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PREFACE

I DR U S

This book was planned and begun in 1929. O
tion was that it should be one of the Cambridge Tracts, but it
soon became plain that a tract would be much too short for our

PULPUBG.
Our objects in writing the book are explained sufficiently in
the introductory chapter, but we add a note here about history

nAd hihliangn T, Hiatnr: ihli 3 v
nd bibliography. Historical and bibliographical questions are

particularly troublesome in a subject like this, which has applica-

1 |

tions in every part of mathematics but has never been developed

avatamatinally
SysiHiauiCally .

It is often really difficult to trace the origin of a familiar
inequality. It is quite likely to occur first as an auxiliary
proposition, often without explicit statement, in a memoir on
geometry or astronomy; it may have been rediscovered, many
years later, by half a dozen different authors; and no accessible
statement of it may be quite complete. We have almost always
found, even with the most famous inequalities, that we have
a little new to add.

We have done our best to be accurate and have given all
references we can, but we have never undertaken systematic
bibliographical research. We follow the common practice, when
a particular inequality is habltually associated with a particular

mathematician’s name ; we speak of the inequalities of Schwarz,
Holder, and Jensen, though all these inequalities can be traced

3Tt Tl awa manaccantr Fan alhanliida nminnlakanace
AUULUI0ILIS WIIICIL a4l 1LIoUCHSdal 10Ul auduluvec vuUL PIUUU i Lot is )
We have received a great deal of assistance from friends.

ﬂ“f] A 7“'1’"‘“]17‘\(]

oYl N n or
. viilur, A4, . .LUl.l.lJ.s, [ 2 & AV S e ¥l u.ysu.lu.u.u

have all helped us with criticisms or original contributions.

R N

Dr Bosanquet, Dr Jessen, and Prof. Zygmund have read the

o ! L
. S. Bosanquet, R. Courant, B. Jessen,
Q
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proofs, and corrected many inaccuracies. In particular, Chap-

tar 11T hag heen verv ]nr(rn]v rewritten as thn result of Dr Jessen’s

VU4 dad JAQUD AUVAL VUL Y AU AAUUTRL WD ViilU 4 U . a asa R N Y

suggestions. We hope that the book may now be reasonably
free from error, in spite of the mass of detail which it contains.

Dr Levin composed the bibliography. This contains all the
books and memoirs which are referred to in the text, directly
or by implication, but does not go beyond them. G.H.H.

J.E.L.
G.

R

Cambridge and Ziirich
July 1934
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CHAPTER 1
INTRODUCTION

1.1. Finite, infinite, and integral inequalities. It will be

I\"‘\“' “‘A “'n]r “"1’!11] l'] 1 n] 1 N n]
convenientv vo vtake some tmu uvuCwiarl ana u .y pival 1190 uadil

text for the general remarks which occupy this cha ter an d we
select a remarkable theorem due to Cauchy and usuall known
a8 ‘ Cauchy’s inequality’.

Cauchy’s inequality (Theorem 7) is

{111\ {oo h. Lo h L Lo h )
\Ledody) \W U T WU T eee T W), Uy
<l 21421 Ly 2\(Rh2 h 2 v h 2)
=\W1 'rwz Tllo"['wn I\UI "ruz T eee -I'-Un ]
or
' n I
2
(1.1.2) (2a,b,)* = Za,* 2b,?,
: nmﬂ is true for all real values of a

mﬂal, ooy bl, ... the variables of the inequa. ’ty. Here the number
4- 1.

i e abhlac 234 Ravtdn awmd +hn tevamnrtialider cbadnac o nalads e Ad~rran
AR Vmu&u&ua ns 1ifiive, ana wie ieJualivy States a réiation uverweeil
“oertain finite sums. We call such an inequality an elementary or
Jinate mequahty

Mha manaat Fiimdamantal inanttalitiag ara Anid 1M ala

oY
4 AV MUIVUDV LUl aiiiviivavl J..I.J.V\i Gll.l. ViUD uAU L1y,

be concerned with inequalities which are not finite and involve
generalisations of the notion of a sum. The most important of such

conaralicationg ara the 1~nﬂ~n1+n

generalisations are the sums
(1.1.3) Sa,, a,

and the integral ] o
(1.1.4) ’be(x) dx
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(or the similar formula in which both limits of summation are
infinite), and

. , T N U Y (L A
(1.1.6) U j(m)g(w)dx) __<;J j‘(x)de 94(x)dx.

We call (1.1.5) an #nfinite, and (1.1.6) an infegral, inequality.
1.2. Notations. We have often to distinguish between dif-

i o SR n Y R A EE. N iy my ___. 2. URNEPRE O NI, Iy 1.
ferent seis of the variables. Thus in (1.1.2) we distinguish t
two sets a;, @, ..., @, and b;, b,, ..., b, . Itis convenient to have

a shorter notation for sets of variables, and often, instead of
writing ‘the set a,, a,, ..., a,” we shall write ‘the set (a)’ or
qlmn]v ‘the o’

We shall habltually drop suffixes and limits in summations,
when there is no risk of ambiguity. Thus we shall write

2a
n [oe] o
for any of 2a,, 2a, X a,;
1 1 —©

so that, for example,
(1.2.1) (Zab)? < Xa2Zb?

may mean either of (1.1.2) or (1.1.5), according to the context.
In integral inequalities, the set is replaced by a function; thus

in passing from (1.1.2) to (1.1.6), (@) and (b) are replaced by
fand g. We shall also often omit variables and limits in integrals,

writing [ fdx

1nferred unambl uousl from the context.

1.3. Positive inequalities. We are interested primarily in

posmve 1nequautlesd A finite or infinite 1nequa111;y is posztwe if

ool I 3
all variables a, 6, ... 1

An inequality of this type usually carries with it, as a trivial

nonlrad In 14 ana raal A at
(0S8 AwiV 3 11 1U alTU 1LUoad al-llu llull._-l-lcsalu.lVU

There are exceptions, as for example in §§ 8.8-8.17. There the ‘positive’ cases of

Alxnrraxn A ana walativalyy +nivia

8 QiScussea are reiavively trivial.
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corollary, an apparently more general inequality valid for all real,
or even complex, a, b, .... Thus from (1.1.2) and the inequality

(1.3.1) [Zu| =2 |ul,
valid for all real or complex u, we deduce
(1.3.2)  [ZabPs(Z|a]|b])<Z]|al2Z]b[?,

where thea and b are arbitrary complexnumbers. Weshall usually

l\n ocnantant tn a+o+n our +hnnrnmc m +}\n 'anr]amnnf-a] ‘nagitive’
VULLVWVILIAU VWU DuUwWwu NACULLAN/LL U t’uk’l\/& v

form and to leave the derived results to the reader. Occasionally,
however, when the inequality in question is very important, we
state it explicitly in its most general form.

Similar remarks apply to integral inequalities. The independent
variable z will be real, but will (like the variable of summation »)
take either pdgitive or negative values; while the functions f(x),
g(2), ... will generally assume non-negative values only. To such

5!aninequality as (1.1.6), true for non-negative f, g, corresponds
*the more general inequality

(1 3.3) [ fgdz|*<[|f|*dz[]|g|*de,
mm for arbitrary complex functions f, g of the real variable x.
" Numbers k, 1, r, s, ... occurring as indices in our theorems are
“real but in general capable of either sign.

‘)1.4.' Homogeneous inequalities. The two sides of (1.1.2)
- are homogeneous functions of degree 2 of the a and also of the b;
and generally both sides of our inequalities will be homogeneous
functions, of the same degree, of certain sets of variables. Since
homogeneous functions of positive degree vanish when all their
arguments vanish, both sides, if of positive degree, will vanish,
‘and so be equal, when the sets concerned consist entirely of 0’s.
Thus (1.1.2) reduces to an equality if all the a, or all the b, are 0.

-A set consisting entirely of 0’s is called a nul set, or the nul set,
if the context is unamblguous. In general the ‘<’ or ‘2’ f our

“theorems will reduce to ‘=’ when one or all of the sets invo d i

M“‘I Q mn+1m faYal “l\‘lﬂ m1 l'\ +]nn nm 7/)[

nui. OOINCUMOS vils Wiu 00 vl 07y Cad Uusu Y

y Mnro u
.y . VLY D WL .y

there will be other cases; thus plainly ‘ =’ occursin (1.1.2)if every

o

(¢
VCD

ais equal to the corresponding b. We shall be careful, wherever it
is possible, to pick out explicitly such cases of equality

I-2
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The homogeneity of an inequality in certain sets of variables

often enables us to 31mphfy our proofs by imposing an additional

restriction {a normalisation) on them. Thus the means I, (a) of

§ 2.2 are homogeneous, of degree 0, in the weights p, and we may
always suppose, if we please, that Zp =1. Again, if we wish to
prove that
(1.4.1)  (af+a+...+a,5)B < (a7 +a+...+a, )"
when 0 <7 < s (Theorem 19), we may suppose (since both sides are
homogeneous in the a of degree 1) that Xa”=1. We have then
avr <1, avs = (avr)s/r < avr,
and so Za® < Za” = 1. Without this preliminary normalisation, our
proof would run
(Zas)l/s; IS‘, as \tl/s J { a’ \‘s/rllls<{ ar \|1/s= ]
(Bt |7 (Zar)er) l— \3a7) | T \_ Sar) )
There is another sense of ‘homogeneity’ which is sometimes
important. Let us compare (1.4.1) above, which may be written as
(1.4.2) (Zas)Vs < (Zar)ir,

with (1.1.2). Both inequalities are homogeneous in the variables
i

e P VALVII AR A48

but (1.1.2) has a further homogeneity which (1.4.2) has not. It i
as we may say, ‘homogeneous in X’; X, if treated as a number,
would occur to the same power on the two sides of the inequality.

The result of this homogeneity in X is that (1.1.2) remains
true if every sum which occurs is replaced by the corresponding
mean, i.e. if written in the form

(1 Sa AR SR
(=) s () (22
The importance of this kind of homogeneity will appear very
clearly in §2.10 and §6.4. Roughly, an inequality which possesses
it has an integral analogue, while one which does not, like (1.4.2),
has none.

1.5. The axiomatic basis of algebraic inequalities 2. Our
subject is difficult to define precisely, but belongs partly to
‘algebra’ and partly to ‘analysis’. Algebra or analysis, like
geometry, may be treated axiomatically. Instead of saying, as

3 See Artin and Schreier (1).
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for example in Dedekind’s theory of real numbers, that we are
concerned with such or such definite objects, we may say, as in
projective geometry, that we are concerned with any system of
objects which possesses certain properties speclﬁed in a set of

L

axioms. We do not propose to consider the ‘axiomatics’ of
(o)

il. but it mav be worth while

J.U 1AV y RSU VY UL Ui

to insert a few remarks concerning the axiomatic basis of those
1.

axioms of an algebra only the ordinary
. 3 L 111 “'1\[\“

iaws Ol aGaiviOil aiiG miuiv p.liCé‘w on. All our theorems will then
be true in many different ﬁeld_s, in real algebra, complex algebra,
or the arithmetio of residues any modulus. Or we may add
‘axioms concerning the sclublhu" of linear equations, axioms

which secure the existence and uniqueness of difference and
%&Dhent Our theorems will then be true in real or complex
yobra, or in arithmetic to a prime modulus.

In our present subject we are concerned with relations of in-
‘equality, a notion peculiar to real algebra. We can secure an
‘axiomatio basis for theorems of inequality by taking, in addition
to the ‘indefinables’ and axioms already referred to, one new
indefinable and two new axioms. We take as indefinable the idea.
of a positive number, and as axioms the two propositions:

1. Either a is 0 or a 18 positive or —a i8 positive, and these
possibilities are exclusive.

II. The sum and product of two positive numbers are positive.

We say that a is negative if —a is positive, and that a is greater
(less) than b if a—b is positive (negative). Any inequality of a

purely algebraic type, such as (1.1.2), may be made to rest on

this foundation.
> .
1.8. Comparable functions. We may say that the functions

f(a’) =f(a1,a,,.-.,8,), g(a)=g(a,,a,, cees ly)
are comparable if there is an inequality between them valid for
all non-negative real a, that is to say if either f < g for all such @ or
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f=g for all such a. Two given functions are not usually compar-
able. Thus two positive homogeneous polynomials of different
degrees are certainly not comparable?; if 0<f<g for all nbn-
negative a, and both sides are homogeneous, then f and g are
certainly of the same degree.

ALR 21NV U K, uu.LJ L U/EL L ALA A A
fla,b,...) of several sets of variables.

AT L 1Y v o1 2l L2 a1 2 . T Y

YY € Slidlil pe O 'Uuylﬁu uviro gﬂU U 15 voiluilie witu. PL'U 1€11S
concerning the comparability of functions. Thus the arithmetic
and geometric means of the a are comparable: &(a)=<U(a)
(Mha~nons OV Mha Coanndinna (7m0 BY awmd 74\ 1 (LY nma ames
\_LLI. ULTI11L 7}. L I1C 1LULIVUVIUILIS W) \UI ~+ U} il O \w} ~+ O \U} .l Cull-
parable (Theorem 10). The functions % (ab) and A (a) A (b) are not

3 n N N re { nAn A2\ A i1ttt
VUl 111111 VUUT U < W il \ CuU1LT11l *k ). 11U L1 ULIV U1VLID
:Ir_]- IS‘.MJ; {ﬂ\\ q;—l lY‘m«,(n\\
¥ \~pP W) \«~ \wyJ
are comparable if and only if xJ~1 is convex or concave

2a,Ma,% ... a,%,
due to Muirhead, will be found in §2.18.

1.7. Selection of proofs. The methods of proof which we use
in different parts of the book will depend on very different sets of
ideas, and we shall often, particularly in Ch. I, give a number of
alternative proofs of the same theorem. It may be useful to call
attention here to certain broad distinctions between the methods

elementary’, since they depend solely on the ideas and processes
af inite aloahra Wa havr i 1
\ %4 11 P

1 AL111VUT WlsUU.LCllv Ywv o

permits it.

Nevt we have oven 1 A
4¥YvAad WU vy v, UYuvll dil Uldle X4, u.I.CI)LlJ FLUU

elementary in this sense because they involve considerations
& Compare § 2.19.

1S Wil are 1no

f

)
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real variable.
Later, when dealing with integrals in Ch. VI, we naturally

make use of the theorvy of measure and of the inteoral of Lebesoue
J VEALNS LJLVVa‘. WE VA A4/ Mv”a AN/

This we take for granted, but we give a summary in §§6.1-6.3 of
the parts of the theory which we require.

Occasionally we appeal to the more remote parts of the theory
of functions of real variables; but we do this only in alternative
proofs or in the proofs of theorems of considerable intrinsic
diﬁculty Thus in Ch. IV (§4.6) we use the theory of the maxima

TrYTT

and minima of functions of several varlames, in Ch. VII we use

the methods of the Calculus of Variations; and in Ch. IX we use
the theory of double and repeated integration. We make no use
- of complex function theory, although, in the last chapters, we

. safow to it occasionallv for nurnoses of 1"11q+rwt1v n. The sectio

;
i
)
[
)

in which we do this do not belong properly to the main body of
. €he book.

We add a few further

emarks of a more detailed character.

(i) Cauchy’sinequality(1.1.2)is a proposition of finite algebra,
as defined in §1.5. Itis a recogmsed principle that the proof of

L1 1L 1.1 _ 1_ L'I_‘ FURURR IR, PR oV R IR I

& theorem should inv nly the methods of the theory to
which it belones

]

(ii) Weshall be continually meeting theorems, such as Holder’s
inequality
- (17.1) Zab < (Zak)Ve (Zp*)UE
(Theorem 13), whose statusdepends upon the value of aparameter
k. If k is rational, the theorem is algebraical, and our remarks
under (i) apply. If kisirrational, a* is not an algebraical function,
and it is obvious that there can be no strictly algebraical proof.
It is however reasonable to demand, when we are concerned
with an inequality so fundamental as Holder’s, that our step
outside algebra shall be the absolute minimum which the nature



8 INTRODUCTION

of the problem necessitates. It is plain that this step will depend

cps
upon our definition of a*. We may define a* as exp (k¥loga), and

in this case it is obviously legitimate and necessary to use the
theory of the exponential and logarithmic functions. If, as is
more usual, we define a* as the limit of a¥», where k,, is an appro-
priate rational approximation to k, then this limiting process
should be the only one to which we appeal.

(iii) Suppose that, adopting the last point of view, we have
proved Hélder’s inequality, for rational k, in the form (1.7.1.).
We can infer its truth for irrational k by a passage to the limit.

Such a proof, however, is not usually sufficient for our purpose.
We always wish to prove a theorem of a more precise type than
(1.7.1), in which (as in Theorem 13) we establish strict inequality
except in certain specified special cases. When we pass to the
limit, ¢ <’ becomes ‘ <’, we lose touch with the cases of equality

(though these are in fact the same as in the rational case), and

« . .
FaSh b ¢l “"lf\f\p b ¥a] hnnm“]n“'n T“' Ty +Lﬂ n'p Tay NDNAACC O MY +
Our prooi is incompieve. 1v 1S wleTreiore necessary 1116 arra}lge our

proofs in such a manner as to avoid such passages to the limit
wherever it is possible. The same point arises wheneve I
o

to pass from a finite in nnna]ﬂ-v to the corresnondin

‘.J.\ILLA AXLAUC ‘.LL\J\i“W Viil VULLUL UL

integral inequahty It recurs at intervals througho ut the volume

theorem is subsndlary or dlfﬁcult or When a proof satlsfymg these

conditions would be troublesome orlong, we use whatever method

seems to us s1mplest or most instructive.

us in our selectlon of subgects may be summarised as follows.
(i) The first part of the book (Chs. II-VI?) contains a syste-
matic treatment of a definite subject. Our object has been to

& Except perhaps some parts of Ch. IV.
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discuss thoroughly (with their analogues and extensions) the
mple inequalities which are ‘in daily use’ in analysis. Of these

sim
three are fiuindamental i

LV A ULIAWIAI UL ULy ¥V Ldde

arithmetic and

geometric means
(2) Holder’s inequality (Theorem 11),

£\ MAec_ 1 i LD DL, ) ) A ¥i Fig ) - n AN\

(o) MINKOWSKI § Inequality { 1neorem <4%),;

and these three theorems dominate the first six chapters. We
prove them in a Varlety of ways, in the ﬁnlte case in Ch II in
the 1nﬁn1te in Ch. V, and in thei ' i

nda na ~f
UUlluallLl al DUL.‘-UD UL

systematic investigations Whlch ecede In them there is very
little attempt at system or completeness. They are intended as

an infradietion to certain fielde af madern recscareh and we have
CULL ALLUVLAULWUU ULULL UU UUL VGUALL LAVEUND UL LILUNAUL 1L LUUUWL\J“, CULANA YY U LAV Y UV

allowed our personal interests to dominate our choice of topics.
In spite of this (or because of it) the chapters have a certain

unity. There is much modern work. in real or complex function-

2aTANT A3 AiilaW BEUAU LU Les 1S 3 § YL, 222 2Rl UL RS A AR

theor_y, in the theory of Fourier series, or in the general theory of
orthogonal developments, in which the ‘Lebesgue classes L*’
occupy the central position. This work demands a considerable
mastery of the technique of inequalities; Holder’s and Min-
kowski’s inequalities, and other more modern and more sophisti-
cated inequalities of the same general character, are required at
every turn. Our object has been to write such an introduction to
this field of analysis as may be made to hang naturally on the
subject matter of the early chapters.

(iii) We are interested primarily in certain parts of real analysis

ano. not in arwnmemc or in augevora for its own sake.
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between algebra and analysis is often difficult to draw, especially
in the theory of quadratic or bilinear forms, and we have often

doubted what to include or reiect. We have however excluded

e R VORe ArLUATRIANS B A VUA Vaviauiavia

all developments whose main interest seemed to us to be alge-
braical.

We have also excluded function-theory proper, real or complex.
In the later chapters, however, we have sometimes tried to show
the significance of our theorems by sketching the lines of some of
their function-theoretic applications.

Thus (to give definite examples) our programme excludes

(1) inequalities of a definitely arithmetical character, such as
those of the theory of primes, or those which give bounds for
forms with integral variables;

(2) inequalities which belong properly to the algebraical theory
of quadratic forms;

(3) inequalities, such as ‘Bessel’s inequality’, which belong to
the theory of orthogonal series;

(4) inequalities, such as ‘Hadamard’s three circle theorem’,
which belong to function-theory proper:

and there is no systematic discussion of geometrical inequalities,
though we use them frequently for purposes of illustration.

It may be useful to end this introduction by a few words of

advice to readers who are anxious to av01d unnecessary immer-
sion in detail. The subject, attractive as it is, demands, for the
writer at any rate, a great deal of attention to details of a rather
tiresome kmd. These details arise particularly in the exclusion of
exceptional cases, the complete specification of cases of equality,
and the conventional treatment of zero and infinite values. Such
a reader as we have in mind may be conteﬂt, in general, to sim-
plify his task as follows. (1) He may ignore the distinction be-
tween non-negative and positive, so that the numbers and func-
tions with which he is concerned are all positive in the narrow
sense. (2) He may ignore our conventions concerning ‘infinite
or

values’. (3) He may assume that the parameter £ or r of i
amitalidias grinh ac H21dande and Minmloncolo2?0 30 pnaandan 4hann 1
Uqu LIUIOS SUULL ad 1101UCL S8 allu MIIIKRKUWISKAL B IS 5LUGJUU1 uvllall L



(4) He mav take it for oranted that ‘what goes for sums ooes
() may take 1t granted vthat at goes IOor sums goes,
with the obvious modifications, for integrals’ (or vice versa). He
ahneld Lo L ahla o cncmcdnn vorhaod 1o accarndial wadlh ~csd oo Tos o
PLIUUWIU L1 DC Al LU LIASLCL Willavu 15 OSdOllulidl iviouv ungus
trouble

This advme for ‘easy reading’ must not be taken too literally.
It is essential to understand the kind of exceptional cases which
occur, and the general principles which govern the discrimination
of cases of equality. It is not a mere academic exercise to pick
out the cases of equality in such an inequality as Holder’s; a
knowledge of these cases provides (as is shown very clearly in
§§ 8.13-8.16) a powerful weapon for the discovery of deep and
important theorems. Every reader should make it his business
to explore this inequality at any rate to the end.



wirith anta Afm nan_nacativa ntimhora o (ar h \ qaxr
YYivull DUULD UL TV 1U11‘1105a:u.l.v0 11UllL VYLD W \U.I. U,y Uy .'0” Dw‘y
(2.1.1) 2 DN a,,...,a, (a,=0),
\T**7*77 i R | A e () \TTy = 73

and a real parameter r, which we suppose for the present not to

be zero.
Wo dannta tha Aardarad
v V. A

Yy v wwwiiwv 1AV ULWWUL VUV

that ‘(a) is proportional to ()’ we mean that there are two
numbers A and u, not both zero, such that

(91 ‘)\ Y — . h (o — 1 m\
\H L. I Ilwv—".‘./uv \V—.l., el o evey IUl
T+ will ha anhaorvad that tho nil cat thao ant (4) in whinh avory 4 19 7zorn
LAV VYLIL VU UOUL YU vilivy ULJ AdLALr QUU’ ViliU ©OuU v \w’ AL YV ALIVAlL UV UL W Lo dvansg

L J
is proportional to any (b). Proportionality, as we have defined it, is a
symmetrical relation between sets but not a transitive one; it becomes

trangitive 1f wo oaxchide the n1il gat fram conaidaration
UJ.WLJ‘UJ.VJ-VU A VWU UAUVIAUULU VLIV 4d1lUlL DUV 11 V1AL VUVLLDIAU L UULULLe

-

If (a) and (b) are proportional, and neither of them is nul, then b,=0
whenever a, =0, and a, /b, is independent of v for the remaining values of v.

We write
1 1/r 1 2 1r
(2.1.3) Emr=§m,(a)=(—2a’\) =( 2a, \) ,
\n ° 7 \n 7

=1

=i

except when (i) r=0 or (ii) <0 and one or more of the a are

zero. In the exceptional case (ii), when (2.1.3) has no meaning,
we define SW} as zero, so that

ACALLAT @ LTL 2 Viiy

(2.1.4) M,=0 (r<0, some a zero)?.
Here and elsewhere we shall omit the suffixes and limits of sum-
mation when it can be done without ambiguity.

In particular we write

(2.1.5) A=A (a) =M, (a),

(2.1.6) =9 (a)=T_, (a).
Finally, we write '

(2.1.7) =G (a)=+/ (a:8,...a,)= @/(Ha.)

& If we admitted infinite values, there would be a corresponding case for positive r,
viz. r >0, some q infinite, Vi, = .
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Thus A(a), H(a), &(a) are the ordinary arithmetic, harmonic,
and geometric means.

L §. ¥R PO, [, R I n L. _ T 1Y O X Vod . 40 ON 2L 2

YV © nave exciugedq uviae case l'~—U DUL We Snaill nna iaver (9 4.6) vIlaL we
can interpret I, conventionally as (5. We are not generally concerned
with 'negative a, but it is sometimes convenient to use A (a) without any

VRIS By Py oS NI . iy

resuricuvion UJ. SIgLt,. .l..llb' U.ULLUIU].ULI. 1b uuuuuugeu.
2.2. Weighted means. We shall however usually work with
a more general system of mean values. We suppose that

(2.2.1) p,>0 (v=1,2,...,n)

and write
(“"’2) S'~!~Q1‘=g~!~!%1'( )=S~U2r( a,p / \l/r
(2.2.3) M, =0 (r<0, some a zero),
(2.2.4) GB=@(e)=G(a,p)=(1lar)zp,

The equations (2.1.5) and (2.1.6) stand as before, with the ad-
dition of the symbols UA(a,p), H(a,p). The last remark of §2.1
applies also to the generalised . The weighted means reduce to
the ordinary means when p,=1 for every ».

The means being homogeneous and of degree 0 in the p’s, we
may suppose, if we please, that Zp=1. In this case we shall
replace p by ¢; thus

(2.2.5) M, (a) =M, (a,q9)=(Zqga")r  (Zg=1),

(2.2.6) & (a)=6(a,q)=1la? (Zg=1).

We shall not usually refer to the weights explicitly in our
formulae, but it is always to be understood that mean values
which are compared with one another are formed with the same
wetghts.

Ordinary means are special cases of weighted means. On the
other hand, welguwu means with commensurable webguw are
special cases of ordinary means (with a different system of a); for
we may suppose on account of homogeneity, that the Weights
are wyl u/l/, and we can derive means with i .luucsj. ral w WUléu.Ub from

ordinary means by replacmg every number by an appropriate

set of equal numbers. Means with incommensurable Welgm:s may
Lr\ mnnn"nr]n:] 0 ]17\'\14-1“" NoQoQ r\'p n'\nr]1nn1n1-7 ™Oanomna
Vo 1L Uéal Uucu av 111111 Ul.lxé vauouwu Ul vilulliildvL 11ivauiin
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The following obvious formulae will be used repeatedly:

(2.2.7) M, (@) ={A(a")}¥r,
o o Q\ s s\ __ SN (loga)
{£.4.9) & (a)=e* 7

1
2.2.9 a
(2.2.9) M) =0, (Ta)’
(2.2.10) M, (@) ={M, (am)}2r.

We suppose that a >0 in (2.2.8), and in the other formulae if a

suffix is negative; the formulae may be extended to cover the

missing cases by appropriate conventions. Also
(2.2.11) A(a+b)=A(a)+A(b),
(2.2.12) © (ab) = (@) 6 b),
1 O 10\ oYy /LN ___ 7.0}y 7 .\ 2L LN 1./ ~\
(2.2.13) N (0) =k, (a) of (0)=FK(a)

(i a :l‘l\ — Ty wrhana Lhig indeanandant ~F )

\i.© L Uv-—-lizwv, WIITLC fv 1D LILWL PU 1UCIiV UL },
(2.2.15) M. (a) =M, (b) f a,=b, for all v.
2.3. Limiting cases of I, (a). We denote by

NAzan ~ 1LV P
Aviiii w, Yrax W
the smallest and largest value of an a.

else r< 0 and an a 18 zero.

It is to be understood here, and in the enunciations of all later

theorems, that, when we assert that inequalities hold uniess some

narticilar nandifian 1ig aaticfind wa imnlar +hat at loaat ana AfF+ha
HWL ViU UWLQuL UULLULLVLIVLL 1D DAl J.LU\L, YW < 11ut’l‘y VilavV AoV LUV VILTU Ul V11U

inequalities degenerates into an equality in the case excluded.

oYYy s mr

Here, for example, Mina =9, (¢) = Maxa if all a are equal, and

M_inn =Sﬂ} (1) <anﬂ in the nthar excantinonal o

We form our means with ¢. Since
(

AxrATTr 7 1a antral 4 SW PR §\f 3 i rrra Fanm adt loaacad Ao v awnd
CUYULY Wwis tyyual vU <G, UL TIST W0 — A4 IS PUSILLYTC 1UL AL 10adLV V1D W iU
negative for another. This proves the theorem for r=1.
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lies between (Mina)" and (Maxa)", which proves the theorem
generally.
2. Mina < ® (@) < Max a, unless all the a are equal or an a s zero
In the second exceptional case & =0. If & > 0 then
[ \a
1 (@) =1,

so that every a is ¢ or at least one is greater and one less than @.
3. lim N, (a) =& (a).
r—0
If every a is positive

rs A

o (o)
’.Uc,(a)zexp\—mgz‘qa' )

{ 10g(1+r20102a+0(7*2))}
—exp (Zqloga)=Ila?=@ (a),

M. (a, )=(anr)1/T—~(ESb")1/T—(Zs)”r?}ﬁ (b,s)—>0
when r—+ 0, since I, (b,s)>® (b,s) and Xs < 1. When r < 0, I,
and & are both zero, so that the result holds also when r—— 0.
Our proof depends on the theory of the exponential and
Ioganthml functions. We show in §2.16 how a more ele-

L‘VU'I'I"?'ln] ‘F‘ QOMITY 7Y 1IQ rrOnn ﬂ“f] r/\]]
Urivias 1T ally @ 18 Z€r0 alit 1011

We now agree to write
(2.3.1) Mo(@)=B(a), M, (a)=Maxa

With these conventions, we have



16 TT T TAIMADY AT AN YT AT TITIQ
& AL DAL LU AN L A Iv L I U A AN vaunuvuno
o A Nazenlherta Sevnveealiee Th 20 natcrantand 4 e PR P I
&sTe dAaULLLy D lIITYUallly. 1VIBSUVULUIIVUOILILCIIL VU PIOVO UC LICA L
theorem here although it will be superseded later by a more
h 2 a1 Vigahl
complete theorem (Theorem 16).

6. M, (@) <M, (a) (r>0), unless all the a are equal.
The inequality is (Spa’)? < Sp Epa®

and is a special case of the very important theorem which

are proportionald.

&

3

Cr

S

SN

«

3
—
—_ C~
N

is positive for all z, y, and therefore has a negative discrimi-
nant, unless za,+yb,= 0 for some x, y, not both zero, and all v.
To deduce Theorem 6, take 4/p and a"+4/p in place of a and b.

Theorem 7 may be generalised as follows:

8. ! Za?2 Xab ... Zal |>0,
! Zia b ... ZI® |
unless the sets (a), (b)s ..., (I) are linearly dependent, i.e. unless there are

numbers x, y, ..., w, not ail zero, such that xa, + yb, + ... + wi, =0 for every v.

Rither nroof of Theorem 7 mav be extended to nrove Theorem 8: we

sedaviaL LA UVL R S LwiV i el el L M CaAvTiiatia § - 22001012 O

may either express the determinant as a sum of squares of determinants,
or we may consider the non-negative quadratic form

Z(xa+yb+...+wl)?
inz,y,...,w. We do not go into details because any systematic discussion
of inequalities connected with determinants and quadratic forms would
carry us beyond the limits which we have imposed on the book.

2.5. The theorem of the arithmetic and geometric
means. We come now to the most famous theorem of the
subject.

@ This is what is usually called Cauchy’s inequality: see Cauchy (1, 373). The

corresponding inequality for integrals (Theorem 181) is usually called Schwarz 8
inequality, though it seems to have been stated first by Buniakowsky: see Bun

kowsky (l 4), Schwarz (2, 251).



TAT TMAALATANTT A T W MA T A AT X7 AT Trmmg 1’1
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0n 1N WS\ penaT g 211 AL o e one srnsre]
8. ®(a)<¥Ula), uniess avi tne a are equas.
i 41T A uaiiv VLU UO PLUVU\L i VT YWILI1UUUll 111 Uivllvul VUl viiv
forms
- /11 ay+ T[J a, \Pittin
(2.5.1)  a,Pra,P:... anpn<( 11 2 ”)
D1t -+,
\ LT /
(2.5.2) a a2 ...a,% < Ega
(where as usual 2g=1).
This theorem is so fundamental that we propose to give a

number of proofs, of varying degrees of simplicity and generality.
Of the two which we give in this section, the first is entirely

n‘lnmnni-nrtr rF]r\n qnnr\hr] Annnnﬂc nn mhanrnm 2 Qh{:‘ an at nrocant
iVl UCU.I.J o ALIV DUVULIIWL uutlu;.xuu Vil L A1VULVELL O UL DV, VU tl VoLl Uy

on the theory of the exponential and logarithmic functions. We
shall show later (§2.16) how this proof also may be made to

annform maore etrictlv to the canone of §1 7

WNVJLLAVL ALL L1RAVAU DUurav U-I- Viddw wididviinw va 6 Ao ¥ o

VY v Al ¥V

- < (Ut a\? (ag+ag\? _ (a;+ay+az+a,)
u1w2w3u4=\ 2 )\ B )=\ 4 }:

with inequality in one place or the other unless a,=a,=a;=a,.
Repeating the argument m times, we find

am
19 & o (Ot Ayt ..+ Aom)
(4.0.6} alaz... azm 2m ) )
unless all the a are equal. This is (2.5.1) with unit weights and

n a power of 2.
Suppose now that n is any number less than 27. Taking

bl=a1, bz=a2, ooy b an,

n
o A L iy,
Wy T Wo T ees T Wy, QI
- b
n

bn+1=bn+2= -..=b2m=

and applying (2.5.3) to the b, we find

m bi+by+ .. +b50\2"  (nU+ (2™ —n) W\2"
@y ... a0, W ‘"<( e =( (2m ) ) = A",
or a,a,...a, < A",
& Cauchy (1, 375). b Euclid (1: m 5, v 25).
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unless all the b, and so all the a, are equal. This is (2.5.1) with
unit weights. We deduce (2.5.1), with any commensurable
weights, by the process explained in §2.2.

When the weights are incommensurable, we can replace them
by a set of commensurable approximations, prove (2.5.1) with
the approximating weights, and proceed to the limit. In this

nNnrAanaaa Ahawnmaad 3mdn € r? an dhad veren A~ vmd ad Bnad Ahdain
PpPLUVODS \ 1»3 Uual.lécu 111vU = 5 BU uvllau WU UV 1iuvuv av IiTST 60vaiil

a complete proof of the theor;m. We may complete the proof as

follows. Write , .
QV=qV+qll (V=1> 29"')77/):

where ¢, >0, ¢/ >0, and ¢, is rational. Then

M, e vﬂ’ ,, — vﬂ"

r=24q,, " =249,
are rational and »' -t "' =1. We have alreadv proved (2.5.1) wit
WALV LWwuviviiwwi J 8 7 P YV U LAY v varvavrwa t".U'U\‘. \u.u l, YV AUAK
‘<’ for rational p, and with ‘<’ in any case. Hence

) Zq/a\m 5 Zq"afq
Mat < (2£2)™, mars(2L2%)7,
\«q ) \<q )

IMa?2=1Ila? [Ta?" <‘ . 2q’ a) (-1,- Eq”a)r"

<2q'a+2q" a=2qa.
Another way of completing the proof was show us by R. E. A. C. Paley.
< A

QYN e O £ e AT (e} — D 2 (B> (G273 — (G ()
u\w)-.ml\w;).m%\w;—‘ml \W= )= W \ws ) — WU\wj.
s20ve T ML L T D _Laxrn
(11)* DYy i1neore 0 anda o, we Nnave

£\ [\ ~ {~\ < {r) ~ ~ lim m () — {)
UA\A) =W \A) > W \W) > i \W) = oo ~ L Gg-—m (W) = T (W).
m—>0
This proof is very concise but not quite so elementary as the

first. It may be observed that we require Theorem 3 only in the
case in which the 7 of Theorem 3 tends to zero through the special

quence of values 2™,

y—A
T
)
o o
=)
Q.a
IQ
e
=)
(S
=
won
o
(O
p_-a
§
Q
o
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(i)2 If the a are not all equal, let
a,=Mina<Maxa=a,.

T, R, | " 1 o] h | 1 1 7 . \ QY 7 _\ * 14 . |
1f we replace each of a, and a, by % (a, +a,), 3 (a) is unaltered,
1

Suppose n that we vary the a in such a manner that U is
constant, and that we assume the existence of a set (a*) for which
& attains a maximum value. Then the a* must be equal, since
if not we can replace them as above by another system for which
@ is greater. It follows that the maximum of @ is U, and that this
maximum is attained only for equal a.

To prove the existence of (a*), let

D (A, 00, ey Wpy_1)=0105...0, ;(RUA—a;—...—a,_,).

Then ¢ is continuous in the closed domain

3 This proof, the most familiar of all proofs of the theory, is due (so far as we have
been able to trace it) to Maclaurin (2). Maclaurin states the theorem in geometrical
language, as follows: ‘If the Line AB is divided into any Number of Parts AC, CD,
DE, EB, the Product of all those Parts multiplied into one another will be a Maxi-
mum when the Parts are equal amongst themselves’. His proof is substantially that
which follows. The proof has been rediscovered or reproduced by many later writers,
for example by Grebe (1), Chrystal (1, 47).

AL DY WIcDo 75 il ysidl

(‘nnnhvn 'nrnn'F (S 2 K\ mav hp rpn'nrﬂn{] as 8 more so orm of Mac-

wauci proox ~.2) May DE regarceq & more uup..... ) Ly 1 oI MNac

laurin’s, since he proves the theorem in the special case w a process
similar to Maclaurin’s. In general, Maclaurin’s proof is not a unite’ proof. As we
have stated it, it depends on Weierstrass’s theorem on the maximum of a continuous
function. This would naturally have been taken for granted by Maclaurin (and has
also been taken for granted by many of his modern followers, such as Grebe and
Chrystal).

1t is possible to avoid an appeal to Weierstrass’s theorem, but at considerable cost.
It is plain that if a,1, a,!; a,2, a,?; ... are the smallest and largest of the sets resulting
from 1, 2, ... repetitions of Maclaurin’s process, then a,% increases and a,® decreases as

8 increases, so that

;:-
1 §
il
[
3
o
<<

aS—>ay, a°>ay, o=y,

A little consideration will show that n repetitions of the process diminish the greatest

Loty s o 7. S_S 0
difference of the a b_'y' atleast one- ha:lf, 80 that w2 - w1 = §\w2 - ""1) ience 6'02 —ay"—>v,

and o; =o,. It follows that all the a tend to the same limit (. This gives a proof of
the theorem, but one a good deal less simple than that in the text.
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The reader should ork out the anaiogous proof in which & is
A Wher /M )
QA By V&%)

(ii) There is a variation of Cauchy’s proof which illustrates a point of
some logical importance.

An ordinary inductive proof proceeds from » to n+1; the truth of a
proposition P (n) follows from the hypotheses

(a) P(n) implies P(n+1),

(b) P(n)is true forn=1.
There is another mode of proof which may be called proof by ‘backward

LA, IR R DR | AN +1. ~AF Y FAllAacra Fonen
maucuion » I)l.lU IJ]. LI.UJJ. UJ. .l \10} 1ULIVU VYD 11U111

(a”) P(n) implies P(n—1),

(b) P (n)is true for an infinity of n.

Cauchv’s proof mav be arranged as a proof of this last type First,

J -tJJ.\IUL ‘qu WLLWLLBU\A W W IJJ.V\IJ. AL VadAiINg AUV UJ t’vl A 3

Cauchy proves (b’) for n= 2™, Next, if the theorem is true for n, and if A
is the arithmetic mean of a, , a,, ..., a,_, , then anapplication of the theorem

to the n numbers a,, ..., a,_,, A gives

a,+...+a A\
Q{nz( 1t F O ) >0y 0., %,

n
\ (L

.

the result for n—1.

£222%0 TVYAL o re v ) v ot 12 crm naxr voinlanm v amed o T QOF
()® Jouiliig wy alil ey 111 (1), Cuiay 1Cplatc uy 1 Wy Uy A
and a; +a,— A. Then U is again unchanged, and

m(a1+ao %)““1(1'0:(%_(1

Y R V1 qdanvae at o axratona ~L all amnssal 4 QY T £V 41 _ 1
HIOSL 76— 1 EUUPﬁ, auv a bybUULll Ul ali cqucu VO 2. 1V 1()1 OWS tnagv
& <N

This proofis a little more sophisticated but entirely elementary.
mL. o 1n aldarnativa wwhinh wwa 1 4 4tha voadan 3 bt P
A D VU vilG .onlJuUl, 111 111CI11 (l/l

Dwma 19 o o naxra
HULT 1D All Alvviliauvlvo, wiliull WU 1oavo

and a., are replaced by & and a. a.,

Mo X v = 17ai *

(iv) There are a number of inductive proofs of the theorem: see
example, Chrystal (1, 46), Muirhead (3). One of the simplest runs as
follows®. Suppose that 0<a,=a,=...Za,, a,<a,, that U, and &, refer
to the first v of the a, and that it has been proved that %, =26, _,.

v Theorem 1 and

MTha < N
.l.J..I.ULJ. w"/ “An-1>1 UJ -I..LLUVJUL.LJ. EE ) ana

QY (n - 1) QI'n._1 +an, o a,— mn__l
7 .

9, =1 J An_ SR
n n n—-11

& For these proofs see Sturm (1, 3), Crawford (1), B iggs
Muirhead (3), Hardy(l 32).

b Another simule nroof due to R, Rado

a2 0UTL S 148,03 % v AV

(Theorem 60).



MT HMAMTATIMADY ATTI AN ITATITINQ DA
i uiviiN 1 ADNvVY MIOLAN YVALIU LD i L
Raicing +thica anitatinn +a +tha mih navwan and varmarmhaoning that o 1 wrn
LvalSIng vills SJuaiionl vo e ftuil pOwer, aliG remeinoering viav 71 > 1, wo
obtain
a,—U
WA+ ]2l W 12q,60 1 =60
n n—1 n—1 n n¥n—-1="%"n—-1 n’

(v) Another interesting proof was given very recently by Steffensen
(1, 2). It starts from the lemma:ifa,_;<a,,b, ;<b,,and a,<b,, for all v,

then Za Zb is not decreased by exchangmg a; and b;, and is increased except
when a;=b;ora,=>b, f'or v+1. The lemma follows at once from the identity

{Za+(b;— )} {Zb+ (a; - b )}
a

(a;+ag+...+ay).
If we suppose, as we may, that a, <a,<... Za,, and exchange n— 1 terms
of the first factor of the left-hand side agamst one term of each of the other

fa.ct@rs we obtain
. (@ +agtas+...+a,) (@ +az+as+...+as) ... (o
which is greater, by the lemma, unless all the g are equal. The theorem
follows by repetmon of the argument.

(vi) Further proofs of Theorem 9 (or of the special case considered in

b2 ol aTao rrsraTs 5]
VIS DULD].UJJ.) aloc glVUl.l. 1u SS & .L‘:I:, 4 é.l. 0 _l..l., uuu. ‘t A.

~ 2.7. Holder’sinequality and its extensions. Ournextgroup
of theorems centres round Theorem 11 (Holder’s inequality)a.
10. Suppose that (a), (b), ..., (I) are m sets each of n numbers.
Then
(2.7.1) G@)+EBB)+...+BD<G(@+b+...+1),
unless either (1) every two of (a), (b), ..., (I) are proportional, or

2

{O\ +honen na v <5 coznh +hat ~ __h 7 _0
\a, uvetr C o Wy swlire vit U/V——Uv—- . ——-llv——' Ve

The theorem states that, if Xg=1, then

B oy S A ES S 8 b L H! J.’ vaiiwvaiir

ala. .. Whr-b.Ubp L. .. b Wt . +]0] 2., . ] I

1 2 °° n ! I 1 ¥n ! L S P n
<(@y+by+ ... + L) (ay+by+ ... +1,)

unless every two columns of the array

1.
Ao, Vg, eeey Ug
cesy  eeey  eesy  wes

& Strictly, ‘Holder’s inequality’ is Theorem 14, or (2.8.3) of Theorem 13. The
inequality (2.7.1) was stated explicitly, for two sets and equal weights, by Minkowski

(1, 117).
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are proportional or there is a row containing only zeros. A neces-
sary and sufficient condition that all columns should be Propor-
tional (i.e. that every pair of columns should be proportlonal) is
thata b —-a,b,=0,a,,—a,, =0,

1 Ty
tionality of all rows. If we remember thi;

tionality of all rows. emer s, chan 1 tation as
between rows and columns of the array, and wri /5 ..., A for
sl o~ Ped CETLL Ot “'1\ﬂ+ m]nnn-mnm 1“ :ﬁ An“T‘T‘Yﬂ]n“" "'f\
!11, 32, eeey qn, WU dCU vliav L1IICULUII AV 1D U\iulva'lU.llU vuU
44 DY mnmandansen reaned . 1 D 1 L Y 1 +honm
11. 1J o, [J, coey NATE POSTIVE QT KT P T ooe T N= 1, UlET

(2.7.2) SacbB... < (Za)*(Th)B... (I,
unless either (1) the sets (a), (b), ..., (1) are all proportional, or
(2) one set 1s nul.

m]nn nf\“f]‘l" T AWV O #f\‘l’l DN TIO
1 08 COIiGIUOIS 10T O ua

that there is one set which is proportional to all the others (the nul

set being proportional to all other sets). The case in which one set
'IS “'l"] 19 t‘l"}“v’f}a] Q"ll:‘ Vre ™M axry 1nnn1‘n 'I+ ‘:ﬁ ‘th T\rnn‘F
A ALWAL AW L J. ULL\A ¥ lqu JsLLULU AV X111 ViiV tlL\IUL‘

Here again we give two proofs.

i) By Theorem 7

(i) By » (Zab)?< Xa2Xb?

unless (a) and (b) are proportional. Hence
(Zabed)* = (Za?b?)2 X (c2d?)2 < Xat b Xt Td4,

withinequality somewhere unless (2), (b), (¢), (d) are proportionala.
Repeating the argument we see that

(2.7.3) (Zab ... )" < Za?" TH?" ... 2",
with 27 sets (a), (b), ..., unless all the sets are proportional. This
is equivalent to (2.7.2) when every index is 2-™.

Suppose next that M is any number less than 27, and let

-~ 41 MA. 4 Te 7 1

be the Mth set. If (ab...g) is not nul, we define 4, B, ..., L

—~

<

p—
c-

4 om » a -

A¥ =aM, ..., F"=gM (M sets),
H=K*=. .. =L"=ab...qg (2m— M sets),
so that AB...L=ab...g, and apply (2.7.3) to 4, B,...,L. We
h .
Er“S ODBIN (5op ... g)?" < SaM ... SgM (Sab ... g)™
(2.7.4) (Zab...gM < ZaMTHM . TgM

# The nul set being excluded, proportionality is now transitive: see §2.1.

=
3



[ B3 P

€ €x l/ﬂi, to M sets formed b 0y o UK®E bct O
b, and so on, we obtain (2.7.2) with indices «, §, ....
Finally, Wh /5, ... are not all rational, we repiace them by

EAVISSE Y \Q HI LUL viivov

~

11
e limit. In this process ‘ <

‘<’ and, as in § 2.5 (i), we do not at first obtain
1 roof as follows ‘ﬁ]e

o m
LA -tll. AVAV SR W FAVESAV R LESYS

aegenerat in

a nnammnlata
D UULLI.P.I.UUU J:’

1 are rational. If then X«;=0,
and Poi=qxbbi..., P,or=qa%bb: ...,

S P, =Za0 ... Mo < (Za)ulor .., (SN

while for £P, we have a similar inequality, but with ‘<’ only.
Combining our results we obtain (2.7.2).

(ii) We may deduce Theorem 11 from Theorem 9. We have in
fact (since no set is nul)
SaxbB ... A Z/a,\m/b\ﬁ [ 1\2
Cap... o \za) \58) - \5)
a b [ )
§E(ocv—"+/9ﬁ+. AAg =+ B+ +HA=1
\ Aad U LdU LdU |
Lg 3 Vo vl 1 __ O
1nere can pe equalvry oIy 11
¢ _b_ L 19 .
e V=1, &, ...,70),
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It will be observed that, whether «, 3, ... are rational or not,
no limiting processes are involved in the proof beyond those

already present in the proof of Theorem 9. The principle of the
proof is the same as that of the proof of Theorem 13 below given

independently by Francis and Littlewood2 (1) and F. Riesz (6).

12. Ifr,a, B, ..., A are positive and o+ B+ ... +A=1, then
M, (ab...l) <M, o (@) Mg (8) ... M, (1)
unless (all®), (bVB), ..., (1Y) are proportional or one of the factors on
the right-hand side is zero. If r <0, the inequality is reversed.

It is to be observed that, when r > 0, the second exceptional
case occurs only if one of the sets (a), (b), ... is nul, whereas when
r <0 it occurs if any number of any set is zero. When r=0
there is equality in any case.

We shall often find it convenient, when we are concerned with
two sets of numbers only, to use the notation

_k

k-1

k being any real number except 1. The relation (2.8.1) may also
be written in the symmetrical forms

(2.8.1) k'

(2.8.2) (k-1 -1)=1,
(the last form failing when £ =0, k' =0). We say that k and %’ are

conjugate.

[ 3 Y. o~ 21 2T N 1. 1 . T 21 2 Tt a_ 7. m7
. uppose tnat K=Y, £ 1, And Lidt K 1S CONJUgare 1o K. L Ren
5]
.

'S

n

o
M
QN
S
A

™
Q

Q {
Oo. {
3 7

unless (a* ) are proportional; an

. P 23 A
uniess (a®) ana (0

(2.8.4) Zab > (Zak)Vk (ZbE'WE (k< 1)

unless either (a*) and (b¥) are proportional or (ab) is nul.

& See Hardy (8).
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Cauchy’s inequality (Theorem 7) is the special case k=k"=2,
':1"\ X7 ':nh 7/' 1 nt\“';]'l”ﬂ*'ﬂ +n 1+QQ]F
411 YV 1iilvlid v 1O UU]..l.J uswuu VU 1LUDWViL.

(i) Suppose that k>1. Then (2.8.3) is the special case of
Theorem 11 in which there are two sets of letters and a=1/k,
B=1/k'. This is the ordinary form of Hélder’s inequality?.

(ii) Suppose that 0<k <1, so that k' <0. If any b is 0 then
the second factor on the right-hand side of (2.8.4) is, as in
§2 1, to be interpreted as 0, so that (2.8.4) is true unless (ab)

. | i~

S ul. J.I evely 0 lb PO Ve, 15 (‘1611 1€ l/, wu, v D:y
[=1/F,
so that I>1, k'=-Fkl'
and u=(ab)k, v=07%,
so that ab=v!, aF=uv, b¥ ="
Then (2.8.4) reduces to (2.8.3) with u, », I in place of a, b, k

ace
The exceptional case is that in which (u’) and (2%), i.e. (ab) and
(b¥), are proportional. If this is so then (since the b are now all
positive) the sets (a) and (b¥-1), and therefore the sets (a*) and
(b¥), are proportional.

(iii) If k<0, then 0<k’<1. This case is reduced to (ii) by
exchanging a and b, k and %’. Both (ii) and (iii) are included
in (2.8.4).

The inequalities remain true in the excluded cases k=0, k=1
if we adopt appropriate conventions. If £=0, £'=0, we must

1n+pmwa+ (‘) A\ as
ALLVUL LUV

a; by +a‘.bn+ .4a,b,>n(a;...a,b;...0,)".

U 1

If k=1 we may interpret £’ as +oo or as —co. In the first case

we interpret (2.8.3) as Xab <MaxbZa, and in the second we
nterpret (2.8.4) as Zab > Min b Za. We may leave it to the reader

AU adll gy v 20 VO VAR LR

ck out the cases of equality.
We can combine (2.8. 3) and (2.8.4) in the single inequality

(2.85)  (Taby < (Ea’“)’“’ (Sh¥" )k (k#O k1)
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depart from our usual practice here and state explicitly the
derivative theorem for complex a, b.

14 flLs1 am
a A A

Lo .LJ w -~

|¥) are proportional

!
I
. AT & wrnera vord

15. Suppose that k> 1, that k' is conjugate to k, and that B> 0.
Then a necessary and sufficient condition that Ta*=<A s that
Zab < AVk BU¥ for all b for which Zb* < B.

The condition is necessary, by (2.8.3). If Za¥>A4, we can
choose the b so that ¥ = B and (b*) is proportional to (a*), and
then Sab = (Sak)uk (SHF Y > AUk BUF

Hence the condition is also su

Theorem 15 is often 1 for the purpose of determining an

1mnar hannd far YAk /\ nxr a mant ha nnr] An it nan ha nhanand
\Atltl 4 MU MLIU 1LVl LW, y Al ULITIIV UadTuUu ULl 11UV vall T Uua)ll.sDu
S on

into one which involves only a special (b), but the form stated
here, with arbitrary (), is sometimes more convenient?.

E”

2.9. General properties of the means It,.(a). We can now
prove a theorem which completes and supersedes some of those

i18.0 If r<s then
(2.9.1) M, (a) < M, (a),
unless the a are all equal, or s £0 and an a s zero.

We have proved this already in the special cases (i) r= —o0

2 Compare §§ 6.9 (p. 142) and 6.13 (p. 149).
b Schloémilch (1). See also Reynaud and Duhamel (1, 155) and Chrystal (1, 48).
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(Theorem 5), (ii) s = + oo (Theorem 5), (iii) 7 = 0, s = 1 (Theorem 9),
(iv) s=2r (Theorem 6).

.Sn'n'r\ncn rat that 0 cr e and write »r—ov an that D v <~ 1
u_t’_tl\luv ALV VIALWUYV UV T N U, ULLIL YYLAUW 1 UW’ PU VLWV VUV N W N ‘-’
and e Y
per=uw, Pp=1v,

~— 41t _ a2 n h | an 4 o\ 1 _ v o1 _
BO tnav v>v ana pact=(pa’)cpr T=u"v""",
Then

(2.9.2) Zutpl—* < (Zu)* (Zo)l-2,

by Theorem 11, unless u,/v, is independent of v, i.e. unless a, is
independent of v. Hence

[Zpa&'a\lls(x /2 aS\l/S
— e —— < —
\"=p \=p)
which 1s (2.9.1).
mL, aana v whinh m<e N and an ~ ia rarn ara Fricrtal and o e
LIk aASTD 111 111011 E V allu all 4 15 LCOLU al© ullivial 11U wo Lle:y

(M, (00))s = (G (a))= (as) <W(a*) = (M, (a)),
by Theorem 9 and (2.2.7). The two remaining cases, r <s <0 and
r <8=0, reduce to those already discussed in virtue of (2.2.9).

178 Tf()(/r <t

en
(2.0 3) s < (WRrVi=F (M=
\&eU.uy s ~\ J° (\ ]

unless all the a which are not zero are equal.

We restrict the parameters to be positive, the complications
introduced by negative or zero values being hardly worth

pursuing systematically.

s=ra+t(l—a) (O<a<l).
The inequality is then
2qas < (anr)“ Zqat)—o
when we write u=qa’,
)
J

Y\d 10!\ Q}If\'l11[4 }\D
\U/ [SE S AVAR S AV IRV A

reduces to a case of

y equi o that stated in the
enunelatmn The reader should observe the difference between
the conditions for equality in Theorems 16 and 17

& Liapounoft (1, 2).
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X7 1 11 1 _ 2 700 n rmi oy 11 i rm
Yy e snail see iater (3(5 0, neorem 6/) That Lneorem .lI may

2.10. The sums &,(a). (i) We write
@r = @r (a’) = (Zar)llr (T > 0)

We confine our attention to positive 7, leaving the construction
of a theory of &_for » <0 as an exerc

V3iJ VR Ny 2VU2 as Qi1 ©

:3
1vs]
@
(=g
o
o+
=
@
4
(7]
[
2
]
=

18. IfO0<r<s<tthen

asre =J

unless all the a which are not zero are equal.
This is essentially the same theorem as Theorem 17. In fact
(2.10.2) S, (a)=n1rM,.(a),

the mean M (a) bei

HEIL AP

formed with unit weights, and (2.10.1)

nit weig
g.

reduces to (2.9.3), th e powers of n disappearin

The correspondence between Theorems 17 and 18 depends
essentially on the fact that (2.9.3) and (2.10.1) are homogeneous
in the second sense of §1.4, namely in the sign 3. There is a
theorem for sums corresponding to Theorem 16, but in this
theorem, which is expressed by (2.10.3) below, the sign of

OQ

inequality is reversed; (2.10.3) is not homogeneous in X, and
is not related to (2.9.1) as (2.10.1) is related to (2.9.3).

19.2 If 0<r<sthen

(2.10.3) S;s(a) <&, (a),

(2). Pringsheim

AL AESIITRR

8 F : n a
b Compare the remarks on this proof in §1.4
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21, ©. >0 when r—0. unless all the a but one are zero
- I b WIVWwUUYT WUV VIV W VWV ViIive Wi v & Ve
Theorem 20 follows from (2.10.2\ and Theo‘em 4. To prove

N is the number of posm
{1,1\ rr‘l'\en'lnnm ' 0 nan mk.ﬂ

1 o
ALVLIL K /7, VULLL VLIV

ing theorem of Jensen?.
22. If o, B, ..., A are posity
3~ I

Tacan writa a — ol B LA rhara b~ 1 a al 1. A — 1
Y ULVUQull YY L1UU (K — IV ’rJ-—'W,\J,o c,VV-lJ-U-LUW/-L(U.I.L 7.5 TI\I T cee ™ Lo
If then a*= A, b¥k= B, ..., we have
TaebB...N=SABE ... [X < (SA)¥ (EBP ... LY
_ IS E\ok INTEAAE <« (5~ \ oy AYAYY
= (07) e \ZE S (@)™ .. (),
1‘\"7 ml\l\f\‘lﬂl\w\ﬁ 1 1 ﬂ“l‘] 10 ml\l\“l\ ;ﬂ 1“[\“11!\-‘1"1‘7 ﬁl‘\mﬂ““’l\l\“f\ "1“1l\ﬂﬁ
U.y TUITLIID 1 X allu 1 7. L11010 1D 1L J.Uliual.l.l.l.ly PULILIUWILITIU UWLLITUDD

(iv) It is natural to consider weighted sums
T, =T, (a) = T, (a, p) = (Zpar)tlr.

It is plain that there can be no universal relation of the type (2.9.1) or
(2.10.3), since T, is the &, of Theorem 10 when ». =1 and is M. when

\Sed Ve jy SIIIUT ~p A0 ULIU \Jp Ui 2 ITULTIXL K7 VViiUix Uy, QAL LS DYy VYV IIULL

2p,=1. The possibilities in this direction are settled by the following
theorem.

28. A4 necessary and sufficient condition that

(2.10.4) T=T, (0O<r<s),
Jor given weights p and all a, is that Zp < 1. There is then inequality unless
(a) is nul, or Zp=1 and all the a are equal.

A necessary and sufficient condition that

(2.10.5) T,<3I, (0<r<s),
Jor given weights p and all a, is that p, = 1 for every v. There is then inequality
unless (a) 18 nul, or a, >0, p,= 1, and the remaining a are zero.

(1\ If we take a,=1 for every v, then I,= (74}\1/" and (2.10.4) can be

trueonlyif Zp <1. If this condmon 18 samsﬁed, and r=sua,sothat 0<a <1,
we have o

- PP AV e R D YWY LAY WA NPURN TV N b STV
Zpa’ = I (pa’)* pt* = (Zpat)* (Zp)t— = (Zpat)®
which is (2.10.4). The conditions for equality are plainly as stated

& Jensen (2).
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(ii) If we take a;=1 and the other a zero, I,=p,/r, and (2.10.5) can
be true only if p, = 1. If we assume that this condition is satisfied, write

g=7rR. so that Rs] and a assume, ag we may on grounds of homogeneity
& B, 80 that 1, and we may on grounds of homogeneity,

1 for every v and
Spat=2 (pan)Ppl-B< X (pa )ﬁé Yoar

£  od ?
which is (2.10.5). The conditions for equality are again plainly as stated.
911, Mlnlznwel(i 'e ineanality. Onr nexvt thenram ic a cone-
A &A&A® ATVAAA YV AFARE W a;;v&uu;xu‘y L] NS AL LIV AY VIAVULVILL A0 W 6\/1‘-\-’

ralisation of Theorem 10.

24. Suppose that r is finite and not equal to 1. Then

(2.11.1)
M. (@)+ M, (B)+ ... +M, ) >M, (@ +b+... +1) (r>1),

(2.11.2)
M. (@)+ M. B)+... + WM. () <M. (@a+b+...+1) (r<1),
unless (a), (b), ..., (I) are proportional, or r <0 and
a,=b,=...=1,=0

Lo o mann B
J () e v
Mhans 1qa antialidy FAr any ~ kA wxrhon 2 1 Mha~rnane 10 34
A 11CL n Ukiu.wllb 1UL . .l..y Wy Uy oo WLITIL 7 — 1. LUTOULOLIL 1V 1D
the special case »=0. The main result remains true (and is
trivial) when =00 or r= —o00, except that the conditions for
anttalitr von1ive a roagtatomaont whin xr ho 1aft 44 +ha voaadon
U\iua& ‘y J.U\.iu..IJ.U U LUpuvwvuvuiIiiviiv 111011 lua/J VU 1ULU VU ULIU LUQLUL »

a+b+...+1l=s, M. (s)=21.
Then Sr=2qs" = 2qas™ 1+ 2qbs 1+ ... + Xqls™1
= (ql/ra) (ql/rs)r—1+ e 3 (qm*” (C_]l/rS)r—l.

Suppose first that »>1. Applying (2.8.3) of Theorem 13 to
each sum on the right, we obtain

(2.11.3) 87 <(Sqar)Vr (Eqs")”" Foee= 81 (Sqar)ir 4 ).

/ 4

. are all proporuonaL Lne

.
. Sn’\np RN 18 nositive (nvn ant,

i S L viv] D PUDLULY U \VAUVU U

. —
)
(]

as™) . i.e 1*F(n.\ (h\
gs'),re. o), ...

in the tr1v1a1 case When every set is nul), this establishes (2.11.1)2.
Suppose next that 0 <7< 1. Unless all the sets (@), (), ... are

nul, s,>0 for some v, If 8,=0 for any nﬂrholla,r v, then

There is equality only if (ga’),
(

e ML _ £ J___. & _ h_‘_, r4 ‘P'\
Rl N (U0 PI'UUL 15 A4ue 1o IvICSZ \ ’ O)-

h;i
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a,=b,=...=1,=0, and we may omit that value of » from con-
sideration. We may therefore argue as if s, >0 for every ». In
that case (2.8.4) of Theorem 13 gives (2.11.3) with the sign of
inequality reversed, and the proof may be completed as before.

Finally, suppose that r < 0. If any s, is zero, all the means are
zero; we may therefore assume that s, > 0 for everyv. If anya,is
zero, I, (a) =0, and we may omit the letter .2 We may therefore
argue on the assumption that every a, b, ... is positive, and then
agaln everythmg follows from (2.8.4) of Theorem 13.

When the q are equa al, we obtai
not eq

25. If r s finite and
(2.11.4)
Z(@+b+... + 1)) < (Zam)Vr 4 ... + (2 (r>1),

(E(@+b+... +1)")Vr> (Za")Vr 4 ...+ (2 (r< 1),
unless (a), (b), ..., (I) are proportional, orr<0and a,,b,, ..., 1, are
all zero for some v.
It is (2.11.4) which is usually called Minkowski’s inequality?

...... ich is Mir ski’s inequality®.

Theorem 24 is more general than Theorem 25 in appearance
only, since it may be deduced from Theorem 25 by writing
plra, ptrb, ... for a, b, .

Theorem 24 may be given a very elegant symmetrical forme.

26. Suppose that MW denotes a mean taken with respect to the

suffix p, with weights p,,, and MY one taken with respect to v with

g,egghtg q,;4 and that 0 <r < s <o0. Then

?JJL(V) E)Jt..e(”) (a. ) < S)JL(}L) S;)’L(v) (a ).
S T \"uvs 7 s \Muwss

except when a,,=b,c,.
T'he result holds generally for all r, s such that r < s, except for the

epamﬁnnhrm of the cases m" orm:nhhl

A A L asata a4Vl

8 Here we use (2.2.15). b Minkowski (1, 115-117).

¢ Theorem 26 was communicated to us in 1929 by Mr A. E. Ingham. The same
formulation of Minkowski’s inequality was found independently by Jessen and
published in his paper 1. This and his later papers 2 and 3 contain many interesting
generalisations: see Theorems 136 and 137.

4 We depart here from our usual convention about g, ZQ

is il
(though we prove the inequality by transforming it into one in which we may sup-

nnga Yo —1)
pPUsY oy — i



W Ao nrava +ha +hanvnar fAan ) - o a o ~~ Toaxrinee +ha ~ndhan ~acno
YYyo AUVU VLIU VIICULULLL 1UL VN T N9 W, 1Tavil .ls vl VO ULITL OasSTey>
to the reader. There are various supplementary cases of equality
when 7 £ 0 or one of 7 and s is infinite.
Let sjr=k>1 and p,a’ =A4, . Then the inequality to be
./ ©wruy 1724 ke |
proved is
n /' m sfry1/s m n ris\ 1/r
] S S L] [ S] Sl C D]
lv=1 \u=1 J ) le=1 " \r=1 /)
{n /[ m \ N1k m [/ n \ Yk
D k
o {Ea(Eaf < E (Raan)”
\V=a \H=1 7 ] p=a \V=a 7

This reduces to (2.11.1) when Xg=1, and, being homogeneous
in the ¢, is true without this restriction.

-‘-]nnnwtnm m]n‘!n]n 'pn]]nmcv 19 amnm ﬂv\ﬁ]f\ﬂ]"h n"" r[‘]nanmnm f): r\‘p o m1m*n1crr-
tieorem winlCil I0U0OWS 1S all anaiogue 01l L1neoreill 4J OI & S1Mp.cl
kind.

97 "_1(' » 20 mpertrine and not counl to 1 then

o L3 ‘I I v IJVUO(/(/UD wivw 1rvuvu o wuwwv vV A uvivwirv

[ 1O 1) NV~ Lo 1 NP~ N Ar s N7 . NIr [V Y

\‘l..lﬁ l) LJ\WTU"T' .._r'b} P T 4&dU T eee T &dl \l)-l,,

(2.12.2) X(@+b+...+l)\<Za"+2b"+...+2I" (O0<r<l1),
unless all numbers but one of each set a,,b,, ...,1, v=1,2, ..., n)

are zero.

mi:s_ ¢ 1 _ 4 O T . 10 (lamn L Ao A
1118 10110WS daU 011Ce 110111 111eorentl 17, S11CO 101 ©cAdlllplo
{ 1 I\» ~T » Ir
A TO0TeoTl) >0 +

TAT T o 2 cmcimc Ve o i 2 e dlmm it 2 mmradatannd e ~E /O TT AN
ynat is usuaily required in practiceis a compinavion o1 (2.11.4)
and (2.12.2), viz

28. If r>0 then
(Z(a+b+...+D))ES (Zan)E+ (ZO7)E+ ... + (Z7)E,
where R=1if0<r=land R=1/rifr>1.

2.13. Illustrations and applications of the fundamental
inequalities. (i) Geometrical interpretations of Holder’s and Min-
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kowski’s inequalities. Two particular ly simple cases of H
and Minkowski’s 1nequa11tles are

(2.13.1) (21224 Y192 +2125)% < (B2 + Y12 +21%) (%2 + Y2+ 2,%),
(2.13.2) VA{(21+2:)* + (1 + ¥2)* + (21 + 22) %

rl‘kﬁan hn]tq 'F.I'\T‘ 0-'] Y'QO] TTO]11CIG l'\'F‘ '*‘hﬁ TT“]'V";nl’\]QG nﬂlq o

TNragy
AVUL Vil AVOVL Y AvLiUuuvin Ul vaiv ¥ CULJ.CUUJ.UD, avii\i UAL}.’. o

facts that (1) the cosine of a real angle is numerically less than 1,
and (2) the sum of two sides of a triangle is greater than the third
side. The exceptional cases are those in which (1) the vectors
(%1, Yy, 21) and (x,, ¥, 2,) are parallel (with the same or opposite
senses), and (2) the vectors are parallel and have the same sense.

The ordinary form of Minkowski’s inequality is the extension
of (2.13.2) to space of n dimensions with a generalised definition
of distance, viz.

P, Py=(|2y—2 |+ |ys— Yo |7+ .. )" (rz1).

The most obvious extensions of (2.13.1) are connected not with
T

3
0
t
""b
r

_l.l J.I Gldvr S lﬂ%quah vy fU.l. gener ral r but wi

case r =2 in a different direction.

a ornmnnwm
(<] 5ULIUL

29. If Za,,x, x,, where a,,=a,,, 18 a positive quadratic form

(with real, but not necessarily positive, coefficients), then

(an,xyy,,) <2Za,xr xr, 2a, v YuYvs

uyuty

unless (x) and (y) are proportional.

This is an immediate consequence of the fact that

Zay,, (A, + py,) (A%, + py,)

is positive: compare the second proof of Theorem 7. It represents
geometrically an extension of (2.13.1) to »-dimensional space,
with oblique coordinates or a non-Euclidean metric.

To illustrate Theorem 15, take k=2, A=1[2, B=1, and
rectangular coordinates. The theorem then asserts that, if
the length of the projection of a vector along an arbitrary
direction does not exceed /, the length of the vector does not
exceed /.

HI 3
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(ii) A theorem of Hadamard?. In our next theorem also we are
concerned with a set of numbers g,, real but not necessarily

positive.

30. If D is the determinant whose constituents are

a. (uv=12..n),
1114 NS
then
(9 192 2) N2 <y 2V, 2 Sy 2
\H.J-u.u, P >4 P HWIK HW2K es e HwnK .
q her're /'1;8 equa atas omlag anshom
! wwvu 'Ivy vivy wiIuvviv
(92192 4) VY, A N N La a —0
\Ferrexy w}Lle]. i Wy.2""v2 b oees i Wp,n""vn v

for every distinct pair u, v, or when one of the factors on the right-
hand side of (2.13.3) vanishes.
The geometrical sigm'ﬁcance of the theorem is that the volume

UL a Pa,u.a:ucxcylycu in n- 8Pal® AOEs Gy eXceea und proaucCu 01 vi©

edges diverging from one corner, and that there is equality only
when they are orthogonai or an edge va,nishes

QI'I“Y\I\GD “‘"\ v s o l'l [2} T\I\G‘I“"ITTQ NI'I‘\AT‘\‘\"';I\
UutlyUDU U.LI.(NU HUI.LV va, VVLLUI.U U’Lv—uv’l:’ JD w PUDLULV \1u.a;u..|.aau1v

form, and that A is the determinant whose constituents are ¢,, .
Then the equation

(.

1n

o\ 1

.9) l Ci11—A C12 l
. . 1

l (/21 (/22—'/\ cee l

ces e

has n positive roots® whose sum is 2¢,, and whose product is A.
Hence, by Theorem 9,

s T NN A

(2.13.6)

A

(>
If ¢,, > 0 for all u, then the form

c
S—E g ax=3C x x
A/(c..c,.) "7 pypY
v \F’J, | 4 &4

is also positive; and if we apply (2.13.6) to this form, we obtain
(2.13.7) A<c

3 Hadamard (1) considers determinants with complex constituents. Theorem
30 was found earlier by Kelvin and proved by Muir (1).
P See Bécher (1, 171).



all the roots of (2.13.5) must be equal,
Whlch is only possnble 1f Cuy=0 Whenever p+v and c,, is inde-
pendent of p. Hence, for equahty in (2.13.7), we must have
0., =0 for p=+v, C,, independent of u. The last condition is
certainly satisfied, since ¢, =1, and C,,=0is ¢,,=0, which is
(2.13.4). h ' '

We can extend the theorem to determinants with complex
constituents by using Hermitian instead of quadratic forms.
Further extensions have been made by Schur (2)a.

The following ingenious proof of (2.13.7) is due to OppenheimP.

Nernanbh At s anagrrmna atal lichog wwnt Anlsr 70 19 7\ 43 A
vUppPeInciii s au.gu.mcuu E€80a01isnes 10U Oy («.10.4), aia 80

Hadamard’s theorem, but also the inequalities (2.13.8) and

(2.13.9) below, due to Minkowskic and Fischerd respectively.

Anr +exr 141 ive n1adnatin farma Sn SJ > Thnn
.L'.\J..l.y UWU PUDLU ‘iua}ulaul\} LUL 112D HUQkWZWk, szszwk mal.y UU

reduced simultaneously, by a linear transformation of deter-
minant unity, to sums of sr.quarese say Zc,y,%, 2d,y,% where

v v YUDIULV e A AL/LL dd zkl W?/ k 48 PR WAV AV AVIWLD § v
X(c,+d,)y,2 and the determlnants I ¢xls ... of the forms
satisfy

I r, ( —_— r l l — A I oA I — (n AN
| Cik | = 210y, |G | =118y, | Oyt Oy | = 11(0) T8y
Hence, applying Theorem 10 to the sets (c,), (d,), we obtain
19 192 Q) lo 1nld 1Mn<la. 4. 1ln

& See also A. L. Dixzon (1)
b Oppenheim (2) ¢ Minkowski (2).
4 Fischer (1). ¢ See Bocher (I, 171).



QR TAT TARAOTANTIM A T 7 MATY A \T AT TTTQ
[V AV LB ILIN LADVY IVMIuAdN VALU LD
iy PSR A 1T a TLLL A v At da 70 19 O\ Ty O oA waigca 40
coLumns, o — 1. 11 LHOIl WO UlVIUC (4.190.0) DY 4, allUu 1aldt vU
the nth power, we obtain -

(2.13.9) | Cir|=|Craeee Cnn | ] C11eee Cr | | Crpg,rpa - Cun |5
Where [ cl1 . ] denotes the north-west diagonal minor of r rows

| .
mentarv south-east minor Pn‘n he cument eplacing
each of the factors on the right-hand side of (2.13.9) by two
Lot e o Ao o T T STl ol (O 19 7Y
1acCu0rs, ana sO 011, we ululiiavCly Uovaill («.10.4 ).

T T o e oS A A D a +ha

(iii) The modulus UJ a matrix. Dupyum: that 4 and B are the
matrices of n rows and columns whose elements are a,, and b’w,

}LV
the elements may be complex. The matrices 4 + B and BA are
defined as the matrices whose elements are

n v A
WFW T U’Lv ’
31.0 If | A|, the modulus of the matrix A, is defined by

|4 |=viZ|a,|%
then |A+B|<|A|+|B|, |BA|=|B||4].
The first inequality is an immediate consequence of Theorem
25, with r = 2. The second follows from Theorem 7, since

2 2 2
= | bp1a1v+ °ee +by.na’nvl = % I bu.p | | Qg l :
My V [N N
(iv) Maxima and minima in elementary geometry. We quote (as ex-
ercises for the reader) a few of the numerous applications of the funda-
mental inequalities to problems of elementary geometry.

32. The area of a triangle of given perimeter 2p is a maximum if the sides
a, b, ¢ are equal.

[Apply Theorem 9 to p—a, p—b, p—c.]

