝑥𝑧
𝑦2𝑧2 + 𝑥4 for 𝑥, 𝑦, 𝑧 > 0

9 For 𝑎, 𝑏, 𝑐, 𝑑 ≥ 0 prove
𝑎+𝑏+𝑐+𝑑

4
≥

4
𝑎𝑏𝑐𝑑

10
If 𝑎, 𝑏, 𝑐, 𝑑 > 0 then prove

𝑎3

𝑏
+

𝑏3

𝑐
+

𝑐3

𝑑
+

𝑑3

𝑎
≥ 4𝑎𝑏𝑐𝑑

11 For 𝑎, 𝑏, 𝑐 ≥ 0 prove
𝑎+𝑏+𝑐

3
≥

3
𝑎𝑏𝑐

12 If 𝑎, 𝑏, 𝑐 > 0 then prove 𝑎3 + 𝑏3 + 𝑐3 ≥ 𝑎2𝑏 + 𝑏2𝑐 + 𝑐2𝑎

13 Let 𝑎1, 𝑎2, . . . , 𝑎𝑛 be positive real numbers such that 𝑎1𝑎2𝑎3. . . 𝑎𝑛 = 1.

Prove that 𝑎1
2 + 𝑎1 𝑎2

2 + 𝑎2 . . . 𝑎𝑛
2 + 𝑎𝑛 ≥ 2𝑛

14 i) For 𝑎, 𝑏, 𝑐 ≥ 0 prove 𝑎2 + 𝑏2 + 𝑐2 ≥ 𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎

ii) Hence prove 𝑎 + 𝑏 + 𝑐 2 ≥ 3 𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎
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CHALLENGING

15 Let 𝑎 + 𝑏 = 1 prove that 𝑎4 + 𝑏4 ≥
1

8

16 Let 𝑎, 𝑏, 𝑐 > 0 such that 𝑎𝑏𝑐 = 1, prove that 𝑎2 + 𝑏2 + 𝑐2 ≥ 𝑎 + 𝑏 + 𝑐

17 If 𝑎, 𝑏, 𝑐 > 0 then prove 𝑎4 + 𝑏4 + 𝑐4 ≥ 𝑎2𝑏𝑐 + 𝑏2𝑐𝑎 + 𝑐2𝑎𝑏

18 If 𝑎, 𝑏, 𝑐 > 0 satisfy 𝑎𝑏𝑐 = 1, prove
1 + 𝑎𝑏

1 + 𝑎
+

1 + 𝑏𝑐

1 + 𝑏
+

1 + 𝑎𝑐

1 + 𝑐
≥ 3

19 Prove the Harmonic Mean ≤ the Geometric Mean ≤ the Arithmetic Mean ≤ the Quadratic

Mean for 2 numbers, ie:

2𝑎𝑏

𝑎 + 𝑏
≤ 𝑎𝑏 ≤

𝑎 + 𝑏

2
≤

𝑎2 + 𝑏2

2

20 a For 𝑎, 𝑏, 𝑐 > 0 prove 3 𝑎2 + 𝑏2 + 𝑐2 ≥ 𝑎 + 𝑏 + 𝑐 2 ≥ 3(𝑎𝑏 + 𝑏𝑐 + 𝑎𝑐)

b If 𝑎 + 𝑏 + 𝑐 = 3, hence prove that 𝑎2 + 𝑏2 + 𝑐2 + 𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎 ≥ 6
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SOLUTIONS - EXERCISE 1.6

1
𝑎 − 𝑏

2
≥ 0

𝑎 − 2 𝑎𝑏 + 𝑏 ≥ 0

𝑎 + 𝑏 ≥ 2 𝑎𝑏

𝑎 + 𝑏

2
≥ 𝑎𝑏 □

𝟐 𝑎 − 𝑏 2 ≥ 0

𝑎2 − 2𝑎𝑏 + 𝑏2 ≥ 0

𝑎2 + 2𝑎𝑏 + 𝑏2 ≥ 4𝑎𝑏

𝑎 + 𝑏 2 ≥ 4𝑎𝑏

𝑎 + 𝑏 ≥ 2 𝑎𝑏

𝑎 + 𝑏

2
≥ 𝑎𝑏

3 Method 1

𝑥 −
1

𝑥

2

≥ 0

𝑥2 − 2 +
1

𝑥2
≥ 0

𝑥2 +
1

𝑥2
≥ 2 □

Method 2

Let 𝑎 = 𝑥2, 𝑏 =
1

𝑥2 in
𝑎+𝑏

2
≥ 𝑎𝑏

∴
𝑥2 +

1
𝑥2

2
≥ 𝑥2 ×

1

𝑥2

𝑥2 +
1

𝑥2
≥ 2 □

Method 3

LHS− RHS = 𝑥2 − 2 +
1

𝑥2

= 𝑥 −
1

𝑥

2

≥ 0

∴ 𝑥2 − 2 +
1

𝑥2
≥ 0

∴ 𝑥2 +
1

𝑥2
≥ 2 □

Method 4

On working out paper:

𝑥2 +
1

𝑥2
≥ 2

𝑥2 − 2 +
1

𝑥2
≥ 0

𝑥 −
1

𝑥

2

≥ 0

Now rewrite like Method 1

4 𝑥2 − 1 − 1
2

≥ 0

𝑥2 − 1 − 2 𝑥2 − 1 + 1 ≥ 0

𝑥2 ≥ 2 (𝑥 − 1)(𝑥 + 1) for 𝑥 ≥ 1 □

5 LHS − RHS

= 𝑎 + 2𝑏 2 − 8𝑎𝑏
= 𝑎2 + 4𝑎𝑏 + 4𝑏2 − 8𝑎𝑏
= 𝑎2 − 4𝑎𝑏 + 4𝑏2

= 𝑎 − 2𝑏 2

≥ 0 since ℝ2 ≥ 0
∴ 𝑎 + 2𝑏 2 − 8𝑎𝑏 ≥ 0

∴ 𝑎 + 2𝑏 2 ≥ 8𝑎𝑏 □

6 Method 1

𝑎𝑐 −
𝑏

𝑐

2

≥ 0

𝑎2𝑐2 − 2𝑎𝑏 +
𝑏2

𝑐2
≥ 0

∴ 𝑎2𝑐2 +
𝑏2

𝑐2
≥ 2𝑎𝑏 □

Method 2

Let 𝑚 = 𝑎2𝑐2, 𝑦 =
𝑏2

𝑐2 in
𝑚+𝑛

2
≥ 𝑚𝑛

∴
𝑎2𝑐2 +

𝑏2

𝑐2

2
≥ 2 𝑎2𝑐2 ∙

𝑏2

𝑐2

= 2 𝑎2𝑏2

= 2𝑎𝑏

∴ 𝑎2𝑐2 +
𝑏2

𝑐2
≥ 2𝑎𝑏 □
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7
𝑥

𝑦𝑧 +
𝑦

𝑥𝑧

2
≥

𝑥𝑦

𝑥𝑦𝑧2
(AM−GM)

1

2

𝑥𝑦

𝑧
+

𝑦𝑧

𝑥
≥

1

𝑧
1

Similarly
1

2

𝑥

𝑦𝑧
+

𝑧

𝑥𝑦
≥

1

𝑦
2

1

2

𝑦

𝑥𝑧
+

𝑧

𝑥𝑦
≥

1

𝑥
3

1 + 2 + 3 :

1

2

𝑥𝑦

𝑧
+

𝑦𝑧

𝑥
+

1

2

𝑥

𝑦𝑧
+

𝑧

𝑥𝑦
+

1

2

𝑦

𝑥𝑧
+

𝑧

𝑥𝑦
≥

1

𝑥
+

1

𝑦
+

1

𝑧
□

8 𝑥2

𝑦2 +
𝑦2

𝑧2 +
𝑧2

𝑥2

2
≥

𝑥2

𝑦2

𝑦2

𝑧2
+

𝑧2

𝑥2
(AM − GM)

𝑥2

𝑦2 +
𝑦2

𝑧2 +
𝑧2

𝑥2

2
≥

𝑥2

𝑦2

𝑥2𝑦2 + 𝑧4

𝑥2𝑧2

𝑥2

𝑦2 +
𝑦2

𝑧2 +
𝑧2

𝑥2

2
≥

1

𝑦𝑧
𝑥2𝑦2 + 𝑧4 (1)

Similarly

𝑦2

𝑧2 +
𝑥2

𝑦2 +
𝑧2

𝑥2

2
≥

1

𝑥𝑧
𝑦2𝑧2 + 𝑥4 (2)

1 + 2 :
𝑥2

𝑦2
+

𝑦2

𝑧2
+

𝑧2

𝑥2
≥

1

𝑦𝑧
𝑥2𝑦2 + 𝑧4 +

1

𝑥𝑧
𝑦2𝑧2 + 𝑥4 □

9 Let 𝑥 =
𝑎+𝑏

2
, 𝑦 =

𝑐+𝑑

2
in 

𝑥+𝑦

2
≥ 𝑥𝑦

𝑎 + 𝑏
2 +

𝑐 + 𝑑
2

2
≥

𝑎 + 𝑏

2
×

𝑐 + 𝑑

2

∴
𝑎 + 𝑏 + 𝑐 + 𝑑

4
≥ 𝑎𝑏 × 𝑐𝑑 since

𝑎 + 𝑏

2
≥ 𝑎𝑏 ,

𝑐 + 𝑑

2
≥ 𝑐𝑑

∴
𝑎 + 𝑏 + 𝑐 + 𝑑

4
≥

4
𝑎𝑏𝑐𝑑 □
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10 𝑎3

𝑏
+

𝑏3

𝑐
+

𝑐3

𝑑
+

𝑑3

𝑎
4

≥
𝑎3

𝑏
×

𝑏3

𝑐
×

𝑐3

𝑑
×

𝑑3

𝑎
AM − GM

𝑎
𝑏

+
𝑏
𝑐

+
𝑐
𝑑

+
𝑑
𝑎

4
≥ 𝑎2𝑏2𝑐2𝑑2

𝑎

𝑏
+

𝑏

𝑐
+

𝑐

𝑑
+

𝑑

𝑎
≥ 4𝑎𝑏𝑐𝑑 □

11 Let 𝑤 = 𝑎, 𝑥 = 𝑏, 𝑦 = 𝑐, 𝑧 =
𝑎+𝑏+𝑐

3
in

𝑤+𝑥+𝑦+𝑧

4
≥ 4 𝑤𝑥𝑦𝑧

∴
𝑎 + 𝑏 + 𝑐 +

𝑎 + 𝑏 + 𝑐
3

4
≥

4

𝑎𝑏𝑐
𝑎 + 𝑏 + 𝑐

3

4
3

𝑎 + 𝑏 + 𝑐

4
≥ 𝑎𝑏𝑐

1
4

𝑎 + 𝑏 + 𝑐

3

1
4

𝑎 + 𝑏 + 𝑐

3

1

≥ 𝑎𝑏𝑐
1
4

𝑎 + 𝑏 + 𝑐

3

1
4

𝑎 + 𝑏 + 𝑐

3

3
4

≥ 𝑎𝑏𝑐
1
4

𝑎 + 𝑏 + 𝑐

3

3
4

×
4
3

≥ 𝑎𝑏𝑐
1
4

×
4
3

∴
𝑎 + 𝑏 + 𝑐

3
≥

3
𝑎𝑏𝑐 □

12
𝑎3 + 𝑎3 + 𝑏3

3
≥

3
𝑎6𝑏3

∴
2𝑎3 + 𝑏3

3
≥ 𝑎2𝑏 (1)

Similarly

2𝑏3 + 𝑎3

3
≥ 𝑏2𝑐 2

2𝑐3 + 𝑎3

3
≥ 𝑐2𝑎 (3)

1 + 2 + 3 : 𝑎3 + 𝑏3 + 𝑐3 ≥ 𝑎2𝑏 + 𝑏2𝑐 + 𝑐2𝑎 □
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13 𝑎1 − 𝑎1
2 ≥ 0

𝑎1
2 − 2𝑎1 𝑎1 + 𝑎1 ≥ 0

𝑎1
2 + 𝑎1 ≥ 2𝑎1 𝑎1 (1)

Similarly for 𝑎2 to 𝑎𝑛 2 . . . (𝑛)

1 × 2 × 3 × . . .× 𝑛 :

∴ 𝑎1
2 + 𝑎1 𝑎2

2 + 𝑎2 𝑎3
2 + 𝑎3 . . . 𝑎𝑛

2 + 𝑎𝑛 ≥ 2𝑎1 𝑎1 × 2𝑎2 𝑎2 × 2𝑎3 𝑎3 ×. . .× 2𝑎𝑛 𝑎𝑛

≥ 2𝑛(𝑎1𝑎2𝑎3. . . 𝑎𝑛) 𝑎1𝑎2𝑎3. . . 𝑎𝑛

≥ 2𝑛 □

14 𝐢 𝑎 − 𝑏 2 ≥ 0

𝑎2 − 2𝑎𝑏 + 𝑏2 ≥ 0

𝑎2 + 𝑏2 ≥ 2𝑎𝑏 1

Similarly:

𝑎2 + 𝑐2 ≥ 2𝑎𝑐 (2)

𝑏2 + 𝑐2 ≥ 2𝑏𝑐 (3)

1 + 2 + 3 :

2 𝑎2 + 𝑏2 + 𝑐2 ≥ 2 𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎

𝑎2 + 𝑏2 + 𝑐2 ≥ 𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎 □

𝐢𝐢 𝑎 + 𝑏 + 𝑐 2 = 𝑎2 + 𝑏2 + 𝑐2 + 2 𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎

≥ 𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎 + 2 𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎 from (i).

≥ 3 𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎 □

15 𝑎2 − 𝑏2 2 ≥ 0

𝑎4 − 2𝑎2𝑏2 + 𝑏4 ≥ 0

2 a4 + 𝑏4 − 𝑎2 + 𝑏2 2 ≥ 0

∴ 𝑎4 + 𝑏4 ≥
𝑎2 + 𝑏2 2

2
(1)

Similarly

𝑎2 + 𝑏2 ≥
𝑎 + 𝑏 2

2

∴ 𝑎2 + 𝑏2 ≥
12

2

𝑎2 + 𝑏2 ≥
1

2
(2)

From (1) and 2 :

𝑎4 + 𝑏4 ≥

1
2

2

2

𝑎4 + 𝑏4 ≥
1

8
□

Alternatively

𝑎2 + 𝑏2 + 𝑐2 − 𝑎𝑏 − 𝑏𝑐 − 𝑐𝑎

=
1

2
𝑎2 − 2𝑎𝑏 + 𝑏2 + 𝑏2 − 2𝑏𝑐 + 𝑐2 + 𝑐2 − 2𝑐𝑎 + 𝑎2

=
1

2
𝑎 − 𝑏 2 + 𝑏 − 𝑐 2 + 𝑐 − 𝑎 2

≥ 0

∴ 𝑎2 + 𝑏2 + 𝑐2 ≥ 𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎 □
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16 𝑎 + 𝑏 + 𝑐 ≥ 3
3

𝑎𝑏𝑐
𝑎 + 𝑏 + 𝑐 ≥ 3 (1)

𝑎2 + 1

2
≥ 𝑎2 ∙ 1

≥ 𝑎
Similarly

𝑏2 + 1

2
≥ 𝑏

𝑐2 + 1

2
≥ 𝑐

Summing the inequalities:

𝑎2 + 1

2
+

𝑏2 + 1

2
+

𝑐2 + 1

2
≥ 𝑎 + 𝑏 + 𝑐

𝑎2 + 𝑏2 + 𝑐2 + 3 ≥ 2 𝑎 + 𝑏 + 𝑐
𝑎2 + 𝑏2 + 𝑐2 ≥ 2 𝑎 + 𝑏 + 𝑐 − 3

≥ 2 𝑎 + 𝑏 + 𝑐 − 𝑎 + 𝑏 + 𝑐 from 1
≥ 𝑎 + 𝑏 + 𝑐

17 𝑎4 + 𝑎4 + 𝑏4 + 𝑐4

4
≥

4
𝑎8𝑏4𝑐4

∴
2𝑎4 + 𝑏4 + 𝑐4

4
≥ 𝑎2𝑏𝑐

Similarly

2𝑏4 + 𝑎4 + 𝑐4

4
≥ 𝑏2𝑎𝑐

2𝑐4 + 𝑎4 + 𝑏4

4
≥ 𝑐2𝑎𝑏

Summing the above gives

𝑎4 + 𝑏4 + 𝑐4 ≥ 𝑎2𝑏𝑐 + 𝑏2𝑐𝑎 + 𝑐2𝑎𝑏 □

18 1 + 𝑎𝑏

1 + 𝑎
=

𝑎𝑏𝑐 + 𝑎𝑏

𝑎𝑏𝑐 + 𝑎
=

𝑎𝑏 𝑐 + 1

𝑎 𝑏𝑐 + 1
=

𝑏 𝑐 + 1

𝑏𝑐 + 1
(3)

Similarly
1 + 𝑏𝑐

1 + 𝑏
=

𝑐(𝑎 + 1)

𝑎𝑐 + 1
2

1 + 𝑎𝑐

1 + 𝑐
=

𝑎(𝑏 + 1)

𝑎𝑏 + 1
3

LHS =
1 + 𝑎𝑏

1 + 𝑎
+

1 + 𝑏𝑐

1 + 𝑏
+

1 + 𝑎𝑐

1 + 𝑐

=
1

2

1 + 𝑎𝑏

1 + 𝑎
+

1 + 𝑏𝑐

1 + 𝑏
+

1 + 𝑎𝑐

1 + 𝑐
+

𝑏 𝑐 + 1

𝑏𝑐 + 1
+

𝑐 𝑎 + 1

𝑎𝑐 + 1
+

𝑎 𝑏 + 1

𝑎𝑏 + 1

≥
1

2
6 ×

6 1 + 𝑎𝑏

1 + 𝑎
∙

1 + 𝑏𝑐

1 + 𝑏
∙

1 + 𝑎𝑐

1 + 𝑐
∙

𝑏 𝑐 + 1

𝑏𝑐 + 1
∙

𝑐 𝑎 + 1

𝑎𝑐 + 1
∙

𝑎 𝑏 + 1

𝑎𝑏 + 1

≥
1

2
× 6 × 1

≥ 3 □
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19 𝑎 − 𝑏
2

≥ 0

𝑎 − 2 𝑎𝑏 + 𝑏 ≥ 0

𝑎 + 𝑏 ≥ 2 𝑎𝑏

𝑎𝑏 ≤
𝑎 + 𝑏

2
1

1 × 𝑎𝑏: 𝑎𝑏 ≤
𝑎 + 𝑏 𝑎𝑏

2
2𝑎𝑏

𝑎 + 𝑏
≤ 𝑎𝑏 2

𝑎

2
−

𝑏

2

2

≥ 0

𝑎2 − 2𝑎𝑏 + 𝑏2

4
≥ 0

𝑎2 − 2𝑎𝑏 + 𝑏2

4
+

𝑎 + 𝑏 2

4
≥

𝑎 + 𝑏 2

4
2𝑎2 + 2𝑏2

4
≥

𝑎 + 𝑏 2

4
𝑎 + 𝑏 2

4
≤

𝑎2 + 𝑏2

2

𝑎 + 𝑏 2

4
≤

𝑎2 + 𝑏2

2

𝑎 + 𝑏

2
≤

𝑎2 + 𝑏2

2
3

From 2 , 1 and 3 :

2𝑎𝑏

𝑎 + 𝑏
≤ 𝑎𝑏 ≤

𝑎 + 𝑏

2
≤

𝑎2 + 𝑏2

2
□

20 a

3 𝑎2 + 𝑏2 + 𝑐2 − 𝑎 + 𝑏 + 𝑐 2

= 3𝑎2 + 3𝑏2 + 3𝑐2 − 𝑎2 + 𝑏2 + 𝑐2 + 2 𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎

= 2 𝑎2 + 𝑏2 + 𝑐2 − 2 𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎
= 𝑎2 − 2𝑎𝑏 + 𝑏2 + 𝑏2 − 2𝑏𝑐 + 𝑐2 + 𝑐2 − 2𝑐𝑎 + 𝑎2

= 𝑎 − 𝑏 2 + 𝑏 − 𝑐 2 + 𝑐 − 𝑎 2

≥ 0
∴ 3 𝑎2 + 𝑏2 + 𝑐2 ≥ 𝑎 + 𝑏 + 𝑐 2 1

𝑎 + 𝑏 + 𝑐 2 − 3 𝑎𝑏 + 𝑏𝑐 + 𝑎𝑐
= 𝑎2 + 𝑏2 + 𝑐2 + 2 𝑎𝑏 + 𝑐𝑎 + 𝑐𝑎 − 3 𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎
= 𝑎2 + 𝑏2 + 𝑐2 − 𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎

=
𝑎2 − 2𝑎𝑏 + 𝑏2

2
+

𝑏2 − 2𝑏𝑐 + 𝑐2

2
+

𝑐2 − 2𝑎𝑐 + 𝑎2

2

=
𝑎 − 𝑏 2 + 𝑏 − 𝑐 2 + 𝑐 − 𝑎 2

2
≥ 0
∴ 𝑎 + 𝑏 + 𝑐 2 ≥ 3 𝑎𝑏 + 𝑏𝑐 + 𝑎𝑐 2
From (1) and 2 :
3 𝑎2 + 𝑏2 + 𝑐2 ≥ 𝑎 + 𝑏 + 𝑐 2 ≥ 3 𝑎𝑏 + 𝑏𝑐 + 𝑎𝑐 □

Alternative for GM and QM

𝑎 + 𝑏

2
≤

𝑎2 + 𝑏2

2

𝑎 + 𝑏

2

2

−
𝑎2 + 𝑏2

2

2

=
𝑎2 + 2𝑎𝑏 + 𝑏2

4
−

𝑎2 + 𝑏2

2

= −
𝑎2 − 2𝑎𝑏 + 𝑏2

4

= −
𝑎 − 𝑏

2

2

≤ 0

∴
𝑎 + 𝑏

2

2

≤
𝑎2 + 𝑏2

2

2

∴
𝑎 + 𝑏

2
≤

𝑎2 + 𝑏2

2
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20 b

LHS − RHS = 𝑎2 + 𝑏2 + 𝑐2 + 𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎 − 6

=
𝑎2 + 2𝑎𝑏 + 𝑏2

2
+

𝑏2 + 2𝑏𝑐 + 𝑐2

2
+

𝑐2 + 2𝑎𝑐 + 𝑎2

2
− 2 𝑎 + 𝑏 + 𝑐

=
𝑎 + 𝑏 2 + 𝑏 + 𝑐 2 + 𝑐 + 𝑎 2

2
−

12

2
since 𝑎 + 𝑏 + 𝑐 = 3

=
3 − 𝑐 2 + 3 − 𝑎 2 + 3 − 𝑏 2

2
−

12

2

=
3 − 𝑐 2 − 4 + 3 − 𝑎 2 − 4 + 3 − 𝑏 2 − 4

2

=
5 − 𝑐 1 − 𝑐 + 5 − 𝑎 1 − 𝑎 + 5 − 𝑏 1 − 𝑏

2

=
5 − 6𝑐 + 𝑐2 + 5 − 6𝑎 + 𝑎2 + 5 − 6𝑏 + 𝑏2

2

=
𝑎2 + 𝑏2 + 𝑐2 − 6 𝑎 + 𝑏 + 𝑐 + 15

2

=
𝑎2 + 𝑏2 + 𝑐2 − 18 + 15

2

=
𝑎2 + 𝑏2 + 𝑐2 − 3

2

Now 3 𝑎2 + 𝑏2 + 𝑐2 ≥ 𝑎 + 𝑏 + 𝑐 2 from (a)

∴ 𝑎2 + 𝑏2 + 𝑐2 ≥
𝑎 + 𝑏 + 𝑐 2

3

≥
33

3
≥ 3

≥ 0
∴ 𝑎2 + 𝑏2 + 𝑐2 + 𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎 ≥ 6 □
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HSC Mathematics Extension 2

Chapter 2

Complex Numbers

MEX-N1 Introduction to Complex Numbers

MEX-N2 Using Complex Numbers

Complex Numbers is a great topic as:

• it provides us with a completely new type of number system to wrap our heads around

• it closely links geometry and algebra, but in unexpected ways

• it introduces us to a branch of mathematics that seems to be purely theoretical yet has

massively important practical uses

• it stretches our imaginations as we try to visualise how numbers that seemingly don’t exist

behave under different conditions

Lessons

Complex Numbers is covered in 10 lessons.

2.1   Introduction to Complex Numbers

2.2   Cartesian Form

2.3   Polar Form

2.4   Exponential Form

2.5   Square Roots

2.6   Conjugate Theorems

2.7   Complex Numbers as Vectors

2.8   Curves and Regions

2.9   De Moivre’s Theorem

2.10 Complex Roots

Appendix 1: Converting between Cartesian and Polar Forms on a Calculator

Appendix 2: Using the Limit Definition to explain Euler’s Formula geometrically

Appendix 3: Proving Euler’s Formula from the Taylors Series

Revision Questions

In ‘1000 Revision Questions’, the revision book that goes with this textbook you will find the 

following questions matching this chapter:

• Revision Exercise 2 

100 graded questions on this topic only

• Revision Exercises 7 (Basic), 8 (Medium) and 9 (Challenging)

Another 100 questions mixed through other topics for when you finish the course.

Don’t forget to do any questions from the exercises in this textbook you haven’t done.
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2.1  INTRODUCTION TO COMPLEX NUMBERS

In Lesson 1 we get a basic overview of complex numbers that will help us through the later

lessons in the topic. The first lesson of complex numbers is mainly a general chat to help us

attain understanding of the topic to follow, with only a few exercises at the end. We will cover:

• How Complex Numbers fit with other Number Systems

• Imaginary Numbers

• Definition of 𝑖

• Geometric Explanation of 𝑖

• Now Isn’t 𝑖 = −1? 

• Surd Laws

• Real World Uses of Complex Numbers

• The Complex Plane

• Powers of 𝑖

• Powers of −1
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HOW COMPLEX NUMBERS FIT WITH OTHER NUMBER SYSTEMS

We first learned about Natural Numbers ℕ (1,2,3…) when we were growing up. Over the years

we then added numbers like zero and negative numbers to create the Integers ℤ, then fractions

(including terminating or recurring decimals) to create the Rational Numbers ℚ. All of the

rational numbers can be written as fractions.

The next step was to learn that there are numbers that cannot be written as fractions, such as

𝜋 or 2 . These are the Irrational Numbers (non recurring decimals), which together with

Rational Numbers, form the larger group Real Numbers ℝ. A number cannot be both Rational

and Irrational.

You are about to learn that there is another set of numbers, Imaginary Numbers 𝕀, that together

with Real Numbers form the larger group Complex Numbers ℂ. Just like Real Numbers,

Imaginary Numbers can also be rational or irrational.

A number cannot be Real and Imaginary, but it can have a real and an imaginary part, just like

the real number 1 + 3 has a rational and irrational part.

Natural

Integers

Rational

Irrational

Real

i Natural

i Integers

i Rational

i Irrational

Imaginary

Complex

So the number 1, the first number we learned about as children, is Natural, an Integer, Rational,

Real and Complex, but it is not Irrational or Imaginary.
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IMAGINARY NUMBERS

Although what we now know as Imaginary Numbers have only been commonly accepted for a

few hundred years, they were first discovered by the Ancient Greeks.

French mathematician and philosopher Rene Descartes (‘I think, therefore I am’) created the

Cartesian Plane (which allows us to link geometry and algebra), and also derisively named

numbers involving the square root of negatives as ‘imaginary’. It is a poor choice of name that

misleads us to this day.

He didn’t think negative numbers existed either and called solutions which were negative ‘false’!

We should also note that the ‘complex’ in Complex Numbers means ‘made of parts’ rather than

‘complicated’ - another misleading name! A complex number is made of a real part and an

imaginary part.

So keep in mind that complex numbers are not hard and they do exist.

Imaginary numbers are a bit like irrational numbers, negative numbers and even zero - they are

non-tangible numbers that have useful properties. You cannot hold 2 marbles, −2 marbles, 0

marbles or −2 marbles in your hand, but irrational, negative, zero and imaginary numbers

allow us to solve more difficult problems.

At various points in history in different cultures all of these non-tangible numbers have been

seen as fictitious or useless!
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DEFINITION OF 𝑖

The definition of 𝑖 from the syllabus is as a solution of the equation 𝑥2 = −1, so 𝑖2 = −1.

The definition is not the more commonly recognised 𝑖 = −1, which is not mentioned in the

syllabus at all. It is no big deal if you use both definitions for 𝑖, as we will certainly gain a better

understanding from 𝑖 = −1. We will look at this more closely later in the lesson.

It is important to note that 𝑖 is similar to a surd, so there are some similarities between the

properties of complex numbers and surds, but not all of the rules for complex numbers follow

the surd rules.

So let’s look at a few examples of using complex numbers algebraically only, before we look at

a geometric explanation to improve our understanding. We generally use 𝑧 to represent a

complex variable, as opposed to 𝑥 which will generally be reserved for a real variable.

Example 1

a Factorise 𝑧2 + 9

b Find the square roots of −9.

Solution

a

𝑧2 + 9

= 𝑧2 − 9𝑖2

= 𝑧2 − 3𝑖 2

= (𝑧 + 3𝑖)(𝑧 − 3𝑖)

b

Let 𝑧 be a square root of −9

∴ 𝑧2 = −9

𝑧2 + 9 = 0

∴ 𝑧 + 3𝑖 𝑧 − 3𝑖 = 0

𝑧 = ±3𝑖

Check: 3𝑖 2 = 9𝑖2 = 9 × −1 = −9

−3𝑖 2 = 9𝑖2 = 9 × −1 = −9
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Example 2

a Factorise 𝑧2 + 4𝑧 + 10

b Solve 𝑧2 + 4𝑧 + 10 = 0

Solution

a

𝑧2 + 4𝑧 + 10

= 𝑧2 + 4𝑧 + 4 + 6

= 𝑧 + 2 2 + 6

= 𝑧 + 2 2 − 6𝑖2

= (𝑧 + 2 + 6𝑖)(𝑧 + 2 − 6𝑖)

b

𝑧2 + 4𝑧 + 10 = 0

𝑧 + 2 + 6𝑖 𝑧 + 2 − 6𝑖 = 0

𝑧 = −2 ± 6𝑖

Alternatively

𝑧 =
−4 ± 42 − 4 × 1 × 10

2 × 1

=
−4 ± −24

2

=
−4 ± 2 6𝑖

2

= −2 ± 6𝑖

−24 = 4 × 6 × −1

= 2 6𝑖

Example 3

Factorise 𝑧2 + 4𝑖𝑧 + 5

a by completing the square

b by factorising

Solution

a

𝑧2 + 4𝑖𝑧 + 5

= 𝑧2 + 4𝑖𝑧 + 2𝑖 2 − 2𝑖 2 + 5

= 𝑧 + 2𝑖 2 + 4 + 5

= 𝑧 + 2𝑖 2 + 9

= 𝑧 + 2𝑖 2 − 9𝑖2

= 𝑧 + 2𝑖 + 3𝑖 𝑧 + 2𝑖 − 3𝑖

= (𝑧 + 5𝑖)(𝑧 − 𝑖)

b

𝑧2 + 4𝑖𝑧 + 5

= 𝑧2 + 4𝑖𝑧 − 5𝑖2

= (𝑧 + 5𝑖)(𝑧 − 𝑖)
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GEOMETRIC EXPLANATION OF 𝑖

We have just used 𝑖 in calculations, without really understanding what it is. Let’s have a look at a

geometric explanation of 𝑖 to improve our understanding of what we are doing.

Up until now the one dimensional number line has been adequate for all our work with real

numbers, but it has also restricted our thinking unnecessarily.

Let’s have a look at the equation 𝑥2 = −1, and make sure we understand what squaring, the

minus sign and 1 really mean.

THE NUMBER 1

Well the 1 is easy - it just means one unit more than zero, which we can represent on the

number line as one unit to the right, or by an arrow (vector) stretching from 0 to 1.

THE MINUS SIGN

Now with the minus sign we see a restriction to our thinking caused by the number line.

When we place a minus in front of any real number then the only one dimensional operation we

can perform is a reflection about 0, so −1 is the reflection (or opposite) of 1.

But what if we weren’t restricted to movement in one dimension? Is there another operation that

could take us to the same place?

The answer is yes, because a rotation either anticlockwise or clockwise through 180° would get

us to the same point.

..
−1 10

. .
2

.
−2

..

−1 10

. .

2

.

−2

÷ −1

..

−1 10

. .

2

.

−2

× −1
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Now to be consistent with our work from other topics, we will define multiplying by −1 as

causing an anticlockwise rotation by 180°. We can also define dividing by −1 as causing a

clockwise rotation by 180°.

We can view −1 as 1 × (−1), where 1 is our starting point and multiplying by −1 is the operation

of rotating 180° anticlockwise.

SQUARING

Squaring normally means that a number is multiplied by itself, but if 𝑥 represents an operation

then it means that the same operation will be repeated twice in a row.

To solve 𝑥2 = −1, we first view the equation as 1 × 𝑥 × 𝑥 = −1. So starting at 1, what operation

can we perform twice to end up at −1?

Reflection about 0 will not work, as reflecting twice brings us back to our starting point of 1.

There are two possible solutions:

• 𝑥 could represent a 90° anticlockwise rotation

• 𝑥 could represent a 90° clockwise rotation

Now either one is just as valid to be the definition of 𝑖, but by tradition we let 𝑖 represent the

anticlockwise rotation. There is no reason we couldn’t have defined it the other way around, but

it is more consistent with our work in other topics.

So if the anticlockwise rotation is 𝑖, what is the clockwise rotation? It is −𝑖, as −𝑖 2 = 𝑖2 = −1.

The two solutions to 𝑥2 = −1 are 𝑖 and −𝑖.

× (−𝑖)

..

−1 10

. .

2

.

−2

× 𝑖× 𝑖

× (−𝑖)
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Now 𝑖 = 1 × 𝑖, so starting with the vector to 1 and rotating it 90° anticlockwise, we see that 𝑖

must be a number that is off the number line, 1 unit above 0.

So 𝑖 can either rotate a complex number by
𝜋

2
if it is multiplied or divided, or move it one unit

perpendicular to the number line if it is added or subtracted.

It is the ease with which complex numbers can either move objects at right angles or rotate

them that makes them so important in science.

Similarly −𝑖 is one unit beneath 0.

..

−1 10

. .

2

.

−2

× 𝑖
𝑖

..

−1 10

. .

2

.

−2

× (−𝑖)
−𝑖

Later in the lesson we will extend the number line to form the Complex Plane, but I always like

showing 𝑖 as a point somewhere off the number line so that we can better see the link between

the number line and the Complex Plane, rather than being confused between the Cartesian

Plane and the Complex Plane.
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SURD LAWS

We mentioned that complex numbers act like surds in some cases.

It is important to note that our surd laws only work with complex numbers when certain

restrictions are put in place. Since these restrictions are beyond the course it is safest to simply

avoid the surd laws.

As an example of how the surd laws don’t always work with complex numbers, consider this

false proof:

−1 = 𝑖2

= 𝑖 × 𝑖

= −1 × −1

= −1 × −1

= 1

= 1

REAL WORLD USES OF COMPLEX NUMBERS

Like many concepts in mathematics complex numbers have been found to have uses far

beyond those they were initially created for.

Complex Numbers can be used:

• As a quicker way to solve questions that could still be solved using only real numbers - this

is the most common application

• To simplify calculations for determining the position of objects that are rotating or being

transformed

• To solve equations where the first and last steps are purely real but intermediary steps can

only be solved using complex numbers

• In a small number of cases to model situations that could not be handled by real numbers

Mathematics Extension 2 © Steve Howard 86 Howard and Howard Education



Complex numbers are particularly useful as:

• Circular motion can be modelled quite easily, so the study of any object that that involves

waves or oscillations, such as electricity, electromagnetism, earthquakes, soundwaves

and light waves is simpler.

• Anything with two real components can be represented as one complex number, with one

real number assigned to the real component and the other to the imaginary, such as the

state of an electric circuit which is defined by voltage 𝑉 and current 𝐼, and can be

represented by 𝑧 = 𝑉 + 𝐼𝑖 (normally using 𝑗 instead of 𝑖 to avoid confusion).

• Anything with two components that are at right angles to each other can be represented as

one complex number, since the real and imaginary components are at right angles, such

as a force being split into its vertical and horizontal components

• Objects which repeatedly change direction can be modelled by imaginary numbers, since

𝑖2 = −1 represents a change of direction, such as for alternating current in electricity

• Probabilities for predicting the positions of particles in quantum physics or the cycles in the

share markets can be modelled using complex numbers

Most technology relies on complex numbers for its invention or to speed up calculations. If you

are taking a selfie (CCD) on your phone while texting (signal), then switch to a game stored on

your phone (magnetic disk and graphics), under a fluorescent light (particle control), then you

are surrounded by advances that would not be possible without complex numbers.

We have barely scratched the surface of how we use complex numbers in the real world.
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THE COMPLEX PLANE

We have seen that imaginary numbers are above or below the number line - this is the basis of

the Complex Plane, also known as the Argand Diagram. Let’s look at it in more detail.

The Number Line is one dimensional and includes all real numbers. Positive numbers are to the

right and negative numbers to the left.

| | | | | | | | |

-4 -3 -2 -1 0 1 2 3 4

.

The real number 2

The Complex Plane starts with the Number Line, now called the Real axis and marked Re(𝑧).

A vertical axis passes through 0, representing imaginary numbers, and is marked Im(𝑧).

Positive multiples of 𝑖 are above the line with negative multiples below.

.

| | | | | | | |

-4 -3 -2 -1 1 2 3 4

.

−

−

−

−

2

1

-1

-2

The real number 2

The imaginary number 2𝑖

.
The complex number 2 + 2𝑖

Im(𝑧)

Re(𝑧)
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Although the Complex Plane looks like a Cartesian Plane, it is more closely related to the

number line and there are some important differences.

Each point on a Cartesian Plane represents two different real numbers that are somehow

related, like the point (2,1) shown at left. This could be the input and output of a function, like

𝑦 = 𝑥2 − 3, or the distance travelled and time taken.

Each point on the Complex Plane represents one number which has a real and an imaginary

part, so (2,1) now represents 2 + 𝑖.

Where the two axes cross on the Complex Plane is the number zero, rather than the pair of

zeros (0,0), although we may still refer to it as the origin.

The Complex Plane has lots of interesting properties, and although it is in many ways more

related to a number line, it shares properties with the Cartesian Plane and the Unit Circle.

| | | | | | | |
-4 -3 -2 -1 1 2 3 4

−

−

−

−

2

1

-1

-2

.

𝑦

𝑥

| | | | | | | |
-4 -3 -2 -1 1 2 3 4

−

−

−

−

2

1

-1

-2

.

Im(𝑧)

Re(𝑧)

(2,1)

2 + 𝑖

Cartesian Plane

Complex Plane
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POWERS OF 𝑖

Powers of 𝑖 can be simplified algebraically or geometrically. Algebraically we can use index

laws to break the powers into 𝑖, 𝑖2 and 𝑖4, noting 𝑖2 = −1 and 𝑖4 = 𝑖2 2 = 1. We see a cyclical

pattern repeating every four integers, 𝑖, −1,−𝑖, 1, representing the intersections of the axes with

the unit circle.

𝑖1 = 𝑖

It represents one 90° turn

𝑖

−𝑖

1−1

𝑖1 = 𝑖

.

𝑖

−𝑖

1−1

𝑖

−𝑖

1−1

𝑖2 = −1

It represents two 90° turns

𝑖3 = 𝑖2 × 𝑖

= −1 × 𝑖

= −𝑖

It represents three 90° turns

𝑖3 = −𝑖

.

𝑖2 = −1

.
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𝑖

−𝑖

1−1

𝑖

−𝑖

1−1

𝑖4 = 𝑖2 2

= −1 2

= 1

It represents four 90° turns, bringing us 

back to 1.

𝑖5 = 𝑖4 × 𝑖

= 1 × 𝑖

= 𝑖

It represents five 90° turns, ending up in the 

same place as only one turn.

𝑖4 = 1

.

𝑖5 = 𝑖

.

Higher powers of 𝑖 continue to cycle around the circle, a property that makes calculations with

complex numbers so useful in some fields.

If the power is:

• A multiple of 4 then it is equal to 1

• One more than a multiple of 4 then it is equal to 𝑖

• Two more than a multiple of 4 and it is equal to −1

• Three more and it is equal to −𝑖

We can also use negative powers of 𝑖 with similar results, as the point cycles clockwise in a

similar manner.

We can simplify powers of 𝑖 by looking at how many revolutions have occurred, and where we

end up on the unit circle.
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Example 4

Simplify the following powers of 𝑖:

a 𝑖10 b 𝑖1000 c 𝑖99 d 𝑖−1 e 𝑖−11

Solution

𝐚

𝑖10

= 𝑖4 2 × 𝑖2

= 12 × −1

= −1

𝐛

𝑖1000

= 𝑖4 250

= 1250

= 1

𝐜

𝑖99

= 𝑖4 24 × 𝑖2 × 𝑖

= 124 × −1 × 𝑖

= −𝑖

𝐝

𝑖−1

= 𝑖2 −1 × 𝑖

= −1 −1 × 𝑖

=
1

−1
× 𝑖

= −𝑖

𝐞

𝑖−11

= 𝑖4 −3 × 𝑖

= 1−3 × 𝑖

= 𝑖

Ten lots of 90° is

2.5 revolutions,

ending at −1.

1000 lots of 90°

is 250 full

revolutions,

ending at 1.

99 lots of 90° is

24.75 full

revolutions,

ending at −𝑖.

1 lot of 90°

backwards ends

at −𝑖.

11 lots of 90°

backwards is

3.75 revolutions,

ending at 𝑖.

𝑖

−𝑖

1−1

Example 5

Simplify:

a 𝑖6 + 𝑖4 b 𝑖3(𝑖5 + 𝑖8)

Solution

𝐚

𝑖6 + 𝑖4

= 𝑖4 𝑖2 + 1

= 𝑖4 −1 + 1

= 0

𝐛

𝑖3 𝑖5 + 𝑖8

= 𝑖8 1 + 𝑖3

= 𝑖4 2 1 − 𝑖

= 1 − 𝑖
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EXERCISE 2.1

BASIC

1 a Factorise 𝑧2 + 25 b Hence find the square roots of −25

2 a Factorise 𝑧2 + 2𝑧 + 5 b Hence solve 𝑧2 + 2𝑧 + 5 = 0

c Solve 𝑧2 + 2𝑧 + 5 = 0 using the quadratic formula.

3 Factorise 𝑧2 + 6𝑖𝑧 + 7

a by completing the square b by factorising

c Hence solve 𝑧2 + 6𝑖𝑧 + 7 = 0

4 Simplify the following powers of 𝑖:

a 𝑖6 b 𝑖400 c 𝑖63 d 𝑖−3 e 𝑖−10

5 Write 𝑖9 in the form 𝑎 + 𝑖𝑏 where 𝑎 and 𝑏 are real.

6 Simplify:

a 𝑖5 + 𝑖7 b 𝑖6(𝑖2 + 𝑖3)

7 Find the square roots of −36.

MEDIUM

8 The three cube roots of 8 are the solutions to 𝑧3 − 8 = 0. The cube roots include 𝑧 = 2
plus two complex roots. Given 𝑧3 − 8 = (𝑧 − 2)(𝑧2 + 𝑧 + 2) find the complex cube roots of 

8. 

9 Factorise 𝑧4 + 𝑧2 − 12 over:

a the rational field b the real field c the complex field

10 Solve 𝑧2 + 2𝑧 + 5 = 0

a by completing the square                 b by replacing 𝑏2 − 4𝑎𝑐 with 𝜆, where 𝜆2 = Δ

11 Solve the quadratic equation 𝑧2 + 2 + 3𝑖 𝑧 + 1 + 3𝑖 = 0, giving your answers in the

form 𝑎 + 𝑏𝑖, where 𝑎 and 𝑏 are real numbers.

12 Graph the following complex numbers:

a −1
1

3 b −1 −
2

3 c −1
8

3
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SOLUTIONS - EXERCISE 2.1

1 a 𝑧2 + 25 = 𝑧2 − 25𝑖2 = 𝑧2 − 5𝑖 2 = (𝑧 + 5𝑖)(𝑧 − 5𝑖)

b Let 𝑧 be a square root of −25 𝑧2 = −25 𝑧2 + 25 = 0 ∴ 𝑧 + 5𝑖 𝑧 − 5𝑖 = 0 𝑧 = ±5𝑖

2 a 𝑧2 + 2𝑧 + 5 = 𝑧2 + 2𝑧 + 1 + 4 = 𝑧 + 1 2 + 22 = 𝑧 + 1 2 − 2𝑖 2

= (𝑧 + 1 + 2𝑖)(𝑧 + 1 − 2𝑖)

b 𝑧2 + 2𝑧 + 5 = 0 (𝑧 + 1 + 2𝑖)(𝑧 + 1 − 2𝑖) = 0 𝑧 = −1 ± 2𝑖

𝐜 𝑧 =
−2 ± 22 − 4 × 1 × 5

2 × 1
=
−2 ± −16

2
=
−2 ± 4𝑖

2
= −1 ± 2𝑖

3 a 𝑧2 + 6𝑖𝑧 + 7 = 𝑧2 + 6𝑖𝑧 + 3𝑖 2 − 3𝑖 2 + 7 = 𝑧 + 3𝑖 2 + 9 + 7 = 𝑧 + 3𝑖 2 + 42

= 𝑧 + 3𝑖 2 − (4𝑖)2= 𝑧 + 3𝑖 + 4𝑖 𝑧 + 3𝑖 − 4𝑖 = (𝑧 + 7𝑖)(𝑧 − 𝑖)

b 𝑧2 + 6𝑖𝑧 + 7 = 𝑧2 + 6𝑖𝑧 − 7𝑖2 = (𝑧 + 7𝑖)(𝑧 − 𝑖)

c 𝑧2 + 6𝑖𝑧 + 7 = 0 𝑧 + 7𝑖 𝑧 − 𝑖 = 0 𝑧 = −7𝑖, 𝑖

4 𝐚 𝑖6 = 𝑖4 × 𝑖2 = 1 × −1 = −1

b 𝑖400 = 𝑖4 100 = 1100 = 1

c 𝑖63 = 𝑖4 15 × 𝑖2 × 𝑖 = 115 × −1 × 𝑖 = −𝑖

d 𝑖−3 = 𝑖−4 × 𝑖 = 𝑖4 −1 × 𝑖 = 1−1 × 𝑖 = 𝑖

e 𝑖−10 = 𝑖−12 × 𝑖2 = 𝑖4 −3 × 𝑖2 = 1−3 × −1 = −1

5 𝑖9 = 𝑖8 × 𝑖 = 1 × 𝑖 = 𝑖 = 0 + 1𝑖

6 a 𝑖5 + 𝑖7 = 𝑖4 𝑖 + 𝑖3 = 1 𝑖 − 𝑖 = 0

b 𝑖6 𝑖2 + 𝑖3 = 𝑖8 1 + 𝑖 = 𝑖4 2 1 + 𝑖 = 1 1 + 𝑖 = 1 + 𝑖

7 𝑧2 = −36 𝑧2 = 36𝑖2 𝑧2 = ±6𝑖 2 𝑧 = ±6𝑖 OR

Let 𝑧 be a square root of −36 ∴ 𝑧2 = −36 𝑧2 + 36 = 0 ∴ 𝑧 + 6𝑖 𝑧 − 6𝑖 = 0 𝑧 =

± 6𝑖 OR

𝑧 = −36 = 36𝑖2 = ±6𝑖 2 = ±6𝑖
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8 Let 𝑧 be a cube root of 8

∴ 𝑧3 = 8

∴ 𝑧3 − 8 = 0

𝑧 − 2 𝑧2 + 2𝑧 + 4 = 0

𝑧 − 2 = 0 or 𝑧2 + 2𝑧 + 4 = 0

𝑧 = 2 𝑧 =
−2 ± 22 − 4 1 4

2 1

=
−2 ± −12

2

=
−2 ± 2 3𝑖

2

= −1 ± 3𝑖

The three cube roots of 2 are 1 and − 1 ± 3𝑖

9 𝐚 𝑧4 + 𝑧2 − 12 = (𝑧2 − 3)(𝑧2 + 4)

𝐛 𝑧4 + 𝑧2 − 12 = 𝑧2 − 3 𝑧2 + 4 = 𝑧 + 3 𝑧 − 3 (𝑧2 + 4)

𝐜 𝑧4 + 𝑧2 − 12 = 𝑧2 − 3 𝑧2 + 4 = 𝑧 + 3 𝑧 − 3 (𝑧2 + 4)

= 𝑧 + 3 𝑧 − 3 (𝑧 + 2𝑖)(𝑧 − 2𝑖)

10 a

𝑧2 + 2𝑧 + 5 = 0

𝑧2 + 2𝑧 + 1 + 4 = 0

𝑧 + 1 2 + 4 = 0

𝑧 + 1 2 = −4

𝑧 + 1 2 = 4𝑖2

𝑧 + 1 = ±2𝑖

𝑧 = −1 ± 2𝑖

b

Δ = 22 − 4 1 5 = −16 = 16𝑖2 = 4𝑖 2

𝑧 =
−𝑏 ± 𝜆

2𝑎
=
−2 ± 4𝑖

2 × 1
= −1 ± 2𝑖

11 This question is easier if you notice that the sum of 2 + 3i is one more than the product 

1 + 3i, so 1 and 1 + 3i are the numbers needed. Alternatively use the quadratic formula.

𝑧2 + 2 + 3𝑖 𝑧 + 1 + 3𝑖 = 0 𝑧 + 1 𝑧 + 1 + 3𝑖 = 0 ∴ 𝑧 = −1 or − 1 − 3𝑖
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12 a One third of the anticlockwise rotation from 0 to -1

b Two thirds of the clockwise rotation from 0 to -1

c Eight thirds of the anticlockwise rotation from 0 to -1,

so a complete revolution plus two thirds of the

anticlockwise rotation.

𝑖

−𝑖

1−1

.

.

−1
1
3

−1 −
2
3

−1
8
3.
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2.2  CARTESIAN FORM

In Lesson 2 we look at the three forms of a complex number, then cover basic operations of

complex numbers in Cartesian form:

• Forms of a Complex Number

• Calculations in Cartesian Form

• Addition and Subtraction

• Multiplication and Division

• Multiplication of Complex Numbers

• Squaring a Complex Number

• Powers of a Complex Number

• Conjugate of a Complex Number

• Division of Complex Numbers

• Equal Complex Numbers

• Combining Operations
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FORMS OF A COMPLEX NUMBER

Complex Numbers can be represented in three forms, which we will look at in detail in the next

lessons. Cartesian (or rectangular) form, Polar (Modulus-Argument) form and Exponential form.

CARTESIAN (RECTANGULAR) FORM

A complex number can be written in the form 𝑧 = 𝑎 + 𝑖𝑏 where 𝑎 and 𝑏 are real numbers.

𝑎 is the real part also known as Re(𝑧)

𝑏 is the imaginary part also known as Im(𝑧).

If 𝑏 = 0 then we have a purely real number.

If 𝑎 = 0 then we have a purely imaginary number.

For example 6 + 0𝑖 = 6 is purely real and 0 + 6𝑖 = 6𝑖 is purely imaginary.

POLAR (MODULUS - ARGUMENT) FORM

We can also write the same number as z = 𝑟(cos 𝜃 + 𝑖 sin𝜃), where 𝑟 is the modulus (distance

from zero) and 𝜃 is the argument (the angle measured anti-clockwise from the 𝑥-axis). This is

often abbreviated as 𝑧 = 𝑟 cis 𝜃 for convenience. We will look at this in more detail in Lesson 3.

If 𝜃 = 0 or 𝜋 then we have a purely real number on the real axis.

If 𝜃 =
𝜋

2
or

3𝜋

2
then we have a purely imaginary number on the imaginary axis.

For example 3(cos 0 + 𝑖 sin0) is purely real and

2 cos
3𝜋

2
+ 𝑖 sin

3𝜋

2
is purely imaginary.

.

𝑎

𝑏

𝑧 = 𝑎 + 𝑖𝑏

Re(𝑧)

Im(𝑧)

.
𝑟

𝜃

𝑧 = 𝑟 cos 𝜃 + 𝑖 sin 𝜃

Re(𝑧)

Im(𝑧)
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EXPONENTIAL FORM

A form that is new to the syllabus is exponential form, which also uses the modulus and

argument, but in a much simpler form. Confusingly it is also sometimes known as polar form.

We will look at this in more detail in Lesson 4.

Again, if 𝜃 = 0 or 𝜋 then we have a purely real number, and if

𝜃 =
𝜋

2
,
3𝜋

2
then we have a purely imaginary number.

eg. 3𝑒0𝑖 is purely real and 2𝑒
3𝜋

2
𝑖

is purely imaginary.

.

𝑟

𝜃

𝑧 = 𝑟𝑒𝑖𝜃

Re(𝑧)

Im(𝑧)

CALCULATIONS IN CARTESIAN FORM

For the remainder of this lesson we will concentrate on basic calculations in Cartesian form.

Cartesian form is:

• the easiest form to understand

• the best form to use for addition and subtraction

• capable of doing multiplication, powers and division (but not the easiest)

• the best form to use when translating vectors

Complex Numbers follow most but not all of the laws we have used in Years 7-10 for real

numbers.

Each example will be solved algebraically (which is all you need to do in exams), but then is

followed by a geometric explanation to increase your understanding of what is happening.
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ADDITION AND SUBTRACTION

For addition and subtraction we simply collect like terms.

From zero go right 4, up 2, right 2 and up

3. In total that is 6 to the right and 5 up.

From zero go right 4, up 2, left 2 and down 3.

In total that is 2 to the right and −1 up.

4

2𝑖

2

3𝑖

6

5𝑖

Im(𝑧)

Re(𝑧)

6 + 5𝑖

4

2𝑖

−2

2

−𝑖

Im(𝑧)

Re(𝑧)

−3𝑖

2 − 𝑖

Example 1

Simplify:

a 4 + 2𝑖 + 2 + 3𝑖 b 4 + 2𝑖 − 2 + 3𝑖

Solution

a

6 + 5𝑖

b

2 − 𝑖
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MULTIPLICATION AND DIVISION

Multiplication and division of complex numbers are easier in polar or exponential form, which we 

will explore in later lessons. 

A complex number can be multiplied or divided by:

• a real positive number - which changes the real and imaginary parts in the same proportion 

- the scale changes 

• a real negative number, which will reflect it to the other side of zero and may change the 

real and imaginary parts in the same proportion

• an imaginary number - which will rotate it by 
𝜋

2
and may change its scale

• a complex number - which will rotate it and may change its scale

If the modulus of the imaginary number or complex number is 1 then there will be no change of 

scale.

Algebraically all we need to do is expand any brackets and collect the like terms.
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Example 2

Simplify (2 + 𝑖)(1 + 2𝑖)

Solution

2 + 𝑖 1 + 2𝑖

= 2 + 4𝑖 + 𝑖 + 2𝑖2

= 2 + 4𝑖 + 𝑖 − 2

= 5𝑖

We can view the question as 2 1 + 2𝑖 + 𝑖(1 + 2𝑖), which is 1 + 2𝑖 scaled by 2 (since it is

multiplied by 2), added with 1 + 2𝑖 rotated anti-clockwise by 90° (since it is multiplied by 𝑖).

1

2𝑖

2

4𝑖
× 2

1

2𝑖
× 𝑖

𝑖

−2

90°

Im(𝑧)

Re(𝑧)

𝑖

−2
5𝑖

2

4𝑖

extra 

triangle

𝛼

𝛽

Note:

• the four side lengths on the diagram (2, 4𝑖, 𝑖, −2) match the algebraic expansion top left.

• the extra triangle formed by the two triangles is a similar triangle to 2 + 𝑖. This shows that 

the argument of the product is equal to the sum of the arguments of the two complex 

numbers (marked 𝛼 and 𝛽), which we will look at in a later lesson. 
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SQUARING A COMPLEX NUMBER

Squaring a Complex Number is a special case of multiplying two complex numbers and can be

done using the expansion of a perfect square formula.

𝑎 + 𝑖𝑏 2 = 𝑎2 + 2𝑖𝑎𝑏 + 𝑖2𝑏2 = 𝑎2 − 𝑏2 + 2𝑖𝑎𝑏

The rule above is useful for explaining 

some of the methods for finding the square 

root of a complex number that we will do 

later in the topic. 

Note 

Re 𝑎 + 𝑖𝑏 2 = 𝑎2 − 𝑏2

Im 𝑎 + 𝑖𝑏 2 = 2𝑎𝑏

Another way to view squaring a complex 

number is that we can add a similar triangle 

with an adjoining edge. This helps us 

understand powers in the next example, 

which in turn helps us understand 

exponential form and de Moivre’s theorem 

later in the topic. 

Im(𝑧)

Re(𝑧)

1 + 𝑖

1 + 𝑖 2

2

1(1 + 𝑖)

𝑖(1 + 𝑖)

Im(𝑧)

Re(𝑧)

1 + 𝑖

1 + 𝑖 2

2

𝛼

𝛼

Example 3

Simplify 1 + 𝑖 2

Solution

1 + 𝑖 2

= 12 + 2𝑖 + 𝑖2

= 1 − 1 + 2𝑖

= 2𝑖
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CONJUGATE OF A COMPLEX NUMBER

The conjugate of a complex number is its reflection over the real axis. The conjugate is known

as ҧ𝑧 which is pronounced ‘z bar’.

In Cartesian form the conjugate has the same real part, but the imaginary part is of the opposite

sign. The conjugate of 𝑎 + 𝑖𝑏 is 𝑎 − 𝑖𝑏. eg. the conjugate of 3 + 2𝑖 is 3 − 2𝑖. Note the similarity

to surds, where the conjugate of 3 + 2 is 3 − 2.

.

𝑎

𝑏

Re(𝑧)

Im(𝑧)

−𝑏

ҧ𝑧 = 𝑎 − 𝑖𝑏.

𝑧 = 𝑎 + 𝑖𝑏

Conjugates are important as:

- Multiplying by a conjugate rotates the opposite direction to multiplying by the original

complex number, which we use for dividing with complex numbers

- Adding a complex number and its conjugate removes the imaginary component, while 

subtracting removes the real component

- If the modulus is 1 then the reciprocal of a complex number and its conjugate are equal.

- When we solve a polynomial where the coefficients are real then any complex roots occur 

in conjugate pairs as we see this lesson.

In Lesson 5 we will look at many important properties of conjugates.

Example 4

Find the conjugate of each complex number:

a −3 + 2𝑖 b 4𝑖

Solution

a

−3 − 2𝑖

b

−4𝑖
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DIVISION OF COMPLEX NUMBERS

When dividing complex numbers we must realise the denominator (it must end up with no

imaginary component), which is very similar to rationalising the denominator with surds. Division

can involve rotation and/or scaling, just like multiplication.

Dividing by 2𝑖 is the same 

as dividing by 2 then 

rotating clockwise 90°.

3

2𝑖
÷ 2𝑖

1

−
3

2
𝑖

Im(𝑧)

Re(𝑧)
3

2𝑖

1

−
3

2
𝑖

3 + 2𝑖

2𝑖
= 1 −

3

2
𝑖

Example 5

Simplify
3+2𝑖

2𝑖

Solution

3 + 2𝑖

2𝑖
×
𝑖

𝑖

=
3𝑖 + 2𝑖2

2𝑖2

=
−2 + 3𝑖

−2

= 1 −
3

2
𝑖
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Example 6

Simplify
3+2𝑖

1+𝑖

Solution

3 + 2𝑖

1 + 𝑖
×
1 − 𝑖

1 − 𝑖

=
3 − 3𝑖 + 2𝑖 − 2𝑖2

12 − 𝑖2

=
5 − 𝑖

2

In polar form, 1 + 𝑖 has modulus 2 and argument 45°, so dividing by 1 + 𝑖 is the same as

scaling by
1

2
then rotating clockwise 45°. Using trigonometry we could show that there exists

another triangle with horizontal and vertical sides with lengths equivalent to
5

2
and −

1

2
𝑖

3

2𝑖

÷ (1 + 𝑖)
3

2
2

2

5

2

−
1

2
𝑖

Im(𝑧)

Re(𝑧)3

2
2

2

2𝑖

3
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EQUAL COMPLEX NUMBERS

An important technique in solving questions is that for two complex numbers in Cartesian form

to be equal, their real parts are equal and their imaginary parts are equal.

Example 7

Given 𝑧 = 𝑎 + 𝑖𝑏, find 𝑎 and 𝑏 such that 𝑧 + 3𝑖 ҧ𝑧 = −1 + 13𝑖

Solution

LHS = 𝑎 + 𝑖𝑏 + 3𝑖 𝑎 − 𝑖𝑏

= 𝑎 + 𝑖𝑏 + 3𝑎𝑖 + 3𝑏

= 𝑎 + 3𝑏 + 3𝑎 + 𝑏 𝑖

∴ 𝑎 + 3𝑏 = −1 1

3𝑎 + 𝑏 = 13 2

2 − 3 × 1 :

−8𝑏 = 16 → 𝑏 = −2

sub in 2

3𝑎 − 2 = 13 → 𝑎 = 5

∴ 𝑎 = 5 and 𝑏 = −2
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EXERCISE 2.2

BASIC

1 Simplify:

a 3 + 2𝑖 + 4 + 𝑖 b 3 + 2𝑖 − 4 + 𝑖

2 Simplify:

a 3(2 + 4𝑖) b −2(4 − 3𝑖)

3 Simplify:

a 𝑖(3 + 𝑖) b −2𝑖(3 − 4𝑖)

4 Simplify (3 + 𝑖)(4 − 2𝑖)

5 Simplify 2 − 𝑖 2

6 Simplify 2 + 𝑖 3

7 Find the conjugate of each complex number:

a 2 − 2𝑖 b −6𝑖

8
Simplify 

2−3𝑖

2𝑖

9
Simplify 

3−2𝑖

1−𝑖

10 Given 𝑧 = 3 + 2𝑖 find Re(2𝑧 + 𝑖𝑧)

11 Given 𝑧 = 𝑎 + 𝑖𝑏, find 𝑎 and 𝑏 such that 𝑧 − 2𝑖 ҧ𝑧 = 3 + 4𝑖

12 Find the real numbers 𝑎 and 𝑏 such that  1 + 2𝑖 1 − 3𝑖 = 𝑎 + 𝑖𝑏

13 Let 𝑧 = 1 + 𝑖 and 𝑤 = 1 − 𝑖. Find, in the form 𝑥 + 𝑖𝑦

a 𝑧 + 𝑖𝑤 b 𝑧2ഥ𝑤 c
𝑧

𝑤

14 If 𝑧 = 3 + 𝑖 and 𝑤 = −2 + 2𝑖, find:

a 𝑧 + 𝑤 b 𝑧 − 𝑤 c 2𝑧 d −3𝑤

e 𝑖𝑧 f 𝑧 × 𝑤 g
𝑤

3𝑖
h
𝑧

𝑤

MEDIUM

15 Given that 𝑎 and 𝑏 are real numbers and 
𝑎

1+𝑖
−

𝑏

2𝑖
= 2 find the values of 𝑎 and 𝑏.

16 The points 𝑃 and 𝑄 represent the complex numbers 𝑧 and 𝑤 respectively. 

Mark the following points on the diagram.

a the point 𝑅 representing ҧ𝑧

b the point 𝑆 representing 𝑖𝑤

c the point 𝑇 representing 𝑤 + 𝑧

.

.

𝑃

𝑄
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SOLUTIONS - EXERCISE 2.2

1 a 3 + 2𝑖 + 4 + 𝑖 = 7 + 3𝑖 b 3 + 2𝑖 − 4 + 𝑖 = −1 + 𝑖

2 a 3 2 + 4𝑖 = 6 + 12𝑖 b −2 4 − 3𝑖 = −8 + 6𝑖

3 a 𝑖 3 + 𝑖 = 3𝑖 + 𝑖2 = −1 + 3𝑖 b −2𝑖(3 − 4𝑖) = −6𝑖 + 8𝑖2 = −8 − 6𝑖

4 3 + 𝑖 4 − 2𝑖 = 12 − 6𝑖 + 4𝑖 − 2𝑖2 = 12 − 2𝑖 + 2 = 14 − 2𝑖

5 2 − 𝑖 2 = 4 − 4𝑖 + 𝑖2 = 4 − 4𝑖 − 1 = 3 − 4𝑖

6 2 + 𝑖 3 = 2 3 + 3 2 2 𝑖 1 + 3 2 𝑖 2 + 𝑖3 = 8 + 12𝑖 − 6 − 𝑖 = 2 + 11𝑖

7 a 2 − 2𝑖 = 2 + 2𝑖 b −6𝑖 = 6𝑖

8 2 − 3𝑖

2𝑖
×
𝑖

𝑖
=
2𝑖 + 3

−2
=
−3 − 2𝑖

2

9 3 − 2𝑖

1 − 𝑖
×
1 + 𝑖

1 + 𝑖
=
3 + 3𝑖 − 2𝑖 + 2

12 + 12
=
5 + 𝑖

2

10 Re 2𝑧 + 𝑖𝑧 = Re 2 3 + 2𝑖 + 𝑖 3 + 2𝑖 = Re 6 + 4𝑖 + 3𝑖 − 2 = Re 4 + 7𝑖 = 4

11 LHS = 𝑎 + 𝑖𝑏 − 2𝑖 𝑎 − 𝑖𝑏 = 𝑎 + 𝑖𝑏 − 2𝑎𝑖 − 2𝑏 = 𝑎 − 2𝑏 + 1 − 2𝑏 𝑖

∴ 𝑎 − 2𝑏 = 3 1 1 − 2𝑏 = 4 2

2 − 3 : 1 − 𝑎 = 1 → 𝑎 = 0

sub in 1 : 0 − 2𝑏 = 3 → 𝑏 = −
3

2

12 1 − 3𝑖 + 2𝑖 − 6𝑖2 = 7 − 𝑖 ∴ 𝑎 = 7, 𝑏 = −1

13
𝑎

1 + 𝑖
×
1 − 𝑖

1 − 𝑖
−
𝑏

2𝑖
×
𝑖

𝑖
= 2

𝑎 − 𝑎𝑖

12 + 12
−

𝑏𝑖

−2
= 2

𝑎 − 𝑎𝑖 + 𝑏𝑖

2
= 2

𝑎 + 𝑏 − 𝑎 𝑖 = 4

∴ 𝑎 = 4, 𝑏 − 𝑎 = 0 → 𝑏 = 4

14 a 𝑧 + 𝑤 = 3 + 𝑖 + −2 + 2𝑖 = 1 + 3𝑖
b 𝑧 − 𝑤 = 3 + 𝑖 − −2 + 2𝑖 = 5 − 𝑖
c 2𝑧 = 2 3 + 𝑖 = 6 + 2𝑖
d −3𝑤 = −3 −2 + 2𝑖 = 6 − 6𝑖
e 𝑖𝑧 = 𝑖 3 + 𝑖 = −1 + 3𝑖
f 𝑧 × 𝑤 = 3 + 𝑖 −2 + 2𝑖 = −6 + 6𝑖 − 2𝑖 − 2 = −8 + 4𝑖

g
𝑤

3𝑖
=

−2+2𝑖

3𝑖
×

𝑖

𝑖
=

−2𝑖−2

−3
=

2

3
+

2

3
𝑖

h
𝑧

𝑤
=

3+𝑖

−2+2𝑖
×

−2−2𝑖

−2−2𝑖
=

−6−6𝑖−2𝑖+2

4+4
=

−4−8𝑖

8
=

−1−2𝑖

2
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15 a

𝑧 + 𝑖𝑤 = 1 + 𝑖 + 𝑖 1 − 𝑖

= 1 + 𝑖 + 𝑖 + 1

= 2 + 2𝑖

b

𝑧2ഥ𝑤 = 1 + 𝑖 2 1 + 𝑖

= 1 + 𝑖 3

= 13 + 3 1 2𝑖 + 3 1 𝑖2

= 1 + 3𝑖 − 3 − 𝑖

= −2 + 2𝑖

c

𝑧

𝑤
=
1 + 𝑖

1 − 𝑖
×
1 + 𝑖

1 + 𝑖

=
1 + 2𝑖 − 1

12 + 12

= 𝑖

16

.
𝑅

.𝑆

.
𝑇

.

.

𝑃

𝑄
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2.3  POLAR FORM

In Lesson 3 we look at the polar form of a complex number, covering:

• Modulus, Argument and Polar Form

• Multiplying Complex Numbers in Polar Form

• Division of Complex Numbers in Polar Form

• Conjugate in Polar Form

• Converting Rectangular to/from Polar Form

MODULUS, ARGUMENT AND POLAR FORM

Polar form (𝑟 cos 𝜃 + 𝑖 sin 𝜃 or 𝑟 cis 𝜃) is also known as modulus-argument (mod-arg) form.

In the diagram below the complex number 𝑧 can be represented as 𝑥 + 𝑖𝑦 in Cartesian form, or

𝑟(cos 𝜃 + 𝑖 sin𝜃) in polar form – they represent the same complex number.

.

𝜃
𝑥

𝑦

𝑧 = 𝑥 + 𝑖𝑦

𝑧 = 𝑟(cos𝜃 + 𝑖 sin 𝜃)

The distance from zero is called the modulus, which we represent using either the pronumeral 𝑟

or |𝑧|.

At a glance we can see that the modulus is a hypotenuse of a right angled triangle, so we can

use Pythagoras’ theorem to show that 𝑧 = 𝑥2 + 𝑦2.

We call the angle the argument, labelled arg 𝑧 and measure it anticlockwise from the 𝑥-axis.
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Like on the Unit Circle a single point can be represented by many angles, each differing by 2𝜋 radians, so

we define the principal argument as the angle from −𝜋 radians exclusive to 𝜋 radians inclusive, so

(−𝜋, 𝜋].

Now some mathematicians prefer a principal argument to be defined for [0,2𝜋), and each has its

advantages. The advantage of using (−𝜋, 𝜋] is that we often have solutions that are conjugates, and so

we get answers in the form ±𝜃 rather than 𝜃, 2𝜋 − 𝜃 which is a bit easier.

Any angle is formed by two lines. For the argument we have the real axis plus the ray from zero to the

complex number. We cannot use polar form for the complex number zero, as there no line from zero to

zero, so the argument is undefined. The modulus is zero.

Using some right angled trigonometry we can then easily see that 𝑥 = 𝑟 cos 𝜃 and 𝑦 = 𝑟 sin 𝜃, so we can

convert the rectangular form of 𝑥 + 𝑖𝑦 into polar form z = 𝑟(cos 𝜃 + 𝑖 sin 𝜃) which is often abbreviated as

𝑟 cis 𝜃 which stands for cos + i sin. Purists prefer not to use cis notation, and in HSC solutions the full

cos 𝜃 + 𝑖 sin 𝜃 is used.

In the last lesson we will use 𝑐 and 𝑖𝑠 as abbreviations for cos and 𝑖 sin in our working.

1

3

1 1

−1 −1

Example 1

Convert the following complex numbers from Cartesian form into polar form:

a 1 + 3𝑖 b −1 + 𝑖 c 1 − 𝑖

Solution

Draw a rough sketch the first few times you do it.

a

𝑧 = 12 + ( 3)2

= 2

arg 𝑧 = tan−1
3

1

=
𝜋

3
∴1 + 3𝑖 = 2 cis

𝜋

3

b

𝑧 = 12 + 12

= 2

arg 𝑧 = 𝜋 − tan−1
1

1

∴ arg 𝑧 =
3𝜋

4
∴ −1 + 𝑖 = 2 cis

3𝜋

4

c

𝑧 = 12 + 12

= 2

arg 𝑧 = −tan−1
1

1

∴ arg 𝑧 = −
𝜋

4
∴1 − 𝑖 = 2 cis −

𝜋

4
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Example 2

Convert the following complex numbers from polar into Cartesian form:

a 2 cis
𝜋

3
b cis −

2𝜋

3

Solution

𝐚

2 cis
𝜋

3

= 2 cos
𝜋

3
+ 𝑖 sin

𝜋

3

= 2 ×
1

2
+ 𝑖 ×

3

2
= 1 + 3𝑖

𝐛

cis −
2𝜋

3

= cos −
2𝜋

3
+ 𝑖 sin −

2𝜋

3

= −cos
𝜋

3
− 𝑖 sin

𝜋

3

= −
1

2
− 𝑖 ×

3

2

= −
1

2
−

3

2
𝑖

MULTIPLYING COMPLEX NUMBERS IN POLAR FORM

We have seen that multiplying by a complex number causes a rotation and/or a scaling, and this

is much simpler when the numbers are in polar form.

We can find the product by:

• Multiplying the moduli of the factors

• Adding the arguments of the factors

𝑧1 × 𝑧2 = 𝑟1𝑟2 cos 𝜃1 + 𝜃2 + 𝑖 sin 𝜃1 + 𝜃2

We can extend these rules to powers if we let the complex numbers be equal (call them 𝑧), then:

𝑧2 = 𝑧 2 and arg 𝑧2 = 2 arg 𝑧

𝑧𝑛 = 𝑧 𝑛 and arg(𝑧𝑛) = 𝑛 arg 𝑧

When we raise a complex number to a power we raise the modulus to the power and multiply

the argument by the power. This is the basis of de Moivre’s Theorem which we will look at more

deeply in Lesson 8.
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Example 3

If 𝑢 = 2 cis
𝜋

3
and 𝑣 = 2 cis

𝜋

4
, find 𝑤 where 𝑤 = 𝑢𝑣.

Solution

𝑤 = 𝑢𝑣

= 2 cis
𝜋

3
× 2 cis

𝜋

4

= 2 × 2 cis
𝜋

3
+
𝜋

4

= 2 2 cis
7𝜋

12

• Starting with 𝑂𝑈 which has an argument of

𝜋

3
, we rotate it by

𝜋

4
(the argument of 𝑣) to

find the argument of 𝑤.

• The modulus of 𝑤 is the product of the

moduli of 𝑢 and 𝑣.

𝑂

𝑉

𝑈

𝑊

𝜋

4

𝜋

3

2

2

2 2
𝜋

4

DIVISION OF COMPLEX NUMBERS IN POLAR FORM

We can find the quotient by:

• Dividing the moduli of the factors

• Subtracting the arguments of the divisor (denominator) from the dividend

(numerator)

𝑧1 ÷ 𝑧2 =
𝑟1
𝑟2

cos 𝜃1 − 𝜃2 + 𝑖 sin 𝜃1 − 𝜃2
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DIVISION OF COMPLEX NUMBERS IN POLAR FORM

We can find the quotient by:

• Dividing the moduli of the factors

• Subtracting the arguments of the divisor (denominator) from the dividend

(numerator)

𝑧1 ÷ 𝑧2 =
𝑟1
𝑟2

cos 𝜃1 − 𝜃2 + 𝑖 sin 𝜃1 − 𝜃2

• Starting with 𝑂𝑈 which has an argument of 
𝜋

3
, we rotate 

it by clockwise 
𝜋

4
, the argument of 𝑣 to find the argument 

of 𝑤.

• The modulus of 𝑤 is the modulus of 𝑢 divided by 2, 

the modulus of 𝑣. 

𝑂

𝑉

𝑊

𝜋

4

𝜋

3

2

2

2

Example 4

If 𝑢 = 2 cis
𝜋

3
and 𝑣 = 2 cis

𝜋

4
, find 𝑤 where 𝑤 =

𝑢

𝑣
.

Solution

𝑤 =
𝑢

𝑣

= 2 cis
𝜋

3
÷ 2 cis

𝜋

4

= 2 ÷ 2 cis
𝜋

3
−
𝜋

4

= 2cis
𝜋

12
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CONJUGATE IN POLAR FORM

In polar form the conjugate of a complex number has the same modulus while the argument is

the negative.

The conjugate of 𝑧 = 𝑟(cos 𝜃 + 𝑖 sin 𝜃) is ҧ𝑧 = 𝑟 cos −𝜃 + 𝑖 sin −𝜃 .

.

𝑟

𝜃

Re(𝑧)

Im(𝑧)

−𝜃

𝑟
ҧ𝑧 = 𝑟 cos −𝜃 + 𝑖 sin −𝜃.

𝑧 = 𝑟 cos 𝜃 + 𝑖 sin 𝜃

Example 5

State the conjugate of each complex number, leaving your answer in polar form

a z = 2 cos
𝜋

3
+ 𝑖 sin

𝜋

3
b z = cos −

𝜋

4
+ 𝑖 sin −

𝜋

4

Solution

a

z = 2 cos −
𝜋

3
+ 𝑖 sin −

𝜋

3

b

z = cos
𝜋

4
+ 𝑖 sin

𝜋

4
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EXERCISE 2.3

BASIC

1 Convert the following complex numbers from Cartesian form into polar form:

a 1 + 𝑖 b −1 + 3𝑖 c − 3 − 𝑖

2 Convert the following complex numbers from polar into Cartesian form:

a 4 cis
𝜋

6
b cis −

𝜋

3

3 If  𝑢 = 4 cis
𝜋

6
and 𝑣 = cis −

𝜋

3
, find 𝑤 where 𝑤 = 𝑢𝑣. 

4 If  𝑢 = 4 cis
𝜋

6
and 𝑣 = cis −

𝜋

3
, find 𝑤 where 𝑤 =

𝑢

𝑣
.

5 State the conjugate of each complex number, leaving your answer in polar form

a z = 2 cos
𝜋

6
+ 𝑖 sin

𝜋

6
b z = cos −

𝜋

3
+ 𝑖 sin −

𝜋

3

6 Convert 3 + 𝑖 into polar form in radians using a calculator (see Appendix 1)

7
Convert 2(cos

𝜋

3
+ 𝑖 sin

𝜋

3
) into rectangular form using a calculator (see Appendix 1)

MEDIUM

8
Prove 𝑧1 × 𝑧2 = 𝑟1𝑟2 cos 𝜃1 + 𝜃2 + 𝑖 sin 𝜃1 + 𝜃2 .

Hint: let 𝑧1 = 𝑟1(cos 𝜃1 + 𝑖 sin 𝜃1) , 𝑧2 = 𝑟2(cos 𝜃2 + 𝑖 sin𝜃2)

9
Prove 𝑧1 ÷ 𝑧2 =

𝑟1

𝑟2
cos 𝜃1 − 𝜃2 + 𝑖 sin 𝜃1 − 𝜃2

Hint: let 𝑧1 = 𝑟1(cos 𝜃1 + 𝑖 sin 𝜃1) , 𝑧2 = 𝑟2(cos 𝜃2 + 𝑖 sin𝜃2)

10

a Write
3+𝑖

3−𝑖
in the form 𝑎 + 𝑖𝑏 where 𝑎 and 𝑏 are real.

b By expressing 3 + 𝑖 and 3 − 𝑖 in polar form, write
3+𝑖

3−𝑖
in polar form.

c Hence find sin
𝜋

3
in surd form

11 Multiplying a non-zero complex number by 
1−𝑖

−1+𝑖
results in a rotation about the origin. 

What is the angle of rotation, and in what direction? 

12 Given z = 2 cos
𝜋

6
+ 𝑖 sin

𝜋

6
find ҧ𝑧 −1in polar form.
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SOLUTIONS - EXERCISE 2.3

𝑧 = 12 + 12

= 2

arg 𝑧 = tan−1
1

1

=
𝜋

4
∴1 + 𝑖 = 2 cis

𝜋

4

𝑧 = (−1)2+ 3
2

= 2

arg 𝑧 = 𝜋 − tan−1
3

1

∴ arg 𝑧 =
2𝜋

3
∴ −1 + 3𝑖 = 2 cis

2𝜋

3

𝑧 = (− 3)2+(−1)2

= 2

arg 𝑧 = −𝜋 + tan−1
1

3

∴ arg 𝑧 = −
5𝜋

6

∴−1 − 3𝑖 = 2 cis −
5𝜋

6

1 a b c

1

1

3

−1−1

− 3

4 cis
𝜋

6

= 4 cos
𝜋

6
+ 𝑖 sin

𝜋

6

= 4 ×
3

2
+ 𝑖 ×

1

2
= 2 3 + 2𝑖

cis −
𝜋

3

= cos −
𝜋

3
+ 𝑖 sin −

𝜋

3

= cos
𝜋

3
− 𝑖 sin

𝜋

3

=
1

2
− 𝑖 ×

3

2

=
1

2
−

3

2
𝑖

2 a b 3

𝑤 = 𝑢𝑣

= 4 cis
𝜋

6
× cis −

𝜋

3

= 4 × 1 cis
𝜋

6
−
𝜋

3

= 4 cis −
𝜋

6

5 a

2 cos
𝜋

6
+ 𝑖 sin

𝜋

6
= 2 cos −

𝜋

6
+ 𝑖 sin −

𝜋

6

b

cos −
𝜋

3
+ 𝑖 sin −

𝜋

3
= cos

𝜋

3
+ 𝑖 sin

𝜋

3

6 Keystrokes: SHIFT   Pol   3   → SHIFT  ,   1   )   =

To find the argument in exact form, SHIFT  𝜋 ÷ ALPHA  Y  = gives 6, so 
𝜋

6

7 Keystrokes: SHIFT   Rec   2   SHIFT  ,   SHIFT  𝜋 3   )   =

To find the imaginary part in exact form, ALPHA  Y  𝑥2 =  gives 3, so 3

4

𝑤 =
𝑢

𝑣

= 4 cis
𝜋

6
÷ cis −

𝜋

3

= 4 ÷ 1 cis
𝜋

6
− −

𝜋

3

= 4cis
𝜋

2
= 4𝑖
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10a

3 + 𝑖

3 − 𝑖
×

3 + 𝑖

3 + 𝑖

=
3 + 2 3𝑖 + 1

3 + 1

=
4 + 2 3𝑖

4

= 1 +
3

2
𝑖

b

3 + 𝑖 = 2 cos
𝜋

6
+ 𝑖 sin

𝜋

6

3 − 𝑖 = 2 cos −
𝜋

6
+ 𝑖 sin −

𝜋

6

3 + 𝑖

3 − 𝑖
=

2 cos
𝜋
6
+ 𝑖 sin

𝜋
6

2 cos −
𝜋
6

+ 𝑖 sin −
𝜋
6

=
2

2
cos

𝜋

6
− −

𝜋

6
+ 𝑖 sin

𝜋

6
− −

𝜋

6

= cos
𝜋

3
+ 𝑖 sin

𝜋

3

c

Equating imaginary parts of a and b

sin
𝜋

3
=

3

2

11

1 − 𝑖

−1 + 𝑖
=

2 cos −
𝜋
4

+ 𝑖 sin −
𝜋
4

2 cos
3𝜋
4

+ 𝑖 sin
3𝜋
4

= cos −𝜋 + 𝑖 sin −𝜋 = −1

The rotation is 180°.

12

ҧ𝑧 −1 =
1

2 cos −
𝜋
6

+ 𝑖 sin −
𝜋
6

×
cos −

𝜋
6

− 𝑖 sin −
𝜋
6

cos −
𝜋
6

− 𝑖 sin −
𝜋
6

=
cos −

𝜋
6

− 𝑖 sin −
𝜋
6

2

=
1

2
cos

𝜋

6
+ 𝑖 sin

𝜋

6
since cosine is even and sine is odd

8

Let 𝑧1 = 𝑟1(cos 𝜃1 + 𝑖 sin𝜃1) , 𝑧2 = 𝑟2(cos 𝜃2 + 𝑖 sin 𝜃2)
𝑧1 × 𝑧2 = 𝑟1(cos 𝜃1 + 𝑖 sin𝜃1) × 𝑟2(cos 𝜃2 + 𝑖 sin𝜃2)

= 𝑟1𝑟2 cos𝜃1 cos 𝜃2 + 𝑖 cos 𝜃1 sin𝜃2 + 𝑖 sin𝜃1 cos 𝜃2 + 𝑖2 sin𝜃1 sin𝜃2
= 𝑟1𝑟2 (cos 𝜃1 cos 𝜃2 − sin 𝜃1 sin𝜃2) + 𝑖 sin𝜃1 cos 𝜃2 + cos 𝜃1 sin𝜃2
= 𝑟1𝑟2 cos 𝜃1 + 𝜃2 + 𝑖 sin 𝜃1 + 𝜃2 □

∴ 𝑧1𝑧2 = 𝑧1 𝑧2 and arg 𝑧1𝑧2 = arg 𝑧1 + arg 𝑧2

9
Let 𝑧1 = 𝑟1(cos𝜃1 + 𝑖 sin 𝜃1) , 𝑧2 = 𝑟2(cos𝜃2 + 𝑖 sin 𝜃2)
𝑧1
𝑧2

=
𝑟1(cos𝜃1 + 𝑖 sin 𝜃1)

𝑟2(cos𝜃2 + 𝑖 sin 𝜃2)
×
cos𝜃2 − 𝑖 sin 𝜃2
cos𝜃2 − 𝑖 sin 𝜃2

=
𝑟1(cos𝜃1 cos 𝜃2 − 𝑖 cos𝜃1 sin 𝜃2 + 𝑖 sin 𝜃1 cos 𝜃2 − 𝑖2 sin 𝜃1 sin 𝜃2)

𝑟2(cos2 𝜃2 + sin2 𝜃2)

=
𝑟1
𝑟2

cos 𝜃1 − 𝜃2 + 𝑖 sin 𝜃1 − 𝜃2

∴
𝑧1

𝑧2
=

𝑧1

𝑧2
and arg

𝑧1

𝑧2
= arg 𝑧1 − arg 𝑧2 □
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2.4  EXPONENTIAL FORM

In Lesson 4 we look at complex numbers in exponential form, covering:

• Exponential Form

• Explaining Exponential Form and Euler’s Formula

• Proving Euler’s Formula

• Euler’s Identity

• Calculations in Exponential Form

• Compare and Convert Between Forms

EXPONENTIAL FORM

We have seen complex numbers expressed in Cartesian form

(𝑧 = 𝑥 + 𝑖𝑦) and polar form 𝑧 = 𝑟 cos 𝜃 + 𝑖 sin 𝜃 , but there is another very useful form -

exponential form, 𝑧 = 𝑟𝑒𝑖𝜃 where 𝑟 is the modulus and 𝜃 is the principal argument.

.

𝑟

𝜃

𝑎

𝑏

𝑧 = 𝑟𝑒𝑖𝜃

Re(𝑧)

Im(𝑧)

Exponential form makes multiplication, division, powers and roots very simple.

EULER’S FORMULA

Joining exponential form with the polar form we can easily see that 𝑒𝑖𝜃 = cos 𝜃 + 𝑖 sin 𝜃

Euler’s formula leads us to one of the most famous relationships in mathematics, Euler’s 

Identity, which we will look at later in the lesson.
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EXPLAINING EXPONENTIAL FORM AND EULER’S FORMULA

We will look at some formal algebraic proofs of Euler’s formula, but first let’s try and gain an

understanding of how 𝑒𝑖𝜃 works using geometry.

Now there are many potentially baffling aspects of exponential form, the two most important

aspects being:

• what is 𝑒?

• what happens when we raise 𝑒 to an imaginary power?

So let’s have a look at these aspects first, before we look at an algebraic proof of Euler’s

formula.

EULER’S NUMBER

We have often come across Euler’s number 𝑒, which we know is approximately 2.72, but how is

it defined?

There are actually many ways to define 𝑒𝑥, and we will use two of them in this lesson and

Appendix 2.

Our first geometric explanation is based on the power series:

𝑒𝑥 = 1 + 𝑥 +
𝑥2

2!
+
𝑥3

3!
+
𝑥4

4!
+. . .

In Appendix 2 we look at an explanation using the definition of 𝑒 as a limit:

𝑒𝑥 = lim
𝑛→∞

1 +
𝑥

𝑛

𝑛

Let’s start by finding 𝑒1, which is of course just 𝑒. Using the power series we can see that

𝑒1 = 1 + 1 +
1

2!
+
1

3!
+
1

4!
+
1

5!
+. . .

= 1 + 1 +
1

2
+
1

6
+

1

24
+

1

120
+. . .
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We can view this sum as ‘right 1’, right 1’, ‘right
1

2
’ etc. Representing each fraction as a vector,

we can see:

1

1

1

2

1

6

1

24

1

120

We can see that the sixth term is almost negligible, and everything after that is even smaller.

Arranging them in line from zero we see:

| | | | | | |

0 0.5 1.0 1.5 2.0 2.5 3.0

.

𝑒

So even at a glance we can see that 𝑒 is approximately 2.75. We will use the second definition

in Appendix 2 to narrow it down.

Now to find 𝑒𝑖, using the power series we can see that

𝑒𝑖 = 1 + 𝑖 +
𝑖2

2!
+
𝑖3

3!
+
𝑖4

4!
+
𝑖5

5!
+. . .

= 1 + 𝑖 −
1

2
−
𝑖

6
+

1

24
+

𝑖

120
+. . .

We can view this sum as ‘right 1’, ‘up 1’, ‘left
1

2
’, ‘down

1

6
’, ‘right

1

24
’ and ‘up

1

120
’ etc. Representing

each fraction as a vector on the complex plane, we can see:
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We can see that 𝑒𝑖 must have a real value a bit more than
1

2
and an imaginary part a bit more

than
5

6
. We will narrow this down using the limit definition in a minute. In Appendix 2 we will

narrow down the values of 𝑒 and 𝑒𝑖 for those who are interested.

Re(𝑧)

Im(𝑧)

.

𝑒𝑖

1

1

PROVING EULER’S FORMULA

We now have an understanding of why Euler’s formula works and what it means, so now it is

time for a formal proof. We will start by assuming the power series for 𝑒𝑥 , cos 𝑥 and sin 𝑥, but in

Appendix 3 we look at a more thorough proof starting with the Taylor’s Series.

Proof 1

Prove 𝑒𝑖𝑥 = cos 𝑥 + 𝑖 sin𝑥. You are given that:

𝑒𝑥 = 1 + 𝑥 +
𝑥2

2!
+
𝑥3

3!
+. . . , cos 𝑥 = 1 −

𝑥2

2!
+
𝑥4

4!
−
𝑥6

6!
+. . . and sin𝑥 = 𝑥 −

𝑥3

3!
+
𝑥5

5!
−
𝑥7

7!
+. . .

Solution

𝑒𝑖𝑥 = 𝑒0𝑖 + 𝑖𝑒0𝑖𝑥 +
𝑖2𝑒0𝑖𝑥2

2!
+
𝑖3𝑒0𝑖𝑥3

3!
+
𝑖4𝑒0𝑖𝑥4

4!
+. . .

= 1 + 𝑥𝑖 −
𝑥2

2!
−
𝑥3

3!
𝑖 +

𝑥4

4!
+
𝑥5

5!
𝑖 −

𝑥6

6!
−
𝑥7

7!
𝑖+. . .

= 1 −
𝑥2

2!
+
𝑥4

4!
−
𝑥6

6!
+. . . + 𝑖 𝑥 −

𝑥3

3!
+
𝑥5

5!
−
𝑥7

7!
+. . .

= cos 𝑥 + 𝑖 sin𝑥 □
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EULER’S IDENTITY

If we let 𝑥 = 𝜋 in Euler’s formula, we end up with Euler’s Identity, which famously finds a link

between the 5 most important constants in mathematics.

𝑒𝑖𝜋 + 1 = 0

The identity links:

• Euler’s number 𝑒

• The imaginary unit 𝑖

• The constant 𝜋

• The number 1

• The number 0

Im(𝑧)

Re(𝑧)
1

𝑖𝑖

𝑒𝑖𝜋

.

.

Example 3

Simplify each expression and mark on a complex plane

a 𝑖𝑖 b 𝑒𝑖𝜋

Solution

a

𝑖𝑖 = 𝑒
𝜋
2
𝑖

𝑖

= 𝑒
𝜋
2
𝑖2

= 𝑒−
𝜋
2

≈ 0.2

b

𝑒𝑖𝜋 = −1

= 𝑖

Proof 2

Prove 𝑒𝑖𝜋 + 1 = 0

Solution

Let 𝑥 = 𝜋 in Euler’s formula

∴ 𝑒𝑖𝜋 = cos𝜋 + 𝑖 sin𝜋

𝑒𝑖𝜋 = −1 + 𝑖 0

𝑒𝑖𝜋 + 1 = 0 □
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Example 5

Simplify −2(3𝑒2𝑖)

Solution

Simplify −2(3𝑒2𝑖)

CALCULATIONS IN EXPONENTIAL FORM

Exponential form makes many of our calculations involving multiplication, division, powers and

roots a simple matter of following our index laws.

It is best to avoid using exponential form for addition and subtraction as we have no way to

simplify the final answer using our index laws, unless the two complex numbers have the same

argument.

Im(𝑧)

Re(𝑧)3

3𝑒2𝑖

6

6𝑒2𝑖

Multiplying by a positive real number

changes the modulus, but leaves the

argument constant.

Multiplying a complex number in exponential form by a negative real number involves a simple

trick, as in our final answer the modulus must be positive. We replace the minus with 𝑒𝑖𝜋 or 𝑒−𝑖𝜋

and use our index laws as shown below.

Im(𝑧)

Re(𝑧)3

3𝑒2𝑖

6

6𝑒(2−𝜋)𝑖

Multiplying by a negative real 

number changes the modulus, and 

adds or subtracts 𝜋 to the 

argument.

Example 4

Simplify 2(3𝑒2𝑖)

Solution

2 3𝑒2𝑖 = 6𝑒2𝑖
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Multiplying a complex number in exponential form by an imaginary number rotates the complex

number by
𝜋

2
- either anticlockwise (if there is a positive multiple of 𝑖) or anticlockwise (if there is

a negative multiple of 𝑖). Remember that 𝑖 = 𝑒
𝜋

2
𝑖

and −𝑖 = 𝑒−
𝜋

2
𝑖
.

Im(𝑧)

Re(𝑧)3

3𝑒
𝜋
4
𝑖

Im(𝑧)

Re(𝑧)3

3𝑒
𝜋
2
𝑖

6

3𝑒
3𝜋
4
𝑖

× 𝑖 × −2𝑖

Multiplying by 𝑖 rotates 
𝜋

2
anticlockwise, 

leaving the modulus unchanged.

Multiplying by −2𝑖 rotates 
𝜋

2
anticlockwise 

and scales the modulus by 2.

Example 6

Simplify 

a 𝑖(3𝑒
𝜋

4
𝑖) b −2𝑖 3𝑒

𝜋

2
𝑖

Solution

a

𝑖 3𝑒
𝜋
4
𝑖 = 𝑒

𝜋
2
𝑖 × 3𝑒

𝜋
4
𝑖

= 3𝑒
𝜋
2
+
𝜋
4
𝑖

= 3𝑒
3𝜋
4
𝑖

b

−2𝑖 3𝑒
𝜋
2
𝑖 = −2𝑖 × 3𝑖

= −6𝑖2

= 6
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Dividing is similar to multiplication, with the scaling of the modulus being in the opposite

direction and any rotation occurring the opposite way.

In polar form the conjugate of a complex number has the same modulus while the argument is

the negative.

The conjugate of 𝑧 = 𝑟𝑒𝑖𝜃 is ҧ𝑧 = 𝑟𝑒−𝑖𝜃.

We look at square roots of complex numbers in Cartesian Form next lesson, but finding the

square root of a complex number in exponential form is easy - take the square root of the

modulus, halve the argument to find the one of the square roots, then add or subtract 𝜋 to find

the argument of the other square root.

Im(𝑧)

Re(𝑧)

2𝑒𝑖

4𝑒2𝑖

2𝑒(1−𝜋)𝑖

2 4

One square root has half the argument of the original 

number, and the modulus is the square root of the 

original. The second square root is opposite the first 

square root, so its argument differs by 𝜋.

Example 7

Find the square roots of 4𝑒2𝑖

Solution

The square roots are 2𝑒𝑖 and 2𝑒 1−𝜋 𝑖
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COMPARE AND CONVERT BETWEEN FORMS

Both exponential and polar forms use the modulus and argument of a complex number, so we

can view exponential form as a shorthand notation for polar form, plus it allows us to use our

index laws for multiplication and division.

Cartesian form is the best form for addition and subtraction of complex numbers, plus their

geometric equivalents of translation of vectors.

Polar form is a good way to convert between Exponential and Cartesian forms, and with de

Moivre’s theorem and binomial expansion allows us to find other relationships.

Converting from Cartesian form to Exponential form is the same as converting to polar form.

Example 8

Convert the following complex numbers from exponential into Cartesian form:

a 2 𝑒
𝜋

3
𝑖

b 𝑒−
2𝜋

3
𝑖

Solution

𝐚 2 𝑒
𝜋
3
𝑖

= 2 cos
𝜋

3
+ 𝑖 sin

𝜋

3

= 2 ×
1

2
+ 𝑖 ×

3

2
= 1 + 3𝑖

𝐛 𝑒−
2𝜋
3
𝑖

= cos −
2𝜋

3
+ 𝑖 sin −

2𝜋

3

= −cos
𝜋

3
− 𝑖 sin

𝜋

3

= −
1

2
− 𝑖 ×

3

2

= −
1

2
−

3

2
𝑖
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EXERCISE 2.4

BASIC

1 Simplify 3(4𝑒3𝑖)

2 Simplify −(4𝑒3𝑖)

3
Simplify a 𝑖(2𝑒

𝜋

3
𝑖) b −𝑖 3𝑒−

𝜋

2
𝑖

4 Simplify 2𝑒−2𝑖 × 3𝑒𝑖

5
Simplify                        a 3𝑒𝑖

3
b 3𝑒−𝑖

2

6
Simplify 4𝑒

𝜋

2
𝑖 ÷ 2

7
Simplify                        a 2𝑒

𝜋

3
𝑖 ÷ 𝑖 b 5𝑒−

𝜋

2
𝑖 ÷ (−𝑖)

8 Simplify 2𝑒−2𝑖 ÷ 4𝑒𝑖

9
Find the conjugate of z = 3𝑒−

𝜋

3
𝑖

10 Convert the following complex numbers from polar form to exponential form:

a 2 cos
𝜋

3
+ 𝑖 sin

𝜋

3
b cos −

𝜋

4
+ 𝑖 sin −

𝜋

4

11 Convert the following complex numbers from Cartesian form into exponential form:

a 1 + 𝑖 b − 3 + 𝑖

12 Convert the following complex numbers from exponential into Cartesian form:

a 𝑒
2𝜋

3
𝑖

b 𝑒−
𝜋

4
𝑖

MEDIUM

13 Prove 𝑒𝑖𝑥 = cos 𝑥 + 𝑖 sin𝑥 using the Power Series

14 Prove 𝑒𝑖𝜋 + 1 = 0

15 Simplify each expression and mark on a complex plane

a 𝑖−𝑖 b 𝑒−𝑖𝜋

16 Prove −1
1

𝑛 = 𝑒
𝜋

𝑛
𝑖

17
Find the square roots of 9𝑒

𝜋

3
𝑖

CHALLENGING

18 Prove 𝑒𝑖𝑥 = cos 𝑥 + 𝑖 sin𝑥 using the Maclaurin Series
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SOLUTIONS - EXERCISE 2.4

1 3(4𝑒3𝑖) = 12𝑒3𝑖

2 −(4𝑒3𝑖) = 𝑒−𝑖𝜋 × 4𝑒3𝑖 = 4𝑒 3−𝜋 𝑖

3 a 𝑖 2𝑒
𝜋

3
𝑖 = 𝑒

𝜋

2
𝑖 × 2𝑒

𝜋

3
𝑖 = 2𝑒

𝜋

2
+
𝜋

3
𝑖
= 2𝑒

5𝜋

6
𝑖

b −𝑖 3𝑒−
𝜋

2
𝑖 = 𝑒−

𝜋

2
𝑖 × 3𝑒−

𝜋

2
𝑖 = 3𝑒

−
𝜋

2
−
𝜋

2
𝑖
= 3𝑒−𝑖𝜋 = 3 × −1 = −3

4 2𝑒−2𝑖 × 3𝑒𝑖 = 6𝑒−𝑖

5
a 3𝑒𝑖

3
= 33 × 𝑒𝑖×3 = 27𝑒3𝑖 b 3𝑒−𝑖

2
= 32 × 𝑒−𝑖×2 = 9𝑒−2𝑖

6 4𝑒
𝜋
2
𝑖 ÷ 2 = 2𝑒

𝜋
2
𝑖

7 a 2𝑒
𝜋

3
𝑖 ÷ 𝑖 = 2𝑒

𝜋

3
𝑖 ÷ 𝑒

𝜋

2
𝑖 = 2𝑒

𝜋

3
−
𝜋

2
𝑖
= 2𝑒−

𝜋

6
𝑖

b 5𝑒−
𝜋

2
𝑖 ÷ −𝑖 = −5𝑖 ÷ −𝑖 = 5

8
2𝑒−2𝑖 ÷ 4𝑒𝑖 =

1

2
𝑒−3𝑖

9 തz = 3𝑒
𝜋
3
𝑖

10 a 2 cos
𝜋

3
+ 𝑖 sin

𝜋

3
= 2𝑒

𝜋

3
𝑖

b cos −
𝜋

4
+ 𝑖 sin −

𝜋

4
= 𝑒−

𝜋

4
𝑖

11 a b

12
a 𝑒

2𝜋

3
𝑖 = cos

2𝜋

3
+ 𝑖 sin

2𝜋

3
= −cos

𝜋

3
+ 𝑖 sin

𝜋

3
= −

1

2
+ 𝑖 ×

3

2

b 𝑒−
𝜋

4
𝑖 = cos −

𝜋

4
+ 𝑖 sin −

𝜋

4
= cos

𝜋

4
− 𝑖 sin

𝜋

4
=

1

2
− 𝑖 ×

1

2
=

1

2
−

𝑖

2

13

𝑒𝑖𝑥 = 𝑒0𝑖 + 𝑖𝑒0𝑖𝑥 +
𝑖2𝑒0𝑖𝑥2

2!
+
𝑖3𝑒0𝑖𝑥3

3!
+
𝑖4𝑒0𝑖𝑥4

4!
+. . .

= 1 + 𝑥𝑖 −
𝑥2

2!
−
𝑥3

3!
𝑖 +

𝑥4

4!
+
𝑥5

5!
𝑖 −

𝑥6

6!
−
𝑥7

7!
𝑖+. . .

= 1 −
𝑥2

2!
+
𝑥4

4!
−
𝑥6

6!
+. . . + 𝑖 𝑥 −

𝑥3

3!
+
𝑥5

5!
−
𝑥7

7!
+. . .

= cos 𝑥 + 𝑖 sin 𝑥 □

𝑧 = 12 + 12

= 2

arg 𝑧 = tan−1
1

1

=
𝜋

4

∴ 1 + 𝑖 = 2𝑒
𝜋
4
𝑖

𝑧 = 12 + ( 3)2

= 2

arg 𝑧 = 𝜋 − tan−1
1

3

∴ arg 𝑧 =
5𝜋

6

∴ − 3 + 𝑖 = 2 𝑒
5𝜋

6
𝑖

1

1 1

− 3
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14 Let 𝑥 = 𝜋 in Euler’s formula → ∴ 𝑒𝑖𝜋 = cos𝜋 + 𝑖 sin𝜋 → 𝑒𝑖𝜋 = −1 + 𝑖 0 → 𝑒𝑖𝜋 + 1 = 0

15
a 𝑖−𝑖 = 𝑒−

𝜋

2
𝑖
𝑖

= 𝑒−
𝜋

2
𝑖2 = 𝑒

𝜋

2 ≈ 4.8

b 𝑒−𝑖𝜋 = 𝑒𝑖𝜋 −1 = (−1)−1= −1 = 𝑖

16

−1
1

𝑛 = 𝑒𝑖𝜋
1

𝑛 = 𝑒
𝜋

𝑛
𝑖

Since arg 𝑒
𝜋

𝑛
𝑖 =

𝜋

𝑛
, this is equivalent to a rotation of 

𝜋

𝑛
.

17 The square roots are 3𝑒
𝜋

6
𝑖

and 2𝑒−
5𝜋

6
𝑖

18 For 𝑓 𝑥 = 𝑒𝑖𝑥

𝑓 𝑥 = 𝑓 0 +
𝑓′ 0

1!
𝑥 +

𝑓′′ 0

2!
𝑥2 +

𝑓′′′ 𝑎

3!
𝑥3+. . .

𝑒𝑖𝑥 = 𝑒0𝑖 + 𝑖𝑒0𝑖𝑥 +
𝑖2𝑒0𝑖𝑥2

2!
+
𝑖3𝑒0𝑖𝑥3

3!
+
𝑖4𝑒0𝑖𝑥4

4!
+. . .

= 1 + 𝑥𝑖 −
𝑥2

2!
−
𝑥3

3!
𝑖 +

𝑥4

4!
+
𝑥5

5!
𝑖 −

𝑥6

6!
−
𝑥7

7!
𝑖+. . . ∗

= 1 −
𝑥2

2!
+
𝑥4

4!
−
𝑥6

6!
+. . . + 𝑖 𝑥 −

𝑥3

3!
+
𝑥5

5!
−
𝑥7

7!
+. . . (1)

For 𝑓 𝑥 = cos 𝑥

𝑓 𝑥 = 𝑓 0 +
𝑓′ 0

1!
𝑥 +

𝑓′′ 0

2!
𝑥2 +

𝑓′′′ 𝑎

3!
𝑥3+. . .

cos 𝑥 = cos(0) − sin 0 𝑥 −
cos 0 𝑥2

2!
+
sin 0 𝑥3

3!
+
cos 0 𝑥4

4!
+. . .

= 1 − 0𝑥 −
𝑥2

2!
+ 0𝑥3 +

𝑥4

4!
+ 0𝑥5 −

𝑥6

6!
+. . .

= 1 −
𝑥2

2!
+
𝑥4

4!
−
𝑥6

6!
+. . . 2

For 𝑓 𝑥 = sin𝑥

𝑓 𝑥 = 𝑓 0 +
𝑓′ 0

1!
𝑥 +

𝑓′′ 0

2!
𝑥2 +

𝑓′′′ 𝑎

3!
𝑥3+. . .

sin𝑥 = sin(0) + cos 0 𝑥 −
sin 0 𝑥2

2!
−
cos 0 𝑥3

3!
+
sin 0 𝑥4

4!
+. . .

= 0 + 𝑥 + 0𝑥2 −
𝑥3

3!
+ 0𝑥4 +

𝑥5

5!
+ 0𝑥6+. . .

= 𝑥 −
𝑥3

3!
+
𝑥5

5!
−
𝑥7

7!
+. . . 3

So we have the following equations:

𝑒𝑖𝑥 = 1 −
𝑥2

2!
+
𝑥4

4!
−
𝑥6

6!
+. . . + 𝑖 𝑥 −

𝑥3

3!
+
𝑥5

5!
−
𝑥7

7!
+. . . (1)

cos 𝑥 = 1 −
𝑥2

2!
+
𝑥4

4!
−
𝑥6

6!
+. . . 2

sin 𝑥 = 𝑥 −
𝑥3

3!
+
𝑥5

5!
−
𝑥7

7!
+. . . 3

From 1 , (2) and (3) we see that 𝑒𝑖𝑥 = cos 𝑥 + 𝑖 sin𝑥 □
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2.5  SQUARE ROOTS

In Lesson 5 we cover square roots of complex numbers:

• using formal simultaneous equations

• using shortcuts for solving simultaneous equations

• using the formula
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SQUARE ROOTS OF A COMPLEX NUMBER

To find the square roots of a complex number we can use the information from squaring a

complex number in Lesson 2 to create simultaneous equations, or we can use a formula that

works but is not in the syllabus. Use the formula if you can remember it as it is much quicker and

can save a lot of fuss.

There are always two square roots of every non-zero complex number, and one is always the

negative of the other, so they are in the form ±(𝑎 + 𝑖𝑏).

If we let 𝑎 + 𝑖𝑏 be one of the square roots of z = 𝑥 + 𝑖𝑦, then 𝑥 + 𝑖𝑦 = 𝑎 + 𝑖𝑏 2.

From equating real and imaginary parts when squaring a complex number we found:

Re 𝑧 = 𝑎2 − 𝑏2 = 𝑥 1

Im 𝑧 = 2𝑎𝑏 = 𝑦 2

One of the square roots will always have an argument half that of the original complex number,

while the second root will have an argument ±𝜋 that of the first root.

The modulus of both roots is the square root of the modulus of the original complex number.

In the first example we will use a formal solution of the simultaneous equations, then look at

some shortcuts to solve the equations.

The argument of this root is half the 

argument of the original number

Re(𝑧)

Im(𝑧) 𝑧 = 𝑥 + 𝑖𝑦

𝑎 + 𝑖𝑏

−(𝑎 + 𝑖𝑏) .

.

.
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METHOD 1 - SIMULTANEOUS EQUATIONS

3 + 2𝑖 has half the argument of 5 + 12𝑖, and its 

modulus is the square root of the modulus of 5 + 12𝑖. 

The other root is −3 − 2𝑖.
Re(𝑧)

Im(𝑧)
5 + 12𝑖

3 + 2𝑖

−3 − 2𝑖

.

.

.

We just solved the simultaneous equations formally, but we can solve them for simpler

examples in our heads, with a little bit of writing. As a shortcut:

• Halve the imaginary part of the original number

• Find pairs of numbers that multiply to give that number

• Find which pair has a difference of their squares equal to the real part of the original

number.

See the other adjustments that are needed for more difficult examples that follow.

Example 1

Find the square root of 5 + 12𝑖, using simultaneous equations.

Solution

𝑎2 − 𝑏2 = 5 1

2𝑎𝑏 = 12 2

𝑏 =
6

𝑎
2 rearranged

𝑎2 −
36

𝑎2
= 5 substituting into 1

𝑎4 − 5𝑎2 − 36 = 0

𝑎2 − 9 𝑎2 + 4 = 0

𝑎2 − 9 = 0 or 𝑎2 + 4 = 0

∴ 𝑎 = ±3 are the only solutions, since 𝑎 must be real (not ±2𝑖) – this is an important point

Substituting into (2) we get 𝑎 = 3, 𝑏 = 2 and 𝑎 = −3, 𝑏 = −2 which gives the square roots as 

± (3 + 2𝑖).
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While this can be quite quick for simple examples, it has its disadvantages. Here we will look at

a range of examples - one simple then three more complicated.

Example 3

Find the square roots of 8𝑖

Solution

Taking the coefficient of 𝑖 and halving it we get 4, so we are looking for a pair of numbers with a

product of 4. We have 1 and 4, or 2 and 2 (and their negatives).

Now the real part is zero, so the difference of the squares is zero, so 2 and 2 (and their

negatives) are the pairs we want.

So the square roots of 8𝑖 are ±(2 + 2𝑖).

Example 2

Find the square root of 5 + 12𝑖.

Solution

Half of 12 is 6. Find pairs of numbers whose product is 6:

1 and 6, 2 and 3.

Since the real part is positive then 𝑎2 − 𝑏2 is positive, so we place the number with the largest

absolute value first (otherwise the difference would be negative).

In our heads: 62 − 12 ≠ 5; 32 − 22 = 5 Thus 3 and 2 are the values for 𝑎 and 𝑏, so 3 + 2𝑖 is a

solution.

Therefore −3 − 2𝑖 is also a solution.

The square roots of 5 + 12𝑖 are ±(3 + 2𝑖).
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METHOD 2 - FORMULA

Now personally I never use simultaneous equations - I use the formulae below, which are easy

to remember and make the task much simpler.

Equating real parts of 𝑧 = 𝑥 + 𝑖𝑦 and 𝑎 + 𝑖𝑏 2 we have

Re(𝑧) = 𝑎2 − 𝑏2 (1)

In a later lesson we learn that the modulus of a square is the square of the modulus of its root,

so

𝑥 + 𝑖𝑦 = 𝑎 + 𝑖𝑏 2

∴ 𝑧 = 𝑎2 + 𝑏2 2

We can solve these two equations simultaneously by adding them, and rearranging we get:

𝑎 = ±
𝑧 + Re 𝑧

2
and 𝑏 = ±sgn 𝑦

𝑧 − Re 𝑧

2

where sgn(𝑦) is the signum function, returning the sign of 𝑦.

These are simple formula, and within the scope of many students to remember.

Example 4

Find the square root of 5 + 12𝑖, using Method 2

Solution

𝑎 = ±
52 + 122 + 5

2
= ±3

𝑏 = ±(+)
52 + 122 − 5

2
= ±2

∴ ±(3 + 2𝑖) are the solutions.
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Example 6

The two square roots of 8𝑖 are ±(2 + 2𝑖). Find the solutions of  2𝑧2 + 4𝑧 + 2 − 𝑖 = 0

Solution

𝑧 =
−4 ± 42 − 4 2 2 − 𝑖

2 2

=
−4 ± 8𝑖

4

=
−4 ± 2 + 2𝑖

4

= −
3 + 𝑖

2
,
−1 + 𝑖

2
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EXERCISE 2.5

BASIC

1 Find the square root of 3 + 4𝑖, using formal simultaneous equations.

2 Find the square root of 3 + 4𝑖, using the formula.

3 Find the square root of 3 + 4𝑖 using the shortcuts for simultaneous equations.

4 Find the square roots of 5 − 12𝑖 using the shortcuts for simultaneous equations.

5 Find the square roots of 2𝑖 using the shortcuts for simultaneous equations.

MEDIUM

6 Find the square roots of 2 − 2 3𝑖 using the shortcuts for simultaneous equations.

7 Find the square roots of 4 − 3𝑖 using the shortcuts for simultaneous equations.

8 The two square roots of 4𝑖 are ±( 2 + 2𝑖). Find the solutions of 𝑧2 + 4𝑧 + 4 − 𝑖 = 0

9 a Find the square roots of −6 + 8𝑖

b Hence, or otherwise, solve the equation 𝑧2 − 2𝑖𝑧 + 1 − 2𝑖 = 0
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SOLUTIONS - EXERCISE 2.5

1 𝑎2 − 𝑏2 = 3 1

2𝑎𝑏 = 4 2

𝑏 =
2

𝑎
2 rearranged

𝑎2 −
4

𝑎2
= 3 substituting into 1

𝑎4 − 3𝑎2 − 4 = 0

𝑎2 − 4 𝑎2 + 1 = 0

𝑎2 − 4 = 0 or 𝑎2 + 1 = 0

∴ 𝑎 = ±2 are the only solutions, since 𝑎 must be real (not ±𝑖)

Substituting into (2) we get 𝑎 = 2, 𝑏 = 1 and 𝑎 = −2, 𝑏 = −1 which gives the square roots 

as ±(2 + 𝑖).

2 Half of 4 is 2. Find pairs of numbers whose product is 2: ±1 and ±2 is the only pair.

Since the real part is positive then 𝑎2 − 𝑏2 is positive, so we place the number with the

largest absolute value first (otherwise the difference would be negative).

In our heads: 22 − 123. Thus 2 and 1 are the values for 𝑎 and 𝑏, so 2 + 𝑖 is a solution.

Therefore −2 − 𝑖 is also a solution.

