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Preface

Topology is the study of continuous deformations. It is an abstract geometry which
is not concerned with properties such as area, length, or shape, which may change
as an object is continuously deformed, but rather with more fundamental properties
such as connectedness. As the study of continuous deformations, topology includes
the study of continuity, limits, and convergence. Thus, topology may be viewed as the
formal study of nearness.

While topological concepts can be identified in much earlier work, the develop-
ment of topology as a separate discipline was strongly influenced by the push in the
mid-1800s by Karl Weierstrass, Georg Friedrich Bernhard Riemann, and others to put
mathematics on a solid formal foundation, and later that century, by Georg Cantor
and Richard Dedekind. The foundations of the specific areas of general topology pre-
sented in this book were started in the early 1900s by Felix Hausdorff and Maurice
Fréchet and continued by Pavel Alexandroff, Pavel Urysohn, and Nicholas Bourbaki,
among many others.

Topology has developed into a broad and useful area encompassing far too much
to be included in any single book. This book provides a solid introduction to basic
concepts and applications of general topology and lays the foundation for continued
study in topology. Much of early topology was developed to put analysis on a solid
foundation, and introductory topology is often presented as a handmaiden of analy-
sis and an introduction to algebraic topology. A distinguishing feature of this text is
the additional emphasis on the connections between topology and order, which are
fundamental to applications in computer science. Many of the techniques introduced
in the latter half of the book are part of the growing area of asymmetric topology, which
addresses topological spaces in which a point x having a neighborhood disjoint from
y does not imply that y has a neighborhood disjoint from x (spaces which are not T1),
or distance functions (quasi-metrics) qwhich may allow the distance from x to y to be
different from the distance from y to x.

After the preliminaries in Chapter 0, Chapters 1–7 contain a classical introduction
to general topology, motivated and developed from intuitive ideas. Boundary points
are used to introduce open and closed sets. The quotient topology is developed as the
topology of saturated open sets relative to an equivalence relation. Before continuity is
defined, homeomorphisms are introduced as bijections between the points and open
sets of two topological spaces. Most of this material should be covered in an introduc-
tory topology course. The topics after the Chapter 7 provide some traditional and some
modern applications of introductory general topology.

An equivalence relation on a set X is essentially equality of some specified at-
tribute of the elements of X. A partial order on some attribute of the elements of X
gives a quasiorder on the elements of X. That is, a partial order on the equivalence
classes from an equivalence relation on X gives a quasiorder on X. Such constructions
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clearly fall in the area of discretemathematics, andwith the traditional focus of topol-
ogy applied to the continuous mathematics used in analysis, it may be surprising to
find that this construction yields a topology on X. Indeed, if X is finite, every topol-
ogy arises from a quasiorder, so the study of topology on finite sets may be rephrased
as the study of quasiorders. This is done in Chapter 8. Computers only deal with fi-
nite sets: π can only be represented by a finite rational decimal approximation, and
line segments contain only finitelymany points (pixels). Convergence, continuity, and
nearness in computer applications thus require topologies on finite sets. The discrete
techniques needed for these applications are a recurring theme of this book.

After viewing topologies as (quasi-)orders in Chapter 8, Chapter 9 investigates
some classical results about orders on collections of topologies. Chapter 10 considers
topologies on ordered sets. Further connections between topology and order are given
inChapters 11 and 12, particularly in the sections onquasi-metrics, quasi-uniformities,
and partial metrics. Distance functions, or metrics, are extremely useful in defining
nearness, convergence, and topologies. Typically distance functions are assumed to
satisfy properties of the familiar Euclidean distances between points in the real line or
in the Euclidean plane. Variations of distance functions which do not behave exactly
as the Euclidean distance function occur in many natural ways and are the topic of
much research. For example, the distance froma tobmaydiffer from thedistance from
b to a when driving in a city with one-way streets. Or, motivated by loss of resolution
situations, the distance from one pixel to itself (or fromNew York to New York) may be
greater than zero. Some variations of distance functions are introduced in Chapter 11.
Chapter 12 introduces uniform spaces, which provide a global approach to specifying
nearness to points. Chapter 13 formally returns to the classical topological idea of con-
tinuous deformation applied not only to points, but to curves or sets in the plane. This
chapter lays the groundwork for further study in algebraic topology and is motivated
by the question of whether two disjoint planar sets moving continuously may go from
being disjoint to having overlapping interiors without first having their boundaries
touch.

Another important part of this book is the assortment of exercises. There are over
740 exercises designed to reinforce the concepts, illustrate further applications, and
suggest areas for continued investigation.

Course outline
For an introductory one-semester course at the upper undergraduate or beginning
graduate level, a traditional course may start with a day or two of review in Chap-
ter 0, then cover at least Sections 1.1 through 7.2, omitting Sections 1.4.1 (Neighbor-
hood bases), 1.6 (Limit points), 5.2 (Compactness in metric spaces), and 6.3 (The co-
countable topology). Additional topics fromChapters 8, 11, or 13may be added as time
permits. For one-semester courses with more advanced students, Chapters 1–7 may
be covered entirely, with additional topics selected from the remaining chapters. All
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sections may be covered in a two-semester course. Though the connections between
Sections 8.1–8.3, 11.2, and 12.4 provide an elegant motivating cohesion for the top-
ics of these chapters, the chapters after Chapter 7 may be largely presented indepen-
dently. Section 9.3 depends on Section 8.1, Theorem 11.2.12 depends on Section 8.3,
Section 12.4 depends on 11.1, and Section 12.5 depends on Sections 8.3 and 11.2.

The selection of topics reflects my personal interests, which have been greatly
influenced by many students and colleagues. In particular, the works of Hans-Peter
Künzi and his collaborators and students have been a major influence, as well as the
works of Darrell Kent, Ralph Kopperman, and Marcel Erné. Thanks to Filiz Yıldız,
Anneliese Schauerte, Hans-Peter Künzi, and many students for their comments on
drafts of this book. Their comments have greatly improved the text, but I am solely
responsible for any remaining errors.

Tom Richmond
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0 Preliminaries

Most of the concepts of this chapter should be familiar to the reader. We present them
here briefly as a refresher and to clarify the terminology. More details can be found,
for example, in [41].

0.1 Real numbers

Mathematics involves logic and patterns, often in quantitative settings requiring
numbers. The natural numbers ℕ = {1, 2, 3, 4, 5, . . .} are those that occur naturally in
counting, and are sometimes called the counting numbers. Historically, zero came
much later than the counting numbers. Numbers were used to count things. If you
had no things, you would not need to count, and would not need a number to
quantify nothing to count. The natural numbers together with zero form the set
of whole numbers. Negative numbers came into widespread usage even later. The
whole numbers together with their negatives form the set of integers, denoted ℤ =
{. . . , −4, −3, −2, −1,0, 1, 2, 3, 4, . . .}. The symbolℤ comes from the Germanword for num-
bers, Zahlen. Ratios of integers give us the set of rational numbers ℚ = { ab : a, b ∈ ℤ,
b ̸= 0}. The symbol ℚ is used to signify quotients of integers. The Greeks were very
adept at using positive integers and ratios of positive integers. They were not happy
to discover that some numbers they encountered—such as the length of the diagonal
of a unit square—were not ratios of integers. Such numbers are irrational numbers. If
we visualize the set of real numbers ℝ as all the distances on a number line, then the
irrational numbers are the real numbers which are not rational.

We list some well-known facts about rational and irrational numbers.

Theorem 0.1.1.
(a) If n ∈ ℕ, then√n is either an integer or irrational.
(b) The product or quotient of two nonzero rational numbers is rational.
(c) The product or quotient of a nonzero rational number and an irrational number is

irrational.
(d) The product or quotient of two irrational numbers may be rational or irrational.
(e) Every nonempty open interval (a, b) contains rational numbers and irrational num-

bers.

Proof. Suppose n ∈ ℕ. (a) can be rephrased as: if √n is rational, then it is an inte-
ger. Suppose √n = a

b where a, b ∈ ℕ. Squaring and clearing the denominators gives
nb2 = a2. Since nb2 is a perfect square, all of its prime factors appear with even multi-
plicities, and thus all of the prime factors of n appear with even multiplicities, so n is
a perfect square and√n ∈ ℕ.

https://doi.org/10.1515/9783110686579-001
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(c) Suppose to the contrary that ( ab )α =
c
d , where a, b, c, d are nonzero integers

and α is irrational. Solving for α gives α = bc
ad , contrary to α being irrational. Similar

arguments apply for the other half of (c) and (b).
(d)√2√2 and √2√2 are rational;√6√3 = √18 and

√6
√3 =
√2 are irrational.

(e) Given an open interval (a, b)with a < b, let n be a positive integer with 1/n less
than the length b − a of (a, b). Now all multiples of 1

n are rational, and some multiple
m
n must fall in (a, b), or else (a, b) falls between two consecutive multiples of 1

n . This
cannot happen: two consecutive multiples of 1

n form an interval of length 1
n , which

cannot contain the interval (a, b) of length greater than 1
n . By choosing n ∈ ℕ large

enough tomake π
n < b−a, a similar argument shows that somemultiple of πn must fall

in (a, b), and all multiples of π
n are irrational.

0.2 Sets

Suppose we have several objects under consideration, and we wish to specify some
list of these objects for further consideration. The objects under consideration make
up the universal set U, and a well-define list of selected objects gives a set A in U . The
objects included in a set A are the elements of the set A. If a is an element of A, we
write a ∈ A. If A and B are two sets in U and every element of A is an element of B,
then A is a subset of B and B is a superset of A, denoted by A ⊆ B or B ⊇ A. If A ⊆ B
and A ̸= B, then A is a proper subset of B, denoted A ⊂ B. The set with no elements is
called the empty set, denoted 0 or {}. A set {a}with a single element is called a singleton
set. The union of two sets A and B is A ∪ B = {x : x ∈ A or x ∈ B}. The intersection of
A and B is A ∩ B = {x : x ∈ A and x ∈ B}. The complement of A in the universal set
U is Ac = U − A = {x ∈ U : x ̸∈ A}. If A and B are sets, the set difference A − B is
{x : x ∈ A and x ̸∈ B} = A ∩ Bc = A ∩ (U − B). The set difference A − B is also called the
complement of B in A. If A ⊆ B ⊆ U, then U − B ⊆ U − A; that is, a smaller set has a
larger complement. Two sets A and B are disjoint if A∩B = 0. The number of elements
in a finite set A is the cardinality of A, denoted |A|.

A collection is a set whose elements are themselves sets. Elements of sets are
denoted by lower case letters, sets are denoted by upper case letters, and collec-
tions are denoted by upper case script letters. The collection of all subsets of U
is the power set of U, denoted 𝒫(U). For example, if U = {1, 2, 3}, then 𝒫(U) =
{0, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}. If U has n elements, then the power set 𝒫(U)
has 2n elements—that is, U has 2n subsets. This follows since any subset of U is ob-
tained by making a binary decision for each of the n elements to include the element
or exclude it. Note that A ⊆ U is equivalent to A ∈ 𝒫(U).

Example 0.2.1. For U = {1, 2, 3, 4}, let 𝒟 be the collection of all subsets of U which
contain an odd number of elements, and let ℰ be the collection of all subsets of U
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which contain an even number of elements. That is,

𝒟 = {A ∈ 𝒫(U) : |A| is odd} = {A ⊆ U : |A| is odd}, and

ℰ = {A ∈ 𝒫(U) : |A| is even} = {A ⊆ U : |A| is even}.

Thus,

𝒟 = {{1}, {2}, {3}, {4}, {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}} and

ℰ = {0, {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}, {1, 2, 3, 4}}.

Now𝒟 and ℰ are disjoint subcollections of 𝒫(U), and𝒟 ∪ ℰ = 𝒫(U). Observe that

2 ̸∈ 𝒟,

{2} ∈ 𝒟,

{2} ̸⊆ 𝒟,

{{2}} ⊆ 𝒟,

{{2}, {4}, {1, 3, 4}} ⊆ 𝒟,

𝒟 ⊆ 𝒫(U),

𝒟 ∈ 𝒫(𝒫(U)),

{𝒟, ℰ} ⊆ 𝒫(𝒫(U)),

{𝒟, ℰ} ∈ 𝒫(𝒫(𝒫(U))),

𝒟 − {{3}, {1, 3}, {2, 4}} = 𝒟 − {{3}},

𝒟 ∪ {{1, 2}, {1, 2, 3}, {2, 3, 4}} = 𝒟 ∪ {{1, 2}}.

Oftenwewill need to give each element of a collection 𝒞 a label, andwemaywrite
𝒞 = {Ai : i ∈ I} = {Ai}i∈I . Here, the subscript i is an index, the set I is the index set,
and 𝒞 is thus an indexed collection. Operations on indexed collections are defined as
expected. If 𝒞 = {Ai : i ∈ I}, then

⋃ 𝒞 = ⋃
i∈I

Ai = {x : x ∈ Ai for some i ∈ I},

⋂ 𝒞 = ⋂
i∈I

Ai = {x : x ∈ Ai for every i ∈ I}.

If the index set I is finite, then the intersection ⋂i∈I Ai is called a finite intersection.
That is, a finite intersection is an intersection of a finite collection of sets. Similarly,
the adjectives in infinite intersections, countable intersections, and uncountable inter-
sections refer to the cardinality of the index set. If no restriction whatsoever is given
on the index set, we may refer to an arbitrary intersection. In practice, arbitrary inter-
section should suggest intersecting a finite or infinite collection. Similar terminology
applies to unions.
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Occasionally, wemay consider a collection of subsets of a universal setU indexed
by the empty set. In this case, we take

⋂
i∈0

Ai = U and ⋃
i∈0

Ai = 0.

Intuitively, the more sets you intersect, the smaller the intersection gets, so the fewer
sets you intersect, the larger the intersection gets, so intersecting no sets gives the
largest possible set U . Similarly, the fewer sets you union, the smaller the result, so
unioning no sets gives the smallest possible set, 0.

A collection 𝒞 = {Ai : i ∈ I} is mutually disjoint if for i, j ∈ I, Ai ̸= Aj implies
Ai ∩ Aj = 0, and is nested if for every i, j ∈ I, either Ai ⊆ Aj or Aj ⊆ Ai.

Rules for taking complements of unions or intersections are named for the British
mathematician Augustus De Morgan (1806–1871). De Morgan’s Laws state that the
complement of an intersection is the union of the complements, and the complement
of a union is the intersection of the complements. That is,

U −⋂
i∈I

Ai = ⋃
i∈I
(U − Ai) and U −⋃

i∈I
Ai = ⋂

i∈I
(U − Ai).

Another often-used property involves containments. If Ai ⊆ Bi for each i ∈ I, then
⋃i∈I Ai ⊆ ⋃i∈I Bi and⋂i∈I Ai ⊆ ⋂i∈I Bi.

Given two sets A and B, their Cartesian product is the set A × B = {(a, b) : a ∈ A,
b ∈ B} of all ordered pairs whose first coordinate is an element of A and whose second
coordinate is an element of B. If {Ai}i∈I is a collection of sets, the Cartesian product
∏i∈I Ai of the collection consists of all the vectors (xi)i∈I where xi ∈ Ai for each i ∈ I.

It may not be easy to recognize when a set is infinite or finite. Mathematicians do
not know whether the set of twin primes (that is, primes which differ by two, such as
17 and 19) is finite or infinite. However, the concepts of finite and infinite are still well-
defined. One must be precise when discussing infinite sets, paying careful attention
to what the adjective “infinite” quantifies. It is incorrect to say 𝒞 = {{n, n + 1}}n∈ℕ has
infinite elements. Every element of 𝒞 has form {n, n+ 1}, so every element of 𝒞 is finite.
We could properly say that 𝒞 has infinitely many elements.

0.3 Quantifiers and logic

A statement is a sentence which is either true or false. If S and T are statements, the
implication “S implies T” will be denoted S ⇒ T. The implication S ⇒ T is true if,
whenever S is true, T is also true. If S ⇒ T, then we say S implies T, T is implied by S,
S is a sufficient condition for T, or T is a necessary condition for S. In words, S ⇒ T may
appear as “if S then T”, “T if S”, or “S only if T”.

If S ⇒ T and T ⇒ S, then we write S ⇐⇒ T and say S and T are logically equiv-
alent statements (or simply equivalent), or S occurs if and only if (or iff ) T occurs. In
this case S is a necessary and sufficient condition for T.
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The negation of a statement S, denoted ∼ S, is the statement “not S”. That is, S is
true if and only if ∼ S is false.

The converse of an implication S ⇒ T is the implication T ⇒ S. If an implication
is true, its converse may be true or false, as illustrated in Example 0.3.1.

The contrapositive of an implication S ⇒ T is the implication ∼T ⇒ ∼ S. An im-
plication and its contrapositive are logically equivalent: either both are true or both
are false.

Example 0.3.1. The implications below illustrate that the converse of a true implica-
tionmay be true or false. Also note that an implication and its contrapositive have the
same truth value.

Implication: x = −2 ⇒ x2 = 4. True
Converse: x2 = 4 ⇒ x = −2. False

Contrapositive: x2 ̸= 4 ⇒ x ̸= −2. True

Implication: x = 3 ⇒ x + 1 = 4. True
Converse: x + 1 = 4 ⇒ x = 3. True

Contrapositive: x + 1 ̸= 4 ⇒ x ̸= 3. True

Implication: sin x = 0 ⇒ x = 0. False
Converse: x = 0 ⇒ sin x = 0. True

Contrapositive: x ̸= 0 ⇒ sin x ̸= 0. False

The conjunction S ∧ T of statements S and T is the statement “S and T”. The dis-
junction S ∨ T of statements S and T is the statement “S or T”. The following facts are
also called De Morgan’s Laws:

∼ (S ∧ T) = ∼ S ∨ ∼T and

∼ (S ∨ T) = ∼ S ∧ ∼T .

The only way an implication S ⇒ T may fail is if S occurs but T does not. Thus,
∼ (S ⇒ T) = S ∧ ∼T.

The universal quantifier ∀ means “for every”. The existential quantifier ∃ means
“there exists”. For example, ⋂i∈I Ai = {x : ∀i ∈ I , x ∈ Ai} and ⋃i∈I Ai = {x : ∃i ∈
I such that x ∈ Ai}.

The only way the statement “there exists x for which S is true” could fail is if for
every x, S is false. Similarly, the statement “for every x, S is true” fails if and only if
there exists an x for which S fails. That is,

∼ (∀x, S) = ∃x such that ∼ S and

∼ (∃x such that S) = ∀x, ∼ S.

Example 0.3.2. Some statements and their negations are given.
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S: ∀x ∈ ℝ, x2 − 1 > 0,
∼ S: ∃x ∈ ℝ such that x2 − 1 ̸> 0,

T: ∃x ∈ ℕ such that x2 = x + 3,
∼T: ∀x ∈ ℕ, x2 ̸= x + 3,

P: ∀y ∈ [0, 1] ∃x ∈ [0, 2π) with sin x = y,
∼P: ∃y ∈ [0, 1] such that ∼ (∃x ∈ [0, 2π) with sin x = y)
= (∃y ∈ [0, 1] such that ∀x ∈ [0, 2π), sin x ̸= y),

Q: ∃y ∈ ℝ such that ∀x ∈ ℝ, y
x = 0,

∼Q: ∀y ∈ ℝ ∼ (∀x ∈ ℝ, yx = 0)
= (∀y ∈ ℝ ∃x ∈ ℝ such that y

x ̸= 0).

We note that S, T, and Q are false and P is true. Had the statement T started with
∃x ∈ ℝ, then it would have been true. Statement Q fails precisely for one point x = 0.

0.4 Functions

If X and Y are sets, a function from X to Y is a rule that assigns to each element of X a
unique element of Y . To denote that f is a function from X to Y , we write f : X → Y .
The set X is the domain and the set Y is the codomain of the function. If f : X → Y is a
function and x ∈ X, then the unique element of Y which f assigns to x is denoted f (x)
and is called the value of f at x or the image of x under f . While f must assign a value to
each point x of its domain, not every point of the codomainmust be used as an output
value. The set f (X) = {f (x) : x ∈ X} ⊆ Y is called the image or range of f . A function
f : X → Y is onto or surjective if f (X) = Y , that is, if for every y ∈ Y , there exists x ∈ X
with f (x) = y. A function f : X → Y is one-to-one or injective if w ̸= x ⇒ f (w) ̸= f (x), or
equivalently, f (w) = f (x) ⇒ w = x. Note that f : X → Y fails to be one-to-one if there
exist two distinct elementsw ̸= x in X which map to the same one element f (w) = f (x)
in Y . A one-to-one onto function may be called a bijection. If f : X → Y is a bijection,
then, for any y ∈ Y , there exists x ∈ X with f (x) = y since f is onto, and there is a
unique x ∈ X with f (x) = y since f is one-to-one. Thus, f : X → Y is a bijection if
and only if there exists a function f −1 : Y → X called the inverse function of f with
f −1(y) = x if and only if f (x) = y.

Functions are rules denoted by f or by the rule of assignment y = f (x); technically,
f (x) represents the value of a function andnot the function itself. Bywidespread abuse
of notation, “the function f (x)” is sometimes used as a shortened version of “the func-
tion y = f (x)”. Of course, it would be even shorter to simply say “the function f ”, but
often it is important to know the independent variable (that is, the “input” variable).

Suppose f : X → Y is a function, A ⊆ X, and B ⊆ Y . The set f (A) = {f (a) : a ∈ A}
is the image of A under f . The set f −1(B) = {x ∈ X : f (x) ∈ B} is the inverse image of
B under f . Note that the inverse image of a set B is defined whether or not f has an
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inverse function. In this notation, f −1 denotes the inverse relation, which may or may
not be a function.

For example, consider f : ℝ → ℝ defined by f (x) = sin x. The image of { nπ2 : n ∈ ℤ}
under f is {f ( nπ2 ) : n ∈ ℤ} = {0, 1, −1}. The inverse image of {0} under f is f −1({0}) =
{x ∈ ℝ : f (x) ∈ {0}} = {nπ : n ∈ ℤ}. Likewise, f −1([0,∞)) = ⋃n∈ℤ[2nπ, (2n + 1)π].

The behavior of images and inverse images of unions, intersections, and comple-
ments is described in the next theorem.

Theorem 0.4.1. Suppose f : X → Y is a function.
(a) f (A ∪ B) = f (A) ∪ f (B) for all A,B ⊆ X.
(b) f (A ∩ B) ⊆ f (A) ∩ f (B) for all A,B ⊆ X and f (A ∩ B) = f (A) ∩ f (B) for all A,B ⊆ X if

and only if f is one-to-one.
(c) f (A − B) ⊇ f (A) − f (B) for all A,B ⊆ X and f (A − B) = f (A) − f (B) for all A,B ⊆ X if

and only if f is one-to-one.
(d) f −1(C ∪ D) = f −1(C) ∪ f −1(D) for all C,D ⊆ Y.
(e) f −1(C ∩ D) = f −1(C) ∩ f −1(D) for all C,D ⊆ Y.
(f) f −1(C − D) = f −1(C) − f −1(D) for all C,D ⊆ Y.

The proof is left as an exercise.
If f : A → B and g : B → C are functions, then the composition of f and g is

g ∘ f : A→ C defined by (g ∘ f )(a) = g(f (a)) for all a ∈ A.
A sequence inA is a function f : ℕ → A. The nth term of the sequence is f (n). If we

write f (n) = an, then we may specify the sequence by (f (n))n∈ℕ = (an)n∈ℕ, or simply
as (an).

If X and Y are subsets of ℝ, a function f : X → Y is increasing if a ≤ b in X
implies f (a) ≤ f (b) in Y , and is strictly increasing if a < b in X implies f (a) < f (b) in Y .
Decreasing and strictly decreasing functions are defined dually.

Intuitively, a subsequence of a sequence (an)n∈ℕ is a sequence obtained by (pos-
sibly) omitting some of the terms of (an)n∈ℕ. For example, for (an)n∈ℕ = (1, 4, 9, 16, 25,
36, . . .) = (n2)n∈ℕ, we have (bn)n∈ℕ = (4, 25, 64, 121, . . .) = (a2, a5, a8, a11, . . .) is a sub-
sequence of (an)n∈ℕ. The nth term of (bn)n∈ℕ is the (3n − 1)st term of (an)n∈ℕ. That
is, for every n ∈ ℕ, bn = a3n−1 = aσ(n) where σ : ℕ → ℕ is the strictly increasing
function σ(n) = 3n − 1. In general, (bn)n∈ℕ is a subsequence of (an)n∈ℕ if and only if
(bn)n∈ℕ = (aσ(n))n∈ℕ for some strictly increasing function σ : ℕ → ℕ. The sequence
(σ(n))n∈ℕ tells which terms of (an)n∈ℕ to retain in the subsequence (bn)n∈ℕ.

0.5 Countable and uncountable sets

To count the objects in a finite set, we set up a one-to-one correspondence (that is, a
bijection) between the objects and a set {1, 2, 3, . . . , n}. We say sets A and B have the
same cardinality, denoted |A| = |B|, if there exists a bijection from A to B. A set A is
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countably infinite it has the same cardinality as the set ℕ of counting numbers. That
is, A is countably infinite if and only if there exists a bijection f : ℕ → A. Thus, A is
countably infinite if and only if the elements of A can be listed as a sequence (an)n∈ℕ
of distinct terms. A set is countable if and only if it is finite or countably infinite. A set
is uncountable if it is not countable.

For example, the set {1, 4, 9, 16, 25, . . .} = {n2 : n ∈ ℕ} is countably infinite since
f : ℕ → {1, 4, 9, 16, 25, . . .} defined by f (n) = n2 is a bijection.

Theorem 0.5.1.
(a) Every subset A of a countable set B is countable.
(b) If f : A→ B is one-to-one and B is countable, then A is countable.
(c) If f : A→ B is onto and A is countable, then B is countable.
(d) If A and B are countably infinite sets, then A ∪ B is countably infinite.
(e) If A and B are countably infinite sets, then A × B is countably infinite.
(f) If {An}n∈ℕ is a countable collection of countably infinite sets An, then the union
⋃n∈ℕ An is countably infinite.

Proof. (a) Since every countable set B is in one-to-one correspondence with a subset
ofℕ, it suffices to show that every subset of (a subset of)ℕ is countable. If A is finite,
clearly A is countable, so suppose A is an infinite subset of ℕ. Define f : ℕ → A
by f (1) = the smallest element of A, f (2) = the smallest element of A − {f (1)}, and in
general f (n) = the smallest element of A − {f (1), . . . , f (n − 1)}. Since f is a bijection, A is
countable.

(b) follows from (a) since A has the same cardinality as f (A) ⊆ B if f is one-to-one.
(c) Suppose f : A → B is onto and A is countable. Since f is onto, for every b ∈ B,

there exists (at least one) ab ∈ f −1({b}). Thus, we may define a function g : B → A by
taking g(b) to be one element ab ∈ f −1(b). This function is one-to-one from B into the
countable set A, so by (b), B is countable.

(d) Suppose A and B are countably infinite. Then there exist bijections f : ℕ → A
and g : ℕ → B. Define h : ℕ → A ∪ B by h(2n) = f (n) and h(2n − 1) = g(n). Now h is
clearly onto, so by (c), A ∪ B is countable.

(e) Suppose A = {an}n∈ℕ and B = {bn}n∈ℕ are countably infinite. List the ele-
ments (ai, bj) of A × B in a rectangular array as shown at the top of Figure 0.1. Define
f (1), f (2), f (3), . . . in the diagonal pattern suggested in the second part of Figure 0.1.
This will provide a bijection betweenℕ and A × B. The details are left to the reader.

(f) is similar to (e). List all the elements of⋃n∈ℕ An in an array with the elements
an,1, an,2, an,3, . . . of An on the nth row. Define f (1), f (2), f (3), . . . in the diagonal pattern
as suggested in Figure 0.1. This function will not be one-to-one if the sets An are not
mutually disjoint, but by (c), the union will be countable.

Theorem 0.5.2. The set ℚ of rational numbers is countable. The set ℝ of reals is un-
countable.
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A × B

(a1, b1) (a1, b2) (a1, b3) (a1, b4) ⋅ ⋅ ⋅

(a2, b1) (a2, b2) (a2, b3) (a2, b4) ⋅ ⋅ ⋅

(a3, b1) (a3, b2) (a3, b3) (a3, b4) ⋅ ⋅ ⋅

(a4, b1) (a4, b2) (a4, b3) (a4, b4) ⋅ ⋅ ⋅
...

...
...

...
. . .

?????????????????????

????????????????

???????????

?????? ????

f (1)

f (2), f (3)

f (4), f (5), f (6)

f (7), f (8), f (9), f (10)
...

(a1, b1) (a1, b2) (a1, b3) (a1, b4) ⋅ ⋅ ⋅

(a2, b1) (a2, b2) (a2, b3) (a2, b4) ⋅ ⋅ ⋅

(a3, b1) (a3, b2) (a3, b3) (a3, b4) ⋅ ⋅ ⋅

(a4, b1) (a4, b2) (a4, b3) (a4, b4) ⋅ ⋅ ⋅
...

...
...

...
. . .

Figure 0.1: The procedure for enumerating the elements of A × B.

Proof. For n ∈ ℕ, the set Qn = {
a
n : a ∈ ℤ} is a countable set: it is indexed by ℤ,

which is the union of the countable setsℕ ∪ {0} and −ℕ. Now ℚ = ⋃n∈ℕ Qn, and by
Theorem 0.5.1(f),ℚ is countable.

To see that ℝ is uncountable, we will show that [0, 1) is uncountable. Suppose to
the contrary that [0, 1) is a countable set {ri}i∈ℕ indexed by ℕ. Express each of these
real numbers ri in its decimal representation, avoiding repeating nines. (So, 12 is repre-
sented as 0.50, and not as 0.49.) Let di,j be the jth digit in the decimal expansion of ri,
as suggested in Figure 0.2.

r1 = 0.d1,1 d1,2 d1,3 d1,4 ⋅ ⋅ ⋅
r2 = 0.d2,1 d2,2 d2,3 d2,4 ⋅ ⋅ ⋅
r3 = 0.d3,1 d3,2 d3,3 d3,4 ⋅ ⋅ ⋅
r4 = 0.d4,1 d4,2 d4,3 d4,4 ⋅ ⋅ ⋅

...

Figure 0.2: An alleged enumeration of the real numbers in [0, 1).

We will find a contradiction by producing a real number x ∈ [0, 1) which is not in the
countable list {r1, r2, r3, . . .}. We will give the decimal expansion of x. Let xj represent
the jth digit of the decimal expansion of x, and take xj to be any digit different from
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0, dj,j, and 9. Thus, the decimal expansion of x differs from that of rj in the jth digit. Be-
cause we have avoided zeros and nines in the decimal expansion of x, this means that
x ̸= rj for any j ∈ ℕ, giving the desired contradiction. (Note that the decimal numbers
0.50 and 0.49 are equal even though they differ in every digit of their decimal expan-
sions. Avoiding zeros and nines in the decimal expansion of x prevents this potential
problem.)

0.6 Equivalence relations and partitions

If A and B are sets, a relation from A to B is a subset R of A × B. If (a, b) ∈ R, we say a is
related to b by the relation R, denoted aRb. Thus, a relation from A to B is just a set of
ordered pairs telling which elements of A are related to which elements of B.

A relation from a set A to the same set A is called a relation on A.

Definition 0.6.1. An equivalence relation R on set A is a relation which is
reflexive: aRa for every a ∈ A,
symmetric: aRb⇒ bRa for every a, b ∈ A, and
transitive: aRb and bRc imply aRc for every a, b, c ∈ A.

The prototype for an equivalence relation on a set A is equality. For every a, b,
c ∈ A, clearly a = a, if a = b then b = a, and if a = b and b = c, then a = c,
so equality is an equivalence relation. In general, an equivalence relation on a set A
will be equality of some attribute of the elements of A. For example, a prospector may
use an equivalence relation on gold nuggets defined by taking two gold nuggets to be
equivalent if and only if their weights are equal.

Given an equivalence relation, it is not always easy to recognize it as equality of
some attribute. For example, define a relation ≈ on ℕ by taking a ≈ b if and only if
ab is a perfect square. It is easy to verify that ≈ is an equivalence relation, but it may
not be immediately obvious what attributes of a and b are equal if a ≈ b. In fact,
a ≈ b if and only if their square-free parts are equal. Any natural number a may be
factored into the largest factor m2 that is a perfect square and a square-free factor n
which only has prime factors of multiplicity one. For example, the square-free part
of a = 23365973 = (2 ⋅ 33547)2(2 ⋅ 5 ⋅ 7) is 2 ⋅ 5 ⋅ 7. Now if ab is a perfect square, then
the prime factorization of bmust have odd multiplicities on precisely the same prime
factors as a, namely 2, 5, and 7. Thus, the square-free parts of a and bmust be equal.

A partition of a set A is a collection 𝒫 = {Bi}i∈I of nonempty, mutually disjoint
subsets of A whose union is A. The elements Bi of a partition are called the blocks of
the partition. If 𝒫 = {Bi}i∈I is a partition of set A and some of the blocks Bi are further
partitioned into “subblocks”, the resulting collection of subblocks is also a partition
of A called a refinement of 𝒫, or a finer partition than 𝒫. Formally, if 𝒫 and ℛ are
partitions of set A,ℛ is a refinement of 𝒫 (orℛ is finer than 𝒫, or 𝒫 is coarser thanℛ)
if for every block BR ∈ ℛ, there exists BP ∈ 𝒫 with BR ⊆ BP. If partitionℛ is finer than
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𝒫 and ℛ ̸= 𝒫, then we say ℛ is strictly finer than ℛ (or 𝒫 is strictly coarser than ℛ).
Subsets ofAwhich are unions of blocks of a partition ofA are said to be saturatedwith
respect to the partition. Thus, partitionℛ is finer than partition 𝒫 if and only if each
block of 𝒫 isℛ-saturated.

Example 0.6.2. Pixelate the square S = [0, 5) × [0, 5) into the set of pixels 𝒫 = {[m,
m+1)×[n, n+1) : m, n ∈ {0, 1, 2, 3, 4}}, as suggested inFigure0.3.Now𝒫 is a partitionof S.
A saturated set and a non-saturated set relative to 𝒫 are also shown there. The collec-
tions𝒱 = {[m,m+1)×[0, 5) : m ∈ {0, 1, 2, 3, 4}} andℋ = {[0, 5)×[n, n+1) : n ∈ {0, 1, 2, 3, 4}}
partition S into vertical and horizontal strips, respectively. Since each block of 𝒱 is
𝒫-saturated, 𝒫 is a refinement of 𝒱, and similarly, 𝒫 is a refinement ofℋ. Note that 𝒱
is neither finer nor coarser thanℋ: these two partitions are non-comparable.

Figure 0.3: Partitions and Saturated Sets.𝒫 is finer than 𝒱 andℋ.

If ≈ is an equivalence relation on A and a ∈ A, the equivalence class of a is the set
[a] = {x ∈ A : x ≈ a} of all elements of A which are equivalent to a.

The following result shows the fundamental connection between equivalence re-
lations and partitions.

Theorem 0.6.3. Every partition 𝒫 of a set A determines an equivalence relation ≈𝒫 on
A defined by a ≈𝒫 b if and only if there exists a block Bi ∈ 𝒫 with {a, b} ⊆ Bi.

Every equivalence relation ≈ on set A determines a partition 𝒫≈ = {[a] : a ∈ A}
whose blocks are the equivalence classes.

Furthermore, 𝒫≈𝒫 = 𝒫 and ≈𝒫≈ = ≈.
It is easy to transfer terminology about partitions into the language of equivalence

relations. For example, if ≈ is an equivalence relation on set A, we say a set B ⊆ A is
saturated with respect to ≈ if x ∈ B implies [x] ⊆ B.
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0.7 Partial orders

Order relations are used to determine preference. In any optimization problem, an
order relation is required to determine which solutions are better than which.

Definition 0.7.1. A partial order on set A is a relation ≤ which is
reflexive: a ≤ a for every a ∈ A,
antisymmetric: a ≤ b and b ≤ a imply a = b for all a, b ∈ A, and
transitive: a ≤ b and b ≤ c imply a ≤ c for every a, b, c ∈ A.

A set A with a partial order ≤ is called a partially ordered set, or poset, denoted
(A, ≤).

A total order (or linear order) on set A is a partial order ≤ on Awith the additional
property that, for every a, b ∈ A, either a ≤ b or b ≤ a.

Note that equivalence relations and partial orders are both special kinds of reflex-
ive, transitive relations. Reflexive, transitive relations are called quasiorders and are
studied in Chapter 8.

Partial orders allow us to define monotone functions. A function f : (X, ≤X) →
(Y , ≤Y ) is increasing if a ≤ b in X implies f (a) ≤ f (b) in Y . It is strictly increasing if a < b
in X implies f (a) < f (b) in Y . Decreasing and strictly decreasing functions are defined
dually. A function is (strictly) monotone if it is either (strictly) increasing or (strictly)
decreasing. Increasing functions are sometimes called order preserving functions, and
decreasing functions are calledorder reversing functions.As a special case,we see that
a sequence (an)n∈ℕ of real numbers is increasing if i ≤ j inℕ implies ai ≤ aj in ℝ.

If (A, ≤A) and (Z, ≤Z) are posets, we may define a partial order ≤ on the Cartesian
product A × Z by taking

(a, y) ≤ (b, z) if and only if a ≤A b and y ≤Z z.

This order on A × Z is called the product order (or coordinate-wise order).
If (A, ≤) is a poset, an element a ∈ A is maximum if a ≥ x for all x ∈ A, and is

maximal if x ∈ A and x ≥ a implies x = a. Thus, a is maximum (or largest) if it is larger
than every element and is maximal if there is no element strictly larger than it. In
totally ordered sets, these concepts agree. Minimum elements and minimal elements
are defined dually. The distinction between maximal and maximum is illustrated in
the following example.

Example 0.7.2. Consider the poset (𝒫({1, 2, 3}) − {{1, 2, 3}}, ⊆) of all proper subsets of
{1, 2, 3}, ordered by set inclusion. Finite posets such as this may be represented by a
Hasse diagram (see Figure 0.4) showing each point and upward line segments from
each point leading to the larger points.

The sets {1, 2}, {1, 3}, and {2, 3} aremaximal, since there areno larger proper subsets
of {1, 2, 3}. However, these maximal sets are not maximum since none is larger than
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{1, 2} {2, 3} {1, 3}

Figure 0.4: The proper subsets of {1, 2, 3}, ordered by inclusion.

every element of the poset. There is aminimumelement, namely 0, which is contained
in (below) every other element of the poset. Furthermore, there is no element below 0,
so 0 is also minimal.

In the Hasse diagram shown in Figure 0.4, 0 is below {1, 2}, but there is no line
segment directly connecting these two points of the diagram. A direct line segment is
not needed (and should not be included in the Hasse diagram) since there is a point
{1} strictly between 0 and {1, 2}. The segments from 0 to {1} and from {1} to {1, 2} show
0 ⊆ {1} ⊆ {1, 2}, and by transitivity, we can determine 0 ⊆ {1, 2} from the diagram
without a direct segment connecting them. In a Hasse diagram, a line from a up to b
should be drawn if and only if a < b and there is no point strictly between a and b. In
this case, we say a is covered by b or b covers a. Formally, we say b covers a in a poset
(X, ≤) if a < b and whenever a ≤ x ≤ b, either x = a or x = b.

If B is a subset of a poset (A, ≤), an element a ∈ A is an upper bound of B if a ≥ b
for every b ∈ B. If it exists, the least element in the set of upper bounds of B is called
the least upper bound of B or the supremum of B, denoted lubB = supB. Lower bounds
of a set B are defined dually, as are the greatest lower bound or infimum of B, denoted
glbB = infB. A set B is bounded above (below) if it has an upper (lower) bound, and
is bounded if it has both an upper and a lower bound. A set B in a poset is convex (or,
for emphasis, order convex) if a, b ∈ B and a ≤ x ≤ b imply x ∈ B. You may have
encountered the definition of convexity of a set B in the plane or a vector space. The
definition of convexity in any setting is as follows. B is convex if whenever a and b
are in B and x is between a and b, then x must be in B. The variability lies in how
“between” is defined. A proper subset of a poset A is an interval if it has one of the
following forms:

[a, b] = {x ∈ A : a ≤ x ≤ b} [a, b) = {x ∈ A : a ≤ x < b}
(a, b] = {x ∈ A : a < x ≤ b} (a, b) = {x ∈ A : a < x < b}
[a,→) = {x ∈ A : x ≥ a} (a,→) = {x ∈ A : x > a}
(←, b] = {x ∈ A : x ≤ b} (←, b) = {x ∈ A : x < b}
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If A is a totally ordered set, A = (←,→) is also be considered to be an interval.
If b < a, then [a, b] = {x ∈ A : a ≤ x and x ≤ b} = 0. From the definition, we see
that [a, b] is defined to be the smallest convex set containing a and b. Intervals of any
form in a poset are always convex. The converse does not hold; a poset may have a
convex set which is not an interval. In any totally ordered set, such as the real line ℝ
with the usual order, I is an interval if and only if I is convex. That is, an interval in a
totally ordered set may be defined to be any set I with the property that if a, b ∈ I and
a ≤ x ≤ b, then x ∈ I.

Example 0.7.3. Give each of the following subsets of ℝ × ℝ the product order. Note
that (x, y) ≤ (z,w) if and only if (x, y) is south and west of (z,w). The sets are depicted
in Figure 0.5.

?
?
??

A
?
?
??

A

?
?
??

B

X = A ∪ B

?
?

??
A

?
?

??
C

Y = A ∪ C
?

?
???

?
D

E

F

?
?
??

?
?
??

G

Figure 0.5: Subsets of the plane with the product order. Note that E and F are (order) convex, but D
and G are not.

A = {(x, y) ∈ [0, 1] × [0, 1] : y ≤ 1 − x} has no maximum element. For each x ∈ [0, 1], the
point (x, 1 − x) is maximal. The minimum point of A is (0,0), and any minimum point
is also necessarily minimal.

Let B = {(x, y) ∈ [1, 2] × [1, 2] : y ≥ 3 − x} and X = A ∪ B. In X, every point of B is
an upper bound of A, but A has no least upper bound. For every x ∈ [1, 2], the point
(x, 3 − x) is a minimal upper bound of A. The point (0,0) is the greatest lower bound
(infimum) of A.

Let C = {(x, y) ∈ [1, 2] × [1, 2] : y ≤ 3 − x} and Y = A ∪ C. In Y , infA = (0,0) ∈ A and
supA = (1, 1) ̸∈ A.Y has nomaximumelement, but infinitelymanymaximal elements.
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Let D = {(x, x) : x ∈ [0, 1)}. D has no maximum element and nomaximal elements.
D is not convex in ℝ2: (0,0) ≤ (0.3,0.5) ≤ (0.8,0.8) and both (0,0) and (0.8,0.8) are
in D, but (0.3,0.5) is not in D.

Let E = ([0, 1] × [1, 2]) ∪ ([1, 2] × [0, 1]). E is convex in ℝ2, but is not an interval.
However, E is the union of the two intervals [(0, 1), (1, 2)] and [(1,0), (2, 1)].

Let F = ([0, 2] × [0, 2]) − ([0, 1) × [0, 1)). The maximum point of F is (2, 2), and F has
two minimal points (1,0) and (0, 1). F is convex in ℝ2.

Let G = {(x, y) ∈ [0, 1] × ℝ : x ≤ y ≤ x + 1}. The point (0,0) is the minimum point of
G and the infimum of G, and (1, 2) is the maximum point and supremum of G. G is not
convex inℝ2: (0,0) and (1, 1) are both in G and (0,0) ≤ (0.5,0) ≤ (1, 1), but (0.5,0) ̸∈ G.

Note that in the space X = A ∪ B of the previous example, A was a nonempty set
bounded above which had no supremum. Such an example cannot occur in the real
line ℝ with the usual order. This is called the completeness property of the real line,
which we will assume without proof.

Axiom 0.7.4 (Completeness ofℝ). Every nonempty set of real numbers which is bound-
ed above has a supremum inℝ. Equivalently, every increasing sequence of real numbers
bounded above has a limit. Dually, every nonempty set of real numberswhich is bounded
below has an infimum in ℝ, and every decreasing sequence of real numbers bounded
below has a limit.

The completeness of the reals is one way to say that there are no holes in the real
line. The set X = [0, 1) ∪ (1, 2] contains a nonempty set A = [0, 1) bounded above which
has no supremum, since there is no least element among the upper bounds (1, 2] of A.
Thus, X is not complete; there is something missing at the upper end of [0, 1), namely
lub A.

Exercises
1. Find the union, or state that the notation is not defined.

(a) {0, 1, 2} ∪ 3
(b) {0, 1, 2} ∪ {3}
(c) {0, 1, 2} ∪ {{3}}

(d) {{0}, {1}, {2}} ∪ 3
(e) {{0}, {1}, {2}} ∪ {3}
(f) {{0}, {1}, {2}} ∪ {{3}}

2. True or false: {A,B} ∪ 0 = {A,B} ∪ {0}. Justify your answer.
3. Fill in the blank to make a true statement. Is your answer unique?

(a) {{1}, {2, 3}} ∪ = {{1}, {2, 3}}
(b) {{1}, {2, 3}} ∪ = {{1}, {2, 3}, 0}

4. For each of the following, find all solutions A ⊆ {1, 2, 3, 4}.
(a) {1, 2} ∪ A = {1, 2, 4} (b) {1, 2, 4} − A = {1, 2}

5. For each of the following, find the number of solutions for 𝒞 ⊆ 𝒫({1, 2, 3, 4}), and
give three solutions.
(a) {{1}, {2, 3}} ∪ 𝒞 = {{1}, {2, 3}, {2, 3, 4}}
(b) {{1}, {2, 3}, {2, 3, 4}} − 𝒞 = {{1}, {2, 3}}
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6. LetWk = {(x, y) ∈ ℝ2 : x > 0,0 ≤ y < kx} and Sn = [
1
n , 2 +

1
n ) × (

1
n , 3 −

1
n ]. Sketch the

sets indicated.
(a) W2
(b) S3
(c) S2 ∩W1
(d) S2 ∪W1
(e) S1 ∪ S2

(f) S1 ∩ S3
(g) S2 −W2
(h) W2 − S2
(i) W2 −W1

(j) S3 − S1
(k) ⋃{Wk : k ∈ ℕ}
(l) ⋃{Sn : n ∈ ℕ}
(m) ⋂{Sn : n ∈ ℕ}

7. Determine whether the statements are true or false. For those that are false, ex-
plain and correct the errors.
(a) The setℕ has infinite points.
(b) {ℕ} is an infinite set.
(c) {ℕ,ℝ} has infinite elements.
(d) {ℕ,ℝ} has infinitely many elements.

8. Give a proof or counterexample: {Ai}i∈I is a collection of mutually disjoint sets if
and only if for every pair i ̸= j in I, Ai and Aj are disjoint.

9. Suppose {Ai}i∈I and {Bi}i∈I are collections of subsets of set X, and a ∈ X. Fill in the
blanks belowwith the appropriate symbol ⊆, ⊇, or =. Provide counterexamples for
any inclusions that fail.
(a) ⋂i∈I (Ai ∪ Bi) (⋂i∈I Ai) ∪ (⋂i∈I Bi).
(b) ⋂i∈I ({a} ∪ Bi) {a} ∪ (⋂i∈I Bi).

10. Consider the collection 𝒞 = {(−∞, −a)∪(a,∞) : a ≥ 0}∪{(−∞, −a]∪[a,∞) : a ≥ 0}.
(a) Find⋂ 𝒞 and⋃ 𝒞.
(b) Is 𝒞 nested? Is it a collection of mutually disjoint sets?
(c) Which of the following are members of 𝒞? A = (3,∞), B = 0, C = ℝ, D =
(−∞, −2) ∪ (2,∞), E = ℝ − (−3, 3), F = [π,∞)

11. For each implication below, give its converse and contrapositive. Determine the
truth value of each.
(a) n ∈ ℕ ⇒ 4(n + 1

2 )
2 ∈ ℕ.

(b) xy ∈ ℕ ⇒ x ∈ ℕ and y ∈ ℕ.
(c) x ∈ ℝ ⇒ x2 ̸= −1.

12. For each statement below, give its negation. Determine the truth value of each.
(a) ∃y ∈ ℝ such that ∀x ∈ ℝ, xy = 0.
(b) ∀x ∈ (0,∞) ∃n ∈ ℕ such that 1

n < x.
(c) ∃y ∈ (0,∞) such that ∀x ∈ (0,∞), xy = 1.
(d) ∀y ∈ (0,∞) ∃x ∈ (0,∞) such that xy = 1.
(e) ∀x ∈ ℝ ∃(n, a) ∈ ℕ × [0, 12 ] such that x = n + a or x = n − a.

13. For each statement below, give its negation. Determine the truth value of each.
(a) ∀n ∈ ℕ, n is odd or n + 1 is odd.
(b) ∃n ∈ ℕ such that ∀m ∈ ℕ, n ≥ m.
(c) ∀m ∈ ℕ, ∃n ∈ ℕ such that n > m.
(d) ∃m,M ∈ ℝ such that ∀x ∈ ℝ,m ≤ sin x ≤ M.
(e) ∀n ∈ ℕ and ∀x ∈ (0,0.5), ∃m ∈ ℕ such thatm = n + 2x.
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14. Complete the sentences:
(a) f : A→ B is onto if and only if for every b ∈ B, f −1({b}) . . .
(b) f : A→ B is one-to-one if and only if for every b ∈ B, f −1({b}) . . .

15. Prove parts (a), (c), and (e) of Theorem 0.4.1.
16. Prove parts (b), (d), and (f) of Theorem 0.4.1.
17. Suppose f : X → X is a function. Prove:

(a) For all U ⊆ X, U ⊆ f −1(f (U)), and equality holds if and only if f is one-to-one.
(b) For all V ⊆ X, f (f −1(V)) ⊆ V , and equality holds if and only if f is onto.

18. Suppose f : A→ B and g : B→ C are functions. Show
(a) g ∘ f is one-to-one⇒ f is one-to-one.
(b) g ∘ f is onto⇒ g is onto.

19. Suppose f : A → B is a function. Recall that there exists a function g : B → A
such that f ∘ g = idB and g ∘ f = idA if and only if f is one-to-one and onto. Such a
function g is called the inverse of f .
(a) Show that there exists a function g : B→ A such that f ∘ g = idB if and only if

f is onto. Such a function g is called a right inverse of f .
(b) Show that there exists a function h : B→ A such that h ∘ f = idA if and only if

f is one-to-one. Such a function g is called a left inverse of f .
(c) If g is a right inverse of f and h is a left inverse of f , show that g = h = f −1.

20. Consider the sequence (an)n∈ℕ = (1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, . . .). Determinewhether
the sequences (bn)n∈ℕ below are subsequences of (an)n∈ℕ. If so, identify a strictly
increasing function σ : ℕ → ℕ such that bn = aσ(n). If not, justify your an-
swer.
(a) (1, 2, 3, 1, 2, 3, 1, 2, 3, . . .)
(b) (3, 1, 2, 3, 1, 2, 3, 1, 2, 3, . . .)
(c) (1, 1, 1, 1, 1, . . .)
(d) (3, 2, 1, 3, 2, 1, 3, 2, 1, . . .)
(e) (1, 4, 1, 1, 1, 1, 1, . . .)

21. Consider the sequence (an)n∈ℕ = (1, 2, 3, 2, 3, 4, 3, 4, 5, 4, 5, 6, 5, 6, 7, . . .). Determine
whether the sequences (bn)n∈ℕ below are subsequences of (an)n∈ℕ. If so, identify
a strictly increasing function σ : ℕ → ℕ such that bn = aσ(n). If not, justify your
answer.
(a) (1, 2, 3, 4, 5, 6, 7, 8, . . .)
(b) (3, 3, 2, 4, 4, 3, 5, 5, 4, 6, 6, 5, . . .)
(c) (1, 1, 1, 1, 1, . . .)
(d) (3, 2, 1, 4, 5, 6, 9, 8, 7, . . .)
(e) (3, 2, 5, 4, 7, 6, 9, 8, . . .)

22. Consider the sequence (an)n∈ℕ = (1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5, . . .). Notice that
an = 1 if and only if n belongs to the sequence (tn)n∈ℕ = (1, 3, 6, 10, 15, 21, . . .) of
triangular numbers, where tn = 1+2+⋅ ⋅ ⋅+n = n(n+1)/2. Show that every sequence
inℕ is a subsequence of (an)n∈ℕ.

23. Determine whether the following sets are countable or uncountable.
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(a) For n ∈ ℕ, 𝒞n = {A ⊆ {1, 2, 3, . . . , n} : A is finite}
(b) 𝒞 = {A ⊆ ℕ : A is finite}
(c) 𝒟 = {A ⊆ ℛ : A is finite}
(d) Any mutually disjoint collection ℱ = {(ai, bi)}i∈I of open intervals inℝ. (Hint:

Consider Theorem 0.1.1(e).)
24. (a) Show that if f : A→ B is onto and B is uncountable, then A is uncountable.

(b) For each i ∈ ℕ, let Di be the countable set {0, 1, 2, 3, . . . , 9}. Consider the map
f : ∏i∈ℕ Di → [0, 1] defined by f ((di)i∈ℕ) = 0.d1d2d3 ⋅ ⋅ ⋅, the number whose ith
decimal digit is di. Show that f is onto.

(c) Show that a countable product of countable sets need not be countable.
25. A real number a is an algebraic number if and only if a is a zero of a polynomial

p with integer coefficients. A real number is transcendental if it is not algebraic.
Show that the set of algebraic numbers is countable and the set of transcendental
numbers is uncountable.

26. Define an equivalence relation ∼ on ℝ by x ∼ y if and only if x2 = y2.
(a) Find a saturated set (relative to this equivalence relation) with four elements.
(b) Find a saturated set with five elements.
(c) Find a countably infinite saturated set.
(d) Find an interval of positive length which is saturated.

27. Let 𝒱 ,ℋ, and 𝒫 be the partitions of Example 0.6.2. Howmany saturated sets does
each have? Give a general result about the number of saturated sets with respect
to a finite partition.

28. Note that the partition 𝒫 of Example 0.6.2 of [0, 5)2 arises from the equivalence
relation (a, b) ∼ (x, y) if and only if (⌊a⌋, ⌊b⌋) = (⌊x⌋, ⌊y⌋) where ⌊z⌋ is the greatest
integer less than or equal to z. The function f (z) = ⌊z⌋ is called the floor func-
tion of z. Use the floor function to describe equivalence relations on [0, 5)2 which
generate the partitions 𝒱 andℋ given in Example 0.6.2.

29. Consider thepartition𝒫 = {𝔻,𝔼}ofℤwhere𝔻 = {2n+1 : n ∈ ℤ} is the set of odd in-
tegers and𝔼 = {2n : n ∈ ℤ} is the set of even integers. Give two partitions ofℤ finer
than𝒫. Howmany partitions ofℤ are strictly coarser than𝒫? Justify your answer.

30. Define a relation ≈ onℕ by taking a ≈ b if and only if ab is a perfect square. Show
that ≈ is an equivalence relation.

31. A relation R on a nonempty set A is irreflexive if for every a ∈ A, (a, a) ̸∈ R.
(a) Exhibit an example to prove that irreflexive is different from “not reflexive”.
(b) Does either of “irreflexive” or “not reflexive” imply the other?
(c) If A is a finite set, show that the number of reflexive relations on A is equal to

the number of irreflexive relations on A.
32. Suppose𝒫 andℛ are partitions of A. Recall thatℛ is a refinement of𝒫 if for every

blockBR ∈ ℛ, there existsBP ∈ 𝒫 withBR ⊆ BP. Show that this is equivalent to: for
every block BP of 𝒫, there exists a subcollection {Bi}i∈I ofℛ which partitions BP.
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33. Define a relation ⊴ on the power set 𝒫({1, 2, 3, 4}) by A ⊴ B if and only if the sum
of the elements of A (listed without repetition) is less than or equal to the sum of
the elements of B (listed without repetition).
(a) Which of the defining properties of a partial order does⊴ satisfy?
(b) Let 𝒟 be the collection of subsets of {1, 2, 3, 4} which contain an odd number

of elements, as in Example 0.2.1. Which of the defining properties of a partial
order does⊴ satisfy when restricted to𝒟?