33. If the surface of a rectangular parallelepiped is given, the volume is

areatest when the narallelenined is o cube
V VOV WwWaIvwiv vive _tlwl WUVUVVIIV‘HUW VD W VAT

[Denote theedges diverging from a corner by a, b, c and apply Theorem 9

to be, ca, ab. There is an analogous theorem for a Pnra“n'lcnmhpﬂ in n

VYRS vaalla

dlmensmns, if k<n, and the surface of the k-dimensional boundary is

given, the volume is greatest when the parallelepiped is rectangular and
its edges are equal. This may be proved by combining Theorems 9and 30

Y YO A2

with 1dent1t1es between determmants.]

8 Thus Xd ;2,7 is formed from Xegz;a;, by replacing &;, 2 (3, k=1,2, ..., 7)
by —z;, —; (and is therefore positive if Xc ;2 is nomtlve)
b See Wedderburn (1).
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34. Définition. St la Base d’une Pyramide est circonscriptible & un Cercle;
et 8t le Pié de la Hauteur est au Centre de ce Cercle: J’appelle cette Pyramide
droite.

Dans une Pyramide droite toutes les Faces ont une méme Hauteur, et sont
éaalement inclinées au Plan de la Base.

Cy JIOCTeE TV eeTeTTS LC ¢S L2UWo0Cs

Théoréme. Soient deux Pyramides de méme Hauteur, dont les Bases sont

égales tant en Surface qu’en Contour; que Uune soit droite et que I’auire ne le
soit pas: ';» n-ﬁf’fwma que la Sufrface dela /nfrp'moprp Polrnm')dp est plus p hite
la S urface de la seconde. [(Lhuilier (1, 11
[Let h be the height, b, a side of the base, and p, the perpendicular
from the foot of the altitude on to b,. Then the lateral surface of the
second pyramid is
3 2b,v/(R*+p,%) >} V{(Zhb,)? + (Zp,b,)%,
by (2.11.4) of Theorem 25, unless all the p, are equal.]
(v) Some inequalities useful in elementary analysis. The following
theorems, which are easy deductions from Theorem 9, are fundamental in

the theory of the exponential and logarithmic functions.

385. If¢>0,0<m<n, then

(1+5) < (145)".
N\ m/ N n

/'1 ———>_m> <1 _E\T .
36. If £>0, ¢1, 0O<m<n, then
n(lr—1)<m(¢
We have, by Theorem 9
(1+§§ 1" m(1+§§+" Mi=14f.

Tiv/ vy n

If also ¢ <m, then

If ¢ <m, we may write — ¢ for £, This proves Theorem 35. Theorem 36

- g, / PN
follows from Theorem 393 if we replace ¢ in Theorem 36 by ( 1+ 7—%)

2.14. Inductive proofs of the fundamental inequalities.
Our fundamental theorems are Theorems 9, 10 (or 11), and 24
(or 25), which we refer to shortly as G, H, M. We deduced H
from G2 and M from H; G is a limiting case of H, H a special
case, or anticipation, of M.

The simplest case of G is

37. (G,): a*bB<au+bB8 (a+B=1).

We show first that G can be deduced from G, by induction.

& Though giving also an independent proof of H.



38 ELEMENTARY MEAN VALUES

Suppose that G has been proved for m letters a, b, ... , k (or for
any smaller number), and that

at+B+...+xk+A=1, a+B+...+k=0.
Then

a®bP...kx = (a¥obBlo ., kxlo)o A
S (a¥eoPio, . kX% o+ IAsan+bB+ ...+ ke +IA,
by G for 2 and for m letters. There is equality in the final result
only if adiobBlo | Jwio=], g=b=...—=F,

i.e. if all letters are equal. Hence G is true for m + 1 letters.
The simplest cases of H and M are
38. (Hy):

20, (M.):
e \-L'J.O/.

fa. LAY L (o LB YW (g g\t (br o hr\lr (r~ 1)

(\W1 ¥ Y1/ P \W2 1 vY2J 4§ ~A\WL w2 FAA\v] TVv2)/ \'! — %)
(with a reversed ineanality when » < 1Y Wa can dedrice H am
\" AVAL W ALWVY VAW LLLV\i“WuUJ YY AANJAL 1 ™~ J.,. LR A VAR VI VIS SRV AWLY AV v v —...LO AL\JELL

xo and M, from H, by specialising our deductions of H from G
memad LA Lo on TT YA mnnemn sV I3 TY ___  IANMN L. ___TT - 1N\
41U 01 ¥l 11011 11. YYC© Udll 180 euudle 11 4114 v 11roiu .[10 ana lVJ.O
by induction, but, since these inductive proofs are not essential
to our argument, we need only sketch them.

(i) We have

0120, F + a,2bof + a32bsf < (@) + ap)* ( 1+b2)’3+“3 bsf

] there is

thus obtain (2.8.3) of Theorem 13

The process may be repeated, and
out the cases of equality. We
(H for two sets of » numbers).

Next, if «+8+y=1, «+ B=0, we have
SaxbBcy =X (a¥obBloYo ¢y < (Za¥obbloy (Ze)r < (Sa)® (Z6)B (Zc)r.

[
!

This process also may be repeated, and leads to the general form
of H.
We mav arrance the indnetion differantly oreaging thae
YZWWU LAy aliongl uviv auauiuvuivll \MMU,I.UL.[ULJ P me LUGRLLIE  LVIU

\

number of sets of two numbers) is worth separate statement.

number of sets first. The intermediate generalisation (H for any
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40. Ifa+B+...+A=1, then
“h_ﬁ 7_)‘.!_11 ap, ﬂ_ 7)\(( )“(b

i ¢ sss ¥y H see Vg o

unless a,/a,=b,/b,= ... =1,/l, or one of the sets s nul.

(ii) Similarly we can generalise M, in two directions. On the
one hand

'y : L A V4 i \,,..\1/,'”

WAL T 01 +C1) + Qe+ 03+ Cy)
<l T PR 1 ST 07 SERTPSRY ST S TP \r11/r
=\Uy T Uy )7 T W1 TC) TWaT o)y
= (@ a4+ (b7 4 by 4 (e + e,

and on the other

{(@+ b)) + (ag+ by) + (@ + by}
= (@) + @)+ (b7 + by )1 + (a3 + b5y T

= (@) + as" +ag" )i+ (by" + by + by

Repeating and combining these processes, we arrive at the

or a*—b*<ab*1(a—b) (0O<a<l),

which is one case of a system of inequalities prominent in text-
books of analysis. The complete system is stated in Theorem 41
below. The theorem is so important that it is worth while to give
a direct proof from first principles which conforms strictly to the
criteria of §1.7.

41. If x and y are positive and unequal, then
(2.15.1) ral(x—y)>a'—y" >ryt(x—y) (r<Oorr>1),
(2.15.2) ra™t(x—y)<a'—y ' <ry"l(x—y) (0<r<l).

There is obviously equality whenr=0,r=1, or x =y. We begin
by reducing the theorem to one of its cases.
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That n — +hat
has been proved when r>1, and that r<0, r= —s, so that
8s+1>1. Then

xr —_— yT f— x—s — y—'s —_ x—Sy—S—l (ys-l-l —_ xsy)

=a oy Hy T — et — 2 (y —2)} > 2yt sat (Y — )

(ii) Let us denote the left- and right-hand inequalities in
(2.15.1) by (1a) and (1b) respectively, and similarly for (2.15.2).
If we interchange x and y, (1 b) and (2b) become (1a) and (2 a).
It is therefore sufficient to prove (1) and (2 b).

(iii) We may now suppose, on grounds of homogeneity, that

y=1.
The proof of Theorem 41 is now reduced to that of the next
theorem.

42. If x is positive and not equal to 1, then

(2.15.3) r—1>r(x—1) (r>1),

(2.15.4) rr—1l<r(x—1) (0<r<l).

If in (2.15.3) we write r=1/s and z=y"" =y, it becomes
(2.15.4) with y, s for z, r. It is therefore sufficient to prove
(2.15.3).

If g is an integer greater than 1,2 and ¥ > 1, then

_ 3/“—1
qyi>1+y+... 4yt l= >4

If 0 <y <1, the inequalities are reversed. Replacmg y? by x, we
obtain in either case
xr—

(2.15.5) = <g@i-1)<a-1.

Next, we have

7 (gy?—y*t—yr 2~ ...~ 1)

1 1 w1 TN
g+ i gig+1j
— 2
_=1) {ya 14+ (Y 1+ y )+ .+ (Y2 L+ 1))
Q(Q'*‘l)

& We abandon here our usual convention concerning the meanings of ¢ and p.



mi o 1 T 4 _ VIR Py TN L 11 11 1 T _
111€e Curly racCxkeuv COoivalils gfl“{'i- .l) weris, all 01 winicn ue pe-
tween %2 and 1, so that
g s BU VRSV
(2.15.6)
yrH-1 yi-1 :
Fy-1PS— -5y (y—-1)? (yz1)
Y1 b A
and ean 1f m i anv intacer oraatar than o
CULLA )JU’ AL ‘tl A WLLJ LLIUU&UL 6LVWUUL ViAiuLL Ei,
(2.15.7)
yP—1 yi-1
p—q)(y—1)Ps———-"——33(p—-9y*(¥—1)* (yz1).
o q
Now it follows from (2.15.5) that
—_1)\2
(@—=1)* _ 2rptia_ 1)2 < (z—1)2
x2 ~Z \ ST )

if > 1, while if 0<z<1 ‘the inequalities are reversed. Hence,
replacing ¢ by z in (2.15.7), we obtain

(2.15.8)
—1)2 gpla_ -
’p Q(x 1) z 1__,/m=1\<p qm}?/_lm=1\2 /m>l\
-1 b L1 =1

Sunnnae now that »~ 1 Tf » ig rational we write » for m/lo.

Uut’ruuv LAS VY ViLWWU [ o~ X LA 7 AN J.WU.L\J-I-JWL’ Yy W YY LAUV 1/ ANJ L -tlli,
if r is irrational, we make p/g—>r. In either case we have

(2.15.9)

(x—1)2_ar—1 <
%(7’_1) 22 = 7 —(x—l)é%(r-—l)xr(x—l)z (Ir>19 le)’
which plainlv includes (2.15.3)

1iCIL Pl Y 1HIC1UUCD (4. 19.9].

This proves Theorems 42 and 41, but it will be useful to have
the 1nequaht1es corresponmng to (2.15.9) when r< 1. We now
.LUJ:ILGJUU y" U‘y ;l./ 11 \ AU, }, 1 unvw \‘J..I.U.U, Yivll ! LUIJLC!JUU\L [ 1-’-
We thus obtaln

(2.15.10)

—_ —1)2 P _ 1 —
p—q—-1) 2 p—q
o ——Sr—1——7—s——2(x-1)% (221),
“p € q/pP <
(2.15.11)
—1)2 r
1(1=m\(3__1)_§m_7_1,,x, ,lglll_m\m(m_1\2 (O<r<l. 2>1)
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.
We have made the proof of (2.15.3) rather more elaborate than is
AY

3 .

necessary, in order to obtain the ‘second order’ inequalities (2.15.6)—
(2.15.11), whichare interesting in themselves. If we are concerned only to
prove (2.15.3), we can argue as follows. Instead of (2.15.6) we write
simply
yQ+1 -1 - yq -1
g+1 ~ ¢

-1_y1—-1
Y > &

p q
if p and ¢ are integers and p >g. Hence we obtain (2.15.3) for rational r,
and so, by a passage to the limit

~-1zr(z-1),

whence

*

for any r> 1. If now r is irrational, we may write r= s, where « and s are
both greater than 1 and « is rational. Then

—1l=(zt8)—1>a(x*—1)Z=as(z—~1)=r(x~1),

so that (2.15.3) is true generally.

For other proofs of Theorem 41 which satisfy the requirements, see
Qt5ly and QGmeiner (1. 209_9208) and Pringsheim (1). Prinosheim 11ges the

Stolz and Gmeiner (1, 202-208) and Pringsheim (1). Pringsheim uses the
result to obtain an elementary proof of H. Radon (1, 1351) deduces H and
M from Theorem 41, but proves this by differential calculus. The proofs
of Theorem 41 given in textbooks are usually limited to rational r; see
for example Chrystal (1, 42-45), Hardy (1, 138).

mentarv p roof of Theorem 3. We have proved incidentally
ber of inequalities sharper than those stated in
Je lay no stress on these, since it is easy to find still
'f ies by the aid of the differential calculus (see § 4.2);

ahnacr ahantler lhacer +haw anahla 1f wo dagaina

1 to show shor Uy i0W U408y 1i&nid UGS, i Wo Giesirs,

elementarise’ the proof of Theorem 3.
We observe first that
(2.16.1) a’'=1+4+0(r)
for fixed positive a and small (positive or negative) r;
(2.16.2) (14+u)?=1+qu+ O (u?)
for fixed ¢ and small »; and
(2.16.3) {1+0@)}/r=140(r)

for small r. We leave the deduction of these formulae from those of the last
section to the reader.
Supposing now that r is small, we have a,”= 1+ u,, where u, = O(r), by

(2.16.1), and
quvr.: (1 +u’i/)q" =1+ Y, + 0o (_7-2)5
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by (2.16.2). Hence
{3 %" ... a, %" \Yr o (14u)... (] +u,)n ) 1r
A P e B FY§ ETA B W )
1+qiu+.. +qnun+0(r2)1r1"

1Lg 2, L Lo oy
L LI & Shad BN I T Invn J

={1+40(2)Wr=14+0(r)—>1.
2.17. Tchebychef’s inequality. We know (Theorem 24) that

sr0 =

’JJC,. (a+ 0) ].S comp&r&ble (S 1. b) Wltll chT (a/) + ZUC,. (0) lb IS nabural
+n a‘g]r whathar YW (AA) iqa comnarahla vwith O (A4YI2 (h) rl‘]nanram

Y illvuiivi ,J,JLr \WU} 10 \JUJ..LI.PCULCVUJ.U Yy -I-Uu /J.J\-r \W)] ddbp\V ],

43 below shows that this is not so.
TXT 1Y 1 Vi AN Y /TN . *7 y J Iy SRy AL o
We say that (a) and (b) are similarly ordered if

{ ~ \ /L l. A\ SN
\ G = @y)\Gy—0y) =Y
Lo 11 I Y. TR, LRI, N
101 aUu @, v, alla U[)p()b'b y UI'U/GI'ESU/ II UNne In Jualry IS always
reversed. It is evident that (a) and (b) are similarly ordered if
there is a permutation v,, v,, ..., v, of the suffixes such that
" _, - and L A 1, arna Thnth 1man_dannae i
wv1, Qyys eesy Gy, B0QA U, , Upyy .eep, Uy, aIC 00U ION-GOCTEASILL
sequences, and oppositely ordered if a . is non-increasing
rr J V13 o
a,nd b,,, ... non-decreasing; and that the converses of these pro-
“nﬂ;““n“ﬁ [l tVaY n‘lﬁl\ 4‘“"1[\
DLUVLIVILD ulT aniduU vl uvo
AD o DN o d LN A AL\ o ansaialrsados Aamdomad 4% oan
40.% 1] T>U, ana (a) ana (0) are SUniariy oraerew, tien
(2.17.1) M, (@) I, (b) < M, (ad),

unless all the a or all the b are equal. The inequality is reversed when
the sets are oppositely ordered.
It is enough, after (2.2.7), to consider the case r=1. Then
2p Zpab — Epa Tpb=Zp, Zp,a,b,—2p,a,2p,b,
= 2 (.pupvavbv—pypvaybv) =22 (pvp_u,afy.bp -pvpy,a'vb_p,)
= %22 (pppvavbv _p,u,pvap,bv +pvpp,a’y,bp —pvppa’vbp,)
=13%» » (0, —a (b —b )=>0,
P L LV AT v/ \"u v/ =V
or
A (@) A (D) = A(ab),
if the series are similarly ordered.
We can determine the cases of equality as follows. Suppose, as

& The integral analogue is due to Tchebychef. See Hermite (1, 46—47), Franklin (1),
Jensen (1), and Theorem 236, When r=1, M, =, the inequality holds for any real

and gimilarly ordered a. b,

WS JasldBisy LARUAITRR B Vs
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we m irtn m that ()
we may in virtue of the remarks earlier in th tion, that (a)

parhorar M, (@) < W (2)
if m is an integer greater than 1. This includes Theorem 6 and is
included in Theorem 16.

The question asked at the beginning of this section is included

in the more general question settled by the next theorem.
A4 A moroecrris
s e -~ Ivuvvo I y wirvt

M, (@) M, (B) ... M, (1), where r, s, ..., v are positive, should be com-
parable, is that

o:mciomf condatron that V¢ (ah N am
v v vu v

ﬂmd 0 Uity G \WU ... vy Wit

1.1 1 1
(2.17.2) = Mgt B Rt
T S [ v
wn which case
(2.17.3) M, (@b...1) <M, (a) W, (b) ... M, (7).

The sufficiency of th condition follows at once from Theorems
12 and 16. If we take every setin (2.17.3) to be (1, 0,0, ..., 0), we
see at once that (2.17.2) must be satisfied. A general inequality

AAAAAAA ~ ~ ! A WP SRS Iy IR o, - L ~ L 7
opposite to (2.17.3) is impossible for any r, s, ..., since a,b,...1,
may vanish for every v and yet the right-hand side be positive

2.18. Muirhead’s theorem. In this and the four succeed-
ing sections we suppose the a to be strictly positive. We denote by

21 F(ay,ay,...,a,)
the sum of the n! terms obtained from F(a,, a,, ..., @,) by the
possible permutations of the a. We shall be concerned only with
the special case

F(a,,a,...,a,)=a,"10,*...a,% (a,>0, a,=0).
We write

loel=Tots, 05, ...
L4 L "L’ b



T 2 ~1afn AL o 2 Y Lo oo o1t a1
41U 15 plal viav LOC_] 1S unaiverea y a .ly PL‘/IHJ.L[Ud; 1011 OL LlIC &,
so that we may regard two sets of « as the same if they differ
only in arrangement. We may describe a mean value of the type
[a] as a symmetrical mean.
In particular
—1\!
rnn oo n-l_—_-_,(l?,l,),/n Loy L L Y= N\
LA.,V’\J, ...,UJ /n" \Wl rWz‘[ see ] Wn, “\WI,
M 1 17 _n! 1jn 4 lin Vn — 3
=y ey — | =—a " a a, "= (a
n’ n?, ’ n 11 2 n ( )>

L [ 1 ' ~ 1 F Y S mmmmmmam oo oo Y2 2 OO\ T
%+ o+ ...+, =1, [a] 18 & common generalisation of 2l (@) and
&(a).
~ A\

Mha venahhlamn gnload T dhia cmd 4ha srovd dvrn gondinma 1o + £
AT PLUULULL[ SULVOU 111 U1ILS allll LlLGC 110X ] U SO0CLIUILLS 1D U L
determining conditions for comparability.
We say that («) is majorised by («), and write
7
(') < (),

O 10 1\ ’ ’ -, . .
Z2.18.1) ® F oy Feeeto, =opF Ut e+ X,
’ ’ ’ .
(2.18.2) o Za 2.2, 2o ...2A,;
(2.18.3) o) oy +.eita,) St oyt ta, (I=Sv<n).
The second condition is in itself no restriction, since we may

rearrance (¢’ and («) Iin anv order. hut it i ecgential tao the ctate-
\ VAV AN U VW W VW U/

va.n;w.t;av Vv J UEARA \Uv )y LEd CUaLy UL UL g AT oA valva AN WO

ment of the third. It is plain that («)<(«).

AR A morocenry and eufficient condition 1
A AT ow Al Ay v A vvvw V.

S K - A A% A IU wivw UW“}V v IHvw v 7 U L J wiv wv
comparable with [«], for all positive values of the a, is that one of
£ I T N ST .7 Lo o e o A L. 2L o 2L .. TL A IN 0 N\ 2T
(&) ANA (X ) SAOULW 0€ TRAJOTLSEW OY ULe OWier. L) \K j<\\&X) tier

10 1Q A\ F .17 ~1r .71

(2.13.4) Lo | = |«

There 1s equality only when (') and () are tdeniical or when all
the a are equal®.

& Theorem 45 is due substantially to Muirhead (2); but Muirhead considers only
integral a.
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2.19. Proof of Muirhead’s theorem. (1) The condition s
necessary. Suppose, as we may, that (2.18.2) is satisfied, and that
(2.18.4) holds for all positive a. Taking all the a equal to x, we

Obtain xza,z £a11 é Lal — xza.

This can only be true both for large and for small z if (2.18.1) is
true.

Cy=0y=...=A,=L, A 1=..=0A,=1,

x being large. Since («') and (x) are in descending order, the
K4 I o Lar 1L 1 4Lt /T Y
Indaices o1 the nignest powers ol x in [« | ana [«] are

oy Fog Foeetay, ogtagt... o,
respectively. It is plain that the first cannot exceed the second,
and this proves (2.18.3).

(2) The condition is sufficient. The proof of this is rather more
troublesome, and we require a new definition and two lemmas.

We define a special type of linear transformation of the «,
which we call a transformation 7', as follows. Suppose that o
and «; are two unequal «, the first being the greater; we may write

(2.19.1) ap=p+7, y=p—7 (0<7=p).
If now
(2.19.2) O0=Zo<7=Zp
then a transformation 7' is defined by
s
T g T—0
% =p+o= s o+ %5
2T 2r
(2.19.3) 1 T—0 T+o

(o) =a, (v£k, v£I).

If (') arises from («) by a transformation 7', we write o’ = Ta.
The definition does not necessarily imply that either the « or

, . .
the «’ are in decreasing order.

It is plain that the sufficiency of our condition for compara-
bility will be established, and that we shall also have proved what
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is stated in Theorem 45 about the case of equality, if we have

proved the two following lemmas.

T avirna O ANEVY Y I.’) ,

1010 a 4. _LJ \m J<1%), uw (& Yard aadh () ;1,,,,,,,

entical with \&), tier
(o) can be derived from («) by the successive application of a finite
number of transformations T'.

Proof of Lemma 1. We may rearrange («) and (') so that
k=1, l=2. Then
(2.19.4) n!2[a]—n!2[a']

=n!2[p+r,p—7,05,...]—0!2[p+0o,p—0,3,...]

= 2 g (7/3&3 cee anan (L‘Zl""'*'q'a}zp—* + a'/lp—”'a‘, P+* - 0'/1'0""96132"“’—9— alp—ga2p+c)
e SV e \D—=T » O O g THO __ g THO\N (9w T—O __ n T—0Y > N
=LA o) Ag73 . By Gy Q" 77 )\0y @y )=V,

with equality only when all the a are equal.

Proof of Lemma 2. We suppose that the condition (2.18.2) is
satisfied, and call the number of the differences «,—a,” which
are not zero the discrepancy of («) and (a'); if the discrepancy
is zero the sets are identical. We prove the lemma by induction,
assuming it to be true when the discrepancy is less than r and
proving that it is then true when the discrepancy is r.

Suppose then that («')<(«) and that the discrepancy is r>0.
Since. bv (218 1). S (e —a V=0. and not all of these differences

UL.LI.UU lu.y \H AU, J.l, daed \w = U&.V I—-' Ve uiila LUU Wil UL Viiwow AAVAL V3LLAVUD
are zero, there must be positive and negative differences; and
by (2.18.3) the first which is not zero must be positive. We can
therefore find  and 7 so that
14 ’ ’ !

(2.19.5) o' <oy, @i i=0pigs ce X =0 g, o >op.d
We take o =p+7, y=p—r, as in (2.19.1), and define ¢ by

(2.19.6) U=M&X([ock —pl, | —p|)-

Then 0 <+ < p, since o, > ;. Also one or other? of
P k= X
7
al'-—pz—-o', ak —-—p:a‘,

% o, —a;’ is the first negative difference, oy — ;" the last posmve difference which
-precedes it. The text assumes I —% > 1; the case [—k=1 is easier.
b Possibly both.



If ock —p=0, ock"=ock'; if ocl'—-p= —o o =u 2 Since the pairs

’
between (~ ) and («), the discrepancy between («

AT e 211 7 PEGUE R . S a

mexi), comparing (2.19.7) with (2.19.3), and observing that
(2.19.2) is satisfied, we see that («'’) arises from («) by a trans-
formation T

B 7\ LS | PR [ NP R . D | o 14 PR N o vora vnirad <raw:for

Finally, (') is majorised by («'’). To prove this we must verify
that the conditions corresponding to (2.18.1), (2.18.2) and

(2.18.8), with o'’ for o, are satisfied. For the first, we have
(2.19.8) oyt =2p=0p+ 0, 2o =Za=2Za".

TN . T o o L O 1 .
For the second, we observe nirst that
PN D S B 7
a Spt |y —plSpto=a,
'>p— - >pe—g=q,"'
o zp—|o/~plzp—0o=0

and so, by (2.19.5),
o'y = g 2 0= P"*"‘">P+0‘—°c k>°‘k>“k+1““k+l—°‘ k+1s

a=wg=a g zajzaj=poo>p—T=0gZ 0 = y;
and the inequalities affecting the o'’ are those required. Finally,

we have to prove that
o Foty +eee o Sy oy . o

Now this is true if v<k or v=1, by (2.19.7) and (2.18.3); it is
true for v==£, because it is true for v=~k—1 and «;’ S «,”’; and
is true for k < v < because it is true for v=F and the intervening
o’ and o'’ are identical.

We have thus proved that («') is
from (oc) a transformation 7' and having a discrepancy from
(«) less than 7. This proves Lemma 2 and so completes the proof

of Theore 45 b

WO ':f\"‘1 on.,
INajorise

E§

& Again, both these equations may be true.
b For another proof, see Theorems 74 and 75.
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2.20. An alternative theorem. We shall say that () s an
average of («) if there are n2 numbers p,, such that

B 4

n n
1o on 1\ . ~ N vy 1 b S - |
(2.20.1) P20, & py,=1, 2 p,=1
v =1 v=1
ana
’
(2.20.2) %y = Pu1 % T Pus®at oo+ Bup oy e

Since the conditions (2 20 1) are not aﬁected by a permuta,tion

adl al. . A O aLl 4l 7 TN e dd e \ ohAssr 4o
01 tLlU 01 U.U.l U]. IJ.I.I.U o Or llllU G. . .LLI.U Uliu.d:l:.lUllb \ﬁ J_U 0) SIIUW ULI.CUU

(p+o, p—o, a3,...) is an average of (p+7, p—7, a3,...) When

(2.19.2) is satisfied.
Mha laad 4vrmn nandidtiana 9 ON 1) mmaxr alan ho atatnd ag FAllAaxra «
L 11T L UV LUWU UUl1LIUluiviLID \AI.HU .l.} v AU DU DUAWVUU i LULLU VWD .
Xo’, when expﬁessed, as a function of the «, is identical with X«,
and every «' is 1 if every « is 1. From this it follows that the
relationship is transitive; if («’) is an average of («), and («'’) of

(o’), then («’) is an average of («). And from this and Lemma 2
of §2.19 it follows that if (o)< (&) then («') 18 an average of ().

The converse is alse true. For suppose that (2.20.1) and
(2.20.2) are satisfied. Then (2.18.1) follows by addition of the
equations (2.20.2). Finally, if we suppose («) and («') in descend-
ing order, and write

Py +DPoy+ .- +Z).m.v=kv’
we have k, <1 and 2k,=m, by (2.20.1); and so
o oyt Shiog otk goy gt (m—k— . k) 0y
Sloy—oy,)+ .o+ (01— a)+ma, =0 +os+ ...+ 0y,

which is (2.18.3).

We have therefore proved the two following theorems.

46. A mnecessary and sufficient condition that («') should be an
average of («) 18 that (a’) < ().

47. A necessary and sufficient condition that [o'] should be com-
parable with [«] is that one of («") and (x) should be an average of the
other. If (a’) is an average of (o) then [o'] £ [a], with equality only
as in Theorem 45.

2.21. Further theoremson symmetrical means. (1) Theo-
rems 45 and 47 fulfil two purposes. First, either theorem gives a

I A
P-4 “&
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simple criterion for deciding whether two means [«] and [«'] are
or are not comparable. Secondly, the proof of Theorem 45 shows
us how, by repeated application of the transformation (2.19.3)

and the formula (2.19.4), to decompose the difference of two
comparable means into a sum of obviously positive terms. We
obtain, for example, a new and interesting proof of the theorem
of the arithmetic and geometric means (withunit weights); in fact

A(a™) -G (a”)=[n,0,0,...,0]—[1,1,...,1]
=([#,0,0, ...,0]—[n—1,1,0,...,0])

+(n-1,1,0,...,0]=[n—-2,1,1,0,...,0])
+([n—2-’ 15 1302 ]_I-n 3 ]-9 1101- -,0])+ oo
1 {Z!(a —a," Y (a;—a,)+ 2! (a"2—a,"2) (a; —a,)a,
2(7&'){ T Y1 J \7TL a7 \"TL Z /7 \771L Y14 3

+2! (“171_3 —ay" %) (a; —az) agay+ ...}
Since (a,—ag) (@, —ar)>0
unless a,=a,, the theorem follows?.
(2) 48. If oy +og+...+a,=1, then

£I€ 7

& (a) <[] <U(a),

unless [a] ts & (a) or U(a), or all the a are equal.

This theorem? shows that all the [«] of degree of homogeneity 1
are comparable with & (a) and 2 (a), though not in general com-
parable among themselves. To prove it we apply Theorem 47;
since 1

and oc'u=oc'u.1+oc'u_,_1.0+...+ocn.0+oc1.0+...+oc'u_1.0,
(1/n, 1/n, ..., 1/n) is an average of («) and («) an average of

1 N \ Nv vwa mavw dadiine Thaoanram AR r];vl +]1~r -Fv-nm
\Ly, Y, ceey, Vjo UL WU lia GOGuUCe LuCiICii =6 GuUOCuLy LOULIL
Theorem 45.

(3) Weadd two further theorems of a similar character, with indications
only of the proofs.

49. If 0< g =1, then a necessary and sufficient condition that [a'] < [a]”

25 LILCTC Lo oW

8 that (oc )< (o). If o> 1, the condition is necessary but not sufficient.

& This proof was known before Muirhead’s work; see Hurwitz (1).
b Communicated to us by Prof. I. Schur.
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[To prove the condition necessary, follow the line of § 2.19 (1). To prove
it sufficient, combine Theorems 45 and 11. As an example
[,0,0,...]1=[5,0,0,...]* (0<r<s);
this is M, (a) < M, (a) (Theorem 16), with unit weights. The same example

shows that the condition is no longer sufficient when o> 1.]
B0. Ifr, p, a are positive and
7 -3 T3 T
1 r— pvav -
{in tha notation of 8§92 10 /i)Y #homn 1 monsecnrar and eufBoient condition that
‘l-“ VAAN AANV VWWVAVVAL VA& 5 ol A\ \" ”, VIVVIV W IOV y wivw OWJ[VVVV'VV WV IVW UV VWV IV Vivwwy

Jfor all a and p is that (a’i{(;c).

IMha nanaacity nf tha annditinan mav ha astahlicshed aa hafare. To nrove
L‘“v AANS W ANIE J WA VAIAY VUWVLAVALVAVLA mw.’ AU URDUWANILLDLLAUWL U RULUA Ve A s r-l-v ~

it sufficient we use Theorem 46 and Holder’s inequality, which give

T" = T'p.l &1+8ug dgrte ooy O
<(T_ Vw1 (Tﬁg)",u,z vee (Tam)’u.m.

\Taqr

we have changed the notation slightly in order to avoid conflict with
that of § 2.10. The result follows by multiplication.]

2.22. The elementary symmetric functions of n positive

xn—l rn—2 ) s
] Vn

n\ A
l)p x"—1+k2) P 2+ .+ Dy,

Vod

symmetric function of the a, i.e. the

e nf difforant 7 and n the averace
141C, O1 GluUCIiciiv iy, wuut/ uiC @ VOIago

his sectlon we consuier two well-known

=
o
S
[¢]
B
@y
)
Q
=
. 8
H
E.
=
o

& This is a trivial case of Theorem 45.
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51. P, 1 P,11<P,2 (1=7r<n), unless all the a are equal.
52. p,> .t >pt>...>p, V", unless all the a are equal.

Theorem 51, which was stated by Newton?, is actually true for
real, not necessarily positive, a; and we shall give a proof of the

mara agnnaral +hanram Adanandine an +ha moathada af+ha i fFaran.
MOre geiiclas viCOICl, GOPTituiig Ol vl OunOuUs O1 viiC WiuiCicii

tial calculus, in §4.3. Theorem 52 is due to Maclaurin®.
Theorem 52 is a corollary of Theorem 51, since

(Po P2) (01 23)% (P2 P4)® - (Dr—y Pri1)” <P12D24D5% ... DX
gives pr_ <p'*t!or

1/r 1/(r+1),
pr >-pr+1

This remark, together with the proof of §4.3, disposes of the

theorems, but it is nfprpqhnn' to congider nroofs of them hv the

VALUUJL iAiiIg AU au &5 UV UAS Udiism VI/ VWLAILDLAVL AL V4 vad

methods of this chap

(i) Proof of Theorem 52 by the method of §2.6 (iii). We begin
by proving a theorem similar to but weaker than Theorem 51.

2
53.¢ ¢,_;¢.1<C,
This theorem isweaker than Theorem 51,since p,_, p,., <p,%is

(r+1)(n—r+1)
r(n—r)

2
r—1 cr+1 < C,.

To prove it we observe that a typical term in ¢,_;c, ,—c,2is
(Rl P RN AR ) S

-----

and that this occurs with the coefficient
( 28 \' ( 28\ 0.
\s—1/ \8)
From Theorem 53 it follows that

(2.22.1) Cr1Ce<CpCgy
if r<s.
a Newton (1, 173). See also Maclaurin (2).
b Maclaurin (2). See also Schlémilch (1). The inequality p, > / 17 is g case of
Theorem 9.

¢ The theorem is stated, like Theorems 51 and 52, for positive a. It remains

true, as the proof shows, for non- -negative a, unless c,.--O (i.e. unless all but r—1
f +tho ara )

o
W @iT V.

Q
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el Red Bd MVA Bd AN A LAV A i Al LA AN ¥V b Ad U AN Ao~ 4
Wa can navw nrava honram B ag fallavwe TF+ha 7 ara nat all
vy © Vil 10VW pIlUOVO LOCOICIH J& ad 10110WS., i1 uili© v alC (1Uv il

equal, let a, =Mina, a,=Maxa. Then
(2.22.2) Oy <oy <y,
where oy = p, M-

angi +hat 1n ahall
O0BINg ®Ky SO that Py, SOALL
or

which v>pu is mcreased

Wa ranlana an
vv & Tepiaced @, an

be unaltered and prove that any p,

(
v ! ’ 4
{u D=0, =0105C, _,+(a;+a5)c, ;+c,,
where c,’ is the ¢, formed from the n —2 numbers other than a,

Ay Ay Cy g+ (@1 +a5) C, 1+c = 0y Uy C _2+(oc1+oc2) Cp1tCps

4
(2.22.3) (qop— a1a2)cy,—-2"" (o +otp =y —ay) €4,
(29224 (oo +¢ Noo=a.a.¢ _+(a,.+a.—cc)c
\Se88.%) A& 00T Cy—1) Ke= G180, o T\ T T Xy Yy
Mhawalitae nf o~ Aofinad hao (9 99 AY 1a nacitive hanatiga nf (9 929 9)
L IO VALUUD UL LL2 WUuoiiuiivu v \HCHH I, no BUDLULVU [SAVA VLT SN L WIR WS N \H HH.H,
Also, if p, becomes p¥,
(" (¥ ' /
(p* — ’D) = (Oh Lo — Ay az) C, o+ (d-}_ + Ao — Oy — ao) C. 4

e’ c \
(o3 + g — @y — @) | = —F2).
\Cv—z Op,-2}

=SO'D.{C.!- (CY-- ““19"‘”‘ _..-A\ "l—a‘ aﬁ‘_’_y." (.Z.ol
(=) [ Gt S Nl & Z/ ¢ 177a a)
=sgn{( —'a1)(051 a‘,)}=—-1,

(ii) Proof of Theorem 51 by inductiond. Suppose that Theorem
51 has been proved for » — 1 numbers, a,, a,, ..., @,_;, and that

a This proof was communicated to us independently by Messrs A. L. Dixon,
A, E. Jolliffe, and M. H. A. Newman.
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c,, p, are the c,, p, formed from these n—1 numbers, which we
shall at first suppose not all equal. Then
Cr=C.+a,C,_4
n—r , r ,
and so Pr=""—DpF W Ppy-

Hence we deduce
2 ra 2\ — A " e o I'V‘
(.’pr—-l_pr-!»l"'pr )—A+Da’ +(-’a’n s
A ={{n—71)2 o a\2.72
re ={(n—r)?=1}p, 1 Ppi1— (n—7)2D,2,

B=(n—r+1)(r+1)p, 1p.+n—r—1)(r—1)p,_3D5t1

1
I

Dr Do <D2, DroPr<P2is PrgPriy<Dr—yDrs
o that A< —-p2, B<2p _.p, C<-p2,,

and a2 f an ~ 2N\ o A e \2 20
allu C \VPr—1¥Pry1— Vr) = \Vp—™ %W Pr-1) =V
mL ........ 4l s 4l nnmarin ML A oo ) PRES-PURPIIL) | [ B, i
LIS provoes Uu UIIC0OICIIL. 1L IE 1CSULU 1S duill t.l. ue whtsu
— Y —_— —
W= W= .er = Up—1>

because then a,+a,=p,/p,_,-

It is also possible to prove Theorem 51 by means of identities of the
type considered in §2.21(1).

A o 1 rl( 20\ (7,9)
o%. Pr*=PraPr1= 725 T & \ i ) ixr1’
rer+1) (7 r+1)= /
where () =202 .. 0% 1Gr_ieee Oryiy (ar+i - ar+i+1)2,

the summation extending over all products formed from the a and of the type
shown.

an Y 3 ]
5. =T Tm—r=Tyy (P~ PraPria)= (=1 E(a =) (7Y

21 (n—3 —4,\
+ 7z 1\(/M__ )____'I\E(al a2)2(a3——a4)2( . )
\I_J.]\Ib 7 _l.l
31 (n—25) 0 5 o/ m—61s
+(7_l)(,’._z)(,n_r__1)(7,,_._,’.__2)2(a1—a’2) (aa—%) (a5'—a’6) (cr__3)
+...

where c 1 18 the sum of the products, r — 1 at a time, of the n— 2 a other than
a,, a,, and 8o on.
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Theorem 54 is due to Muirhead (1), and Theorem 55 to Jolliffe (1).

mh g ¢ 4 m Y ™
reorem 55 gives an ‘intuitive’ proof of the more general form of Theorem

A 1.
51 (for real a of either sign) referred to at the beginning of this section.

2.23. A note on definite forms. The identity of Hurwitz
and Muirhead proved in § 2.21 (1) shows that, when a >0,
a"+a,"+...+a,"—na,a,...a,
can be expressed as a sum in which every term is obviously

non-negative.
If we write a, =2,2, a,=x,2, ..., we obtain

(2.23.1) 22 +... +x, " —nxdx,2... 2,0
1
—_ 2N—2 __ 4 2n—2 2__ 2
= sy B =) o~ ) )
T[\“T )
-+ YY
(.20—2 _ 0 210—2) (1o 2 _ oo 2)
\"1 2 7 \*1 a7/
(.2 — e 2)2 (. 20—4 20—6 4 2 2n—4
= (2,2 —2,%)% (22"t + 2, x2 + .o F a2

—X

the ght hand side of (2.23.1)is a su f squares. Finally, since

x:"
)
\_‘\3
S
|
»
e
13
R
w
Q

22+ o X2 — 208 Xy o gy, =TT A XE— XX
- — ‘2
a2 TN X, (e By — Xy g e Ty )

it follows that

-
-~
e

28 + ¢ + 28 + ub + 08 + wb — 6ryzuvw
= @ty 42 (P~ ) (- (02—
+ 1 (u2+ 02+ w?) {(v2 — w2 + (w? — u?)?+ (u—v?)} + 3 (ryz — uvw)?

is a sum of 9+ 9+ 1 =19 squares of real polynomials.
A real form is a homogeneous polynomial F (x;,x,, ..., %), with

real coefficients, in the m real variables z,, %,, ..., %,,. A form F'is

said to be definite, in a certain region of the variables, if it does not
change sion in that region, for examuple if F' > 0. We mav divide

VAANALGT Hdgmii 4L VWY Vel UL LAQEAIAPAY 22 e {

definite forms into positive and negative forms, and it is plainly
sufficient to consider positive forms. Thus the form (2.23.2) is
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positive in the region of all real values of the variables. It is plain
that a form which has this property must be of even degree.
If F > 0in a certain region, then F is said to be strictly positive
in that region.
my ~n =Y nn o h R o O .t 1
1he 1orm (<.29.2), and wne iorms coisiraerea
and BB (with a)

WilLd v \vv;uu x 4

, y
polynomials, and it is natural r this is a general
property of definite forms. Is it truethat, if F = 0 for all real x, then
n_SD2
A — Ld L i 9
i

where the P, are real polynomials?

This problem was solved completely by Hilbert2. Here we have
space only for a few fragmentary remarks. We begin by observing
that there are two cases in which the answer is immediate. We
denote the degree of F by 2n, and the number of variables by m.

If m =2, so that F = F (z,y) and » is arbitrary, then any real
factor ax+by of F must occur in even multiplicity, and the
complex factors must occur in conjugate pairs ax+ by, Gx+by.
Hence, grouping the factors appropriately, we obtain

F =p*(q+1r) (g—ir)= (pg)*+ (pr)?
where p, q, r are real polynomials.

It is a familiar theorem of algebraP that any definite quadratic
form in any number m of variables may be expressed as a sum of
at most m squares of real linear forms. Thus the answer is affirma-
tive in the two cases

(1) m=2, n arbitrary,

(2) m arbitrary, 2n=2.
Hilbert found a third case

(3) m=3, 2n=4,

and proved that any positive biquadratic form in three variables
is representable as the sum of three squares of real quadratics.
He also proved that in all other cases the answer is negative,
there being definite forms of degree 2n in m variables which can-
not be represented in the manner proposed.

a Hilbert (1). b See, for example, Bocher (1, 144-154).
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Hilbert then suggested the following theorem: any positive F
can be expressed as F_SR?2
< =21,
1

where R, is a real rational function. An equivalent theorem is: any
positive F may be expressed as a quotient of sums of squares of real
formse.

Hilbert?gavea very difficult proof of these theorems for ternary
forms in (%, y, z). The general theorems were first proved by
Artin®. Artin’s proof is very remarkable and comparatively
simple, but depends upon the ideas of modern abstract algebra
in a manner which makes it impossible for us to reproduce it here.

2.24. A theorem concerning strictly positive forms. The
rather fragmentary remarks of § 2.23 form a natural introduction
to the simpler problem which we consider here. We are concerned
now with forms which are sirictly positive in the region of posi-
tive x. The theorem which we shall prove resembles those of
§2 23 in assermng DﬂaU a pOSlTJIVB form can be I'GPI'BSGDUGQ in a
manner which renders its positive character intuitive. It is no

longer necessary that the degree of the form should be even.
56.9 If the form F (x,, x,, ..., &,,) 18 strictly positive for
=20, Xx>0,

then F may be expressed as

=9,
H

where G and H are forms with positive coefficients. In particular
we may suppose that
= (2, +Zo+ ... +2,)?

fm' a suitable .

& Tt is evident that the first theorem implies the second (with one square only in
the denominator). And since
2
208 5 (4ikY}
2hE g g\l

the second theorem implies the first.

b Hilbert (2). ¢ Artin (1).

4 Pélya (3). The theorem had been proved before (apart from the last clause) by
Poincaré (1) when m=2 and by Meissner (1) when m=3. Meissner’s method is
applicable in principle in the general case, but does not lead to so simple a result.
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For simplicity of writing we suppose m = 3; no new point of

nrincinle arices for ceneral m
-[JJ.LJ..I.UJ.IJJ.\J WA ANV AN/ A SV.I.J.VJ.WJ. FEVe

The function ¥ (z, y, 2) is positive and continuous in the closed

Lf] LOG a MNAItTiIvo m;n;m-nm 1 IM h‘)“ T‘ﬂ”‘:f\“ XTQ xxrmro

WL 11 w BUBLUJ-V \AF SSENEENSRRVESE ] ’.k 41l ALV U J.\JSJ-UJJ-. Ty UV yYriaivwvw
xayﬁz'}’

(2.24.2) F(x’y’z)=2n‘4aﬁya131y!’

(O 94 9) >0 2>0n >SN a1 Ry ai— e
\H.H‘I.U} U.=U, P:U, )/=U, %TIJT}/—IU,
and
—1 -1 -1
1 OA AN L e nz o3\ __ 0S5 A /xt \/yt \/Zt \
\@.a%.2) P l)=0anlagyl , I g L L, 12
\E& /NP JNY
3 /m-’-l\ i 7 is L | = A
where ¢ >0 and \ ), ... are the usual binomial coefticients, so
o
that -1
{xt \=l
o)
\
and » (et 1\ x(x—1)(x—28)...{x—(a— 1)t}
k o } 1.2.3...«
fora=1, 2, 3, ...
T+ ie nlain that Alr ag 2N > H(r a1 »)
AV 4D ‘tll.w.ll_l viiwu \[J\W’ﬂ’“’(]’ e \W’U’H,
when #—0; and if we write
c}’)(xiy,z,O):E(m,y,z),

then ¢ is continuous in

=0, y=0, 220, z+y+z=1, 0=t=1.
There is therefore an € such that
(2.24.5)
¢ (,9,2:8)> ¢ (2,9,2,0)—tp=F(z,y,2) - tpzip>0
forO0<t<eandall z, y, z in (2.24.1).

—

We have also
ax yr o
(2.24.6) (z+y+2)in=(k—n)!Z, ZIZ
\ J 4 \ 4 IGILK!A!“!J
the summation being over
x20, 220, p=0, x+A+pu=k—mn.
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Multiplying (2.24.2) and (2.24.6), we obtain

otk .yﬂ-!-)\, vy
k—n !
(x+y+2)f"F=(k—-n)!Z, 2 ”A"‘B"a'x!,B!A!y!;L"
Here we write
atr=a, B+A=b, y+u=c,
g0 hata b £ varv over
W VAAW U W’ V’ v VWJ.J Y VAL
(9 94 7\ a>0 A>0 >0 nlbhLe—Dhk
and «, B, y over
M 7
(2.24.8) 0<as<a, 0=<B=<bH, 0=y=c, a+fB+y=n
This gives
(2.24.9)
Man'bﬁc /a\/ \/\
(x+y+2)rF=(k—n)!Z, WMoY,

In (2.24.9), X’ implies summation with respect to «, 8, y over

(2.24.8); but, smce( \)=O, (%\]: 0,..ifa>a, B>0, ..., we may
\&/ \P/

replace this summation by summation over (2.24.3),i.e. by Z,,.
We thus obtain

( .24.10)
x2qb 2¢ a\ (b\ [c
@ty 2 Fe(k-m) 152075 40 () () ()
alblc! PP\ \ B \/
’ 7 a\ e _h_.n
b c 1\ x%y’z°
= (k=m0 (5 0 5 7) aTa 1o

The ¢ here is positive, by (2.24.5), if k is sufficiently large, and
this proves the theorem.

(1) The theorem gives a systematic process for deciding whethe
form F is strictly nositive for nogitive 2. We mn]hn]v reneatedlv by >

AVLIIL £ A SULIUULY pPUSIUIVD & pUsava FESRTVEAY )

~11 ~ e

and, if the form is positive, we shall sooner or luwr obtam a
positive coefficients.
It is instructive to consider the working of the process for

F=x"+2,"+ ... +2,"— (n—€) X125 ... Ty,
where ¢ is positive and small. The coefficient of

=
5
g
B

1 [
xl 1x22...xn ,

where ¢, + 95+ ... +i,=n(q+ 1),



s 2 T__ __ __®1* __ e _ 1Yt N T * ~_ 1 * ~_ Y "1 °*_
is certainly positive if one of the +1s 0. If ¢+, =1, ...,¢,=11t1s
(ng)! (ng)! (ng)!
A PN T W S w v +""—(n—€)l'_'l\gl,.' L
\#y 1)itgitgice  Ppil\lg—Tjilgi... L)i{tg— 1) L.,

and has the sign of
6 (85 g5 ve s Bp) =1y (3= 1) oo (4 —m+ 1) o
bg(lg—1) .. (g =P+ 1) v — (B €) Gy Ty ee T

cﬂ't«- e far all 2

‘XT ﬂl\ﬂ‘ﬂ: n'
VO 1UL aul (/1, (/2, RPN 7%

re A 4—
J.U\iml. (‘U
If not all of ¢;,%,, ... are equal to ¢ + 1, thereisone, say 1,,lessthang+1,

and one, say %,, greater than ¢+ 1; and changing 4,, ¢, into ¢, +1, ¢,—1
changes ¢ by
—(n_E)is...i"(iz—i1—1)<0.

Hence ¢ will be positive for all ¢ if it is positive when every ¢ is ¢ + 1.
It will be positive in this case if
n(g+1)g(g—1)... (q—n+2)>(n—6) (g+1)"

/ 1\ 7/
o \I-gv1) - q+1) K q+1 >1‘7z‘
n?(n— 1)
ae

If this condition is satisfied, all the coefficients in ¢ are positive.
It follows that F>0 for >0, Zx>0. Making «— 0, we obtain yet

another proof of the theorem of the means, in the form Za” = nllx.

(2) If we write Tp=1—0;— ...~ 2,4
we obtain a theorem concerning general non-homogeneous polynomials
in m—1 variables.

and a fortioria if qg+1>

57. If a (non-homogeneous) polynomial f(xy, %y, ... s Zy_y) 48 positive in

the region 2,20, «oiy, 120, 2423+t =1,
3L ann £1Ln\ npan ho orsissocs e NSNS N S
vivorTe | \W ) bWy UG CL T C3SCW vTe lJlbOJ 7116
ai aAm—1 am
f( )226271 cos m_l(l—xl—'...—xm_l)
where th e integers and the c are positive.

a are non-negatw

ro T . N Y amem e d

938. 11 o, B,9,...,A &re great

negative, then i v o At 1 e A N
o Jeeell+A) 1+ a+ P+ ... F A

[For the case a=B=...=2, see James Bernoulli (1, 5, 112).]

2 See Theorem 58. b Hausdorff (1). Hausdorff has n=2.
¢ Some of the theorems which follow here are mere exercises for the reader, but
most have some independent interest.
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59. If ¢>0 then
la+b|2=(14¢)|a|
a, b.

Y | i
c-‘
T

S

for all (real or complex) a,
[See Bohr (1, 78).]
60. If %,, ®, are the arithmetic and geometric means of QysgseeesQys

with unit weights, and U,,,;, G, those of a;,a,,...,a,,a,,,;, then
1 (Up—0p) <(n+1) (Wpt1— Gppa)

unless a, . .=

SRRRS “nt+i— ¥n

[This theorem, communicated to bV Dr R. Rado, embodies another
proof of the theorem of the means. If we write a,,, =21, G, =y"t1,
then the inequality to be proved is

"l —(n+ 1) zy" +ny"t1>0
and this follows from Theorem 41.]
B’

nT
61. abé%—+”;,— (@>0,5>0,r>1),

1
62. wv=u 4 (u>0,v>—1/p, p>0)
p \l1+p/
TD Ao 22 g ML £1 e T 8 o mn T o~ Ll A PR VR | PO |
LL\J Pl O 7 L LIlCVUICIIl UL Uy .l'r‘_l} L1CL w, U Uy W, \.l. T_[JU)/\J. "‘_[}) _I
no nias < nslncmns 1L o0—1 fas~l D
U wu = w.lus o -1 \ ~—VUj}e

unless all the @ are equal.

[Chrystal (i, 51). Example of Theorem 40.]

o TL o A L cn nncidtcra anmed saae T A an o L1 o

UJ. 1l U allu ¥ al pPpusluivo alilu P~ 1 UL P <\ U, ulioll
a? (Za)?

“pri (Zb)p—l ’
unless (a) and (b) are proportional. The inequality is reversed if 0 <p < 1.
[Radon (1, 1351): transformation of Theorem 13.]
66. If a> 0 then Xa Xa~1>n?, unless all the a are equal.
[From Theorems 7 or 9 or 16 or 43.]

87. 5(ﬂ+b\_5—ci<_5w_5br
/ l b 2
unless (a) and (b) are proportional.
\"™7 \N“ 7 F r
[Milne (1).]
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bc+ca+ab$, abe <SaShSe

e
~7r

B8R, lat+btel
i \GToTo) & a+b+c T bec+ca+ab

unless (a), (b), (c) are prop'ortional.
69. If 0<r<sand

Cl/"+bf ir
M, (@, b)=(T52),
then XM, (a,b)ZM_,(a,b)<ZM,(a,b)ZM_,(a,b)<ZaXZb,
IR, PIPIPURY VL . [ & A WSO RIRRNggY L P |
688 (@) anda (0) are proporuvional.
rmn TN ~1. -1 and
IVe Al VSN XL i
Tab= A (Zb*)UE

for all b, then Xak = A*.

[This is an analogue of Theorem 15 for the case 0 <k <1 (when %’ <0).
If all a are positive, define b by

Lk b=qgk-1 Lk _ ik
av=a~, 0= y UT —UuU,

when
(i) Sak> A (ZTak)U, Zak= A,

If all @ vanish, 4 must be 0 and there is nothing to prove. If some but
not all vanish, suppose that a>0 in a set £ of u members and a=0 in
the complementary set CE of v=# — u members; and define b as above

Ly
in K, and by b= G in CE. The

" e
(=

‘L~ XY I . 7Y
2.0% 4 v G*

E
Making G - oo we obtain (i) again.]
71. If0<h=a,=H,0<k=b,=K, then

(%
N

< < _1
L™ = 240

[See Pélya and Szegé (1, 1, 57, 213), where the conditions for equality

are given.]
. Mita) o
72. lim —2HT =9, (a)
r—>w M (a)

If all the a are positive, there is a similar theorem for — co.

73. If A@-6(a) .

Aa) = 7

the means being formed with unit weights, then

a, ’

’

where ¢ is the negative and &’ the positive root of the equation

..-n

_Lm\n L=
W’U

{1
-\
[See Pélya and Szegé (1, 1, 58, 215).]

-\n
€17,

—~
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T4. If [y s Vi 1S [yas oo Yids [8175 0 0s 8IS 815 0005 8]

for all values of the variables involved, then
[v1'seeesYu'501 s 0o es 8 TS [V1s eoes Yis 815 oees O
[It follows from the first hypothesis, and the definition of the sums, that
[‘/1 seees Vk ’81}5[71’ cees Vo N
and hence, by repetition of the argument, that

13\ r I'4 7 Q Q1T n Q Q1

\L) L’}/l 9 seey '}’k 9019004907 ==1|Y19 222 VEko019°0+507]¢
Similarly, using the second hypothesis,

(ﬁ.) [’}/1’, ceay 'yk,, 81’, coey 81,] é[')/ll, ceey ’yk’, 81, ceny 81]-

The result follows from (i) and (ii).]

75. If (a’)<(a) and the a and o’ are in decreasing order, then there is
a greatest non-negative § for which

(1) (B)=(°‘1’+8’ “2” "'?a,n—l’ %’*8)<(°‘)°
f & has this value then
(i) ("5 0,") <(By1s Bn)
and
(333) R (o \ B\ (o, w )
\141) \I"l’ ceey ML N\t “"'kl’ \ch-|-1’ CtrIPPNI N\YEf12 00y Spn)

for some k between 1 and n — 1 inclusive.

rTI- is h]mn from the definitions (a) that 11\ is truefor§=0 .
set of § for which it is true is closed, (¢) that, if it is true for positive 8,
then it is true for any smaller positive §. Hence there is a maximum
non-negative § for which (i) and (ii) are true.

If § has this value then either (a) B,=ao,"—8=0, or
(b) Bi+ ...+ Bi=ay+ .o+ +0=a; +... + o

\¥Y7 71 ' s Sk
for a k<n; for othermse we could increase 8§ without disturbing (i). In
case (a)

and so By+...+Bp_ 1= +...+a,_;, which is (b) with k=n—1. Hence
(b) is true in any case; and then (iii) follows from the definitions.

Dr R. Rado, who communicated Theorems 74 and 75 to us, uses them
to obtain a new and elegant proof of the sufficiency of Muirhead’s criterion

{Mhanram ABY Thae regnlt igtriie for n=2hv Temma 1 of n 47 1ot 11g
\.LLLUULUJ.LI. T Jo LIIU LUDSWULU 15 VL UU AVL Tyv=— & V) £4Uiiliiar & VA P XTi gy 1DV WS

then suppose that n > 2, that the conditions (2.18.1), (2.18.2), and (2.18.3)
are satisfied, and that the result is true for any number of variables less

than n. Then, by the inductive hypothesis,
[051’, an’]s[ﬁ1, ﬁn]s [ﬁl’ sy Bk]<[°‘1’°"sak], [ﬂk+1’---’ﬁn]§[°‘k+1s~--, an]'
B TSI ) SR A bt coa b ol
rience, U.bl.u.g Theorem 74 twice, we obtain
[Otil, caes a,r.,] = [061' 32, eses ,B’a’}—l’ a,n’ §[B1 200 ,B”E]

—_
A

,--, —
H

K

3

K

&

+

-

K

S

]

—

K
=

K
!
—

"‘[Bl’ ""Bks /3]9+1, "'ﬁn
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76. If a >0, and r and s are positive integers, then

3,7 asT ... a-’Z—l—>(n\ /n\
fatagt...a,f” \r/\s/

unless all the a are equal.

[Generalisation of Theorem 66. By Theorem 45,

[rs 7y ... (8 times), 0, O, .. O]>| s rs . 7—;9 I
Form the corresponding inequality with 7 and s interchanged and a
replaced by 1/a, and multiply.]

77. A necessary and sufficient condition tha

P17 P2 oo Pron’ SP1MPOR ... Ppn,
where p, , ... are defined as in § 2.22, and the « are positive, for all positive
a, is that

O+ 20 o F(—m+ Do, Za,+ 20, 4+ ... +(n—m+1)a
m

=n, with equality when m=1.

1
i

The suffici ~ Falla Foann Mhanna~ 1. 41 PR
LTI L €COSSIVY 11

SPpes > T o [ |
O SULIVICIIVY 1U11V WS ITOIIl L (60reill 541 ; ’ U A pe provea

en ay be p
on thelines of §2.19(1). Dougall(1) gives a proof for integral « based on an
identity. For certain special cases, such as
pu—)\pu+/\§pu—xp_/.c+x (0§K<A<[.L),

py.1+u2+...+p.r §pp.1.pp.2 see .pll-r,

see Kritikos (1).]
78. Themeans{$,4$,0,0,...,0]Jand [%, $, 2,0, ...,0] are not comparable.
[Example of Theorem 45 and illustration of Theorem 48.]

79. If a>0, and P, is the arithmetic mean of the uth roots of the
products of y different a, then

D ~ D < ~ D
Lt1~+ 2~ ~ 4L ns
unless all the a are equal.
[Smith (1, 440). Example of Theorem 45

oo
oo
)=
e
\'
red

80. If x>0, and z, y, z are positive, then
ot (x—y) (x—2)+y*(y—2)(y—x)+2* (2—x) (2 —y) >0,

y=z.

H[

[ NN
UlLLIess
81. If »=0, §> 0, and the a are positive and not al
[V+28,0,0,OL4,...]—2[V+8,8,0,OC4,...]+[v,5,8,0(4,...]>0.

[This result, communicated to us by Prof. I. Schur, is not a consequence
f Theorem AR hut follawe from Thaorem K0 'rrr1+h — /8.1

1
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CHAPTER III
MEAN VALUES WITH AN ARBITRARY
FUNCTION AND THE THEORY OF
'ONVEX FUNCTIONS

3.1.‘ Definitions. The means I, (2) and & () are of the form
(3.1.1) My (@)=~ {Zg(a)},

where ¢ () is one of the functions

2, logx
and ¢-1(z) the inverse function. It is natural to consider more
general means of the type (3.1.1), formed with an arbitrary
function ¢ subject to appropriate conditions. The most obvious
conditions to be imposed upon ¢ are that it should be continuous
and strictly monotonic, in which case it has an inverse ¢~ which

satisfies the same conditions.

We require the following preliminary theorem.
82, If(i) ¢ (x) 28 continuous and strictly monotonicin H<x < K,
(i) H2a, <K (v=12,...,n),

o)
:
S
o~
f—
N”
™
al
o
=
[\
~
«»

(3.1.2) ¢ (M) =2g94¢(a),
(2) R vs greater than some and less than others of the a, unless
the a are all equal.

Since ¢ (x) is continuous and increases or decreases from ¢ (H)

to ¢ (K) when x increases from H to K, and 3q ¢ (a) lies between

these limits, there is just one IR which satisfies (3.1.2). Also

Zg{p(M)—(a)}=0
and some terms must be positive and some negative, unless all
are zero. Hence It —a is sometimes positive and sometimes
negative, unless it is always zero.
We have assumed ¢(x) continuous in the closed interval
(H, K). The argument is still valid if ¢(z) is continuous and

HI 5
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strictly increasing in H <z < K, while ¢(x)—>—oc0 when z—H,
or ¢ (x)—+ 0o when z— K, provided that we then interpret ¢ (H)

as mﬂ.qn*lno' —00. or A(R’\ as meaning +o00, and I as b@lng H

pSEiwis 808 Ve L LAV QALILS Mg Waila v e

when quS(a,): —00 or K when 2g¢ (a)= +c0. Here H may be
—o0 or K may be +00; a particularly important case is that
in which H=0, K = +00. In the definition which follows, and
in all the discussion of the properties of ¢, later in this chapter,
it is assumed that ¢ is strictly monotonic and is either con-
tinuous in the closed interval or behaves in the manner just

explained.

We write?

(3.1.3) My =My (a) =My (a,9) = {Zq (a)} = {U[$ (a)]}-
The weights g are arbitrary posmve numbers whose sum is 1,
and when we compare two means it is to be understood that the
weights of the means are the same. For ¢(x)==, logz and a7,
My reduces to A, & and M, respectively.

3.2. Equivalent means. The mean IRy is determined when
the function ¢ is given. We may ask whether the converse is
true: if M, =M, for all @ and g, is f necessarily the same function
as x? This question is answered by the theorem which follows.

83.% In order that

.2 ) ,u\«,j, oy (a)

for all a and q, 1t 18 necessary and sufficient that
forallaand g, s n Y 1

(3.2.2) v = o + B,

\ 7 n T 17
where o and B are constants and = 0.

In the argument which follows we assume ¢ and y continuous
2 4+ mtanral (T I\ T4 10 naawr+n ann +hat 3+ annling ot

11 [} 1) UGJB)’ VU DUCT vilav 1u G)PP Td YWi1lull

e closed interval L, nj). &
ions in the exceptional cases mentioned in § 3.

7

shall actually prove more than we have stated, viz. that (3.

1ant con r] HON 'Fn-v- (Q ‘) 1\+n }\o 4’1‘11:) or all g and ~

'J
)

) \b—-l
; S
~ D

o
=3
(oM

that it is a necessary condltlon for (3.2.1) to be true for all sets of

 In this chapter we define I, directly, and deduce its properties from the

P T (L, UT 182 2 10_4 00\ wa ahall ghaw how I mav ha dafinad ‘avia
ucuuuuuu LIl Ulle ¥V L {§y O.10-0.04) WO Shai SA0WwW 40w ‘U"d’ diay JC Uciilucua 4axio-

matically’, that is to say by prescription of its characteristic properties.
b Knopp (2), Jessen (2).
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two variables and weights. Later (§ 3.7) we shall prove still more,
viz. that (3.2.2) is necessary for the truth of (3.2.1) for all sets
of two variables and a fixed pair of weights.

(1) If (3.2.2) is satisfied

x{IM, (a)}= qu (@) =2Zg{wf(a) + B}

aZgi(a)+ B
— o (Mg (@)} + B=x (M (@)},
and so I, =M, . Hence the condition is sufficient.

(ii) In proving the condition necessary, we assume only that
(3.2.1) is true for all sets of two variables and weights.

. o . K-t t—H
nN=2, 0=, A=K, =35, 2= 37
N — i1 N —I1
where H <t < K. Then
(3.2.3)
1_1(K_t 1 {TT\ t—H IIT/'\]__ _1{K_t L ITN t—H ) /Tf\)
¥ "\ g¥P\L) T F7m¥P\8 ) =X 7 gX\W) T fgX\B)p
L. ... 17 .1 . ¥ awmd dhhic 30 alan 4nixa FAan £ IT A 2 I T
1O 11 (.l/g.l\., alill viils 1d ISV UL WU 1UL V=11l Al V= 1IN. 11 WU
denote the common value by x then, as £ varies from H to K,
x assumes all values in (H, K) and
K—t t—H
Y 74 TT‘"/,(H)—’- Y 74 TTl/’(K):lﬁ(x)’

=w/'(w)+/3,

or all zin (H, K); and thig is (3.2.2). This com

VUl Uid & 11X \.LJ., LA J o

of Theorem 83.
One corollary of Theorem 83 which is sometimes useful is this.

Since — ¢ is a linear function of $, and — ¢ increases if ¢ decreases,

LA O N aizix «Qlil2 ALV LTUROTUS 24 A A VTSNS

,-

we may always suppose, if we please, that the ¢ 1nvolved in
M, (x) is an increasing function.

Ln
"
N
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Theorem 83 also enables us to elucidate the apparently exceptional
status of M, = ® among the means M, of Ch. I1. Since

1
i

[ P
4 (2)= | I tr-1ds="

r
s a linear function of :1:0 we have, by Theorem 83,
S[R ( ) ¢,(a).
This equation is still valid for =0, since ¢,(x)=logw.
29 A pcharactaricetice propertv nf tha maane § T+ 1g
FelJe dB WAL L AV LWA ADLAG PL \/J. | 9 AV § LiAWw RAAVERIRD Jl‘or . AUV >4

natural to ask whether there is any simple property of the means
of Ch. II which characterises them among the more general

means considered here.

3
)

QA a .Q,n:m_/nnnn that Ll 2o pamfamarnnta ann +ho Amnnr anmmtonmna] (O AR\
=, W IJUOU 244247 ll)\ll/, o vt wuuwo viv vt UIJUI(/ vrover vul \U, W),
and that
(3.3.1) My (ka)=EkM 4 (a)
7 Ty ) ann

for all posiiive a, q, and k. 1'hen My (a) ts M, (a). In other words,
+tho monmne YN are I h g

vive rnivvwivo ;.’,./br wir

a.\wumw..-. v.v....

where Y (x) = (kx).
It follows from Theorem 83" that
(3.3.3) b (k) = o (k) () + B(E),
where « (k) and B (k) are functions of %, and «(k)=+0; and from
(3.3.2) and (3.3.3) that
(3.3.4) b (k)=pB (k)

& Nagumo (1), de Finetti (1), Jessen (4). The following simple version of de
Finetti’s proof was communicated to us by Dr Jessen.
b If we used one of the more precise forms of Theorem 83, referred to after itg

enunciation in § 3.2, we should obtain a more precise form of Theorem 84, in which

]r\nmnnn'ncnf‘r wmra s l'\“]" aaqnmnr] *Fn'r T‘QG“"‘Tﬂfp{" h]QQQDQ A'F VQNQ]’\]QG nr WD‘I""I{'Q
AUILUEULOIVY Wao Ulily astuintia 101 100uliluta VIaSttis Ui Vaai@ilits UL WUIg1iuS,
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If we substitute from (3.3.4) into (3.3.3), and write y for k, we
find that

(3.3.5) b (xy)=a(y)$ @)+ (y)
for all positive = and y.

Qinnilanls,

U.lu.l.llal.l..l.y

(2 2 g8\ Al — (N A (2 L ().

\VeZeVy WY\VI ] T B\ NIT] VA
and (3.3.5) and (3.3.6) give

a(x)—1 a(y)—12
b () o(y)

Each of these functions must reduce to a constant ¢, so that
a(y)=1+co(y). It then follows from (3.3.5) that

(3.3.7) b (xy)=cd (@) b (y)+ (@) + S (y).

In diseussing this functional equation, we must distinguish two

The most general solution, continuous for z > 0, is? ¢ =Clogz.
(2) Ifc+£0,weput cé(x)+1=f(z),

and the equation reduces to

0"
v,_h

iy \ Lor N L7\
Jley)=f(=)f (),
. IS o I DR Y e r m T
whnose gereral solution 18 j = rence
bla)="—
c

3.4. Comparability. Our general remarks on the ‘com-
parability’ of functions of the a (§1.6) suggest the following
problem: given two functions s and x, each continuous and strictly

monotonic in (H, K ), are M, and M, comparable; i.e. is there an
inequality
<
(3.4.1) 9)24, = ?IRX
& Provided x51, y=41. Since (3.3.7) is plainly true when z or y is 1, the ex-

ception is irrelevant.
o Cauchy (I, 103-105).
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( one 1n the onmosite sense) valid for all a

H vieo U o OUieR, U

a. qa
01 and q?
tells us that the answer is affirmative when ¢ and y are powers.

We write x {1 (2)} = ().
Then ¢ is continuous and strictly monotonic, and has the inverse
¢ t=yxt. We also write

Then the z are arbitrary
(3.4.1) takes the form

(3.4.2) ¢ (2qx) = 2q ¢ (x)

umbers between  (H) and 4 (K); and

S
(8
=)
3]
vl
v
9
<<
S
S
ISH
S O
S
=]
~
[
S
™
[«
Q
3
s
S
~ S
S 3
S
>4
S
e
b
e
A
|
S
(SH
s
f
=
]
=
§
K
Q-l
[$
§
]

y Weignbb P, (3.4.2) becomes
(3.4.3) (pr <2PPW)
\ ~Lr ) '}9

3.5. Convex functions. The function ¢ of §3.4 was the
resultant of two monotonic functions, and therefore itself mono-
tonic; but now we consider a ¢ subject to (3.4.2) only.

_LIle b pLGSU case OI \6 é} IS

\ (Y @)+ (y
) v'\ 2 ) =
A function which satisfies (3.4.2) satisfies (3.5.1), but the class
of functions satisfying (3.5.1) is more general. We shall however
show that the two inequalities are equivalent for functions sub-
ject to certain not very restrictive conditions.

A function which satisfies (3.5.1) in a certain interval is called
convex in that interval. If — ¢ is convex, ¢ is concave. We may
also define convexity or concavity in an open interval. It is

often convenient to admit infinite values at the ends of th

(3
\9

o

1=

|

e
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terval; it is obvious that such values must be positive for convex
and negative for concave functions.

'T‘he fnn'nﬂnfﬁnhu nf the theorvy n'F convex ot
N UAULANVAWVAVLIIN UL ViadAV Viaauvuvua J VULILY VA Luilvu

Jensen (2).2 Geometrically, (3.5.1) means that the middle point
of any chord of the curve y=¢(z) lies above or on the curve;
here a curve means any, not necessarily continuous, graph. The
inequality
(3.5.2) b (9121 + @2 %2) = 1 P (%) + 42 (22)

(for all ¢) asserts that the whole chord lies above or on the curve,
and the general inequality (3.4.2) asserts that the centre of
gravity of any number of arbitrarily weighted points of the curve
lies above or on the curve. It is geometrically intuitive that,
when the curve is continuous, the weakest condition implies the

BULULIZTL, aliu WU Sriail 1ind vnav mucn imore U].l.d/ll Ll.l..le lb VUL IIITU

by our analysis. We might have taken (3.4.2) or (3.5.2) as our

definition of OOHVGXIT;y, but we have followed Jensen in ST;&I‘UH’Ig

fram +the weoakoat dofinitian Mo vnaat matunal dafinitiong ara
ALVILIIL VIAUVU YWWUORNDURDU WUL1IILUViIVLL . J.l.lU ALIIUDU Wi Wy UAUL11IILuivIID Al v

perhaps (3.5.2) and another which we discuss in § 3.19. There is
some logical interest in assuming as little as possible.

It is sometimes useful to have a definition of the nnnvpvﬁ-v or con-
cavity of a finite or enumerably infinite set of numbers. We shall say that
the set a,,...,a, is convex if

20,5a, ,+avy; (v=2,3,...,n—1),
1.e. if the second differences of the set are non-negative.

Thus we can state Theorem 51, in the less exact form with ‘ <°, by
saying that the set log p is concave; the full theorem is that log p is strictly
concave \SE‘G S 6 6) milb‘bS D.[le a are unaal VV 11611 two pIOQuCDb UI pOWerS
of the p are comparable, the inequality which holds between them may
be deduced (substantially as Theorem 52 was deduced from Theorem 51)

from the concavity of Iog p. This is the kernel of Theorem 77.

3.6. Continuous convex functions. We now proceed to
investigate the simplest case in which (3.4.2) and (3.5.1) are
equivalent.

If ¢ (x) satisfies (3.5.1), we have

44 (x1+x21—x3+x4)§24) (x1+x2) 2 (x3+x4)

S (1) + b (22) + B (%) + ¢ (24),
Though Hoélder (1) had considered the inequality (3.4.2) before Jensen.




b
b
b
P
«
»
[¢
b
¢

4+ +...+x\ )+ +..+o(x
(361) 1 2 n éqs( 1) ¢( 2 9‘5( n)
\ n / n
Lo o mmmd ST o T A 2 L om
10 & P rviCcular bﬁq CI1ICC U1 values UL v, V14, Tv = a7
To prove (3.6.1) true generally, it is enough to prove also
r \ 7 () J 2 (=) Ir
that, if it is true for n, it is true for n— 1.2 Suppose then that
(9 1\ hag hoon nrave A Fav 22 1t hong and +hat v 4 o
\2.0.1 (a8 OEEI Provea ior # NUmoers, alit Vhav &y, Loy eeey L py_g
are given Ta,.king z, to be the arithmetic mean 9 (with equal
weights) of the n — 1 numbers, and applying (3.6.1), we obtain
'(n—-l)%i—l—%{ x1+x2+...+wn_1+a
(W) =4¢
n')(,’)g‘\-l-rlex:.\-l--i_-l-rly{x N4+ (A)
S‘f'\ 17 vV P \7a7 ¢ VP \NTYR—1) P T\ /.
< p ’
'I(L'\-*-“x\-—f—,”ﬂ—“x_\
and SO ¢(%)§¢( 1) (P( Z) - Sb( n 1)’
which is (3.6.1) with n — 1 for n. Hence (3.6.1)is trL orenera"v

In other words
87. log M, (a)=rlog M, (a) is a convex function of r.
From this, by appealing to Theorem 86 (or repeating the

argument by which this theorem was proved), we deduce Theorem
17 (apart from the specification of the cases of equality).

a Here we follow the lines of § 2.6 (ii). For a proof following Cauchy’s argument
more directly, see Jensen (2).
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3.7. An alternative definition®. We characterised a convex

n ¢ (x) in § 3.5 by the fact that the middle point of a chord

1 )
of the curve y = ¢ (x) lies above or on the curve. Riesz and Jessen
have made an observation which is interesting and sometimes im-
portant in applications?, viz. that, when ¢ () is continuous, it is
sufficient to require that some point of the chord should lie above
or on the curve.

88. If ¢ (x) is continuous, and there is at least one point of every
chord of the curve y = ¢ (), besides the end points of the chord, which
lies above or on the curve, then every point of every chord lies above
or on the curve, so that ¢(x) s convex.

Suppose that PQ is a chord, and R a point on the chord
below the curve. Then there is a last point S on PR and a first
point 7' on RQ in which the curve meets the chord: § may be P
and 7 may be @. The chord ST lies entirely below the curve,
contradicting the hypothesis.

This remark gives us an alternative proof of Theorem 86. If
¢ (z) is convex, the middle point of any chord lies above or on the
curve. Hence, as we have proved, every point of the chord lies
above or on the curve. That is to say

b (9121 + 92 %2) S @1 b (%) + g2 b (2,
if ¢, >0, ¢,>0, ¢; +¢,=1, but ¢, and ¢, are otherwise arbitrary
We may then proceed by induction. If ¢, +g,+¢3=1, then
f g2 %+ G5 %3)
(8.7.1)  $(gy2y+ Qoo+ @525) = {qy 2, + (95 + G5) t
( 92+9s
Q3 %5+ G55
<qb @)+ @+ a) (B
\ 12 vV 13 / °
ag.dblx)N+o.b(x.)
A2 \*W27 V A3 \*Y3/
=1 (2y) + (92 +95)
9219

I]I\N

S0 svuox 3:11 Y.