The square roots of 3 + 4𝑖 are ±(2 + 𝑖).

3 Taking the coefficient of 𝑖 and halving it we get −6, so we need to find a pair of numbers

that have a product of −6. We have either ±2 and ∓3 or ±1 and ∓6.

Now we check which pair has a difference of their squares being +5. 32 − 22 = 9 − 4 = 5,

so the square roots are ±(3 − 2𝑖).

4 Taking the coefficient of 𝑖 and halving it we get− 3, so we need to find a pair of numbers

that have a product of 3.

Trying ± 3 and ∓1 we get a difference of squares of 2, which is what we want, so the

square roots of 2 − 2 3𝑖 are ±( 3 − 𝑖)

5

𝑎 = ±
32 + 42 + 3

2
= ±2, 𝑏 = ±(+)

32 + 42 − 3

2
= ±1

∴ ±(2 + 𝑖) are the solutions.
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6 Taking the coefficient of 𝑖 and halving it we get 1, so we are looking for a pair of numbers

with a product of 1. We have ± 1 and ±1.

Now the real part is zero, so the difference of the squares is zero, so 1 and 1 (and their

negatives) are the pairs we want.

So the square roots of 2𝑖 are ±(1 + 𝑖).

7 We have a problem here – the coefficient of 𝑖 isn’t even so we cannot use our shortcut

yet. We will double it and put it over 2 so we can use our shortcut.

4 − 3𝑖 =
8 − 6𝑖

2

Taking the coefficient of 𝑖 in the numerator and halving it we get 3, so we need to find a

pair of numbers that have a product of 3. We have ±1 and ∓3. 32 − 12 = 8, so the

square roots of 8 − 6𝑖 are ±(3 − 𝑖). So we have square rooted the numerator, but we

must also square root the denominator.

So the square roots of 4 − 3𝑖 are ±
3−𝑖

2
.

8

𝑧 =
−4 ± 42 − 4 1 4 − 𝑖

2 1

=
−4 ± 4𝑖

2

=
−4 ± 2 + 2𝑖

2

=
−4 − 2 − 2𝑖

2
,
−4 + 2 + 2𝑖

2

9 a

−6 + 8𝑖 = (−6)2+8 = 10, Re −6 + 8𝑖

= −6

The square roots of −6 + 8𝑖 are

±
10 − 6

2
+

10 + 6

2
𝑖 = ± 2 + 2 2𝑖

b

𝑧 =
2𝑖 ± − 2𝑖

2
− 4 1 1 − 2𝑖

2 1

=
2𝑖 ± −2 − 4 + 8𝑖

2

=
2𝑖 ± −6 + 8𝑖

2

=
2𝑖 ± 2 + 2 2𝑖

2

= −2 − 2𝑖, 2 + 3 2𝑖
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2.6  CONJUGATE THEOREMS

In Lesson 6 we cover:

• Conjugate Proofs

• Product of Conjugates

• Reciprocal of 𝑧 and its conjugate

• Sum of Conjugates

• Difference of Conjugates

• Arithmetic of Conjugates

• Conjugate Root Theorem
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CONJUGATE PROOFS

We will state the rules involving conjugates here, leaving their proofs for the exercises. When

doing the proofs remember that we will generally find exponential form easiest if the proof

involves multiplication or division, or Cartesian form if the proof involves addition or subtraction.

PRODUCT OF CONJUGATES

The product of a complex number and its conjugate is real and equals the square of the

modulus.

𝑧 ҧ𝑧 = 𝑧 2

Example 1

If 𝑧 = 3 − 4𝑖 find 𝑧 ҧ𝑧.

Solution

𝑧 ҧ𝑧 = 𝑧 2

= 𝑎2 + 𝑏2

= 32 + −4 2

= 25
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RECIPROCAL OF 𝑧 AND ITS CONJUGATE

Conjugates of complex numbers and division of complex numbers are closely related. If the

modulus of the complex number is 1, then the conjugate and the reciprocal are the same.

If 𝑧 = 1 then 
1

𝑧
= ҧ𝑧

SUM OF CONJUGATES

The sum of a complex number and its conjugate is real and equals twice the real part.

𝑧 + ҧ𝑧 = 2Re 𝑧

The imaginary parts cancel out to 

leave us with twice the real part.

Re(𝑧)

Im(𝑧)

𝑧

3

3

6

−4𝑖
4𝑖

Example 3

If 𝑧 = 3 − 4𝑖 find 𝑧 + ҧ𝑧.

Solution

𝑧 + ҧ𝑧 = 2Re(𝑧)

= 2 × 3

= 6

Example 2

If 𝑧 =
1

2
+

3

2
𝑖 find

1

𝑧

Solution

𝑧 =
1

2

2

+
3

2

2

= 1

∴
1

𝑧
= ҧ𝑧 =

1

2
−

3

2
𝑖
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DIFFERENCE OF CONJUGATES

The difference of a complex number and its conjugate is imaginary and equals twice the

imaginary part.

𝑧 − ҧ𝑧 = 2Im 𝑧

The real parts cancel out to 

leave us with twice the 

imaginary part.

Re(𝑧)

Im(𝑧)

𝑧

3

−3

−8

−4𝑖

−4𝑖

OPERATIONS WITH CONJUGATES

We will now look at the conjugate of a sum and the conjugate of a product, but these rules

extend to differences and quotients, so we see that:

• the conjugate of a sum equals the sum of the conjugates 𝑢 + 𝑣 = ത𝑢 + ҧ𝑣

• the conjugate of a product equals the product of the conjugates 𝑢𝑣 = ത𝑢 × ҧ𝑣

• the conjugate of a difference equals the difference of the conjugates 𝑢 − 𝑣 = ത𝑢 − ҧ𝑣

• the conjugate of a quotient equals the quotient of the conjugates 
𝑢

𝑣
=

ഥ𝑢

ത𝑣

Example 4

If 𝑧 = 3 − 4𝑖 find 𝑧 − ҧ𝑧.

Solution

𝑧 − ҧ𝑧 = 2Im(𝑧)

= 2 × −4𝑖

= −8𝑖
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CONJUGATE OF A SUM

We can find the conjugate of the sum of multiple complex numbers by finding the conjugate of

each one and adding them together (or vice versa).

𝑧1 + 𝑧2+ . . . +𝑧𝑛 = 𝑧1 + 𝑧2 + . . . +𝑧𝑛

CONJUGATE OF A PRODUCT

We can find the conjugate of the product of multiple complex numbers by finding the conjugate

of each one and multiplying them together (or vice versa).

𝑧1 × 𝑧2 × . . .× 𝑧𝑛 = 𝑧1 × 𝑧2 × . . .× 𝑧𝑛

Example 5

If 𝑝 and 𝑞 are the roots of 2𝑧2 + 1 + 𝑖 𝑧 + (10 − 3𝑖) = 0, find:

a ഥ𝑝 + ഥ𝑞 b ഥ𝑝 × ഥ𝑞

Solution

a

ഥ𝑝 + ഥ𝑞 = 𝑝 + 𝑞

= −
𝑏

𝑎

= −
1 + 𝑖

2

= −
1 − 𝑖

2

b

ഥ𝑝 × ഥ𝑞 = 𝑝 × 𝑞

=
𝑐

𝑎

=
10 − 3𝑖

2

=
10 + 3𝑖

2
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CONJUGATE ROOT THEOREM

Conjugate Root Theorem: If 𝑧 is a non-real root of a polynomial with real coefficients, then ҧ𝑧 is

also a root.

Example 6

Prove that 2 + 𝑖 is a root of 𝑧3 − 3𝑧2 + 𝑧 + 5 = 0, and hence find the other roots.

Solution

2 + 𝑖 3 − 3 2 + 𝑖 2 + 2 + 𝑖 + 5

= 23 + 3 2 2𝑖 + 3 2 𝑖 2 + 𝑖3 − 3 22 + 4𝑖 + 𝑖2 + 2 + 𝑖 + 5

= 8 + 12𝑖 − 6 − 𝑖 − 12 − 12𝑖 + 3 + 2 + 𝑖 + 5

= 0

∴ 2 + 𝑖 is a root.

∴ 2 − 𝑖 is a root.

∴ 2 + 𝑖 + 2 − 𝑖 + 𝛾 = −
𝑏

𝑎

= −
−3

1

= 3

∴ 4 + 𝛾 = 3

∴ 𝛾 = −1

∴ The roots of 𝑧3 − 3𝑧2 + 𝑧 + 5 = 0 are −1, 2 ± 𝑖.
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EXERCISE 2.6

BASIC

1 If 𝑧 = 2 − 3𝑖 find 𝑧 ҧ𝑧.

2 If 𝑧 =
1

2
−

1

2
𝑖 find 

1

𝑧

3 If 𝑧 = 2 − 3𝑖 find 𝑧 + ҧ𝑧

4 If 𝑧 = 3 − 4𝑖 find 𝑧 − ҧ𝑧.

5 If 𝑝 and 𝑞 are the roots of 3𝑧2 + 2 − 𝑖 𝑧 + 6𝑖 = 0, find:

a ഥ𝑝 + ഥ𝑞 b ഥ𝑝 × ഥ𝑞

6 Prove that 1 + 𝑖 is a root of 𝑧3 − 2𝑧 + 4 = 0, and hence find the other roots.

MEDIUM

7 Prove 𝑧 ҧ𝑧 = 𝑧 2. Hint: let 𝑧 = 𝑟𝑒𝑖𝜃

8 Prove that if 𝑧 = 1 then 
1

𝑧
= ҧ𝑧. Hint: let 𝑧 = 𝑒𝑖𝜃

9 Prove 𝑧 + ҧ𝑧 = 2Re 𝑧 . Hint: let 𝑧 = 𝑎 + 𝑖𝑏

10 Prove 𝑧 − ҧ𝑧 = 2Im 𝑧 . Hint: let 𝑧 = 𝑎 + 𝑖𝑏

11 Prove 𝑧1 + 𝑧2+ . . . +𝑧𝑛 = 𝑧1 + 𝑧2 + . . . +𝑧𝑛. Hint: let 𝑧1 = 𝑎1 + 𝑖𝑏1, 𝑧2 = 𝑎2 + 𝑖𝑏2 etc

12 Prove 𝑧1 × 𝑧2 × . . .× 𝑧𝑛 = 𝑧1 × 𝑧2 × . . .× 𝑧𝑛. Hint: let 𝑧1 = 𝑟1𝑒
𝑖𝜃1 , 𝑧2 = 𝑟2𝑒

𝑖𝜃2 etc

13 The polynomial 𝑃(𝑧) has real coefficients, and 𝑧 = 2 + 3𝑖 is a root of 𝑃(𝑧). What quadratic

must be a factor of 𝑃(𝑧)?

14 The polynomial 𝑃(𝑧) has real coefficients, and the non-real numbers 𝛼 and −𝑖𝛼 are zeros

of 𝑃(𝑧), where ത𝛼 ≠ 𝑖𝛼. Explain why ത𝛼 and 𝑖 ത𝛼 are also zeros of 𝑃(𝑧).
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SOLUTIONS - EXERCISE 2.6

1

𝑧 ҧ𝑧 = 𝑧 2

= 𝑎2 + 𝑏2

= 22 + −3 2

= 13

2

𝑧 =
1

2

2

+ −
1

2

2

= 1

∴
1

𝑧
= ҧ𝑧 =

1

2
+

1

2
𝑖

3

𝑧 + ҧ𝑧 = 2Re(𝑧)

= 2 × 2

= 4

4

𝑧 − ҧ𝑧 = 2Im(𝑧)

= 2 × −4𝑖

= −8𝑖

5a

ഥ𝑝 + ഥ𝑞 = 𝑝 + 𝑞

= −
𝑏

𝑎

= −
2 − 𝑖

3

= −
2 + 𝑖

3

b

ഥ𝑝 × ഥ𝑞 = 𝑝 × 𝑞

=
𝑐

𝑎

=
6𝑖

3

= −2𝑖

6

1 + 𝑖 3 − 2 1 + 𝑖 + 4

= 13 + 3 1 2𝑖 + 3 1 𝑖 2 + 𝑖3 − 2 1 + 𝑖 + 4

= 1 + 3𝑖 − 3 − 𝑖 − 2 − 2𝑖 + 4

= 0

∴ 1 + 𝑖 is a root.

∴ 1 − 𝑖 is a root.

∴ 1 + 𝑖 + 1 − 𝑖 + 𝛾 = −
𝑏

𝑎

= −
0

1

= 0

∴ 2 + 𝛾 = 0

∴ 𝛾 = −2

∴ The roots of 𝑧3 − 2𝑧 + 4 = 0 are −2, 1 ± 𝑖.

7

Let 𝑧 = 𝑟𝑒𝑖𝜃

∴ ҧ𝑧 = 𝑟𝑒−𝑖𝜃

𝑧 ҧ𝑧 = 𝑟𝑒𝑖𝜃 × 𝑟𝑒−𝑖𝜃

= 𝑟2𝑒𝑖𝜃−𝑖𝜃

= 𝑟2

= 𝑧 2

8

Let 𝑧 = 𝑒𝑖𝜃

1

𝑧
=

1

𝑒𝑖𝜃

= 𝑒−𝑖𝜃

= ҧ𝑧 □
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9

𝑧 + ҧ𝑧 = 𝑎 + 𝑖𝑏 + 𝑎 − 𝑖𝑏

= 2𝑎

= 2Re 𝑧 □

10

𝑧 − ҧ𝑧 = 𝑎 + 𝑖𝑏 − 𝑎 − 𝑖𝑏

= 2𝑏𝑖

= 2Im 𝑧 □

11

Let 𝑧1 = 𝑎1 + 𝑖𝑏1, 𝑧2 = 𝑎2 + 𝑖𝑏2 etc

LHS = 𝑎1 + 𝑖𝑏1 + 𝑎2 + 𝑖𝑏2+ . . . +𝑎𝑛 + 𝑖𝑏𝑛

= 𝑎1 + 𝑎2+. . . 𝑎𝑛 + 𝑖 𝑏1 + 𝑏2+. . . +𝑏𝑛

= 𝑎1 + 𝑎2+. . . 𝑎𝑛 − 𝑖 𝑏1 + 𝑏2+. . . +𝑏𝑛

= 𝑎1 − 𝑖𝑏1 + 𝑎2 − 𝑖𝑏2+ . . . +𝑎𝑛 − 𝑖𝑏𝑛

= 𝑧1 + 𝑧2 + . . . +𝑧𝑛

= 𝑅𝐻𝑆 □

12

Let 𝑧1 = 𝑟1𝑒
𝑖𝜃1 , 𝑧2 = 𝑟2𝑒

𝑖𝜃2 etc

LHS = 𝑟1𝑒
𝑖𝜃1 × 𝑟2𝑒

𝑖𝜃2 ×. . .× 𝑟𝑛𝑒
𝑖𝜃𝑛

= 𝑟1𝑟2 . . . 𝑟𝑛 𝑒𝑖𝜃1+𝑖𝜃2+...+𝑖𝜃𝑛

= 𝑟1𝑟2 . . . 𝑟𝑛 𝑒−(𝑖𝜃1+𝑖𝜃2+...+𝑖𝜃𝑛)

= 𝑟1𝑒
−𝑖𝜃1 × 𝑟2𝑒

−𝑖𝜃2 ×. . .× 𝑟𝑛𝑒
−𝑖𝜃𝑛

= 𝑟1𝑒
𝑖𝜃1 × 𝑟2𝑒

𝑖𝜃2 × . . .× 𝑟𝑛𝑒
𝑖𝜃𝑛

= 𝑧1 × 𝑧2 × . . .× 𝑧𝑛

= 𝑅𝐻𝑆 □

13

2 − 3𝑖 must also be a root

∴ the following quadratic must be a factor.

𝑧 − 2 + 3𝑖 𝑧 − 2 − 3𝑖 = 𝑧 − 2 − 3𝑖 𝑧 − 2 + 3𝑖

= 𝑧 − 2 2 − (3𝑖)2

= 𝑧2 − 4𝑧 + 4 + 9

= 𝑧2 − 4𝑧 + 13

14

Since the coefficients are real then the conjugate of non-real zeros are also zeros.

The conjugate of 𝛼 is ത𝛼.

The conjugate of −𝑖𝛼 is −𝑖𝛼 = −𝑖 × ത𝛼 = 𝑖 ത𝛼

∴ ത𝛼 and 𝑖 ത𝛼 are roots of 𝑃 𝑧 □
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2.7  COMPLEX NUMBERS AS VECTORS

In Lesson 7 we look at complex numbers as vectors on the Complex Plane. We cover:

• Complex Numbers as Vectors

• Translations

• Triangle Law

• Parallelogram Law

• Subtracting Vectors

• Polygon Law

• Rotation and Dilation

• Parallel Vectors

• Perpendicular Vectors

• Rotating Vectors

• Midpoint

• Triangle Inequality
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COMPLEX NUMBERS AS VECTORS

It is important to note that two dimensional vectors (which we will cover in Vectors) and complex

vectors (in Complex Numbers) behave the same with addition and subtraction but quite

differently for multiplication. We can also divide with Complex vectors, as well as raising them to

powers or finding their roots, which we cannot do with two dimensional vectors.

In Vectors we are only interested in the direction of a two dimensional vector as a concept,

whereas in Complex Numbers we are interested in the argument of complex vectors, so will

solve proofs involving rotation.

We can look at a complex number as a vector. For example, 𝑂𝑈 represents the complex

number 𝑢 = 𝑎 + 𝑖𝑏, which can be viewed as a vector starting at zero which travels 𝑎 units to the

right and goes up by 𝑏 units. Its tail is at zero and its tip is at 𝑈.

𝑎

𝑏
𝑈(𝑢)

𝑂

Im(𝑧)

Re(𝑧)

𝑉(𝑣)

𝑊(𝑤)

Since 𝑂𝑈 and 𝑊𝑉 have the same magnitude and direction they are equal vectors, so 𝑊𝑉 also 

equals 𝑎 + 𝑖𝑏.
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TIP MINUS TAIL

Any complex vector equals the complex number at its tip minus the complex number at its tail.

When we label the vector we put the pronumeral at the tail first followed by the pronumeral at

the tip.

So 𝑊𝑉 = 𝑣 − 𝑤.

Similarly 𝑂𝑈 = 𝑢 − 0 = 𝑢.

Consider the vectors 𝑂𝐴 and 𝐵𝐶 at right.

𝑂𝐴 is a position vector as it has its tail at the 

origin and its tip at the position of 𝐴.

𝐵𝐶 is a displacement (or relative) vector as it gives us the displacement of 𝐶 from 𝐵.

𝑂

𝐴

𝐵

𝐶

TRIANGLE LAW - ADDING VECTORS

When we add two vectors the resultant vector can be found as the third side of the triangle

formed by moving the tail of one vector to the tip of the other. The resultant vector goes from the

tail of the first vector to the tip of the second as shown below.

We can add the vectors in any order and achieve the same result as shown middle and right, as

vectors follow the commutative law

𝑢 + 𝑣 = 𝑣 + 𝑢

𝑢

𝑣

𝑢

𝑣

𝑢 + 𝑣
resultant

vector

𝑣

𝑢
𝑢 + 𝑣𝑢

𝑣
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PARALLELOGRAM LAW - ADDING VECTORS

The Triangle Law for addition leads to a few other important results, the first being the

Parallelogram Law. We start by arranging the two triangles shown above into the parallelogram

as shown below. The diagonal of a parallelogram (from tail to tip) with sides 𝑢 and 𝑣 is the sum

of the vectors.

𝑢

𝑣

𝑣

𝑢

SUBTRACTING VECTORS

There are two ways to subtract vectors, each of which are useful in different circumstances.

USING THE NEGATIVE OF A VECTOR AND THE TRIANGLE LAW

We can view 𝑢 − 𝑣 as 𝑢 + (−𝑣). We first find −𝑣 by reversing 𝑣 (below left), then move the tail

of this new vector to the tip of 𝑢 (right). The vector from tail to tip is 𝑢 − 𝑣.

If we wanted 𝑣 − 𝑢 then we find −𝑢 and move its tail to the end of 𝑣 as below. Note that 𝑢 − 𝑣

and 𝑣 − 𝑢 are negative vectors (same modulus with opposite direction).

𝑢

𝑣

𝑢

𝑢 − 𝑣

−𝑣

−𝑣

𝑢

𝑣 𝑢 − 𝑣

−𝑢

𝑣

−𝑢
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THE VECTOR BETWEEN THE TIPS

If the tails of the two vectors are at the same point (move one or both of them if not) then we can

find 𝑢 − 𝑣 as the vector from the tip of 𝑣 to the tip of 𝑢. Notice this is tip minus tail.

Similarly we can find 𝑣 − 𝑢 as the vector from the tip of 𝑢 to the tip of 𝑣.

Extending the two triangles above into parallelograms, we can see that the diagonal running

across the parallelogram gives the difference of the two vectors. Depending on which way we

draw the diagonal we get either 𝑢 − 𝑣 or 𝑣 − 𝑢.

𝑢

𝑣

𝑢

𝑣

𝑢 − 𝑣

𝑢

𝑣

𝑣 − 𝑢

𝑢

𝑣

𝑢

𝑣

𝑢 𝑢

𝑣 𝑣
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POLYGON LAW

The Triangle Law for adding two vectors can also be extended to any number of vectors using

the Polygon Law.

𝑎

𝑏

𝑐

𝑎

𝑏

𝑐
𝑑 𝑑

The vectors can be added together in any order and achieve the same result. The diagrams

below show two more of the 4! ways of adding the four vectors - all give the same resultant

vector.

𝑎

𝑏

𝑐

𝑑

𝑎

𝑏

𝑐

𝑑
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𝑄(𝑤)

𝑃(𝑧).

.

Re(𝑧)

Im(𝑧) 𝑅(𝑧 + 𝑤)

𝑆(𝑧 − 𝑤)

𝑄(𝑤)

𝑃(𝑧).

.

Re(𝑧)

Im(𝑧)

.

.

Example 1

The points P and Q on the complex plane represent the complex numbers 𝑧 and 𝑤 respectively.

Mark the points 𝑅 representing 𝑧 + 𝑤, and 𝑆 representing 𝑧 − 𝑤.

Solution
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ROTATION AND DILATION

When a complex number is multiplied by another complex number, then starting with the

original we:

• dilate (scale) the modulus by the modulus of the second number

• rotate the vector by the argument of the second number

𝑢

𝑣 Im(𝑧)

Re(𝑧)

𝑢 × 𝑣

The work on complex vectors is far more likely to involve multiplication than division, however

division is the inverse operation of multiplication, so the effects occur in the opposite directions:

• rotate by the opposite of the argument of the second complex number

• divide by the modulus of the second complex number.

Let’s have a look specifically at multiplying by a real number, an imaginary number and a

complex number.

Mathematics Extension 2 © Steve Howard 157 Howard and Howard Education



MULTIPLYING VECTORS BY A CONSTANT - PARALLEL VECTORS

When we multiply a vector by a constant real number 𝑘:

• The modulus changes by a factor of the real number - the vector stretches or compresses

(dilates)

• The direction stays the same if 𝑘 > 0, or becomes the opposite direction if 𝑘 < 0, so the

new vector is parallel to the original.

This matches what we have just said about multiplying by a complex number, as a real number

has an argument of 0 if it is positive (so no rotation) or 𝜋 if it is negative (so reverses direction).

𝑢

−𝑢

1.5𝑢

−1.5𝑢

Im(𝑧)

Re(𝑧)

Multiplying a complex number by a positive constant

leaves the argument the same (no rotation) and dilates

the modulus.

Multiplying a complex number by −1 rotates the vector

180° and leaves the modulus the same (the vector does

not change length, just rotates).

Multiplying a complex number by any other negative constant rotates the vector 180° and

scales the modulus – the point lies on the line through the original point and zero but on the

other side of zero.
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.
.

Im(𝑧)

𝑂 Re(𝑧)

𝑤

𝑧

.
.

Im(𝑧)

𝑂 Re(𝑧)

𝑤

𝑧

2𝑧

.1

2
𝑤

.
−𝑧

.

Example 2

The complex plane shows the complex numbers 𝑤 and 𝑧. Mark possible positions for

a 2𝑧 b
1

2
𝑤 c −𝑧

Solution
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ROTATING BY
𝜋

2
- PERPENDICULAR VECTORS

We have seen that an essential property of 𝑖 is that when we multiply by 𝑖 we rotate

anticlockwise by
𝜋

2
.

This matches what we have just seen about multiplying by a complex number, as 𝑖 has an

argument of
𝜋

2
and a modulus of 1, so we rotate by

𝜋

2
and scale the modulus by 1 (leave it alone).

.

Im(𝑧)

𝑂

Re(𝑧)
𝑧

.

Im(𝑧)

𝑂

Re(𝑧)

𝑧

.

.

.𝑖𝑧

ҧ𝑧

𝑖 ҧ𝑧

Example 3

The complex plane shows the complex number 𝑧.

Mark possible positions for

a 𝑖𝑧 b 𝑖 ҧ𝑧

Solution

a Rotate 𝑧 anticlockwise
𝜋

2

b Flip 𝑧 over the 𝑥-axis to find the conjugate ҧ𝑧, then rotate ҧ𝑧 anticlockwise
𝜋

2
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ROTATING BY 𝛼

We rotate a vector by multiplying by a second vector which has as argument equal to the angle

we wish to rotate by.

If we want to rotate a vector without changing its length then we want the modulus of the

multiplier to be 1 and the argument to be the angle we want the vector to rotate.

𝑧𝑧 cis
𝜋

3

𝜋

3

Im(𝑧)

Re(𝑧)

If the angle of rotation is to be 𝛼 anticlockwise, we multiply by any

complex number having a modulus of 1 and an argument of 𝛼,

such as 𝑒𝑖𝛼 or cos 𝛼 + 𝑖 sin𝛼.

So to rotate by
𝜋

3
radians we would multiply by any of:

• 𝑒
𝜋

3
𝑖

• cos
𝜋

3
+ 𝑖 sin

𝜋

3

•
1

2
+

3

2
𝑖.

𝑉(𝑣)

𝑂

𝑈(𝑢)

Re(𝑧)

Im(𝑧)

Example 4

The complex numbers 0, 𝑢 and 𝑣 form the vertices of an equilateral triangle in the complex

plane. Show that 𝑢2 + 𝑣2 = 𝑢𝑣

Solution

arg 𝑢 − arg 𝑣 =
𝜋

3

Let 𝑣 = 𝑢 cos
𝜋

3
+ 𝑖 sin

𝜋

3

𝑢2 + 𝑣2 = 𝑢2 + 𝑢2 cos
𝜋

3
+ 𝑖 sin

𝜋

3

2

= 𝑢2 1 + cos
2𝜋

3
+ 𝑖 sin

2𝜋

3

= 𝑢2
1

2
+ 𝑖

3

2

𝑢𝑣 = 𝑢2 cos
𝜋

3
+ 𝑖 sin

𝜋

3

= 𝑢2
1

2
+ 𝑖

3

2

∴ 𝑢2 + 𝑣2 = 𝑢𝑣
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MIDPOINT

The midpoint between two points can be found in

three different ways depending on the form of the

complex numbers.

Let the numbers be 𝑢 = 𝑥1 + 𝑖𝑦1 and 𝑣 = 𝑥2 + 𝑖𝑦2.

Im(𝑧)

Re(𝑧)

𝑈(𝑢)

𝑉(𝑣)

.
𝑀(𝑚)

We can use the midpoint formula from the Cartesian plane:

𝑚 =
𝑥1 + 𝑥2

2
,
𝑦1 + 𝑦2

2
=
𝑥1 + 𝑥2

2
+
𝑦1 + 𝑦2

2
𝑖

Given that the Complex Plane is an extension of the number line we can also find the average

of the two numbers, as the midpoint is the average:

𝑚 =
𝑢 + 𝑣

2

We can also find the midpoint using coinciding lines if we can show that from a common tail

one vector is half the other.

𝑚 − 𝑢 =
1

2
𝑣 − 𝑢

Example 5

Find the midpoint 𝑀 of u = 1 + 2𝑖 and 𝑣 = 3 − 4𝑖

Solution

𝑀 is
1+3

2
+

2−4

2
𝑖 = 2 − 2𝑖
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TRIANGLE INEQUALITY

The Triangle Inequality is based on the sum of any two sides of a triangle being at least as big

as the third side. If the sum of the two sides equals the third side then the three sides form one

straight line, rather than a triangle as we know it.

So for any two complex numbers we can say that:

𝑧1 + 𝑧2 ≤ 𝑧1 + 𝑧2

Example 6

Given 𝑧 <
1

2
, show that 1 + 𝑖 𝑧3 + 𝑖𝑧 <

3

4

Solution

1 + 𝑖 𝑧3 + 𝑖𝑧 ≤ 1 + 𝑖 𝑧3 + 𝑖𝑧 (by the triangle inequality)

≤ 1 + 𝑖 𝑧 3 + 𝑧

< 2
1

2

3

+
1

2

<
2 + 4

8

<
6

8

<
3

4
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EXERCISE 2.7

BASIC

1 The points P and Q on the complex plane represent the complex numbers 𝑧 and 𝑤

respectively. Mark the points 𝑅 representing 𝑧 + 𝑤, and 𝑆 representing 𝑧 − 𝑤.

2 The complex plane shows the complex numbers 𝑤 and 𝑧. Mark possible positions for

a 2𝑧 b
1

2
𝑤 c −𝑧

3 The complex plane shows the complex number 𝑧. Mark possible positions for

a 𝑖𝑧 b 𝑖 ҧ𝑧

𝑄(𝑤)

𝑃(𝑧).

.

Re(𝑧)

Im(𝑧)

.

.
Im(𝑧)

𝑂 Re(𝑧)

𝑤

𝑧

.

Im(𝑧)

Re(𝑧)

𝑧
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4 Find the midpoint 𝑀 of u = −1 + 3𝑖 and 𝑣 = 5 − 𝑖

5 The complex numbers 0, 𝑢 and 𝑣 form the vertices 

of an equilateral triangle in the complex plane. 

It is given that 𝑢 = 𝑒
𝜋

6
𝑖
. Show that 𝑢2 + 𝑣2 = 𝑢𝑣

6 The point 𝑃 on the Argand diagram represents the

complex number 𝑧. The points 𝑄 and 𝑅 represent

the points 𝜔𝑧 and ഥ𝜔𝑧 respectively, where 𝜔 = cis
𝜋

3
.

The point 𝑀 is the midpoint of 𝑄𝑅.

a Find the complex number representing 𝑀 in terms of 𝑧.

b The point 𝑆 is chosen so that 𝑃𝑆𝑄𝑅 is a

parallelogram. Find the complex number

represented by 𝑆.

7
Given 𝑧 < 1, show that 1 − 𝑖 𝑧2 + 2𝑖𝑧 < 3

MEDIUM

8 The complex numbers 𝑢 and 𝑣 are indicated on the complex plane. 

Given 𝑢 + 𝑣 + 𝑤 = 0, sketch a possible location for 𝑤. 

𝑉(𝑣)

𝑂

𝑈(𝑢)

Re(𝑧)

Im(𝑧)

𝑂

𝑆

𝑅

𝑄

𝑃

𝑀
.

.

.

Im(𝑧)

𝑂 Re(𝑧)
𝑣

𝑢
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9 𝑂𝐴𝐵𝐶 is a rectangle in a complex plane where 𝑂 is the 

origin and point 𝐴 corresponds to the complex number 

1 + 𝑖. 𝐶 lies in the second quadrant as shown. Given  the 

length of the rectangle is three times its breadth and 

𝑂𝐴 is one of the shorter sides, find the complex number 

represented  by 𝐶.

10 The point 𝐴 represents the complex number 𝑎 and the

point 𝐵 represents the complex number 𝑏. The point 𝐵

is rotated clockwise about 𝐴 through a right angle

to take up the position 𝐶, representing the complex

number 𝑐. Show that 𝑐 = 1 + 𝑖 𝑎 − 𝑖𝑏.

11 The point 𝑉 represents the complex number 4 + 𝑖. 

∠𝑂𝑊𝑉 =
𝜋

2
and 𝑉𝑊 = 𝑂𝑊 . Find the complex 

number represented by the point 𝑊.

12 The points 𝑃, 𝑄 and 𝑅 on the complex plane represent 

the complex numbers 𝑝, 𝑞 and 𝑟 respectively. The triangles

𝑃𝑂𝑅 and 𝑂𝑄𝑅 are right angled isosceles with right angles 

at 𝑃 and 𝑄 as shown. Show that 𝑝𝑞 = 𝑟2

13 Prove for two complex numbers 𝑧1, 𝑧2 that 𝑧1 + 𝑧2 ≤ 𝑧1 + 𝑧2

Im(𝑧)

𝑂
Re(𝑧)

𝐶

𝐴

𝐵

𝑂

𝐶

𝐴

𝐵

Re(𝑧)

Im(𝑧)

𝑊

𝑉(4,1)

𝑂 Re(𝑧)

Im(𝑧)

𝑅 𝑟

𝑂

𝑄 𝑞

𝑃 𝑝
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SOLUTIONS - EXERCISE 2.7

𝑄(𝑤)

𝑃(𝑧)
.

.

Re(𝑧)

Im(𝑧)𝑅(𝑧 + 𝑤)

𝑆(𝑧 − 𝑤)

.

.

.

.

Im(𝑧)

𝑂 Re(𝑧)

𝑤

𝑧
2𝑧

. 1

2
𝑤

.−𝑧

.

.

Im(𝑧)

Re(𝑧)

𝑧

.

.

.𝑖𝑧

ҧ𝑧

𝑖 ҧ𝑧

1 2

3

5

arg 𝑢 − arg 𝑣 =
𝜋

3

Let 𝑣 = 𝑢 𝑒
𝜋

3
𝑖 = 𝑒

𝜋

6
𝑖 × 𝑒

𝜋

3
𝑖 = 𝑒

𝜋

2
𝑖 = 𝑖

𝑢2 + 𝑣2 = 𝑒
𝜋
6
𝑖

2

+ 𝑖2

= 𝑒
𝜋
3
𝑖 − 1

= cos
𝜋

3
+ 𝑖 sin

𝜋

3
− 1

=
1

2
+

3

2
𝑖 − 1

= −
1

2
+

3

2
𝑖

𝑢𝑣 = 𝑒
𝜋
6
𝑖 × 𝑖

= cos
𝜋

6
+ 𝑖 sin

𝜋

6
𝑖

= − sin
𝜋

6
+ 𝑖 cos

𝜋

6

= −
1

2
+

3

2
𝑖

∴ 𝑢2 + 𝑣2 = 𝑢𝑣

4

𝑀 is 
−1+5

2
+

3−1

2
𝑖 = 2 + 𝑖

6

a

𝑀 =
1

2
𝜔𝑧 + ഥ𝜔𝑧

=
𝑧

2
𝜔 + ഥ𝜔

=
𝑧

2
cos

𝜋

3
+ 𝑖 sin

𝜋

3
+ cos

𝜋

3
− 𝑖 sin

𝜋

3

=
𝑧

2
2 cos

𝜋

3

= cos
𝜋

3
𝑧

=
𝑧

2

b

𝑀 is also the midpoint of SP

𝑠 + 𝑝

2
=
𝑧

2

𝑠 + 𝑧 = 𝑧

𝑠 = 0
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.

.

.

Im(𝑧)

𝑂 Re(𝑧)
𝑣

𝑢

𝑤

𝑢 + 𝑣.

7

1 − 𝑖 𝑧2 + 2𝑖𝑧 ≤ 1 − 𝑖 𝑧2 + 2𝑖𝑧 (by the triangle inequality)

≤ 1 − 𝑖 𝑧 2 + 2 𝑧

≤ 2 1 2 + 2

≤ 2 2

< 3

8

9

𝑂𝐶 = 3𝑖 × 𝑂𝐴

= 3𝑖 1 + 𝑖

= −3 + 3𝑖

10

𝐴𝐶 = −𝑖𝐴𝐵

𝑐 − 𝑎 = −𝑖 𝑏 − 𝑎

𝑐 = −𝑖𝑏 + 𝑖𝑎 + 𝑎

𝑐 = 1 + 𝑖 𝑎 − 𝑖𝑏

11

Let 𝑊 represent 𝑎 + 𝑖𝑏

−𝑖𝑊𝑉 = 𝑂𝑊

−𝑖 4 + 𝑖 − 𝑎 − 𝑖𝑏 = 𝑎 + 𝑖𝑏

−4𝑖 + 1 + 𝑎𝑖 − 𝑏 = 𝑎 + 𝑏𝑖

−𝑏 + 1 + 𝑖 𝑎 − 4 = 𝑎 + 𝑏𝑖

∴ −𝑏 + 1 = 𝑎 𝑏 = 1 − 𝑎

𝑎 − 4 = 𝑏

𝑎 − 4 = 1 − 𝑎

2𝑎 = 5

𝑎 =
5

2

𝑏 = 1 −
5

2

= −
3

2

𝑊 represents
5−3𝑖

2

12

∠ 𝑃𝑂𝑅 = ∠𝑅𝑂𝑄 =
𝜋

4

∴ 𝑞 = 𝑟 cis
𝜋

4
and 𝑝 = 𝑟 cis −

𝜋

4

𝑝𝑞 = 𝑟 cis
𝜋

4
× 𝑟 cis −

𝜋

4

= 𝑟2 cis
𝜋

4
−
𝜋

4

= 𝑟2 cis 0

= 𝑟2

𝑧1

𝑧1 + 𝑧2

𝑧2

𝑂

Im(𝑧)

Re(𝑧)

𝑧2

𝑧1

𝑧1

13

In the diagram at right we can see that 𝑂, 𝑧1, 𝑧2 and

𝑧1 + 𝑧2 form a parallelogram.

The diagonal from zero to 𝑧1 + 𝑧2 splits the parallelogram

into two congruent triangles with lengths 𝑧1 , 𝑧2 and

𝑧1 + 𝑧2 .

∴ 𝑧1 + 𝑧2 ≤ 𝑧1 + 𝑧2 (any side of a triangle is less than the sum of the other two sides).    □
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2.8  CURVES AND REGIONS

In Lesson 8 we look at locus on the Argand Diagram. We cover:

• Circles

• Perpendicular Bisector

• Rays and Sectors

• Horizontal and Vertical Lines

• Algebraic Method

• Arcs
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CIRCLES

The length of a vector from the centre of a

circle to any point on the circumference has

a modulus equalling the radius.

𝑧 = 𝑟 is a circle of radius 𝑟 centred at zero

𝑧 − 𝑎 + 𝑖𝑏 = 𝑟 is a circle of radius 𝑟 centred at the point (𝑎, 𝑏)

Im(𝑧)

Re(𝑧)

𝑧

Im(𝑧)

Re(𝑧)

|

4

−2

−2

2

2

. (1,2)

5 −

−1 −

Example 1

Illustrate the following on a Complex Plane:

a 𝑧 = 2 b 𝑧 − 1 − 2𝑖 ≤ 3

Solution

a This is a circle centred at zero with radius 2

b This is the inside and circumference of a circle 

centred at (1,2)with radius 3 units.
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PERPENDICULAR BISECTOR

The length of the vectors from any point on 

a perpendicular bisector to the two points 

have the same modulus, so the perpendicular 

bisector of the points (𝑎, 𝑏) and (𝑐, 𝑑) is 

𝑧 − 𝑎 + 𝑖𝑏 = 𝑧 − 𝑐 + 𝑖𝑑

Im(𝑧)

Re(𝑧)

(𝑎, 𝑏)

(𝑐, 𝑑)

𝑧 − 𝑎 + 𝑖𝑏

𝑧 − 𝑐 + 𝑖𝑑

Im(𝑧)

Re(𝑧)
4

−3

2
(2,1)

Example 2

Sketch 𝑧 − 4 = |𝑧 − 2𝑖|

Solution

This is the perpendicular bisector of

the interval joining (4,0) and (0,2).

Mathematics Extension 2 © Steve Howard 171 Howard and Howard Education



RAYS AND SECTORS

A ray is a line that starts from a point and continues in one direction. The argument of any point

on the ray equals the angle the ray makes with the Real axis.

A ray starting at zero at an angle of 𝜃 is arg 𝑧 = 𝜃.

A ray starting at (𝑎, 𝑏) at an angle of 𝜃 is arg 𝑧 − (𝑎 + 𝑖𝑏) = 𝜃.

Note that there should be an open circle on the starting point itself, as there can be no angle

formed at the point itself, so the argument is undefined.

A sector with centre (𝑎, 𝑏) and arms at angles to the 𝑥-axis of 𝛼 and 𝛽 is 𝛼 ≤ arg 𝑧 − 𝑎 + 𝑖𝑏 ≤

𝛽.

Again there must be an open circle at the centre, as the angle is undefined at that point.

Im(𝑧)

Re(𝑧)
−2

𝜋

3
𝜋

4

Example 3

Sketch the following on a Complex Plane:

a arg 𝑧 + 2 =
𝜋

3
b 0 ≤ arg 𝑧 ≤

𝜋

4

Solution

a  A ray from the point (−2,0) at an angle of 
𝜋

3
.

b A sector centred at zero, with rays at 0 radians 

and 
𝜋

4
radians.
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HORIZONTAL AND VERTICAL LINES

Re 𝑧 = 𝑎 will give a vertical line at 𝑥 = 𝑎

Im 𝑧 = 𝑎 will give a horizontal line at 𝑦 = 𝑎

Re 𝑧 = 3

Im(𝑧) = 2

Im(𝑧)

Re(𝑧)

2

3

Example 4

Sketch the following on a Complex Plane:

a Re 𝑧 = 3 b Im 𝑧 = 2

Solution

a A vertical line at Re(𝑧) = 3

b A horizontal line at Im(𝑧) = 2
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ALGEBRAIC METHOD

Many other curves will need to be simplified algebraically until we can recognise their details.

With practice most will become obvious.

Example 5

Find the curve satisfying 𝑧 − 1 = 2|𝑧 + 1|.

Solution

𝑥 − 1 2 + 𝑦2 = 2 𝑥 + 1 2 + 𝑦2

𝑥2 − 2𝑥 + 1 + 𝑦2 = 4 𝑥2 + 2𝑥 + 1 + 𝑦2

𝑥2 − 2𝑥 + 1 + 𝑦2 = 4𝑥2 + 8𝑥 + 4 + 4𝑦2

3𝑥2 + 10𝑥 + 3𝑦2 + 3 = 0

𝑥2 +
10

3
𝑥 + 𝑦2 = −1

𝑥2 +
10

3
𝑥 +

25

9
+ 𝑦2 = −1 +

25

9

𝑥 +
5

3

2

+ 𝑦2 =
16

9

Which is a circle with centre −
5

3
, 0 with radius

4

3
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ARCS

A common textbook question from the old syllabus involved arcs, although it was not used in the

HSC. Although Circle Geometry has now been dropped from the Stage 6 syllabus it is still

assumed knowledge from Stage 5, so it could theoretically appear.

We have seen that when a vector is divided by another vector we subtract the arguments. This

means that the following types of equation are interchangeable:

arg 𝑧 − 𝑧1 − arg 𝑧 − 𝑧2 = 𝜃 or arg
𝑧−𝑧1

𝑧−𝑧2
= 𝜃

These equations:

• describe a major or minor arc of a circle if 0 < 𝜃 < 𝜋, where the two points 𝑧1 and 𝑧2 are on

the circumference of a circle, and where the angle within the segment (measured at the

circumference) is 𝜃.

You will find either the minor or major 

arc, not the whole circumference!

𝜃

𝑧2 𝑧1

2𝜃

Im(𝑧)

Re(𝑧)

In drawing the arc it may be of assistance to remember that the angle at the centre must be

twice as large as the angle at the circumference, and that it is the apex angle of the isosceles

triangle whose base vertices are 𝑧1 and 𝑧2.
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Some other drawing hints: imagine standing at the second listed point (𝑧2) and facing the first

point (𝑧1).

• If 𝜃 is positive then you want the arc on the left

• If 𝜃 is negative you want the arc on the right

• If 𝜃 is ± then you want a mirror image of the arc (so not a whole circle) either side of the

chord.

If 𝜃 is
𝜋

2
or less the centre of the circle will be on the same side as the arc you want and you will

have a major arc. Once you have found the centre you can draw an arc from one point to the

other and you have the curve.

2𝜋

3

Im(𝑧)

Re(𝑧)−4 −1

We have seen that if 0 < 𝜃 < 𝜋 that arg
𝑧−𝑧1

𝑧−𝑧2
= 𝜃 gives an arc, but if 𝜃 = 0, 𝜋 then we get part

of a straight line:

• If 𝜃 = 0 then the vectors to 𝑧 from 𝑧1 and from z2 have the same argument. This only

occurs when 𝑧 is on the line passing through the two points, but outside the two points.

• If 𝜃 = 𝜋 then the vectors to 𝑧 from 𝑧1 and 𝑧2 point in opposite directions. This only occurs

on the line passing through the two points between the points.

Example 6

Sketch arg 𝑧 + 1 − arg 𝑧 + 4 =
𝜋

3

Solution

The angle at 𝑧 (formed by the vectors from (−1,0) and

(−4,0) is equal to
𝜋

3
, so an arc with ends at (−1,0) and

(−4,0). Standing at (−4,0) and facing (−1,0) we want the

arc on the left (since the angle is positive).

We double the
𝜋

3
angle at the circumference to get

2𝜋

3
,

which is the apex angle of our isosceles triangle. Since

our angle is less than
𝜋

2
put the centre to the left (above)

the chord, and draw our arc.
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EXERCISE 2.8

BASIC

1 Illustrate the following on a Complex Plane:

a 𝑧 = 3 b 𝑧 + 1 − 𝑖 ≤ 1

2 Sketch 𝑧 + 1 − 𝑖 = |𝑧 − 1 + 𝑖|

3 Sketch the following on a Complex Plane:

a arg 𝑧 = −
𝜋

4
b 0 ≤ arg 𝑧 − 1 ≤

𝜋

3

4 Sketch the following on a Complex Plane:

a Re 𝑧 = −2 b Im 𝑧 = 1

MEDIUM

5 Find the locus of the point z satisfying 𝑧 + 1 = 3|𝑧|.

6 Sketch arg 𝑧 + 1 − arg 𝑧 − 1 =
𝜋

4

7 Sketch Im 𝑧2 = 1

8 Sketch the region on the Argand diagram where the inequalities 𝑧 − ҧ𝑧 < 1 and 𝑧 − 𝑖 ≤
2 hold simultaneously.

9 The point 𝑃 on the Argand diagram represents the complex number 𝑧, where 𝑧 satisfies

1

𝑧
−

1

ഥ𝑧
= 1. Give a geometrical description of the locus of 𝑃 as 𝑧 varies.

10 Sketch

arg
𝑧 + 1 + 𝑖

𝑧 − 1
= ±

𝜋

4

CHALLENGING

11 Sketch the following on a Complex Plane:

arg
𝑧 − 1 − 𝑖

𝑧 + 1 − 𝑖
= 0

12 Sketch the following on a Complex Plane:

arg
𝑧 − 2

𝑧 + 2𝑖
= 𝜋

13 Sketch Re 𝑧2 = 9
** This question involves hyperbolas with asymptotes 𝑦 = ±𝑥, from the old topic of Conics 

so is probably beyond the scope of the current syllabus **
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SOLUTIONS - EXERCISE 2.8

1

a This is a circle centred at zero with radius 3

b This is the inside and circumference of a 

circle centred at (−1,1) with radius 1.

Im(𝑧)

Re(𝑧)

3

2

This is the perpendicular bisector of 

the interval joining (−1,1) and (1,−1).
Im(𝑧)

Re(𝑧)

.
(−1,1)

3

−3

−3

.(−1,1)

(1, −1)

3

a  A ray from the point (−2,0) at an angle 

of 
𝜋

3
.

b A sector centred at zero, with rays at 0 

radians and 
𝜋

4
radians.

Im(𝑧)

Re(𝑧)

1

𝜋

4

𝜋

3
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4

a A vertical line at Re(𝑧) = 3

b A horizontal line at Im(𝑧) = 2

Re 𝑧 = −2

Im(𝑧) = 1

Im(𝑧)

Re(𝑧)

−2

1

7

A hyperbola with asymptotes the

𝑥 and 𝑦 axes.

Im 𝑧2 = 1

Im(𝑧)

Re(𝑧)
−1,−1

1,1

.

.

Im 𝑧2 = 1

5

𝑥 + 1 2 + 𝑦2 = 3 𝑥2 + 𝑦2

𝑥2 + 2𝑥 + 1 + 𝑦2 = 9 𝑥2 + 𝑦2

𝑥2 + 2𝑥 + 1 + 𝑦2 = 9𝑥2 + 9𝑦2

8𝑥2 − 2𝑥 + 8𝑦2 − 1 = 0

𝑥2 −
1

4
𝑥 + 𝑦2 =

1

8

𝑥2 +
1

4
𝑥 +

1

64
+ 𝑦2 =

1

8
+

1

64

𝑥 +
1

8

2

+ 𝑦2 =
9

64

Which is a circle with centre −
1

8
, 0 with radius

3

8

6

The angle at 𝑧 (formed by the vectors from (−1,0) and (1,0) is equal

to
𝜋

4
, so an arc with ends at (−1,0) and (1,0). Standing at (−4,0) and

facing (−1,0) we want the arc on the left (since the angle is positive).

We double the
𝜋

4
angle at the circumference to get

𝜋

2
, which is the

apex angle of our isosceles triangle. Since our angle is less than
𝜋

2

put the centre to the left (below) the chord, and draw our arc.

𝜋

2

Im(𝑧)

Re(𝑧)−1 1
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8

𝑧 − ҧ𝑧 = 𝑥 + 𝑖𝑦 − 𝑥 − 𝑖𝑦 = 2𝑖𝑦

∴ 𝑧 − ҧ𝑧 < 1 is the same as |2𝑖𝑦| <, so |𝑦| <
1

2
, 

or the region between  the lines 𝑦 = ±
1

2
.

𝑧 − 𝑖 ≤ 2 is the circumference of a circle 

centred at (0.1) with radius 2, plus everything 

inside the circle.

1

−1

.

0.5

−0.5

9

1

𝑧 + 1
+

1

തz + 1
= 1

ҧ𝑧 + 1 + 𝑧 + 1 = (𝑧 + 1)( ҧ𝑧 + 1)

𝑥 − 𝑖𝑦 + 1 + 𝑥 + 𝑖𝑦 + 1 = 𝑥 + 1 + 𝑖𝑦 𝑥 + 1 − 𝑖𝑦

2𝑥 + 2 = 𝑥 + 1 2 + 𝑦2

2𝑥 + 2 = 𝑥2 + 2𝑥 + 1 + 𝑦2

𝑥2 − 2𝑥 + 𝑦2 − 1 = 0

𝑥2 − 2𝑥 + 1 + 𝑦2 = 1 + 1

𝑥 − 1 2 + 𝑦2 = 2
2

So the locus of P is a circle of radius 2 with centre (1,0)

1 + 2
1
.

10

The angle at 𝑧 (formed by the vectors from (−1,−1) and (1,0) is

equal to ±
𝜋

4
, so an arc with ends at −1,−1 and (1,0).

We want isosceles triangles drawn to both sides since the angle

can be positive or negative, with apex angles of 2 ×
𝜋

4
=

𝜋

2
and

can then draw both arcs to form a snowman.

Im(𝑧)

Re(𝑧)
(−1,−1)

1

11

The angle at z formed by the vectors from (1,1) and

(-1,1) is equal to 0. The line passing through (1,0) and

(0,1), but outside those points.

Im(𝑧)

Re(𝑧)
1−1

1
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13

A hyperbola with asymptotes

𝑦 = ±𝑥 and 𝑥-intercepts ±2.
Re 𝑧2 = 9

Re 𝑧2 = 9

Im(𝑧)

Re(𝑧)

−3 3

12

The angle at z formed by the vectors from (2,0) and (0. −2)

is equal to 𝜋. The line between (2,0) and (0, −2) not

including the points.

Im(𝑧)

Re(𝑧)

2

−2
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2.9  DE MOIVRES THEOREM

In Lesson 9 we look at de Moivre’s Theorem. We cover:

• De Moivre’s Theorem

• Trigonometrical Applications of De Moivre’s Theorem

DE MOIVRE’S THEOREM

De Moivre’s Theorem states that if we raise a complex number to a power then we raise the

modulus to that power and multiply the argument by the power.

𝑟 cos 𝜃 + 𝑖 sin 𝜃 𝑛 = 𝑟𝑛(cos 𝑛𝜃 + 𝑖 sin𝑛𝜃)

De Moivre’s theorem is often used in calculations as an intermediate step, such as simplifying 

powers of complex numbers in Cartesian form, and in combination with binomial expansion to 

find relationships between trigonometric ratios.

We mostly use polar form, but in exponential form we get the simple result 𝑒𝑖𝜃
𝑛
= 𝑒𝑖𝑛𝜃, 

although it is often not as useful for further steps.

If a question does not use Cartesian form, keep in mind that doing the calculation via 

exponential form may be easier than de Moivre’s theorem.

Im(𝑧)

Re(𝑧)

𝑧

𝑧3

2

8

𝜋

4

3𝜋

4

In the diagram the complex number

z = 2 cis
𝜋

4
has been raised to the

power of 3 to become 𝑧3, so the

argument is multiplied by 3 to become 

3𝜋

4
and the modulus is cubed to become 8.
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To help our understanding of what happens with de Moivre’s theorem, let’s have a look at what

happens to a complex number as we raise it to successively higher powers. If we take 1.5 cis
𝜋

5

and raise it to increasing powers of 𝑛, we can see that we end up with an increasing anti-

clockwise spiral (since 𝑧 > 1 and arg 𝑧 > 0), created by the successive similar triangles as we

saw earlier in the topic.

Im(𝑧)

Re(𝑧)

𝑧

𝑧2

𝑧3𝑧4

𝑧5

𝑧6

1
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Every power of 1 + 𝑖 has a modulus

2 times as long as the one before,

and an argument
𝜋

4
more, so we get

an increasing anti-clockwise spiral.
Re(𝑧)

1 + 𝑖

(1 + 𝑖)2(1 + 𝑖)3

(1 + 𝑖)4

Im(𝑧)

1

−4(1 + 𝑖)5

−4

2

Example 1

Let 𝑧 = 1 + 𝑖

a Express 𝑧 in polar form

b Express 𝑧5 in polar form

c Hence express 𝑧5 in the form 𝑥 + 𝑖𝑦

Solution

a

1 + 𝑖 = 12 + 12 = 2

arg 1 + 𝑖 = tan−1
1

1
=
𝜋

4

1 + 𝑖 = 2 cis
𝜋

4

b

∴ 1 + 𝑖 5

= 2 cos
𝜋

4
+ 𝑖 sin

𝜋

4

5

= 2
5

cos
5𝜋

4
+ 𝑖 sin

5𝜋

4

= 4 2 − cos
𝜋

4
− 𝑖 sin

𝜋

4

c

= −4 2
1

2
+ 𝑖

1

2

= −4 − 4𝑖
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We can also use de Moivre’s theorem to simplify more complicated power expressions.

Each 1 + 3𝑖 increases the

modulus and the argument so

we have an increasing anti-

clockwise spiral, then each 1 − 𝑖

increases the modulus and

decreases the argument so the

spiral continues to increase but

clockwise.

Re(𝑧)

1 + 3𝑖

(1 + 3𝑖 )2

Im(𝑧)

(1 + 3𝑖 )3

(1 + 3𝑖 )4

1 + 3𝑖
4
(1 − 𝑖)

1 + 3𝑖
4
1 − 𝑖 2

1

Example 2

Simplify 1 + 3𝑖
4
1 − 𝑖 2

Solution

1 + 3𝑖 = 2 cis
𝜋

3
1 − 𝑖 = 2 cis −

𝜋

4

∴ 1 + 3𝑖
4
1 − 𝑖 2 = 2 cis

𝜋

3

4
2 cis −

𝜋

4

2

= 24 × 2
2
× cis

4𝜋

3
× cis −

2𝜋

4

= 32 cis
5𝜋

6

= 32 − cos
𝜋

6
+ 𝑖 sin

𝜋

6

= 32 −
3

2
+ 𝑖

1

2

= −16 3 + 16𝑖
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Example 3

a Using de Moivre’s theorem, or otherwise, show that for every positive integer 𝑛,

1 + 𝑖 𝑛 + 1 − 𝑖 𝑛 = 2 2
𝑛
cos

𝑛𝜋

4
.

b Hence, or otherwise,  show that for every positive integer 𝑛 divisible by 4, 

𝑛

0
−

𝑛

2
+

𝑛

4
−

𝑛

6
+. . . +

𝑛

𝑛
= −1

𝑛
4 2

𝑛

Solution

a 1 + 𝑖 = 2cis
𝜋

4
and 1 − 𝑖 = 2 cis −

𝜋

4

∴ 1 + 𝑖 𝑛 + 1 − 𝑖 𝑛

= 2 cis
𝜋

4

𝑛

+ 2 cis −
𝜋

4

𝑛

= 2
𝑛
2 cis

𝑛𝜋

4
+ 2

𝑛
2 cis −

𝑛𝜋

4

= 2
𝑛
2 cos

𝑛𝜋

4
+ 𝑖 sin

𝑛𝜋

4
+ cos −

𝑛𝜋

4
+ 𝑖 sin −

𝑛𝜋

4

= 2
𝑛
2 cos

𝑛𝜋

4
+ 𝑖 sin

𝑛𝜋

4
+ cos

𝑛𝜋

4
− 𝑖 sin

𝑛𝜋

4

= 2
𝑛
2 2 cos

𝑛𝜋

4

= 2 2
𝑛
cos

𝑛𝜋

4
as required

b

1 + 𝑖 𝑛 + 1 − 𝑖 𝑛

= 𝑛
0
+ 𝑛

1
𝑖 + 𝑛

2
𝑖2 + 𝑛

3
𝑖3+ . . . + 𝑛

𝑛
𝑖𝑛

+ 𝑛
0
− 𝑛

1
𝑖 + 𝑛

2
𝑖2 − 𝑛

3
𝑖3+ . . . + 𝑛

𝑛
𝑖𝑛

= 2 𝑛
0
+ 𝑛

2
𝑖2 + 𝑛

4
𝑖4+ . . . + 𝑛

𝑛
𝑖𝑛

= 2 𝑛
0
− 𝑛

2
+ 𝑛

4
+ . . . + 𝑛

𝑛

∴ 2 𝑛
0
− 𝑛

2
+ 𝑛

4
+ . . . + 𝑛

𝑛
= 2 2

𝑛
cos

𝑛𝜋

4

𝑛
0
− 𝑛

2
+ 𝑛

4
+ . . . + 𝑛

𝑛
= 2

𝑛
cos

𝑛𝜋

4

but since 𝑛 is a multiple of 4, 
𝑛𝜋

4
is equal to 0 or 𝜋, and thus cos

𝑛𝜋

4
is equal to 1 or -1, which we 

can say mathematically as −1
𝑛

4.

∴ 𝑛
0
− 𝑛

2
+ 𝑛

4
+ . . . + 𝑛

𝑛
= −1

𝑛

4 2
𝑛

as required
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TRIGONOMETRICAL APPLICATIONS OF DE MOIVRE’S THEOREM

Combining de Moivre’s theorem and binomial expansion allows us to find links between powers

of trig ratios. For brevity in the examples below we will let 𝑐 = cos 𝜃 and 𝑖𝑠 = 𝑖 sin 𝜃.

Example 4

a Expand (cos 𝜃 + 𝑖 sin𝜃)5

b Hence find an expression for cos 5𝜃 in terms of cos 𝜃

Solution

a

(cos 𝜃 + 𝑖 sin 𝜃)5

=
5

0
𝑐5 +

5

1
𝑐4 𝑖𝑠 +

5

2
𝑐3 𝑖𝑠 2 +

5

3
𝑐2 𝑖𝑠 3 +

5

4
𝑐 𝑖𝑠 4 +

5

5
𝑖𝑠 5

= 𝑐5 + 5𝑖𝑐4𝑠 − 10𝑐3𝑠2 − 10𝑖𝑐2𝑠3 + 5𝑐𝑠4 + 𝑖𝑠5

= 𝑐5 − 10𝑐3𝑠2 + 5𝑐𝑠4 + 𝑖(5𝑐4𝑠 − 10𝑐2𝑠3 + 𝑠5)

b

From de Moivre’s Theorem we also know that (cos 𝜃 + 𝑖 sin 𝜃)5 = cos5𝜃 + 𝑖 sin 5𝜃.

Equating real parts with part a we get:

cos 5𝜃 = cos5 𝜃 − 10 cos3 𝜃 sin2 𝜃 + 5 cos 𝜃 sin4 𝜃

= cos5 𝜃 − 10 cos3 𝜃 (1 − cos2 𝜃) + 5 cos 𝜃 1 − cos2 𝜃 2

= cos5 𝜃 − 10 cos3 𝜃 + 10 cos5 𝜃 + 5 cos 𝜃 − 10 cos3 𝜃 + 5 cos5 𝜃

= 16 cos5 𝜃 − 20 cos3 𝜃 + 5 cos 𝜃 □
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EXERCISE 2.9

BASIC

1 Let 𝑧 = 1 − 𝑖

a Express 𝑧 in polar form b Express 𝑧5 in polar form

c Hence express 𝑧5 in the form 𝑥 + 𝑖𝑦

2 Simplify 1 − 3𝑖
4
1 + 𝑖 2

MEDIUM

3 a Expand (cos 𝜃 + 𝑖 sin𝜃)5

b Hence show that sin5𝜃 = 16 sin5 𝜃 − 20 sin3 𝜃 + 5 sin𝜃

4 For what values of n is 1 − 𝑖 𝑛 purely imaginary?

5 Prove 𝑟 cos 𝜃 + 𝑖 sin𝜃 𝑛 = 𝑟𝑛(cos 𝑛𝜃 + 𝑖 sin𝑛𝜃) for non-negative integers by induction.

6 Prove 𝑟 cos 𝜃 + 𝑖 sin𝜃 𝑛 = 𝑟𝑛(cos 𝑛𝜃 + 𝑖 sin𝑛𝜃) for negative integers.

7 a Use the binomial theorem to expand cos 𝜃 + 𝑖 sin𝜃 4

b Use de Moivre’s theorem and your result from part (a) to prove that

cos 4𝜃 = 8 cos4 𝜃 − 8 cos2 𝜃 + 1

c Hence, or otherwise, find the smallest positive solution of 

8 cos4 𝜃 − 8 cos2 𝜃 = −1

CHALLENGING

8 a Using de Moivre’s theorem, or otherwise, show that for every positive integer 𝑛,

1 + 𝑖 𝑛 − 1 − 𝑖 𝑛 = 2 2
𝑛
sin

𝑛𝜋

4
𝑖.

b Hence, or otherwise,  show that for every positive integer 𝑛 divisible by 4, 

𝑛

1
−

𝑛

3
+

𝑛

5
+ . . . +

𝑛

𝑛 − 1
= 0

9 a Show that 

where cos 𝜃 ≠ 0 and 𝑛 is a positive integer.

b Hence show that if 𝑧 is a purely imaginary number, the roots of 

1 + 𝑧 4 − 1 − 𝑧 4 = 0 are 𝑧 = 0,±𝑖.

1 + 𝑖 tan𝜃 𝑛 − 1 − 𝑖 tan 𝜃 𝑛 =
2 sin𝑛𝜃

cos𝑛 𝜃
𝑖
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SOLUTIONS - EXERCISE 2.9

1a

1 − 𝑖 = 12 + (−1)2= 2

arg 1 − 𝑖 = tan−1
−1

1
= −

𝜋

4

1 + 𝑖 = 2 cis −
𝜋

4

b

∴ 1 − 𝑖 5 = 2 cos −
𝜋

4
+ 𝑖 sin −

𝜋

4

5

= 2
5

cos −
5𝜋

4
+ 𝑖 sin −

5𝜋

4

= 4 2 − cos
𝜋

4
+ 𝑖 sin

𝜋

4
c

= 4 2 −
1

2
+ 𝑖

1

2

= −4 + 4𝑖

2

1 − 3𝑖 = 2 cis −
𝜋

3
1 − 𝑖 = 2 cis

𝜋

4

∴ 1 + 3𝑖
4
1 − 𝑖 2 = 2 cis −

𝜋

3

4

2 cis
𝜋

4

2

= 24 × 2
2
× cis −

4𝜋

3
× cis

2𝜋

4

= 32 cis −
5𝜋

6

= 32 − cos
𝜋

6
− 𝑖 sin

𝜋

6

= 32 −
3

2
− 𝑖

1

2
= −16 3 − 16𝑖

4

1 − 𝑖 𝑛 = 2cis −
𝜋

4

𝑛

= 2
𝑛
2cis −

𝑛𝜋

4

The real part is 2
𝑛

2 cos −
𝑛𝜋

4
, which we let equal 0.

cos −
𝑛𝜋

4
= 0

∴ cos
𝑛𝜋

4
= 0 since cosine is even

∴
𝑛𝜋

4
=

2𝑘+1 𝜋

2
where 𝑘 is an integer

𝑛 = 4𝑘 + 2 so 𝑛 is a multiple of 4

∴ 1 + 𝑖 𝑛 is purely imaginary when 𝑛 is two more than a multiple of 4.

3a

(cos 𝜃 + 𝑖 sin 𝜃)5 = c5 + 5c4 𝑖s + 10c3 𝑖s 2 + 10c2 𝑖s 3 + 5c 𝑖s 4 + 𝑖s 5

= c5 + 5c4s𝑖 − 10c3s2 − 10c2s3𝑖 + 5cs4 + s5𝑖
b

(cos 𝜃 + 𝑖 sin 𝜃)5 = cos 5𝜃 + 𝑖 sin 5𝜃
Equating imaginary parts

sin5𝜃 = 5cos4𝜃 sin𝜃 − 10cos2𝜃sin3𝜃 + sin5𝜃
= 5(1 − sin2 𝜃)2 sin 𝜃 − 10 1 − sin2𝜃 sin3 𝜃 + sin5 𝜃
= 5(1 − 2 sin2 𝜃 + sin4 𝜃) sin𝜃 − 10 1 − sin2𝜃 sin3 𝜃 + sin5 𝜃
= 5 sin 𝜃 − 10 sin3 𝜃 + 5 sin5 𝜃 − 10 sin3 𝜃 + 10 sin5 𝜃 + sin5 𝜃
= 16 sin5 𝜃 − 20 sin3 𝜃 + 5 sin 𝜃 as required
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5

Let 𝑃(𝑛) represent the proposition.

𝑃 0 is true since LHS = 𝑟 cos 𝜃 + 𝑖 sin 𝜃 0 = 1

RHS = 𝑟0(cos0𝜃 + 𝑖 sin 0𝜃) = 1(1 + 0𝑖) = 1

𝑃 𝑘 : let 𝑘 ≥ 0 be an arbitrary integer for which 𝑃(𝑘) is true, that is

𝑟 cos𝜃 + 𝑖 sin 𝜃 𝑘 = 𝑟𝑘(cos𝑘𝜃 + 𝑖 sin 𝑘𝜃)

RTP 𝑃 𝑘 + 1 : 𝑟 cos 𝜃 + 𝑖 sin 𝜃 𝑘+1 = 𝑟𝑘+1(cos(𝑘 + 1)𝜃 + 𝑖 sin(𝑘 + 1)𝜃)

LHS = 𝑟 cos𝜃 + 𝑖 sin 𝜃 𝑘 × 𝑟 cos𝜃 + 𝑖 sin 𝜃

= 𝑟𝑘 cos𝑘𝜃 + 𝑖 sin 𝑘𝜃 × 𝑟 cos 𝜃 + 𝑖 sin 𝜃

= 𝑟𝑘+1 cos𝑘𝜃 + 𝑖 sin 𝑘𝜃 cos𝜃 + 𝑖 sin 𝜃

= 𝑟𝑘+1 cos 𝑘𝜃 cos𝜃 + 𝑖 cos𝑘𝜃 sin 𝜃 + 𝑖 sin 𝑘𝜃 cos𝜃 + 𝑖2 sin 𝑘𝜃 sin 𝜃

= 𝑟𝑘+1 cos 𝑘𝜃 cos𝜃 − sin 𝑘𝜃 sin 𝜃 + 𝑖 (sin 𝑘𝜃 cos 𝜃 + cos 𝑘𝜃 sin 𝜃)

= 𝑟𝑘+1 cos 𝑘𝜃 + 𝜃 + 𝑖 sin 𝑘𝜃 + 𝜃

= 𝑟𝑘+1 cos 𝑘 + 1 𝜃 + 𝑖 sin 𝑘 + 1 𝜃

∴ 𝑃 𝑘 ⇒ 𝑃(𝑘 + 1)

Hence 𝑃(𝑛) is true for all 𝑛 ≥ 0 by induction.

6

Let 𝑛 = −𝑘 where 𝑘 is a positive integer

𝑟 cos 𝜃 + 𝑖 sin 𝜃 𝑛 = 𝑟 cos 𝜃 + 𝑖 sin 𝜃 −𝑘

= 𝑟−𝑘 × cos𝜃 + 𝑖 sin 𝜃 −1 𝑘

= 𝑟−𝑘 cos𝜃 + 𝑖 sin 𝜃 𝑘 since cos𝜃 + 𝑖 sin 𝜃 = 1

= 𝑟−𝑘 cos −𝜃 + 𝑖 sin −𝜃 𝑘

= 𝑟−𝑘 cos −𝑘𝜃 + 𝑖 sin −𝑘𝜃 since 𝑘 ≥ 0

= 𝑟𝑛 cos 𝑛𝜃 + 𝑖 sin 𝑛𝜃

∴ de Moivre’s Theorem is true for negative integers

Mathematics Extension 2 © Steve Howard 190 Howard and Howard Education



7a

Let c = cos 𝜃 𝑖s = 𝑖 sin𝜃 and 𝑧 = 𝑐 + 𝑖𝑠
𝑧4 = 𝑐 + 𝑖𝑠 4

= c4 + 4c3 𝑖s + 6c2 𝑖s 2 + 4c 𝑖s 3 + 𝑖s 4

= c4 + 𝑖4c3s − 6c2s2 − 𝑖4cs3 + s4

b

𝑧4 = cos 4𝜃 + 𝑖 sin4𝜃
Equating real parts with (a)

cos 4𝜃 = cos4 𝜃 − 6 cos2 𝜃 sin2 𝜃 + sin4 𝜃
= cos4 𝜃 − 6 cos2 𝜃 1 − cos2 𝜃 + 1 − cos2 𝜃 2

= cos4 𝜃 − 6 cos2 𝜃 + 6 cos4 𝜃 + 1 − 2 cos2 𝜃 + cos4 𝜃
= 8 cos4 𝜃 − 8 cos2 𝜃 + 1

c

8 cos4 𝜃 − 8 cos2 𝜃 = −1
8 cos4 𝜃 − 8 cos2 𝜃 + 1 = 0

cos 4𝜃 = 0

4𝜃 =
2𝑘 + 1 𝜋

2
for 𝑘 = 0,1, . . .

𝜃 =
2𝑘 + 1 𝜋

8

=
𝜋

8
,
3𝜋

8
. . .

The smallest positive solution is 
𝜋

8

8

a 1 + 𝑖 = 2cis
𝜋

4
and 1 − 𝑖 = 2 cis −

𝜋

4

∴ 1 + 𝑖 𝑛 − 1 − 𝑖 𝑛

= 2 cis
𝜋

4

𝑛

− 2 cis −
𝜋

4

𝑛

= 2
𝑛
2 cis

𝑛𝜋

4
− 2

𝑛
2 cis −

𝑛𝜋

4

= 2
𝑛
2 cos

𝑛𝜋

4
+ 𝑖 sin

𝑛𝜋

4
− cos −

𝑛𝜋

4
− 𝑖 sin −

𝑛𝜋

4

= 2
𝑛
2 cos

𝑛𝜋

4
+ 𝑖 sin

𝑛𝜋

4
− cos

𝑛𝜋

4
+ 𝑖 sin

𝑛𝜋

4

= 2
𝑛
2 2 sin

𝑛𝜋

4
𝑖

= 2 2
𝑛
sin

𝑛𝜋

4
𝑖 as required

b

1 + 𝑖 𝑛 − 1 − 𝑖 𝑛

= 𝑛
0
+ 𝑛

1
𝑖 + 𝑛

2
𝑖2 + 𝑛

3
𝑖3+ . . . + 𝑛

𝑛
𝑖𝑛

− 𝑛
0
+ 𝑛

1
𝑖 − 𝑛

2
𝑖2 + 𝑛

3
𝑖3+ . . . − 𝑛

𝑛
𝑖𝑛

= 2 𝑛
1
𝑖 + 𝑛

3
𝑖3 + 𝑛

5
𝑖5+ . . . + 𝑛

𝑛−1
𝑖𝑛−1

= 2 𝑛
1
− 𝑛

3
+ 𝑛

5
+ . . . + 𝑛

𝑛−1
𝑖

∴ 2 𝑛
1
− 𝑛

3
+ 𝑛

5
+ . . . + 𝑛

𝑛−1
= 2 2

𝑛
sin

𝑛𝜋

4

𝑛

1
−

𝑛

3
+

𝑛

5
+ . . . +

𝑛

𝑛 − 1
= 2

𝑛
sin

𝑛𝜋

4

but since 𝑛 is a multiple of 4, 
𝑛𝜋

4
is equal to 0 or 𝜋, 

and thus sin
𝑛𝜋

4
is equal to 0.

∴ 𝑛
1
− 𝑛

3
+ 𝑛

5
+ . . . + 𝑛

𝑛−1
= 0 as required
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9a

1 + 𝑖 tan 𝜃 𝑛 − 1 − 𝑖 tan 𝜃 𝑛

=
cos𝜃 + 𝑖 sin 𝜃

cos𝜃

𝑛

−
cos𝜃 − 𝑖 sin 𝜃

cos 𝜃

𝑛

=
cos𝜃 + 𝑖 sin 𝜃

cos𝜃

𝑛

−
cos(−𝜃) + 𝑖 sin(−𝜃)

cos𝜃

𝑛

=
cos𝑛𝜃 + 𝑖 sin 𝑛𝜃 − cos −𝑛𝜃 − 𝑖 sin −𝑛𝜃

cosn𝜃

=
cos𝑛𝜃 + 𝑖 sin 𝑛𝜃 − cos 𝑛𝜃 + 𝑖 sin 𝑛𝜃

cosn𝜃

=
2 sin 𝑛𝜃

cos𝑛 𝜃
𝑖

b

1 + 𝑧 4 − 1 − 𝑧 4 = 0

Let 𝑧 = 𝑖 tan 𝜃

∴ 1 + 𝑖 tan 𝜃 4 − 1 − 𝑖 tan 𝜃 4 = 0

∴
2 sin 4𝜃

cos4 𝜃
= 0 from (a)

sin 4𝜃 = 0

4𝜃 = 𝑘𝜋 for 𝑘 = −1,0,1,2

𝜃 =
𝑘𝜋

4

= −
𝜋

4
, 0,

𝜋

4
,
𝜋

2

∴ 𝑧 = 𝑖 tan −
𝜋

4
, 𝑖 tan 0 , 𝑖 tan

𝜋

4
, tan

𝜋

2

= 0,±𝑖 since tan
𝜋

2
is undefined
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2.10  COMPLEX ROOTS

In Lesson 10 we look at roots of Complex Numbers. We look at

• Complex Roots of Unity

• Complex Roots of −1

• Roots of Other Complex Numbers
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COMPLEX ROOTS OF UNITY

The complex 𝑛th roots of the number 1 are called the complex roots of unity. They are the

solutions to 𝑧𝑛 = 1 (or 𝑧𝑛 − 1 = 0). The complex roots of 1 are spread equally around the unit

circle, starting at the number 1 itself. The cube roots of 1 are shown below.

Note that the argument at 1 is not just 0, but

also the multiples of 2𝜋. Since we are after

the three cube roots we are interested in the

first three multiples of 2𝜋, so 0, 2𝜋 and 4𝜋.

1

𝜔

𝜔2

Im(𝑧)

Re(𝑧)

1

3
of 2𝜋

1

3
of 4𝜋

1

3
of 0

We can think of complex roots of unity as:

• the cube root of 𝑒0𝑖 which is cis
0𝜋

3
= cis 0 = 1

• the cube root of 𝑒2𝜋𝑖 which is cis
2𝜋

3

• the cube root of 𝑒4𝜋𝑖 which is cis
4𝜋

3

Since the multiples of 2𝜋 are equally spaced, the arguments of the three roots are also equally

spaced.

We normally use arguments from −𝜋 to 𝜋, but for complex roots it is often easier to use

arguments from 0 to 2𝜋, which we simplify if the answer is purely real or imaginary.

Mathematics Extension 2 © Steve Howard 194 Howard and Howard Education



When solving questions like this in exams the most successful technique is to start by sketching

the roots, then simply write down the roots using the modulus and argument.

Exponential form is easiest if you only have to find the roots and nothing else. In many

questions there will be a second part to a question which requires the roots to be in polar form.

1

𝑒
2𝜋
3 𝑖

𝑒
4𝜋
3 𝑖

Im(𝑧)

Re(𝑧)

2𝜋

32𝜋

3 2𝜋

3

Using the same diagram but using polar form we can say the three cube roots are

1, cos
2𝜋

3
+ 𝑖 sin

2𝜋

3
and cos

4𝜋

3
+ 𝑖 sin

4𝜋

3
. We could then convert to Cartesian form if required.

Example 2

Find the cube roots of 1 using de Moivre’s theorem.

Solution

Let a root be 𝑧 = 𝑟(cos 𝜃 + 𝑖 sin𝜃)

∴ 𝑧3 = 1

𝑟3 cos 𝜃 + 𝑖 sin𝜃 3 = cos 2𝑘𝜋 + 𝑖 sin 2𝑘𝜋 for 𝑘 = 0,1,2

𝑟3 cos 3𝜃 + 𝑖 sin 3𝜃 = cos 2𝑘𝜋 + 𝑖 sin 2𝑘𝜋

∴ 𝑟3 = 1 and 3𝜃 = 2𝑘𝜋

∴ 𝑟 = 1 and 𝜃 =
2𝑘𝜋

3

∴ 𝑧 = cos 0 + 𝑖 sin0 , cos
2𝜋

3
+ 𝑖 sin

2𝜋

3
, cos

4𝜋

3
+ 𝑖 sin

4𝜋

3

= 1, cos
2𝜋

3
+ 𝑖 sin

2𝜋

3
, cos

4𝜋

3
+ 𝑖 sin

4𝜋

3

Example 1

Find the cube roots of 1 by sketching the roots first.

Solution

1 is a cube root of 1, and the other roots must be

spaced by
2𝜋

3
as shown. The cube roots of 1 are

1, 𝑒
2𝜋

3
𝑖

and 𝑒
4𝜋

3
𝑖
.

The third root could be written as 𝑒−
2𝜋

3
𝑖

instead.

Mathematics Extension 2 © Steve Howard 195 Howard and Howard Education



SOME POINTS TO NOTE BEFORE WE CONTINUE

Complex roots of unity are solutions to a polynomial with real coefficients, so using the

conjugate root theorem the conjugate of every non-real root will also be a root, as we can see

from the sketches we have done where any root off the real axis is matched by one directly

above or below on the unit circle.

All complex roots of 1 are powers of the non-real root with the smallest argument, so if 𝜔 is the

non-real root with the smallest argument, then the other roots are 𝜔2, 𝜔3, 𝜔4 . . . 𝜔𝑛−1. So if we let

𝜔 = 𝑒
2𝜋

3
𝑖

then we see that 𝜔2 = 𝑒
4𝜋

3
𝑖

and 𝜔3 = 𝑒
6𝜋

3
𝑖 = 𝑒2𝜋𝑖 = 𝑒0𝑖 = 1

This rule only works for complex roots of 1. Combining the two points above we see

relationships like 𝜔2 = ഥ𝜔 for cube roots of unity.

Exponential form is the easiest form to use when finding complex roots and should always be 

used if the question doesn’t specify a form, but we can find the 𝑛th complex roots using any of 

the three forms of a complex number.

• For polar form use the same method as we used in Example 1 - find as many arguments 

as you need for the original number and divide each of these arguments by 𝑛. 

Alternatively use de Moivre’s theorem like Example 2.

• For Cartesian form we normally need to find the modulus and argument then use 

exponential form (or polar form), converting back to Cartesian form if needed. Alternatively 

the following formula may be handy to memorise for some proofs:

𝑥𝑛 − 𝑦𝑛 = 𝑥 − 𝑦 𝑥𝑛−1 + 𝑥𝑛−2𝑦 + 𝑥𝑛−3𝑦2+. . . +𝑦𝑛−1

𝑥𝑛 + 𝑦𝑛 = 𝑥 + 𝑦 𝑥𝑛−1 − 𝑥𝑛−2𝑦 + 𝑥𝑛−3𝑦2−. . . +𝑦𝑛−1 only if 𝑛 is odd

We will prove both of these results in Mathematical Induction.

So if 𝜔 is a complex 𝑛th root of 1, ie a complex solution of 𝑧𝑛 − 1 = 0 (which is 𝑧𝑛 − 1𝑛 = 0) 

then using the top rule with 𝑥 = 𝑧 and 𝑦 = 1 we can say:

𝜔 − 1 𝜔𝑛−1 +𝜔𝑛−2 +𝜔𝑛−3+. . . +𝜔2 +𝜔 + 1 = 0

∴ 1 + 𝜔 + 𝜔2 +𝜔3+ . . . +𝜔𝑛−1 = 0 since𝜔 is not real

Mathematics Extension 2 © Steve Howard 196 Howard and Howard Education



This means that the sum of the nth roots is equal to zero, an important result that we could also 

prove using the polygon rule for adding vectors.

We can also prove that the sum of the 𝑛th roots of any complex number is zero using the sum 

of the roots one at a time

𝛼 = −
𝑏

𝑎

=
0

1

= 0

Example 3

Prove that if ω is a non-real cube root of unity, then 1 + ω−ω2 7 = −128𝜔2

Solution

1 + 𝜔 + 𝜔2 = 0

∴ 1 + 𝜔 − 𝑤2 7

= 1 + 𝜔 + 𝜔2 − 2𝜔2 7

= −2𝜔2 7

= −128𝜔14

= −128 𝜔3 4𝜔2

= −128𝜔2
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COMPLEX ROOTS OF −1

The complex roots of −1 are also spread equally around the circle, but finding the first root can

be tricky if 𝑛 is even.

• If 𝑛 is odd then the roots include −1

• If 𝑛 is even then there are no purely real roots, and the two roots either side of −1 are

spaced equally either side (one is still the conjugate of the other).

−1 1
−1

Spacing of

Odd Roots

Spacing of

Even Roots

1

Im(𝑧)

Re(𝑧)

Im(𝑧)

Re(𝑧)

cis
𝜋

5

cis
3𝜋

5

−1

cis
7𝜋

5

cis
9𝜋

5

Im(𝑧)

Re(𝑧)

Example 4

Find the fifth roots of −1 in polar form.

Solution

−1 is one of the roots, and the others are spread

evenly around the unit circle, so there is
2𝜋

5
between

each.

∴ the roots are

cos
𝜋

5
+ 𝑖 sin

𝜋

5
, cos

3𝜋

5
+ 𝑖 sin

3𝜋

5
,−1,

cos
7𝜋

5
+ 𝑖 sin

7𝜋

5
, cos

9𝜋

5
+ 𝑖 sin

9𝜋

5
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ROOTS OF OTHER COMPLEX NUMBERS

New to the course is finding the complex roots of complex numbers, rather than the roots of real

numbers only from the old course.

• To find the first root, take the 𝑛th root of the modulus and divide the argument by 𝑛. The

first root is 𝑛 𝑟𝑒
𝜃

𝑛
𝑖
.

• The roots will be equally spaced around a circle, so they have the same modulus as the

first root and their arguments differ by
2𝜋

𝑛
. The other roots are

𝑛 𝑟𝑒
2𝜋+𝜃

𝑛
𝑖, 𝑛 𝑟𝑒

4𝜋+𝜃

𝑛
𝑖, 𝑛 𝑟𝑒

6𝜋+𝜃

𝑛
𝑖, . . .

As a shortcut the roots are:

• 𝑛 𝑟𝑒
2𝑘𝜋+𝜃

𝑛
𝑖

for 𝑘 = 0,1, . . . 𝑛 − 1, or

• 𝑛 𝑟 cos
2𝑘𝜋+𝜃

𝑛
+ 𝑖 sin

2𝑘𝜋+𝜃

𝑛
for 𝑘 = 0,1, . . . 𝑛 − 1

Example 5

Find the fifth roots of 𝑖

Solution

For 𝑖 𝑟 = 1, 𝜃 =
𝜋

2

The first root has modulus
5
1 = 1 and argument

𝜋

2
÷ 5 =

𝜋

10
.

The other roots have arguments which differ by
2𝜋

5
=

4𝜋

10

∴ the fifth roots of 𝑖 are 𝑒
𝜋

10
𝑖, 𝑒

5𝜋

10
𝑖 , 𝑒

9𝜋

10
𝑖, 𝑒

13𝜋

10
𝑖, 𝑒

17𝜋

10
𝑖

which simplify to 𝑒
𝜋

10
𝑖, 𝑖, 𝑒

9𝜋

10
𝑖, 𝑒

13𝜋

10
𝑖, 𝑒

17𝜋

10
𝑖
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Example 6

Find the cube roots of −4 2 − 4 2𝑖, leaving answers in exponential form.

Solution

For −4 2 − 4 2𝑖, 𝑟 = −4 2
2
+ −4 2

2
= 8 and 𝜃 =

5𝜋

4

The first root has modulus
3
8 = 2 and argument

5𝜋

4
÷ 3 =

5𝜋

12
.

The other roots have arguments which differ by
2𝜋

3
=

8𝜋

12

∴ the cube roots of 𝑖 are 2𝑒
5𝜋

12
𝑖, 2𝑒

13𝜋

12
𝑖, 2𝑒

21𝜋

12
𝑖
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EXERCISE 2.10

BASIC

1 Find the fifth roots of 1 by sketching the roots first.

2 Find the fifth roots of 1 using de Moivre’s theorem.

3 Prove that if ω is a non-real cube root of unity, then  1 − ω +ω2 4 = 16𝜔

4 Find the cube roots of −1 in polar form.

5 Find the cube roots of 𝑖

6 Find the eighth roots of 1.

MEDIUM

7 Find the fourth roots of 8 2 − 8 2𝑖, leaving answers in exponential form.

8 Find the cube roots of 8 in Cartesian form.

9 Find the remainder when 𝑃(𝑥) is divided by 𝑥 + 𝑖 if 𝑃 𝑥 = 𝑥2 + 1 𝑄 𝑥 + 4𝑥 − 2

10 If 𝑤 is a non-real cube root of unity prove 

1

1 + 𝑤
−

1

1 + 𝑤2
= −(1 + 2𝑤)

11 If 𝜔 is a non-real cube root of unity, prove that 𝑎 − 𝑏 𝑎 − 𝜔𝑏 𝑎 − 𝜔2𝑏 = 𝑎3 − 𝑏3

12 Given 𝑧5 − 1 = (𝑧 − 1)(𝑧4 + 𝑧3 + 𝑧2 + 𝑧 + 1) let 𝑤 be a solution to 𝑧5 − 1 = 0

where 𝑤 ≠ −1.

a Prove that 

b Hence show that 

1 + 𝑤2 +𝑤4 = −(𝑤 + 𝑤3)

cos
2𝜋

5
− cos

𝜋

5
= −

1

2
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SOLUTIONS - EXERCISE 2.10

𝑒
4𝜋
5

𝑒
2𝜋
5

1

𝑒−
2𝜋
5

𝑒−
4𝜋
5

Im(𝑧)

Re(𝑧)

1

1 is one of the roots, and the others are spread

evenly around the unit circle, so there is
2𝜋

5

between each.

∴ the roots are 𝑒−
4𝜋

5 , 𝑒−
2𝜋

5 , 1, 𝑒
2𝜋

5 , 𝑒
4𝜋

5

2

Let a root be 𝑧 = 𝑟(cos 𝜃 + 𝑖 sin 𝜃)

∴ 𝑧5 = 1

𝑟5 cos𝜃 + 𝑖 sin 𝜃 5 = cos2𝑘𝜋 + 𝑖 sin 2𝑘𝜋 for 𝑘 = −2,−1,0,1,2

𝑟5 cos 5𝜃 + 𝑖 sin 5𝜃 = cos2𝑘𝜋 + 𝑖 sin 2𝑘𝜋

∴ 𝑟5 = 1 and 5𝜃 = 2𝑘𝜋

∴ 𝑟 = 1 and 𝜃 =
2𝑘𝜋

5

∴ 𝑧 = cis −
4𝜋

5
, cis −

2𝜋

5
, 1, cis

2𝜋

5
, cis

4𝜋

5

3

1 + 𝜔 + 𝜔2 = 0

∴ 1 − 𝜔 +𝑤2 4

= 1 + 𝜔 + 𝜔2 − 2𝜔 4

= −2𝜔 4

= 16𝜔4

= 16𝜔3𝜔

= 16𝜔

4

−1 is a cube root of −1, and the other roots must

be spaced by
2𝜋

3
as shown. The cube roots of −1

are −1, 𝑒
2𝜋

3
𝑖

and 𝑒−
2𝜋

3
𝑖
.

The third root could be written as 𝑒
5𝜋

3
𝑖

instead.

−1

𝑒
2𝜋
3 𝑖

𝑒−
2𝜋
3 𝑖

Im(𝑧)

Re(𝑧)

2𝜋

3
2𝜋

3

2𝜋

3

5

For 𝑖 𝑟 = 1, 𝜃 =
𝜋

2

The first root has modulus
3
1 = 1 and argument

𝜋

2
÷ 3 =

𝜋

6
.

The other roots have arguments which differ by
2𝜋

3
=

4𝜋

6

∴ the fifth roots of 𝑖 are 𝑒
𝜋

6
𝑖, 𝑒

5𝜋

6
𝑖 , 𝑒

9𝜋

6
𝑖

which simplify to 𝑒
𝜋

6
𝑖, 𝑒

5𝜋

6
𝑖, −𝑖.
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8

Let 𝑧 be a cube root of 8

∴ 𝑧3 = 8

∴ 𝑧3 − 8 = 0

𝑧 − 2 𝑧2 + 2𝑧 + 4 = 0

𝑧 − 2 = 0 or 𝑧2 + 2𝑧 + 4 = 0

𝑧 = 2 𝑧 =
−2 ± 22 − 4 1 4

2 1

=
−2 ± −12

2

=
−2 ± 2 3𝑖

2

= −1 ± 3𝑖

The three cube roots of 8 are 2 and − 1 ± 3𝑖

6

1 is an eighth root of 1, and the other roots must

be spaced by
2𝜋

8
=

𝜋

4
as shown. The eighth roots of

1 are ±1,
1

2
±

1

2
𝑖, ±𝑖, −

1

2
±

1

2
𝑖.

Alternatively in exponential form the roots are

1, 𝑒±
𝜋
4
𝑖 , ±𝑖, 𝑒±

3𝜋
4
𝑖

𝑖

1

−𝑖

Im(𝑧)

Re(𝑧)
−1

. .

. .

1

2
+

1

2
𝑖

1

2
−

1

2
𝑖−

1

2
−

1

2
𝑖

−
1

2
+

1

2
𝑖

7

For 4 − 𝑖, 𝑟 = (8 2)2+ −8 2
2
= 16 and 𝜃 = −

𝜋

4

The first root has modulus
4
16 = 2 and argument −

𝜋

4
÷ 4 = −

𝜋

16
.

The other roots have arguments which differ by
2𝜋

4
=

8𝜋

16

∴ the cube roots of 𝑖 are 2𝑒−
𝜋

16
𝑖, 2𝑒

7𝜋

16
𝑖 , 2𝑒

15𝜋

16
𝑖 , 2𝑒

23𝜋

16
𝑖

9

𝑃 −𝑖 = (−𝑖)2+1 𝑄 −𝑖 + 4 −𝑖 − 2

= −1 + 1 𝑄 𝑖 − 4𝑖 − 2

= −4𝑖 − 2
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10

1

1 + 𝑤
−

1

1 + 𝑤2

=
1 + 𝑤2 − 1 − 𝑤

1 + 𝑤2 + 1 + 𝑤

=
𝑤2 − 𝑤

1 + 𝑤 + 𝑤2 + 1

=
1 + 𝑤 + 𝑤2 − 1 − 2𝑤

0 + 1

= −(1 + 2𝑤) □

11

𝑎 − 𝑏 𝑎 − 𝜔𝑏 𝑎 − 𝜔2𝑏

= 𝑎 − 𝑏 𝑎2 − 𝑎𝑏𝜔2 − 𝑎𝑏𝜔 + 𝑏2𝜔3

= 𝑎 − 𝑏 𝑎2 − 𝑎𝑏 1 + 𝜔 + 𝜔2 − 1 + 𝑏2

= 𝑎 − 𝑏 𝑎2 − 𝑎𝑏 0 − 1 + 𝑏2

= 𝑎 − 𝑏 𝑎2 + 𝑎𝑏 + 𝑏2

= 𝑎3 − 𝑏3 □

12a

𝑤5 − 1 = 0

∴ 𝑤 − 1 𝑤4 + 𝑤3 + 𝑤2 + 𝑤 + 1 = 0

∴ 𝑤4 + 𝑤3 + 𝑤2 + 𝑤 + 1 = 0 since 𝑤 ≠ −1

∴ 1 + 𝑤2 + 𝑤4 = −(𝑤 + 𝑤3)

b

Let 𝑧 = 𝑟 cis 𝜃

𝑧5 − 1 = 0

𝑧5 = 1

∴ 𝑟5cis5𝜃 = cis 2𝑘𝜋

𝑟5 cos 5𝜃 + 𝑖 sin 5𝜃 = cos 2𝑘𝜋 + 𝑖 sin 2𝑘𝜋

∴ 𝑟 = 1 and 5𝜃 = 2𝑘𝜋

𝜃 =
2𝑘𝜋

5

= 0,±
2𝜋

5
,±

4𝜋

5

Let 𝑤 = cos
2𝜋

5
+ 𝑖 sin

2𝜋

5

∴ 1 + cos
2𝜋

5
+ 𝑖 sin

2𝜋

5

2

+ cos
2𝜋

5
+ 𝑖 sin

2𝜋

5

4

= − cos
2𝜋

5
+ 𝑖 sin

2𝜋

5
+ cos

2𝜋

5
+ 𝑖 sin

2𝜋

5

3

1 + cos
4𝜋

5
+ 𝑖 sin

4𝜋

5
+ cos

8𝜋

5
+ 𝑖 sin

8𝜋

5
= − cos

2𝜋

5
+ 𝑖 sin

2𝜋

5
+ cos

6𝜋

5
+ 𝑖 sin

6𝜋

5

1 − cos
𝜋

5
+ 𝑖 sin

𝜋

5
+ cos

2𝜋

5
− 𝑖 sin

2𝜋

5
= − cos

2𝜋

5
+ 𝑖 sin

2𝜋

5
− cos

𝜋

5
− 𝑖 sin

𝜋

5

1 − cos
𝜋

5
+ 𝑖 sin

𝜋

5
+ cos

2𝜋

5
− 𝑖 sin

2𝜋

5
= − cos

2𝜋

5
− 𝑖 sin

2𝜋

5
+ cos

𝜋

5
+ 𝑖 sin

𝜋

5

∴ 1 − 2 cos
𝜋

5
+ 2 cos

2𝜋

5
= 0

∴ cos
2𝜋

5
− cos

𝜋

5
= −

1

2
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CONVERTING RECTANGULAR TO POLAR/EXPONENTIAL FORM

In Complex Numbers we often have to convert between rectangular form (z = 𝑋 + 𝑖𝑌) and polar 

or exponential forms (𝑧 = 𝑟 cis 𝜃 or 𝑧 = 𝑟𝑒𝑖𝜃), where 𝑟 = 𝑋2 + 𝑌2 and 𝜃 = tan−1
𝑌

𝑋
.

It is always better to know how to do this properly as we have done in the examples, but if a 

student has a mental blank in a test, or wants to check their answer, here is how to do it on a 

CASIO fx82 AUPlusII:

• Set your calculator to DEG or RAD as needed.

• Press SHIFT   Pol

• Enter the 𝑋 value, then SHIFT    ,   𝑌 value )  =  

• The calculator will display 𝑟 and 𝜃 on the screen as decimals - you may need to use the 

right arrow to see the value of 𝜃. 

• ProTip: the calculator stores the 𝑟 value in both Ans and memory X, and the 𝜃 value in 

memory Y, so you can perform further calculations on these values if needed. For example 

if you press 𝑥2 straight away the calculator will square 𝑟 and in the example on the right tell 

you 2, so working backwards this means 𝑟 = 2. 

Appendix 1 - Converting Between Cartesian and Polar Forms on a Calculator

Keystrokes: SHIFT   Pol   1   SHIFT  ,   1   )   =

Example 1

Convert 1 + 𝑖 into polar form

Solution
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CONVERTING FROM POLAR/EXPONENTIAL TO RECTANGULAR FORM

To convert from polar or exponential form to rectangular form on a CASIO fx82 AUPlusII:

• Set your calculator to  DEG or RAD as needed.

• Press SHIFT   Rec

• Enter the 𝑟 value, then SHIFT    ,   𝜃 value )  =  

• The calculator will display 𝑋 and 𝑌 on the screen as decimals - you may need to use the 

right arrow to see the value of 𝜃. 

• ProTip: the calculator stores the 𝑋 value in both Ans and memory X, and the 𝑌 value in 

memory Y, so you can perform further calculations on these values if needed. For 

example if you press 𝑥2 straight away the calculator will square 𝑋 and in the example on 

the right tell you 3, so working backwards this means 𝑋 = 3. 

Keystrokes: 

SHIFT   Rec   2   SHIFT  ,   SHIFT  𝜋 6   )   =

This would be the same steps for converting 2𝑒
𝜋

6
𝑖

into rectangular form.

Example 2

Convert 2(cos
𝜋

6
+ 𝑖 sin

𝜋

6
) into rectangular form

Solution
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Appendix 2 - Finding 𝑒 and 𝑒𝑖 Using the Limit Definiton

Now let’s start narrowing down the values of 𝑒 and 𝑒𝑖 using the limit definition for 𝑒𝑥. We

start by looking at 1 +
1

𝑛

𝑛
for some values of 𝑛.

| | | | | | |

0 0.5 1.0 1.5 2.0 2.5 3.0

.

1 +
1

1

1

= 2

.

1 +
1

2

2

= 2.25
1 +

1

3

3

= 2.37

. .

1 +
1

10

10

= 2.59

1 +
1

100

100

= 2.70

.

As we try larger and larger values we find that the result moves from 2 to 2.25 to 2.37, gradually

approaching 2.718. . .

Since 𝑒 = lim
𝑛→∞

1 +
1

𝑛

𝑛
, so we see that 𝑒 = 2.718. . .

.
𝑒

So what happens if 𝑥 is imaginary? Does it make 𝑒𝑥 imaginary? Well, not quite.

Consider 𝑒𝑖 - if we have a look at our definition of 𝑒𝑥, we can see

𝑒𝑖 = lim
𝑛→∞

1 +
𝑖

𝑛

𝑛

Now looking at the expression in the brackets, 1 +
𝑖

𝑛
, we see that it is a complex number, and

1 +
𝑖

𝑛

𝑛
is a complex number multiplied by itself 𝑛 times, which is also complex. So 𝑒𝑖 is

complex rather than imaginary.
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Let’s follow similar steps to what we have just done with 𝑒1 to find where 𝑒𝑖 is on the complex

plane.

1 is multiplied by 1 + 𝑖. 
arg 𝑧 = 0.79

𝑧 = 1.41

Letting 𝑛 = 1

1 +
𝑖

1

1

= 1 + 𝑖

1 is multiplied by 1 +
𝑖

2
twice. 

arg 𝑧 = 0.93
𝑧 = 1.25

Letting 𝑛 = 2

1 +
𝑖

2

2

= 1 + 2
𝑖

2
+
𝑖2

4

=
3

4
+ 𝑖

1 is multiplied by 1 +
𝑖

3
three times. 

arg 𝑧 = 0.97
𝑧 = 1.17

Letting 𝑛 = 3

1 +
𝑖

3

3

= 1 + 3
𝑖

3
+ 3

𝑖

3

2

+
𝑖3

27

=
2

3
+

26

27
𝑖

Im(𝑧)

Re(𝑧)
1

1 + 𝑖

Im(𝑧)

Re(𝑧)
1

1 +
𝑖

2

1 +
𝑖

2

2

Im(𝑧)

Re(𝑧)
1

1 +
𝑖

3

1 +
𝑖

3

2

1 +
𝑖

3

3

Looking at the pattern as 𝑛 increases from 1 to 4 we see:

Im(𝑧)

Re(𝑧)

𝑒𝑖

1 + 𝑖 1

1 +
𝑖

2

2

1 +
𝑖

3

3

1 +
𝑖

4

4

1

1
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As 𝑛 increases we see that:

• The path to 1 +
𝑖

𝑛

𝑛
bends to the left and down, moving a smaller distance each time

• The modulus of 1 +
𝑖

𝑛

𝑛
is decreasing a little each time

• The argument of 1 +
𝑖

𝑛

𝑛
is increasing a little each time

So the question is how far does the modulus decrease and how far does the argument increase

to get to 𝑒𝑖?

Consider 1 +
1

𝑛

𝑛
. We have 𝑛 similar triangles where the hypotenuse of one is the adjacent

side of the next (below left). The first triangle (shown below right) would have sides of length 1

and
1

𝑛
, and using Pythagoras we can see the hypotenuse is

𝑛2+1

𝑛
.

1

1

𝑛𝛼

𝑛2 + 1

𝑛Im(𝑧)

Re(𝑧)

𝛼
𝛼

𝛼

1st

2nd

𝑛th

1 +
𝑖

𝑛

𝑛

Note: tan 𝛼 =
1

𝑛

1 +
𝑖

𝑛

1

1 +
𝑖

𝑛

2 1st

As 𝑛 → ∞ the opposite sides of the triangles approach an arc of the unit circle.

We can see that for 1 +
1

𝑛

𝑛
we keep adding 𝛼 to find the argument and multiplying by

𝑛2+1

𝑛
to

get the modulus:

arg 1 +
𝑖

𝑛

𝑛

= 𝑛 × 𝛼 1 +
𝑖

𝑛

𝑛

=
𝑛2 + 1

𝑛

𝑛
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Since 𝑒𝑖 = lim
𝑛→∞

1 +
𝑖

𝑛

𝑛
we find the argument and modulus of 𝑒𝑖 by finding the limit of the

argument and modulus of 1 +
𝑖

𝑛

𝑛
:

∴ 𝑒𝑖 = lim
𝑛→∞

1 +
𝑖

𝑛

𝑛

= lim
𝑛→∞

𝑛2 + 1

𝑛

𝑛

= lim
𝑛→∞

𝑛2

𝑛

𝑛

since 𝑛 is large 1 is negligible ∗

= lim
𝑛→∞

1𝑛

= 1

Another way of viewing this step, is that as 𝑛 → ∞ the hypotenuse approaches the same length

as the adjacent side.

∴ arg(𝑒𝑖) = lim
𝑛→∞

arg 1 +
𝑖

𝑛

𝑛

= lim
𝑛→∞

𝑛 × 𝛼

= lim
𝑛→∞

(𝑛 × tan 𝛼) since 𝛼 is small

= lim
𝑛→∞

𝑛 ×
1

𝑛

= lim
𝑛→∞

1

= 1

𝑒𝑖 has modulus 1 and argument 1 radian

∴ 𝑒𝑖 = cos 1 + 𝑖 sin 1

So 𝑒𝑖 is on the unit circle with an argument of 1 radian.
1

1

𝑒𝑖.
1

Re(𝑧)

Im(𝑧)

Mathematics Extension 2 © Steve Howard 210 Howard and Howard Education



We could extend this process to 𝑒𝑖𝜃. The diagram below shows the path taken by 1 +
𝑖𝜃

𝑛

𝑛
for

𝜃 = 2, 3 and 4 as 𝑛 moves from 1 tending to infinity, giving us the position of 𝑒2𝑖 , 𝑒3𝑖 and 𝑒4𝑖

respectively.

Im(𝑧)

Re(𝑧)1

𝑒2𝑖

𝑒3𝑖

𝑒4𝑖

1 +
2𝑖

𝑛

𝑛

1 +
3𝑖

𝑛

𝑛

1 +
4𝑖

𝑛

𝑛.

.

.

.

.

.

.𝑒𝑖
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We now have an understanding of why Euler’s formula works and what it means, so now it is

time for a formal proof. This might be the basis for part of an investigative task.

We will start from the Taylor Series, but for a simpler proof you might get students to start with

the power series.

We will do the proof with the variable 𝑥, as stated in the syllabus, as it is easier to follow the

differentiation, but it is best to show students the rule in terms of 𝜃, as a reminder that the

variable represents an argument or rotation, rather than a horizontal distance.

BACKGROUND - TAYLOR SERIES

A Taylor Series is used to approximate any differentiable non-polynomial function as a

polynomial, around some point 𝑥 = 𝑎. It is

𝑓 𝑥 ≈ 𝑓 𝑎 +
𝑓′ 𝑎

1!
𝑥 − 𝑎 +

𝑓′′ 𝑎

2!
𝑥 − 𝑎 2+. . . +

𝑓𝑛 𝑎

𝑛!
𝑥 − 𝑎 𝑛

The Cartesian plane below (not a complex plane) shows how the first 8 terms of a Taylor Series

gives us a polynomial that approximates 𝑦 = sin𝑥 about 𝑥 = 𝜋. So below we have graphed 𝑦 =

sin𝑥 and the polynomial

𝑦 = sin𝜋 + cos𝜋 𝑥 − 𝜋 −
sin𝜋 𝑥 − 𝜋 2

2
−
cos 𝜋 𝑥 − 𝜋 3

6
+. . . +

cos 𝜋 𝑥 − 𝜋 7

5040

Appendix 3 - Proving Euler’s Formula from the Taylor Series

We can see that it is quite accurate around 𝑥 = 𝜋, and as we take more and more terms the

approximation becomes more accurate through more of the domain.

𝜋 2𝜋

1

−1

Taylor Series with 8 terms

𝑦 = sin 𝑥

polynomial

sine curve
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BACKGROUND - MACLAURIN SERIES

Now as 𝑛 → ∞ the Taylor Series is no longer an approximation, but equals the function. The

point about which we base the approximation no longer matters, so let’s make it zero for easier

calculations.

A Taylor Series where 𝑛 → ∞ and where 𝑎 = 0 is a Maclaurin Series.

𝑓 𝑥 = 𝑓 0 +
𝑓′ 0

1!
𝑥 +

𝑓′′ 0

2!
𝑥2 +

𝑓′′′ 𝑎

3!
𝑥3+. . .

Now we will find the Maclaurin Series for 𝑒𝑖𝜃 , cos 𝜃 and sin𝜃.

For 𝑓 𝑥 = 𝑒𝑖𝑥

𝑓 𝑥 = 𝑓 0 +
𝑓′ 0

1!
𝑥 +

𝑓′′ 0

2!
𝑥2 +

𝑓′′′ 𝑎

3!
𝑥3+. . .

𝑒𝑖𝑥 = 𝑒0𝑖 + 𝑖𝑒0𝑖𝑥 +
𝑖2𝑒0𝑖𝑥2

2!
+
𝑖3𝑒0𝑖𝑥3

3!
+
𝑖4𝑒0𝑖𝑥4

4!
+. . .

= 1 + 𝑥𝑖 −
𝑥2

2!
−
𝑥3

3!
𝑖 +

𝑥4

4!
+
𝑥5

5!
𝑖 −

𝑥6

6!
−
𝑥7

7!
𝑖+. . . ∗

= 1 −
𝑥2

2!
+
𝑥4

4!
−
𝑥6

6!
+. . . + 𝑖 𝑥 −

𝑥3

3!
+
𝑥5

5!
−
𝑥7

7!
+. . . (1)

* This is a power series.

For 𝑓 𝑥 = cos 𝑥

𝑓 𝑥 = 𝑓 0 +
𝑓′ 0

1!
𝑥 +

𝑓′′ 0

2!
𝑥2 +

𝑓′′′ 𝑎

3!
𝑥3+. . .

continues over page

Proof 1

Prove 𝑒𝑖𝑥 = cos 𝑥 + 𝑖 sin𝑥 using the Maclaurin Series

Solution

Mathematics Extension 2 © Steve Howard 213 Howard and Howard Education



cos 𝑥 = cos(0) − sin 0 𝑥 −
cos 0 𝑥2

2!
+
sin 0 𝑥3

3!
+
cos 0 𝑥4

4!
+. . .

= 1 − 0𝑥 −
𝑥2

2!
+ 0𝑥3 +

𝑥4

4!
+ 0𝑥5 −

𝑥6

6!
+. . .

= 1 −
𝑥2

2!
+
𝑥4

4!
−
𝑥6

6!
+. . . 2

For 𝑓 𝑥 = sin 𝑥

𝑓 𝑥 = 𝑓 0 +
𝑓′ 0

1!
𝑥 +

𝑓′′ 0

2!
𝑥2 +

𝑓′′′ 𝑎

3!
𝑥3+. . .

sin 𝑥 = sin(0) + cos 0 𝑥 −
sin 0 𝑥2

2!
−
cos 0 𝑥3

3!
+
sin 0 𝑥4

4!
+. . .

= 0 + 𝑥 + 0𝑥2 −
𝑥3

3!
+ 0𝑥4 +

𝑥5

5!
+ 0𝑥6+. . .

= 𝑥 −
𝑥3

3!
+
𝑥5

5!
−
𝑥7

7!
+. . . 3

So we have the following equations:

𝑒𝑖𝑥 = 1 −
𝑥2

2!
+
𝑥4

4!
−
𝑥6

6!
+. . . + 𝑖 𝑥 −

𝑥3

3!
+
𝑥5

5!
−
𝑥7

7!
+. . . (1)

cos 𝑥 = 1 −
𝑥2

2!
+
𝑥4

4!
−
𝑥6

6!
+. . . 2

sin 𝑥 = 𝑥 −
𝑥3

3!
+
𝑥5

5!
−
𝑥7

7!
+. . . 3

From 1 , (2) and (3) we see that 𝑒𝑖𝑥 = cos 𝑥 + 𝑖 sin 𝑥 □
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HSC Mathematics Extension 2

Chapter 3

Mathematical Induction

MEX-P2: Further Proof by Mathematical Induction.

Mathematical Induction is a great topic for Extension 2 students as

• it tests your ability to use mathematical language and plain language to reason and

communicate

• it promotes clear, simple and logical thought processes

• it forces you to master your algebra skills - you need to be quick and accurate, and have a

deep understanding of how the rules work.

• the topic has a wide variety of applications so questions do not need to be repetitive.

LESSONS

Further Mathematical Induction is covered in 2 lessons. In the Appendix you will find two lessons

on the Extension 1 content if you have not already done them - do them before the Extension 2

lessons.

3.1 Further Algebraic Induction Proofs

3.2 Other Induction Proofs

Appendix 1: Extension 1 Mathematical Induction

3.0A Introduction to Mathematical Induction and Proofs Involving Series

3.0B Proofs Involving Divisibility, False Proofs and Inappropriate Situations

REVISION QUESTIONS

In ‘1000 Extension 2 Revision Questions’, the revision book that goes with this textbook you will 

find the following questions matching this chapter:

• Revision Exercise 3 

40 graded questions on this topic only

• Revision Exercises 7 (Basic), 8 (Medium) and 9 (Challenging)

Another 40 questions mixed through other topics for when you finish the course.

Don’t forget to do any questions from the exercises in this textbook you haven’t done.
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3.1 FURTHER ALGEBRAIC INDUCTION PROOFS

In Lesson 1 we look at the first of two lessons covering the types of Mathematical Induction not 

included in Extension 1. In this first lesson we will look at algebraic proofs which are quite 

similar to those we covered in Extension 1, covering:

• Induction in Extension 2

• The Initial Value and Step not equal to 1

• Sigma Notation

• Divisibility Proofs in Extension 2

• Inequality Proofs by Induction 
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Example 1

Prove that 𝑛2 + 2𝑛 is a multiple of 8 if 𝑛 is an even positive integer

Solution

Let 𝑃 𝑛 represent the proposition.

𝑃(2) is true since 22 + 2 2 = 8

If 𝑃(𝑘) is true for some arbitrary even 𝑘 ≥ 2 then 𝑘2 + 2𝑘 = 8𝑚 for integral 𝑚

RTP  𝑃 𝑘 + 2 𝑘 + 2 2 + 2 𝑘 + 2 = 8𝑝 for integral 𝑝

LHS = 𝑘 + 2 2 + 2 𝑘 + 2

= 𝑘2 + 4𝑘 + 4 + 2𝑘 + 4

= 𝑘2 + 2𝑘 + 4 𝑘 + 2

= 8𝑚 + 8
𝑘

2
+ 1 from 𝑃(𝑘)

= 8 𝑚 +
𝑘

2
+ 1

= 8𝑝 for integral 𝑝 since 𝑚 is integral and 𝑘 is even

= RHS

∴ 𝑃 𝑘 ⇒ 𝑃(𝑘 + 2)

∴ 𝑃(𝑛) is true for even 𝑛 ≥ 2 by induction □

THE INITIAL VALUE AND STEP NOT EQUAL TO 1

In Extension 1 the results we prove always apply to all natural numbers, so 1, 2, 3 etc. We

always test 𝑛 = 1 for the base case and in the inductive step prove that 𝑃 𝑘 ⇒ 𝑃(𝑘 + 1).

In Extension 2

• The base case we test can be greater than 1 (not 0 for some unknown reason . . . sigh)

• The numbers we are proving the result for may jump by 2s or any other number.

For example, to prove a result is true for positive even numbers means that we test 𝑛 = 2 as the

base case, then check that 𝑃 𝑘 ⇒ 𝑃(𝑘 + 2) in the inductive step.
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Example 2

Prove that                                                          for 𝑛 ≥ 1.

Solution

Let 𝑃 𝑛 represent the proposition.

𝑃(1) is true since 2 1 + 21 = 4; 1 1 + 1 + 21+1 − 2 = 4

If 𝑃(𝑘) is true for some arbitrary 𝑘 ≥ 1 then 

RTP  𝑃 𝑘 + 1

LHS = 

𝑟=1

𝑘

2𝑟 + 2𝑟 + 2 𝑘 + 1 + 2𝑘+1

= 𝑘 𝑘 + 1 + 2𝑘+1 − 2 + 2 𝑘 + 1 + 2𝑘+1 from 𝑃(𝑘)

= 𝑘 + 1 𝑘 + 2 + 2 × 2𝑘+1 − 2

= 𝑘 + 1 𝑘 + 2 + 2𝑘+2 − 2

= RHS

∴ 𝑃 𝑘 ⇒ 𝑃(𝑘 + 1)

∴ 𝑃(𝑛) is true for 𝑛 ≥ 1 by induction □

SIGMA NOTATION

Sigma notation is not officially part of the Extension 1 course, even though you may have used

it in topics like Polynomials. So in Extension 1 the sum of a series had to be written out in full,

while in Extension 2 we can use sigma notation. Presumably the questions will also be harder!