34. Rephrase the statements of Exercise 13(b) and 13(c) in terms of maximal and
maximum elements.

35. Give a proof or counterexample for each statement belowabout a partially ordered
set (X, ≤).
(a) Ifm is minimum in X, thenm is minimal.
(b) If b is a lower bound of A ⊆ X and c < b, then c is a lower bound of A.
(c) If X has a maximum element, then it is unique.
(d) If A ⊆ B ⊆ X, then infA ≤ infB.

36. Suppose C ⊆ X is convex and a is maximal in C. Must C − {a} be convex? Give a
proof or counterexample.

37. Consider the collection 𝒞 = {{1}, {2}, {1, 2}, {1, 3}, {2, 3}, {1, 3, 4}, {5, 6}} ordered by set
inclusion ⊆.
(a) Draw the Hasse diagram for (𝒞, ⊆).
(b) Find all maximum, maximal, minimum, and minimal elements.
(c) Find a nonconvex set in (𝒞, ⊆).

38. Order each collection below by set inclusion. Discuss the maximum, maximal,
minimum, and minimal elements.
(a) {[0, x] ⊆ ℝ : x ∈ [0, 1)}
(b) {[x, x + 1] ⊆ ℝ : x ∈ [0, 1)}

39. Consider the poset (𝒫(U), ⊆). Suppose Ai ∈ 𝒫(U) for every i ∈ I. What are
sup{Ai : i ∈ I} and inf{Ai : i ∈ I}?

40. Shown are three subsets X,Y , and Z of ℝ2 with the product order, each of which
contains A = {(x, y) ∈ ℝ2 : x ≥ 0, y ≥ 0, y ≤ 1 − x}. Find the set of upper bounds of
A and discuss the supremum of A in each poset X,Y , and Z.

?
??A

X = A

?
??A

Y

?
??A

?
?

?
??
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......................................

......................................

......................................

......................................

......................................

......................................

Z

(a) X = A
(b) Y = A ∪ ([1, 3] × [2, 3]) ∪ ([2, 3] × [1, 3])
(c) Z = A ∪ {(x, y) ∈ ℝ2 : y ≥ 1.5 − x}





1 Topologies

1.1 The Euclidean metric

Ametric ona setX is a distance function, giving thedistanced(x, y)between twopoints
x, y ∈ X. The familiar Euclidean distance formula between points in the planeℝ2 is the
prototype of a metric, and the properties we expect from Euclidean distances are the
basis for our definition of a metric. We will see that there are many other ways to mea-
sure distances between points inℝ2, andmetricsmay be applied to sets other thanℝn.
For example, if youmisspell a word, your word processor spell-check applicationmay
present suggestions based on the distance between the “word” you typed and a word
in its dictionary. In Chapter 6, we will introduce two metrics to measure distances be-
tween continuous functions.

Definition 1.1.1. Ametric on a set X is a function d : X × X → ℝ satisfying
(a) d(x, y) ≥ 0 for all x, y ∈ X (nonnegativity);
(b) d(x, y) = 0 if and only if x = y;
(c) d(x, y) = d(y, x) for all x, y ∈ X (symmetry);
(d) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X (triangle inequality).

Ametric space is a pair (X, d) where X is a set and d is a metric on X.

The first three defining conditions of a metric are easily understood: distances
are never negative, two points are equal if and only if the distance between them is
zero, and the distance from x to y always equals the distance from y to x. The triangle
inequality is easily illustrated using our usual concept of distance in the Euclidean
plane. If x, y, and z are three points in theplane, thend(x, y) is the length of the straight
line segment between x and y. Since the shortest distance between two points in the
Euclidean plane follows a straight line, d(x, y) is less than or equal to the length of
the polygonal path from x to z and on to y. Thus, the triangle inequality says that the
length of one side of a triangle is less than or equal to the sum of the lengths of the
other two sides, as suggested in Figure 1.1

Figure 1.1: The triangle inequality: d(x, y) ≤ d(x, z) + d(z, y).
https://doi.org/10.1515/9783110686579-002
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Vectors in ℝn will be denoted by x = (x1, x2, . . . , xn). We are most familiar with the
Euclidean metric d : ℝn × ℝn → [0,∞) given by

d(x, y) = √(x − y)2 = |x − y| for x, y ∈ ℝ,

d(x, y) = √(x1 − y1)2 + (x2 − y2)2 for x, y ∈ ℝ2,

d(x, y) = √(x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2 for x, y ∈ ℝ3,

d(x, y) = √(x1 − y1)2 + (x2 − y2)2 + ⋅ ⋅ ⋅ + (xn − yn)2 for x, y ∈ ℝn.

The sets ℝ and ℝ2 with the Euclidean metric are called the Euclidean line and
the Euclidean plane, and in general, ℝn with the Euclidean metric is called the
n-dimensional Euclidean space. While it is intuitively clear that the Euclidean metric
on ℝn satisfies the triangle inequality, a formal proof of this is not trivial. One such
proof is outlined in Exercise 15.

If d is a metric on X and Y ⊆ X, then since d tells us the distance between any two
points in X, it tells us the distance between any two points in Y ⊆ X. It is easy to show
that this inherited distance on Y obeys all the conditions defining a metric. Formally,
if d : X × X → ℝ is a metric on X and Y ⊆ X, then the restriction d|Y×Y of d to Y × Y is
a metric on Y . Thus, we may speak of a subset of ℝn with the Euclidean metric.

A metric allows us to determine which points are near a given point x. This near-
ness can be characterized by the “balls” centered at x.

Definition 1.1.2. Suppose (X, d) is ametric space. For x ∈ X and ε > 0, theball centered
at x with radius ε, or simply the ε-ball centered at x, is

B(x, ε) = {y ∈ X : d(x, y) < ε}.

Note that our definition of B(x, ε) requires ε > 0. This convention guarantees that
x ∈ B(x, ε), so every ball is nonempty.

In the Euclidean line ℝ, the ε-ball centered at x consists of all points on the real
line within ε of x, and thus B(x, ε) is the open interval (x − ε, x + ε). For example,
B(5,0.2) = (4.8, 5.2). In the Euclidean planeℝ2, the ball B(x, ε) is the disk centered at x
with radius ε, not including the boundary of the disk. In the 3-dimensional Euclidean
spaceℝ3, the ball B(x, ε) is the solid inside the sphere centered at x with radius ε, not
including the boundary sphere.

The balls are used to define important concepts such as convergence of sequences
and continuity of functions.

Definition 1.1.3. A tail of sequence (xn)n∈ℕ is a subsequence (xn)n≥k obtained from the
original by deleting the initial terms x1, x2, . . . , xk−1.

A sequence (xn)n∈ℕ is eventually in a set S if there exists an integer k ∈ ℕ such that
xn ∈ S for all n ≥ k. That is, (xn)n∈ℕ is eventually in S if some tail of the sequence is con-
tained in S. A sequence (xn)n∈ℕ is eventually constant if it is eventually in a singleton
set {a}.
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A sequence (xn)n∈ℕ is frequently in a set S if for any k ∈ ℕ, there exists n > k such
that xn ∈ S.

Clearly if (xn)n∈ℕ is eventually in a set S, it is frequently in S.
Example 1.1.4.
(a) In the Euclidean line ℝ, the sequence ( (−1)nn )n∈ℕ is eventually in B(−1, 1.02) =
(−2.02,0.02), since for n ≥ k = 51, xn =

(−1)n
n ∈ (−2.02,0.02). However, the sequence

is not eventually in B(2, 2) = (0, 4) since no tail of the sequence is contained in
B(2, 2). This sequence is eventually in B(0, ε) = (−ε, ε) for any ε > 0.

(b) In the Euclidean line ℝ, the sequence (zn)n∈ℕ = (0, 5,0, 5,0, 5,0, 5, . . .) is fre-
quently in B(0, .3) and frequently in B(5, .02), but is not eventually in either of
these balls. It is eventually in the ball B(2, 7) = (−5, 9) and eventually in the set
S = {0,π, √7, 5, 12.6}.

Definition 1.1.5. A sequence (xn)n∈ℕ in a metric space (X, d) converges to a ∈ X if for
every ε > 0, (xn)n∈ℕ is eventually in B(a, ε). If (xn)n∈ℕ converges to a, we say a is the
limit of the sequence, and write limn→∞ xn = a or xn → a.

Referring to theprevious example, in the Euclidean lineℝ, the sequence ( (−1)nn )n∈ℕ
is eventually in every ε-ball around 0, so the sequence converges to 0. The sequence
(zn)n∈ℕ = (0, 5,0, 5,0, 5,0, 5, . . .) does not converge to any limit. To see this, suppose to
the contrary that limn→∞ xn = a. Consider the ball B(a, 1) = (a − 1, a + 1), an interval of
length 2.Now this ballmay contain0or 5, but cannot contain both. Thus, the sequence
is not eventually in B(a, 1), contrary to the definition of limn→∞ xn = a. The sequence
(0, 5,0, 5,0, 5, . . .) is frequently in every ε-ball B(5, ε) around 5. This occurs since there
is a subsequence (consisting of the even-indexed terms) which converges to 5. This
idea is investigated in Exercise 4.

Our next result is that a sequence in Euclidean space cannot converge to two dif-
ferent limits. Our familiarity with limits of sequences from calculus, which is based
on the Euclideanmetric, makes this result not surprising. The surprise will come later
when we examine topological spaces in which a sequence might converge to more
than one point.

Theorem 1.1.6. If a sequence (xn)n∈ℕ in a metric space (X, d) converges, then the limit
is unique.

Proof. Suppose (xn)n∈ℕ is a sequence converging to a in a metric space (X, d), and
b ̸= a. We will show that (xn)n∈ℕ does not converge to b. Since b ̸= a, ε = 1

2d(a, b) is
greater than zero. First, wewill show that, as Figure 1.2 suggests,B(a, ε) andB(b, ε) are
disjoint. Suppose to the contrary that there exists x ∈ B(a, ε) ∩ B(b, ε). Then d(a, x) < ε
and d(x, b) < ε, and adding gives d(a, x)+d(x, b) < 2ε = d(a, b), contrary to the triangle
inequality. So, B(a, ε) and B(b, ε) are disjoint.
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Figure 1.2: Potential distinct limits a and b of a sequence in a metric space.

Since (xn)n∈ℕ converges to a, it is eventually in B(a, ε), which is disjoint from B(b, ε).
Thus, no tail of the sequence is in B(b, ε), so the sequence does not converge to b.

The following property of metric spaces will be used frequently.

Theorem 1.1.7. If (X, d) is a metric space, x ∈ X, and y ∈ B(x, ε), then there exists εy > 0
such that B(y, εy) ⊆ B(x, ε).

Proof. Figure 1.3 suggests the appropriate value of εy.

Figure 1.3: If B(x, ε) contains y, then it contains a ball B(y, εy ) around y.
Under the hypotheses, take εy = ε − d(x, y). Since y ∈ B(x, ε), εy > 0. Now z ∈ B(y, εy)
implies d(y, z) < εy = ε − d(x, y). Adding d(x, y) to both sides of the equation and
applying the triangle inequality, we have d(x, z) ≤ d(x, y) + d(y, z) < ε, so z ∈ B(x, ε).
Since z was an arbitrary point of B(y, εy), we have B(y, εy) ⊆ B(x, ε).

Now we present another metric on ℝ2 to illustrate that, while our intuition from
Euclidean geometry will often provide the correct motivation for metric arguments,
we may need to be careful in the details.

Example 1.1.8 (Sup-metric). Definem : ℝ2 × ℝ2 → ℝ by

m((x1, y1), (x2, y2)) = sup{|x1 − x2|, |y1 − y2|}.

Thus, the distance between two points in the plane is the larger of the horizontal dis-
tance |x1 − x2| separating them and the vertical distance |y1 − y2| separating them. For
example, to get from (−2, 3) to (5, 1), we rise by y2 − y1 = −2 and run by x2 − x1 = 7, so in
the supremummetric,m((−2, 3), (5, 1)) = sup{| − 2|, |7|} = 7.
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We will confirm that the function m is indeed a metric. As the supremum of
two nonnegative numbers, m((x1, y1), (x2, y2)) is always nonnegative. Also, m((x1, y1),
(x2, y2)) = sup{|x1 − x2|, |y1 − y2|} = 0 if and only if both of the nonnegative numbers
|x1 − x2| and |y1 − y2| are zero, which happens if and only if (x1, y1) = (x2, y2). Symmetry
follows since m((x1, y1), (x2, y2)) = sup{|x1 − x2|, |y1 − y2|} = sup{|x2 − x1|, |y2 − y1|} =
m((x2, y2), (x1, y1)) for all (x1, y1), (x2, y2) ∈ ℝ2. It only remains to check the triangle
inequality. Since the sup-metric is defined in terms of the Euclidean metric d(x1, x2) =
|x1 − x2| onℝ, it is not surprising that the triangle inequality for the sup-metric will be
based on that for the Euclidean metric on ℝ. For any x1, x2, x3, y1, y2, y3 ∈ ℝ, we have

|x1 − x3| ≤ |x1 − x2| + |x2 − x3|
≤ sup{|x1 − x2|, |y1 − y2|} + sup{|x2 − x3|, |y2 − y3|}
= m((x1, y1), (x2, y2)) +m((x2, y2), (x3, y3)).

Similarly, |y1 − y3| ≤ m((x1, y1), (x2, y2)) +m((x2, y2), (x3, y3)), som((x1, y1), (x3, y3)) =
sup{|x1 − x3|, |y1 − y3|} ≤ m((x1, y1), (x2, y2)) +m((x2, y2), (x3, y3)). This shows thatm sat-
isfies the triangle inequality.

In ℝ2 with the sup-metric, B((0,0), ε) = {(x, y) ∈ ℝ2 : sup{|x − 0|, |y − 0|} =
sup{|x|, |y|} < ε}, which is the set of all points in the plane such that the vertical dis-
tance |y| and horizontal distance |x| from the origin are both less than ε. This is the
square (−ε, ε) × (−ε, ε). Similarly, in this metric, the ball B((a, b), ε) is the square region
(a − ε, a + ε) × (b − ε, b + ε), as depicted in Figure 1.4.

?
(a, b)

?

?

ε
ε

Figure 1.4: The sup-metric ball B((a,b), ε).
Exercises
1. Suppose d : X × X → [0,∞) is a function with d(x, x) = 0 for all x ∈ X. Show that

if x, y, z ∈ X are not all distinct, then d(x, y) + d(y, z) ≥ d(x, z). Thus, in confirming
that d is a metric, if the other conditions are verified first, one need only confirm
the triangle inequality for distinct points x, y, z ∈ X.

2. In a metric space (X, d), show that if 0 < δ < ε, then B(x, δ) ⊆ B(x, ε).
3. In a metric space (X, d), show that if x ∈ B(y, α) ∩ B(z, β), then there exists ε > 0

s. t. B(x, ε) ⊆ B(y, α) ∩ B(z, β).
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4. Show that a sequence (xn)n∈ℕ in Euclidean space is frequently in every ball B(a, ε)
centered at a if and only if there is a subsequence (xσ(n)) converging to a.

5. (Taxicab metric) The taxicab metric (or Manhattan metric) on ℝ2 is given by
d((x, y), (a, b)) = |x − a| + |y − b|. Thus, the distance from one point to another is
the sum of the vertical and horizontal (Euclidean) distances between them. Show
that the taxicab metric really is a metric.

6. In the taxicab metric defined in Exercise 5, draw the balls B((0,0), 2) and B((2,
3), 1).

7. Suppose d : X ×X → ℝ is a metric on a set X and k is a positive real number. Show
that kd : X × X → ℝ is also a metric on X. If d measures Euclidean distances in
units of meters, what value of k would give ametric kdwhichmeasures Euclidean
distances in millimeters?

8. In the metric spaces described below, find all points x ∈ X such that B(x, 15) =
B(5, 15). Carefully justify that you have found all answers.
(a) X = ℝ with the Euclidean metric.
(b) X = {1, 5, 10, 50} ⊆ ℝ with the Euclidean metric.

9. Under what conditions does the intersection B(x, ε) ∩ B(y, δ) of two balls equal a
ball in
(a) the Euclidean metric on ℝ?
(b) the Euclidean metric on ℝ2?
(c) the sup-metric on ℝ2?

10. Describe all points x, y, z in the Euclidean plane for which equality holds in the
triangle inequality, that is, for which d(x, y) + d(y, z) = d(x, z).

11. In the Euclidean plane, show that a = b if and only if B(a, 1) = B(b, 1).
12. Suppose d : X × X → ℝ is a metric on X. Show that f : X × X → ℝ defined by

f (x, y) = √d(x, y) is also a metric on X.
13. Let f : ℝ → ℝ be any one-to-one function. Define df : ℝ × ℝ → ℝ by df (x, y) =
|f (x) − f (y)| for all x, y ∈ ℝ.
(a) Show that df is a metric on ℝ.
(b) For f (x) = x, find the df -ball B(0, 1) centered at 0 with radius 1.
(c) For g(x) = arctan x, find the dg-ball B(0, 1).
(d) For h(x) = x−1 for x ̸= 0 and h(0) = 0, find the dh-ball B(0, 1).

14. Let df , dg and dh be the metrics on ℝ defined in Exercise 13. Discuss the conver-
gence of the sequences (n)n∈ℕ and ( 1n )n∈ℕ in each of the metric spaces (ℝ, df ),
(ℝ, dg), and (ℝ, dh).

15. For x, y ∈ ℝn, let x ⋅ y = x1y1 + x2y2 + ⋅ ⋅ ⋅ + xnyn and ‖x‖ = √x ⋅ x. Then the Euclidean
metric d on ℝn is given by d(x, y) = ‖x − y‖. To prove that d satisfies the triangle
inequality, it suffices to show ‖x + y‖ ≤ ‖x‖ + ‖y‖ for any x, y ∈ ℝ. Complete the
steps below to do this.
(a) Given x, y ∈ ℝn, let z = ‖y‖x−‖x‖y and show that z ⋅z ≥ 0 implies x ⋅y ≤ ‖x‖‖y‖.

This is the Cauchy–Schwarz inequality.
(b) Show that 0 ≤ ‖x + y‖ = (x + y) ⋅ (x + y) ≤ (‖x‖ + ‖y‖)2, so ‖x + y‖ ≤ ‖x‖ + ‖y‖.
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1.2 Open sets in metric spaces

In theEuclidean lineℝ familiar fromcalculus, an interval (a, b)which containsneither
of its endpoints is called an open interval and an interval [a, b]which contains both of
its endpoints is called a closed interval. Similarly, an open set in Euclidean spaceℝn is
a setwhich containsnoneof its boundarypoints anda closed set is onewhich contains
all of its boundary points. See Figure 1.5. Thesedefinitions of openand closed sets hold
not only in Euclidean space, but in all metric spaces (and, indeed, in all topological
spaces). Thus, we need a formal definition of boundary points.

Figure 1.5: An open set, a closed set, and a set that is neither.

Definition 1.2.1. Suppose A is a subset of a metric space (X, d). A boundary point of A
is a point x ∈ X such that every ball around x (with arbitrary radius ε > 0) intersects
both A and X − A. The set of all boundary points of A is called the boundary of A and
is denoted 𝜕A.

We note that an immediate consequence of the definition is that 𝜕A = 𝜕(X − A).
Now we may formally define open and closed sets in metric spaces.

Definition 1.2.2. A set A in a metric space (X, d) is open (or, for emphasis, d-open) if it
contains none of its boundary points, and is closed (or d-closed) if it contains all of its
boundary points.

In the cased is the Euclideanmetric onℝn,d-open andd-closed setsmaybe called
Euclidean open and Euclidean closed sets.

Example 1.2.3. Consider the following sets in Euclidean space.
(a) For A = (0, 1] ⊆ ℝ, 𝜕A = {0, 1}. For every ε > 0, B(0, ε) = (−ε, ε) intersects both

A = (0, 1] and (−∞,0] ⊆ ℝ − A, so 0 ∈ 𝜕A, and similarly, 1 ∈ 𝜕A. Furthermore,
for x ̸∈ {0, 1}, x is not a boundary point: for ε = min{|x|, |1 − x|}, B(x, ε) is either
completely contained in A or completely contained in ℝ − A. Since A contains
some, but not all, of its boundary points, A is neither open nor closed.

(b) For A = (0, 1] ∪ {2}, we have 𝜕A = {0, 1, 2}, and A is neither open nor closed.
(c) For A = (3,∞) ⊆ ℝ, we have 𝜕A = {3}, and 𝜕A ∩ A = 0, so A = (3,∞) is open.
(d) For A = ℝ in the Euclidean space ℝ, the complement of A is empty, so no ball

around any point x intersects the complement of A. Thus, we have 𝜕ℝ = 0. Nowℝ
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contains none of its boundary points (since it has none), but also contains all of
its boundary points since 𝜕ℝ = 0 ⊆ ℝ. Thus, ℝ is both open and closed.

(e) For the set ℚ of rational numbers, 𝜕ℚ = ℝ. For every real number x and every
ε > 0, B(x, ε) = (x − ε, x + ε) contains some rational numbers and some irrational
numbers, so x ∈ 𝜕ℚ. Since 𝜕ℚ ̸⊆ ℚ, the setℚ is not closed. Since 𝜕ℚ ∩ ℚ ̸= 0, the
setℚ is not open.

(f) The set A = (0, 1) × ℝ ⊆ ℝ2 has boundary 𝜕A = {(x, y) : x = 0 or x = 1}. Since A
contains none of its boundary points, A is open. Furthermore, since A does not
contain all of its boundary points, A is not closed.

The open sets and closed sets are fundamentally related by the following theorem.

Theorem 1.2.4. In a metric space (X, d), A is open if and only if X − A is closed; A is
closed if and only if X − A is open.

Proof. Recalling that the boundary of A equals the boundary of its complement, B is
open if and only ifB∩𝜕B = 0, andB is closed if and only if 𝜕B ⊆ B, wenote the following
equivalences in a metric space X:

A is open ⇐⇒ A ∩ 𝜕A = 0
⇐⇒ 𝜕A ⊆ X − A
⇐⇒ 𝜕(X − A) ⊆ X − A
⇐⇒ X − A is closed.

Thus, A is open if and only if its complement is closed. Replacing A by X − A shows
that A is closed if and only if its complement is open.

Wewill focus on the open sets in this section. The closed sets and open sets are the
extremes—they contain either all or none of their boundary points. Most sets would
fall somewhere between these extremes, including some but not all of their boundary
points. That is, most sets would be neither open nor closed. In particular, notice that
“not open” does not imply closed, and “not closed” does not imply open. The third set
shown in Figure 1.5 is simultaneously not open and not closed.

Theorem 1.2.5. U is open in a metric space (X, d) if and only if for every x ∈ U, there is
a ball B(x, ε) contained in U.

That is, U is open if and only if

∀x ∈ U , ∃ε > 0 such that B(x, ε) ⊆ U .

Proof. (⇒) Suppose U is open in X. Then

x ∈ U ⇒ x ̸∈ 𝜕U
⇒ ∼ (every ball around x intersects both U and X − U)
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⇒ there exists a B(x, ε) which does not intersect both U and X − U
⇒ there exists a B(x, ε) which does not intersect X − U
(since x ∈ U , every B(x, ε)must intersect U)

⇒ there exists a B(x, ε) ⊆ U .

(⇐) Suppose that for every x ∈ U there exists εx > 0 such that B(x, εx) ⊆ U . Now
for every x ∈ U ,B(x, εx) does not intersect X − U, so x ̸∈ 𝜕U . Thus, U contains none of
its boundary points, so U is open.

This theorem is suggested in Figure 1.6.

Figure 1.6: U is open if and only if it contains balls centered at each of its points.

Corollary 1.2.6. In a metric space, every ball B(x, ε) is open.

Proof. Apply Theorems 1.2.5 and 1.1.7.

Corollary 1.2.7. U is open in a metric space (X, d) if and only if U is a union of balls.

Proof. By “union”, we mean an arbitrary union, allowing unions of infinite collec-
tions, finite collections, or even the empty collection of balls. The union of an empty
collection is 0, so U = 0 is a union of balls.

If U is a nonempty open set in X, by Theorem 1.2.5, for each x ∈ U, there exists εx
with {x} ⊆ B(x, εx) ⊆ U . Taking the union over all x ∈ U gives

U = ⋃
x∈U{x} ⊆ ⋃x∈U B(x, εx) ⊆ ⋃x∈U U = U ,

and thus U is a union⋃x∈U B(x, εx) of balls.
Conversely, supposeU is a union⋃i∈I B(xi, εi) of balls and x ∈ U . Then there exists

j ∈ I such that x ∈ B(xj, εj). By Theorem 1.1.7, there is a ball B(x, ε) centered at x which
is contained in B(xj, εj) ⊆ U . Now by Theorem 1.2.5, U is open in X.

Definition 1.2.8. An open neighborhood of x is an open set containing x. A neighbor-
hood of x is any set which contains an open neighborhood of x.

Some introductory textbooks in topology define all neighborhoods to be open.
Because arbitrary neighborhoods of x are defined in terms of open neighborhoods, in
many applications this is adequate; there are enough open neighborhoods to define
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nearness. However, in applications involving nesting of neighborhoods and supersets
of neighborhoods, the more general definition is helpful.

The collection of all neighborhoods of x will be used to quantify nearness to x.
The nicest neighborhoods of x in a metric space are the balls centered at x. Indeed,
Theorem 1.2.5 shows that any neighborhood of x contains a ball centered at x. The
definitions of boundary and sequential convergence given above in terms of balls can
in fact be restated using “every neighborhood” instead of “every ball.” So, even if we
do not have ametric to generate balls, these concepts can be equallywell utilized if we
only know which sets are open—and consequently, which sets are neighborhoods of
any given point. A topology on a setX will be a collection of subsets ofX which serve as
the open sets. The theorem below lists fundamental properties of open sets in ametric
space whichwewill wish any topology—that is, any collection of open sets—to satisfy.

Theorem 1.2.9. In a metric space (X, d):
(a) 0 and X are open.
(b) Finite intersections of open sets are open.
(c) Arbitrary unions of open sets are open.

Proof. (a) 0 and X have no boundary points, and thus are open.
(b) SupposeU1,U2, . . . ,Un are open inX and x ∈ U1∩U2∩⋅ ⋅ ⋅∩Un. By Theorem 1.2.5,

there exist ε1, ε2, . . . , εn such thatB(x, εi) ⊆ Ui for i = 1, . . . , n. Take ε = min{ε1, ε2, . . . , εn}.
Then ε > 0 and B(x, ε) ⊆ U1 ∩U2 ∩ ⋅ ⋅ ⋅∩Un. Thus, Theorem 1.2.5 impliesU1 ∩U2 ∩ ⋅ ⋅ ⋅∩Un
is open.

(c) By Corollary 1.2.7, a union of open sets in X is a union of unions of balls, which
is again a union of balls, and is thus open.

Note that arbitrary intersections of open sets need not be open: IfUn = (0, 1+
1
n ) in

the Euclidean line ℝ, then Un is open for each n ∈ ℕ, but the intersection ⋂n∈ℕ Un =
(0, 1] is not open.

Exercises

1. The proof of Theorem 1.2.9(b) cannot be modified to show that arbitrary intersec-
tions of open sets are open. Why not? Which step of the proof fails to generalize
to arbitrary intersections?

2. Recall that in a metric space (X, d), x is a boundary point of A if and only if every
ball B(x, ε) centered at x intersects both A and X − A. Show that this statement is
equivalent: In a metric space (X, d), x is a boundary point of A if and only if every
neighborhood U of x intersects both A and X − A.

3. For each given subset of the Euclidean plane ℝ2, (a) determine the boundary
points, (b) determine whether the set is open, (c) write each set that is open as a
union of balls, and (d) determine whether the set is closed.
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A = ℝ2

B = (−1, 1) × ℝ
C = {(x, y) ∈ ℝ2 : x > 0}
D = {(x, y) ∈ ℝ2 : y = x2}
E = {(x, y) ∈ ℝ2 : x ≥ 0, y > 0}
F = {(x, y) ∈ ℝ2 : y < x}

4. From the sets given in Exercise 3, determine all that are
(a) a neighborhood of (3, 2);
(b) a neighborhood of (1, 1);
(c) a neighborhood of (0, 1);
(d) a neighborhood of (−2,0);
(e) a neighborhood of (0, −1).

5. Some open sets U in the Euclidean plane ℝ2 are given below. For every point
(x, y) ∈ U, find an ε > 0 such that B((x, y), ε) ⊆ U .
(a) U = B((0,0), 1) ∪ B((1, 1), 2)
(b) U = (−1, 1) × (−1, 1)
(c) U = {(x, y) ∈ ℝ2 : y < x}

6. Sketch each given subset of the Euclidean plane ℝ2 and determine whether it is
(a) open, (b) closed, (c) not open, (d) not closed, and (e) a neighborhood of (1,0).
A = ⋂5n=1 B((0,0), 1 + 1

n )

B = ⋂∞n=1 B((0,0), 1 + 1
n )

C = ⋂3n=1 B((n,0), 13 )
D = ⋃3n=1 B((n,0), 13 )
E = ⋃∞n=1[ 1n , 3 − 1

n ] × [
1
n , 3 −

1
n ]

F = ⋃∞n=1[0, 3 − 1
n ] × [0, 3 −

1
n ]

7. Suppose X is a metric space.
(a) Show that X − {a} is open for each a ∈ X.
(b) Show that every subset A of X is an intersection of open sets.

8. Suppose A is a subset of a metric space X. Show that x ∈ 𝜕A if and only if there
exists a sequence (an)n∈ℕ in A converging to x and a sequence (bn)n∈ℕ in X − A
converging to x.

1.3 Topologies
In a metric space, open sets were defined in terms of boundaries of sets, which were
defined in terms of ε-balls, which were defined using a distance function. Thus, open
sets were defined in terms of the distance function. But there are ways to determine
nearness—which is the goal of topology—which cannot be measured by a metric. All
that is needed is a suitable collection of open sets. The open sets may then be used
to define neighborhoods, convergence, and continuity, among other topological con-
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cepts. The characteristic properties of open sets allowing the quantification of near-
ness are those given for open sets in a metric space in Theorem 1.2.9. This is the basis
for the definition below.

Definition 1.3.1. A topology on a nonempty set X is a collection 𝒯 of subsets of X,
called the open sets, satisfying:
(a) 0 ∈ 𝒯 and X ∈ 𝒯 .
(b) If U1,U2, . . . ,Un ∈ 𝒯 , then⋂

n
i=1 Ui ∈ 𝒯 (𝒯 is closed under finite intersections).

(c) If I is an arbitrary index set and Ui ∈ 𝒯 for all i ∈ I, then ⋃i∈I Ui ∈ 𝒯 (𝒯 is closed
under arbitrary unions).

A topological space is a pair (X, 𝒯 ) where X is a nonempty set and 𝒯 is a topology on X.

If the topology 𝒯 is understood, we may refer to “the topological space X” just
naming the underlying set of the topological space (X, 𝒯 ). If we wish to emphasize the
topology, an element of a topology 𝒯 may be called a 𝒯 -open set.

The condition (b) that a topology 𝒯 must be closed under finite intersections can
be replaced by the condition (b󸀠) that if U1,U2 ∈ 𝒯 , then U1 ∩ U2 ∈ 𝒯 (that is, 𝒯 is
closed under binary intersections). Clearly (b) implies (b󸀠). Suppose (b󸀠) holds and
U1,U2, . . . ,Un ∈ 𝒯 . Proceeding inductively, if U1 ∩ ⋅ ⋅ ⋅ ∩ Uk ∈ 𝒯 , then, by (b󸀠), (U1 ∩
⋅ ⋅ ⋅ ∩ Uk) ∩ Uk+1 ∈ 𝒯 . Thus, 𝒯 is closed under finite intersections if and only if it is
closed under binary intersections.

If (X, d) is a metric space, then the collection of d-open sets is a topology on X
called themetric topology generated by d. In the special case ofℝn with the Euclidean
metric, the resulting topology is the Euclidean topology 𝒯ℰ , and (ℝn, 𝒯ℰ ) is called the
n-dimensional Euclidean space.

While a metric on X gave us one way to generate open sets, the concept of a topol-
ogy is that we start by specifying the open sets and use them to characterize near-
ness, convergence, and continuity. Metric spaces are concrete examples of topological
spaces which are easy to visualize, but not every topological space is a metric space.

Wenote that the open sets in ametric spacewere all generatedbyanicer collection
of open sets, the balls, in the sense that every open set was a union of balls. Such a
collection of open sets will be called a basis for the topology. Bases will be studied in
the next section.

Now, we will give the natural extensions of some metric space concepts to topo-
logical spaces.

Definition 1.3.2. If (X, 𝒯 ) is a topological space and x ∈ X, an open neighborhood of x
is an open set containing x. A neighborhood of x is a set containing an open neighbor-
hood of x.

To emphasize the topology, a neighborhood of x in (X, 𝒯 )may be called a 𝒯 -neigh-
borhood of x. (As noted earlier, some elementary textbooks initially require all neigh-
borhoods to be open, which is adequate for an elementary development.)
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Definition 1.1.5 of convergence of a sequence in a metric space carries over easily
to convergence in an arbitrary topological space.

Definition 1.3.3. A sequence (xn)n∈ℕ in a topological space X converges to a ∈ X if and
only if (xn)n∈ℕ is eventually in every neighborhood of a. That is, limn→∞ xn = a if and
only if for any neighborhood U of x, there exists k ∈ ℕ such that n ≥ k implies xn ∈ U .

Checking sequential convergence to a point a requires checking something for
every neighborhood of a, with the idea that as the neighborhoods get “smaller and
smaller” the sequence still eventually gets in the neighborhoods. The formal way to
quantify the “smaller and smaller” concept is to require the condition to hold for every
possible neighborhood.

We note that “every neighborhood” in Definition 1.3.3 could be replaced by “every
openneighborhood”. Clearly if (xn)n∈ℕ is in every neighborhood of a, then it is in every
open neighborhood of a. Conversely, since every neighborhood of a contains an open
neighborhood of a, if (xn)n∈ℕ is in every open neighborhood of a, it must be in every
neighborhood of a.

The next examples illustrate some topologies and how they may be used to quan-
tify nearness.

Example 1.3.4 (The discrete topology). IfX is any nonempty set, the discrete topology
on X is 𝒯D = 𝒫(X) = {U : U ⊆ X}. Every subset of X is open in the discrete topology
(so it is easily confirmed that 𝒯D is in fact a topology). Any topology is a collection
of subsets of X; the discrete topology is the collection of all subsets of X and thus is
the largest possible topology on X. In the discrete topology on X, each singleton set
{x} is open and is therefore a neighborhood of x. This suggests that x is not near any
other points. If a sequence (xn)n∈ℕ converges to a, then the sequence is eventually in
every neighborhood of a, and thus is eventually in the neighborhood {a}. Thus, the
only convergent sequences are those which are eventually constant.

The discrete topology models discrete situations. To model the Euclidean plane
by a finite set of pixels on a computer screen, we might stipulate that an open set in
the plane should illuminate an open set of pixels on the screen. If the point (0,0) is
centered in a pixel occupying a square [−r, r] × [−r, r], then the open Euclidean ball
B((0,0), r) is contained in [−r, r]× [−r, r] and thus would illuminate the single pixel, so
this singlepixel shouldbeopen. Similarly, everypixel shouldbeopen, andwehave the
discrete topology on the set of pixels. This natural model is in many ways inadequate.
A better way to model pixels is suggested in Example 1.4.6, which incorporates the
boundaries between pixels.

The discrete topology on a set X ismetrizable, that is, it arises as the metric topol-
ogy for some metric on X. Indeed, there are many metrics which generate the discrete
topology. The most common one is the discrete metric

d(x, y) = { 0 if x = y,
1 if x ̸= y.
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The discrete metric is used in instances where exact precision is needed, such as in
comparing an input ‘password’ to the actual password. If the entered password is not
exact, then you will not be permitted partial access based on entering something “al-
most correct.” Any entry other than the exact passwordhas distance 1 to the password,
which is not considered close.

Example 1.3.5 (The indiscrete topology). The indiscrete topology on X is 𝒯I = {0,X}.
Thus, the only open sets in the indiscrete topology are those required by the definition
of a topology. If x ∈ X, the only neighborhood of x is the whole space X. Every point x
is close to every other point in the space. In the indiscrete topology onℝ, consider the
sequence (0, 1,0, 1,0, 1,0, 1, . . .). The sequence is eventually in (in fact, always in) every
neighborhood of 7, and thus (0, 1,0, 1,0, 1,0, 1, . . .) converges to 7. There was nothing
special about 7, or the sequence (0, 1,0, 1,0, 1,0, 1, . . .). Every sequence (xn)n∈ℕ in ℝ
with the indiscrete topology converges to every point a ∈ ℝ. If X has more than one
point, every sequence converges to more than one limit, so by Theorem 1.1.6, (X, 𝒯I ) is
not metrizable.

The discrete topology and the indiscrete topology are the extremes. In the discrete
topology, every set is open, each {x} is a neighborhood of x, no point is close to any
other, and the only convergent sequences are the eventually constant sequences. In
the indiscrete topology, every point is close to every other, and every sequence con-
verges to every point.

Example 1.3.6. Consider the set X = {a, b, c} and the collections of subsets 𝒯1 =
{0, {a, b}, {b}, {b, c}} and 𝒯2 = {0, {a, b}, {b, c},X} as shown below.

𝒯1 𝒯2

a b c a b c

𝒯1 is not a topology on X since X ̸∈ 𝒯1. The collection 𝒯2 is not a topology on X since it
is not closed under finite intersections: {a, b} and {b, c} are in 𝒯2 but their intersection
{b} is not.

Consider the set Y = {a, b, c, d} and the collections of subsets 𝒯3 = {0, {a}, {c},
{c, d},Y} and 𝒯4 = {0, {a, b, c}, {c}, {c, d},Y} as shown below.

𝒯3 𝒯4

a b c d a b c d
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𝒯3 is not a topology on Y since it is not closed under arbitrary unions. The sets {a} and
{c} are in 𝒯3, but their union {a, c} is not.

The collection 𝒯4 is a topology on Y . The 𝒯4-neighborhoods of a are {a, b, c} and
{a, b, c, d}. The constant sequence (b, b, b, b, b, . . .) is eventually in (in fact, entirely in)
every neighborhood of b and in every neighborhood of a. Thus, the constant sequence
(b, b, b, b, b, . . .) converges to a and to b. The sequence (c, d, c, d, c, d, c, d, . . .) is eventu-
ally in both open neighborhoods {c, d} and {a, b, c, d} of d and thus (c, d, c, d, c, d, c,
d, . . .) converges to d. This sequence is not eventually in the neighborhood {c} of c.
Thus, (c, d, c, d, c, d, c, d, . . .) does not converge to c.

Example 1.3.7 (Single transmitter topology). LetX = [−1, 1] and let 𝒯 be the collection
of subsets of X satisfying

0 ∈ U ⇒ (−1, 1) ⊆ U .

Thus, 𝒯 contains any subset ofXwhichdoes not contain 0, and the supersets of (−1, 1),
all of which do contain 0.

We will confirm that 𝒯 is a topology on X. Clearly 0 and X are in 𝒯 . Suppose
U1, . . . ,Un are in 𝒯 . If 0 ∈ U1 ∩ ⋅ ⋅ ⋅ ∩ Un then 0 ∈ Uk for all k ∈ {1, . . . , n}, so (−1, 1) ⊆ Uk
for all k ∈ {1, . . . , n}, and thus (−1, 1) ⊆ U1 ∩ ⋅ ⋅ ⋅ ∩ Un. Thus, 0 ∈ U1 ∩ ⋅ ⋅ ⋅ ∩ Un implies
(−1, 1) ⊆ U1 ∩ ⋅ ⋅ ⋅ ∩ Un, which is the definition of the finite intersection U1 ∩ ⋅ ⋅ ⋅ ∩ Un
being open. Finally, suppose Ui ∈ 𝒯 for all i ∈ I, where I is an arbitrary index set.
If 0 ∈ ⋃i∈I Ui, then there exists k ∈ I such that 0 ∈ Uk . Since Uk is open, we have
(−1, 1) ⊆ Uk ⊆ ⋃i∈I Ui. Thus, 0 ∈ ⋃i∈I Ui implies (−1, 1) ⊆ ⋃i∈I Ui, so the arbitrary union
⋃i∈I Ui is open. Thus, 𝒯 is a topology.

In this topology, if x ̸= 0, then {x} is a neighborhood of x, so points different from
x are not close to x. However, every neighborhood of 0 contains (−1, 1), and thus 0 is
close to all the points in (−1, 1). For example, this topology may represent the trans-
mission reach from any point in X = [−1, 1] if there is a single functioning transmitter
at 0 which reaches every point in (−1, 1). Transmitters at every other point x ̸= 0 are
not functioning, so “transmissions” from x ̸= 0 do not reach any other point.

The sequence (.2, .2, .2, .2, .2, . . .) converges to .2 and to 0, and to no other points.
Clearly the sequence is in every neighborhood of .2, since any neighborhood of .2
must contain .2. Also, .2 is in every neighborhood of 0 since every neighborhood of
0 contains (−1, 1). Furthermore, if a ̸∈ {0, .2}, then the sequence is not eventually in the
neighborhood {a} of a, so the sequence does not converge to any a ̸∈ {0, .2}.

In the indiscrete topology on ℝ, 𝒯4 of Example 1.3.6, and the single transmitter
topology on [−1, 1], we saw sequences which converged to more than one limit. Theo-
rem 1.1.6 showed that in ametric space no sequence can havemore than one limit. Ex-
amining the proof of Theorem 1.1.6, the crucial property which prevented a sequence
in a metric space from converging to distinct points a and b was that a and b had
disjoint neighborhoods. To ensure that no sequence ever has two distinct limits, we
could impose the condition that every pair of distinct points a and b possess disjoint
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neighborhoods, that is, every pair of distinct points a and b are “separated” by disjoint
neighborhoods. This separation property is named for Felix Hausdorff (1868–1942). It
is also called the T2 property, short for the original German terminology Trennungsax-
iom 2, which means “separation axiom 2”.

Definition 1.3.8. A topological space (X, 𝒯 ) satisfies the Hausdorff property (or the
T2-property) if for every a, b ∈ X with a ̸= b, there exist Na,Nb ∈ 𝒯 with a ∈ Na,
b ∈ Nb, and Na ∩ Nb = 0. (See Figure 1.7.) If X satisfies the Hausdorff property, we say
X is a Hausdorff space, or is a T2 space.

Figure 1.7: The Hausdorff property: distinct points have disjoint neighborhoods.

We have already noted the first benefit of this property, stated below. Its proof is
similar to that of Theorem 1.1.6 and is left to the exercises.

Theorem 1.3.9. If (X, 𝒯 ) is a Hausdorff topological space, then every convergent se-
quence in X has a unique limit.

The indiscrete topology on ℝ is clearly not Hausdorff. Given a ̸= b in ℝ, the only
neighborhood of a or of b is ℝ, so distinct points do no have disjoint neighborhoods.
This is manifested by sequences with more than one limit. In the single transmitter
topology, a = 0 and b = .2 do not have disjoint neighborhoods, so this topology is not
Hausdorff. Since any metric topology is Hausdorff, the indiscrete topology on ℝ and
the single transmitter topology are not metric topologies for any metric. That is, these
topologies are notmetrizable.

In Section 6.3 we will see that the converse of Theorem 1.3.9 holds under certain
conditions, but not in general.

Example 1.3.10. Let X be the interval (0, 1).
The collection 𝒯1 = {(0, b) : 0 ≤ b ≤ 1} ∪ {(a, 1) : 0 ≤ a ≤ 1} of intervals having 0 or

1 as an endpoint is not a topology on X. It contains 0 = (0, b) for b = 0 and X = (0, b)
for b = 1, but is neither closed under arbitrary unions nor finite intersections. The sets
(0, 13 ) and (

2
3 , 1) are in 𝒯1 but their union is not. The sets (0, 23 ) and (

1
3 , 1) are in 𝒯1 but

their intersection is not.
The collection 𝒯2 = {(0, b) :

2
3 < b ≤ 1} ∪ {(a, 1) : 0 ≤ a <

1
3 } is not a topology on X.

It contains X = (0, 1), and is closed under arbitrary unions. Indeed, arbitrary unions
of a collection of sets in 𝒯2 all of the form (0, b) or all of the form (a, 1) are again of that
form and are in 𝒯2, and if a collection of sets from 𝒯2 contains a set of form (0, b) and a
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set of form (a, 1), then since a < 1
3 <

2
3 < b, the union is (0, 1) = X ∈ 𝒯2. However, 𝒯2 is

not a topology since it does not contain 0 and is not closed under finite intersections.
The sets (0, 23 ) and (

1
3 , 1) are in 𝒯1 but their intersection is not.

The collection 𝒯3 = {(0, b) :
1
2 < b < 1} ∪ {(a, 1) : 0 < a <

1
2 } ∪ {(a, b) : 0 ≤ a <

1
2 <

b ≤ 1} ∪ {0} is a topology on X. The verification is omitted.

Example 1.3.11 (The cofinite topology). The cofinite topology (or finite complement
topology) on a set X consists of the empty set together with all subsets of X which
have a finite complement. That is 𝒯c = {0} ∪ {U ⊆ X : X − U is finite}. The details of
confirming that this is a topology are left to the exercises.

Exercises
1. Some collections of subsets 𝒯i of {1, 2, 3, 4} are shown below. Assume that each

collection contains the empty set. Which are topologies? For all that fail to be a
topology, state each condition of the definition which does not hold.

𝒯1 𝒯2

𝒯3 𝒯4

𝒯5 𝒯6

𝒯7

2. (Right ray topology) The right ray topology on ℝ is the collection {(a,∞) :
a ∈ ℝ} ∪ {0, ℝ}.
(a) Verify that this is a topology.
(b) Find all limits of the sequence (2, 3, 2, 3, 2, 3, 2, 3, . . .) in this topological space.
(c) Is this topology Hausdorff? Justify your answer.
(d) Is the collection 𝒯 = {[a,∞) : a ∈ ℝ} ∪ {0, ℝ} a topology on ℝ? Justify your

answer.
3. Which of the following collections are topologies on X = [0, 1]? For those that are

not topologies, state every condition of the definition which does not hold.
(a) 𝒯1 = {A ⊆ X : A is finite}
(b) 𝒯2 = {A ⊆ X : {0,

1
2 , 1} ⊆ A} ∪ {0}

(c) 𝒯3 = {[0, b] :
1
2 < b ≤ 1} ∪ {0}

(d) 𝒯4 = {[0, b) :
1
2 < b < 1} ∪ {(a, 1] : 0 ≤ a <

1
2 )} ∪ {(a, b) : 0 ≤ a <

1
2 <

b ≤ 1} ∪ {0,X}



38 | 1 Topologies

4. For k ≥ 0, let Wk be the wedge {(x, y) ∈ ℝ2 : x > 0,0 ≤ y < kx}. For each set Xi
and collection 𝒯 of subsets of Xi below, determine whether 𝒯 is a topology on Xi.
For those that are not topologies, identify every condition of the definition which
does not hold.
(a) X1 = {(x, y) ∈ ℝ2 : x > 0, y ≥ 0} and 𝒯 = {0,W1,W2,X1}.
(b) X1 = {(x, y) ∈ ℝ2 : x > 0, y ≥ 0} and 𝒯 = {0,W2,W3,W3 −W1,X1}.
(c) X1 = {(x, y) ∈ ℝ2 : x > 0, y ≥ 0} and 𝒯 = {0,X1} ∪ {W1− 1n : n ∈ ℕ}.
(d) X1 = {(x, y) ∈ ℝ2 : x > 0, y ≥ 0} and 𝒯 = {Wk : k > 0}.
(e) X2 = {(x, y) ∈ ℝ2 : x > 0, y > 0} and 𝒯 = {Wk ∩ X2 : k ≥ 0}.
(f) X3 = {(x, y) ∈ ℝ2 : x > 0,0 < y < x} and 𝒯 = {Wk ∩ X3 : 0 ≤ k ≤ 1}.

5. Suppose U is a subset of a topological space X. Show that U is open if and only if
for every x ∈ U, there exists a neighborhood of x contained in U .

6. (a) Show that a point x in a topological space X has a smallest neighborhood Nx
if and only if⋂{U : U is a neighborhood of x} is a neighborhood of x.

(b) Which of the following topological spaces contain a point with a smallest
neighborhood?
i. ℝ with the Euclidean topology.
ii. ℝ with the discrete topology.
iii. ℝ with the cofinite topology.
iv. The space (Y , 𝒯4) given in Example 1.3.6.

7. Consider this property P which a topological space X might satisfy: For any three
distinct points a, b, c ∈ X, there exist mutually disjoint neighborhoodsNa,Nb, and
Nc of a, b, and c. Does the T2 property imply property P? Does property P imply the
T2 property? Give a proof or counterexample for each question.

8. Prove Theorem 1.3.9: A convergent sequence in a Hausdorff space has a unique
limit.

9. Show that every metric space is Hausdorff.
10. Verify that the cofinite topology is indeed a topology.
11. Show that the cofinite topology on ℝ is not Hausdorff by:

(a) exhibiting distinct points a and bwhich do not have disjoint neighborhoods;
(b) exhibiting a sequence which has more than one limit.

12. Show that the discrete topology is the only Hausdorff topology on a finite set X =
{x1, . . . , xn}.

13. Describe all nonempty sets X for which the indiscrete topology on X is Hausdorff.
14. Describe all nonempty sets X for which the cofinite topology on X is Hausdorff.
15. (Particular point topology) Let X be any nonempty set and a ∈ X. The particular

point topology on X determined by a is Pa = {U ⊆ X : a ∈ U} ∪ {0}. Show that this is
a topology.

16. (Excluded point topology) Let X be any nonempty set and a ∈ X. The excluded
point topology on X determined by a is Ea = {U ⊆ X : a ̸∈ U} ∪ {X}. Show that this
is a topology.
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17. What can be said about the set X if
(a) the particular point topology Pa on X equals the excluded point topology Ea?
(b) the particular point topology Pa on X equals the discrete topology?
(c) the particular point topology Pa on X equals the indiscrete topology?
(d) the cofinite topology on X equals the discrete topology?
(e) the discrete topology on X has 64 open sets?
(f) the particular point topology is Hausdorff?

18. (Nested collections)
(a) For n ∈ ℕ, let In = [0, n] ⊆ ℝ. Show that {In : n ∈ ℕ} ∪ {0, [0,∞)} is a topology

on X = [0,∞).
(b) Suppose U1 ⊆ U2 ⊆ U3 ⊆ ⋅ ⋅ ⋅ ⊆ Un ⊆ X. Show that the finite nested collection
{0,U1,U2, . . . ,Un,X} is a topology on X.

(c) Is every infinite nested collection of subsets of X = ℝwhich contains 0 andℝ
a topology? Give a proof or counterexample.

19. Suppose X is a finite set and |X| = n. Since every topology on X is a collection of
subsets of X, the number of collections of subsets of X will be an upper bound
for the number of topologies on X. How many subsets does X have? How many
collections of subsets of X are there?

20. A topology 𝒯 on X is called a finite topology on X if the collection 𝒯 of open sets
is finite.
(a) Which of these topologies on ℝ are finite topologies?

𝒯1 = the discrete topology
𝒯2 = the indiscrete topology
𝒯3 = the Euclidean topology
𝒯4 = {0, ℤ,ℝ}
𝒯5 = the right ray topology = {(a,∞) : a ∈ ℝ} ∪ {0, ℝ}.

(b) If 𝒯 is a finite topology on X and a ∈ X, show that a has a smallest neighbor-
hood.

(c) In the Euclidean topology on ℝ, does 0 have a smallest neighborhood?
21. Suppose X is a set, A ⊆ X, and p, q are distinct points in X.

(a) Show that {0,A,X} is a topology on X. (Note that the only topology strictly
contained in this topology is the indiscrete topology.)

(b) Show that 𝒯{p,q} = {U ⊆ X : p ∈ U or {p, q} ∩U = 0} is a topology on X. (We will
see in Section 9.3 that the only topology which strictly contains this topology
is the discrete topology.)

1.4 Basis for a topology

Wesaw that all the open sets in ametric spacewere generated by the balls in twoways:
A set U is open if and only if it is a union of balls (Corollary 1.2.7).
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A set U is open if and only if for every x ∈ U, there exists a ball B(x, ε) which is
contained in U . (Theorem 1.2.5).

A nice collection of open sets which can be used in these ways to generate the
topology is called a basis for the topology.

Definition 1.4.1. If 𝒯 is a topology on X, a basis for 𝒯 is a collection ℬ ⊆ 𝒯 of open
subsets of X such that every open set is a union of elements of ℬ. The open sets in ℬ
are called basic open sets with respect to ℬ, and if B ∈ ℬ and x ∈ B, we say B is a basic
neighborhood of x with respect to ℬ. If ℬ is a basis for 𝒯 , we say 𝒯 is generated by ℬ,
and write 𝒯 = 𝒯ℬ or 𝒯 = [ℬ].

When we refer to an open set, wemust knowwhich topology is being used. When
referring to a basic open set, we must also know which basis is being used. When the
topology 𝒯 and basis ℬ are understood, we may simply say “open” or “basic open”
instead of the more precise “𝒯 -open” or “basic open with respect to ℬ”.

Recall that the union of an empty collection is 0, so the open set 0 will always be
realized as a union (namely, the empty union) of elements of a basis ℬ. To avoid the
case of the empty union, we could equivalently define a basis for a topology 𝒯 to be a
collection ℬ ⊆ 𝒯 such that every nonempty open set is a union of elements of ℬ.

To reiterate our motivating example, if (X, d) is a metric space, the collection ℬ =
{B(x, ε) : x ∈ X, ε > 0} of all balls is a basis for the metric topology on X generated by
the metric d.

Every topology 𝒯 has a basis: ℬ = 𝒯 is a basis for 𝒯 . A topology may have many
different bases, as the following example illustrates.

Example 1.4.2. Let 𝒯ℰ be the Euclidean topology on ℝ. Consider the collections

ℬ1 = {(x − ε, x + ε) : x ∈ ℝ, ε > 0},
ℬ2 = 𝒯ℰ ,

ℬ3 = {(x −
1
n
, x + 1

n
) : x ∈ ℝ, n ∈ ℕ}, and

ℬ4 = {(x − ε, x + ε) − {x} : x ∈ ℝ, ε > 0}.

Each is a collection of open sets. ℬ1 is the collection of balls in the Euclidean met-
ric, and thus is a basis for 𝒯ℰ . Clearly every open set in 𝒯ℰ is a union of sets in 𝒯ℰ , so
ℬ2 is a basis for 𝒯ℰ .

Note that every ε-ball (x − ε, x + ε) is a union of 1
n -balls: for each z ∈ (x − ε, x + ε),

there exists a 1
n -ball Bz centered at z and contained in (x − ε, x + ε), and (x − ε, x + ε) =

⋃{Bz : z ∈ (x − ε, x + ε)}. Thus, every open set is a union of
1
n -balls, so ℬ3 is a basis.

The elements ofℬ4 are balls with their center points removed; such sets are called
deleted balls. Any ε-ball (x − ε, x + ε) is the union of the two deleted balls ((x − ε,
x+ ε)− {x})∪ ((y− ε2 , y+

ε
2 )− {y})where y = x+

ε
4 , so every open set is a union of deleted

balls, and thus ℬ4 is a basis.
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The balls in a metric space are the prototype of a basis. We used the property of
balls given in Corollary 1.2.7 to form our definition. Now we will also show that the
property of balls in a metric space given in Theorem 1.2.5 carries over to any basis for
any topological space.

Theorem 1.4.3. Suppose 𝒯 is a topology on set X and ℬ ⊆ 𝒯 is a collection of open sets.
The following are equivalent.
(a) ℬ is a basis for 𝒯 .
(b) U is open if and only if U is a union of elements of ℬ.
(c) U is open if and only if for every x ∈ U, there exists a basic open set B ∈ ℬ which

contains x and is contained in U.

We note that (c) could be formally written as:
(c󸀠) U ∈ 𝒯 if and only if ∀x ∈ U ∃B ∈ ℬ such that x ∈ B and B ⊆ U .

Proof. The definition of ℬ being a basis for 𝒯 was that U is open only if U is a union
of elements of ℬ. The converse also holds: U is open if U is a union of elements of ℬ.
Indeed, sinceℬ ⊆ 𝒯 , any union of elements ofℬ is a union of open sets, which is open.
Thus, (a) and (b) are equivalent.