A orollary of Theorem 88 is
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By Theorem 88, every point of every chord lies on or above the
curve. But Theorem 88 remains true if ‘above’ is replaced by
‘below’ in hypothesis and conclusion. Hence every chord of the
curve coincides with the curve.

From Theorem 89 we can deduce the refinement on Theorem 83
referred to in § 3.2. Suppose that

g1 (00) + 92 (@2)} =x 7 {1 x (31) + 2 x (@)}
for fixed ¢,, ¢, and arbitrary a. Writing yy—1=4¢, J(a)=x,
a=y~1(x), we obtain
b (g1 %1+ ¢2%2) =1 b (1) + ¢2b (%3),
so that one point at any rate of every chord of y=¢(x) lies on
the curve. It follows from Theorem 89 that ¢ is linear.

3.8. Equality in the fundamental inequalities. We now
suppose ¢ (x) continuous and convex, and consider when equality
can occur in (3.5.1), (3.5.2), or (3.4.2).

Suppose tha,t xl < x3 < x2 , that xs = ql xl + q2 %y, and tha, Py,

U

L I SOV N ¢ 1} MO LS I %Y. and P. Hes

4 23 i’k Mail o ~ L A AN A A - 1_. Zi —_—— A RSN \ e sy - =2 VY ALU2iZ
inequality. It fo llow that equality can occur in (3.5.2) only when
A (N 2o Tlrnmm 2nn (o an )

()D\.b) o vervewr o Kubl, ¢b2}.
This conclusion is easily extended to the general inequality

Suppose, for example, that there is equality when n=3,

(3.7.1)
\Te b2y

of the

af - Mhan all +ha giona
lavu wl\w2\W3 411011 il u1 C O

must reduce to equality, and ¢ (x) must be linear
intervals /

g2 %+ q5%;) ( )
x ) Ko, X
1> s 25 %3
(\ 92+ 93
and therefore over (z,, z3)
"X'Tcx h ave t]nns nroavad
AV § AL WA ‘tll.\} A WAV §

(3.8.1) g{)(qu) < quﬂ
LP‘L' LT"P\-’”)
3.8.2 ,



91. Any chord of a continuous convex curve lies entirely above
the curve, except for its end-points, or coincides with it.

We may say that ¢(x) is strictly convex if

Lo L /ll\
w T
1
(3.8.3) $(=5") <3 @)+ )
for every unequal pair z,y. Since a strictly convex function
cannot be linear in any interval, any such function,if continuous,
aaticfos /9 Q T\ and /9 Q 9\ 11“11\.«4(‘_ all 4Thn A ang amital
PAUVLOLIOUD \U.O.J_) il \U O.A/}, UWLLLTD™DD 1L UILL L L Uliu Le
3.9. Restatements and extensions of Theorem 85.2 We
crnar mmed o d ML O 41 £
Hiay 1esvdi 1L1e0reiil oo 111 uvile 10rin

92. If y and x are continuous and strictly monotonic, and x ¢
wncreasing, then a necessary and suficient condition that M, < me
for all a and q is that ¢ = x =1 should be convex®.

We shall say in these circumstances that x W
to . Thus t2 is convex with respect to ¢” When s ; r> 0.

The curve y = ¢ (x) has the parametric representation

=48, y=x()

.3
=
‘*i
,o

ml. ’=Ln-y-] dlimnyvolh 4hA nmtida A A AIINTTA Anvmacghandinae A
A40C Cliuru ulll ugu LIS PU.u.I.UE OUll Lud0 VUl vo LULIospuLiviLlg vwv
t=t;, and t=1, is
x=¢’(t)’ yzl)b* (t)a
() = (1) O =t
% — 2/ ¢ 1 ¢

Where PO = X Wy X ()

¥A\v2/ T \"1/ T \v2/ T \1/
e +ho Frinntinn sl (Y 1. R
1S v 1ulicCuloll Kp\v)T pP
. L a8SuInes 1l n wralicac (2 ) o [+ \ £~ +__ 4 an ,J + __+ YA~
wnicn assSuIines vne values X\l1) alll Y \lg) 1OL v=10yq U ¢ =1vg9. YVYO
may call y =* () the -chord of y=x (x). In der thatxshould

be convex with respect to i, it is necessary
X/I/J,.lU.UhdJUUV ery poin O

above the curve.

& Jessen (2, 3).
b We have actually proved more in regard to the necessity of the condition: see
our remarks on Theorem 83.
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Theorem 92 may be generalised as follows. Suppose that
a=a

VisVaseee s Vi
is a function of m variablesv,, v,, ..., v,,, and that
wz 4/2 g‘n Y1 (a')
is the result of taking means Wlth respect tov,,v,, ...v,, in succes-
sion.
93. Suppose that i, and y,, are continuous and strictly mono-

tonie, and that x, is increasing. Then, in order that
M M <SIE”  IM a)

/J/J\«\il e n’n"'lp \a, —] n’J\'X see n’l"xl \w/J
for all a and q, it is necessary and sy Lﬁ'cz’enf that every Xy should be

convex with respect to the corresponding

it is llIl(leI'ST;OO(l of course, that the w ignbs involved in the

nnaratinna R, and A3 ara +tho aame +thancoh +thov will cenarally
UFUL UULU LD JJ‘«IP uu.l.u ,’JLX arLvw viiv D(AJLLI.U viiyv u.éu U-ll.\./‘y YY L4 SUL‘.U‘. W-I-LJ

vary with p. That the conditions are sufficient follows at once
from Theorem 92. To see that they are necessary, we have only

5\/11\/1 i t’l. _tl\/l. L%}

ularly 1mportant sub-class
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v
open interval (H, K). The
& (x) should be convex vn the tnierval is

@ The important case in practice is that in which (as stated in the theorem) ¢/
exists in the open interval. We usually wish, however, to assert convexity in the
closed interval. Since ¢”’=>0, ¢” and ¢ are monotonic near the ends of the interval
and tend to finite or infinite limits; ¢” may tend to — o at the left-hand end and to
+ o« at the right- hand end, and ¢ may tend to + o at either. The function will be

convex in the closed 1n1:erva1 if its value at each end is not less than its limit at that

and
Tiilde
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(3.10.2) d(E+h)+d(t—h)—24(t)=0
for all ¢, A such that the arguments lie in the interval,
Suppose now that ¢'' (£) < 0. Then there are positive numbers

8 and A such that ¢ (t+u)—¢ (t—u)< —du

for 0 <u = h. Integrating this inequality from u=0 to u=h, we

obtain B(t+0)+(t—h)— 28 (1) < — 152,
in contradiction with (3.10.2).

(ii) T'he condition is suffictent. We prove that ¢ satisfies (3.4.2).
In fact, if X = 2qz, we have

b () =$(X) + (@,~ X) ¢ (X)+1 (&,

/7 e Ny

X)24" (£,)

JV

for some £, between X and z,, and so

2 ¢ (x) 2 (X)=¢(2gx).
If ¢ (x) > 0, there can be equality only if every z is equal to X.
+ £

TrToe pr;2 ~

85.a Ifd'" (x)> 0, then ¢ (x) 18 stricily convex and satisfies (3.8.1)
and (3.8.2), unless all the x are equal.

3.11. Applications of the properties of twice differenti-
able convex functions. The following theorem, which follows
from Theorems 95 and 85, will be found nsarhmﬂ.qr]v useful in

applications. .

96. Ifiiand y are monotonic, y increasing, ¢ =
~ T A AN

then 3))(},, < wcx, unless all the a are equal.

1 and d'' >
T Y~

(o]

P

Examples. (1) If y=logx, x =x, then ¢ = y—1=e*. Theorem 96

10UULvUOD W Luovulivoill 7
(O T£.1 __ 1 . 8 vwrhoavwal ~ 2 - o +han .L_/MS/T d17 . 0 Thannam
\‘l’ J..L‘,u—-'tb ’X—W WIHLULO VU 7 \O UuU-ll'P ,({J ) ° A 1ITUVUILITILL

96 gives Theorem 16 (for positive indices). The other cases of
Theorem 16 may be derived similarly.
(3) Suppose that ¢ =x*, where k is not 0 or 1. Then ¢ is convex
in (0,00)if k< 0ork> 1, concaveif 0 <k < 1. Supposing £ > 1, and
& Holder (l)

b MMnn odlad Lomsin Mg s OF o F il ccn o f n L TP cvns O Do Mh anienna O
bl L 8 00 4 - Hbllbbly, ITOIN 1neorem 70 aliu ULl _p.lUUl o1 .LLlUUlULl.l Oov. Ly i1lculicul 7

e
(3.4.2) is true with inequality, and so 3, <IN, , unless the a are equal.

=
I,
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applying Theorem 95, we find

Zqx < (Zqxk)lk
or Zpx < (Zpxk)ik (Xp)iK,
unless all the x are equal. If we write px=ab, pa* =a*, we obtain
msrmn 12 Lo .o 1 MLy ~dlne Anccne FAT Ao ctmatT o o
.LJJ.UUIULU. 19, 1UL A ~ 1. 1110 OLl1C1 OCadSes 101V S1L .le/l.l.y
(4) Suppose that ¢ =1log (1 +e*), so that
I;I (x\ — ew > G
P (L+e®)2™ 7
and +that tha ahanicean and woichta in 12 Q 1\ awvn lacla /a )
allu uvliau UliU auUdulppboav iliiu VVU-lquD 4LL \U O. ..l., arLw .I.Us \Wz/WII’
log (by/by), ..., and o, B, .... We obtain
a;%bB .. I A+ a,2b 3...l,. < (@y+ay)*(by+b,)B... (I, + 1),
unless a,/a;=0b,/b;=... (Theorem 40: H for any number of sets

of two numbers).

(3) Suppose that ¢=(1+2")', where r is not 0 or 1, and
£liad LA alaniccan o A xratadhda 3 /D Q na S |
vlda v Luito Ubblbbd&? ana WUlsLlUb 111 {9.0. a) are w2/w1, U2/U1, .0 NG
@y, by, .... In this case ¢ is convex if r > 1 and concaveif r < 1. We

find, for example, that

\reY1m

{(@y+by+ e +0) + (@2 + by + .. + 1)}
< (@ +ag )+ (b + bW e+ (I 1)
ifr>1and ay/a,, by/b,, ... are not all equal (M for any number of

sets of two numbers). It will be remembered that both H and

AT Aan hao notnindad +A andto P N " 11 hang 1“4411@-‘-;1—71\117
4dYL Udill DU CAULULIUCTWU VU DUOLD Ul 111Ul AULILIVCTCLD 111U UULVUJ.y .
(6) 97. Ifa>0,p>0,then
| Zplog a,\ Zpa P 2palog a\
A ~ vA
U Zp )32 T Zpa )

unless all the a are equal.
Wa writa +thie with m inctoaad AF 4 far tha calra Af covmmadne
YY U VYVALiIUUVU VUl yYvaivii _t.l 1110 vvae UL H 1UL vViiU oanv vl D‘yu.u.u.UuJ.‘y.
The first inequality is (3.8.2) reversed, with ¢(x)=logz, a
concave function. Itisequivalent to G (Theorem 9). The second
ineanalitv ig {Q 8. ‘)\ txni-h Alr) = ]nn- » a convexy funetinn
3.12. Convex functions of several variables. Suppose that
L7 LD Ay UUL1Y A UVUILLAUlLL 111 vilD Pla« 10 UL \u(/, ” Uiiarv 1d U ‘y ’ @ uuviiialll
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which contains the whole of the segment of a straight line which

onnnents anw fwo of ifg nointed A Funection A (» 24) d be

) e n
VULLLLIVV U WLJ.J UYWU UL LU HULLLUD e LA LULIVULULL X (W, yl i DW v

convex tn D if it is defined everywhere in D and

+ax, Y+ U\

/‘1’.1 LIRS S § g2 1 ¥, 7
(3.12.1) (Dk 9 3 )g%{@(xl,yl)-f—(l)(xg,yz)},

forall (z,, y,) and (x,, y,) of D.? The definition asserts more than
convexity in x and y separately; thus xy is a convex function

n‘F ""nf‘ QTTDY“T Y] Q“Iq a f‘n“TTQv ‘F‘l'l'nn .1('\“ n“" 21 N aXxTaryy }\'I'I+ ':+
‘7 3, CULL\A UV A P AVAVEAVES LY y AL UY UL W’ MUY 4LV

is not a convex function of « and y.

T 0 L4t 4o o 1t L L2l 30

41T 1S O1ten CoIlvenicnu to use an alieriiavive 1orin o1 vne aeini-
finn 'i]‘lq ] ("i Tﬂ Sunnonse that » 22 1 ) are (ﬁVnn ﬂ.ﬂfl C “Q1APY‘
tion just given. Suppose that z, y, 4, v are given, and consider
the values of ¢ (if any) for which (x4 ut, y 4+ vt) belongs to D.
Qi N 2 Al o Ll n o Javac Frmein aw tvdareral forbhi il an oo 1o
OHICC L/ lb Cco1vex, tIiese vaiues 101rm 1 1H1erval (wilon .UJ.dJy e
nul). Then we qny that @ (z,y) is convex in D if

(219 9) v =® (L ut 2L )

\U A i H, \ll/ = \W 1 WV, '7 i Ull,

~ale L

lb, IOI' every Z, y, u, v, a convex Luuuauu Ul t b NTOT guOub ‘[-/l.le
interval of ¢ in question. The definition is equivalent to that which
we gave before, since, if

rTtuty=2, Y+ =Y, TH+uly=2%,, Y+viy=y,,
{3.12.1) becomes

- / \<lf‘\l(*\_‘_'\l{* \1

/‘.\ 9 }=2\/(\”1/T \v2/s5-
Sq aaid 44 ha annaa o if D i1q convex
WIS dalul LU DU ULVILIVaV D 11 — W 10 vullvvuoa

If 2=® (z,y) is the equation of a surface in rectangular Car-
tesian coordinates, (3.12.1) asserts that the middle point of any
chord of thesurfacelies above oron the corresponding point of the

a It would be sufficient to consider rectangular domains, but convexity is the
natural limitation to impose on D. It is not part of our programme to consider
questions of analysis situs connected with convex or general domains.

b There is a wider generalisation of the notion of a convex function of a single
variable which is important in the theory of functions but with which we shall
not be concerned. The function &(x, y) is subharmonic if its value at the centre of
any circle does not exceed its average over the circumference. In particular & is

subharmomc if it is twice dlﬁerentlable and
VED = B+ Dy 2 0.
For the theory of subharmonic functions see F. Riesz ( 5, 9), Montel (1).
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surface. If the surface is continuous we can deduce that the whole
chord lies above or on the surface, and that the centre of gravity
of any number of arbitrarily weighted points of the surface lies
above or on the surface. This is what is asserted in the following
theorem.

98. If®(x,y) 1s convex and continuous, then

(3.12.3) D (Zgx, Zqy) £ Zq D (2, y).

The proof is the same as that of Theorem 86, except for the
obvious changes of notation.

There is also a theorem corresponding to Theorem 88; it is
sufficient to assert that no chord of the surface lies (except for its
end-points) entirely below the surface. All the other remarks of
§ 3.7 remain true with the obvious changes.

A theorem corresponding to Theorems 94 and 95 is

99. If ® (z,y) is twice differentiable in an open D, then a neces-
sary and sufficient condition that it should be convex in D is that the

quaaranc jorm O—=® 22190 unid 22
Y el A T

should be positive? for all u, v and all (z, y) of D.
If Q vs strictly positive®, then (3.12.3) holds with inequality,
unless all the x and all the y are equal.

(1Y The condition 18 necessary. If (x. ) is in D). then + (1)
\-LI - TV WV IVWUvVvwIv VU IUVVWUW' 'y - A \W’ y ’ g ) ALK A VALV LA \V’

defined by (3.12.2), is convex in a neighbourhood of = 0. Hence,
by Theorem 94, X”( )2 0,ie. @=0.

n A atn
nwe curnwevoy

then
O (z,,y,)=0(X, Y)+ (¢,— X)0,°+ (y,— Y)®,°

+3{(x, - X201 +2(x, - X)(y,— Y) D 1+ (y,— Y)2 D, 1},
where the index 0 indicates the point (X, Y) and theindex 1 some
point on the line joining this point to (x,, y,). It follows that

20 (x,y) 20 (X,Y)=D(Zgz, Zqy).

T€f N 30 atmintlyr nagidisra nd +]r\o-n 1a nnnaliter +han aw» 9V
FES % I DUlLlV U-l‘y HUDIUJV Uy a:.u.u viivio 10 U\iuwuu ’ viilTlil WV -_ ll.,
y,=Y for all v.
JYV
2 Q=0 b @> 0 except for u=v=0.
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19 4) d >0 d >0 ') —Dd 2>0
14.x) ¥ oar =Y oy =Y, > ax ¥ yy ¥y =Y
and striectlv nogitive if and onlv if
WEAWA M UVLALAV U-I-J t’\JUJ. VA Y WV 124 vaiwAa \JLLJ.J AL
(3.12.5) o, >0 o O -0 2>0
\ 2y T H X =YY zyY

It is negative if (3.12.4) holds with the signs of the first two
inequalities reversed.
Thao avtanainn nftha dafiniti

|
LAV UVAUVVIIODLIVIL Ul ViV UAV1IALLL UL

functions of more than two variables may be left to the reader.

3.13. Generalisations of Holder’s inequality. We may
write Holder’s inequality in the form

(3.13.1) W(ab) =My (a) Ma(b)
or
(3.13.2) Yqab = F1{3q F (a)} G—1{Zq G (b)},
where F (x)=2" (r>1) and G (x)=2a", r' being as usual the index
conjugate to r in the sense of § 2.8. If we write
bd=F-1 =01 Fl=2 OB \=vu. a=d(x) b=d
¥ ¥ U + \w) Wy “AY) y W W\w) v Y\I)»
we obtain
(3.13.3) Zgé (@) (y) = ¢ (Xqw) P (Zqy).

The simplest case of this is
which expresses the fact that ¢ () (y) is a concave function of
z and y. When, as here, ¢ and ¢ are continuous, it is equivalent to
the more general inequality (3.13.3). Hence, reversing the argu-
ment (with general ¢ and i), we obtain

100. If F and G are continuous and strictly monotonic, then a

necessary and sufficient condition that U (ab) should be comparable
a1 th YOV f})\ 28 that F1 (fr\ﬂ 1//)1\ should be a concave or

m..
wuviv Q’l‘vl{ \WI IV'J"
convex function of the two vamables x cmd y; wn the first case (3.13.1)
18 true, tn the second the reverse inequality.
Asanexample we maytake F (x) =27, G (y) =y*. It then follows
from Theorems 100 and 99 that

A (ab) =M, (a) M, (b)
ifr>1,s>land (r—1)(s—=1)z1. Ifr<1l,8<1,(1—=r)(1—8)=1,

o

i
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)
]
<,

1\‘14‘ “"l\f\""' k22 vd 1\ h ] ,]I
vUuv vy miay o 1

of a power.

We might look for a more straightforward generalisation of
Holder’s inequality. Holder’s inequality asserts that (3.13.1)
holds if f(x) and g (x) are inverse positive powers of z, and either

(a) F(x)=xf (), G () =2zg(x),
or

(0) F(2)= j FOd G- f g ()t

and we might expect that it would hold for other pairs of inverse
fand g. The theorem which follows shows that no such extension
is possible.

101. Suppose that f(x) is a continuous and strictly increasing
function which vanishes for x=0 and has a second derivative con-
tinuous for x>0, and that g(x) 1s the 1nverse function (wlw}ch has
necessarily the same properties). Suppose further that F (x) and
G (x) are defined either by (a) or by (b), and that (3.13.1) is true
for all positive a, b. Then f is a power of x and (3.13.1) 1s Holder’s
inequality.

We consider case (). If, as in the proof of Theorem 100, we

~ -~

write ¢ and i for F—* and G, then ¢ (z) (y) must be a concave
£,

Lo 22 ~F an el A T4+ FfAll Avra Framm ThaAaram 00 and /9 19 A\C +hat
LUncCuion o1 ¥ ana . 1vi0110ws LLULL LHOUITIL 77 alil (0. 14,2~ vlLdv
d'<0, ¢ <0and
P =V7F =
(3.13.4)  {¢' (@) (NPE=o@)P(y) " (@) ()
for all positive z and y.
Tfh(x\=un_ Ji(x)=7v. we have
4L Pw) wy, WYiwy Jy
_ . x
v=F@)=uf(w), —=f@), w=g(_),
x /x\ G /x\ x ( )
X =— — = — —_= xr)=7
u g(\u) (u’ T ¥ ’
and so
(3.13.5) ¢ (x) ¢ (x)=xz.
& Compare Theorem 44. b See Cooper (4) for case (b).

¢ With the appropriate changes of sign.



4
b
!
4
Q
=
et
o
7
wn
[0e]

¢

(¢"¢+¢¢"')2— 422 < A" ",

all the arguments being x. This is only possible if

AL L L AL LS ¥ RLAN TR SN XSS o
P Y=oy =—9y, ¢ yptroy =0
! . .
or ¢'¢ is constant. Hence, by (3.13.5), ¢’/ is constant, in which

case ¢ and the other functions are powers of «

3.14. Some theorems concerning monotonic functions.
We collect here some simple theorems which will be useful later.
The first characterisesmonotonic functionsas (3.4.2) characterises
continuous convex functions.

102.2 A necessary and sufficient condition that

(3.14.1) (Zp) ¢ (22) = Zpé (2),
for all positive x and p, is that ¢(x) should decrease (in the wide
sense) for x> 0. The opposite inequality is similarly characteristic
of increasing functions.

There 18 strict tnequality of ¢ (x) decreases strictly and there s
more than one x.

(1) If ¢ decreases, ¢ (2x) < b (x), whence (3.14.1) follows.

(ii) If in (3.14.1) we take n=2, 2, =2, x,=h, p; =1, p,=p, we
obtain (Y mYh(m L BY< ()t md (B
LTP/PETA)=P\X) T PP\
Making p—>0, we see that ¢ (z+4) < ¢ (x).
The case ¢ (x)=z*1 (0<a< 1), p=2, gives Theorem 19

103. A sufficient condition that
(3.14.2) f(Zz) = Zf (=),

72

for all positive z, is that x~1f(x) should decrease. There 4

smeauality +f o1 f(x) decreases strictly and ther
For if we write f(z)=2x¢(x), then (3.14.2) becomes (
with p=2x. The condition is not necessary, since (3.1

by any J \.,o) for which

f(x)>0, Maxf(x)<2Minf(z);
for example f(x)=3+cos .

&«
&
S
=,
o
S

a Jensen (2): Jensen does not refer to the necessity of the condition.

.
N
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(3 14.3 ) ¢ (Zpx) = Zpd(x)

we obtain
1 7 \ | V4 \
Py P2)
21 = wr ¢
'y w
Qinnna 7 "o 111 dnnnharnoen v a PR 3 PUSE- DU B §
M1IIVC WU vall .U..lUU.I. Uua,uso N Clt y (P/;b D CUILLD U 1U.

3.15. Sums with an arbitrary function: generalisations
of Jensen’s inequality. We may define ‘sums’ involving an
arbitrary function ¢ as well as means. We write

v¢ L .
Haora 4 aontinnong and aftretlv monoton in £921 - hat
ALUVALV ‘f’ VULIVLLL WU U viia DUJ.L\JU-‘-J PSRV S Do L £ VAV SV

2 d(a) is not,
like Zq¢ (a), a mean of the values of ¢(a), and so necessarily a
possible value of ¢ (x). We therefore assume that ¢(x) is positive
for all positive x and tends to oo either when x— 0 or when
x—>o0. We shall also assume that the a are all positive, leaving
the reader to make the modifications appropriate when any a

is zero?,

LA i A A0 L 2 2

monotonic.
In case (1),
(3015.1) 61[ éex

if4} decreases and x increases. In case (2), (3.15.1

decreases. There s CquaviLy

& Suppose, for example, that ¢(x)=2", where >0 (the case of §2.10

IO\ =0 and wa nasd maka no digtinetion bhetween two gneh svatemsa of f‘\o nag
U,'_U’ CULIA YWWU LIUUVW JMWWAY 11V WINVLALIVUVAVLAL NVUUV T WWAL ViYW Duwvaas IGJ RUTLLLRN Vi ViU w wio

1, ) and (l 1, O) It qS(O) were positive it would be necessary to distinguish, and
he discrimination of the cases of equality in Theorem 105 would become tedious.
f ¢(x)—>oo when 2—0, then &, (a)= 0 whenever any @ is zero.

b The substance of this theorem is due to UOOPGI‘ (l )

A'GL
h

H e
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In case (1), when y increases,
&, (@) z xH{x (Maxa)}=]
and similarly &, (@) < Mina.

1\ 4 1 3 .y N

In case (2), suppose that » and x increase, and write

I} \

pla)==z, a=¢(z), xp'=Ff
Then (3.15.1) reduces to (3.14.2), and is true if x—1f(x) decreases,

ie. if fd@)} x(@)
b(x)  P(x)
decreases. If ‘ b (3.14.2)

equality. The case ¢y =29, y =2" gives Theorem 19.

We may also define weighted sums analogous to those of §2.10 (iv), viz.

[ o4 4 __\ — _1 (Y 1 7 AY
Ty(a)=¢"H{Zpp(a)},
where the p are arbitrary positive numbers. Ty reduces to M, if Zp=1,

3.16. Generalisations of Minkowski’s inequality. If
¢ (x)=2a", where r> 1, we have

sex = om WA onny /a+b\ - 1 fonn 2 N . O T\
(3.16.1) Wy \T}é—;iw%(a)+wc¢(0);,
(2 168 9) f&:./ﬂ\<;f@.ln\urfz.lml
\0.10.4) a1 9 /’ =217 \W) T H VS
{a+ b\ L ,
(3.16.3) ng( 5 )§—2-{$¢(a)+%¢(b)},

-

(3.16.4) 241 {

but the differences between the weights p ar
In (218.1). Ssp=1:1n (23 16.2) n

AL \U A UJe -l., II—'_I., ALX \U.



positive numbers. We call these three cases the cases (I), (IT),
and (IITI). In discussing them, we shall suppose that
>0, ¢'>0
“'.nm Nne n
AUL L& ~ Ve

The inequality (3.16.4) asserts that ¢—1{Zp ¢ ()} is, for given
P, a convex function of the n variables «,, z,, ..., ,; or, after
§3.1‘) a that

- X () =¢"1{Zps (x+ut)},
where the z, p, u are fixed and the x and p positive, is convex in ¢
for all ¢ for which all x + ut are positive. If ¢ is twice differentiable
this condition is, by Theorem 94, equivalent to x''(0)=0. A
straightforward calculation shows that

(3.16.5)
{" (P x" ={¢" (X)) Zpurd” (x)—¢" (x) {Zpud’ (®)}3,
where
(3.16.6) = x(0)=¢"1{p4 (2)}

stances

(3.16.7) {¢'(x)}*Zpud” (x)— " (x){Zpué’ ()2 0.

It is easy to see that (3.16.7) cannot be true generally without
restriction on the sign of ¢’’. Suppose for example that ¢’ > 0 and
that ¢ is continuous and sometimes negative. We can then
choose z; and z, so that ¢ (2;) <0, ¢ (z,) <0, and u, and u, so

Tn thic cace (2 18 7Y for » — 92 rodiices tn

AL UVRLIND VIOV \U 4 v [ ] l’ ANJEL IU “’ L UL UUVID UV
(1P N2 e 2L L N 1o pr 277 (o NL > 0
1P XS W11 P )T Paheg @ (Lo)f=VY,

ETCPR TEE SR SIS » v SIS I © UL T . S S, SN .J | PR AT
wnicn 18 1alse. vve SIilall vilereiore su P()bt: 111 wilat 101OWwWS ullavu
>0, ¢' >0, ¢"">0

We can write (3.16.7) in the form
"2( Zpud’ (z)}?
(3.16.8) lﬁ(X)=¢i'l 1X\) ;{ ¢l 2r 7 }

¢ (x)~ Zpute”(x)’

8 We take for granted the obvious extensions of § 3.12 from two to » variables.
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Now, by Theorem 7,
2 TR OV (S 412 |5 " (09 \\? c 5 2 g O
(3.16.9) (Zpud'yP={Z/(pd")u. [|=5r |1 SZpu’d” Zpm.
{ N\¢ /) P
Hence (3.16.8) is certainly true for all z, u if
016100 $022p S mpy),

.U' /M\
<)

for all . Further, there is equality in (3.16.9) if

,(
x)
¥, Y — ¢ /l- — 1 ‘) M\
U=~ W=1,4,...,70},
an that /191 N\ sa hath -6 it a a nanagaarer nanditian fan
oV viianv \Unl V) 10 YUV LLL U all A LITCUOUDDAVL vUliuivivll 1UL

£ [=1(y) ]2
(3.16.11)  ®(y)=4(a) = {7 W} =Yg »
¢ @ W)
19 12 TN\ aagrimnieog +ha fAasnn
\9.10.1U) asSSuUinies v 10rim
(3.16.12) O (Zpy)ZZp D (y)

TN

We now consider the three cases (I), (II), (III) separately.

(i) In case (I), (3.16.12) is true if and only if ® (y) is a concave
function of y.

(i1) In case (IT), (3.16.12)is (3.14.2), reversed and with y, ® for
z £ A arificiant (fhanoch noat a nacocaary) candition 1a that @ /a3
) J 42 ODuUllliviviiv \D.IJ. 61]. 1IVUV Qv 12VUVUVODODWL , UULIWLLIVAULL 10 ViLWwu Y/y i

an increasing function of y or, what is the same thing, that ¢¢’’/¢'2
isa decrea,smg function of z.
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In these cases it is true.

Mha altarmativa Ffarma nf+ho ananditiang (1) and 1Y whish
XL ]J.U.I.U W.LU a.u UCULILIAUVL Y U 1UL1ILD Ul VilU VULIUWLVAIVLLID \.l.’ QULIAL \u’ Yy iriivilii
show better their relations t e another. We shall suppose qS""

b-‘
¢]
[
=
o~
&
a
w0
ci~

continuous, aswe may do without affecting seriously t

&0

Since q'b"" >0.
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of the results. Then from

¢"2(x)
W)= 5
Y & (@)
, d ¢ (x) .

we deduce 04

2 ’
= gt 9 117 .
# @) a2 ¢ (@)
Hence @ (y) is concave if and only if ¢'(x) /¢’ (x) is concave, or,
what is the same thing, if ¢'¢’"'/4''2 is increasing. 'l‘heqe are
alternative forms of (i), and an alternative form of (ii) is ‘¢/¢’
is convex’.
Summing up our conclusions, we have
106.2 Suppose that ¢'""" is continuous and that >0, ¢’ >0,

$">0. Then

(1) 4t 18 necessary and sufficient for (3.16.1) that ¢'[¢d’’ should
be concave, or ¢’ ¢’’’ [$''2 increasing ;

(ii) ot ¢s sufficient (but not necessary) for (3.16.2) that ¢/d’ should
be convex, or dpd'’ |¢'? decreasing ;

(iii) ot is mecessary and sufficient for (3.16.3) that ¢ should be
one of the functions (3.16.13).

We leave it for the reader to formulate the variations of this theorem,
when (for example) ¢ >0, ¢’ <0, ¢’'> 0, or when the inequalities are re-
versed. It is instructive to verify that (i) is satisfied (from a certain z
onwards) when ¢ =x?/logx, where p > 1, but not when ¢ ==?logz, while
for (ii) the situation is reversed.

3.17. Comparison of sets. Theorem 105 asserts that
@¢ (@) =G, (a)

of this sectlon are of a dlﬂerent type, mvolvmg given sets (a)

i s =)W ¥

and (a’) and a variable function ¢. We consider the conditions
under which Sy (a') = Gy (),

& The first results of this character are due to Bosanquet (1): Bosanquet con-
siders case (IT).



MEAN VALUES WITH ARBITRARY FUNCTIONS 89

or, what is the same thing for increasing ¢,
(3.17. 1)

$(a)) +d(as) +... +d(a,) S d(ay) +d(ag) +... +é(ay)
for given ¢ and o’ and all ¢ of a certain class
10 uppose thnt tho onfa (N amAd (A’ avo avwmcamaod am doeromdam
AV, OST vivlov uiv® SCus \lwy Witlv \W ) WIe WiTWilgelw vit Westeivweivy

A w
order of magnitude. Then a ecessaru and sufficient condition that
(3.17.1) should be true for all continuous and increasing ¢ s that

! o A Y | PURY
a, =a, (v=1,2,...,n)
ML | a2 . Ll o X2 L T L
410 sulciency o1 vie conaiuvion s oovious. 10 pr lb 11eCes-
sary, suppose that a," > a, for some u, that ¢, <b<a,’, and that

¢* () is defined by
¢*(x)=0 (x=0), $*(x)=1 (x>b).
Then Zo* (@ )z u>p—12=2Zd*(a).
Hence (3.17.1) is false for ¢*, and therefore also false for an

appropriately chosen continuous increasing approximation to ¢*.
Ournext theoremisconnected with the theoremsof §§ 2.18-2.20.

108. In order that (3.17.1) should be true for all continuous

vvvvv *e JUT Gl <

convex ¢, it s necessary and sufficient either that (1) ( "< (a),
v.e. that (a’) is majorised by (a) in the sense of §2.18, or that (2) (a’)
18 an average of (a) in the sense of §2.20.

If these conditions are satisfied, and ¢'’ (x) exists for all x, and s
positive, then equality can occur in (3.17.1) only when the sets (a)
and (a') are identicala.

We have proved already (Theorem 46) that the two conditions
are equivalent. It is therefore enough to prove that the first is
necessary and the second sufficient. We may suppose (a) and (a’)
arranged in descending order.

(i) Condition (1) s necessary. Condition (1) asserts that

(3.17.2) a,+ay,+...+a,/Za,+a,+...+a, (¥=1,2,...,n),
with equality in the casev=n

The functions x and —x are both continuous and convex in any

a Schur 12\ nroves th

=/ r=x
the case of equaht
Tittlawaosd. and P4

AdLUVIU YW UUUy aillUl L O

"T‘L<!
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aa

interval. Hence,if (3.17.1) is true, Za’' £ Zaand X (—a’) £ 2 (—a),
1o YAl N which 10 /92 17 O\ far ., —» with cariglity
1.0 &l =— &y, WILIUILL ID \9 .l.l.‘l} 1UL Vv — 1710, 1viL U\iua;uu .
Next, let
$(x)=0 (zZa,), ¢(@)=2—0a, (z>a,).

a,’ +a2 +.ota,’ —va, £2b(@')<2Zd(a)=a,+a,+ ... +a,—
which is (3.17.2).

(ii) Condition (2)is sufficient. If (o) isan average of (@), we have
’
a’,u.- =Z);,Lla’l+p 2+ +p#na’
n n

where 0,20 2 P,,=1 X p 1

Puv=VYs Puv ’ r

IJ_:]_ V=1

for all 4 and ». If ¢ is convex, then

|
K w
S
P

B
O
Qu vy
C-F

—~

Theore ha all th a are equal, in which case all the a’ are
also equal and the common values are the same.

Tn ceneral however come of the n  will be zero. We chall say

fay
Al QUIITIOULY LAV VYUY ULy DULLLY UL VAU oy 77 adl U LULVe 77 U Dailiil O

that a,’ and a, are immediately connected if p,,, > 0, i.e.if @, occurs
eﬁectlvely in the formula for a,’; and that ny two elements
(whether a or a’) are connected if they can be joined by a chain of

elements in Wthh each consecutive pair is 1mmed1ately con-
nected.

Consider now the complete set C of elements connected witha, .
We may write this set (changing the numeration of the elements
if necessary) as

(@) [ 7 P SO P PN
the a’ of C involve the a of O, and no other a, and no other o’
involves an @ of C. Hence, using the sum-properties of the p,



MITAN TATTIHGQ YWTIMIT ARPRTMR ADY TITNAMTANS a1

FLARN UV WA | Y LA U Lo YW 1141l ADDLALIDVAIVL XL UILNNU LIV AYD LY 8

o dhad £V nmsdadoo Suvo 4+ ac ot 2 aa s T2 LMoo Lonn Mhannan
PU vilavu U CULLLALLLS JuHU ad 1iia. .ly W ads W. LU 1UILLOWDS 110111 L1ICU1LUI11L
95, and from the equality in (3.17.3), that all & immediately

7 nnr] ﬂ’ QWN AN
w oliu w ail9ov U\.i

equal to a,.
We now repeat the argument, starting from a,,, and we con-
clude that both (e) and (a’) consist of a certain number of blocks

of equal elements, the values of the elements in corresponding
blocks being the same.

Incidentally we have proved

rnn Iy}

109. If¢" (2)>0,p,,>0,2p,,=1,2p,,=1,anda,’=2Zp,,a,,
then "’ ’ ’
(3.17.4) 2 (a') < X (a),
unless all the a and a’ are equal.

If all the a’ are equal, (3.17.4) is a special case of Theorem 95.
A special case of Theorem 108 which is often useful is

(3.17.5) ¢(x—h")+d(x+h)SP(x—h)+d(x+h).

3.18. Further general propertiesof conveéxfunctions. We
have assumed since § 3.6 that ¢ (z) is continuous. We shall now
discard this hypothesis and consider the direct consequences of
(3.5.1). The general lesson of the theorems which follow will
be that a convex function s either very reqular or very irreqular,
and in particular that a convex function which is not ‘entirely
irregular’ is necessarily continuous (so that the hypothesis of
continuity is a good deal less restrictive than might have been

avnantad)
expeirea).

111. Suppose that ¢ (x) is convex tn the open interval (H,K),and
bounded above in some interval ¢ interior to (H, K). Then ¢ (x) is
continuous in the open interval (H, K). Further, ¢ (x) has everywhere
left-hand and right-hand derwvatives; the right-hand derivative us

not less than the left-hand derivative; and both derivatives increase
with x.
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It follows that a discontinuous convex function is unbounded
in every interval.

We prove first that ¢ (x) is bounded above in every interval
interior to (H, K). The kernel of the proof is this. The argument

of §3.6 shows that 500y < 304 (a)

O iv

we used the hypothesis of se nov 9
(h, k) and that the upper bound f ¢ in ¢ is G. It is enough to
prove ¢ bounded above in (I, 2) and (k, m), where l and m are any
numbers such that H<l<h<k<m< K. If z is in (I, k), we can
find a ¢ in 4 so that x divides (I, £) rationally, and then ¢ (z) must
lie below a bound depending on ¢(l) and @, and so be bounded
above in (I, ). Similarly, it must be bounded above in (k, m).

To state the argument precisely, let % be the left-hand end of ¢
and G the upper bound of ¢ in 7, and suppose that

H<l<x<h.
We can choose integers m and »n >m so that
E=1+2(x~1
== — (D -
+ 2 (@ 1)
lies in 7, and then
(mE+(n—m)l) _m n—m oy
r)= =—
@)= T S @+ )
Mo M=, o
=—G+ ¢ () <Max {G, ¢ (1)}
n n

Hence ¢ (x) is bounded above in (I, &).

. .
In proving the remainder of the theorem we ma

selves to an interval (H’, K') interior to (H, K), or, what is the

same thing, we may suppose ¢ bounded above in t
nterval. Q'nh?nqn then that J\/fr\< Gin (H. K). that H <$<K,

1 ii vasly A1k \LL g £X Jy UL

Aix

that m and n>m are posmve 1ntegers, and that 6 is a number
(positive or negative) small enough to leave x + 78 inside (H, K).
Then
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b(@+n8)~ () (z+mb)— ()

- = p” (m < n).

or

Replacing 6 by —9, and combining the two inequalities, we
obtain

(3.18.1) ¢(”+”3)“¢(‘”);¢(x+m3)—¢(x)
n

: b (x) —p(x—md) _ ¢(2)—¢(x—nd)

m n

IIV
HV

onvexity of ¢).

adt 1 o) ~rn
1la v SD=_\- T, WU

G2 40+ 8)—d(a) 24 (@) — dla—0) 22D,

We now suppose that 8 -0 and n — o0, but so that « 4+ %3 remains
inside the interval. It then follows from (3.18.2) that ¢ (x + &) and
¢ (x—38) tend to ¢ (), and so that ¢ is continuous.

We next suppose 8> 0, and replace 6 in (3.18.1) by &/n. We
have then

(3.18.3) ¢(x+5§—¢(x)g¢(x+8é),—¢(x)

e .Ul

b4

> cﬁ(x)—-cf(x-—fi") ¢(x)~—¢(x 9)
where 8’ =md/n is any rational multiple of 8 less than 8. Since ¢
is continuous, (3.18.3) is true for any 3’ < 6. It follows that the
quotients on the extreme left and right decrease and increase
respectively when & decreases to zero, and so that each tends to a
limit. Hence ¢ possesses right-handed and left-handed derivatives
(]Sr' a'nd (?sl,’ and ‘751’ é (]Srl‘

Finally, we maywritex — 6’ =x;,x=%x,,x + 0 =23 (orx— 3 =2,
Xx=2x,, +8' =x;), when (3.18.3) gives

b(an)— (@) . $ @)= (@)

Z3—Ty —  Xy— Ty




Making x5 —>x,, ,—>%;, We obtain
(3 18. 4) ¢r (x4)>96l (.’E4 >¢r g‘}s (xl)’

a1 £ a1
5 The PIOOI UI1© 11E0re

EE

T+ 1¢ nlain from what n
$(2)— $ (@)
’ 7
(3.18.5) & (%4) 2 = ¢, (),
L3 — Lo

3F o L oan e
11 ulJl —_ 2 ~ 3 —_ d/4

Theorem 111 assertsnothing about the existence of an ordinary

differential coefficient ¢’ (x). It is however easy to prove that ¢’ (x

exists except perhaps for an enumerable set of vwlues of . The
function ¢, (x), being monotonic, is continuous except perhaps

in such a set. If it is continuous at z; then, by (3.18.4), ¢, (x;)
lies between ¢, (z,) and ¢, (x,), which tends to ¢, (x;) when
x,—>x,. Hence ¢, (z,)= ¢, (x;), and ¢’ (x) exists for x=2,.

It is also plain from (3.18.5) that, if ¢é(x) is continuous and
convex in an open interval (a, b), then

@) ¢(w ‘

=
o
=

is bounded for all x and 2’ o

...v ..-... -

3.19. Further properties of continuous convex functions.
We now suppose ¢ (x) convex and continuous. It follows from
(3.18.5) that if H<¢< K and

¢ (E) =A<, (§)

then the line

(3.19.1) Yy—¢(§)=A(z—¢)
will lie wholly under (on or below) the curve. In other words
112. If ¢ (x) is convex and continuous then there is at least one

line through every point of the curve y = ¢ (x) which lies wholly under
the curve.
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curve (under or over) is called a Stiitzgerade of the curve. If ¢(x) is con-
cave, then the graph of ¢ (x) has at every point a Stiifzgerade over the curve.
If ¢ (x) is both convex and concave the two lines must coincide and ¢(x)
must be linear.

It is easy to see the truth of Theorem 112 directly. If ¢<z<x’, and
P, @, @’ are the points on the curve corresponding to £, x, 2, then PQ lies
under P@’, and the slope of P@ decreases as x approaches ¢, and so tends
to a limit y. Similarly, if x < £ and « tends to £, the slope of @ P increases

t0 a limit e If @ 'were greater ¢ than v, and 2. Xq WETre rprpnhVP]v less than

Viidvia Py UialA W 9 W

and greater than £, and sufficiently near to £, then P would lie above
P, P,, in contradiction to the convexity of the curve. Hence yu=v, and
(3.19.1) lies under the curve if A has any value between w and v inclusive.

In this proof we do not appeal to Theorem 111, but the proof depends
on just those geometrical ideas which underlie the more formal and

analytical argument of § 3.18.

nd has the

.QI‘IT\r\nQo N NYXT nnv\waroo]'t? +1\n+ ’Llflﬂ\ aul.

.
N - n'n+ NnINIIQ
DU ppUBe 110w, CUILLYVCLS0 S

ly, that ¢ () is continuo
property assertedin Theorem 112. If z, and z, are two values of z,
P, and P, the corresponding points on the curve, and P the point
corresponding to §=3%(z; +,), then both P, and P, lie over a
certain line through P, and the middle point of P, P, lies over P.
Hence ¢ (z) is convex.

We have thus proved that the property of Theorem 112 affords
a necessary and sufficient condition for the convexity of a con-
tinuous function, and might be used as an alternative definition
of convexity. That is to say, we might define convexity, for con-
tinuous functions, as follows: a continuous function ¢ (x) s said to

bho romaoar am (K KN\ 2f 40 camag £ af (H K\ porvoemonde n mambor
0€ Convexr wn \ii, 1, ) 1) 10 ANY ¢ Of \i1, L) COTTESPONAS @ NUNMOC]

A=A(§) such that 42y N(w—¢)<d(x
Jorall x of (H, K).

47}

This definition of a convex function is quite as ‘natural’ as that implied
in (3.5.2), and it is interesting to deduce some of the characteristic pro-
perties of continuous convex functions directly from it. For example, the
inequaiity (3.4.2) may be proved as followsa.

TX -..-.,-.. g 11aisal (\YIL\:V,\.L
ig asS usuai U\0) = 4go,
and taking £= A (a), a value which lies in the interval of variation of the a,
we have $ U@} +A(a~§) = ()

a Jessen (2).
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for a certain A=A(£) and all a. Performing the operation % on each side,
btai

e obtamn ${UW(@}+2{U(@) - =U{S (@)},

or ${U(a)}=U{$(a)},

which is (3.4.2). It is instructive to compare this argument with that of

§ 3.10 (ii).

3.20. Discontinuous convex functions. Discontinuous con-
vex functions are, by Theorem 111, unbounded in every interval,
and their existence has not been proved except under the
assumption of Aermelo ‘s Axiom or (What is for purpose equi-

If
(3.20.1) fl@+y)=Ff(x)+f(y),

then f(22)=2f(x)

and Zf(L )=r@+y)=f(2)+1(9)-

Thus a solution of (3.20.1) is certainly convex.

It was proved by Hamel (1)2 that, if Zermelo’s Axiom is true,
there exist bases [«, B, v, ...] for the real numbers, that is to say,
sets of real numbers «, B, y, ... such that every real a is expressible
uniquely in the form of a finite sum

x=au+bB+...+IA
with rational coefficients a, b, ..., I. If we assume this, we can
at once write down discontinuous solutions of (3.20.1); we give
. f(x) arbitrary values f(«), f(B), ... for x=«, B, ..., and define
S (x) generally by '
f@)=af()+bf(B)+... +1f (A).
Then, if y=a’a+ ..., we have
fe+y)=f{la+a)oat..}=(a+a)f(a)+...=f(2)+f(¥)

Ay AL 4l n s adiAan AL Anencen

.DU.'. .LLI.U].U uUUdJl.lUu buu.uy Ul Lilo PLUPU]. U1€S OI Co1ivex fu.u.bmuub, Uf
the solutions of the equation (3.20.1) and of inequalities associated with
it, we may refer to Darboux (1), Fréchet (l 2) F. Bernstein (1) Bern-

| [N A PPty

bUULlJ. mu UUUUbbll \1}, D.lu.ll.lUb‘J.g \1), DlUlPuLDAI. \1, ﬁ}, CUUPU.I. \0}, au.lld
Ostrowski (1). Blumberg and Sierpiriski prove that any convex measurable
Junction is continuous, and Ostrowski obtains a still more general result.
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MISCELLANEOUS THEOREMS AND EXAMPLES

113. If a is a constant, =+ 0, and x = a¢, then
- Sy(a)=Cg(a), T, (a)=Ty(a).
[The corresponding property of I is included in Theorem 83.]
114. An increasing convex function of a convex function is convex.
115. If every chord of a continuous curve contains a point which lies
above the curve, then every point of every chord, except the end-points,

lieg above the curve,

22TS

1168. If 4(x) is convex and continuous, a <b<c¢, and ¢(a) = ¢(b) = (c).
then ¢(x) is constant in (a, c).

an PN | J-m PN R o AR P S O I AN [P -
i

r oA
UWICo Qiler Ul.l.llli’,‘bU.lU, Dl.lUl.l. a necessa y I

sufficient condition that log f(«x) should be convex is that ff’ —f22 0

119. If ¢(x) is continuous for > 0, and one of the functions z ¢ (z) and
¢ (1/x) is convex, then so is the other.

120. If ¢ (=) is positive, twice differentiable and convex, then so are
(s qS(x—*’) (s= 1), et (}S(e_“’)
(the first for positive x).

121. If y and x are continuous and strictly monotonic, and y increasing,
then a necessary and sufficient condition that

P {7 (@) . (@)} = X7 {x (@) --0 x% (@)},

Al = Tace Sanl—1 { s¥\L
Y\I ] T VB AV \V /5
should be convex.
[Compare Theorem 92.]
122. Suppose that
13\ Ll N A Nl e N LAl N A0
$9) (1) (%3 — ) + (%) (@1 — x3) +$(23) (22 — 1) = 0,
r (what is the same thing)
VT s Al N
I SR A T VA
(i) { 1 2, $(z;) |20,
|1 @y by |

for all «;, x,, @ of an open interval I for which @, <x,<x,. Then ¢(z) is
continuous in 7, and has finite left-handed and right-handed derivatives
at every point of I.

HI

~
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If ¢(x) is twice differentiable, then (i) and (ii) are equivalent to the

diffarnantial ina~nitaliér
WA T/ L Tlivicud .IJ.J.U\.iu-GlJ.lU‘)’
1770 N> 0
¢ (z)= 0.
1) and (11) are alternative formas of (2. 8 2\ and 4A/»)ia conves an +hat
L %/ iR (il) ULV QLUVVLLUIDWULI VU LULLLID VUl | UsUs i Jy uilUL w, 40 LUULLVUA . DU vViiavy
the theorem is a restatement of parts of Theorems 111 and 94.

/3 1/ Yatm fan o Y U Llan VYoo £ PSS T I DV RN Uy S s AN
(1) @(@)SIn (T3 — Xy) + ¢(Tp) SIN (% — Z3) + p(Xg) Sin (23 —241) 2 0,
or (what is the same thing)
| coszy sinz; ¢(zy) |
(ii) Cos T, sinx, ¢(z,) (=0,

| cosx, sinw, ¢(x,) |

for all z,, z,, z; of an open interval I for which z, <z, <x; <%, +m. Then
é(z) is continuous in I and has finite left-handed and right-handed

derivatives at everv noint of 7,
1vaty o1 1

\ 1.1

If ¢(x) is twice differentiable, then (i) and (ii) are equivalent to the
differential inequality
¢ () +¢(x)=0.

10/‘. nanoagcant and a1 nmioant ananditinan fhat a Anntiniias £r9m
Aax. L3 [ECOSSAry allG SUlilClonlv COLNGIUIOIL vdadv a COIy 1

¢ (x) should be convex in an interval 1 is that, if « is any real number and
any closed interval included in 7, then ¢ () + o should attain its maximum
in4 at one of the ends of <. If alsox and ¢(z) are positive, then a necessary
and sufficient condition that log ¢(x) should be a convex function of log
is that z* ¢ (x) should have the same maximal property.

[For applications of this theorem, which results immediately from the
definitions, see Saks (1).]

125. A necessary and sufficient condition that a continuous function
¢ () should be convex in (a, b) is that

1 flaxth d
i ) =5 t)dt
& b@)Sg; [ 40)
£ P 1L, ~merm L L <L
10 =X <TTTiv=0.

[This is a corollary of Theorem 124. If ¢(x) satisfies (i), so does ¢(z) + ax;
and itis plain that any continuous function which satisfies (i) must possess
the property of Theorem 124.2

Theorem 125 may also be proved independently ; and there are various
generalisations. In particular we need only suppose (i) true for every  and

arbitrarily small A="h(x).] .

& For a formal proof, use Theorem 183.
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126. If ¢(z)is conve

[¢]0)
& (x) tends to infinity, for one o

Tty YERRAS

M

o

B
<D le

) . .'.... ~T< . -
manner as to be ultimately greatver than

‘e
s
W
4
)
)
)
)
2
H

4 Oory TE 177 nl-‘,\-..,.,.\f\ and {
Aaf. 1l @ ~VUI0L £~ VU, allh @f

1
[This follows at once from the equations

128. If ¢”’>0 for x>0 and
lim (2’ —$) =<0
&L ~—> o
then ¢/x decreases (strictly) for x> 0.

[The limit certainly exists, since x¢’— ¢ increases. The result follows
from the equations used in proving Theorem 127. The cases considered
in Theorems 127 and 128 are the extreme cases possible when ¢’ > 0; if
neither condition is satisfied, ¢/« has a minimum for some positive «.]

129. If ¢’ >0 for all z, ¢(0) =0, and ¢/x is interpreted as ¢ (0) for x =0,
then ¢/x increases for all x.

130. If the set a,, a,, ..., G5, is convex in the sense of § 3.5, i.e. if

A2 [ P >N s
[N 14

—_ 9 Dan
wv—wy—awv+11—wv+2'_u \v= Ly oo

.oy arv-—}.),

ek

s

a;+az+.. +aon+1>a2+ gt ..oty
o ’
r

H/']"L

then

with inequality except when the numbers are in arithmetical progression.

[Nanson (1). Add up the inequalities

an Ml \/\2n >0 r

P
T \n—7 1) Q%o 1=V,

—_

Theorem 130 may also be proved as an example of Theorem 108: the set,
formed by the numbers 2, 4,...,2n, each taken n + 1 times, is majorised
by that formed by the numbers 1, 3, ..., 2n + 1, each taken »n times.]

131. If O0<x <1, then

[Put =92 and a,=y" in Theorem 130.]

400 41 AL & Atnala oA A A an snnanth
j ¥ 7<13 U 15 lJ.l..I.b‘ bU.ll,IJLU 01 & Circie ana 4‘10[11 o« £L1lp£lg QL1 1LISULLIY

whose vertices lie on the circle in the order mdlcated C,A,, 4, are ﬁxed
and 4,, 4,, ..., A,_, vary. Then the area and perimeter of the polygon

PRI I h S,
alo g.lUdalJUbll WIICI1L A0A1=A1A2= .. =An_1A."
[Let 4, ;CA, =0a,. Since (sinz)’”’ < 0 for 0 <x < 7, we have, by Theorem

95,
1., (S, \
~3¥sin oy
n
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equ _
by 3«,. These mequahtles give the two parts of the theorem. When A,
coincides with 4,, they reduce to familiar maximal properties of regular

polygons.]

Wh1n.|n sranich at +the aricin +ha Hemf (Y — i and +that ~ cotiaclos +1ha
AUI1 VQULILOLL QU ULLD Uligili, ULJ.WU L~y U — Y, iU ullau Y SaulsSLIoS Lllo
inequalit;
quality g(xy) <g(x) g (y)
I\NTII =T\ JIN\NT/*

Suppose further that Zab<A4AB
2G(b)=G(B). Then

L
ZF(a)g————F(I/A).

[Cooper (3). The result is included in Theorem 15 when f is a power
of z.]

134. If ¢(z) is convex and continuous for x20,r=1,2, 3,..., and the

a, are non-negative and decreasing, then
1IN\

$(0) +Z{¢ (na,)— ¢ [(n—1)a,l} = ¢ (Zay,).
If also ¢’(x) is a strictly increasing function, there is equality only when
the a, are equal up to a certain point and then zero.

VRIC Ly, 1T O b LUl VGl PRl &AL LACAL 401

[Hardy, Littlewood, and Pélya (2). Write
80=0, sy=a;4+as+...+a, (1),
and s,+(v—1)a,=s,_; +va,=2x,
s,—(v—1)a,=2h, s, ;—va,=2h.
It is easily verified that | A’ | < h, with equality only if @, =0 or

a.=q,= =qa
G =az=...=a ve

It follows from Theorem 1 10 that

and the result follows by summation.]

135. If ¢>1and a,decreases, then
Z2Hi—(v—1)% a5 (Za,)l.
[Example of Theorem 134.]

186. Suppose that a is a function of vy, vy, ..., v,; that i, 25, ..., t,, iS
a permutation of the numbers 1, 2, ..., m; and that the ¢ and y are con-
tinuous and strictly monotonic and the y increasing. Then, in order that
Vm Vl Vi
EUtwm cou S[Rw] (@)= EIRX@ SIRX? (a)
for all @ and g, it is necessary that
co

onvex with resnect to ,I. ws for p= 1

L OSpOLY

, m
(2) x,isconvex with respect to s, ,if A>pand Aand p
ion in the permutation i,, 4,, ..., 1,, (i.e. if th

T z moANTT T T -

in the series 1, 2, vombuat LA, L g, e I Ey, Ce, eey Ty).
[Jessen (3).]



IEAN VALUES WITH ARBITRARY FUNCTIONS

EI
[u—
]
[y

order that

)-‘L
~1
E-I

oV omV. 7 v - onVs onlV: ,
: Do -o Byt (a) = Wgm ... M2 (a)
for all @ and g, it is necessary and sufficient that (1) r, <s, and (2) »
(the range of u and A being defined as in Theorem 136).
[Jessen (3). The most important cases are:

m=1, r<s.

\_r

@i
(i) m=2, (¢,,%)=(2,1), S4=ry=8;=7;.

Thetwocases correspond to Theorems 16 and 26. The kernel of the theorem

15 b()I]IJH/L[].tBLl 111 DIIB statement TJle.'D, Wnenevel Tzﬂe two Sl(leS OI Uﬂe ln-
equality are comparable, the inequality may be proved by repeated

annlication of the snecial cases corresnondine to ( Y and (11).1

apphication of the special cases corresponding to (1) and (11). ]
138. A continuous cu v=d(x) defined in an oven interval. sav
135. 4o Continuous Curve ¥ —o@(x) aeiinea in an 1 intervai, say

0<z<1, has the followmg property: through every point of the curve

there is either (a) a line which lies under the curve, or (b) a line which lies
over the curve. Then one and the same of (a) and (b) is true at all pomts
of the curve, and the curve is convex or concave.

[Tt is easv to show that if §. and S, are the sets of v

LAV A0 TSy VU D1aU VY uiiuy i AJa wiilx Ub AT URLIT DUUDS U

(a) or (b) is true, then S, and S} are closed (in the open interval). But a
continuum cannot be the sum of two non-nul closed and exclusive sets.]

139, QHn hnf.rl\(fr\ 1S conv

2 LU Vex a Doy AW 2254

m(x) is the lower bound of é(x) at x (the hmlt f the lower bound of & (x)
in an interval including x). Then m () is a continuous convex function;
and either (i) ¢ () is identical with m(x), or (ii) the graph of ¢ () is dense
in the region H Sx = K, y=m(x).

If ¢ (x) is convex and not bounded below, its graph is dense in the strip
H=zz<K.

[Bernstein and Doetsch (1).]



CHAPTER IV
VARIOUS APPLICATIONS OF THE CALCULUS
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“.1. 11ILTOQUCLLIOIL. FaruiCulal 1INSyualltiCs alisiilg 11l Orulllal y
analysis are often proved more easily by some special device than

by an appeal to any general theory. We therefore interrupt our

systematic treatment of the subject at this point, and devote a
short chapter to the illustration of the simplest and most useful
of these devices. The subject-matter is arranged according to the

+thAAd
methods and aracter of the

VARIABLE
4.2. Applications of the mean value theorem. Our first
examples depend upon a straightforward use of the mean value

(4.2.1) f(x+h)—f(x)=hf"(x+6h) (0<b<1),
or its generalisations with higher derivatives. It is a corollary of
(4.2.1) that a function with a positive differential coefficient
increases with x.

xXXT

(1) We have

log (x+ 1’)—10gw=—§:-,

where x < £ <x+ 1, when x> 0. It follows that

(%[x{log(m+ 1) —logz}]=log (x+1)—logx— >0,

x+1

gz—v[(x—l- 1){log (z+ 1) —log x}] =log (x + 1)_.10gx_261,< 0.
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. / 1\ v
Since the latter function is {1 —-;) , Where y=x+1>1, we

obtain

~ AW

140. (1 +1)a; wncreases for x> 0; (1 —1)4 decreases for x> 1.
x x

This is substantially the same as Theorem 35.

(2) If x>1,r>1, we have
#=1+4r(@—1)+4r(r—1)&=2(@—1),

where 1< £<2, and so
1\2

[ —
1. 7> 1+r(x—-1)+3r(r— 1)("“—50—1) (x>1,r>1).
This inequality was found, in a less precise form, in §2.15.
(3) If z3=0 we have
(4.2.2) e®=1+4x+La2el”

where 0 <0< 1, and so

142 e>1+2 (z+£0).
We can deduce another proof of Theorem 9. If
Sg=1, Zga=9,

and the a are not all equal, we can write a= (1+ )%, where
Zqgz=0and the x are not all zero. Then 1+ z < €%, with inequality
for at least one z, and

Ia?=UII (1 + )7 < Ae*® = U = 2qa.
The argument is a special case of that used at the end of § 3.19.

(4) The function f(z)=e*—1—x—1a?

and its first two derivatives, vanish for =0. There is no other
zero of f (x), since this would (by repeated application of Rolle’s
Theorem) involve the existence of a zero of f''' (x) =e*. Hence

The same argument may be applied to any number of terms of
the aylor series of various functions. When the function is e,



143. If n is odd then
rr2 T
(4.2.3) T>14+a+—+...+-— (2+0).
\ 4 2’ n! \ ' 4
If n vs even then (4.2.3) is true for x > 0 and the reversed inequality
for <0

4.3. Further applications of elementary differential
calculus. In this section we give some applications of a less
immediate character.

(1) Repeated application of Rolle’s Theorem leads easily to

the followine lemmaa: 3f

Adiem A RAILILCY vj

Fflay aN\—=p M 1L p pm—1,y, 1 L gm0

J\Wr 9/ Lo mUjw g T eee T Uy v
has all its roots x[y real, then the same 1is true of all non-identical®
equations obtained from it by partial differentiations with respect
dn o nn vnnd as ) N PPy AP i 7 B I ¥ AN S Sl A
w e unw y. Lurier, J Li S Wy or UJ uese equulions, anw nuws o
multiple r,-t. c1., then o s ,l.so a 'root, of multz.MZ@cz., Yy one 7nge¢ of

L] 1,09, «sey Oy, ATE T lewb pua tive or -
, and p,, 1s the arithmetic mean of the p oduc

ts o
then pp—lpp+1<py,2 (f"=1>2:"" )
unless all the a are equal.

VVQ suppose +hat na 7 ia marn ainna +ha ananificatinn of tha
w ‘tJtIUDU Viiavv 11V w 10 lAUJ.U’ P1LLVY vikivyv DBUULLLU(UUJ.\JLL Vi viiv
cases of equality becomes more troublesome when zero a’s are
admitted.

Let f(z,y)=(x+ay)(®+ayy)...(x+a,y)
(73 (1)
=poa™+ (7 | P12ty + () Pr 22+ o+ D™
A~/ \=/

ince no a vanishes, p»_ 40 and z/y

oince no ¢ vanishes, p, ana x/y:-

Hence z/y =0 cannot be a multiple root of any of the derived

0 is not a root of f=0

e

8 Maclaurin (2). See Pélya and Szegd (1, 11, 4547 and 230-232).
b That is to say, all equations whose coefficients are not all zero.

¢ Newton (1, 173) For further references, see § 2.22.
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1
hat the a need not necess .rily be positive,

(2) Suppose that ¢(z)=Ilog(Zpa*), and (what is no real
]'im;fnfign\ That the 7 are all nacitive and 11mananal Then
ALLLLL YUY UL LLI Vi1lWV ViiV Ww vpr v vis t’UU-lUJ. A A YIRY PV § ull\/\iuwl- Al LANAL
Spa*loga Ypa*Xpa® (log a)2 — (Zpa*log a)?
él= L et =} éll__ ¥ ad ~r \*Yo v/ \=r o 77 >O
' pa® (Zpa®)?
(Theorem 7). An easy calculation shows that, if a, is the
ovraatoat 4 +han
SLUWUUDU W, viioliL
A =TloocSn Hmlrd! —A—= —laomn
P =0 &, P TP Ve

It follows from Theorems 127 and 129 that ¢/x increases for x > 0
if £p <1, and for all z if Zp=1. In the last case

20 _1ogm, (@), lim 20 g (0)=1og & @).

n
r—>v

We thus obtain further proofs of Theorems 9 and 16.

If, on the other hand, p,=1 for every v, ¢/x decreases, by
Theorem 128. In varticular (" (n\——(anE\lfx decreases (Thpn-

. AAUNTAN AL i Shadad alvs LV DRSO S A Y

rem 19). The general case gives part of Theorem 23.

(3) The following examples have applications in ballistics.
145. logsecx<}sinztanx (0<x<}w).
148. The function 1

where g(x) j (1 +sect)dt=x+log (sec x + tan x),

decreases steadily from 1 to 0 as x increases from 0 to 4.
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147, The function

-
. logsecxl w(1+sec t)dt
Jo

increases steadily from % to % as x increases from 0 to .

mL .. *. JUISR, B N L © I I n‘___ P T I B
rnereis a generat ur 1eorem Wﬂlbll Wl1il D€ 10ur 1

Theorem 147,

148. If f, g, and f ‘lg’ are posiiive increasing functions, then f[g eithe
increases for all x in question, or decreases for all such x, or decreases to @
minimum and then increases. In particular, if f(0)=g(0)=0, then f/g
increases for x> 0.

To prove this, observe that

A 7L\ 7 £ £\ 7
el J_) _ J__J_) g
dz \g 9 9/9
and consider the possible intersections of the curves y=f/g, y=f'/g’. At

~ R tersec ol Vi Jids J

one of these intersections the first curve has a horizontal and the second
a rising tangent, and therefore there can be at most one intersection.
If we take g as the mdpnpndpn’r variable, write f(:r\——d;((ﬂ and suppose,

as in the last clause of the theorem, that

f(0)=g(0)=0
or ¢(0) =0, then the theorem takes the form: if ¢(0)=0 and ¢’(g) increases
for 9> 0, then ¢/g increases for g > 0. Thisis a slight generalisation of part
of Theorem 127. Theorem 148 should also be compared with Theorems 128
and 129,

a4 A a
A very common method for the proof
finding the absolute maximum or minimum of a function ¢ (x) by

(x
v

a discussion of the sion of &’

”””””””””””” bt — haniidall
s d . .. . ,
(1) Since %{(l—x)ew}= —xer,

the function (1 — ) e® has just one maximum, for x=0. Hence
1

149. e”:<1__ (x< 1, xz£0).
This is also a consequence of Theorem 142.
(2) Since ﬂi (logx—x+1)=-—1

the function logz —x+1 has one maximum, for x=1. Hence
150. logr<ax—1 (x>0, x+1).



1 generally log x < n (xm — 1), for any positive n, since we
may write 2¥* for  in Theorem 150. This result is also a
nanrallamey AL ML a~naa 2L
\JU.I.ULI.GIJ..Y Ul 11ICUVLICI1Il JU

(3) Let  (x)=1+mzy— (L+2FPr(1+y¥)WF,
where k>1, x>0, y>0. It is easily verified that ¢(x) has a
unique maximum 0 for z*=y*.

This gives another proof of H, (Theorem 38), and so of H

(Theorem 11).

(4) If « and y are positive, and k> 1, then the function

—ptf —

has the derivative y — ¥* and attains its maximum 0 for 2% = y*".

a A wan Mhannnnsy A1 (o d oo TN o Ao an
YYU UCUULU 1100011 Ul (allu SU 1LHCULTIIS 37 Q. ld 9).
(5) The function

b (x)=2y—xlogxr—eVl,
where z is positive, attains its maximum 0 for x = e¥~1. We deduce
Theorem 63.

4.5. Use of Taylor’s series. If f(z) =Xa,2z"and g (x) = Zb, 2™
are two series with positive coefficients, and a, <b,, for every =,
we say that f(z) is majorised by g (x), and write f<g. It is plain
that f< g and f,< ¢, imply ff, < 99, , and so on.

To illustrate the use of this idea in the proof of inequalities, we
prove

151. Ifs,=a,+a,+...+a,,where n> 1 and the a are positive,
then

< e 2 e N
(L+a) (L+a5)... (L+a,) <1+ 7+ 55+ +07

In fact 1+a,x<e®?, so that
IT (1 + ax)<en®,
The result follows by adding up the coefficients of 1, x, 22, ..., 2",
and observing that there is strict inequality between the co-

efficients of z2. It may also be proved by writing the left-hand
side in the form

n(n—1)
1+ np, + 1o Pet--tPn
(so that np,=s,) and using Theorem 52.
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Lo
2
§(

asrrnnnag awn

tion n v

Suppose that we wish to prove that two functions ¢ and i of the
continuous variables x,, z,, ..., z, are comparable; let us say, to
fix ourideas, that ¢ — ¢ = 0. Thiswill be s0,if ¢ — s has a minimum,
if and only if this minimum is non-negative; and this is a question
which can always be attacked (at any rate when the functions
are differentiable) by the standard arguments of the theory of
maxima and minima.

The method is attractive theoretically, and always opens a
first line of attack on the problem; but it is apt to lead to serious
complications in detail (usually connected with the ‘boundary
values’ of the variables), and it will be found that, however
suggestive it may be, it rarely leads to the simplest solution. We
illustrate these remarks by considering its application to the
mental inequalities G and H.

(1) To prove G, consider
Sy, 2y, 00,2, 1)=2,012,2...2,%,

i
where Tp=— U= 12— o = Q1% 1),
In

in the closed and bounded domain 2; >0, ..., z,20. It is con-
tinuous, and therefore attains a maximum, which is not on the

Trsiin A o s f<crThmre £ <re PR WS T
Do ull.bldle (WLCOILO J Vallusues). Av ule HiaXxiiuin
1of ¢4 gt
0=—,T—=—V—*ﬂ‘——1 {V=]_2 ==~-7L""1‘
ox, %, %,9, T ”
f 14 14 nin
and so the x are allequal to 9. In this case noserious complication
is introduced by the boundary values?.

Lo 6 a1l 1 LT _ _ {  ___.*3._
Ol e 1mnevnoa ot Ldagld/ 1ge vonsiaer
£l Y—eh o R a1 Ll e
J \wl,wz, .e ,Wn,——ulvul"ruzwz‘l_. ."[‘Unvbn,
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where b, > 0, subject to the condition that

1 N L L L 17 LAY

D(Ty, X,y oy y) =2 F F 2+ xf (B> 1)
T a NAagtdriern nmnadawnd VML (.. T Ao ncnt el A 2 O]
iS5 @ PUSIULVUD LULIdLallL A . LU0 (70— 1 jJ-UliliCiisiolldal Uiialll ucliineu
by x = 0, ¢:=_X is closed and bounded, and some x vanishes at

If the maximum is attained at an internal pOll’lT; t;nen at that

P b, ket
f Zy - bv B
is independent of v; and an elementary calculation shows that
f= XUk (Zhk YUK = (Sak)Vk (ShE )k,

There remains the possibility that the maximum should be
attained at a boundary point, where some z, say x,,, is zero. This
possibility may be excluded by an inductive argument, since, if
we assume that the inequality has been proved already for n— 1
variables, and that z, =0, we have

n—1i n i \.UIC /n 1 ‘ 1k

f—au,, V__\z;x'") \A } < (Zx,’

N1/l +<VL L\1/L
AR Y /i

)HE (20,7 )
The weakness of the method is that, if we are to argue by induc-
tion at all, it is better to prove the whole theorem inductively,

and then we come back to one of the proofs of H given already.
(3) It is quite usual that the method should, as in case (2),

prove troublesome when developed in detail; but even in such

cases it is very useful as indicating a possible solution of the

problem.
A great many of our theorems assert inequalities between two
symmetric functions f (%1, %5, ..., x,) and g (%, %,, ..., %,), homo-

vonrnnnttia ~f +hs carn ncitivra FAarn all Acidir nn Mhia

5U1-|.UUU-D O1x U.l_lU [elelt 88 Lwj UUELUU aauu PUD.I.U.I.VC? iUl all pupliul ve ¥. iiiS

is true, for example, of Theorems 9, 16 and 17 (for unit weights,
the crucial case), Theorem 45 (in the case of comparability) and

PRSIV VIRWSES VA WIIL Ukl

When we use Lagrange’s method, we must consider the maxi-
mum of f for constant ¢, say for g=1. Lagrange’s equations are
af Py
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These equations have always a solution with z,=2,=...=2,,
and A is the value of f for this system of values of . If Ais a
strict absolute maximum of f, then f=< g, and there is inequality
except when all the 2 are equal.

All this is in fact true in the cases mention d, but there are

ALL.\“ cases 19v wxrhinlh 4ha anlevdiae A L. S
Ouvner CasSes iIl WIICil vile SOo1uuvion aoes g,wc

of f. This happens for example in Theore 45, in the case of
non-comparability.

<r +1 a1 11T
vl

ie MmaXimum

the elementary Riemann or Riemann-Stieltjes type. In Ch. VI
we shall consider inequalities between integrals systematically,

QOrI1IO QY\A T.D"’\DQ(T'I‘ID_
Og Uy Quild 44U UDE WY

[
-
®
(e
¢

and there we shall use the gener
Stieltjes integrals.

The theorems which follow immediately are due in principle
to Maclaurin and Cauchya.

159 Tf £{x\ dorvoneoe fnr »> 0
AT bl o -LJ J \WI wuouwvi vwe W= v

o
f)+f2)+...+f(n) g’ f@)dx=f(0)+f(1)+...+f(n—1).
There s inequality if f(x) decreases strictly.
v+1
In fact flw+ 1)§Jf ’ f@)dxe=f(v)

(with inequality if f () decreases strictly).
Further theorems of the same type, which we state without
proof, are:

153. Ifay<a;<a,<..., andf (x) decreases for x = a,, then

n

E@-a)f@)s [ F@des £ -, f 0.

V=1

8 Maclaurin (1, 1, 289); Cauchy (2, 222).
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1584. If f(x) =0, and f(x) decreases in (0, £) and increases in
(5. 1), where 0§£§ 1, then

(1) -1\ (.
G G) e () 2] e
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|
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Applications of these theorems, particularly to the theory of
the convergence of series, may be found in any textbook of
analysis.

4.8. Aninequality of Young. The simple but useful theorem
which follows is due to W. H. Young? and is of a different type.

¥ () satisfies the same conditions; and tha ta=20,0=20. Then

abs [ p@ydet [ p@)do
Jo Jo
There is equality only if b= ¢ (a).
The theorem becomes intuitive if we draw the curve y=d¢ (x)
or z=1y(y), and the lines =0, x=a, y=0, y =5, and consider the
various areas bounded by them. A formal proofis included in that

1

of the more general theorems which follow.
A nnrn]]or\"r (\p rp]nanrom 1 =A .G

b |
LA UUL UL J A AAVULVILL AUVU 1O

157. If the conditions of Theorem 156 are satisfied, then
ab=ad(a)+bi(b).

Theorem 157 is weaker than Theorem 156, but oftenaseffective
in applications.
We pass to more general theorems which include Theorem 156.

& 'W. H. Young (2).
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158. Suppose that v=1, 2, ..., n; that a,=0; tnat j,(x) 1s con-
tinuous, non-negative, and strictly increasing; and that one of the

and there is equality only zf A =0y=...=@q,.2

The inequality may be made intuitive by considering the curve

n 7

,(¢) in n-dimensional space, and the volumes bounded by the
ortr:l the nrr“ru:lerc ﬂr}\ich nrol n

x, =
COULLL;..LI.W v _tl
these planes.
m 14 . I'ag ) T i L A
To obtain a formal proof, put

AY £ 7/ AN

F,(x)=f,(x) (0=2=a,), F,(x)=[(a,) (x2a,),

so that F,(x)<f,(x). If we suppose, as we may, that a, is the
largest of the a,, then, since IIF,(0) =0, we have

an Gn
M (@)= TIF (@)= [ TF =3 [ T F (2) dF. (2)
Jv\Wy/ v\ n/ JO [§ v\*vJ) ‘-JO ";:‘ [L\ 7 v\*/
v wEv
_—.zj I iv“(x).df,,(x)éﬁj 11 f, (2).df, (@);
vdJd 0 p==v vd 0 uv

and there is inequality unless every a, is equal to a,, .