𝑟=1

𝑛

2𝑟 + 2𝑟 = 𝑛 𝑛 + 1 + 2𝑛+1 − 2



𝑟=1

𝑘

(2𝑟 + 2𝑟) = 𝑘 𝑘 + 1 + 2𝑘+1 − 2



𝑟=1

𝑘+1

(2𝑟 + 2𝑟) = (𝑘 + 1) 𝑘 + 2 + 2𝑘+2 − 2
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Example 3

Prove that 32𝑛+4 − 22𝑛 is divisible by 5 for any positive integer 𝑛.

Solution

Let 𝑃 𝑛 represent the proposition.

𝑃(1) is true since 32 1 +4 − 22 1 = 725 = 5 × 145

If 𝑃(𝑘) is true for some arbitrary 𝑘 ≥ 1 then 32𝑘+4 − 22𝑘 = 5𝑚 for integral 𝑚

RTP  𝑃 𝑘 + 1 32𝑘+6 − 22𝑘+2 = 5𝑝 for integral 𝑝

LHS = 32𝑘+6 − 22𝑘+2

= 9(32𝑘+4) − 4(22𝑘)

= 9 32𝑘+4 − 22𝑘 + 5(22𝑘)

= 9 5𝑚 + 5(22𝑘) from 𝑃 𝑘

= 5 9𝑚 + 22𝑘

= 5𝑝 for integral 𝑝 since 𝑚 and 𝑘 are integral

= RHS

∴ 𝑃 𝑘 ⇒ 𝑃(𝑘 + 1)

∴ 𝑃(𝑛) is true for 𝑛 ≥ 1 by induction □

DIVISIBILITY PROOFS IN EXTENSION 2

As an educated guess, we can expect to see divisibility expressions with only one index in

Extension 1, while those with two or more indices or other more complicated expressions will be

in Extension 2. The only real difference is that the algebraic manipulation in the inductive step is

harder, particularly rearranging the LHS of 𝑃(𝑘 + 1) in terms of 𝑃(𝑘).

Mathematics Extension 2 © Steve Howard 219 Howard and Howard Education



Example 4

Prove by induction that 2𝑛 > 𝑛2 for positive integers 𝑛 > 4.

Solution

Let 𝑃 𝑛 represent the proposition.

𝑃(5) is true since 25 = 32; 52 = 25

If 𝑃(𝑘) is true for some arbitrary 𝑘 > 4 then 2𝑘 > 𝑘2

RTP  𝑃 𝑘 + 1 2𝑘+1 > 𝑘 + 1 2

LHS = 2 ∙ 2𝑘

> 2𝑘2 from 𝑃 𝑘

∴ 2𝑘+1 > 𝑘2 + 𝑘2 1

Now 𝑘2 − 2𝑘 − 1

= 𝑘2 − 2𝑘 + 1 − 2

= 𝑘 − 1 2 − 2

> 0 for 𝑘 > 4

∴ 𝑘2 > 2𝑘 + 1 for 𝑘 > 4 (2)

From (1) and (2)

2𝑘+1 > 𝑘2 + 2𝑘 + 1

= 𝑘 + 1 2

= RHS

∴ 𝑃 𝑘 ⇒ 𝑃(𝑘 + 1)

∴ 𝑃 𝑛 is true for 𝑛 > 4 by induction □

INEQUALITY PROOFS BY INDUCTION

We now look at induction proofs where we bring our skills from direct inequality proofs into the

inductive step. As with any inequality proof, obtaining a deep understanding of inequalities is

the key.
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EXERCISE 3.1

BASIC

1 Prove by induction that 2𝑛 + 1 is divisible by 3 for all odd integers.

2 Prove by induction that the square of an even number is even.

MEDIUM

3 Prove by induction that the product of 𝑛 even integers is even for 𝑛 ≥ 2.

4 Prove by induction that                                                            for 𝑛 ≥ 1.

5 Prove by induction that 32𝑛 − 4𝑛 is divisible by 5 if 𝑛 is a positive odd number.

6 Prove by induction that 4𝑛 + 5𝑛 is divisible by 9 if 𝑛 is a positive odd number.

7 Prove by induction that 𝑥𝑛 − 𝑦𝑛 is divisible by 𝑥 − 𝑦, (𝑥 ≠ 𝑦) for real 𝑥, 𝑦 with 𝑛 a positive

integer.

8 Prove by induction that 4𝑛+1 + 6𝑛 is divisible by 10 when 𝑛 is even

9 Prove by induction that 6𝑛 + 6 < 2𝑛 for 𝑛 ≥ 6

CHALLENGING

10 Prove by induction that 𝑛2 < 4𝑛 for 𝑛 a positive integer.

11 Prove by induction that 12𝑛 > 7𝑛 + 5𝑛 for 𝑛 ≥ 2

12 Prove by induction for positive integers 𝑛 that 1! × 3! × 5! ×. . .× 2𝑛 − 1 ! ≥ 𝑛! 𝑛

13
Prove by induction for 𝑛 ≥ 2 that 13 + 23+. . . + 𝑛 − 1 3 <

𝑛4

4
< 13 + 23+. . . +𝑛3



𝑟=1

𝑛

4𝑟 + 4𝑟 = 2𝑛 𝑛 + 1 +
4𝑛+1 − 4

3
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SOLUTIONS - EXERCISE 3.1

1 Let 𝑃 𝑛 represent the proposition.

𝑃(1) is true since 21 + 1 = 3

If 𝑃(𝑘) is true for some arbitrary odd 𝑘 ≥ 1 then 2𝑘 + 1 = 3𝑚 for integral 𝑚

RTP  𝑃 𝑘 + 2 2𝑘+2 + 1 = 3𝑝 for integral 𝑝

LHS = 2𝑘+1 + 1

= 22 2𝑘 + 1 − 3

= 4 3𝑚 − 3 from 𝑃 𝑘

= 3 4𝑚 − 1

= 3𝑝 for integral 𝑝 since 𝑚 is integral

= RHS

∴ 𝑃 𝑘 ⇒ 𝑃(𝑘 + 2)

∴ 𝑃(𝑛) is true for odd 𝑛 ≥ 1 by induction □

2 Let 𝑃 𝑛 represent the proposition.

𝑃(2) is true since 22 = 4 which is even

If 𝑃(𝑘) is true for some arbitrary even 𝑘 ≥ 2 then 𝑘2 = 2𝑚 for integral 𝑚

RTP  𝑃 𝑘 + 2 𝑘 + 2 2 = 2𝑝 for integral 𝑝

LHS = 𝑘2 + 4𝑘 + 4

= 2𝑚 + 4𝑘 + 4 from 𝑃(𝑘)

= 2 𝑚 + 2𝑘 + 2

= 2𝑝 for integral 𝑝 since 𝑚 and 𝑘 are integral

= RHS

∴ 𝑃 𝑘 ⇒ 𝑃(𝑘 + 2)

∴ 𝑃(𝑛) is true for odd 𝑛 ≥ 1 by induction □

3 Let 𝑃 𝑛 represent the proposition, and the even numbers be 2𝑗1, 2𝑗2, . . . , 2𝑗𝑛 for integral 𝑗1, 𝑗2, . . . 𝑗𝑛.

𝑃(2) is true since 2𝑗1 2𝑗2 = 4𝑗1𝑗2 = 2 2𝑗1𝑗2 which is even since 𝑗1, 𝑗2 are integral.

If 𝑃(𝑘) is true for some arbitrary even 𝑘 ≥ 2 then 2j1 2𝑗2 . . . (2𝑗𝑘) = 2𝑚 for integral 𝑚

RTP  𝑃 𝑘 + 1 2j1 2𝑗2 . . . (2𝑗𝑘)(2𝑗𝑘+1) = 2𝑝 for integral 𝑝

LHS = 2j1 2𝑗2 . . . 2𝑗𝑘 2𝑗𝑘+1

= 2𝑚 2𝑗𝑘+1 from 𝑃(𝑘)

= 4𝑚𝑗𝑘+1

= 2 2𝑚𝑗𝑘+1

= 2𝑝 for integral 𝑝 since 𝑚 and 𝑗𝑘+1 are integral

= RHS

∴ 𝑃 𝑘 ⇒ 𝑃(𝑘 + 2)

∴ 𝑃(𝑛) is true for 𝑛 ≥ 2 by induction □
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4 Let 𝑃 𝑛 represent the proposition.

𝑃(1) is true since 4 1 + 41 = 8; 2(1) 1 + 1 +
41+1−4

3
= 8

If 𝑃(𝑘) is true for some arbitrary 𝑘 ≥ 1 then 

RTP  𝑃 𝑘 + 1

LHS = 

𝑟=1

𝑘

4𝑟 + 4𝑟 + 4 𝑘 + 1 + 4𝑘+1

= 4𝑘 𝑘 + 1 +
4𝑘+1 − 4

3
+ 4 𝑘 + 1 + 4𝑘+1 from 𝑃(𝑘)

= 4𝑘 𝑘 + 1 + 4 𝑘 + 1 +
4𝑘+1 − 4

3
+ 4𝑘+1

= 4 𝑘 + 1 𝑘 + 1 + 1 +
4𝑘+1 − 4 + 3 × 4𝑘+1

3

= 4 𝑘 + 1 𝑘 + 2 +
4 × 4𝑘+1 − 4

3

= 4 𝑘 + 1 𝑘 + 2 +
4𝑘+2 − 4

3

= RHS

∴ 𝑃 𝑘 ⇒ 𝑃(𝑘 + 1)

∴ 𝑃(𝑛) is true for 𝑛 ≥ 1 by induction □

5 Let 𝑃 𝑛 represent the proposition.

𝑃(1) is true since 32 1 − 41 = 5

If 𝑃(𝑘) is true for some arbitrary odd 𝑘 ≥ 1 then 32𝑘 − 4𝑘 = 5𝑚 for integral 𝑚

RTP  𝑃 𝑘 + 2 32(𝑘+2) − 4𝑘+2 = 5𝑝 for integral 𝑝

LHS = 32𝑘+4 − 4 𝑘+2

= 81 32𝑘 − 16 4𝑘

= 81 32𝑘 − 4𝑘 + 65 4𝑘

= 9 5𝑚 + 65 4𝑘 from 𝑃 𝑘

= 5 9𝑚 + 13 × 4𝑘

= 5𝑝 for integral 𝑝 since 𝑚 and 𝑘 are integral

= RHS

∴ 𝑃 𝑘 ⇒ 𝑃(𝑘 + 2)

∴ 𝑃(𝑛) is true for odd 𝑛 ≥ 1 by induction □

6 Let 𝑃 𝑛 represent the proposition.

𝑃(1) is true since 41 + 51 = 9

If 𝑃(𝑘) is true for some arbitrary odd 𝑘 ≥ 1 then 4𝑘 + 5𝑘 = 9𝑚 for integral 𝑚

RTP  𝑃 𝑘 + 2 4𝑘+2 + 5𝑘+2 = 9𝑝 for integral 𝑝



𝑟=1

𝑘

4𝑟 + 4𝑟 = 4𝑘 𝑘 + 1 +
4𝑘+1 − 4

3



𝑟=1

𝑘+1

4𝑟 + 4𝑟 = 4(𝑘 + 1) 𝑘 + 2 +
4𝑘+2 − 4

3
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LHS = 16 ∙ 4𝑘 + 25 ∙ 5𝑘

= 16 4𝑘 + 5𝑘 + 9 ∙ 5𝑘

= 16 9𝑚 + 9 ∙ 5𝑘 from 𝑃 𝑘

= 9 16𝑚 + 5𝑘

= 9𝑝 for integral 𝑝 since 𝑚 and 𝑘 are integral

= RHS

∴ 𝑃 𝑘 ⇒ 𝑃(𝑘 + 2)

∴ 𝑃(𝑛) is true for odd 𝑛 ≥ 1 by induction □

7 Let 𝑃 𝑛 represent the proposition.

𝑃(1) is true since 𝑥1 − 𝑦1 = 𝑥 − 𝑦

If 𝑃(𝑘) is true for some arbitrary 𝑘 ≥ 1 then 𝑥𝑘 − 𝑦𝑘 = 𝑚(𝑥 − 𝑦) for integral 𝑚

RTP  𝑃 𝑘 + 1 𝑥𝑘+1 − 𝑦𝑘+1 = 𝑝(𝑥 − 𝑦) for integral 𝑝

LHS = 𝑥𝑘+1 − 𝑦𝑘+1

= 𝑥 ∙ 𝑥𝑘 − 𝑦 ∙ 𝑦𝑘

= 𝑥 𝑥𝑘 − 𝑦𝑘 − 𝑦 − 𝑥 𝑦𝑘

= 𝑥 𝑚 𝑥 − 𝑦 + 𝑥 − 𝑦 𝑦𝑘 from 𝑃(𝑘)

= 𝑥 − 𝑦 𝑚𝑥 + 𝑦𝑘

= 𝑝 𝑥 − 𝑦 for integral 𝑝 since 𝑚, 𝑥, 𝑦 and 𝑘 are integral

= RHS

∴ 𝑃 𝑘 ⇒ 𝑃(𝑘 + 1)

∴ 𝑃(𝑛) is true for 𝑛 ≥ 1 by induction □

8 Let 𝑃 𝑛 represent the proposition.

𝑃(2) is true since 42+1 + 62 = 100 = 10(10)

If 𝑃(𝑘) is true for some arbitrary 𝑘 ≥ 2 then 4𝑘+1 + 6𝑘 = 10𝑚 for integral 𝑚

RTP  𝑃 𝑘 + 2 4𝑘+3 + 6𝑘+2 = 10𝑝 for integral 𝑝

LHS = 16 4𝑘+1 + 36 6𝑘

= 16 4𝑘+1 + 6𝑘 + 20 6𝑘

= 16 10𝑚 + 20 6𝑘 from 𝑃 𝑘

= 10 16𝑚 + 2 × 6𝑘

= 10𝑝 for integral 𝑝 since 𝑚 and 𝑘 are integral
= RHS

∴ 𝑃 𝑘 ⇒ 𝑃(𝑘 + 2)

∴ 𝑃(𝑛) is true for even 𝑛 ≥ 2 by induction □
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9 Let 𝑃 𝑛 represent the proposition.

𝑃(6) is true since LHS = 6 6 + 6 = 42; RHS = 26 = 64

If 𝑃(𝑘) is true for some arbitrary 𝑘 ≥ 6 then 6𝑘 + 6 < 2𝑘

RTP  𝑃 𝑘 + 1 6𝑘 + 12 < 2𝑘+1

LHS = 6𝑘 + 6 + 6

< 2𝑘 + 6 from 𝑃(𝑘)

< 2𝑘 + 2𝑘 for 𝑘 ≥ 6

= 2𝑘+1

= RHS

∴ 𝑃 𝑘 ⇒ 𝑃(𝑘 + 1)

∴ 𝑃 𝑛 is true for 𝑛 ≥ 6 by induction □

10 Let 𝑃 𝑛 represent the proposition.

𝑃(1) is true since 12 < 41

If 𝑃(𝑘) is true for some arbitrary 𝑘 ≥ 1 then 𝑘2 < 4𝑘

RTP  𝑃 𝑘 + 1 𝑘 + 1 2 < 4𝑘+1

LHS = 𝑘 + 1 2

= 𝑘2 + 2𝑘 + 1

< 4𝑘 + 2𝑘 + 1 from 𝑃 𝑘

< 4𝑘 + 3 × 4𝑘 since 2𝑘 + 1 < 3 4𝑘 for 𝑘 ≥ 1

= 4 4𝑘

= 4𝑘+1

= RHS

∴ 𝑃 𝑘 ⇒ 𝑃(𝑘 + 1)

∴ 𝑃(𝑛) is true for 𝑛 ≥ 1 by induction □

11 Let 𝑃 𝑛 represent the proposition.

𝑃(2) is true since LHS = 122 = 144; RHS = 72 + 52 = 74

If 𝑃(𝑘) is true for some arbitrary 𝑘 ≥ 2 then 12𝑘 > 7𝑘 + 5𝑘

RTP  𝑃 𝑘 + 1 12𝑘+1 > 7𝑘+1 + 5𝑘+1

LHS = 12(12𝑘)

> 12 7𝑘 + 5𝑘 from 𝑃(𝑘)

= 12(7𝑘) + 12(5𝑘)

> 7 7𝑘 + 5 5𝑘

= 7𝑘+1 + 5𝑘+1

= RHS

∴ 𝑃 𝑘 ⇒ 𝑃(𝑘 + 1)

∴ 𝑃 𝑛 is true for 𝑛 ≥ 2 by induction □
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12 Let 𝑃 𝑛 represent the proposition.

𝑃(1) is true since 1! ≥ 1 !
1

If 𝑃(𝑘) is true for some arbitrary 𝑘 ≥ 1 then 1! × 3! × 5! ×. . .× 2𝑘 − 1 ! ≥ 𝑘! 𝑘

RTP  𝑃 𝑘 + 1 1! × 3! × 5! ×. . .× 2𝑘 − 1 ! × 2𝑘 + 1 ! ≥ (𝑘 + 1)! 𝑘+1

LHS = 1! × 3! × 5! ×. . .× 2𝑘 − 1 ! × 2𝑘 + 1 !

≥ 𝑘! 𝑘 × 2𝑘 + 1 ! from 𝑃 𝑘

= 𝑘! 𝑘 ∙ 2𝑘 + 1 ∙ 2𝑘 ∙ (2𝑘 − 1). . . 𝑘 + 2

𝑘 terms

𝑘 + 1 𝑘!

≥ 𝑘! 𝑘 ∙ 𝑘 + 1 𝑘 𝑘 + 1 !

= 𝑘 + 1 𝑘!
𝑘
∙ 𝑘 + 1 !

= 𝑘 + 1 !
𝑘
∙ 𝑘 + 1 !

= 𝑘 + 1 !
𝑘+1

= RHS

∴ 𝑃 𝑘 ⇒ 𝑃(𝑘 + 1)

∴ 𝑃 𝑛 is true for 𝑛 ≥ 1 by induction □

13 Let 𝑃 𝑛 represent the proposition.

𝑃(2) is true since 13 <
24

4
< 13 + 23 → 1 < 4 < 9

If 𝑃(𝑘) is true for some arbitrary 𝑘 ≥ 2 then   13 + 23+. . . + 𝑘 − 1 3 <
𝑘4

4
< 13 + 23+. . . +𝑘3

RTP  𝑃 𝑘 + 1 13 + 23+. . . + 𝑘 − 1 3 + 𝑘3 <
(𝑘+1)4

4
< 13 + 23+. . . +𝑘3 + 𝑘 + 1 3

13 + 23+. . . + 𝑘 − 1 3 <
𝑘4

4
< 13 + 23+. . . +𝑘3 from 𝑃 𝑘

13 + 23+. . . + 𝑘 − 1 3 + 𝑘3 <
𝑘4

4
+ 𝑘3 < 13 + 23+. . . +𝑘3 + 𝑘3

13 + 23+. . . + 𝑘 − 1 3 + 𝑘3 <
𝑘4

4
+ 𝑘3 < 13 + 23+. . . +𝑘3 + 𝑘3

13 + 23+. . . + 𝑘 − 1 3 + 𝑘3 <
𝑘4

4
+ 𝑘3 +

3

2
𝑘2 + 𝑘 +

1

4
< 13 + 23+. . . +𝑘3 + 𝑘3 +

3

2
𝑘2 + 𝑘 +

1

4

13 + 23+. . . + 𝑘 − 1 3 + 𝑘3 <
𝑘4 + 4𝑘3 + 6𝑘2 + 4𝑘 + 1

4
< 13 + 23+. . . +𝑘3 + 𝑘3 + 3𝑘2 + 3𝑘 + 1

13 + 23+. . . + 𝑘 − 1 3 + 𝑘3 <
𝑘 + 1 4

4
< 13 + 23+. . . +𝑘3 + 𝑘 + 1 3

∴ 𝑃 𝑘 ⇒ 𝑃(𝑘 + 1)

∴ 𝑃 𝑛 is true for 𝑛 ≥ 1 by induction □
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3.2 OTHER INDUCTION PROOFS

In Lesson 2 we look at unusual applications of mathematical induction, some of which have 

appeared in the Extension 2 HSC in recent years. We cover:

• Choosing a Method in Unusual Questions

• Calculus

• Probability

• Geometry

• First Order Recursive Formula
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Example 1

Prove that for any positive integer 𝑛,
𝑑

𝑑𝑥
𝑥𝑛 = 𝑛𝑥𝑛−1

Solution

Let 𝑃 𝑛 represent the proposition.

𝑃(1) is true since 
𝑑

𝑑𝑥
𝑥1 = 1 and 1𝑥1−1 = 1

If 𝑃(𝑘) is true for some arbitrary 𝑘 ≥ 1 then 
𝑑

𝑑𝑥
𝑥𝑘 = 𝑘𝑥𝑘−1

RTP  𝑃 𝑘 + 1
𝑑

𝑑𝑥
𝑥𝑘+1 = (𝑘 + 1)𝑥𝑘

LHS =
𝑑

𝑑𝑥
𝑥 ∙ 𝑥𝑘

= 𝑥 ∙
𝑑

𝑑𝑥
𝑥𝑘 + 𝑥𝑘 ∙

𝑑

𝑑𝑥
𝑥 by the product rule

= 𝑥 ∙ 𝑘𝑥𝑘−1 + 𝑥𝑘 ∙ 1 from 𝑃 𝑘

= 𝑘𝑥𝑘 + 𝑥𝑘

= 𝑘 + 1 𝑥𝑘

= RHS

∴ 𝑃 𝑘 ⇒ 𝑃(𝑘 + 1)

∴ 𝑃 𝑛 is true for 𝑛 ≥ 1 by induction □

CHOOSING A METHOD IN UNUSUAL QUESTIONS

In all of the questions to follow, the trick in solving them involves finding how the relation being

true for 𝑛 = 𝑘 leads to it being true for 𝑛 = 𝑘 + 1. This means we need to find an instance of the

smaller problem in the larger problem. In the first five examples we will use algebraic and

calculus skills to prove 𝑃 𝑘 ⇒ 𝑃(𝑘 + 1), while in the geometry questions we will grow or

change the previous diagram.

CALCULUS

We will start by looking at using induction to prove calculus results. We need to keep in mind

that although these results are actually true for all real 𝑛, induction only proves that they are true

for the positive integers.
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Example 2

Prove that for any positive integer 𝑛,

𝑥 + 𝑎 𝑛 = 

𝑟=0

𝑛

𝑛𝐶𝑟 𝑥
𝑛−𝑟𝑎𝑟

Solution

Let 𝑃 𝑛 represent the proposition.

𝑃(1) is true since 𝑥 + 𝑎 1 = 𝑥 + 𝑎 and 

If 𝑃(𝑘) is true for some arbitrary 𝑘 ≥ 1 then 

RTP  𝑃 𝑘 + 1

LHS = 𝑥 + 𝑎 𝑥 + 𝑎 𝑘

= 𝑥 + 𝑎 

𝑟=0

𝑘

𝑘𝐶𝑟 𝑥
𝑘−𝑟𝑎𝑟 from 𝑃(𝑘)

= 

𝑟=0

𝑘

𝑘𝐶𝑟 𝑥
𝑘−𝑟+1𝑎𝑟 +

𝑟=0

𝑘

𝑘𝐶𝑟 𝑥
𝑘−𝑟𝑎𝑟+1

= 

𝑟=0

𝑘

𝑘𝐶𝑟 𝑥
𝑘−𝑟+1𝑎𝑟 +

𝑟=1

𝑘+1

𝑘𝐶𝑟−1 𝑥
𝑘−𝑟+1𝑎𝑟

= 𝑥𝑘+1 +

𝑟=1

𝑘

𝑘𝐶𝑟 +
𝑘𝐶𝑟−1 𝑥𝑘−𝑟+1𝑎𝑟 + 𝑎𝑘+1

= 𝑥𝑘+1 +

𝑟=1

𝑘

𝑘+1𝐶𝑟𝑥
𝑘−𝑟+1𝑎𝑟 + 𝑎𝑘+1 since 𝑘+1𝐶𝑟 =

𝑘𝐶𝑟 +
𝑘𝐶𝑟−1

= 

𝑟=0

𝑘+1

𝑘+1𝐶𝑟 𝑥
𝑘−𝑟+1𝑎𝑟

= RHS
∴ 𝑃 𝑘 ⇒ 𝑃(𝑘 + 1)

∴ 𝑃 𝑛 is true for 𝑛 ≥ 1 by induction □

PROBABILITY

𝑥 + 𝑎 𝑘 = 

𝑟=0

𝑘

𝑘𝐶𝑟 𝑥
𝑘−𝑟𝑎𝑟

𝑥 + 𝑎 𝑘+1 = 

𝑟=0

𝑘+1

𝑘+1𝐶𝑟 𝑥
𝑘−𝑟+1𝑎𝑟

RHS = 𝑥 + 𝑎 𝑛 = 

𝑟=0

𝑛

𝑛𝐶𝑟 𝑥
𝑛−𝑟𝑎𝑟
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Example 3

Prove that the sum of the exterior angles of an 𝑛-sided plane convex polygon is 360°

Solution

Let 𝑃 𝑛 represent the proposition.

𝑃(3) is true since the sum of the interior and exterior angle at each of the three vertices is 180°, 
totalling 540°. Subtracting the interior angle sum of a triangle, 180°, we are left with an exterior 

angle sum of 360°.

If 𝑃(𝑘) is true for some arbitrary 𝑘 ≥ 3, then the sum of the exterior angles of a 𝑘-sided plane 

convex polygon is 360°

RTP  𝑃 𝑘 + 1 The sum of the exterior angles of a (𝑘 + 1)-sided plane convex polygon is 360°

Consider the (𝑘 + 1) - sided polygon at right, formed 

by adding Δ𝐴𝐵𝐶 to one side of the 𝑘-sided polygon.

The exterior angle sum of the new polygon will be 

equal to that of the 𝑘-sided polygon:

• minus ∠𝐶𝐴𝐵 from exterior angle ∠𝐷𝐴𝐵
• minus ∠𝐶𝐵𝐴 from exterior angle ∠𝐸𝐵𝐴
• plus the new exterior angle ∠𝐴𝐶𝐹

∴ the sum of the exterior angles of a (𝑘 + 1)-sided polygon is 360° + ∠𝐴𝐶𝐹 − ∠𝐶𝐴𝐵 − ∠𝐶𝐵𝐴
from 𝑃 𝑘 .
Now ∠𝐴𝐶𝐹 = ∠𝐶𝐴𝐵 + ∠𝐶𝐵𝐴 (exterior angle of Δ𝐴𝐵𝐶).

The sum of the exterior angles of a 𝑘 + 1-sided plane convex polygon is 360° + ∠𝐴𝐶𝐹 − ∠𝐴𝐹𝐶
= 360°
∴ 𝑃 𝑘 ⇒ 𝑃(𝑘 + 1)

∴ 𝑃 𝑛 is true for 𝑛 ≥ 3 by induction □

GEOMETRY

𝐶

𝐴

𝐵

𝐸
𝐹

𝐷

𝑘-sided polygon
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Example 4

A sequence 𝑏𝑛 is defined by 𝑏0 = 5 and 𝑏𝑛 = 4 + 𝑏𝑛−1 for 𝑛 ≥ 1.

Prove that 𝑏𝑛 = 5 + 4𝑛 for 𝑛 ≥ 1.

Solution

𝑏1 is true since LHS = 4 + 𝑏0 = 4 + 5 = 9 and RHS = 5 + 4 1 = 9.

If 𝑃(𝑘) is true for some arbitrary 𝑘 ≥ 1 then 𝑏𝑘 = 5 + 4𝑘

RTP  𝑃 𝑘 + 1 𝑏𝑘+1 = 5 + 4(𝑘 + 1)

LHS = 𝑏𝑘+1
= 4 + 𝑏𝑘 from the recursive formula
= 4 + 5 + 4𝑘 from 𝑃 𝑘
= 5 + 4 𝑘 + 1
= RHS

∴ 𝑃 𝑘 ⇒ 𝑃 𝑘 + 1

∴ 𝑃 𝑛 is true for 𝑛 ≥ 1 by induction □

FIRST ORDER RECURSIVE FORMULA

A first order recursive formula creates a sequence where each term is determined by the

previous term. There always seem to be two formulas in these questions, but you are given the

recursive formula (the one linking 𝑇𝑛 and 𝑇𝑛−1) and must prove the formula linking 𝑇𝑛 and 𝑛.

Reading the questions carefully you will see this is what they ask.

The syllabus limits us to first order recursive formula, so the Fibonacci Sequence cannot be

tested as it relies on the two previous terms so is a second order recursive formula. It is it still

useful and interesting.

Mathematics Extension 2 © Steve Howard 231 Howard and Howard Education



EXERCISE 3.2

BASIC

1
Prove that for any positive integer 𝑛,

𝑑

𝑑𝑥
𝑥𝑛 = 𝑛𝑥𝑛−1

2 Prove that for any positive integer 𝑛, 

3 Prove that the sum of the interior angles of an 𝑛-sided plane convex polygon 

is 180(𝑛 − 2)°

4 Given 𝑎1 = 2 and 𝑎𝑛 = 5𝑎𝑛−1 for 𝑛 ≥ 2, prove that 𝑎𝑛 = 2 × 5𝑛−1 for 𝑛 ≥ 1.

5 Given 𝑎0 = 𝐴 and 𝑎𝑛 = 1 + 𝑟 𝑎𝑛−1, show that 𝑎𝑛 = 𝐴 1 + 𝑟 𝑛 for 𝑛 ≥ 0

MEDIUM

6 Prove that for any positive integer 𝑛, 
𝑑

𝑑𝑥
cos𝑛 𝑥 = −𝑛 cos𝑛−1 𝑥 sin𝑥

7 Prove that for any positive integer 𝑛 ≥ 1 that 𝑛
1

= 𝑛.

You may assume 𝑛
𝑟

= 𝑛−1
𝑟

+ 𝑛−1
𝑟−1

and 𝑛
0

= 1

8 A plane is divided into regions by one or more intersecting circles. Prove that it is possible 

to colour the regions with only two colours, such that no two regions sharing an edge are 

the same colour.

9
Given 𝑎1 = 2 and 𝑎𝑛 =

𝑎𝑛−1

𝑛
for 𝑛 ≥ 2, prove that 𝑑𝑛 =

2

𝑛!
for 𝑛 ≥ 1

CHALLENGING

10 Chessboard Problem Prove that it is possible to cover a 2𝑛 × 2𝑛 grid with L tiles consisting 

of 3 squares if 1 square is removed.

11 Tower of Hanoi You have three pegs and a collection of

disks of different sizes. Initially all of the disks are stacked

on top of each other according to size on the first peg

- the largest disk being on the bottom and the smallest on top, as shown above. A move in

this game consists of moving a disk from one peg to another, subject to the condition that

a larger disk may never rest on a smaller one. The objective of the game is to find a

number of permissible moves that will transfer all of the disks from the first peg to the third

peg, making sure that the disks are assembled on the third peg according to size. The

second peg is used as an intermediate peg. Prove that it takes 2𝑛 − 1 moves to move 𝑛

disks from the first peg to the third peg.

12 Postage Stamp Problem Prove any integer amount of postage in cents 𝑛 ≥ 12 can be

paid for exactly using only 4 cent and 5 cent stamps.

𝑥 + 𝑎 𝑛 = 

𝑟=0

𝑛

𝑛𝐶𝑟 𝑥
𝑛−𝑟𝑎𝑟
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SOLUTIONS - EXERCISE 3.2

Question 1-3

See the lesson for solutions

4 Let 𝑃(𝑛) represent the proposition.

𝑃(1) is true since 𝑎1 = 2 and 𝑎1 = 2 × 51−1 = 2

If 𝑃(𝑘) is true for some arbitrary 𝑘 ≥ 1 then 𝑎𝑘 = 2 × 5𝑘−1

RTP  𝑃 𝑘 + 1 𝑎𝑘+1 = 2 × 5𝑘

LHS = 𝑎𝑘+1

= 5𝑎𝑘 from the recursive formula

= 5 2 × 5𝑘−1 from 𝑃 𝑘

= 2 × 5𝑘

= RHS

∴ 𝑃 𝑘 ⇒ 𝑃 𝑘 + 1

∴ 𝑃 𝑛 is true for 𝑛 ≥ 1 by induction □

5 Let 𝑃(𝑛) represent the proposition.

𝑃(0) is true since 𝑎0 = 𝐴 and 𝑎0 = 𝐴 1 + 𝑟 0 = 𝐴

If 𝑃(𝑘) is true for some arbitrary 𝑘 ≥ 1 then 𝑎𝑘 = 𝐴 1 + 𝑟 𝑘

RTP  𝑃 𝑘 + 1 𝑎𝑘+1 = 𝐴 1 + 𝑟 𝑘+1

LHS = 𝑎𝑘+1

= (1 + 𝑟)𝑎𝑘 from the recursive formula

= 1 + 𝑟 × 𝐴 1 + 𝑟 𝑘 from 𝑃 𝑘

= 𝐴 1 + 𝑟 𝑘+1

= RHS

∴ 𝑃 𝑘 ⇒ 𝑃 𝑘 + 1

∴ 𝑃 𝑛 is true for 𝑛 ≥ 0 by induction □

6 Let 𝑃 𝑛 represent the proposition.

𝑃(1) is true since 
𝑑

𝑑𝑥
cos1 𝑥 = −sin 𝑥 and −1cos1−1 𝑥 sin𝑥 = −sin𝑥

If 𝑃(𝑘) is true for some arbitrary 𝑘 ≥ 1 then 
𝑑

𝑑𝑥
cos𝑘 𝑥 = −𝑘 cos𝑘−1 𝑥 sin𝑥

RTP  𝑃 𝑘 + 1
𝑑

𝑑𝑥
cos𝑘+1 𝑥 = −(𝑘 + 1) cos𝑘 𝑥 sin𝑥
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LHS =
𝑑

𝑑𝑥
cos 𝑥 cos𝑘 𝑥

= cos 𝑥
𝑑

𝑑𝑥
cos𝑘 𝑥 + cos𝑘 𝑥 ×

𝑑

𝑑𝑥
cos 𝑥

= cos 𝑥 −𝑘 cos𝑘−1 𝑥 sin𝑥 + cos𝑘 𝑥 − sin 𝑥 from 𝑃(𝑘)

= −𝑘 cos𝑘 𝑥 sin𝑥 − cos𝑘 𝑥 sin𝑥

= − 𝑘 + 1 cos𝑘 𝑥 sin𝑥

= RHS

∴ 𝑃 𝑘 ⇒ 𝑃(𝑘 + 1)

∴ 𝑃 𝑛 is true for 𝑛 ≥ 1 by induction □

7 Let 𝑃 𝑛 represent the proposition.

𝑃(1) is true since 1
1

=
1!

0!1!
= 1

If 𝑃(𝑘) is true for some arbitrary 𝑘 ≥ 1 then 𝑘
1

= 𝑘

RTP  𝑃 𝑘 + 1 𝑘+1
1

= 𝑘 + 1

LHS =
𝑘 + 1

1

=
𝑘

1
+

𝑘

0
since

𝑛

𝑟
=

𝑛 − 1

𝑟
+

𝑛 − 1

𝑟 − 1

= 𝑘 + 1 from 𝑃(𝑘)

= RHS

∴ 𝑃 𝑘 ⇒ 𝑃 𝑘 + 1

∴ 𝑃 𝑛 is true for 𝑛 ≥ 1 by induction □
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8 Let 𝑃 𝑛 represent the proposition.

𝑃(1) is true since with one circle we can colour the inside of the circle with one colour and 

the outside the other.

If 𝑃(𝑘) is true for some arbitrary, then with 𝑘 circles we can colour the resulting regions 

with only two colours so no two regions sharing an edge are the same colour.

RTP  𝑃 𝑘 + 1 We can colour the regions that result from 𝑘 + 1 circles with only two 

colours so no two regions sharing an edge are the same colour.

Consider the 𝑘 circles on the plane, with no 

two regions sharing a border being the 

same colour as shown (top right).

Add a circle, here shown in red, cutting some 

regions in two, and possibly leaving others unaffected.

For all regions on the inside of the circle swap 

their colour, as shown (bottom right).

No two regions sharing an edge are the same colour.

∴ We can colour the regions that result from 𝑘 + 1 circles with only two colours so no two 

regions sharing an edge are the same colour.

∴ 𝑃 𝑘 ⇒ 𝑃(𝑘 + 1)

∴ 𝑃 𝑛 is true for 𝑛 ≥ 1 by induction □

9 Let 𝑃(𝑛) represent the proposition.

𝑃(1) is true since 𝑎1 = 2 and 𝑎1 =
2

1!
= 2

If 𝑃(𝑘) is true for some arbitrary 𝑘 ≥ 1 then 𝑎𝑘 =
2

𝑘!

RTP  𝑃 𝑘 + 1 𝑎𝑘+1 =
2

𝑘+1 !

LHS = 𝑎𝑘+1

=
𝑎𝑘

𝑘 + 1
from the recursive formula

=
2

𝑘!
÷ (𝑘 + 1) from 𝑃 𝑘

=
2

𝑘 + 1 !

= RHS

∴ 𝑃 𝑘 ⇒ 𝑃 𝑘 + 1

∴ 𝑃 𝑛 is true for 𝑛 ≥ 1 by induction □

𝑘 circles

𝑘 + 1 circles
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10

Let 𝑃 𝑛 represent the proposition.

𝑃(1) is true since a 21 × 21 grid with one square removed can be covered by one L tile.

If 𝑃(𝑘) is true for some arbitrary 𝑘 then it is possible to completely cover a 2𝑘 × 2𝑘 grid 

with L tiles consisting of 3 squares if 1 square is removed.

RTP  𝑃 𝑘 + 1 It is possible to completely cover a 2𝑘+1 × 2𝑘+1 grid with L tiles consisting 

of 3 squares if 1 square is removed.

Arrange 4 of the 2𝑘 × 2𝑘 grids in a square, removing the square 

from each grid that is in the centre of the new square, which is a 

2𝑘+1 × 2𝑘+1 grid, as shown at right.

Place one extra tile in the centre, so only 1 square has been 

removed from the 2𝑘+1 × 2𝑘+1 grid and the rest is covered.

∴ It is possible to completely cover a 2𝑘+1 × 2𝑘+1 grid with L tiles 

consisting of 3 squares if 1 square is removed.

∴ 𝑃 𝑘 ⇒ 𝑃 𝑘 + 1

∴ 𝑃 𝑛 is true for 𝑛 ≥ 1 by induction □

11

Let 𝑃 𝑛 represent the proposition.

𝑃(1) is true since the one disk can be moved to the third 

peg in 1 move, and 21 − 1 = 1

If 𝑃(𝑘) is true for some arbitrary 𝑘 then it takes 2𝑘 − 1
moves to move 𝑘 disks from the first peg to the third peg.

RTP  𝑃 𝑘 + 1 It takes 2𝑘 − 1 moves to move 𝑘 disks 

from the first peg to the third peg.

Move the first 𝑘 disks to the second peg instead of the third peg, in 2𝑘 − 1 moves, from 

𝑃(𝑘).
Move the bottom disk to the third peg in one move.

Move the first 𝑘 disks again until they are on the third peg on top of the largest disk, in 

2𝑘 − 1 moves, again from 𝑃(𝑘).
Total moves = (2𝑘 − 1) + 1 + (2𝑘 − 1)

= 2 ∙ 2𝑘 − 1
= 2𝑘+1 − 1 as required

∴ 𝑃 𝑘 ⇒ 𝑃 𝑘 + 1

∴ 𝑃 𝑛 is true for 𝑛 ≥ 1 by induction □

Here we have a 22 × 22 grid with 1 square removed, with 

the remainder covered in 5 L tiles.

𝑘 + 1
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12 Let 𝑃 𝑛 represent the proposition.

𝑃(12) is true since we can use three 4 cent stamps.

If 𝑃(𝑘) is true for some arbitrary 𝑘 ≥ 12 then we can pay for it exactly using only 4 cent 

and 5 cent stamps.

RTP  𝑃 𝑘 + 1
We can pay for 𝑘 + 1 cents of postage exactly using only 4 cent and 5 cent stamps.

Case 1: We have used at least one 4 cent stamp to make 𝑘 cents postage

Remove one 4 cents stamp and replace it with a 5 cent stamp, increasing the postage by 

1 cent from 𝑘 to 𝑘 + 1 cents.

Case 2: There are no 4 cent stamps used to make 𝑘 cents postage.

There must be at least three 5 cent stamps here, and if we remove three 5 cent stamps 

and replace them with four 4 cent stamps the postage increases by 1 cent from 𝑘 to 𝑘 + 1
cents.

∴ We can pay for 𝑘 + 1 cents postage.

∴ 𝑃 𝑘 ⇒ 𝑃 𝑘 + 1

∴ 𝑃 𝑛 is true for 𝑛 ≥ 12 by induction □
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APPENDIX 1: EXTENSION 1 MATHEMATICAL INDUCTION

In Appendix 1 we will cover the work on Mathematical Induction from the Extension 1 course,

for those who find themselves up to Extension 2 Induction without having done Extension 1

Induction yet.
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3.0A INTRODUCTION TO MATHEMATICAL INDUCTION

In Lesson 3.0A we look at the theory of mathematical induction, and examples involving sums. 

We will cover:

• An Introduction to Mathematical Induction

• Base Case

• Inductive Step

• Analogies

• Falling Dominos 

• Climbing a Ladder

• Burning Down a Skyscraper

• How does the Analogy Match the Proof?

• Looking at the Two Steps in Depth

• Inductive Step & If-then Statements

• Base Case

• Setting out a Mathematical Induction Proof

• Miscellaneous Notes on Induction

• Proving results with Sums

THE PRINCIPLE OF MATHEMATICAL INDUCTION

Mathematical Induction is a great technique that is used when we need to prove a proposition

for an infinite number of positive integers.

It consists of two proofs:

• Base Case: We prove that it is true for 𝑛 = 1
• Inductive Step: We prove that if it is true for 𝑛 = 𝑘 (the Inductive Hypothesis) then it is true for

𝑛 = 𝑘 + 1.

The two proofs together create an automated loop that proves a proposition for every positive

integer.

Let’s look at an example before we study the technique more deeply. We will prove that the sum

of the first 𝑛 positive integers is
𝑛 𝑛+1

2
, with the proof set out in a slightly different way to that

which many of us are used to.

Mathematics Extension 2 © Steve Howard 239 Howard and Howard Education



Example 1

Prove 1 + 2 + 3+. . . +𝑛 =
𝑛 𝑛+1

2
for 𝑛 ≥ 1 by induction.

Solution

Let 𝑃 𝑛 represent the proposition.

𝑃(1) is true since 1 =
1 1+1

2

If 𝑃(𝑘) is true for some arbitrary 𝑘 ≥ 1 then

1 + 2 + 3+. . . +𝑘 =
𝑘(𝑘 + 1)

2

RTP 𝑃 𝑘 + 1 :

1 + 2 + 3+. . . +𝑘 + (𝑘 + 1) =
(𝑘 + 1) 𝑘 + 2

2

LHS =
𝑘 𝑘 + 1

2
+ 𝑘 + 1 from 𝑃(𝑘)

=
𝑘 𝑘 + 1

2
+
2 𝑘 + 1

2

=
𝑘 + 1 𝑘 + 2

2
= RHS

∴ 𝑃 𝑘 ⇒ 𝑃(𝑘 + 1)

∴ 𝑃(𝑛) is true for 𝑛 ≥ 1 by induction           □

Now we have seen an example, let’s have a look at some analogies to explain what we have

just done.

Base Case

In
d
u

c
tio

n

H
y
p
o
th

e
s
is

Definition

In
d
u
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tiv

e
S

te
p

Finishing Statement

RTP

𝑃
𝑘

⇒
𝑃
(𝑘

+
1
)
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ANALOGIES FOR MATHEMATICAL INDUCTION

The new courses have a greater emphasis on understanding how the Base Case and Inductive

Step interact. A lot of mathematicians can use the technique successfully without

understanding how it works, and with the changes in the syllabus this will not be good enough.

Let’s start by looking at some analogies that help us gain a deeper understanding of how proof

by induction works.

FALLING DOMINOS

By far the most popular analogy is falling dominos. We can think of Induction proofs like

knocking over dominos standing in a line - what conditions will cause all the dominos to fall?

If the first domino falls over, and, 

if when any domino falls then the next domino falls,

then all the dominos will fall.

When we combine the two steps then the first domino knocks over the second domino, the

second knocks over the third, the third knocks over the fourth, with the process repeating

infinitely, and so all dominoes fall.

What happens if:

• The first domino doesn’t fall (no one pushes it over).

• Any domino that falls doesn’t knock over the next domino (the dominos are too far apart

say).
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You need to realise the significance of both steps - if either is missing then at most only one

domino will fall.

The only reservation with the domino analogy is that it almost presumes that every proposition

will be true, because as everyone knows, if you line up some dominos they must fall!

We can adjust the analogy so that it fits more involved induction proofs in Extension 2, such as:

• we could start by pushing over the second or third domino rather than the first, knocking

over all dominos after that

• we could arrange the dominos in two offset rows - so that when we push over the first or

second domino, only the odd or even dominos fall respectively

CLIMBING A LADDER

Another popular analogy involves climbing an infinitely tall ladder. How do you climb every

rung?

If you step from the ground onto the first rung, and if you step from any rung to the one above

then you will climb every rung.

What happens if:

• You can’t step onto the first rung (it is too high off the ground)

• You can’t step from any rung to the next (the rungs are too far apart).

Again you need to realise the significance of both steps - if either is missing then at most only

one rung will be climbed.

When we combine the two steps then we step from the ground to the first rung, then the first

rung to the second rung, and continue infinitely.

There a couple of reservations with the ladder analogy:

• ladders can be climbed or descended, whereas mathematical induction only works in one

direction.

• ladders are meant to be climbed, which again almost presumes that every proposition will be

true.

It is harder to adjust the ladder analogy to fit more detailed induction proofs in Extension 2 and

still make sense, but it can be done:

• we could somehow start climbing from the second or third rung rather than the first

• we could climb two rungs at a time, so we only step on the odd or even rungs
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BURNING DOWN A SKYSCRAPER

So now let’s look at an analogy that you won’t intuitively think is always true.

Dastardly Dan the Dodgy Demolition Dude has taken the contract to demolish an infinitely tall

skyscraper. He didn’t understand the concept of infinity when he was a student, and has just

realised he is about to lose lots of money … an infinite amount! Luckily he was listening when

his class was taught about mathematical induction.

So instead of demolishing it properly he wants to see if he can burn it to the ground with one

match - think of the money he will save! He determines that:

If he sets fire to the first* floor, and if every floor once alight causes the floor above to burn then

the skyscraper will burn to the ground.

* Call the lowest floor the first floor, not the ground floor, as in Extension 1 the Base Case is

always 𝑛 = 1.

What happens if:

• He can’t set fire to the first floor (it might have sprinklers)

• Any floor catching fire doesn’t cause the one above to catch fire (the exteriors might be fire

resistant).

Again you need to realise the significance of both steps - if either is missing then at most only

one floor will burn.

Because most buildings don’t burn down, or only partially burn, you will have a much better

intuitive understanding of the importance of both steps.

When we combine the two steps then the first floor being on fire causes the second floor to

catch alight, then the second floor causes the third floor to catch alight etc.

There are of course many reservations about the burning building analogy, but more social than

mathematical! We must assume that fire can only spread up not down.

We can adjust the analogy so that it fits more detailed induction proofs in Extension 2, such as:

• the fire could be started on a higher floor rather than the first floor, and only burn the floors

from there up

• every second floor could have a wider balcony causing the fire to skip a floor, only burning

down the even (or odd) floors

Mathematics Extension 2 © Steve Howard 243 Howard and Howard Education



HOW DOES THE ANALOGY MATCH THE PROOF?

Now let’s match the steps of the domino analogy with the steps of an induction proof. We could

do this with any of the analogies.

The Base Case is like checking that the first domino falls over.

The Inductive Step is like checking that if any domino falls it will knock over the next domino.

This involves three steps:

• We assume* that a domino falls over - this is the inductive hypothesis.

• Then we see what the next domino falling over would look like - this is the RTP.

• We prove that the next domino will fall.

* The word ‘assume’ can cause misunderstanding - I prefer to use ‘if’.

When we combine the Base Case and the Inductive Step we can see that the proposition must

be true for any positive number. This is like proving that all dominoes must be knocked over

Base Case Inductive Step The whole row falls

If the proposition is true for the Base Case and, if when the proposition is true for 𝑛 = 𝑘 then it

must be true for 𝑛 = 𝑘 + 1, then the proposition must be true for all 𝑛 ≥ 1.

The first couple of times you write out an induction proof it can be a good idea to write down

what each step is down the side, as we will see in the next example - only do it for the first one

or two proofs though.

+ ⇒
1st 𝑘th 𝑘 + 1th 1st 2nd 3rd 4th . . .
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Example 2

Prove 1 + 3 + 5+. . . + 2𝑛 − 1 = 𝑛2 for 𝑛 ≥ 1

Solution

Let 𝑃 𝑛 represent the proposition.

𝑃(1) is true since 1 = 12

If 𝑃(𝑘) is true for some arbitrary 𝑘 ≥ 1 then 

1 + 3 + 5+. . . + 2𝑘 − 1 = 𝑘2

RTP  𝑃 𝑘 + 1

1 + 3 + 5+. . . + 2𝑘 − 1 + (2𝑘 + 1) = (𝑘 + 1)2

LHS = 𝑘2 + 2𝑘 + 1 from 𝑃(𝑘)

= 𝑘 + 1 2

= RHS

∴ 𝑃 𝑘 ⇒ 𝑃(𝑘 + 1)

∴ 𝑃(𝑛) is true for 𝑛 ≥ 1 by induction □

Base Case
In

d
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c
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n

H
y
p

o
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is

Definition

In
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p

Finishing Statement

RTP

𝑃
𝑘

⇒
𝑃
(𝑘

+
1
)
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Example 3

Prove 1 + 2 + 22 + 23+. . . +2𝑛−1 = 2𝑛 − 1 for 𝑛 ≥ 1

Solution

Let 𝑃 𝑛 represent the proposition.

𝑃(1) is true since 1 = 21 − 1

If 𝑃(𝑘) is true for some arbitrary 𝑘 ≥ 1 then 1 + 2 + 22 + 23+. . . +2𝑘−1 = 2𝑘 − 1

RTP  𝑃 𝑘 + 1 1 + 2 + 22 + 23+. . . +2𝑘−1 + 2𝑘 = 2𝑘+1 − 1

LHS = 2𝑘 − 1 + 2𝑘 from 𝑃(𝑘)

= 2 × 2𝑘 − 1

= 2𝑘+1 − 1

= RHS

∴ 𝑃 𝑘 ⇒ 𝑃(𝑘 + 1)

∴ 𝑃(𝑛) is true for 𝑛 ≥ 1 by induction □
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Example 4

Prove 1 + 4 + 9+. . . +𝑛2 =
𝑛 𝑛+1 2𝑛+1

6
for 𝑛 ≥ 1

Solution

Let 𝑃 𝑛 represent the proposition.

𝑃(1) is true since LHS = 12 = 1; RHS =
1 1+1 2 1 +1

6
= 1

If 𝑃(𝑘) is true for some arbitrary 𝑘 ≥ 1 then 12 + 4 + 9+. . . +𝑘2 =
𝑘 𝑘+1 2𝑘+1

6

RTP  𝑃 𝑘 + 1 12 + 4 + 9+. . . +𝑘2 + 𝑘 + 1 2 =
(𝑘+1) 𝑘+2 2𝑘+3

6

LHS =
𝑘 𝑘 + 1 2𝑘 + 1

6
+ 𝑘 + 1 2 from 𝑃(𝑘)

= 𝑘 + 1
2𝑘2 + 𝑘

6
+ 𝑘 + 1

= 𝑘 + 1
2𝑘2 + 𝑘 + 6𝑘 + 6

6

=
𝑘 + 1 2𝑘2 + 7𝑘 + 6

6

=
𝑘 + 1 𝑘 + 2 2𝑘 + 3

6
= RHS

∴ 𝑃 𝑘 ⇒ 𝑃(𝑘 + 1)

∴ 𝑃(𝑛) is true for 𝑛 ≥ 1 by induction □

Look at RTP and take out common factor

rather than expanding

Look at RTP and use it to factorise rather

than trying to do it from scratch.

Mathematics Extension 2 © Steve Howard 247 Howard and Howard Education



EXERCISE 3.0A

BASIC

1 Prove 2 + 4 + 6+. . . +2𝑛 = 𝑛 𝑛 + 1 for 𝑛 ≥ 1 by induction.

Mark definition, base case etc down the right hand side.

2 Prove 3 + 6 + 9+. . . +3𝑛 =
3𝑛 𝑛+1

2
for 𝑛 ≥ 1

MEDIUM

3 Prove 1 + 4 + 42+. . . +4𝑛−1 =
4𝑛−1

3
for 𝑛 ≥ 1

4 Prove 12 + 42 + 72+. . . + 3𝑛 − 2 2 =
𝑛 6𝑛2−3𝑛−1

2
for 𝑛 ≥ 1

5
Prove 1 × 4 + 2 × 5 + 3 × 6+. . . + 𝑛 𝑛 + 3 =

𝑛 𝑛+1 𝑛+5

3
for 𝑛 ≥ 1

6 Prove 
1

1 1+1
+

1

2 2+1
+. . . +

1

𝑛 𝑛+1
=

𝑛

𝑛+1
for 𝑛 ≥ 1

7 Prove 2 × 1! + 5 × 2! + 10 × 3!+. . . + 𝑛2 + 1 𝑛! = 𝑛 𝑛 + 1 ! for 𝑛 ≥ 1

8 Prove 2 × 2 + 3 × 22 + 4 × 23+. . . + 𝑛 + 1 × 2𝑛 = 𝑛 × 2𝑛+1 for 𝑛 ≥ 1

9
Prove 1 +

1

1
1 +

1

2
1 +

1

3
. . . 1 +

1

𝑘
= 𝑘 + 1 for 𝑛 ≥ 1

Mathematics Extension 2 © Steve Howard 248 Howard and Howard Education



SOLUTIONS - EXERCISE 3.0A

1

Let 𝑃 𝑛 represent the proposition.

𝑃(1) is true since 2 = 1(1 + 1)

If 𝑃(𝑘) is true for some arbitrary 𝑘 ≥ 1 then

2 + 4 + 6+. . . +2𝑘 = 𝑘 𝑘 + 1

RTP 𝑃 𝑘 + 1 :
2 + 4 + 6+. . . +2𝑘 + 2(𝑘 + 1) = (𝑘 + 1) 𝑘 + 2

LHS = 𝑘(𝑘 + 1) + 2 𝑘 + 1 from 𝑃(𝑘)
= (𝑘 + 1)(𝑘 + 2)
= RHS

∴ 𝑃 𝑘 ⇒ 𝑃(𝑘 + 1)

∴ 𝑃(𝑛) is true for 𝑛 ≥ 1 by induction           □

Base Case

In
d

u
c
tio

n

H
y
p

o
th

e
s
is

Definition

In
d

u
c
tiv

e
S

te
p

Finishing Statement

RTP

𝑃
𝑘

⇒
𝑃
(𝑘

+
1
)

2

Let 𝑃 𝑛 represent the proposition.

𝑃(1) is true since 3 =
3 1 1+1

2

If 𝑃(𝑘) is true for some arbitrary 𝑘 ≥ 1 then 3 + 6 + 9+. . . +3𝑘 =
3𝑘 𝑘+1

2

RTP  𝑃 𝑘 + 1 3 + 6 + 9+. . . +3𝑘 + 3(𝑘 + 1) =
3(𝑘+1) 𝑘+2

2

LHS =
3𝑘 𝑘 + 1

2
+ 3 𝑘 + 1 from 𝑃(𝑘)

= 3 𝑘 + 1
𝑘

2
+ 1

=
3 𝑘 + 1 𝑘 + 2

2

= RHS

∴ 𝑃 𝑘 ⇒ 𝑃(𝑘 + 1)

∴ 𝑃(𝑛) is true for 𝑛 ≥ 1 by induction □
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3

Let 𝑃 𝑛 represent the proposition.

𝑃(1) is true since 1 =
41−1

3

If 𝑃(𝑘) is true for some arbitrary 𝑘 ≥ 1 then 1 + 4 + 42+. . . +4𝑘−1 =
4𝑘−1

3

RTP  𝑃 𝑘 + 1 1 + 4 + 42+. . . +4𝑘−1 + 4𝑘 =
4𝑘+1−1

3

LHS =
4𝑘 − 1

3
+ 4𝑘 from 𝑃(𝑘)

=
4𝑘 − 1

3
+ 3 ∙

4𝑘

3

=
4 ∙ 4𝑘 − 1

3

=
4𝑘+1 − 1

3
= RHS

∴ 𝑃 𝑘 ⇒ 𝑃(𝑘 + 1)

∴ 𝑃(𝑛) is true for 𝑛 ≥ 1 by induction □

4

Let 𝑃 𝑛 represent the proposition.

𝑃(1) is true since LHS = 12 = 1; RHS =
1(6 1 2−3 1 −1)

2
= 1

If 𝑃(𝑘) is true for some arbitrary 𝑘 ≥ 1 then 12 + 42 + 72+. . . + 3𝑘 − 2 2 =
𝑘 6𝑘2−3𝑘−1

2

RTP  𝑃 𝑘 + 1 12 + 42 + 72+. . . + 3𝑘 − 2 2 + 3𝑘 + 1 2 =
𝑘+1 6 𝑘+1 2−3 𝑘+1 −1

2
=

𝑘+1 6𝑘2+9𝑘+2

2

LHS =
𝑘 6𝑘2 − 3𝑘 − 1

2
+ 3𝑘 + 1 2 from 𝑃(𝑘)

=
6𝑘3 − 3𝑘2 − 𝑘 + 18𝑘2 + 12𝑘 + 2

2

=
6𝑘3 + 15𝑘2 + 11𝑘 + 2

2

=
6𝑘3 + 9𝑘2 + 2𝑘 + 6𝑘2 + 9𝑘 + 2

2

=
𝑘 + 1 6𝑘2 + 9𝑘 + 2

2

=
𝑘 + 1 6 𝑘 + 1 2 − 3 𝑘 + 1 − 1

2
= RHS

∴ 𝑃 𝑘 ⇒ 𝑃(𝑘 + 1)

∴ 𝑃(𝑛) is true for 𝑛 ≥ 1 by induction □
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5

Let 𝑃 𝑛 represent the proposition.

𝑃(1) is true since LHS = 1 × 4 = 4; RHS =
1 1+1 1+5

3
= 4

If 𝑃(𝑘) is true for some arbitrary 𝑘 ≥ 1 then 1 × 4 + 2 × 5 + 3 × 6+. . . +𝑘 𝑘 + 3 =
𝑘 𝑘+1 𝑘+5

3

RTP  𝑃 𝑘 + 1 1 × 4 + 2 × 5 + 3 × 6+. . . +𝑘(𝑘 + 3) + (𝑘 + 1)(𝑘 + 4) =
(𝑘+1) 𝑘+2 𝑘+6

3

LHS =
𝑘 𝑘 + 1 𝑘 + 5

3
+ 𝑘 + 1 𝑘 + 4 from 𝑃(𝑘)

= 𝑘 + 1
𝑘2 + 5𝑘

3
+ 𝑘 + 4

= 𝑘 + 1
𝑘2 + 5𝑘 + 3𝑘 + 12

3

=
𝑘 + 1

3
𝑘2 + 8𝑘 + 12

=
𝑘 + 1 𝑘 + 2 𝑘 + 6

3
= RHS

∴ 𝑃 𝑘 ⇒ 𝑃(𝑘 + 1)

∴ 𝑃(𝑛) is true for 𝑛 ≥ 1 by induction □

6

Let 𝑃 𝑛 represent the proposition.

𝑃(1) is true since 
1

1(1+1)
=

1

1+1

If 𝑃(𝑘) is true for some arbitrary 𝑘 ≥ 1 then 
1

1 1+1
+

1

2 2+1
+. . . +

1

𝑘 𝑘+1
=

𝑘

𝑘+1

RTP  𝑃 𝑘 + 1
1

1 1+1
+

1

2 2+1
+. . . +

1

𝑘 𝑘+1
+

1

𝑘+1 𝑘+2
=

𝑘+1

𝑘+2

LHS =
𝑘

𝑘 + 1
+

1

𝑘 + 1 𝑘 + 2
from 𝑃(𝑘)

=
𝑘2 + 2𝑘 + 1

𝑘 + 1 𝑘 + 2

=
𝑘 + 1 2

𝑘 + 1 𝑘 + 2

=
𝑘 + 1

𝑘 + 2
= RHS

∴ 𝑃 𝑘 ⇒ 𝑃(𝑘 + 1)

∴ 𝑃(𝑛) is true for 𝑛 ≥ 1 by induction □
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7

Let 𝑃 𝑛 represent the proposition.

𝑃(1) is true since LHS = 2 × 1! = 2; RHS = 1 1 + 1 ! = 2

If 𝑃(𝑘) is true for some arbitrary 𝑘 ≥ 1 then

2 × 1! + 5 × 2! + 10 × 3!+. . . + 𝑘2 + 1 𝑘! = 𝑘 𝑘 + 1 !

RTP  𝑃 𝑘 + 1

2 × 1! + 5 × 2! + 10 × 3!+. . . + 𝑘2 + 1 𝑘! + 𝑘 + 1 2 + 1 𝑘 + 1 ! = (𝑘 + 1) 𝑘 + 2 !

LHS = 𝑘 𝑘 + 1 ! + 𝑘 + 1 2 + 1 𝑘 + 1 ! from 𝑃(𝑘)

= 𝑘 + 1 ! 𝑘 + 𝑘2 + 2𝑘 + 1 + 1

= 𝑘 + 1 ! 𝑘2 + 3𝑘 + 2

= 𝑘 + 1 ! 𝑘 + 1 𝑘 + 2

= 𝑘 + 1 𝑘 + 2 !

= RHS

∴ 𝑃 𝑘 ⇒ 𝑃(𝑘 + 1)

∴ 𝑃(𝑛) is true for 𝑛 ≥ 1 by induction □
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8

Let 𝑃 𝑛 represent the proposition.

𝑃(1) is true since LHS = 2 × 2 = 4; RHS = 2 × 21+1 = 4

If 𝑃(𝑘) is true for some arbitrary 𝑘 ≥ 1 then 

2 × 2 + 3 × 22 + 4 × 23+. . . + 𝑘 + 1 × 2𝑘 = 𝑘 × 2𝑘+1

RTP  𝑃 𝑘 + 1

2 × 2 + 3 × 22 + 4 × 23+. . . + 𝑘 + 1 × 2𝑘 + 𝑘 + 2 × 2𝑘+1 = (𝑘 + 1) × 2𝑘+2

LHS = 𝑘 × 2𝑘+1 + 𝑘 + 2 × 2𝑘+1 from 𝑃(𝑘)

= 2𝑘+1 𝑘 + 𝑘 + 2

= 2𝑘+1 × 2 𝑘 + 1

= 𝑘 + 1 × 2𝑘+2

= RHS

∴ 𝑃 𝑘 ⇒ 𝑃(𝑘 + 1)

∴ 𝑃(𝑛) is true for 𝑛 ≥ 1 by induction □

9

Let 𝑃 𝑛 represent the proposition.

𝑃(1) is true since 1 =
1+1

2 1

If 𝑃(𝑘) is true for some arbitrary 𝑘 ≥ 1 then

1 +
1

1
1 +

1

2
1 +

1

3
. . . 1 +

1

𝑘
= 𝑘 + 1

RTP  𝑃 𝑘 + 1 1 +
1

1
1 +

1

2
1 +

1

3
. . . 1 +

1

𝑘
1 +

1

𝑘+1
= 𝑘 + 2

LHS = (𝑘 + 1) × 1 +
1

𝑘 + 1
from 𝑃(𝑘)

= 𝑘 + 1 + 1

= 𝑘 + 2

= RHS

∴ 𝑃 𝑘 ⇒ 𝑃(𝑘 + 1)

∴ 𝑃(𝑛) is true for 𝑛 ≥ 1 by induction □
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3.0B OTHER MATHEMATICAL INDUCTION

Example 1

Prove 4𝑛 − 1 is divisible by 3 for 𝑛 ≥ 1

Solution

Let 𝑃 𝑛 represent the proposition.

𝑃(1) is true since 41 − 1 = 3

If 𝑃(𝑘) is true for some arbitrary 𝑘 ≥ 1 then 4𝑘 − 1 = 3𝑚 for integral 𝑚

RTP  𝑃 𝑘 + 1 4𝑘+1 − 1 = 3𝑝 for integral 𝑝

LHS = 4 4𝑘 − 1

= 4 4𝑘 − 1 + 3

= 4 3𝑚 + 3 from 𝑃 𝑘

= 3 4𝑚 + 1

= 3𝑝 since 4,𝑚 and 1 are integral

= RHS

∴ 𝑃 𝑘 ⇒ 𝑃(𝑘 + 1)

∴ 𝑃(𝑛) is true for 𝑛 ≥ 1 by induction □

In Lesson 3.0B we look at divisibility proofs and some miscellaneous aspects related to 

mathematical induction. We will cover:

• Simple divisibility proofs by induction

• False proof by induction

• Cases where proof by induction is not appropriate

DIVISIBILITY PROOFS
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Example 2

Prove 5𝑛 − 2𝑛 is divisible by 3 for 𝑛 ≥ 1

Solution

Let 𝑃 𝑛 represent the proposition.

𝑃(1) is true since 51 − 21 = 3 = 3 × 1

If 𝑃(𝑘) is true for some arbitrary 𝑘 ≥ 1 then 5𝑘 − 2𝑘 = 3𝑚 for integral 𝑚

RTP  𝑃 𝑘 + 1 5𝑘+1 − 2𝑘+1 = 3𝑝 for integral 𝑝

LHS = 5 5𝑘 − 2 2𝑘

= 5 5𝑘 − 2𝑘 + 3 2𝑘

= 5 3𝑚 + 3 2𝑘 from 𝑃(𝑘)

= 3 5𝑚 + 2𝑘

= 3𝑝 since 5,𝑚, 2 and 𝑘 are integral

= RHS

∴ 𝑃 𝑘 ⇒ 𝑃(𝑘 + 1)

∴ 𝑃(𝑛) is true for 𝑛 ≥ 1 by induction □

Now we will look at an example involving two indices that might be beyond the Extension 1 

syllabus - best to be able to do it anyway!
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WHEN CAN WE USE MATHEMATICAL INDUCTION?

Mathematical Induction can only be used to prove propositions that meet all of the following 

criteria.

1. The variable must be a positive integer 

2. The rule for any integer must be able to be found from the rule for a smaller integer - we 

need to find an instance of 𝑃(𝑘) in 𝑃(𝑘 + 1) for the induction step to work.

3. There must be a lowest value that we can test 

We cannot use induction to prove results for all positive real numbers, as the step-wise nature

of the induction proof misses an infinite number of real numbers between each pair of integers.

So even in Extension 2 where we will prove that
𝑑

𝑑𝑥
𝑥𝑛 = 𝑛𝑥𝑛−1, a result that is true for all real

values of 𝑛 except 𝑛 = 0, the induction proof will only prove that it is true for integral values of 𝑛.

If we look through the Reference Sheet, the majority of rules cannot be proved by induction as

they involve real variables rather than integers. So looking at the top of the first page:

• 𝐴 = 𝑃 1 + 𝑟 𝑛 is appropriate as the variable 𝑛 is an integer (𝑃 and 𝑟 being constants within a

given question), and 𝑃 1 + 𝑟 𝑛 can be found from 𝑃 1 + 𝑟 𝑛−1.

• ℓ =
𝜃

360
× 2𝜋𝑟 is inappropriate as the variable 𝜃 is real (𝑟 is a constant within a given circle).

We could use induction to prove ℓ =
𝜃

360
× 2𝜋𝑟 for all integral angles, just not for all angles.

Mathematics Extension 2 © Steve Howard 256 Howard and Howard Education



Example 3

Which of the following rules from the Reference Sheet can be proved by induction for all 

possible values?

a) sin2 𝑛𝑥 =
1

2
1 − cos 2𝑛𝑥

b) 𝑛𝑃𝑟 =
𝑛!

𝑛−𝑟 !

c) 
𝑑𝑦

𝑑𝑥
= 𝑛𝑓′ 𝑥 𝑓 𝑥 𝑛−1

Solution

a) No, as 𝑛 is a real variable

b) Yes, as 𝑛 can only take integral values and 𝑛𝑃𝑟 can be found from 𝑛−1𝑃𝑟

c) No, as 𝑛 is a real variable - we could prove it just for the integral values though.

CAN WE PROVE A FALSE RESULT BY MATHEMATICAL INDUCTION?

If Mathematical Induction is used properly it is impossible to prove a false result - you will find

that either you cannot prove a base case or the inductive step fails.

We can however mistakenly prove a false result if we do any of the following:

• Only test one or more base values without the inductive step

• Only do the inductive step and not test a base case

• Perform both steps but have a logic error or algebraic mistake
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Example 4

What is the error in this false proof?

Prove 𝑛2 − 3𝑛 + 2 = 0 for all 𝑛 ≥ 1

Let 𝑃(𝑛) represent the proposition.

𝑃(1) is true since 1 2 − 3 1 + 2 = 0

𝑃(2) is true since 2 2 − 3 2 + 2 = 0

…

∴ 𝑃(𝑛) is true for 𝑛 ≥ 1 by induction □

Solution

There is no Inductive Step. We have just tested two cases and extrapolated from there. If we

had tested 𝑛 = 3 we would see it is false.

Example 5

Prove all odd numbers are even.

Let 𝑃 𝑛 represent the proposition.

If 𝑃(𝑘) is true for some arbitrary 𝑘 ≥ 1, then

2𝑘 + 1 = 2𝑚 for integral 𝑚

RTP 𝑃 𝑘 + 1 2𝑘 + 3 = 2𝑝 for integral 𝑝

LHS = 2𝑘 + 1 + 2

= 2𝑚 + 2 from 𝑃 𝑘

= 2 𝑚 + 1

= 2𝑝 for integral p since m and 1 are integral

= RHS

∴ 𝑃 𝑘 ⇒ 𝑃(𝑘 + 1)

∴ 𝑃(𝑛) is true for 𝑛 ≥ 1 by induction □

Solution

There is no Base Case. We are saying that it will be true everywhere if it is true anywhere, but

we haven’t shown that it is true anywhere.
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EXERCISE 3.0B

BASIC

1 Prove 5𝑛 − 1 is divisible by 4 for 𝑛 ≥ 1

2 Which of the following rules from the Reference Sheet can be proved by induction for all 

possible values?

a)
𝑛

𝑟
=

𝑛!

𝑟! 𝑛 − 𝑟 !
b)

𝑑

𝑑𝑥

𝑢

𝑣
=
𝑣
𝑑𝑢
𝑑𝑥

− 𝑢
𝑑𝑣
𝑑𝑥

𝑣2
c) 𝑆𝑛 =

𝑛

2
𝑎 + 𝑙

3 What is the error in this false proof?

Prove 6 − 11𝑛 + 6𝑛2 − 𝑛3 = 0 for all 𝑛 ≥ 1

Let 𝑃(𝑛) represent the proposition.

𝑃(1) is true since 6 − 11(1) + 6(1)2−(1)3= 0

𝑃(2) is true since 6 − 11(2) + 6(2)2−(2)3= 0

𝑃(2) is true since 6 − 11(3) + 6(3)2−(3)3= 0

…

∴ 𝑃(𝑛) is true for 𝑛 ≥ 1 by induction □

4 What is the error in this false proof?

Prove that the sum of the first 𝑛 even numbers is odd.

Let 𝑃 𝑛 represent the proposition.

If 𝑃(𝑘) is true for some arbitrary 𝑘 ≥ 1, then 2 + 4 + 6+. . . +2𝑘 = 2𝑚 + 1
RTP 𝑃 𝑘 + 1
2 + 4 + 6+. . . +2𝑘 + 2(𝑘 + 1) = 2𝑞 + 1 for integral 𝑞
LHS = 2𝑚 + 1 + 2(𝑘 + 1) from 𝑃 𝑘

= 2 𝑚 + 𝑘 + 1 + 1
= 2𝑞 + 1 since m, k and 1 are integral
= RHS

∴ 𝑃 𝑘 ⇒ 𝑃(𝑘 + 1)

∴ 𝑃(𝑛) is true for 𝑛 ≥ 1 by induction □

So all the sum of the first 𝑛 even numbers is odd, eg 2 + 4 is odd!
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MEDIUM

5 Prove 43𝑛 + 8 is divisible by 9 for 𝑛 ≥ 1

6 Prove 𝑛3 − 𝑛 is divisible by 3 for 𝑛 ≥ 1

7 What is the error in this false proof?

Every positive integer 𝑛 is much less than 1, 000, 000. 

Let 𝑃 𝑛 represent the proposition.

𝑃(1) is true, since 1 is much less than a million

If 𝑃(𝑘) is true for some arbitrary 𝑘 ≥ 1, then 𝑘 is much less than a million.

RTP  𝑃 𝑘 + 1 that 𝑘 + 1 is much less than a million.

Since 𝑘 is much less than a million from 𝑃(𝑘), then adding 1 to it will still create a number

much less than a million, so 𝑘 + 1 is much less than a million.

∴ 𝑃 𝑘 ⇒ 𝑃(𝑘 + 1)

∴ 𝑃(𝑛) is true for 𝑛 ≥ 1 by induction □

So all positive integers are less than one million!

CHALLENGING

8 Prove 7𝑛 − 2𝑛 is divisible by 5 for 𝑛 ≥ 1

9 What is the error in this false proof?

Prove that any set of 𝑛 points lie on one line. 

Let 𝑃 𝑛 represent the proposition.

𝑃(1) is true, since one point must lie on one line. 

If 𝑃(𝑘) is true for some arbitrary 𝑘 ≥ 1, then any 𝑘 points must lie on one line.

RTP  𝑃 𝑘 + 1 that any 𝑘 + 1 points lie on one line.

If we add one point to 𝑃(𝑘) then there will be a group of 𝑘 + 1 points. From 𝑃(𝑘) the first 𝑘

points are on one line, and the last 𝑘 points must also be on one line, and since at least

one point belongs to both groups then all the 𝑘 + 1 points are on one line.

∴ 𝑃 𝑘 ⇒ 𝑃(𝑘 + 1)

∴ 𝑃(𝑛) is true for 𝑛 ≥ 1 by induction □

So all the sum of the first 𝑛 even numbers is odd, eg 2 + 4 is odd!
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SOLUTIONS - EXERCISE 3.0B

1 Let 𝑃 𝑛 represent the proposition.

𝑃(1) is true since 51 − 1 = 4

If 𝑃(𝑘) is true for some arbitrary 𝑘 ≥ 1 then 5𝑘 − 1 = 4𝑚 for integral 𝑚

RTP  𝑃 𝑘 + 1 5𝑘+1 − 1 = 4𝑝 for integral 𝑝

LHS = 5 5𝑘 − 1

= 5 5𝑘 − 1 + 4

= 5 4𝑚 + 4 from 𝑃 𝑘

= 4 5𝑚 + 1

= 4𝑝 since 4,𝑚 and 1 are integral

= RHS

∴ 𝑃 𝑘 ⇒ 𝑃(𝑘 + 1)

∴ 𝑃(𝑛) is true for 𝑛 ≥ 1 by induction □

2 a) Yes, as 𝑛 can only take integral values and 𝑛
𝑟

can be found from 𝑛−1
𝑟

b) No, as 𝑛 is a real variable - we could prove it just for the integral values though.

c) Hmmm sort of. If 𝑎 and 𝑙 are fixed then yes, but that is not what this formula is about, as 𝑙

for 𝑛 − 1 and for 𝑛 are different last terms. We would need to be able to relate the last terms, 

which would need the common difference 𝑑. The other version of 𝑆𝑛 is a definite yes, while 

this is a maybe depending on assumptions.

3 There is no Inductive Step. We have just tested three cases and extrapolated from there. If we

had tested 𝑛 = 4 we would see it is false.

4 There is no Base Case. We are saying that it will be true everywhere if it is true anywhere, but

we haven’t shown that it is true anywhere.

5 Let 𝑃 𝑛 represent the proposition.

𝑃(1) is true since 43 1 + 8 = 72 = 9 × 8

If 𝑃(𝑘) is true for some arbitrary 𝑘 ≥ 1 then 43𝑘 + 8 = 9𝑚 for integral 𝑚

RTP  𝑃 𝑘 + 1 43𝑘+3 + 8 = 9𝑝 for integral 𝑝.

LHS = 43𝑘+3 + 8

= 43 × 43𝑘 + 8

= 43 43𝑘 + 8 − 63 × 8

= 64 9𝑚 − 9 × 56

= 9 64𝑚 − 56

= 9𝑝 since 64,𝑚 and 56 are integral

= RHS

∴ 𝑃 𝑘 ⇒ 𝑃(𝑘 + 1)

∴ 𝑃(𝑛) is true for 𝑛 ≥ 1 by induction □
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6 Let 𝑃 𝑛 represent the proposition.

𝑃(1) is true since 13 − 1 = 0 = 3 × 0

If 𝑃(𝑘) is true for some arbitrary 𝑘 ≥ 1 then 𝑘3 − 𝑘 = 3𝑚 for integral 𝑚

RTP  𝑃 𝑘 + 1 𝑘 + 1 3 − (𝑘 + 1) = 3𝑝 for integral 𝑝

LHS = 𝑘3 + 3𝑘2 + 3𝑘 + 1 − 𝑘 − 1

= 𝑘3 − 𝑘 + 3𝑘2 + 3𝑘

= 3𝑚 + 3𝑘2 + 3𝑘 from 𝑃 𝑘

= 3 𝑚+ 𝑘2 + 𝑘

= 3𝑝 since 𝑚 and 𝑘 are integral

= RHS

∴ 𝑃 𝑘 ⇒ 𝑃(𝑘 + 1)

∴ 𝑃(𝑛) is true for 𝑛 ≥ 1 by induction □

7 Here we have a logic error created by the inexact language. We have no definition for ‘much 

less’, and so at some point 𝑃(𝑘) won’t imply the truth of 𝑃(𝑘 + 1). For instance, if we say a 

number is only much less than a million of the difference between them is 1000, then 

𝑃(999 000) is true but 𝑃(999 001) is false.

8 Let 𝑃 𝑛 represent the proposition.

𝑃(1) is true since 71 − 21 = 5

If 𝑃(𝑘) is true for some arbitrary 𝑘 ≥ 1 then 7𝑘 − 2𝑘 = 5𝑚 for integral 𝑚

RTP  𝑃 𝑘 + 1 7𝑘+1 − 2𝑘+1 = 5𝑝 for integral 𝑝

LHS = 7 7𝑘 − 2 2𝑘

= 7 7𝑘 − 2𝑘 + 5 2𝑘

= 7 5𝑚 + 5 2𝑘 from 𝑃(𝑘)

= 5 7𝑚 + 2𝑘

= 5𝑝 since 5,𝑚, 2 and 𝑘 are integral

= RHS

∴ 𝑃 𝑘 ⇒ 𝑃(𝑘 + 1)

∴ 𝑃(𝑛) is true for 𝑛 ≥ 1 by induction □

9 There is a logic error, as we would need to show that there were two points that belong to

both groups. It first breaks down for 𝑃 2 ⇒ 𝑃(3), but also breaks down everywhere after that.
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HSC Mathematics Extension 2

Chapter 4

Integration

Integration and Complex Numbers were the two most important topics, in terms of marks, in

HSCs from the old course and we can probably expect this to continue. Integration is a great

Extension 2 topic, as you are often given the question with no hints as to how you should

approach it, so need to develop a deep understanding of the dozens of different techniques.

Lessons

Integration is covered in 10 lessons.

4.1 Standard Integrals & Completing the Square

4.2 The Reverse Chain Rule and U Substitutions

4.3 Splitting the Numerator and Partial Fractions by Inspection 

4.4 Partial Fractions

4.5 Other Substitutions

4.6 Trigonometric Functions I - Powers of Trig Functions and Product to Sum identities

4.7 Trigonometric Functions II - 𝑡-results, trig substitutions and rationalising the numerator

4.8 Integration by Parts 

4.9 Recurrence Relationships

4.10 Definite Integrals

Appendix 1: Tabular Integration by Parts

Revision Questions

In ‘1000 Revision Questions’, the revision book that goes with this textbook you will find the 

following questions matching this chapter:

• Revision Exercise 4 

100 graded questions on this topic only

• Revision Exercises 7 (Basic), 8 (Medium) and 9 (Challenging)

Another 100 questions mixed through other topics for when you finish the course.

Don’t forget to do any questions from the exercises in this textbook you haven’t done.
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4.1 STANDARD INTEGRALS & COMPLETING THE SQUARE

In Lesson 1 we introduce Extension 2 Integration and look at the standard integrals, then look at

simple questions that can be solved by first completing the square.

We will cover:

• Integration in Extension 2

• Understanding Integration

• Standard Integrals

• From the Reference Sheet

• Other Useful Standard Integrals

• Mnemonics (memory aids)

• Completing the Square

INTEGRATION IN EXTENSION 2

Extension 2 Integration involves a massive number of different techniques, some you have seen

before in Advanced and Extension 1, and others which will be new. As well as the new

techniques you will learn, Integration in Extension 2 is also harder as you will often be given a

bare question with no hints as to how it should be solved - you generally won’t be given the

substitution if one is needed, or any other hint if a different technique is needed.

In the old course Integration questions were mainly in the easy to medium range (for students

who had practised enough) with a few harder questions, although we may see more harder

integrations in the new course with the change of content. Concentrate on the small differences

between integrands that require different approaches.

There are online integral calculators that can help you if you are doing a question without

worked solutions. Search for ‘integral calculator’ and end up at sites like integral-calculator.com

- type in the integrand and it will give you the final solution plus working if you select it. Just

keep in mind that it may use different techniques to what you would like, and the final answer

may be equivalent to what you want but in a different form.

At the end of this document is a summary of the topic, including many standard integrals that

you would benefit from memorising.
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UNDERSTANDING INTEGRATION

One of the results of having so many techniques to learn is we often focus on how to do each

type without really understanding what they do and how they do it.

The trick to successfully being able to solve the greatest variety of integration questions is to

deeply understand that

Integration is the inverse operation of Differentiation

This might seem to be an obvious statement, but until we continually remind ourselves that

Integration is all about finding the function that can be differentiated to get the integrand, we will

only be following processes without understanding.

STANDARD INTEGRALS

Standard Integrals are common primitive functions, which form the basis of all our integration.

They are the anti-derivatives from work we have looked at in Advanced and Extension 1. So for

instance:

𝑑

𝑑𝑥
sin𝑥 = cos 𝑥 ⇒ ∴ නcos 𝑥 𝑑𝑥 = sin𝑥 + 𝑐

The Reference Sheet has a list of some of the standard integrals, and that will certainly cover

most questions in the HSC, but it is important to look at some other standard integrals listed in

the next pages, as they can make answering more obscure questions a lot simpler.
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LIST OF STANDARD INTEGRALS ON THE CURRENT REFERENCE SHEET

Here is the list of standard integrals from the reference sheet. You should memorise them as

you use them in the course, only using the reference sheet as a back up if you forget.

න𝑓′(𝑥) 𝑓 𝑥 𝑛𝑑𝑥 =
1

𝑛 + 1
𝑓 𝑥 𝑛+1 + 𝑐

where 𝑛 ≠ 1

න𝑓′(𝑥) sin 𝑓(𝑥) 𝑑𝑥 = −cos 𝑓 𝑥 + 𝑐

න𝑓′(𝑥) cos 𝑓(𝑥) 𝑑𝑥 = sin𝑓 𝑥 + 𝑐

න𝑓′ 𝑥 sec2 𝑓(𝑥) 𝑑𝑥 = tan𝑓 𝑥 + 𝑐

න𝑓′ 𝑥 𝑒𝑓 𝑥 𝑑𝑥 = 𝑒𝑓 𝑥 + 𝑐

න
𝑓′ 𝑥

𝑓 𝑥
𝑑𝑥 = ln 𝑓 𝑥 + 𝑐

න𝑓′(𝑥) 𝑎𝑓 𝑥 𝑑𝑥 =
𝑎𝑓 𝑥

ln 𝑎
+ 𝑐

න
𝑓′ 𝑥

𝑎2 − 𝑓 𝑥 2
𝑑𝑥 = sin−1

𝑓 𝑥

𝑎
+ 𝑐

න
𝑓′ 𝑥

𝑎2 + 𝑓 𝑥 2
𝑑𝑥 =

1

𝑎
tan−1

𝑓 𝑥

𝑎
+ 𝑐

OTHER USEFUL STANDARD INTEGRALS

There are other standard integrals that you might occasionally find useful.

න𝑓′(𝑥)cosec2𝑓(𝑥) 𝑑𝑥 = −cot 𝑓 𝑥 + 𝑐

න𝑓′(𝑥) sec 𝑓(𝑥) tan 𝑓(𝑥) 𝑑𝑥 = sec 𝑓 𝑥 + 𝑐

න𝑓′(𝑥) cosec 𝑓(𝑥) cot 𝑓(𝑥) 𝑑𝑥 = −cosec 𝑓 𝑥 + 𝑐

න𝑓′(𝑥) sec 𝑓(𝑥) 𝑑𝑥 = ln sec 𝑓 𝑥 + tan𝑓 𝑥 + 𝑐

න𝑓′(𝑥)cosec 𝑓(𝑥) 𝑑𝑥 = − ln cosec 𝑓 𝑥 + cot 𝑓 𝑥 + 𝑐

න
𝑓′(𝑥)

[𝑓 𝑥 ]2−𝑎2
𝑑𝑥 = ln 𝑓 𝑥 + 𝑓 𝑥 2 − 𝑎2 + 𝑐

න
𝑓′(𝑥)

[𝑓 𝑥 ]2+𝑎2
𝑑𝑥 = ln 𝑓 𝑥 + 𝑓 𝑥 2 + 𝑎2 + 𝑐

Now that is a lot of rules to remember, and the trigonometry rules in particular can be quite

confusing, so let’s look at some mnemonics that help us remember some of them.
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MNEMONICS FOR DIFFERENTIATING AND INTEGRATING WITH TRIGONOMETRY

The mnemonics below can be a handy way to remember the rules for differentiating or

integrating with trig functions. For all diagrams the arrows represent differentiation, so go

against the arrows to find the primitives.

Sine and Cosine (Left)

To differentiate we follow the arrows clockwise, or to integrate go against the arrows

(anticlockwise for the anti-derivatives).

Tangent and Secant (Middle)

To find the derivative of tan 𝑥 we follow the arrow from ‘tan’ - it ends half way between ‘sec’ and

‘sec’ - taking the product of these the derivative is sec2 𝑥. Similarly the derivative of sec 𝑥 is

sec 𝑥 tan 𝑥. A more obscure rule also shown is that the derivative of ln tan 𝑥 + sec 𝑥 is sec 𝑥,

which we will sometimes use when integrating sec 𝑥.

Cotangent and Cosecant (Right)

To find the derivative of cot 𝑥 we follow the arrow from ‘cot’ - it ends half way between ‘-cosec’

and ‘-cosec’ - so the derivative is −cosec2 𝑥. The derivative of cosec 𝑥 is −cosec 𝑥 cot 𝑥, and of

ln cot 𝑥 + cosec 𝑥 is −cosec 𝑥.

At the end of this chapter is a summary of the standard integrals and mnemonics.

sin

-sin

-cos cos

tan

sec sec

ln

+

cot

-cosec cosec

ln

+
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Example 1

Find

Solution

න
𝑑𝑥

𝑥2 + 10𝑥 + 29

= න
𝑑𝑥

𝑥2 + 10𝑥 + 25 + 4

= න
𝑑𝑥

𝑥 + 5 2 + 22

=
1

2
tan−1

𝑥 + 5

2
+ 𝑐

COMPLETING THE SQUARE

Some integrands need to be manipulated into a different form before we can use the standard

integrals. We will start by looking at some requiring completing the square.

න
𝑑𝑥

𝑥2 + 10𝑥 + 29

Example 2

Find

Solution

න
1

16 − 6𝑥 − 𝑥2
𝑑𝑥

= න
1

− 𝑥2 + 6𝑥 − 16
𝑑𝑥

= න
1

− 𝑥2 + 6𝑥 + 9 − 25
𝑑𝑥

= න
1

52 − 𝑥 + 3 2
𝑑𝑥

= sin−1
𝑥 + 3

5
+ 𝑐

න
1

16 − 6𝑥 − 𝑥2
𝑑𝑥
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Example 4

Find

Solution

න
1

𝑥2 − 𝑥 + 1
𝑑𝑥

= න
1

𝑥2 − 𝑥 +
1
4+

3
4

𝑑𝑥

= න
1

𝑥 −
1
2

2

+
3
2

2 𝑑𝑥

=
2

3
tan−1

𝑥 −
1
2

ൗ3
2

+ 𝑐

=
2

3
tan−1

2𝑥 − 1

3
+ 𝑐

න
1

𝑥2 − 𝑥 + 1
𝑑𝑥

Example 3

Find , given

Solution

න
1

𝑥2 − 6𝑥 + 5
𝑑𝑥

= න
1

𝑥2 − 6𝑥 + 9 − 4
𝑑𝑥

= න
1

𝑥 − 3 2 − 22
𝑑𝑥

= ln 𝑥 − 3 + 𝑥2 − 6𝑥 + 5 + 𝑐

න
1

𝑥2 − 6𝑥 + 5
𝑑𝑥 න

𝑓′(𝑥)

[𝑓 𝑥 ]2−𝑎2
𝑑𝑥 = ln 𝑓 𝑥 + 𝑓 𝑥 2 − 𝑎2 + 𝑐
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EXERCISE 4.1

BASIC

Find

1 න
𝑑𝑥

𝑥2 + 6𝑥 + 25

2 න
1

20 − 8𝑥 − 𝑥2
𝑑𝑥

3 න
1

𝑥2 − 8𝑥 + 7
𝑑𝑥

4 න
1

𝑥2 − 3𝑥 + 3
𝑑𝑥

MEDIUM

5 න
1

4𝑥2 − 16
𝑑𝑥

6 න
2

4𝑥2 − 4𝑥 + 17
𝑑𝑥

7 න
2𝑥

𝑥4 + 2𝑥2 + 5
𝑑𝑥

CHALLENGING

8 න
cos 𝑥

sin2 𝑥 + 2 sin𝑥 + 5
𝑑𝑥

9 න
𝑒𝑥

𝑒2𝑥 + 2𝑒𝑥 − 3
𝑑𝑥

10 න
cos 𝑥 − sin𝑥

2 + sin 2𝑥
𝑑𝑥

Mathematics Extension 2 © Steve Howard 270 Howard and Howard Education



SOLUTIONS - EXERCISE 4.1

1

න
𝑑𝑥

𝑥2 + 6𝑥 + 25

= න
𝑑𝑥

𝑥2 + 6𝑥 + 9 + 16

= න
𝑑𝑥

𝑥 + 3 2 + 42

=
1

4
tan−1

𝑥 + 3

4
+ 𝑐

2

න
1

20 − 8𝑥 − 𝑥2
𝑑𝑥

= න
1

− 𝑥2 + 8𝑥 − 20
𝑑𝑥

= න
1

− 𝑥2 + 8𝑥 + 16 − 36
𝑑𝑥

= න
1

62 − 𝑥 + 4 2
𝑑𝑥

= sin−1
𝑥 + 4

6
+ 𝑐

3

න
1

𝑥2 − 8𝑥 + 7
𝑑𝑥

= න
1

𝑥2 − 8𝑥 + 16 − 9
𝑑𝑥

= න
1

𝑥 − 4 2 − 32
𝑑𝑥

= ln 𝑥 − 4 + 𝑥2 − 8𝑥 + 7 + 𝑐

4

න
1

𝑥2 − 3𝑥 + 3
𝑑𝑥

= න
1

𝑥2 − 3𝑥 +
9
4
+
3
4

𝑑𝑥

= න
1

𝑥 −
3
2

2

+
3
2

2 𝑑𝑥

=
2

3
tan−1

𝑥 −
3
2

ൗ3
2

+ 𝑐

=
2

3
tan−1

2𝑥 − 3

3
+ 𝑐

5

න
1

4𝑥2 − 16
𝑑𝑥

=
1

2
න

2

𝑥2 − 22
𝑑𝑥

=
1

2
ln 𝑥 + 𝑥2 − 4 + 𝑐

6

න
2

4𝑥2 − 4𝑥 + 17
𝑑𝑥

= න
2

4𝑥2 − 4𝑥 + 1 + 16
𝑑𝑥

= න
2

2𝑥 − 1 2 + 42
𝑑𝑥

=
1

4
tan−1

2𝑥 − 1

4
+ 𝑐
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7

න
2𝑥

𝑥4 + 2𝑥2 + 5
𝑑𝑥

= න
2𝑥

𝑥4 + 2𝑥2 + 1 + 4
𝑑𝑥

= න
2𝑥

𝑥2 + 1 2 + 22
𝑑𝑥

=
1

2
tan−1

𝑥2 + 1

2
+ 𝑐

8

න
cos 𝑥

sin2 𝑥 + 2 sin𝑥 + 5
𝑑𝑥

= න
cos 𝑥

sin2 𝑥 + 2 sin𝑥 + 1 + 4
𝑑𝑥

= න
cos 𝑥

sin 𝑥 + 1 2 + 22
𝑑𝑥

=
1

2
tan−1

sin 𝑥 + 1

2
+ 𝑐

9

න
𝑒𝑥

𝑒2𝑥 + 2𝑒𝑥 − 3
𝑑𝑥

= න
𝑒𝑥

𝑒2𝑥 + 2𝑒𝑥 + 1 − 4
𝑑𝑥

= න
𝑒𝑥

𝑒𝑥 + 1 2 − 22
𝑑𝑥

= ln 𝑒𝑥 + 1 + 𝑒2𝑥 + 2𝑒𝑥 − 3 + 𝑐

10

න
cos 𝑥 − sin𝑥

2 + sin 2𝑥
𝑑𝑥

= න
cos 𝑥 − sin𝑥

2 + 2 sin𝑥 cos 𝑥
𝑑𝑥

= න
cos 𝑥 − sin𝑥

sin2 𝑥 + 2 sin𝑥 cos 𝑥 + cos2 𝑥 + 1
𝑑𝑥

= න
cos 𝑥 − sin 𝑥

sin𝑥 + cos 𝑥 2 + 1
𝑑𝑥

= tan−1 sin 𝑥 + cos 𝑥 + 𝑐
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4.2 THE REVERSE CHAIN RULE & U SUBSTITUTIONS

In Lesson 2 we look at integrals where we need to use the Reverse Chain Rule or a 𝑢

substitution before we can use the standard integrals.

We will cover:

• The Reverse Chain Rule and 𝑢 Substitutions

THE REVERSE CHAIN RULE & U SUBSTITUTIONS

Many integration questions in Extension 1 involve 𝑢 substitutions, and in Extension 1 you will

always be given the substitution. You will also often be told you have to use the 𝑢 substitution.

In Extension 2 we could get exactly the same question, but not be told how to solve it - we either

need to work out what substitution to use, or use the Reverse Chain Rule which is often quicker.

The Reverse Chain Rule is actually the first Standard Integral on the reference sheet.

Mastering the Reverse Chain Rule also makes Integration by Parts and Recurrence

Relationships much easier when we get to them later in the chapter.

Consider                            . We have the compound function 2𝑥2 + 3 3 multiplied by the 

function 𝑥. If we were to use a 𝑢 substitution then we would let 𝑢 be equal to the inner function 

of the compound function, so 𝑢 = 2𝑥 + 3, and we could then solve it like in Extension 1.

With practice it is easier to solve questions like this using the Reverse Chain Rule. Consider first 

the compound function 𝑦 = 2𝑥2 + 3 4, where the inner function is 𝑓 𝑥 = 2𝑥2 + 3 and the outer 

function is raising this to the power of 4. Differentiating the compound function we would get:

𝑦 = 2𝑥2 + 3 4

𝑑𝑦

𝑑𝑥
= 4 2𝑥2 + 3 3 4𝑥

= 16𝑥 2𝑥2 + 3 3

So to summarise

2𝑥2 + 3 4

16𝑥 2𝑥2 + 3 3

differentiate integrate

න𝑥 2𝑥2 + 3 3 𝑑𝑥
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This means that if we get an integrand that is a multiple of 16𝑥 2𝑥2 + 3 3 then the primitive will

be the same multiple of 2𝑥2 + 3 4. So going to the original question we can say:

න𝑥 2𝑥2 + 3 3 𝑑𝑥

=
1

16
න16𝑥 2𝑥2 + 3 3 𝑑𝑥

=
2𝑥2 + 3 4

16
+ 𝑐

Now that explains what is happening for this one question, but it needs a little tweak before we

get a method that will work to easily solve many integration questions. Let’s redo the same

question, but this time we will rearrange the integrand into the form 𝑓′ 𝑥 𝑔 𝑓 𝑥 , so the first

function 𝑓′(𝑥) is the derivative of the inner function of the compound function 𝑔 𝑓 𝑥 . We will

often need to multiply by a constant (the fudge factor) to make the integral equivalent. Once the

integrand is in that form we can take the primitive of the outer function, leaving the inner function

the same as shown below, then simplifying the solution.

න𝑥 2𝑥2 + 3 3 𝑑𝑥

=
1

4
න4𝑥 2𝑥2 + 3 3 𝑑𝑥

=
1

4
×

2𝑥2 + 3 4

4
+ 𝑐

=
2𝑥2 + 3 4

16
+ 𝑐

We will now look at finding integrals where we can use either the Reverse Chain Rule of 𝑢

substitutions - each question will be solved using both methods.

It is helpful to think of the functions we use in Integration in five groups: Algebraic, Trig, Inverse

Trig, Exponential and Logarithmic. We will use a mix of the five groups as the inner and outer

functions.

Take the primitive of the outer function,

leaving the inner function the same
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Example 1

Find

Solution

න𝑥3 𝑥4 − 2 5

=
1

4
න4𝑥3 𝑥4 − 2 5 𝑑𝑥

=
1

4
×

𝑥4 − 2 6

6
+ 𝑐

=
𝑥4 − 2 6

24
+ 𝑐

න𝑥3 𝑥4 − 2 5

= න𝑥3 × 𝑢5 ×
𝑑𝑢

4𝑥3

=
1

4
න𝑢5 𝑑𝑢

=
1

4
×
𝑢6

6
+ 𝑐

=
𝑥4 − 2 6

24
+ 𝑐

න𝑥3 𝑥4 − 2 5 𝑑𝑥

𝑢 = 𝑥4 − 2

𝑑𝑢

𝑑𝑥
= 4𝑥3

𝑑𝑥 =
𝑑𝑢

4𝑥3

Example 2

Find

Solution

න
𝑥

2𝑥2 − 1
𝑑𝑥

=
1

4
න4𝑥 2𝑥2 − 1 −

1
2 𝑑𝑥

=
1

4
× 2 2𝑥2 − 1

1
2 + 𝑐

=
2𝑥2 − 1

2
+ 𝑐

න
𝑥

2𝑥2 − 1
𝑑𝑥

= න
𝑥

𝑢
×
𝑢 𝑑𝑢

2𝑥

=
1

2
න𝑑𝑢

=
1

2
𝑢 + 𝑐

=
2𝑥2 − 1

2
+ 𝑐

න
𝑥

2𝑥2 − 1
𝑑𝑥

𝑢2 = 2𝑥2 − 1

2𝑢 𝑑𝑢 = 4𝑥 𝑑𝑥

𝑑𝑥 =
𝑢 𝑑𝑢

2𝑥
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Example 3

Find

Solution

න𝑒3𝑥 𝑒3𝑥 + 1𝑑𝑥

=
1

3
න3𝑒3𝑥 𝑒3𝑥 + 1

1
2 𝑑𝑥

=
1

3
×
2

3
𝑒3𝑥 + 1

3
2 + 𝑐

=
2 𝑒3𝑥 + 1 3

9
+ 𝑐

න𝑒3𝑥 𝑒3𝑥 + 1𝑑𝑥

= න𝑒3𝑥 × 𝑢 ×
2𝑢 𝑑𝑢

3𝑒3𝑥

=
2

3
න𝑢2 𝑑𝑢

=
2

3
×
𝑢3

3
+ 𝑐

=
2 𝑒3𝑥 + 1 3

9
+ 𝑐

න𝑒3𝑥 𝑒3𝑥 + 1𝑑𝑥

𝑢2 = 𝑒3𝑥 + 1

2𝑢 𝑑𝑢 = 3𝑒3𝑥𝑑𝑥

𝑑𝑥 =
2𝑢 𝑑𝑢

3𝑒3𝑥

Example 4

Find

Solution

න𝑥 sin𝑥2 𝑑𝑥

=
1

2
න2𝑥 sin 𝑥2 𝑑𝑥

= −
1

2
cos 𝑥2 + 𝑐

න𝑥 sin𝑥2 𝑑𝑥

= න𝑥 × sin 𝑢 ×
𝑑𝑢

2𝑥

=
1

2
නsin𝑢 𝑑𝑢

= −
1

2
cos𝑢 + 𝑐

= −
1

2
cos 𝑥2 + 𝑐

න𝑥 sin𝑥2 𝑑𝑥

𝑢 = 𝑥2

𝑑𝑢

𝑑𝑥
= 2𝑥

𝑑𝑥 =
𝑑𝑢

2𝑥
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Example 5

Find

Solution

න cos 2𝑥 sin 2𝑥 𝑑𝑥

= −
1

2
න −2 sin 2𝑥 cos 2𝑥

1
2 𝑑𝑥

= −
1

2
×
2

3
cos 2𝑥

3
2 + 𝑐

= −
cos3 2𝑥

3
+ 𝑐

න cos 2𝑥 sin 2𝑥 𝑑𝑥

= න𝑢 × sin2𝑥 × −
𝑢 𝑑𝑢

sin2𝑥

= −න𝑢2 𝑑𝑢

= −
𝑢3

3
+ 𝑐

= −
cos3 2𝑥

3
+ 𝑐

න cos 2𝑥 sin 2𝑥 𝑑𝑥

𝑢2 = cos 2𝑥

2𝑢 𝑑𝑢 = −2 sin2𝑥 𝑑𝑥

𝑑𝑥 = −
𝑢 𝑑𝑢

sin2𝑥

Example 6

Find

Solution

න𝑒𝑥 sin 𝑒𝑥 𝑑𝑥

= −cos 𝑒𝑥 + 𝑐

න𝑒𝑥 sin 𝑒𝑥 𝑑𝑥

= න𝑒𝑥 sin𝑢 ×
𝑑𝑢

𝑒𝑥

= නsin𝑢 𝑑𝑢

= −cos 𝑢 + 𝑐

= −cos 𝑒𝑥 + 𝑐

න𝑒𝑥 sin 𝑒𝑥 𝑑𝑥

𝑢 = 𝑒𝑥

𝑑𝑢 = 𝑒𝑥𝑑𝑥

𝑑𝑥 =
𝑑𝑢

𝑒𝑥
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Example 7

Find

Solution

න
𝑒sin

−1 𝑥

1 − 𝑥2
𝑑𝑥

= න
1

1 − 𝑥2
× 𝑒sin

−1 𝑥 𝑑𝑥

= 𝑒sin
−1 𝑥 + 𝑐

න
𝑒sin

−1 𝑥

1 − 𝑥2
𝑑𝑥

= න
𝑒𝑢

1 − 𝑥2
× 1 − 𝑥2𝑑𝑢

= න𝑒𝑢 𝑑𝑢

= 𝑒𝑢 + 𝑐

= 𝑒sin
−1 𝑥 + 𝑐

න
𝑒sin

−1 𝑥

1 − 𝑥2
𝑑𝑥

𝑢 = sin−1 𝑥

𝑑𝑢 =
1

1 − 𝑥2
𝑑𝑥

𝑑𝑥 = 1 − 𝑥2𝑑𝑢

Example 8

Find

Solution

න
sin ln 𝑥

𝑥
𝑑𝑥

= න
1

𝑥
sin(ln 𝑥 ) 𝑑𝑥

= −cos ln 𝑥 + 𝑐

න
sin ln 𝑥

𝑥
𝑑𝑥

= න
sin𝑢

𝑥
× 𝑥 𝑑𝑢

= නsin𝑢 𝑑𝑢

= −cos 𝑢 + 𝑐

= −cos ln 𝑥 + 𝑐

න
sin ln 𝑥

𝑥
𝑑𝑥

𝑢 = ln 𝑥

𝑑𝑢 =
1

𝑥
𝑑𝑥

𝑑𝑥 = 𝑥 𝑑𝑢
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EXERCISE 4.2

BASIC

Find

1 න𝑥2 𝑥3 + 4 5 𝑑𝑥 4 න𝑥 cos 𝑥2 𝑑𝑥

2 න
𝑥2

2𝑥3 − 1
𝑑𝑥 5 නtan3 𝑥 sec2 𝑥 𝑑𝑥

3 න𝑒2𝑥 𝑒2𝑥 − 1𝑑𝑥 6 න
cos 𝑥

sin5 𝑥
𝑑𝑥

MEDIUM

7 නsin
3
2 2𝑥 cos 2𝑥 𝑑𝑥 13 න𝑥2𝑒𝑥

3
𝑑𝑥

8 න sin2𝑥 cos 2𝑥 𝑑𝑥 14 න
𝑥3 + 𝑥2

3𝑥4 + 4𝑥3
𝑑𝑥

9 න𝑒𝑥 cos 𝑒𝑥 𝑑𝑥 15 න
sin tan−1 𝑥

1 + 𝑥2
𝑑𝑥

10 න
𝑒cos

−1 𝑥

1 − 𝑥2
𝑑𝑥 16 න(𝑒𝑡

2
+ 16)𝑡𝑒𝑡

2
𝑑𝑡

11 න
cos ln 𝑥

𝑥
𝑑𝑥 17 න

cosec 𝑥 cot 𝑥

1 + cosec2 𝑥
𝑑𝑥

12 න(3𝑥2 + 2𝑥) 𝑥3 + 𝑥2 𝑑𝑥

CHALLENGING

18 න
cos3 𝑥

sin𝑥
𝑑𝑥 20 න

𝑒 sin 𝑥

sec 𝑥 sin 𝑥
𝑑𝑥

19 න
𝑥 sin 2𝑥2 − 1

2𝑥2 − 1
𝑑𝑥

Mathematics Extension 2 © Steve Howard 279 Howard and Howard Education



SOLUTIONS - EXERCISE 4.2

1

න𝑥2 𝑥3 + 4 5 𝑑𝑥

=
1

3
න3𝑥2 𝑥3 + 4 5 𝑑𝑥

=
1

3
×

𝑥3 + 4 6

6
+ 𝑐

=
𝑥3 + 4 6

18
+ 𝑐

න𝑥2 𝑥3 + 4 5 𝑑𝑥

= න𝑥2 × 𝑢5 ×
𝑑𝑢

3𝑥2

=
1

3
න𝑢5 𝑑𝑢

=
1

3
×
𝑢6

6
+ 𝑐

=
𝑥3 + 4 6

18
+ 𝑐

2

න
𝑥2

2𝑥3 − 1
𝑑𝑥

=
1

6
න6𝑥2 2𝑥3 − 1 −

1
2 𝑑𝑥

=
1

6
× 2 2𝑥3 − 1

1
2 + 𝑐

=
2𝑥3 − 1

3
+ 𝑐

න
𝑥2

2𝑥3 − 1
𝑑𝑥

= න
𝑥2

𝑢
×
𝑢 𝑑𝑢

3𝑥2

=
1

3
න𝑑𝑢

=
1

3
𝑢 + 𝑐

=
2𝑥3 − 1

3
+ 𝑐

3

න𝑒2𝑥 𝑒2𝑥 − 1𝑑𝑥

=
1

2
න2𝑒2𝑥 𝑒2𝑥 − 1

1
2 𝑑𝑥

=
1

2
×
2

3
𝑒2𝑥 − 1

3
2 + 𝑐

=
𝑒2𝑥 − 1 3

3
+ 𝑐

න𝑒2𝑥 𝑒2𝑥 − 1𝑑𝑥

= න𝑒2𝑥 × 𝑢 ×
𝑢 𝑑𝑢

𝑒2𝑥

= න𝑢2 𝑑𝑢

=
𝑢3

3
+ 𝑐

=
𝑒2𝑥 − 1 3

3
+ 𝑐

𝑢 = 𝑥3 + 4

𝑑𝑢

𝑑𝑥
= 3𝑥2

𝑑𝑥 =
𝑑𝑢

3𝑥2

𝑢2 = 2𝑥3 − 1

2𝑢 𝑑𝑢 = 6𝑥2 𝑑𝑥

𝑑𝑥 =
𝑢 𝑑𝑢

3𝑥2

𝑢2 = 𝑒2𝑥 − 1

2𝑢 𝑑𝑢 = 2𝑒2𝑥𝑑𝑥

𝑑𝑥 =
𝑢 𝑑𝑢

𝑒2𝑥
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4

න𝑥 cos 𝑥2 𝑑𝑥

=
1

2
න2𝑥 cos 𝑥2 𝑑𝑥

=
1

2
sin𝑥2 + 𝑐

න𝑥 cos 𝑥2 𝑑𝑥

= න𝑥 × cos 𝑢 ×
𝑑𝑢

2𝑥

=
1

2
නcos𝑢 𝑑𝑢

=
1

2
sin𝑢 + 𝑐

=
1

2
sin𝑥2 + 𝑐

5

නtan3 𝑥 sec2 𝑥 𝑑𝑥

= නsec2 𝑥 tan 𝑥 3 𝑑𝑥

=
tan4 𝑥

4
+ 𝑐

නtan3 𝑥 sec2 𝑥 𝑑𝑥

= න𝑢3 × sec2 𝑥 ×
𝑑𝑢

sec2 𝑥

= න𝑢3 𝑑𝑢

=
𝑢4

4
+ 𝑐

=
tan4 𝑥

4
+ 𝑐

6

න
cos 𝑥

sin5 𝑥
𝑑𝑥

= නcos 𝑥 sin 𝑥 −5 𝑑𝑥

=
sin𝑥 −4

−4
+ 𝑐

= −
1

4 sin4 𝑥
+ 𝑐

න
cos 𝑥

sin5 𝑥
𝑑𝑥

= න
cos 𝑥

𝑢5
×

𝑑𝑢

cos 𝑥

= න𝑢−5 𝑑𝑢

=
𝑢−4

−4
+ 𝑐

= −
1

4 sin4 𝑥
+ 𝑐

𝑢 = 𝑥2

𝑑𝑢

𝑑𝑥
= 2𝑥

𝑑𝑥 =
𝑑𝑢

2𝑥

𝑢 = tan 𝑥

𝑑𝑢 = sec2 𝑥 𝑑𝑥

𝑑𝑥 =
𝑑𝑢

sec2 𝑥

𝑢 = sin𝑥

𝑑𝑢 = cos 𝑥 𝑑𝑥

𝑑𝑥 =
𝑑𝑢

cos 𝑥
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7

නsin
3
2 2𝑥 cos 2𝑥 𝑑𝑥

=
1

2
න2 cos 2𝑥 sin 2𝑥

3
2 𝑑𝑥

=
1

2
×
2

5
sin2𝑥

5
2 + 𝑐

=
sin5 2𝑥

5
+ 𝑐

නsin
3
2 2𝑥 cos 2𝑥 𝑑𝑥

= න𝑢
3
2 × cos 2𝑥 ×

𝑑𝑢

2 cos 2𝑥

=
1

2
න𝑢

3
2 𝑑𝑢

=
1

2
×
2

5
𝑢
5
2 + 𝑐

=
sin5 2𝑥

5
+ 𝑐

8

න sin2𝑥 cos 2𝑥 𝑑𝑥

=
1

2
න 2 cos 2𝑥 sin2𝑥

1
2 𝑑𝑥

=
1

2
×
2

3
sin2𝑥

3
2 + 𝑐

=
sin3 2𝑥

3
+ 𝑐

න sin2𝑥 cos 2𝑥 𝑑𝑥

= න𝑢 × cos 2𝑥 ×
𝑢 𝑑𝑢

cos 2𝑥

= න𝑢2 𝑑𝑢

=
𝑢3

3
+ 𝑐

=
sin3 2𝑥

3
+ 𝑐

9

න𝑒𝑥 cos 𝑒𝑥 𝑑𝑥

= sin 𝑒𝑥 + 𝑐

න𝑒𝑥 cos 𝑒𝑥 𝑑𝑥

= න𝑒𝑥 cos 𝑢 ×
𝑑𝑢

𝑒𝑥

= නcos 𝑢 𝑑𝑢

= sin𝑢 + 𝑐

= sin 𝑒𝑥 + 𝑐

𝑢2 = sin2𝑥

2𝑢 𝑑𝑢 = 2 cos 2𝑥 𝑑𝑥

𝑑𝑥 =
𝑢 𝑑𝑢

cos 2𝑥

𝑢 = 𝑒𝑥

𝑑𝑢 = 𝑒𝑥𝑑𝑥

𝑑𝑥 =
𝑑𝑢

𝑒𝑥

𝑢 = sin 2𝑥

𝑑𝑢 = 2 cos 2𝑥 𝑑𝑥

𝑑𝑥 =
𝑑𝑢

2 cos 2𝑥
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10

න
𝑒cos

−1 𝑥

1 − 𝑥2
𝑑𝑥

= −න
−1

1 − 𝑥2
× 𝑒cos

−1 𝑥 𝑑𝑥

= −𝑒cos
−1 𝑥 + 𝑐

න
𝑒cos

−1 𝑥

1 − 𝑥2
𝑑𝑥

= න
𝑒𝑢

1 − 𝑥2
× (− 1 − 𝑥2𝑑𝑢)

= −න𝑒𝑢 𝑑𝑢

= −𝑒𝑢 + 𝑐

= −𝑒cos
−1 𝑥 + 𝑐

11
න
cos ln 𝑥

𝑥
𝑑𝑥

= න
1

𝑥
cos(ln 𝑥 ) 𝑑𝑥

= sin ln 𝑥 + 𝑐

න
cos ln 𝑥

𝑥
𝑑𝑥

= න
cos 𝑢

𝑥
× 𝑥 𝑑𝑢

= නcos 𝑢 𝑑𝑢

= sin𝑢 + 𝑐

= sin ln 𝑥 + 𝑐

12

න(3𝑥2 + 2𝑥) 𝑥3 + 𝑥2 𝑑𝑥

= න 3𝑥2 + 2𝑥 𝑥3 + 𝑥2
1
2 𝑑𝑥

=
2 𝑥3 + 𝑥2

3
2

3
+ 𝑐

=
2 𝑥3 + 𝑥2 3

3
+ 𝑐

න(3𝑥2 + 2𝑥) 𝑥3 + 𝑥2 𝑑𝑥

= න 3𝑥2 + 2𝑥 × 𝑢 ×
2𝑢 𝑑𝑢

3𝑥2 + 2𝑥

= 2න𝑢2 𝑑𝑢

= 2 ×
𝑢3

3
+ 𝑐

=
2 𝑥3 + 𝑥2

3
2

3
+ 𝑐

=
2 𝑥3 + 𝑥2 2

3
+ 𝑐

13
න𝑥2𝑒𝑥

3
𝑑𝑥

=
1

3
න3𝑥2𝑒𝑥

3
𝑑𝑥

=
1

3
𝑒𝑥

3
+ 𝑐

න𝑥2𝑒𝑥
3
𝑑𝑥

= න𝑥2 × 𝑒𝑢 ×
𝑑𝑢

3𝑥2

=
1

3
න𝑒𝑢 𝑑𝑢

=
1

3
𝑒𝑢 + 𝑐

=
1

3
𝑒𝑥

3
+ 𝑐

𝑢 = cos−1 𝑥

𝑑𝑢 =
−1

1 − 𝑥2
𝑑𝑥

𝑑𝑥 = − 1 − 𝑥2𝑑𝑢

𝑢 = ln 𝑥

𝑑𝑢 =
1

𝑥
𝑑𝑥

𝑑𝑥 = 𝑥 𝑑𝑢

𝑢 = 𝑥3

𝑑𝑢 = 3𝑥2𝑑𝑥

𝑑𝑥 =
𝑑𝑢

3𝑥2

𝑢2 = 𝑥3 + 𝑥2

2𝑢 𝑑𝑢 = 3𝑥2 + 2𝑥 𝑑𝑥

𝑑𝑥 =
2𝑢 𝑑𝑢

3𝑥2 + 2𝑥
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14

න
𝑥3 + 𝑥2

3𝑥4 + 4𝑥3
𝑑𝑥

=
1

12
න
12𝑥3 + 12𝑥2

3𝑥4 + 4𝑥3
𝑑𝑥

=
1

12
ln 3𝑥4 + 4𝑥3 + 𝑐

න
𝑥3 + 𝑥2

3𝑥4 + 4𝑥3
𝑑𝑥

= න
𝑥3 + 𝑥2

𝑢
×

𝑑𝑢

12𝑥3 + 12𝑥2

=
1

12
න
1

𝑢
𝑑𝑢

=
1

12
ln 𝑢 + 𝑐

=
1

12
ln 3𝑥4 + 4𝑥3 + 𝑐

15

න
sin tan−1 𝑥

1 + 𝑥2
𝑑𝑥

= න
1

1 + 𝑥2
sin(tan−1 𝑥) 𝑑𝑥

= −cos tan−1 𝑥 + 𝑐

= −
1

1 + 𝑥2
+ 𝑐

න
sin tan−1 𝑥

1 + 𝑥2
𝑑𝑥

= න
sin𝑢

1 + 𝑥2
× 1 + 𝑥2 𝑑𝑢

= නsin𝑢 𝑑𝑢

= −cos 𝑢 + 𝑐

= −cos tan−1 𝑥 + 𝑐

= −
1

1 + 𝑥2
+ 𝑐

16

න(𝑒𝑡
2
+ 16)𝑡𝑒𝑡

2
𝑑𝑡

=
1

2
න2𝑡𝑒𝑡

2
𝑒𝑡

2
+ 16 𝑑𝑡

=
1

2
×

𝑒𝑡
2
+ 16

2

2
+ 𝑐

=
𝑒𝑡

2
+ 16

2

4
+ 𝑐

න(𝑒𝑡
2
+ 16)𝑡𝑒𝑡

2
𝑑𝑡

= න𝑢 × 𝑡𝑒𝑡
2
×

𝑑𝑢

2𝑡𝑒𝑡
2

=
1

2
න𝑢𝑑𝑢

=
1

2
×
𝑢2

2
+ 𝑐

=
𝑒𝑡

2
+ 16

2

4
+ 𝑐

17 න
cosec 𝑥 cot 𝑥

1 + cosec2 𝑥
𝑑𝑥

= −න −cosec 𝑥 cot 𝑥
1

1 + cosec

= − tan−1(cosec 𝑥) + 𝑐

න
cosec 𝑥 cot 𝑥

1 + cosec2 𝑥
𝑑𝑥

= න
cosec 𝑥 cot 𝑥

1 + 𝑢2
× (−

𝑑𝑢

cosec 𝑥 cot 𝑥
)

= −න
1

1 + 𝑢2
𝑑𝑢

= − tan−1 𝑢 + 𝑐

= − tan−1 cosec 𝑥 + 𝑐

𝑢 = 3𝑥4 + 4𝑥3

𝑑𝑢 = 12𝑥3 + 12𝑥2 𝑑𝑥

𝑑𝑥 =
𝑑𝑢

12𝑥3 + 12𝑥2

𝑢 = tan−1 𝑥

𝑑𝑢 =
1

1 + 𝑥2
𝑑𝑥

𝑑𝑥 = 1 + 𝑥2 𝑑𝑢

𝑢 = 𝑒𝑡
2
+ 16

𝑑𝑢 = 2𝑡𝑒𝑡
2
𝑑𝑡

𝑑𝑡 =
𝑑𝑢

2𝑡𝑒𝑡
2

𝑢 = cosec 𝑥

𝑑𝑢 = −cosec 𝑥 cot 𝑥 𝑑𝑥

𝑑𝑥 = −
𝑑𝑢

cosec 𝑥 cot 𝑥
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18

න
cos3 𝑥

sin𝑥
𝑑𝑥

= න
1 − sin2 𝑥

sin𝑥
× cos 𝑥 𝑑𝑥

= නcos 𝑥 sin 𝑥 −
1
2 − sin𝑥

3
2 𝑑𝑥

= 2 sin𝑥
1
2 −

2

5
sin𝑥

5
2 + 𝑐

= 2 sin𝑥 −
2 sin5 𝑥

5
+ 𝑐

න
cos3 𝑥

sin𝑥
𝑑𝑥

= න
cos3 𝑥

𝑢
×
2𝑢 𝑑𝑢

cos 𝑥

= 2නcos2 𝑥 𝑑𝑢

= 2න(1 − sin2 𝑥) 𝑑𝑢

= 2න(1 − 𝑢4) 𝑑𝑢

= 2𝑢 −
2𝑢5

5
+ 𝑐

= 2 sin𝑥 −
2 sin5 𝑥

5
+ 𝑐

19

න
𝑥 sin 2𝑥2 − 1

2𝑥2 − 1
𝑑𝑥

=
1

2
න

2𝑥

2𝑥2 − 1
sin 2𝑥2 − 1 𝑑𝑥

= −
1

2
cos 2𝑥2 − 1 + 𝑐

න
𝑥 sin 2𝑥2 − 1

2𝑥2 − 1
𝑑𝑥

= න
𝑥 sin𝑢

𝑢
×
𝑢 𝑑𝑢

2𝑥

=
1

2
නsin𝑢 𝑑𝑢

= −
1

2
cos 𝑢 + 𝑐

= −
1

2
cos 2𝑥2 − 1 + 𝑐

20
න

𝑒 sin 𝑥

sec 𝑥 sin 𝑥
𝑑𝑥

= 2න
cos 𝑥

2 sin𝑥
𝑒 sin 𝑥 𝑑𝑥

= 2𝑒 sin 𝑥 + 𝑐

න
𝑒 sin 𝑥

sec 𝑥 sin 𝑥
𝑑𝑥

= න
𝑒𝑢

sec 𝑥 × 𝑢
× 2𝑢

𝑑𝑢

cos 𝑥

= 2න𝑒𝑢 𝑑𝑢

= 2𝑒𝑢 + 𝑐

= 2𝑒 sin 𝑥 + 𝑐

𝑢2 = sin𝑥

2𝑢 𝑑𝑢 = cos 𝑥 𝑑𝑥

𝑑𝑥 =
2𝑢 𝑑𝑢

cos 𝑥

𝑢 = 2𝑥2 − 1
1
2

𝑑𝑢 =
1

2
2𝑥2 − 1 −

1
2 4𝑥 𝑑𝑥

𝑑𝑥 =
2𝑥2 − 1𝑑𝑢

2𝑥

= 𝑢 𝑑𝑢

𝑢 = sin𝑥
1
2

𝑑𝑢 =
1

2
sin𝑥 −

1
2 cos 𝑥 𝑑𝑥

𝑑𝑥 = 2 sin𝑥
𝑑𝑢

cos 𝑥

=
2𝑢 𝑑𝑢

cos 𝑥
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4.3 SPLITTING THE NUMERATOR

In Lesson 3 we spend the first of two lessons looking at integrals involving rational fractions,

which must be broken into simpler fractions before we can use the standard integrals. In this

lesson we will look at simple rational functions which we can break up by splitting the

numerator, or partial fractions by inspection.

