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PREFACE TO THE FOURTH EDITION

AparT from the provision of an index of names, the main changes in
this edition are in the Notes at the end of each chapter. These have
been revised to include references to results published since the third
edition went to press and to correct omissions. There are simpler
proofs of Theorems 234, 352, and 357 and a new Theorem 272. The
Postscript to the third edition now takes its proper place as part of
Chapter XX. T am indebted to several correspondents who suggested
improvements and corrections.

I have to thank Dr. Ponting for again reading the proofs and Mrs.

V. N. R. Milne for compiling the index of names.

ABERDEEN
July 1959



PREFACE TO THE FIRST EDITION

THis book has developed gradually from lectures delivered in a number
of universities during the last ten years, and, like many books which
have grown out of lectures, it has no very definite plan.

It is not in any sense (as an expert can see by reading the table of
contents) a systematic treatise on the theory of numbers. It does not
even contain a fully reasoned account of any one side of that many-
sided theory, but is an introduction, or a series of introductions, to
almost all of these sides in turn. We say something about each of a
number of subjects which are not usually combined in a single volume,
and about some which are not always regarded as forming part of the
theory of numbers at all. Thus Chs. XII-XV belong to the ‘algebraic’
theory of numbers, Chs. XIX-XXT to the ‘additive’, and Ch. XXII
to the ‘analytic’ theories; while Chs. III, X1, XXIII, and XXIV deal
with matters usually classified under the headings of ‘geometry of
numbers’ or ‘Diophantine approximation’. There is plenty of variety
in our programme, but very little depth; it is impossible, in 400 pages,
to treat any of these many topics at all profoundly.

There are large gaps in the book which will be noticed at once by any
expert. The most conspicuous is the omission of any account of the
theory of quadratic forms. This theory has been developed more
systematically than any other part of the theory of numbers, and there
are good discussions of it in easily accessible books. We had to omit
something, and this seemed to us the part of the theory where we had
the least to add to existing accounts.

We have often allowed our personal interests to decide our pro-
gramme, and have selected subjects less because of their importance
(though most of them are important enough) than because we found
them congenial and because other writers have left us something to
say. Our first aim has been to write an interesting book, and one unlike
other books. We may have succeeded at the price of too much eccen-
tricity, or we may have failed; but we can hardly have failed com-
pletely, the subject-matter being so attractive that only extravagant
incompetence could make it dull.

The book is written for mathematicians, but it does not demand any
great mathematical knowledge or technique. In the first eighteen
chapters we assume nothing that is not commonly taught in schools,
and any intelligent university student should find them comparatively
easy reading. The last six are more difficult, and in them we presuppose
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a little more, but nothing beyond the content of the simpler, university
courses.

The title is the same as that of a very well-known book by Professor
L. E. Dickson (with which ours has little in common). We proposed
at one time to change it to An introduction to arithmetic, a more novel
and in some ways a more appropriate title; but it was pointed out that
this might lead to misunderstandings about the content of the book.

A number of friends have helped us in the preparation of the book.
Dr. H. Heilbronn has read all of it both in manuseript and in print,
and his criticisms and suggestions have led to many very substantial
improvements, the most important of which are acknowledged in the
text. Dr. H. S. A. Potter and Dr. S. Wylie have read the proofs and
helped us to remove many errors and obscurities. They have also
checked most of the references to the literature in the notes at the ends
of the chapters. Dr. H. Davenport and Dr. R. Rado have also read
parts of the book, and in particular the last chapter, which, after their
suggestions and Dr. Heilbronn’s, bears very little resemblance to the
original draft.

We have borrowed freely from the other books which are catalogued
on pp. 414-15, and especially from those of Landau and Perron. To
Landau in particular we, in common with all serious students of the
theory of numbers, owe a debt which we could hardly overstate.

- G.H.H.
OXFORD E.M W
August 1938



REMARKS ON NOTATION

We borrow four symbols from formal logic, viz.
-, =1, e
— is to be read as ‘implies’. Thus
Illm—>lin (p- 2)
means ‘ ‘‘lis a divisor of m’’ implies ‘‘l is a divisor of »’’’, or, what is
the same thing, ‘if [ divides m then [ divides n’; and
bla.c|b—>c|a (p- 1)
means ‘if b divides ¢ and ¢ divides b then ¢ divides a’.

= is to be read ‘is equivalent to’. Thus
m | ka—ka' =m, | a—a’ (p. 51)
means that the assertions ‘m divides ka—ka’’ and ‘m, divides a—a’’
are equivalent; either implies the other.

These two symbols must be distinguished carefully from — (tends to)
and = (is congruent to). There can hardly be any misunderstanding,
since — and = are always relations between propositions.

3 is to be read as ‘there is an’. Thus

Il 1<li<m.l|m (p- 2)

means ‘there is an [ such that (i) 1 << < m and (ii)  divides m’.

€ is the relation of a member of a class to the class. Thus

meS.neS8—(mtn)elS (p. 19)

means ‘if m and n are members of S then m-+n and m—n are members
of 8.

A star affixed to the number of a theorem (e.g. Theorem 15*) means
that the proof of the theorem is too difficult to be included in the book.

It is not affixed to theorems which are not proved but may be proved
by arguments similar to those used in the text.
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1
THE SERIES OF PRIMES (1)

1.1. Divisibility of integers. The numbers
S—%,—2-1,0,1,2 .
are called the rational integers, or simply the integers; the numbers
0123,..
the non-negatiee integers; and the numbers
1,2,3,..

the positive integers. The positive integers form the primary subject-
matter of arithmetic, but it is often essential to regard them as a sub-
class of the integers or of some larger class of numbers.

In what follows the letters

a, b, n, P, y,..

will usually denote integers, which will sometimes, but not always, be
subject to further restrictions, such as to be positive or non-negative.
We shall often use the word ‘number’ as meaning ‘integer’ (or ‘positive
integer’, etc), when it is clear from the context that we are considering
only numbers of this particular class.

An integer a is said to be divisible by another integer b, not O, if
there is a third integer ¢ such that

a = bc.

If a and b are positive, ¢ is necessarily positive. We express the fact
that a is divisible by b, or b is a divisor of a, by

bla.

Thus lla, ala;

and b 0for every b but 0. We shall also sometimes use
bla

to express the contrary of b a. It is plain that
bla.clb — cla,
bla = bclac
if c # 0, and cla ,c|b — c|ma+nd
for all integral m and n.
1.2. prime numbers. In this section and until § 2.9 the numbers

considered are generally positive integers.? Among the positive integers
+ There are occasional exceptions, asin §§ 1.7, where ¢? is the exponential function of
analysis.
5591 B



2 THE SERIES OF PRIMES [Chap. 1

there is a sub-class of peculiar importance, the class of primes. A num-
ber p is said to be prime if

i 2»>1

(i) p has no positive divisors except 1 and p.
For example, 37 is a prime. It is important to observe that 1 is not
reckoned as a prime. In this and the next chapter we reserve the letter
p for primes.?

A number greater than 1 and not prime is called composite.

Our first theorem is

THEOREM 1. Every positive integer, except 1, is a product of primes.

Either #» is prime, when there is nothing to prove, or % has divisors
between 1 and n. If m is the least of these divisors, m is prime; for
otherwise . 1<li<m.l|m
and Illm — I|n,
which contradicts the definition of m.

Hence n is prime or divisible by a prime less than n, say p,, in which

case
n= Py, I<n <n

Here either #, is prime, in which case the proof is completed, or it is
divisible by a prime p, less than z,, in which case

n = p]nl = p1p2n2, 1 < n2< nl < n.
Repeating the argument, we obtain a sequence of decreasing numbers
N, Ny yerey Ng_ys---» all greater than 1, for each of which the same alterna-

tive presents itself. Sooner or later we must accept the first alternative,
that n,_, is a prime, say p;, and then

(12.1) n = P1Pg . Py
Thus 666 = 2.3.3.37.

If ab = n, then a and b cannot both exceed vn. Hence any composite
n is divisible by a prime p which does not exceed +n.

The primes in (1.2.1) are not necessarily distinct, nor arranged in
any particular order. If we arrange them in increasing order, associate
sets of equal primes into single factors, and change the notation appro-
priately, we obtain

(122 n=pipe..pf (a;>0,a,>0,..., 9 < Py <o)
We then say that n is expressed in standard form.

t It would be inconvenient to have to observe this convention rigidly throughout
the book, and we often depart from it. In Ch. IX, for exemple, we use p/q for & typical
rational fraction, and p is not usually prime. But p is the ‘natural’ letter for & prime,
and we give it preference when we ¢an conveniently.
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1.3. Statement of the fundamental theorem of arithmetic.
There is nothing in the proof of Theorem 1 to show that (1.2.2) is a
unique expression of n, or, what is the same thing, that (1.2.1) is unique
except for possible rearrangement of the factors; but consideratian of
special cases at once suggests that this is true.

Trecrem 2 (THE  FUNDAMENTAL  THEOREM O AR THMETIC).  The
standard form of n 4s unique; apart from rearrangement of factors, n can be
expressed as a product of primes in one way only.

Theorem 2 is the foundation of systematic arithmetic, but we shall
not use it in this chapter, and defer the proof to § 2.10. It is however
convenient to prove at once that it is a corollary of the simpler theorem
which follows.

THEOREM 3 (BucLiD's FIRST THEOREM). If p 45 prime, and p |ab,
thenp aor p b

We take this theorem for granted for the moment and deduce
Theorem 2. The proof of Theorem 2 is then reduced to that of Theorem
3, which is given in § 2.10.

It is an obvious corollary of Theorem 3 that

plabec..l = plaorplborplc...orpll,
and in particular that, if a, b ,..., 7 are primes, then p is gne of &, b ,..., 1.
Suppose now that

n= plipg... P =qir gl . .Y,
each product being a product of primes in standard form. Then
P; q’{t...q;’i for every 4, so that every p is a q; and similarly every g
is a p. Hence k = j and, since both sets are arranged in increasing
order, p, = g, for every i,
If a; > b;, and we divide by p’:, we obtain
pLphi Lpie = P phipli ol

The left-hand side is divisible by p;, while the right-hand side is not;
a contradiction. Similarly b, > @, yields a contradiction. It follows
that g, = b,, and this completes the proof of Theorem 2.

It will now be obvious why 1 should not be counted as a prime. If
it were, Theorem 2 would be false, since we could insert any number
of unit factors.

1.4. The sequence of primes. The first primes are
2,3,5 7, 11, 13,17, 19, 23, 29, 31, 37, 41, 43, 47, 53 ,....

It is easy to construct a table of primes, up to a moderate limit I, by a
procedure known as the ‘sieve of Eratosthenes’. We have seen that
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4 THE SERIES OF PRI MES [Chap. 1

if n < N, and n is not prime, then n must be divisible by a prime not
greater than ¥N. We now write down the numbers

2,3,4,56 ,.,N
and strike out successively

(i) 4, 6, 8, 10 ,..., i.e. 22 and then every even number,
(i) 9, 15, 21, 27 ,..., i.e. 3% and then every multiple of 3 not yet struck
out,
(iii) 25, 35, 55, 65 ..., ie. 5%, the square of the next remaining number
after 3, and then every multiple of 5 not yet struck out,... .

We continue the process until the next remaining number, after that
whose multiples were cancelled last, is greater than ¥N., The numbers
which remain are primes. All the present tables of primes have been
constructed by modifications of this procedure.

The tables indicate that the series of primes is infinite. They are
complete up to 11,000,000; the total number of primes below 10 million
is 664,579; and the number between 9,900,000 and 10,000,000 is 6,134.
The total number of primes below 1,000,000,000 is 50,847,478; these
primes are not known individually. A number of very large primes,
mostly of the form 27—1 (see the note at the end of the chapter), are
also known ; the largest found so far has nearly 700 digits.

These data suggest the theorem

Trecrem 4 (EucLip’s  seoo  THecReM) . The number of primes is
infinite.

We shall prove this in § 2.1.

The ‘average’ distribution of the primes is very regular; its density
shows a steady but slow decrease. The numbers of primes in the first
five blocks of 1,000 numbers are

168, 135, 127, 120, 119,
and those in the last five blocks of 1,000 below 10,000,000 are
62, 58, 67, 64, 53.
The last 53 primes are divided into sets of
5,4,7,4,6,3,6,45, 9

in the ten hundreds of the thousand.
On the other hand the distribution of the primes in detail is extremely
irregular.
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In the first place, the tables show at intervals long blocks of com-
posite numbers. Thus the prime 370,261 is followed by 111 composite
numbers. It is easy to see that these long blocks must occur. Suppose
that 2.3, 5, P
are the primes up to p. Then all numbers up to p are divisible by one
of these primes, and therefore, if

2.3.5..p=q,
all of the p- 1 numbers

q+2, ¢+3, g+4,..., 9g+p

are composite. If Theorem 4 is true, then p can be as large as we please;
and otherwise all numbers from some point on are composite.

Treorem 5. There are blocks of consecutive composite numbers whose
length cxceeds any given number N.

On the other hand, the tables indicate the indefinite persistence of
prime-pairs, such as 3, 5 or 101, 103, differing by 2. There are 1,224
such pairs (p,p-+2) below 100,000, and 8,169 below 1,000,000. The
evidence, when examined in detail, appears to justify the conjecture

There are infinitely many prime-pairs (p, p-+2).

It is indeed reasonable to conjecture more. The numbers p, p+2,
' p-+4 cannot all be prime, sirice one of them must be divisible by 3;
but there is no obvious reason why p, p+2, p--6 should not all be
prime, and the evidence indicates that such prime-triplets also persist
indefinitely. Similarly, it appears that triplets (p, p-+4, p-+6) persist in-
definitely. We are therefore led to the conjecture

There are infinitely many prime-triplets of the types (o, p-+ 2, p + 6) and
(p,p+4,p+6).

Such conjectures, with larger sets of primes, may be multiplied, but
their proof or disproof is at present beyond the resources of mathematics.

1.5. Some questions concerning primes. What are the natural
questions to ask about a sequence of numbers such as the primes ? We
have suggested some already, and we now ask some more.

(1) Is there a simple general formula for the n-th prime p, (a formula,
that is to say, by which we can calculate the value of p, for any given
n without previous knowledge of its value) ? No such formula is known.



6 THE SERIES OF PRIMES [Chap. 1

Indeed it is unlikely that such a formula is possible, for the distribution
of the primes is quite unlike what we should expect on any such
hypothesis.

On the other hand, it is possible to devise a number of ‘formulae’
for p, which are, from our point of view, no more than curiosities.
Such a formula essentially defines p, in terms of itself, and no previously
unknown p, can be calculated from it. We give an example in Theorem
419 of Ch. XXII.

Similar remarks apply to another question of the game kind, viz.

(2) is there a general formula for the prime which follows a given prime
(i.e. a recurrence formula such as p,,, = p2+42) ?

Another natural question is

(3) s there a rule by which, given any prime p, we can find a larger
prime g?

This question of course presupposes that, as stated in Theorem 4, the
number of primes is infinite. It would be answered in the affirmative if
any simple function f(n) were known which assumed prime values for all
integral values of n, Apart from trivial curiosities of the kind already
mentioned, no such function is known. The only plausible conjecture
concerning the form of such a function was made by Fermat,{ and
Fermat's conjecture was false.

Our next question is

(4) how many primes are there less than a given number x ?

This question is a much more profitable one, but it requires careful
interpretation. Suppose that, as is usual, we define

w(x)

to be the number of primes which do not exceed z, so that #(1) = 0,
w(2) = 1, #(20) = 8. |Ifp, is the nth prime then

W(pn) = n,
so that =(x), as function of x, and p,, as function of n, are inverse
functions. To ask for an exact formula for =(z), of any simple type, is
therefore practically to repeat question (1).

We must therefore interpret the question differently, and ask ‘about
how many primes . .. ? " Are most numbers primes, or only a small
proportion ? Is there any simple function f (x) which is ‘a good measure
of =(x)?

t See §2.5.
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We answer these questions in § 1.8 and Ch. XXII.

1.6. Some notations. We shall often use the symbols

(1.6.1) 0, o, ~,
and occasionally
(1.6.2) <, > =.

These symbols are defined as follows.

Suppose that n is an integral variable which tends to infinity, and x a
continuous variable which tends to infinity or to zero or to some other
limiting value; that ¢(n) or ¢(x)is a positive function of n or x; and
that f(») or f(x)is any other function of n or x. Then

(i) f = O(¢) means thatt |f < A4,
where A is independent of n or z, for all values of n or x in question;

(i) f = o($) means that  f/¢ — 0;

and
(iii) f ~ ¢ means that fié - 1.
Thus 10x = O(x),  sinx = O(),  x = O(x?),
X = o(x?), sinx = o(x), x+1~uz,

where x - o0, and
z? = O(x), 2 = o(X), SinX ~ 14z ~1,

when x — 0. It is to be observed that f = o(¢$) implies, and is stronger
than, f = O(4).
As regards the symbols (1.6.2),

(iv) f < ¢ means f/¢ — 0, and is equivalent to f == o(4);

(v) f > ¢ means f/¢ - co;

(Vi) f = ¢ means A¢ < f < A¢,
where the two A’s (which are naturally not the same) are both positive
and independent of n or x. Thus f = ¢ asserts that ‘f is of the same
order of magnitude as ¢’.

We shall very often use A as in (vi), viz. as an unspecified positive
constant. Different A’s have usually different values, even when they
occur in the same formula; and, even when definite values can be
assigned to them, these values are irrelevant to the argument.

So far we have defined (for example) f = O(l)', but not ‘O( 1)’ in
isolation; and it is convenient to make our notations more elastic, We

T f|denotes, as usually in analysis, the modulus or absolute value off.
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agree that ‘O(¢)’ denotes an unspecified f such that f = O(¢). We can
then write, for example,

0(1)+0(1) = O(1) = o(5)
when x — 00, meaning by this ‘if f = O(1)andg = O(l)thenf+g= O(1)
and a fortiort f+¢g = o(x). Or again we may write

élom = Om),

meaning by this that the sum of n terms, each numerically less than a
constant, is numerically less than a constant multiple of n.

It is to be observed that the relation ‘=", asserted between 0 or ¢
symbols, is not usually symmetrical. Thus o(1) = O(1) is always true;
but 0( 1) == o(1) is usually false. We may also observe that f ~ ¢ is
equivalent to f = ¢-+o(4) or to

[ = ${1+o(1)}.
In these circumstances we say that f and ¢ are asymptotically equivalent,
or that f is asymptotic to ¢.

There is another phrase which it is convenient to define here. Suppose
that P is a possible property of a positive integer, and P(x) the number
of numbers less than x which possess the property P. If

P (x) ~ T,
when x -» oo, i.e. if the number of numbers less than x which do not
possess the property is o(x), then we say that almost all numbers possess

the property. Thus we shall seet that n(x) = o(x), so that almost all
numbers are composite.

1.7. The logarithmic function. The theory of the distribution
of primes demands a knowledge of the properties of the logarithmic
function logx. We take the ordinary analytic theory of logarithms and
exponentials for granted, but it is important to lay stress on one
property of log .1

. x‘n-i-l
Since et = 14ax+.. + +(n+l) + .
~neT > 7 —> 00
]

when x — c0. Hence ¢ tends to infinity more rapidly than any power
of x. It follows that logx, the inverse function, tends to ¢nfinity more

t This follows at once from Theorem 7.

{ log z is, of course, the ‘Napierian’ logarithm of z, to base ¢, ‘Common’ logarithms
have no mathematical interest.
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slowly than any positive power of x; logx — oo, but

logx

(1.7.1) 282 50,
20

or log x = o(z?3), for every positive §. Similarly, loglog x tends to infinity
more slowly than any power of logx.

We may give a numerical illustration of the slowness of the growth
or logx. If x = 10° = 1,000,000,000 then

logx = 20:72... .

Since e? = 20-08..., loglogx is a little greater than 3, and logloglogx a
little greater than 1. If x = 101990 Jogloglogx is a little greater than 2.
In spite of this, the ‘order of infinity’ of logloglogx has been made to
play a part in the theory of primes.

The function X

log x

is particularly important in the theory of primes. It tends to infinity
more slowly than x but, in virtue of (1.7.1), more rapidly than -8,
i.e. than any power of x lower than the first; and it is the simplest
function which has this property.

1.8. Statement of the prime number theorem. After this preface
we can state the theorem which answers question (4) of § 1.5.

TeRRM 6 (THE PRME NMBER THEGREM .  The number of primes
not exceeding x is asymptotic to x/loga:
log x
This theorem is the central theorem in the theory of the distribution
of primes. We shall give a proof in Ch. XXII. This proof is not easy
but, in the same chapter, we shall give a much simpler proof of the
weaker

TeoRem 7 (Toesvoer s mHEGREM) .  The order of magnitude of

?T(x) is x/logx: z

n(x) xm.

It is interesting to compare Theorem 6 with the evidence of the tables.
The values of n(x) for x = 103, x = 108, and x = 10° are
168, 78,498, 50,847,478;

and the values of z/logz, to the nearest integer, are
145, 72,382, 48,254,942,
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The ratios are 1-159..> 108 . > 1-053...;

and show an approximation, though not a very rapid one, to 1. The
excess of the actual over the approximate values can be accounted for
by the general theory.

X
I y= logx
then log y = log x-loglog X,
and loglog x = o(log X),
so that logy ~ loge, x = ylogx ~ ylogy.

The function inverse to z/logx is therefore asymptotic to xlogx.
From this remark we infer that Theorem 6 is equivalent to

THEOREM  8: P, ~ nlogn.
Similarly, Theorem 7 is equivalent to
THEOREM  9: P = nlogn.

The 664,999th prime is 10,006,721, the reader shoulcl compare these
figures with Theorem 8.

We arrange what we have to say about primes and their distribution
in three chapters. This introcluctory chapter contains little but defini-
tions and preliminary explanations; we have proved nothing except the
easy, though important, Theorem 1. In Ch. Il we prove rather more :
in particular, Euclid’s theorems 3 and 4. The first of these carries
with it (as we saw in §1.3) the ‘fundamental theorem’ Theorem 2, on
which almost all our later work depends; and we give two proofs in
§§ 2.10-2.11. We prove Theorem 4 in §§ 2.1, 2.4, and 2.6, using several
methocls, some of which enable us to develop the theorem a little further.
Later, in Ch. XXIl, we return to the theory of the distribution of primes,
and clevelop it as far as is possible by elementary methods, proving,
amongst other results, Theorem 7 and finally Theorem 6.

NOTES ON CHAPTER 1

§ 1.3. Theorem 3 is Eueclid vii. 30. Theorem 2 does not seem to have been
stated explicitly before Gauss (D.4.,§ 16). It was, of course, familiar to earlier
mathematicians; but Gauss was the first to develop arithmetic as a systematic
science. See also § 12.5.

§ 1.4. The best table of primes is D. N. Lehmer’s List OF prime numbers Jrom 1
to 10,006,721 [Carnegie Institution, Washington, 165 (1914}]. The same author’s
Factor table for the first ten millions [Carnegie Institution, Washington, 105 (1909)]
gives tho smallest factor of all numbers up to 10,017,000 not divisible by 2, 3, 5,
or 7. See also Liste des nombres premiers du onzieme million-(ed. Beeger, Amster-
dam, 1951). Information about earlier tables will be found in the introductions
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to Lehmer's two volumes, and in Dickson’s History, i, ch. xiii. There are
manuscript tables by Kulik in the possession of the Academy of Sciences of Vienna
which extend up to 100,000,000, but which are, according to Lehmer, not accurate
enough for publication. Our numbers of primes are less by 1 than Lehmer’s
because he counts 1 as a prime. Mapes [Math. Computation 17 (1963), 184-5] gives
a table of g(z) for x any multiple of 10 million up to 1,000 million.

A list of tables of primes with descriptive notes is given in D. H. Lehmer’s
Guide to tables in the theory of numbers (Washington, 1941).

Theorem 4 is Euclid ix. 20.

For Theorem 5 see Lucas, Théorie des nombres, i (1891), 359-61.

Kraitchik [Sphine, 6 (1936), 166 and 8 (1938), 86] lists all primes betwetn
1012—10% and 1012 104, These lists contain 36 prime pairs (p,p + 2), of which the

last is 1,000,000,009,649,  1,000,000,009,651.
This seems to be the largest pair known.

In § 22.20 we give a simple argument leading to a conjectural formula for the
number of pairs (p, p + 2) below z. This agrees well with the known facts. The
method can be used to find many other conjectural theorems concerning pairs,
triplets, and larger blocks of primes.

§ 1.5. Our list of questions is modified from that given by Carmichael, Theory
oj numbers, 29.

§ 1.7. Littlewood's proof that w(x) is sometimes greater than the ‘logarithm
integral’ lix depends upon the largeness of logloglogz for large x. See Ingham,
ch. v, or Landau, Vorlesungen, ii. 123-56.

§ 1.8. Theorem 7 was proved by Tchebychef about 1850, and Theorem 6 by
Hadamard and de la Vallée Poussin in 1896. See Ingham, 4-5; Landau, Hand-
buch, 3-55; and Ch. XXII, especially the note to §§ 22.14-16.
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2.1. First proof of Euclid’s second theorem. Euclid’s own proof
of Theorem 4 was as follows.

Let 2, 3,5 ,..., p be the aggregate of primes up to p, and let
(2.1.1) q =2.3.5.p+1.
Then g is not divisible by any of the numbers 2, 3, 5,..., p. It is there-
fore either prime, or divisible by a prime between p and ¢. In either
case there is a prime greater than p, which proves the theorem.

The theorem is equivalent to

(2.1.2) n(x) = oo.

2.2. Further deductions from Euclid’s argument. If p is the
nth prime p,, and ¢ is defined as in (2.1.1), it is plain that
¢ <pptl
for n > 1,7 and so that Ppyy <Patl.
This inequality enables us to assign an upper limit to the rate of in-

crease of p,, and a lower limit to that of =(x).
We can, however, obtain better limits as follows. Suppose that

(2.2.1) P < 2%
for n = 1,2,.., N. Then Euclid’s argument shows that
(2.2.2) Pyi1 < PPy Py+1 < 224420 ] < 2297,
Since (2.2.1) is true for # = 1, it is true for all n.
Suppose now that n > 4 and
e < L et
Thent er-1 > an A
and so w(x) = 7(e ") = #(2¥) >=n,
by (2.2.1). Since loglogx < n, we deduce that
X(X) = loglogx

3

for x > ¢¢'; and it is plain that the inequality holds also for 2 < x < ¢,
We have therefore proved
THEOREM 10: m(z) > loglogx (x > 2).
We have thus gone beyond Theorem 4 and found a lower limit for
1 There is equality when

n =1 p = 2; g =23
I This is not true for n = 3.
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the order of magnitude of #(x). The limit is of course an absurdly weak
one, since for z = 10° it gives =(x) > 3, and the actual value of =(x)
is over 50 million.

2.3. Primes in certain arithmetical progressions. -Euclid’s
argument may be developed in other directions.

THEOREM 11. There are infinitely many primes of the form 4n--3.

Define ¢ by gqg= 2%3.5.p—1,
instead of by (2.1 .1). Then q is of the form 4»n+43, and is not divisible
by any of the primes up to p. It cannot be a product of primes 4n-1
only, since the product of two numbers of this form is of the same form;
and therefore it is divisible by a prime 4n- 3, greater than p.

Theorem 12, There are infinittly many primes of the form 6n-45.
Thé proof is similar. We define q by
q=2.3.5.p—1,
and observe that any prime number, except 2 or 3, is 6n--1or 6n+5,
and that the product of two numbers 6n-1is of the same form.

The progression 4n--1is more difficult. We must assume the truth
of a theorem which we shall prove later (§ 20.3).

THeoremMm 13. If aand b have no common factor, then any odd prime
divisor of a2-+b2 is of the form 4n--1.

If we take this for granted, we can prove that there are infinitely
many primes 4n-+ 1 In fact we can prove

THeoREM 14. There are infinitely many primes of the form 8n 5.

We take q = 32.52. 72...p2 22,
a sum of two squares which have no common factor. The square of an
odd number 2m-- 1 is dmm+-1)+1

and is 8xn- 1, so that q is 8n4-5. Observing that, by Theorem 13, any
prime factor of q is 4n4 1, and so 8n 1 or 8z} 5, and that the product
of two numbers 8n--1is of the same form, we can complete the proof
as before.

All these theorems are particular cases of a famous theorem of
Dirichlet.

THEOREM 15* (DIRICHLET'S THEOREM).T If a is positive and a and b
have no common divisor except 1, then there are ¢nfinitely many primes of
the form an-+b.

t AN asterisk attached to the number of & theorem indicates that it jg not proved
anywhere in the book.
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The proof of this theorem is too difficult for insertion in this book.
There are simpler proofs when bis 1 or — 1.

2.4. Second proof of Euclid’s theorem. Our second proof of

Theorem 4, which is due to Pélya, depends upon a property of what
are called ‘Fermat’'s numbers’.

Fermat's numbers are defined by
F, = 2741,
so that F, =5 F, = 17, F, = 257, F, = 65537.
They are of great interest in many ways: for example, it was proved by
Gausst that, if F, is a prime p, then a regular polygon of p sides can

be inscribed in a circle by Euclidean methods.
The property of the Fermat numbers which is relevant here is
Treorem 16. NO two Fermat numbers have @ common divisor Oreater
than 1.

For suppose that F, and F, ,;, where k > 0, are two Fermat numbers,

and that m!|F,, m|F, .

If x = 22, we have
Foy—2 2%—1_ ¥

— = o N I
F, 2211 x+1
and so F, F, , ,—2 Hence
m F e m|F, —2;

and therefore m 2. Since F,, is odd, m = 1, which proves the theorem.
It follows that each of the numbers F,, F,,..., F, is divisible by an odd

“r n

prime which does not divide any of the others; and therefore that there
are at least n odd primes not exceeding F,. This proves Euclid’s

heorem. Al n

theore o) P K Fy= 2041,

and it is plain that this inequality, which is a little stronger than (2.2.1),
leads to a proof of Theorem 10.

2.5. Fermat’s and Mersenne’s numbers. The first four Fermat

numbers are prime, and Fermat conjectured that all were prime. Euler,
however, found in 1732 that

F, = 2211 = 641.6700417
is composite. For 641 = 204151 = 592717

t Soe § 5.8.
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and <o
2382 = 16.2% = (641—5%)2%8 = 641m—(5.27)*
= 641m—(641—1)* = 641n—1,
where m and 5 are integers.
In 1880 Landry proved that
F6 = 22°+ 1 = 274177.67280421310721.

More recent writers have proved that F, is composite for
7 < n<16,n =18, 19, 23, 36, 38, 39, 55, 63, 73

and many larger values of n. Morehead and Western proved F; and Fg
composite without determining a factor. No factor is known for £, or
for F,, but in g]l the other cases proved to be composite a factor is known.

No prime F, has been found beyond F,, so that Fermat’s conjecture
has not proved a very happy one. It is 'perhaps more probable that the
number of primes F,, is finite.f If this is so, then the number of primes
2741 is finite, since it is easy to prove

Theorem 17. Ifa = 2 and g+ 1 is prime, then a is gzen and N = 2m,

For if a is odd then a"-1 is even; and if » has an odd factor k and
N = kI, then a” 4 1 is divisible by
a¥41
a'+1
It is interesting to compare the fate of Fermat's conjecture with that
of another famous conjecture, concerning primes of the form 27—1,
We begin with another trivial theorem of much the same type as
Theorem 17.

THEOREM 18. If n > 1 and a®— 1 is prime, then a = 2 and n is prime.

= a¥*-V_gk-204 1],

For if ¢ > 2, then a-l [@*»—1; and if a=2 and % = kI, then
2k—1 o2n—1.

The problem of the primality of ¢®—1 is thus reduced to that of
the primality of 2¢— 1. It was asserted by Mersenne in 1644 that

t This is what is suggested by considerations of probability. Assuming Theorem 7,
one might argue roughly as follows. The probability that a number p is prime is gt
most A

logn’
and therefore the total expectation of Fermat primes is at most
1
42 {log<2="+ T
This argument (apart from its general lack of precision) assumes that there are no
special reasons Why a Fermat number ahould be likely to be prime, while Theorems 16
and 17 suggest that there are some.

}<AZ2‘"<A.
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M, = 2v— 1 is prime for
p=23,57, 13, 17, 19, 31, 67, 127, 257,

and composite for the other 44 values of p less than 257. The first
mistake in Mersenne’s statement was found about 1886,1 when Pervusin
and Seelhoff discovered that M, is prime. Subsequently four further
mistakes were found in Mersenne’s statement and it need no longer be
taken seriously. In 1876 Lucas found a method for testing whether M,
is prime and used it to prove M,,, prime. This remained the largest
known prime until 1951, when, using different methods, Ferrier found
a larger prime (using only a desk calculating machine) and Miller and
Wheeler (using the EDSAC 1 electronic computer at Cambridge) found
several large primes, of which the largest was

180M3,; +1,
which is larger than Ferrier ’s. But Lucas’s test is particularly suitable for
use on a binary digital computer and it has been applied by a succession
of investigators (Lehmer and Robinson using the SWAC and Hurwitz
and Selfridge using the IBM 7090, Riesel using the Swedish BESK,
and Gillies using the ILLIAC I1). As a result it is now known that
M, is prime for
p=223057 13, 17, 19, 31, 61, 89, 107,
127, 521, 607, 1279, 2203, 2281, 3217,
4253, 4423, 9689, 9941, 11213, 1‘4%7/ 20104

and composite for gll other p < 12000. The largest known pr/ime is thus
M;1013, @ Nnumber of 3375 digits.

We describe Lucas’s test in § 15.5 and give the test used by Miller
and Wheeler in Theorem 10 1.

The problem of Mersenne’'s numbers is connected with that of ‘per-
fect’ numbers, which we shall consider in § 16.8.

We return to this subject in § 6.15 and § 15.5.

2.6. Third proof of Euclid’s theorem. Suppose that 2, 3,..., p;
are the first j primes and let N(x) be the number of n not exceeding x
which are not divisible by any prime p > p,. If wc express such an n

in the form n = nim,
where m is ‘quadratfrei’, ie. is not divisible by the square of any prime,
we have m = 21;1 3[)2“ ‘p?f,

with every b either 0 or 1. There are just 27 possible choices of thc

exponents and so not more than 27 different values of m. Again,

n, < ¥n < vz and so there are not more than vz different values of n,.
1 Euler stated in 1732 that M, and M,, are prime, but this was a mistake.
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Hence
(2.6.1) N(x) < 2z,
If Theorem 4 is false, so that the number of primes is finite, let the
primes be 2, 3,...,p;. In this case N(x) = x for every x and so
x < 2N, x L 2%,
which is false for x > 2%+ 1.
We can use this argument to prove two further results.

THEOREM 19. The series
1 1 1 1 1 1
(2.6.2) ZF—)“— tgtgtystgte
is divergent.

If the series is convergent, we can choosej so that the remainder after
j terms is less than 4, i.e.

1 1
— ot <3
p9+1 p9+2

The number of n < x which are divisible by p is at most x/p Hence
X-N(x), the number of n < x divisible by one or more of p;. ., D;40:
is not more than

i+i+... < 3.
Piv1 Pjt 2
Hence, by (2.6.1),
1z < N(X) < 20We,  x < 24+,
which is false for x > 22/+2, Hence the series diverges.
logx
2log
We take j = m(z), so that p,; > x and N(x) = x. We have
x = N(x) < 27@Wg, . 270) >
and the first part of Theorem 20 follows on taking logarithms. If we
put 2 = p,, SO that =(z) = n, the second part is immediate.
By Theorem 20, #(10%) > 15; a number, of course, still ridiculously
below the mark.

THEOREM 20: =(x) >

x 21 p<d

2.7. Further results on formulae for primes. We return for
a moment to the questions raised in § 1.5. We may ask for ‘a formula
for primes’ in various senses.

(i) We may ask for a simple function f(n) which assumes all prime
values and only prime talues, i.e. which takes successively the values
Py Psy-» When n takes the values 1, 2,... . This is the question which we
discussed in § 1.5.

5591 C
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(i) We may ask for a function which assumes prime values only.
Fermat’s conjecture, had it been right, would have supplied an answer
to this question.? As it is, no satisfactory answer is known.

(ilf) We may moderate our demands and ask merely for a function
which assumes un enfinity of prime values. It follows from Euclid's
theorem that j'(n) = n is such a function, and less trivial answers are
given by Theorems 11-15.

Apart from trivial solutions, Dirichlet's Theorem 15 is the only
solution known. It has never been proved that »?{-1, or any other
quadratic form in n, will represent an infinity of primes, and g]] such
problems seem to be extremely difficult.

There are some simple negative theorems which contain a very partial
reply to question (ii).

Tueorem 21. No polynomial f (n) with integral coefficients, not a con-
stant, can be prime for all n, or for all sufficiently large n.

We may assume that the leading coefficient in f (n) is positive, so that
f(n) >oc when n—co,and f(n) > 1 for n > N, say. If x > N and
f @)= apz*4-... =y > 1,

then flry+a) = aglry+x)F+...
is divisible by y for every integral r; and f (ry+x) tends to infiniiy
with r. Hence there are infinitely many composite values off(n).

There are quadratic forms which assume prime values for consider-
able sequences of values of n. Thus n2—n--41 is prime for 0 < n 40,

and n2—T9n-11601 = (n—40)21 (n—40)4-41
for 0 < n < 79.
A more general theorem, which we shall prove in § 6.4, is
THeorem 22. If  f(n) = P(n, 2", 3" ,.., k")
18 a polynomial in its arguments, with integral coefficients, and f(n) - oo
when n -» co,fthen f (n) ¢s compositefor an infinity of values of n.

t It had been suggested that Fermat’s sequence should be replaced by
241, 2+l 2yl 2fp1
The first four numbers are prime, but Fy,, the fifth member of this sequence, is now
known to be composite. Another suggestion wag that the sequence sz where p is
confined to the Mersenne primes, would contain only primes. The first five Mersenne
primes are
M, =3, M, =17, M, = 31, M, = 127, M,, = 8191
and the sequence proposed would be
M, M;, M, M, Mgy,

The first four are prime but M,,,, is composite.

+ Some care is required in the statement of the theorem, to gvoid such an f(n) as
213% g4 5, which is plainly prime for all n,
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2.8. Unsolved problems concerning primes. In § 1.4 we stated
two conjectural theorems of which no proof is known, although empirical
evidence makes their truth seem highly probable. There are many other
conjectural theorems of the same kind.

There are infinitely many primes n*4- 1. More generally, if a b, c are
integers without a common divisor, a t¢s positive, @+b and ¢ are not both
even, and b2—4ac is not a perfect square, then there are infinitely many
primes an?-bn-c.

We have already referred to the form »2+1in § 2.7 (iii). If a, b, ¢
have a common divisor, there can obviously be at most one prime of
the form required. If a+b and ¢ are both even, then N = an?-+bn-+tc
is always even. If b2—4ac = k2, then

4aN = (2an-+b)2—k2
Hence, if N is prime, either 2an+b—+% or 2an--b—Fk divides 40, and this.

can be true for at most a finite number of values of n. The limitations
stated in the conjecture are therefore essential.

There is always a prime between 22 and (n+ 1)2
If n >4 is even, then n is the sum of two odd primes.

This is ‘Goldbach’s theorem’.

If n>9 is odd, then n is the sum of three odd primes.
Any n from some point onwards is a square or the sum of a prime and
a square.

This is not true of all n; thus 34 and 58 are exceptions.
A more dubious conjecture, to which we referred in § 2.5, is

The number of Fermat primes F, is finite. .

2.9. Moduli of integers. We now give the proof of Theorems 3
and 2 which we postponed from § 1.3. Another proof will be given in
§ 2.11 and a third in § 12.4. Throughout this section integer means
rational integer, positive or negative.

The proof depends upon the notion of a ‘modulus’ of numbers. A
modulus is a system S of numbers such that the sum and difference of
any two members of S are themselaes members of S: ie.

(29.1) meS.neS - (min)eS.

The numbers of a modulus need not necessarily be integers or even
rational; they may be complex numbers, or quaternions: but here we
are concerned only with moduli of integers.
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The single number 0 forms a modulus (the null modulus).
It follows from the definition of S that

aeS—->0=a—aecS .2 =atacs.

Repeating the argument, we see that na £ S for any integral n (positive
or negative). More generally

j2.9.2) aeS.beS—>xatybe S

for any integral X, y. On the other hand, it is obvious that, if a and b
are given, the aggregate of values of xa+yb forms a modulus.

It is plain that any modulus S, except the null modulus, contains
some positive numbers. Suppose that d is the smallest positive number
of S. If n is any positive number of S, then n-xd € S for all z. If ¢ is
the remainder when n is divided by d and

n = zd-+tec,
then c € S and 0 < ¢ < d. Since d is the smallest positive number of
S, ¢ =0 and n = zd. Hence

THEREM 23.  Any modulus, other than the quff modulus, is the aggregate
of integral multiples of a positive number d.

We define the highest common divisor d of two integers a and b, not
both zero, as the largest positive integer which divides both a and &;
and write

a = (a,
Thus (0, a) = [a|. We may define the highest common divisor
@b, c,..,Kk

of any set of positive integers a, b, c,..., k in the same way.
The aggregate of numbers of the form

xa+yb,
for integral X, y, is a modulus which, by Theorem 23, is the aggregatc

of multiples zc of a certain positive c. Since ¢ divides every number of
S, it divides a and b, and therefore

¢ < d,

On the other hand, dla.d|b—>d]|xat+yb,

so that d divides every number of S, and in particular c. It follows that
¢.=d

and that S is the aggregate of multiples of d.
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THEOREM 24. The modulus za+yb is the aggregate of multiples of
d = {(a,b).

It is plain that we have proved incidentally

THEOREM 25. The equation

ar+by = n
is soluble in integers x, y If and only if d n. In particular,
axtby = d

is  soluble.
THEOREM 26. Any common divisor of a and b divides d.

2.10. Proof of the fundamental theorem of arithmetic. We
are now in a position to prove Euclid’'s theorem 3, and so Theorem 2.
Suppose that p is prime and p ab. Ifp [ athen (a, p) =1, and there-
fore, by Theorem 24, there are an x and a y for which xaf yp = 1 or
xab+ypb = b.
Butp ab and p | pb, and therefore p b.
Practically the same argument proves

THEOREM 27: (&, b)=d . ¢ > 0— (uc, bc) = dc.
For there are an x and a y for which za--yb = d or

zac+ybc = dc.
Hence (ac, bc) dc. On the other hand, d a — dc acand d b — dc bc;
and therefore, by Theorem 26, dc | (ac, bc). Hence (ac, bc) = dc.

2.11. Another proof of the fundamental theorem. We call
numbers which ¢gn be factorized into primes in more than one way
abnormal. Let n be the least abnormal number. The same prime P
cannot appear in two different factorizations of n, for, if it did, n/P
would be abnormal and »/P < n. We have then

"= P1P2Pss = ©1as
where the p and q are primes, no pisaqandno g isap.

We may take p; to be the least p; since n is composite, P < n.
Similarly, if ¢, is the least g, we have ¢} < n and, since p; # ¢, it
follows that p,¢; < n. Hence, if N = n—p,q;, we have 0 < N <
and N is not abnormal. Now p; nand so p;, N; similarly ¢, ' N.
Hence p, and ¢, both appear in the unique factorization of N and
p,q; [N. From this it follows that p,q, n and hence that ¢, 7/p;-
But n/p, is less than n and so has the unique prime factorization p,ps.. . .
Since ¢, is not a p, this is impossible. Hence there cannot be any ab-
normal numbers and this is the fundamental theorem.
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NOTES ON CHAPTER I

§2.2. Mr. Ingham tells us that the argument used here is due to Bohr and
Littlewood: see Ingham, 2.

§ 2.3. For Theorems 11, 12, and 14, see Lucas, Théorie des nombres, i (1891},
353-4; and for Theorem 15 see Landau, Handbuch, 422-46, and Vorlesungen, 1.
79-96.

§ 2.4. See Pélya and Szegé, ii. 133, 342.

$2.5. See Dickson, History, i, chs. i, xv, xvi, Rouse Ball (Coxeter), 6569,
and, for numerical results, Kraitchik, Théorie des nombres, i (Paris, 1922), 22,
218, D. H. Lehmer, Bulletin Amer. Math. Soc. 38 (1932), 3834 and, for the recent
large primes and factors of Fermat numbers recently obtained by modern high.
speed computing, Miller and Wheeler, Nature, 168 (1951), 838, Robinson, Proc,
Amer. Math. Soc. 5(1954), 842-6, and Math. tables, 11 (1957), 21-22, Riesel, Math.
tables, 12 (1958), 60, Hurwita and Selfridge, Amer. Math. Soc. Notices, 8 (1961). 601.
See D. H. Gillies [Math. Computation 18 (1964), 93-5] for the three largest Mersenne
primes and for references.

Ferrier's prime is (21484 1)/17 and is the largest prime found without the use
of electronic computing (and may well remain so).

Much information gbout large numbers known to be prime is to be found in
Sphinx (Brussels, 1931-9). A list in vol. 6 (1936), 166, gives 8ll those (336 in
number) between 10!2— 10* and 102, and gne in vol. 8 (1938), 86, those between
1012 and 104 104, In addition to this, Kraitchik, in vol. 3 (1933), 99101, gives
a list of 161 primes ranging from 1,018,412,127,823 to 2127 1, mostly factors of
numbers 2% 4 1. This list supersedes an earlier list in Mathemutica (Cluj), 7 (1933).
93-94; and Kraitchik himself and other writers add substantially to it in later-
numbers. See also Rouse Ball (Coxeter), 62-65.

Our proof that 641 F; is taken from Kraitchik, Théorie des nombres, ii (Paris,
1926), 221.

§ 2.6. See Erd&s, Mathematica, B, 7 (1938), I-2. Theorem 19 was proved by
Euler in 1737.

§ 2.7. Theorem 21 is due to Goldbach (1752) and Theorem 22 to Morgan Ward,
Journal London Math. Soc. 5 (1930), 106-7.

§ 2.8. ‘Goldbach’s theorem’ was enunciated by Goldbach in a letter to Euler in
1742. 1t is still unproved, but Vinogradov proved in 1937 that all odd numbers from
a certain point onwards are sums of three odd primes. van der Corput and Ester-
mann used his method to prove that ‘almost all’ even numbers are sums of two
primes. See Estermann, Introduction, for Vinogradov’s proof, and James, Bulletin
Amer. Math. Soc. 55 (1949), 24660, for an agcount of recent work in this field.

Mr. A. K. Austin and Professor P. T. Bateman each drew my attention to the
falsehood of one of the conjectures in this section in the third edition.

§§ 2.9-10. The argument follows the lines of Hecke, ch. i. The definition of
a modulus is the natural one, but is redundant. It is sufficient to assume that

For then meS.neS +m—nelf.
0=n—meS, —n=0—-neS m+tn = m-(-n) € S.
§ 2.11. F. A. Lindemann, Quart. J. of Math. (Oxford), 4 (1933), 319-20, and
Davenport, Higher arithmetic, 20. For somewhat similar proofs, see Zermelo,

Gottinger Nachrichten (new series), i (1934), 43-44, and Hasse, Journal jur Math.
159 (1928), 3-6.
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FAREY SERIES AND A THEOREM OF MINKOWSKI

3.1. The definition and simplest properties of a Farey series.
In this chapter we shall be concerned primarily with certain properties
of the ‘positive rationals’ or ‘vulgar fractions’, such as } or-i%. Such
a fraction may be regarded as a relation between two positive integers,
and the theorems which we prove embody properties of the positive
integers.

The Farey series §, of order n is the ascending series of irreducible
fractions between 0 and 1 whose denominators do not exceed n. Thus
h/k belongs to §,, if

(3.1.1) 0<hLkELn, Mk)=1;
the numbers 0 and 1 are included in the forms § and {. For example,
Fs is 091112

L e LLLLET
The characteristic properties of Farey series are expressed by the
following theorems.
THeOREM  28. If h/k and k'[k’ are two successive terms of §,, then
(3.1.2) kh’-hk’ = 1.
THeoREM 29. If AJk, B"/k”, and k’[k’ are three successive terms of ¥y,
then

613 B hth

Kkl

We shall prove that the two theorems are equivalent in the next
section, and then give three different proofs of both of them, in §§ 3.3,
3.4, and 3.7 respectively. We conclude this section by proving two still
simpler properties of &,.

Treorem 30. If hjk and h'[k" are two successive terms of ., then

(3.1.4) kfk’ > n.
. h+h'
‘ !
The ‘mediant k+lc’t

of h/k and &'/’ falls in the interval

h B
kE

Hence, unless (3.1.4) is true, there is another term of §, between h/k

and &'k,
t Or the reduced form of this fraction.
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THeorem 31. If n > 1, then no two successive terms of §, have the
same denominator.

If k> 1 and A'/k succeeds k/k in §,, then h4-1 < h’ < k. But then

R b _htl W
F<—i<F SE

and h/(k— 1)t cornes between h/k and &'/k in §,, a contradiction,

3.2. The equivalence of the two characteristic properties.
We now prove that each of Theorems 28 and 29 implies the other.

(1) Theorem 28 implies Theorem 29. If we assume Theorem 28, and
solve the equations
(321) kR'—RE" = 1, 'R —WE =1
for A" and k", we obtain

h”(kh’-hk’) = h+h’, k"(kR'—RhE'y = k-f-K
and so (3.1.3).

(2) Theorem 29 implies Theorem 28. We assume that Theorem 29 is
true generally and that Theorem 28 is true for §,_,, and deduce that
Theorem 28 is true for §,. It is plainly sufficient to prove that the
equations (3.2.1) are satisfied when A"/k” belongs to §, but not to
¥n_y, SO that k” = n. In this case, after Theorem 31, both k and ¥’
are less than &”, and h/k and &'/k’ are consecutive terms in §,_;.

Since (3.1.3) is true ex hypothesi, and A”/k” is irreducible, we have

h+h" = Ah”, k+4-k = Ak,
where Ais an integer. Since k and k’ are both less than k”, A must be 1.

Hence h” _=h+h’, k” - k-[—k’,
kh"—hE" = k' —hk =1;
and similarly R —b'E = 1.

3.3. First proof of Theorems 28 and 29. Our first proof is a
natural development of the ideas used in § 3.2.

The theorems are true for n = 1; we assume them true for §,,_; and
prove them true for &,.

Suppose that k/k and A’/k’ are consecutive in §,_; but separated by
R in F T Let
(3.3.1) kh”-hk” = » > 0, KW' —h'E = s > 0.

t Or the reduced form of this fraction.

1 After Theorem 31, A"fk” is the only term of {, between A/k and #'/k"; but we do
not assume this in the proof.
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Solving these equations for h” and k”, and remembering that
kb —RE' = 1

we obtain
(33.2) B = shtrh', k" = sk+rk'.
Here {r,8) = 1, since (h”, k”) = 1.

Consider now the set S of all fractions
H_ ph4-AR
K ™ uk+Ak
in which X and p are positive integers and (A,p) = 1. Thus A"/k"
belongs to S. Every fraction of S lies between A/k and &'/k’, and is in
its lowest terms, since any common divisor of H and K would divide

F(ph -+ M) —h(pk+A) = A
and R (uk+AE)—K (uh+-2R") = p.
Hence every fraction of S appears sooner or lafer in some &,; and plainly
the first to make its appearance is that for which K is least, i.e. that
for which A = 1 and p = 1. This fraction must be A"/k”, and so
(3.3.4) h” = h+d', k" = k4K
This proves Theorem 29. It is to be observecl that the equations

(3.3.4) are not generally true for three successive fractions of {,, but
are (as we have shown) true when the central fraction has made its

first appearance in {,.

(33.3)

3.4. Second proof of the theorems. This proof is not inductive,
and gives a rule for the construction of the term which succeeds A/k

in g,
Since (h, k) = 1, the equation
(3.4.1) kx—hy = 1

is soluble in integers (Theorem 25). If z,,y,, is a solution then

2o+ rh, Yotk
is also a solution for any positive or negative integral . We can choose

7 SO that n-k < yydbrk < n
There is therefore a solution (x, y) of (3.4.1) such that
(34.2) (x,y) = 1, 0<n—k<y<n

Since z/y is in its lowest terms, and y < n, z/y is a fraction of §,.
Also z_ + 1 h
k

)
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so that z/y cornes later in &, than A/k. If it is not &//k’, it cornes later

than »'/k', and x_h _kxhy 1

y k= ""szy_'-> k_'y;
while E hk k’:(k—hk > klk"
= klrcl’y = Ij—y’

by (3.4.2). This is a contradiction, and therefore z/y must be 4'/k’, and
kh'—hk' = 1.

Thus, to find the siccessor of 5 in {3, we begin by finding some solution (zg, v.)
of 9x—4y = 1, e.g. 2 = 1, y, = 2. We then choose r so that 2+ 9r lies between
13-9 = 4 and 13. This gives r =1, x = 1—}-47 =5y = 249 = 11, and the
fraction required is £.

3.5. The integral lattice. Our third and last proof depends on
simple but important geometrical ideas.

Suppose that we are given an origin 0 in the plane and two points
P, Q not collinear with 0. We complete the parallelogram OPQR,
produce its aides indefinitely, and draw the two systems of equidistant
parallels of which OP, QR and OQ, PR are consecutive pairs, thus
dividing the plane into an infinity of equal parallelograms. Such a
figure is called a lattice (Gitter).

A lattice is a figure of lines. It defines a figure of points, viz. the
system of points of intersection of the lines, or lattice points. Such
a systtem we call a point-Zattice.

Two different lattices may determine the same point-lattice; thus
in Fig. 1 the lattices based on OP, OQ and on OP, OR determine the
same system of points. Two lattices which determine the same point-
lattice are said to be equivalent.

It is plain that any lattice point of a lattice might be regarded as the
origin 0, and that the properties of the lattice are independent of the
choice of origin and symmetrical abhout any origin.

One type of lattice is particularly important here. This is the lattice
which is formed (when the rectangular coordinate axes are given) by
parallels to the axes at unit distances, .dividing the plane into unit
squares. We call this the fundamental lattice L, and the point-lattice
which it determines, viz. the system of points (x, y) with integral coordi-
nates, the fumdamental point-luttice A.
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Any point-lattice may be regarded as a system of numbers or vectors,
the complex coordinates xz--ty of the
lattice points or the vectors to these
points from the origin. Such a system y
is plainly a modulus in the sense of
$2.9. If P and Q are the points (x4, ¥,)
and (z,, y,), then the coordinates of R
any point 8 of the lattice based upon /

OP and OQ are g

and Q, then the complex coordinate

of S'is 2= mztnz,

X = mx;+nx,, y = my;+ny,, /
where m and n are integers; or if 2z, and P
2, are the complex coordinates of P

3.6. Some simple properties of
the fundamental lattice. (1) We
now consider the transformation de-

fined by
(3.6.1) X = axt+by, y = cx-t+dy,
where a, b, ¢, d are given, positive Fic. 1

or negative, integers. It is plain
that any point (z,y) of A is tran.sformed into another point (z’, y’)
of A.

Solving (3.6.1) for x and y, we obtain

o —=hy’ ' —ay
062 "=wdmbe’ YT Tadsbe
If
(36.3) A = ad-bc = fl,

then any integral values of 2" and y’ give integral values of x and vy,
and every lattice point (z’,3’) corresponds to a lattice point (z,y). In
this case A is transformed into itself.

Conversely, if A is transformed into itself, every integral (X', y") must
give an integral (x, y). Taking in particular (X', y’) to be (1,0) and (0, 1),

we see that Ald, Alb, Avc¢, Ala,

and so A?  ad-bc, AZ]A,
Hence A = fl.
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We have thus proved

THEREM 32, A necessary and sufficient condition that the transforma-
tion (3.6.1) should fransform A into stself is that A=f1 .

We call such a transformation unimodular.

R R
[} -7
/’// /”//
7/ //I /
) e ,/ e T /
/ /
/ / / Q /
/ / /
/ / / /
/ 7 / s
L 7 ~7IP
,/ pall / P
/7 / /r
7, /-~
/ ] -
0 0
Fia. 2a FiG. 2b
Ch
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Vi N
/ N\
[N S 7R
\ /
\ ’
\ 'e
N7
P
FiG. 20

(2) Suppose now that P and Q are the lattice points (a,c) and (b,d)

of A.  The area of the parallelogram defined by OP and OQ is
8 = 4({ad—bc) = |ad—bcl,
the sign being chosen to make & positive. The points (z',y’) of the
lattice A’ based on OP and OQ are given by
' = xa-+tyb, y = zc+tyd,

where x and y are arbitrary integers. After Theorem 32, a necessary
and sufficient condition that A’ should be identical with A is that
o =1.

THeEOREM 33. A necessary and suffictent condition that the lattice L’
based upon OP and OQ should be equivalent to L 4s that the area of the
parallelogram defined by OP and OQ should be wunaty.
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(3) We call a point P of A visible (i.e. visible from the origin) if there
is no point of A on OP between 0 and P. In order that (X, y) should
be visible, it is necessary and sufficient that z/y should be in its lowest
terms, or (z,y) = 1.

Treorem 34. Suppose that P and Q are visible points of A, and that
3 is the area of the parallelogram J defined by OP and OQ. Then

(i) if & = 1, there is no point of A inside J;

(i) if 8 > 1, there is at least one point of A inside J, and, unless that
point is the intersection of the diagonals of J, at least two, one in each of
the triangles into which J is divided by PQ.

There is no point of A inside J if and only if the lattice L’ based on
OP and OQ is equivalent to L, i.e. if and only if § = 1. If § > 1,-there
is at least one such point S. If R is the fourth vertex of the parallelo-
gram J, and RT is parallel and equal to OS, but with the opposite sense,
then (since the properties of a lattice are symmetrical, and independent
of the particular lattice point chosen as origin) T is also a point of A,
and there are at least two points of A inside J unless T coincides with
S. This is the special case mentioned under (ii).

The different cases are illustrated. in Figs. 2 a, 2 b, 2 c.

3.7. Third proof of Theorems 28 and 29. The fractions k/k with
O<h<k<n, (h,k)=1
are the fractions of {,, and correspond to the visible points (k, h) of A
inside, or on the boundary of, the triangle defined by the lines y = 0,
y =X X =n.

If we draw a ray through O and rotate it round the origin in the
counter-clockwise direction from an initial position along the axis of x,
it will pass in turn through each point (k, h) representative of a Farey
fraction. If P and P’ are points (k, h) and (k’, h’) representing con-
secutive fractions, there is no representative point inside the triangle
OPP’ or on the join PP’, and therefore, by Theorem 34,

kW' —hE' =1

3.8. The Farey dissection of the continuum. It is often con-
venient to represent the real numbers on a circle instead of, as usual,
on a straight line, the object of the circular representation being to
eliminate integral parts. We take a circle C of unit circumference, and
an arbitrary point 0 of the circumference as the representative of O,

and represent x by the point P, whose distance from 0, measured round
the circumference in the counter-clockwise direction, is x. Plainly all
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integers are represented by the same point 0, and numbers which differ
by an integer have the game representative point.

It is sometimes useful to divide up the circumference of C in the
following manner. We take the Farey series §,, and form all the
mediants

h+-h'
I = k+k/
of successive pairs h/k, ' /k’. The first and last mediants are
041 _ 1 n—141 n

1+ 41’ n+1 — a1l
The mediants naturally do not belong themselves to &,,.

We now represent each mediant u by the point P,L. The circle is thus
divided up into arcs which we ecall Farey arcs, each bounded by two
points P# and containing one Farey point, the representative of a term
of &, Thus n 1
(ot ar)
is a Farey arc containing the one Farey point 0. The aggregate of
Farey arcs we call the Farey dissection of the circle.

In what follows we suppose that n> 1. If P, is a Farey point, and

hy/ky, hyofk, are the terms of §, which precede and follow %/k, then the
Farey arc round P, is composed of two parts, whose lengths are

b h+h 1 hthy b 1
k¥ ktk, k(ktk)  ktk, k *(ltky)
respectively. Now k+-k, < 2n, since k and k, are unequal (Theorem 31)
and neither exceeds n; and k+-k; > n, by Theorem 30. We thus obtain
THeEOREM 35. In the Farey dissection of order n, where n > 1, each
part of the arc which contains the representative of A/k has a length between
1 1
k@2n—1)"  k(n+1)'
The dissection, in fact, has a certain ‘uniformity’ which explains its
importance.
We use the Farey dissection here to prove a simple theorem concern-

ing the approximation of arbitrary real numbers by rationals, a topic
to which we shall return in Ch. XI.

THEOREM 36. If ¢ is any real number, and n a positive integer, then
there ¢ an irreducible fraction 2/k such that

3
"

1

(3.8.1) 0<k<nm, TR

<
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We may suppose that 0 < £ < 1. Then ¢ falls in an interval bounded
by two successive fractions of §,, say h/k and A'/k’, and therefore in
one of the intervals

h h+H h+h" A
Hence, after Theorem 35, either &/k or k’/k’ satisfies the conditions:
h/k if § falls in the first interval, A’/k" if it falls in the second.

3.9. A theorem of Minkowski. If P and Q are points of A, P’
and Q’ the points symmetrical to P and Q about the origin, and we add
to the parallelogram J of Theorem 34 the three parallelograms based
on OQ, OP’, on OP’, 0g’, and on OQ’, OP, e obtain a parallelogram
K whose centre is the origin and whose area 46 is four times that-of J.
If & has the value 1 (its least possible value) there are points of A on
the boundary of K, but none, except 0, inside. If § > 1, then there are
points of A, other than O, inside K, This is a very special case of a
famous theorem of Minkowski, which asserts that the same property is
possessed, not only by any parallelogram symmetrical about the origin
(whether generated by points of A or not), but by any ‘convex region’
symmetrical about the origin.

An open region R isa set of points with the properties (1) if P belongs
to R, then all points of the plane sufficiently near to P belong to R,
(2) any two points of R can be joined by a continuous curve lying
entirely in R. We may also express (1) by saying that any point of R
is an interior point of R. Thus the i:nside of a circle or a parallelogram
is an open region. The boundary C of R is the set of points which are
limit points of R but do not themselves belong to R Thus the boundary
of a circle is its circumference. A closed region E* is an open region R
together with its boundary. We consider only bounded regions.

There are two natural definitions of a convex region, which may be
shown to be equivalent. First, we may say that R (or R*) is convex
if every point of any chord of R, i.e. of any line joining two points of
R, belongs to R. Secondly, we may say that R (or R*) is convex if it
is possible, through every point P of O, to draw at least one line ! such
that the whole of R lies on one side of 1. Thus a circle and a parallelo-
gram are convex; for the circle, ! is the tangent at P, while for the
parallelogram every line [ is a side except at the vertices, where there
are an infinity of lines with the property required.

It is easy to prove the equivalence of the two definitions. Suppose first that

R is convex according to the second definition, that P and Q belong to R, and
that a point S of P@ does not. Then there is a point T of C (which may be S
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itself) on PS, and a line ] through T which leaves R entirely on one side; and,
since all points sufficiently near to P or @ belong to R, this is a contradiction.

Secondly, suppose that R is convex according to the first definition and that
P is a point of C; and consider the set L of lines joining P to points of R. If ¥}
and ¥, are points of R, and Y is a point of Y;Y,, then Y is a point of R and PY
a line of L. Hence there is an angle APB such that every line from P within
APB, and no line outside APB, belongs to L. If APB > q, then there are
points D, E of R such that DE passes through P, in which case P belongs to
R and not to C, a contradiction. Hence APB < q, If APB = m, then AB is
a line I; if APB < =, then any line through P, outside the angle, is a line 1.

It is plain that convexity is invariant for translations and for magni-
fications about, a point 0.

A convex region R has an area (definable, for example, as the upper
bound of the areas of networks of small squares whose vertices lie in R).

THEOREM 37 (MINKOWSKI'S THEOREM). Any convex region R sym-
metrical about 0, and of greg greater than 4, includes points of A other
than 0.

3.10. Proof of Minkowski’s theorem. We begin by proving. a
simple theorem whose truth is ‘intuitive’.

THEOREM 38. Suppose that R, is an open region including 0, that
Rp is the congruent amd similarly situuted region about any point P of A
and that no two of the regions R, overlap. Then the area of B, does not
exceed 1.

The theorem becomes ‘obvious’ when we consider that, if B, were
the square bounded by the lines x = 41,y = 44, then the area of
R, would be 1 and the regions Ry, with their boundaries, would cover
the plane. We may give an exact proof as follows.

Suppose that A is the areg of A,, and A the maximum distance of
a point of C,t from 0; and that we consider the (2n--1)2% regions R,
corresponding to points of A whose coordinates are not greater numeri-
cally than n. All these regions lie in the square whose sides are parallel
to the axes and at a distance n-4A from 0. Hence (since the regions
do not overlap)

@nd 172A < (2n+24),, A< (1 A_"ﬁ)g,
n+4-§
and the result follows when we make n tend to infinity.

It is to be noticed that there is no reference to symmetry or to con-
vexity in Theorem 38.

t We use C systematically for the boundary of the corresponding R.
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It is now easy to prove Minkowski’'s theorem. Minkowski himself
gave two proofs, based on the two definitions of convexity.

(1) Take the first definition, and suppose that E, is the result of
contracting R about 0 to half its linear dimensions. Then the area of
R, is greater than 1, so that two of the regions R, of Theorem 38
overlap, and there is a lattice-point P such that Ro and R, overlap.
Let Q (Fig. 3a) be a point common to B, and R,. If OQ' is equal
and parallel to PQ, and €” is the image of Q' in 0, then Q’, and there-

()

F1a. 3

fore Q”, lies in Ro; and therefore, by the definition of convexity, the
middle point of @@" lies in R,. But this point is the middle point of
OP; and therefore P lies in R.

(2) Take the second definition, and suppose that there is no lattice
point but 0 in R. Expand R* about 0 until, as R’*, it first includes
a lattice point P. Then P is a point of ¢’, and there is a line [, say [,
through P (Fig. 3 b). If R, is R’ contracted about O to half its linear
dimensions, and [, is the parallel to ! through the middle point of OP,
then I is a line I for R,. It is plainly also a line [ for By, and leaves
R, and Ep on opposite sides, so that R, and R, do not overlap.
A fortiori R, does not overlap any other Ej, and, since the area of
R, is greater than 1, this contradicts Theorem 38.

There are a number of interesting alternative proofs, of which per-
haps the simplest is one due to Mo-rdell.

If R is convex and symmetrical about 0, and P, and P, are points
of R with coordinates (z;, ¥,) and (z,, ¥,), then (—z,, —¥,), and there-
fore the point M whose coordinates are $(x,—=x,) and 4(y,—¥s,), is also
a point of R.

The lines X = 2p/t, y = 2¢/t, where ¢ is a fixed positive integer and
p and q arbitrary integers, divide up the plane into squares, of area
4/t3, whose corners are {2p/t, 2q/t). If N(t) is the number of corners in

R, and A the area of R, then pla:inly 4(-2N(t) - 4 when ¢ — c0; and
5591 D
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if A > 4 then N(t) > ¢2 for large ¢ But the pairs (p,q) give at most
¢ different pairs of remainders when p and q are divided by ¢; and
thereforc there are two points £, and B, of R, with coordinates 2p,/t,
2q,/t and 2p,/t, 2q,/t, such that p,—p, and ¢,—g, are both divisible by .
Hence the point M, which belongs to R, is a point of A.

3.11. Developments of Theorem 37. There are some further
developments of Theorem 37 which will be wanted in Ch. XXIV and
which it is natural to prove here. We begin with a general remark
which applies to all the theorems of §§ 3.6 and 3.9-10.

We have been interested primarily in the ‘fundamental’ lattice L
(or A), but we can see in various ways how its properties may be
restated as general properties of lattices. We use L or A now for any
lattice of lineg or points. If it is based upon the points 0, P, Q, as in
§ 3.5, then we ¢all the parallelogram OPRQ the fundamental parallelo-
gram of L or A.

(i) We may set up a system of oblique Cartesian coordinates with
OP, OQ as axes, and agree that P and Q are the points (1,0) and (0, 1).
The area of the fundamental parallelogram is then

8§ = OP.0Q . sinw,

where w is the angle between OP and OQ. The arguments of § 3.6,
interpreted in this system of coordinates, then prove

THEOREM 39. A necessary and sufficient condition that the transforma-
tion (3.6.1) shall transform A into itself is that A = 4- 1.

THEOREM 40. If P gnd Q are any two points of A, then a necessary
and sufficient condition that the lattice L' based upon OP and OQ should
be equivalent to L is that the area of the parallelogram defined by OP, OQ
should be equal to that of the fundamental parallelogram of A

(i) The transformation

2 = ax+Py, Yy = yx4oy
(where now «, B, vy, & are any real numbers)t transforms the fundamental
lattice of $3.5 into the lattice based upon the origin and the points
(o, ¥), (B,8). It transforms lines into lines and triangles into triangles.
If the triangle B, F, F,, where P, is the point (x;, y,), is transformed into
@, @, Q;, then the areas of the triangles are

oy 1 [
i 5 v2 1 .
Z3 vz 1|

+ The 3§ of this paragraph has no connexion with the § of (i). which reappears below.
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and
oy +Byy oy, +8y;, 1 v oy 1
+3 | awy+-By, yr, 408y, 1|= F3od—By) |z, Yy, 1
ary-Byy  yxst+dys 1 r3 Yz 1

Thus areas of triangles are multiplied by the constant factor |«5—pBy/|;
and the same is true of areas in general, since these are sums, or limits
of sums, of areas of triangles.

We can therefore generalize any property of the fundamental lattice
by an appropriate linear transformation. The generalization of Theorem
38 is

Theorem 41. Suppose that A is any lattice with origin 0, and that
R, satisfies (with respect to A) the conditions Stated in Theorem 38. Then
the area of R, does not exceed that of the fundamental parallelogram of A

It is convenient also to give a proof ab inttio which we state at length,
since we use similar ideas in our proof of the next theorem. The proof,
on the lines of (i) above, is practically the same as that in § 3.10.

The lines xr = 4mn, Y= *xn

define a parallelogram II of area 4n25, with (2n- 1)2 points P of A
inside it or on its boundary. We co:nsider the (2rn+-1)? regions Eg corre-
sponding to these points. If A is the greatest value of || or |y on Cy,
then all these regions lie inside the parallelogram II', of area 4(n+4)3%5,
bounded by the lines

x = +(n+4), Y= +(nt+d);

and (2n--1)%A < 4(n+4)%.
Hence, making n —» oo, we obtain
A L8,

We need one more theorem which concerns the iimiting case A =: §.
We suppose that R, is a parallelogram; what we prove on this hypo-
thesis will be sufficient for our purposes in Ch. XXIV.

We say that two points (x, y) and (X, y’) are equivalent with respect
to L if they have similar positions in two parallelograms of L (so that
they would coincide if one parallelogram were moved into coincidence
with the other by parallel displacement). If L is based upon OP and
0OQ, and P and Q are (x,, %,) and {z,, ¥,), then the conditions that the
points (z,y) and (z’,%") should be equivalent are that

' —x = rr-tsr, Y'—Y = 1Y1+5Y
where # and s are integers.
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Theorem 42. If R, is a parallelogram whose areg is equal to that of
the fundamental parallelogram of L, and there are no two equivalent points
inside R, then there is a point, inside R, or on its boundary, equivalent
to any given point of the plane.

We denote the closed region corresponding to Rp by R¥.

The hypothesis that R includes no pair of equivalent points is equi-
valent to the hypothesis that no two Ry overlap. The conclusion that
there is a point of R equivalent to any point of the plane is equivalent
to the conclusion that the RT, ¢over the plane. Hence what we have to
prove is that, if A =§ and the R do not overlap, then the R} cover the
plane.

Suppose the contrary. Then there is a point Q outside all R%. This
point Q lies inside or on the boundary of some parallelogram of L, and
there is a region D, in this parallelogram, and of positive area 7, outside
all Bp; and a corresponding region in every parallelogram of L. Hence
the area of all Ep, inside the parallelogram I1’ of area 4(n-+4)23, does

not exceed 45— n)(n+A+1).
It follows that (2n4-1)2 < 4(8—n)(n+A4+1)3
and therefore, making n - oo,

3 < 8_777

a contradiction which proves the theorem.

Finally, we may remark that all these theorems may be extended
to space of any number of dimensions. Thus if A is the fundamental
point-lattice in three-dimensional space, i.e. the set of points (z,y, z)
with integral coordinates, R is a convex region symmetrical about the
origin, and of volume greater than 8, then there are points of A, other
than 0, in R. In n dimensions 8 must be replaced by 27, We shall

say something about this generalization, which does not require new
ideas, in Ch. XXIV.

NOTES ON CHAPTER III

§ 3.1. The history of ‘Farey series’ is very curious. Theorems 28 and 29 seem
to have been stated and proved first by Haros in 1802; see Dickson, History,
i. 156. Farey did not publish anything on the subject until 1816, when he stated
Theorem 29 in a note in the Philosophical Magazine. He gave no proof, and it
is unlikely that he had found one, since hé seems to have been at the best an
indifferent mathematician.

Cauchy, however, saw Farey’s statement, and supplied the proof (Exercices de
mathématiques, i. 114-16). Mathematicians generally have followed Cauchy’s
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examplc in attributing thc results to Farey, and the series will no doubt continuc
to bear his name.

Farcy has a notice of twenty lines in the Dictionary of national biography, where
he is described as a geologist. As a geologist he is forgotten, and his biographer
does not mention the one thing in his life which survives.

§ 3.3. Hurwitz, Math. Annalen, 44 (1894), 417-36.

§ 3.4. Landau, Vorlesungen, i. 98-100.

§§ 3.5-7. Here we follow the lines of a lecture by Professor Pélya,.

§ 3.8. For Theorem 36 see Landau, Vorlesungen, i. 100.

§ 3.9. The reader need not pay much attention to the definitions of ‘region’,
‘boundary’, etc., given in this section if he does not wish to; he will not lose by
thinking in terms of elementary regions such as parallelograms, polygons, or
ellipses. Convex regions are simple regions involving no ‘topological’ difficultios.
That a convex region has an area was first proved by Minkowski (Geometrie der
Zahlen, Kap. 2).

§ 3.10. Minkowski's first proof will be found in Geometrie der Zahlen, 73-76,
and his second in Diophantische Approzimationen, 28-30. Mordell's proof was
given in Compositio Math. 1 (1934), 248--53. Another interesting proof is that by
Hajés, Acta Univ. Hungaricae (Szegod), 6 (1934), 224-5: this was set out in full
in the first edition of this book.
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IRRATIONAL NUMBERS

4.1. Some generalities. The theory of ‘irrational number’, as
explained in text books of analysis, falls outside the range of arith-
metic. The theory of numbers is occupied, first with integers, then
with rationals, as relations between integers, and then with irrationals,
real or complex, of special forms, such as

r4sv2, r+8J(—5),
where # and s are rational. It is not properly concerned with irrationals
as a whole or with general criteria for irrationality (though this is a
limitation which we shall not always respect).

There are, however, many problems of irrationality which may be
regarded as part of arithmetic. Theorems concerning rationals may be
restated as theorems about integers; thus the theorem

‘r8+s3 = 3 is insoluble in rationals’
may be restated in the form
‘a3d3-1-b3c3 = 3b3%d3 is insoluble in integers”
and the game is true of many theorems in which ‘irrationality’ inter-
venes. Thus

(P) ‘¥2 is irrational’
means
(@) ‘a® = 2b% is insoluble in integers’,

and then appears as a properly arithmetical theorem. We may ask
‘is ¥2 irrational ?' without trespassing beyond the proper bounds of
arithmetic, and need not ask ‘what is the meaning of +2 2" We do not
require any interpretation of the isolated symbol ¥2, since the meaning
of (P) is defined as a whole and as being the same as that of (¢).}

In this chapter we shall be occupied with the problem

‘is x rational or irrational?’,

x being a number which, like 42, e, or m, makes its appearance naturally
in analysis.

4.2. Numbers known to be irrational. The problem which we
are considering is generally difficult, and there are few different types
of numbers x for which the solution has been found. In this chapter

t In short ¥2 may be treated here ag an ‘incomplete symbol’ in the sense of Principia
Mathematica.
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we shall confine our attention to a few of the simplest cases, but it
may be convenient to begin by a rough general statement of what is
known. The statement must be rough because any more precise state-
ment requires ideas which we have not yet defined.

There are, broadly, among numbers which occur naturally in analysis,
two types of numbers whose irrationality has been established.

(@) Algebraic irrationals. The iirrationality of ¥2 was proved by
Pythagoras or his pupils, and later Greek mathematicians extended the
conclusion to 43 and other square roots. It is now easy to prove that

m/N
is generally irrational for integral m and N. Still more generally,
numbers defined by algebraic equations with integral coefficients, unless
‘obviously’ rational, can be shown to be irrational by the use of a
theorem of Gauss. We prove this theorem (Theorem 45) in § 4.3.

(b) The numbers e and 7 and numbers derived from them. It is easy
to prove e irrational (see § 4.7); and the proof, simple as it is, involves
the ideas which are most funclamental in later extensions of the theorem.
 is irrational, but of this there is no really simple proof. All powers of
e or 7, and polynomials in e or 7 with rational coefficients, are irrational.
Numbers such as

e¥?, %, TN, log 2
are irrational. We shall return to this subject in Ch. XI (§§ 11.13-14).

It was not until 1929 that theorems were discovered which go beyond
those of §§ 11.13-14 in any very important way. It has been shown
recently that further classes of numbers, in which

em, 2%, en
are included, are irrational. The irrationality of such numbers as
2¢, e, a2

or ‘Euler’s constant’f y is still unproved.

4.3. The theorem of Pythagoras and its generalizations. We
shall begin by proving

Trecrem 43 (PYTHAGORAS' THEOREM). /2 is irrational.

We shall give three proofs of this theorem, two here and one in § 4.6.
The theorem and its simplest generslizations, though trivial now, deserve
intensive study. The old Greek theory of proportion was based on the

_ 0 1 1
ty= LLT) (1+§+...+;L—logn)



40 IRRATIONAL NUMBERS [Chap. IV

hypothesis that magnitudes of the same kind were necessarily com-
mensurable, and it was the discovery of Pythagoras which, by exposing
the inadequacy of this theory, opened the way for the more profound
theory of Eudoxus which is set gut in Euclid V.

(@) First proof. The traditional proof ascribed to Pythagoras runs
as follows. If 42 is rational, then the equation

(431) a? = 2h?

is soluble in integers a, b with (a, b) = 1. Hence a? is even, and there-
fore a is even. If a = 2¢, then 4¢% = 2b%, 2¢® = 4%, and b is also even,
contrary to the hypothesis that (a, b) = 1.

(b) Second proof. It follows from (4.3.1) that b q2, and a fortiori that
p a? for any prime factor p of b. Hence p a. Since (a, b) = 1, this is
impossible. Hence b =1 and 2 is the square of an integer a, which is
false .

The two proofs are very similar, but there is an important difference.
In (a) we consider divisibility by 2, a given number; in (b) we consider
divisibility by the unknown number b. For this reason (a) is, as we
shall see in a moment, the logically simpler proof, while (b) lends itself
more readily to generalization.

Similar arguments prove the more general

THEOREM 44. M/N is irrational, unless N is the m-th power of an
integer n.
The proofs corresponding to (a) and (b) above may be stated thus.
(&) Suppose that
(4.3.2) am — Nbp»

where (a, b) = 1. If p is any prime factor of N, then p am and there-
fore p a. If p? is the highest power of p which divides a, so that

a4 = pta, P [ a,
then p*mo™ = Nb”.

But p /b and p f «, and therefore N is divisible by p*® and by no higher
power of p. Since this is true of all prime factors of N, N is an mth
power.

(b) It follows from (4.3.2) that b @™, and p a™ for every prime factor
p of b. Hence p a, and from this it follows as before that b = 1. It
will be observed that this proof is almost the same as the second proof
of Theorem 43. whereas (a) has become noticeably more complex.
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A still more general theorem is
THEOREM 45. If X is a roof of an equation
a4 ™t +e, = 0,

with integral coefficients of which the first is unity, then x is either integral
or irrational.

In the particular case in which the equation is

am—N =0,

Theorem 45 reduces to Theorem 44.

We may plainly suppose that ¢,, # 0. We argue as under (b) above.
If x = a/b, where (a, b) = 1, then

a™+c,a™ b+ ... 4c,bm = 0.

Hence b o™, and from this it follows as before that b = 1.

4.4, The use of the fundamental theorem in the proofs of
Theorems 4345. It is important, in view of the historical discussion
in the next section, to observe what use is made, in the proofs of
§ 4.3, of the fundamental theorem of arithmetic or of the ‘equivalent’
Theorem 3.

The critical inference, in either proof of Theorem 44, is

‘pla™ —» pla’.
Here we use Theorem 3. The same remark applies to the second proof
of Theorem 43, the only simplification being that m = 2. In all these
proofs Theorem 3 plays an essential part.

The situation is different in the first proof of Theorem 43, since here
we are considering divisibility by the special number 2. We need
‘2 |a? = 2 a’, and this can be proved by ‘enumeration of cases' and
without an appeal to Theorem 3. Since

(2m+41)2 = dm2+4m+1,

the square of an odd number is odd, and the conclusion follows.

Similarly, we can dispense with Theorem 3 in the proof of Theorem
-44 for any special m and N. Suppose, for example, that m =2, N = 5.
We need ‘5]a% - 5|a’. Now any number a which is not a multiple
of 5 is of one of the forms

5m+1, 5m+2, 5m+3, Sm-+4,

and the squares of these numbers leave remainders

1, 4, 4,1
after division by 5.
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If m =2, N =6, we argue with 2, the smallest prime factor of 6,
and the proof is almost identical with the first proof of Theorem 43.
With m = 2 and

N=23,5,6, 7,8, 10, 11, 12, 13, 14, 15, 17, 18
we argue with the divisors
2,3,5,2,7,4, 2,11, 3, 13, 2, 3, 17, 2,

the smallest prime factors of N which occur in odd multiplicity or, in
the case of 8 an appropriate power of this prime factor. It is instructive
to work through some of these cases; it is only when N is prime that the
proof runs exactly according to the original pattern, and then it becomes
tedious for the larger values of N.

We can deal similarly with cases such as m = 3, N = 2, 3, or 5; but
we confine ourselves to those which are relevant in §§ 4.5-6.

4.5. A historical digression. There is a curious historical puzzle
on which the preceding discussion throws a good deal of light.

It is unknown when, or by whom, the ‘theorem of Pythagoras’ was
discovered. ‘The discovery’, says Heath,t ‘can hardly have been made
by Pythagoras himself, but it was certainly made in his school. Pytha-
goras lived about 570-490 B.c. Democritus, born about 470, wrote ‘on
irrational lines and solids’, and ‘it is difficult to resist the conclusion
that the irrationality of +/2 was discovered before Democritus’ time'.

It would seem that no extension of the theorem was made for over
fifty years. There is a famous passage in Plato’'s Theaetetus in which it
is stated that Theodorus (Plato’s teacher) proved the irrationality of

/3, #5,...,

‘taking all the separate cases up to the root of 17 square feet, at which
point, for some reason, he stopped’. We have no accurate information
about this or other discoveries of Theodorus, but Plato lived 429-348,
and it seems reasonable to date this discovery about 410-400.

The question how Theodorus proved his theorems has exercised the
ingenuity of every historian. It would be natural to conjecture that he
used some modification of the ‘traditionsl method of Pythagoras, such
as those which we discussed in the last section. In that case, since he
cannot have known the fundamental theorem,} and it is unlikely that

t Sir Thomas Heath, A manual of Greek mathematics, 54-55. In what follows passages
in inverted commas, unless attributed to other writers, are quotations from this book

op from the same writer's A history of (reek mathematics.
1 See Ch. XII, § 12.5, for gome further discussion of this point.
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he knew even Euclid’s Theorem 3, he must have argued much as we
argued at the end of § 4.4.

Some historians, however, such as Zeuthen and Heath, have objected
to this conjecture on other grounds. Thus Heath remarks that
‘the objection to this conjecture as to the nature of Theodorus’ proof
is that it is so easy an adaptation of the traditional proof regarding. +/2
that it would hardly be important enough to mention as a new discovery
and that

‘it would be clear, long before ¥17 was reached, that it is generally
applicable . . .”;

and regards these objections as ‘difficult to meet’.
Zeuthen assumes

‘(@) that the method of proof used by Theodorus must have been
sufficiently original to call for special notice from Plato, and (b) that
it must have been of such a kind that the application of it to each
surd required to be set out separately in consequence of the variations
in the numbers entering into the proofs’;

and considers that

‘neither of these conditions is satisfied by the hypothesis of mere
adaptation to 3, +/5,... of the traditional proof with regard to V2,

On these grounds he puts forward an entirely different hypothesis about
the nature of Theodorus’ proof.

The method of proof suggested by Zeuthen is most interesting, and
his hypothesis may be correct. But it should be clear by now that (what-
ever the historical truth may be) the reasons advanced by Zeuthen and
Heath are quite unconvincing. To prove Theodorus’ theorems, as we
proved them in § 4.4, and without assuming any general theorem such
as Theorem 3, requires a good deal more than a ‘trivial’ variation of
the Pythagorean proof. If Theodorus proved them thus, then his work
fully satisfied Zeuthen’s criteria; it was certainly original enough to
‘call for special notice from Plato’, and it did require ‘to be set out
separately’ in every case. By the time Theodorus had finished with 17,
he may well have been quite tired; it would be what he had done and
not what he had not done that should fill us with surprise.

4.6. Geometrical proofs of the irrationality of +2 and +5. The
proofs suggested by Zeuthen vary from number to number, and the
variations depend at bottom on the form of the periodic continued

t We give two examples of it in §4.6.
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fractiont which represents 4N. We take as typical the simplest case
(N = 5) and the lowest case (N = 2).

(@ N = 5. We argue in terms of

r = }(V5—1).
Then 2= |-Xx.
Geometrically, if AB =1, AC = x, then
AC? = AB. CB
4 6 G 2 ¢ B
Fia. 4

and AB is divided ‘in golden section’ by C. These relations are funda-
mental in the construction of the regular pentagon inscribed in g circle
(Euclid iv. 11).

If we divide 1 by x, taking the largest possible integral quotient,, viz.
1,{ the remainder is I-x = z% If we divide x by z? the quotient is
again 1 and the remainder is x-x? = 3. We next divide z2 by #®, and
continue the process indefinitely; at each stage the ratios of the number
divided, the divisor, and the remainder are the same. Geometrically,
if we take CC, equal and opposite to CB, CA is divided at C, in the
same ratio as AB at C, i.e. in golden section; if we take C,C; equal and
opposite to C; A, then C; C is divided in golden section at C,; and so on.||
Since we are dealing at each stage with a segment divided in the same
ratio, the process can never end.

It is easy to see that this contradicts the hypothesis of the rationality
of x. If x is rational, then AB and AC are integral multiples of the same
length &, and the same is true of

C; C = CB = AB-AC, C,C,= AC,= AC-C, C, >
ie. of all the segments in the figure. Hence we can construct an infinite
sequence of descending integral multiples of §, and this is plainly im-
possible.

(b) N = 2. This case is best treated by a two-dimensional argument.

Let AB, AC be two sides of a unit square ABDC,; take BD, = AB

along the diagonal BC; and let the perpendicular to BC at D; meet
AC in B,. The elementary properties of triangles show that

AB, = B,D, = D,C.

t See Ch. X, § 10.12. { Since § < z < 1.
Il €4C,equal and opposite to €,C, C,C, equal rnd opposite to C,Cy,... . The New
segments defined are measured alternately to the left and the right.
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We now complete the square A, B; D, C and repeat the construction,
taking B, D, = 4, B,, B, D; = A, B,,

as indicated in the figure. Each square constructed is dissected in the
same proportions, and the process cannot end.

A 0

0y

B

Fia. 5

If /2 were rational, i.e. if AC and BC were integral multiples of the
same length 8, the same would be true of
4,B, = D,C= BC-BD,= BC-AC
and of B, C = AC-AB, = AC—-B, D, = AC-A, B,
and so, by repetition of the argument, of all the segments in the figure;
and plainly we should arrive at the same contradiction as before.

4.7. Some more irrational numbers. We know, after Theorem

44, that N 3/2, 411,
are irrational. After Theorem 45,
X = V2443
is irrational, since it is not an integer and satisfies
xt—10224+1 = 0.
We can construct irrationals freely by means of decimals or continued
fractions, as we shall see in Chs. IX and X; but it is not easy, without

theorems such as we shall prove in § 11.13-14, to add to our list many

of the numbers which occur naturally in analysis.
THEOREM 46. log,, 2 is irrational.
a

This is trivial, since logy2 = 3
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involves 2% = 102, which is impossible. More generally log,m is irra-
tional if m and n are integers, one of which has a prime faotor which
the other lacks,

THEOREM 47. e is srrational.

Let us suppose e rational, so that e = a/b where a and b are integers.
If k> b and

1 1 1
o= k!(e~1_ﬂ—§!_ _E)’
then b k! and ¢ is an integer. But
1 1 1 1 1
0 = = L e =
<= mmtenEn T SFR T ERE T Tk

and this is a contradiction.

In this proof, we assumed the theorem false and deduced that « was
(i) integral, (ii) positive, and (iii) less than omne, an obvious contradiction.
We prove two further theorems by more sophisticated applications of
the same idea.

For any positive integer n, we write

n(1__m\n n
f:f(x):x_(_];!_x)_zézcmxm’
m=n

where the ¢, are integers. For 0 < x < 1, we have
1
(4.7.1) 0 < f(x) < ot

Again f(0) =0 and f™(0) = 0 ifm < nor m > 2n. But, if n << m < 2n,
m!
Fm(0) = 2 O
an integer. Hence f(x) and all its derivatives take integral values at
x = 0. Since f(1—z) = f(x), the game is true at z = 1.

THEOREM 48. ¥ is irrational for every rational 'y # o.

If y = h/k and e? is rational, so is e¥ = ¢t Again, if e-h is rational,
so is eh. Hence it is enough to prove that, if his a positive integer, e*
cannot be rational. Suppose this false, so that e* = a/b where a, b are
positive integers. We write

F(z) = h2f(x)—h*n-1f (@) .. — RO () -+ f (),
so that P(0) and F(1) are integers. We have

d% {eth(x)} — ehz{kF(.’L’) +F'(x)} — thHehzf(x).
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1
Hence b [ h241ohaf(z) d = b[e"F()]y = aF(1)—bF(0),
0
an integer. But, by (4.7.1),
bh2neh
<1
n!

1
0<b f Rentighaf(z) da <
0

for large enough n, a contradiction.
THEOREM 49. 7 and #? are irrational.

Suppose 7 rational, so that % = a/b, where a, b are positive integers.
We write

S0 = br{rnf(@)—min =3 (z) 4 w24 O ... (— 1) Oz},
so that G(0) and G(1) are integers. We have
% {& ()sin xx — 7G(z)cos mx}

{G"(x)+72G(x)}sinmx = b+ (x)sin ma
w2a® sin wx f(x).

Hence

1 ’ ) 1
G
wdfa" sin 7 f(x) dz = [-——@Sl—mrf~—0(x)cos-nx = G(0)4+G(1),

an integer. But, by (4.7.1),
1
] man
O<7-rfa"sm Trxf(x)dx<—T<1
nt
0
for large enough n, a contradiction.

NOTES ON CHAPTER IV

§ 4.2. Thc irrationality of e and 7 was proved by Lambert in 1761; and that
of e by Gelfond in 1929. See the notes on Ch. XI.

§ 4.3-6. A reader intorested in Greek mathematics will find what biblio-
graphical information he requires in Heath's books referred to on p. 42.

We do not givc spccific references, except when we quote Heath, nor attempt
to assign Greek theorcms to their real discoverers. Thus we use ‘Pythagoras’
for ‘some mathematician of the Pythagorean school'.

§ 4.3. Thoorem 45 is provcd, in a more general form, by Gauss, D.4., § 42.

§ 4.6. Our construction in the case N = 2 follows Rademacher and Toeplitz,
15-17.

§4.7. Our proof of Theorcm 48 is based on that of Hermite (@uvres, 3, 154)
and our proof of Theorem 49 on that of Niven (Bulletin Amer. Math. Soc. 53
(1947), 509).
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CONGRUENCES AND RESIDUES

5.1. Highest common divisor and least common multiple. We
have already defined the highest common divisor (a, b) of two numbers
aand b. There is a simple formula for this number.

We denote by min(z, y) and max(z, y) the lesser and the greater of
z and y. Thus min(1,2) = 1, max(1,1) = 1.