159.p Suppose that g, (x) 18 a system of n continuous and strictly

gv_l (.’E) = Xv (), bv =0y (a’v)’ a,= gv—l (bv) =Xv (bv)
and apply Theorem 158 to the system f, (x) = x, (), we obtain

bz wg,(y)
Ia,=1y, (5, ng _—d,,x=zf v dy.
x»(6,) ) Xy () Y Y

& Oppenheim (1). The proof is by T. G. Cowling. -
b Cooper (1).
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¢y(x)= -
L
connected by (4.8.1) is a generalisation of a pair of inverse
unetions. For sumnose that =2, a0. (Y =2A(x). o ()= xdi (1)
functions. For suppose that n=2, ¢, (x)=2z¢ (), g, (x)=2¢(x),
and write (4.8.1) in the two forms
x z
— -1 — -
=17\ "“92 (x)’ ~ =17\ _gl l(x)'
1 & Y2 “\«&)
Then
g, (%) -1 gz () -1
S{’(x):——”x =g, {91 (@)}, ‘ﬁ(x):—“x =g,"1{g2 (@)},
and g,71¢9,, g,"1g, are inverse; and the functions ¢ and  of
JZ JlL? J4i g & J b d b

Theorem 156 can always be represented in t h1s form. Hence

If in Theorem 159 we take g,(x)=2'4,, where X¢,=1, then

UV\

(4.8.1) is satisfied, and we obtain

v 2
bl e Mhanvain O T Thanvar 1 EE wa dalra Ll ak=1 ol ava
WILIUIL IS LI1ICUVLC . 1L 111 LIICULTILL 1JU WU LAKT SD \-l/} - ’ WILICLC
k>1 weh and we obtain Theorem 61. If we take

180 f d(x) increases stf,rq,cﬂ with x, d(0)=0. and L (x) i3 the
function inverse to q{> (x), then
m n
mn < % [ (W] +2Z [ ()],
vh Tl 2e the amtearal nart of v
I Ly-l O IUU '/'v'/vv’ wv IJWI v VJ y.

This theorem is less interesting in itself, but illustrates a type
of argument often effective in the Theory of Numbers.

& Actually the result is true for % >0 and all v. See §4.4 (5).
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CHAPTER V
INFINITE SERIES

5.1. Introduction. Our theorems so far have related to finite
sums, and we have now to consider their extensions to infinite

agariee The nnn-raa] concliicion will ]'\n +119+ our t+heor rems romaxn
LOVLAWVIOe A 1LV sv AN/L VAL VULLULMU i1 YV oL vuL VLAV L V. AL VEALACUALR

valid for infinite series in so far as they retain significance.

Two pre]iminary remarks are necessary.
TLA La0cdt AmynaTn g 4+1. A 29

1) X<ZAYb.. Z
(or X<XAY?. Zc), where Y, ..., Z are any finite number of
P |

Barita a3
1i1ive
1

s <

=

and A4 A ama oS
im, ana a, 0,..., ¢ are posi

> interpreted as meaning ‘if Y, ..., Z are convergent, then
X is convergent and X satlsﬁes the 1nequa]1ty Neglect of this
understanding would lead to confusion when it is ‘<’ which
stands in the inequality. We could read ‘Y’ as ‘o0’ in the case
of divergence; then ‘X £co’ would convey no information, but
‘X <00’ would imply the convergence of X, and this implication
would usually be false.

Some inequalities will occur which are not of the form (5.1.1).
These are usually secondary, and should be reduced to the form

(5.1.1) if there is any doubt about their interpretation. Thus

should be interpreted as
X < AYa Ybla,
which is of the form (5.1.1); and X > Y should be interpreted
as ¥ <X.
There is one important inequality, viz.

(5.1.2) Sab > (Zak)ik (TpF Uk
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> which we have written deliberately in a

éﬂ
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]
(¢2]
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Y AJ £ N 4 1 \ A 9. 97PN, N L 4 . S
101mm unike (J.1. . YYEOC .[Lllg 1U I1aVe Wrivten 1v as
(5.1.3) Zak < (Zab)k (Zb¥)—*K
when 0<k<1, or as
(5.1.4) Zb¥ < (Zab)¥ (Zak)—Fik
when k< 0. These are of the form (5.1.1), and are the forms
Tatal amtan vitin gl ler aa 41 L LT nrsinin 12 YA o e Loee 410
ILIGIL ALlLdS PJ.J.LLI.d;l..Ll 1 1 UL LIICVUILCIIL 10 YY Pl el UIIC

V about convergence.
There are a few cases where the inequality asserted is not one

. .
hit invoalves tha roatilta af athar limit
AMUU ALY ULV OS uliC 10buiud Oo uliCn 11y

M
o
Q
ot
Q< ;
=
&)
=
z
=
o
&
&
O
=
m

L
=

operations. Thus, when we extend the inequality &(a) <Max a
(Theorem 2) we obtain an inequality between an infinite product
and the upper bound of an infinite set. Such an inequality
‘X < Y’is to be interpreted in the same way, viz. as ‘if Y is
finite then X is finite and X < Y.

(2) The second remark concerns method, and should be read in
conjunction with §1.7. Suppose, for example, that we wish to
prove the inequality

£ 1 Lonidn cnviac N A Trnnaer +ha 13~ o - ~ ot o~
1UL 111111 VG BOL1IGD Yvo 1UW ULl 1 l.U\iuCULI. L 1HIIUVO DUl
(Theorem 7) and, everything being positive, our conclusion

nit
U

+ avtand Thanram N Imnm
b O piiiadie

1 1
VAUVUUVILU A LIVULULLL &4 4 131 1

»)

(3

series in so simple a manner, since in the limiting process ‘ <
degenerates into  <’, and we are unable to pick out the possible

cases of equality. Here and elsewhere, we must avoid limiting
processes; instead of deducing the infinite theorem from the
finite one, we must verify that the proof given for the finite
theorem remains valid, with that minimum of change required
by the new context, in the infinite case. For example, either
proof of Theorem 7 given in §2.4 may be extended to the infinite

& (2,8.4) of Theorem 13.
8-2
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case by the addition of a few obvious comments concerning
convergence.

It will not be necessary to retrace the path followed in Ch. II
systematically The few new points which arise are neither

g 4b

difficult nor particularly interesting, and, in so far as they are
important, recur in a more interesting form in Ch. VI. We shall

therefore arrange the substance of this chapter informaﬂy, illus-

R, I | o
l)ldlbl.l.lg cuuu bULLI.].LlUIUJLUg upoirl UIlU new PUbblUluUlUb ana Ulld g

with an enumeration of some of the more important theorems
of Ch. IT which remain valid with the new interpretation.

5 2. The means It,. We begin by some comments on a new

snhh awmicac + ren dhhn AL nidin ~F 4 Tmraana ST
1icn aubt:b in tne u.tuuuuuu o1 UhU meaiis wi, VVU have

now an mﬁmty of terms @ and weights p, and there are two cases
to consider, aecording as Ep is convergent or divergent.

um

Q

tt is 1 and
is case 9 STT} ig ﬂpﬁhnﬂ forr>0

(5.2.1) M, (a) = (Sqar),
andmay beregarded as a ‘mean’ in the sense of § 2.2 or a ‘weighted
sum’ in the sense of §2.10 (iv). It is finite or infinite according as
2ga’ is convergent or divergent.

(ii) If Zpis divergent, we can still define IR, as a limit, e.g. by

n 1/r
(5.2.2) wMAMmuw@,
1

n——>oo

or as the corresponding upper limit lim. The latter definition is
not particularly interesting, though it would preserve most of
our theorems. If we define MM, by (5.2.2), we are met by a
difficulty: the existence of I, for a given r does not ensure its exist-
ence for any other r. In fact we can determine the a so that ¢, shall
exist for a given set 4, 75, ..., 7, of values of r and for no others.

TKT
Ve shall therefore confine our attention to case (i).

For the general question of the existence of 9,, see, for example,
BResicoviteh (1), We mav illustrate the point by 'hgwn'\cr hrlpﬂv how to

25305100 Vivlil (& vv © INQY 1LAAUSUVIQUC LIS POy ©y SL0WAlly 2l 110
.[’

find a so that either of the limits
. .1
hm;l(a1+a2+...+a,,), lim = (a2 4 a? + ... + a,?)

may exist without the other: here p=1.



INFINITE SERIES 117

Malra Anat +vra cAartTTATN A
L OURU AILDV VWU ocliucuucn
Olys Olgy evey Olary Oyy Cgy «ee3  PBrs Bas eovs Bars Prs Pas «oo

with period w. When a =a, both limits exist and have the values
A1=a1+a2+...+aw A2=a12+a22+.-.+aw2

H

@ @
and wr en a4 = 2 +haxr havwa +ha anmmacranAdine rraliiac R )5
SHAARA VY XA — P us J.U‘y nave Vo UULLUDPUILHLLLé VALUTD 47 Uz-
Now take the @ as follows:
®y, g ...» O (repeated N, times),
0 n n oo d . AT L L\
Pis Pgs .0y pPw (TEPEATEQ LV, UIMES),
oy, ®g, ..., Oxm (repeated N, times),

It is easy to see that by Supposmg the sequence N,, Ny/N,, N;/N,, ... to
tend to infinity with great rapidity, we can make (a;+...+a,)/n and

(n-z-L .ta 2\/4') oscillate between 4., B, and 4.. B. respectively. The

T e WSUiLAUT ATV VY TTAL 4‘.1, a—vl Viala 4‘.2, a—vz tlvvv‘.vva. = 1.

conditions for convergence will then be 4, = B; and 4,= B, respectively,
and we can obviously choose the « and B so that either of these conditions
shall be satisfied without the other.

We therefore restrict ourselves to case (i). We define %Ik, , for
si

b
_ — - I PO 1 Y . 4

i~

positive or negative r, by (5.2.1), with the convention tha
EIR 0 if » is negative and an a zero or Xga" divergent. We
define @ (and t,) by

(5.2.3) & (a) =Wty (a) = lla?=exp (Zgloga),

with the conventions that @ =oo if IIa? diverges to oo (i.e. if
Zqloga diverges to +0), and & =0 if Ila? diverges to 0 (i.e. if
Zgloga diverges to —o0). It is to be observed t’ at loga may
have either sion. and that the definition of & fai f Yalooa is

AV VU VAIVIIVAE Digily Wil VAU varw UAJia UX I w Y e W AD

oscillatory. In this case @ is meamngless.

Te LN L0 ML _ 2L
10V 10110WS 1101 1neoreiis o

~ 1 12N 41 .4
14 19V uilau

<
|
frnnd
5
ol

S

(O<r<s, £>0),

unliess =1, when there is equality. We define log™ ¢ and log—{ by
T g Tt (2. 1\ ) PR R Y s N 7 s W D Y
1 g' l/——lugl/ \l/) i), 10 V=V \Vlt=1),
loc—t=logt (0<t<1), log—t=0 ((>1),
(=} o \ —_ 77 o \ 77
so that
—— 1
logtt=0, log=t<0, logt=logti+log=¢, log=t= —-log+¥.



118 INFINITE SERIES

where X’ denotes a summation extended over the @ which ex-
ceed 1. Hence, if M, (@) is finite for some positive s, then IMN, (@) is

finita for Ocrce and Salaota ie econvercent We can nrave
ALLAIRUU AV VNN U, wuiia H‘_i J-Ué wo A N/\JEL Y \J.LS\J.[.I.U YY U vouia .tl.l.\.’ LAY

similarly that, if I _,(a) is positive for some positive s, then
M_, (@) is positive for —s< —r< 0, and 2q log—a is convergent.
In the first case & is positive and finite or zero, in the second
it is positive and finite or infinite. If Xgloga oscillates then
Zglogta and Xglog—a are both divergent, and this is only
possible when I, (a) =oo for all positive r and I, (¢) =0 for all
negative r. It is only in this case that the definition of & (a)
can fail.

There is one new point which, as we shall see in § 5.9, affects

the specification of the cases of equality in some of our theorems.
Thig naint armana fraom tha nocaihilitv that whan rr<n a2 ()

1 ]
AL t’\.l.l-.l-l. U ULIouwUD dLvVvirr VLA tIUDD.L UJ.-I-J. J viiv U, Yy 11 1 ol \«T \W,

may be zero although no a is zero. If r>0 then, as in Ch. II,

an s/ . 1 __*C /s N 1T . __1°* 1 . Qv 7 __\ n £ __
ﬂJ(r\ ) call pe zero ()Illy 11 () 1s nui, 11 winicll sase i’.’(r\ )=U 10
all ». But when 7 <0 there is a difference. The I, (a) of Ch. IT
was zero, for such an 7, if and only if some a was zero, and then

L\ ssrac manm FAan all pamn TL 24 simesr svmccat 1. o1 o o 41 1
:/JLTV\UI) wad 410 1L 41l 7 = V. 1L 15 11UwW PUbb U.lb', WIICI1L 7 EU, vilav
M, () should be zero for s <7 and positive for s=r, or zero for

s <r and positive for s >r.
Thus in Theorem 1 there were two exceptional cases;

Min a < M, (@) <Max a,

unless either all the a are equal, or else <0 and an a is zero.

All that we can say now is ‘unless either all the a are equal (in

which case both inequalities reduce to equalities) or else r < 0 and

M, (a)=0 (in which case Min @ =0 and the first inequality reduces
e

equd 11 Y) . Duosua,nma,uy the same pOlnE a:rlseS in connection
ems 2, 5’ 10 16 ')A. and 28 (ta anote O'n]v' e

ANV, AU, £ Qi &v (VU yuuvy

referred to in our summary in § 5.9).

5.3. The generalisation of Theorems 3 and 9. We use
the inequalities (5.2.4), and the equation

hm

r—>0 T

—logt



[
st
N>

INFINITE SERIES
Taking t=a/2qa=a/¥U, r=1in (5.2.4), we have

QY -~ 1
\__, J.,

=Y
log & —logA=2¢q(loga—1logA)£1—-1=0.
with equality only if every a is 9. This proves the analogue of
Theorem 9.
Suppose now that I, is finite for some positive s. Then & is
positive and finite or zero: the proof below applies to either case®.
Given € > 0, we can choose N so that

loga—log %

(5.3.1) % qloga<log (®+e),
n=N
as—1
(5.3.2) > g- —<e¢,
and then 7, so that 0 <7, < s and
a—1
(5.3.3) 2 q < 2 gqloga+e

nsN r n=N
for 0<r<r,. We have then

1 1 A(ar)—1
log ()= » log & () £  log (&) £ 1
r r r
ar—1 ar—1 as—1
= X q + X q————< Z qloga+e+ Zq
nsN n>N N n>N
< log (@5—}—6)—1— 2e.
- . 1% 2 BV R 1 a AY 7 £y LN
Hence logl.(a)=—-log(a")—>log¥y(a)
g ;08 2
when 7 — + 0. We leave it to the reader to prove that, if I, is
positive for some negative r, then M, - & when r »—0.

5.4. Holder’s inequality and its extensions. The proofs of
Holder’s inequality, and other theorems of the same type, given
in Ch. IT apply equally to infinite series. We may observe in
passing that the series may be multiple series. Thus

(ZZaz,,,,b,,v)2 <X¥Xa2 2202 Z

n)
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L0 eXampie, SUuppose taav z.;u/“" ana 4v,” are convergerv, ana
take
a,,=u,v,, b, = (3>0).
214 © v? wv (1 _L'n\l"*'a \ /
\ )
[N i IV ST W W ). DU R S oy & DRGERY 1y R
DI1IICC L4 UL"I"V) 13 COILVEOIZPOILL, 1U 1U1LIOWS uvllav

is convergent. This is an imperfect form of a theorem to be
proved later (Theorem 315).

The theorems concerning I)t, deduced from Holder’s inequality
(Theorems 16 and 17) are unchanged, except that the statement
of the second exceptional case of Theorem 16 must be modified
in accordance with our remarks at the end of §5.2. Here we

st say ‘unless s £ 0 and JJLs\w)—U .
One new point of greater interest arises in connection with

this group of theorems. There is a theorem, suggested by Theorem

161.2 If k> 1 and Zab is convergent for all b for which Zb* s
convergent, then Za* is convergent.

We deduce this from another theorem due to Abel?, which is of
great interest in itself.

162. If3a

2 Landau (1).
b Abel (1). There are theorems of the same type involving an arbitrary function
f(z). Thus, if Xa, is divergent, f(x) is positive and decreasing, and

1= [ fa)ae,
J1

then the convergence of I involves that of Xa, f(4,), and the divergence of I in-
volves that of Ya HAn 1): see, for example, de la Vallée Poussin (1, 398-399),

SIC—OIT

Littlewood (1). This theorem though of a more general character, does not a,ctua]ly

include Theorem 162: it is not truc that the divers anana oaf T nacogaar alo
AILVIUULY A MVULULIL A UM . a0 llUU viuwv uua»u I.’J.IU uiy Ul.svuw Vi 4 LIU\/UDDGI].LLJ lllv viy UD
that of Xa,, f(4,). For an example to the contrary take

a —92n £10\ — 1

Gy =25 J\Z)=
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xR
3

(i) X~ +8 s convergent for every positive 5.
n
(i) We have
\J., YVY U AN Y U
Al Tnt2 o g >‘*n+r—An= 1— An
An+1 An+2 An+r - An-l-r An-{-r'
which tends to 1 when 7 is fixed and r—o00, and is theretore
wvvnagdandtbhann 1 Lot qaicrar annd grina nanmagiinmdinee 2 MThais mavrag
51U¢UUL vllail 5 1U1L ail ¢ allU SULIIC bU.lJ.UbPU.ll\,Llll 7. L1 PI.UVUD \1}.
(i) W y obviously suppose 0 <8 < 1. Then
3 3
b - b 8
An——l An \An—l An }
is convergent. By Theorem 41, the numerator on the left is not
less than §4,%-1(4,—4,_,)=8a,A4,5. Tt follows that
E an
4,4, f
ia nonvarcant \ Tn nrove in fact a littla mare than (11)
&N VALY \JL&UL.I.U Y .tl.l.u YU 414 AWV U W VAV 1LVl vV Virwwial \J-J.,.

-
(@)
[oN
]
o
(o
Q
[¢]
—-
B =
[¢]
Q
L
¢}
B
[y
(=)
b
'l
[¢]

ak=u, ab =uv, bF =ud¥,

We then have to prove that, if Zu, is divergent, there is a v,

arieh +that S a0 1q divercent and Yo kB aanveracgent We +alra
YuvillL viianv Hwn Un f 8] u—lvolsvllu lii ‘-‘wn Un UULLVULSUI.‘.U Yy U vanwv

v,=1/U,., where U, ,=u;+us+...+u,, and the conclusion

w-

follows from Theorem 162.

5.5. The means M, (continued). There is little to be added

about the means I,, but one or two further remarks are re-
“111“4‘\"] ‘KTI\ If\f\N'IV\ 'I"r'r'l"lﬁ [>% mnW\nm]’ QA“QAW:“N L]f\f\ Nnv\f\“ﬂ]iﬁn“1t‘\“ l'\p
‘i 11O Yvo ch.ll.l VWI1ULL A 1Ciilali n VUILIUCTLILL 15 Vi8R w] 5(7 1ICLAaLlldavivull UL
Theorem 4. This theorem, in so far as it concern:s

when r—+ o0; if the a are unbounded, but N, 1s finite for all positive
r, then I, — co.
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The question of the continuity of I, for a finite positive or
negative r is no longer quite trivial. We state a comprehensive
theorem, but give no proof, since all the points involved arise in
a more interesting form in Ch. VI (§§ 6.10-6.11).

Ifa,=C, M,.=C for all » (whether C be positive or zero). We

n
exclude this case, and also the case in which & is meaningless,

when I, = oo for r> 0 and E)Jtr=0forr< . We write

163. Apart from the cases just mentioned, the set of values I for
which L, (a) s finite is either the nul set or a closed, half-closed, or
open inierval (u, v), where —o0Su<v= + 00, which has r=0 as

.
an internal or end-point, sothat w < 0 < v, but is otherwise arbit

(and in particular may include all real values or none). &, s + o0
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all greater r and ...", and Theorem 21 a
1 m 1

VOIgClIiv IO

of Theorem 20 may be proved as follows. If 6D is convergent for
a positive R, then a,—>0, and &, is convergent for r > R. There
is a largest @, which we may suppose on grounds of homogeneity
to be 1, and we may suppose the a arranged in descending order.

3
H

v 0 ny Doy Q =]
L QU 11U VWU VUL DLl

If then A =0y=...=ay=1>an.,,
r r
we have S, =N+ay,1+aypg+...)0r
for r> R. The series here lies between 1 and
Z\vT 1 G'/R 1 aR I
TYN+1 TY¥YN42 T e

from Whicb the theorem follows

Vide

There is one new theorem (trivial in the finite case).
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164. IfSyisconvergent, then &, is continuous for r > R and con-
tinuous on the right for r= R. If Gg is divergent, but S, convergent
for r> R, then ©,— o0 when r— R.

The proof may be left to the reader.
5.7. Minkowski’

£82.11-2.12 require
33 L AL ™4l I.Utiull\j
O

|-n

s inequality. The main arguments of

Qo

{an (me mn)’}1”< D (2q, )

m n

The inequality is 'reversed when 0 <r< 1.
There is no real loss of generality in supposing p=1,¢=1, and

hv nronf onec aa hn’f‘nrn Qimilarls y nn-vrm:se-nnnﬂ1nn- ] eorem 27
we have
166. Z (Eamn) >22afm
if 7> 1 lwith a reversed inequalit if 0 <7< 1), unless. for every n
> 1w i G Teversea v vequavily 1 U <7 < 1), Uniess, jor eves (N

=0 for every m save one.

5.8. Tchebychef’s inequality. As one further illustration
we take Tchebychef’s inequality (Theorem 43).

We may suppose Xp = 1. The identity
n n n

S Y o L S s S L 1Y NI
?Ppbpvwvuv—bpp.“p.é‘pvuv'_fz‘L‘pppv\“p—wv)\(}y_uv)

1 11
shows, provided of course that neither (@) n

saal

if (a) and (b) are similarly ordered then the convergence of Zpa
implies that of Zpa and Zpb, and (i) that if (@) and (b) are
oppositely ordered then the convergence of Xpa and Zpb implies
that of Zpab. In either case we may put n=o00 in the identity,

and our conclusions follow as before.

(=

5.9. A summary. The theorem which follows is substantially
an enumeration of the principal theorems of Ch. IT which remain
valid, with the glosses which we have explained in the preceding

2UIDDOS BENADIE S Al iTil A1l =]

sections, for infinite series.

a Here, as in Theorem 26, we abandon our usual convention about ¢.
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167. Theorems 1,2,3,4,5,7,9, 10, 11, 12, 13, 14, 15, 16,
i7, 18, 19, 20, 21, 22, 24, 25, 27, 28 and 43 remain valid
when the series concerned are infinite, provided that the inequalities

asserted are interpreted in accordance with the conventions laid

down in § 5.1, and that the statement of the exceptional cases in
Theorems 1,2, 5, 10, 16, 24 and 25 +s modified in the manner

explained in §5.2.

It may be worth while to supplement the last clause of the theorem
by a more explicit statement. The last words of the theorems must be

replaced by (1) ‘or else r<0 and M,(a)=0",
(2) ‘or G(a)=0",

(5) ‘or r<0 and M, (a)=0",

(10) ‘or (2) G (a+b+...+1)=0,

Com o — 0
(16) 07 ogewwd‘.{ns\w)—e,

(24) ‘orr=0and M, (a+b+...+1)=0",
(25) ‘orr<0and (Z(a+b+...+1I)y)Vr=0".
We may add also that (as is explained in §6.4) most of the theorems
referred to in Theorem 167 (especially those concerning Ii,.) may be

Aa ad aly £ +ha or
derived b y S PUwauba tion from the COTI'G»:pOuduLs theorems for mtesx als.

In Ch. VI, however, we often ignore negative values of r.

MISCELLANEOUS THEOREMS AND EXAMPLES

MTha +h ma whi 7 ™m w1
The theorems which follow are for the most part connected with

Theorems 156 and 157. We suppose in Theorems 168-175 that f(x) and
g(x) are inverse functions which vanish for x =0 and increase steadily as

.
m inaraacna and that
@& HICTCasls, allll villdavu

F(z)= fjf(u) du, G(z)= ﬁg(t) .

168. If X F(a,) and £G(b,,) are convergent, then Xa,b, is convergent,

and Za,b,<ZF(a,)+2ZG(b,).
Theorem 1561

2903

"'3

[Coroll of
169. IfXa, f(a,)and Xb,g(b,) areconvergent,then Xa, b, isconvergent,

and 2000, < Za, f(@n) + Zbyg (ba)-

[Corollary of Theorem 157.]

170. Tt is possible to choose f (and so g, F, G) and a,, in such a manner
that £F (a,) is divergent, but Za,b, is convergent for all b, for which
23 (b,) is convergent.

A4 r74 o als L PR RN N Y .l.‘
141, .l.l/ iS aiso PUb LDIC VO LIlalkO oy, f(Wy,) IVUIBU

vergent whenever Xb,g(b,) is convergent.
[The point of the last two theorems is to show that Theorems 168

and 169 have no converses in the sense in which Theorem 161 gives a
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converse of Holder’s inequality and the convergence test deduced from it.
Theorem 171 is proved by Cooper (3), and Theorem 170, which includes
Theorem 171 and is a little stronger, may be proved in the same manner.]

172. If X —

7

is convergent, then % 100

n
log (1/b,,) (1 /b”) 18 convergent.

[Cooper (3): Theorem 172 is used in Cooper’s proof of Theorem 171.]
173. If g(x) satisfies the inequality

g(zy) =g(x)g(y),
and if Za 2bn 18 convergent whenever ang(bn) is convergent, then
DY wrangant Qirnilanley i v b 20 annitrancgan

HwnJ \Wn} J.D VUJ—LVULéU}.LU. wllmlal ‘l‘y » 11- ‘-‘w" Un ID vulLyv UlsUJJ.U WhU.llUVU].
2G(b,) is convergent, then X F (a,) is convergent.
[See (”nnnm- (3) for the first form, which in this case is stronger, the

second form being a corollary.]

174. If Xa,b, is convergent whenever XG(b,) is convergent then there
is a number A=A(a), depending upon the sequence (@), for which ZF (Aa,)
is convergent.

175. 1f the conditions of Theorem 174 are satisfied, and F(cx) S kF ()
for small z, a ¢> 1, and some k, then XF(a,) is convergent.

[For the last two theorems see Birnbaum and Orlicz (1).]

178. If g, and b, tend to zero, k is positive, and
p 2P SN S T
log (1/a,)
PRvN n_nn-.,fw.nnnJ- +han %@ h 1 nAancrancsand
L L. ULSU-[ U’ viivlL uwnu” p o] UUJ—LVULE LU

[Use Theorem 169.]
177. If >0, a,=0, and f(x)=2a,z", then f(x) is a convex function
of x and log f(x) of logx.
[Plainly f/(x)= 0. To prove the second result, let x=e~, f(x)=g(y).

Then 99" —g*=2a,e " Znla e " —(Zna,e )2 =0,
by Theorem 7. The result follows from Theorem 118.]

178. If a,=0, A,>A,_;=0, and f(x)=2a,e % then log f(z) is a
convex function of x.

41 _A

- s e o o N o TN s s h n mnain ™
179. 11 G, >0 814 Ayy Uy s -ves Vs Ly Yy «-0 5 Z BI'6 TEa, then the domain D
of convergence of the series

vnakx+ll-il+ L tHvE — f/m a1 )
WeYseeeya)

is convex, and log f is a convex func’olon of z,y,...,21in D.
[Because (by the extension of Theorem 11 to infinite series)
Flot+ay(1=12), oo, 2it + 25 (L= S{f (@15 o520 )} {f (a5 o0 s 230
Here our conventions concerning convergence are important.]
180. 2a,? < 2 (En2a,2)} (2 (an — anir)?)s

RS P N £awm 211 o0
Uriiess u«n —_— U LUL avil 7¢.

[See Theorem 226.]



6.1. Preliminary remarks on Lebesgue integrals. The
integrals considered in thischapter are Lebesgue integrals, except
in §§6.15-6.22, where we are concerned with Stieltjes integrals.
It may be convenient that we should state here how much know-
ledge of the theory we assume. This is for the most part very
little, and all that the reader usually needs to know is that there
is some definition of an integral which possesses the properties
specified below. There are naturally many of our theorems which
remain significant and true with the older definitions, but the
subject becomes easier, as well as more comprehenswe if the
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components.
We shall generally assume, without special remark, that any

ot K w r +th which we are conge cerned 1ie meacurahle “7;: denote the
SV L4 Yy VAL YY ALLUEL VY WU UL VURNTEALUVUVL AALVUNA LW LAELVW \.AJ. RIAL e V NAVALVU VY viawv

1071

measure of £ by mE or sometimes, Where there is no risk of
ambiguity, simply by E. If F is unbounded, mZ may be co.

We also take for granted the idea of a measurable function.
Sums, products, and limits of measurable functions are measur-
able. All functions definable by the ordinary processes of analysis
are measurable, and we shall confine our attention to measurable
functions; we shall not usually repeat explicitly that a function
which occurs in our work is assumed to be measurable.

Next, we take for granted the definition of the integral, of a

bounded or unbounded function, over any (bounded or un-
bounded)interval or measurable set of points. A bounded measur-



able function is integrable over any bounded measurable set
We call the class of (bounded or unbounded) functions integrable
PRI T MR R I R ) B SUSRRSY BRI I AT DRI ATPSUIV.Y ol U [, S
OvVeLD Lle LIverval Or Seu Ly 111 (1[1 SULOLL Ve Class Ly O, 11 1L 1S UesS1L-
able to emphasise the set in question, the class L (F). If f belongs

[«
wise, so that

JT=Max (f,0), f~=Min(f,0), f=f+*+f~, |fl=fr—f"
then f+ e L and f~ ¢ L, and?

[ i § ) O PN (AN T
[fde= lim [ (f),dx
n —>o0

(substantially by definition).
If fe L, and (g is measurable and) |g| <C|f|, then g € L.

If £y, far ove, fo € L then
4

\"iv1id

R
+
+
-
=
%

N
=N

bounded function belongs to every L4. These propositions are not
true for an infinite interval; f may belong to L?, in (0, co), for one
value of p only.

If the interval is finite and fe L% p<gq, then |f|?<1+|f|% so that
felL>,
If the interval is (0, a), where a <1, then (a) z~1/? belongs to L?% for

. 1. —9ln
-

every &8> 0, but not to L?; (b) x~1/? (Iog ;) belongs to L?, but not to

& We state the results for one variable and omit explicit reference to the range or
set of integration.
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L?+3; (¢) log (1/x) belongs to every L?; and (d) el/z belongs to no L?. If the
interval is (0, o), then 2% (1+ |logx|)~! belongs to L2 but to no other
class L?,

6.2. Remarks on nul sets and nul functions. A set of
measure zero is called a nul sef. Nul sets are negligible in the
theory of integration. If f=g except in a nul set, we say that
fand g are equivalent, and write f=g. Equivalent functions have
the same integral @if any)

If J=0, we call f a nul function, and say that f S s nul.

Similarly, we define eqmvalent in £, ‘nulin E’: fisnulin £ if

f=0at all points of £ except the points of a nul set. In such cases
e ahall saAd mainand +hn wafanamnn 4~ B vl £hn Anaadawd iaalrac 14
WU sllaldl 11Uvu J.UPU U ULIT 1TI10CL0I1IVT LU 1Y WIIUIL vUC CUILVCA DV L11akhod 1L
obvious, as for example when we are considering integrals over X.
If a property P (z) is possessed by all « except the x of a nul set,
won ahall gaxr +hat 14+ 1g naganaand hyr alamnet A1l &+ Ar +hat Pl ia
YWU oliavil Da.'.)’ vilavv 1U 1D PUDDUDDUU [ 94 wuritvovr wuv u{/, Ul vilavv & \W} 110
true for almost all x, or almost always. Thus a nul functio

almost always zero.

We shall generally assume th
always finite ; but there will be occasions when we have to consider
functions infinite in a set of positive measure. Thusif fis generally
positive, but zeroin a set £ of positive measure, and 7 < 0,then we
must regard f* as infinite in Z, and [ fdx as having the value oo.

If F is nul then (
N7 ~
fdx=0
E
4AUL GULJ.J. YY U OlidviL PO ULLLITY YYivliU v DLIUUJ.CII.L iuinialn viiawv a Qv 14

If f= 0, then a necessary and sufficient condition that [ fdx=0 is
that f should be nul.

T A a o
AUV LLX J YV Ui Uil V¥V ALJL\J \J VviL WU J v
replaces thls in the theory of Riemann integration. We denote the class

of Riemann integrable functions by E. A necessary and sujﬁcmnt con-
dition that f cshould be R is that f s

dlscontmmtles should be nul.

B

aatiafin ,J +1-\n“ +thoras 10 a nont
Savisiied, vacn tnere 18 & Poinv

or (1) if the condition is satisfied, then f=0 and o [fdx=0. And (2)if
nt \
nov > )

1'+n“
iv 1S

(e
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and an interval including £ throughout which f(x)>1f(£); so that
ffﬂfrxﬂ

JJ o A

This theorem enables us to specify the cases of equality in our inequalities

when they are restricted to functions of E. In fact most of our theorems
have a dual interpretation. The primary interpretation is that in which

the integrals are Lebesgue 1ntegra1s and nul’ and ‘equivalent’ are in-
terpreted as in the theory of Lebesgue. In the secondary interpretation

integrals are ‘Riemann integrals’ a ‘nul function’ is a function which is
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(@) Integration by parts. The theorem required is: ¢f
wntegrals (absolutely continuous functions), then

rb r ~b rb
Jafg'dx=| fg |— |af’gdx-

(b) Passage to the limit under the integral sign. The two main
theorems are

(Y Tflo (N - Al anbovo A =T, and o (1 tomnde to a lomat o ()
\.l, -‘.J ‘O \W’I \‘f’ W,, wiIiver © lflc -‘—l: wiIrvw Un\ﬂ/, vovIrvwo UUWUU”'/'/UO\W’
for all or almost all x, then
[s, (x)dx—>[s(x)dx
(33N TP oo oy o T £ orvomnr on o foN fancmorsana amtth o Fone Tl oo Tavn of
\11’ .lJ On\u(/)e.L/J 7 505/y (2) O,n \-l/} vILUrewsds wionry l/JUI wit UT Lrnuso
all x, and 1 (o) — < ()
llms,nlx)——-S(x s
then Jsn(@)da—[s(x)d.
In /ii\ +hao intfeaoral an the rioht mavw he infinite whan +he resnls
I viivw JLLUUsLWL \JiL ViivV 4o A4V ALV Ly A w) J.L‘.J.LJ-J.J.UU, YY LAU/L1L VidLIV AV wuav

if 8 (x)=o0 in a set of pommve measure. In

n mav bhe an intecer which tends to in
o 17

@y Y s () Axanjaia Uvix

parameter which tends to a limit.

It follows from (i), as is shown in books on the theory of functions of
a real variable, that a function f(x) whose incrementary ratio

f(z+h)—f(z)

A
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is bounded (and which therefore has a derivative almost everywhere) is the
integral of its derivative. Combining this remark with that at the end of

§ 3.18 we see that a continuous convex function J(x) is the 1nnegra1 of its

derivative f’(x), or of its one-sided derivatives f;’ (x), f,”(x). It is therefore
the integral of an increasing function. On the other hand, if f(z) is the

AU sial 222l 0esls il il S& VALT RSUAATL JaANiAlAy 2 J (W) A

integral of an increasing function g(x), and A > 0, then
x+h x
feth—f@)=[""guduz [* gu)du=f@)—-f@-h),
J x J x—h

so that f(z) is convex. Hence the class of continuous convex functions is
vdentical with that of iniegrals of increasing funciions.

An increasing function belongs to R, so that the integrals in question
exist as Riemann integrals, and the theorem could be proved without
any use of the theory of Lebesgue.

(c) Substitution. The standard theorem is: if f and g are in-
tegrable, g = 0, G 1s an integral of g, and a= G (a), b= G(B), then

rb 8
(6.3.1) ' f@)de= | fG Wy dy.

Here any of a, b, «, B may be inﬁnite.
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to is ‘Fubini’s Theorem’. If f(x,y) is (measurable and
negative, and omy one of the integmls

4 rB rB

Uy
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limits are finite or infinite, and the case of divergence is included;
if one integral diverges the others diverge.

8 We may add two additional remarks concerning the formula (6.3.1).

(1) If we suppose, as in the text, that g is non-negative and integrable, but
assume only the measurability (and not the integrability) of f, then the existence

of the right-hand side of (6.3.1) is a sufficient, as well as a necessary, condition
for the existence of the left-hand side, i.e. for the integrability of f.

(2) The mtegrabﬂﬂsy of f (:1:), though it implies that of f{G (y)}g (¥), does not
imply even the measurability of f{G (¥)}.
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Suppose then that f(x,y) is measurable and non-negative.
The double integral is zero if and only if f(z,y) is nul, ie. if
the set in which f(z,y) > 0 has measure zero. The first repeated
integral is zero if and only if f(, y) is, for almost all #, nul in y; and
the second if f (z, y) is, for almosn all y, nulin . Hence these three

{,’ ‘ .‘? ‘ " 4 I
[aV=} aYaVata] m "1l MmN = ocra Tﬂ nan NM n Xrin raria ng aro
PULIOUD vs al i1i1WUL lLUlL'ILUsw UJ- w Lu.l].\} u}.uu UL U V'r\l v v 1w ”l\JU Wi w

equivalent.

6.4. Remarks on methods of proof. Inequalities proved for
finite sums may often be extended to integrals by the use of
limiting processes, but something is usually lost in the argument.
We may illustrate this by considering the analogue for integrals
of Theorem 7.

Suppose first that f (x) and g (x)

1); a

integrable in (0,

in Theorem 7. Dividing by %2, we obtain?
1 v )12 1 v\ 1 v
1 ()o () =z () 22 )
and, making n— o0,
/04 3\ /rlr‘.J \2< 11-2.1,.., rl,.gJ,-
ce WS A P P

If we use the Lebesgue integral we must argue differently?®.
Suppose that f and g are non-negative and L?in (0, 1), and that
e, is the set in which

Tlepcl, olepll rs=1,23,..)
n n n n
mL. ...
411011
1 2 T r\¥ s\t TJ? r 8
(f fgdx\ érzz (:) (:) ersI ézz:erszz €rss
\Jo / L \rej \1v/ . w
by Theorem 7. Now
r 1 r—1 1 1
w37 —xxte +xni=le <1 [ roae
%\ n n Jo

-

1t is here that ‘homogeneity in %’ (§ 1.4) is essential.
The precise form of atgument used here was suggested to us by Mr H. D. Ursell.

o

\, Q-2
9-2



ML aranen 27 aridds € -2 2hia w211 Aomamanada tvmdn ¢ < ? o s oo
A UCOULCILY /4 vl <, LIS Wil ng 11CLauve 1I11LV = WIICTIIL WO PQDE
0 the limit. and we shall logse touch with the cases of equa itv

The passage in the opposite direction, from an integral i
equality to an inequality for sums, is much simpler, and can be
effected by suitable specialisation. Consider, for example, the
inequality

1 1
(6.4.2) exp“~ logf(x)dxl< r f(x)dx
(Jo ) Jo
(§6.7, Theorem 184). If

QV>O’ Q1+Q2+ ‘"+Qn= 1:
and we define f(x) by

f@=a, (@1+.---+¢152<qy+...4+¢,31+4),

it being understood that ¢;+...+¢q,_; means
9. Tha ennditinnae 11mdar whi

n E on [»]
A IV UUVLILULIVIULIOD  Uuilluiluvd yyiuivil 1.11\/\.1 uois
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enerates into equality in Theorem 9 also follow immediatel

v

g

hOR O

In

om the corresponding conditions for (6.4.2).

-
=

more manageable than series. We shall meet with examples in
Ch. IX.

6.5. Further remarks on method: the inequality of
warz. We meet the difficulty of § 6.4, as in our treatment

er 1oa hv ooing hank +0 +ha nranfe af +he thaorama of
‘\.JUU, U.y 6\’-‘.116 MLV ILZ. UV viauv tl.LU AN UL VilVv ViivuULi VLl va

»»
e
. :‘

h — hd Y oL 1 _ 1 P oAV _ i B . OXYXEY 11 4 4
DE ¢ ppueu O lnDegI'EuS o1tone HOSU general Dype yvye mazylllusvrafﬂe
the noint here bhv conciderine ‘Sehwarz’ca ineannalitv’ the ana-
CAAENS r’v‘-& YV OAAN AN MJ AVA W E W} U-I.\J-\/.LLA-IE ANINVEAL VY WA &4 W A.I..I.\/\.j_\AWA.LUJ ’ VAANS NALN

logue of Theorem 7.

181. ([fgdx)2<[f2dx[g*dx, unless Af= By, where A and B are
constanis, not both zero.

A S

nere, dle(l .ld:Ub‘I', we bupprebb Txﬂe J.IIIIIUS OI Inwg‘rdmon WIIGII

there is nothing to be gained by showing them explicitly; they
2 Or Buniakowsky’s (see p. 16).
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may be finite or infinite, or the integrals may be over any measur-
able set £, in which case of course Af= Bg means Af= Bgin K.
We also adopt conventions corresponding to those of §5.1:
‘X <Y’ means ‘if Y is finite then X is finite and X < Y’; and
inequalities of other forms like those mentioned in §5.1 are to be
interpreted simﬂaﬂy Thus every inequality contains implicitly
an assertion about con'v‘ergence s which we shall Oiﬂy make ex-
plicit occasionally. For example, Theorem 181 asserts implicitly
that ‘if | f2dx and [g?dx are finite, then [fgdz is finite; if f and g

avre T2 414 I 4
alo L/, D.LlUll Jy lb L .

The proofs corresponding to those of §2.4 run as follows.
(i) We have
[frdx] g*dax— ([ fgdx)?
=4[f2@)dxf g*(y)dy + %[ 9* (%) da [ f?(y) dy
—Jf@)g@)dx[f(y)g(y)d
=3[dyJ{f () g(y)—g (@) f(y)}*dx 2 0.

It remains to discuss the possibility of equality. In the first

lace, there is certainly equality if Af= Bg. Next, if there is

equality, and ¢ is nul, then Af= By Wlth A4=0, B=1. We may

therefore assume that ¢ is not nul, so that the set £ in which
g (y) % 0 has positive measure. If

[y [{f(x)g(y)—g @) f(y)Pdx=0

|,-a

"13

then

(6.5.1) J{f@)g(y)—g9@)[(y)}2de=0
for almost all y, and therefore for some y belonging to E. We
may therefore suppose that g (y,) =0 and that (6.5.1) is true for

y=Yyo- But then — repy () —g(2)f(yo) =0

for almost all z, and this completes the proof.
(ii)) The quadratic form
JOf+pgyde=2%[f*dz
is positive. We can now complete t
The analogue of Theorem 181 for multiple integrals may be
proved similarly. We shall not usually mention such extensions

explicitly, but we shall occasionally take them for granted. It

AN rr 7 . 9ofFf 9 7.
plfgde+p2) g2dx
1€ pPro de:b.u.l 34;5:

";" [\D



134 INTEGRALS

is to be understood that, when we do this, the extension may be
proved in the same manner as the original theorem.

We can translate the proof of Theorem 8 in the same manner,
and so obtain

182.2 | [f2de [fydz ... [fhdx |>0,

| [hfdx [hgdx ... [hidx |

unless the functions f, g, ..., b are linearly dependent, i.e. unless
there are constants A, B, ..., O, not all zero, such that

Af+ Bg+ ...+ Ch=0.

(fY whan »2L0 Tn wha
\J I I = yv AdR VVLLCII

VY LAN/AL

C+

ut specification of the

e vrra vafavce A oo Bt oot e Y /s TN\ 1.1

range,lreiers to 4 LIILe or 1nanive inverval (a4, 0) ortoa measuraoie

set H.b f(x) is finite almost everywhere in ¥ and non-neg&twe;

p(x), the ‘weight function’, is finite and positive¢ everywhere i

I 50l fondncnahla Acran 1 ML o cvamasiiadas 2ot 2aal i ot rora

i, aiiu 1 lngldlULU Uveoel 14. 1110 _Pd.v.l.d: IICUCL 7 1S LCal 4llu 110U ZEerI
Our hypotheses involve 0 < [pdz <oco. Tt is often convenient

[pdx=1:
in this case (cf. §2.2) we ert e q for p.
We write
6.61) ()=, 0=(EV (o)
fpds ) ’
(e 0 O\ A/ £\ a0 1 £\
\V.V.«) AW I=Huuhb
so that
(6.6.3) W, () ={A (Fs

with the following conventions. If [ pfrdx is infinite, we write
[pfrdz=00, M, (f)=00 (r>0), M.(f)=0 (r<0).

& Gram (1).

b When >0 we can reduce every case to that of the interval (- », «), by
supposing f=0 in the set complementary to Z. i

¢ The hypothesis p = 0, instead of p >0, would lead to slightly different results
concerning the cases of equality (e.g. pf = »C instead of f=C). This case could be
reduced to the apparently more special case by replacing £ by the sub-set of £ in

which p>0.
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In particular M, (f)=0 if r<0 and f=0 in a set of positive
measure. If we agree further to regard 0 and co as reciprocals of
one another, we have

v AR

1
S M)
This formula enables us to pass from positive to negative r, and
we shall simplify the following theorems by restricting ourselves,
for the most part, to positive .

If f=0; M, (f)=0 for all ». If f=C, where C is positive and
finite, then M, (f)= C forallr. If f= 0,2 then M, (f)=oco for all r.
Apart from these cases, I, (f)=o00 is possible only when 7> 0,
and I, (f)=0 when r< 0.

 rY

We define Max f, the ‘effective upper bound’ of f, as the largest

which has the property:

12 AN
\YU.Y.=x) gﬁr (f)

‘if € > 0, there is a set e (¢) of positive measurein which f> § —¢€’.

If there is no such ¢, we write Max f=00. For functions con-
tinuous in a closed interval, Maxf is the ordinary maximum.

Min f is defined similarly; Min f> 0 and
1
(6.6.5)  Min
~Max (1/f)

Equivalent functions have the same Max and Min.

Suppose for example that the range of integration is (0, ), and that
f(x) and g(x) are the step functions defined by
f(®)=a,, qx)=q, (n—1Zx<n, n=1,2,3,...).
Then W, (f) = (Sqa")r =M, @),
according to the definition of (5.2.1). Similarly
Max f=Maxa, Minf=Mina,
and (if we anticipate the definition of §6.7) ® (f) = ® (a). This specialisa-

tion enables us to include manv theorems of Ch. IT and Ch. V in the

COorY UDPULL\MLLE UAA OT

Alternatively we rmght (as in § 6.4) suppose that the range of integration
is (0, 1), and define f(x) and ¢(x) by

flxy=a, (@1t +@a1Se<q+...+q) glx)=1.
In this case also M, (f) reduces to M, (a).

& To admit this case is to abandon momentarily the understanding of § 6.2, that

.
f ig assumed to be finite almost evervwhere

VU QRiLOUSU CVOL Y Wi,



unless f=C.

of positive measure. This proves the result forr =1, and we extend
it to the general case by use of (

If we wish to state Theore

¥V VY adia VU o uvvw &

exactly to that of Theorem 1 and its extension in Ch. V2, we
must say ‘Min f<I,.(f) <Max f unless f=C or else r<0 and

M,.(f)=0". We have then two cases of equality corresponding
exactly to those distinguished in § 5.2, the ‘primary’ case in
which f=C, in which both inequalities reduce to equalities, and
the ‘secondary’ case, occurring only for r <0, in which one
inequality only reduces to an equality. This distinction recurs
in many of our theorems, when r <0, as it recurred in Chs. II
and V; but it is less conspicuous here because we often ignore

negative values of r.

(6.7.2) log® (f)=U(log f),

so that, in particular, if p=g¢, [ gdx=1, we have

(6.7.3) 3 (f)=log & (f)=] qlog fdx.

Certain preliminary explanations are necessary.
Since log f is not necessarily positive, the possibilities concern-
ing the convergence of  are more complex than those which we

have considered hitherto.

& See §5.2.



If we denote by 3+ and §— the integrals formed with log*f and
ION— 'p -~ ‘ln 'pf\ nr] rrn‘- ]nn -P a4 4-1!\1\“ 4 oara arn MNATIT MANAaQY ;]1.“";0(!'
6 J 3 GID f\) 4D LULILICTWUL VWiUuvlL LUSJ ’ UVilUT1l VIAUVLAU Aviv L1vuL PUDDLULMULUO .
(@) &+ and J~ both finite, (b) I+ finite, J— = —o0, (¢) I+ =0,
NPt £ IN r\,m ~ . m I LY o |
S finite, (d) §+ =00, = —oo0. The four cases are exemplified
by the functions
xz, e YUz egllz  exp (L sin 1
’ ’ ’ 134 ‘\xz x/’
in (0, 1), with gq(x)=1
If 9. (f) is finite for some r > 0, then, since
r—1
log* f < Max (L—M—— , O\) ,
\ 7 /
VL LY o2 1T L C2ds A crrn Lol g A mnarnad ~nlar sxrid b macnc 4\
,\S ! \J ) 111 DO 1111105, allu WO Sllall DE CUILICOL1ICU Ol1L WIULL Cades ()
and (b). In case (a), (f) exists as a Lebesgue integral, and & (f)
\~¥7 \™J)r O \J / (o] O 2 ~\J 7
is positive and finite. In case (b) we write

S(f)=—0, G(f)=0.
Similarly, if I, (1/f) is finite for some r > 0, we are in case (a) or
case (¢); in the latter we write
J(f)=0, G(f)=o0.
In case (d) the symbol & (f) is meaningless. In this case I, (f)
and I, (1/f) are infinite for every positive r, and I, (f) =0 for

.
avary nacativae »
UVUJ." llvswulvu Ly

In case (a) we have

(617 A4) &4 {1\ _ 1
e S\F TR
\J / ~AJ 7
UJJ. \.L RTLL. 15 AULY U QULIUL 11111 VU Uil QU L1LVULIRVLLV D vUlLIniuviI avuivir

shows that this e ation holds in all cases, if we adopt the same
convention about and oo as in (6.6.4), and

ot
Q@
¢
Q
h
-
(¢
¢

vnn+1nn that one s
AL VILWU WLiw W

is meaningless.
We now prove the analogue of Theorem 9.

184. If A(f) s finite then
(6.7.5) & (f) <A),

8 See § 5.2 for the definitions of logt and log—.
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unless f=C, where C 1is constant. More generally, if WM,.(f),
where r> 0, 18 finite, then

(6.7.6) G (f) <M, (f),
with the same reservation®.

Suppose first that

F(f)=—o00, B(f)=0=A( ). maymerexoresupposeuu)> 0.
Qi LML 1EN
oLce, o 1 1eoreinl 10V,
10 M rFN 1.2 b |
(6.7.7) logi<i—1,
if£>0,t+1, we have

alogf) Og%{(f)égt(f)—lzo’
log® (f)=U(log f) <log A(f).
Equality can occur only if f=(f).
The result for general r now follows from (6.6.3).

In Theorem 184 we have stated the hypotheses ‘if U(f) is
finite’, ‘if M, (f) is finite’ explicitly. As we have explained in
§§ 5.1 and 6.5, we shall often save space by omitting such hypo-
theses in accordance with our conventions. We shall also denote
constants by C, 4, B,a,b, ... without explanation, when there is
no danger of ambiguity. Two C’s occurring in the same con-
nection will not necessarily be the same.

We add two corollaries (extensions of Theorem 10).

185. G (f)+ G (9) < & (f+9), unless Af= Bg, where A, B are not both
zero, or G (f+g)=0.

a<r 1‘ ' \A r\ Then T " .

We may suppose that &({f+ ¢)> 0. Then, by

O () culL),

The addition of the two equalities of this type gives the result.
More generally

186. G(f)+ 6 (f) + B o)+ ... <G (fi+fotfo+

= Wi

(the series being finite or infinite), unless f,=C, Xf, or ® an =0.

@ For the proof which follows see F. Riesz (7).
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6.8. Further properties of the geometric mean. Our
next theorem corresponds to Theorem 3 (for positive r).

187. If WM. (f) s finite for some positive r, then
when r—>+0

It should be observed that & (f) may be finite even when
AN /1LY L all el N TMhia ta an Frar avatrnnla 1€ L1\ o avn f—E)
W \J )= 10T all 7 > U. 1118 18 80, 10T ©CXalllpiC, 11 jl\L)=CapiL *),
g(xz)=1, and the range is (0, 1).
T\ 2 0 \~J 7

When Z is a closed interval or set, and f is continuous and
positive, the proof is immediate. In this case f=3>0, logfis
bounded, and

s -
V8 WA

M,r=[erloglqdx=] [1+7log f+O{r2(log f)*}1q
=1+rF+0(?),
lim log é)RT:lim;log{l +r3+ 0 (r)} =

There is some difﬁcultv in extending this argument to the

,,,,,

1

—{A(f

s
When r decreases to zero, (t”— 1)/r decreases (by Theorem 36) and
+anda $n +ha limit laat Haoannsab
UVUO11IUD VU V11U diiiLiv J.Us v LAALULIIVY

esrals. Weconsider next the
Ve

. been given by Besicovitch, Hardy,
and Littlewood see Hardy (7).
b See § 6.3 (b) (ii).



theorems for integrals which correspond to Theorems 11-15 s
convenient to introduce another definition which enables us to
shorten our statements of cases of equality. Two functions f, ¢
will be said to be effectively proportional if there are constants

=
=
o

Q.

A, B, not both zero, such that Af= Bg. idea has occurred
already in Theorems 181 and 185. A nul function is effectively

Prnpn'ﬁwnna] to anv function. We shall sav that f, g, h, ... are

viviiva vuv iy LA Vi

)

effectively proportional if every pair are so.
188. Ifa, B, ..., A are positive and a+ B+ ... +A=1, then
(6.9.1) ff"‘gﬁ < ([ fdx)* ([ gdx)B... ([ ldx),
unless one of the functions is nul or all are effectively proportional.
Assuming no function nul, we have, by Theorem 9,
[f*gP ... 1"dx ((_S\( 9\ (1
070 9o .. (127~ \ffdx} \fgdz) *\[da

< ” /99 +. ..+i\dm=l.
J\Jfdx jgdw Jtax)

As a corollary?® we have

189. If k>1 then

(6.9.2) [fadx < ([ fedx)VE ([ g¥ da)V¥
unless f& and g¥ are effectively proportional.

ot
bd
@
Q
L}
<]
B
=
]
o
=}
foed o
[}
[
n
&
=
-
-+
[y
CD
M
=
i
&
=
&
31
Q
=

e
< 1 [2 % o1 A +1\n+ rmk’Jm ':n -ﬂn“-
N X uiuiu viianv J y W A0 11111V

is almost always positive. If then we write I=1/k, so that

v

t>1, and f=(), g=v

so that fo=u, fr=uv, g¢g¥=0t,
& Compare § 2.8.
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[
W
[

Juvdx < (Jutdx)t ([0 da)'!
or [f¥da < ([ fgda)* (fg¥ du)'~¥,
unless «!, v are effectively proportional or, what is the same
thing, unless f*, g¥ are effectively proportional. Since [¢* dx is
finite and not zero?, this is (6.9.3).

If [¢g¥ dx= o0, then
(Jg¥ da)t* =0
(since k' < 0). Hence the right-hand side of (6.9.3) is zero, and
there is inequality unless [fgdx =0, or fg is nul.

When k<0, 0<k’<1, and the argument is substantially the
same.

As we have explained in §§ 5.1 and 6.5, the theorem contains
implicitly an assertion about convergence or finitude; if two of
the integrals involved are finite, then so is the third. The
integral which is finite if the other two are finite is [ fgdx when

k>1, fffde if 0<k<]1, and fg¥dx if k<O.

The theorem corresponding to Theorem 161 is very important

1

and, like Theorem 161, is not a direct corollary of preceding

190.0 Ifk> 1and fg belongs to L for every g which belongs to L¥,
then f belongs to L*.

We consider first the case in which (a, b) is finite (or m ¥ finite),
and suppose that [ ffdr=00. We can find a function f* which
(1) has only an enumerable infinity of values a;, and (2) satisfies
f¥<f<f*+e Since f* does not exceed a constant multiple of
j*"-i—(j f*)%, by Theorem 13, we have [f**dx=oco0. Hence, if

ol S 1.1 P .
be‘ U 11 LllU.llJ'=U/i,

e; is th
Zake,= 0.
It follows from Theorem 161, taking
are;=uk, bFe;=v¥, a;be;=u;v;,
% [g¥dx=0 would involve g* =0 and so g= o0, and this possibility is excluded

by the understanding of §6.2.
b P, Riesz (2).
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1 2 21 . 7 1 21 TR w b A 4 1<
wnat there 18 a 0,’ such that 2401:"' ez S convergen'ﬁ ana Lazo e = 00.
Ta +alza alrY=Hh. in 2. (far all 2\ Than
Kk — K’
1 Jg¥dx=2bFe,

is convergent, but

ff*gdx = Za,.,: bi 6,',: =00

and hence [ fgdx =00, contrary to the hypothesis.

If the integrals are over an infinite range, say (0, we can
write
N t
L = ——
1-¢
when
© 1 0 1 0 1
Jyww—- g A WU, J WAy = XL W(/, H ww — \v J Wl/,
Jo Jo Jo Jo Jo Jo
where
F(#\— (1 _f\—zﬂcf{_t__\ Y (4 = (1 _f\“2/k'n{___t__\
£ \v) \* v} J\ /’ M A\YJ \* v} U\l ,
1—¢ -1
The theorem is thus reduced to the finite case
191 Tf k>1. then a necessary and sufficient condition that

A A v o Ay vivOIY W vvooowi y

L
J. f’“dx < F 18 that [ fgdx < FYVe GV¥ for all g such that [ g¥ dx < G.

v

The condition is necessary, by Theorem 189. If it is satisfied,
then [ f* dx is finite, by Theorem 190. If [ f*dx > F, we choose g

so that g* is effectively proportional to f*, k. and then, by Theorem

189, Uk

fodx = ([ frdx)Ve ([ g¥ dx)VE > FVk QUK
JJ uyoer)

two inequalities: in order that jf*dx < F, it is necessary and
PUWULLIV1IULIV viilovu J Jy W ™ L \v } \AQSAWV R Lwp B u)§ J H W —= U,
W a nan nirave Thanroary 101 wi s+t nnnnn]' nr +n +ha more AR A 14
YY O vauli .tJ.lUVU A LATULT11L A J A lll]..lU\.LU al.lJ UOJI LA RV B L wj AVULCT uLiiivulivy
Theorem 190. If [f*dx>F then [(f),*dx>F for sufficiently large n.

Then, choosing ¢ effectively proportional to (f,)*~!, we have

%

[fgdaeZ [ (flagde = (] (f)a*da)*G/F > FVeGUF,
in contradiction to the hypothesis of the theorem.

Another proof of Theoremn 190 (and of the associated Theorem 161)

has been given by Banach (1, 85-86).

An examnle of the use m" Theorem 191 annearsin §6.13, in the prgof of

B b e VeSS RS S 2SY = e =9 v H

a See in particular §§ 9.3 and 9.7 (2).
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two different ways, of which one depends explicitly on Theorem 191 while
the other does not use it, and the logical status of Theorem 191 in proofs
of this character is explained in detail.

6.10. General properties of themeans I, (f). Weshallnow
prove a number of theorems Which include the analogues of those

I y«.v. L0C Properuics vO OC INVEsSugatth are a uttle more com

plex than they were there, and we shall require some additional
conventions before we can state them comprenenswely We

sunhose ﬂrqf fhcnf r> ﬂ {-]1 +thonram
t’r SA WJ VAL J.U VALV

41 A PR P R LS, | . | -1 11 1 1.1, 4 44
Ui1€ SupsallCe 0oL nav 1s l'equueu, 1 WE Shidll D€ aplie 1O Stabt
the results for unrestricted » more summarily, leaving most of

the details of verification to the reader.

192. If 0 <r<s and M, is finite, then
M, < I,

unless f C.

If r=sa, so that 0 <« < 1, we have, by Theorem 188,
Jafrde={(qf*)*q*~*dx < (] ¢f*dx)* ([ gdz)'~*= ([ ¢fdx)*,
unless ¢f*= Cq. Since ¢ > 0, this is the result required.
193. If I, is finte for every r, then M, — Max f when r -+ 0.
(i) Suppose u=Maxf finite. Then (a) M. <pu, and (b) f>u—e
in a set e of positive measure , so that

positive measure, and, as abov , lim EJR,
From (6.6.4), (6.6.5) and Theorem

"‘t—t
O -

M > Min
e~ VAL §

when r——co.
194. If 0<s<co and IR, is finite, then I, is conttnuous for

0 <r<sand continuous on the left for r=s. If M = o0, but I, is
ﬁwn‘p f'nfr 0<r<s, then M. — o0 when r—s.

..... LI ey L2808 L Ao
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a majorant of class L independent of r; and the results follow
from §6.3 (b) (i).2

(ii) Suppose M, =c0. We can choose n so that

J(gf*)nda>G.
But (¢f7),, is a continuous function of r, and so?

[ {(ogf") dr> 1@

J\LJ /nr T 27
FAr v o . Honaa Tafrdm< 1 1 wwhinh nravag +ha thonram
AVUL 7 ~ O c. J..LU]..[UUJ J W ~ 2 U, Yy ii1iuvil HLUVUD VU vViIIUUVULI ULl .

6.11. General properties of the means IR, (f) (continued).
Inthe nreoedmg sectionswe have, in the main, confined our atten-

tion to means for which r = 0, leaving it to the reader to deduce
the corresponding results for means of negative order from the
formulae (6.6.4) and (6.6.5). In this section we consider the
means more comprehensively. We write, as is natural after
Theorems 187 and 193,

6.1L1) ©(/)=T(f), Maxf=1R,. (f), Minf=T_, (/).

) may be meaningless, but only if I, (f)=oco for all > 0 and
\
)

extreme cases C =0 and C=o00.¢

(B) We may have

Q
&
[}
(€]
wn
Q
=
)
]
-
B
&
=
ot @
B
CD
"d
<,
o
=
®
S
Q
&
[¢]
@
2]
—_—
Ei

and
m,= 9)2 =00 (which
can happen

Q
&
B
Bd
&
=
3
@
tﬁ
2.
<
od o
Pty
~
A%
Ci
=}
=
§
=
\;ﬁ
i
&
mﬂ
Il
S~
é
b.«

& Continuity for r < s can also be deduced from Theorems 111 and 197 (see § 6.12).
P By § 6.3 (b) (i).

¢ Strictly, the second ¢

CLlys LI S0

se is excluded by the understanding of § 6.2.

(e
o



O\ A dar~tasa We PR " 1o 1< i, T -
(<) YWE uciowe Dy (. o ana .’JJC,-_H) Nne 1umivs (winicn d:l.WdayS
exist) of M, when ¢ —r from below and from above respectively

143ra o midta Lt QT s Fnr Fo s 3 wwrhink asca
pOSiti e and finite but Wiy == 10r { > 7, il WNICGH Gase

hen M, ,=M,, and IM,_ =M, except wh

positive and finite but ;=0 for ¢ <, in which case
M _o=0<IN,.
1f =0 there are exceptional cases corresponding to each of
those indicated above. If M, is 0 or oo then either (a) M_, and
Mo are each equal to M,, or else (b)

M_g=My=0, M, 4=00
or M_o=0, M;=M_,=00.
If M, is positive and finite, then each of M_; and I, 40, if also

positive and finite, is equal to I,; but M_, may also be 0 or Mo
may be co.
Finally, all possibilities not explicitly excluded may actually

oceur?,

The results may be stated more symmetrically and concisely in terms of
ﬂ,. = log 9]3,.:
we agree that logoo= + o0 and log0= —oco. We put aside the cases
corresponding to cases (A) and (B) above, viz.
(where C may be 0 or o), when &, =1log C for all r;

eaningless, when £, = 4+ o0 for >0 and £,= — oo for r<0.

G - IR D v3iicil ) 101 U and

8

195. Apart from the cases just mentioned, the set of values of r for which

7 A h~ 7 A
L,=log M, is finite is either the nul set or a closed, half-closed, or u_[/c Y E7-

terval I or (u, v), where — oo Su = = 00, which includes the point r=0 (so
that v = 0=v), but is otherwise arbitrary (so that, for example, u y be

— o0 and }\D 400, Oor U and nmaw haoth ha DY Q 2o 1~ Fom aelos

1IN0 m
WA/ VLA UV WL W WLIINA V 111w RUVLIL MU VU je Ay vo A/ viIi vwurwuoo U 5o
bt Y T

(o]

the right of I and — oo for values io the ieft.

Inside I, £, is continuous and strictly increasing. If r tends to an end-
point of I through values of r interior to I, then L, tends to a lemit ( finite
or infiniie) equal to its value at the end-point in question.

6.12. ConvexityoflogIR,”. In this section (asin Theorem 17)
we suppose 7> 0.

& See Theorem 231.

HI IO
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196. If0<r<s<t, and M, is finite, then

t—s 8—r

M < (M, )t T (M, t)t““
unless f=0 in a part of K and f= C n the complementary part.

The proof is based on Theorem 188, and is the analogue of
that of Theorem 17. For equality,

nf": Claft

Cqf!.
As a corollary, we have

197. logM,” (f)=rlog M, (f) 18 @ convex function of r.

Compare Theorem 87. The reader will find it instructive to
deduce the continuity of I, (Theorem 194) from Theorem 197.

dorived in srnthatantiallyvy +he scame

3. Minkowski’s inequality for integrais. The inequali-
£ 1+ ro ]

L Al B e N v WALV UULLY VWL 111 DU UWL].UJ.WLLJ Viiwvw owiiLyv
way as in §2.11. The ordinary form of Minkowski’s inequality
for integrals is

198. Ifk>1then

(6.13.1) {J(f+g+...+1)edax}V* < ([ fedx)Ve + ... + ([ Ik dx)VE,
and if 0<k<1 then

Vs s
WIUUWOJ, y’ LEX N

The wnequality (6. 13 2) 18 still true aenemllz/ when k<0, but

t/&@T@ ZS a second case OJ excepmon, when ()OEII/ b'L(L&S OJ EI&B zneq LM,M/M:I/

vanash,

VWiIvvoiva

(6913,3) jS’f(lx=JI'fS’f—1dx+JfgS’“—1dx+ e+ JUSF1dy,
Suppose first that 0 <k <1. By Theorem 19,
Sk fetgk+ ... 41k,

Hence, if [fdx,... are finite, [S*dx is finite. Also [S*dx>0
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unless S=0andso f,g, ... areallnul. We may therefore suppose

NER N iV L
J8%dx positive and finite.
Tor MLpomrmnn 1QO
DYy ineorecil 107,
(£ Q=1 don ~ ([ £k A N\VE (§ Qk 1. \1E
JIRT TG > \JJTax)E (JRTaL) T,
vinlaca 14N £E and Qk ana affantivaler nnanantianal ~n (B £Qk—1 N
WLILITDD \w,J AL O alT GLIOLULIVOL PLUPUL viviial Ul \U} JU = V.

[

Since k—1<0, and 8 is finite almost everywhere, the second

alternative can occur only if f is nul, and so reduces to a case
nf +tha irat Honna /8 192 Q\ oY

faXa]
UL U1lIVU 11 DU, JdLdAvilivvuy \U.-I.U , 6LVUD

(6.13.4) [S8%dax>{([frdx)Ve+ ...+ ([I*dx)V*} (fS*da)V¥,
unless f, g, ... , | are effectively proportional; and the conclusion
follows.

The argument ided |,
positive and finite. If [S*¥dx=0 then, since £ <0, § is infinite
almost everywhere, which is impossible since every f is finite

almanaet avervwheore Tf (QkJdr i¢ infinite then (acain ginee I «~ N\
WLILLUD VU U Y U].‘y ¥YY LLUL VU, AL J A Ww AN LAi11443UV VILU/LA \wswll-l PRILLVUU v UI

ff¥dzx, ... are all infinite, and both sides of (6.13.2) are zero.
This is the second exceptional case mentioned in the enunciation,

Fo 2 aYay 3 3
E0UCS slhililially wWiCIL v <V, Pio

QI\A [e1¢] oenrg or DYQW\T\]Q W}'\P'n

VUL NTy AL Valv g VY XXTia

in a set & of positive measure.
We have excluded the cases k=1 and k=0
- .

ment of Theorem 198. The first is trivial and the nd is

included in Theorem 186. We leave it to the reader to state

rmL.. . __ 1N0 °*_. . £ __ . PO LAV R T A R AJ 4 & ) PR ~ A

lneorem 1Yo 11 & 10r1m corre PU umg U uilab Ol LINEOre1 Z4<.
Corresnonding to Theorem 27, we have

and zf O<L< 1 then
(6.13.6) [(f+g+...+0)ede<[frdx+...+[lFdx,
unless, for almost all z, all but one of f, g, ..., l are zero. If all of

[ 9, ..., U are almost always positive, then (6.13.6) s true also for
k<0
Theorem 198, with k> 1, is a special case of tl
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finite or infinite and the ranges of integration arbitrary. We
confine ourselves to the case k> 1; in general, the sign of in-

eanali ty is reversed when k< 1.

‘1“.“._- ar AN - RN

200. If k> 1 then
(6.13.7)  [[{Zf, (@)}*da]V* < Z{[ [, * () dw}',

unless fm@)=0, ¢ (x

on4d TL 1.l ¥ 4L 5nn

VUL, J.J > 1 uer.

(612 8) IS I F (o NAn WK - (IS k(0 \\VEk J e
unless fo(@)=0C, ¢ (x).

202. Ifk>1 then

(6.13.9)  [{1 @ 9)dy}dai <[ {1 * (w,y)daiiedy,
P PO Llon i\ L L\ L Las)
UnLEss J(@,y)=0(Z)Py).

T aanh +thannam +1\nv-a 1qa anttalitv in tho avnantinnal naan

ALl UAlVAL VAATULULLL ViLUC F i) Ul.iual.l.l. U‘y i1 viiv UAUUPULUJLGL wvanG.

Consider for example Theorem 202 (the least elementary of the
theorems). We begin by proving the theorem with ‘' <’. We give
two proofs, in the first of which we appeal to Theorem 191, In
each proof the chain of equalities and inequalities which arises
is to be interpreted in the sense ‘if the right-hand side of any
equality or inequality is finite, then so is the left-hand side, and

J
the two are related as sta

ted’. The inversions of the order of

integration are justified by Fubini’s Theorem.

WPWl"lte T Tl £ v\ 7

J=JX)=] ]2, Y)ay.

(i) In order that

(6.13.10) [J*dx < M*
2. M. __ . AOe - 0t 4 a1
1L 15, Dy 1rneorein 171, 1e 'ebsauy a1l SUulicienv uviav

(12 11) ( Tade< M

\U..I.U.LJ.’ JUHWW:JJ-L
for all g for which

(6.13.12) fg¥dx<1.
Now

(81212 (.Jadr—="F(al(x\Xdr{ flr a1\das

\WUeddeio)  JuGhw =g g \bjew g\ g%y

=[dy ([ g (x)f(x,y)dx) < [dy ([ f*(x,y)dx)VE,
by Theorem 189 and (6.13.12). Hence we may take
nr tI3../0 £k 1- N1/
VL =J w ‘JJ"(I/.L i

i R 12 1N whinh nravoae tha thanram (wnth ¢ <)
Al \U LU.LUI, YY iilivaL J:’.LUVUD viiv viivuiviii Yy ivis F—3 lt
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(ii) If fJ*dx=0, then J = 0 for almost all z, and so (for almost
all ) f= 0 for almost all y. Hence, after §6.3 (d), f(x,y)=0.

We may therefore suppose that [J¥dx > 0. Let us assume for
a moment that [J*dx is finite. Then

JJ*da=[J* dx | fdy = deJJ’Hfd < [dy {(J feda)Vk ([T dz)}
£k 1k
FE o)L

and so
(6.13.14) (JJ'“dw)*”‘éJ"(J"f’“dx)”’“dy,
which is (6.13.9), with ‘ <’ for ‘<’

In this proof we have assumed {J*dx finite, an assumption
which was not required in proof (i). In order to get rid of the
assumption, we must approximate to f by some function forwhich
the assumption is certainly justified. Suppose for example that
the integrations are over finite intervals or sets of finite measure,
that (f),, is defined as in § 6.1, and that
Then [J ,*dz is certainly finite, and so

(J T Fdae) e < [{[ () da}edy < [ ([ fedx)edy.

From this (6.13.9) follows, with ‘ <’, by making n— 0.
The arguments under (i) and (ii) are essentially of the same
character, the part of the arbitrary g in (i) being played in (ii) by

the definite function

Jk—1
9= [ T*dz)i%’
which satisfies (6.13.12) if [J*dx is finite. By using this particular
g, we avoid an appeal to a rather sophisticated general theorem,
but at the cost of some additional complications. A similar alter-
native presents itself whenever we make use of Theorem 191.

It remains to discuss the possibility of equality in (6.13.9).
There will be inequality if2

Jdgdx < M

Q

for all g subject to (6.13.12). There is inequality in

Jay (f gfdw) = [ dy{(J f*dx)* (] g* dx)*},
& See the last remark of § 6.9.
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unless, for almost all y, f* and g* are effectively proportional, i.e.

J

unless (for almost all )

T B S T B 7 Ta? £ N\

(0.15.19) P f*(x,y)=0(y)g* (@),
where p?+ 0% > 0, for almost all . If p(y) were zero, for a y for
which (8 12 15 halda 472 wanld he nil which ig falae Hence
Yviiiviir \U..LU.LU} LLUJ.\-LD, H \W} Yruultuu uvv l.lul-, YY RLAVIEL LD LQULIOV e .I..I.\JLLUV,
in (6.13.15), p(y) > 0, and so

J(@,y)=9(x)¥(y),

where ¢=g¥'%k = (o/p)V%. This equation holds, for almost all y,
Lo alimnmcd a1l 4h 0 b L s Lo o .M.‘NL all A &
1Vl &4llliusyu all £, alll LIlclCluLo, Uy S U O \(l/}, 101 1UBSV all W, Y.

The proofs of Theorems 200 and 201 follow similar lines. Thus, in
proving Theorem 201, we write

Jp=1Jnd%

and arnone as follawa Tn ardar that ST k- Mk 14 10 noscaaary and o =
LLiilL Cvi UD VD LUVILIU VY IOe ALl UVLWAUL UVLINIAVV sty n TN AL 9 LU AD UUUDOOL CULALL Oliiiar
cient, by Theorem 15,2 that 26, J,, < M whenever 25, < 1, Also

S J =3b (£ de=0(Zh fV\dr<{da(Sf B\UE(TH Nk < ((f B\ E Jope

~YnTon ~vYnJjJnwww J\=Yngn/vvJgWwvN=yn J \=~>n J =J\=~=Jn /J hadad
and so on. The summation under the integral sign is justified by (ii) of
§6.3(b).

The analogue of Theorem 26 is
203. If 0<r<sthen
E):Rs(u) E]Jtr(w)f(x’ y) < m(m) ms('y)f(x, y),
unless f(x,y) = ¢(x) Y (y)-

For an explicit proof see Jessen (1).