We will cover:

• Splitting the numerator, where the degree of the numerator

• is greater than or equal to that of the denominator

• is one less than that of the denominator

• Partial Fractions by Inspection

SPLITTING THE NUMERATOR

Rational functions are fractions where the numerator and denominator are both polynomials.

Examples include

𝑥2 + 2𝑥 + 3

𝑥 − 1

𝑥 + 2

𝑥 + 1

4𝑥

𝑥2 + 4𝑥 − 6

Splitting the numerator is a method of rewriting the numerator in terms of another polynomial -

the denominator and the derivative of the denominator are useful in different situations. You

may have used this method for dividing polynomials in Year 11, where it is a much better

alternative to long division. We can also use this method for similar functions - functions that

would be rational functions after making a 𝑢 substitution.

The polynomial we choose depends on the relative degrees of the numerator and denominator.

Looking at the three examples above, we see:

1. on the left and in the middle, the degree of the numerator is greater than or equal to

that of the denominator

2. on the right the numerator has a degree one less than that o the denominator

In all cases we need to have a rational function where the numerator is less than the

denominator before we can use any of the standard integrals.
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Case 1: The degree of the numerator is greater than or equal to that of the denominator

If the numerator has degree that is greater than or equal to the degree of the denominator, then

we rewrite the numerator as multiples of the denominator, leaving us with the sum of a

polynomial and a rational fraction.

Example 1

Find

Solution

න
𝑥2 + 2𝑥 + 3

𝑥 − 1
𝑑𝑥

= න
𝑥 𝑥 − 1 + 3 𝑥 − 1 + 6

𝑥 − 1
𝑑𝑥

= න 𝑥 + 3 +
6

𝑥 − 1
𝑑𝑥

=
𝑥2

2
+ 3𝑥 + 6 ln 𝑥 − 1 + 𝑐

න
𝑥2 + 2𝑥 + 3

𝑥 − 1
𝑑𝑥

Example 2

Find

Solution

න
𝑥 + 2

𝑥 + 1
𝑑𝑥

= න
𝑥 + 1 + 1

𝑥 + 1
𝑑𝑥

= න 1 +
1

𝑥 + 1
𝑑𝑥

= 𝑥 + ln 𝑥 + 1 + 𝑐

න
𝑥 + 2

𝑥 + 1
𝑑𝑥
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Example 4

Find

Solution

න
𝑒2𝑥 + 𝑒𝑥

𝑒2𝑥 − 𝑒𝑥
𝑑𝑥

= න
𝑒2𝑥 − 𝑒𝑥 + 2𝑒𝑥

𝑒2𝑥 − 𝑒𝑥
𝑑𝑥

= න 1 +
2𝑒𝑥

𝑒2𝑥 − 𝑒𝑥
𝑑𝑥

= න 1 +
2𝑒−𝑥

1 − 𝑒−𝑥
𝑑𝑥

= න 1 + 2 ×
𝑒−𝑥

1 − 𝑒−𝑥
𝑑𝑥

= 𝑥 + 2 ln 1 − 𝑒−𝑥 + 𝑐

= 𝑥 + 2 ln
𝑒𝑥 − 1

𝑒𝑥
+ 𝑐

= 𝑥 + 2 ln 𝑒𝑥 − 1 − 2 ln 𝑒𝑥 + 𝑐

= 2 ln 𝑒𝑥 − 1 − 𝑥 + 𝑐

න
𝑒2𝑥 + 𝑒𝑥

𝑒2𝑥 − 𝑒𝑥
𝑑𝑥

The same techniques work for functions that would be rational functions after a 𝑢 substitution.

Example 3

Find

Solution

න
𝑥2 + 5

𝑥2 + 1
𝑑𝑥

= න
𝑥2 + 1 + 4

𝑥2 + 1
𝑑𝑥

= න 1 +
4

𝑥2 + 12
𝑑𝑥

= 𝑥 + 4 tan−1 𝑥 + 𝑐

න
𝑥2 + 5

𝑥2 + 1
𝑑𝑥

Getting to this step in an exam 

would probably be enough
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Case 2: The degree of the numerator is one less than that of the denominator

If the numerator has degree that is one less than the degree of the denominator, then we rewrite

the numerator as multiples of the derivative of the denominator, leaving us with the sum of a

polynomial and a rational fraction.

Example 5

Find

Solution

න
4𝑥

𝑥2 + 4𝑥 + 13
𝑑𝑥

= න
2 2𝑥 + 4 − 8

𝑥2 + 4𝑥 + 4 + 9
𝑑𝑥

= 2න
2𝑥 + 4

𝑥2 + 4𝑥 + 13
𝑑𝑥 − 8න

1

𝑥 + 2 2 + 32
𝑑𝑥

= 2 ln 𝑥2 + 4𝑥 + 13 −
8

3
tan−1

𝑥 + 2

3
+ 𝑐

න
4𝑥

𝑥2 + 4𝑥 + 13
𝑑𝑥
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Example 6

Find

Solution

න
3

𝑥 𝑥 + 1
𝑑𝑥

= 3න
1

𝑥
−

1

𝑥 + 1
𝑑𝑥

= 3 ln 𝑥 − 3 ln 𝑥 + 1 + 𝑐

= 3 ln
𝑥

𝑥 + 1
+ 𝑐

න
3

𝑥 𝑥 + 1
𝑑𝑥

PARTIAL FRACTIONS BY INSPECTION

Partial Fractions involves breaking a rational function into the sum or difference of two or more

simpler fractions. It only works for rational fractions whose denominator can be factorised (think

cross multiplying to realise why).

We can create partial fractions by inspection for easier examples, or next lesson we will look at

three more formal methods for harder examples.

We will try putting 1 over each factor, and subtracting the two

fractions, which will get rid of the 𝑥 in the numerator when

we cross multiply. We then need to place a fudge factor out

the front, so that when it multiplies by the new fractions we

get an answer equivalent to the original question. In this

case
1

𝑥
−

1

𝑥+1
=

1

𝑥 𝑥+1
so we need a fudge factor of 3 out the

front.

Example 7

Find

Solution

න
1

𝑥 𝑥2 + 1
𝑑𝑥

න
1

𝑥
−

𝑥

𝑥2 + 1
𝑑𝑥

= න
1

𝑥
−
1

2
×

2𝑥

𝑥2 + 1
𝑑𝑥

= ln 𝑥 −
1

2
ln 𝑥2 + 1 + 𝑐

න
1

𝑥 𝑥2 + 1
𝑑𝑥

We will try putting 1 over each factor, and subtracting the two

fractions, but cross multiplying we would be left with an 𝑥2

we don’t want and be subtracting an 𝑥. We can get around

these problems if we make the second denominator 𝑥.

Cross multiplying in our heads we see that no fudge factor is

needed.
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EXERCISE 4.3

BASIC

Find:

1 න
𝑥2 − 2𝑥 − 2

𝑥 + 1
𝑑𝑥

2 න
2𝑥 − 3

𝑥 + 1
𝑑𝑥

3 න
2𝑥2 + 19

𝑥2 + 9
𝑑𝑥

4 න
𝑒−𝑥

𝑒−𝑥 − 1
𝑑𝑥

5 න
2𝑥

𝑥2 + 4𝑥 + 20
𝑑𝑥

6 න
3𝑥 + 2

𝑥2 + 6𝑥 + 10
𝑑𝑥

7 න
2

𝑥 𝑥 − 1
𝑑𝑥

8 න
2

𝑥 𝑥2 + 4
𝑑𝑥

MEDIUM

9
න
𝑒2𝑥 + 𝑒𝑥

𝑒2𝑥 + 1
𝑑𝑥

10
න
𝑥4 + 1

𝑥2 + 2
𝑑𝑥

11
න

𝑥3

𝑥2 + 2
𝑑𝑥

CHALLENGING

12 න
2 cos 𝑥 (sin 𝑥 + 1)

(sin 𝑥 + 3)(sin𝑥 − 1)
𝑑𝑥

13 න
cos 𝑥

sin2 𝑥 − 3 sin𝑥 + 2
𝑑𝑥

14 න
8𝑥

1 + 𝑒2𝑥
𝑑𝑥
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SOLUTIONS - EXERCISE 4.3

1

න
𝑥2 − 2𝑥 − 2

𝑥 + 1
𝑑𝑥

= න
𝑥 𝑥 + 1 − 3 𝑥 + 1 + 1

𝑥 + 1
𝑑𝑥

= න 𝑥 − 3 +
1

𝑥 + 1
𝑑𝑥

=
𝑥2

2
− 3𝑥 + ln 𝑥 + 1 + 𝑐

2

න
2𝑥 − 3

𝑥 + 1
𝑑𝑥

= න
2 𝑥 + 1 − 5

𝑥 + 1
𝑑𝑥

= න 2 −
5

𝑥 + 1
𝑑𝑥

= 2𝑥 − 5 ln 𝑥 + 1 + 𝑐

3 න
2𝑥2 + 19

𝑥2 + 9
𝑑𝑥

= න
2(𝑥2 + 9) + 1

𝑥2 + 9
𝑑𝑥

= න 2 +
1

𝑥2 + 32
𝑑𝑥

= 2𝑥 +
1

3
tan−1

𝑥

3
+ 𝑐

4 න
𝑒𝑥 + 1

𝑒𝑥 − 1
𝑑𝑥

= න
𝑒𝑥 − 1 + 2

𝑒𝑥 − 1
𝑑𝑥

= න 1 +
2

𝑒𝑥 − 1
𝑑𝑥

= න 1 + 2
𝑒−𝑥

1 − 𝑒−𝑥
𝑑𝑥

= 𝑥 + 2 ln 1 − 𝑒−𝑥 + 𝑐

= 𝑥 + 2 ln
𝑒𝑥 − 1

𝑒𝑥
+ 𝑐

= 𝑥 + 2 ln 𝑒𝑥 − 1 − 2 ln 𝑒𝑥 + 𝑐
= 2 ln 𝑒𝑥 − 1 − 𝑥 + 𝑐

5

න
2𝑥

𝑥2 + 4𝑥 + 20
𝑑𝑥

= න
2𝑥 + 4 − 4

𝑥2 + 4𝑥 + 4 + 16
𝑑𝑥

= න
2𝑥 + 4

𝑥2 + 4𝑥 + 20
𝑑𝑥 − 4න

1

𝑥 + 2 2 + 42
𝑑𝑥

= ln 𝑥2 + 4𝑥 + 20 − tan−1
𝑥 + 2

4
+ 𝑐

6

න
3𝑥 + 2

𝑥2 + 6𝑥 + 10
𝑑𝑥

= න

3
2

2𝑥 + 6 − 7

𝑥2 + 6𝑥 + 9 + 1
𝑑𝑥

=
3

2
න

2𝑥 + 6

𝑥2 + 6𝑥 + 10
𝑑𝑥

− 7න
1

𝑥 + 3 2 + 12
𝑑𝑥

=
3

2
ln 𝑥2 + 6𝑥 + 10 − 7 tan−1 𝑥 + 3 + 𝑐

7 න
2

𝑥 𝑥 − 1
𝑑𝑥

= −2න
1

𝑥
−

1

𝑥 − 1
𝑑𝑥

= −2 ln 𝑥 + 2 ln 𝑥 − 1 + 𝑐

= 2 ln
𝑥 − 1

𝑥
+ 𝑐

8 න
2

𝑥 𝑥2 + 4
𝑑𝑥

=
1

2
න

1

𝑥
−

𝑥

𝑥2 + 4
𝑑𝑥

=
1

2
න

1

𝑥
−
1

2
×

2𝑥

𝑥2 + 4
𝑑𝑥

=
1

2
ln 𝑥 −

1

4
ln 𝑥2 + 4 + 𝑐
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9

න
𝑒2𝑥 + 𝑒𝑥

𝑒2𝑥 + 1
𝑑𝑥

= න
1

2
×

2𝑒2𝑥

𝑒2𝑥 + 1
+

𝑒𝑥

𝑒𝑥 2 + 1
𝑑𝑥

=
1

2
ln 𝑒2𝑥 + 1 + tan−1 𝑒𝑥 + 𝑐

10

න
𝑥4 + 1

𝑥2 + 2
𝑑𝑥

= න
𝑥2 𝑥2 + 2 − 2 𝑥2 + 2 + 5

𝑥2 + 2
𝑑𝑥

= න 𝑥2 − 2 +
5

𝑥2 + 2
𝑑𝑥

= 𝑥3 − 2𝑥 +
5

2
tan−1

𝑥

2
+ 𝑐

11

න
𝑥3

𝑥2 + 2
𝑑𝑥

= න
𝑥 𝑥2 + 2 − 2𝑥

𝑥2 + 2
𝑑𝑥

= න 𝑥 −
2𝑥

𝑥2 + 2
𝑑𝑥

=
𝑥2

2
− ln 𝑥2 + 2 + 𝑐

12

න
2 cos𝑥 (sin 𝑥 + 1)

(sin 𝑥 + 3)(sin 𝑥 − 1)
𝑑𝑥

= න
2sin 𝑥 cos𝑥 + 2 cos𝑥

sin2 𝑥 + 2 sin 𝑥 − 3
𝑑𝑥

= ln sin2 𝑥 + 2 sin 𝑥 − 3 + 𝑐

13

න
cos𝑥

sin2 𝑥 − 3 sin 𝑥 + 2
𝑑𝑥

= න
cos𝑥

(sin 𝑥 − 2)(sin 𝑥 − 1)
𝑑𝑥

= න
cos 𝑥

sin 𝑥 − 2
−

cos𝑥

sin 𝑥 − 1
𝑑𝑥

= ln sin 𝑥 − 2 − ln sin 𝑥 − 1 + 𝑐

= ln
sin 𝑥 − 2

sin 𝑥 − 1
+ 𝑐

14

න
8𝑥

1 + 𝑒2𝑥
𝑑𝑥

= න

8
𝑒2

1 + 𝑒2𝑥 −
8
𝑒2

1 + 𝑒2𝑥
𝑑𝑥

= න
8

𝑒2
−

8

𝑒4
×

𝑒2

1 + 𝑒2𝑥
𝑑𝑥

=
8𝑥

𝑒2
−
8 ln 1 + 𝑒2𝑥

𝑒4
+ 𝑐
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4.4 PARTIAL FRACTIONS

In Lesson 4 we look at splitting rational functions into simple fractions, using more formal

methods than we used last lesson. We look at three different methods of splitting a fraction into

partial fractions, which can be simply integrated.

We will cover:

• Background Information

• Partial fractions by Equating coefficients

• Partial fractions by Elimination by substitution

• Partial fractions by The Cover Up Method

• Integrating the partial fractions using Standard Integrals

PARTIAL FRACTIONS

Questions involving partial fractions require us to take a rational function and convert it into two

or more simple fractions (the partial fractions) that we can easily integrate using standard

integrals.

Last lesson we looked at simple examples where we could split the function up by inspection,

while in this lesson we look at more formal methods needed for harder examples. We will work

through examples, with important notes beside each solution.

There are three methods we will investigate. All students should learn the first method, as it will

work for all questions, even if a little more slowly than the other methods. More capable

students should also lean the second and third methods as they each allow more efficient

solutions to some types of questions. In exams you can choose whichever method you like.

Most exam questions will tell you the original integrand (a rational function) and the form of the

partial fractions to use. Use the hints in the following examples so that you can answer those

questions where the form of the partial fractions are not given.
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Method 1 - Equating coefficients 

The first method works for all questions but takes longer than the other two methods. We start

by cross multiplying the partial fractions on the RHS, then equating the coefficients of 𝑥2, 𝑥 and

the constant with the LHS. In more complicated questions the other two methods need to

equate one or more of the coefficients anyway, so make sure you can do this method.

Example 1 - Equating Coefficients

i Express in the form by equating coefficients.

ii Hence find

Solution

𝐢
2𝑥 − 7

𝑥 + 1 𝑥 − 2
=

𝑎

𝑥 + 1
+

𝑏

𝑥 − 2

2𝑥 − 7

𝑥 + 1 𝑥 − 2
=
𝑎 𝑥 − 2 + 𝑏 𝑥 + 1

𝑥 + 1 𝑥 − 2

2𝑥 − 7 = 𝑎 + 𝑏 𝑥 − 2𝑎 + 𝑏

∴ 2 = 𝑎 + 𝑏 1

−7 = −2𝑎 + 𝑏 2

1 − 2 9 = 3𝑎 → 𝑎 = 3

sub in 1 2 = 3 + 𝑏 → 𝑏 = −1

∴
2𝑥 − 7

𝑥 + 1 𝑥 − 2
=

3

𝑥 + 1
−

1

𝑥 − 2

𝐢𝐢 ∴ න
2𝑥 − 7

𝑥 + 1 𝑥 − 2
𝑑𝑥 = න

3

𝑥 + 1
−

1

𝑥 − 2
𝑑𝑥

= 3 ln 𝑥 + 1 − ln 𝑥 − 2 + 𝑐

1 Cross multiply on the RHS

2 Equate the numerators & simplify the RHS

3 Equate the coefficients of the LHS and

RHS to create simultaneous equations

4 Solve the simultaneous equations by 

inspection

𝑎

𝑥 + 1
+

𝑏

𝑥 − 2

2𝑥 − 7

𝑥 + 1 𝑥 − 2

න
2𝑥 − 7

𝑥 + 1 𝑥 − 2
𝑑𝑥
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Method 2 - Elimination by Substitution 

The second method works quickly when the original integrand has single linear factors, but for

more involved questions we need to equate one or more of the coefficients. We start by cross

multiplying the partial fractions on the RHS and equating numerators (don’t simplify though),

just like for Method 1, then we solve for the variables by substituting values for 𝑥 that allow us to

find one variable by eliminating the others. If we used this method for Example 1 it would have

saved us one line of working.

Hints for the previous example:

• Look at the original fraction and each of the partial fractions - the degree of the numerator is

less than that of the denominator in each fraction, which we need for our standard integrals.

• For the unknown numerators we always use a function with a degree one less than the

denominator - in this case both denominators were linear functions, so we used a constant

for the numerator.

Hints for the following example:

• When the original denominator has a double factor the simplest form of the partial fractions

involves a constant over a single power of that factor and a constant over the factor squared.

Alternatively we could expand the perfect square and use a linear numerator:

2𝑥 − 3

𝑥2 𝑥 − 1
=
𝑎𝑥 + 𝑏

𝑥2
+

𝑐

𝑥 − 1

• When there is a repeated factor then the substitution method cannot find all variables -

equating coefficients will be needed for at least one variable. This will also occur for the

Cover Up Method we will use next, which is an abbreviated form of the elimination by

substitution method.
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Example 2 – Elimination by Substitution

i Express in the form by elimination by substitution.

ii Hence evaluate

Solution

𝐢
2𝑥 − 3

𝑥2 𝑥 − 1
=
𝑎

𝑥
+

𝑏

𝑥2
+

𝑐

𝑥 − 1

2𝑥 − 3 = 𝑎𝑥 𝑥 − 1 + 𝑏 𝑥 − 1 + 𝑐𝑥2

Let 𝑥 = 0 ∴ 2 0 − 3 = 𝑎 0 + 𝑏 0 − 1 + 𝑐 0 → −3 = −𝑏 → 𝑏 = 3

Let 𝑥 = 1 ∴ 2 1 − 3 = 𝑎 0 + 𝑏 0 + 𝑐 1 → −1 = 𝑐 → 𝑐 = −1

equating coefficients of 𝑥2: 0 = 𝑎 + 𝑐 → 0 = 𝑎 − 1 → 𝑎 = 1

∴
2𝑥 − 3

𝑥2 𝑥 − 1
=
1

𝑥
+

3

𝑥2
−

1

𝑥 − 1

𝐢𝐢 ∴ න
2

3 2𝑥 − 3

𝑥2 𝑥 − 1
𝑑𝑥 = න

2

3 1

𝑥
+

3

𝑥2
−

1

𝑥 − 1
𝑑𝑥

= ln 𝑥 −
3

𝑥
− ln 𝑥 − 1

2

3

= ln3 − 1 − ln2 − ln 2 −
3

2
− 0

= ln3 − 2 ln 2 +
1

2

= ln
3

4
+
1

2

2𝑥 − 3

𝑥2 𝑥 − 1

𝑎

𝑥
+

𝑏

𝑥2
+

𝑐

𝑥 − 1

න
2

3 2𝑥 − 3

𝑥2 𝑥 − 1
𝑑𝑥

1 Cross multiply on the RHS and equate the 

numerators.

2 Substitute values of 𝑥 that will make each set of 

brackets equal zero, then solve for the variables.

1

2

3

3 No substitution would allow us to find the value 

of 𝑎, so we have to equate coefficients – since 𝑎

is part of the coefficient of 𝑥2 and 𝑥 we could use 

either one.
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Method 3 - Cover Up Method 

The third method is a variation of elimination by substitution, quickly finding variables in simple

questions with a minimum of working. It will not find all variables in harder examples, requiring

us to also equate coefficients. HSC questions are chosen so that this method cannot be used

by itself, as it reduces these questions to mindless technique without any understanding

To find a variable on the RHS we do the following:

• Ignore (cover up) everything on the RHS except the single variable.

• Find the zero of the denominator under the variable.

• On the LHS ignore (cover up) the factor matching the denominator for the variable, then

substitute the zero into the LHS and evaluate.

Let’s redo Example 1, then try a harder example.

Example 3 - Cover Up Method

Express in the form using the cover up method

Solution

𝑎 =
2 −1 − 7

−1 − 2
= 3

𝑏 =
2 2 − 7

2 + 1
= −1

∴
2𝑥 − 7

𝑥 + 1 𝑥 − 2
=

3

𝑥 + 1
−

1

𝑥 − 2

𝑎

𝑥 + 1
+

𝑏

𝑥 − 2

2𝑥 − 7

𝑥 + 1 𝑥 − 2

1 To find 𝑎, we look at the denominator underneath it on the RHS

- the zero of 𝑥 + 1 is 𝑥 = −1, which we substitute into the LHS.

2 To find 𝑏, we look at the denominator underneath it on the RHS

- the zero of 𝑥 − 2 is 𝑥 = 2, which we substitute into the LHS.
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Example 4 - Cover Up Method then Equating Coefficients

Express in the form using the cover up method.

Solution

𝑏 =
2 0 − 3

0 − 1
= 3

𝑐 =
2 1 − 3

12
= −1

equating coefficients of 𝑥2: 0 = 𝑎 + 𝑐 → 0 = 𝑎 − 1 → 𝑎 = 1

∴
2𝑥 − 3

𝑥2 𝑥 − 1
=
1

𝑥
+

3

𝑥2
−

1

𝑥 − 1

2𝑥 − 3

𝑥2 𝑥 − 1

𝑎

𝑥
+

𝑏

𝑥2
+

𝑐

𝑥 − 1

Let’s redo Example 2 using the cover up method, and see why the combination of the cover up

method then equating coefficients is generally the best way to approach these questions. We

will use this combination as the default method in the solutions to the exercises. With practice

we can work out the coefficients in our heads as below, without writing them out.

Although the variables in the partial fractions must be real numbers, we can use imaginary

numbers as tools to help us determine them more quickly using either the substitution method

or the cover up method. Particularly useful when one factor is an irreducible quadratic.
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Example 5 - Cover Up Method with Imaginary Numbers

Express in the form and hence evaluate

Solution

𝑎 =
5(2) + 10

22 + 1
= 4

Let 𝑥 = 𝑖 𝑏𝑖 + 𝑐 =
5𝑖 + 10

𝑖 − 2
×
𝑖 + 2

𝑖 + 2
=
−5 + 10𝑖 + 10𝑖 + 20

𝑖2 − 22

𝑏𝑖 + 𝑐 = −3 − 4𝑖

∴ 𝑐 = −3, 𝑏 = −4

∴
𝑥 + 2

(𝑥 − 2) 𝑥2 + 1
=

4

𝑥 − 2
−
4𝑥 + 3

𝑥2 + 1

∴ න
3

4 5𝑥 + 10

(𝑥 − 2) 𝑥2 + 1
𝑑𝑥 = න

3

4 4

𝑥 − 2
−
4𝑥 + 3

𝑥2 + 1
𝑑𝑥

= න
3

4 4

𝑥 − 2
− 2 ×

2𝑥

𝑥2 + 1
− 3 ×

1

1 + 𝑥2
𝑑𝑥

= 4 ln 𝑥 − 2 − 2 ln 𝑥2 + 1 − 3 tan−1 𝑥
3

4

= 4 ln 2 − 2 ln 17 − 3 tan−1 4 − 0 − 2 ln 10 − 3 tan−1 3

= 4 ln2 − 2 ln 17 + 2 ln 10 − 3 tan−1 4 + 3 tan−1 3

5𝑥 + 10

(𝑥 − 2) 𝑥2 + 1

𝑎

𝑥 − 2
+
𝑏𝑥 + 𝑐

𝑥2 + 1
න
3

4 5𝑥 + 10

(𝑥 − 2) 𝑥2 + 1
𝑑𝑥

Mathematics Extension 2 © Steve Howard 300 Howard and Howard Education



EXERCISE 4.4

BASIC

1 i Express in the form by equating coefficients.

ii Hence find

2 i Express in the form by elimination by substitution.

ii Hence evaluate

3 Express                          in the form                         using the cover up method

4 Express in the form using the cover up method.

MEDIUM

5
Express in the form and hence evaluate

6 It can be shown that

Use this result to evaluate

7 It can be shown that                                                                             (Do NOT prove this.)

Use this result to evaluate

8 Evaluate

9 i Given that                         can be written as

where 𝑎, 𝑏 and 𝑐 are real numbers, find 𝑎, 𝑏 and 𝑐.

ii Hence find

𝑎

𝑥 + 1
+

𝑏

𝑥 + 2

2𝑥 + 1

𝑥 + 1 𝑥 + 2

න
2𝑥 + 1

𝑥 + 1 𝑥 + 2
𝑑𝑥

2𝑥 + 3

𝑥2 𝑥 + 1

𝑎

𝑥
+

𝑏

𝑥2
+

𝑐

𝑥 + 1

න
2

3 2𝑥 + 3

𝑥2 𝑥 + 1
𝑑𝑥

𝑎

𝑥 + 1
+

𝑏

𝑥 + 2

2𝑥 + 1

𝑥 + 1 𝑥 + 2

2𝑥 + 3

𝑥2 𝑥 + 1

𝑎

𝑥
+

𝑏

𝑥2
+

𝑐

𝑥 + 1

5𝑥 − 5

(𝑥 + 2) 𝑥2 + 1

𝑎

𝑥 + 2
+
𝑏𝑥 + 𝑐

𝑥2 + 1
න
3

4 5𝑥 − 5

(𝑥 + 2) 𝑥2 + 1
𝑑𝑥

16𝑥 − 43

𝑥 − 3 2 𝑥 + 2
=

𝑎

𝑥 − 3 2
+

𝑏

𝑥 − 3
+

𝑐

𝑥 + 2

16𝑥 − 43

𝑥 − 3 2 𝑥 + 2

න
16𝑥 − 43

𝑥 − 3 2 𝑥 + 2
𝑑𝑥

2

𝑥3 + 𝑥2 − 𝑥 + 1
=

1

𝑥 + 1
−

𝑥

𝑥2 + 1
+

1

𝑥2 + 1
(Do NOT prove this.)

න
1
2

2 2

𝑥3 + 𝑥2 + 𝑥 + 1
𝑑𝑥

න
0

1 8 1 − 𝑥

2 − 𝑥2 2 − 2𝑥 + 𝑥2
𝑑𝑥

8 1 − 𝑥

2 − 𝑥2 2 − 2𝑥 + 𝑥2
=

4 − 2𝑥

2 − 2𝑥 + 𝑥2
−

2𝑥

2 − 𝑥2

න
2

5 𝑥 − 6

𝑥2 + 3𝑥 − 4
𝑑𝑥
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CHALLENGING

10 Find 

11 Find

12 Use partial fractions to show that

13 It is given that   𝑥4 + 4 = 𝑥2 + 2𝑥 + 2 𝑥2 − 2𝑥 + 2 .

i Find 𝐴 and 𝐵 so that

ii Hence, or otherwise,  show that for any real number 𝑚,

න
0

𝑚 16

𝑥4 + 4
𝑑𝑥 = ln

𝑚2 + 2𝑚 + 2

𝑥2 − 2𝑚 + 2
+ 2 tan−1(𝑚 + 1) + 2 tan−1(𝑚 − 1) .

iii Find the limiting value as 𝑚 → ∞ of

3!

𝑥 𝑥 + 1 𝑥 + 2 𝑥 + 3
=
1

𝑥
−

3

𝑥 + 1
+

3

𝑥 + 2
−

1

𝑥 + 3

16

𝑥4 + 4
=

𝐴 + 2𝑥

𝑥2 + 2𝑥 + 2
+

𝐵 − 2𝑥

𝑥2 − 2𝑥 + 2

න
0

𝑚 16

𝑥4 + 4
𝑑𝑥

න
3𝑥2 + 8

𝑥 𝑥2 + 4
𝑑𝑥

න
2𝑥3 − 𝑥2 − 8𝑥 − 2

𝑥 𝑥 − 2
𝑑𝑥
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SOLUTIONS - EXERCISE 4.4

1
𝐢

2𝑥 + 1

𝑥 + 1 𝑥 + 2
=

𝑎

𝑥 + 1
+

𝑏

𝑥 + 2

2𝑥 + 1

𝑥 + 1 𝑥 + 2
=
𝑎 𝑥 + 2 + 𝑏 𝑥 + 1

𝑥 + 1 𝑥 + 2

2𝑥 + 1 = 𝑎 + 𝑏 𝑥 + 2𝑎 + 𝑏

∴ 2 = 𝑎 + 𝑏 1

1 = 2𝑎 + 𝑏 2

2 − 1 − 1 = 𝑎 → 𝑎 = −1

sub in 1 2 = −1 + 𝑏 → 𝑏 = 3

∴
2𝑥 + 1

𝑥 + 1 𝑥 + 2
= −

1

𝑥 + 1
+

3

𝑥 + 2

𝐢𝐢 ∴ න
2𝑥 + 1

𝑥 + 1 𝑥 + 2
𝑑𝑥 = න −

1

𝑥 + 1
+

3

𝑥 + 2
𝑑𝑥

= − ln 𝑥 + 1 + 3 ln 𝑥 + 2 + 𝑐

2
𝐢

2𝑥 + 3

𝑥2 𝑥 + 1
=
𝑎

𝑥
+

𝑏

𝑥2
+

𝑐

𝑥 − 1

2𝑥 − 3 = 𝑎𝑥 𝑥 + 1 + 𝑏 𝑥 + 1 + 𝑐𝑥2

Let 𝑥 = 0 ∴ 2 0 + 3 = 𝑎 0 + 𝑏 0 + 1 + 𝑐 0 → 3 = 𝑏 → 𝑏 = 3

Let 𝑥 = −1 ∴ 2 −1 + 3 = 𝑎 0 + 𝑏 0 + 𝑐 1 → 1 = 𝑐 → 𝑐 = 1

equating coefficients of 𝑥2: 0 = 𝑎 + 𝑐 → 0 = 𝑎 + 1 → 𝑎 = −1

∴
2𝑥 + 3

𝑥2 𝑥 + 1
= −

1

𝑥
+

3

𝑥2
+

1

𝑥 + 1

𝐢𝐢 ∴ න
2

3 2𝑥 + 3

𝑥2 𝑥 + 1
𝑑𝑥 = න

2

3

−
1

𝑥
+

3

𝑥2
+

1

𝑥 + 1
𝑑𝑥

= − ln 𝑥 −
3

𝑥
+ ln 𝑥 + 1

2

3

= − ln 3 − 1 + ln 4 − − ln 2 −
3

2
− ln 3

= ln 4 + ln 2 − 2 ln 3 +
1

2

= ln
8

9
+
1

2
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3
𝑎 =

2 −1 + 1

−1 + 2
= −1

𝑏 =
2 −2 + 1

(−2) + 1
= 3

∴
2𝑥 + 1

𝑥 + 1 𝑥 + 2
= −

1

𝑥 + 1
+

3

𝑥 + 2

4

𝑏 =
2 0 + 3

0 + 1
= 3

𝑐 =
2 −1 + 3

(−1)2
= 1

equating coefficients of 𝑥2: 0 = 𝑎 + 𝑐

→ 0 = 𝑎 + 1 → 𝑎 = −1

∴
2𝑥 + 3

𝑥2 𝑥 + 1
= −

1

𝑥
+

3

𝑥2
+

1

𝑥 + 1

5

𝑎 =
5 −2 − 5

(−2)2+1
= −3

Let 𝑥 = 𝑖 𝑏𝑖 + 𝑐 =
5𝑖 − 5

𝑖 + 2
×
𝑖 − 2

𝑖 − 2
=
−5 − 10𝑖 − 5𝑖 + 10

𝑖2 − 22

𝑏𝑖 + 𝑐 = −1 + 3𝑖

∴ 𝑐 = −1, 𝑏 = 3

∴
5𝑥 − 5

(𝑥 + 2) 𝑥2 + 1
= −

3

𝑥 + 2
+
3𝑥 − 1

𝑥2 + 1

∴ න
3

4 5𝑥 − 5

(𝑥 + 2) 𝑥2 + 1
𝑑𝑥 = න

3

4

−
3

𝑥 + 2
+
3𝑥 − 1

𝑥2 + 1
𝑑𝑥

= න
3

4

−
3

𝑥 + 2
+
3

2
×

2𝑥

𝑥2 + 1
−

1

1 + 𝑥2
𝑑𝑥

= −3 ln 𝑥 + 2 +
3

2
ln 𝑥2 + 1 − tan−1 𝑥

3

4

= −3 ln 6 +
3

2
ln 17 − tan−1 4 − −3 ln5 +

3

2
ln 10 − tan−1 3

=
3

2
ln
17

10
+ 3 ln

5

6
+ tan−1 3 − tan−1 4
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6

න
1
2

2 2

𝑥3 + 𝑥2 + 𝑥 + 1
𝑑𝑥

= න
1
2

2 1

𝑥 + 1
−

𝑥

𝑥2 + 1
+

1

𝑥2 + 1
𝑑𝑥

= ln 𝑥 + 1 −
1

2
ln 𝑥2 + 1 + tan−1 𝑥

1
2

2

= ln 3 −
1

2
ln 5 + tan−1 2 − ln

3

2
−
1

2
ln
5

4
+ tan−1

1

2

= ln 3 − ln
3

2
−
1

2
ln 5 +

1

2
ln
5

4
+ tan−1 2 − tan−1

1

2

= ln 2 −
1

2
ln
1

4
+ tan−1 2 − tan−1

1

2

= ln 1 + tan−1 2 − tan−1
1

2

= tan−1 2 − tan−1
1

2

7

න
0

1 8 1 − 𝑥

2 − 𝑥2 2 − 2𝑥 + 𝑥2
𝑑𝑥

= න
0

1 4 − 2𝑥

2 − 2𝑥 + 𝑥2
−

2𝑥

2 − 𝑥2
𝑑𝑥

= න
0

1

−
2𝑥 − 2

𝑥2 − 2𝑥 + 2
+

2

𝑥 − 1 2 + 12
−

2𝑥

2 − 𝑥2
𝑑𝑥

= − ln 𝑥2 − 2𝑥 + 2 + 2 tan−1 𝑥 − 1 + ln 2 − 𝑥2

0

1

= 0 + 0 + 0 − − ln 2 + 2 −
𝜋

4
+ ln 2

=
𝜋

2
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8 𝑥 − 6

𝑥2 + 3𝑥 − 4
=

𝑥 − 6

𝑥 + 4 𝑥 − 1
=

𝑎

𝑥 + 4
+

𝑏

𝑥 − 1

𝑎 =
−4 − 6

−4 − 1
= 2

𝑏 =
1 − 6

1 + 4
= −1

∴ න
2

5 𝑥 − 6

𝑥2 + 3𝑥 − 4
𝑑𝑥

= න
2

5 2

𝑥 + 4
−

1

𝑥 − 1
𝑑𝑥

= 2 ln 𝑥 + 4 − ln 𝑥 − 1
2

5

= 2 ln 9 − ln 4 − 2 ln 6 − 0

= ln 81 − ln 4 − ln 36

= ln
81

144

= ln
9

16

9
𝐢

16𝑥 − 43

𝑥 − 3 2 𝑥 + 2
=

𝑎

𝑥 − 3 2
+

𝑏

𝑥 − 3
+

𝑐

𝑥 + 2

𝑎 =
16 3 − 43

3 + 2
= 1

𝑐 =
16 −2 − 43

−2 − 3
2 = −3

equating coefficients of 𝑥2: 𝑏 + 𝑐 = 0 → 𝑏 = 3

𝐢𝐢න
16𝑥 − 43

𝑥 − 3 2 𝑥 + 2
𝑑𝑥

= න
1

𝑥 − 3 2
+

3

𝑥 − 3
−

3

𝑥 + 2
𝑑𝑥

= −
1

𝑥 − 3
+ 3 ln 𝑥 − 3 − 3 ln 𝑥 + 2 + 𝑐

= 3 ln
𝑥 − 3

𝑥 + 2
−

1

𝑥 − 3
+ 𝑐
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10 3𝑥2 + 8

𝑥 𝑥2 + 4
=
𝑎

𝑥
+
𝑏𝑥 + 𝑐

𝑥2 + 4

𝑎 =
3 0 + 8

0 2 + 4
= 2

𝑏 2𝑖 + 𝑐 =
3 2𝑖 2 + 8

2𝑖

= −
4

2𝑖
×
𝑖

𝑖
= 2𝑖

∴ 𝑏 = 1, 𝑐 = 0

න
3𝑥2 + 8

𝑥 𝑥2 + 4
𝑑𝑥 = න

2

𝑥
+

𝑥

𝑥2 + 4
𝑑𝑥

= 2 ln 𝑥 +
1

2
ln 𝑥2 + 4 + 𝑐

11 2𝑥 + 3 +
1

𝑥
−

3

𝑥 − 2

=
2𝑥 𝑥 𝑥 − 2 + 3 𝑥 𝑥 − 2 + 𝑥 − 2 − 3𝑥

𝑥 𝑥 − 2

=
2𝑥3 − 4𝑥2 + 3𝑥2 − 6𝑥 + 𝑥 − 2 − 3𝑥

𝑥 𝑥 − 2

=
2𝑥3 − 𝑥2 − 8𝑥 − 2

𝑥 𝑥 − 2

න
2𝑥3 − 𝑥2 − 8𝑥 − 2

𝑥 𝑥 − 2
𝑑𝑥

= න
2𝑥 𝑥2 − 2𝑥 + 3 𝑥2 − 2𝑥 − 2𝑥 − 2

𝑥 𝑥 − 2
𝑑𝑥

= න 2𝑥 + 3 −
2𝑥 + 2

𝑥 𝑥 − 2
𝑑𝑥 (∗)

Let
2𝑥 + 2

𝑥 𝑥 − 2
=
𝑎

𝑥
+

𝑏

𝑥 − 2

𝑎 =
2 0 + 2

0 − 2
= −1

𝑏 =
2 2 + 2

2
= 3

sub in ∗

න
2𝑥3 − 𝑥2 − 8𝑥 − 2

𝑥 𝑥 − 2
𝑑𝑥

= න 2𝑥 + 3 +
1

𝑥
−

3

𝑥 − 2
𝑑𝑥

= 𝑥2 + 3𝑥 + ln 𝑥 − 3 ln 𝑥 − 2 + 𝑐
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12
Let

3!

𝑥 𝑥 + 1 𝑥 + 2 𝑥 + 3
=
𝑎

𝑥
+

𝑏

𝑥 + 1
+

𝑐

𝑥 + 2
+

𝑑

𝑥 + 3

𝑎 =
3!

0 + 1 0 + 2 0 + 3
= 1

𝑏 =
3!

−1 −1 + 2 −1 + 3
= −3

𝑐 =
3!

−2 −2 + 1 −2 + 3
= 3

𝑑 =
3!

−3 −3 + 1 −3 + 2
= −1

∴
3!

𝑥 𝑥 + 1 𝑥 + 2 𝑥 + 3
=
1

𝑥
−

3

𝑥 + 1
+

3

𝑥 + 2
−

1

𝑥 + 3

13

𝐢 RHS =
𝐴 + 2𝑥 𝑥2 − 2𝑥 + 2 + 𝐵 − 2𝑥 𝑥2 + 2𝑥 + 2

𝑥4 + 4

equating coefficients of 𝑥 − 2𝐴 + 4𝑥 + 2𝐵 − 4𝑥 = 0 ∴ 𝐴 = 𝐵

equating the constant terms  2𝐴 + 2𝐵 = 16 ∴ 𝐴 = 𝐵 = 4

𝐢𝐢 න
0

𝑚 16

𝑥4 + 4
𝑑𝑥 = න

0

𝑚 4 + 2𝑥

𝑥2 + 2𝑥 + 2
+

4 − 2𝑥

𝑥2 − 2𝑥 + 2
𝑑𝑥

= න
0

𝑚 2𝑥 + 2

𝑥2 + 2𝑥 + 2
+

2

𝑥 + 1 2 + 1
−

2𝑥 − 2

𝑥2 − 2𝑥 + 2
+

2

𝑥 − 1 2 + 1
𝑑𝑥

= ln 𝑥2 + 2𝑥 + 2 + 2 tan−1 𝑥 + 1 − ln 𝑥2 − 2𝑥 + 2 + 2 tan−1 𝑥 − 1
0

𝑚

= ln 𝑚2 + 2𝑚 + 2 + 2 tan−1 𝑚 + 1 − ln 𝑚2 − 2𝑚 + 2 + 2 tan−1 𝑚 − 1

− ln 2 + 2 tan−1 1 − ln 2 + 2 tan−1 1

= ln
𝑚2 + 2𝑚 + 2

𝑚2 − 2𝑚 + 2
+ 2 tan−1(𝑚 + 1) + 2 tan−1(𝑚 − 1)

𝐢𝐢𝐢 as 𝑚 → ∞

ln
𝑚2 + 2𝑚 + 2

𝑚2 − 2𝑚 + 2
+ 2 tan−1(𝑚 + 1) + 2 tan−1(𝑚 − 1) →

ln(1) + 2
𝜋

2
+ 2

𝜋

2
= 2𝜋

∴ න
0

𝑚 16

𝑥4 + 4
𝑑𝑥 → 2𝜋
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4.5 OTHER ALGEBRAIC SUBSTITUTIONS 

SIMPLIFYING INTEGRANDS

In general, the simpler the integrand is the easier it is to integrate it. A common difficulty arises

when the integrand includes the square root of the variable, say 𝑥, or some function involving 𝑥.

In these situations we can use a 𝑢 or 𝑢2 substitution to simplify the integrand so that we can

integrate it more easily.

When a square root is involved, it is easiest to let 𝑢2 equal the radicand as the algebra is easier.

We assume that 𝑢 is restricted to positive values only, without the need to define it as such - this

matches official HSC solutions.

Later in the chapter we will look at trig substitutions, which are only needed in a small number of

cases.

In each of the examples to follow we will see that letting 𝑢2 equal the radicand simplifies the

integrand, replacing any fractional powers with integral powers that are much easier to

manipulate.

In Lesson 5 we look at other algebraic substitutions, which cannot be solved using the Reverse

Chain Rule. These questions could also occur in Extension 1, but the substitution would be

given there, so the only difference is being able to recognise the best substitution to make.

We will cover substitutions that simplify:

• Compound Functions

• Other Square Roots
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Example 1

Find

Solution

න𝑥3 𝑥2 − 1𝑑𝑥

= න𝑥3𝑢 ×
𝑢𝑑𝑢

𝑥

= න𝑥2𝑢2𝑑𝑢

= න 𝑢2 + 1 𝑢2𝑑𝑢

= න 𝑢4 + 𝑢2 𝑑𝑢

=
𝑢5

5
+
𝑢3

3
+ 𝑐

=
𝑥2 − 1 5

5
+

𝑥2 − 1 3

3
+ 𝑐

𝑢2 = 𝑥2 − 1
2𝑢𝑑𝑢 = 2𝑥𝑑𝑥

𝑑𝑥 =
𝑢𝑑𝑢

𝑥

න𝑥3 𝑥2 − 1𝑑𝑥
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Example 2

Find

Solution

න
𝑥

1 + 𝑥
𝑑𝑥

= න
𝑢

1 + 𝑢2
× 2𝑢 𝑑𝑢

= 2න
𝑢2

1 + 𝑢2
𝑑𝑢

= 2න
1 + 𝑢2 − 1

1 + 𝑢2
𝑑𝑢

= 2න 1 −
1

1 + 𝑢2
𝑑𝑢

= 2𝑢 − 2 tan−1 𝑢 + 𝑐

= 2 𝑥 − 2 tan−1 𝑥 + 𝑐

𝑢2 = 𝑥
2𝑢 𝑑𝑢 = 𝑑𝑥

න
𝑥

1 + 𝑥
𝑑𝑥
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Example 3

Find

Solution

න
𝑥7

1 − 𝑥4
𝑑𝑥

= න
𝑥7

𝑢
× −

𝑢 𝑑𝑢

2𝑥3

= −
1

2
න𝑥4 𝑑𝑢

= −
1

2
න 1 − 𝑢2 𝑑𝑢

= −
1

2
𝑢 −

𝑢3

3
+ 𝑐

=
1 − 𝑥4 3

6
−

1 − 𝑥4

2
+ 𝑐

𝑢2 = 1 − 𝑥4

2𝑢 𝑑𝑢 = −4𝑥3𝑑𝑥

𝑑𝑥 = −
𝑢 𝑑𝑢

2𝑥3

න
𝑥7

1 − 𝑥4
𝑑𝑥
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Example 4

Find

Solution

න𝑥
1 − 𝑥2

1 + 𝑥2
𝑑𝑥

= න𝑥
1 − 𝑢

1 + 𝑢
×
𝑑𝑢

2𝑥

=
1

2
න

1 − 𝑢

1 + 𝑢
×

1 − 𝑢

1 − 𝑢
𝑑𝑢

=
1

2
න

1 − 𝑢

1 − 𝑢2
𝑑𝑢

=
1

2
න

1

1 − 𝑢2
𝑑𝑢 −

1

2
න

𝑢

1 − 𝑢2
𝑑𝑢

=
1

2
න

1

1 − 𝑢2
𝑑𝑢 +

1

4
න 1 − 𝑢2 −

1
2(−2𝑢) 𝑑𝑢

=
1

2
sin−1 𝑢 +

1

2
1 − 𝑢2 + 𝑐

=
sin−1 𝑥2

2
+

1 − 𝑥4

2
+ 𝑐

𝑢 = 𝑥2

𝑑𝑢 = 2𝑥 𝑑𝑥

𝑑𝑥 =
𝑑𝑢

2𝑥

න𝑥
1 − 𝑥2

1 + 𝑥2
𝑑𝑥

There are some substitutions that are much more difficult to see - the only way to be able to

solve questions like these is lots of practice! Notice in the example below at one point we

rationalise the numerator, not the denominator, so that we can split the fraction.
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EXERCISE 4.5

BASIC

Find the following indefinite integrals:

1
න𝑥5 𝑥2 + 1𝑑𝑥

2
න

𝑥

1 − 𝑥
𝑑𝑥

3
න

𝑥3

1 + 𝑥2
𝑑𝑥

4
න

1

2 + 𝑥
𝑑𝑥

MEDIUM

5 න
𝑥3

𝑥2 + 1 2
𝑑𝑥

6
න𝑥5 2 − 𝑥3 𝑑𝑥

7

න𝑥
1 − 𝑥2

1 + 𝑥2
𝑑𝑥

CHALLENGING

8
න

sec 𝑥 tan 𝑥

sec 𝑥 + sec2 𝑥
𝑑𝑥

9 Let

i Use the substitution 𝑢 = 4 − 𝑥 to show that

ii Hence, find the value of 𝐼.

𝐼 = න
1

3 cos2
𝜋
8
𝑥

𝑥(4 − 𝑥)
𝑑𝑥

𝐼 = න
1

3 sin2
𝜋
8 𝑢

𝑢(4 − 𝑢)
𝑑𝑢
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SOLUTIONS - EXERCISE 4.5

1

න𝑥5 𝑥2 + 1𝑑𝑥

= න𝑥5𝑢 ×
𝑢𝑑𝑢

𝑥

= න𝑥4𝑢2𝑑𝑢

= න 𝑢2 − 1 2𝑢2𝑑𝑢

= න 𝑢4 − 2𝑢2 + 1 𝑢2𝑑𝑢

= න 𝑢6 − 2𝑢4 + 𝑢2 𝑑𝑢

=
𝑢7

7
−
2𝑢5

5
+
𝑢3

3
+ 𝑐

=
𝑥2 + 1 7

7
−
2 𝑥2 + 1 5

5
+

𝑥2 + 1 3

3
+ 𝑐

2

න
𝑥

1 − 𝑥
𝑑𝑥

= න
𝑢

1 − 𝑢
× 2𝑢 𝑑𝑢

= 2න
𝑢2

1 − 𝑢
𝑑𝑢

= 2න
−𝑢 1 − 𝑢 − 1 − 𝑢 + 1

1 − 𝑢
𝑑𝑢

= 2න −𝑢 − 1 +
1

1 − 𝑢
𝑑𝑢

= −𝑢2 − 2𝑢 − 2 ln 1 − 𝑢 + 𝑐

= −𝑥 − 2 𝑥 − 2 ln 1 − 𝑥 + 𝑐

3

න
𝑥3

1 + 𝑥2
𝑑𝑥

= න
𝑥3

𝑢
×

𝑢 𝑑𝑢

𝑥

= න𝑥2 𝑑𝑢

= න 𝑢2 − 1 𝑑𝑢

=
𝑢3

3
− 𝑢 + 𝑐

=
1 + 𝑥2 3

3
− 1 + 𝑥2 + 𝑐

4

න
1

2 + 𝑥
𝑑𝑥

= න
1

𝑢
× 2 𝑢 − 2 𝑑𝑢

= 2න
𝑢 − 2

𝑢
𝑑𝑢

= 2න 1 −
2

𝑢
𝑑𝑢

= 2𝑢 − 4 ln 𝑢 + 𝑐

= 2 2 + 𝑥 − 4 ln 2 + 𝑥 + 𝑐

= 2 𝑥 − 4 ln 2 + 𝑥 + 𝑐

𝑢2 = 𝑥2 + 1
2𝑢𝑑𝑢 = 2𝑥𝑑𝑥

𝑑𝑥 =
𝑢𝑑𝑢

𝑥

𝑢2 = 𝑥
2𝑢 𝑑𝑢 = 𝑑𝑥

𝑢2 = 1 + 𝑥2

2𝑢 𝑑𝑢 = 2𝑥𝑑𝑥

𝑑𝑥 =
𝑢 𝑑𝑢

𝑥

𝑢 = 2 + 𝑥

𝑑𝑢 =
1

2
𝑥−

1
2 𝑑𝑥

𝑑𝑥 = 2 𝑥𝑑𝑢
= 2 𝑢 − 2 𝑑𝑢
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5

න
𝑥3

𝑥2 + 1 2
𝑑𝑥

= න
𝑥3

𝑢2
×
𝑑𝑢

2𝑥

=
1

2
න
𝑥2

𝑢2
𝑑𝑢

=
1

2
න
𝑢 − 1

𝑢2
𝑑𝑢

=
1

2
න

1

𝑢
− 𝑢−2 𝑑𝑢

=
1

2
ln 𝑢 +

1

2𝑢
+ 𝑐

=
1

2
ln 𝑥2 + 1 +

1

2 𝑥2 + 1
+ 𝑐

6

න𝑥5 2 − 𝑥3 𝑑𝑥

= න𝑥5 × 𝑢 × −
2𝑢

3𝑥2
𝑑𝑢

= −
2

3
න𝑥3𝑢2 𝑑𝑢

= −
2

3
න 2 − 𝑢2 𝑢2 𝑑𝑢

= −
2

3
න 2𝑢2 − 𝑢4 𝑑𝑢

= −
2

3

2𝑢3

3
−
𝑢5

5
+ 𝑐

= −
4 2 − 𝑥3 3

9
+
2 2 − 𝑥3 5

15
+ 𝑐

7

න𝑥
1 + 𝑥2

1 − 𝑥2
𝑑𝑥

= න𝑥
1 + 𝑢

1 − 𝑢
×
𝑑𝑢

2𝑥

=
1

2
න

1 + 𝑢

1 − 𝑢
×

1 + 𝑢

1 + 𝑢
𝑑𝑢

=
1

2
න

1 + 𝑢

1 − 𝑢2
𝑑𝑢

=
1

2
න

1

1 − 𝑢2
𝑑𝑢 +

1

2
න

𝑢

1 − 𝑢2
𝑑𝑢

=
1

2
න

1

1 − 𝑢2
𝑑𝑢 −

1

4
න(−2𝑢) 1 − 𝑢2 −

1
2 𝑑𝑢

=
1

2
sin−1 𝑢 −

1

2
1 − 𝑢2 + 𝑐

=
sin−1 𝑥2

2
−

1 − 𝑥4

2
+ 𝑐

8

න
sec 𝑥 tan 𝑥

sec 𝑥 + sec2 𝑥
𝑑𝑥

= න
sec 𝑥 tan 𝑥

𝑢 + 𝑢2
×

𝑑𝑢

sec 𝑥 tan 𝑥

= න
1

𝑢 1 + 𝑢
𝑑𝑢

= න
1

𝑢
−

1

1 + 𝑢
𝑑𝑢

= ln 𝑢 − ln 1 + 𝑢 + 𝑐

= ln
𝑢

1 + 𝑢
+ 𝑐

= ln
sec 𝑥

1 + sec 𝑥
+ 𝑐

= ln
1

cos𝑥 + 1
+ 𝑐

= − ln cos 𝑥 + 1 + 𝑐

𝑢 = 𝑥2 + 1
𝑑𝑢 = 2𝑥 𝑑𝑥

𝑑𝑥 =
𝑑𝑢

2𝑥

𝑢 = sec 𝑥
𝑑𝑢 = sec 𝑥 tan 𝑥 𝑑𝑥

𝑑𝑥 =
𝑑𝑢

sec 𝑥 tan 𝑥

𝑢2 = 2 − 𝑥3

2𝑢 𝑑𝑢 = −3𝑥2𝑑𝑥

𝑑𝑥 = −
2𝑢

3𝑥2
𝑑𝑢

𝑢 = 𝑥2

𝑑𝑢 = 2𝑥 𝑑𝑥

𝑑𝑥 =
𝑑𝑢

2𝑥
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9

𝐼 = න
1

3 cos2
𝜋
8
𝑥

𝑥 4 − 𝑥
𝑑𝑥

= −න
3

1 cos2
𝜋
8

4 − 𝑢

4 − 𝑢 𝑢
𝑑𝑢

= න
1

3 cos2
𝜋
2
−
𝜋
8
𝑢

𝑢 4 − 𝑢
𝑑𝑢

= න
1

3 sin2
𝜋
8
𝑢

𝑢 4 − 𝑢
𝑑𝑢

ii

2𝐼 = න
1

3 cos2
𝜋
8
𝑥

𝑥 4 − 𝑥
𝑑𝑥 + න

1

3 sin2
𝜋
8
𝑢

𝑢 4 − 𝑢
𝑑𝑢

2𝐼 = න
1

3 1

𝑥 4 − 𝑥
𝑑𝑥

2𝐼 =
1

4
න
1

3 1

𝑥
+

1

4 − 𝑥
𝑑𝑥

𝐼 =
1

8
ln 𝑥 − ln 4 − 𝑥

1

3

=
1

8
ln 3 − ln 1 − ln 1 + ln 3

=
ln 3

4
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4.6 TRIGONOMETRIC FUNCTIONS I 

In Lesson 6 we look at integrals where the integrand is a power of one or more trig functions.

We will cover:

• Integrands involving powers of Sine and/or Cosine

• Integrands involving powers of Tangent and/or Secant

• Integrands involving powers of Cotangent and/or Cosecant (briefly)

• Integrands involving Product to Sum Identities

POWERS OF TRIGONOMETRIC FUNCTIONS

We have seen some trigonometric and inverse trigonometric results already in this chapter, and

in this lesson we will focus on powers of trig functions. Powers of trigonometric integrals

requires the use of the Pythagorean Identities and Standard Integrals.

When we have trig functions raised to a power, singly or in pairs, we have many different

approaches depending on the function(s) and the powers. The only way to learn is to practise!
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POWERS OF SINE AND COSINE

To integrate powers of sine and cosine we will use the following rules and the reverse chain

rule:

sin2 𝜃 + cos2 𝜃 = 1

cos2 𝑥 =
1

2
1 + cos 2𝑥

sin2 𝑥 =
1

2
1 − cos 2𝑥

නsin 𝑥 𝑑𝑥 = −cos 𝑥 + 𝑐

නcos 𝑥 𝑑𝑥 = sin𝑥 + 𝑐

Example 1

Find

Solution

නsin3 𝑥 𝑑𝑥

= නsin2 𝑥 sin𝑥 𝑑𝑥

= න(1 − cos2 𝑥) sin 𝑥 𝑑𝑥

= නsin𝑥 𝑑𝑥 − නsin𝑥 cos2 𝑥 𝑑𝑥

= −cos 𝑥 +
cos3 𝑥

3
+ 𝑐

නsin3 𝑥 𝑑𝑥
Hint for first step:

sin2 𝑥 = 1 − cos2 𝑥

Memorise these bottom two identities. 

Notice that the only difference is the sign.
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POWERS OF TANGENT AND SECANT

Integration involving tan 𝑥 and sec 𝑥 can be more involved, as the two functions are linked by

many different rules, which can cause confusion. Not all integrands involving tangent and/or

secant can be integrated using the simple techniques below - some rely on integration by parts

as we will see later in the chapter. This complexity makes integration using tangent and secant

great for Extension 2. We need to solve the integrals using the following Pythagorean Identity

and standard integrals.

tan2 𝑥 + 1 = sec2 𝑥

නtan 𝑥 𝑑𝑥 = − ln cos 𝑥 + 𝑐

නsec 𝑥 𝑑𝑥 = ln sec 𝑥 + tan 𝑥 + 𝑐

නsec2 𝑥 𝑑𝑥 = tan 𝑥 + 𝑐

නsec 𝑥 tan 𝑥 𝑑𝑥 = sec 𝑥 + 𝑐

Example 2

Find

Solution

නtan4 𝑥 𝑑𝑥

= නtan2 𝑥 (sec2 𝑥 − 1) 𝑑𝑥

= නsec2 𝑥 tan 𝑥 2𝑑𝑥 − නtan2 𝑥 𝑑𝑥

= නsec2 𝑥 tan 𝑥 2𝑑𝑥 − න(sec2 𝑥 − 1) 𝑑𝑥

=
tan3 𝑥

3
− tan 𝑥 + 𝑥 + 𝑐

නtan4 𝑥 𝑑𝑥 Hint for first step:

tan2 𝑥 = sec2 𝑥 − 1
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Example 3

Prove

Solution

නsec 𝑥 𝑑𝑥

= නsec 𝑥 ×
tan 𝑥 + sec 𝑥

sec 𝑥 + tan 𝑥
𝑑𝑥

= න
sec 𝑥 tan 𝑥 + sec2 𝑥

sec 𝑥 + tan 𝑥
𝑑𝑥

= ln tan 𝑥 + sec 𝑥 + 𝑐

නsec 𝑥 𝑑𝑥 = ln tan 𝑥 + sec 𝑥 + 𝑐
We could differentiate the RHS and

prove we get sec 𝑥, but let’s do it using

integration

Hint for first step:

නsec 𝑥 𝑑𝑥 = නsec 𝑥 ×
tan 𝑥 + sec 𝑥

sec 𝑥 + tan 𝑥
𝑑𝑥

If you are not required to prove it then

just use the mnemonic.

Example 4

Find

Solution

නtan3 𝑥 sec 𝑥 𝑑𝑥

= නtan2 𝑥 . tan 𝑥 sec 𝑥 𝑑𝑥

= න sec2 𝑥 − 1 tan 𝑥 sec 𝑥 𝑑𝑥

= න(tan 𝑥 sec 𝑥) sec 𝑥 2 𝑑𝑥 − නtan𝑥 sec 𝑥 𝑑𝑥

=
sec3 𝑥

3
− sec 𝑥 + 𝑐

නtan3 𝑥 sec 𝑥 𝑑𝑥
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POWERS OF COTANGENT AND COSECANT

There are many similarities between the pair of functions cot 𝑥 and cosec 𝑥 and the pair of

functions tan 𝑥 and sec 𝑥 that we have just looked at.

There are no separate examples for this pair – have a look at the previous slides for the

techniques to be used, replacing sec 𝑥 with cosec 𝑥 and tan 𝑥 with cot 𝑥, remembering that there

will be a minus sign involved in each of them too.

PRODUCT TO SUM IDENTITIES

The Product to Sum Identities are another source of integrals, which were not in the old course.

If you have the option, use double angle results or other trig identities as the solution will be

easier.

Example 5

Find

Solution

න sin2𝑥 + sin4𝑥 2 𝑑𝑥

= න sin2 2𝑥 + 2 sin4𝑥 sin2𝑥 + sin2 4𝑥 𝑑𝑥

= න
1

2
1 − cos 4𝑥 + 2

1

2
cos 4𝑥 − 2𝑥 − cos 4𝑥 + 2𝑥 +

1

2
1 − cos 8𝑥 𝑑𝑥

= න 1 −
1

2
cos 4𝑥 + cos 2𝑥 − cos 6𝑥 −

1

2
cos 8𝑥 𝑑𝑥

= 𝑥 −
sin8𝑥

16
−
sin 4𝑥

8
−
sin 6𝑥

6
+
sin2𝑥

2
+ 𝑐

න sin2𝑥 + sin 4𝑥 2 𝑑𝑥
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EXERCISE 4.6

BASIC

Find the following indefinite integrals:

1

2

3 Prove

4

5

6

7

MEDIUM

8

9

10

11

12

13

CHALLENGING

14

15 Prove 

i Using the double angle results                ii Using the Product to Sum results.

16

17

නcos3 𝑥 𝑑𝑥

නsec4 𝑥 𝑑𝑥

නcosec 𝑥 𝑑𝑥 = − ln cot 𝑥 + cosec 𝑥 + 𝑐

නtan 𝑥 sec3 𝑥 𝑑𝑥

න cos 2𝑥 + cos 4𝑥 2 𝑑𝑥

නcos4 𝑥 𝑑𝑥

නtan3 𝑥 sec2 𝑥 𝑑𝑥

නcosec4 𝑥 𝑑𝑥

නsin 3𝑥 sin 2𝑥 𝑑𝑥

න
cos 2𝑥

cos 𝑥
𝑑𝑥

න
tan 𝑥

cos2 𝑥
𝑑𝑥

න(cos4 𝑥 − sin4 𝑥) 𝑑𝑥

නsin𝑚𝑥 sin𝑛𝑥 𝑑𝑥 for positive integral 𝑚, 𝑛 and 𝑚 ≠ 𝑛

න
cos 𝑥 + sin𝑥 3

sin2𝑥 + 1
𝑑𝑥

නsin𝑥 sin2𝑥 𝑑𝑥 =
2 sin3 𝑥

3
+ 𝑐

න
1 + sin𝑥

sec 𝑥
𝑑𝑥

න 1 + sin 𝑥 𝑑𝑥
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SOLUTIONS - EXERCISE 4.6

1

නcos3 𝑥 𝑑𝑥

= නcos2 𝑥 cos 𝑥 𝑑𝑥

= න(1 − sin2 𝑥) cos 𝑥 𝑑𝑥

= නcos𝑥 𝑑𝑥 − නcos𝑥 sin2 𝑥 𝑑𝑥

= sin 𝑥 −
sin3 𝑥

3
+ 𝑐

2
නsec4 𝑥 𝑑𝑥

= නsec2 𝑥 sec2 𝑥 𝑑𝑥

= නsec2 𝑥 (tan2 𝑥 + 1) 𝑑𝑥

= නsec2 𝑥 tan 𝑥 2𝑑𝑥 + නsec2 𝑥 𝑑𝑥

=
tan3 𝑥

3
+ tan 𝑥 + 𝑐

3

නcosec 𝑥 𝑑𝑥

= නcosec 𝑥 ×
cot 𝑥 + cosec 𝑥

cosec 𝑥 + cot 𝑥
𝑑𝑥

= න
cosec 𝑥 cot 𝑥 + cosec2 𝑥

cosec 𝑥 + cot 𝑥
𝑑𝑥

= −න
− cosec 𝑥 cot 𝑥 − cosec2 𝑥

cosec 𝑥 + cot 𝑥
𝑑𝑥

= − ln cot 𝑥 + cosec 𝑥 + 𝑐

4

නtan 𝑥 sec3 𝑥 𝑑𝑥

= නtan 𝑥 sec 𝑥 sec 𝑥 2 𝑑𝑥

=
sec3 𝑥

3
+ 𝑐

5
න cos2𝑥 + cos4𝑥 2 𝑑𝑥

= න cos2 2𝑥 + 2 cos2𝑥 cos 4𝑥 + sin2 4𝑥 𝑑𝑥

= න
1

2
1 + cos 4𝑥 + 2

1

2
cos 4𝑥 + 2𝑥 + cos 4𝑥 − 2𝑥 +

1

2
1 + cos 8𝑥 𝑑𝑥

= න 1 +
1

2
cos4𝑥 + cos6𝑥 + cos2𝑥 +

1

2
cos8𝑥 𝑑𝑥

= 𝑥 +
sin 8𝑥

16
+
sin 6𝑥

6
+
sin 4𝑥

8
+
sin 2𝑥

2
+ 𝑐
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6

නcos4 𝑥 𝑑𝑥

= න cos2 𝑥 2

= න
1

2
1 + cos 2𝑥

2

𝑑𝑥

=
1

4
න(1 + 2 cos 2𝑥 + cos2 2𝑥) 𝑑𝑥

=
1

4
න 1 + 2 cos 2𝑥 +

1

2
1 + cos 4𝑥 𝑑𝑥

=
1

4
𝑥 + sin 2𝑥 +

1

2

1

4
sin4𝑥 + 𝑥 + 𝑐

=
𝑥

4
+
sin2𝑥

4
+
sin 4𝑥

8
+
𝑥

2
+ 𝑐

=
sin4𝑥

32
+
sin2𝑥

4
+
3𝑥

8
+ 𝑐

7

8

9

නtan3 𝑥 sec2 𝑥 𝑑𝑥

= නsec2 𝑥 tan 𝑥 3 𝑑𝑥

=
tan4 𝑥

4
+ 𝑐

නcosec4 𝑥 𝑑𝑥

= නcosec2 𝑥 × cosec2 𝑥 𝑑𝑥

= නcosec2 𝑥 (1 + cot2 𝑥) 𝑑𝑥

= න(cosec2 𝑥 + cosec2 𝑥 cot2 𝑥) 𝑑𝑥

= −cot 𝑥 −
cot3 𝑥

3
+ 𝑐

නsin3𝑥 sin2𝑥 𝑑𝑥

= න
1

2
cos(3𝑥 − 2𝑥) − cos 3𝑥 + 2𝑥 𝑑𝑥

=
1

2
න cos 𝑥 − cos 5𝑥 𝑑𝑥

=
sin𝑥

2
−
sin5𝑥

10
+ 𝑐

10 න
cos 2𝑥

cos 𝑥
𝑑𝑥

= න
2 cos2 𝑥 − 1

cos 𝑥
𝑑𝑥

= න(2 cos 𝑥 − sec 𝑥) 𝑑𝑥

= 2 sin𝑥 − ln tan 𝑥 + sec 𝑥 + 𝑐

11
න

tan𝑥

cos2 𝑥
𝑑𝑥

= න
sin 𝑥

cos3 𝑥
𝑑𝑥

= −න cos 𝑥 −3 ×
𝑑

𝑑𝑥
cos 𝑥 𝑑𝑥

= −
cos 𝑥 −2

−2
+ 𝑐

=
sec2 𝑥

2
+ 𝑐

12 න(cos4 𝑥 − sin4 𝑥) 𝑑𝑥

= න(cos2 𝑥 − sin2 𝑥)(cos2 𝑥 + sin2 𝑥) 𝑑𝑥

= න(cos2 𝑥 − sin2 𝑥) 𝑑𝑥

= නcos 2𝑥 𝑑𝑥

=
1

2
sin2𝑥 + 𝑐
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13 නsin𝑚𝑥 sin 𝑛𝑥 𝑑𝑥

= න
1

2
cos(𝑚𝑥 − 𝑛𝑥) − cos 𝑚𝑥 + 𝑛𝑥 𝑑𝑥

= න
1

2
cos 𝑚 − 𝑛 𝑥 − cos 𝑚 + 𝑛 𝑥 𝑑𝑥

=
sin(𝑚 − 𝑛)𝑥

2(𝑚 − 𝑛)
−
sin(𝑚 + 𝑛)𝑥

2(𝑚 + 𝑛)
+ 𝑐

14

16

17

න
cos𝑥 + sin 𝑥 3

sin 2𝑥 + 1
𝑑𝑥

= න
cos𝑥 + sin 𝑥 3

2 sin 𝑥 cos𝑥 + cos2 𝑥 + sin2 𝑥
𝑑𝑥

= න
cos𝑥 + sin 𝑥 3

cos𝑥 + sin 𝑥 2
𝑑𝑥

= න(cos 𝑥 + sin 𝑥) 𝑑𝑥

= sin 𝑥 − cos𝑥 + 𝑐

න
1 + sin 𝑥

sec 𝑥
𝑑𝑥

= න 1 + sin 𝑥
1
2 cos 𝑥 𝑑𝑥

= න 1 + sin 𝑥
1
2 ×

𝑑

𝑑𝑥
(sin 𝑥) 𝑑𝑥

=
2

3
1 + sin 𝑥

3
2 + 𝑐

=
2

3
1 + sin 𝑥 3 + 𝑐

න 1 + sin 𝑥 𝑑𝑥

= න cos2
𝑥

2
+ sin2

𝑥

2
+ sin 2

𝑥

2
𝑑𝑥

= න cos2
𝑥

2
+ 2 cos

𝑥

2
sin

𝑥

2
+ sin2

𝑥

2
𝑑𝑥

= න cos
𝑥

2
+ sin

𝑥

2

2

𝑑𝑥

= න cos
𝑥

2
+ sin

𝑥

2
𝑑𝑥

= 2 sin
𝑥

2
− 2 cos

𝑥

2
+ 𝑐

15
𝐢 නsin 𝑥 sin 2𝑥 𝑑𝑥

= න2 sin2 𝑥 cos𝑥 𝑑𝑥

= 2න sin 𝑥 2 ×
𝑑

𝑑𝑥
(sin 𝑥) 𝑑𝑥

=
2 sin3 𝑥

3
+ 𝑐

𝐢𝐢 නsin 𝑥 sin 2𝑥 𝑑𝑥

= න
1

2
cos(2𝑥 − 𝑥) − cos 2𝑥 + 𝑥 𝑑𝑥

=
1

2
න cos 𝑥 − cos3𝑥 𝑑𝑥

=
1

2
sin 𝑥 −

1

6
sin 3𝑥 + 𝑐

=
1

2
sin 𝑥 −

1

6
sin 2𝑥 cos𝑥 + cos 2𝑥 sin 𝑥 + 𝑐

=
1

2
sin 𝑥 −

1

6
2 sin 𝑥 cos2 𝑥 + sin 𝑥 − 2 sin3 𝑥 + 𝑐

=
1

2
sin 𝑥 −

1

3
sin 𝑥 1 − sin2 𝑥 −

1

6
sin 𝑥 +

1

3
sin3 𝑥 + 𝑐

=
1

2
sin 𝑥 −

1

3
sin 𝑥 +

1

3
sin3 𝑥 −

1

6
sin 𝑥 +

1

3
sin3 𝑥 + 𝑐

=
2 sin3 𝑥

3
+ 𝑐
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4.7 TRIGONOMETRIC FUNCTIONS II 

In Lesson 7 we look at more trigonometric integrands, this time looking at methods we keep in

reserve for when easier methods will not work.

We will cover:

• Integrating with t-formulae

• Integrating with trigonometric substitutions

INTEGRATING WITH T-FORMULAE

In the HSC for the old syllabus we were always told when to use the t-formulae, and it is likely

that this will continue as it is, otherwise it takes much practice to recognise when to use

t-formulae.

T-formulae are one of our methods of last resort, as many integrands involving trig functions can

be solved more easily using other methods.

Once you have substituted for 𝑡, the integrand can be rearranged into one of the standard

integrals and solved. If you are using an indefinite integral, remember to rewrite your answer in

terms of the original variable.
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Example 1

Find using 𝑡 = tan
x

2

Solution

න
𝑑𝑥

1 + cos 𝑥

= න
1

1 +
1 − 𝑡2

1 + 𝑡2

×
2𝑑𝑡

1 + 𝑡2

= 2න
1

1 + 𝑡2 + 1 − 𝑡2
𝑑𝑡

= 2න
1

2
𝑑𝑡

= 𝑡 + 𝑐

= tan
𝑥

2
+ 𝑐

𝑡 = tan
𝑥

2

𝑑𝑥 =
2𝑑𝑡

1 + 𝑡2

𝑡 = tan
𝑥

2
𝑑𝑡

𝑑𝑥
=
1

2
sec2

𝑥

2

=
1

2
1 + tan2

𝑥

2

=
1

2
1 + 𝑡2

𝑑𝑥 =
2𝑑𝑡

1 + 𝑡2

The official HSC solutions show all steps

in finding 𝑑𝑥, as shown in the example on

the left. It is unclear whether writing just

the steps below would suffice instead.

Note that the RHS on the final

line is almost the same as the 𝑡-
result for sin𝜃 which is on the

Reference Sheet.

න
𝑑𝑥

1 + cos 𝑥
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Example 2

Using the substitution , or otherwise, evaluate

Solution

න
1

4 + 5 cos 𝑥
𝑑𝑥

= න
1

4 + 5
1 − 𝑡2

1 + 𝑡2

×
2𝑑𝑡

1 + 𝑡2

= 2න
1

4 + 4𝑡2 + 5 − 5𝑡2
𝑑𝑡

= 2න
1

9 − 𝑡2
𝑑𝑡

=
1

3
න

1

3 − 𝑡
+

1

3 + 𝑡
𝑑𝑡

=
1

3
ln 3 − 𝑡 + ln 3 + 𝑡 + 𝑐

=
1

3
ln

3 − 𝑡

3 + 𝑡
+ 𝑐

=
1

3
ln

3 − tan
𝑥
2

3 + tan
𝑥
2

+ 𝑐

න
1

4 + 5 cos 𝑥
𝑑𝑥𝑡 = tan

𝑥

2

𝑡 = tan
𝑥

2

𝑑𝑥 =
2𝑑𝑡

1 + 𝑡2
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TRIG SUBSTITUTIONS

Another method we can use when nothing else works is to use a trig substitution - we will

normally be told in an exam when to use a trig substitution, as they are rarely needed. Often we

can use a 𝑢2 substitution instead and save a lot of work, as trig substitutions are often quite

long.

Trig substitutions can be used whenever the integrand involves a square root (including in the

denominator) where the radicand is the sum or difference of two squares. This might involve

completing the square to become obvious.

In the following examples we will see how the trig substitution gives us an expression that we

can then simplify using a Pythagorean Identity.
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Example 3

Using the substitution , or otherwise, evaluate

Solution

න𝑥3 𝑥2 − 1𝑑𝑥

= නsec3 𝜃 sec2 𝜃 − 1 sec 𝜃 tan𝜃 𝑑𝜃

= නsec3 𝜃 tan2 𝜃 sec 𝜃 tan𝜃 𝑑𝜃

= නsec4 𝜃 tan2 𝜃 𝑑𝜃

= නsec2 𝜃 sec2 𝜃 tan2 𝜃 𝑑𝜃

= නsec2 𝜃 (tan2 𝜃 + 1) tan2 𝜃 𝑑𝜃

= නsec2 𝜃 tan4 𝜃 𝑑𝜃 + නsec2 𝜃 tan2 𝜃 𝑑𝜃

=
tan5 𝜃

5
+
tan3 𝜃

3
+ 𝑐

=
𝑥2 − 1 5

5
+

𝑥2 − 1 3

3
+ 𝑐

𝑥 = sec 𝜃
𝑑𝑥 = sec 𝜃 tan𝜃 𝑑𝜃

tan2 𝜃 = sec2 𝜃 − 1
= 𝑥2 − 1

tan𝜃 = 𝑥2 − 1

න𝑥3 𝑥2 − 1𝑑𝑥𝑥 = sec 𝜃

The trig substitution chosen is 𝑥 = sec 𝜃, 

as then the radicand becomes the LHS 

of the Pythagorean sec2 𝜃 − 1 = tan2 𝜃, 

which the simplifies to tan 𝜃, simplifying 

the integrand. 
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Example 4

Using the substitution , or otherwise, evaluate

Solution

න
1

𝑥2 4 + 𝑥2
𝑑𝑥

= න
1

4tan2 𝑢 4 + 4 tan2 𝑢
× 2 sec2 𝑢 𝑑𝑢

=
1

2
න

sec2 𝑢

tan2 𝑢 4 sec2 𝑢
𝑑𝑢

=
1

2
න

sec2 𝑢

tan2 𝑢 × 2 sec 𝑢
𝑑𝑢

=
1

4
න

sec𝑢

tan2 𝑢
𝑑𝑢

=
1

4
න
cos 𝑢

sin2 𝑢
𝑑𝑢

=
1

4
න sin𝑢 −2 × cos 𝑢 𝑑𝑢

=
1

4
න

𝑑

𝑑𝑢
− sin𝑢 −1 𝑑𝑢

= −
1

4 sin 𝑢
+ 𝑐

= −
1

4
𝑥

𝑥2 + 4

+ 𝑐

= −
𝑥2 + 4

4𝑥
+ 𝑐

𝑥 = 2 tan 𝑢
𝑑𝑥 = 2 sec2 𝑢 𝑑𝑢

න
1

𝑥2 4 + 𝑥2
𝑑𝑥𝑥 = tan 𝜃

The trig substitution chosen is 𝑥 = 2 tan 𝑢, 

as then the radicand becomes the LHS of 

the Pythagorean 4 1 + tan2 𝑢 = 4 sec2 𝑢, 

which then simplifies to 2 sec 𝑢, simplifying 

the integrand. 

𝑥
𝑥2 + 4

2

u

Integrals in the form                                              can be solved using 𝑢2 = radicand, avoiding 

trig substitutions. For example in the integral                       we would let 𝑢2 = 𝑥 − 4

න
1

𝑥 𝑥𝑛 − 𝑐
𝑑𝑥 𝑛 = 1,2,3 . . .

න
1

𝑥 𝑥 − 4
𝑑𝑥
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EXERCISE 4.7

BASIC

1 Find using

2 Using the substitution               , or otherwise, find 

3 Using the substitution              , or otherwise, find 

4 Using the substitution , or otherwise, find

MEDIUM

5 Using the substitution                 find 

6 Using the substitution , or otherwise, find

7 Using the substitution                , or otherwise, evaluate

8 Using the substitution 𝑥 = sin2 𝜃, or otherwise, evaluate

9 Use the substitution                    to show that

CHALLENGING

Find the following indefinite integrals using a suitable trig substitution:

10

11

12

න
𝑑𝑥

1 + sin𝑥

න
5

5 + 13 sin𝑥
𝑑𝑥𝑡 = tan

𝑥

2

න𝑥3 1 − 𝑥2 𝑑𝑥𝑥 = sin𝜃

න
1

𝑥 𝑥2 − 4
𝑑𝑥𝑥 = 2 sec 𝜃

𝑡 = tan
𝑥

2

𝑡 = tan
𝜃

2
න
0

𝜋
2 𝑑𝜃

2 − cos 𝜃

න 𝑥 + 4 𝑑𝑥𝑥 = 4 tan2 𝑢

න
𝜋
2

2𝜋
3 𝑑𝜃

sin 𝜃
=
1

2
log𝑒 3𝑡 = tan

𝜃

2

න
𝜋
3

𝜋
2 1

3 sin 𝑥 − 4 cos 𝑥 + 5
𝑑𝑥𝑡 = tan

𝑥

2

න
0

1
2 𝑥

1 − 𝑥
𝑑𝑥

න
𝑥2

4 − 𝑥2
𝑑𝑥

න
3 + cos 𝑥

2 − cos 𝑥
𝑑𝑥

න 2𝑥 − 𝑥2 𝑑𝑥
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SOLUTIONS - EXERCISE 4.7

1

න
𝑑𝑥

1 + sin 𝑥

= න
1

1 +
2𝑡

1 + 𝑡2

×
2𝑑𝑡

1 + 𝑡2

= 2න
1

1 + 𝑡2 + 2𝑡
𝑑𝑡

= 2න
1

𝑡 + 1 2
𝑑𝑡

= 2න 𝑡 + 1 −2 𝑑𝑡

= −
2

𝑡 + 1
+ 𝑐

= −
2

tan
𝑥
2
+ 1

+ 𝑐

2
න

5

12 + 13 cos𝑥
𝑑𝑥

= න
5

12 + 13
1 − 𝑡2

1 + 𝑡2

×
2𝑑𝑡

1 + 𝑡2

= 10න
1

12 + 12𝑡2 + 13 − 13𝑡2
𝑑𝑡

= 10න
1

25 − 𝑡2
𝑑𝑡

= න
1

5 − 𝑡
+

1

5 + 𝑡
𝑑𝑡

= ln 5 − 𝑡 + ln 5 + 𝑡 + 𝑐

= ln
5 − 𝑡

5 + 𝑡
+ 𝑐

3

න𝑥3 1 − 𝑥2 𝑑𝑥

= නsin3 𝜃 1 − sin2 𝜃 cos 𝜃 𝑑𝜃

= නsin3 𝜃 cos2 𝜃 cos 𝜃 𝑑𝜃

= නsin3 𝜃 cos2 𝜃 𝑑𝜃

= නsin 𝜃 sin2 𝜃 cos2 𝜃 𝑑𝜃

= නsin 𝜃 1 − cos2 𝜃 cos2 𝜃 𝑑𝜃

= −න(− sin 𝜃)(cos2 𝜃 − cos4 𝜃) 𝑑𝜃

=
cos5 𝜃

5
−
cos3 𝜃

3
+ 𝑐

=
1 − 𝑥2 5

5
−

1 − 𝑥2 3

3
+ 𝑐

𝑡 = tan
𝑥

2

𝑑𝑥 =
2𝑑𝑡

1 + 𝑡2

𝑡 = tan
𝑥

2

𝑑𝑥 =
2𝑑𝑡

1 + 𝑡2

𝑥 = sin 𝜃
𝑑𝑥 = cos 𝜃 𝑑𝜃

cos 𝜃 = 1 − sin2 𝜃

= 1 − 𝑥2
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4

න
1

𝑥 𝑥2 − 4
𝑑𝑥

= න
1

2 sec 𝑢 4 sec2 𝑢 − 4
× 2 sec 𝑢 tan 𝑢 𝑑𝑢

= න
tan 𝑢

4 tan2 𝑢
𝑑𝑢

= න
tan𝑢

2 tan 𝑢
𝑑𝑢

=
1

2
න𝑑𝑢

=
𝑢

2
+ 𝑐

=
1

2
tan−1

𝑥2 − 4

2
+ 𝑐

Alternatively:

න
1

𝑥 𝑥2 − 4
𝑑𝑥

= න
1

𝑥𝑢
× 𝑢

𝑑𝑢

𝑥

= න
1

𝑥2
𝑑𝑢

= න
1

𝑢2 + 4
𝑑𝑢

=
1

2
tan−1

𝑢

2
+ 𝑐

=
1

2
tan−1

𝑥2 − 4

2
+ 𝑐

5
න
0

𝜋
2 𝑑𝜃

2 − cos 𝜃

= න
0

1 1

2 −
1 − 𝑡2

1 + 𝑡2

×
2𝑑𝑡

1 + 𝑡2

= 2න
0

1 1

2 + 2𝑡2 − 1 + 𝑡2
𝑑𝑡

= 2න
0

1 1

1 + 3𝑡2
𝑑𝑡

=
2

3
න
0

1 3

1 + 3𝑡2
𝑑𝑡

=
2

3
tan−1 3𝑡

0

1

=
2

3
tan−1 3 − tan−1 0

=
2

3

𝜋

3

=
2 3𝜋

9

6

න 𝑥 + 4𝑑𝑥

= න 4 tan2 𝑢 + 4 × 8 tan 𝑢 sec2 𝑢 𝑑𝑢

= 8නtan 𝑢 sec2 𝑢 4 sec2 𝑢 𝑑𝑢

= 16නtan 𝑢 sec3 𝑢 𝑑𝑢

= 16නtan 𝑢 sec 𝑢 sec 𝑢 2 𝑑𝑢

=
16 sec3 𝑢

3
+ 𝑐

=
2 𝑥 + 4 3

3
+ 𝑐

𝑥 = 2 sec 𝑢
𝑑𝑥 = 2 sec 𝑢 tan 𝑢 𝑑𝑢

𝑥
𝑥2 − 4

2

u

𝑢2 = 𝑥2 − 4
2𝑢 𝑑𝑢 = 2𝑥 𝑑𝑥

𝑑𝑥 =
𝑢 𝑑𝑢

𝑥

H
in

t: In
te

g
ra

n
d
s
 in

 th
e
 fo

rm
 

1

𝑥
𝑥
2
−
𝑐

c
a
n
 

b
e
 s

o
lv

e
d
 u

s
in

g
 a

 𝑢
2

s
u
b
s
titu

tio
n
.

𝑡 = tan
𝑥

2

𝑑𝑥 =
2𝑑𝑡

1 + 𝑡2

𝑥 = 4 tan2 𝑢
𝑑𝑥 = 8 tan 𝑢 sec2 𝑢 𝑑𝑢

𝑥 + 4 𝑥

2

u
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7

න
𝜋
3

𝜋
2 1

3 sin 𝑥 − 4 cos 𝑥 + 5
𝑑𝑥

= න
1

3

1 1

3
2𝑡

1 + 𝑡2
− 4

1 − 𝑡2

1 + 𝑡2
+ 5

×
2𝑑𝑡

1 + 𝑡2

= න
1

3

1 2

6𝑡 − 4 + 4𝑡2 + 5 + 5𝑡2
𝑑𝑡

= න
1

3

1 2

9𝑡2 + 6𝑡 + 1
𝑑𝑡

= න
1

3

1 2

3𝑡 + 1 2
𝑑𝑡

= 2
3𝑡 + 1 −1

−1 × 3 1

3

1

= −
2

3

1

3𝑡 + 1 1

3

1

= −
2

3

1

4
−

1

3 + 1

= −
2

3

1

4
−

1

3 + 1
×

3 − 1

3 − 1

= −
2

3

1

4
−

3 − 1

2

= −
2

3

3 − 2 3

4

=
2 3 − 3

6

8

9

න
0

1
2 𝑥

1 − 𝑥
𝑑𝑥

= න
0

𝜋
4 sin2 𝜃

1 − sin2 𝜃
× 2 sin 𝜃 cos 𝜃 𝑑𝜃

= න
0

𝜋
4 sin 𝜃

cos𝜃
×2 sin 𝜃 cos 𝜃 𝑑𝜃

= 2න
0

𝜋
4
sin2 𝜃 𝑑𝜃

= න
0

𝜋
4
(1 − cos2𝜃) 𝑑𝜃

= 𝜃 −
1

2
sin 2𝜃

0

𝜋
4

=
𝜋

4
−
1

2
− 0 − 0

=
𝜋

4
−
1

2

න
𝜋
2

2𝜋
3 𝑑𝜃

sin 𝜃

= න
1

√31 + 𝑡2

2𝑡
×

2𝑑𝑡

1 + 𝑡2

= න
1

√3𝑑𝑡

𝑡

= ln 𝑡
1

3

= ln 3 − ln 1

= ln 3
1
2

=
1

2
ln 3

10
න

𝑥2

4 − 𝑥2
𝑑𝑥

= න
4sin2 𝜃

4 − 4 sin2 𝜃
× 2 cos𝜃 𝑑𝜃

= න
4 sin2 𝜃

2 cos𝜃
× 2 cos𝜃 𝑑𝜃

= 4නsin2 𝜃 𝑑𝜃

= 4න
1

2
1 − cos 2𝜃 𝑑𝜃

= 2 𝜃 −
1

2
sin 2𝜃 + 𝑐

= 2𝜃 − 2 sin 𝜃 cos 𝜃 + 𝑐

= 2 sin−1
𝑥

2
− 2

𝑥

2

4 − 𝑥2

2
+ 𝑐

= 2 sin−1
𝑥

2
−
𝑥 4 − 𝑥2

2
+ 𝑐

11
න
3 + cos𝑥

2 − cos𝑥
𝑑𝑥

= න
3 +

1 − 𝑡2

1 + 𝑡2

2 −
1 − 𝑡2

1 + 𝑡2

×
2𝑑𝑡

1 + 𝑡2

= 2න
3 + 3𝑡2 + 1 − 𝑡2

2 + 2𝑡2 − 1 + 𝑡2
×

𝑑𝑡

1 + 𝑡2

= 2න
2𝑡2 + 4

(3𝑡2 + 1)(1 + 𝑡2)
𝑑𝑡

= 2න
5

3𝑡2 + 1
−

1

1 + 𝑡2
𝑑𝑡

=
10

3
න

3

3𝑡2 + 1
𝑑𝑡 − 2න

1

1 + 𝑡2
𝑑𝑡

=
10

3
tan−1 3𝑡 − 2 tan−1 𝑡 + 𝑐

=
10

3
tan−1 3 tan

𝑥

2
− 𝑥 + 𝑐

𝑥 = sin2 𝜃
𝑑𝑥 = 2 sin 𝜃 cos 𝜃 𝑑𝜃

𝑡 = tan
𝑥

2

𝑑𝑥 =
2𝑑𝑡

1 + 𝑡2

𝑥 = 2 sin 𝜃
𝑑𝑥 = 2 cos 𝜃 𝑑𝜃

𝑡 = tan
𝑥

2

𝑑𝑥 =
2𝑑𝑡

1 + 𝑡2
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12 න 2𝑥 − 𝑥2 𝑑𝑥

= න 1 − 𝑥 − 1 2 𝑑𝑥

= −න 1 − sin2 𝜃 × cos 𝜃 𝑑𝜃

= −නcos2 𝜃 𝑑𝜃

= −
1

2
න 1 + cos2𝜃 𝑑𝜃

= −
𝜃

2
−
sin 2𝜃

4
+ 𝑐

= −
𝜃

2
−
2 sin 𝜃 cos𝜃

4
+ 𝑐

= −
sin−1 1 − 𝑥

2
−

1 − 𝑥 1 − 1 − 𝑥 2

2
+ 𝑐

= −
sin−1 1 − 𝑥

2
−

1 − 𝑥 2𝑥 − 𝑥2

2
+ 𝑐

1 − 𝑥 = sin𝜃
−𝑑𝑥 = cos 𝜃 𝑑𝜃
𝑑𝑥 = −cos 𝜃 𝑑𝜃

Mathematics Extension 2 © Steve Howard 337 Howard and Howard Education



4.8 INTEGRATION BY PARTS 

In Lesson 8 we look at Integration by Parts (IBP), a method that we use to integrate an

integrand that involves two different types of functions - it is sometimes used for two similar

functions as we will see. Although it will work on the simpler integrals we have already solved,

we reserve it for more complicated integrals.

We will cover:

• How Integration by Parts works

• Integration by Parts using DETAIL

• Integrations by Parts using the Reverse Chain Rule

HOW INTEGRATION BY PARTS WORKS

Integration by Parts comes about by taking the Product Rule from Differentiation, integrating

both sides and rearranging. Again note that we are using integration as the inverse operation to

remove differentiation:

𝑑

𝑑𝑥
𝑢 × 𝑣 = 𝑣

𝑑𝑢

𝑑𝑥
+ 𝑢

𝑑𝑣

𝑑𝑥

∴ න
𝑑

𝑑𝑥
𝑢 × 𝑣 𝑑𝑥 = න𝑣

𝑑𝑢

𝑑𝑥
𝑑𝑥 + න𝑢

𝑑𝑣

𝑑𝑥
𝑑𝑥

𝑢 × 𝑣 = න𝑣
𝑑𝑢

𝑑𝑥
𝑑𝑥 + න𝑢

𝑑𝑣

𝑑𝑥
𝑑𝑥

න𝑢
𝑑𝑣

𝑑𝑥
𝑑𝑥 = 𝑢𝑣 −න𝑣

𝑑𝑢

𝑑𝑥
𝑑𝑥

In words:

1. split the integrand into two functions

2. find the primitive of one of the functions and put it in both parts of the RHS

3. the other function stays the same in the square brackets and is differentiated for the

integral.

This makes more sense when you see it used in the examples to follow.

Notes:

• In some questions you will need to integrate by parts twice to get the answer

• In Appendix 1 we will look at an alternative method - Tabular Integration by Parts.
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INTEGRATION BY PARTS USING DETAIL

Once you split the original expression into the correct functions for 𝑢 and
𝑑𝑣

𝑑𝑥
then this work is

straightforward, however if you choose the wrong functions then the work becomes either much

harder, or impossible and you will have to start again.

The trick to Integration by Parts lies in correctly splitting the integrand into one function

that is easy to integrate and a second function that is simpler when it is differentiated.

To split the integrand and make our solution work as easily as possible we have two choices:

• DETAIL * - This rule of thumb helps us to choose which function is most easily integrated

(which we make ) when we have two different types of functions. It works in the vast

majority of questions in the HSC or from textbooks.

• Reverse Chain Rule - If one of the functions is a compound function we find as the

product of the composite function and the derivative of the inner function. This can then be

integrated using the Reverse Chain Rule.

* Alternatives to DETAIL are LIATE or ILATE, which focus on choosing the function for 𝑢 rather

than the function for . In other countries LIPET is also used for choosing 𝑢, where P stands

for Polynomials rather than Algebraic. Note that since we will probably never have an integrand

with a logarithmic and an inverse trig function it doesn’t matter whether LIATE or ILATE is used.

Since Exponential and Trigonometric functions can both be integrated we can swap the order of

those terms and still achieve success.

I used to use LIATE, but now prefer DETAIL as it helps us focus our attention on , which is

the pressure point for harder questions in Integration by Parts and Recurrence Relationships

next lesson.

𝑑𝑣

𝑑𝑥

𝑑𝑣

𝑑𝑥

𝑑𝑣

𝑑𝑥

𝑑𝑣

𝑑𝑥
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DETAIL

D – Let equal the first function from this list to appear in the integrand

E – Exponential

T – Trigonometric

A – Algebraic

I – Inverse Trig

L – Logarithmic

For example                   has 𝑥2 (an Algebraic term) and ln 𝑥 (a Logarithmic term). Since A

comes before L in DETAIL we let                while 𝑢 equals the rest of the integrand, in this case 

𝑢 = ln 𝑥.

DETAIL focuses on the functions that are best to integrate, but it is also interesting to consider

how well each function works as 𝑢. We want to be much simpler than 𝑢.

• Logarithmic functions differentiate to become simple algebraic functions, so are the best

choice for 𝑢 if available.

• Inverse Trig functions differentiate to become algebraic functions, so are also a good choice

for 𝑢.

• Algebraic functions differentiate easily so are a good choice for 𝑢.

• Trig functions often cycle from sine to cosine, so while we can use them for 𝑢 they will require

us to integrate twice (see Example 2)

• Exponential functions don’t get simpler when they are differentiated, plus we need to know

extra rules, so are no good as 𝑢.

If we only have one function in the integrand we often let
d𝑣

𝑑𝑥
= 1 (as this is easy to integrate) and

let 𝑢 equal the function.

In the exercises we will do one of the integrals twice, once using DETAIL and the other going

against it

• when we follow DETAIL the answer is straightforward

• when we go against DETAIL we will still get the correct answer but it will be a harder solution.

Easiest to Integrate, so these are the best functions for
𝑑𝑣

𝑑𝑥

Hard to Integrate, so no good for
𝑑𝑣

𝑑𝑥

න𝑥2 ln 𝑥 𝑑𝑥

Easy to Integrate, so still good for
𝑑𝑣

𝑑𝑥

𝑑𝑣

𝑑𝑥
= 𝑥2

𝑑𝑣

𝑑𝑥

𝑑𝑢

𝑑𝑥

Mathematics Extension 2 © Steve Howard 340 Howard and Howard Education



We have to use Integration by Parts

a second time. Since the 𝑢 and 𝑣
don’t form part of our actual solution

we can use them again,

Using DETAIL
𝑑𝑣

𝑑𝑥
= 𝑒𝑥

Example 2 - Using IBP twice

Evaluate

Solution

න
0

𝜋
2
𝑒𝑥 sin𝑥 𝑑𝑥

= 𝑒𝑥 sin 𝑥
0

𝜋
2

−න
0

𝜋
2
𝑒𝑥 cos 𝑥 𝑑𝑥

= 𝑒𝑥 sin 𝑥
0

𝜋
2

− 𝑒𝑥 cos 𝑥
0

𝜋
2

+න
0

𝜋
2
𝑒𝑥 sin 𝑥 𝑑𝑥

∴ 2න
0

𝜋
2
𝑒𝑥 sin 𝑥 𝑑𝑥 = 𝑒𝑥 sin 𝑥

0

𝜋
2

− 𝑒𝑥 cos 𝑥
0

𝜋
2

න
0

𝜋
2
𝑒𝑥 sin𝑥 𝑑𝑥 =

1

2
𝑒
𝜋
2 − 0 − 0 − 1

=
𝑒
𝜋
2 + 1

2

Using DETAIL
𝑑𝑣

𝑑𝑥
= 𝑒𝑥

𝑢 = sin𝑥
𝑑𝑣

𝑑𝑥
= 𝑒𝑥

𝑑𝑢

𝑑𝑥
= cos 𝑥 𝑣 = 𝑒𝑥

This example is also done using 

Tabular IBP in Appendix 1
න
0

𝜋
2
𝑒𝑥 sin 𝑥 𝑑𝑥

𝑢 = cos 𝑥
𝑑𝑣

𝑑𝑥
= 𝑒𝑥

𝑑𝑢

𝑑𝑥
= −sin𝑥 𝑣 = 𝑒𝑥

Example 1

Find

Solution

න𝑥 ln 𝑥 𝑑𝑥

=
𝑥2 ln 𝑥

2
− න

𝑥2

2
×
1

𝑥
𝑑𝑥

=
𝑥2 ln 𝑥

2
−
1

2
න𝑥 𝑑𝑥

=
𝑥2 ln 𝑥

2
−
1

2

𝑥2

2
+ 𝑐

=
𝑥2 ln 𝑥

2
−
𝑥2

4
+ 𝑐

Using DETAIL
𝑑𝑣

𝑑𝑥
= 𝑥𝑢 = ln 𝑥

𝑑𝑣

𝑑𝑥
= 𝑥

𝑑𝑢

𝑑𝑥
=
1

𝑥
𝑣 =

𝑥2

2

This example is also done using 

Tabular IBP in Appendix 1
න𝑥 ln 𝑥 𝑑𝑥

At the start it can help to draw these lines to 

see which pairs we need to multiply
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INTEGRATION BY PARTS WITH THE REVERSE CHAIN RULE

The vast majority of questions you come across will be solved using DETAIL, but there are

more obscure questions where DETAIL will not work since both functions are of the same type,

commonly with one of the functions being a compound function. Here we will use the Reverse

Chain Rule. While we could often simplify the integrand first using 𝑢 substitution it would cause

more confusion (you would need a different variable as you couldn’t use 𝑢 twice) and make for a

longer solution. This method is also good for Recurrence Relationships where we are not given

the rule.

Let
𝑑𝑣

𝑑𝑥
be the product of the composite function and the derivative of the inner function.

In Example 3 we will look at

• 𝑒𝑥
2

is the compound function.

• The derivative of the inner function, 𝑥2, is 2𝑥

• Let
𝑑𝑣

𝑑𝑥
= 2𝑥𝑒𝑥

2

• That leaves us with
𝑥2

2
from the integrand, which gives us 𝑢.

Example 3 - Reverse Chain Rule

Evaluate

Solution

න𝑥3𝑒𝑥
2
𝑑𝑥

=
𝑥2𝑒𝑥

2

2
− න𝑥𝑒𝑥

2
𝑑𝑥

=
𝑥2𝑒𝑥

2

2
−
1

2
න𝑥𝑒𝑥

2
𝑑𝑥

=
𝑥2𝑒𝑥

2

2
−
𝑒𝑥

2

2
+ 𝑐

𝑢 =
𝑥2

2

𝑑𝑣

𝑑𝑥
= 2𝑥𝑒𝑥

2

𝑑𝑢

𝑑𝑥
= 𝑥 𝑣 = 𝑒𝑥

2

න𝑥3𝑒𝑥
2
𝑑𝑥

Using RCR
𝑑𝑣

𝑑𝑥
= 2𝑥𝑒𝑥

2

න𝑥3𝑒𝑥
2
𝑑𝑥
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SIMILAR FUNCTIONS

We can also use IBP with the Reverse Chain Rule to integrate integrands with two similar

functions, although quite often it is a hidden example of reversing the quotient rule as we will

see in the next example. Again a 𝑢 substitution would create a more involved and longer

solution.

Example 4

Find

i Using IBP

ii By using the quotient rule to find a function whose derivative equals the integrand

Solution

𝐢 න
ln 𝑥

1 + ln 𝑥 2
𝑑𝑥

= න
𝑥 ln 𝑥

𝑥 1 + ln 𝑥 2
𝑑𝑥

= −
𝑥 ln 𝑥

1 + ln 𝑥
+ න

ln 𝑥 + 1

1 + ln 𝑥
𝑑𝑥

= −
𝑥 ln 𝑥

1 + ln 𝑥
+ 𝑥 + 𝑐

=
𝑥

1 + ln 𝑥
+ 𝑐

𝐢𝐢

∴ න
ln 𝑥

1 + ln 𝑥 2
𝑑𝑥 = න

1 + ln 𝑥 − 1

1 + ln 𝑥 2
𝑑𝑥

= න
1 + ln 𝑥 1 − 𝑥

1
𝑥

1 + ln 𝑥 2
𝑑𝑥

= න
𝑑

𝑑𝑥

𝑥

1 + ln 𝑥
𝑑𝑥

=
𝑥

1 + ln 𝑥
+ 𝑐

𝑢 = 𝑥 ln 𝑥
𝑑𝑣

𝑑𝑥
=
1

𝑥
1 + ln 𝑥 −2

𝑑𝑢

𝑑𝑥
= ln 𝑥 + 1 𝑣 = − 1 + ln 𝑥 −1

= −
1

1 + ln 𝑥

Using RCR
𝑑𝑣

𝑑𝑥
=
1

𝑥
1 + ln 𝑥 −2

න
ln𝑥

1 + ln 𝑥 2
𝑑𝑥

Although this solution is simpler, it

would be very difficult to see how to

proceed under exam conditions.
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EXERCISE 4.8

BASIC

Use Integration by parts to find/evaluate the following integrals, unless told otherwise.

1 න𝑥2 ln 𝑥 𝑑𝑥
2

න
0

𝜋
2
𝑒𝑥 cos 𝑥 𝑑𝑥

3 න𝑥3 sin 𝑥2 𝑑𝑥
4

නln𝑥 𝑑𝑥

Hint: let 𝑢 = ln 𝑥 and             . 

You may wish to memorise this result.