To see (b) and (c) are equivalent, it suffices to show that (b2) U is a union of el-
ements of ℬ is equivalent to (c2) for every x ∈ U, there exists a basic open set B ∈ ℬ
which contains x and is contained in U . Suppose (b2). Express U as the union ⋃{Bi :
i ∈ I} of basic open sets Bi ∈ ℬ. For any x ∈ U, there exists j ∈ I such that x ∈ Bj.
Furthermore, Bj ⊆ ⋃{Bi : i ∈ I} = U, proving (c2). Now suppose (c2). Then, for every
x ∈ U, there exists a basic open set Bx ∈ ℬ with {x} ⊆ Bx ⊆ U . Taking the union over all
x ∈ U gives U = ⋃x∈U {x} ⊆ ⋃x∈U Bx ⊆ ⋃x∈U U = U, so U is a union of basis elements,
proving (b2).

Note that Theorem 1.4.3(c) may be interpreted as saying every neighborhood U
of x contains a basic neighborhood of x, that is, a basic open set B ∈ ℬ which con-
tains x. In the discrete topology𝒯D onX, every point x has a smallest neighborhood {x}.
Since {x} must contain a basic neighborhood of x, it follows that {x} must be a basic
open set in any basis ℬ for 𝒯D. Furthermore, since every set is a union of singleton
sets, the collection ℬ = {{x} : x ∈ X} of singleton sets in X is a basis for the discrete
topology. Similarly, if a point x in a topological space (X, 𝒯 ) has a smallest neighbor-
hood Nx, then Nx ∈ ℬ for any basis ℬ for 𝒯 . If every point x ∈ X has a smallest neigh-
borhood Nx, then {Nx : x ∈ X} is a basis for 𝒯 by the equivalence of (a) and (c) in
Theorem 1.4.3.

Recall the single transmitter topology 𝒯 = {U ⊆ [−1, 1] : 0 ∈ U ⇒ (−1, 1) ⊆ U}
on X = [−1, 1] given in Example 1.3.7. In this topology, if x ̸= 0, then {x} is open, and
U is a neighborhood of 0 if and only if (−1, 1) ⊆ U . Thus, every point has a smallest
neighborhood, and the collection of these smallest neighborhoods {{x} : x ∈ [−1, 1],
x ̸= 0} ∪ {(−1, 1)} is a basis for 𝒯 .
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Of course, generally a point will not have a smallest neighborhood. In the Eu-
clidean topology on ℝ, B(x, 1n ) = (x −

1
n , x +

1
n ) is a neighborhood of x for every n ∈ ℕ.

If there were a smallest neighborhood Nx of x, it would have to contain x and be con-
tained in each B(x, 1n ), giving {x} ⊆ Nx ⊆ ⋂{B(x,

1
n ) : n ∈ ℕ} = {x}, so Nx = {x}. But this

is a contradiction, since {x} is not a neighborhood of x in the Euclidean topology.
We will see several topological concepts such as convergence of sequences or

boundary points of a set, which are defined in terms of arbitrary neighborhoods of
a point, with an unwritten emphasis on “no matter how small”. Since any neighbor-
hood of x contains a basic neighborhood of x, such properties may be characterized
or confirmed by using only the basic neighborhoods of the point.

In our discussion so far, we have started with a given topology 𝒯 and considered
bases generating that topology. We may ask, if we start with a collection of subsets
of X, whenmight it be a basis for some (as yet unknown) topology on X? Suppose that
ℬ is a basis for a topology 𝒯 onX. SinceX is an open set, condition (b) of Theorem 1.4.3
implies that⋃ℬ = X. If B1,B2 ∈ ℬ, then B1 and B2 are both open, so B1 ∩ B2 is open. If
x ∈ B1 ∩ B2, then the neighborhood B1 ∩ B2 of xmust contain a basic neighborhood B3
of x. That is, there existsB3 ∈ ℬwith x ∈ B3 andB3 ⊆ B1∩B2, as suggested in Figure 1.8.
In fact, these properties are all that is needed to guarantee that a collectionℬ is a basis
for some topology on X.

Figure 1.8: If B1,B2 ∈ ℬ and x ∈ B1 ∩ B2, then there exists B3 ∈ ℬ with x ∈ B3 ⊆ B1 ∩ B2.
Theorem 1.4.4. A collection ℬ of subsets of X is a basis for some topology on X if and
only if
(a) ⋃ℬ = X, and
(b) if B1,B2 ∈ ℬ and x ∈ B1 ∩ B2, then there exists B3 ∈ ℬ with x ∈ B3 ⊆ B1 ∩ B2.

Proof. If ℬ is a basis for some topology on X, the discussion before the statement of
the theorem shows that (a) and (b) are satisfied.

Suppose ℬ satisfies (a) and (b) above. If ℬ is to be a basis for a topology, then that
topology must consist of all unions of elements of ℬ. Let 𝒯ℬ be the collection of all
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unions of elements of ℬ. We will show that 𝒯ℬ is a topology. By condition (a) above,
X ∈ 𝒯ℬ, and 0 ∈ 𝒯ℬ since 0 is the union of the empty collection of elements of ℬ.
An arbitrary union of elements of 𝒯ℬ is a union of unions of elements of ℬ, which is
just a larger union of elements of ℬ, so 𝒯ℬ is closed under the formation of arbitrary
unions. For finite intersections, suppose U1,U2 ∈ 𝒯ℬ. If U1 ∩U2 = 0, then U1 ∩U2 ∈ 𝒯ℬ.
Otherwise, suppose x ∈ U1 ∩ U2. Since U1 is a union of sets in ℬ, there exists B1 ∈ ℬ
with {x} ⊆ B1 ⊆ U1. Similarly, there exists B2 ∈ ℬ with {x} ⊆ B2 ⊆ U2. By condition (b),
there exists Bx ∈ ℬ with {x} ⊆ Bx ⊆ B1 ∩ B2 ⊆ U1 ∩ U2. Now taking the union over all
x ∈ U1 ∩ U2 shows that

U1 ∩ U2 = ⋃
x∈U1∩U2

{x} ⊆ ⋃
x∈U1∩U2

Bx ⊆ ⋃
x∈U1∩U2

U1 ∩ U2 = U1 ∩ U2,

so U1 ∩ U2 = ⋃x∈U1∩U2
Bx is a union of elements of ℬ and thus is in 𝒯ℬ. Having shown

the result for intersections of two open sets, the result follows for finite intersections
inductively.

Example 1.4.5. Let X = {1, 2, 3, 4}, and consider the collections 𝒜 = {{1, 2}, {2}, {2, 3}},
ℬ = {{1, 2}, {2}, {2, 3}, {4}}, and 𝒞 = {{1, 2, 3}, {2}, {2, 3, 4}}, as depicted in Figure 1.9.

Figure 1.9:Which collections are bases?

𝒜 is not a basis for a topology on X since ⋃𝒜 ̸= X. 𝒜 defines no neighborhood of the
point 4.

The union of ℬ is X. To check the second defining condition of a basis for ℬ, we
must verify an implication for every x ∈ B1∩B2, whereB1 andB2 are arbitrarymembers
of ℬ. Furthermore, the implication is always true if B1 = B2 (for then we may take
B3 = B1 = B2), so we only need to verify the implication for distinct sets B1,B2 ∈ ℬ
with nonempty intersection. There is only one such pair in ℬ, and their intersection
contains only one point, namely 2 ∈ {1, 2} ∩ {2, 3}. Now B3 = {2} ∈ ℬ contains 2 and is
contained in {1, 2} ∩ {2, 3}, so ℬ is a basis for a topology on X. The topology generated
by ℬ is 𝒯ℬ = ℬ ∪ {0, {1, 2, 3}, {1, 2, 4}, {2, 4}, {2, 3, 4},X}.

𝒞 is not a basis for a topology on X. Indeed, {1, 2, 3}, {2, 3, 4} ∈ 𝒞 and 3 ∈ {1, 2, 3} ∩
{2, 3, 4}, but there is no C3 ∈ 𝒞 with 3 ∈ C3 ⊆ {1, 2, 3} ∩ {2, 3, 4}.

Many topologies are defined in terms of a basis, as the next two examples illus-
trate.

Example 1.4.6 (The digital line). Consider a line of pixels. As discussed after Exam-
ple 1.3.4, each pixel should be open since it is illuminated by an open set contained
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in the pixel. Considering only the pixels, this gives the discrete topology, which does
not adequately model closeness of pixels. To remedy this, we will also consider the
boundaries between pixels. Suppose the pixels correspond to the odd integers, with
the even integers representing the boundaries between adjacent pixels, as suggested
in Figure 1.10. Each boundary between pixels is close to its two neighboring pixels.
This suggests the topology 𝒯DL on ℤ whose basis is shown in Figure 1.10. With this
topology,ℤ is called the digital line. The basis for 𝒯DL isℬ = {{n} : n is an odd integer}∪
{{n − 1, n, n + 1} : n is an even integer}.

Figure 1.10: The digital line topology.

Example 1.4.7 (Partition topologies). Let 𝒫 be a partition of a set X. Then ⋃𝒫 = X,
and because the blocks of 𝒫 are mutually disjoint, x ∈ P1 ∩ P2 for P1,P2 ∈ 𝒫 implies
P1 = P2, so with P3 = P1, we have P3 ∈ 𝒫 and x ∈ P3 ⊆ P1 ∩ P2. Thus, 𝒫 is basis
for a topology on X. The topology 𝒯𝒫 generated by a partition is called a partition
topology.

Recall that a partition ℛ is a refinement of partition 𝒫 if ℛ is obtained by parti-
tioning the blocks of 𝒫, as illustrated in Figure 1.11. If ℛ is a refinement of 𝒫, then
ℛ has smaller blocks than 𝒫, and thus 𝒯ℛ has smaller neighborhoods than 𝒯𝒫 . This
suggests the terminology of one topology being finer than another.

Figure 1.11: Partitionℛ is a refinement of partition 𝒫. Basisℛ generates a finer topology than ba-
sis 𝒫.

Definition 1.4.8. If ℱ and 𝒞 are topologies on the same set X, then we say ℱ is finer
than 𝒞 (or 𝒞 is coarser thanℱ) if and only if 𝒞 ⊆ ℱ . Thus,ℱ is finer than 𝒞 ifℱ contains
all the 𝒞-open sets and possibly more.

Example 1.4.9 (Lower limit topology). The lower limit topology (also called the Sorgen-
frey topology) on ℝ is the topology 𝒯l generated by the basis ℬ = {[a, b) ⊆ ℝ : a < b}.
ℝ with the lower limit topology is denoted ℝl. It is easy to check that ℬ is a basis for
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a topology. Taking unions of basis elements will produce sets such as [0, 1) ∪ [2, 3),
⋃n>7[5, n) = [5,∞), and even ⋃{[5 + 1

n , 8) : n ∈ ℕ} = (5, 8). Similarly, every interval
(a, b) with a < b is open in the lower limit topology. Thus, every union of intervals of
form (a, b) is open in the lower limit topology. That is, any set open in the Euclidean
topology 𝒯ℰ is open in the lower limit topology. This proves that 𝒯ℰ ⊆ 𝒯l, so the lower
limit topology is finer than the Euclidean topology onℝ. The lower limit topologymod-
els situations in which you need “close, but no less than”. For example, if you need a
log to cross from one side of a gorge to the opposite side 4 meters away, logs of length
l ∈ [4, b) will be of interest.

By defining a topology on a set X, we specify which sets are open, and these open
sets are then used to define neighborhoods and sequential convergence. We cannot
answer the question “Does the sequence ( 1n )

∞
n=1 converge in ℝ?” until we know which

topology onℝwe are using. In the Euclidean topology familiar from calculus, this se-
quence converges to 0. In the indiscrete topology, this sequence converges to every real
number r. In the discrete topology, this sequence does not converge. In the lower limit
topology, the sequence converges to 0, but (−1n )∞n=1 does not converge: If a < 0, then
(−1n )∞n=1 is eventually out of the neighborhood [a, a/2) of a, and if a ≥ 0, the sequence is
never in the neighborhood [a, a + 1) of a. The lower limit topology captures the usual
convergencewe expect from the Euclidean topology for decreasing sequences, but not
for arbitrary sequences.

Terminology: If 𝒮 ⊆ 𝒯 is a collection of open sets, by an 𝒮-neighborhood of x we
mean a neighborhood of x which is an element of 𝒮. In particular, if ℬ is a basis for 𝒯 ,
a ℬ-neighborhood of x will be a basic open set from ℬ containing x.

Since a basis determines the topology,we should be able to tell whenone topology
is finer than another by comparing the bases. The finer topology should have smaller
basic neighborhoods at each point. This result is formally stated now.

Theorem 1.4.10. Suppose ℬℱ and ℬ𝒞 are bases for topologies ℱ and 𝒞 on X. Then
ℱ is finer than 𝒞 (and 𝒞 is coarser than ℱ) if and only if for every x ∈ X, every
ℬ𝒞-neighborhood of x contains a ℬℱ -neighborhood of x.

Proof. Suppose ℱ is finer than 𝒞, x ∈ X, and B𝒞 ∈ ℬ𝒞 with x ∈ B𝒞 . Since B𝒞 ∈ ℬ𝒞 ⊆
𝒞 ⊆ ℱ , B𝒞 is an ℱ -neighborhood of x, so by Theorem 1.4.3(c), B𝒞 must contain a
ℬℱ -basic neighborhood of x, as needed.

Conversely, suppose that, for every x ∈ X and every B𝒞 ∈ ℬ𝒞 with x ∈ B𝒞 , there
exists Bℱ ∈ ℬℱ with x ∈ Bℱ ⊆ B𝒞 . To show 𝒞 ⊆ ℱ , suppose U ∈ 𝒞. Now for each x ∈ U,
there exists B𝒞 ∈ ℬ𝒞 with x ∈ B𝒞 ⊆ U . By our hypothesis, there exists Bx ∈ ℬℱ with
x ∈ Bx ⊆ B𝒞 ⊆ U . Taking the union over all x ∈ U, we find that U = ⋃{Bx : x ∈ U}, and
as a union of basic open sets in ℬℱ ⊆ ℱ , U ∈ ℱ , as needed.

We have seen that the lower limit topology onℝ is finer than the Euclidean topol-
ogy. The theorem above allows us to confirm this as follows: Since every basic Eu-
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clidean neighborhood (x − ε, x + ε) of an arbitrary x ∈ ℝ contains a basic lower limit
neighborhood [x, x + ε), the lower limit topology is finer than the Euclidean topology.

For another example, consider ℝ2 in the metric topology 𝒯ℰ from the Euclidean
metric and in the metric topology 𝒯sup from the sup-metric. The balls form a basis for
any metric topology. In the Euclidean metric the balls Bℰ (x, ε) are circular regions,
but the sup-metric produces square balls Bsup(x, ε). It is easy to see that Bℰ (x, ε) ⊆
Bsup(x, ε), so by the previous theorem, the Euclidean metric topology is finer than the
sup-metric topology. However, every round ε-ball Bℰ (x, ε) contains a square ε

2 -ball
Bsup(x,

ε
2 ) as shown in Figure 1.12, so the sup-metric topology is finer than the Eu-

clideanmetric topology. Thus, 𝒯sup ⊆ 𝒯ℰ ⊆ 𝒯sup, so the topologies are the same. A sub-
set of the plane is a union of open disks if and only if it is a union of open squares. This
shows that different metrics may generate the same topology.

Figure 1.12: Bsup(x, ε2 ) ⊆ Bℰ (x, ε) ⊆ Bsup(x, ε), so 𝒯sup ⊆ 𝒯ℰ ⊆ 𝒯sup.
The prototype of a basis for a topological space are the open intervals (a, b) (that is, the
balls) inℝ, giving the Euclidean topology. The open intervals (a, b)may be generated
from open rays (a,∞) and (−∞, b) by taking intersections. The collection 𝒮 = {(a,∞) :
a ∈ ℝ} ∪ {(−∞, b) : b ∈ ℝ} is not a basis, since, for example, S1 = (−1,∞) and S2 =
(−∞, 1) are in 𝒮 and 0 ∈ S1 ∩ S2, but there is no S3 ∈ 𝒮 with S3 ⊆ S1 ∩ S2. The collection
𝒮 of open rays in the Euclidean topology on ℝ is the prototype of a subbasis for a
topology.

Definition 1.4.11. A collection 𝒮 of subsets of X is a subbasis for a topology 𝒯 on X
if the collection ℬ𝒮 = {S1 ∩ ⋅ ⋅ ⋅ ∩ Sn : n ∈ ℕ, S1, . . . , Sn ∈ 𝒮} of finite intersections of
elements of 𝒮 is a basis for 𝒯 .

If 𝒮 is a subbasis for 𝒯 , then the open sets in 𝒯 are generated as arbitrary unions
of finite intersections of elements of 𝒮. The result below tells us when a collection is a
subbasis for some topology.

Theorem 1.4.12. A collection 𝒮 of subsets of a set X is a subbasis for a topology on X if
and only if ⋃𝒮 = X.

The proof is left as an exercise.
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1.4.1 Neighborhood bases

The Euclidean topology on ℝ2 has a basis of balls. Then, a basic neighborhood of
a ∈ ℝ2 is any ball containing a, whether the ball is centered at a or not. But, every
ball B(x, ε) containing a contains a ball B(a, δ) centered at a. Thus, if we are checking
some condition which should hold for every neighborhood of a, then it would suffice
to check the condition for every ball centered at a. The collection {B(a, ε) : ε > 0} of
balls centered at a in the Euclidean topology is the prototype for a neighborhood base
at a point a.

Definition 1.4.13. If (X, 𝒯 ) is a topological space, a neighborhood base at a ∈ X is a
collection 𝒩 (a) of neighborhoods of a such that every neighborhood of a contains a
neighborhood of a from 𝒩 (a). That is, a neighborhood base at a ∈ X is a collection
𝒩 (a) ⊆ 𝒯 such that, for any neighborhood U of a, there exists N ∈ 𝒩 (a) with a ∈
N ⊆ U .

Every point of a topological space (X, 𝒯 ) has a neighborhood base: taking 𝒩 (a)
to be the collection of all basic neighborhoods of a from any basis ℬ for 𝒯 gives a
neighborhood base. In particular, all neighborhoods of a form a neighborhood base
at a, as do all open neighborhoods of a. As with bases, the usefulness of this concept
will be in choosing neighborhood bases which simplify matters.

To show that a sequence (xn) converges to x in Euclidean space, from the defini-
tion, we should check that (xn) is eventually in every open set containing x. However,
it suffices to check that (xn) is eventually in every open ball B(y, ε) containing x (that
is, every neighborhood from the standard basis), and furthermore, it suffices to check
that (xn) is eventually in every open ball B(x, ε) centered at x. That is, we need only
check the neighborhoods from a neighborhood base at x to determine whether (xn)
converges to x.

The result below shows that we may check when one topology is finer than an-
other by comparing the neighborhood bases at every point.

Theorem 1.4.14. Suppose ℱ and 𝒞 are topologies on X, ℬℱ is a basis for ℱ , ℬ𝒞 is a
basis for 𝒞, and for each x ∈ X,𝒩ℱ (x) is a neighborhood base for x in ℱ and𝒩𝒞(x) is a
neighborhood base for x in 𝒞. Then the following are equivalent.
(a) ℱ is finer than 𝒞.
(b) For every x ∈ X, every 𝒞-neighborhood of x contains a ℱ -neighborhood of x.
(c) For every x ∈ X, every ℬ𝒞-neighborhood of x contains a ℬℱ -neighborhood of x.
(d) For every x ∈ X, every 𝒩𝒞(x)-neighborhood of x contains a 𝒩ℱ (x)-neighborhood

of x.
(e) For every x ∈ X, every 𝒞-neighborhood of x contains a ℬℱ (x)-neighborhood of x.

Proof. The equivalence of (a) and (c) is Theorem 1.4.10. The equivalences (c) ⇐⇒ (b)
and (b) ⇐⇒ (e) follow since every neighborhood of x contains a basic neighborhood
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of x, and (c) ⇐⇒ (d) follows since every neighborhood of x contains a neighborhood
of x from a neighborhood base at x.

Definition 1.4.15. A topological spaceX is first countable if every x ∈ X has a countable
neighborhood base.

Every metric space M is first countable since every point x ∈ M has a countable
neighborhood base {B(x, 1n ) : n ∈ ℕ}.

Example 1.4.16. ℝwith the cofinite topology is not first countable. Suppose to the con-
trary that it is first countable, and 𝒩 (0) = {Bi : i ∈ ℕ} is a countable neighborhood
base at 0. For every y ̸= 0, ℝ − {y} is a neighborhood of 0, so there exists By ∈ 𝒩 (0)
with {0} ⊆ By ⊆ ℝ − {y}. Taking the intersection over all y ̸= 0, it follows that

{0} ⊆ ⋂𝒩 (0) = ⋂{Bi : i ∈ ℕ} ⊆ ⋂
y ̸=0By ⊆ {0}.

Thus, ℝ − {0} = ℝ − ⋂{Bi : i ∈ ℕ} = ⋃{ℝ − Bi : i ∈ ℕ}, which is a countable union of
finite sets, and thus is countable. But ifℝ− {0} is countable, thenℝ is countable, and
this contradiction shows that there is not a countable neighborhood base at 0, so the
cofinite topology is not first countable.

Exercises
1. Which collections below are a basis for a topology on ℝ? Justify your answers.

(a) ℬ1 = {[a, b] : a < b}
(b) ℬ2 = {(a, b) ∪ (c, d) : a < b < c < d}
(c) ℬ3 = {(a, a + 2) : a ∈ ℝ}
(d) ℬ4 = {A ⊆ ℝ : 0 ∈ A or 1 ∈ A}
(e) ℬ5 = {A ⊆ ℝ : 0 ̸∈ A or 1 ̸∈ A}
(f) ℬ6 = {A ⊆ ℝ : 0 ̸∈ A and 1 ∈ A}

2. Of the collections depicted in Exercise 1 of Section 1.3, which are bases for a topol-
ogy on {1, 2, 3, 4}?

3. Suppose (X, 𝒯 ) is a topological space and ℬ is a basis for 𝒯 . Prove that (xn)∞n=1
converges to a in X if and only if the sequence is eventually in every basic neigh-
borhood B of a.

4. Which collections below are bases for the right ray topology 𝒯 = {(a,∞) :
a ∈ ℝ} ∪ {0, ℝ} on ℝ? Justify your answer.
(a) {(a,∞) : a ∈ ℝ}
(b) {(a,∞) : a ∈ ℚ}
(c) {(a,∞) : a ∈ ℕ}
(d) {(a,∞) : a ∈ ℝ} ∪ {(0, 1)}

5. Let ℬ = {[x, x + ε) : x ∈ ℚ, ε > 0} ∪ {(x − ε, x] : x ∈ ℝ − ℚ, ε > 0}.
(a) Show that ℬ is a basis for a topology on ℝ.
(b) Is 𝒯ℬ finer, coarser, or incomparable to the Euclidean topology 𝒯ℰ?
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(c) Discuss the convergence of these sequences in (ℝ, 𝒯ℬ): (π/n)∞n=1, (−π/n)∞n=1,
(π + 1/n)∞n=1, (π − 1/n)∞n=1.

6. (Multiples topology onℕ) For n ∈ ℕ, letMn = {kn : k ∈ ℕ} be the set of positive
multiples of n.
(a) Show that ℬ = {Mn : n ∈ ℕ} is a basis for a topology on ℕ. This topology is

called themultiples topology onℕ.
(b) In the multiples topology, give six distinct neighborhoods of 10.
(c) In the multiples topology, does every k ∈ ℕ have a smallest neighborhood?

Explain.
(d) Prove or disprove: The multiples topology onℕ is Hausdorff.

7. In the multiples topology onℕ (see Exercise 6), find the following or explain why
they do not exist.
(a) All limits of the sequence (6, 12, 18, 24, 30, 36, 42, 48, . . .) = (6n)∞n=1.
(b) All limits of the sequence (2, 3, 2, 3, 2, 3, 2, 3, 2, 3, . . .).
(c) All limits of the sequence (2, 4, 2, 4, 2, 4, 2, 4, 2, 4, . . .).
(d) All limits of the sequence of digits to the right of the decimal in the decimal

expansion of 13579
99999 .

(e) A sequence with no limit.
8. Find a characterization of all constant sequences inℕwith themultiples topology

(see Exercise 6) which converge to exactly three limits. Prove that your character-
ization is true.

9. Suppose 𝒞 is a collection of subsets of X which is closed under finite intersections
and has⋃ 𝒞 = X.
(a) Give a proof or counterexample: 𝒞 must be a topology.
(b) Give a proof or counterexample: 𝒞 must be a basis for a topology.

10. Give a proof or counterexample: If ℬ is a basis for a topology, then ℬ is closed
under finite intersections.

11. Suppose ℬ is a basis for topology 𝒯 on X, and 𝒞 is any larger collection of open
sets. (That is, suppose ℬ ⊆ 𝒞 ⊆ 𝒯 .) Show that 𝒞 is also a basis for 𝒯 .

12. Suppose ℬ is a basis for a topology on X, and 𝒞 is any larger collection of subsets
of X, that is, ℬ ⊆ 𝒞 ⊆ 𝒫(X). Must 𝒞 be a basis for some topology on X? Give a proof
or counterexample. (Compare to Exercise 11.)

13. Among all the topologies on a set X, is there always a finest topology? Is there
always a coarsest one?

14. On X = [−1, 1], consider the discrete topology 𝒯D and the single transmitter topol-
ogy 𝒯 . Carefully justify which (if either) of these topologies is finer than the other.

15. On X = ℝ2, consider the metric topology 𝒯taxi generated by the taxicab metric of
Exercise 5 of Section 1.1 and the Euclidean topology 𝒯ℰ . Carefully justify which (if
either) of these topologies is finer than the other.

16. Discuss sequential convergence in the digital line. Find the limits of all constant
sequences. Describe all convergent sequences which are not eventually constant.
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17. If d : X × X → ℝ is a metric on X and k is a positive real number, then kd : X ×
X → ℝ is also a metric on X. If 𝒯d and 𝒯kd are the metric topologies generated by
these metrics, carefully justify which (if either) of these topologies is finer than
the other.

18. Consider X = {1, 2, 3, 4} with the topology generated by the basis {{1, 2, 3}, {3}, {4}}.
(a) To which point or points of X, if any, does the sequence (2, 3, 2, 3, 2, 3, 2, 3, . . .)

converge?
(b) To which point or points of X, if any, does the sequence (1, 1, 1, 1, 1, . . .) con-

verge?
(c) Find a sequence in X which does not converge.
(d) Find a convergent sequence in X which has a unique limit.

19. Can an increasing sequence (xn)∞n=1 of real numbers converge in the lower limit
topology? What about a strictly increasing sequence?

20. Find a sequence (yn)∞n=1which is not decreasing and not eventually decreasing but
converges to 0 in the lower limit topology.

21. Let X = [0, 1], ℬ1 = {(a, b) : 0 ≤ a < b ≤ 1}, ℬ2 = {{0} ∪ (a, 1) : 0 ≤ a < 1}, and
ℬ3 = {(0, b) ∪ {1} : 0 < b ≤ 1}.
(a) Show that ℬ = ℬ1 ∪ ℬ2 ∪ ℬ3 is a basis for a topology on X.
(b) Is 𝒯ℬ finer, coarser, neither, or equal to the Euclidean topology 𝒯ℰ onX, which

has a basis {B(x, ε) ∩ X : x ∈ X, ε > 0}.
(c) Find the limit of the sequence ( 1n )

∞
n=1 in (X, 𝒯ℬ) and in (X, 𝒯ℰ ).

(d) Find a nonconstant sequence in (X, 𝒯ℬ) which converges to 0.
(e) Give a geometric discussion of how (X, 𝒯ℬ) and (X, 𝒯ℰ ) are related.

22. Prove: If (xn)∞n=1 converges to a in a topological space (X, 𝒯 ) and 𝒯C is a topology
on X coarser than 𝒯 , then (xn)∞n=1 converges to a in (X, 𝒯C).

Exercises 23–27 refer to these topologies. The bow-tie topology 𝒯BT onℝ2 has a basis
consisting of sets of form

BT((a, b), ε) = {(x, y) : |y − b| < |x − a| < ε} ∪ {(a, b)},

and the deleted radius topology 𝒯DR onℝ2 has a basis consisting of sets of form

DR((a, b), ε) = (Bℰ((a, b), ε) − {(x, y) : x = a}) ∪ {(a, b)},

where Bℰ (x, ε) is the Euclidean metric ball, as suggested in Figure 1.13.

Figure 1.13: Basic open sets in the Euclidean, bow-tie, and deleted radius topologies.
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23. Which of the topologies 𝒯ℰ , 𝒯BT , and 𝒯DR are finer than which? If one of these
topologies is finer than another, prove it. If one is not finer than another, prove
it.

24. Verify that the basis indicated for the bow-tie topology is indeed abasis for a topol-
ogy.

25. Verify that the basis indicated for the deleted radius topology is indeed a basis for
a topology.

26. Consider the bow-tie, deleted radius, and Euclidean topologies on ℝ2. Give ex-
amples of the sequences in ℝ2 described or show that no such sequence can ex-
ist.
(a) A sequence (xn)∞n=1 which converges in the Euclidean topology but not in the

bow-tie topology.
(b) A sequence (xn)∞n=1 which converges in the deleted radius topology but not in

the bow-tie topology.
(c) A sequence (xn)∞n=1 which converges in the bow-tie topology but not in the

deleted radius topology.
(d) A sequence (xn)∞n=1 which converges to two distinct limits in the bow-tie topol-

ogy.
(e) A sequence (xn)∞n=1 which is not eventually constant and converges to the

same limit in all three topologies.
(f) A sequence (xn)∞n=1 which converges in one of the three topologies and con-

verges to a different limit in another of the three topologies.
(g) A sequence (xn)∞n=1 which diverges in all three topologies.

27. Let A = DR((0,0), 5) ∪ ({0} × [−1, 1)] ⊆ ℝ2, where DR((0,0), 5) is a basic open set
in the deleted radius topology. Determine whether A is open in (a) the Euclidean
topology, (b) the deleted radius topology, and (c) the bow-tie topology. For each
of these topologies in which A is open, write A as a union of basis elements from
that topology.

28. Show that if two Hausdorff topologies on X are comparable (that is, one is finer
than the other) and (xn)∞n=1 is a sequence in X, then (xn)∞n=1 cannot converge to
different limits in the different topologies. Why are the assumptions of Hausdorff
and comparability necessary?

29. Prove Theorem 1.4.12 by showing that if 𝒮 is a collection of subsets of X with
⋃𝒮 = X, then ℬ𝒮 = {S1 ∩ ⋅ ⋅ ⋅ ∩ Sn : n ∈ ℕ, S1, . . . , Sn ∈ 𝒮} is a basis for a topol-
ogy.

30. Determine which of the following collections of subsets of ℝ is a subbasis for a
topology on ℝ. For those that are subbases, give the associated basis and topol-
ogy.
(a) 𝒮1 = {(−∞, −3), (0,∞)}
(b) 𝒮2 = {(−∞, 3), (0,∞)}
(c) 𝒮3 = {(−∞, 3), (0,∞), (1, 5)}
(d) 𝒮4 = {(−∞, −3), (0,∞), (−4, 4)}
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1.5 Closure and interior

In our earlier discussion of metric spaces, we defined the boundary points of a set A
to be those points x such that every ball B(x, ε) centered at x laps into A and laps out
of A. Then we defined a set to be open if it contains none of its boundary points, and
closed if it contains all of its boundarypoints.We immediately noted that, in themetric
space setting, a set is open if and only if its complement is closed. In this section, we
will extend these concepts to topological spaces.

A topology on X is a collection of subsets of X which we call the open sets. We
could, in a natural extension, define boundary points in terms of neighborhoods (tak-
ing the place of balls in our Euclidean metric approach), then define closed sets in
terms of boundary points. However, because closed sets play amore fundamental role
than boundary points, here we will define closed sets directly, without reference to
boundary points.

Definition 1.5.1. Suppose X is a topological space. A subset F of X is closed if and only
if its complement X − F is open.

An extremely important fact to recognize immediately is that closed does not
mean “not open”. A set may be open, closed, neither, or both. In the Euclidean topol-
ogy onℝ, the set [0, 1) is not open and not closed, showing that “not open” is different
from “closed” and “not closed” is different from “open”. The sets 0 and ℝ are both
open and closed.

Open sets are frequently denoted by the letters U or V , from the German word
Umgebung and the French word voisinage for “neighborhood”. Closed sets are fre-
quently denoted by the letter F, from the French word fermé for “closed”.

By taking complements, statements about open sets can be transformed into
statements about closed sets. For example, we know that if U1, . . . ,Un are open in X,
then the finite intersection U1 ∩ ⋅ ⋅ ⋅ ∩ Un is open. That is, if X − U1, . . . ,X − Un are
closed in X, then X − (U1 ∩ ⋅ ⋅ ⋅ ∩ Un) is closed, and applying De Morgan’s law we have
(X − U1) ∪ ⋅ ⋅ ⋅ ∪ (X − Un) is closed. That is, if F1, . . . , Fn are closed, then F1 ∪ ⋅ ⋅ ⋅ ∪ Fn is
closed, proving that finite unions of closed sets are closed.

In short, taking complements toggles open sets to closed sets, unions to inter-
sections, and intersections to unions. In a similar manner, the statement that arbi-
trary unions of open sets are open toggles to the fact that arbitrary intersections of
closed sets are closed. Thus, the collections 𝒯 of open sets and ℱ of closed sets are
each closed under finite unions and finite intersections, but generally only one (𝒯 )
is closed under arbitrary unions and only one (ℱ) is closed under arbitrary intersec-
tions. To help remember which is which, keep in mind the counterexamples from the
Euclidean topology onℝ of the infinite intersection of open sets⋂∞n=1(−1n , 1+ 1n ) = [0, 1]
which is not open, and the infinite union of closed sets⋃∞n=2[ 1n , 1 − 1

n ] = (0, 1)which is
not closed.
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In the Euclidean space ℝ, the set A = [0, 1) ∪ (3, 5) ∪ {7} is not closed, but we may
obtain a closed set by adding some points. We could add all the points of [1, 3] ∪ [5, 6]
to get the closed set [1, 6]∪{7}, butwe could have obtained a closed set by adding fewer
points. The minimal way we could obtain a closed set by adding points would be to
add {1, 3, 5} to A to get [0, 1] ∪ [3, 5] ∪ {7}, which is the smallest closed set containing A.
There is no smallest open set containing A, since there is no smallest neighborhood
of 7. However, there is a largest open set contained in A, namely (0, 1) ∪ (3, 5). This
discussion prompts our next definition.

Definition 1.5.2. Suppose A is a subset of a topological space X. The closure of A, de-
noted clA, is the intersection of all closed sets containingA. The interior of A, denoted
intA, is the union of all open sets contained in A.

Note that because arbitrary intersections of closed sets are closed, the closure of
A is a closed set which contains A. Furthermore, clA is the smallest closed set which
containsA, for if F is any closed set containingA, then clA is the intersection of F with
the other closed sets containing A, so clA ⊆ F. Similarly, the interior of A is open, and
is the largest open set contained in A.

We always have intA ⊆ A ⊆ clA, and these inclusions could be equality. Note
that A is closed if and only if A = clA. (If A = clA, then A is closed since clA is a
closed set. Conversely, if A is closed, then A is the smallest closed set containing A, so
A = clA.) Similarly, A is open if and only if A = intA. Thus, intA = clA if and only if
A = intA = clA is both open and closed.

Furthermore, if A ⊆ B, then clA ⊆ clB and intA ⊆ intB.

Example 1.5.3. Let X = {a, b, c, d} with the topology 𝒯 = {0, {a, b}, {b}, {b, c, d},X}, as
shown on the left in Figure 1.14. Since the interior of set A is the largest open set con-
tained in A, we see that int{b, c, d} = {b, c, d}, int{b, c} = {b}, and int{c, d} = 0. The clo-
sure of a set A is the smallest closed set containing A, and to recognize these for this
simple example, we may draw all the closed sets, as seen on the right of Figure 1.14.
Now we can recognize that cl{b, c, d} = X, cl{c, d} = {c, d}, and cl{c} = {c, d}.

Figure 1.14: The 𝒯 -open sets and the 𝒯 -closed sets.

The following theoremprovides one of themost powerful characterizations of clo-
sure and interior.

Theorem 1.5.4. Suppose X is a topological space and A ⊆ X.
(a) x ∈ clA if and only if every neighborhood of x intersects A.
(b) x ∈ intA if and only if there exists a neighborhood of x contained in A.
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Proof. For (a), we will show the equivalent statement that x ̸∈ clA if and only if there
exists a neighborhood of x which does not intersect A. If x ̸∈ clA, then X − clA is a
neighborhood of x which does not intersect A. Conversely, if there exists a neighbor-
hoodN of xwhich does not intersectA, letN 󸀠 be an open neighborhood of x contained
in N . Now X − N 󸀠 is a closed set containing A but not containing x. Thus, the smallest
closed set containing A does not contain x, so x ̸∈ clA.

For (b), if x ∈ intA, then intA is a neighborhood of x contained in A. Conversely, if
there exists a neighborhoodU of x contained in A, there exists an open neighborhood
U 󸀠 of x with U 󸀠 ⊆ U ⊆ A. Since intA is the union of all open sets contained in A, x ∈ U 󸀠
implies x ∈ intA.

Since every open set is a union of basic open sets, it should be no surprise that the
results hold if we only consider basic neighborhoods.

Corollary 1.5.5. Suppose X is a topological space with a specified basis and A ⊆ X.
(a) x ∈ clA if and only if every basic neighborhood of x intersects A.
(b) x ∈ intA if and only if there exists a basic neighborhood of x contained in A.

Proof. For (a), if every neighborhood of x intersects A then, in particular, every basic
neighborhood of x intersects A. Conversely, since every arbitrary neighborhood of x
contains a basic neighborhood of x, if all the basic neighborhoods of x intersects A,
then so must every arbitrary neighborhood. The proof of (b) is similar.

Corollary 1.5.6. If X is a topological space and A ⊆ X, then X − clA = int(X − A).

Proof. Applying both parts of Theorem 1.5.4, we see that the following are equivalent:
(a) x ∈ X − clA. (b) there exists a neighborhood U of x which does not intersect A. (c)
there exists a neighborhood U of x with U ⊆ X − A. (d) x ∈ int(X − A).

Example 1.5.7. In ℝ with the Euclidean topology, int 0 = 0 = cl 0, intℝ = ℝ = clℝ,
int((1, 2] ∪ [3, 4)) = (1, 2) ∪ (3, 4), and cl((1, 2] ∪ [3, 4)) = [1, 2] ∪ [3, 4]. For the set ℚ of
rational numbers,

intℚ = the union of all open subsets ofℚ
= the union of all basic open subsets ofℚ
= the union of all intervals (x − ε, x + ε) contained inℚ
= 0.

Furthermore, x ∈ clℚ if and only if every basic neighborhood (x − ε, x + ε) of x inter-
sectsℚ. Since every interval (x − ε, x + ε) contains rational points, every real number x
is in the closure ofℚ. That is, clℚ = ℝ. This is sometimes stated by sayingℚ is dense
in ℝ.

Definition 1.5.8. In a topological space X, a set D ⊆ X is dense in X if clD = X.
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Thus, D is dense in X if and only if every nonempty (basic) open set in X inter-
sects D. Since every open interval in ℝ intersects the irrationals, the irrationals are
dense in ℝ with the Euclidean topology.

Example 1.5.9. Consider the right ray topology 𝒯 = {0, ℝ} ∪ {(a,∞) : a ∈ ℝ} onℝ. The
closed sets areℝ, 0, and rays of form (−∞, a]. The set A = (0, 1) contains no nonempty
open set (a,∞), so the largest open set it contains is int(0, 1) = 0. The smallest closed
set (−∞, a] containing A is clA = (−∞, 1]. The set B = {1, 2, 3} ∪ [π,∞) does contain
nonempty open sets of form (a,∞); the largest one it contains is intB = (π,∞). Since
B is not contained in any closed set of form (−∞, a], the smallest closed set containing
B is clB = ℝ. The setℚ contains no nonempty open sets (a,∞) and is contained in no
proper closed set (−∞, a], so intℚ = 0 and clℚ = ℝ. Thus, the sets B andℚ are dense
in ℝ with the right ray topology.

Example 1.5.10. Consider the cofinite topologyonℝ. Recall thatU is open if andonly if
ℝ−U is finite or U = 0. Here, the open sets are defined in terms of their complements,
the closed sets. Thus, in the cofinite topology, F is closed if and only if F is finite or
F = ℝ. If A is infinite, the only closed set containing A is ℝ, so clA = ℝ. Thus, any
infinite subset of ℝ is dense in ℝ with the cofinite topology.

For interiors, int(0, 7] = 0 since the interval (0, 7] contains no set whose comple-
ment is finite. Since intA is an open set contained in A, if intA is nonempty, then A
contains a cofinite set and thus A is cofinite. That is, in ℝ with the cofinite topology,
the only sets with nonempty interiors are the nonempty open sets.

The points of metric spaces, and in particular Euclidean spaces ℝn, have count-
able neighborhood bases {B(x, 1n ) : n ∈ ℕ}. This allows us to characterize the closure
of a set in terms of sequences.

Theorem 1.5.11. If (X, d) is a metric space and A ⊆ X, then x ∈ clA if and only if there
exists a sequence in A converging to x.

Proof. Suppose (X, d) is a metric space, A ⊆ X, and x ∈ clA. Then, for any n ∈ ℕ, the
basic neighborhood B(x, 1n ) intersects A, so we may choose xn ∈ A ∩ B(x,

1
n ). Now the

sequence (xn)∞n=1 is a sequence in A and converges to x, for every neighborhood U of x
contains a basic neighborhood B(x, 1k ), and xn ∈ U for all n ≥ k. Conversely, suppose
there is a sequence in A converging to x. Then every neighborhood of x contains some
tail of that sequence, and thus contains points of A. Thus, x ∈ clA.

Closure may be thought of as a function cl : 𝒫(X) → 𝒫(X) which maps a subset
A ⊆ X to its closure clA ⊆ X. Union and intersection are operations on 𝒫(X). If S is a
set and ∗ an operation on S, recall the algebraic terminology that a functionφ : S → S
preserves the operation ∗ if φ(a ∗ b) = φ(a) ∗φ(b) for all a, b ∈ S. The closure function
doesnot preserve the operationof intersection. That is, in general, cl(A∩B) ̸= clA∩clB.
For example, in the Euclidean lineℝ, withA = (0, 1) andB = (1, 2), note that cl(A∩B) =
cl 0 = 0, which does not equal clA ∩ clB = [0, 1] ∩ [1, 2] = {1}. While the closure
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functiondoes not preserve the operation of intersection, it does preserve the operation
of union. The interior function int : 𝒫(X) → 𝒫(X) which maps a subset A ⊆ X to
intA ⊆ X preserves intersections. The interactions between closure and interior with
unions and intersections are given below. The proofs are left to the exercises.

Theorem 1.5.12. Suppose X is a topological space, and A,B ⊆ X.
(a) cl(A ∩ B) ⊆ clA ∩ clB.
(b) cl(A ∪ B) = clA ∪ clB.
(c) int(A ∩ B) = intA ∩ intB.
(d) int(A ∪ B) ⊇ intA ∪ intB.

1.5.1 Boundary points

In a metric space, we defined x to be a boundary point of A if and only if every ball
centered at x intersects both A and X − A. This suggests the definition of boundary
points in an arbitrary topological space.

Definition 1.5.13. If A is a subset of a topological space X, then x ∈ X is a boundary
point of A if and only if every neighborhood of x intersects both A and X − A. The set
of all the boundary points of A is called the boundary of A, denoted 𝜕A.

Again we note that an equivalent definition would be that x ∈ X is a boundary
point of A if and only if every basic neighborhood of x with respect to a given basis
(and in particular, every open neighborhood) intersects both A and X − A. Clearly if
every neighborhood intersects A and X − A, then every basic neighborhood does. If
every basic neighborhood intersectsA andX−A, then every neighborhood does, since
every neighborhood of x contains a basic neighborhood of x.

From Definition 1.5.13, Theorem 1.5.4, and Theorem 1.5.11, we have the following
corollary.

Corollary 1.5.14. If A is a subset of a topological space X, then 𝜕A = clA ∩ cl(X − A).
Furthermore, if X is ametric space, then x ∈ 𝜕A if and only if there exist sequences (an)∞n=1
in A and (bn)∞n=1 in X − A which both converge to x.

The following result confirms our expectations.

Theorem 1.5.15. Suppose A is a subset of a topological space X.
(a) A is open if and only if it contains none of its boundary points.
(b) A is closed if and only it contains all of its boundary points.

Proof. (a) Suppose A is open and b ∈ 𝜕A. Then every neighborhood of b intersects
X −A, so no neighborhood of b is contained in the open set A. Thus, b ̸∈ A. Conversely,
suppose thatA contains none of its boundary points, anda ∈ A. Sincea is not a bound-
ary point of A, there exists a neighborhoodN of awhich does not intersect both A and
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X − A. Because N contains a ∈ A, N intersects A and thus N does not intersect X − A.
That is, N ⊆ A. We have shown that, for every a ∈ A, there exists a neighborhood N of
a with N ⊆ A, which shows that A is open.

(b) Suppose A is closed and b ∈ 𝜕A. Then every neighborhood of b intersects A,
so b ∈ clA = A. Thus, A contains all of its boundary points. Conversely, suppose A
contains all of its boundary points. If x ∈ clA, then either there exists a neighborhood
of x contained in A, in which case x ∈ A, or every neighborhood of x intersects X − A,
in which case x ∈ 𝜕A ⊆ A. Thus, clA ⊆ A, so A = clA is closed.

The following theorem is similar. Its proof is left to the exercises.

Theorem 1.5.16. Suppose A is a subset of a topological space X.
(a) intA = A − 𝜕A.
(b) clA = intA ∪ 𝜕A.
(c) 𝜕A = clA − intA.

Example 1.5.17. For each n ∈ ℤ, suppose a metal rod fills the interval (n, n + 1), and
the rods are connected by insulated couplings at each n ∈ ℤ. For the transfer of heat
or electricity, the usual Euclidean nearness applies between the couplings, but if an
electrical current is applied to a coupling at x = n ∈ ℤ, the current does not transfer
to any other points. This situation is modeled by the topology 𝒯 on ℝ having basis
ℬ = {(a, b) ⊆ ℝ : a < b} ∪ {{n} : n ∈ ℤ}. (Another basis for this topology would be
{(a, b) ⊆ ℝ : ∃n ∈ ℤ with (a, b) ⊆ (n, n + 1)} ∪ {{n} : n ∈ ℤ}.)

In this topology, A = [0, 1] = {0} ∪ (0, 1) ∪ {1} is a union of basis elements, and
therefore is open. The complement of A can also be expressed as a union of open sets,
so A is also closed. Thus, A must contain all of its boundary points and none of its
boundary points, so 𝜕A = 𝜕[0, 1] = 0. For example, 0 ̸∈ 𝜕[0, 1] since the neighborhood
{0} of 0 does not intersect X − A = ℝ − [0, 1]. Formally, since A is open and closed,
A = intA = clA, so Theorem 1.5.16 tells us 𝜕A = clA − intA = 0.

For B = [0,π), we have 𝜕B = 𝜕[0,π) = {π}. Applying Theorem 1.5.16, we see
int[0,π) = [0,π) − 𝜕[0,π) = [0,π) − {π} = [0,π), so [0,π) is open. Also, cl[0,π) =
[0,π) ∪ 𝜕[0,π) = [0,π) ∪ {π} = [0,π].

In general, in this topology, the boundary of an interval I of form (a, b), [a, b),
(a, b], or [a, b] is 𝜕I = {a, b} −ℤ. Thus, the closure cl I = I ∪𝜕I of such an interval keeps
the included endpoints but only adds non-integer endpoints. The interior int I = I −𝜕I
only removes the non-integer endpoints.

Exercises
1. Use De Morgan’s laws to prove that arbitrary intersections of closed sets are

closed.
2. Find a set that is neither open nor closed in the cofinite topology, showing that

“not open” does not imply closed and “not closed” does not imply open.
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3. Suppose A ⊆ B. Carefully justify that clA ⊆ clB and intA ⊆ intB.
4. Show that U is a neighborhood of x if and only if x ∈ intU .
5. In the proof of Theorem 1.5.4, we state “If x ̸∈ clA, then X − clA is a neighborhood

of x which does not intersect A.” Carefully justify this statement.
6. Show that both parts of Corollary 1.5.5 fail if the basis and basic neighborhoods

are replaced by a subbasis and subbasic neighborhoods.
7. Sketch the subsets of the Euclidean plane ℝ2 below and find the interior, clo-

sure, and boundary of each. Bℰ ((x, y), ε) represents a ball in the Euclidean metric
on ℝ2.
(a) A = [0, 1) × (0, 2)
(b) B = Bℰ ((0,0), 1) ∪ ([−2, 2] × {0})
(c) C = (ℚ ∪ (0, 1)) × (ℚ ∪ (0, 1))
(d) D = {(x, y) ∈ ℝ2 : y = sin x}
(e) E = {( 1n ,

1
n ) ∈ ℝ

2 : n ∈ ℕ}
(f) F = ⋃x∈[0,2] Bℰ ((x,0), 1)

8. In the topology onX = {1, 2, 3, 4, 5}whose basis is shown, find the interior, closure,
and boundary of each set below.
(a) {1, 2, 3} (b) {4, 5} (c) {3, 4} (d) {5}

1 2 3 4 5

9. In the topology onX = {1, 2, 3, 4, 5}whose basis is shown, find the interior, closure,
and boundary of each set below.
(a) {1, 2, 3} (b) {4, 5} (c) {3, 4} (d) {5}

1 2 3 4 5

10. In the digital line, find the interior, closure, and boundary of the following
sets.
(a) A = {1, 2, 3}
(b) B = {2, 3, 4}
(c) 𝔻 = {2n + 1 : n ∈ ℤ}
(d) 𝔼 = {2n : n ∈ ℤ}

11. Give ℕ the multiples topology having basis ℬ = {Mn : n ∈ ℕ}, where for n ∈ ℕ,
Mn = {kn : k ∈ ℕ} is the set of positive multiples of n.
(a) Find the interior, closure, and boundary of A = {3, 4, 5}.
(b) Find the interior, closure, and boundary of P = {p ∈ ℕ : p is prime}.

12. In ℝ with the right ray topology 𝒯 = {0, ℝ} ∪ {(a,∞) : a ∈ ℝ}, find the interior,
closure, and boundary of the sets below.
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(a) A = (−∞,0) ∪ [1,∞)
(b) B = (−∞, 2)
(c) C = ℕ

13. Consider ℝ with the right ray topology 𝒯 = {0, ℝ} ∪ {(a,∞) : a ∈ ℝ}.
(a) Give necessary and sufficient conditions for a subset to be dense.
(b) Give necessary and sufficient conditions for a subset to have empty interior.

14. Consider ℝ with the right ray topology 𝒯 = {0, ℝ} ∪ {(a,∞) : a ∈ ℝ}.
(a) Give a proof or counterexample: If clA ̸= ℝ then intA = 0.
(b) Give a proof or counterexample: If intA = 0 then clA ̸= ℝ.

15. Inℝwith the cofinite topology, find the interior, closure, and boundary of the sets
A = {1, 2,π} and B = ℕ.

16. Let X = [−1, 1] have the single transmitter topology 𝒯 = {U ⊆ X :
0 ∈ U ⇒ (−1, 1) ⊆ U}. Find the interior, closure, and boundary of the sets A = {1},
B = [0.2,0.3), and C = {0}.

17. Let X = [−1, 1] have the single transmitter topology 𝒯 = {U ⊆ X : 0 ∈ U ⇒
(−1, 1) ⊆ U}.
(a) Show that a nonzero point x is never in the boundary of any set, so 𝜕A ⊆ {0}

for every A ⊆ X.
(b) Find all sets A ⊆ X which have empty boundary.

18. Show that if A ⊆ B ⊆ clA, then clB = clA.
19. In ℝ with the Euclidean topology, let S = ℚ ∩ (−1, 1).

(a) Show that 𝜕(𝜕S) ̸= 𝜕S. (Note: In any topological space X, closure and interior
are idempotent operators; that is, cl(clA) = clA and int(intA) = intA for
every A ⊆ X. This shows that the boundary operator is not idempotent.)

(b) For the setA = [0, 1) in the Euclidean line (orA = [0, 1)×(0, 2] in the Euclidean
plane), if intA ⊆ B ⊆ clA, then A and B have the same interior, closure, and
boundary. This need not be true in general. With S as above, find a set B in
ℝ with int S ⊆ B ⊆ cl S whose interior, closure, and boundary are all distinct
from the interior, closure, and boundary of S.

20. Prove: If x is any point in a Hausdorff space X, then {x} is closed.
21. Show that if D is dense in X and D ⊆ E ⊆ X, then E is dense in X.
22. A topological space X is resolvable if it has two disjoint dense subsets. Consider

the Euclidean, discrete, indiscrete, cofinite, and right ray topologies onℝ. Which
of these topologies make ℝ a resolvable space?

23. Provide a proof or counterexample: If A ⊆ B, then 𝜕A ⊆ 𝜕B.
24. (a) Find two sets A and B for which 𝜕(A ∩ B) is a proper subset of 𝜕A ∩ 𝜕B.

(b) Find two sets C and D for which 𝜕C ∩ 𝜕D is a proper subset of 𝜕(C ∩ D).
25. Prove Theorem 1.5.12(a): For any sets A and B in a topological space, cl(A ∩ B) ⊆

clA ∩ clB. Give an example where equality fails.
26. Prove Theorem 1.5.12(b): For any sets A and B in a topological space, cl(A ∪ B) =

clA ∪ clB. (Hint: Use the contrapositive for one direction.)
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27. Prove Theorem 1.5.12(c): For any sets A and B in a topological space, int(A ∩ B) =
intA ∩ intB.

28. Prove Theorem 1.5.12(d): For any sets A and B in a topological space, int(A ∪ B) ⊇
intA ∪ intB. Give an example where equality fails.

29. Prove Theorem 1.5.16(a): For a subset A of a topological space X, intA = A − 𝜕A.
30. Prove Theorem 1.5.16(b): For a subset A of a topological space X, clA = intA ∪ 𝜕A.
31. Prove Theorem 1.5.16(c): For a subset A of a topological space X, 𝜕A = clA − intA.

Then show that 𝜕A is always a closed set.
32. SupposeA is a subset of the Euclidean lineℝ and infA exists. Show that infA ∈ 𝜕A

(and hence, infA ∈ clA).
33. Determine which statements below are true. Prove those that are true and give

counterexamples for those that are false.
(a) 𝜕A = 𝜕(clA)
(b) cl(X − A) = cl(X − clA)
(c) 𝜕(clA) ⊆ 𝜕A

34. Suppose X is a topological space, a ∈ X, {a} is not open, and U is a neighborhood
of a. Show that a ∈ 𝜕(U − {a}), and thus a ∈ cl(U − {a}).

35. Consider the topology on ℝ having basis {(a, b) ⊆ ℝ : ∃n ∈ ℤ with (a, b) ⊆
(n, n + 1)} ∪ {{n} : n ∈ ℤ}, discussed in Example 1.5.17. Give a metric d on ℝ which
generates this topology, and prove that d is indeed a metric.

36. Give the appropriate topology which models the situation described.
(a) A packaging facility can set its equipment to pack rice in bags to be sold as “x

pound” bags, for any x ∈ [.25, 15.25]. Bags are close to x-pounds in the usual
sense, except that underweight bags cannot be shipped, and thus are not
considered close to the correct weight.

(b) Nearness to a point in the plane is determined by remote imaging from a cam-
era mounted on a north–south cable positioned at that point. The mounting
prevents a camera angle of due north or due south.

(c) An app checks your password and allows access based on the closeness of
your input to the correct password. Describe the topology used to measure
closeness.

(d) An app asks the user to “press any key to proceed”. Describe the topology
used to measure closeness of the entry to the correct response.

(e) At a security gate of Bill Gates’ compound, a nonempty set of people are
permitted to enter if and only if they are accompanied by Bill Gates.

(f) A game has nine levels, which must be completed sequentially. Describe the
topology on the set of possible fully-completed levels attainable.

(g) A building has eight rooms, each with one light which illuminates the entire
room and only that room. On the set of points in the building, describe the
topology of all possible sets which may be simultaneously illuminated.

37. (The infinitude of primes) In 1955, H. Fürstenberg [18] gave the topological proof
outlined below that there are infinitely many primes. (See [35] for other proper-
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ties of this topology.) For integers a and d with d ̸= 0, the arithmetic progression
containing a with common difference d is

AP(a, d) = {a + nd : n ∈ ℤ} = {m ∈ ℤ : m ≡ amod d}.