THECREM 50. If a=TI» (x20),7F

- P

and b=TIp% B8 >0),
»
then @b =TI puinp),
by

This theorem is an immediate consequence of Theorem 2 and the
definition of (a, b).

The least common multiple of two numbers a and b is the least positive
number which is divisible by both a and b. We denoteitby {a, b}, so that
al{a,b}, . b |{a,b},
and {a, b} is the least number which has this property.

THEOREM 51. In the notation of Theorem 50,

{ a, b} = H pmax(a,ﬁ).
From Theorems 50 and 51 we dedﬂce
ab
(a,0)’

If (a, b) =1, aand b are said to be prime to gne another or coprime.
The numbers a, b, ¢ ,...,, kK are said to be coprime if every two of them
are coprime. To say this is to say much more than to say that

(a,b,¢,....K) =1,
which means merely that there is no number but 1 which divides all
ofa, b, c,.,k
t The symbol I1f»)
denotes a product extanded over all primg values of p. The symbol

ﬂ.ﬂp)

denotes a product extended over all primes which divide 4, In the first formula of
Theorem 50, ¢ is zero unless p a (so that the product is really a finite product). We
might equally well write

THEOREM 52 : {a,b} =

a = I I «
- - age 14 ap
in this cage every g would be  be positive.
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We shall sometimes say that ‘a and & have no common factor’ when
we mean that they have no common factor greater than 1, ji.e. that
they are coprime.

5.2. Congruences and classes, of residues. If m is a divisor of

X-a, we say that x is congruent to a to modulus m, and write
z = a (modm).

The definition does not introduce any new idea, since x = a (modm)’
and ‘in x-a' have the same meaning, but each notation has its ad-
vantages. We have already used the word ‘modulus’ in a different sense
in § 2.9, but the ambiguity will not cause any confusion.}

By x # a (modm) we mean that x is not congruent to a.

If x = a (modm), then a is called a residue of x to modulus m. If
0 L a < m-, then ais the least residue} of x to modulus m. Thus two
numbers a and b congruent (modm) have the same residues (modm).
A class of residues (modm) is the class of all the numbers congruent to
a given residue (modm), and every member of the class is called a
representative of the class. It is clear that there are in all m classes,
represented by 0,12 o ml,

These m numbers, or any other set of m numbers of which one belongs
to each of the m classes, form a complete systtm of incongruent residues
to modulus m, or, more shortly, a complete system (modm).

Congruences are of great practical importance in everyday life. For
example, ‘today is Saturday’ is a congruence property (mod 7) of the
number of days which have passed since some fixed date. This property
is usually much more important than the actual number of days which
have passed since, say, the creation. Lecture lists or railway guides
are tables of congruences; in the lecture list the relevant moduli are
365, 7, and 24.

To find the day of the week on which a particular event falls is to
solve a problem in ‘arithmetic (mod7)'. In such an arithmetic con-
gruent numbers are equivalent, so that the arithmetic is a strictly
finite science, and all problems in it can be solved by trial. Suppose,
for example, that a Jecture is given on every alternate day (including
Sundays), and that the first lecture occurs on a Monday. When will a
lecture first fall on a Tuesday ? If this lecture is the (z--1)th then

2xX = 1 (mod7);

1 The dual use bas a purpose because the notion of a ‘congruence with respect to
a modulus of numbers’ oceurs at a later stage in the theory, though Wwe shall not use it
in this book. 1 Strictly, least non-negative residue.
6581 )



50 CONGRUENCES AND RESIDUES [Chap. V

and we find by trial that the least positive solution is
X = 4.

Thus the fifth lecture will fall on a Tuesday and this will be the first
that will do so.

Similarly, we find by trial that the congruence
22 =1 (mod 8)
has just four solutions, namely
x =1, 3, 5, 7 (mod8).
It is sometimes convenient to use the notation of congruences even

when the variables which occur in them are not integers. Thus we may

write z = y (mod 2)

whenever x-y is an integral multiple of z, so that, for example,
3 =% (mod 1), —7 = 7 {mod 27).
5.3. Elementary properties of congruences. It is obvious that
congruences to a given modulus m have the following properties:
MHa=h—->b=a,
(ila=b.b=c—oa=c,
(ila=a.b=b—>ath =a+b.
Also,ifa =a', b=Db',... we have

) kat-Ib+...=ka'+1b'+ . . ..

V) a® = a'?, a® = a3,
and so on; and finally, if ¢(a, b,...) is any polynomial with integral
coefficients, we have

(Vi) +@, b ,...) = $@, b,.. ).

THEOREM 53. If a = b (modm) and a = b (modn), then

a = b (mod{m, n}).
In particular, if (M, n) = 1, then
a = b (modmn),

This follows from Theorem 50. If p¢ is the highest power of p which
divides {m, n}, then p¢ mor p* mand so p¢ (a-b). This is true for every
prime factor of {m,n}, and so

a=b (mod {m, n}).

The theorem generalizes in the obvious manner to any number of
congruences.
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5.4. Linear congruences. The properties (i)-(vi) are like those of
equations in ordinary algebra, but we soon meet with a difference. It
is not true that

ka =ka' = a=a;

for example 2.2 = 2.4 (mod4),

but 2 £ 4 (mod4).

We consider next what is true in this direction.
TeeRem 54.  If (k,m) = d, then

ka = ka’ (modm) —» a = a’ (mod%),

and conversely.
Since (k,m) = d, we have
k=kd,  m=md,  (k,m)= L
ka-ka' k(a—a’)

Then = s

and, since (k;,m;) = 1,
m ka-ka' == m, a—a'.T
This proves the theorem. A particular case is
TrheoREM 55. If (k,m) = 1, then

ka = ka' (modm) —» a = a’' (mod m)
and  conversely.

ThecRem 56.  If a,, @,,.., a, 1§ acomplete system of incongruent
residues (modm) and (k, m) = 1, then ka,, ka ,,..., ka, is also such a
system.

For ka;,—ka; = 0 (modm) implies a;—a; = 0 (modm), by Theorem
55, and this is impossible unless ¢ = j. More generally, if (k, m) =1,
then ka, 41 (r=123,.,m)
is a complete system of incongruent residues (modm).

THeoREM 57. If (k,m) = d, then the congruence
(5.4.1) kx = 1 (modm)
ts soluble if and only if ¢|1. It has then just d solutions. In particular,
if (k m) = 1, the congruence has always just one solution.

The congruence is equivalent to

kx—my = 1,

t *=’is the symbol of logical equivalence: if P and Q are propositions, then P = Q
ifP—>Qand @ —» P,
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so that the result is partly contained in Theorem 25. It is naturally
to be understood, when we say that the congruence has ‘just 4’ sol u-
tions, that congruent solutions are regarded as the same.

If d = 1, then Theorem 57 is a corollary of Theorem 56. If cl > 1,
the congruence (5.4.1) is clearly insoluble unless d|I. If d | I, then

m = dm’, k = dk', I =dl,
and the congruence is equivalent to
(5.4.2) kKx = I' (modm’).
Since (k’,m’) = 1, (5.4.2) has just one solution. If this solution is
z = t (modm’),
then X = t4ym/,
and the complete set of solutions of (5.4.1) is found by giving y all
values which lead to values of ¢-} ym' incongruent to modulus m. Since
t+ym' =t+zm'(modm) =m m'(y—z)=d (y-2),
there are just d solutions, represented by
t, tm', t-2m/, . ... tE(d—1)m'.

This proves the theorem.

5.5. Euler’s function ¢(m). We denote by ¢{m) the number of
positive integers not greater than and prime to m, that is to say the
number of integers n such that

0<n<m, (n, m) = 1L.¥
If a is prime to m, then so is any number x congruent to a (modm).
There are ¢(m) classes of residues prime to m, and any set of ¢(m)
residues, one from each class, is called a complete set of residues prime

to m. One such complete set is the set of ¢(m) numbers less than and
prime to m.

THEREM 58. If a,, @y,...; Qg IS @ complete set of residues prime to
m, and (k,m) = 1, then
kay, kay, . . . . kag
is also such a set.
For the numbers of the second set are plainly all prime to m, and,
as in the proof of Theorem 56, no two of them are congruent.

THEOREM 59. Suppose that (m,m’) = 1, and that a runs through a
complete set of residues (modm), and a through a complete set of residues
(modm’). Then a'm+am’ runs through a complete set of residues
(modmm’).

+ n can be equal to m only when n = 1. Thus ¢(1) = 1.
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There are mm’ numbers a’'m-am’. If

aym+ta;m' = agm-+ta,m’ (modmm’),

then a, m = a, m (mod m),
and so a, = a, (modm);
and similarly a; = a, (modm’).

Hence the mm’ numbers are all incongruent and form a complete set of
residues (mod mm’).

A function f (m) is said to be multiplicative if (m, m') = 1 implies

flmm') = f(m)f(m').

THEOREM 60. ¢(n) is multiplicative.

If (m,m’) = 1, then, by Theorem 59, a'm--am’ runs through a com-
plete set (modmm’) when a and a' run through complete sets (modm)
and (mod m’) respectively. Also

@m+am’',mm’) = 1 = (@m+am’, m) = 1. (a'm+am’, m) = 1

=@m,m)=1.(@mm)=1
=(@,m)=1.(@.m) = 1.
Hence the ¢(mm’) numbers less than and prime to mm’ are the least
positive residues of the $(m)p(m’) values of a’'m+am’ for which a is
prime to m and a’ to m’; and therefore
p(mm’) = (m)p(m’).
Incidentally we have proved
Theorem 61. If (m, m’) = 1, a runs through a complete set of residues

prime to m, and a' through a complete set of residues prime to m’, then
am’+a'm runs through a complete set of residues prime to mm'.

We can now find the value of ¢(m) for any value of m. By Theorem
60, it is sufficient to calculate ¢(m) when m is a power of a prime. Now

there are p°—1 positive numbers less than p¢, of which p¢-1—1 are
multiples of p and the remainder prime to p. Hence

#(p7) = p'—1—(p1=1) = pC(l—}o);

and the general value of ¢(m) follows from Theorem 60.
Theorem 62. If m =T] p¢, then
1

¢(m) = m ﬂ (1_ ];)
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We shall also require

THEOREM 63, > $(d) = m.
dlm

If m = TT ¢, then the divisors of m are the numbers d = [T »°,
where 0 < ¢’ < ¢ for each p; and

Om) = 5 $d) = 3 TI $(2°) = T[ (1+4(2)+4()++4()}
by the multiplicative property of ¢(m). But
14+é(p) ... +6(p°) = 1+(p—D+plp—1)+...+pHp—1) = 2’

so that O(m) = T p° = m.
D
5.6. Applications of Theorems 59 and 61 to trigonometrical
sums. There are certain trigonometrical sums which are important in
the theory of numbers and which are either ‘multiplicative’ in the sense
of § 5.5 or possess very similar properties.

We writet e(r) = e¥ir:

we shall be concerned only with rational values of . It is clear that

m m’
El—] = e{—
(5} =)
when m = m’ (modn). It is this property which gives trigonometrical
sums their arithmetical’importance.

(1) Multiplicative property of Gauss’s sum. Gauss’'s sum, which is
particularly important in the theory of quadratic residues, is

n-1 "l hem
S(m, n) = Y emikimin — e(—).

h=0» n
2
Since E{W} — Q(M)
n n
2 2
for any r, we have e(M) = e(}lﬂ-n)
n n

whenever h; = h, (modn). We may therefore write

S(m,n) = Z e(hz—m>,
m \ 7

the notation implying that h runs through any complete system of

1 Throughout this section eZ is the exponential function ¢ =1 4¢+-. .. of the complex
variable {. We assume a knowledge of the elementary properties of the exponential
function.
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residues modn. When there is no risk of ambiguity, we shall write h
instead of h(n).

THEOREM 64. |f (n,n') = 1, then

S(m, nn’) = S(mn’, n)S(mn, n’).

Let h, h’ run through complete systems of residues to modulus n, n’

respectively. Then, by Theorem 59,
H = hn’+h’n

runs through a complete set of residues to modulus nn’.  Also

mH? = m(hn'+h'n): = mh2n/24+mh'2n? (modnn’).
Hence

S(mn', n)S(mn, ') = {Z e(h_z’rt_)} { ,,Z e(h:nn)}

_ Z e(iﬁmn' h'zmn) _ Z e{m(hzn’2+h’2n2)}
R

n n nn'

h,h

= Z e(@:) = S(m,nn’).
& \nn

(2) Multiplicative property of Ramanujan’s sum. Ramanujan’s sum is

the notation here implying that h runs only through residues prime to
g. We shall sometimes write h instead of h*(q) when there is no risk
of ambiguity.

We' may write c,(m) in another form which introduces a notion of
more general importance. We call p a primitive g-th root of unity if
p? =1 but p"isnot 1 for any positive value of 7 less than g.

Suppose that p?=1 and that r is the least positive integer for which
p"=1. Then q= kr+s,where 0 < s <r. Also

pro= ptkr =1,
sothats=0and r|g. Hence
THEOREM 65. Any g-th root of unaty is a primitive r-th root, for some
divisor r of .
THEOREM  66. The g-th roots of unity are the numbers

e(ﬁ') (h = 0,1,..., g-1),
q

and a necessary and sufficient condition that the root should be primitive
is that h should be prime to q.
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We may now write Ramanujan’s sum in the form
cm) = 3, p™,
where p runs through the primitive gth roots of unity.
THEOREM 67. If (9,9') = 1, then
Cag(m) = cy(m)cy(m).

=3

by Theorem 61.

(3) Multiplicative property of Kloosterman's sum. Kloosterman’s sum
(which is rather more recondite) is

_ wh—+ ok
S(u,v,n) = Z e( — ),
where h runs through a complete set of residues prime to n, and £ is
defined by kk = 1 (modn).

Theorem 57 shows us that, given any h, there is a unique £ (modn)
which satisfies this condition. We shall make no use of Kloosterman'’s
sum, but the proof of its multiplicative property gives an excellent
illustration of the ideas of the preceding sections.

TrHeOREM 68, if (n,n") = 1, then
S(u,v,n)S(u, v',n’) = S(u, V,nn'),

where V = w24 v'nl
If kh = 1 (modn), KR = 1 (modn’),
then . P
b uh+vh  uh'+v'h’
(5.6.1) S(u,v,n)S(u,v',n') = ; e( T )
_ e{u(hn'+’iL’n)+vhn'+zl)’ﬁ’n}
& nn nn
o . uH+
- & A
where H = hn'+h'n, K = ohn'+v'k'n.

By Theorem 61, H runs through a complete system of residues prime
to nn’. Hence, if we can show that
(5.6.2) K = VH (modnn),

where H is defined by _
HH = 1 (modnn),
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then (5.6.1) will reduce to _
Stu, v m)S(uwm) = > 05T

Now (hn'+h'n)H = HH = 1 (modnn).
Hence  hn'H = 1 (modn), n'H = khn'H = } (modn),
and so

= S(u, V,nn').

(5.6.3) n'2H = n'h (modnn’).
Similarly we see that
(5.6.4) n2H = k' (modnn’);

and from (5.6.3) and (5.6.4) we deduce
VH = (vn't4-v'n2)H = wn'h+-v'nk’ = K (modnn).
This is (5.6.2), and the theorem follows.

5.7. A general principle. We return for a moment to the argu-
ment which we used in proving Theorem 65. It will avoid a good deal
of repetition later if we restate the theorem and the proof in a more
general form. We use P(a) to denote any proposition asserting a
property of a non-negative integer g,

THeorRem 69. If

(i) P(a) and P(b) wmply P(a-+b) und P(u-b), for every a und b (pro-
vided, in the second case, thut b < uj,

(i) r is the least positive integer for which P(r) is true,
then

(@ Pkr) is true for every non-negative integer K,

(b) amy q for which P(g) is true is a multiple of 7.

In the first place, (a) is obvious.

To prove (b) we observe that 0 < r < g, by the definition of 7, Hence
we can write q'= krts, s = gkr,

,where k > 1and 0 <'s < r. But P(r) — P(kr), by (a), and
P(g) . Plkr) = P(s),
by (i). Hence, again by the definition of », s must be 0, and q = kr.
We can also deduce Theorem 69 from Theorem 23. In Theorem 65,
P(u) is pt = 1.
5.8. Construction of the regular polygon of 17 sides. We con-
clude this chapter by a short excursus on one of the famous problems

of elementary geometry, that of the construction of a regular polygon
of n sides, or of an angle « = 2x»/n.
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Suppose that (n,, n,) = 1 and that the problem is soluble for n = n,
and for n = n,. There are integers r, and r, such that

1N Fran, = 1
or riog Ty = rl'—_;+r2——=-—--.
2

Hence, if the problem is soluble for n = », and n = #,, it is soluble
for n = n,m,. It follows that we need only consider cases in which n
is a power of a prime. In what follows we suppose n = p prime.

We can construct o if we can construct cosw« (or sina); and the
numbers coskatisinka (¢ = 1,2,..,n—1)
are the roots of
2mr—1
X -1

(5.8.1) = " l4gn-24. +1=0.
Hence we can construct g if we can construct the roots of (5.8.1).
‘Euclidean’ constructions, by ruler and compass, are equivalent
analytically to the solution of a series of linear or quadratic equations.t
Hence our construction is possible if we ¢an reduce the solution of
(5.8.1) to that of such a series of equations.
The problem was solved by Gauss, who proved (as we stated in § 2.4)
that the reduction is possible if and only if n is a ‘Fermat prime’]

n=p=2"+1=F,
The first five values of h,viz. 0, 1, 2, 3, 4, give
n=3,5, 17, 257, 65537,

all of which are prime, and in these cases the problem is soluble.

The constructions for n = 3 and n = 5 are familiar. We give here
the construction for n = 17. We shall not attempt any systematic
exposition of Gauss’s theory; but this particular construction gives a
fair example of the working of his method, and should make it plain
to the reader that (as is plausible from the beginning) success is to be
expected when n = pand p— 1 does not contain any prime but 2.
This requires that p is a prime of the form 271, and the only such
primes are the Fermat primes.11

Suppose then that n = 17. The corresponding equation is

+ See § 11.5. t See § 2.5. || See § 2.5, Theorem 17.



5.8] CONGRUENCES AND RESIDUES 59

We write o= -“i—:, € = e({%) = 08 ka1 sin ko,

so that the roots of (5.8.2) are

(5.8.3) X = €1y € yuury €16

From these roots we form certain sums, known as periods, which are

the roots of quadratic equations.

The numbers 3" (0 < m £ 15)

are congruent (mod 17), in some order, to the numbers k=1, 2,,..,16,1

as is shown by the table
m=0,1, 2, 3,4,5,6,7,8,9, 10, 11, 12, 13, 14, 15,
k=1, 3,9, 10, 13, 5, 15, 11, 16, 14, 8, 7, 4, 12, 2, 6.

We define 2, and x, by
7= 2 e = etegtegtegtestetete,
meven

2y = 3 e - etegtetentetedeteg

modd
and y;, ¥y, Y3 va by
Y= > & = etetegte,

m=0(mod 4)

Y2 = € - €otestegtey,
m=2(mod 4)
Y3 = € = €3t €5te€qteras
m=1(mod 4)
Yy = 2> & - eptenteate
m=3(mod 4)
Since €+ e€7_p == 2 coska,
we have

2, = 2(cos o + cos 8« + cos 4a + cos 2a)

Zy = 2(cos 3o + cos Ta 4 cos 5a + cos 6a),
1y = 2(cos o + COS 4a), Y5 = 2(cos 8a 4 COS 2q),
Y3 = 2(cos 3o - COS 5a), Y, = 2(cos To + cos 6a).
We prove first that »; and 2, are the roots of a quadratic equation

with rational coefficients. Since the roots of (5.8.2) are the numbers

(5.8.3), we have
16

8
x,ta, = 2kzlcoska = z_:fk - —L

Again,
¥, ¥y = 4(cos a 4 COS 8o 4 COS 4 + COS 2a) X
X (cos 3o+ COS Ta |- COS 5o + COS 6ax).
If we multiply out the right-hancl side and use the identity
(5.8.4) 2cosmacosna = cos(m-+n)a-tcos(m—n)a,

t In fact 3 is a ‘primitive root of 17’ in the sense which will be explained in § 6.8.
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we obtain 2,2, = 4 +x,) = -4.
Hence z, and x, are the roots of

(5.8.5) x?4+x—4 = 0.
Also

cosa 4+ cos2x > 2cosdw = V2 > —cos 8q, cos4a > 0.
Hence z, > 0 and therefore
(5.8.6) Ty > X

We prove next that ¥,, ¥, and ¥, ¥, are the roots of quadratic equa-
tions whose coefficients are rational in 2, and z,. We have

o . Yit¥e = %
and, using (5.8.4) again,

¥, Yo = 4(cos a 4 COS 4a)(cos 8x 4- COS 2a)
8
=2 ko = -1.
k; cos ka

Hence y,, ¥, are the roots of

(5.8.7) yi—x; y-I = 0;
and it is plain that
(5.8.8) y1 > Yo
Similarly Ys+Ys = Ty Ys¥Ys = —1,
and so ¥4, y, are the roots of
(5.8.9) y*—z, y-l = 0,
and
(5.8.10) Y3 > Yy
Finally

2cosa-+2cosda = ¥y,
4 COS o COS 4o = 2(cos Sax+€0s 3u) = y5.

Also cos g > CcOs 4q, Hence z, = 2 cos g and 2, = 2 COS 44 are the roots
of the quadratic

(5.8.11) 22—y 2+y; = 0
and
(5.8.12) Z, > 2.

We can now determine z;, = 2 cosa by solving the four quadratics
(5.8.5), (5.8.7), (5.8.9), and (5.8.11), and remembering the associated
inequalities. We obtain

2cosa = F{—1-4+VI1T4,/(34—2417)}+
+3,(68-+-12V1T—16,/(34+2V17)—2(1 —V17)/(34—2V17)},



5.8] CONGRUENCES AND RESIDUES ol

an expression involving only rationals and square roots. This number
may now be constructed by the use of the ruler and compass only, and
SO a may be constructed.

There is a simpler geometrical construction. Let C be the least
positive acute angle such that

tan 4C =4,
so that C, 2C, and 4C are all acute. Then (5.8.5) may be written
x?4-4xcot 4C—4 = 0.

P 8 A
~5
22
a ¢
/
Ns F 0E N3 A
Fic. §

The roots of this equation are
2tan 20,  —2cot2C.

Since 1, > z,, this gives

x, = 2tan2C, ©, = -2c0t 2c.
Substituting in (5.8.7) and (5.8.9) and solving, we obtain

y; = tan(C+im), Yy, = tan C,

Y, = tan(C—im), y, = —cot c.
Hence
(5.8.13) 208 3o - 2008 5o = yy == tan C,

2 0B 3x.2 0B S = 2 OB 20 + 2 OB 8a =y, = tan(C—1n).
Now let OA, OB (Fig. 6) be two perpendicular radii of a circle. Make

Ol one-fourth of OB and the angle OIE (with E in OA) one-fourth of
the angle OIA. Find on A0 produced a point F such that EIF = 1.
Let the circle on AF as diameter cut OB in K, and let the circle whose
centre is E and radius EK cut 04 in N; and N; (¥; on O4, N; on AO
produced). Draw N, P,, N, P, perpendicular to OA to cut the circum-
ference of the original circle in £, and F;.
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Then OIA = 4C and OE = C Also
2cos AOP;+2cos AOP, = 2 ON— N _ 0B _ OF _ tanC,

04 04— 01 —
- N N — OK?
2cos AOP,.2¢cos AOP, = -4 i - —Yom
or oF
= 45 = — g = tan(C—}n).

Comparing these equations with (5.8.13), we see that AOP, = 3« and
AOP, = 5a.

It follows that A, P, P, are the first, fourth, and sixth vertices of a
regular polygon of 17 sides inscribed in the circle; and it is obvious how
the polygon may be completed.

NOTES ON CHAPTER V

§ 5.1. The contents of this chapter are a]l ‘classical' (except the properties of
Ramanujan’s and Kloosterman’s sums proved in § 5.6), and wi]l be found in
text-books. The theory of congruences was first developed scientifically by Gauss,
D.A., though tho main results must have been familiar to earlier mathematicians
such as Fermat and Fuler. We give occasional references, especially when some
famous function or theorem is habitually associated with the name of a particular
mathematician, but make no attempt to be systematic.

§ 5.5. Euler, Novt Comm. Acad. Petrop. 8 (1760-l), 74-104 [Opera (1), ii.
531-44].

It might seem more natural to say that f(m) is multiplicative if

flmm') = f(m)f(m’)
for all m, m’. This definition would be too restrictive, and the less exacting
definition of the text is much more useful.

§ 5.6. The sums of this section occur in Gauss, ‘Summatio quarumdam
serierum singularium’ (1808), Werke, ii. 1 1-45; Ramanujan, Trans. Camb. Phil.
Soec. 22 (1918), 259-76 (Collected Papers, 179-99); Kloosterman, Actg Math. 49
(1926), 407-64. ‘Ramanujan’s gum’ may be found in earlier writings; see, for
example, Jensen, Beretning d. fredje Skand, Matematikercongres (1913), 145, and
Landau, Handbuch, 572: but Ramanujan was the first mathematician to see its
full importance and use it systematically. It is particularly important in the
theory of the representation of humbers by sums of squares.

§ 5.8. The general theory was developed by Gauss, D.A., §§ 335-66. The first
explicit geometrical construction of the 17-agon was made by Erchinger (see
Gauss, Werke, ii. 186-7). That in the text is due to Richmond, Quarterly Journal
of Math. 26 (1893), 206-7, and Math. Annalen, 67 (1909), 459-61. Our figure is
copied from Richmond's.

Gauss (D.A., § 341) proved that the equation (5.8.1) is irreducible, ie. that
its left-hand side cannot be resolved into factors of lower degree with rational
coefficients, when n is prime. Kronecker and Eisenstein proved, more generally,
that the equation satisfied by the ¢(n) primitive nth roots of unity is irreducible;
see, for example, Mathews, 186-S. Grandjot has shown that the theorem can be
deduced verysimply from Dirichlet’s Theorem 15: see Landau, Vorlesungen, iii. 2 19.
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FERMAT'S THEOREM AND ITS CONSEQUENCES

6.1. Fermat’s theorem. In this chapter we apply the general ideas
of Ch. V to the proof of a series of classical theorems, due mainly to
Fermat, Euler, Legendre, and Gauss.

THEOREM 70. If p 4s prime, then

(6.1.1) a? = a (modp).
THEGREM 71 (FERWT'S THEOREM). If p s prime, and p [ a, then
(6.1.2) aP-1=1 (modp).

The congruences (6.1.1) and (6.1.2) are equivalent when p [ a; and
(6.1.1) is trivial when p a, since then ¢ =0 = a. Hence Theorems
70 and 71 are equivalent.

Theorem 71 is a particular case of the more general

THEOREM 72 (THE FERRW-EUER THE®). If(e,m) = 1, fhen
a$™ =1 (modm).

If X runs through a complete system of residues prime to m, then, by
Theorem 58, qx also runs through guch a system. Hence, taking the
product of each set, we have

IT (az) = TI x (modm)
or a$™ TT z = TT = (modm).

Since every number x is prime to m, their product is prime to m; and
hence, by Theorem 55,
a®™ = 1 (mod m).
The result is plainly false if (a, m) > 1.

6.2. Some properties of binomial coefficients. Euler was the
first to publish a proof of Fermat's theorem. The proof, which is easily
extended so as to prove Theorem 72, depends on the simplest arith-
metical properties of the binomial coefficients.

THEOREM 73. If m and n are positive integers, then the binomial
coefficients

m mml)...(mn+l) -—m:( 1nrr(mkl)...(ml-n-l)
on! ! ’ ng ) n!
are  integers.
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It is the first part of the theorem which we need here, but, since

()=o)
7 7
the two parts are equivalent. Either part may be stated in a more
striking form, viz.

THEOREM 74.  The product of any n successive positive integers s
divisible by nl.

The theorems are obvious from the genesis of the binomial coefficients
as the coefficients of powers of x in (1+z)(1-+2)... or in

(I1—z)Y(1—z)1.. = Qd-at+x2-. )1 txta?+ . ).
We may prove them by induction as follows. We choose Theorem 74,
which asserts that
(m, = nmmtl)...(mn-1)

i s divisible by . This is plainly true for = 1 and all m, and also for
m = 1 and all n. We assume that it is true (a) for n = N-1 and all
m and (b) forn =N and m = M. Then

(M+ 1)y—My = N(M+ 1)y,

and (M+1)y_, is divisible by (N-I)!. Hence (M+l), is divisible by
N!, and the theorem is true for n = N and m = M+ 1. It follows that
the theorem is true for n = N and all m. Since it is also true for
n=N4+1and m =1, we can repeat the argument; and the theorem
is true generally.

THEOREM 75. If p is prime, then
are divisible by p.

» (P P
17\2) "7 \p—1
If1 <n<p-—1,then

n!|p(p—1)...(p—n+1),
by Theorem 74. But n! is prime to p, and therefore
n! (p—1)(p—2)...(p—n-+1).
Hence (P) . p@=D(P=2).(p—n+1)

U nt
is divisible by p.

THEOREM 76. If p is prime, then all the coefficients in (1 -x)-p are
divisible by p, except those of 1, 2, 222 ..., which are congruent to 1 (mod p).
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By Theorem 73, the coefficients in

(10-P = 14 > (P+Z—1)xn
n=1

are all integers. Since
(I—a?)-1 = 1-paP a2
we have to prove that every coefficient in the expansion of
(1—a?)l—(1—2)® = (1—z)P(1—a?)(1—z)?—14-27)

is divisible by p. Since the coefficients in the expansions of (1—zx)~?
and (1 —zr)-1 are integers it is enough to prove that every coefficient
in the polynomial (1—z)?—1--7 is divisible by p. For p = 2 this is
trivial and, for p > 3, it follows from Theorem 75 since

(1—z)p—1+aP = 2 (—l)r(f)x’-

We shall require this theorem in Ch. XIX.
Teecem 77.  Ifp is prime, then

(x+y+...+w)P = 2P-+yP4...+w? (modp).
For (x4y)P = 2P-}y? (modp),

by Theorem 75, and the general result follows by repetition of the
argument.

Another useful corollary of Theorem 75 is
Terem 78. Ifa > 0 and
m = 1 (mod p%),
then mP =1 (mod p>+1).
For m = 1+kp* where k is an integer, and ap > a+ 1. Hence
mP = (L+kp*)? = 14-Ip*+,

where [ is an integer.

6.3. A second proof of Theorem 72. We can now give Euler’s
proof of Theorem 72. Suppose that m = J] p* Then it is enough,
after Theorem 53, to prove that

a®m = 1 (mod p*).

6691 ¥
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But ¢(m) = 11 ¢(p*) = I p*(p—1),
and so it is sufficient to prove that
a?*"'@-1) = 1 (mod p®)
when p [ a.
By Theorem 77,

(x+y+...)? = 2?+yP+... (mod p).

Taking x =y = 2z = . . . = 1, and supposing that there are a numbers,

we obtain aP = a (mod p),

or a1 =1 (mod p).
Hence, by Theorem 78,
ar®-1 =1 (mod p?), a?'®-D =1 (modp?),
a?*7'®-1) = 1 (mod p%).
6.4. Proof of Theorem 22. Before proceeding to the more impor-

tant applications of Fermat's theorem, we use it to prove Theorem 22
of Ch. II.

We can write f(n) in the form

m m qr
fo) =3 @,(m)ap =3 ( 3 e,ymt)ar,

r=1 r=1's=0
where the a and ¢ are integers and

1g€a,<a,<...<a,
The terms off(n) are thus arrangea in increasing order of magnitude
for large n, and f(n) is dominated by its last term

Cingm TP Om

for large n (so that the last c is positive).
If f (n) is prime for all large n, then there is an n for which

n) = p>a,
and p is prime. Then ) = e

{n+kp(p—1)}* = »* (mod p),
for all integral k£ and s. Also, by Fermat's theorem,
a?~1l = 1 (mod p)
and so ar -1 = g* (mod p)
for all positive integral k. Hence
{n+kp(p— 1)}far ¥~ = n? (mod p)
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and therefore JF{n+kp(p—1)} = f(n) = 0 (mod p)
for all positive integral k; a contradiction.

6.5. Quadratic residues. Let us suppose that p is an odd prime,
that p [ a, and that x is one of the :numbers

1,2, 3 ,..,pl
Then, by Theorem 58, just one of the numbers
1.z, 2.9:,.'.., (p—1)x
is congruent to a (modp). There is therefore a unique 2’ such that
xX' = a (modp), 0 <2 <p.

We call 2’ the associate of x. There are then two possibilities: either
there is at least one x associated with itself, so that 2’ = x, or there is
no such x.

(1) Suppose that the first alternative is the true one and that x, is
associated with itself. In this case the congruence

z? = a (modp)

has the solution x = z;; and we say that a is a quadratic residue of p,
or (when there is no danger of a misunderstanding) simply a residue
of p, and write a R p. Plainly

r = px, = —zx; (modp)

is another solution of the congruence. Also, if ' = x for any other
value z, of x, we have

22 = a, )

i

a, (®y—2,) (2, +1,) = 2}—2f = O (modp).
Hence either x, = z, or
Ty, = —X; = P-X,;
and there are_just two solutions of the congruence, namely x, and p-x,.
In this case the numbers
1, 2,.., p-l
may be grouped as %, p-xi, and }(p—3) pairs of unequal associated
numbers. Now
r(p—a,) = —a? = -a (modp),
while xz’ = a (modp)
for any associated pair x, z'. Hence

(P! = TI X = —a.ql®3 = —ghv-1 (modp).
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(2) If the second alternative is true and no x is associated with itself,
we say that a is g quadratic non-residue of p, or simply a non-residue
of p, and write a N p. In this case the congruence

22 = a (modp)

has no solution, and the numbers
1, 2,..., p-l
may be arranged in 4(p— 1) associated unequal pairs. Hence
(p—1)! = TJ = = a¥®-1 (modp).
We define ‘Legendre’s symbol’ % where p is an odd prime and a is

any number not divisible by g, by

YN = 41, if aRp,
5

P
(ﬁ) = -1, if aNp.
VY
It is plain that (ﬁ) —_ (é)
vy P

if a= b (mod p). We have then proved
Treorem 79, If p is an odd prime and a is not a multiple of p, then
(p—1)! = —(g)aé(l"l) (mod p).
D
We have supposed p odd. It is plain that 0 = 02, 1 =12, and so all numbers,
are quadratic residues of 2. We do not define Legendre's symbol when » = 2

and we ignore this case in what follows. Some of gur theorems are true (but
trivial) when p = 2

6.6. Special cases of Theorem 79. Wilson’s theorem. The

two simplest cases are those in whicha=1and a=—1.
(1) First let a = 1. Then
22 = 1 (modp)

has the solutions x = 4 1; hence 1 is a quadratic residue of p and
Lo
@

If we put a = 1 in Theorem 79, it becomes

TrEoReM 80 (WILSON’S  THEOREM)

(p-1)! = -1 (modp).
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Thus 11 |3628801.

The  congruence (p—1)14+1 = 0 (mod p?)
is true for P =5 p == 13, p = 563,
but for no other value of p less than 200000. Apparently no general theorem
concerning the congruence is known.

If m is composite, then

m|(m—1)!4-1
is false, for there is a number d such that
d |m, l<d<m,

and d does not divide (m=1) ! + 1. Hence we derive
Trecrem 81, If m > 1, then a necessary and suffictent condition that
m should be prime is that
m (m—1)!41.
The theorem is of course quite useless as a practical test for the
primality of a given number m.
(2) Next suppose a = — 1. Then Theorems 79 and 80 show that

(:P_l) = —(—1ED(p—1)! = (1)1,

TreoRem 82.  The number — 1 4s a quadratic residue of primes of the
form 4k-+1 and a non-residue of primes of the form 4k-}+3, <.e.

(__1) = (= L)ip-D,
P
More generally, combination of Theorems 79 and 80 gives
TecRem 83 ¢ 2 = gy (modp).
cr

6.7. Elementary properties of quadratic residues and non-
residues. The numbers
(6.7.2) 12,2232 ., {-%—(p—l)}2
are all incongruent; for y2 = ¢2 implies r = s or r = —s (modp), and
the second alternative is impossible here. Also

%2 = (p—r)? (modp).

It follows that there are 3(p— 1) residues and 4(p— 1) non-residues of p.

Trecrem 84.  There are 1(p—1) residues and L(p—1) non-residues of
an odd prime p.

We next prove

Trecrem 85.  The product of fwo residues, or of fwoe non-residues, is
a residue, while the product of a residue and a non-residue ¢s a non-residue.
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(1) Let us write v, &, o ,... for residues and B, 8, B, ,... for non-
residues. Then every «d’ is an g, since
= a. y? = o - (2y)? = «’ (Modp).
() If o is a fixed residue, then
ooy, 2.0q, 3.0 youny (P—1)y

is a complete system (modp). Since every aa, is a residue, every Bay
must be a non-residue.

(3) Similarly, if 8, is a fixed non-residue, every BB, is a residue. For

1.81, 2.8y (p— DB

is a complete system (modpj, and every «f; is a non-residue, so that
every BB, is a residue.

Theorem 85 is also a corollary of Theorem 83.

We add two theorems which we shall use in Ch. XX. The first is
little but a restatement of part of Theorem 82.

Tiecrem  86.  If pis a prime 4k 1, then there is an x such that

1-4-2% = mp,

where 0 <<m < p.

For, by Theorem 82, -- 1 is a residue of p, and so congruent to one
of the numbers (6.7.1), say «?; and

0< l1422< 14(1ip)? < po
THEoREM 87. If p 4s an odd prime, then there are numbers x and y such
that 1-+a?+y® = mp,
where 0 <m < p.
The (p+1) numbers

(6.7.2) 22 (0 e< Hp—1)
are incongruent, and so are the %{(p-+1) numbers
(6.7.3) —1—y* (0 <y < 3Hp—1).

But there are p + 1 numbers in the two sets together, and only p residues
(modp); and therefore some number (6.7.2) must be congruent to some
number (6.7.3). Hence there are an z and a y, each numerically less
than 1p, such that

2t = —1—y2 1422492 = mp.
Also 0 < 1+224-9% < 14+2(3p)? < p?,
sothat 0 <m < p.
Theorem 86 shows that we may take y = 0 when p = 4k+ 1.
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6.8. The order of a (mod m). We know, by Theorem 72, that
a$m =1 (modm)
if (@, m) = 1. We denote by d the smallest positive value of x for which
(6.8.1) a® = 1 (modm),
so that d < ¢(m).
We call the congruence (6.8.1) the proposition P(x). Then it is
obvious that P(x) and P(y) imply P(z-+y). Also, if y < z and
a®¥ = b (mod m),
then a® = ba¥ (modm),
so that P(x) and P(y) imply P(z—v). Hence P(x) satisfies the condi-
tions of Theorem 69, and d | d(m).

We call d the ordert of a (modm), and say that a belongs to d (mod m).
Thus 2=2  2=4  28=1 (mod7),

and so 2 belongs to 3 (mod7). If 4 = $(m), we say that a is a primi-
tive root of m. Thus 2 is a primitive root of 5, since

2 =2, 2 = 4, 23 =3, 24=1 (mod 5);

and 3 is a primitive. root of 17. The notion of a primitive root of m
bears some analogy to the algebraical notion, explained in § 5.6, of a
primitive root of unity. We shall prove in $7.5 that there are primitive
roots of every odd prime p.

We can sum up what we have proved in the form

THeOREM 88. Any number a prime to m belongs (modm) to a divisor
of ¢(m): if d is the order of a (modm), then d|$(m). If m is a prime p,
then d (p- 1). The congruence a* == 1 (modm) is true or false according
as x is or is not a multiple of d.

6.9. The converse of Fermat’s theorem. The direct converse of
Fermat's theorem is false; it is not true that, if m f a and
(6.9.1) am-1 = 1 (modm),

then m is necessarily a prime. It is not even true that, if (6.9.1) is true
for all a prime to m, then m is prime.. Suppose, for example, that
m = 561 = 3.11.17. 1f.3 J a, 11 [ a, 17} a, we have

g =1 (mod3), ¢ =1 (modll), a'®* =1 (mod17),

t Often called the index; but this word has & quite different meaning in the theory
of groupa.
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by Theorem 71. But 2 | 560, 10 | 560, 16 | 560 and so %0 = 1 to each
of the moduli 3, 11, 17 and so to the modulus 3.11.17 = 561.
For particular a we can prove a little more, viz.

Trecrem 89.  For every a > 1, there is an infintty of composite m
satisfying (6.9.1).

Let p be any odd prime which does not divide a(a®—1). We take

(692 m_azl’—l_ aP—1\ faP -1
- T a?—1 \a-—1 a—]—l)’

so that m is clearly composite. Now
(a®*~-1)(m—1) = a??—q? = a(a?1—1)(a?+a).
Since a and q¢? are both odd or both even, 2 (a?+a). Again aP-1—1
is divisible by p (after Theorem 7 1) and by a®— 1, since p- 1 is even.
Since p [ (a*— 1), this means that p(a?— 1) (a?-1-—1). Hence
2p(a®— 1) (a®—1)(m—1),
so that 2p (m--l) and m = 142py for some integral u. Now, to

modulus m,
a?® = 14+m(a?—1) = 1, a™1 =g =]

and this is (6.9.1). Since we have a different value of m for every odd
p which does not divide a(a®—1), the theorem is proved.
.A correct converse of Theorem 71 is

Trecrem 90.  If am™! =1 (modm) and a® # 1 (modm) for any
dividor x of m- 1 less than m- 1, then m is prime.

Clearly (a,m) = 1. If { is the order of a (mgdm), then d | (m-l) and
d | $(m) by Theorem 88. Since g = 1, we must have d = m- 1 and
so (m-l) ¢(m). But

¢(m) = m | | (1-i) < m-I
i

if m is composite, and therefore m must be prime.
6.10. Divisibility of 2»-1_1 by p2. By Fermat's theorem
2r-1_1 = 0 (modp)
if p > 2. Is it ever true that
9p-1_1 = 0 (mod p?)?
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This question is of importance in the theory of ‘Fermat’s last theorem’
(see Ch. XIIl). The phenomenon does occur, but very rarely.
Treorem 91. There is a prime p for which
2p-1_1 =0 (mod p?).
In fact this is true when p = 1093, as can be shown by straight-
forward calculation. We give a shorter proof, in which all congruences

are to modulus p? = 1194649.
In the first place, since

3 = 2187 = 2p+1,

we have
(6.10.1) 34 = dpt1.
Next  ou = 16384 = 15p—11, 2% = —330p+121,
32,9% = _2970p1-1089 = —2060p 4 = — 1876p—4,
and so 32.226 = —-469p—1.

Hence, by the binomial theorem,
g1 2182 = _ (469p4-1)7 = —3283p—1,

and so
(6.10.2) 314.2182 — __4p_1].
From (6.10.1) and (6.10.2) it follows that
314 9182 == -314 9182 — _ ]
and so 21092 = 1 (mod 10932).

6.11. Gauss’s lemma and the quadratic character of 2. If p
is an odd prime, there is just one residuet of n (modp) between —ip
and }p. We call this residue the minimal residue of n{modp); it is
positive or negative according as the least non-negative residue of n lies
between 0 and 1p or between 1p and p.

We now suppose that m is an integer, positive or negative, not
divisible by p, and corsider the minimal residues of the i(p— 1) numbers
(6.11.1) m, 2m, 3m ,..., }(p—1)m.

We can write these residues in the form

UY 73 yere r)\! —1;,’ _TI2 geery _rp,’
where  A4p = $(p—1), O<n<ip, 0<7r<ip

t Here, of course, ‘residue’ has its ususl meaning and is not an abbreviation of
‘quadratic residue’.
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Since the numbers (6.11.1) are incongruent, no two r can be equal, and
no two Y. If an r and an " are equal, say r; = 7}, let am, bm be the
two of the numbers (6.11.1) such that

am = 1, bm = —r; (mod p).
Then am-+bm = 0 (modp),
and so atb = 0 (modp),

which is impossible because 0 << a < {p,0<b < p.
It follows that the numbers 7;, r;- are a rearrangement of the numbers

1, 2:-") %(p_l);
and therefore that
m.2m.. g(p—1)ym = (—1)r1.2..3(p—1) (modp)
and so m®-1) = (—1)* (modp).
But (ﬁ) — -1 (modp),
VY

by Theorem 83. Hence we obtain
THEOREM 92 (GAUSS’S LEWR) : M= (— )*, where y is the number
p

of members of the set
m, 2m, 3m ,..., {(p—1)m,

whose least positive residues (modp) are greater than Qp.

Let us take in particular m = 2, so that the numbers (6.11.1) are

2, 4 ..., pl

In this case A is the number of positive even integers less than {p.

We introduce here a notation which we shall use frequently later.
We write 2] for the ‘integral part of #’, the largest integer which does
not exceed X. Thus z = [a]Lf,

where 0 < f < 1. For example,

[i1 =2, [3] = 0, [—%] = —2.
With this notation A= [}p]
B u t Adp = HP-I),
and so p = 3(p—1)—[ip]

If p=1 (mod4), then
p == Hp—1)—ip—1)= {(p—1) = [Hp+V)],
and if p = 3 (mod 4), then
p=3p—1)—ip-3) = i{p+1) = [ip+1]
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Hence = 2ip-1) = (_1)[i(p+1)] (modp)’

that is to say =1, if p =841 or 8n—1,

= -1, if p = 8-+3 or 8»n—3.

%’N %[l\) %“\:

If p = 811, then }(p%—1) is even, while if p = 8»4-3, it is odd.
Hence (— 1RE+ = (_ 1)iw*-D),
Summing up, we have the following theorems.

2

THecREM 93! - = (= 1)@+,
cp

THEGREM  94: 2 _ 1)i@i-D),
w

Trerem  95. 2 is a quadratic residue of primes of the form 8n+ 1 and
a quadratic non-residue of primes of the form 8n-3.

Gauss’s lemma may be used to determine the primes of which any
given integer m is a quadratic residue. For example, let us take m = — 3,
and suppose that p > 3. The numbers (6.11.1) are

-3a (1 < a < ip),

and g is the number of these numbers whose least positive residues lie
between 1p and p. Now

—3a = p—3a (modp),
and p-3a lies between ip and pif 1 € a < p. If ip < a < ip, then
p-3a lies between 0 and }p. If ip < a < ip, then

-3a = 2p—3a (modp),

and 2p— 3a lies between 4p and p. Hence the values of a which satisfy
the condition are

1, 2,.., (4], [3p]+1, [3p)+2..... (3],
and w = [$p]+[3p]-[3p]
If p=#6n+lthen p= n}3n—2n is even, and if p = 6n45 then

_ = nt(3n+2)—(2n+1)
is odd.

THEREM  96. == 3 is a quadratic residue of primes of the form 6n- 1
and a quadratic non-residue of primes of the form 6n-5.
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A further example, which we leave for the moment? to the reader, is

THEOREM 97. 5 is a quadratic residue of primes of the form10n-41 and
a quadratic non-residue of primes of the form 10n+ 3.

6.12. The law of reciprocity. The most famous theorem in this
field is Gauss's ‘law of reciprocity’.
Trecrem 98. If p and g are odd primes, then

where P’ = 3(p—1), a’ = #g—1).
B C
]
P
A
L
2
L7
//
L~
0 S K A

Fig. 7.

Since p’q’ is even if either p or q is of the form 4n-+1, and odd if both
are of the form 4»-3, we can also state the theorem as

Treorem  99. If p and g are odd primes, then

-0

unless both p and q are of the form 4n-+3, in which case
@:_ﬁ.
_ q D
We require a lemma.

THEOREM  100.% If S{g,p) = i [ﬂ],

s=1

then S(g, p)+8(p, q) = P'¢.
The proof may be stated in a geometrical form. In the figure (Fig. 7)
AC andBC are z = p,y = g, and KM and LM are x = p,y =¢.

t See § 6.13 for g proof depending on Gauss's law of reciprocity.
1 The notation has no connexion with that of § 5.6.
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If (as in the figure) p > q, then ¢'/p’ < q/p, and M falls below the
diagonal OC. Since

¢ <q£ <41,
there is no integer between KM = ¢" and KN = ¢p’/p.

We count up, in two clifferent ways, the number of lattice points in
the rectangle OKM L, counting the points on KM and LM but not
those on the axes. In the first place, this number is plainly p'q’. But
there are no lattice points on OC (since p and g are prime), and none
in the triangle PMN except perhaps on PM. Hence the number of
lattice points in OKML is the sum of those in the triangles OKN and
OLP (counting those on KN and LP but not those on the axes).

The number on ST, the line x = g, is [s¢/p], since sq/p is the ordinate
of T. Hence the number in OKN is

§ [‘%q] = 8(¢,p)-

s=1

Similarly, the number in OLP is S(p, q), and the conclusion follows.

6.13. Proof of the law of reciprocity. We can write

(6.13.1) kg = P{ la- + oty

where 1< k<y, 1 < w < p-l
Here u, is the least positive residue of kq (modp). If u, = v, < p/,
then w, is one of the minimal residues r, of § 6.11, while if u; = w, > p’
then u,—p is one of the minimal residues —rj. Thus

h= U rp = p—iy
for every i, j, and some k.

The r; and r; are (as we saw in § 6.11) the numbers 1, 2,..., " in some
order. Hence, if

R=3%n=2Yu, R =37 =23 (p—wy) = pp— 2wy
(where p is, as in § 6.11, the number of the r}), we have

;% 1p—1p+4l p*—1
E+R “,21”_5 2 2 8

and so

(6.132) pp+ X v 3wy = (PP~
On the other hand, summing (6.13.1) from k = 1to k = p’, we have

(6.13.3) 3q(p = p8(g, P)+ 3wy = PS(@.P)+ Y vt D wy
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From (6.13.2) and (6.13.3) we deduce

(6.13.4) Hp*—1)(g—1) - pS(g;P)+2 3 we—pp.

Now g- 1 is even, and p®— 1 = 0 (mod 8);t so that the left-hand side

of (6.13.4) is even, and also the second term on the right. Hence (since

p is odd) S(g, p) = p (mod 2),

and therefore, by Theorem 92,

2—_: — 1) = (—1)5@n),
(p) (—Dr = (1)

Finally, &)%): (—1)Sep+Se - (— 1)p'e,

by Theorem 100.
We now use the law of reciprocity to prove Theorem 97. If

p = 10n-+k,
where Kis 1, 3, 7, or 9, then (since 5 is of the form 4n-1)

5-6- -0

The residues of 5 are 1 and 4. Hence 5 is a residue of primes 5n- 1

and 5n+4, i.e. of primes 10n-+1and 10n-+9, and a non-residue of the
other odd primes.

6.14. Tests for primality. We now prove two theorems which
provide tests for the primality of numbers of certain special forms.
Both are closely related to Fermat's Theorem.

THEOREM 101. Ifp > 2, h < p, n = hpt+1or hp241 and
(6.14.1) 20 £ 1, 9n-1 = 1 (modn),
then n s prime.
We write n = hp®+1, where b = 1 or 2, and suppose d to be the

order of 2 (modn). After Theorem 88, it follows from (6.14.1) that J f h

and d | (n-l), i.e. d| hpb. Hence p | d. But, by Theorem 88 again
d ¢(n)and so p ¢(n). If

n = pi.pg,
we have (n) = phti.pf(p;—~ 1)...(pp—1)

and so, since p / n, p divides at least one of p,—1, p,—1,..., p—1.
Hence n has a prime factor P = 1 (mod p).

b

t1fp = 2n4+1then p*—1= 4n(n+1) = 0 (mod 8).
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Let n = Pm. Since n =1 = P (modp), we have m = 1 (modp).
Ifm > 1, then
(6.14.2) n = (up+1)wp+l), 1<u<e
and hpt-1 = uvp+u+v.
If b=1, this is h = uvp4u-+v and so
P<uvp < h <p,
a contradiction. If b = 2,
hp = uwvptu+v, P | (u+v), utv>=p
and so vz autvzop, v>3p
and
p—2 _2(p—2)< 2

< — .

uv < h < p, w <L p—2, <
p p U » P

Hence u = 1 and so
v=p—l, uv = pl,
a contradiction. Hence (6.14.2) is impossible and m = 1 and n = P,

THEOREM 102. Let m > 2, A < 2m and n = A2™41 be a quadratic
non-residue (modp) for some odd prime p. Then the necessary and suffi-
cient condition for n to be a prime is that

(6.14.3) pin=D = — 1 (mod n).
First let us suppose n prime. Sinoe n =1 (mod 4), we have
P
a p)

by Theorem 99. Then (6.14.3) follows at once by Theorem 83. Hence
the condition is necessary.

Now let us suppose (6.14.3) true. Let P be any prime factor of n and
let d be the order of p (mod P). We have

pin-D = —1, prl=1 pP1l=1 (modP)
and so, by Theorem 88,
df}n=1), d @m—1), d (P-1),
that is d)2m-1th, d 27, d (P-1),

so that 2m|d and 2m| (P-l). Hence P = 2mz4-1.
Since n = 1 = P (mod 2™), we have n/P = 1 (mod 2™) and so

n= @ubnEmyLl),  x2Lly>0
Hence 2mpy < 2mypyt-x+y = b < 2m y=20
and n = P. The condition is therefore gufficient.
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If we put A = 1, m = 2%, we have n = F, in the notation of § 2.4.
Since 12 = 22 = 1 (mod 3) and F, =2 (mod3), F, is a non-residue
(mod 3). Hence a necessary and sufficient condition that F;, be prime
is that F, (3{Fx D 1).

6.15. Factors of Mersenne numbers; a theorem of Euler. We
return for the moment to the problem of Mersenne’'s numbers, men-
tioned in § 2.5. There is one simple criterion, due to Euler, for the
factorability of M, = 27 — 1.

THeorem 103. If kK > 1 and p = 4k-+3 4g prime, then a necessary
and sufficrent condition that 2p+ 1 should be prime is that

(615.1) 2 = 1 (mod2p-1).
Thus, if 2p+1is prime, (2p+1) M, and M, is composite.

First let us suppose that 2p-- 1 = P is prime. By Theorem 95, since
P =17 (mod 8), 2 is a quadratic residue (mod P) and

99 = 2¥P-1) =1 (mod P)

by Theorem 83. The condition (6.15.1) is therefore necessary and
P|M, Butk>1land so p>3and M,=2°—1>2p41=P.
Hence M, is composite.

Next, suppose that (6.15.1) is true. In Theorem 101, put h = 2,
n = 2p+1. Clearly h < pand 2t =4 # 1 (modn) and, by (6.15.1),

2n-1 = 2% = 1 (modn).
Hence n is prime and the condition (6.15.1) is sufficient.

Theorem 103 contains the simplest criterion known for the charac-
ter of Mersenne numbers. The first eight cases in which this test gives
a factor of M,,,, are

23| My, 47 | My, 167 | Mg, 263 | My,
359 | Mz, 383 | My, 479 M,,,, 503 My,

L]

NOTES ON CHAPTER VI

§ 6.1. Fermat stated his theorem in 1640 (Huwres, ii. 209). Euler’s first proof
dates from 1736, and his generalization from 1760. See Dickson, History, i, ch. iii,
for full information.

§ 65 Legendre introduced ‘Legendre's symbol in his Essai sur la théorie des
nombres, first published in 1798. See, for example, § 135 of the second edition
(1808).
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§ 6.6. Wilson's theorem was first publiahed by Waring, Meditationes algebraicae
(1770), 288. There is evidence that it was known long before to Leibniz. Goldberg
(Journ. London Math. Soc. 28 (1953), 252-6) gives the residue of (p-l)'+ 1 to
modulus p* for » < 10000. See E. H. Pearson [Math. Compuiation 17 ( 1963),
194-5] for the statement about the congruence (mod p?). )

§ 6.9. Theorem 89 is due to Cipolla, Annalz di Mat. (3), 9 (1903), 139'—'6Q
Amongst others the following composite values of m satisfy (6.9.1) for all' a
prime to m, viz. 3.11,17,5.13.17, 5.17.29, 5.29.73, 7.13.19. Apart from these,
the composite values of m < 2000 for which 2™—! = 1 (modm) are

341 = 11.31, 645 = 3.5.43, 1387 = 19.73, 1905 =3.5.127,

See also Dickson, History, i. 91-95, and Lehmer, Amer. Math. Monthly, 43 (1936),
347-54. Lehmer gives a list of large composite m for which 2m-1 = 1 (modm).

Theorem 90 is due to Lucas, Amer. Journal of Math. 1 (1878), 302. It has
been modified in various ways by D. H. Lehmer and others in order to obtain
practicable tests for the prime or composite character of a given large m. See
Lehmer, loec, cit., and Bulletin Amer. Math. Soc. 33 (1927), 327-40, and 34 (1928),
54-56, and Duparc, Simon Stevin 29 (1952),-21-24.

§ 6.10. The proof is that of Landau, Vorlesungen, iii. 275, improved by R. F.
Whitehead. Theorem 91 is true also forp = 3511 (N. G. W. H. Beeger, Mess. Math.
51 (1922), 149-50) and for no other p < 200000 (see Pearson, loc. cit., above).

§§ 6.11-13. Theorem 95 was first proved by Euler. Theorem 98 was stated by
Euler and Legendre, but the first satisfactory proofs were by Gauss. See Bachmann,
Niedere Zahlentheorie, i, ch. 6, for the history of the subject, and many other proofs.

$6.14. Taking the known prime 2127_ 1 asp in Theorem 101, Miller and Wheeler
tested n = hp+ 1l and n = hp2+ 1 (with various small values of h) for prime
factors « 400 and < 2000 respectively.. For exemple, trivially, if h is odd, 2|n.
They t}_len showed that 2* # 1 (mod n) for the remaining h (a fairly simple matter,
since 2*— 1 is not large compared with n). Finally they used the Cambridge
electronic computer to test whether 2%! = 1 (mod n). For each n = hp+ 1, this
took about 3 minutes, and for each n = hp?4- 1 about 27 minutes. Several primes
of form hp + 1 were found. Seven numbers of the form hp2+ 1 were found not
to satisfy 2%-1 = 1 (modn) (and so to be composite) before 5 = 180p*+1 was
found to satisfy the test. See Miller, gureka, October 1951; Miller and Wheeler,
Nature, 168 (1951), 838; and our note to § 2.5. Theorem 101 is also true when
n = hp®4 1, provided that h < Ap and that h is not a cube. See Wright, Math.
Gazette, 37 (1953), 104-6.

Robinsonextended Theorem 102 (Amer, Math. Monthly, 64 (1957), 783-10) and
he and Selfridge used the case p = 3 of the theorem to find a large number of
primes of the form k. 2m4 1 (Math. tables and other aids to computation, 11 (1957),
21-22). Amongst these primes are several factors of Fermaupqi}lbers. See also
the note to § 15.5.

Lucas [Théorie des nombres, i (1891), p. xii] stated the test for the primality
of F,. Hurwitz [Math. Werke. ii. 747] gave a proof. F,, was proved composite by
this test, though an gctual factor was subsequently found (see Selfridge, Math.
tables and other aids to computation,7 (1953), 274-5).

§ 6.15. Theorem 103; Euler, Comm. Acad. Petrop. 6 (1732-3), 103 [Opera (1),
ii. 3].
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VI
GENERAL PROPERTIES OF CONGRUENCES

7.1. Roots of congruences. An integer x which satisfies the con-
gruence f(X) = coa™+c am14...¢c, = O (modm)
is said to be a ropot of the congruence or a root off(x) (modm). If a is
such a root, then so is any number congruent to a (modm). Congruent
roots are considlered equivalent; when we say that the congruence has
I roots, we mean that it has | incongruent roots.

An algebraic equation of degree n has (with appropriate conventions)
just n roots, and a polynomial of degree n is the product of n linear
factors. It is natural to inquire whether there are analogous theorems
for congruences, and the consideration of a few examples shows at once
that they cannot be so simple. Thus

(7.1.1) zp-1-1 = 0 (mod p)
has p-l roots, viz. 1, 2 ,.., p-1,

by Theorem 71,

(7.1.2) 28— 1 =0 (mod 16)
has 8 roots, viz. 1, 3, 5, 7, 9, 11, 13, 15; and
(7.1.3) 2¢—2 = 0 (mod16)

has no root. The possibilities are plainly much more complex than they
are for an algebraic equation.

7.2. Integral polynomials and identical congruences. If ¢,
Ci,..., ¢, are integers then
Cox™+c 214+,
is called an sntegral polynomial. If

n n
f@y= e avr,  9xX) = 3 can T,
r=0 r=0

and ¢, = ¢, (modm) for every r, then we say that f(x) and g(x) are
congruent to modulus m, and write
f(x) = g(x) (modm).
Plainly f(x) = g(x) = f@)h(z) = g(x)h()
if h(x) is any integral polynomial.
In what follows we shall use the symbol ‘=" in two different senses,
the sense of § 5.2, in which it expresses a relation between numbers,
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and the sense just defined, in which it expresses a relation between
polynomials. There shoulcl be no confusion because, except in the
phrase ‘the congruence f(x) = 0', the variable x will occur only when
the symbol is used in the second sense. When we assert that f (x) = g(x),
or f(x) = 0, we are using it in this sense, and there is no reference to
any numerical value of x. But when we make an assertion about ‘the
roots of the congruence f(x) = 0’, or discuss ‘the solution of the con-
gruence’, it is naturally the first sense which we have in mind.

In the next section we introduce a similar double use of the symbol ¢ [’

Theorem 104. (i) If p 48 prime and
f@)g(x) = 0 (mod p),
then either f(x) = 0 or g(x) = 0 (mod p).
(ii) More generally, if
S(x)g(x) = 0 (modp?)
and f@) # o (modp),
then g(z) = 0 (mod p2).

(i) We form fi(z) from f(x) by rejecting all terms of f(x) whose
coefficients are divisible by p, and g,(x) similarly. If f(x) 2 0 and
g(x) # 0, then the first coefficients in f;(x) and g,(x) are not divisible by
p, and therefore the first coefficient in f,(x)g,(x) is not divisible by p.
Hence f@)y(@) = fil@) (@) # 0 (mod p).

(if) We may reject multiples of p from f (x), and multiples of p¢ from
g(x), and the result follows in the ssme way. This part of the theorem

will be required in Ch. VIII.
If f(z) = g(x), then f(a) = g(a) for all values of a. The converse is not

true; thus @ = a (modp)

for gll a, by Theorem 70, but
2P = x (mod p)
is false.

7.3. Divisibility of polynomials (mod m). We say that f(x) is
divisible by g(x) to modulus m if there is an integral polynomial h(x)
such that f(x) = g(x)h(x) (modm).

We then write g(x) If (=) (modm).
THEOREM 105. A necessary and sufficient condition that
(x-u) |f(x)(modm)
is that f(a) = 0 (modm).
teg. in§8.2.
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If (z—a) | f(x) (modm),
then f(x) = (x—a)k(x) (modm)
for some integral polynomial h(x), and so

f(a) = 0 (modm).
The condition is therefore necessary.

It is also sufficient. If
f(@) = 0 (modm),

then f(z) = f(x) —f(a) (mod m).
But fle) = canT
and f@)—fa) = @—ajh),
where

h(x) = f_(zL_Hi:{L(a) = Y ¢l 4an 24 am )

is an integral polynomial. The degree of h(x) is one less than that of
f(@).

7.4. Roots of congruences to a prime modulus. In what follows
we suppose that the modulus m is prime; it is only in this case that there
is a simple general theory. We write p for m.

Trecrem 106. If p ts prime and
f(z) = g)h(x) (mod p),
then any root of f(x) (Mmodp) is a root either of g(z) or of h(z).
If.a is any root off(x) (modp), then
fa) = 0 (modp),
or g(a)h{a) = 0 (modp).

Hence g(a) = 0 (modp) or h(a) = 0 (modp), and so a is a root of g(x)
or of h(x) (modp).
The condition th.at the modulus is prime is essential. Thus

22 = 22—4 = (x-2)(2+2) (mod4),
and 4 is a root of 2 = 0 (mod4) but not of x-2 = 0 (mod4) or of
z+2 =0 (mod4).
TuroreM 107. If f(x) ¢s of degree n, and has more than n roots (modp),
then fx) = 0 (modp).

The theorem is significant only when n < p. It is true for = = 1, by
Theorem 57; and we may therefore prove it by induction.
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We assume then that the theorem is true for a polynomial of degree
less than n. If f(x) is of degree 7, and f(a) = O (modp), then
f@) = (z—a)g(z) (modp),
by Theorem 105; and g(z) is at most of degree n- 1. By Theorem 106,
any root of f(x)is either a or a root of g(x). If f(z) has more than n
roots, then g(x) must have more than n- 1 roots, and so
g(x) = 0 (mod p),
from which it follows that
f(x) = 0 (modp).
The condition that the modulus is prime is again essential. Thus
2z*—1= 0 (mod 16)
has 8 roots.
The argument proves also
Trecrem 108. If f(x) has its full number of roots
ay, Qo,..., @, (modp),
then f(X) = colx—a,)(x—a,)...(x—a,) (modp).

7.5. Some applications of the general theorems. (1) Fermat's
theorem shows that the binomial congruence
(7.5.1) 2% = 1 (modp)
has its full number of roots when d = p- 1. We can now prove that
this is true when  is any divisor of p 1.

Trecem  109. If pis prime and d p- 1, then the congruence (7.5.1)
hus d roots.

We have aPl—1 = (x8—1)g(x),
where g(x) = qp-1-0 gp-1-2d.1 4 ad L],

Now gr-1-1 = 0 has p-l roots, and g(x) = 0 has at most p-I-d.
It follows, by Theorem 106, that #2—1 = 0 has at least d roots, and
therefore exactly d.

Of the d roots of (7.5.1), some will belong to d in the sense of § 6.8, but
others (for example 1) to smaller divisors of p- 1. The number belong-
ing to d is given by the next theorem.

Trecem 110. Of the d roots of (7.5.1), ¢(d) belong to d. In particular,
there are ¢(p— 1) primitive roots of p.

If#(d) is the number of roots belonging to d, then
S 4@ = p- 1,
dlp—1
since each of 1, 2,..., p- 1 belongs to some d; and also

dl])z—l ‘Jb(d) = p_l’
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by Theorem 63. I:f we can show that ¢(d) < ¢(d), it will follow that
Y(d) = $(d) for each d.

If $(d) > O, then one at any rate of 1,2 ..., p - 1, say f, belongs to d.
We consider the d :numbers

fi=f" O << h < d)

Each of these numbers is a root of (7.5.1), since f¢ == 1 implies f2¢ = 1.
They are incongruent (modp), since f *» = f ¥ where A’ < h < d, would
imply f*¥ =1, where 0 < k= h-h’ < d, and then f would not belong
to d; and therefore, by Theorem 109, they are qll the roots of (7.5.1).
Finally, if f, belongs to d, then (h, d) = 1; for k|2, k| d, and k> 1
would imply (fr)d = (fapik =1,
in which case f , would belong to a smaller index than d. Thus A must
be one of the $(d) numbers less than and prime to d, and therefore

$(d) < 4(d).

We have plainly proved incidentally

THEOREM 111. If p is an odd prime, then there are numbers g such
thelt 1, g, ¢%,..., g¥-% are incongruent modp.

(2) The polynomial f@)y=art—1
is of degree p--1 and, by Fermat's theorem, has the p-l -roots
1,2,3...,p-1 (modp). Applying Theorem 108, we obtain

THeEOREM 112. If p is prime, then
(4.5.2) ar1—1 = (z—1)(x—2)...xk—p+1) (modp).

If we compare the constant terms, we obtain a new proof of Wilson’s
theorem. If we compare the coefficients of «®-2, x?-3,..., X, we obtain

THeorem 113. If p is an odd prime, 1 < ! < p- 1, and A, is the
sum of the produ‘cts of 1 different members of the set 1, 2,..., p-1, then
A, = 0 (modp).

We can use Theorem 112 to prove Theorem 76. We suppose p odd.

Suppose thet n=rp—s (r>10<¢<p).
Then
(p+n—-1\) _(rp—stp=1)! _(rp—s+1)(rp—s+2)..(rp—s+p—1)
n T rp—8)ip—1)! T (p—1)t

is an integer ¢, and
(rp—s+1)rp—s8+2)..(rp—s+p—1) = (p—1)!t = —4 (modp),
by Wilson's theorern (Theorem 80). But the left-hand side is congruent to
(s— 1)(s—2)...(s—p--1) = sP~*— 1 (modp),

by Theorem 112, and is therefore congruent to — 1 when § = 0 and to O otherwise.
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7.6. Lagrange’s proof of Fermat’s and Wilson’s theorems. We
based our proof of Theorem 112 on Fermat's theorem and on Theorem
108. Lagrange, the discoverer of the theorem, proved it directly, and
his argument contains another proof of Fermat's theorem.

We suppose p odd. Then

(7.6.1) (x—1)(x—2)...(x—p+1) = aP1—A4 2P 2. 14,

where A,,... are defined as in Theorem 113. If we multiply both sides
by x and change x into x- 1, we have

(x—1pP—A(x—1)P 4.+ 4, ,(—1) = (z—1)(z—2)..(x—p)
= (z—p)aPt—A;2P ..+ 4y ).

Equating coefficients, we obtain

(Ilj)‘l"Al = p+4,, (12)) + (pTl)Aﬁ"Az = pd;+4,,

—1 —9
)+ (75t (P77 a4, = 24y 4,

and so on. The first equation is an identity; the others yield in suc-

cession 1
acf ool

—1 —2
oo (o1 o2

(p— I)AP—I = 1+'A1+A2+"'+Ap—2'

Hence we deduce successively

(7.62) P4y pldy o PlAps
and finally (p—1A4,, = 1 (modp)
or

(7.6.3) 4,, = -1 (modp).

Since 4,_; = (p-1)!, (7.6.3) is Wilson's theorem; and (7.6.2) and
(7.6.3) together give Theorem 112. Finally, since

{(x—1)}(x—2)...(x—p+1) = 0 (modp)
for any x which is not a multiple of p, Fermat's theorem follows as a
corollary.
7.7. The residue of {}(p— 1)) !. Suppose that p is an odd prime and
w = (p—1).
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From
(p—D! = 1.2.4p—D{p—Hp—1}{p—(p-3)}..(p—1)
= (— 1)®(=!)? (modp)
it follows, by Wilson’s theorem, that
(w!)? = (- 1)®! (modp).

We must now distinguish the.two cases p = 4n- 1 and p = 4n- 3.

If p=4n-+1, then (w!)? = -1 (modp),

so that (as we proved otherwise in $6.6) — 1 is a quadratic residue of p.

In this case . is congruent to one or other of the roots of #* = —1
(mod p).
If p = 4n-+3, then
(7.7.1) (w!)? = 1 (modp),
(7.7.2) w = 41 (modp).

Since ~ 1 is a non-residue of p, the sign in (7.7.2) is positive or negative
according as w! is a residue or non-residue of p. But w! is the product
of the positive integers less than p, and therefore, by Theorem 85, the
sign in (7.1.2) is positive or negative according as the number of non-
residues of p less than 4p is even or odd.

Theorem 114. If p is g prime 4n--3, then

(-1}t = (—1) (modp),
where v is the number of quadratic non-residues less than 4p.

7.8. A theorem of Wolstenholme. It follows from Theorem 113
that the numerator of the fraction

1,1 1
14+
tyt3t +p— i
is divisible by p; in fact the numerator is the 4,_, of that theorem.

We can, however, go farther.

Theorem 115, If P18 a prime greater than 3, then the numerator of the
fraction

1 1 1
7.8.1 ) [ D i B et
( ) + 2+ 3+ +ﬁ_ 1
is divisible by p*.
The result is false when p=3.1t is irrelevant whether the fraction

is or is not reduced to its lowest terms, since in any case the denominator
cannot be divisible by p.

The theorem may be stated in a different form. If ¢ is prime to m,

the congruence ix = 1 (modm)
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has just one root, which we call the associate of 4 (modm).f We may
denote this associate by 7, but it is often convenient, when it is plain
that we are concerned with an integer, to use the notation

(or 1/7). More generally we may, in similar circumstances, use
b
@

(or b/a) for the solution of ax = b.

We may then (as we shall see in a moment) state Wolstenholme'’s
theorem in the form

Theorem 116. If P > 3, and 1/v is the associate of i (mod p?), then
1 1 1
ot —= d p?).
Ltgtgtet, =y =0 (modp?)
We may elucidate the notation by proving first that
1 1 <1
7.8.2 14>+ -+4..4—-—— =0 (modp).
(782) gttty =0 (modp)
For this, we have only to observe that, if 0 < < p, then
W1
z% =1, (p—1) - = 1 (modp).

1
Hence i(i+ 1 ) = i.l—(p—i)p_i = 0 (modp),

i p—1 )
1 1
-+ —— = 0 (modp),
tr— = (modp)

and the result follows by summation.

We show next that the two forms of Wolstenholme's theorem
(Theorems 115 and 116) are equivalent. If 0 < x < p and % is the
associate of x (mod p?), then

1\ 1
Fp—1)! = xi(p D xl). (mod p?).

X

Hence
- = N 1 1
(p—D!A+2+4...4p-—-1) = (I"—l)!(l +§+ +}’)—:‘__1) (mod p?),
the fractions on the right having their common interpretation; and the
equivalence follows.

t As in § 6.5, the a of § 6.5 being now 1.
{ Here, naturally, 1/ is the associate of 7 (mod p). This is determinate (mod p), but
indeterminste (mod p*) to the extent of an arbitrary multiple of p.
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To prove the theorem itself we put z = p in the identity (7.6.1).
This gives
(p—-l) = pP-1—A,pP24...—A, ,p+A, .
But 4, ; = (p-l)!, and therefore
pr2— A, pP34 .+ A, yp—A, =
Since p > 3 and PlAl,plA2, ,plA Za»

by Theorem 113, it follows that p? Ap o

Pl=D!(1 454+ )

This is equivalent to Wolstenholme’s theorem.
The numerator of

0—1+++( T

is A2_,—24, , 4,5, and is therefore divisible by p. Hence
Theorem 117. If p > 3, then Cp = 0 (modp).

7.9. The theorem of von Staudt. We conclude this chapter by
proving a famous theorem of von Staudt concerning Bernoulli's numbers.
Bernoulli's numbers are usually defined as the coefficients in the
expansionf

.2 2 24 Ez:s_
—1 3x+——x !x +6!x

e.lf
We shall find it convenient to write

x B
pra ﬁo+ﬁx

€

Bz e, Bs

x2—|— x3+
so that By = 1, B; = —1% and

Ba = (=1F By, By = 0 (k2 1).
The importance of the numbers cornes primarily from their occurrence
in the ‘Buler-Maclaurin sum-formula’ for 3 mk*. In fact

k
(7.9.1) 164264 4 (n—1)F = Z k+11_"r(]:)"k+l_rﬂ i
r=0.

for | 2> 1. For the left-hand side is the coefficient of x%+1 in

k! (1% g2 .. |- en-Dz) = kvxl"e = b

1—e® er—1
— k1(1+'31 Bzxz-{- )(nx—}-ﬁ‘;cj ),

and (7.9.1) follows by picking out the coefficient in this product.

{ This expansion is convergent whenever |x| < 2.

(ere—1)
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von Staudt's theorem determines the fractional part of B,.
Theorem 118. If k > 1, then

(7.9.2) (—1)*B, = ZZI, (mod 1),

the summation being extended oper thc: primes p such that (p- 1) | 2k.

For example, if k = 1, then (p—1)| 2, which is true if p = 2 or p = 3.
Hence —B; == }+1 = §; and in fact B; = }. When we restate (7.9.2)
in terms of the B, it becomes

1 X
(7.9.3) Bt > = =i,
o=k P
where
(7.9.4) k=12 4,6 .

and ¢ is an integer. If we define ® Kk(p) by

@) = 1((P-1) k), «&lp) = 0 ((p—1)]1%),
then (7.9.3) takes the form

795) Bt > M s,

where p now runs through all primes.
In particular von Staudt's theorem shows that there is no squared
factor in the denominator of any Bernoullian number.

7.10. Proof of von Staudt’s theorem. The proof of Theorem 118
depends upon the following lemma.

THEOREM 119: PE mk = —e(p) (modp).
1

If (p-1) | k, then mk = 1, by Fer:mat's theorem, and

Smk =p—1 = -1 = —glp) (Modp).
If (p-1) J k, and g is a primitive root of p, then
(7.10.1) g* # 1 (mod p),

by Theorem 88. The sets g, 29 ,..., (p—1)g and 1, 2 ,..., p-l are equi-
valent (modp), and therefore

2 (mg)k =3 mF (modp),

(g*—1) 3 m* = 0 (modp),
and S mk = 0= —e(p) (modp),
by (7.10.1). Thus 3 m*k = —e,(p) in any case.
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We now prose Theorem 118 by induction, assuming that it is true for
any number [ of the sequence (7.9.4) less than k, and deducing that it
is true for }. In what follows [ and ] belong to (7.9.4), » runs from
Oto k, By=1. and B, = B, = . . . = 0. We have already verified the
theorem when } == 2, and we may suppose k > 2.

It follows from (7.9.1) and Theorem 119 that, if «is any prime

k
r=0

or

k-2
7.10.2 (@) SR S L) W 1.
(7.10.2)  fy+-+"2 ZO T, )™ (@B = 0 (mod 1),
there is no term in B,_,, since B,_, = 0. We consider whether the
denominator of ‘
u 1 Kk
kr = k+1—T()I’
can be divisible by w.
If risnotanl, B,is 1 or 0. If r is an [, then, by the induetive hypo-
thesis, the denominator of 8, has no squared factor,t and that of wp,

m'k_l_r(w/gr)

is not divisible by w. The factor k is integral. Hence the denomina-
0 r

tor of u,, is divisible by w only if that of

wh-1-r sl
m = s+1
is divisible by 1. In this case
1> o,

But s = k-r 2= 2, and therefore
s+1< 22 < =%

a contradiction. ]t follows that the denominator of #,, is not divisible
by .
e(w) @

Hence Bi+ = -k,

w Or.

where w | b, and &(p) (p # w
p

is obviously of the same form. It follows that
7.10.3 lp) _ Ay
(7.103) Bt 2,2 =5

T It will be observed that we do not need the full force of the inductive hypothosis.
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where By, is not divisible by =r. Sinoe w is an arbitrary prime, B;, must
be 1. Hence the right-hand side of (7.10.3) is an integer ; and this proves

the theorem.
Suppose in particular that & is a prime of the form 3n-1- 1. Then

(p-) 2k only if p is one of 2, 3, k41, 2k+1. But k+1 is even, and
2k--1 = 6n4-3 is divisible by 3, so that 2 and 3 are the only permissible
values of p. Hence

Theorem 120. If ks a prime of the form 3n- 1, then
B, =% (maod 1).
The argument can be developed to prove that if % is given, thero are

an infinity of 1 for which B, has the same fractional part as B;; but for
this we need Dirichlet's Theorem 15 (or the special case of the théorem

in which b = 1).

NOTES ON CHAPTER VII

§§ 7.2-4. For the most part we follow Hecke, § 3.

§ 7.6. Lagrange, Nouveaux mémoires de I’Académie royale de Berlin, 2 (1773),
125 ((Huvres, iii. 425). This was the first, published proof of Wilson’s theorem.

§ 7.7. Dirichlet, Journal fir Math. 3 (1828), 407-8 (Werke, i. 107-8).

§ 7.8. Wolstenholme, Quarterly Journal of Math. 5 (1862), 35-39. There are
many generalizations of Theorem 115, some of which are also generalizations of
Theorem 113. See § 8.7.

The theorem has generally been described as ‘Wolstenholme’s theorem’, and
we follow the usual practice. But N. Rama Rao [Bull. Calcutta Math. Soc. 29
(1938), 167-70] has pointed out that it, and a good many of its extensions, had
been anticipated by Waring, Meditationes algebraicae, ed. 2 (1782), 383.

§§ 7.9-10. von Staudt, Journal fir Math. 21 (1840), 372-4. The theorem was
discovered independently by Clausen, Astronomische Nachrichten, 17 (1840), 352.
We follow a proof by R. Rado, Journal London Math. Soc. 9 (1934), 85-8.

Theorem 120, and the more general theorem referred to in connexion with it,
are due to Rado (ibid. 88-90).



VIl
CONGRUENCES TO COMPOSITE MODULI

8.1. Linear congruences. We have supposed since § 7.4 (apart
from a momentary digression in § 7.8) that the modulus m is prime.
In this chapter we prove a few theorems concerning congruences to
general moduli. The theory is much less simple when the modulus is
composite, and we shall not attempt any systematic discussion.

We considered the general linear congruence

(8.1.1) ax = b (modm)
in § 5.4, and it will be convenient to recall our results. The congruence
is insoluble unless
(8.1.2) d=(a m) |b.
If this condition is satisfied, then (8.1.1) has just d solutions, viz.
m

m m
f’ f'JFE, §+27ia'", §+(d_l)zs

where ¢ is the unique solution of

We consider :next a system
(8.1.3) a,2 = b, (modm,), ayx = b, (modm,),..., a;x = b, (mod m).

of linear congruences to coprime moduli my, My,..., M. The system will
be insoluble unless (a;, m;) b; for every ¢. If this condition is satisfied,
we can solve each congruence separately, and the problem is reduced
to that of the solution of a certain number of systems

(8.1.4) & = ¢, (modm,), = ¢, (modm,), ... & = ¢, (modmy).
The m,; here are not the same as in (8.1.3); in'fact the m; of (8.1.4) is
m;f(a;, m;) in the notation of (8.1.3).
We write
m = mymg..my, = my My = my My = ... = my, M,
Since (m;, M;) = 1, there is an n,; (unique to modulus m;) such that
n, M, =1 (modm,).
If
(815) X = nlMCl+n2M2C2+...+nkMka,
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then x = n; M; ¢, = ¢, (modm,;) for every i, so that x satisfies (8.1.4).
If y satisfies (8.1.4), then
y = ¢; = X (modm,)

for every i, and therefore (since the m,; are coprime), y = x (modm).
Hence the solution X is unique (mod m).

THeorem 121, If my, my, .., my, are coprime, then the system (8.1.4)
has a unique solution (modm) given by (8.1.5).

The problem is more complicated when the moduli are not coprime. We
content ourselves with an illustration.

Six professors begin courses of lectures on Monday, Tuesday, Wedneaday,
Thursday, Friday, and Saturday, and announce their intentions of lecturing at
intervals of two, three, four, ome, six, and five days respectively. The regulations
of the undversity forbid Sunday lectures (s¢ that a Sunday lecture must be omitted).
When jirst will all six professors jind themselves compelled to omit a lecture ?

If the day in question is the xth (counting from and including the first
Monday), then

x = 142k, = 23k, = 3+4ky =44k, = 5+46k; = 645k = Tk,
where the k are integers; i.e.
(1) x =1 {mod2), (2 x=2 (mod3), B) x =3 (mod4), (4) x =4 (mod 1),

(5) x =5 (mod6), (6) x =6 (modb), (7) x = 0 (mod7).

Of these congruences, (4) is no restriction, and (1) and (2) are included in (3)
and (5). Of the two latter, (3) shows that x is congruent to 3, 7, or 11 (mod 12),
and (5) that ¢ is congruent to 5 or 11, so that (3) and (5) together are equivalent
to x = 11 (mod 12). Hence the problem is that of solving

x = 11 (mod 12), x = 6 (mod 5), 2 = 0 (mod 7)
or X = -1 (modl12), x = 1 (mod 5), x = 0 (mod 7).
This is a case of the problem solved by Theorem 121. Here
my = 12, my = 5, my = 7, m = 420,

M, = 35, M, = 84, M, = 60.
The n are given by
35n, = 1 (mod 12), 84n, = 1 (mod 5), 60ny =1 (mod7),
or —n, =1 (mod 12), —ny = 1 (mod 5), 4n, = 1 (mod7);
and we can take n; = =1, n,= — 1, ny; = 2. Hence
x = (—1)(—1)354(—1)1.844+2.0.60 = -49 = 371 (mod420).
"The first x satisfying the condition is 371..

8.2. Congruences of higher degree. We can now reduce the
solution of the general congruencef
(8.2.1) f(x) = 0 (modm),
where f (x) is any integral polynomial, to that of a number of congruences

whose moduli are powers of primes.
t See §7.2.
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Suppose that ms= mymy. .. My,
no two m; having a common factor. Every solution of (8.2.1) satisfies
(8.2.2) fx) =0 (modm,;) (¢:=1,2,.,K).
If ¢;, ¢y,..., ¢, is & set of solutions of (8.2.2), and x is the solution of
(8.2.3) r=c¢ (modm;) (=1, 2.,k),
given by Theorem 121, then

f@) = f(e;) = 0 (modm,)

and therefore f(x) = 0 (modm). Thus every set of solutions of (8.2.2)
gives a solution of (8.2.1), and conversely. In particular

TurorEM 122. The number of roots of (8.2.1) is the product of the
numbers of roots of the separate congruences (8.2.2).

If m= phpd. . plk we may take m, = pf.

8.3. Congruences to a prime-power modulus. We have now
to consider the congruence
(8.3.1) f(z) =0 (mod p9),

where p is prime and a > 1.
Suppose first that x is a root of (8.3.1) for which

8.3.2) 0 < x < p*

Then z satisfies

(8.3.3) f(x) = 0 (mod pe-1),
and is of the form

(8.3.4) E-tsp®t (0 < s < p),
where ¢ is a root of (8.3.3) for which

(8:3.5) 0 < ¢ < pat.

Next, if ¢ is a root of (8.3.3) satisfying (8.3.5), then
FE+sp1) = f@)+sp*f () +3p™ Y " (€) 4.
= f(€)4-sp* [ (§) (mod p?),
since 204—2 > @, 3a—3 > a,..., and the coefficients in

foE)
k!

are integers. We have now to distinguish two cases.

(1) Suppose that
(8.3.6) f '(€) % 0 (mod p).
Then ¢4-sp®-lis a root of (8.3.1) if and only if

) +sp*f () = 0 (mod p?)
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or ¢ = — L8 (modp),

!

and there is just one s (modp) satisfying this condition. Hence the

number of roots of (8.3.3) is the same as the number of roots of (8.3.1).
(2) Suppose that

(8.3.7) f'(¢) = 0 (modp).

Then f(€+sp*1) = f(€) (mod p?).

If f(¢) £ 0 (modp®), then (8.3.1) is insoluble. If f(¢) =0 (modp?),

then (8.3.4) is a solution of (8.3.1) for every s, and there are p solutions
of (8.3.1) corresponding to every solution of (8.3.3).

Trecrem 123. The number of solutions of (8.3.1) corresponding to a
solution £ of (8.3.3) is

(@) none, tf f'(¢) = 0 (modp) and ¢ is not a solution of (8.3.1);

(b) one, if f7(£) % O (mod p);

(©) p, if f'(£) = 0 (modp) and ¢ is a solution of (8.3.1).
The solutions of (8.3.1) corresponding to ¢ may be derived from ¢, in case
(b) by the solution of a linear congruence, in case (c) by adding any multiple

of pa-11to ¢.
8.4. Examples. (1) The congruence
f(X) = aP-1—1 = 0 (modp)
has the p-l roots 1, 2,..., p-I; and if £ is any one of these, then
f'€) = (p—1)»=2 % 0 (modp).
Hence f (x) =0 (mod p?) has just p- 1 roots. Repeating the argument,
we obtain
THecREM 124,  The congruence
a?-1—1 = 0 (mod p®)
has just p-— 1 roots for every a.
(2) We consider next the congruence
(8.4.1) f(z) = 2t®D—1 =0 (modp?),
where p is an odd prime. Here
(€)= ip(p—1)§ir®-1-1 = 0 (modp)
for every £. Hence there are p roots of (8.4.1) corresponding to every
root off(x) = 0 (modp).
Now, by Theorem 83,
xi@-D = 1.1 (modp)

5591 H
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according as x is a quadratic residue or non-residue of p, and

Z2iPP-1 = 41 (modp)
in. the same cases. Hence there are }(p—1) roots of f(z) = 0 (modp),
and 3p(p— 1) of (8.4.1).

We define the quadratic residues and non-residues of p? as we defined
those of p in § 6.5. We consider only numbers prime to p. We say that
z is a residue of p? if (i) (z,p) = 1 and (ii) there is a y for which

¥* = x (mod p?),
and a non-residue if (i) (x,p) = 1 and (ii) there is no such y.
If X is a quadratic residue of p?, then, by Theorem 72,
-1 = yp(l’—l) =1 (modpz)’
so that x is gne of the %p(pml) roots of (8.4.1). On the other hand,
if y; and ¥, are two of the p(p— 1) numbers less than and prime to p?,
and y% = y, then either y, = p®—y, or y,—y, and y,-+y, are both
divisible by p, which is impossible because y, and y, are not divisible
by p. Hence the numbers g2 give just {p(p—1) incongruent residues
(mod p?), and there are 4p(p—1) quadratic residues of p2, namely the
roots of (8.4.1).

THEOREM 125. There are }p(p—1) quadratic residues of p? and these

residues are the roots of (8.4.1).

(3) We consider finally the congruence
(8.4.2) f(z) = 22—¢ =0 (mod p®),
where p [ c. If pis odd,.then

£(5) = 26 # 0 (modp)

for any ¢ not divisible by p. Hence the number of roots of (8.4.2) is the
sanie as that of the similar congruences to moduli p2-1, p2-2,..., p; that
is to say, two or none, according as ¢ is or is not a quadratic residue of p.
We could use this argument as a substitute for the last paragraph of (2).

The situation is a little more complex when p = 2, since then
f(f) = 0 (modp) for every ¢, We leave it to the reader to show that
there are two roots or none when a = 2 and four or none when a = 3.

8.5. Bauer’s identical congruence. We denote by t one of the
é(m) numbers less than and prime to m, by t(m) the set of such numbers,
and by

(8.5.1] Julz) =TI (@—1)

t(m)
a product extended over all the { of t(m). Lagrange’s Theorem 112
states that
(8.5.2) fr(®) = 2¥m— 1 (modm)
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when m is prime. Since
x$m— 1 = 0 (modm)
has always the ¢(m) roots ¢, we might expect (8.5.2) to be true for all m;
but this is false. Thus, when m = 9, ¢ has the 6 values 41, 42,44
(mod 9), and
Fnl@) = (22— 12)(22—22) (22— 4?%) = 28— 32*4-322— 1 (mod 9).

The correct generalization was found comparatively recently by
Bauer, and is contained in the two theorems which follow.

THeEoREM 126. If p 4s an odd prime divisor of m, and p® 4g the highest
power of p which divides m, then

853)  ful@) = II (xt) = (@*-1—1)$@e-D (mod p2).
t(m)
In particular
(8.5.4) fpel®) = 11 (@-t) = (@?'— 1)»*"" (mod p?).
1(®%)
THeorem 127. If m s even, m > 2, and 22 ¢s the highest power of 2
which divides m, then

(8.5.5) foa(x) = (22— 1)¥m (mod 2¢),
In particular

(8.5.6) fool) = (22— 1)¥"" (mod 29)
when a > 1.

In the trivial case m = 2, f,(x) = z— L. This falls under (8.5.3) and not under
(8.5.5).
We suppose first that p > 2, and begin by proving (8.5.4). This is
true when a = 1. If a > 1, the numbers in {(p®) are the numbers
t+vpst (0 <v< p)
where t is a number included in #(p®-1). Hence

= Eff Spo-i(x—vp®1).

But fpa—l(x——vp“ D) = fpe-r(2) —vp*f pa-a(2) (mod p?);
and foel@) = {fpoi(@)fP — 2 v.p*H{ fpom1(@)}P 7 o)
= {fpemi(@)}? (mod p?),
since = Ip(p— 1.) = 0 (modp).
This proves (8.5.4) by induction.

Suppose now that m = p®M and that p / M. Let ¢ run through the
$(p*) numbers of #(p2) and T through the (M) numbers of t(M). By
Theorem 61, the resulting set of ¢(m) numbers

tM+Tpe,
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reduced modm, is just the set t(m). Hence

Snlx) = ‘%;j; (z-t) ETE%) te}(;l;) (x—tM—Tp*) (modm).