6.14. Mean values depending on an arbitrary function.
There is a theory of integral mean values involving an arbitrary
function similar to that developed in Ch. III. We do not set it
out in detail here because it would be so largely a repetition, in
a slightly different form, of what we have said a]ready We

confine ourselves to proving the analogue of Theorem 95.0

204. Suppose that o = f(x) < B, where o and B may be finite or
infinite, and that f(x) is almost always different from o« and B; that
the range of integration and the weight function p(x) satisfy the

& Extended to infinite series.
b A number of other analogues of theorems of Ch. III are stated among the

miscellaneous theoreme at the end of this chanter. A fuller treatment of some of

AOVTAALIATIUS VIATVATILS WU VAU TiiW Ul vilis VLWPUTUL. <43 AUWAUL VAUWUILMUTIAY Ui SVIRU Ui

them will be found in Jessen’s papers 2 and 3. A good deal of the content of these

nanany haa hane rmmanndad ottt 4l ol g Londl Nt

Tr
papris nas oeen m Lyuxwucu. wivil ULIU H/PPI.UP.IIU/IJU muulubumuuﬂ, .u..luu A\ V7 17} .L.L.l.
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conditions of § 6.6; and that ¢’ (t) is positive and finite for a <t < B.

Then
(6.14.1) ¢ (1fpdz) _[$()pde
S P\Upde |~ [pde

wheneverthe right-hand side exists and s finite; and there is equality

Andrs anbon, £ - 1)
oy wrern j=v.

It is possible that [ fpde=c0 or [ fpder= —o0; (6.14.1) is then
still true if interpreted in the obvious manner. It is not possible
(when the right-hand side is finite) that [ fpdx should not exist,
ie. [ftpdx=00 and [f~pdxr= —oo. For in this case a= —o0,
B=o0, and ¢(f), being convex and not constant, must tend to
infinity, with rapidity at least that of a multlple of | f|, either for

Tawron nacidivra nn Far lanan nacativya vrals f

1arge positive or 10T 1arge negauive vaiues o

cannot exist and be finite.

9

nt e~ R A]GO

> W HJ\«\,.’. A XA

and « < f< B, for almost all x; so that, for almost all «,

¢ (f)=¢ M)+ (f— M) $" (M) + 3 (f— M)?S" (1),
where u lies between f and IR, so that « < < 8. Hence

[é(f)qdez¢ (M
which is (6.14.1). There is equality only if (f—I)24"’ (1) =0; but
a<p<pf,and so ¢’ (u) > 0, for almost all z, so that then f=9IR.
Next suppose (say) [ fgdx =0, so that B=00. Then

s |l

ASCIEN adrl < TAS(FY Ladr
YUV I/InIYvYS =¥ \J Inf 1TV
brr ‘VVhat has benn nroved alv-oor]\—r Qinecoa Al ) 1@ contintiniie and
A .tJLU VUL viLrvana NiiLivy V) \J l 4o VUvldivaiiiuuvusuio vaaws
monotomc forlarge f th integral on the right tends to [ (f) gdx
) is finite, in

with equality only if & (f) = ¢ (c0), a possibility which we excluded.
The case in which [ fgdx= — co may be dlscussed similarl

a See Theorem 126.
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It is possible that the left-hand side of (6
Mha vaadar oill B3 -“‘—} T +

448 I'eaGer Wil 0nd 1v insvruc
which we have contemplated can all occur.
If we take ¢ (f) = — log, we obtain
exp( l qlogfdx) < 'qfdx,
/o

\J
i.e. B (f)<UA(f) (Theorem 184). If we take ¢ =", we are led again
to Holder’s inequality, and other examples may be constructed
analogous to those of §3.11. If we take ¢ (t) =tlog¢, we find

205 Ipfdx (I pflogfdx)

. <ex ( -—)
[pdz ~ P\ [pfdz )’

unless f=C

specification of the cases of equality) to any convex and con-
tinuous ¢.

206. The inequality (6.14.1) is true whenever ¢ (t) 18 convex and
continuous 1m o<t < f.

J
where A is any number between the left and right hand deriva-
tives of ¢ (¢) for t=9I. Hence
Jé(f)qdz = H(M),
which is (6.14.1).

STIELTJES INTEGRALS
6.15. The definition of the Stieltjes integral. We have so

far considered series and integrals separately, and all the funda-
mental theorems have appeared in dual form; thus Holder’s
inequality is contained in Theorems 13 and 189. It is natural to
look for an extension of these theorems which combines them
into one, and we can find such an extension by using Stieltjes
integrals.

Suppose that ¢ (x) increases (in the wide sense)ina <z <b, and



1annntinitriding Arn ~fF cdnotnhaa AF s;mrrantio hilidr Mha sntranan
VALIOUVUULLUVLILI UL ULUD L Ul DuilTuuUllITo UL 1ilvaliairiiivu 4 1IC 111V VULOU
function _ —
r=x(y)=x

is defined uniquely except (@) in intervals (y;, y,) of y corre-
sponding to discontinuities x = ¢ of ¢ and (b) for values of y which
correspond to stretches of invariability of ¢. If we agree that
(¥4, ¥s) is a stretch of invariability of z(y), in which it has the
value £, then z(y) is defined except for the values (b), and is an
increasing function of y for the values of y for which it is defined.
Finally we complete the definition of z(y), as an increasing
functlon of y, by ass1gmng to it, for a value (b) of ¥, any one of

.1

the values of z in the stretch of mvamamuny These values of Y
a

§

of f(x) with respect to ¢ (x
(6.15.1) | s@dp=| @)

whenever the integral on the right-hand side exists as a Lebesgue
integralb.

~ ’ -
g
.

The definition (

of Stieltjes Invegrais

-You &) Q <
Usl. LD, ana we .u_l.a;‘y
a

rise. For full dis-

cussions of tl is nd older definitions of the Stieltjes integral, we
luw'y AVIVI VU ALV NMOULL \.l’, uuuvusuv \‘. /, A Uiiva i \L}, A U UlL \l }'

X —>o0

is any function of bounded wvariation, then
o

g=
1creasing fineti ns, and we may define the .th]hpq lntegra.l 0

frdg=[fdé —ffd.

We shall not require this more general definition here.
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where ¢ is an increasing function, and E a set of values of z,
similarly, that is to say by the equation

where & is the set of values of ¢ corresponding to . We must
assume & measurable. The integral

[ a4
. - : J B
is the variation of ¢ in E.

6.16. Special cases of the Stieltjes integral. The simplest
cases are the following:

(@) ¢==. In this case the Stieltjes integral reduces to the
ordinary Lebesgue integral.

(b) ¢ is an integral. In this case

[t i

Ds N T —_— Dyt \ 17/ ~ 7
| J@)ap=1 JX)p (r)ax.
Ja Ja

(e 420 a0 Amasto ameroncrna etom_Frimetsnm

\UI lf,l vo WJOIUI/UO vivvs owovu/y U(ID‘IJ JWI(/U(/(IUI(I.

Suppose that ea=a,<a,<...<a,=>b, that ¢(x)=«;, where
o< 0y1, IN Q<X <ay,;, and that ¢(a,), when 1 <k<n, has
any value consistent with the fact that ¢ increases. Then z(y) is
a step-function with values a,, a,, ..., @, , and

I AL
(6.16.1) | jdo=| jx(p)sde
Ja Ja
Y aY L0\ { s ar Y £ \ { - \ LS \
=0y — &) J\By) + &y — 0y ) J(Bg) T+ oo (g — Xpy2) ] (Bp1)
+ (18 %p—1 )Jf(a'n)
= Zpkf(ak):
where p, is the saltus of ¢ at v =a,,. It is plain that any finite sum
can be expressed as a Stieltjes integral; thus
& r n s AN s 2
“ily = J \Z) do,
1
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(d) These considerations extend at once to step-functions with
infinitely many discontinuities, when the Stieltjes integral is
Zprf(a;), summed over all the discontinuities. Any convergent
infinite series may be expressed in this way as a Stieltjes integral.

6.17. Extensions of earlier theorems. It will now be clear
that all our fundamental theorems may be extended at once to
Stieltjes integrals, and that the theorems thus obtained include

those for Lebesgue integrals and also those for sums. We state
the most representative of these theorems in the next section.

Two 'nrphm1nnry remarks will be ngeful

DA LAde

b ]
vy AV NULUVLVIVEO 11l

1) 7hen t}\n QHialtiag
integral, the variable of integration is ¢. Our condltlons for
equality were always of the type f=g, f=g excep f

] new

meagure zero. The excentio

AL A AT VAUU VA AL ja & / a

measure zero in ¢, and when we state this concept again in terms
of z it becomes ‘a set of values of z in which the variation of ¢ is

zero’, i.e. a set K such that the nnrrpqnnnrhng values of r’m form
a nul set. Our conditions for equality must therefore all be in-
terpreted in this sense. Thus ‘f is effectively proportional to g’

means that Af= By,

where A and B are constants not both zero, except t the points
e

cmmmm s Ty ot d a4 AL A O 2 . L AT L A MM L
SLIHLLAL PUJ. 1L OCCUrLrs 111 uil€ UcClIIvIoIl UL 1YL ).LJ allQ J.VLLUJ.
Thus Max f is the greatest number £ such that, for every positive €
J Jd > 2 J Jg I
f>&—ein a set in which the variation of ¢ is positive.

(2) Many inequalities ‘X < Y’ are true for Lebesgu tegrals
when their analogues for Stieltjes int Is 1

J
c < QHPann for exammple, that the 1

v.‘xw ALpraliy VLAV

and that [ fdxz=1. Then, by Theorem 181,
(6.17.1) (Jaf de)? < [fdx [a*fdx= [x2fdx,
unless % f=Cf or x?=C, which is untrue, so that (6.17.1) is true
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B
&
o
®
3
E#l

the corresponding theorem for Stieltjes integrals

and
(6.17.2) (fzdd)2 < [dd [xPdd=[a>d.
There is equality in (6.17.2) if 22=C, i.e. if x is constant except in
a set over which the variation of ¢ is zero, or, what is the same
thing, if ¢ varies at one point only. Thus if =0 for 0z <1,
and ¢(z)=1 for =1, then
(fxdd)?=1=[a%d.

6.18. The means M, (f; ). We write

2=, 95 [ rad) = (L) o
r\J / r\ \ aj J ‘f’, \J‘d¢ \’
A(S; $)= My (f: $),
e ([1og fdd
S(f; $)=exp (g ) =T (S5 $)

These definitions presuppose that the integrals involved are

finite. If [ frd¢ = co, we agree (following the conventions of §6.6)
that M, =oco0 when >0 and 2TJZ,= 0 when r<0. The points dis-
cussed in §§ 5.2 and 6.7 naturally recur here in connection with
the definition of &.

The theorems corresponding to Theorems 183, 184, 187, 189,

192, 193, 197, and 198 are as follows: we suppose for simplicity
of statement that » > 0.

onrr Mz £ - £\ - Mo £ assnloge £— 1)

~V . LV.l..UJ.J ~ JJLT\ }\LV.L J wreoso J =U.

aono Ve AN ANPPE § § SRV AN AN Y g S AN AN \(Il‘ , _l‘__/Y

208. G (f) <M, (f), and in particular & (f) < W(f),unless f=C

209. If M,.(f)s finite for some r, then I, (f) »@(f) when
r— 4 0.

210. If k>1, then
[uvdd < (JuFd)V® (fo* dg)V*
unless u® and v are effectively proportional. The inequality s
reversed when 0<k<1l or k<0, except when u* and ¥ are

effectively proportional, or the left-hand side vs zero (in which case
the right-hand side is also zero).



his is Holder’s inequality; there are naturally corresponding
e § J 2 J r D
generahsatlo s of Theorems 11 (or 10) and 188

then M, (f) < W, (f), unless f=
i2. If I, ( f ) is finite for every posiiive r, then SR, (f)—>Max f

213. log M, (f) ¢s a convex function of r.
214. If k> 1, then
{[(u+v)kdp}e < (JuFdp)E + (Jo* )%,
unless uw and v are effectively proportional. The inequality is in
general reversed if 0<k<1or k<02

»

AXIOMATIC TREATMENT OF MEAN VALUES
6.19. Distribution functions. In Ch. III we defined the
mean value My =My (2,9) =~ {zaasmn

0 use the notation

t pro to use t
of Stieltjes integration, and it is for this reason that we have
reserved the discussion until now; but the Stieltjes integrals
which we use are actually all finite sums.

In what follows we consider a special class of step-functions,
defined for all real =, which we call finite distribution functions.

We call F () a finite distribution function if

(i) it is constant in stretches and has only a finite number of
discontinuities,

€ (S)
treatment nromised on p.6 Tf 18 canvenient

(ii) it increases (in the wide sense) from 0 to 1, so that

/s PR S Y A — 1

L\ — )=V, L\ )= 4,
FEEEANEY 1 I VRN 1 (T /A NN v T AN Lo 1T e
\111) ry (.L)=—§'i.ﬂ “Ww—V)+ U \.L-rU}j 10U all &

prov1des a representatlon of both the values a and the weights ¢
involved in 2UC¢ (a). The samplest such function is

E(z)=3%(1+sgnw),

2 We leave the specification of the exceptional cases to the reader.
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which has the single jump 1 at x=0. 1If we write
Ey(2)=B(w—9),
then
(6.19.1) F(x)=2qH,(x).
where
_ . e {1 O JURY ANP | e ey - P
a=a,, §¢=q, v=L1,4,...,), aq,=1i, 01<Ay<...<q,,
is the general finite distribution function with jumps ¢ at the

points a. Also
[l

(6.19.2) J ¢ () dF (x)=2q ¢ (a),
and the mean value (3.1.3) may be written as

(6.19.3) Sﬁ¢[F]=<{>—1( (¥ 4 dF(x)).

Any finite distribution function is 0 for x < 4 and 1 for x> B,
A and B being finite numbers depending on F. In what follows
we confine our attention to a sub-class of these functions, viz.
those which satisfy

those which satisfy
(6.19.4) F(x)=0 (x<4), F(x)=1 (x> B)
fora fixed 4 and B. In these circumstances we say that ¥ belongs
to D (4, B).
If ¢ (x) is continuous and strictly monotonic in the closed

D (4, B). The values of ¢ (x) outs
O08

in (6193) and we may cho

s Waila

to choose them so that ¢ (x) is continuous and strlctly monotonic
for —0Sx =@

6.20. Characterisation of mean values. Our object is to

PIUVE DHC luJ.IUWLng l.l.U.UUlt?lLl

215. Suppose that there is a unique real number M [F'], corre-
sponding to each F of D (A4, B), with the following properties:

[1] M[Es(x)]=¢ (A& B);
[2] if F, and F, belong to D(4, B), F. =2 F, for all z, and

F,> F?__ _for some x, then

MLF]<MLF,);
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[3] of ', F'*, G belong to D (4, B) and

y oYY s T el (a'sl Yy r: Ty 'l I\ Y1
tnen Wt +(1—t)Gl=2201L"+(1—1) G}
L .. N 1 .1
J 7T V< Ii< 1.
Then there is a function ¢ (x), continuous and strictly increasing

wn the closed interval (4, B), for which
(6.20.1)  IM[F]=My [F]=¢—1( [m $ () dF(x)) :
O’onversely, zf Sﬁ[F] 18 deﬁned by (6 20 1), for a gb(x) wzth the

mman A ES mnn o rwsn anpnpacraar ranrd cnidBasonnd 1L seonnmencomtretanns AL
conuLLeonsS ure OCOWOwa (4 O(ld/bb (A1) JUI l/ll/(’j TCPTCOCTUUWLLUIY Uj
WM F] in the form (6.20.1).2

’
M1 and all hut ohvione that 1+ nogeescoa propertv [3 " QInee
AR+ (1 -GN =¢t{AdF +(1 -\ [ddG
PA L A= U =Hjeal AL jedl
=t|odl'* 4+ (1—1)|pdG=¢ CNc[tL™*+ (1 1) &)
It remains to prove [2].
Q‘l‘l““l\ﬂn #]r\nl- F r] m nn‘-im-‘-‘v 4-1\{\ nr\'r\r]':“-':(\hﬁ n+n4-cuq rr‘l'\nh
UuPPUDU tnav L3 ana fy Sauisty uvne CONnaGltlons Svated. 1ncil

m (v RAYD annfoe
re s 2 i 0 B | VYR - WY e "w I3 T rYy [‘w » 7YY
QU £ of)— QUL ])= pat,— | ~ Qdly
J —w J —w
* 0
= (Fl“Fz)dSbc
J —©
"B
=) 1 L) @@= P \pP) — Py~ Y.
J A

a See Nagumo (1), Kolmogoroff (1), de Finetti (1). We follow the lines of de

Finetti’s proof -

b ']‘l‘-nrn 18 an m fnr xxr]"nnh F (fr Y~ Fo(o
\Q7 & 2 U

3 {F1(2y—-0) + Fy ($o+0)}>7{F (79— 0) + Fy(zo+0)}.
ence either F,(z,—0) > Fy(x, —0) or F;(x;+0) > Fy(2,+0). In the first case there

L& U1 r

erval satlsfymg the conditions to the left of Z,, in ‘the second case one to

<
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6.21. Remarks on the characteristic properties. We
have still to show that the properbles [1]-3] are sufficient to
Ahawnanatanion 4ha PR R 9. Y7 . VAR o S R ..A.M,,_.,L,,
¢naracuierise UJJ.U nmeans ,.UL¢ Yvo .U.LDU.I.U 111D U DULLIT 5 1101 Al 1CLLLAL KD

concerning the ‘significance’ of the properties.

(1) [1] asserts that ‘if all the elements of a set have the same
value, then their mean has that value’.

(ii) [2] asserts that ‘WM [F'] is a strictly monotonic functional
of F’°. It would not be sufficient to assert that (under the condi-
tions stated) MM[F;]<IMM[F,], i.e. that ‘IM[F] is a monotonic
functional’.

Let us consider some examples.
(a) The arithmetic mean
N(a,q)=2ga=[xdF =UN[F]
i8 a strictly monotonic functional of #. In this case ¢(x)=x.

(b) We may define ‘Max a’ as ‘the lower bound of the values of z for
which F(z)=1’ (F being any finite distribution function with jumps at
the points @). Then Max a=u[F] is a functional of F which is plainly
monotonic: if F;=F, for all x, then u[F,]Su[F,]. But pu[F] is not
strictly monotonic: if ¥, and F, are defined by

Fi=F,=0 (x<0); F,=4%, F;=0 (0<x<1); F,=F,=1 (z>1),
then pl[Fy]=Max (0,1)=Max (1, 1)=pu[F,].

That p[F] is not representable in the form (6.20.1) follows from the
theorem itself; if it were, it would be strictly monotonic.

(¢c) The geometric mean & = ® (a,q) is a functional of F which is not
strictly monotonic, since, for example, the sets (0, a,, ...) and (0, by, ...)
have the same ®. It is representable by the formula

® =exp (fw log;‘cdﬁ’(w)) .
0

This is of the form (6.20.1), with ¢ (x) =logx for x> 0; but ©® is not repre-
sented in the manner p esembed by the theorem, since log x — — co when
x>0,

s ‘N TN rac 11 11 171 ’al ra ks 1 Iy
(111) 11 we use [s] twice, the SeCOIlCl I}lme WI'UD. T, T, 1 —1
mnlaco nf Al B F% + wo aoo +that
ALd -tl-l-w\/\-/ T4 A ’ A b A bl U’ YY WV ovw viiwwv
(291 1) NS A BEEA AW AL BN [ S 2L SIS B AWAL
(U.c1.1) WL T L — U =il " T (L —vjUuT}

whenever N[ F]=M[F*] and M[G]=MM[G*]. In other words
(@) M[LF + (1 —t) (] is determined uniquely by M [F], M [G] and t.



T g‘é‘:u Tail
(& 21 92) Mo F1=T1a F *]
\Ves 2o & J ad Bl STEEYN Bt A Bl STE IR VIS |

if M[F,]=M[F,*] and Zq,=1.
A functional ¥ [F'] is said to be linear if
FLoF +ul]=tF[F]+uF[G]:

in this case it has certainly property (a). If IR[F] satisfies (a)
or [3], of which (@) is a consequence, we may call I [F] quasi-
linear. If also we agree to describe the property [1], as is natural,
by consistency, we may state Theorem 215 shortly as follows:
the most general comsistent, strictly increasing, and quasi-linear
Junctional of F s that defined by (6.20.1).

6.22. Completion of the proof of Theorem 215. The
functions £ 4 (x), E g (x),and (1 —¢) £ 4 (x) + tH 5 (x),where0<t< 1,
belong to D (4,B).2 We write

P (t)=M(1—1) B4 +tEg],
80 that S(0)=M[E ]=4, 4(1)=M[E]=B.

Let us assume provisionally that i () is strictly increasing and

continuous. Then () has an inverse
b (u) =4~ (u)

which is also continuous and increases strictly from 0 to 1 when
u increases from A to B. If

Tr - S o e TOT S A sk A AL /00T O\ o VY
I1€11CC, Uusi .lg Lo] i1l uhio vxeliucu 101l (0.41.4 ), allt Ltle eXPI'ebblOIl
(6.19.1) for any finite distribution function F, we obtain
L 4 L pr 3 3

=M[Zq{(1-¢(a)) £+ ¢(a) Ep}]

=Y _NaAhlaWN B L (Saoahia B

=ML —2qp\@)) &4+ \=qP\Q)) L]

=) (Sq(a) = ¢ (Sg (a))

the result of the theorem.

It should be observed that here ¢(4)=0, ¢(B)=1. When a ¢ has been
found, it may (after Theorem 83) be replaced by any ad¢ + 8.

& F, and E 3 are extreme cases of functions of D(4, B): if F belongs to D (4, B),
then B4 =F =z Ep for all x.

HI II
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It has still to be proved that i (¢) is strictly increasing and
contmuous.

71\ N o~ ) — 1

(H I U= <i, =1,
then 1 tNE vt B>t B, Lt 8B

AA/AL L 1/ 4+ 4 npHEp=\+ vz)uA'T‘vzuB

{ 1
\ T
for all z, with inequality f

o 8

rSs
*M%) M1 "tl.)EA‘f"tlE._

ok 4l o
YUUILL Ule:l/

for arbitrarily small €, and
By 2z Lez Lygere
for all #, with inequality for some z. Hence, by [2],

2 00 1\
(0.22.1)

m [%‘E Pty T %‘E ¢(f>] <M [%E ¢t %E t/r(l)] <M [%E plto+e) T ’%‘E x,b(l)]
for any ¢ of (0, 1). But if s and ¢ lie in (0, 1), then, by [1],

J(8)=M Byl =M[(1—8) B, +sEp),

and similarly for ¢; and, by [3],
WMILE, +1E, 1___cm»|_ _S)EA"!—SEB_[_(]‘_’J’)EA’i‘tEB_l

—-%L(l-ﬂ)% ()

Combining this with (6.22.1), we see that
lo+1 lot+1l+e
p(0F), y(lrre
\ =</ \ <
are separated by a number, viz. M [3E;+ $E ], which is in-
dependent of ¢; and so, making 0,

¢(t0;-t)<¢(t0:—t+0\'

Hence i has a discontinuity at 1 (¢,+¢), for all ¢ of an interval;
and this is impossible, because the discontinuities of a monotonic
function are at most enumerable.

It follows that i (£) has no right-hand discontinuity. Similarly,
it has no left-hand discontinuity. It is therefore continuous, and
this completes the proof.
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We have confined our attention to finite distribution functions, so that
all the functions # which have been considered are step-functions, and the
means are the means of Ch. ITI. There is a similar theorem in which both

hvnothesis and conclusion are stronger in that they Qpn]v to a class of

S22 ) PPV VRATURAS Giaala UVAaliaSa Suvalsia,

functions more extensive than D (4, B). Let us denote by D* (4, B) the
class of functions which have the properties (ii) and (iii) of §6.19 and also

f‘v (6.19.4). We can then nrove a theorem which differs from Theorem

A Ve 2Ty YV U TQuas VaATEL AU VO & vaioL TR Y

i 5 only in the substitution of D* for . The proof is very much the same,
ut is slightly more elaborate in its final stages. See de Finetti (1).

MISCELLANEOUS THEOREMS AND EXAMPLES
216. ‘Velocity averaged by time is less than velocity averaged by
distance.’

7 ' da \
wo
I_Thls is j &_tdt </ dtj ds_—jdtj (dt) dt, a case of Theorem 181. _’
217. If the kinetic energy of a mass M of moving homogeneous in-

compressible fluid is &, and the average velocity of its particles is V, then
E>1MV?, unless all particles have the same velocity.

1twv. » the velocity of an alament AN —drdards than
lIJ 9 v Vaaivw ¥ VIU\/&UJ A ULA UAUVALAULALYV WA = W W W~’ ViAUVLL

M=pfdS, V[dS=[vdS, E= —%pfvzdS

218. A unit electric current passes through a closed plane circuit
enclosing an area 4, and exerts a force /' on a unit magnetic pole P in

[Suppose, for simplicity, that the cir ult is ‘star shaped’ with respect

to P (i.e. that every point of the line from P to any point of the circuit
lies inside the circuit). Then, using polar coordinates r, § about P, and

integrals from 0 to 2=,
/1N % 23 g / (donE / '
-_jd(? \r) )® 0<U—) Urzdﬁ) F§(2A§
unless 7 is constant.]

2i9. If f, (xz,) and g, (xz,y) are two (finite or infinite) sets of functions
ofwandy, thet (5[ fgdudy)?< X jf f2dudy X [[g*dudy,
unless there are two constants ¢ and b, not both zero, such that

afv (%, y) = bg, (%, y),
for every v.

[From Theorems 7 (for infinite series) and 181 (for double integrals),
or directly, by the second method of § 2.4. The theorem illustrates the
following principle. The inequality

1) (ZEZuv)2 XXX u XXl



164 INTEGRALS

where  and v are functions of three integral variables m, » and p, does
not differ materially from the ordinary form of Cauchy’s inequality ; but
we can derive materially different inequalities from (i) by replacing dif-

= ST T TN T TTTTTTTO
ferent selections of the signs of summation by signs of int‘gr&tion 1
220. Suppose that the a are positive, and that ¢, is defined by
1 =1+ngz+ +/n+r—1\gx,_+
g T=am = et -+ (T e
(1—-ayz) (1 —ayx)...(1—a,z) r

Then 42 <Qr-19ri1 (r=1,2,..)
unless all the a are equal.

221. n<gi<gld<..
unless all the a are equal.

[Theorems 220 and 221 were communicated to us by Prof. I. Schur.
The g are means of homogeneous products of the a, like the p of § 2.22,
but now the a in a product are not necessarily different. In particular
@ =2 o i o B

Theorem 221 follows from Theorem 220 as Theorem 52 followed from
Theorem 51. To prove Theorem 220 we observe that

(1) y=(n—=1)[[.. [(a, 2y + a2+ ... + a2, da, ... dx,_q,
where z,=1—x; —2y— ... —%,-; and the domain of integration is defined

by 2,>0, ..., 2,-,>0, x,,>0 We obtain Theorem 220 by applying

Theorem IRI ('Fnr mn]hn]p Infpo'rsﬂq\ to (1\

o AT0L e

The formula (i) leads to a more complete theorem. If the a are real

(but not necessarily positive) then the quadratic form Xq,, ,y, ¥, is strictly

rm 7.2, 1s strietl
positive; and if the a are pncuhvp then the form 2,101 YrYs 18 strictly

positive; except (in both cases) when all the a are equal.]

222 Ifp>1,fis L?in (0, a), and
- [z
I(z)= Of(t)df,
then F(x) =o (2} ?")
Rt \"v7/ \ 7
for small 2.

[By Theorem 189,
Fr< f‘” pra( /m dt)” ' g f fods,

and the second factor tends to 0.]
223. If p>1and f is L? in (0, ), then F(z)=o(2'/*) both for small
and for large =.

[For small z, by Theorem 222. To prove the result for large x, choose X
so that

[*fraz<er
J X



=
Qﬂ
=
&=
R
=4]
p.
=t
)]
[
N
en

xyo=( [* pat) <(@w—Xyo= [ prds< var,
AV S ") x

F(z) < F(X)+ ext?’ < 2extl?’
for sufficiently large x.]
224. If y is an integral except perhaps at x =0 and xy’? is integrable in

S a,zoﬂlo 1\”[
R ANV |
for small z.
Ff%. ., -([*d= (% 7 \t7]

A

L]eyww \jegjewy ww}-J
225. If y is an integral except perhaps at 0 and 1, and x (1 —xz)y’?is
integrable in (0, 1), then v is L? and

0§/’ly2dm (/ ydx> §%/ix(1—-x)y’2dcc.

n
U Y \J O Y

3 M

{That yis L2 follows from Theorem 2Z4. The first inequality is included
in Theorem 181. For the second, we have

I'l,.z,wm_/ [1,.;1,,\2;1 [ll‘lr,./, \ il T T
.,Oy wa \]OHU’/ "'2']0]01.9\“’1 g\vjy dwuwav
:jf 1dujf1dv(‘j[vy’(t)dt>2s [’ av [ (g )2 de
0 w J U

Of the two 1nequahtles, the first can reduce to an equality only if y is
constant, the second only if ¥ is linear.]

226. If m>1,n> —1, and f is positive and an integral, then
w o M (nd1) m—1 ©
(i) [ xnfmwaLj x m—1 Jf’mﬂ/r /[ lf"’mdx\m
Jo 7 =n+1 1/, /
with equality only when f= Bexp{— O’x‘””‘”’/ (’"‘1)}, Where Bz=0, C>0.
In particular

(ii) [ praw<s( [“arpra) ([ fraw)
Jo P, wIER) A, TR
unless f= Be~C2*; and this inequality holds whether f be positive or not,

and also for the range (— o0, ©0).
[The most interesting case is (ii), which is due to Weyl (1, 345), and

is useful in guantum-mechanics
s u quan S.

AV SR LS8R Lo 02 81771 8§ LV

Assume that the integrals on the right-hand side of (i) are finite. Since
f is continuous, and n <m (n + 1)/(m — 1), that on the left-hand side is also
finite. Hence

1i
il

L~ 0

2]

pntl £Mm
w J —

0
Vs

-

i
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and so, integrating by parts over (0, x;), where () is an appropriate
sequence which tends to infinity with £,

i mo .. g
[ xrfrder= — —— 1i [ Tl fm=1 £’ g,
J 0 LAl k=w® J 0

But, by Theorem 189,

ro ¢ ro mindl) sm=-1 , »

1
|, #mr e[ Ta e pmaat (T 1f ),
0 J O J S 0 /
unless f’<0 and f’ and x(»*V/(m=1) f are effectively proportional. This
hypothesis leads to the form of f stated.]

227. If ¢ increases,
(If9dé)2<[f2d¢ fg2ds,
unless f and g are effectively proportional (in the sense of § 6.17).
[Included in Theorem 210; wanted in Theorem 228.]

228. Ifa=0,b=0, a=+b, and ¢ is non-negative and decreasing, then

(J[wxa+b¢dm>2<jl (a b \2)» [7‘2" fr[ b(]/)dx;
0

\a+b+1/ ) g Jo ¥

unless ¢ = C, where C> 0, in (0, £), and ¢ =0 in (£, ).

[¢ may be 0. The inequality is stronger than that resulting from a direct
application of Theorem 181. Tt follows from Theorem 227 if we reduce the
integrals to the form considered there by partial integration. The case
a=0, b=2 was mentioned by Gauss in connection with the Theory of

Errors: see Gduss (1, 1v, 12) and Pélya and Szegé (1, 11, 114, 318).]

229. If a=0,b=0, a=1, and ¢ is non-negative and increasing, then

(fimnga'> = G2} e

unless ¢ =C.

LDGG PUL‘y‘& and Szegd (1 i, 57, 214). In this case Theorem 181 giVGS &
reversed inequality, with the factor 1 on the right-hand side.]

230. If O<asf=sA<oo, 0<b<g<B<oo,

v [pinfoacs[3 /(45 ()} [T,

[Analogue of Theorem 71: see Polya and Szegd (1, 1, 57, 214).]

231. If we consider the closed or open intervals (in general four in
number) with end-points —a, b, where a2 0, b= 0, and suppose each of
a and b zero, positive and finite, or infinite, we obtain in all 34 types of
intervals I. Assign to each interval I a function f(z) defined for 0 <z <1
and such that logEUt,( f ), where M, (f) is formed for the interval (0, 1) and

PR SR § e Vo

W.lt.l.l. Y— .l, 15 J.LUJU(:) JUBU lUl UIIU values Ul T ]Il .l.
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[Examples:
. / 2 \—2/b
Tis —a<r<b: FloN—plla (1 _ \-1/b (1o 2
- XD w I :V’ J\W’ A \-L W’ \LV 1—-xl
Iis —c0=r=oo; flx)y=142a2
'l' n s Ay rl —l . e | \“*\
I is the single point 0;  f(x)=exp(—2 *+(1—x)" *):
I is empty; fx)=exp(—a 14+ (1—2x)2).

This contains part of the proof of what is stated near the end of § 6.11.]

232. Geometrical interpretation of Minkowski's inequality. Suppose
that a point in functional space is defined as a function of L2, two functions
deﬁnmg the same point if and only if their difference is nul; and that

-~ 1 P AN | A
l/.l.lU u..lbl)d.a.[.lbﬁ UtHJWb'b‘.[L DWU PUIIlbbJ ana y lb U.U.LIJJ.U‘J Ry

Then (i) the distance between two distinct points is positive; and (ii)
S (iR =8(f,9)+3(9,R)-
[If we define distance by
g =Ulf—glrda)tlr (rz1),
we obtain similar results in ‘functional space L"’.]

233. The shortest distance between two given points in Euclidean space
is the straight line.

rA ODIIMITN ‘IY\ cﬂnnn 14 OrTYTA

LL.L VUL VU 111 t} AL T ) BLVULL

z=x(t), y=y(t), z=z().

We may suppose that ¢ increases from 0 to 1 on the arc in question. If we
assume that z, y, 2z are integrals of functions of L2, then the length [ is
given by
B=[f@2 4y 422 A= My (@72 4y +2) 2 My ('2) + My (y72) + Ty (272),
by Theorem 198; and this is not less than

(Ja'dt)2 + ([ y'dt)? 4 (J 2" dt)? = (21 — %0)? + (Y1 — Yo)® + (21— 20)*-
If there is equality, Az’ = By’ = 2/, and the curve is a straight line.]

234. If 0<p<1 and ‘
[fgde= A ([ g da)t/?’
for all g, then [f?dx= A?.

[Compare Theorem 70. If f> 0 for all z, define g by fg=f?. If f>0in
E, f=0 in CE, and the measure of CE is finite, define g by fg=f? in K
and by g= @ in CE, and proceed as in the proof of Theorem 70. If the
measure of CK is infinite, take (for example)

g=Ge*
in CE. Then

1/»/
[ff'dx= [fgdx_z_A( [ praotar f etz
J E CE

and the result again follows when G — c0.]
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235. Suppose that fand p are positive and that f has the period 2= ; that

Fe)=["fetopmal [Tpe
and that the means 9, refer to the interval (0, 27) and a constant weight-
function. Then

M(F)ZM.(f) (0sr=s1), M(F) D, (f) (r=1).

[This may be deduced from Theorem 204, or proved directly (supposing
for example 7= 1) as follows:

im,’(F):é% [dx[f.f(x+t)p(t) dt_;

T (#\ At
JII\'I’ wv

< L [gp1f @+ p @ de([ p(s) dey-t

=5_|0% 7 72\ Jave
am) Upe)at)
1 (p)dtffriz+tyde 1 [, .

=/_~J1 \4 JJ N 7 —_— fr(u)du::s t,"(f).
27 fo(t)dt 27

For the case r=0, see Pélya and Szegs (1, 1, 56, 212).]
236. We say that f(x,y,...) and g(x, ¥, ...) are similarly ordered if
(@915 ) = (@2s Yas o JHG (@1, Y15 -0) — 9 (25 Y25 - )} 20,

oppositely ordered if f and — g are similarly ordered. Prove that

[J...fdedy...[f...gdzdy... £[[...dzedy ... []... fgdedy ...,
if f and g are similarly ordered, while the sign is reversed if f and g are
oppositely ordered. The integration is extended over any common part of
the regions of definition of f and g.

[Analogue of Theorem 43 (with r=1), due in substance to Tchebychef
(who considers only monotonic functions of one variable).]

237. If ¢ and ¢ satisfy the conditions of Theorem 156, and
i fx [
O@)=| pMd, Y@= b,
0 Jo

then [fgdze <[ O(f)dx+[ ¥ (g)dx.

238. If f and g are positive, and k a positive constant, and flogtf and
e* are integrable, then fg is integrable.
[By Theorem 63, kfg < flog* f+ e*9-1.]

239. If fis positive, then

/aflog}dx§2faflog+fdx+4\/
0

0 X e

a

[Take g= %logé » k=1, in the inequality used in proving Theorem 238.]
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240 If fis positive and L in (0, a), and

ra 1 Fo T\ 1
then , f(x)logédx=J B g+ F(a)loga,
Jo 0

whenever either integral is finite,

241. Suppose that a is positive and finite; that B= B(a) denotes
generally a number depending on a only; that f(z) = 0; and that

F(z)= [ “£() dt,

J= f flogtfde, K= [ — dzx.
Then (i) if J is finite K is also finite, and

K< BJ+B:
(ii) when f is a decreasing function the converse is also true; if K is finite
then J is finite, and J < BKlog+ K + B.

[For the last two theorems see Hardy and Littlewood (8).]
242. If fis positive and L in (0, a) and

Py

_ [°f @) .,
.t
then g is L and , :g(m) da:::j:f(x) dx.

[Integrate by parts; or substitute for g and change the order of integra-
tion.]

243. We define M, (f), where ¢ is a continuous and strictly increasing
function, by

£ £\ l—'l ir1

an 1 £\ s A
We\J ) =@ yelJ )gaxs.
Then, in order that Mo (f) = My (f)
for all f, it is necessary and sufficient that iy should be convex with respect
to .
244. In order that
Tn Pt <am® 9ty £

vadsn cece .wvd)l\.} ] = Jv»d/" s .wvwl\'} 7
for all f=f(xy,%,,...,2,), it is necessary and sufficient that every ¢, be
convex with respect to the corresponding ¢, .

245. In order that

X
Mor ... Mps (f) = o Mg, (f)
for all f, it is necessary and sufficient that ( ) ¢, = pvand (ii) gu = p, when
p> v and the permutation by which v,, vy, ..., v, is derived from 1, 2, ..., n

involves an inversion of y and ».
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[For the last three h

137, see Jessen (2, 3).

246. Holder’s inequality may be deduced from
My¥ Mo (f) = My® D2 (f)
(Theorem 203), by taking

f@y)=f7) (0<x<m) f @ y)=12""(y) ( sz él)'
[See Jessen (3).]

the 1ntegra]
I(x)zjf é(x, t)yp(t)dt

0
is finite for z==z, and z==,; then I(x) is continuous and convex for

aia ana convex 1oil

at 2} 18 bounde convex followe immediately from the
Mhat T{x) b ded and follo d
() 18 bounded ows 1mmeqiately irom the

\ .

Sf{x) and ¢(x) are pUblmve and ¢(x) convex for

(f(t) 7e

"C b
@]
w
=1
o
<
a
&
g
=
Cu

I(x)= dt

is finite for x =2, and x ==,, then I (a:) is continuous and convex for

[By Theorem 119, z¢(1/x) and
(£ ()
065 )

are convex, and we can apply Theorem 247. More general results can be
derived from Theorem 120.]

249, In order that

[4) a
should be true for every convex and continuous ¢, it is necessary and
sufficient that b ) b )
| s@do=| j@)dz
[4) a
) b
and [" @)~ yr+do= [ (f@) — y)+ da
J Ja

ar all a,
L

4UL ui -

[Here at means Max (a,0), as in §6.1.]

250. If fand g are increasing functions, then an equivalent condition is

/ REL= / fa)da

fora=<§£<0.
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Iﬁ

[For the two last theorems, which embody analogues for integrals of
parts of Theorem 108, see Hardy, Littlewood, and Pélya (2).]

261. If fi(2), f2(2), ..., fi(2) are real and integrable in (0, 1), then either

DR AN

(i) there is a function x(t such that

1 1
{Afl(t)x(t)dt>0, cees [ﬁf,(t)x(t)dt>0,
J o J o
or (ii) there are non-negative numbers ¥, , ¥,, ..., ¥;, not all zero, such that
nr £ 2N 4 e L or2N t e L 72\ — N
J1J1\v) T Y )T e T Y3 1) =Y .
252. If f,(¢), fa(t), ..., [ (t) are real and continuous in (0, 1), then either
(i) there are real numbers z;, x,, ... , &, such that
L1 f1(8) +xofo () + oo + X S (2)

is non-negative for all, and positive for some, ¢ of (0, 1), or (ii) there is a
positive and continuous function y(¢) such that

} fiH)y@)di=0, j Falt)y(t)d

[Theorems 251 and 252
theorem of Stiemke (1)

Suppose that

are both inteoral ana
tegral ar

MU UL sx3 5+

concerning systems of llnear 1nequa11tles.

ay, (A=1,2,...,l;u=1,2,...,m)
is a rectangular array of [ rows and m columns, and that
L)\(;c)=n 2zt ar,+ ...+ a,

L /\Ill« l’l’l: 7
M, (X)=01, Y+ Ay Yo+ ... +am?/z,
and consider the two problems:
(1) to find a real set (x) for which
Ly(2)>0, Ly(x)>0,..., Li(x)>0;
(ii) to find a non-negative and non-nul set (y) for which
M (y)=0, My(y)=0,..., M, (y)=0.
Since SyL(z)=ZxM(y),
the two problems cannot both be soluble for the same set (a), and Stiemke’s
theorem asserts that one is soluble whatever the set (a).
Theorems 251 and 252 state analogues of Stiemke’s theorem in which
the m columns or [ rows are replaced by a continuous infinity of columns
These theorems, and further references to the theory of systems

D

tinag wwhinh oo ha aralis
Ul

[ Ty I dad £ nlv
[ A 8 cqua’u TUD, WIiCI We fiave eXciuaed irom our lJL UsL amime u.u.xJ

1
on account of its algebraical and geometrical preliminaries, will be found
in Haar (1) and Dines (1).]



CHAPTER VII

SOME APPLICATIONS OF THE
CALCULUS OF VARIATIONS

Caleulus of Variations’ is that of aeuermmmg a maximum or
minimum value of
[‘1‘1
Tla,\ TV nn pe n2f\ Jon
sW)=| LEy.y)e
Zo

(1) v, =v(x.), y.=vy(x;) are given
\=/7 J0 J N\ /7 JiL g \*™1/ t=) )
(2) %' is continuous.
Let us denote this class of functions by &. Then our object is to
N1 1
Iina & runcuion
y=1Y (x)
of &, such that either
"1
JW)< | F(x,Y,Y)dx=J(Y),
J 7
or J (y)>J(Y), for all y of & other than Y. The general theory
tells us that, if such a function Y exists, it must satisfy ‘ Euler’s
equation’
(E) oF d (E}F‘)
MmN ool
oy dx\dy',

and y,=0, y;=1. Then (E) is ¥’'=0, and the only solution satis-
fying the conditions is y==x. It is easy to verify that ¥ =x does
in fact give a minimum for J (y) For J(Y)=1and

by Theorem 181, unless y'=1, y==x; so that J > 1 for all y other
than Y.
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We have in fact proved more than the problem as stated
demands, since the proof is valid whenever y is an integral. This

last hypothesis is however essential, since there are functions y
for which

(7.1.1) y(0)=0, y(1)=1, y'=0, J(y)=0.
In order that Yy should be an 1ntegral, i.e. in order that there

@= s du,

it is necessary and sufficient that y(z) should be ‘absolutely
continuous’. It is necessary, but not sufficient, that y(x) should

ariflipiant +hat

+1011]
QTN 1‘\['\11“& d hvgs) YIIF)*"II\ T“ mMarntrinil nr ls Yiuv DULLLULULLU tiiav

hw YU MU WUILWUY YoLiavvivii. 111 tl(l).l. vivui
Y

(x) should be monotonic; there are ¢ncreasing functions ¥ which

N B A4 1™~

— ok o

of its derivative. All this is expounded in detail in books on
the theory of functions of a real variabled. The main theorem
needed in this nhn'nfpr is the theorem of n'nfpgr atio
stated in § 6.3 (a).

These remarks lead us to lay down the following convention.
Throughout this chapter it will be assumed that, whenever y and
Yy’ occur in an enunciation or a proof, y is an integral (and so the
integral of ). A similar assumption will be made about ¢’ and 3"’
(if y¥”" occurs in the problem); and the assumption naturally
applies also to letters other than y. Without this assumption, all
the problems of this chapter would lose their significance.

(ii)> Suppose that
J (y)=J ,WEtyP)de,

and y, =y, = 0. The only solution of (E) satisfying the conditions
isy=0. If Y=0, J(Y)=0, but Y does not give a maximum or
minimum of J (y). It isin fact easy to construct a y of & for which

Hobson (1) Tlt hmarsh (1\

a e 3 ) 1lée (2),
e Vallée (2), ),
b This and the next example are due to Weierstrass and are of great historical
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J (y) is as large, positively or negatively, as we please. Thus, if
f (%) is any function for which f(0)=f(1)=0 and

r1
IS SN

J J ax > v,
0

and y=Cf(x), then J(y) is large when C is large and has the
sign of C.
(iii) Suppose that
1
)= ayde,
Jo

Yo=0,y,=1. Here J (y) > 0 forally of ®; but y =a™ gives J ={m,
so that there are y of & for which J(y) is as small as we please.
For y of &, J (y) has an unattained lower bound 0. The same is

true for classes of ¥ more general than & (for example, the class
nf'"ln{'nnra]a\ n the nther hand T{al\ attaing 1fa ]r\nnhr] 0O for the

h gl
v J.J..I.UUELWJ.}J NS 4A vVidiv v viiva uw;xu , UUUQULILID LUD JU UL vV LU vilv

iunc’mon mentloned under (i) above and also for the discon-

ORI, SN, S

- : K £
IVII‘Ill' 1

)..n

~x=0 and IOIQ’J>U

CD

7.2. Object of the present chapter. The Calculus of Varia-
tions might be expected to provide a very powerful weapon for
the proof of integral inequalities. There are however hardly any
instances of its application to inequalities of the types important
in general analysis. This may be explained on two grounds. In
the first place, the Calculus of Variations is concerned avowedly
with attained maxima or minima, while many of the most im-
portant integral inequalities assert unattained upper or lower
b

> hvnotheses of the classic

ity’ hypotheses of the classic

J—L,\mn 1easons +1L Na
U U \ &%

almost ignored in this chap ,

The ideas of the Calculus are however often very useful, and
we apply them here to a number of special inequalities. When, as
in example (i) above, or Theorems 254 and 256 below, the bound

asserted by the inequality is attained, and attained by an ex-
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tremal, that is to say by a solution of Euler’s equation, these ideas
are obviously relevant, and the result may well be one which it
would be difficult to obtain in any other way. We shall however

find that they are sometimes effective even when the bound is

4 P YT I S - R S S
(9] Hesouusiae vile Scope bile viieo y.
OL!‘ ar ghments ill not demand any detailed knowledge of the

7.3. Example of an inequality corresponding to an
unattained extremum. As a first example of the use of varia-
tional methods, we select a special case of a theorem which was
first proved in an entirely different manner, and to which we

S N Q

shall return in § 9.8.
253. Ify'belongsto L?(0,0), y,=0,and yis notalwayszero,then

0

I Y.
J(y):JO k4y é—ﬁ)m>o.

It is necessary for our present purpose to consider the more

general integral
£ - T\ T/,._\__ rw/ 12 yz\ 7T Vs > AN
(7.3.1) T)=] \m*—) > (24
Euler’s equation is
w20/ L X =0 (X =1/, < 1)\
w g ] l\y v \l\ .l.l’k: 4/.
Its solution is y=Ax™+ Ba®,
—1 1 1
where m=3++/(3—=A), n=§—+/(;-A),
if >4, and is y=a*(A + Blogx)

if u=4. In neither case is there a solution (other than y=0) for
which ¥’ is L2,

For this reason it is necessary to modify the problem before
we attempt to apply variational ideas. We consider

— 2__J
J@)=| |ry?—5)dx
v i\ ~ 7
8 Talawla aniatian and TTilhandd’s tnoaniant intagnal Ancrihinae whish oo aggiime
TOALuITL D U\.:l Uuauviulil alitl 11UUGLLU D 1ilvailaily 1 10(751(1/1 Pat yuuul WIllLiT WU adduiiv
will be found without difficulty in the books of Bliss (1) or Bolza (1



176 SOME APPLICATIONS OF

(7.3.2) Y=Y =gm=gite
where
/(1 1) 1
(7.3.3) a=A‘/(\a—‘;), =g
A simple calculation gives
9
(7.3.4) (Y)-.i——2

and this suggests the following theorem.
254.% If u>4, y(O) 0, y(l)-_.l and y' is L?, then

— 2
(7.3.5) Jy)=| (py?-5)dez—p5-,
Jo\ ) 1-2a
where a s deﬁ%ed by (7.3.3). The only case of equality is that

defined by (7.3.2).

7.4. First proof of Theorem 254. We give two proofs of
Theorem 254. The first demands no knowledge of the Calculus of
Variations, though the transformations which we use are sug-
gested by our knowledge of the form of the extremal Y.

If

(7.4.1) y=xtt0fn=Y 41,
then
(7.4.2) Jy)=J(Y)+J (n)+ K(Y,n),
where B, =2 (275 =1 de
’ jg \" a2
Since Y’ and so 5’ are L2, n=o0 (x*) for small x;¢ and so
— 9 Hm _g e L Y d)
s»o\J 22 L“"_I ) e
/ Y
="2§1Lf’},, 817(\,;,Y"+;2)dx=0
2 The extremal y=Mtt0 (1 - )z

gives y,=0, y, =1 for any A; but y is not L?, and J(y) diverges, unless A=1.
b For this and some later theorems in this chapter see Hardy and Littlewood (10).
¢ Theorem 222.
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Hence (7.4.2) gives

2
(7.43) T @)= —ga+ 3
and it is sufficient to prove that
J(n)>0
Here 7’ is L2, and v is not nul but vanishes at the ends of the
interval
We now write n=Y{
T A
R Silvid}
1 7?2
(.44) Tsn)= [ (=T} do
J 8 w/
r1 r1y2ze
_—.,L' (Y + Y'{)2dx— , x; dxz
J s Js

—u| verrdos [ (v eaerou[ vYer e
But J J &\ v/ J 8
(1.4.5)

1
> xr

2;1,]8 Y

Combining (7.4.4) and (7.4.5), and observing that Y is a solution
of

v

2 7 WP T e [‘1 :ww e —r wwary o
Y (0 dr= —,u,(l’l"g‘)g—-,u,J (X" 4+ Y Y')(4da.
8

, Y
we obtain

(48)  Tyt)= —u(FVPhyt | (YU)od.

( Z)"’ 2
But YY'(*=(3+a) ——(%+a)%->0
when z—0. Hence, when we m“ke 8—>0 in (7.4.6), we obtain
ri
(7.4.7) Jm)=pl (Y{)*de,
Jo
RN, L .U IS I IR S R N b | 1 1 v ~
WILICI1 1S POSItIVE uniess vne invegrand 18 nui, 1.e. unless {=0U.
This proves the theorem. The condition >4 was required to
make Y’ belong to L2. We have however reduced the theorem
to dependence on the identity (7.4.7). Since
Y =n' s+a ,_3ta



178 SOME APPLICATIONS OF

(7.4.7) and (7.4.3) give
1 Y 1+a 2 ]
1:48) J0)= [ (w*=L)da= 2 vu[ (v =2E") aws

and here Y has disappeared. Since both sides of (7.4.8) are con-
tinuous in u, we may now include the case u=4, a=0. The
identity may be verified directly by partial Integration when its

rm h an ana 1qa Paniiirad o
form has been discovered (though some care is required a

convergence at the lower limit).
We are now in a posmon to prove Theorem 253. If we write

(7.4.9) “ {u'll 2\1] 2 6_2+ mn “e{al'—%-‘*-aw\z dx

AT 7 \Fvl x&/ 1""’2“& I"JO\U x n‘]/ 2
where now y(U):U, y(€)=c. If y" is L? in (0, 00), c=0(£}) for
large £,2 and the first term on the right tends to 0 when &->co.
Making ¢ — o0, and supposing u =4, we obtain

{(41/’2 \dx 4{ (”—Zfi) de.

This formula, Whlch makes Theorem 253 intuitive, is valid when-
ever ¥’ is L2, and may of course be verified directly?®.

D..

1+ 4ha vrariatinn

7.5. Second proof of Theorem 254. In our second proof we
st

make explicit the variational theory which underlies the firs
Sunpose that y =Y (x), or £, is the extremal through the end-

Iy o~ 1\ 2§ e 1 / \

(/.0.1) y=yw,a),
or K («), is a family of extremals containing £ and depending on
a parameter «. Suppose further either that

(i) E (x)coversup aregion surrounding £ in a ( 1; 1) manner, S0

(ii) every curve of K («) passes through P,, so that y(xz,,«) is
independent of «, but condition (i) is satisfied in all other respects.

% Theorem 223.
b Grandjot (1) gives a number of somewhat similar identities for series.



mTYYT T AT MANTTYTT TT O rath nl xTr TIT A MT A AT 1”“
L L vALuvuvLuUD uvn ADNMLIALIUND Lo
T~ P . SR RPN / \ 2 et A | ~ AL . O£ TT Lo
in tnese circumstances?® (7.5.1) 1s said to deline a jieid Oi ex-

The slope Yy (x,a)

of the extremal through a point P of the field may be expressed

as a one-valued function
p=p(x,y)

of x and y. Hilbert’s ‘invariant integral’ is
J*(C) = Jf (F—pF,)dw+ F,dy).
c

Here F and F, are the values of F(x,y,y’) and F(z,y,y’)
when y’ is replaced by p, and the integral is taken along any
curve C which lies in the region covered by the field.

The fundamental properties of Hilbert’s integral are as follows.
/ T* Iﬂ\ r]nv\nntqm nv\]-r‘r NN +1\o Qnr]n n r\‘P ﬂ- m n*‘]’lﬂr mnrr]u
\ eJ \U’ uUt}ULluﬂ Ul.ll.y Ull vViilv viiuo %, A0 UL UV ’ L1l UVIIUL YY UL\WRLD
(F—oF Vdx+F. di=dW
\ _lJ.l‘ p) aL -+ » ay=wyvry

is a perfect differential, and
J*(O)= WR— WQ.
(ii) If Cis the extremal £, then

JH(E)= | Fde=J(B),
JE

say. It follows that, if C' runs from P, to Py, then
J(C)—=J (B)=J(C)=J*(HE)=J(C)—J*(C)

[ F(x,y,y')da
R

~ [ (F@y.0)-pF,@y.p)do+ Fy 0. 9)y}
J C
—_— r G/m At m VAW L
'—J CL \ub, ,1}, IWW,

where
E(x’y:pvy,)=F(x’y:y’)—F(xay:p)—(y’—p)Fp(x’yap)°

a With the addition of certain conditions concerning the differentiability of
o (x, y) which it is unnecessary to repeat here: see Bolza (1, 95-105).

o
N
1
N
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Here y' is the slope of C' at any point and p the slope of the
extremal through the point; and & is Weierstrass’s ‘excess-

lLule/lUI.l . .Ll C >0 WIIGIIBVGI y ?p, UIJGII
J(E)<J(C)
and & gives a true minimum of J.
In the present case we take

Q/__ xé-f-a
as K (a). We find

»2? » (1 _ Y\ b (1 __ 4\ 22
\2 wjpw \2 wypw
Ji=t (=L awr®ay)= [aw
= — e x —
%—a“ 2T 4 y) ’ ’
y‘u‘
where W= """
Here E=py?—up?—(y' —p)2up=py —p)*>0
unless ' = p. The identity
v Iad
J(OY=-J(E)=| Edx
Jg C
reduces to
1 2 2 1 1 2
i 2] ()
fn (“y ) Kl el I Uil PRl I S
U\ v U\ \ / /
which is (7.4.8).
This argument shows the genesis of (7.4.8), but does not prove

14 FAv tvra voaaanna T 4hn Bnat nlann 7 haa a ot lanider n A

it, for two reasons. In the first place, F' has a singularity, and
the theory of the field breaks down, for z=0. Secondly, the
theory presupposes the continuity of y’.

In order to dispose of the first difficulty, we may take P, and
P, to be (8, 8+2) and (1, 1). The theory then gives the identity

iy y2\ 2(1—3%9) [, /1 ?/)2

Jolore=ta)as =S e [y = (e oo

and we obtain (7.4.8), for continuous y’, by making & tend to

7eron

i AT .

When (7.4.8) is proved for continuous y’, it may be extended
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to general y’ of L? by standard processes of approximation. We
deal with this point in the next section, in a different problem
where we have no alternative elementary proof.

Similar considerations lead to the identity

(7 7.5.2) P(,m'k y\dfz:_ 1
Jo\1Y xk) (k—1)(1=2)

(1 o (M\E / , /)\?/\’“"11 _
+[.L y“’— — K axr.e
0 x
Here
k k
y(0)=0, y(l)=1, ¥ =20, k>1, "l>(k—i) =K,
and 1¢ the (11minna) rant of
SALANA VAN ViU \uj..l.‘l\.iu\.// LUV U UL
(7 B 2) gl IYX-1(X _ 1YL 1 =0
\lou-ul Iuk\'\l -l-,l\ \I\ J.’T-l. v

(o))

which lies between 1/k’ and 1. When the form of (7.5.2) has been

determined we may put

by )

It may be verified directly, by partial integration, that this is
true whenever gy’ is L¥; and we can prove as in §7.4 that the
1dpnhfv remains true when the upper limit 118 renlaced_ hv o0 and

the term k/(k— 1) is omitted. Since, by Theorem 41,
ak—bk >k (a—b)bk-1

for all positive a, b, we thus obtain a proof of a theorem (Theorem

’2’)’7\ 11’71’\1[\ heva 11 1\{) a4t r] DV“]1I’I“+]‘\'Y ‘)T\A T\T‘I\TTQI’] 1“ an DY\+.TT'D]T7
’ YY 1RIULIR VY 11l MU DU U AV § UA}:}JJ.ULU.l s Cuiiva tl.l.UVU\.L LXK 11l U1LVLL VAL
different manner, in $9.8.
Incidentally we obtain
E \F
255. If kE>1, ;u>(k 1) =K,

& The theory of the field gives the form of the identity, which may then be
verified independently. The limitation to curves for which y”=0 would introduce
another slight complication into a properly variational proof.
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y(0)=0,y(1)=1, and y' ts L¥, then
(10 . y* 1
T= ] W 2 e a sy

where A 18 the root of (7.5.3) between 1]k’ and 1.

7.6. Further examples illustrative of variational
methods. It is difficult to distinguish at all precisely between
‘elementary’ and ‘variational’ proofs, since there are many
proofs of intermediate types. We give a selection of such proofs,
worked out with varying degrees of detail, in this and the succeed-
ing sections.

(I). 256. Ify(0)=0 and 2k is an even positive integer, then

r1
(7.6.1) | y y'2kdx,
v o J O
where
1 2k . m\%*
(7.6.2) 5 (\7 Smiﬁc)

There s equality only for a certain hyperelliptic curve.

(i) We suppose first that (1)=+0, in which case we may take
y(1)=1, and consider

‘-1
J (y) —y2*ydux.
0

Euler’s equation is
(2k—1) Cq ’Alc—d/q” —I—’l/”“ 1=,
which gives (2k—1) Cy'% = " — y?*

where (' is a constant of integration
There is one extremal which passes through (0, 0) and (1, 1)
and cuts x= 1 at right angles. In fact, if we take (" =1, then y’
vanishes when y=1. Also
pef(op_1Oek| %W
W\ /AS| J (1 _yzk)llzk
and, since
1 1
2k\1/2k - 97.°
J o A=y 2~ 3% ) 2k ok
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there is an extremal of this type which passes through (0, 0) and

(1, 1). If we denote this extremal by Y, then

T IXrN r/vfrfr,cﬂ.___--.ll rl Xr 1 -\ m-r‘r:n1 n‘rr,l,l s Tral. 1\ 7 ~

J(I}:I—UII an—t —J Y (k= 1)Ux “*72 ) + X¥=*"*yadx=0V,
0 0

since Y'(1)=0.

To prove the theorem, we must show that y= Y gives a strong
minimum; and this follows easily from the general theory. The
extremal is a rising curve of the same general form as the curve
y=sin {7z, to which it reduces when k= 1. The curve y=al is
also an extremal; the family y=«Y defines a field in the sense of
§7.5; and the excess-function

€=y —p*—2k(y’ —p)p*
is positive. Hence the standard conditions for a minimum are
satisfied. This proof is genuinely ‘variational’, and (in view of the
trouble of calculatmg the slope function p explicitly) it might be

> B
_I
@]
g,l

=
o
=
=
D -
=3
d
=
&
cf-

T () =tim J ()
but all that then follows from (7.6.3) is
Jy)zJ(Y),
the strict sign of inequality being lost in the passage to the limit.
The difficulty disappears if we lock at the question differently.

N

The general theory proves not
the identity T (%) — J(

nly the inequality ( 6.3) but also
(
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where & (y*) is the excess-function corresponding to y* and the
field y=a«Y. Approximating to ¥ by an appropriate sequence of
y*, we replace this identity by

Jy)—-J(Y)=[E&(y)d
and the integral is positive unless y= Y.

(ii) The case in which y(1)=0 may be discussed similarly,
since y=0 is then an extremal qnhqunq the conditions, and is
lncluded in the field y=aY used in ( 1)

The proof might have been arranged differently if we had
made no hypothesis about the value of y(1). The problem is
then one with a ‘variable end-point’, that of minimising J (y)
for curves drawn from the origin to meet the line x=1. The
extremals cut thisline ‘transversally’ (in this case orthogonally),
and all the curves y=aY satisfy this condition. The general
theory shows that all the extremals give the same value of J (),
and this value must be 0, since it is 0 when = 0.2

7.7. Further examples: Wirtinger’s in quahty (II) Let

1sg congider more nnrhmﬂs\rlv the cage I
pa ecase k

limits, the result is that

I
pomd
-'1
..4
2
0
3
2.
-]
=]
-’-.
>
D

ir
or J( {y2(1+ %) — 2yy' Y} da=0.

This will plainly be true if

Y2 (1 +4?) do — 2ydy
is an exact differential dz, and z vanishes at the limits; and this
requires — ' =1+42 = —tan(z+k),

& We owe these remarks to Prof. Bliss.
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in which case z= —yy?. If we take k=1, J=cotx, then 2
vanishes when = 17; and since ¥’ is L? and so® y=o(x?), 2z also

vanishes when = 0. We thus obtain

A LARDAANS AaT/ad W N as VCRALL

(3 i
(7.7.2) ’ (y'2—y?2)de= . (y' —ycotx)?de,

——

which makes (7.7.1) intuitive.
A slight modification of (7.7.2) leads to

287. Ify(0)=y(7w)=0 and y' is L?, then

J‘Fyzdx<J‘ y'2dx
0 0
unless y=Csinzx.
For y=o(at) for small z, and y=o{(7w—x)}} for x near =2 so

4

hat y2cot x vanishes at both 'mi‘us. Hence

T ™
(7.7.3) ‘ (y"2—y?)dr= ‘ (y' —ycotx)?dx.
Jo Jo
Ao ~al o T 1t l‘-r O\ 1Aia A £ & vnAra 1taractia o
Anopner Hiouincauoin ok (/./.4) leaus v a 11101 1IILCICS UG

theorem due to Wirtingerb.

258. Ify has the period 2w, y' is L2, and

2
(7.7.4) f ydx=0,
v i
r2r r2r
then ’ y2da < ' y'2dx
Jo Jo
unless y=Acosx+ Bsinx.

We cannot write down at once an identity similar to (7.7.2)
r (7.7. 3) but with 0, 27 as limits, because ycotx will usually

have infinities in the range o
as followsc.

[ v T A o e A

~ XXTA
1. VVUJ.lldy UWUVGL alguy

a Theorem 222
h Q.- DI 11 . 74 1N~ (4 ) PSR TS SUUIUNPPh LN Sy
¥ R0ee DIasSCllke (1, 1ug). 10e INoUsSty ilugicuiaile prou
Parseval’s Theorem to the IFourier developments
y~%a,+X (a, cos nw +b, sin nz), y ~ X (nb, cos nx —na,, sin nx)

o
L

I
15 U

allows wag communiecated to ng
O S wWas Co nicated to us
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The function z@)=y(x+7)—y ()
has opposite signs for the arguments x and x+ =, and therefore
vanishes at least once in (0, 7). We suppose that z(«) =0, where
0<a<m, and write y(a)=a. Since ¥y’ is L2, (y—a)’cot(x—a)
vanishes for r=a and x=a+ 7 ;2 and
(f2r ) i
| - (y—a)—{y —(y—a)cot(x—a)}*’|dz
0
r ki
= I (y —a)?cot (x— oc)J = 0.
L o

Hence, using (7.7.4), we obtain

r 2
| @2-yhdo=2ma2+ | {y —(y—a)cot(z—a)da,

y'=ycot(r—a), y=Csin(x—a).

There is a special interest in Theorem 258 because the proof of
the classical isoperimetric property of the circle may be based
upon it. We consider a simple closed curve C whose areais 4 and

whose perimeter is L, and take

2ms

(ii’ = *L"" ’
where s is the arc of the curve, as parameter, so that
r=x(¢4), y=y(p) (0=¢=2m).

We suppose for simplicity that 2’ and %’ are continuous; the
proofis valid for more general z, y. We may also suppose without

loss of generality that the centre of gravity of the perlmeter lies
on the axis of z, so that

We have then

PRI R

& Using Theorem 222 as in § 7.4 and above.
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?—244_”2”1( 2 (W Hd<ﬁ+2f y % aga
= Jo Wdg) T\ag) | i
e e [
Jo \dé 7))o Nag) T
> [ I(WY el ag =,
Jo WNag) =Y

by Theorem 258. There will be inequality unless
y=Acos¢+ Bsind
and also = —[ydd¢=—Asind+ Beosd+ C,

when the curve is a circle®.

7.8. An example involving second derivatives. (ITI) It
+

s and gy, g, fh

N N N T A T
JO Jo

where p > 1. The next theorem settles this question in the case
p=2.
2569. Ifyandy'’' are L?in (0, 00)4, then

( ' y'2dm) <4' yzdx' y''%dx,
\J 0

nsnlooa as . A VI DN ulnaen

(L2 [ 24710 y———l‘l.l \.Uvb}, wnere
A VR ¥, LAY P \ fo, 1\
I =€ “"dl lkdzb l'y—"’y} \')/—377},

[271' dx

a N 5] . y PR, £ R B
w uUr —AI Yy J$ u,fp, accoraimg uvo vae sense o

a given sense round the curve

b The proof is in pnnclple Jhat of Hurwitz (2), but differs (a) in that we do not
use the theory of Fourier series and () in our unsymmetrical treatment of « and y.

e T o dns
¥ nanaaua \‘, O}

d In accordance with the convention of § 7.1, ¢’ is the integral of ¥” and y of ¥’.
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If we consider the ‘isoperimetrical’ problem of the Calculus of
Variations defined by

P ~man oo

‘Ji=| y'?dx maximum, J,= ‘ y2dx and J,= | y''%dx given’,
J o J O J o
we have to form Euler’s equation for

It is a linear equation of the form
ay”"” +by" +cy=0,

whose solutions are linear combinations of real or complex ex-
ponentials. When we try to choose the parameters in the most
advantageous way, we are led to consider the function Y.

It seems difficult to complete the proof on these lines by use
of the general theory. We shall deduce Theorem 259 from the
simpler theorem which follows.

260. Under the conditions of Theorem 259,
o
J(y)=J (> —y?+y"?)dx>0
Jo

unless y=AY , when there is equality.

We give several proofs of this theorem to illustrate differences
ofmethad Thefiret two are aathevatand elementarv: the third

A ALLVV/ULAUNA e A LAV LIL DU VYY U v U’ o U-IJ.VJ DUCULJ.\L, viviiivlix le‘y viiv UJJ.J..I. u.

of which we give only an outline, makes explicit the variational
theory which lies behind the other two. We begin by an obser-

vation which ie necessarv in anv case viz that .. ic finite
v Akia ANT AL A

UL L ¥V 224043 20 JAUVUSOOUL Y L1l QVily WOV, ¥

To prove this, we have

b:¢ X X
frmr O ¥\ r I2 y 28 r I—l r rr 7
(7.8.1) j Y ax:l_yy_l -—J yy''dx
0 0 0
Since J, and J, are finite, the last integral tends to a finite limit®

would tend to infinity, which is impossible on account of the con-

- o

ergence of J,. Hence J is finite, and all three terms in (7.8.1)

& By Theorem 181,
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tend to limits. In particular yy’ tends to a limit, which can only
be 0 (again on account of the convergence of /).

(1) Our first proof proceeds rather on the lines of §7.4. It is
easily verified that
Y+Y'+Y"=0, Y(0)+Y' (0)=0, Y"(0)=0
J(Y)=0a

We now write y=z2+cY,

ol

Av]

nel

§

choosing ¢ so that z(0)=0. Then z, z’, and 2"’ are L2, z and 2’ are
o («*) for large x,P and zz’— 0.

N A<xr Tia\ _ T\ 1 DA KAV S\ p02 TIVN
ANOW v Y)muv ig)T el L ,%)T 0 v Ly,
whara
YY aivaw
[‘oo
rr __ 1Y . B VA VT Ve W Y NN SN
_[L—' \l&—.lé"r'.l « juan
J O
fo fo fo__
=——J (Y’ + Y")zdx-—J (Y + Y’)z”dx—J Y'2'dx
0 0 J 0
roo
_— (VLY LV "\ dr—=0
J U

Hence J (y)=J (z), and it is enough to prove that J (z) > 0 unless
z=0. But, since z2(0)=0 and 22’ -0 when z—> o0,

o0 e}
f 2'2dx= — { zz' dex,
J o

6 Jg O
w . - P PYP Y -
and so J(z)= (22422"+2""2)dx >0
0
rmi < m._ . YN
uniess 2=4u, 11nIs proves Lneorei 4ov.

(2) We may try (following the lines of §7.5 and §7.7) to reduce
Mhanrarm VYEN 44 Aarnondanaon 11nnn an 1doantiter Hart+hia ywormalra
LIICUVULTIL &4VUVU UL uUPUlluULlUU ut’ull il 1UAU11UL U‘y « AUL ULuD, YU LLLanw

(77 R 9) $202 __0y’2 1 a2 (2 1 har - i’ N2

\i.5.4) g Ty Ty I TRYTYY Jged

an exact differential; and the simplest choice of ¢ and ¢ is
¢=1=1, when (7.8.2) reduces to

—d(y+y')
Thus
L3¢ r— -1 X
| -2y - +y +y)de=—| g+ 2| .
JO | 10

a This requires a little calculation. b By Theorem 223.
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Since J,, J;, and J, are finite, the left-hand side has a limit
when X —>o00.% Also yy’— 0, and so y%+ y'2 tends to a limit, which
an onlv }\n 0. T+ -pn"nnrq that

nwl..l U.I.ll.J AV AUVLAUVU YYD ViLOUVY
(7.8.3)
fo ¥~y +y ") dz={y(0)+y (0)}*+ f (y+y' +y"')de,
which is positive unless B _
y'+y +y=0
and ¥’ (0)+y(0)=0.

These conditions give y=AY.

(3) The underlying variational theory is a little more complex
than that of §7.5. If we put

(7.8.4) Yy =z,

{*

(7.8.5) TJW)=J(y,2)=| (y°—y*+2")da,

and suppose that
(7.8.6)  y(0)=1, 2(0)={, y(0)=0, 2z(0)=0,
then the problem is a ‘Lagrange problem’, viz. that of minimising

uT/nl »\ whon mn}nnni- +n (77 A\ and (7 Q &

\Y> ﬂl VV.Ll.el..l. Uy U\JU VU \1.0,. ) itk \(1.0.U

\

).
The extremals of the field, in space (z, y, 2) are given® by
od d 6}3\ 0 oD d@‘_b)

(78.7) ~ 5 I5=I1=Y, = —5 . =O,
dx\0y') 0z dx\0z
where O=F—-Ay —2)=y2—y'?+22-A(y' —2),
and A is a function of x defined by the equations themselves. In
this case the equations (7.8.7) reduce to
d o, d o
(7.8.8) 2+ (2y'+A)=0, A= (22)
a dx
and from these and (7.8.4) we find
(7.8.9) ¥y +y" " +y=0.

a The integrals o .
/ yy’ dx, -/ Yy dz, /0 yy''dx

uelug conavergeliy, IJy .I.JJ.BUI(:?LU 101
b For an account of the general theory see Bliss (2).
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(7.8.10) Y =ae P¥+ dePx,

where p = ¢} and the bar denotes the conjugate.
The equations (7.8.10) and
(7.8.11) z= —ape~P* —ape=P*,
(7.8.12) A= 20e-P% + 2qeP",

define a two-parameter ‘field’ of extremals through (oo, 0, 0).
The ‘slope functlons P, q, and the ‘multiplier’ A of the field

aalanladinn oicre

valvulauvivull SJ.VU
™ Q 19\ A ™ ~ a ~
(/.0.190) Pp=e, qg=—y—=%
i Q 1A\ Dar 2
({.0.1%) N=2aYy.>

=
=3
n
Jod o
’3
¢'+-
@

oral has nropertjes cor espgpd g to those of 8 7.5; 1t is

nd-pomts, and its Value
hat of

gpl-l
FE
® 3
©
5 8
o O
M B
o o+
=
gr—s
?_%E-*
o o
n
a—*"‘
('DC‘?'
g:“
58
®c+
g,é
w Q
o B
|-|

E=0(x,y,2,9,2,A) =D (x,9,2,0,¢,A) — (¢ —p)P,— (' —q)D,.
7 7 7 7 7 4 7 7 7 7 7 \ i 7 _[l L

& p, ¢, A are in the first instance functions of « and the parameters a, @ of the
extremal. Here, in particular

Yy = —ape P —gpe =z, 2'=ap’ePP+apleP= -y -z,
A=22"= —2ap3eP% — 2qp% e—P% =2y.



109 QAT ADDTTANAAMTANG AT
LI94& DUNMLIL AT ITMUWIVALILIUNOD UX
T AL 2 om 2 1T L Lrinenad 4l o4
111 S Case 1V WilL DO 10U11U ullat
7 Q 18\ f Y YRR PV H’\Z_’Al __~\2
17.0.10) C=\YTeT S \Y “)
and Jp=(1+10)>2

Since & reduces to (y+vy’ +2)% when y’' =z, we obtain

,“ (uz—u'2+z’2)da:—(l+Z)2+’( (y+y' +2')de,
0 J O

which is (7.8.3). We have thus proved Theorem 260 in three
different ways.

We have supposed that y(0)#+0, so that we can take y(0)=1. The
case in which #(0)=0 may be discussed similarly2.

Our object has been only to illustrate a method and not to discuss a
difficult general theory, and we have therefore presented the argument

very shortly. The following remarks® may help to make the method

LAPP I § B Re By
11IVCIIIZ 11O,

(a) The integral J* constructed from a two-parameter set of extremals
is not necessarily invariant. Here we can verify the invariance of J*
directly; in fact

—Jd(y +2)
s 2 (2112 "FL . i

11 avrdm ala £ A QAT
I eXUiremass iorma & “1eia . 1 LUu'bUll g

eyt

i e
L1118 u1va11aubu ensures

to be found in the fact that they pass through a fixed point, y, z, and A
all vanishing for x = co.
(b) In this case @ is quadratic, and
E=H{(Y' —P)P Py +2(y' —P) (2" = q) Do+ (2" — 9) Doy},
which leads immediately to the formula (7.8.16).

A\ Qussnannan +ha ! and ) ara dofinad ac ahavwae +hat B 1o +ha rnaatdiorn
\U} UU.PFUBU U).J.CU/U i ana U are geineqa as AU VT, LllAU JJO f ] UIJ.U lJUDl ULVU
axis of x, and L an arbitrary curve joining (0, 1, {) to the origin. Then

:(1+;>2+Jf0 (y+y +y")2de.