5 න𝑥𝑒2𝑥 𝑑𝑥
6

න
0

𝜋

𝑥 cos 𝑥 𝑑𝑥

7
න
0

2

𝑡𝑒−𝑡 𝑑𝑡
8

න
0

1

tan−1 𝑥 𝑑𝑥

MEDIUM

9 නln 1 + 𝑥 𝑑𝑥
10

න𝑥2𝑥 𝑑𝑥

CHALLENGING

11 Find

i Using IBP ii Using a 𝑢2 substitution

12 Find

i Using IBP

ii By using the quotient rule to find a function whose derivative equals the integrand

13 Using the result from Q4, repeat Q1 but ignore DETAIL and let 𝑢 = 𝑥2 and

14
න𝑥 sin𝑥 cos 𝑥 𝑑𝑥

15

න
𝑥𝑒𝑥

1 + 𝑥 2
𝑑𝑥

න
ln 𝑥 − 2

ln 𝑥 − 1 2
𝑑𝑥

𝑑𝑣

𝑑𝑥
= 1

𝑑𝑣

𝑑𝑥
= ln 𝑥

න𝑥2 𝑥 − 1𝑑𝑥
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SOLUTIONS - EXERCISE 4.8

1

න𝑥2 ln 𝑥 𝑑𝑥

=
𝑥3 ln 𝑥

3
− න

𝑥3

3
×
1

𝑥
𝑑𝑥

=
𝑥3 ln 𝑥

3
−
1

3
න𝑥2 𝑑𝑥

=
𝑥3 ln 𝑥

3
−
1

3

𝑥3

3
+ 𝑐

=
𝑥3 ln 𝑥

3
−
𝑥3

9
+ 𝑐

2
න
0

𝜋
2
𝑒𝑥 cos𝑥 𝑑𝑥

= 𝑒𝑥 cos 𝑥
0

𝜋
2

+න
0

𝜋
2
𝑒𝑥 sin 𝑥 𝑑𝑥

= 𝑒𝑥 cos 𝑥
0

𝜋
2

+ 𝑒𝑥 sin 𝑥
0

𝜋
2

−න
0

𝜋
2
𝑒𝑥 cos𝑥 𝑑𝑥

∴ 2න
0

𝜋
2
𝑒𝑥 cos 𝑥 𝑑𝑥 = 𝑒𝑥 cos𝑥

0

𝜋
2

+ 𝑒𝑥 sin 𝑥
0

𝜋
2

න
0

𝜋
2
𝑒𝑥 sin 𝑥 𝑑𝑥 =

1

2
0 − 1 + 𝑒

𝜋
2 − 0

=
𝑒
𝜋
2 − 1

2

3 න𝑥3 sin 𝑥2 𝑑𝑥

= −
𝑥2 cos 𝑥2

2
+ න𝑥 cos𝑥2 𝑑𝑥

= −
𝑥2 cos 𝑥2

2
+
1

2
න2𝑥 cos 𝑥2 𝑑𝑥

= −
𝑥2 cos 𝑥2

2
+
sin 𝑥2

2
+ 𝑐

4

නln 𝑥 𝑑𝑥

= 𝑥 ln 𝑥 − න𝑥 ×
1

𝑥
𝑑𝑥

= 𝑥 ln 𝑥 − න𝑑𝑥

= 𝑥 ln 𝑥 − 𝑥 + 𝑐

𝑢 = cos𝑥
𝑑𝑣

𝑑𝑥
= 𝑒𝑥

𝑑𝑢

𝑑𝑥
= −sin 𝑥 𝑣 = 𝑒𝑥

𝑢 = sin 𝑥
𝑑𝑣

𝑑𝑥
= 𝑒𝑥

𝑑𝑢

𝑑𝑥
= cos𝑥 𝑣 = 𝑒𝑥

𝑢 = ln 𝑥
𝑑𝑣

𝑑𝑥
= 𝑥2

𝑑𝑢

𝑑𝑥
=
1

𝑥
𝑣 =

𝑥3

3

𝑢 =
𝑥2

2

𝑑𝑣

𝑑𝑥
= 2𝑥 sin 𝑥2

𝑑𝑢

𝑑𝑥
= 𝑥 𝑣 = − cos𝑥2

𝑢 = ln 𝑥
𝑑𝑣

𝑑𝑥
= 1

𝑑𝑢

𝑑𝑥
=
1

𝑥
𝑣 = 𝑥
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5 න𝑥𝑒2𝑥 𝑑𝑥

=
𝑥𝑒2𝑥

2
−
1

2
න𝑒2𝑥 𝑑𝑥

=
𝑥𝑒2𝑥

2
−
𝑒2𝑥

4
+ 𝑐

6
න
0

𝜋

𝑥 cos 𝑥 𝑑𝑥

= 𝑥 sin𝑥
0

𝜋

−න
0

𝜋

sin𝑥 𝑑𝑥

= 0 − 0 + cos 𝑥
0

𝜋

= −1 − 1

= −2

7

න
0

2

𝑡𝑒−𝑡 𝑑𝑡

= − 𝑡𝑒−𝑡

0

2

+න
0

2

𝑒−𝑡 𝑑𝑡

= −
2

𝑒2
− 𝑒−𝑡

0

2

= −
2

𝑒2
−

1

𝑒2
+ 1

= 1 −
3

𝑒2

8

න
0

1

tan−1 𝑥 𝑑𝑥

= 𝑥 tan−1 𝑥
0

1

−න
0

1 𝑥

1 + 𝑥2
𝑑𝑥

=
𝜋

4
− 0 −

1

2
ln 1 + 𝑥2

0

1

=
𝜋

4
−
1

2
ln 2 − 0

=
𝜋

4
−
ln 2

2

𝑢 = 𝑥 𝑑𝑣 = 𝑒2𝑥

𝑑𝑢

𝑑𝑥
= 1 𝑣 =

1

2
𝑒2𝑥

𝑢 = 𝑥
𝑑𝑣

𝑑𝑥
= cos 𝑥

𝑑𝑢

𝑑𝑥
= 1 𝑣 = sin𝑥

𝑢 = 𝑡
𝑑𝑣

𝑑𝑡
= 𝑒−𝑡

𝑑𝑢

𝑑𝑥
= 1 𝑣 = −𝑒−𝑡

𝑢 = tan−1 𝑥 𝑑𝑣 = 1
𝑑𝑢

𝑑𝑥
=

1

1 + 𝑥2
𝑣 = 𝑥
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9 නln 1 + 𝑥 𝑑𝑥

= 𝑥 ln 1 + 𝑥 −න
𝑥

1 + 𝑥
𝑑𝑥

= 𝑥 ln 1 + 𝑥 −න
1 + 𝑥 − 1

1 + 𝑥
𝑑𝑥

= 𝑥 ln 1 + 𝑥 −න1 −
1

1 + 𝑥
𝑑𝑥

= 𝑥 ln 1 + 𝑥 − 𝑥 + ln 1 + 𝑥 + 𝑐
= 𝑥 + 1 ln 1 + 𝑥 − 𝑥 + 𝑐

10
න𝑥2𝑥 𝑑𝑥

=
𝑥2𝑥

ln 2
−

1

ln 2
න2𝑥 𝑑𝑥

=
𝑥2𝑥

ln 2
−

1

ln 2

2𝑥

ln 2
+ 𝑐

=
𝑥2𝑥

ln 2
−

2𝑥

ln2 2
+ 𝑐

11

𝐢 න𝑥2 𝑥 − 1𝑑𝑥

= 2𝑥2 𝑥 − 1
3
2 −

4

3
න𝑥 𝑥 − 1

3
2 𝑑𝑥

= 2𝑥2 𝑥 − 1
3
2 −

4

3

2𝑥 𝑥 − 1
5
2

5
−
2

5
න 𝑥 − 1

5
2 𝑑𝑥

= 2𝑥2 𝑥 − 1
3
2 −

8𝑥 𝑥 − 1
5
2

15
+

16

105
𝑥 − 1

7
2 + 𝑐

𝐢𝐢 න𝑥2 𝑥 − 1𝑑𝑥

= න𝑥2𝑢 × 2𝑢 𝑑𝑢

= 2න 𝑢2 + 1 2𝑢2 𝑑𝑢

= 2න 𝑢6 + 2𝑢4 + 𝑢2 𝑑𝑢

=
2𝑢7

7
+
4𝑢5

5
+
2𝑢3

3
+ 𝑐

=
2 𝑥 − 1 7

7
+
4 𝑥 − 1 5

5
+
2 𝑥 − 1 3

3
+ 𝑐

𝑢 = ln 1 + 𝑥 𝑑𝑣 = 1
𝑑𝑢

𝑑𝑥
=

1

1 + 𝑥
𝑣 = 𝑥

𝑢 = 𝑥
𝑑𝑣

𝑑𝑥
= 2𝑥

𝑑𝑢

𝑑𝑥
= 1 𝑣 =

2𝑥

ln 2

𝑢 = 𝑥2 𝑑𝑣 = 𝑥 − 1
1
2

𝑑𝑢

𝑑𝑥
= 2𝑥 𝑣 =

2

3
𝑥 − 1

3
2

𝑢2 = 𝑥 − 1
2𝑢 𝑑𝑢 = 𝑑𝑥
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12

𝐢 න
ln 𝑥 − 2

ln 𝑥 − 1 2
𝑑𝑥

= −
𝑥(ln 𝑥 − 2)

ln 𝑥 − 1
+ න

ln 𝑥 − 1

ln 𝑥 − 1
𝑑𝑥

= −
𝑥 ln 𝑥 − 2

ln 𝑥 − 1
+ න𝑑𝑥

=
2𝑥 − 𝑥 ln 𝑥

ln 𝑥 − 1
+ 𝑥 + 𝑐

=
2𝑥 − 𝑥 ln 𝑥

ln 𝑥 − 1
+
𝑥 ln 𝑥 − 𝑥

ln 𝑥 − 1
+ 𝑐

=
𝑥

ln 𝑥 − 1
+ 𝑐

𝐢𝐢

∴ න
ln 𝑥 − 2

ln 𝑥 − 1 2
𝑑𝑥 = න

ln 𝑥 − 1 − 1

ln 𝑥 − 1 2
𝑑𝑥

= න
ln 𝑥 − 1 1 − 𝑥

1
𝑥

ln 𝑥 − 1 2
𝑑𝑥

= න
𝑑

𝑑𝑥

𝑥

ln 𝑥 − 1
𝑑𝑥

=
𝑥

ln 𝑥 − 1
+ 𝑐

13
න𝑥2 ln 𝑥 𝑑𝑥 = 𝑥2 𝑥 ln 𝑥 − 𝑥 − 2න𝑥 𝑥 ln 𝑥 − 𝑥 𝑑𝑥

= 𝑥3 ln 𝑥 − 𝑥3 − 2න 𝑥2 ln 𝑥 − 𝑥2 𝑑𝑥

= 𝑥3 ln 𝑥 − 𝑥3 − 2න𝑥2 ln 𝑥 𝑑𝑥 + 2න𝑥2𝑑𝑥

∴ 3න𝑥2 ln 𝑥 𝑑𝑥 = 𝑥3 ln 𝑥 − 𝑥3 +
2𝑥3

3
+ 𝑐

න𝑥2 ln 𝑥 𝑑𝑥 =
𝑥3 ln 𝑥

3
−
𝑥3

9
+ 𝑐

𝑢 = 𝑥(ln 𝑥 − 2)
𝑑𝑣

𝑑𝑥
=
1

𝑥
ln 𝑥 − 1 −2

𝑑𝑢

𝑑𝑥
= 𝑥

1

𝑥
+ (ln 𝑥 − 2)(1) 𝑣 = − ln 𝑥 − 1 −1

= ln𝑥 − 1 = −
1

ln 𝑥 − 1

𝑢 = 𝑥2
𝑑𝑣

𝑑𝑥
= ln 𝑥

𝑑𝑢

𝑑𝑥
= 2𝑥 𝑣 = 𝑥 ln 𝑥 − 𝑥

Mathematics Extension 2 © Steve Howard 348 Howard and Howard Education



14

න𝑥 sin𝑥 cos 𝑥 𝑑𝑥

= 𝑥 sin2 𝑥 − න sin2 𝑥 + 𝑥 sin𝑥 cos 𝑥 𝑑𝑥

= 𝑥 sin2 𝑥 − නsin2 𝑥 𝑑𝑥 − න𝑥 sin𝑥 cos 𝑥 𝑑𝑥

∴ 2න𝑥 sin 𝑥 cos 𝑥 𝑑𝑥 = 𝑥 sin2 𝑥 −
1

2
න 1 − cos 2𝑥 𝑑𝑥

න𝑥 sin𝑥 cos 𝑥 𝑑𝑥 =
𝑥 sin2 𝑥

2
−
1

4
𝑥 −

1

2
sin2𝑥 + 𝑐

=
𝑥 sin2 𝑥

2
−
𝑥

4
+
sin2𝑥

8
+ 𝑐

15

න
𝑥𝑒𝑥

1 + 𝑥 2
𝑑𝑥

= න
1 + 𝑥 𝑒𝑥 − 𝑒𝑥

1 + 𝑥 2
𝑑𝑥

= න
𝑒𝑥

1 + 𝑥
𝑑𝑥 − න

𝑒𝑥

1 + 𝑥 2
𝑑𝑥 (∗)

න
𝑒𝑥

1 + 𝑥
𝑑𝑥

=
𝑒𝑥

1 + 𝑥
+න

𝑒𝑥

1 + 𝑥 2
𝑑𝑥

sub in ∗

න
𝑥𝑒𝑥

1 + 𝑥 2
𝑑𝑥 =

𝑒𝑥

1 + 𝑥
+න

𝑒𝑥

1 + 𝑥 2
𝑑𝑥 − න

𝑒𝑥

1 + 𝑥 2
𝑑𝑥

=
𝑒𝑥

1 + 𝑥
+ 𝑐

𝑢 = 𝑥 sin 𝑥
𝑑𝑣

𝑑𝑥
= cos 𝑥

𝑑𝑢

𝑑𝑥
= sin𝑥 + 𝑥 cos 𝑥 𝑣 = sin 𝑥

𝑢 =
1

1 + 𝑥

𝑑𝑣

𝑑𝑥
= 𝑒𝑥

𝑑𝑢

𝑑𝑥
= −

1

1 + 𝑥 2
𝑣 = 𝑒𝑥

Alternatively

න
𝑥𝑒𝑥

1 + 𝑥 2
𝑑𝑥

= න
1 + 𝑥 𝑒𝑥 − 𝑒𝑥

1 + 𝑥 2
𝑑𝑥

= න
𝑑

𝑑𝑥

𝑒𝑥

1 + 𝑥
𝑑𝑥

=
𝑒𝑥

1 + 𝑥
+ 𝑐
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4.9 RECURRENCE RELATIONSHIPS

In Lesson 9 we look at Recurrence Relationships, commonly known as reduction formula:

We will cover:

• How to determine whether to use Integration by Parts or not

• Recurrence Relationships using Integration by parts

• Recurrence Relationships using other methods

RECURRENCE RELATIONSHIPS

Recurrence Relationships express an integral (where the integrand includes a function to the

power of 𝑛) as a function of another integral whose integrand includes the same function to a

different power of 𝑛. For example we can prove that

න
0

1

𝑥𝑛 1 − 𝑥2 𝑑𝑥 =
𝑛 − 1

𝑛 + 2
න
0

1

𝑥𝑛−2 1 − 𝑥2 𝑑𝑥

The first integral includes 𝑥𝑛, and is expressed in terms of the integral including 𝑥𝑛−2. The

power in the second integral is usually lower like in this example, which gives us the common

alternative name of reduction formula.

Typically we use abbreviations such as 𝐼𝑛 for the integrals, and will find a relationship between

𝐼𝑛 and 𝐼𝑛−1, or 𝐼𝑛 and 𝐼𝑛−2, so we would write the reduction formula in the above example as

𝐼𝑛 =
𝑛 − 1

𝑛 + 2
𝐼𝑛−2

We can use letters other than 𝐼 for the integral, such as 𝑈 or 𝐴, or leave the integral written in

complete form.

We often use the recurrence relationships to evaluate integrals with higher powers by breaking

them down into functions of a lower powered integral that we can integrate.
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INTEGRATION BY PARTS OR NOT?

Recurrence Relationships are normally considered to be of medium to higher difficulty, as it is

very easy to choose the wrong method and have to start again. Success has traditionally

required much practise and a deep knowledge of differentiation and integration. Part of the

problem is that while most Recurrence Relationships are found using integration by parts,

others can only be solved using standard integration techniques.

There is however a very easy way to choose the correct method, which converts the topic to a

simple mechanical process. This is great for quickly gaining marks in an exam, but our

understanding suffers! We will also try to attain a deeper understanding of the work.

In Appendix 1 we will look at Tabular Integration by Parts which can also be used for those

Recurrence Relationships where IBP applies, but is only an interesting aside - I recommend you

use the traditional method shown in the examples.

CHOOSING THE CORRECT METHOD

As a rule of thumb, look at the coefficient of the lower powered integral on the RHS (𝐼𝑛−1 or

𝐼𝑛−2) and see if it involves 𝑛. Here are 3 examples:

Integration by Parts

If the coefficient involves 𝑛 (examples A and B above) then this tells us to use integration by

parts. The numerator of the coefficient also gives us an important shortcut - use it (or the

multiple closest to the power in the original integral) as the power to use for 𝑢.

Other Methods

If the coefficient does not involve 𝑛 (example C above) then we do not use integration by parts.

It is normally easiest to move both integrals to the one side and simplify.

The rule of thumb requires that the integral with the higher power (usually 𝑛) is the subject of the

reduction formula, so on the LHS.

𝐀 𝐼𝑛 =
𝑒

2
− 𝑛𝐼𝑛−1 𝐁 𝐼𝑛 =

sec𝑛−2 𝑥 tan 𝑥

𝑛 − 1
+
𝑛 − 2

𝑛 − 1
𝐼𝑛−2 𝐂 𝐼𝑛 =

1

2𝑛 − 1
− 𝐼𝑛−1

𝑛 − 2

𝑛 − 1 −1−𝑛
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Original Integral Recurrence Relationship to be Proved

𝐼𝑛 = න
1

𝑒2

log𝑒 𝑥
𝑛 𝑑𝑥 𝐼𝑛 = 𝑒22𝑛 − 𝑛𝐼𝑛−1

• The coefficient of 𝐼𝑛−1 involves 𝑛 so use IBP. 

• The numerator is 𝑛, so let 𝑢 = log𝑒 𝑥
𝑛

𝐼𝑛 = න
0

𝑥

sec𝑛𝑡 𝑑𝑡 𝐼𝑛 =
sec𝑛−2 𝑥 tan 𝑥

𝑛 − 1
+
𝑛 − 2

𝑛 − 1
𝐼𝑛−2

• The coefficient of 𝐼𝑛−2 involves 𝑛 so use IBP. 

• The numerator is 𝑛 − 2, so let 𝑢 = sec𝑛−2 𝑡.

𝐼𝑛 = න
0

1

𝑥2𝑛+1𝑒𝑥
2
𝑑𝑥 𝐼𝑛 =

𝑒

2
− 𝑛𝐼𝑛−1

• The coefficient of 𝐼𝑛−1 involves 𝑛 so use IBP. 

• The numerator is 𝑛, and in this case we use a multiple of 𝑛, so 𝑢 = 𝑥2𝑛. 

• Where there are two functions in the integral, use the function that is already to the power of 

some function of 𝑛.

𝐼𝑛 = න
0

𝜋
4
tan2𝑛 𝜃 𝑑𝜃 𝐼𝑛 =

1

2𝑛 − 1
− 𝐼𝑛−1

• The coefficient of 𝐼𝑛−1 is −1. As it does not involve 𝑛 we don’t use integration by parts. 

• The easiest method is to rearrange the expression and first prove that 

𝐼𝑛 + 𝐼𝑛−1 =
1

2𝑛 − 1

𝐼𝑛 = න
0

𝜋
2
𝑥𝑛cos 𝑥 𝑑𝑥 𝐼𝑛 =

𝜋

2

𝑛

− 𝑛 𝑛 − 1 𝐼𝑛−2

The numerator 𝑛(𝑛 − 1) is the product of two consecutive terms, which indicates that we will 

integrate by parts twice:

• the first time using 𝑢 = 𝑥𝑛

• the second time using 𝑢 = 𝑥𝑛−1

Note that we use the higher term for the first IBP.
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Example 1

If prove that

Solution

𝐼𝑛 = න𝑥𝑛𝑒𝑥 𝑑𝑥

= 𝑥𝑛𝑒𝑥 −න𝑛𝑥𝑛−1𝑒𝑥 𝑑𝑥

= 𝑥𝑛𝑒𝑥 − 𝑛න𝑥𝑛−1𝑒𝑥 𝑑𝑥

= 𝑥𝑛𝑒𝑥 − 𝑛𝐼𝑛−1

𝑢 = 𝑥𝑛
𝑑𝑣

𝑑𝑥
= 𝑒𝑥

𝑑𝑢

𝑑𝑥
= 𝑛𝑥𝑛−1 𝑣 = 𝑒𝑥

The coefficient of 𝐼𝑛−1 involves 

𝑛, so use IBP.

The numerator is 𝑛 which gives 

us the power we want, so we let 

𝑢 = 𝑥𝑛.

𝐼𝑛 = න𝑥𝑛𝑒𝑥 𝑑𝑥 𝐼𝑛 = 𝑥𝑛𝑒𝑥 − 𝑛𝐼𝑛−1 This example is also done using

Tabular IBP in Appendix 1

Example 2

If prove that

Solution

𝐼𝑛 = නcos𝑛𝑥 𝑑𝑥

= cos𝑛−1 𝑥 sin 𝑥 + 𝑛 − 1 නcos𝑛−2 𝑥 sin𝑥 sin𝑥 𝑑𝑥

= cos𝑛−1 𝑥 sin 𝑥 + 𝑛 − 1 නcos𝑛−2 𝑥 (1 − cos2 𝑥)𝑑𝑥

= cos𝑛−1 𝑥 sin 𝑥 + 𝑛 − 1 නcos𝑛−2 𝑥 𝑑𝑥 − 𝑛 − 1 නcos𝑛 𝑥 𝑑𝑥

∴ 𝐼𝑛 = cos𝑛−1 𝑥 sin𝑥 + 𝑛 − 1 𝐼𝑛−2 − 𝑛 − 1 𝐼𝑛

𝑛𝐼𝑛 = cos𝑛−1 𝑥 sin 𝑥 + 𝑛 − 1 𝐼𝑛−2

𝐼𝑛 =
cos𝑛−1 𝑥 sin𝑥

𝑛
+
𝑛 − 1

𝑛
𝐼𝑛−2

The coefficient of 𝐼𝑛−2 involves

𝑛, so use IBP.

Looking at the final answer we

see a numerator of 𝑛 − 1 which

gives us the power we want, so

we let 𝑢 = cos𝑛−1 𝑥.

𝐼𝑛 = නcos𝑛𝑥 𝑑𝑥 𝐼𝑛 =
cos𝑛−1 𝑥 sin𝑥

𝑛
+
𝑛 − 1

𝑛
𝐼𝑛−2

𝑢 = cos𝑛−1 𝑥 𝑑𝑣 = cos 𝑥 𝑑𝑥
𝑑𝑢

𝑑𝑥
= − 𝑛 − 1 cos𝑛−2 𝑥 sin𝑥 𝑣 = sin𝑥
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Example 3

If prove that

Solution

𝐼𝑛 + 𝐼𝑛−2

= නtan𝑛 𝑥 𝑑𝑥 + නtan𝑛−2 𝑥 𝑑𝑥

= නtan𝑛−2 𝑥 (tan2 𝑥 + 1) 𝑑𝑥

= නtan𝑛−2 𝑥 sec2 𝑥 𝑑𝑥

= න
𝑑

𝑑𝑥

tan𝑛−1 𝑥

𝑛 − 1
𝑑𝑥

=
1

𝑛 − 1
tan𝑛−1 𝑥

∴ 𝐼𝑛 =
1

𝑛 − 1
tan𝑛−1 𝑥 − 𝐼𝑛−2

The coefficient of 𝐼𝑛−2 does not 

involve 𝑛, so move both integrals 

to the one side and simplify.

𝐼𝑛 = නtan𝑛 𝑥 𝑑𝑥 𝐼𝑛 =
1

𝑛 − 1
tan𝑛−1 𝑥 − 𝐼𝑛−2
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Example 4

In Example 1 we saw that if then

Use this recurrence relationship to evaluate

Solution

𝐼0 = න𝑥0𝑒𝑥 𝑑𝑥

= න𝑒𝑥 𝑑𝑥

= 𝑒𝑥 + 𝑐

න𝑥3𝑒𝑥 𝑑𝑥 = 𝐼3

𝐼3 = 𝑥3𝑒𝑥 − 3𝐼2

= 𝑥3𝑒𝑥 − 3 𝑥2𝑒𝑥 − 2𝐼1

= 𝑥3𝑒𝑥 − 3𝑥2𝑒𝑥 + 6 𝑥1𝑒𝑥 − 1𝐼0

= 𝑥3 − 3𝑥2 + 6𝑥 𝑒𝑥 − 6𝐼0

∴ න𝑥3𝑒𝑥 𝑑𝑥 = 𝑥3 − 3𝑥2 + 6𝑥 𝑒𝑥 − 6(𝑒𝑥 + 𝑐)

= 𝑥3 − 3𝑥2 + 6𝑥 − 6 𝑒𝑥 + 𝑐

𝐼𝑛 = න𝑥𝑛𝑒𝑥 𝑑𝑥 𝐼𝑛 = 𝑥𝑛𝑒𝑥 − 𝑛𝐼𝑛−1

න𝑥3𝑒𝑥 𝑑𝑥

1. We usually start by evaluating 𝐼0, as it will be

the easiest integral to evaluate. Sometimes 𝐼1
or rarely 𝐼2 will be easy to integrate.

2. Determine which integral you are trying to find.

3. Use the reduction formula to express the

integral you are trying to find in terms of 𝐼0.
4. Evaluate.
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Example 5

Find a recurrence relationship for

Solution

𝐼𝑛 = න
0

1 𝑥𝑛

𝑥2 + 1 2
𝑑𝑥, for 𝑛 = 0, 1, 2. . .

= −
1

2

𝑥𝑛−1

𝑥2 + 1
0

1

+
𝑛 − 1

2
න
0

1 𝑥𝑛−2

𝑥2 + 1
𝑑𝑥

= −
1

4
− 0 +

𝑛 − 1

2
න
0

1 𝑥𝑛−2 𝑥2 + 1

𝑥2 + 1 2
𝑑𝑥

= −
1

4
+
𝑛 − 1

2
න
0

1 𝑥𝑛

𝑥2 + 1 2
𝑑𝑥 +

𝑛 − 1

2
න
0

1 𝑥𝑛−2

𝑥2 + 1 2
𝑑𝑥

= −
1

4
+
𝑛 − 1

2
𝐼𝑛 +

𝑛 − 1

2
𝐼𝑛−2

∴
3 − 𝑛

2
𝐼𝑛 = −

1

4
+
𝑛 − 1

2
𝐼𝑛−2

𝐼𝑛 =
1

2(𝑛 − 3)
−
𝑛 − 1

𝑛 − 3
𝐼𝑛−2

WHAT IF THE RECURRENCE RELATIONSHIP IS NOT GIVEN?

In all recent HSC questions the recurrence relationship has been given in the question, so we

can use the tricks from this lesson to quickly choose whether to use IBP, and if so the correct

value of 𝑢.

But how would we proceed if the recurrence relationship was not given? This might occur if the

examiners want to create a much more difficult question for use late in the paper.

In our shortcut that we have used so far this lesson we have focused on 𝑢, but if the recurrence

relationship is not known we shift our focus back to
𝑑𝑣

𝑑𝑥
, choosing it so that it is the most

complicated function that we can easily integrate. This often uses IBP with the Reverse Chain

Rule that we used last lesson, or is sometimes equal to 1. For trig functions we often need to

split the powers so we can use the Pythagorean identities. It is important in all types that the 𝑛

stays as a power of 𝑢, not becoming part of
𝑑𝑣

𝑑𝑥
.

𝑢 =
1

2
𝑥𝑛−1

𝑑𝑣

𝑑𝑥
= 2𝑥 𝑥2 + 1 −2

𝑑𝑢

𝑑𝑥
=
1

2
𝑛 − 1 𝑥𝑛−2 𝑣 = − 𝑥2 + 1 −1

𝐼𝑛 = න
0

1 𝑥𝑛

𝑥2 + 1 2
𝑑𝑥, for 𝑛 = 0, 1, 2. .

Using the RCR

𝑑𝑣

𝑑𝑥
= 2𝑥 𝑥2 + 1 −2
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EXERCISE 4.9

BASIC

1 If                         prove that

2 If                         prove that

3 If prove that

4 In Question 1 we saw that if then . Find

MEDIUM

5 If                         prove that

6 i Let              where                 . Show that

ii Hence find the exact value of

7 Prove                                                                  and hence find

8 If                         prove that

9 If                         prove that

CHALLENGING

10 Find a recurrence relationship for 

11 Find a recurrence relationship for 

12 Find a recurrence relationship for 

13 Find a recurrence relationship for 

𝐼𝑛 = න𝑥𝑛𝑒2𝑥 𝑑𝑥 𝐼𝑛 =
𝑥𝑛𝑒2𝑥

2
−
𝑛

2
𝐼𝑛−1

𝐼𝑛 = නsin𝑛 𝑥 𝑑𝑥 𝐼𝑛 = −
sin𝑛−1 𝑥 cos 𝑥

𝑛
+
𝑛 − 1

𝑛
𝐼𝑛−2

𝐼𝑛 = නcot𝑛 𝑥 𝑑𝑥 𝐼𝑛 = −
1

𝑛 − 1
cot𝑛−1 𝑥 − 𝐼𝑛−2

𝐼𝑛 = න
0

1 𝑥𝑛

𝑥2 + 1 2
𝑑𝑥

𝐼𝑛 = න𝑥𝑛𝑒2𝑥 𝑑𝑥 𝐼𝑛 =
𝑥𝑛𝑒2𝑥

2
−
𝑛

2
𝐼𝑛−1

𝐼𝑛 = න
0

𝑥

sec𝑛𝑡 𝑑𝑡 𝐼𝑛 =
sec𝑛−2 𝑥 tan 𝑥

𝑛 − 1
+
𝑛 − 2

𝑛 − 1
𝐼𝑛−2

න
0

𝜋
3
sec4 𝑡 𝑑𝑡

0 ≤ 𝑥 ≤
𝜋

2

න𝑥2𝑒2𝑥 𝑑𝑥

𝐼𝑛 = න𝑥𝑛 2𝑥 + 1𝑑𝑥 𝐼𝑛 =
𝑥𝑛 2𝑥 + 1 3

2𝑛 + 3
−

𝑛

2𝑛 + 3
𝐼𝑛−1

𝐼𝑛 = න
𝑑𝑥

sin𝑛 𝑥

න𝑥 ln𝑛 𝑥 𝑑𝑥 =
𝑥2 ln𝑛 𝑥

2
−
𝑛

2
න𝑥 ln𝑛−1 𝑥 𝑑𝑥 න𝑥 ln2 𝑥 𝑑𝑥

𝐼𝑛 = න
0

𝜋
2
𝑥𝑛cos 𝑥 𝑑𝑥 𝐼𝑛 =

𝜋

2

𝑛

− 𝑛 𝑛 − 1 𝐼𝑛−2

𝐼𝑛 = න
1

𝑒2

log𝑒 𝑥
𝑛 𝑑𝑥 𝐼𝑛 = 2𝑛𝑒2 − 𝑛𝐼𝑛−1

𝐼𝑚 = න
0

1

𝑥𝑚 𝑥2 − 1 5 𝑑𝑥

𝐼𝑛 = න
−3

0

𝑥𝑛 𝑥 + 3𝑑𝑥
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SOLUTIONS - EXERCISE 4.9

1

𝐼𝑛 = න𝑥𝑛𝑒2𝑥 𝑑𝑥

=
𝑥𝑛𝑒2𝑥

2
−
𝑛

2
න𝑥𝑛−1𝑒2𝑥 𝑑𝑥

=
𝑥𝑛𝑒2𝑥

2
−
𝑛

2
𝐼𝑛−1

2

𝐼𝑛 = නsin𝑛 𝑥 𝑑𝑥

= −sin𝑛−1 𝑥 cos 𝑥 + 𝑛 − 1 නsin𝑛−2 𝑥 cos 𝑥 cos 𝑥 𝑑𝑥

= −sin𝑛−1 𝑥 cos 𝑥 + 𝑛 − 1 නsin𝑛−2 𝑥 (1 − sin2 𝑥)𝑑𝑥

= −sin𝑛−1 𝑥 cos 𝑥 + 𝑛 − 1 නsin𝑛−2 𝑥 𝑑𝑥 − 𝑛 − 1 නsin𝑛 𝑥 𝑑𝑥

∴ 𝐼𝑛 = −sin𝑛−1 𝑥 cos 𝑥 + 𝑛 − 1 𝐼𝑛−2 − 𝑛 − 1 𝐼𝑛

𝑛𝐼𝑛 = −sin𝑛−1 𝑥 cos 𝑥 + 𝑛 − 1 𝐼𝑛−2

𝐼𝑛 = −
sin𝑛−1 𝑥 cos 𝑥

𝑛
+
𝑛 − 1

𝑛
𝐼𝑛−2

3 𝐼𝑛 + 𝐼𝑛−2

= නcot𝑛 𝑥 𝑑𝑥 + නcot𝑛−2 𝑥 𝑑𝑥

= නcot𝑛−2 𝑥 (cot2 𝑥 + 1) 𝑑𝑥

= නcosec2 𝑥 cot𝑛−2 𝑥 𝑑𝑥

= −
1

𝑛 − 1
cot𝑛−1 𝑥

∴ 𝐼𝑛 = −
1

𝑛 − 1
cot𝑛−1 𝑥 − 𝐼𝑛−2

𝑢 = 𝑥𝑛
𝑑𝑣

𝑑𝑥
= 𝑒2𝑥

𝑑𝑢

𝑑𝑥
= 𝑛𝑥𝑛−1 𝑣 =

1

2
𝑒2𝑥

𝑢 = sin𝑛−1 𝑥 𝑑𝑣 = sin𝑥 𝑑𝑥
𝑑𝑢

𝑑𝑥
= 𝑛 − 1 sin𝑛−2 𝑥 cos 𝑥 𝑣 = −cos 𝑥
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4

𝐼0 = න𝑥0𝑒2𝑥 𝑑𝑥

= න𝑒2𝑥 𝑑𝑥

=
1

2
𝑒2𝑥 + 𝑐

න𝑥2𝑒2𝑥 𝑑𝑥 = 𝐼2

=
𝑥2𝑒2𝑥

2
−
2

2
𝐼2−1

=
𝑥2𝑒2𝑥

2
−

𝑥𝑒2𝑥

2
−
1

2
𝐼0

=
𝑥2𝑒2𝑥

2
−
𝑥𝑒2𝑥

2
+
1

2

1

2
𝑒2𝑥 + 𝑐

=
𝑥2𝑒2𝑥 − 𝑥𝑒2𝑥 + 2𝑒2𝑥

2
+ 𝑐

5

𝐼𝑛 = න
1

𝑒2

log𝑒 𝑥
𝑛 𝑑𝑥

= 𝑥 log𝑒 𝑥
𝑛

1

𝑒2

− 𝑛න
1

𝑒2

log𝑒 𝑥
𝑛−1 𝑑𝑥

= 𝑒2 × 2𝑛 − 0 − 𝑛𝐼𝑛−1

∴ 𝐼𝑛 = 2𝑛𝑒2 − 𝑛𝐼𝑛−1

6

𝐼𝑛 = න
0

𝑥

sec𝑛𝑡 𝑑𝑡

= sec𝑛−2 𝑡 tan 𝑡
0

𝑥

− 𝑛 − 2 නsec𝑛−2 𝑡 tan2 𝑡 𝑑𝑡

= sec𝑛−2 𝑥 tan 𝑥 − 0 − 𝑛 − 2 නsec𝑛−2 𝑡 sec2 𝑡 − 1 𝑑𝑡

= sec𝑛−2 𝑥 tan 𝑥 − 𝑛 − 2 නsec𝑛 𝑡 𝑑𝑡 + 𝑛 − 2 නsec𝑛−2 𝑡 𝑑𝑡

∴ 𝐼𝑛 = sec𝑛−2 𝑥 tan 𝑥 − 𝑛 − 2 𝐼𝑛 + 𝑛 − 2 𝐼𝑛−2

𝑛 − 1 𝐼𝑛 = sec𝑛−2 𝑥 tan 𝑥 + 𝑛 − 2 𝐼𝑛−2

𝐼𝑛 =
sec𝑛−2 𝑥 tan 𝑥

𝑛 − 1
+
𝑛 − 2

𝑛 − 1
𝐼𝑛−2

𝑢 = log𝑒 𝑥
𝑛

𝑑𝑣

𝑑𝑥
= 1

𝑑𝑢

𝑑𝑥
= 𝑛 log𝑒 𝑥

𝑛−1 𝑣 = 𝑥

𝑢 = sec𝑛−2 𝑡
𝑑𝑣

𝑑𝑡
= sec2 𝑡

𝑑𝑢

𝑑𝑡
= 𝑛 − 2 sec𝑛−3 𝑡 sec 𝑡 tan 𝑡 𝑣 = tan 𝑡

= 𝑛 − 2 sec𝑛−2 𝑡 tan 𝑡
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7

𝐼𝑛 = න𝑥 ln𝑛 𝑥 𝑑𝑥 =
𝑥2 ln𝑛 𝑥

2
−
𝑛

2
න
ln 𝑥

𝑥
× 𝑥2 𝑑𝑥

=
𝑥2 ln𝑛 𝑥

2
−
𝑛

2
න𝑥 ln𝑛−1 𝑥 𝑑𝑥

∴ 𝐼𝑛 =
𝑥2 ln𝑛 𝑥

2
−
𝑛

2
𝐼𝑛−1

𝐼0 = න𝑥 𝑑𝑥 =
𝑥2

2
+ 𝑐

𝐼2 =
𝑥2 ln2 𝑥

2
−
2

2
𝐼1

=
𝑥2 ln2 𝑥

2
−

𝑥2 ln 𝑥

2
−
1

2
𝐼0

=
𝑥2 ln2 𝑥

2
−
𝑥2 ln 𝑥

2
+
1

4

𝑥2

2
+ 𝑐

=
𝑥2 4 ln2 𝑥 − 4 ln 𝑥 + 𝑥2

2
+ 𝑐

8

𝐼𝑛 = න
0

𝜋
2
𝑥𝑛cos 𝑥 𝑑𝑥

= 𝑥𝑛 sin 𝑥
0

𝜋
2

− 𝑛න
0

𝜋
2
𝑥𝑛−1 sin 𝑥 𝑑𝑥

=
𝜋

2

𝑛

− 𝑛න
0

𝜋
2
𝑥𝑛−1 sin 𝑥 𝑑𝑥

=
𝜋

2

𝑛

+ 𝑛 𝑥𝑛−1 cos 𝑥
0

𝜋
2

− 𝑛 − 1 න
0

𝜋
2
𝑥𝑛−2 cos 𝑥 𝑑𝑥

=
𝜋

2

𝑛

+ 𝑛 0 − 0 − 𝑛 𝑛 − 1 𝐼𝑛−2

∴ 𝐼𝑛 =
𝜋

2

𝑛

− 𝑛 𝑛 − 1 𝐼𝑛−2

𝑢 = ln𝑛 𝑥
𝑑𝑣

𝑑𝑥
= 𝑥

𝑑𝑢

𝑑𝑥
=
𝑛 ln𝑛−1 𝑥

𝑥
𝑣 =

𝑥2

2

𝑢 = 𝑥𝑛
𝑑𝑣

𝑑𝑥
= cos 𝑥

𝑑𝑢

𝑑𝑥
= 𝑛𝑥𝑛−1 𝑣 = sin 𝑥

𝑢 = 𝑥𝑛−1
𝑑𝑣

𝑑𝑥
= sin 𝑥

𝑑𝑢

𝑑𝑥
= 𝑛 − 1 𝑥𝑛−2 𝑣 = − cos𝑥
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9

𝐼𝑛 = න𝑥𝑛 2𝑥 + 1𝑑𝑥

=
𝑥𝑛 2𝑥 + 1

3
2

3
−
𝑛

3
න𝑥𝑛−1 2𝑥 + 1

3
2 𝑑𝑥

=
𝑥𝑛 2𝑥 + 1 3

3
−
𝑛

3
න 2𝑥 + 1 𝑥𝑛−1 2𝑥 + 1

1
2 𝑑𝑥

=
𝑥𝑛 2𝑥 + 1 3

3
−
2𝑛

3
න𝑥𝑛 2𝑥 + 1𝑑𝑥 −

𝑛

3
න𝑥𝑛−1 2𝑥 + 1𝑑𝑥

∴ 𝐼𝑛 =
𝑥𝑛 2𝑥 + 1 3

3
−
2𝑛

3
𝐼𝑛 −

𝑛

3
𝐼𝑛−1

2𝑛 + 3

3
𝐼𝑛 =

𝑥𝑛 2𝑥 + 1 3

3
−
𝑛

3
𝐼𝑛−1

∴ 𝐼𝑛 =
𝑥𝑛 2𝑥 + 1 3

2𝑛 + 3
−

𝑛

2𝑛 + 3
𝐼𝑛−1

10

𝐼𝑛 = න
0

1 𝑥𝑛

𝑥2 + 1 2
𝑑𝑥, for 𝑛 = 0, 1, 2. . .

= −
𝑥𝑛−1

𝑥2 + 1
0

1

+ 𝑛 − 1 න
0

1 𝑥𝑛−2

𝑥2 + 1
𝑑𝑥

= −
1

2
− 0 + 𝑛 − 1 න

0

1 𝑥𝑛−2 𝑥2 + 1

𝑥2 + 1 2
𝑑𝑥

= −
1

2
+ 𝑛 − 1 න

0

1 𝑥𝑛

𝑥2 + 1 2
𝑑𝑥 + 𝑛 − 1 න

0

1 𝑥𝑛−2

𝑥2 + 1 2
𝑑𝑥

= −
1

2
+ 𝑛 − 1 𝐼𝑛 + 𝑛 − 1 𝐼𝑛−2

∴ 2 − 𝑛 𝐼𝑛 = −
1

2
+ 𝑛 − 1 𝐼𝑛−2

𝐼𝑛 =
1

2 𝑛 − 2
−
𝑛 − 1

𝑛 − 2
𝐼𝑛−2

𝑢 = 𝑥𝑛
𝑑𝑣

𝑑𝑥
= 2𝑥 + 1

1
2

𝑑𝑢

𝑑𝑥
= 𝑛𝑥𝑛−1 𝑣 =

1

3
2𝑥 + 1

3
2

𝑢 = 𝑥𝑛−1
𝑑𝑣

𝑑𝑥
= 𝑥 𝑥2 + 1 −2

𝑑𝑢

𝑑𝑥
= 𝑛 − 1 𝑥𝑛−2 𝑣 = − 𝑥2 + 1 −1
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11

𝐼𝑚 = න
0

1

𝑥𝑚 𝑥2 − 1 5 𝑑𝑥

=
1

12
𝑥𝑚−2 𝑥2 − 1 6

0

1

−
𝑚 − 1

12
න
0

1

𝑥𝑚−2 𝑥2 − 1 6 𝑑𝑥

= 0 −
𝑚 − 1

12
න
0

1

𝑥𝑚−2 𝑥2 − 1 𝑥2 − 1 5 𝑑𝑥

= −
𝑚 − 1

12
න
0

1

𝑥𝑚 𝑥2 − 1 5 𝑑𝑥 +
𝑚 − 1

12
න
0

1

𝑥𝑚−2 𝑥2 − 1 5 𝑑𝑥

∴
𝑚 + 11

12
𝐼𝑚 =

𝑚 − 1

12
𝐼𝑚−2

∴ 𝐼𝑚 =
𝑚 − 1

𝑚 + 11
𝐼𝑚

12

𝐼𝑛 = න
−3

0

𝑥𝑛 𝑥 + 3𝑑𝑥

=
2

3
𝑥𝑛 𝑥 + 3

3
2

−3

0

−
2𝑛

3
න
−3

0

𝑥𝑛−1 𝑥 + 3
3
2 𝑑𝑥

= 0 −
2𝑛

3
න
−3

0

𝑥𝑛−1 𝑥 + 3 𝑥 + 3
1
2 𝑑𝑥

= −
2𝑛

3
න
−3

0

𝑥𝑛 𝑥 + 3𝑑𝑥 − 2𝑛න
−3

0

𝑥𝑛−1 𝑥 + 3𝑑𝑥

∴ 𝐼𝑛 = −
2𝑛

3
𝐼𝑛 − 2𝑛𝐼𝑛−1

2𝑛 + 3

3
𝐼𝑛 = −2𝑛𝐼𝑛−1

𝐼𝑛 = −
6𝑛

2𝑛 + 3
𝐼𝑛−1

𝑢 = 𝑥𝑚−1
𝑑𝑣

𝑑𝑥
= 𝑥 𝑥2 − 1 5

𝑑𝑢

𝑑𝑥
= (𝑚 − 1)𝑥𝑚−2 𝑣 =

𝑥2 − 1 6

12

𝑢 = 𝑥𝑛
𝑑𝑣

𝑑𝑥
= (𝑥 + 3)

1
2

𝑑𝑢

𝑑𝑥
= 𝑛𝑥𝑛−1 𝑣 =

2

3
𝑥 + 3

3
2
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13

𝐼𝑛 = න
𝑑𝑥

sin𝑛 𝑥

= නcosec𝑛 𝑥 𝑑𝑥

= − cot 𝑥 cosec𝑛−2 𝑥 − 𝑛 − 2 නcosec𝑛−2 𝑥 cot2 𝑥 𝑑𝑥

= −
cos𝑥

sin 𝑥
×

1

sin𝑛−2 𝑥
− 𝑛 − 2 නcosec𝑛−2 𝑥 cosec2 𝑥 − 1 𝑑𝑥

= −
cos𝑥

sin𝑛−1 𝑥
− 𝑛 − 2 නcosec𝑛 𝑥 𝑑𝑥 + 𝑛 − 2 නcosec𝑛−2 𝑥 𝑑𝑥

∴ 𝐼𝑛 = −
cos𝑥

sin𝑛−1 𝑥
− 𝑛 − 2 𝐼𝑛 + 𝑛 − 2 𝐼𝑛−2

𝑛 − 1 𝐼𝑛 = −
cos𝑥

sin𝑛−1 𝑥
+ 𝑛 − 2 𝐼𝑛−2

∴ 𝐼𝑛 = −
cos𝑥

𝑛 − 1 sin𝑛−1 𝑥
+
𝑛 − 2

𝑛 − 1
𝐼𝑛−2

𝑢 = cosec𝑛−2 𝑥
𝑑𝑣

𝑑𝑥
= cosec2 𝑥

𝑑𝑢

𝑑𝑥
= 𝑛 − 2 cosec𝑛−3 𝑥 − cosec𝑥 cot 𝑥 𝑣 = −cot 𝑥
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4.10 DEFINITE INTEGRALS

In Lesson 10 we look at a variety of techniques relating to definite integrals.

We will cover:

• Revision of Mathematics Advanced work on Integrals

• Working with Odd and/or Even Functions

• Reflections and translations

AREAS ABOVE OR BELOW THE X-AXIS

Part of this topic involves an understanding of how to manipulate integrals. This combines a

basic understanding of what integrals are, with algebraic or geometric manipulation.

Where a function is above the 𝑥-axis the integral will be positive and be equal to the area

between the curve and the 𝑥-axis. Where the function is below the 𝑥-axis it will be negative and

be equal to the area between the curve and the 𝑥-axis multiplied by −1.

For example the function 𝑦 = sin 𝑥 is above the 𝑥-axis between 0 and 𝜋, and below the 𝑥-axis

between 𝜋 and 2𝜋, so the respective areas would be andන
0

𝜋

sin 𝑥 𝑑𝑥 −න
𝜋

2𝜋

sin 𝑥 𝑑𝑥

Area = න
0

𝜋

sin 𝑥 𝑑𝑥

Area = −න
𝜋

2𝜋

sin𝑥 𝑑𝑥

𝜋 2𝜋
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Area = න
𝑏

𝑐

𝑓 𝑥 − 𝑔 𝑥 𝑑𝑥

𝑎

𝑦 = 𝑓(𝑥)

𝑏 𝑐

Area = න
𝑎

𝑏

𝑔 𝑥 − 𝑓 𝑥 𝑑𝑥

𝑦 = 𝑔(𝑥)

න
0

3

𝑥2 − 4 𝑑𝑥

= න
0

2

𝑥2 − 4 𝑑𝑥 + න
2

3

𝑥2 − 4 𝑑𝑥

න
2

3

𝑥2 − 4 𝑑𝑥

2

𝑦 = 𝑥2 − 4

3

න
0

2

𝑥2 − 4 𝑑𝑥

DIFFERENCE OF TWO FUNCTIONS

Where we have the difference of two functions, it is equal to the area from the first mentioned

function down to the second one. If the second function is higher than the first function the

integral will be negative.

SPLITTING INTEGRALS

We can split an integral at any point, and the sum of the two integrals will equal the original. We

will split an integral either where the curve cuts the 𝑥-axis, or at 𝑥=0 to compare the left and right

hand sides of even or odd functions.

For example
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SWITCHING LIMITS

If we switch the upper and lower limits of an integral the answer changes sign

CHANGING VARIABLES

The value of an integral is independent of the variable used.

This is an important technique used in proofs.

න
𝑎

𝑏

𝑓 𝑥 𝑑𝑥 = −න
𝑏

𝑎

𝑓 𝑥 𝑑𝑥

න
𝑎

𝑏

𝑓 𝑢 𝑑𝑢 = න
𝑎

𝑏

𝑓 𝑥 𝑑𝑥

න
0

2

𝑥2 + 3 𝑑𝑥

2

𝑦 = 𝑥2 + 3

න
0

2

𝑢2 + 3 𝑑𝑢

2

𝑦 = 𝑢2 + 3

න
0

2

𝑥2 + 3 𝑑𝑥 = න
0

2

𝑢2 + 3 𝑑𝑢

𝑢𝑥

𝑦𝑦
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When multiplying functions:

even × even = even

even × odd = odd

odd × even = odd

odd × odd = even

The same rules apply for division

When adding or subtracting functions:

even + even = even

even + odd = neither

odd + even = neither

odd + odd = odd

The same rules apply for subtraction

ODD AND EVEN FUNCTIONS

Even Functions Odd Functions

න
−𝑎

𝑎

𝑓 𝑥 𝑑𝑥 = 2න
0

𝑎

𝑓(𝑥) 𝑑𝑥 if 𝑥 is even

𝑎

𝑦 = 𝑓(𝑥)

−𝑎

න
−𝑎

𝑎

𝑓 𝑥 𝑑𝑥 = 0 if 𝑓 𝑥 is odd

𝑎

𝑦 = 𝑓(𝑥)

−𝑎

For many (but not all) compound functions:

If the inner and outer functions are both odd then the compound function is odd.

If either function is even the compound function is even.
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න
0

2

𝑥2 + 3 𝑑𝑥

2

𝑦 = 𝑥2 + 3

න
3

5

𝑥 − 3 2 + 3 𝑑𝑥

5

𝑦 = 𝑥 − 3 2 + 3

3

The curve and the limits have all

been moved 3 units to the right.

TRANSFORMATIONS

In Year 11 we looked at how to quickly sketch transformations of a curve. The transformations

that moved a function left or right or reversed it horizontally, without changing the shape of the

curve, can help us with areas under a curve, and thus with integrals in general.

As a recap:

• 𝑓(𝑥 − 𝑎) is 𝑓(𝑥) moved ‘a’ units to the right

• 𝑓(−𝑥) is 𝑓(𝑥) reflected about the 𝑦-axis

• 𝑓(2𝑎 − 𝑥) is 𝑓(𝑥) reflected about 𝑥 = 𝑎.

It is not only the functions that move, but also the areas under them, which we can use to find

equivalent integrals. For example the area under the curve 𝑦 = 𝑥2 + 3 from 𝑥 = 0 to 𝑥 = 2, must

be the same as the area under the curve 𝑦 = 𝑥 − 3 2 + 3 from 𝑥 = 3 to 𝑥 = 5, as the curve is

moved 3 units to the right, as are the upper and lower limits. We could thus say:

න
0

2

𝑥2 + 3 𝑑𝑥 = න
3

5

𝑥 − 3 2 + 3 𝑑𝑥

We can generalize to find equivalent integrals like:

න
𝑎

𝑏

𝑓(𝑥)𝑑𝑥 = න
𝑎+3

𝑏+3

𝑓(𝑥 − 3)𝑑𝑥

න
𝑎

𝑏

𝑓(𝑥)𝑑𝑥
𝑦
= 𝑓(𝑥)

The curve and the limits have all

been moved 3 units to the right.

𝑎 𝑏

න
𝑎+3

𝑏+3

𝑓(𝑥 − 3)𝑑𝑥 𝑦
= 𝑓(𝑥
− 3)

𝑎
+ 3

𝑏
+ 3
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Example 1

Prove and hence find

Solution

න
0

𝑎

𝑓 𝑎 − 𝑥 𝑑𝑥

= න
𝑎

0

𝑓 𝑢 × (−𝑑𝑢)

= න
0

𝑎

𝑓(𝑢)𝑑𝑢

= න
0

𝑎

𝑓 𝑥 𝑑𝑥

Example 2

Evaluate

Solution

න
0

1

1 − 𝑥 99𝑥 𝑑𝑥

= න
0

1

𝑥99 1 − 𝑥 𝑑𝑥

= න
0

1

(𝑥99 − 𝑥100) 𝑑𝑥

=
𝑥100

100
−
𝑥101

101
0

1

=
1

100
−

1

101
− 0 − 0

=
1

10100

𝑢 = 𝑎 − 𝑥
𝑑𝑢 = −𝑑𝑥
𝑑𝑥 = −𝑑𝑢

∴ න
0

𝜋

𝑥 sin 𝑥 𝑑𝑥 = න
0

𝜋

(𝜋 − 𝑥) sin(𝜋 − 𝑥)𝑑𝑥

න
0

𝜋

𝑥 sin𝑥 𝑑𝑥 = න
0

𝜋

𝜋 sin(𝜋 − 𝑥) 𝑑𝑥 − න
0

𝜋

𝑥 sin(𝜋 − 𝑥) 𝑑𝑥

2න
0

𝜋

𝑥 sin𝑥 𝑑𝑥 = 𝜋න
0

𝜋

sin 𝑥 𝑑𝑥

න
0

𝜋

𝑥 sin𝑥 𝑑𝑥 =
𝜋

2
න
0

𝜋

sin 𝑥 𝑑𝑥

=
𝜋

2
−cos 𝑥

0

𝜋

=
𝜋

2
− −1 − −1

= 𝜋

න
0

𝑎

𝑓 𝑎 − 𝑥 𝑑𝑥 = න
0

𝑎

𝑓 𝑥 𝑑𝑥 න
0

𝜋

𝑥 sin𝑥 𝑑𝑥

න
0

1

1 − 𝑥 99𝑥 𝑑𝑥
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Example 3

Evaluate

Solution

Sine is an odd function and cosine is an even function, so the product is an odd function.

When 𝑓(𝑥) is an odd function

∴ න
−𝑎

𝑎

sin 𝑥 cos 𝑥 𝑑𝑥 = 0

න
−𝑎

𝑎

sin 𝑥 cos 𝑥 𝑑𝑥

න
−𝑎

𝑎

𝑓(𝑥)𝑑𝑥 = 0

Example 4

Evaluate

Solution

න
0

𝜋
2
tan 𝑥 −

𝜋

4
sec 𝑥 −

𝜋

4
𝑑𝑥

= න
−
𝜋
4

𝜋
4
tan 𝑥 sec 𝑥 𝑑𝑥

= 0 tan 𝑥 sec 𝑥 is odd since tan 𝑥 is odd and sec 𝑥 is even

න
0

𝜋
2
tan 𝑥 −

𝜋

4
sec 𝑥 −

𝜋

4
𝑑𝑥
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EXERCISE 4.10

BASIC

1 Prove and hence find

2 Evaluate

3 Evaluate

4 Evaluate

MEDIUM

5 A function 𝑓(𝑥) has the property that 𝑓 𝑥 + 𝑓 𝑎 − 𝑥 = 𝑓(𝑎). 

Given prove that

6 Without evaluating the integrals, which one of the following integrals is greater than zero?

(A) න
−
𝜋
2

𝜋
2
𝑒𝑥

2
cos 𝑥 𝑑𝑥 (B) න

−𝜋

𝜋

𝑥3 cos 𝑥 𝑑𝑥 (C) න
−
𝜋
4

𝜋
4
(sin2 𝑥 − cos2 𝑥) 𝑑𝑥 (D) න

−1

1

sin−1 𝑥3 𝑑𝑥

7 Which integral is necessarily equal to

(A) න
0

𝑎

𝑓 𝑥 − 𝑎 − 𝑓(−𝑥) 𝑑𝑥 (B)න
0

𝑎

𝑓 𝑎 + 𝑥 − 𝑓(𝑥) 𝑑𝑥

(C)න
0

𝑎

𝑓 𝑥 + 𝑓 −𝑥 𝑑𝑥 (D)න
0

𝑎

𝑓 𝑥 − 𝑎 − 𝑓(𝑎 − 𝑥) 𝑑𝑥

8 It is given that 𝑓(𝑥) is a non-zero even function and 𝑔(𝑥) is a non-zero odd function. 

Which expression is equal to 

(A) න
0

𝑎

𝑔 𝑥 + 𝑔(−𝑥) 𝑑𝑥 (B) 2න
0

𝑎

𝑔 𝑥 + 𝑔(−𝑥)𝑑𝑥

(C) න
0

𝑎

𝑓 𝑥 + 𝑓(−𝑥) 𝑑𝑥 (D) 2න
0

𝑎

𝑓 𝑥 + 𝑓(−𝑥) 𝑑𝑥

න
0

𝑎

𝑓 𝑎 − 𝑥 𝑑𝑥 = න
0

𝑎

𝑓 𝑥 𝑑𝑥 න
0

2𝜋

𝑥 cos 𝑥 𝑑𝑥

න
0

2

𝑥 2 − 𝑥 𝑑𝑥

න
−2

2

𝑥 + 𝑥3 + 𝑥5 1 + 𝑥2 + 𝑥4 𝑑𝑥

න
−𝜋

0

sin 𝑥 +
𝜋

2
cos 𝑥 +

𝜋

2
𝑑𝑥

න
0

𝑎

𝑓(𝑥) 𝑑𝑥 = න
0

𝑎

𝑓(𝑎 − 𝑥) 𝑑𝑥 න
0

𝑎

𝑓(𝑥) 𝑑𝑥 =
𝑎

2
𝑓(𝑎)

න
−𝑎

𝑎

𝑓(𝑥) 𝑑𝑥

න
−𝑎

𝑎

𝑓 𝑥 + 𝑔(𝑥) 𝑑𝑥 ?
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9 Which of these integrals has the smallest value?

𝐀 න
0

𝜋
6
sin 𝑥 𝑑𝑥 𝐁 න

0

𝜋
6
sin2 𝑥 𝑑𝑥 𝐂 න

0

𝜋
6
(1 − sin𝑥) 𝑑𝑥 𝐃 න

0

𝜋
6
(1 − sin2 𝑥) 𝑑𝑥

10 Evaluate

11 Evaluate

CHALLENGING

12 Evaluate 

න
0

𝜋
2 sin 𝑥

sin 𝑥 + cos 𝑥
𝑑𝑥

න
0

2

1 + sin 𝜋 1 − 𝑥 3 𝑑𝑥

න
0

𝜋
2 cos 𝑥

2 − sin 2𝑥
𝑑𝑥
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SOLUTIONS - EXERCISE 4.10

1

න
0

𝑎

𝑓 𝑎 − 𝑥 𝑑𝑥

= න
𝑎

0

𝑓 𝑢 × (−𝑑𝑢)

= න
0

𝑎

𝑓(𝑢)𝑑𝑢

= න
0

𝑎

𝑓 𝑥 𝑑𝑥

න
0

2𝜋

𝑥 cos 𝑥 𝑑𝑥

= න
0

2𝜋

2𝜋 − 𝑥 cos(2𝜋 − 𝑥) 𝑑𝑥

= 2𝜋න
0

2𝜋

cos(2𝜋 − 𝑥) 𝑑𝑥 − න
0

2𝜋

𝑥 cos(2𝜋 − 𝑥) 𝑑𝑥

= 2𝜋න
0

2𝜋

cos 𝑥 𝑑𝑥 − න
0

2𝜋

𝑥 cos 𝑥 𝑑𝑥

∴ 2න
0

2𝜋

𝑥 cos 𝑥 𝑑𝑥 = 2𝜋න
0

2𝜋

cos 𝑥 𝑑𝑥

න
0

2𝜋

𝑥 cos 𝑥 𝑑𝑥 = 𝜋 sin 𝑥
0

2𝜋

= 𝜋 0 − 0

= 0

2

න
0

2

𝑥 2 − 𝑥 𝑑𝑥

= න
0

2

2 − 𝑥 𝑥 𝑑𝑥

= න
0

2

2𝑥
1
2 − 𝑥

3
2 𝑑𝑥

=
4

3
𝑥
3
2 −

2

5
𝑥
5
2

0

2

=
4

3
× 2 2 −

2

5
× 4 2

=
16 2

15

3

4

න
−2

2

𝑥 + 𝑥3 + 𝑥5 1 + 𝑥2 + 𝑥4 𝑑𝑥 = 0

[since an odd function × an even function is

an odd function].

න
−𝜋

0

sin 𝑥 +
𝜋

2
cos 𝑥 +

𝜋

2
𝑑𝑥

= න
−
𝜋
2

𝜋
2
sin 𝑥 cos 𝑥 𝑑𝑥

= 0 sin𝑥 cos 𝑥 is odd since sin 𝑥 is

odd and cos 𝑥 is even

𝑢 = 𝑎 − 𝑥
𝑑𝑢 = −𝑑𝑥
𝑑𝑥 = −𝑑𝑢
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5
න
0

𝑎

𝑓(𝑥) 𝑑𝑥 = න
0

𝑎

𝑓 𝑎 − 𝑥 𝑑𝑥

∴ 2න
0

𝑎

𝑓(𝑥) 𝑑𝑥 = න
0

𝑎

𝑓 𝑥 𝑑𝑥 + න
0

𝑎

𝑓 𝑎 − 𝑥 𝑑𝑥

න
0

𝑎

𝑓(𝑥) 𝑑𝑥 =
1

2
න
0

𝑎

𝑓 𝑥 + 𝑓 𝑎 − 𝑥 𝑑𝑥

=
1

2
න
0

𝑎

𝑓 𝑎 𝑑𝑥

=
𝑓 𝑎

2
𝑥

0

𝑎

=
𝑓 𝑎

2
𝑎 − 0

=
𝑎

2
𝑓 𝑎

6 𝐴: 𝑒𝑥
2
> 0 and cos 𝑥 ≥ 0 in the domain. True.

𝐵: 𝑥3 cos 𝑥 is odd since 𝑥3 is odd and cos 𝑥 is even. False

𝐶: sin2 𝑥 − cos2 𝑥 = −cos 2𝑥 which is negative in the domain. False

𝐷; sin−1 𝑥3 is the odd function of an odd function so is odd. False.

ANSWER (A)

7

න
−𝑎

𝑎

𝑓(𝑥) 𝑑𝑥

= න
−𝑎

0

𝑓(𝑥) 𝑑𝑥 + න
0

𝑎

𝑓(𝑥) 𝑑𝑥

= න
0

𝑎

𝑓(−𝑥) 𝑑𝑥 + න
0

𝑎

𝑓(𝑥) 𝑑𝑥

ANSWER (C)

8

න
−𝑎

𝑎

𝑓 𝑥 + 𝑔(𝑥) 𝑑𝑥

= න
−𝑎

𝑎

𝑓(𝑥) 𝑑𝑥 since 𝑔 𝑥 is odd

= න
0

𝑎

𝑓(−𝑥)𝑑𝑥 + න
0

𝑎

𝑓(𝑥) 𝑑𝑥 from Q7

9
for 0 ≤ 𝑥 ≤

𝜋

6

A: 0 ≤ sin𝑥 ≤
1

2

B: 0 ≤ sin2 𝑥 ≤
1

4

C:
1

2
≤ 1 − sin 𝑥 ≤ 1

D:
3

4
≤ 1 − sin2 𝑥 ≤ 1

∴ANSWER (B)
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10
න
0

𝜋
2 sin𝑥

sin𝑥 + cos 𝑥
𝑑𝑥 (1)

= න
0

𝜋
2 sin

𝜋
2
− 𝑥

sin
𝜋
2
− 𝑥 + cos

𝜋
2
− 𝑥

= න
0

𝜋
2 cos 𝑥

cos 𝑥 + sin𝑥
𝑑𝑥 (2)

From 1 and 2 :

2න
0

𝜋
2 sin 𝑥

sin 𝑥 + cos 𝑥
𝑑𝑥 = න

0

𝜋
2 sin 𝑥 + cos 𝑥

sin𝑥 + cos 𝑥
𝑑𝑥

න
0

𝜋
2 sin 𝑥

sin 𝑥 + cos 𝑥
𝑑𝑥 =

1

2
න
0

𝜋
2
𝑑𝑥

න
0

𝜋
2 sin 𝑥

sin 𝑥 + cos 𝑥
𝑑𝑥 =

1

2
𝑥

0

𝜋
2

=
𝜋

4

11
න
0

2

1 + sin 𝜋 1 − 𝑥 3 𝑑𝑥

= න
0

2

1 − sin 𝜋 𝑥 − 1 3 𝑑𝑥

= න
−1

1

1 − sin𝜋𝑥3 𝑑𝑥

= න
−1

1

1𝑑𝑥 − න
−1

1

sin𝜋𝑥3 𝑑𝑥

= 𝑥
−1

1

− 0

= 1 − −1

= 2

12

න
0

𝜋
2 cos 𝑥

2 − sin2𝑥
𝑑𝑥

= න
0

𝜋
2 cos 𝑥

1 + sin2 𝑥 + cos2 𝑥 − 2 sin𝑥 cos 𝑥
𝑑𝑥

= න
0

𝜋
2 cos 𝑥

1 + sin𝑥 − cos 𝑥 2
𝑑𝑥 1

= න
0

𝜋
2 cos

𝜋
2 − 𝑥

1 + sin
𝜋
2
− 𝑥 − cos

𝜋
2
− 𝑥

2 𝑑𝑥

= න
0

𝜋
2 sin 𝑥

1 + cos 𝑥 − sin𝑥 2
𝑑𝑥 2

From 1 + (2):

2න
0

𝜋
2 cos 𝑥

2 − sin2𝑥
𝑑𝑥 = න

0

𝜋
2 cos 𝑥 + sin𝑥

1 + sin 𝑥 − cos 𝑥 2
𝑑𝑥

න
0

𝜋
2 cos 𝑥

2 − sin2𝑥
𝑑𝑥 =

1

2
tan−1 sin 𝑥 − cos 𝑥

0

𝜋
2

=
1

2
tan−1 1 − tan−1 −1

=
1

2

𝜋

4
− −

𝜋

4

=
𝜋

4
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APPENDIX 1: TABULAR INTEGRATION BY PARTS

In a number of the lessons through this topic we have dealt with an integrand which was the

product of two functions. We dealt with many of these using 𝑢 or 𝑢2 substitutions while others

needed integration by parts.

A little known variation to integration by parts is tabular integration by parts, which we can use

as a checking method whenever the answer we are trying to find is not given in the question. It

is a process that does not provide any understanding, so really only recommended for checking

an answer obtained using any of the usual methods.

We start by choosing the functions for
𝑑𝑣

𝑑𝑥
and 𝑢 using DETAIL - if you need the Reverse Chain

Rule this method will quickly reach a dead end.

We then continually differentiate 𝑢 and integrate
𝑑𝑣

𝑑𝑥
until two terms on the same line create an

integral we can deal with.

This happens when either we:

• differentiate 𝑢 to reach 0 (as it is very easy to differentiate 0) - Example 1

• create a simple integral we can solve - Example 2

• create an integral that matches the original (so that we can swing it back with the original) -

Example 3

• reach the integral with the lower power we need for the Reduction Formula - Example 4
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Example 3

Find

Solution

Using DETAIL we let
𝑑𝑣

𝑑𝑥
= sin 𝑥 and so 𝑢 = 𝑥2

Differentiate 𝑢 Integrate
𝑑𝑣

𝑑𝑥

𝑥2 sin 𝑥

2𝑥 − cos 𝑥

2 − sin𝑥

0 cos 𝑥

න𝑥2 sin 𝑥 𝑑𝑥

= + 𝑥2 −cos 𝑥 − 2𝑥 − sin𝑥 + 2 cos 𝑥 + 𝑐

= 2 − 𝑥2 cos 𝑥 + 2𝑥 sin𝑥 + 𝑐

+

−

+

Find
𝑑𝑣

𝑑𝑥
and 𝑢 as we would in IBP.

Differentiate 𝑢 and integrate
𝑑𝑣

𝑑𝑥
until the

derivative of 𝑢 becomes zero.

The integral equals the product of the 

diagonals as marked with an arrow. 

Every second arrow needs a negative 

product. Add 𝑐 for indefinite integrals.

න𝑥2 sin 𝑥 𝑑𝑥
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Example 2

Find

Solution

Using DETAIL we let
𝑑𝑣

𝑑𝑥
= 𝑥 and so 𝑢 = ln 𝑥

Differentiate 𝑢 Integrate
𝑑𝑣

𝑑𝑥

ln 𝑥 𝑥

1

𝑥

𝑥2

2

න𝑥 ln 𝑥 𝑑𝑥

= + ln 𝑥
𝑥2

2
− න

1

𝑥

𝑥2

2
𝑑𝑥

=
𝑥2 ln 𝑥

2
−
1

2
න𝑥 𝑑𝑥

=
𝑥2 ln 𝑥

2
−
𝑥2

4
+ 𝑐

+

Find
𝑑𝑣

𝑑𝑥
and 𝑢 as we would in IBP.

Differentiate 𝑢 and integrate
𝑑𝑣

𝑑𝑥
until the

product of the derivative of 𝑢 and the

integral of
𝑑𝑣

𝑑𝑥
is easily integrated.

The integral equals the product of the 

diagonals as marked with an arrow. 

Every second arrow needs a negative 

product. Add 𝑐 for indefinite integrals.

න𝑥 ln 𝑥 𝑑𝑥

−
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Example 3

Evaluate

Solution

Using DETAIL we let
𝑑𝑣

𝑑𝑥
= 𝑒𝑥 and so 𝑢 = sin 𝑥

Differentiate 𝑢 Integrate
𝑑𝑣

𝑑𝑥

sin 𝑥 𝑒𝑥

cos 𝑥 𝑒𝑥

−sin𝑥 𝑒𝑥

න
0

𝜋
2
𝑒𝑥 sin 𝑥 𝑑𝑥 = + sin 𝑥 𝑒𝑥 − cos 𝑥 𝑒𝑥

0

𝜋
2

+න
0

𝜋
2
(− sin 𝑥)(𝑒𝑥) 𝑑𝑥

= 𝑒𝑥 sin𝑥 − cos 𝑥
0

𝜋
2

−න
0

𝜋
2
𝑒𝑥 sin 𝑥 𝑑𝑥

∴ 2න
0

𝜋
2
𝑒𝑥 sin 𝑥 𝑑𝑥 = 𝑒

𝜋
2 0 + 1 − 1(0 − 1)

∴ න
0

𝜋
2
𝑒𝑥 sin 𝑥 𝑑𝑥 =

𝑒
𝜋
2 + 1

2

Find
𝑑𝑣

𝑑𝑥
and 𝑢 as we would in IBP.

Differentiate 𝑢 and integrate
𝑑𝑣

𝑑𝑥
until the

product of the derivative of 𝑢 and the integral

of
𝑑𝑣

𝑑𝑥
is a multiple of the original integral.

The integral equals the product of the 

diagonals as marked with an arrow. 

Every second arrow needs a negative 

product. Add 𝑐 for indefinite integrals.

න
0

𝜋
2
𝑒𝑥 sin 𝑥 𝑑𝑥

+

−

+
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Example 4

If prove that

Solution

Using DETAIL we let
𝑑𝑣

𝑑𝑥
= 𝑒𝑥 and so 𝑢 = 𝑥𝑛

Differentiate 𝑢 Integrate
𝑑𝑣

𝑑𝑥

𝑥𝑛 𝑒𝑥

𝑛𝑥𝑛−1 𝑒𝑥

𝐼𝑛 = න𝑥𝑛𝑒𝑥 𝑑𝑥

= + 𝑥𝑛 𝑒𝑥 −න 𝑛𝑥𝑛−1 𝑒𝑥 𝑑𝑥

∴ 𝐼𝑛 = 𝑥𝑛𝑒𝑥 − 𝑛න𝑥𝑛−1𝑒𝑥 𝑑𝑥

= 𝑥𝑛𝑒𝑥 − 𝑛𝐼𝑛

Find
𝑑𝑣

𝑑𝑥
and 𝑢 as we would in IBP.

Differentiate 𝑢 and integrate
𝑑𝑣

𝑑𝑥
until the

product of the derivative of 𝑢 and the

integral of
𝑑𝑣

𝑑𝑥
is the lower powered

integral required.

The integral equals the product of the 

diagonals as marked with an arrow. 

Every second arrow needs a negative 

product. Add 𝑐 for indefinite integrals.

𝐼𝑛 = න𝑥𝑛𝑒𝑥 𝑑𝑥 𝐼𝑛 = 𝑥𝑛𝑒𝑥 − 𝑛𝐼𝑛−1

+

−
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Standard Integrals - Trigonometry

න𝑓′(𝑥) sin 𝑓(𝑥) 𝑑𝑥 = −cos 𝑓 𝑥 + 𝑐

න𝑓′(𝑥) cos𝑓(𝑥) 𝑑𝑥 = sin 𝑓 𝑥 + 𝑐

න𝑓′ 𝑥 tan 𝑓(𝑥) 𝑑𝑥 = න
𝑓′ 𝑥 sin 𝑓 𝑥

cos𝑓 𝑥
𝑑𝑥 = − ln cos𝑓 𝑥 + 𝑐

න𝑓′(𝑥)cosec 𝑓(𝑥) 𝑑𝑥 = − ln cosec 𝑓 𝑥 + cot 𝑓 𝑥 + 𝑐

න𝑓′(𝑥) sec 𝑓(𝑥) 𝑑𝑥 = ln sec 𝑓 𝑥 + tan 𝑓 𝑥 + 𝑐

න𝑓′ 𝑥 cot 𝑓(𝑥) 𝑑𝑥 = න
𝑓′ 𝑥 cos 𝑓 𝑥

sin 𝑓 𝑥
𝑑𝑥 = ln sin 𝑓 𝑥 + 𝑐

න𝑓′ 𝑥 sec2 𝑓(𝑥) 𝑑𝑥 = tan 𝑓 𝑥 + 𝑐

න𝑓′(𝑥)cosec2𝑓(𝑥) 𝑑𝑥 = −cot 𝑓 𝑥 + 𝑐

න𝑓′(𝑥) sec 𝑓(𝑥) tan 𝑓(𝑥) 𝑑𝑥 = sec 𝑓 𝑥 + 𝑐

න𝑓′(𝑥) cosec𝑓(𝑥) cot 𝑓(𝑥) 𝑑𝑥 = − cosec 𝑓 𝑥 + 𝑐

Standard Integrals  - Other

න𝑓′(𝑥) 𝑓 𝑥 𝑛𝑑𝑥 =
1

𝑛 + 1
𝑓 𝑥 𝑛+1 + 𝑐

where 𝑛 ≠ 1

න𝑓′ 𝑥 𝑒𝑓 𝑥 𝑑𝑥 = 𝑒𝑓 𝑥 + 𝑐

න
𝑓′ 𝑥

𝑓 𝑥
𝑑𝑥 = ln 𝑓 𝑥 + 𝑐

න𝑓′(𝑥) 𝑎𝑓 𝑥 𝑑𝑥 =
𝑎𝑓 𝑥

ln 𝑎
+ 𝑐

න
𝑓′ 𝑥

𝑎2 − 𝑓 𝑥 2
𝑑𝑥 = sin−1

𝑓 𝑥

𝑎
+ 𝑐

න
𝑓′ 𝑥

𝑎2 + 𝑓 𝑥 2
𝑑𝑥 =

1

𝑎
tan−1

𝑓 𝑥

𝑎
+ 𝑐

න
𝑓′(𝑥)

[𝑓 𝑥 ]2−𝑎2
𝑑𝑥 = ln 𝑓 𝑥 + 𝑓 𝑥 2 − 𝑎2 + 𝑐

න
𝑓′(𝑥)

[𝑓 𝑥 ]2+𝑎2
𝑑𝑥 = ln 𝑓 𝑥 + 𝑓 𝑥 2 + 𝑎2 + 𝑐

Trig Identities

sin2 𝑥 + cos2 𝑥 = 1
sin2 𝑥 = 1 − cos2 𝑥
cos2 𝑥 = 1 − sin2 𝑥

tan2 𝑥 + 1 = sec2 𝑥
tan2 𝑥 = sec2 𝑥 − 1

1 + cot2 𝑥 = cosec2𝑥
cot2 𝑥 = cosec2𝑥 − 1

sin 2𝑥 = 2 sin 𝑥 cos 𝑥
cos 2𝑥 = cos2 𝑥 − sin2 𝑥

= 2 cos2 𝑥 − 1
= 1 − 2 sin2 𝑥

tan 2𝑥 =
2 tan 𝑥

1 − tan2 𝑥

cos2 𝑥 =
1

2
1 + cos2𝑥

sin2 𝑥 =
1

2
(1 − cos2𝑥)

t-results

𝑡 = tan
𝑥

2
𝑑𝑡

𝑑𝑥
=
1

2
sec2

𝑥

2

=
1

2
(1 + 𝑡2)

𝑑𝑥 =
2𝑑𝑡

1 + 𝑡2

sin 𝑥 =
2𝑡

1 + 𝑡2

cos 𝑥 =
1 − 𝑡2

1 + 𝑡2

tan 𝑥 =
2𝑡

1 − 𝑡2

Standard Integrals and Identities

Product to Sum Identities

cos𝐴 cos𝐵 = 1
2
cos 𝐴 − 𝐵 + cos 𝐴 + 𝐵

sin𝐴 sin𝐵 = 1
2
cos 𝐴 − 𝐵 − cos 𝐴 + 𝐵

sin 𝐴 cos𝐵 = 1
2
sin 𝐴 + 𝐵 + sin 𝐴 − 𝐵

cos𝐴 sin𝐵 = 1
2
sin 𝐴 + 𝐵 − sin 𝐴 − 𝐵

Definite Integrals

න
𝑎

𝑏

𝑓 𝑥 𝑑𝑥 = −න
𝑏

𝑎

𝑓 𝑥 𝑑𝑥

න
𝑎

𝑏

𝑓 𝑢 𝑑𝑢 = න
𝑎

𝑏

𝑓 𝑥 𝑑𝑥

For even functions 𝑓 −𝑥 = 𝑓 𝑥 :

න
−𝑎

𝑎

𝑓 𝑥 𝑑𝑥 = 2න
0

𝑎

𝑓 𝑥 𝑑𝑥

For odd functions 𝑓 −𝑥 = −𝑓 𝑥 :

න
−𝑎

𝑎

𝑓 𝑥 𝑑𝑥 = 0
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Hexagon Mnemonic

Co-function Relations: The trigonometric functions 

cosine, cotangent, and cosecant on the right of the 

hexagon are co-functions of sine, tangent, and secant 

on the left respectively. 

sin(90 − 𝜃) = cos 𝜃 ; tan(90 − 𝜃) = cot 𝜃 ; sec(90 − 𝜃)
= cosec 𝜃

Reciprocal identities: The two trigonometric 

functions of any diagonal are reciprocals of each 

other.

cosec 𝜃 =
1

sin 𝜃
; sec 𝜃 =

1

cos 𝜃
; cot 𝜃 =

1

𝑡𝑎𝑛 𝜃

Product identities: Along the outside edges of the 

hexagon any trigonometric function equals the product 

of the functions of the adjacent vertices. 

tan 𝜃 × cos 𝜃 = sin 𝜃 ; sec 𝜃 × cot 𝜃 = cosec 𝜃 etc

1

sin cos

tan

sec cosec

cot

Quotient identities: along the outside edges of the hexagon, any trigonometric function equals the quotient of the 

next two trigonometric functions going either clockwise or counter clock wise. 

sin 𝜃 = tan 𝜃 ÷ sec 𝜃 ; cot 𝜃 ÷ cosec 𝜃 = cos 𝜃 𝑒𝑡𝑐

Pythagorean Identities: For each shaded triangle, the upper left function squared plus the upper right function

squared, equals the bottom function squared.

sin2 𝜃 + cos2 𝜃 = 1 ; tan2 𝜃 + 1 = sec2 𝜃 ; 1 + cot2 𝜃 = cosec2𝜃

To rearrange any identity, drop any term from the top line to the right end of the bottom line with a minus in front.

sin2 𝜃 = 1 − cos2 𝜃 ; tan2 𝜃 = sec2 𝜃 − 1 ; cosec2𝜃 − cot2 𝜃 = 1

cos𝐴 cos𝐵 = 1
2
cos 𝐴 − 𝐵 + cos 𝐴 + 𝐵

sin𝐴 sin𝐵 = 1
2
cos 𝐴 − 𝐵 − cos 𝐴 + 𝐵

sin 𝐴 cos𝐵 = 1
2
sin 𝐴 + 𝐵 + sin 𝐴 − 𝐵

cos𝐴 sin𝐵 = 1
2
sin 𝐴 + 𝐵 − sin 𝐴 − 𝐵

Sin or Cos on the RHS?

• If the factors use the same ratio then use cos on the RHS, if the factors use different ratios then use sin

Sum or Difference of Angles first on RHS?

• If using cos then difference of angles is used first, if using sin then sum of angles is used first

Add or Subtract the Ratios on RHS?

• If cos is the second factor then add the ratios on RHS, if sin is the second factor then subtract

Product to Sum Mnemonic

Factors Difference Sum

Factors are the 

same so use 

cos on RHS

Factors are 

different so use 

sin on RHS

The fours Product to Sum Identities are very similar, so to save us looking at the Reference Sheet each time, try:

If cos is the second factor add the 

ratios on the RHS, if sin then subtract
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Differentiation & Integration of Trig Functions Arrow = Differentiation.

Go in reverse for Integration/ primitives

Function Derivative

tan 𝑥 sec2 𝑥
sec 𝑥 sec 𝑥 tan 𝑥
ln(tan 𝑥 + sec 𝑥) sec 𝑥

Function Derivative

cot 𝑥 − cosec2 𝑥
cosec 𝑥 − cosec 𝑥 cot 𝑥
ln(cot 𝑥 + cosec 𝑥) − cosec 𝑥

Function Derivative

sin 𝑥 cos 𝑥
cos 𝑥 − sin 𝑥
− sin 𝑥 − cos 𝑥
− cos 𝑥 sin 𝑥

The arrows show differentiation, but the bottom two triangles show rules that are more often used in integration.

When differentiating:

• any of the complementary ratios (cos𝜃 , cot 𝜃 or cosec 𝜃) the sign changes.

• any ratio ending in ‘c’ (sec 𝜃, cosec 𝜃) gives two terms.

sin

-sin

-cos cos

tan

sec sec

ln

+

cot

-cosec cosec

ln

+

In the diagrams below:

• an arrow pointing at a side means the derivative is the product of the vertices, so the derivative of sec 𝑥 is 

sec 𝑥 tan 𝑥
• the plus sign on the RH side means to take the ln of the sum of the vertices, so the derivative of 

ln tan 𝑥 + sec 𝑥 is sec 𝑥
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HSC Mathematics Extension 2

Chapter 5

Vectors

MEX-V1 Further Work with Vectors

Vectors is a great topic for Extension 2 students as

• it provides another close link between geometry and algebra

• the topic has a wide variety of applications so questions do not need to be repetitive

• many of the questions can involve both theoretical and practical applications of

mathematics, leading us towards the possibilities in university and beyond

LESSONS

Vectors is covered in 6 lessons.

5.1 Three Dimensional Vectors

5.2 Geometric Proofs

5.3 Vector Equation of a Line

5.4 Properties of Lines

5.5 Spheres and Basic Two Dimensional Curves

5.6 Harder Two Dimensional Curves and Three Dimensional Curves

REVISION QUESTIONS

In ‘1000 Extension 2 Revision Questions’, the revision book that goes with this textbook you will 

find the following questions matching this chapter:

• Revision Exercise 5

100 graded questions on this topic only

• Revision Exercises 7 (Basic), 8 (Medium) and 9 (Challenging)

Another 100 questions mixed through other topics for when you finish the course.

Don’t forget to do any questions from the exercises in this textbook you haven’t done.
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5.1 THREE DIMENSIONAL VECTORS

In Lesson 1 we extend some of our work from two-dimensional vectors in Extension 1 to three-

dimensional vectors. This lesson is fairly basic once you have covered the same work for two-

dimensional vectors, with some sections being almost identical. We cover:

• Three dimensional coordinate system

• Standard unit vectors in three dimensions

• Notation

• Addition, subtraction and scalar multiplication

• Magnitude

• Unit vectors

• Scalar product

VECTORS IN THREE DIMENSIONS

A vector in one, two or three dimensions is really the same - all we are really doing is moving or

twisting it in relation to some arbitrary set of axes. As such many of our rules for three-

dimensional vectors are identical to those we have seen for two-dimensional vectors.

To indicate that a vector is three-dimensional we can draw it as the diagonal of a rectangular

prism, or draw it on a three-dimensional coordinate system as we will see soon.

𝑢
~

Just like for two dimensional vectors:

• Equal vectors have the same magnitude and direction

• Negative vectors have the same magnitude but opposite direction

• The scalar multiple of a vector is a vector parallel to the original.

• Collinear points involve one vector being a scalar multiple of another vector, with one point in

common.

• Subtraction of Vectors is done either by adding the negative of a vector, or using tip minus

tail.

• A vector can be split into component vectors, usually parallel to the three axes.
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The Triangle, Parallelogram and Polygon Laws are used to add vectors. It can often help to

imagine boxes being ‘stacked’ so that the corners just touch (very hard to draw clearly). The

sum of the vectors being the diagonal of the box that would stretch from the start of the first box

to the end of the last box.

We mainly use the laws algebraically rather than geometrically, if for no other reason that they

are very hard to draw clearly as we can see!

𝑢
~

𝑣
~

𝑢
~
+ 𝑣

~

The dot product of two perpendicular vectors is zero,

so here 𝑢
~
∙ 𝑣
~
= 0.

𝑢
~
+ 𝑣

~
is the long diagonal 

of the box containing both 

smaller boxes.

𝑢
~𝑣

~

THREE-DIMENSIONAL COORDINATE SYSTEM

We are quite used to using coordinates in one and two dimensions.

In the one dimensional number line, the positive direction of the 𝑥-axis extends to the right from

zero (think eastwards).

One dimensional Number Line

|
0

𝑥

+−
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We extend the number line into the two dimensional Cartesian Plane (number plane) by

extending the positive direction of the 𝑦-axis up the page from zero (think northwards).

𝑥

+−

+

−

𝑦

𝑂

We then extend the Cartesian Plane into three dimensions by having the positive direction of

the 𝑧-axis come straight up out of the page - so if the page is flat on a desk the 𝑧-axis is truly

vertical and comes up and pokes you in the eye!

𝑥

+−

+

−

𝑦

Now we can show that the 𝑧-axis is coming up out of the page by drawing a circle with a dot in

the centre to look like the tip of an arrow coming towards us (think bow and arrow). We won’t

draw the axes like this, but it does help us realise why the three axes are in the order they are.
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The three dimensional axis we have drawn is a right handed axes, for if we start with the back of

our right fist flat on the table:

• opening out our thumb until it is flat, this gives the positive direction of the 𝑥-axis

• opening out our pointer finger until it is flat, this gives the positive direction of the 𝑦-axis

• opening out our middle finger until it is vertical, this gives us the positive direction of the 𝑧-

axis

When drawing a point it helps to draw a rectangular prism stretching from the origin to the point

so that we can more easily see the three dimensions. To make the diagram clearer we can just

draw the base of the rectangular prism and the vertical line up to the point.

𝑦

𝑥

𝑧

𝑃(𝑥, 𝑦, 𝑧).

𝑦

𝑥

𝑧

𝑃(𝑥, 𝑦, 𝑧).

STANDARD UNIT VECTORS

We have already seen that the unit vectors along the 𝑥 and 𝑦-axes are 𝑖
~

and 𝑗
~

respectively. To

this we add the unit vector along the 𝑧-axis, which is 𝑘
~

.

𝑦

𝑥

𝑧

𝑖
~

𝑗
~

𝑘
~

1

1

1
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NOTATION

We can extend our notation for vectors to three dimensions.

We can say that 𝑂𝐴 is equal to:

𝑖
~
+ 3𝑗

~
+ 4𝑘

~
in component form

(1,3,4) as an ordered triple

1
3
4

in column vector notation

𝑦

𝑥

𝑧

𝐴.

1

4

3𝑂

Example 1

Write 𝑂𝐴 in component form, as an ordered triple and in column vector

notation

We can say that 𝑂𝐴 is equal to:

2𝑖
~
+ 5𝑗

~
+ 3𝑘

~
in component form

(2,5,3) as an ordered triple

2
5
3

in column vector notation

𝑦

𝑥

𝑧

𝐴.

2

3 5
𝑂
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ADDITION, SUBTRACTION AND SCALAR MULTIPLICATION

We can also extend our methods for addition, subtraction or scalar multiplication to three-

dimensions using similar methods. The methods are exactly the same as for two dimensional

vectors, so we won’t go through any examples here.

MAGNITUDE OF THREE DIMENSIONAL VECTORS

Extending our formula for the magnitude of a vector, we can say that if 𝑢
~
= 𝑥𝑖

~
+ 𝑦𝑗

~
+ 𝑧𝑘

~
then

𝑢
~

= 𝑥2 + 𝑦2 + 𝑧2. Again it is very similar so we won’t go through an example.

UNIT VECTORS

We have had a look at the standard unit vectors running parallel to the 𝑥, 𝑦 and z-axes, 𝑖
~
, 𝑗
~

and

𝑘
~

respectively, but there are times when it is useful to define a unit vector running in the

direction of the vector itself, rather than one of the axes.

Ӈ𝑢
ꞈ
=

𝑢
~

𝑢
~

Ӈ𝑢
ꞈ

magnitude 𝑢
~

magnitude 1
𝑢
~
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Example 2

Find the unit vector for each vector.

𝐚 𝑎
~
= 2𝑖

~
+ 3𝑗

~
+ 2𝑘

~
𝐛 𝑏
~
= 4,−3,−1 𝐜 𝑐

~
=

−6
3
2

𝐚 𝑎
~

= 17, Ӈ𝑎
ꞈ
=

2

17
𝑖
~
+

3

17
𝑗
~
+

2

17
𝑘
~

𝐛 𝑏
~

= 26, Ӈ𝑏
ꞈ
=

4

26
,−

3

26
,−

1

26

𝐜 𝑐
~
= 7, Ӈ𝑐

ꞈ
=

−
6

7
3

7
2

7

Example 3

Find the vector 𝑣
~

parallel to 𝑢
~
= 3𝑖

~
+ 2𝑗

~
− 𝑘

~
that has a magnitude of 2.

Find the unit vector parallel to 3𝑖
~
+ 2𝑗

~
− 𝑘

~
and multiply it by ±2

𝑢
~

= 32 + 22 + −1 2 = 14

Ӈ𝑢
ꞈ
=

3

14
𝑖
~
+

2

14
𝑗
~
−

1

14
𝑘
~

𝑣
~
= Ӈ𝑢

ꞈ
× (±2)

=
6

14
𝑖
~
+

4

14
𝑗
~
−

2

14
𝑘
~
, −

6

14
𝑖
~
−

4

14
𝑗
~
+

2

14
𝑘
~
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SCALAR (DOT) PRODUCT OF VECTORS

The product of two vectors can either be a scalar or a vector. We will only deal with the scalar

product in the Extension 1 and 2 courses. A vector product (cross product) can only exist in ℝ3

or ℝ7, and is well beyond the Extension 2 course.

The scalar product, also known as the dot product, is important as it allows us to find the angle

between two vectors and is one way to project one vector onto another. It has other uses which

are beyond the syllabus, dealing with lengths, areas and volumes.

There are two versions of the rule. The first involves the vectors in component form, and

extends the rule from two dimensions:

𝑢
~
∙ 𝑣
~
= 𝑥1𝑥2 + 𝑦1𝑦2 + 𝑧1𝑧2

The second involves the magnitudes of the two vectors and the angle between them, and is the

same as for two-dimensional vectors.

𝑢
~
∙ 𝑣
~
= 𝑢

~
𝑣
~
cos 𝜃

Example 4

Find the following scalar products

𝐚 2𝑖
~
+ 3𝑗

~
− 𝑘

~
∙ 𝑖

~
− 2𝑗

~
+ 3𝑘

~

𝐛 4,−3,2 ∙ 2,0,−1

𝐜
−6
3
2

∙
3
6
0

𝐚 2 × 1 + 3 × −2 + −1 × 3 = −7

𝐛 4 × 2 + −3 × 0 + 2 × (−1) = 6

𝐜 −6 × 3 + 3 × 6 + 2 × 0 = 0
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ANGLE BETWEEN TWO VECTORS

Extending the formula for the angle between two vectors from two dimensions to three we see:

cos 𝜃 =
𝑥1𝑥2 + 𝑦1𝑦2 + 𝑧1𝑧2

𝑢
~

𝑣
~

We will prove this in the exercises using the formulae for the dot product.

PARALLEL VECTORS

Two vectors are parallel if the angle between them is 0° or 180°, and cos 𝜃 = 1 and cos 𝜃 = −1

respectively.

PERPENDICULAR VECTORS

Two vectors are perpendicular if the angle between them is 90°, in which case 𝑢
~
∙ 𝑣
~
= 0, which

makes cos 𝜃 = 0. To prove two non-zero vectors are perpendicular we can prove either

𝑢
~
∙ 𝑣
~
= 0 or cos 𝜃 = 0.

ORTHOGONAL VECTORS

Two vectors are orthogonal if their scalar product is zero. This includes the case where two

vectors are perpendicular, plus the case where one or both of the vectors are the zero vector.

So we can say that two vectors are orthogonal if 𝑢
~
⊥ 𝑣

~
or 𝑢

~
= 0 or 𝑣

~
= 0.

Example 5

Find the angle between the vectors
1
2
2

and
−1
1
0

to the nearest degree.

cos 𝜃 =
𝑥1𝑥2 + 𝑦1𝑦2 + 𝑧1𝑧2

𝑢
~

𝑣
~

=
1 −1 + 2 1 + 2 0

12 + 22 + 22 × −1 2 + 12 + 02

=
1

3 2
𝜃 = 76° nearest degree
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EXERCISE 5.1

BASIC

1 Write 𝑂𝐴 in component form, as an ordered triple 

and in column vector notation

2 Simplify the following in each of the three forms.

𝐚 𝑖
~
+ 3𝑗

~
− 2𝑘

~
+ 2𝑖

~
− 4𝑗

~
+ 𝑘

~
𝐛 1,3,−2 + 2,−4,1 𝐜

1
3
−2

+
2
−4
1

3 Simplify the following in each of the three forms.

𝐚 𝑖
~
+ 3𝑗

~
− 2𝑘

~
− 2𝑖

~
− 4𝑗

~
+ 𝑘

~
𝐛 1,3,−2 − 2,−4,1 𝐜

1
3
−2

−
2
−4
1

4 Simplify.

𝐚 3 𝑖
~
+ 3𝑗

~
− 2𝑘

~
𝐛 3 1,3,−2 𝐜 3

1
3
−2

5 Find the magnitude of these vectors:

𝐚 𝑖
~
+ 3𝑗

~
− 2𝑘

~
𝐛 4,3,−2 𝐜

1
5
−2

6 Find the unit vector for each vector in Question 5.

MEDIUM

7
Prove that if 𝑢

~
= 𝑥𝑖

~
+ 𝑦𝑗

~
+ 𝑧𝑘

~
then 𝑢

~
= 𝑥2 + 𝑦2 + 𝑧2

8
If 𝑂𝑃 =

1
5
−2

and 𝑂𝑄 =
7
6
2

find 𝑃𝑄

9
Show that 𝑎

~
=

1

2
𝑖
~
+

1

2
𝑗
~
+

1

2
𝑘
~

is a unit vector

10
Find the vector 𝑣

~
parallel to 𝑢

~
= 2𝑖

~
− 𝑗

~
+ 4𝑘

~
that has a magnitude of 3.

𝑦

𝑥

𝑧

𝐴.

3

2 4
𝑂
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11 Find the following scalar products

𝐚 𝑖
~
+ 3𝑗

~
+ 2𝑘

~
∙ 2𝑖

~
− 4𝑗

~
+ 6𝑘

~
𝐛 3,2,−6 ∙ 2,−4,1 𝐜

1
3
−2

∙
2
0
1

12 Use the two formula for the dot product to prove that the angle between

𝑢
~
= 𝑥1 𝑖

~
+ 𝑦1 𝑗

~
+ 𝑧1𝑘

~
and 𝑣

~
= 𝑥2 𝑖

~
+ 𝑦2 𝑗

~
+ 𝑧2𝑘

~
is given by

cos 𝜃 =
𝑥1𝑥2 + 𝑦1𝑦2 + 𝑧1𝑧2

𝑢
~

𝑣
~

13 Find the angle between

𝐚 3𝑖
~
+ 𝑗

~
− 2𝑘

~
and 2𝑖

~
− 3𝑗

~
− 𝑘

~

𝐛 𝑖
~
+ 2𝑗

~
− 𝑘

~
and −2𝑖

~
− 4𝑗

~
+ 2𝑘

~

𝐜 𝑖
~
− 𝑗

~
+ 𝑘

~
and 𝑖

~
+ 𝑗

~
+ 0𝑘

~

𝐝 0𝑖
~
+ 0𝑗

~
+ 0𝑘

~
and 𝑖

~
− 𝑗

~
+ 2𝑘

~

CHALLENGING

14 A triangular based pyramid has three of its vertices at A 2,0,0 , 𝐵(0,2,0) and 𝐶(0,0,2). If its

fourth vertex is at 𝐷(𝑎, 𝑎, 𝑎), where 𝑎 > 0, find the value of 𝑎. You are given the three

triangles forming the sides of the pyramid are equilateral.

15 A rectangular prism with sides of length 6, 8 and 10 units has both ends of one of its

longest diagonals along the 𝑥-axis. Prove that all points on the surface of the prism satisfy

𝑧 ≤ 5 2.

Mathematics Extension 2 © Steve Howard 395 Howard and Howard Education



SOLUTIONS - EXERCISE 5.1

1

𝑂𝐴 = 3 𝑖
~
+ 4 𝑗

~
+ 2 𝑘

~
= 3,4,2 =

3
4
2

2 𝐚 1 + 2 𝑖
~
+ 3 − 4 𝑗

~
+ −2 + 1 𝑘

~

= 3𝑖
~
− 𝑗

~
− 𝑘

~

𝐛 1 + 2,3 − 4,−2 + 1
= 3,−1,−1

𝐜
1 + 2
3 − 4
−2 + 1

=
3
−1
−1

3 𝐚 1 − 2 𝑖
~
+ 3 + 4 𝑗

~
+ −2 − 1 𝑘

~

= −𝑖
~
+ 7𝑗

~
− 3𝑘

~

𝐛 1 − 2,3 + 4,−2 − 1
= −1,7,−3

𝐜
1 − 2
3 + 4
−2 − 1

=
−1
7
−3

4 𝐚 3𝑖
~
+ 9𝑗

~
− 6𝑘

~

𝐛 (3,9,−6)

𝐜
3
9
−6

5 𝐚 𝑎
~

= 12 + 32 + (−2)2= 14

𝐛 𝑏
~

= 42 + 32 + −2 2 = 29

𝐜 𝑐
~

= 12 + 52 + (−2)2= 30

6 𝐚 𝑎
~

= 14, Ӈ𝑎
ꞈ
=

1

14
𝑖
~
+

3

14
𝑗
~
−

2

14
𝑘
~

𝐛 𝑏
~

= 29, Ӈ𝑏
ꞈ
=

4

29
,
3

29
, −

2

29

𝐜 𝑐
~

= 30, Ӈ𝑐
ꞈ
=

1

30
5

30

−
2

30

7
Splitting 𝑢

~
into its component vectors 𝑥 𝑖

~
, 𝑦𝑗

~
and 𝑧𝑘

~
, we can see that Δ𝑂𝑃𝑄 is right angled with 

hypotenuse 𝑂𝑄 and short sides of 𝑥 𝑖
~
= 𝑥 and 𝑦𝑗

~
= 𝑦

∴ 𝑂𝑄
2
= 𝑥 2 + 𝑦 2 Pythagoras

Similarly we have Δ𝑂𝐴𝑄 also right angled

𝑢
~

2
= 𝑂𝑄

2
+ 𝐴𝑄

2

= 𝑥 2 + 𝑦 2 + 𝑧 2

= 𝑥2 + 𝑦2 + 𝑧2

∴ 𝑢
~

= 𝑥2 + 𝑦2 + 𝑧2 □

8

𝑃𝑄 =
7
6
2

−
1
5
−2

=
6
1
4

𝑃𝑄 = 62 + 12 + 42 = 53

9

𝑎
~

=
1

2

2

+
1

2

2

+
1

2

2

=
1

2
+
1

4
+
1

4

= 1
∴ 𝑎
~

is a unit vector

𝑢
~ 𝑧

𝑥

𝑦

𝑂

𝐴

𝑃

𝑄
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10 Find the unit vector parallel to

2𝑖
~
− 𝑗

~
+ 4𝑘

~
and multiply it by ±3

𝑢
~

= 22 + (−1)2+42 = 21

Ӈ𝑢
ꞈ
=

2

21
𝑖
~
−

1

21
𝑗
~
+

4

21
𝑘
~

𝑣
~
= Ӈ𝑢

ꞈ
× (±3)

= ±
6

21
𝑖
~
−

3

21
𝑗
~
+

12

21
𝑘
~

11 𝐚 1 2 + 3 −4 + 2 6 = 2
b 3 2 + 2 −4 − 6 1 = −8
𝐜 1 2 + 3 0 − 2 1 = 0

12 From the scalar product we have

𝑢
~
∙ 𝑣
~
= 𝑥1𝑥2 + 𝑦1𝑦2 + 𝑧1𝑧2 1

𝑢
~
∙ 𝑣
~
= 𝑢

~
𝑣
~
cos𝜃 2

∴ 𝑢
~

𝑣
~
cos 𝜃 = 𝑥1𝑥2 + 𝑦1𝑦2 + 𝑧1𝑧2

cos 𝜃 =
𝑥1𝑥2 + 𝑦1𝑦2 + 𝑧1𝑧2

𝑢
~

𝑣
~

□

13

𝐚 cos𝜃 =
3 2 + 1 −3 − 2(−1)

32 + 12 + −2 2 × 22 + −3 2 + (−1)2

𝜃 = 69°05′

𝐛 cos𝜃 =
1 −2 + 2 −4 − (2)

12 + 22 + (−1)2× (−2)2+(−4)2+22

𝜃 = 180 (parallel vectors)

𝐜 cos 𝜃 =
1 1 − 1 + (0)

42 + (−1)2+32 × 22 + 82 + 02

𝜃 = 90° (perpendicular vectors)

𝐝 The first vector is the zero vector. There is no angle, as an angle needs two arms and the zero

vector does not form a line. The vectors are orthogonal.

14 𝐷 is the far corner of a cube whose other end is at the origin, and using the other vertices we can

easily see 𝑎 = 2.

15 The longest diagonal is 62 + 82 + 102 = 200 = 10 2. The centre of the prism is on the long

diagonal, so lies on the 𝑥-axis, and every point on the prism must be at most half of the length of

the long diagonal from the centre, and thus 𝑧 ≤ 5 2. We could also say 𝑦 ≤ 5 2.
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5.2 GEOMETRIC PROOFS

In Lesson 2 we look at geometric proofs. We cover:

• Harder geometric proofs in the plane

• Proofs in three dimensions

GEOMETRIC PROOFS IN THE PLANE

There isn’t a lot of difference in the syllabus dot points in Extension 1 and 2, so in Extension 2

we can expect mainly harder two dimensional proofs with a few three dimensional proofs thrown

in.

Example 1

Prove that the square of the hypotenuse equals the sum of the squares of

the other two sides in a right angled triangle.

Let ΔABC be right angled at 𝐵.

𝐴𝐶2 = 𝐴𝐶
2

= 𝐴𝐵 + 𝐵𝐶
2

= 𝐴𝐵 + 𝐵𝐶 ∙ 𝐴𝐵 + 𝐵𝐶

= 𝐴𝐵 ∙ 𝐴𝐵 + 2 𝐴𝐵 ∙ 𝐵𝐶 + 𝐵𝐶 ∙ 𝐵𝐶

= 𝐴𝐵 ∙ 𝐴𝐵 + 𝐵𝐶 ∙ 𝐵𝐶 since 𝐴𝐵 ⊥ 𝐵𝐶 ∴ 𝐴𝐵 ∙ 𝐵𝐶 = 0

= 𝐴𝐵
2
+ 𝐵𝐶

2

= 𝐴𝐵2 + 𝐵𝐶2

∴ The square on the hypotenuse of a right angled triangle equals the sum of the squares on the other two 

sides.      □

𝐴 𝐵

𝐶

** Thanks to Luke W, one of my 
students, who simplified this proof.
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Example 2

Prove that the medians of a triangle are concurrent.

We will let 𝑋 be the intersection of 𝐴𝐷 and 𝐶𝐹 and prove that it lies on 𝐵𝐸. 

Let 𝑂𝐴 = 𝑎
~
, 𝑂𝐵 = 𝑏

~
and 𝑂𝐶 = 𝑐

~
.

In Δ𝐴𝐵𝐶 let 𝐷, 𝐸, 𝐹 be the midpoints of the sides 𝐵𝐶, 𝐴𝐶 and 𝐴𝐵 respectively. 

∴ 𝑂𝐸 =
𝑎
~
+𝑐
~

2
, 𝑂𝐷 =

𝑏
~
+𝑐
~

2
and 𝑂𝐹 =

𝑎
~
+𝑏
~

2

𝐴 𝐵

𝐶

𝐷
𝐸

𝐹

𝑋

𝑂

𝑂𝑋 = 𝑂𝐴 + 𝐴𝑋

= 𝑎
~
+ 𝜆𝐴𝐷

= 𝑎
~
+ 𝜆

𝑏
~
+ 𝑐

~

2
− 𝑎

~

= 1 − 𝜆 𝑎
~
+
𝜆

2
𝑏
~
+
𝜆

2
𝑐
~

(1)

Also

𝑂𝑋 = 𝑂𝐶 + 𝐶𝑋

= 𝑐
~
+ 𝜇𝐶𝐹

= 𝑐
~
+ 𝜇

𝑎
~
+ 𝑏

~

2
− 𝑐

~

=
𝜇

2
𝑎
~
+
𝜇

2
𝑏
~
+ 1 − 𝜇 𝑐

~
(2)

From (1) and (2):

1 − 𝜆 =
𝜇

2

𝜆

2
=
𝜇

2

𝜆

2
= 1 − 𝜇

𝜆 = 𝜇

1 − 𝜆 =
𝜆

2

1 =
3𝜆

2

𝜆 = 𝜇 =
2

3

∴ 𝑂𝑋 =
𝑎
~
+ 𝑏

~
+ 𝑐

~

3

𝐵𝑋 =
𝑎
~
+ 𝑏

~
+ 𝑐

~

3
− 𝑏

~

=
𝑎
~
+ 𝑐

~
− 2𝑏

~

3

𝑋𝐸 =
𝑎
~
+ 𝑐

~

2
−
𝑎
~
+ 𝑏

~
+ 𝑐

~

3

=
𝑎
~
+ 𝑐

~
− 2𝑏

~

6

=
1

2
𝐵𝑋

∴ 𝐵, 𝐸, 𝑋 are collinear

∴ the medians of a triangle are concurrent.

A median is a line joining a vertex to the 

midpoint of the opposite side
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Example 3

Three vertices of a parallelogram are O 0,0,0 , 𝐴(1,2,3) and B(3,2,1). Find 

the possible positions of the fourth vertex.

There are three possible vectors for 𝑂𝐷 that would create a parallelogram: 𝑂𝐴 + 𝑂𝐵,𝑂𝐴 − 𝑂𝐵

and 𝑂𝐵 − 𝑂𝐴.

∴ 𝑂𝐷& = 1,2,3 + 3,2,1 = 4,4,4 or

= 1,2,3 − 3,2,1 = −2,0,2 or

= 3,2,1 − 1,2,3 = (2,0, −2)

The fourth vertex is at 4,4,4 , (−2,0,2)

or (2,0, −2).

𝑦

𝑥

𝑧

𝐴(1,2,3).

𝑂
𝐵(3,2,1)
.

𝑂𝐴 + 𝑂𝐵

𝑂𝐴 − 𝑂𝐵

𝑂𝐵 − 𝑂𝐴

Example 4

A mass exerts a downward force of 100 N. It is being held in a steady 

position by four drones, exerting the forces in Newtons of 25,25,25 ,

30,−30,30 , (−15,15,15) and (𝑎, 𝑏, 𝑐). Find the value of 𝑎, 𝑏 and 𝑐.

25,25,25 + 30,−30,30 + −15,15,15 + 𝑎, 𝑏, 𝑐 = 0,0,100

25 + 30 − 15 + 𝑎, 25 − 30 + 15 + 𝑏, 25 + 30 + 15 + 𝑐 = 0,0,100

40 + 𝑎, 10 + 𝑏, 70 + 𝑐 = 0,0,100

∴ 𝑎 = −40, 𝑏 = −10 and 𝑐 = 30.

GEOMETRIC PROOFS IN THREE DIMENSIONS

Many proofs in two dimensions can be repeated in three dimensions simply by twisting the axes

with respect to the vectors - the solutions end up being exactly the same using vector notation.

Let’s focus on some proofs using three dimensional coordinates.
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Example 5

A square based pyramid has its base on the 𝑥 − 𝑦 plane, with opposite

corners of the base at the origin and (2𝑎, 2𝑎, 0). Its height is 𝑏, and the four

triangles forming its sides are equilateral. Find 𝑏 in terms of 𝑎.

𝑦

𝑥

𝑧

(2𝑎, 2𝑎, 0)

The apex of the pyramid is (𝑎, 𝑎, 𝑏).

The magnitude of the slant height must be 2a, as

the triangles are equilateral.

∴ 𝑎2 + 𝑎2 + 𝑏2 = 2𝑎

2𝑎2 + 𝑏2 = 4𝑎2

𝑏2 = 2𝑎2

𝑏 = 2𝑎
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Example 6

The points A(1,2,3), B(4,5, 𝑧) and C(7,8,9) form a right angled triangle, with 

∠𝐴𝐵𝐶 = 90°. Prove that 𝑧 = 6 ± 2 3.

𝐴𝐵2 = 4 − 1 2 + 5 − 2 2 + 𝑧 − 3 2

= 9 + 9 + 𝑧2 − 6𝑧 + 9

= 𝑧2 − 6𝑧 + 27

𝐵𝐶2 = 7 − 4 2 + 8 − 5 2 + 9 − 𝑧 2

= 9 + 9 + 81 − 18𝑧 + 𝑧2

= 𝑧2 − 18𝑧 + 99

𝐴𝐶2 = 7 − 1 2 + 8 − 2 2 + 9 − 3 2

= 36 + 36 + 36

= 108

∴ 𝑧2 − 6𝑧 + 27 + 𝑧2 − 18𝑧 + 99 = 108 Pythagoras

2𝑧2 − 24𝑧 + 18 = 0

𝑧2 − 12𝑧 + 9 = 0

𝑧 =
12 ± −12 2 − 4 1 9

2 1

=
12 ± 108

2

=
12 ± 6 3

2

= 6 ± 2 3
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EXERCISE 5.2

BASIC

1 Prove that the sum of the square of the hypotenuse 

equals the sum of the squares of the other two sides 

in a right angled triangle. 

2 What type of triangle is formed by the points A 1,1,1 , 𝐵(1,−1,1) and 𝑂(0,0,0)?

3 Prove that the midpoint of the interval from 𝐴(𝑥1, 𝑦1, 𝑧1)

to 𝐵 𝑥2, 𝑦2, 𝑧2 is 𝑀
𝑥1+𝑥2

2
,
𝑦1+𝑦2

2
,
𝑧1+𝑧2

2

4 A mass exerts a downward force of 50 N. It is being held in a steady position by four 

drones, exerting forces in Newtons of 10,20,10 , 20,−10,20 , (−15,−15,20) and (𝑎, 𝑏, 𝑐). 

Find the value of 𝑎, 𝑏 and 𝑐.

MEDIUM

5 Prove that the line from the centre of a circle to the 

midpoint of a chord is perpendicular to the chord.

6 Find the point that divides 𝑃(1,−2,4) and 𝑄(5,6,0) in the ratio 1: 3.

7 Three vertices of a parallleogram are 𝑂 0,0,0 , 𝐴(1,1,1) and B(1,−1,1). Find the possible 

positions of the fourth vertex.

8 Prove that the sum of the medians of a triangle is zero.

A median is a line joining a vertex to the midpoint

of the opposite side as shown.

𝐶

𝐴 𝐵

𝑦

𝑥

𝑧

𝐴(𝑥1, 𝑦1, 𝑧1)

.

𝑂

𝐵(𝑥2, 𝑦2, 𝑧2)

.

.𝑀

𝐴

𝐵

𝑂

𝑀

𝐴 𝐵

𝐶

𝐷
𝐸
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9 𝑀 and 𝑁 are the midpoints of 𝐴𝐵 and 𝐴𝐶 respectively.

Prove that 𝑀𝑁 is half the length of 𝐵𝐶 and parallel to it.

10 A square based pyramid has its base on the

𝑥 − 𝑦 plane, with its apex at 𝐴(0,0, 𝑎). The

four triangles forming its sides are isosceles

with sides in the ratio 2: 2: 1, the short side

being the bottom side. One of the four

vertices of the square base is B(𝑏, 𝑏, 0),

where 𝑏 > 0. Find 𝑏 in terms of 𝑎.

CHALLENGING

11 Prove that the medians of a triangle are concurrent (intersect at one point).

12 The faces of tetrahedron O𝐷𝐸𝐹 are comprised

of equilateral triangles of side length 1 unit.

Its base lies flat on the 𝑥 − 𝑦 plane with

vertices at 𝑂, D(1,0,0) and 𝐸
1

2
,

3

2
, 0 as

shown. Prove the coordinates of 𝑀, the

midpoint of 𝐹𝑂, is
1

4
,

3

12
,

6

6
.

𝑦

𝑥

𝑧

𝐴

𝐵

.𝑀

𝑁
.

𝐶

𝑦

𝑥

𝑧

𝐵(𝑏, 𝑏, 0)

𝐴(0,0, 𝑎)

𝑦

𝑥

𝑧

𝐷

𝐸

𝐹

𝑂
𝑀.
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SOLUTIONS - EXERCISE 5.2

1 𝐵𝐶 ∙ 𝐴𝐵 = 0 perpendicular

𝑐
~
− 𝑏

~
∙ 𝑏

~
− 𝑎

~
= 0

𝑐
~
∙ 𝑏
~
− 𝑎

~
∙ 𝑐
~
− 𝑏

~
∙ 𝑏
~
+ 𝑎

~
∙ 𝑏
~
= 0

𝑎
~
∙ 𝑐
~
= 𝑎

~
∙ 𝑏
~
+ 𝑏

~
∙ 𝑐
~
− 𝑏

~
∙ 𝑏
~

(1)

𝐵𝐶
2
+ 𝐴𝐵

2
= 𝑐

~
− 𝑏

~
∙ 𝑐

~
− 𝑏

~
+ 𝑏

~
− 𝑎

~
∙ 𝑏

~
− 𝑎

~

= 𝑐
~
∙ 𝑐
~
− 2𝑏

~
∙ 𝑐
~
+ 𝑏

~
∙ 𝑏
~
+ 𝑏

~
∙ 𝑏
~
− 2 𝑎

~
∙ 𝑏
~
+ 𝑎

~
∙ 𝑎
~

= 𝑐
~
∙ 𝑐
~
+ 2 𝑏

~
∙ 𝑏
~
− 𝑎

~
∙ 𝑏
~
− 𝑏

~
∙ 𝑐
~

+ 𝑎
~
∙ 𝑎
~

= 𝑐
~
∙ 𝑐
~
− 2𝑎

~
∙ 𝑐
~
+ 𝑎

~
∙ 𝑎
~

= 𝑐
~
− 𝑎

~
∙ 𝑐

~
− 𝑎

~

= 𝐴𝐶
2

∴ The square on the hypotenuse of a right angled triangle equals the sum of the squares on the 

other two sides.      □

2 𝑂𝐴 = 1 − 0 2 + 1 − 0 2 + 1 − 0 2 = 3

𝑂𝐵 = 1 − 0 2 + −1 − 0 2 + 1 − 0 2 = 3

𝐴𝐵 = 1 − 1 2 + 1 + 1 2 + 1 − 1 2 = 2

Δ𝐴𝐵𝐶 is isosceles.