(a) Show that ℬ = {AP(a, d) : a, d ∈ ℤ, d ̸= 0} is a basis for a topology 𝒯 on ℤ.
(b) Show that

ℤ \ {1, −1} = ⋃
p a prime

AP(p, p).

(c) Show that if p is prime, AP(p, p) is 𝒯 -closed.
(d) Show that if there are only finitely many primes p, then (b) implies {1, −1} is a

𝒯 -open set. Explain why this is a contradiction.

1.6 Limit points

Consider the set A = { 1n : n ∈ ℕ} ∪ [2, 3) ∪ {4} in the Euclidean line ℝ. The closure of A
is clA = A ∪ {0, 3}. Since 4 ∈ clA, every neighborhood of 4 intersects A, but some just
barely intersect A. For example, B(4,0.1) ∩ A = (3.9, 4.1) ∩ A = {4}. Similarly, for any
given n ∈ ℕ, every neighborhood of 1

n intersectsA (so
1
n ∈ clA), but the neighborhoods

of 1
n which are contained in (

1
n+1 , 1

n−1 ) intersectA only in the one point 1
n . Other points,

suchas x = 0, x = 2.5, or x = 3have theproperty that not onlydoes everyneighborhood
of x intersect A, but every neighborhood of x intersects A in a point other than x itself.
These are the limit points of A.

Definition 1.6.1. Suppose X is a topological space and A ⊆ X. A limit point of A is a
point x ∈ X such that every neighborhood of x intersects A in a point other than x. The
set of limit points of a set A is called the derived set of A, denoted A󸀠.

More formally, we could say x is a limit point of A if and only if for every neigh-
borhood N of x, (N ∩ A) − {x} ̸= 0. Now (N ∩ A) − {x} = (N − {x}) ∩ A. A set of the form
N − {x} where N is a neighborhood of x is called deleted neighborhood (or punctured
neighborhood) of x. With this terminology, we see that x is a limit point ofA if and only
if every deleted neighborhood of x intersects A. Also, since (N ∩A)− {x} = N ∩(A−{x}),
we see that x is a limit point of A if and only if x ∈ cl(A − {x}). Limit points are also
called accumulation points or cluster points.

One of the motivations for limit points is the fundamental result that the closure
of a set is obtained by adding the limit points.

Theorem 1.6.2. If X is a topological space and A ⊆ X, then clA = A ∪ A󸀠.
Proof. Clearly A ⊆ clA, and if x ∈ A󸀠, then every (deleted) neighborhood of x inter-
sects A, so x ∈ clA. Thus A ∪ A󸀠 ⊆ clA. To show clA ⊆ A ∪ A󸀠, we need only show that
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clA − A ⊆ A󸀠. If x ∈ clA − A, then every neighborhood of x intersects A and x is not in
this intersection, so every neighborhood of x intersects A in a point other than x. This
says x ∈ A󸀠, as needed.

The previous theorem says clA = A ∪ A󸀠, and Theorem 1.5.16 says clA = A ∪ 𝜕A.
Unfortunately, there is little correlation between limit points and boundary points. For
A = (0, 1)∪{2} in the Euclidean line, the boundary 𝜕A ofA is the three point set {0, 1, 2},
while the derived set A󸀠 is the infinite set [0, 1]. In particular, a limit point such as 1

2
need not be a boundary point, and a boundary point such as 2 need not be a limit
point.

Limit points are related to limits of sequences, at least for metric spaces, as we
see next. (More generally, limit points are related to limits, but there are non-metric
spaces in which convergence cannot always be determined by sequences—the count-
able indexing of a sequence may be inadequate in such spaces.)

Theorem 1.6.3. In a metric space (X, d), x is a limit point of A ⊆ X if and only if x is the
limit of a sequence (ai)∞i=1 of distinct points in A.

One may ask whether a limit point of the set of limit points of A is a limit point
of A. That is, is A󸀠󸀠 ⊆ A󸀠? This need not be true, but is true in certain spaces, including
all Hausdorff spaces. These concepts are investigated in Exercises 9 and 10.

Exercises
1. Prove Theorem 1.6.3.
2. In the finite topological space X of Exercise 8 of Section 1.5, find the derived set of

each subset of X given there.
3. In the finite topological space X of Exercise 9 of Section 1.5, find the derived set of

each subset of X given there.
4. Considerℝwith the cofinite topology. SupposeA ⊆ ℝ is finite andB ⊆ ℝ is infinite.

Find A󸀠 and B󸀠.
5. Consider the digital line ℤ.

(a) Describe all sets A which have 2 as a limit point.
(b) Describe all sets A which have 3 as a limit point.
(c) Find the set of all limit points of𝔻 = {2n + 1 : n ∈ ℤ} and 𝔼 = {2n : n ∈ ℤ}.

6. Show that if the singleton set {x} is open in X (that is, x is an isolated point of X),
then x ̸∈ A󸀠 for any A ⊆ X.

7. Suppose X is a topological space and A,B ⊆ X. Prove the following. Compare the
results to the analogous statements about closures.
(a) 0󸀠 = 0.
(b) If A ⊆ B, then A󸀠 ⊆ B󸀠.
(c) (A ∩ B)󸀠 ⊆ A󸀠 ∩ B󸀠, and equality may fail.
(d) (A ∪ B)󸀠 ⊆ A󸀠 ∪ B󸀠.
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8. (a) Show that if X is a Hausdorff space and a ∈ X, then {a}󸀠 = 0.
(b) Find a set A in a topological space X with A󸀠󸀠 ̸= A󸀠, proving that unlike the

closure operator, the derived set operator is not idempotent.
9. Suppose X is a topological space with the property that every singleton set {x} in

X is closed. (Hausdorff spaces, including metric spaces, have this property. See
Exercise 20 of Section 1.5.)
(a) Show that x is a limit point of A ⊆ X if and only if every neighborhood of x

intersects A in infinitely many points.
(b) If A ⊆ X, show that A󸀠󸀠 ⊆ A󸀠.
(c) Show that A󸀠 is closed for every A ⊆ X.

10. Let X = {1, 2, 3} with the indiscrete topology.
(a) Find the derived set A󸀠 for each of the eight subsets of X.
(b) Find a set A ⊆ X with A󸀠󸀠 ̸⊆ A󸀠.
(c) For which subsets A is A󸀠 closed?





2 New topologies from existing topologies

2.1 Subspaces

If we know how to add real numbers then, sinceℚ ⊆ ℝ, we know how to add rational
numbers. The operation of addition on ℚ is “inherited” from the larger set ℝ. Simi-
larly, if we know a topology on a set X and Y ⊆ X, then Y should inherit a topological
structure from X. The inherited topology is the subspace topology on Y .

Definition 2.1.1. Suppose (X, 𝒯 ) is a topological space and Y ⊆ X. The subspace topol-
ogy on Y is

𝒯Y = {U ∩ Y : U ∈ 𝒯 }.

Thus, the open sets in the subspace Y ⊆ X are open sets in X restricted to (that
is, intersected with) Y . The subspace topology on Y ⊆ X is also called the topology
inherited from X. By saying Y is a subspace of X, we imply that Y carries the subspace
topology inherited from X.

It is easy to show that 0,Y ∈ 𝒯Y ,⋂
n
i=1(Ui∩Y) = (⋂

n
i=1 Ui)∩Y , and for arbitrary index

sets I,⋃i∈I (Ui ∩ Y) = (⋃i∈I Ui) ∩ Y , showing that 𝒯Y is indeed a topology.
As always, in determiningwhether a set is open or not, the answer depends on the

topological space (X, 𝒯 ) involved. This is easy to overlook in dealing with subspaces.
The interval [0, 1) is not open in ℝ with the Euclidean topology, but [0, 1) is open in
the subspace Y = [0,∞) of ℝ with the Euclidean topology, since [0, 1) = (−1, 1) ∩ Y is
realized as the restriction of an open set (−1, 1) in ℝ to Y . If [0, 1) is open in Y , then it
contains none of its boundary points. The point 0 is not a boundary point of [0, 1) in
the subspace Y since, for example, [0, 14 ) = (−

1
4 ,

1
4 ) ∩ Y is a neighborhood of 0 which

does not intersect Y − [0, 1).
The following theorem tells us that closed sets in the subspace Y are also recog-

nizable from the topology on X in a natural way.

Theorem 2.1.2. Suppose Y is a subspace of X. Then C is closed in the subspace topology
on Y if and only if C has the form F ∩ Y for some set F closed in X.

Proof. Figure 2.1 suggests the proof, which formally follows from the equivalence of
the following statements.

C is closed in the subspace Y .
C = Y − (U ∩ Y) where U is open in X.
C = Y − U = Y ∩ (X − U) where U is open in X.
C = Y ∩ F where F = X − U is closed in X.

If Y is a subspace of X, then the open sets in Y are determined by the open sets
in X, which are determined by the basic open sets from any basis ℬ. Thus, the open
sets in the subspace Y are determined by the basic open sets in X. The theorem below
makes this relation precise.

https://doi.org/10.1515/9783110686579-003
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Figure 2.1: C = Y − (U ∩ Y ) if and only if C = (X − U) ∩ Y .

Theorem 2.1.3. If ℬ is a basis for a topology 𝒯 on set X and Y ⊆ X, then

ℬY = {B ∩ Y : B ∈ ℬ}

is a basis for the subspace topology 𝒯Y on Y.

Proof. Recall that ℬY is a basis for 𝒯Y if and only if ℬY is a collection of 𝒯Y -open sets
such that every set open in 𝒯Y is a union of sets in ℬY . Clearly ℬY is a collection of
𝒯Y -open sets. If UY is open in 𝒯Y , then UY = U ∩ Y for some U ∈ 𝒯 . Since ℬ is a basis
for 𝒯 , we may write U as a union ⋃i∈I Bi of basis elements Bi ∈ ℬ. Now UY = U ∩ Y =
(⋃i∈I Bi) ∩ Y = ⋃i∈I (Bi ∩ Y), which is a union of elements from ℬY .

Example 2.1.4. Consider the planeℝ2with the deleted radius topology, having a basis
of sets of formDR((a, b), ε) = (Bℰ ((a, b), ε)−{(x, y) : x = a})∪{(a, b)}, where Bℰ ((a, b), ε)
is the Euclidean ε-ball centered at (x, y). We may view any line in ℝ2 as a copy of ℝ
embedded in the plane, and as a subset of the plane, the line inherits the subspace
topology. If the line is not vertical, the basic neighborhoods in thedeleted radius topol-
ogy intersect the line in an open interval (a, b) or the union (a, b) ∪ (b, c) of two open
intervals sharing an endpoint, as suggested on the left in Figure 2.2. These form a ba-
sis for the Euclidean topology on the line, so the subspace topology for a non-vertical
line is the Euclidean topology. If the line is vertical, the basic deleted radius neighbor-
hoods intersect the line in singletons and open intervals, as suggested on the right in
Figure 2.2, and these sets form a basis for the subspace topology. Since every singleton
is a basic open set, the subspace topology for a vertical line is the discrete topology.

The results below follow immediately from the definitions.

Theorem 2.1.5. Suppose X is a topological space and A ⊆ Y ⊆ X.
(a) If A is open in the subspace Y and Y is open in X, then A is open in X.
(b) If A is closed in the subspace Y and Y is closed in X, then A is closed in X.

Proof. Suppose A is open in the subspace topology on Y and Y is open in X. From the
definition of the subspace topology, A = U ∩Y for some U open in X. NowU and Y are
both open in X, so U ∩ Y = A is open in X. A similar argument shows (b).
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Figure 2.2: Basic open sets for non-vertical and vertical lines as a subspace of the plane with the
deleted radius topology.

While an open set in a subspace Y of X is obtained by intersecting an open set of
X with Y , the same cannot be said for the interior of a set. Consider X = ℝ with the
Euclidean topology and Y = [0,∞). The set A = [0, 1) = (−1, 1) ∩ Y is open in Y and
thus intY A = A. However, intX(A) ∩ Y = intℝ([0, 1)) ∩ [0,∞) = (0, 1) ∩ [0,∞) = (0, 1) ̸=
A = intY A. Furthermore, 𝜕Y [0, 1) = {1} ̸= 𝜕X([0, 1)) ∩ Y = {0, 1}. The following theorem
shows the containments which do hold.

Theorem 2.1.6. Suppose Y is a subspace of X and A ⊆ Y.
(a) intX(A) ∩ Y ⊆ intY A.
(b) clX(A) ∩ Y = clY A.
(c) 𝜕X(A) ∩ Y ⊇ 𝜕YA.

Proof. (a) Since intX A ⊆ A ⊆ Y , intX(A) = intX(A) ∩ Y is an open set in Y contained
in A, and thus intX(A) ∩ Y ⊆ intY A since intY A is the largest open set in Y contained
in A.

(b) clX(A) ∩ Y is a closed set in Y containing A, so clY A ⊆ clX(A) ∩ Y since clY A
is the smallest such closed set. Conversely, if y ̸∈ clY A, then there exists an open
neighborhood UY of y in Y which does not intersect A ⊆ Y . Now UY = U ∩ Y for some
open setU inX, andU∩A = U∩(A∩Y) = (U∩Y)∩A = UY∩A = 0, soU is a neighborhood
of y inX which does not intersectA, so y ̸∈ clX A, and thus y ̸∈ clX(A)∩Y . Thus y ∈ clY A
if and only if y ∈ clX(A) ∩ Y .

(c) follows from the equations

𝜕YA = clY A − intY A
= (clX(A) ∩ Y) − intY A (by (b))
= clX A ∩ (Y − intY A)
⊆ clX A ∩ (Y − intX A) (by (a))
= (clX A − intX A) ∩ Y
= 𝜕X(A) ∩ Y .
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Subspaces allow us to easily define the concept of an isolated point of a set A in a
topological space X.

Definition 2.1.7. If X is a topological space and A ⊆ X, then x ∈ A is an isolated point
ofA if {x} is open in the subspace topology onA. In particular, ifA = X, x is an isolated
point of X if {x} is open.

Thus, a point x of (X, 𝒯 ) is an isolated point ofA if there exists a neighborhoodN ∈
𝒯 of x such thatN∩A = {x}. For example, consider the subsetA = {2}∪[3, 4)∪{5}∪(7,∞)
of the real line. Ifℝ is given the Euclidean topology, then 2 and 5 are the only isolated
points of A. If ℝ is given the discrete topology, then every point of A is isolated. If
X = ℝ with the Euclidean topology, then X has no isolated points, but if X = ℝ with
the discrete topology, every point of X is isolated.

Exercises
1. Suppose 𝒯 is a topology on X and Y ⊆ X. Show that 0,Y ∈ 𝒯Y , ⋂

n
i=1(Ui ∩ Y) =

(⋂ni=1 Ui)∩Y , and for arbitrary index sets I,⋃i∈I (Ui ∩Y) = (⋃i∈I Ui)∩Y , confirming
that the subspace topology 𝒯Y really is a topology.

2. Suppose (X, 𝒯 ) is a topological space and Z ⊆ Y ⊆ X. Now Z may be given the
subspace topology 𝒯Z it inherits from X or the subspace topology 𝒯YZ it inherits
from the subspace (Y , 𝒯Y ) of X. Show that these topologies on Z are equal.

3. Let X be the real line with the Euclidean topology, and Y = [0, 5) ∪ {10} ∪ [12, 15).
For each set below, determine whether it is open, closed, neither, or both in the
subspace Y .
A = [0, 5)
B = {10, 12}
C = (1, 2)
D = {10} ∪ [12, 13)
E = {10} ∪ [12, 13]
F = {10} ∪ [13, 14)
G = [0, 5) ∪ {10} ∪ [12, 15)

4. Describe the subspace topologyℕ inherits (a) fromℝwith the Euclidean topology,
(b) from ℝ with the cofinite topology, (c) from ℝ with the discrete topology, and
(d) from ℝ with the indiscrete topology.

5. Give ℤ the digital line topology. Describe the subspace topology on the set 𝔻 of
odd integers and on the set 𝔼 of even integers.

6. For any natural number n > 2, let Pn = {
p+1
2 ∈ ℕ : p is prime and p ≥ n} with the

subspace topology from the digital line.
(a) Is P13 Hausdorff? Justify your answer.
(b) What is the twin primes conjecture? Rephrase it in terms of Pn being Haus-

dorff.
7. Prove that every subspace of a Hausdorff topological space is Hausdorff.
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8. Find a topology on X = {1, 2, 3, 4, 5} which is not Hausdorff, but has the property
that every subspace of X which does not contain 5 is Hausdorff.

9. Find a finite topological space X with the property that X is not Hausdorff, but
every proper subspace of X is Hausdorff.

10. Consider the plane ℝ2 with the bow-tie topology, defined above Figure 1.13.
(a) What topology does a horizontal line inherit? Which other lines inherit the

same topology?
(b) What topology does a vertical line inherit?Which other lines inherit the same

topology?
11. Shown is a basis for a topology on X = {a, b, c, d}.

(a) Which points of X are isolated?
(b) Which one-point subsets of X are closed?
(c) List all subspaces Y of X in which a is an isolated point.
(d) List all nonempty subspaces Y of X which are Hausdorff.

12. Suppose A is a subset of topological space X and a is an isolated point of A. Show
that any sequence in A which converges to a is eventually constant.

13. A set A is regular closed if A = cl(intA).
(a) Among the closed subsets A = ℕ2, B = [0, 1]2 ∪ ({0} × [−2, 2]), and C = {(x, y) ∈
ℝ2 : x2 + y2 ≤ 4} of ℝ2 with the Euclidean topology, which are regular closed
sets?

(b) If X = ℝ2 with the Euclidean topology, show that if a subset A ⊆ X has an
isolated point, then A is not regular closed.

(c) Give an example to show that the converse of (b) does not hold.
(d) Give an example to show that the result of (b) does not always hold if X is a

subspace of ℝ2 with the Euclidean topology.
14. If 𝒮 is a subbasis for a topology 𝒯 on set X and Y ⊆ X, is 𝒮Y = {S ∩ Y :

S ∈ 𝒮} a subbasis for the subspace topology 𝒯Y on Y? Justify your answer. (Com-
pare Theorem 2.1.3.)

2.2 Finite products of spaces

Given topologies on sets X and Y , we should be able to define a topology on the Carte-
sian product X × Y . From our experience with the Euclidean space ℝ2 = ℝ × ℝ, we
would expect a point (x, y) to be close to a point (a, b) if and only if it is close in both
coordinates. That is, a (basic) neighborhood of (a, b) should consist of points (x, y)
where x is in a (basic) neighborhood of a and y is in a (basic) neighborhood of b. This
prompts our definition of the product topology.
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Definition 2.2.1. For each i = 1, . . . , n, suppose (Xi, 𝒯i) is a topological space and ℬi is
any basis for 𝒯i. The product topology on X1 × ⋅ ⋅ ⋅ × Xn is the topology generated by the
basis

ℬ = {B1 × ⋅ ⋅ ⋅ × Bn : Bi ∈ ℬi for every i = 1, . . . , n}.

It is routine to check that ℬ is a basis for a topology on the product X1 × ⋅ ⋅ ⋅ × Xn.
Since the product topology was defined in terms of arbitrary bases ℬi for the topolo-
gies 𝒯i, to see that the product topology is well-defined, we should also confirm that
every collection of bases ℬi will generate the same topology. That is, we will not get
a different “product topology” by choosing a different set of bases for the coordinate
factors. For each i = 1, . . . n, suppose ℬi and 𝒞i are bases for the topology 𝒯i on Xi. Let
ℬ = {B1×⋅ ⋅ ⋅×Bn : Bi ∈ ℬi for every i = 1, . . . , n} and 𝒞 = {C1×⋅ ⋅ ⋅×Cn : Ci ∈ 𝒞i for every i =
1, . . . , n} be bases for 𝒯ℬ and 𝒯𝒞 , respectively. If B1 × ⋅ ⋅ ⋅ × Bn is a ℬ-neighborhood of
(x1, . . . , xn), then each Bi is a 𝒯i-neighborhood of xi, and since 𝒞i is a basis for 𝒯i, there
exists Ci ∈ 𝒞i with x ∈ Ci and Ci ⊆ Bi. Now C1 × ⋅ ⋅ ⋅ × Cn is a 𝒯𝒞 neighborhood of
(x1, . . . , xn) contained in the 𝒯ℬ neighborhood B1 × ⋅ ⋅ ⋅ × Bn of (x1, . . . , xn), so 𝒯𝒞 is finer
than 𝒯ℬ. Interchanging ℬ and 𝒞 shows that 𝒯ℬ is also finer than 𝒯𝒞 , so 𝒯𝒞 = 𝒯ℬ. Thus,
the product topology is unique, regardless of the bases ℬi or 𝒞i used on the coordi-
nates.

Since the choice of basis for the topology 𝒯i on the factor Xi is irrelevant, we may
choose ℬi = 𝒯i for each i = 1, . . . , n. This shows that the product topology on (X1, 𝒯1) ×
⋅ ⋅ ⋅ × (Xn, 𝒯n) has basis

{U1 × ⋅ ⋅ ⋅ × Un : Ui ∈ 𝒯i for every i = 1, . . . , n}.

In short, a basis for the product topology has the form

(open set) × (open set) × ⋅ ⋅ ⋅ × (open set),

or indeed,

(basic open set) × (basic open set) × ⋅ ⋅ ⋅ × (basic open set).

The product topology of two copies of the Euclidean line (ℝ, 𝒯ℰ ) would have a
basis of sets of form (x − ε, x + ε) × (y − ε, y + ε). Such sets are just the square balls
generatedby the supmetric onℝ2. However,wehave seen that the supmetric topology
is precisely the Euclidean topology on ℝ2.

The example of the product (ℝ, 𝒯ℰ ) × (ℝ, 𝒯ℰ ) also points out that the basis for the
product topology given in Definition 2.2.1 is, in general, not a topology. The standard
basis on each factor generates open squares in ℝ2. An open circular disk (that is, a
Euclidean metric ball) is a union of such open squares, but is not itself the product of
two (basic) open sets.
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Cartesian coordinates allows us to visualize basic open sets in ℝ3 by drawing the
three mutually perpendicular copies of ℝ as the coordinate axes. Since we have only
three spatial dimensions, we cannot represent ℝ4 with mutually perpendicular axes.
To allow the representation of higher dimensional products of ℝ, we may draw our
axes parallel. Figure 2.3 shows a basic open set in the Cartesian coordinate system
and the same set in a parallel coordinate system, and it shows the representation of a
basic open set in the product topology on ℝ4.

Figure 2.3: (a) (−1,0) × (1,4) × (1, 3) in perpendicular coordinates. (b) (−1,0) × (1,4) × (1, 3) in parallel
coordinates. (c) (−1,0) × (1,4) × (1, 3) × (−2, 2) in parallel coordinates.

Example 2.2.2 (The digital plane). Computer graphics try to represent sets in the Eu-
clidean plane, which may contain infinitely many points, by a finite set of square pix-
els. Since there are tinyEuclideanopen setswhich illuminate a singlepixel, everypixel
should be open. When applied just to the set of pixels, we get the discrete topology,
in which every set is open. To better model which pixels are near, we will introduce
“boundaries” between pixels. Every pixel will have a horizontal boundary line above
and below and a vertical boundary line on its left and right, each shared by two adja-
cent pixels. Furthermore, every pixel has four corner boundary points, each shared by
four pixels. To model this, we may place the pixels on the points (2n + 1, 2k + 1) ∈ ℤ2.
Then the vertical boundary lines fall at points (2n, 2k + 1) ∈ ℤ2, the horizontal bound-
ary lines fall at points (2n + 1, 2k), and the corner boundary points fall at (2n, 2k) ∈ ℤ2.
Each object has a smallest neighborhood, as represented in Figure 2.4. Every pixel
is open. The smallest neighborhood of a boundary line consists of that line and the
two adjacent pixels. The smallest neighborhood of a corner point contains the corner
point, four adjacent pixels, and four adjacent boundary lines.ℤ2 with this topology is
called the digital plane.

Notice that the basis of smallest neighborhoods of the points of the digital plane
ℤ2 are all rectangular, of form B1 × B2 where B1 and B2 are of form {2n − 1, 2n, 2n + 1} or
{2k + 1}. Thus, the digital plane topology onℤ2 has a basis of form {B1 ×B2 : B1,B2 ∈ ℬ}
whereℬ is the basis for the digital line topology onℤ. This shows that the digital plane
is the product of two copies of the digital line, given the product topology.
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Figure 2.4: The digital plane and some basic open sets.

Example 2.2.3. Let S be the two-element set {0, 1} with the indiscrete topology, and
let T be the same set {0, 1} with the discrete topology. Give ℝ the Euclidean topology.

Since {0, 1} is the only nonempty open set in S, the basic open sets in the product
topology for ℝ × S are of form (a, b) × {0, 1}, as shown in Figure 2.5(a). The open sets
are unions of such basic open sets, so the space ℝ × S consists of two mirror image
copies of ℝ. This product is not Hausdorff: For any x ∈ ℝ, (x,0) ̸= (x, 1) but every
neighborhood of (x,0) contains (x, 1).

Since T = {0, 1} with the discrete topology has a basis {{0}, {1}} consisting of the
singletons in T, basic open sets in the product topology forℝ×T are of form (a, b)×{0}
or (c, d) × {1}, as shown in Figure 2.5(b).

Figure 2.5: (a) A basic open set in ℝ × S. (b) Two basic open sets in ℝ × T .

The underlying sets forℝ×S andℝ×T are equal, and consist of two copiesℝ×{0} and
ℝ × {1} of the real line. In ℝ × S, in effect we have one copy of the Euclidean line and
a carbon copy, mirror image of it. The two copies are inseparably linked. An open set
in ℝ × S has the form U × {0, 1} where U is open in ℝ, and thus consists of two copies
U × {0} and U × {1} of the set U ⊆ ℝ. Inℝ× T we have two copies of the Euclidean line
which are not linked in any way. An open set inℝ×T consists of a Euclidean open set
in the first copy ofℝ and an independent Euclidean open set in the second copy ofℝ.

If X and Y are disjoint sets with topologies 𝒯X and 𝒯Y , respectively, then a natural
topology on the union X∪Y is the union topology generated by the basis 𝒯X ∪𝒯Y . Thus,
open sets in the union have the form UX ∪UY where UX is open in X and UY is open in
Y (including the possibility that UX ,UY , or both are empty).
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The previous example of the product of the Euclidean line ℝ with the discrete
space T = {0, 1} gave two independent copies of ℝ, with open sets consisting of an
open set from each copy. Thus, this was the union topology on two “disjoint” copies
of ℝ, that is, on the disjoint union of ℝ with ℝ. To distinguish the two copies of ℝ,
the product construction essentially indexed them, obtaining disjoint copies ℝ × {0}
andℝ×{1}. The same process works for combining any two topological spaces (X1, 𝒯1)
and (X2, 𝒯2). We relabel each x ∈ X1 as (x, 1) and relabel each x ∈ X2 as (x, 2). Now
if X1 and X2 are not disjoint, each x ∈ X1 ∩ X2 appears as (x, 1) when viewed as an
element of X1 and as (x, 2) when viewed as an element of X2. This technical indexing
trick allowsus to treat the setsX1 andX2 as beingdisjoint, and is the basis of our formal
definition.

Definition 2.2.4. Suppose (X1, 𝒯1) and (X2, 𝒯2) are topological spaces. Their disjoint
union, denoted X1

∘
∪ X2, is the set (X1 × {1}) ∪ (X2 × {2}) with the topology {(U1 × {1}) ∪

(U2 × {2}) : U1 ∈ 𝒯1,U2 ∈ 𝒯2}.

We note that the definition of the disjoint union of topological spaces can be ex-
tended in a natural way to arbitrary unions of topological spaces.

Example 2.2.5. Consider the coordinate axes Ax = {(x,0) ∈ ℝ2 : x ∈ ℝ} and Ay =
{(0, y) ∈ ℝ2 : y ∈ ℝ} in ℝ2. If Ax and Ay each have the subspace topology, B = {(x,0) ∈

Ax : |x| < 1} is open in Ax
∘
∪ Ay. Notice that the definition of B ⊆ Ax implies B only

contains the copy of (0,0) on the x-axis, and not the copy on the y-axis, and (0,0) ∈
Ax has neighborhoods which do not contain any points of Ay in the disjoint union.
However, in the subspace of Ax ∪Ay ofℝ2, B is not open, since (0,0) ∈ Ax is also in Ay,
and B contains no neighborhood of (0,0). See Figure 2.6.

Figure 2.6: (a) B ⊆ Ax is open in Ax
∘
∪ Ay . (b) A neighborhood of (0,0) ∈ Ax in Ax

∘
∪ Ay . (c) A neighbor-

hood of (0,0) in Ax ∪ Ay .

Exercises

1. Verify that the collection ℬ given in Definition 2.2.1 of the product topology really
is a basis for a topology on X1 × ⋅ ⋅ ⋅ × Xn.



74 | 2 New topologies from existing topologies

2. Prove that (xn, yn) → (x, y) in the product space X × Y if and only if xn → x in X
and yn → y in Y .

3. If A is closed in X and B is closed in Y , show that A × B is closed in the product
space X × Y .

4. Carefully describe the open sets in the product of the Euclidean line ℝ with the
two-point set {0, 1} with the nested topology 𝒯 = {0, {0}, {0, 1}}.

5. Recall that a topology 𝒯 is nested if for every U ,V ∈ 𝒯 , either U ⊆ V or V ⊆ U .
Give a proof or counterexample: If 𝒯1 is a nested topology on X1 and 𝒯2 is a nested
topology on X2, then the product topology on X1 × X2 is a nested topology.

6. Let X = {0, 1} with the nested topology {0, {0}, {0, 1}} and Y = {0, 1, 2} with the
nested topology {0, {0}, {0, 1}, {0, 1, 2}}. Sketch the basic open sets in the product
X × Y and find the total number of open sets in the product.

7. Describe the subspace topology inherited by the following linear subsets of the
digital plane, when viewed as a copy of ℤ in the digital plane.
(a) The diagonal D = {(n, n) : n ∈ ℤ}.
(b) L = {(n, 2n − 1) : n ∈ ℤ}.

8. If X and Y are topological spaces, prove that the product X × Y is Hausdorff if and
only if X and Y are both Hausdorff.

9. Suppose X and Y are topological spaces with A ⊆ X and B ⊆ Y . There are two
natural ways to obtain a topology on A × B: either as a subspace of the product
X × Y , or as the product of the subspaces A of X and B of Y . Show that the two
ways yield the same topology.

10. Let ℝl denote the real line with the lower limit topology. Which of the sets below
are open in ℝl × ℝl with the product topology?
A = [0, 1) × (0, 1)
B = (0, 1] × [0, 1)
C = {(x, y) : x ≤ y < x + 1}

11. Consider the octagonal region D in the plane, as shown below. The Euclidean
boundary of this set consists of eight line segments N, S, E, W, NE, NW, SE, and
SW, labeled according to the compass directions.

Which edges (including or excluding which endpoints) may be added to D to get
an open set in (a)ℝl × ℝl, (b)ℝl × ℝ, and (c)ℝ ×ℝl, whereℝl is the real line with
the lower limit topology, ℝ is the real line with the Euclidean topology, and each
product has the product topology?

12. The particular point topology onℝ determined by the particular point p = 1 is the
collection 𝒫1 = {U ⊆ ℝ : 1 ∈ U} ∪ {0}. Thus, a nonempty set is open in (ℝ,𝒫1) if
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and only if it contains the particular point p = 1. Let 𝒯ℰ be the Euclidean topology
onℝ. Which of the sets shown below are open in (ℝ, 𝒯ℰ )×(ℝ,𝒫1)with the product
topology? Justify your answers.

13. Find the boundary of each of the subsets of (ℝ, 𝒯ℰ ) × (ℝ,𝒫1) given in Exercise 12.
14. Considerℝl×ℝl with the product topology, whereℝl is the real line with the lower

limit topology.
(a) Describe the subspace topology inherited by the line y = x.
(b) Describe the subspace topology inherited by the line y = −x.
(c) Describe the subspace topology inherited by an arbitrary line y = mx + b or

x = k.
15. Consider the two topologies onℝ×{0, 1} given in Example 2.2.3. Is either topology

finer than the other?
16. Suppose 𝒯Y is a topology onY and 𝒯F , 𝒯C are topologies onX with 𝒯F finer than 𝒯C.

Prove that the product topology (X, 𝒯F)× (Y , 𝒯Y ) is finer than the product topology
(X, 𝒯C) × (Y , 𝒯Y ).

17. If X and Y are Hausdorff topological spaces, is their disjoint union X
∘
∪ Y Haus-

dorff? Give a proof or counterexample.
18. Let X = (−∞,0], Y = (0,∞), and Z = [0,∞), each with the Euclidean topology.

(a) Is (−1,0] open in X
∘
∪ Y?

(b) Is (0, 1] closed in X
∘
∪ Y?

(c) Is (0, 1] closed in X
∘
∪ Z?

(d) Is (−1,0] ⊆ X open in X
∘
∪ Z?

(e) Is {x ∈ X : x ∈ (−1,0]} ∪ {z ∈ Z : z = 0} open in X
∘
∪ Z?

19. (a) Suppose (A, 𝒯A) and (B, 𝒯B) are disjoint topological spaces, and (xn)n∈ℕ is a
sequence in A ∪ B with the union topology. Show that if (xn)n∈ℕ converges to
a ∈ A, then (xn)n∈ℕ is eventually in A and cannot converge to any b ∈ B.

(b) If (A, 𝒯A) and (B, 𝒯B) are not disjoint, carefully state the property analogous to
(a) for sequences in the disjoint union A

∘
∪ B = (A × {1}) ∪ (B × {2}).

2.3 Quotient spaces

If we view the interval [0, 1] with the Euclidean topology as a piece of a rubber band,
we may bend or stretch the rubber band, and the open sets of [0, 1] bend and stretch
along with the points in a natural way. Furthermore, we may bend the interval into a
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circle and glue the endpoints together, with a natural topology defined on the circle in
terms of the open sets from [0, 1]. The bending and twisting of the line is accomplished
by a homeomorphism, and the gluing is accomplished by a quotient space, as we will
see in this section.

The function h : [0, 1] → [0,π] defined by h(x) = πx is a bijection, and thus gives a
one-to-one correspondence between the points of [0, 1] and of [0,π]. If these intervals
have the Euclidean topology, h also gives a one-to-one correspondence between the
basic open sets (a, b) ∩ [0, 1] of [0, 1] and the basic open sets (πa,πb) ∩ [0,π] of [0,π],
and thus between the open sets of [0, 1] and [0,π]. As a one-to-one correspondence be-
tween the points of the spaces which also gives a one-to-one correspondence between
their open sets, the function h shows that the spaces [0, 1] and [0,π] are topologically
equivalent.

Definition 2.3.1. Topological spacesX andY are homeomorphic or topologically equiv-
alent if there exists a one-to-one onto function h : X → Y which also provides a one-
to-one correspondence between the open sets of X and Y , in the sense that U is open
in X if and only if h(U) is open in Y . Such a function h is a homeomorphism.

The identity function on X shows X is homeomorphic to X. If h : X → Y and
g : Y → Z are homeomorphisms, then g ∘h : X → Z is a homeomorphism. If h : X → Y
is a homeomorphism, then h−1 : Y → X is a bijection and V = h(U) is open in Y if and
only if U = h−1(V) is open in X, so h−1 is a homeomorphism. Thus, “is homeomorphic
to” is an equivalence relation on the set of all topological spaces.

The function g : [0,π] → {(r, θ) ∈ ℝ2 : r = 1, θ ∈ [0,π]} from the interval to the
upper half of the unit circle inℝ2 in polar coordinates defined by g(θ) = (1, θ) is easily
seen to be a homeomorphism, providing a one-to-one correspondence between the
points and open sets of the interval and those of the semicircle. If h : [0, 1] → [0,π]
is the homeomorphism h(x) = πx, then the composition g ∘ h is a homeomorphism
showing that [0, 1] is homeomorphic to the semicircle.

Figure 2.7 shows several subspaces of the Euclidean plane which are homeomor-
phic to the interval [0, 1]. While all of these are topologically equivalent, they do not
have the same length, shape, or curvature. Length, shape, and curvature are geomet-
ric properties, but are not topological properties. A property is a topological property
if whenever a topological space X has the property, every topological space Y homeo-
morphic to X also has the property. The Hausdorff property is a topological property.
We will study other topological properties such as connectedness and compactness
later.

Figure 2.7: Some subsets ofℝ2 homeomorphic to [0, 1].
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Homeomorphisms allow us to bend or twist topological spaces into topologically
equivalent spaces. Now let us turn to gluing points together.

Suppose we wish to glue together the endpoints 0 and 1 of the Euclidean interval
[0, 1]. That is, we wish to glue together distinct points 0 and 1 to make them into one
identical point p. This process is called identifying the points 0 and 1, or forming an
identification space or a quotient space. It is easy to see thatwewouldwant a neighbor-
hood of p to contain p and a neighborhood of each point 0 and 1 which was identified
to form p. This is suggested in Figure 2.8. This is the simplest possible example of a
quotient space, identifying only one pair of distinct points. We turn to a more general
discussion.

Figure 2.8: Identification of the endpoints of [0, 1] to form a circle.

To formaquotient space from (X, 𝒯 ), wemust specifywhichpoints are to be identified.
This is done by giving an equivalence relation on X, with x ≈ y if and only if x and y
are to be identified (along with all other elements of the equivalence class [x]). Now
the collection of identified points will be the set Y = {[x] : x ∈ X} of all equivalence
classes. There is a natural function f : X → Y defined by f (x) = [x]. To define the
topology on Y in terms of the topology on X, we want a set V to be open in Y if and
only if it was made up of an open neighborhood of each point of x that was collapsed
to a point [z] ∈ V . That is, V should be open in Y if and only if f −1(V) is an open
neighborhood of each of its points, which occurs if and only if f −1(V) is open in X. Not
every open set U in X collapses to an open set f (U) in Y ; only those open sets of form
f −1(V) for some V ⊆ Y do. Open sets of form f −1(V) cannot split an equivalence class:
If [z] ∈ V ⊆ Y = {[x] : x ∈ X}, then f −1([z]) ⊆ f −1(V). But f −1([z]) = {x ∈ X : f (x) =
[z]} = {x ∈ X : [x] = [z]} = [z] ⊆ X. Thus, every set W in X of form f −1(V) has the
property that x ∈ W if and only if [x] ⊆ W . Recall that such sets are called saturated
sets with respect to the equivalence relation. Conversely, any saturated setW ⊆ X has
the form W = ⋃x∈W [x] = f

−1(V) where V ⊆ Y has the form V = {[x] : x ∈ W}. Thus,
f −1(V) is open in X if and only if it is a saturated open set in X. We also note that, since
f : X → Y is onto, f (f −1(V)) = V , so f collapses the saturated open setsW ⊆ X to open
sets V in Y .

In summary, to form a quotient space, we start with a topological space (X, 𝒯 ), de-
fine an equivalence relation on X telling which (equivalent) points will become equal
in the quotient space Y , collapse each equivalence class of X to a single point of Y ,
and collapse each saturated open set of X to an open set of Y .

This discussion provides the motivation for the formal definition of a quotient
space.
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Definition 2.3.2. If (X, 𝒯 ) is a topological space, Y is any set, and f : X → Y is an onto
function, then the quotient topology on Y induced by f is 𝒯f = {V ⊆ Y : f −1(V) ∈ 𝒯 }.
The space (Y , 𝒯f ) is a quotient space of X, and f is the associated quotient map.

This definition did not specifically start with an equivalence relation on X. The
equivalence relation is implicitly defined by x ≈ y if and only if f (x) = f (y), so that the
equivalence classes inX are of form f −1({y}) for y ∈ Y . Inmost elementary applications,
a set X and an equivalence relation will be given, f will be defined f (x) = [x], and
Y = {[x] : x ∈ X} will be the set of equivalence classes.

It is easy to verify that 𝒯f is indeed a topology on Y using the facts that
f −1(⋃i∈I Ai) = ⋃i∈I f

−1(Ai) and f −1(⋂i∈I Ai) = ⋂i∈I f
−1(Ai).

By the definition, V is open in the quotient topology on Y induced by f : X → Y if
and only if f −1(V) is open in X. Furthermore, since f is onto and f −1(Y − A) = f −1(Y) −
f −1(A) = X − f −1(A), it follows that A is closed in the quotient space Y if and only if
f −1(A) is closed in X.

Example 2.3.3. Let X = {a, b, c, d, e} have the topology 𝒯 with basis ℬ = {{a, b}, {b},
{c, d, e}, {d}}. To form the quotient space identifying b and c, we consider the equiva-
lence relation defined by x ≈ x for all x ∈ X and b ≈ c. The associated quotient space
is the set Y = {{a}, {b, c}, {d}, {e}} of all equivalence classes, and the associated quo-
tient map f : X → Y mapping each point of X to its equivalence class is f (a) = {a},
f (b) = {b, c} = f (c), f (d) = {d}, and f (e) = {e}, as suggested in Figure 2.9. Since
f (x) = [x], the equivalence classes in X are the subsets of form f −1(y) for y ∈ Y .

Figure 2.9: The quotient space identifying b and c.

Since X is a finite topological space, each point has a smallest neighborhood, so it suf-
fices to describe theminimal neighborhoods inX and inY . In the quotient spaceY , ifV
is the minimal neighborhood of [b] = [c] = {b, c}, then f −1(V) is the minimal saturated
open set in X and containing {b, c}, namely {b, c, d, e}. Now f collapses this saturated
open set to f ({b, c, d, e}) = {{b, c}, {d}, {e}}, and this is the minimal neighborhood of
{b, c} in the quotient.

The minimal neighborhood of {a} in the quotient space Y corresponds to the min-
imal saturated open set in X containing {a}. Every open set containing a contains b,
every saturated set containing b contains c, and every open set containing c contains
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{c, d, e}. Thus, theminimal saturated open set containing a is X, so theminimal neigh-
borhood of {a} in Y is f (X) = Y .

Similarly, the minimal neighborhood of [e] = {e} ∈ Y is the minimal saturated
open set in X containing e. Every open set containing e contains {c, d, e} and every
saturated set containing c contains [c] = {b, c}, so the minimal saturated open set
containing e contains {b, c, d, e}, and indeed {b, c, d, e} is a saturated open set, so the
minimal neighborhood of {e} in Y is f ({b, c, d, e}) = {{b, c}, {d}, {e}}.

It is easy to see that {d} is the minimal open neighborhood of {d} in Y .

Example 2.3.4. Let X = [0, 2π] × [0, 1] with the Euclidean topology, and let ∼ be the
equivalence relation on X defined by (x, y) ∼ (x, y) for all (x, y) ∈ X and (0, y) ∼ (2π, y)
for all y ∈ [0, 1]. The quotient space Y determined by this equivalence relation (that is,
by the quotient map f (x) = [x]) identifies points (0, y) on the left edge of the rectangle
with the correspondingpoint (2π, y)on the right edge.Wemayview thequotient space,
formed by gluing the left and right edges of the rectangle together, as a cylinder inℝ3

with the subspace topology, as suggested by Figure 2.10.

Figure 2.10: A quotient space producing a cylinder.

To be precise, the quotient space Y of the last example is not equal to a cylinder Z
in ℝ3, but is homeomorphic to Z. The points of the quotient space are equivalence
classes like {(2, 12 )} or {(0,

1
3 ), (2π,

1
3 )}, while the points of the cylinder in ℝ

3 have the
form (x, y, z). However, the function h from the quotient space Y to the cylinder Z =
{(cos x, sin x, y) : x ∈ [0, 2π], y ∈ [0, 1]} in ℝ3 defined by h([(x, y)]) = (cos x, sin x, y) is
a homeomorphism. Note that this is a well-defined function: If [(x, y)] = [(z,w)], then
x = z or x = z ± 2π and y = w, so h([(x, y)]) = h([(z,w)]).

Example 2.3.5. Let X = [0, 5] × [0, 1] with the Euclidean topology.
(a) Identify the points (0, y) with (5, 1 − y) for all y ∈ [0, 1]. This can be visualized by

putting a half twist in the bandX and gluing the ends together. The quotient space
is homeomorphic to a Möbius strip (see Figure 2.11).

Figure 2.11: The Möbius strip.
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(b) Identify the points (x,0) with (x, 1) for all x ∈ [0, 5], and identify the points (0, y)
with (5, y) for all y ∈ [0, 1]. Note then, that [(0,0)] = {(0,0), (0, 1), (5,0), (5, 1)}. This
glues the top and bottom edges of the rectangle X to get a cylinder, and bymaking
two u-turn bends in the cylinder, we may then glue the ends of the cylinder to
obtain a torus. The quotient space is homeomorphic to a torus (see Figure 2.12).

Figure 2.12: The torus.

(c) Identify the points (x,0) with (x, 1) for all x ∈ [0, 5], and identify the points (0, y)
with (5, 1 − y) for all y ∈ [0, 1]. Note then that [(0,0)] = {(0,0), (0, 1), (5,0), (5, 1)}.
This glues the top and bottom edges of the rectangle X to get a cylinder, but after
two u-turn bends to bring the ends of the cylinder close together, the orientation
on the ends do not match. We must glue the ends of the cylinder after only one u-
turn in the cylinder. This quotient space is called the Klein bottle. It cannot be re-
alized in 3-dimensional real space, but a suggestivemodel is shown in Figure 2.13.
In the figure, the neck of the bottle appears to pass through the side of the bottle.
A point at this apparent intersection in ℝ3 would have a neighborhood which is
topologically equivalent to two open disks glued along a diameter. However, no
such point exists in the quotient topology where every point has a neighborhood
topologically equivalent to an open disk.

Figure 2.13: The Klein bottle.

In effect, we want to pass the neck of the bottle through the 2-dimensional wall
of the bottle without intersecting that 2-dimensional barrier. Considering similar
scenarios in lower dimensions is instructive. If you live in a 1-dimensional world
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ℝ and wish to get from one side of a 0-dimensional barrier (a point) to the other
side—say youwish to get from 1 to−1 and avoid the barrier 0—it is impossible inℝ,
but by addinga seconddimension, it is easily accomplished, as seen inFigure 2.14.

Figure 2.14: A 0-dimensional point creates a barrier in 1-dimensional line. A 1-dimensional line cre-
ates a barrier in a 2-dimensional plane. Adding a dimension allows us to cross the barrier.

Similarly, inℝ2, wemay not cross from one side of a 1-dimensional barrier (a line)
to the other side without crossing the line, but by adding a third dimension, we
can hop over the line. The suggestive figure for the Klein bottle involves the next
higher dimensional analog. We wish to get from one side of a 2-dimensional bar-
rier to the other in 3-dimensional space. This is impossible inℝ3, but by adding a
dimension, which cannot be visualized, we can easily hop over the barrier in the
new dimension.

In the example of the Klein bottle, the quotient topology allows us to easily de-
scribe a space which cannot be accurately visualized inℝ3. For another such quotient
space, start with a spherewith an open circular disk removed. The boundary of this set
is a circle. Glue onto this circle the circular boundary of a Möbius strip. The resulting
space is called the projective plane.

Exercises

1. Considerℤwith the topology 𝒯 having basis {{2n, 2n+1} : n ∈ ℤ}. Find three home-
omorphisms from (ℤ, 𝒯 ) to (ℤ, 𝒯 ) other than the identity function id. Include at
least one homeomorphism h1 with h1 ∘ h1 = id and at least one homeomorphism
h2 with h2 ∘ h2 ̸= id.

2. On the set X = [0, 1], consider the Euclidean topology 𝒯ℰ and the topology 𝒯ℬ de-
scribed in Exercise 21 of Section 1.4. Find a homeomorphism h : (X, 𝒯ℰ ) → (X, 𝒯ℬ).

3. Let X = {a, b, c, d, e} have the topology described in Example 2.3.3.
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(a) Give a basis for the quotient space formed by identifying b and d to a single
point.

(b) Give a basis for the quotient space formed by identifying a and e to a single
point.

4. Consider the topology on X = {a, b, c, d, e, f } having basis ℬ = {{a, b, c, d, e}, {b},
{b, c}, {d, e}, {e}, {e, f }} as shown below.

Give a similar sketch showing a basis for the quotient spaces determined by the
identifications described.
(a) d and f are identified.
(b) b and c are identified, and e and f are identified.
(c) a and b are identified, and d, e, and f are identified.
(d) b and e are identified.

5. Describe partitions or equivalence relations on the square X = [−1, 1]2 in the Eu-
clidean plane which produce quotient spaces homeomorphic to (a) a cylinder, (b)
a cone, (c) a sphere, (d) two parallel cylinders intersecting along a line segment,
and (e) a cylinder with a slit half way, as shown.

6. Let X = {1, 2, 3, 4, 5, 6, 7, 8}with the subspace topology from the digital line. Sketch
the quotient topology obtained by:
(a) Identifying all the odd points in X to a point.
(b) Identifying all the even points in X to a point.
(c) Identifying all the even points in X to a point and all the odd points in X to a

point.
(d) Identifying 1 with 7, and 2 with 8.

7. Consider the cylinder X = {(x, y, z) ∈ ℝ3 : x2 +y2 = 1,0 ≤ z ≤ 2} in Euclidean space.
Describe the quotient space obtained by:
(a) Identifying the set {(x, y, z) ∈ X : z = 0} to a point.
(b) Identifying the sets {(x, y, z) ∈ X : z = 0} and {(x, y, z) ∈ X : z = 2} to points.
(c) Identifying the sets {(x, y, z) ∈ X : z = 0}, {(x, y, z) ∈ X : z = 1}, and {(x, y, z) ∈

X : z = 2} to points.
(d) Identifying the sets {(1,0, z), (−1,0, z)} to a point for every z ∈ [0, 2].
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8. Consider the circle S1 = {(x, y) ∈ ℝ2 : x2 + y2 = 1} in the Euclidean plane. Describe
the quotient space resulting from the following equivalence relations or partitions
given.
(a) {{(x, y), (x, −y)} : (x, y) ∈ S1}
(b) {{(x, y)} : (x, y) ∈ S1, x ̸= 0} ∪ {{(0, 1), (0, −1)}}
(c) {{(x, y)} : (x, y) ∈ S1, xy ̸= 0} ∪ {{(0, 1), (0, −1)}, {(1,0), (−1,0)}}
(d) For x ≤ 0, (x, y) ≈ (z,w) if and only if x = z, and for x > 0, (x, y) ≈ (z,w) if and

only if (x, y) = (z,w)
(e) (x, y) ≈ (z,w) if and only if {x, z} ⊆ { 12 ,

−1
2 } or (x, y) = (z,w)

9. Consider the topological space X = {a, b, c, d, e, f } having basis ℬ = {{a, b, c},
{b, c}, {b, c, d, e, f }, {e, f }} as shown below. Give a similar sketch showing the quo-
tient space resulting from the equivalence relation on X defined by x ≈ y if and
only if cl{x} = cl{y}.

10. Describe all equivalence relations onXwhose associatedquotientmaps arehome-
omorphisms.

11. Below is a rectangle with identification of edges indicated to produce the Klein
bottle, as in Figure 2.13. Split the rectangle horizontally into two rectangles, as
shown below, and (a) on each rectangle, perform the identification indicated by
the vertical ends, and (b) perform the remaining identification indicated by the
horizontal lines. The result will be the Klein bottle. Explicitly describe the result
of step (a) and the subsequent identification occurring in step (b).

12. Quotients of Hausdorff spaces need not be Hausdorff. Let X = {( 1n , 1) ∈ ℝ
2 :

n ∈ ℕ} ∪ {( 1n , −1) ∈ ℝ
2 : n ∈ ℕ} ∪ {(0, 1), (0, −1)} with the subspace topology from

the Euclidean plane. Let Y be the quotient space resulting from the equivalence
relation (x, y) ≈ (x, y) for every (x, y) ∈ X and ( 1n , 1) ≈ (

1
n , −1) for every n ∈ ℕ.

(a) Sketch X and give a suggestive sketch for Y .
(b) Explain why X is Hausdorff.
(c) Show that Y is not Hausdorff by exhibiting distinct points which cannot be

separated by disjoint open sets.
(d) Show that Y is not Hausdorff by exhibiting a sequence in Y which does not

have a unique limit.





3 Continuity

3.1 Continuity

You may recall a definition of continuity of a function f : ℝ → ℝ from calculus. In
calculus, a pointwise definition is given, first defining continuity at a point, then say-
ing f is continuous if it is continuous at every point of its domain. Loosely speaking,
f : ℝ → ℝ is continuous at a point x = a of its domain if, as input values get closer and
closer to a, the corresponding output values get closer and closer to f (a). Specifically,
f is continuous at a if, for any ε > 0 to specify closeness of f (x) to f (a), there exists
a δ > 0, specifying closeness of x to a such that f (x) is within ε of f (a) whenever x is
within δ of x. In symbols, f is continuous at a if

∀ε > 0 ∃δ > 0 such that |x − a| < δ ⇒ 󵄨󵄨󵄨󵄨f (x) − f (a)
󵄨󵄨󵄨󵄨 < ε.

The statement |x−a| < δ simply says x iswithin δunits ofa, or x ∈ B(a, δ).With a similar
interpretation of the second absolute value inequality, the displayed line above can be
phrased as

∀ε > 0 ∃δ > 0 such that x ∈ B(a, δ) ⇒ f (x) ∈ B(f (a), ε),

or

∀ε > 0 ∃δ > 0 such that f (B(a, δ)) ⊆ B(f (a), ε).

The same phrasingwould define continuity of f at a for a function f : (X, dX) → (Y , dY )
from any metric space X to any metric space Y . To define continuity at a point for
a function between two topological spaces, we note that the balls in the displayed
line above represent neighborhoods of the points a and f (a). The last statement of
continuity above says: for every ε-ball neighborhood V of f (a), there exists a δ-ball
neighborhood U around a with f (U) ⊆ V . In an arbitrary topological space (that is,
ones which may not be metrizable), we simply drop the reference to the balls and use
neighborhoods.

Definition 3.1.1. If (X, 𝒯X) and (Y , 𝒯Y ) are topological spaces and f : X → Y is a func-
tion, then f is continuous at a ∈ X if and only if for every 𝒯Y -neighborhood V of f (a),
there exists a 𝒯X -neighborhood U of a with f (U) ⊆ V .

Figure 3.1(a) suggests the ε–δ definition of pointwise continuity. Figure 3.1(b) sug-
gests the topological definition of pointwise continuity.

Note that it is equivalent to say f is continuous at a ∈ X if and only if for every basic
𝒯Y -neighborhood V of f (a), there exists a 𝒯X -neighborhood U of a with f (U) ⊆ V .

Our goal will be to give a global definition of continuity of a function f : (X, 𝒯X) →
(Y , 𝒯Y ) between topological spaces in terms of the open sets in X and Y , rather than

https://doi.org/10.1515/9783110686579-004
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Figure 3.1: (a) Pointwise continuity from ℝ to ℝ. (b) Pointwise continuity between two topological
spaces. (c) Global continuity.

a pointwise definition. Of course, we would anticipate that f should be continuous if
and only if it is continuous at every point of its domain.

Suppose f : (X, 𝒯X) → (Y , 𝒯Y ) is continuous at every point of its domain and V is
open in Y . For any x ∈ f −1(V), V is a 𝒯Y -neighborhood of f (x). Since f is continuous
at x, there exists an open 𝒯X -neighborhood Ux of x with f (Ux) ⊆ V , so

{x} ⊆ Ux ⊆ f
−1(V).

Taking the union over all x ∈ f −1(V) shows that f −1(V) = ⋃{Ux : x ∈ f −1(V)} and, as
a union of 𝒯X -open sets, f −1(V) is 𝒯X -open. This shows that if f is continuous at every
point of its domain, then the inverse image of every open set in Y is open in X.

Conversely, if the inverse image of every open set in Y is open in X, then, for any
x ∈ X and any open neighborhood V of f (x), U = f −1(V) is an open neighborhood of x
with f (U) ⊆ V , so f is continuous at x.

This gives the global characterizationof continuity in termsof open sets,whichwe
will take as the definition of continuity of a function between two topological spaces.

Definition 3.1.2. If (X, 𝒯X) and (Y , 𝒯Y ) are topological spaces and f : X → Y is a func-
tion, then f is continuous if and only if

V ∈ 𝒯Y ⇒ f −1(V) ∈ 𝒯X .

That is, f is continuous if and only if the inverse image of every open set in Y is open
in X.