This is (7.8.3); the argument avoids a direct calculation of Jz. Alterna-

tively we may argue
fe o]
dz,
Jo

Jpg=Jdp=J] +J 5 =(1+0)

& Compare §7.6.
b For which we are indebted to Prof. Bliss and Mr L. C. Young.
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In order to deduce Theorem 259 from Theorem 260, we apply

the 1wa+ thanrarmm +n a1l inatand ~AF + 21l Wa +hiia nhtain
oV UAUULULLL UV \WIPI LIDUUQAL UL U \W" YYU vilug vy uvaniir
{* o0
4 2 4,2 _ 12,,/2 772
ptdo—p?Jy+J,y= ’O(P?/ p*y 2 +y"?)dx>0.

7.9. A simpler probiem. It is interesting to observe that the corre-
sponding theorem for the interval ( — oo, o) is much more elementary and
of a quite different character.

261. Ifyandy”
— 4

Q

e L2 in (—o0, o0), £
\ /

/[°° 2 N

\_} Y d"">2<j[00 Y wvuj y"zdx
— 00 — e OO

unless y=0. The (unit) constant is the best possible.
In fact (as in the proof of Theorem 260) yy’ — 0 and

Je=( [mmy’zdxf (" yyraw) <[ yae” yraw=0,0,.

— / \ J - / J - J —=
To prove the constant best possible, we take y=sinx for |z | Sn=, y=0
for | x| >nm, and round off the angles at x= + nx so as to make ¥’/ con-
tinuous. We can plainly do this with changes in the three integrals which
are bounded when n — oo, and then each of them differs boundedly from n,
so that J 2

if n is sufficiently large.

I"l A\ T T
“L—¢€)JgJg

MISCELLANEOUS THEOREMS AND EXAMPLES
f

U!

(0)=y(1)=0 and y’ is L?, then

[1————34—2——11,, <} { y2dx,
Jox (1—2) Jo”
unless y=cxz (1 —z).
[If J(y)=J[ (%ylz z 1 )) dz,

woy A

nnen( )1S (l—x)y"+ =0

and y=ox (1 —x) is an extremal satisfying the conditions whatever be «.
By varying « we can define a field? round any particular extremal. It will
be found that in this case J(Y)=0 and

_1-2x W= 1-22  , =~ _,f, 1-2% ]2
P=ri=—oy? “2x(1—x)y’ C=2¥ Tza=xY -
& The field differs slightly in character from those described in § 7.5, since each
extremal passes through (0, 0 and (1, 0),

HI I3
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The underlying identity is
7 1 2 2
[y ao=t [ (v~ 2722 0) e
\ “’U z)/ Jo\ r{(L—x)~
The theorem should be compared with Theorem 225. For fuller details,
and nranfas af hadtlh +h oo oo mmmra F T Acras o s PR

@l pLuuvLs UL UL VIICOTCLILS Uy 11eaiis Ol .uegﬁuu.u:‘, .I.LLU.bl)lUle, sSeé aiay

and Littlewood (10).]
268. If J=/ y2da, K:jf "y’ dx, then
0 0

4JK > {y(0)}*
unless y = ae~b2,
264. If
(@) y(—=l)=-1, y()=1, ¥y (-1)=y'(1)=0
and k is a positive integer, then
{l (/" Vkedy > 2 /4_]_"_____1.\.%_1 s
_/ 1 \J 7 = \2]6 . 1/
wxrith inanitalidyr 11mlaca
YYivii LlLU\.iualll.U VWLLITDD
4k—1  2k-—1
— - (4k—1)[(2k-1)
Y="9r *" 72k °
[This is an example of the theory of § 7.8, simpler than that in the text.
In this C&SG é‘zzfzk_q2k_2k(z/_q)q2k_l.]

285. If y satisfies (a), and has a second derivative ¥’ for every z of
(=1, 1), then | y”/(x) | > 2 for some .

[This theorem, which is easily proved directly, corresponds to the
limiting case k& = o0 of Theorem 264. The extremal curve of Theorem 264

reduces to y=2x—x?sgnz.

D
=3
o
)

For this curve ' =2(1—|z|{), and ¥’ = — 2 sgnx except for x=0. There
is no second derivative at the origin.]
266. If yis L2, 2=y, and
Y(0)=y(27) =2(0)=2(27) =0,
then
[ 2 -cos:t sin .) j+(1—cosx)2)? |
N R e =
[This identity, which gives another (though less simple) proof of
Theorem 258, is the result of treating Wirtinger’s inequality as a case of

o o

Lagrange’s problem, on the lines of § 7.8.]

267. j . @+ y Y o> Hy((0)y

unless y=Ce =(x+2).
268. If k=1 and y and ¥’ are L* in (— o0, o) or (0, ), then
Jly |*de)* <K (k) [ |y |*daf|y" |*dx,

Thnten oy 4T [ PR, PR,

annn s "
OEL 1S DOLLLE U!:U.XUII over UI.U:' lllllU.l VUJJ. LU, unbblUu‘

[We are unable to determine the best value of K, even when k=4.]
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269. If k>1 and y and y’’ are L* and L* respectively, then

I O B oo N\YE Lo NE
[ vas<(f wiras) ([ 1™,

unless y is nul.

270. If y’is L3, then
© 974 © 2
) ["Cares( ["y2an)
Jo \Jo /
unless
feas . x
(11) ?/ - ar + b ’
where a and b are positive,in which case there isequality. Moregenerally, if
l
(iii) I>k>1, rz%—l,
and y’ is positive and L¥*, then
w0 gyl 0 e
(iv) f-%;M<K(/y%m),
JOo W \J 0 /
where
(v) K= r rI’(l/r)
l=r=1 T(1/r)I{E=1)/r} ]’
unless
. _ x
(vi) Y= ez 1By

[It is easy to prove an inequality of the type of (i) but with a less
favourable constant. Thus, if we denote the integrals in (i) by K and J

respectively, we have 2
peSTTER yi=( [Tyat) <70
\Jo ) =
w0 574 © 972
and so K= [ y—d:z:SJ[ ldr<4ﬁ,
Jox® T Jo 2
by Theorem 252, We know no elementary nraoof of the full reanlt For

4480 TATLIATILUGL y UL (634 4T d1wii LUSWLU.

details of the variational proof, which is much more difficult than that
of Theorem 260, we must refer to Bliss (3).]

271. If a>1, and G (f) is the geometric mean of f over (0, ), then

Theorem 335.]
272. In the problem

¢ Lo Lo £
] y2dx maximum, j x?y%dx and y2dx given’,
-0 -—0 - 00

the Fular acuation ig of tha form
VAANS ‘-‘mvﬁ v\iuwu.lv&.& AN VA VIAU ANJALLLL

Y +(a+bx?)y=0,
and is soluble by parabolic cylinder functions. It has a solution y = e—=*

I3 JRY 1

if b= —a?= —(2¢c)2.
[Thisgivesthe variational basisfor Weyl’sinequality (see Theorem 226).]

13-2
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CHAPTER
C

SOME THEOREMS CONCERNING BILINEAR
AND MULTILINEAR FORMS “

IIT

n. In this chapter we prove a number of
the maxima of bilinear and multi-

ALALAN AN

linear forms. In the arl y part of the chapter we consider forms

N

in n sets of variables, but suppose the variables and coefficients

positive. Later, we abandon this restriction, but suppose that
n=2; and most of the latter part of the chapter is occupied by
the proof of an important theorem of M. Riesz concerning

bilinear forms with oomn]mt variables and coefficients.

POSITIVE MULTILINEAR FORMS
8.2. An nequallty for multilinear forms with positive

xo ) ’l/a 9 evey zln
are n sets of variables, ¢, 7, ..., k running from — oo to co; and that

DINDIND I
i
indicate respectively summation with respect to all suffixes,
summation with respect to ¢ only, and summa t:(n with respect
+a 4 I (all sunflixes excent 2). The sum
UUJ v ‘W-l-‘- N OALLLLEN N NS VVL’V VII N

1T O ~An9 +ha -pn-v.vv\ 1iq aaid 44 ho lHnoaar hilinoa Aavr frmilinaan
1, &4, UL 9, ULIT 1UL1U 1D dAiU VU VU LVl , VIHITUGL, UL viiulival.
If the series a bsolutely convergent, then
§=Sx.3'a 5, S _
——le?’ZJ kyj...zk Lyj%ai:’-.”kxi...zk—....
1 1 J 7

(8.2.1) O0<a=<1l, 0<B=1, ..., O0<y=l
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that &, B, ..., y are defined by
(8.2.3) a—a=B—f=.
(sothat0<a=a,..., 059=
(8.2.4) ap
Suppose further that
' ngo, ngo, seey zkzo, ai]-mkg(),
(8.25) ZalesX, ZylBgY, .., ZpWrsZ,
i i

and

rv+ 25 . -l—'u—]_
v ,"l . 3 ,

eEYTYE n—1

), and that p, o, ..., T are positive and

(8.2.6) X'af, ,=A4,=4, X'a, ,=B;<B,
y PRRCERS
T, =0 <)
. E) HW?/] ..k \/,c= s o
_ k
Then S=ZXay. p0:;Y;...2, < A*BP ... CYX*Y /4
We have in fact
_ 3 _ et B+ +y—1 >
lmg—fe—p 2Pty o B ..,
n—1
and so, by Theorem 112
‘v=_‘(apx1/oc)a aayuﬁ)ﬁ_ (a‘rzll'y)y (xllocy B.. zll'y)l E—P—er—yp
< (Zaral%)® (TaoyVB)B ... (Zar2lv)? (SalleyVB .. ptyi-a—p——¥
SEA SN, TR NTDWAY. (SLUYSY AT (Sl S\ —F—e e —y
—\Llub Albl/"} . \/_m'uu/)l\uub e & ’} 4
i 1 k k 3 k
S(AX)E...(CZ) (XY ... Z):-a—~F
=A°‘B/3 ..CPX2YB ., 2.
We note some special cases.
(1Y T LR loa,— 1
\i) 4L . ETPTeeTY=141,
then a=a, B=B, ..., y=v,

and the statement of the theorem becomes simpler.

(2) When n=2, the second of the conditions (8.2.2) is satis-
fied automatically. If we write?

(e AV R VAV S

then 5=

@ Extended to infinite series: we shall not usually repeat this remark.
b In the preceding chapters the letters » and g have been reserved for the weights
of mean values. In this chapter they are not requlred for this purpose, and we use

them ag indices,
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Exchanging p and o, and 4 and B, we obtain

274, If
pzl, g1, -+ 151, p>0, >0, })'3,+§=1,
S, <4, za "<B, ZrpsX, zyqsif

then S = 2% Ty S AV Bl/q XUp yl/q_
(3) An interesting and still more special case is that in which
p=o=1,q=p".

8.3. A theorem of W. H. Young. Another specialisation of

Theorem 274 leads to an inequality of W. H. Young which is

very important in the theory of Fourler series,
Suppose that o=p > 1, so that
~1;+—1—,=1< 1, l+—1-> 1;
P qg p P q
and take a;;=a,;;. Then
Yy =Za;f=Za,,=A,
i i

say, for every j and ¢ respectively. Hence, if we write
(8.3.1) Zn= X X;¥Yj,

i+i=n
we have, by Theorem 274,
(8.3.2) 2a,z, =20, ;2,y; < Al XUp Y,
Since (8.3.2) is true for all a,, for which Za,r= A, it follows, by

Theorem 15, that Sy o< Xl Yrla,

This must be replaced, when p=1, by 2, < XV Y1q,
Wel have thus proved (apart from the specification of the cases



TDTT TATT' A D A AT T MAYTTT MTT TATT A D TNADAMTS ]qq
DLLL AN AN ANYU VLU A 1341V uAaliv X Uaviaw -~ v v
1 1
9T7R If m~ 1 1 AR TR |
P q
vrnrd o aa AoLrnnd Lar /Q 9O T\ 4L onn
wm4n0 UJJbbWUy \OO.I.),(/I!JU(/
_ Pz D
+ + p+a—pa
(8.3.3) Yz, PTePL < (B xp)p q P (% Y; )
Equality can occur only if all the z, or all the y, or all the x but one

and all the y but one, are zero.

We add a more direct proof which enables us to settle the
question of equality. If we write 1/p=1—A, 1/g=1—p;*then
A>0, u>0, A+u<1, and we can enunciate the theorem in the
following form.

_\
M
5

>«
+
<
e
:
+
<
&
>
+
<
<
+
+
N

. U=Yp+=Y;, V=%;,
to (8.3.1), we obtain

‘!“‘"

o N

(8.3.5 Zn

lIA

o M
_{_.
<M
&
i_

|t
>
[ary
ey

I‘-+V Atv i+j=n




200 SOME THEOREMS CONCERNING

LA viiva v v ow

n. We call he lattl e po oint

8
w5,
V
o
o
]
w
g
(¢"]
S
o (IQ'
=
S
g
=
od
o
=
)
+
‘S, <
ll

ourselves tovalues of 7 and j co rrespondm to
is equality in (8.3.5), then, for such ¢, 5 the ratlos

wpty s g gy
do not depend on ¢ and j, and the corresponding z;, and the
corresponding y;, are all equal. It follows that there can, for any
n, be only a finite number of points P, .

Suppose that all these conditions are satisfied for a certain n.
Then equality will still be excluded in the next inequality (8.3.6),
unless the ¢ and j corresponding to the P, exhaust all ¢ and j
for which z;>0 and y;> 0. It follows that the total number of
positive z; and y; is finite. There is therefore a single point for
which ;¥;>0 and n=4+j is a minimum. For this n there is a
unique P, and, if there is equality in (8.3.6) for this n, then 2;=0

and y;= 0 except for the corresponding pair 1, j.

teresting specialisations, generalisations, and
nmmmher nf theeo withant nranf

[»]
w J.J.ul—l-lkl\/.l. VAL VIAUVDV Yraviavwuv _tJJ.UUJ..

8.4. Generalisations and analogues. Theorems 276 and
in

278. IfA>0,u>0,...,v>0,A+u+...+v<l,and
w,, = > xiy;,-...zk_,
t1+i+ . tbk=n
then
G 1 W)€ ; )€1 (¥)...6 1 (2),
l—A—p—..—v 1-a 1-n 1—v

~ Tic eIV e ma Lo s 2 Py & B AU SRR (PN S
UTLLESS UL TVUTILUETS Of OTLe SeL, O il v'ul ONe O GUGIy €L, Wre 2€10.

279. If Cp= )y Qs Qgy oo By

T+ttt . =
2%k
2k—1

then ¢, 2= (Ta, 2P0,

unless all a but one are zero.
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Theorems 277-279, being ‘homogeneous in £’ in the sense
of § 1.4, have integral analogues.

280. IfA>0,u>0,A+pu<l,

® 1r
Sr (f) = { r frdx\
\Voo? )
(e 0]
and h(x)::’ f@)g(x—1t)dt,
J -
then S 1 W< (HF 1 (9),
I 1—x 1—p
unless f or g 1s nul
004 T£ ) . O Y s N W - 1
adl. Lf AV, u>V, A+ u<i,
N AN ‘wfr,],m
«)r\JI—J J o,
0
(‘:c
and hir) — FIN (2 — 1\ AF
It T IR
0
then o3 (MN<X . (A . (g)
LS/ 1 \'YJ >0 1 W/ V0 1 v/
1—A—p I—x 1—n

unless f or g is nul.

282. If k is an integer and

¢(x>=f . ...Jf P f (@) @)

— 00 —00

Xuf(x—'xl—"...—xkgl)dxldng.-dxkel,

© _ﬂﬂ_ 2k—1
fHE1 () dx) .

then (m gSz(x)dxé(f
J - \J

—

then "w&(x)dx_g( ’ fHL(x) dx
Jo \J 0
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284. If f(x) has the period 2w, and

A LA 1 rﬂ- rﬂ 4' \ L1 A\ £1{ \
PE)=rpw=il - J(Z1)J (Zg) +ee J Zp—1)
\«ity J -7 J -7
de\x—xl— _xk_l) dxldxz cos dxk_I;
(v 2 \ 2k—1
then ’ @) }2dx<{ | @da)

8.5. Applications to Fourier series. Theorems 279 and 284 have
important applications in the theory of Fourier series. Here we are con-
cerned with functions and coefficients which are not positive, but the
theorems which we have proved are sufficient for the applications.

Suppose first that f(x) and g(z) are complex functions of L?, and that

— — Q0
are their complex Fourier series. Then it is well known that
1 ™
(8.5.1) Eanbn=%( f@) 7 @) de
i 4 J —_w

(8.5.2) = |a, z:.if" 17|12 de.

Conversely, if 2 | a, |? is convergent, there is an f(x) of L? which has the
a, as its Fourier constants and satisfies (8.5.2).

These theorems( ‘Parseval’s Theorem’ and ‘the Riesz-Fischer Theorem’)
were generalised by Young and Hausdorff. We write

‘o K ) = S e o (1 [ \ \1/1’

(8.9.9) Syla)=(Z|a,|")"?, 3m(])=\"27] |f () |?d )

so that G, (a) is S,(|a|) as defined in §2.10, and (8.5.2) may be written

(8.5.4) Se(a)=Ja(/)-
Young and Hausdorff proved that, if
(8.5.5) l<p=2,
then
(8.5.6) Iy (f)=6,(a)
and
11
(8.5.7) S, (@) =S, (f)-

The limitation on p is essential. The theorems were proved first by Young
(3, 4, 6) for a special sequence of values of p and p’, viz.

2k
(8.5.8\ p=2T15 r,=2k (k=1,253, ),
and thon conerallty by HawadAnfF D)
dil ViITILL 5 J..lUJ.auuy U‘)’ LAlaudvUuul il \‘)o
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We confine ourselves here to the case (8.5.8), considered by Young.
In this case (8.5.6) and (8.5.7) are corollaries of Theorems 279 and 284
respectively. For example, the ¢, of Theorem 2792 is the Fourier constant
of y=f*, and so

%
(Gl
£
<
|
]
1
—
NI :'..__..
-
a
Il
w
:1
'\
I
=1’-—
-
"o
U
&

N S, MDY &< - < BN [ g
Wil is (0.9.0). Ol

il
Theorem 284, and 8.

see §8 17
It is interesting to observe (as another application of Holder’s in-
equality) how (8.5.7) may be deduced from (8.5.6). Write

7

0,= i Ay ip’;lsgna’n= i an ip/ldn
ifa,+0and |n|=<N, and b, =0 otherwise; and let
g(x)=2Xb,em=,

. PUAN - N - 1 /. —
Then Z|a,|?P=2a,b,= —j Jf(x) g (x)dzx,
-N _N 2w) _x
since g is a trigonometrical polynomial. Hence, using Holder’s inequality
and (8.5.6), we cbtain
PR (A (N<S (FYS (B
Z 10 |72 3p(1) S (9) = 35(/) S, (b)

L=

o
~p
=30 (L fauto ) = 5,00 (£ faul?)"”.
\ = /

Transposing the last factor, and then making N tend to infinity, we
obtain (8.5.7).

T
L

O.U. IIT lLvuvoailly

forms. In this section we prove a simple but important property

of multilinear forms with positive variables and coefficients.
Tha +thanram which wo O

A RAV VAALUVUL VIR VY Adliuvid YY U p mere f\Y‘n]]QT’TT nF -n'n]’qer 1n-'

a
[/ s S Ll R v UU.I.UJ.J.WJ.J A AAULIWAL

me—

equality, but it is useful, and will serve as an introduction to the

deeper theorem of §8.13.
285.0 Suppose that a 20,20, ..., 2= 0, and that

. -Zl'ircx, Byeresy
18 the upper bound of

S=2a; 1%:Yj--p>
forall z,y, ..., z for which
Salie<1, ZyUh<l, ..., XU

& Now, of course, formed from complex a.
b M. Riesz (1): Riesz has n=2.
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then log M, g ... . 18 a convex function of «, B, ...,y in the region
«>0,5>0,..,v>0.

By a convex function of nvariables «, f3, ..., y we mean (§3.12)
a function convex along anystraight line in the space of , 8, ..., y.

We have to verify that if
1,20, 6,20, t+t,=1,

a=tiog+la,, B=tBi+6:B:, .o vy=tiyvitiys,
then
t 1
(8'6'1) M“:B,“';yéMIO‘13,319"':)’1M20‘2,B2:'":')’2.
Now

S=ary...2=2 (agx* 4131/3 . zh/?’)ﬁ (ax“z/ayﬁgfﬁ . zi’glﬁ’)"z

Since T (x/o)on =Fple <1, ...,

the first sum on the right does not exceed M, g ... .; and simi-

n

1 1 11 1 1 2 1 nrxr rmy_ - 10
larly the second does not exceed M, g, ... ,,. This proves (8.6.1).

The thenrem mav ha exvtanded +n +]\n claced recin =0

UILUUL UL Ly Y MY vavviiuuvw Vv ViIULUUA Lvad U l. )

0, ..., if we replace the conditions Sxl'*< 1, Zy¥f<1, ... by
, ... when a, 8, ... are zero.
that n =2 and

Then M, <4 and M, gB_, so that M, , ,<B*4* for
O<a<l. pr>1 g=p’, we may take oc—l/p, 1—a=1/g; and
then we obtain

GENERALITIES CONCERNING BILINEAR FORMS
8.7. General bilinear forms. So far we have been occupied

with ‘positive’ multilinear forms, i.e. forms whose variables and
coefficients are non-negative. The most important multilinear
forms are bilinear, and the remainder of this chapter, and most of
the next, is concerned, from one point of view or another, with
bilinear forms, which will not generally be positive.



e
(8.7.1) Azaw'xi=Xj, Za,ij%: Y.i.

When the form is positive
(8.7.2) A Zza x,by] Exz Yi= Zijj,
i J

the convergence of any one of these series involving the con-
vergence of the others and the equality of the three. The equations

{Q '7 D\ ann 411 n"ﬁr\ 'pr\'v- nr\mﬂ nw Mmoo nr 11'7'1‘\‘)1’\ 4'1‘\& Fr\-v-m 1Q ‘F;'I’\'I*‘A
\U. H} ALY UL UU awwuv 11Ul UUJ.J,LJ:JJ.UA w, Ly y VWILUILL UVILU LULLIL 1D 1111l UV

We shall make repeated}flse of the following general theorems?.

286. Suppose that /

b b 1 1

/ 1 1 1 1

(80 that p'>1, ¢' > 1) and that a, x, y are real and non-negative.
Then the three as;wtions

(Qr7 9) | A( /u\|< S A NS (22)
\O.4.0) |\ Y) | = Dp\Ww)jDg\Y)
forall x, y;P
(8.7.4) 8, (X) = KB, (x)
Jor all x;
1Q M K\ > (V< K (22\
(0.i.0) Op\ LS AOg\Y)

for all y; are equivalent.

287. The three assertions

(i) there is inequality in (8.7.3), unless either (x;) or (y;) vs nul
(11) there is inequality in (8.7.4), unless (x;) 1s nul;
(iii) there is inequality in (8.7.5), unless (y;) 1s nul;

are also equrvalent.

a For the case p=¢ =2, see Hellinger and Toeplitz (1); for g=p’, F. Riesz (1).
The substance of the general theorems is to be found in M. Riesz (1). The im-
portant cases are naturally those in which K has its least possible value, i.e. is the
bound of 4 (§8.8).

b Here A = 0; but we write | A | for 4 in view of Theorem 288,
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288. When the forms are finite, Theorems 286 and 287 are true
also for forms with complex variables and coefficients.

Theorem 286 is a simple corollary of Theorems 13 and 1i5.
It follows from (8.7.2) and Theorem 13 that

(8.7.6) A=3y;X;<6,(y)8,(X),

d

a flo d
=

(=}
=
—~~
-3
=

There w ll be 1nequahty in (8.7.3) unless (y,) is nul or there
isegualitvin (8.7 A\ Hence the second

o &UWLLUJ 211 \© AAVRIUY Vil

implies the first. If the z;, and so the X, are given, we can, by

Theorem 13, choose a non-nul (y;) so that there shall be equality
in (8.7.6). Hence if there iz egunalitv in

ax \ e A NRAI g viialla jmw;;v‘} Axa

(%;), then there is equality in (8.7.3) for a non-nul (z;) and (y;).
Hence the two assertions are equivalent, and similarly the first
and third are equivalent. This proves Theorem 287.

Finally, the whole argument applies equally to complex a, , ¥
when the forms are finite?. We have only to use Theorem 14
instead of Theorem 13.

The most important case is that in which ¢=7p’, ¢'=p, when
(8.7.3), (8.7.4), and (8.7.5) become

| 4| <K&, @), 1), ©,(X)sKG,@), &,(Y)<KS,()

(8.7.4) for a non-nul

ANsarT 4L AL

A TYT AT TN Ty T ey

BOUNDED BILINEAR FORMS
8.8. Definition of a bounded bilinear form. Throughoutthe

rest of this chapter we suppose, except when there is an explicit
statement to the contrary, that the variables and coefficients in

+hn Fravrng nnannardanad ama awlhidnamer maal ~ PRURSS, PR A
U€ 10TIYIS CONSIaerea are aroivr d}ly réali or LIU.LLILJ]. LULLLTLDe
We describe the aggregate of all sets (x) or z,, ,, ..., real or
complex, for which
/9 Q 1\ o DA\ -yl Iy AN Im\i/n —~ 1
(8.8.1) G,(x)=6,(|z|)=Z |z |?)? =1

as space [p]. Here p is any positive number; but usually p > 1.

& QOtherwise there are difficulties concerning the mode of summation of 4.
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Similarly we describe the aggregate of sets (z, y) for which

(8.8.2) Cplr)=l, G y)=1
as space [p, ¢]. The most important case is that in which p=¢g=2.
The importance of this space was first recognised by Hilbert, and
we may describe it shortly as Hilbert space.

.LII our general uemumon porgq Iﬂd:y De o0, lI we IHUGI’PI'GD woo \-0)
as Max |z |. Thus space [00, 00] is the aggregate of sets (z, y) for
which |z| =1, |y| =1

A bilinear form

(8.8.3) A=A(x,y)=2Za,;r;y;
is said to be bounded in [p, q] if

(8.8.4) |4, (x, u‘)l—-] ) Ea, \

li=1j=1 7
where M is independent of the x and y, and of n, for all points of
[p, q]. We call A, a section (Abschnitt) of A: a form is bounded
if its sections are bounded.

TL 10 »vJaten 4had 7Q Q AN 11 T A1 L‘ P ntrmda AL Fan A1
LU 1D Pld;ll.l vilav (0.0.%) Wl.l 1noia 1or d/ PU].LUJ QL ul, 4] 1

holds whenever

lII/\

L

(8.8.5) S,(x)=1, G,(y)=1.
In this case (8.8.4) may be written
(8.8.6) | 4, (,y) | = ME, ()8, (y),

and here both sides are homogeneous of degree 1 in x and in y, so
that the conditions (8.8.5) are immaterial. We might therefore
have taken (8.8.6), with unrestricted z, ¥, in our definition of a
bounded form.

So far M has been any number for which (8.8.4) or (8.8.6) is
true; if so, we say that 4 is bounded by M, or M is a bound of 4.

L1 1 PR | P R PR, PR | e

.LU is nau‘aral to take M to be bue smallest such b un , ana then

we say that M is the bound of A.»

s If M, is the maximum of 4,, under the conditions

glxilpél, =y lesl,

h;.

exists, and is the smallest bound o
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A =Q;;
Jje 2
when A4 is said to be symmetrical. In this case a necessary and
sufficient condition that A should be bounded is that the quadratic
Jorm A (x,x)=2Za;x,x;

should be bounded. When we say that A4 (z, x) is bounded, we
mean, naturally, that 4 (x, y) is bounded when the z and y are
the same, i.e. that
| 4, (2, 2) | = M
for all x for which &, (x)=1.
In the first place, 1t 1s obvious that the condition 1s necessary,
and that the bound of 4 (z, ) does not exceed that of 4 (x, y).

That the condition is sufficient follows from the identity

When p=2 we can go a little further; the bounds of 4 (z, x) and
+ 1f M 1« +]nn knn‘nr:l nf A4 (»

A (4 n fan »\ +han
LA\W, g ) WiIC v olWin€., i1l 1alu, 11 L 1S Ul £1\W, w;, UilCil

I

Nh—l
II/\

l A (2 a/lS_.l_ M (le+yl24-lp—y|2Y=1M
1 <50\ =4S v T 7 )

> U (| 2+ y [?)
J J | 1 g 17

It is evident that, when the coefficients a are positive, 4 is
bounded if it is bounded for non-negative x and y, and that its

bound may be defined with reference only to such x and y. If

8.9. Some properties of bounded forms in [p, ¢]. The
theory of bounded forms is very important, but we cannot
develop it systematically here. We prove enough to enable us to
give an account of some special forms in which we shall be
interested in the sequel.

We take p>1, ¢>1, and, as usual,
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289. If A has the bound M in [p, q), then

(R.9.1) ?In Ip<7|/rp Sla.. ld < MT
(8.9.1) ;P = 2 |t =M
i J

for every j and ¢ respectively.
Take all the x zero except z;, ;= 1, and all the y zero except

P /1Q Q £\
Y1, Y25 -y Yg. DY (5.6.90),
J J 1/gq
IZ*’ijfgé'M(Z!yf !q)
1 1

for all 7 and 4. The condition
P l A4 !2 < QO
is sufficient, since then
|4A2=Z|a,|*Z i z iyt | =2 | ay|
[ ] l 2W)

but this condition is by no means necessary, even when the coefficients
are posttive. Thus, as we shall see in §8.12, :

>y %Y
. )
is bounded.
290. Any row or column of a bounded form is absolutely con-
vergent.
For

J

.

<l s as l<| L RYA « I R lp\auu /Y lp
Zlagey;| Sy | (B2 [PV (2] a0y
? 2

by Theorem 289.

It is plain that, when a,; =0, a necessary condition that 4 should be
bounded is that

(8.9.2) 225795

POLY LA T o o nds T 4 aals

thuLu 0e bUllVUlgUrt

whether this is also true for bounded forms with arbitrary real or com-
plex coefficients, i.e. whether, when 4 is bounded, the series (8.9.2) is
necessarlly convergent (for the  and y of [p, ¢]) in any of the recognised
senses. The answer 1s affirmative: if 4 is bounded, the series (8.9.2) is
convergent (indeed uniformly) in the three standard senses, as a double

\Hiuoou 111l

Lme 211 ira,
10l all puUSL vive & aauu y 111 LIJ, (_{J. 4T IS figvural vO aSK

HI 14
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series in Pringsheim’s sense or as a repeated sum by rows or columns.
But the idea of the convergence of the double series is irrelevant to our
L\AI‘\T‘TT\

. .
present purpose (and is not very important in the general theory), and

we shall not prove these theorems. See Hellinger and Toeplitz (1) for
the case [2, 2].

2
k k
and therefore, by Theorem 13, the series

et My
'
®
=
Qi
oy
7
L]
g,
s
=
“hl
&

oQ4 T A nond R Lins tho Lhoasioada AL ~Aand AT ,n.,nn l',n a1 oo T 2o
(<3~ ) ¥ J.J L1 Wit L 10w vo vt vvwitws L Wit 4y viv L[J, IJ J, vIvery 1 vo
bounded in [p, p'], and its bound does not exceed M N .

bounded by A in [p, p’], we have
| m n |
| 4 =i Z Y 2% <M
k=1 =
for all  and y for which &, (z) <1 and &, (y)<1. Hence, by
Theorem 15,
mln P
2| X Qugx;| S MP
k=1|i=1
far s > me and therafora
1UL 11V =— ll}, Auiill vaivivaivaiv
S < & p_
(8.10.2) S| 2 agw| = MP
k|i=1
Similarly
YO
(8.10.3) 2 T byl NP
k li=1 l
But
(8.10.4)
n on [ n \ /
£ 2 fymyy= 2 iy Sanby=3( £ ana) £ bypy).
i=1j=1 t=1j=1 k \i=1 /] \i=1
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TNree 1O n 4 A f N\ a1 i L 11 . 4l
From (8.10.2), (8.10.3), (8.10.4), and Theorem 13, it 101ilows tnat

which proves the theorem.
It is plain that we can define the Faltung of A and B, whether

A .1 D _

A ana p are DOunu a .lOt, whnenever

are convergent.

8.11. Some special theorems on forms in [2, 2].2 In this
section we confine ourselves to the classical case p=¢=2, and
suppose the variables and coefficients real (though not generally
nositive) We sunnose then that 4 1g a al form and de not

PYURIVEIY U g. TV WV DUPPURDUY VILULL VLAWYV LI 10 J.\./wa. Ariin, Viile \A-

(8.11.1) A’ =Sa,;z;y;

If

(8.11.2) Xty < o0
k
for all 2, the series
IR11 2) o= (..

are absolutely convergent, and, by (8.10.1),

(8.].]..4:) O(x. y)=220a4xaﬂy};
is the Faltung F (A4, A’) of 4 and A’. In particular C (z,x) is a
quadratic form whose section C,, is given, after (8.10.4), by

n 2
(8.11.5) O’n(x,x)——-f‘..( h) aikxl) .
k \i=1
We write
Y L N AT AN
U\, )=V i)

& Hellinger and Toeplitz (1), Schur (1).

I4-2
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is bounded, and its bound P does not exceed M2. On the other
hand, whenever N (4) exists,

N B (2 N2 (& \2) ¢
A BIN= 28 2 Y 20 ) LS M)
S( %a:ﬂ\%!{‘! (. x\\3,
—-\ J7 , ~Mn\rvJj

Hence, if N (A4) is bounded by P, 4 is bounded by P*.
Collecting our results, we obtain

292 A necessary and sufficient condition that a real form A should

) N o 1T AP A QT ~ns

be bounded in [2, 2] is that the norm N (4) of A olwu7

bounded. If M is the bound of A, and P that of N (A), then
P =Mz

293. If A, B, ... 18 a finite set of forms whose norms exist, and
H(x,2)=N(A4)+N(B)+...
18 bounded, with bound P, then A, B, ... are bounded, with bounds
which do not exceed P%,

In fact, if N, (A4), ... are sections of N (4), ..., then N, (4), ...
are non-negative?, by (8.11.5) and

n
Hence N, (4), ... are bounded bv P*.

8.12. Application to Hilbert’s forms. We now apply
Theorem 293 to two very important special forms first studied
by Hilbert.

294. The forms

L:Y; _ ' XY
o1 B=XZ i ;
where i, j=1, 2, ... and the dash implies the omission of the terms
in which i=j, are bounded in real space [2, 2], with bounds not
exceeding .

A __ %
A =2L2

& That is to say, assume non-negative values only for real z. The phrase ‘positive
form’ has been used in this chapter in a different sense, that of a form with non-
negative coefficients and variables.



N (A) EEG X%
and calculate c;;+d;;.
Ifi=j4, we nave

) 1 © 1 o 1
Cu+di1',_ 2 7 7. 1\o+ 2 /* ACES / 1\9—‘:"‘1?772
Pokm1 G E—1P g (1K) o (0—F)?
If ¢+ 7, then
cl'j'!‘d,h: ﬁ 0 1 §’ 3 1 3
k=1 (0 +E—1)(j+k— n" k=1 (t—k)(J—F)
. 1 L os (L L),
h=—oo (0 —K) () — ’G) 1—Jk=——w \J—k 1—k)

the dash here excluding the values k=% and k=j. If K is greater
than both |¢| and |j|, then

K

Z’ —-—1—:'—";1—:\‘

k=—K\J—Kk 1—£k)
2 (. 1 1 1
i—j j=K """ Tj+K i—-K 7 i+ K)

with two series unbroken except for the omission of terms with
denominator 0, and the bracket tends to zero when K -—>o0.2
Hence

2 ..
(t—3)
From (8.12.1) and (8.12.2) it follows that
2 T, %;
(8.12.3) N(A)+N(B)= ——5‘. 5‘3"—————-
3 1—J)°
The first form here has the bound {#?2; and, since

XV’ ]' X/ 4 1

R CE  Ci)
the second satisfies the conditions of Theorem 275, and has the
bound £#%. Hence N (4)+ N (B) has the bound 72, and Theorem
294 follows from Theorem 293.p

a All terms cancel except a number independent of K.
b The proof is that of Schur (1).
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That 4 is bounded can be proved more simply: we give a number of
proofs in Ch. IX.

4 is absolutely bounded (§ 8.8), since its coefficients are positive. It is
important to observe that this is not true of B. To prove this, it is enough
to prove that

X,
EZI| .ly] —
[e—21
for a positive set (z, y) for which Xa,2 and Xv.2 are convergent. We take
iy ™5 g z 7 NAEiivse T Uaas
z;=1"t(loge)™ (¢>1), y;=57%(logs)™?* (>1)
and ». —m At ——ny Mhan
CVALAA Wl—Wz’ 1—32 A 11T Ll
<Y, wzyq ~ ‘u;‘ \-Kw) 7 __1 ~ {_’; 7 _1 voo‘
z2’ Zx nkTre gy, zn kT Loxy,
=7 j=1k=1 k=1 I=k+1
flg Lo sglf o de g
i1 ki1 Log 12 =32k | 1oy w(logu)® 4= klog (k+ 1)

and this series is dlvergent
We shall see in Ch. IX that 4 is bounded in [p,p’]. B is also bounded

1
n I'n.»n’1. but the 'rn-nn'f" 1a muich mora difficn I

+ {7y 7 Jy MWV ULiD TOOI IS MUl more Giile

marsh (2, 3).

« ann 1aamr
Us DUV Lide XLVIUDG |

THE THEOREM OF M. RIESZ
8.13. The convexity theorem for bilinear forms with

complex variables and coefficients. We prove next a very
imnortant theorem due to M. Riegz2 r]‘}\;c like Theorem 285

et L Uvaa u . LA A

asserts the convexity of log M, g, where M, gis the upper bound
of a form of the type 4; bu t n Riesz’s theorem the form is

bilinear, the a, z, ¥ are general complex numbers, and cgnvex‘ty

AALAAAIUIVL 4 VAL Wy y g AT gLl a_-.r-.va.. ai MRS, VallA

is proved only in a restricted domain of « and S.
It is essential to Riesz’s argument that M, g should be an

attained maximum and not mprp]v an upper bound; and we

1..:

therefore consider a finite bilinear form

m n
Q19 1) A0S N o onpy
\0 O, .l.) LA — Ld p] wzjw,by?
i=17j=1
“9= NMAIMNNNOD ‘I‘ ﬂ* /r - 10 " 0 /VV)IYIY'II‘IW)/)IM n‘F 'Fn/l'
Ve Nw VOoU Uity AL a,ﬂ VO vIve JrvuwwuviirvwiiiTu UJ LA JIJI
m n o
1/ 1/
(8.13.2) Sla s, Ty s,

it being understood that, if a=0 or B=0, these inequalities are

a M. Riesz (1). The proof which we give of the theorem is substantially that
of Riesz. An alternative proof has been given (not guite completely) by Paley
(2, 4).
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replaced by |z;|<1 or |y;| <1. Then log M, g is convex in the
triangle

(8.13.3) 0<a<gl, 0=2B=L1, a+B21.
We have to prove that, if («,, B;) and («,, B,) are two points of
the triangle (8.13.3), 0<t< 1, and

(.13.4) a=ot+ o (1 —1) B=R.t+B.(1—1)

\S- R RN A\ PRIV PN
then

(8.13.5) M, g< M. g M5,
After Theorem 88, it is enough to prove that (8.13.5) is true,
cerhims o D i metmes Lo e n L L L. N -2 -1 9
WIiCIl X alll p alre glVUll, 100 SOme v 10 wnlienn v < 1.

We define ». g. »’. ¢’ bv

Ly 1> 100 7 1 J
1 1 1 1 1 1
(8.13.6) a=-, B=—, —+—=1, —+—5=1.
r q9 P P 7 ¢

There is no finite system (p, ¢) corresponding to the points (0, 1)
and (1. 0) of the triancle (8.12.2). These nointe are narticularly

A \ s \I, NS & ViANS UJ-J-W-K‘-&‘-\/ \ UUUUU U,. Al AANNIN Ilvu;vu WA S ‘tlw‘. VAN AL, J
important, but we may disregard them in the proof, and include
I . S 1 POy I SR DU \JIPL M. JUR. B
LIICIIL 111 LiIi© 1OsuUly, VI 210 Us 01 COlluliiuluy

We may then write (8.13.2) in the form

(8.13.7) S, (@) <1, &,y =1;
and the inequalities (8.13.3) are equivalent to either of

(8.13.8) gzp=1
and

/8.15\ g\ plzgz 1.

We shall also write, as in §8.7,
so that b ’

1 j ".‘
Or S1mpiLy
(8.13.12) A=XXy=3cY.

8 We take for granted the continuity of M,, 5. M,, g is & maximum over the
space defined by (8.13.2), a real space of 2m -+ 2n dimensions (when we separate
the real and imaginary parts of the x and the y), which varies continuously with
o and 8; and the proof that this maximum is continuous, though tiresome in
detail, belongs to the elements of analysis.
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Theorem 286 enables us to give another definition of M, g
which is more convenient for our present purpose. It is plain
that 4, g attains its maximum for a set (z, y) in which

(8.13.13) C,@)=1, &,(y)=1;
and M, g is the least number K satisfying
(8.13.14) | 4| =K, (x)&,(y)

for all such (2, y). Since both sides are homogeneous of degree 1

in z and y, the restrictions (8.13.13) are now irrelevant, and M B

may be defined as the least K satisfying (8.13.14) for all («, y).2
By Theorem 286, this is also the least K satisfying

(8.13.15) G, (X)< K&, (x)
for all z, or
(8.13.16) » (Y)S K@, (y)

for all y. We may therefore define M

(8.13.17) Ma’ = Max =Max—2——=,
P S, () S,y
the maxima being taken for all non-nul sets x or y
8.14. Further properties of a maximal set (z, ). Suppose
that (x*, y*) is a set of (%, y), subject to (8.13.7), for which | 4 |

attains its maximum, and that X*, Y* are the corresponding
values of X, Y. It is obvious (as we have observed already) that

(8.14.1) G, (@) =1, &, (y*)=1.
Also, as in (8.7.6),
(8.14.2) A =6, (X)&,(y), |4
~ it e amiralider 2o nanth AL
AL HTLC LUUuSU C U(iud:.u.b 111 ©al1l UL } y
values 2*, y*; for otherwise we could increase | 4| by leaving
the z, X unaltered and changing the y, or by leaving the y, ¥
unaltered and changing the . Hence
Mo p=] 4 (% y%) | =6y (X*) 8, (5%)= 8, (Y*) &, (2%).
Further, by Theorem 14,
| X% € = @ | 9. % g,
! J i 1Jj 172
or
* | — * |g—1
(8.14.3) | X* | = | g% |0,

& This is merely a repetition of an argument used already in § 8.8.
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where w is positive and independent of j; and
arg X*y*
7 II

is independent of ;. Hence
M, g=|A4(x*y*)|=| 2X*y* | =Z| X*y* | =X |y* |"=o.
Substituting in (8.14.3), and adding the corresponding result for

V* Trr(\ﬁl\“-n*l“

J-i y VWU Ulvailll

(R144Y | X *%| M ,la%la-1 | V¥l M [ 2% |p—1,
\Leaxxy I.‘.L’ l AT a,# l 3’ I ’ ’ + 4 | A (X,p ' wy l

8.15. Proof of Theorem 295. In what follows we suppose
(%, y) a maximal set (for the indices «, 8), omitting the asterisks.
We write p; =1/, and so on, and M, M,, M,for M, 5, M, B
. excludes the points (0, 1), (1 0) of

Maz:Bz Our use of p, p,, ..

i JO S DR Tssd oo wra varmanlrad 32 20 19 4bhis «ort 1l sv nd 3 naTe
UllU Dlldlllgltf, Duv, das W 1olialhoUu 111 8 O.19, ULLIS WILl 11UV .u.u_yazu.
the proof.

By (8.14.4)
»r~n—1 \ IRV O RANE Hp—1 p\VD,
MO (p—1)py (X) = (LT 2| Ty 77751 )75
= (S V.|l — & (V)
=\~ L2100 —Np'\L )

(8.15.1) MSE, 0 (@) S M S, ()
Similarly

(8.15.2) Mo (1) < M, G, ().
Hence, if 0 <f< 1, we have

(8.15.3)

MG 1o ()G Do " () S MMy &4, (y) &y, ().
Let us assume provisionally that there is a ¢ between 0 and 1

1.2l il L
WILICIL SAUISLLICS

o v An 1 ¢ 1—-¢t 1 ¢t 1-¢

(8 10.4:) :='M—+ —, :=:—+ >

P 1 P2 9 41 42

that g 4+~ gaxr +ha antrafiana IR 12 4Y and +hat
viila v 1D vU ba:y (738w Ul,iu.cvw.yllm \O.1 0.7 j, iU viivu

o 1= 2\ =t o @-1) ~t . <G ~@@—=1y1A—t) /, \

(8.10.9) ©p, (X)=O@p-1)p/ %)y O \Y)=O@g-1)er \Y):
Then (8.15.3) and (8.15.5) will give

M<Mimyt

from which the theorem will follow.
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It remains to justify the assumptions expressed by (8.15.4)
and (8.15.5). Let us assume further that there are numbers p and
v such that

(8.15.6) O<u=sl, O<v=l,
(8.15.7)
4
Pe=@—-1)p/ p+p(1—p), ¢=(@-1)gv+q(1-v)
) mt_ 4O o 1 ~ N\ 1 ol Y A . e L4t L.
By Theorem 18,2 rlog &, () =log &, (x) 1s a convex function o1 7;
and the z, being a maximal set, satisfy (8.13.13). Hence
s v o ~(n—1 TR ~'D(1—IJ-) { o) ~(7 —1)_171',# JRRY
(8.15.8) &, (%) = Sip_1yp D ) =O@p-1)p/ )

and similarly
0 (@—1)qe'v q(1—v) _e@—av

(8.15.9) GL(y)=C€I 1" (&3 TV (W)=8g 1)a ¥)-
If finally

(8.15.10) pip_ b &v 1t

Py 1=t @ o’
then (8.15.8) and (8.15.9) will be equivalent to (8.15.5).

In order to complete the proof, it is necessary to show that
(8.15.4), (8.15.6), (8.15.7), and (8.15.10) are consistent. These
conditions contain six equations to be satisfied by the four
numbers p, ¢, u, v, and two inequalities. The first equation
(8.15.10) gives

(/' =1)p+1=

(pl—,l)pz‘t—i-l pZ t‘+1
Py 1—1 P i—1

and Pat oy p= Z’z(1+

and the first equation (8.15.7) gives
1 _(p ,,,"1)”+ 1 _pot+p,(1—8) ¢t 1t

P Patpip P1P2 1 2
which agrees s with (R 15.4).
A si mllar argument applies to the equations involving ¢, so
that (8.15.4) is a consequence of (8.15.7) and (8.15.10). Given
P15 G1s P25 G2, and £, we can find p, v from (8.15.10) and p, ¢ from

(8.15.7), and these numbers will satisfy the six equations.

@ Strictly, by Theorem 18 restated as Theorem 17 was restated in Theorem
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Sa.t.is‘f‘\-r (R d5.10) and O+« 1 +tha 1nnn11a]1'ﬁ1na aro nn1ﬁva1ent

.I.J \U , WLEAAL 'V N U N .L Uil 111\.‘\1 UWLL VLIV v v U\ibl-l- wavaid
: ’ ¢t p
(8.15.11) dig T <fE
q s 1—1 Pz

4 <t'1

%'~ P2
We can therefore choose ¢ so as to satisfy (8.15.11), and then all
PRSI K. NI R .U L |
Ourl CULLULUIOVILS al'€ Saulsileu.

It will be observed that it is only in the last paragraph that we
use the essential inequality «+ 8= 1. When the form is positive,
4hia 3maniialidsr 1o svnalacrands Tan AT 1 4hanm ey Mhasuans QK
vl 1 .I.Ul_i d;.IJ.Uy D 1C1I0V allvy, .lU% pisa a,ﬁ iS5 uvlvill, Uy 1 {1ouioll 40V,
convex in the whole of the positive quadrant of («, 8).

8.16. Applications of the theorem of M. Riesz. (i) Theo-
rem 295 is easily transformed into another theorem of very
different appearance.

296. Suppose that

m
(R1A 1) YA\ N ... (17=1 9 m\
\\J--I-U--I-I 4-‘.9\(&![ HW'L]W'& \J -I-, H’ v’ IUI
i=1
and that M , is the maximum of
In \ .r.
[ x. 1uv)
\ [<*317)
1 /
m
for AL R
1
MThom loo M* 38 conver 1n the trignole
-k FUNIV -‘.\}6 A,.‘.a’y ViU VIV VA VIV VIivVw v .-7
(8.16.2) 0<y<asl.
In fact, by (8.13.17),
M M &y (X)
=Max
64 2
g » (®)
Sy, (X) Sy (X)
* Y — My
while M¥  =Max > =Max ———.
! 1 ) Op b
R PR M M
1101100 pisa . ﬁ — 4inL 0y



n m

(R16 2) SIY. 12<S 4.2
for all x; and that

(8.16.4) 1<p<2.
Then

/O 10 ™\ o AV = a2 Y L4\

(8.10.9) Opr A = U 20, (L),
Py A
Wney

/1O 10 DN\ e nr. ! . 1

(3.10.0) m=.MaxX | G; |.

To deduce Theorem 297 from Theorem 296, we write a=1/p,
as before, and consider the line from (3, 1) to (1, 0) in the plane
(o, ). This line lies entirely in the triangle (8.16.2); and hence,
by Theorem 296,

M* | < (BF,)20-) (I )2t

for  <a<1. Itis plain from (8.16.3) that M¥ ;< 1; and

e Max | X | ,

LT TS =M
=11

Hence M¥ S m2el= 0D

werhial fe amattoralamd 4~ /Q T2 E\

WI1l1C1l 15 o4y ulvaloliv vo (0.10.9)

The condition (8.16.3) is certainly satisfied (with equality) if
(8.16.1) is a ‘unitary’ substitution, i.e. a substitution which
1r\n-rrnm V I l2 1 ]+n1‘ntqa_y rrqr\-n PeYsYaral r\"" -‘-]r\n -‘-lv\nnmnm - o~ -“1\1‘“::' Ta~r
ITAVUD i I I HESRL IR L 411D UadU Ul LilD uvilTuULOLLL W i1ouliu v
F. Riesz (4), and the general theorem by M. Riesz (1)

8.17. Applications to Fgurier series. Out of ma,__y o..h.‘r

w

tion of Theorem 297 to the proof of Ha,usdorﬁ"s theorem b,

3 Tn this case »=m. A real unitary substitution is orthogonal.
b See §8.5. Riesz deduces thesetheorems in a different manner, and gives anumber

of other applications.
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(i) Suppose that m is an odd integer and
b} erlig, B

S (0)=
—im
%
X, = énﬂ » 1 fm (2™,
—im K P’ \/m \m /

a,, = m—% e2Zpvmiim

The substitution is unitary, so that
EIlezzzlxulz

Also m=m~%. Hence, by Theorem 297
[ Qv !p’\ 1/p’ y
(8.17.1) ( Zlfm ) | ) < (Z|w, |p)vp
1
The left-hand side belng an approximation to J,-(f), we may
Andirnan ITFNatradanfP’ i dhnnnar IQ X 8\ ey vnaccamac 4~ 41A 13 540
aAcauce rausaorii s vaeorem \ J, U) Uy }_Jd}bﬁ éUb LU LlO 1i1liv®.
/ \ T iy I | V. .
(ii) If m is again an odd integer,
(27 im
— — 2rumi/m
T, fm( - _x ae
\ / i 2iiv
and X,=— b5y e~Bhmimg,
VM —ym
P Py S D p\_n.'n-l-i.'n"":r\'v\ﬁ ahAaxer #hat
UVLITI11l Diill PLU CalUUlaululld sV viav
X, =mta,,
[ ° 12 — 2
Z|X, F=2], |

and
as before. In this case Theore
7) follows by appropriate passages

™
‘S
g

and Hausdorff’s theorem (8.5
i ded

to the limit.
XY . . P P e _ Py
YV e can aiso, as we snowe
from the first.
& We now write p, v for ¢, j, and extend the summations over the range
—im<p<gm.

7
Sz, emd?

b If f(6) is a polynomial
—3M
then f,,(0)=f(0) for m = M, and the theorem for f(6) follows immediately from

(8.17.1). The extension o ajn arbitrary f(0) depends on the theory of ‘strong

convergence



<
-
]

SOME THEOREMS CONCERNING

MISCELLANEOUS THEOREMS AND EXAMPLES
298. If p>1, and a(x,y) is measurable and positive, then the three

.
assertions

KS UL val ils

[l .

Jy J, @9 @)

-

i3
1

for all non-negative f, g;

(i) [“ay( f a(z,y)f @) ds) <K? [“frde,
Jo P\ / Jo
for all non-negative f;
(i) [Caa([“a@mowan)” s&” [ gy,

for all non-negative g, are equivalent. The assertions ‘there is inequality
in (i) unless f or ¢ is nul’, ‘there is inequality in (ii) unless f is nul’,

‘there ig 1nnnnc\]1+v mn (111\ unless g is nul’, are also equivalent

VALTLT IS LIATVYURAIV)Y ALL (1l 1) WLITOT g 40 ditie 9 WAT @aSU Tlyel VRatalide

f Theorems 286 and 287,with ¢ =p’. Thereis a more general
orm with both p and ¢ arbitrary.]

299. The forms
A=3x_FY _ poyy ZUi

1) —a L
TJ LTAN ] JTI

where A> 0, and the dash is required only if A is integral, are
I

|_a, a_l, and have bounds wif A is JLIUUS.I.G}., T l COSeC A = ILAIS non-in Cgrai.
[Schur (1), Pélya and Szegd (1, 1, 117, 290).]
300. If p>1 and A =XXa;;x;y; has a bound M in [p, p’], and

E
©
<)
2
o

-

G‘

ounded in

{4\ ~ (4

"/1.7 "'JJ t\vJYj \"I “”"’
where I _!pdt<u.p lg l" dt<v?,
then A*=22a;h;vy;

1Ly,
Ll nid

l II{Eza’uxtft t)yigi(t)}dtl

S M [{Z]@:fs(8)|73P {Z ] y;9;(2) |17 de
SM{JZ |z, |7| fi(2)|Pde}? {f Zys|* | g5(2) |7 At}
S Muv(Z | |2)Y2 (2 |y, |77

For the case p=p"=2, see Schur (1).]

(n—1)
301. zz'(”)“ 2y, is bounded in [2, 2].

302. Tx’ M 29, is bounded in [2, 2], for any real 8. If 0 <0 <,

the bound does not exceed Max (8, = —0).
[For the last two theorems see Schur (1).]
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303. If a, is the Fourier sine coefficient of an odd bounded function, or
the Fourier cosine coefficient of an even bounded function, then the forms

22a,-+,- TiYjs Zzai—j Z:Y;

are bounded in [2, 2].
[Toeplitz (1). Suppose that ¢ and j run from 1 to n; that x and y are
real and Srt=Sy2=1;

that X =2Xz;cos10, X'=2ZXZz;sintd, Y =2Xy,cosjd, Y’'=Zy,sinj0,

and that (for example)

= jf " #(6) sinngds,
T]o
where | f| = M. A simple calculation gives
nn {
Y¥a, xy=— | (X'Y —XY)f(6)do.
11

Since
I I Y
| [ XY FOdo| S3M | (X*+ Y7 dp =} M (T + Zy?) = }Mm,
0 0
we find the upper bound 2M for A. Similarly in the other cases.
If for example f(6) is odd and equal to §(7—0) for 0 <0 <z, then M =}~

and a,=n"1. We thus obtain the result of Theorem 294 concerning B.]

dila villds Lveniil LA 200 AV OL 210Ul AR AL Hlis £

304. If (i) XX ay2;y; is bounded in [p, q] (11) k>1,1>1, and (iii) (»;),
1 ' ivel 3 whnich © I'U'r) a0, \.Jql\U)\w, then
A =X a,;uv;2,9;

is bounded in [pk%, ql].
[For |4|SM(Z|ux|?)V?(Z|vy|?)Ye
SMZ | urr l Yrk (X2 I eV | We'(Z I x |pk)1/pk(z I Y Iql)llal_]
305. The form

YV U Yy

XM,
bt B4 1

.,

where u; and v; are given sets of numbers satisfying
S‘!u 12< 1 Ellfn 12 <1

U= 1y Vil =2
is bounded, but not necessarily absolutely bounded, in [c0, c0].
[Take p=qg=2, k=10=oc0 in Theorem 304.
If the form were always absolutely bounded, then Hilbert’s form B of
§ 8.12 would be absolutely bounded, which is untrue.]

306. If Ma(a)z A, H, My(a)s4,H,
%) A93 Tr ~QWM 7\ —~ A ITT
then Zzzﬂ Swg(a)s a4 1.

[By Theorems 16 and 17. The result is required in the proof of the

next theorem.
negrem, |
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=
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\

307. If perpendiculars are drawn from the corners(+1, +1,..., +1)of
the ‘unit cube’in space of m dimensions, upon any linear [m — 1] through
the centre of the cube, then the mean of the perpendiculars lies between
two constants 4 and B, independent of m and the position of the [m — 1].

3 }
308. If by=(S]ay|2)s e=(Sla,l2),
\ i / \J /
41 D__ V0V 14\38 ~ 17 1L SNA\N _ D FaAY
then P={aaja;|5)t =K (04 2c;) =K (B84 (),

where K is an absolute constant.

309. A necessary condition that a form 4 =2XXa;x;y;, with real or
complex coefficients, should be bounded in [c0, 0], with bound M, is that,
in the notation of the last theorem, B, C, P should be less than KM.

[For the last five theorems see Littlewood (2).]

1 1.1
310. If pz2,922, ~+-=,,

Fr 4 bl

___Pg —__ 4pq

A’—'M,v P "y P=H— Don D9
r49—r—9g OpYq — L — &y
anﬂ 1ia hoiinmded in I 21 with haommnmd M than
A L4 A0 MU ULAAUAL 1L Lt’, !J, YVYLURL MU KRLLLL 4ATL ¢ UaiULL

ﬂf\ﬂ]“f
\.lvll.‘l
311, If 11,1,
A Ade i = l ~ 3
r q

but the conditions of Theorem 310 are satisfied in other respects, then
(TS KM, (ZeA)A=KM, (ZX]ay|)VrsKM.

312, If

p<2<gq, 1-§-1<1,
P q

and the conditions of Theorem 310 are satisfied otherwise, then
(ZZ|ay; A< KM,
313. If p>1, ¢>1, _}f+':_!<ls
Pr 9

a;= 0,

A is bounded in [p, ¢], with bound M, and

\V» N1
Bi= @aﬁ” > s Yi= (Zaz’ja> s
, sl

then (BB M, (Zp MM, (ZZa,MNYA< M.
[For the last four theorems see Hardy and Littlewood (13).]
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314. Hilbert’s forms in [p, p’]. It will be proved in Ch. IX that the
form A of Theorem 294 is bounded in [p, p’]. The corresponding theorem
for B lies a good deal deeper. We have to show that

jnmn . |
@) xz A

]
11 ©—9
111 J

SKG,(x) Sp(y),

where K = K (p) depends only on p; or, what is, after Theorem 286, the
same thing, that

(i) zlz'..y—f.!”'gmfz[

@

5

|27,

ilyg v=—2

4 e amnarioh affan Mhannan DOE 44 svmecra 13) A £33) oz oosoas o
v s Uu.uusu, QlUOL L1L1IDUVULVULIl &« 7J, VU P].UVU \l./ UL \LI.) 1UL &UCre v

T.
X
of p’ (or for some subsequence of these values). This demands some
special device, the most natural, from our present point of view, being

that used by Titchmarsh (2). o



9.1. Hilbert’s double series theorem. The researches of
Which we give an account in this chapter originate in aremarkable
) qs 1

Hilbert, and which we

where m and n run from 1 tooo Ourfirst theorem isTheorem 315
holaw whinh wa atata with 1t

| SAW3 4V VV YY 1l1Vvill YY UV DUWUV YYaivil LUD L .l

plement of a type which will occur frequently in this chapter.

tegral analogue and with a com-

315. If p>1, p'=p/lp-1),
and, Ya,P<A, %2b,P<B,
the summations running from 1 to co, then

. A < @b o

(9.1.1) 5 m%n T 4up gup

m+mn sin(7/p)
unless (a) or (b) 18 nul.

316. If p>1, p'=p/(lp-1),
and ‘ fP(x)dze< F, ‘ g7 (y)dy £ G,
Jo Jo
then
P P LA ~{a:)
(9.1.2) ‘%@dxdy<m Fl/p Gl/p

317. The constant wcosec (m/p) is the best possible constant in
each of Theorems 315 and 316.

The case p=p’=2 of Theorem 315 is ‘Hilbert’s double series theorem’,
and was proved first (apart from the exact determination of the constant)

by Hilbert in his lectures on integral equations. Hilbert’s proof was
published by Weyl (2). The determination of the constant, and the



Hardy and M. Rlesz e Hardy (3). Other proofs, of the whole or
of parts of the theorems, and generalisations in different directions,
have been given by Fejér and F. Riesz (1), Francis and Littlewood (1),
Hardy (2), Hardy, Littlewood, and Pélya (1), Mulholland (1,3), Owen (1),
Pélya and Szegd (1, 1, 117, 290), Schur (1), and F. Wiener (1). A number
of these generalisations will be proved or quoted later.

The inequality (9.1.1) is of the same type as the general inequality
discussed in § 8.2; but Theorem 315 is not included in Theorem 275, since

b ]
1

m Mm+n
is divergent. It is to be observed that = cosec am, where « = 1/p, is (in
accordance with Theorem 295) convex for 0<a < 1.

9.2. A general class of bilinear forms. We shall deduce

Theorem 315 from the following more general theorem2.

318. Suppose that p>1, p"=p[/(p—1), and that K (x,y) has the
foliowing properties:

(i) K s non-negatz've and homogeneous of degree —1:

( ) Jo (fb‘,l -'/rd;l':‘jolx
and either (iii) K (z, 1) x~17 is a strictly decreasing function of x,
and K (1,y) y~YP of y: or, moregenerally, (iii’) K (x,1) x=V? decreases
from x=1 onwards, while the interval (0, 1) can be divided into two
parts, (0, §) and (€, 1), of which one may be nul, in the first of which
1t decreases and in the second of which it increases; and K (1,y) y—/»

has similar properties. Finally suppose that, when only the less
stringent condition (iii’) s satisfied,
(iv) K (x,2)=0.
Then
(a) XK (m,n)a,,b, <k(Za,P)¥? (Zb,? )P
unless (a) or (b) 1s nul‘
2P0 U Y B L 74 SUUR \ ~ 1IN . m
(o) Z \AA (m,n) ) < kP 2a,,?

unless (a) is nul;

» Hardy, Littlewood, and Pélya (1). The case p=2 of the theorem is due in sub-
stance to Schur (1): Schur supposes K («, ) a decreasing function of both variables.

I5-2



of K.
(2) The words ‘decreasing’, ... are to be interpreted in the strict sense

throughout the theorem.
(3) £mayDbeOor 1, oneof theintervals (0, £) and (¢, 1) then disappearing.

(4) In the most important application, in which

3 3 T danacdin aca 1 whirh ~canditian (1317 5
condition (111) is satisfied. An interesting case in which condition (ii1") 18
required is

(O<axl).®

K@= Gryrelz=y
(2, 1) has an infinity at =1. In such cases condition (iv) is
lude equal pairs (m, m) from the summation.

der to exc

It is easy to see
summations ar 2, ..., then

N

\
-a.4)

{C
\
For, if (iii) is satisfied, then

-1/ 1 "r/n
K (z,1)x~Vr dy,

923 KL )5
\n" J\n] n Je-1m

and (9.2.1) follows by summation. If only (iii’) is satisfied, we

use (9.2.3) for » > n and for r < én, and
-1l/p (r+1)/n
VEY e [T R @ )2 e

e} m .
/ \ I u/ v J r)ﬂln
& See Hardy, Littiewood, and Pdlya (1).

[4

K(f,l
\7’
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for ¢én<r<mn; and the result again follows by summation when

we observe that K (1, 1)= 0. The proof of (9.2.2) is similar
Hence
1/pp’ n \Vpp’
SSK (m,n)a, b, =S5a, Ko () b, K1 (7)
" \n) \m/
< Pljp Nilp’
ST,
(™)™
where P=%q,? 2K (m,n){—
m n \n/
/ \ /n\"¥P 1
=2a,?PXK|1, — —< k2a,?,
" m
by (9.2.2), unless (a) is nul; and similarly
Q@<kZb,”
unless (b) is nul. This proves the theorem
1
If we take K(x,y)=——
r+Yy
we obtain Theorem 315. It may be shown that the & of Theorem
318 isa best possib e copst-ant, th. in this direction we shall not

9.3. The corresponding theorem for integrals. The
theorem for integrals corresponding to Theorem 318 is

319. Suppose that p> 1, that K (x,y) is non-negative and homo-
geneous of degree — 1, and that

r K(x, )z Vpdx= f K1,y \y“l/p'dy=k.

b rJ7

Jo Jo
Then (a)
@ © 1/p © p
(" [ & @y f@gwdedysk( [ fraz) ([~ gay)”
Jo \Jo /] \Jo /
(5) | wd,,,l/ [~ K (2. ) *"x‘dx\\p <Ip [~ £0 do
(0) ], W\, S @y wary S5 ) ,

(c) f dx”mK(x Y g(y)d \ < kP (Oogp'dy.
Jo -/ Jo

If K (x,y)1s posztwe, then there is inequality in (b) unless f=0,
in (c) unless g=0, and in (a) unless either f=0 or g=0.

a See § 9.5. The constant % is (again in accordance with Theorem 295) convex

ing—1/»
mao=1/2.
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The theorem may be proved by the method of §9.2, which
naturally goes rather more simply in this case. We have

.p N e lasN Tondas
JJ "'HJ L)y\y)uruwy
x\1»p , (Y ijp
= [ 1@ K2 ()™ g(9) Ko (U) dwdy < P @u
JJ \Y/ \&/
1 ’
where  P=| fr@)ds | K@y (Z) dy=k | fodo
b
J J \y/ J
and Q=k f gr' dy.
If K > 0, and there is equality, then
fn o 1N\ A P 7 N\ /x\l/p’___ n, . mn' 7.\ /y\llp
(9.6.1) A7 @)\ =) =D97 Y]
\Y/ \T/
Lo aTlrnmat all 2: 8 T aro criora a7 a walia Fancohinh 420 ia nnaidion and
AUL A111USY dc.Ll.y 11 WO %.lVUyCll ValuG LUl wmuuy\yjla }_JUDJ.U].VUCUIU
finite, and for which the equivalence holds, we see that f? (x) is

equivalent to a function Oz, and this is inconsistent with the
~f £ d v £ or

Hance eithe
\JULLVULEULLUU U.I_ JJ WW ..LLUJ..IUU UIUJJ.UJ. J v

shown that the constant is the best possible.
There is another interesting method of proof due to Schurp.
We have

ﬁ
]
g~
———

~— E:
o
=
Qo

52
o
[
@
Q
Q
[
Q
==
&
=.
@
=
(o

N oz I

equal for almost ail z. See §6.3(d).
b Schur (1). Schur supposes p=2.



ECT eaé’m,g ]’wncv’wn OJ
irons (1) and (i' nf' Theorem 318;

VU v H Ax Ty

QQ
S~
s
v
8
D O
-
~
s
&
<
9.4

and that p>1. Then
SEK (A, M) M 1,00, b, < o (S, 2) 12 (Sb, 2 Yo
unless (@) or (b) is nula.

The special case A, =m, M, =n is also a special case of
Theorem 318.

We deduce Theorem 320 from Theorem 319 by a process which
has many applications?. We interpret A, and M, as 0, and take,
in Theorem 319,

f@)y=A""Pa, (A, 1Sx<Ay),
g(y)= un‘l’p by (M,ySy<M,).

If we observe that

Am Mn
[ [ K@9)f@g@)dedy> 02 1,22 a,b, K (A, M,)

. get. st BT T (s pyue(sh P)
* A+ m=n = qin (40/m)
m ' Ytn \** /L7
unless (a) or (b) 18 nul.

or integrals of any order.

322.4 Suppose that the n numbers p, Qs oo T satisf'y
i

> 1, >1, ..., r>1, -+ +. +— 1;
p q g

a For the case p= =2 see Schur ( 1).
b Cf., § 6.4; and see, for exampie, § 9.11.
¢ Owen (1) gives a more general but less precise result.

a4 For the case p=g=...=r see Schur (1).
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that K (x,y, ...,2) 18 & posttive functz’on of the n variables x, y, ..., 2,

Z - e s B A

mrr‘wgenwwe UJ weyiee — 7+ .l unw EIMD

o ) 21 _1
(9.4.1) J, ;HJlOK( Yy ees2)y .2 rdy...dz=k.
bom
[l

[
J J J K(2,Yy,....2)[()g(y)... h(2)dxdy ... dz
0Jo 0
[ \Up [ [ \ Ve [ [ _ \Vr

t{[rrae) ([ ran) (] )
If further

y Ve, .z K(1,y,...,2), a7V U K(x,1,...,2),...
are decreasing functions of all the variables which they involve, then
X2, 2K (m,n,...,8)aub, ...c; < k(Za,P)V? (Lb,2)Va... (ZeJ)Vr.
In virtue of the homogeneity of K, the convergence of (9.4.1)
implies the convergence and equality of all the n integrals of the
same type.
Theorem 322 may be proved by straightforward generalisations

£ a1,

Ol e PI‘OOIS UI Lneorems 016 &na O.l‘]

9.5. Best possibie constants: proof of Theorem 317. We
have still to prove Theorem 317, which asserts that the constant
mcosec (m/p) of Theorems 315 and 316 is ‘the best possible’, that
is to say that the inequah'ties asserted by the theorems would be
false, for some a,,, b,, or f(z), g (y), if 7= cosec (/p) were replaced
by any smaller number. The method Whlch we use illustrates an

important general principle and may be used in the proof of many
theorems of this ‘negative’ character.
A | — (1+€ _ 1+-€)/p’
We take am__ m—+ )/p’ bn__ p—1+e/p ,

where ¢ is small and positive; we may suppose that € < p’/2p.

A o
We denote by O (1) a number which may depend upon p and e,

but is bounded when 7 is fixed and e—0; and by o (1) a number
which satisfies these conditions and tends to zero with e. Then

1 o0 0 f*oo 1
—=| xlfde<Zm <14+ | zrl-dr=1+-,
€ J1 1 J1 €
and so
19 5 1\ Z(I;p _Zm=1=€_1 . 0/1\ Ebﬁ'—}— . 011\
(Jd.9.1) m= —e‘f* (1), n—-€+ (1)
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Also
o0 o0

oy a’mbn - r r A._(l—l-g\/n,.._ll.l_g\lfn’dxdy
HH ) ' ' V’/ AS J:‘y AN 1] TAF o4

m L m - wm 1 ar

vy v J 1 J 1 WTy

roo o

I e AU
— x—i-€dy J wu—1tem .
J 1 1/x 1+u

The error in replacmg the lower hmlt in the inner integral by

ondent of -8 and
LA/ A C, CULAA

<D
D
n
n
-
ra
3
Q
3
R
ER:!
D
"'5
52
el o

Hence
(9.5.2) 3% “nln o [ pameqy [Tymarow 2 o)
m+n” J, Jo 1+u
1 1
™ voml+oq)y=tl—7 Lol
e (sin (7/p) ) € (sin (7/p) )
It is plain from (9.5.1) and (9.5.2) that, if % is any number less

sz Inn 1 (Sapyiw (S
T T 7Tv
whon - 1q er1ifheiontly amall
YY LLULAL © 10 DWULLluViIvILUL OLLLULL .

as in §9.
9.1.2) ig also fhp h pggglbl .

AT Vi \ 25 VIO vaaAT

course also prove this dlrectly.
An alternative method is to take

Q
3
€2}
(gl
I
=
o
d o
i

v — ap—LD L 5 —1/p
Ap=mP, 0,=n
-] f < awrnd v~ N0 L N al s LT L T
when m s u, » =, and a,,=0, 6, =0 otherwise, and 0 make u
tend to infinitv. The princinle is the same in each case: we make
ALA A4 L‘-J.I.‘.LJ—I.UJ E I’A.A&d.v&r’&\./ AR VALY ROWALLL Ada WINVAL Vi g v W aaalivasS

& Tt is less than

b B 1 l1+e 1 €
re =l —-=-=—;
whe P P D

and we may take «=1/2p, if e<p’/2p.
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to a limit, and compare their values for values of the parameter

near this limit. The method is effective in the proof of very
manv theorems of the tvne of Theorem 217. The inequalities

S2iR2l) vaeRARAsL vazs J Y YA X 1aUTULTiAL T Al UL

(9.1.1) and (9.1.2) assert unattained upper bounds; except when
both sides vanish, equality cannot occur; and it is for this reason
that the introduction of a parameter (e or u) is necessary in the
proof of the complementary theorem.

315 and 316 have been proved in many different ways and have

very varied applications. In this and the next section we collect a

number of remarks which concern both nroofs and apnlications

2. LA RS Vi AALARL AN VY AAaVAs UUAIVULLL UV VAL A UL Warte W ALV UL ILD

and are intended to illustrate the connections between the
theorems and various parts of the theory of functions.

(1) Theorem 315 may be deduced from Theorem 316 by the
nroceca which lad g +n Thoanram D1 Wa dafine f1+»Yand ~(4) hy
t’L AW AL WIS ) YY ARA\VAL AU/ U A LLIVUUVUALVULIL Udw & \W’ CUALL\A y \yl UJ

Jm-1Jn-1 1Y ) m+n
Here, however, we can go a little further, since
1 1 2
+ >
m+n—l—a m+n—14+a m+n—1

for 0<a<1, and soP
[* dxdy 1
> .
Vo dua oy “mrn=1
If now we replace m and » by m+1 and n+ 1, we obtain a
slightly sharper form of Theorem 315, viz.

323. If the conditions of Theorem 315 are satisfied, then
0 o0 a (1) T \ 1/ /0 \ l/p'
Ty _Cmon Taz) " (Shr)
f oA en 1 <in (m-/ Y\ PR
U U v Tv MAIENCILTT NV / A Y /

& We describe Theorems 315 (together with the sharper Theorem 323) and 316
as ‘Hilbert’s theorems’. Strictly, Hilbert’s theorem is Theorem 315, with p=2.
b" Associate elements of the integral symmetrically situated about the centre of

the square of integration.
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Several other proofs of Hilbert’s theorem, for example the proof of
Mulhalland /1) +ha nranf af Sahiir ocivon i1 §$2 12 the nroof of ,ejér and

AVALAIIAULICULLA\A \.I.}, |\ ¥ iv) PJ.UUL Ul Muvriul 61\’011 iiL 3 e A bdg ULAL tJLUUJ. AL A
F. Riesz given below, and the proof of Pélya and Szegé (1, 1, 290), also
give the result in this form. The last three are limited to the case p =2.