For any fixed T, since (p% M) = 1,
Il @—tM—-Tp*) = T] (@—tM)= T[] (@—1t) = fudx) (modp2).

tet(p?) tet(p%) tet(p®)
Hence, since there are ¢(M) members of t(M),

Ful®) = @P=1— 1)7"740D (mod po)
by (85.4). But (8.5.3) follows at once, since
a m
peegn) = S8 g0 - 2,
8.6. Bauer’s congruence : the case p = 2. We have now to con-
sider the case p = 2. We begin by proving (8.5.6).
If a= 2 fax) = (x—1)(x—3) = «®>—1 (mod 4),
which is (8.5.6). When a > 2, we proceed by induction. If
foomi(@) = (22—1)*"" (mod 27-),
then foa-1(x) = 0 (Mod2).
Hence Jool®) = fou-r() fror(®—29-7)
= {fooms(®)2— 2% fyaes(2) from1()
= {foor(2)}? = (2%~ 1)*7* (mod 29).
Passing to the proof of (8.5.5), we have now to distinguish two cases.
@) If m=2M,where M is odd, then
Ful@) = (x—1)™ = (22— 1)¥m (mod 2),
because (x- 1)? = z2-- 1 (mod 2).

(2) If m = 2¢M, where M is odd and a > 1, we argue as in § 8.5,
but use (8.5.6) instead of (8.5.4). The set of ¢(m) = 2¢-1¢(M) numbers

tM+ T 2¢
reduced modm, is just the set t(m). Hence
— (A — . .
ful®) = I @0 = IT TT (z—tM—~22T) (modm)

= {foe(@)}*™ (mod 2),
just as in § 8.5. (8.55) follows at once from this and (8.5.6).

8.7. A theorem of Leudesdorf. We can use Bauer's theorem to
obtain a comprehensive generalization of Wolstenholme’s Theorem 115.
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1

TueorEm 128. If S, = I(Zm) 7
then
(8.7.1) 8, = 0 (mod m?)
if 2f/m, 3)m;
(8.7.2) 8, = 0 (mod im?)
if 2/m, 3|\m;
(8.7.3) S, =0 (mod 1m?)
if 2[m, 3 [ m, and m is not a power of 2;
(8.7.4) 8, = 0 (mod {m?)
if 2{m, 3|m; and
(8.7.5) 8§ = 0 (mod }m?)
if m = 2a,

We use 3, ] for sums or produ.cts over the range t(m), and 3, H’
for sums or products over the part of the range in which t is less than
4m; and we suppose that m = pegire... .

If p > 2 then, by Theorem 126,

(8.7.6) (@rl— Lppmie-D = TT (x-t) = TT' {(x-Dx-m+t)
= [1" {#?+t(m—1t)} (mod p=).

We compare the coefficients of «2 on the two sides of (8.7.6). If p > 3,
the coefficient on the left is 0, and

(8.7.7) o =TT {tm—1)} }:'“71__—0: %sz L (modpo)

t{m—t
Hence ( )

SO

!
=imT] z T =0 (mod p2e),

or
(8.7.8) S

m

= 0 (mod p?e).

If2 /' m, 3 ) m, and we apply (8.7.8) to every prime factor of m, we
obtain (8.7.1).
If p =3, then (8.7.7) must be replaced by

(—1p#o-thom) =TT ¢ 2, gy (mod 39;

so that S TT # = (— D$m-1 1ind(m) (mod 32a),
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Since ¢(m) is even, and divisible by 34-1, this gives

S, = 0 (mod 32-1),
Hence we obtain (8.7.2).
If p = 2, then, by Theorem 127,

(22— 1)¥m =TT {z2+4(m—t)} (mod 29)

and so (— 1)$m-1 1 d(m) = 1 T ¢ z “%_n
]
SuTTt=14m Tt > = 1)¥m-1 Lynd(m) (mod 22),

If m = 2eM, where M is odd and greater than 1, then
Id(m) = 20-24(M)

8§, = 0 (mod 22-1),
This, with the preceding results, gives (8.7.3) and (8.7.4).
Finally, if m == 2¢ 1é(m) = 22-2 and
8, =0 (mod 22¢-2),

is divisible by 2¢-1, and

This is (8.7.5).

8.8. Further consequences of Bauer’s theorem. (1) Suppose that

$(m)
Then ¢(m) is even and, when we equate the constant terme in (8.5.3)
and (8.5.5), we obtain

m>2 m=TIp% 4, = }$(m), u, (p > 2).

i = (—1)% (mod p9).
t(m)

It is easily verified that the numbers u, and u,, are all even, except
when m is of one of the special forms 4, p? or 2p% sothat [[{=1
(mod m) except in these cases. Ifm =4, then [T¢=13= 1 (mod 4).
If m is p® or 2p“, then w,, is odd, so that H { = == 1 (mod p®) and there-
fore (since JJ ¢ is odd) TT ¢ = -1 (modm).

THEOREM 129: {t = +1 (modm),

i(m
where the negative sign is to be chosen when m is 4, p?, or 2p®, where p
is an odd prime, and the positive sign in all other cases.

The case m = p is Wilson’8 theorem.

@ Ifp>2 and
fz) =[] @—t) = a$®I— 4 ab014

t(p%)
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then f(z) = f(p®—=x). Hence
24, 2$@O 14 24,0900 - f(—2)—f(2) = f(po+2)—f(x)
= p*f’(x) (mod p**).
But af 2a 1 Z) 1)xr- 2(xT' -1_. 1)17“"‘—1 (modpz“)
by Theorem 126. It follows that 4,,,, is a multiple of p?2except when
H(p*)—2v—1 = p-2 (modp-1),
i.e. when 2v = 0 (modp-1).

Treorem 130. If A,y 0s the sum of the homogeneous products, 2v+ 1
ut a time, of the numbers of i(p2), and 2v is not a multiple of p-I, then

A2v+1 = 0 (mOde)-
Wolstenholme’s theorem is the case
a=1, v+l =p-2, p > 3.

(3) There are also interesting theorems concerning the sums

‘ i
Spa1 = z v

We confine ourselves for simplicity to the case a = 1, m = p,} and
suppose p > 2. Then f (x) = f (p-x) and

f(=2)=f (p+2)=]f (@) +pf (@
f X =—f (p+x' = —f ‘®)-pf “(),
f @ f ' (—2)f 0f (—2) = p{f @) —f (@) f "(@)}
to modulus p2. Since f (x) = zP-1— 1 (modp),

JH00-f (2)f “(X) = 2aP-3—a?~* (modp)
and so

(8:8.1) f@)f (—@)+f (@)f (—z) = p(2aP—*—a*4)(mod p?).

Now f((x)) Xl t = —Sl_xsg_xzsa e I
882 L )f' f ( X) —a)f @) _ — 28,9228, —

t In this case Theorem 112 is sufficient I’ or our purpoese, and we do not require the
general form of Bauer's theorem.
t Theserjes Which follow areordinary power series in the variablez,
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Also
= T1 e = T1 o) = w(1+25+ %5 +),
1 bz b x2
—_— 1+ 1 2 )
f(z) w(
1 1 clar;2 02x4 )
(8.8.3) For s = —;2(14- sttt
where @ == (p-I)! and the a, b, and ¢ are integers. It follows from
(8.8.1), (8.8.2), and (8.8.3) that
-3__,2p-4 2 2 4
—28,—2x28,—... :p(2x1' xpz )+p g(x)(l.. Clxz 6226 = ),
o w w

where g(x) is an integral polynomial. Hence, if 2v < p-3, the numera-
tor of §,,,, is divisible by p2.

THeorem 131.. If p 4s prime, 2v < p-3, and

. 1
o1 = +22v+1+ A P

then the numerator of S, ,, ds divisible by p2.

The case v = 0 is Wolstenholme’s theorem. When v = 1, p must be
greater than 5. The numerator of

145t ot

is divisible by 5 but not by 52,
There are many more elaborate theorems of the same character.

8.9. The residues of 27-! and (p-I)! to modulus p?% Fermat's
and Wilson's theorems show that 27-1 and (p-I)! have the residues
1 and -1 (modp). Little is known about their residues (mod p?), but
they can be transformed in interesting ways.

THeorem 132. If p is an odd prime, then
2r-1—1

1 1 1
(8.9.1) w_-z—)— = 1+§+5—}—...+1)T2 (mod p).

In other words, the residue of 27-1 (mod p?) is

1 1
+p(1+ g+t +p§)

where the fractions indicate associates (modp).
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We have
P P AN/
D = — = .
2 = (14+1)p = 1+(1)+...+(p) 2+ Z (l)
Every term on the right, except the first, is divisible by p, and
Oi ::pxl,
where
e = (p- 1)(p—2)...(p—I+ 1) = (— 1)}-1(I— 1)! (modp),
or ley = (— 1)*-1 (modp).
Henee 5 = (= 111 (modp),
Py _ = -1 d p2
l pxl—(_l) V4 (mop),
2 R 11 1
8.9.2 = =l—ef i e— dp).
©92) - % = 1—gtg—w o= (modp)
But
1 1 1 1 1 1 1.1 1
1-—5—}-5— e =2(1+3+5+...+1_0j2)-—(1+§ §+...+Z:)

S

by Theorem 116,1 so that (8.9.2) is equivalent to (8.9.1).
Alternatively, after Theorem 116, the residue in (8.9.1) is

1. 1 1
> 4 —5:—1 (modp).
THEOREM 133. If p is an odd prime, then
p—1\°
(p-1)! z(—l)m’—l)QzP-Z(T !) (mod p?).

Let p = 2p41. Then

2n)!

(2,_%)_! = 1.3..(2n—1) = (p—2)(p—4)...(p—2n),

(2 2"n!—2"n!;p(%+i+m+§%) (mod p?)
= 2mp! 4279 1(227—1) (mod p?),
by Theorems 116 and 132; and
(2n)! = (-1)" 2(n)? (mod p?).
t By Theorem 75. t W need only (7.8.2).
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NOTES ON CHAPTER VIII

§ 8.1. Theorem 121 (Gauss, D.A., § 36) was known to the Chinese mathemati-
cian Sun-Tsu in the first century ».o. See Bachmann, Niedere Zahlentheorie, i. 83.

§ 8.5. Bauer, Nouvelles annales (4), 2 (1902), 25664. Rear-Admiral C. R.
Darlington suggested the method by which 1 deduce (8.5.3) from (8.5.4). This is
much simpler than that used in earlier editions, which was given by Hardy and
Wright, Journal London Math. Soc. 9 (1934), 38-41 and 240.

Dr. Wylie points out to us that (8.5.5) is equivalent to (8.5.3), with 2 for p,
except when m is a power of 2, gince it may easily be verified that

(22— 1)) = (z— 1)¢m (mod 2¢)
when m = 20M, M is odd, and M > 1.

§ 8.7. Leudesdorf, Proc. London Math. Soc. (1) 20 (1889), 199-212. See also
S. Chowla, Journal London Math. Soc. 9 (1934), 246; N. Rama Rao, ibid. 12
(1937), 247-50; and E. Jacobstal, Forhand. K. Norske Vidensk. Selskab, 22 (1949),
nos. 12, 13, 41.

§ 8.8. Theorem, 129 (Gauss, D.A., § 78) is sometimes called the ‘generalized
Wilson’s theorem’.

Man y theorems of the type of Theorems 130 and 13 1 will be found in Leudesdorf’s
paper quoted above, and in papers by Glaisher in vols. 3 1 and 32 of the Quarterly
Journal of Mathematics.

§ 8.9. Theorem 132 is due to Eisenstein (1850). Full references to later proofs

and generalizations will be found in Dickson, History, i, ch. iv. See also the note
to § 6.6.



IX.
THE REPRESENTATION OF NUMBERS BY DECIMALS
9.1. The decimal associated with a given number. There is a

process for expressing any positive number ¢ as a ‘decimal’ which is
familiar in elementary arithmetic.

We write

(0.L1) ¢ = [f]+z= X+tz,

where X is an integer and 0 < x </ 1,1 and consider X and x separately.
If X > 0and 108 X < 10°4,

and A, and X, are the quotient and remainder when X is divided by

108, then X = A, 10+X,,
where 0 < A, = [10X] < 10, 0 < X, <10
Similarly
X, =A. 104X, (0A <10,0 X, < 1051,
X, =A. 10-2+X, O0<A <10, 0 < X, 108—2),
X,, =A. 104X, (0 A, < 10,0 < X < 10)
X, = Ao 0 < A, < 10).
Thus X may be expressed uniquely in the form
(9.1.2) X = A, 105+4,. 105 ...+ A4,. 10+4,,,,
where every A isone of 0, 1, 2 ,..., 9, and A, is not 0. We abbreviate
this expression to
(9.1.3) X=A, 4,.4, 4,

the ordinary representation of X in decimal notation.
Passing to x, we write

z=f; (0<f; <)
We suppose that a, = [10f,], so that

a,isoneof0,1,.,9, and
a; - [10f1), 10f, = at+f, (0 <fa <1)

t Thus [¢] has the same meaning agin § 6.11.
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Similarly, we define a,, g,,... by

ay = [10f,], 10fi=axtfy (0 <fy <),

ay = [10fy], 10f = ag+fy (0 <fy <),

Every a, is one of 0, 1, 2,...,, 9. Thus

(9.1.4) T = zn+gn+1’

where

(9.1.5) = + 100+ +1_0"
fn 1

(9.1.6) 0< gy = 16,1 < Ton

We thus define a decimal  -a,a,05...a,

associated with x. We call a,, a,,... the first, second,... digits of the
decimal.
Since a, < 10, the series
o«
un

9.1.7 —
( ) 108
is convergent; and since g,,,, — 0, its sum is x. We may therefore write
(9.1.8) X = 0,a,0,..,
the right-hand side being an abbreviation for the series (9.1 .7).

If f, .1 = Ofor some n,i.e. if 10mz is an integer, then

an+1 Slppp 77 =0.
In this case we say that the decimal terminates. Thus
17
— -0425000...,
400
. . 17
and we write simply 100= -0425.

It is plain that the decimal for x will terminate if and only if x is a
rational fraction whose denominator is of the form 258,

. a
Since i Onntll"}' On,:fg =Ip1 < 107
9 9 9 1
and _ L
ignh T o T = 107+(1— 1) = 107

it is impossible that every g, from a certain point on should be 9. With
this reservation., every possible sequence (a,) will arise from some x.
We define x as the sum of the series (9.1.7), and x, and g, ., as in (9.14)
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and (9.1.5). Then g¢,., < 10-* for every n, and x yields the sequence
required.
Finally, if

(9.1.9) Z‘%z Z&,
10™ 10
1 1
and the b, satisfy the conditions already imposed on the a,, then

a, = b, for every n. For if not, let ay and b, be the first pair which
differ, so that |‘1N“b1\| 1. Then
[4]

= b, a,—b = 9
T&_ZIO" 10N 2’ ol > 10N zTo‘TLZO
1 N+1
This contradicts (9.1.9) unless there is equality. If there is equality,
then all of ay ., —by,y, Gy,s—bys,... Must have the same sign and the
absolute value 9. :But then either a, = 9 and b, =0 for n > N, or
else a, = 0 and b, = 9, and we have seen that each of these alternatives
is impossible. Hence a, = b, for all n. In other words, different deci-
mals correspond to different numbers.
We now combine (9.1.1), (9.1.3), and (9.1.8) in the form

(9.1.10) £ = X+x = A4,4,..4,,,a,a5a;...;
and we can sum up-our conclusions as follows.

2
> —

THEOREM 134. Any positive number ¢ may be expressed as a decimal
AA,. A raa50,. ...
where 0<A «10,0 LA <10,.,0<a, <10,
not all A and a are 0, and an nfinity of the a, are iess than 9. If § > 1

then A, > 0. There is a (1, 1) correspondence between the numbers and
the decimals, and

E=A,.104.. +As+1+ + LI

102

In what follows we shall usually suppose that 0 £ < 1, so that
X =0, ¢ = z. In this case all the A are 0. We shall sometimes save
words by ignoring the distinction between the number x and the decimal
which represents it, saying, for example, that the second digit of & is 4.

9.2. Terminating and recurring -decimals. A decimal which
does not terminate may recur. Thus
3= -3333..., 3= -14285714285714...;
equations which we express more shortly as
=43 1= .142857.
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These are pure recurring decimals in which the period reaches back to
the beginning. On the other hand,

3 = -1666... = 16,

a mixed recurring decimal in which the period is preceded by one non-
recurrent digit.
We now determine the conditions for termination or recurrence.

B
(1) If z = = 35

where (p, q) = 1, and

(9.2.1) p = max(e, f),

then 10"z is an integer for n = y and for no smaller value of n, so that
X terminates at a,. Conversely,

a _r Z_)

+102+ +10f‘ 100 ¢
where g has the prime factors 2 and 5 only.

(2) Suppose next that x = p/q, (p,¢) = 1, and (g, 10) = 1, so that
q is not divisible by 2 or 5. Our discussion of this case depends upon
the theorems of Ch. VI.

By Theorem 88, 10¥ = 1 (modq)

for some v, the least such v being a divisor of ¢(g). We suppose that v
has this smallest possible value, i.e. that, in the language of § 6.8, 10
belongs to v (modq) or v is the order of 10 (modg). Then

14
(9.2.2) 1ovz — 9P _(mg+ 1)p
g q
where m is an integer. But
10°z = 10%,+10%g,., = 10%z,4+f, .1,

by (9.1.4). Since 0 < x < 1, f,,; = X, and the process by which the
decimal was constructed repeats itself from f,,; onwards. Thus x is a
pure recurring decimal with a period of at most v figures.

On the other hand, a pure recurring decimal -d,a,...dy is equal to

a, 1 1
( +102+ +10>«)( +IEA+TZA+‘")

IOA—la 1022, tay
10A—1

E
7
when reduced to its lowest terms. Here q 10*— 1, and so A > v. It

= mp—{-% = mp+x,
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follows that if (g, 10) = 1, and the order of 10 (mod g} is v, then z is a
pure recurring decimal with a period of just v digits; and conversely.
(3) Finally, suppose that
~P__P_
T=T e5pQ
where (p,q) = land (@, 10) = 1; that p is defined as in (9.2.1); and
that v is the order of 10 (mod ). Then
P p
104y = <_ = X+—.
Q Q

where p’, X, P are integers and
0<x<10k, O0<P<Q (PQ =1

If X >0 then 10° X < 10841 for some s < p,and X = 4, 4,..4,,,;
and the decimal for P/ is pure recurring and has a period of y digits.

(9.2.3)

Hence 1062 = A, A, . .. 4,14, dy...d,
and
(9.2.4) X = by by.ib, dy ag...d,,

the last s--1 of the b being A,, A,,..., A,,, and the rest, if any, 0.
Conversely, it is plain that any decimal (9.2.4) represents a fraction
(9.2.3). We have thus proved

Theorem 135. The decimal for a rational number p/g between 0 and 1
1§ terminating or recurring, and any terminating or recurring decimal is
equal to a rational number. If (p,q) = 1, q = 2%5f, and max(x,B) = 4,
then the decimal terminates after u digits. If (p, q) = 1, q = 2"‘53@,
where Q > 1, (Q, 10) = 1, and v is the order of 10 (mod @), then the
decimal contains p non-recurring and v recurring digits.

9.3. Representation of numbers in other scales. There is no
reason except familiarity for our special choice of the number 10; we
may replace 10 by 2 or by any greater number r. Thus

1 0 0 1

.= §+§.2+§ = 001,

2 1,0 1 O

3 = -§+—2,+273+2§+--' - '10,
2 4 4 4

L oA Dl T |

= gtmtat ;

the first two decimals being ‘binary’ decimals or ‘decimals in the secale
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of 2°, the thirc. a ‘decimal in the scale of 7°.1 Generally, we speak of
‘decimals in the scale of r.

The arguments of the preceding sections may be repeated with certain
changes, which are obvious if ¢ is a prime or a product of different
primes (like 2 or 10), but require a little more consideration if r has
square divisors (like 12 or 8). We confine ourselves for simplicity to the
first case, when our arguments require only trivial aJterations. In § 9.1,
10 must be replaced by » and 9 by r-I. In § 9.2, the part of 2 and 5 is
played by the prime divisors of 7.

THeorem 136. Suppose that 7 is a prime or a product of different
primes. Then any positive number ¢ may be represented uniquely as a
decimal in the scale of 7. An infinity of the digits of the decimal are Jess
than ¢#— 1; with this reservation, the correspondence between the numbers
and the decimals is (1,1).

Suppose further that

0<a<l, x :l;, (p,gq) = 1.
If q= s4f..u,

where §, t,..., u are the prime factors of 7, and

p = max(e, B,..., y),
then the decimal for x terminates af the wth digit. If q 18 prime to y, and
v is the order of r (modq), then the decimal is pure recurring and has a

period of v digits. If , _ sub.wrQ (@ > 1),

Q is prime to r, and v s the order of » (mod Q), then the decimal ¢s mixed
recurring, and has p non-recurring and v recurring digits.}

9.4. Irrationals defined by decimals. It follows from Theorem
136 that a decimal (in any scale||) which neither terminates nor recurs
must represent an irrational number. Thus

xz = -0100100010...

t We ignore the verbal contradiction involved in the use of ‘decimal’ ; there is no
other convenient word.

1 Generally, when r = s4¢5..uf we must define p as

a B %
max |-, & ., =
(5 ¢
if this number is an integer, and otherwise as the first greater integer.
| Strictly, any ‘quadratfrei’ scale (scale whose base is a prime or a product of different

primes). This is the only case actually covered by the theorems, but there is no difficulty
in the extension.
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(the number of 0’s increasing by 1 at each stage) is irrational. We
consider some less obvious examples.

THeEOREM 137: 011010100010...,

where the digit a, is 1 if n is prime and O otherwise, is irrational.

Theorem 4 shows that the decimal does not terminate. If it recurs,
there is a function An+B which jg prime for g]l n from some point

onwards; and Theorem 21 shows that this also is impossible.
This theorem is true in any scale. We state our next theorem for

the scale of 10, leaving the modifications required for other scales to the
reader.

THeorem 138 : -2357111317192329...,

where the sequence of digits is formed by the primes in ascending order, is
irrational.

The proof of Theorem 138 is a little more difficult. We give two
alternative proofs.

(1) Let us assume that any arithmetical progression of the form
k. 108141 (k=1, 2,3 ,..)

contains primes. Then there are primes whose expressions in the decimal
system contain an arbitrary number s of O's, followed by a 1. Since
the decimal contains such sequences, it does not terminate or recur.

(2) Let us assume that there 35 a prime between N and 10N for every
N > 1. Then, given s, there are primes with just s digits. If the decimal
recurs, it is of the form

(9.4.1) e @y gty ay @y

the bars indicating the period, and the first being placed where the
first period begins. We can choose I > 1 so that all primes with ¢ = kI
digits stand later in the decimal than the first bar. If p is the first such
-prime, then it must be of one of the forms

P =ty gty Uy ] @y 0.,
or P = @y Qg Gty |y Gyt ]ty ...,

and is divisible by a, a,...a; or by a,,,4...q; &, a,...a,,; a contradiction.
In our first proof we assumed a special case of Dirichlet 's Theorem 15.
This gpecial case is easier to prove than the general theorem, but we

5591 1
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shall not prove it in this book, so that (1) will remain incomplete. In
(2 we assumed a result which follows at once from Theorem 418 (which
we shall prove in Chapter XXII). The latter theorem asserts that, for
every N > 1, there is at least one prime satisfying N <p < 2N. It
follows, a fortiori, that N < p < 10N.

9.5. Tests for divisibility. In this and the next few sections we
shall be concerned for the most part with trivial but amusing puzzles.

There are not very many useful tests for the divisibility of an integer
by particular integers such as 2, 3, 5,... . A number is divisible by 2 if
its last digit is even. More generally, it is divisible by 2¥ if and only if
the number represented by its last y digits is divisible by 2*. The reason,
of course, is that 2¥ 10*; and there are similar rules for 5 and 5.

Next 10> =1 (mod9)
for every v, and therefore

A, 1054+4,.10 0+ A 10+4,,, = A, 4+ A,+...+4,,; (mod 9).
A fortiori this is true mod 3. Hence we obtain the well-known rule
‘a number is divisible by 9 (or by 3) if and only if the sum of its digits
is divisible by 9 (or by 3).

There is a rather similar rule for 11. Since 10 = -1 (mod 1 1), we
have 10r =1, 10+ = -1 (mod 11),
so that

A 1054 A, 10014 A, 10+ 4,y = A, —A+4,_—... (mod 11).

A number is divisible by 11 if and only if the difference between the
sums of its digits of odd and even ranks is divisible by 11.

We know of only one other rule of any practical use. This is a test
for divisibility by any one of 7, 11, or 13, and depends on the fact that
7.11.13 = 1001. Its working is best illustrated by an example: if
29310478561 is divisible by 7, 11 or 13, so is

561—4784+310—29 = 364 = 4.7.13.

Hence the original number is divisible by 7 and by 13 but not by 11.

9.6. Decimals with the maximum period. We observe when
learning elementary arithmetic that

1= -142857, 2= 285714, .. &= -857142,

the digits in each of the periods differing only by a cyclic permutation.
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Consider, more generally, the decimal for the reciprocal of a prime q.
The number of digits in the period is the order of 10 (modq), and is a
divisor of ¢(gq) = g- 1. If this order is g- 1, i.e. if 10 is a primitive root
of g, then the period has g- 1 digits, the maximum number possible.

We convert 1/g into a decimal by dividing successive powers of 10
by q; thus

10™
= 10’"2:” +fn+17

in the notation of § 9.1. The later stages of the process depend only
upon the value of f,,;, and the process recurs so soon as f,,; repeats a
value. If, as here, the period contains g- 1 digits, then the remainders

Jor fes fo
must all be different, and must be a permutation of the fractions
12 q—1
79" g

The last remainder f, is1/q.
The corresponding remainders when we convert p/¢ into a decimal are

pf2’ pf3"'-, pfq!

reduced (mod 1). These are, by Theorem 58, the same numbers in a
different order, and the sequence of digits, after the occurrence of a
particular remainder s/g, is the same as it was after the occurrence of
s/q before. Hence the two decimals differ only by a cyclic permutation
of the period.

What happens with 7 will happen with any g of which 10 is a primi-
tive root. Very little is known about these ¢, but the g below 50 which
satisfy the condition are

7,17, 19, 23, 29, 47.

Treorem 139. If g isaprime, and 10 is a primitive root of g, then the

decimals for P
?!' (p = 1;2s""q_l)

have periods of length g- 1 and differing only by cyclic permutation.

9.7. Bachet’s problem of the weights. What is the least number
of weights which will weigh any integral number of pounds up to 40
(a) when weights may be put into one pan only and (b) when weights
may be put into either pan ?
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The second problem is the more interesting. We can dispose of the
first by proving

THeorem 140. Weights 1, 2, 4 ..., 21 wsll weigh any integral weight
up to 2n— 1; and no other set of so few as n weights is equally effective (ie.
will weigh so long an unbroken sequence of weights from 1).

Any positive integer up to 2"— 1 inclusive can be expressed uniquely

as a hinary decimal of n figures, ie. as a sum

n-1

; a, 28,
where every a, is 0 or 1. Hence our weights will do what is wanted,
and ‘without waste’ (no two arrangements of them producing the same
result). Since there is no waste, no other selection of weights can weigh
a longer sequence.

Finally, one weight must be 1 (to weigh 1); one must be 2 (to weigh
2); one must be 4 (to weigh 4); and so on. Hence 1, 2, 4,..., 2*-1 is the
only system of weights which will do what is wanted.

It is to be observed that Bachet's number 40, not being of the form
27— 1, is not chosen appropriately for this problem. The weights 1, 2,
4, 8, 16, 32 will weigh up to 63, and no combination of 5 weights will
weigh beyond 32. But the solution for 40 js not unique; the weights
1,2, 4,8, 9,16 will also weigh any weight up to 40.

Passing to the second problem, we prove

Tueorem 141. Weights 1, 3, 32,..., 3"t will weigh any weight up to
$(3"— 1), when weights may be placed in either pan; and no other set of go
few as n weights is equally effective.

(1) Any positive integer up to 3"—1 inclusive can be expressed
uniquely by n digits in the ternary scale, i.e. as a sum

n-1

> a3,

0
where every a, is 0, 1, or 2. Subtracting

14343%4-... 4371 = 1(37—1),
we see that every positive or negative integer between —1(3»_ 1) and
$(8"— 1) inclusive can be expressed uniquely in the form

n-1
2 b,
0

where every &, is - 1, 0, or 1. Hence our weights, placed in either pan,
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will weigh any weight between these limits.t Since there is no waste,
no other combination of n weights can weigh a longer sequence.

(2) The proof that no other combination will weigh so long a sequence
is a little more troublesorne. It is plain, since there must be no waste,
that the weights must all differ. We suppose that they are

W <wy<...<w,
The two largest weighable weights are plainly
W = Wy Wyt W, W = wyt...-tw,.
Since W; = W-I, w, must be 1.
The next weighable weight is
— W+ Wyt wyt-...+w, = w-2,
and the next must be
Wyt Wy + Wy Wy,
Hence w,-+ws+...4w, = W-3 and w, = 3.
Suppose now that we have proved that
w; =1, w,=3,..> w, = 3L
If we can prove that w,,, = 3¢, the conclusion will follow by induction.
The largest weighable weight W is

38 n
W= 3wt 3w
1 s+1
Leaving the weights w,,,,..., w, undisturbed, and removing some of

the other weights, or transferring them to the other pan, we can weigh
every weight down to

— 2wtk Y = W—(3-1),
1 s§+1
but none below. The next weight less than this is W—3%, and this

must be Wyt Wyt ... F W Wy oW pgtee Wy
Hence Weyp = 20w Fwyt..Fw)+1 = 39
the conclusion required.

Bachet’'s problem corresponds to the case n = 4.

9.8. The game of Nim. The game of Nim is played as follows.
Any number of matches are arranged in heaps, the number of heaps,
and the number of matches in each heap, being arbitrary. There are
two players, A and B. The first player A takes any number of matches
from a heap; he may take one only, or any number up to the whole

t Counting the weight to be weighed positive if it is placed in one pan and negative
if itis placed in the other.
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of the heap, but he must touch one heap only. B then makes a move
conditioned similarly, and the players continue to take alternately. The
player who takes the last match wins the game.

The game has a precise mathematical theory, and one or other player
can always force a win.

We define a winning position as a position such that if one player
P (A or B) can secure it by his move, leaving his opponent Q (B or A)
to move next, then, whatever Q may do, P can play so as to win the
game. Any other position we ¢gll a losing position.

For example, the position
or (2, 2), is a winning position. If A leaves this position to B, B must
take one match from a heap or two. If B takes two, A takes the
remaining two. If B takes one, A takes one from the other heap; and
in either case A wins. Similarly, as the reader will easily verify,

g

or (1, 2, 3), is a winning position.

We next define a correct position. We express the number of matches
in each heap in the binary scale, and form a figure F by writing them
down one under the other. Thus (2,2), (1,2, 3), and (2, 3, 6,7) give the

figures 10 01 010 :
10 10 o1l

-— 11 110
20 — 111
22

242

it is convenient to write 01, 010,... for 1, 10,.., so as to equalize the
number of figures in each row. We then add up the columns, as ind;i-
cated in the figures. If the sum of each column is even (as in the cases
shown) then the position is ‘correct’. An incorrect position is one which
is not correct: thus (1, 3, 4) is incorrect.

Theorem 142. A position in Nim is a winning position if and only if
it is correct.

(1) Consider first the special case in which no heap contains more
than one match. It is plain that the position is winning if the number
of matches left is even, and losing if it is odd; and that the game condi-
tions define correct and incorrect positions.

(2) Suppose that P has to take from a correct position. He must
replace one number dcfining a row of F by a smaller number. If we
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replace any number, expressed in the binary scale, by a smaller number,
we change the parity of at least one of its digits. Hence when P fakes
from a correct position, he necessarily transforms it into an incorrect
position.

(3) If a position is incorrect, then the sum of at least one column of
F is odd. Suppose, to fix our ideas, that the sums of the columns are

even, even, odd, even, odd, even.

Then there is at least one 1 in the third column (the first with an odd
sum). Suppose {again to fix our ideas) that one row in which this
happens is * %
011101,

the asterisks indicating that the numbers below them are in columns
whose sum is odd. We can replace this number by the smaller number

sk
0181 10,

in which the digits with an asterisk, and those only, are altered. Plainly
this change corresponds to a possible move, and makes the sum of every
column even; and the argument is general. Hence P, if presented with
an incorrect position, can always conwert it into a correct position.

(4) If A leaves a correct position, B is compelled to convert it into
an incorrect position, and A can then move so as to restore a correct
position. This process will continue until every heap is exhausted or
contains one match only. The theorem is thus reduced to the special
case already proved.

The issue of the game is now clear. In general, the original position
will be incorrect, and the first player wins if he plays properly. But
he loses if the original position happens to be correct and the second

player plays properly.t
t When playing against an opponent who does not know the theory of the gamc,
there is no need to play strictly according to rule. The experienced player can play. at
random until he recognizes a winning position of a comparatively simple type. It is
quite enough to know that
1, 2n, 2n4-1, n, 7-n, 7, 2,3, 4,58
are winning positions ; that 1, 2n+1, 2n+2

is a losing position ; and that a combination of two winning positions is a winning position.
The winning move is not always unique. The position

1, 3,9, 27
is incorrect, and the only move which makes it correct is to take 16 from the 27. The
position 3,578 11

is also incorrect, but may bc made correct by taking 2 from the 3, the 7, op the 11,
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There is a variation in which the player who takes the last match
loses. The theory is the same SO long as a heap remains containing more
than one match; thus (2,2) and (1, 2, 3) are still winning positions. We
leave it to the reader to think out for himself the small variations in
tactics at the end of the game.

9.9. Integers with missing digits. There is a familiar paradoxt
concerning integers from whose expression in the decimal scale some
particular digit such as 9 is missing. It might seem at first as if this
restriction should only exclude ‘about one-tenth’ of the integers, but
this is far from the truth.

THEOREM 143. Almost all numbersf contarn a 9, or any given sequence
of digits such as 937. More generally, almost all numbers, when expressed
in any scale, contain every possible digit, or possible sequence of digits.

Suppose that the scale is r, and that v is a number whose decimal
misses the digit b. The number of v for which -1 v < rlis (r- 1)} if
b =0and (r— 2)(r— 1¥-1if b % 0, and in any case does not exceed

1) i
(r—1). Hence, i f rlgn <k
the number N(n) of v up to n does not exceed

r—1+4(r—124. .+ =1k L kr—1)k;

R Y3 — 1\k
and Nfln) < pr—1) < kr(r__l) ,

rk-1 r
which tends to 0 when n — oo.

The statements about sequences of digits need no additional proof,
sinae, for example, the sequence 937 in the scale of 10 may be regarded
as a single digit in the scale of 1000.

The ‘paradox’ is usually stated in a slightly stronger form, viz.

Theorem 144. The sum of the reciprocals of the numbers which miss a given
digit is convergent.

The number of y between 7%-1 and #* is at most (r—1)¥, Hence

v v
k=1 rk—1gp<ok

> = - Z ()= e
= k

We shall discuss next some analogous, but more interesting, properties

¥ Relevant in controversies about telephone directories.
1 In the sense of § 1.6.
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of infinite decimals. We require a few elementary notions concerning
the measure of point-sets or sets of real numbers.

9.10. Sets of measure zero. A real number x defines a ‘point’ of
the continuum. In what follows we use the words ‘number’ and ‘point’
indifferently, saying, for example, that ‘P is the point «’.

An aggregate of real numbers is called a set of points. Thus the set

T defined by 1
X = - (n=1,2,3,...)

the set R of all rationals between 0 and 1 inclusive, and the set € of
all real numbers between 0 and 1 inclusive, are sets of points.

An interval (z-6, x--3), where § is positive, is called a neighbourhood
of x. If S is a set of points, and every neighbourhood of x includes an
infinity of points of S, then x is called a limit point of S. The limit point
may or may not belong to S, but there are points of S as near to it
as we please. Thus T has one limit point, x = 0, which does not belong
to T. Every x between 0 and 1 is a limit point of R.

The set 8 of limit points of S is called the derived set or derivative
of S. Thus C is the derivative of R. If S includes S, i.e. if every limit
point of S belongs to S, then S is said to be closed. Thus C is closed.
If S" includes S, i.e..if every point of S is a limit point of S, then S is
said to be dense in itself. If S and S’ are identical (so that S is both
closed and dense in itself), then S is said to be Perfect. Thus C is perfect.
A less trivial example will be found in § 9.11.

A set S is said to be dense in an interval (a, b) if every point of (a, b)
belongs to S'. Thus R is dense in (0, 1).

If S can be included in a set J of intervals, finite or infinite in number,
whose total length is as small as we please, then S is said to be of measure
zero, Thus T is of measure zero. We include the point 1/ in the interval

1 1
~ - 2-n-13 —}2-n~1§
n ’ n+
of length 2-§, and the sum of all these intervals (without allowance
for possible overlapping) is

b i 2-n = 8,

1

which we may suppose as small as we please.
Generally, any enumerable set is of measure zero. A set is enumerable
if its members can be correlated, as

(9.10.1) Xy, Toperey Xpppeeny
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with the integers 1, 2 ,...,, n ,.... We include z, in an interval of length
2-"3, and the conclusion follows as in the special case of T.

A subset of an enumerable set is finite or enumerable. The sum of
an enumerable set of enumerable sets is enumerable.

The rationals may be arranged as

111213123

1> 1> 2 35 35 45 &> &5 s Boeee

and so in the form (9.10.1). Hence R is enumerable, and therefore of
measure zero. A set of measure zero is sometimes called a null set;
thus R is null. Null sets are negligible for many mathematical purposes,
particularly in the theory of integration.

The sum S of an enumerable infinity of null setsS, (ie. the set formed
by all the points which belong to some §,) is null. For we may include
8, in aset of intervals of total length 2-75, and so S in a set of intervals
of total length not greater than § ¥ 2" =3,

Finally, we say that almost all points of an interval I possess a pro-
perty if the set of points which do not possess the property is null.
This sense of the phrase should be compared with the sense defined
in § 1.6 and used in § 9.9. It implies in either case that ‘most’ of the
numbers under consideration (the positive integers in §§ 1.6 and 9.9, the
real numbers here) possess the property, and that other numbers are
‘exceptional .}

9.11. Decimals with missing digits. The decimal
1 = .142857

has four missing digits, viz. 0, 3, 6, 9. But it is easy to prove that
decimals which miss digits are exceptional.

We define S as the set of points between 0 (inclusive) and 1 (exclusive)
whose decimals, in the scale of r, miss the digit 6. This set may be
generated as follows.

We divide (0, 1) into » equal parts

S s$+1

PP Pgan. (8 =0, L,.e.,7—1);

r r
the left-hand end point, but not the right-hand one, is included. The
sth part contains just the numbers whose decimals begin with s-I,

t Our explanations here ¢ontain the minimum necessary for the understanding of
§§9.11-13 and a few later passages in the book. In particular, we have not given any

general definition of the meagure of a set. There are fuller accounts of g}l these jdeas in
the standard treatises on analysis.
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and if we remove the (b4 1)th part, we reject the numbers whose first
digit is b.

We next divide each of the r— 1 remaining intervals into # equal parts
and remove the (b+l)th part of each of them. We have then rejected
all numbers whose first or second digit is b. Repeating the process
indefinitely, we reject all numbers in which any digit is b; and S is the
set which remains.

In the first stage of the construction we remove one interval of length
1/r; in the second, r-l intervals of length 1/r, i.e. of total length
(r— 1)/r%; in the third, (r— 1)? intervals of total length (r— 1)%/r3; and
so on. What remains after k stages is a set J, of intervals whose total

length is £ (r—1y-1
1 A
s

2

=1
and this set includes S for every k. Since

N

when k — oo, the total length of J, is small when k is large; and S is
therefore null.

Trecrem 145. The set of points whose decimals, in any scale, miss
any digit is null: almost all decimals contain all possible digits.

The result may be extended to cover combinations of digits. If the
sequence 937 never occurs in the ordinary decimal for x, then the digit
‘937’ never occurs in the decimal in the scale of 1000. Hence

Trecrem 146. Almost all decimals, in any scale, contain qll possible
sequences of any number of digits.

Returning to Theorem 145, suppose that » = 3 and b = 1. The set
S is formed by rejecting the middle third (1, ) of (0, 1}, then the middle
thirds @, ), (¢, §) of (0, ) and (3, 1), and so on. The set which remains
is null.

It is immaterial for this conclusion whether we reject or retain the
end points of rejected intervals, since their aggregate is enumerable and
therefore null. In fact our definition rejects some, such as 3 = -1, and
includes others, such as % = -2.

The set becomes more interesting if we retain all end points. In this
case (if we wish to preserve the arithmetical definition) we must allow
ternary decimals cnding in 2 (and excluded in our account of decimals
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at the beginning of the chapter). All fractions p/3* have then two
representations, such as

P =1=-02
(and it was for this reason that we made the restriction); and an end
point of a rejected interval has always one without a 1.

The set S thus defined is called Cantor's ternury set.

Suppose that X is any point of (0, 1), except 0 or 1. If x does not
belong to S, it lies inside a rejected interval, and has neighbourhoods
free from points of S, so that it does not belong to S'. If x does belong
to S, then all its neighbourhoods contain other points of S; for other-
wise there would be one containing x only, and two rejected intervals
would abut. Hence x belongs to S'. Thus S and S’ are identical, and
X is perfect.

THeorem 147. Cantor's ternury set is a perfect set of measure zero.

9.12. Normal numbers. The theorems proved in the last section
express much less than the full truth. Actually it is true, for example,
not only that almost all decimals contain a 9, but that, in almost all
decimals, 9 occurs with the proper frequency, that is to say in about
one-tenth of the possible places.

Suppose that x is expressed in the scale of 7, and that the digit b occurs
n, times in the first » places. If

7
-2 >
- B

when n - oo, then we say that b has frequency 8. It is naturally not
necessary that such a limit should exist; ny/n may oscillate, and one
might expect that usually it would. The theorems which follow prove
that, contrary to our expectation, there is usually a definite frequency.
The existence of the limit is in a sense the ordinary event.

We say that x is simply normal in the scale of r if

(9.12.1) 1
n r

for each of the r possible values of b. Thus
x = (123456789
is simply normal in the scale of 10. The gsame x may be expressed in the
scale of 101%, when its expression is
x = b,
where b = 123456789. It is plain that in this scale x is not simply
normal, 10— 1 digits being missing.
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This remark leads us to a more exacting definition. We say that x is
normal in the scale of r if all of the numbers

X, rz, r*x,...T
are simply normal in all of the scales
rord i,

It follows at once that, when x is expressed in the scale of r, every
combination byb,... b,

of digits occurs with the proper frequency; i.e. that, if n, is the number
of occurrences of this sequence in the first n digits of x, then

n, 1
(9.12.2) 2
n T
when n - co.
Our main theorem, which includes and goes beyond those of § 9.11, is

‘ THeorem 148. Almost all numbers are normal in any scale.

9.13. Proof that almost all numbers are normal. It is sufficient
to prove that almost all numbers are simply normal in a given scale.
For suppose that this has been proved, and that S(z,r) is the set of
numbers x which are not simply normal in the scale of ». Then S(z, r),
S(x,7%), 8(x,r3),... are null, and therefore their sum is null. Hence the
set T'(z, r) of numbers which are not simply normal in g]] the scales
r, 7%,... is null, The set T'(rz,r) of numbers such that rx is not simply
normal in all these scales is also null; and so are T'(r%x,r), T(r3z, r),... .
Hence again the sum of these sets, i.e. the set U(z, 7) of numbers which
are not normal in the scale of r, is null. Finally, the sum of U(x, 2),
U(x,3),... is null; and this proves the theorem.

We have therefore only to prove that (9.12.1) is true for almost g]}
numbers X. We may suppose that n tends to infinity through multiples
of r, since (9.12.1) is true generally if it is true for n so restricted.

The numbers of r-ary decimals of n figures, with just m b's in assigned
places, is (r- 1)»-™. Hence the number of such decimals which contain
just mb’s, in one place or another, isj}

— n! __1\n—-m
p(n,m) = mln—m)! (r—1)n-m,

t Strictly, the fractional parts of these numbers (sinco we have been considering
numbers hetween 0 and 1). A numher greater than 1 is simply normal, or normal, if
its fractional part is simply normal, or normal.

¥ p(n, m) is the term in (r— 1)»~™ in the binomial expansion of

{1+ =1}
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We consider any decimal, and the incidence of b’'s among its first n
digits, and call »
b= m—; = m—n*

the n-excess of b (the excess of the actual number of b's over the number
to be expected). Since n is a multiple of r, n* and p are integers. Also

(9.13.1) - 1-< - < 1_1_
r n r
We have
9.132) pn,m+1) ~ n-m (r- yn—ru
pn,m) (- D(m+ 1) — (- Da+rr— D+ 1)

Hence
p(nam—l_l) > l - _1 __2 p(nam+l) < 1 = 01 2 .
—p(n,m) (/J. 1 ’-'-)’ “‘-p(n"m' ) (‘LL sy :"'):
so that p(r, m) is greatest when

p =09, m = n*.
If p > 0, then, by (9.13.2),
(9.13.3) p(n,m+1) _ (r- Dn—ru

p(n,m) (r—Dn-t-rir—1)(u+1)

<1_ r Egexp(_LI’_L)

r—1mn r—1mn)

If w <Oand y= |y, then
p(n,m—1) (r- )ym  (r- Hn—r(r— L)
pm,m) — m—m+1 " (r—ln+trp+1)

rv v )
1—— —_ ] = — A
< - < exp( n) exp( - )
We now fix a positive 9, and consider the decimals for which

(9.13.5) | > on
for a given n. Since n is to be large, we may suppose that |u| > 2.
If u is positive then, by (9.13.3),
p(n, m) — p(n,m) p(",’m—l) pn,m—p+1)
pln,m—p) = p(n, m- 1) p(n, m-2) " pn, m—p)
r (p=1)+(p—2)+..+1

r-| n

(9.13.4)

A

e X

p

-l gl <o
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where K is a positive number which depends only on 7. Since

pln, m—p) = p(n, »¥) <rm3¥
it follows that
(9.13.6) p(n, m) < yre-Kuin,
Similarly it follows from (9.13.4) that (9.13.6) is true also for negative p.
Let S,(p) be the set of numbers whose n-excess is u. There are
P = p(n, m) numbers ¢,, &, ..., £, represented by terminating decimals
of n figures and excess p, and the numbers of §, (n) are included in the

intervals fs’ §s+r-n (s = 1, 27,]))
Hence S, (p) is included in a set of intervals whose total length does not

exceed r-np(n, m) < e-Ewin,

And if 7,,(3) is the set of numbers whose n-excess satisfies (9.13.5),
then 7),(8) can be included in a set of intervals whose length does not
exceed
S eKuim =9 S o-Kutn L 2 % ¢~HEWng~tKpin < QoK i e—tKpin
lpi=8n p=on p=on u=0
9p—K8™m

. — 2
f— WL < Lne iKS n,

where L, like K, depends only on r,
We now fix N (a multiple N*r of r), and consider the set Uy(3) of
numbers such that (9.13.5) is true for some
n = n* >N = N*.
Then Uy(8) is the sum of the sets

q]V(S)’ TN+r(8)’ TN+27(B),...,
i.e. the sets T (8) for which n = kr and k > N*. It can therefore be
included in a set of intervals whose length does not exceed

Lkgvokm_mszkf = 7(N*);

and 7(¥*) - 0 when n* and N* tend to infinity.

If U(S) is the set of numbers whose n-excess satisfies (9.13.5) for an
infinity of n (all multiples of r), then U(S) is included in Uy(3) for
every N, and can therefore be included in a set of intervals whose total
length is as small as we please. That is to say, U(6) is null.

Finally, if z is not simply normal, (9.12.1) is false (even when n is
restricted to be a multiple of r), and

| = Cn
t Indeed p(n, m) < »® for all m,
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for some positive { and an infinity of multiples n of ¢, This { is greater
than some one of the sequence §, 3, 13,...,and so x belongs to some one
of the sets

PARRS]
U(3), U(33), U(3),...,
all of which are null. Hence the set of all such X is null.

It might be supposed that, since almost all numbers are normal, it
would be easy to construct examples of normal numbers. There are in
fact simple constructions; thus the number

-123456789101112..,

formed by writing down all the positive integers in order, in decimal
notation, is normal. But the proof that this is so is more_troubles-
than might be expected.

NOTES ON CHAPTER IX

§ 9.4. For Theorem 138 see P¢lya and Szeg(’), ii. 160, 383. The result is stated
without proof in W. H. and G. C. Young's The theory of sets of points, 3.

§ 9.5. See Dickson, History, i, ch. xii. The test for 7, 11, and 13 is not mentioned
explicitly. It is explained by Grunert, Archiv der Math. und Phys. 42 (1864),
478-82. Grunert gives slightly earlier rcferences to Brilka and V. A. Lebesgue.

§§ 9.7-8. See Ahrens, ch. iii.

There is an interosting logical point involved in the definition of a ‘losing’
position in Nim. We define a losing position as gne which is not a winning position,
i.e. as a position such that P cannot force a win by lcaving it to Q. It follows
from our analysis of the game that a losing position in this sense is also a losing
position in the sense that Q ¢gn force a win if P leaves such a position to Q. This
is a case of a general theorem (due to Zermelo and von Neumann) true of any
game in which there are only two possible results and only a finite choice of
‘moves’ at any stage. See D. Kognig, Acta Univ. Hungaricae (Szeged), 3 (1927),
121-30.

§ 9.10. Our ‘limit point' is the ‘limiting point’ of Hobson's Theory offunctions
of a real variable or the ‘Héaufungspunkt’ of Hausdorff's Mengenlehre.

§§ 9.12-13. Niven and Zuckerman (Pacific Journal of Math. 1(1951), 103-9) and
Cassels (ibid. 2 (1952), 555-7) give proofs that, if (9.12.2) holds for every sequencc
of digits, then x is normal. This is the converse of our statement that (9.12.2)
follows from the definition; the proof of this converse is not trivial.

For the substance of these sections see Borel, Legons sur la théorie des fonctions
(2nd ed., 1914), 182-216. Theorem 148 has been developed in various ways since
it was originally provcd by Borel in 1909. Full references will be found in
Koksma, 116-18.

Champernowne (Journal London Math. Soc. 8 (1933), 254-60) proved that
‘123... is normal. Copeland and Erdés (Bulletin Amer. Math. Soc. 52 (1946),
857-60) provcd that, if a,, a,,... is any increasing sequenco of integers such that
a, < nlt¢ for every € > 0 and n > nye), then tho decimal

Ay Ay g
(formed by writing ont the digits of the @, in any scale in ordcr) is normal in
that scale.
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CONTINUED FRACTIONS
10.1. Finite continued fractions. We shall describe the function

(10.1.1) ag+ !

a,+ .

ag+... )
Tay

a,+

of the N3 1 variables

gy Qyyenny Uppyoey By,
as a finite continued fraction, or, when there is no risk of ambiguity,
simply as a continued fraction. Continued fractions are important in
many branches of mathematics, and particularly in the theory of ap-
proximation to real numbers by rationals. There are more general types
of continued fractions in which the ‘numerators’ are not all 1’s, but we
shall not require them here.

The formula (10.1.1) is cumbrous, and we shall usually write the

continued fraction in one of the two forms

ao_l__.l_. ......}._ oo 1_
ayt+ -+ ay
or (g Ay, Bgserny Ay
We call a,, a,,..., @y the partial quotients, or simply the quotients, of the

continued fraction.
We find by calculation thatt

@ _ 000+ a gy Gy +35+ay .
= 7> ) = = y Ay Ao = — 7
[a] = 5 (@0, @] o [20: @y, @] PAES
and it is plain that
1
(10.1.2) [aga1] = ao+—,
1
1
(_10-1'3) [ao’ By yorey an—l’an] = By Oy geees By a’n—1+a— ’
n

T There is a clash between our notation here and that of § 6.11, which we shall use
again later in the chapter (for example in § 10.5). In § 6.11, [«] Wa8 defined as the integral
part of z; while here [a,] means simply a,. The ambiguity should not confuse the
reader, since we use {a,] here merely as a special case of [@, a,,..., @y,]. The square bracket
in this sense will geldom occur with a single letter inside it, and will not then be im-
portant.

5591 K
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1
[ay, ag,-.., 0]
for 1 €< n < N. We could define our continued fraction by (10.12)
and either (10.1.3) or (10.1.4). More generally
(10.1.5) [@0: @1 5oty @] = [@0s @pyeees Bpe1s [Bins Bmp1se00 W )]

forl<m<n <N.

(10.1.4) [ag,ay,..., 8, = Gg+ —————— = [aq, [@y, @p,..., 0, ]],

10.2. Convergents to a continued fraction. We call
[apay,..sa,] (0L << N)

the nth convergent to [ag, @, ,...,ay]. It is easy to calculate the con-
vergents by means of the following theorem.

THEOREM 149. If p, and g, are defined by

(10.2.1) py = a,, Py = a1, Po= 8y Py1FPr2e (2 < 1< N),
(10.2.2) g= 1, ¢, = a,, Iy = @pnatqdn-e (2<n<N),
then
(10.2.3) [ap a,.a] =2,

In

We have already verified the theorem for n = 0 and n = 1. Let us
suppose it to be true for n < m, where m < N. Then
Pm — O Prm-1tPm—z
G Oy It Tne
and p,,_;, Pm—2s 9m-1> Im—2 depend only on
gy Qyyerey Gy g
Hence, using (10.1.3), we obtain

[an a, yeeey Ty a,] =

1
(@0 @1seees Bty Oy Uiy ] = [a“, @y geeey By, m+a—;
m+
1
a pm—1+pm—2

( m + ) Qm—1+qm~2
m+1

Qi1 (@ Py 1+ Prp—2) 1+ Pin 1

am+l(a’QO—l+qm—2)+qm—1

Qi1 P+ PPms1.

R P
and the theorem is proved by induction.
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It follows from (10.2.1) and (10.2.2) that

(10.2.4) P _ %Pn-1F P

Qn an Qn—-l +Qn—2 )
Also

DPn n—1—Pn-1 qn = (anp'n—l—{_pnfz)qn—l_“pn—l(an qn-1+Qn—2)
= (Ppa1 Tn—2—Prn-2py)
Repeating the argument with n-I, n-2,..., 2 in place of n, we obtain
Prln-1—Pn18n = (—" UP1go—Poq) = (—1)"%
Also
pn In—2"Pn-2 qn = (anpn—1+pn—2)Qn—2—pn—2(an qn—1+Qn—2)
= @p(Pp-1 In-2—Pn—2 pn-1) = (—1)*ay,.
Treorem 150.  The functions p, and g, satisfy

(10-2-5) Prn9n-1—"Pn-19s = (—l)n_l
or
(10.24 Po_Puy (217

9 gqn-1 gn-1 Qn.
TrHecrem 151, They also satisfy

(10'2'7) pnqn—z_pn—ZQn = (—l)"an
or
(10.2.8) Pn Puz _ (—1)"0n,

9. [/ B ‘]n—z Qn

10.3. Continued fractions with positive quotients. We now
assign numerical values to the quotients a,, and so to the fraction
(10.1.1) and to its convergents. We shall always suppose that
(10.3.1) a;>0, .. ay>0f
and usually also that a, is integral, in which case the continued fraction
is said to be simple. But it is convenient first to prove three theorems
(Theorems 152-4 below) which hold for all continued fractions in which
the quotients satisfy (10.3.1). We write

Ty, = &’ X = Zy,
an
so that the value of the continued fraction is xy or Xx.

It follows from (10.1.5) that
(1032) r = [ao, al,..., aN] = [ao, Qyseees Qpy g5 [an; an+19'“) aN]]

- [a,, a......, an]Pn-a1+Pns
[am an+1,-"; aN]qn—1+Qn—2
for 2 < n < N.

t @, may be negative.
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THEOREM 152. The even convergents z,, increase strictly with n, while
the odd convergents x,,,, decrease strictly.

Theorem  153. Every odd convergent is greater than qny even convergent.

THeoreM 154. The value of the continued fraction 4s greater than that
of any of its even convergents and less than that of any of its odd convergents
(except that it is equal to the last convergent, whether this be even or odd).

In the first place every g, is positive, so that, after (10.2.8) and
(10.3.1), ,—=x,_, has the sign of (—1)», This proves Theorem 152.
Next, after (10.2.6), x,—=x,_, has the sign of (—1)»-1, so that

(10.3.3) Lomi1 > Lom:
If Theorem 153 were false, we should have z,, ,, < x,, for some pair
m, u. If @ < m, then, after Theorem 152, x,,, ., < %a,, and if u > m,
then z,,., < Loys and either inequality contradicts (10.3.3).

Finally, x = g, is the greatest of the-even, or the least of the odd
convergents, and Theorem 154 is true in either case.

10.4. Simple continued fractions. We now suppose that the a,
are integral and the fraction simple. The rest of the chapter will be con-
cerned with the special properties of simple continued fractions, and
other fractions will occur only incidentally. It is plain that p, and g,
are integers, and ¢, positive. If

lag, a5, @y,..., ay] = Py _ ,
N
we say that the number x (which is necessarily rational) is represented
by the continued fraction. We shall see in a moment that, with one
reservation, the representation is unique.

THeoreM 155. ¢, 22 ¢,,_, for n 2> 1, with inequality when n > 1.
THEOREM 156. ¢, > n, with inequality when n > 3.
In the first place, ¢, = 1, ¢, =a, > 1. If n >> 2, then
9n = Opln-1t9n23 Gnatl,
so that ¢, > ¢,_, and g, > n. If n > 3, then

Qn > qn—1+qn—2 > Qn—l_*_l 2 n)
and so ¢, > n.
A more important property of the convergents is
THEOREM 157. The convergents to a simple continued fraction are in
their lowest terms.

For, by Theorem 150,
d|p, - d|g, = d|(~1)*1 > d| 1.
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10.5. The representation of an irreducible rational fraction
by a simple continued fraction. Any simple continued fraction
[a, a, .. ., ay] represents a rational number

X = Ty
In this and the next section we prove that, conversely, every positive
rational x is representable by a simple continued fraction, and that,
apart from one ambiguity, the representation is unique.

Theorem 158. If x is representable by a simple continued fraction with
an odd (even) nmumber of convergents, it is also representable by one with
an even (odd) number.

For, if a, > 2,

[ag, @y )] = [agayes0,—1, 1],
while, if a, =1,

[a()’ Ay, an—l’ 1] = [ao’ [= PP an~2’ an~1+ l:"

For example [2,2,8] = [2,2,2,1].
This choice of alternative representations is often useful.
We call ap =[a,, &, ay] (0<n<N)

the n-th complete quotient of the continued fraction

[a()’ Aseens A, a’N]'
’
a; ag+1
gyt

Thus X = ay, v
ay
and
a‘lnpn—l_*_pn—2
(10.5.2) # o= 2t 2Rt (2 < n g N).
U Qp-17Gn—2 =T

Theorem 159. @, = [ay,], the integral part of a,,T except that

ay_1 = [ay-]—1
when ay = 1.

If N =0, then a, = ay = [ag). If N > 0, then

€= ayb—— ©<n <N
Fpi1
Now a,,,) 1 0<nN-1)
except that a),,, = 1 when n = N- 1and ay = 1. Hence
(10.52) a, < a, < a,+1 (0 < n << N1
and a, = [@,] (O < n < N-1)

t We revert here to our habitual use of the square bracket in accordance with the
definition of § 6.11.
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except in the case specified. And in any case
ay = ay = [ay])-
THeorewm 160. If two simple continued fractions
(@0 @1--5 y], [Bgs b1s---> Dag]
have the same value X, and ay > 1, by, > 1, then M = N and the fractions
are identicul.
When we say that two continued fractions are identical we mean that
they are formed by the same sequence of partial quotients.
By Theorem 159, g, = [x] = b, Let us suppose that the first n
partial quotients in the continued fractions are identical, and that
a,, b, are the nth complete quotients. Then

X = [ag s @y, @] = [, a0, Bpens b2

If n = 1, then ao_{_l, = a0+_17,
ay by

a; = by, and therefore, by Theorem 159, a, = b,. If n > 1, then, by

(10.5.1), T - by Py1+Pn—2

a;; qn—l+Qn~—2 b;v, Qn—1+Qn—2 ’
(a;z_b;t)(pn—IQn—Z_pn—zQn—l) = 0.
But p,_1¢n_s—Pu—2qn-1 = (—1)* by Theorem 150, and so a, = b;. It
follows from Theorem 159 that a, = b,.

Suppose now, for example, that N <, M. Then our argument shows
that

a, = b,
for n < N. If M > N, then
Pn _ - _ by Py Py
N = [a,, Gy e, Gy = [@g @, yorry By Oygyees, by | = LN T EN
N p SELLAH) N] [ 0 geety Ny YNH1 M] bN+1 qN+qN—1,
by (10.5.1); or PnAN-1—PN-19v =0,

which is false. Hence M = N and the fractions are identical.

10.6. The continued fraction algorithm and Euclid’s algo-
rithm. Let x be any real number, and let a, = [z]. Then
z = ag+&, 0< < L.

If £, == 0, we can write

1 ’ ’ 14

E‘ = &y, [a1] = ay, o = a;-+&, 0 < L

0
If ¢ 70, we can write

1

E—=a'z=az+§z, 0§, <],
1
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and so on. Also a;, = 1/¢,_; > 1, and so a, > 1, for n > 1. Thus

1 1 L
r=[anai] = a8k 5o fu i) = [doan o ] = .

[

where a, a,.. are integers and
a, >0, ay > 0,... .

The system of equations

A 0<&<1),

fl =o =0+ (06 <),
0

1 ’

f=G=ath  (0<&<Y)

is known as the continued fraction algorithm. The algorithm continues
so long as £, # 0. If we eventually reach a value of n, say N, for which
&y = 0, the algorithm terminates and

z = [ay, a5, Qq,..., ay]-
In this case x is represented by a simple continued fraction, and is
rational. The numbers a, are the complete quotients of the continued
fraction.

Theorem 161. Any rational number cam be represented by a finite
simple continued fraction.

If x is an integer, then £, =0 and x = a,. If x is not integral, then

X — h
=g
where h and k are integers and k > 1. Since
Do agtée b= agktéok,
a, is the quotient, and k, = &, k the remainder, when h s divided by &.f
, 1 k
If 0, then ay = — = —
go ¢ 1 fo kl

t The ‘remainder’, here and in what follows, is to be non-negative (here positive).
If a, >> 0, then z and h are positive and k; is the remeinder in the ordinary sense of
arithmetic. If a, < 0, then z and k are negative and the ‘remainder’ is

(@—[=]k.
Thus if h = -7, k = 5, the ‘remeinder’ is
(—3—[—ZN5 = (—F+2)5 = 3.



136 CONTINUED FRACTIONS [Chap. X

and ;;1 = a,+§, k= ayky+&k;
thus a, is the quotient, and k, = ¢, &, the remainder, when k is divided
by k,. We thus obtain a series of equations

h = ayk+k, k= aky+k, ky = a,kyt-ks,
continuing so long as ¢, 7% 0, or, what is the same thing, so long as
kn+1 # 0.

The non-negative integers k, k;, k,, . . .form a strictly decreasing sequence,
and so ky,; = 0 for some N. It follows that £, = 0 for some N, and that
the continued fraction algorithm terminates. This proves Theorem161,

The system of equations

h = ayk+k, 0 <k < k),
k= a,k+k, (0 < ky < ky),

ky_y== aya by y+ky (9< ky < ky_y),
ky_y = ayky
is known as Euclid’s algorithm. The reader will recognize the process
as that adopted in elementary arithmetic to determine the greatest
common divisor k, of h and k.
Since £y = 0, ay = a,; also
1 1
0 < — =5 =&y <1,
< ay  ay Ena
and so ay > 2. Hence the algorithm determines a representation of
the type which was shown to be unique in Theorem 160. We may always
make the variation of Theorem 158.
Summing up our results we obtain
THEOREM 162. A rational number cqn be expressed as a finite simple
continued fraction in just two ways, one with an even and the other with
an odd number of convergents. In one form the last partial quotient is 1,
in the other it is greater than 1.

10.7. The difference between the fraction and its convergents.
Throughout this section we suppose that N > 1 and n > 0. By (10.5.1)
— a;z+1.pn+pn—1

a’n+1qn+Qn—-1
for 1 £ n < N-I, and so
Z—BE — — pnqn—l—_pVL—lqn — (—l)n '
qn Qn(a;H»l qn+qn—l) Qn(a;b+l Qn+qn—l)




10. 7 (163-4)] CONTI NUED  FRACTI ONS 137

Also r—20% _ x-a, = 1_
9o 21
If we write
(10.7.1) ¢ = a, @n = 1tz Q<0 N)
(so that, in particular, ¢ = g,), we obtain

Treorem 163, If 1 <<n < N—1, then

9n Inn+1
This formula gives another proof of Theorem 154.
Next, y 11 < a;zﬂ < an+1+]

for n < N-2, by (10.5.2), except that
a}v_l =ayq+1
when ¢, = 1. Hence, if we ignore this exceptional case for the moment,
we have
(10.7.2) =0 <o <atl<g
and
(10.7.3) Tnsr = Cni19nFTne1 > i1 atn- = Gnios
(10.7.4) q’nH < Gt atdn = Gatdn K Uieanitqn = nie
for 1 << n < N-2: It follows that

1
(10.7.5) LI |Pn—tn | < (n < N—2),
In+2 Tn+1
while
1
(10.7.6) |Py-1—an-12] = w Pv—anT = 0.
N

In the exceptional case, (10.7.4) must be replaced by
gyv-1 = @yt 1)gv—2t9v-s = In-1HIv—2 = gy

and the first inequality in (10.7.5) by an equality. In any case (10.7.5)
shows that |p,—g,, #| decreases steadily as n increases; a fortiori, since
g, increases steadily,

decreases steadily.
We may sum up the most important of our conclusions in

Trecem 164, If N > 1, n > 0, then the differences

_Pn
. b
In

X

Gpt—Pn
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decrease steadily in absolute value as n increases. Also

_ (—1)”8n
r—p, = —L12,
qn pn 9n+1
where 0<8,<1 (1 <n< N2, Oy = L,
and
1 1
10.7.7 z—Pnl < —
(01,7 Tnl  Qndns1 O

for n < N- 1, with inequality i n both places except when n = N-I.

10.8. Infinite simple continued fractions. We have considered
so far only finite continued fractions; and these, when they are simple,
represent rational numbers. The chief interest of continued fractions,
however, lies in their application to the representation of irrationals,
and for this #nfinite continued fractions are needed.

Suppose that a,, a, @... 1S a sequence of integers satisfying (103. 1),
so that Ty = [Bgy Byyerer Bn)
is, for every n, a simple continued fraction representing a rational
number x,. If, as we shall prove in a moment, x, tends to a limit x
when n -> oo, then it is natural to say that the simple continued fraction

(10.8.1) lag, a1, Gy,
converges to the value X, and to write
(10.8.2) x = [ay,a5,85,... ]
Trecem 165. If a,, a,, @, ,.. IS @ sequence of integers satisfying

(10.3.1), then z, = [a,, a; ,...,a] tends to a limit x when n — 0.
We may express this more shortly as

THEOREM 166. All infinite simple continued fractions are convergent.

Ve write T, = Pn _ [@g) Gyyeees @),
qn
as in § 10.3, and call these fractions the convergents to (10.8.1). We
have to show that the convergents tend to aldimit.

If N > n, the convergent z, is also a convergent to [a,, a,,..., y].
Hence, by Theorem 152, the even convergents form an increasing and
the odd convergents a decreasing sequence.

Every even convergent is less than x,, by Theorem 153, so that the
increasing sequence of even convergents is bounded above; and every
odd convergent is greater than z,, so that the decreasing sequence of



e

4

10. 8(187-9)] CONTI NUED  FRACTI ONS 139

odd convergents is bhounded below. Hence the even convergents tend
to a limit ¢,, and the odd convergents to a limit £,, and ¢, < §,.
Finally, by Theorems 150 and 156,

Pon_ Pon—1 1 < 1
— ~
9on  Qon-1| = 92n92m1  2n(2n—1)
so that ¢; = &, = X, say, and the fraction (10.8.1) converges to x.
Incidentally we see that

-0,

TreoRem 167, An infinite simple continued fraction is less than any
of its odd convergents and greater than amy of its even convergents.

Here, and often in what follows, we'use ‘the continued fraction’ as
an abbreviation for ‘the value of the continued fraction'.

10.9. The representation of an irrational number by an infinite
continued fraction. We call
a;:, = [am an+1""]
the n-th complete quotient of the continued fraction
X = [ao,al,...]-

a, =1lim [a,, a,+,,..., @
n AF»«! N]

|

= a+ lim ———= q,-}
Now [Op1ens an] "

Clearly

3
a'n +1

- - _ r _ 1
and in particular X = ag= a0_|_.dTl,

’ ’ 1
AISO an > an, an+1 > an+1 > 0’ 0 < ’ < 1;
Ani1
and 8o a, = [a,].

Treorem 168. If [a,,, a4, a4 ... | = z, then

ay = [z], a, = [a,] (n > 0).
From this we deduce, as in § 10.5,

~ Tiecem 169. Two ¢nfinite simple continued fractions which have the

same value are identical.

We now return to the continued fraction algorithm of § 10.6. If x
is irrational the process cannot terminate. Hence it defines an infinite
sequence of integers

@y, Aq, By, ..,
and as before
’ ’ I’
z = [ag, 03] = [ag, ay, a] = . . . = [ag, @y, Ag..., @y, Opps],
?
where Uni1 = Gyiy + > Gpyye

’
Ania
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a’;ﬁ-l Pn +pn—1

Hence T = p2- % -7
an+1 Qn+9n—1

by (10.5.1), and so

x_& — Pn-19—Pn9n-1 — ('—'l)n ,
9 qn(anﬂ Qn+9n—1) Qn(anﬂ Qn+Qn—1)
1
Tl (@190t Tn1)  Gnan  Mn+1)
when n -» c0. Thus
x=lim2_[a,a,,.,a ,.],
n—0 ¢y

and the algorithm leads to the continued fraction whose value is x, and
which is unique by Theorem 169.

Trecrem 170.  Every irrational number c¢an be expressed in just one
way as an infinite simple continued fraction.

Incidentally we see that the value of an infinite simple continued
fraction is necessarily irrational, since the algorithm would terminate
if X were rational.

We define Gn = O Qu1 s
as in § 10.7. Repeating the argument of that section, we obtain

Trecrem 171, The results of Theorems 163 and 164 hold also (except
for the referemces to N) for ¢mfinite continued fractions. In particular

1 1
_ P <
n

(10.9.1) —.
Qn Qn+1 Qn

x

10.10. A lemma. We shall need the theorem which follows in
§ 1011
__ P{+R
CQU+8°
where § > 1 and P, Q, R, and S are integers such that

Q>8>0 PS-QR = ],

then R/S and P/Q are two comsecutive convergents to the simple continued
fraction whose value is x. If R/S is the (n- 1)tk convergent, and P/@ the
nth, fhen { is the (n+1)th complete quotient.

We can develop P/ in a simple continued fraction

P p
—=[a, a, yu., a,] =2,
Q ’ ] qn

Treoem 172, If

(10.10.1)
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After Theorem 158, we may suppose n odd or even as we please. We
shall choose n so that
(10.10.2) PS-QR = 41 = (=1L

Now (P, Q)= 1 and Q > 0, and p, and g, satisfy the same condi-
tions. Hence (10.10.1) and (10.10.2) imply P = p,, Q = g,, and

_pn S'qr R = PS'QR = (_l)n—l = Prnln-1—"Prn-19%

or

1
(10.10.3) Pp(8—¢n_y) = G(B—Pn)-
Since (p,,,q,) = 1, (10.10.3) implies
(10.10.4) 2n (8—qu_y)-
But %=Q>8>0, ¢,>20n1>0,
and so S~qu1 <y

and this is inconsistent with (10.10.4) unless §—q,_; = 0. Hence
S - 9n-1) R =P,

pn C+pn—1
and g =" -n"2

qn g‘l—Qn—l
or x = [ag, @y, @y, L]

If we develop { as a simple continued fraction, we obtain

g = [an+1: a’n+2""]

where a, ., = [{] > 1. Hence

Z = [@g, Qyyerey Apyy Qppigs Do)
a simple continued fraction. But p,,_,/¢,-, and p,/q,, that is B/S and
P/@, are consecutive convergents of this continued fraction, and ¢ is
its (n+ 1)th complete quotient.

10.11. Equivalent numbers. If { and 5 are two numbers such that

£ — an+b
T end’
where a, b, ¢, d are integers such that ad — bc = 4 1, then ¢ is said to
be equivulent to 4. In particular, £ is equivalent to itself.}
If ¢ is equivalent to 7, then
—dé+b

o (—d(—a)=be = ad-bc = T

7] =
and so 7 is equivalent to £. Thus the relation of equivalence is sym-

metrical.
ta=d=1b=c=0.
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THEOREM 173. If ¢ and % are equivalent, and n and { are equivalent,
then £ and { are equivalent.

. an--b =
FOI‘ f——- m, ard bC :tl)
_alc+b’ 1 IV
n_m, a'd —b'¢’ = fI,
_ Al+B
and f-—— ma
where

A = ad’ +bc, B = ab’+4bd’, C = ca’+dc’, D = c¢b'4dd,
AD-BC = (au-bc)(a'd’-b’c’) = +1.

We may also express Theorem 173 by saying that the relation of
equivalence is transitive. The theorem enables us to arrange irrationals
in classes of equivalent irrationals.

If h and k are coprime integers, then, by Theorem 25, there are in-
tegers h’ and %’ such that

k' —h'E = 1;
h_#'.04h _a.0+b
k' k.0+k  ¢.0%d’
with ad-bc = ~ 1. Hence any rational A/k is equivalent to 0, and
therefore, by Theorem 173, to any other rational.

and then

Trecrem 174. Any two rational numbers are equivalent.

In what follows we confine our attention to irrational numbers,
represented by infinite continued fractions.

THEOREM 175. Two irrational numbers ¢ and 7 are equivalent if and
only if
(10.11.1) § = [@g, @y sove 5B €0sC1sConeee]s M = [Bg, b1see, by, €, €9, 000 ],
the sequence of quotients in ¢ after the m-th being the same as the sequence
in 7 after the n-th.

Suppose first that ¢ and 7 are given by (10.11.1) and write

w= [co, €15 Cg 5eee ]
- pmw+pm—1.
?

In @0t qm

and Py, ¢-1—Pm-1 9m = £ 1,80 that { and o are equivalent. Similarly,

n and w are equivalent, and so £ and 7 are equivalent. The condition is
therefore sufficient.

Then 5 - [an ay PARAS an w]
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On the other hand, if { and 5 are two equivalent numbers, we have

_af+b
1= e d’

We may suppose c£+d > 0, since otherwise we may replace the coeffi-
cients by their negatives. When we develop ¢ by the continued fraction
algorithm, we obtain

E = [ao, Qsenes Apgs ak+1""]

Pr—1 U~+Pr—2 )

ad-bc = fl.

= [ag,..., Qp_y, ) =

Q-1 T+ Qp—2
Pa;+ R
Hence = ="
1= Qa1 8
where

P = apy 1104y, R = apy_yt+bgy_s,
Q = ppatdge-1, S = Pr-otdgis
so that P, Q, R, S are integers and

PS-QR = (ad—be)(pg—1 Qu-2—Pr-29k-1) = L 1.
By Theorem 171,

DPr = f‘b;—rl-i’ Pr—g = Edk—2+ 5 )
/= Q-2
where |3 < 1, |8'| < 1. Hence
Q= (Etdgert-2, 8= (gt .
Tk Q-2
Now ¢é+d >0, @1 > qx-2 > 0, and ¢y_; and ¢z, tend to infinity;
so that Q>8>0
for sufficiently large k. For such k
__ P{+R
N = m:

where PS-QR = 41, @>8>0, {(=a,>1
and so, by Theorem 172,

n = [b()’ bl""’bl’c] = [b()’ bl""’b!’aki akil""]’
for some by, b,,..., 6,. This proves the necessity of the condition.

10.12. Periodic continued fractions. A periodic continued fraction
is an infinite continued fraction in which

ap = Qg
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for a fixed positive k and gll [ > L. The set of partial quotients
Ars Apq1serss Cr4k-1
is calletl the period, and the continued fraction may be written
[ao, Ayyeeir Op 1, QL Op 1y O ik
We shall be concerned only with simple perioclic continued fractions.

THEOREM 176. A periodic continued fraction is a quadratic surd, z.e.
an irrational root of a quadratic equation with integral coefficients.

If o), is the Lth complete quotient of the periodic continued fraction

X, we have )
ay, = [ag, @pi1oeees Cpsk—1> Aps AL o]

’
= [a’L; Ar+1-5 CL+k-1> aL]:

a' _ p,a_,L‘l‘p”
- ! 24
qar+q
(10.12.1) q'af+(q"—paL—p" =0,
where p”/q" and p’/q’ are the last two convergents to [a, @1, @ 1k-1]-
But x:Pan:L‘FPL-z’ o, —PL2-PL-2 ¥
9r—105+9r-2 9.1%—Pr

If we gsubstitute for ¢ in (10.12.1), and clear of fractions, we obtain an
equation
(10.12.2) ax®-+bx+c =0
with integral coefficients. Since X is irrational, b2—4ac # 0.

The converse of the theorem is also true, but its proof is a little more
difficult.

THEOREM 177. The continued fraction which represents a quadratic
surd ¢ periodic.

A guadratic surd satisfies a quaclratic equation with integral coeffi-
cients, which we may write in the form (10.12.2). If

X=[a, 8 e d, ]

then P = Poa a;b+pn—2.
9n—1 an+Qn—2
and if we substitute this in (10.12.2) we obtain

(10.12.3) A a2+ B d,+C, =0,

where
A, = apl 1 +bp, 1 @y Fegh,
B, = 2ap, 1 Proatb(Dyy GugtPr-zTu-1)+ 20401 Gucs:
C, = apd o t-bp, o qu_otegios.
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If A, = api 1 +bp, 1 QuyFcqny = 0,

then (10.12.2) has the rational root p, _;/¢.-1, and this is impossible
because x is irrational. Hence A, # 0 and

Any2+BrL?/+0 =0
is an equation one of whose roots is a;,. A little calculation shows that
(10.12.4) B'?L_4An Cn = (bz_4ac)(pn~l Gn-2—Pn-2 qn~—1)2

= b2—dac.

By Theorem 17 1,

S,
Ppoy = an_l-i-au ‘(L < 1)
n-1

Hence
S, 1\2 Spe
A! = a(xQn—1+ n—l) +bq",—1(xQn~l+ 1)+qu—l
Qn—l 9n—
82
= (.axz—{—bx—{—c)qf,_l—}—2ax3n_1—{—aq:—_1-}—bSn_,
n—1
82
= 2028, _;+a—224 bS,
9n—1
and |4,] < 2|ax|+]|a|+|b].

Next, since C, = 4,,_;,
Cal < 2laz|+]al+[b].
Finally, by (10.12.4),
B < 4|4, C, |+ |b*—4ac|

< 4(2|ax|+|a|+|b|)*+|b2—4ac].
Hence the absolute values of A,, B,, and C, are less than numbers
independent of n.

It follows that there are only a finite number of different triplets
(A,, B,,());and we can find a triplet (A, B, C) which occurs at least
three times, say’ as (A,,, B, C..): (4., B,,. C,)), and (4, B,,, C,).
Hence a,,,, a;,, a,, are all roots of

Ay*+By+C =0,

and at least two of them must be equal. But if, for example, a',h = ay,,
then

8p, = py Anygrl = A 4100

and the continued fraction is periodic.
5501 L
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10.13. Some special quadratic surds. It is easy to find the
continued fraction for a special surd such as 42 or 3 by carrying out

the algorithm of § 10.6 until it recurs. Thus

1 1
13. 2= 1+(V2—1)= 14— — -
10181) V2= 1+(V2=1) = 14 G5y = 14 5p—py
1 1 1
=I5y 3o = Map ey = b2
and, similarly,
1 1 1 1
10.13.2 3 =14+ - - =112
w2 B=lr gy gt LY
1 1 :
10.13.3 = = 4
(10.13.3) V5 =24 2, 4],
1 1 1 1
1913.4 —_— = 1,4
( ) NT = +1+1+1+4+ =[2,i, 1, 1,4].
But the most interesting special continued fractions are not usually
‘pure’ surds.
A particular simple type is
1 1 1 1 ;.

where a) b, so that b = a¢, where c is an integer. In this case

11 (ab+1)x+b

T T ET TaeT
(10.13.6) wt—bz—c = 0,
(1013.7) X = 3{b+(b2+4c)}.
In particular
(10.13.8) o= 1+I}? ﬁl—— — (] = ‘/5_;_1

11 _

(1013.9) B=24gr g =[] = V241,
(10.13.10) y = 2+& :ai — 2 1] = V341

It will be observed that g and y are equivalent, in the sense of § 10.11,
to v2 and 3 respectively, but that « is not equivalent to /5.
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It is easy to find a general formula for the convergents to (10.13.5).
THeorem 178. The (n+ 1)th convergent to (10.13.5) s given by

(10.13.11) Py = c-lm+lly, o, g, = clinilly,
where

an—yn
(10.13.12) Uy, =

X-Y

and x and y are the roots of (10.13.6).
In the first place

g =1= h=a=_=—"=°17

Po =0 = x4y = uy, py=ab+1=

3

b tc_ (@+y)—xy _ u
c ¢ c

so that the formulae (10.13.11) are true for # = 0 and n = 1. We prove
the general formulae by induction.
We have to prove that

pn —_ C—H(n+1)]runt2 - wn_’_z’

say. Now "2 = b+l cxn, Y2 = by tlfcyn,
and so

(10.13.13) Unso = bun+1+cun'

But Ugmiz = " Wams2: Ugm+1 = C"Wamer:

Substituting into (10.13.13), and distinguishing the cases of even and
odd n, we find that
Womtz = OWamiy+Wam, Womi1 = QWam+Wop -
Hence w,,, satisfies the same recurrence formulae as p,, and so
P, = W, 4. Similarly we prove that ¢, = w, ;-
The argument is naturally a little simpler when a = b, ¢ = 1. In
this cse p, and ¢, satisfy
Untz = bun+1+un
and are of the form Az"+ By®,
where A and B are independent of n and may be determined from the
values of the first two convergents, We thus find that
xn+2_Y nt2 xn+1_Yn+1
Pn = T, qn = T’

in agreement with Theorem 17s.

+ The power of ¢ is ¢ when n = 2m and ¢~ when n = 2m+ 1.
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10.14. The series of Fibonacci and Lucas. In the special case
a =b = 1we have

V51 1 N5—1
10.14.1 = — = = —
( ) x — Y x g
2 gynt2 gy 20
Pn = Upyg = —ﬁ—; In = Unn = _%y_
The series (u,) or
(10.14.2) 1, 1,2 3,5 8 13, 21,...

in which the first two terms are %; and %,, and each term after is the
sum of the two preceding, is usually called Fibonacci's series. There
are, of course, similar series with other initial terms, the most interesting
being the series (v,) or

(10.14.3) 1, 3 4,7 11, 18, 29, 47 ,..,
defined by
(10.14.4) v, = amym.

Such series have been studied in great detail by Lucas and later writers,
in particular D. H. Lehmer, and have very interesting arithmetical

properties. We shall corne across the series (10.14.3) again in Ch. XV
in connexion with the Mersenne numbers.

We note here some arithmetical properties of these series, and parti-
cularly of (10.14.2).

Trecem  179. The numbers u, and v, defined by (10.14.2) and (10.14.3)
have the following properties:
(1) (uns un+1) = Ia (Um vnﬂ) =1
(i) w, and », are both odd or bhoth even, and
(un, vn) = 1, (un’vn) =2
in these two cases;
(i) w, | u,, for every r;
(iv) 4f (m, n) = d then
(um: un) - ud’
and, in particular, u,, and u, are coprime if m and n are coprime;
(V) if (m,n) = 1, then
um un I umn'
It is convenient to regard (10.13.12) and (10.14.4) as defining u, and
v, for all integral n. Then
Uy = 0, Vg = 2
and

(10.145) w_, = —(zy) ™, = (=", v, = (=1,
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We can verify at once that

(10.14.6) 2Upsm = U U2y Vs
(10.14.7) vE—5ud = (—1)"4,
(10.14.8) UL — Uy Uy = (— 1),
(10.14.9) V=0, Upy = (— 1),

Proceeding to the proof of the theorem, we observe first that (i)
follows from the recurrence formulae, or from (10.14.8), (10.14.9), and
(10.14.7), and (ii) from (10.14.7).

Next, suppose (iii) true for » = 1, 2 ..., R-l. By (10.14.6),
2uRn = Uy U(R—1)1L+u(R—1)n Uy
If u, is odd, then u,, 2up, and so u, ug,.If 4, is even, then v,, is even
by (ii), u@_p, by hypothesis, and v _y, by (ii). Hence we may write
Upn = un‘%v(ﬂ—l)n+u(R~l)n [ %vn’
and again u,, Up,.

This proves (iii) for all positive , The formulae (10.14.5) then show
that it is also true for negative r.

To prove (iv) we observe that, if (m,n) = cl, there are integers r, 8
(positive or negative) for which

rm+sn = d,
and that

(10.14.10) 2ug = Upy Vo T+ Usn, Vpps
by (10.14.6). Hence, if (u,, u,) = k, we have
Bty Bl — B|w,, . h|u, = | 2u,

If hisodd, h %, If hiseven, then u, and u, are even, and so

™m»

Usns Vpmy Vs @re all even, by (ii) and (iii). We may therefore write
(10.14.10) as 1 L
Ug = urm(f”sn) +usn(§vrm):

and it follows as before that 4 ;. Thus k u, in any case. Also u; u,,

Uy Uy, by (iii), and so g (4, 4,) = .

Hence h = u,
which is (iv).
Finally, if (m, ») -= 1, we have

U, Umns Up Umn

by .(iii), and (%,,, u,,) = 1 by (iv). Hence

um un umn'
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In particular it follows from (iii) that «,, can be prime only when m
is 4 (when %, = 3) or an odd prime p. But Up is not necessarily prime:
thus Us = 53316291173 = 953.55945741.

Trecrem 180. Every prime p  divides some Fibonacci number (and
therefore an snfinity of the numbers). In particular

Up—y = 0 (Modp)
if p = 5m4-1, and Uy = 0 (Modp)

if p= 5m+42,
Since u3 = 2 and u; = 5, we may suppose that p = 2, p # 5. It
follows from (10.13.12) and (10.14.1) that

n n
14, gn-ly, = 54 5%,
(10.14.11) = nt gt 5

where the last term is 5¥*-1 if n is odd and n. 5i*-1if niseven. If n = p

then 5
20-1 =1, 5%p-D = Z (modp),
op

by Theorems 71 and 83; and the binomial coefficients are all divisible
by p, except the last which is 1. Hence

U = 41 (mod p)

»
and therefore, by (10.14.8),
Up_1Up41 = 0 (Modp).
Also (p-lp+l) = 2, and so
(Up—1,Up1) = Uy = 1,
by Theorem 179 (iv). Hence one and only one of u,_; and Uy is
divisible by p.
To distinguish the two cases, take n = p+l in (10.14.11). Then

2Py = (P+1)+(p—;—1)5—1—...—}—(1)_}_1)51}(17—1)_

Here all but the first and last coefficients are divisible by p,t and so

|%Icn

2u,,, = 1—|—(§ (modp).

Hence u,,, = 0 (modp) if£ = -1, ie. if p = 42 (mod5),f and

U

1 = 0 (modp) in the contrary case.

We shall give another proof of Theorem 180 in § 15.4.

t (p+1), where 3 € Y < p— 1, is an integer, by Theorem 73 ; the numerator containg
v

P, and the denomiuator does not. t{ By Theorem 97.
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10.15. Approximation by convergents. We conclude this chapter
by proving some theorems whose importance will become clearer in

Ch. XI.
Pn 1

By Theorem 171, oz < =,
qn qn
so that p, /g, provides a good approximation to x. The theorem which
follows shows that p,/g, is the fraction, among all fractions of no greater
complexity, i.e. all fractions whose denominator does not exceed g¢,,
which provides the best approximation.

Theorem 181. If n > 1,70 < q £ ¢, and p/qg # PnlQn> then
Pn Py
9n

This is included in a stronger theorem, viz.

Theorem 182. I1f n > 1, 0 < q < ¢q,, and p/q # p,/¢,, then
(10.15.2) |Pr—dnz| < |p—g2|.

We may suppose that (p,q) = 1. Also, by Theorem 171,

lpn_anl < (pn—-ll_qn—lxl:

and it is sufficient to prove the theorem on the assumption that

@n-1 < 0 < ¢y, the complete theorem then following by induction.
Suppose first that.q = g¢,. Then

X

(10.15.1) —x| < .

Pn_pl 1
T nl” n
it p# Py But Pr_glg <,
q, QnQnﬂ 2Qn
by Theorems 171 and 156; and therefore
Po_o |24
n n

which is (10.15.2).
Next suppose that ¢, ; < q < g,, SO that p/g is not equal to either
of pn—l/Qn—l or pn/qn If we write
#pn+vpn—1 = P; I‘an_l_vqn—l' = q’

t We state Theorems 181 and 182 for 5 > 1 in order to avoid a trivial complication.
The proof is valid for n = 1 unless Oy =y = 2, which is possible only if a, = a;= 1.
In this case

_ 1 1 1 P
g= %+Tﬁ‘ I+ as+.. 41 %+1’
and G+t <2 < aptl

unless the fraction ends at the second 1. If this is not so then p,/g; is nearer to z than any
other integer. But in the exceptional case x = @44} there are two integers equidistant
from x, and (10.15.1) may become an equality.
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then I"'(ann—l—pn—IQn) = an—l—qpn—l’
so that p = (Pe-1—9Pn1);
and similarly v = +(pg,—9P,)-

Hence p and v are integers and neither is zero.

Since g = ug,+vq,_; < ¢, ¢ @and v must have opposite signs. By

Theorem 17 1,
pn—qnx; Pp-1—"9n1%

have opposite signs. Hence
I"“(pn_qn IE), V(pn—l G z)

have the same sign. But

P-P” = P'(pn_Qnx)+V(pn—1_q7L—1x)i
and therefore

}p_—qx] > ,pn-l_Qn—lxl > Ipn—'anl~

Our next theorem gives a refinement on the inequality (10.9.1) of

Theorem 17 1.

THEOREM 183. Of any two consecutive convergents to X, one at least
satisfies the inequality

p !
10.15.3 Pzl .
( ) ; <
Since the convergents are alternately less and greater than x, we have
(10.15.4) Pusi Pnl _|\Pu_ | o [Prtr |
9+ qn 9y qn+1

If (10.15.3) were untrue for both p,/¢, and p,.,/q, .., then (10.15.4)
would imply

V(PG Pulnna — |Pnia_ Pa 2*1__}_&1_’
UnTni1 T ni1 1 Tl ~ 245 20744
or (qll+1_Q7t)2 < 0:
which is false except in the special case
n =0, a, =1, q, = qo = 1.
In this case
1 1 a 1
0 <%—ﬁx =l-pp o S 1 <y

so that the theorem is still true.

It follows that, when x is irrational, there are an infinity of con-
vergents p, /g, which satisfy (10.15.3). Our last theorem in this chapter
shows that this inequality js characteristic of convergents.
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THEOREM 184. If
1
(10.15.5) P gl

then p/q is a convergent.
If (10.15.5) is true, then

p _ €t
¢ ¢
where €= +1, 0<d <

We can express p/q as a finite continued fraction
[@g, @yseney X))

and since, by Theorem 158, we can make n odd or even at our discretion,

we may suppose that e = (—=1)n-t
We write T = %p”‘l,
an+qn—1

where p, /q,., Pn-1/9.-1 are the last and the last but one convergents to
the continued fraction for p/q. Then

i =T x _ Prn9n-1"Pr-19n _ (=1t ,
B dn In(wgntdn)  ulwgnt9n-1)
qn
and so —In___ . §,
wgn+Qn—1
1
Hence W= I
b g,

(since 0 < # < }); and so, by Theorem 172, p,_,/q,, and p,/q, are
consecutive convergents to . But p,/q, = p/q.

NOTES ON CHARTER X

§ 10.1. The best and most complete account of the theory of continued frac-
tions is that in Perron’s Kettenbriiche; and many proofs in this and the next chapter
are modelled on those given in this book or in the game writer's Irrationalzahlen.
The Only extended treatment of the subject in English is in Chrystal's Algebra, ii.
Perron gives full references to the history of the subject.

§ 10.12. Theorem 177 is Lagrange’s most famous contribution to the theory.
The proof given here (Perron, Kettenbriiche, 77) is due to Charves.