Figure 3.1(c) suggests this global definition of continuity. The discussion above
proves that our concepts of continuity defined globally and defined pointwise coin-
cide, and we state this as our next theorem.

Theorem 3.1.3. If (X, 𝒯X) and (Y , 𝒯Y ) are topological spaces and f : X → Y is a function,
then f is continuous if and only if f is continuous at every point of X.

Note that the topological definition of continuity in terms of inverse images of
open sets is a rather more elegant statement than the pointwise definition of continu-
ity of a function between topological spaces, and, in particular, is more elegant than
the ε–δ definition of continuity from calculus.
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Since continuity was defined in terms of open sets, it should not be surprising
that it may be characterized in terms of basic open sets. Also, taking complements,
we should be able to characterize continuity in terms of closed sets. We give these
characterizations in the following theorem.

Theorem 3.1.4. Suppose X and Y are topological spaces, and f : X → Y is a function.
Then the following are equivalent.
(a) f is continuous.
(b) The inverse image of every open set in Y is open in X.
(c) The inverse image of every basic open set in Y (relative to any basis) is open in X.
(d) The inverse image of every closed set in Y is closed in X.

Proof. The equivalence of (a) and (b) is the definition of continuity. (b) clearly implies
(c) since every basic open set is open. If the inverse image of every basic open set is
open and V is an arbitrary open set in Y , then we may write V as a union ⋃i∈I Bi of
basic open sets, and f −1(V) = f −1(⋃i∈I Bi) = ⋃i∈I f

−1(Bi), which is open in X since
each f −1(Bi) is open. Thus, (c) implies (b). The equivalence of (b) and (d) is left as an
exercise.

In part (c) of the theorem above, we must be careful to observe what the theorem
does not say. It does not say that, for continuity, the inverse image of every basic open
set in Y has to be a basic open set in X. Indeed, given the standard basis of open in-
tervals in the Euclidean lineℝ, the function f (x) = sin x is continuous, but the inverse
image of the basic open set (0, 2) is⋃n∈ℤ(2nπ, (2n+ 1)π), which is open, but not a basic
open set.

We list some immediate facts about continuous functions, whose proofs are left
as exercises.

Theorem 3.1.5. Suppose X,Y, and Z are topological spaces.
(a) Any constant function f : X → Y defined by f (x) = c, where c is a fixed element of Y,

is continuous.
(b) The identity function f : X → X is continuous.
(c) If f : X → Y and g : Y → Z are continuous, the composition g ∘ f : X → Z is

continuous.
(d) Any quotient map q : X → Y where Y has the quotient topology is continuous.
(e) If X has the discrete topology and Y has any topology, then every function f : X → Y

is continuous.
(f) If X has any topology and Y has the indiscrete topology, then every function f : X →

Y is continuous.
(g) If f : X → Y is continuous and A ⊆ X has the subspace topology, then the restriction

f |A of f to A (defined by f |A(x) = f (x) for all x ∈ A) is continuous.

Generally, your familiaritywith Euclidean spacewill provide goodmotivation and
intuition for the proper definitions in terms of open sets. However, once the definitions
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are clarified, your intuition from Euclidean space regarding which sets are open—and
therefore which functions are continuous and which sequences converge—cannot be
extended to general topological spaces. The point of defining other topologies is to
characterize other sorts of continuity and convergence. The example below shows one
continuous function and one discontinuous function, but determiningwhich iswhich
will depend on the given topologies.

Example 3.1.6. Let ℝ denote the real line with the Euclidean topology and ℝl denote
the real line with the lower limit topology. Consider the map f : ℝ → ℝl defined by
f (x) = x and the function g : ℝl → ℝ defined by g(x) = 1 if x ≥ 0 and g(x) = −1
if x < 0, shown in Figure 3.2. Note that the domains and codomains of f and g are
interchanged.

Figure 3.2: Two functions. Which is continuous?

As a function between distinct topological spacesℝ andℝl, f is not the identity func-
tion since the domain is a different topological space from the codomain. As a function
on the underlying sets, f : ℝ → ℝ would be the identity function, but without speci-
fying the topologies, we cannot ask whether f is continuous since continuity depends
on the open sets. The function f : ℝ → ℝl is not continuous: [1, 2) is open in the lower
limit topology but f −1([1, 2)) = [1, 2) is not open in the Euclidean topology.

The function g : ℝl → ℝ is continuous. Suppose V is an open set in the
codomain ℝ. If V ∩ {1, −1} = {1, −1}, then g−1(V) = ℝ, which is open in the domain
ℝl. If V ∩ {1, −1} = {−1}, then g−1(V) = (−∞,0), which is open. If V ∩ {1, −1} = {1},
then g−1(V) = [0,∞), which is open. If V ∩ {1, −1} = 0, then g−1(V) = 0, which is
open. Considering all cases, the inverse image of an arbitrary open set is open, so g is
continuous.

Youmay recall from calculus that a function f is continuous at x = a if limx→a f (x)
exists, f (a) exists, and limx→a f (x) = f (a); in other words, if limx→a f (x) = f (limx→a x).
That is, the limit can be brought inside a continuous function. In terms of sequences,
f is continuous if and only if xn → a implies f (xn) → f (a), so f “preserves limits.”
This result remains true for functions f between any two metric spaces. Indeed, the
result that continuous functions are those that preserve limits remains true for arbi-
trary topological spaces, if we can define convergencewithout reference to sequences.
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The inadequacy of sequences in arbitrary topological spaces hinges on the fact that
sequences are indexed by a countable set, and there are topological spaces which re-
quire an uncountable indexing set to achieve convergence to some points. See Sec-
tion 6.3 for further discussion of this topic.

Theorem 3.1.7. Suppose X and Y are metric spaces. A function f : X → Y is continuous
if and only if whenever a sequence (xn)∞n=1 converges to x in X, the sequence (f (xn))

∞
n=1

converges to f (x) in Y. That is, f is continuous if and only if it preserves limits.

Proof. Suppose f : X → Y is a continuous function between metric spaces X and Y ,
and xn → x in X. To see f (xn) → f (x), let V be any open neighborhood of f (x). By
continuity of f , f −1(V) is an open neighborhood of x. Since xn → x, (xn) is eventually
in f −1(V), so (f (xn)) is eventually in V . This proves that f (xn) → f (x).

Conversely, suppose xn → x implies f (xn) → f (x). To see f is continuous, suppose
V is open in Y . We will show f −1(V) is open. Suppose to the contrary that f −1(V) is
not open. Then f −1(V) contains one of its boundary points x. For every n ∈ ℕ, B(x, 1n )
intersects both f −1(V) and X − f −1(V). Pick xn ∈ B(x,

1
n ) ∩ (X − f

−1(V)). Now (xn)∞n=1 is a
sequence in X − f −1(V) converging to x ∈ f −1(V). Applying the function f , we see that
f (xn) ̸∈ V for every n ∈ ℕ, and f (x) ∈ V . But by the hypothesis, xn → x should imply
f (xn) → f (x). However, the sequence (f (xn))∞n=1 is never in the neighborhood V of f (x),
so f (xn) does not converge to f (x). This contradiction completes the proof.

This theorem shows that continuity between metric spaces is equivalent to the
implication xn → x implies f (xn) → f (x). Continuity is not equivalent to the converse of
the implication. That is, if f is continuous, it need not be true that f (xn) → f (x) implies
xn → x. For example, consider f : ℝ → ℝ defined by f (x) = sin x, and xn = (−1)nπ.
Now f (xn) → f (0) but xn ↛ 0. Or, with yn =

1
n , f (yn) → f (3π) but yn ↛ 3π.

Suppose X and Y are topological spaces, X = A ∪ B, and functions f : A → Y and
g : B → Y are continuous. May we use f and g to define a continuous function on
X = A ∪ B? That is, is

h(x) = { f (x) if x ∈ A,
g(x) if x ∈ B,

continuous? It is immediately obvious that, for h(x) to be a well-defined function, we
must have f (x) = g(x) for all x ∈ A ∩ B. This necessary condition is not sufficient. If
X = Y = ℝ with the Euclidean topology, A = (−∞,0), B = [0,∞), f (x) = −1, and
g(x) = 1, then h(x) is not continuous. Further assumptions on A and B are needed.

Theorem 3.1.8 (The pasting lemma). Suppose X and Y are topological spaces, X =
A ∪ B, functions f : A → Y and g : B → Y are continuous, f (x) = g(x) for all x ∈ A ∩ B,
and h : X → Y is defined by

h(x) = { f (x) if x ∈ A,
g(x) if x ∈ B.

Then h is continuous if A and B are both open or are both closed in X.
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Proof. SupposeA and B are both open. To see h is continuous, supposeV is open in Y .
We wish to show h−1(V) is open in X. But h−1(V) = f −1(V) ∪ g−1(V). Since f : A → Y
is continuous, f −1(V) is open in A. Since A is open in X, we have f −1(V) is open in X
(by Theorem 2.1.5). Similarly, g−1(V) is open in B and B is open in X, so g−1(V) is open
in X. Thus, h−1(V) = f −1(V) ∪ g−1(V) is open in X, so h is continuous. If A and B are
both closed, then a similar argument using the characterization of continuity in terms
of inverse images of closed sets and the second part of Theorem 2.1.5 applies.

The theorem below characterizes continuity in terms of closures.

Theorem 3.1.9. A function f : X → Y is continuous if and only if f (clA) ⊆ cl(f (A)) for
every A ⊆ X.

Proof. Suppose f : X → Y satisfies f (clA) ⊆ cl(f (A)) for every A ⊆ X. To show f is
continuous, we will show that, for any closed set F in Y , the set D = f −1(F) is closed
in X. Recalling that f (f −1(F)) ⊆ F, we have f (clD) ⊆ cl(f (D)) = cl(f (f −1(F))) ⊆ cl F = F,
and thus clD ⊆ f −1(F) = D. This shows clD = D, so D is closed.

To see the converse, suppose to the contrary that it fails. That is, suppose f : X → Y
is continuous, but there exists a set A ⊆ X with f (clA) ̸⊆ cl(f (A)). Then there exists
x ∈ clAwith f (x) ̸∈ cl(f (A)), andV = Y −cl(f (A)) is an open neighborhood of f (x). Note
in particular that V is disjoint from f (A). By continuity of f , f −1(V) is an open set, and
it contains x ∈ clA. Thus, the neighborhood f −1(V) of x intersects A. If a ∈ A ∩ f −1(V),
then f (a) ∈ f (A) ∩V , contrary to V being disjoint from f (A). Thus, the converse cannot
fail.

Exercises

1. Show that f : X → Y is continuous at a ∈ X if and only if for every basic
𝒯Y -neighborhood V of f (a), there exists a 𝒯X -neighborhood U of a with f (U) ⊆ V .
That is, show that it suffices to consider basic neighborhoods of f (a) in Defini-
tion 3.1.1.

2. Show by example that if f : X → Y is a continuous function and U is open in X,
then f (U) need not be open in Y .

3. The functions f1, f2, and f3 from the Euclidean line to the Euclidean line given be-
low are not continuous.

f1(x) = {
x if x ̸= 0,
1 if x = 0,

f2(x) = {
x2 if x ≤ 2,
x2 + 1 if x > 2,

f3(x) = {
x2 if x2 < 4,
1 if x2 ≥ 4.

For each, find:
(a) an open set V whose inverse image is not open;
(b) a closed set C whose inverse image is not closed;



Exercises | 91

(c) a sequence (xn)n∈ℕ converging to x for which (fi(xn))n∈ℕ does not converge to
fi(x).

4. Shown below are some bases for topologies on {1, 2, 3, 4} and {1, 2, 3} and some
functions f , g, h, j. Determine which of the functions shown are continuous.

5. Complete the proof of Theorem 3.1.4 by showing that f : X → Y is continuous if
and only if the inverse image of every closed set in Y is closed in X.

6. If ℝ has the Euclidean topology, consider the function f : ℝ → {1, 2, 3} defined by

f (x) =
{{
{{
{

1 if x ∈ (−∞, 1]
2 if x ∈ (1, 2)
3 if x ∈ [2,∞).

(a) Find the finest topology on {1, 2, 3} which makes f continuous.
(b) Find all topologies on {1, 2, 3} which make f continuous.

7. Give X = {1, 2, 3, 4} the topology having basis ℬ = {{1, 2, 3}, {2, 3}, {3}, {3, 4}}. Show
that there is no continuous function f from X to the Euclidean line which maps
the closed set A = {1, 2} to 0 and maps the closed set B = {4} to 1.

8. Suppose f : X → Y is continuous and B ⊆ Y . Show
(a) cl(f −1(B)) ⊆ f −1(clB)
(b) f −1(intB) ⊆ int(f −1(B))

9. Suppose f : X → Y is a continuous function, A ⊆ X, and B ⊆ Y .
(a) Show that if a is a boundary point ofA, then f (a)neednot be a boundary point

of f (A).
(b) Show that if a is a boundary point of f −1(B), then f (a) is a boundary point ofB.

That is, show that 𝜕f −1(B) ⊆ f −1(𝜕B). Hint: Youmayuse the result of Exercise 8.
10. Let X = Y = ℝ with the cofinite topology. Plot the functions from X to Y given

below and determine which are continuous.
(a) f (x) = x2

(b) g(x) = sin x
(c) h(x) = 4 sin x + x
(d) The floor function j(x) = ⌊x⌋ = the greatest integer less than or equal to x

(e) k(x) = { x if ⌊x⌋ is even
−x if ⌊x⌋ is odd

11. Characterize the continuous functions f : ℝ → ℝ where each copy of ℝ has the
cofinite topology.
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12. Recall that, for any a ∈ ℝ, the particular point topology on ℝ determined by a is
Pa = {U ⊆ ℝ : a ∈ U} ∪ {0}, and the excluded point topology on ℝ determined by
a is Ea = {U ⊆ ℝ : a ̸∈ U} ∪ {ℝ}. Describe
(a) all continuous non-constant functions f : (ℝ,P1) → (ℝ,P3);
(b) all continuous non-constant functions f : (ℝ,E1) → (ℝ,E3);
(c) all continuous non-constant functions f : (ℝ,P1) → (ℝ,E3);
(d) all continuous non-constant functions f : (ℝ,E1) → (ℝ,P3).

13. Let X = ℝ with the right ray topology 𝒯 = {0, ℝ} ∪ {(a,∞) : a ∈ ℝ}. Plot the
functions from X to X given below and determine which are continuous.
(a) f (x) = x
(b) g(x) = −x
(c) h(x) = −⌊−x⌋
(d) s(x) = sin x

14. Let X = ℝ with the right ray topology 𝒯 = {0, ℝ} ∪ {(a,∞) : a ∈ ℝ}. Show that if
f : X → X is continuous then it is increasing. Is the converse true?

15. (a) Prove part (a) of Theorem 3.1.5.
(b) Prove part (b) of Theorem 3.1.5.
(c) Prove part (c) of Theorem 3.1.5.
(d) Prove part (d) of Theorem 3.1.5.
(e) Prove part (e) of Theorem 3.1.5.
(f) Prove part (f) of Theorem 3.1.5.
(g) Prove part (g) of Theorem 3.1.5.

16. Give ℝ the Euclidean topology generated by the standard basis ℬ = {(a, b) ⊆ ℝ :
a < b}. Suppose f : ℝ → ℝ is continuous and there exist a < b < c with f (a) =
f (c) ̸= f (b). Show that there exists a basic open set B ∈ ℬ whose inverse image is
not a basic open set in ℬ.

17. Suppose 𝒯F and 𝒯C are two topologies on the set X. Show that 𝒯F is finer than 𝒯C
if and only if the function f : (X, 𝒯F) → (X, 𝒯C) defined by f (x) = x is continuous.

18. If X = ℝ with the Euclidean topology, the function f : X → X defined by

f (x) = { 1 if x ≥ 0
−1 if x < 0

is not continuous, yet for the sequence (xn) = (1 +
1
n ), it is true that xn → 1 implies

f (xn) → f (1). Why does this not contradict Theorem 3.1.7?
19. Show that if D is dense in X and f : X → Y is continuous and onto, then f (D) is

dense in Y .
20. Suppose f and g are continuous functions from a topological space X to a Haus-

dorff space Y .
(a) Show that the set {x ∈ X : f (x) = g(x)} is closed.
(b) Show that if f (x) = g(x) for all x in a dense subset D of X, then f (x) = g(x) for

all x ∈ X.
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21. Suppose ℝ has the Euclidean topology, f : ℝ → ℝ is continuous, and f (x + y) =
f (x) + f (y) for all x, y ∈ ℝ. Use Exercise 20(b) to show f is a linear function of form
f (x) = mx.

22. Suppose ℝ has the Euclidean topology.
(a) Show that if f : ℝ → ℝ is a continuous function with f (x) = f ( x2 ) for all x ∈ ℝ,

then f (x) is constant.
(b) Show that continuity is necessary in part (a) by finding a non-constant, dis-

continuous function f : ℝ → ℝ with f (x) = f ( x2 ) for all x ∈ ℝ.
(c) If f : ℝ → ℝ is a continuous function with 2∫x0 f (t) dt = ∫

2x
0 f (t) dt for every

x ∈ ℝ, show that f is constant.
23. Show that with the usual topologies, addition is continuous. That is, show that

the function Add : ℝ2 → ℝ defined by Add(x, y) = x + y is continuous, where ℝ2

and ℝ carry the Euclidean topologies.
24. Show that the addition function Add : ℝ2 → ℝl defined by Add(x, y) = x + y is not

continuous, where ℝ2 has the Euclidean topology and ℝl is the real line with the
lower limit topology.

25. Suppose f : X → Y is a function, I is an arbitrary index set, X = ⋃i∈I Ai, and f is
continuous on each Ai.
(a) If each Ai is open, must f be continuous on X? What if I is finite?
(b) If each Ai is closed, must f be continuous on X? What if I is finite?

3.2 Special continuous functions

3.2.1 Homeomorphisms

Recall that a homeomorphism is a function h : X → Y between two topological spaces
which is a bijection between the points and provides a bijection between the open sets
of X and the open sets of Y in the sense that U is open in X if and only if h(U) is open
in Y . Topological spaces X and Y are topologically equivalent, or homeomorphic (de-
notedX ≈ Y), if there exists a homeomorphism h from X to Y . Such a homeomorphism
essentially relabels each point x of X as h(x) in Y , and relabels each open set U of X
as the open set h(U) in Y . If h : X → Y is a homeomorphism, then h−1 : Y → X gives
a bijection between the points of Y and X and between the open sets of Y and those
of X, so h−1 is also a homeomorphism.

The following important observation is often given as the definition of a homeo-
morphism.

Theorem 3.2.1. A function h : X → Y is a homeomorphism if and only if h is one-to-one,
onto, continuous, and has a continuous inverse h−1.

Proof. Suppose h : X → Y is a bijection. Now h is a homeomorphism if and only if (a)
if U is open in X then h(U) = (h−1)−1(U) is open in Y , and (b) if h(U) = V is open in Y
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then U = h−1(V) is open in X. But (a) is the definition of the continuity of h−1 and (b)
is the definition of the continuity of h. Thus, a bijection h is a homeomorphism if and
only if h and h−1 are continuous.

Example 3.2.2. Consider the topological spaces X = {a, b, c, d} and Y = {1, 2, 3, 4}
whose topologies (excluding the empty set) are shown in Figure 3.3. The represen-
tation for Y could be rearranged, repositioning the points in the plane but keeping
their neighborhoods the same, to obtain the representation for X. Thus, X and Y are
homeomorphic. Note that X and Y each have exactly one open set of cardinality n for
each n = 1, 2, 3, 4. Since a homeomorphism from X to Y must map an n-element open
set to an n-element open set, there is a unique homeomorphism h : X → Y defined by
h(a) = 2, h(b) = 1, h(c) = 4, and h(d) = 3.

Figure 3.3: Two homeomorphic topological spaces.

We note that since a homeomorphism h : X → Y gives a bijection between the
open sets of X and Y , it also gives a bijection between the closed sets of X and Y . That
is, if h : X → Y is a homeomorphism, F is closed in X if and only if h(F) is closed in Y .
This observation also follows from the characterization of the continuity of h and h−1

in terms of inverse images of closed sets being closed.
If h : X → Y is a homeomorphism and A ⊆ X has the subspace topology, then

the restriction h|A of h to A is one-to-one, onto h(A), and continuous. Now (h|A)−1 =
(h−1)|f (A) is also continuous (as the restriction of the continuous function h−1), so h|A :
A→ h(A) is a homeomorphism.

Since a homeomorphism h : X → Y is a bijection, just from the set-theoretic prop-
erties of bijections (without using the topologies), we have h(⋂i∈I Ai) = ⋂i∈I h(Ai),
h(⋃i∈I Ai) = ⋃i∈I h(Ai), and h(A −B) = h(A) − h(B) for any A,B,Ai ⊆ X. Since h is essen-
tially a relabeling of the points and open sets, the following topological results should
be anticipated.

Theorem 3.2.3. Suppose h : X → Y is a homeomorphism and A ⊆ X.
(a) h(clA) = cl(h(A)).
(b) h(intA) = int(h(A)).
(c) h(𝜕A) = 𝜕(h(A)).

Proof. Since h is a homeomorphism, F is a closed set if and only if h(F) is a closed set.
Since h is a bijection,A ⊆ F if and only if h(A) ⊆ h(F), and h(⋂i∈I Fi) = ⋂i∈I h(Fi) for any
index set I. Now since clA = ⋂{F : F is closed and A ⊆ F}, we have h(clA) = ⋂{h(F) :
h(F) is closed and h(A) ⊆ h(F)}, and the latter set is cl(h(A)). Thus, h(clA) = cl(h(A)).
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The corresponding result for interiors can be shown similarly, or by using the result
for closures after noting that intA = X − cl(X − A) (Corollary 1.5.6), and recalling that
h(C−D) = h(C)−h(D) for bijections. Thenh(intA) = h(X)−cl(h(X−A)) = Y−cl(Y−h(A)) =
int(h(A)). The result for boundaries follows from the characterization of boundaries in
terms of closures: 𝜕A = cl(A) ∩ cl(X −A). Applying h and using properties of bijections
gives h(𝜕A) = h(cl(A) ∩ cl(X − A)) = h(cl(A)) ∩ h(cl(X − A)) = cl(h(A)) ∩ cl(h(X − A)) =
cl(h(A)) ∩ cl(Y − h(A)) = 𝜕(h(A)).

If topological spacesX andY are homeomorphic, wewriteX ≈ Y . In the Euclidean
lineℝ, the open interval (0, 1) is homeomorphic to any other nonempty open interval
(a, b). Indeed, if h(x) is the linear function with h(0) = a and h(1) = b, then h|(0,1) :
(0, 1) → (a, b) is a homeomorphism. Using the properties of the equivalence relation
≈, we see that any two nonempty open intervals (a, b) and (c, d) in the Euclidean line
are homeomorphic. Furthermore, since h : (−π/2,π/2) → ℝ defined by h(x) = tan x
is a homeomorphism, (−π/2,π/2) and every other nonempty open interval (a, b) are
homeomorphic to the real line ℝ. We may visualize the homeomorphism tan x from
(−π/2,π/2) toℝ by bending the interval into the right half of a unit circle, as shown in
Figure 3.4, andmapping a point on this arc to its shadow from a light source placed at
the origin. This is an example of a stereographic projection.

Figure 3.4: The interval (−π/2, π/2) is homeomorphic to ℝ.

Technically, the function f : (−π/2,π/2) → {(x, y) ∈ ℝ2 : x > 0, x2 + y2 = 1} defined
by f (x) = (cos x, sin x) is a homeomorphism, which we follow by the homeomorphism
mapping (cos x, sin x) on the unit circle to tan x onℝ. The function f gives us a home-
omorphic copy of (−π/2,π/2) appearing as a subspace of the Euclidean plane. That is,
f embeds the interval (−π/2,π/2) into the plane.

Definition 3.2.4. If X and Y are topological spaces, a function e : X → Y is an embed-
ding of X into Y if e : X → e(X) is a homeomorphism, where e(X) ⊆ Y has the subspace
topology. In this case, we say e(X) is a homeomorphic copy of X embedded in Y .

An embedding of X into Y is sometimes called a homeomorphism into Y .
Other examples of stereographic projection showing (a, b) ≈ ℝ involve embedding

(a, b) intoℝ2 as a circle with the north polemissing, placing a light source at the north
pole, and projecting onto a line inℝ2 parallel but not equal to the tangent at the north
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pole on the same side of the tangent as the circle. The ray from the light source to a
point x on the circle crosses the line at f (x). Two common illustrations of this (where
the line is tangent at the south pole or includes a diameter), and one uncommon one,
are shown in Figure 3.5.

Figure 3.5: Stereographic projection showing that an interval (a,b) is homeomorphic to the real line.

A similar stereographic projection in a higher dimension shows that an open disk
inℝ2,which, by “drawstringing” theboundary, canbebent into the surface of a sphere
with the north pole missing, is homeomorphic to the plane ℝ2 (see Figure 3.6).

Figure 3.6: Stereographic projection showing that an open disc is homeomorphic to the plane.

Often in practice, we will simply need to recognize when bending, stretching, embed-
ding, or projecting gives a homeomorphism,without actually exhibiting the functions
doing these contortions. We should recognize, for example, that the interval [0, 2π] in
the Euclidean line is homeomorphic to the set of points {(x, sin x) ∈ ℝ2 : x ∈ [0, 2π]},
which is the graph of one period of the sine function. Embedding an interval in ℝ
into a higher dimensional Euclidean space by viewing it at the graph of a continuous
function is an important and useful technique.

Theorem 3.2.5. Suppose X and Y are topological spaces, and f : X → Y is a continuous
functionwith domain X. Then X is homeomorphic to G = {(x, f (x)) : x ∈ X} as a subspace
of X × Y. The set G is called the graph of f .
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Proof. We will show that h : X → G defined by h(x) = (x, f (x)) is a homeomorphism.
Clearly h is one-to-one and onto. h−1 is continuous since, ifU is open inX, (h−1)−1(U) =
h(U) = {(x, f (x)) : x ∈ U} = (U ×Y) ∩G, which is open in Gwith the subspace topology.
To see that h is continuous, we will show that it is continuous at every point x ∈ X by
showing that, for any neighborhoodW of h(x) in G, there exists a neighborhood U 󸀠 of
x in X with h(U 󸀠) ⊆ W . Suppose x ∈ X is given andW is a neighborhood of h(x) in the
subspaceG of X ×Y . ThenW contains a neighborhood of form (U ×V)∩GwhereU is a
neighborhood of x inX andV is a neighborhood of f (x) inY . By the continuity of f at x,
there exists a neighborhood U 󸀠 of x in X with f (U 󸀠) ⊆ V . Without loss of generality, we
may assume U 󸀠 ⊆ U, for otherwise, replace U 󸀠 by U 󸀠 ∩ U . Now h(U 󸀠) = {(y, f (y)) : y ∈
U 󸀠} ⊆ U 󸀠 × f (U 󸀠) ⊆ U × V , and h(U 󸀠) ⊆ G, so h(U 󸀠) ⊆ (U × V) ∩ G ⊆ W , as needed.

If a property is defined in termsof the topology, relabeling thepoints andopen sets
(by running the space through a homeomorphism) should not destroy the property.
This prompts the following definition.

Definition 3.2.6. ApropertyP is a topological property ifwhenever a topological space
X has the property, h(X) also has the property for every homeomorphisms h. That is,
a property P is a topological property if it is preserved by homeomorphisms.

Topological properties can be used to show that two topological spaces are not
homeomorphic. If X has the property and Y does not, then X and Y cannot be topo-
logically equivalent. Of course, if two topological spaces both satisfy some topologi-
cal property, they need not be homeomorphic. The property of having exactly seven
elements is a topological property: If X has exactly seven elements, anything homeo-
morphic to X also has exactly seven elements. However, it is not the case that any two
topological spaces with exactly seven elements are homeomorphic.

In the Euclidean plane, we know many metric or geometric properties which are
not topological properties. The homeomorphic image of a right triangle need not be
a right triangle, so the property of being a right triangle is not a topological property.
Indeed, the geometric property of being a triangle is not a topological property. We
may stretch a triangular rubber band into a circle or square through a homeomor-
phism. Boundedness is not a topological property. The bounded space (0, 1) with the
Euclidean topology is homeomorphic to the unbounded spaceℝ. Boundedness is de-
fined in terms ametric, andnot a topology. Propertieswhichdependonmeasurements
of lengths or measurements of angles will not be topological properties.

Generally, properties defined in termsof open sets, closed sets, and the cardinality
of certain subsets of a topological space will be topological properties since homeo-
morphisms provide bijections between the open sets, the closed sets, and the points
of two spaces. The next example combines closed sets and cardinality considerations.

Example 3.2.7. A topological space is said to be separable if it has a countable dense
subset. For example, the Euclidean line ℝ is separable since ℚ is a countable dense
subset. We will show that separability is a topological property. If X has a countable
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dense subset D and h : X → Y is a homeomorphism, then h(D) is countable since h is
a bijection. Since X = clD, by Theorem 3.2.3, Y = h(X) = h(cl(D)) = cl(h(D)), so h(D) is
dense in Y . Thus, h(D) is a countable dense subset of Y , so Y is separable.

3.2.2 Projection functions

An element of a finite product∏ni=1Xi is a vector (x1, x2, . . . , xn)whose ith coordinate xi
is an element of the ith factor Xi of the product. Given a vector (x1, x2, . . . , xn) in∏

n
i=1Xi,

we may wish to only focus on the jth coordinate, discarding the other coordinates.
This process is called projecting the vector onto the jth coordinate. The function πj :
∏i∈IXi → Xj defined by πj((xi)i∈I ) = xj is the projection function onto the jth coordinate.
For example, in ℝ3 = ∏i∈{1,2,3}ℝ, we have π1((3, −1, 5)) = 3, π2((3, −1, 5)) = −1, and
π3((3, −1, 5)) = 5.

If each Xi (i = 1, . . . , n) is a topological space and Z = ∏
n
i=1Xi has the product topol-

ogy, then projection functions are continuous. For example, to see that π2 : Z → X2 is
continuous, supposeU2 is open in X2. The inverse image π−12 (U2) consists of all vectors
whose projection onto the second coordinate falls inU2. Since there is no restriction on
the other coordinates,π−12 (U2) = {(x1, x2, . . . xn) ∈ ∏

n
i=1Xi : x2 ∈ U2} = X1×U2×X3×⋅ ⋅ ⋅×Xn,

which, as a product of open sets, is open in the product topology on Z. Thus, π2 is con-
tinuous.

Continuous functions are those for which inverse images of open sets are open.
Functions for which the forward images of open sets are open also have a name.

Definition 3.2.8. If X and Y are topological spaces, a function f : X → Y is an open
mapping or open function if and only if f (U) is open in Y for every open set U in X.
Similarly, f : X → Y is a closed mapping or closed function if and only if f (F) is closed
in Y for every closed set F in X.

Note that any homeomorphism is both an open mapping and a closed mapping.
If an open mapping f : X → Y is bijective, then it has an inverse function f −1 :

Y → X, and saying f (U) is open for every open U simply says (f −1)−1(U) is open for
every openU, which is the definition of f −1 being continuous. That is, if an openmap-
pinghas an inverse function, then the inverse is continuous. The result belowprovides
an example of open mappings which are not invertible.

Theorem 3.2.9. If Xi (i = 1, . . . , n)are topological spaces andZ = ∏
n
i=1Xi has the product

topology, then the projection functions are continuous open mappings.

Proof. The continuity of the projection functions was justified above Definition 3.2.8.
To show πi : Z → Xi is open, suppose W is open in Z and x ∈ πi(W). Now x =
πi(w1, . . . ,wn) for some (w1, . . . ,wn) ∈ W . SinceW is open, it contains a basic neighbor-
hoodB = U1×⋅ ⋅ ⋅×Un of (w1, . . . ,wn),where eachUi is open inXi. NowUi = πi(B) ⊆ πi(W)
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is a neighborhood of x contained in πi(W). Since x was an arbitrary element of πi(W),
this shows that πi(W) is open, as needed.

We note that projections need not be closedmaps: The set F = {(x, 1x ) ∈ ℝ
2 : x > 0}

is a closed set in ℝ2, but π1(F) = (0,∞) is not closed.

3.2.3 Coordinate functions

In multivariable calculus, you study vector valued functions of a real variable such
as f : ℝ → ℝ3 defined by f (t) = (t, cos t, sin t). For this function, we may write
f (t) = (f1(t), f2(t), f3(t)) where f1(t) = t, f2(t) = cos t, and f3(t) = sin t are the coordi-
nate functions of f . You may recall that f : ℝ → ℝn is continuous if and only if each
of its coordinate functions is a continuous function from ℝ to ℝ. This result holds in
the more general setting of a function f from any topological space to a product of
topological spaces.

Theorem 3.2.10. If X, Y1, . . . ,Yn are topological spaces, Y = Y1×⋅ ⋅ ⋅×Yn has the product
topology, and f : X → Y is a function, then f (x) = (f1(x), . . . , fn(x)) is continuous from X
to Y if and only if each of the coordinate functions fi : X → Yi is continuous (i = 1, . . . , n).

Proof. Suppose f : X → Y is continuous. Since each projection function πi : Y → Yi is
continuous, the composition πi ∘ f = fi is continuous. Thus, each coordinate function
is continuous.

Conversely, suppose each coordinate function is continuous and V = V1 × ⋅ ⋅ ⋅ ×Vn
is a basic open set inY . Now f −1(V) = {x ∈ X : f (x) ∈ V} = {x ∈ X : fi(x) ∈ Vi for each i =
1, . . . , n} = ⋂ni=1 f

−1
i (Vi), which, as a finite intersection of open sets, is open in X. Thus,

f is continuous.

Thus, the function f : ℝ → ℝ3 defined by f (t) = (t, cos t, sin t) is continuous
since each of its coordinate functions is. Recalling that the domain of a function is
homeomorphic to the graph of the function (Theorem 3.2.5), we can now conclude
that the real line ℝ is homeomorphic to the helix H = {(t, cos t, sin t) : t ∈ ℝ} in ℝ3,
since H is the graph of f .

Exercises

1. Giveℝ the Euclidean topology.Which of the followingmaps fromℝ toℝ are home-
omorphisms? Among those that are not homeomorphism, which are open map-
pings?
(a) i(x) = x
(b) f (x) = x2

(c) g(x) = x3



100 | 3 Continuity

(d) h(x) = x3 − 4x
(e) j(x) = x + 3

2. Let X = {a, b, c, d, e}, Y = {1, 2, 3, 4, 5} and Z = {r, s, t, u, v} have the topologies gen-
erated by the bases shown. Which spaces are homeomorphic? Exhibit a homeo-
morphism for each homeomorphic pair.

3. For the functions between the finite topological spaces given in Exercise 4 of Sec-
tion 3.1, determine which are open mappings, which are closed mappings, and
which are homeomorphisms.

4. Prove:
(a) If X = {1, 2, 3} and Y = {a, b, c, d} have any topologies, X and Y are not homeo-

morphic.
(b) The subspacesℚ and ℝ − ℚ of the Euclidean line are not homeomorphic.
(c) If X = {a, b, c} has the discrete topology and Y = {a, b, c} has the topology
{0, {a}, {a, b}, {a, b, c}, {c}, {a, c}}, then X and Y are not homeomorphic.

5. Suppose that A,B, and C are topological spaces.
(a) Show that if B ≈ C, then A × B ≈ A × C.
(b) If A × B ≈ A × C, then it does not follow that B ≈ C. (Cancellation does not

hold for products of topological spaces.) Prove this using A = ℕ, B = {0}, and
C = {0, 1} with the usual Euclidean topologies.

6. Recall that x ∈ X is an isolated point if and only if {x} is an open set. Show that if
X has exactly k isolated points and X ≈ Y , then Y has exactly k isolated points.
That is, show that “has exactly k isolated points” is a topological property.

7. Prove that the following are topological properties.
(a) Has a set A whose boundary has exactly two points.
(b) Has a set A with clA = intA.
(c) Has an open set which intersects exactly three other open sets.

8. Prove that the following are topological properties.
(a) Has a nested topology. (Recall that a topology 𝒯 is nested if U ,V ∈ 𝒯 implies

U ⊆ V or V ⊆ U .)
(b) Has an open set U with exactly two open sets properly contained in U .

9. A topological space X has the fixed point property if every continuous function
f : X → X has a fixed point (that is, a point x ∈ X such that f (x) = x.) Show that
the fixed point property is a topological property.

10. For which of the spaces X given below is X ≈ X × X? Justify your answers.
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(a) X = {1, 2, 3} with the discrete topology.
(b) X = ℕ with the discrete topology.
(c) X = ℝ with the right ray topology {(a,∞) : a ∈ ℝ} ∪ {0, ℝ}.

11. Find a necessary and sufficient condition on Y to guarantee that X × Y ≈ X for
every topological space X. Justify your answer.

12. Provide figures to illustrate the steps of proof of Theorem 3.2.5 that h and h−1 are
continuous, in the case X = Y = ℝ with the Euclidean topology.

13. SupposeX andY are topological spaces,X×Y has the product topology, and y ∈ Y .
Show that X × {y} is a homeomorphic copy of X embedded in X × Y .

14. If the north pole of a circle is removed and a light source is placed there, explain
why stereographic projection does not provide a homeomorphism to a line ℓ not
parallel to the tangent at the north pole.

15. Use stereographic projection to explain why the unit sphere in ℝ3 is homeomor-
phic to the surface of a cube and to the surface of a pyramid.

16. Suppose f : X → Y is an open mapping and A ⊆ X has the subspace topology. Is
the restriction of f to A an open mapping? What if A is open in X?

17. Let X be the real line with the cofinite topology. Which of the functions from X to
X given below are open? Which are closed? Justify your answers.
(a) f (x) = 7
(b) g(x) = arctan x

18. Let X be the real line with the cofinite topology.
(a) Show that every surjection f : X → X is a closed mapping.
(b) Must every surjection f : X → X be an open mapping? Give a proof or coun-

terexample.
19. If Pa = {U ⊆ ℝ : a ∈ U} ∪ {0} is the particular point topology on ℝ determined by

a and Eb = {U ⊆ ℝ : b ̸∈ U} ∪ {ℝ} is the excluded point topology on ℝ determined
by b, describe:
(a) all open functions f : (ℝ,Ea) → (ℝ,Eb);
(b) all closed functions f : (ℝ,Ea) → (ℝ,Eb);
(c) all open functions f : (ℝ,Ea) → (ℝ,Pb);
(d) all closed functions f : (ℝ,Ea) → (ℝ,Pb).

20. Show that any bijective open mapping is a closed mapping.
21. Suppose f : X → Y is continuous and Y is Hausdorff. Show that the graph G =
{(x, f (x)) : x ∈ X} of f is closed in the product X × Y .

22. The remark before Theorem 3.2.9 suggests that projection functions πi : ∏
n
i=1Xi →

Xi neednot be invertible. Underwhat circumstanceswould suchaprojection func-
tion be one-to-one? onto?

23. Sketch three different sets A in ℝ2 with π1(A) = π2(A) = (−1, 1).
24. Let h : ℝ → ℝ be defined by h(x) = x

2 , and let f : ℝ → ℝ
3 be the function f (x) =

(h(x), (h ∘ h)(x), (h ∘ h ∘ h)(x)). Describe the set A = f ([0, 4]) and give π1(A),π2(A),
and π3(A).
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25. The ellipse x2+ y
2

4 = 1 is revolved around the line x = 2 to get a surface of revolution
S in ℝ3. Find π1(S),π2(S), and π3(S).

26. In ℝ3, consider the sets A = ⋃x∈[0,2) B((x,0,0), 1) and B = B((0,0,0), 3) ∪ ([0, 1] ×
(0, 5] × {3}), where B((x, y, z), ε) represents a ball in the Euclidean metric. Find the
projections πi(A) and πi(B) for i = 1, 2, 3.

27. Suppose X,Y , and Z are sets and f : X → Y × Z has coordinate functions f1 and f2,
so f (x) = (f1(x), f2(x)). Consider the statements (a) f : X → Y × Z is onto, and (b)
f1 : X → Y and f2 : X → Z are both onto. Does either statement imply the other?
Give proofs or counterexamples.

28. Suppose X,Y , and Z are sets and f : X → Y × Z has coordinate functions f1 and f2,
so f (x) = (f1(x), f2(x)). Consider the statements (a) f : X → Y ×Z is one-to-one, and
(b) f1 : X → Y and f2 : X → Z are both one-to-one. Does either statement imply
the other? Give proofs or counterexamples.

29. Separate vs. joint continuity. A function f : X × Y → Z is separately continuous if
for every a ∈ X and every b ∈ Y , the functions f (a, y) : Y → Z and f (x, b) : X → Z
are continuous. Separate continuity is not equivalent to f being continuous. To
emphasize the difference, if f continuous we may say it is jointly continuous.
(a) Show that (joint) continuity implies separate continuity.
(b) Show that the real-valued function of two variables f : ℝ2 → ℝ defined by

f (x, y) = {
2xy
x2+y2 if (x, y) ̸= (0,0)
0 if (x, y) = (0,0)

is separately continuous but not (jointly) continuous. (This is a standard ex-
ample to illustrate that both partial derivatives fx and fy of a function f may
exist at (0,0) even though f is not differentiable at (0,0).)
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4.1 Connectedness

Here is a brief True/False quiz to check your knowledge of functions from calculus.

True False 1. If f 󸀠(x) = 0 on its domain, then f (x) is constant on its domain.

True False 2. If f (x) is continuous on its domain, f (−2) < 0, and f (2) > 0, then
f (x) = 0 for some x ∈ (−2, 2).

On first inspection, these seem to be believable. If a function has zero rate of
change, then one may expect it to be constant. The second statement should bring
to mind the intermediate value theorem. However, both statements are false, as seen
by the function f : (−∞, −1) ∪ (1,∞) → ℝ defined by f (x) = −1 if x < −1 and f (x) = 1
if x > 1. The problem with these statements is that they have no restrictions on the
domain. The statements do not hold if the domain is not a solid interval. The correct
statements are:
1. If f 󸀠(x) = 0 on an interval, then f (x) is constant on that interval.
2. If f (x) is continuous on the interval [−2, 2], f (−2) < 0, and f (2) > 0, then f (x) = 0

for some x ∈ (−2, 2).

The important thing about an interval which makes these statements true is that an
interval is connected—it is all in one piece. The domain (−∞, −1) ∪ (1,∞) of our coun-
terexample above is not connected: It separates into two disjoint open sets (−∞, −1)
and (1,∞).

Definition 4.1.1. A separation of a topological space X is a pair (U ,V) of disjoint
nonempty open subsets U and V of X such that X = U ∪ V . A topological space X
is connected if it has no separation. A subset A of X is a connected subset if it is a
connected topological space when given the subspace topology.

Thus, X is connected if and only if it cannot be partitioned into two open sets.
Since the complement of anopen set is closed,wehave the following immediate result.

Theorem 4.1.2. For a topological space X, the following are equivalent.
(a) X is connected.
(b) X cannot be written as the union of two disjoint nonempty open sets U and V.
(c) X cannot be written as the union of two disjoint nonempty closed sets V and U.
(d) X has no nonempty proper subset U which is both open and closed.

Example 4.1.3. Consider the following subsets of ℝ with the usual topology.
(a) X = (0, 1) ∪ [2,∞) is not connected since U = (0, 1) and V = [2,∞) are open sets in

X which partition X.

https://doi.org/10.1515/9783110686579-005
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(b) ℤ is not connected since, for example, U = {1} and V = ℤ − {1} form a separa-
tion ofℤ. Indeed, sinceℤ has the discrete topology, if U is any nonempty, proper
subset, then (U , ℤ − U) is a separation of ℤ.

(c) ℚ is not connected since U = (−∞,π) ∩ ℚ and V = (π,∞) ∩ ℚ form a separation
ofℚ.

Example 4.1.4. The real line with the lower limit topology is not connected since, for
example, U = [0, 1) is nonempty, proper, closed, and open.

Our next example illustrates a subtlety in dealing with connected subsets of a
topological space X.

Example 4.1.5. Let X = {1, 2, 3, 4, 5} with the topology 𝒯 = {0, {1, 2, 3}, {3}, {3, 4, 5},X},
and let A = {1, 2, 4, 5} ⊆ X as shown in Figure 4.1.

Figure 4.1: There is no ‘separation’ (U,V) of A = {1, 2,4, 5} where U and V are disjoint open sets in
X = {1, 2, 3,4, 5}, but there is a separation of A in A.
ClearlyA is not connected, and (U ,V) = ({1, 2}, {4, 5}) is the only separation ofA. NowU
andV are open inA and thus theywere the intersection of open setsU 󸀠,V 󸀠 inX withA.
The only choices for U 󸀠 and V 󸀠 in this example are U 󸀠 = {1, 2, 3} and V 󸀠 = {3, 4, 5}, and
U 󸀠 and V 󸀠 are not disjoint.

This example emphasizes the point that in testing a proper subset A of X for con-
nectedness, any separation must be by disjoint open sets in the subspace. We could
provide an alternate definition of connectedness of a subspace A ⊆ X by saying (U ,V)
is a separation ofA ifU andV are open inX,U∩A andV∩A are nonempty anddisjoint,
and A ⊆ U ∪ V .

The result below will confirm that connectedness is preserved by homeomor-
phisms and thus is a topological property. In fact, we prove the much stronger result
that connectedness is preserved by any continuous function.

Theorem 4.1.6. If f : X → Y is continuous and X is connected, then f (X) is connected.
That is, the continuous image of a connected set is connected.

Proof. Suppose f : X → Y is continuous andX is connected.Wewish to show that f (X)
is connected. Suppose to the contrary that (U ,V) is a separation of f (X). Now f −1(U)
and f −1(V) are disjoint nonempty open subsets of X and f −1(U)∪ f −1(V) = f −1(U ∪V) =
f −1(Y) = X, so (f −1(U), f −1(V)) is a separation of X, contrary to X being connected.
Thus, f (X)must be connected.
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To prove that a set A is connected in a topological space, we must show that it
has no separation. It is common to argue by contradiction, assuming to the contrary
that there is a separation of A. Proof by contradiction is very useful for proving some-
thing is infinite (not finite), uncountable (not countable), connected (no separation),
or prime (no nontrivial factorization), since each of these concepts is defined in terms
of a negation, that is, in terms of something failing.

The theorem below confirms our intuition about which sets are connected in the
real line.

Theorem 4.1.7. A is connected inℝwith the usual topology if and only if A is an interval
(including rays and ℝ = (−∞,∞)).

Proof. If A is not an interval, then there exist points a, c ∈ A and b ̸∈ A with a < b < c.
NowU = (−∞, b)∩AandV = (b,∞)∩Aprovide a separationofA, soA is not connected.

If A is an interval, to see that A is connected, suppose to the contrary that (U ,V)
is a separation of A. Pick u ∈ U and v ∈ V . Either u < v or v < u. Without loss of
generality, assume u < v. (If v < u, wemay interchange the labels onU and V , making
u < v.) Consider the set S = {y ∈ ℝ : [u, y] ⊆ U}. Now S is nonempty since u ∈ S, and S
is bounded above by v. Thus, by the completeness of the reals, b = sup S exists. Now
u ≤ b ≤ v and A is an interval containing u and v, so b ∈ A = U ∪ V . If b is in the open
setU, then there exists a basic neighborhood B(b, ε) = (b−ε, b+ε) of b contained inU .
Then [u, b + ε/2] ⊆ U, so b + ε/2 ∈ S, contrary to b = sup S. If b is in the open set V ,
then there exists a basic neighborhood B(b, ε) = (b−ε, b+ε) of b contained in V . Since
b − ε/2 ∈ V , we have [u, b − ε/2] ̸⊆ U, so b − ε/2 is an upper bound of S, contrary to
b = sup S.

The previous two theorems have a significant interpretation for calculus-type
functions.

Corollary 4.1.8 (The intermediate value theorem). Suppose [a, b] ⊆ ℝ, [a, b] and ℝ
have the Euclidean topology, f : [a, b] → ℝ is continuous, and z is any value between
f (a) and f (b). Then there exists a point c ∈ [a, b] with f (c) = z.

Proof. The interval [a, b] is connected, so f ([a, b]) is connected in ℝ. That is, f ([a, b])
is an interval. Thus, since f (a) and f (b) are in f ([a, b]), any point z between f (a) and
f (b) is in f ([a, b]), so z = f (c) for some c ∈ [a, b].

As a topological property, connectedness (and variations of it) may be used to
tell when two topological spaces are not homeomorphic. The intervals [0, 1] and (0, 1)
are both connected, but we would not expect them to be homeomorphic. We should
expect that there is no point in (0, 1)which is topologically like the point 1 in [0, 1]. To
see this, consider what happens whenwe remove 1 from [0, 1]. Now if h : [0, 1] → (0, 1)
were a homeomorphism, then removing h(1) from h([0, 1]) = (0, 1) should give a space
homeomorphic to [0, 1]−{1} = [0, 1), which is connected. However, removing any point
h(1) from (0, 1) leaves a disconnected space. This shows that [0, 1] ̸≈ (0, 1). Technically,



106 | 4 Connectedness

we used the fact that if h : X → Y is a homeomorphism, then h : X − {a} → Y − {h(a)}
is a homeomorphism.

This discussion motivates the following definition.

Definition 4.1.9. Suppose X is a connected topological space. An element a ∈ X is a
cut point if X − {a} is not connected. Otherwise, x is a non-cut point. A subset A ⊆ X
such that X − A is not connected is called a cut set of X.

It is easy to see that a homeomorphism carries cut points to cut points andnon-cut
points to non-cut points, so the cardinality of the set of cut-points (or non-cut points)
in a connected topological space is a topological property. Similar remarks apply to
cut sets. Thus, since [0, 1] has exactly two non-cut points 0 and 1, and (0, 1) has no
non-cut points, these spaces are not homeomorphic. Viewed as subspaces of the Eu-
clidean plane, the letter H is not homeomorphic to the letter T since H has a subset of
cardinality 4 which is not a cut set, but every subset of Twith cardinality 4 is a cut set.

Our next result shows that if A is a connected subset of a topological space, then
adding any boundary points of A results in a connected set.

Theorem 4.1.10. If A is a connected set in a topological space X and A ⊆ B ⊆ clA, then
B is connected.

Proof. Suppose A is connected in X and A ⊆ B ⊆ clA. To see B is connected, suppose
to the contrary that there exists a separation (U ,V) of B. Now U ∩ A and V ∩ A are
disjoint open sets inAwhose union isA, so if they are both nonempty, then theywould
provide a separation of A, contradicting the connectedness of A. Since U ̸= 0, there
exists x ∈ U ⊆ clA = A∪𝜕A, so either x ∈ A or x ∈ 𝜕A. In either case, the neighborhood
U of x must intersect A. Similarly, V ∩ A ̸= 0.

Note in particular that this theorem says that the closure of a connected set is
connected.

Next we will show that the product of two connected spaces is connected. We will
need the two nice results below.

Lemma 4.1.11. If A is a connected subset of B and (U ,V) is a separation of B, then either
A ⊆ U or A ⊆ V.

Proof. IfU∩A andV∩A are both nonempty, then they form a separation ofA, contrary
to the connectedness ofA. SinceA ⊆ B = U∪V , ifU∩A = 0, thenA ⊆ V , and ifV∩A = 0
then A ⊆ U .

Theorem 4.1.12. Suppose I is an arbitrary index set and for each i ∈ I, Ai is a connected
subset of a topological space X. If⋂i∈I Ai ̸= 0, then⋃i∈I Ai is connected.
Proof. Under the hypotheses, suppose a ∈ ⋂i∈I Ai and⋃i∈I Ai has a separation (U ,V).
Without loss of generality, say a ∈ U . By Lemma 4.1.11, each Ai is either contained in
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U or in V . Since a ∈ U, we have⋃i∈I Ai ⊆ U and thus V ∩⋃i∈I Ai = 0, contrary to (U ,V)
being a separation of⋃i∈I Ai. Thus,⋃i∈I Ai can have no separation.
Theorem 4.1.13. A finite product X1 × X2 × ⋅ ⋅ ⋅ × Xn of topological spaces is connected if
and only if each factor Xi (i = 1, . . . , n) is connected.

Proof. If X1 × ⋅ ⋅ ⋅ × Xn is connected, then each factor Xi = πi(X1 × ⋅ ⋅ ⋅ × Xn) is the image
of a connected set under the continuous projection function and thus is connected.

To show the converse, we will show that X1 × X2 is connected if X1 and X2 are.
The result for any finite number of factors would then follow by iteratively applying
this result. Suppose X1 and X2 are connected. Select a point (a, b) ∈ X1 × X2. Now by
the previous theorem, the union of all connected subsets of X1 × X2 containing (a, b)
is connected. Thus, it suffices to show that, for any (x, y) ∈ X1 × X2, there exists a
connected set containing (a, b) and (x, y). Now (a, b) is in the set S(a,y) = ({a} × X2) ∪
(X1 × {y}). Since {a} × X2 is homeomorphic to X2, it is connected. Similarly, X1 × {y}
is connected. These two connected sets intersect at the point (a, y), and thus S(a,y) is
connected by Theorem 4.1.12. Now X1 × X2 = ⋃y∈X2 S(a,y) is connected.

An important consequence of Theorem 4.1.12 used in the proof above is that, for
any point a in a topological space X, there exists a largest connected set containing a,
namely the union of all connected sets in X which contain a.

Definition 4.1.14. If a is an element of a topological space X, the largest connected set
containing a is called the connected component of a.

Clearly every x ∈ X is in the connected component determined by x, so each con-
nected component is nonempty and the union of all connected components is X. If C
andD are connected components and c ∈ C∩D, then both C andD are the largest con-
nected set containing c, so C = D. Thus, the connected components of X are mutually
disjoint. This proves the following result.

Theorem 4.1.15. The connected components of a topological space X form a partition
of X.

Every partition generates and is generated by an equivalence relation. The equiv-
alence relation generating the connected components of X is a ≈ b if and only if there
exists a connected set C in X which contains both a and b.

It should also be clear that a homeomorphism carries connected components
to connected components, so the number of connected components is a topological
property. We may use this to show, for example, that the polar graphs of r = sin(3θ)
and r = sin(2θ), depicted in Figure 4.2, are not homeomorphic subsets of the Eu-
clidean plane. Each has exactly one cut point, but removing the cut point leaves a
space with three connected components in one case and a space with four connected
components in the other case.
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Figure 4.2: Two roses.

Exercises

1. Is the empty set connected? Justify your answer.
2. Show that if A is a connected subset of X and X is a subspace of Y , then A is a

connected subset of Y .
3. Show that X is not connected if and only if there exists a continuous onto function

f : X → {0, 1} where {0, 1} has the discrete topology.
4. Show that (X, 𝒯 ) is not connected if there exists a nonempty proper subset Awith
𝜕A = 0.

5. Find all the nonempty connected subsets in each of the topological spaces given
below. Justify your answers.
(a) ℝ with the discrete topology.
(b) ℝ with the indiscrete topology.
(c) ℝ with the right ray topology {(a,∞) : a ∈ ℝ} ∪ {0, ℝ}.
(d) ℝ with the cofinite topology.

6. Describe all connected subsets of ℝl. If X is a connected topological space, char-
acterize all continuous functions f : X → ℝl.

7. Prove or give a counterexample: If f : X → Y is continuous and B is a connected
subset of Y , then f −1(B) is connected.

8. Prove or give a counterexample: If f : ℝ → ℝ is increasing, then the inverse image
of every connected set in f (ℝ) is connected.

9. (One-point connectification) Suppose (X, 𝒯 ) is a topological space and Y = X ∪
{ω} for some point ω ̸∈ X. Give Y the topology 𝒯Y = 𝒯 ∪ {Y}. Show that (Y , 𝒯Y ) is
connected. (Y , 𝒯Y ) is called the one-point connectification of X.

10. Prove that a homeomorphism carries cut points to cut points and non-cut points
to non-cut points.

11. Viewing the letters A, E, O, P and W as subspaces of the Euclidean plane, how
many cut points and non-cut points does each have?

12. Identify the cut points and non-cut points in the connected subspaces of the Eu-
clidean plane given below. Are any of these topological spaces homeomorphic?
(a) {(x, y) : x2 + y2 ≤ 1}
(b) {(x, y) : x2 + y2 ≤ 1} ∪ {(x, y) : (x − 2)2 + y2 ≤ 1}
(c) {(x, y) : x2 + y2 ≤ 1} ∪ {(x, y) : (x − 3)2 + y2 ≤ 1} ∪ {(x,0) : x ∈ [0, 3]}
(d) {(x, y) : −| sin x| ≤ y ≤ | sin x|}
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13. Provide a proof or counterexample: The interior of a connected set is connected.
14. Give examples to show that the neither the intersection of connected sets nor the

union of connected sets must be connected.
15. Suppose X is a topological space with the property that, for every a, b ∈ X with

a ̸= b, cl{a} ∩ cl{b} ̸= 0. Show that X is connected. Does the converse hold? Justify
your answer.