(2) The proof of Fejér and F. Riesz is based upon the theory
of analytic functions, and proceeds as follows. Suppose that

f(v\—?n 2N ig a nalvnomial Anf r:lomnn 7\7 with nnn_npnnﬁvp cO-
n -t.' JLLU.LIJ.J.WL L 6 AV "J. ULk AaA 6

efﬁclents, not identically zero. Then, by Cauchy’s Theorem,

I 7

) [ Srede=—i] f
and so

1 1 ”
(9.6.1) Jf 2 (@) de < Jf fr@ydesi| [f0)|2d0,
0 -1 —

NN b,
2wy Oy Ay
2 —mn

Ld
0 0 m-i+n- 1
If we make N->o00 we obtain Hilbert’s theorem, with a,,=b,,
and ‘<’ for ‘<’. The first restriction is unimportant, since,

aftan £ Q crrnmnatnina hilitnaan fanmn 113 79 9T haa a harmnmd aniial
Ll UT1L 8 O O, & Ey.u..l.[uUUlJ.\.; ULI1IICol 1UL111 111 L‘, a_l LI a oouna U\iuﬂll

to that of the corresponding quadratic form. Toreplace ‘ <’ by ¢ <’
requires a refinement of the argument which we shall not discuss

I’I orn
1AUVLI U,

The second inequality in (9.6.1) may be written

Q
]

~1 Ps

| @dest | |e)]d6

1 or

"D

J -
and in this form 1t is valid whether the coefficients » Te

complex, and has important function-theoretic .‘:Lppnc.emonsd

Q

(3) Hilbert’s original proof depended upon the identity
[ {n 2

(9.6.2) j t {E (=1) (a,cos'rt-b,sin'rt)} dt=2n(S—-T),
- 1

?b-':‘

. ~ 2N oq b. —
where O=22— T =
11 7‘+8

(the dash 1mply1ng that pairs 7, s for which r =g are omitted). From this

i

~ M=
- l*’.ls

%

n 2
{Z (= 1) (a,cosrt—b,sin rt)} dt = =? % (aZ+b2).
1 1

-

& See Fejér and F. Riesz (1). The inequality is actually true (and in the stricter
form with ¢<’) for any f(z), except f () =0, for which 3]a,, |? is convergent; and
this is a corollary of Hilbert’s theorem, if this theorem is proved in some other way.
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\v.G.%) PP =T iy

117+8 1

and from (9.6.4), and the remark of § 8.8 quoted under (2), we deduce

(9.6.5) $3ub < ( - Zaz\ ( zbz\ <;m(2a2+2b2\

117

This gives the second result of Theorem 294, except that the constant 2«
is not the best possible constant.

9.7. A ‘ppiication of Hilbert’s t

:\
9—:

eorems. (1) Asanapp

nalytic functions
|

ica-

g:
g:

select he fo]lowmg _SLppose that f(z) is regu_la_.r in |2 d
belongs to the ‘complex Lebesgue class L, i.e. that

1 [ 0
g;J | f(re®) | db
-
is bounded for r<1. If f(z) is ‘wurzelfrei’, i.e. has no zeros in
|z <L then ¢y 50 sn_g2(0)= (Za,2n)2,

< 1. Since [|g(re®?)|2d0 is

where g(z) also is regular in |z|
d therefore, by Theorem 323,

bounded, X |a,, |2 is convergent, an
la
|

U | | @
m+n+1
is convergent. A fortior:
> {C l 1 1 > a.a l
Cv+1 v+ 1l e,

is convergent.

It is fairly easy, by a method which is familiar in this part of
the theory of analytic functions, to extend the conclusion to
general f (not necessarily ‘wurzelfrei’)2. We thus obtain the

& See F. Riesz (3), Hardy and Littlewood (2). We can express f as the sum of
two ‘wurzelirei’ functions of L.
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theorem: if f(z) belongs to L in |z| <1, then its integrated power
aomnne o mhonlaidolas anmmnsomsnonnd o ol __ 1 a
oI (CO O anUbwbbb voreveryceroy JUI lo(; I — L.
100\ A R 1LY 1. LTI Y o+ a1l a1l
(<) A8 all appiacatlon O rillperv 8 8eries tneorein vo e tneory
of functions of a real variable, we prove
NOA T, £y \ 7 [ ] I ') 7 . I 72N Y 7
324.> 1If f(x) s real, L=, ana not nul, wn (0, 1), and
(1
P PG o P R N fon __ D 5] \
wn——J TEJ\E)AX M=V, 1, 4,...),
0
i
2
then a2 < wfo f2(z)de.

The constant 1s the best possible.

We may plainly suppose f(z)=0. Then, if (b,) is any non-

hvp and non-nul sequence,

. N S , 1 ,
2a,b,=2b, J x"j(x)dx=J (2b,2") f (x)dx,
0 J 0
rASl 1 A9 rl FA NS A \2 7 rl Lo N\ 7
(2a,0,)°= | (20,2")°dx| [=(x)dx
JO JO
b, b, r1 - r1
= _— . 2 2 . 2
P Jef (x)dx <7 Zb2 Jvf (z)dw,

by Hilbert’s theorem. The result now follows from Theorem 15.
To prove the constant = the best possible, consider

f(x) = (l - x)e-—-i,
and make ¢ tend to zero.
The integrals a,, are called the moments of f(z) in (0, 1) and are
important in many theories.
Here we have deduced Theorem 324 from Th rem 323 (with

A CUICHE 1o (UilC CUILVOIST UL _u.uxucj. B u..l.U uaiivy

o Xa W | 3 rm

(Wit p= ) from Theorem 324 and Theorem
o1y

& Hardy and Littlewood (2). The theorem may also be stated in the form ‘if a
power series g(z)=23b, 2" is of bounded variation in |z| <1, then 3|b,| is conver-
gent’. For this form of the theorem, and for more precise results, see Fejér (1).

b A much more general inequality, but without the best possible value of the
consgtant, is nroved hv Hnrdv and Littlewood (1). See also Hardy (‘lﬂ\

LISV peovea &AL 22PICWOOLCL Je PUC QIR0 IRQIVY (=Y.



5 0¥ rr T’ O TATTIATT A T Y
&La0 lLubiBERL O INLKQYUALLLY

i

non-negative and not always 0, and that f(r) is any non-negative

and non-nul function. Then

Walia ailsii"aiwis AL RATAS

rl dz = ((Zb ") fdx=2b,
Jo”’ Jo

( f fgdx\ (Sa,b,)? < Za,25b,? < Wansz o,
0

by Theorem 324. Since this is true for all f, it follows, by
Theorem 191, that

rl
i

J . g dx < 7Zb,?;

and this is equivalent to Theorem 323.
It is plain that when two inequalities each involving a con-
stant factor, are remprocc‘u in this sense, each uemg‘ deducible

from the other in thisway by the converse of Holder’s inequality,
then one constant must be best possible if the other is. We shall

rant worith amadthan annlicagti~an Af +hig nninpinla 1g4an 7120 10 71V)
HICCUV wilivld aiiubvuct t}t)uuw LULL UL vl PLI 10 PLU LA VG \3 Jd.1V \.l,)
IOV Aa o anmallane AP Mhannanm 2148 fooidlh 00— D\ rn voera
\0’ LAS8 & GULULL Ly UL LI1ITULCL JAU \ J.U.ll_tl-—-a” wo PLUVU
325.2 Supposethat a, =0 and that the summations run from 0 to co, and
that
a,x"
(9.7.1) A@x)=Za,z", A*(x)=X"_,
\v / \""7 n A"/ n!
Then
pIDN 2% < Zz(m'!'n)' Ly
(9.7.2) mEn+l="5% JaTnt gubnts
x©
(9.7.3) [ A2(x) dxéw[ {e = A*(x)}2dx.
Jo J

To p ove (9.7.3) we observe that
A(z)= [me‘tA*(xt) dt-:} [w e~z A* (u)du
] zJo

0
and so

f1 iy / ; \% [ /[ \ 2
joAz(w)dxzjogz-Uo e“"/“A*(u)du) =j dyU e‘WA*(u)du)

= / dw / e~ww a(u)du>2,

where oa(u)y=e*A*(u).

& Widder (1), Hardy (9).
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This is
]
[ dw[ e% o (u) du[ *W’oc(v)dv_[ [ ,A( )dudv
Jo UTv

< wj cx2 (w)du= 'rr/ {e* A*(u)}2du,
0 0
by Theorem 316.
It is easy to see that the constant = is the best possible. The relations

between the functions (9.7.1) are important in the theory of divergent

series, particularly in connection with singularities of analytic functions.

9.8. Hardy’s inequality. The two theorems which we discuss
next were discovered in the course of attempts to simplify the

proofs then known of Hilbert’s theorems?.

o equire onls nfnnd £ ~£m
‘VVG m.lsht require onwy an im pcucuu 10711 O 1(
ar

double series 1s convergent whenever Za? and Zb¥’
would then be natural to argue as follows. We divide the double

series into two parts §;, S, by the diagonal m=n, and consider
the part §, in which m < n. Then
a0 @b A
8, =373 mn x5y Imin_ 5 Eny
msn m-+n msn N n
where 4,=a,+a,+...+a,.

Thls hne of argument leads up to and is completed by the
following theorem.

326. Ifp>1,a,20,and A,=a,+as+...+a,,then
(0.8.1) s {4\ (2 Vs,
{J.0.1) < ~lhy
n p—1
Toaa 11 27 - SR ¢ £ ) ARG SN BTy Ay RSN SRR & R
UnLESS al tne a are zero. 4 ne constant 1S e vest posstote.

s It was a considerable time before any really simple proof of Hilbert's double
series theorem was found.
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| N2
T
<o

The corresponding theorem for integrals is

3272 Ifp>1,f(®)20,and F(x)=| [f(t)di, ithen
0
(9.8.2) (" (EY dw< (LN [ praw,
Jo\z) \p—1] Jo

unless f=0. The constant is the best possible.

These theorems were firet nroved hv T—Tgrr]v {’)\ excent that T—andv

LAUDOU UL EE ¥ iw) LAY ] ALDU LV U S g vaity - X

was unable to fix the constant in Theorem 326 ThlS imperfection was
removed by Landau (4). A great many alternative proofs of the theorems
have been given by various writers, for exa,mple by Broadbent (l),
Elliott (1), Grandjot (1), Hardy (4), Kaluza and Szego (1), Knopp (1).

We begin by giving Elliott’s proof of Theorem 326 and Hardy’s proof
of Theorem 327.°

3V Tan smvrmerian oo M ammasn 2L cra wn acr criannan dhod o < 0 WHan
\ } il P.I.U .U.lé L JICUILCLIL O&4U WC 1L y bUPPUbU ullau wlzu. A UL
if we suppose that a, =0, and replace a_.. bv b_, (9.8.1) becomes
g N X 7 r nTi 2 Tv7 \ 7
- + oo < + A
\2) *\757) p—1) Gf b,
an inequality weaker than (9.8.1) itself.
Tn+ us “Tltle fAarn A and acvan +hat anv nrmhor vwith
M-n .LU.I. ﬂ.n/ll/, aAlluu agloT uviiau il ILULII UL YY 4 Jia
suffix 0 is 0. We have then
w P P, =P '_—‘p—? no, —(n—1) ary=l} o P
p—1 p—1"
L omp\ (n—1)p
— _ -1
——anp‘l m_])+ m__1 anp Ocn_'l
\ P P

2 We have already encountered this theorem in Ch. VII, but the proof which we
gave there (in detail only when p=2) was intended primarily as an illustration of
variational methods and has no particular pretensions to simplicity.

b We have expanded the proofs so as to deal with the question of equality.

¢ By Theorem 9.



[
S
[

y

N N N

(9.8.3) Xa,P< P v, ﬂ—lan§_—£_(z p\llp (S‘ﬂ p\llp
1 p—11 p—1\7 \1 ")

Dividing by the last factor on the right (which is certainly
positive), and raising the result to the pth power, we obtain

N [ p \PX
9.8.4) zllocn”‘ = \p— 1} za, P

——~~

When we ma,k N tend to infinity we obtain (9. ) except that

we have ‘<’ in vlace of ‘<’. In particular we see that ZC’.np ig

12w ¥ .L tr.n.wvv v ~ . AR VAV AL ~o

finite.
Returning to (9.8.3), and replacing N by oo, we obtain

L Sa,pa, <= (Sa,P)UP (Sa,2)4r.

(9.8.5) Zo,P<

e

r© I~
There is inegualitv in the second mlace unless (o, ) and (g P
are proportional, i.e. unless a,=Cu,, where C is independent
) . . - 1.

p 1 1
(9.8.6) Sa,? < ——(Za,P)VP (Za,P)VP
P 1
amd /0Q 1IN L. M Lo (OQ R 2 IO Q AN £ N e A Larnann 1O Q D)
a kv.o.l} 10HOWS 1101l {(J.0.V} ad (J.0.F) 1010 U iiuil \J.0.9)
To prove the constant factor the best possible, we take
a,=n"1 (n<N), a,=0 (n>N)
¥
Tueﬂ Eanp: Z —
1
Y4
£L

A, =3y > J w W= {n® W -1} (n=N),
1 1

p-

/An\p [ p V1l—¢,
()~ G5) = o=

where ¢, — 0 when n—co. It follows that
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where 7, —0 when N —oco. Hence any inequality of the type

is false if a,, is chosen as above and N is sufficiently large.
0 —1/p)-€ for all n. and

Tvy Wirla

®
K
I
S

Q

n 7

is
to make e small. Compare §9.5: it was this procedure which we

1-p f'p 1-p fo X
p-1 p—1 p—1];
But. bv Theorem 222. £1-2 F7 (&) -0 when f? is inteorable and
, Py 1neorem «««, & LE(§)—>vu wnen j* is mtegraonie and
£—-0. Hence
X F D X F p-1
087 [ (XY w2 [ (E)" fau
0 P—1]Jo \Z/
m (PX/EN\D \lp' /7 rX \ 1/
< £ 11 (=Y dael (] fi"dx\ .
p—1Jo\x) ) \J, /
f

Hence (9.8.7) gives
9.8.8) rX/E\pdx Y FXJfﬁ’ dz;
’ Jol\z/ \p—1) Jo

and when we make X —o00 we obtain (9.8.2), except that ‘<’ is
replaced by ‘<’. In particular, the integral on the left-hand side
of (9.8.2) is finite.

It follows that all the integrals in (9.8.7) remain finite when
X is replaced by oo, and that

(9.8.9) (=) dw 1)
Jo\z) p—1Jo\2)
) 1/p’ 0 1/
- (E\pdxl p” _fpdx\ !
p—=L{Jo\2x) ) \Jo /
The last sign of inequality may be replaced by ‘<’ unless x—2 F?

IIA

—~_~

=)

IIA
=

& Partial integration is justified because F? is an integral when F is an integral.
For a formal proof see Hardy (4).
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Q.hf] 'I"p arn a#anf‘nro]tr 1’\1"{\1’\(\1"“"1(\1’\0] rr‘ ‘;G 1171\11][‘] mo]za 'I“ a MNUurar
WLL\.J.J WALV \J-I-LU\JULV\JLJ tl.l.U_tJU.L VAU LLVA A iAo Yy Uwila LIJ.(ND.UJ w t’\} YY WVai
of x, and then [ f?dx would be divergent.
Tr . _
Iicence
® 1’ P ([ /F\p \Up'f poo - \Up

unless f is nul. Since the integral on the left-hand si
and finite. (9 82) now follows from (9.8 'lﬂ) (

AANS VY I AL NJIAL \U-U-J—V
from (9.8.7).
The proof that the constant is the best possible follows the

same hines as before: take f’(fr) =0forx<1 f{rr\ =P —<forxr>1.

- hafiientiadhas Il it 4 =2J \YY/ P— -

Elliott’s proof of Theorem 326 applies to Theorem 327 also, with the

obvious modifications. The proof of Theorem 327 given in (ii) may be
adapted to series, but does not give the best possible value of the constant.

(iii) The following proof of Theorem 327 (due to Ingham) is also
interesting : we shall be content with proving the form with ‘<’. We use
Theorem 203, supposing that the intervals of integration are each (0, 1),
that the weight-functions are 1, and that

r=1, s=p>1, f(z,y)=f(xy).

1
Then S,Uti(m)f('zty)z [f(:r@,l) dqu_.(_‘qi.),
Jo y
(1 y1/o \ (1N Y1/
M, floy) =1 | S @y)dy; =17 j 7(2) dt} = 1z, /@O
0 0

for x§ 1, Hence, by Theorem 203,

[i(F [ o g\ ?

Y L N , (Y en 7.
U \y) ““’f AV ARV PR TS AV I
We then obtain the result by putting
z=XJo, f(X[c)=g(X),
replacing X, g by «, f, and making ¢ — co.

9.9. Further integral inequalities. There are many ana-
logues and extensions of Theorems 326 and 327, which have been
proved by different writers in different ways; and we give some
of these theorems here. We consider integral inequalities first,
since we can derive most of these in a simple and uniform manner
from Theorem 319, and the corresponding theorems for series

sometimes involve slight additional complications.
(1) Take, in Theorem 319,
K(z,y)=1ly (x=y), K(,y)=0 (z>y).

16-2
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p— p—1°
and all the conditions on K are satisfied. Hence (b) and (c) of
Theorem 319 give

won [“af [

\
e

(9.9.2) | da (

.1)is Theorem 327, with ‘<’ for ‘<’;
the genera theorem becau K is

n N STrAMNNNAMM NN 'p
uie€ conver gence o1

Similarly we can prove that there is inequality in (9.9.2) unless

g isnul. A tr1v1a1 transformation then gives
328. If p>1and

N PP
F (@)= | “fa)i,
x
then
(9.9.3) de<pr | m(xf)ﬂdx,
Jo ~Jo

(ON A

K(x m):PZ )W_“” - w<y), K(@y)=0 x2y)
’ r yr ’ ’ =
with r > 0. With r=1, we come back to (1). We now have
(1
P( ~=
1
sz‘—l—( z~UP (1 — gy —tda= pl .
")J o F(r+1——]

\ p/
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We are thus led to
329. If p>1,r>0, and

(9.9.4) J,f(m)=__‘_t-f (" @—ty-17() dt

then o
e |0 T

(9.9.5) ’n (-7) de < {F(T-}—I—%)i Jof dz,
unless f=0. If

(9.9.6) 1) =y | =y,
then

o ‘ P(\é) ly *oo
(9.9.7) Je f,.pdx<{“‘/ +1\}» ‘0 (2 f)? da,

unless f=0. In each case the constant is the best possible.

~

e function f, (x) of (9.9.4)is the ‘Riemann-Liouvilleintegral’

%) ~~ f\“‘l"‘v\, I\ S od
(‘b) Uf U.LdUL r, thh Origin 0. The fuuC‘Olu.‘ﬁ \9 J. u) ST 4'1" ‘xr"_y]

integral’ of order r, which is in some ways more convenient,
especially in the theory of Fourier series.
(3) Take
—1
K n:\=yé¢ (<o)
\Ww=yY/

L2 \Wor g xa, g7 wrg R
with a < 1/p’. Then
k= ' xo—irdo = D
0 p—pa—1
and (b) and (c¢) of Theorem 319 give
0.0.8) |~ uyre=t( [V gerizmyae) dve(—2P N[ trdm
' N \Jo V) 77 \p—ap—1/ Jo*

/

(9.9.9) j x‘“”'(j y“‘lg(y)dy dx<(1f; ,)- g¥ dy.

Changing the notation, we obtain
330. Ifp>1,r+1, and F(x) s defined by

e
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then
-3 P w0
(9.9.10) (" e Fram< (P [© o (af)rde,
J \[r=11/ /o

unless f=0.

The constant is the best possible. It is also easy to verify that, when
p» =1, the two sides of (9.9.10) are equal.

Tanth thannaiea cancarning ceries Among the
9.10. Further theorems concerni ig series. Among the

analogues and extensions of Theorem 326 we select the following.

(1) The theorem related to Theorem 326 as Theorem 328 is to
Theorem 327 is

331.p foms 1 then
- LJ .tl - -L, vivwiv
Z(a,+a,,., +...p <p?P X (na,)?,
unless (a,) 18 nul. The constant is the best possible.

This theorem is ‘reciprocal’ to Theorem 326 in the sense of
§ 9.7 (2), i.e. deducible from the latter theorem by the converse
f Holder’s inequality. It may be instructive to set out the

0
SYK (m,n)a,b, = zzamb"=2“1+“2+'“+“nb%=2%bﬂ

m=n N n

< {\ > ( “‘“/)‘”}” (25,77 <L (S e (Sb,7 )4,

by Theorems 13 and 326, unless (a) or (b) is nul.
On the other hand

/h \
EZK(m,n)ambn=2am(um+ —i—+...

3

m+1

and the maximum of this, for all (@) for which Xa,?=1, is, by

ma < =~
ineorem 10,
(< (b \7') Up’

i{£+mﬁﬁ+m,} .

& For a direct proof see Hardy (5).
b Copson (1); see also Hardy (6).
¢ See § 8.7.




("\m "m+1777) ] Tp—1
Changmg b,, into ma,,, and p’ into p, we obtain Theorem 331
That the constant p® is the best possible f ‘
last remark of §9.7 (2).
(2) 332. If p>1,a,20,7,>0, and
A,=M+A+. o+, A,=Na,+20,+...+2,a,,

then ZA, (ﬂ") < (

v/

p— 1, 240 s

unless (a,,) 18 nul.

rma_ s i | 1. 1 . 1 1 h ] rmuy s Xa ¥ 4 rma ra e
1118 tneorem,whnich 1s related 1o 1L neorem 440 as 1L heorem o441
n

is related to Theorem 315, may be proved in various ways. In

first place, it may be deduced from Theorem 320 by aspecialisation
of K (as Theorem 327 was deduced from Theorem 319 in §9.9);

but t,he. nestion nfnnqqﬂﬂp pnnah’rvfhpn needs a little attention.

Perhaps he mplest proof is by a dlrect adaptation of Elliott’s
argument in §9.8. If «,=4,/A, , we find that

(=]
U‘

TNANAOQQ I\TT m}\‘nh
TOCESS 0Oy wilci, 1

+ MriIa
U tJ Ut’ icv
9.4, we deduced Theorem 32 from Theore 319). We shall not
set this out in detail? ; but the remark raises questions of which

we say something more in the next section.

eries from theorems

+ vafarrad +A and
U LULUL1LIUWL UU, vlliL

.4, is very natural and often effective. It is
todifficulties of detail, so that direct methods

suallv hrnﬂ:rable_ We illustrate this by givine a deduection of

WUU Uaiao My gya Vo idde (24 VI.V\-‘-MV UA s

[
s-l
§
<
R
v
(
b
(
[«
.
t

For the details see Copson (1).
For the details (which are rather troublesome) see Hardy (4).
Compare §§ 6.4 and 9.4 (1).

o T ®
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Theorem 326 from Theorem 327, which leads us incidentally to
a remark of considerable intrinsic interest.

We observe first that ¢ ¢s sufficient to prove Theorem 326 on the
hypothesis that a, decreases as n increases. This follows from a
theorem which is of sufficient interest to be stated separately.

333. If the a,, are given except tn arrangement, and ¢ (u) s a
positive increasing function of u, then

o, [4,)
=\ )

18 greatest when the a,, are arranged in decmasing order.

ino and a 1s tn
I U

Then
(9.11.1) Zaﬁ:foofpdx,

(et L.

If n<x<n+1, then

n
x x x ’
and A —na, =0
@ n Un4l =Y
g0 that F/x decreases from A mto A . ./(n+ 1)when 2 increases
o that F| amto A, /(n+1) when x increases
from » to n+ 1. Hence
F\ An+l
—z—" (m<xz<n+l)
x -+ 1
and so
“(EY dwz % (4n)
(9.11.2) ) dxez2Z(=2) .
Jo\z/ 1\ /

Theorem 326 now follows from (9.11.
333.
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If the reader will try to deduce Theorem 331 from Theorem
328 similarly, he will ﬁnd some difficulty. Something is lost in the
passage from integrals to series, and it is by no means always

7 fnr Ve wo nhtain
Wn L Wn s YZwWU UN UL
(VP +a P+ 4 P\P [ p \P_
(9.12.1) = (& <(- Sa,.
) p—1

T e vmalea m o mn and 11as Mhanrans 2 o hdadn
4l WG L1L1lAne p—ruu, aliu uds LiICUICIIL 9, WG UDU L

S (. a. a VlIn<o¥a

2\ A Qg e By ) =eu,,

and this suggests the more complete theorem which follows.
334.2 2 (a,0y...a,)"<eXa,,

unless (a,) 18 nul. The constant 18 the best possible.
It is natural to attempt to prove the complet

anvarm O it a0 Aivnant annlinads

means of Theorem 7, DUU & airecv appiication o
the left-hand side of (9.12.1) is insufficient?. To remedy this, we

apply Theorem 9 not to a,, a,, ..., a, but to c,a,, c,a,, ..., c,a,
f] n]r\nnnn +1‘ID n GI\ +}\D “Th Vn 10 noaar "'l’\ﬁ ]v\n11hrqn1"}r (\F

ar
VILWA VILUUVURDU vilv v OV U.IJ.WU, Yy l..l\/ll. uwn 10 11UV WL ViAVv U W

convergence, thesenumbersshall be roughly equal’. Thisrequires
that c,, shall be rougmy of the order of n.

& Carleman (1). The proof given here is due to Pélya (2). The less precise
convergence theorem (without the constant e) was found independently by other
writers, and there are a number of proofs of one form or the other of the theorem,
See Collmgwood (in Valiron, 1, 186 where there is a proof due to Littlewood),
Kaluza and Szego (1), Knopp (l), Ostrowski (2, 201-204).

1
b Efaa 1/"<2— a,=2%a, 2 -;
172 ) n Pm<n " m 'ném n’

but the rlght hand sxde is generally d.lvergent The proof fails because the e in

. a g PRy 1.
@y @y ... G, are ‘too unequal’, and too much is lost in replacing &(a) by %(a).



250 HILBERT’S INEQUALITY AND

In order that the inner summation should be easily effected,

we choose
(6162...Gn)1/n=n+1,
when
(m+1)m < ré N T tan Z 1 1
Z ~(ci€p...0, ) V= =
m m’m——l ? n= 1v2 n) ngmn(n+1) m’
and then
a, C ( 1\™
(e ay... )T o5y {14+ ) <e3qg,,
n = m m\ m} m

by Theorem 140, unless a,, is nul.

We can prove the constant best possible as in § 9.5. We may,
for example, take a, =1/n for n < u, @, =0 for n > u, and make u
tend to mnfinmity.

01 U S S
11e correspondaing integre

335.2 If f 18 not nul, then
rw Ao {1 rw1 Lo\ ,J.l] J [‘w L.\ T
exXp - 10griv)aty ar <e Z)ai.
JO Plx‘yo aJ\t) j JOJ\)

A wamaninatan an szarres lera = PR, B . PSP R ) P,
the parameter p involved in our theorems i greater than 1.
A good many of them, however, have ana.-loglws with a p less

than 1, and we give a selection of them in this section. Th
characteristic difference between the two cases lies (as is to be
expected after our experience with Hélder’s and Minkowski’s
inequalities) in a reversal of the sign of inequality.

(1) 336. If K (x,y) s non-negative and homogeneous of degree

h | n . .. - 1 P |
-1, 0<p<l, ana

Nroo m o
| K@ )arde= | K(1y)y»'dy="k<oo,
v J O
then
Nl AR, \WP e \Lp
(“)J J K (z,y)f(x)g(y)dzdy ékU JP x) U gray)
0Jo 0 0
(A rw,],../ er/m 2\ £1L s\ Jm\lp ~ L.p rwm £\ Ao
) J W \J ll\vb,y,J\vb}ww’ glbfj J T \wpak.
0 0 0
Here, in accordance with the conventions of §§5.1 and 6.5,
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(@) means ‘if the double integral, and the second integral on the
right, are finite, then the first integral on the right isfinite,and ...”;
and (b) means ‘if the integral on the left is finite, then the
integral on the right is finite, and ...".

o

If we use the second method of §9.3, the proof o
hﬂf r\'{"lﬂ\ n'prpl'\nn'nam 210 rpl'\cx Qiom 1

or 1Q
NU UL Wl VUL LIIVVUIVIIL UK J. L1V 01611 s

S o

o
fasi}
Q.|
..Q
=
£
(=t
<
z,
[
=
=
/\
|_4
—
@)
(oh
2.
e
Q
@
=
=
O
B
g
g
@
o
=
o)
@
o
i

88 'F-'fi A
-3

fPdx < oo,
Jo
. - [® .
and F (x):J f (&) dt,
x
then ‘~w‘£: pdx> ‘1 pm\)p ‘mmfpdx,
JONE) AP/ Jo

We may deduce Theorem 337, in an imperfect form, from
Theorem 336, by taking

1
K(x,y)=0 (x<y), K(x,y)=?7 (xzy),
1 . 7. roo —10 T p
winen KJ—-J X HE QX = .
1 4

1
To prove the complete theorem in this way would involve a

A‘Gn‘I’IQQ1nh n'p +]’\Q G';fl‘“ I\F 1“&”1101

1 oY 22‘\ /Q“A QN 1“
VWUIooLUiIYE UL viiv DISJJ Ui 111\/\1!.& L1 LU il

J 11l JUU [SAV S & 4
Theorem 234). We therefore follow a direct method analogous to
that of §9.8.
We may suppose

finite, since otherwise there would be nothing to prove.
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We have

(9.13.1)
[X(F\? , 1 l_l_pnn,\lx. p (X
J &) =[P e ) ),

Since F decreases as x increases,

71— Fp { F (x \p
X

l.\)||-'
!I/\

o [ (EY a
7). \7)

L%

tends to 0 both when -0 and when z—>o00. Hence (9.13.1)
gives in the limit

[LE) a2y [ ) e

0 b JU\""/

'
8

AY

and the proof may be completed as before

.LLI.UU.I.U 01’ .
{2\ TWinallyr vwon nrave a tha em m‘lr\;n 1a ralatad +aThanrarm 22& nasrohler
\UI L lllall.y Yvwo HLU AAvEel Ull A1 VY LAAUVLIL 1D LULWUUWL VU L 1LIUUL TL u‘vluuslll‘y

as Theorem 337 is related to Theo em327. The correspondence is not quite
precise, and the theorem illustrates very instructively the slight additional

anmnlbicatinnawhinh ars anmoiﬂmoq inherantin athanram concomingo anniag
UULMPLIUWULUJLQ YV LALAWVAL WL U RDWVLLAVVELLLVID ARLLAUVAVVAIAV LA W VLAV L VAL VLAV UL 1,1.1.11.5 PDULLTUD .

338.2 If0<p<1land 2a,? <o, then
Z, (a’_____h.___.__n+an+1 + o .>P> (’——'z—)~> Y Ea”@,
\ n / D,

unless (a,,) @8 nul. The dash over the summation on the left-hand side vmplies
that the term for which n=1 is to be multiplied by
141
l1-p
The constant is the best possible.
In Theorem 337, take
fl@)=0 (0<z<1), f(zr)=a
Then, if O<nrx<n+1,

.ﬁ_’_(n+1—x)a"+an+l+...<an+an+1+...

£ X == n
Hence [7(E) arss (atlmtoy”
w 1\ v J
while (T pax_—(a +ag+...)? rlx-jzdx=(a1+a2+---)”.
.’O\ ) 1 2 ’ ./O 1""}7 ’

and the result follows from Theorem 337.

& The substance of this theorem was communicated to us by Prof. Elliott in 1927.



9.14. A theorem with two parameters p and ¢g. We con
AlasAda 4hin Alhanidnm cmridlh 42 Ak ammas vt al, STl man WL o e S nam A
Cluug uiiis b.leJ_lJbU.l i1ulli a4 uil ik wioii, aluviiv gu d:g 111l all ©X-
tension of Hilbert’s theorem, has peculiarities which do not occur
in any of the earlier theorems of the chapter. It involves two
inAdanandant 1nndinasg 2 and A~ and an vndatamnniinad AAanoataond
llluUllUl.lu AU TLIVLIUOD ll 1L !1 aiiul all 1UCTUOLILIIIIIICU UUlIdU iV
K(p.q)

1 1
229 Jf n>1 o>1 a1 >1
339. If p>1, g>1, F-2>1,
V)
o111 1
so that O<A=2—-——-=—+4+-=<1,
P 9 p 9
0 0 9] 1j 1
2T A N a’mb'n, /Tf/Y'A. /n\ /p/gl n\ /q
e d m = ‘ LJU/m" ' ‘ LJUn“‘ ’ ’
11 (m+n) \1 / \1 J
nnz:nmn V—.— IM I‘l\ I]I)MhMI]O N M ﬂMI] Y I'\M]ﬂl
wiIver © Ax — AX \‘[J,y, wo pyiIivwo Ull/l} wivw y Uittty «
Thia +hanram vadrrinnataMhanvarm 21T Rsrrhoan v — a2/ Y_ T e in 4+
A LD VHIUULUILL 1VUULVUUDO VU L1IIVULIC1LI A J 1111 q __lJ s NA—— L. 111 U

been found in the general case, and the problem of determining it
appears to be difficult. We shall prove later (§10.17) a deeper

theorem in which A< 1 and m +n is replaced by |m—n| (equal

LY |

values being then excluded from the summation).
e

It is sufficient to prove that, if Xa,?=A4, 3b 2= B, then
(9.14.1) za, = b K Alr Bl
m mngm (m+n)/\_— ’
and for this, by Theorem 13, that
/0 Y 4 O\ X' m - T DI
(9.14.2) up P = 8 DPE,
m 7
h s on
where Bm: “ fm 1 m A
ném \Ill/ T l(/}
-A — A
Now Bp=m* X b,=mB,,
nsm
and p’=q. Hence
’ IA ’ Bm Z ’ /A
Zﬁmp =< >m™P .B,np =2 —7)_?,— Bmp “Ama-PL,
a Take a,=1, ag=a,=...=0. Then the result is false if p > 4. For an alternative

form of the result see Theorem 345,
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m ‘. \ i/g
But B,,=Xb,<m¥ (Sh,e) " < Blamle,
i \1 /
Ml_ﬂ
and F Y+g——pl1\=9-
q’
Hence
—m s o, o (B XX [ @ \@_ )
)_]ﬁmﬁ _S__B(p —q)/qz‘l IIL) S( i 1) Bw —Q)/Q'i-l-._.KBp/q’
m ) \g—

by Theorem 326. This proves (9.14.2).

Similarly we prove

340. Under the same conditions as those of Theorem 339

1/np / P \ Yag

gdy)

-
8

e
e
~.

MISCELLANEOUS THEOREMS AND EXAMPLES
344, I (i) ap, by, f(2), gly) are non-negative, (ii) the summations go
from 1 to oo and the integrations from 0 to oo,

and (iv) p> 1, then
(1) PP B b <pp'AB
\ Max (m, n) ?
[ f(x)g(y)

(<) m) aray<pp ra,

unless (a,,) or (b,) or f(z) or g (y) is nul. The constants are the best possible.

[Cases of Theorems 318 and 319, (a). In order to shorten the statements
of the following theorems we agree that conditions (i), (ii), and (iii) are pre-
supposed in all of them; and that, whenever the conclusion is expressed
by an inequality

D'V 7ah ve fomn YV o T7 TN
P4 U NGV 4 W 4 \Or A ~>1nn1j,
with a definite K, then K has its best possible val* o (unless the contrar ry is

stated explicitly) and equality is excluded unle
involved in the theorem is nul.
When, on the other hand, the conclusion is

X=KY,

with an unspecified K, then K is a function of any parameters of the
theorem.]



Y
]
ko
M
=]
ko
4
n
e
(o)
Z
10!
[89]
o]l
(%13

(1) yzlog(m/n)a’” b, < m?cosec? AB,
\NT7 m_n m=n p
log (z
(2) 8l /y)f(m)g(:y) dxdy cosec? -, FG
JJ =Y
[Also cases of Theorems 318 and 319, (a). Here
1n [w logxm—lln,.‘lm 2 nmann2 T
m=, —— XTI ZW*UUDGG"'—.J
Jo &— b

343. If p>1, then
s anb, T G *
2 3 mnlogmn “sin(m/p)\s m ]
[Mulholland (2). Since

the result is slightly stronger than that obtained by taking A,,=logm,

J.Vln — J.Ué (] ]J.J. J. .IJUU]. ©1I1 -)A.I. J

344. If 0<p<1 then

Z(a’n+a’n+1+ “')p>pp ’ (mn)p'
TConson (2), This thaorem, with Theorems 2326. 221 and 228 forms
L~ r’Mvd. \=jeo A aiai VAL L Lidg VIAVEL A ILIVULUVILIN UMV, UUu Ly uilld UUU, AL LLID
a systematic set of four.]
QAR TN ~n 1 +hnan
O XJ . 4L U \1-’ =~ 4 viLioliy

X
3

> <a‘"‘+a2-—“+l+"'\p>mpza »

T i~ laaes A8 ML oo DAA N o ~m . BAQ
Luuu_uu:u Y Or 1L10eoreii sx=x. Loilipare Theorem 3900, here there is no

gloss, but the constant is less favourable and is presumably not the best
possible.]

346. If (a) ¢>1, s,=a,+as+...+a,, or (b) c<1, s,=a,+ap  +...,
then -
(o) Zn s, P K EZn
(B) Xns,?=K3En°(na,
[In each of the four cases K = K (p, ¢), as laid down under Theorem 341
See Hardy and Littlewood (1).
We prove (o) when ¢> 1. If
Pp=n"+(n+1)°+...,
then ¢, < Knil—*°. Hence, if we agree that s,=0, we have

Zn"”s” Z((ﬁn ¢n+1)8np§qzn¢n(snp_sn—lp)

m iip /m 1/p’
=K Z ni—ts,?~1q, <K (E 7~ na,,)”) <2 n sn”) ;
1 1 1

?

and (a) follows. Hardy and Littlewood (2) give function-theoretic
applications of («) and (B8). The important case is that in which ¢=2.]
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[Hardy (5).]

and p>1, then _
s 0 < [ o0y < (o (1)) an

Jo v Y v \P /)

[Take K (z, y) =y 1e—*/v and apply Theorem 319, (b). More general but
less precise results are given by Hardy and Littlewood (1), and some
function-theoretic applications by Hardy and Littlewood (2).]

349. If A, and A, satisfy the conditions of Theorem 332, then

ZAy (aMaghe ... a2 n)l/An <e XX ,a,.

Py 1 fay~_ N Pu |
350. pr>1., LA (T) > VU, ana

- JK(x)2sde=¢(s),
then
1 1p \1/pr
K dxd = —2 duy
j[j[ (xy) f(z) g(y) de y<¢<p> ([xﬂ f”dx> ([9” y)
Jlrdx (\ j’rK (2y) f(y) "’y/\ﬁ <¢? {\;) j’r’r"““’d v dz,
/ 272 dy /K(xy) f(y)dy)ﬁ <g¥ (5 / 12 de.

In particular, when K (z) =¢~%, and F (z)= [ K (zy)f(y) dy is the ‘Laplace

transform’® of f(rr\

T T T 73

351. If also K () is a decreasing function of z, and
A(x)y=2a, K(nx), A,=[a(x)K (nx)dz,
I 71N
then jAf’(x) de < ¢? Q—) Zn?2q,?,
P
1\
TA,7<$? (—) j x?2a? (x) dz,
P
[W,P-2_Ap(x) dr < ¢P /_1/\ Eanp,
J \p’/
1
Tnr-2 4,0 < §? (17) jfa?(x) da
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352. If F(z)is the Laplace transform of f(z), and 1 <p <2, then

[Fp 52” [ [fpdx\\pllp_
=p'\J’ )

_[For the last three theorems see Hardy (10). Theorem 350 may be
deduced from Theorem 319 by transformation. It is not asserted that

Ehhm amn ko <
the constant u1 .l.LlBOI eI OO£ IS T/Ile Debb PObSl Ul(:) J

353. If Ky(x)=0,
Ky (@,9)= [ Ko(at) Kolgt)dt, Ky (@,9)= [ Ky (0, Ky (v 1)
j[Kl (IE, l)dM___k
L 7
then 2XK,(m,n)a,a,<kZXK, (Mm,Nn)0,0,.

[See Hardy (9). The theorem is one concerning quadratic, not
bilinear, forms.]

354 sylogmn) . . v w3y
UXe died howd WmWhp = il &did L]
m—n m+n
| log (m/n) | Gy @
m>n
355 22 Ma fan an) amanszzz“[n‘r’m P
PLEN e P \'l!/,l(l} PLA T A\IIP’I(/)

m—mn
in agreement with Theorem 342.]
356. If ¢() =/ a(t)b(z—1t)dt,

p>1, g>1, lgl—}-l, a<l, B<l, y=a+p-1,
rp g
then C<KAB,
where 7 =1 (i—-a)T(1-p)
T'(1-y)

3570 If ao_——-bo:O, cn=aobn+albn_1+ cve +anb0,
A?=3n"1(n%a,)?, BI=Zn"1(nfb,)?, Cr=Zn"1l(nYc,),

P, q, r, and y satisfy the conditions of Theorem 356, and 0<a<]1,
0=B8<1, then C<KAB, with the K of Theorem 356. If o <0 or 8<0, the

smanttaliter 10 1108 vrith anmas K
LuU\iualluy 1D UL UU YWIiULL QUIIVD X e

HI 17



258 HILBERT'S INEQUALITY AND
358. If ayg=by=...=¢c=0

(ry=

@

L VY
s LTj=T),

\L' (Sn2k—2g 2K\Uk __ (Tp2k—2p_2k\1/K_
J L T e [ ’ o NTO T T 7 -

e x b N ~ ~ ] s A 2 Vel | : eyt s J -4 )1 -
99Y. LI pP>1,i>VU,mMm>0anda c(x) 18S aenned as 11 1neorem 9500, tnen
f

] p(1—~i—m) (p-1) cp(x)dx < K} (1= (p—1) ap(x) dx/rq;(l—-m) (p—1) b?(x)dﬂ?,

o (L) T (m)) 71
“TeEm
There is equality if and only if

where

S~

L/ N\ e T,
a(zy=Axd e s O\T)= D™

where 4, B, C are non-negative constants and C is positive.

-~ R

{For Theorems 356-359 see Hardy and Littlewood (3, 5, and 12).]

360. If L(xz) is the Laplace transform of f(x), and ¢=p> 1, then
,/ x—{p+e—22/? [a(x) de < KF¢
J
361. If p>1,¢9>1,
1 1
p=o+o—120,
P q

and L, M are the Laplace transforms of f, g, then

.
/ x*LMde<KFG.

362. If p>1,0=pu<1/p, and

Om

Ay = —— 2

" (m+n)1“ ’
i R <Y /(1 up) < A fn’ o)
viiollL /_aan N L1 4 We Sl =7,

[This may be deduced from Theorem 339 by the converse of Hlder’s

inequality. Many further theorems of the same general character as

Theorems 360-362 are given by Hardy and Littlewood (1).]
363. If ), is positive and
p>1, A,=a,+ay+...+a,, M+A+...4+2,Zcn,
then )X (‘%‘)”AngKAp.
364. If2a v
p>1, r> 1, AHATH . A Scen,
then zx 2 b Aman S KAB.

lu/Tl

The result is not necessarily true when =1 (as it is when A, =1).

Mian +hacns 4o th amnarnag whinh  ara  sesroci
L Or UL.IUDU UWO ULI.UUI.ULLI.D, WIiGILI al©o bULlUSpU

din,
Theorems 326 and 315, see Hardy and Littlewood (11).

1g extensions of
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365. The inequalities in Theorems 326 and 334 are the special cases
p=zt(0<t<l), p=logzx, of

:i\ /é(at)"*' +¢’(an)\ r AR E(l
) 7 " ) <BA($) 2ay.

[Knopp (2). emark has led Knopp to a systematic investigation

1q Frria Qan alan Milhalland 14V 1
LINJALCULAA \—:}lJ

O1 10rMmsS 01 @ 10T Wiillil \L} 1S Irue. et a0 iUl

366. Suppose that ¢ and i are continuous and strictly increasing for

x>0, and have the limits 0 or —oo when x—0; and that ¢ is convex
with respect to i (§3.9). Then (i), if true for ¢, is also true for 4, with

K(¢)§K(¢)
[Knopp (2).]
1/a1 1/as 1/a,\ —
367 z<1og te e V' <2%a,

[Knopp (2).]

17-2



CHAPTER X
REARRANGEMENTS
10.1. Rearrangements of finite sets of variables. In what
follows we are concerned with finite sets of non-negative numbers
such as Aps Qgyveey By ooy Ay by by o, by iiny by

Qs oves Ogy saey Qjy eany Oyt
we denote such sets by (a), (b), ....
Taking for example the first set, in which j assumes the values
1, 2, ..., n, we define a permutation function ¢(j) as a function
which takes each of the values 1, 2, ..., n just once when j varies
through the same aggregate of values. If
ayin=a; (j=1,2,...,m)
then we describe (a’) as a rearrangement of (a). Similar definitions
apply to other cases in which the range of variation of j is
different.
There are certain special rearrangements of (a) which are
particularly important here. These rearrangements, which we

denote by (@), (a¥), (*a), (a¥),
are defined as follows.

The set (@) is the set (a) rearranged in ascending order, so that,
when the values of jare 1, 2, ..., n,

xR

. < d,
i=%"2

A
A
=T

The set (@) is defined unambiguously by the set (a) although,
when the @ are not all different, there are ambiguities in the
definition of the permutation function by which we pass from
(a) to (a).

In defining the sets (at), (*a), (a*) we suppose that j varies
from —n to n. The set (a*) is defined by

aytZatza_tZatza st
and the set (ta) by
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There is one particularly important case, that in which every
value of an a, except the largest, occurs an even number of times,
while the largest value occurs an odd number of times. In this
case we shall say that the set (a) is symmetrical. The sets (a*) and
(ta) are then identical, and we write

at=ta=a%*,

so that a* is defined by

a*zaF=a_*Za,*=a_*=....
A set (a*) may be said to be symmetrically decreasing. The sets
(a*) and (ta) are sets arranged so as to be as nearly symmetrically
decreasing as possible, but with the inevitable overweight of one
side arranged systematically to the advantage of the right or the

1aft +ical ATl +h +
left respectively. All these sets are defined unambiguously by (a),

though there may be ambiguities in the definitions of the

corresponding permutation functions.
We note tha

vw UIL U

4LV
1) n+ +a_ .
1.1) a—;.

/-\
<D
-..a

10.2. A theorem concerning the rearrangements of two
sets. We begin by proving a verysimple, but important, theorem
concerning the set (@).

368.2 If (a) and (b) are given except in arran

e Wy Wi

‘3.
~
D
3
S
I~
)
S
Q
N
>
S
N
=
S
N
D
=
.3
D
:'\
3
:

8 greatest when (a) and

least when they are monotonic opposzt senses; that is to say

T <Ya.b.<Xa
(10.2.1) 2 @b, j=Xa;b;=<Xab;.
1=1 1 1
It will be observed that, since we can add up the sum Zab in

& This theorem and Theorem 369 are valid for all real, not necessarily positive,
a and b.
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sense of §2.17, the minimum to ‘opposite ordering’2. The theorem
becomes ‘intuitive’ if we interpret the a as distances along a
rod to hooks and the b as weights suspended from the hooks. To
get the maximum statical moment with respect to an end of
the rod, we hang the heaviest weights on the hooks farthest from

a5y + apb;— (@;0;+ a3.by) = (@ — a;) (b; — by) 2
we do not diminish Xab by exchanging b; and 5. A ﬁmte number
of such exchanges leads to an ascending order of the b, so that
Sab < Zab.
The other half of the theorem is proved in the same way.

This argument establishes incidentally a variant of Theorem
368 which is sometimes useful.

onnNn TL

QUJI. .lJ

10 9 9\ S ah! <« Sk

\J.U.‘l.‘l} d T =_:/..awu
'fn_m ~17 Mmoresprtnn reoan omto le’\ n-" I;:\ 'l‘z:nM [N recnd (LY oo nA,Annn"ﬂ/u"/nl
JUI wot 1OWI 1 wWwivyoIivoiIvre \U, UJ \U’, vroIv ‘\U/} wIrvw \U} Wi svrveeuT v
ordered

For, if (a;—ay) (b;—b;) < 0 for any j, k, we can falsify (10.2.2)
by exchanging b; and b;.

em 268. We have to consid
L1l OU0. Vv © aVE U0 CONnSit

analogues of Theorem 368 for more than two sets of variab
These lie a good deal deeper and cannot be proved in so simple a
manner. We therefore give a second proof of Theorem 368 which,
though quite unnecessarily complicated for its immediate object,
will serve to introduce the method which we use later. We con-
fine ourselves to the second inequality (10.2.1), and divide the
proof into three stages.

Pas

4

10 2 A cannnd nranf
iv.o. £a SCCONG PTolI

=

es.

(1) Suppose first that the sets considered consist entirely of

8 Theorem 43 (withr=1 and p=1) may be expressed, in our present notation,

in the form nEa;by ;< Ta; Tb;<nXasb;.



0’s and 1’s;
letters a, b, .... Then

(10.3.1) a’=a, bZ=D
for all j. In this case

Zab<Za, Zab=Zb,

and so Sab £ Min (Za, Zb) = Zab.

(2) Any set (@) may be decomposed into a linear combination
of sets @), (a2), ..., (a)e
of the special type considered under (1), in such a way that

(10.3.2) a;=otat+alal+...+al (j=1,2,...,n),

QJ"\A
Waii\A
7 —olala g25.2 g0 (5=
(10.3.3) @;=oldt+ 2824 ...+o'd (j=1,2,...,n),
the coefficients a being non-negative.

ecial case. S ¢ (
the three numbers A, B, C, where 0 A< B£ C, so that
a, =4, a,=B, a;=_C

a,=A4.1+(B—-4)0+(C—B)0,
d,=A4.14+(B—-4)1+(C—-B)0,
d;=A.1+(B—A4)14+(C—-B)1;
and we may write
a;=otat+o2a;
where al=A4, a?=B—A4,
and (a'), (a2%), (a%) are the three sets
(1,1,1), (0,1,1), (0,0,1).

If then we perform the permutation which changes (@) into (a)
and at the same time (@!), ... into (a?), ...,> we obtain
— ol

a,=«&
7

1

” d A
uj T w

2421 483438
4% &7 G,

& o means a'¥ and o« means «'¥’: in (10.3.1) above, a? is a power, but this use does
not recur.
b gt ig defined by this permutation.
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Tan dlan vnmnsmal Ao o csrm smsimmm e Son 41 [ L. I S,

411 vl golCIal C4sC WE Proceed 11 e same way, wWilulllg
~ 11 /5 ~\ O (=5 2\ O
Wy =Wwy.1T\UW—Up). YT (Ug—™ Wg}.VT .y
Ay=0y. 14 (Gy—@y) . 1+ (A3 —a5) . 0+ ...,

This secures (10.3.3), and (10.3.2) then follows by rearrangement,
as In the special case.

(3) From (1) and (2) we can deduce the general theorem. For,
decomposing (b) as in (2), we have

a’- = %OCP a’_P ] d’ = EOCP (-ijp ) bj = ZBUB"U, 69' = E:Babja,
p o

and call a,=C(f(x))
the central coefficient of f. Plainly

€ (f (1)) =C(f(x)).

Also Z a,b,=2a;b_;=C(fg).
r+s=0
The sets (a,7) and (*5_;) are similarly ordered, and if we write
[T (@) =2a;*2!, *f(x)=2%a;2f,

o Wl o) hd

then Theorem 368 gives
C(fg)= ¥ ab=2a;b_j<Xa**b_j= T a++b,=C(ft+g).
r+s=0 r+5=0

Hence we deduce

N S X vy w

870. The central coefficient of

n . n B
Taxt X bj::ﬂ
-n -Nn



10.5. Theorems concerning the rearrangement of three

ants YA . L iy P
sets. We pass now to mleorems anOlVIIlg three sets Ol d,bw.s.

371.2 Suppose that the ¢, x, and y are non-negative, and the ¢
symmetrically decreasing, so that

l”)l;’ w A t] n1 o nn.,ncn_/m navnnmt A.M A tnn MO D f mlnnm #Z.n l\n"f:mnnm
(4214 /4 Wi wir v y VeI e LUCPU Iy Wit w l/yblllzﬂ e L IULCTIL VIVC OLLUVIVCWI
form . .
9 v
S§S= 2 X ¢ %Y,
r=—lks=—Fk

attains its maximum when (x) is (xt) and y s (y+).

It is evident that, if this is so, then the maximum must also be
attained when (x) is (*z) and (y) is (ty).

372.> Suppose that (@), (b), (c) are three sets satisfying

(10.5.1) A2 t=0a_,, by=b,=b_;, co=c;=c_;.
Then the maximum of

2 ab,e=C(Za,x"Zb,xs Te,xt),
r+s+t=0
for rearrangements of the sets which leave a,, by, ¢, unaltered, is

attarned when (a), (b), (c) are (a*), (b*), (c*).

373.c If (a), (b), (c) are three sets, of which (c) is symmetrical in
the sense of §10.1, then

Z abegs X attbeF= X tabgte*.
r+s+i=0 r+8+t=0 r+s+t=0

T+ w111 ha ﬁ11mq-:n
AU Wiil UU DUllluiC

=

> &
@
.=t
U‘
@
-
d-
é
Q
o
=
@
Q
[}
[«
B
n
e
- B
c\'.
=
[«
=
v}
m
’ﬁ
[oudiry
&
Q
o
}_3
U‘
@
Q
p1
@
E
W
N
w
»
—
< 5 E
(¢ p
Q
'c'é
. B

0 5.1), wholly in regard to (a)

a Thanram 271 fram
€ LNE0TrCHL S/ 1 iGN

Theorem 373, we put 2k=mn, x,=a_,, y,=b,, and suppose that
the @ and b outside the range (—k, k) are zero. We may observe
& Hardy, Littlewood, and Pélya (1).

b Hardy and Littlewood (4), Gabriel (1).

¢ Gabriel (3).

¢|
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finally that Theorem 370 is the simple case of Theorem 373 in
which ¢,=1 and the remaining c are 0.

aductinn of Thanram 272 ta a enacia
A ¥ 3 LAY i (P Y (O 4 W W A A

i

divide the proof of Theorem 373 intothree stages, asin §10.3.The
(@

whole difficulty of the proof lies in stage (1), in which (a), (b), (¢

are nff‘mpq (n\ (B\ (r\ and we take this stage for Urﬂnfpd_ for th

moment and dlspose of the easier stages (2) and (3).
First, we may decompose (a), (b), (¢) into sums of sets (a?),
(b9), (¢7), in such a way that

.= PP h.=XR%hH.0 Co== 2T CT
J b g J ~
T T

o
-~

[«

-

@

Y et B e A
P
= + +h.= o+ .0 NN T e TR
and ajt=XaPart, Tb;=Xp°tbC, c;¥=TyTe;mF.
0 o T
Here the q, b, ¢ are all 0 or 1, the «, B, y are non-negative, and
fa ettt ohinh A anc md omtantie C1N O\ Lo ando /AT ana armmatrinal
@ PU.[ LU WHILLHIUouCsS 110uvarine 11l S .I.U.O) [ 8l bUUb\ ) AL b‘y LI VL LUQUL «
Allthisis proved by the method of §10.3 (2).2 Whenwehavedone
this, and proved the theorem for sets of type (a), (b), (¢), we have
% ab= X aPBoym X alblC”
r+s+t=0 P, o, T r+s+t=0
é E oP BU'VT 2 a..P++f)ﬂ°Cf*= 2 ar++bsct*9
PO, T r+s+t=0 r+s+i=0

and the proof is completed.

It remains to prove the theorem in the special case in which all
a,b, c are 0 or 1.P The set ¢, being symmetrical, contains an even
number of 0’s and an odd number of 1’s. We write

f@)=Za.x", g(x)=3ZTbxs, h(x)=Zca'.
Since we may add any number of 0’s to the sets, we may sup-
pose that all the summations run from —=» to ».

We have also

ftx)=Zatar=xB+...+1+...+2F,
tg(x)=Ztbas=a5+...+1+...+ 25,
h*(x)=2c*xt = T+...+14+...+27,

N ooy L .13

& In order that the sets (¢7) obtained by the process of §10.3{2) should be
symmetrical, in the sense of § 10.1, we drop those ¢ which correspond to zero y".

b So that, strictly, we should write a, b, ¢ for a, b, c. There is, however, no further
necessity for this notation.
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Do
N
~3

Yl

1 n fF O O oM i o 1
waere L, L, O, O, 4 are non-negative mtegers and

(10.6.1) R<R <R+1, 88 =<8+1.
We have to prove that
(10.6.2) € (fgh) = C(f+*gh*).

The 1npn11n]1fv (10 8 2) may be made ‘intuitive’ by a geo-

\ & VeVe&y

metrical representatlon. Let z, y be rectangular coordinates in a
plane, and represent each non-zero coefficient of f, g, # by a line,
x=rfora,=1,y=sfor b,=1, and x+y= —1¢ for ¢,;=1. If a,b,c,
contributes a unit to € (fgk), these three lines intersect. Each of
the functions f, g, k is represented by a family of parallel lines,

N, AN AN y

AU NN\

DN NN
AN NN e

AN % h—b—th

\
N

=== [JTAY

Fig. 1. Graph of f, g, k. Fig. 2. Graph of f*, *g, k*.

¥

&
/|

&

A
—
/
/

and (&’{fnh\ is the total number of trinle intersections of these

lines. We r;present ft, Tg, b* similarly; ,r f+* is also represented by
R+ 1+ R’ vertical lines, but now these lines are shifted as near as
possible together. Typical figures are shown in Figs. 1 and 2:
here (a), (b), (c) are the sets
1,0,1,0,0,1,0,0, 1;
1,1,0,0,1,1,1,0,0, 1;
1,0,1,0,0,0,1,0,1,0,0,1,0
R=1, R'=2, 8=2, §8'=3, T=2.
It is intuitive that the number of intersections is greatest when,

ad 1I1 © 15 [543
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N1irn nranf ~AF {] NAODOY mavr ho nrmagantad canrmatninaller2 and
\J WL tl]. (P VN U.l. \ U.U.H} u.xa;‘y | 8 L v y—l CURULLUUWL éUUluU virivall ailll
followed on the figures. We reduce the actual ca considered to
a simpler one by taking away one horizontal and one vertical line

from ocach ficcnira ag ig annococtad hv the +hicl lineg in +he fiocnrag
AL VIAL VYU AL us u-I.U, o A O SSVUUV\.‘- U" ViAWV UViidilVIEIN I1LL1UVUD k1L qu us UL U

We prefer however to state the proofin a purely analytical form.

e nf +tlhan

L]
10.7. Com 101 O tii€ proo

-
AV.1e UVLLLY

cases in which the proof is easy.

(1) If R'=0, f+ reduces to 1 and the result is included in
Theorem 370.

1At £ TMTha
1T .|..u

-~

(2) If 8’=0, tg reduces to 1 and again the result is included in
Theorem 370.

(3) Suppose that

(10.7.1) B+8'T, R+8sT
We have in any case
11N ™ O\
(10.7.2)
—_— — ’ ’
@(fgk)_ Z a,bscéZa,Tst—(R-!-l-%-” J(S+148)

But, wheén th 1nequaht1es (10.7.1) are satisfied,
C(f++gh*)=C{(x B+ 4 ... 4 2B +8) (T + ...+ 14 ... +2T)}

is the sum of all the coefficients of f*++g, and therefore
(10.7.3)

14

DN v 1 Q2N
n)S+14+05").

We now conmder the general case in Wh_lch
R'>0, §8>0, Max(R+8', R+8)=n>T.
We assume that the result has been proved for

f—xp=¢’ g’—x°=¢r, Jt—aF= ‘-ﬁ’ +g x5 = ‘)Z
Since R’ > 0, 8> 0, none of these functions vanishes identically.
& See Gabriel (3).
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Then foh=(d+xP) (x° + ) h = dfh + xh,
where X =%+ Pt + 2P,
Since the highest power in 294 is lower than 2Pt and the lowest

power in zPi is higher than xr+°, there is no overlapping, and a
coefficients in x are 0 or 1. Since the sum of the coefficients in %
is 27 + 1, it follows that

C(xh)=2T+1,

(10.7.4) C(fgh) = C(dfh)+ 2T + 1.

On the other hand

(10.7.5)  frrgh*=($+2F) (=5 + ) b* = Jh* + xh*
where

X=a 5§+t~ 4ok
=B gl B8 RSy g RS,

The sequence of exponents in ¥ is an unbroken one, extending
from — R— 8’ to R'+ 8. We know that either R+ S8’ or B'+ S
is greater than 7. If R+ S’ > T then, by (10.6.1),

R+8zR+8-1=zT,
and so the unbroken sequence from — 7 to 7, of length 27+ 1,
is part of the sequence of exponents of ¥. The same conclusion
follows when R'+ 8> 7. Since A* has an unbroken sequence of
exponents of length 27 + 1, centred round the constant term,
it follows that € (h*)=2T+1,

and so, by (10.7.5), that

(10.7.6) C(f+*gh*)=C(dJh*)+ 2T + 1.
Now dH(@)=a"® D4 . +af=d(x1)2
+u{.’)3\=’)j‘-‘s-l— -I—;)“S"J':u('l“'l\
T \777 ¢ T\ 7
Also
Max(R'—1+8, R+8 -1)=Max(R'+8, R+ 8')—1=n-1,

(Pt T h*) = C{F (x~1) f (x~1) b* ()}

= (7 N I

=C{$()f (@) h*(2)}=€ (szlﬁh*)
& It is not necessarily true that

¢t (z)=¢(2) =2~ R +... + 2B,
gince, if R’ = R, this polynomial is ‘overweighted’ at the wrong end. When R'=FE +1,

aithar faormnla 18 anrract
€itner Iormiuid 18 ¢orrect.

g
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N |
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Finally, comparing (10.7.4), (10.7.6), and (10.7.7), we see that
@3 (fgh) = C(f*++gh*),

and the proof is completed

AR ..v Veas

NQ Anntha

4 nra
AVeUs .Lluvl,u.\a. PLOU

proof of Theorem 371 which is interesting in itself, although it
cannot be extended to prove the more general Theorem 373.

“Tn hn\-rn to nrevv that’ wmvpg +hn arrnngnmnnfu n'F +hn » and

nfn

*
-
3t
>
D
"

which make S a maximum, there is one in which

(10.8.1) ,—2p20, Y,—ys=0
if |7 |>]r], |s'|>]s]
orif r=—7r< §&=—s5<0,

We may suppose on grounds of continuity that the «, y, and ¢
are all positive, that the x and the y are all different, and that the

c are differant nvnnnf in an far ag thev are regtricted kv c_, =¢C

the condition of symmetry.

We shall denote an arrangement of the « and y generally by 4.
We say that 4 is ‘correct’ if it satisfies (10.8.1); there is just one
correct arrangement . We say that 4 is ‘almost correct’ if it
satisfies (10.8.1) except perhaps when = —7 or 8’ = —s; there
are, including C, 22* almost correct arrangements, and we denote
the class of such arrangements by C’. Finally we denote by K the
class of those 4 which give the maximum value of S. We have
to prove that C is a K.

Given p, we can associate the x and y in pairs

(10K (v . N {n N (2 i—_1 9 9 \
\1V.0.4) Wp—is Ypiils \Yp—ij> Yp+i) (o, = L, 4,9,...),
or in pairs

(1083) (x -—i: xp+’£+1) (yp—j; yp+3'+1) (2’920 1 2 )

2 AT i A Arner wnates Al na ALl Acininnin ~L el i el 2 XAV A s
111C1UuUe 11.)/ Pd:.l]. VIO UllIUICLIICOC U1 WIIUSEC TdllKksS 18 OUU. YV © usSo
both pairings, and the arguments are essentially the same which-
ever is being used.
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Consider, for example, the pairing (10.8.2), and suppose, to fix
our idoaa that »n >0 a0 tha
VUL AWAVWND o AINU == Yy OV varv v
lp—il=lp+il, [p-jls|p+jl

xp—_ < xp-—&-_ H yp-—] < Jn+J 2
e - b PR P (LA RS SR S SR ISP RSN SR A \
80 that the pairs corresponding to f and J do not satisty (10.8.1)
* [4 bl [ . 2
Such pairs we call ‘wrong’, others ‘right’. If p+4 falls outside

(—k, k), but p—4 inside it, then x,,,; is to be replaced by 0, and
the correspondmg pair of z is certainly right. Hence, except
perhaps when p =0, there are + which are not I and j which are

not J.

If, for a given p and a given pairing?, there are no wrong pairs,
we say that A4 is ‘right with respect to p’, and otherwise ‘wrong

with respect to p’. Itis clear that Cis rlght with respect to every
p, and that any (' is right with respect to all p except perhaps
p=0 and the pairing (10.8.2). Further, any 4 other than C

is wrong with respect to some p and pairing, and any A which
is not a ('’ is wrong either with respect to a p other than 0
or with respeot to p 0 and the palrlng (10.8.3).

8.
ndsup

We now \d:gd,m qumaglug the first Pcmuug, supposing p

consider the effect on S of the substitution
Ly Zp—1s Tpirs Yp—y> Yp+s)
which interchanges each pair z,,_;, ,,,; and each pairy,,_;, ¥, -

.
We divide S into nine partial sums defined as follows:

II\/

Z
o

S;: r=p; s=p;

Syt r=p; s=p—j,p+j (J+J);

S;: r=p—1,p+e (z=i=I); s=p;

S,: r=p; s=p—J,p+J;

S r:p-—I,p+I; 8=p;

Seg: r=p—1,p+t (t1); s=p—3,p+j) (G*J);
S, r=p—i,p+e tkI); s=p—-J,p+J;

Sg: r=p—IL,p+I; s=p—j,p+j (j*J);

@

&

r=p—1,p+1; s=p-J,p+J.
It is plain, first, that S;, S,, 83, and Sg are not affected by 2,,.

& Either (10.8.2) or (10.8.3). In what follows ‘right (or wrong) with respect to p’
means always ‘right (or wrong) with respect to p and the pairing under consideration’.,
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Y 3 oY _— <Y 7
Next 04—%?(0 Yp—it+C g Ypis)
is not affected because c_; =c;. Similarly S, and
Sg= % (C—I-S-pr——l_ -3t C 1 3% _1Yniy
I,J
+ch,7xpLT m_7+cf=7xm_l_f /nJ,")
LTV TA YV M v rs v MNTr v pPTus
are not affected. It remains to consider S, and S;.
The contribution of the pair z,_;, ,,, to 8 is
xp—i% (C—H-J Yo +C iy ?/Ip-w') z —1-0 ; % ((.H-J Yp—y +¢iy ?/lp-w)7

and the increment produced by Q, is
( p—i p+1,) % (Oi—-J - c1Z+J) (yp—J - ?/p+J)-
J

The total change in S, is the sum of this increment over ¢+ I, and
is positive, provided that there are J and ¢ I, since the three

differences written are respectively nncnhvp nogitive, and

NALIR UL ULAUUND VY Aavuvaa AU PN VA Y R Y PR UL Y [PUPAVLY Uy

negative. Hence §, is increased if there are J and ¢+ 7; and
similarly S; is increased if there are I and j+J. Finally, § is
increased if either of these conditions is satisfied.

If p+0, there are ¢+ I and j + J; and then § is increased unless
A is right with respect to p. In any case, whatever p, S is not
diminished.

Suppose now that 4 isnot a C’. Then 4 is wrong with respect
either to some p+0 or to p=0 and the pairing (10 8.3). The

equally simple argument based upon a substitution defined
directly.
[

10.9. Rearrangements of any number of setse There are

a The argument is the same in principle as that used by Hardy, Littlewood,
and Pélya (1), and substantially reproduced by Hardy and L1ttlewood (6). We
have however expanded it considerably, Dr R. Rado having pointed out to us that
the original form of the argument was not conclusive. Another form of the proof is
indicated in Theorem 389 at the end of the chapter.
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analogues of Theorem 373 for more than three sets (), ..., which
may be deduced from Theorem 373 itself.

TR AANSAaA A AATUNSANVAra U8 AU

3743 If(a),(b),(c),(d),...arefinit

SANYJINTIINTS - T

and (c), (d), ... are symmetrical, tken
(10.9.1) Z a b,eid, ... = py a,++bsc,*du*
r+s+i+u+.. r+s+i+u+t.. )
We assume the theorem to be true when there are k—1 sym-
metrical sets (¢), (d), ... involved, and prove that it is true when
+hnv~n are k. We chall malkao nge nf+ ]nn fn"nvnhnr +hanram “r}n his

PALUAL ALIWIANY WOV UL ALL viaivuvaviia 9 Y AAAV.

3
-
S~
A
n
[\
IS
]

of some interest in itself.

375. If (c*), (d*), ... are symmetrically decreasing sets, then the
set (Q) defined by

(10 0 O\ N < Ak T %

\LtV.J9.4) Egn——- i (/l U/,u coe

t+u+t...=
18 symmetrically decreasing.

It is enough to prove the theorem for two sets (c*), (d*), since
its truth in general then follows by repetition of the argument.
We may agree that, when there is no indication to the contrary,
sums involving several suffixes are extended over values of the
suffixes whose sum vanishes.

It is plain that ¢_,, = @,,. Further, for any set (x), we have

28, @ =22, Q,=2x,c*d,* <X} c¥d,* =2z} Q,,,

m m
U‘y LA UUOUVUILICINL VI V. J.U.LlUVVD, U‘y L UTUL U JU 7, viliav vIic Qﬂm L
similarly ordered to the x} , and therefore, since @, is an even

1 M

function of m, that the set is symmetnea ly aecrea,smg

This is the most elegant proof, but there is a simpler one which does not
depend upon Theorem 373.
We drop the asterisks for convenience and suppose n = 0. Then
Qn= ch-g-r d_,+ 20n+1—r d, 15
the summations extending over » = 1. Similarly
Qn+1 = ch+r dl—r + 20n+1—rdr .
Subtracting, and using the equations d_,=d, and d, ,=d,

Rt T T A--T =17 %7

Qn— Qn+1 =% {Cn+r (d_r—di,)+ Cni1—r (&1 —d,)}
=X (cn-{-l—:ﬁ - Cg@-;-.r.) (dr—l - dr)
Since |n+1—7r|<n+r for n=0, r= 1, each term here is non-negative.

we obtain

& Gabriel (3). The case of the theorem in which all the sets are symmetrical was
Frnvpﬂ by Hardv and Littlewood (4).

PVl My Axalay @aila LaauualyyUUta

HI 18
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Returning to the proof of Theorem 374, we define ,, as in
(10.9.2), and P,, by

¥4

Za,b,ed, ... TP Q,= P+Qm ZP m @Dm>

where ¢ (m) is a permutation functlon for Whlch P, = qu )5 1-€.
Za,bgcidye,... < Ta,b,Qpm < Za,t10,Q,*
=2a, b, @, =2Xat+b.c*d, *e *...
swvm r 8§ u v
which is (10.9.1).

378. Given any finite number of sets (a), (b), ..., we have
Sa a b b e, ¢ <NYat+a ht+h ot te,
LW W e Ug YV —5a Y Vo —_ _wrl Wiy usl Y 8o vtl Yig o
=Xatat bibr ctcl
LT, -8, 1

10.10. A further theorem on the rearrangement of any
number of sets. In Theorems 373 and 374 two of the sets, (a)
and (b), were arbitrary, but the remainder were subject to the
condition of ‘symmetry’. This restriction is essential; if (a), (b)
and (c) are unrestricted, it is not possible to specify the maximal
arrangement generally by means of the symbols a*, *a, ... .C

There is however a less precise theorem which is often equ-‘Hy
effective in g.n‘n]*i . .h'nrm
effective in applications.
3877. For any system of k sets (a), (b), (c),
3 +hH+ ot
2 a,byc... = K (k) 2 atblct ...,
r+s+i+...=0 r+s+it...=0

where K = K (k) is a number depending only on k.
We suppose k= 3; the argument is essentially the same in the

We define the sets (8*), (y*) by
(10.10.1) Br=b, yE=c} (mz0),
(10.10.2) BEn="Bn, Vim=vm (m20);

& With P, ¢, d, ... for a, b, c, ...: since (c) is symmetrical, t¢,=c*.
b Gabriel (3). ¢ See Theorem 388 at the end of the chapter.



PIMADD A Fal
AV AU L3 AV AV A LAY U A

allll \P} allu \'y’ as UuU Scus lu VU WILIUIL \IJ ) ana \'y } aL< Uua;.uscu

by the permutations which change (b*) into (b) and (c*+) into (c)

respecmvely Then (B) and (y) are symmetrical sets. Further,

f=31 nnn ’\+ (’\'*' and o+ (n+ wha >0 wo havwva
PiILIVY —-_m = all\l U __ -m - Y m .I-I.\J.l..l. ll(l '— U’ \A A% qu(I

=
H/\
%

I3
rl

r
v,

=4
II/\

o _ 2%
for all », and so

(10.10.3)
for all n.

We shall also require an inequality for 8 and y* with m <0.
We have b <bf, , andc} <ct ., for n=1, and so, by (10.10.1)
and (10.10.2),

(10.10.4) BrSbriis YmSche (m<O).

Using (10.10.3) and the symmetry of (8) and (y), we find

8= X abgs I afys I o BAyF,

r+s8+i=0 r+s+i=0 r+s+i=0

(e}

Cn=Yn

3
A
W
3

(Z+Z+Z+2)ajﬁ;“y;“;

, 120 $<0,t=20 820,t<0 8<0,t<0

0,t=
and so, by (10.10.1) and (10.10.4),

(10.10.5)

S X arblef+ X afbf

=
=
n
| &)
[v7)
[aw)
&
=
o
<
+
@
+
b 1
il
3 >
wm
(@]
b:‘
)
d.
¢
]
d.
+ B
@
~
<
\%
(e}
Q
~

(10.10.7) a7 bF e, =a” b7 ¢l +ar bl cfy.
Finally, in 8;, 8<0, {<0 and r+s+¢{=0, so that r=2 and
at<al_,,and

(10.10.8) afbl e, Sat,bh ol .
If now we substitute into (10.10.5) the upper bounds for the
typical terms given by (10.10.6), (10.10.7), and (10.10.8), and

18-2
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observe that, in these upper bounds, the sum of the suffixes is

- rey n hyyd ey Ak+n1ﬂ
IWays U, wG ulualll
Q<(1L921L91 1) 3 nthtet = 8% athtet.
r+s8+t=0 r+8+t=0

which proves the theorem.

AViaas Jdaps < A

Ve 1 )
the theory of Fourler series. It is easy educe from Theorem 3763 that if

10.11. Annhnnhnne Thesge theorems have im
to

R
f(O)=2 ae?, fH(f)= z o, e,
-R -R
where «,=| a, |, and k is a positive integer, then

[" 1@ maos[" 17+ 1as;

and this relation between trlgonometrlca,l polynomials may be extended
0 functions rr—mrpqpnfnd bv Q'Pnpra] Fourier series. Series of the type

CHCiineol CLiCiad 1P OLLLICL SCLHICS oS UL U 1

Zar erodi
have particularly simple properties. They converge uniformly except at
the origin and congruent points, where the function which they represent
has in general an infinite peak; and the ratio

o+

/ﬁ |f+(6) |2k dg: = (| 7| + 1)2—20,2%

lies between positive bounds depending only on k. We thus find, for
example, that

{” |£(0)|2*do S K (k) T (| 7| + 1)2F~2 ¢, 2,
J -7
For fuller developments see Hardy and Littlewood (9), Paley (3).

.
notinn Tha thanrame n
ALANr LAV RA e A ALY VIIVUL VLI U

Fh

LT s e et ~f Al and 2 wohial Lo\ > o (2} 2o o domonoaie e
e casulc U1 Ll DU 111 WilliUll (;’\nb} f__:”, piia \y) ids a uUl/J.Ud/bL[lg
function of y. The inverse ¢ of M is defined by

ASM (2L — 9+

VLY =Y

and ¢ () is a decreasing function of # defined uniquelyin (0, 1) ex-
cept for at most an enumerable set of values of z, viz. those corre-

a See Gabriel (3). A less precise inequality was given by Hardy and Little-

a /oy
T

3
Q
©
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to intervals of constancy of M (y). We may complete

7 - \J/°

the definition of & (—) b}; agréemg for example, that
é(x)=3{$(x—0)+(x+0)}

at a point of discontinuity 2.
We call I(fr\ the rearrangement, of glb (x) i

Itis a decreasmg function of x which has, in ge neral an 1nﬁmte
peak at the origin.