§§ 10.13-14. Therc is a large literature concerned with Fibonacci’s and similar
series. See Bachmann, Niedere Zahlentheorie, ii, ch. ii; Dickson, History, i, ch. xvii;
D. H. Lehmer, Annals OF Math. (2), 31 (1930), 419-48.



X1
APPROXIMATION OF IRRATIONALS BY RATIONALS

11.1. Statement of the problem. The problem considered in this
chapter is that of the approximation of a given number ¢, usually
irrational, by a rational fraction

r = B.
q
We suppose throughout that 0 < ¢ < 1 and that p/q is irreducible.t

Since the rationals are dense in the continuum, there are rationals as

near as we please to any ¢£. Given ¢ and any positive number ¢, there is

an r = p/q such that P
Ir—e] = ‘5_5 <e

any number can be approximated by a rational with any assigned degree
of accuracy. We ask now how simply or, what is essentially the same
thing, how rapidly can we approximate to £? Given ¢ and ¢, how com-
plex must p/q be (i.e. how large q) to secure an approximation with the
measure Of accuracy ¢? Given £ and g, or some upper bound for g, how
small can we make €?

We have already done something to answer these questions. We
proved, for example, in Ch. Il (Theorem 36) that, given ¢ and n,

o<

Ip,g.0<qg<n

o q(n+1)
and a fortiori

(11.1.1)

1
P_¢ <
q

and in Ch. X we proved a number of similar theorems by the use of
continued fractions. { The inequality (11.1. 1), or stronger inequalities
of the same type, will recur continually throughout this chapter.

When we consider (11.1.1) more closely, we find at once that we must
distinguish two cases.

(1) éisarational a/b. If r £ f then
l al _ |bp—aq|
¢ BT b bq
so that (11.1.1) involves q < b. There are therefore only a finite number
of solutions of (11.1.1).

1 Except in § 11.12. } See Theorems 171 and 183.

(11.1.2) r—¢€| =
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(2) £ is trrational. Then there are an infinity of solutions of (11.1.1).
For, if p,/q, is any one of the convergents to the continued fraction
to £, then, by Theorem 171,

1
qn qn
and p,./4.. is a solution.

Theorem 185. If £ is irrational, then there is an snfinity of fractions
p/g which sutisfy (11.1.1).

In § 11.3 we shall give an alternative proof, independent of the theory
of continued fractions.
11.2. Generalities concerning the problem. We can regard our
problem from two different points of view. We suppose ¢ irrational.
(1) We may think first of €. Given ¢, for what functions
®~ofz, )

€
is it true that

(11.2.1) I3p,q.9<?P. }§—§|<€,

for the given £ and every positive ¢ ? Or for what functions

o-of)

independent of £, is (11.2.1) true for every ¢ and every positive € ? It
is plain that any ® with these properties must tend to infinity when
¢ tends to zero, but the more slowly it does so the better.

There are certainly sotie functions ® which have the properties
required. Thus we may take

1
O=|—-|+1,
[=]+

and q = @. There is then a p for which

P_¢
q

1
<2_q<‘€:

and so this @ satisfies our requirements. The problem remains of find-
ing, if possible, more advantageous forms of @.
(2) We may think first of g. Given ¢, for what functions

¢ = (& 9),
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tending to infinity with q, is it true that
——e

Or for what functions $ = é(g)

independent of ¢, is (112.2) true for every ¢ ? Here, naturally, the
larger ¢ the better. If we put the question in its second and stronger
form, it is substantially the same as the second form of question (1).
If ¢ is the function inverse to @, it is substantially the same thing to
assert that (112.1) is true (with @ independent of ¢) or that (11 .2.2)
is true for all ¢ and q.

These questions, however, are not the questions most interesting to
us now. We are not so much interested in approximations to ¢ with
an arbitrary denominator g, as in approximations with an appropriately
selected g. For example, there is no great interest in approximations
to 7 with denominator 11; what is interesting is that two particular
denominators, 7 and 113, give the very striking approximations # and
5% We should ask, not how closely we can approximate to ¢ with an
arbitrary g, but how closely we can approximate for an infinity of
values of q.

We shall therefore be occupied, throughout the rest of this chapter,
with the following problem: for what ¢ = ¢(&, q), or ¢ = é(g), is it true,
for a given £ or for all ¢ or for all ¢ of some interesting class, that

P 1

q f' S5

for an infinity of q and appropriate p ? We know already, after Theorem
171, that we can take ¢ = ¢ for g}l irrational ¢,

11.3. An argument of Dirichlet. In this section we prove Theorem
185 by a method independent of the theory of continued fractions.
The method gives nothing new, but is of great importance because it
can be extended to multi-dimensional problems.}

We have already defined [«], the greatest integer in x. We define
(x) by x) = z—[x];
and £ as the difference between x and the nearest integer, with the
convention that 7 —  when x is n+3. Thus

=1 ®=3% §=-b
Suppose ¢ and e given. Then the @+ 1 numbers
0» (f)) (25)’ 1(Q§)

T See § 11.12.

(11.2.2) ap

¢

(11.2.3)
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define @ 1 points distributed among the Q intervals or ‘boxes’

%<x<%—l (s = o, 1,..., Q.

There must be one box which contains at least two points, and there-
fore two numbers ¢, and ¢,, not greater than Q, such that (g, ¢) and
(9 €) differ by less than 1/@. If ¢, is the greater, and ¢ = ¢,—¢;, then
0 < g <Qand |¢f] < 1/Q. There is therefore a p such that

< —
|qé —p| Q
Hence, taking Q = [l] +1,
€
we obtain 3p,q.q<[1]+l -‘£—§{<f
€ q q

(which is nearly the same as the result of Theorem 36) and

P 1 1
(11.3.1) L ¢l <o,

I q 99 ~ ¢

which is (11.1.1).

If £ is rational, then there is only a finite number of solutions.t We
have to prove that there is an infinity when ¢ is irrational. Suppose that

PP P
T
' ‘I2 x
exhaust the solutions. Since ¢ is irrational, there is a Q such that
Ps 1 _
>_ (s= 12, k).
qs Q ) )
But then the p/g of (11.3.1) satisfies
1 1
P_gw— <=,
q qQ ~ @

and is not one of p,/q,; a contradiction. Hence the number of solutions
of (11.1.1) is infinite.

Dirichlet’'s argument proves that qf is nearly an intrger, so that (q.f) is nearly
0 or 1, but does not distinguish botween these cases. The argument of § 11.1
i rather more: for _
gives &‘_fﬁ(_l)n 1

Qn‘InH
is positive or negative according as n |s odd or even, and g, ¢ is alternately a
little less and a little greater than p,,.

T The proof of this in §11.]1 wag independent of continued fractions.
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11.4. Orders of approximation. We shall say that ¢ is approxim-
able by rationals to order n if there is a K(¢), depending only on £, for
which

P K(¢£)
11.4.1 _..gt < 2)
414 i<
has an infinity of solutions.
We can dismiss the trivial case in which ¢ is rational. If we look back

at (11.1.2), and observe that the equation bp-ag = 1 has an infinity
of solutions, we obtain

THEOREM 186. A rational is approximable to order 1, and to no higher
order.

We may therefore suppose ¢ irrational. After Theorem 171, we have
Trecrem 187.  Any irrational is approximable ¢o order 2.

We can go farther when ¢ is a quadratic surd (i.e. the root of a
guadratic equation with integral coefficients). We shall sometimes
describe such a ¢ as a quadratic irrational, or simply as ‘quadratic’.

Trecrem 188. A quadratic irrational is approximable fo order 2 and
{o no higher order.

The continued fraction for a quadratic £ is periodic, by Theorem 177.
In particular its quotients are bounded, so that

0<a <M,
where M depends only on ¢. Hence, by (10.5.2),
Tni1 = Uns1ntna < (@t Dt dnn < (MH42)g,
and a fortiori g,, < (M+2)g,. Similarly g, < (M+42)g,-;.

Suppose now that 1< g9 < ¢y
Then ¢, < (M+-2)g and, by Theorem 181,
z’-—‘f'>]i"—f= LSS S : s K
7 |17 |4 Gnna ~ (M+2)g% 7 (M42P¢5, 7 ¢*

where K = (M +2)-3; and this proves the theorem.

The negative half of Theorem 188 is a special case of a theorem
(Theorem 191) which we shall prove in § 11.7 without the use of con-
tinued fractions. This requires some preliminary explanations and some
new definitions.
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11.5. Algebraic and transcendental numbers. An algebraic
number is a number x which satisfies an algebraic equation, i.e. an
equation
(11.51) ap2"+a, 2" 1+...+a, = 0,
where a,, a,.. are integers, not all zero.

A number which is not algebraic is called transcendental.

If x = a/b, then bx-a = 0, so that any rational x is algebraic. Any
quadratic surd is algebraic; thus i = 4(— 1) is algebraic. But in this
chapter we are concerned with real algebraic numbers.

An algebraic number satisfies any number of algebraic equations of
different degrees; thus x = 42 satisfies z2—2 =0, z*—4 = O,... . If x
satisfies an algebraic equation of degree n, but none of lower degree,
then we say that X is of degree n. Thus a rational is of degree 1.

A number is Euclidean if it measures a length which ¢an be con-
structed, starting from a given unit length, by a Euclidean construction,
i.e. a finite construction with ruler and compasses only. Thus +2 is
Euclidean. It is plain that we can construct any finite combination of
real quadratic surds, such as

(11.5.2) NAL42VT)— (11— 2v7)

by Euclidean methods. We may describe such a number as of real
quadratic type.

Conversely, any Euclidean construction depends upon a series of
points defined as intersections of lines and circles. The coordinates
of each point in turn are defined by two equations of the types

lx-+my+n =0
or i +y?+ 2+ ify+e = O,

where I, m, n, g, f, ¢ are measures of lengths already constructed; and
two such equations define x and y as real quadratic combinations of
{, m,... . Hence every Euclidean number is of real quadratic type.

The number (11.5.2) is defined by

X = y-z, gt= 1149 2= 11-2t, =7
and we obtain rt—44224112 = 0

on eliminating y, 2, and t. Thus x is algebraic. It is not difficult to
prove that any Euclidean number is algebraic, but the proof demands
a little knowledge of the general thecry of algebraic numbers.

t In fact any number defined by an equation oy 2"+« 2" 14...+a, = 0, where

Qgs O1y-ey O are algebraic, ig algebraic. For the proof 866 Hecke 66, or Hardy, Pure
mathematics (ed. 9, 1944), 39.
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11.6. The existence of transcendental numbers. It is not imme-
diately obvious that there are any transcendental numbers, though
actually, as we shall see in a moment, almost all real numbers are
transcendental.

We may distinguish three different problems. The first is that of
proving the existence of transcendental numbers (without necessarily
producing a specimen). The second is that of giving an example of
a transcendental number by a construction specially designed for the
purpose. The third, which is much more difficult, is that of proving
that some number given independently, some one of the ‘natural’
numbers of analysis, such as e or 7, is transcendental.

We may define the rgnk of the equation (11.5.1) as

N = n+lag|+lay|+...4|a,).
The minimum value of J is 2. It is plain that there are only a finite

number of equations E
E + E
N, 1 N,2s **y “Nky

of rank N. We can arrange the equations in the sequence
Byys Bopyeoos Byyyy Eyyy Byoreeos Byyyy Byyseee
and so correlate them with the numbers 1, 2, 3,... . Hence the aggregate
of equations is enumerable. But every algebraic number corresponds
to at least one of these equations, and the number of algebraic numbers
corresponding to any equation is finite. Hence
Trecrem 189. The uggregate of ulgebraic numbers 3¢ enumeruble.

In particular, the aggregate of real algebraic numbers has measure
zero.

Trecrem 190. Almost all real numbers are trunscendentul.

Cantor, who had not the more modern concept of measure, arranged his proof
of the existence of transcendental numbers differently. After Theorem 189, it is
enough to prove that the continuum O <{ & < ] 48 not enumerable. We reprenent

z by its decimal X = -ayayas..

(9 being excluded, as in § 9.1). Suppose that the continuum is enumerable, as
Tyy L35 Xy yeery and let

Xy = @y Ay yg ...
Ty = 091 Qgplaz..s
%y = 03 O3p033...

If now we define a, by

ag = @upt 1 (if a,, is neither 8 nor 9),

a, =0 (if a,, is 8 or 9),
then a, fa,, for any n; and 2 cannot be any of &, Z,,..., since its decimal
differs from that of any x, in the nth digit. This is a contradiction.
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11.7. Liouville’s theorem and the construction of transcen-
dental numbers. Liouville proved a theorem which enables us to
produce as many examples of transcendental numbers as we please. It
is the generalization to algebraic numbers of any degree of the negative
half of Theorem 18s.

Theorem 191. A real algebraic number of degree n is not approximable
to any order greater than n.

An algebraic number ¢ satisfies an equation
fh = ayé"+o, 6"+ +a, =0
with integral coefficients. There is a number M (£) such that
(11.7.1) If'@) <M (-1 <z <Eé+D).

Suppose now that p/g # £ is an approximation to ¢, We may assume
the approximation close enough to ensure. that p/g lies in (¢—1,¢4-1),

and is nearer to ¢ than any other root of f(x) = 0, so that f(p/q) # O.
Then

B\ [aop™ tayprigho] | 1
(11.7.2) f(_)i: 0 1 o1
’ q qn = q"
since the numerator is a positive integer; and
i p p :
(11.7.3) f(—) =f(~)— £) = (———5) x),
where x lies between p/g and £, It follows from (11.7.2) and (11.7.3) that
P el L K
q |f’(x)| Mg qn’

so that ¢ is not approximable to any order higher than n.

The cases n = 1 and n = 2 are covered by Theorems 186 and 188.
These theorems, of course, included a positive as well as a negative
statement.

(&) Suppose, for example, that
¢ = -110001000... = 10-1'4-10-2'4-10-3'+ .,

that n > N, and that ¢, is the sum of the first n terms of the series.
Then

_ PP
b= g =%,

say. Also

0 < f__fj = §—£, = 10-Dp [Q~nDt L < 2, 10-(4D! - 29N,
q

5501 M
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Hence ¢ is not an algebraic number of degree less than N. Since N is
arbitrary, £ is transcendental.
(6) Suppose that

£ — 1 1 1
T 104 10#4 10340
that n > N, and that P_Pn
4 qn
the nth convergent to £, Then
1 1
—*fl < 5 < .
Indntr  Gpalh  Gpi

Now @,., = 1lO®+D! gnd

¢ < a+1, ‘%—l . m+— < Gt (0 > 1)
so that "
@n < (@yF1)(@y1)...(a,+1)

1 1 1
< (1 +E)(l +1—02)---(1 +1—0,,)“1a2---an

< 28,@,..8 = 2,101+l < 102D — g2,

__§ 1 < 1 < 1 1
a’n+1 an+1 %N‘

We conclude, as before, that ¢ is transcendental.
THeorem 192. The numbers
€= 10-Y410-2+410-3"+ .,
| | 1

and ¢
= 10V 4 10*'4 10%' 4+,

are  transcendental.

It is plain that we ¢ould replace 10 by other integers, and vary the
construction in many other ways. The general principle of the construc-
tion is simply that a number dejined by a sufficiently rapid sequence of
rational approximations is necessarily transcendental. It is the simplest
irrationals, such as +2 or 1(¥56—1), which are the least rapiclly ap-
proximable.

It is much more difficult to prove that a number given ‘naturally’ is
transcendental. We shall prove e and # transcendental in §§ 11.13-14.
Few classes of transcendental numbers are known even now. These
classes include, for example, the numbers

e, m, sin 1, Jy(1), log 2, }0g3 e, 2¥2
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but not 2¢, 27, #¢, or Euler’s constant y. It has never been proved even
that any of these last numbers are irrational.

11.8. The measure of the closest approximations to an arbitrary
irrational. We know that every irrational has an infinity of approxi-
mations satisfying (11.1. 1), and indeed, after Theorem 183 of Ch. X,
of rather better approximations. We know also that an algebraic.
number, which is an irrational of a comparatively simple type, cannot
be ‘too rapidly’ approximable, while the transcendental numbers of
Theorem 192 have approximations of abnormal rapidity.

The best approximations to ¢ are given, after Theorem 181, by the
convergents p,/q, of the continued fraction for ¢; and

Po_go 1 1

q'n Q-n Qn+1 Ap41 an
so that we get a particularly good approximation when a,., is large. It
is plain that, to put the matter roughly, £ will or will not be rapidly
approximable according as its continued fraction does or does not
contain a sequence of rapidly increasing quotients. The second ¢ of
Theorem 192, whose quotients increase with great rapidity, is a particu-
larly instructive example.

One may say, again very roughly, that the structure of the continued
fraction for ¢ affords a measure of the ‘simplicity’ or ‘complexity’ of £.
Thus the second £ of Theorem 192 is a ‘complicated’ number. On the
other hand, if a, behaves regularly, and does not become too large, then
¢ may reasonably be regarded as a ‘simple’ number; and in this case
the rational approximations to ¢ cannot be too good. From the point
of view of rational approximation .Imimplegﬂnz\bers are the worst:’ I

The ‘simplest’ of ga}l irrationals, from this point of view, is the number

1 1 1
11.8.1 = 351 —_—
(11.8.) €= 3051 = -y
in which every a, has the smallest possible value. The convergents to
this fraction are 0112
101 2 3 5) gy
-s0 that ¢,_, = p, and an-1_ ﬂ‘_> £,
gn D
Hence
L_gl .
Tutin (000t 0}

1 g\ 1 1 1
—ﬁ(““L“E) ETT% @+
when n — oo.
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These considerations suggest the truth of the following theorem.

THeorem  193. Any irrational ¢ has an infinity of approximations which
satisfy

1
qué.

The proof of this theorem requires some further analysis of the
approximations given by the convergents to the continued fraction.
This we give in the next section, but we prove first a complement to
the theorem which shows that it is in a certain sense a ‘best possible’
theorem.

(11.8.2) ]—;—fl <

Treorem 194. In Theorem 193, the number +5 is the best pOSSibl@

number: the theorem would become false If any larger number were substi-
tuted for 5,

It is enough to show that, if 4 > +5, and ¢ is the particular number
{11.8.1), then the inequality

L
<4

P_¢
q

has only a finite number of solutions.
Suppose the contrary. Then there are infinitely many ¢ and p such
that
1

_p, 3 1.1

Hence S 5

— 2_1 -

G € T = ey,

82
o W5 = (3¢+p)—i¢* = p*+pg—q*
The left-hand side is numerically less than 1 when ¢ is large, while the
right-hand side is integral. Hence p?+pg—q% = 0 or (2p-9)* = 5¢7,
which is plainly impossible.

11.9. Another theorem concerning the convergents to a con-

tinued fraction. Our main object in this section is to prove

Theorem 195. Of any three consecutive comvergents to ¢, one at least
satisfies (11.8.2).

This theorem should be compared withh Theorem 183 of Ch. X.
We write

qn.—-I
(11.9.1) = b
qn

n+l-
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Then Prn__ gl _17__ _ 12 '_1_;
In TuIn+1 o Oatbpig

and it is enough to prove that

(11.9.2) aj+-b, < Ab

cannot be true for the three values n-l, n, n+l of 3.
Suppose that (11.92) is true for 34 = n- 1 and ¢ = n. We have

1

’ —

a/n_l = a,-, +a~,
n

and
(11.9.3) LT g
bn qn- 2
1 1 '
Hence — = = @y b, < A5,
a by
| 1
and l1=a, +< («/5—bn)(«/5——;)
a, b
or b,,-}--l < 45,

by T
Equality is excluded, since b4, is rational, and b, << 1. Hence
b2—b, N5+ 1<0, (3v5-b,)% < L

(11.9.4) b, > $(v5—-1).
If (11.9.2) were true also for ¢ == n+ 1, we could prove similarly that
(11.9.5) busr > H(W5—1);
and (11.9.3),1 (11.9.4), and (11.9.6) would give
a = bnir_b” < JVBE1)—3(5—1) = 1,

a contradiction. This proves Theorem 195, and Theorem 193 is a
corollary.

11.10. Continued fractions with bounded quotients. The number
+5 has a special status, in Theorems 193 and 195, which depends upon
the particular properties of the number (11.8.1). For this £, every a, is
1; for a ¢ equivalent to this one, in the sense of § 10.11, every a, from
a certain point is 1; but, for any other ¢, a, is at least 2 for infinitely
many n. It is natural to suppose that, if we excluded ¢ equivalent to
(11.8.1), the 45 of Theorem 193 could be replaced by some larger

f With p 1 for m.
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number; and this is actually true. Any irrational ¢ not equivalent to
(11.8.1) has an e¢nfinity of rational approximations for which
P_¢ 1
q 2¢2V2'
There are other numbers besides 45 and 2v2 which play a special part
in problems of this character, but we cannot discuss these problems
further here.

If a, is not bounded, i.e. if
(11.10.1) lima, = oo,

n—>®0

then ¢, ,,/2,, assumes arbitrarily large values, and

<

(11.10.2) P_¢ <i2
q q

for every positive ¢ and an infinity of p and g. Our next theorem shows
that this is the general case, since (11.10.1) is true for ‘almost all’ ¢ in
the sense of § 9.10.

THeorem 196. a, is unbounded for almost all £; the set of [for which
a, is bounded is null.
We may confine our attention to ¢ of (0, 1), so that a, = 0, and to

irrational ¢, since the set of rationals is null. It is enough to show that
the set F, of irrational ¢ for which

(11.10.3) a, <k
is null; for the set for which a, is bounded is the sum of F, K, F;,... .
We denote by Eu aa,

the set of irrational ¢ for which the first n quotients have given values
@y, y,-.., &, The set E, lies in the interval

1 1
s
which we call ,. The set E, . lies in
11 1 1

afa, 7 at a1

which we call Generally, B, , lies in the interval I

) a, a2’ a 2 @ s O ey Oy
whose end points are
[2y, agy..., @yy, @y +1], [ay, ay,... a5y, @]

(the first being the left-hand end point when n is odd). The intervals
corresponding to different sets a,, a,,..., @, are mutually exclusive
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(except that they may have end points in common), the choice of a,,,
dividing up L, ,.. 4 into exclusive intervals. Thus I, g4, .. 4, is the

sum of I I
tyy Ay Ay 12 ay, asy..., Ony 23

The end points of Iah can also be expressed as

aa yuy dn
(a'n+ l)pn—1+pn—2 anpn—1+pn—2;
(a’n+ l)qn—1+qn—2 ’ an qn—1+qn—2

and its length (for which we use the same symbol as for the interval) is

1 1
{(an+1)Qn-—1+Qn—2}(anqn—1+qn—2) - (qn'{'qn—l)qn.
1
I = ——,
Thus (et
We denote by Eoa-. a0 k

the sub-set of K, , . for which a,,; < k. The set is the sum of

Ealn [/ 7 a., [+ 79 tl (auv l) 2 geery k)

The last set lies in the interval I, , . . .
[alr Qgseery Uy an+1+ 1]’ [al’ Qgseees Ay an+l];
ands0 B, o, o, liesinthe interval I o .. whose end points are
[ay, @geees Oy k417, (a1, agy..., @, 1],
or (E+VputPusy  PutPra
(k+1)gn+9n- It 201

The lengthof I, o, . «i8
K

(RS A N

whose end points are

and
1{’1;. ag,..., Ay k kgm < k ,
Ial, Aty A, — (k‘i'l)Qn‘l'qn—l k+1
for all a,, a,,..., a,.
Finally, we denote by
(n _ T 7
It S L

a < Kyeery A<

(11.10.4)

the sum of the I, , for which a, <k .., a, < k; and by F{® the set of
irrational ¢ for which a, <k,..., & < k. Plainly F{» is included in I{».
First, I{V is the sum of I, fora, =1, 2 ,...,k, and
k

1 1 k
I(l) = —_—— = 1—_—— = m——,
: ,Zl ay(a,+1) k41 +1
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Generally, I{n* ¥ is the sum of the parts of the I, , ,.. . included in

IV, for which a,,, < k, i.e. is

I -

a, <k, an sk s Bty 35 K

Hence, by (11.10.4),
(n‘rl) < — n)'
g FF1 Z Loy ay..a. = T I

o<k, on<k

and so Ipth < (—--’C—)Ml.
k41
It follows that F{™ can be included in a set of intervals of length less
than K \n
(m) !

which tends to zero when n —co. Since F, is part of F{” for every n,
the theorem follows.

It is possible to prove a good deal more by the same kind of argument.
Thus Borel and F. Bernstein proved

Treorem 197*, If d(n) is an increasing function of n for which

1
(11.10.5) —
z $(n)
is divergent, then the set of ¢ for which
(11.10.6) a, < ¢(n),
for all suficiently large n, is null. On the other hand, if
1
(11.10.7) —
2. 7t

is convergent, then (11.10.6) is true for almost all ¢ and sufficiently large n.

Theorem 196 is the special case of this theorem in which ¢(n) is a
constant. The proof of the general theorem is naturally a little more
complex, but does not involve any essentially new idea.

11 .11. Further theorems concerning approximation. Let us suppose, to

fix gur ideas, that a, tends steadily, fairly regularly, and not too rapidly, to
infinity. Then

Pu_ | _ 1 L1
n Tnnsr G @h InX(gn)’
where X(24) = %41

There is a certain correspondence between the behaviour, in, respect of con-
vergence or divergence, of the seriest

2 L O

= X)L xlga)
t The idea is that underlying ‘Cauchy’s condensation test’ for the convergence or

divergence of a geries of decreasing positive terms. See Hardy, Pure mathematics, 9th
ed., 354.



11.11 (198-9)] IRRATIONALS BY RATIONALS 169

.. 1
and the latter series 18 _—

.
Tni1
These rough considerations suggest that, if we compare the inequalities

(11.11.1) ay < P(n)
and

P 1
11.11.2 Tt <« —,
( : q fl ax(q)

there should be a certain correspondence between conditions on the two series

2F 2

And the theorems of § 11.10 then suggest the two which follow.

THEOREM 198. If Z;((_lﬂ

is convergent, then the set of & which satisfy (11.11.2) for an dnfinity of q is null.

THEOREM 199*. If x(q)/q increases with g, and

25
x(q)
18 divergent, then (11.11.2) is true, for an infinity of q, for almost all £,
Theorem 199 is difficult. But Theorem 198 is very easy, and can be proved

without continued fractions. It shows, roughly, that most irrationals cannot be
approximated by rationals with an error of order much less than ¢2, e.g. with

an error 1
ol
g*(logq)

The more difficult theorem shows that approximation to gych orders as

o) o), .
g*logq g*log gloglogq
is usually possible.

We may suppose 0 < f < 1. We enclose every p/q for which g > N in an

interval b 1 P 1

¢ @ g ax(@)’
There are less than g values of p corresponding to a given g, and the total length
of the intervals is less (even without allowance for overlapping) than

@
2 Z —,
5 x(q)

which tends to 0 when N — ¢0. Any f which has the property is included in an

interval, whatever be N, and thé set of f can therefore be included in a set of
intervals whose total length is as small as we please.

11.12. Simultaneous approximation. SO far we have been con-
cerned with approximations to a single irrational ¢. Dirichlet's argument
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of § 11.3 has an important application to a multi-dimensional problem,
that of the simultaneous approximation of k numbers

fly 621---’ Ek
by fractions &, ]—’g,---, D
q9 9 q

with the same denominator q (but not necessarily irreducible).

Trecrem 200. If &, &,,..., €, are amy real numbers, then the system of

inequulities
(11.12.1) <L (,.L — %; i— 1,2,...,k)

has at least one solution. If one ¢ at least is irrational, then it has an
infinity of solutions.

We may plainly suppose that 0 < ¢, < 1 for every i. We consider
the k-dimensional ‘cube’ defined by 0 < #; < 1, and divide it into @*
‘boxes’ by drawing ‘planes’ parallel to its faces at distances 1/Q. Of
the @%4-1 points

(1), (1€s),s () (0 = 0,1,2,..,,@5),
some two, corresponding say to | = ¢, and | = g, > ¢;, must lie in the
same box. Hence, taking q = ¢,—¢,, as in § 11.3, there is a q < @*
such that 1
4l < 5

qi’v
for every i.

The proof may be completed as before; if a £ say &; is irrational, then
&; may be substituted for ¢ in the final argument of § 11.3.

In particular we have

TrEGRem 201, Given ¢, &, ..., & and any positive €, we can find an
integer g so that g¢; differs from an integer, for every i, by less than e.

11.13. The transcendence Of e. We conclude this chapter by
proving that e and 5 are transcendental.

Our work will be considerably simplified by the introduction of a
symbol A7, which we define by

h0 =1, =1l (r>=1).
If f(S) is any polynomial in x of degree m, say

m
z) = E 2,
r=0

then we define f (h) as ﬁ c bt = % c 7!
r=0 r=0
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(where O! is to be interpreted as 1). Finally we define f(x-+A4) in the
manner suggested by Taylor’s theorem, viz. as

=0
r=0

If f(z-+y) = F(y), then f(x+h) = F(h).
We define %,(x) and ¢,(z), for » =0, 1, 2 ,..,, by

72

u, (x) = d o = el ().
S PR
It is obvious that |u,(x)] < €%, and so
(11.13.1) le@)] < 1,
for all .
We require two lemmas.
Trecrem 202, If é(x) is any polynomial and
(11.13.2) H(x) = }8: c, ', P(z) = Es: ¢, ,(x)a",
r=0 r=0
then
(11.13.3) e*d(h) = (x+h)+P(x)e.
By our definitions.above we have
(x+-Rh)y = h'—{—rxh’*l—}-r—(’l.—_;—)x%"z-{—...—}—x"
rir—1)
= rltr(r—1)2x4 T3 (r—2)12%4-... 42"
2 r'
= r!(l+x+g—!+...+%)
= rl ef—u ()2 = eTh"—u,(x)".
Hence el = (z+hytuz)at = (x4h) e ()"

Multiplying this throughout by ¢,, and summing, we obtain (11.13.3).
As in § 7.2, we call a polynomial in X, or in x, y, . . . . whose coefficients
are integers, an integral polynomial inz,or 2,v,... .

Trecrem 203. If m = 2, f(x)is an wntegral polynomial in z, and
xm—l am

F(z) = W:l—)_l.f(x)’ Fyz) = .

then F’(h), F!(h) are integers and
F(h) = f(0), Bll(h) = 0 (modm).
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L
Suppose that flx)y = a2,
1=0

where a,,.., az are integers. Then

L
xl+m-1
R) = > t—

“ (m—1)1"
L
o ({+m—1)!
and so E(h) = I—Zoal(m———l).'—'
But GEm=DU 1)+ m—2)...m

is an integral multiple of m if / > 1; and therefore

F.(h) = a, = f(0) (modm).
Similarly

L m
1112(:”) = Z al_—(mxlil)!’

=0
L !
Fyh) = Z a,((im_% =0 (modm).

We are now in a position to prove the first of our two main theorems,
namely

THEOREM 204. e 18 transcendental.

If the theorem is not true, then
n
(11.13.4) > et =0,
t=0

where n > 1, G, C; ..., C, are integers, and (;, # 0.
We suppose that p is a prime greater than max(n, ]00|), and define

$(z) by -1
¢x) = G)Tl)—!{(x—l)(x—%...(x—n)}p.

Ultimately, p will be large. If we multiply (11.13.4) by é(%), and use
(11.13.3), we obtain

Sasn+ 3 aune = o
or
(11.13.5) S;+8, = 0,
say.
By Theorem 203, with m = p, ¢(%) is an integer and
(k) = (—1)P*(n!)? (mod p).
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Again, if 1 <t < n,

()Pt xP

t4x) = ———{(@+t—1)..a@—1)..(e+t—n)}? = _Z___ f(x),

et+e) = o=t ) } oo/ @

where f(z) is an integral polynomial in z. It follows (again from Theo-
rem 203) that ¢(¢-+4) is an integer divisible by p. Hence
zq (t+-h) = (—1)PnCyn!)? 5 0 (modp),

since Cy # 0 and p > max(n, |Cy|). Thus §, is an integer, not zero; and
therefore
(11.13.6) 18y > 1

On the other hand, |¢,(z)| < 1, by (11.13.1),and so

[iit)] <§olcrlt’

tp-1
- »
< (p_1)!{(t+1)(t+2)m.(t+n)} -0
when p — oo. Hence §, - 0, and we can make
(11.13.7) 1Se| < %

by choosing a sufficiently large value of p. The formulae (11.13.5),
(11.13.6), and (11.13.7) are in contradiction. Hence (11.13.4) is impos-
sible and e is transcendental.

The proof which precedes is a good deal more sophisticated than the
simple proof of the irrationality of e given in § 4.7, but the ideas which
underlie it are essentially the same. We use (i) the exponential series
and (ii) the theorem that an integer whose modulus is less than 1
must be 0.

11.14. The transcendence of n. Finally we prove that = is
transcendental. It is this theorem which settles the problem of the
‘quadrature of the circle’.

THEOREM 205. T g transcendental.

The proof is very similar to that of Theorem 204, but there are one
or two slight additional complications.

Suppose that 8, Bs,..., B,, are the roots of an equation

da™+d, 2™ 14 4d, =
with integral coefficients. Any symmetrical integral polynomial in

dBy, dB,,..., dB,
is an integral polynomial in
dy, dgyoony dpps

and is therefore an integer.
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Now let us suppose that # is algebraic. Then i is algebraic,t and
therefore the root of an equation
dzm+-d, am14-...4+d,, = 0,
where m > 1, 4, d, ,..., d,, are integers, and d s 0. If the roots of this

equation are
q Wyy Woyeery Wiy

then 1 4« = 1 J-¢im = 0 for some w, and therefore
(14-e@r)(14e™)...(1+e%m) = 0.
Multiplying this out, we obtain

P-1

(11.14.1y 1+ ; e =0,
t=

where

(11.14.2) 0y, Olgyerey Olgmy

are the 2m—1 numbers

Wyyeesy Wy Wi, wytwg,., wytwot.twy,
in some order.
Let us suppose that C-1 of the g are zero and that the remaining

n=gm_1-_(C—1)

are not zero; and that the non-zero « are arranged first, so that (11.14.2)

reads Ggyenes Oy 0,0, .., 0.

Then it is clear that any symmetrical integral polynomial in
(11.14.3) day,..., doy,
is a symmetrical integral polynomial in
dal,...,dan,o, 0,..., 0,
ie. in day, doy,..., dagm .
Hence any such function is a symmetrical integral polynomial in

dwy, dw,,..., dw,,
and so an integer.
We can write (11.14.1) as

n
(11.14.4) C+ Yex = 0.
t=1
We choose a prime p such that
(11.14.5) p > max(d, C, |[d"a;...a,|)

tIf ggz®ta 2" 4.4 a, =0and y = ix, then
Gyt —ay Y i P —ay ) = 0
and 8o (@ y*—as y" P+ " T —ay " L) = 0
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and define ¢(x) by

dnrp+p-1lgp-1

(11.14.6) d(x) = {(x— o)) (@—0)...(x— ) }P.

(p—1)!
Multiplying (11.14.4) by ¢(k), and using (11.13.3), we obtain
(11.14.7) 8y+8,+8, = 0,
where
(11.14.8) S, = C(h),
(11.14.9) Sy =§1¢>(a¢+h),
(11.14.10) Sy = 3 dlag)e.
=1
- a1 &
Now $(x) = 1) ; 9.,

where g, is a symmetric integral polynomial in the numbers (11.14.3),
and so an integer. It follows from Theorem 203 that ¢(k) is an integer,
and that

(111411)  &(h) = gy = (—1)P"dPYdoy . day. . . . -da,)? (MOP).
Hence &, is an integer; and
(11.14.12) S = Cgy # 0 (mod p),

because of (11.14.5).
Next, by substitution and rearrangement, we see that

P np—1
$loy+7) = —— @,
‘ (p—1)! IZO &
where Ju = fildoy; doy, dosy,...y doy_y, dotg g, doty)

is an integral polynomial in the numbers (11.14.3), symmetrical in all

but da,. Hence I

P
1¢(°‘1+x) = m ; K,

n n
where F :tglf“ ztglfl(da[; dotgyeey doy_y, doyyy,..., doy).

Mz

¢

i

It follows that F is an integral polynomial symmetrical in all the num-
bers (11.14.3), and so an integer. Hence, by Theorem 203,

S1 ztil‘f’(o‘c‘l'h)
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is an integer, and
(11.14.13) 8§, = 0 (modp).

From (11.14.12) and (11.14.13) it follows that S+, is an integer
not divisible by p, and so that

(11.14.14) ISy+S,| 3 1.
On the other hand,

|d|np+p—1|x‘p—1

@) < ey {llal+ o]} (2l D > O,
for any fixed x, when p -» c0. It follows that
(11.14.15) ISy < %

for sufficiently large p. The three formulae (11.14.7), (11.14.14), and
(11.14.15) are in contradiction, and therefore 7 is transcendental.

In particular = is not a ‘Euclidean’ number in the sense of § 11.5;
and therefore it is impossible to construct, by Euclidean methods, a
length equal to the circumference of a circle of unit diameter.

It may be proved by the methods of this section that

oy ePrtayefrit o efs £ 0
if the  and B are algebraic, the x are not all zero, and no two B are
equal.

It has been proved more recently that «f is transcendental if y and 8
are algebraic, o is not 0 or 1, and B is irrational. This shows in particular
that ¢-7, which is one of the values of 3%, is transcendental. It also
shows that

__log3
log 2
is transcendental, since 20 = 3 and § is irrational.}

NOTES ON CHAPTER XI

§ 11.3. Dirichlet’'s argument depends upon the principle ‘if there are n 1
objects in n boxes, there must be at least one box which contains two (or more)
of the objects’ (the Schubfachprinzip of German writers). That in § 11.12 is
essentially the same.

§§ 11.6-7. A full account of Cantor’s work in the theory of aggregates (Mengen-
lehre) will be found in Bobson’s Theory of functi(ms of a real variable, i.

Liouville’'s work was published in the Journal de Math. (1) 16 (1851), 133-42,
over twenty years before Cantor’s. See also the note on §§ 11.13-14.

Theorem 191 has been improved successively by Thue, Siegel, Dyson, and
Gelfond. Finally Roth (Mathematika, 2 (1955), 1-20) showed that no irrational
algebraic number is approximable to any order greater than 2.

t See § 4.7.

g
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§§ 11.8-9. Theorems 193 and 194 are due to Hurwitz, Math. Ann. 39 (1891),
279-84; and Theorem 195 to Borel, Journal de Math. (5), 9 (1903), 329-75. Our
proofs follow Perron (Kettenbriiche, 49-52, and Irrationalzahlen, 129-31).

§ 11.10. The theorem with 24/2 is also due to Hurwitz, l.c. supra. For fuller
information see Koksma, 29 et seq.

Theorems 196 and 197 were proved by Borel, Rendiconti del ¢ircolo mat. di
Palermo, 27 (1909), 247-71, and F. Bernstein, Math. Ann. 71 (1912), 417-39.
For further refinements see Khintchine, Compositio Math. 1 (1934), 361-83, and
Dyson, Journal London Math. Soc. 18 (1943), 40-43.

§.11.11, For Theorem 199 see Khintchine, Math. Ann. 92 (1924), 115-25.

§ 11.12. We lost nothing by supposing p/q irreducible throughout §§ 11.1-1 1.
Suppose, for example, that p/g is a reducible solution of (11.1.1). Then if
{p, @ = d>1, and we write p = dp’, g =dg, we have (p’, q) = ] and

! 1 1
ot =t < g
g0 that p’/q’ is an irreducible solution of (11.1.1).

This sort of reduction is no longer possible when we require a number of rational
fractions with the same denominator, and some of QUr conclusions here would
become false if we insisted on irreducibility. For example, in order that the
system (11.12.1) should have an infinity of solutions, it would be necessary, after
§ 11.1 (1), that every £; should be irrational.

We owe this remark to Dr. Wylie.

§§ 11.13-14. The transcendence of e wag proved first by Hermite, Comptes
rendus, 77 (1873), 18-24, etc. (Buwres, iii. 150-81); and that of 7 by F. Lindemann,
Math. Ann. 20 (1882), 213-25. The proofs were afterwards modified and éimpli-
fied by Hilbert, Hurwitz, and other writers. The form in which we give them is in
pssentials the same as that in Landau, Vorlesungen, iii. 9095, or Perron, Irrational-
zahlen, 174-82.

The problem of proving the transcendentality of of, under the conditions stated
at the end of § 11.14, was propounded by Hilbert in 1900, and solved inde-
pendently by Gelfond and Schneider, by different methods, in 1934. Fuller
details, and references to the proofs of the transcendentality of the other numbers
mentioned at the end of § 11.7, will be found in Koksma, ch. iv.

56901
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THE FUNDAMENTAL THEOREM OF ARITHMETIC
IN k(l), k(i), AND k(p)

12.1. Algebraic numbers and integers. In this chapter we con-
sider some simple generalizations of the notion of an integer.

We defined an algebraic number in § 11.5; £ is an algebraic number

if it is a root of an equation
€ tc ér 14 4c, = 0 (¢ # 0)
whose coefficients are rational integers.t If
¢y = 1,

then £ is said to be an algebraic integer. This is the natural definition,
since a rational ¢ = a/b satisfies b¢—a = 0, and is an integer when
b= 1.

Thus i = J(-1)
and
(12.1.1) p =etm = L{—144V3)
are algebraic integers, since
?4+1=0
and p?+p+1=0.
When n = 2, ¢ is said to be a quadratic number, or integer, as the

case may be.
These definitions enable us to restate Theorem 45 in the form

THeorem 206. An algebraic integer, if rationul, is a rational integer.

12.2. The rational integers, the Gaussian integers, and the
integers of k(p). For the present we shall be concerned only with
the three simplest classes of algebraic integers.

(1) The rational integers (defined in § 1.1) are the algebraic integers
for which » = 1. For reasons which will appear later, we shall call the
rational integers the integers of k( 1).1

(2) The complex or ‘Gaussian’ integers are the numbers

¢ = a+tb,

t We defined the ‘rational integers’ in § 1.1. Since then we have described them simply
a3 the ‘integers’, but now it becomes important to distinguish them explicitly from
integers of other kinds.

1 We shall define k(f) generally in § 14.1. k(1) is in fact the class of rationals ; we shall

not use § special symbol for the sub-class of rational integers. k(i) is the class of numbers
r+si, where ¢ and § are rational; and k(p) is defined similarly.
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where a and b are rational integers. Since
£ 2af+a®+b% = 0,

a Gaussian integer is a quadratic integer. We call the Gaussian integers
the integers of k(i). In particular, any rational integer is a Gaussian
integer.

Since (@a-+bi)+(c-+di) == (a+c)+(b-+d)i,

(a+bi)(c+di) = ac—bd-+(ad+be)i,
sums and products of Gaussian integers are Gaussian integers. More
generally, if «, B,..., « are Gaussian integers, and
£ = Plo,B,... k),

where P is a polynomial whose coefficients are rational or Gaussian
integers, then ¢ is a Gaussian integer.

() If p is defined by (12.1.1), then

p? = etml = L(—1—v3),
ptp*= —1,  pp*=1.
If ¢ = atbp,
where a and b are rational integers, then
(é—a—bp)(E—a—bp?) = 0
or £2—(2a—b)¢+a2—ab+-b% = 0,

so that £ is a quaclratic integer. We call the numbers ¢ the integers of
k(p). Since

pPPt+pt+1=0, atbp=a—b—bp?, a+bp® = a-b-bp,
we might equally have defined the integers of k(p) as the numbers
a-+-bp2.

The properties of the integers of k(i) and k(p) resemble in many ways
those of the rational integers. Our object in this chapter is to study the
simplest properties common to the three classes of humbers, and in
particular the property of ‘unique factorization’. This study is im-
portant for two reasons, first because it is interesting to see how far
the properties of ordinary integers are susceptible to generalization, and
secondly because many properties of the rational integers themselves
follow most simply and most naturally from those of wider classes,

We shall use small latin letters a, b,..., as we have usually done, to
denote rational integers, except that ; will always be J(_l), Integers
of k(i) or k(p) will be denoted by Greek letters «, 8,... .

12.3. Euclid’s algorithm. We have already proved the ‘funda-
mental theorem of arithmetic, for the rational integers, by two different
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methods, in § 2.10 and 2.11. We shall now give a third proof which is
important both logically and historically and will serve us as a model
when extending it to other classes of numbers.t

Suppose that az=b>0.
Dividing a by b we obtain a = ¢, b -7,
where 0 < r; < b. If r; 54 0, we can repeat the process, and obtain

b= gur+rs,
where 0 {7y < 7. If 7y £ 0O,

Ty = 3Tyt T,
where 0 < 74 < ry; and so on. The non-negative integers b, ry, ry,...,
form a decreasing sequence, and so

‘ ny1 ~ O
for some n. The last two steps of the process will be
Tp—2 = Qnrn—l—*_rn (0 < Tn < rn-l):

Tna = Qp1¥pe
This system of equations for 7y, 7,,... is known as Euclid’s algorithm.
It is the same, except for notation, as that of § 10.6.
Euclid's algorithm embodies the ordinary process for finding the
highest common divisor of a and b, as is shown by the next theorem.

ThecRem 207: 7, = (a, D).

Let d = (a, b). Then, using the successive steps of the algorithm, we

have dla.db—>dlr—>dr—...>dlr,

so that d < r,. Again, working backwards,

Tl Puct = T0l s => Tl fps—=> ... > 71, |b—>r,la
Hence r, divides both a and b. Since d is the greatest of the common
divisors of a and b, it follows that r, < d, and therefore that r, = d.

12.4. Application of Euclid’s algorithm, to the fundamental
theorem in k(1). We base the proof of the fundamental theorem
on two preliminary theorems. The first is merely a repetition of
Theorem 26, but it is convenient to restate it and deduce it from the
algorithm. The second is substantially equivalent to Theorem 3.

Theorem 208. Iff|a f b then f (a b)

t The fundamental idea of the proof is the same as that of the proof of § 2.10: the
numbers divisible by d = (a, b) form a ‘modulus’. But here we determine d by g direct
construction.
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For fla . flb = flry—=>flry = . = flr,
or f]| d.
THEOREM 209. If (a, b) =1and b uc, then b |c.
If we multiply each line of the algorithm by c, we obtain
ac = g, be+ryc,

Tns 6= qnTpq C+Tn €
rn—lc = Qn+1 rn ¢,

which is the algorithm we should have obtained if we started with uc
and bc instead of a and b. Here

r, = (@ b)y=1

and so (uc, be) = r,c = c.
Now b uc, by hypothesis, and b | bc. Hence, by Theorem 208,
b (uc, bc) =c,

which is what we had to prove.

If p is a prime, then either p a or (a,p) = 1. In the latter case,
by Theorem 209, p | uc implies p ¢. Thus p |uc implies p aor pjc.
This is Theorem 3, and from Theorem 3 the fundamental theorem
follows as in § 1.3.

It will be useful to restate the fundamental theorem in a slightly
different form which extends more naturally to the integers of k(i) and
k(p). We call the numbers €= 41,

the divisors of 1, the unities of k(l). The two numbers
€m

we call associates. Finally we define a prime as an integer of &( 1) which

is not 0 or a unity and is not divisible by any number except the unities
and its associates. The primes are then

+2, +3, +5,...,
and the fundamental theorem takes the form : a@ny integer n of k( 1), not
0 or a unity, can be expressed as a product of primes, und the expression
8 unique except in regard to (a) the order of the fuctors, (b) the presence
of unities us fuctors, und () ambiguities between ussociuted primes.

12.5. Historical remarks on Euclid’s algorithm and the funda-
mental theorem. Euclid’s algorithm is explained at length in Book vii
of the Elements (Props. 1-3). Euclid deduces from the algorithm, effec-

tively, that fla . f1b— f|(a,b)
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and (ac,bc) = (a,b)e.
He has thus the weapons which were essential in our proof.

The actual theorem which he proves (vii. 24) is ‘if two numbers be

prime to any number, their product also will be prime to the same’; i.e.
(12.5.1) (@ c)=1. (b,c)=1 — (ab,c) = 1.
Our Theorem 3 follows from this by taking ¢ a prime p, and we can
prove (12.5.1) by a slight change in the argument of § 12.4. But Euclid’s
method of proof, which depends on the notions of ‘parts’ and ‘propor-
tion’ , is essentially diff erent .

It might seem strange at first that Euclid, having gone so far, could
not prove the fundamental theorem itself; but this view would rest
on a misconception. Euclid had no formal calculus of multiplication
and exponentiation, and it would have been most difficult for him even
to state the theorem. He had not even a tesm for the product of more
than three factors. The omission of the fundamental theorem is in no
way casual or accidental, Euclid knew very well that the theory of
numbers turned upon his algorithm, and drew from it a1l the return he
could.

12.6. Properties of the Gaussian integers. Throughout this and
the next two sections the word ‘integer’ means Gaussian integer or
integer of Kk(i).

We define ‘divisible’ and ‘divisor’ in k(i) in the game way as in k(l);
an integer £ is said to be divisible by an integer 4, not 0, if there exists
an integer { such that £ = ni;

and 7 is then said to be a divisor of £&. We express this by 7 | €. Since
1, -1, i, —s are all integers, any ¢ has the eight ‘trivial’ divisors

1§ -1 —¢ 5 1€, —1, —id
Divisibility has the obvious properties expressed by
«|B . Bly = aly,
alyy.....oaly, = 0‘|18171+'--+ﬁn7n‘

The integer ¢ is said to be a unity of k(z) if e |£ for every ¢ of k(q).
Alternatively, we may define a unity as any integer which is a divisor
of 1. The two definitions are equivalent,. since 1 js a divisor of every
integer of the field, and

ell. 1{¢é — €lé.
The norm of an integer ¢ is defined by
N¢ = N(a+bi) = a®4-b%
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If £ is the conjugate of ¢, then
Ne=¢E=|¢1
Since (@24-b2)(c2+d?) = (ac—bd)?-+(ad-+be)?,
N¢ has the properties
NENR = N(éy), NENy... = N(éy...).
Treorem 210. The norm of a unity is 1, and any integer whose norm
is 1is a unity.
If ¢ is a unity, then ¢ 1. Hence 1 = en,and so
1 =NeNyn, Ne|l, Ne=1.
On the other hand, if N(a+bi) =1, we have
1= a*+b% = (atbi)(la—bi), a+bi 1,
and so a-+bi is a unity.
Treorem 211. The unities of k(i) are
€= (s=0,1,2,3).
The only solutions of a?+5b% =1 are
a=—-+41, b= o; a=0, b= 41,
so that the unities are +1, fi.
If ¢ is any unity, then ® .$ is said to be associated with {, The associates
of £ are ¢ b, —¢ —it;

and the associates of 1 are the unities. It is clear that if ¢ |5 then
£e, me,, Where ¢, ¢; are any unities. Hence, if 9 is divisible by ¢, any
associate of 7 is divisible by any associate of ¢.

12.7. Primes in k(i). A prime is an integer, not 0 or a unity,
divisible only by numbers associated with itself or with 1. We reserve
the letter 7 for primes.T A prime = has no divisors except the eight

trivial divisors 1, 1

, —m, 0, iX, —%, —1im.
The associates of a prime are clearly also primes.
Treorem 212. An integer whose norm is a rational prime is a prime.
For suppose that N¢ = p, and that ¢ = 5{. Then
p= N¢= NqyNL
Hence either Ny =1 or N{ = 1, and either 5 or { is a unity; and there-
fore ¢ is a prime. Thus N(2414) =5, and 244 is a prime.

T There will be no danger of confusion with the ordinary use of .
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The converse theorem is not true; thus N3 = 9, but 3 is a prime.
For suppose that 3 = (ad-bi)(c+di).
Then 9 = (a24+b2)(c24-d?).
It is impossible that a?4-b% = ¢2fd2 = 3
(since 3 is not the sum of two squares), and therefore either a24-b2 =1
or ¢*4-d? = 1, and either a+4bi or c+4di is a unity. It follows that 3
is a prime.

A rational integer, prime in Kk(i), must be a rational prime; but not\l,

| all rational primes are prime in k(i). Thus y
b 5 = (244)(2—i).
Treorem 213. Any integer, not O or a wunity, +s divisible by a prime.
If y is an integer, and not a prime, then
Y = By Noy > 1, NB, > 1, Ny = Noy NB;,
and so 1< Nay < Ny.
If a; is not a prime, then
a = 0By, Naoy, > 1, NB2 > 1,
Na, = Na, NB,, 1< Nay < Na,.
We may continue this process so long as a, is not prime. Since
Ny, Noy, Na,,...

is a decreasing sequence of positive rational integers, we must sooner

or later corne to a prime «,; and if «, is the first prime in the sequence
Y, &, & ..., then

Y = Bioq = BiBada = v = B1BeBs B Olpey

and so g, Y.
THeoREM 214. Any integer, not 0 or a unity, is a product of primes.
If y is not O or a unity, it is divisible by a prime #,. Hence
Y = ™Y1 Ny, < Ny.
Either y, is a unity or
Y1 = TgYa Ny, < Ny,
Continuing this process we obtain a decreasing sequence
Ny, n,, Nygeo,
of positive rational integers. Hence Ny, = 1 for some ¢, and v, is a
unity ¢; and therefore
Y S Ty T T € = Ty ey Ty,

where 77'7 =, ¢ Is an associate of 7, and so itself a prime.
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42.8. The fundamental theorem of arithmetic in k(). Theorem

214 shows that every y can be expressed in the form

Yy = mTe. Ty,
where every g is a prime. The fundamental theorem asserts that, apart
from trivial variations, this representation is unique.

THEOREM 215 ( THE FUNDAMENTAL THEOREM FOR (FAUSSIAN
INTEGERS). The expression of an integer as a product of primes is
unique, apart from the order of the primes, the presence of unities, and
ambiguities between associated primes.

We use a process, analogous to Euclid’s algorithm, which depends
upon

Trecrem 216. Given any two integers y, y,, of which y, 54 0, there is
an integer « such that

Y = kyrtys, Nya < Ny
We shall actually prove more than this, viz. that
Ny, < iNy,,
but the essential point, on which the proof of the fundamental theorem
depends, is what is stated in the theorem. If ¢ and ¢, are positive rational
integers, and ¢, # 0, there is a k such that
¢ = ke;+c,, 0L ¢g<ec
It is on this that the construction of Euclid's algorithm depends, and
Theorem 216 provides the basis for a similar construction in k(i).
Since y, # 0, we have
Y = R+S,
Y1
where R and S are real; in fact R and S are rational, but this is irre-
levant. We ¢an find two rational integers x and y such that

|[B—z| < 4 S—yl < §;
and then
. 1
yl—<x+iy> = |(B—2)+i(S—y)l = {(B—aP+(S—y)} < 5.
1
If we take K = T8y, Y2 =y—KyL,
we have ly—reysl < 27y,

and so, squaring, Ny, = N(y—xy) < wv .
We now apply Theorem 216 to obtain an analogue of Euclid's
algorithm. If y and y, are given, and y; # 0, we have

Y = «ky1+y: (Ny, < Nyy).
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If y, £ 0, we have
y1 = K1yatys  (Nys < Nyy),
and SO on. Since Nyy, Ny,,...

is a clecreasing sequence of non-negative rational integers, there must

be an n for which
N7n+1 =0, Yn+1 = 0,

and the last steps of the algorithm will be
Yn-2 = Kn—27n—1+7n (N'Yn < N'}’n—l)’
Yn-1 = Kn-1Vn-

It now follows, as in the proof of Theorem 207, that y,, is a common
divisor of y and y,, and that every common divisor of y and y, is a
divisor of v,.

We have nothing at this stage corresponcling exactly to Theorem 207,
since we have not yet defined ‘highest common divisor. If { is a common
clivisor of y and y,, and every common clivisor of y and v, is a divisor
of ¢, we call ¢ a highest common divisor of y and v,, and write £ = (y, v,)-
Thus y, is a highest common divisor of y and y;. The property of (y, ;)
corresponcling to that proved in Theorem 208 is thus absorbecl into its
definition.

The highest common divisor is not unique, since any associate of a
highest common divisor is also a highest common divisor. If 5 and {
are each highest common divisors, then, by the definition,

n|& g,
and so = én, M= 6f = 0¢1,, 043 =1
Hence ¢ is a unity and { an associate of 5, and the highest common divisor
18 unique except for ambiguity between associates.

It will be noticecl that we defined the highest common clivisor of
two numbers of k( 1) differently, viz. as the greatest among the common
divisors, and provecl as a theorem that it possesses the property which
we take as our definition here. We might define the highest common
divisors of two integers of k(i) as those whose norm is greatest, but
the definition which we have adopted lends itself more naturally to
generalization.

We now use the algorithm to prove the analogue of Theorem 209, viz.

Treorem 217. If (y, v1) = 1 and y, | By, then y; B.

We multiply the algorithm throughoufz by B and find that

By Br1) = Bra-

Since (y, y;) =1, y, is aunity, and so

(ﬁ% /3)/1) = )8
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Now ¥, | By, by hypothesis, and 1y, | By,. Hence, by the definition of the
highest common divisor, v1| (By, Byy)
or y | 8.

If 7is prime, and (m, y) = p, then p |7 and p|y. Since p m, either
(1) p is a unity, and so (m,y) = 1, 0or (2) p is an associate of 7, and so
m Y. Hence, if we take y; = # in Theorem 217, we obtain the analogue
of Buclid’s Theorem 3, viz.

Treorem 218. If w By, thenm |Borm|y.

From this the fundamental theorem for k(i) follows by the argument
used for k(1) in § 1.3.

12.9. The integers of k(p). We conclude this chapter with a more
summary discussion of the integers
§=atbp
defined in § 12.2. Throughout this section ‘integer’ means ‘integer of
k(p)’.
We define divisor, unity, associate, and prime in k(p) as in k(i); but
the norm of ¢ = atbp is

N¢ = (a+bp)a+bp?) = a®—ab-b2.

since at—ab+bt = (a—4b)*+b2,
N¢ is positive except when ¢ = 0.

Since la-+bp|2 = a?—ab+4-b% = N(a+bp),
we have NaNB = N(aB), NaNB... = N(of...),
as in k().

Theorems 210, 212, 213, and 214 remain true in k(p); and the proofs
are the same except for the difference in the form of the norm.
The unities are given by
a?—ab+b% =1,
or (2a—b)24-3b% = 4.
The only solutions of this equation are
a=+1,b=0, a=0,b=21; a=1,b=1; a= —1, b= —1:
so that the unities are
+1, +p, :j:(l'*_P)
or +1, +p, 0%
Any number whose norm is a rational prime is a prime; thus I-p is
a prime, since N( 1 —p) = 3. The converse is false; for example, 2 is a

prime. For if 2 = (a+bp)(ci-dp),
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then 4 = (azéab—i—bz)(Cz—Cd-i—dz).
Hence either a+bpor C+dpisa unity,or

at—abtb? = £2,  (2a—b)24+-36% - 8,
which is impossible.

The fundamental theorem is true in k(p) alSO,and depends on a

theorem verbally identical with Theorem 216.
THEOREM 219. Given any two integers y, %, of which 94 # 0, there is
Un integer K Such that
Y = KY1F¥a, e < Nyp

For
Y a+bp (a+bp)(c+dp®) act+bd—ad+(bc—ad)p _ R+8p
vi= ctdp=  (c+dp)(c+dp®) = E—cdd? ’

Say. We Can ﬁnd two rational integers x and y such that

[B—2[ < 4, 8-yl < 4,
and then
2

yl— (@+yp) = (R—x)*—(R—2)(S—y)+(S—y)? < %
1

Hence, if k = Z4Yp, Y5 = Y—KYy;, we have
Ny, = N{y—xy,) < Ny, < Nyy

The fundamental theorem for k(p) follows from Theorem 219 by the
argument used in §12A8.

THEOREM 220 [THE FUNDAMENTALTHEOREM FOR K(p)]. The expres-
sion of an integer of k(p) as a p’roductof primes is unique, apart from
the order of the primes, the presence of unities, and ambiguities between
associated  primes.

We conclude with a few trivial propositions a,bout the integers of
k(p) which are of no intrinsic interest but Will be required in Ch. XIII.

THEGREM 221. A =1 —p is a prime.

This has been proved already.

THEOREM 222. All integers of k(p) fall into three classes (mod)\),
typified by 0, 1, and = 1.

The definitions of acongruence to modulus A’a residue (mOdA),and
a class of residues (mod /\),are the 8ame as in k( 1).
If y is 8Ny integer of k(p), we have

=atbp=a+b—bA=a+b (modn).

y
Since3 = (l—— )(1—p2),A]3;and Since a + b has ONe of the three residues



12.9 (223-4)] ARITHMETIC IN k1), le(i), AND k(p) 189

0, 1, *-1 (mod 3), y has one of the same three residues (mod ). These
residues are incongruent, since neither N1 = 1 nor N2 = 4 is divisible
by NA = 3.

THEOREM 223. 3 is associated with A2,

For A2 = 1—-2p—p% = -3p.

THeorRem 224. The numbers 4(1—p), £( 1—p?), +p( 1 —p) are all
assoctated with A.

For

+(1—p) = £, £(1—p) =F?  £p(l—p) = £Ap.

NOTES ON CHAF'TER XII

§ 12.1. The Gaussian integers were used first by Gauss in his researches on
biquadratic reciprocity. See in particular his memoirs entitled ‘Theoria resi-
duorum biquadraticorum’, Werke, ii. 67-148. Gauss (here and in his memoirs
on algebraic equations, Werke, iii. 3-64) was the first mathematician to use
complex numbers in a really confident and scientific way.

The numbers a + bp were introduced by Eisenstein and Jacobi in their work on
cubic reciprocity. See Bachmann, Allgemeine Arithmetik der Zahlkirper, 142.

§ 12.5. We owe the substance of these remarks to Prof. S. Bochner.



X111
SOME DIOPHANTINE EQUATIONS

13.1. Fermat’s last theorem. ‘Fermat’s last theorem’ asserts that
the equation
(13.1.2) ant oy = 2,
where n is an integer greater than 2, has no integral solutions, except
the trivial solutions in which one of the variables is 0. The theorem has
never been proved for all n, or even in an infinity of genuinely distinct
cases, but it is known to be true for 2 < n <« 619. In this chapter we
shall be concerned only with the two simplest cases of the theorem, in
which n = 3 and n = 4. The case n = 4 is easy, and the case n = 3
provides an excellent illustration of the use of the ideas of Ch. XII.

13.2. The equation z%+y? = 22 The equation (13.1.1) is soluble
when n = 2; the most familiar solutions are 3, 4, 5 and 5, 12, 13. We
dispose of this problem first.

It is plain that we may suppose X, y, a positive without loss of

generality. Next dlz.d|y - d]|z

Hence, if x, y, 2z is a solution with (X, y) = d, then x = dz', y = dy/,
z=dz,and 2, y’, 2’ is a solution with (x, y’) = 1. We may therefore
suppose that (z, y) = 1, the general solution being a multiple of a
solution satisfying this condition. Finally
x=1(mod?2).y =1 (mod 2) = 22 =2 (mod 4),

which is impossible; so that gne of x and y must be odd and the other
even.

It is therefore sufficient for our purpose to prove the theorem which
follows.

THEOREM 225. The most general solution of the equation

(13.2.2) 2 byt = 22,
satisfying  the conditions

(13.2.2) r>0,y>02>0 (x,y) =1, 2 Ix,
is

(13.2.3) X = 2ab,y = a?—b? z = a?+4b?
where a, b are integers of opposite parity and

(13.2.4) (a,b) =1, a>b>0.

There is a (1, 1) correspondence between different values of a, b and different
values of , vy, z.
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First, let us assume (13.2.1) and (13.2.2). Since 2 gz and (z,y) = 1,
y and z are odd and {y,z) = 1. Hence 1(z—y) and }(z+y) are integral
and

(z;y, z_ﬂ/) -1
2 2
By (13.2.1), (”-26)2= (fiz—y)(z—;—y)

and the two factors on the right, being coprime, must both be squares.

2ty —g? z—Y be,

Hence \ =

2 2
where a>0,b>0 a>hb, (& b) = 1.
Also a+b = a?+b% =z =1 (mod2),

and a and b are of opposite parity. Hence any solution of (13.2.1),
satisfying (13.2.2), is of the form (13.2.3); and a and b are of opposite
parity and satisfy (13.2.4).
Next, let us assume that a and b are of opposite parity and satisfy
(13.2.4). Then
22492 = 4a2b2-+ (a2 —b2)2 = (a2+b2)2 = 22,
x>0, y>02>0 2 x
If (x, y) =d, thend |z, and so
dly = a®—b% d|z = a®+b%
and therefore d | 2a% d| 2b%. Since (a, b) = 1, d must be 1 or 2, and the
second alternative is excluded because y is odd. Hence (X, y) = 1.
Finally, if y and z are given, g2 and 52, and consequently a and b, are
uniquely determined, so that different values of x, y, and z correspond
to different values of a and b.
13.3. The equation x¢+y* = 2zt We now apply Theorem 225 to
the proof of Fermat’s theorem for n = 4. This is the only ‘easy’ case
of the theorem. Actually we prove rather more.

Treorem 226. There are no positive ¢ntegral solutions of

(13.3.1) 24yt = 2%
Suppose that u is the least number for which
(13.3.2) 4yt =u? x>0,y>0, % >0)

has a solution, Then (x, y) = 1, for otherwise we ¢an divide through
by (x, )t and so replace y by a smaller number. Hence at least one of

x and vy, is odd, and
w® = zttyt = 1 or 2 (mod4).
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Since 42 = 2 (mod4) is impossible, y is odd, and just one of x and y
is even.
If x, say, is even, then, by Theorem 225,

2% = 2ab, y?: = a?—b?, u = a?+4b?
a>0 b>0, (¢b)=1,
and a and b are of opposite parity. If a is even and b odd, then
y? = -1 (mod4),
which is impossible; so that a is odd and b even, say b = 2c.
Next (3x)? = UC (a,c)=1;
and so a=4d? c=f% d>0f>04f) =1
and d is odd. Hence
y? = a?—b® = dt—4f4,
(2f*)2+y* = (d?)3,
and no two of 2f2,y, d2 have a common factor.
Applying Theorem 225 again, we obtain

of = olm, d* = B4m?, [>0, m>0 (,m)= 1.

Since f2=Im, (,m) =1,

we have 1=17rm-= g (r>0,s>0),
and so rifst = 42

But d<di=a <a<a?4b? =y,

and so u is not the least number for which (13.3.2) is possible. This
contradiction proves the theorem.

The method of proof which we have used, and which was invented
and applied to many problems by Fermat, is known as the ‘method of
descent’. If a proposition P(n) is true for some positive integer n, there
is a smallest such integer. If P(n), for any positive n, implies P(n’) for
some smaller positive n’, then there is no guch smallest integer; and
the contradiction shows that P(n) is false for every n.

13.4. The equation 3443 = 23. If Fermat's theorem is true for
some n, it is true for any multiple of n, since #¥*4-y'» = 2 is
@)+ = (@)
The theorem is therefore true generally if it is true (2) when n = 4 (as

we have shown) and (b) when n is an odd prime. The only case of {b)
which we can discuss here is the case n = 3.
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The natural method of attack, after Ch. Xi 1, isto write Fermat's
equation in the form
(@+y)x-Fpy)+pty) = 2
and consider the structure of the various factors in k(p). As in § 13.3,
we prove rather more than Fermat's theorem.

Trecrem 227.  There are no soldions of
E4pP+3 =0 (E#£0,7£0,{#0)
in integers of k(p). In particular, there are no solutions of
B4y =23
in rational integers, except the trivial solutions in which one of x, vy, z is 0.
In the proof that follows, Greek letters denote integers in k(p), and
A is the prime 1—p.T We may plainly suppose that
(13.4.1) (0= (&= (¢n=1
We base the proof on four lemmas (Theorems 228-31).
Trecrem  228.  If wis not divisible by A, then
3 = 4-1 (mod A%).
Sinee w is congruent to one of 0, 1, -1, by Theorem 222, and A | w,
we have w = +1 (modh).
We can therefore choose ¢ = 4w so that
a =1 (modA), a = 14pA
Then HPF 1) = aB—1= (a—1)(a—p)(ax—p?)
- BN 1 —p)(BA+ 1 —p?)
BB+ 1)(B—p?),
since 1—p? = A 14-p) = —Ap% Also
p? = 1 (modA),
s that BB+1)(B—p?) = BB+ 1)(B—1) (modA).
But one of B, B+1, B—1 is divisible by A, by Theorem 222; and so
+(w?F1) =0 (modA?)
or w? = +1 (modAt).
Turorem 229. If £4-73£(3 = 0, then one of £ 7, L is divisible by A.
Let us suppose the contrary. Then
0 = S84+ = 414141 (modA?),
andso L1 =0o0r £3=0,i.e X |1or A|3. The first hypothesis is
1 See Theorem 221.

5591 0
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untenable because A is not a unity; and the second because 3 is an
associate of A*t and therefore not divisible by A% Hence one of ¢, 9, {
must be divisible by },
We may therefore suppose that A |{, and that
L= Any,
where A [ y. Then A [ £, X [ 5, by (13.4.1), and we have to prove the im-
possibility of

(13.4.2) §3+n3+A3ny3 =0,
where

It is convenient to prove more, viz. that
(13.4.4) §3+7]3+€A3n)’3 =0

cannot be satisfied by any ¢, 5, y subject to (13.4.3) and any unity e .

Theorem 230. If &, n, and y satisfy (13.4.3) and (13.4.4),then n > 2.
By Theorem 228,

—eX3my3 = 84 98 = L 141 (modf).
If the signs are the same, then
—eAy® = 12 (mod At),
which is impossible because Af 2. Hence the signs are opposite, and
—eX3™y3 = 0 (mod A%).
Since Afy,n > 2.
THEOREM 23 1. If (134.4) is possible for n = m > 1, then it is possible
forn = ml.

Théorem 231 represents the critical stage in the proof of Theorem 227,
when it is proved, Theorem 227 follows immediately. For if (13.4.4) is
possible for any n, it is possible for n = 1, in contradiction to Theorem
230. The argument is another example of the ‘method of descent'.

Our hypothesis is that

(13.4.5) —eX¥™3 = (E4-9)(E+pn)(E+p%).

The differences of the factors on the right are

7 e, A
all associates of nA. Each of them is divisible by A but not by A% (since
At ).
Since m > 2, 3m > 3, and one of the three factors must be divisible
by A% The other two factors must be divisible by A (since the differences

TTheorem 223.
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are divisible), but not by A2 (since the differences are not). We may
suppose that the factor divisible by A% is £ y; if it were one of the other
factors, we could replace 5 by one of its associates. We have then

(13.4.6) &4m = Xm3, E+pn = Axy, E+p%n = Ak,
where none of ky, k,, k5 is divisible by A.

If 8|k, and & kg, then 8 also divides

Ke—Ks = P7

and pKa-—p2K2 = p§,
and therefore both ¢ and ». Hence & is a unity and (ky«;) = 1.
Similarly (kg, x;) = 1 and (xy, kp) = 1.

Substituting from (13.4.6) into (13.4.5), we obtain

—ey® = KiKyKs

Hence each of «;, k,, k5 is an associate of a cube, so that

E4 1= Xomt = N300, £lpn = 0P, £dplp - M,
where 8, ¢, 4 have no common factor and are not divisible by A, and
€,9 2 0 aareunities. It follows that

0 = (I4+p+p¥(E+n) = E+ntpE-+pn)+pHé+pn)
= & BB 1€, pAG® -5 p2ASP;

and so that
(23.4.7) #3+ e, B 5 A3m-368 = 0,
where ¢, = e;p/e, and €5 = €,/e,p are also unities.

Now m > 2 and so
¢*+¢,® =0 (mod A?)

(in fact, mod A3). But A [ ¢ and A [ ¢, and therefore, by Theorem 228,
$ = 41 (mod A?), J? =4 1 (mod A?)
(in fact, mod A%). Henae
+14¢, =0 (modA?).
Here ¢, is 4+ 1, +p, or 4p% But none of
+14+p, +14p2
is divisible by A2, since each is an associate of 1 or of A; and therefore
g = fTI.
If =1 (13.4.7) is an equation of the type required. If ¢ = -1,

we replace ¢ by —i. In either case we have proved Theorem 231 and
therefore Theorem 227.
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13.5. The equation z344% = 323. Almost the same reasoning will
prove

THeorem 232, The equution

x3+y® = 323

has no solutions in integers, except the trivial solutions in which z = 0.

The proof is, as might be expected, substantially the same as that
of Theorem 227, since 3 is an associate of A2, We again prove more, viz.
that there are no solutions of
(13.5.1) E+nd4eddnt = 0,
where ¢ 7 =1, ALy,
in integers of k(p). And again we prove the theorem by proving two
propositions, viz.

(a) if there is a solution, then n > 0;

(b) if there is a solution for n = m > 1, then there is a solution for

n = m-I;

which are contradictory if there is a solution for any n.

We have (E+n)(EFpn)(Etpin) = —eXm RS,
Hence at least one factor on the left, and therefore every factor, is
divisible by A; and hence m > 0. It then follows that 3m-+2 > 3 and
that one factor is divisible by A2, and (as in § 13.4) only one. We have
therefore

£+1’ = )\spr §+Pn = AK?’ §+P27) = Akay

the « being coprime in pairs and not divisible by A.

Hence, asin § 13.4, —ey® = K{KgKg,
and «y, «,, k5 are the associates of cubes, so that

E4+m = € A¥mE3, E4pn = € A¢3, E4-pPy = €3A¢la.
It then follows that
0 = EFntplEtpn)+p*E+pin) = e X2m8+ep pAd®+ep?Nf7,
F-euite om0 = 0;

and the remainder of the proof is the same as that of Theorem 227.

It is not possible to prove in this way that

(135.2) E+ndtednilyd £ 0.

In fact 134-2349(—1)3 = 0

and, since 9 = pA4,1 this equation is of the form (13.5.2). The reader

will find it instructive to attempt the proof and observe where it fails.
t See the proof of Theorem 223.
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13.6. The expression of a rational as a sum of rational cubes.
Theorem 232 has a very interesting application to the ‘additive’ theory
of numbers.

The typical problem of this theory is as follows. Suppose that x
denotes an arbitrary member of a specified class of numbers, such as
the class of positive integers or the class of rationals, and y is a member
of some sub-class of the former class, such as the class of integral squares
or rational cubes. Is it possible to express z in the form

= Yttty

and, if so, how economically, that is to say with how small a value of f?

For example, suppose x a positive integer and y an integral square.
Lagrange’s Theorem 3691 shows that every positive integer is the sum
of four squares, so that we may take f = 4. Since 7, for example, is
not a sum of three squares, the value 4 of £ is the least possible or the
‘correct’ omne,

Here we shall suppose that x is a positive rational, and y a non-negative
rational cube, and we shall show that the ‘correct’ value of [ is 3.

In the first place we have, as a corollary of Theorem 232,

THeorem 233. There are positive rationals which are not sums of two
non-negatice rational cubes.

For example, 3 is such a rational. For

a\®  o\3

Y LA R

b ﬂfb
involves (ad)®--(be)® = 3(bd)?,

in contradiction to Theorem 232.%
In order to show that 3 is an admissible value of £, we require another
theorem of a more elementary character.

THEOREM 234, Any positive rational is the sum of three positive rational
cubes.
We have to solve
(13.6.1) r = a34y8423,
where 7 is given, with positive rational X, y, z. It is easily verified that
2 4+y3 428 = (wty+2)2—3(y+2)(z+x)(z+y)

+ Proved in various ways in Ch. XX.
t Theorem 227 shows that 1 is not the sum of two positive rational cubes, but it is of
course expressble as 03+ 13,
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and so (13.6.1) is equivalent to

(@+y+2)—3(y+2)(z+x)(x+y) = r.
If we write X = y+2,Y = z-+x, Z = z-+y, this becomes

(13.62) (X+Y+Z)p3—24XYZ = 8r.
If we put
(136.3) X ?ZLZ, V= % ,
(13.6.2) becomes
(13.6.4) (u4-v)3—24v(u— 1) = 873,
Next we restrict Z and v to satisfy
(13.6.5) r = 3Z%,
so that (13.6.4) reduces to
(13.6.6) (u+2)3 = 24uw,
To solve (13.6.6), we put u = ¥ and find that
2442 24t
(13.6.7). U = (t+t1)3’ v = (t—1—1)3'

This is a solution of (13.6.6) for every rational t. We have still to satisfy
(13.6.5), which now becomes

rt+1)3 = 722%.

If we put ¢t = r/(72w®), where w is any rational number, we have
Z = w(t+1). Hence a solution of (13.6.2) is

(13.6.8) x = (u- DZ, Y = vZ, 7 = wit+1),
where u, v are given by (13.6.7) with ¢ = rw=3/72. We deduce the solu-
tion of (13.6.1) by using
(13.6.9) 2x = Y+Z—-X, 2y = Z+X-Y, 22 = X4+Y—Z.
To complete the proof of Theorem 234, we have to show that we can

choose w so that x, y, z are all positive. If w is taken positive, then ¢ and
Z are positive. Now, by (13.6.8) and (13.6.9) we have

2 2z
%; vfl-(u-1) = 24v—u, Y - u-v, = u+v-2.

Z V/ Z
These are all positive provided that

U >0 u-v < 2 < gy,

that is b> 1, 126(—1) < (1) < 126(t+1).
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These are certainly true if ¢ is a little greater than 1, and we may choose w
S0 that

o
= T2uB
satisfies this requirement. (In fact, it is enough if 1 <t 2)
Suppose for example that r = 4. If we put w =} so that { = 2, we
have
B =M (PO
The equation 1= (3P+@+ G7

which is equivalent to
(13.6.10) 63 = 334-434-53,
is even simpler, but is not obtainable by this method.
13.7. The equation x3+y3*+2% = 3. There are a number of other

Diophantine equations which it would be natural to consider here; and
the most interesting are

(13.7.1) 23 bytpat =3
and
(13.7.2) 23443 o w ud05,

The second equation 1s derived from the first by writing —u, v for z, 1.
Each of the equations gives rise to a number of different problems,
since we may look for solutions in (a) integers or (b) rationals, and we
may or may not be interested in the signs of the solutions. The simplest
problem (and the only one which has been solved completely) is that
of the solution of the equations in positive or negative rationals. For
this problem, the equations are equivalent, and we take the form
(13.7.2). The complete solution was found by Euler and simplified by

Binet.
If we put
z = XY, yv= X4+Y,u = u-v, v = U4V,
(13.7.2) becomes
(13.7.3) X(X243Y?) .= U(U2+3V3).
We suppose that X and Y are not both 0. We may then write

U+VJ(—3) _ bo(—3 U— VV
where a, b are rational. From the first of these
(13.7.4) U =aX-—-3bY, V = bX+4aY,

while (13,7.3) becomes X = Ula®+ 3b%).



200 SOME DIOPHANTINE EQUATIONS [Chap. XII1I

This last, combined with the first of (13.7.4), gives us
cx = dY,

where c = a(a®43b%)—1, d = 3b(a?+3b2).
Ifc=d=0,then b=0,a=1 X=U,Y = V. Otherwise
(13.7.5) X = M = 3Xb(a?-+3b2), Y = Xc = Ma(a®+3b%)— 1},
where A = 0. Using these in (13.7.4), we find that
(13.7.6) U = 3, V = A{(a2--3b2)2—a}.
Hence, apart from the two trivial solutions

X=Y=U=0; x =U, Y = v,
every rational solution of (13.7.3) takes the form given in (13.7.5) and
(13.7.6) for appropriate rational A, a, b.

Conversely, if A, a, b are any rational numbers and X, Y, U, V are
defined by (13.7.5) and (13.7.8), the formulae (13.7.4) follow at once
and

U(U+3V?) = 3Ab{(aX —3bY )24 3(bX +aY )%}

= 3Ab(a®+-3b2)(X2+43Y%) = X(X*4-3Y2).
We have thus proved

THeoreM 235. Apurt from the trivial solutions
(13.7.7) x=y=0 U=-V; 2 =U, ¥y =V,
the general rational solution of (13.7.2) is given by
x = Ml—(a—3b)(a®+3b%}, y = A{(a+3b)(a+3b%)—1},
u = M(a+3b)—(a2+436%2, Vv = A{(a>+3b%)2—(a—3b)},
where A, a, b are any rational numbers except that A £ 0.

(13.7.8)

The problem of finding all integral solutions of (13.7.2) is more diffi-
cult. Integral values of a, b and A in (13.7.8) give an integral solution,
but there is no converse correspondence. The simplest solution of
(13.7.2) in positive integers is
(13.7.9) x=1 y =12, v« = 9, v= 10
corresponding to

a=% b=—h A=—%
On the other hand, if we puta = b =1, A =, we have
5 u= —4, v= 6,

=l

a
X =3, ¥

equivalent to (13.6.12).
Other simple solutions of (13.7.1) or (13.7.2) are

13465483 = 93, 2301343 = 153433%,  93+15% = 234163,

li
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Ramanujan gave
X = 34 5ab—5b2%, y = 4a?—4ab+-6b2,
= ba2—>5ab—3b2, t = 6a®—4ab-4b2
as a solution of (13.7.1). If we take a = 2, b = 1, we obtain the solu-
tion (17, 14, 7, 20). If we take a == 1, b = -2, we obtain a solution
equivalent ‘to (13.7.9). Other similar solutions are recorded in Dick-

son’s History.
Much less is known about the equation

(13.7.10) 2yt = utdoot,
first solved by Euler. The simplest parametric solution known is
X = a’4a’h?2—2a*b* -+ 3a2b5+-ab®,
y = abh—3a%h%-—2a%h3-}-a?bh>- b7,
U = a’4a%h?—2a3b*—3a2b’4-abb,
V = a8b-|-3a%h%-— 22403 +ab5 b7,
but this solution is not in any sense complete. When a =1, b =2 it
leads to 13341344 == 158¢-4-59%,
and this is the smallest integral solution of (13.7. 10).

To solve (13.7.10), we put
(13.7.12) x = agw-t¢, y = bw-d, u = aw+d, v = bwiec.
We thus obtain a quartic equation for w, in which the first and last
coefficients are zero. The coefficient of w3 will also be zero if

c(a®—b%) =: d(a®+b3),

in particular if c = ¢345b3, d = a®—b?%; and. then, on dividing by w, we
find that g j2_po)(e2—d2) = 2(ad®—acd 1 bes 1 bd?).
Finally, when we substitute these values of ¢, d, and w,in (13.7.12),

and multiply throughout by 3a?b2, we obtain (13.7.11).
We shall say something more about problems of this kind in Ch. XXI.

(13.7.11)

NOTES ON CHAPTER XIlII

§ 13.1. All this chapter, up to § 13.5, is modelled on Landau, Vorlesungen, iii.
201-17.

The phrase ‘Diophantine equation’ is dorived from Diophantus of Alexandria
(about . o. 250), who was the first writer to make a systematic study of tho
solution of equations in integers. Diophantus proved the substance of Theorem
225. Particular solutions had been known to Greek mathematicians from
Pythagoras onwards. Heath’s Diophantus of Alexandria (Cambridge, 1910)
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includes translations of all the extant works of Diophantus, of Fermat's com-
ments on them, and of many solutions of Diophantine problems by Euler.

There is a very large literature about ‘Fermat’s last theorem’. In particular
we may refer to Bachmann, Das Fermatproblem; Dickson, History, ii, ch. xxvi;

Landau, Vorlesungen, iii; Mordell, Three lectures gn Fermat's last theorem (Cam-
bridge, 1921); Nogués, Théoréme de Fermat, son histoire (Paris, 1932); Vandiver,
Report of the committee on algebraic numbers, ii (Washington, 1928), ch. ii, and

Amer. Math. Monthly, 53 (1946), 555-78.

The theorem was enunciated by Fermat in 1637 in a marginal note in his copy
of Bachet’s edition of the works of Diophantus. Here he asserts definitely that
he possessed a proof, but the later history of the subject seems to show that he
must have been mistaken. A very large number of fallacious proofs have been
published.

In view of the remark at the beginning of § 13.4, we can suppose that n = p> 2.
Kummer (1850) proved the theorem for 1 = p, whenever the odd prime p is
‘regular’, i.e. when p does not divide the numerator of any of the numbers

Bv Bzv---’ Bi(p—3)’

where Bk is the kth Bernoulli number defined gt the beginning of § 7.9. It is known,
however, that there is an infinity of ‘irregular’ p. Various criteria have been
developed (notably by Vandiver) for the truth of the theorem when p is irregular.
The corresponding calculations have been earried out on the high-speed computer
SWAC and as a result, the theorem jg now known to be true for all p < 4002.
See Lehmer, Lehmer and Vandiver, Proc. Nat. Acad. Sci (U.S.A) 40 (1954),
25-33 ; Vandiver, ibid. 732-5, and Selfridge, Nicol and Vandiver, ibid. 41 (1955),
970-3.

The problem is much simplified if it is assumed that no one of #, y, z is divisible
by p. Wieferich proved in 1909 that there are no such solutions unless 271 =1
(mod p?), which is true for p = 1093 (§ 6.10) but for no other p less than 2000.
Later writers have found further conditions.of the same kind and by this means
it has been shown that there are no solutions of this kind for p < 253,747,889,
See Rosser, Bulletin Amer. Math. Soc. 46 (1940), 299-304, and 47 (1941), 109-10,
and Lehmer and Lehmer, ibid. 47 (1941), 139-42.

§ 13.3. Theorem 226 was actually proved by Fermsat, See Dickson, History, ii,
ch. xxii.

§ 13.4. Theorem 227 was proved by Euler between 1753 and 1770. The proof
was incomplete at one point, but the gap was filled by Legendre. See Dickson,
History, ii, ch. xxi.

Our proof follows that given by Landau, but Landau presents it as a first
exercise in the use of ideals, which we have to avoid.

$13.6. Theorem 234 is due to Richmond, Proc, London Math. Soc. (2) 21 (1923),
401-9. His proof is based on formulae given much earlier by Ryley [The ladies’
diary (1825), 35].

Ryley’s formulae have been reconsidered and generalized by Richmond [Proc.
Edinburgh Math. Soc. (2) 2 (1930), 92-100, and Journal London Math. Soc. 17
(1942),. 196-7] and Mordell [Journal London Math. Soc. 17 (1942), 194-6]. Rich-
mond finds solutions not included in Ryley's; for example,
l—t+x = s(1+1%), I1—t+2)y = s(3t—1—13), 3(1—t+2)z = 8(3t—3¢%),
where s ig rational and ¢ = 3r/s®, Mordell solves the more general equation

(X+Y+2)p—dXYZ = m,
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of which (13.6.2) is a particular case. Our presentation of the proof is based on
Mordell's. There are a number of other papers on cubic Diophantine equations in
three variables, by Mordel1 and B. Segre, in later numbers of the Journal. See also
Mordell, A chapter in the theory of numbers (Cambridge 1947), for an geeount of
work on the equation y% == z% + k.

§ 13.7. The first results concerning ‘equal sums of two cubes’ were found by
Vieta before 1591. See.Dickson, History, ii. 550 et seq. Theorem 235 is due to
Euler. Our method follows that of Hurwitz, Math. Werke, 2 (1933), 469-70.

Euler's solution of (13.7.10) is given in Dickson, Introduction, 60—62. His
formulae, which are not quite so simple as (13.7.11), may be derived from the
latter by writing f +g and f—g for a and b and dividing by 2. The formulae
(13.7.11) themselves were first given by Gérardin, [’ Intermdcdiaire des mathé
maticiens, 24 (1917), 51. Thc simple solution here is due to Swinnerton-Dyer,
Journal London Math. Soc. 18 (1943), 2-4.

Leech (Proc. Cambridge Phil. Soc. 53 (1957), 778-80) lists numerical solutions of
(13.7.2), of (13.7.10), and of several other Diophantine equations.



X1V
QUADRATIC FIELDS (1)

14.1. Algebraic fields. In Ch. XII we considered the integers of
k(i) and %(p), but did not develop the theory farther than was necessary
for the purposes of Ch. XIII. In this and the next chapter we carry
our investigation of the integers of quadratic fields a little farther.

An algebraic field is the aggregate of all numbers

P®)

where & is a given algebraic number, P(8) and Q(6) are polynomials
in ¢ with rational coefficients, and Q(9) £ 0. We denote this field by
k(9). It is plain that sums and products of numbers of k($) belong to
k(6) and that «/g8 belongs to k(B) if « and § belong to k(8) and 8 = 0.

In § 115, we defined an algebraic number ¢ as any root of an algebraic
equation

(14.1.1) agx*+a, 2" 1+, +a, = 0,

where a,,, a,,... are rational integers, not all zero. If ¢ satisfies an
algebraic equation of degree n, but none of lower degree, we say that
¢ is of degree n.

If n =1, then ¢ is rational and k(¢) is the aggregate of rationals.
Hence, for every rational ¢, k(f) denotes the same aggregate, the field
of rationals, which we denote by k(1). This field is part of every
algebraic field.

If n =2, we say that ¢ is ‘quadratic’. Then ¢ is a root of a quadratic

equation aoxz_*_alx_}_ag =0

_ a—}-b«/m, Vi — ct—a
c b
for some rational integers a, b, ¢, m. Without loss of generality, we may
take m to have no squared factor. It is then easily verified that the
field k(f) is the same aggregate as k(vm). Hence it will be enough for
us to consider the quadratic fields k( +m) for every ‘quadratfrei’ rational
integer m, positive or negative (apart from m = 1).
Any member ¢ of k(+/m) has the form

P(Vm) t+uvm _ (tHuvm)(v—wvm)  a+bvm

Q(Vm)  v4wVm vE—wim c

and so £

¢
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for rational integers ¢, u, v, w, a, b, c. We have (c£—a)? = mb2, and so
& is a root of

(14.1.2) c2x?—2acx+at—mb? = 0.

Hence ¢ is either rational or quadratic; ie. every member of a quadratic
field is either a rational or a quadratic number.

The field k(vm) includes a sub-class formed by all the algebraic in-
tegers of the field. In § 12.1 we defined an algebraic integer as any root
of an equation

(14.1.3) ¥ te i 14 4¢; = 0,

where ¢y,..., ¢; are rational integers. We appear then to have a choice
in defining the integers of k(vm). We may say that a number ¢ of
k(¥m) is an integer of k(v¥m) (i) if ¢ satisfies an equation of the form
(14.1.3) for some j, or (ii) if ¢ satisfies an equation of the form (14.1.3)
with j = 2. In the next section, however, we show that the set of
integers of k(~'m) is the same whichever definition we use.

14.2. Algebraic numbers and integers; primitive polynomials.
We gay that the integral polynomial

(14.2.1) f(x) = goa"ta, 2" 1+...+a,
is a primitive polynomial if
a, >0, (a’ow Ay, an) =1

in the notation of p. 20. Under the same conditions, we call (14.1.1)
a primitive equution. The equation (14.1.3) is obviously primitive.

Treorem 236. An algebraic number ¢ of degree n satisfies a unique
primitive equation of degree ». If ¢ is an algebraic integer, the coefficient
of 2™ in this primitive equation is wunity.

For n = 1, the first part is trivial; the second part is equivalent to
Theorem 206. Hence Theorem 236 is a generalization of Theorem 206.
We shall deduce Theorem 236 from

Trueorem 237. Let £ be an algebraic number of degree n and let
f(x) = 0 be a primitive equation of degree n safisfied by £. Let g(x) = 0
be any primitive equation satisfied by £.  Then g(x) = f(z)h(zx) for some
primitive polynomial A(z)and all x.

By the definition of ¢ and n there must be at least one polynomial

f(x) of degree n such that f (¢£) = 0. We may clearly suppose f(x)
primitive. Again the degree of g(x) cannot be less than n. Hence we
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can divide g(x) by f(x) by means of the division algorithm of elementary
algebra and obtain a quotient H(x) and a remainder K(x), such that

(14.2.2) g(x) = f(x)H(x) +K(x),
H(x) and K(x) are polynomials with rational coefficients, and K(x) is
of degree less than n.

If we put x = ¢ in (14.2.2), we have K(¢£)= 0. But this is impossible,
since ¢ is of degree n, unless K(x) has all its coefficients zero. Hence

glx) = flx)H ().
If we multiply this throughout by an appropriate rational integer, we
obtain
(14.2.3) cg(x) = flx)h(x),
where ¢ is a positive integer and h(x) is an integral polynomial. Let d be
the highest common divisor of the coefficients of h(x). Since g is primi-
tive, we must have d c. Hence, if d > 1, we may remove the factor d;
that is, we may take h(x) primitive in (14.2.3). Now suppose that p c,
wherepisprime. It follows thatf(x)h(x) = 0 (modp)andso, by Theorem
104 (i), either f(x) = 0 or h(x) = 0 (modp). Both are impossible for
primitive f and hand so ¢ = 1. This is Theorem 237.