16. Suppose that Ai is a connected subset of topological space X for i = 1, . . . , n, and
Ai ∩ Ai+1 ̸= 0 for i = 1, . . . , n − 1. Show that⋃ni=1 Ai is connected.

17. Show that every connected component of a topological space is a closed set.
18. Show that the homeomorphic image of a connected component is a connected

component.
19. Use the connected components to show that the following topological spaces are

not homeomorphic.
(a) A = {(x, y) ∈ ℝ2 : 0 ≤ x < 4π,0 < y ≤ sin x}
(b) B = {(x, y) ∈ ℝ2 : 0 ≤ x < 4π, −2 < y ≤ sin x}
(c) C = {(x, y) ∈ ℝ2 : 0 ≤ x < 4π,0 < y ≤ cos x}

20. With A = B = [0, 1) and C = (0, 1), show that A × B ≈ A × C does not imply B ≈ C.
21. Viewing the letters T, H, i, and X as subspaces of the Euclidean plane, use the

concept of connected components to show that no two are homeomorphic.
22. For a topological space (X, 𝒯 ), show that the following are equivalent:

(a) Every nonempty open set in X is dense in X.
(b) Every pair of nonempty open sets in X has a nonempty intersection.
(c) Every open set in X is connected.
A topological space satisfying these conditions is called hyperconnected.

23. If X is a topological space, show that the relation a ≈ b if and only if there exists a
connected set C in X which contains both a and b is an equivalence relation and
the equivalence classes are the connected components.

24. IfA is a closed, connected cut set of a connected spaceX and (U ,V) is a separation
of X − A, show that U ∪ A is connected.

25. Show that every open set in the Euclidean line ℝ is the union of countably many
mutually disjoint open intervals.

26. Prove that if f : ℝ → ℝ is continuous and one-to-one, then f is strictly increasing
or strictly decreasing. (Note that f is strictly increasing if and only if x < y < z
implies f (x) < f (y) < f (z).)

4.2 Path connectedness

Consider the subsets A = B((0,0), 2) ∪ ([1, 4] × [−3,0]) and C = B((0,0), 2) ∪ ([3, 4] ×
[−3,0]) of ℝ2, as shown in Figure 4.3. Given any two points a and b in the subset A,
we can connect the points with a continuous path which stays entirely in the set A.



110 | 4 Connectedness

However, the set C does not have this property. We will say A is path connected and C
is not. The following definition makes this precise.

Figure 4.3: A is path connected. C is not.

Definition 4.2.1. Suppose X is a topological space and [0, 1] has the Euclidean topol-
ogy. For points a, b ∈ X, a path from a to b in X is a continuous function f : [0, 1] → X
with f (0) = a and f (1) = b. The topological space X is path connected if, for every
pair of points a, b ∈ X, there is a path in X from a to b. A subset A ⊆ X is said to be
path connected if it is a path connected topological space when given the subspace
topology.

If f : [0, 1] → X is a path froma tob inX, then g : [0, 1] → X definedby g(t) = f (1−t)
is a path fromb toa obtainedby tracing the path of f backwards. Thus, if there is a path
from a to b, we may simply say there is a path connecting a and b, without specifying
which is the initial point and which is the final point.

The Euclidean space ℝn is path connected. For points a, b ∈ ℝn, the straight-line
path f : [0, 1] → ℝn defined by f (t) = tb + (1 − t)a is a path in ℝn from a to b. If A ⊆ ℝn

and a, b ∈ A, the straight-line path from a to b may or may not lie in A. A set A ⊆ ℝn

is (vector-space) convex if, for every a, b ∈ A, all points tb + (1 − t)a (t ∈ [0, 1]) of
the straight-line path from a to b are contained in A. Clearly any vector-space convex
subset of ℝn is path connected, but not every path connected subset of ℝn is vector-
space convex.

The subset A = B((0,0), 2) ∪ ([1, 4] × [−3,0]) of ℝ2 shown in Figure 4.3 is easily
seen to be not vector-space convex. We formally prove that it is path connected. Given
any two points (a, b) and (c, d) in A, we need a path in A from (a, b) to (c, d). If (a, b)
and (c, d) are both in the ball B = B((0,0), 2) then, by the convexity of the ball, the
straight-line path f : [0, 1] → B defined by f (t) = t(c, d) + (1 − t)(a, b) connecting (a, b)
and (c, d) stays within B, and thus within A. A similar argument applies if both points
were in the rectangle R = [1, 4] × [−3,0]. Now suppose (a, b) and (c, d) are not both in
B and not both in R. Without loss of generality, suppose (a, b) ∈ B and (c, d) ∈ R.

Suppose (y, z) is any point in B∩R. Now the straight-line paths f connecting (a, b)
to (y, z) and g connecting (y, z) to (c, d) lie within B and R, respectively. Tracing these
paths consecutively will give a path from (a, b) to (c, d) inside A, but we must adjust
the parameters to make this fit our definition of a path. The paths f and g are param-
eterized by
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f : [0, 1] → B ⊆ A defined by f (t) = t(y, z) + (1 − t)(a, b)
g : [0, 1] → R ⊆ A defined by g(t) = t(c, d) + (1 − t)(y, z).

Now to get a path p : [0, 1] → A from (a, b) to (c, d), we would like to trace f during the
time interval [0, 12 ] and trace g during the time interval [ 12 , 1]. The function p : [0, 1] →
A defined by

p(t) = {
f (2t) if t ∈ [0, 12 ],

g(2t − 1) if t ∈ [ 12 , 1],

does this. Furthermore, by the pasting lemma, p is continuous.
We will next consider how path connectedness is related to connectedness.

Theorem 4.2.2. If a topological space X is path connected, then it is connected.

Proof. Suppose to the contrary that the implication fails. Then there exists a topolog-
ical space X which is path connected but not connected. Let (U ,V) be a separation
of X. Since U and V are nonempty, there exist u ∈ U and v ∈ V . Let f : [0, 1] → X be a
path in X connecting u and v. Now f ([0, 1]) is the continuous image of a connected set
and is thus connected. But (U ,V) is a separation of f ([0, 1]).

Connectedness and path connectedness are not equivalent, however, as seen by
the following example.

Example 4.2.3. In the Euclidean plane, let C = {(x, y) : x2 + y2 = 4} be the circle of
radius 2 and let S be the set described in polar coordinates by {(r, θ) : r = 2 − 1

θ , θ ≥ 1}.
The graph of S spirals out, approaching C in the limit. Let A = S ∪ C.

Now A is connected since A = cl S, and, as the continuous image of the connected
set [1,∞) under the polar map r = 2 − 1

θ , S is connected.
The setA is not path connected. Intuitively, a path that starts on the circleC cannot

jump to the spiral S.
Suppose thatA is path connected.Wewill first show that there is a path f : [0, 1] →

A from some point c on the circle C to some point s on the spiral S with f (0) = c and
f ((0, 1]) ⊆ S. Indeed, suppose c󸀠 ∈ C, s ∈ S, and g is a path from c󸀠 to s in A. Since C is
closed and g continuous, g−1(C) is closed in [0, 1]. Let t0 = sup g−1(C). Any closed set in
[0, 1] contains its supremum, so t0 ∈ g−1(C), and thus g(t0) ∈ C and g((t0, 1]) ⊆ S. Now
c = g(t0) is the “last point” on the path g which is in C, andwemay rescale the domain
of g|[t0 ,1] to make it a path. Specifically, the function f : [0, 1] → A defined by f = g ∘ h
where h is the linear function mapping [0, 1] to [t0, 1] has the desired properties.

Now f is continuous at the point t = 0, so for the neighborhood V = B(f (0), 1) ∩ A
of f (0) = c, there exists a basic neighborhood U = [0, ε) of 0 with f (U) ⊆ V . Now the
neighborhood V of c ∈ C has infinitely many connected components: one on C and
infinitely many arcs of the spiral. But f (U) is a connected subset of V and thus must
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be contained in a single component of V . But f (U) contains c ∈ C and f ( ε2 ) ∈ S, which
are not in the same component of V . This contradiction shows that A = C ∪ S is not
path connected.

The closure of a connected set is connected, but the example above illustrates that
the closure of a path connected set need not be path connected.

Path components will be defined similarly to connected components.

Definition 4.2.4. IfX is a topological space, the equivalence classes under the equiva-
lence relation x ∼ y if andonly if there is a path inX from x to y are thepath components
of X.

The path component of x is the largest path connected set containing x.

Exercises

1. Show that the continuous image of a path connected space is path connected (and
thus, path connectedness is a topological property).

2. Let X be the subset of the Euclidean plane described in polar coordinates by
{(r, θ) : r ∈ [1, 2], θ ∈ [−3π/4, 3π/4]}. Give explicit equations for paths to prove that
X is path connected.

3. Let Y be the subset of the Euclidean plane ([−1,0] × [0, 1]) ∪ ([1, 2] × [0, 2]) ∪ {(x, x) :
x ∈ [0, 1]}. Give explicit equations for paths to prove that Y is path connected.

4. The comb space is the subspace of the Euclidean plane

C = {{ 1
n
} × [0, 1] : n ∈ ℕ} ∪ ([0, 1] × {0}) ∪ ({0} × [0, 1]}).

The deleted comb space is the subspace of the Euclidean plane

C∗ = {{ 1
n
} × [0, 1] : n ∈ ℕ} ∪ ([0, 1] × {0}) ∪ {(0, 1)}

obtained by removing {0} × [0, 1) from the comb space.
(a) Draw the comb space and determine whether it is connected or not and

whether it is path connected or not.
(b) Draw the deleted comb space and show that it is connected but not path con-

nected.
5. Give examples of the following, or show that no such example can exist.

(a) Two path connected spaces X and Y such that X ∩ Y has three path compo-
nents.

(b) Two path connected spaces X and Y such that X ∪ Y has three path compo-
nents.

6. Consider the following subspaces of the Euclidean plane.
S = {(x, sin( 1x )) ∈ ℝ

2 : 0 < x ≤ 1} ∪ {(0,0)}
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T = S ∪ {(0, 1)}
U = S ∪ {(0, y) ∈ ℝ2 : 12 < y ≤ 1}
V = S ∪ {(0, y) ∈ ℝ2 : y ∈ [0, 1] ∩ ℚ}
W = S ∪ {(0, y) ∈ ℝ2 : y ∈ [0, 1] − ℚ}
The set S is the topologist’s sine curve. Sketch the sets S,T ,U ,V , andW , determine
the connected components and the path components of each, and show that no
two of these are homeomorphic.

7. Show that if A and B are two path connected sets in a topological space X and
A ∩ B ̸= 0, then A ∪ B is path connected.

8. Suppose X is a topological space and ∼ is the relation on a topological space X
defined by x ∼ y if and only if there is a path in X from x to y. Prove that ∼ is an
equivalence relation.

9. Prove that the path componentP of x is the largest path connected set containing x
by showing (a) P is path connected, and (b) ifQ is path connected and contains x,
then Q ⊆ P.

10. If A is an open set in the Euclidean spaceℝn, show that A is connected if and only
if it is path connected.

11. If [0, 1] has the Euclidean topology andX is any topological space, an arc from a to
b inX is a continuous one-to-one function f : [0, 1] → X with f (0) = a and f (1) = b.
Thus, an arc is a one-to-one path. X is arc connected if, for any pair of distinct
points a, b ∈ X, there exists an arc from a to b. Consider the space X = {1, 2, 3}with
the topology generated by the basis {{1}, {3},X}. Show that X is path connected but
not arc connected.





5 Compactness

5.1 Compactness

The spaces X = (0, 1) and Y = [0, 1], each with the Euclidean topology, are not topo-
logically equivalent: every point of (0, 1) is a cut point, while [0, 1] has two non-cut
points. However, cut points and other elementary connectedness arguments are not
adequate to distinguish between the open ball B = {(x, y) ∈ ℝ2 : x2 + y2 < 1} and the
closed ball C = {(x, y) ∈ ℝ2 : x2 + y2 ≤ 1} as subspaces of the Euclidean plane, since
both sets have no cut points. So, let us consider other ways to show that the topologi-
cal space X = (0, 1) is not topologically equivalent to the space Y = [0, 1], which might
generalize to show B and C are not homeomorphic.

In terms of the order, [0, 1] contains a largest element, while (0, 1) does not, but
this only shows that these sets are not “order equivalent”. From our intuition with the
real line, we are tempted to say [0, 1] contains its boundary points, but (0, 1) does not.
This argument requires external knowledge (outside of X or Y) of how these intervals
are embedded in a larger space ℝ, which was not originally mentioned. Indeed, stay-
ing within the sets given, neither topological space X = (0, 1) or Y = [0, 1] has any
boundary points.

The concept of compactness provides a purely internal way to capture the idea
that a space like [0, 1] is not “missing any limits”. A space like (0, 1) is “missing some
limits”, and will not be compact. The idea of compactness is suggested by the follow-
ing example.

Example 5.1.1. Let X = (0, 1) and Y = [0, 1], each with the topology generated by the
Euclidean metric. We will show that X and Y are not homeomorphic. Consider the
open subsets Un = (

1
n , 1) of X. We say that the collection {Un : n = 2, 3, . . .} covers

X = (0, 1) since ⋃∞n=2 Un = X. Furthermore, there is no finite subcollection of the open
sets Un whose union gives (0, 1). This is an internal way to capture the idea that the
sequence ( 1n )

∞
n=1 in (0, 1) “converges to the missing boundary point 0” (and thus, (0, 1)

is not compact). Now suppose h : X → Y is a homeomorphism. Since {Un : n = 2, 3, . . .}
is a collection of nested connected open subsets of X whose union is X, it follows that
{h(Un) : n = 2, 3, . . .} is a collection of nested connected open subsets of Y whose union
is h(X) = Y . Furthermore, since there is no finite subcollection of {Un : n = 2, 3, . . .}
which covers X, there is no finite subcollection of {h(Un) : n = 2, 3, . . .}which covers Y .
Since 0 ∈ Y = ⋃∞n=2 h(Un), there exists j ≥ 2 with 0 ∈ h(Uj), and similarly, since
1 ∈ Y = ⋃∞n=2 h(Un), there exists k ≥ 2 with 1 ∈ h(Uk). Because h(Uj) and h(Uk) are
nested, {0, 1} ⊆ h(Um)wherem is either j or k. Since h(Um) is a connected set containing
{0, 1}, it contains [0, 1]. Thus, {h(Um)} is a finite subcollection of {h(Un) : n = 2, 3, . . .}
which covers Y = [0, 1], a contradiction.

While this example includes the crux of the concept of compactness, it also used
some unnecessary restrictions which allowed us to easily illustrate the idea. Indeed,

https://doi.org/10.1515/9783110686579-006
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the open sets {Un : n = 2, 3, . . .} covering X need not be nested: given any collection
of open subsets, by taking the union of successively more and more of them, we get a
nested collection. Also, the use of countable indexing on our collection of open sets
was an unnecessary convenience. Furthermore, connectedness plays no role in the
definition of compactness. In this specific example, we simply used to our advantage
the fact that the topologies in question have bases of connected sets.We are now ready
for the definition of compactness.

Definition 5.1.2. Suppose X is a topological space and A ⊆ X. An open cover of A is
a collection 𝒞 of open sets in X whose union contains A. If 𝒞 is an open cover of A,
a finite subcover of A from 𝒞 is a finite subcollection of 𝒞 which is an open cover of
A. The set A ⊆ X is compact if and only if every open cover of A has a finite sub-
cover.

Not only is compactness a topological property (preserved by homeomorphisms),
it is preserved by any continuous function.

Theorem 5.1.3. The continuous image of a compact set is compact. That is, if f : X → Y
is a continuous function and A ⊆ X is compact, then f (A) is compact in Y.

Proof. Suppose f : X → Y is a continuous function, A ⊆ X is compact, and 𝒞 is an
open cover of f (A). Then f −1(𝒞) = {f −1(V) : V ∈ 𝒞} is an open cover of A, so there exists
a finite subcover {f −1(V1), . . . , f −1(Vn)} covering A. Now {V1, . . . ,Vn} is a finite subcover
from 𝒞 covering f (A).

In Example 5.1.1, we saw that 𝒞 = {Un : n = 2, 3, . . .} = {(
1
n , 1)}
∞
i=2 is an open cover of

(0, 1)whichhasnofinite subcover, so (0, 1)with theEuclidean topology is not compact.
That example did not show that [0, 1] is compact. We only showed that one particular
open cover of [0, 1], namely {h(Un) : Un ∈ 𝒞}, had a finite subcover. The compactness
of [0, 1] requires showing that every open cover has a finite subcover, and will be ad-
dressed in the next theorem. The collection 𝒞1 = {(x −

1
4 , x +

1
4 ) :

1
4 < x <

3
4 } is another

open cover of (0, 1)which has no finite subcover, again showing that (0, 1) is not com-
pact. Of course, some open covers of (0, 1), such as 𝒞2 = {(0, 1)}, 𝒞3 = {(0,

3
4 ), (

2
3 , 1)},

or 𝒞4 = {(0, b) :
1
2 < b < 1} ∪ {(a, 1) :

1
2 < a < 1} will have finite subcovers. Note that

𝒞3 is a finite subcover of 𝒞3 and of 𝒞4. Typically, a topological space will have so many
open sets that it will be impossible to list every open cover, so compactness cannot be
verified by an exhaustive check for finite subcovers. Techniques such as those in the
result below will be helpful.

Theorem 5.1.4. If a < b in ℝ, the closed interval [a, b] is a compact subset of the Eu-
clidean line.

Proof. Since every closed interval [a, b] is homeomorphic to [0, 1], it suffices to show
that [0, 1] is compact. Suppose 𝒞 is an arbitrary open cover of [0, 1]. Our goal is to
show that we can cover the entire interval [0, 1] with a finite subcollection from 𝒞.
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Now there exists at least one open set C1 ∈ 𝒞 which contains 0. This set will contain
a basic neighborhood of 0, so the finite subcollection {C1} of 𝒞 covers [0, ε) for some
ε > 0. Our strategy will be to see how far from 0 we can extend to the right and still be
covered by a finite subcollection. Let

y = sup{x ∈ [0, 1] : [0, x) can be covered by a finite subcollection of 𝒞}.

As the supremumof a nonempty set bounded above by 1, y exists by the completeness
property of ℝ. Choose C0 ∈ 𝒞 with y ∈ C0. If y < 1, since C0 is open, there exists ε > 0
such that (y− ε, y+ ε) ⊆ C0 ⊆ (0, 1). By the definition of y, there is a finite subcollection
{C1,C2, . . . ,Cn} from 𝒞 which covers [0, y − ε/2). Now {C1, . . . ,Cn,C0} covers [0, y + ε),
contrary to the definition of y. Thus, y = 1. Now since C0 is an open neighborhood of
y = 1, there exists ε > 0 with (1 − ε, 1] ⊆ C0. By the definition of y, there is a finite
subcollection {C1,C2, . . . ,Cn} from 𝒞 which covers [0, y − ε/2) = [0, 1 − ε/2), and thus
{C1, . . . ,Cn,C0} is a finite subcollection of 𝒞 which covers [0, 1].

Thus, since (0, 1) is not compact and [0, 1] is compact, these spaces are not home-
omorphic.

Note that compactness of A ⊆ X was defined in terms of covers of A by sets open
in X having finite subcovers. If 𝒞X is a cover of A by sets open in X, then 𝒞A = {C ∩ A :
C ∈ 𝒞X} is a cover of A by sets open in the subspace A of X. Conversely, if 𝒞A is a cover
of A by sets open in the subspace A, then each C ∈ 𝒞A is of form C ∩ UC for some set
UC open in X, and 𝒞X = {UC : C ∈ 𝒞A} is a cover of A by sets open in X. Furthermore, in
either case, 𝒞X has a finite subcover if and only if 𝒞A does.

This proves the following important result.

Theorem 5.1.5. A is a compact subset of a topological space X if and only if A with the
subspace topology is a compact topological space.

This shows that compactness of A is an absolute property, not dependent on
whether we view A as a subspace of a larger space or not.Openness and closedness are
not absolute properties: A = [0, 1] is open in A with the subspace topology from the
Euclidean line ℝ, but A = [0, 1] is not open in ℝ. B = (0, 1) is closed in the subspace B
of ℝ, but not closed in ℝ. However, if A ⊆ X, the subspace A is compact if and only if
A is a compact subset of X. We may iterate this to subspaces of subspaces. [3, 4) is not
closed in ℝ, but is closed in the subspace (0, 4) of ℝ. However, [3, 4) is not compact
in ℝ, in (0, 4), nor in [3, 4).

Below is another important result about compact sets.

Theorem 5.1.6. If A is a compact set in aHausdorff topological spaceX, thenA is closed.

Proof. Suppose A is a compact set in a Hausdorff topological space X. We will show
that X−A is open. If x ∈ X−A, then, for every a ∈ A, there exist disjoint open neighbor-
hoodsUa of a and Va of x, as suggested in Figure 5.1. Now {Ua : a ∈ A} is an open cover
of A, so there exists a finite subcover {Ua : a ∈ F} where F is some finite subset of A.



118 | 5 Compactness

Figure 5.1: {Ua : a ∈ A} is an open cover of A.
Now U = ⋃{Ua : a ∈ F} is an open set containing A, and V = ⋂{Va : a ∈ F} is an open
set containing x. Furthermore,U ∩V = 0, for y ∈ U ∩V would imply y ∈ Ui ∩V ⊆ Ui ∩Vi
for some i ∈ F, contrary to Ui ∩ Vi = 0. In particular, V is an open neighborhood of x
contained in X − U ⊆ X − A. Since x was an arbitrary point of X − A, this shows X − A
is open.

In general, compactness is not a hereditary property. That is, if X is compact and
Y ⊆ X, then the subspace Y need not be compact. The example of (0, 1) ⊆ [0, 1] in the
Euclidean line shows this. However, compactness is hereditary to closed subsets.

Theorem 5.1.7. If A is a closed set in a compact topological space X, then A is compact.

Proof. Suppose A is a closed set in a compact topological space X and 𝒞 is an open
cover of A. The collection 𝒞 ∪ {X − A}, suggested in Figure 5.2, is an open cover of X
which has, by the compactness of X, a finite subcover ℱ . Now ℱ − {X − A} is a finite
subcollection of 𝒞 which covers A. Thus, A is compact.

Figure 5.2: If A is closed, an open cover 𝒞 of A gives an open cover 𝒞 ∪ {X − A} of X .
The previous two results are often stated as “compact in Hausdorff is closed” and

“closed in compact is compact”. While compactness is not generally hereditary, it is
productive. That is, a product of compact spaces is compact. This result holds for ar-
bitrary products, but the proof for infinite products is much more complicated and
will be presented in Section 7.4. We present the proof for finite products. To simplify
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the proof, we would like to work with covers by basic open sets, and will need the
following results.

Theorem 5.1.8. A topological space X is compact if and only if every open cover of X by
basic open sets has a finite subcover.

Proof. If every open cover of X has a finite subcover, then every open cover consisting
of basic open sets has a finite subcover. Conversely, suppose every cover of X by basic
open sets has a finite subcover. If 𝒞 is an open cover of X, then consider the collection
ℬ = {B : B is a basic open set and B ⊆ C for some C ∈ 𝒞}. Now since each C ∈ 𝒞 is the
union of the basic open sets it contains, we see that⋃ 𝒞 = ⋃ℬ, so ℬ is a cover of X by
basic open sets. Let {B1, . . . ,Bn} be a finite subcover from ℬ, and pick Ci ∈ 𝒞 such that
Bi ⊆ Ci. Now {C1, . . . ,Cn} is a finite subcollection of 𝒞 and X ⊆ B1∪⋅ ⋅ ⋅∪Bn ⊆ C1∪⋅ ⋅ ⋅∪Cn,
so {C1, . . . ,Cn} is a finite subcover of X from 𝒞. Thus, every open cover of X has a finite
subcover.

Theorem 5.1.9. If X1,X2, . . . ,Xn are compact topological spaces, then the product X1 ×
⋅ ⋅ ⋅ × Xn is compact.

Proof. Wewill prove that if X and Y are compact, then X ×Y is compact. The result for
finite products will then follow from iterative applications of this result.

Suppose X and Y are compact and 𝒞 is an open cover of X×Y by basic open sets of
form U × V where U and V are open in X and Y , respectively. For any given x ∈ X, the
set {x}×Y is a homeomorphic copy of Y embedded in X×Y . Thus, 𝒞 is an open cover of
the compact set {x}×Y . If 𝒞x is a finite subcover of {x}×Y from 𝒞, then 𝒞x actually covers
not just the “line” {x} × Y but an open band Ux × Y for some open neighborhood Ux
of x. (This is often called the tube lemma.) To see this, if 𝒞x = {U1 ×V1, . . . ,Un ×Vn} ⊆ 𝒞
covers {x} × Y , then without loss of generality, we may assume each Ui × Vi intersects
{x} ×Y ; those that do not intersect {x} ×Y are not needed in a cover of {x} ×Y andmay
be discarded. Now if Ux = U1 ∩ ⋅ ⋅ ⋅ ∩ Un, then Ux × Vi ⊆ Ui × Vi for each i = 1, . . . , n, so
𝒞x = {U1 × V1, . . . ,Un × Vn} covers the open band Ux × Y , as depicted in Figure 5.3. So
far, we have used only the compactness of Y . Now we will use the compactness of X.

Figure 5.3: A covering of the line {x} × Y by a finite number of basic open sets {U1 × V1, . . . ,Un × Vn}
actually covers a band Ux × Y .
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Consider the open cover {Ux : x ∈ X} of X, where Ux is as constructed in the previous
paragraph. Since X is compact, there exists a finite subcover {Ux : x ∈ F} where F
is a finite subset of X. But each Ux corresponds to an open band which is covered by
finitely many members of 𝒞, so this will result in a finite subcollection of 𝒞 covering
X × Y . Specifically,⋃{𝒞x : x ∈ F} is a finite subcover of X × Y from 𝒞 since it is a finite
subcollection of 𝒞, 𝒞x covers Ux × Y , and {Ux : x ∈ F} covers X.

Before presenting a criterion to easily recognize compact sets in Euclidean space,
we give a definition.

Definition 5.1.10. A subset A of a metric space (X, d) is bounded if there exists a real
numberM such that d(a, b) < M for all a, b ∈ A.

It is easy to see that a subset A of ametric space X is bounded if and only if for any
x ∈ X, there exists a finite radius N with A ⊆ B(x,N). Indeed, if A ⊆ B(x,N), then, for
any a, b ∈ A, the triangle inequality gives d(a, b) ≤ d(a, x)+d(x, b) < N+N = 2N, soA is
bounded. Conversely, if A is a nonempty bounded set with d(a, b) < M for all a, b ∈ A,
fix a point b0 ∈ A. Then d(a, b0) < M for all a ∈ A, so A ⊆ B(b0,M). Furthermore, given
any x ∈ X, A ⊆ B(b0,M) ⊆ B(x,N) where N = d(x, b0) + M. If A is empty, then it is
trivially bounded and contained in any ball B(x,N) with positive radius.

Theorem 5.1.11. Inℝn with the Euclidean topology, A is compact if and only if it is closed
and bounded.

Proof. Suppose A is compact in Euclidean space ℝn. Let 0 ∈ ℝn be the zero vector.
Since ℝn is Hausdorff, A is closed by Theorem 5.1.6. Furthermore, since the nested
open cover {B(0, n) : n ∈ ℕ} of A has a finite subcover, A ⊆ B(0,N) for some N > 0,
so A is bounded. Conversely, suppose A ⊆ ℝn is closed and bounded. Then there ex-
ists N > 0 such that A ⊆ B(0,N). Furthermore, B(0,N) ⊆ [−N ,N]n. (Since |xi| > N
implies √x21 + ⋅ ⋅ ⋅ + x2n > N, x ̸∈ [−N ,N]

n implies x ̸∈ B(0,N).) Thus, A is a closed sub-
set of [−N ,N]n. Since [−N ,N] is homeomorphic to [0, 1], it is compact, and [−N ,N]n is
compact by Theorem 5.1.9. Now A is a closed subset of a compact space, so by Theo-
rem 5.1.7, A is compact.

This immediately gives the following result from calculus.

Corollary 5.1.12 (The extreme value theorem). If [a, b] andℝ have the Euclidean topol-
ogy and f : [a, b] → ℝ is a continuous function on a closed and bounded interval [a, b],
then f has a maximum value and a minimum value over [a, b]. That is, there exist points
c, d ∈ [a, b] with f (c) ≤ f (x) ≤ f (d) for all x ∈ [a, b].

Proof. The domain [a, b] is a closed and bounded interval inℝ, and thus compact and
connected. Since f is continuous, f ([a, b]) is compact and connected. That is, f ([a, b])
is a closed and bounded interval [m,M]. Now the minimum value m ∈ f ([a, b]) must
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equal f (c) for some c ∈ [a, b], and similarly, the maximum value M = f (d) for some
d ∈ [a, b].

Example 5.1.13. As subspaces of the Euclidean plane, the open ball B = {(x, y) ∈ ℝ2 :
x2 + y2 < 1} and the closed ball C = {(x, y) ∈ ℝ2 : x2 + y2 ≤ 1} are not homeomorphic. C
is closed and bounded in the Euclidean plane, so it is compact. But B is not compact,
since the open cover {B((0,0), 1 − 1

n ) : n = 2, 3, . . .} of B has no finite subcover. Or, B is
not a compact set in the Hausdorff space ℝ2 since it is not closed.

Compactness is defined in terms of collections of open sets. Taking complements,
we should be able to characterize compactness in terms of closed sets. A (finite or
arbitrary) collection 𝒞 of open sets covers X if and only if⋃ 𝒞 = X, which occurs if and
only if X −⋃{C : C ∈ 𝒞} = ⋂{X − C : C ∈ 𝒞} = 0. Thus, a collection 𝒞 of open sets covers
X if and only if the associated collection ℱ = {X − C : C ∈ 𝒞} of closed sets has empty
intersection.

Now the following are equivalent:
(a) X is compact.
(b) If 𝒞 is a collection of open sets and every finite subcollection fails to coversX, then

𝒞 fails to cover X.
(c) If ℱ is a collection of closed sets such that every finite subcollection {F1, . . . , Fn}

has nonempty intersection, then⋂ℱ ̸= 0.

After introducing some terminology, the equivalence of (a) and (c) above is stated in
the next theorem.

Definition 5.1.14. A collection ℱ of closed subsets of a topological space X has the
finite intersection property if every finite subcollection ofℱ hasnonempty intersection.

Theorem 5.1.15. A topological space X is compact if and only if every collection ℱ of
closed sets with the finite intersection property has⋂ℱ ̸= 0.

Exercises

1. Each set below is noncompact. Exhibit an open cover which has no finite sub-
cover.
(a) A = [0, 1] in ℝ with the discrete topology.
(b) B = [1,∞) in the Euclidean line.
(c) C = {(x, y) ∈ ℝ2 : x > 0} in the Euclidean plane.
(d) D = ([0, 2] × [−1, 1]) − {(0,0)} in the Euclidean plane.

2. For X = (0, 3) in the Euclidean line, find open covers with the indicated property.
(a) 𝒞 has exactly one finite subcover.
(b) 𝒟 is an infinite collection, and has exactly one finite subcover of cardinality 3.
(c) ℰ has no finite subcover.
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3. Suppose X is a set. Describe the compact subsets of X if
(a) X has the discrete topology.
(b) X has the indiscrete topology.
(c) X has the cofinite topology.
(d) X is finite and has any topology.
(e) X = ℝ with the right ray topology.

4. Give (0, 1) and [0, 1] the Euclidean topologies. Find the functions described or
prove that no such function can exist.
(a) A continuous surjection f : (0, 1) → [0, 1].
(b) A continuous surjection g : [0, 1] → (0, 1).

5. Show that no two of subsets of the Euclidean plane shown below are homeomor-
phic.

A B C D E

6. Give an example of a compact set which is not closed.
7. Give an example of aHausdorff topological spaceX and anonempty proper subset

A which is open and compact. Can such an example be connected? Explain.
8. Let d be the Euclidean metric on ℝ2 and define the post office metric p on ℝ2 by

p(a,b) = { 0 if a = b,
d(a,0) + d(0,b) if a ̸= b.

(a) Which subspaces of (ℝ2, p) inherit the discrete topology?
(b) Discuss the limits of the sequences (( 1n , 1))

∞
n=1 and (( 1n ,0))∞n=1.

(c) Show that the subset [−1, 1]2 is closed and bounded, but not compact in
(ℝ2, p).

9. (a) Prove that the union of finitely many compact sets is compact.
(b) Show that the union of arbitrarily many compact sets need not be compact.

10. Prove that the intersection of arbitrarily many compact subsets of a Hausdorff
space is compact.

11. Let X = [0, 1] be the unit interval in ℝ with the topology having basis {{x} : 0 <
x < 1} ∪ {[0, 1]}. Find two compact subsets of X whose intersection is not compact.

12. Suppose 𝒯C and 𝒯F are topologies onXwith 𝒯C coarser than 𝒯F . Show that if (X, 𝒯F)
is compact, then 𝒯C is compact.

13. Does the converse of Theorem 5.1.9 hold? That is, if X1 × ⋅ ⋅ ⋅ × Xn is compact, must
each Xi (i = 1, . . . , n) be compact? Provide a proof or counterexample.

14. Prove that any continuous bijection f froma compact spaceX to aHausdorff space
Y is a homeomorphism.
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15. Suppose A is a compact subset of the Euclidean lineℝ. Show that every sequence
(xn) in A has a subsequence converging to a point of A.

16. Suppose A is a compact subset of X, B is a compact subset of Y , andW is an open
set in the product X × Y which contains A × B. Show that there exist open sets
U ⊆ X and V ⊆ Y with A × B ⊆ U × V ⊆ W .

17. Show that every compact metric space is separable. That is, show that every com-
pact metric space has a countable dense subset.

18. Suppose the sets X1 and X2 are countably infinite and (X1, 𝒯1) and (X2, 𝒯2) are com-
pact Hausdorff topological spaces with exactly one point which is not isolated.
Show that X1 and X2 are homeomorphic.

19. (a) Show that the assumption that (X1, 𝒯1) and (X2, 𝒯2) are Hausdorff is necessary
for the result of Exercise 18.

(b) Show that the assumption that (X1, 𝒯1) and (X2, 𝒯2) are compact is necessary
for the result of Exercise 18.

20. The extreme value theorem was stated for real valued functions whose domain
was a compact and connected set inℝ. Prove the following more general version:
A is a compact subset of the Euclidean space ℝn if and only if every continuous
function f : A→ ℝ has a maximum value and a minimum value over A.

21. If X is any topological space and Y is compact, show that the projection function
π1 : X × Y → X is a closed mapping.

22. Use the result of Exercise 21 to show that if Y is compact and f : X → Y is a
function, then f is continuous if its graph G = {(x, f (x)) : x ∈ X} is closed in X × Y .
(Compare to Exercise 21 of Section 3.2.)

23. Prove that the converse of Exercise 22 holds if Y is also assumed to be Hausdorff.
That is, prove the closed graph theorem: IfY is compact andHausdorff andX is any
topological space, f : X → Y is continuous if and only if its graph G = {(x, f (x)) :
x ∈ X} is closed in X × Y .

24. Suppose X is a nonempty compact Hausdorff space and f : X → X is contin-
uous. If f (n) represents the composition of f with itself n times, show that ℱ =
{f (X), f (2)(X), f (3)(X), . . .} has the finite intersection property, and show that there
exists a nonempty closed set A with f (A) = A.

25. (The Cantor set) The Cantor set is the subspace of the Euclidean line defined as
follows. Let C1 = [0, 1]. Remove the open middle third to get C2 = [0,

1
3 ] ∪ [

2
3 , 1].

Remove the open middle thirds of the two intervals in C2 to get C3 = [0,
1
9 ] ∪

[ 29 ,
1
3 ] ∪ [

2
3 ,

7
9 ] ∪ [

8
9 , 1]. Having defined Cn, we remove the open middle thirds of

each interval in Cn to form Cn+1. Now the Cantor set (or Cantor middle-thirds set)
is C = ⋂n∈ℕ Cn. Note that in ternary (base 3) notation, a number in [0, 1] has rep-
resentation 0.d1d2d3 ⋅ ⋅ ⋅ = d1 ⋅ 3−1 + d2 ⋅ 3−2 + d3 ⋅ 3−3 + ⋅ ⋅ ⋅. Removing the mid-
dle third ( 13 ,

2
3 ) of C1 removes the numbers with d1 = 1, leaving those with d1 =

0 or 2. Removing the middle thirds of C2 removes those numbers with d2 = 1,
and so on. Thus, the Cantor set (or Cantor ternary set) consists of the real num-
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bers in [0, 1] which can be represented in base 3 as ∑n∈ℕ dn3−n where dn ∈ {0, 2}
for all n. (Note that non-uniqueness of representation allows that some of these
numbers might be represented using 1’s as well. For example, in base 3, 0.02 =
0.10.)
(a) Show that the Cantor set C is compact.
(b) Show that C is uncountable.
(c) If Ln is the combined length of the intervals in Cn, show that limn→∞ Ln = 0.

(This shows that the Lebesgue measure of the Cantor set is zero.)
(d) Show that the connected components of C are the singletons.
(e) Show that C is homeomorphic to the product ∏n∈ℕ{0, 2} with the product

topology, where {0, 2} has the discrete topology.
26. Let ℬ = {(a, b) ∪ ( 1b ,

1
a ) : 0 < a < b} ∪ {[0, b) ∪ (

1
b ,∞) : b > 0}.

(a) Show that ℬ is a basis for a topology 𝒯 on X = [0,∞).
(b) Show that (X, 𝒯 ) is not Hausdorff by exhibiting distinct points which cannot

be separated by disjoint neighborhoods and by exhibiting a sequence which
has more than one limit.

(c) Which convergent sequences have unique limits?
(d) Determine whether (X, 𝒯 ) is compact or not. Prove your answer.

5.2 Compactness in metric spaces

In the previous section, compactness was motivated as one way to quantify that a
topological space has no “missing points”. The open cover definition of compactness
is a powerful tool developed over time. It is perhaps no surprise that historically, the
open cover definition was not the first attempt to quantify that a space has nomissing
points. Many of the first instances motivating the need to quantify compactness oc-
curred in metric spaces, and particularly in Euclidean spaces. In this section, we will
investigate some other useful characterizations of compactness in metric spaces.

In Section 1.6, we defined a limit point of a subset A of a topological space X to be
a point a ∈ X such that every neighborhood of a intersects A in a point other than a.
Thus, a is a limit point of A if and only if a ∈ cl(A − {a}).

Definition 5.2.1. A subsetY of a topological spaceX is limit point compact if every infi-
nite subset ofY has a limit point inY . A subsetY of a topological spaceX is sequentially
compact if every sequence in Y has subsequence converging to a point of Y .

Both of these new versions of compactness may be interpreted as conditions to
eliminate missing “limits”. For example, let Y = (0, 1) with the Euclidean topology.
The infinite subset A = {1/n : n ∈ ℕ, n ≥ 2} is an infinite set in Y with no limit point
in Y , so (0, 1) is not limit point compact. Similarly, the sequence (1/n)n∈ℕ in Y has no
subsequence converging to a point of Y , so Y is not sequentially compact. We will see
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that in a metric space, limit point compactness, sequential compactness, and com-
pactness are equivalent. Before turning to metric spaces, we note some implications
which hold in arbitrary topological spaces.

Theorem 5.2.2.
(a) If a topological space X is compact, then it is limit point compact.
(b) If a topological space X is sequentially compact, then it is limit point compact.

Proof. (a) We will show the contrapositive. If X is not limit point compact, then there
exists an infinite subset A of X which has no limit points. Then, for every x ∈ X, there
exists an open neighborhood Ux of x with Ux ∩ A ⊆ {x}. Now 𝒞 = {Ux : x ∈ X} is an
open cover of X. Since each Ux covers at most one element of A, any finite subcollec-
tion of 𝒞 cannot cover the infinite set A, so 𝒞 has no finite subcover. Thus, X is not
compact.

(b) Suppose X is sequentially compact and A is an infinite subset of X. Now
A must contain a countably infinite sequence (an) of distinct terms. If a is a limit
of a subsequence of (an), then every neighborhood of a contains a tail of the se-
quence (an) and thus intersects A in a point other than a. Thus, a is a limit point
of A.

Example 5.2.3 (Limit point compactness does not imply compactness). Give ℤ the
topology having basis ℬ = {{2n, 2n + 1} : n ∈ ℤ}. The basis ℬ is an open cover ofℤwith
no finite subcover, so this space is not compact. However, given any infinite subset A
ofℤ, if 2n ∈ A, then 2n + 1 is a limit point of A and if 2n + 1 ∈ A, then 2n is a limit point
of A. Thus, the space is limit point compact.

Theorem 5.2.4. A metric space X is limit point compact if and only if it is sequentially
compact.

Proof. By Theorem 5.2.2, we need only show that limit point compactness in a met-
ric space implies sequential compactness. Suppose the metric space X is limit point
compact and (xn) is a sequence in X. If the set of terms {xn} is a finite set, then by
the pigeonhole principle, one term must be repeated infinitely often, and this gives a
constant subsequence, which must converge. So, suppose the set of terms A = {xn}
is infinite. Then A has a limit point a. Not only does every neighborhood U of a in-
tersect A − {a}, but this intersection must be infinite, for otherwise, if ε is the dis-
tance from a to the closest point of U ∩ (A − {a}), then we have the contradiction
that U ∩ B(a, ε) ∩ (A − {a}) = 0. Pick a1 ∈ B(a, 1) ∩ (A − {a}). Since a1 ∈ A, we have
a1 = xm1

for somem1 ∈ ℕ. Among the infinitely many elements of B(a, 1/2) ∩ (A − {a}),
pick one a2 such that a2 = xm2

for some m2 ≥ m1. Continuing inductively, picking
aj ∈ (B(a, 1/j) ∩ (A− {a})) − {x1, x2, . . . , a1, . . . , a2, . . . , aj−1}, we define a subsequence (an)
of (xn) which clearly converges to a.
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By Theorems 5.2.2 and 5.2.4, to show that limit point compactness, sequential
compactness, and compactness agree in a metric space, it only remains to show that
sequential compactness implies compactness. For this step, we present a definition
and some lemmas.

Definition 5.2.5. Ametric space X is totally bounded if for every ε > 0, the open cover
{B(x, ε) : x ∈ X} of X has a finite subcover.

Lemma 5.2.6. Every sequentially compact metric space is totally bounded.

Proof. Suppose to the contrary thatX is a sequentially compactmetric space and there
exists ε > 0 such that the open cover {B(x, ε) : x ∈ X} of X has no finite subcover. Select
a sequence (xn) inX by choosing x1 ∈ X, x2 ∈ X−B(x1, ε), x3 ∈ X−(B(x1, ε)∪B(x2, ε)), and
in general, xn ∈ X−⋃{B(xi, ε) : i = 1, . . . , n−1}. Note that, since the cover {B(x, ε) : x ∈ X}
of X has no finite subcover, we are guaranteed that X − ⋃{B(xi, ε) : i = 1, . . . , n − 1} ̸=
0. Furthermore, by the selection, xn is not within ε of any of the points x1, . . . , xn−1,
and thus d(xj, xk) < ε if and only if j = k. Now we claim that the sequence (xn) has
no convergent subsequence. If (xn) has a subsequence converging to a ∈ X, then the
ball B(a, ε/2) should contain distinct terms xj, xk of the sequence (xn). Then d(xj, xk) ≤
d(xj, a) + d(a, xk) < ε/2 + ε/2 = ε, contrary to j ̸= k.

Lemma 5.2.7. If X is a sequentially compact metric space and 𝒞 is an open cover of X,
then there exists a number δ > 0 such that, for any x ∈ X, there exists U ∈ 𝒞 with
B(x, δ) ⊆ U. The number δ is called the Lebesgue number of 𝒞.

Proof. Assume to the contrary that X is sequentially compact, 𝒞 is an open cover of X,
but for any δ > 0 there exists x ∈ X with B(x, δ) ̸⊆ U for any U ∈ 𝒞. In particular, for
any n ∈ ℕ, we may select xn ∈ X with B(xn, 1/n) ̸⊆ U for any U ∈ 𝒞. Let a be a limit
of a subsequence of (xn), and pick Ua ∈ 𝒞 with a ∈ Ua. Since Ua is open, it contains
B(a, 1/k) for some k ∈ ℕ. Now B(a, 1/(2k)) must contain a tail of the subsequence of
(xn) converging to a. Pick n > 2k with xn ∈ B(a, 1/(2k)). Now y ∈ B(xn, 1/n) implies
d(y, xn) < 1/n < 1/(2k) and xn ∈ B(a, 1/(2k)) implies d(xn, a) < 1/(2k). It follows that
d(y, a) ≤ d(y, xn) + d(xn, a) < 1/k, so y ∈ B(a, 1/k) ⊆ Ua. Thus B(xn, 1/n) ⊆ Ua, contrary
to the choice of xn.

Theorem 5.2.8. In a metric space X, compactness, limit point compactness, and se-
quential compactness are equivalent.

Proof. With Theorems 5.2.2 and 5.2.4, it remains to show that sequential compactness
implies compactness. Suppose the metric space X is sequentially compact. To show
X is compact, suppose 𝒞 is an open cover of X. By Lemma 5.2.7, there exists δ > 0
such that, for any x ∈ X, B(x, δ) ⊆ U for some U ∈ 𝒞. Since X is totally bounded
(Lemma 5.2.6), the open cover {B(x, δ) : x ∈ X} has a finite subcover {B(xi, δ)}ni=1. For
each i = 1, . . . , n, pick Ui ∈ 𝒞 with B(xi, δ) ⊆ Ui. Now {Ui}

n
i=1 is a finite subcover of 𝒞.

Thus, X is compact.
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The three notions of compactness discussed all say that, in some sense, the space
has nothing missing. The three notions of compactness were topological properties,
and theywere equivalent inmetric spaces.Wenow turn to the notion of completeness,
which is also way to say that, in another sense, no points are missing from a metric
space. Completeness is only defined for metric spaces, and requires the following def-
inition.

Definition 5.2.9. A sequence (xn) in a metric space X is a Cauchy sequence if for every
ε > 0, there exists n ∈ ℕ such that d(xj, xk) < ε for all j, k > n.

For comparison, recall that a sequence (xn) in a metric space converges to a limit
L if for every ε > 0, there exists n ∈ ℕ such that d(xj, L) < ε for j > n. Thus, the terms of
a convergent sequence are eventually arbitrarily close to the limit L, while the terms
of a Cauchy sequence are eventually arbitrarily close to each other.

Theorem 5.2.10. Every convergent sequence in a metric space is a Cauchy sequence.

Proof. Suppose the sequence (xn) converges to L in a metric space. Given ε > 0, there
exists n ∈ ℕ such that j > n implies d(xj, L) < ε/2. Now for j, k > n, we have d(xj, xk) ≤
d(xj, L) + d(L, xk) < ε/2 + ε/2 = ε. Thus, (xn) is a Cauchy sequence.

The converse of Theorem 5.2.10 fails: A Cauchy sequence may not converge. For
example, in the set ℚ of rational numbers with the Euclidean metric, consider the
sequence (pn)∞n=1 = (3.1, 3.14, 3.141, 3.1415, 3.14159, . . .)whose nth term pn is the value of
π truncated n places to the right of the decimal. Now as a sequence in the Euclidean
lineℝ, (pn) converges toπ, and thus by Theorem 5.2.10, (pn) is a Cauchy sequence inℝ.
Since ℚ carries the same metric as ℝ, (pn) is a Cauchy sequence in ℚ. However, (pn)
does not converge inℚ; its “limit” π is not an element ofℚ.

This example is typical. If a Cauchy sequence does not converge in a metric
space X, then in some sense the “intended limit” is missing from the metric space.
This prompts the following definition.

Definition 5.2.11. A metric space X is complete if every Cauchy sequence in X con-
verges to a point of X.

The discussion above shows thatℚ with the Euclidean metric is not complete.
We have already discussed completeness of the real line in order-theoretic terms.

Axiom 0.7.4 stated that every nonempty set of real numbers bounded above has a least
upper bound, and dually. This result was called completeness of the real line, and
was given without proof. The theorem below shows that the order-theoretic concept
of completeness of the real line is equivalent to the Euclidean metric concept of com-
pleteness of the real line.

Theorem 5.2.12. The following are equivalent characterizations of the completeness of
the real line with the Euclidean topology.
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(a) Every nonempty subset of ℝ bounded above has a least upper bound, and dually,
every nonempty subset of ℝ bounded below has a greatest lower bound.

(b) Every Cauchy sequence in ℝ converges.

Proof. Suppose (a). If (xn) is a Cauchy sequence, the set {xn : n ∈ ℕ} of terms is
bounded above and below (see Exercise 8). For n ∈ ℕ, let bn = lub{xn, xn+1, xn+2, . . .}.
The sequence (bn) is a decreasing sequence, since each successive term is the supre-
mum of a smaller set. The set of terms {bn : n ∈ ℕ} are bounded below, so L = glb{bn :
n ∈ ℕ} exists. We will show that (xn) converges to L. Given ε > 0, there exists m ∈ ℕ
such that j, k ≥ m implies |xj − xk | < ε/4, so {xm, xm+1, . . .} ⊆ [xm − ε/4, xm + ε/4]. Now
for j ≥ m, we have xm − ε/4 ≤ xj ≤ bj ≤ xm + ε/4, so |xj − bj| < ε/2. Furthermore,
since L = glb{bn : n ∈ ℕ}, and (bn) is a decreasing sequence, there exists s ∈ ℕ such
that j ≥ s implies bj ∈ [L, L + ε/2), so |bj − L| < ε/2. Now for j ≥ max{m, s}, we have
|xj − L| ≤ |xj − bj| + |bj − L| < ε/2 + ε/2 = ε. Thus, (xn) converges to L.

Suppose (b). Let A be nonempty set bounded above. We wish to show that A has
a least upper bound. Pick a1 ∈ A and b1 ∈ ubA. (Note that if a1 = b1, then b1 =
lubA.) Having defined an interval [an, bn] with endpoints an ∈ A and bn ∈ ubA, if
[ an+bn2 , bn] ∩ A ̸= 0, chose a ∈ [

an+bn
2 , bn] ∩ A and set [an+1, bn+1] = [a, bn]. Otherwise,

take [an+1, bn+1] = [an, an+bn2 ]. Either way, we have an+1 ∈ A, bn+1 ∈ ubA, an ≤ an+1 ≤
bn+1 ≤ bn, and |bn+1 − an+1| ≤ |b1−a1|2n , and consequently, |bk − aj| ≤

|b1−a1|
2n for all j, k > n.

Wewill show (an) is a Cauchy sequence. Given ε > 0, pickm ∈ ℕ such that
|b1−a1|
2m < ε/2.

Now for j, k > m, we have |aj − ak | ≤ |aj − bm+1| + |bm+1 − ak | ≤ ε/2 + ε/2 = ε. Thus,
(an) is a Cauchy sequence, and similarly, (bn) is Cauchy. Thus, both sequences (an)
and (bn) converge, and |bn+1 − an+1| ≤ |b1−a1|2n implies limn→∞ |bn − an| = 0, so (an) and
(bn) converge to the same limit, which we will call L. Now if x < L < y, then there are
points an ∈ A, bn ∈ ubA with x < an < L < bn < y, so x ̸∈ ubA and y ̸= lubA. Thus,
L = lubA. Dually, every nonempty set of real numbers bounded below has a greatest
lower bound.

Note that we have not proved that the real line is complete; we havemerely shown
that the two descriptions of this property are equivalent. The proof that ℝ is com-
plete would require a formal construction of the real numbers. The rational num-
bers are easily constructed from ℕ by introducing an additive identity, additive in-
verses, and multiplicative inverses of non-zero elements. In one formal construction,
the real numbers are defined to be equivalence classes of Cauchy sequences of ratio-
nal numbers under the equivalence (xn) ≈ (yn) if and only if limn→∞ |yn − xn| = 0
in ℚ. Thus, the real number 7/8 is defined to be the collection of equivalent Cauchy
sequence of rationals, including (7/8)∞n=1 and (7/8 − 1/n)∞n=1, which converge to 7/8,
and π is defined to be the collection of equivalent Cauchy sequence of rationals, in-
cluding (3.1, 3.14, 3.141, 3.1415, . . .), which after having defined ℝ, would be described
as “converging to π”. With much effort, it can be shown that this construction of the
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real numbers satisfies condition (a) of Theorem 5.2.12, and the topology arises from
the expected metric.

The connectionbetween completeness and compactness in ametric space is given
by the following result.

Theorem 5.2.13. A metric space is compact if and only if it is complete and totally
bounded.

Proof. Suppose the metric space X is compact. Then it is sequentially compact (The-
orem 5.2.8) and thus is totally bounded (Lemma 5.2.6). To see that the sequentially
compact metric space X is complete, suppose (xn) is a Cauchy sequence in X. This se-
quence must have a subsequence (xσ(n)) converging to a limit L (where σ : ℕ → ℕ is a
strictly increasing function). We will show that the sequence (xn) itself must converge
to L. Given ε > 0, there exists n ∈ ℕ such that k > n implies d(xσ(k), L) < ε/2. Also,
there exists m ∈ ℕ such that j, k > m implies d(xj, xk) < ε/2. Now for j, k > max{m, n},
d(xj, L) ≤ d(xj, xσ(k)) + d(xσ(k), L) < ε/2 + ε/2 = ε. Thus, (xn) converges to L and X is
complete.

Conversely, suppose X is complete and totally bounded. To see that X is compact,
we will show that it is sequentially compact. Suppose (xn) is a sequence in X. By to-
tal boundedness, the open cover {B(x, 1) : x ∈ X} by balls of radius 1 has a finite
subcover {B(xi, 1)}ni=1. By the pigeonhole principle, at least one element of this finite
subcover, say B(x1, 1), contains xn for infinitely many values of n. Thus, B(x1, 1) con-
tains an infinite subsequence (xσ1(n)) of (xn). Now the open cover {B(x, 1/2) : x ∈ X}
by balls of radius 1/2 has a finite subcover {B(xi, 1/2)}mi=1, and one element of this sub-
covermust contain an infinite subsequence (xσ2(n)) of (xσ1(n)). Iterating, the open cover
{B(x, 1/3) : x ∈ X} by balls of radius 1/3 has a finite subcover {B(xi, 1/3)}ki=1, one ele-
ment of which contains an infinite subsequence (xσ3(n)) of (xσ2(n)). Continuing in this
manner, consider the subsequence (xσ1(1), xσ2(2), xσ3(3), . . .). By the construction, for any
j, k ≥ 2n, both xσj(j) and xσk(k) lie in a ball B(xi, 1/(2n)) so d(xσj(j), xσk(k)) < 1/n. Thus, the
subsequence (xσj(j)) of (xn) is a Cauchy sequence, and by the completeness of X, it con-
verges. Thus, X is sequentially compact.

Exercises

1. Let X be an infinite set with the cofinite topology. Is X limit point compact? Is X
sequentially compact? Prove your answers directly from the definitions.

2. Compactness does not imply sequential compactness. Find the flaw in this
“proof” that compactness implies sequential compactness:

Suppose X is not sequentially compact. Then there exists a sequence (xn) in X which has
no convergent subsequence. In particular, the sequence (xn) itself does not converge to any
x ∈ X, so for any x ∈ X there exists an openneighborhoodUx of xwhich contains only finitely
many terms of (xn). Now {Ux : x ∈ X} is an open cover of X, but any finite subcollection only
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covers finitely many terms of the sequence (xn) and thus is not a cover of X. Thus, X is not
compact.

3. Show that every closed subset of a sequentially compact topological space is se-
quentially compact.

4. Suppose X is a sequentially compact metric space and A ⊆ X. Show that A is se-
quentially compact if and only if A is closed.

5. Show that every closed subset of a limit point compact topological space is limit
point compact.

6. Suppose X is a limit point compact metric space and A ⊆ X. Show that A is limit
point compact if and only if A is closed.