3 𝑂𝑀 = 𝑂𝐴 + 𝐴𝑀

= 𝑂𝐴 +
1

2
𝐴𝐵

= 𝑥1, 𝑦1, 𝑧1 +
1

2
𝑥2 − 𝑥1, 𝑦2 − 𝑦1, 𝑧2 − 𝑧1

= 𝑥1 +
1

2
𝑥2 − 𝑥1 , 𝑥1 +

1

2
𝑥2 − 𝑥1 , 𝑥1 +

1

2
𝑥2 − 𝑥1

=
𝑥1 + 𝑥2

2
,
𝑦1 + 𝑦2

2
,
𝑧1 + 𝑧2

2
□

4 10,20,10 + 20,−10,20 + −15,−15,20 + 𝑎, 𝑏, 𝑐 + 0,0,−50 = (0,0,0)

10 + 20 − 15 + 𝑎 + 0,20 − 10 − 15 + 𝑏 + 0,10 + 20 + 20 + 𝑐 − 50 = 0,0,0

15 + 𝑎, 𝑏 − 5, 𝑐 = 0,0,0

∴ 𝑎 = −15, 𝑏 = 5 and 𝑐 = 0.

𝐴
𝐵

𝐶

𝑦

𝑥

𝑧

𝐴(𝑥1, 𝑦1, 𝑧1)

.

𝑂

𝐵(𝑥2, 𝑦2, 𝑧2)

.

.𝑀
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5 𝑂𝑀 = 𝑂𝐴 + 𝐴𝑀

= 𝑂𝐴 +
1

2
𝐴𝐵

= 𝑂𝐴 +
1

2
𝑂𝐵 − 𝑂𝐴

=
1

2
𝑂𝐴 + 𝑂𝐵

𝑂𝑀 ∙ 𝐴𝐵 =
1

2
𝑂𝐴 + 𝑂𝐵 ∙ 𝑂𝐵 − 𝑂𝐴

=
1

2
𝑂𝐵 ∙ 𝑂𝐵 − 𝑂𝐴 ∙ 𝑂𝐴

=
1

2
𝑂𝐵

2
− 𝑂𝐴

2

=
1

2
𝑟2 − 𝑟2

= 0
∴ 𝑂𝑀 ⊥ 𝐴𝐵

6 Let 𝑋(𝑎, 𝑏, 𝑐) be the point that divides 𝑃𝑄 in

the ratio 1: 3.

∴ 𝑃𝑋 =
1

4
𝑃𝑄

𝑎 − 1
𝑏 + 2
𝑐 − 4

=
1

4

5 − 1
6 + 2
0 − 4

=
1
2
−1

∴ 𝑎 − 1 = 1 → 𝑎 = 2

𝑏 + 2 = 2 → 𝑏 = 0

𝑐 − 4 = −1 → 𝑐 = 3

∴ 𝑋(2,0,3)

7 There are three possible vectors for 𝑂𝐷 that would create a parallelogram: 𝑂𝐴 + 𝑂𝐵, 𝑂𝐴 − 𝑂𝐵 and

𝑂𝐵 − 𝑂𝐴.

∴ 𝑂𝐷 = 1,1,1 + 1,−1,1 = 2,0,2 or

= 1,1,1 − 1,−1,1 = 0,2,0 or

= 1,−1,1 − 1,1,1 = (0,−2,0)

The fourth vertex is at 2,0,2 , (0,2,0)

or (0, −2,0).

8
Let 𝑂𝐴 = 𝑎

~
, 𝑂𝐵 = 𝑏

~
and 𝑂𝐶 = 𝑐

~
.

In Δ𝐴𝐵𝐶 let 𝐷,𝐸, 𝐹 be the midpoints of the sides 𝐵𝐶, 𝐴𝐶 and 𝐴𝐵 respectively. 

∴ 𝑂𝐸 =
𝑎
~
+𝑐
~

2
, 𝑂𝐷 =

𝑏
~
+𝑐
~

2
and 𝑂𝐹 =

𝑎
~
+𝑏
~

2

𝐴𝐷 + 𝐵𝐸 + 𝐶𝐹

=
𝑏
~
+ 𝑐

~

2
− 𝑎

~
+

𝑎
~
+ 𝑐

~

2
− 𝑏

~
+

𝑎
~
+ 𝑏

~

2
− 𝑐

~

= −1 +
1

2
+
1

2
𝑎
~
+

1

2
− 1 +

1

2
𝑏
~
+

1

2
+
1

2
− 1 𝑐

~

= 0

𝐴

𝐵

𝑂

𝑀

𝐴 𝐵

𝐶

𝐷
𝐸

𝐹

𝑂
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9 𝑀𝑁 = 𝑀𝐴 + 𝐴𝑁

=
1

2
𝐵𝐴 +

1

2
𝐴𝐶

=
1

2
𝐵𝐴 + 𝐴𝐶

=
1

2
𝐵𝐶

∴ 𝑀𝑁 is half the length of 𝐵𝐶 and parallel to it.

10
𝐴𝐵 = −𝑏 2 + −𝑏 2 + 𝑎2 = 𝑎2 + 2𝑏2

The side length of the base is 2𝑏.

∴ 2 2𝑏 = 𝑎2 + 2𝑏2

4𝑏 = 𝑎2 + 2𝑏2

16𝑏2 = 𝑎2 + 2𝑏2

𝑎2 = 14𝑏2

𝑏2 =
𝑎2

14

𝑏 =
𝑎

14

𝑦

𝑥

𝑧

𝐴

𝐵

.𝑀

𝑁
.

𝐶

𝑦

𝑥

𝑧

𝐵(𝑏, 𝑏, 0)

𝐴(0,0, 𝑎)
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11 We will let 𝑋 be the intersection of 𝐴𝐷 and 𝐶𝐹 and prove that it lies on 𝐵𝐸. 

Let 𝑂𝐴 = 𝑎
~
, 𝑂𝐵 = 𝑏

~
and 𝑂𝐶 = 𝑐

~
.

In Δ𝐴𝐵𝐶 let 𝐷,𝐸, 𝐹 be the midpoints of the sides 𝐵𝐶, 𝐴𝐶 and 𝐴𝐵 respectively. 

∴ 𝑂𝐸 =
𝑎
~
+𝑐
~

2
, 𝑂𝐷 =

𝑏
~
+𝑐
~

2
and 𝑂𝐹 =

𝑎
~
+𝑏
~

2

𝑂𝑋 = 𝑂𝐴 + 𝐴𝑋

= 𝑎
~
+ 𝜆𝐴𝐷

= 𝑎
~
+ 𝜆

𝑏
~
+ 𝑐

~

2
− 𝑎

~

= 1 − 𝜆 𝑎
~
+
𝜆

2
𝑏
~
+
𝜆

2
𝑐
~

(1)

Also

𝑂𝑋 = 𝑂𝐶 + 𝐶𝑋

= 𝑐
~
+ 𝜇𝐶𝐹

= 𝑐
~
+ 𝜇

𝑎
~
+ 𝑏

~

2
− 𝑐

~

=
𝜇

2
𝑎
~
+
𝜇

2
𝑏
~
+ 1 − 𝜇 𝑐

~
(2)

From (1) and (2):

1 − 𝜆 =
𝜇

2

𝜆

2
=
𝜇

2

𝜆

2
= 1 − 𝜇

𝜆 = 𝜇

1 − 𝜆 =
𝜆

2

1 =
3𝜆

2

𝜆 = 𝜇 =
2

3

∴ 𝑂𝑋 =
𝑎
~
+ 𝑏

~
+ 𝑐

~

3

𝐵𝑋 =
𝑎
~
+ 𝑏

~
+ 𝑐

~

3
− 𝑏

~

=
𝑎
~
+ 𝑐

~
− 2𝑏

~

3

𝑋𝐸 =
𝑎
~
+ 𝑐

~

2
−
𝑎
~
+ 𝑏

~
+ 𝑐

~

3

=
𝑎
~
+ 𝑐

~
− 2𝑏

~

6

=
1

2
𝐵𝑋

∴ 𝐵, 𝐸, 𝑋 are collinear

∴ the medians of a triangle are concurrent

𝐴 𝐵

𝐶

𝐷
𝐸

𝐹

𝑋

𝑂
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12 Let 𝑀(𝑎, 𝑏, 𝑐)

In Δ𝑀𝑂𝐷

cos
𝜋

3
=

𝑎, 𝑏, 𝑐 ∙ 1,0,0

1
2
× 1

1

4
= 𝑎 + 0 + 0

𝑎 =
1

4

In Δ𝑀𝑂𝐸

cos
𝜋

3
=

𝑎, 𝑏, 𝑐 ∙
1
2
,
3
2
, 0

1
2
× 1

1

4
=
𝑎

2
+

3

2
𝑏 + 0

3

2
𝑏 =

1

4
−
𝑎

2

𝑏 =
2

3

1

4
−
1

2
×
1

4

=
1

4 3

=
3

12

𝑎2 + 𝑏2 + 𝑐2 =
1

2

2

1

4

2

+
3

12

2

+ 𝑐2 =
1

4
1

16
+

3

144
+ 𝑐2 =

1

4

𝑐2 =
1

6

𝑐 =
6

6

∴ 𝑀
1

4
,
3

12
,
6

6

𝑦

𝑥

𝑧

𝐷

𝐸

𝐹

𝑂
𝑀.
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5.3 VECTOR EQUATION OF A LINE

In Lesson 3 we start to look at the vector equation of lines in two and three dimensions, which 

continues next lesson. 

VECTOR EQUATION OF A LINE IN TWO DIMENSIONS

Plotting the tip of each of the scalar multiples of 𝑏
~

we see the following:

Now if we were to plot the tips of all scalar multiples of 𝑏
~

we would get a straight line through

the origin, parallel to 𝑏
~
. If we let 𝜆 represent any scalar then we could say that the new line is

𝑟
~
= 𝜆𝑏

~
, where 𝑟

~
is the position vector 𝜆𝑏

~
.

3𝑏
~ .2𝑏

~ .𝑏
~ .

−𝑏
~

.

−2𝑏
~

.

−3𝑏
~

.

𝑏
~

0 .

If we plot the values of 𝜆 along the line we see the following:

So we could also think of the line 𝑟
~
= 𝜆𝑏

~
as a number line parallel to 𝑏

~
with the distance

between integers being 𝑏
~

, with 0 at the origin. Note that the gradient of 𝑏
~

determines the

gradient of the line.

3 .
2 .

1 .

−1 .
−2

.
−3 .

𝑏
~

0 .

Mathematics Extension 2 © Steve Howard 410 Howard and Howard Education



But could we move the 0 mark away from the origin? Very easily - just choose the vector from

the origin to where the 0 mark will be and add it on. By tradition we state it first and add the

scalar multiple of the second vector to it, so the position vector to the starting point is 𝑎
~

.

.
.

.

.
.

.

𝑏
~

.
𝑎
~

Note that the line is formed by the tip of the position vectors shown in grey and green, although

we will normally only draw the line itself.

So the line above is 𝑟
~
= 𝑎

~
+ 𝜆𝑏

~
. We can see that 𝑎

~
tells us where the 0 mark is while 𝑏

~
sets the

gradient and how far apart the integers on the ‘number line’ are. So a vector equation is similar

to the point-gradient form of a line.

It is important to realise that 𝜆 is a parameter, with each value of 𝜆 representing a single point on

the line.
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There is no unique vector form of a line, just like we have more than one parametric form of a

Cartesian equation. So we could move the starting point represented by 𝑎
~

to any point on the

line we want, and use any vector parallel to the line (of any length and pointing in either direction

along the line). We can see two different vector equations for the same line below.

𝑎
~

𝑏
~

𝑐
~

𝑑
~

We can replace 𝑏
~

with any parallel vector, so any vector having its components in the same

ratio. So for example the following vector equations are all equal - focus on the vector after 𝜆:

𝑟
~
=

1

2
+ 𝜆

−3

4
𝑟
~
=

1

2
+ 𝜆

−6

8
𝑟
~
=

1

2
+ 𝜆

3

−4

If we think of them in as number lines then:

1. The numbers on the second number line would be twice as far apart as for the first one

2. The third number line would have its positive direction opposite that of the other two

lines.
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LINES IN THREE DIMENSIONS

The vector equation for a line in three dimensions is exactly the same as it is for two

dimensions, and the line is again like a number line with the 0 at the tip of 𝑎
~

, 1 at the tip of 𝑎
~
+ 𝑏

~

etc. The line is made of the tip of the position vectors, although they are not shown in the

diagram below.

𝑎
~

𝑏
~

𝑦

𝑥

𝑧

𝜆 = 0

𝜆 = 1

𝜆 = 2

𝜆 = −1
.

.

Due to the difficulty of drawing lines in three dimensions we often work with them algebraically

only.
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SKETCHING A VECTOR EQUATION

We have two methods to sketch a line. Consider 𝑟
~
= 𝑎

~
+ 𝜆𝑏

~
, which could be a two or three

dimensional vector.

Method 1 treats the vector equation as a point (𝑎
~

) and a gradient (𝑏
~
). We first draw a position

vector representing 𝑎
~
, then from the tip of this vector draw the vector 𝑏

~
. Now draw a line that

passes through the tips of both vectors and we have our line.

Method 2 uses the vector equation to find two points on the line, then plots a line through these

two points. It easiest to use 𝜆 = 0 and 𝜆 = 1, but we could use any values.

Example 1

Sketch 𝑟
~
= 1

2
+ 𝜆 3

−3

1

2

3

−3

𝑟
~
=

1

2
+ 𝜆

3

−3

Method 1

Method 2

Let 𝜆 = 1 to find a second point, in

this case 4
−1

, and plot this point

and 1
2

, drawing a line through their tips.
1

2

4

−1

𝑟
~
=

1

2
+ 𝜆

3

−3

We can use the same two methods to sketch a three dimensional line.
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SKETCHING AN INTERVAL

Sketching an interval (line segment) is very similar to Method 2, but we use the two values of 𝜆

given in the question and only go from tip to tip. Let’s sketch a three dimensional interval.

Example 2

Sketch the interval 𝑟
~
=

2
3
4

+ 𝜆
1
2
−1

for 1 ≤ 𝜆 ≤ 3

Substitute 𝜆 = 1 and 𝜆 = 3 to find the end points of the interval.

𝑥
𝑦
𝑧

=
2
3
4

+ 1
1
2
−1

=
3
5
3

𝑥
𝑦
𝑧

=
2
3
4

+ 3
1
2
−1

=
5
9
1 𝑦

𝑥

𝑧

3
5

5

91

3

4
5
3

5
9
1
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FINDING A VECTOR EQUATION OF A LINE THROUGH TWO POINTS

To find the equation of a line through two points, say 𝐴 and 𝐵, first find the vector 𝐴𝐵, then

rewrite the equation as 𝑟
~
= 𝑂𝐴 + 𝜆𝐴𝐵.

Note that there are four easy possible answers here that are all correct, plus an infinite number

of other correct answers. Including the above, four possible correct answers are:

𝑟
~
= 𝑂𝐴 + 𝜆𝐴𝐵 𝑟

~
= 𝑂𝐴 + 𝜆𝐵𝐴 𝑟

~
= 𝑂𝐵 + 𝜆𝐴𝐵 𝑟

~
= 𝑂𝐵 + 𝜆𝐵𝐴

So we can start with either vector, 𝑂𝐴 or 𝑂𝐵 and add either vector between them, 𝐴𝐵 or 𝐵𝐴.

Sketching an interval is quite similar, but we need to calculate the parameter values at each end

of the interval, and write them at the end like a domain.

Example 3

a Find a vector equation of the line through 2
3

and 5
7

. 

b Find a vector equation for the interval from 2
3

to 5
7

.

a
5

7
−

2

3
=

3

4

∴ 𝑟
~
= 2

3
+ 𝜆 3

4
is one correct answer.

Some other possible answers are

𝑟
~
=

2

3
+ 𝜆

−3

−4
, 𝑟
~
=

5

7
+ 𝜆

3

4
and 𝑟

~
=

5

7
+ 𝜆

−3

−4

b Letting 𝜆 = 0 in 𝑟
~
= 2

3
+ 𝜆 3

4
gives us 2

3
, and 𝜆 = 1 gives 5

7
, so one vector equation for

the interval is

𝑟
~
=

2

3
+ 𝜆

3

4
, 0 ≤ 𝜆 ≤ 1
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PARALLEL AND PERPENDICULAR LINES

Two lines 𝑎1
~
+ 𝜆𝑏1

~
and 𝑎2

~
+ 𝜆𝑏2

~
are:

• parallel if 𝑏1
~
= 𝑘𝑏2

~
.

• perpendicular if 𝑏1
~
∙ 𝑏2
~
= 0, or if we find the gradients first and check as normal. Finding the

dot product is much easier.

Example 4

Prove the following lines are parallel: 𝑟
~
= 3

−2
+ 𝜆 2

−4
and 𝑞

~
= 4

1
+ 𝜆 −1

2
.

2

−4
= −2

−1

2

∴ 𝑟
~

and 𝑞
~

are parallel.

The syllabus states that we need to check whether intersecting lines are perpendicular, so we

don’t need to worry about skew lines.

Example 5

Prove the lines 𝑟
~
=

1
3
2

+ 𝜆
2
3
−1

and 𝑞
~
=

3
1
0

+ 𝜆
−1
1
1

are 

perpendicular.

2
3
−1

∙
−1
1
1

= 2(−1) + 3(1) − 1(1) = 0

∴ 𝑟
~

and 𝑞
~

are perpendicular
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EXERCISE 5.3

BASIC

1 Sketch 𝑟
~
= 1

1
+ 𝜆 2

−1

2
Sketch 𝑟

~
=

1
3
2

+ 𝜆
1
2
1

3 Sketch the interval 𝑟
~
= 1

1
+ 𝜆 2

−1
for −1 ≤ 𝜆 ≤ 1

4
Sketch the interval 𝑟

~
=

1
3
2

+ 𝜆
1
2
1

for −1 ≤ 𝜆 ≤ 2

5 a Find a vector equation of the line through 1
1

and 2
3

. 

b Find a vector equation for the interval from 1
1

to 2
3

.

6
Consider the points 𝐴

1
3
2

and 𝐵
1
2
1

.

a Find a vector equation of the line through 𝐴 and 𝐵.

b Find a vector equation for the interval from 𝐴 to 𝐵.

7 Prove the following lines are parallel: 𝑟
~
= 1

−1
+ 𝜆 1

2
and 𝑞

~
= 3

1
+ 𝜆 −2

−4
.

8
Prove the following lines are parallel: 𝑟

~
=

2
1
−2

+ 𝜆
1
−1
3

and 𝑞
~
=

1
−3
−2

+ 𝜆
−3
3
−9

9 Prove the lines 𝑟
~
= 2

1
+ 𝜆 3

2
and 𝑞

~
= 4

−2
+ 𝜆 −2

3
are perpendicular.

10
Prove the lines 𝑟

~
=

−1
2
−2

+ 𝜆
1
2
−1

and 𝑞
~
=

−2
−1
3

+ 𝜆
−1
1
1

are perpendicular.

MEDIUM

11 Find the vector equation of the line through A −1
2

parallel to 𝐵𝐶 with B 2
1

and C 1
2

12
Find the vector equation of the line through A

1
2
1

parallel to 𝐵𝐶 with B
1
2
3

and C
3
3
1

.

13 Find a vector equation for the line through 0
1

with gradient 𝑚 = −2

14 The lines 𝑟
~
= 𝜆 2

3
and 𝑞

~
= 4

1
+ 𝜆 𝑝

2
are perpendicular. Find 𝑝.

15

The lines 𝑟
~
= 𝜆

−2
1
−𝑝

and 𝑞
~
=

−1
1
2

+ 𝜆
2
1
−2

are perpendicular. Find 𝑝.

CHALLENGING

16 A cube has opposite vertices at the origin and (2,2,2). State the equations of the four

diagonals. Are the diagonals perpendicular?
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SOLUTIONS - EXERCISE 5.3

1 Method 1 Method 2

Let 𝜆 = 1 to find a second point, in this case 3
0

,

and plot this point and 1
2

, drawing a line

through their tips.

2 Method 1 Method 2

Let 𝜆 = 1 to find a second point, in this case
2
5
3

, and plot this point and
1
3
2

, drawing a line

through their tips.

3 Substitute 𝜆 = −1 and 𝜆 = 1 to find the end points of the interval.

𝑥1
𝑦1

=
1

1
−

2

−1
=

−1

2

𝑥2
𝑦2

=
1

1
+

2

−1
=

3

0

1
3
2

1
2
1

𝑦

𝑥

𝑧

𝑟
~
=

1
3
2

+ 𝜆
1
2
1

1
32

1
1

2

1

1

2

−1

𝑟
~
=

1

1
+ 𝜆

2

−1

1

1

3

0

𝑟
~
=

1

1
+ 𝜆

2

−1

1
3
2

𝑦

𝑥

𝑧

𝑟
~
=

1
3
2

+ 𝜆
1
2
1

1
32

1

2

5
3

2
5
3

−1

2

3

0

𝑟
~
=

1

1
+ 𝜆

2

−1
, −1 ≤ 𝜆 < 1
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4 Substitute 𝜆 = −1 and 𝜆 = 2 to find the end

points of the interval.

𝑥
𝑦
𝑧

=
1
3
2

−
1
2
1

=
0
1
1

𝑥
𝑦
𝑧

=
1
3
2

+ 2
1
2
1

=
3
7
4

5 a

2

3
−

1

1
=

1

2

∴ 𝑟
~
= 1

1
+ 𝜆 1

2
is one correct answer.

b Letting 𝜆 = 0 in 𝑟
~
= 1

1
+ 𝜆 1

2
gives us

1
1

, and 𝜆 = 1 gives 2
3

, so one vector

equation for the interval is

𝑟
~
=

1

1
+ 𝜆

1

2
, 0 ≤ 𝜆 ≤ 1

6 a
1
3
2

−
1
2
1

=
0
1
1

∴ 𝑟
~
=

1
2
1

+ 𝜆
0
1
1

is one correct answer.

b Letting 𝜆 = 0 in 𝑟
~
=

1
2
1

+ 𝜆
0
1
1

gives

us
1
2
1

, and 𝜆 = 1 gives
1
3
2

, so one

vector equation for the interval is

𝑟
~
=

1
2
1

+ 𝜆
0
1
1

, 0 ≤ 𝜆 ≤ 1

7 −2

−4
= −2

1

2

∴ 𝑟
~

and 𝑞
~

are parallel.

8 −3
3
−9

= −3
1
−1
3

∴ 𝑟
~

and 𝑞
~

are parallel

9 3

2
∙
−2

3
= −6 + 6 = 0

∴ 𝑟
~

and 𝑞
~

are perpendicular

10 1
2
−1

∙
−1
1
1

= 1(−1) + 2(1) − 1(1) = 0

∴ 𝑟
~

and 𝑞
~

are perpendicular

11
𝐵𝐶 =

1

2
−

2

1
=

−1

1

∴ 𝑟
~
=

−1

2
+ 𝜆

−1

1

12
𝐵𝐶 =

3
3
1

−
1
2
3

=
2
1
−2

∴ 𝑟
~
=

1
2
1

+ 𝜆
2
1
−2

0
1
1

𝑦

𝑥

𝑧

1

1

3

7

4

3
7
4

1
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13 The gradient of −2 can be represented by

the vector 1
−2

, or any vector where the 𝑦-

value is minus two times the 𝑥-value.

∴ 𝑟
~
=

0

1
+ 𝜆

1

−2

14 2

3
∙
𝑝

2
= 0

2𝑝 + 6 = 0
2𝑝 = −6
𝑝 = −3

15 −2
1
−𝑝

∙
2
1
−2

= 0

−2 2 + 1 1 − 𝑝(−2) = 0
−3 + 2𝑝 = 0

∴ 𝑝 =
3

2

16 All diagonals pass through (1,1,1), plus one of the four base vertices, 𝐴 0,0,0 , 𝐵 2,0,0 , 𝐶(2,2,0) and

𝐷 0,2,0

𝑟1
~
=

1
1
1

+ 𝜆
1 − 0
1 − 0
1 − 0

=
1
1
1

+ 𝜆
1
1
1

𝑟2
~
=

1
1
1

+ 𝜆
1 − 2
1 − 0
1 − 0

=
1
1
1

+ 𝜆
−1
1
1

𝑟3
~
=

1
1
1

+ 𝜆
1 − 2
1 − 2
1 − 0

=
1
1
1

+ 𝜆
−1
−1
1

𝑟4
~
=

1
1
1

+ 𝜆
1 − 0
1 − 2
1 − 0

=
1
1
1

+ 𝜆
1
−1
1

None of the dot products of the direction vectors give zero, so the diagonals are not perpendicular.

For example
1
1
1

∙
−1
1
1

= −1 + 1 + 1 = 1 ≠ 0
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5.4 PROPERTIES OF LINES

In Lesson 4 we take a further look at the properties of two or three dimensional lines. We cover:

• Does a point lie on a line?

• The Point of Intersection of Two Lines

• The connection between the vector equation and the gradient-intercept form of a 

line in two dimensions

DOES A POINT LIE ON A LINE?

To determine whether a point lies on a line represented by a vector equation, we check to see if

the 𝑥 and 𝑦 values, plus the 𝑧 value if needed, can be created using the same value of the

parameter 𝜆 - if they can the point is on the line, while if different values of 𝜆 are needed it is not

on the line. This works for two and three dimensional lines.

Example 1

Prove the point 
−4
−1
0

lies on the line 𝑟
~
=

−1
3
−2

+ 𝜆
3
4
−2

𝑥
𝑦
𝑧

=
−1 + 3𝜆
3 + 4𝜆
−2 − 2𝜆

−4 = −1 + 3𝜆 → 𝜆 = −1
−1 = 3 + 4𝜆 → 𝜆 = −1
0 = −2 − 2𝜆 → 𝜆 = −1

In each case 𝜆 = −1

∴
−4
−1
0

lies on the line 𝑟
~
=

−1
3
−2

+ 𝜆
3
4
−2
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POINT OF INTERSECTION

To find the point of intersection of two lines, we must first use different parameters for the two

lines. If we used the same parameter for both lines then all we would be checking is whether the

intersection at the same parameter value, not whether they intersect at all. If the lines are written

with the same parameter then change one of them to a different parameter.

We then solve the equations simultaneously, needing to find only one result, then substitute it

into either original equation to find the point of intersection.

Example 2

Find the point of intersection of the lines 𝑟
~
= 2

3
+ 𝜆 −1

2
and 𝑞

~
= 6

9
+ 𝜆 3

1

Change the second parameter to 𝜇

2 − 𝜆

3 + 2𝜆
=

6 + 3𝜇

9 + 𝜇

2 − 𝜆 = 6 + 3𝜇 1 3 + 2𝜆 = 9 + 𝜇 2

2 + 2 × 1 :

7 = 21 + 7𝜇 → 7𝜇 = −14 → 𝜇 = −2

The point of intersection is 6
9
− 2 3

1
= 0

7
.

Note that we do not need to find the value of both scalars.

Mathematics Extension 2 © Steve Howard 423 Howard and Howard Education



CONVERTING BETWEEN CARTESIAN AND VECTOR EQUATIONS

For two dimensional lines we can convert from a vector equation to its Cartesian equation by

finding the parametric equations for 𝑥 and 𝑦, then solving simultaneously. Generally rearranging

the equation for 𝑥 to make the parameter the subject then substituting into the equation for 𝑦 is

easier.

Example 3

Rewrite the following vector equations in Cartesian form by first finding 

expressions for 𝑥 and 𝑦 in terms of 𝜆.

a 𝑟
~
= 1

2
+ 𝜆 3

−3

b 𝑟
~
= −2

3
+ 𝜆 4

2

a
𝑥

𝑦
=

1 + 3𝜆

2 − 3𝜆

𝑥 = 1 + 3𝜆 → 𝜆 =
𝑥 − 1

3
𝑦 = 2 − 3𝜆

= 2 − 3
𝑥 − 1

3

= 2 − 𝑥 + 1
∴ 𝑦 = −𝑥 + 3

b
𝑥

𝑦
=

−2 + 4𝜆

3 + 2𝜆

𝑥 = −2 + 4𝜆 → 𝜆 =
𝑥 + 2

4
𝑦 = 3 + 2𝜆

= 3 + 2
𝑥 + 2

4

= 3 +
𝑥

2
+ 1

∴ 𝑦 =
1

2
𝑥 + 4

Mathematics Extension 2 © Steve Howard 424 Howard and Howard Education



EXERCISE 5.4

BASIC

1 Prove the point 1
−4

lies on the line 𝑟
~
= 3

−1
+ 𝜆 2

3

2
Prove the point 

4
3
−3

lies on the line 𝑟
~
=

0
1
−1

+ 𝜆
2
1
−1

3 Prove the point 1
2

does not lie on 𝑟
~
= 3

−1
+ 𝜆 2

3

4
Prove the point 

3
4
2

does not lie on 𝑟
~
=

0
1
2

+ 𝜆
3
2
1

MEDIUM

5 Find the point of intersection of the lines 𝑟
~
= 1

1
+ 𝜆 2

3
and 𝑞

~
= 4

2
+ 𝜆 −1

2

6 Find the point of intersection of the lines 

𝑟
~
=

0
3
−5

+ 𝜆
−1
1
2

and 𝑞
~
=

−1
2
3

+ 𝜇
−1
2
−1

7 Rewrite the following vector equations in Cartesian form by first finding expressions for 𝑥
and 𝑦 in terms of 𝜆.

a 𝑟
~
= 0

1
+ 𝜆 2

−1

b 𝑟
~
= 2

−3
+ 𝜆 −1

−3

8 Prove that the vector equations 𝑟
~
= 2

4
+ 𝜆 1

3
and 𝑞

~
= 0

−2
+ 𝜆 −2

−6
have the same

Cartesian equation.

9 Rewrite 𝑦 = 4𝑥 + 5 as a vector equation.

CHALLENGING

10 Prove the lines 𝑦 = 2𝑥 + 1 and 𝑦 = −
1

2
𝑥 are perpendicular

a Using the product of their gradients

b By first converting them to vector form

11 A triangle has vertices 𝐴 0,0,0 , 𝐵(0,2,4) and 𝐶(4,2,0). Find the equations of the three

medians and show that they are concurrent.
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SOLUTIONS - EXERCISE 5.4

1 1

−4
=

3 + 2𝜆

−1 + 3𝜆

1 = 3 + 2𝜆 → 𝜆 = −1
−4 = −1 + 3𝜆 → 𝜆 = −1

∴ 1
−4

lies on the line 𝑟
~
= 3

−1
+ 𝜆 2

3

2 4
3
−3

=
2𝜆

1 + 𝜆
−1 − 𝜆

4 = 2𝜆 → 𝜆 = 2
3 = 1 + 𝜆 → 𝜆 = 2

−3 = −1 − 𝜆 → 𝜆 = 2

∴
4
3
−3

lies on the line 𝑟
~
=

0
1
−1

+ 𝜆
2
1
−1

3 1

2
=

3 + 2𝜆

−1 + 3𝜆

1 = 3 + 2𝜆 → 𝜆 = −1
2 = −1 + 3𝜆 → 𝜆 = 1

∴ 1
2

does not lie on 𝑟
~
= 3

−1
+ 𝜆 2

3

4 3
4
2

=
3𝜆

1 + 2𝜆
2 + 𝜆

3 = 3𝜆 → 𝜆 = 1

4 = 1 + 2𝜆 → 𝜆 =
3

2

∴
3
4
2

does not lie on 𝑟
~
=

0
1
2

+ 𝜆
3
2
1

5 Change the second parameter to 𝜇
1 + 2𝜆

1 + 3𝜆
=

4 − 𝜇

2 + 2𝜇

1 + 2𝜆 = 4 − 𝜇 1 1 + 3𝜆 = 2 + 2𝜇 2
2 + 2 × 1 :
3 + 7𝜆 = 10 → 7𝜆 = 7 → 𝜆 = 1

The point of intersection is 1
1
+ 2

3
= 3

4

6 −𝜆
3 + 𝜆

−5 + 2𝜆
=

−1 − 𝜇
2 + 2𝜇
3 − 𝜇

−𝜆 = −1 − 𝜇 1
3 + 𝜆 = 2 + 2𝜇 2
−5 + 2𝜆 = 3 − 𝜇 (3)
1 + 2 :
3 = 1 + 𝜇
𝜇 = 2

The point of intersection is
−1
2
3

+ 2
−1
2
−1

=
−3
6
1

7 a

𝑥

𝑦
=

2𝜆

1 − 𝜆

𝑥 = 2𝜆 → 𝜆 =
𝑥

2

𝑦 = 1 − 𝜆 = 1 −
𝑥

2

∴ 𝑦 = −
1

2
𝑥 + 1

b

𝑥

𝑦
=

2 − 𝜆

−3 − 3𝜆

𝑥 = 2 − 𝜆 → 𝜆 = 2 − 𝑥
𝑦 = −3 − 3𝜆 = −3 − 3 2 − 𝑥

∴ 𝑦 = 3𝑥 − 9

8 For 𝑟
~
= 2

4
+ 𝜆 1

3
, we have 𝑚 =

3

1
= 3 and 

𝑏 = 4 − 2 3 = −2, so its Cartesian 

equation is 𝑦 = 3𝑥 − 2.

For 𝑞
~
= 0

−2
+ 𝜆 −2

−6
, we have 𝑚 =

−6

−2
= 3

and 𝑏 = −2 − 0 3 = −2, so its Cartesian 

equation is 𝑦 = 3𝑥 − 2..

Both vector equations have the same 

Cartesian equation.

9 The 𝑦-intercept is (0,5) so let 𝑎
~
= 0

5
.

The gradient is
4

1
so let 𝑏

~
= 1

4
.

𝑦 = 4𝑥 + 5 is equivalent to 𝑟
~
= 0

5
+ 𝜆 1

4
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10 a

𝑚1 = 2,𝑚2 = −
1

2

𝑚1 ×𝑚2 = 2 × −
1

2
= −1

∴ The two lines are perpendicular

b

In vector form 𝑦 = 2𝑥 + 1 → 𝑟1
~
=

0
1

+ 𝜆
1
2

and 𝑦 = −
1

2
𝑥 → 𝑟2

~
= 𝜆

−2
1

1
2

∙
−2
1

= −2 + 2 = 0

∴ The two lines are perpendicular

11 The midpoints are 𝑀𝐴𝐵 = 0,1,2 ,𝑀𝐴𝐶 = 2,1,0 ,𝑀𝐵𝐶 = (2,2,2) . The equations of the medians

through each vertex are:

𝑟𝐴
~
=

0
0
0

+ 𝜆
2 − 0
2 − 0
2 − 0

=
2𝜆
2𝜆
2𝜆

1 𝑟𝐵
~
=

0
2
4

+ 𝜆
2 − 0
1 − 2
0 − 4

=
2𝜆

2 − 𝜆
4 − 4𝜆

(2)

𝑟𝐶
~
=

4
2
0

+ 𝜆
0 − 4
1 − 2
2 − 0

=
4 − 4𝜆
2 − 𝜆
2𝜆

(3)

For (1) and (2):

2𝜆 = 2𝜇 2𝜆 = 2 − 𝜇 2𝜆 = 4 − 4𝜇

𝜆 = 𝜇 3𝜆 = 2 → 𝜆 =
2

3

∴ (1) and (2) intersect at
4

3
,
4

3
,
4

3

For (1) and (3):

2𝜆 = 4 − 4𝜇 2𝜆 = 2 − 𝜇 2𝜆 = 2𝜇

3𝜆 = 2 → 𝜆 =
2

3
𝜆 = 𝜇

∴ (1) and (3) intersect at
4

3
,
4

3
,
4

3

Since (2) and (3) both intersect (1) at the same point, they must intersect there as well.

∴ all three medians intersect at
4

3
,
4

3
,
4

3

Mathematics Extension 2 © Steve Howard 427 Howard and Howard Education



5.5 SPHERES AND BASIC TWO DIMENSIONAL CURVES

In Lesson 5 we look at spheres and basic two dimensional curves. We cover:

• Spheres

• Curves in Two Dimensions

• Common Curves

• Transformations

• Restrictions

SPHERES

Every point on a sphere is exactly 𝑟 units from the centre, where 𝑟 is the radius of the sphere.

𝑦

𝑥

𝑧

𝑟

𝑅
𝑥
𝑦
𝑧

Letting any point on the surface of the sphere be 𝑅
𝑥
𝑦
𝑧

, this means that the magnitude of 𝑂𝑅 is

𝑟, so using our formula for magnitude we see

𝑥2 + 𝑦2 + 𝑧2 = 𝑟

∴ 𝑥2 + 𝑦2 + 𝑧2 = 𝑟2

This is the Cartesian equation of a sphere. We can adjust the formula easily enough using

transformations if the centre is not at the origin.

When drawing a sphere, it can be easiest to draw a circle, with an ellipse used to indicate the

equator, and one line of longitude, as above.
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Example 1

Find the equations of the spheres with:

a radius 4 and centre at the origin

b radius 2 and centre at (1, −2,1)

a 𝑥2 + 𝑦2 + 𝑧2 = 16

b 𝑥 − 1 2 + 𝑦 + 2 2 + 𝑧 − 1 2 = 2

Example 2

Complete the square to determine the radius and centre of the sphere.

𝑥2 + 2𝑥 + 𝑦2 − 6𝑦 + 𝑧2 + 8𝑧 + 10 = 0

𝑥2 + 2𝑥 + 𝑦2 − 6𝑦 + 𝑧2 + 8𝑧 + 10 = 0

𝑥2 + 2𝑥 + 1 + 𝑦2 − 6𝑦 + 9 + 𝑧2 + 8𝑧 + 16 = 16

𝑥 + 1 2 + 𝑦 − 3 2 + 𝑧 + 4 2 = 16

A sphere with radius 4 and centre (−1,3, −4).
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CURVES IN TWO DIMENSIONS

We will start by looking at the common curves you should know by sight. We will look at how to

convert them to a Cartesian equation and the important features of their sketches. We will then

look at how to transform them (without converting to Cartesian form) and how to restrict them.

We will then look at how to approach the sketching of unusual curves.

COMMON CURVES

You should be able to recognise and sketch the following curves from their parametric

equations, without needing to convert them to Cartesian form first, plus be able to convert each

of these into Cartesian form if needed.

Once you are familiar with them you will be able to use them as the basis of harder curves.

Shape 
Parametric 

Equations

Cartesian 

Equation
Sketch 

Unit Circle
𝑥 = cos 𝑡
𝑦 = sin 𝑡

𝑥2 + 𝑦2 = 1

A circle centred at the origin with radius 1.

𝑥 = cos 𝑡 ,
𝑦 = sin 𝑡

𝑥

𝑦

1−1

1

−1

Shape 
Parametric 

Equations

Cartesian 

Equation
Sketch 

Ellipse
𝑥 = 𝑎 cos 𝑡
𝑦 = 𝑏 sin 𝑡

𝑥2

𝑎2
+
𝑦2

𝑏2
= 1

An ellipse centred at the origin with semi-major axis 𝑎
and semi-minor axis 𝑏. 

An ellipse could instead be viewed as a circle stretched 

by different factors vertically and horizontally.

𝑥 = 𝑎 cos 𝑡 ,
𝑦 = 𝑏 sin 𝑡

𝑥

𝑦

𝑎−𝑎

𝑏

−𝑏

Mathematics Extension 2 © Steve Howard 430 Howard and Howard Education



Shape 
Parametric 

Equations

Cartesian 

Equation
Sketch 

Parabola
𝑥 = 𝑡
𝑦 = 𝑡2

𝑦 = 𝑥2

A concave up parabola with vertex at the origin.

𝑥 = 𝑡,
𝑦 = 𝑡2

𝑥

𝑦

(1,1).

Shape 
Parametric 

Equations

Cartesian 

Equation
Sketch 

Rectangular 

Hyperbola

𝑥 = 𝑡

𝑦 =
1

𝑡

𝑦 =
1

𝑥
or

𝑥𝑦 = 1

A rectangular hyperbola with branches in the 1st and 3rd

quadrants, passing through (1,1) and (−1,−1).

𝑥 = 𝑡

𝑦 =
1

𝑡

𝑥

𝑦

(1,1).

(−1,−1)
.

Shape 
Parametric 

Equations

Cartesian 

Equation
Sketch 

Hyperbola
𝑥 = 𝑎 sec 𝑡
𝑦 = 𝑏 tan 𝑡

𝑥2

𝑎2
−
𝑦2

𝑏2
= 1

A hyperbola with its axis along the 𝑥-axis, with 𝑥-

intercepts 𝑥 = ±𝑎 and asymptotes 𝑦 = ±
𝑏

𝑎
𝑥.

Probably beyond the syllabus but worth covering just in 

case.

𝑥 = 𝑎 sec 𝜃 ,
𝑦 = 𝑏 tan 𝜃

𝑥

𝑦

𝑎−𝑎
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TRANSFORMATIONS

The easiest way to sketch most curves is to recognise the parametric equations as a

transformation of one of the common curves above, and sketch it directly.

We need to be careful, as it is easy to get the transformation wrong due to some leftover

baggage from our work with transforming Cartesian equations.

Consider the Cartesian equation 𝑦 = 2 3(𝑥 − 1) 2 + 4. Note that 𝑦 is the subject while the 𝑥 is

over with all the numbers. For this reason the vertical changes (relating to the 𝑦 value) are as

expected while the horizontal changes (relating to the 𝑥 value) are counterintuitive.

We can sketch this function by transforming its basic curve 𝑦 = 𝑥2. To do this we note that we

perform two operations before squaring (subtracting 1 and multiplying by 3) and two operations

after squaring (multiplying by 2 and adding 4).

The operations made before squaring cause horizontal changes that are counterintuitive - so

subtracting 1 moves the curve 1 unit to the right (not the left) and multiplying by 3 compresses it

horizontally (not stretching it).

The operations made after squaring cause vertical changes in the expected directions - so

multiplying by 2 stretches it vertically and adding 4 moves it up.

𝑦 = 𝑥2

𝑥

𝑦

𝑦 = 2 3 𝑥 − 1 2 + 4

right 1

up 4

compressed horizontally

by a factor of 3

stretched vertically by 

a factor of 2
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So how does this affect our sketches of parametric equations?

The parametric equations have 𝑥 and 𝑦 as the subject (so all the other numbers on the opposite

side), so any operations will cause changes as expected - they will not be counterintuitive!

So if we consider 𝑥 = 𝑡 − 1, 𝑦 = 2𝑡2 this will take the basic parabola 𝑦 = 𝑥2 and move it 1 unit to

the left and stretch it vertically by a factor of 2.

Now these rules for transformations only apply to simple equations - as soon as an operation

occurs to 𝑡 before the main function occurs then it is safest to find the Cartesian equation. So for

example 𝑥 = 𝑡 − 1, 𝑦 = 2 𝑡 + 3 2 actually moves 𝑦 = 𝑥2 four units to the left - not nearly what we

might expect.

Example 3

Sketch 𝑥 = 3 cos 𝑡 − 2, 𝑦 = 3 sin 𝑡 + 1

This is the circle with radius 3 moved 2 units to 

the left and 1 unit up.
𝑥 = 3 cos 𝑡 − 2,
𝑦 = 3 sin 𝑡 + 1

𝑥

𝑦

(−2,1)

(−2,−2)

.

.
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RESTRICTIONS

With the exception of the hyperbola, where 𝑡 ≠ 0, the curves we have seen so far have had no

restrictions given in the question or implied by one of the parametric equations.

Let’s have a look at some examples where we do not sketch all the curve.

In the first example 𝑡 will be restricted in the question.

Example 4

Sketch 𝑥 = 2𝑡, 𝑦 = 𝑡2 − 1 for 1 ≤ 𝑡 ≤ 4

This is the basic parabola stretched horizontally 

by a factor of 2 and moved down 1. 

We only take the section from 𝑡 = 1 to 𝑡 = 4, so 

from (2,0) to (8,15)

𝑥 = 𝑡 − 1,
𝑦 = 2𝑡2

−1

2 𝑥

𝑦

−2

(8,15)

Example 5

Sketch 𝑥 = 2 cos 𝑡 , 𝑦 = 2 sin 𝑡

0 ≤ 𝑥 ≤ 2 and 0 ≤ 𝑦 ≤ 2, so the top right quadrant of a 

circle of radius 2 centred at the origin.
𝑥 = 2 cos 𝑡
𝑦 = 2 sin 𝑡

𝑥

𝑦

2

2
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SPIRALS

A spiral can be thought of as a point moving around a circle, but where the radius increases.

There are many types of spiral - we will cover the simplest, the Archimedean Spiral, in the next

example.

When sketching spirals it is best to sketch a few points to determine the pattern.

Example 6 The Archimedean Spiral

Sketch 𝑥 = 𝑡 cos 𝑡 , 𝑦 = 𝑡 sin 𝑡 for 𝑡 ≥ 0

𝑡 𝑥 𝑦

0 0 0

𝜋

2
0 𝜋

2

𝜋 −𝜋 0

3𝜋

2

0
−
3𝜋

2

2𝜋 2𝜋 0

3𝜋 −3𝜋 0

Note in this case that the magnitude of each successive intercept increases by
𝜋

2
.

−𝜋 −

𝑥 = 𝑡 cos 𝑡 ,
𝑦 = 𝑡 sin 𝑡

𝑥

𝑦

|
𝜋

. |
2𝜋

|
3𝜋

|
−𝜋

|
−2𝜋

|
−3𝜋

𝜋 −

2𝜋 −

3𝜋 −

−2𝜋 −

−3𝜋 −

.
.

.

..

.
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EXERCISE 5.5

BASIC

1 Find the equations of the spheres with:

a radius 2 and centre at the origin               b radius 3 and centre at (−1,1,3)

2 Sketch 𝑥 = 3 cos 𝑡 , 𝑦 = 2 sin 𝑡

3 Sketch 𝑥 = 𝑡2, 𝑦 = 𝑡

4 Sketch 𝑥 = 5 cos 𝑡 − 2, 𝑦 = 4 sin 𝑡 + 1

5 Sketch 𝑥 = 𝑡2 − 1, 𝑦 = 𝑡 + 1

6 Sketch 𝑥 =
1

𝑡
, 𝑦 = 𝑡 + 2

7 Sketch 𝑥 = sec 𝜃 , 𝑦 = tan 𝜃

8 Sketch 𝑥 = 𝑡, 𝑦 = 𝑡2 for 0 ≤ 𝑡 ≤ 2

MEDIUM

9 Complete the square to determine the radius and centre of the sphere

𝑥2 − 2𝑥 + 𝑦2 + 𝑧2 + 4𝑧 + 4 = 0

10 The parameterised equation of a sphere is 𝑥 = 𝑟 sin𝛼 sin𝛽 , 𝑦 = 𝑟 cos 𝛼 , 𝑧 = 𝑟 sin𝛼 cos 𝛽.  

Prove that it satisfies 𝑥2 + 𝑦2 + 𝑧2 = 𝑟2.

11 Sketch 𝑥 = − 2 cos 𝑡 , 𝑦 = 2 sin 𝑡

12
Sketch 𝑥 = 𝑡2, 𝑦 =

1

𝑡2

13 Sketch 𝑥 = 𝑡 sin 𝑡 , 𝑦 = 𝑡 cos 𝑡

CHALLENGING

14 The parametric equations 𝑥 = cos 𝑡 , 𝑦 = sin 𝑡 gives a unit circle, and as 𝑡 increases from

zero the point moves anticlockwise from (1,0). Find the parametric equations of a circle

where as 𝑡 increases from zero the point moves clockwise from 3, 1 , centred about the

origin.
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SOLUTIONS - EXERCISE 5.5

1 a 𝑥2 + 𝑦2 + 𝑧2 = 4 b 𝑥 + 1 2 + 𝑦 − 1 2 + 𝑧 − 3 2 = 9

2 From the common curves this is an ellipse centred at 

the origin with a horizontal semi-major axis of 3 and a 

semi-minor axis of 3.

Alternatively

𝑥 = 3 cos 𝑡 → cos 𝑡 =
𝑥

3

𝑦 = 2 sin 𝑡 → sin 𝑡 =
𝑦

2
sin2 𝜃 + cos2 𝜃 = 1 Pythagorean Identity

𝑥2

9
+
𝑦2

4
= 1

Which is the ellipse centred at the origin with horizontal semi major axis 3 and semi minor axis 2

3 From the common curves this is a parabola with

𝑥 and 𝑦 values swapped, so concave right with 

vertex at the origin

Alternatively

𝑥 = 𝑡2 → 𝑡 = ± 𝑥 1
𝑦 = 𝑡 2
sub (1) in (2)

𝑦 = ± 𝑥

This is the parabola which is concave right with 

vertex at the origin.

4 This is the ellipse with horizontal semi major

axis 5 and semi minor axis 4 moved 2 units

to the left and 1 unit up.

5 Safest to find the Cartesian equation:

𝑥 = 𝑡2 − 1 → 𝑡 = ± 𝑥 + 1

𝑦 = 𝑡 + 1 = ± 𝑥 + 1 + 1

This is the concave right parabola moved 1 unit 

to the left and up 1. 

𝑥 = 3 cos 𝑡
𝑦 = 2 sin 𝑡

𝑥

𝑦

3−3

2

−2

𝑥 = 𝑡2

𝑦 = 𝑡

𝑥

𝑦

(1,1)
.

𝑥 = 𝑡2 − 1
𝑦 = 𝑡 + 1

(−1,1)

𝑥

𝑦

𝑥 = 5 cos 𝑡 − 2
𝑦 = 4 sin 𝑡 + 1

𝑥

𝑦

(−2,1)

(−2,−3)

.

.

. 3,1
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6 This is the basic rectangular hyperbola moved 2 units up. 

Alternatively we could find the Cartesian equation:

𝑥 =
1

𝑡
→ 𝑡 =

1

𝑥

𝑦 = 𝑡 + 2 =
1

𝑥
+ 2

7 This is the hyperbola 𝑥2 − 𝑦2 = 1.

The asymptotes are 𝑦 = ±𝑥

8 This is the basic parabola.

We only take the section from 𝑡 = 0 to 

𝑡 = 2, so from (0,0) to (2,4)

9 𝑥2 − 2𝑥 + 𝑦2 + 𝑧2 + 4𝑧 + 4 = 0

𝑥2 − 2𝑥 + 1 + 𝑦2 + 𝑧2 + 4𝑧 + 4 = 1

𝑥 − 1 2 + 𝑦2 + 𝑧 + 2 2 = 1

A sphere with radius 1 and centre (1,0,−2).

𝑥 =
1

𝑡
𝑦 = 𝑡 + 2

𝑥

𝑦

(1,3).
2

−
1

2

𝑥 = sec 𝜃
𝑦 = tan𝜃

𝑥

𝑦

1−1

𝑥 = 𝑡, 𝑦 = 𝑡2 for 

0 ≤ 𝑡 ≤ 2

𝑥

𝑦

(2,4)
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10 𝑥2 + 𝑦2 + 𝑧2

= 𝑟 sin 𝛼 sin 𝛽 2 + 𝑟 cos𝛼 2 + 𝑟 sin 𝛼 cos𝛽 2

= 𝑟2 sin2 𝛼 sin2 𝛽 + 𝑟2 cos2 𝛼 + 𝑟2 sin2 𝛼 cos2 𝛽

= 𝑟2 sin2 𝛼 sin2 𝛽 + cos2 𝛽 + cos2 𝛼

= 𝑟2 sin2 𝛼 × 1 + cos2 𝛼

= 𝑟2 sin2 𝛼 + cos2 𝛼

= 𝑟2

∴ 𝑥 = 𝑟 sin 𝛼 sin 𝛽 , 𝑦 = 𝑟 cos𝛼 , 𝑧 = 𝑟 sin 𝛼 cos𝛽 satisfies 

𝑥2 + 𝑦2 + 𝑧2 = 𝑟2

11 −2 ≤ 𝑥 ≤ 0 and 0 ≤ 𝑦 ≤ 2, so the top left quadrant

of a circle of radius 2 centred at the origin.

12 Since 𝑡2 ≥ 0, so 𝑥 > 0 and 𝑦 > 0. This is the top

right branch of the hyperbola.

13 A clockwise Archimedean spiral.

𝑥 = − 2 cos 𝑡
𝑦 = 2 sin 𝑡

𝑥

𝑦

2

−2

𝑥 = 𝑡2

𝑦 =
1

𝑡2

𝑥

𝑦

(1,1).

𝑡 𝑥 𝑦

0 0 0

𝜋

2

𝜋

2
0

𝜋 0 −𝜋

3𝜋

2
−
3𝜋

2

0

2𝜋 0 2𝜋

3𝜋 0 −3𝜋

−𝜋 −

𝑥 = 𝑡 sin 𝑡 ,
𝑦 = 𝑡 cos 𝑡

𝑥

𝑦

|
𝜋

. |
2𝜋

|
3𝜋

|
−𝜋

|
−2𝜋

|
−3𝜋

𝜋 −

2𝜋 −

3𝜋 −

−2𝜋 −

−3𝜋 −

..
.

..

.
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14
The radius of the new circle is 𝑟 = 3

2
+ 12 = 2.

For the point to move clockwise we swap sine and cosine, so 𝑥 = 2 sin 𝑓 𝑡 , 𝑦 = 2 cos 𝑓 𝑡 .

To move the starting position to 3, 1 , or 2 sin
𝜋

3
, 2 cos

𝜋

3
we use 𝑡 +

𝜋

3
.

∴ 𝑥 = 2 sin 𝑡 +
𝜋

3
, 𝑦 = 2 cos 𝑡 +

𝜋

3
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5.6 HARDER TWO DIMENSIONAL CURVES + 3D CURVES

In Lesson 6 we look at harder two dimensional curves and three dimensional curves. We cover:

• More Curves in Two Dimensions

• Harder Curves

• Curves in Three Dimensions

• Helixes

• Harder Curves

HARDER TWO DIMENSIONAL CURVES

We saw a variety of common curves last lesson, but it is quite likely that you will come across

unusual curves and have to sketch them, particularly late in the exam.

For unknown curves it can help to first work out the domain and range and lightly draw a box on

the number plane as a guide for the sketch. The second step is to create a table of values to

sketch part of the curve, while symmetry or a bit of thought can help finish off the rest of the

sketch.

In the exercises we will also sketch some of the Lissajous Curves, of which the ABC logo is one.

They are possibly beyond what would be tested in an exam as they take some time to sketch

accurately.
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Example 1

Sketch 𝑥 = 2 sin2 𝑡 , 𝑦 = cos 𝑡

With this unknown curve we will start by considering the 

domain and range then use a table to plot some points. 

domain:     [0,2] since 0 ≤ sin2 𝑡 ≤ 1
range:         [−1,1] since −1 ≤ cos 𝑡 ≤ 1

The sketch must fit within the square of side length 2 

centred at (1,0) as shown.

We then plot some positive values of 𝑡, making them 

multiples of 𝜋.

𝑥

𝑦

2

−1

1

𝑡 𝑥 𝑦

0 0 1

𝜋

8
0.3 0.9

𝜋

4
1 0.7

3𝜋

8

1.7 0.4

𝜋

2
2 0

Plot these points, then also reflect them over the 𝑥-axis as cos 𝑡 can be positive or negative,

then draw a smooth curve through the points, filling the box.

𝑥

𝑦

2

−1

1 . . .
.

.

. . .
.

𝑥 = 2 sin2 𝑡 ,
𝑦 = cos 𝑡
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CURVES IN THREE DIMENSIONS

The parameterised curves in two dimensions that we have just looked at involve a point moving

along a curve on the 𝑥𝑦 plane. We can visualise this as the point moving on a piece of paper on

a desk. The point will often follow a circle, ellipse, parabola or hyperbola.

For easier examples of parameterised curves in three dimensions, we can think of the point

moving around the 𝑥𝑦 plane, but also rising or falling above or below the desk. This elevation is

the 𝑧 value. Often the point will still be following a circle in the 𝑥𝑦 plane, but we could use an

ellipse, parabola or hyperbola. The elevation will either be a multiple of the parameter, so it will

rise steadily, or a function of sine or cosine so it rises and falls.

If we want to make the question harder then we can make the point follow a regular shape in the

𝑥𝑧 or 𝑦𝑧 plane, with the linear function the equation of 𝑥 or 𝑦.

If you get stuck then it can help to focus on only two of the parameters, using them to draw a top

view (𝑥𝑦 plane), front view (𝑥𝑧 plane) and side view (𝑦𝑧 plane) like you would have done with

solids in Year 7.

CIRCLES

Let’s start with a circle in three dimensional space. We could use the same techniques for any

of the shapes we have dealt with earlier.

Example 2

Sketch 𝑥 = cos 𝑡 , 𝑦 = sin 𝑡 , 𝑧 = 2

We see that in the 𝑥𝑦 plane this is the unit circle, 

and its elevation is constant at z = 2, so it is the 

unit circle but raised 2 units.

𝑦

𝑥

𝑧

2
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HELIXES

Now if the elevation is increasing as the point moves around the circle we will get a helix (think

a coil or spring).

We will start by lightly drawing the unit circle on the 𝑥𝑦 plane, then test some values around the

circle to find the elevation. This method will help us with some of the harder sketches to come.

Example 3

Sketch 𝑥 = cos 𝑡 , 𝑦 = sin 𝑡 , 𝑧 = 𝑡 for 𝑡 ≥ 0.

As we move around the unit circle the 

elevation increases from 0 at a steady 

rate. Note that the parameter is used 

for the angle and elevation, which 

helps us plot it. Our initial point is at 1 

on the 𝑥-axis, then as we pass above 

the 𝑦 and 𝑥 axes as we rotate 

anticlockwise we are at elevations of 

𝜋

2
, 𝜋,

3𝜋

2
, 2𝜋 etc.

𝑦

𝑥

𝑧

1

1

−1

−1

𝜋

2

5𝜋

2

9𝜋

2

The example above has its axis along the 𝑧-axis, and if we look at the parameterised equations 

we can see that 𝑧 = t. We can make the helix have its axis along either of the other axes by 

letting 𝑥 = 𝑡 or 𝑦 = 𝑡. We can also make the helix turn the other way by swapping sine and 

cosine.
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UNUSUAL CURVES

Now let’s have a look at what happens if the 𝑧 value varies up and down.

Example 4

Sketch 𝑥 = cos 𝑡 , 𝑦 = sin 𝑡 , 𝑧 = sin2𝑡

Similar to the last example, but the elevation 

completes 2 cycles of the sine curve 𝑡 goes from 

0 to 2𝜋. The two peaks will occur at 𝑡 =
𝜋

4
,
5𝜋

4
and 

the two troughs at 𝑡 =
3𝜋

4
,
7𝜋

4
.

The curve is shaped like a saddle.

𝑦

𝑥

𝑧

1

1

−1

1

−1

1

−1
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When we get an unusual curve and are not sure what it looks like, one method is to draw at

least two of the two dimensional views, then combine them to create the three dimensional

sketch.

Example 5

Sketch 𝑥 = 𝑡, 𝑦 = 2𝑡, 𝑧 = 𝑡2

Using 𝑥 = 𝑡, 𝑦 = 2𝑡 we can rearrange to

get 𝑦 = 2𝑥. This means that in the 𝑥𝑦

plane (so viewed from above) the curve

is a straight line through the origin.

Using 𝑥 = 𝑡, 𝑧 = 𝑡2 we can rearrange to

get z = 𝑥2 . This means that in the 𝑥𝑧

plane (so viewed from the right) the curve

is a concave up parabola with vertex at

the origin.

𝑥

𝑦

𝑥

𝑧

So now we convert our two lines into

three dimensional space. Remember that

the first quadrant is now bottom right, so

the line 𝑦 = 2𝑥 has a different look to

what we just drew.

So the only curve that would like the line

𝑦 = 2𝑥 from above and a parabola from

the right would be a parabola (shown in

black) that is above the line 𝑦 = 2𝑥 as

shown.

𝑦

𝑥

𝑧

𝑥 = 𝑡
𝑦 = 2𝑡
𝑧 = 𝑡2

𝑦 = 2𝑥

𝑧 = 𝑥2

𝑧 = 𝑥2

𝑦 = 2𝑥
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EXERCISE 5.6

BASIC

Sketch the following curves

1 𝑥 = 0, 𝑦 = cos 𝑡 , 𝑧 = sin 𝑡

2 𝑥 = cos 𝑡 , 𝑦 = −1, 𝑧 = sin 𝑡

3 𝑥 = sin 𝑡 , 𝑦 = cos 𝑡 , 𝑧 = 1

MEDIUM

4 𝑥 = 2 cos2 𝑡 , 𝑦 = sin 𝑡

5 𝑥 = 2 cos 𝑡 , 𝑦 = 1 + sin2 𝑡

6 𝑥 = sin 𝑡 , 𝑦 = cos 𝑡 , 𝑧 = 𝑡 for 𝑡 ≥ 0.

7 𝑥 = cos 𝑡 , 𝑦 = 𝑡, 𝑧 = sin 𝑡 for 𝑡 ≤ 0.

8 𝑥 = sin 𝑡 , 𝑦 = cos 𝑡 , 𝑧 = sin 𝑡

9 𝑥 = cos 𝑡 , 𝑦 = sin 𝑡 , 𝑧 = sin3𝑡

CHALLENGING

10 𝑥 = cos 𝑡 , 𝑦 = sin2𝑡

11 𝑥 = 𝑡, 𝑦 = 𝑡2, 𝑧 = 𝑡2
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SOLUTIONS - EXERCISE 5.6

1 We see that in the 𝑦𝑧 plane this is the unit circle,

with an 𝑥-value of zero, so it is a vertical unit circle.

2 We see that in the 𝑥𝑧 plane this is the unit circle,

but with 𝑦 = −1, so it is a vertical unit circle but

moved 1 unit to the left.

3 Swapping cos 𝑡 and sin 𝑡 makes no difference to

the final curve, so here we have a unit circle in

the 𝑥𝑦 plane, but moved 1 unit up.

𝑦
𝑥

𝑧

1

1

−1

−1

𝑦

𝑥

𝑧

1

𝑦

𝑥

𝑧

−1
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4

5 domain: [−2,2] since −1 ≤ cos 𝑡 ≤ 1
range:     [1,2] since 0 ≤ sin2 𝑡 ≤ 1

The sketch must fit within the rectangle as shown.

𝑥

𝑦

2−2

1

2

𝑡 𝑥 𝑦

0 2 1

𝜋

8
1.8 1.1

𝜋

4
1.4 1.5

3𝜋

8

0.8 1.9

𝜋

2
0 2

𝑥 = 2 cos 𝑡 ,
𝑦 = 1 + sin2 𝑡

𝑥

𝑦

2−2

1

2

With this unknown curve we will start by considering the 

domain and range then use a table to plot some points. 

There no restrictions for 𝑡, though we note in the domain 

that 𝑡2 ≥ 0.

domain:     [0,2] since 0 ≤ cos2 𝑡 ≤ 1
range:         [−1,1] since −1 ≤ sin 𝑡 ≤ 1

The sketch must fit within the square of side length 2 

centred at (1,0) as shown.

We then plot some positive values of 𝑡, making them 

multiples of 𝜋.

𝑥

𝑦

2

−1

1

𝑡 𝑥 𝑦

0 2 0

𝜋

8
1.7 0.4

𝜋

4
1 0.7

3𝜋

8

0.3 0.9

𝜋

2
0 1

Plot these points, then also reflect them over the 𝑥-axis as sin 𝑡 can be positive or negative, then

draw a smooth curve through the points, filling the box.

𝑥

𝑦

2

−1

1

𝑥 = 2 cos2 𝑡 ,
𝑦 = sin 𝑡
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6 Swapping sine and cosine causes the helix to start

at (0,1,0) an spiral in the opposite direction.

7 The helix spirals to the left around the 𝑦-axis.

8 As we move around the unit circle the elevation is 0 

where it crosses the 𝑦-axis, and 1 or -1 where it 

crosses the 𝑥-axis.

The shape is an ellipse tilted 45° about the 𝑦-axis. 

By Pythagoras we could see that 𝑎 = 2 and 𝑏 = 1. 

Very difficult to see from this perspective!

9 The elevation completes 3 cycles of the sine curve, 

with peaks at a height of 1 at 
𝜋

6
,
5𝜋

6
and 

3𝜋

2
, and troughs 

at 
𝜋

2
,
7𝜋

6
and 

11𝜋

6
. The two peaks will occur at 𝑡 =

𝜋

4
,
5𝜋

4

and the two troughs at 𝑡 =
3𝜋

4
,
7𝜋

4
, and the elevation 

will be zero at 𝑡 = 0,
𝜋

3
,
2𝜋

3
, 𝜋,

4𝜋

3
and 

5𝜋

3
.

Viewed from the side we see the ABC logo.

𝑦

𝑥

𝑧

1

1

−1

−1
.

𝑦
𝑥

𝑧

𝑦

𝑥

𝑧

1

1

−1

−1
1 −1 .

.
. .

𝑦

𝑥

𝑧

1

1

−1

. .

.
..

.
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10

11

domain: [−1,1] since −1 ≤ cos 𝑡 ≤ 1

range:    [−1,1] since 0 ≤ sin 2𝑡 ≤ 1

The sketch must fit within the rectangle as 

shown.

The 2 in 2𝑡 indicates that there will be two 

humps in the Lissajous curve. Let y = 1 →

sin 2𝑡 = 1 → 𝑡 =
𝜋

4
→ 𝑥 = cos

𝜋

4
= 0.7. 

Arrange other humps symmetrically.

𝑥

𝑦

1−1

1

−1

𝑥

𝑦

1−1

1

−1

.

Using 𝑥 = t, 𝑦 = 𝑡2 we can rearrange to get 𝑦 = 𝑥2. 

This means that in the 𝑥𝑦 plane (so viewed from above) 

the curve is a parabola. Think of this like its shadow.

Using 𝑥 = 𝑡, 𝑧 = 𝑡2 we can rearrange to get z = 𝑥2. This 

means that in the 𝑥𝑧 plane (so viewed from the right) the 

curve is a concave up parabola with vertex at the origin.

So now we convert our two lines into three 

dimensional space. Remember that the first 

quadrant is now bottom right, so the parabola 

looks concave right.

So the only curve that would like a parabola from 

above and from the right is a parabola with its axis 

along the line 𝑦 = 𝑧, shown in black.

𝑦

𝑥

𝑧
𝑥 = 𝑡
𝑦 = 𝑡2

𝑧 = 𝑡2

𝑥

𝑦

𝑥

𝑧
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HSC Mathematics Extension 2

Chapter 6

Mechanics

MEX-M1 Applications of Calculus to Mechanics

In Mechanics we bring many of our calculus and algebra skills together at a high level, focusing

on their practical applications.

LESSONS

Mechanics is covered in 8 lessons.

6.1 Motion in a Straight Line

6.2 Motion Without Resistance

6.3 Simple Harmonic Motion 

6.4 Harder Simple Harmonic Motion

6.5 Horizontal Resisted Motion 

6.6 Vertical Resisted Motion

6.7 Further Projectile Motion - Cartesian Equations 

6.8 Projectile Motion with Resistance

REVISION QUESTIONS

In ‘1000 Extension 2 Revision Questions’, the revision book that goes with this textbook you will 

find the following questions matching this chapter:

• Revision Exercise 6

100 graded questions on this topic only

• Revision Exercises 7 (Basic), 8 (Medium) and 9 (Challenging)

Another 100 questions mixed through other topics for when you finish the course.

Don’t forget to do any questions from the exercises in this textbook you haven’t done.
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6.1  MOTION IN A STRAIGHT LINE

CALCULUS IN MECHANICS

In Extension 2 questions, the equation of motion can be:

• Harder examples of:

• Displacement as a function of time

• Velocity as a function of time

• Velocity as a function of displacement

• Acceleration as a function of displacement

• Acceleration as a function of velocity.

All of these variations require different approaches, testing our calculus skills.

In each lesson we will see this variety of equations of motion, and see some common

approaches to questions from lesson to lesson even as the context changes.
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GRAPHING DISPLACEMENT, VELOCITY AND TIME

We start by using displacement-time and velocity-time graphs, to describe the motion and any

forces involved.

Example 1

The graph below shows the velocity of a particle moving horizontally along the 𝑥-axis over time.

a What is the initial velocity and acceleration of the particle?

b Can we tell the initial displacement without further information?

c When is the particle furthest to the left?

d When is the force at a minimum/maximum?

e When is the force directed to the left/right?

f What would the graph of the displacement of the particle look like as 𝑡 → ∞?

Solution

a The particle is initially at a velocity of 2 metres per second to the left (since the height is -2)

with positive acceleration (since the curve then has a positive gradient)

b No, as there could be an infinite number of displacement-time graphs where the gradient

matches the height of this velocity-time graph.

c After 10 seconds when the particle is at rest.

d The force (and acceleration) is at a minimum at the start and end of the motion when the

gradient is flattest, and at a maximum at about 𝑡 = 10 when it is steepest (point of inflexion).

e The force is always to the right, though it approaches zero as 𝑡 → ∞.

f Since velocity is approaching a constant value of 2, the gradient of the displacement would be

approaching a straight line with gradient 2.

2

−2

𝑣

𝑡10
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MOTION AS A FUNCTION OF DISPLACEMENT OR VELOCITY

We have seen displacement, velocity and acceleration as functions of time in Advanced and

Extension 1. This means that at any point in time (𝑡) we can calculate the displacement, velocity

or acceleration of the particle. We can differentiate or integrate with respect to (wrt) time to

move between the different functions.

displacement

velocity

acceleration

We will now look at velocity and acceleration as functions of displacement, so at any point on

the number line (displacement 𝑥) we can calculate the velocity or acceleration. To change

between expressions for velocity or acceleration (as functions of displacement) we cannot use

simple differentiation or integration as we will see.

These new ways of defining motion are used through the rest of the topic, especially in:

• Simple Harmonic Motion where acceleration and velocity are functions of displacement

• Resisted Motion where acceleration is a function of velocity

differentiate wrt time

differentiate wrt time

integrate wrt time

integrate wrt time
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VELOCITY, DISPLACEMENT AND TIME

At times we want to know the velocity at a displacement rather than at a point in time. Let’s look

at how velocity, displacement and time interact. We need to use examples with constant or

variable acceleration. In most Mechanics questions it helps to start by drawing a diagram,

although for simple questions it is not needed.

In the examples below see that using a definite integral is often more efficient than using an

indefinite integral and solving for 𝑐 . There will be a deeper explanation after the second

example. We will use definite integrals as our default method in this topic, but HSC solutions

usually use indefinite integrals.

Example 2

A particle has velocity given by ሶ𝑥 = −𝑥3. If it is initially at 𝑥 = 2, find the displacement of the

particle after 1 second.

Solution

𝑑𝑥

𝑑𝑡
= −𝑥3

𝑑𝑡

𝑑𝑥
= −𝑥−3

𝑡 = −න
2

𝑥

𝑥−3 𝑑𝑥

=
1

2

1

𝑥2
2

𝑥

=
1

2𝑥2
−
1

8

8𝑡 + 1

8
=

1

2𝑥2

𝑥2 =
4

8𝑡 + 1

𝑥 =
2

8𝑡 + 1
since 𝑥2 ≠ 0 then 𝑥 > 0 for all 𝑡

Let 𝑡 = 1

𝑥 =
2

8 1 + 1

=
2

3

The particle has a displacement of
2

3
after 1 second

Alternatively:

𝑡 = −න𝑥−3 𝑑𝑥

=
1

2𝑥2
+ 𝑐

Let 𝑡 = 0, 𝑥 = 2

0 =
1

2 × 22
+ 𝑐

𝑐 = −
1

8

∴ 𝑡 =
1

2𝑥2
−
1

8

From time 0 to 𝑡 the particle’s 

displacement changes from 2 to 𝑥

ሶ𝑥 = −𝑥3

𝑥0 = 2𝑥1 =?

When we take a square root we need

to look closely at the question to

determine if we need both the positive

and negative roots or just one.
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The variable velocity of −𝑥3 ms−1 from an initial displacement of 2 is equivalent to the 

displacement function 𝑥 =
2

8𝑡+1
. As 𝑥 → 0 ሶ𝑥 → 0 so the particle approaches the origin as a limit, 

so the displacement is never negative.

> 𝑡

𝑥^

4. Substituting the limits we get the change in the time, 𝑡 − 0, 

which equals the variable 𝑡. We are actually getting the 

change in time rather than 𝑡 itself though in this case they 

are the same since we started from 𝑡 = 0. 

A NOTE ON INTEGRATION

In the last example we saw the following step:

𝑑𝑡

𝑑𝑥
= −𝑥−3

𝑡 = −න
2

𝑥

𝑥−3 𝑑𝑥

This is how the official HSC solutions do similar steps so is perfectly fine, but what is happening

behind the scenes? How can we integrate the LHS wrt 𝑥 from 𝑥 = 2 to 𝑥 = 𝑥 and seemingly

ignore the limits? So what really happened and how does it work?

2. Integrate each side, using the start and end values as the 

limits. Time changes from 0 to 𝑡 while displacement changes 

from 2 to 𝑥.

𝑑𝑡

𝑑𝑥
= −𝑥−3

𝑑𝑡 = −𝑥−3𝑑𝑥

න
0

𝑡

𝑑𝑡 = −න
2

𝑥

𝑥−3 𝑑𝑥

𝑡
0

𝑡

= −න
2

𝑥

𝑥−3 𝑑𝑥

𝑡 − 0 = −න
2

𝑥

𝑥−3 𝑑𝑥

𝑡 = −න
2

𝑥

𝑥−3 𝑑𝑥

1. Separate the variables as we saw in differential equations.

3. Take the primitive of the LHS. 

This will always give us the variable, in this case 𝑡.

In questions where the starting value is not 0 it would be best to skip from the first line to the 

fourth line and substitute, rather than jumping from the first line to the sixth.

The solution on the previous page

is all you need, but graphing

functions in Mechanics can help to

understand what is occurring.
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Proof 3

Prove

Solution

ሷ𝑥 =
𝑑2𝑥

𝑑𝑡2

=
𝑑

𝑑𝑡

𝑑𝑥

𝑑𝑡

=
𝑑

𝑑𝑡
𝑣

=
𝑑𝑣

𝑑𝑡
(1)

=
𝑑𝑣

𝑑𝑥
×
𝑑𝑥

𝑑𝑡

=
𝑑𝑣

𝑑𝑥
× 𝑣 (2)

=
𝑑𝑣

𝑑𝑥
×

𝑑

𝑑𝑣

1

2
𝑣2

=
𝑑

𝑑𝑥

1

2
𝑣2 (3)

ሷ𝑥 =
𝑑𝑣

𝑑𝑡
= 𝑣

𝑑𝑣

𝑑𝑥
=

𝑑

𝑑𝑥

1

2
𝑣2 from 1 , 2 , (3)

ACCELERATION AND VELOCITY

When velocity and acceleration are functions of time then we can simply differentiate or

integrate to convert from one to the other.

So we have already seen that

If we have velocity as a function of displacement we have two ways to find acceleration, each

useful in different situations.

ሷ𝑥 =
𝑑𝑣

𝑑𝑡

ሷ𝑥 = 𝑣
𝑑𝑣

𝑑𝑥
or ሷ𝑥 =

𝑑

𝑑𝑥

1

2
𝑣2

ሷ𝑥 =
𝑑𝑣

𝑑𝑡
= 𝑣

𝑑𝑣

𝑑𝑥
=

𝑑

𝑑𝑥

1

2
𝑣2

As a generalisation we will use:

• (1) if velocity is given as a function of 𝑡

• (2) if we are given 𝑣2 as a function of 𝑥, or 𝑣 as the square root of a function of 𝑥,

• (3) if velocity is any other function of 𝑥.
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Example 4

The velocity of a particle is given by ሶ𝑥 = 𝑥2 + 1 metres per second. What is the acceleration

when the particle is at 𝑥 = 2?

Solution

ሷ𝑥 = 𝑣
𝑑𝑣

𝑑𝑥

= 𝑥2 + 1 × 2𝑥

= 2𝑥3 + 2𝑥

Let 𝑥 = 2

ሷ𝑥 = 2 2 2 2 + 1

= 20 ms−2

Alternatively:

ሷ𝑥 =
𝑑

𝑑𝑥

1

2
𝑣2

=
1

2
×

𝑑

𝑑𝑥
𝑥4 + 2𝑥2 + 1

=
1

2
4𝑥3 + 4𝑥

= 2𝑥3 + 2𝑥

Graphing ሶ𝑥 = 𝑥2 + 1 in blue and ሷ𝑥 = 2𝑥3 + 2𝑥 in red we can see that 

acceleration increases quickly, as it is the product of velocity and the 

gradient of velocity wrt 𝑥.

ሶ𝑥 = 𝑥2 + 1

> 𝑥

ሶ𝑥, 𝑥 ሷ^
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Example 5

The acceleration of a particle is given by ሷ𝑥 = −𝑒−2𝑥 metres per second squared.

It is initially at the origin with a velocity of 1 metre per second.

i Show that ሶ𝑥 = 𝑒−𝑥

ii Hence show that 𝑥 = ln(𝑡 + 1)

Solution

i

ሷ𝑥 =
𝑑

𝑑𝑥

1

2
𝑣2

−𝑒−2𝑥 =
𝑑

𝑑𝑥

1

2
𝑣2

−න𝑒−2𝑥 𝑑𝑥 =
1

2
𝑣2

𝑣2 = 𝑒−2𝑥 + 𝑐
Let 𝑥 = 0, 𝑣 = 1
1 = 1 + 𝑐 → 𝑐 = 0
𝑣2 = 𝑒−2𝑥

ሶ𝑥 = ±𝑒−𝑥

ሶ𝑥 = −𝑒−𝑥 does not satisfy ሷ𝑥 =
𝑑

𝑑𝑥

1

2
𝑣2

∴ ሶ𝑥 = 𝑒−𝑥

ii

𝑑𝑥

𝑑𝑡
= 𝑒−𝑥

𝑑𝑡

𝑑𝑥
= 𝑒𝑥

𝑡 = 𝑒𝑥

0

𝑥

𝑡 = 𝑒𝑥 − 1

𝑒𝑥 = 𝑡 + 1

𝑥 = ln 𝑡 + 1

No absolute value sign is

needed when the term is positive

ሷ𝑥 = −𝑒−2𝑥

𝑣0 = 1

𝑥0 = 0

𝑣 =?
𝑡 =?

𝑥

Alternatively???

ሷ𝑥 =
𝑑

𝑑𝑥

1

2
𝑣2

=
𝑑

𝑑𝑥

1

2
𝑒−𝑥 2

=
1

2
×

𝑑

𝑑𝑥
𝑒−2𝑥

= −𝑒−2𝑥

∴ ሶ𝑥 = 𝑒−𝑥

Note that this alternative has only 

proved that ሶ𝑥 = 𝑒−𝑥 is a possible 

solution, not that it is the only possible 

solution. Has it answered the question??
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Graphing ሶ𝑥 = 𝑒−𝑥 in blue and 

ሷ𝑥 = −𝑒−2𝑥 in red we can see that velocity is positive 

but approaching zero, reflected by acceleration 

being negative and approaching zero more quickly

ሶ𝑥 = 𝑒−𝑥

ሷ𝑥 = −𝑒−2𝑥

𝑥 = ln(𝑡 + 1)

> 𝑡

ሶ𝑥, 𝑥 ሷ^

> 𝑥

𝑥^

Looking at the top graph we might expect to see displacement approaching a horizontal 

asymptote fairly quickly, but remember that the horizontal axis on the bottom graph represents 

time not displacement, so the two graphs are almost unrelated.
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In part (i) of the previous example we used an indefinite integral, one of the few times in this

chapter when we will. Below we will redo the solution with a definite integral. It is no shorter than

the previous solution, and requires us to use 𝑣2 as the variable rather than 𝑣. We could use the

substitution 𝑢 = 𝑣2, but that would make it longer still.

ሷ𝑥 =
𝑑

𝑑𝑥

1

2
𝑣2

−𝑒−2𝑥 =
𝑑

𝑑𝑥

1

2
𝑣2

−𝑒−2𝑥𝑑𝑥 =
1

2
𝑑𝑣2

−න
0

𝑥

𝑒−2𝑥 𝑑𝑥 =
1

2
න
1

𝑣2

𝑑𝑣2

1

2
𝑒−2𝑥

0

𝑥

=
1

2
𝑣2

1

𝑣2

𝑒−2𝑥 − 1 = 𝑣2 − 1

𝑣2 = 𝑒−2𝑥

ሶ𝑥 = ±𝑒−𝑥

ሶ𝑥 = −𝑒−𝑥 does not satisfy ሷ𝑥 =
𝑑

𝑑𝑥

1

2
𝑣2

∴ ሶ𝑥 = 𝑒−𝑥

I think this method is more likely to cause mistakes for students, so I will use indefinite integrals

for most questions where we use
𝑑

𝑑𝑥

1

2
𝑣2 , except where the particle starts from rest.

If the particle starts from rest then we can do the following:

𝑑

𝑑𝑥

1

2
𝑣2 = 𝑓 𝑥

1

2
𝑣2 = න

𝑥1

𝑥2

𝑓 𝑥 𝑑𝑥

where we have effectively used a definite integral on both sides.

𝑣2 is the variable here

Since we are have velocity changing from 1 to 𝑣, our variable

𝑣2 is changing from 12 to 𝑣2.

Since our variable is 𝑣2, the primitive of 1 wrt 𝑣2 is 𝑣2.
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Example 6

The acceleration of a particle is given by ሷ𝑥 = 4𝑣2 + 2𝑣. If the particle has a velocity of 2 ms−1 at

the origin, find an expression for the velocity in terms of displacement.

Solution

𝑣
𝑑𝑣

𝑑𝑥
= 4𝑣2 + 2𝑣

𝑑𝑣

𝑑𝑥
= 4𝑣 + 2

𝑑𝑥

𝑑𝑣
=

1

4𝑣 + 2

𝑥 =
1

2
න
2

𝑣 1

2𝑣 + 1
𝑑𝑣

=
1

4
ln 2𝑣 + 1

2

𝑣

=
1

4
ln 2𝑣 + 1 − ln5

4𝑥 = ln 2𝑣 + 1 − ln5

ln 2𝑣 + 1 = ln5 + 4𝑥

2𝑣 + 1 = 𝑒ln 5+4𝑥

= 5𝑒4𝑥

2𝑣 = 5𝑒4𝑥 − 1

𝑣 =
5𝑒4𝑥 − 1

2

The particle is initially moving to the right, and so 𝑎 ≥ 0

so the velocity is positive and will continue to increase.

We have acceleration as a function of velocity,

which we most commonly see with resisted motion.

In these cases we replace acceleration with 𝑣
𝑑𝑣

𝑑𝑥
.

ሷ𝑥 = 4𝑣2 + 2𝑣

𝑣 = 2

𝑥 = 0

𝑣 =?

𝑥
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The horizontal axes again represent different 

variables so the graphs are almost unrelated, 

even though they appear similar.

𝑣 =
5𝑒4𝑥 − 1

2

ሷ𝑥 = 4𝑣2 + 2𝑣

> 𝑣

ሷ𝑥^

> 𝑥

𝑣^
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EXERCISE 6.1

BASIC

1 The graph below shows the displacement of a particle moving horizontally along the

𝑥-axis over time.

a Describe the initial displacement, velocity and acceleration of the particle?

b When does the resultant force on the particle equal zero?

c When is the force directed to the right?

For the rest of the question assume that the displacement

function is a polynomial of degree 4.

d What are the degrees of the functions of velocity and acceleration?

e How many times is the particle at the origin?

f How many times is the particle at rest?

2 The graph below shows the velocity of a particle moving horizontally along the 𝑥-axis over

time.

a What is the initial velocity and acceleration of the particle?

b Can we tell the initial displacement without further information?

c When is the particle furthest to the left?

d When is the force at a minimum/maximum?

e When is the force directed to the left/right?

f What would the graph of the displacement of the particle look like as 𝑡 → ∞?

4

0

𝑥

𝑡3 6 8

2

2

−2

𝑣

𝑡61 3
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3 Prove 

4 The velocity of a particle is given by ሶ𝑥 = 2𝑥2 + 3 metres per second. What is the

acceleration when the particle is at 𝑥 = 1?

5 The velocity of a particle, in metres per second, is given by 𝑣 = 𝑥2 + 2, where 𝑥 is its 

displacement in metres from the origin. What is the acceleration of the particle at 𝑥 = 1?

6 At time 𝑡 the displacement, 𝑥, of a particle satisfies 𝑡 = 4 − 𝑒−2𝑥.

Find the acceleration of the particle as function of 𝑥.

MEDIUM

7 A particle moves along a straight line with displacement 𝑥 metre and velocity 𝑣 metres per

second. The acceleration of the particle is given by . Given that 𝑣 = 4 when

𝑥 = 0, express 𝑣2 in terms of 𝑥.

8 A particle moves on the 𝑥-axis with velocity 𝑣. The particle is initially at rest at 𝑥 = 1. Its

acceleration is given by ሷ𝑥 = 𝑥 + 4. Find the speed of the particle at 𝑥 = 2.

9 A particle has velocity given by ሶ𝑥 = −𝑥2. If it is initially at 𝑥 = 2, find the displacement of 

the particle after 1 second.

10 The acceleration of a particle is given by ሷ𝑥 = 𝑣2 + 𝑣. If the particle has a velocity of 2 ms−1

at the origin, find an expression for the velocity in terms of displacement.

11 A particle moves in a straight line. At time 𝑡 seconds the particle has a displacement of 𝑥

metres, a velocity of 𝑣 metres per second and acceleration of 𝑎 metres per second 

squared. Initially the particle has displacement 0 m and velocity of 2 ms−1. The 

acceleration is given by 𝑎 = −2𝑒−𝑥. The velocity of the particle is always positive. 

i Show that 

ii Find an expression for 𝑥 as a function of 𝑡.

12 A particle is moving horizontally. Initially the particle is at the origin 𝑂 moving with velocity 

1 ms−1. The acceleration of the particle is given by ሷ𝑥 = 𝑥 − 1, where 𝑥 is its displacement 

at time 𝑡.

i Show that the velocity of the particle is given by ሶ𝑥 = 1 − 𝑥.

ii Find an expression for 𝑥 as a function of 𝑡.

iii Find the limiting position of the particle.

ሷ𝑥 =
𝑑𝑣

𝑑𝑡
= 𝑣

𝑑𝑣

𝑑𝑥
=

𝑑

𝑑𝑥

1

2
𝑣2

ሷ𝑥 = 2 − 𝑒−
𝑥
2

𝑣 = 2𝑒−
𝑥
2
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CHALLENGING

13 A particle is moving so that ሷ𝑥 = 18𝑥3 + 27𝑥2 + 9𝑥. Initially 𝑥 = −2 and the velocity, 𝑣,

is −6.

i Show that 𝑣2 = 9𝑥2 1 + 𝑥 2

ii Hence, or otherwise, show that

iii It can be shown that for some constant 𝑐,

Using this equation and the initial conditions, find 𝑥 as a function of 𝑡.

14 The acceleration of a particle moving along a straight path is given by

where 𝑥 is in metres. Initially the particle is at the origin with a velocity of 2 ms−1, and its

velocity remains positive.

i Show that 𝑣 = 𝑒−𝑥 + 1

ii Find the equation of the displacement, 𝑥, in terms of 𝑡.

15 i Prove 

ii Prove 

iii The acceleration of a particle moving in a straight line and starting from rest at 1 cm on 

the positive side of the origin is given by 

(𝛼)  Derive the equation relating 𝑣 and 𝑥

(𝛽)  Hence, evaluate 𝑣 when 𝑥 = 𝑒2.

න
1

𝑥 1 + 𝑥
𝑑𝑥 = −3𝑡

log𝑒 1 +
1

𝑥
= 3𝑡 + 𝑐 (Do NOT prove this)

ሷ𝑥 = −
𝑒𝑥 + 1

𝑒2𝑥

𝑑2𝑥

𝑑𝑡2
=

𝑑

𝑑𝑥

1

2
𝑣2

𝑑

𝑑𝑥
𝑥 ln 𝑥 = 1 + ln 𝑥

𝑑2𝑥

𝑑𝑡2
= 1 + ln 𝑥
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SOLUTIONS - EXERCISE 6.1

1 a The particle is initially 2 metres to the right of the origin, moving to the left (since the gradient is

negative), with positive acceleration (since it is concave up).

b After approximately 4.5 and 7 seconds at the points of inflexion, since the curve is neither

concave up or down so the net force is zero.

c From 𝑡 = 0 to approx. 𝑡 = 4.5 seconds, and from 𝑡 = 7 onwards since the curve is concave up.

d The velocity is of degree 3 and acceleration of degree 2, since they are the first and second

derivative of displacement.

e Only the two times shown, as the particle will continue to move to the right.

f Only the three turning points shown, as the particle will continue moving to the right.

2 a The particle is initially at a velocity of 2 metres per second to the right (since the height is 2) with

negative acceleration (since the curve then has a negative gradient)

b No, as there could be an infinite number of displacement-time graphs where the gradient matches

the height of this velocity-time graph.

c After 6 seconds when the particle is at rest, after having negative velocity.

d The force (and acceleration) is at a minimum at the turning point (approx. 𝑡 = 3), and at a

maximum at about 𝑡 = 0 when it is steepest.

e The force is always to the right from 𝑡 = 0 to 𝑡 = 3 where the gradient of 𝑣 is negative and to the

right for 𝑡 > 3 as the velocity increases.

f Since velocity is approaching a constant value of 2, the gradient of the displacement would be

approaching a straight line with gradient 2.

3
ሷ𝑥 =

𝑑2𝑥

𝑑𝑡2

=
𝑑

𝑑𝑡

𝑑𝑥

𝑑𝑡

=
𝑑

𝑑𝑡
𝑣

=
𝑑𝑣

𝑑𝑡
(1)

=
𝑑𝑣

𝑑𝑥
×
𝑑𝑥

𝑑𝑡

=
𝑑𝑣

𝑑𝑥
× 𝑣 (2)

=
𝑑𝑣

𝑑𝑥
×

𝑑

𝑑𝑣

1

2
𝑣2

=
𝑑

𝑑𝑥

1

2
𝑣2 (3)

ሷ𝑥 =
𝑑𝑣

𝑑𝑡
= 𝑣

𝑑𝑣

𝑑𝑥
=

𝑑

𝑑𝑥

1

2
𝑣2 from 1 , 2 , (3)

4

5

ሷ𝑥 = 𝑣
𝑑𝑣

𝑑𝑥
= 2𝑥2 + 3 × 4𝑥
= 8𝑥3 + 12𝑥

Let 𝑥 = 1
ሷ𝑥 = 8 1 3 + 12(1)
= 20 ms−2

ሷ𝑥 = 𝑣
𝑑𝑣

𝑑𝑥
= 𝑥2 + 2 2𝑥

= 12 + 2 2 1

= 6
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6 𝑡 = 4 − 𝑒−2𝑥

𝑑𝑡

𝑑𝑥
= 2𝑒−2𝑥

𝑣 =
𝑑𝑥

𝑑𝑡

=
𝑒2𝑥

2

𝑎 = 𝑣
𝑑𝑣

𝑑𝑥

=
𝑒2𝑥

2
× 𝑒2𝑥

=
𝑒4𝑥

2

7 𝑑

𝑑𝑥

1

2
𝑣2 = 2 − 𝑒−

𝑥
2

1

2
𝑣2 = 2𝑥 + 2𝑒−

𝑥
2 + 𝑐

Let 𝑥 = 0 𝑣 = 4
1

2
42 = 2 0 + 2𝑒0 + 𝑐

𝑐 = 6
1

2
𝑣2 = 2𝑥 + 2𝑒−

𝑥
2 + 6

𝑣2 = 4𝑥 + 4𝑒−
𝑥
2 + 12

8 𝑑

𝑑𝑥

1

2
𝑣2 = 𝑥 + 4

1

2
𝑣2 =

𝑥2

2
+ 4𝑥 + 𝑐

Let 𝑥 = 1 𝑣 = 0

0 =
1

2
+ 4 + 𝑐

𝑐 = −
9

2
1

2
𝑣2 =

𝑥2

2
+ 4𝑥 −

9

2
𝑣2 = 𝑥2 + 8𝑥 − 9

Let 𝑥 = 2:

speed = 𝑣 = 22 + 8 2 − 9

= 11 ms−1

9 𝑑𝑥

𝑑𝑡
= −𝑥2

𝑑𝑡

𝑑𝑥
= −𝑥−2

𝑡 = −න
2

𝑥

𝑥−2 𝑑𝑥

=
1

2

1

𝑥
2

𝑥

=
1

2𝑥
−
1

4
4𝑡 + 1

4
=

1

2𝑥

𝑥 =
2

4𝑡 + 1
Let 𝑡 = 1

𝑥 =
2

4 1 + 1

=
2

5

10
𝑣
𝑑𝑣

𝑑𝑥
= 𝑣2 + 𝑣

𝑑𝑣

𝑑𝑥
= 𝑣 + 1

𝑑𝑥

𝑑𝑣
=

1

𝑣 + 1

𝑥 = න
2

𝑣 1

𝑣 + 1
𝑑𝑣

= ln(𝑣 + 1)
2

𝑣

∗∗

= ln(𝑣 + 1) − ln 3
ln(𝑣 + 1) = 𝑥 − ln 3

𝑣 + 1 = 𝑒𝑥−ln 3

= 3𝑒𝑥

𝑣 = 3𝑒𝑥 − 1

∗∗ The particle has 𝑎 ≥ 0 so the velocity is

greater than or equal to zero.

11 i

𝑑

𝑑𝑥

1

2
𝑣2 = −2𝑒−𝑥

1

2
𝑣2 = 2𝑒−𝑥 + 𝑐

Let 𝑥 = 0, 𝑣 = 2
1

2
2 2 = 2𝑒0 + 𝑐

𝑐 = 0

∴
1

2
𝑣2 = 2𝑒−𝑥

𝑣2 = 4𝑒−𝑥

∴ 𝑣 = 2𝑒−
𝑥
2 since 𝑣 > 0

ii

∴
𝑑𝑥

𝑑𝑡
= 2𝑒−

𝑥
2

𝑑𝑡

𝑑𝑥
=
1

2
𝑒
𝑥
2

𝑡 =
1

2
න
0

𝑥

𝑒
𝑥
2 𝑑𝑥

= 𝑒
𝑥
2

0

𝑥

= 𝑒
𝑥
2 − 1

𝑒
𝑥
2 = 𝑡 + 1
𝑥

2
= ln 𝑡 + 1

𝑥 = 2 ln 𝑡 + 1
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12 i

𝑑

𝑑𝑥

1

2
𝑣2 = 𝑥 − 1

1

2
𝑣2 =

𝑥2

2
− 𝑥 + 𝑐

𝑤ℎ𝑒𝑛 𝑥 = 0 𝑣 = 1
1

2
= 0 − 0 + 𝑐

𝑐 =
1

2
1

2
𝑣2 =

𝑥2

2
− 𝑥 +

1

2
𝑣2 = 𝑥2 − 2𝑥 + 1 = 𝑥 − 1 2

𝑣 = − 𝑥 − 1 = 1 − 𝑥
(negative root given initial conditions)

ii
𝑑𝑥

𝑑𝑡
= 1 − 𝑥

න
1

1 − 𝑥
𝑑𝑥 = න𝑑𝑡

− ln 1 − 𝑥 = 𝑡 + 𝑐
𝑤ℎ𝑒𝑛 𝑡 = 0 𝑥 = 0
− ln 1 = 0 + 𝑐
𝑐 = 0
𝑡 = − ln 1 − 𝑥
𝑒−𝑡 = 1 − 𝑥
𝑥 = 1 − 𝑒−𝑡

iii

as 𝑡 → ∞ 𝑒−𝑡 → 0 ∴ 𝑥 → 1

13 i

ሷ𝑥 =
𝑑

𝑑𝑥

1

2
𝑣2 = 18𝑥3 + 27𝑥2 + 9𝑥

1

2
𝑣2 =

9

2
𝑥4 + 9𝑥3 +

9

2
𝑥2 + 𝑐

𝑤ℎ𝑒𝑛 𝑥 = −2 𝑣 = −6:
1

2
−6 2 =

9

2
−2 4 + 9 −2 3 +

9

2
−2 2 + 𝑐

𝑐 = 0
1

2
𝑣2 =

9

2
𝑥4 + 9𝑥3 +

9

2
𝑥2

𝑣2 = 9𝑥4 + 18𝑥3 + 9𝑥2

= 9𝑥2 𝑥2 + 2𝑥 + 1
= 9𝑥2 𝑥 + 1 2

ii

∴ 𝑣 = −3𝑥 1 + 𝑥
(minus since when 𝑥 = −2 𝑣 = −6)
𝑑𝑥

𝑑𝑡
= −3𝑥 1 + 𝑥

න
1

𝑥 1 + 𝑥
𝑑𝑥 = −3න𝑑𝑡

න
1

𝑥 1 + 𝑥
𝑑𝑥 = −3𝑡

iii

log𝑒 1 +
1

𝑥
= 3𝑡 + 𝑐

𝑎𝑡 𝑡 = 0 𝑥 = −2:

log𝑒(1 −
1

2
) = 0 + 𝑐

𝑐 = − log𝑒 2

log𝑒 1 +
1

𝑥
= 3𝑡 − log𝑒 2

1 +
1

𝑥
= 𝑒3𝑡−log𝑒 2

1 +
1

𝑥
=
𝑒3𝑡

2
1

𝑥
=
𝑒3𝑡 − 2

2

𝑥 =
2

𝑒3𝑡 − 2

Mathematics Extension 2 © Steve Howard 470 Howard and Howard Education



14 i
𝑑

𝑑𝑥

1

2
𝑣2 = −

𝑒𝑥 + 1

𝑒2𝑥

1

2
𝑣2 = −න

𝑒𝑥 + 1

𝑒2𝑥
𝑑𝑥

𝑣2 = −2න 𝑒−𝑥 + 𝑒−2𝑥 𝑑𝑥

= 2𝑒−𝑥 + 𝑒−2𝑥 + 𝑐
Let 𝑥 = 0, 𝑣 = 2

2 2 = 2𝑒0 + 𝑒0 + 𝑐
4 = 2 + 1 + 𝑐
𝑐 = 1

𝑣2 = 𝑒−2𝑥 + 2𝑒𝑥 + 1
∴ 𝑣 = 𝑒−𝑥 + 1

given initial conditions

ii
𝑑𝑥

𝑑𝑡
= 𝑒−𝑥 + 1

=
1 + 𝑒𝑥

𝑒𝑥
𝑑𝑡

𝑑𝑥
=

𝑒𝑥

1 + 𝑒𝑥

𝑡 = න
0

𝑥 𝑒𝑥

1 + 𝑒𝑥
𝑑𝑥

= ln(𝑒𝑥 + 1)
0

𝑥

= ln(𝑒𝑥 + 1) − ln 2
ln(𝑒𝑥 + 1) = 𝑡 + ln 2

𝑒𝑥 + 1 = 𝑒𝑡+ln 2

𝑒𝑥 + 1 = 2𝑒𝑡

𝑒𝑥 = 2𝑒𝑡 − 1
𝑥 = ln 2𝑒𝑡 − 1

15 i

𝑑2𝑥

𝑑𝑡2
=

𝑑

𝑑𝑡

𝑑𝑥

𝑑𝑡

=
𝑑

𝑑𝑡
𝑣

=
𝑑𝑣

𝑑𝑥
×
𝑑𝑥

𝑑𝑡

=
𝑑𝑣

𝑑𝑥
× 𝑣

=
𝑑𝑣

𝑑𝑥
×

𝑑

𝑑𝑣

1

2
𝑣2

=
𝑑

𝑑𝑥

1

2
𝑣2

ii
𝑑

𝑑𝑥
𝑥 ln 𝑥 = ln 𝑥 × 1 + 𝑥 ×

1

𝑥
= ln 𝑥 + 1

iii

𝜶
𝑑2𝑥

𝑑𝑡2
= 1 + ln 𝑥

𝑑

𝑑𝑥

1

2
𝑣2 = 1 + ln 𝑥

1

2
𝑣2 = න 1 + ln 𝑥 𝑑𝑥

𝑣2 = 2𝑥 ln 𝑥 + 𝑐
Let 𝑥 = 1, 𝑣 = 0
02 = 2 1 × ln 1 + 𝑐
𝑐 = 0

𝑣2 = 2𝑥 ln 𝑥
𝜷
Let 𝑥 = 𝑒2

𝑣2 = 2 𝑒2 ln 𝑒2

= 4𝑒2

𝑣 = 2𝑒 since ሷ𝑥 > 0
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6.2 MOTION WITHOUT RESISTANCE

FURTHER MOTION IN A STRAIGHT LINE

In the last lesson we looked at questions where particles were moving in a straight line and the

equations of motion were given in the question. In this lesson we look at questions where we

are given information about force or acceleration and we have to find the equation of motion.

None of the questions in this lesson involve resistance to motion, though it is important in most

of the remaining lessons in this topic.

HINTS FOR SUCCESS

Many of the Mechanics questions in the rest of this topic seem more difficult than they end up

being, mainly due to the large number of different constants and variables in the equations, and

the length of the questions.

• There is commonly a mixture of lower and upper case pronumerals with Greek letters, which

is particularly confusing until you become familiar with it.

• There are often square roots, natural logarithms or inverse tangents to make it look more

complex.

To successfully solve Mechanics questions:

• Look carefully to see which are the variables and which are the constants, as this can help

break down the question into more manageable chunks.

• Remember in exams that if you don’t get part (i) you can still use the result you were given to

prove in part (ii) etc - this is particularly important in Mechanics.

• Possibly the greatest difficulty with solving mechanics questions comes from choosing

whether acceleration needs to be replaced with
𝑑𝑣

𝑑𝑡
,

𝑑

𝑑𝑥

1

2
𝑣2 or 𝑣

𝑑𝑣

𝑑𝑥
. The flowchart below

shows how we choose the correct version.
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Acceleration as 

a function of 

time

𝑎 = 𝑓(𝑡)

Acceleration as a 

function of 

displacement

𝑎 = 𝑓(𝑥)

Acceleration as a 

function of 

velocity

𝑎 = 𝑓(𝑣)

sub 𝑎 =
𝑑𝑣

𝑑𝑡
sub 𝑎 =

𝑑

𝑑𝑥

1

2
𝑣2

Sometimes used in Motion 

without Resistance
Often used for Motion 

without Resistance
All Resisted Motion is a function of velocity. Also some questions 

on Motion without Resistance are functions of velocity.

if proof 

involves time 

and velocity

if proof involves 

displacement 

and velocity

sub 𝑎 =
𝑑𝑣

𝑑𝑡
sub 𝑎 =

𝑑𝑣

𝑑𝑡
sub 𝑎 = 𝑣

𝑑𝑣

𝑑𝑥

(find velocity as a 

function of time first  

then integrate for 

displacement as a 

function of time)

if proof involves 

time and 

displacement

Equation of Motion

UNIT OF FORCE

We measure force in Newtons (N). One Newton is equal to a mass of 1 kilogram being

accelerated at 1 ms−2. To give you a rough idea, a mandarin has a mass of about 100 grams,

so its weight on Earth is about 1 Newton. So to visualise a force of 100 N imagine trying to hold

a bag with 100 mandarins.

NEWTON’S LAWS

Newton’s Laws underpin much of our work in the rest of this chapter, and much of the work we 

have already done in projectile motion. A knowledge of the laws allows us to do unusual 

questions. As stated in the syllabus Newton’s Law are:

1. Unless acted upon by a resultant force, a body remains at rest or in uniform motion in a 

straight line.

2. The acceleration of a body is proportional to the resultant force that acts on the body and 

inversely proportional to the mass of the body.

3. For every action, there is an equal and opposite reaction.
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NEWTON’S FIRST LAW

The first law is also known as inertia - a particle will remain stationary if it is at rest or keep

moving in a straight line at a constant velocity if it is already moving, unless there is a resultant

force.

So with projectile motion the particle would continue

in a straight line at the initial velocity, but the

resultant force (gravity) bends the trajectory downwards.

So if we want the velocity to stay constant (like with terminal velocity later in the chapter) we

have to make the resultant force zero.

NEWTON’S SECOND LAW

The second law gives us the formula 𝐹 = 𝑚𝑎, or in our case 𝑚 ሷ𝑥 = 𝐹 where 𝐹 is the resultant

force. This is a common starting point for solving questions, which we rearrange to make ሷ𝑥 the

subject.

NEWTON’S THIRD LAW

The third law leads us into the concepts of Normal forces, Tension forces and friction, which are

often needed in more involved questions. These three types of forces are adjustable - they

create an equal and opposite force which can increase from zero up to some natural limit before

something breaks.

Let’s look at them in more detail.

initial path

actual path
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NORMAL FORCE - AN ADJUSTABLE PUSHING FORCE

Looking round your classroom you might see an empty

chair. Let’s pretend for the moment that it has no mass, so

exerts no force on the floor beneath.

When someone sits on the chair their weight presses

down on the chair, matched by an equal normal force from

the chair - otherwise they would fall to the floor. Their

weight transfers through the four legs of the chair, with

each leg receiving a matching normal force from the floor

so the chair does not fall through the floor.

Normal forces are variable, up to the breaking strength of

the object. The chair or the floor can exert any required

force as lighter or heavier people sit on it, but will

eventually break if there is enough force.

The top of the seat exerts a normal force 

equal to the gravitational force (weight) 

of the person.

The floor is also exerting a normal force 

on each of the legs of the chair.

The force is at right angles to the surface, which is why it is called a Normal force - just like

normals to a curve, which are lines perpendicular to the tangent.
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TENSION - AN ADJUSTABLE PULLING FORCE

When two objects are joined together by a rope or cable and a force is trying to move them

apart, then the force transmitted through the rope to keep them stationary is a tension force. The

rope exerts an equal tension force on both objects - the tension pulling in each direction is

equal. A single rope must have equal tension throughout.

The rope exerts a tension force on the 

person and on the hook in the ceiling, equal 

to the gravitational force (weight) of the 

person.

The ceiling is also applying an equal force on 

the hook.

Imagine a rope (of no mass) attached to a hook in the

ceiling. Given our theoretical rope has no mass then

there will be no tension - it will be loose or floppy.

Now get a person to hang off it - the tension in the rope

will increase until it matches the new gravitational force

(weight) of the person. It will also pull down on the hook

with that same tension, so there is some type of force 𝐹

of equal magnitude holding the rope up. Depending on

how the hook is attached this could be compression or

tension.

If it was the same person sitting on our chair from the

previous page, then the Tension force in the rope would

be the same magnitude as the Normal force from the

chair.

T

mg

T

F

Tension forces are variable, up to the breaking strength of the object. A rope can exert any

required tension force as lighter or heavier people hang off it, but will eventually break if there is

enough force.

We could have tension forces in a chair (imagine two students pulling on each end of a chair),

but we cannot have normal forces with a rope as it would collapse in a pile (imagine pushing the

two ends of a rope together).
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FRICTION - AN ADJUSTABLE LATERAL PUSHING FORCE

When a force is trying to move an object along the surface of another object, a force preventing

that movement is friction. It operates in a similar manner to a Normal force, in that it can adjust

to different levels, but it operates parallel to the surface rather than perpendicular. The other big

difference is that it can change direction, as it always operates against the direction of any

possible movement. It is called a resistive force, as it resists movement.

Imagine a heavy box being pushed along a floor. While

the box is stationary, the floor is exerting a friction force

equal to the force with which the box is being pushed, in

the opposite direction.

The floor is also creating a friction force against the

motion of the person’s feet. The feet are pushing away

from the box, so the two friction forces act in opposite

directions.

The friction forces act against 

the direction of push.

Friction forces are variable, up to the limit of the gripping strength of the surfaces. At a certain

amount of force either the box or the feet will slide!

Let’s start with an example where we need to prove a result for velocity as a function of

displacement, which is generally the easiest type of result to prove.
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Example 1

A particle of mass 𝑚 is moving in a straight line under the action of a force, 𝐹 = 𝜙𝑚(𝑥 + 2),

where 𝜙 is a positive constant.

Given the particle starts from rest at 𝑥 = 2, prove 𝑣 = 𝜙 𝑥2 + 4𝑥 − 12 .

Solution

𝑣0 = 0

𝐹 = 𝜙𝑚(𝑥 + 2)

𝑚 ሷ𝑥 = 𝜙𝑚(𝑥 + 2)

ሷ𝑥 = 𝜙(𝑥 + 2)

𝑑

𝑑𝑥

1

2
𝑣2 = 𝜙 𝑥 + 2

1

2
𝑣2 = 𝜙න

2

𝑥

𝑥 + 2 𝑑𝑥

= 𝜙
𝑥2

2
+ 2𝑥

2

𝑥

= 𝜙
𝑥2

2
+ 2𝑥 −

22

2
+ 2 2

= 𝜙
𝑥2

2
+ 2𝑥 − 6

𝑣2 = 𝜙(𝑥2 + 4𝑥 − 12)

∴ 𝑣 = 𝜙 𝑥2 + 4𝑥 − 12

𝑣 =?

Motion is given as a function of 

displacement, so use ሷ𝑥 =
𝑑

𝑑𝑥

1

2
𝑣2

Alternatively we could use an indefinite 

integral as below.

1

2
𝑣2 = 𝜙

𝑥2

2
+ 2𝑥 + 𝐶

when 𝑥 = 2, 𝑣 = 0

0 = 𝜙
22

2
+ 2 2 + 𝐶 ⇒ 𝐶 = −6𝜙

1

2
𝑣2 = 𝜙

𝑥2

2
+ 2𝑥 − 6

𝑣2 = 𝜙 𝑥2 + 4𝑥 − 12

Always start by drawing a forces diagram, 

clearly showing displacement, velocity and 

force/ acceleration separately. Here 

displacement is shown against a number 

line, velocity with an single arrow and force 

with a double arrow. 

2 𝑥

Note we have taken the positive square root

only - why is this? Since the particle starts to

the right, force will always be positive, so the

particle will keep going faster and faster to

the right, and velocity can never be negative.
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Letting 𝜙 = 1 we can see ሷ𝑥 = 𝑥 + 2 and 

𝑣 = 𝑥2 + 4𝑥 − 12. 

Given that initially 𝑥 = 2, the acceleration will 

always be positive so the particle will continue 

moving to the right, so 𝑣 > 0.

𝑣 = 𝑥2 + 4𝑥 − 12

ሷ𝑥 = 𝑥 + 2

ሶ𝑥, ሷ𝑥^

> 𝑥

Tension also allows us to redirect forces, as we can see in the example below. Another

interesting aspect of the next example is that since we get an expression for acceleration which

is a constant we can use ሷ𝑥 = 𝑣
𝑑𝑣

𝑑𝑥
or ሷ𝑥 =

𝑑

𝑑𝑥

1

2
𝑣2 .

Example 2

Particle A of mass 𝑚 kg and Particle B of mass 2𝑚 kg are

connected by a light inextensible string passing over a

frictionless pulley. Initially the particles are at rest. After

Particle A has travelled 𝑥 metres in an upwards direction

it is travelling at 𝑣 metres per second.

Prove

𝐴
𝐵

𝑣 =
2𝑔𝑥

3
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Solution

𝑚 + 2𝑚 ሷ𝑥 = 2𝑚𝑔 − 𝑇 − 𝑚𝑔 − 𝑇

3𝑚 ሷ𝑥 = 𝑚𝑔

ሷ𝑥 =
𝑔

3

𝑑

𝑑𝑥

1

2
𝑣2 =

𝑔

3

1

2
𝑣2 =

𝑔

3
න
0

𝑥

𝑑𝑥

𝑣2 =
2𝑔

3
𝑥

𝑣 =
2𝑔𝑥

3
positive root only since the particle will only move up

𝑣 =? 𝑥

𝑚𝑔

2𝑚𝑔

𝑇

𝐴
𝐵

𝑇

0

Alternatively

𝑣
𝑑𝑣

𝑑𝑥
=
𝑔

3
𝑑𝑣

𝑑𝑥
=

𝑔

3𝑣
𝑑𝑥

𝑑𝑣
=
3𝑣

𝑔

𝑥 =
3

𝑔
න
0

𝑣

𝑣 𝑑𝑣

=
3

2𝑔
𝑣2

0

𝑣

=
3𝑣2

2𝑔

𝑣2 =
2𝑔𝑥

3

Letting 𝑔 = 10 we can see 𝑣 =
20𝑥

3

𝑣 =
20𝑥

3

𝑣^

> 𝑥
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Example 3

A 100 kilogram box sits on a slippery ramp which is inclined at an angle of 30° to the horizontal.

If the box starts from rest, find:

a its velocity after 𝑡 seconds.

b its displacement after 𝑡 seconds

Solution

a

100 ሷ𝑥 = 100𝑔 × sin 30°

𝑑𝑣

𝑑𝑡
=
𝑔

2

𝑣 =
𝑔

2
න
0

𝑡

𝑑𝑡

=
𝑔𝑡

2

b

∴
𝑑𝑥

𝑑𝑡
=
𝑔𝑡

2

𝑥 =
𝑔

2
න
0

𝑡

𝑡 𝑑𝑡

=
𝑔

4
𝑡2

0

𝑡

=
𝑔𝑡2

4

100𝑔

The weight of 100𝑔 can be split into

components parallel to the slope and

perpendicular to the slope. We can ignore the

component perpendicular to the slope as it

will be balanced by the normal reactive force.

30°

𝑁

Letting 𝑔 = 10 we can see 

𝑣 = 5𝑡 and 𝑥 = 2.5𝑡2

𝑣 = 5𝑡

𝑥, 𝑣^

> 𝑡

𝑥 = 2.5𝑡2
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GRAVITY

In the old syllabus HSC questions on motion without resistance occurred every few years, and

often dealt with gravity. It is important to note that gravity is only constant close to the Earth’s

surface. Most questions that we deal with in Mechanics are close to the Earth, which will

normally be specified in the question by stating gravitational acceleration is 𝑔,−𝑔, 9.8 ms−2 or

10 ms−2.

Gravity is inversely proportional to the square of the distance from the centre of the Earth -

gravity gets weaker as you go in to space until eventually it is negligible. If you could head

deeper into the Earth it would get stronger until you were crushed by the forces.

A common mistake is to measure distance from the surface of the Earth rather than the centre.

Since for gravity acceleration is a function of displacement we are unable to use the formulae

𝑑𝑣

𝑑𝑡
, so we will usually only prove results for velocity in terms of displacement

ሷ𝑥 = −9.8 at the Earth’s surface

ሷ𝑥 > −9.8 (is weaker) above the Earth’s surface

ሷ𝑥 < −9.8 (is stronger) below the Earth’s surface

𝑅

We often use 𝑅
to indicate the

radius of the

Earth.
𝑂
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Example 4

A body is projected vertically upwards from the surface of the Earth with initial speed 𝑢. The

acceleration due to gravity at any point on its path is inversely proportional to the square of its

distance from the centre of the Earth. Let the radius of the Earth be 𝑅, and the acceleration due

to gravity at the surface be −𝑔.

Prove that the speed at any position 𝑥 is given by

Solution

𝑣2 = 𝑢2 + 2𝑔𝑅2
1

𝑥
−
1

𝑅

Let 𝑥 be the distance from the centre of the Earth.