The proof of Theorem 236 is now simple. If g(x) = 0 is a primitive
equation of degree n satisfied by ¢, then h(x) is a primitive polynomial
of degree 0O; i.e. h(x) = 1 and g(x) = f(x) for all x. Hencef(x) is unique.

If £ is an algebraic integer, then ¢ satisfies an equation of the form
(14.1.3) for somej 2= n. We write g(x) for the left-hand aide of (14.1.3)
and, by Theorem 237, we have

g(x) = flx)h(z),
where h(x) is of degree j-n. If f(x) = ay2"--... and h(x) = hox"""—{- Ce
we have 1 =a, h,, and so a, = 1. This completes the proof of
Theorem 236.

14.3. The general quadratic field %{ ¥m). We now define the integers
of k(vm) as those algebraic integers which belong to k(vm). We use
‘integer’ throughout this chapter and Ch. XV for an integer of the
particular field in which we are working.

With the notation of § 14.1, let

a--balme

£ =
c

be an integer, where we may suppose that ¢ > 0 and (a, b, c) = 1.
If b=o, then { =a/cis rational, c =1, and ¢ = a, any rational integer.
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If p £ 0, ¢ is quadratic. Hence, if we divide (14.1.2) through by ¢?,
we obtain a primitive equation whose leading coefficient is 1. Thus
¢ |2aand & (a®—mb?). If d = (a,c), we have

dt a%, d? ¢t d? (a®*—mb?) — d? mb2 —-d b,

since m has no squared factor. But (a, b, c) =1 and so d = 1. Since
C|2a, we have c = 1 or 2.

If ¢ = 2, then a is odd and mb? = a?> = 1 (mod 4), sO that b is odd
and m = 1 (mod4). We must therefore distinguish two cases.
(i) If m # 1 (mod 4), then c = 1 and the integers of k{~m) are

¢ = at+bvm

with rational integral a, b. In this case m = 2 or m = 3 (mod4).

(i) If m =1 (mod4), one integer of k(vm) is 7 = }(vm—1) and all
the integers can be expressed simply in térms of this r, If ¢ = 2, we
have a and b odd and

£ — “_Jr;’i” - %’er-r = ay+(2by+ 1),
where a,, b, are rational integers. If ¢ = 1,
£= a+bvm = a+b+2br = a,+2b, 7,

where a,, b; are rational integers. Hence, if we change our notation
a little, the integers of k(Vm) are the numbers g--br with rational
integral a, b.

Trecrem 238. The integers of k(vm) are the numbers
a-+bvm
when m =2 or m = 3’ (mod 4), und the numbers
a-+br = at+3b(vm—1)
when m = 1 (mod 4), a and b being in either case rational integers.

The field k(i) is an example of the first case and the field Ic{\/(— 3)) of
the second. In the latter case

T=—}+}V3=0p
and the field is the same as k(p). If the integers of Kk(6) can be expressed
as a+bs,
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where a and b run through the rational integers, then we say that [I, ¢]
is a basis of the integers of k(6). Thus [1, 7] is a basis of the integers of
k(i), and [1,p] of those of &{\/(—3)}.

14.4. Unities and primes. The definitions of divisibility, divisor,
unity, and prime in k(vm) are the same as in Kk(i); thus «a is divisible
by B, or B|«, if there is an integer y of k(vm) such that « = By.T Aunity
¢ is a divisor of 1, and of every integer of the field. In particular 1 and
-1 are unities. The numbers @ E are the associates of £, and a prime is
a number divisible only by the unities and its associates.

THEOREM 239. Ife; and e, are unities, then ¢, €, and e,/e, are unities.

There are a 8, and a 8, such that ¢, 8, = 1, ¢,8, = 1, and

6ed =1 > el l
Hence ¢, ¢, is a unity. Also §, = 1/¢, is a unity; and so, combining
these results, ® ile, is a unity.

We call £ = r—svm the conjugate of ¢ = r+svm. When m < 0, £ is
also the conjugate of ¢ in the sense of analysis, ¢ and £ being conjugate
complex numbers; but when m > 0 the meaning is different.

The norm N¢ of ¢ ig defined by

NE = ¢ = (r+svm){r—svm) = r2—me?,
If ¢ is an integer, then N¢ is a rational integer. If m = 2 or 3 (mod 4),
and ¢ = q-+bvm, then NE= a—mbd;

and if m = 1 (mod 4), and £ = a--bw, then
N¢ = (a—10)2—Ltmb2.

Norms are positive in complex fields, but not necessarily in real fields.
In any case N(¢y) = NEN7.

THEOREM 240. The norm of a unity is 41, and every number whose
norm is 41 is a unity.

For(@ e|l=>e8=1->NeN6 =1 > Ne= 41,
and (b) (8= NE= 41 — €1,

If m < 0, m == —u, then the equations

a?+pb?=1 (m =23 (mod 4)),
(@a—1b)2+4-3ub2 =1 (m =1 (mod 4))
have only a finite number of solutions. This number is 4 in k(i), 6 in
k(p), and 2 otherwise, since
a= 41, b=0

are the only solutions when p > 3.

t If &« and g are rationd integers, then y is rationd, and so a rationa integer, so tha
B |a then means the same in &{j(—m)} as iINK(1).
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There are an infinity of unities in a real field, as we shall see in a

moment in k(v2).
N¢ may be negative in a real field, but

is a positive integer, except when ¢ = 0. Hence, repeating the argu-
ments of § 12.7, with M¢ in the place of ¥¢ when the field is real, we
obtain

THEOREM 241. An integer whose rorm is a rational prime is prime.

THEOREM 242. An integer, not 0 or a wumity, can be expressed as a pro-
duct of primes.

The question of the uniqueness of the expression remains open.

14.5. The unities of k(v2). When m = 2,
NE = a2—202
and at—2b = -1
has the solutions 1, 1 and — 1, 1. Hence
w = 142, wl = —@ = —14+42

are unities. It follows, after Theorem 239, that all the numbers
(14.5.1) +w® Jw® (N =0 1,2.)
are unities. There are unities, of either sign, as large or as small as
we please.

THEOREM 243. The numbers (14.5.1) are the only unities of k(v2).

(i) We prove first that there is no unity ¢ between 1 and w. If there
were, we should have

1< z4+yVv2= e< 1442
and 22—2y% = +1;
so that -1 < z—yV2 < 1,
0 < 2x < 2442,

Hence x = 1 and 1 < 1 4yv2 < 1+ 42, which is impossible for in-
tegral .

(ii) If ¢ > 0, then either ¢ = " or

o < ¢< whtl

for some integral n. In the latter case w-"¢ is a unity, by Theorem 239,
and lies between 1 and w. This contradicts (i); and therefore every
positive ¢ is an ®, Since —¢ iS a unity if ¢ is a unity, this proves the
theorem.

6691 p



210 QUADRATIC FIELDS [Chap. XIV

Since Nw = — 1, Nw? = 1, we have proved incidentally
THEOREM 244. All rational integral solutions of

—2y2 =1
are given by r+yv2 = +(14-V2)2
and all of 22—2y% = —1
by THYV2 = L (1424,
with n a rational integer.
The equation x2—my? = 1,

where m is positive and not a square, has always an infinity of solutions,

which may be found from the continued fraction for vm. In this case

1

V2 =1
T

the length of the period is 1, and the solution is particularly simple.

If the convergents are

Pn

In
then p,, ¢,, and »
¢n = Potdn \/2, ‘/‘n = P la v2

57: (n=0,1,2,..)

le

1
1’

are solutions of x, = 2z, ,+x, ,.
From ¢, = w, ¢, = f Yo = -w-I, ¥ = wF
and

w" = 20" 14w (—w)™ = 2(—w)~"H 4 (—w)"+2,
it follows that ¢, == whtl P, = (—w)r1
for all n. Hence
Po = Hom 4 (—w) 1) = H{(14HV2)mH 4 (1 V),
Gp = PV2wm—(—w)m1 = IW2{(14-V2)nH — (1—y2)r+1]),

and pn_29n = ¢'n¢'n - (_1)n+1.
The convergents of odd rank give solutions of 22—2y% = 1 and those
of even rank solutions of x2-—2y2= — 1.

If 22—2y2 = 1 and zfy > 0, then
1 1 1
Yetyv2) Sy ogve S
Hence, by Theorem 184, z/y is a convergent. The convergents also give

all the solutions of the other equation, but this is not quite so easy to

prove. In general, only some of the convergents to ¥m yield unities of
k(Vm).

0<? _v2—
y
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14.6. Fields in which the fundamental theorem is false. The
fundamental theorem of arithmetic is true in k(l), k(i), k(p), and
(though we have not yet proved so) in k(~2). It is important to show by
examples, before proceeding farther, that it is not true in every k(v¥m).
The simplest examples are m = — 5 and (among real fields) m = 10.

+(i) Since -5 =3 (mod 4), the integers of k{,((—5)} are a-+b/(—
It is easy to verify that the four numbers

2, 3, L4y(=5), 1—(—

are prime. Thus
h(—5) = {atby(—5))etdy(—
implies 6 = (a?-+5b%)(c%4-5d?);
and a2-5b% must be 2 or 3, if neither factor is a unity. Since neither

2 nor 3 is of this form, 14 J(-5) is prime; and the other numbers may
be proved prime similarly. But

6—23—{1-}-«/ }{1 J
and 6 has two distinct decompositions into primes.
(ii) Since 10 = 2 (mod4), the integers of k(~10) are a-+b+10. In

this - case 6 = 2.3 = (44+-v10)(4—v10),
and it is again easy to prove that g]] four factors are prime. Thus, for
example, 2 = (a4bv10)(c-+dV10)
implies 4 = (a®— 10b%)(c®— 10d2),
and a2 10b% must be -2, if neither factor is a unity. This is impossible
because neither of 2 is a quadratic residue of 10.t

The falsity of the fundamental theorem in these fields involves the
falsity of other theorems which are central in the arithmetic of k(1).

Thus, if  and 8 are integers of k(t), without a common factor, there
are integers A and p for which

aA+fu = 1.

This theorem is false in k{J(_5)}, Suppose, for example, that o and B
are the primes 3 and 1+,/(—5). Then

3{a4-by(—= 5} +{1+y(—5)}e+dy(—
involves 3a+c—5d =1, 3b+ct+d =0
and so 3a—3b—6d-=1,
which is impossible.

118, 2% 32 48, 52, 6%, 72,82, 9t =1, 4, 9,6, 5 6, 9. 4, 1 (mod 10).
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14.7. Complex Euclidean fields. A simple field is a field in
which the fundamental theorem is true. The arithmetic of simple
fields follows the lines of rational arithmetic, while in other cases a new
foundation is required. The problem of determining all simple fields is
very difficult, and no complete solution has been found, though Heil-
bronn has proved that, when m is negative, the number of simple fields
is finite.

We proved the fundamental theorem in k(i) and k(p) by establishing
an analogue of Euclid's algorithm in k(1). Let us suppose, generally,
that the proposition

(E) ‘given integers y and y,, with y, == 0, then there is an integer « such

that Y = ritye Nyl < [Nyl
is true in k(vm). This is what we proved, for k(i) and k(p), in Theorems
216 and 219; but we have replaced Ny by |Nv|in order to include real
fields. In these circumstances we say that there is a Euclidean algorithm
in k(¥m), or that the field is Euclidean.

We can then repeat the arguments of § 12.8 and 12.9 (with the sub-
stitution of |Ny| for Ny), and we conclude that

Theorem 245. The fundamental theorem is true in gny Euclidean
quadratic  field.

The conclusion is not confined to quadratic fields, but it is only in
such fields that we have defined Ny and are in a position to state it
precisely.

(E) is plainly equivalent to

(E) ‘given any & (integral or not) of K( v/m), there is an integer « such that

(14.7.1) IN@—x)] < 1'.

Suppose now that 8 = rdsvm,

where r and s are rational. If m =% 1 (mod 4) then
K = xtyim,

where x and y are rational integers, and (14.7.1) is

(14.7.2) [(r—z)2—m(s—y)? < L

If m = 1 (mod4) then

K = atytlyWm—1)= z+ly+iyvm,t
where x and y are rational integers, and (14.7.1) is
(14.7.3) (r—z—3y)2—m(s—iy)? < L.

1 The form of § 14.3 with z<+y, y for a, b.
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When m = —pu < 0, it is easy to determine all fields in which these
inequalities can be satisfied for any r, s and appropriate X, y.

THEOREM 246. There are just five complexr Euclidean quadratic fields,
viz. the fields in which

m= -1, -2, -3, -7, -11.
There: are two cases.
(i) When m # 1 (mod4), we take r = }, s = } in (14.7.2); and we
require 14 <1,
or u<3.Hence y =1 and p = 2 are the only possible cases; and in

these cases we can plainly satisfy (14.7.2), for any r and s, by taking
x and y to be the integers nearest to r and s.

(i)) When m = 1 (mod 4) we take r = 4, s = } in (14.7.3). We require

T+ <L
Since p = 3 (mod 4), the only possible values of p are 3, 7, 11. Given
s, there is a y for which 12s—y| < 1,
and an x for which r—ax—3y| < I
and then l(r—a—dy)P—mls—dy? < }H+H= K < L.

Hence (14.7.3) can be satisfied when p has one of the three values in
question.

There are other simple fields, such as k{/( — 19)) and *{y/( —43)}, which
do not possess an algorithm; the condition is sufficient but not necessary
for simplicity. The fields corresponding to

m = -1, -2, -3, -7, --11, -19, -43, -67, -163
are simple, and Heilbronn and Linfoot have proved that there is at
most one more. Stark has proved that for this field (if it exists)
m < —exp(2-2X 107)
but its existence is highly improbable.

14.8. Real Euclidean fields. The real fields with an algorithm are
more numerous and it is only very recently that they have been com-
pletely determined.

THEOREM 247.* k(¥m) is Euclidean when

m =2 3,5 6, 7, 11, 13, 17, 19, 21, 29, 33, 37, 41, 57, 73
and for no other positive m.

We can plainly satisfy (14.7.2) when m = 2 or m = 3, since we can
choose x and y so that |r—a| < 4 and |s—y| < 3. Hence k(v2) and
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k(~3) are Euclidean, and therefore simple. We cannot prove Theorem
247 here, but we shall prove

Treorem 248. k(vm) 4s Euclidean when
m=2,3,5,6, 7,13, 17, 21, 29.
If we write
A=0, n=m (mz1 (mod 4)),
A=1 n=jm (m=1(mod 4)),
and replace 2s by s when m = 1, then we can combine (14.7.2) and

(14,7_3) in the form
(14.8.1) |[(r—x—Ay)2—n(s—y)? < 1.

Let us assume that there is no algorithm in k(vm). Then (14.8.1) is
false for some rationsl r, s and all integral X, y; and we may suppose
thatt
(14.8.2) 0<r<t, o0<s<L
There is therefore a pair r, s, satisfying (14.8.2), such that one or other of

[P(x? y)] (r—x—)\y)2 = 1—{—n(s—y)2,
[N, )] n(s—y)? = 1+ (r—a—Ay)?
is true for every X, y. The particular inequalities which we shall use are
[P(0,0)] 7 > 14ns2,  [N(0,0)]  ns® > 142
[P(1,0)] (1—r)? 2 1+ns?, [N(1,0)] ms® > 14+(1—1)?
[P(—1,0)] (14r)® 3 14ns? [N(—1,0)] ns® > 1+4(147)2

t This is very easy to see whenm 1 (mod 4) and the left-hand side of (14.8.1) is
o . |(r—2)*—m{s—y);
for this is unaltered if we write
§riu, g T+u, €8+, €Y+,
where ® 1and g, are each 1 or — 1, and % and v are integers, for
r’ x’ 8’ y;

and we can always choose e;, €5,u, v so that ¢ r+u and ¢; 5+ v liebetween Oand } inclusive.

The situation is a little more complex when m = 1 (mod 4) and the left-hand side
of (14.8.1) is

(484 [(r—2—39)* — bm{s—p)?].
This is unaltered by the substitution of any of

(1) e7+u, qztu, s ¥

2) r, 2—v, s+2, y-2v,

(3) 7', x+y7 —8, —‘y’

(4) $—r, —2, ‘1—s, |-y,
for r,x, 8, y. We first use (1) to make O < r < % ; then (2) to make = 1< ¢ < 1; and
then, if necessary, (3) to make 0 s 1. If then 0 < § < 4, the reduction is completed.
If + <8< 1, weend by using (4), as we can do because $—r lies between 0 and } if
# does so.
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One at least of each of these pairs of inequalities is true for some r and
s satisfying (14.8.2). If r = s = ¢, P(O,0) and N(0,0) are both false,
so that this possibility is excluded.

Since r and s satisfy (14.8,2), and are not both 0, P(0, 0) and P(l, 0)
are false; and therefore N(O, 0) and N(l, 0) are true. If P(-1, 0) were
true, then N(1,0)and P(— 1,0) would give

(1472 > 1+4ns? =2 24 (1—1)?
and so 4r 2> 2. From this and (14.8.2) it would follow that r = } and
ns? = §, which is impossible.t Hence P(-1, 0) is false, and therefore
N(—1,0)is true. This gives
ns? > 14(14r) > 2,
and this and (14.8.2) give n > 8.
It follows that there is an algorithm in all cases in which n <« 8,

and these are the cases enumerated in Theorem 248.
There is no- algorithm when m = 23. Take r = 0, s = J. Then

(1481) is 2302 — (23y—7)% < 23.
Since £ = 232°—(23y—7)% = -49 = -3 (mod 23),
¢ must be -3 or 20, and it is easy to see that each of these hypotheses
is impossible. Suppose, for example, that
£ = 23X2-Y? = -3

Then neither X nor Y c¢an be divisible by 3, and

X2 =1 Y2 =1 ¢£=22 =1 (mod 3),
a contradiction.

The field k(v23), though not Euclidean, is simple; but we cannot prove
this  here.

14.9. Real Euclidean fields (continued). It is naturally more diffi-
cult to prove that k(~m) is not Euclidean for all positive m except those
listed in Theorem 247, than to prove k(v¥m) Euclidean for particular
values of m. In this direction we prove only

THeorem 249. The number of real Euclidean fields k(~¥m), where
m = 2 or 3 (mod 4), is finite.

1 Suppose that § == p/g, where (p, q) = L. If m 5% 1 (mod 4), then m = n and
4mp? = bg?.
Hence p? |5, so that p = 1; and ¢*[4m. But m has no squared factor,and 0 < ¢ < }.
Hence q= 2, s = 4,and m =5 =1 (mod 4), a contradiction.
If m = 1 (mod 4), then m = 4n and
mpt = 5¢b
From this we deduce p=1, q=1, § = 1, in contradiction to (14.8.2).
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Let ys suppose k(vm) Euclidean and m = 1 (mod4). We take r = 0
and s = t/m in (14.7.2), where { is an integer to be chosen later. Then
there are rational integers X, y such that

t 2
#=nfy—)

Since (my—1t)2—ma? = 2 (modm),

<1, |my—t)?—ma? < m.

there are rational integers x, z such that
(14.9.7) 22—ma? = 2 (modm), |22—ma? < m.
If m = 3 (mod 4), we choose t an odd integer such that
5m < # < 6m,

as we certainly can do if m is large enough. By (14.9.1), z22—ma? is
equal to $2—5m or to {2—6m, SO that one of

(14.9.2) 12—z = m(5—x?), $2—z2 = m(6—=x?)
is true, But, to modulus 8,
2 =1, 22, 2® =0, 1,0r 4 m=3or7
$2—22 =20, 1, or 5,
5—2%=1, 4, or 5; 6—x2 = 2,5, or 6
m(5—z%) = 3, 4, or 7, m(6—2x%)= 2, 3, 6, or 7,
and, however we choose the residues, each of (14.9.2) is impossible.

If m = 2 (mod 4), we choose t odd and such that 2m < {2 < 3m, as
we can if m is large enough. In this case, one of

(14.9.3) 12—22 = m(2—x?), 1P—2% = m(3—=x)?
is true. But, to modulus 8, m = 2 or 6:
2—x2=1, 2, or 6; 3—x2=23,0r7;

m(2—a?) = 2, 4, or 6; m(3—a?) = 2, 4, or 6
and each of (14.9.3) is impossible.
Hence, if m = 2 or 3 (mod 4) and if m is large enough, k(vm) cannot
be Euclidean. This is Theorem 249. The same is, of course, true for
m = 1, but the proof is distinctly more difficult.

NOTES ON CHARTER XIV

§§ 14.1-6. The theory of quadratic fields is developed in detail in Bachmann’s
Grundlehren der neueren Zahlentheorie (Gdsehens Lehrbicherei, no. 3, ed. 2, 1931)
and Sommer's Vorlesungen iiber Zahlentheorie. There is a French translation of
Sommer’s book, with the title Introduction & la théorie des nombres algébrigues
(Paris, 1911); and a more elementary account of the theory, with many numerical
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examples, in Reid’s The elementa of the theory of algebraic numbers (New York,
1910).

§ 14.5. The equation :iz:’—my2 = 1 is usually called Pell's equation, but this
is the result of a misunderstanding. See Dickson, History, ii, ch. xii, especially
pp. 341, 351, 354. There is a very full account of the history of the equation in
Whitford’'s The Pell equation (New York:, 1912).

§ 14.7. The work of Heiloronn and Linfoot referred to will be found in the
Quarterly Journal of Math. (Oxford), 5 (1934), 150-60 and 293-301. Stark’s result
[Trans. Amer. Math. Soc. 122 (1966), 112-9] is an improvement of Lehmer’s

that m > —§,10°,
§ 14.8-9. Theorem 247 is essentially due to Chatland and Davenport [Canadian

Journal of Math. 2 (1950), 289-96]. Davenport [Proc. London Math. Soc. (2)
53 (1951), 65-82] showed that k(\/m) cannot be Euclidean if m > 214 — 16384,
which reduced the proof of Theorem 247 to the study of a finite number of values
of m. Chatland [Bulletin Amer. Math. Soc. 55 (1949), 948-53] gives a list of
references to previous results, including a mistaken announcement by another
that k(«/97) was Euclidean. Barnes and Swinnerton-Dyer [Acta Math. 87 (1952),
259-323] show that k{+97) is not, in fact, Euclidean.

Our proof of Theorem 248 is due to Oppenheim, Math. Annalen, 109 (1934),
349-52, and that of Theorem 249 to E. Berg, Fysiogr. Sillsk. Lund. Férh, 5 (1935),
1-6.

The problem of determining all m for which h(¥m) is simple is very much more
difficult and so far unsolved.
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15.1. The primes of k(i). We begin this chapter by determining
the primes of k(i) and a few other simple quadratic fields.
If 7 is a prime of k(vm), then
7|Nm = »7
and 7 |Nw=|. There are therefore positive rational integers divisible
by =. If z is the least such integer, z = 2,2, and the field is simple,

hen
the 7|2 2, —> w|2 OF 7|2y,

a contradiction unless z, or z, is 1. Hence z is a rational prime. Thus
= divides at least one rational prime p. If it divides two, say p and p’,

then ‘ , P
n|p. w|p = wpr—py=1

for appropriate x and y, a contradiction.

THEOREM 250. Any prime 7 of a simple field k(v'm) is a dyvisor of just
one positive rational prime.

The primes of a simple field are therefore to be determined by the
factorization, in the field, of rational primes.
We consider k(i) first. If

7= atbi|p, m=p,

then N#NX = p2
Either NX = 1, when ) is a unity and 7 an associate of p, or
(15.1.1) N# = a21b2 = p.

@) If p =2, then
p = 12412 = (144)(1—2) = 4(1—2)
The numbers 143, —1414, -I-i, 1— (which are associates) are
primes of k(i).
(i) If p = 4n+3, (15.1.1) is impossible, since a square is congruent
to 0 or 1 (mod4). Hence the primes 4n--3 are primes of k(i).

(i) Ifp = dn1, then (:pl) 1,

by Theorem 82, and there is an x for which

Pla*+l,  P|(z+i){e—1).
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Ifp were a prime of k(i), it would divide 2+t or x-i, and this is false,
since the numbers .
xr ?
“42
p P
are not integers. Hence p is not a prime. It follows that p = #A, where
r = atbi, A = a-bi, and
Nr = a®=-b* = p.

In this case p can be expressed as a sum of two squares.

The prime divisors of p are
(151.2) m, im, —m, —im, A, 1A, —A, —1A,
and any of these numbers may be substituted for #. The eight varia-
tions correspond to the eight equations
(151.3) (£a)+(£b)* = (£b)2+(£a)? = p.
And if p = ¢?4d? then ¢+id |p, so that ¢++id is one of the numbers
(15.1.2). Hence, apart from these variations, the expression of p as a
sum of squares is unique.

Trecrem 251, A rattonal prime p = 4n+ 1 can be expressed as a sum
a®-4+b% of two squares.

Trecrem 252. The primes of k(i) are

(1) 1 + and its associates,

(2) the rational primes 4n-+3 and their associates,

(3) the factors a-+bi of the rational primes 4n- 1.

15.2. Fermat’s theorem in k(). As an illustration of the arith-
metic of k(i), we select the analogue of Fermat's theorem. We consider
only the analogue of Theorem 71 and not that of the more general
Fermat-Euler theorem. It may be worth repeating that y («—p8) and

o = B (mody)

mean, when we are working in the field k(9), that «—p8 = «y, where
k is an integer of the field.

We denote rational primes 4n-4 1 and 4n43 by p and g respectively,
and a prime of k(i) by 7. We confine our attention to primes of the

classes (2) and (3), i.e. primes whose norm is odd; thus 7 is a g or a
divisor of a p. We write

¢(7T) = N‘”'—'I,
$(m) = p—1 (z|p), @ = ¢—1 (77 =q)
Trecrem 2.53. If (o, m) = 1, then
a¥m = 1 (mod =).

so that
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Suppose that « = I4im. Then, when » p,? =i and
af = (I4+im)? = P4 (em)? = IP+imP (modp),
by Theorem 75; and so
of = l49m = g (modp),

by Theorem 70. The same congruence is true modw, and we may
remove the factor «,

When 7 = ¢, 1 = —¢ and

o? = (I4+im)? = 9—im? = —im = & (modq).
Similarly, af = g, so that
ol =a, of-! = 1 (modg).

The theorem can also be proved on lines corresponding to those of

§ 6.1. Suppose for example that 7 = a-+bs | p. The number
(a-+bi)(c+di) = ac—bd+i(ad+be)
is a multiple of 7 and, since (a, b) = 1, we canh choose ¢ and d so that
ad-}+bc = 1. Hence there is an s such that
7r|s+-.
Now consider the numbers
r=0,1,2,..> Np—1=a2-+b2—-1,
which are plainly incongruent (mod =). If x4y is any integer of Kk(i),
there is an r for which
x-sy = r (mod Nw);

and then x4yt = y(s+1i)+r = r (mod ).
Hence the r form a ‘complete system of residues’ (modn).

If « is prime to 4, then, as in rational arithmetic, the numbers or also
form a complete system of residues.t Hence

TI (er) = T1 7 (mod =),

and the theorem follows as in § 6.1.

The proof in the other case is similar, but the ‘complete system’ is
constructed differently.

15.3. The primes of k(p). The primes of k(p) are also factors of
rational primes, and there are again three cases.
(1) If p = 3, then
P = (1—p)(1—p%) = (1+p)(1—p)* = —p*1—p)®.
By Theorem 221, 1 —p is a prime.

1 Compare Theorem 58. The proof g essentially the same.
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(2) If p = 2 (mod 3) then it is impossible that N« = p, since
4N7 = (2a—b)>1 3b?
is congruent to 0 or 1 (mod3). Hence p is a prime in k(p).
(3) If p = 1 (Mmod3) then
=)
) =1,
p

by Theorem 96, and p «%-+3. It then follows as in § 15.1 that p is
divisible by a prime 7 = a+bp, and that
p= Nn= a?—ab-}b2

THEOREM 254. A rational prime 3n+1 is expressible in the form
a?—ab-+b2,

THEOREM 255. The primes of k(p) are

(1) l-p and its associates,

(@) the rational primes 3n+2 and their associates,

(3) the factors a--bp of the rational primes 3n+ 1.

15.4. The primes of k(~2) and k(v5). The discussion goes similarly
in other simple fields. In k(v2), for example, either p is prime or
(15.4.1) . Nz = a2—2b% = Lp.

Every square is congruent to O, 1, or 4 (mod 8), and (15.4.1) is impossible

when p is 823, When p is 8n--1, 2 is a quadratic residue of p by

Theorem 95, and we show as before that p is factorizable. Finally
2= (v2),

and v2 is prime.

TrHeorem 256. The primes of k(v2) are (1) ¥2, (2) the rational primes
8143, (3) the factors a+-b+~2 of rational primes 8n-+1 (and the associates
of these numbers).

We consider one more example because we require the results in

§ 15.5. The integers of k(v5) are the numbers a---bw, where a and b
are rational integers and

(15.4.2) w = 3 14-+5).
The norm of a+ bw is at+ab—b2.

The numbers

(15.4.3) 4wt (n = 0,1,2,.)

are unities, and we can prove as in § 14.5 that there are no more.
The determination of the primes depends upon the equation

Nnm = a?+4ab—b* = p,
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or (2a+b)2—5b% = 4p.
If p = 5r4-2, then (2a-4b)% = £3 (mod 5), which is impossible. Hence
these primes are primes in k(v5).

5

Ifp = 5n41, then (—) =1,
g

by Theorem 97. Hence p [ (x®—5) for some x, and we conclude as before
that p is factorizable. Finally

5= (v5)* = (2w—1)%
Trecrem 257.  The wunities of k(v5) are the numbers (15.4.3). The

primes are (1) «5, (2) the rational primes 5zt 2, (3) the factors a-bw Of
rational primes 5n+ 1 (and the associates of these numbers).

We shall also need the analogue of Fermat's theorem.

Trecrem 258.  If p and g are the rational primes 5n41and 5n-42
respectively; ¢(m) = |N7| =1, so that
$(m) = p—1 (7[p), ¢(m) = ¢~1 (7=aq)
and (a, 7} = 1; then

(15.4.4) o™ =1 (mod =),
(15.4.5) aP-1 = 1 (modn),
(15.4.6) attl = Na (modq).
Further, if = p, # is the conjugate of m, (x,7) = 1 and («, #) = 1, then
(15.4.7) oP-1 = 1 (modp).
First, if 20 = c¢-dw5,
then 2P = (2a)? = (¢c+dVB)? = ¢?+dP5@-DV5 (modp).
But 5Hp-1) = (]_5)) = 1 (mod p),
¢? =cand d? = d. Hence
(15.4.8) 2a? = ¢+dvV5 = 2« (Modp),
and a fortiori
(15.4.9) 2«7 = 2a (mod ).

Since (2, =) = 1 and (01, =) = 1, we may divide by 2«, and obtain
(15.4.5). If also (x,#) = 1, so that (a,p) = 1, then we may divide
(15.4.8) by 24, and obtain (15.4.7).

Similarly, if q > 2,

(15.4.10) 207 = ¢c—dW5 = 23, of = g (modq),
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(15.4.11) af*l = g5 = N« (modg).
This proves (15.4.6). Also (15.4.10) involves
a?’ = a? = a (modg),
(15.4.12) a?’-1 =1 (modgq).
Finally (15.4.5) and (15.4.12) together contain (15.4.4).

The proof fails if ¢ = 2, but (15.4.4) and (15.4.6) are still true. If
® = e +fw then one of e and f is odd, and therefore Na =e?+4-¢f —f tis
odd. Also, to modulus 2,

o = eflw? = et fo? = etflotl) = et+f(l—w) = etfo = &
and o =ax =Na =1.

We note in passing that gur results give incidentally another proof of Theorem
180.

The Fibonacci number is

wh—oh wh—a"
Uy = ———— =

w—ad N5
where @ is the number (15.42) and @ = — l/w I8 its conjugate.
If n = p, then
w?™l = 1 (modp), @?! = 1 (modp),

Up_1 V8 = P 1—gP1 = 0 (modp),
and therefore %, ; = 0 (modp). If n = g, then
w1l 3 New, @ = Nw (mod q),
Ugy N5 = 0 (modaq)
and wug,, == 0 (modq).

15.5. Lucas’s test for the primality of the Mersenne number
M,,.5. We are now in a position to prove a remarkable theorem which
is due, in substance at any rate, to Lucas, and which contains a neces-
sary and sufficient condition for the primality of M, 3 Many ‘necessary
and sufficient conditions’ contain no more than a transformation of a
problem, but this one gives a practical test which can be applied to
otherwise inaccessible examples.

We define the sequence

715 Tgs 350 = 3, 7, 47,..,
by Tm = w2m+d_)2m,
where w is the number (15.4.2) and & = —1/w. Then

Tmpr = 15—2.
In the notation of § 10.14, T = VUgm.
No two r,, have a common factor, since (i) they are all odd, and
(i) tm =0 >r, =2 —>1=2 (¥>mtl),
to any odd prime modulus.
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THeorem 259. If p 48 a prime 4n-+3, and
M=M,=2—1
18 the corresponding Mersenne number, then M is prime if
(15.51) Tp-y = 0 (mod M),
and otherwise composite.
(1) Suppose M prime. Since
M=8.16—1 = 8—1 = 2 (mod 5),
we may take a = @, = M in (15.4.6). Hence
w2p = wM+1 = Nw =-1 (modM),
Tp1 = @ (¥4 1) =0 (mod M),
which is (155.1).
(2) Suppose (15.5.1) true. Then
w¥+ 1= w?*r, ;=0 (mod M),
(15.52) w¥ = -1 (mod M),
(15.5.3) w?™ =1 (mod M).
The same congruences are true, a fortiori, to any modulus r which
divides M.
Suppose that M - pi1pe.919s...
is the expression of M as a product of rational primes, p, being a prime
5n4-1 (so that p; is the product of two conjugate primes of the field)
and ¢; a prime 5n+2. Since M == 2 (mod 5), there is at least one g;.
The congruence w® =1 (modr),
or P(x), is true, after (15.5.8), when x = 2P+, and the smallest positive
solution is, by Theorem 69, a divisor of 27+l These divisors, apart
from 22+, are 27, 27-1, . and P(z) is false for all of them, by (15.5.2).
Hence 274! js the smallest solution, and every solution is a multiple of
this one.
But wP~l =1 (mod p,),
W) = (Nw)® =1 (modg;),
by (15.4.7) and (15.4.6). Hence p,—1 and 2(g,+1) are multiples of
2r+1 and p; = 2p+1hi_‘*_1’
¢4 = 2°k;—1,
for some %, and k;. The first hypothesis is'impossible because the right-
hand side is greater than M;and the second is impossible unless

kj = 1, gj _ M.
Hence M is prime.
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The test in Theorem 259 apphes only when p = 3 (mod 4). The
sequence 4, 14, 194,...
(constructed by the same rule) gives a test (verbally identical) for anyp.
In this case the relevant field is £(v3). We have selected the test in
Theorem 259 because the proof is slightly simpler.

To take a trivial example, suppose p = 7, M, = 127. The numbers
r,, of Theorem 259, reduced (mod M), are

3, 7, 47, 2207 = 48, 2302 = 16, 254 = 0,

and 127 is prime. Ifp = 127, for example, we must square 125 residues,
which may contain as many as 39 digits (in the decimal scale). Such
computations were, until recently, formidable, but quite practicable,
and it was in this way that Lucas showed M,,, to be prime. The construc-
tion of electronic digital computers has enabled the tests to be applied
to M, with larger p. These computers usually work in the binary scale
in which reduction to modulus 2% -- 1 is particularly simple. But their
great advantage is, of course, their speed. Thus M,, was tested in about
a minute by SWAC and M, in about an hour. Each minute of this
machine’s time is equivalcnt to more than a year's work for someone
using a desk calculator.

15.6. General remarks on the arithmetic of quadratic fields.
The construction of an arithmetic in a field which is not simple, like
k{J( -5)) or k(~10), demands new ideas which (though they are not
particularly difficult) we cannot develop systematically here. We add
only some miscellaneous remarks which may be useful to a reader who
wishes to study the subject more seriously.

We state below three properties, A, B, and C, common to the ‘simple’
fields which we have examined. These properties are all consequences
of the Euclidean algorithm, when such an algorithm exists, and it was
thus that we proved them in these fields. They are, however, true in
any simple field, whether the field is Euclidean or not. We shall not
prove so much as this; but a little consideration of the logical relations
between them will be instructive.

A. Ifx and B are integers of the field, then there ¢s an integer 8 with
the properties

(A1) dla, 8B,
and
(A ii) 8, lo. 8,8 — 8,5.

Thus 8 is the highest, or ‘most comprehensive’, common divisor (x, f)
of o and B, as we defined it, in k(¢), in § 12.8.
5561 Q
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B. If « and B are integers of the jield, then there is an integer § with
the properties

(Bi) 8ley, OB
and (B ii) & is a limear combination of ¢ and B; there are integers A and u
such that Aat-pf = 3.

It is obvious that B implies A; (B i) is the same as (A i), and a 8 with
the properties (B i) and (B ii) has the properties (A i) and (A ii). The
converse, though true in the quadratic fields in which we are interested
now, is less obvious, and depends upon the special properties of these
fields.

There are ‘fields’ in which ‘integers’ possess a highest common divisor in sense
A but not in sense B. Thus the aggregate of all rational functions
Pz,y)

Qlz,y)

of two independent variables, with rational coefficients, is a field in the sense
explained at the end of § 14.1. We may call the polynomials P(z,y) of the field
the ‘integers’, regarding two polynomials as the same when they differ only by
a constant factor, Two polynomials have a greatest common divisor in sense A;

thus x and y have the greatest common divisor 1. But there are no polynomials
P(z, y) and @(z, y) such that

zP(x,y)+yQ(x,y) = 1.
C. Factorization in the jield is unique the jield is simple.
It is plain that B implies C; for (B i) and (B ii) imply

3y | oy, 8y By,  Aay+uBy = 8y,

R(x, y) =

and so
(156.1) (ay, By) = dy;
and from this C follows as in § 12.8.

That A implies C is not quite so obvious, but may be proved as
follows. It is enough to deduce (15.6.1) from A. Let

(0‘71187) = A
Then 3|a.8|B — dy|ay . dy|By,
and so, by (A ii), 3y | A.
Hence A = 8vyp,
say. But A oy, A |By and so
opla,  3plf;

and hence, again by (A ii), 3p 3.
Hence p is a unity, and A = 8y.

On the other hand, it is obvious that C implies A; for 8 is the product
of all prime factors common to « and 8. That C implies B is again less
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immediate, and depends, like the inference from A to B, on the special
properties of the fields in question.?

15.7. Ideals in a quadratic field. There is another property
common to all simple quadratic fields. To fix our ideas, we consider
the field k(z), whose basis (§ 14.3) is [1,1].

A lattice A is} the aggregate of all points||

ma-+nB,
a and B being the points P and Q of § 35 and m and n running through
the rational integers. We say that [«, 8] is a basis of A, and write

A=, B];
a lattice will, of course, have many different bases. The lattice is a
modulus in the sense of § 2.9, and has the property

(15.7.1) pEA.ceEA > mptnoceA

for any rational integral m and n.

Among lattices there is a sub-class of peculiar importance. Suppose
that A has, in addition to (15.7.1), the property
(15.7.2) yeA = iyeA.
Then plainly my € A and niy € A, and so

yeA = pyeA

for every integer p of k(i); all multiples of points of A by integers of k(z)
are also points of A. Such a lattice is called an ideal. If A is an ideal,
and p and ¢ belong to A, then pp-vo belongs to A:
(15.7.3) peEA.oceA = pptroeA
for all integral p and v. This property includes, but states much more
than, (15.7.1).

Suppose now that A is an ideal with basis [«, 8], and that

(OL,B) = 3. R
Then every point of A is a multiple of 8. Also, since 6 is a linear com-
bination of ¢ and B, 5 and all its multiples are points of A. Thus A is
the clags of all multiples of §; and it is plain that, conversely, the class
of multiples of any 8 is an ideal A. Any ideal is the class of multiples of
an integer of the field, and any such class is an ideal.

t In faet both inferences depend on just those arguments which are required in the
elements Of the theory of ideels in a quadretic field.

1 See § 3.5. There, however, wé reserved the symbol A for the principal lattice.

|| We do not distinguish between a point and the number which is its affix in the
Argand diagram.
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If A is the class of multiples of p, we write

A = {p)
In particular the fundamental iattice, formed by all the integers of the
field, is {1}.
The properties of an integer p may be restated as properties of the
ideal {p}. Thus ¢ p means that {p} is a part of {c}. We can then say
that ‘{p} is divisible by {¢}’, and write

, , {o} 1 {p}.
Or again we can write
{G} lp; p = 0 (mod{s}),

these assertions meaning that the number p belongs to the ideal {c}.
In this way we can restate the whole of the arithmetic of the field in
terms of ideals, though, in k(i), we gain nothing substantial by such a
restatement. An ideal being always the class of multiples of an integer,
the new arithmetic is merely a verbal translation of the old one.

We can, however, define ideals in any quadratic field. We wish to
use the geometrical imagery -of the complex plane, and we shall there-
fore consider only complex fields.

Suppose that k(vm) is a complex field with basis [1,w].f We may
define a lattice as we defined it above in k(i), and an ideal as a lattice
which has the property
(15.7.4) vyeEA - wycA
analogous to (15.7.2). As in Kk(i), such a lattice has also the property
(15.7.3), and this property might be used as an alternative definition
of an ideal.

Since two numbers o and 8 have not necessarily a ‘greatest common
divisor’ we can no longer prove that an ideal r has necessarily the form
{p}; any {p} is an ideal, but the converse is not generally true. But the
definitions above, which were logically independent of this reduction,
are still available; we can define

s|r
as meaning that every number of r belongs to s, and
p = 0 (mods)
as meaning that p belongs to s. We can thus define words like divisible,
divsor, and prime with reference to ideals, and have the foundations
for an arithmetic which is at any rate as extensive as the ordinary arith-
metic of simple fields, and may perhaps be useful where such ordinary
t w= vmwhen m £ 1 (mod 4).



15.7 QUADRATIC FIELDS 229

arithmetic fails. That this hope is justified, and that the notion of an
ideal leads to a complete re-establishment of arithmetic in any field, is
shown in systematic treatises on the theory of algebraic numbers. The
reconstruction is as effective in real as. in complex fields, though not all
of our geometrical language is then appropriate.

V-5-1 542)

-5+

Fic. 8

An ideal of the special type {p} is called a principal ideal; and the
fourth characteristic property of simple quadratic fields, to which we
referred at the beginning of this section, is

D. Every ideal of a simple field s a principal ideal.

This property may also be stated, when the field is complex, in a
simple geometrical form. In k(i) an ideal, that is to say a lattice with
the property (15.7.2), is square; for it is of the form {p}, and may be
regarded as the figure of lines based on the origin and the points p
and ip. More generally

E. If m < 0 and k(~¥m) is simple, then every ideal of k(vm) is a lattice
similar in shape to the lattice formed by all the integers of the field.
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It is instructive to verify that this is not true in k{J( -5)). The lattice
ma+nf = m.34n{—1+4,(—5)}
is an ideal, for w = 4/( -5) and
wa = a-+38, wf = —2a—p.
But, as is shown by Fig. 8 (and may, of course, be verified analytically),
the lattice is not similar to the lattice of all integers of the field.

15.8. Other fields. We conclude this chapter with a few remarks
about some non-quadratic fields of particularly interesting types. We
leave the verification of most of our assertions to the reader.

(i) The field k(¥2+1). The number

# = V244
satisfies HM—29%4-9 = O,

and the number defines a field which we denote by k(v2-+1). The
numbers of the field are

(15.8.1) ¢ = rdsi+ivV2+uv2,
where r, s, ¢, u are rational. The integers of the field are
(15.8.2) £ = atbifeV2+dine,

where a and b are integers and ¢ and d are either both integers or both
halves of odd integers.

The conjugates of ¢ are the numbers £,, &,, £, formed by changing the
sign of either or both of ¢ and ~2 in (15.8.1) or (15.8.2), and the norm
N¢ of ¢ is defined b

for s Yo NE= bt

Divisibility, and so forth, are defined as in the fields already considered.
There is a Euclidean algorithm, and factorization is unique.t
(ii) The field k(v2+4+3). The number

P = V2443,
satisfies the equation #4—-10824-1 = 0.
The numbers of the field are’
€ = r4-svV24+tV3+uve,
and the integers are the numbers
£ = atbv2-++eN3-dve,
where a and c are integers and b and 4 are either both integers or both

t Theorem 215 stands in the field as stated in § 12.8. The proof demanda some
calculation.



15.81 QUADRATIC FIELDS 231

halves of odd integers. There is again a Euclidean algorithm, and
factorization is unique.

These fields are simple examples of ‘biquaclratic’ fields.

(iii) The field k(et™). The number § = eimi satisfies the equation

$51 \
= M+ P42 4541 =0,

The field is, after k(i) and k(p), the simplest ‘cyclotomic’ field.}
The numbers of the field are

£ = r4-sd-+1924uds,
and the integers are the numbers in which 7, s, +, 4 are integral. The

conjugates of ¢ are the numbers ¢, &,, €, obtainecl by changing 4 into
92, 93, 94, and its norm is
N§ = 5515253-

There is a Euclidean algorithm, and factorization is unique.

The number of unities in k(i) and k(p) is finit?. In k(et7i) the number
is infinite. Thus (149) (9492499494
and §4-9293 494 = — 1, so that 148 and all its powers are unities.

It is plainly this field which we must consider if we wish to prove
‘Fermat’s last theorem’, when n = 5, by the method of § 13.4. The
proof follows the same lines, but there are various complications of
detail.

The field defined by a primitive nth root of unity is simple, in the
sense of § 14.7, when}

n =3, 4,5, 8.

NOTES ON CHAPTER XV

§ 15.5. Lucas stated two tests for the primality of Mp, but his statements of
his theorems vary, and he never published any complete proof of either. The
argument in the text is due to Western, Journal London Math. Soc. 7 (1932),
130-7. The second theorem, not proved in the text, is that referred to in the
penultimate paragraph of the section. Western proves this theorem by using the
field k(v3). Other proofs, independent of the theory of algebraic numbers, have
been given by D. H. Lehmer, Annals of Math. (2) 31 (1930), 419-48, and Journal
London Math. Soc. 10 (1935), 162-5.

Professor Newman has drawn our attention to the following result, which can
be proved by a simple extension of the argument of this section.

t The field k(§#), with 6 a primitive nth root of unity, is called eyclotomic because §
and its powers are the complex coordinates of the vertices of a regular n-agon inscribed
in the unit circle.

O LIS LU %—f’s a number of k(~v24-¢).
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Let h < 2™ be odd, M = 2"h— 1 = 42 (mod 5) and
R, = o™+&%, R; = R} ,—2 (5 > 2).
Then a necessary and sufficient condition for M to be prime 4s that
Rm-1 = 0 (mod M).

This result was stated by Lucas [Amer. Journal of Math. 1 (1878), 310], who
gives a similar (but apparently erroneous) test for numbers of the form
N = h2™+ 1, The primality of the latter can, however, be determined by the
test of Theorem 102, which also requires about m squarings and reductions
(mod N). The two tests would provide a practicable means of seeking large
prime pairs (p,p+2).

§§ 15.6-7. These sections have been much improved as a result of criticisms
from Mr. Ingham, who read an carlier version. The remark gbout polynomials
in § 15.6 is due to Bochner, Journal London Math. Soc. 9 (1934), 4.

§ 15.8. There is a proof that k(et™) is Euclidean in Landau, Vorlesungen, iii.
228-31.



XV1
THE ARITHMETICAL FUNCTIONS ¢(n), u(n), d(n), a(n), r(n)

16.1. The function ¢(n). In this and the next two chapters we
shall study the properties of certain ‘arithmetical functions’ of n, that
is to say functions f(n) of the positive integer n defined in a manner
which expresses some arithmetical property of n.

The function ¢(n) was defined in § 5.5, for n > 1, as the number of
positive integers less than and prime to n. We proved (Theorem 62)
that

N 1
(16.1.1) d(n) =n (1—-).
This formula is also an immediate consequence of the general principle
expressed by the theorem which follows.

(};f"} . THEOREM 260. If there are N objects, of which N, have the property c,
S Ng have B,..., Nyg have both aand B ,..., Nyg, have o, 8, and ¥ s+ and so ony,
then the number of the objects which have nome of «, B, v,... is

_ (16.1.2) N—Na—-NB——{—Naﬁ-]——*NaB),—
Suppose that 0 is an object which has just k of the properties «, 8,... .

Then O contributes 1 to N. If k >> 1, 0 also contributes 1 to k of
N,, Ng,..., to 3k(k—1) of Nyg,..., t0

k(k- 1)(k-2)
1.2.3

of Nyg,»---» and so on. Hence, if k 2> 1, it contributes
k(k—1) k(k—1)(k—2)
12~ 123
to the sum (16.1.2). On the other hand, if k = 0, it contributes 1.
Hence (16.1.2) is the number of objects possessing none of the pro-
perties.
The number of integers not greaﬁer than n and divisible by a is

W
a
If a is prime to b, then the number of integers not greater than n, and

divisible by both a and b, is [n
65];
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and so on. Hence, taking (v, 8,y ,... to be divisibility by a, &, c ..., we
obtain

THeorem 261. The number of integers, less than or equal to n, and not
divisible by any one of a coprime set of integers a, b,..., is

(- > [§]+ S [a_’;]_

If we take a, b,... to be the different prime factors p, p’,... of n, we
obtain

(16.1.3)  (n) = n— Z§+ 57;7—... = n]_[(l—%),

pin
which is Theorem 62.

16.2. A further proof of Theorem 63. Consicler the set of n
rational fractions

(16.2.1) g (1

N

h < n).

We can express each of these fractions in ‘irreducible’ form in just one
way, that is, h a
nT@

where d | n and
(16.2.2) 1 <a<d, (a,d) = 1,
and a and d are uniquely cletermined by h and n. Conversely, every
fraction a/d, for which d n and (16.2.2) is satisfied, appears in the set
(16.2.1), though in general not in reduced form. Hence, for any func-
tion F(x), we have

3 a

(16.2.3) > F(ﬁ) => > F(&)’
1<hsn dln 1<a<d

(a,d)=1
Again, for a particular d, there are (by definition) just ¢(d) values of
a satisfying (16.2.2). Hence, if we put F(z) = 1 in (16.2.3), we have

no= Y Pd).

dln

16.3. The Mobius function. The Mobius function pu(n) is defined
as follows :

(i) p() = L;
(i) u(n) = 0 if n has a squarecl factor;

(iii) p(p,Po-..px) = (—1)* if all the primes p,, Pg,..., P; are different.
Thus w(2) = -1, u(4) =0, wu(6) = 1.
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THEOREM 262. u(n) is multiplicative.~

This follows immediately from the definition of u(n).
From (16.1.3) and the definition of x(n) we obtain

(16.3.1) ¢(n) = n ; ’%‘Q = Z g u(d) = Z d‘u.(;%) = 3 dudt
n [n =

am
Next, we prove
THEOREM  263:

pd)=1f=1), Tud=0@m>1)

daln din
THEOREM 264. If n > 1, and k is the number of different prime factors

of n, then %, |u(d)] = 2%

In fact, if k > 1 and n = p$...p#, we have
d}}%#(d) =1+ Z#(Z’i)‘?‘%#(?i?ﬂ%‘---

k k
02 %
while, if n = 1, p(n) = 1. This proves Theorem 263. The proof of
Theorem 264 is similar. There is an alternative proof of Theorem 263
depending on an important general theorem.

= |-k+ +..= (1—1) = 0,

THEOREM 265. If f(n)is a multiplicative function of n, then so is
gin)= > f(d).
dm

If (n,n')= 1, cl n, andd n’, then (d,d’)= 1 and ¢ = dd’ runs
through all divisors of nn’. Hence

glan’) = 3 f)= 3 f(dd)

¢lnn’ din,d’|n’

= 2/ @2 fd)=glrgn).

din din’
To deduce Theorem 263 we write f(n) = p(n), so that

gin) = 2 p(d)-
Then g(1) = 1, and g(p™ = 1-+ulp) = 0
when m = 1. Hence, when n = pP...p% > 1,
g(n) = 9(P{)g(P§)-- = 0.

+ See § 5.5.
t A sum extended over all pairs d, d’ for which dd’ = n.
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16.4. The Mobius inversion formula. In what follows we shall
make frequent use of a general ‘inversion’ formula first proved by
Mobius.

Trecrem  266.  If gn) = 3 f(d),
din
then — g(d) = (d)gl2).
s =3 W) > 3)
In fact
> wld(3) = 3 1) 370 = 3 pdifie) = 30 3 wld
amn din c}g cdln cln d‘cn

The inner sum here is 1 if n/c = 1, i.e. if c = n, and 0 otherwise, by
Theorem 263, so that the repeated sum reduces to f(n).
Theorem 266 has a converse expressed by

THECREM  267:

fn) = Z P«(g)g(d) = g(n) = %Lf(d).

dain

The proof is similar to that of Theorem 266. We have

sr0 = > 1(5) = > > w{Zee

an am
- a%n(%)g(c) =>4t % (2o} = o

If we put g(n) = n in Theorem 267, and use (16.3.1), so that
f(n) = ¢(n), we obtain Theorem 63.

As an example of the use of Theorem 266, we give another proof of
Theorem 110.

We suppose that ¢ »— 1 and ¢ d, and that y(c) is the number of
roots of the congruence z¢ =-1 (modp) which belong to c¢. Then (since
the congruence has d roots in all)
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16.5. Further inversion formulae. There are other inversion
formulae involving u(n), of a rather different type.

Trecrem 268, If G(x) = [zﬂ: F(g)

n=

for all positive z,T then

ul x
F(x) = Z ,L(n)a(%).
For "
[x] x [x] {z/n] x x
y(n)G(ﬁ) — > um) > F(2) = F(z) pmt = Fa),
n=1 n=1 m=1 1<k<[x] nlk

by Theorem 263. There is a converse, viz.

THECREM  269:
{x]

[x]
x x
F = — ] F - .
0=> M(n)G(n) - 6w =>F
n=1 n=1
This may be proved similarly.
Two further inversion formulae are contained in

THecREM 270
ge) = 3 Jme) Zfi@) = 3 p(nlg(n).

The reader should have no difficulty in constructing a proof with
the help of Theorem 263; but some care is required about convergence.
A sufficient condition is that

> |f(mnz)| = g d(k)| f(kz)]

m,n

should be convergent. Here d(k) is the number of divisors of £.|

16.6. Evaluation of Ramanujan’s sum. Ramanujan’s sum c,(m)
was defined in § 5.6 by

k

(16.6.1) cp,(m) = e(in).

10 \

thyn)=1
We can now express c,(m) as a sum extended over the common divisors
of m and n.

THEREM  271: c,(m = ? p(ﬁ)d.
Ly d
dim,din

A
IN

t AN empty sum is as usual to be interpreted gg 0. Thus G(z) =0if 0 < r < 1
}1If mn = kthen n k,and k runs through the numbers 1, 2,..., [Z].
|| See § 16.7.



238 ARITHMETICAL TFUNCTIONS [Chap. XVI

If we write

(16.2.3) becomes g(n) = > f(d).
By Theorem 266, wc have the inverse formula

(16.6.2) fn) = Z p(g)g(d),
<

that is "
h " a
(16.6.3) F(—) _ ,L(_) F(_)
z n P d 1§Z§d d

We now take F(x) = e(mz). In this event,

f(n) = ¢,(m)

by (16.6.1), while g(n) = Z e(hm)
lshsn n

which is n or 0 according as n m or n}m. Hence (16.6.2) becomes

- 4P
"= 2 il

Another simple expression for c,(m) is given by
THeorem 272. If (n,m) = a and n = aN, then

p)B(n)

()
By Theorem 271,

am) = > du3) = > du¥oy = S Ly

dia cd=a cla

Now u(Ne¢) = u(V)ulc) or 0 according as (N, ¢) = 1 or not. Hence

o(m) = o) > ’@ - a,u(N)(l— E}ﬁ Zp;,_...),
(c,zc\k’()lzl

where these sums run over those different P which divide a but do not

divide N. Hence
1
Cn(m) = (l,u.(N) 1—71 (1 —“)-
pla,pf{N P

But, by Theorem 62,
$(n) _n 1_1):(1 T (1_1)
pln.pfN P

#N) N pmmm( ?
and Theorem 272 follows at once.

c,{m) =
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When m= 1, we have c¢,, (1) = u(n), that is
h
(16.6.4 oy = > e(ﬁ).

16.7. The functions d(n) and o,(n). The function d(n) is the
number of divisors of n, including 1 and n, while g,(r) is the sum of the
kth powers of the divisors of n. Thus

op(n) = Y dk, din) = X1,

dn din
and d(n) = a,(n). We write u(n) for o,(n), the sum of the divisors of n.

If n= p{pg..pi,

then the divisors of n are the numbers
P} ..o

where oLh<a, 0<b<ay ... 0Kb<a,.
There are (@, +1)(ag+1)...(a,41)
of these numbers. Hence

THEOREM  273: d(n) :fI (a;+1).

More generally, if k > 0,

[251 az ay |4 )
an)= 2 oo S pukplkphk =TT (L4-pl4-p¥F .. +pf).
b1=0b2=0 b=0 i=1
Hence :
(a+Dk__1
P
THEOREM274: ai(n) = ( X )
In particular, -
l ;,IH»l_l
THEOREM 275: u(n) = H (7@?)
i—

16.8. Perfect numbers. A perfect number is a number n such
that u(n) = 2n. In other words a number is perfect if it is the sum of
its divisors other than itself. Since 14+-2-+3 = 6, and

1+24+44+7414 = 28,
6 and 28 are perfect numbers.
The only general class of perfect num’bers known occurs in Euelid.

THEREM 276.  If 2"*'— 1 s prime, then 27(2"+1— 1) ds perfect.
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Write 2%*1—1 = p, N = 2%, Then, by Theorem 275,
a(N) = (2m+1—1)(p41) = 2l (2n+1_ 1) = 2N,
so that N is perfect.

Theorem 276 shows that to every Mersenne prime there corresponds
a perfect, number. On the other hand, if N = 27p is perfect, we have

o(N) = (2"1=1)(p-+1) = 2**1p
and so p o= 2011,
Hence there is a Mersenne prime corresponding to any perfect number
of the form 2»p. But we can prove more than this.

Treorem 277. Any even perfect number s a Euclid number, that ¢s to
say of the form 27(27+1—1), where 2711 g prime.

We can write any such number in the form N = 2%, where n > 0
and b is odd. By Theorem 275, u(n) is multiplicative, and therefore

a(N) = a(2")a(b) = (2"+'— 1)a(b).

Since N is perfect, o(N) = 2N = 2n+lp;
b 2ntl__1

and so . -T2
O'(b) on+1

The fraction on the right-hand sjde is in its lowest terms, and therefore
b = (2rt11)c, u(b) = 27+,
where ¢ is an integer.
If c > 1, b has at least the divisors
b, c 1,
so that ub) = bdc+ 1 = 20t 1 > 2rtle = u(b),
a contradiction. Hence ¢ = 1,
N = 2n(2n+1_1),
and o(2M1—1) = 2"+,
But, if 27411 is not prime, it has divisors other than itself and 1, and
0.(2n+1_1) > 2n+1'
Hence 27+1.—1 is prime, and the theorem is proved.
The Euclid numbers corresponding to the Mersenne primes are the
only perfect numbers known. It seems probable that there are no odd
perfect numbers, but this has not been proved. The most that is known

in this direction is that no odd perfect number can have less than six
different prime factors or be less than 1-4 x 1014,
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16.9. The function r(n). We define r(n) as the number of repre-
sentations of n in the form

n = A+ B,

where A and B are rational integers. We count representations as
distinct even when they differ only ‘trivially’, i.e. in respect of the sign
or order of A and B. Thus

0 = 02102 r(0) = 1;
1 = (412402 = 02+ (£1)3 riQ) = 4
5 = (224 (£1)? = (£1)24(£2)% r5) = 8.

We know already (§ 15.1) that r(n) = 8 when = is a prime 4m-+1;
the representation is unique apart from its eight trivial variations. On
the other hand, r(n) = 0 when n is of the form 4m- 3.

We define x(n), for n > 0, by

x(n)=0 (2 m), x(n) = (=1)"Y (2[n).
Thus y(n) assumes the values 1,0, — 1, 0, 1,...forn=1, 2, 3,.... Since
1’ —1)—3(n—1)—3(n'—1) = {n—1)(n'—1) = 0 (mod2)
when n and n’ are odd, x(n) satisfies
x(nn') = x(n)x(n')

for all nand n'. In particular y(n) is multiplicative in the sense of § 5.5.
It is plain that, if we write

(16.9.1) dn)= X x(d),
then
(16.9.2) 3(n) = dy(n)—dy(n),

where d,(n) and d,(n) are the numbers of divisors of n of the forms
4m-+ 1 and 4m- 3 respectively.

Suppose now that
(16.9.3) n =N = 2% = 22 T] p" [ ¢,

where p and ¢ are primes 4m--1and 4m--3 respectively. If there are
no factors ¢, so that [] ¢° is ‘empty’, then we define v as 1. Plainly

8(n) = S(N).
The divisors of N are the terms in the product
(16.9.4) IT (1 +p++p) TT (g4 4).

A divisor is 4m4 1 if it contains an even number of factors ¢, and 4m-+-3
5591 R
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in the contrary case. Hence S(N) is obtained by writing 1 for p and
-1 for g in (16.9.4); and

(16.9.5) sy =[Je+n]] (L@)

If any s is odd, i.e. if v is not a square, then
S(n) = S(N) = 0;

while S(n) = S(N) = ] (r+1) = d(p)
if v is a square.

Our object is to prove

THEOREM 278: If n = 1, then

r(n) = 46(n).

We have therefore to show that r(n) is 4d(p) when v is a square, and
zero otherwise.

16.10. Proof of the formula for r(n). We write (16.9.3) in the

form n = {(14+)(1—i)* TT {(@-+bi)a—bi) T ¢,
where a and b are positive and unequal and
p = a?+b2
This expression of p is unique (after § 15.1) except for the order of a
and b. The factors

1+i, a+bi, q
are primes of k(i).
I f n = A?2LB? = (A+Bi)(A-Bi),
then
A+Bi = (1 41)a(1—i)% H {(a+bi)y(a—bi)} TT ¢*,
A-Bi = iH(1—3)m(140)= TT {(a—bi)”(a+bi)’ﬂ} Hqﬂz,
where
t=o0 1, 2, or 3, Aty = a 1Ty =7, S8 =S

Plainly s, = s,, so that every s is even, and v is a square. Unless this
is so there is no representation.
We suppose then that

v=[l¢=T1I¢
is a square. There is no choice in the division of the factors g between
A+ Bi and A- Bi. There are
4(a+1) IT (r+1)
choices in the division of the other factors. But
I-i
142
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is a unity, so that a change in «; and «, produces no variation in A
and B beyond that produced by variation of {, We are thus left with
o TL 1) = 4d(p)
possibly effective choices, i.e. choices which may produce variation in

A and B.

The trivial variations in a representation n = A2 B? correspond
(i) to multiplication of A+ Bi by a unity and (ii) to exchange of A+ Bi
with its conjugate. Thus

1(A+Bv) = A4 Bi, 1(A+ Bi) = —B+4-Ai,

13 A+ Bi) -A-Bi, 13(A+ Bi) B-Ai,
and A- Bi, -B-Ai, -A+ Bi, B+A4: are the conjugates of these four
numbers. Any change in { varies the representation. Any change

in the r, and r, also varies the representation, and in a manner not
accounted for by any change in ¢; for

(14+a)a(1—i)= [T {(a+biys(@a—biy}
= 9 (1+0)%(1—5)® TT {(a+-biyi(@—bYys}
is impossible, after Theorem 215, unless r, = r} and r, = 7,.1 There

are therefore 4d(u) different sets of values of A and B, or of representa-
tions of n; and this proves Theorem 278.

NOTES ON CHAPTER XVI

§ 16.1. The argument follows Pélya and Szegé, ii. 119-20, 326-7.

§§ 16.3-5. The function p(n) occurs implicitly in the work of Euler as early as
1748, but Mobius, in 1832, was thé first to investigate its properties systematically.
See Landau, Handbuch, 567-87 and 901.

§ 16.6. Ramanujan, Collected papers, 180. Our method of proof of Theorem 271
was suggested by Professor van der Pol. Theorem 272 is due to Hélder, Prace
Mat. Fiz. 43 (1936), 13-23. See also Zuckermann, American Math. Monthly, 59
(1952), 230 and Anderson and Apostol, Duke Math. Journ, 20 (1953), 211-16.

§§ 16.7-8. There is a very full account of the history of the theorems of these
sections in Dickson, History, i, chs. i-ii. For the theorems referred to at the end
of § 16.8, see Kanold, Journ..f'ur Math. 186 (1944), 25-29 and Kuhnel, Math. Zeqt.
52 (1949), 202-1 1. We have to thank Mr. C. J. Morse for pointing out an error in
our earlier proof of Theorem 277.

§ 16.9. Theorem 278 was first proved by Jacobi by means of the theory of
elliptic funetions. It is, however, equivalent to gne stated by Gauss, D.A., § 182;
and there had been many incomplete proofs or statements published before. See
Dickson, History, ii, ch. vi, and Bachmann, Niedere Zahlentheorie, ii, ch. vii.

Change of r, into r, and ¢, into 7, (together with corresponding changes in ¢, a, «
2 1 ] 2
changes A + Bt into its conjugate.
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GENERATING FUNCTIONS OF ARITHMETICAL FUNCTIONS

17.1. The generation of arithmetical functions by means of
Dirichlet series. A Dirichlet series is a series of the form

0

17.1.2) F(s) = ot
n=1

The variable s may be real or complex, but here we shall be concerned

with real values only. F(s), the sum of the geries, is called the generating

Sfunction of o,

The theory of Dirichlet series, when studied seriously for its own
sake, involves many delicate questions of convergence. These are mostly
irrelevant here, since we are concerned primarily with the formal side
of the theory; and most of our results could be proved (as we explain
later in § 17.6) without the use of any theorem of analysis or even the
notion of the sum of an infinite series. There are however some theorems
which must be considered as theorems of analysis; and, even when this
is not so, the reader will probably find it easier to think of the series
which occur as sums in the ordinary analytical sense.

We shall use the four theorems which follow. These are special cases
of more general theorems which, when they occur in their proper places
in the general theory, can be proved better by different methods. We
confine ourselves here to what is essential for our immediate purpose.

(1) If X «,n* is absolutely convergent for a given s, then it is
absolutely convergent for all greater s. This is obvious because

o™ oy 7|
when n 2= 1 and s, > s,.

2 If Z a, n* is absolutely convergent for s > s;, then the equation

(17.1.1) may be differentiated term by term, so that

(17.1.2) F(s) = — Z “n_i;gl‘
for s > s, To prove this, suppose that
8y < 8p+8 = 8 <5 K S,
Then logn < K(8)n®, where K(S) depends only on §, and

x, logn i

ns

n

< K(9) T
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for all s of the interval (s,, s,). Since

2

is convergent, the series on the right of (17.1.2) is uniformly convergent
in (s,, 8,), and the differentiation is justifiable.

@ I Fig)= Saun2=0
for 8> g, then a,, = O for all %. To prove this, suppose that ,, is the
first non-zero coefficient. Then

= = —8 Uprr [MFH1N"? oo fm+2\78
= (Y
= am={14-G(s)},
say. If 8, < 8 < s, then

[t s e

Ap
n&ﬁ-is

m S\ om m
1 (m-1\-6- ]
and 166s)] < IEJ(‘m_) ms gl sk
which tends to 0 when 8 — co. Hence
1+ G(s)] > 4
for sufficiently large s; and (17.1.3) implies «,, = 0, a contradiction.
It follows that if >a,nt=3B,n?

for s > s, then o, = B, for all n. We refer to this theorem as the
‘uniqueness theorem’.

(4) Two absolutely convergent Dirichlet series may be multiplied in
a manner explained in § 17.4.

17.2. The zeta function. The simplest infinite Dirichlet series is

(17.2.1) Ls) = %
n=1

It is convergent for s > 1, and its sum {(s) is called the Riemann zeta
function. In particulart

w

(17.22) {2) = 2

n=1

1_11'2
nt = 6’

-[' {(2n) is a rational multiple of #»*" for all positive integra,l n, Thus {(4) = ialﬁ""
and generall

o gom) = T D o

T (2a) ’

where B, is Bernoulli’s number.
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If we differentiate (17.2.1) term by term with respect to s, we obtain

@0

Trecrem  279:  U'(s) = — Z logs" (s > 1).

n

The zeta function is fundamental in the theory of prime numbers.
Its importance depends on a remarkable identity discovered by Euler,
which expresses the function as a product extended over prime numbers

only.
THecrem 280. ifs > 1 then

1) =T ==
: b

Since p > 2, we have
1
1-—-]3‘3
for s > 1 (indeed for s > 0). If we take p = 2, 3,..., P, and multiply
the series together, the general term resulting is of the type
2-083-ass  P-aps — N-S,

(17.2.3) = 14potp2i..

where n=2a&3a . P (a, >0, a;20,.., ap > 0).

A number n will occur if and only if it has no prime factors greater
than P, and then, by Theorem 2, once only. Hence

the summation on the right-hand side extending gver numbers formed

from the primes up to P.
These numbers include all numbers up to P, so that

O < 3 n—s_ n——a 5 n—s'
nzl (%) <sz:—l
and the last sum tends to 0 when P — o0, Hence
i 8 =i 8 = |j 1
7% = lim 7% = lim S
n=1 P—w (%:) P—w ¢ Tl_p—s’

the result of Theorem 280.
Theorem 280 may be regarded as an analytical expression of the ,
fundamental theorem of arithmetic.

17.3. The behaviour of {(s) when s — 1. We shall require later
to know how {(s) and {’(s) behave when s tends to 1 through values
greater than 1.
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We can write {(s) in the form
nt1

(17.3.1) . f o9 d + z J (n-s—z-*) dx.

1

4 1
Here J'x—sdxzs_l,

since s > 1. Also
x
$
0 < nd—g* :Jst—s-l at < o
ifn < X < n+1, and so
n+l
0 < ‘. (n-8—x-%) dg <
n
and the last term in (17.3.1) is positive and numerically less than
s > m2 Hence

n?’

TrecRemM  281: {(s) = P + 0(1)
Also log £(s) = logsil log{140(s—1)},
and so

THECREM  282: log {(s) = log—q-l—l-;-O(s-—l).

We may also argue with
© o Ml

— z n-3logn —f z-tlogx dx -+ 2 J n-¢logn—z-*logx) dx
1

much as with {(s), and deduce

THEOREM 283! {'(s) = —G-_—IW-}-O(I).

. 1
I n particular . L(s) ~ 1
This may also be proved by observing that, if § > 1,
(1= 21-90(8) = 1= 2~ 3h = 22~ 4~ 67+
— 1—3_2—&_{_ J-s—
and that the last series converges to log 2 for ¢ = 1. Hence?}

(S--D{(s) = 1—21“’)C(3)

T We assume here that hm z

whenever the series on the right is convergent, a theorem not included in those of § 17.1.
We do not prove this theorem because we require it only for an alternative proof.
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17.4. Multiplication of Dirichlet series. Suppose that we are
given a finite set of Dirichlet series

(17.4.1) Sa,ns YB.nE Y y,nE
and that we multiply them together in the sense of forming all possible
products with one factor selected from each series. The general term

resulting is _ _ _ _ -
g A, wBv Sy, w s = oy By Y 75,

where n = uvw... . If now we add together all terms for which n has
a given value, we obtain a single term x, n—¢, where

(17.4.2) Xn = 2 By Ve
utw...=n

The series ¥ x, n*, with yx, defined by (17.4.2), is called the formal
product of the series (17.4.1).

The simplest case is that in which there are only two series (17.4.1),
> x,utand Y B, v-s If (changing our notation a little) we denote
their formal product by 3 y,n=5, then

(17.43) vn =2 2Bz Zabua = 2 abo

uv="n
a sum of a type which occurred frequently in Ch. XVI. And if the
two given series are absolutely convergent, and their sums are F(s) and

G(s), then
F(s)G(s) = ; a,ws Ev: B, vt = qu ay, Byluv)—*

]

= % n—s Z auBu ES 2 Ya n—3’

wv=n
since we may multiply two absolutely convergent series and arrange
the terms of the product in any order that we please.

THEOREM 284. If the geries

F(s) = Y a,u*, G(s) =2 B, Vv-8
are absolutely convergent, then
F(s)G(s) = 3 yan~,

where vy, is defined by (17.4.3).

Conversely, if Hs) = 3 8,772 = F(s)G(s)
then it follows from the uniqueness theorem of § 17.1 that &, = y,,.

Our definition of the formal product may be extended, with proper
precautions, to an infinite set of series. It is convenient to suppose that

o =pB=y=...=1

Then the term oy B Vape--
in (17.4.2) contains only a finite number of factors which are not 1,
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and we may define y, by (17.4.2) whenever the series is absolutely

convergent.?
The most important case is that in which f(1) = 1, f(n) is multi-

plicative, and the series (17.4.1) are
(17.44) 1+-fplp= /") 4 " )p ..
for p = 2, 3, 5,...; so that, for example, a, is f(2¢) when u = 22 and 0
otherwise. Then, after Theorem 2, every n occurs just once as a product
uv'w... with a non-zero coefficient, and
Xn = f(pp)f(p2)... = f(n)

whenn= phipd . ... It will be observed that the series (17.4.2) reduces
to asingle term, so that no question of convergence arises.

Hence

Trecrem 285. If f(1) == 1 and f(n) ts multiplicative, then

2 fmn-e

18 the formal product of the series (17.4.4).

In particular, 3 n-8 is the formal product of the series

14potp-24....

Theorem 280 says in some ways more than this, namely that {(s),

the sum of the series 3 n-* when ¢ > 1, is equal to the product of the

sums of the series 1 +p~2++p-2.... The proof can be generalized to cover
the more general case considered here.

Treorem 286.  If f(n) satisfies the conditions of Theorem 285, and
(17.4.5) S ifm)n®
48 convergent, then
Fs)= 3 flam= = T (1 +f@p~+f(@)p~>+...}.
»

We write Fy(s) = 1+f(p)p*+f(pHp~+...;
the absolute convergence of the series is a corollary of the convergence
of (17.4.5), Hence, arguing as in § 17.2, and using the multiplicative
property off(n), we obtain
I1 Fp(s) = 3 fm)n=.
ps<P (P)
> fm—— 3 fryn=s| < 3 |f(n)n—2 -0,
n=1 (P) P+1

the result follows as in § 17.2.

1 We must assume absolute convergence because we have not specified the order in
which the terms are to be taken.

Since




250 GENERATI NG FUNCTI ONS OF [Chap. XVI |

17.5. The generating functions of some special arithmetical
functions. The generating functions of most of the arithmetical func-
tions which we have considered are simple combinations of zeta functions.
In this section we work out some of the most important examples.

. 1 _ Spn)
THEOREM 287: Ks)_,g; - (s > 1)

This follows at once from Theorems 280, 262, and 286, since
1 @
7 = T (=p) = TL (+ulplp*+u(pp+.3 = 3 w(jn-
. {(s—1) > f(n)
T 288: S N— L4
HECREM 0 ,Zl pr (s > 2).

By Theorem 287, Theorem 284, and (16.3.1)

{s—1)_ oncpn <1 n\ _ < ¢(n)
Ls)y ne n z;tadm dﬂ(‘—i—) B z ne

n=1 n=1 n=1 n=1
THEOREM 289: {¥(s) = z d:l?) (s > 1)
. . < oan)
TreReM 2900 {(8)¢(s—1) = ;17 (s > 2).

These are special cases of the theorem
THECREM 291

n=1 ne
In fact
_—mlwnk—wl k_wok(")
U(s)(s—k) = Z ’?’Zl_‘“ = Z_?%d = 21 -
by Theorem 284. - " "
9]
THEGREM 292 95-2(m) = ealm) (s > 1)
mel(s) L onf
By Theorem 271,
dim,dn dim,dd’'=n
and so © w ,
zcn(m) _ Z 2 pd')d
n=1 e n=1 dimdd’ =n d'*d?
_Sdihs 1 1S
“ 4 & a1 [(s) L a1t
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Finally YAl = ml-8 > ds-1 = ml-Sg,_ (m).
dim dim
In particular
. ¢, (m) 6 a(m) 5W"9\2/
THeEOREM 293! ZT —
n ks

n m RWW

17.6. The analytical interpretation of the Mobius formula.

Suppose that
g(n) = d%f (d),

and that F(s) and G(s) are the generating functions of f(n) and g(n).
Then, if the series are absolutely convergent, we have

n=1 n=1 n=1
where hin) = iy
() = > gt@mg
din
It then follows from the uniqueness theorem of § 17.1 (3) that
h(n)== f(n),

which is the inversion formula of Mobius (Theorem 266). This formula
then appears as an arithmetical expression of the equivalence of the

equations
G(s)

{s)

We cannot regard this argument, as it stands, as a proof of the
Mobius formula, since it depends upon the convergence of the series
for F(s). This hypothesis involves a limitation on the order of magni-
tude off(n), and it is obvious that such limitations are irrelevant. The
‘real’ proof of the Mobius formula is that given in § 16.4.

G(s) = L(s)F(s), F(s) =

We may, however, take this opportunity of expanding some remarks which
we made in § 17.1. We could construct a formal theory of Dirichlet series in
which ‘analysis’ played no part. This theory would include all identities of the
‘Mobius’ type, but the notions of the sum of an infinite series, or the value of an
infinite produet, would never occur. We shall not attempt to construct such a
theory in detail, but it is interesting to consider how it would begin.

We denote the formal series z a,n"% by A, and write

A= Ya,ns
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In particular we write
1=1.1"40.27%4-0.33%+ ..,
Z=1.1"41.27341.3754 .. ..
M= p(D1+pu(2)2734+-u(3)375+ ... .
By A =B
we mean that a, = b, for all values of p,
The equation AxB=0C

means that ¢ is the formal product of A and B, in the sense of § 17.4. The
definition may be extended, as in § 17.4, to the product of any finite number of
series, or, with proper precautions, of an infinity. It is plain from the definition
that

AXB=EBxAd, AXBXC =(AXB)XC = AX(BXC0),

and so on, and that AxI=A.
The equation AxZ =B
means that b, = Y a,
din
Let us suppose that there is a geries L such that
ZxL =1
Then A= AxI = AX(ZxL)= (AXZ)XxL = BXL,
ie an = Zbdln/d'
dln
The Mobius formula asserts that I, = u(n), or that L = M, or that
(17.6.1) ZxM = 1,
and this means that > pld)
dln

is 1 when n =1 and 0 whenn > 1 (Theorem 263).
We may prove this as in § 16.3, or we may continue as follows. We write

P, = 1-p=, Q, = Hp7i+p 4.
where p is a prime (so that Pp, for example, is the geries A in which a, = 1,
a, = — 1, and the remaining coefficients are 0); and calculate the coefficient of
n~% in the formal product of P, and €,. This coefficientis 1 if n =1, 1-1 =0
if n is a positive power of p, and 0 in all other cases; so that
Fox@Q, = 1
for every p.
The series P, @,, and I are of the special type considered in § 17.4; and

Z=1__[Qp: M - ]_-IPp9
ZXM= HQpXHPps

while TT1(Q,xP,)=TII=1
But the coefficient of »=3 in

(@ X @3 X QX )X (PyX Pyx Pyx...)
(a product of two series of the general type) is the game as in
QX ByX QX PyX Qs X PyX ...
orin (Qex P)x(Q3x F3) x(Qs X Py)x . ..



17.6 (294)] ARITHMETICAL FUNCTIONS 253

(which are each products of an infinity of series of the special type); in each
case the y, of § 17.4 contains only a finite number of terms. Hence
ZXM = H QpXHPp = H (QpXPp) = n 1=1
It is plain that this proof of (17.6.1) is, at bottom, merely a translation into
a different language of that of § 16.3; and that, in a simple case like this, we
gain nothing by the translation. More complicated formulae become much easier
to grasp and prove when stated in the language of infinite series and products,
and it is important to realize that we can use it without analytical assumptions.
In what follows, however, we continue to use the language of ordinary analysis.

17.7. The function A(n). The function A(n), which is particularly
important in the analytical theory of primes, is defined by
A(n) = logp (n = p7),
A(n) = 0 (n # p™),

i.e. as being logp when # is a prime p or one of its powers, and 0
otherwise.

From Theorem 280, we have
Differentiating with respect to s, and observmg that

log {(s) z log(

d 1 logp
21 = —
ds & 1—p-s pr—1’
we obtain
I'(s) logp
17.7.1 - 20— .
e s) ;p"—l

The differentiation is legitimate because the derived series is uniformly
convergent for s > 148 > 1.t
We may write (17.7.1) in the forrn

C —-ms
G = Floer 32

and the double geries 3 > p ™ logp is absolutely convergent when
s > 1. Hence it may be written as

> pmlogp =3 Aln)n,
»p.m
by the definition of A(n).

. {'(s) R
Treorem 294 —m - z A(n)n (s > .
} , = logn
Since —'(s) = n; Rt

t The nth prime Pn iS greater than n, and the series may be compared with X n~% log n,
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by Theorem 279, it follows that

A(n) 1 logn <o pu(n) < logn
Zns Z(—s—)zns_—ZnSZns’
n=1 n=1 n=1 n=1
= logn 2 A(m)  ~ 1 <= A(n)
and it - B = il
From these equations, and the uniqueness theorem of § 17.1, we deducef
n
T 295: = — .
HECREM A(n) ;np,(d)logd
THEGREM  296: logn = > A(d)
dln

We may also prove these theorems directly. If n = T 9%, then
2> A@) = 3 logp.
dln

pxin
The summation extends over all values of p, and all positive values of
a for which p* n, so that logp occurs a times. Hence

Zl logp = 3 alogp = log ] »* = logn.
4n
This proves Theorem 296, and Theorem 295 follows by Theorem 266.

. df1 L'(s) 1 '(s)
Again, LA S . 55 I 5
s ds{as)} r(s) cw{ as)}
2 logn < wn) < A(n)
so that Z ,Zl por ,Zl p
Hence, as before, we deduce
THECREM  297: —p{n)logn = M 7—2 A(d).
>+
- L6 _ gL
Similarly ~ ) = C(S)ds{c(s)},
and from this (or from Theorems 297 and 267) we deduce
THEGREM  298: An) = = > up(d)logd.
dln

17.8. Further examples of generating functions. We add a few
examples of a more miscellaneous character. We define d,(n) as the
number of ways of expressing n as the product of k positive factors
(of which any number may be unity), expressions in which only the

+ Compare § 17.6.
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order of the factors is different being regarded as distinct. In particular,
d,(n) = d(n). Then

d.(n) .
THEGREM  299: {e(s) = an(s_) (s > 1).
Theorem 289 is a particular case of this theorem.
. {(2s) 1—p-8\ 1
Again 6 -[;[ 1I—p& “l:[ 1+1_’—“
1 1
T

»

-1

< h(n)

'
n=1 w

where X(n) = (- 1)?, p being the total number of prime factors of n,
when multiple factors are counted multiply. Thus

. {(2s) < An)
Treorem  300: O Z-ﬁ’*_ (s > 1).

Similarly we can prove

2 An)
THeRem  301: i( ) %i
5(28) “ n®

where w(n) is the number of different prime factors of n.

(s > 1),

A number n is said to be quadratfreit if it has no squared factor. If
we write q(n) = 1 when n is quadratfrei, and q(n) =0 when n has a
squared factor, so that q(n) = |u(n)|, then

=T (l_p_%) =TT 0+p~) = Sy,
P

£(2s) l—p~® — W
by Theorems 280 and 286. Thus
THecrem  302:

2] o0
zq_n— Z«n38>l)

n=1
More generally, if qk( )=0o0r 1 according as n has or has not a kth
power as a factor, then

(<]
THeoreM 303: L(s) Z(:]——— > 1),
=

t Wc have already used this word in § 2.6 (p. 16) ; there is no convenient English
word.
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Another example, due to Ramanujan is

. C“(s {d 1
TrecRem  304: T = Z (s > 1)

This may be proved as follows. We have

is) _ 7 1—p 14p-
L(2s) » (I-p-<)~ :1_[ (1—p-5)3°
Now
(113;)3: (142)(14 35+ 6a2+...)
= 14do+9a2+ i (141)%
L4(s) 3 s
Hence Ts) = ];[{zz {I+1)*p ’}.
The coefficient of n-2, when n = p% pl .. .. is

A4 D2 = {d(n))?,
by Theorem 273.
More generally we ¢an prove, by similar reasoning,

Trecrem 305.  Ifs, s-a, s-b, and s-a-b are all greater than 1, then

{(s)l(s—a)l(s—b){(s—a—D) 2 g (n)o
{(2s—a—Db) :Z b

17.9. The generating function of r(n). We saw in § 16.10 that
rn) = 4 dlZn x(d),

where x(n) is 0 when n is even and (— 1)¥*-Y when n is odd. Hence

Lo o SIS L g6,

ns
where L(s) = 1-8—3-5}5-5—
ifs > 1.
T 306: rin) _
HECREM Z el 4¢(s)L(s) (s > 1).
The function n{s) = 1-9—2-8.3-5—

is expressible in terms of {(s) by the formula

7(s) = (1—=217){(s);

but L(s), which can also be expressed in the form

L(s) = U (W),
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is an independent function. It is the basis of the analytical theory of
the distribution of primes in the progressions 4m-+ 1 and 4m-}-3.

17.10. Generating functions of other types. The generating
functions discussed in this chapter have been defined by Dirichlet
series; but any function

F(S) = X a, u,(8)
may be regarded as a generating functlon of «,. The most usual form

of u,(s) is U, (8) == e-Mns,

where 2, is a sequence of positive numbers which increases steadily to
infinity. The most important cases are the cases A, = log n and A, = n.
When A, = log n, u,(s) = n-8, and the series is a Dirichlet series. When
A, = m, it is a power series in

T =e
Since m=s. nf = (mn)-3,
and xm. x? = xm+n’

the first type of series is more important in the ‘multiplicative’ side of
the theory of numbers (and in particular in the theory of primes). Such

functions as S w(n)am, S d(n)an, S A(n)an
are extremely difficult to handle. But generating functions defined by

power geries are dominant in the ‘additive’ theory.f
Another interesting type of series is obtained by taking

e—ns xn
un(s) = 1 _e-ne = l—x"'
oo\ "
it = -,
We write F(x) Z U T—m

and disregard questions of convergence, which are not interesting here.
A series of this type is called a ‘Lambert series’. Then
F{x) = Za Zx’""—- szx
m=1

where by = 2 a,.
n|N

This relation between the a and b is that considered in §§ 16.4 and 17.6,
and it is equivalent to LUs)f(s) = gls)

where f(s) and g(s) are the Dirichlet series associated with a, and b,.

t See Chs. XIX-XXI.

1 All the series of this kind which we consider me absolutely convergent when
0gz< L.

5591 8
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TuEOREM 307. If

= > a,n, g(8) = > b,n?,
then F(x) = Za" lin - = Yb,xn

if and only if Ls)f(s) = g(s).
Iff(s) = 3 w(n)n=, g(s) = 1, by Theorem 287. If f(s) = 3 d(n)n-2,

n
%’

() = {s—1) =

by Theorem 288. Hence we derive

THEGREM  308: Z#
1 x”
1
2]
THEREM  309: Z¢(" z
- 1—zr T (- x)

Similarly, from Theorems 289 and 306, we deduce
THeorReM 310:

x 3

Samper = 21 T
n=1

—x x2

+

— 3

THEOREM 311:

?Ms

r(n)x® = 4(1_ 1—x3+ )

z 1x5

Theorem 311 is equivalent to a famous identity in the theory of elliptic
functions, viz.

1

THECREM  312:

(14 22228+ 2294 ..)2 = 1+4( z _1f3x3+1f55_...)

11—z
In fact, if we square the geries

142242244229+ ... = i xm
s

the coefficient of 2% is r(n), since every pair (m, m,) for which
m2+m2 = n contributes a unit to it.t

t Thus 5 arises from 8 pairs, viz. (2, 1), (1, 2), and those derived by changes of sign.
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NOTES ON CHAPTER XVII

§ 17.1. Therc is a short account of the analytical theory of Dirichlet series in
Titchmarsh, Theory offunctions, ch. ix; and fuller accounts, including thc theory
of series of the more general type

Sa, e

(referred to in § 17.10) in Hardy and Riesz, The general theory of Dirichlet’s series
(Cambridge Math. Tracts, no. 18, 1915), and Landau, Handbuch, 103-24, 723-75.

§ 17.2. There is a large literature concerned with the zeta function and its
application to the theory of primes. See in particular the books of Ingham and
Landau, and Titchmarsh, The Riemann zeta-function (Oxford, 1951).

For the value of {(2n) see Bromwich, Infinite series, ed. 2, 298.

§ 17.3. The proof of Theorem 283 depends on the formulae

x
0 < ntlogn—z*logx = ft""‘(slogt— 1) dt < T—f—zlog(n+1),
]

valid for 3 < n <z < n+l ands > 1.

There are proofs of the theorem referred to in the footnote to p. 247 in Landau,
Handbuch, 106-7, and Titchmarsh, Theory of functions, 289-90.

§§ 17.5-10. Many of the identities in these sections, and others of similar
character, occur in Pélya and Szegd, ii. 123-32, 331-9. Some of them go back
to Euler. We do not attempt to assign them systematically to their discovcrcrs,
but Theorems 304 and 305 were first stated by Ramanujan in the Messenger of
Math. 45 (1916), 81-84 (Collected papers, 133-5 and 185).

§ 17.6. The discussion in small print is the result of conversation with Professor
Harald Bohr.

§ 17.10. Theorem 312 is due to Jacobi, Fundamenta nova (1829), § 40 (4) and
§ 65 (6).
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THE ORDER OF MAGNITUDE OF ARITHMETICAL FUNCTIONS

18.1. The order of d(n). In the last chapter we discussed formal
relations satisfied by certain arithmetical functions, such as d(n), u(n),
and ¢(n). We now consider the behaviour of these functions for large
values of n, beginning with d(n). It is obvious that d(n) > 2 when
n > 1, while d(n) = 2 if n is a prime. Hence

THeorem 313. The Jower limit of d(n) as n — o0 s 2:

lim d(n) = 2.

n—rw
It is less trivial to find any upper bound for the order of magnitude
of d(n). We first prove a negative theorem.
THeorem 314. The order of magnitude of d(n) 7s sometimes larger than
that of any power of logn: the equation
(18.1.1) d(n) = Of(logm)*}
1s false for every At

log n
= m = —_—
If n = 2m then din) = m+1 ~ Tog 2°
2
0= (2.3 then  de) = (1~ (1257
and so on. If Il <A<+l
and n=(2.3.p.™

I+1

> K(log n)*t,

log n
log(2.3...py,4)
where K is independent of n. Hence (18.1.1) is false for an infinite
sequence of values of n.

On the other hand we can prove
THeorem 315: d(n) = O(n¥*)

v

then cl(n) = (m+4 1)1 ~ {

for all positive 3.

The assertions that d(n) = O(n*), for all positive 3, and that
d(n) = o(n?), for all positive 8, are equivalent, since n¥ = o(n?) when
0< 3§ <.

We require the lemma

THEOREM 316. If f(n) 4s multiplicative, and f (p™) — 0 as p™ — o,
then f(n) - 0 as n - oo.

t The symbols 0, o, ~ were defined in § 1.6.
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Given any positive €, we have
(i) |f(p™)| < A for all p and m,
(i) |f(em)| < 1if pm > B,
(iii) [f(@™)] < ¢ if pm > N(e),
where A and B are independent of p, m, and ¢, and N(e) depends on

only. If
¢ oy n = pipg..pf,

then f) = f(p)f(p%)...S(pF)-

Of the factors p#, p%,..., not more than C are less than or equal to
B, C being independent of n and ¢. The product of the corresponding
factors f(p?) is numerically less than A4¢, and the rest of the factors
of f(n) are numerically less than 1.