7. Show that the continuous image of a limit point compact topological space is limit
point compact.

8. Suppose (xn) is a Cauchy sequence in a metric space X. Show that the set {xn : n ∈
ℕ} of terms is bounded.

9. (a) Show that the Euclidean lineℝ is complete if and only if [a, b] is complete for
every compact interval [a, b] ⊆ ℝ.

(b) Together with (a), Theorem 5.1.4 and Theorem 5.2.13 may seem to prove that
the Euclidean line is complete. Looking over the proofs of those theorems,
explain why this does not give a valid logical proof that the Euclidean line is
complete.

10. SupposeX is ametric space inwhich every closed andbounded subset is compact.
Show that X is complete.

11. (a) Show that every totally bounded metric space is bounded.
(b) Find an example of ametric space which is bounded but not totally bounded.
(c) Show that a subset of Euclidean spaceℝn is bounded if and only if it is totally

bounded.
12. Prove that (0, 1) with the Euclidean metric is totally bounded but not compact.
13. (a) Prove that (0, 1)with the Euclideanmetric is not sequentially compact directly

from the definition of sequentially compact.
(b) Prove that (0, 1) with the Euclidean metric is not sequentially compact by

showing that the conclusion of Lemma 5.2.7 fails.
14. Let X = [0, 1] with the Euclidean metric. For the each open cover of X below, find

a Lebesgue number.
(a) 𝒞 = {(1/n, 1]}∞n=1 ∪ {[0, 1/4)}
(b) 𝒟 = {[0, 1/2 + 1/n)}∞n=1 ∪ {(1/2 − 1/n, 1]}∞n=1

15. Give an example of a complete metric space which is not totally bounded.
16. Let X = (0, 1) with the discrete metric, Y = (0, 1) with the Euclidean metric, and

f : X → Y be the function f (x) = x. Complete the details that this shows the
continuous image of a complete metric space need not be complete.

17. Suppose X is a complete metric space and A ⊆ X. Must A be complete? If A is
closed, must A be complete?
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18. Suppose (xn) and (yn) are Cauchy sequences in ℚ. Without appealing to the fact
that (xn) and (yn)must converge to real numbers which may not be inℚ, show
(a) (xn − yn) is a Cauchy sequence inℚ.
(b) (|xn|) is a Cauchy sequence inℚ.

19. Repeat Exercise 18, appealing to the fact that (xn) and (yn) must converge to real
numbers which may not be inℚ.





6 Metric spaces and real analysis

6.1 Metric spaces

The Euclidean metric topology generated by a basis of balls is the most basic motivat-
ing example for the study of topology. We start with a brief review of some results on
metric spaces. Recall that ametric on a set X is a function d : X ×X → [0,∞) such that
(a) d(x, y) ≥ 0 for all x, y ∈ X (nonnegativity);
(b) d(x, y) = 0 if and only if x = y;
(c) d(x, y) = d(y, x) for all x, y ∈ X (symmetry);
(d) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X (triangle inequality).

The pair (X, d) is ametric space. The ε-ball B(x, ε) consists of all points y ∈ X which are
less than ε away from x. If (X, d) is a metric space, the collection ℬ = {B(x, ε) : x ∈ X,
ε > 0} of all balls is a basis for themetric topology on X.

Metric spaces were introduced by Maurice Fréchet in his Ph. D. thesis in 1906.
In the discussion and exercises of Section 1.1, we defined three metrics on the

plane:

the Euclidean metric d((x, y), (a, b)) = √(x − a)2 + (y − b)2,
the sup metric m((x, y), (a, b)) = sup{|x − a|, |y − b|}, and

the taxicab metric t((x, y), (a, b)) = |x − a| + |y − b|.

The ε-balls in these three metrics on ℝ2 are shown in Figure 6.1.

Figure 6.1: B(x, ε) in the Euclidean, sup, and taxicab metrics.

Recall (Theorem 1.4.10) that one topology 𝒯F on X is finer than another 𝒯C if for each
basic 𝒯C neighborhoodV of x ∈ X, there exists a basic 𝒯F neighborhood of x contained
in V . Since each round (Euclidean) ball around x contains a square (sup-metric) ball,
which contains a diamond (taxicab-metric) ball, which contains a round ball, we see
that these three metrics on ℝ2 generate the same topology.

In Section 5.1, we defined a bounded subset of a metric space X to be a set A such
thatA is contained in some ballB(x,N). It is easy to show thatA is bounded if and only
if the set S = {d(x, y) : x, y ∈ A} is a bounded subset of ℝ, that is, if there existsM ∈ ℝ

https://doi.org/10.1515/9783110686579-007
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with S ⊆ [−M,M]. If (X, d) is a metric and the set X itself is bounded, then we say d is a
bounded metric on X. The Euclideanmetric d onℝ is not a boundedmetric. Given any
potential boundM > 0, we can find points such as x = 0 and y = 2M which are farther
thanM units apart. However, if we truncate all distances greater than 1 by taking

d̄(x, y) = min{d(x, y), 1},

then one can verify that d̄ is a bounded metric. (Only the triangle inequality is non-
trivial to verify.) This metric d̄ is called the standard boundedmetric associated with d.
Furthermore, if ε < 1, then the ε-balls in d and d̄ agree. Since it is the balls with small
radii which are most important in defining the basis for a topology, d and d̄ generate
the same topology. (See Exercise 2.)

Thus, metrics with very different properties may generate the same topology.
A significant question in topology has been the question of which topological

spaces are generated by somemetric; that is, which topological spaces aremetrizable.
Since every metric space is Hausdorff, any topological space which is not Hausdorff
will not be metrizable. The idea of the taxicab metric provides the basis for the proof
of the next result.

Theorem 6.1.1. If (X, dX) and (Y , dY ) are metric spaces, then X × Y with the product
topology is metrizable.

Proof. Consider the function d : (X × Y)2 → [0,∞) defined by d((x, y), (a, b)) =
dX(x, a) + dY (y, b). It is easy to see that d is nonnegative, symmetric, and d((x, y),
(a, b)) = 0 if and only if (x, y) = (a, b). The triangle inequality follows by applying the
triangle inequality in both coordinates: for any (x, y), (a, b), (z,w) ∈ X × Y ,

d((x, y), (a, b)) + d((a, b), (z,w)) = dX(x, a) + dY (y, b) + dX(a, z) + dY (b,w)
≥ dX(x, z) + dY (y,w)
= d((x, y), (z,w)).

For (x, y) ∈ X × Y , a basic neighborhood of (x, y) in the product topology has form
BX(x, ε) × BY (y, ε). Now (z,w) ∈ B((x, y), ε) implies z ∈ BX(x, ε) and w ∈ BY (y, ε), so
B((x, y), ε) ⊆ BX(x, ε) × BY (y, ε), so the metric topology on X × Y is finer than the prod-
uct topology. However, (z,w) ∈ BX(x, ε/2) × BY (y, ε/2) implies d((x, y), (z,w)) < ε, so
BX(x, ε/2)×BY (y, ε/2) ⊆ B((x, y), ε), showing that the product topology is finer than the
metric topology. Thus, the topologies agree, and this shows that the product topology
is metrizable.

In any interpretation of sequential convergence, xn → x should occur if and only
if the terms xn are getting close to x. Thus, the following result is expected.

Theorem 6.1.2. If (xn)n∈ℕ is a sequence in ametric space (X, d), then xn → x if and only
if d(xn, x) → 0.
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Proof. The following statements are equivalent:
xn → x.
For any ε > 0, there exists N ∈ ℕ with xn ∈ B(x, ε) for all n ≥ N .
For any ε > 0, there exists N ∈ ℕ with d(xn, x) < ε for all n ≥ N .
For any ε > 0, there exists N ∈ ℕ with d(xn, x) ∈ B(0, ε) for all n ≥ N .
d(xn, x) → 0.

Thus, if (xn, x) → (x, x), then d(xn, x) → d(x, x). In the proof of the next result, we
show that a metric d preserves limits of all sequences and thus (by Theorem 3.1.7) is a
continuous function.

Theorem 6.1.3. Suppose (X, d) is a metric space and (xn, yn) → (x, y) in X × X. Then
d(xn, yn) → d(x, y), and thus the metric d : X × X → [0,∞) is continuous, where [0,∞)
carries the Euclidean metric.

Proof. Suppose (xn, yn) → (x, y) inX×X. Since theprojection functions are continuous,
xn → x and yn → y in X. Thus, given ε > 0, there exist N1,N2 ∈ ℕ such that n ≥ N1
implies d(xn, x) < ε/2 and n ≥ N2 implies d(yn, y) < ε/2. Now for n ≥ N = max{N1,N2},

d(xn, yn) ≤ d(xn, x) + d(x, y) + d(y, yn) < ε/2 + d(x, y) + ε/2.

Subtracting d(x, y) from both sides of this inequality shows d(xn, yn) −d(x, y) < ε. Sim-
ilarly, for n ≥ N,

d(x, y) ≤ d(x, xn) + d(xn, yn) + d(yn, y) < ε/2 + d(xn, yn) + ε/2,

which gives d(xn, yn) − d(x, y) > −ε. Together, this shows that, for every ε > 0, there
exists N ∈ ℕ such that |d(xn, yn) − d(x, y)| < ε for all n ≥ N . Thus, d(xn, yn) → d(x, y),
and since d preserves limits, d is continuous.

Most of the metrics we have seen have described distances between points of ℝn.
We now look at metrics on sets of other kinds of objects.

Example 6.1.4 (The Hamming metric). Let X = {0, 1}n be the set of all binary n-tuples.
An element of X has form (x1, x2, . . . , xn) where each xi is either 0 or 1, and is called a
binary word of length n. The Hamming distance between two binary words of length n
is the number of places inwhich thewords differ. That is, if x, y ∈ X with x = (x1, . . . , xn)
and y = (y1, . . . , yn), then dH (x, y) = |{i ∈ {1, . . . , n} : xi ̸= yi}|. For example, on the set of
binary words of length 11, comparing

x = (1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1) and
y = (0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1),

× × × ×

we see that x and y differ in four places, so dH (x, y) = 4.
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The Hamming metric is the basis for error-correcting codes. Suppose we wish to
transmit combinations of the lettersA,B,C,D, and E. Wemay agree beforehand to rep-
resent these letters by the binary words

A = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)
B = (1, 1, 1, 1, 1,0,0,0,0,0,0)
C = (0,0,0,0,0, 1, 1, 1, 1, 1, 1)
D = (1, 1, 1,0,0,0,0,0, 1, 1, 1)
E = (0,0,0, 1, 1, 1, 1, 1,0,0,0).

Since we will only send these letters, we are restricting our attention to the
subspace Y = {A,B,C,D,E} of X = {0, 1}11. Now it is easy to check that the small-
est distance between any distinct pair of these binary words is 5, so for distinct
words y, z in our subspace Y , we have B(y, 3) ∩ B(z, 3) = 0. That is, for any y ∈ X,
we have B(y, 3) ∩ Y = {y}. If a received message includes the binary word w =
(1,0,0,0,0, 1, 1, 1, 1,0, 1) ̸∈ Y = {A,B,C,D,E}, we would observe that w differs from
C in two positions, so w ∈ B(C, 3). Since B(C, 3) ∩ Y = {C}, if we assume that the
received word has fewer than three incorrect binary digits, we must conclude that the
incorrect w should have been C.

We present an application of the Hamming metric to the mathematical study of
social choice. Suppose several individuals each rank k options. For example, fellow
travelers may rank points of interest to visit on a 3-day trip to Paris, employees may
rank items for budgetary preference, or votersmay rank candidates. For our purposes,
a rankingwill be a strict total order <, so each individual specifies the first choice, sec-
ond choice, and so on until the last choice, with no ties. Such a ranking P on k options
{a1, a2, . . . , ak} can be specified by the binary vector ⟨P⟩ formed by going through the
(k2) distinct pairs (ai, aj) in a specified order and recording 1 if ai < aj and 0 otherwise.
Then,wemayuse theHammingmetric tomeasure the distance between two rankings.
Formally, if P is a ranking of {a1, a2, . . . , ak}, we take

⟨P⟩ = ⟨P(a1, a2), P(a1, a3), P(a1, a4), . . . , P(a1, ak),
P(a2, a3), P(a2, a4), . . . , P(a2, ak),

. . .
...

P(ak−2, ak−1), P(ak−2, ak),
P(ak−1, ak)⟩,

where P is viewed as the strict total order < and

P(ai, aj) = {
1 if ai < aj
0 if ai ̸< aj.
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Given two rankings P,Q of the k options, theKemeny distance (orKendall tau distance)
between them is K(P,Q) = dH (⟨P⟩, ⟨Q⟩). Table 6.1 shows the six strict total orders
P1, . . . ,P6 on {a1, a2, a3} and their associated binary vectors.

Table 6.1: Binary vectors associated with the six rankings of {a1, a2, a3}.

Label Order ⟨ Pi(a1, a2), Pi(a1, a3), Pi(a2, a3) ⟩

P1 a1 < a2 < a3 ⟨ 1, 1, 1 ⟩
P2 a1 < a3 < a2 ⟨ 1, 1, 0 ⟩
P3 a2 < a1 < a3 ⟨ 0, 1, 1 ⟩
P4 a2 < a3 < a1 ⟨ 0, 0, 1 ⟩
P5 a3 < a1 < a2 ⟨ 1, 0, 0 ⟩
P6 a3 < a2 < a1 ⟨ 0, 0, 0 ⟩

Now we see, for example, that

K(P2,P5) = dH(⟨P2⟩, ⟨P5⟩) = dH(⟨1, 1,0⟩, ⟨1,0,0⟩) = 1.

If eight individuals place their ranking of three candidates into a ballot box,
the contents of the ballot box might be: P1,P1,P3,P3,P4,P6,P6,P6. This collection
of rankings, with appropriate multiplicities, is called a profile, and is denoted π =
{{P1,P1,P3,P3,P4,P6,P6,P6}} or π = {Pi}i∈{{I}}, where {{I}} = {{1, 1, 3, 3, 4, 6, 6, 6}}. The
double set-brackets indicate that we are not merely denoting a set of elements, but a
set of elements listed with the appropriate multiplicities; that is, a multiset. A stan-
dard goal would be to take the rankings of all individuals, that is, a profile π, and
aggregate them into a single societal ranking which is “most acceptable”. Since the
distance K(R,Pi) gives a measure of how unhappy someone who prefers the ranking
Pi would be with the ranking R, we may say that a ranking R is the most acceptable
societal ranking from a profile π = {Pi}i∈{{I}} if the sum u(R,π) = ∑i∈{{I}} K(R,Pi) of the
unhappiness is minimum. Such a ranking R is called a Kemeny ranking for the profile.

Example 6.1.5. Given the rankings of {a1, a2, a3} listed in Table 6.1 and the profile π =
{{P1,P1,P3,P3,P4,P6,P6,P6}}, we note that, for i = 1, . . . , 6, ifmi is the multiplicity of Pi,

u(Pi,π) = m1K(Pi,P1) +m2K(Pi,P2) + ⋅ ⋅ ⋅ +m6K(Pi,P6)
= 2K(Pi,P1) + 2K(Pi,P3) + K(Pi,P4) + 3K(Pi,P6).

Calculating the distances K(Pi,Pj) from Table 6.1, we find

u(P1,π) = 2(0) + 2(1) + 2 + 3(3) = 13,
u(P2,π) = 2(1) + 2(2) + 3 + 3(2) = 15,
u(P3,π) = 2(1) + 2(0) + 1 + 3(2) = 9,
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u(P4,π) = 2(2) + 2(1) + 0 + 3(1) = 9,
u(P5,π) = 2(2) + 2(3) + 2 + 3(1) = 15,
u(P6,π) = 2(3) + 2(2) + 1 + 3(0) = 11.

Since P3 and P4 produce the minimum value of the unhappiness sum u(Pi,π), each
of them is a Kemeny ranking for the profile π. In particular, we note that a Kemeny
ranking need not be unique.

It is known that Kemeny rankings areNP-hard to compute, even for profiles of four
rankings.

The Hamming metric measured the distance between words of the same length
formed from a binary alphabet {0, 1}. We turn to a metric which measures distances
between words of arbitrary finite length formed from larger alphabets.

Example 6.1.6 (The Levenshtein metric). If you misspell a word in a word processor,
the spell-checking software may suggest words in its dictionary which it thinks are
close to what you typed. One way to measure closeness of two words is to find the
minimal number of insertions, deletions, and replacements to get from one word to
the other. For example, if you intended to transmit “CAT” but “CAGE” was received,
then the error introduced one replacement (“G” for “T”) and one insertion (“E”). There
are other sequences of errors which could have resulted in the transformation of CAT
to CAGE, such as changing T toN, changingN toG, inserting Z and changing Z to E. The
minimal number of insertions, deletions, and replacements to transform CAT to CAGE
is 2, and this will be the Levenshtein distance between the words. The Levenshtein
distance between finite words x and y is

dL(x, y) = the minimum number of (deletions, insertions, and replacements)
required to change x to y.

For example, dL(CAT,CAGE) = 2, dL(CAT,HAT) = 1, dL(CAT,AT) = 1, and
dL(CAT, IT) = 2.

Vladimir Levenshtein introduced this metric in a 1966 paper in Russian [33]. In
1964, Fred Damerau [12] introduced a very similar metric in which the distance be-
tween two words is the minimum number of deletions, insertions, replacements, or
transpositions of adjacent letters. In a trial for his paper, Damerau found that 80% of
misspelled words had distance 1 from the intended word using his metric.

A more classical usage of metrics is to measure the distance between two func-
tions. The study of functions from subsets of ℝ to ℝ, both with the Euclidean topol-
ogy, is an important part of real analysis. Let C[a, b] be the collection of continuous
functions f : [a, b] → ℝ, where the compact interval [a, b] and ℝ carry the Euclidean
topology. For the three functions f , g, h ∈ C[a, b] shown in Figure 6.2, is g or h closer
to f ?
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Figure 6.2:Which function, g or h, is closer to f ?.

Suppose f represents a heating element in a windshield. Since heat disperses uni-
formly from f , the function g will be completely defrosted before h, so g would be
considered closer to f . However, if the functions represent boundary fences of a lawn,
the region between f and h can be mowed faster than the region between f and g, so
in this interpretation, hwould be considered closer. In the latter interpretation, we are
simply taking the distance between two curves to be the area between them. We are
using the areawise metric (or the L1 metric) metric d on C[a, b] defined by

d(f , g) =
b

∫
a

󵄨󵄨󵄨󵄨f (x) − g(x)
󵄨󵄨󵄨󵄨 dx.

In the former interpretation, the distance between two functions is the greatest
vertical distance between them, which is the sup metric ρ on C[a, b] defined by

ρ(f , g) = sup
x∈[a,b]
{󵄨󵄨󵄨󵄨f (x) − g(x)

󵄨󵄨󵄨󵄨}.

Note that by considering continuous functions over the compact interval [a, b], the
extreme value theorem implies that the supremum indicated exists and is actually
realized at a point in [a, b], so in this case, the supremum is in fact a maximum. In
the sup metric, g is close to f if it is uniformly close; indeed, the ε-ball Bρ(f , ε) = {g ∈
C[a, b] : f (x) − ε < g(x) < f (x) + ε for all x ∈ [a, b]} consists of all functions g ∈ C[a, b]
whose graph lies in the band between f (x) − ε and f (x) + ε, as suggested by Figure 6.3.

Figure 6.3: Bρ(f , ε) consists of all functions like g, whose graph falls within the ε-band above and
below f .

The sup metric is well-defined on the collection of bounded real-valued functions
onℝ. For classes of functions which contain unbounded functions, sup{|f (x) − g(x)| :
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x ∈ ℝ}may not exist (that is, may “= ∞”). Still, we should be able to recognize when
two functions f , g : ℝ → ℝ are uniformly close. We can do this with the bounded sup
metric ρ̄ on the set of all functions from ℝ to ℝ defined by

ρ̄(f , g) = min{1, sup
x∈ℝ
{󵄨󵄨󵄨󵄨f (x) − g(x)

󵄨󵄨󵄨󵄨}}

= sup
x∈ℝ
{min{1, 󵄨󵄨󵄨󵄨f (x) − g(x)

󵄨󵄨󵄨󵄨}} = sup
x∈ℝ
{d̄(f (x), g(x))},

where d̄ is the standard bounded metric associated with the Euclidean metric on ℝ,
and where we take min{1,∞} = 1. For ε < 1, the ε-balls in ρ and ρ̄ agree, so these
metrics generate the same topology.

A sequence of functions fn : ℝ → ℝ converges uniformly to a function f if it con-
verges to f in themetric spaceof all functions fromℝ toℝwith thebounded supmetric.
The topology generated by the bounded sup metric is called the uniform topology. For
this reason, the bounded sup metric is also called the uniform metric.

Example 6.1.7. The sequence (fn)n∈ℕwhere fn(x) = x2+cos(nx)/n converges uniformly
to f (x) = x2. Given any ε > 0, pick N ∈ ℕ such that 1

N < ε. Then, for n > N, we have

sup{󵄨󵄨󵄨󵄨fn(x) − f (x)
󵄨󵄨󵄨󵄨 : x ∈ ℝ} = sup{

󵄨󵄨󵄨󵄨cos(nx)/n
󵄨󵄨󵄨󵄨 : x ∈ ℝ} =

1
n
<

1
N
< ε.

That is, for n > N we have fn ∈ B(f , ε). Thus, (fn)n∈ℕ converges uniformly to f (x) = x2.
Some terms of the sequence are shown in Figure 6.4.

Figure 6.4: fn(x) = x2 + cos(nx)/n for n = 1, 5,9.

Exercises

1. Show that if A is a bounded subset of a metric space (X, d), then clA is bounded.
2. Suppose (X, d) is a metric space and δ > 0. Show that ℬδ = {B(x, ε) : x ∈ X,

0 < ε ≤ δ} is a basis for the metric topology on X.
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3. If d is a metric on X, prove that the associated standard boundedmetric d̄ defined
by d̄(x, y) = min{1, d(x, y)} is a metric on X.

4. Suppose (X, d) is a metric space, x ∈ X, and ε ≥ 0. The closed ball centered at x
with radius ε is B(x, ε) = {y ∈ X : d(x, y) ≤ ε}.
(a) Show that the closed ball B(x, ε) is a closed set in the metric topology on X.
(b) Show that cl(B(x, ε)) ⊆ B(x, ε), and give an example of a metric space (X, d) in

which cl(B(x, ε)) ≠ B(x, ε) for some x ∈ X and some ε > 0.
5. Suppose d1 and d2 are two metrics on a set X.

(a) Give a proof or counterexample: The sum d1 + d2 is always a metric.
(b) Give a proof or counterexample: The product d1d2 is always a metric.

6. Consider the function p : ℝ2 → [0,∞) defined by p(x, y) = max{|x − y|, |x + y|}.
Which properties of the definition of a metric are satisfied by p?

7. Show that an infinite connected metric space must be uncountably infinite.
8. Using the error-correcting code given in Example 6.1.4, decode the following erro-

neous messages.
(a) (1, 1, 1, 1,0, 1, 1,0, 1, 1, 1) (0,0,0, 1, 1, 1, 1, 1, 1, 1, 1) (0, 1,0, 1,0, 1, 1, 1,0,0,0)
(b) (1, 1, 1, 1, 1,0, 1,0,0, 1,0) (0,0,0,0,0, 1, 1, 1,0,0,0) (1, 1,0, 1, 1, 1, 1, 1,0,0,0)

9. Label the binary 5-tuple (d4, d3, d2, d1, d0) ∈ X = {0, 1}5 by the base 10 integer
n = d424+d323+d2d2+d121+d020 having binary digits d4, d3, d2, d1, d0. With these
labels, X = {0, 1, . . . , 31}. In the Hammingmetric, find B(31, 2), B(20, 2), and B(0, 3).

10. With the orders on {a1, a2, a3} as in Table 6.1, find all Kemeny rankings for the pro-
file π = {{P1,P3,P3,P5,P6,P6}}. Is each Kemeny ranking an element of the profile?

11. With the orders on {a1, a2, a3} as in Table 6.1, find all Kemeny rankings for the pro-
file π = {{P1,P1,P2,P2,P2,P3,P4,P4,P4,P5,P6,P6}}.

12. If P is a ranking of {a1, . . . , ak}, let P← be the ranking obtained by reversing P. That
is, P’s ranking of the elements from best to worst is P←’s ranking of the elements
from worst to best; ai < aj in P if and only if aj < ai in P←. Show that if π is a
profile on {a1, . . . , ak} in which the multiplicity of Pi equals the multiplicity of P←i
for every Pi ∈ π, then every ranking of {a1, . . . , ak} is a Kemeny ranking.

13. Suppose π is a profile of rankings of {a1, a2, a3} and i, j are distinct elements of
{1, 2, 3}. If π only includes rankings which place ai < aj, show that any Kemeny
ranking forπ alsohasai < aj. (That is, theKemeny rankingof aprofile of {a1, a2, a3}
satisfies the Pareto condition.)

14. In the Levenshtein metric, find a word whose distance from COUNC is one, and
find five words in B(COUNC, 3).

15. In the Levenshtein metric,
(a) Is SIXTY closer to SEVENTY or EIGHTY?
(b) Is TOPOLOGY closer to TOPOGRAPHY or BIOLOGY?
(c) Is CONNECTED closer to COMPACT or COUNTABLE?

16. (The prefix metric) Let S = {(xi)∞i=1 : xi ∈ {0, 1} for all i ∈ ℕ} be the set of all
binary sequences. Two sequences x = (xi)∞i=1 and y = (yi)∞i=1 are said to have a
common prefix of length n, denoted pre(x, y) = n, if the two sequences agree in the
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first n terms and differ in the (n + 1)st term. The prefix metric p on X is defined by
p(x, y) = 0 if x = y, and for distinct sequences x and y with a common prefix of
length n ∈ ℕ ∪ {0}, p(x, y) = 1

2n =
1

2pre(x,y) .
Suppose a = (1,0, 1, 1, 1, 1, 1, 1, 1, . . .), b = (1,0, 1, 1, 1,0,0,0,0, . . .), c = (1, 1,0, 1,0, 1,
0, 1,0, . . .), and d = (0,0, 1, 1, 1, 1, 1, 1, 1, . . .).
(a) Find p(a, b), p(a, c), and p(a, d).
(b) If x = (1)∞n=1, describe the points y with p(x, y) =

1
16 .

(c) If z is an arbitrary element of S, and n ∈ ℕ ∪ {0}, give a verbal description of
B(z, 12n ).

(d) Show that, for every x, y, z ∈ S, pre(x, z) ≥ min{pre(x, y),pre(y, z)}.
(e) Show that the prefix metric is indeed a metric on S.

17. An isometry is a distance-preserving function from one metric space to another.
That is, if (X, dX) and (Y , dY ) are metric spaces, an isometry from X to Y is a func-
tion f : X → Y such that, for every a, b ∈ X, dX(a, b) = dY (f (a), f (b)). Show that if f
is an isometry from (X, d) onto (Y ,m), then f is a homeomorphism and f −1 : Y → X
is an isometry.

18. Let f : ℝ2 → ℝ2 be the functionwhich rotates a vector (x, y) ∈ ℝ2 around the origin
through a fixed angle α. That is, in polar coordinates, f ((r, θ)) = (r, θ + α). Is f an
isometry (see Exercise 17) if:
(a) The domain and codomain ℝ2 carry the Euclidean metric?
(b) The domain and codomain ℝ2 carry the taxicab metric?

19. For r > 0, let Sr = {(x, y) ∈ ℝ2 : x2 + y2 = r2} = {(r, θ) : θ ∈ [0, 2π)} be the circle of
radius r. Let d : Sr × Sr → ℝ be the function that gives the length of the shortest
arc of Sr between two points. Show that d is a metric on Sr .

20. If (X, d) is ametric space,we say that {x, y, z} ⊆ X is a degenerate triangle if d(x, z) =
d(x, y) + d(y, z). If every triangle in a metric space is degenerate, one might ex-
pect that the metric space is isometric to a subspace of the Euclidean line (see
Exercise 17). This is true except for one class of 4-point spaces. (For more details,
see [40].)
Let d be the arc length metric on the unit circle S1 defined in Exercise 19. Consider
the 4-point subspace X = {(r, θ) : r = 1, θ ∈ {0,π/4,π, 5π/4}} of S1.
(a) Show that every triangle in (X, d) is degenerate.
(b) Show that (X, d) cannot be realized as a subspace of the Euclidean line.

21. Confirm that d(f , g) = ∫ba |f (x) − g(x)| dx defines a metric on C[a, b].
22. Confirm that ρ(f , g) = sup{|f (x) − g(x)| : x ∈ [a, b]} defines a metric on C[a, b].
23. The bounded sup metric ρ̄ on the set of functions from ℝ to ℝ was defined by

ρ̄(f , g) = min{1, sup
x∈ℝ
{󵄨󵄨󵄨󵄨f (x) − g(x)

󵄨󵄨󵄨󵄨}} = sup
x∈ℝ
{min{1, 󵄨󵄨󵄨󵄨f (x) − g(x)

󵄨󵄨󵄨󵄨}}.

Confirm that these two expressions for ρ̄(f , g) are equal.
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24. Consider the function h : ℝ → ℝ defined by

h(x) = { 1 if x ∈ ℚ,
−1 if x ̸∈ ℚ.

(a) Give two continuous functions in Bρ(h, 1.25).
(b) Prove that there is no continuous function in Bρ(h, 1).

25. Consider the functions f (x) = x2, g(x) = x3, and h(x) = x5 in C[0, 1].
(a) Determine whether f or h is closer to g in the sup metric ρ.
(b) Determine whether f or h is closer to g in the areawise metric d defined by

d(f , g) = ∫10 |f (x) − g(x)| dx.
(c) Is f closer to g in the sup metric or in the areawise metric?

26. (Metric-preserving functions) A function f : [0,∞) → [0,∞) is metric-preserving
if for any metric d on X, f ∘ d is also a metric on X.
(a) Show that f : [0,∞) → [0,∞) is metric preserving if f is increasing, f (x) = 0

if and only if x = 0, and f (x + y) ≤ f (x) + f (y) for any x, y ∈ X.
(b) If f meets the hypotheses of (a) and is continuous, show that the metrics d

and f ∘ d generate the same topology on X.
(c) Show that f (x) = x

1+x meets the hypotheses of (a) and is continuous, so f ∘ d
is a metric for any metric d on X. Note that (f ∘ d)(a, b) = d(a,b)

1+d(a,b) defines a
bounded metric generating the same topology as the metric d.

6.2 Infinite products and functional analysis

In the Cartesian coordinate system, to visualize a point of ℤ3, we draw three perpen-
dicular copies ofℤ and find (a, b, c) ∈ ℤ3 by finding the coordinates a in the first copy,
b in the second copy, and c in the third copy. This techniquewill not work for products
of more than three factors since we have only 3 spatial dimensions in which to draw
perpendicular axes. For a visual interpretation which can generalize to products of
more than three factors, we may draw three parallel copies ofℤ and find (a, b, c) ∈ ℤ3

by finding the coordinates a in the first copy, b in the second copy, and c in the third
copy, as suggested in Figure 6.5.

Wemaywrite the productℤ3 in various forms, including∏i∈{1,2,3}ℤ = ℤ
{1,2,3}. Now

a point of ℤ3 has form (x1, x2, x3) = (f (1), f (2), f (3)) where xi = f (i) ∈ ℤ for each i in the
index set {1, 2, 3}. Thus, we may view ℤ3 = ℤ{1,2,3} as the collection of all functions
f : {1, 2, 3} → ℤ.

For another example, the product∏n∈ℕℝ = ℝ
ℕ consists of a copy of ℝ for each

natural number n ∈ ℕ. An element of ∏n∈ℕℝ may be viewed as a vector ⟨an⟩n∈ℕ, a
sequence (an)n∈ℕ, or a function f : ℕ → ℝ defined by f (n) = an, where an ∈ ℝ for
every n ∈ ℕ. This is the usual interpretation of a sequence (an)n∈ℕ of real numbers as
a function f : ℕ → ℝ, andwe graph such functions by finding the nth coordinate an in
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Figure 6.5: The point (3,4, 1) in ℤ × ℤ × ℤ visualized with perpendicular coordinate axes and parallel
coordinate axes.

the nth parallel copy of ℝ. That is, given n ∈ ℕ to specify the coordinate in question,
we plot (n, f (n)) = (n, an).

Similarly, ∏x∈ℝ[0, 1] = [0, 1]
ℝ provides a copy of [0, 1] for each x ∈ ℝ, and a

point of this product may be viewed as a vector ⟨ax⟩x∈ℝ = ⟨f (x)⟩x∈ℝ or a function
f : ℝ → [0, 1], where for x ∈ ℝ, f (x) represents the xth coordinate ax. Notice that,
since the indexing setℝ is uncountable, wemay not think of this vector as a sequence.
Sequences are indexed by countable sets.

We formally define our notation.

Definition 6.2.1. If X is any set and I is any index set, then the Cartesian product
∏i∈I X = X

I of I copies of X is the collection {f : I → X} of all functions from I to X. A
function f ∈ XI = ∏i∈I X may be thought of as a vector∏i∈I f (i) = ⟨f (i)⟩i∈I whose ith
coordinate is f (i) = πi(f ).

Our discussion of infinite products so far has been purely set-theoretic. We now
turn to topology and introduce the product topology on an infinite product. While the
notation of the previous definition considered products with all factors equal, we now
consider arbitrary products which may have different factors.

The fundamental topological property that wewish to preserve for arbitrary prod-
ucts is that the projection maps should be continuous.

Definition 6.2.2. The product topology on an arbitrary product∏i∈I Xi of topological
spaces (Xi, 𝒯i) is the smallest topology on ∏i∈I Xi which makes the projection maps
πj : ∏i∈I Xi → Xj continuous for every j ∈ I. That is, the product topology on∏i∈I Xi is
the coarsest topology which includes 𝒮 = {π−1j (Uj) : j ∈ I ,Uj ∈ 𝒯j}.
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Now 𝒮 = {π−1j (Uj) : j ∈ I ,Uj ∈ 𝒯j} need not be a basis for a topology on∏i∈I Xi, but
it is a subbasis since, for any given j ∈ I,⋃𝒮 includes π−1j (Xj) = ∏i∈I Xi. Any topology
which makes each projection function continuous must contain 𝒮. If Uj is open in Xj,
then π−1j (Uj) has form ∏i∈I Wi where Wi = Xi if i ̸= j, and Wj = Uj. To project into
Uj ⊆ Xj, the other coordinates are completely unrestricted; only the jth coordinate
must fall in Uj. In∏i∈ℕℝ, Figure 6.6 shows π

−1
4 ((1, 2)).

?? 12
ℝ1 ℝ2 ℝ3 ℝ4 ℝ5 ℝ6 ℝ7

⋅ ⋅ ⋅

(a)

?
?
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(b)

Figure 6.6: (a) Subbasic element π−14 ((1, 2)) in∏i∈ℕ ℝ. (b) Basic element π
−1
4 ((1, 2)) ∩ π

−1
7 ((√2, 3)) in

∏i∈ℕ ℝ.

Now a basis is obtained by taking finite intersections of the subbasis elements from 𝒮.
This gives the following result.

Theorem 6.2.3. The product topology on∏i∈I Xi has a basis consisting of sets of form
∏i∈I Wi whereWi is open in Xi for every i ∈ I andWi = Xi for all but finitely many indices
i ∈ I.

Many familiar properties for finite products remain true for infinite products. We
list some of them here.

Theorem 6.2.4. Suppose (Xi, 𝒯i) is a topological space for each i in an arbitrary index
set I, and Y = ∏i∈I Xi with the product topology.
(a) Note that a function f : Z → Y = ∏i∈I Xi has form f (z) = ∏i∈I fi(z) where, for i ∈ I,

the function fi : Z → Xi is the ith coordinate function. A function f : Z → Y is
continuous if and only if each of its coordinate functions fi = πi ∘ f is continuous.

(b) Y is Hausdorff if and only if Xi is Hausdorff for every i ∈ I.
(c) Y is connected if and only if Xi is connected for every i ∈ I.
(d) Y is path connected if and only if Xi is path connected for every i ∈ I.

Proof. Most of these results are straightforward generalizations of the case for finite
products and are left as exercises. We will only give one of the more involved proofs,
to show that a product of connected spaces is connected.

Suppose Xi is connected for every i ∈ I. Fix a vector ⟨ai⟩i∈I ∈ X = ∏i∈I Xi. For each
finite set F ⊆ I, let ZF = {⟨xi⟩i∈I ∈ X : xi = ai ∀i ∈ I − F} be the set of vectors in x which



146 | 6 Metric spaces and real analysis

agree with ⟨ai⟩i∈I except possibly in the finite number of coordinates determined by F.
NoweachZF is connected sinceZF ≈ ∏i∈F Xi×⟨ai⟩i∈I−F ≈ ∏i∈F Xi,which is afinite prod-
uct of connected spaces (see Theorem 4.1.13). Let Z = ⋃{ZF : F is a finite subset of I}.
As a union of connected spaces with a point ⟨ai⟩i∈I in common, Z is connected (The-
orem 4.1.12). Since the closure of a connected set is connected (Theorem 4.1.10), cl Z
is connected. We will complete the proof by showing cl Z = X, that is, by showing Z
is dense in X. For this, it suffices to show that every basic open set in X intersects Z.
Suppose B = ∏i∈I Bi is a basic open set in X with Bi ̸= Xi only for indices i in a finite
set F ⊆ I. Pick zi ∈ Bi for i ∈ F and set zi = ai for i ∈ I − F. Now ⟨zi⟩i∈I ∈ B ∩ ZF ⊆ B ∩ Z,
as needed.

We mention one other result in this vein separately. In Theorem 5.1.9 we saw that
a finite product of compact sets is compact. A. N. Tychonoff (1906–1993) proved that
this result holds for arbitrary products.

Theorem 6.2.5 (The Tychonoff theorem). A product ∏i∈I Xi of topological spaces is
compact if and only if every factor Xi is compact.

Tychonoff proved a special case of the theorem in 1930 [48], and stated the gen-
eral case in a 1935 paper. Indeed, it was his 1935 paper that introduced the definition
of the product topology on infinite products. Besides being a deep theorem, the Ty-
chonoff theorem hasmany ramifications and applications.Wewill prove this theorem
in Section 7.4.

An easier way to define a topology on a product∏i∈I Xi of topological spaces Xi is
to take the collection {∏Ui : Ui is open in Xi} as a basis, without requiring any Ui to
be Xi. This gives the box topology on∏i∈I Xi. Now every basic open set in the product
topology is a product of open sets (with all but finitely many of them being the entire
coordinate), so the product topology is contained in the box topology. Unfortunately,
many of the expected results of Theorem 6.2.4 do not hold if the product is given the
box topology, as we see in Exercises 11–12 and the next example.

Example 6.2.6. Consider Y = ∏n∈ℕℝ, and f : ℝ → Y defined by f (x) = (x, x, x, x, . . .),
where ℝ has the Euclidean topology and Y has the box topology. The nth coordinate
function of f is fn(x) = x, which is continuous. However, f is not continuous. The set
W = ∏n∈ℕ(−

1
n ,

1
n ) is an open neighborhood of (0,0,0,0, . . .) in the box topology. Now

f −1(W) = {x ∈ ℝ : f (x) ∈ W} = {x ∈ ℝ : x ∈ (− 1n ,
1
n ) for every n ∈ ℕ} = {0}, which is not

open in ℝ.

We will now discuss a basic topic from functional analysis: convergence of se-
quences of functions from D to ℝ, where the domain D is a subset of the Euclidean
line, and the codomainℝ also has the Euclidean topology. A sequence (fn)n∈ℕ of func-
tions fn : D→ ℝ is just a sequence of elements fn ∈ ℝD = ∏d∈Dℝ. Nowany topology on
the product ℝD will allow us to define convergence of such sequences (fn)n∈ℕ. Before
pursuing this, we introduce a more elementary approach to defining convergence of
sequences of functions fn : D→ ℝ.
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For the remainder of this section, ℝ and all subsets of ℝ will carry the Euclidean
topology.

Definition 6.2.7. Suppose D ⊆ ℝ. A sequence (fn)n∈ℕ of functions fn : D → ℝ con-
verges pointwise to a function f : D → ℝ if for each point x0 ∈ D, the sequence
(fn(x0))n∈ℕ of real numbers converges to f (x0).

We illustrate this definition with an example.

Example 6.2.8. Consider the functions fn : [0,π] → ℝ defined by fn(x) = sinn x. The
first five terms of this sequence are shown in Figure 6.7.

Figure 6.7: The first five terms of (fn)n∈ℕ, (fn(0.8))n∈ℕ, and (fn(2))n∈ℕ.

For the point x0 = π/2 ∈ D, the sequence (fn(x0))n∈ℕ = (sinn(π/2))n∈ℕ = (1n)n∈ℕ con-
verges to the real number 1. For any point x0 ∈ D− {π/2}, we have 0 ≤ sin x0 < 1, so the
sequence (fn(x0))n∈ℕ = (sinn(x0))n∈ℕ is a geometric sequence with ratio r = sin x0 ∈
[0, 1), and converges to 0. Thus, for any point x0 in the domainD of the functions fn, the
sequence of real numbers (fn(x0))n∈ℕ converges, so the sequence of functions (fn)n∈ℕ
converges pointwise. The pointwise limit of (fn)n∈ℕ is the function f : [0,π] → ℝ de-
fined by f (x) = 0 for x ∈ D − {π/2} and f (π/2) = 1.

The theorem below provides another important property of the product topology.
It says that pointwise convergence of a sequence (fn)n∈ℕ of functions fn : ℝ → D is just
convergence in ℝD with the product topology.

Theorem 6.2.9. If D ⊆ ℝ, a sequence (fn)n∈ℕ of functions fn : D → ℝ converges point-
wise to a function f if and only if (fn)n∈ℕ converges to f inℝD with the product topology.

Proof. Suppose the sequence (fn)n∈ℕ converges pointwise to f . To see that the se-
quence converges to f in the product topology, let V = ∏x∈D Vx be a basic neighbor-
hood of f = ⟨f (x)⟩x∈D ∈ ℝD. Then the set F = {x ∈ D : Vx ̸= ℝ} is finite. For each z ∈ F,
pointwise convergence implies (fn(z))n∈ℕ converges to f (z), so there exists Nz ∈ ℕ
such that fn(z) ∈ Vz for n ≥ Nz . If N = max{Nz : z ∈ F}, then n ≥ N implies fn(x) ∈ Vx
for all x ∈ D, so the sequence (fn)n∈ℕ is eventually in the neighborhood V of f .
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Conversely, suppose fn → f in ℝD with the product topology. Given an arbitrary
z ∈ D, we want to show that fn(z) → f (z) in ℝ. Suppose Uz is an arbitrary neigh-
borhood of f (z). Now in ℝD, the sequence (fn)n∈ℕ is eventually in the neighborhood
V = ∏x∈D Vx of f , where Vx = ℝ if x ̸= z and Vz = Uz . Projecting onto the zth coordi-
nate, we see that (fn(z))n∈ℕ is eventually in Uz . Thus, fn(z) → f (z), as needed.

Pointwise convergence of functions from ℝ to ℝ can be compared with uniform
convergence of functions, that is convergence of functions in the uniform topology,
generated by the bounded sup metric and having a basis of balls B(f , ε) = {g : ℝ →
ℝ : f (x) − ε < g(x) < f (x) + ε}. Thus, the basic neighborhoods B(f , ε) in the uniform
topology consist of those functions g which, for every x ∈ ℝ, pass through the hoop
{x} × (f (x) − ε, f (x) + ε). In the product topology onℝℝ, a basic neighborhood V of f is
determined by a finite set F ⊆ ℝ of indices and a neighborhoodUf (x) of f (x) for each x ∈
F. The neighborhood V consists of all the functions g which pass through the hoops
{x} × Uf (x) for each x in the finite set F. Figure 6.8 illustrates this. Indeed, for a basis,
we may take every neighborhood Uf (x) to be a basic neighborhood (f (x) − εx , f (x) + εx)
centered at f (x) for each x ∈ F. Now for ε = min{εx : x ∈ F}, the basic neighborhood
B(f , ε) in the uniform topology is clearly contained in the basic neighborhood V of f
in the product topology. This proves the following result.

Basic neighborhood B(f , ε) of f in the
uniform topology on ℝℝ: All functions
passing through {x} × (f (x) − ε, f (x) + ε)
for every x ∈ ℝ.

Basic neighborhood V of f in the product
topology on ℝℝ: All functions passing
through {xi} ×Ui for i = 1, . . . , nwhere Ui is
a neighborhood of f (xi).

Figure 6.8: Uniform vs. product neighborhoods of f .

Theorem 6.2.10. The uniform topology is finer than the product topology on ℝD. That
is, the topology on ℝD generated by the bounded sup metric is finer than the product
topology.

It is easy to see that if a sequence converges in one topology, then it converges
in any coarser topology. (See Exercise 22 of Section 1.4.) This provides the following
corollary.

Corollary 6.2.11. If a sequence of functions (fn)n∈ℕ inℝD converges uniformly to f inℝD,
then it converges pointwise to f .
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In Example 6.2.8, we saw that the sequence of functions fn : [0,π] → ℝ defined by
fn(x) = sinn x converged pointwise to the function f defined by f (x) = 0 for x ∈ D−{π/2}
and f (π/2) = 1. If the sequence of functions fn converges uniformly, then the “uniform
limit” must equal the “pointwise limit” f . But, the sequence does not converge uni-
formly to f since, for example, the uniform ball B(f , 14 ) contains no functions with
y-values in [ 14 ,

3
4 ] and thus contains no fn.

Example 6.2.12. Consider the sequence of functions gn : ℝ → ℝ where gn(x) is zero
for x outside [n− 1, n+ 1] and on [n− 1, n+ 1], gn(x) is the linear function from (n− 1,0)
to (n, 1) followed by the linear function from (n, 1) to (n + 1,0), as shown below.

? ? ??
(0,0)

?
??

?

n − 1 n + 1

(n, 1)

gn(x)

Now (gn) converges pointwise to g(x) = 0, since given any x ∈ ℝ andanyneighborhood
U of 0 = g(x), gn(x) = 0 ∈ U for all n > x+ 1. However, this sequence does not converge
uniformly. If it converges uniformly, it would have to converge to the pointwise limit
g(x) = 0. But, for ε < 1, the functions gn(x) never fall in the ε-ball (−ε, ε) × ℝ around
g(x) = 0.

The product topology is the topology of pointwise convergence. The bounded sup
metric topology is the topology of uniform convergence (and thus, is called the uni-
form topology). Uniform convergence implies pointwise convergence, but not con-
versely.

We close this section with two very important theorems.

Theorem 6.2.13. If a sequence of continuous functions fn ∈ ℝD converges uniformly to f ,
then f is continuous.

Proof. Suppose fn is a sequence of continuous functions in ℝD converging uniformly
to f . To show f is continuous at each x0 in its domainD, suppose a basic neighborhood
B(f (x0), ε) of f (x0) ∈ ℝ is given. We need to find a neighborhood U of x0 ∈ D such that
f (U) ⊆ B(f (x0), ε). That is, we need a neighborhood U of x0 such that |f (x) − f (x0)| < ε
for all x ∈ U . Since fn converges uniformly to f , there exists k ∈ ℕ such that fk ∈ B(f ,

ε
4 )

in the uniform metric on ℝD, and thus |fk(x) − f (x)| <
ε
4 for all x ∈ ℝ. Since fk is

continuous, for the neighborhood B(fk(x0),
ε
2 ), there exists a neighborhood U of x0

with fk(U) ⊆ B(fk(x0),
ε
2 ), so |fk(x) − fk(x0)| <

ε
2 for all x ∈ U . Now for x ∈ U, the triangle

inequality gives
󵄨󵄨󵄨󵄨f (x) − f (x0)

󵄨󵄨󵄨󵄨 ≤
󵄨󵄨󵄨󵄨f (x) − fk(x)

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨fk(x) − fk(x0)

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨fk(x0) − f (x0)

󵄨󵄨󵄨󵄨
<
ε
4
+
ε
2
+
ε
4

= ε.

Thus, f (U) ⊆ B(f (x0), ε), as needed.
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The next theorem was published in 1885 by the prolific German mathematician
Karl Weierstrass (1815–1897).

Theorem 6.2.14 (Weierstrass approximation theorem). If [a, b] is a compact interval
in ℝ, then the collection P[a, b] of polynomials over [a, b] is dense in the set C[a, b] of
continuous functions over [a, b] with the uniform topology.

The Weierstrass approximation theorem says that any continuous function f :
[a, b] → ℝ is in the closure of P[a, b], so every neighborhood B(f , ε) contains a point
of P[a, b]. That is, given any continuous function f : [a, b] → ℝ and any ε > 0, there
exists a polynomial pwith f (x)−ε < p(x) < f (x)+ε for all x ∈ [a, b]. Thus, any continu-
ous function over a compact interval is uniformly approximated to any desired degree
of accuracy by a polynomial. For a continuous function f : [a, b] → ℝ which has
derivatives of all orders, if the Taylor series for f converges to f on [a, b], then it con-
verges uniformly and a Taylor polynomial may be used as the uniform approximation.
However, theWeierstrass approximation theorem applies to any continuous function,
including those which are not differentiable. Indeed, in 1872, Weierstrass exhibited a
class of functions, including

W(x) =
∞

∑
n=0

cos(5nπx)
2n
,

which are continuous but nowhere differentiable. Weierstrass’s example was perhaps
the first such example to be published, but the Czechmathematician Bernard Bolzano
knew of such an example around 1830. The proof that this functionW is continuous
is based on the fact thatW is the uniform limit of a sequence of continuous functions,
namely, the sequence of partial sums of the infinite series. Indeed, most examples of
continuous nowhere differentiable functions are defined as a limit of a sequences of
functions.

The proof of the Weierstrass approximation theorem is lengthy andmay be found
in [3].

Exercises
1. Is X × Y − (A × B) = (X − A) × (Y − B)? Provide a proof or counterexample.
2. (a) If Y = ∏i∈I Xi has the product topology and Fi is closed in Xi for every i ∈ I,

show that F = ∏i∈I Fi is closed.
(b) More generally, show that if Y = ∏i∈I Xi has the product topology and Ai ⊆ Xi

for every i ∈ I, then cl∏i∈I Ai = ∏i∈I clAi.
3. If∏i∈I Xi has the product topology, prove that a function f : Z → ∏i∈I Xi is con-

tinuous if and only if each of its coordinate functions fi = πi ∘ f is continuous.
4. If J ⊆ I, then we may consider the projection function πJ : ∏i∈I Xi → ∏i∈J Xi

defined by πJ(⟨xi⟩i∈I ) = ⟨xi⟩i∈J . If both products have the product topology, show
that every projection function πJ is continuous.
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5. For J ⊆ I, consider the projection function πJ as in Exercise 4. Must πJ be an open
mapping? Give a proof or counterexample.

6. Suppose I is infinite and ⟨ai⟩i∈I is an isolated point in ∏i∈I Xi with the product
topology. What can be said about the topological spaces Xi?

7. If I is an infinite index set, prove that∏i∈I Xi with the product topology is Haus-
dorff if and only if Xi is Hausdorff for every i ∈ I.

8. If I is an infinite index set, prove that if∏i∈I Xi with the product topology is con-
nected, then Xi is connected for every i ∈ I.

9. If I is an infinite index set, prove that ∏i∈I Xi with the product topology is path
connected if and only if Xi is path connected for every i ∈ I.

10. Give {0, 1} the discrete topology and let 𝒯 be the product topology on S =
∏n∈ℕ{0, 1} = {0, 1}

ℕ. The prefixmetric topology 𝒯pre (see Exercise 16 of Section 6.1)
gives another topology on the set S.
(a) Is one of these topologies finer than the other, are they equal, or are they non-

comparable?
(b) Is S compact in none, one, or both of these topologies? Justify your answer.

11. If {0, 1} has the discrete topology, and Y = {0, 1}ℕ has the box topology, show that
Y is not compact. Does this violate the Tychonoff theorem?

12. A product of connected spaces need not be connected if the product has the box
topology. Let ℝ have the Euclidean topology and consider the product ℝℕ with
the box topology. Each factor ℝ is connected, but the (box) product is not. Prove
this by showing that the set B of bounded real valued sequences is a nonempty,
proper, closed and open subset of ℝℕ with the box topology.

13. Suppose Di is dense in Xi for i ∈ I. Is ∏i∈I Di dense in ∏i∈I Xi with the product
topology? Is∏i∈I Di dense in∏i∈I Xi with the box topology?

14. SupposeD is dense in∏i∈I Xi with the product topology. Must πi(D) be dense in Xi
for all i ∈ I? What if∏i∈I Xi has the box topology?

15. If X is a topological space and I an index set, consider the product topology 𝒯 , the
uniform topology 𝒯ρ, and the box topology 𝒯b onXI . Which of these topologies are
finer than which, and which are not finer than which? Justify your answers.

16. For n ∈ ℕ, define fn : ℝ → ℝ by fn(x) =
1
n . Determinewhether the sequence (fn)n∈ℕ

converges:
(a) in ℝℝ with the product topology.
(b) In ℝℝ with the box topology.
(c) In ℝℝ with the uniform topology.

17. Let C[a, b] be the set of continuous functions f : [a, b] → ℝ. Show that C[a, b]
is not compact in the uniform topology by finding an open cover with no finite
subcover.

18. Let C be the set of continuous bounded functions f : [0, 1] → [0, 1]. That is, C =
{f ∈ [0, 1][0,1] : f is continuous}.
(a) Show that, as a subspace of [0, 1][0,1] = ∏x∈[0,1][0, 1] with the product topol-

ogy, C is not compact.
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(b) Use part (a) to show that, as a subspace of [0, 1][0,1] = ∏x∈[0,1][0, 1] with the
uniform topology, C is not compact.

(c) Show directly that C is not compact in the uniform topology by finding an
open cover with no finite subcover.

19. Consider the sequence (fn)n∈ℕ of functions fn : [0, 2π] → ℝ defined by fn(x) =
cosn x. Find the largest subsetD of [0, 2π] onwhich the sequence converges point-
wise and determine whether the sequence converges uniformly on D. Give the
pointwise and uniform limits, if they exist.

20. Consider the sequence (gn)n∈ℕ of functions gn : (0, 1) → ℝ defined by gn(x) = xn.
Determine whether the sequence converges pointwise and whether the sequence
converges uniformly. Give the pointwise and uniform limits, if they exist.

21. In the areawise metric (or L1 metric) d(f , g) = ∫∞−∞ |f (x) − g(x)| dx on the set of all
continuous functions h : ℝ → ℝ with ∫∞−∞ h(x) dx < ∞, consider the functions gn
and g of Example 6.2.12. Does the sequence (gn) converge to g areawise?

22. Find a sequence of functions in C[−1, 1] which converges pointwise to f (x) = 0,
but does not converge in the areawise metric d(f , g) = ∫1−1 |f (x) − g(x)| dx.

23. Prove or give a counterexample: If fn converges uniformly to f in C[a, b], then fn
converges to f in the areawise metric d(f , g) = ∫ba |f (x) − g(x)| dx on C[a, b].

24. Prove or give a counterexample: If fn converges to f in C[a, b] with the areawise
metric d(f , g) = ∫ba |f (x) − g(x)| dx on C[a, b], then fn converges uniformly to f .

25. Definem : ℝℕ × ℝℕ → ℝ by

m((xn)
∞
n=1, (yn)

∞
n=1) = sup

k∈ℕ

min{1, |xk − yk |}
k

.

(a) Show thatm is a metric.
(b) Show that the metric topology 𝒯m is the product topology on ℝℕ

26. Exercise 25 showed thatℝℕ with the product topology ismetrizable. Complete the
steps below to show that ℝℕ with the box topology is not metrizable.
(a) Show that 0 = ∏n∈ℕ 0 is in the closure of A = (ℝ − {0})

ℕ.
(b) Show that there is no sequence in A converging to 0, and invoke Theo-

rem 1.5.11.
27. The Lagrange remainder theorem states that if a function f (x) has derivatives of

all orders and is approximated by its nth-degree Taylor polynomial,

Tn(x) = f (c) + f
󸀠(c)(x − c) + f

󸀠󸀠(c)(x − c)2

2!
+ ⋅ ⋅ ⋅ +

f (n)(c)(x − c)n

n!
,

then the error f (x) − Tn(x) is equal to

Rn(x) =
f (n+1)(z)(x − c)n+1

(n + 1)!
for some z between x and c.

This error function Rn(x) is called the Lagrange remainder.
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(a) Use the Lagrange remainder theorem to show that the series ∑∞n=0
xn
n! (that is,

the sequence of partial sums of the series) converges uniformly to ex for all
x ∈ [−1, 1].