The measure of the set in which ¢ (x) =y is M(y).b It follows
that the two (in general quite different) sets in which

Y12 (@) <Yy, Y1=P(X)<y,
have the same measure, and that the same is true of the sets in

Wilit | A T /.0
P>y, ¢)>Y.
AT A cvvavr ca<r dhad dbin O 22 ne L fa\ nand T /n\ ana S amtit toas ity
VYO lllay Say utllal LIO 1UlICUVLIIS @ (L) allu (P (L) al cy ui-iicasulL -
able’; they have equal integrals over (0, 1) and
J 1 =] AT /
R
| £ (p)dx=]| F(p)ax
Jo Jo
Y o TP Ay PR /) B (SR, AL PR & SRR RPN PR SN &
10r at y HHeasuravle r 101 wilcCl uile lHuegrals cxisv.
We mayv define &(z) similarly for a é(x) defined in any interval
N J T \*7 J T \7 J
of z, provided that, if the interval is infinite, M (y) is finite for
every positive ¥y
If ¢, (z) < ¢ () then plainly ¢, () < ¢ (x). Suppose in particular
that ¢, (z) is ¢ (x) in K and zero in C K. Then
*mE
10.12.) | p@yde=[g@do=[" f@doz " §@)dx.
JE J Jo Jo
We shall use this inequality in § 10.19. In particular
rx frx
(10.12.2) | dt)dt< | d(t)di
T \77 - r \"7
Jo Jo
if ¢ (x) is defined in (0, a) and 0sx=a

§

¢
[

- B
3
<]
[«
wn
o
pa-
[

b This becomes obvmus on drawing a figure. It must be remembered that ¢ (2)
may have intervals of constancy, correspondmg to dmcontlnmtles of M(y). Ttis
however easy to prove that M (y ) ) =M (y ) for all Y, and so that the assertion in
the text is true even for these exceptional y. In fact

1
M G’“% — M(y)=mS,

where S, is the set in which y—7"1=<¢ <y, and the limit of mS,, is zero.
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Another type of rearrangement of a function will be important

v '~ Qirnnoan £ A a1 4liadk Ll ia Aafianad £ a1
L Wha:t' fUl}UWb pouppuUsY, 101 UACI:LLLPLU, U.lellJ (P \&4) 1S aeiinedq 1or aii

real, or almost all real z, and that M (y) is finite for all positive y.
We may define an even function ¢* (x) by agreeing that

Jud o

&3 nAx /7 \)

%1 _
P M \Y)=Y
(x); or, what is the same thing, that ¢*(z)

1
0

3 41
ana nat ¢«

1 3

(—2)=¢*
is even and b* (2) = & (2x)

for positive x. Then ¢* (x) decreases symmetrically on each side
of the origin, where it has generally an infinite cuspidal peak. We

call ¢*(x) the rearrangement of ¢ (x) in symmetrical decreasing
order.

10.13. On the earrangement of two functions. We begin
yan i ‘ nding to Theorem 368.

h_b
[¢"]
£|
[<¥]
E .
<
o}
= 9
(¢}
o7}
o
c»

We prove this by an argument similar to that of §10.3. In the
first place, the theorem is true for functions which assume only
the values 0 and 1. For suppose that £ and F are the sets in
which ¢=1 and =1 respectlvely, and E, F the analogous sets
corresponding to ¢, J. Then the first integral is m(EF'), the

wrhinh 1 n nnadirnd ~ ) 7 RPN Iy 7) BN |
measure of the set £ F which is the J:uuduu‘l) of & and F , ana
m(EF)=Min (mE,mF)=Min (mE,mF)=m(LF).

Next, the theorem is true for functions which assume only a
finite number of non-negative values. In fact, following the lines

o 1N

of S 1U. D, we can repres ent such a IHHCUIOH (P in the IOI'III

1
b=+ oyt e+ oty Py,

where the o are non-negative, the ¢ are always 0 or 1, and

f=uyfrtaadot... +o, .
The inequality then follows from a linear combination of in-
equalities already proved.
Finally, we prove the theorem in the general case by approxi-
mating to ¢ and ¢, by functions of the type just considered. We
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do not give the last two stages of the proof in detail, since the
arguments willrecur in the proofof the more difficuit Theorem 379.

10.14. On the rearrangement of three functions. We come
now to what is our main object in these sections, the integral

+than A A3 FPN a
theorem corresponding to Theorems 372 and 373.

379.2 If f(x), g(x), and h(x) are non-negative, and f* (x), g* (),
and h*(x) are the equi-measurable symmetrically decreasing func-
tions, then

(10.14.1) I= J( Jf f@gW)h(—z—y)dzdy

f*(x)g*(zl)k*(—w—y)dxdy= I*.

=

J — O —PD

We may plainly suppose that none of f, g, % is nul. We may

also replace —x—y by + « + y without changing the significance
AL 4t 3vanzia lid<y
Ul vuio .U..I.Utiu. Lllly .
We prove the inequality (1) for func iio which are always 0
or 1, (2) for functions which take only a finite number of values,
and (3) for general functions. As with Theerem 373, the whole

difficulty lies in stage (1). We take this stage for granted for the
moment and begin by showing that, if the theorem is true in this

special case, it is true generally.

A function which takes only a finite number of non-negative

values 0, a,, a,, ..., @, can be expressed in the form

2,
I PV U (Y 0 N IV S v [ERPVRE Y PURY
JWI= R Ji W] T Re Jo L) T eee T K Jp\l)s
where the « are positive, the f; take only the values 0 and 1, and
fizfoz...2f,-
J1=J2= =Jn
For we may suppose 0<a;<a,<...<a,, take
v g 4 & ({24
“1=a1, O(.2=Cl/2—a1, seey Otn=an—a/,n__1,
and h=1(za), =0 (j<ay),
Jo=1 (J=2ay), =V (J<ay),

A moment’s consideration shows that we then have also

[* (@)= [1* (2) + 2o fp* (@) + ... + 0, . * ().
s F. Riesz (8).
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values, and decompose them in this way, then (10.14.1) follows
from the combination of similar inequalities involving triads

') 3" Py lvk .
To pass from this case to the general case, we approximate to
f» g, k by functions which take only a finite number of values. We

n annroximate to 'F for pvnmn]p hv the funct .ignfn defined by

JALL TOXIAK/VC i
L

bl p Bt h0,1,2, . n2=1), fo=n (f2n)
=— |==f<—, k= ceey ME— =n (f=n);
n n ( n n ’ s Ly &y ’ ): n I
and to g and A similarly. Then f, <f, f,* =f*, and similarly for
g and . Hence (assuming that the theorem has been proved for

the special type of functions) we have

r — rw rw n ré A ra AN ré \ 7 7 < T *< T*
'l'n_l ' 'n(x)gn(y) n( z y)axa’y=1n =47,
J—0J —-w
nd an T—lm T < T*
.I.uD AL === L1331 L =.L -

It remains to prove the theorem in the special case when f, g,
assume only the values 0 and 1. It is however convenient first to
make a further reduction of the problem.

First, we may suppose that the sets F, ¢, and H in which
f> 9, and kb assume the value 1 are finite. If fwo of these sets are
infinite, then two of f*, g* and h* are 1 for all z, in which case
I*=o0P and there is nothing to prove. Suppose then that just
one of the sets, say F, is infinite. Let /'y be the part of F in
(=N, N),let N be the smallest number for which mFy = 2n,
and define f,, as being f in F, and 0 outside. Then (assuming
the theorem to have been proved when the sets are finite)

rw rw f ah xda:ér
J J

‘n —ooJ —oan ot —oo.} w axay

(™ 0% e wrswang A % o wrmamt

=) prerimdadys ||| roritdedy=r
and so I=limI, <I*.

Suppose then that f(x) assumes the value 1 in a set £ of finite
measure. We can represent £ in the form & +e¢—e’, where &€ is a

& Compare the similar argument in § 10.6.
b Unless the third function is nul.
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finite set of non-overlapping intervals, and e and e’ are sets of
ar U.ll]ld:l'l.ly Sm&u measure“ anu Uﬂe sets lIl Wﬂlbﬂ g afnu Ib assunie
the value 1 can be represented similarly. It is also plain that,

since f, g, and & do not exceed 1, small sets e, ... make a small

Aiflrcnsnnn tn dlen 2dmcanale T acnd T YATA cinaxr 4 mnaafrna g1rirm~on
UILTICIICT 111 [T 8L lleUgl. S L allll L. YVYGO Ll.lﬂay LIICLICLULC BU.PPUEU
that the sets in which f=1, g=1, and A=1 are finite sets of

case follow approximation
N ext we may suppose, on similar grounds, that the ends of all
the intervals are rational; and then by a change of va rla,ble, that
“'1\&1‘7 arnn n’m#nnmn’ ml\o -‘-]'\nnvtom "-}\ “AA‘!‘II\CIA +n r]onnhrqn*nnn
UJ_I.UJ LT Uiy frwuv. A111T vuiivulvuoliir J.D U.LI.LI.D Louuvovu vu uUt’ULL\AUL.I.UV
upon the case in which each of the sets in which f=1, g=1, or
h=1 consists of a finite number of intervals (m, m + 1), where m

.
19 an intaconr
AN ULL I.LLUVSV-L

Finally we may suppose, if we please, that the number of
intervals in any or all of the sets is even, since we can replace each
interval by two by bisecting it and effecting another change of
variable.

10.15. Completion of the proof of Theorem 379. It is
convenient to replace f(x) by f(—x), as plainly we may without
affecting the result. If we do this, write s, ¢ for z, y and then make
the substitution s=x —¢f, we obtain

(10.15.1)

T £r71 AN (2N T S Aar\ A A2 L ( UL U U Nl SN
L= | | JU—=x)g)n(—rjaxar= | n(—x)x(x)ar,
J —0J —© J —o

(10.15.2)

\ V2T Sy
I*=J J j‘*(t——x)g*(c)h*(—x)dxdz=] h*(—x) *y(x) dx,

—00 4 —o0 —00

"Tl\f\“t\
VW1ilT1L©

(10.15.3)

\-LV.-I.UQUI

[ [
x (@ =J ft—2x)g(t)ds, ’“X(x)’*‘" JTE—x)gTr)al.”
—00
YA T A v ntn A LFant+lhn mmnniaontd manalcrdhad £ ~ L avanhana ndbantadin
Yvo buyyuac 10UL UILICO 111ULLICLLIU 11101 J.y l.llld.:l/J,y,lb AL UVLLal AU UCLID ULV



at the end of §10 W e, T, ..
acgoivnin 4lha cratioa T L Tk manh Lican bl rantahoas ATd_
a8SSumnie vné vaiue 1 oy 1, ..., £, ...; 6aC0 IUNCUion vainisnes ouv
side the corresponding set, and F*, ... are intervals symmetric
about the origin. We suppose that
nl TVl on Pal Pa oo Tr TT am
mE=mF*=2R, mG@=mG*=28, mH=mH*=21

\
J
<" [° f(t—x)g(t)dxdt=f°° f(—s)ds | g(t)dt=4RS,

J-—wnJ — J -
rT
(10.15.5) I*= ’ *y () de.
-7

If z is fixed, and ¢ —x describes the set F, then ¢ describes a set
) 7) BERG T SRR, B S NN, B B 7 VT RS JE (LU R TL oonn AL an s
r x opudaliea Uy vransiatl lg 2 tarougn a AisSvance w. 11 wo uociil
F* = (F*) gimilarly, then the functions (10.15.3) maybe written

X \ r J 2 v \ 7 J
in the form

(10.15.6) x@)=m(F,Q), *x(x)=m(F*,G%).

(10.15.7) R<S.
Then *yx (z) is continuous,

(10.15.8) *y (x)=0 (jz|=2 R+ 8), *x(x)=2R (jz|=S8—-R),
and *x(x) is linear in the intervals (— RE—S, — S8+ R)
(8— R, R+ 8). The graph of *y (x) is shown in Fig. 3.

Suppose now that

(10.15.9) R+8<T.
Ml nen 2k £ 1T sy Fonmann 71N T2 QY 41 oL
L1CIL 1V 1VULLUWDS 110111 \.I.U..ld.O} vllav
"T "R+S
I*: *‘\/(93\/]’7‘; *11(’7!\ ’7‘;4_-qu
AN\ J A\ Y
J -T —R-8

and the result of the theorem follows from (10.15.4). We have
thus proved the theorem under the restriction (10.15.9). It is
also plainly true if R=0 or 8§=0 (when F or ¢ is nul).

& Chosen to emphasize the parallelism of the argument with that of §§ 10.6-7.
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nA 14 1 ™ + 4 adn
and it is more convenient O a:uupt & bhshtl Yy more general 1y po-

thesis and to suppose only that 2R+ 28+ 27 is even. In these
circumstances R, 8, and 7' are not necessarily integral, but 2R,
28, 27 and

(10.15.10) u=RL ST

R+ 84+T-2T

-

I\
]

/ ZR-1 \
V

-R-S/ /

~ —S+R O  S-R  R+S-I

Fig. 8. Graph of *y and *y,.

are integral. We have already proved that the theorem is true if
=0, and it is also true if B =0 or §=0. It is therefore enough to

establish its truth when

(10.15.11) p=n>0, R>0, S§>0,
on the assumption that it is true when p=n-—1.

We denote by F, the set derived from F by omitting the last
interval of F on the right; similarly G, is G less the last interval
on the right of . Generally, sets, functions, or numbers with
suffix 1 are derived from F; and Gy as the corresponding sets,
functions, or numbers without suffixes are derived from F and G;
thus f;* is the rearrangement of j1 , the characterlstlc function of
F,,and *x; (x)is the ‘Faltung’ of f;* and g,*. F,* is the interval

( - R + 2 R— %))
and generally, R and 8 are replaced by B — 4 and §— 4 when we
pass from F, G to F,, G,. By the inductive hypothesis

& Vauh B-2 X3 T —~ 7

y *
(10.15.12) I, = 1™



mh A p11v\q‘-:n“ & {2 vranitahna fAn lml > D .qi 1 ;G ani1ta {'ﬂ

A 11T 1ulivuivll x1 \ub’ Y AVLLIDLILIUD LUL ‘ 2 l = LV T A L, 1D vyuwi UV
2R—1 for || < S— R, and is linear in the intervals remaining;
and Ts R+8-1, by H

AT
(IO 1R 19y T% _ T.%— | £ (s\ kv (s\V At =T
\J.\Jc.l.u .I.UI xz .Ll J ]\ A\U} l\UIJ'WU i K
-7
We have now to consider
oo
—~00

Here, after (10.15.6),

{

“
o
]
@
B
Q0
Q
]
[
=
‘ﬁ
1}_3‘ j=
£
¥
(=)
H5
8
-
]
=}
(@]
Q
2]
(e}

then that x is integral. In this case the set F G is composed of
full intervals (m, m + 1), and, when we remove the intervals of
F, and @ furthest to the right, either one or no interval of F G
is lost, one if the extreme interval of either set coincides with an
interval of the other set, and none if there is no such coincidence®.
Hence x (x) — x4 (®) is 1 or 0 for integral z, and therefore

(10.15.16) 0=x(@x)—x(x)=1
for all .
From (10.15.14) and (10.15.16) it follows that

(10.15.17) og1—11=’r {X(—-x)——xl(—x)}dxé’r dz=2T,

and from (10.15.13) and (10.15.17) that
(10.15.18) I—-I,sI*—1*

\

J

W1ha1]\'r(1ﬁ1 E19Y and /1IN 18 1R
-I_].LJ.WJ-LJ \LVQ-I-U..LU

\J.V Ader, .I.H} CUVLLAA

the proofe.

& See Fig. 3.

b We cannot lose two mtervals because the intervals removed from F, and G
are the furthest to the right of their respective sets. This is the essential point of
the proof.

¢ The proof follows the line indicated by Zygmund (1). It is, however, con-

aidarahly lancer and mnanacssarile an ginee Zvemmund’as nranf ia not aa it atanda
PIUVIWALY AVIISULy Qlilse LUUVUDKWLILY KU, DLIUU 4y Qiliuiile 5 pPLUvl 0 UUVy o 1V DURiiag,

a
(s
Ix]

imrand il TN TE 1O\ 2
Yye PLUVUU viat (1V.1J.10) 1
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10.16. An alternative proof. The proof of Theorem 379 given

]’]V -R'lpﬂ'l 19 n]gn very 1n+nrnq+1nn- VVn 0nan q1m1‘\] 'Pvr 1+ hy rnr:l'l'lnrnrr
wJ AN NI hd KNI NIRRT .I.J LLLUUL\JDULLL& YvY v vivaa DLJ..LLLIJ.J..I.J 4 U UJ LU\LMV‘.LLB

the theorem, as in §10.14, to the case in which f, g, A are each equal
to 1 in a finite set of intervals and to 0 elsewhere. We represent
the variables z, y, z on the sides of an equilateral triangle, taking
the middle point of each side as the origin and the positive direc-
tions on the sides cyclically. Then z+y+2=0 is the condition
that the points x, y, z on the sides should be the three orthogonal
projections of a point of the plane.

The functions f(z), g(y), k() are the characteristic functions
of three sets F,, E,, E,, each consisting of a finite number of

Nets 7

nomn- Overlappmg mbervals and J""(x), g"' (y), h* (Z) are the char-
a.ct.epufnn fimetiona nf +tha +hrao intarvala A% K % ﬁ' % n'plnnn‘f'l‘)u

EOUAV ALV ULULLID UL VU VML UU XAUVL VLD 14 5 4dg 5 L4 AW 2 § Luusuuu

E,,E,, ;> symmetrically disposed about the three origins. If £, ,,
g 4+Vh o stk AL L1 .S IR o I SRR, DI 1 L S L
IS tne set OI tanose points oI tne pian Ao\ varee proj CU1011S
belong to ., E,, and E,, and E*_,. is defined similarly, thent

o Y¥Y i 3 123 == =% bl SRy VAR
T —sinla B T% —qin 1. B*
i = 1Ll‘3"7T."J123’ i —-bulg?T.w 1233

and what we have to prove is that
(10.16.1) E < B,

The figure £*,,4 is defined by drawing six lines perpendicular
to the sides, and is a hexagon unless one of £, E,, E,is greater
than the sum of the other two, in which case it reduces to a

narallalaoram We haoin hv nravine (10 18 1Y in tha lattanr caca
t}w.quU‘.Ua.Lwlu. vy v U‘Jé.l.l]. UJ t’l.uvl.ll.s \-‘.V.-LU.-L' Ald VilU ALV UUUVALA VUUOUV .

Suppose for example that E;= K, + E,. Then E*,,, reduces to

the extreme intervals on the right. It would not have been true if we had removed two

arhat trary 1n+¢n‘vn]n Qﬁn’nnﬁn for examnle. that each of F nnﬂ fi 1g +1\n intarval
Qrowrary eIVais. uppese, Ior exampie, tnat ealtl Ol e INTervas

(- ) that F, consists of the two intervals (-4, —2) and (2, 4), and G4 of the
[ Y (5 T 2N TTT.. nam mona Fname BV Y4 T LY 3~ e mdoane I
uve l.Vﬂ: \“‘l’ &) YYVO Call P S L1V Ly U LV 1.’4, Uy 11 10Ul Duopn, uanu.lg ﬂlwlﬂl‘y 0o1eé
unit interval from each set at each step; but
y (0) =, (0)=8,

instead of being less than or equal to 4. The same example shows that Zygmund’s
assertion (1, 176) “those [the values] of ¢ (z) in ( — «©, ) increase at most by 2’ is
untrue unless his construction is restricted in a way which he does not state ex-
plicitly. It is essential to go closely into detail at this point, since it is the kernel of
the proof.

a If P is the point in question and @ is the centre of the triangle, then

x4y +2=PG {cos o+ cos (x +§w) +cos (« +$m)}=0.
b We use E, both for the set F, and for its measure.
¢ E, ., when used as a measure, is of course a plane measure.
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This proves the theorem when E*,,, is a parallelogram.
Passing to the case of the hexagon, suppose for example that
E,>E,2E,, E,<E,+E,.
We define sets E ), E,@t), E;@),
and corresponding intervals E * (), E,* (), E3*(t), by subtracting
from each £ a set of measure i at each end . If  increases from 0 to
to="4%(E,+ Hy— Hy),
E,(t), E,(t), E4(¢) decrease from K., E,, H; to sets H,(ty), £, (%),
E,(t,) whose measures satisfy
B, (ty) + Ey (o) = B3 (%)

The hexagon then reduces to a parallelogram, so that

n

\V,

(10 18 9) 17 {+ V<< Ok {+
\1V.1V0.4) Li193\by) = &4 123 \Yp)

TL c«xrn narr nmarrn ala~ 4had

AL o U 1 PLUVU alsyU uviiavu
/1N 10 O\ _m .z\<1y77>k ___1177* f2 1\
(1V.10.9] U123 Lio3\bp) = £ 193~ 44 "193\l0)s

our conclusion will follow by addition.
We prove (10.16.3) by comparing the derivatives of

(t)= "'Elzs(t)a ¥ ()= — E*yp5(8).
In the first nla ce, the difference between F’*_--H\ and F’*---If.l-])\

;.w »v AE B A v A\ jaa Ad 3 \v) Viis LA 23\ 1

is a hexagonal ring whose area is AP () + O (k2), where P (t) is the
perimeter of the hexagon corresponding to the value ¢, and so

*
di:P/t\—_-COgec -l’.'."fE (L B (1L B (t\l
dt \v/ 3 L=“1\v/ 1 2\v/ 1 3\v/§*
On the other hand the three sets
i\ iy Z\%/ 2\ /> 3\¥/ 3\ /
& That is to say Elell(t)'f‘El(t)‘*'El"(t),

where E,’(t) lies to the left, and E,”(f) to the right, of E,(t), and
mEy (t)y=mE,” () =t.



7 i 7 1%k
9 < cosec k {By () + By(t)+ By ()} = 2
- al

(477

From this (10.16.3) follows by integration, and this completes
the proof of the theorem.

3 See Fig. 4. In the figure the sets &, ({+4), ... are blackened on the sides of the
triangle, the set E,y5 (¢ + £) is shaded, the twelve perpendiculars are dotted, and the
boundary of B,y (t) — E,s5 (£ -+ 1) is indicated by a thick line.
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10.17. Applications. The special case of Theorem 379 corre-

<
Jowl o
We shall now apply Theorems 371 and 380 to the special cases

G,._s—]T—-S]"’\
and h(x-—y)=|x y[—'\
381. If a,20, b,20,
(10,17 1) 1 , 1 .. 11
\iv.1i.1) p>1i, G>u, ;+;>19 A=a—-—_
4 b 4 Vid 4
(so that 0 <A< 1), and
ZaP=A, 2bi=B,
then T=22’ifbsl < KAVpRBia

where the dash 1mplies that r + s, and K = K (p, q) depends on p and
q only.
382. Iff(x)=0,9(y)=0, p and q satisfy (10.17.1), and

Moo fadls's)

f* and g*. We then divide I into four parts corresponding to
the four quadrants of integration. The north-east and sov _th-wes.,
parts are equal, and so are the north-west and south-east parts,

and the two latter do not exceed the two former?. We need
a2 For that of Theorem ’181 see Hardy, Littlewood, and Poélya (1); for a deduction

of Theorem 382 fro heorem 381 see Hardy and Littlewood (6)
b Mha narth wwoat n“r'l south-cast marts oconld bhe aceounted for bhv the easier
1Ne norvn-west and soutin-east parts Couwi Be actounteG I0or Dy tae €a S1CT

argument of § 9.14.
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therefore only consider the north-east part. Hence, changing

b

Qla i

<

dxdy < K FUr@la,

g(y)dy

REARRANGEMENTS

-
g1 ()= ’

We have
Since g (y) decreases, and (x— y)~? increases, in (0, z),

where now
respectively.

m 189. Hence

heore

—~

o
P e
o R
g o

=Rl

rev
'I‘

)2
J
19

1 ()

= (y\P —2a ("
| =

Y\
]

it follows that

)

3

(since
HI
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383. Suppose that f(x) is non-negative and L?, where p> 1, in
(0, c0), that

f [ [f® \a/p
(10.17.6) ] fanngUOfpdx) ,

where K=K (p,a)=K(p,q).
Suppose that g (z) is any function of L7, and that

and a fortior:

[t (@) g @) de=
J O

[ (" \1p / po la
([ )" ([ o

Since this is true for all g, it follows, by Theorem 191, that
Y] \ ]-/q ¢/ o0 . 1/1)
(| fads) sK(| frdz),
\J 0 / \J 0 /

which is (10.17.6).
The proof shows that the result is also true when f, (x) isdefined

h S

e fa@)=mm | £&) (—2)o-1dy.
L\*®)Jzx

Theorem 383 embodies a result in the theory of ‘fractional integration’.
Liouville (1) and Riemann (1, 331-344) defined the integral f« () of f(x),

of order «, as _
(10.17.7) fa(x)=r—}a;/af(y) (x—y)~1dy.

The lower limit a is the ‘origin of integration’; a change of origin changes
f... in a manner which 18 not trivial f'nrma“_v thOU.D’h HnIanrtant for
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theorems of the type considered here. It is easily deduced from Theorem
3832 that, if f 15 L? in {(a, b), where —w0<a<b=w®, a<l/p, and fa 28 the

viiuUy ¢y g viv \wy Uy Wiold Ky U< 2/ Wik j G
I\ YXETL

integral of f, of order o and with origin a, then fyis L in (a, b). When « > 1/p,
fa is continuous, and indeed belongs to the ‘Lipschitz class’ of order
a—1/p.

In applications of the theory, f is usually periodic. It was observed by
Weyl (3) that the reference to an origin a is in this case inappropriate:
Weyl accordingly meodified the definition as follows. If we suppose that
the mean value of f over a period is zero (a condition which we can always
satisfy by subtracting an appropriate constant from f), then

f ) (@ —y)tdy

converges at the lower limit, and

theorem concerning the Lebes

theorem concerning the Lebesgue

we ma
eclasses

10.18. Another theorem concerning the rearrangement
of a function in decreasing order. The theorem with which
we end is important primarily for its function-theoretic applica-
tions, but the proof which we giveP is interesting independently.

The theorem may be stated in two forms
384. Suppose that f(x) is non-negative and integrable in a finite

interval (0, a), that f (x) is the rearrangement of f () in decreasing
order, that

(10 189
(V.18

o

\ D () = m f
/ O\X)=0U, J)

and that O () is the rearrangement of O (x) in decreasing order.
Then

10 1Q 9)
\J.U.J.O.a}
for 0<x=a.

385. Suppose that f(x) satisfies the conditions of Theorem 384,
and that s (y) is any increasing function of y defined for y = 0. Then

/e EO \ {‘a €\ 1 Y T — ra (]'erIJ\ Jl} 7
1V SW(x)rar = §4— (t)at rax
\ ) Joi i Jo 137}0‘/ }
We begin with two preliminary remarks.

a See Hardy and Littlewood (6).
b Due to F. Riesz (10).

-
3
»n
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(1) We shall prove Theorem 384 first and deduce Theorem 385.
Since © (x) and O (z) are equimeasurable,

' s{O (x)}dx—-'r {0 (x)} dz.

v v

Hence (10.18.3) follows from (10.18.2).
That (10.18.2) follows from (10.18.3), so that the two forms

of the theorem are equivalent, is a little less obvious, but is
proved in Theorem 392.2 The first implication is sufficient for our
purpose here, since it is in the second form that the theorem is

used in the applications.

(2) If A (Y= [+ £) 1 ran,n
\<; 441 VO\'”I=V0\“”JI=;JOJ\“IW"

then O (@, F) < O (@, f) = O (2,] ) = %Jf Fit)dt,
0

by (10.12.2), and
(10.18.4) f 8{0y (x)}dx < ra !1 fxf(t)dt} dx.

Jo \LJo
Q@ a miie Ara dnirial dnoanialidy 4k oo e 4l
This, a much more trivial inequality than (10.18.3), is the

analogue for integrals of Theorem 333.

10.19. Proof of Theorem 384. We suppose, as we may, that
a=1.
We consider a point z, for which
Zy>0, -@-(wo) >0,

write

(10.19.1) Q) =p+e (p>0, >0),
and consider the set & defined by

(10.19.2) 0<zs<l, O(z)>p.

Since © (z) and O () are equimeasurable, £ has the same measure
]

as the set in which @ (z) > p. Thissetis a

& See the Miscellaneous Theorems at the end of the chapter.

Theorem 385 was proved by Hardy and Littlewood (8), who deduced it by a
limiting process from the analogous theorem for finite sums (Theorem 394). Their
proof of Theorem 394 was elementary but long, and a much shorter proof was found
by Gabriel (2). Riesz ‘en combinant ce qui me parait &tre 'idée essentielle de
M. Gabriel avec un théoréme appartenant aux éléments de ’analyse’ (Lemma A
below) was able to prove the theorem d"'eoﬂv and without limiting processes,
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in which @(x =p+e¢, and the measure of this last set is, after
t r

(10.19.1). at least z., ence
\IV.J-VI-I-,’ WV AW wou WS BN
(10.19.3) XoSmh.
A 4 U=
Now the set E is composed of those points x for which

jou—
8

Fnm gnvng € ElaN ~n YATa nnwm wrnida (10 10 A\ 30v +ha Fanm
AUL SUL Ug—-g\ob)\wb YYo U 1 LIUVO \J.U..I.U-‘.l:}l.l. U1 LUL 1L
rx ré
(10.19.5) J f(t) dt—px>J f @) dt—pé
0 0
or
(10 10 K) alrys al£)
\2Ved vy J\W} T I\S)»
say. Thus F is the set of points in which a certain continuous
function ¢ (x) assumes a value greater than some at any rate of
tha walias whinh 34 koo aagiirnad hafans Mhic nnananrto anahlag 11a
UVLIC VvAaLUuosS WILIUIL 11U 11aS asSdSUWillcu vciulo., 111D PLUP LUY GClLayULIUS uo
to characterise the structure of Z.

Lemma A. The set B is composed of a finite or enumerable system

AT7

of non-overlapping intervals (o, B;). AU of these intervals are open,
g (Otk) =g (p'k):
except possibly when x=1 s a point of E, in which case there 13
one interval («,, 1) closed on the right, and g (o) = g (1), though g («;,)
18 not necessarily equal to g (1).2
In the first place, since g (z) is ¢
(except possibly for the point z = 1) Hence £ is a set 0
(ak, Bi), openif B, < 1.
If B;, < 1 then B, is not a point of
(10.19.7) 9(02) 29 (B
by the definition of Z.
Next, suppose that e, < ; < B;, and consider the minimum of
g (z) in the interval 0 <z <z, . This minimum cannot be attained
for o <T=%q, since all such z beh')ﬁ’g to &, and so g \.’1‘?; >g \g) for
some ¢ <z. Hence it is attained for x < ;. But o is not a point
of B, and therefore g («;) < g (x) for all these . Hence the mini-
& All that we need is that g («;)<g (B;); but the argument will probably be
clearer if we make the lemma complete.



(10.19.8) g (0x) 29 (Br);
and this, with (10.19.7), proves the lemma?.
YA T~ mcn e mvwmcres T amsmae 2 A TNAT A vvia<r sxreidan 710 10O O\ =an
YV Cail 110 P.l Ve 1L11CUICIL 00k YVve L Yy 1o (1vV.19.0) 111
the form o

r “mE_
(10 104 0) m m B < floNdr < £l dr
\J.U-.LU 0./} t}.uvu: J\W}WW:J J\WIWW’
Jz 0
and hence, by (10.19.1),
— 1 [mE
(10.19.10) B(xy) —e=p < flx)de.
~mE [

Finally, since f(x) decreases, it follows from (10.19.10) and
(10.19.3) that

—_ 1 Zo_
el
O @) —es— | flx)dx
wodJ 0
Since € ig arbitrarv, this gives (10.18.1) with o, for
AL A A J’ VALAN 61'““ \.l.\lt‘.\/ J.,’ YY 4 Vax WU A\TL W
The function-theoretic applications of Theorems 384 and 385 arise
e LTl mcrn  Qaizimamman dlhad £/0V ta dntncgrnalds and hao 4ha worind O 11 a4
ad LULIUOWS DU.PPUDU vilav J \U) 1S LIILeglablo allu las Lo pPorivu 4w, vllav
A s NN mMA I N A\ nr_ 1 [tl‘lllw N S
MA(U)=i (U, J)= Max - J +u)au,

o<itisn ) o
and that N(6) is the similar function formed with |f(6+wu)|. These
functions are of the same type as the ®(x) of Theorem 384, but are

. .
oanara +QA 1‘\‘7 moanga "'D]’O“ +n o1 “‘]"Iﬂ"' a'l(;ln n'F ﬁ
SVLLVLIDUTA My JlITNALS UAaAULL UV T1UiiTa BT Va Ve

Consider now the integral

() mp)=g [ FO+0x( p),

where y is a kernel which involves a parameter p and satisfies the
conditions

.. 1 m
(it Xt )20, o [yt pydi=1.
The standard examples of such kernels are the ‘Poisson kernel’

X=T"%rcost+r2’

& The argument here is due to M. Riesz (see F. Riesz, 10).
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in which p=r is positive and less than 1, and the ‘Fejér kernel’
sin? int

X=n sm2 12

in which p=n is a positive integer. The corresponding values of h are

arl N +ha L " £ 43 dafl 1 1
Uy U, LIS harmonic function defined b‘.y’ the ‘Poisson lntegr&l of .f

and o, (6), the Cesaro mean, of order 1, of the Fourier series of f(8
Suppose now (a) that f(8) belongs to L*, where k> 1, and (b) tha,t X
satisfies the additional condition

I (™ |
(1ii) %—70, . ‘t
where A4 is independent of p. It follows from Theorems 385, with

s(y)=vy*, and 327, that M (6) also belongs to L*.2 And itis easy to deduce
from (i), (ii), and (iii) that

’

x| <
ot ‘dt=A’

of p) of the class L*.
It is easily verified that the Poisson kernel satisfies (iii). Hence
u(r, 0) possesses a majorant U(f) of the class L*. The same is true of

izt e 4+l Aag H
a,(0), but in this case the proof is not quite so simple, since the Fejér

kernel does not satisfy (iii). We can however prove that |o, (8)] = AN (6),
and similar conclusions follow. All this is set out in detail by Hardy

and Littlewood (8).

I ) A'IA"I'\T T

oM AT TN
S TAHEOREMS AND EXAMPLES
a

386. If c,=c3=...=¢y, =0 and the sets (a), (b) are non-negative and
given except in arrangement, then

r X .
Z X a.b,
r=1 s=1
is a maximum when (a) and (b) are both in decreasing order.
[F. Wiener (1).]

387. It is not true that
Z ab,,s T atbtet.
r+s+t=0 r4-s+t=0

[Trivial: take (a), (b), (¢) to be (0, 2, 1), (1, 2, 0), (1, 2, 1). Then
Za.b,c,=14, Xa,tbtet=12.]
3888. There are sets (a), (b), (¢) such that none of the eight sums
Zatbtet, Ztabtct, Zattbet, ..., Ztatbte

gives the maximal sum Zabc.

[Suppose 0 << 1 and ¢ positive and sufficiently small; and take (a) to
be 0,0,0,1,2,(b) tobe h—¢, b, h+¢, 1, 1, and (c) to be formed of any five
different elements.]



296 REARRANGEMENTS

389. If M($)=2|T[Z’,, M(y)=Z|8|y,,
and p #+0, then the substitution Q,, of § 10.8 decreases u=M () + M (y).

[The theorem is trivial, but may be used to construct another proof of
Theorem 371, which follows the general lines of that in § 10.8 but is free

from an appeal to ¢ continuity’.

110 52D 84V E Y

We use 4, C, C’, K as in §10.8; there may now be more than one

arrangement C. We define L as the sub-class of K formed by those mem-
bers of K for which u ig least T'Fm-l-ﬂ and 4 is wrono with regnect to n

4222 4> 2RSS Ve Vg AR LI LS Walliem Viauda L\lul-l\/\-l‘l v 1‘”

t}”‘ 1L AL” decreases © and does not diminish S. Hence any Aof Lisa b

and we can then show as in § 10.8 that L includes a C.]

390. In the notation of Theorem 373

T abygs T afthe*
r+s+t=n r+8-+t=0
for every n.

[Corollary of Theorem 373.]
391. If (a), (a’), (b) (b’), (¢), and (¢’) are six sets of positive numbers

--1“-,\ L dm 11N =
bject to (10.5.1), then

X a.a/bb/cc/< T a*a’*b*b/*c*c *
r+8+t=0 r+8+t=0
[Corollary of Theorem 372 if first reduced, by the method of §10.3,
to the special case in which every number is 0 or 1.]

200 T L£and »
OU&L. 11y au y

i e macrndiera oAl
L0 11UIL-IICE# LIV e, allu

) [(stt@nass [(sg@)ds
for every positive and increasing s (), then
(i) f=g

except perhaps for an enumerable set of values of z.

[This is the theorem referred to in § 10.18, as proving the equivalence of
Theorems 384 and 385. It is an analogue of Theorem 107.

Since the integrals (i) are unaltered when we replace f and g by f and g,

we may suppose f and g themselves decreasing, so that f=f,

perhaps in an enumerable set of points).

If (ii) is not true for almost all z, we can find a b and a ¢ such that

(i) b<e, fl(c)>g(b).

For, if this were not so, we should have f(b+0)=g(b) for all b, an
F(b) =g (b) at all points of continuity of the functions, and therefore except
in an enumerable set.

Supposing then that b and c satisfy (iii), we choose 7 so that

and define s(y) by
8(y)=0 (y<r), s(v)

a
Then [ s{f(m)}dx=[_ dx;c>bg[
Jo Jfer J g2r

in contradiction with (i).]
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393. Ifa,, a,, ..., ay are non-negative,

ay+avy+...+a,

™ ('n‘;m{'n. rl.\; ax -
O (n)=0(n,a)= Max I ;
1<v=n n—v+
and a bar denotes a rearrangement in decreasing order (a notation opposite

to that of §10.1), then
@(n)§d1+d2f,"'+d" (1SnsN).

1@y 58 (Ut

[The last two theorems are the analogues for finite sums of Theorems
384 and 385, and the reader will find it instructive to prove them by an
adaptation of the argument of i§§ 10.18~19. The earlier proofs of Hardy
and Littlewood and of Gabriel are referred to in §10.18.]

-
on
o~

395. If C1=Cp=...2¢,>0, d,=dy=...2d,>0;
€1, €9y -..s €544 I8 the aggregate of the ¢ and d rearranged in decreasing
order; On‘-cl+02+ +Cpn,
arnd N and B! anadafinmadaimilanlsrcand afa) sannaitieraandinanaagino--than
QILU LSy QILU Ld y QLT UDL CUSUUIIALLY , VIIU o (Y ] IO PUSIULV O QLR 1LIVI UADLLLE 5 UL1ULL
-Iﬁ\.-/OZ\n u‘/ p\l-lh\l.\/Dz\l |-/‘Dq\
S LU S | & S|\ — ~a . I
(C) 45 (g )+ b8 () +8 D+ )+t (F)
Ss(E—)+s/~3\+ +3(E”+”\a
= 2/ \p+q/
[This is a special case of Theorem 394. For a direct proof by induction,
due to Chaundy, see Hardy and Littlewood (8): the theorem is one of

the lemmas on which they based their proof of Theorem 394.]
396. Ifp,q, P, Qare positive integers and s(y) is positive and increasing,

then ) / \ 1/ \ 1)+q / + \

3\ Yo Q .%,./2 < ptq

W T\n/ TR/ =T Un )?
+P + +atP+

(i) 53 s/£\+qZQs/g\‘ép a£P+Q (p+q\
1 0/ g \n/ p+q+1 \ n

®© /m\ ®© /a\
cen L/ 1 < N ad ‘ ‘1
(11) ?8(7&)"'?8&%):?8\ n )

[(i) and (ii) follow from Theorem 395 by appropriate specialisation, and
(iii), which is true whether p and ¢ are integers or not, is a corollary. A

.....

case of (iii) is
xlla mllb B wll(a+b)
1— wl,’a + 1-— wllb = 1— xl{(a—{-b)

1\

{(a>0,0>0, 0<xr<li):

this may naturally be proved independently (and with ¢ <), for example
as an application of Theorem 103.]

397. If a, b, «, B are positive and s positive and increasing, then

[ote raN fb+B /b\ . f“+b+“+3 fa+b\ .
I, 8lz)%+] (M)d = | 8 —— ) dw-
Ja Jb J a+b \ z )/
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398. Ifk>1, and O (z) is defined as in Theorem 384, then

/ @"(x)dx<(7c—k-—-> /f"(m)dx.

J o

[From Theorems 385 and 327. There is of course a corresponding theo-
rem for finite sums. This theorem hasparticularly important applications.]

399. In order that anintegrable function ¢ (x)should have the property
1
[ s(x)d(x)dx =0,
Jo
for all positive, increasing, and bounded s(z), it is necessary and sufficient
that

[‘4ydizo (0=w=1).
J x

[To prove the condition necessary, specialise s(z) appropriately; to
prove it sufficient, integrate partially or use the second mean value

theorem. The condition is certainly satisfied if there is a ¢ between 0
and 1 such that ¢(2)=0 for z> ¢, $(z) <0 for z< ¢, and

f1
| é(x)dx=0.
Jo

Theorem 397 is a special case of this theorem (after a simple trans-
formation).]

400. If E and ¢ are functions of x subject to
0<dE<dz, 0<t<u,

[ {My‘ kB =B (1)

then (k>1),

f’E(x)—-E'(E) de< E(1) fi-i—io 1
Jo Tamg R EITe gy
[Suppose that f (x) is always 0 or 1, and that E (z) is the measure of the
part of (0, ) in which f(z) =1, and apply Theorem 385.]

401. If p>1, ¢g>1, l+};1, )\:2_1_}_,
r q r 9

h<l—=, k<l—2, h+k=0,
P q

and h+lc>0if-1~+$=l,then

[= [=  f(x)g(y) /(o N\YUp/[=» N\l
T 3 [ kdxdy<ﬁ( | JPdz) (] gax)
JOo JO w y (e Y1 \J O / \J 0 /
[Here, and in Theorems 402 and 403, K denotes a positive number

depending only on the parameters of the theorem (here p, g, A, k).]
P

402. If p>1, 0_S~oc<}),

—ap’
(o QIP
then / x“( :D—Q-l'mm)/z?faq dx é K ( / )

0n
J Y
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where fy is defined as in (10.17.5). The result is still true if «=1/p, when
the second condition on ¢ may be omitted.
[For the last two theorems see Hardy and Littlewood (6). The case

=—m mqu
Y ¥ 5rves

[: (o fo)?de = K [:0 frdx:

compare Theorem 329.]
403. The result
[Define f(x) by

(1023 )”
f(x)—‘% log 5;/ (0<z=4%), =0 (z>3),
where 8> 1. Then

fx1 /. 1\~B
f“(x)=Kj0 g(log?;) (—y)tdy

™

> Kool ,wi (log 1 -6dy-—Kx“'1 (log-)r.P.
Jo¥Y y)
1
Here p=1, 9=7—5
fis L, but fy is L? only if
B=lo1, p>2-al
l—a™ 77 )

404. Suppose that f(x) is defined in (—1, 1) and has a continuous
derivative f’(x) which vanishes only at a finite number of points, and that

f(x)z 0, f(-l) f(l)—

Then the le +h )

unless f(x) f* ().
[See Steiner (1, 11, 265). If 0<y< Y =Maxf then (except perhaps for

a finite number of values of y) the equation y=f(x) has an even number

2n (depending on y) of roots. If we denote these roots, in ascending order,

£ +h curve nt—F
X Ul viuuL vy —J

E?
m
p.
s
c+
d
o

M 11C0VUICI ’
Y [Y
o (1 T1Y¢ _1wo 71208 2 | TS0 e r2vh g,
“ VT~ T L) Ay g wy:j 2Ty T )Ewye.
0 0
ML cin Yo amiialitsr A Ysr 12 5 1 L o1 a Al A b
1110 15 cgjuallty OIlly 11 7t = 1 10. 11 Y, A Xy = —&y.|
134 Qinnnas +that £/ 2S00 far all » s and +that +ha maeoagnire M2\ af
EY N PUDO viiovvy \ ==V 1UL Uil Wy y’ CULI\A V11UV ViAU L11Uuio UL v Lrx \H’ iz

and write FH(@, y)=p- v<x2+y2>},
where p=! is the inverse of p. Then (under appropriate conditions of
regularity) the area of the surface z=f(z, y) is greater than that of

z=f*(z, y).
[Se S hwarz (1). The theorem is important in itse 7f d interesting
because it involves a two-dimensional analogue of the notion of f*(x). ]

eSS hetaah it = = F5° - e



BIBLIOGRAPHY

N. H. Abel

1. Surles séries, Huwres complétes, 11 (2nd ed., Christiania, 1881), 197-201.
E. Artin

“ 5 ¢ TUN. 1 e TN T et . N At ALL s A1 o~ A
L. Uper (110 aeuegung (.1(:3111111781 Funkt U 1€l 1 wuaarave, Aor e e W

G.

1.

S.

1

Ae

dJd.
1i.

A.

1.

1.

ot

math. Seminar Hamburg, 5 (1927), 100-115,

O. Schreier
lgebraische Krm truktion reeller Kérper, Abhandl. a. d. math. Seminar

Aumann
Konvexe Funktionen und die Induktion bei Ungleichungen zwischen
Mittelwerten, Miinchner Sitzungsber. 1933, 403-415.

Banach

4 . A s e
nmamninnma AN ONNVO O I‘ TQ‘I"G
PCT WY UTYvD vervow v

Bernoulli

Unendliche Reihen (Ostwald’s Klassiker der exakten Wissenschaften,
Nr. 171, Leipzig, 1909).

setz, Math. Annalen, 64 (1907), 417-447.

. Bernstein and G. Doetsch

Zur Theorie der konvexen Funktionen, Math. Annalen, 76 (1915),
514-526.

S. Besicovitch

On mean values of functions o

DPonn T, AT Q’ IC)\ 97 1109Q
L TTCe ddadVi \&fy &4 (LULO

-

a complex and of a real variable,

licz
Uber die Veraligemeinerung des Begriffes der zueinander konjugierten
Potenzen, Studia Math. 3 (1931), 1-67.

W. Blaschke

1.

G.

1.
2.

3.

Kreis und Kugel (Leipzig, 1916).
A. Bliss
Calculus of variations (Chicago, 1927).

The transformation of Clebsch in the calculus of variations, Proc.

Tan ~T1 AT 3Ll A Moo & 1094 =2Q0__AN9
intern lmouwwu M ath. L ongress \J_ULUuuu, Lvaet], I, 90v—UVo.

An integral inequality, Journ. L.M.S. 5 (1930), 40—46.



ao :..\m b

-

[l

“ee rarg n

H

BIBLIOGRAPHY 301

. Bohr

Zur Theorie der fastperiodischen Funktionen (1), Acta Math. 45 (1924),
29-127.

. Bolza

X7 nrndoaninnriors dibhorm Tl rntrd e oo T — / Al TONON
¥V UTesuTger woer v artabtornsT cul.mung LBIpZIg, 19VY).

S Drcvmes coeead
s D LPUSALIYUDU

Generalisations of Minkowski’s inequality, Journ. L.M.S. 3 (1928),
51-56.

. Briggs and G. H. Bryan

The tutorial algebra (4th ed., London, 1928).

. A. A. Broadbent

A proof of Hardy’s convergence theorem, Journ. L.M.S. 3 (1928),
242-243.

. H. Bryan and W. Briggs. See W. Briggs and G. H. Bryan
. Buniakowsky )
SQur Aanalaties indoalitda nonnsarmant lag intdorales nrdinaivrea ot laogin
N \1‘.‘-UA\1|.‘-UD LL&UBWLLUUD VVLAUVUVA LAGNLIL Y 1VD LLLWSLW.&\JD VANALILIONILUD UV 1UD 111"
tégrales aux différences finies, Mémoires de I' Acad. de St-Pétersbourg

(vix), 1 (1859), No. 9.

. Carleman

Sur les fonctions quasi-analytiques, Conférences faites au cinquiéme
congrés des mathématiciens scandinaves (Helsingfors, 1923), 181-196,

A. L. Cauchy

1. Cours d’analyse de I’Ecole Royale Polytechnique. Ire partie. Analyse
algébrique (Paris, 1821). [Huwvres complétes, I1e gérie, 111.]

2. Huxercices de mathématiques, 11 (Paris, 1827). [Huvres complétes, 11¢
série, VII.]

G. Chrystal

1. Algebra, 11 (2nd ed., London, 1900).

R. Cooper

1. Notes on certain inequalities (I): generalisation of an inequality of
W. H. Young, Journ. L.M.S. 2 (1927), 17-21.

2. Notes on certain inequalities (II), Journ. L.M.S. 2 (1927), 159-163.

3. The converses of the Cauchy-Htilder inequality and the solutions of
the inequality g (z+y)<g (z)+g (y), Proc. L.M.S. (2), 26 (1927),
415-432.

4. Note on the Cauchy-Holder inequality, Journ. L.M.S. 3 (1928), 8-9.



se NOSKLT ) rn.
\ P ? ! 7
2. Note on series of positive terms, Journ. L.M.S. 3 (1928), 49-51.

G. E. Crawiord
1. Elementary proof that the arithmetic mean of any number of positive

quantities is greater than the geometric mean, Proc. Edinburgh
Soc. 18 (1900), 24

AN eath _
AVL Wrive AIUU LUVUV Jg & T

4 +thanrnam arthaonnal frinatiang oith an annlinatinan +a 1ndcanal
Ae viicuvuL il U .I. vi ULLUSULLG’I LULIUUVLIVLID YWivull Qilr a&t.ll.’ll\/al vivL 1 VU 111 UUSL al
inequalities, Trans. Amer. Math. Soc. 30 (1928), 425-438.

A. L. Dixon

i. A proof of Hadamard’s theorem as to the maximum value of the
modulus of a determinant, Quart. Journ. of Math. (2), 3 (1932),
224-225.

G. Doetsch and F. Bernstein. See F. Bernstein and G. Doetsch

eyl b, e 5

1. Quantitative proofs of certain algebraic inequalities, Proc. Edinburgh

Math. Soc. 24 (1906), 61-77.

J. M. C. Duhamel and A. A. L. Reynaud

1. Problémes et développemens sur diverses parties des mathématiques
(Paris, 1823).

E. B. Elliott
1. A simple exposition of some recently proved facts as to convergency,

Jowrn. L.M.S. 1 {1926), 23-96.

2. A further note on sums of positive terms, Journ. L.M.S. 4 (1929),
21-23,

Euclid

1. The thirteen books of Euclid’s Elements (translated by Sir Thomas Heath,

Cambridge, 1908).



BIBLIOGRAPHY 303

L. Fejér and F. Riesz
1. Uber einige funktionentheoretische Ungleichu

11 (1921), 305—314.

gen, Math. Zeitschr.

{
|
4
)
[

B. de Finetti

1. Sul concetto di media, Giornale dell’ Istituto Italiano degli Attuari,
o0
VI

/1091y 9 204
\LUO.L}, O0I—0J0e

E. Fischer

1. Uber den Hadamardschen Determinantensatz, Archiv d. Math. u.

DL QY T /TOQNQN 99 AN
A wyowv \d}, 140 {LIVO}, o&—~xV,

E. C. Francis and J. E. Littlewood
1. Examples in infinite series with solutions (Cambridge, 1928).

F. Franklin

1. Proof of a theorem of Tschebyscheff’s on definite integrals, American
Journ. of Math. 7 (1885), 377-379.

M. Fréchet

1. Pri la funkecia equacio f (x+y)=f (x)+f (y), L’enseignement math.
15 (1913), 200-303

4U \LU 1Y)y DIV UJUs

2. A propos d’unarticle sur I’équation fonctionnelle f (x + y) =f () + f (¥),
L’enseignement math. 16 (1914), 136,

-V (Y2

2
by
]
0
&'
()
=

=

Uber Matrizen aus positiven Elementen (II), Berliner Sitzungsber.
1909, 514-518.

ATVTy VATTLALOs

o)
2
")
]
5
3
(0]
d

K
b
(
f
’
b

|l

An additional proof of a theorem upon rearrangements, Journ,
L.M.S. 3 (1928), 134-136, -

ey

2. An additional proof of a maximal theorem of Hardy and Littlewood,
Journ. L.M.S. 6 (1931), 163-166.

3. The rearrangement of positive Fourier coefficients, Proc. L.M.S. (2),
33 (1932), 32-51.

C. F. Gauss

1. Werke (Gottingen, 1863—-1929).

A. Gmeiner and O. Stolz

Theoretische Arithmetik, 11 Abteilung (Leipzig, 1902).

P. Gram

Uber die Entwicklung reeller Funktionen in Reihen, mittelst der
1

Maoathada dar Llainatan Oadrat+a Tansana ]l
L EUIOUC GO KUCIIISUCII wUuaUlauvG, v OwWirivloe

=gy

Ry



304 BIBLIOGRAPHY

K. Grandjot
1. On some identities relating to Hardy’s convergence theorem, Journ.

L.M.S. 3 (1928), 114-117.

Grebe

1. Uber die Vergleichung zwischen dem arithmetischen, dem geo-
metrischen und dem harmonischen Mittel, Zeitschr. f. Math. u.
Ph/umlf‘ 3 (1858), 297-298.

A. Haar

1. Uber lineare Ungleichungen, Acta Litt. ac Scient. Univ. Hung. 2
(1924), 1-14,

\1v&xT

J. Hadamard

1. Résolution d’une question relative aux déterminants, Bull. des sciences
/{
(

ammath O\ 7 2 QAQ

) 1 1209\ AD
naur. \(«)y, 1 10U j, «2U—a%0.

L L

H. Hahn
1. Theorie der reellen Funktionen, 1 (Berlin, 1921).

G. Hamel
1. Eine Basis aller Zahlen und die unstetigen Loésungen der Funk-

PN s R

tionalgieichung f (z+y)=f (x)+f (y), Maih. Annaien, 60 (1905),
459-462,

G. H. Hardy
1. A course of pure mathematics (6th ed., Cambridge, 1928).
2. Note on a theorem of Hilbert, Math. Zeitschr. 6 (1920), 314-317,

3. Note on a theorem of Hilbert concerning series of positive terms,
Proc. L.M.S. (2). 23 (1925), Records of Proec. xlv—xlvi

L TUUs de \&Jy &U (LULU 3 AVUVULUD UL L iUV, ALlVTALVie

4, Notes on some points in the integral calculus (LX), Messenger of Math.
(1925), 150-156

2T AV

5. Notes on some points in the integral calculus (LXIV), Messenger of
Math. 57 (1928), 12-16.

6. Remarks on three recent notes in the Journal, Journ. L.M.S. 3 (1928),
166—169.

7. Notes on some points in the integral calculus (LXVIII), Messenger
of Math. 58 (1929), 115-120.

8. Prolegomena to a chapter on inequalities, Journ. L.M.S. 4 (1929),
61-78 and 5 (1930), 80.

9. Remarks in addition to Dr Widder’s note on inequalities, Journ.

aIN INONIIN Tsd3na 7 2 2aran

nonta our T Q QI/1Q029Y 11 110
Lol valll 1S4y uallvion, v TT0e LdolVL o)Os O\ 1UJOD)yliF—110.



ry
s
"
o
S
o

G. H. Hardy and J. E.

B el e N

!—l
‘:
g
Q
Q
(=9

1. Elementary theorems concerning power series with positive coefficients
and moment constants of posi itive functions, Journal f Math.

157 (1927), 141-158.

2. Some new properties of Fourier constants, Math. Annalen, 97 (1927),
159-206 (199).

3. Notes on the theory of series (VI): two inequalities, Journ. L.M.S.
2 (1927), 196-201.

4. Notes on the theory of series (VIII): an inequality, Journ. L.M.S.
3 (1928), 105-110.

5. Notes on the theory of series (X): some more inequalities, Journ.
L.M.S. 3 (1928), 294-299.

6. Some properties of fractional integrals (I), Math. Zeutschr. 27 (1928),
565-606.

7. Notes on the theory of series (XII): on certain inequalities connected

with the calculus of variations, Jowrn. L.M.S. 5 (1930), 283—-290.

8. A maximal theorem with function-theoretic applications, Acta Math.
54 (1930), 81-116.

8. Notes on the uut::GJTy of series (XIII) SO1o
constants, Journ. L.M.S. 6 (1931), 3-9.

4Nn Q al aliés; nt .
AV DOINIS LuuosLau Luc\.iu.auw.es connected with the caleulus of varia

Quart. Journ. of Math. (2), 3 (1932), 241-252.
11. Some new cases of Parseval’s theorem, Math. Zeitschr. 34 (1932),

NN Do

620-633.
12, Some more integral inequalities, T'6hoku Math. Journal, 37 (1933),
151-159.
13. Bilinear forms bounded in space [p, q], Quart. Journ. of Math. (2)
[unpublished].

G. H. Hardy, J. E. Littlewood and G. Pélya
1. The maximum of a certain bilinear form, Proc. L.M.S. (2), 25 (1926),
265282,

. Some simple inequalities satisfied by convex functions, Messenger
of Math. 58 (1929), 145-152.

[\

F. Hausdorfi

1. Summationsmethoden und Momentfolgen (1), Math. Zeitschr.9 (1921),
74~-109.

2. Eine Ausdehnung des Parsevalschen Satzes {iber Fourierreihen,
Math. Zeitschr. 16 (1923), 163-169.

HT

N
(@]



306 BIBLIOGRAPHY

E.

1.

Hellinger and O. Toeplitz

Grundlagen fiir eine Theorie der unendlichen Matrizen, Math.
Annalen, 69 (1910), 289-330.

\.4 . ner.uume

1.

D.

il

Cours de la Faculté des Sciences de Paris (4th lithographed ed., Paris,
1888).

Hilbert
¥ 3 — PR S T h PV ST I v, PRI DU« IR ) PR
uper dle uvarsveilung aenmntver rorien als suinimne von rorier-

quadraten, Math. Annalen, 32 (1888), 342-350. [ Werke,11,154-161.]

2. Uber ternsre definite Formen, Acta Math.17 (1893), 169-197. [ Werke,

0.

i-

1

e

11, 345-366.]

The theory of functions of a real variable and the theory of Fourier
cnairna T v [0~ A ﬂnm‘—--,n',:lnn 1001 10948\
seres, I, II («na ea., Lamoriage, 1, 1926).

Holder

<%y . LV AW | P Ve LTV © S L AP 100N QOO am
U per emen MI1Uelwertsatz, Uouinger LN AacnriCiiten, 18d9, 00—41.

- Harwitz

Uber den Vergleich des arithmetischen und des geometrischen Mittels,
Journal f. Math. 108 (1891), 266—-268. [Werke, 11, 505-507.]

Sur le probléme des isopérimeétres, Comptes rendus, 132 (1901),
401-403. [Werke, 1, 490—-491.]

J. L. W. V. Jensen

1.

2.

BI

1.

(9]
&ie

3.

4'

Sur une généra,lisa,tion d’une formule de Tchebycheff, Bull. des

- ou 19 /771QQQ\ 194 19K
5(105";(/&8 Ilmlb \4), 14 (1000)y 199%™ 19U,

Sur les fonctions convexes et les inégalités entre les valeurs moyennes,

Ante MaAath 20 (1008 171092
LAV LJVLWDIVe OV \IUUU}’ d iU LUUe

Jessen
Om TUligheder imellem Potensmidd
(1931), No. 1.

™. Aleon Tenen 1o ~TTlisha
Demaer. h.l.ugtu om nuuvvmc £ u.u.nw.uu.cj. us U LRI

vaerdier (I), Mat. Tidsskrift, B (1931), No. 2.
Bemaerkinger om konvekse Funktioner og Uligheder imellem Middel-
vaerdier (II), Mat. Tidsskrift, B (1931), Nos. 3-4.

Uber die Verallgemeinerungen des arithmetischen Mittels, Acta Litt.

~ TN L WaVe)

ac Scieni. Univ. Hung. 5 (1931), 108-1160.

Ao 3 a1 = 331
CUCL 11110110111 lviluuci-



BIBLIOGRAPHY 307
A. E. Jolliffe

i. An identity connected with a polynomial algebraic equation, Journ.
L.M.S. 8 (1933), 82-85.

Th. Kaluza and G. Szegd

i. Uber Reihen mit lauter positiven Gliedern, Journ. L.M.S. 7 (1932),
208-214.

J. Karamata

’

1. Sur une inégalité relative aux fonctions convexes, Publ. math. Univ.

Belgrade, 1 (1932), 145-148.

K. Knopp
1. Uber Reihen mit positiven Gliedern, Journ. L.M.S. 3 (1928), 205-211.
2. Neuere Satze liber Reihen mit positiven Gliedern, Math. Zeitschr. 30

r1TO0N

(1929), 387—413.

3. Uber Reihen mit positiven Gliedern (2te Mitteilung), Journ. L.M.S.
5 (1930), 13-21.

A. Kolmogoroff

1. Sur la notion de la moyenne, Rend. Accad. det Lince: (6), 12 (1930),
388-391.

N. Kritikos

1. Sur une extension de P'inégalité entre la moyenne arithmétique et la
moyenne géométrique, Bull. soc. math. Gréce, 9 (1928), 43—46.

14 ndaun

o -.-w ala e

1. Uber einen Konvergenzsatz, Géttinger Nachrichten, 1907, 25-217.

s ] TN o TTrplat s £33 o
2. Einige Ungleichungen fiir zweimal differentiier

Proc. L.M.S. (2), 13 (1913), 43—49.
8. Die Ungleichungen fiir zweimal differentiierbare Funktionen, Med-

delelser Kobenhavn, 6 (1925), Nr. 10.

4. A note on a theorem concerning series of positive terms, Journ
L.M.S. 1 (1926), 38-39.

H. Lebesgue

1. Legons sur Vintégration et la recherche des fonctions primitives (2nd ed.,

Paris, 1928).

S. Lhuilier
1. Polygonoméirie, ou de la mesure des figures rectilignes. Et abrégé
d’isopérimétrie élémentaire (Genéve and Paris, 1789).

N
O
U
N



308 BIBLIOGRAPHY

A. Liapounoff

1. Nouvelle forme du théoréme sur la limite de probabilité, Mémoires

wo v .‘..I. Viwwe ll i

J. Liouville
1. Sur le calcul des différentielles & indices quelconques, Journal de

To00

r ECOI»@ ro&yvecnmque, i3 (1664}, i-69.

J. E. Littlewood

1. Note on the convergence of series of positive terms, Messenger of
Math. 39 (1910), 191-192,

On bounded bilinear forms i in an infinite ni imber of Va,r-i?bles, Quarrt.

Journ. of Math. (2), 2 (1930), 164-174.

[+ ]
&do

J. E. Littlewood and E. C. Francis. Se¢ E. C. Francis and

J. E. Littlewood

J. E. Littlewood and G. H. Hardy. See G. H. Hardy and
J. E. Littlewood

d. E. Littlewood, G. H. Hardy and G. Pélya. See G. H. Hardy,
Jd. E. Littlewood and G. Poélya

C. Maclaurin

1. A treatise of fluxions (Edinburgh, 1742).

2. Asecond letter to Martin Folkes, Esq.; concerning the roots of equa-
tions, with the demonstration of other rules in algebra, Phil.

Transactions, 36 (1729), 59-96.

E. Meissner
1. Uber positive Darstellung von Polynomen, Mazh. Annalen, 70 (1911),

999 99K
el

kT hmi I T

E. A. Milne
1. Note on Rosseland’s integral for the stellar absorption coefficient,
Monthly Notices B.A.S. 85 (1925), 979-984.

H. Minkowski
1. Geometrie der Zahlen, 1 (Leipzig, 1896).

2. Discontinuitétsbereich fiir arithmetische Aquivalenz, Journal f.
Math. 129 (1905), 220-274.

P. Montel

1. Sur les fonctions convexes et les fonctions sousharmoniques, Journal
de math. (9), 7 (1928), 29-60.

\+vTy



BIBLIOGRAPHY 09
(Sir) T. Muir
1. Solution of the question 14792 [Educational Times, 54 (1901), 83],
b, Y Y A £ ) S SR ;e £\ 1T I NNON ~ 0 ~
LVL QUIL, JI' m Lauc. Lvmes (<), 1 (.LHUZ), QL—J O,
k- ) Mt e e T

F 3 I . .LV.I.u.I..!. 11cau

1. Inequalities relating to some algebraic means, Proc. Hdinburgh Math.
Soc. 19 (1901), 36-45.

2. Some methods applicable to identities and inequalities of symmetric
algebraic functions of n letters, Proc. Edinburgh Math. Soc. 21
(1903), 144-157.

3. Proofs that the arithmetic mean is greater than the geometric mean,
Math. Gazette, 2 (1904), 283-287.

4. Proofs of an inequality, Proc. Edinburgh Math. Soc. 24 (1906), 45-50.

H. P. Mulholland
1. Note on Hilbert’s double series theorem, Journ. L.M.S. 3 (1928),

107_100
1gi—19J.

2. Some theorems on Dirichlet series with positive coefficients and
related Infﬂovrﬂh Proe, L. M.S. (2\ 20 ('lQQQ\ 281-292.

3. A further generahsatlon of Hllbert’s double series theorem, Journ.
L.M.S. 6 (1931), 100-106.

4. On the generalisation of Hardy’s inequality, Journ. L.JM.S. 7 (1932),
208-214

M. Nagumo

1. Uber eine Klasse der Mittelwerte, Jap. Journ. of Math. 7 (1930),
71-79.

- - -

E. J. Nanson

1. An inegualityv., Messenaer of Math. 32 (1904), 89-90

- Sl 4 J7 ~ bt J YvEYE EE ANTY YT D

1. Arithmetica universalis: sive de compositione el resolutione arithmetica
liber. [Opera, 1.]

A. Oppenheim

1. Note on Mr Cooper’s generalisation of Young’s inequality, Journ.
L.M.S. 2 (1927), 21-23.

2. Inequalities connected with definite hermitian forms, Jowrn. L.M.S.
5 (1940), 114119,

W. Orlicz and Z. W. Birnbaum. §See 4. W. Birmbaum and
W. Orlicz

A. Ostrowski

1. Zur Theorie der konvexen Funktionen, Comm. Math. Helvetici, 1

(1929), 157—159.



310 BIBLIOGRAPHY

A. Ostrowski (cont.)

2. Uber quasi-analytische Funktionen und Bestimmtheit asymptotischer
Entwicklungen, Acta Math. 53 (1929), 181-266.

P. M. Owen

1. A generalisation of Hilbert’s double series theorem, Journ. L.M.S. 5
(1930), 270-272.

R. E. A. C. Paley

1. A proof of a theorem on averages, Proc. L.M.S. (2), 31 (1930),
289-300.

2. A proof of a theorem on bilinear forms, Journ. L.M.S. 6 (1931),
226-230.

H. Poincaré
1. Sur les équations algébriques, Comptes rendus, 97 (1888), 1418-1419.

S. Pollard

1. The Stieltjes integral and its generalisations, Quart. Journ. of Maih.
49 (1923), 73-138.

G. Pélya

1. On the mean-value theorem corresponding to a given linear homo-
geneous differential equation, Trans. Amer. Math. Soc. 24 (1922),

2. Proof of an inequality, Proc. L.M.S. (2), 24 (1926), Records of Proc
lvii.
3§ jbe ‘an'“"itrn. Darestelluno von pn]trnnmnn T/aoviohn’-) res8e 2 f; d.

€ Larsteliun QLYLIOINCI VvV 0Tl RRTSSUIVTY ¢
(=] J > (ad J

positi
naturforschenden Gesellsch. Ziirich, 73 (1928), 141-145.

4. Untersuchungen iiber Liicken und Singularititen von Potenzreihen,

Py A 7 ntanl e {TONN EAQ QAN
Math. Zeitschr. 29 {1929), 549640,

G. Poélya, G. H. Hardy and J. E. Littlewood. See G. H. Hardy,
J. E. Littlewood and G. Poélya

G. Pblya and G. Szego

1. Aufgaben und Lehrsdtze aus der Analysis, 1, 11 (Berlin, 1925).

A. Pringsheim

1. Zur Theorie der ganzen transzendenten Funktionen (Nachtrag),

Miinchner Sitzungsber. 32 (1902), 295-304.



BIBLIOGRAPHY 311

J. Radon

1. Uber die absolut additiven Mengenfunktionen, Wiener Sitzungsber.
(ITa), 122 (1913), 1295-1438.

A. A, L. Reynaud and J. M. C. Duhamel. See J. M. C. Duhamel
and A. A. L. Reynaud

B. Riemann
1. Gesammelte math. Werke (Leipzig, 1876).

F. Riesz

1. Les systémes d’équations linéaires a une infinité d’inconnues (Paris,
1913).

2. Untersuchungen uber Systeme integrierbarer Funktionen, Math.

(
4, Uber eine Verallgemeinerung der Parsevalschen

Taiil VUL Nl TaraTiaat

(=
Zeitschr. 18 (1923), 117-124.
5. Sur les fonctions subharmom’ques et leur rapport & la théorie du

AQ /1092 Q0D _DAD
PUUUIIULU.[, [.l.bbu« il’iwblb X0 {(194V), 04070 %OI.

6. Su alcune disuguaglianze, Boll. dell’ Unione Mat. Italiana, Anno 7

{1098\ N 92
(L9&4O ), aNO. 4.

7. Sur les valeurs moyennes des fonctions, Journ. L.M.S. 5 (1930),
120-121.

8. Sur une inégalité intégrale, Journ. L.M.S. 5 (1930), 162-168.

9. Sur les fonctions subharmoniques et leur rapport é, la, théorie du

potentiel (seconde partie), Acta Math. 54 (1930), 162—168.

10. Sur un théoréme de maximum de MM. Hardy et Littlew od, Journ
L.M.S. 7 (1932), 10-13.

F. Riesz and L. Fejér. See L. Fejér and F. Riesz

M. Riesz

1. Sur les maxima des formes bilindaires et sur les fonctionnelles
linéaires, Acta Math. 49 (1927), 465—497

. Sur les fonctions conjuguées, Math. Zeitschr. 27 (1928), 218-244.

T T DAasmanc

Ads . J-lus A~ -]

1. An extension of a certain theorem in inequalities, Messenger of Math
I 71QQQON TAM THEN
L \ 1000 )y, LTJTLIV,

[ ] o P g

N DAns

1. Sur un théoréme de M. Montel, Comptes rendus, 187 (1928), 276-277.

SEEMSy W MAIAYE R IRAEEEe ST 2



312 BIBLIOGRAPHY

2i

[
|

-
[]

N

O. Schldédmilch

1. JUBI .LV.U.DUelgIOSSGII Velbuueaener Urunungen, aeuson,r . f zuam U.
Physik, 3 (1858), 301-308.

O. Schreier and E. Artin. See E. Artin and O. Schreier

I. Schur

1. Bemerkungen zur Theorie der beschrankten Bilinearformen mit

arform:

unendlich vielen Verénderlichen, Journal f. Math. 140 (1911), 1-28.

TThnY- eine Klasse von M‘ttelb'l""“g‘m mit Anv ungen au uf
Determinantentheorie, Sitzungsber. d. Berl. Math. Gesellsch 22
(1923), 9-20.

mn'nrqu’n onan a11
L AZ 1V

. A. Schwarz

Beweis des Satzes dass die Kugel kleinere Oberfliche besitzt, als jeder

andere Korper gleichen Volumens, Gottinger Nachrichien, 1884,
1_13. FTWorke IT Q‘)'7__QAn

LY7 Uiivly xiy O Ve

Uber ein die Flichen klemsten Flacheninhalts betreffendes Problem
der Vnrmhnnqw:ﬂhnnno' Acta soc. scient. Fenn. 15 (]RRR\ 315-362.

[Werke, 1, 224-269.]

W. Sierpinski

1. Sur I’équation fonctionnelle f (x +y)=f () +f (v), Fundamenta Math
1 (1920), 116-122.

2. Sur les fonetions convexes mesurables, Fundamenta Math. 1 (1920),
198 20,

H. Simon

1. Uber einige Ungleichungen, Zeitschr. f. Math. u. Physik, 33 (1888),
56-61.

Ch. Smith

1. A treatise on algebra (London, 1888).

J. F. Steffensen

1
4o

E.
1.

T+ Ravria far Qandaninonn

g..

A And santrmatnialea MM AAA14a1 at 1Bos +:- o
A4V JOTVID 1UL DCIIUUIJ.J.1151711 Uill, av LI.UU 5UULLI.UUJ..I.61\U iMiivuyvciliuval auv ]_J LULV O
Sterrelser ikke storre end det aritmetiske, Mat. Tidsskrift, A (1930),

115-116.
The geometrical mean, Journ. of the Institute of Actuaries, 62 (1931),
117-118.

Steiner
Gesammelie Werke (Berlin, 1881-2).

Stiemke

Uber positive Losungen homogener linearer Gleichungen, Math.
Annalen, 76 ('IQ'IF{\ 240-249

Vivlavlivy \2T AUy DIVTOTL.



BIBLIOGRAPHY 313
O. Stolz and J. A. Gmeiner. See J. A. Gmeiner and O. Stolz

R. Sturm

R, sturm

1. Maxima und Minima in der elemeniaren Geometrie (Leipzig, 1910).
G. Szegd and Th. Kaluza. See Th. Kaluza and G. Szegé

G. Szegd and G. Pélya. See G. Pélya and G. Szegd

E. C. Titchmarsh

1. The theory of functions (Oxford, 1932).

2. Reciprocal formulae involving series and integrals, Math. Zeitschr. 25

(1926), 321-341.
3. An inequality in the theory of series, Journ. L.M.S. 3 (1928), 81-83.

O. Toeplitz

1. Zur Theorie der quadratischen Formen von unendlich vielen Verdn-
derlichen, Géttinger Nachrichten (1910), 489-506.

O. Toeplitz and E. Hellinger. See E. Hellinger and O. Toeplitz

G. Valiron

1. Lectures on the general theory of integral functions (Toulouse, 1923).

Ch.-J. de la Vallée Poussin

1. Cours d’analyse infinitésimale, 1 (6th ed., Louvain and Paris, 1926).

2. Iniégrales de Lebesgue. Fonctions d’ensemble. Classes de Baire (Paris,
1916).

J. H. Maclagan Wedderburn

4 ML~ sl antecdtn wralic s AP Ll o n Tl AL doirn v ndznne DIl A s nie AL 2l

de L 11€ auSo1uUTe vaiiue 01 urie P.LUUU.DU UL VWU 1LLIIAULIVOD, DULLe L1TIET . LVLWUIb.
Soc. 31 (1925), 304-308.

H. Weyl

1 ﬂ/P‘IDIMMDM /Il) AIMJ nn:nmfnlmmnn,rﬂmnln {‘)V\A DA T 'I’\l'l"f’f 10‘21\

A AT WIIPUIUU'VUU v wivw YUWIUUWIIVI"IVV'VWIV'/W \Hllu Ulke s L4 tluls, .-I-UU-I./

2. Singuldre Integralgleichungen mit besonderer Berticksichtigung des
Fourierschen Integraltheorems, Inaugural-Dissertation (Gottingen,
TQNQN
p A UUO}-

3. Bemerkungen zum Begriff des Differentialquotienten gebrochener

ﬂrﬂnnng Vi pw‘phnhreenhm ft d. 'nﬂhl'rfnrqr'hpfnﬂpfn Gesellsch. Ziirich,

62 (1917), 296—302.

D. V. Widder
1. An inequality related to one of Hilbert’s, Journ. L.M.S. 4 (1929),
194-198.

F. Wiener
1. Elementarer Beweis eines Reihensatzes von Herrn Hilbert, Math. An-
nalen, 68 (1910), 361-366.



314 BIBLIOGRAPHY

W. H. Young

1. On a class of parametric integrals and their application to the theory
of Fourier series, Proc. Royal Soc. (A), 85 (1911), 401-414.

2. On classes of summable functions and their Fourier series, Proc.
Royal Soc. (A), 87 (1912), 225-229.

3. On the multiplication of successions of Fourier constants, Proc. Royal
Soc. (A), 87 (1912), 331-339.

4. Sur la généralisation du théoréme de Parseval, Comptes rendus, 155
(1912), 30-33.

5. On a certain series of Fourier, Proc. L.M.S. (2), 11 (1913), 357-366.

6. On the determination of the summability of a function by means of
its Fourier constants, Proc. L.M.S. (2), 12 (1913), 71-88.

7. On integration with respect to a function of bounded variation, Proc.
L.M.8S. (2), 13 (1914), 109-150.

A. Zygmund

On an integral inequality, Journ. L.M.S. 8 (1933), 175-178.

CAMBRIDGE: PRINTED BY WALTER LEWIS, M.A., AT THE UNIVERSITY PRESS