The number of integers which can be formed by the multiplication of
factors p* < N(E) is M(e), and every such number is less than P(e),
M(e) and P(e) depending only on €. Hence, if n > P{e), there is at
least one factor pe of n such that p* > N(e) and then, by (iii),

()] <.
It follows that |f(n)| < ACe

when n > P(e), and therefore that f(n) > 0.
To deduce Theorem 315, we take f(n) = n—®d(n). Then f(n) is multi-
plicative, by Theorem 273, and

A m)_m+1 2m 2 logp™ 2 logp™
o™ Tpm T p logp T log2 (pm)P
when p™ - 0. Hence f(n) - 0 when n - oo, and this is Theorem 315
(with o for 0).
We can also prove Theorem 315 directly. By Theorem 273,

d(n) 1 (a1
(18.1.2) T H( ™ )
i=1 K
Since ad log 2  eedlog? = 94 e,
a+1 a 1 L
wehave  — <145 < ltspos < eXp(Slogz)'

We use this in (18.1.2) for those p which are less than 2U%; there are less
than 218 such primes. If p > 2% we have

at1l

P> 2 28 S5 St
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Hence

d(n) 1 21/3
1813 < Hsexp(m) < eXp(m) _ 0Q).

p<?
This is Theorem 315.
We can use this type of argument to improve on Theorem 315. We
suppose ¢ > 0 and replace § in the last paragraph by
_ (1+3e)log2
" loglogn
Nothing is changed until we reach the final step in (18.1.3) since it is

here that, for the first time, we use the fact that & is independent of n.
This time we have

log d(n) 2V (logn)UtH9loglogn  elog 2logn
no alog2 ™~ (1+3e)og?2 = 210glogn

for all n > ny(e) (by the remark at the top of p. 9). Hence

elog2logn  (1-+e¢)log2logn

< =
log din) < alogn + 2 loglog n loglogn

We have thus proved part of

=— log d(n)loglog n

THeEOREM 3 17 hm = log 2;
logn

that is, if e > 0, then
d(n) < 9(1+e)log niloglog n
for all n > nyle) and
(18.1.4) d(n) > 9(1-e)log njloglog n
for an infinity of values of 7.
Thus the true ‘maximum order’ of dam is about
2log nfloglog ",
It follows from Theorem 315 that

logd(n) 50
log n
and so d(n) — nlog d(n)logn — neu’
where ¢, - 0 as n — c0. On the other hand, since
Olog njloglog n nlog 2/loglog n

and loglogn tends very slowly to infinity, e, tends very slowly to O.
To put it roughly, d(n) is, for some n, much more like a power of g
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than a power of logn. But this happens only very rarelyt and, as
Theorem 313 shows, d(n) is sometimes quite small.

To complete the proof of Theorem 317, we have to prove (18.1.4) for
a suitable sequence of n. We take n to be the product of the first r
primes, so that

n=23.517.P, d(n) =9r = 2md),

where P is the rth prime. It is reasonable to expect that such a choice
of n will give us a large value of d’(n). The function

Hzx) = 3 logp
PLT
is discussed in Ch. XXII, where we shall prove (Theorem 414) that
Hzx) > Ax
for some fixed positive A and all x > 2.7. We have then

AP < &(P) = Z logp = logn,
TP

a(P)log P =log P > 1 > &(P) = logn,
s

and so
_ Iggnlog2 log n log 2
log d(n) = w(P)log a_logg’P ~ Toglog n —log A
, (1-=)lognlog2
~ Toglog n

for n > ny(e).

18.2. The average order of d(n). If f(») is an arithmetical func-
tion and g(n) is any simple function of n such that
(18.2.1) FOH@) + o tf () ~ g(1)+ ... 4-g(n),

we say that f(n) is of the average order of g(n). For many arithmetical
functions, the sum of the left-hand side of (18.2.1) behaves much more

regularly for large n than does f(n) itself. For d(n), in particular, this
is true and we can prove very preoise results about it.

Theorem 318: d(1)+d(2)+...-d(n) ~ nlogn.
n
Since log 1+log 2+...+logn ~ [logt dt ~ nlogn,

the result of Theorem 318 is equivalent to
d(1)+d(2)+...4-d(n) ~ log 1+log 24-...4-logn.

t See § 22.13.

1 In fact, we prove (Theorem 6 and 420) that §(z) ~, but it is of interest that the
much simpler Theorem 414 suffices here.
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We may express this by saying
THeorem 319. The average order of d(n) is logn.
Both theorems are included in a more precise theorem, viz.
THEOREM  320: )
d(1)+d(2)+...+d(n) = nlogn+(2y—1)n+O0(¥n),
where y is Euler’s constant.t

We prove these theorems by use of the lattice L of Ch. Ill, whose
vertices are the points in the (x, y)-plane with integral coordinates.
We denote by D the region in the upper right-hand quadrant contained
between the axes and the rectangular hyperbola xy = n. We count the
lattice points in D, including those on the hyperbola but not those on
the axes. Every lattice point in D appears on a hyperbola

oy =s (1 <s<n)
and the number on su¢ch a hyperbola is d(s). Hence the number of
lattice points in D is d(1)+d(2)+...-d(n).

Of these points, # = [n] have the x-coordinate 1, [4n] have the
X-coordinate 2, and so on. Hence their number is

1+ 5]+ [5] -+ [5] = n(1 5+ 3] +0m) = nlogn+0q),

since the error involved in the removal of any square bracket is less
than 1. This result includes Theorem 318.
Theorem 320 requires a refinement of the method. We write

u = [¥n],
so that u? = n40(Vn) = n+0(u)
and logu = log{vn+0(1)} = 110gn+0(%n)_
N

In Fig. 9 the curve GEFH is the reotangular hyperbola xy = n,
and the coordinates of A, B, C, D are (0, 0), (0, u), (u, %), (%, 0). Since
(u-+1)% > n, there is no lattice point inside the small triangle ECF;
and the figure is symmetrical as between x and y. Hence the number
of lattice points in D is equal to twice the number in the strip between
AY and DF, counting those on DF and the curve but not those on

t In Theorem 422 we prove that

n

1 1
1+§++;t—10g n = y+0(l),

where y is a oconstant, known ag Euler's constant
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AY, less the number in the square ADCB, counting those on BC and
CD but not those on AB and AD; and therefore

g a(l) = 2([7%] 4+ [g] +.. —f—[%])——uz - 2n(1 +%+... +%)V—n—§—0(u).

1

Y| H

N
8 C} EN
\\\
G
A D ¢
Fic. 9.
Now 211 1 1 = 2lo u—{—2+01
+§++,’—4) = g Y Oj )

so that
l_ild(l) = 2nlogu—{—(2y-—l)n+0(u)+0(g) = nlogn+(2y—1)n+0(Wn).

1 n
Although 1
oug - Zl d(l) ~ logn,

it is not true that ‘most’ numbers n have about log n divisors. Actually
‘almost all’ numbers have about
(log n)loe2 == (log n)6-
clivisors. The average logn is produced by the contributions of the
small proportion of numbers with abnormally large d(n).t
This may be seen in another way, if we assume some theorems of
Ramanujan. The sum d2(1)+...4-d%(n)

is of order n(log 7)1 = n(log n)3;
d3(1)+...+d3(n)

T ‘Almost all’ is used in the genge of § 1.6. The theorem is proved in § 22.13.
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is of order n(log n)*-! = n(logn)’; and so on. We should expect these
sums to be of order n(log=n)?, n(log n)3,..., if d(n) were generally of the
order of logn. But, as the power of d(n) becomes larger, the numbers

with an abnormally large number of divisors dominate the average
more and more.

18.3. The order of a(n). The irregularities in the behaviour of o(n)
are much less pronounced than those of d(n).

Since 1| n and n|n, we have first

THecREM  321: u(n) > n.

On the other hand,

THeoREM 322:  u(n) = O(n!+3) for every positive 8.

More precisely,

THEOREM 323: Hﬁ ﬂ =
n loglog n

We shall prove Theorem 322 in the next section, but must postpone
the proof of Theorem 323, which, with Theorem 321, shows that the
order of u(n) is always ‘very nearly n’, to § 22.9.

As regards the average order, we have

Tiecem  324.  The average order of u(n) ¢s w2n. More precisely,
a(l)+0(2)+...+0o(n) = Ln*n®+O(nlogn).
For o(1)+...4o(n) = Dy,

where the summation extends over all the lattice points in the region
D of § 18.2. Hence

Y
|l
S 3
SM
B
<
M=
[
—
]R3
| I
o
1
813
[ S
_|._
e

x=1
1 n n g . n . 1 n 1
=3 ; (5+0 ) ;+O(1)) = n Zl ;:g‘{'o("" glx)w(n)
< 1 1 1 1
Now 2= 2 mt0 a) = %”2+O(ﬁ)’
z=1 z=1
&1
y (17.2.2), and - = O(logn).
z=1
Hence zi a(l) = &nin?4O(nlogn).
=1

In particular, the average order of u(n) is }m?*n.t

a
¥ Since % m e~ jnd
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18.4. The order of ¢(n). The function $(n) is also comparatively
regular, and its order is also always ‘nearly n'. In the first place

TrecRem 325: d(n) < n ifn > L
Next, if n=pm and p > 1fe, then

o) = nf1-2) > a1
Hence

TiecReM  326: li_m_gf) = 1.

There are also two theorems for ¢(n) corresponcling to Theorems 322
and 323

TrecREM  327: ii’f% - oo for every positive §,
Tiecem 328 lim $(Mloglog™ _
n
Theorem 327 is equivalent to Theorem 322, in virtue of
TrecRem  329: 4<n d’(" <1

(for a positive constant A).
To prove the last theorem we observe that, if n = T p?, then

pa+1_] _p—a -1
1_[ = 1—pt
r

pln pin
and n JT (1—p™).
nn
Hence o(n ]'I —p~e1),
pin

which lies between 1 and TI (1—p»~2).1 It follows that o(n)/n and
n/¢(n) have the same order of magnitude, so that Theorem 327 is
equivalent to Theorem 322.
To prove Theorem 327 (and so Theorem 322) we write
nl-d
f(n) = W
Then f(n) is multiplicative, and so, by Theorem 3186, it is sufficient to

prove that £ (p™) > 0

+ By Theorem 280 and (17.2.2), we see that the A of Theorem 329 is in fact
{L@)* = 6=z
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when p™ — c0. But

1 $(»™) 1 5
fpm ~ pmad = pma(l_p—) > ipm > o

We defer the proof of Theorem 328 to Ch. XXII.

18.5. The average order of ¢(n). The average order of ¢(n) is
6n/n%. More precisely

THEREM  330:

X p(d) ,
D(n) = WZI m mzn d dd'<nd ud)

n G/ R nl?  [n
=B g =5 > wof 5] +[3])
=1 > +o(3))
= in? ’#-{-0(77, Z (%)

d=1 a=1
=4 5 D ol S L)+ Ouiogn)
d= n+1
2
= 2—2%—)—}—0(7@)—{—0(nlogn) = ?’7%—{—0(”10%”),

by Theorem 287 and (17.2.2).
The number of terms in the Farey series &, is ®(n)+1, so that an
alternative form of Theorem 330 is

Trecrem 331, The number of terms in the Farey series of order n is
approximately 3n?/m®.

Theorems 330 and 331 may be stated more picturesquely in the
language of probability. Suppose that n is given, and consider all pairs
of integers (p, q) -for which

¢>0, 1<p<qg<oy,
and the corresponding fractions p/g. There are

Yo = dnlnt1) ~ in?



18.5 (332-3)] ARITHMETICAL FUNCTIONS 269

such fractions, and x,, the number of them which are in their lowest
terms, is a>(n) If, as is natural, we define ‘the probability that p
and q are prime to one another’ as

lim X»

n—rwo iy, ’
we obtain

THEOREM 332. The probability that two integers should be prime to one
another is 6/

18.6. The number of quadratfrei numbers. An allied problem
is that of finding the probability that a number should be ‘quadratfrei’,t
i.e. of cletermining approximately the number Q(x) of quaclratfrei
numbers not exceeding X.

We can arrange all the positive integers.» < y? in sets 8, S,,..., such
that §; contains just those n whose largest square factor is d®. Thus
8, is the set of all quaclratfrei n <{ 42 The number of n belonging to
Sd is Q(:I/—g)

d2
and, when d >y, S; is empty. Hence

[v*1= > Q(B)

a<y

and so, by Theorem 268,

Replacing #* by x, we obtain

Treorem 333. The probability that a number should be quadratfresd is

6/m2: more precisely
QX = %+ O(Vx).

1 Without square factors, g product of different primes: gee § 17.8.
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A number n is quadratfrei if p(n) = fl, or |u(n)] = 1. Hence an
alternative statement of Theorem 333 is

Trecrem  334: z lp(n)| = =+ O(vx).

It is natural to ask whether, among the quadratfrei numbers, those
for which p(n) = 1 and those for which p(n) = -1 occur with about
the same frequency. If they do so, then the sum

x
M(z) = 2
should be of lower order than x; i.e.
Turorem 335 M(X) = 0 ().
This is true, but we must defer the proof until § 22.17.

18.7. The order of r(n). The funetion r(n) behaves in some ways
rather like d(n), as is to be expected after Theorem 278 and (16.9.2).
If n =3 (mod4), then r(n) = 0. If n = (p, p,...p,)™, and every p is
4k-+-1, then r(n) = 4d(n). In any case r(n) < 44(r). Hence we obtain
the analogues of Theorems 313, 314, and 315, viz.

THEOREM 336! limr(n) = 0.

THEOREM 337: r(n) = O{(log »)*}
is false for every A

TEREM  338: r(n) = O(n?)

for every positive 8.
There is also a theorem corresponding to Theorem 317, the maximum
order of r(n) is

logn

22Ioglogn

A difference appears when we consider the average order.

Trecrew 339. The average order of r(n) s m; ie.

lim FOAr@) A Ar(n)

n—© n

More precisely

(18.7.1) r(1)4-r(2)+...+r(n) = ant0(Vn).

We can deduce this from Theorem 278, or prove it directly. The direct
proof is simpler. Since r(m), the number of solutions of 224-y% = m,
is the number of lattice points of L on the circle 2+y% = m, the sum
(18.7.1) is one less than the number of lattice points inside or on the
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circle z2+ y2 = n. If we associate with each such lattice point the lattice
square of which it is the south-west corner, we obtain an area which is
included in the circle

x2+y? = (Vn++2)?
and includes the circle

224+y? = (Vn—v2)3
and each of these circles has an area mn-+ O(vVn).

This geometrical argument may be extended to space of any number of dimen-
sions. Suppose, for example, that r4(n) is the number of integral solutions of
zz_*_yz_{__zz = n

(solutions differing only in sign or order being again regarded as distinct). Then
we can prove

THEOREM 340: “rg(1) 4 75(2) 4.+ 15(n) = $mnd+ O(n).
If we use Theorem 278, we have
[x)
r(v) =4 x(d) =4 (w),
1§§<m ( ) g «% 1@%@ X
the sum being extended over all the lattice points of the region D of
§ 18.2. If we write this in the form

s 3 xw 3 1 4 > i,

<u<gzx 1<vgxfu = w
1<u v/ 155
REOREM 341:

2.0 = (i[5 )

This formula is true whether x is an integer or not. If we sum
separately over the regions ADFY and DFX of § 18.2, and calculate
the second part of the sum by summing first along the horizontal lines
of Fig. 9, we obtain

¢ 3 i+ 3, 3 xew.

uNT v VE ve<u<ziv
The second sum is O(vz), since 2, x(«), between any limits, is 0 or 41,
and .
‘ Z x(u)[f] = Z x(u)a+0(4x)

" USNE

we obtain

USNT

i

x(l _%4_%_ +X{[~,«Z]))+0(~/¥)
= aftr+ 0(%)}-%0(4@ — Jrwt-O(a).

This gives the result of Theorem 339.
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NOTES ON CHAPTER XVIII

§ 18.1. } or the proof of Theorem 314 see Pélya, and Szegé, ii. 160-1, 386.

Theorem 317 is due to Wigert, Arkiv for matematik, 3, no. 18 (1907), 1-9
(Landau, Handbuch, 219-22). Wigert's proof depends upon the ‘prime number
theorem’ (Theorem 6), but Ramanujan (Collected papers, 85-86) showed that it
is possible to prove it in a more elementary way. Our proof is essentially
Wigert’s, modified so as not to require Theorem 6.

§ 18.2. Theorem 320 was proved by Dirichlet, Abhandl. Akad. Berlin (1849),
69-83 ( Werke, ii. 49-66).

A great deal of work has been done since on the very difficult problem
(‘Dirichlet's divisor problem’) of finding better bounds for the error in the
approximation. Suppose that 8 is the lower bound of numbers B such that

d(1)+d(2)+...+d(n) = nlogn+(2y—1m+OnP).
Theorem 320 shows that 8 < }. Voronéi proved in 1903 that 6 «{ 4, and van der
Corput in 1922 that 8 < i%%’ and these numbers have been improved further by
later writers. On the other hand, Hardy and Landau proved independently in
1915 that 6 > }. The true value of 8 is still unknown. See also the note on
§18.7.

As regards the sums d?( I)+..+@(n), etc., see Ramanujan, Collected papers,
133-5, and B. M. Wilson, Proc. London Math. Soc. (2) 21 (1922), 235-55.

§ 18.3. Thcorem 323 is due to Gronwall, 7'rans. American Math. Soc. 14 (1913),
113-22.

Theorem 324 stands as stated here in Bachmann, Analytische Zahlentheorie,
402. The substance of it is contained in the memoir of Dirichlet referred to
under §18.2.

§§ 18.45. Theorem 328 was proved by Landau, Archiw d. Math. u. Phys. (3)
5 (1903), 86-91 (Handbuch, 216-19); and Theorem 330 by Mertens, Journal fiir
Math. 77 (1874), 289-338 (Landau, Handbuch, 578-9).

§ 18.6. Theorem 333 is due to Gegenbauer, Denkschriften Akad. Wien, 49, Abt.
1 (1885), 37-80 (Landau, Handbuch, 580-2).

Landau [Handbuch, ii. 588—90] showed that Theorem 335 follows simply from
the ‘prime number theorem’ (Theorem 6) and later [Sitzungsberichte Akad. Wien,
120, Abt. 2 (1911), 973-88] that Theorem 6 follows readily from Theorem 335.

§ 18.7. For Theorem 339 see Gauss, Werke, ii. 272-5.

This theorem, like Theorem 320, has been the starting-point of a great deal
of modern work, the aim being the determination of the number & corresponding
to the § of the note on § 18.2. The problem is very similar to the divisor problem,
and the numbers 4,1, } occur in the sgame kind of way; but the analysis required
is in some ways a litle simpler and has been pushed a little farther. See Landau,
Vorlesungen, ii. 183-308, and Titchmarsh, Proc. London Math. Soc. (2) 38 (1935),
96-115 and 555.

For a general elementary method of calculating the ‘average order’ of arith-
metical functions belonging to a wide class and for further references to the
literature, see Atkinson and Cherwell, Quarterly Journal of Math. (Oxford), 20
(1949), 65-79.
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PARTITIONS

19.1. The general problem of additive arithmetic. In this and
the next two chapters we shall be occupied with the additive theory of
numbers. The general problem of the theory may be stated as follows.

Suppose that A or @y, gy Gy, oo
is a given system of integers. Thus A might contain all the positive

integers, or the squares, or the primes. We consider all possible repre-
sentations of an arbitrary positive integer n in the form
n=a;,+a;,+..+a,,

where s may be fixed or unrestricted, the a may or may not be neces-
sarily different, and order may or may not be relevant, according to
the particular problem considered. We denote by r(n) the number of
such representations. Then what can we say about r(n) ? For example,
is r(n) always positive? Is there always at any rate one representation
of every n ?

19.2. Partitions of numbers. We take first the case in which A
is the set 1, 2, 3,... of all positive integers, s is unrestricted, repetitions
are allowed, and order is irrelevant. This is the problem of ‘unrestricted
partitions’,

A partition of a number n is a representation of n as the sum of any
number of positive integral parts. Thus

5—441=3+2=3+141=242+4+1=241+141
= 141414141
has 7 partitions.? The.order of the parts is irrelevant, so that we may,

when we please, suppose the parts to be arranged in descending order
of magnitude. We denote by p(n) the number of partitions of n; thus

pGs) = 7.
We can represent a partition graphically by an array of dots or

‘nodes’ such as

A

+ We have, of course, to count the representation by one part only.
5591 T
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the dots in a row corresponding to a part. Thus A represents the

partition 744434341
of 18.

We might also read A by columns, in which case it would represent
the partition 544t 442414141

of 18. Partitions related in this manner are said to be conjugate.

A number of theorems about partitions follow immediately from this
graphical representation. A graph with m rows, read horizontally,
represents a partition into m parts; read vertically, it represents a
partition into parts the largest of which is m. Hence

Trecrem 342, The number of partitions of n into m parts is equal to
the number of partitions of n into parts the largest of which- is m.

Similarly,

Theorem 343. The number of partitions of n into gf most m parts s
equal to the number of partitions of n into parts which do not exceed m.

We shall make further use of ‘graphical’ arguments of this character,

but usually we shall need the more powerful weapons provided by the
theory of generating functions.

19.3. The generating function of p(n). The generating functions

which are useful here are power seriest
FX) = 3 f (n)a.

The sum of the series whose general coefficient is f(n) is called the
generating function off(n), and is said to enumerate f (n).

The generating function of p(n) was found by Euler, and is

1 @©

19.3.1 ",
(31 F@) _ Il (1—2).. = I+ 2 p(n)

We can see this by writing the infinite product as
(1+x+224...)
(142 +at+...)
(1423 428+...)

and multiplying the series together. Every partition of n contributes
just 1 to the coefficient of g2, Thus the partition

10 = 342424241
t+ Conpare § 17.10.
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corresponds to the product of z3 in the third row, z® = x**2+2 in the
second, and x in the first; and this product contributes a unit to the
coefficient of x1°.
This makes (19.3.1) intuitive, but (since we have to multiply an in-
finity of infinite geries) some development of the argument is necessary.
Suppose that 0 < x < 1, so that the product which defines F(x) is
convergent. The series

I+rtai4..>  14a?dat4..> > 1famdatm
are absolutely convergent, and we can multiply them together and
arrange the result as we please. The coefficient of z™ in the product is
P(n);
the number of partitions of n into parts not exceeding m. Hence

(1932 Fo) - 5= (1_3152)... = = 1+ 3 palne
It is plain that

(19.3.3) Pa(n) < p(n),

that

(19.34) Pn(n) = p(n)

for n < m, and that

(19.35) Pm(n) > p(n),

when m — oo, for every n. And

(19.36) F () = 1+élp(n)xn+m21pm(n)zn.

The left-hand side is less than F(x) and tends to F(x) when m — 0.

Thus 1+ 3 ppr < Fola) < Fl)

which is independent of m. Hence 3 p(n)2™ is convergent, and so, after
(19.3.3), ¥ p,(nz™ converges, for any fixed x of the range 0 < x < 1,
uniformly for all values of m. Finally, it follows from (19.3.5) that

1+ 3 plger = lim (14 3 pnjer) = lim (@) = F(0.

Incidentally, we have proved that
1
(1—z)(1—2a?)...(1—2™)
enumerates the partitions of n into parts which do not exceed m or
(what is the same thing, after Theorem 343) into at most m parts.

(19.3.7)



276 PARTITIONS [Chap. XIX

We have written out the proof of the fundamental formula (19.3.1)
in detail. We have proved it for 0 < x < 1, and its truth for le <1
follows at once from familiar theorems of analysis. In what follows
we shall pay no attention to such ‘convergence theorems’,} since the
interest of the subject-matter is essentially formal. The series and
products with which we deal are all absolutely convergent for small x
(and usually, as here, for |#| < 1). The questions of convergence,
identity, and so on, which arise are trivial, and can be settled at once
by any reader who knows the elements of the theory of functions.

19.4. Other generating functions. It is equally easy to find the
generating functions which enumerate the partitions of n into parts
restricted in various ways. Thus

1
(1—x)(1—a3)(1—x?)...
enumerates partitions into odd parts;

1
(1—a?)(1—ab) (1 —xP)...
partitions into even parts;
(19.4.3) (1) (1 4-a2)(14-23)...
partitions into unequal parts;
(19.4.4) (14-x)(1+aB)(1-4a5)...
partitions into parts which are both odd and unequal; and
1
(1—x)(1—ah)(1—x8)(1 —29)...

where the indices are the numbers 5m--1and 5m-+4, partitions into
parts each of which is of one of these forms.
Another function which will occur later is

(19.4.1)

(19.4.2)

(19.4.5)

N

(19.4.6) (T—2%)(1—a%)...(1—a®m)’

This enumerates the partitions of n-N into even parts not exceeding
om, or of (n—N) into parts not exceeding m; or again, after Theorem
343, the partitions of 1(rn—XN) into at most m parts.

Some properties of partitions may be deduced at once from the forms

t Except once in § 19.8, where again we are ¢oncerned with a fundamental identity,
and once in § 19.9, where the limit process involved is less obvious.
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of these generating functions. Thus
1—a? 1—at1-2af
T 1—x 1—z21—a8"
1
T =) (=) (1—a%)...

(19.4.7) (14z)(1+-a2)(1-+a?)...

Hence

THEOREM 344. The number of partitions of n into unequal parts is
equal to the number of its partitions into odd parts.
It is intoresting to prove this without the use of generating functions. Any
number | ¢an be expressed uniquely in the binary scale, i.e. as
1= 204920424, (0<a<b< c.)t
Hence a partition of 5 into odd parts can be written as
n=1.14+1,.3+1,.54...
= (2042614 )] (29242024 )3 (2% 4..)54 .3
and there isa(1,1) correspondence between this partition and the partition into

the unequal parts
20, 9b,..., 2013, 202.3,..,, 20,5, 25,5 ..., ...

19.5. Two theorems of Euler. There are two identities due to
Euler which give instructive illustrations of different methods of proof
used frequently in this theory.

THEOREM 345:

(1+42)(1-423)(1 +9)...
x xt x®
= 1+l__x2+(1_x2)(1__x4)+(1_x2)(1_x4)(1__x6)+--..
THEOREM 346:
(L4-a2)(14+at)(1429)...
x? a8 12
— 1+1—x2+(1———x2)(1-—x4)+(l—x2)(l—x4)(1—x6)+""

In Theorem 346 the indices in the numerators are 1.2, 2.3, 3.4 ,....

(i) We first prove these theorems by Euler's device of the intro-

duction of a second parameter a.
Let

K@) = K(a,z) = (14ax)(l+ax®)(l+-axb)... = 14c,atc,a?+...,
T This is the arithmetic equivalent of the identity
(I4+z)(I4+a?)(1+24)(1+28).. = 7—.

11—z
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where ¢, = ¢,(x) is independent of a. Plainly
K@) = (1 +4ax)K(ax?)
or 1+e,a4-cpa?+... = (14-ax)(l-+c,azx?t-cya’xtH...).
Hence, equating coefficients, we obtain

¢, = x+c, 2% ¢ = ¢ 83yt oy € = Cpy 2 4cp 2 L,

x2m—1 pl+3+..+(2m-1)
M0 s gt = Ty T (1)
mt

= A=2¥)(1—29%)...(1—22m)"

It follows that

(19.51) (1-+az)(ltae®)(ltazd)... = 14.98 4 @&
1—a? ' (1—2z%)(1—a?) ’

and Theorems 345 and 346 are the special cases a = 1 and a = x.

(if) The theorems can also be proved by arguments independent of
the theory of infinite series. Such proofs are sometimes described as
‘combinatorial’. We select Theorem 345.

We have geen that the left-hand side of the identity enumerates
partitions into odd and unequal parts: thus

15= 114341 = 94541 = 74543
has 4 such partitions. Let us take, for example, the partition 11434 1,
and represent it graphically as in B, the points on one bent line corre-
sponding to a part of the partition.

[

o

B C D

We can also read the graph (considered as an array of points) as
in C or D, along a series of horizontal or vertical lines. The graphs
C and D differ only in orientation, and each of them corresponds to
another partition of 15, viz. 6434341414 1. A partition like this,
symmetrical about the south-easterly direction, is called by Macmahon
a self -conjugate partition, and the graphs establish a (1, 1) correspondence
between self-conjugate partitions and partitions into odd and unequal
parts. The left-hand side of the identity enumerates odd and un-
equal partitions, and therefore the identity will be proved if we can
show that its right-hand side enumerates self-conjugate partitions.
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Now our array of points may be read in a fourth way, viz. as in E.
E . . I

Here we have a square of 32 points, and two ‘tails’, each representing
a partition of }(15—32) = 3 into 3 parts at most (and in this particular
case all 1’s). Generally, a self-conjugate partition of n can be read as
a square of m? points, and two tails representing partitions of

3(n—m?)
into m parts at most. Given the (self-conjugate) partition, then.m and
the reading of the partition are fixed; conversely, given n, and given
any square m? not exceeding n, there is a group of self-conjugate parti-
tions of n based upon a square of ;2 points.
ot

(1—a2)(1 —at)...(1 —z2m)

is a special case of (19.4.6), and enumerates the number of partitions
of 4(n—m?) into at most m parts, and each of these corresponds as we

have seen to a self-conjugate partition of n based upon a square of m?
points. Hence, summing with respect to m,

Now

L

4] xm
1+ Z (1—a2)(I—aA)...(1—a%m)

enumerates all self-conjugate partitions of n, and this proves the
theorem.
Incidentally, we have proved

THeorem 347. The number of partitions of n into odd and unequal
parts is equal to the number of its self-conjugate partitions.

Our argument suffices to prove the more general identity (19.5.1),
and show its combinatorial meaning. The number of partitions of n
into just m odd and unequal parts is equal to the number of self-con-
jugate partitions of n based upon a square of m? points. The effect of
putting a = 1 is to obliterate the distinction between different values
of m.

The reader will find it instructive to give a combinatorial proof of
Theorem 346. It is best to begin by replacing x? by x, and to use the
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decomposition 142434...4m of im(m-+1). The square of (ii) is
replaced by an isosceles right-angled triangle.

19.6. Further algebraical identities. We can use the method (i)
of § 19.5 to prove a large number of algebraical identities. Suppose, for
example, that

K;(a) = Kja,x) = (1+ax)(14-az?)...(1+ax) = ; Cp @™,

m=0
Then (14-axi+)K(a) = (1+ax)K;(az).
Inserting the power series, and equating the coefficients of gm we
obtain Cmt ey T = (Cpt-Cpp )™
or (1 —amyc,, = (am—aitl)c, _, = a™( 1 —gi-mtl)e .
for 1 < m < j. Hence
THeECREM  348:
(14 az)(1+az?)...(14-aa) = 1+ax + a2 A=) —77)
(1—2)(1—2?)

1—af)...(1—af-m+1)
(1—2)...(1—2™)

If we write 22 for x, 1/x for a, and make j — oo, we obtain Theorem 345

Similarly we can prove

_I_ + amgimim+1) (

”.{_ajx“(j-i'l),

THEGREM  349:
1 (1—af)(1—ai*)
=1 ax L A A S
(1—ax)(1 —ax?)...(1—azx)) — + + (1—2)(1—a?)
In particular, if we put a = 1, and make j — oo, we obtain
Trecrem  350:
1 x x?
= =1
(1—z)(1—a?)... _*—l—ac_*_(1—9&)(1——9@2)Jr

19.7. Another formula for F(x). As a further example of ‘com-
binatorial' reasoning we prove another theorem of Euler, viz.

THECcRem 35 1:

1
I—z)(I—29)(1—29)...

xt 8

- TP —a T (I=ap—a P

+

X
T T+
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The graphical representation of any partition, say

contains a square of nodes in the north-west corner. If we take the
largest such square, called the ‘Durfee square’ (here a square of 9 nodes),
then the graph consists of a square containing ¢ nodes and two tails;
one of these tails represents the partition of a number, say I, into not
more than j parts, the other the partition of a number, say m, into

parts not exceeding ¢; and
n = ¥4+l+4+m.
In the figure n = 20, i =3 I =6, m = 5.
The number of partitions of I (into at most ¢ parts) is, after § 19.3,
the coefficient of 2 in

1
(1—2z)(1—a?)...(1—z%)’

and the number of partitions of m (into parts not exceeding %) is the
coefficient of ™ in the same expansion. Hence the coefficient of z7-# in
1 2
(1—x)(1—2?)...(1—z?)| ’

i

(1—)2(1—a?)2...(1—=%)?’
is the number of possible pairs of tails in a partition of n in which the

Durfee square is 7%. And hence the total number of partitions of n is
the coefficient of 27 in the expansion of

or of 2 in

z x4 "

R Vo = Y Ty e e

This proves the theorem.
There are also simple algebraicalt proofs.

t We use the word ‘algebraical’ in its old-fashioned sense, in which it includes ele-
mentary manipulation of power series or infinite products. Such proofs involve (though
sometimes only superficially) the use of limiting processes, and are, in the strict gense
of the word, ‘analytical’ ; but the word ‘analytical’ is usually reserved, in the theory
of numbers, for proofs which depend upon analysis of a deeper kind (usually upon the
theory of functions of a complex variable).
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19.8. A theorem of Jacobi. We shall require later certain special
cases of a famous identity which belongs properly to the theory of

elliptic functions.
THEOREM 352. If |x| < 1, then

(1981)  TT{(1—a)(14atn-1)(1+a2-1z-1))
n=1

=14+ ixn’(zn_[_z-n) = i anian
for all z except z = 0. " o
The two forms of the geries are obviously equivalent.
Let us write P(z,z) = Q(x)R(z, z)R(x,z71),

a0

where Qx) =TT (1—a*), R(z, 2) = ﬁ (1 +a2n-1z).

n=1
When |z| < 1 and z =£ 0, the infinite products

o0 o)

TT (14 |z [27), TT (14 |a2n1z)), ﬁ1(1+ |z2n-1z-1))

n=1 n=1
are all convergent. Hence the products Q(x), R(z, z), R(x, z!) and the
product P(x,z) may be formally multiplied out and the resulting terms
collected and arrangea in any way we please; the resulting series is
absolutely convergent and its sum is equal to P(z, z). In partidar,

P(x,z) = ¥ a,(x)n,
n="=w
where a,(x) does not depend on z and
(19.8.2) a-,(xX) = a,(x).
Provided x # 0, we can easily verify that
(14-x2) B(x, 2x?) = R(x, 2), R(x, z-1x-2) = (1 +z"x VY R(x, 271),
so that xzP(x,za?) = P(x,z). Hence
i g ()"t = > a,(x)n.
n=—o n=—o
Since this is true for all values of z (except z = 0) we can equate the
coefficients of z» and find that a,_,(x) = a?**la,(x). Thus, for n > 0,
we have anﬂ(x) — x(2n+1)+(2n—1)+...+1a0(x) — x(n+1)zao(x).
By (19.8.2) the same is true when n+l < 0 and so a,(x) = x™a,(«x) for
all n, provided z s 0. But, when x = 0, the result is trivial. Hence

(19.8.3) P(, 2) = ay(2)S(x, 2),

where S, z) = 3 aman

n="—w

To complete the proof of the theorem, we have to show that a,,(x) = 1.
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If z has any fixed value other than zero and if |x| < % (say), the
products @(z), R(x, z), R(x, z71) and the series S(z, z) are all uniformly
convergent with respect to x. Hence P(z, z) and S(x, z) represent
continuous functions of x and, as x — o,

P(z,2) > P(0,2)= 1, Sz, 2) > 8(0,2) = 1.

It follows from (19.8.3) that a,X) - 1 as z — O.
Putting z = ¢, we have

(19.8.4) S{x,t) = 142 i (—1)“954"’ = S(x"*, -1).
n=1
Again

o0

R(z, ))R(x, i) =TT {( 1 +da?-1)(1 —iz?-1)} = H (14-a8n-2),
1 n=1

n=

Q(.’C — ﬁ 1—-—&?2" fl{ 1—274" 1—-—.’134""2)},

n=1
and so

(19.8.5)  P(z,i)= T {(1—in)(1—an4)}

n=1
ﬁ{l x8n 1— xSn—4)2} = P(IA, -1).

Clearly P(x*, ~ 1) # 0, and so it follows from (19.8.3), (19.8.4), and
(19.85) that ay() = a,y(2%). Using this repeatedly with x#, 2% x*,...
replacing x, we have

ay(z) = ap(2t) = . . . = ag(zt)
for any positive integer k. But |z| < 1 and so 2% — 0 as k — 0. Hencc

ay(x) = lima,(z) =
20

This completes the proof of Theorem 352.

19.9. Special cases of Jacobi’s identity. If we write a* for X,

—2af and & for 2, and replace n by n+ 1 on the left-hand side of (19.8.1),
we obtain

(19.9.1) IO‘OI {(l_xzkn+k_1)( 1_x2kn+k+l)(1 _x2k7t+2k)}= % (_l)nxkn2+ln,
n=0

N= — D0

(19.9'2) ﬁ {(1+x2kn+k—1)(l+x2kn+k+l)(l,_x2kn+2k)}: i xkn’a—ln.
n=0

n=-w
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Some special cases are particularly interesting.
(i) k= 1,1=0 gives

{(—amp—gten) = (1,

"ES

li[o{ 1+x2n+1) (1-—x2"+2)}: Z x”z,

n=-—o

two standard formulae from the theory of elliptic funections.
(i) k=3,1=1}in (19.9.1) gives

ﬁ{ 1_x3n+1 (1_x3n+2)(1_x3n+3)} — i (_l)nx;n(snﬂ)
n=0 n=—m
or
THeorem 353 :

(1—x)(1—a2)(1—ad)... = (—1)nginGn+1),

Ms

n=—aw

This famous identity of Euler may also be written in the form
(19.9.3) (1—2)(1—a})(1—2a3)... = 14+ 3 (—L)yn{zinGn-D | gin@n+1)}
n=1

= l—x—x2 a4’ —x2—al5 . .

(iii) k== 17 =1 in (19.9.2) gives
[T +an)(1—a}= 3 ginosn,
n=0

=0

which may be transformed, by use of (19.4.7), into
THEOREM 354:

(1—&®) (1 —a)(1—af)...
=1 -+ S fgl0 . .
=) | Trrotat+es
Here the indices on the right are the triangular numbers.}
(ivyk=4%1=3%and k= §1= }in (19.9.1) give

THEOREM 355

ﬁ{(1“‘x5n+1)(1"‘x5n+4)(1‘“x5"+5 = E —1)nghnsnd)
n=0 n=""w
THEOREM 356
ﬁ 1 —adn+2)(1—x5n+3)(1— x5n+5} — E (—1)nginnn,
n=0 n=—o

We shall require these formulae later.
T The numbers 4n(n+ 1).
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As a final application, we replace z by ztand z by z{ in (19.8.1).
This gives

ﬁ{(l—x" I4anf)(14an-10-1)} = i ghntrDgn

n=— o
OoP

0

(12 H{ (1—a®)(1+2")(1+an{-1) =m20(§m+c—m—1)x;m(m+1)’

where on the right-hand side we have combined the terms which
correspond to n = m and n = -m- 1. We deduce that

(19.9.4) i[l{( —am)(14-2ng)(1 +an1) = Zg ( Hg )xmmm

= 3 ahmninfon(1 £ P L)

for all { except £ =0 and { = — 1. We now suppose the value of x
fixed and that { lies in the closed interval — § < { < —%. The infinite
product on the left and the infinite series on the right of (19.9.4) are
then uniformly convergent with respect to {. Hence each represents
a continuous function of { in this interval and we may let { - 1.
We have then

THEOREM 357:

o

ﬁ 1) = 3 (—1)m(2m -4 1)intn+D,

m=0

This is another famous theorem of Jacobi.

19.10. Applications of Theorem 353. Euler’s identity (19.9.3)
has a striking combinatorial interpretation, The coefficient of x* in
(1—x)(1 —22Y1—a?)...
is
(19.10.1) Y (—1y,

where the summation is extended over all partitions of n into unequal
parts, and v s the number of parts in such a Ba,rtlggn “Thus the parti-
tion 34241 of 6 contributes (—1)3 to the coefficient of 8. But (19.10.1)
is E(n)- U(n), where E(n) is the number of partitions of n into an even
number of unequal parts, and U(n) that into an odd number. Hence
Theorem 353 may be restated as

Trecrem 358.  E(n) = U(n) except when n = 1k(3k41), when
E(n)- U(n) = (= 1)k
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Thus 7T=64+1=5+2=4+3=4+2+1,
E(7) = 3, u@ = 2, E()-C(7) =1,
and 7 =4.2.(3.241), k = 2.

The identity may be used effectively for the calculation of p(n), For

(—z—sttat =1+ S ploar] = I EE LT ey

Hence, equating coefficients,

(19.10.2) p(n)—p(n—1)—p(n—2)+p(n—>5)+...
+(—1)ep{n—Jk(3k— 1)} +(— 1)ep{n—Fk(3k+ 1)} +... = 0.

The number of terms on the left is about 2./¢§x) for large n.

Macmahon used (19.10.2) to calculate p(n) up to n = 200, and found

that p(200) = 3972999029388.

19.11. Elementary proof of Theorem 358. There is a very beauti-
ful proof of Theorem 358, due to Franklin, which uses no algebraical
machinery.

We try to establish a (1,1) correspondence between partitions of
the two sorts considered in § 19.10. Such a correspondence naturally
cannot be exact, since an exact correspondence would prove that
E(n) = U(n) for all n.

We take a graph G representing a partition of n into any number
of unequal parts, in descending order. We ¢gll the lowest line AB

|
‘...i --.--/Mi

G H

(which may contain one point only) the ‘base’ g8 of the graph. From
C, the extreme north-east node, we draw the longest south-westerly line
possible in the graph; this also may contain one node only. This line
CDE we call the ‘slope’ ¢ of the graph. We write 8 < ¢ when, as
in graph G, there are more nodes in ¢ than in B, and use a similar
notation in other cases. Then there are three possibilities.

(@) B << ¢. We move B into a position parallel to and outside o, as
shown in graph H. This gives a new partition into decreasing unequal
parts, and into a number of such parts whose parity is opposite to that
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of the number in G. We call this operation 0, and the converse opera-
tion (removing ¢ and placing it below B) Q. It is plain that Q is not
possible, when f < ¢, without violating the conditions of the graph.

(b) B = a. Inthis case 0 is possible (as in graph 1) unless 8 meets ¢
(as in graph J), when it is impossible. Q is not possible in either case.

(¢) B > ¢. In this case 0 is always impossible. Q is possible (as in
graph K) unless 8 meets ¢ and 8 = o1 (as in graph L). Q is impos-
sible in the last case because it would ]ead to a partition with two equal
parts.

To sum up, there is a (1,1) correspondence between the two types
of partitions except in the cases exemplified by J and L. In the first of
these exceptional cases n is of the form

ket (k4-1)+... 4 (2k—1) = $(3k2—F),
and in this case there is an excess of gne partition into an even number
of parts, or one into an odd number, according as k is even or odd. In
the second case n is of the form

(k+1)+(k+2)+...+2k = F3k*+Ek),
and the excess is the same. Hence E(n)- U(n) is 0 unless n = $(3k%*4-k),
when E(n)- U(n) = (— 1)%. This is Euler’s theorem.

19.12. Congruence properties of p(n). In spite of the simplicity
of the definition of p(n), not very much is known about its arithmetic
properties.

The simplest arithmetic properties known were found by Ramanujan.
Examining Macmahon'’s table of p(n), he was led first to conjecture, and
then to prove, three striking arithmetic properties associated with the
moduli 5, 7, and 11. No analogous results are known to modulus 2 or 3,
although Newman has found some further results to modulus 13.

TrecReM  359: . p(dm-+4) = 0 (mod 5).
THEOREM 360: p(Tm+5) = 0 (mod 7).
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THEOREM 36 1 * : p(llm+6) =0 (mod11).

We give here a proof of Theorem 359. Theorem 360 may be proved
in the same kind of way, but Theorem 361 is more difficult.
By Theorems 353 and 357,

z{(1—2z)(1—2?)..}* = z(l—2)(1—2?)..{(1 —z)(1—a?)..}3
= 2(l—x—2z?4a%4...)(1 -3+ 53— Tab4-...)

= 3 3 (s,

where k = k(r,s) = 14+4r(3r+1)+s(s-+1).
We consider in what circumstances k is divisible by 5.
Now  2(r+1)24(2s+1)2 = 8k—10r2—5 = 8k (mod5).
Hence k = 0 (mod 5) implies
2(r+1)2+ (2s+1)2= 0 (mod 5).
Also 2(r+1)23 0, 2, or 3, (2s+1)2 =0, 1, or 4 (mod 5),

and we get 0 on addition only if 2(r4-1)* and (2s-} 1)? are each divisible
by 5. Hence k can be divisible by 5 only if 25 1 is divisible by 5, and
thus the coeffictent of xom+3 in

2{(1—x)(1—a?)...}*
is divisible by 5.
Next, in the binomial expansion of (1 —a)-%, all the coefficients are

divisible by 5, except those of 1, a5, 21°,..., which have the remainder 1.}
We may express this by writing
1 1
—— = —— (mod5);
(1—z)p 1—2° ( )
the notation, which is an extension of that used for polynomials in

§ 7.2, implying that the coefficients of every power of x are congruent.
It follows that 1—gb
- - =1 (modb)

(1-x)5 —
(1—28)(1—210)(1 —213)...

and =1 d5).
=) | (med?)
Hence the coefficient of x®m+5 in
] __ 10 __ 10
x(l 2°)(1—a70)... = z{(1—x)(1—2?).. }4 )(l Z0)...

(1-2)(1-x3)...

a7

+ Theorem 76 of Ch. VI.
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is a multiple of 5. Finally, since
x
(I—z)(1—a?)...

= x((ll__ngi:;:) (4504 ) (1+a 02+ ).

the coefficient of x5™+5 in

x _ 2 n
—ni—ai—=). °T 2 pin—1)

is a multiple of 5; and this is Theorem 359.

The proof of Theorem 360 is similar. We use the square of Jacobi’s
series 1—3x+523—T72%+... instead of the product of Euler's and
Jacobi s series.

There are also congruences to moduli 52, 72, and 112, such as

p(26m~+24) = 0 (mod 52).

Ramanujan made the general conjecture that if

§ = 5arblle,
and 24n =1 (mod3),
then p(n) =0 (mod3$).

It is only necessary to consider the cases & = 5%, 7%,11¢, since all others
would follows as corollaries.

Ramanujan proved the congruences for 52, 72, 11%, Kre¢mar that for
5%, and Watson that for general 52. But Gupta, in extending Mae-
mahon’s table up to 300, found that

p(243) = 133978259344888

is not divisible by 73 = 343; and, since 24.243 = 1 (mod 343), this ¢on-
tradicts the conjecture for 7. The conjecture for 7¢ had therefore to
be modified, and Watson found and proved the appropriate modifica-
tion, viz. that p(n) = 0 (mod 7%) if b > 1 and 24n =1 (mod 7%-2),

D. H. Lehmer used a quite different method based upon the analytic
theory of Hardy and Ramanujan and of Rademacher to calculate p(n)
for particular n. By this means he verified the truth of the conjecture
for the first values of n associated with the moduli 113 and 114" Subse-
quently Lehner proved the conjecture for 113, Dr. Atkin informs me
that he has now proved the conjecture for general 1 1¢, but his proof has
not yet been published.

Dyson conjectured and Atkin and Swinnerton-Dyer proved certain
5591 U
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remarkable results from which Theorems 359 and 360, but not 361, are

immediate corollaries. Thus, let us define the ygpk of a partition as the
Il a r ges t p ar t - sothat forexample the rank

Next we arrange the partitions of a number in five classes, each class
containing the partitions whose rank has the same residue (mod5).
Then, if n = 4 (mod 5), the number of partitions in each of the five
classes is the same and Theorem 359 is an immediate corollary. There
is a similar result leading to Theorem 360.

19.13. The Rogers-Ramanujan identities. We end this chapter
with two theorems which resemble Theorems 345 and 346 superficially,
but are much more difficult to prove. These are

THEOREM 362 :
xt z’

(—z)(1 —x")+ (l—x)(l—xz)(l—x“)+

1+lix+(

1
(I—z)(1—a)...(L—at)(1—a?)...

1.2

o zm* ® 1
(8181 14 D iy - | | gmamn—ay

THEOREM  363:

a2 a8 x12
! +’1—x+ (l—x)(l—x2)+ (1—x)(1 —z?)(1—2?) T
1
= (I—z9(1l—a7)...(1—23)(1—2®)...

1.8

i mm+1) = 1
(19132) 1+ ;(l—x)(l—xz)...(l——x"‘) = 1;[(1_Z6m+2)(1_x5m+3)'

The series here differ from those in Theorems 345 and 346 only in that
x? is replaced by x in the denominators. The peculiar interest of the
formulae lies in the unexpected part played by the number 5.

We observe first that the theorems have, like Theorems 345 and 346
a combinatorial interpretation. Consider Theorem 362, for example.
We can exhibit any square m? as

m2= 14+3+5+...4+(2m—1)
or as shown by the black dots in the graph M, in whichm =4.  If we
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now take any partition of n—m?2 into m parts at most, with the parts
in descending order, and add it to the graph, as shown by the circles
of M, where m = 4 and n = 424 11 = 27, we obtain a partition of n
(here 27 = 114-8+-6--2) into parts without repetitions or sequences,
or parts whose minimal difference is 2. The left-hand side of (19.13.1)

enumerates this type of partition of n.
. . . . ...00.0
...000
s 0 0 O

M

On the other hand, the right-hand side enumerates partitions into
numbers of the forms 5m+ 1 and 5m-+4. Hence Theorem 362 may be
restated as a purely ‘combinatorial’ theorem, viz.

Treoem  364.  The number of partitions of n with minimal difference
2 is equal to the number of partitions into parts of the forms 5m+ 1 and
5m-+4.

Thus, when n = 9, there are 5 partitions of each type,

9 , 8+1, 7+2, 643, 543+1
of the first kind, and

9, 6}14+1+1, 44441, 44141414141,
14+14+14+1414+1414141
of the second.
Similarly, the combinatorial equivalent of Theorem 363 is

TreoRem  365. The number of partitions of n into parts not less than 2,
and with minimal difference 2, is equal to the number of partitions of n
into parts of the forms 5m-+2 and 5m-3.

We can prove this equivalence in the same way, starting from the

\dentity m(m+1) = 244464+ ...+2m.

The proof which we give of these theorems in the next section was
found independently by Rogers and Ramanujan. We state it in the
form given by Rogers. It is fairly straightforward, but unilluminating,
since it depends on writing down an auxiliary function whose genesis
remains obscure. It is natural to ask for an elementary proof on some
such lines as those of § 19.11, and such a proof was found by Schur;
but Schur's proof is too elaborate for insertion here. There are other
proofs by Rogers and Schur, and one by Watson based on different
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ideas. No proof is really easy (and it would perhaps be unreasonable
to expect an easy proof).

19.14. Proof of Theorems 362 and 363. We write

’
1
=1, PT=|.|1__73’ Q =@e) =

s8=1 =

= 3r(5r41)

and define the operator 7 by

/(@) = f(ax).

We introduce the auxiliary function

(19141) H, = Hya) = 3 (—lyatrado-mr(1_gmganr)P, Q

sy
r=0

where m = 0, 1, or 2. Our object is to expand H;, and H, in powers of a.
We prove firgt that

(19.14.2) H,—H, = avyH, . (M= 1,2)

We have H,—H, = 2 — 1ya¥z'C, P, Q,,

where C,, = x—mr—gmgmr _gl-mr | gm—lyrm-1)
= gm-tgrm-1( 1 —qgr)4-g—mr( 1 —gr),
Now (1 —a2Q, = Q. (L —a)B =P, 1—2°=0
and so
Hm_ Hm—l = io(_1)ra2r+m—lx)\(r)+r(m—l)f>r Qr+1+
=

@©
+ Z= 1( - l)raer/\(r)—er_l Q .
In the second sum on the right-hand side of this identity we change r
into <41, Thus ©
H I:Im 1 rgo(_ mr rQr+1y

where D — q2rm-1pe+rm-1) _ g% +DpXr+D-mir +1)

mr

— am—l+2rx)\(r)+r(m—1)( 1—q3-m g2r+1X3-mj)

— am—-ln {aer)t(r)-—r(ii—m)( 1— a3—mx2r(3—m))}’
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since A(r-+1)—A(r) = 6r+3. Also @,,, = 7@, and so

H,—H, , =am1y 2 razrxA(r)—r(s—m)( 1—qg3-mg2r@-m\P

— gm—1
= a"nH,_,,

which is (19.14.2).
If we put m=1and m =2 in (19.14.2) and remember that H, = 1,
we have

(19.14.3) H, - qH,,
H,—H, = anHl:

so that

(19.14.4) H, = nH,+an*H,.

We use this to expand H, in powers of a. If
H, = ¢y4cia+...= 3 ¢ a8,
where the ¢, are independent of a, then ¢; = 1 and (19.14.4) gives
Yo=Y ¢ atat + Y o, z¥as+

Hence, equating the coefficients of g3 we have

1 2252 2 +4+..+2s-1) U
¢ = ) = = -1P
R — L i (1—z)...1—2%) = ¢
Hence Hy(a) = Z afx%e-DP,
§=0

If we put a = X, the right-hand side of this is the series in (19.13.1).
Also P.Q.(x) = P,and so, by (19.14.1),

Z — 1)1 —g¥er+D)
= Pw{ § (_I)rxz\(r)_;_ f (_l)rxh(r—:l)+2(2r—1);
r=0 r=1

{1+ i (— 1) (atrGr+D)_ griror— 1))}
Hence, by Theorem 356,

Hy) = B, T {(1—ao(1—zsns0)(1—awns9)

1
= ety (] — bty
H(l O] —dn+d)
This completes the proof of Theorem 362.
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Again, by (19.14.3),
Hy(a) = nHya) = Hyaz) = 2 a*e*'k,
and, for ¢ = x, the right-hand side becomes the series in (19.13.2).

Uaing (19.14.1) and Theorem 355, we complete the proof of Theorem
363 in the same way as we did that of Theorem 362.

19.15. Ramanujan’s continued fraction. We can write (19.14.14)
in the form Hy(a, x) = Hy(ax, x)+-aH,(ax? X)
so that Hy(ax, 2) = Hy(ax?, x)+axH,(az?, X).
Hence, if we define F(a) by
F(u) = Fla, 2) = H(a, x) = nHy(a, 2) = Hy(az, )
ax axt
=1
T T i—a=—a* "

then F(u) satisfies
F(ax®) = F(ax®tl)4ax"+1F (ax+?).

. Flax")
Hence, if. TS
n= F(ax"*l)
we have w, = 1+

n+1
and hence u, = F(a)/F(ax) may be developed formally as

F(a) _ , , ax ax® a3’ ,
19154) Flax) 1 1+ 14 1+...
a ‘continued fraction’ of a different type from those which we con-
sidered in Ch. X.
We have no space to construct a theory of such fractions here. It is

not difficult to show that, when |#| < 1,

azx ax2 _ax”
N el W
tends to a limit by means of which we can define the right-hand side
of (19.15.1). If we take this for granted, we have, in particular,

F() _ _*_L_ﬁ 8
Fa) 1+ 1+ I+..

and so

1.7 * 1—a?—2¥ a4 (1—2?)(1—27)...(1—a®)(1—ab)...
TFIF. T T+ (=)= (I—a)(1—2)~. '
It is known from the theory of elliptic functions that these products
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and series can be calculated for certain special values of x, and in

particular when z = g-2mvh

and h is rational. In this way Ramanujan proved that, for example,

1-|-dr e=im g—6m 5445\ 541 o
14 WH—.--_{ 2 )"_’2—} :

NOTES ON CHAPTER XIX

§ 19.1. There are general accounts of the theory of partitions in Bachmann,
Niedere Zahlentheorie, ii, ch. 3; Netto, Combinatorik (second ed. by Brun and
Skolem, 1927); Macmahon, Combinatory analysts, ii.

§§ 19.3-7. Almost all of the formulae of these sections are Euler’s. For references
see Dickson, Haustory, ii, ch. 3.

§ 19.8. Jacobi, Fundamentu noua, § 64. The theorem was known to Gauss.
The proof given here is ascribed to Jacobi by Enneper; Mr. R. F. Whitehead drew
our attention to it.

§ 19.9. Theorem 353 is due to Euler; for references see Bachmann, Niedere
Zahlentheorie, ii. 163, or Dickson, Hzistory, ii. 103. Theorem 354 was proved by
Gauss in 1808 ( Werke, ii. 20), and Theorem 357 by Jacobi ( Fundamenta noua, § 66).
Professor D. H. Lehmer suggested the proof of Theorem 357 given here.

§ 19.10. Macmahon’s table is printed in Pro¢, London Math. Soc. (2) 17 (1918),
114-15, and has subsequently been extended to 600 (Gupta, ibid. 39 (1935), 142-9,
and 42 (1937), 546-9), and to 1000 (Gupta, Gwyther, and Miller, Roy. Soc. Math.
Tables 4 (Cambridge, 1958).

§ 19.11. F. Franklin, Comptes rendus, 92 (1881), 448-50.

§ 19.12. 8ee Ramanujan, Collected Papers, nos. 25, 28, 30. These papers cou-
tain completé proofs of the congruences to moduli 5, 7, and 11 only. On p. 213
he states jdentities which involve the congruences to moduli 5% and 7% as corol-
laries, and these identities were proved later by Darling, Proc. London Math.
Soc. (2) 19 (1921), 350-72, and Mordell, ibid. 20 (1922), 408-16. A manuscript
still unpublished contains alternative proofs of these congruences and one of the
congruence to modulus 1 1% See also Newman, Can. Journ. Math. 10 (1958), 577-
86.

The papers referred to at the end of the section are Gupta’'s mentioned under
§ 19.10; Kre€mar, Bulletin de I'acad. des sciences de I'URSS (7) 6 (1933), 763-800;
Lehmer, Journal London Math. Soc. 11 (1936), 114-18, and Bull. Amer. Math.
Soc. 44 (1938), 84-90; Watson, Journal fiir Math. 179 (1938), 97-128; Lehner,
Proc. Amer. Math. Soc. 1 (1950), 172-81; Dyson, Eureka 8 (1944), 10-15; Atkin
and Swinnerton-Dyer, Proc. London Math. Soc. (3) 4 (1954), 84-106.

There has been a good deal of recent work on this and related topics. See in
particular the following papers, and the references therein: Fine, Tohoku Math.
Journ, 8 (1956), 149-64; Kolberg, Math. Scand. 10 (1962), 171-81; Lehner, Amer.
Journ. Math. 71 (1949), 373-86; Newman, Trans. Amer. Math. Soc. 97 (1960),
225-36, Illinois Journ. Math. 6 (1962), 59-63; as well as the papers of Lehner
and Newman already referred to.

1 am indebted to Dr. Atkin for the references to recent work.
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§§ 19.13-14. For the history of the Rogers-Ramanujan identities, first found
by Rogers in 1894, see the note by Hardy reprinted on pp. 344—5 of Ramanujan’s
Collected papers, and Hardy, Ramanujan, ch. 6. Schur's proofs appeared in the
Berliner Sitzungsberichte (1917), 302-21, and Watson's in the Journal London
Math. Soc. 4 (1929), 4-9. Hardy, Ramanujan, 95-99 and 107-11, gives other
variations of the proofs.

Selberg, Avhandlinger Norske Akad. (1936), no. 8, has generalized the argu-
ment of Rogers and Ramanujan, and found similar, but less simple, formulae
associated with the number 7. Dyson, Jowurnal London Math. Soc. 18 (1943),
35-39, has pointed out that these also may be found in Rogers’s work, and has
simplified the proofs considerably.

Mr. C. Sudler suggested a substantial improvement in the presenta,tion of the
proof in §19.14.



XX

THE REPRESENTATION OF A NUMBER BY TWO OR
FOUR SQUARES

20.1. Waring's problem: the numbers g(k) and G(k). Waring's
problem is that of the representation of positive integers as sums of a
fixed number ¢ of non-negative kth powers. It is the particular case of
the general problem of § 19.1 in which the a are

0%, 1k 2k 3k
and s is fixed. When £ = 1, the problem is that of partitions into s
parts of unrestricted form; such partitions are enumerated, as we saw

in Ch. XIX, by the function
1

(1—z)(1—2?)...1—=°)

Hence we take k > 2.

It is plainly impossible to represent al | integers if s is too small, for
example if § = 1. Indeed it is impossible if ¢ < k. For the number of
values of #, for which ¥ < n does not exceed n'*-- 1; and so the
number of sets of values &y, ,,..., z;_, for which

¥ 4ak < n
does not exceed
(ndk 4= 1)k-1 = k1K | O(ptk-2k),
Hence most numbers are not representable by k— 1 or fewer kth powers.

The first question that arises is whether, for a given k, there is any
fixed s = s(k) such that
(20.1.2) n = zbtaki. Jak
is soluble for every n.

The answer is by no means obvious. For example, if the a of § 19.1 are the
numbers 1,2, 2200y 20

then the number omtl__1 = 14242244 2m

is not representable by less than m+ 1 numbers a, and m+ 1 - o when
n = 2MmHl_ 1 5 o0, Hence it is not true that all numbers are representable by
a fixed number of powers of 2.

Waring stated without proof that every number is the sum of 4
squares, of 9 cubes, of 19 biquadrates, ‘and so on. His language implies
that he believed that the answer to our question is affirmative, that
(20.1.1) is soluble for each fixed k, any positive n, and an s = s(k)
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depending only on k. It is very improbable that Waring had any
sufficient grounds for his assertion, and it was not until more than 100
years later that Hilbert first proved it true.

A number representable by g kth powers is plainly representable by
any larger number. Hence, if all numbers are representable by s kth
powers, there is a least value of s for which this is true. This least value
of s is denoted by g(k). We shall prove in this chapter that g(2) = 4,
that is to say that any number is representable by four squares and
that four is the least number of squares by which all numbers are
representable. In Ch. XXI we shall prove that g(3) and g(4) exist,
but without determining their values.

There is another number in some ways still more interesting than
g(k). Let us suppose, to fix our ideas, that k = 3. It is known that
9(3) = 9; every number is representable by 9 or fewer cubes, and every
number, except 23 = 2. 234+ 7. 13 and

239 = 2.43-1-4.334-3.13,
can be represented by 8 or fewer cubes. Thus dl sufficiently large
numbers are representable by 8 or fewer. The evidence indeed indicates
that only 15 other numbers, of which the largest is 454, require so many
cubes as 8, and that 7 suffice from 455 onwards.

It is plain, if this be so, that 9 is not the number which is really most
significant in the problem. The facts that just two numbers require 9
cubes, and, if it is a fact, that just 15 more require 8, are, so to say,
arithmetical flukes, depending on comparatively trivial idiosyncrasies
of special numbers. The most fundamental and most difficult problem
is that of deciding, not how many cubes are required for the representa-
tion of all numbers, but how many are required for the representation
of all large numbers, i.e. of all numbers with some finite number of
exceptions.

We define G(k) as the least value of s for which it is true that all
sufficiently large numbers, i.e. all numbers with at most a finite number
of'exceptions, ar e representable by s kth powers. Thus G(3) < 8. On
the other hand, as we shall see in the next chapter, G(3) > 4; there are
infinitely many numbers not representable by three cubes. Thus G(3)
is 4,5, 6, 7, or 8; it is still not known which.

It is plain that G(k) < g(k)

for every k. In general, G(k) is much smaller than g(k), the value of
g(k) being’'swollen by the difficulty of representing certain comparatively
small numbers.
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20.2. Squares. In this chapter we confine ourselves to the case
k = 2. Our main theorem is Theorem 369, which, combined with the
trivial resultt that no number of the form 8m+-7 can be the sum of
three squares, shows that

9(2) = G(2) = 4.

We give three proofs of this fundamental theorem. The first (§ 20.5)
is elementary and depends on the ‘method of descent’, due in principle
to Fermat. The second (§§ 20.6-g) depends on the arithmetic of quater-
nions. The third (§ 20.11-12) depends on an identity which belongs
properly to the theory of elliptic functions (though we prove it by
elementary algebra),{ and gives a formula for the number of repre-
sentations.

But before we do this we return for a time to the problem of the
representation of a number by two squares. S

THeorem 366. A number n is the sum of two squares @;ﬂr@
all prime factors of n of the form 4m-+ 3 have even exponents imthe standard
form of n.

This theorem is an immediate consequence of (16.9.5) and Theorem
278. There are, however, other proofs of Theorem 366, independent of
the arithmetic of k(i), which involve interesting and important ideas.

20.3. Second proof of Theorem 366. We have to prove that n is
of the form of z2+-y2 if and only if

(20.3.1) n = nin,,
where n, has no prime factors of the form 4m-3.
We say that n = a?4fy*

is a primitive representation of n if (x, y) = 1, and otherwise an im-
primitive representation.

THeorem 367. If p = 4m-+3 and p n, then n has no primitive
representations.

If n has a primitive representation, then
Pl (x2+y2)’ (x:y) = 1
and so p fa, p [y. Hence, by Theorem 57, there is a number [ such
that y = Ix (modp) and so
22(14+12) = x?4-y* = 0 (modp).

t See § 20.10. 1 See the footnote to p. 281.
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It follows that 1412 = 0 (modp)
and therefore that -1 is a quadratic residue of p, which contradicts
Theorem 82.
Treorem  368. 1fp =4m--3, p°|n, p°+! [ n, and c is odd, then n has
no representations (primitive or imprimitive).
Suppose that n = g2+42, (x, y) = d; and let p¥ be the highest power
of p which divides d. Then
z=dX, y =dY, (X, Y)=1,
n = d¥X?4Y%) = d®N,
say. The index of the highest power of p which divides N is ¢—2y,
which is positive because ¢ is odd. Hence
N = X247¢? (X, Y)=1, p|N;

which contradicts Theorem 367.
It remains to prove that n is representable when n is of the form
(20.3.1), and it is plainly enough to prove %, representable. Also

(@)@ 3413 = @2ty 922+ (1Y —2291)?
so that the product of two representable numbers is itself representable.
Since 2 = 124-1% is representable, the problem is reduced to that of
proving Theorem 251, i.e. of proving that if p = 4m-4 1, then p s
representable.
Since — 1 is a quadratic residue of guch a p, there is an [ for which

. 12 = -1 (modp).
Taking n = [«/p] in Theorem 36, we see that there are integers a and b
such that I a 1
0 < b < p, 578 < bvp'
If we w-rite ¢ = lb+pa,
then le| < 4p, 0 < b*4c®< 2p.

But ¢ = Ib (modp), and so
b2+4c? = b2+1%? = b3(14+1?) = 0 (modp);
and therefore bi+tc? = p.

20.4. Third and fourth proofs of Theorem 366. (1) Another proof
of Theorem 366, due (in principle at any rate) to Fermat, is based on
the ‘method of descent’. To prove that p = 4m--1 is representable,
we prove (i) that some multiple of p is representable, and (ii) that the
least representable multiple of p must be p itself. The rest of the proof
is the same.
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By Theorem 86, there are numbers x, y such that
(20.4.2) ?+y? = mp, pfw,  PXY
and 0 < m < p. Let m, be the Ieast value of m for which (20.4.1)
is soluble, and write m, for m in (20.4.1). If my, = 1, our theorem is

proved.
If my > 1, then 1 < my; < p. Now m, cannot divide both x and vy,
since this would involve

mi| (@2-+y?) — mi|myp — my | p.
Hence we ¢an choose ¢ and d so that
2, = x—cmy, Y = y—dmy,
|x1| < dmy, 1] < dmy, 224y > 0,
and therefore

(20.4.2) 0 < 23448 < 2(3my)? < mi.
Now 2498 = 2y = 0 (modm,)
or

(20.4.3) iy = mym,,

where 0 < m, < m,, by (20.4.2). Multiplying (20.4.3) by (20.4.1), with
m = m,, we obtain
mimyp = (@P+y0)1+yi) = (@2 +Hyy,) ey, —,y)

But xxy,+yy; = 2(z—emy)+y(y—dmg) = myX,

xY1—21y = w(y—dmg)—y(T—cmy) = My Y,
where X = p-cx-dy, Y = cy—dz. Hence

mp = X2HY? (0 < my < my),

which contradicts the definition of m,. It follows that m,; must be 1.

(2) A fourth proof, ‘due to Grace, depends on the ideas of Ch. IIl.
By Theorem 82, there is a number ! for which

1?*+1 = 0 (modp).
We consider the points (X, y) of the fundamental lattice A which satisfy
= Ix (modp).
These points define a lattice M.t It is easy to see that the proportion
of points of A, in a large circle round the origin, which belong to M is

asymptotically 1/p, and that the area of a fundamental parallelogram
of M is therefore p.

1 We state the proof shortly, leaving some details to the reader,
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Suppose that A or (¢,n) is one of the points of M nearest to the
origin. Then 5 = If and so
—§¢ = ¥ = lnp (modp),

and therefore B or (— 7, £) is also a point of M. There is no point of
M inside the triangle OAB, and therefore none within the square with

sides 04, OB. Hence this square is a fundamental parallelogram of M,
and therefore its area is p. It follows that

gt = .
20.5. The four-square theorem. We pass now to the principal
theorem of this chapter.

Trecrev 369 (LAGRANGE'S TrEGReM) . Every positive integer s the
sum of four squares.

Since

(20.5.1) (zi+ai+ai+ad)(yi+yi+yit+ud)
= (@2 Yty Ys 20 Ya) 2 (X Yo — T2 Y1 T X3 Ys—Ta Ys)®
(@ Y3— 23 Y F 2 Yo— 0 Y0+ (11 Y2y Y1+ %3 Ys— 23 Ya),
the product of two representable numbers is itself representable. Also
1 =124024024-02 Hence Theorem 369 will follow from

Trecrem 370.  Any prime p is the sym of four squares.

Our first proof proceeds on the same lines as the proof of Theorem 366
in § 20.4 (1). Since 2 = 1241%24+024-0% we can take p > 2.

It follows from Theorem 87 that there is a multiple of p, say mp,
such that mp = x§+x§+x§+xz’
with z;, z,, #3, x, not all divisible by p; and we have to prove that the
least such multiple of p is p itself.

Let myp be the least such multiple. If m, = 1, there is nothing more
to prove; we suppose therefore that mg > 1. By Theorem 87, m, < p.

If my is even, then x,+-x,+24-+2, is even and so either (i) &y, &, 3, 24
are all even, or (ii) they are all odd, or (iii) two are even and two are

6dd. In the last case, let us suppose that z,, z, are even and , x,

are odd. Then in all three cases

Xy 4%, Zy—y, Tty T3
are all even, and so

2 _ »\2 2 _ae\2
e S R M a iy
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is the sum of four integral squares. These squares are not all divisible
by p,since x;, z,, 25, x, are not all divisible by p. But this contradicts
our definition of m,. Hence m, must be odd.
Next, z,, Z,, X5, , are not all divisible by m,, since this would imply
mg|mep —> mg| p,
which is impossible. Also m, is odd, and therefore at least 3. We can
therefore choose b,, b,, b,, b4 so that

Yi = x‘i_bimo (I = 1’2)3:4)

satis fy | < dme,  yi+yityityl>o.
Then 0 < yi+yd+udtok < 40m) = m},
and yi+yi+yi+y? = O (modomy).

It follows that
af+ag+aitag = mp  (me < p),
Yityityitul = memy (0 <my <my);
and so, by (20.5.1),
(20.5.2) mim,p = 23428428424,
where z,, z,, 23, 24 are the four numbers which occur on the right-hand
aide of (20.51). But

2= 2% y; =3 Zy(x;—bymg) = 2% =0 (modm,);
and similarly z,, z, z, are divisible by m,. We may therefore write
and then (20.52) becomes
mp = GHG+R+,
which contradicta the definition of m, because m; < m,.
It follows that m, = 1.

20.6. Quaternions. In Ch. XV we deduced Theorem 251 from
the arithmetic of the Gaussian integers, a subclass of the complex
numbers of ordinary analysis. There is a proof of Theorem 370 based
on ideas which are similar, but more sophisticated because we use
numbers which do not obey all the laws of ordinary algebra.

Quaternionst are ‘hyper-complex’ numbers of a special kind. The
numbers of the system are of the form

(20.6.1) ¥ = aytay iy +-a, iy+-ag i,

t We take the elements of the algebra of quaternions for granted. A reader who
knows nothing of quaternions, but accepts what is stated here, will be able to follow
§§ 20.7-9.
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where a,, a,, dy, a3 are real numbers (the coordinutes of «), and ¢y, fg, %3
elements characteristic of the system. Two quaternions are equal if
their coordinates are equal.

These numbers are combined according to rules which resemble those
of ordinary algebra in all respects but one. There are, as in ordinary
algebra, operations of addition and multiplication. The laws of addition
are the same as in ordinary algebra; thus

atB = (a+ayt+asiy+-azig)+(by+by 9 +by15,1+by15)
= (@p+bo) (@, +by)iyF(@a+by)ip (a3 +by)ts.

Multiplication is associative and distributive, but not generally com-

mutative. It is commutative for the coordinates, and between the
coordinates and i,, i,, #g; but

B=i=i=—]
(206.2) | . . . R -
I 13 = U = —lgly, U130 = g = —yly, Y12 = U9 = iyl
Generally,

CogFCy1,+Coip-FCaty,
where

Co = @oby—a,b,—~ayby—ayb,,
(206.0) ¢ = agbyta,by-ta,b—agb,,
0y = @yby—a,by+asbyt+ayby,
€s = @yby-t+a,by—ayb,--a4b,.
In particular,
= aj+ai+ai+a,
the coefficients of i,, 1y, i3 in the product being zero.

We shall say that the quaternion o is integral if a, a, a,, @, are either
(i) all rational integers or (ii) all halves of odd rational integers. We
are interested only in integral quaternions; and henceforth we use
‘guaternion’ to mean ‘integral quaternion’. We shall use Greek letters

for quaternions, except that, when a, =a, = ¢, =0 and so ¢ = a,,, we
shall use a, both for the quaternion

ay+0.5,+0.3,40.1,
and for the rational integer a,.
The quaternion
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is called the conjugate of o = ay+a,1,+a,t,+a,1,, and
(20.6.7) No = aa = ax = af+-ai+-ajtal
the norm of . The norm of an integral quaternion is a rational integer.
We shall say that y is odd or even according as N« is odd or even.
It follows from (20.6.3), (20.6.4), and (20.6.6) that

of = Bs,
and so

(20.6.8) N(aB) = of.af = of.Bi = «.NB.@ = a&.NB = NaNB.
We define a1, when « # 0, by

20.6.9 = S

( ) « N

so that

(20.6.10) acl = ala = 1.

If @ and a1 are both integral, then we say that « is a unity, and write
o =€ Since ee* = 1, NeNe ! = 1 and so NE = 1. Conversely, if « is

integral and Na: = 1, then ¢~1 = g is also integral, so that « is a unity.
Thus a unity may be defined alternatively as an integral quaternion
whose norm is 1.

If a,,, a,, @, @y are all integral, and a+a2+a3+a? =1, then one of
ai,... must be 1 and the rest 0. If they are all halves of odd integers,
then each of ad,... must be }. Hence there are just 24 unities, viz.
(20611) 41, iy, by ki H(E1diydiycds).

If we write

(20.6.12) p - H14i+a41y),
then any integral quaternion may be expressed in the form
(20.6.13) koptkytytkyty-tkyts,

where ko, k,, k,, k, are rational integers; and any quaternion of this
form is integral. It is plain that the sum of any two integral quaternions
is integral. Also, after (20.6.3) and (20.6.4),

P = H—1Hitiptis) = p-l,
pi, = $(—1+41i+40—13) = —p-tiy+iy,
tp = H—lt+i—i+15) = —p+iy+is
with similar expressions for pi, etc. Hence all these products are integral,
and therefore the product of any two integral quaternions is integral.
If ¢ is any unity, then ex and «e are said to be associates of a, Asso-
ciates have equal norms, and the associates of an integral quaternion

are integral.
6691 X
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If y = of, then y is said to have o as a left-hand divisor and 8 as
a right-hand divisor. If o = @, or B = b,, then of = B« and the dis-
tinction of right and left is unnecessary.

20.7. Preliminary theorems about integral quaternions. Our
second proof of Theorem 370 is similar in principle to that of Theorem
25 1 contained in § 128 and 15.1. We need some preliminary theorems.

Treorem 371. If g is an integral quaternion, then one at least of its
associates has integral coordinates; and if o is odd, then one at least Of
its associates has non-integral  coordinates.

(1) If the coordinates of g itself are not integral, then we can choose
the signs so that

o = (byt-byty+byigtbyis)+ 3 (1 L0y 4ip41s) = B+,
say, where by, by, by, b, are even. Any associate of 8 has integral coordi-
nateq, and vy, an associate of y, is 1. Hence oy, an associate of a, has
integral coordinates.

(2) If o is odd, and has integral coordinates, then

o = (bot-by by igbyig)+(CotCy 8y +CyiatCat) = By,
say, where by, b,, b,, by are even, each of ¢, ¢;, ¢y, €3 is 0 or 1, and
(since N« is odd) either one is 1 or three are. Any associate of B has
integral coordinates. It is therefore sufficient to prove that each of the
quaternions

1 , iy, By, g 1ig iy, 14iytis, 1hirtiy, 63+oy+is
has an associate with non-integral coordinates, and this is easily verified.
Thus, if y = 4,, then yp has non-integral coordinates. If

Y = 14ipt1y = (i tigtig)—iy = Atp
or y = tttptig = (L+5+ip+1i5)—1 = /\'JI‘IL;
then Ae = A 3(1—i —ip—1) = 2

and the coordinates of ye are non-integral.

Theorem 372. If k is an integral quaternion, and m a positive integer,
then there is an integral quaternion A such that

N(x—md) < m2
The case m = 1 is trivial, and we may suppose m > 1. We use the
form (20.6.13) of an integral quaternion, and write

K = kopthti+htatkyty A=Tptli+liatlss,
where kg ,..., 1, ,... are integers. The coordinates of «—mA are
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%(ko‘mlo), Mo+ 2k, —m(ly4-21,)}, 3{ko+ 2k —m(ly+21,)},
Hko+2ky —m(ly+21y)}.
We can choose [, 1,, I,, I3 in succession so that these have absolute
values not exceeding }m, 3m, im, im; and then
N(k—md) < $m?4-3.3m? < m.
Trecrem 373, If o and B are integral quaternions, and B # 0, then
there are integral quaternions A and y such that

o = AB+y, Ny < NB.
We take k = of, m = PB- NB,
and determine ) as in Theorem 372. Then
(«x—AB)B= k—Am= «k—md,
N(a—AB)NB = N(x—mX)< m?
Ny = N(a—Ag) < m = NB.

20.8. The highest common right-hand divisor of two quater-
nions. We shall say that two integral quaternions g and B8 have a
highest common right-hand divisor § if (i) & is a right-hand divisor of
and B, and (i) every right-hand divisor of » and B is a right-hand divisor
of 8; and we shall prove that any two integral quaternions, not both 0,
have a highest common right-hand divisor which is effectively unique.
We could use Theorem 373 for the construction of a ‘Euclidean algo-
rithm’ similar to those of §§ 12.3 and 12.8, but it is simpler to use ideas
like those of §2.9 and 15.7.

We call a system S of integral quaternions, one of which is not 0,
a right-ideal if it has the properties

(i) xeS.BeS —» a4Be 8,
(i) x € S = Aa e S for all integral quaternions ):

the latter property corresponds to the characteristic property of the
ideals of § 15.7. If & is any integral quaternion, and S is the set (A3)
of all left-hand multiples of § by integral quaternions A, then it is plain
that S is a right-ideal. We call such a right-ideal a principal right-ideal.

THeOREM 374. Every right-ideal ¢s a principal right-ideal.

Among the members of S, not 0, there are some with minimum norm:
we call one of these 8. If y € S, Ny < N3, then y = 0.

If « €S then a—A3 € S, for every integral A, by (i) and (ii). By
Theorem 373, we can choose ) so that Ny = N(a—A8) < N§. But then
y =0, « = A3, and so S is the principal right-ideal (),
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We can now prove

THeoREM 375. Any two integral quaternions ¢ and g8, not both 0, have
a highest common right-hand divisor 8, which is unique except for a left-
hand unit factor, and can be expressed in the form

(20.8.1) 8 = patiB,
where p and v are integral.

The set S of all quaternions pa+u8 is plainly a right-ideal which,
by Theorem 374, is the principal right-ideal formed by all integral
multiples A8 of a certain 3. Since S includes §, S can be expressed in
the form (20.8.1). Since S includes o and 8, S is a common right-hand
divisor of @ and 8; and any such divisor is a right-hand divisor of every
member of S, and therefore of 8. Hence S is a highest common right-
hand divisor of y and 8.

Finally, if both S and &’ satisfy the conditions, 8’ = A and S = A’¥’,
where Aand )" are integral. Hence S = A’A§, 1 = A’A,and Aand X’ are
unities.

If S is a unity e , then all highest common right-hand divisors of & and
B are unities. In this case

patv'B = e

for some integral u’, v'; and
(e )at(e )8 = 1;

so that

(20.8.2) patvp = 1
for some integral p, y. We then write
(20.8.3) (e, B), = 1.

We could of course establish a similar theory of the highest common
left-hand divisor.

If ¢ and 8 have a common right-hand divisor 8, not a unity, then
No and NS have the common right-hand divisor NS > 1. There is one
important case in which the converse is true.

Theorem 376. If ¢ is integral and 8 = m, a positive rational integer,
then a necessary and sufficient condition that (o, 8), = 1 is that
(No, NB) = 1, or (what is the same thing) that (Na,m) = 1.

For if («,8), = 1 then (20.8.2) is true for appropriate g, v. Hence
N(pa) = N(1—vf) = (1—mv)(1—m2),
NuNa = 1—myv—mi+m2Nv,
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and (Na«, m) divides every term in this equation except 1. Hence
(o, m) = 1. Since NB = m?, the two forms of the condition. are
equivalent

20.9. Prime quaternions and the proof of Theorem 370. An
integral quaternion =, not a wunity, is said to be prime if its only divisors
are the unities and its associates, i.e. if 7 = of implies that either a or
B is a unmity. It is plain that all associates of a prime are prime. If
7 = of, then N= = NaNB, so that x is certainly prime if Nz is a
rational prime. We shall prove that the converse is also true.

Trecrem 377.  An integral quaternion # is prime if and only if its
norm Nz is a rational prime.

Since Np = p?, a particular case of Theorem 377 is

Trecrem 378. A rational prime p cannot be a prime quaternion.

We begin by proving Theorem 378 (which is all that we shall actually
need).

Since 2 = (142, )(1—13y),
2 is not a prime quaternion. We may therefore suppose p odd.

By Theorem 87, there are integers r and s such that

0<r<p, 0<s<p, 1472452 = 0 (modp).
If o = 14-si,—ris,
then No = 1472152 = 0 (modp),

and (Na,p) > 1. It follows, by Theorem 376, that « and p have a
common right-hand divisor & which is not a unity. If

a = 835, P = 3,98,
then 8, is not a unity; for if it were then & would be an associate of p,
in which case p would divide all the coordinates of
x = 8,6 = 3,8;1p,

and in particular 1. Hence p = 8,8, where neither 8 nor §, is a unity,
and so p is not prime.

To complete the proof of Theorem 377, suppose that 7 is prime and
p a rational prime divisor of N#. By Theorem 376, » and p have a
common right-hand divisor =’ which is not a unity. Since = is prime,
' is an associate of  and N#' = Nz. Also p = An’, where A is
integral; and p? = NAN7' = NANm, so that NXis 1 or p. If NA were
1, p would be an associate of 7' and =, and so a prime quaternion,
which we have seen to be impossible. Hence No = p,a rational prime.



310 THEREPRESENTATI ONOFANUMBERBY [Chap. XX

It is now easy to prove Theorem 370. If p is any rational prime,
p = Am, where NA = Ng = p. If 7 has integral coordinates a,, a,, a,,
a4, then 0= Nr= al+ai+altal
If not then, by Theorem 371, there is an associate «' of 7 which has
integral coordinates. Since

= N=» = N«/,
the conclusion follows as before.

The analysis of the preceding sections may be developed so as to
lead to a complete theory of the factorization of integral quaternions
and of the representation of rational integers by sums of four squares.
In particular it leads to formulae for the number of representations,
analogous to those of § 16.9-10. We shall prove these formulae by a
different method in § 20.12, and shall not pursue the arithmetic of
quaternions further here. There is however one other interesting
theorem which is an immediate consequence of our analysis. If we

suppose p odd, and select an associate =’ of # whose coordinates are
halves of odd integers (as we may by Theorem 371), then

p = Nm= Nu' = (bt 3P (byt- 4+ (bat-41+ (B
where b,,... are integers, and
4p = (2bo+1)2+(2b,+ 1)+ (2b,+1)2+(2b3+ 1)
Hence we obtain

Treoem 379.  If p s an odd prime, then 4p is the sum of four odd
integral squares.

Thus 4.3 = 12 = 12412412432 (but 4.2 = 8 is not the sum of four
odd integral squares).
20.10. The values of g(2) and G(2). Theorem 369 shows that

G(2) < 9(2) L4
On the other hand,

(2m)? =0 (mod4), (2m+1)2 =1 (mod 8),
so that 2% =0, 1, or 4 (mod 8)
and x?+y?+2% =£ 7 (mod 8).

Hence no number 8m--7 is representable by three squares, and we
obtain

TrEREM  380: g(2) = G(2) = 4.
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If 224 y%422 = O (mod 4), then all of X, y, z are even, and
M2 = (P ()t (b2
is representable by three squares. It follows that no number 4%(8m--7)

is the sum of three squares. It can be proved that any number not of
this form is the sum of three squares, so that

n # 4%(8m+-7)
is a necessary and sufficient condition for n to be representable by three
squares; but the proof depends upon the theory of ternary quadratic
forms and cannot be included here.

20.11. Lemmas for the third proof of Theorem 369. Our third
proof of Theorem 369 is of a quite different kind and, although
‘elementary’, belongs properly to the theory of elliptic functions.

The coefficient r.,(n) of 2% in

(1+2x42224...)% = ( > x’"’)4
m = —
is the number of solutions of
n = mi+mi+mi+m?
in rational integers, solutions differing only in the sign or order of the
m being reckoned as distinct. We have to prove that this coefficient

is positive for every n.
By Theorem 312

(1+2x4-2244...)2 = 1+4(1 = I*—xs 1

and we proceed to find a transformation of the square of the right-hand
side.

In what follows x is any number, real or complex, for which |z| < 1.
The series which we use, whether simple or multiple, are absolutely
convergent for |x| < 1. The rearrangements to which we subject them
are all justified by the theorem that any absolutely convergent series,
simple or multiple, may be summed in any manner we please.

W . xr
e write Up = T
z
so that m = u,(14-u,).
We require two preliminary lemmas.
THEOREM 381: i Up(14+u,,) =n§:1nu

m=1
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> = nat
[, mn __ mn __ .

Z: xm)2 2 z ne 21 mzlx = 1—an
THEOREM  382:

Dty
m=1

3 (— 1 Mg ty) = 3 (20—
For

2]

_1 m— 1x2m =)
z 1 2m Z _1)m lzrxmnr
-

4 m=1
© © O
— r —1Ym-1g2mr __ Z
rgl mz=1( ) “ 14a%
2 ra¥ 2radr > (2n—1)win-2
= 21 1—zr 11— = Z 1—_zin-2 °
r=

n

1
20.12. Third proof of Theorem 369: the number of repre-

sentations. We begin by proving an identity more general than the
actual one we need.

Theorem 383. If @ is rea and not an even multiple of #, and if
L = L(x,0) = }cot104u,sin 0+ u,sin 26 +...,
Ty = Ty(x,0) = (Fcot 16)2-+u,(14u;)cos B-+uy(1+uy)cos 26 4.,
T, = Ty(z, e) = 3{u;(1—cos )+ 2u,(1—cos 260)+ 3uy(1—cos 30)+...},
then L* = T\ +T,.

We have

L= {%cot %H-I—iun sin n()}z

(}cot 36)2 41 Eu cot 10 sinnf+ E zu u,, sin mf sin nd
m=1n=1
= (4 cot 36) +51+Sz,
say. We now use the identities
1cot30sinnb = 1-+cosf+cos 26+...4-cos(n—1)8+4-4 cosnb,

2sinmfsinnf = cos(m—n)f—cos(m+n)f,
which give

S, = e.Zun{%%—cos 0-+cos 264-...-+-cos(n—1)8+1 cos nf},

n=

S, = 1 E Uy UpfCOS(Mm—n)0—cos(m+n)6}.
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o .
and L2 = (}cot16)24-Cy+ > Cy coskd,
K1
say, on rearranging §; and S, as series of cosines of multiples of 8.t
w0
We consider C first. This coefficient includes a contribution 4 Y w,
1

0
from §,, and a contribution } 2 u2 from the terms of §, for which
m = n. Hence

G

(% = }5 n—Fun = %

n=1 1

Ms

nu,,

by Theorem 381.
Now suppose k > 0. Then 8, contributes

2] L= o)
%uk‘*‘ Z u, = ux+ Z U+
n=k+1 =1
to G, while 8, contributes
1
% 2 umun—*‘% Z U Up—2 Z U Ugs
m-n=k n ‘m—k min—*k
where m > 1, n 2> 1 in each summation. Hence

@© © k-1
C, _tu+ D> w g+ Y wu,—3 Y uwu, .
| o = BUk ;__lkﬂ glzlm 2l=zlzkz
The reader will easily verify that

WUy = U(l-Hwtug )

and Ut W Upyy = Up(U—Upyy).
Hence

Ce = “k[‘H‘ E Up—Uppg) %gl 1+ul+uk—l):

uk{e}+u1+u2+...+uk— (k—1)—(uy+ug+...+uey)}
(14w, —1k),

and so
L2 = (toot 30)*+} X mu,+ 3 (14w, —pk)cos kf

(4 cot 36)%+ Z w (14w, )cos k043 2 ku,(1—cos kf)
T(x, 6) +Tz(x, 9).

t To justify this rearrangement we have to prove that

El[uﬂl(i—}- |cos 8]+ ...+ }|cos nb|)
n=

[-e] -2}
and S T fupllugl(lcos(m-n)é]+|cos(m—n)8])
m=1n=1

are convergent. But this is an immediete consequence of the absolute convergence of
[o] [ee] 2]
T nup, T 3 uyu,

n=1 m=1n=1
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THEOREM 384 :
(d+u—ugtu;—u,+...)°
= o+ 3w+ 2up+ Bugt-bus+ 6ug+Tu +9upt-.),
where in the last series there are no ferms in u,, ug, Ujg... .
We put 6 = 1= in Theorem 383. Then we have

T - 3 () (1),

TZ = % Z (2m_1)“2m—1+2m§1(2m_1)u4m—2'

m=1

Now, by Theorem 382,
Ty - f5— 2 (2m—1)ug,

m=1
and so TH-T, = & +3(uy+2uy+ 3ug+Sus+...).
From Theorems 312 and 384 we deduce
THEOREM 385:
(1422424 4-22%4 .. )4 = 148 3 mu,,
where m runs through all positive integral values which are not multiples of 4.
Finally,

, r mx™ R S »
83 mu, = 82 — = 8> mrglx = Snglcnx ,

where Cp= 2 m
min, 4/ m

is the sum of the divisors of n which are not multiples of 4.
It is plain that ¢, > 0 for all n > 0, and so r,(n) > 0. This provides
us with another proof of Theorem 369; and we have also proved

THEoREM 386. The number of representations of a positive integer n as
the sum of four squares, representations which differ only in order or sign
being counted @8 distinct, is 8 times the sum of the divisors of n which are
not multiple8 of 4.

20.13. Representations by a larger number of squares. There
are similar formulae for the numbers of representations of n by 6 or 8

squares. Thus ren) = 16 z X(d)d2—4 z x(d)dz,
din dln
where dd’ = n and x(d), as in§ 16.9, is 1, -1, or 0 according as d is
4k+1, 4k—1, or 2k; and
r(n) = 16(—1)» > (—1)%d?.

dln
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These formulae are the arithmetical equivalents of the identities
(14 2x+2244-...)8

2 2.2 2.3 2 2.3 2.5
=1+16(1x 22y 32 +m)_(1x 32y 52 ),

1+x2+1+x4+1+x6 1—z 1—28 " 1—28

3 3x2 3.3
and (14224 2x44..)8 = 1+16( 132z 2% 3% )

14+ 1—a? 1+x3+"'

These identities also can be proved in an elementary manner, but have
their roots in the theory of the elliptic modular functions. That r,(n)
and rg(n) are positive for all n is trivial after Theorem 369.

The formulae for r,(n), where s = 10,12,..., involve other arithmetical
functions of a more recondite type. Thus r,,(n) involves sums of powers
of the complex divisors of n.