ሷ𝑥 = −
𝑘

𝑥2

at the surface of the Earth 𝑥 = 𝑅 and ሷ𝑥 = −𝑔

∴ −𝑔 = −
𝑘

𝑅2

𝑘 = 𝑔𝑅2

∴
𝑑

𝑑𝑥

1

2
𝑣2 = −

𝑔𝑅2

𝑥2

= −𝑔𝑅2𝑥−2

∴
1

2
𝑣2 = න−𝑔𝑅2𝑥−2 𝑑𝑥

= −𝑔𝑅2 ×
𝑥−1

−1
+ 𝐶1

𝑣2 =
2𝑔𝑅2

𝑥
+ 𝐶2

when 𝑥 = 𝑅 𝑣 = 𝑢

𝑢2 =
2𝑔𝑅2

𝑅
+ 𝐶2

𝐶2 = 𝑢2 − 2𝑔𝑅

∴ 𝑣2 =
2𝑔𝑅2

𝑥
+ 𝑢2 − 2𝑔𝑅

= 𝑢2 + 2𝑔𝑅2
1

𝑥
−
1

𝑅

𝑣0 = 𝑢

ሷ𝑥 = −
𝑘

𝑥2

0

𝑅
ሷ𝑥𝑅 = −𝑔

We are now going to integrate wrt 𝑥. The final result

we are trying to prove involves a constant related to

velocity (𝑢2 ), not displacement, so since we are

integrating wrt displacement a definite integral

cannot give us this constant.

As a result we will have to use an indefinite integral

and solve for 𝐶.

𝑣 =?𝑥

𝑥
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Letting 𝑔 = 10, 𝑅 = 6400 km, and 𝑢 = 1 km/s we get the graph above. 

Note that the vertical scale uses standard notation as the numbers are so large, so even to the 

right of the graph the particle is travelling quickly. Not a particularly useful graph! 

𝑣2 = 𝑢2 + 2𝑔𝑅2
1

𝑥
−
1

𝑅

𝑣2^

> 𝑥
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EXERCISE 6.2

BASIC

1 A particle of mass 𝑚 is moving in a straight line under the action of a force,

𝐹 = 𝜙𝑚(𝑥 − 2), where 𝜙 is a positive constant. Given the particle starts from rest at the 

origin, prove 𝑣 = − 𝜙 𝑥2 − 4𝑥 .

2 Particle A of mass 𝑚 kg and Particle B of mass 5𝑚 kg are

connected by a light inextensible string passing over a

frictionless pulley. Initially the particles are at rest. After

Particle A has travelled 𝑥 metres in an upwards direction

it is travelling at 𝑣 metres per second.

Prove

3 A body is projected vertically downwards from a height of 2𝑅 (from the centre of the Earth)

with initial speed 𝑢. The acceleration due to gravity at any point on its path is inversely

proportional to the square of its distance from the centre of the Earth. Let the radius of the

Earth be 𝑅, and the acceleration due to gravity at the surface be −𝑔.

Prove that the speed at any position 𝑥 is given by

4 A particle of mass 𝑚 is moving in a straight line under the action of a force,

𝐹 =
𝑚

𝑥3
(6 + 10𝑥). Find an expression for velocity as a function of its displacement 𝑥, if the

particle starts from rest at 𝑥 = 1.

5 A particle is launched vertically upwards from the surface of Earth. As it ascends it

experiences gravity downwards which is inversely proportional to the square of its

distance from the centre of Earth (i.e. 𝐹 =
𝑚𝑘

𝑥2
where 𝑘 is a constant and 𝑥 is the distance

from the centre of Earth). Given that the radius of Earth is 𝑅 and the acceleration due to

gravity at the Earth's surface is 𝑔 ms−2, find the value of 𝑘 in terms of 𝑔 and 𝑅.

6 A 20 2 kilogram box sits on a slippery ramp which is inclined at an angle of 45° to the

horizontal. If the box starts from rest, find:

a its velocity after 𝑡 seconds.

b its displacement after 𝑡 seconds

𝐴
𝐵

𝑣 =
4𝑔𝑥

3

𝑣2 = 𝑢2 + 2𝑔𝑅2
1

𝑥
−

1

2𝑅
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MEDIUM

7 Particle A of mass 𝑚 kg and Particle B of mass 2𝑚 kg

are connected by a light inextensible string passing

over a frictionless pulley. Particle A is on a horizontal

surface, with friction 𝐹. Initially the particles are at rest.

After Particle A has travelled 𝑥 metres to the right it is

travelling at 𝑣 metres per second.

Given , find an expression for 𝐹 as a function of 𝑚 and 𝑔.

8 A particle of mass 𝑚 moves in a straight line under the action of a resultant force 𝐹 where

𝐹 = 𝐹(𝑥). Given that the velocity 𝑣 is 𝑣0 when the position 𝑥 is 𝑥0, and that 𝑣 is 𝑣1 when 𝑥

is 𝑥1, prove

CHALLENGING

9 A particle is initially at rest at the point 𝐵 which is 𝑏 metres to the right of 𝑂. The particle

then moves in a straight line towards 𝑂. For 𝑥 ≠ 0, the acceleration of the particle is given

by , where 𝑥 is the distance from 𝑂 and 𝜇 is a positive constant.

i Prove that

ii Using the substitution 𝑥 = 𝑏 cos2 𝜃, show that the time taken to reach a distance 𝑑

metres to the right of 𝑂 is given by

iii It can be shown that (Do NOT prove this.)

What is the limiting time taken for the particle to reach 𝑂?

𝑣1 =
2

𝑚
න
𝑥0

𝑥1

𝐹 𝑥 𝑑𝑥 + 𝑣0
2

𝐴

𝐵

𝑣 =
𝑔𝑥

2

−
𝜇2

𝑥2

𝑑𝑥

𝑑𝑡
= −𝜇 2

𝑏 − 𝑥

𝑏𝑥

𝑡 =
𝑏 2𝑏

𝜇
න
0

cos−1
𝑑
𝑏
cos2 𝜃 𝑑𝜃

𝑡 =
1

𝜇

𝑏

2
𝑏𝑑 − 𝑑2 + 𝑏 cos−1

𝑑

𝑏
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10 In an alien universe, the gravitational attraction between two bodies is proportional to 𝑥−3,

where 𝑥 is the distance between their centres. A particle is projected upward from the

surface of the planet with velocity 𝑢 at time 𝑡 = 0. Its distance 𝑥 from the centre of the

planet satisfies the equation ሷ𝑥 = −
𝑘

𝑥3
.

i Show that 𝑘 = 𝑔𝑅3, where 𝑔 is the magnitude of the acceleration due to gravity at the 

surface of the planet and 𝑅 is the radius of the planet.

ii Show that 𝑣, the velocity of the particle, is given by

iii It can be shown that 𝑥 = 𝑅2 + 2𝑢𝑅𝑡 − 𝑔𝑅 − 𝑢2 𝑡2. (Do NOT prove this.) 

Show that if 𝑢 ≥ 𝑔𝑅 the particle will not return to the planet.

iv If 𝑢 < 𝑔𝑅 the particle reaches a point whose distance from the centre of the planet is 

𝐷, and then falls back.

(𝜶) Use the formula in part (ii) to find 𝐷 in terms of 𝑢, 𝑅 and 𝑔.

(𝜷) Use the formula in part (iii) to find the time taken for the particle to return to the surface 

of the planet in terms of 𝑢, 𝑅 and 𝑔.

𝑣2 =
𝑔𝑅3

𝑥2
− 𝑔𝑅 − 𝑢2
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SOLUTIONS - EXERCISE 6.2

1 𝑚 ሷ𝑥 = 𝜙𝑚(𝑥 − 2)
ሷ𝑥 = 𝜙(𝑥 − 2)

𝑑

𝑑𝑥

1

2
𝑣2 = 𝜙(𝑥 − 2)

1

2
𝑣2 = 𝜙න(𝑥 − 2)𝑑𝑥

𝑣2 = 2𝜙
𝑥2

2
− 2𝑥 + 𝑐

Let 𝑥 = 0, 𝑣 = 0
1

2
0 2 = 2𝜙 0 − 0 + 𝑐

𝑐 = 0
∴ 𝑣2 = 𝜙𝑥2 − 4𝜙𝑥

𝑣 = − 𝜙 𝑥2 − 4𝑥 since ሷ𝑥 < 0 at the origin and all 𝑥 < 0

2 𝑚 + 5𝑚 ሷ𝑥 = 5𝑚𝑔 − 𝑇 − 𝑚𝑔 − 𝑇
6𝑚 ሷ𝑥 = 4𝑚𝑔

ሷ𝑥 =
2𝑔

3

𝑣
𝑑𝑣

𝑑𝑥
=
2𝑔

3
𝑑𝑣

𝑑𝑥
=
2𝑔

3𝑣
𝑑𝑥

𝑑𝑣
=
3𝑣

2𝑔

𝑥 =
3

2𝑔
න
0

𝑣

𝑣 𝑑𝑣

=
3

4𝑔
𝑣2

0

𝑣

=
3𝑣2

4𝑔

𝑣2 =
4𝑔𝑥

3

𝑣 =
4𝑔𝑥

3
since the particle only moves up

3
ሷ𝑥 = −

𝑘

𝑥2

when 𝑥 = 𝑅 ሷ𝑥 = −𝑔

−𝑔 = −
𝑘

𝑅2

𝑘 = 𝑔𝑅2

∴
𝑑

𝑑𝑥

1

2
𝑣2 = −

𝑔𝑅2

𝑥2

= −𝑔𝑅2𝑥−2

∴
1

2
𝑣2 = න−𝑔𝑅2𝑥−2 𝑑𝑥

= −𝑔𝑅2 ×
𝑥−1

−1
+ 𝐶1

𝑣2 =
2𝑔𝑅2

𝑥
+ 𝐶2

when 𝑥 = 𝟐𝑅 𝑣 = 𝑢

𝑢2 =
2𝑔𝑅2

𝟐𝑅
+ 𝐶2

𝐶2 = 𝑢2 − 𝑔𝑅

∴ 𝑣2 =
2𝑔𝑅2

𝑥
+ 𝑢2 − 𝑔𝑅

= 𝑢2 + 2𝑔𝑅2
1

𝑥
−

1

𝟐𝑅

𝑣 =? 𝑥

𝑚𝑔

5𝑚𝑔

𝑇

𝐴
𝐵

𝑇

0
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4

7

𝑎 =
𝐹

𝑚
𝑑

𝑑𝑥

1

2
𝑣2 = 6𝑥−3 + 10𝑥−2

1

2
𝑣2 = −3𝑥−2 − 10𝑥−1 + 𝐶

Let 𝑥 = 1, 𝑣 = 0
0 = −3 − 10 + 𝐶 ⇒ 𝐶 = 13

1

2
𝑣2 = −3𝑥−2 − 10𝑥−1 + 13

𝑣2 =
2 −3 − 10𝑥 + 13𝑥2

𝑥2

𝑣 =
1

𝑥
26𝑥2 − 20𝑥 − 6

since 𝑎 > 0

𝑚 + 2𝑚 ሷ𝑥 = 2𝑚𝑔 − 𝑇 − 𝐹 − 𝑇
3𝑚 ሷ𝑥 = 2𝑚𝑔 − 𝐹

ሷ𝑥 =
2𝑚𝑔 − 𝐹

3𝑚

𝑣
𝑑𝑣

𝑑𝑥
=
2𝑚𝑔 − 𝐹

3𝑚
𝑑𝑣

𝑑𝑥
=
2𝑚𝑔 − 𝐹

3𝑚𝑣
𝑑𝑥

𝑑𝑣
=

3𝑚𝑣

2𝑚𝑔 − 𝐹

𝑥 =
3𝑚

2𝑚𝑔 − 𝐹
න
0

𝑣

𝑣 𝑑𝑣

=
3𝑚

2𝑚𝑔 − 𝐹
𝑣2

0

𝑣

=
3𝑚𝑣2

2𝑚𝑔 − 𝐹

𝑣2 =
2𝑚𝑔 − 𝐹 𝑥

3𝑚

𝑣 =
2𝑚𝑔 − 𝐹 𝑥

3𝑚
𝒗 > 𝟎

∴
𝑔

2
=
2𝑚𝑔 − 𝐹

3𝑚
3𝑚𝑔

2
= 2𝑚𝑔 − 𝐹

𝐹 =
𝑚𝑔

2

5

6

8

𝑚𝑥 ሷ =
𝑚𝑘

𝑥2

Let ሷ𝑥 = 𝑔, 𝑥 = 𝑅

𝑚𝑔 =
𝑚𝑘

𝑅2

𝑘 = 𝑔𝑅2

a

ሷ𝑥 = 20 2𝑔 × sin 45°

𝑑𝑣

𝑑𝑡
= 20𝑔

𝑣 = 20𝑔න
0

𝑡

𝑑𝑡

= 20𝑔𝑡

b

∴
𝑑𝑥

𝑑𝑡
= 20𝑔𝑡

𝑥 = 20𝑔න
0

𝑡

𝑡 𝑑𝑡

= 10𝑔 𝑡2

0

𝑡

= 10𝑔𝑡2

𝑚𝑣
𝑑𝑣

𝑑𝑥
= 𝐹 𝑥

𝑚𝑣 𝑑𝑣 = 𝐹 𝑥 𝑑𝑥

𝑚න
𝑣0

𝑣1

𝑣 𝑑𝑣 = න
𝑥0

𝑥1

𝐹 𝑥 𝑑𝑥

𝑚
𝑣2

2
𝑣0

𝑣1

= න
𝑥0

𝑥1

𝐹 𝑥 𝑑𝑥

𝑣1
2 − 𝑣0

2 =
2

𝑚
න
𝑥0

𝑥1

𝐹 𝑥 𝑑𝑥

𝑣1
2 =

2

𝑚
න
𝑥0

𝑥1

𝐹 𝑥 𝑑𝑥 + 𝑣0
2

𝑣1 =
2

𝑚
න
𝑥0

𝑥1

𝐹 𝑥 𝑑𝑥 + 𝑣0
2

𝐴

𝐵

𝑚𝑔

2𝑚𝑔

𝑇

𝑇𝐹

𝑁 = 𝑚𝑔 20 2𝑔
45°

𝑁

Mathematics Extension 2 © Steve Howard 489 Howard and Howard Education



9 i

𝑑

𝑑𝑥

1

2
𝑣2 = −

𝜇2

𝑥2

1

2
𝑣2 = −𝜇2න

1

𝑥2
𝑑𝑥

1

2
𝑣2 =

𝜇2

𝑥
+ 𝑪

when 𝑥 = 𝑏, 𝑣 = 0

0 =
𝜇2

𝑏
+ 𝑪 ⇒ 𝑪 = −

𝜇2

𝑏
1

2
𝑣2 =

𝜇2

𝑥
−
𝜇2

𝑏

𝑣2 = 2𝜇2
𝑏 − 𝑥

𝑏𝑥

𝒗 = − 2𝜇2
𝑏 − 𝑥

𝑏𝑥

∴ 𝒗 =
𝑑𝑥

𝑑𝑡
= −𝜇 2

𝑏 − 𝑥

𝑏𝑥
𝑠𝑖𝑛𝑐𝑒 𝑎 < 0 𝑣 < 0

ii

iii

Let 𝑑 = 0 in the given equation

𝑡 =
1

𝜇

𝑏

2
0 + 𝑏

𝜋

2

=
𝑏 𝑏𝜋

2 2𝜇
𝑠𝑒𝑐

10 i When 𝑥 = 𝑅, ሷ𝑥 = −𝑔

∴ −𝑔 = −
𝑘

𝑅3

𝑘 = 𝑔𝑅3

𝐢𝐢
𝑑

𝑑𝑥

1

2
𝑣2 = −

𝑔𝑅3

𝑥3

𝑣2 = −2𝑔𝑅3න𝑥−3 𝑑𝑥

𝑣2 = −2𝑔𝑅3 −
𝑥−2

2
+ 𝐶

𝑣2 =
𝑔𝑅3

𝑥2
+ 𝐶

Let 𝑥 = 𝑅, 𝑣 = 𝑢

𝑢2 =
𝑔𝑅3

𝑅2
+ 𝐶

𝐶 = 𝑢2 − 𝑔𝑅

∴ 𝑣2 =
𝑔𝑅3

𝑥2
− 𝑔𝑅 − 𝑢2

iii Let 𝑥 = 𝑅

𝑅 = 𝑅2 + 2𝑢𝑅𝑡 − 𝑔𝑅 − 𝑢2 𝑡2

𝑅2 = 𝑅2 + 2𝑢𝑅𝑡 − 𝑔𝑅 − 𝑢2 𝑡2

∴ 𝑡 2𝑢𝑅 − 𝑔𝑅 − 𝑢2 𝑡 = 0
∴ 𝑡1 = 0 or 2𝑢𝑅 − 𝑔𝑅 − 𝑢2 𝑡 = 0

𝑡2 =
2𝑢𝑅

𝑔𝑅 − 𝑢2

now 0 < 𝑔𝑅 ≤ 𝑢 so the numerator is 

positive and the denominator negative 

so 𝑡2 < 0 and is not a valid solution. The 

particle does not return to the planet.

𝒊𝒗 𝜶 𝑙𝑒𝑡 𝑣 = 0

0 =
𝑔𝑅3

𝐷2
− 𝑔𝑅 − 𝑢2

𝑔𝑅3

𝐷2
= 𝑔𝑅 − 𝑢2

𝐷2 =
𝑔𝑅3

𝑔𝑅 − 𝑢2

𝐷 =
𝑔𝑅3

𝑔𝑅 − 𝑢2

The particle takes 
𝑢𝑅

𝑔𝑟−𝑢2
to reach its 

maximum height, so takes the same time 

to return since there is no air resistance.

𝜷 ∴
𝑔𝑅3

𝑔𝑅 − 𝑢2
= 𝑅2 + 2𝑢𝑅𝑡 − 𝑔𝑅 − 𝑢2 𝑡2

𝑔𝑅3 = 𝑔𝑅3 − 𝑢2𝑅2 + 2𝑢𝑅 𝑔𝑅 − 𝑢2 𝑡 − 𝑔𝑅 − 𝑢2 2𝑡2

∴ 𝑔𝑅 − 𝑢2 2𝑡2 − 2𝑢𝑅 𝑔𝑅 − 𝑢2 𝑡 + 𝑢2𝑅2 = 0

𝑔𝑟 − 𝑢2 𝑡 − 𝑢𝑅
2
= 0

𝑡 =
𝑢𝑅

𝑔𝑟 − 𝑢2

𝑑𝑡

𝑑𝑥
= −

1

𝜇 2

𝑏𝑥

𝑏 − 𝑥

𝑡 = −
1

𝜇 2
න
𝑏

𝑑 𝑏𝑥

𝑏 − 𝑥
𝑑𝑥 𝑥 = 𝑏 cos𝟐 𝜃 ;

𝑑𝑥 = −2𝑏 cos 𝜃 sin𝜃 𝑑𝜃

= −
1

𝜇 2
න
0

cos−1
𝑑
𝑏 𝑏2 cos2 𝜃

𝑏 − 𝑏 cos2 𝜃
−2𝑏 cos 𝜃 sin 𝜃 𝑑𝜃

=
2𝑏

𝜇 2
න
0

cos−1
𝑑
𝑏 𝑏 cos2 𝜃

sin2 𝜃
cos 𝜃 sin𝜃 𝑑𝜃

=
𝑏 2𝑏

𝜇
න
0

cos−1
𝑑
𝑏
cos2 𝜃 𝑑𝜃
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6.3 SIMPLE HARMONIC MOTION 

UNDERSTANDING SIMPLE HARMONIC MOTION

Simple Harmonic Motion (SHM) describes particles that are oscillating in one dimension, usually

either vertically or horizontally. It is a type of motion without resistance, which is why I prefer to

teach it after the first two lessons rather than at the start as in the syllabus.

There are obvious examples of SHM such as the tides rising and falling, and less obvious

examples such as the vibrations in a string. As a particle moves around a circle its 𝑥-value is in

SHM and its 𝑦-value is in SHM, while the particle itself is in circular motion.

Before we look in more detail at SHM, let’s consider a nail, a rubber band and a marble as

shown below, so that we get a better feel for the behaviour of a particle in SHM.

Now we have to use a bit of imagination here. First we will pretend that:

• When we release the marble it will somehow pass through the nail

• The marble will somehow stay within the rubber band forever

• No energy will be lost as heat, sound or friction, so the marble moves forever

So the marble will move from left to right until the end of time as two physical phenomena

continually fight each other;

• The marble always wants to keep moving in a straight line at its current velocity (inertia)

• The rubber band always tries to bring the marble back towards the nail, so sometimes it is

speeding the marble towards the nail, sometimes slowing it down once it has gone past.

Force When the rubber band is fully extended (at either end of the motion) it places the most

force on the marble. As the marble moves towards the nail the rubber band slightly slackens

and the force reduces, while as the marble passes the nail the rubber band is slack so there is

temporarily no force. Once the marble passes the nail the rubber band stretches and the force

increases, slowing the marble until it comes to a stop.

The acceleration of a particle in SHM is directly proportional to the distance from the

centre of motion, and directed towards the centre.

Nail

Marble Rubber Band
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Speed* At each end of the motion the marble temporarily stops, then speeds up towards the

centre, then slows down once it passes the centre.

The speed of the particle is zero at each end of the motion and reaches a maximum at the

centre.

* When trying to understand SHM we use the term speed, but we are interested in velocity.

Now we have a better feel for the force and speed involved in SHM, but how could we model the

motion? Let’s imagine graphing the height of water during the day as the tide rises and falls with

the tides. If we graph the depth of water against time we would see something like the diagram

below.

Some characteristics of the depth of water would be:

• The water depth rises and falls between the same two heights.

• The change of depth is slower near high tide and low tide

• The change of depth is greatest when the water is close to the central depth

Looking at the graph above we can see that the motion might be modelled by a sine curve, and

shortly we will prove that this is true.
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TERMINOLOGY AND DEFINITIONS

We start by assuming that the SHM is horizontal along a number line, with the positive direction

to the right. We can easily adapt this to vertical motion.

The distance from the centre of the motion (𝑐) to either end of the motion is called the amplitude

(𝑎). The centre of motion is also known as the equilibrium position.

Centre (𝑐)

Amplitude (𝑎)

𝑥

The base definition of SHM is that the particle has acceleration which is directly proportional to

the displacement from the centre, and in the opposite direction. In general we can state this as

ሷ𝑥 = −𝑘(𝑥 − 𝑐), where 𝑘 is a positive constant.

In a moment we will define the displacement as a function involving 𝑛, and we can define

acceleration as:

ሷ𝑥 = −𝑛2 𝑥 − 𝑐

If we are asked to prove a particle is in SHM then we need to prove that this formula holds for a

given equation of motion.

In the old syllabus the only way to prove SHM was using acceleration as above. Given the

wording of the new syllabus I think that if students can show that the equation of motion matches

either of the forms for displacement we will see immediately below then that would also be

accepted.

Students need to be able to prove that a particle is in SHM given an equation of motion for

displacement, velocity or acceleration.
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EQUATIONS OF MOTION

There are several different equations of motion that satisfy ሷ𝑥 = −𝑛2(𝑥 − 𝑐). We will look at some

this lesson and some more next lesson. The two most common equations we will use are

𝑥 = 𝑎 sin(𝑛𝑡 + 𝛼) + 𝑐 and 𝑥 = 𝑎 cos(𝑛𝑡 + 𝛼) + 𝑐, where 𝑥 is the displacement from a fixed point

(the origin),
2𝜋

𝑛
is the period,

𝛼

𝑛
is the phase shift and 𝑐 is the central point of motion. Let’s prove

that 𝑥 = 𝑎 sin(𝑛𝑡 + 𝛼) + 𝑐 satisfies ሷ𝑥 = −𝑛2(𝑥 − 𝑐), then look at the purpose of 𝑛 and 𝛼.

Proof 1

Prove that a particle where 𝑥 = 𝑎 sin(𝑛𝑡 + 𝛼) + 𝑐 is in Simple Harmonic Motion

Solution

𝑥 = 𝑎 sin 𝑛𝑡 + 𝛼 + 𝑐

ሶ𝑥 = 𝑎𝑛 cos 𝑛𝑡 + 𝛼

ሷ𝑥 = −𝑎𝑛2 sin 𝑛𝑡 + 𝛼

= −𝑛2 𝑎 sin 𝑛𝑡 + 𝛼 + 𝑐 − 𝑐

= −𝑛2 𝑥 − 𝑐

∴ a particle where = 𝑎 sin(𝑛𝑡 + 𝛼) + 𝑐 is in Simple Harmonic Motion

Example 2

Prove that a particle where ሷ𝑥 = −16𝑥 − 4 is in Simple Harmonic Motion

Solution

ሷ𝑥 = −16𝑥 − 4

= −42 𝑥 +
1

4

∴ The particle is in SHM since it satisfies ሷ𝑥 = −𝑛2 𝑥 − 𝑐
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THE PURPOSE OF 𝑛 AND 𝛼 ON THE EQUATION OF MOTION

So we have a particle in SHM with amplitude 𝑎 about a centre of motion 𝑐, but where did the

particle start, what direction did it first move in and how fast is it travelling? To adjust our

equation of motion to allow for these differences the variables 𝑛 and 𝛼 have been included. Be

careful not to mix the amplitude 𝑎 and the angle 𝛼 as they can easily be mistaken as they look

similar in many fonts.

Many questions do not give (or need) initial values, in which case let 𝛼 = 0 for ease of

calculations.

Consider for a moment a particle moving around a circle of radius 𝑎 with centre (𝑐, 0) - the

centre could be at any height, but let’s say 0 to make things easier. Let’s say that it starts at an

angle of 𝛼 to the positive direction of the 𝑥-axis and rotates at a speed of 𝑛 radians per second

in an anti-clockwise direction, as shown in Figure 1. Figure 2 shows a view taken from directly

above where we can see the horizontal motion but not the vertical - the particle is now in SHM.

Dotted lines join the important points on the two figures.

In Figure 1 the particle will move anticlockwise, which in Figure 2 means that the particle will

initially move to the left. We can see how the radius of the circle matches the amplitude of the

SHM. In the diagram as shown we could work out that the 𝑥-value would be given by

𝑥 = 𝑎 cos(𝑛𝑡 + 𝛼) + 𝑐, using simple trigonometry.

𝑐
𝛼

𝑛 rad.s−1

𝑎

𝑐

𝑥

𝑥

𝑦

Figure 1

Circular Motion

Figure 2

Simple Harmonic Motion
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In Figure 1, to complete a full revolution of 2𝜋 radians at 𝑛 radians per second would take
2𝜋

𝑛

seconds, so the Period is
2𝜋

𝑛
. This would correspond to the time taken for the particle in SHM to

complete one full cycle, so the period of a particle in SHM is also
2𝜋

𝑛
.

If we were to graph displacement against time for 𝑥 = 𝑎 sin 𝑛𝑡 in grey and 𝑥 = 𝑎 sin(𝑛𝑡 + 𝛼) in

black as shown below, we would see that the curve 𝑥 = 𝑎 sin 𝑛𝑡 has been shifted left by
𝛼

𝑛
to

get the curve 𝑥 = 𝑎 sin(𝑛𝑡 + 𝛼), so we say that the phase shift is
𝛼

𝑛
.

𝛼

𝑛

𝑥

𝑡

Now the observant student might have a couple of questions by now, such as:

• what if we want the particle to start by moving in the other direction?

• what happens if we use the equation of motion with cosine instead of sine?

Firstly, by changing the value of 𝛼 we can move to an

equivalent starting position but where the particle would 

move in the opposite direction. So in Figure 1 if we start 

at −𝛼, then in Figure 2 we get the same starting position 

but initially move to the right. Theoretically we could also 

make 𝑛 negative to move the other way, but we always 

take 𝑛 as positive so that the period 
2𝜋

𝑛
remains positive.

Secondly, the cosine curve is the sine curve shifted to the left (or right), so we can use either

version of the formula and get the same results - we would use a different value for 𝛼 in each

version so that the particle starts in the correct position with the correct initial direction.

𝑐

−𝛼

𝑛 rad.s−1

𝑎

𝑐

𝑥

𝑥

𝑦
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Example 4

A particle moves in SHM about the origin, with a period of 𝜋 seconds and amplitude 5 metres.

Find

i The maximum and minimum displacement

ii The maximum and minimum velocity

iii The maximum and minimum acceleration

Solution

2𝜋

𝑛
= 𝜋 → 𝑛 = 2

i 𝑥 = 5sin 2t

∴ −5 ≤ 𝑥 ≤ 5 since −1 ≤ sin𝜃 ≤ 1

ii ሶ𝑥 = 10 cos 2𝑡

∴ −10 ≤ ሶ𝑥 ≤ 10 since −1 ≤ cos 𝜃 ≤ 1

iii ሷ𝑥 = −20 sin 2𝑡

∴ −20 ≤ ሷ𝑥 ≤ 20 since −1 ≤ sin𝜃 ≤ 1

Example 3

A particle moves in SHM about the centre of motion 𝑥 = 2, with amplitude 3 and period
𝜋

2
. Find a

possible equation of motion.

Solution

𝑐 = 2, 𝑎 = 3

𝑇 =
2𝜋

𝑛
=
𝜋

2
→ 𝑛 = 4

One possible equation of motion is 𝑥 = 3 sin 4𝑡 + 2.

Alternative solutions would swap the sine for cosine, and replace 4𝑡 with 4𝑡 + 𝛼 for any angle 𝛼.

We used sine, as we don’t have to

deal with negatives until ሷ𝑥, so less

chance of mistakes. There were no

initial conditions so we let 𝛼 = 0.
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Example 5

A particle moves in SHM about the origin, with displacement given by 𝑥 = 3 sin 𝑡 +
𝜋

4
.

i What is its initial displacement?

ii What is its initial velocity?

iii Once its velocity is zero, how long does it take to next reach the origin?

Solution

i Let 𝑡 = 0

𝑥0 = 3 sin 0 +
𝜋

4

= 3 ×
1

2

=
3 2

2

ii ሶ𝑥 = 3 cos 𝑡 +
𝜋

4

Let 𝑡 = 0

ሶ𝑥0 = 3cos 0 +
𝜋

4

= 3 ×
1

2

=
3 2

2

iii To get from one end of the motion to the centre takes one quarter of the period

𝑡 =
1

4
×
2𝜋

1

=
𝜋

2
sec
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Example 6

A particle moves in SHM centred about the origin. When 𝑥 = 4 the particle is at rest. When 𝑥 = 2

the velocity of the particle is 4. Given the equation of motion is 𝑥 = 𝑎 sin(𝑛𝑡) find the values of 𝑎

and 𝑛.

Solution

𝑎 = 4

𝑥 = 4 sin 𝑛𝑡

ሶ𝑥 = 4𝑛 cos(𝑛𝑡)

Let 𝑥 = 2, ሶ𝑥 = 4

∴ 2 = 4 sin 𝑛𝑡 → sin 𝑛𝑡 =
1

2
1

4 = 4𝑛 cos 𝑛𝑡 → cos(𝑛𝑡) =
1

𝑛
2

sin2(𝑛𝑡) + cos2(𝑛𝑡) = 1 Pythagorean Identity

∴
1

2

2

+
1

𝑛

2

= 1

1

4
+

1

𝑛2
= 1

𝑛2 + 4 = 4𝑛2

3𝑛2 = 4

𝑛2 =
4

3

𝑛 =
2

3

Mathematics Extension 2 © Steve Howard 499 Howard and Howard Education



Example 7

The graph below shows the displacement of a particle in SHM. Its equation of motion is given by

𝑥 = 𝑎 cos(𝑛𝑡 + 𝛼) + 𝑐. Find the values of 𝑎, 𝑛, 𝛼 and 𝑐.

Solution

The difference between the peak and the trough is 20, so 𝑎 = 10.

The motion has period 𝜋, so
2𝜋

𝑛
= 𝜋 → 𝑛 = 2

The curve is the cosine curve shifted vertically, not horizontally, so 𝛼 = 0

The centre of motion is the average of the peak and the trough, so 𝑐 =
20+0

2
= 10.

15 −

10 −

−5 −

−10 −

20 −

|
𝜋

4

|
𝜋

2

|
3𝜋

4

|
𝜋 𝑡

5 −

−15 −

−20 −

𝑥

GRAPHS OF SHM

The new syllabus places a far greater emphasis on sketching SHM and using sketches of SHM.

The sketches involved can be displacement, velocity or acceleration, and involve finding

equations of motion and proving that motion is simple harmonic. In the next lesson we will also

look at sketches of velocity as a function of displacement.
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Example 8

The graph below shows part of the graph of the displacement and acceleration of a particle in

SHM, with the horizontal scale missing.

i Find the value of 𝑛

ii Sketch the velocity of the particle onto the graph.

Solution

i The amplitudes are 5 and 20 respectively with opposite sign, so ሷ𝑥 = −4𝑥. ∴ 𝑛2 = 4 → 𝑛 = 2

ii The graphs of displacement and acceleration are sine curves, so the graph of velocity will be a

cosine curve. It will be zero when displacement is at a maximum or minimum, positive when

displacement is increasing and negative when displacement is decreasing. Its amplitude will be

𝑛𝑎, so 2 × 5 = 10

15 −

10 −

−5 −

−10 −

20 −

𝑡

5 −

−15 −

−20 −

𝑦 = 𝑥

𝑦 = ሷ𝑥

𝑦

15 −

10 −

−5 −

−10 −

20 −

𝑡

5 −

−15 −

−20 −

𝑦 = 𝑥

𝑦 = ሷ𝑥

𝑦

𝑦 = ሶ𝑥
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15 −

10 −

−5 −

−10 −

20 −

|
𝜋

2

|
𝜋

|
3𝜋

2

|
2𝜋 𝑡

5 −

−15 −

−20 −

𝑥

.
𝜋

4
, 15

EXERCISE 6.3

BASIC

1 Prove that a particle where 𝑥 = 𝑎 cos(𝑛𝑡 + 𝛼) + 𝑐 is in Simple Harmonic Motion

2 A particle moves in SHM about the centre of motion 𝑥 = −1, with amplitude 2 and period

3𝜋

2
. Find a possible equation of motion.

3 A particle moves in SHM about the origin, with a period of
𝜋

3
seconds and amplitude 2

metres. Find

i The maximum and minimum displacement

ii The maximum and minimum velocity

iii The maximum and minimum acceleration

4 A particle moves in SHM about the origin, with displacement given by 𝑥 = 2 sin 𝑡 −
𝜋

4
.

i What is its initial displacement?

ii What is its initial velocity?

iii Once its velocity is first zero, how long does it take to reach the origin for the second

time?

5 A particle moves in SHM centred about the origin. When 𝑥 = 2 the particle is at rest.

When 𝑥 = 1 the velocity of the particle is 3. Given the equation of motion is 𝑥 = 𝑎 sin(𝑛𝑡)

find the values of 𝑎 and 𝑛.

6 The graph below shows the displacement of a particle in SHM. Its equation of motion is

given by 𝑥 = 𝑎 cos(𝑛𝑡 + 𝛼) + 𝑐. Find the values of 𝑎, 𝑛, 𝛼 and 𝑐.
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7 The graph below shows part of the graph of the velocity and acceleration of a particle in

SHM, with the horizontal scale missing.

i Find the value of 𝑛

ii Sketch the displacement of the particle onto the graph.

8 A particle moves in SHM with 𝑥 = 2 cos 𝑡 − 2. Sketch displacement and acceleration on

the same axes.

MEDIUM

9 A particle is undergoing simple harmonic motion on the 𝑥-axis about the origin. It is initially

at its extreme positive position. The amplitude of motion is 18 and the particle returns to

its initial position every 5 seconds.

i Write down an equation for the position of the particle at time 𝑡 seconds.

ii How long does it take the particle to move from a rest position to the point halfway

between the rest position and the equilibrium position?

10 Two particles oscillate horizontally. The displacement of the first is given by 𝑥 = 3 sin4𝑡

and the displacement of the second is given by 𝑥 = 𝑎 sin𝑛𝑡. In one oscillation, the second

particle covers twice the distance of the first particle, but in half the time. What are the

values of 𝑎 and 𝑛?

11 The displacement, in metres, of a particle from a fixed point in time 𝑡, in seconds, 𝑡 ≥ 0, is 

given by 𝑥 = 2 cos 3𝑡. How many oscillations does the particle make per second?

12 The tide can be modelled using simple harmonic motion. At a particular location, the high 

tide is 9 metres and the low tide is 1 metre. At this location the tide completes 2 full 

periods every 25 hours. Let 𝑡 be the time in hours after the first high tide today.

i Explain why the tide can be modelled by the function

ii The first high tide tomorrow is at 2 am. What is the earliest time tomorrow at which the 

tide is increasing at the fastest rate?

15 −

10 −

−5 −

−10 −

20 −

𝑡

5 −

−15 −

−20 −

𝑦 = ሷ𝑥

𝑦

𝑦 = ሶ𝑥

𝑥 = 5 + 4 cos
4𝜋

25
𝑡
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13 A particle is oscillating between 𝐴 and 𝐵, 7 m apart, in Simple Harmonic Motion. The time

for a particle to travel from 𝐵 to 𝐴 and back is 3 seconds. Find the velocity and

acceleration at 𝑀, the midpoint of 𝑂𝐵 where 𝑂 is the centre of 𝐴𝐵.

14 A particle moving in simple harmonic motion oscillates about a fixed point 𝑂 in a straight

line with a period of 10 seconds. The maximum displacement of 𝑃 from 𝑂 is 5 m. Which of

the following statements are true?

If initially the particle is at 𝑂 moving to the right then 27 second later 𝑃 will be:

(I) moving with a decreasing displacement

(II) moving with a decreasing speed

(III) moving with a decreasing acceleration

CHALLENGING

15 At the start of the observation yesterday, the upper deck of a ship, anchored at Sydney 

Wharf was 1.2 metres above the wharf at 6: 13 am, when the tide was at its lowest level. 

At 12: 03 pm at the following high tide the last observation record shows that the upper 

deck was 2.6 metres above the wharf. Considering that the tide moves in simple harmonic 

motion, find:

i At what time during the observation period, was the upper deck exactly 2 metres above 

the wharf?

ii What was the maximum rate at which the tide increased during this period of 

observation?

16 A particle moves in SHM with period 𝑇 about a centre 𝑂. Its displacement at any time 𝑡 is 

given by 𝑥 = 𝐴 sin 𝑛𝑡, where 𝐴 is the amplitude.

i Draw a neat sketch of one period of this displacement-time equation, showing all 

intercepts.

ii Show that 

iii The point 𝑃 lies 𝐷 units on the positive side of 𝑂. Let 𝑉 be the velocity of the particle 

when it first passes through 𝑃. Show that the first time the particle is at 𝑃 after passing

through 𝑂 is 

iv Show that the time between the first two occasions when the particle passes through 𝑃

is                            . You may assume that 

ሶ𝑥 =
2𝜋𝐴

𝑇
cos

2𝜋𝑡

𝑇

𝑡 =
𝑇

2𝜋
tan−1

2𝜋𝐷

𝑉𝑇

𝑇

𝜋
tan−1

𝑉𝑇

2𝜋𝐷
tan−1 𝑥 + tan−1

1

𝑥
=
𝜋

2
for 𝑥 > 0
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SOLUTIONS - EXERCISE 6.3

1 𝑥 = 𝑎 cos 𝑛𝑡 + 𝛼 + 𝑐
ሶ𝑥 = −𝑎𝑛 sin 𝑛𝑡 + 𝛼
ሷ𝑥 = −𝑎𝑛2 cos 𝑛𝑡 + 𝛼
= −𝑛2 𝑎 cos 𝑛𝑡 + 𝛼 + 𝑐 − 𝑐
= −𝑛2 𝑥 − 𝑐

∴ a particle where = 𝑎 cos(𝑛𝑡 + 𝛼) + 𝑐 is in

SHM

2 𝑐 = −1, 𝑎 = 2

𝑇 =
2𝜋

𝑛
=
3𝜋

2
→ 𝑛 =

4

3
One possible equation of motion is

𝑥 = 2 sin
4𝑡

3
− 1.

Alternative solutions would swap the sine for

cosine, and replace
4𝑡

3
with

4𝑡

3
+ 𝛼 for any

angle 𝛼

3

5

2𝜋

𝑛
=
𝜋

3
→ 𝑛 = 6

i 𝑥 = 2sin 6t
∴ −2 ≤ 𝑥 ≤ 2 since −1 ≤ sin 𝜃 ≤ 1

ii ሶ𝑥 = 12 cos 6𝑡
∴ −12 ≤ ሶ𝑥 ≤ 12 since −1 ≤ cos𝜃 ≤ 1

iii ሷ𝑥 = −72 sin 2𝑡
∴ −72 ≤ ሷ𝑥 ≤ 72 since −1 ≤ sin 𝜃 ≤ 1

𝑎 = 2
𝑥 = 2 sin 𝑛𝑡
ሶ𝑥 = 2𝑛 cos(𝑛𝑡)

Let 𝑥 = 1, ሶ𝑥 = 3

∴ 1 = 2 sin 𝑛𝑡 → sin 𝑛𝑡 =
1

2
1

3 = 2𝑛 cos 𝑛𝑡 → cos(𝑛𝑡) =
3

2𝑛
2

sin2(𝑛𝑡) + cos2(𝑛𝑡)
= 1 Pythagorean Identity

∴
1

2

2

+
3

2𝑛

2

= 1

1

4
+

9

4𝑛2
= 1

𝑛2 + 9 = 4𝑛2

3𝑛2 = 9
𝑛2 = 3

𝑛 = 3

4

6

i Let 𝑡 = 0

𝑥0 = 2sin 0 −
𝜋

4

= 2 × −
1

2

= − 2

ii ሶ𝑥 = 2 cos 𝑡 −
𝜋

4

Let 𝑡 = 0

ሶ𝑥0 = 2cos 0 −
𝜋

4

= 2 ×
1

2
= 2

iii To get from one end of the motion to the

other end of the motion then back to the

centre takes three quarters of the period

𝑡 =
3

4
×
2𝜋

1

=
3𝜋

2
sec

The difference between the peak and the

trough is 15 − 5 = 10, so 𝑎 = 5.

The motion has period 2𝜋, so
2𝜋

𝑛
= 2𝜋 →

𝑛 = 1
The curve is the cosine curve shifted

vertically by 10 and right by
𝜋

4
,

so
𝛼

1
= −

𝜋

4
→ 𝛼 = −

𝜋

4

The centre of motion is the average of the

peak and the trough, so 𝑐 =
15+5

2
= 10.

7 i The amplitudes are 5 and 15 respectively,

and the amplitude of ሷ𝑥 is the amplitude of ሶ𝑥

multiplied by 𝑛, so 𝑛 = 3

ii The graph of displacement is the reflection

of the graph of acceleration over the 𝑡-axis,

but with amplitude
1

𝑛
that of velocity, so

5

3
.

15 −

10 −

−5 −

−10 −

20 −

𝑡

5 −

−15 −

−20 −

𝑦 = 𝑥

𝑦 = ሷ𝑥

𝑦

𝑦 = ሶ𝑥

5

3
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−2 −

−4 −

𝑡

2 −

𝑦 = 𝑥

𝑦 = ሷ𝑥

𝑦

2𝜋

8 Displacement is a cosine curve with an 

amplitude of 2, centre of motion -2 and 

𝑇 = 2𝜋 since 𝑛 = 1. So it is a cosine curve 

stretched vertically by a factor of 2 then 

moved down 2 units. 

Acceleration is given by ሷ𝑥 = − 𝑥 + 2 =

− 𝑥 − 2 since 𝑛 = 1 and 𝑐 = −2, so it is the

displacement curve reflected over the 𝑥-axis

then moved down 2 units. Notice that it is

centred about 0, not 3, as acceleration is

proportional to the distance from the centre

of motion.

9

10

11

i

𝑛 =
2𝜋

𝑇
=
2𝜋

5
𝑎𝑡 𝑡 = 0 we want cos 𝑛𝑡 + 𝛼 = 1

or sin 𝑛𝑡 + 𝛼 = 1

𝑥 = 18 cos
2𝜋

5
𝑡

or 18 sin
2𝜋

5
𝑡 +

𝜋

2

ii

The particle is at rest at the extreme 

position, so at time 𝑡 = 0.

9 = 18 cos
2𝜋

5
𝑡

cos
2𝜋

5
𝑡 =

1

2
2𝜋

5
𝑡 =

𝜋

3

𝑡 =
5

6
sec

Twice the distance means that the amplitude 

is doubled. Half the time means that the 

angle velocity (𝑛) is doubled.

∴ 𝑎2 = 6, 𝑛2 = 8

𝑓 =
1

𝑇
=

𝑛

2𝜋
=

3

2𝜋

12 i

𝑐 =
9 + 1

2
= 5

𝑎 =
1

2
9 − 1 = 4

The period of motion is 
2𝜋

𝑛
=
25

2
→ 𝑛 =

4𝜋

25

∴ 𝑥 = 5 + 4 cos
4𝜋

25
𝑡 if 𝑡 = 0 at high tide

ii

The tide increases fastest as it rises past its 

centre value, so 
3

4
of a period after 2 am:

2 am +
3

4
× 12

1

2
hours = 11: 22: 30 am

13 𝑎 =
7

2
,
2𝜋

𝑛
= 3 → 𝑛 =

2𝜋

3
, at 𝑀 𝑥 =

7

4
.

Let 𝑥 =
7

2
sin

2𝜋𝑡

3

ሶ𝑥 =
7𝜋

3
cos

2𝜋𝑡

3

At 𝑀:

7

2
sin

2𝜋𝑡

3
=
7

4

sin
2𝜋𝑡

3
=
1

2
2𝜋𝑡

3
=
𝜋

6

𝑡 =
1

4

ሶ𝑥𝑀 =
7𝜋

3
cos

2𝜋
1
4

3
=
7𝜋

3
cos

𝜋

6
=
7𝜋

3
×

3

2

=
7 3𝜋

6
ms−1

ሷ𝑥𝑀 = −𝑛2𝑥 = −
2𝜋

3

2

×
7

4
= −

7𝜋2

9
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14

15

The period is 10 seconds, so after 27

seconds 𝑃 will have completed to full cycles

and be almost halfway through the third.

Since it started at 𝑂 moving right it will be to

the right of 𝑂 moving towards 𝑂 when 𝑡 =

27.

𝑃 is moving left so displacement is

decreasing, ∴ (I) is true

𝑃 is moving left at an increasing speed, so

velocity is becoming move negative, ∴ (II) is

true

𝑃 is getting closer to the origin, so the

magnitude of the acceleration is decreasing.

Since acceleration is negative it is

increasing, ∴ (III) is false.

𝐢 𝑎 =
2.6 − 1.2

2
= 0.7

𝑇 = 2 × 12: 03 − 6: 13 = 700 min

𝑛 =
2𝜋

𝑇
=

𝜋

350
; c =

2.6 + 1.2

2
= 1.9

∴ 𝑥 = 1.9 − 0.7 cos
𝜋

350
𝑡

where 𝑡 is measured in minutes from 

6: 13am.

∴ 2 = 1.9 − 0.7 cos
𝜋

350
𝑡

cos
𝜋

350
𝑡 = −

1

7
𝜋

350
𝑡 = cos−1 −

1

7

𝑡 =
350

𝜋
cos−1 −

1

7

= 190.97
= 3 hours 11 minutes

The water is 2.0 m high at 9: 24 am

ii Maximum rate of increase when it passes 

the equilibrium point, which is  when 𝑡 = 175

𝑥 = 1.9 − 0.7 cos
𝜋

350
𝑡

𝑑𝑥

𝑑𝑡
=
0.7𝜋

350
sin

𝜋

350
𝑡

when 𝑡 = 175
𝑑𝑥

𝑑𝑡
=
0.7𝜋

350
sin

𝜋

350
× 175

= 0.00628 m/min

= 37.7 cm/hour

16 i

ii

𝑇 =
2𝜋

𝑛
→ 𝑛 =

2𝜋

𝑇
𝑥 = 𝐴 sin 𝑛𝑡

= 𝐴 sin
2𝜋

𝑇
𝑡

ሶ𝑥 =
2𝜋𝐴

𝑇
cos

2𝜋𝑡

𝑇

iii

Let 𝑥 = 𝐷

𝐷 = 𝐴 sin
2𝜋𝑡

𝑇

𝐷

𝐴
= sin

2𝜋𝑡

𝑇
(1)

Let ሶ𝑥 = 𝑉

𝑉 =
2𝜋𝐴

𝑇
cos

2𝜋𝑡

𝑇

𝑉𝑇

2𝜋𝐴
= cos

2𝜋𝑡

𝑇
(2)

1 ÷ 2 :
2𝜋𝐷

𝑉𝑇
= tan

2𝜋𝑡

𝑇

2𝜋𝑡

𝑇
= tan−1

2𝜋𝐷

𝑉𝑇

𝑡 =
𝑇

2𝜋
tan−1

2𝜋𝐷

𝑉𝑇

This is the first time that the particle passes

through 𝑃 since all variables are positive.

iv

The particle will pass through 𝑃 again when

𝑡2 and
𝑇

2𝜋
tan−1

2𝜋𝐷

𝑉𝑇
add to half the period.

∴ 𝑡2 =
𝑇

2
−

𝑇

2𝜋
tan−1

2𝜋𝐷

𝑉𝑇

The difference between the times is:

𝑇

2
−

𝑇

2𝜋
tan−1

2𝜋𝐷

𝑉𝑇
−

𝑇

2𝜋
tan−1

2𝜋𝐷

𝑉𝑇

=
𝑇

2
−
𝑇

𝜋
tan−1

2𝜋𝐷

𝑉𝑇

=
𝑇

2
−
𝑇

𝜋

𝜋

2
− tan−1

𝑉𝑇

2𝜋𝐷

=
𝑇

2
−
𝑇

2
+
𝑇

𝜋
tan−1

𝑉𝑇

2𝜋𝐷

=
𝑇

𝜋
tan−1

𝑉𝑇

2𝜋𝐷

𝐴 −

𝑡

−𝐴 −

𝑥 = 𝐴 sin𝑛𝑡

𝑥

2𝜋

𝑛

𝜋

𝑛

𝜋

2𝑛
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6.4 HARDER SIMPLE HARMONIC MOTION

ALTERNATIVE EQUATIONS OF MOTION

In the last lesson we used two possible equations of motion for SHM, 𝑥 = 𝑎 sin(𝑛𝑡 + 𝛼) + 𝑐 and

𝑥 = 𝑎 cos(𝑛𝑡 + 𝛼) + 𝑐, but there are other equations that also describe SHM. Remember that for

a particle to be in SHM it must satisfy ሷ𝑥 = −𝑛2(𝑥 − 𝑐).

In Extension 1 we have looked at harmonic addition, also known as the auxiliary angle method,

where we add a sine function and a cosine function to create a new sine or cosine function. This

means that functions of the form 𝑥 = 𝐴 sin 𝑛𝑡 + 𝛼 + 𝐵 cos 𝑛𝑡 + 𝛼 + 𝑐 are in SHM.

Example 1

A particle moves with equation of motion 𝑥 = sin2𝑡 + cos 2𝑡 + 3 metres. Prove that the particle is

in SHM, and find the centre and amplitude of its motion.

Solution

Let sin2𝑡 + cos 2𝑡 = 𝑅 sin(2𝑡 + 𝛼)

∴ 𝑅 = 12 + 12 = 2

𝛼 = tan−1
1

1
=
𝜋

4

∴ 𝑥 = 2 sin 2𝑡 +
𝜋

4
+ 3

This is in the form 𝑥 = 𝑎 sin(𝑛𝑡 + 𝛼) + 𝑐,

so the particle is in SHM. The centre of

motion is 3 and the amplitude is 2.

Alternatively

𝑥 = sin2𝑡 + cos 2𝑡 + 3

ሶ𝑥 = 2 cos 2𝑡 − 2 sin 2𝑡

ሷ𝑥 = −4 sin2𝑡 − 4 cos 2𝑡

= −4 sin2𝑡 + cos 2𝑡 + 3 − 3

= −22 𝑥 − 3

∴ the particle is in SHM with centre 3.

Let sin2𝑡 + cos 2𝑡 = 𝑅 sin(2𝑡 + 𝛼)

∴ 𝑅 = 12 + 12 = 2

∴ the amplitude of the motion is 2.

Other sources of equations of motion for SHM are based on the Pythagorean Identities. For

instance 𝑥 = 4 cos2 𝑡 + 1 is in SHM since we can show that

4 cos2 𝑡 + 1 = 4 ×
1

2
1 + cos 2𝑡 + 1 = 2 cos 2𝑡 + 3, so it has 𝑎 = 2, 𝑛 = 2 and 𝑐 = 3
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Proof 2

Prove for a particle in SHM about a point 𝑐 with amplitude 𝑎 that 𝑣2 = 𝑛2 𝑎2 − 𝑥 − 𝑐 2 .

Solution

Let 𝑥 = 𝑎 sin 𝑛𝑡 + 𝛼 + 𝑐

∴ ሶ𝑥 = 𝑎𝑛 cos 𝑛𝑡 + 𝛼

∴ 𝑣2 = 𝑎2𝑛2 cos2 𝑛𝑡 + 𝛼

= 𝑎2𝑛2 1 − sin2 𝑛𝑡 + 𝛼

= 𝑛2 𝑎2 − 𝑎2 sin2 𝑛𝑡 + 𝛼

= 𝑛2 𝑎2 − 𝑎 sin 𝑛𝑡 + 𝛼 + 𝑐 − 𝑐 2

= 𝑛2 𝑎2 − 𝑥 − 𝑐 2

Alternatively

Let ሷ𝑥 = −𝑛2(𝑥 − 𝑐)

∴
𝑑

𝑑𝑥

1

2
𝑣2 = −𝑛2(𝑥 − 𝑐)

𝑑

𝑑𝑥
𝑣2 = −2𝑛2(𝑥 − 𝑐)

𝑣2 = −𝑛2 𝑥2 − 2𝑐𝑥 + 𝐶

Let 𝑥 = 𝑐 − 𝑎, 𝑣 = 0

0 = −𝑛2 𝑐 − 𝑎 2 − 2𝑐(𝑐 − 𝑎) + 𝐶

𝐶 = 𝑛2 𝑐 − 𝑎 2 − 2𝑐(𝑐 − 𝑎)

∴ 𝑣2 = −𝑛2 𝑥2 − 2𝑐𝑥 + 𝑛2 𝑐 − 𝑎 2 − 2𝑐(𝑐 − 𝑎)

= −𝑛2 𝑥2 − 2𝑐𝑥 − 𝑐 − 𝑎 2 − 2𝑐 𝑐 − 𝑎

= −𝑛2 𝑥2 − 2𝑐𝑥 − 𝑐2 + 2𝑎𝑐 − 𝑎2 + 2𝑐2 − 2𝑎𝑐

= −𝑛2 𝑥2 − 2𝑐𝑥 + 𝑐2 − 𝑎2

= 𝑛2 𝑎2 − 𝑥2 − 2𝑐𝑥 + 𝑐2

= 𝑛2 𝑎2 − 𝑥 − 𝑐 2

VELOCITY AS A FUNCTION OF DISPLACEMENT

There is a common formula linking velocity and displacement, 𝑣2 = 𝑛2 𝑎2 − 𝑥 − 𝑐 2 , which is

now no longer in the syllabus as such. Instead it is mentioned as something that you must derive

given an expression for acceleration as a function of 𝑥, plus initial conditions. Let’s prove the

formula first in a couple of ways, then use it as intended in some examples.
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Example 3

A particle is moving in SHM about the point 𝑥 = 2 with period
𝜋

2
, and initially the particle is at rest

at the origin.

i Derive an equation for 𝑣2 as a function of displacement, 𝑥.

ii Find all values of 𝑥 for which the particle is at rest.

iii Find the maximum velocity of the particle

Solution

i
2𝜋

𝑛
=

𝜋

2
→ 𝑛 = 4

∴ ሷ𝑥 = −16 𝑥 − 2

𝑑

𝑑𝑥

1

2
𝑣2 = −16 𝑥 − 2

1

2
𝑣2 = −16

𝑥2

2
− 2𝑥 + 𝑐

𝑣2 = −16𝑥2 + 64𝑥 + 𝑐

Let 𝑣 = 0, 𝑥 = 0

02 = −16 0 + 16 0 + 𝑐

𝑐 = 0

𝑣2 = −16𝑥2 + 64𝑥

= 16𝑥 4 − 𝑥

ii Let 𝑣 = 0

∴ 02 = 16𝑥 4 − 𝑥

𝑥 = 0,4

iii The maximum velocity occurs at the centre 

of motion, 𝑥 = 2, when the particle is moving 

to the right.

𝑣max
2 = 16 2 4 − 2

𝑣max = 64

= 8

Example 4

A particle is moving in SHM with 𝑣2 = 24 − 8𝑥 − 2𝑥2.

i Find an expression for the acceleration of the particle in terms of 𝑥.

ii Find the centre of motion and period

Solution

i

ሷ𝑥 =
𝑑

𝑑𝑥

1

2
𝑣2

=
𝑑

𝑑𝑥
12 − 4𝑥 − 𝑥2

= −4 − 2𝑥

= −2 𝑥 + 2

= − 2
2

𝑥 − −2

ii

𝑐 = −2, 𝑛 = 2

𝑇 =
2𝜋

2
= 2𝜋
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Example 5

A particle is moving with equation of motion 𝑣2 + 9𝑥2 = 𝑘, where 𝑘 is a positive constant.

Show that the particle is in SHM with period
2𝜋

3
.

Solution

𝑣2 = 𝑘 − 9𝑥2

ሷ𝑥 =
𝑑

𝑑𝑥

1

2
𝑣2

=
1

2
×

𝑑

𝑑𝑥
𝑘 − 9𝑥2

=
1

2
−18𝑥

= −32𝑥

∴ the particle is in SHM with 𝑛 = 3, so the period is
2𝜋

3
.

Example 6

A particle is moving in SHM with 𝑣2 = 16(5 + 4𝑥 − 𝑥2) . Find a possible equation for

displacement as a function of time.

Solution

𝑣2 = 16 5 + 4𝑥 − 𝑥2

= 42 − 𝑥2 − 4𝑥 − 5

= 42 − 𝑥2 − 4𝑥 + 4 − 9

= 42 32 − 𝑥 − 2 2

Given 𝑣2 = 𝑛2 𝑎2 − 𝑥 − 𝑐 2 ∴ 𝑛 = 4, 𝑎 = 3 and 𝑐 = 2

A possible equation of motion is 𝑥 = 3 sin 4𝑡 + 2.
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EXERCISE 6.4

BASIC

1 A particle is moving in simple harmonic motion with displacement 𝑥. Its velocity 𝑣 is given 

by 𝑣2 = 16 9 − 𝑥2 . What is the amplitude and period of the motion?

2 A particle is moving in simple harmonic motion. The displacement of the particle is 𝑥 and

its velocity, 𝑣, is given by the equation 𝑣2 = 𝑛2 2𝑘𝑥 − 𝑥2 , where 𝑛 and 𝑘 are constants.

The particle is initially at 𝑥 = 𝑘. Find a possible equation for the displacement of the

particle as a function of time.

3 A particle moves with equation of motion 𝑥 = 3 cos 3𝑡 − sin3𝑡 − 2 metres. Prove that the 

particle is in SHM, and find the centre and amplitude of its motion.

4 A particle is moving in SHM about the point 𝑥 = 1 with period
𝜋

4
, and initially the particle is

at rest at the origin.

i Derive an equation for 𝑣2 as a function of displacement, 𝑥.

ii Find all values of 𝑥 for which the particle is at rest.

iii Find the maximum velocity of the particle

5 A particle is moving in SHM with 𝑣2 = 8 − 4𝑥 − 4𝑥2.

i Find an expression for the acceleration of the particle in terms of 𝑥.

ii Find the centre of motion and period

6 A particle is moving with equation of motion 𝑣2 + 𝑥2 = 4.

Show that the particle is in SHM with period 2𝜋.

7 A particle is moving in SHM with 𝑣2 = 25 3 − 2𝑥 − 𝑥2 . Find a possible equation for

displacement as a function of time.

8 A particle is moving in SHM with 𝑣2 = −4(𝑥 − 5)(𝑥 + 1) . For what value of 𝑥 is

acceleration a maximum.

9 The displacement 𝑥 of a particle at time 𝑡 is given by 𝑥 = 5 sin4𝑡 + 12 cos 4𝑡. What is the

maximum velocity of the particle?

MEDIUM

10 Prove for a particle in SHM about a point 𝑐 with amplitude 𝑎 that 𝑣2 = 𝑛2 𝑎2 − 𝑥 − 𝑐 2 .

11 A particle is moving in a straight line according to the equation 𝑥 = 5 + 6 cos 2𝑡 + 8 sin2𝑡,

where 𝑥 is the displacement in metres and 𝑡 is the time in seconds.

i Prove that the particle is moving in simple harmonic motion by showing that 𝑥 satisfies

an equation of the form ሷ𝑥 = −𝑛2(𝑥 − 𝑐).

ii When is the displacement of the particle zero for the first time?
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12 A particle is moving along the 𝑥-axis in simple harmonic 

motion. The displacement of the particle is 𝑥 metres and 

its velocity is 𝑣 ms−1. The parabola at right shows 𝑣2 as 

a function of 𝑥.

i For what value(s) of 𝑥 is the particle at rest? 

ii What is the maximum speed of the particle?

iii The velocity of the particle is given by the 

equation 𝑣2 = 𝑛2(𝑎2 − 𝑥 − 𝑐 2), where 

𝑎, 𝑐 and 𝑛 are positive constants. 

What are the values of 𝑎, 𝑐 and 𝑛?

13 i Verify that a particle with displacement given by 𝑥 = 𝐴 cos 𝑛𝑡 + 𝐵 sin𝑛𝑡, where 𝐴 and 𝐵

are constants, is in simple harmonic motion.

ii The particle is initially at the origin and moving with velocity 2𝑛.

Find the values of 𝐴 and 𝐵.

iii When is the particle first at its greatest distance from the origin?

iv What is the total distance the particle travels between 𝑡 = 0 and 𝑡 =
2𝜋

𝑛
?

14 The equation of motion for a particle moving in simple harmonic motion is given by 

, where 𝑛 is a positive constant, 𝑥 is the displacement of the particle and 𝑡 is 

time.

i Show that the square of the velocity of the particle is given by 𝑣2 = 𝑛2 𝑎2 − 𝑥2 , where 

𝑣 =
𝑑𝑣

𝑑𝑡
and 𝑎 is the amplitude of the motion.

ii Find the maximum speed of the particle.

iii Find the maximum acceleration of the particle.

iv The particle is initially at the origin. Write a formula for 𝑥 as a function of 𝑡, and hence 

find the first time that the particle’s speed is half its maximum speed. 

15 The velocity, 𝑣 ms−1, of a particle moving in simple harmonic motion along the 𝑥-axis is

given by 𝑣2 = 8 − 2𝑥 − 𝑥2, where 𝑥 is in metres.

i Find the centre of the motion, and the two extreme points of motion

ii Find the maximum speed

iii Find an expression for the acceleration of the particle in terms of 𝑥.

16 A particle 𝑃 is moving in simple harmonic motion. At time 𝑡 seconds, its acceleration is

given by ሷ𝑥 = −9 𝑥 − 2 , where 𝑥 metres is the displacement from the origin 𝑂. Initially the

particle is at 𝑂 and its velocity is 8 ms−1.

i Find the centre and period of motion

ii Show that 𝑣2 = 64 + 36𝑥 − 9𝑥2.

iii Find the maximum speed of the particle.

𝑣2

11 −

3 7 𝑥𝑂

𝑑2𝑥

𝑑𝑡2
= −𝑛2𝑥
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CHALLENGING

17 A particle is moving in a straight line and performing simple harmonic motion. At time 𝑡

seconds it has displacement 𝑥 metres from a fixed point 𝑂 on the line, given by

𝑥 = 2 cos 2𝑡 −
𝜋

4
, velocity 𝑣 ms−1 and acceleration ሷ𝑥 ms−2.

i Show that 𝑣2 − 𝑥 ሷ𝑥 = 16

ii Sketch the graph of 𝑥 as a function of 𝑡 for 0 ≤ 𝑡 ≤ 𝜋 clearly showing the coordinates of

the endpoints.

iii Show that the particle first returns to its starting point after one quarter of its period.

iv Find the time taken by the particle to travel the first 100 metres of its motion.

18 A particle moves in such a way that its displacement, 𝑥 cm, from the origin at any time is 

given by the function 𝑥 = 2 + cos2 𝑡, where 𝑡 is in seconds.

i Show that acceleration is given by ሷ𝑥 = 10 − 4𝑥

ii Prove 𝑣2 = −4𝑥2 + 20𝑥 − 24
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SOLUTIONS - EXERCISE 6.4

1 𝑣2 = 42 32 − 𝑥2

∴ 𝑛 = 4, 𝑎 = 3, 𝑇 =
2𝜋

𝑛
=
2𝜋

4
=
𝜋

2

2 𝑣2 = 𝑛2 − −2𝑘𝑥 + 𝑥2

= 𝑛2 𝑘2 − 𝑘2 − 2𝑘𝑥 + 𝑥2

= 𝑛2 𝑘2 − 𝑘 − 𝑥 2

∴ 𝑛2(𝑘2 − 𝑥 − 𝑘 2) ≡ 𝑛2 𝑎2 − 𝑥 − 𝑏 2

The amplitude is 𝑘 and the centre of motion 

is 𝑘. Possible equations of motion include 

𝑥 = 𝑘 sin 𝑛𝑡 + 𝑘 and 𝑥 = 𝑘 cos 𝑛𝑡 +
𝜋

2
+ 𝑘

3 Let 3 cos3𝑡 − sin 3𝑡 = 𝑅 cos(3𝑡 + 𝛼)

∴ 𝑅 = ( 3)2+12 = 2

𝛼 = tan−1
1

3
=
𝜋

6

∴ 𝑥 = 2 cos 3𝑡 +
𝜋

6
− 2

This is in the form 𝑥 = 𝑎 cos(𝑛𝑡 + 𝛼) + 𝑐,

so the particle is in SHM. The centre of

motion is -2 and the amplitude is 2.

Alternatively

𝑥 = 3 cos3𝑡 − sin 3𝑡 − 2

ሶ𝑥 = −3 3 sin 3𝑡 − 3 cos 3𝑡

ሷ𝑥 = −9 3 cos3𝑡 + 9 sin 3𝑡

= −9 3 cos 3𝑡 − sin 3𝑡 − 2 + 2

= −32 𝑥 + 2
∴ the particle is in SHM with centre -2.

Let 3 cos3𝑡 − sin 3𝑡 = 𝑅 cos(3𝑡 + 𝛼)

∴ 𝑅 = ( 3)2+12 = 2

∴ the amplitude of the motion is 2.

4 i
2𝜋

𝑛
=

𝜋

4
→ 𝑛 = 8

∴ ሷ𝑥 = −64 𝑥 − 1
𝑑

𝑑𝑥

1

2
𝑣2 = −64 𝑥 − 1

1

2
𝑣2 = −64

𝑥2

2
− 𝑥 + 𝑐

𝑣2 = −64𝑥2 + 128𝑥 + 𝑐
Let 𝑣 = 0, 𝑥 = 0

02 = −64 0 + 128 0 + 𝑐
𝑐 = 0

𝑣2 = −64𝑥2 + 128𝑥
= 64𝑥 2 − 𝑥

ii Let 𝑣 = 0
∴ 02 = 64𝑥 2 − 𝑥

𝑥 = 0,2

iii The maximum velocity occurs at the 

centre of motion, 𝑥 = 1, when the particle is 

moving to the right.

𝑣max
2 = 64 1 2 − 1

𝑣max = 64
= 8

5 i

ሷ𝑥 =
𝑑

𝑑𝑥

1

2
𝑣2

=
𝑑

𝑑𝑥
4 − 2𝑥 − 2𝑥2

= −2 − 4𝑥

= −4 𝑥 +
1

2

= −22 𝑥 − −
1

2

ii

𝑐 = −
1

2
, 𝑛 = 2

𝑇 =
2𝜋

2
= 𝜋

6 𝑣2 = 4 − 𝑥2

ሷ𝑥 =
𝑑

𝑑𝑥

1

2
𝑣2

=
1

2
×

𝑑

𝑑𝑥
4 − 𝑥2

=
1

2
−2𝑥

= −𝑥
∴ the particle is in SHM with 𝑛 = 1, so the

period is 2𝜋.
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7 𝑣2 = 25 3 − 2𝑥 − 𝑥2

= 52 − 𝑥2 + 2𝑥 − 3

= 52 − 𝑥2 + 2𝑥 + 1 − 4

= 52 22 − 𝑥 + 1 2

∴ 𝑛 = 5, 𝑎 = 2 and 𝑐 = −1
A possible equation of motion is 

𝑥 = 2 sin 5𝑡 − 1.

8

9

The extremes of the motion are at 𝑥 =
5, 𝑥 = −1 , with maximum (positive)

acceleration to the left, so 𝑥 = −1

𝑥 = 5 sin 4𝑡 + 12 cos4𝑡 = 𝑟 sin 4𝑡 + 𝛼

𝑟 = 52 + 122 = 13
𝑥 = 13 sin 4𝑡 + 𝛼
ሶ𝑥 = 52 cos 4𝑡 + 𝛼

since the maximum value of cosθ is 1, the

maximum value of ሶ𝑥 is 52

10

Let 𝑥 = 𝑎 sin 𝑛𝑡 + 𝛼 + 𝑐
∴ ሶ𝑥 = 𝑎𝑛 cos 𝑛𝑡 + 𝛼
∴ 𝑣2 = 𝑎2𝑛2 cos2 𝑛𝑡 + 𝛼

= 𝑎2𝑛2 1 − sin2 𝑛𝑡 + 𝛼

= 𝑛2 𝑎2 − 𝑎2 sin2 𝑛𝑡 + 𝛼
= 𝑛2 𝑎2 − 𝑎 sin 𝑛𝑡 + 𝛼 + 𝑐 − 𝑐 2

= 𝑛2 𝑎2 − 𝑥 − 𝑐 2

Alternatively

Let ሷ𝑥 = −𝑛2(𝑥 − 𝑐)

∴
𝑑

𝑑𝑥

1

2
𝑣2 = −𝑛2(𝑥 − 𝑐)

𝑑

𝑑𝑥
𝑣2 = −2𝑛2(𝑥 − 𝑐)

𝑣2

0

𝑣

= −𝑛2 𝑥2 − 2𝑐𝑥
𝑐−𝑎

𝑥

𝑣2 = −𝑛2 ቀ 𝑥2 − 2𝑐𝑥 − ൫ 𝑐 − 𝑎 2 − 2𝑐(𝑐

= −𝑛2(𝑥2 − 2𝑐𝑥 − 𝑐2 + 2𝑎𝑐 − 𝑎2 + 2𝑐2

= −𝑛2 𝑥2 − 2𝑐𝑥 + 𝑐2 − 𝑎2

= 𝑛2 𝑎2 − 𝑥2 − 2𝑐𝑥 + 𝑐2

= 𝑛2 𝑎2 − 𝑥 − 𝑐 2

11 i

𝑥 = 5 + 6cos 2𝑡 + 8 sin 2𝑡
ሶ𝑥 = −12 sin 2𝑡 + 16 cos2𝑡
ሷ𝑥 = −24 cos 2𝑡 − 32 sin 2𝑡
= −4 6 cos 2𝑡 + 8 sin 2𝑡
= −22 𝑥 − 5

ii

5 + 6 cos 2𝑡 + 8 sin 2𝑡 = 0
6 cos2𝑡 + 8 sin 2𝑡 = −5

𝑟 = 62 + 82 = 10

𝛼 = tan−1
8

6
= 0.9272. . .

∴ 10 cos(2𝑡 − 0.9272) = −5

cos(2𝑡 − 0.9272) = −
1

2

2𝑡 − 0.9272 =
2𝜋

3

𝑡 =
1

2

2𝜋

3
+ 0.9272

= 1.510. . .
𝑡 = 1.5 𝑠 (1 dp)

12 i

𝑥 = 3 or 7

ii

𝑣 = 11

iii

𝑐 = 5 centre of oscillation
𝑎 = 2 the amplitude of the motion

𝑣2 = 𝑛2 𝑎2 − 𝑥 − 𝑐 2

maximum velocity when 𝑥 = 5

11 = 𝑛2 22 − 5 − 5 2

11 = 4𝑛2

𝑛 =
11

2
(𝑛 > 0)

13 i

𝑥 = 𝐴 cos 𝑛𝑡 + 𝐵 sin 𝑛𝑡
ሶ𝑥 = −𝐴𝑛 sin 𝑛𝑡 + 𝐵𝑛 cos 𝑛𝑡
ሷ𝑥 = −𝐴𝑛2 cos𝑛𝑡 − 𝐵𝑛2 sin 𝑛𝑡
= −𝑛2 𝐴 cos𝑛𝑡 + 𝐵 sin 𝑛𝑡
= −𝑛2𝑥

ii

0 = 𝐴 cos0 + 𝐵 sin 0
0 = 𝐴 + 0
𝐴 = 0
2𝑛 = −𝐴𝑛 sin 0 + 𝐵𝑛 cos0
2𝑛 = 0 + 𝐵𝑛
𝐵 = 2

iii

Let ሶ𝑥 = 0
0 cos𝑛𝑡 + 2𝑛 cos 𝑛𝑡 = 0
cos 𝑛𝑡 = 0

𝑛𝑡 =
𝜋

2

𝑡 =
𝜋

2𝑛

iv

𝑡 = 0 𝑡𝑜 𝑡 =
2𝜋

𝑛
is one full cycle

= 4 × amplitude = 4 × 2 = 8
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14 i

𝑑

𝑑𝑥

1

2
𝑣2 = −𝑛2𝑥

1

2
𝑣2 = −

𝑛2

2
𝑥2 + 𝑐

Let 𝑥 = 𝑎 𝑣 = 0

0 = −
𝑛2

2
𝑎2 + 𝑐

𝑐 =
𝑛2

2
𝑎2

1

2
𝑣2 =

𝑛2

2
𝑎2 −

𝑛2

2
𝑥2

𝑣2 = 𝑛2 𝑎2 − 𝑥2

ii 

Let 𝑥 = 0

𝑣 = 𝑛2 𝑎2 − 0 = 𝑎𝑛 𝑚𝑠−1

iii

Let 𝑥 = 𝑎
𝑑2𝑥

𝑑𝑡2
= −𝑛2𝑎

∴ maximum acceleration is 𝑛2𝑎

iv

𝑥 = 𝑎 sin(𝑛𝑡)
ሶ𝑥 = 𝑎𝑛 cos 𝑛𝑡

𝑙𝑒𝑡 ሶ𝑥 =
𝑎𝑛

2
𝑎𝑛

2
= 𝑎𝑛 cos 𝑛𝑡 → cos 𝑛𝑡 =

1

2

𝑛𝑡 =
𝜋

3
→ 𝑡 =

𝜋

3𝑛

15

16

i

𝑣2 = 8 − 2𝑥 − 𝑥2

= 9 − 1 + 𝑥 2

= 12 32 − 𝑥 + 1 2

𝑛 = 1, 𝑎 = 3, 𝑐 = −1
The centre of motion is 𝑥 = −1 and the

extremes of motion are 𝑥 = −4 and 𝑥 = 2.

ii

Maximum speed at the centre

𝑣max
2 = 12 32 − 0 = 9

∴ speedmax = 3 ms−1

iii

ሷ𝑥 = −𝑛2(𝑥 − 𝑐) = −(𝑥 + 1)

i

ሷ𝑥 = −9 𝑥 − 2
= −32 𝑥 − 2

∴ 𝑛 = 3, 𝑐 = 2

𝑇 =
2𝜋

3

ii

𝑑

𝑑𝑥

1

2
𝑣2 = −9 𝑥 − 2

1

2
𝑣2 = −9

𝑥2

2
− 2𝑥 + 𝑐

𝑣2 = −9𝑥2 + 36𝑥 + 𝑐
Let 𝑥 = 0, 𝑣 = 8

82 = −9 0 + 36 0 + 𝑐
𝑐 = 64

𝑣2 = 64 + 36𝑥 − 9𝑥2

iii

Let 𝑥 = 2

𝑣max
2 = 64 + 36 2 − 9 2 2

= 100
speedmax = 10 ms−1
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17 i

𝑥 = 2 cos 2𝑡 −
𝜋

4

𝑣 = −4 sin 2𝑡 −
𝜋

4

ሷ𝑥 = −8 cos 2𝑡 −
𝜋

4

𝑣2 − 𝑥 ሷ𝑥 = −4 sin 2𝑡 −
𝜋

4

2

− 2 cos 2𝑡 −
𝜋

4
−8 cos 2𝑡 −

𝜋

4

= 16 sin2 2𝑡 −
𝜋

4
+ 16 cos2 2𝑡 −

𝜋

4

= 16 sin2 2𝑡 −
𝜋

4
+ cos2 2𝑡 −

𝜋

4
= 16

ii

iii

2 = 2 cos 2𝑡 −
𝜋

4

cos 2𝑡 −
𝜋

4
=

1

2

2𝑡 −
𝜋

4
= −

𝜋

4
,
𝜋

4
,
7𝜋

4
, . .

2𝑡 = 0,
𝜋

2
, 2𝜋, . . .

𝑡 = 0,
𝜋

4
, 𝜋, . .

The particle first returns to its starting point after
𝜋

4
seconds, which is one quarter of its period (from

the graph).

iv

The amplitude is 2, so each cycle the particle travels 2 × 4 = 8 metres.
100

8
= 12.5, so it will take 12.5 cycles to travel 100 metres

𝑡 = 12.5 × 𝑇 =
25𝜋

2

18 i

𝑥 = 2 + cos2 𝑡
ሶ𝑥 = −2 cos 𝑡 sin 𝑡

ሷ𝑥 = −2 cos 𝑡 × cos 𝑡 + sin 𝑡 × − sin 𝑡

= −2 cos2 𝑡 − sin2 𝑡
= −2 2 cos2 𝑡 − 1
= −2 2 2 + cos2 𝑡 − 2 − 1
= −4𝑥 + 10
= 10 − 4𝑥

ii

𝑥 = 2 + cos2 𝑡

= 2 +
1

2
1 + cos 2𝑡

=
1

2
cos 2𝑡 +

5

2

𝑎 =
1

2
, 𝑛 = 2, 𝑐 =

5

2

𝑣2 = 2 2
1

2

2

− 𝑥 −
5

2

2

= 1 − 2𝑥 − 5 2

= 1 − 4𝑥2 + 20𝑥 − 25
= −4𝑥2 + 20𝑥 − 24

2

2

𝜋

7𝜋

8

3𝜋

8

5𝜋

8
,−2

−2
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6.5 RESISTED MOTION - HORIZONTAL  

RESISTED MOTION - HORIZONTAL

In real life situations we also have to consider resisted motion – this is where the fluid (gas or

liquid) the particle travels through, or the surface it travels over, provides a resistance to the

motion. Resistance is a force, not an acceleration. Since the resistance increases as the

velocity increases, acceleration is a function of velocity.

Resisted motion is covered in three lessons in this chapter:

• In this lesson we will consider motion along a horizontal line (where gravity is irrelevant)

• Next lesson we will consider motion up or down (where resistance acts with or against

gravity)

• In the last lesson we will look at projectile motion in a resisted medium:

• where motion is up then down

• where motion starts at an angle to the horizontal

Resisted Motion questions were asked almost every year in the HSC in the old syllabus and we

can expect this to continue, possible becoming more common as we also consider projectile

motion with resistance.

We use either 𝑣
𝑑𝑣

𝑑𝑥
or

𝑑𝑣

𝑑𝑡
for motion with resistance, since acceleration is almost always a

function of velocity. If the result you are trying to prove involves time then use
𝑑𝑣

𝑑𝑡
, otherwise use

𝑣
𝑑𝑣

𝑑𝑥
.

if result involves 

time and velocity

if result involves 

displacement and velocity*

sub 𝑎 =
𝑑𝑣

𝑑𝑡
sub 𝑎 =

𝑑𝑣

𝑑𝑡
sub 𝑎 = 𝑣

𝑑𝑣

𝑑𝑥

find velocity as a 

function of time first  

then integrate for 

displacement as a 

function of time

if result involves 

time and displacement

* We will see an example shortly 

where acceleration is constant, 

so we can use 𝑣
𝑑𝑣

𝑑𝑥
or 

𝑑

𝑑𝑥

1

2
𝑣2 .
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RESISTANCE AND HOW IT IS MODELLED

In real life we see that motion through a fluid (gas or a liquid), is resisted by a force that is:

• partly proportional to velocity (linear drag) 

- caused by friction from the laminar flow along the surface

• partly proportional to the square of velocity (quadratic drag) 

- caused by turbulence at the front and back

At lower speeds, or for very streamlined objects, air resistance is mainly proportional to velocity

as there is little turbulence, so friction is most important. At higher speeds, or for less

streamlined objects, turbulence occurs and is more important than friction, so resistance is

mainly proportional to the square of velocity. The diagram below shows a brick falling through

the air, although similar affects occur for horizontal motion.

You will come across questions where the resistance is proportional to some other power of

velocity, or a combination of linear and quadratic resistance.

d
ire

c
tio

n
o
f
m

o
v
e
m

e
n
t

higher pressure 

at the front 

pushes it back

lower pressure at the 

back creates a vacuum 

that pulls it back

Friction along 

the surface 

drags it back

Laminar flow is 

proportional to 

velocity

Turbulent flow is 

proportional to 

velocity squared

Turbulent flow is 

proportional to 

velocity squared

gravity
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𝐹 −𝑘𝑣2

𝐹 −𝑘𝑣
The equation of motion is 𝑚 ሷ𝑥 = 𝐹 − 𝑘𝑣

where 𝐹 is the force that is propelling the object.

The equation of motion is 𝑚 ሷ𝑥 = 𝐹 − 𝑘𝑣2

where 𝐹 is the force that is propelling the object.

EQUATIONS OF MOTION

Every question will give you a simplified equation of motion to use, or enough information to

create one. The resultant force is the force propelling the object (in the positive direction) plus

the resistive force (which acts in the opposite direction so is negative).

LINEAR DRAG

QUADRATIC DRAG

RESULTS INVOLVING DISPLACEMENT AND VELOCITY

The results that students will need to prove in Resisted Motion involving one of three pairs:

• displacement and velocity, for example prove

• velocity and time, for example prove

• displacement and time, for example prove 𝑥 = 𝑢 + 2 1 − 𝑒−𝑡 − 2𝑡

We will start with some examples involving displacement and time, which are generally the

easiest types of results to prove (as we have seen in previous lessons). We generally replace

acceleration with 𝑣
𝑑𝑣

𝑑𝑥
.

𝑥 =
25

𝑘
ln

200

200 − 𝑘𝑣2

𝑣 = 150 1 − 𝑒−
𝑡
50

RESISTANCE IS NOT A FUNCTION OF MASS

Resistance is related to surface area and shape, not mass, and so resistance is a constant times

some power of velocity. Some sources of questions will include resistance in the form 𝑚𝑘𝑣 or

𝑚𝑘𝑣2 - this makes for easier calculations but is not realistic. It would imply that changing the

mass would change the resistance which is usually false.
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Example 1

A cart with a mass of 50 kg is pushed along a horizontal path with a force of 200 N. Friction

causes a force acting against the cart’s motion which is proportional to the square of the cart’s

velocity.

i Show that where 𝑘 is a positive constant

ii Show that the velocity of the cart, given it started from rest, is given by

where 𝑥 is its displacement from its starting position.

Solution

i

𝑚 ሷ𝑥 = 200 − 𝑘𝑣2

ሷ𝑥 =
200 − 𝑘𝑣2

50

= 4 −
𝑘𝑣2

50

ii

∴ 𝑣
𝑑𝑣

𝑑𝑥
=
200 − 𝑘𝑣2

50

𝑑𝑣

𝑑𝑥
=
200 − 𝑘𝑣2

50𝑣

𝑑𝑥

𝑑𝑣
=

50𝑣

200 − 𝑘𝑣2

𝑥 = න
0

𝑣 50𝑣

200 − 𝑘𝑣2
𝑑𝑣

= −
25

𝑘
න
0

𝑣

−
2𝑘𝑣

200 − 𝑘𝑣2
𝑑𝑣

=
25

𝑘
ln 200 − 𝑘𝑣2

𝑣

0

=
25

𝑘
ln 200 − ln 200 − 𝑘𝑣2

=
25

𝑘
ln

200

200 − 𝑘𝑣2

ሷ𝑥 = 4 −
𝑘𝑣2

50

𝑣0 = 0

−𝑘𝑣2

𝑣𝑡 =?

𝑥0

200 N

𝑥 =
25

𝑘
ln

200

200 − 𝑘𝑣2
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Letting 𝑘 = 1, and noting that velocity is on the 

horizontal axis, we can see that velocity is reaching a 

plateau – this is the terminal velocity we will see next 

lesson.

𝑥 =
25

𝑘
ln

200

200 − 𝑘𝑣2

𝑥^

> 𝑣
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Example 2

A car of mass 2000 kg starts from rest and travels along a horizontal road. The engine produces

a constant force of 6000 N, while a force of 40𝑣 N opposes the motion of the car.

i Show that

ii Prove that

Solution

i

𝑚
𝑑𝑣

𝑑𝑡
= 𝐹 − 𝑅

2000
𝑑𝑣

𝑑𝑡
= 6000 − 40𝑣

𝑑𝑣

𝑑𝑡
=
150 − 𝑣

50

ii

𝑑𝑣

𝑑𝑡
=
150 − 𝑣

50

𝑑𝑡

𝑑𝑣
=

50

150 − 𝑣

𝑡 = න
0

𝑣 50

150 − 𝑣
𝑑𝑣

= −50 ln 150 − 𝑣
0

𝑣

∗∗

= −50 ln(150 − 𝑣) − ln 150

= 50 ln
150

150 − 𝑣

𝑡

50
= ln

150

150 − 𝑣

𝑒
𝑡
50 =

150

150 − 𝑣

150𝑒
𝑡
50 − 𝑣𝑒

𝑡
50 = 150

𝑣𝑒
𝑡
50 = 150 𝑒

𝑡
50 − 1

𝑣 = 150 1 − 𝑒−
𝑡
50

** As we will see next lesson, terminal velocity

would keep 0 ≤ 𝑣 < 150.

RESULTS INVOLVING TIME AND VELOCITY

Examples involving velocity and time are generally a bit more involved. We generally replace

acceleration with
𝑑𝑣

𝑑𝑡
. It is also the first step we use when finding results involving displacement

and time.

𝑑𝑣

𝑑𝑡
=
150 − 𝑣

50

𝑣0 = 0

−40𝑣

𝑣𝑡 =?

𝑥0

6000

𝑣 = 150 1 − 𝑒−
𝑡
50
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The particle increases its velocity from rest, before eventually moving to the right 

approaching 150 ms−1, which is a terminal velocity.

𝑣 = 150 1 − 𝑒−
𝑡
50

𝑣^

> 𝑡

In each of the examples we have seen so far we have seen that the velocity reaches a limit,

which we call the terminal velocity. Next lesson we will look at terminal velocity for a falling

object in detail, but let’s look at an example for a particle moving horizontally.

For the moment we will note that terminal velocity is the constant velocity that the particle

approaches as the resistive force increases towards the force propelling the object. This occurs

when the resultant force is zero, so ሷ𝑥 = 0.
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Example 4

A supercar has a mass of 500 kilograms and its engine generates a force of 1000 N. Its motion

is opposed by a resistive force of
𝑣2

10
N.

a What is the maximum possible speed (terminal velocity) of the car on flat ground?

b If the car starts from rest, prove that the time taken to reach a speed of 𝑣, where 𝑣 < 100,

is given by

c How does this formula help support the idea that the car can never reach the terminal

velocity?

Solution

a

500 ሷ𝑥 = 1000 −
𝑣2

10

ሷ𝑥 =
10000 − 𝑣2

5000

Let ሷ𝑥 = 0, ∴ 10000 − 𝑣𝑇
2 = 0 → 𝑣𝑇 = 10000 = 100 ms−1

b

𝑑𝑣

𝑑𝑡
=
10000 − 𝑣2

5000

𝑑𝑡

𝑑𝑣
=

5000

10000 − 𝑣2

𝑡 = 25න
0

𝑣 1

100 − 𝑣
+

1

100 + 𝑣
𝑑𝑣

= 25 − ln 100 − 𝑣 + ln 100 + 𝑣
0

𝑣

= 25 − ln 100 − 𝑣 + ln 100 + 𝑣

= 25 ln
100 + 𝑣

100 − 𝑣

c

Let 𝑡 = 100 in 𝑡 = 25 ln
100 + 𝑣

100 − 𝑣

∴ 𝑡 = 25 ln
100 + 𝑣

100 − 𝑣

= 25 ln
200

0
which is undefined

As 𝑣 → 100,
100+𝑣

100−𝑣
→ ∞ so the time taken to

reach terminal velocity is infinite – the car will

never reach it.

𝑡 = 25 ln
100 + 𝑣

100 − 𝑣
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Making time the horizontal axis, we can see that velocity is flattening out as it approaches 

100 ms−1.

𝑡 = 25 ln
100 + 𝑣

100 − 𝑣

𝑣^

> 𝑡

Results Involving Time and Displacement

Examples involving displacement and time are generally the most involved. We generally 

replace acceleration with 
𝑑𝑣

𝑑𝑡
to first find an expression involving velocity as a function of time (as 

we have done in the last two examples) then integrate to find an expression for displacement in 

terms of time.

** In the next example we use a resultant force that is a function of mass. When students come

across examples like this it is important to explain to them that this not reflective of real life, as

resistance is unrelated to mass **
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Example 5

A particle of mass 𝑚 kg is set in horizontal motion with speed 𝑢 ms−1 and experiences a

resistive force and comes to rest. At time 𝑡 seconds the particle has displacement 𝑥 metres from

its starting point 𝑂, velocity 𝑣 ms−1 and acceleration 𝑎 ms−2. The resultant force acting on the

particle directly opposes its motion and has magnitude 𝑚 2 + 𝑣 N.

Prove that 𝑥 = 𝑢 + 2 1 − 𝑒−𝑡 − 2𝑡

Solution

𝑚 ሷ𝑥 = −𝑚 2 + 𝑣

ሷ𝑥 = − 2 + 𝑣

𝑑𝑣

𝑑𝑡
= − 2 + 𝑣

𝑑𝑡

𝑑𝑣
= −

1

2 + 𝑣

𝑡 = −න
𝑢

𝑣 1

2 + 𝑣
𝑑𝑣

= − ln(2 + 𝑣)
𝑢

𝑣

= ln
2 + 𝑢

2 + 𝑣

∴ 𝑒𝑡 =
2 + 𝑢

2 + 𝑣

2𝑒𝑡 + 𝑣𝑒𝑡 = 2 + 𝑢

𝑣𝑒𝑡 = 2 + 𝑢 − 2𝑒𝑡

𝑣 = 2 + 𝑢 𝑒−𝑡 − 2

𝑣0 = 𝑢

𝐹 = −𝑚(2 + 𝑣)

RTP: 𝑥 = 𝑢 + 2 1 − 𝑒−𝑡 − 2𝑡

𝑥𝑂

𝑥 = න
0

𝑡

2 + 𝑢 𝑒−𝑡 − 2 𝑑𝑡

= − 2 + 𝑢 𝑒−𝑡 − 2𝑡
0

𝑡

= − 2 + 𝑢 𝑒−𝑡 − 2𝑡 − − 2 + 𝑢 − 0

= − 2 + 𝑢 𝑒−𝑡 − 1 − 2𝑡

= 𝑢 + 2 1 − 𝑒−𝑡 − 2𝑡

Letting 𝑢 = 10 we get the graph above, but may only be relevant until the maximum turning 

point at which point the object is at rest. 

The question could reflect a situation where an object is going up a ramp and experiencing both 

a component of gravity and friction.

𝑥 = 𝑢 + 2 1 − 𝑒−𝑡 − 2𝑡

𝑥^

> 𝑡
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EXERCISE 6.5

BASIC

1** A particle of mass 𝑚 is moving horizontally in a straight line. Its motion is opposed by a 

force of magnitude 𝑚𝑘(𝑣 + 𝑣3) Newtons, its speed is 𝑣 ms−1 and 𝑘 is a positive constant. 

At time 𝑡 seconds the particle has displacement 𝑥 metres from a fixed point 𝑂 on the line. 

Prove 

2 A body is moving in a horizontal straight line. At time 𝑡 seconds, its displacement is 𝑥

metres from a fixed point 𝑂 on the line, and its acceleration is −
1

10
𝑣 1 + 𝑣 where 𝑣 ≥

0 is its velocity. The body is initially at 𝑂 with velocity 𝑉 > 0.

Show that

MEDIUM

3 A high speed train of mass m starts from rest and moves along a straight track. At time t
hours, the distance travelled by the train from its starting point is x km, and its velocity is v
km/h. The train is driven by a constant force F in the forward direction. The resistive force 

in the opposite direction is K𝑣2, where K is a positive constant. The terminal velocity of the 

train is 300 km/h.

i Show that the equation of motion for the train is

ii Find, in terms of F and m, the time it takes the train to reach a velocity of 200 km/h.

4 A 20 kg trolley is pushed with a force of 100 N. Friction causes a resistive force which is 

proportional to the square of the trolley's velocity.

i Show that ሷ𝑥 = 5 −
𝑘𝑣2

20
where 𝑘 is a positive constant.

ii If the trolley is initially stationary at the origin, show that the distance travelled when its 

speed is  𝑉 is given by

𝑥 =
10

𝑘
ln

100

100 − 𝑘𝑉2

5** A landing aeroplane of mass 𝑚 kg is brought to rest by the action of two retarding forces: 

a force of 4𝑚 Newtons due to the reverse thrust of the engines; and a force due to the 

brakes of 
𝑚𝑣2

40 000
Newtons.

i Show that the aeroplane's equation of motion for its speed 𝑣 at time 𝑡 seconds after  

landing is

ሶ𝑣 = −
𝑣2 + 4002

40 000

ii Assuming the aeroplane lands at a speed of 𝑈 m/s, find an expression for the time it 

takes to come to rest.

iii Show that, given a sufficiently long runway, no matter how fast its landing speed, it 

will always come to rest within approximately 2.6 minutes of landing.

𝑥 = −
1

𝑘
න

1

1 + 𝑣2
𝑑𝑣

𝑡 = 20 log𝑒
1 + 𝑉

1 + 𝑣

m ሷ𝑥 = F 1 −
𝑣

300

2

** Resultant force is given as a function of mass which makes our calculations easier but is not 

reflective of real life, as resistance is unrelated to mass.Mathematics Extension 2 © Steve Howard 529 Howard and Howard Education



6 A car, starting from rest, moves along a straight horizontal road. The car’s engine 

produces a constant horizontal force of magnitude 4000 Newtons. At time 𝑡 seconds, the 

speed of the car is 𝑣 ms−1 and a resistance force of magnitude 40𝑣 Newtons acts upon 

the car. The mass of the car is 1600 kg.

i Show that

ii Find the velocity of the car at time 𝑡.

7 A supercar has a mass of 1000 kilograms and its engine generates a force of 1125 N. Its

motion is opposed by a resistive force of
𝑣2

20
N.

a What is the maximum possible speed (terminal velocity) of the car on flat ground?

b If the car starts from rest, prove that the time taken to reach a speed of 𝑣,

where 𝑣 < 150, is given by

c How does this formula help support the idea that the car can never reach the terminal

velocity?

CHALLENGING

8 A fishing boat drifts with a current in a straight line across a fishing ground. The boat's 

velocity v, at time r after the start of this drift is given by 𝑣 = b − b − 𝑣0 𝑒−𝛼𝑡, where 

𝑣0, 𝑎 and b are positive constants, and 𝑣0 < b.

i Show that

ii The physical significance of 𝑣0 is that it represents the initial velocity of the boat. 

What is the physical significance of b?

iii Let 𝑥 be the distance travelled by the boat from the start of the drift. Find 𝑥 as a function 

of t. Hence show that 

𝑥 =
𝑏

𝛼
loge

b − 𝑣0
b − 𝑣

+
𝑣0 − 𝑣

𝛼

iv The initial velocity of the boat is     . How far has the boat drifted when           ?

9 A particle of unit mass moves in a straight line against a resistance numerically equal to 

𝑣 + 𝑣3, where 𝑣 is its velocity. Initially the particle is at the origin and is traveling with 

velocity 𝑄, where 𝑄 > 0.

i Explain why ሷ𝑥 = − 𝑣 + 𝑣3

ii Show that 𝑣 is related to the displacement 𝑥 by the formula

iii Show that the time 𝑡 which has elapsed when the particle is traveling

with velocity 𝑉 is given by

iv Find 𝑉2 as a function of 𝑡.

𝑑𝑣

𝑑𝑡
=
100 − 𝑣

40

𝑑𝑣

𝑑𝑡
= 𝛼(𝑏 − 𝑣)

𝑏

10
𝑣 =

𝑏

2

𝑥 = tan−1
𝑄 − 𝑣

1 + 𝑄𝑣

𝑡 =
1

2
log𝑒

𝑄2 1 + 𝑉2

𝑉2 1 + 𝑄2

𝑡 =
200

3
ln

150 + 𝑣

150 − 𝑣

Mathematics Extension 2 © Steve Howard 530 Howard and Howard Education



10 A particle of mass one kg is moving in a straight line. It is initially at the origin and is 

travelling with velocity 3 ms−1. The particle is moving against a resisting force 𝑣 + 𝑣3, 

where 𝑣 is the velocity.

i Briefly explain why the acceleration of the particle is given by

ii Show that the displacement 𝑥 of the particle from the origin is given by

iii Show that the time 𝑡 which has elapsed when the particle is travelling with velocity 𝑉 is 

given by 

iv Find 𝑉2 as a function of 𝑡.

v Hence find the limiting position of the particle as 𝑡 → ∞.

𝑑𝑣

𝑑𝑡
= − 𝑣 + 𝑣3

𝑥 = tan−1
3 − 𝑣

1 + 𝑣 3

𝑡 =
1

2
log𝑒

3 1 + 𝑉2

4𝑉2

Mathematics Extension 2 © Steve Howard 531 Howard and Howard Education



SOLUTIONS - EXERCISE 6.5

1
𝑚𝑣

𝑑𝑣

𝑑𝑥
= −𝑚𝑘 𝑣 + 𝑣3

𝑑𝑣

𝑑𝑥
= −𝑘 1 + 𝑣2

𝑑𝑥

𝑑𝑣
= −

1

𝑘
×

1

1 + 𝑣2

𝑥 = −
1

𝑘
න

1

1 + 𝑣2
𝑑𝑣

2 𝑑𝑣

𝑑𝑡
= −

1

10
𝑣 1 + 𝑣

𝑑𝑡

𝑑𝑣
= −

10

𝑣 1 + 𝑣

𝑡 = −න
𝑉

𝑣 10

𝑣 1 + 𝑣
𝑑𝑣

= 20න
𝑣

𝑉
1
2
𝑣−

1
2

1 + 𝑣
𝑑𝑣

= 20 ln 1 + 𝑣
𝑣

𝑉

= 20 ln 1 + 𝑉 − ln 1 + 𝑣

= 20 ln
1 + 𝑉

1 + 𝑣

3 i

The equation of motion is given by

𝑚 ሷ𝑥 = 𝐹 − 𝑘𝑣2

At terminal velocity of 300 km/h ሷ𝑥 = 0
∴ 0 = 𝐹 − 𝑘 × 3002

𝑘 =
𝐹

3002

The equation of motion is:

𝑚 ሷ𝑥 = 𝐹 −
𝐹

3002
𝑣2 = 𝐹 1 −

𝑣

300

2

ii

𝑚 ሷ𝑥 = 𝐹 1 −
𝑣

300

2

𝑑𝑣

𝑑𝑡
=
𝐹

𝑚

3002 − 𝑣2

3002

𝑑𝑡

𝑑𝑣
=
𝑚

𝐹

3002

3002 − 𝑣2

𝑡 =
𝑚

𝐹
න
0

200 300

3002 − 𝑣2
𝑑𝑣

=
3002𝑚

600𝐹
න
0

200 1

300 + 𝑣
+

1

300 − 𝑣
𝑑𝑣

=
150𝑚

𝐹
ln 300 + 𝑣 − ln 300 − 𝑣

0

200

=
150𝑚

𝐹
ln
300 + 𝑣

300 − 𝑣
0

200

=
150𝑚

𝐹
ln
500

100
− ln

300

300

=
150𝑚

𝐹
ln 5 hours

4 20 ሷ𝑥 = 100 − 𝑘𝑣2

ሷ𝑥 = 5 −
𝑘𝑣2

20

𝑣
𝑑𝑣

𝑑𝑥
= 5 −

𝑘𝑣2

20
𝑑𝑣

𝑑𝑥
=
100 − 𝑘𝑣2

20𝑣
𝑑𝑥

𝑑𝑣
=

20𝑣

100 − 𝑘𝑣2

𝑥 = න
0

𝑉 20𝑣

100 − 𝑘𝑣2
𝑑𝑣

= −
10

𝑘
ln 100 − 𝑘𝑣2

0

𝑉

= −
10

𝑘
ln 100 − 𝑘𝑉2 − ln 100

=
10

𝑘
ln

100

100 − 𝑘𝑉2
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5 i

𝑚 ሶ𝑣 = −
𝑚𝑣2

40 000
− 4𝑚

ሶ𝑣 = −
𝑣2 + 160 000

40 000

= −
𝑣2 + 4002

40 000

ii

𝑑𝑣

𝑑𝑡
= −

𝑣2 + 4002

40 000
𝑑𝑡

𝑑𝑣
= −

40 000

𝑣2 + 4002

𝑡 = −න
𝑈

0 40 000

𝑣2 + 4002
𝑑𝑣

= 40 000
1

400
tan−1

𝑣

400
0

𝑈

= 100 tan−1
𝑈

400
− 0

= 100 tan−1
𝑈

400
s

iii

As 𝑈 → ∞ tan−1
𝑈

400
→

𝜋

2

∴ 𝑡 → 100 ×
𝜋

2
≈ 157 s ≈ 2.618 minutes

∴ The plane lands within approximately 2.6
minutes of landing regardless of speed.

6 i

1600
𝑑𝑣

𝑑𝑡
= 4000 − 40𝑣

𝑑𝑣

𝑑𝑡
=
100 − 𝑣

40
ms−2

ii
𝑑𝑡

𝑑𝑣
=

40

100 − 𝑣

𝑡 = න
0

𝑣 40

100 − 𝑣
𝑑𝑣

= −40 ln 100 − 𝑣
0

𝑣

= 40 ln 100 − ln 100 − 𝑣

= 40 ln
100

100 − 𝑣

𝑒
𝑡
40 =

100

100 − 𝑣

100𝑒
𝑡
40 − 𝑣𝑒

𝑡
40 = 100

𝑣𝑒
𝑡
40 = 100 𝑒

𝑡
40 − 1

𝑣 = 100 1 − 𝑒−
𝑡
40 ms−1

7 a

1000 ሷ𝑥 = 1125 −
𝑣2

20

ሷ𝑥 =
22500 − 𝑣2

20000

Let ሷ𝑥 = 0, ∴ 22500 − 𝑣𝑇
2 = 0 → 𝑣𝑇 = 22500 = 150 ms−1

b

𝑑𝑣

𝑑𝑡
=
22500 − 𝑣2

20000

𝑑𝑡

𝑑𝑣
=

20000

22500 − 𝑣2

𝑡 =
200

3
න
0

𝑣 1

150 − 𝑣
+

1

150 + 𝑣
𝑑𝑣

=
200

3
− ln 150 − 𝑣 + ln 150 + 𝑣

0

𝑣

=
200

3
− ln 150 − 𝑣 + ln 150 + 𝑣

=
200

3
ln

150 + 𝑣

150 − 𝑣
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8 i
𝑑𝑣

𝑑𝑡
= 𝛼 𝑏 − 𝑣0 𝑒−𝛼𝑡

= 𝛼 𝑏 − 𝑏 − 𝑏 − 𝑣0 𝑒−𝛼𝑡

= 𝛼 𝑏 − 𝑣

ii

‘b’ is the speed of the current – the boat

slowly approaches the speed of the current,

as a limiting value.

iii

𝑥 = න
0

𝑡

(𝑏 − 𝑏 − 𝑣0 𝑒−𝛼𝑡) 𝑑𝑡

= 𝑏𝑡 +
𝑏 − 𝑣0
𝛼

𝑒−𝛼𝑡

𝑜

𝑡

= 𝑏𝑡 +
𝑏 − 𝑣0
𝛼

𝑒−𝛼𝑡 −
𝑏 − 𝑣0
𝛼

1

Rearranging the equation of motion:

𝑒−𝛼𝑡 =
𝑏 − 𝑣

𝑏 − 𝑣0
⇒ 𝑡 = −

1

𝛼
ln

𝑏 − 𝑣

𝑏 − 𝑣0
sub in (1):

𝑥

= 𝑏 −
1

𝛼
ln

𝑏 − 𝑣

𝑏 − 𝑣0
+
𝑏 − 𝑣0
𝛼

𝑏 − 𝑣

𝑏 − 𝑣0

−
𝑏 − 𝑣0
𝛼

= −
𝑏

𝛼
ln

𝑏 − 𝑣

𝑏 − 𝑣0
+

𝑏 − 𝑣 − 𝑏 − 𝑣0
𝛼

=
𝑏

𝛼
ln
𝑏 − 𝑣0
𝑏 − 𝑣

+
𝑣0 − 𝑣

𝛼

iv

𝑥 =
𝑏

𝛼
ln

𝑏 −
𝑏
10

𝑏 −
𝑏
2

+

𝑏
10

−
𝑏
2

𝛼

=
𝑏

𝛼
ln

9
10
1
2

+
𝑏

𝛼
−
2

5

=
𝑏

𝛼
ln
9

5
−
2

5
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9 i

𝑚 ሷ𝑥 = −𝑚 𝑣 + 𝑣3

ሷ𝑥 = − 𝑣 + 𝑣3

ii

𝑣
𝑑𝑣

𝑑𝑥
= − 𝑣 + 𝑣3

𝑑𝑣

𝑑𝑥
= − 1 + 𝑣2

𝑑𝑥

𝑑𝑣
= −

1

1 + 𝑣2

𝑥 = −න
𝑄

𝑣 1

1 + 𝑣2
𝑑𝑣

= tan−1 𝑣
𝑣

𝑄

= tan−1𝑄 − tan−1 𝑣

= tan−1
tan tan−1 𝑄 − tan tan−1 𝑣

1 + tan tan−1𝑄 tan tan−1 𝑣

= tan−1
𝑄 − 𝑣

1 + 𝑄𝑣

iii
𝑑𝑣

𝑑𝑡
= − 𝑣 + 𝑣3

𝑑𝑡

𝑑𝑣
= −

1

𝑣 + 𝑣3

𝑡 = −න
𝑄

𝑉 1

𝑣 + 𝑣3
𝑑𝑣

= න
𝑉

𝑄 1

𝑣
−

𝑣

1 + 𝑣2
𝑑𝑣

= ln 𝑣 −
1

2
ln 1 + 𝑣2

𝑉

𝑄

= ln𝑄 −
1

2
ln 1 + 𝑄2

− ln𝑉 −
1

2
ln 1 + 𝑉2

=
1

2
ln𝑄2 −

1

2
ln 1 + 𝑄2

−
1

2
ln𝑉2 −

1

2
ln 1 + 𝑉2

=
1

2
ln

𝑄2

1 + 𝑄2
−
1

2
ln

𝑉2

1 + 𝑉2

=
1

2
ln

𝑄2 1 + 𝑉2

𝑉2 1 + 𝑄2

iv

𝑒2𝑡 =
𝑄2 1 + 𝑉2

𝑉2 1 + 𝑄2

𝑉2𝑒2𝑡 1 + 𝑄2 = 𝑄2 + 𝑄2𝑉2

𝑉2 𝑒2𝑡 1 + 𝑄2 − 𝑄2 = 𝑄2

𝑉2 =
𝑄2

𝑒2𝑡 + 𝑒2𝑡𝑄2 − 𝑄2

10 i

Resistance is acting in the opposite direction 

to the velocity. Since velocity is positive, 

resistance must be negative.

𝑚 ሷ𝑥 = −𝑚 𝑣 + 𝑣3

ሷ𝑥 = − 𝑣 + 𝑣3

ii

𝑣
𝑑𝑣

𝑑𝑥
= − 𝑣 + 𝑣3

𝑑𝑣

𝑑𝑥
= − 1 + 𝑣2

𝑑𝑥

𝑑𝑣
= −

1

1 + 𝑣2

𝑥 = −න
3

𝑣 1

1 + 𝑣2
𝑑𝑣

= tan−1 𝑣
𝑣

3

= tan−1 3 − tan−1 𝑣

= tan−1 tan tan−1 3 − tan−1 𝑣

= tan−1
tan tan−1 3 − tan tan−1 𝑣

1 + tan tan−1 3 × tan tan−1 𝑣

= tan−1
3 − 𝑣

1 + 3𝑣

iii
𝑑𝑣

𝑑𝑡
= − 𝑣 + 𝑣3

𝑑𝑡

𝑑𝑣
= −

1

𝑣 + 𝑣3

𝑡 = −න
3

𝑉 1

𝑣 + 𝑣3
𝑑𝑣

= න
𝑉

3 1

𝑣
−

𝑣

1 + 𝑣2
𝑑𝑣

= ln 𝑣 −
1

2
ln 1 + 𝑣2

𝑉

3

= ln 3 −
1

2
ln 4 − ln 𝑉 +

1

2
ln 1 + 𝑉2

=
1

2
ln 3 +

1

2
ln 1 + 𝑉2 −

1

2
ln 4 −

1

2
ln 𝑉2

=
1

2
ln

3 1 + 𝑉2

4𝑉2

iv

𝑒2𝑡 =
3 1 + 𝑉2

4𝑉2

4𝑉2𝑒2𝑡 = 3 + 3𝑉2

𝑉2 4𝑒2𝑡 − 3 = 3

𝑉2 =
3

4𝑒2𝑡 − 3

v

as 𝑡 → ∞ 𝑒2𝑡 → ∞ ∴ 𝑉2 → 0 ∴ 𝑉 → 0

∴ 𝑥 → tan−1
3

1
=
𝜋

3
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6.6 VERTICAL RESISTED MOTION

RISING OBJECTS

If an object is rising we take its starting point as the origin and measure

upwards motion as positive.

The two forces on the object are a gravitational force, −𝑚𝑔, and a

resistance, −𝑘𝑣 or −𝑘𝑣2 , given in the question. Both forces are

negative as they go against the direction of motion.

The equation of motion is 𝑚 ሷ𝑥 = −(𝑚𝑔 + 𝑘𝑣2) or 𝑚 ሷ𝑥 = −(𝑚𝑔 + 𝑘𝑣).

FALLING OBJECTS

If an object is falling we take its starting point as the origin and measure

downwards motion as positive.

The two forces on the object are a gravitational force, 𝑚𝑔 , and a

resistance, −𝑘𝑣 or −𝑘𝑣2, given in the question. Gravitational force is

positive since it is in the direction of motion, while resistance is negative

since it is against the direction of motion.

The equation of motion is 𝑚 ሷ𝑥 = 𝑚𝑔 − 𝑘𝑣2 or 𝑚 ሷ𝑥 = 𝑚𝑔 − 𝑘𝑣.

We will cover objects that rise then fall in Lesson 8.

−𝑚𝑔 −𝑘𝑣2

VERTICAL RESISTED MOTION

When we consider objects moving vertically in a resisting medium we also need to take gravity

into account. The resistive force always opposes motion, but gravity can either resist upward

motion or assist downwards motion.

𝑣

0

𝑥

𝑚𝑔 −𝑘𝑣2

𝑣

0

𝑥
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TERMINAL VELOCITY

When an object is falling towards Earth, it goes faster and faster, but at some point the downward

force of gravity is almost balanced by the upward force of air resistance, so the resultant force

approaches zero and the velocity plateaus. This velocity is called the terminal velocity, and will be

fixed for a given air resistance and mass.

Terminal Velocity is actually a limit for the velocity and is never reached - it is approached as an

asymptote. In general a particle will quickly reach 90%, 99% or even 99.99% of the terminal

velocity.

At terminal velocity acceleration (and force) is zero – this is an important technique in solving

questions. Particles travelling horizontally with a constant force can also reach a terminal velocity.

CONSTANT GRAVITATIONAL ACCELERATION

With resisted motion we assume that the object stays close enough to the surface of the Earth so

that gravitational acceleration is constant, and we measure displacement from the surface of the

Earth.

This is different to some of our work on Motion without Resistance where we looked at gravity

being inversely proportional to the distance from the centre of the Earth. In that case the origin

needs to be the centre of the Earth, with displacement measured away from the centre, as we

then assume that we will travel far enough from the Earth’s surface for gravitational acceleration

to reduce.

When the object is 

first dropped it is at 

rest so there is no 

resistance. The 

object starts to 

accelerate at 

9.8 ms−2.

As the velocity 

increases the 

resistance increases. 

The acceleration 

reduces, but the 

object is still 

accelerating and 

going faster. 

Acceleration is less 

than 9.8 ms−2.

The resistance 

continues to increase 

as velocity increases. 

Acceleration 

approaches zero but 

never quite reaches 

it.

If the resistance was 

to suddenly increase 

(like opening a 

parachute) then 

resistance is greater 

than gravity, so the 

particle starts slowing

towards the new 

terminal velocity. 

𝑚𝑔 𝑚𝑔 𝑚𝑔

𝑅 = 𝑚𝑔
𝑅 < 𝑚𝑔

𝑅 = 0
𝑚𝑔

𝑅 > 𝑚𝑔
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UNDERSTANDING TERMINAL VELOCITY

Consider this situation:

A parachutist jumps out of a plane and starts falling in a horizontal position -

they accelerate at first, with their velocity plateauing out as they approach their

initial terminal velocity.

They could increase their terminal velocity by becoming more vertical, (which

decreases their air resistance), causing them to accelerate towards a new

higher terminal velocity.

Once they release their parachute the air resistance increases massively, so

their final terminal velocity is much lower, and allows them to land at a safe

speed. Note that when the parachute opens the parachutist is travelling faster

than the new terminal velocity, so they have to slow towards the new terminal

velocity - this is why you need to open a parachute far enough above the

ground to slow to a safe speed for landing.

If they were able to change their mass on the way down (by jettisoning mass) this would also

change their terminal velocity for any given position, as air resistance would become

proportionally more important and slow them down.
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RESULTS INVOLVING DISPLACEMENT AND VELOCITY

Again we will find that examples involving results involving displacement and velocity are

generally the easiest.

Example 1

A brick weighing 1 kg is placed on the surface of a lake then released, and sinks with an

equation of motion of ሷ𝑥 = 10 − 𝑘𝑣2.

i If the terminal velocity of the brick is 2 ms−1, find the value of 𝑘.

ii How deep is the brick before it reaches 90% of its terminal velocity?

Solution

i

Let ሷ𝑥 = 0

∴ 10 − 𝑘 22 = 0

𝑘 = 2.5

ii

ሷ𝑥 = 10 − 2.5 𝑣2

∴ 𝑣
𝑑𝑣

𝑑𝑥
= 10 − 2.5𝑣2

𝑑𝑣

𝑑𝑥
=
20 − 5𝑣2

2𝑣

𝑥 = න
0

1.8 2𝑣

20 − 5𝑣2
𝑑𝑣

= −
1

5
ln 20 − 5𝑣2

0

1.8

= −
1

5
ln 20 − 5 1.8 2 − ln 20

≈ 0.33 m

The brick reaches 90% of its terminal velocity when it is 33cm

under the surface.

ሷ𝑥 = 10 − 𝑘𝑣2

1 kg

Note: the question involves displacement

and velocity so we use ሷ𝑥 = 𝑣
𝑑𝑣

𝑑𝑥
.

90% of the terminal velocity is 1.8 ms−1

Mathematics Extension 2 © Steve Howard 539 Howard and Howard Education



The velocity approaches 2, with the brick reaching 90% of that after moving 33 cm.

𝑥 = −
1

5
(ln 20 − 5𝑣2 − ln 20)

𝑣^

> 𝑥

RESULTS INVOLVING TIME AND VELOCITY

Again we will find that examples involving results involving time and velocity are generally a bit

more involved.

Example 2

A particle of unit mass is projected vertically upwards with an initial velocity of 𝑢 ms−1 in a 

medium in which resistance to the motion is proportional to the square of the velocity 𝑣 ms−1 of 

the particle, or 𝑘𝑣2. Let 𝑥 be the displacement in metres of the particle above the point of 

projection. Assume 𝑘 = 10 and the acceleration due to gravity is 10 ms−2, so that the equation 

of motion is ሷ𝑥 = −10(1 + 𝑣2). 

Prove that the time of flight at any point on the upward flight can be calculated as 
tan−1 𝑢 − tan−1 𝑣

10
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Solution

𝑑𝑣

𝑑𝑡
= −10 1 + 𝑣2

𝑑𝑡

𝑑𝑣
= −

1

10
×

1

1 + 𝑣2

𝑡 = −
1

10
න
𝑢

𝑣 1

1 + 𝑣2
𝑑𝑣

= −
1

10
tan−1 𝑣

𝑢

𝑣

= −
1

10
tan−1 𝑣 − tan−1 𝑢

=
tan−1 𝑢 − tan−1 𝑣

10

Note: the question involves velocity and time so we use ሷ𝑥 =
𝑑𝑣

𝑑𝑡

ሷ𝑥 = −10(1 + 𝑣2)𝑣0 = 𝑢

𝑣𝑡 = 𝑣

𝑡 =?

Note that the values of 𝑘 are normally decimals much closer to zero, so this question gives us

nice numbers but is unrealistic.

Letting 𝑢 = 200 ms−1 the particle would reach its maximum height (that is 𝑣 = 0) after only 0.16

seconds as shown in the graph above.

𝑡 =
tan−1 𝑢 − tan−1 𝑣

10

𝑡^

> 𝑣

Mathematics Extension 2 © Steve Howard 541 Howard and Howard Education



RESULTS INVOLVING TIME AND DISPLACEMENT

Again we will find that examples involving results involving time and displacement are generally

a bit more involved. We start by finding a function for velocity in terms of time then integrate.

Example 3

A particle is dropped through oil which has a resistance to motion of
𝑣2

40
. Assume 𝑔 = 10.

i Prove that, where 𝑣 is the velocity and 𝑡 is the time in seconds.

ii Hence prove where 𝑥 is the distance travelled.

Solution

i

ሷ𝑥 = 10 −
𝑣2

40

𝑑𝑣

𝑑𝑡
=
400 − 𝑣2

40

𝑑𝑡

𝑑𝑣
=

40

400 − 𝑣2

𝑡 = න
0

𝑣 40

400 − 𝑣2
𝑑𝑣

= න
0

𝑣 1

20 − 𝑣
+

1

20 + 𝑣
𝑑𝑣

= ln 20 + 𝑣 − ln 20 − 𝑣
0

𝑣

= ln
20 + 𝑣

20 − 𝑣

𝑒𝑡 =
20 + 𝑣

20 − 𝑣

20𝑒𝑡 − 𝑣𝑒𝑡 = 20 + 𝑣

𝑣 1 + 𝑒𝑡 = 20 𝑒𝑡 − 1

𝑣 =
20 𝑒𝑡 − 1

𝑒𝑡 + 1

=
20 𝑒𝑡 + 1 − 2

𝑒𝑡 + 1

= 20 1 −
2

𝑒𝑡 + 1

ii

𝑑𝑥

𝑑𝑡
= 20 1 −

2

𝑒𝑡 + 1

𝑥 = 20න
0

𝑡

1 −
2

𝑒𝑡 + 1
𝑑𝑡

= 20න
0

𝑡

1 −
2𝑒−𝑡

1 + 𝑒−𝑡
𝑑𝑡

= 20 𝑡 + 2 ln 1 + 𝑒−𝑡

0

𝑡

= 20 𝑡 + 2 ln 1 + 𝑒−𝑡 − 0 + 2 ln 2

= 20 𝑡 + 2 ln
1 + 𝑒−𝑡

2

10
−
𝑣2

40

𝑣

0

𝑥

𝑥 = 20 𝑡 + 2 ln
1 + 𝑒−𝑡

2

𝑣 = 20 1 −
2

𝑒𝑡 + 1
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Graphing                                   we can see how 

velocity quickly plateaus.

𝑣 = 20 1 −
2

𝑒𝑡 + 1

𝑣^

> 𝑡

𝑣 = 20 1 −
2

𝑒𝑡 + 1

Graphing                                             we can see that the graph 

approaches an oblique asymptote, which has a gradient of 20, 

matching the terminal velocity.

𝑥 = 20 𝑡 + 2 ln
1 + 𝑒−𝑡

2
𝑥^

> 𝑡
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EXERCISE 6.6

BASIC

1 A mass of 1 kg is released from rest at the surface in which the retardation on the mass is

proportional to the distance fallen (𝑥). The net force for this motion is 𝑔 − 𝑘𝑥 Newtons, 

with the downward direction as positive. How far will the mass fall before it has constant 

velocity?

2 A particle of unit mass falls from rest from the top of a cliff in a medium where the resistive

force is 𝑘𝑣2 . How far has it fallen when it reaches a speed half its terminal velocity?

3 A ball of mass 𝑚 is projected vertically upwards with speed 𝑢. The acceleration acting 

against the ball is gravity plus air resistance proportional to its speed. Find the time (𝑡)

taken to reach the greatest height.

MEDIUM

4 A particle of mass 𝑚 is projected vertically upwards with an initial velocity of 𝑢 ms−1 in a

medium in which the resistance to the motion is proportional to the square of the velocity

𝑣 ms−1 of the particle or 𝑘𝑣2. Let 𝑥 be the displacement in metres of the particle above the

point of projection, 𝑂, so that the equation of motion is ሷ𝑥 = − 𝑔 + 𝑘𝑣2 where 𝑔 ms−2 is

the acceleration due to gravity. Assume 𝑘 = 10 and the acceleration due to gravity is

10 ms−2. Find an expression for the time taken as a function of velocity.

5 i Find the constants a, b and c such that:

300𝑥

1000 + 𝑥3
=

𝑎

10 + 𝑥
+

𝑏𝑥 + 𝑐

100 − 10𝑥 + 𝑥2

ii A particle of mass 𝑚 kg is projected vertically upwards in a highly resistive medium at a 

velocity of 5 m/s.

The particle is subjected to the force of gravity and to a resistance due to the medium of 

magnitude 
𝑚𝑣3

100
Newtons. Given the acceleration due to gravity is 10 ms−2,

(𝜶) State the equation of motion (if upwards is the positive direction)

𝜷 Hence find the maximum height reached by the particle, (giving your answer correct 

to 1 decimal place). 

6 A particle of unit mass falls from rest under gravity and the resistance to its motion is 𝑘𝑣2, 

where 𝑣 is its speed and 𝑘 is a positive constant. Prove 𝑣2 =
𝑔

𝑘
1 − 𝑒−2𝑘𝑥 .
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CHALLENGING

7 A rock is dropped under gravity 𝑔, from rest, at the top of a cliff. The vertical distance 

travelled is represented by 𝑥 in time 𝑡. Air resistance is proportional to the velocity 𝑣 of the 

rock.

i Explain why

ii Show that                              when 𝑡 ≥ 0.

iii Show that

8 A body of mass 𝑚 in falling from rest, experiences air resistance of magnitude 𝑘𝑣2 per 

unit mass, where 𝑘 is a positive constant.

i Write the equation of motion of the body and find the value of the terminal velocity 𝑉 of 

the body in terms of 𝑘 and 𝑔 (acceleration due to gravity). 

ii If 𝑤 is the velocity of the body when it reaches the ground, show that the distance 𝑆

fallen is given by 

iii With air resistance remaining the same, prove that if the body is projected vertically 

upwards from the ground with velocity 𝑈, then it will attain its greatest height 𝐻 where

and return to the ground with velocity 𝑤 given by

9 A particle A of unit mass travels horizontally through a viscous medium. When 𝑡 = 0, the 

particle is at point 𝑂 with initial speed u. The resistance on particle A due to the medium is 

𝑘𝑣2, where 𝑣 is the velocity of the particle at time 𝑡 and 𝑘 is a positive constant. When 

𝑡 = 0, a second particle 𝐵 of equal mass is projected vertically upwards from 𝑂 with the 

same initial speed 𝑢 through the same medium. It experiences both a gravitational force 

and a resistance due to the medium. The resistance on particle 𝐵 is 𝑘𝑤2, where w is the 

velocity of the particle 𝐵 at time t. The acceleration due to gravity is g.

i Show that the velocity 𝑣 of particle 𝐴 is given by 
1

𝑣
= kt +

1

𝑢

ii By considering the velocity w of particle B, show that

t =
1

𝑔𝑘
tan−1 u

𝑘

𝑔
− tan−1 w

𝑘

𝑔

iii Show that the velocity 𝑉 of particle 𝐴 when particle 𝐵 is at rest is given by

1

𝑉
=

1

𝑢
+

𝑘

𝑔
tan−1 y

𝑘

𝑔

iv Hence, if 𝑢 is very large, explain why V ≈
2

𝜋

𝑔

𝑘

𝑑𝑣

𝑑𝑡
= 𝑔 − 𝑘𝑣

𝑣 =
𝑔

𝑘
1 − 𝑒−𝑘𝑡

𝑥 = −
1

𝑘
𝑣 +

𝑔

𝑘2
log𝑒

𝑔

𝑔 − 𝑘𝑣

𝑆 = −
1

2𝑘
ln 1 −

𝑤2

𝑉2

𝐻 =
1

2𝑘
ln 1 +

𝑈2

𝑉2
𝑤−2 = 𝑈−2 + 𝑉−2
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10 A particle of unit mass is projected vertically upwards. The resistance to the

motion is proportional to the square of the velocity. The velocity of projection is 𝑉.

i Show that the acceleration is given by: ሷ𝑥 = −(𝑔 + 𝑘𝑣2).

ii Show that the maximum height 𝐻 reached is:

iii Show that 𝑇, the time taken to reach 𝐻 is: 

11 Particles of mass 𝑚 and 3𝑚 kilograms are connected by a light inextensible

string which passes over a smooth fixed pulley. The string hangs vertically

on each side, as shown in the diagram.

The particles are released from rest and move under the influence of gravity. 

The air resistance on each particle is 𝑘𝑣 Newtons, when the speed of the 

particles is 𝑣 ms−1 and the acceleration due to gravity is 𝑔 ms−2 and is 

taken as positive throughout the question and is assumed to be constant.

𝑘 is a positive constant.

i Draw diagrams to show the forces acting on each particle.

ii Show that the equation of motion is:

iii Find the terminal velocity 𝑉 or maximum speed of the system stating your answer in 

terms of 𝑚,𝑔 and 𝑘.

iv Prove that the time since the beginning of the motion is given by:

v If the bodies attain a velocity equal to half of the terminal speed, show by using the 

results in iii. and iv. that the time elapsed is equal to 
𝑉

𝑔
ln 4, where 𝑉 is the terminal 

velocity. 

12 A weight is oscillating on the end of a spring under water. Because of the resistance by 

the water (proportional to speed), the equation of the particle is : ሷ𝑥 = −4𝑥 − 2 3 ሶ𝑥, where 

𝑥 is the distance in metres above equilibrium position at time 𝑡 seconds. Initially the 

particle is at the equilibrium position, moving upwards with a speed of 3 ms−1

i Find the first and second derivatives of 𝑥 = 𝐴𝑒− 3𝑡 sin 𝑡, where 𝐴 is the constant, and 

hence show that 𝑥 = 𝐴𝑒− 3𝑡 sin 𝑡, is a solution of the differential equation,  

ሷ𝑥 = −4𝑥 − 2 3 ሶ𝑥, then substitute the initial conditions to find 𝐴.

ii At what times during the first 2𝜋 seconds is the particle moving downwards?

𝐻 =
1

2𝑘
ln

𝑔 + 𝑘𝑉2

𝑔

𝑇 =
1

𝑘𝑔
tan−1

𝑘

𝑔
𝑉

> >

𝒎

𝟑𝒎

ሷ𝑥 =
𝑚𝑔 − 𝑘𝑣

2𝑚

𝑡 =
2𝑚

𝑘
ln

𝑚𝑔

𝑚𝑔 − 𝑘𝑣
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SOLUTIONS - EXERCISE 6.6

1

3

constant velocity when force is zero

0 = 𝑔 − 𝑘𝑥
𝑘𝑥 = 𝑔

𝑥 =
𝑔

𝑘

𝑚 ሷ𝑥 = −𝑚𝑔 −𝑚𝑘𝑣
ሷ𝑥 = −(𝑔 + 𝑘𝑣)

𝑑𝑣

𝑑𝑡
= −(𝑔 + 𝑘𝑣)

𝑑𝑡

𝑑𝑣
= −

1

𝑔 + 𝑘𝑣

𝑡 = −න
𝑢

0 1

𝑔 + 𝑘𝑣
𝑑𝑣

=
1

𝑘
ln(𝑔 + 𝑘𝑣)

0

𝑢

=
1

𝑘
ln(𝑔 + 𝑘𝑢) − ln 𝑔

=
1

𝑘
ln

𝑔 + 𝑘𝑢

𝑔

2 ሷ𝑥 = 𝑔 − 𝑘𝑣2

0 = 𝑔 − 𝑘𝑉𝑇
2 ⇒ 𝑉𝑇

2 =
𝑔

𝑘
⇒ 𝑉𝑇 =

𝑔

𝑘

𝑣
𝑑𝑣

𝑑𝑥
= 𝑔 − 𝑘𝑣2

𝑑𝑣

𝑑𝑥
=
𝑔 − 𝑘𝑣2

𝑣
𝑑𝑥

𝑑𝑣
=

𝑣

𝑔 − 𝑘𝑣2

𝑥 = න
0

1
2

𝑔
𝑘 𝑣

𝑔 − 𝑘𝑣2
𝑑𝑣

=
1

2𝑘
ln 𝑔 − 𝑘𝑣2

1
2

𝑔
𝑘

0

=
1

2𝑘
ln𝑔 − ln 𝑔 − 𝑘

𝑔

4𝑘

=
1

2𝑘
ln𝑔 − ln

3𝑔

4

=
1

2𝑘
ln

4

3

4 𝑑𝑣

𝑑𝑡
= − 𝑔 + 𝑘𝑣2

𝑑𝑡

𝑑𝑣
= −

1

𝑔 + 𝑘𝑣2

𝑡 = −න
𝑢

𝑣 1

𝑔 + 𝑘𝑣2
𝑑𝑣

=
1

𝑘
න
𝑣

𝑢 1

𝑔
𝑘

2

+ 𝑣2

𝑑𝑣

=
1

𝑘

𝑘

𝑔
tan−1

𝑘

𝑔
𝑣

𝑣

𝑢

=
1

𝑘𝑔
tan−1

𝑘

𝑔
𝑢 − tan−1

𝑘

𝑔
𝑣

=
1

10 × 10
ቌ

ቍ

tan−1
10

10
𝑢

− tan−1
10

10
𝑣

=
1

10
tan−1 𝑢 − tan−1 𝑣

5
𝑎 =

300 −10

100 − 10 −10 + −10 2
= −10

equating coefficients of 𝑥2: 𝑎 + 𝑏 = 0 ⇒
𝑏 = 10

equating constants:  100𝑎 + 10𝑐 = 0 ⇒
𝑐 = 100

∴
300𝑥

1000 + 𝑥3
= −

10

10 + 𝑥
+

10𝑥 + 100

100 − 10𝑥 + 𝑥2

𝜶) 𝑚 ሷ𝑥 = −𝑚𝑔 −
𝑚𝑣3

100

ሷ𝑥 = − 𝑔 +
𝑣3

100

= − 10 +
𝑣3

100
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5
𝜷) 𝑣

𝑑𝑣

𝑑𝑥
= − 10 +

𝑣3

100

𝑑𝑣

𝑑𝑥
= −

1000 + 𝑣3

100𝑣
𝑑𝑥

𝑑𝑣
= −

100𝑣

1000 + 𝑣3

𝑥 = −න
5

0 100𝑣

1000 + 𝑣3
𝑑𝑣

=
1

3
න
0

5

−
10

10 + 𝑣
+

10𝑣 + 100

100 − 10𝑣 + 𝑣2
𝑑𝑣

=
1

3
න
0

5

−
10

10 + 𝑣
+
5 2𝑣 − 10 + 150

100 − 10𝑣 + 𝑣2
𝑑𝑣

=
1

3
න
0

5

−
10

10 + 𝑣
+

5 2𝑣 − 10

100 − 10𝑣 + 𝑣2
+

150

𝑣 − 5 2 + 75
2 𝑑𝑣

=
1

3
−10 ln 10 + 𝑣 + 5 ln 100 − 10𝑣 + 𝑣2 +

150

75
tan−1

𝑣 − 5

75 0

5

=
1

3
−10 ln 15 + 5 ln 75 + 0 − −10 ln 10 + 5 ln 100 +

150

75
tan−1 −

5

75

= 1.19197. . .
= 1.2 m (1 dp)

6 𝑚 ሷ𝑥 = 𝑚𝑔 −𝑚𝑘𝑣2

𝑣
𝑑𝑣

𝑑𝑥
= 𝑔 − 𝑘𝑣2

𝑑𝑣

𝑑𝑥
=
𝑔 − 𝑘𝑣2

𝑣
𝑑𝑥

𝑑𝑣
=

𝑣

𝑔 − 𝑘𝑣2

𝑥 = න
0

𝑣 𝑣

𝑔 − 𝑘𝑣2
𝑑𝑣

= −
1

2𝑘
ln 𝑔 − 𝑘𝑣2

0

𝑣

=
1

2𝑘
ln𝑔 − ln 𝑔 − 𝑘𝑣2

=
1

2𝑘
ln

𝑔

𝑔 − 𝑘𝑣2

𝑒2𝑘𝑥 =
𝑔

𝑔 − 𝑘𝑣2

𝑔 − 𝑘𝑣2 = 𝑔𝑒−2𝑘𝑥

𝑘𝑣2 = 𝑔 1 − 𝑒−2𝑘𝑥

𝑣2 =
𝑔

𝑘
1 − 𝑒−2𝑘𝑥
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7 i

𝑚 ሷ𝑥 = 𝑚𝑔 −𝑚𝑘𝑣

∴
𝑑𝑣

𝑑𝑡
= 𝑔 − 𝑘𝑣

∴
𝑑𝑡

𝑑𝑣
=

1

𝑔 − 𝑘𝑣

𝑡 = න
0

𝑣 1

𝑔 − 𝑘𝑣

= −
1

𝑘
ln 𝑔 − 𝑘𝑣

0

𝑣

=
1

𝑘
ln𝑔 − ln 𝑔 − 𝑘𝑣

𝑘𝑡 = ln
𝑔

𝑔 − 𝑘𝑣

𝑒𝑘𝑡 =
𝑔

𝑔 − 𝑘𝑣
𝑔𝑒𝑘𝑡 − 𝑘𝑣𝑒𝑘𝑡 = 𝑔

𝑘𝑣𝑒𝑘𝑡 = 𝑔 𝑒𝑘𝑡 − 1

𝑣 =
𝑔

𝑘
1 − 𝑒−𝑘𝑡

ii

𝑣
𝑑𝑣

𝑑𝑥
= 𝑔 − 𝑘𝑣

𝑑𝑣

𝑑𝑥
=
𝑔 − 𝑘𝑣

𝑣
𝑑𝑥

𝑑𝑣
=

𝑣

𝑔 − 𝑘𝑣

𝑥 = න
0

𝑣 𝑣

𝑔 − 𝑘𝑣
𝑑𝑣

= −
1

𝑘
න
0

𝑣 𝑔 − 𝑘𝑣 − 𝑔

𝑔 − 𝑘𝑣
𝑑𝑣

= −
1

𝑘
න
0

𝑣

1 +
𝑔

𝑘
×

−𝑘

𝑔 − 𝑘𝑣
𝑑𝑣

=
1

𝑘
𝑣 +

𝑔

𝑘
ln 𝑔 − 𝑘𝑣

𝑣

0

=
1

𝑘
ቆ 0 +

𝑔

𝑘
ln 𝑔 − ൬𝑣 +

𝑔

𝑘
ln(𝑔

=
1

𝑘
−𝑣 +

𝑔

𝑘
ln

𝑔

𝑔 − 𝑘𝑣

= −
1

𝑘
𝑣 +

𝑔

𝑘2
ln

𝑔

𝑔 − 𝑘𝑣

8 i

𝑚 ሷ𝑥 = 𝑚𝑔 −𝑚𝑘𝑣2

ሷ𝑥 = 𝑔 − 𝑘𝑣2

∴ 0 = 𝑔 − 𝑘𝑉2

𝑉2 =
𝑔

𝑘

𝑉 =
𝑔

𝑘

ii

𝑣
𝑑𝑣

𝑑𝑥
= 𝑔 − 𝑘𝑣2

𝑑𝑣

𝑑𝑥
=
𝑔 − 𝑘𝑣2

𝑣
𝑑𝑥

𝑑𝑣
=

𝑣

𝑔 − 𝑘𝑣2

𝑆 = න
0

𝑤 𝑣

𝑔 − 𝑘𝑣2
𝑑𝑣

= −
1

2𝑘
ln 𝑔 − 𝑘𝑣2

0

𝑤

= −
1

2𝑘
ln 𝑔 − 𝑘𝑤2 − ln 𝑔

= −
1

2𝑘
ln

𝑔 − 𝑘𝑤2

𝑔

= −
1

2𝑘
1 −

𝑘

𝑔
𝑤2

= −
1

2𝑘
ln 1 −

𝑤2

𝑉2 from i

iii

𝑚 ሷ𝑥 = −𝑚𝑔 −𝑚𝑘𝑣2

ሷ𝑥 = − 𝑔 + 𝑘𝑣2

𝑣
𝑑𝑣

𝑑𝑥
= − 𝑔 + 𝑘𝑣2

𝑑𝑣

𝑑𝑥
= −

𝑔 + 𝑘𝑣2

𝑣
𝑑𝑥

𝑑𝑣
= −

𝑣

𝑔 + 𝑘𝑣2

𝐻 = −න
𝑈

0 𝑣

𝑔 + 𝑘𝑣2
𝑑𝑣

=
1

2𝑘
ln 𝑔 + 𝑘𝑣2

0

𝑈

=
1

2𝑘
ln 𝑔 + 𝑘𝑈2 − ln 𝑔

=
1

2𝑘
ln

𝑔 + 𝑘𝑈2

𝑔

=
1

2𝑘
ln 1 +

𝑘

𝑔
𝑈2

=
1

2𝑘
ln 1 +

𝑈2

𝑉2

but 𝐻 = 𝑆

∴
1

2𝑘
ln 1 +

𝑈2

𝑉2 = −
1

2𝑘
ln 1 −

𝑤2

𝑉2

ln 1 +
𝑈2

𝑉2 = − ln 1 −
𝑤2

𝑉2

∴
𝑉2 +𝑈2

𝑉2 =
𝑉2

𝑉2 − 𝑤2

𝑉4 + 𝑈2𝑉2 − 𝑉2𝑤2 − 𝑈2𝑤2 = 𝑉4

𝑈2𝑉2 = 𝑉2𝑤2 + 𝑈2𝑤2

1

𝑤2 =
1

𝑈2 +
1

𝑉2

∴ 𝑤−2 = 𝑈−2 + 𝑉−2
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9 i
𝑑𝑣

𝑑𝑡
= −𝑘𝑣2

𝑑𝑡

𝑑𝑣
= −

1

𝑘
×

1

𝑣2

𝑡 = −
1

𝑘
න
𝑢

𝑣

𝑣−2 𝑑𝑣

=
1

𝑘

1

𝑣
𝑢

𝑣

=
1

𝑘

1

𝑣
−
1

𝑢

𝑘𝑡 =
1

𝑣
−
1

𝑢
1

𝑣
= 𝑘𝑡 +

1

𝑢

ii
𝑑𝑤

𝑑𝑡
= −𝑔 − 𝑘𝑤2

𝑑𝑡

𝑑𝑤
= −

1

𝑔 + 𝑘𝑤2

𝑡 = −න
𝑤

𝑢 1

𝑔 + 𝑘𝑤2
𝑑𝑤

=
1

𝑘
න
𝑤

𝑢 1

𝑔
𝑘

2

+ 𝑤2

𝑑𝑤

=
1

𝑘

𝑘

𝑔
tan−1

𝑘

𝑔
𝑤

𝑤

𝑢

=
1

𝑘𝑔
tan−1 𝑢

𝑘

𝑔
− tan−1 𝑤

𝑘

𝑔

iii

Let 𝑤 = 0

𝑡 =
1

𝑘𝑔
tan−1 𝑢

𝑘

𝑔

∴
1

𝑣
= 𝑘

1

𝑘𝑔
tan−1 𝑢

𝑘

𝑔
+
1

𝑢

=
1

𝑢
+

𝑘

𝑔
tan−1 𝑢

𝑘

𝑔

iv

as 𝑢 → ∞
1

𝑢
→ 0 and tan−1 𝑢

𝑘

𝑔
→

𝜋

2

1

𝑣
→

𝑘

𝑔
tan−1 𝑢

𝑘

𝑔
=

𝜋 𝑘

2 𝑔

∴ 𝑣 →
2

𝜋

𝑔

𝑘

10 i

𝑚 ሷ𝑥 = −𝑚𝑔 −𝑚𝑘𝑣2

ሷ𝑥 = − 𝑔 + 𝑘𝑣2

ii

𝑣
𝑑𝑣

𝑑𝑥
= − 𝑔 + 𝑘𝑣2

𝑑𝑣

𝑑𝑥
= −

𝑔 + 𝑘𝑣2

𝑣
𝑑𝑥

𝑑𝑣
= −

𝑣

𝑔 + 𝑘𝑣2

𝐻 = −න
𝑣

0 𝑣

𝑔 + 𝑘𝑣2

=
1

2𝑘
ln 𝑔 + 𝑘𝑣2

0

𝑉

=
1

2𝑘
ln 𝑔 + 𝑘𝑉2 − ln 𝑔

=
1

2𝑘
ln

𝑔 + 𝑘𝑉2

𝑔

iii
𝑑𝑣

𝑑𝑡
= − 𝑔 + 𝑘𝑣2

𝑑𝑡

𝑑𝑣
= −

1

𝑔 + 𝑘𝑣2

𝑡 = −න
𝑉

0 1

𝑔 + 𝑘𝑣2
𝑑𝑣

=
1

𝑘
න
0

𝑉 1

𝑔
𝑘

2

+ 𝑣2

𝑑𝑣

=
1

𝑘

𝑘

𝑔
tan−1

𝑘

𝑔
𝑣

0

𝑉

=
1

𝑘𝑔
tan−1

𝑘

𝑔
𝑉
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11 i

ii

𝑚 ሷ𝑥 + 3𝑚 ሷ𝑥
= 3𝑚𝑔 − 𝑘𝑣 − 𝑇 −𝑚𝑔 − 𝑘𝑣 + 𝑇

4𝑚 ሷ𝑥 = 2𝑚𝑔 − 2𝑘𝑣

ሷ𝑥 =
𝑚𝑔 − 𝑘𝑣

2𝑚

iii

Let ሷ𝑥 = 0
∴ 𝑚𝑔 − 𝑘𝑉 = 0

𝑉 =
𝑚𝑔

𝑘

iv
𝑑𝑣

𝑑𝑡
=
𝑚𝑔 − 𝑘𝑣

2𝑚
𝑑𝑡

𝑑𝑣
=

2𝑚

𝑚𝑔 − 𝑘𝑣

𝑡 = 2𝑚න
0

𝑣 1

𝑚𝑔 − 𝑘𝑣
𝑑𝑣

= −
2𝑚

𝑘
ln 𝑚𝑔 − 𝑘𝑣

0

𝑣

=
2𝑚

𝑘
ln 𝑚𝑔 − ln 𝑚𝑔 − 𝑘𝑣

=
2𝑚

𝑘
ln

𝑚𝑔

𝑚𝑔 − 𝑘𝑣

v

Let 𝑣 =
𝑉

2
=

𝑚𝑔

2𝑘

𝑡 =
2𝑚

𝑘
ln

𝑚𝑔

𝑚𝑔 − 𝑘
𝑚𝑔
2𝑘

=
2𝑚

𝑘
ln

𝑚𝑔

𝑚𝑔 −
𝑚𝑔
2

=
2𝑚

𝑘
ln 2

=
𝑚

𝑘
ln 4

=
𝑉

𝑔
ln 4 since 𝑉 =

𝑚𝑔

𝑘

12 𝑥 = 𝐴𝑒− 3𝑡 sin 𝑡

ሶ𝑥 = 𝐴 𝑒− 3𝑡 cos 𝑡 + sin 𝑡 − 3𝑒− 3𝑡

= 𝐴𝑒− 3𝑡 cos 𝑡 − 3 sin 𝑡

= 2𝐴𝑒− 3𝑡 sin 𝑡 − 3 cos 𝑡

−4𝑥 − 2 3 ሶ𝑥

= 2𝐴𝑒− 3𝑡 sin 𝑡 − 3 cos 𝑡

= ሷ𝑥

∴ 𝑥 = 𝐴𝑒− 3𝑡 sin 𝑡 is a solution of ሷ𝑥 = −4𝑥 − 2 3 ሶ𝑥

when 𝑡 = 0, ሶ𝑥 = 3

∴ 3 = 𝐴𝑒0 cos 0 − 3 sin 0

𝐴 = 3

Let ሶ𝑥 < 0

3𝑒− 3𝑡 cos 𝑡 − 3 sin 𝑡 < 0

since 3𝑒− 3𝑡 > 0 for all 𝑡, velocity is negative when cos 𝑡 −

3 sin 𝑡 < 0

Let cos 𝑡 − 3 sin 𝑡 = 𝑟 cos(𝑡 + 𝛼) where 

𝑟 = 12 + 3
2
= 2 and 𝛼 = tan−1

3

1
=

𝜋

3

∴ 2 cos 𝑡 +
𝜋

3
< 0

cos 𝑡 +
𝜋

3
< 0

𝜋

2
< 𝑡 +

𝜋

3
<
3𝜋

2
𝜋

6
< 𝑡 <

7𝜋

6
The particle is moving downwards between 𝑡 =

𝜋

6
and 𝑡 =

7𝜋

6

seconds.

𝒎 𝟑𝒎

mg 3mg

kv

kv

T T

ሷ𝑥 = 𝐴 𝑒− 3𝑡 −sin 𝑡 − 3 cos 𝑡 + cos 𝑡 − 3 sin 𝑡 − 3𝑒− 3𝑡

= −4 𝐴𝑒− 3𝑡 sin 𝑡 − 2 3 𝐴𝑒− 3𝑡 cos 𝑡 − 3 sin 𝑡

= −4𝐴𝑒− 3𝑡 sin 𝑡 − 2 3𝐴𝑒− 3𝑡 cos 𝑡 + 6𝐴𝑒− 3𝑡 sin 𝑡
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6.7 FURTHER PROJECTILE MOTION - CARTESIAN EQUATIONS

CARTESIAN EQUATIONS

The Cartesian equation describes the entire trajectory of the particle, while the parametric

equations for horizontal and vertical displacement describe the position only at a point in time.

Each form is useful for different types of questions. For example in computers to make an object

appear to move along the trajectory (a Cartesian equation) requires the programming to have

horizontal and vertical displacement as functions of time (parametric equations).

In Projectile Motion in Extension 1 we mainly solved questions using the parametric equations

for the horizontal and vertical components of motion. We might also have to find simple

Cartesian equations (like the example below) that involve only numbers and the variable 𝑡

(time), so where no other constants (such as gravitational acceleration, angles or velocity) are

involved. This follows from the earlier Extension 1 work on Parametric Equations.

Example 1 (Extension 1 level)

A stone is thrown from the top of a cliff. Its parametric equations of motion are 𝑥 = 10 3𝑡 and

𝑦 = 20 + 2𝑡 − 5𝑡2. What is its Cartesian equation? Assume air resistance is negligible.

Solution

𝑥 = 10 3𝑡 1

𝑦 = 20 + 2𝑡 − 5𝑡2 (2)

𝑡 =
𝑥

10 3
from 1

sub in 2 : 𝑦 = 20 + 2
𝑥

10 3
− 5

𝑥

10 3

2

= 20 +
𝑥

5 3
−
𝑥2

60

= 20 +
3𝑥

15
−
𝑥2

60
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CARTESIAN EQUATIONS IN EXTENSION 2

In Extension 2 we will combine the parametric equations involving 𝑔, 𝑉 and 𝜃 to create the

Cartesian equation.

The Cartesian equation of a particle fired from the origin with velocity 𝑉 and angle to the

horizontal 𝜃, where the gravitational acceleration is 𝑔, where air resistance is negligible, is given

by:

𝑦 = −
𝑔𝑥2

2𝑉2
1 + tan2 𝜃 + 𝑥 tan 𝜃

As with all projectile motion equations you will need to derive them in the exam, or they will be

given to you in the question, so the only advantage to students of memorising the formula would

be for checking their answers.

Proof 2

Given the parametric equations                                                             , prove the Cartesian 

equation of motion of a projectile fired from the Origin is                                                    . 

Assume air resistance is negligible.

Solution

𝑥 = 𝑉𝑡 cos 𝜃 (1)

𝑦 = −
𝑔𝑡2

2
+ 𝑉𝑡 sin𝜃 (2)

From (1):

𝑡 =
𝑥

𝑉 cos 𝜃
Substituting into (2):

𝑦 = −
𝑔

𝑥
𝑉 cos 𝜃

2

2
+ 𝑉

𝑥

𝑉 cos 𝜃
sin𝜃

𝑦 = −
𝑔𝑥2

2𝑉2 cos2 𝜃
+ 𝑥 tan 𝜃

𝑦 = −
𝑔𝑥2

2𝑉2
sec2 𝜃 + 𝑥 tan𝜃

𝑦 = −
𝑔𝑥2

2𝑉2
1 + tan2 𝜃 + 𝑥 tan𝜃

𝑥 = 𝑉𝑡 cos 𝜃 and 𝑦 = −
𝑔𝑡2

2
+ 𝑉𝑡 sin𝜃

𝑦 = −
𝑔𝑥2

2𝑉2
(1 + tan2 𝜃) + 𝑥 tan 𝜃
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Example 3

A cricket player hits a ball at a velocity of 40 ms−1 and the ball just clears a 1 metre high fence

which is 60 m away. Find the two possible angles at which the ball could have been hit, to the

nearest degree. Assume there is no air resistance and that 𝑔 = 10 ms−2.

The equation of motion is

Solution

𝑦 = −
𝑔𝑥2

2𝑉2
1 + tan2 𝜃 + 𝑥 tan 𝜃

1 = −
10 × 602

2 × 402
1 + tan2 𝜃 + 60 tan𝜃

1 = −11.25 1 + tan2 𝜃 + 60 tan 𝜃

11.25 tan2 𝜃 − 60 tan𝜃 + 12.25 = 0

tan𝜃 =
60 ± 602 − 4 11.25 12.25

2 11.25

= 5.1207, 0.2126

𝜃 = 79°, 12°

The ball can be hit at angle of 12° or 79° and just clear the fence.

𝑦 = −
𝑔𝑥2

2𝑉2
1 + tan2 𝜃 + 𝑥 tan 𝜃

A common question using Cartesian equations involves having to clear an object at a given

horizontal and vertical position. Usually this will involve a given initial velocity where you have to

find the initial angle of projection. There will be two answers - one above 45° and one below

45°. If the object has to clear the object (rather than just clear it) then any angle in between is

sufficient.

In the next example we are given the Cartesian equation while in the example after that it must

be derived first.

Mathematics Extension 2 © Steve Howard 554 Howard and Howard Education



Example 4

A stone is thrown from the top of a 40 m high cliff and lands in the sea 20 m from the base. If the

stone was thrown at a velocity of 10 ms−1 what are the possible angles of projection? Assume

negligible air resistance and 𝑔 = −9.8 ms−2.

Solution

The stone is thrown from (0,40) with velocity 10 ms−1 at an angle of 𝜃 and lands at (20,0) at

time 𝑡.

න
0

𝑡

𝑉 𝑑𝑡 = න
0

𝑡

10 cos 𝜃 𝑑𝑡

𝑥
0

𝑡

= 10 cos 𝜃 𝑡
0

𝑡

20 − 0 = 10𝑡 cos 𝜃

𝑡 =
2

cos 𝜃

න
0

𝑡

ሷ𝑦 𝑑𝑡 = න
0

𝑡

−9.8 𝑑𝑡

ሶ𝑦
0

𝑡

= −9.8 𝑡
0

𝑡

ሶ𝑦 − 10 sin𝜃 = −9.8𝑡

ሶ𝑦 = −9.8𝑡 + 10 sin 𝜃

න
0

𝑡

ሶ𝑦 𝑑𝑡 = න
0

𝑡

−9.8𝑡 + 10 sin 𝜃 𝑑𝑡

𝑦
0

𝑡

= −4.9𝑡2 + 10𝑡 sin𝜃
0

𝑡

𝑦 − 40 = −4.9𝑡2 + 10𝑡 sin 𝜃

𝑦 = −4.9𝑡2 + 10𝑡 sin 𝜃 + 40

Let 𝑡 =
2

cos 𝜃
, 𝑦 = 0

0 = −4.9
2

cos 𝜃

2

+ 10
2

cos 𝜃
sin 𝜃 + 40

0 = −4.9 × 4 sec2 𝜃 + 20 tan𝜃 + 40

0 = −19.6 tan2 𝜃 + 1 + 20 tan 𝜃 + 40

0 = 19.6 tan2 𝜃 − 20 tan 𝜃 − 20.4

tan𝜃 =
20 ± −20 2 − 4 19.6 −20.4

2 × 19.6

tan𝜃 = −0.6305,1.6508,

𝜃 = −32°14′, 58°48

The stone can be thrown up at an angle of 58°48′ or down at an angle of 32°14′.
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Example 5

A projectile is fired from the base of a hill which has a angle of
𝜋

4
to the horizontal. The projectile

is fired at a velocity of 20 ms−1 at an angle to the horizontal of
𝜋

3
. How far up the hill will the

projectile land? Assume there is no air resistance and that 𝑔 = 10 ms−2.

The equation of motion is

Solution

Let the hill be represented by the line 𝑦 = 𝑥.

substitute 𝑦 = 𝑥, 𝑔 = 10, 𝑉 = 20, 𝜃 =
𝜋

3
into the equation of motion

𝑥 = −
10 × 𝑥2

2 × 202
1 + 3

2
+ 3𝑥

𝑥 = −
𝑥2

20
+ 3𝑥

𝑥2

20
+ 1 − 3 𝑥 = 0

𝑥
𝑥

20
+ 1 − 3 = 0

𝑥 = 0, 20 3 − 1

∴ at impact 𝑥 = 20 3 − 1

Using exact triangles the distance to impact is 20 2( 3 − 1) metres.

Another similar type of question involves the projectile being projected onto sloping ground, and

we need to find the point of impact. The ground will often have a slope of ±1 to make

calculations easier.

𝑦 = −
𝑔𝑥2

2𝑉2
1 + tan2 𝜃 + 𝑥 tan 𝜃
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HARDER PROJECTILE MOTION

Although it was rarely tested, the old Extension 2 Mechanics syllabus actually included projectile

motion and simple harmonic motion. In 2019, the last year the old syllabus was tested, we saw a

question that does not involve Cartesian equations, so could be included in the HSC for the new

Extension 1 course, but may indicate the level of difficulty that is intended for the new Extension

2 course.

Example 6 (2019 HSC)

Two objects are projected from the same point on a horizontal surface. Object 1 is projected with

an initial velocity of 20 ms−1 directed at an angle of
𝜋

3
to the horizontal. Object 2 is projected 2

seconds later.

The equations of an object projected from the origin with initial velocity 𝑣 at an angle 𝜃 to the

𝑥-axis are 𝑥 = 𝑣𝑡 cos 𝜃 and 𝑦 = −4.9𝑡2 + 𝑣𝑡 sin 𝜃 , where 𝑡 is the time after projection of the 

object. Do NOT prove these equations.

i Show that Object 1 will land at a distance
100 3

4.9
m from the point of projection.

ii The two objects hit the horizontal plane at the same place and time. Find the initial speed and

the angle of projection of Object 2, giving your answer correct to 1 decimal place.

Solution

i

Let 𝑦 = 0

∴ 0 = −4.9𝑡2 + 20𝑡 sin
𝜋

3

0 = −4.9𝑡2 + 10 3𝑡

𝑡 4.9𝑡 − 10 3 = 0

𝑡 = 0,
10 3

4.9

∴ the time of flight is
10 3

4.9
seconds

At impact

𝑥 = 20
10 3

4.9
cos

𝜋

3

=
100 3

4.9
m
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ii

Let Object 2 have time of flight 𝑡 − 2 =
10 3

4.9
− 2 =

10 3−9.8

4.9
and be projected at an angle of 𝛼 with 

initial velocity 𝑈.

At impact:

100 3

4.9
= 𝑈

10 3 − 9.8

4.9
cos 𝛼 (1)

0 = −4.9
10 3 − 9.8

4.9

2

+ 𝑈
10 3 − 9.8

4.9
sin𝛼

4.9
10 3 − 9.8

4.9

2

= 𝑈
10 3 − 9.8

4.9
sin 𝛼 2

2 ÷ 1 :

4.9
10 3 − 9.8

4.9

2

ൗ100 3
4.9

= tan 𝛼

𝛼 = tan−1
10 3 − 9.8

2

100 3

= 18.1° (1 dp)

sub in (1):

100 3

4.9
= 𝑈

10 3 − 9.8

4.9
cos 18.1°

𝑈 =
100 3

10 3 − 9.8 cos 18.1°

= 24.2 ms−1 (1 dp)

For Object 2 the initial angle and velocity are unrelated to those of Object 1, so we use new

variables, not 𝑉 and 𝜃. The time of Object 2 is related to the time of Object 1, so we can still use

𝑡 as a variable for time. The range of the two Objects is the same, but that does not mean the

two angles are the complements of each other, as the velocities are not the same.
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EXERCISE 6.7

BASIC

1 Given the parametric equations                                                             , prove the Cartesian 

equation of motion of a projectile fired from the Origin is

2 A stone is thrown from the top of a cliff. Its parametric equations of motion are 𝑥 = 5 2𝑡

and 𝑦 = 10 + 2 2𝑡 − 5𝑡2. What is its Cartesian equation?

3 A cricket player hits a ball at a velocity of 30 ms−1 and the ball just clears a 1 metre high

fence which is 50 m away. Find the two possible angles at which the ball could have been

hit, to the nearest degree. Assume there is no air resistance and that 𝑔 = 10 ms−2).

The equation of motion is

MEDIUM

4 A ball is kicked on level ground to clear a fence 2 metres high and 40 metres away. The

initial velocity is 30 metres per second and the angle of projection is 𝛼. The displacement

equations are 𝑥 = 30𝑡 cos𝛼 and 𝑦 = −5𝑡2 + 30𝑡 sin𝛼. (Do NOT prove these).

i Show that

ii Hence, or otherwise, find the angles of projection that allow the ball to clear the fence.

Answer to the nearest degree.

5 A stone is thrown from the top of a 50 m high cliff and lands in the sea 30 m from the base.

If the stone was thrown at a velocity of 20 ms−1 what are the possible angles of

projection? Assume 𝑔 = −9.8 ms−2.

6 A paint ball is fired at a velocity of 20 ms−1, at an angle of 𝜃 to the horizontal, at a target 

2.5 m above the ground which is 25 m horizontally from the point of projection. The paint 

ball is fired from a height of 1.5 m. Assume 𝑔 = −9.8 ms−2.

i The equation of horizontal motion is given by 𝑥 = 20𝑡 cos 𝜃. Derive the equations of 

vertical motion.

ii To avoid overhead power lines the paintball must be fired at an angle less than 45°. At 

what does it need to fired to hit the target?

7
A ball is hit at a velocity of 50 ms−1 at an angle of projection 𝜃 where tan 𝜃 =

3

4
.

i Taking the origin as the point of projection and 𝑔 = 10 ms−2 show that ሶ𝑥 = 40 and 

ሶ𝑦 = −10𝑡 + 30, and then find 𝑥 and 𝑦 in terms of 𝑡.

ii A tall building is 100 m from where the ball is hit on horizontal ground. If the ball passes 

through a small open window in the building find the height of the window.

iii Find the velocity and angle that the ball makes with the horizontal as it passes through 

the window.

𝑥 = 𝑉𝑡 cos 𝜃 and 𝑦 = −
𝑔𝑡2

2
+ 𝑉𝑡 sin𝜃

𝑦 = −
𝑔𝑥2

2𝑉2
(1 + tan2 𝜃) + 𝑥 tan 𝜃

𝑦 = −
𝑔𝑥2

2𝑉2
1 + tan2 𝜃 + 𝑥 tan 𝜃

𝑦 = −
𝑥2

180
sec2 𝛼 + 𝑥 tan 𝛼
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CHALLENGING

8 A small paintball is fired from the origin with initial velocity 14 metres per second towards

an eight metre high barrier. The origin is at ground level 10 metres from the base of the

barrier. The equations of motion are 𝑥 = 14𝑡 cos 𝜃 and 𝑦 = 14𝑡 sin𝜃 − 4.9𝑡2 where 𝜃 is the

angle to the horizontal at which the paintball is fired and 𝑡 is the time in seconds. (Do NOT

prove these equations of motion.)

i Show that the equation of trajectory of the paintball is

where 𝑚 = tan𝜃.

ii Show that the paintball hits the barrier at height ℎ metres when 𝑚 = 2 ± 3 − 0.4ℎ

iii There is a large hole in the barrier. The bottom of the hole is 3.9 metres above the

ground and the top of the hole is 5.9 metres above the ground. The paintball passes

through the hole if 𝑚 is in one of two intervals. One interval is 2.8 ≤ 𝑚 ≤ 3.2. Find the

other interval.

iv Show that, if the paintball passes through the hole, the range is metres.

Hence find the width of the two intervals in which the paintball can land at ground level

on the other side of the barrier.

𝑦 = 𝑚𝑥 −
1 +𝑚2

40
𝑥2

40𝑚

1 + 𝑚2

𝑦

𝑂
𝜃

10

8

𝑥
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9 The take-off point 𝑂 on a ski jump is located at the top of a downslope. The angle

between the downslope and the horizontal is
𝜋

4
. A skier takes off from 𝑂 with velocity

𝑉 ms−1 at angle 𝜃 to the horizontal, where 0 ≤ 𝜃 <
𝜋

2
. The skier lands on the downslope at

some point 𝑃, a distance 𝐷 metres from 𝑂.

The flight path of the skier is given by 𝑥 = 𝑉𝑡 cos 𝜃 , 𝑦 = −
1

2
𝑔𝑡2 + 𝑉𝑡 sin𝜃 ., where 𝑡 is the

time in seconds after take-off. (Do NOT prove this.)

i Show that the Cartesian equation of the flight path of the skier is given by

𝑦 = 𝑥 tan 𝜃 −
𝑔𝑥2

2𝑉2
sec2 𝜃

ii Show that

iii Show that

iv Show that 𝐷 has a maximum value and find the value of 𝜃 for which this occurs.

𝐷 = 2 2
𝑉2

𝑔
cos 𝜃 cos 𝜃 + sin𝜃

𝑑𝐷

𝑑𝜃
= 2 2

𝑉2

𝑔
cos 2𝜃 − sin 2𝜃

𝑦

𝑂
𝜃

𝜋

4

𝑃

𝑥

𝐷
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SOLUTIONS - EXERCISE 6.7

1 𝑥 = 𝑉𝑡 cos𝜃 (1)

𝑦 = −
𝑔𝑡2

2
+ 𝑉𝑡 sin 𝜃 (2)

From (1):

𝑡 =
𝑥

𝑉 cos𝜃
Substituting into (2):

𝑦 = −
𝑔

𝑥
𝑉 cos 𝜃

2

2
+ 𝑉

𝑥

𝑉 cos𝜃
sin 𝜃

𝑦 = −
𝑔𝑥2

2𝑉2 cos2 𝜃
+ 𝑥 tan 𝜃

𝑦 = −
𝑔𝑥2

2𝑉2
sec2 𝜃 + 𝑥 tan 𝜃

𝑦 = −
𝑔𝑥2

2𝑉2
1 + tan2 𝜃 + 𝑥 tan 𝜃

2 𝑥 = 5 2𝑡 1

𝑦 = 10 + 2 2𝑡 − 5𝑡2 (2)

𝑡 =
𝑥

5 2
from 1

sub in 2 :

𝑦 = 10 + 2 2
𝑥

5 2
− 5

𝑥

5 2

2

= 10 +
2𝑥

5
−
𝑥2

10

3
𝑦 = −

𝑔𝑥2

2𝑉2
1 + tan2 𝜃 + 𝑥 tan 𝜃

1 = −
10 × 502

2 × 302
1 + tan2 𝜃 + 50 tan 𝜃

1 = −13. ሶ8 1 + tan2 𝜃 + 50 tan 𝜃

13. ሶ8 tan2 𝜃 − 50 tan 𝜃 + 14. ሶ8 = 0

tan 𝜃 =
50 ± 502 − 4 13. ሶ8 14. ሶ8

2 13. ሶ8

= 3.2724, 0.3276
𝜃 = 89°, 18°

4 i

𝑥 = 30𝑡 cos 𝛼 → 𝑡 =
𝑥

30 cos𝛼

∴ 𝑦 = −5
𝑥

30 cos𝛼

2

+ 30
𝑥

30 cos𝛼
sin 𝛼

= −
5𝑥2

900
sec2 𝛼 + 𝑥 tan 𝛼

= −
𝑥2

180
sec2 𝛼 + 𝑥 tan 𝛼

ii

Let 𝑥 = 40, 𝑦 = 2

2 = −
402

180
tan2 𝛼 + 1 + 40 tan 𝛼

2 = −
80

9
tan2 𝛼 −

80

9
+ 40 tan𝛼

80 tan2 𝛼 − 360 tan 𝛼 + 98 = 0

tan 𝛼 =
360 ± (−360)2−4 80 98

2 80
= −0.2910, 4.2090
= 16°, 77°

The ball will clear the fence for any angle

from 16° to 77°.
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5 The stone is thrown from (0,50) with velocity 20 ms−1 at an angle of 𝜃 and lands at (30,0) at time 𝑡.

න
0

𝑡

𝑉 𝑑𝑡 = න
0

𝑡

20 cos𝜃 𝑑𝑡

𝑥
0

𝑡

= 20 cos𝜃 𝑡
0

𝑡

30 − 0 = 20𝑡 cos 𝜃

𝑡 =
3

2 cos 𝜃

න
0

𝑡

ሷ𝑦 𝑑𝑡 = න
0

𝑡

−9.8 𝑑𝑡

ሶ𝑦
0

𝑡

= −9.8 𝑡
0

𝑡

ሶ𝑦 − 20 sin 𝜃 = −9.8𝑡
ሶ𝑦 = −9.8𝑡 + 20 sin 𝜃

න
0

𝑡

ሶ𝑦 𝑑𝑡 = න
0

𝑡

−9.8𝑡 + 20 sin 𝜃 𝑑𝑡

𝑦
0

𝑡

= −4.9𝑡2 + 20𝑡 sin 𝜃
0

𝑡

𝑦 − 50 = −4.9𝑡2 + 20𝑡 sin 𝜃
𝑦 = −4.9𝑡2 + 20𝑡 sin 𝜃 + 50

Let 𝑡 =
3

2 cos 𝜃
, 𝑦 = 0

0 = −4.9
3

2 cos𝜃

2

+ 20
3

2 cos𝜃
sin 𝜃 + 50

0 = −
4.9 × 9

4
sec2 𝜃 + 30 tan 𝜃 + 50

0 = −11.025 tan2 𝜃 + 1 + 30 tan 𝜃 + 50
0 = 11.025 tan2 𝜃 − 30 tan 𝜃 − 38.975

tan 𝜃 =
30 ± −30 2 − 4 11.025 −38.975

2 × 11.025
tan 𝜃 = −0.9603,3.6814,

𝜃 = −43°50′, 74°48
The stone can be thrown up at an angle of 74°48′ or down at an angle of 43°50′.

6 i

ሷ𝑦 = −9.8

න
0

𝑡

ሷ𝑦 𝑑𝑡 = −9.8න
0

𝑡

𝑑𝑡

ሶ𝑦
0

𝑡

= −9.8 𝑡
0

𝑡

ሶ𝑦 − 20 sin 𝜃 = −9.8𝑡
ሶ𝑦 = −9.8𝑡 + 20 sin 𝜃

න
0

𝑡

ሶ𝑦 = න
0

𝑡

−9.8𝑡 + 20 sin 𝜃 𝑑𝑡

𝑦
0

𝑡

= −4.9𝑡2 + 20𝑡 sin 𝜃
0

𝑡

𝑦 − 1.5 = −4.9𝑡2 + 20𝑡 sin 𝜃 − 0
𝑦 = −4.9𝑡2 + 20𝑡 sin 𝜃 + 1.5

ii

𝑡 =
𝑥

20 cos 𝜃

𝑦 = −4.9
𝑥

20 cos 𝜃

2

+ 20
𝑥

20 cos𝜃
sin 𝜃 + 1.5

400𝑦 = −4.9𝑥2 sec2 𝜃 + 400𝑥 tan 𝜃 + 600
400𝑦 = −4.9𝑥2 tan2 𝜃 + 1 + 400𝑥 tan 𝜃 + 600

Let 𝑥 = 25, 𝑦 = 2.5
400 2.5 = −4.9 25 2 tan2 𝜃 + 1 + 400 25 tan 𝜃 + 600

1000 = −3062.5 tan2 𝜃 − 3062.5 + 10000 tan 𝜃 + 600
3062.5 tan2 𝜃 − 10000 tan 𝜃 + 3462.5 = 0

tan 𝜃 =
10000 ± −10000 2 − 4 3062.5 3462.5

2 3062.5
= 0.3937, 2.8716
= 21°, 71°

The paintball needs to be fired at an angle of 21° to miss

the power lines and hit the target.
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7 i

ሶ𝑥 = 50 cos tan−1
3

4

= 50 ×
4

32 + 42

= 40 ms−1

න
0

𝑡

ሶ𝑥 𝑑𝑡 = 40න
0

𝑡

𝑑𝑡

𝑥
0

𝑡

= 40 𝑡
0

𝑡

𝑥 − 0 = 40𝑡
𝑥 = 40𝑡

ሷ𝑦 = −10

න
0

𝑡

ሷ𝑦 𝑑𝑡 = −10න
0

𝑡

𝑑𝑡

ሶ𝑦
0

𝑡

= −10 𝑡
0

𝑡

ሶ𝑦 − 50 sin tan−1
3

4
= −10𝑡

ሶ𝑦 − 50 ×
3

32 + 42
= −10𝑡

ሶ𝑦 = −10𝑡 + 30

න
0

𝑡

ሶ𝑦 𝑑𝑡 = න
0

𝑡

−10𝑡 + 30 𝑑𝑡

𝑦
0

𝑡

= −5𝑡2 + 30𝑡
0

𝑡

𝑦 − 0 = −5𝑡2 + 30𝑡
𝑦 = −5𝑡2 + 30𝑡

ii

𝑡 =
𝑥

40

∴ 𝑦 = −5
𝑥

40

2

+ 30
𝑥

4

= −5
100

40

2

+ 30
100

40

= 43.75 m

iii

𝑡 =
100

40
= 2.5

When 𝑡 = 2.5
ሶ𝑥 = 40
ሶ𝑦 = −10 2.5 + 30 = 5

𝑣 = ሶ𝑥2 + ሶ𝑦2

= 402 + 52

= 5 65

tan 𝛼 =
ሶ𝑦

ሶ𝑥

=
5

40
𝛼 = 7°8′

8 i

𝑥 = 14𝑡 cos 𝜃 → 𝑡 =
𝑥

14 cos𝜃

𝑦 = 14
𝑥

14 cos 𝜃
sin 𝜃 − 4.9

𝑥

14 cos𝜃

2

= tan 𝜃 𝑥 −
4.9

142
sec2 𝜃 𝑥2

= tan 𝜃 𝑥 −
1

40
1 + tan2 𝜃 𝑥2

= 𝑚𝑥 −
1 +𝑚2

40
𝑥2

ii

𝐋et 𝑥 = 10, 𝑦 = ℎ:

ℎ = 10𝑚 − 1 + 𝑚2 ×
5

2
2ℎ = 20𝑚 − 5 − 5𝑚2

5𝑚2 − 20𝑚 + 5 + 2ℎ = 0

𝑚 =
20 ± −20 2 − 4 5 5 + 2ℎ

2 5

=
20 ± 300 − 40ℎ

10
= 2 ± 3 − 0.4ℎ

iii

2 − 3 − 0.4 × 5.9 ≤ 𝑚 ≤ 2 − 3 − 0.4 × 3.9
0.8 ≤ 𝑚 ≤ 1.2

iv)

𝐋et 𝑦 = 0:

0 = 𝑚𝑥 −
1 + 𝑚2

40
𝑥2

𝑥 𝑚 −
1 + 𝑚2

40
𝑥 = 0

∴ 𝑥 = 0 𝑜𝑟 𝑚 −
1 +𝑚2

40
𝑥 = 0

1 + 𝑚2

40
𝑥 = 𝑚

𝑥 =
40𝑚

1 +𝑚2
metres

𝑚 = 0.8 Range =
40 0.8

1 + 0.82
= 19.51 𝑚

𝑚 = 1 Rangemax =
40 1

1 + 12
= 20 𝑚

𝑚 = 1.2 Range =
40 1.2

1 + 1.22
= 19.67 𝑚

𝑚 = 2.8 Range =
40 2.8

1 + 2.82
= 12.67 𝑚

𝑚 = 3.2 Range =
40 3.2

1 + 3.22
= 11.39 𝑚

The paintball can land for 49 cm from 19.51 to 20 m, 

or 128 cm from 11.39 to 12.67 m.
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9 i

𝑥 = 𝑉𝑡 cos𝜃 → 𝑡 =
𝑥

𝑉 cos 𝜃

𝑦 = −
1

2
𝑔

𝑥

𝑉 cos 𝜃

2

+ 𝑉
𝑥

𝑉 cos 𝜃
sin 𝜃

= −
𝑔𝑥2

2𝑉2 cos2 𝜃
+
sin 𝜃 𝑥

cos𝜃

= 𝑥 tan 𝜃 −
𝑔𝑥2

2𝑉2
sec2 𝜃

ii

Let 𝑃 be
𝐷

2
,−

𝐷

2
, since it lies on the line 𝑦 = −𝑥, and 𝑂𝑃 = 𝐷.

∴ −
𝐷

2
=

𝐷

2
tan 𝜃 −

𝑔
𝐷

2

2

2𝑉2
sec2 𝜃

−
𝐷

2
=

𝐷

2
tan 𝜃 −

𝑔𝐷2

4𝑉2
sec2 𝜃

−
𝐷

2
cos2 𝜃 =

𝐷

2
sin 𝜃 cos𝜃 −

𝑔𝐷2

4𝑉2

𝑔𝐷2

4𝑉2
−

𝐷

2
sin 𝜃 cos𝜃 + cos2 𝜃 = 0

𝐷
𝑔𝐷

4𝑉2
−

1

2
cos𝜃 sin 𝜃 + cos𝜃 = 0

∴ 𝐷 = 0 𝑜𝑟
𝑔𝐷

4𝑉2
=

1

2
cos 𝜃 sin 𝜃 + cos𝜃

𝐷 = 2 2
𝑉2

𝑔
cos 𝜃 sin 𝜃 + cos 𝜃

iii

𝑑𝐷

𝑑𝜃
= 2 2

𝑉2

𝑔
cos𝜃 + sin 𝜃 − sin 𝜃 + cos 𝜃 − sin 𝜃 + cos 𝜃

= 2 2
𝑉2

𝑔
− cos𝜃 sin 𝜃 − sin2 𝜃 − sin 𝜃 cos𝜃 + cos2 𝜃

= 2 2
𝑉2

𝑔
cos2 𝜃 − sin2 𝜃 − 2 sin 𝜃 cos 𝜃

= 2 2
𝑉2

𝑔
cos2𝜃 − sin 2𝜃

iv

𝑑𝐷2

𝑑𝜃2
= 2 2

𝑉2

𝑔
−2 sin 2𝜃 − 2 cos 2𝜃

= −4 2
𝑉2

𝑔
sin 2𝜃 + cos 2𝜃 < 0 𝑓𝑜𝑟 0 ≤ 𝜃 <

𝜋

2

∴ 𝐷 has a maximum value

Let
𝑑𝐷

𝑑𝜃
= 0:

2 2
𝑉2

𝑔
cos2𝜃 − sin 2𝜃 = 0

cos 2𝜃 = sin 2𝜃
tan 2𝜃 = 1

2𝜃 =
𝜋

4

𝜃 =
𝜋

8
The maximum value of 𝐷 occurs when 𝜃 =

𝜋

8
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6.8 PROJECTILE MOTION WITH RESISTANCE

We finish the chapter off by looking at projectile motion in a resisted medium. We look at

particles that are projected vertically, which follows closely from our work in Lesson 6. We then

look at particles projected at an angle to the horizontal, which mixes our work from differential

equations and exponential growth and decay with projectile motion.

If an object starts from Earth, travels up to a maximum height

then returns to Earth, to simplify calculations:

• use Earth as the Origin for the upward flight and with

upward motion being positive

• use the maximum turning point as the Origin for the

downward flight with downward motion being positive.

Exam questions on particles that rise then fall tend to have

many parts which can put people off, but the individual parts

are simple once you make the proper start.

P
o

s
it
iv

e

Upward

Flight

Downward

Flight

Origin

Origin

P
o

s
itiv

e

PARTICLES THAT RISE THEN FALL

Questions involving particles that rise then fall tend to involve distance and velocity, as the

maximum height (usually denoted 𝐻) the velocity is zero. Less commonly they can involve time

and velocity.

Looking at the next example we will see:

• In part (i) we find an expression for terminal velocity, by substituting into the equation of

motion.

• In part (ii) we find a result involving displacement and velocity, so let acceleration equal 𝑣
𝑑𝑣

𝑑𝑥
.

• In part (iii) we find a second result involving displacement and velocity, and have to equate it

to the expression from part (ii) to achieve the result.
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Example 1 (2013 HSC)

A ball of mass m is projected vertically into the air from the ground with initial velocity 𝑢. After 

reaching the maximum height 𝐻 it falls back to the ground. While in the air, the ball experiences 

a resistive force 𝑘𝑣2, where 𝑣 is the velocity of the ball and 𝑘 is a constant. The equation of 

motion when the ball falls can be written as m ሶ𝑣 = mg− k𝑣2 (Do NOT prove this.)

i Show that the terminal velocity 𝑣𝑇 of the ball when it falls is

ii Show that when the ball goes up, the maximum height H is

iii When the ball falls from height H it hits the ground with velocity w. Show that

Solution

i

At terminal velocity ሶ𝑣 = 0

∴ 𝑚𝑔 − 𝑘𝑣𝑇
2 = 0

𝑣𝑇 =
𝑚𝑔

𝑘

ii

𝑚 ሶ𝑣 = − 𝑚𝑔 + 𝑘𝑣2

∴ 𝑣
𝑑𝑣

𝑑𝑥
= −

𝑚𝑔 + 𝑘𝑣2

𝑚

𝑑𝑣

𝑑𝑥
= −

𝑚𝑔 + 𝑘𝑣2

𝑚𝑣

𝑑𝑥

𝑑𝑣
= −

𝑚𝑣

𝑚𝑔 + 𝑘𝑣2

∴ 𝐻 = −න
𝑢

0 𝑚𝑣

𝑚𝑔 + 𝑘𝑣2
𝑑𝑣

= −
𝑚

2𝑘
ln 𝑚𝑔 + 𝑘𝑣2

𝑢

0

= −
𝑚

2𝑘
ln𝑚𝑔 − ln 𝑚𝑔 + 𝑘𝑢2

=
𝑚

2𝑘
ln
𝑚𝑔 + 𝑘𝑢2

𝑚𝑔

=
𝑚

2
𝑚𝑔
𝑉𝑇
2

ln

𝑚𝑔 +
𝑚𝑔
𝑉𝑇
2 𝑢2

𝑚𝑔

=
𝑉𝑇
2

2𝑔
ln 1 +

𝑢2

𝑉𝑇
2

iii

𝑚𝑣
𝑑𝑣

𝑑𝑥
= 𝑚𝑔 −

𝑚𝑔

𝑉𝑇
2 𝑣

2

𝑑𝑣

𝑑𝑥
=
𝑔 𝑉𝑇

2 − 𝑣2

𝑣. 𝑉𝑇
2

𝑑𝑥

𝑑𝑣
=
𝑉𝑇
2

𝑔
×

𝑣

𝑉𝑇
2 − 𝑣2

∴ 𝐻 =
𝑉𝑇
2

𝑔
න
0

𝑤 𝑣

𝑉𝑇
2 − 𝑣2

𝑑𝑣

= −
𝑉𝑇
2

2𝑔
ln 𝑉𝑇

2 − 𝑣2

0

𝑤

= −
𝑉𝑇
2

2𝑔
ln 𝑉𝑇

2 −𝑤2 − ln 𝑉𝑇
2

=
𝑉𝑇
2

2𝑔
ln

𝑉𝑇
2

𝑉𝑇
2 −𝑤2

∴
𝑣𝑇
2

2𝑔
ln 1 +

𝑢2

𝑣𝑇
2 =

𝑣𝑇
2

2𝑔
ln

𝑣𝑇
2

𝑣𝑇
2 −𝑤2

∴ 1 +
𝑢2

𝑣𝑇
2 =

𝑣𝑇
2

𝑣𝑇
2 −𝑤2

𝑣𝑇
2 + 𝑢2

𝑣𝑇
2 =

𝑣𝑇
2

𝑣𝑇
2 −𝑤2

𝑣𝑇
4 −𝑤2𝑣𝑇

2 + 𝑢2𝑣𝑇
2 − 𝑢2𝑤2 = 𝑣𝑇

4

𝑢2𝑣𝑇
2 = 𝑤2𝑣𝑇

2 +𝑤2𝑢2

1

𝑤2
=

1

𝑢2
+

1

𝑣𝑇
2 (÷ both sides by 𝑢2𝑉𝑇

2𝑤2)

H =
𝑣𝑇
2

2𝑔
ln 1 +

𝑢2

𝑣𝑇
2

1

𝑤2
=

1

𝑢2
+

1

𝑣𝑇
2

𝑚𝑔

𝑘
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Example 2

A capsule of mass 𝑚 is fired straight up at speed 𝑢 ms−1. On the upward flight air resistance is

negligible and the magnitude of the acceleration due to gravity is 𝑔. The capsule then deploys a

parachute and falls back to earth, subject to gravity and to a resistance of magnitude 𝑘𝑣2.

i Use calculus to show that the maximum height attained by the capsule is 𝐻 =
𝑢2

2𝑔

ii For the return trip, take the origin at the point it begins falling and assume down is positive.

Show that the motion is determined by the equation ሷ𝑥 = 𝑘(𝛼2 − 𝑣2), where 𝛼2 =
𝑔

𝑘
.

iii Let 𝑈 be the impact speed of the package. Prove

iv Assume that the package is launched at speed 𝑢 = 𝛼. Find the impact speed as a percentage

of the launch speed.

Solution

i

ሷ𝑥 = −𝑔

𝑣
𝑑𝑣

𝑑𝑥
= −𝑔

𝑑𝑣

𝑑𝑥
= −

𝑔

𝑣

𝑑𝑥

𝑑𝑣
= −

𝑣

𝑔

𝐻 = −
1

𝑔
න
𝑢

0

𝑣 𝑑𝑣

= −
1

𝑔

𝑣2

2
𝑢

0

= −
1

𝑔
(0 −

𝑢2

2
)

∴ 𝐻 =
𝑢2

2𝑔

ii

𝑚 ሷ𝑥 = 𝑚𝑔 −𝑚𝑘𝑣2

ሷ𝑥 = 𝑔 − 𝑘𝑣2

= 𝑘
𝑔

𝑘
− 𝑣2

= 𝑘 𝛼2 − 𝑣2

iii

𝑣
𝑑𝑣

𝑑𝑥
= 𝑘 𝛼2 − 𝑣2

𝑑𝑥

𝑑𝑣
=
1

𝑘
×

𝑣

𝛼2 − 𝑣2

𝐻 =
1

𝑘
න
0

𝑈 𝑣

𝛼2 − 𝑣2
𝑑𝑣

= −
1

2𝑘
ln 𝛼2 − 𝑣2

0

𝑈

−2𝑘𝐻 = ln 𝛼2 − 𝑈2 − ln 𝛼2

−2𝑘𝐻 = ln
𝛼2 − 𝑈2

𝛼2

𝑒−2𝑘𝐻 =
𝛼2 − 𝑈2

𝛼2

𝛼2𝑒−2𝑘𝐻 = 𝛼2 − 𝑈2

𝑈2 = 𝛼2 1 − 𝑒−2𝑘𝐻

iv

𝑈

𝑢
× 100%

=

𝛼2 1 − 𝑒
−2

𝑔
𝛼2

𝛼2

2𝑔

𝛼
× 100%

=
100𝛼 1 − 𝑒−1

𝛼
%

= 100
𝑒 − 1

𝑒

≈ 79.5%

The impact speed is 79.5% of the launch 

speed.

𝑈2 = 𝛼2 1 − 𝑒−2𝑘𝐻

Mathematics Extension 2 © Steve Howard 568 Howard and Howard Education



RESISTED PROJECTILE MOTION AT AN ANGLE TO THE HORIZONTAL

In all the previous work we have done with projectile motion at an angle the only force involved

has been gravity. Since gravity acts vertically it only affects the vertical motion, and so we have

seen that the horizontal velocity remains constant. This has allowed us to create parametric or

Cartesian equations without too much trouble and use them to solve a wide range of questions.

In real life the drag caused by air resistance has a large impact on the motion of the particle, as

we have seen with horizontal and vertical resisted motion. The screenshot below is taken from a

simulator, and shows the motion of 4 particles each with the same initial velocity (50 ms−1) and

angle of projection (40°), where air resistance is proportional to the square of velocity.

The blue line shows a particle with no air resistance and its path is a parabola. The other lines

represent balls where air resistance has an increasing affect as the ratio of surface area to mass

increases - if we decrease mass and/or increase surface area then air resistance has more

affect. The lines approximate a golf ball (black), a tennis ball (green) and a table tennis ball

(orange). The table below shows how different aspects of flight are affected by air resistance.

Source: http://galileoandeinstein.physics.virginia.edu/more_stuff/Applets/Projectile/projectile.html

Compared to no 

air resistance

Time of 

Flight

Maximum 

Height

Final 

Velocity
Range

Angle at

Impact

Golf Ball 97% 94% 89% 89% 110%

Tennis Ball 94% 88% 82% 80% 118%

Table Tennis 

Ball
75% 57% 49% 41% 150%

No air resistance

Table tennis ball
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In summary we can say that with air resistance the particle:

• has a lower maximum height

• has a shorter range

• has a shorter time of flight

• descends more steeply that it climbed

• lands at a lower velocity.

Air resistance affects the range and final velocity the most, while the time of flight is least

affected.

The highest point is closer to the point of impact than the point of projection - the RHS of the

path is compressed horizontally more than the LHS. Although not part of the course, it can be

shown that air resistance does not affect the trajectory much until after approximately 𝑡 =
𝑉𝑇

𝑔
,

where 𝑉𝑇 is the terminal velocity and 𝑔 the gravitational acceleration. Terminal velocity still

occurs when the vertical air resistance balances gravity.

Example 3

A particle is projected with velocity 40 ms−1 at an angle of 30° to the horizontal in a resistive

medium. It reached a maximum height of 15.5 m and lands 87.4 m away from its projection point.

Which of the following statements cannot be true?

A The maximum height occurs when the particle has travelled 48 m horizontally

B The velocity at impact is 24.0 ms−1.

C The angle to the horizontal at impact is 24°

Solution

A The maximum height occurs more than half way along the range, so is possible

B The impact velocity is less than the projection velocity, so is possible.

C The impact angle is less than the projection angle, which is impossible.

ANSWER (C)
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SPLITTING AIR RESISTANCE INTO COMPONENTS

Air resistance acts in the opposite direction to the motion of the particle, so as the particle

changes direction and magnitude along its trajectory, the direction and magnitude of the air

resistance have to change as well. To create equations of motion we have to be able to split air

resistance into horizontal and vertical components.

LINEAR DRAG

For linear drag we can do this easily, and so most questions on projectile motion with resistance

will use linear drag. For linear drag we have overall air resistance of −𝑘𝑣 which can be split into

− 𝑘 ሶ𝑥 and −𝑘 ሶ𝑦 using trigonometry or vectors.

Proof 4

A particle is moving with velocity 𝑣 in a medium where resistance to 

motion is proportional to velocity and in the opposite direction,  so 

𝑅 = −𝑘𝑣 where 𝑘 is a positive constant.  If 𝑣 has horizontal and 

vertical components ሶ𝑥 and ሶ𝑦 respectively, prove resistance has 

horizontal and vertical components −𝑘 ሶ𝑥 and −𝑘 ሶ𝑦 respectively.

Solution

Using trigonometry

Let the angle of motion to the horizontal be 𝛼

ሶ𝑥 = 𝑣 cos 𝛼 , ሶ𝑦 = 𝑣 sin𝛼

𝑅𝑥 = −𝑘𝑣 cos 𝛼

= −𝑘 ሶ𝑥

𝑅𝑦 = −𝑘𝑣 sin𝛼

= −𝑘 ሶ𝑦

Alternatively using vectors

𝑅 = −𝑘𝑣

= −𝑘 ሶ𝑥 𝑖
~
+ ሶ𝑦𝑗

~

= −𝑘 ሶ𝑥 𝑖
~
− 𝑘 ሶ𝑦𝑗

~

∴ 𝑅𝑥 = −𝑘 ሶ𝑥 and 𝑅𝑦 = −𝑘 ሶ𝑦

∴ Linear drag has horizontal and vertical components −𝑘 ሶ𝑥 and −𝑘 ሶ𝑦 respectively.

𝑣

ሶ𝑥

ሶ𝑦

𝑅

𝑅

𝑅

𝑅

𝑅

𝑅

direction of motion

𝛼

𝑅 = −𝑘𝑣

𝑅𝑥 = −𝑘 ሶ𝑥

𝑅𝑦 = −𝑘 ሶ𝑦

𝛼
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Proof 5

A particle is moving with velocity 𝑣 in a medium where resistance 

to motion is proportional to the square of velocity and in the opposite 

direction, so 𝑅 = −𝑘𝑣2 where 𝑘 is a positive constant. If 𝑣 has 

horizontal and vertical components ሶ𝑥 and ሶ𝑦 respectively, prove 

resistance has horizontal and vertical components −𝑘𝑣 ሶ𝑥 and −𝑘𝑣 ሶ𝑦 respectively.

𝑅 = −𝑘𝑣2

𝑅𝑥 = −𝑘𝑣 ሶ𝑥

𝑅𝑦 = −𝑘𝑣 ሶ𝑦

QUADRATIC DRAG

For Quadratic Drag we can only partially separate the horizontal and vertical components, so we

cannot use calculus to find equations for horizontal and vertical velocity and displacement,

despite what at least one textbook says!

For quadratic drag we have overall air resistance of −𝑘𝑣2 which can be split into horizontal and

vertical components −𝑘𝑣 ሶ𝑥 and −𝑘𝑣 ሶ𝑦 respectively. Since 𝑣 = ሶ𝑥2 + ሶ𝑦2 we cannot separate the

vertical and horizontal components.

Solution

Using trigonometry

Let the angle to the horizontal be 𝛼

ሶ𝑥 = 𝑣 cos 𝛼 , ሶ𝑦 = 𝑣 sin𝛼

𝑅𝑥 = −𝑘𝑣2 cos 𝛼

= −𝑘𝑣 (𝑣 cos 𝛼)

= −𝑘𝑣 ሶ𝑥

𝑅𝑦 = −𝑘𝑣2 sin𝛼

= −𝑘𝑣 (𝑣 sin𝛼)

= −𝑘𝑣 ሶ𝑦

Alternatively using vectors

𝑅 = −𝑘𝑣2

= −𝑘 × 𝑣 2 × ො𝑣
~

= −𝑘 × 𝑣 ⋅ 𝑣 ×

ሶ𝑥 𝑖
~
+ ሶ𝑦𝑗

~

ሶ𝑥 2 + ሶ𝑦 2

= −𝑘( ሶ𝑥2 + ሶ𝑦2)

ሶ𝑥 𝑖
~
+ ሶ𝑦𝑗

~

ሶ𝑥2 + ሶ𝑦2

= −𝑘 ሶ𝑥2 + ሶ𝑦2 ሶ𝑥 𝑖
~
+ ሶ𝑦𝑗

~

= −𝑘 𝑣 ሶ𝑥 𝑖
~
+ ሶ𝑦𝑗

~

= −𝑘𝑣 ሶ𝑥 𝑖
~
− 𝑘𝑣 ሶ𝑦𝑗

~

∴ Quadratic drag has horizontal and vertical components −𝑘𝑣 ሶ𝑥 and −𝑘𝑣 ሶ𝑦 respectively

𝛼
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Example 6

A particle is projected with velocity 40 ms−1 at an angle of 30° to the horizontal in a resistive

medium. It reached a maximum height of 15.5 m and lands 87.4 m away from its projection point.

Which of the following statements cannot be true?

A The maximum height occurs when the particle has travelled 48 m horizontally

B The velocity at impact is 24.0 ms−1.

C The angle to the horizontal at impact is 24°

Solution

A The maximum height occurs more than half way along the range, so is possible

B The impact velocity is less than the projection velocity, so is possible.

C The impact angle is less than the projection angle, which is impossible.

ANSWER (C)

VERTICAL AND HORIZONTAL ACCELERATION

We have seen that without air resistance the equations of motion are ሷ𝑥 = 0 and ሷ𝑦 = −𝑔. We can

adjust these to account for air resistance:

Linear Drag Quadratic Drag

ሷ𝑥 = −𝑘 ሶ𝑥 ሷ𝑥 = −𝑘𝑣 ሶ𝑥

ሷ𝑦 = −𝑔 − 𝑘 ሶ𝑦 ሷ𝑦 = −𝑔 − 𝑘𝑣 ሶ𝑦

We can only use the formulae for quadratic drag to find the acceleration or forces at a point in 

the flight, as we cannot integrate them to find equations for velocity or displacement.

The formula for linear drag are differential equations, and we solve them in a similar way to our 

work in exponential growth and decay. There we solved equations like                          , so the 

first derivative is a function of the original function. 

In projectile motion with linear drag we have the second derivative as a function of the first 

derivative, so to find an expression for displacement we will integrate twice. Just as in 

exponential growth and decay we find that the solution involves exponential functions, so the 

trajectory is not a parabola as we have seen in projectile motion without air resistance.

𝑑𝑁

𝑑𝑡
= 𝑘(𝑁 − 𝐴)
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Example 7

A particle of mass 10 kg is moving through a medium where resistance is proportional to the

square of velocity. At a point in its flight ሶ𝑥 = 12 ms−1 and ሶ𝑦 = 5 ms−1. If its terminal velocity is

100 ms−1 and 𝑔 = 10, find the horizontal and vertical acceleration of the particle at that point in

its flight. Comment on the results.

Solution

As the particle falls ሶ𝑥 → 0 and so 𝑣 → ሶ𝑦 .

The particle will approach terminal velocity and so ሷ𝑦 → 0.

𝑚 ሷ𝑦 = −𝑚𝑔 − 𝑘𝑣 ሶ𝑦

Let ሷ𝑦 = 0,𝑚 = 10, 𝑔 = 10, ሶ𝑦 = −100, 𝑣𝑇 = 100

∴ 0 = −10 × 10 − 𝑘 × 100 × (−100)

∴ 𝑘 =
100

1002
= 0.01

𝑚 ሷ𝑥 = −𝑘𝑣 ሶ𝑥

ሷ𝑥 = −0.01 × 122 + 52 × 12 ÷ 10 = −0.156 ms−2

𝑚 ሷ𝑦 = −𝑚𝑔 − 𝑘𝑣 ሶ𝑦

ሷ𝑦 = −10 × 10 − 0.01 × 122 + 52 × 5 ÷ 10 = −10.065 ms−2

The particle has a large mass and small coefficient of drag, so its horizontal motion is only

slowing slightly while its vertical motion is slowing a bit more than with just gravity.

So we seen that we cannot completely separate the components of quadratic drag, so cannot

use questions requiring calculus. Let’s have a look at a simple question that would still be within

the syllabus.

Terminal velocity still occurs when the vertical air resistance balances gravity.
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Example 8 (2003 HSC)

A particle of mass 𝑚 is thrown from the top, 𝑂, of a very tall building with an initial velocity 𝑢 at

an angle 𝛼 to the horizontal. The particle experiences the effect of gravity, and a resistance

proportional to its velocity in both the horizontal and vertical directions. The equations of motion

in the horizontal and vertical directions are given respectively by

ሷ𝑥 = −𝑘 ሶ𝑥 and ሷ𝑦 = −𝑘 ሶ𝑦 − 𝑔,

where 𝑘 is a constant and the acceleration due to gravity is 𝑔. (You are NOT required to show

these.)

i Derive the result ሶ𝑥 = 𝑢𝑒−𝑘𝑡 cos 𝛼 from the relevant equation of motion.

ii Verify that ሶ𝑦 =
1

𝑘
𝑘𝑢 sin𝛼 + 𝑔 𝑒−𝑘𝑡 − 𝑔 satisfies the appropriate equation of motion and 

initial condition.

iii Find the value of 𝑡 when the particle reaches its maximum height.

iv What is the limiting value of the horizontal displacement of the particle?

𝑦

𝑥𝑂

𝛼

𝑢

In this past HSC question the results for horizontal and vertical velocity were given, though we

could have derived them using our knowledge of differential equations. We could also integrate

each of them again to find the equations for displacement, then combine them for the Cartesian

equation. We will see questions like this in the exercises.
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Solution

i

ሷ𝑥 = −𝑘 ሶ𝑥

𝑑

𝑑𝑡
ሶ𝑥 = −𝑘 ሶ𝑥

න
𝑑 ሶ𝑥

ሶ𝑥
= −𝑘න𝑑𝑡

න
𝑢 cos 𝛼

ሶ𝑥 𝑑 ሶ𝑥

ሶ𝑥
= −𝑘න

0

𝑡

𝑑𝑡

ln ሶ𝑥
𝑢 cos 𝛼

ሶ𝑥

= −𝑘𝑡

ln ሶ𝑥 − ln 𝑢 cos 𝛼 = −𝑘𝑡

ln
ሶ𝑥

𝑢 cos𝛼
= −𝑘𝑡

ሶ𝑥

𝑢 cos 𝛼
= 𝑒−𝑘𝑡

ሶ𝑥 = 𝑢𝑒−𝑘𝑡 cos 𝛼

ii

𝑑

𝑑𝑡

1

𝑘
𝑘𝑢 sin𝛼 + 𝑔 𝑒−𝑘𝑡 − 𝑔

= − 𝑘𝑢 sin𝛼 + 𝑔 𝑒−𝑘𝑡

= −𝑘
1

𝑘
𝑘𝑢 sin𝛼 + 𝑔 𝑒−𝑘𝑡 − 𝑔 − 𝑔

= −𝑘 ሶ𝑦 − 𝑔

Let 𝑡 = 0

ሶ𝑦 =
1

𝑘
𝑘𝑢 sin𝛼 + 𝑔 − 𝑔

= 𝑢 sin𝛼 + 𝑔 − 𝑔

= 𝑢 sin𝛼

∴ ሶ𝑦 =
1

𝑘
𝑘𝑢 sin𝛼 + 𝑔 𝑒−𝑘𝑡 − 𝑔 satisfies 

ሷ𝑦 = −𝑘 ሶ𝑦 − 𝑔 and the initial conditions

iii

At maximum height ሶ𝑦 = 0

1

𝑘
𝑘𝑢 sin𝛼 + 𝑔 𝑒−𝑘𝑡 − 𝑔 = 0

𝑘𝑢 sin𝛼 + 𝑔 𝑒−𝑘𝑡 = 𝑔

𝑒𝑘𝑡 =
𝑘𝑢 sin𝛼 + 𝑔

𝑔

𝑘𝑡 = ln
𝑘𝑢 sin𝛼 + 𝑔

𝑔

𝑡 =
1

𝑘
ln

𝑘𝑢 sin𝛼 + 𝑔

𝑔

iv

𝑥 = න
0

∞

ሶ𝑥 𝑑𝑡

= 𝑢 cos 𝛼න
0

∞

𝑒−𝑘𝑡 𝑑𝑡

= −
𝑢 cos 𝛼

𝑘
න
0

∞

−𝑘𝑒−𝑘𝑡 𝑑𝑡

= −
𝑢 cos 𝛼

𝑘
𝑒−𝑘𝑡

0

∞

= −
𝑢 cos 𝛼

𝑘
0 − 1

=
𝑢 cos 𝛼

𝑘
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The past HSC questions and the Sample question both use linear drag, and start with equations

of motion for the horizontal and vertical acceleration and stop at finding expressions for

horizontal and vertical velocity. This might give us an indication of how far we can expect you to

go in exams.

Without too much extra effort we can create the equations of motion, including variables for

mass, and go through to find the Cartesian equation, all assuming that drag is linear. You can

attempt this in the second last question in the exercise for this lesson.
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EXERCISE 6.8

BASIC

1

A particle is projected upwards from ground level with initial velocity
1

2

𝑔

𝑘
ms−1, where 𝑔 is

the acceleration due to gravity and 𝑘 is a positive constant. The particle moves through

the air with speed 𝑣 ms−1 and experiences a resistive force. The acceleration of the

particle is given by ሷ𝑥 = −𝑔 − 𝑘𝑣2. Do NOT prove this. The particle reaches a maximum

height, 𝐻, before returning to the ground.

Using ሷ𝑥 = 𝑣
𝑑𝑣

𝑑𝑥
, or otherwise, show that metres.

2 A particle is projected with velocity 60 ms−1 at an angle of 30° to the horizontal in a

resistive medium. It reached a maximum height of 17.9 m and lands 75.7 m away from its

projection point. Which of the following statements cannot be true?

A The maximum height occurs when the particle has travelled 47 m horizontally

B The velocity at impact is 60.0 ms−1.

C The angle to the horizontal at impact is 58°

3 A particle of unit mass is projected in a medium where air resistance is proportional to 

velocity, at 50 ms−1 at an angle of 𝜃 to the horizontal where tan 𝜃 =
3

4
. The vertical 

equation of motion of is ሶ𝑦 = 230𝑒−
𝑡

20 − 200, where ሶ𝑦 is in metres per second. 

Find the time taken to reach maximum height, to 1 decimal place.

CHALLENGING

4 A ball of mass m is projected vertically into the air from the ground with initial velocity u. 

After reaching the maximum height H it falls back to the ground. While in the air, the ball 

experiences a resistive force k𝑣2, where v is the velocity of the ball and k is a constant. 

The equation of motion when the ball falls can be written as m ሶ𝑣 = mg− k𝑣2 (Do NOT 

prove this.)

i Show that the terminal velocity 𝑣𝑇 of the ball when it falls is

ii Show that when the ball goes up, the maximum height 𝐻 is

iii When the ball falls from height H it hits the ground with velocity w. 

Show that

𝐻 =
1

2𝑘
log𝑒

5

4

𝐻 =
𝑣𝑇
2

2𝑔
ln 1 +

𝑢2

𝑣𝑇
2

1

𝑤2
=

1

𝑢2
+

1

𝑣𝑇
2

𝑚𝑔

𝑘
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5 A particle of mass 1 kg is projected vertically upwards from the ground with a speed of 20
m/s. The particle is under the effect of both gravity (𝑔) and an air resistance of magnitude 
1

40
𝑣2 where 𝑣 is the current velocity of the particle at any time. The effects of gravity and 

air resistance remain the same no matter which direction the particle is going.

i Explain why the acceleration of the particle at any time whilst traveling upwards is given 

by 

(For the remainder of this question you may use 𝑔 = 10 ms−2)

ii Calculate the greatest height reached by the particle

iii Write an expression for the acceleration of the particle as it returns to earth.

iv Find the speed of the particle just before it strikes the ground. 

6 A rubber ball of mass 7 kg, falls from rest, from the top of a building. While falling the ball 

experiences a resistive force 
7𝑣2

10
, where 𝑣 is the velocity of the ball. Take 𝑔, acceleration 

due to gravity, as 𝑔 = 10 ms−2.

i Show that ሷ𝑥 = 10 −
𝑣2

10
, where 𝑥 is the distance the ball has fallen.

ii Find the terminal velocity of the ball as it falls.

iii Show that 𝑣2 = 100 1 − 𝑒−
𝑥

5

iv After hitting the ground the ball rises vertically such that ሷ𝑋 = −10 −
𝑉2

10
, where 𝑉 is the 

velocity of the ball as it rises and 𝑋 is the distance the ball rises. Find the time that it 

takes for the ball to rise to its maximum height if initially 𝑉 =
10

3
ms−1. 

7 A particle is projected from the origin with an initial velocity 60 ms−1 at 30° to the

horizontal. The particle experiences the effect of gravity, and a resistance proportional to

its velocity in both the horizontal and vertical directions. The equations of motion in the

horizontal and vertical directions are given respectively by

ሷ𝑥 = −
ሶ𝑥

10
and ሷ𝑦 = −

ሶ𝑦

10
− 10,

(You are NOT required to show these.)

i Find an expression for horizontal displacement as a function of time.

ii Find an expression for vertical displacement as a function of time. 

iii Find the Cartesian equation of the trajectory of the particle

iv Find the value of 𝑡 when the particle reaches its maximum height. to 1 decimal place.

ሷ𝑥 = −𝑔 −
1

40
𝑣2
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8 A body of unit mass is projected vertically upwards in a medium that has a constant 

gravitational force 𝑔 and a resistance 
𝑣

10
, where 𝑣 is the velocity of the projectile at a given 

time 𝑡. The initial velocity is 10(20 − 𝑔).

i Show that the equation of motion of the projectile is

ii Show that the time 𝑇 for the particle to reach its greatest height is given by

iii Show that the maximum height 𝐻 is given by 𝐻 = 2000 − 10𝑔[10 + 𝑇]

iv If the particle then falls from this height, find the terminal velocity in this medium. 

9 A particle of mass 𝑚 is projected from the origin with an initial velocity 𝑉 ms−1 at an angle

of 𝜃 to the horizontal. The particle experiences the effect of gravity and a resistance

proportional to its velocity in both the horizontal and vertical directions.

Prove the following results, where 𝑘 is the coefficient of drag and 𝑔 is gravitational

acceleration.

i

ii

iii

iv

v

10 A particle is moving in a medium where resistance to motion is proportional to the square 

of velocity, so 𝑅 = −𝑘𝑣2. At some point in its flight ሶ𝑥 = 7 ms−1 and ሶ𝑦 = 24 ms−1.

a Use similar triangles to find the horizontal and vertical components of resistance at the 

point, and prove that the total resistance and its components satisfy Pythagoras’ 

Theorem.

b Show that the horizontal and vertical components at the point can be found using 𝑅𝑥 =

− 𝑘𝑣 ሶ𝑥 and 𝑅𝑦 = −𝑘𝑣 ሶ𝑦

c Show that 𝑅𝑥 = −𝑘 ሶ𝑥2 and 𝑅𝑦 = −𝑘 ሶ𝑦2 do not match the horizontal and vertical 

components at the point.

d Prove that 𝑅 = −𝑘𝑣2 cannot be split into horizontal and vertical components of 𝑅𝑥 =

− 𝑘 ሶ𝑥2 and 𝑅𝑦 = −𝑘 ሶ𝑦2 if the particle is moving at angle to the horizontal (ie unless ሶ𝑥 = 0

and/or ሶ𝑦 = 0 so the particle is moving vertically or horizontally, or is stationary).

𝑑𝑣

𝑑𝑡
= −𝑔 −

𝑣

10

𝑇 = 10 ln
20

𝑔

ሶ𝑥 = 𝑉 cos 𝜃 𝑒−
𝑘
𝑚
𝑡

𝑦 =
𝑚

𝑘

𝑚𝑔

𝑘
+ 𝑉 sin 𝜃 1 − 𝑒−

𝑘
𝑚
𝑡 −

𝑚𝑔𝑡

𝑘

ሶ𝑦 =
𝑚𝑔

𝑘
+ 𝑉 sin 𝜃 𝑒−

𝑘
𝑚
𝑡 −

𝑚𝑔

𝑘

𝑥 =
𝑚𝑉 cos 𝜃

𝑘
1 − 𝑒−

𝑘
𝑚
𝑡

𝑦 =
𝑚𝑔

𝑘𝑉 cos 𝜃
+ tan 𝜃 𝑥 +

𝑚2𝑔

𝑘2
ln 1 −

𝑘𝑥

𝑚𝑉 cos 𝜃

Mathematics Extension 2 © Steve Howard 580 Howard and Howard Education



SOLUTIONS - EXERCISE 6.8

1
𝑣
𝑑𝑣

𝑑𝑥
= − 𝑔 + 𝑘𝑣2

𝑑𝑣

𝑑𝑥
= −

𝑔 + 𝑘𝑣2

𝑣

𝑑𝑥

𝑑𝑣
= −

𝑣

𝑔 + 𝑘𝑣2

𝑥 = −
1

2𝑘
න
1
2

𝑔
𝑘

0 2𝑘𝑣

𝑔 + 𝑘𝑣2
𝑑𝑣

=
1

2𝑘
ln 𝑔 + 𝑘𝑣2

0

1
2

𝑔
𝑘

=
1

2𝑘
ln 𝑔 + 𝑘

𝑔

4𝑘
− ln 𝑔

=
1

2𝑘
ln 1 +

1

4

=
1

2𝑘
ln
5

4
metres

2

3

A The maximum height occurs more than

half way along the range, so is possible

B The impact velocity is equal to the

projection velocity, which is impossible.

C The impact angle is greater than the

projection angle, so is possible.

ANSWER (B)

Let ሶ𝑦 = 0

∴ 230𝑒−
𝑡
20 − 200 = 0

230𝑒−
𝑡
20 = 200

𝑒−
𝑡
20 =

200

230

𝑒
𝑡
20 =

230

200

𝑡

20
= ln

230

200

𝑡 = 20 ln
230

200

= 2.8 seconds (1 dp)

4 i At terminal velocity ሶ𝑣 = 0
∴ 𝑚𝑔 − 𝑘𝑣𝑇

2 = 0

𝑣𝑇 =
𝑚𝑔

𝑘

ii

𝑚 ሶ𝑣 = − 𝑚𝑔 + 𝑘𝑣2

∴ 𝑣
𝑑𝑣

𝑑𝑥
= −

𝑚𝑔 + 𝑘𝑣2

𝑚
𝑑𝑣

𝑑𝑥
= −

𝑚𝑔 + 𝑘𝑣2

𝑚𝑣
𝑑𝑥

𝑑𝑣
= −

𝑚𝑣

𝑚𝑔 + 𝑘𝑣2

∴ 𝐻 = −න
𝑢

0 𝑚𝑣

𝑚𝑔 + 𝑘𝑣2
𝑑𝑣

= −
𝑚

2𝑘
ln 𝑚𝑔 + 𝑘𝑣2

𝑢

0

= −
𝑚

2𝑘
ln𝑚𝑔 − ln 𝑚𝑔 + 𝑘𝑢2

=
𝑚

2𝑘
ln
𝑚𝑔 + 𝑘𝑢2

𝑚𝑔

=
𝑚

2
𝑚𝑔

𝑉𝑇
2

ln

𝑚𝑔 +
𝑚𝑔

𝑉𝑇
2 𝑢2

𝑚𝑔

=
𝑉𝑇
2

2𝑔
ln 1 +

𝑢2

𝑉𝑇
2

iii

𝑚𝑣
𝑑𝑣

𝑑𝑥
= 𝑚𝑔 −

𝑚𝑔

𝑉𝑇
2 𝑣

2

𝑑𝑣

𝑑𝑥
=
𝑔 𝑉𝑇

2 − 𝑣2

𝑣. 𝑉𝑇
2

𝑑𝑥

𝑑𝑣
=
𝑉𝑇
2

𝑔
×

𝑣

𝑉𝑇
2 − 𝑣2

∴ 𝐻 =
𝑉𝑇
2

𝑔
න
0

𝑤 𝑣

𝑉𝑇
2 − 𝑣2

𝑑𝑣

= −
𝑉𝑇
2

2𝑔
ln 𝑉𝑇

2 − 𝑣2

0

𝑤

= −
𝑉𝑇
2

2𝑔
ln 𝑉𝑇

2 − 𝑤2 − ln 𝑉𝑇
2

=
𝑉𝑇
2

2𝑔
ln

𝑉𝑇
2

𝑉𝑇
2 − 𝑤2

∴
𝑣𝑇
2

2𝑔
ln 1 +

𝑢2

𝑣𝑇
2 =

𝑣𝑇
2

2𝑔
ln

𝑣𝑇
2

𝑣𝑇
2 − 𝑤2

∴ 1 +
𝑢2

𝑣𝑇
2 =

𝑣𝑇
2

𝑣𝑇
2 − 𝑤2

𝑣𝑇
2 + 𝑢2

𝑣𝑇
2 =

𝑣𝑇
2

𝑣𝑇
2 − 𝑤2

𝑣𝑇
4 − 𝑤2𝑣𝑇

2 + 𝑢2𝑣𝑇
2 − 𝑢2𝑤2 = 𝑣𝑇

4

𝑢2𝑣𝑇
2 = 𝑤2𝑣𝑇

2 + 𝑤2𝑢2

1

𝑤2
=

1

𝑢2
+

1

𝑣𝑇
2

(÷ both sides by 𝑢2𝑉𝑇
2𝑤2)
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5 i

𝑚 ሷ𝑥 = −𝑚𝑔 − 𝑅

1 × ሷ𝑥 = −1 × 𝑔 −
1

40
𝑣2

ሷ𝑥 = −𝑔 −
1

40
𝑣2

ii

𝑣
𝑑𝑣

𝑑𝑥
= − 𝑔 +

𝑣2

40

𝑑𝑣

𝑑𝑥
= −

40𝑔 + 𝑣2

40𝑣
𝑑𝑥

𝑑𝑣
= −

40𝑣

40𝑔 + 𝑣2

𝑥 = −න
20

0 40𝑣

40𝑔 + 𝑣2
𝑑𝑣

= 20 ln 40𝑔 + 𝑣2

0

20

= 20 ln 800 − ln 400
= 20 ln 2

iii

ሷ𝑥 = 𝑔 −
1

40
𝑣2

iv

Let 𝑤 be the velocity just before impact.

𝑣
𝑑𝑣

𝑑𝑥
= 𝑔 −

1

40
𝑣2

𝑑𝑣

𝑑𝑥
=
40𝑔 − 𝑣2

40𝑣
𝑑𝑥

𝑑𝑣
=

40𝑣

40𝑔 − 𝑣2

𝑥 = න
0

𝑤 40𝑣

40𝑔 − 𝑣2
𝑑𝑣

= 20 ln 40𝑔 − 𝑣2

𝑤

0

= 20 ln 40𝑔 − ln 40𝑔 − 𝑤2

= 20 ln
400

400 − 𝑤2

∴ 20 ln 2 = 20 ln
400

400 − 𝑤2

400

400 − 𝑤2
= 2

400 = 800 − 2𝑤2

2𝑤2 = 400

𝑤 = 200

= 10 2 ms−1

6 i

𝑚 ሷ𝑥 = 𝑚𝑔 − 𝑅

7 ሷ𝑥 = 7 × 10 −
7𝑣2

10

ሷ𝑥 = 10 −
𝑣2

10

ii

ሷ𝑥 = 0

0 = 10 −
𝑣𝑇
2

10
𝑉𝑇
2 = 100
𝑉𝑇 = 10 ms−1

iii

𝑣
𝑑𝑣

𝑑𝑥
= 10 −

𝑣2

10
𝑑𝑣

𝑑𝑥
=
100 − 𝑣2

10𝑣
𝑑𝑥

𝑑𝑣
=

10𝑣

100 − 𝑣2

𝑥 = න
0

𝑣 10𝑣

100 − 𝑣2
𝑑𝑣

= −5 ln 100 − 𝑣2

0

𝑣

= 5 ln
100

100 − 𝑣2

𝑒
𝑥
5 =

100

100 − 𝑣2

100𝑒
𝑥
5 − 𝑒

𝑥
5𝑣2 = 100

𝑒
𝑥
5𝑣2 = 100 𝑒

𝑥
5 − 1

𝑣2 = 100 1 − 𝑒−
𝑥
5

iv

𝑑𝑉

𝑑𝑡
= − 10 +

𝑉2

10
𝑑𝑡

𝑑𝑉
= −

10

100 + 𝑉2

𝑡 = −10න
10

3

0 1

100 + 𝑉2
𝑑𝑉

= 10 ×
1

10
tan−1

𝑉

10
0

10

3

= tan−1
1

3
− tan−1 0

=
𝜋

6
s
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7 i
𝑑 ሶ𝑥

𝑑𝑡
= −

ሶ𝑥

10
1

ሶ𝑥
𝑑 ሶ𝑥 = −

𝑑𝑡

10

න
0

𝑡 1

ሶ𝑥
𝑑 ሶ𝑥 = −

1

10
න
0

𝑡

𝑑𝑡

ln ሶ𝑥
0

𝑡

= −
1

10
𝑡

ln ሶ𝑥 − ln 60 cos 30° = −
𝑡

10

ln ሶ𝑥 = −
𝑡

10
+ ln(30 3)

ሶ𝑥 = 𝑒−
𝑡
10
+ln(30 3)

= 30 3𝑒−
𝑡
10

න
0

𝑡

ሶ𝑥 𝑑𝑡 = 30 3න
0

𝑡

𝑒−
𝑡
10 𝑑𝑡

𝑥
0

𝑡

= −300 3 𝑒−
𝑡
10

0

𝑡

𝑥 − 0 = −300 3 𝑒−
𝑡
10 − 1

𝑥 = 300 3 1 − 𝑒−
𝑡
10

ii
𝑑 ሶ𝑦

𝑑𝑡
= −

ሶ𝑦

10
− 10

= −
ሶ𝑦 + 100

10
1

ሶ𝑦 + 100
𝑑 ሶ𝑦 = −

𝑑𝑡

10

න
0

𝑡 1

ሶ𝑦 + 100
𝑑 ሶ𝑦 = −

1

10
න
0

𝑡

𝑑𝑡

ln ሶ𝑦 + 100
0

𝑡

= −
1

10
𝑡

ln ሶ𝑦 + 100 − ln 60 sin 30° + 100 = −
𝑡

10

ln ሶ𝑦 + 100 = −
𝑡

10
+ ln 130

ሶ𝑦 + 100 = 𝑒−
𝑡
10
+ln 130

ሶ𝑦 = 130𝑒−
𝑡
10 − 100

න
0

𝑡

ሶ𝑦 𝑑𝑡 = න
0

𝑡

130𝑒−
𝑡
10 − 100 𝑑𝑡

𝑦
0

𝑡

= −1300𝑒−
𝑡
10 − 100𝑡

0

𝑡

𝑦 − 0 = −1300𝑒−
𝑡
10 − 100𝑡 + 1300

𝑦 = 1300 − 1300𝑒−
𝑡
10 − 100𝑡
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7.. iii
𝑥

300 3
= 1 − 𝑒−

𝑡
10

𝑒−
𝑡
10 = 1 −

𝑥

300 3
(1)

=
300 3 − 𝑥

300 3

𝑒
𝑡
10 =

300 3

300 3 − 𝑥

𝑡 = 10 ln
300 3

300 3 − 𝑥
(2)

from 1 and 2 :
𝑦

= 1300 − 1300 1 −
𝑥

300 3

− 100 10 ln
300 3

300 3 − 𝑥

=
13𝑥

3 3
+ 1000 ln

300 3 − 𝑥

300 3

iv

Let ሶ𝑦 = 0

130𝑒−
𝑡
10 − 100 = 0

𝑒−
𝑡
10 =

100

130

𝑒
𝑡
10 =

130

100
𝑡 = 10 ln 1.3
= 2.6 sec

8 i

𝑚 ሷ𝑥 = −𝑚𝑔 −
𝑚𝑣

10

∴
𝑑𝑣

𝑑𝑡
= −𝑔 −

𝑣

10

ii
𝑑𝑡

𝑑𝑣
= −

10

10𝑔 + 𝑣

𝑡 = −න
10 20−𝑔

𝑣 10

10𝑔 + 𝑣
𝑑𝑣

= 10 ln 10𝑔 + 𝑣
𝑣

10 20−𝑔

= 10ቆln 10𝑔 + 200 − 10𝑔

= 10 ln
200

10𝑔 + 𝑣

when 𝑡 = 𝑇, 𝑣 = 0

∴ 𝑇 = 10 ln
200

10𝑔

= 10 ln
20

𝑔

iii
𝑑𝑡

𝑑𝑣
= −

10

10𝑔 + 𝑣

𝑡 = −න
10 20−𝑔

𝑣 10

10𝑔 + 𝑣
𝑑𝑣

= 10 ln 10𝑔 + 𝑣
𝑣

10 20−𝑔

= 10 ln 200 − ln 10𝑔 + 𝑣

𝑡

10
= ln

200

10𝑔 + 𝑣

𝑒
𝑡
10 =

200

10𝑔 + 𝑣

10𝑔𝑒
𝑡
10 + 𝑣𝑒

𝑡
10 = 200

∴ 𝑣 =
200 − 10𝑔𝑒

𝑡
10

𝑒
𝑡
10

= 200𝑒−
𝑡
10 − 10𝑔

∴ 𝐻 = න
0

𝑇

200𝑒−
𝑡
10 − 10𝑔 𝑑𝑡

= −2000𝑒−
𝑡
10 − 10𝑔𝑡

0

𝑇

= −2000𝑒−
𝑇
10 − 10𝑔𝑇 − −2000 − 0

= 2000 − 2000𝑒
− ln

20
𝑔 − 10𝑔𝑇

= 2000 − 100𝑔 − 10𝑔𝑇
= 2000 − 10𝑔 10 + 𝑇

iv

ሷ𝑥 = 𝑔 −
𝑣

10

0 = 𝑔 −
𝑉𝑇
10

𝑉𝑇 = 10𝑔
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9 i

𝑚 ሷ𝑥 = −𝑘 ሶ𝑥
𝑑 ሶ𝑥

𝑑𝑡
= −

𝑘

𝑚
ሶ𝑥

𝑑 ሶ𝑥

ሶ𝑥
= −

𝑘

𝑚
𝑑𝑡

න
𝑉 cos 𝜃

ሶ𝑥 𝑑 ሶ𝑥

ሶ𝑥
= −

𝑘

𝑚
න
0

𝑡

𝑑𝑡

ln ሶ𝑥
𝑉 cos 𝜃

ሶ𝑥

= −
𝑘

𝑚
𝑡

ln ሶ𝑥 − ln 𝑉 cos 𝜃 = −
𝑘

𝑚
𝑡

ln ሶ𝑥 = ln(𝑉 cos𝜃) −
𝑘

𝑚
𝑡

ሶ𝑥 = 𝑉 cos 𝜃 𝑒−
𝑘
𝑚
𝑡

ii
𝑑𝑥

𝑑𝑡
= 𝑉 cos𝜃 𝑒−

𝑘
𝑚
𝑡

𝑥 = 𝑉 cos𝜃න
0

𝑡

𝑒−
𝑘
𝑚
𝑡 𝑑𝑡

= 𝑉 cos𝜃 × −
𝑚

𝑘
𝑒−

𝑘
𝑚
𝑡

0

𝑡

=
𝑚𝑉 cos 𝜃

𝑘
1 − 𝑒−

𝑘
𝑚
𝑡

iii

𝑚 ሷ𝑦 = −𝑘 ሶ𝑦 − 𝑚𝑔
𝑑 ሶ𝑦

𝑑𝑡
= −

𝑘

𝑚
ሶ𝑦 − 𝑔

= −
𝑘 ሶ𝑦 + 𝑚𝑔

𝑚
𝑑𝑡

𝑑 ሶ𝑦
= −

𝑚

𝑘 ሶ𝑦 + 𝑚𝑔

𝑡 = −
𝑚

𝑘
න
𝑉 sin 𝜃

ሶ𝑦 𝑘

𝑘 ሶ𝑦 + 𝑚𝑔
𝑑 ሶ𝑦

= −
𝑚

𝑘
ln 𝑘 ሶ𝑦 + 𝑚𝑔

𝑉 sin 𝜃

ሶ𝑦

= −
𝑚

𝑘
ln 𝑘 ሶ𝑦 + 𝑚𝑔 − ln 𝑘𝑉 sin 𝜃 + 𝑚𝑔

−
𝑘

𝑚
𝑡 = ln 𝑘 ሶ𝑦 + 𝑚𝑔 − ln 𝑘𝑉 sin 𝜃 + 𝑚𝑔

ln 𝑘 ሶ𝑦 + 𝑚𝑔 = ln 𝑘𝑉 sin 𝜃 + 𝑚𝑔 −
𝑘

𝑚
𝑡

𝑘 ሶ𝑦 + 𝑚𝑔 = 𝑘𝑉 sin 𝜃 + 𝑚𝑔 𝑒−
𝑘
𝑚
𝑡

ሶ𝑦 =
𝑚𝑔

𝑘
+ 𝑉 sin 𝜃 𝑒−

𝑘
𝑚
𝑡 −

𝑚𝑔

𝑘

iv
𝑑𝑦

𝑑𝑡
=

𝑚𝑔

𝑘
+ 𝑉 sin 𝜃 𝑒−

𝑘
𝑚
𝑡 −

𝑚𝑔

𝑘

𝑦 = න
0

𝑡 𝑚𝑔

𝑘
+ 𝑉 sin 𝜃 𝑒−

𝑘
𝑚
𝑡 −

𝑚𝑔

𝑘
𝑑𝑡

= −
𝑚

𝑘

𝑚𝑔

𝑘
+ 𝑉 sin 𝜃 𝑒−

𝑘
𝑚
𝑡 −

𝑚𝑔𝑡

𝑘
0

𝑡

= −
𝑚

𝑘

𝑚𝑔

𝑘
+ 𝑉 sin 𝜃 𝑒−

𝑘
𝑚
𝑡 −

𝑚𝑔𝑡

𝑘
+
𝑚

𝑘

𝑚𝑔

𝑘
+ 𝑉 sin 𝜃

=
𝑚

𝑘

𝑚𝑔

𝑘
+ 𝑉 sin 𝜃 1 − 𝑒−

𝑘
𝑚
𝑡 −

𝑚𝑔𝑡
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9.. v

𝑥 =
𝑚𝑉 cos 𝜃

𝑘
1 − 𝑒−

𝑘
𝑚
𝑡

𝑘𝑥

𝑚𝑉 cos 𝜃
= 1 − 𝑒−

𝑘
𝑚
𝑡 1

𝑒−
𝑘
𝑚
𝑡 = 1 −

𝑘𝑥

𝑚𝑉 cos𝜃

−
𝑘

𝑚
𝑡 = ln 1 −

𝑘𝑥

𝑚𝑉 cos 𝜃

𝑡 = −
𝑚

𝑘
ln 1 −

𝑘𝑥

𝑚𝑉 cos𝜃
2

sub 1 , 2 in (iv):

𝑦 =
𝑚

𝑘

𝑚𝑔

𝑘
+ 𝑉 sin 𝜃

𝑘𝑥

𝑚𝑉 cos 𝜃
+
𝑚𝑔

𝑘

𝑚

𝑘
ln 1 −

𝑘𝑥

𝑚𝑉 cos 𝜃

=
𝑚

𝑘

𝑚𝑔 + 𝑘𝑉 sin 𝜃

𝑘

𝑘𝑥

𝑚𝑉 cos 𝜃
+
𝑚2𝑔

𝑘2
ln 1 −

𝑘𝑥

𝑚𝑉 cos𝜃

=
𝑚𝑔 + 𝑘𝑉 sin 𝜃

𝑘𝑉 cos𝜃
𝑥 +

𝑚2𝑔

𝑘2
ln 1 −

𝑘𝑥

𝑚𝑉 cos𝜃

=
𝑚𝑔

𝑘𝑉 cos𝜃
+ tan 𝜃 𝑥 +

𝑚2𝑔

𝑘2
ln 1 −

𝑘𝑥

𝑚𝑉 cos 𝜃
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10 a

𝑣 = 72 + 242 = 25 ms−1

∴ 𝑅 = −𝑘 × 252 = −625𝑘 N

Now the triangle representing velocity and its components (above)

and resistance and its components (below) must be similar.

The scale is 1:−25𝑘 so the horizontal component of resistance

is −175𝑘 N and the vertical component is −600𝑘 N.

Using the magnitudes of the resistance and its components

1752 + 6002 = 390625

252 = 390625

∴ the resistance and its components satisfy Pythagoras’ Theorem.

b

𝑅𝑥 = −𝑘𝑣 ሶ𝑥 = −𝑘 × 25 × 7 = −175𝑘

𝑅𝑦 = −𝑘𝑣 ሶ𝑦 = −𝑘 × 25 × 24 = −600𝑘

∴ the horizontal and vertical components at the point can be found using 𝑅𝑥 = −𝑘𝑣 ሶ𝑥 and 

𝑅𝑦 = −𝑘𝑣 ሶ𝑦

25 ms−1

7 ms−1

24 ms−1

−625𝑘 N

−175𝑘 N

−600𝑘 N
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