The corresponding problems for representations of n by sums of an
odd number of squares are more difficult, as may be inferred from
§ 20.10. When s is 3, 5, or 7 the number of representations is expressible

as a finite sum involving the symbol gof Legendre and Jacobi.
0

NOTES ON CHAPTER XX

§ 20.1. Waring made his assertion in Meditationes algebraicae (1770), 2045,
and Lagrange proved that g(2) = 4 later in the same year. There is an exhaustive
account of the history of the four-square theorem in Dickson, History, ii, ch. viii.

Hilbert's proof of the existence of g(k) for every k was pubiished in Gﬁttinger
Nachrichten (1909), 17-36, and Math. Annalen, 67 (1909), 281-305. Previous
writers had proved its existence when k =3, 4, 5,6, 7,8, and 10, but its value
had been determined only for K = 3. The value of g(k) is now known for all k
except 4 and 5: that of G(K) for k = 2 and k = 4 only. Thc determinations of
9(k) rcst on a previous determination of an upper bound for G(K).

See also Dickson, History, ii, ch. 25, and our notes on Ch. XXI.

Lord Saltoun drew my attention to an error on p. 298.

§ 20.3. This proof is due to Hermite, Journal de math. (1), 13 (1848), 15 (Euvres,
i. 264).

§ 20.4. The fourth proof is due to Grace, Journal London Math. Soc. 2 (1927),.
3-8. Grace also gives a proof of Theorem 369 based on simple properties of four-
dimensional lattices.

§ 20.5. Bachet enunciated Theorem 369 in 1621, though he did not profess to
have proved it. The proof in this section is subatantially Euler’s.

§§ 20.6-g. These sections are based on Hurwitz, Vorlesungen tiber die Zahlen-
theorie der Quaternionen (Berlin, 1919). Hurwitz develops the theory in much
greater detail, and uses it to find the formulae of § 20.12. We go so far only as
is necessary for the proof of Theorem 370; we do not, for example, prove any
general theorem conceming uniqueness of factorization. There is another account
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of Hurwitz’s theory, with generalizations, in Dickson, Algebren und ihre Zahlen-
theorie (Ziirich, 1927), ch. 9.

The first arithmetic of quaternions wag constructed by Lipschitz, Unfer-
suchungen ther die Summen von Quadraten, Bonn, 1886. Lipschitz defines an
integral quaternion in the most obvious manner, viz. as 0ne with integral coordi-
nates, but his theory is much more complicated than Hurwitz's. Later, Dickson
[Proc. London Math. Soc. (2) 20 (1922), 225-32] worked out an alternative and
much simpler theory based on Lipschitz's definition. We followed this theory
in our first edition, but it is less satisfactory than Hurwitz's: it is not true, for
example, in Dickson’s theory, that any two integral quaternions have a highest
common right-hand divisor.

§ 20.10. The ' three-square theorem’, which we do not prove, is due to Legendre,
Essai sur la théorie des nombres (1798), 202, 398-9, and Gauss, D.A., § 291. Gauss
determined the number of representations. See Landau, Vorlesungen, i. 114-25.
There is another proof, depending on the methods of Liouville, referred to in the
note on § 20.13 below, in Uspensky and Heaslet, 465-74.

§§ 20.11-12. Ramanujan, Collected papers, 138 et seq.

§ 20.13. The results for 6 and 8 squares are due to Jacobi, and are contained
implicitly in the formulae of §§ 40-42 of the Fundamenta nova. They are stated
explicitly in Smith’s Report on the theory of numabers (C’Ollected papers, i. 306-7).
Liouville gave formulae for 12 and 10 squares in the Journal de math. (2) 9 (1864),
296-8, and 11 (1866), 1-8. Glaisher, Pro¢, London Math. Soc. (2) 5 (1907), 479-90,
gave a systematic table of formulae for Tzs(n) up to 2¢ = 18, based on previous
work published in vols. 36-39 of the Quarterly Journal of Math. The formulae
for 14 and 18 squares contain functions defined only as the coefficients in certain
modular functions and not arithmetically. Ramanujan (Collected papers, no. 18)
continues Glaisher’s table up to 2s = 24.

Boulyguine, in 1914, found general formulae for r,,(n) in which every function
which occurs has an arithmetical definition. Thus the formula for ry(n) contains
functions 3 ¢(x;, x,,..., T;), where ¢ is a polynomial, ¢ has one of the values 25— 8,
28— 16,..., and the summation is over all solutions of z3+ %+ . . . +} = n. There
are references to Boulyguine’s work in Dickson's History, ii. 317.

Uspensky developed the elementary methods which seem to have been used
by Liouville in a series of papers published in Russian: references will be found
in a later paper in Trans. Amer. Math. Soc. 30 (1928), 385—404. He carries his
analysis up to 2s = 12, and states that his methods enable him to prove Bouly-
guine’s general formulae.

A more analytic method, applicable also to representations by an odd number
of squares, has been developed by Hardy, Mordell, and Ramanujan. See Hardy,
Trans. Amer. Math. Soc. 21 (1920), 255-84, and Ramanujan, ch. 9; Mordell,
Quarterly Journal of Math. 48 (1920), 93-104, and Trans. Camb. Psl, Soc. 22
(1923), 361-72; Estermann, Acta arithmetica, 2 (1936), 47-79; and nos. 18 and
21 of Ramanujan's Collected papers.

Woc defined Legendre’s symbol in § 6.5. Jacobi’s generalization is defined in
the more systematic treatises, e.g. in Landau, Vorlesungen, i. 47.
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REPRESENTATION BY CUBES AND HIGHER POWERS

21.1. Biquadrates. We defined ¢ Waring's problem’ in § 20.1 as the
problem of determining g(k) and G(k), and solved it completely when
k = 2. The general problem is much more difficult. Even the proof
of the existence of g(k) and G(k) requires quite elaborate analysis; and
the value of G(K) is not known for any k but 2 and 4. We give a sum-
mary of the present state of knowledge at the end of the chapter, but
we shall prove only a few special theorems, and these usually not the
best of their kind that are known.

It is easy to prove the existence of g(4).

‘“THEOREM 387. g(4) exists, and does not exceed 50.

The proof depends on Theorem 369 and the identity
(21.1.1) 6(a24-b2+c24d2)2 = (a+b)i+(a—b)*+(c+d)i4(c—d)t

+ate)+ (@—o)+ (b+d)*+(b—d)*
+(a+d)*+(a—d)*+(b+c) +(b—c).
We denote by B, a number which is the gum of ¢ or fewer biguadrates.
Thus (21.1.1) shows that

6(a2+b2+02+d2)2 = B12’
and therefore, after Theorem 369, that

(21.1.2) 62 = B,
for every z.
Now any positive integer n is of the form
n = 6N-r,

where N > 0and ris 0, 1, 2, 3, 4, or 5. Hence (again by Theorem 369)
n = 6(+ad+ai+ad)+r;
and therefore, by (21.1.2),
n = B+ B+ B+ Biyt+r = Bygtr = By

{since r is expressible by at most 5 1’s). Hence g(4) exists and is at
most  53.

It is easy to improve this result a little. Any n 2> 81 is expressible as

n = 6N-}t,

where N > O,andt = 0, 1, 2, 81, 16,0r 17,accordingasn =0, 1,2, 3, 4,
or 5 (mod6). But

1 =14, 2 = 14414, 81 = 3%, 16 = 24, 17 = 24414,
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Hence ¢t = B, and therefore
n = B48+_32 = BSO!
so that any n > 81 is By,
On the other hand it is easily verified that n = B,y if 1 <n < 80.

In fact only 79 = 4.24415.14
requires 19 biquadrates.

21.2. Cubes : the existence of G( 3) and g(3). The proof of the
existence of g(3) is more sophisticated (as is natural because a cube
may be negative). We prove first

THeorem 388: G(3) € 13.

We denote by C, a number which is the sum of s non-negative cubes.

We suppose that z runs through the values 7, 13, 19,... congruent to
1 (mod 8), and that ], is the interval

$(z) = NP (B+1P+12528 < n < 142° = Plz).

It is plain that ¢(z+6) < $(z) for large z, so that the intervals I,

ultimately overlap, and every large 7 lies in some I,. It is therefore

sufficient to prove that every n of I, is the sum of 13 non-negative cubes.
We prove that any n of I, can be expressed in the form

(21.2.1) n = N48224 6msz3,
where

(21.2.2) N = C;, 0 <m< 28
We shall then have m = x4 ai4a2{al,

where 0 < #; < 23; and so
n = N4+824+623(x3+ad+ad+ad)
4
N+ 3 (o + (@)
C+G = (s
It remains to prove (21.2.1). We define 7, s, and N by
N = 6r (modz%) (1 <r K28,
N = s¢+4 (modé) (0 < s <5H),
N = (r+ 1P+ (r—1)342(z3—r)34-(82)3.
Then N = C; and

0 <N < (23+10+4322+1252% = $(2)—82% < n—8,
so that

(21.2.3) 82 < n-N < 142°,
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Now N = (r+134+(r—1p3—2% = 6r = n = n—82° (mod2?).

Also ® = x (mod 6) for every z, and so
N = r414r—142(3—r) 482 = 22°+s2
= (248} = 248 =n—2

n-8 = n—82? (Mod6).
Hence n-N-89 is a multiple of 62%. This proves (21.2.1), and the
inequality in (21.2.2) follows from (21.2.3).

The existence of g(3) is a corollary of Theorem 388. It is however

interesting to show that the bound for G(3) stated in the theorem is
also a bound for g(3).

il

21.3. A bound for g(3). We must begin by proving a sharpened
form of Theorem 388, with a definite limit beyond which all nhumbers
are Cy3.

THEOREM 389. If n 2> 10%, then n = Cy,.
We prove first that qS 2+6) < J(2) if z > 373, or that
1194 (B 12+ 1256 < 14(6—6)°,
ie.
(21.3.1) 14(| - f ) 1243 + +t9,
if £ > 379. Now (1-8)ym > l—mb‘
B 54
if 0 < 8 < 1. Hence (1—9) >1—-=

if t >~ 6; and so (21.3.1) is satisfied if
54 128
1—— )| > 12 )
14( t) +a + +t9
. 128
or if 2(t—17.54) > 2-}- +

This is clearly true if { 2> 7.54-- 1 = 379.

It follows that the intervals J, overlap from z = 373 onwards, and n
certainly lies in an I, if 0 > 14(373),
which is less than 102,

We have now to consider representations of numbers less than 102,
It is known from tables that all numbers up to 40000 are C,, and that,

among these numbers, only 23 and 239 require as many cubes as 9.
Hence

n=0 (1<n<239), n=¢ (240 <n < 40000).
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Next, if N >> 1 and m = [N?#], we have
N—m3 = (N#B—m3 3N} Nt—m) < 3Ni,
Now let us suppose that
240 < n < 10%
and put n = 240+N, 0 € N < 10%,
Then

Z
|
o
+
2
3
|

= [N, 0 < N, < 3N%,
N = mi+N, my = [Ni], 0 < N, <3N},
Ny = mi+N;, my = [Ni], 0 < N; <3N
Hence

(21.3.2) n = 2404+N = 2404 Ny+mP+md+mi+-mi+md.
Here
0 N, <3N <3N ..
< g, 3% gar 3@ 3@ NGO*

N\(3)p 10%) (3)° 0
~ 27(5_7) < 27( 2@ < 35000,

Hence 240 < 240-+N; < 35240 < 40000,

and so 240+Nj is Cg; and therefore, by (21.3.2), n is Cj3. Hence all
positive integers are sums of 13 cubes.

THEOREM 390: g(3) < 13.

The true value of g(3) is 9, but the proof of this demands Legendre’s
theorem ($20.10) on the representation of numbers by sums of three
squares. We have not proved this theorem and are compelled to use

Theorem 369 instead, and it is this which accounts for the imperfection
of our result.

21.4. Higher powers. In § 21.1 we used the identity (21.1.1) to
deduce the existence of g(4) from that of g(2). There are similar identi-
ties which enable us to deduce the existence of g(6) and g(8) from that
of g(3) and g(4). Thus
(21.4.1) 60(a2+b2+c2+d?)3 = 3 (atbtc)+2 Y (atb)+36 3 ab.
On the right there are

164+2.12136.4 = 184

sixth powers. Now any n is of the form
60N+r (0 < r < 59);

g(3) g(3)
and 60N = 60 > X3 = 60 > (ai}b3+ci+4-d?)3,
t=1 t=1
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which, by (21.4.1), is the sum of 184¢(3) sixth powers. Hence % is the

sum of 184(3)--r < 1849(3)+59
sixth powers; and so, by Theorem 390,

THEOREM 39 1: g(6) < 184¢(3)4-59 < 2451.

Again, the identity
(21.4.2) 5040(a®+4b2+c2-+d?)!

=6 (2a)8-4+-60 Y (a+bp+ 3 (2a+b+0)3+6 Y (atbtctd)

has 6.4--60.124+48+6.8 = 840
eighth powers on its right-hand aide. Hence, as above, any number
5040N is the sum of 840g(4) eighth powers. Now any number up to

5039 is the sum of at most 273 eighth powers of 1 or 2.t Hence, by
Theorem 387,

THEOREM 392 :  ((8) < 840g(4)+273 < 42273.
The results of Theorems 391 and 392 are, numerically, very poor; and

the theorems are really interesting only as existence theorems. It is
known that g(6) == 73 and that g(8) = 279.

21.5. A lower bound for g(k). We have found upper bounds for
g(k), and a fortiori for G(k), for k = 3, 4, 6, and 8, but they are a good
deal larger than those given by deeper methods. There is also the
problem of finding lower bounds, and here elementary methods are
relatively much more effective. It is indeéd quite easy to prove all
that is known at present.

We begin with g(k). Let us write ¢ = [(3)¥]. The number

n = 2kg—1< 3k
can only be represented by the powers 1% and 2%, In fact
no= (g—1)284(2F—1)1%,
and so n requires just
q—14+2k—1 = 2k q—2
kth powers. Hence
THEOREM 393 : g(k) > 2¥4-q—2.

In particular g(2) > 4, 9(3) = 9, g(4) = 19, g(5) = 37,.... It is known
that g(k) = 2¥+q¢—2 for all values of k up to 400 except perhaps 4 and
5, and it is quite likely that this is true for every k.

t The worst number is 4863 = 18. 2%+255. 18,
5591 Y
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21.6. Lower bounds for G(k). Passing to G(k), we prove first a
general theorem for every k.

THeorem 394: G(K) = k+1 for k > 2.

Let A(N) be the number of numbers 7 < N which are representable
in the form

(21.6.1) n = aft+ak4-..ak,

where z, 2 0. We may suppose the x; arranged in ascending order of
magnitude, so that

(21.6.2) 0<x <2, <. KT N,

Hence A(N) does not exceed the number of solutions of the inequalities
(21.6.2), which is
INVE) 2 e, s
B(N) = % > > .>1
Tp=0 Tk—1=0 Tp—3=0 =0
The summation with respect to #; gives x,+ 1, that with respect to z,
gives & 2y 1) (2542
Z(x2+l)=( 3+ )( 3+ )

Ze=0 2!
that with respect to &; gives

§<x3+1>(x3+2) (244 1) (%, 4-2) (2 +3)

3

] = ] !
o 2! 3!

and so on: so that

+

(V) ~ 2

1

(21.6.3) B(N) = 75

e

r=1

I

for large N.

On the other hand, if G(k) < k, all but a finite number of n are
representable in the form (21.6. 1), and

A(N) > N-C,
where C is independent of N. Hence

N-C<A(N) < B(N) l

~ 70_!’
which is plainly impossible when k > 1. It follows that G(k) > k.
Theorem 394 gives the best known universal lower bound for G(k).

There are arguments based on congruences which give equivalent, or
better, results for special forms of k. Thus

23 = 0, 1, or -1 (mod?9),

and so at least 4 cubes are required to represent a number N = 9m+ 4.
This proves that G(3) >> 4, a special case of Theorem 394.
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Again
(21.6.4) 24 = 0or 1 (mod 186),

and so all numbers 16m--15 require at least 15 biquadrates. It follows

that G(4) > 15. This is a much better result than that given by
Theorem 394, and we can improve it slightly.

It follows from (21.6.4) that, if 16x is the sum of 15 or fewer biquad-
rates, each of these biquadrates must be a multiple of 16. Hence

15 15
16n = 3 a2} = > (2y,)*
=1 <1

1
15
and so n ,—_—_Z Yt
=

Hence, if 16n is the sum of 15 or fewer biquadrates, so is n. But 31 is
not the sum of 15 or fewer biquadrates; and so 16™, 31 is not, for any m.
Hence

THEOREM 395: G(4) 2 16.

More generally

Theorem 396: G(29) > 20+2 if § > 2.

The case § = 2 has been dealt with already. If § > 2, then

k= 920> 642,
Hence, if x is even, 22 =0 (mod 20+2),
while if x is odd then
a? = (142m)¥ = 14+20+1m 4 20+1(26— 1 )m?
=1-20+1p(m—1) = 1 (mod 20+2),
Thus
(21.6.5) 2 = 0or 1 (mod 26+2),

Now let n be any odd number and suppose that 20+2y is the sum of
90+2_1 or fewer kth powers. Then each of these powers must be even,
by (21.6.5), and so divisible by 2*. Hence 2¢--2 n, and ‘so n is even;
a contradiction which proves Theorem 396.

It will be observed that the last stage in the proof fails for 8 = 2,
when a special device is needed.

There are three more theorems which, when they are applicable, give
better results than Theorem 394.

THeorem 397. If p > 2 and § > 0, then G{pP(p—1)} > p9+1,

For example, G(6) > 9.
If k= p(p—1), then 6+ 1 < 3¢ < k. Hence

2k =0 (mod pf+1)
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if p|x. On the other hand, if p | x, we have
a* = xp°@-D =] (mod p¥+1)
by Theorem 72. Hence, if pf+1n, where p | n, is the sum of p+1—1 or
fewer kth powers, each of these powers must be divisible by p"“ and so
by p*. Hence p* p0+1n, which is impossible; and therefore G(k) = p"“.
Theorem 398. Ifp > 2 and § > 0, then G{ip(p—1)} > L(pf+1—1).
For example, G(10) > 12.
It is plain that
k= 1pi(p—1) > o’ > 6+1,
except in the trivial case p =3, § = 0, k = 1. Hence
#* = 0 (mod p0+1)
if p |2. On the other hand, if p /z, then
gk = 2?°®-D = 1 (mod pf+!)
by Theorem 72. Hence pf+!| (%*—1), i.e.
P (k1) kD)
Since p > 2, p cannot divide both z¥— 1 and 2*-}- 1, and so one of ¥ —1
and x¥4-1 is divisible by p9+1. It follows that
@t =0, 1 or —1 (mod pf+l)
for every x; and therefore that numbers of the form
PoHIm AL (pf—1)
require at least 4(p%+!—1) kth powers.
Theorem 399. If § > 2,4 then ((3.20) > 20+2,
This is a trivial corollary of Theorem 396, since G(3. 26) > G(2f) > 20+2,
We may sum up the results of this section in the following theorem.
THeorem 400. G(k) has the lower bounds
(i) 26+24f ks 29 or 3.29 and 6 > 2;
(i) p¥+tif p > 2 and k = pf(p—1);
(i) 3(pf*1—1) if p>2 and k = 4p¥(p—1);
(iv) k+l in any case.
These are the best known lower bounds for G(K). It is easily verified
that none of them exceeds 4k, so that the lower bounds for G(k) are

much smaller, for large k, than the lower bound for g(k) assigned by
Theorem 393. The value of g(k) is, as we remarked in § 20.1, inflated by

the difficulty of representing certain comparatively small numbers.

+ The theorem is true for§ =0 and 6 = 1, but is then jncluded in Theorems 394
and 397.
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It is to be observed that k may be of several of the gpecial forms
mentioned in Theorem 400. Thus

6 = 3(3—1)= 7-1 = }(13—1),
so that 6 is expressible in two ways in the form (ii) and in one in the
form (iii). The lower bounds assigned by the theorem are
38=9  Tt=7, 1(13—1)=6, 6+1=7;
and the first gives the strongest result.
21.7. Sums affected with signs: the number o(k). It is ‘also

natural to consider the representation of an integer n as the sum of
s members of the set

(21.7.1) 0,1k 2k . —1k 2k 3k
or in the form
(21.7.2) n = fafdald. faf.

We use v(k) to denote the least value of s for which every n is repre-
sentable in this manner.

The problem is in most ways more tractable than Waring's problem,
but the solution is in one way still more incomplete. The value of g(k)
is known for many k, while that of v(k) has not been found for any k
but 2. The main difficulty here lies in the determination of a lower
bound for v(k); there is no theorem corresponding effectively to Theorem
393 or even to Theorem 394.

Trecrem 401:  v(k) exists for every k.

It is obvious that, if g(k) exists, then v(k) exists and does not exceed
g(k). But the direct proof of the existence of w(k) is very much easier
than that of the existence of g(k).

We require a lemma.

TrECREM 402
k-1 k—‘].
Z (_1)k—1—r( )(x+r)k = kletd,
r
r=0

where d is an integer independent of X

The reader familiar with the elements of the calculus of finite
differences will at once recognize this as a well-known property of the
(k—1)th difference of z*, It is plain that, if

Q@) = Apa*+...
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is a polynomial of degree k, then
AQi(x) = Qua+1)—Qulx) = k4, k14,
A2Qu(x) = k(k- )4, 224,

A-1Q,(z) =KI Az+d,
where d is independent of x. The lemma is the case Qy(x) = . In
fact d = 4(k—1)(k!), but we make no use of this.
It follows at once from the lemma that any number of the form
k! z+4d is expressible as the sum of

kzl(k—l) _ gkt
r

r=0
numbers of the set (21.7.1); and

n-d = klz4l, — k) < T L 1Y)
for any n and appropriate 1 and x. Thus
n = (klz+d)4,
and n is the sum of 2k-14 ] L 2k-1 L(k!)
numbers of the set (21.7.1).
We have thus proved more than Theorem 401, viz.
THEOREM 403: v(K) < 2F-14-1(k!).

21.8. Upper bounds for v(k). The upper bound in Theorem 403 is
generally much too large.

It is plain, as we observed in § 21.7, that v(k) < g(k). We can also
find an upper bound for v(k) if we have one for G(k). For any number
from a certain N(k) onwards is the sum of G(k) positive  kth powers,
and

n4-y* > N(k)
G(k)
for some y, so that n =Y xf—yk
1
and
(21.8.1) v(k) < Gk)+1.

This is usually a much better bound than g(k).

The bound of Theorem 403 can also be improved substantially by
more elementary methods. Here we consider only special values of k
for which such elementary arguments give bounds better than (21.8.1),

(1) Squares. Theorem 403 gives v(2) < 3, which also follows from
the identities 941 = (24-1)2—a

and 2= l—(x— 1)24 1%
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On the other hand, 6 cannot be expressed by two squares, since it
is not the sum of two, and a?2—y? = (x—y){x+y) is either odd or a
multiple of 4.

THeorem 404 : v(2) = 3.
(2) Cubes. Since
n¥—n = (n- hn(n+ 1) = o (mod 6)
for any n, we have
n = n3—6x = nd—(x+1)3—(x—1)34 223

for any n and some integral x. Hence v(3) 5.

On the other hand,

y* =0, 1, or -1 (mod 9);

and so numbers 9m -4 require at least 4 cubes. Hence v(3) > 4.

THEOREM 408: v(3) 18 4 oOr 5.

It is not known whether 4 or 5 is the correct value of v(3). The
identity 6X = (x41)*4 (@—1)5— 223

shows that every multiple of 6 is representable by 4 cubes. Richmond
and Mordell have given many gimilar identities applying to other
arithmetical progressions. Thus the identity

6r4-3 = 13— (r—4)°4 (20—5)*—(2x—4)3

shows that any odd multiple of 3 is representable by 4 cubes.
(3) Biquadrates. By Theorem 402, we have

(21.8.2) (x+31—3(x+2)*+3(x+ 1)t—xt = 24x+d

(where d = 36). The residues of 0%, 14, 3% 24 (mod 24) are 0, 1, 9, 16
respectively, and we can easily verify that every residue (mod24) is
the sum of 4 at most of O, 4 1, 49, + 16. We express this by saying
that 0, 1, 9, 16 are fourth power residues (mod 24), and that any residue
(mod 24) is representable by 4 of these fourth power residues. Now
we can express any n in the form n = 24x+d-+r, where 0 < r < 24;
and (21.8.2) then shows that any n is representable by 8§44 = 12
numbers +#4. Hence v(4) < 12. On the other hand the only fourth
power residues (mod 16) are 0 and 1, and so a number 16m+- 8 cannot
be represented by 8 numbers 4y* unless they are all odd and of the
same sign. Since there are numbers of this form, e.g. 24, which are
not sums of 8 biquadrates, it follows that v(4) > 9.
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THEOREM 406: 9gv(@) K12

(4) Fifth powers. In this case Theorem 402 does not lead to the best
result; we use instead the identity
(21.8.3)

(x43)5—2(x+ 25+ b4+ (x—1)5—2(x—3)5+ (x—4)° = 720x-360.
A little calculation shows that every residue (mod 720) can be repre-
sented by two fifth power residues. Hence v(5) < 842 = 10.

The only fifth power residues (mod 11) are 0, 1, and -1, and so
numbers of the form 11m+ 5 require at least 5 fifth powers.

THEOREM 407 : 5 € v(b) < 10.

21.9. The problem of Prouhet and Tarry: the number P(k, j).
There is another curious problem which has some connexion with that
of § 21.8 (though we do not develop this connexion here).

Suppose that the a and b are integers and that

§i= Sa)= altalt.tal= 3 ab
and consider the system of k equations
(21.9.1) Syla) = S,(b) (1< h<Kk).
It is plain that these equations are satisfied when the b are a permuta-
tion of the a; such a solution we call a trivial solution.

It is easy to prove that there are no other solutions when s < k. It
is sufficient to consider the case s = k. Then

bi+bot-. by, 34403, . > b4 4B
have the same values as the same functions of the a, and thereforet
the elementary symmetric functions
> b, 2 bibj, . > bbby
have the same values as the same functions of the a. Hence the a
and the b are the roots of the same algebraic equation, and the b are

a permutation of the a.
When s > k there may be non-trivial solutions, and we denote by

P(k, 2) the least value of s for which this is true. It is plain first (since
there are no non-trivial solutions when s < k) that
(21.9.2) Pk, 2) > k+l.
We may generalize our problem a little. Let us take j > 2, write
Sy = OBt Faly

t By Newton’s relations between the coefficients of an equation and the sums of the
powers of its mots.
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and consider the set of k(j-1) equations

(21.9.3) Siu =8 = =8 (1 <h<k).

A non-trivial solution of (21.9.3) is one in which no two sets @
(1 <e<s)anda (1 << s)with u s~ v are permutations of one
another. We write P(k,j) for the least value of s for which there is a
non-trivial solution. Clearly a non-trivial solution of (21.9.3) for j == 2
includes a non-trivial solution of (21.9.1) for the same s. Hence, by
(21.9.2),

TrEGREM  408. P(k,j) 3 Pk, 2)3 k-+ 1.
In the other direction, we prove that
TrEcREM  409: P(k,j) < $h(k+1)+1.

Write s = 1k(k+-1)+1 and suppose that n > s! s¥j. Consider all the
sets of integers
(21.9.4) Oy, Ggyory O
for which 1 <a, <n Q1Lr €9).
There are n# such sets.
Since 1 < a, < n, we have
s < Syla) < snh.

Hence there are at most

k
1‘1’ (th——8+1) < sknbk(k+l) —_ skns—l

h=1
different sets
(21.95) Si(a), Sy(a),..., S,(a).
Now sl j. shps-1< nf,

and so at least s!j of the sets (21.9.4) have the same set (21.9.5). But
the number of permutations of s things, like or unlike, is at most s!,
and so there are at least j sets (21.9.4), no two of which are permuta-
tions of one another and which have the same set (21.9.5). These
provide a non-trivial solution of the equations (21.9.3) with

s = M(k+1)+1.

21.10. Evaluation of P(k,j) for particular k and j. We prove
Trecrem 410, P(k,j) = k+l for k = 2, 3, and 5 and all j.

By Theorem 408, we have only to prove that P(k,j) < k+1 and for
this it is sufficient to construct actual solutions of (21.9.3) for any
given j.
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By Theorem 337, for any fixed j, there is an n such that
=ciHdi=ci+di=... =c+d},
where all the numbers
C1s Og yreny ij &, yoey dj
are positive and no two are equal. If we put
Ay = Cyp Qg = du’ O3y = —Cuw Oyy = — s
it follows that
8, =0 &, =2, 8, =0 (@gucK]
and so we have a non-trivial solution of (21.9.3) for k = 3, § = 4.
Hence P(3,5) < 4 and so P(3,j) = 4.
For k =2 and k = 5, we use the properties of the quadratic field
k(p) found in Chapters XIII and XV. By Theorem 255, 7 = 34-p and
7 = 3+ p? are conjugate primes with =7 = 7. They are not associates,

since Zf_xﬁ:f”"ﬁpﬂ?: §+§p
T T 7 7017
which is not an integer and so, a fortiori, not a unity. Now let u >0
and let a2 = A,- Byp,
where A,, B, are rational integers. If 7 | A,, we have
mi| A,y wl Ay, 7| Bup
in k(p), and N=|B%, 1|B: 17|B,
in k(1). Finally 7 |#%, 7| =%, 7| =%, 7 |7
in k(p), which is false. Hence 7 ,/‘A, and, similarly, 7 | B,.
If we write ¢, = 7*4,, d,=T-4B,
we have
cz+c,d,+d2 = N(c,—d,p) = T¥-2uNg2 = 7%
Hence, if we put a,,, = ¢,, @y, = 4y, as,, = —(c,+d,), we haveS,, = 0
and g e dt (e, = 2Rt d,d) = 2.7Y.
Since at least two of (ay,,as,,@s,) are divisible by 7-* but not by
7i-%+1, no set is a permutation of any other set and we have a non-

trivial solution of (21.9.3) with k = 2 and s = 3. Thus P(2,j) =
For k = 5, we write

Ay = Cy gy = 8y QAg, = —C _du, Agy = —Qyy
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and have Sy = Sau= 85 =0, Sy, = 4.7%,

Sp = Ach+di+(c,+d,)4 = 4cE+c,d,+di)? = 4,74,
As before, we have no trivial solutions and so P(5, j) = 6.

The fact that, in the last solution for example, S, , =S;, =S, — O
does not make the solution so special as appears at first sight. For, if
ary= A, (I<r<s 1l <u<y)

is one solution of (21.9.3), it can easily be verified that, for any d,
qyy = Aru+d
is another such solution. Thus we can readily obtain solutions in which
none of the S is zero.
The case j = 2 can be handled successfully by methods of little use
for larger j. If a,, ay ).,y @,, by 4.4y by is @ solution of (21.9.1), then
(20100) ¥ {actdP 48 = 3@+ itdf) (< b < kD)

for every d. For we may reduce these to

h—1 ) h—-1 7,
S (Z)Sh_,(a)dlz S (l)Sh,,(b)d’ @ <h <k+1)
i=1 1=1
and these follow at once from (21.9.1).
We choose d to be the number which occurs most frequently as a
difference between two a or two b. We are then able to remove a good

many terms which occur on both sides of the identity (21.10.1).

We write [ @elk = [bypeers byl
to denote that S,(a) = S,(b) for 1 < h < k.
Then [0, 3], = [1, 2],

Using (21.10.1), with d = 3, we get
[1, 2, 3, 8].=[0, 3, 4, 5,
or (1, 2, 6], = [0, 4, 5}
Starting from the last equation and taking € = 5 in (21.10.1), we
obtain [0, 4, 7, 11], = [1, 2, 9, 10];.
From this we deduce in succession
[1, 2, 10, 14, 18], = [0, 4, 8, 16, 17], (d = 7),
0, 4,9, 17, 22, 26}, = [1, 2, 12, 14, 24, 25]; (d = 8),
[1, 2, 12, 13, 24, 30, 35, 39]s = [0, 4, 9, 15, 26, 27, 37, 38)g (d = 13),
[0, 4, 9, 23, 27, 41, 46, 50], = [1, 2, 11, 20, 30, 39, 48, 49]; (d = 11).
Hence P(k, 2) < k4 1 for k < 5 and for k = 7.
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The example}
[0, 18, 27, 58, 64, 89, 101]; = [1, 13, 38, 44, 75, 84, 102],,

shows that P(k, 2) < k+ 1 for k = 6; and these results, with Theorem
408, give

Treorem 411. If kK < 7, P(k, 2) = k+l.

21.11. Further problems of Diophantine analysis. We end this
chapter by a few unsystematic remarks about a number of Diophantine
equations which are suggested by Fermat's problem of Ch. XIII.

(1) A conjecture of Euler. Can a kth power be the sum of s positive
kth powers ? Is

(21.11.12) b faki . fak = yk

soluble in positive integers ? ‘Fermat’s last theorem’ asserts the im-
possibility of the equation when s = 2 and k > 2, and Euler extended
the conjecture to the values 3, 4,..., k-l of 8. For k = 5, s = 4, how-
ever, the conjecture is false, since

2754 8451 11051335 = 1445
The equation
(21.11.2) x’f+x’2\7+.“+xl’g - yk

has also attra\wted much attention. The case k = 2 is familiar.] When
k = 3 we can derive solutions from the analysis of § 13.7. If we put
A=1anda=-3bin (13.7.8), and then write —%q for b, we obtain

(21.11.3) x = 1—9¢3, y = -1, u = —9¢% v = 9¢*—3q;
and so, by (13.7.2),
(9¢*)*+ (3¢—9¢*)*+-(1—9¢°)* = 1.
If we now replace g by £/4 and multiply by 52, we obtain the identity
(211L.4)  (9F8P+(3EnP—9E4 +(n —9Em) = (1),
All the cubes are positive if
0<é< 9‘!‘77’
t This may be proved by starting with
[1,8, 12, 15, 20, 23, 27, 84}, = [0, 7, 11, 17, 18, 24, 28, 353,

and taking d = 7, 11, 13, 17, 19 in succession.
1 See § 13.2.
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so that any twelfth power »!% can be expressed as a sum of three positive
cubes in at least [9-¥5] ways.

When k > 3, little is known. A few particular solutions of (21.11.2)
are known for k == 4, the smallest of which is

(21.115) 30411204 4-27244+3154 = 3534+

For k = 5 there are an infinity included in the identity

(21.11.6) (7505 —a®)3-F (2 -+ 25y°)5 4 (a5 — 25%)-+ (10a%y2)5+ (50248
= @+ Tbyo)S,

All the powers are positive if 0 < 2595 < a% < 75y4°. No solution is

known with k Z= 6.
(2) Equal sums of two kth powers. Is

2L.117 Dok = oo
soluble in positive integers ? More generally, is
(21.11.8) aityf = af4yk = . = af+yf

soluble for given k and r ?

The answers are affirmative when k = 2, since, by Theorem 337, we
can choose N SO as to make r(n) as large as we please. We shall now
prove that they are also affirmative when k = 3.

Theorem 412. Whatever ¢, there are numbers which are representable
as sums of two positive cubes in af least r different ways.

We use two identities, viz.

(21.11.9) X3— Y3 =, adty
if

31 293 A 923143
(21.11.10) X — %, _ yl(x af;yl),
and i~ % 1i— 9%
(21.11.11) 2yl = X3 Y0
if
(21.11.12) X(X3-2Y3) Y(2X3— Y3)

2=~—xsyys * v TXxepTE

t The identity (42t —y4)* + 2(4a®y )4+ 2(22y®)t = (dat4-y4)*
gives an infinity of biquadrates expressible as gums of 5 biquadrates (with two equal
pairs) ; and the identity
(@ —y?) 4 2xy +y2) -+ (2xy+a2)t = 2oy +y?)*
gives an infinity of solutions of

_ zi+ai+el = yityl
(all with y, = g,).
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Each identity is an obvious corollary of the other, and either may be
deduced from the formulae of § 13.7.t From (21.11.9) and (21.11.11)
it follows that

(21.11.13) 234y} = 34k
Here z,, y, are rational if x,, y, are rational.

Suppose now that r is given, that z, and y, are rational and positive

and that 2

is large, Then X, Y are positive, and X/ Y is nearly #;/2y,; and %, ¥: are
positive and x,[y, is nearly X/2Y or x,/4y;.
Starting now with &y, ¥, in place of =, ¥, and repeating the argument,
we obtain a third pair of rationals z, y; such that
2+yd = aityi = 23+ud
and x4y, is nearly z,/4%,. After r applications of the argument we
obtain
(21.11.14) Byd=adtyi=. . = 2Byl
all the numbers involved being positive rationals, and
“104% 020" Sqa %
Y1 v2 v Y,
all being nearly equal, so that the ratios z.fy, (s = 1,2,..., r) are certainly

unequal. If we multiply (21.11.14) by 6, where [ is the least common

multiple of the denominators of z,, y,,..., z,, ¥,, We obtain an integral
solution of the system (21.11.14).

Solutions of e T BT
can be deduced from the formulae (13.7.11); but no solution of
oi+yt = 23+ud = 23403
is known. And no solution of (21.11.7) is known for k > 5.
Swinnerton-Dyer has found a parametric solution of

(21.11.15) o} a3l = yi iyl
which yields solutions in positive integers. A numerical solution is
(21.11.16) 495475511075 == 395492541005,

t1f weput g =b and 3 = 1 in (13.7.8), we obtsin
x = 8a3+1, y = 16a%~1, % = 4a—16a4, v = 2a-+16a4;
and if we replace ¢ by 3¢, and use (13.7.2), we obtain
(¢~ 201 +(20°~ 1)* = (@*+0)*—~(¢*+ 1),
an identity equivalent to (2111.11).
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The smallest result of this kind for sixth powers is
(21.11.17) 364196+ 226 — 1064155238,

NOTES ON CHAFTER XXI

A great deal of work has been done on Waring’s problem during the last fifty
years, and it may be worth while to give a short summary of the results. We
have already referred to Waring's original statement, to Hilbert's proof of the
existence of g(k), and to the proof that g(3) = 9 [Wieferich, Math. Annalen, 66
(1909), 99-101, corrected by Kempner, ibid. 72 (1912), 387-97].

Landau [ibid. 66 (1909), 102-5] proved that G( 3) < 8 and it was not until 1942
that Linnik [Comptes Rendus (Doklady) Acad. Sci. USSR, 35 (1942), 162]
announced a proof that G(3) < 7. Dickson [Bull. Amer. Math. Soc. 45 (1939)
588-91] showed that 8 cubes suffice for all but 23 and 239. See G. L. Watson, Math.
Gazette, 37 (1953), 209-11, for a simple proof that G(3) < 8 and Journ. London
Math. Soc. 26 (1951), 153-6 for one that G(3) < 7 and for further references. After
Theorem 394, G(3) > 4, so that G(3) is 4, 5, 6, or 7; it is still uncertain which,
though the evidence of tables points very strongly to 4 or 5. See Western, ibid.
1 (1926), 244-50.

Hardy and Littlewood, in a series of papers under the general title ‘Some
problems of partitio numerorum’, published between 1920 and 1928, developed
a new analytic method for the study of Waring's problem. They found upper
bounds for G(k) for any k, the first being

(k_2)2k_1+5’

and the second a more complicated function of k which is asymptotic to k2F-2
for large k. In particular they proved that
@ G@) £ 19, GB) <« 41, GB) < 87, G(7) < 193, G(8) g 425.
Their method did not lead to any new result for G(3); but they proved that
‘almost all’ numbers are sums of 5 cubes.

Davenport, Acta Math. 71 (1939), 123-43, has proved that almost all are sums
of 4. Since numbers 9m+-4 require at least 4 cubes, this is the final result.

Hardy and Littlewood algso found an asymptotic formula for the number of
representations for n by g kth powers, by means of the so-called ‘singular series’. (

Thus r,.,,(n), the number of representations of 7% by 21 biquadrates, is approxi-
mately

{2rens
T
(the later terms of the series being smaller). There is a detailed account of all
this work (exoept on its ‘numerical’ side) in Landau, Vorlesungen, i. 235-339.
As regards g(k), the best results known, up to 1933, for small k, were

g(4) < 37, g(5) < 58, g(6) < 478, g(7) < 3806, g8 < 31353

(due to Wieferich, Baer, Baer, Wieferich, and Kempner respectively). All these
had been found by elementary methods similar to those used in §§ 21.1-4. The
results of Hardy and Littlewood made it theoretically possible to find an upper
bound for g(k) for any k, though the calculations required for comparatively
large k would have been impracticable. James, however, in a paper published
in Tram. Amer. Math. Soc. 36 (1934), 395-444, succeeded in proving that

(®) 9(6) < 183,  ¢(7) < 322, g8 < 5%.
He also found bounds for g(9) and g( 10).

nlil{l +1-331 cos(}nm+1§m)+0-379 cos(jnm— §n)+...} ;k(é‘
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The more recent work of Vinogradov has made it possible to obtain much
more satisfactory results. Vinogradov's earlier researches on Waring’'s problem
had been published in 1924, and there is an account of his method in Landau,
Vorlesungen, i. 340-58. The method then used by Vinogradov resembled that
of Hardy and Littlewood in principle, but led more rapidly to some of their
results and in particular to a comparatively simple proof of Hilbert’s theorem.
It could also be used to find an upper bound for g(k), and in particular to prove
that g(k)

Tim -2 <

7c—>ook2k‘-l =
In his later work Vinogradov made very important improvements, based primarily
on a new and powerful method for the estimation of certain trigonometrical sums,
and obtained results which are, for large k, far better than any known before.
Thus he proved that

(c) G(k) < 6klogk—+(4+log216)k;
so that G(k) is at most of order klog k. Vinogradov’s proof was afterwards

simplified considerably by Heilbronn [Acta arithmetica, 1 (1936), 212-21], who
improved (c) to

(d) Gk < 6klogk+{4+3log(3+%)>k+3.
It follows from (d) that
G(4) < 67, G(5) < 89, G(6) < 113, G(7) < 137, G(8) < 163.

These inequalities are inferior to (a) for k = 4, 5, or 6; but better when k > 6
(and naturally far better for large values of k).

More has been proved since concerning the cases k = 4, 5, and 6: in particular,
the value of G(4) is now known. Davenport and Heilbronn [ Proc. London Math.
Xoc. (2) 41 (1936), 143—50] and Estermann (ibid. 126-42) proved independently
that G(4) < 17. Finally Davenport [Annals of Math. 40 (1939), 731-47] proved
that G(4) < 16, so that, after Theorem 395, G(4) = 16; and that any number
not congruent to 14 or 15 (mod 16) is a sum of 14 biquadrates. He also proved
[Amer. Journal of Math. 64 (1942}, 199-207] that G(5) < 23 and G(6) < 36:
Hua had proved that G(5) « 28, and Estermann [Acta arithmetica, 2 (1937),
197-211] a result of which G(6) < 42 is a particular case.

It was conjectured by Hardy and Littlewood that

Gk) < 2k+1,

except when k = 2™ and m > 1, when G(k) = 4k; but the truth or falsity of
these conjectures is still undecided, except for k =2 and k = 4.

Vinogradov’s work has also led to very remarkable results concerning g(k).
If we know that G(k) does not exceed some upper bound d(k), so that numbers
greater than C(k) are represontable by G(k) or fewer kth powers, then the way
is open to the determination of an upper bound for g(k). For we have only to
study the representation of numbers up to C(k), and this is logically, for a given
k, a question of computation. It was thus that James determined the bounds
set out in (b); but the results of such work, before Vinogradov’s, were inevitably
unsatisfactory, since the bounds (a) for G(k) found by Hardy and Littlewood
are {(except for quite small values of k) much too large, and in particular larger
than the lower bounds for g(k) given by Theorem 393.
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I glk) =28 +[(})F] 2
is the lower bound for g(k) assigned by Theorem 393, and if, for the moment,

we take G{k) to be the upper bound for G(k) assigned by (d), then g(k) is ofmuch
higher order of magnitude than G(k). Theorem 393 gives

g(4) > 19, g(5) >37, ¢(6)>73, ¢(7) > 143, g¢(8) > 279;
and g(k) > G(k) for k > 7. Thus if k > 7, if all numbers from C(k) on are
representable by G(k) powers, and all numbers below C(k) by g(k) powers, then

glk) = g(k).
And it is not necessary to determine the C(k) corresponding to this particular
G(k); it is sufficient to know the C(k) corresponding to any (_}(Ic) < g(k), and in
particular to C(k) = g(k).

This type of argument has led to an ‘almost complete’ solution of the original
form of Waring's problem. The first, and deepest, part of the solution rests on
an adaptation of Vinogradov’'s method. The second depends on an ingenious
use of a ‘method of ascent’, a simple case of which appears in the proof, in § 21.3,
of Theorem 390.

Let us write

A = [(3)], B = 3—-2k4, D = [($)f].
The final result is that

(e) g(k) = 2k4+ 4 -2
for all & for which % » 5 and
(f) B < 26—4-2.

In this case the value of g(k) is fixed by the number
n=2%4-1= (4—-1)2%(2k—1).1*

used in the proof of Theorem 393, a comparatively small number representable
only by powers of 1 and 2. The condition (f) is satisfied for 4 < k g 200000
[Stemmler, Math. Computation 18 (1964), 144-6] and may well be true for all
k> 3.

It is known that B % 2¥*— A4 —1 and that B =+ 2¥—4 (except for k = 1).
If B> 2¥—A4 4 1, the formula for g(k) is different. In this case,

g(k) = 2"+ A44D—3 if 2¢ < AD+A+D
and g(k) = 284 A4+D—2 if 28 = AD+A+D.

It is readily shown that 2¥ < AD+A + D.

Most of these results were found independently by Dickson [Amer. Journal
of Math. 58 (1936). 521-9, 530-5] and Pillai [Journal Indian Math. Soc. (2) 2
(1936), 16-44, and Proc. Indian Acad. Sci. (A), 4 (]936), 261]. They were com-
pleted by Pillai [ibid. 12 (1940), 30-40] who proved that g(6) = 73, by Rubu-
gunday [Journal Indian Math. Soc. (2) 6 (1942), 192-8] who proved that
B =~ 2%_ A, by Niven [Amer. Journal of Math. 66 (1944), 137-43] who proved
() when B = 2k 42, a case previously unsolved, and by Jing-run Chen
[Chinese Math.-Acta 6 (1965), 105-27] who proved that g(5) = 37.

The solution is now complete except for k = 4, and for the uncertainty whether
() can be false for any k. The best-known inequality for 4 is

19 < g(4) < 35:

5501 Z
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the upper bound here is due to Dickson [Bull. American Math. Soc. 39 (1933),
701-27). )

It will be observed that (except when k = 4) there is much more uncertainty
about the value of C(k) than about that of g(k); the most striking case is Kk = 3.
This is natural, since the value of G(k) depends on the deeper properties of the
whole sequence of integers, and that of g(k) on the more trivial properties of
special numbers near the beginning.

§ 21.1. Liouville proved, in 1859, that g(4) < 53. This upper bound was im-
proved gradually until Wieferich, in 1909, found the upper bound 37 (the best
result arrived at by elementary methods). We have already referred to Dickson’s
later proof that g(4)  35.

References to the older literature relevant to this and the next few sections
will be found in Bachmann, Niedere Zahlentheorie, ii. 328-48, or Dickson, History,
ii, ch. xxv.

§§ 21.2-3. See the note on § 20.1 and the historical note which precedes.

§ 21.4. The proof for g(6) is due to Fleck. Maillet proved the existence of g(8)
by a more complicated identity than (21.4.2); the latter is due to Hurwitz.
Schur found a similar proof for g( 10).

§ 21.5. The special numbers 7 considered here were observed by Euler (and
probably by Waring).

§ 21.6. Theorem 394 is due to Maillet and Hurwitz, and Theorems 395 and 396
to Kempner. The other lower bounds for G(K) were investigated systematically
by Hardy and Littlewood, Proc, London Math. Soc. (2) 28 (1928), 618-42.

§§ 21.7-8. For the results of these sections see Wright, Journal London Math.
Soc. 9 (1934), 267-72, where further references are given; Mordell, ibid. 11 (1936),
208-18; and Richmond, ibid. 12 (1937), 206.

Hunter, Journal London Math. Soc. 16 (1941), 177-9 proved that 9 < w(4) < 10:
we have incorporated in the text his simple proof that v(4) > 9.

§§ 21.9-10. Prouhet [Comptes Rendus Paris, 33 (1851), 225] found the first non-
trivial result in this problem. He gave a rule to separate the first j"“ positive
integers into j sets of jk members, which provide a solution of (21.9.3) with g = j*.
For a simple proof of Prouhet's rule, see Wright, Proe, Edinburgh Math. Soc.
(2) 8 (1949), 138-42. See Dickson, History, ii, ch. xxiv, and Gloden and Palama,
Bibliographie des Multigrades (Luxembourg, 1948), for general references.
Theorem 408 is due to Bastien [Sphinx-Oedipe 8 (1913), 171-2] and Theorem 409
to Wright [Bull. American Math. Soc. 54 (1948), 755-7].

§ 21.10. Theorem 410 is due to Gloden [Mehrgradige Gleichungen, Groningen,
1944, 71-90]. For Theorem 411, see Tarry, L’intermédiaire des mathématiciens,
20 (1913), 68-70, and Escott, Quarterly Journal of Math. 41 (1910), 152.

A. Létac found the examples

[1, 25, 31, 84, 87, 134, 158, 182, 198],

= [2, 18, 42, 66, 113, 116, 169, 175, 199],
and

[+12, +11881, 20231, 420885, 4-23738];
= [4436, £11857, 420449, {20667, +23750],,
which show that P(K, 2) = k+l for k = 8 and k = 9. See A. Létac, Gaz&a

Matematica 48 (1942), 68-69, and A. Gloden, loc. cit.
§ 21.11. The most important result in this section is Theorem 412. The rela-
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tions (21.11.9)-(21.11.12) are due to Vieta; they were used by Fermat to find
solutions of (21.11.14) for any r (see Dickson, History, ii. 550-1). Fermat assumed
without proof that all the pairs z,, y, (¢ =1,2,..., ¥) would be different. The first
complete proof was found by Mordell, but not published.

Of the other identities and equations which we quote, (21.11.4) is due to
Gérardin [L'intermédiaire de8 math. 19 (1912), 7] and the corollary to Mahler
[Journal London Math. Soc. 11 (1936), 136-8], (21.11.6) to Sastry [ibid. 9 (1934),
242-6], the parametric solution of (2 11115) to Swinnerton-Dyer [Pro¢c. Cambridge
PHhil. Soc. 48 (1952), 516-8], (21.11.16) to Moessner [Proc. Ind. Math. Soc. A 10
(1939), 296-306], (21.11.17) to Subba Rao [Journal London Math. Soc. 9 (1934),
172-3], and (21 .11.5) to Norrie. Patterson found a further solution and Leech 6
further solutions of (21.11.2) for k = 4 [Bull. Amer. Math. Soc. 48 (1942), 736 and
Proc. Cambridge Phil. Soc. 54 (1958), 554—-5]. The identities quoted in the foot-
note to p. 333 were found by Fauquembergue and Gérardin respectively. For
detailed references to the work of Norrie and the last two authors and to much
similar work, see Dickson, History, ii. 650-4. Lander and Parkin [Math. Computation
21 (1967), 101-3] found the result which disproves Euler’s conjecture for k = 5,
8 = 4.



XXT11
THE SERIES OF PRIMES (3)

22.1. The functions #(x) and (z). In this chapter we return to
the problems concerning the distribution of primes of which we gave
a preliminary account in the first two chapters. There we proved
nothing except Euclid’s Theorem 4 and the slight extensions contained
in §§ 2.1-6. Here we develop the theory much further and, in particular,
prove Theorem 6 (the Prime Number Theorem). We begin, however,
by proving the much simpler Theorem 7.

Our proof of Theorems 6 and 7 depends upon the properties of a
function () and (to a lesser extent) of a function $(x). We writet

(22.1.1) He) = D logp =log [ p
DPET DPET

and

(22.1.2) () =p'gwlog p= Z A(n)

(in the notation of § 17.7). Thus
$(10) = 3log2-+2log3+logs+log7,

there being a contribution log 2 from 2, 4, and 8, and a contribution
log 3 from 3 and 9. If p™ is the highest power of p not exceeding X,
logp occurs m times in (x). Also p™ is the highest power of p which
divides any number up to x, so that

(22.1.3) Y(z) = log U(w),

where U(x) is the least common multiple of all numbers up to x. We
can also express (z) in the form

(22.1.4) Pla) = Z [llggx]logp.
psx gp

The definitions of (x) and {/;(x)are more complicated than that of =(x), but
they are in reality more ‘natural’ functions. Thus (z) is, after (22.1.2), the
‘sum function’ of A(n), and A(n) has (as we saw in § 17.7) a simple generating
function. Tho generating functions of 19(x), and still more of x(z), are much more
complicated. And even the arithmetical definition of gb(x), when written in the
form (22.1.3), is very elementary and natural.

+ Throughout this chapter x (and y and ¢) are not necessarily integral. On the other
hand, m, n, h, k, etc., are positive integers and p, as usual, is a prime. We suppose
always that ¢ > 1.
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Since p? < x, p® < x,... are equivalent to p < #, p < xi,..., we have
(22.1.5) P(x) = Ha)+Hat)+9@h) 4. = T Hatm).
The series breaks off when zlm < 2, i.e, when
logx
"> logt
It is obvious from the definition that $(x) < x log x for x > 2. A fortiori
H(xim) < glm log x < zt log x

if m > 2; and > H(aimy = O{z}(log )%},
mz 2

since there are only O(logx) terms in the series. Hence
THEOREM 4 13 : Plx) = Hx) + Ofxt(log )%}
We are interested in the order of magnitude of the functions. Since

m(x) = Z 1, Zlogp,
s | B
it is natural to expect ) to be ‘about logx times' m(x), We ghall see later that
this is so. We prove next that $x) is of order =, so that Theorem 413 tells us that

J(x) is ‘about the same as' Hx) when x is large.

22.2. Proof that &(z) and ¥(x) are of order x. We now prove
THEOREM 414. The functions §(x) and ¥(x) are of order x:

(22.2.1) Ax < Hx) < As, Ax < (x) < AX  (x = 2).
It is enough, after Theorem 413, to prove that

(22.2.2) Hz) < Az

nd

(22.2.3) Ylx) > Az (x = 2).

In fact, we prove a result a little more precise than (22.2.2), viz.
THEOREM 415: &#(n) < 2nlog2 for all n > 1
By Theorem 73,

(2m-+1)! (2m—+1)(2m)...(m~+2)
“ml (m+l m !
is an integer. It occurs twice in the binomial expansion of (1-4-1)zm+1
and so 2M < 2¥m+l gnd M < 227,
If m+1<p <2m+ 1, pdivides the numerator but not the denomi-
nator of M. Hence
( 2)|M
m+l<p<2m+1
and

M2em+1)—Hm+1) = Y logp < log M < 2mlog 2.
m+1<p<2m+1
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Theorem 415 is trivial for n = 1 and for n == 2. Let us suppose it
true for all n < ny— 1. If n, is even, we have

Hng) = Hng—1) < 2(ny—1)log 2 < 2n4log 2.
If »y is odd, say n, = 2m-}-1, we have
Hng) = ¥2m4 1) = (2m+1)—Fm+ 1)+Hm+ 1)
2m log 242(m+-1)log 2
2(2m-+1)log2 = 2n,log 2,

since m+l < n,. Hence Theorem 415 is true for n = %, and so, by
induction, for all n. The inequality (22.2.2) follows at once.

We now prove (22.2.3). The numbers 1, 2., n include just [n/p]
multiples of p, just [n/p?] multiples of p? and so on. Hence

N

THEOREM 416: n! = T piewo),
v
. n
where J(n’p) — gl I:E)Tn]
We write N = (2n)! = TT p*-,

so that, by Theorem 416,

(22.2.4) kp=§1([%’]~2[p_7:”])'

Each term in round brackets is 1 or 0, according as [2nr/p™] is odd or
even. In particular, the term is 0 if p™ > 2n. Hence

(22.2.5) k, < [li’fgi?]
log 2n -
and logN = 3 k logp < [ ]logp—lﬁ(?n)
»2in 7 08P \,,;n logp

by (22.1.4). But

_ @) n+l nt2 2n on
(22.2.6) N_(n!)2_ o

and so $(2n) = nlog2.
For z > 2, we put n = [$z] > 1 and have
4o) 3 (20) > nlog2 > Jalog?,
which is (22.2.3).
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22.3. Bertrand'’s postulate and a ‘formula’ for primes. From Theorem
414, we ¢can deduce

THEOREM 417. There {3 a number B such that, for every x > 1, there 48 a prime
p satisfying x < p < Bx
For, by Theorem 414,
Gz < @) < Gz (x > 2)
for some fixed C,, (,, Hence

HC,z/C)) > CCy3/Cy) = Gz > '9(-'”)

and so there is a prime between x and C,z/C,. If we put B = max(G,/C,, 2),
Theorem 417 is immediate.
We can, however, refine our argument a little to prove a more precise result.

THEOREM 418 (Bertrand'8 Postulate). If n > 1, there is at least one prime p
such that

(22.3.1) n<p<o2n
that is, ijp, is the rth prime,

(22.3.2) Pr+1 < 2p,
Jor every r,

The two parts of the theorem are clearly equivalent. Let us suppose that,
for some n > 2% = 512, there is no prime satisfying (22.3.1). With the notation
of $22.2, let p be a prime factor of N, so that kp > 1. By our hypothesis, p < n.
If 2n < p g n, we have

2p € 2n < 3p, Pt > #n2 > 2n

-

Hence p %n for every prime factor p of N and so

(22.3.3) ;logp < Y logp = d(3n) < inlog 2
pIN p<in

and (22.2.4) becomes

by Theorem 415.
Next, if k, > 2, we have by (22.2.5)

210gp < kylogp < log(2n), P < (2n)
and so there are at most ,/(2n) such values of p. Hence

Y kylogp < V(2n)log(2n),
Ky

and so
(22.3.4) logN < 2 10gp+k2 kylogp < %} log p+/(2n)log(2n)
kpFl 22 »
o7 ’ < 7 1og2 1 ( 2n)log( )
by (22.3.3)

On the other hand, N is the largest term in the expansion of 2** = (14- 1)?#,
so that

om = 2y (2]n)+(2;)+,..+(2:f1) < 2nN.
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Hence, by (22.3.4),
2nlog2 < log(2n)+log N < $nlog2+{1+./(2n)}log(2n),

which reduces to

(22.3.5) 2nlog 2 < 3{1+44/(2n)}og(2n).
. _ log(n/512)
We now write { = T0log2 > 0,

so that 2n = 21°0+H, Jinee n > 512, we have { > 0. (22.3.5) becomes
210(1+{) <30( 25+5L‘_*_1)( 1+ é')’

whence
255 < 30.275(14-27550)(148) < (1=279)(14273)(14{) < 14L.
But 2% = exp(5{log2) > 1+5{log2 > 14,

g contradiction. Hence, if n > 512, there must be a prime satisfying (22.3.1).
Each of the primes

2,3,5,7,13, 23, 43, 83, 163, 317, 631

is less than twice its predecessor in the list. Hence one of them, at least, satisfies
(22.3.1) for any n < 630. This completes the proof of Theorem 418.
We prove next

THEOREM 419. If

& = Elpm 10—2" = .02030005000000070...,
m=
we have
(22.3.6) Pp = [102"a]—— 102"”[102"_104].
By (2.2.2), P < Qam — gam—i

and so the series for g is convergent. Agai.n

o
0 < 102 fj p, 107" < ¥ 42710
1

m=n+ m=n+1
3 2\gm—1 (2 2 1 4 1
- 2)2m—l o (2yon < <
gy ® Dy <
n
Hence [10=%} = 10" 3 p,, 102"
m=1
- n-1
snd, similarly, [10"7 ] = 10**7 ¥ p,, 102",
! m=1

It follows that
n -1
[109%]— 10105 0] = 107( 3 9, 107" 'S po 20727 = p,.
m=1 m=1

Although (22.3.6) gives a ‘formula’ for the nth prime p,,, it is not 8 very useful
one, To calculate p, from this formula, it is necessary to know the value of g
correct to 2" decimal places; and to do this, it is necessary to know the values

of D1, Paseens Pe
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There are a number of similar formulae which suffer from the same defect.
Thus, let us suppose that r is an integer greater than one., We have then
Pr < rh

by (22.3.2). (Indeed, for r > 4, this follows from Theorem 20.) Hence we may
write .
Oy = Z Ppr™™
m=1

and we can deduce that

P = {rnzar]—rm_l[r(n_l)zar]

by arguments similar to those used above.

Any one of these formulae (or any similar one) would attain a different status
if the exact value of the number ¢ or «, which occurs in it ¢could be expressed
independently of the primes. Thero seems no likelihood of this, but it cannot
be ruled out as entirely impossible.

22.4. Proof of Theorems 7 and 9. It is easy to deduce Theorem 7
from Theorem 414. In the first place

Hx) = Z logp < logx ¥ 1 = m(x)logz
T

P
and so
(2241) n(z) > 20 o, L2
ogz ~ logx’

On the other hand, if 0 < 8§ < 1,
HNe) = > logp = (1-dloge ¥ 1

z1-8Tp<a 2-8Ip<e
= (1—8)log 2{m(zx) —m(x1-8)} > (1—)log a{m(x)—a1-3}
and so

M) AX

(22.4.2) m(x) < a1~ 3+( Siogz < logz”

We can now prove

THEOREM 420. () ~ 1’;(-)_ ‘Mx)
log x ‘Iog X"
After Theorems 413 and 414 we need only consider the first assertion.
It follows from (22.4.1) and (22.4.2) that

< m(x)logx _ al-%logxr 1
T~ Hx) = Ha) TS




346 THE SERIES or¥ PRIMES [Chap. XXI1

For any ¢ > 0, we can choose & = 8(¢) so that
1

1-38

and then choose z, = (8, €) = z,(e) SO that

< 1+3%e

xl-dlog z _ Alogx
5(x) P 2€

for all x > z,. Hence
I < —w(g)(lxo)gx < 14
for all X > z,. Since « is arbitrary, the firgt part of Theorem 420 follows
at once.
Theorem 9 is (as stated in § 1.8) a corollary of Theorem 7. For, in
the first place,

(Pn) < I:g%’ p, > Anlog p, > An log n.
Secondly, - Apn ,
Apn .
so that Np, < logp, < An,  p, < An?,
and P, < Anlogp, < Anlogn.

22.5. Two formal transformations. We introduce here two
elementary formal transformations which will be useful throughout this
chapter.

THEOREM 421. Suppose that ¢,, ¢,,... is a sequence of numbers, that
Cty = 2 e
n<i
and that f(t) is any function of t. Then

(22.5.1) Y, f(n) 2 Lo fm)—fn+1}+0) f([=])-

ES
If, in addition, ¢; = 0 fOf J< an and f (1) has a continuous derivative for
t >= m,, then

(225.2) 3 e, f () = C@)f@)— [ COf ) dt

If we write N = [x], the sum on the left of (22.5.1) is
+{0 CI@)+... +{CW) - C(N - DIf(N
{f )=f@} ..+ ON =D f(N—1)—=f ()} + C(N)f(N).

tIn our appllcatlons n, = lor2.1fpn =1, thereis, of course, no restriction on the
C. If n, = 3, we havee, = 0.
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Since C(N) = C(2), this proves (22.5.1). To deduce (22.5.2) we observe
that C(t) = C(n) when n < { < n+l and so
n+1

n){fm)—fn+1)} = f f'@) dt.

Also C(t) = 0 when ¢ < n,.
If we put ¢, =1 and f(t) = 1/t, we have C(z) = [z] and (22.5.2)

becomes
f[t] Q-
= logz+y+E,
where y=1l— f (_tft—z[fhdt
1

is independent of x and

o [ et [ Waof) - o)

Thus we have
1 1
. - I 0 -1
THEOREM 422 Z - ogxr-+y-+ (x)

n<er

where y ¢ a constant (knoum as Euler’s constant).

22.6. An important sum. We prove first the lemma

THECREM  423: Zlog"( ) = Ox) (h > 0).

n<x

Since log ¢ increases with ¢, we have, for n 2> 2,

x
log" (g) < f logh(?) dt
n—1

fx) 4 h
z logh( ) f log"( ) dt = J 1052u du
I

h
<a:f10gudu=Ax,
w2

Hence

since the infinite integral is convergent. Theorem 423 follows at once.



348 THE SERI ES OF PRI MES [Chap. XX

Ifweputh= I,wehave
Y logn = [z]logz+O(x) = xlogz+O(x).
n<x
But, by Theorem 416,

Zlogn =3 j(x]p)logp = ,,gz [1”;7"] logp = gx [E]A(n)

in the notation of § 17.7. If we remove the square brackets in the last
sum, we introduce an error less than
> A(n) = J(z) = Olx)
nsT

and so Z %A(n) = > logn+0(x) = zlogz+O(x).

nEL
nET

If we remove a factor X, we have

A
Trecrem 424 Z --,(;"—) = logz-+0(1).
nNELT
From this we can deduce
TreReM  425: z logp _. = logz+0(1).
pez
For
A(n) logp log p
Z n z p Z Z pm

nET p<x mz2 ph<e
/11 logp
=4+ —=4..) ==
= ;(:pﬁp3+ )ogp ;p(p—l)
< Z logn — 4
If, in (22.5.2), we put f({) = 1/t andc, = A(n), so that C(x) = (z),
we have

A(n) _ $(x) P(t)

2w = T f e

n=x 3

and so, by Theorems 414 and 424, we have

(22.6.1) f_t‘f_(’)u — logz+0(L).

From (22.6.1) we can deduce
(22.6.2) lim{(z)/x} <1, lim{(x)/x} >
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For, if lim{(x)/x} = 14-8, where § > 0, we have (x) > (14-38)x for
all z greater than some 2, Hence

‘/’t)dt f‘b dt-[-f

in contradlctlon to (22.6.1). If we suppose that HE{¢(x)/x} = 139,
we get a similar contradiction.
By Theorem 420, we can deduce from (22.6.2)

% 4 > (14-48)logz—4,

. x T x
: — 1.
THEOREM 426 h_m{n-(w) /logx} < 1, hm{-n(x) 1ng} >
/—_— tends to a limit as x — <o, the limit is 1.
logz
Theorem 6 would follow at once if we could prove that =(x) EJ%—
X

tends to a limit. Unfortunately this is the real difficulty in the proof
of Theorem 6.

22.7. The sum 3 p-1 and the product H (I-p-1). Since

1
(2.1.1) 0 < Iogl p) 5= 2+ 3+
1
2+ 3+ 2p(p—1)
1
d
an ZP(P-l)

is convergent, the series

2.1 =) )

must be convergent. By Theorem 19, Zp-l is divergent and so the
product

(22.7.2) 11 1—=p)

must diverge also (to zero).

From the divergence of the product (22.7.2) we can deduce that
w(x) = o(z),
1.e. almost all numbers are composite, without using any of the results of §§ 22.1-6.
Of course, this result is weaker than Theorem 7, but the very simple proof is of
some interest.
If w(x,r) is the number of numbers which (i) do not exceed x and (ii) are not
divisible by any of the first r primes p,, Pj,..., Py then

n(x)  wle,r)+r
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and, by Theorem 261,

w(z,r) = [x]— Z [ﬁ].*- ; [pfpj]——...,

where ¢, j,... arc unequal and run from 1 to r, The number of square brackots is

()<

snd thc error introduccd by the removal of a squarc bracket is less than 1.

Hcnce
r
x x 1
w(z,r) < T— E — E —t 2z (1___.)_1_2r
= Pi+ .”Pipj 1—[ Pi

=1

and mz) <z JI (1—pY)+2+r.

PPy
Since JT (1 —-p7!) diverges to zero, we can, for any ¢ > 0, choose r = 7(¢) 80 that

I1 (1—p7) < fe
<Pr
and m(x) < }ex+27+4r < ex
for x > xye, ) = xole). Thus z(z) = 0 (x).
We can prove the divergence of J[(1 —p-!) independently of that of
Y p-tas follows. It is plain that
1 ) ( 1 1 1
- )= 1+_+_+...)= =,
—p1 2
the last sum being extended over all N composed of prime factors p < N
Since all n < N satisfy this condition,

H( 1 ) Yo
— = Z ~>logN—4
—_p-1y
PEN 1 p n=1n
by Theorem 422. Hence the product (22.7.2) is divergent.

If we use the results of the last two sections, we can obtain much
more exact information about 3 p-1. In Theorem 421, let us put

= logp/p, and ¢, = 0 if n is not a prime, so that

logp
C(X) = —=£ = logx+7(2),
where 7(x) = O(1) by Theorem 425. With f(t) = 1/logt, (22.5.2) be-
cornes

1
(22.7.3)
2)22 P ]og x +

¢ logzt

7(x)
+logx ftlogt f tlog2t

= Ioglogx+B1+E( )
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(t) dt
tlog?t

where B, = 1-loglog 2} f

and

o) [0l ) f %) = g3
(22.7.4) E(z) = logz f tlogh 0(logx) ( tlog?/ ~ “\logz/)
z v ,

Hence we have

THEOREM 427 :

= loglog x+ B, +0(1),

oY

234

where B, is a constant.

22.8. Mertens’s theorem. It is interesting to push our study of
the series and product of the last section a little further.

THeorem 428. In Theorem 427,
1 1
where y is Euler's constant.

Treorem 429 (Mertens’s theorem) :

[T 5~ s
<z p ng

As we saw in § 22.7, the series in (22.8.1) converges. Since

2 2] = 3 feel )3}

Theorem 429 follows from Theorems 427 and 428. Hence it is enough
to prove Theorem 428. We shall assume thatt
(22.8.2) y = -12(1) = — [e*logwda.

0

If 8§ > 0, we have

) | :
0 < —logll— - b < gy < Gp=T)

by calculations similar to those of (22.7.1). Hence the series

o= -5 4

»

1 See, for example, Whittaker and Watson, Modern analysis, ch. xii.
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is uniformly convergent for all § > 0 and so
F(3) - F(0)

as 8 - 0 through positive values.
We now suppose § > 0. By Theorem 280,

F(3) = g(8)—log £(1+3),
where g(S) = 3 p 1.

If, in Theorem 421, we put ¢, = 1/pand ¢, = 0 when n is not prime,
we have 1
C(x) = z = = loglogz+ B, + E(x)
<P

by (22.7.3). Hence, if f(t) = t-3, (22.5.2) becomes

3 p-1-8 = 2-8C(x +azf t-1-8C(1) dt.

P

Letting x — co, we have

g(s) =8 }’t—l—SC(t) dt

= 5[ t-1-3(loglog ¢+ B,) dt+-8 J t-1-8 (1) dt
l

Now, if we put ¢ = ewd,
) ft-l-aloglogt dt = [e—“log(g) du= —y—logd
1 0 8

by (22.8.2), and 5 ft—l—a dt = 1.

Hence
[<9] 2
9(®)+logd—B,+y = 8 [ ¢-13E(t) di—3 [ t-'Y(loglogt+ By) dt
2 1

Now, by (22.7.4), if T = exp 1/\/8

e

45 [ dt
+log T f

< A3108T+ 5 < AVE >0
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as 8 - 0. Also

3 2
f t-1-3(loglog ¢+ B,) dt < f t~*(|loglogt|+ | B,]) dt = A,
1 1

since the integral converges at { = 1. Hence
9(8)+logd - B,—y

as & — 0.
But, by Theorem 282,
log {(14-8)+1ogd >0
asS — 0and so F(3) » B;—vy.
Hence B; = y4-F(0),

which is (22.8.1).

22.9. Proof of Theorems 323 and 328. We are now able to prove
Theorems 323 and 328. If we write

filn) = dwﬂ, fa(n) = %:
we have to show that
limfy(n) = 1, limfyn) = 1.
It will be enough to find two functions F,(t), Fy(t), each tending to 1 as
t = o0 and such that

(22.9.1) filn) 3 Flogn),  fyn) <*—1(1<1,g 7)
for all n > 3 and

. 1
(22.9.2) flng) 2 F(G),  filny) < £G)

for an infinite inereasing sequence 7, N, 1y,... -

By Theorem 329, fi(n)fy(n) < 1 and so the second inequality in
(22.9.1) follows from the first; similarly for (22.9.2).

Let py, py,..., Pr-, be the primes which divide n and which do not
exceed logn and let p,_,.y,..., p, be those which divide n and are
greater than logn. We have

logn
loglogn

and so ﬂ??):ﬁo_ip(l—@)pﬁ(l_i)

1=1 i=1

1 log n/loglog n 1
™ L)
[T (-

"~ logn
g p<logn

(IOgn)p < pr-p+1"'p1' < n,

5591 A
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Hence the first part of (22.9.1) is true with

loj
F(t) = erlogq | -tl)t/ 8‘1—[<1_I_1))'

p<t

But, by Theorem 429, as ¢ - o0,

1 \W/log? 1
F — = -
(t) N(l t) =1 +0 (Iog t)» 1

To prove the first part of (22.9.2), we write
n; =,,1Je,f’" (j =2),
so that log n; = ji(e’) < Ajel
by Theorem 414. Hence
loglogn; < Ay+j+logj.

Again TTA=p7Y) > IT (-p-i-) = — L
G+
by Theorem 280. Hence

o(ny) ey (l—p—j—l)
N, = — -
Jafny) n; e loglog »; " loglog r,-}l;l; 1—p-1

Fy(j)

er 1
Z - : | | -
C(J+1)(Ao+]+10g])p<e,(1—1)‘1) =

(say). This is the first part of (22.9.2). Again, as j - o0, {(j+1) > 1
and, by Theorem 429,

]

Fy(j) ~ = J 1
)~ N e

22.10. The number of prime factors of n. We define w(n) as the
number of different prime factors of n, and R(n) as its total number of
prime factors; thus

w(n) = 7, Qn) = ay+-a,4...4a,
when n = pf...por.

Both w(n) and Q(n) behave irregularly for large n. Thus both func-
tions are 1 when n is prime, while

logn
00 = 152
when n is a power of 2. If

%= P1PoPy
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is the product of the first 7 primes, then

w(n) = v = =(p,), logn = 9(p,)
and so, by Theorems 420 and 414,

() ~ 3p) | lan
log p, loglog n
(when n -» o0 through this particular sequence of values).

THeoREM 430. The awverage order of both w(n) and Q(n) s loglogn.
More precisely

(22.10.1) > w(n) = zloglogxz+ B, z+o (x),
n<x

(22.10.2) > Q(n) = xloglogz+ B, z+0(x),
n<x

where B, is the number in Theorems 427 and 428 and

B, -

We write S, :ngz =2 gnl — z [p]

LT
since there are just [z/p] values of n < x which are multiples of p.
Removing the square brackets, we have

(22.10.3) 8§ = ZI-;O{n(z)) = zlogloga+ B, x-}0(x)

PST

by Theorems 7 and 427.

Similarly
22.10.4 S, =3Q = I = =z >
( ) 2 ngx () ngx p’"zlh pgx [Pm]
so that 8,—8, = X' [x/p™],

where 3’ denotes summation’over all p™ < x for which m > 2. If we
remove the square brackets in the last sum the error mtroduced is less
than

, rlogp  P(x)—d(x)
2'1< Tog2 g2 ¢ ®
by Theorem 413. Hence
8—8 = x ¥ p™+o (2).

The series

< 1 11 ]
mZz ;Fm B IZ(F+1_9§+) - Zp_(pff) = B,— B,
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is convergent and so
' p™ = By~ B;+o(l)

Sz_S1 = (Bz_Bl)x"_o (x)
and (22.10.2) follows from (22.10.3).

as X -»> 0. Hence

22.11. The normal order of w(n) and (n). The functions w(n)
and Q(n) are irregular, but have a definite ‘average order’ loglogn.
There is another interesting sense in which they may be said to have
‘on the whole’ a definite order. We shall say, roughly, that f(n) has
the normal order F(n) if f(n) is approximately F(n) for almost all values
of n. More precisely, suppose that
(22.11.1) (1—e)F(n) < f(n) < (1+¢€)F(n)
for every positive ¢ and almost all values of n. Then we say that the
normal order of f(n) is F(n). Here ‘almost all’ is used in the sense of
§§ 1.6 and 9.9. There may be an exceptional ‘infinitesimal’ set of n for
which (22.11.1) is false, and this exceptional set will naturally depend
upon e,

A function may possess an average order, but no normal order, or
conversely. Thus the function

f(n) = 0 (n even), f(n) = 2 (n odd)
has the average order 1, but no normal order. The function
f(n) = 2» (n = 2m), f) = 1 (0 % 2m)

has the normal order 1, but no average order.

Treorem 431. The normal order of w(n) and Q(n) s loglogn. More
precisely, the number of n, not exceeding x, for which

(22.11.2) |f(n)—loglogn| > (loglogn)H+?,
where f(n) <s w(n) or Q(n), is o(x) for every positive 4.
It is sufficient to prove that the number of n for which
(22.11.3) |f(n)—loglogz| > (loglog z)t+3
is o(X); the distinction between loglog » and loglog x has no importance.
For loglogz— 1 < loglogn < loglogx

when gl < n < X, so that loglog n is practically loglogx for all such
values of n; and the number of other values of n in question is

O@ve) = 0 (x).
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Next, we need only consider the case f(n) = w(n). For Q(n) > w(n)
and, by (22.10.1) and (22.10.2),

2 {Q(n)—ow(n)} = O@).

n<e

Hence the number of n < x for which
Q(n)-w(n) > (loglogz)}

. x ,
; O ogtogan) = °

so that one case of Theorem 431 follows from the other.
Let us consider the number of pairs of different prime factors p, ¢ of
n (i.e. p # g), counting the pair g, p distinct from p, ¢. There are
w(n) possible values of p and, with each of these, just w(n) - 1 possible
values of ¢, Hence
wmfomn)—1} =31= 3 1- > 1.

ngin pgln pin

p7Fq
Summing over all n < x, we have

Semp-Sem=3(s1-s1)= > [2] 3 [7]

s pi<x

FiI"St Z [1%} z xZE)l_ = O(x),

pi<T pz\w p

since the series is convergent. Next

5 [5)- 3 v

DIST
Hence, using (22.10.1}, we have

(22.11.4) SY{wn)? = = z i-{- O(x loglog x).
NET
pI<t
Now
2 2
(22.115) (z 1) <> 1 <(z 1),
p<~"xp pq<qu p<ﬂcp

since, if pg < X, then p <x and ¢ < x, while, if p < vzand ¢ <
then pg < x. The outside terms in (22.11.5) are each
{loglog x+ O( 1)}” = (loglog )2+ O(loglog X)
and therefore
(22.11.6) S {w(n)}? = x(loglog *)?+ O(x loglog x).

nsx
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It follows that
(22.11.7) ¥ {w(n)—loglog z}?
LT
= z fw(n)}?—2loglogz ¥ w(n)+[x](loglog x)?
n<E ngT
= z(loglog )2+ O(x loglog x)—

-2 loglog z{z loglog x+ O(x)} +{x - O( 1)}(loglog z)?
z(loglog z)*— 2x(loglog x)2+z(loglog x)*+ O(z loglog x)
O(x loglog x)
by (22.10.1) and (22.11.6).

If there are more than zz numbers, not exceeding x, which satisfy
(22.11.3) with f(n) = w(n), then

> {w(n)—loglogx}? > nz(loglog x)1+%,

which contradicts (22.11.7) for sufficiently large x; and this is true for
every positive n. Hence the number of n which satisfy (22.11.3) is
0(x); and this proves the theorem.

22.12. A note on round numbers. A number is usually called
‘round’ if it is the product of a considerable number of comparatively
small factors. Thus 1200 = 2%. 3. 52 would certainly be called round.
The roundness of a number like 2187 = 37 is gbscured by the decimal
notation.

It is a matter of common observation that round numbers are very
rare; the fact may be verified by any one who will make a habit of
factorizing numbers which, like numbers of _taxi-cabs or railway
carriages, are presented to his attention in a random manner. Theorem
431 contains the mathematical explanation of this phenomenon.

Either of the functions w(n) or Q(n) gives a natural measure of the
‘roundness’ of n, and each of them is usually about loglogn, a function
of n which increases very slowly. Thus loglog 107 is a little less than 3,
and loglog 1080 is a little larger than 5. A number near 107 (the limit
of the factor tables) will usually have about 3 prime factors; and a
number near 108° (the number, approximately, of protons in the uni-
verse) about 5 or 6. A number like

6092087 = 37.229.719

is in a sense a ‘typical’ number.
These facts seem at first very surprising, but the real paradox lies a
little deeper. What is really surprising is that most numbers should
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have so many factors and not that they should have so few. Theorem
431 contains two assertions, that w(n) is usually not much larger than
loglogn and that it is usually not much smaller; and it is the second
assertion which lies deeper and is more difficult to prove. That w(n)
is usually not much larger than loglogn can be deduced from Theorem
430 without the aid of (22.11.6).1

22.13. The normal order of d(n). If n = p§p§...p%, then

wn) = 7, Q(n) = a;+ay+...4a, dn) = (1-+a,)(1+a,)...(14a,).
Also 2L 14a g 20
and 2um L d(n) < 28m),
Hence, after Theorem 431, the normal order of log d(n) is

log 2 loglog n.

Theorem 432. If e is positive, then
(22.13.1) 2(1-eNoglogn < d(n) < 9(1+eloglogn
for aimost all numbers n.

Thus d(n) is ‘usually’ about

2loglogn — (log n)loe2 — (log n)®9-,

We cannot quite say that ‘the normal order of d(n) is 2'eglee»’ since thc
inequalities (22.13.1) are of a less precise type than (22.11.1); but one
may say, more roughly, that ‘the normal order of d(n) is about 2'oglosn’,

It should be observed that this normal order is notably less than
the average order logn. The average

A)+AR) ()

is dominated, not by the ‘normal n for which d(n) has its most common
magnitude, but by the small minority of n for which d(n) is very much
larger than logn.} The irregularities of w(n) and Q(n) are not suffi-
ciently violent to produce a similar effect.

22.14. Selberg’s Theorem. We devote the next three sections to
the proof of Theorem 6. Of the earlier results of this chapter we use

t Roughly, if x(x) were of higher order than loglog z, and w(n) were larger than
x{n) for a fixed proportion of numbers less than z, then
2 w(n)
nLx

would be larger than a fixed multiple of xy(z), in contradiction to Theorem 430.
t See the remarks at the ends of §§ 18.1 and 18.2.
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only Theorems 420-4 and the fact that

(22.14.1) P(xr) = O(x),

which is part of Theorem 414. We prove first

THeEOREM 433 (Selberg’s Theorem):

(22.14.2) Jla)logz+ z A(n)yJOg = 2zlogz+O(z)

and e

(22.14.3) Y A(m)logn+ 3 A(m)A(n) = 2zlogz-O(x).
nge mnEe

It is easy to see that (22.14.2) and (22.14.3) are equivalent. For

> Ami(Z) = TAW 3 Am) = 3 AmAw)

=t nET m<a/n mn<x
n<

and, if we put ¢, = A(n) and f(t) = logt in (22.5.2),

(22.14.4) ZA(n)logn = (z)logx— ][@ dt = J(x)logz+O(x)
by (22.14.1).

XX

In our proof of (22.14.3) we use the Mobius function u(n) defined in

§ 16.3. We recall Theorems 263, 296, and 298 by which

(22.145) ‘%#(d) =1 (m=1), E# =0 (n >1,
(22.14.6) Aln) = —~ dlEn,u(d)logd, logn = d% A(d).
Hence
(22.14.7) z ARA T = — &A(h) % w(d)logd

hin al?

~ — 3 p(d)logd T A(R) = —~ szznogdlog(g)
din Iy g din
A(n)log n4- E p(d)logd.

Again, by (22.14.5),

z
u(dlogt X = loga,
o od
but, for n > 1,

Z p(d)log? ( ) ZJL Y{log*d — 2 log z log d)

din

= 2A(n)log x—A(n)log n+ > A(h)A(

hk=n

k)
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by (22.14.6) and (22.14.7). Hence, if we write
_ 2T
S = S udiog?(3)
nsx din

we have
S(z) = log?x+2¢(x)logz—-Y A(n)logn—}—hz A(R)A(k)
nEx k<sz

= EA(n)lognJr Z Am)A(n)+0()

by (22.14.4). To complete the proof of (22.14.3), we have only to show
that

(22.14.8) S(z) = 2xlogz+O(x).
By (22.14.5),
—y* = Z dz u(d){bg2(§)—72}
n<e din
=> w5 roe2(3) )

since the number of n < x, for which d n, is [z/d]. If we remove the
square brackets, the error introduced is less than

> fogt(3) +77] = 0w

d<sz

by Theorem 423. Hence

(22.14.9) S(z) = x d @{1og2(2)_y2}+0(x).

n
8

Now, by Theorem 422,

(22.14.10) dgz #{log (g) }

3 0] 3, ol

The sum of the various error terms is at most

(22.14.11) z é{log(g) —}—y}O(g) 0(916) ;log( )+0( )

a<z
0(1)

S
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by Theorem 423. Also

(22.14.12) ‘Kzz "—Ei@{log(z-)— y} k;d 2
5 - 32 grolel
dk<z
= logx—y+ A(n) = 2logz+0O(1)
2SnsT

by (22.14.5), (22.14.6), and Theorem 424. (22.14.8) follows when we
combine (22.14.9)-(22.14.12).

22.15. The functions R(x) and V(£). After Theorem 420 the Prime
Number Theorem (Theorem 6) is equivalent to
THEOREM 434; P(x) ~ 2,
and it is this last theorem that we shall prove. If we put
Y(x) = =+ R(z)
in (22.14.2) and use Theorem 424, we have
X
(22.15.1) R(z)logz + n; A(")Ron = OX).
Our object is to prove that R(X) = o(x).t
If we replace n by m and x by z/z in (22.15.1), we have

i3 o)t

Hence
X
logx{ R(x)log x + ,2;, A(n)R(;); -
- g ol 3 )
n<e m<xin

= 0(xlogx)+0(x z 1-\—7(@@) = O(zlogz),
that is me
R(z)log’z = — Z A(n)R(g)logn+ z A(m)A(n)R(-”%)-}-O(x log z),

t Of eourse, this would be a trivial deduction if R(z) > 0 forallz (orif R(x) < 0
for all ). Indeed, more would follow, viz. R(x) = O(x{log z). But it i possible, so far
as we know at this stage of our argument, that R(z) is usually of order z, but that its
positive and negative values are so distributed that the sum over n on the left-hand
side of (22.15.1) is of opposite sign to the first term and largely offsets it.
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whence

(22.15.2) | R(x)|log%r < Z a, R(%)‘—{—O(mlcgz),
where a, = A(n)logn—}—‘ Z A(h)A(k)
and Zan = 2xlog x4 O(x)

by (22.14.3). nse

We now replace the gum on the right-hand side of (22.15.2) by an
integral. To do so, we shall prove that

(~)—2f

We remark that, if > ¢

(22.15.3)

( ) logt dt+O(zlog x).

n

[1B@)—|BE)| < IR ) = [$(O) =) =1+
< YO —4(t)+t—t' = FO)—F (),
where F(t) = y@t)+t = O@)

and F(t) is a steadily increasing function of ¢, Also

(22.15.4) \Zln{F(;?)—F(n%l)}:Z () [”]F([ ])

n<x
1
= 0<m _) = O(zlogx).
We prove (22.15.3) in two stages. First, if we put
K

¢, =0, Cp = G,—2 [ logtdt,  fln)=

n—1

in (22.5.1), we have
tz)

Oz) = 3 a,~2 [ 1og t dt = O(=)
x 1

and " ' i
(22.15.5) Z a, R(z) 2 Z R(E) J-logtdt
n<e 2<n<z w1
= 2 ool )| )+ 0w x()

1 n{F(g)—F(nil)})+0(z) O(xlogz)
by (22.15.4).
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f) [rura Jl <>
< |}
< [1rf)- ()}w < oofrlez)-+f9)

n—

3. [ofe)f [ []af]

= 0( KZI n{F(z—) _F(n+ )}) + O(xlogx) = O(xlogx).

Combining (22.15.5) and (22.15.6) we have (22.15.3).
Using (22.15.3) in (22.15.2) we have

(22.15.7) /RK) [log2r < 2 jSH‘Zf)

We can make the significance of this inequality a little clearer if we
introduce a new function, viz.

Next

logt di

logt di

-

Hence

(22.15.6) logt dt

logt dt-+ O(xlogz).

(22.15.8) V() = etR(ef) = e$if(ef)—1
=€ §{n<zefA }

If we write x = ¢ and { = xe~7, we have

Il

logtdt*xf[V E— ndn—xf[V lfdldn

~fo|V )| dydl

on changing the order of integration. (22.15.7) becomes

£
(22.15.9) V@) < 2 [ [ 1Y) dndl+0().
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Since ¢(x) = O(x), it follows from (22.15.8) that V(£) is bounded as
¢ - o0. Hence we may write

¢
«=TmVe, 6= lﬁéf V()] dn,

{—w

since both these upper limits exist. Clearly
(22.15.10) V()] < ato(1)

¢

and [ V() dn < Be+o(£).
0

Using this in (22.15.9), we have

£
21V < 2 [ {Bl+o ()} dL+0(¢) = BE*+o (%)
0

and so V() < Bto(l).
Hence
(22.1511) a < B

22.16. Completion of the proof of Theorems 434, 6, and 8.
By (22.15.8), Theorem 434 is equivalent to the statement that V'(£¢) = 0
as £ - oo, that is, that « = 0. We now suppose that ¢ > 0 and prove
that, in that case, B < « in contradiction to (22.15.11). We require two
further lemmas.

Trecrem 435, There is a fixed positive number A, such that, for every
positive &, &, we have

&
[ [V dn} < A4,
&

If we put x = ¢, ¢ = ¢7, we have

fV(’f)) dn=f{¢ti§)—§}dt= o)
0 1

by (22.6.1). Hence
2 2
| V() dn = jV(n) dn— ﬂ[V(n) dy = O(1)
&
and this is Theorem 435.

TrecRem 436, If g, > 0 and V(x) = 0, then

¢4

J [V (ng+7)] dr < Jo24+-0(n5Y).
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We may write (22.14.2) in the form
Y(x)log x4+ 2 A(m)A(n) = 22 log -+ O(x).

If x> x, > 1, the same result is true with z, substituted for z. Sub-
tracting, we have

P(x)log x—(xy)log x4+ <z < A(m)A(n) = 2(xlog x—x,logz,)+O(x).
Since A(n) > 0 D
0 < ¢(@)logz—¢(xo)D gz < 2(vlog v —1zylog2,)+ O(2),

whence
| R(zx)log x— R(xg)log zy| < xlogx—24logxy+ O(x).
We put x = emt7, x, = b, SO that R(x,) = 0. We have, since
07 <q,

V(ne7)] < 1—(#’:)*‘)(5)

= 1—e "+ 0(1/ny) < 74+0(1/7,)

and so
[ Woatn)dr < | Td7+0(l) - %a2+0(l).
o 3 o o,
2
We now write 8_—_30‘_2*——:‘41>a,

take { to be any positive number and consider the behaviour of V(Q)
in the interval { < 7 < {+8—a. By (22.15.8), V(%) decreases steadily
as 7 increases, except at its discontinuities, where V(7n) increases.
Hence, in our interval, either V() = 0 for some 7, or V() changes
sign at most once. In the first case, we use (22.15.10) and Theorem 436
and have
I+ Mo Mot L+8
" an - J+ [+ ] e
! ™ ta
< a(%— )+ Jo+a({+8—ng—a) -0 (1)
= af8—34a)+o(l) = &'840(1)

for large ¢, where o = a(l—g—g)< a.

In the second case, if V() changes sign just once at 1 = 7, in the
interval { € 7 < {+6—a, we have
{+8—o {+8-o
[ iy —\ V(n) dn\ |

§ m

Vin) dn' < 24,,
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while, if V(n) does not change sign at all in the interval, we have

{+8—a {+8~a
[ Woldn= [ Vindng < 4,
{ e
by Theorem 435. Hence
{+3 {+8—a (43

iVl dn = [+ | |V(g)] dy < 24,4a240(1) = a"8+0(1),
{ { [+8—a
b 24,42 44,4202 a)
[
Hence we have always
{49
[ V)l dn < 840 (1),
4
where o{1) > 0 as { » oo. If M = [£/8],

4 Mg (Mt

4
[Wpldy="3 V() dn+ [ 1V(n)] dn
0 m=0 .3 M

o' M3+o(M)+0(1) = o'§+0(¢).

¢
Hence g = Iim, f Vinldy < o <a,

0
in contradiction to (22.15.11). It follows that » = 0, whence we have
Theorem 434 and Theorem 6. As we saw on p. 10, Theorem 8 is a trivial
deduction from Theorem 6.

22.17. Proof of Theorem 335. Theorem 335 is a simple conse-

guence of Theorem 434. We have

> mnnog(;;) ~ 0)

ST/

by Theorem 423 and so
M(x)logz= 3 p(n)log n+ O(x).
n<x
By Theorem 297, with the notation of § 22.15,

— 2 pn)logn = 2 ZM(g)A(d) = 3 w(k)Ad)

n<z n<z din dk<z

= > wiug) = > wei([7))

k<z ksx

=> n(k)[%] +2 u(k)R([%]) = 84+8,

k<x

x
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(say). Now, by (22.14.5),
x
S, = Z ,.L(k)H = (k) = 1.
f<w n<r kin ’

By Theorem 434, R(xX) = o(x); that is, for any ¢ > 0, there is an integer
N = N(e) such that |R(z) < ex for all x > N. Again, by Theorem 414,
|R(z)| < Az for all x > 1. Hence

si< 2 |(lEl= 2, il 2 Al

k<z k<zN

< exlog(z/N)+ Ax{log x—log(x/N)}-+ O(x)

exlog z+0(x).

Since ¢ is arbitrary, it follows that §, = o (xlogx) and so
—M(z)logx = §;+4-8,+0(x) = o(xlogzx),

whence Theorem 335.

22.18. Products of k prime factors. Let k > 1 and consider a
positive integer n which is the product of just k prime factors, i.e.

(22.18.1) n = Dy Po Dy

In the notation of § 22.10, Q(n) = k. We write 7,(x) for the number
of such n < x. If we impose the additional restriction that all the p
in (22.18.1) shall be different, n is quadratfrei and w(n) = Q(n) = k.
We write m,(x) for the number of these (quadratfrei) n < x. We shall
prove

z(loglog z)*-1

THEOREM 437 © my(@) ~ @)~ e e

k = 2).

For k = 1, this result would reduce to Theorem 6, if, as usual, we
take O! = 1.

To prove Theorem 437, we introduce three auxiliary functions, viz.

L) - 3oy Tale) - 51, o) - 3 Tomraraepi)

where the summation in each case extends over all sets of primes
D1, Pares Pp Such that p,...p, < X, two sets being considered different
even if they differ only in the order of the p. If we write ¢, for the
number of ways in which n can be represented in the form (22.18.1),
we have
Hk(x) = E Cr» 19Ic(w) - zxcnlogn'
n<

nEx
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If all the p in (22.18.1) are different, ¢, = k!, while in any case
¢, < K. If nis not of the form (22.18.1), ¢, = 0. Hence

(22.182) Elagz) < () < klm(x) (k> 1).
Again, for k > 2, consider those n which are of the form (22.181) with
at least two of the p equal. The number of these n < z is 'rk(x)—-'n'k(vx).

Every such n can be expressed in the form (22.18.1) with p,_; = p,
and so

(22183)  r(x)—mx) < 1 < Y 1= I,y
3.0 D1 5 102+ Dk—1S
Dr1P2e PE ST D1P2e- PEk—1<T k> 2).

We shall prove below that
(22.18.4) S(x) ~ kx(loglogz)s-t (k > 2).
By (22.5.2) with f(¢) = logt, we have

X
Bplx) = Hy(x)logz— f—II—Ii(t—)dt.
2

Now 7.(x) < z and so, by (22.18.2), I (¢) = O(¢) and
T
f H';—(t) dt = o(x).
2

Hence, for k > 2,

_ 9y(@) x ka(loglog x)k-1

by (22.18.4). But this is also true for k = 1 by Theorem 6, since
() = =(x). When we use (22.185) in (22.18.2) and (22.18.3),
Theorem 437 follows at once.

We have now to prove (22.18.4). For all k > 1,

kdy4a(2) - pE<xﬂog(pzpa.-.pkﬂ)+10g(p1p3p4---pk+1)+
R +...4+log(p, ... 0x)}
xr
= (Hl%y%ﬂ <, 08(P2 P D) - (k+1)p; ﬁk(;l)

and, if we put L,(s) = 1,
1 1 z
L (x) = - — L, (——)
W= 2 2, oI

Dy DES T P1--Px ST P1
Hence, if we write
ful®@) - Sle) —kxL,_,(z),

we have
(22.18.6) @) = (810> £l 2)-
k+1 zZz k(p)

6681 Bb
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We use this to prove by induction that

(22.187) Jil®) = ofx(loglogz)e-1} (k > 1).
First fil®) = Syf@)—x = 79X = o(x)
by Theorems 6 and 420, so that (22 187) is true for k = 1. Let us
suppose (22.187) true for k = K > 1 so that, for any ¢ > 0, there is

an z,= 2,(K, ® )such that
Ifx(x) < ex(loglog x)X-*
for all x > x,. From the definition of fg(z), we see that
\fx(@)| < D

for 1 € x < x,, where D depends only on K and e. Hence

2

psT/Xy

fx(g)‘ < e{loglog x)X-1 z z

DPEE{To p

< 2ex(loglog x)K
for large enough X, by Theorem 427. Again

fK(g)' < Drm(x) < Dz.

rjre<p<ax

Hence, by (22.18.6), since K41 < 2K
[fen(®)] < 22{2¢(loglogx)k+D} < 5ex(loglog z)X

for x > x; = x4(e, D, K) = 2,(e, K). Since € is arbitrary, this implies
(22.18.7) for k = K41 and it follows for all k > 1 by induction.

After (22.18.7), we can complete the proof of (22.18.4) by showing
that

(22.18.8) Ly(x) ~ (loglogz)* (k> 1).

In (22.18.1), if every p, < a2V%, then n < x; conversely, if n < x, then
p; < z for every 4. Hence

N
~
=
Gl
Y/

5

N

8
| o—

S ————

&

1\*
o
p<anb
But, by Theorem 427,

z ~ loglog z, z F_i Iog(logkx) loglogx

p<x psaik

and (22.18.8) follows at once.
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22.19. Primes in an interval. Suppose that ¢ > 0, so that

x+ex x x
(22.19.1) m(etex)—m(x) = W)—@—i—o(@)
RS
- logx+0 logz/*

The last expression is positive provided that % > =z(e). Hence there is always
a prime p satisfying

(22.19.2) < p<(lte

when & > m(e). This result may be compared with Theorem 418. The latter

corresponds to the case € = I of (22,19.2), but holds for all ¢ > 1.
If we put ¢ =1 in (22.19.1), we have

(22193 m(2x)—m(z) = IBE%+D( Ioj””;) ~ ().

Thus, to a first approximation, the number of primes between x and 2x is the
same as the number less than z. At first sight this is surprising, since we know
that the primes near g ‘thin out’ (in some vague sense) as % increases. In fact,
m 2x)- 2m(x) > —00 as x - o0 (though we cannot prove this here), but this is
not inconsistent with (22.19.3), which is equivalent to

m(2x)—2m(x) = ofm(x)}.

22.20. A conjecture about the distribution of prime pairs
p, p-+2. Although, as we remarked in § 1.4, it is not known whether
there is an infinity of prime-pairs p, p+2, there is an argument which
makes it plausible that

(22.20.1) Pyz) ~ 2%

(logx)?’
where Fy(z) is the number of these pairs with p < x and

(22202) a=1] {1(”_121’?_1_)“2} ~T1 {1 _ (p_l_l—)z}

p=3 p=>38

We take x any large positive number and write
N=TIp

P NE
We shall call any integer » which is prime to N, i.e. any n not divisible
by any prime p not exceeding vz, a special integer and denote by S(X)
the number of special integers which are less than or equal to X. By
Theorem 62, 1

S(N) = ¢(N) = N (1——) = NB(X)

P
(say). Hence the proportion of special integers in the interval (1, N)
is B(x). It is easily seen that the proportion is the same in any com-
plete set of residues (mod N) and so in any set of rN consecutive

integers for any positive integral r,
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If the proportion were the same in the interval (1, ), we should have
2e~Yx

logx

by Theorem 429. But this is false. For every composite n not exceed-
ingx has a prime factor not exceeding vz and so the special n not exceeding
x are just the primes between % (exclusive) and z (inclusive). We
have then

S(z) = xB(x) ~

S(z) = m(x)—7m(Vx) ~ @

by Theorem 6. Hence the proportion of special integers in the interval
(1, x) is about }er times the proportion in the interval (1, N).
There is nothing surprising in this, for, in the notation of § 22.1,
log N = $(Vx) ~ vx
by Theorems 413 and 434, and so N is much greater than x. The
proportion of special integers in every interval of length N need not
be the same as that in a particular interval of (much shorter) length z.t
Indeed, S(vx) =0, and so in the particular interval (1, ) the propor-
tion is 0. We observe that the proportion in the interval (N-x, N)
is again about 1/log x, and that in the interval (N- vz, N) is again 0.
Next we evaluate the number of pairs n, n4-2 of special integers for
which n < N. If n and n-}2 are both special, we must have

N =1 (mod?2), n = 2 (mod 3)

and =1,2,3,..,p-3, orp-1 (modp) (B < p < vx).
The number of different possible residues for n (mod XN) is therefore
2
(p—2) = IN (1—) =  NBy()
3<ps VL :Kpg P

(say) and this is the number of special pairs n, n-+2 with n <{N.

Thus the proportion of special pairs in the interval (1, &) is B,(X)
and the same is clearly true in any interval of rN consecutive integers.
In the smaller interval (1, x), however, the proportion of special integers
is about ler times the proportion in the longer intervals. We may
therefore expect (and it is here only that we ‘expect’ and cannot prove)
that the proportion of special pairsn, n+ 2 in the interval (1, x) is
about (}¢7)? times the proportion in the longer intervals. But the special
pairs in the interval (1, x) are the prime pairs p, p+ 2 in the interval
(vx, x). Hence we should expect that

Py(@)— Pyvx) ~ le¥zBy(x).

t Considerations of this kind explain why the usual ‘probability’ arguments lead to
the wrong asymptotic value for n(r).
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2e~Y
By Theorem 429, B(x) ~ fogw
1 B(x)
2 o~ e _}—_,
and so e B, () (log ) {B(x)}2
By(x) H a-=2/p) _ 1—[ p
By AL, (I=1/py? T

as X — co. Since Py(vx) = O(vz), we have finally the result (22.20.1).

NOTES ON CHAPTER XXII

§§ 22.1, 2, and 4. The theorems of these sections are essentially Tchebychef's.
Theorem 416 was found independently by de Polignac. Theorem 415is an improve-
ment of a result of Tchebychefs; the proof we give here is due to Erdfs and Kalmar.

There is fyl] information about the history of the theory of primes in Dickson'’s
History (i, ch. xviii), in Ingham’s tract (introduction and ch. i), andin Landau’s
Hundbuch (3-102 and 883-5); and we do not give detailed references.

There is also an elaborate account of the early history of the theory in Torelli,
Sulla totalitd dei numer: primi, Atti della R. Acad. di Napoli (2) 11 (1902), 1-222;
and shorter gnes in the introductions to Glaisher’s Facto-r table for the gizth million
(London, 1883) and Lehmer’s table referred to in the note on § 1.4.

§ 22.3. ‘Bertrand’s postulate’ is that, for every n > 3, there is a prime p satis-
fying n < p < 2n—2. Bertrand verified this for n < 3,000,000 and Tchebychef
proved it for all n > 3 in 1850. Our Theorem 418 states a little less but the proof
could be modified to prove the better result. Our proof is due to Erdfs, Acta Litt.
Ac. Sci. (Szeged), 5 (1932), 1948.

For Theorem 419, see L. Moser, Math. Mag. 23 (1950), 163-4. See also Mills,
Bull. American Math. Soc. 53 (1947), 604; Bang, Norsk. Mat. Tidsskr. 34 {1952),
117-18; and Wright, American Math. Monthly, 58 (1951), 616-18 and 59 (1952), 99
and Journal London Math. Soc. 29 (1954), 63-71.

§ 22.7. Euler proved in 1737 that 3 p~* and [T (1-p-l) are divergent.

§ 22.8. For Theorem 429 see Mertens, Journal fiir Math. 78 (1874), 46-62. For
another proof (given in the first two editions of this book) see Hardy, Journal
London Math. Soc. 10 (1935), 91-94.

§ 22.10. Theorem 430 is stated, in a rather more precise form, by Hardy and
Ramanujan, Quarterly Journal of Math. 48 (1917), 76-92 (no. 35 of Ramanujan’s
Collected papers). It may be older, but we cannot give any reference.

§§ 22.11-13. These theorems were first proved by Hardy and Ramanujan in
the paper referred to in the preceding note. The proof given here is due to Turan,
Journal London Math. Soc. 9 (1934), 274-6, except for a simplification suggested
to us by Mr. Marshall Hall.

Turan [ibid. 11 (1936),125-33] has generalized the theorems in two directions.

§§ 22.14-16. A. Selberg gives his theorem in the forms

HMNx)ogx+ z ()logp 2xlog x+ O(x)

N ES

and 3 log'pt 3 logplogy” = 2ulogz+Ox).

PE®T



374 THE SERIES OF PRIMES [Chap. XXII

These may be deduced without difficulty from Theorem 433. There are two
essentially different methods by which the Prime Number Theorem may be
deduced from Selberg's theorem. For the first, due to Erd8s and Selberg jointly,
see Proc, Nat. Acad. Sci. 35 (1949), 374-84 and for the second, due to Selberg
alone, see Annals of Math. 50 (1949), 305-13. Both methods are more ‘elementary’
(in the logical sense) than the one we give, sinece they avoid the use of the integral
calenlus at the cost of a little complication of detail. The method which we use
in §§ 22.15 and 16 is based essentially on Selberg’s own method. For the use of
P(x) instead of $(z), the introduction of the integral calculus and other minor
changes, see Wright, Proc. Roy. Soc. Edinburgh, 63 (1951), 257-67.

For an alternative exposition of the elementary proof of Theorem 6, see van der
Corput, Colloques sur la théorie des nombres (Liege 1956). See Errera (ibid.
111-18) for the ghortest (non-elementary) proof. The same volume (pp. 9-66)
containg a reprint of the original paper in whioh de la Vallée Poussin (contem-
poraneously with Hadamard, but independently) gave the first proof (1896).

For an alternative to the work of § 22.15, see V. Nevanlinne, Soc. Sci. Fenmica:
Comm. Phys. Math. 27/3 (1962), 1-7. The same author (Ann. Acad, Soi. Fennicae
A 1343 (1964), 1-52) gives a comparative account of the various elementary
proofs.

§ 22.18. Landau proved Theorem 437 in 1900 and found more detailed asymp
totic expansions for g (x) and TE(x) in 1911. Subsequently Shah (1933) and
S. Selberg (1940) obtained results of the latter type by more elementary means.
For our proof and references to the literature, see Wright, Proc. Edinburgh Math.
Soc. 9 (1954), 87-90.

$22.20. This type of argument can be applied to obtain similar conjectural
asymptotic formulae for the number of prime-triplets and of longer blocks of
primes. These formulae agree very closely with the results of counts. They
were found by a different method by Hardy and Littlewood [Acta Math. 44
(1923), 1-70 (43)], who give references to work by Staeckel and others. See also
Cherwell, Quarterly Journal of Math. (Oxford), 17 (1948), 46-62, for another
simple heuristic method.

The ideas in this section had their origin in correspondence and conversation
with the late Lord Cherwell. See Cherwell and Wright, Quart. J. of Math. 11
(1980), 60-63, for a fuller account. See also Polya, Amer. Math. Monthly 66
(1959), 375-84.

The formulae agree very well with the results of counts. D. H. and E. Lehmer
have carried these out (on the SWAC computer) for various prime pairs, triplets,
and quadruplets up to 40 million ; and the resulting tables have been deposited
in the Unpublished Math. Tables file of Math. tables and other aids to computa-
tion. Leech has carried out similar counts (on EDSAC), including certain quintu-
plets and sextuplets, up to 10 million.
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KRONECKER'S THEOREM

23.1. Kronecker’'s theorem in one dimension. Dirichlet's
Theorem 201 agserts that, given any set of real numbers &, &,,..., ¥,
we can make ndy, nd,,..., ndy, all differ from integers by as little as we
please. This chapter is occupied by the study of a famous theorem
of Kronecker which has the same general character as this theorem of
Dirichlet but lies considerably deeper. The theorem is stated, in its
general form, in § 23.4, and proved, by three different methods, in
§§ 23.7-9. For the moment we consider only the simplest case, in which
we are concerned with a single 8.

Suppose that we are given two numbers 6 and «. Can we find an
indeger n fOr which .
#8 nearly an integer ? The problem reduces to the simplest case of
Dirichlet's problem when « = 0.

It is obvious at once that the answer is no longer unrestrictedly
affirmative. If 6 is a rational number a/b, in its lowest terms, then
(n#) = nd—[nd] has always one of the values

1 2 b-I

(23.1.1) 0 5 T s

If 0 < <1, and ¢ is not one of (23.1.1), then

r=0,1,..., b

r o
=

has a positive minimum p, and né—a cannot differ from an integer by
less than p.

Plainly p <1/2b,and p - 0 when b - o0; and this suggests the truth
of the theorem which follows.

THEOREM 438. If & is #rrational, « is arbitrary, and N and ¢ are posi-
tive, then there are integers n and p such that n > N and

(23.1.2) [nd—p—a] < e

We can state the substance of the theorem more picturesquely by
using the language of § 9.10. It asserts that there are n for which (nd)
is as near as we please to any number in (0, 1), or, in other words,
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Tueorem 439. If'9d is irrational, then the set of points (nd) s dense in
the snterval (0, 1).1

Either of Theorems 438 and 439 may be called ‘Kronecker’s theorem
in one dimension’.

23.2. Praofs of the one-dimensional theorem. Theorems 438
and 439 are easy, but we give several proofs, to illustrate different ideas
important in this field of arithmetic. Some-of our arguments are, and
some are not, extensible to space of more dimensions.

(i) By Theorem 201, with t = 1, there are integers =, and p such
that |n, #—p| < e. The point (n,d) is therefore within a distance ¢ of
either O or 1. The series of points

(n, #), (2my?), (3n,9), ...,
continued so long as may be necessary, mark a chain (in one direction
or the other) across the interval (0,1) whose mesh] is less than e
There is therefore a point {(kn,#) or (»#) within a distance ¢ of any cv
of (0,1).

(ii) We can restate (i) so as to avoid an appeal to Theorem 201, and
we do this explicitly because the proof resulting will be the model of
our first proof in space of several dimensions.

We have to prove the set S of points P, or (n$), with n =1, 2, 3,...,
dense in (0, 1). Since ¢ is irrational, no point falls at 0, and no two
points coincide. The set has therefore a limit point, and there are pairs
(B,, P,.,), with r > 0, and indeed with arbitrarily large r, as near to
one another as we please.

We call the directed stretch P, P, .. a vector. |If we mark off a stretch
P, Q,equal to P, P,,, and in the same direction, from any P,, then Q
is another point of S, and in fact £,,,. It is to be understood, when we
make this construction, that if the stretch P,, Q would extend beyond
0 or 1, then the part of it so extending is to be replaced by a congruent
part measured from the other end 1 or O of the interval (0, 1).

There are vectors of length less than ¢, and such vectors, with r > N,
extending from any point of S and in particular from F,. If we measure
off such a vector repeatedly, starting from F,, we obtain a chain of
points with the same properties as the chain of (i), and can complete
the proof in the same way.

1 We may seem to have lost something when we state the theorem thus (viz. the
inequality > N). But it is plain that, if there are points of the set as near as we
please to every o of (0, 1), then among these points there are points for which 7 is a8
large as we please.

1 The distance between consecutive points of the chain.
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(iti) There is another interesting ‘geometrical’ proof which cannot be
extended, easily at any rate, to space of many dimensions.

We represent the real numbers, as in § 3.8, on a circle of unit circum-
ference instead of on a straight line. This representation automatically
rejects integers; 0 and 1 are represented by the game point of the circle
and so, generally, are (nd) and né.

To say that S is dense on the circle is to say that every « belongs to
the derived set S'. If « belongs to S but not to §’, there is an interval
round o« free from points of S, except for « itself, and therefore there
are points near ¢ belonging neither to S nor to S'. It is therefore suffi-
cient to prove that every « belongs either to S or to S

If a belongs neither to S nor to 8, there is an interval (a—38, a+36’),
with positive & and &', which contains no point of S inside if; and among
all such intervals there is a greatest.t We call this maximum interval
I{a) the excluded interval of a,

It is plain that, if ¢ is surrounded by an excluded interval I(«), then
a—9 is surrounded by a congruent excluded interval I(a—#&). We thus
define an infinite series of intervals

I@@), I(a—9), I(a—29), . . .

similarly disposed about the points «, a—&, «— 2&,... . No two of these
intervals can coincide, since 6 is irrational; and no two can overlap, since
two overlapping intervals would constitute together a larger interval,
free from points of S, about one of the points. This is a contradiction,
since the circumference cannot contain an infinity of non-overlapping
intervals of equal length. The contradiction shows that there can be
no interval /(a), and so proves the theorem.

(iv) Kronecker's own proof is rather more sophisticated, but proves
a good deal more. It proves

Theorem 440. If & is drrational, o is arbitrary, and N positive, then
there isan n> N and a p for which

nd—p—of < 3.
n

It will be observed that this theorem, unlike Theorem 438, gives a
definite bound for the ‘error’ in terms of n, of the same kind (though
not so precise) as those given by Theorems 183 and 193 when « = 0.

+ We leave the formal proof, which depends upon the construction of ‘Dedekind
sections’ of the possible values of §and 8’, and is of a type familiar in elementary
analysis, to the reader,
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By Theorem 193 there are coprime integers ¢ > 2N and r such that

(232.1) |ﬁ—ﬂ<3

Suppose that Q is the integer, dr one of the two integers, such that
(23.2.2) lge—Q| < %

We can express Q in the form

(23.2.3) Q = vr-uq,

where » and » are integers and

(23.2.4) lv] < 3¢

Then g(vd—u—a) = v(gd—r)—(qa—@),

and therefore

(23.2.5) lg(@d—u—a)| <-3q. $+% —1,

by (23.2.1),(23.2.2), and (23.2.4). If now we write
n=q+v, P=r+tu,

then

(23.26) N<lg<n<y

and  Ind—p—ol < [p9—u—al+ lgh—r| < ot =2 < 3,
9 ¢ g¢qg n

by (23.2.1), (23.2.5), and (23.2.6).

It is possible to refine upon the 3 of the theorem, but not, by this
method, in a very interesting way. We return to this question in
Ch. XXIV.

23.3. The problem of the reflected ray. Before we pass to the
general proof of Kronecker’s theorem, we shall apply the special case
already proved to a simple but entertaining problem of plane geometry
golved by Koénig and Sziics.

The sides of a square are reflecting mirrors, A ray of light leaves a
point inside the square and is reflected repeatedly in the mirrors. What
is the nature of its path ?%

THEOREM 441. Either the path s closed and periodic or st ¢s dense
in the square, passing arbitrarily near to every point of the square. A
necessary and sufficient condition fOI periodicity is that the angle between
a gide of the square and the initial direction of the ray should have a rational
tangent.

t It may happen exceptionally that the ray passes through acorner of the square,
In this case we assume that it returns along its former path. This is the oonvention
suggested by considerations 0f continuity.
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In Fig. 10 the parallels to the axes are the lines
z = l+%’ Y = m+%’
where [ and m are integers. The thick square, of side 1, round the

origin is the square of the problem and P, or (a, b), is the starting-point.
We construct all images of P in the mirrors, for direct or repeated
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reflection. A moment's thought will show that they are of four types,
the coordinates of the images of the different types being

(A) a+21, b+2m; (B) a+-2I, —b+2m--1;
(C) —a+2041, b+2m; (D) —a+20+1, —b+2m+1;
where 7 and m are arbitrary integers.f Further, if the velocity at P has

direction cosines A, u, then the corresponding images of the velocity
have direction cosines

We may suppose, on grounds of symmetry, that p is positive.

Y

Fia. 10.

t The z-coordinate takes dl values derived from g by the repeated use of the substi-
tutions g’ = 1 —~pand g’ = - 1 =7, The figure shows the images corresponding to

non-negative 1 and m.
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If we think of the plane as divided into squares of unit side, the
interior of a typical square being

(23.3.1) -} <z<i+}, m—i<y<mti,
then each square contains just one image of every point in the original
square —-t<z <} —f<y<i;

and, if the image in (23.3.1) of any point in the original square is of
type A, B, C, or D, then the image in (23.3.1) of any other point in the
original square is of the same type.

We now imagine P moving with the ray. When P meets a mirror
at Q, it coincides with an image; and the image of P which momentarily
coincides with P continues the motion of P, in its original direction, in
one of the squares adjacent to the fundamental square. We follow
the motion of the image, in this square, until it in its turn meets a side
of the square. It is plain that the original path of P will be continued
indefinitely in the same line L, by a series of different images.

The segment of L in any square (23.3.1) is the image of a straight
portion of the path of P in the original square. There is a one-to-
one correspondence between the segments of L, in different squares
(23.3.1), and the portions of the path of P between successive reflec-
tions, each segment of L being an image of the corresponding portion
of the path of P.

The path of P in the original square will be periodic if P returns
to its original position moving in the same direction; and this will
happen if and only if L passes through an image of type A of the
original P. The coordinates of an arbitrary point of [ are

X = a4-AX, y = b+ut
Hence the path will be periodic if and only if
At = 21, ut = 2m
for some t and integral I, m; i.e. if A/u is rational.
It remains to show that, when A/u is irrational, the path of P
approaches arbitrarily near to every point (£,7) of the square. It is
necessary and sufficient for this that L should pass arbitrarily near to

some image of (£, 4) and sufficient that it should pass near some image
of (£, ) of type A, and this will be so if

(233.2) la+A—E—21] < e, btut—n—2m| < €

for every § and », any positive €, some positive t, and appropriate
integral { and m.
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_ n+2m—b
= T
when the second of (23.3.2) is satisfied automatically. The first in-
equality then becomes

(23.3.3) |md—w—I| < }e,

We take h

)

where $==C, w= (b_n)i—-%(a—f).
I 2

Theorem 438 shows that, when # is irrational, there are 1 and m, large

enough to make t positive, which satisfy (23.3.3).

23.4. Statement of the general theorem. We pass to the general
problem in space of k dimensions. The num-
bers &, #;,..., ¥, are given, and we wish to
approximate to an arbitrary set of numbers
0y, Ggyesy O, iNtegers apart, by equal mul-
tiples of &y, &,,..., 6,. It is plain, after § 23.1,
that the ¢ must be irrational, but this con-
dition is not a sufficient condition for the
possibility of the approximation.

Suppose for example, to fix our ideas, that

k = 2, that &, ¢, «, B are positive and less Fie.11.
than 1, and that & and ¢ (whether rational or irrational) satisfy a
relation ad+bd+c =0
with integral a, b, c. Then
a.nd+b.nd
and a(nd)4-b(ng)

are integers, and the point whose coordinates are (n#)and (n¢) lies on
one or other of a finite number of straight lines. Thus Fig. 11 shows
the case a = 2, § = 3, when the point lies on one or other of the lines
2x4+3y = v (v==1,2,3,4). It is plain that, if («,8) does not lie on one
of these lines, it is impossible to approximate to it with more than a
certain accuracy.

We shall say that a set of numbers

£ Egves &

is linearly independent if no linear relation

algl_}_az §2+'“+arfr = 0,



382 KRONECKER’S THEOREM [Chap. XXIII

with integral coefficients, not all zero, holds between them. Thus, if
Py Poyeery P, are different primes, then

log p,, logpy, ..., logp,
are linearly independent; for
a,log py+a,log p,+...+a,logp, = 0
is PEpg.per = 1,
which contradicts the fundamental theorem of arithmetic.
We now state Kronecker's theorem in its general form.
TREOREM 442. If Py Doy vy D 1

are linearly independent, o, o ,..., o are arbitrary, and N and ¢ are
positive, then there are integers

n> N, PuPo. Dy
such that Sy —Pp—ayl < € (M=1,2,.,K).

We can also state the theorem in a form corresponding to Theorem
439, but for this we must extend the definitions of § 9.10 to k-dimen-
sional  space.

If the coordinates of a point P of k-dimensional space are 2y, Zg,..., g,
and § is positive, then the set of points 3, xj,..., a) for which

|2 =2y <& (M=1,2,.,k)
is called a meighbourhood of P. The phrases limat point, derivative, closed,
dense in gtself, and perfect are then defined exactly as in $9.10. Finally,
if we describe the set defined by

02, <1 (M=12.,K
as the ‘unit cube’, then a set of points S is dense in the unit cube if every
point of the cube is a point of the derived set S.

Theorem 443. If &y, & ..., 3, 1 are linearly independent, then the set

of points (n9,), (1), ... (ndy)
48 dense in the unit cube.

23.5. The two forms of the theorem. There is an alternative
form of Kronecker's theorem in which both hypothesis and conclusion
agsert a little less.

Treorem 444. |F 8, 8 ..., 8, are linearly independent, oy, oy ..., %

are arbitrary, and T and € are positive, then there 48 a real number #, and

integers p,, Pg yey Py, SUch that
t>T

and t—DPm—a, <€ Mm=12,..,K.
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The. fundamental hypothesis in Theorem 444 is weaker than in
Theorem 442, since it only concerns linear relations homogeneous in
the 6. Thus &, = +2, 6, = 1 satisfy the condition of Theorem 444 but
not that of Theorem 442; and, in Theorem 444, just one of the & may
be rational. The conclusion is also weaker, because ¢ is not necessarily
integral.

It is easy to prove that the two theorems are equivalent. It is useful
to have both forms, since some proofs lead most naturally to one form
and some to the other.

(1) Theorem 444 vmplies Theorem 442. We suppose, as we may, that
every # lies in (0,1) and that ¢ < 1. We apply Theorem 444, with k- 1
for k, N4 1 for T, and }e for ¢, to the systems

Hyy By ooy Fpy 1y 0y, gy 0y 0, O
The hypothesis of linear independence is then that of Theorem 442; and
the conclusion is expressed by

(235.1) t>N+1,
(235.2) 10 —Pp—m < 3¢ (M=12,.,K),
(23.5.3) [f=Pral < de

From (23.5.1) and (23.5.3) it follows that p,,; > N, and from (23.5.2)
and (23.5.3) that

|pk+lﬁm_pm—'°‘ml < Itﬁm—pm—am[+]t—pk+1| < e
These are the conclusions of Theorem 442, with n = p, ..

(2) Theorem 442 implies Theorem 444. We now deduce Theorem 444
from Theorem 442. We observe first that Kronecker's theorém (in
either form) is ‘additive in the or’; if the result is true for a set of #
and for ay,..., ay, and also for the same Set of 6 and for By,---» By, then it
is true for the same 6 and for oy +-f;, . . ., 0z+PBg. For if the differences of
p® from o, and of ¢& from B, are nearly integers, then the difference
of (p+¢)d from a4-B is nearly an integer.

If &4, B,..., %41 are linearly independent, then so are

G e
Fprr’ Fent
We apply Theorem 442, with &N = T, to the system
% k.
There are integers n > N, p,,. .., P; such that

(23.5.4) n—ﬁ'-"—-pm—am <e (mMm=1,2,.,K).
B

1,
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If we take t = n/d,,,, then the inequalities (23.5.4) are k of those
required, and -
ta—n =0 <e

Also t > n > N = T. We thus obtain Theorem 444, for

By vos Oy D3 0, oy 2 0,
We can prove it similarly for

Br ey B Feaas 0, ey 0, g,
and the full theorem then follows from the remark at the beginning of (2).

23.6. An illustration. Kronecker’s theorem is one of those mathematical
theorems which agsert, roughly, that ‘what is not impossible will happen some-
times however improbable it may be’. We can illustrate this ‘astronomically’.

Suppose that k spherical planets revolve round a point 0 in concentric €O-
Planar circles, their angular velocities being 2rw;, 2rwg,..., 27wy, that there is
an observer at 0, and that the apparent diameter of the inmost planet P, observed
from 0, is greater than that of any outer planet.

If the planets are all in conjunction at time ¢ = 0 (so that P occults all the
other planets), then their angular coordinates at time ¢ are 27rtw1,,,, . Theorem 201
shows that we can choose a , as large as we please, for which all these angles are
as near as we please to integral multiples of 277, Hence occultation of the whole
system by P will recur continually. This conclusion holds for @]l angular velo-
cities. )

If the angular coordinates are initially «,, as,..., oz then such an occultation may
never occur. For example, two of the planets might be originally in opposition
and have equal angular velocities. Suppose, however, that the angular velocities
are linearly independent. Then Theorem 444 shows that, for appropriate t, as large

as we please, all of 21rtw1+ot1, o 27'rtwk+ak

will be as near as we please to multiples of 2¢r; and then occultations will recur
whatever the initial positions.

23.7. Lettenmeyer’s proof of the theorem. We now suppose
that k = 2, and prove Kronecker's theorem in this case by a ‘geo-
metrical method due to Lettenmeyer. When k = 1, Lettenmeyer’s
argument reduces to that used in § 23.2 (ii).

We take the first form of the theorem, and write &, ¢ for &,, #,. We

may suppose 0<d <1, 0< <1
and we have to show that if &, ¢, 1 are linearly independent then the
points P, whose coordinates are

(), (nd) (0 =1,2,..)
are dense in the unit square. No two P, coincide, and no F, lies on a

side of the square.
We call the directed stretch

PP, (n>0 r>0)
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a vector. If we take any point £, and draw a vector F,, Q equal and
parallel to the vector P, F,,,, then the other end Q of this vector is a
point of the set (and in fact P,.,). Here naturally we adopt the con-
vention corresponding to that of § 23.2 (ii), viz. that, if P, Q meets a
side of the square, then it is continued in the same direction from the
corresponding point on the opposite side of the square.

Since no two points P,, coincide, the set (PF,) has a'limit point; there
are therefore vectors whose length is less than any positive €, and vectors
of this kind for which r is as large as we please. We call these vectors
e-vectors. There are e-vectors, and e-vectors with arbitrarily large r,
issuing from every P,, and in particular from B. If

¢ < min(9, 4, 1—9, 1—¢),

then all e-vectors issuing from P, are unbroken, i.e. do not meet a side
of the square.

Two cases are possible a priori.

(1) There are two e-vectors which are not parallel.t In this case we
mark them off from P, and construct the lattice based upon P, and the
two other ends of the vectors. Every point of the square is then within
a distance e of some lattice point, and the theorem follows.

(2) All e-vectors are parallel. In this case all e-vectors issuing from
B, lie along the same straight line, and there are points B,, F, on this
line with arbitrarily large suffixes r, s. Since P,, F,, P, are collinear,

5 ¢ 1 9 ¢ 1
0=|(rd) (r¢) 1|=|rd—[rd] ré—[ré] 1
(s#) (s¢) 1, sd—[s8] sp—[sp] !

vy ¢ !

and so [70] [ré] r - 1| =0,
[s8] [sg] -1

or ad-+bdp+c = 0,

where a, b, ¢ are integers. But 6, ¢, 1 are linearly independent, and
therefore a, b, ¢ are all zero. Hence, in particular,

[r¢] r—l‘_
[s¢] s—1
. [s#] _ [

s—1 7r—1°

t In the sense of elementary geometry, where we do not distinguish two directions
on one straight line.

5591 cc
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We can make s - oo, since there are P, with arbitrarily large s; and we

then obtain
4 — tim 58] _ [r8]
s—1  r—1
which is impossible because ¢ is irrational.
It follows that case (2) is impossible, so that the theorem is proved.

23.8. Estermann’s proof of the theorem. Lettenmeyer's argu-
ment may be extended to space of k dimensions, and leads to a general
proof of Kronecker’s theorem; but the ideas which underlie it are illus-
trated adequately in the two-dimensional case. In this and the next
section we prove the general theorem by two other quite different
methods.

Estermann’s proof is inductive. His argument shows that the theorem
is true in space of k dimensions if it is true in space of k- 1. It also
shows incidentally that the theorem is true in one-dimensional space,
so that the proof is self-contained; but this we have proved already,
and the reader may, if he pleases, take it for granted.

The theorem in its first form states that, if {,, #,,..., 4,1 are linearly
independent, q;, ay,..., o, are arbitrary, and ¢ and  are positive, then
there are integers n, p,, p,,..., P such that

(23.8.1) n>w
and
(23.8.2) nd,—Pp—a,] < e (M=12..K).

Here the emphasis is on large positive values of n. It iS convenient
now to modify the enunciation a little, and consider both positive and
negative values of n. We therefore assert a little more, viz. that, given
a positive ¢ and w, and a ) of either sign, then we can choose n and the
p to satisfy (23.8.2) and
(23.8.3) n] > w, signn = signA,
the second equation meaning that n has the same sign as A, We have
to show (a) that this is true for k if it is true for k- 1, and (b) that it is
true when k = 1.

There are, by Theorem 201, integers

s> 0, b by, . ... by

such that
(23.8.4) [8%,—bnl < 3¢ (M=1,2,., K).
Since &, is irrational, s$,—b, # 0; and the k numbers

$ _ 8%,—b,
m T 5O —b;
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(of which the last is 1) are linearly independent, gince a linear relation
between them would involve one between &,,..., &, 1.

Suppose first that k > 1, and assume the truth of the theorem for
k- 1. We apply the theorem, with k- 1 for k, to the system

b1y oy oo Py (for &y, Fyyeey Fiy),
.31 = “1—0%‘;[’1’ 52 = az—ak¢2» ony Bk—l :'ak—1—ak¢k—1
(for oy, agyeney 1),
te (for ¢), A(sd,—b,) (for A),

(23.8.5) Q = (w+1)[sdy—by|+|og| (for w).

There are integers ¢, ¢;, ¢,,..., ¢;_, Such that

(23.8.6) lex] > Q,  sign ¢ = sign {\(sd,—by)},

and

(23.8.7) lekbm—Cn—Bml < 3¢ (M= 1,2 .., k).
The inequality (23.8.7), when expressed in terms of the &, is
(23.8.8) s%kt—%( (88, —bp) —Cn—tm| < t6 (M =1,2,..,K).

Here we have included the value k of m, as we may do because the left-
hand side of (23.8.8) vanishes when m = k.

We have supposed k > 1. When k = 1, (23.8.8) is trivial, and we
have only to choose ¢, to satisfy (23.8.6), as plainly we may.

We now choose an integer N so that

¢+
8. N ETk 1,
(23.8.9) \ b, <
and take n = Ns, Py = Vbt
Then
[nam—‘pm_am] = IN(S&m_bm)—cm_o‘mI
g Sgc::—o;kk (Sﬂm—bm)_cm_am + [s9,,—b,,|

< }et+3e= ¢ (Mm=12,,K),
by (23.8.4), (23.8.8), and (23.8.9). This is (23.8.2). Next

Crptoy |eg| — o] 1
5P, —by, > |88, — by >t

by (23.8.5) and (23.8.6); so that |[N| > w and
nl = INis > IN] > w.

(23.8.10)
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Finally, n has the sign of N, and so, after (23.8.9) and (23.8.10), the

sign of ¢,

s —by'
This, by (23.8.6), is the sign of A.

Hence n and the p satisfy all our demands, and the induction from
k- 1 to k is established.

23.9. Bohr’s proof of the theorem. There are also a number of
‘analytical’ proofs of Kronecker's theorem, of which perhaps the
simplest is one due to Bohr. All such proofs depend on the facts that

e(x) — p2mix
has the period 1 and is equal to 1 if and only if x is an integer.
We observe first that
.
lim L f et dit = lim
T—w T C

eciT —1

if ¢ is real and not zero, and is 1 if ¢ = 0. It follows that, if

(239.1) x() = ¥ b, e,
v=1

where no two ¢, are equal, then
.

| ,
(239.2) b, = lim »—J x(t)e=¥ .
T
T—o0 :

We take the second form of Kronecker's theorem (Theorem 444:),
and consider the function

(23.9.3) $(t) = [F(t)],
where X
(23.9.4) Fo = 14 3 elfnt—on),

of the real variable {. Obviously

$(t) < k--1.

If Kronecker’s theorem is true, we ¢an find a large ¢ for which every
term in the sum is nearly 1 and #(¢) is nearly k+1. Conversely, if ¢(¢)
is nearly k- 1 for some large ¢, then (since no term can exceed 1 in
absolute value) every term must be nearly 1 and Kronecker's theorem
must be true. We shall therefore have proved Kronecker's theorem if
we can prove that
(23.9.5) lim ¢(t) = k41.

)
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The proof is based on certain formal relations between F(t) and the
function

(23.9.6) @y, Togeeny Ty) = 1H2y+ 2ot F-2

of the £ variables x. If we raise 4 to thepth power by the multinomial
theorem, we obtain

(23.9.7) /g 2 Cyimg ., ma L VEE TR

Here the coefficients a are positive; their individual values are irrelevant,
but their sum is

(23.9.8) S>a =y?(1, 1., 1) = (k4 1)P.

We also require an upper bound for their number. There are p4-1 of
them when k = 1; and

(14214 2,)P
== (1—|—x1—|—...—[—xk_1)”+0]1) (142442 )P L+ 28,

so that the number is multiplied at most by p-1 when we pass from
k-1 to k. Hence the number of the a does not exceed (p-+1)k.1
We now form the corresponding power

Fr = {1+e(z91t—al)-l—...—l—e(z?kt—ak)}?’
of F. This is a sum of the form (23,9,1), obtained by replacing x, in
(23.9.7) by ¢(8,t—a,). When we do this, everyproduct x71...a%* in (23.9.7)
will give rise to a different ¢,, since the equality of two ¢, would imply
a linear relation between the &.1 It follows that every coefficient
b, has an absolute value equal to the corresponding coefficient a, and

that 3 bl= Sa= 1.
Suppose now that, in contradiction to (23.9.5),
(23.9.9) lim ¢(t) < k+1.

Then there is a A and a £, such that, for « > {,,
|[F(t)] < A < k41,

T T
— 1 .1
and Tim 1, f \F@)P dt < hm—Tf o di = xe,
0 0

t The actual number is (pi—k).

1 1t is here only that we use the linear independence of the &, and this is naturally
the kerne] of the proof,



390 KRONECKER’S THEOREM [Chap. XXIII

Hence

b, = [lim

N

T T
f (Ft)re—rit dt <fir_n% f \F(0)|P dt < Ne;
0 0

A

and therefore a < AP for every a. Hence, since there are at most
(p+1)* of the a, we deduce

(k1) = 3 a < (pI-1)kAe,

(23.9.10) (k_-/l\'l)pg (p+1)%.
But A < k+1, and so (’%)p= e,
where § > 0. Thus e L (p+1),

which is impossible for large p because
e=3(p+ 1k 50

when p - co. Hence (23.9.9) involves a contradiction for large p, and
this proves the theorem.

23.10. Uniform distribution. Kronecker’'s theorem, important as
it is, does not tell the full truth about the sets of points (n#) or (nd,),
(ndy),... with which it is concerned. These sets are not merely dense in
the unit interval, or cube, but ‘uniformly distributed'.

Returning for the moment to one dimension, we say that a set of
points B, in (0,1) is uniformly distributed if, roughly, every sub-interval
of (0,1) contains its proper quota of points. To put the definition pre-
cisely, we suppose that I is a sub-interval of (0, 1), and use I both for
the interval and for its length. If =; is the number of the points P,
Pyy.uiy P, which fall in 1, and

n
(23.10.1) FI_> I,

whatever 1, when n - oo, then the set is uniformly distributed. We
can also write (23.10.1) in either of the forms

(23.10.2) ny ~ nl, ny = nl+o(n).

THeorem 445. If § i3 grrational then the points (nd) are wuniformly
distributed in (0, 1).

We give a proof depending upon the simplest properties of continued
fractions. We use the circular representation of § 23.2 (iii).
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We choose a positive integer M so that

(23.10.3) n= % < }e < %,

and suppose that
(23.10.4) ¢ <M < Gy

where the ¢, are the denominators of the convergents to &. When 7 is
fixed, and n —+ oo, then v -» 0o and ¢, - oo, and

3M

23.105 — < %e
( ) P 3
for sufficiently large n. We write n in the form
(23.10.6) n = rq,+8,
where r is a positive integer and
(23.10.7) 0L s<y,.
Then l<ﬁ=r+i<r+1
7T O 9

and so

1 n
(23.10.8) M=-Lrg—.

i 9,

We suppose that | is (x,B), and define u and v as the integers such
that

(23.10.9) vl

u v
<oc<-—<—<ﬁ<
¢ ¢ g9

v-u will be large when n ard v are large. The points

u—1

1 4

é‘é w+M <w < v—M)
lie in the interval a+q%, B—qu[,
which we call I'. If a point P’ lies in I, and the distance PP’ is less

than M/q,, then P lies in I.
We now consider the points m#, or

(23.10.10) m‘%
6, being the vth convergent to #. The first g, of these points are the
points 1 2 g,—1
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in another order. Of these points, v-u-2M+ 1 lie in I’; and therefore,
since N 2> rq,, at least

(23.10.11) rlv—u—2M+1)
of the first n points (23.10.10) lie in [,
Now I=B—a< v—-u—}—2’
¥
by (23.10.9), or v-u > g, 1-2.
Hence rv—u—2M+1) > r(g, I—2M—1) > r(g, 1-3M)
= nl—sI—3Mr.
But sl {s< g, <1< en,
by (23.10.7), (23.10.4), and (23.10.3); and
3Mr < 3Mn < }en,

v

by (23.10.8) and (23.10.5). It follows that the number of md, in I’ for
which m g n is greater than n(l—¢).
If md, is one of these points, then

n 1 M
< = —
¥9v+1 gy y
by Theorem 171, (23.10.4), and (23.10.3). Since md, lies in the interval
1, mi lies in the interval I. Hence the number of m& in I for which
m < n is greater than n( I—e¢); and therefore

. n
lim 1 > I-E

n—r
But ¢ is arbitrary, and therefore
(23.10.12) lim 2> 1.
N—>0 n

Suppose finally that J is the complement of I, a single interval in
the circular representation. Then the same argument shows that

. n
lim > J=1-1,
fi—>©

and therefore that

(23.10.13) imM <1,
and (23.10.12) and (23.10.13) together contain the theorem.

The definition of uniform distribution may be extended at once to
space of k dimensions, and Kronecker's general theorem may be
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sharpened in the same way. But the proof is more difficult, and the
argument which we have used in this section cannot be generalized.

It is natural to inquire what happens in the exceptional cases when
the § are connected by one or more linear relations. Suppose, to fix our
ideas, that k = 3. If there is one relation, the points P, are limited to

certain planes, as they were limited to certain lines in § 23.4; if there
are two, they are limited to lines. Analogy suggests that the distribu-
tion on these planes or lines should be dense, and indeed uniform; and
it can be proved that this is so, and that the corresponding theorems
in space of k dimensions are also true.

NOTES ON CHAPTER XXIII

23.1. Kronecker first stated and proved his theorem in the Berliner Sitzungs-
berichte, 1884 [Werke, iii (i), 47-110]. Koksma’s book contoins an exhaustive
bibliography of later work inspired by the theorem. The one-dimensional theorem
seems to be due to Tchebychef: see Koksma, 76.

§ 23.2. For proof (iii) see Hardy and Littlewood, Acta Math. 37 (1914), 155-91,
especially 161-2.

§ 23.3. Konig and Szics, Rendiconti del circolo matematico di Palermo, 36 (1913),
79-90.

§ 23.7. Lettenmeyer, Proc. London Math. Soc. (2), 21 (1923), 306-14.

§ 23.8. Estermann, Journal London Math. Soc. 8 (1933), 18-20.

§ 23.9. H. Bohr, Journal London Math. Soc. 9 (1934), 5-6; for a variation see
Proc. London Math. Soc. (2) 21 (1923), 315-16. There is another simple proof
by Bohr and Jessen in Journal London Math. Soc. 7 (1932), 274-5.

§ 23.10. Theorem 445 seems to have been found independently, at about the
game time, by Bohl, Sierpifiski, and Weyl. See Koksma, 92.

The best proof of the theorem is no doubt that given by Weyl in a very im-
portant paper in Math. Annalen, 77 (1916), 313-52. Weyl proves that a necessary
and sufficient condition for the uniform distribution of the numbers

FO), (1(2)), (£(3)),
n
in (0, 1) is that > e{hf(v)} = o(n)
v=1
for every integral A, This principle has many important applications, particularly
to the problems mentioned at the end of the chapter.



XX1V
GEOMETRY OF NUMBERS

24.1. Introduction and restatement of the fundamental theo-
rem. This chapter is an introduction to the ‘geometry of numbers’,
the subject created by Minkowski on the bagig of his fundamental
Theorem 37 and its generalization in space of n dimensions.

We shall need the n-dimensional generalizations of the notions which
we used in §§ 3.9-11; but these, as we said in § 3.11, are straightforward.
We define a lattice, and equivalence of lattices, as in § 3.5, parallelo-
grams being replaced by n-dimensional parallelepipeds; and a convex
region as in the first definition of § 3.9.t Minkowski’'s theorem is then

THEOREM 446. Any convex region in n-dimensional space, symmetrical
about the origin and of volume greater than 2*, contains a point with
integral coordsnates, not all zero.

Any of the proofs of Theorem 37 in Ch. Ill may be adapted to prove
Theorem 446: we take, for example, Mordell's. The planes

2, = 2pJt (r = 1,2,..,n)
divide space into cubes of volume (2/f)* If N(t) is the number of

corners of these cubes in the region R under consideration, and V the
volume of R, then (2/t)*N(t) - v

when { - oo; and N(f) > ¢* if V > 27 and ¢ is sufficiently large. The
proof may then be completed as before.
If ¢, &,..., £, are linear forms in zy, 2, ,..., X,, say

(24.1.1) £ = o Byt Tyt ta 2, (r=1,2,..,n),
with real coefficients and determinant

1 % s 0w Mg

(24.1.2) A= . . . . . . . |F£0,
%n1 %ng o o o Opg

then the points in ¢-space corresponding to integral x;, Zy,..., &, form
a lattice Al:we call A the determinant of the lattice. A region R of

t The second definition ¢an also be adapted to g dimensions, the line 1 becoming an
(n- 1)-dimension8l ‘plane’ (whereas the line of the first definition remains a ‘line’). We
shall use three-dimensional language: thus we shall call the region |2| < 1, [#] < L,...,
I”ﬂl < 1 the ‘unit cube’.

1 In §3.5 we used L for a lattice of lines, A for the corresponding point-lattice. It
is more convenient now to reserve Greek letters for configurations in ‘¢-space’.
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x-space is transformed into a region P of ¢-space, and a convex R into
a convex P.t Also

[[ ] dndtadtn =I0[[ . . [ doydy...d,,

so that the volume of P is |A| times that 0f R. We can therefore restate
Theorem 446 in the form

Trecrem 447.  IF A is a lattice of determinant A, and P 18 a convex
region symmetrical about O and of volume greater than 2" |A|, then P
contains a point of A other than O.

We assume throughout the chapter that A £ 0.

24.2. Simple applications. The theorems which follow will all
have the same character. We shall be given a system of forms §,,
usually linear and homogeneous, but sometimes (as in Theorem 455)
non-homogeneous, and we shall prove that there are integral values of
the z, (usually not all 0) for which the §, satisfy certain inequalities.
We can obtain such theorems at once by applying Theorem 447 to
various simple regions P.

(1) Suppose first that P is the region defined by

Ifl] < Ap [le < AZ:"" [gnl < An'

This is convex and symmetrical about 0, and its volume is 2", A,...A,,.
If A, A, ... A, > |A|, P contains a lattice point other than O; if
XX, ... A, = |Al, there is a lattice point, other than 0, inside P or on
its boundary.} We thus obtain

Trecrem 448, If £, &,,..., &, are homogeneous linear forms in 2,
Ty yeey X, With real coefficients and determinant A, A;, Ay suey Ay are positive,
and

(24.2.1) My, = 1A
then there are integers x,, Zy,..., &,, not ail 0, for which
(24.2.2) €] < Ay (€] < Aoy [€a] < A

In particular we can make |¢,| < %/ |A | for eachr,

1 The invariance of convexity depends on two properties of linear transformations
viz. (1) that lines and planes are transformed into lines and planes, and (2) that the
order of points on a line is unaltered.

t We pass here by an appeal to continuity from a result concerning an open region
to one concerning the corresponding closed region. We might, of course, make a similar
change in the general theorems 446 and 447: thus any closed convex region, symmetrical
about 0, and of volume not less than 2% has a lattice point, other than 0, inside it or
on its boundary. We shall not again refer exphcitly to such trivial appeals to continuity.
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(2) Secondly, suppose that P is defined by
(24.2.3) €4 1ol 1 < A

If n = 2, P is a square; if n = 3, an octahedron. In the general case
it consists of 2» congruent parts, one in each ‘octant’. It is obviously
symmetrical about 0, and it is convex because

lug+p'8'| < plél+p'lE']
for positive p and /u’ The volume in the positive octant & > 0 is

1- gl 1-fimoo—bns A
o fdfl [ dg, . U[ dgy =3
5 !

If A» > n!|A] then the volume of P exceeds 2"{A], and there is a lattice

point, besides 0, in P. Hence we obtain

THEOREM 449. There are integers z, &s,..., &,, not all 0, for which

(24.2.4) 641+ Il 0] < (0! A,

Since, by the theorem of the arithmetic and geometric means,

nlé ;... [1/n lf1l+|§2[+ +[fn[;

we have also
THEOREM 460. There are integers x,, ,,..., &,, not all 0, for which
(24.2.5) 6,6 . &l <l AL
(3) As a third application, we define P by
B8+ +8 < W
this region is convex because
(pe+p€')? < (ntu)(pe®+p'¢"?)
for positive w and p’. The volume of P is A%J,, wheret
in
J, = H o [ dk gyt = T —.
B4+ +8<1 Plant1)
Hence we obtain
Trecrem 451. There are integers z,, ,,..., &,, ot all 0, for which
2/n
(24.2.6 e+ < 4(15)

n
Theorem 451 may be expressed in a different way. A quadratic form
Q in 2, %y..., z, is a function

Q(®y, Tgperry Tp) = Z Z a,-sx T,

t See, for exemple, Whittaker and Watson, Modem analysis, ed. 3 (1920). 268.

For n =2 and n = 3 we get the values #X? and %73 for the volumes of g circle or
a sphere.
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with ¢, = @,,. The determinant D of Q is the determinant of its
coefficients. If Q > 0 for all z;, @,,..., ¥, not all 0, then Q is said to
be positive definite. It is familiart that Q can then be expressed in the

form

Q = &+&+..+&,
where ¢, £,..., &, are linear forms with real coefficients and determinant
+D. Hence Theorem 451 may be restated as

THeOREM 452, If Q is a positive definite quadratic form in @y, ,,. . . , X,
with determinant D, then there are integral values of x, ..., %,, not all
0, for which

(24.2.7) Q < 4DVnJ i,

24.3. Arithmetical proof of Theorem 448. There are various
proofs of Theorem 448 which do not depend on Theorem 446, and the
great importance of the theorem makes it desirable to give one here.
We confine ourselves for simplicity to the case n = 2. Thus we are
given linear forms
(24.3.1) £= ax+Py, = yr+dy,
with real coefficients and determinant A = «8—f8y # 0, and positive
numbers A, . for which A > A |; and we have to prove that

(24.3.2) HERS Il < p,

for some integral x and y not both 0. We may plainly suppose A > 0.

We prove the theorem in three stages: (1) when the coefficients are
integral and each of the pairs o, 8 and y, § is eoprime; (2) when the
coefficients are rational; and (3) in the general case.

(1) We suppose first that «, B, y, and § are integers and that
(%B) = (y,0) = L

Since («, ) == 1, there are integers p and q for which ag—Bp = 1. The
linear transformation

artfy = X, prtqy=17Y
establishes a (1,1) correlation between integral pairs x, y and X, Y; and
(= X, n = rX+AY,
where r = yg—8p is an integer. It is sufficient to prove that |¢[ < A

and |q| < p for some integral X and Y not both 0.
IfA<<lthenpy > A, and X =0,Y = 1 gives £ = 0, |1;|:A<;L.

t See, for example, Bocher, Introduction to higher algebra, ch. 10, or Ferrar, Algebra,
ch. 11
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If A > 1, we take
n = [A], §=._£, h=Y, k=Xt

in Theorem 36. Then 0<X<<)LA

Yo a _ A _A_
XS I sH

[P

and  |rX4AY| = Ax!_.g__

so that X = k and Y = h satisfy our requirements.

(2) We suppose next that a, 8, y, and & are any rational numbers.
Then we can choose p and ¢ so that

¢ = pt = dzt+pfy, 7 = on= yaztdy,
where o, B, y’, and & are integers, («',8) =1, (y, &) = 1, and

A’ = o/8'—PB'y' = poA. Also ph. op > A', and therefore, after (1), there
are integers X, y, not both 0, for which

Ei<pr, Il < op.
These inequalities are equivalent to (24.3.2), so that the theorem is
proved in case (2).

(3) Finally, we suppose «, 8, y, and 5 unrestricted. If we put
o= o'VA .., £ = E£VA ..., then A’ = «’8'—B'y' = 1. If the theorem has
been proved when A = 1, and A’y" 2> 1, then there are integral X, y,
not both 0, for which

EI< X, In'l <pf
and these inequalities are equivalent to (24.3.2), with X = A'WA,
p = VA, Au > A. We may therefore suppose without loss of generality

that A = 1.t
We can choose a sequence of rational sets «,, 8,, ¥,, 8, such that

o‘nan"ﬁn'}’n =1
and a, > a, B, > B,..., when n - oo, It follows from (2) that there are
integers , and ¥,, not both 0, for which

(24.3.3) o T +Butn]l KA [¥a®at3ntnl < g
Also
lx”l = lsn(anxn+ﬁnyn)_ﬁn()’nxn+8nyn)l < Alsnl_l_#lﬁ‘nl’
so that z, is bounded; and similarly y, is bounded. It follows, since

t The ¢ here is naturally not the ¢ of this section.
1 A similar appeal to homogeneity wotld enable us to reduce the proof of any of
the theorems of this chaptel‘ to its proof in the egge in which A hag any assigned value.
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2, and y, are integral, that some pair of integers X, y must occur
infinitely often among the pairs x,, y,. Taking z, = X, y,, =y in
(24.3.3), and making n — oo, through the appropriate values, we obtain
(24.3.2).

It is important to observe that this method of proof, by reduction to the case
of rational or integral coefficients, cannot be used for gsuch a theorem as Theorem
450. This (when n = 2) asserts that |€yn| < HA[ for appropriate z, y. If we try
t0 use the argument of (3) above, it fails because z, and ¥, are not necessarily
bounded. The failure is natural, since the theorem is trivial when the coefficients
are rational: we can obviously choose & and y so that £ = 0, |én] = 0 < 3|A|

24.4. Best possible inequalities. It is easy to see that Theorem

448 is the best possible theorem of its kind, in the sense that it becomes
false if (24.2.1) is replaced by

(24.4.7) Ay A, = kA
with any k< 1. Thus if ¢, = =, for each r, so that A = 1, and A, = %/k,
then (24.4.1) is satisfiecl; but |¢,| < A, < 1 implies 2, = 0, and there is

no solution of (24.2.2) except 2, =2, = ... =0.

It is natural to ask whether Theorems 449-51 are similarly ‘best
possible’. Except in one special case, the answer is negative; the
numerical constants on the right of (24.2.4), (24.2.5), and (24.2.6) can
be replacecl by smaller numbers.

The special case referred to is the case n = 2 of Theorem 449. This
asserts that we can make

(24.4.2) €1+19] < V2IA)),

and it is easy to see that this is the best possible result. If £ = z+y,
n = X-y, then A = -2, and (24.4.2) is |£]+{q| < 2. But
§]41n] = max(|é+7l, |§—nl) = max(|2z], [2y]),

and this cannot be less than 2 unless x = y = 0.}

Theorem 450 is not a best possible theorem even when n = 2. It
then asserts that
(244.3) [éq] < 1Al
and we shall show in § 24.6 that the { here may be replaced by the
smaller constant 5-, We shall also make a corresponding improvement
in Theorem 451. This asserts (when n = 2) that

£+7 < 44,

and we shall show that 47-1 = 1:27... may be replaced by (§)¥ = 1-15... .

+ Actually the case n = 2 of Theorem 449 is equivalent to the corresponding case
of Theorem 448.
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We shall also show that 5-t and (3)t are the best possible constants.
When n > 2, the determination of the best possible constants is difficult.

24.5. The best possible inequality for ¢4qx2 If

Q(x, y) = aa®+2bzy-+cy?
is a quadratic form in x and y (with real, but not necessarily integral,
coefficients);
z = px'qy, y = rx'+sy’ (ps—qr = +1)
is a unimodular substitution in the sense of § 3.6; and
Q(x, y) - a’x’2-|—2b’x’y’—}—c’y’2 - Ql(xl, y’),
then we say that Q is equivalent to Q’, and write Q ~ Q'. It is easily
verified that ¢'¢' —b'2 = gc— b2, so that equivalent forms have the same
determinant. It is plain that the assertions that |@)| < k for appro-
priate integral x, y, and that |Q'| < k for appropriate integral z', y’,
are equivalent to one another.

Now let #,, y,, be coprime integers such that M = Q(x,,Y..) # 0.
We can choose r,, %, so that x; y,—x; y,, = 1. The transformation
(24.5.1) X= z®' 421y, Y = Yo +hY
is unimodular and transforms @(z, y) into @'(z’, y') with

a = axi+2bxyyyteyr = Qg y.) = M.

If we make the further unimodular transformation
(2452) x/ — x”_l_ny”, y, — y”,
where n is an integer, @ = M is unchanged and & becomes

b" = b +na’ = b'4+nM.
Since M =£ 0, we can choose n so that — [M| < 26" < |M |. Thus we
transform @(z, y) by unimodular substitutions into

Qll(xll’ yll) —_ Mx”2+2b”xﬂyll+cl/y”2

with —|M|< 2b" < |M|.}

We can now improve the results of Theorems 450 and 451, for n = 2.
We take the latter theorem first.

THeoreM 453. There are integers X, y, not both 0, for which

(245.3) 42 < (HA);
and this is true with inequality unless
(24.5.4) 2497 ~ (3P}A (2 +zy+yP).

t Areader familiar With the elements of the theory of quadratic forms will recognize
Gauss’s method for transforming Q into g ‘reduced’ form.
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We have

(24.5.5) g4 = axd+2bay+oyt = Qa, y),
where
(24.5.6) { a=atyh b= offys,  c= B4

ac—b? = (ad—Py)2 = A2 > 0.
Then Q > 0 except when x =y = 0, and there are at most a finite
number of integral pairs x, y for which Q is less than any given k. It
follows that, among such integral pairs, not both 0, there is one, say
(%g, ¥,,), for which Q assumes a positive minimum value m. Clearly z,
and y,, are coprime and so, by what we have just said, Q is equivalent
to a form ", with a” = m and -m < 2b” { m. Thus (dropping the
dashes) we may suppose that the form is

mx+4-2bxy-+cy?,
where -m < 2b . m. Then ¢ > m, since otherwise x = 0,y = 1
would give a value less than m; and
(24.5.7) A% = mc—b? = mi—im? = Im?

so that m < ($)1|A].

This proves (24.5.3). There can be equality throughout (24.5.7) only
if c = m and b = im, in which case Q ~ m(x2+2zy+y?). For this form
the minimum is plainly ($)} |A].

24.6. The best possible inequality for [éy|. Passing to the pro-
duct |¢n |, we prove

THEREM 454, There are integers x, y not both 0 for which

(24.6.1) lén] < 57HA;
and this is true with inequality wunless
(24.6.2) én ~ 5HA (22 4-zy—y?).

The proof is a little less straightforward than that of Theorem 453
because we are concerned with an ‘indefinite form’. We write

(24.6.3) én = ax®4-2bxytcy® = Q=, y),
where
(24.6.4) a=ay, 2b=ad+fy, c= P,

4(b®—ac) = A% > 0.

We write m for the lower bound of |Q(z, y)|, for x and y not both zero;
we may plainly suppose that m > 0 since there is nothing to prove if

m = 0. There may now be no pair X, y such that |@(x,y) | = m, but
5301 pd
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there must be pairs for which @(z,y) is as near to m as we please.
Hence we can find a coprime pair z,and y, so that m < |M|< 2m,
where M = Q(z,, ¥,)- Without loss of generality we may take M > 0.
If we transform as in § 24.5, and drop the dashes, our new quadratic

form is Q@,y) = Ma?+2bay+cy?,
where

(24.6.5) m <M < 2m, —M<2b<M
and

(24.6.6) 4(b2—Mc) = A? > 0.

By the definition of m, |@(z,y) > m for all integral pairs x, y other
than 0, 0. Hence if, for a particular pair, @(z, y) < m, it follows that
Q(z,y) < -m. Now, by (24.6.5) and (24.6.6),

2

Q. =0 <t <iM<m
Hence ¢  -m and we write (= —¢ > m > 0. Again
Q(l, I__b?)z M—126|—C < M-C < M-m < m
and so M —|2b|—C < —m, that is
(24.6.7) (26 > M+m-C.

If M+m-C < 0, we have ¢/ > M+m > 2m and
A% = 4(b2°+-MC) = AMC = 8m? > 5m?
If M+m-C > 0, we have from (24.6.7)
A% = 4p24-4MC = (M+m—C)*4-4MC
= (M—m--02+4Mm > bm?
Equality ean occur only if M-m+C = m and M = m, so that
M = (¢ =m and |b] = m. This corresponds to one or other of the
two (equivalent) forms m(x?-txy—y?) and m(z®*—xzy—y?). For these,
1Q(1,0)] = m = 5-*A. For all other forms, 5m? < A%? and so we may
choose 2, y, so that 5m? < 5M2< A,
This is Theorem 454.
24.7. A theorem concerning non-homogeneous forms. We

prove next an important theorem of Minkowski concerning non-homo-
geneous forms

(24.7.1) 5-p = ax+fy—p, n—o = yr4-dy—o.
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THeorem 455. If ¢ and # are homogeneous linear forms in x, y, with
determinant A 5 0, and p and ¢ are real, then there are integral x, y for
which

(24.7.2) (€—p)(n—0)i < FIAL;
and this is true with inequality unless

(24.7.3) £ = bu, n = ¢v, 66 = A, p = 0(f+3), ¢ = g+,

where u and v are forms with integral coefficients (and determinant 1),
and f and g are integers.

It will be observed that this theorem differs from all which precede
in that we do not exclude the values x =y = 0. It would be false if
we did not allow this possibility, for example if £ and 5 are the special
forms of Theorem 454 and p=¢ = 0.

It will be convenient to restate the theorem in a different form. The
points in the plane ¢, n corresponding to integral x, y form a lattice
A of determinant A. Two points P, Q are equivalent with respect to A
if the vector PQ is equal to the vector from the origin to a point of A;T
and (¢—p, n—o), with integral X, y, is equivalent to (-p, —g). Hence
the theorem may be restated as

Treorem 456. If A is a Zattice of determinant A in the plane of (¢, ),
and Q is any given point of the plane, then there is a point equivalent to
Q for which

(24.7.4) 169 < AL
with inequalify except in the special case (24.7.3).

In what follows we shall be concerned with three sets of variables,
(X, ¥), (£, m),and (£, n'). We call the planes of the last two sets of
variables 7 and #’.

We may suppose A =1.1 By Theorem 450 (and a fortiori by Theorem
454), there is a point P, of A, other than the origin, and corresponding
to &y, ¥,, for which

(24.7.5) om0l < -

We may suppose x, and y,, coprime (so that F, is ‘'visible’ in the sense
of § 3.6). Since &, and ), satisfy (24.7.5), and are not both 0, there is
a real positive A for which

(24.7.6) A&+ (\Ing)? = 1.

+See p. 35. It is the same thing to say that the corresponding points in the (z, V)
plane are equivalent with respect to the fundamental lattice.
+ See the footnote to p. 396.
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We put
(24.7.7) &= X, 7 = Ay,
Then the lattice A in # corresponds to a lattice A" in #’, also of deter-
minant 1. If 0’ and P, correspond to 0 and F,, then Py, like F,, is
visible; and O'P; = 1, by (24.7.6). Thus the points of A’ on O'P; are
spaced out at unit distances, and, since the area of the basic parallelo-
gram of A’ is 1, the other points of A’ lie on lines parallel to O'P;
which are at unit distances from one another.
We denote by S’ the square whose centre is 0' and one of whose
sides bisects O'P, perpendicularly.t Each side of §"is 1; 8’ lies in

the circle Sgrz_}_,,’rz _ 2(%)2 — %’
and
(24.7.8) 1€ < €%+ < 4

at all points of S'.

If A" and B' are two points inside §’, then each component of the
vector A' B' (measured parallel to the sides of the square) is less than
1, so that A and B’ cannot be equivalent with respect to A’ It follows
from Theorem 42 that there is a point of 8’ equivalent to Q' (the point
of =’ corresponding to Q). The corresponding point of s is equivalent
to Q, and satisfies
(24.7.9) €0l = |E7'1 < ¢
This proves the main clause of Theorem 456 (or 455).

If there is equality in (24.7.9), there must be equality in (24.7.8), so
that |£'| = |%'| = 4. This is only possible if S’ has its sides parallel
to the coordinate axes and the point of §’ in question is at a corner.
In this case P, must be one of the four points (4 1, 0), (0, 4- 1): let us
suppose, for example, that it is (1,0).

The lattice A’ can be based on O’ Py, and 0’ P;, where P; isony'=1.
We may suppose, selecting P, appropriately, that it is (c, 1), where
0 < ¢ < 1. If the point of S’ equivalent to Q' is, say, (, %), then
(3—c, 3—1), i.e. (4—c, —1), is another point equivalent to Q’; and this
can only be at a corner of S, as it must be, if ¢ = 0. Hence P; is
(0, 1), A’ is the fundamental lattice in 7', and Q’, being equivalent to
(3, 3), has coordinates

£=f+h 7= 9th
where f and g are integers. We are thus led to the exceptional case
(24.7.3), and it is plain that in this case the sign of equality is necessary.

1 The reader should draw g figure.
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24.8. Arithmetical proof of Theorem 455. We also give an arith-
metical proof of the main clause of Theorem 455. We transform it as
in Theorem 456, and we have to show that, given p and v, we can
satisfy (24.7.4) with an x and a y congruent to x and v to modulus 1.

We again suppose A = 1. As in § 24.7, there are integers %, ¥4, Which
we may suppose coprime, for which

[y +Byo)(yzo+0Yy) | < &

We choose r; and y, so that g, y,—=, y,, = 1. The transformation
X = @' +x1y, Y = Yo'+ Y

changes ¢ and 5 into forms ¢ = o2’ 4By, 4 = y'&'+8'y’ for which
o'y’ | = I(oo+-BYo) (v +890)] < &

Hence, reverting to our original notation, we may suppose without loss
of generality that

(248.) ley] < §-
It follows from (24.8.1) that there is a real A for which
Ado24-A-%2 = 1

2|(o-+By)(ya+0y)[ < Ao +By)*+A*(ya+-8y)*?
= attobaytopt = (e4by)*+py,
for some b, ¢, p. The determinant of this quadratic form is, on the one
hand, the square of that of A(ax+By) and A-Y(yx-+-8y),T that is to say 1,
and on the other the square of that of x--by and py, that is to say p;
and therefore p = 1. Thus
2| (o4 By) (ya+8y) | < (@+by)>+y2
We can choose y = v (mod 1) so that |y| < %, and then x = p (mod 1)
so that |x4by| < %; and then
€71 < HEB+@ = &

We leave it to the reader to discriminate the cases of equality in this
alternative proof.

and

24.9. Tchebotaref’s theorem. It has been conjectured that Theo-
rem 455 could be extended to n dimensions, with 2-" in place of };
but this has been proved only for n = 3 and n = 4. There is, however,
a theorem of Tchebotaref which goes some way in this direction.

t See (2455) and (24.56).
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THEOREM 457. If £, &, ,..., £, are homogeneous linear form.8 in z;,
Zy,..., T,, With real coefficients and determinant A; py, ps,..., p,, are real;
and m is the lower bound of

[(1—p1)(E2—p2)--(€n—Pn)],
then
(24.9.1) m < 2-17]A.

We may suppose A = 1 and m > 0. Then, given any positive e,
there are integers z¥, 23,..., z for which

(24.9.2)
1T &5 —pil = |(ET_PI)(E;_PZ)"'(E:—Pn)l = 1—71;0’ 0<f<e
We put & -—f —&f (¢t =1, 2,...,n).

™

§ —Ps
Then &,..., &, are linear forms in &, —zf,..., z, —}, with a determinant
D whose absolute value is

ID| = (TT 1€t —p:) = 10,
m

’

and the points in ¢’-space corresponding to integral x form a lattice
A’ whose determinant is of absolute value (1 —§)/m. Since

[T éi~pil = m,
every point of A’ satisfies
’ gl_pl
A =T] H > 1.

The same inequality is satisfied by the point symmetrical about the
origin, so that J] | £~ 1| = 1-0 and

(24.9.3) TJ [£2—1| = [(E2—1)(E2—1).(E2—1)| > (1—0)2

We now prove that when ¢ and 6 are small, there is no point of A’,
other than the origin, in the cube C’ defined by

(24.9.4) 1€ < J{14+(1—0)3.

If there is such a point, it satisfies

(24.9.5) 1 LE-1< (102 <1 (E=1,2,.,n).
I f

(24.9.6) g2—1 > —(1—f)?

for some 1, then |¢2— 1] < (1—#6)2 for that i, and [¢2— 1| 1 for every
h o that IT ig2—1 < (a—-0p,
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in contradiction to (24.9.3). Hence (24.9.6) is impossible, and therefore

-1 g 512—1 g _(1_0)2 (1’ = 1:2;"‘77");
and hence

(24.9.7) I < JI—(1—0)B < J26) (=12 0y n).

Thus every point of A" in C' is very near to the origin when ¢ and § are
small.

But this leads at once to a contradiction. For if (¢;,..., &) is a point
of A, then so is (N§y,..., N&,) for every integral N. If 6 is small, every
coordinate of a lattice point in €’ satisfies (24.9.7), and at least one of
them is not 0, then plainly we can choose N so that (N§,..., N&,),
while still in €, is at a distance at least 4 from the origin, and there-
fore cannot satisfy (24.9.7). The contradiction shows that, as we stated,
there is no point of A’, except the origin, in C'.

It is now easy to complete the proof of Theorem 457. Since there
is no point of A’, except the origin, in ', it follows from Theorem 447
that the volume of ¢’ does not exceed

2D| = 2n(1—0)/m;
and therefore that
2rm{l4-(1—0)2n L 27(1—0).

Dividing by 27, and making 8§ - 0, we obtain

m < 2-in,
the result of the theorem.

24.10. A converse of Minkowski’s Theorem 446. There is a
partial converse of Theorem 446, which we shall prove for the case
n = 2. The result is not confined to convex regions and we therefore
first redefine the area of a bounded region P, since the definition of
p. 32 may no longer be applicable.

For every p > 0, we denote by A(p) the lattice of points (pz, py),
where x, y take all integral values, and write ) for the number of
points of A(p) (apart from the origin 0) which belong to the bounded
region P. We call
(24.10.2) V - limp%{p)

0
the areq of P, if the limit exists. This definition embodies the only
property of area which we require in what follows. It is clearly
equivalent to any natural definition of area for elementary regions such
as polygons, ellipses, etc.
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We prove first

Trecem 458.  If P is a bounded plane region with an gree V which
is less than 1, there is a Eattice of determinant 1 which has no point (except
perhaps 0) belonging to P.

Since P is bounded, there is a number N such that
(24.10.2) —~N<ELN, —N< <N
for every point (¢, 7) of P. Let p be any prime such that
(24.10.3) p> N2

Let u be any integer and A, the lattice of points (¢, 5), where

£ — 3(_’ n = uX +pY
vp Vp

and X, Y take all integral values. The determinant of A, is 1. If

Theorem 458 is false, there is a point 7, belonging to both A, and P
and not coinciding with 0. Let the coordinates of 77, be

X, uX ,+pY,
§u = %’ Nu = p .

If X, =0, we have

by (24.10.2) and (24.10.3). It follows that Y,, = 0 and T, is O, contrary

to our hypothesis. Hence X, # 0 and

0 < |X,|= +plé,| < NVp < p.

Thus
(24.10.4) X, £ 0 (modp).
If 7', and 7, coincide, we have
X,= Xo  wX,4pY, = X4t
and so

X, (u—v) = 0, u = 1 (modp)
by (24.10.4). Hence the p points

(24.10.5) T, Ty, Ty,..., T,y
are all different. Since they all belong to P and to A(p-?), it follows
that

g(p~t) 3 P

But this is false for large enough p, since

pgp7t) »v <1
by (24.10.1). Hence Theorem 458 is true.
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For our next result we require the idea of visible points of a lattice
introduced in Ch. 1. A point T of A{p) is visible (i.e. visible from the
origin) if T is not O and if there is no point of A(p) on OT between 0
and T. We write f(p) for the number of visible points of A(p) belonging
to P and prove the following lemma.

THEOREM 459: P (p) SV s p = 0,
4(2)

The number of points of A(p) other than 0, whose coordinates satisfy
Hence
(24.10.6) fle) = glp) = 0 (p > N)
and
(24.10.7) flp) < glp) < 9N%p?
for all p

Clearly (pz,py) is a visible point of A(p) if, and only if, z, ¥ are
coprime. More generally, if m is the highest common factor of x and y,
the point (ox, py) is a visible point of A(mp) but not of A(kp) for any

integral k # m. Hence ©
= 2 f(mp)

By Theorem 270, it follows that

flp) = ilﬁ(m)g(mp)-

m=

The convergence condition of that theorem is satisfied trivially since,
by (24.10.6), f(mp) = g(mp) = 0 for mp > N. Again, by Theorem 287,

and so

(24.10.8) (o) — w Z

Now let ¢ > 0. By (24.10.1), there is a number p; = p,(¢) such that

p*g(mp)—V}.

miptg(mp)—V| < ¢
whenever mp < p,. Again, by (24.10.7),

Im3pig(mp) V| < ON4-V
Ee
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for all m. If we write M = [p,/p], we have, by (24.10.8),
M
1
f(e) - 52] < D >
(2) =1 m=M+1
9NV
+M_+l< 3%

if p is small enough to make

M = [pyfp) > (ON*V)je.
Since ¢ is arbitrary, Theorem 459 follows at once.

We can now show that the condition V « 1 of Theorem 458 can be
relaxed if we confine our result to regions of a certain special form.
We say that the bounded region P is a star region provided that (i) O
belongs to P, (ii) P has an area V defined by (24.10.1), and (iii) if T is
any point of P, then so is every point of OT between 0 and T. Every
convex region containing O is a star region; but there are star regions
which are not convex. We gan now prove

Theorem 460. If P is a star region, symmetrical gbout O and of area

V < 20(2) = 1#2 there is a lattice of determinant 1 which has no point
(except pOSSIbly 0) in P.

We use the same notation and argument as in the proof of Theorem
458. If Theorem 460 is false, there is a T, different from 0, belonging
to A, and to P.

If 7, is not a visible point of A(p-!), we have m > 1, where m is the
highest common faetor of X, and uX ,+pY,. By (24.10.4),p f X, and
so p / m. Hence m Y,. If we write X, = mX,, Y, = mY,, the num-
bers X, and uX; +-pY’, are coprime. Thus the point 7%,, whose coordi-

nates are & X, +pY,
W A
belongs to A, and is a visible point of A(p~t). But T, lies on OT, and
so belongs to the star region P. Hence, if 7/, is not visible, we may
replace it by a visible point.
Now P containg the p points

(24.10.9) Ty, Tppery Ty,

all visible points of A(p-t), all different (as before) and none coinciding
with 0. Since P is symmetrical about O, P also contains the p points

(24.10.10) To Tyees Ty,

where T, is the point (—¢,, —7,). All these p points are visible points
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of A(p~3), all are different and none is 0. Now T, and T, cannot coin-
cide (for then each would be 0). Again, if u # ¢ and 7, and T, coincide,

we have X, =—X, uXu+PYu = —vX,—pY,,
u-V)X, = 0, X, =0 oru =v (modp),

both impossible. Hence the 2p points listed in (24.10.9) and (24.10.10)
are all different, all visible points of A(p~%) and all belong to P so that

(24.10.11) f=) > 2p.
But, by Theorem 459, as p — o,
pf(pH) > 6V/m® < 2
by hypothesis, and so (24.10.11) is false for large enough p. Theorem
460 follows.

The above proofs of Theorems 458 and 460 extend at once to n
dimensions. In Theorem 460, {(2) is replaced by {(n).

NOTES ON CHAPTER XXIV

§ 24.1. Minkowski’s writings on the geometry of numbers are contained in his
books Feometrie der Zahlen and Diophantische Approximationen, already referred
to in the note on $3.10, and in a number of papers reprinted in his Gesammelte
Abhandlungen (Leipzig, 1911). The fundamental theorem was first stated and
proved in a paper of 1891 (Gesammelte Abhandlungen, i. 255). There is a very
full gecount of the history and bibliography of the subject, up to 1936, in Koksma,
chs. 2 and 3, and a survey of recent progress by Davenport in Proc. International
Congress Math. (Cambridge, Mass., 1950), 1 (1952), 166-74.

Siegel [Acta Math. 65 (1935), 307-23] has shown that if ¥ is the volume of
a convex and symmetrical region R containing no lattice point but 0, then

20 = V4 V-1 3|11
where each I is a multiple intogral over R. This formula makes Minkowski’s
theorem evident.

Minkowski (Geometrie der Zahlen, 211-19) proved a further theorem which
includes and goes beyond thc fundamental theorem. We suppose R convex and
symmetrical, and write AR for R magnified linearly about 0 by a factor A. We
define A;, Agy..ry A, as follows: }, is the least A for which AR has a lattice point
P, on its boundary; A, the least for which AR has a lattice point B, not collinear
with 0 and P,, on its boundary; Aa the least for which AR has a lattice point P,
not coplanar with 0, Pv and Pz, on its boundary; and so on. Then

0l <A< .. <A
(A,, for example, being equal to /\1 if )\1 R has a second lattice point, not collinear
with 0 and P,, on its boundary); and
MA AV < 27,
The fundamental theorem is equivalent to AV < 2", Davenport [Quarterly

Journal of Math. (Oxford), 10 (1939), 117-21} has given a short proof of the
more general theorem.
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§ 24.2. All these applications of the fundamental theorem were made by
Minkowski.

Siegel, Math. A4nnalen, 87 (1922), 36-8, gave an analytic proof of Theorem 448:
see also Mordell, ibid. 103 (1930), 38-47.

Hajoés, Math. Zeitschrift, 47 (1941), 427-67, has proved an interesting con-
jecture of Minkowski concerning the ‘boundary case’ of Theorem 448. Suppose
that A = 1, so that there are integral z;, %y,..., ¥, such that |£] < 1 for r = 1,
2,.., . Can the z, be chosen so that [{,| < 1 for every r ? Minkowski's con-
jecture, now established by Hajés, was that this is true except when the f,. can
be reduced, by a change of order and a unimodular substitution, to the forms

51 = %y, fz = Qg Ty Ty ey fn = 0‘n.lxl"""n.zxz'{'"'“*“xw
The conjecture had been proved before only for n < 7.

The first general results concerning the minima of definite quadratic forms
were found by Hermite in 1847 ((Huwres, i, 100 et seq.): these are not quite so
sharp as Minkowski's.

§ 24.3. The first proof of this character was found by Hurwitz, Géttinger Nach-
richten (1897), 139-45, and is reproduced in Landau, Algebraische Zahlen, 34-40.
The proof was afterwards simplified by Weber and Wellstein, Math. Annalen,
73 (1912), 275-85, Mordell, Journal London Math. Soc. 8 (1933), 179-82, and
Rado, ibid. 9 (1934), 164-5 and 10 (1933}, 115. The proof given here is substan-
tially Rado’'s (reduced to two dimensions).

§ 24.5. Theorem 453 is in Gauss, D.A., § 171. The corresponding results for
forms in 7 variables are known only for n < 8: see Koksma, 24, and Mordell,
Journal London Math. Soc. 19 (1944), 3-6.

§ 24.6. Theorem 454 was first proved by Korkine and Zolotareff, Math. Annalen
6 (1873), 366-89 (369). Our proof is due to Professor Davenport. See Macbeath,
Journal London Math. Soc. 22 (1947), 261-2, for another simple proof. There is
a close connexion between Theorems 193 and 454.

Theorem 454 is the first of a series of theorems, due mainly to Markoff, of
which there is a systematic account in Dickson, Studies, ch. 7. If &n is not
equivalent either to (24.6.2) or to

(a) 87H|A|(22+ 20y —4?),

then [én] < 8-HA|

for appropriate , y; if it is not equivalent either to (24.6.2), to (a), or to
(b) (221)7}[A](522 + 11y — 5y?),

then |€n] < 5(221)~#|Al;

and so on. The numbers on the right of these inequalities are
(c) m{9m2—4)-1,

where m is one of the ‘Markoff numbers’ 1, 2, 5, 13, 29,...; and the numbers (c)
have the limit }. See Cassels, Annals of Math. 50 (1949), 676-85 for a proof of
these theorems.

There is a similar set of theorems associated with rational approximations to
an irrational f, of which the simplest is Theorem 193: see §§ 11.8-10, and Koksma,
31-33.

Davenport [PT-oc. London Math. Soc. (2) 44 (1938), 412-31, and Journal
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London Math, Soc. 16 (1941), 98-101] has solved the corresponding problem for
n = S We can make 6, £26a] < 318

unless §16:63 ~ 3 T (2,40, +0%,),

where the product extends gver the roots # of §3462—20— 1 = 0. Mordell, in
Journal London Math. Soc. 17 (1942), 107-15, and a series of subsequent papers
in the Journal and Proceedings, has obtained the best possible inequality for the
minimum of a general binary cubic form with given determinant, and has shown
how Davenport’s result ¢an be deduced from it; and this has been the starting~
point for a considerable body of work, by Mordell, Mahler, and Davenport, on
lattice points in non-convex regions.

The corresponding problem for n > 3 has not yet been solved.

Minkowski [Géttinger Nachrichten (1904), 311-35; (esammelte Abhandlungen, ii.
3-42] found the best possible result for [£,| + |£| + |&], viz.

[&]+[€al 16 < GSHADE
No simple proof of this result is known, nor any corresponding result with n > 3.

§§ 24.7-8. Minkowski proved Theorem 455 in Math. A4nnalen, 54 (1904), 108-14
(Ge,ga,mmelte Abhandlungen, i. 320-56, and Diophantische Approximationen, 42-7).
The proof in § 24.7 is due to Heilbronn and that in § 24.8 to Landau, Journal fu'r
Math. 165 (1931), 1-3: the two proofs, though very different in form, are based
on the same idea. Davenport [Acta Math. 80 (1948), 65-95] solved the corre-
sponding problem for indefinite ternary quadratic forms.

§ 24.9. The conjecture mentioned at the beginning of this section is usually
attributed to Minkowski, but Dyson [Annals of Math. 49 (1948), 82-109] remarks
that he can find no reference to it in Minkowski’s published work. Remak [Math.
Zeitschrift, 17 (1923), 1-34 and 18 (1923), 173-200] proved the truth of the con-
jecture for n = 3 and Dyson [loec. cit.] its truth for n = 4. Davenport [Journal
London Math. Soc. 14 (1939), 47-51] gave a much shorter proof for n = 3.

It is easy to prove the truth of the conjecture when the coefficients of the
forms are rational.

Tchebotaref's theorem appeared in Bulletin Univ. Kasan (2) 94 (1934), Heft 7,
3-16; the proof is reproduced in Zentralblatt fir Math. 18 (1938), 110-11. Mordell
[Vierteljahrsschrift d. Nalurforschenden Ces. in Ziirich, 85 (1940), 47-50] has shown
that the result may be sharpened a little. See also Davenport, Journal London
Math. Soc. 21 (1946), 28-34.

§ 24.10. Minkowski [@esammelte Abhandlungen (Leipzig, 1911), i. 265,270, 277]
first conjectured the n-dimensional generalizations of Theorems 458 and 460 and
proved the latter for the n-dimensional sphere [loc. cit. ii. 95]. The first proof
of the general theorems was given by Hlawka [Math. Zeitschrift, 49 (1944), 285—
312]. our proof is due to Rogers [Annals of Math. 48 (1947), 994-1002 and
Nature 159 (1947), 104-5]. See also Cassels, Broc. Cambridge Phil. Soc. 49 (1953),
165-6, for a simple proof of Theorem 460 and Rogers, Proc. London Math. Soc. (3)
6 (1956), 305-20, and Schmidt; Monatsh. Math. 60 (1956), 1-10 and 110-13, for
improvements of Hlawka’s results.
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THE references give the section and page where the definition of the
symbol in question is to be found. We include all symbols which occur
frequently in standard senses, but not symbols which, like S(m,n) in
$5.6, are used only in particular sections.

Symbols in the list are sometimes also used temporarily for other
purposes, as is y in § 3.11 and elsewhere.

General analytical symbols

0, 0, ~, <, >, |f|, A (unspecified § 1.6 p.-7
constant)

min(z, y), max(z, y) § 51 p. 48

olr) = gtrir §5.6 p. 54

L] § 611 p. 74

(x), # § 113 p. 156

(@ a,.. a] (continued fraction) § 10.1 p. 129

Py 95 (cOnvergents) § 10.2 p. 130

U § 105, 10.9 pp. 133, 139
In § 107, 10.9  pp. 137, 140

Symbols of divisibility, congruence, etc.

bla,bfa § 1.1 p. 1

(a, b), (@, b,..., k) §29 p. 20
{a, b} §5.1 p. 48
x = a (modm), « = a (modm) § 52 p. 49
flx) = g(x) (modm) §7.2 p. 82
9() | f(x) (mod m) §7.3 p. 83
% (modm), 2 (modm) §7.8 p. 89
k(1) §122  p. 178
k(3) §122  p. 179
k(p) § 122  p. 179
k(&) § 141 p. 204

Bla, B} a, a=pB (mody) [in k(i) and other fields]

§ 12.6 (p. 182), 12.9 (p. 188), 14.4 (p. 208), 15.2 (p. 21Y)
¢ (unity) §§ 12.4 (p. 181), 12.6 (p. 182), 14.4 (p. 208)
No (norm) §§ 12.6 (p. 182), 12.9 (p. 187), 14.4 (p. 208)
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l;If(P), Hf(p) §51 p. 48 (f.n.)

aRyp, aNp, OF? § 65 pp. 67-8

Special numbers and functions

(%) § 1.5 p. 6

P § 15 p. 6

F, (Fermat number) § 2.4 p. 14

M, (Mersenne number) § 2.5 p. 16

&, (Farey series) § 31 P- 23

y (Euler’s constant) §§4.2, 18.2 pp. 39 (f.n.), 264 (f.n.)
¢(m) §55 p. 52

¢ (n) § 5.6 p. 55
w(n) § 16.3 p. 234
d(n), oy(n), o(n) § 16.7 p. 238
r(n), d(n), ds(n) § 169 pp. 240l
x(n) § 16.9 p. 240
I(s) § 172 p. 245
A(n) § 177 p. 253
pin) § 19.2 p. 273
g(k), G(k) § 20.1 p. 298
v(k) § 21.7 p. 325
Pk, 5) §21.9 pp. 328-9
}Hz), () § 221 p. 340
Ulz) § 22.1 p. 340
w(n), Q(n) §2210  p. 354

Words

We add references to the definitions of a small number of words and
phrases which a reader may find difficulty in tracing because they do
not occur in the headings of sections.

standard form of n §1.2 p. 2
of the same order of magnitude §1.6 p. 7
asymptotically equivalent, asymptotic to § 1.6 P. 8
almost all (integers) §1.6 p. 8
almost all (real numbers) §9.10 p. 122
quadratfrei §2.6 p. 16
highest common divisor §2.9 p. 20
unimodular transformation §3.6 p. 28
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coprime

multiplicative function
primitive root of unity
a belongs to d (mod m)
primitive root of m
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Euclidean number
Euclidean construction
algebraic field

simple field

Euclidean field

linear independence of numbers

§5.1
§5.1
§5.5
§ 5.6
§6.8
§ 6.8
§ 6.11
§ 115
§ 11.5
§ 14.1
§ 14.7
§ 14.7
§ 23.4
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53
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71
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73
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212
212
379
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