(b) Show that if the Lagrange remainders Rn(x) for f converge uniformly to
z(x) = 0 on an interval I, then the sequence (Tn(x))∞n=1 of partial sums of
the Taylor series for f converges uniformly to f on the interval I.

6.3 The cocountable topology

Since this section is neither about metric spaces nor real analysis (that is, analysis on
ℝn with the Euclideanmetric), its placement in this chaptermay need an explanation.
To appreciate the good things that happen in metric spaces, this section provides an
example which serves as a reminder that many of those good things need not happen
in arbitrary topological spaces.

Recall that in a metric space (X, d), x ∈ clA if and only if there exists a sequence
in A converging to x (Theorem 1.5.11), and a function f between two metric spaces is
continuous if and only if it preserves limits of sequences, that is, if and only if (xn)∞n=1
converges to x in the domain of f implies (f (xn))∞n=1 converges to f (x) in the codomain
(Theorem 3.1.7).

These facts do not hold in arbitrary topological spaces. That is, in arbitrary topo-
logical spaces, “sequences do not suffice”. These sequence-based facts work in a met-
ric space (X, d) since every point x ∈ X has a countable neighborhood base {B(x, 1n ) :
n ∈ ℕ}, that is, since X is first countable.

In Example 1.4.16, we have seen thatℝwith the cofinite topology is not first count-
able. We introduce a similar topology with is also not first countable.

Definition 6.3.1. The cocountable topology (or countable complement topology) on a
set X is 𝒯cc = {U ⊆ X : X − U is countable} ∪ {0}.

If X is countable, then every set has a countable complement and the cocountable
topology is the discrete topology. Thus, in our further consideration of the cocountable
topology, wewill generally assume the underlying set is uncountable. The verification
that 𝒯cc is a topology and the proof of the following result are straightforward and are
left to the exercises.

Theorem 6.3.2. If X is uncountable, (X, 𝒯cc) is not Hausdorff, and thus not metrizable.

Recall that if (X, 𝒯 ) isHausdorff, thenevery convergent sequence inX has aunique
limit. We next show that the Hausdorff condition is not necessary for unique limits.

Suppose X is uncountable and carries the cocountable topology 𝒯cc, and
(xn)n∈ℕ → a. Then (xn)n∈ℕ is eventually in every neighborhood of a. Now X − {xn :
n ∈ ℕ} is an open neighborhood of any point awhich is not a term xj of the sequence,
and the sequence is never in this neighborhood. Thus, if (xn)n∈ℕ converges, it must
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converge to a term of the sequence. Furthermore, if (xn)n∈ℕ converges to xj, then the
sequence is eventually in the neighborhood X − {xn : n ∈ ℕ, xn ̸= xj} of xj, and thus
the sequence is eventually constantly xj. In particular, every convergent sequence in
the cocountable topology on an uncountable set has a unique limit, even though the
topology is not Hausdorff.

The theorem below shows that in a first countable space, the Hausdorff condition
is not only sufficient for uniqueness of limits of sequences, but also necessary.

Theorem 6.3.3. If X is a first countable space and every convergent sequence has a
unique limit, then X is Hausdorff.

Proof. Suppose X is first countable. We will show the contrapositive: if X is not Haus-
dorff, then there exists a convergent sequence with distinct limits a ̸= b. Suppose X
is not Hausdorff. Then there exist distinct points a ̸= b in X such that every neigh-
borhood of a intersects every neighborhood of b. Suppose {N1,N2, . . .} is a countable
neighborhood base at a and {M1,M2, . . .} is a countable neighborhood base at b. Pick
x1 ∈ N1 ∩ M1, x2 ∈ N1 ∩ M1 ∩ N2 ∩ M2, and in general, xn ∈ ⋂

n
i=1(Ni ∩ Mi). Now for

any neighborhood U of a, there exists Nj ⊆ U, and for k ≥ j, we have xk ∈ Nj ⊆ U,
so (xn)n∈ℕ is eventually in U . Since U was arbitrary, (xn)n∈ℕ converges to a. Similarly,
(xn)n∈ℕ converges to b ̸= a.

Having seen that an uncountable set with the cocountable topology has unique
limits, Theorems 6.3.2 and 6.3.3 give the following result.

Corollary 6.3.4. The cocountable topology on an uncountable set is not first countable.

Now we return to showing that sequences do not suffice in spaces which are not
first countable.

In a metric space, x ∈ cl(B) if and only if there exists a sequence (bn)n∈ℕ of points
in B which converges to x. We show that this fails in (X, 𝒯cc) if X is uncountable.

SupposeX is uncountable andA is a countable subset of (X, 𝒯cc). ThenA is closed.
Any nonempty open set must be uncountable, so the largest open set contained in the
countable set A is 0. Thus, 𝜕A = clA− intA = A−0 = A. Since A = 𝜕A = clA∩ cl(X −A),
every element a ∈ A is an element of cl(X −A). However, there is no sequence in X −A
converging to a ∈ A, since every convergent sequence of terms in X − A is eventually
constant and has a unique limit, and thus converges to a point in X − A and cannot
converge to a ∈ A.

Finally, we show that, for arbitrary topological spaces X and Y , the continuity
of f : X → Y is not equivalent to f preserving limits of sequences. If (xn)n∈ℕ con-
verges to a in (ℝ, 𝒯cc), then (xn)n∈ℕ is eventually constantly a, so for any function f
from (ℝ, 𝒯cc) to any topological space (Y , 𝒯 ), (f (xn))n∈ℕ is eventually constantly f (a)
and thus converges to f (a). Thus, every function f with domain (ℝ, 𝒯cc) preserves lim-
its of sequences. However, not every such function is continuous. For example, if 𝒯D
is the discrete topology, f : (ℝ, 𝒯cc) → (ℝ, 𝒯D) defined by f (x) = x is not continuous,
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since {0} ∈ 𝒯D but f −1({0}) ̸∈ 𝒯cc. Specifically, this shows that if a function f between
two arbitrary topological spaces preserves limits of sequences, then f need not be con-
tinuous.

The following theorem gives a more precise link between continuity and preser-
vation of limits of sequences.

Theorem 6.3.5.
(a) Continuous functions always preserve limits of sequences.
(b) If X and Y are topological spaces, X is first countable, and f : X → Y preserves

limits of sequences, then f is continuous.

The proof is almost identical to the proof of Theorem 3.1.7.

Exercises

1. Prove that the cocountable topology 𝒯cc = {U ⊆ X : X − U is countable} ∪ {0} is
indeed a topology on X.

2. Given a set X, are either of the collections 𝒯1 = {U ⊆ X : X − U is infinite} ∪ {0} or
𝒯2 = {U ⊆ X : X − U is finite or infinite} a topology on X?

3. Among the functions from ℝ to ℝ given below, which are continuous if the do-
main and codomain have the cocountable topology? Which are continuous if the
domain and codomain have the cofinite topology?
(a) f (x) = arctan x

(b) g(x) = { ⌊x⌋ if x ∈ ℚ
x if x ̸∈ ℚ

(c) h(x) = { x if x ∈ ℚ
⌊x⌋ if x ̸∈ ℚ

(d) s(x) = { sin(1/x) if x ̸= 0
0 if x = 0

4. Suppose X is uncountable.
(a) Show that if U ,V are nonempty sets in 𝒯cc, then U ∩V ̸= 0. (That is, (X, 𝒯cc) is

hyperconnected.)
(b) Prove Theorem 6.3.2: If X is uncountable, (X, 𝒯cc) is not Hausdorff.
(c) If (Y , 𝒯 ) is a Hausdorff space and f : (X, 𝒯cc) → (Y , 𝒯 ) is continuous, show

that f is constant. (In particular, every continuous real-valued function f :
(X, 𝒯cc) → (ℝ, 𝒯ℰ ) is bounded, which is the definition of (X, 𝒯cc) being pseu-
docompact.)

5. If X has the cocountable topology 𝒯cc, show that A ⊆ X is compact if and only if
A if finite. (In particular, every compact subset of (X, 𝒯cc) is closed, even though
(X, 𝒯cc) is not Hausdorff.)
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6. Provide a proof of Corollary 6.3.4without appealing to Theorems 6.3.2 and 6.3.3 by
showing that if {Bi}i∈ℕ is a countable 𝒯cc-neighborhood base at x in an uncount-
able set X, then X − {x} = X − ⋂i∈ℕ Bi = ⋃i∈ℕ(X − Bi). Why is this a contradic-
tion?

7. Describe the modifications of the proof of Theorem 3.1.7 required to give a proof
of Theorem 6.3.5.



7 Separation axioms and compactifications
7.1 Separation axioms
Wehave seen theHausdorff separation axiom:X isHausdorff if andonly if every pair of
distinct points inX canbe separatedbydisjoint neighborhoods. In 1914, before thedef-
initions of topology had become standardized, Felix Hausdorff required what is now
known as the Hausdorff separation axiom in his definition of a topology. In their 1935
book Topologie, written in German, Pavel Alexandroff and Heinz Hopf listed the Tren-
nungsaxioms (that is, the separation axioms) which became known as T0,T1,T2,T3,
and T4. They associated the names Kolmogorov, Fréchet, Hausdorff, Vietoris, and Ti-
etze, respectively, with these axioms.

Definition 7.1.1. Suppose X is a topological space.
(a) X is T0 if for every pair of distinct points x, y in X, there exists a neighborhood U

of x which does not contain y OR there exists a neighborhood V of y which does
not contain x.

(b) X is T1 if for every pair of distinct points x, y in X, there exists a neighborhood U
of x which does not contain y AND there exists a neighborhood V of y which does
not contain x.

(c) X is T2 or Hausdorff if for every pair of distinct points x, y in X, there exist disjoint
open sets U and V with x ∈ U and y ∈ V .

(d) X is T3 if for every closed set A and every x ̸∈ A, there exist disjoint open sets U
and V with x ∈ U and A ⊆ V .

(e) X is regular if X is T3 and T1.
(f) X is T4 if for every pair of disjoint closed sets A,B ⊆ X, there exist disjoint open

sets U and V with A ⊆ U and B ⊆ V .
(g) X is normal if X is T4 and T1.

Figure 7.1 suggests these separation axioms.

Figure 7.1: The separation axioms.

Caution: Topologists universally agree that the definitions of regular and T3 and the
definitions of normal and T4 are identical except that one includes the hypothesis of

https://doi.org/10.1515/9783110686579-008
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T1 and the other does not. Unfortunately, there is not universal agreement on which is
which. We define regular and normal to include T1. Some authors define T3 and T4 to
include T1. Thus, whenever you encounter these separation axioms, carefully check
the author’s definitions to see whether the T1 condition is included or not.

Also, these separation axioms are unrelated to the use of the word separation for
a pair of sets U and V which shows that a topological space is not connected.

In Definition 7.1.1(b) for the T1 property, the “AND” condition is unnecessary: If x
and y aredistinct points, so are y and x, andapplying the conditionbefore the “AND” to
the pair y, x gives the second condition. The redundant second conditionwas included
for emphasis to contrast it with the definition of T0.

The separation axioms involving only points (namely,T0,T1, andT2) are called the
lower separation axioms and those involving closed sets are called higher separation
axioms. For the T3 condition, it is sufficient to check that, for every nonempty closed
set A and every point x ̸∈ A, there exist disjoint open sets U and V separating them,
for if A = 0, the sets U = X and V = 0 are open sets separating x and A. Similarly, in
checking the T4 condition it suffices to consider disjoint closed nonempty setsA andB.

Example 7.1.2. The real line ℝ with the right ray topology is T0 but not T1. Given x <
y in ℝ, there is a neighborhood of y excluding x, but there is no neighborhood of x
excluding y.

The real lineℝwith the cofinite topology is T1 but not T2. Given x ̸= y inℝ,ℝ− {y}
is a neighborhood of x excluding y andℝ−{x} is a neighborhood of y excluding x. The
cofinite topology on ℝ has no disjoint nonempty open sets, so it is not T2.

If X is T1 and y ̸= x in X, then there exists a neighborhood of y which does not
intersect x, so y ̸∈ cl{x}. Thus, if X is T1, then singleton sets {x} are closed. Conversely,
if every singleton set is closed, then, for x ̸= y, y ̸∈ cl{x} and x ̸∈ cl{y}, so there ex-
ists a neighborhood of y not containing x and there exists a neighborhood of x not
containing y, and thus X is T1. This proves the following result.

Theorem 7.1.3. A topological space X is T1 if and only if every singleton set {x} is closed.

As an immediate consequence, we note the following implications between the
separation axioms:

Normal⇒ Regular⇒ T2 ⇒ T1 ⇒ T0.

There are fairly simple spaces to show that T2 does not imply regular (see Exer-
cise 13), and there are fairly complicated examples to show that regular does not imply
normal. Every separation axiom is a topological property. We introduce some termi-
nology.

Definition 7.1.4. A topological property is hereditary if whenever X has the property,
then every subspace of X has the property. A topological property is productive if ar-
bitrary products of spaces with the property have the property.
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For example, the Tychonoff theorem says that compactness is a productive prop-
erty. Theorem 6.2.4 shows that Hausdorff, connected, and path connected are produc-
tive topological properties.

Theorem 7.1.5. The properties T0,T1, T2, T3, and regularity are hereditary and produc-
tive.

Proof. Suppose X is Ti for i = 0, 1, or 2, Y is a subspace of X, and x ̸= y in Y . Then x ̸= y
in X. If U and V are neighborhoods of x and y in X guaranteed by the definition of X
being Ti, (only U is needed for T0) then U ∩ Y and V ∩ Y are neighborhoods of x and y
in Y showing that Y is Ti. Suppose X is T3, Y is a subspace of X, A is closed in Y , and
x ∈ Y − A. Now A = A󸀠 ∩ Y for some closed set A󸀠 in X. If x were in A󸀠, it would be
in A󸀠 ∩ Y = A, so x ̸∈ A󸀠. Now if U and V are the disjoint open sets in X separating x
and A󸀠, thenU ∩Y and V ∩Y are disjoint open sets in Y separating x and A. Regularity
is hereditary since T1 and T3 both are.

The proof that these properties are productive is left to the exercises.

Normality is neither productive nor hereditary, but we have the following result
regarding subspaces.

Theorem 7.1.6. If X is T4 and Y is a closed subset of X, then Y is T4. Thus, T4 and nor-
mality are hereditary to closed subspaces.

The proof is left as an exercise.
The next theorems tell us some spaces which are normal.

Theorem 7.1.7. Every metric space (X, d) is normal.

Proof. Suppose (X, d) is a metric space and A,B are disjoint closed sets in X. For each
a ∈ A, since a ̸∈ clB = B, there exists a basic neighborhoodB(a, εa) of awhich does not
intersect B. Similarly, for each b ∈ B, there exists a neighborhood B(b, εb) of b which
does not intersect A. Let U = ⋃{B(a, εa2 ) : a ∈ A} and V = ⋃{B(b,

εb
2 ) : b ∈ B}. Now U

and V are open sets containing A and B, respectively. It only remains to show that U
and V are disjoint. Suppose x ∈ U ∩ V . Then x ∈ B(a, εa2 ) ∩ B(b,

εb
2 ) for some a ∈ A and

some b ∈ B. Either εa ≤ εb or εb ≤ εa. Without loss of generality, assume εa ≤ εb. Now
d(a, b) ≤ d(a, x) + d(x, b) < εa

2 +
εb
2 ≤ εb, so a ∈ B(b, εb), contrary to B(b, εb) ∩ A = 0.

Thus, U ∩ V must be empty. Since A and Bwere arbitrary disjoint closed subsets of X,
it follows that X is T4. Sincemetric spaces are Hausdorff, they are also T1, and thus are
normal.

Theorem 7.1.8. Every compact Hausdorff space is normal.

Proof. Suppose X is compact and Hausdorff. Since Hausdorff implies T1, to show X is
normal we need only check that X is T4. We will first show that X is T3. Recall that a
closed subset of a compact space is compact. If A ⊆ X is closed and b ̸∈ A, then, for
each a ∈ A, by the Hausdorff property, there exist disjoint open neighborhoods Ua of
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a and Va of b. Now {Ua : a ∈ A} is an open cover of the compact set A. If {Ua : a ∈ F} is
a finite subcover, then U = ⋃{Ua : a ∈ F} is an open set containing A and V = ⋂{Va :
a ∈ F} is an open set containing b. Furthermore, U ∩ V = 0, for x ∈ U ∩ V would give
the contradiction that x ∈ Ua0 ∩Va0 for some a0 ∈ F. Thus, X is T3. Now suppose A and
B are disjoint closed sets in X. For every b ∈ B, we apply the T3 property to find disjoint
open sets Ub and Vb with A ⊆ Ub and b ∈ Vb. Now {Vb : b ∈ B} is an open cover of the
compact set B, so there exists a finite subcover {Vb : b ∈ F}. With U = ⋂{Ub : b ∈ F}
andV = ⋃{Vb : b ∈ F}, we find thatU andV are disjoint open sets containingA and B,
respectively. Thus, X is T4, as needed.

The previous results support the argument that metric spaces and compact Haus-
dorff spaces are someof the nicest,mostwell-behaved topological spaces youwill ever
meet.

We now give characterizations of T3 and T4 spaces.

Theorem 7.1.9.
(a) A topological space X is T3 if and only if for every x ∈ X and every neighborhood U

of x, there exists a neighborhood V of x with clV ⊆ U.
(b) A topological space X is T4 if and only if for every closed set A in X and every open

set U containing A, there exists an open set V with A ⊆ V ⊆ clV ⊆ U.

Proof. Wewill prove the first part. The second part is similar. Suppose X is a T3 space,
x ∈ X, and U is a neighborhood of x. Let U 󸀠 be an open neighborhood of x contained
in U . To find the desired neighborhood V of x, note that X − U 󸀠 is a closed set not
containing x, so there exist disjoint open sets V and W with x ∈ V and X − U 󸀠 ⊆ W .
Since V is disjoint fromW , we have V is contained in the closed set X −W , and thus
clV ⊆ X −W . Now X −U 󸀠 ⊆ W implies X −W ⊆ U 󸀠 ⊆ U, and thus V is a neighborhood
of x whose closure is contained in U .

Conversely, suppose every neighborhood U of an arbitrary point x ∈ X contains
a neighborhood V of x with clV ⊆ U . To see that X is T3, suppose A is a closed set in
X and x ̸∈ A. The neighborhood U = X − A of x contains a neighborhood V of x with
V ⊆ clV ⊆ U . Taking complements, we get A = X −U ⊆ X − clV ⊆ X −V . Thus, X − clV
is an open set containingAwhich is disjoint from the neighborhoodV of x. This shows
that X is T3.

A collection𝒩 (x) of neighborhoods of x is a neighborhood base at x if every neigh-
borhood of x contains a neighborhood of x from𝒩 (x). By definition, the open neigh-
borhoods of x form a neighborhood base at x for any point x. The condition in Theo-
rem 7.1.9 characterizing the T3 property says that, for every x ∈ X, every neighborhood
U of x contains a closed neighborhood clV . That is, Theorem 7.1.9(a) states that a topo-
logical space X is T3 if and only if every point x ∈ X has a neighborhood base of closed
sets.
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It is of general interestwheneverypoint of a topological spacehas aneighborhood
base of special kinds of sets.

Definition 7.1.10. A topological space X is locally compact (respectively, locally con-
nected, locally path connected) if every x ∈ X has a neighborhood base of compact
(respectively, connected, path connected) neighborhoods.

For example, even though the Euclidean line ℝ is not compact, it is locally com-
pact since any neighborhood of an arbitrary x ∈ ℝ contains an open neighborhood
(x − ε, x + ε)which contains a compact neighborhood [x − ε/2, x + ε/2]. The same argu-
ment shows that the Euclidean line is locally connected and locally path connected.
The setℚ of rationals with the Euclidean topology is neither compact nor locally com-
pact: any neighborhood U of 0 must contain an interval (−ε, ε) ∩ ℚ, and if α is an
irrational in (−ε, ε), the open cover {(−∞, α)∩ℚ}∪ {(β,∞)∩ℚ : β > α} is an open cover
of U which has no finite subcover, so U is not compact. Thus, inℚ, no neighborhood
of 0 is compact.

Exercises

1. For the topological spaces below, determine which of the separation axioms T0,
T1, and T2 are satisfied.
(a) The digital line topology on ℤ.
(b) The particular point topology P0 = {U ⊆ ℝ : 0 ∈ U} ∪ {0} on ℝ.
(c) The excluded point topology E0 = {U ⊆ ℝ : 0 ̸∈ U} ∪ {ℝ} on ℝ.

2. Show that if X is not T0, then there exists a convergent sequence in X which does
not have a unique limit. Show that the converse fails.

3. Show that a topological space X is T0 if and only if for all x, y ∈ X, cl{x} = cl{y}
implies x = y.

4. Show that the following are equivalent:
(a) Y is T0.
(b) If f : X → Y is a function with f −1(V) = 0 or X for every open set V in Y , then

f is a constant function.
5. Suppose (X, 𝒯 ) is a T0 topological space and V ∈ 𝒯 . Show that 𝒯 󸀠 = {U ∈ 𝒯 : U ⊆

V or V ⊆ U} is a topology on X and is T0.
6. Show that a topological space (X, 𝒯 ) is T1 if and only if for every x ∈ X,⋂{U ∈ 𝒯 :

x ∈ U} = {x}.
7. Show that the only T1 topology on a finite set is the discrete topology.
8. In the definitions of T0,T1, and T2, replace each reference to a “neighborhood” by

a “basic neighborhood”, relative to some fixed basis. Are the resulting statements
equivalent to the original definitions? What if “neighborhoods” are replaced by
“subbasic neighborhoods”?
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9. Show that X is Hausdorff if and only if the diagonal Δ = {(x, x) : x ∈ X} is a closed
subset of the product X × X with the product topology.

10. Let X be an infinite set with the indiscrete topology. Which separation axioms
(T0,T1,T2,T3,T4, regular, normal) does X satisfy?

11. Which separation axioms (T0,T1,T2,T3,T4, regular, normal) does ℝl satisfy?
12. Give X = {1, 2, 3} the topology having basis {{1, 2}, {3}}. Which of the separation

axioms T3, regular, T4, and normal does X satisfy?
13. Give X = ℝ2 the deleted radius topology defined before Exercise 23 of Section 1.4.

(a) Show that F = {(0, y) : y ∈ ℝ, y ̸= 0} is a closed set not including the point
(0,0).

(b) Show that X is T2 but not T3.
(c) Is ℝ2 with the bow-tie topology T3?

14. If (X, 𝒯C) is a T2 space and 𝒯F is a finer topology on X, then (X, 𝒯F) is T2, since 𝒯F
hasmore than enough open sets to separate points. Show that this result does not
hold if T2 is replaced by T3. (Hint: see Exercise 13.) Why would having more open
sets prevent the finer topology from being T3?

15. Determinewhich of the following topological properties are productive andwhich
are hereditary. Justify your answers.
(a) Is finite.
(b) Has cardinality 10.
(c) Is infinite.
(d) Has exactly two connected components.
(e) Has an isolated point.

16. Show that∏i∈I Xi isT0 if and only ifXi isT0 for every i ∈ I. Show that the statement
remains true if T0 is replaced by T1.

17. Show that T3 is productive.
18. Consider Y = ∏x∈ℝℝx whereℝ0 is the real line with the cofinite topology and for

x ̸= 0,ℝx is the real line with the Euclidean topology. By Theorem 6.2.4, Y is not T2
sinceℝ0 is not T2. Find two elements of Y which have no disjoint neighborhoods.

19. From the definition, X is regular if and only if it is T3 and T1. Show that X is regular
if and only if it is T3 and T0.

20. Show that if X is T4 and Y is a closed subset of X, then Y is T4. Show the same
result with T4 replaced by normal.

21. A topological spaceX satisfies theR0 separation axiom if, for every x ∈ X and every
neighborhood U of x, cl{x} ⊆ U . Prove that X is T1 if and only if it is T0 and R0.

22. Consider the R0 separation axiom defined in Exercise 21. Show that the following
are equivalent.
(a) X is R0.
(b) For every x ∈ X, cl{x} = ⋂{U : U is a neighborhood of x}.
(c) {cl{x} : x ∈ X} is a partition of X.

23. Show that any compact Hausdorff space is locally compact.
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24. In general, a compact space need not be locally compact. Let 𝒯ℚ be the Euclidean
topology on ℚ. Let Y = ℚ ∪ {π} and give Y the topology {Y} ∪ 𝒯ℚ. Show that Y is
compact but not locally compact.

25. Suppose A is a subset of a locally connected topological space, x ∈ intA, and Ax
is the connected component of x ∈ A. Show that x ∈ intAx.

26. (a) Let X = {(x, sin(1/x)) ∈ ℝ2 : x ∈ (0, 4]} ∪ 𝜕([0, 4] × [−2, 2]) with the Euclidean
topology. Is X connected? path connected? locally connected? locally path
connected?

(b) Show that neither connectednessnor locally connectedness implies the other.
(c) Show that neither path connectedness nor locally path connectedness im-

plies the other.
27. If X is T1, connected, and |X| > 2, prove that there exists a connected subset B of

X with 1 < |B| < |X|. (Hint: If the result fails, fix a ∈ X, and for a separation (U ,V)
of X − {a}, consider closed sets (E, F) which give a separation of clU .)

7.2 Separation by continuous functions

The definitions of the separation axioms Ti (i = 0, 1, 2, 3, 4) used separation by open
sets. We now consider separation by a continuous function.

Definition 7.2.1. Let X be a topological space and ℝ the Euclidean line. Two sets A
and B in X are separated by a continuous function if there exists a continuous function
f : X → ℝ with f (A) = 0 and f (B) = 1.

Now if sets A and B in a topological space X are separated by a continuous func-
tion, then they are separated by open sets, for f −1((−0.25,0.25)) and f −1((0.75, 1.25)) are
disjoint open sets containing A and B. However, if A and B are separated by open sets,
they need not be separated by a continuous function, as Example 7.2.3 below illus-
trates. Before that, we make a quick observation about the range of a function which
separates two sets.

Theorem 7.2.2. Two sets A and B in a topological space X can be separated by a con-
tinuous function f : X → ℝ if and only if they can be separated by a continuous function
̄f : X → [0, 1].

Proof. If A and B are separated by ̄f : X → [0, 1], then f : X → ℝ defined by f (x) = ̄f (x)
is a continuous real-valued function separating A and B. If f : X → ℝ is a continuous
function separating A and B, define

̄f =
{{
{{
{

1 if f (x) ≥ 1,
f (x) if 0 ≤ f (x) ≤ 1,
0 if f (x) ≤ 0.
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Clearly ̄f separates A and B, and ̄f is continuous by the pasting lemma, since it is ob-
tained by pasting together f |f −1([0,1]) and the constant functions 0 and 1 on the closed
sets f −1([0, 1]), f −1((−∞,0]), and f −1([1,∞)), and the functions agree on the intersec-
tions.

Example 7.2.3 (Simplified Arens square). Let S = (−1, 1) × (0, 1), a = (−1,0), b = (1,0),
and X = S ∪ {a, b}. For (x, y) ∈ S, take the Euclidean neighborhoods having a base of
sets of form (x−1/n, x+1/n)×(y−1/n, y+1/n)∩S. Take the basic neighborhoods of a and
b to be sets of form {a}∪(−1,0)×(0, 1/n) and {b}∪(0, 1)×(0, 1/m), respectively. It is easily
verified that this is a basis for a topology, and the topology isHausdorff.However, there
is no continuous function f : X → ℝ with f (a) = 0 and f (b) = 1. If there were such
a function, then U = f −1((−.25, .25)) would be a neighborhood of a containing a set of
form (1,0) × (0, 1/n) and V = f −1((.75, 1.25))would be a neighborhood of b containing a
set of form (0, 1)×(0, 1/m).With k = max{m, n}, the point c = (0, 1/(2k)) is in the closure
of U and the closure of V . Now the sequence uj = (−1/j, 1/(2k))j∈ℕ converges to c from
within U and the sequence vj = (1/j, 1/(2k))j∈ℕ converges to c from within V . Since f
preserves limits (see Theorem 6.3.5) f (uj) is a sequence in f (U) ⊆ (−.25, .25) converging
to f (c), and thus f (c) ∈ [−.25, .25]. Similarly, f (vj) is a sequence in f (V) ⊆ (.75, 1.25)
converging to f (c), so f (c) ∈ [.75, 1.25], contrary to f (c) ∈ [−.25, .25]. Thus, there can be
no continuous function f separating a and b. See [45] formore details on this example.

Thus, using continuous functions rather than open sets for our separation will
give stronger separation axioms. We define these separation axioms below.

Definition 7.2.4. A topological space X is functionally Hausdorff if for every pair of
distinct points x, y ∈ X, there exists a continuous function f : X → ℝwith f (x) = 0 and
f (y) = 1.

A topological space X is T3.5 if for every closed set A in X and every x ̸∈ A, there
exists a continuous function f : X → ℝ with f (A) = 0 and f (x) = 1.

A topological space X is completely regular if it is T1 and T3.5.
Thus, X is functionally Hausdorff if distinct points are separated by continuous

functions, and is completely regular if it is T1 and disjoint points and closed sets are
separated by continuous functions. The example of the simplifiedArens square shows
that functionally Hausdorff is a strictly stronger property than the Hausdorff property.
Similarly, complete regularity is strictly stronger than regularity. Completely regular
spaces are also called Tychonoff spaces.

Suppose X is completely regular and Y ⊆ X has the subspace topology. If A is a
closed set in Y and b ∈ Y −A, then there exists a closed set A󸀠 in X with A󸀠 ∩Y = A and
b ̸∈ A󸀠. If f is a continuous function separating A󸀠 and b in X, then the restriction f |Y
of f to Y is a continuous function separating A and b in Y . Thus, complete regularity
is hereditary. Similarly, functionally Hausdorff is a hereditary property.

A version of normality based on separation by continuous functions was conspic-
uously missing from Definition 7.2.4. It is missing due to the following theorem by
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Pavel S. Urysohn, which says closed sets can be separated by open sets if and only
if they can be separated by a continuous function. Urysohn was a brilliant Russian
mathematician who, with Pavel Alexandroff, first defined compactness in terms of
open covers. In 1924, at the age of 26, Urysohn drowned while swimming in rough
seas in Brittany, France.

Theorem 7.2.5 (Urysohn’s lemma). A T1 topological space X is normal if and only if for
every pair of disjoint closed sets A, B in X, there exists a continuous function f : X → ℝ
with f (A) = 0 and f (B) = 1.

Sketch of proof. If a T1 topological space X has the property that disjoint closed sets
A and B can be separated by a continuous function f , then f −1((−0.25,0.25)) and
f −1((0.75, 1.25)) are disjoint open sets separating A and B, so X is normal.

SupposeA and B are disjoint closed sets in a normal space X. Wemust create from
nothing a continuous function f : X → ℝwith f (A) = 0 and f (B) = 1. Howdowe define
f (x) for x ̸∈ A∪B? We will use Theorem 7.1.9(b) repeatedly. Since U1 = X −B is an open
set containing A, by Theorem 7.1.9, there exists an open set U0 with

A ⊆ U0 ⊆ clU0 ⊆ U1.

Nowwe insert an open setU1/2 betweenU0 andU1. Focusing on the fact that clU0 ⊆ U1,
we may apply Theorem 7.1.9 to find an open set U1/2 with

clU0 ⊆ U1/2 ⊆ clU1/2 ⊆ U1. (7.1)

Now having defined U0,U1/2, and U1, we apply Theorem 7.1.9 to the first and third in-
clusions in Equation 7.1 to get an open set U1/4 between U0 and U1/2 and an open set
U3/4 between U1/2 and U1 with

clU0 ⊆ U1/4 ⊆ clU1/4 ⊆ U1/2 ⊆ clU1/2 ⊆ U3/4 ⊆ clU3/4 ⊆ U1.

Having defined open sets Ur for all values of r which are multiples of 1/4 in [0, 1], we
repeat the process, inserting open setsUr for themissingmultiples of 1/8, then for the
missing multiples of 1/16, and so on. Continuing in this manner, we will obtain open
sets Ur for every r ∈ {

m
2n ∈ [0, 1] : m, n ∈ ℕ ∪ {0}} = D. The set D is called the set of

dyadic fractions in [0, 1] and is dense in [0, 1]. Furthermore, for p < q in D, we have

A ⊆ U0 ⊆ Up ⊆ clUp ⊆ Uq ⊆ U1 = X − B.

Now we are ready to define our function f : X → [0, 1] ⊆ ℝ. For x ∈ X, take

f (x) = { inf{r ∈ D : x ∈ Ur} if x ∈ X − B = U1,
1 if x ∈ B.

Now A ⊆ U0 implies f (x) = 0 for x ∈ A, and clearly f (B) = 1.
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It remains to show that f is continuous at each x ∈ X. Given x ∈ X, suppose first
that f (x) ∈ (0, 1). NowanyneighborhoodU of f (x) contains a basic openneighborhood
(p, q) of f (x), where p, q ∈ D. Furthermore, there exist points p󸀠, q󸀠 ∈ D with p < p󸀠 <
f (x) < q󸀠 < q. Now it can be checked that V = Uq󸀠 − clUp󸀠 is a neighborhood of x
with f (V) ⊆ [p󸀠, q󸀠] ⊆ (p, q) ⊆ U, so f is continuous at x. Continuity at points x with
f (x) ∈ {0, 1} can be shown similarly.

We give two immediate consequences of Urysohn’s lemma.

Corollary 7.2.6. If X is normal then it is completely regular.

Proof. Normal spaces are T1, so singletons are closed. If any disjoint closed sets can
be separated by a continuous function, then taking one of those sets to be a singleton
proves that X is completely regular.

Thus, we have

normal⇒ completely regular⇒ regular⇒ T2 ⇒ T1 ⇒ T0.

Corollary 7.2.7. Every subspace of a compact T2 space is completely regular.

Proof. Any compact T2 space is normal, and thus completely regular. Complete regu-
larity is hereditary.

Besides the Urysohn lemma, another very significant result on separation axioms
is that the converse of Corollary 7.2.7 also holds. Every completely regular space is a
subspace of a compact T2 space. This is shown in the next section.

Exercises

1. A zero set in a topological space X is a set of form f −1({0}) for some continuous
function f : X → ℝ (where ℝ has the Euclidean topology). A cozero set in X is the
complement of a zero set. Show that a T1 space X is completely regular if and only
if the collection ℬ of all cozero sets of X is a basis for the topology on X.

2. Complete the missing details from Example 7.2.3, showing that the basis for the
topology describe there really is a basis, and that the topology is Hausdorff.

3. Is the simplified Arens square given in Example 7.2.3 completely regular or nor-
mal? Justify your answer.

4. Give a proof or counterexample for this statement: Functionally Hausdorff is a
productive property.

5. Give a proof or counterexample for this statement: Completely regular is a produc-
tive property.

6. Let 𝒯 be the topology on ℝ generated by the basis ℬ = {[x, x + ε) : x ∈ ℚ,
ε > 0} ∪ {(x − ε, x] : x ∈ ℝ − ℚ, ε > 0}. Which of the following properties does
(ℝ, 𝒯 ) have? T1,T2,T3,T3.5, compactness. Justify your answers.
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7. Show that ℝ with the right ray topology is not T3.5 by exhibiting a point and a
closed set which cannot be separated by a continuous function.

8. Show that the digital line is not T3.5 by exhibiting a point and a closed set which
cannot be separated by a continuous function.

9. Give a proof or counterexample for this statement: If X is a T3.5 space, U is open
in X, and x ̸∈ U, then there exists a continuous function f : X → ℝ with f (U) = 0
and f (x) = 1.

10. Define (X, 𝒯 ) to be ℝl-T3.5 if for every closed A ⊆ X and every x ̸∈ A, there exists a
continuous function f : X → ℝl with f (A) = 0 and f (x) = 1.
(a) Show thatℚ with the Euclidean topology is ℝl-T3.5.
(b) Does ℝl-T3.5 imply T3.5? Justify your answer.
(c) Does T3.5 imply ℝl-T3.5? Justify your answer.
(d) Characterize the connected ℝl-T3.5 spaces.

11. Complete the proof of Urysohn’s lemma by showing that the function f defined
there is continuous.

7.3 Compactifications

A (Hausdorff) compactification of X is a compact T2 space αX which contains a home-
omorphic copy of X as a dense subspace. The subspace X = (0, 1) of the Euclidean
line is not compact, but we may add the points 0 and 1 to make it compact, forming
the compactification αX = [0, 1] of X = (0, 1). Adding points—in some minimal way—
to get a compact space is the concept of forming a compactification. Since (0, 1) is a
homeomorphic copy ofℝ, the compact T2 space [0, 1] contains a homeomorphic copy
of ℝ as a dense subspace, so [0, 1]may also be viewed as a compactification of ℝ. To
help recognize the homeomorphic copy of X embedded in a compactification αX of X,
we will include the homeomorphism as part of the formal definition of a compactifi-
cation.

Definition 7.3.1. A compactification of a topological space X is a pair (αX, α)where αX
is a compact T2 space and α : X → αX is a homeomorphic embedding of X into αX,
such that the homeomorphic copy α(X) of X is a dense subspace of αX. The subspace
αX − α(X) is the remainder associated with this compactification. If the embedding α
is understood, we may simply refer to the compactification αX.

Now αX = [0, 1] is a compactification of X = (0, 1), or more formally, (αX, α) is a
compactification of X where α : (0, 1) → [0, 1] is the inclusion map α(x) = x. Sim-
ilarly, ([0, 5], γ) is a compactification of X = (0, 1), where γ : (0, 1) → (0, 5) is the
homeomorphism γ(x) = 5x. In this case, γX = [0, 5] and γ(X) = (0, 5). The space
δX = [0, 5] ∪ {6} is also a compact T2 space which contains a homeomorphic copy of
(0, 1), but δX is not a compactification of (0, 1) since no homeomorphic image of (0, 1)
is dense in δX.
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Example 7.3.2.
(a) The real line ℝ is homeomorphic to (− π2 ,

π
2 ) by the homeomorphism α(x) =

arctan(x), and [− π2 ,
π
2 ] is a compact T2 space containing α(ℝ) = (− π2 ,

π
2 ) as a

dense subspace, so [− π2 ,
π
2 ] is a compactification of ℝ. The remainder consists of

the two point set {− π2 ,
π
2 } added to make (− π2 ,

π
2 ) ≈ ℝ compact, so this is called a

two-point compactification of ℝ. As noted above, [0, 1] is another two-point com-
pactification ofℝ. In Exercise 14wewill see that every two-point compactification
of ℝ is equivalent to these in a natural way. Essentially, one point must compact-
ify the open left end and one point must compactify the open right end of ℝ. The
two-point compactification of ℝ is sometimes denoted ℝ ∪ {±∞} and called the
extended real line.

(b) The real line ℝ is homeomorphic to (0, 2π). The function f : (0, 2π) → ℝ2 defined
by f (x) = (cos x, sin x) is an embedding of the interval (0, 2π) into the plane ℝ2,
suggested by Figure 7.2.

Figure 7.2: f : (0, 2π) → ℝ2 defined by f (x) = (cos x, sin x).
This tells us that the unit circle with one point missing is a homeomorphic copy
ofℝ. To compactify this copy ofℝ, since it is embedded in the Euclidean spaceℝ2

as a bounded set, we need only take its closure to obtain a closed and bounded
set, whichwill be compact. Taking the closure adds themissing point of the circle,
giving the one-point compactification of ℝ. In effect, the one-point compactifica-
tion wraps the two open ends of ℝ around to the same “limit”.

The technique of the last example may be used to find other compactifications
of ℝ. We may embed ℝ into Euclidean space ℝ2 or ℝ3 as a bounded set, then sim-
ply take the closure. The copy of ℝ will be dense in its closure, and as a closed and
bounded set in Euclidean space, the closure will be compact and T2. The example be-
low illustrates this technique further. To simplify the illustrations, we will consider
[0, 1) ≈ [0,∞) so we have only one end of the line to compactify.

Example 7.3.3. Consider the interval [0, 1) with the Euclidean topology. Note that
[0, 1) ≈ (0, 1] ≈ [a,∞) ≈ (−∞, b], so a compactification of any of these homeomorphic
spaces will give a compactification of [0, 1).
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(a) Embed (0, 1] in ℝ2 as the set A = {(x, sin 1
x ) : x ∈ (0, 1]}, as suggested by Fig-

ure 7.3(a). Taking the closure of A gives a compactification of [0, 1) obtained by
adding an interval {0} × [−1, 1]. Thus, (0, 1] has a compactification whose remain-
der is an interval.

Figure 7.3: Compactifications of (0, 1] which add (a) an interval and (b) a circle.
(b) Embed (0, 1] ≈ [1,∞) into ℝ2 as the spiral B given in polar coordinates by r =

1 − 1
θ for θ ∈ [1,∞), as suggested by Figure 7.3(b). Taking the closure of B gives a

compactification of [0, 1) obtained by adding a circle.
(c) Embed (0, 1] intoℝ3 by the cylindrical coordinate function g(t) = (r(t), θ(t), z(t)) =
(2 + sin( 1t ),

π
t , t). We claim that taking the closure of g((0, 1]) will give a compact-

ification whose remainder is the annulus 1 ≤ r ≤ 3 in the plane z = 0. For this,
it suffices to show that given any ε > 0, for t ∈ (0, ε), the points (r(t), θ(t)) =
(2 + sin( 1t ),

π
t ) are dense in the annulus. Given r0 ∈ [1, 3], there is a t0 ∈ [0, ε) such

that 2 + sin( 1t0 ) = r0, and thus r0 is realized by r(t) for
1
t ∈ {

1
t0
+ 2πn : n ∈ ℕ}, or,

since θ(t) = π
t , for θ ∈ {

π
t0
+ 2π(πn) : n ∈ ℕ}. It is well known (see Exercise 21) that

if γ is an irrational number and k ∈ ℕ, then {nγ : n ≥ k} is dense in [0, 1]modulo 1.
(That is, the fractional parts {nγ − ⌊nγ⌋ : n ≥ k} are dense in [0, 1].) Thus, if γ is
irrational, the set {2π(γn) : n ≥ k}will be dense in [0, 2π]mod 2π, as will any fixed
translation {a + 2π(γn) : n ≥ k} of such a set of angles. Applied in our situation,
this tells us that each r0 ∈ [1, 3] is realized by t ∈ [0, ε) on a dense set of angles
{ πt0 + 2π(πn) : n ∈ ℕ}, so (r(t), θ(t)) = (2 + sin(

1
t ),

π
t ) is dense in the annulus.

The example above showed that (0, 1] has compactifications with remainders of
an interval, a circle, and an annulus.
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Not every topological space has a compactification. If X has a compactification
αX, then αX is a compact T2 space, and thus is normal and completely regular. Since
completely regular is a hereditary property, X must be completely regular. Thus, com-
pletely regular is a necessary condition for a topological space to have a compactifica-
tion. In fact, completely regular is necessary and sufficient. This significant result was
given in different degrees of generality in papers by A. N. Tychonoff in 1930 and 1935.
In these same papers, Tychonoff defined the product topology for infinite products
and proved that with this topology, products of compact spaces are compact.

Theorem 7.3.4. A topological space X has a compactification if and only if it is com-
pletely regular.

Proof. We have proved one direction of implication above. Suppose that X is com-
pletely regular. Let C∗(X) be the collection of continuous, bounded real valued func-
tions f : X → ℝ. For each f ∈ C∗(X), there exists a closed and bounded interval If with
f (X) ⊆ If . Consider the product

∏
f∈C∗(X) If ⊆ ∏f∈C∗(X)ℝ = ℝC∗(X).

An element of this product is an element of ℝC
∗(X), and is thus a function from C∗(X)

to ℝ. Such a function e from C∗(X) to ℝ must give a real number for each f ∈ C∗(X).
One obvious way to define such a function is to pick an x0 ∈ X, and for each f ∈ C∗(X),
take the real number f (x0). Furthermore, we may do this for each x0 ∈ X. This gives
the evaluation function

e : X → ∏
f∈C∗(X) If

defined by

e(x0) = ⟨f (x0)⟩f∈C∗(X) = ∏
f∈C∗(X) f (x0) ⊆ ∏f∈C∗(X) If .

For a given x0 ∈ X, the evaluation function evaluates every f ∈ C∗(X) at x0 to get an
element of∏f∈C∗(X) If .

We will need the following technical detail about the evaluation function.

Lemma 7.3.5. If X is completely regular, then the evaluation function is an embedding
of X into∏f∈C∗(X) If .

We continue with the main argument before proving this lemma. We now have

e : X → e(X) ⊆ cl(e(X)) ⊆ ∏
f∈C∗(X) If .

Now e(X) is a homeomorphic copy of X by the lemma, and it is dense in its closure. By
the Tychonoff theorem, ∏f∈C∗(X) If is compact, and is T2 since products of T2 spaces
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are T2. As a closed subset of a compact T2 space, cl(e(X)) is a compact T2 space. Thus,
cl(e(X)) is a compactification of the completely regular space X.

The compactification cl(e(X)) described above is called the Stone–Čech compact-
ification and is denoted βX. Though the construction is due to Tychonoff, the com-
pactification bears the names ofMarshall Stone and Eduard Čech, who independently
published papers in 1937 exhibiting useful properties of the compactification.

Any completely regular topological space is a dense subspace of its Stone–Čech
compactification. Together with Corollary 7.2.7, we have the following result.

Corollary 7.3.6. A topological space is completely regular if and only if it is a subspace
of a compact T2 space.

The proof of Theorem 7.3.4 was incomplete for two reasons. We must prove the
lemma used, and we must prove the Tychonoff theorem. The first of these is an easy
task and is given here. The proof of the Tychonoff theorem is a deep result and is given
in Section 7.4.

Proof of Lemma 7.3.5. The f th coordinate function of e(x) = ∏f∈C∗(X) f (x) is f (x). Since
each coordinate function is continuous, e is continuous. Suppose x ̸= y inX. SinceX is
completely regular, there exists a bounded continuous function g : X → [0, 1] which
separates the point x from the closed set {y}. It follows that e(x) ̸= e(y) since they
differ in the gth coordinate. This shows that e is one-to-one. Thus, e is continuous,
one-to-one, and onto its range e(X). It only remains to show that e−1 is continuous, or
equivalently, that e is an open map. Suppose U is open in X. Now e(U) will be open
in e(X) if and only if for each e(u) ∈ e(U), there exists an open neighborhood V of
e(u) contained in e(U). Suppose u ∈ U . Since X is completely regular, there exists a
bounded continuous function g : X → [0, 1] with g(u) = 0 and g(X − U) = 1. Let
V = π−1g ([0, 1)) ∩ e(X). Since π−1g ([0, 1)) is open in∏f∈C∗(X) If and e(X) is a subspace of
this product, V is open in e(X). The gth coordinate of e(u) = ∏f∈C∗(X) f (u) is g(u) =
0 ∈ [0, 1), so e(u) ∈ V . Finally, we will show that V ⊆ e(U). Suppose p ∈ V . From the
definition of V , p = e(z) for some z ∈ X and g(z) ∈ [0, 1). Now we must have z ∈ U, for
z ∈ X − U would imply g(z) = 1 ̸∈ [0, 1). Thus, p = e(z) for some z ∈ U, so p ∈ e(U), as
needed.

Many nice properties of the Stone–Čech compactification have been studied ex-
tensively, including the following two nice extension properties.

First, we consider extending a continuous function on X to its compactification.
Note that the continuous bounded function f : (0, 1) → ℝ defined by f (x) = sin 1

x
cannot be continuously extended to the compactification [0, 1] of (0, 1). A continuous
bounded function f : (0, 1) → ℝ can be extended to [0, 1] if and only if both limits
limx→0+ f (x) and limx→1− f (x) exist. The theorem below shows that the f (x) = sin 1

x on
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(0, 1) can be extended to the Stone–Čech compactification β(0, 1), as can any continu-
ous bounded real-valued function on (0, 1). First, we must understand what is meant
by an extension of a function on X to a compactification Y .

Recall that if A ⊆ B and f : A → ℝ is a continuous function, then fB : B → ℝ is an
extension of f if the restriction of fB to A equals f ; that is, if fB(x) = f (x) for all x ∈ A.

Definition 7.3.7. SupposeX and Z are topological spaces, (αX, α) is a compactification
of X, and f : X → Z is a continuous function. A continuous extension of f to αX is a
continuous function fα : αX → Z with fα(α(x)) = f (x) for all x ∈ X.

Thus, a function fα defined on αX is an extension of f defined on X if, for each
x ∈ X, fα maps the homeomorphic copy α(x) of x to f (x). In the diagram of Figure 7.4,
starting from any point inX and following either path along the indicated arrows from
X to Z gives the same result. A diagram showing maps between several sets with this
property that following any of the arrows from one set to another gives the same result
is called a commutative diagram, or we may say that the diagram commutes.

X α ??

f

??

αX

fα

??
Z

Figure 7.4: An extension of f : X → Z to αX is a function fα which makes the diagram commute.

Theorem 7.3.8. If X is a completely regular space, then any continuous bounded real-
valued function f ∈ C∗(X) has a continuous extension to βX.
Proof. Suppose g ∈ C∗(X). We want to find a continuous function gβ : βX → ℝ with
gβ(e(x)) = g(x) for all x ∈ X. The proof is based on the fact that βX = cl e(X) ⊆
∏f∈C∗(X) If contains a copy of g in the gth coordinate of this product. Indeed, the pro-
jection function πg : ∏f∈C∗(X) If → Ig is continuous, and the restriction of πg to βX is
also continuous. Furthermore, for x0 ∈ X, e(x0) = ⟨f (x0)⟩f∈C∗(X), so πg(e(x0)) = g(x0),
and thus gβ = πg is an extension of g.

This result tells us that if X is completely regular, any continuous function f from
X into a compact subspace cl f (X) of ℝ can be continuously extended to βX. The next
theorem is stronger.

Theorem 7.3.9. If X is a completely regular space, K is any compact Hausdorff space,
and f : X → K is continuous, then f has a continuous extension to βX.

Proof. Under the hypotheses, consider the evaluation maps e : X → e(X) ⊆ βX ⊆
∏g∈C∗(X) Ig and e󸀠 : K → e󸀠(K) ⊆ βK ⊆ ∏h∈C∗(K) Ih. Since K is compact, e󸀠 : K → βK is a
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homeomorphism. Note that, for any h ∈ C∗(K), h ∘ f ∈ C∗(X). We will define a function
G which maps a vector in∏g∈C∗(X) Ig to the vector in∏h∈C∗(K) Ih whose hth coordinate
is the (h ∘ f )th coordinate of the input vector. Specifically, define G : ∏g∈C∗(X) Ig →
∏h∈C∗(K) Ih by

G(⟨xg⟩g∈C∗(X)) = ⟨xh∘f ⟩h∈C∗(K).
Now for any h ∈ C∗(K), πh ∘ G = πh∘f , which, as a projection function, is continuous.
Since every coordinate function πh ∘G ofG is continuous,G is continuous. Given x ∈ X,

G(e(x)) = G(⟨g(x)⟩g∈C∗(X)) = ⟨h ∘ f (x)⟩h∈C∗(K) = e󸀠(f (x)) ∈ e󸀠(K),
so e󸀠(K) is a closed set containing G(e(X)). Since e(X) is dense in βX, G(e(X)) is dense
in G(βX) (see Exercise 19 of Section 3.1), and thus clG(e(X)) = G(βX) ⊆ e󸀠(K). Now
consider F = e󸀠 −1 ∘ G|βX : βX → K. As the composition of continuous functions, F is
continuous, and for any x ∈ X,

F ∘ e(x) = e󸀠 −1(G(e(x))) = e󸀠 −1(e󸀠(f (x))) = f (x),
so F ∘ e = f , showing that F : βX → K is a continuous extension of f : X → K.

Let us consider an arbitrary compactification αℝ of the Euclidean line ℝ. Intu-
itively, the “middle part” [−M,M] of the real line is already compact, so any point∞
in the remainder αℝ − ℝ should have neighborhoods which, when restricted to the
homeomorphic copy α(ℝ) of ℝ, should correspond to unbounded sets of ℝ. The fol-
lowing result confirms this.

Theorem 7.3.10. Suppose αℝ is a compactification of ℝ and∞ ∈ αℝ − α(ℝ) is a point
in the remainder. If U is a neighborhood of∞ in αℝ, then α−1(U) is unbounded in ℝ.
Proof. Suppose αℝ is a compactification ofℝ,∞ ∈ αℝ− α(ℝ) is a point in the remain-
der, andU is neighborhood of∞ in αℝ. First, wewill show that∞ ∈ 𝜕(U∩α(ℝ)). Given
any neighborhoodV of∞,V ∩U is a neighborhood of∞ ∈ cl α(ℝ), soV ∩U ∩α(ℝ) ̸= 0.
Also,∞ ∈ V ∩ (αℝ − (U ∩ α(ℝ))), and thus∞ ∈ 𝜕(U ∩ α(ℝ)). Now suppose α−1(U) is
bounded. Then there exists a compact set K in ℝ containing α−1(U) = α−1(U ∩ α(ℝ)).
Now applying α to these sets gives α(α−1(U)) = α(α−1(U ∩ α(ℝ))) = U ∩ α(ℝ) ⊆ α(K).
Now α(K) is compact in the Hausdorff space αℝ and thus is closed. Now we have
∞ ∈ 𝜕(U ∩ α(ℝ)) ⊆ cl(U ∩ α(ℝ)) ⊆ α(K) ⊆ α(ℝ), which is a contradiction since∞
was a point of the remainder αℝ − α(ℝ). Thus, α−1(U)must be unbounded in ℝ.

The description of the one-point compactification of ℝ in Example 7.3.2 should
suggest that the neighborhoods of the remainder point correspond to very particular
unbounded sets—those whose complements are compact. Indeed, if any space X has
a one-point compactification X ∪ {ω}, then ω has a neighborhood base of sets of form
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U ∪ {ω} where X − U is compact. This is the basis for the Alexandroff one-point com-
pactification explored in the exercises.

Theorem 7.3.10 can be used to prove that ℝ has no 3-point compactification. This
is left to the exercises.

Exercises

1. In advanced studies, the requirement that a compactification be T2 may be
dropped to get a non-Hausdorff compactification. If (X, 𝒯 ) is a topological space,
letωX = X∪{ω}whereω is a point not inX, andgiveωX the topology𝒯ω = 𝒯 ∪{ωX}.
Show thatωX is a non-Hausdorff compactification of X. It is called the trivial one-
point compactification of X, or the one-point connectification of X.

2. Let X be the subspace [0, 1] of ℝl, let αX = [0, 1] ∪ [2, 3] with the topology having
basis ℬ = {[x, x+ε)∩X : x ∈ [0, 1],0 < ε < 1}∪ {((x−ε, x+ε)∪ (x−2−ε, x−2)∪ (x−2,
x − 2 + ε)) ∩ X : x ∈ [2, 3],0 < ε < 1}, and define α : X → αX by α(x) = x. Show that
(αX, α) is a non-Hausdorff compactification of X. That is, show that (αX, α)meets
all the requirements of a compactification except the T2 condition.

3. (Alexandroff one-point compactification) A topological space X is locally com-
pact if for every x ∈ X, every neighborhood U of x contains a compact neigh-
borhood V of x, that is, a compact set V with x ∈ intV . The Alexandroff one-
point compactification of a locally compact noncompact space (X, 𝒯 ) is ωX =
X ∪ {ω} where ω is a point not in X and the topology on ωX is 𝒯 ∪ {U ∪ {ω} :
X −U is compact in (X, 𝒯 )}. Show that this construction does give a compactifica-
tion of X. Why is local compactness of X needed? Why is the noncompact condi-
tion needed?

4. Suppose αX = αX ∪ {a} is a one-point compactification of a locally compact
space X. If X ∪ {ω} is the Alexandroff one-point compactification, show that there
is a homeomorphism h : X ∪ {ω} → αX with h(x) = α(x) for all x ∈ X. This shows
that all one-point compactifications of X are equivalent.

5. Give a geometric description of the Alexandroff one-point compactification (see
Exercise 3) of the spaces X = [0, 1), Y = (0, 1), Z = (0, 1) ∪ (2, 3), andW = (0, 1) ∪
(2, 3) ∪ (4, 5), ∪(6, 7], where each space carries the Euclidean topology.

6. In Example 7.3.3 we saw that f : (0, 1] → ℝ2 defined by f (x) = (x, sin 1
x ) is an

embedding which gives a compactification of (0, 1] whose remainder is an inter-
val. Describe the remainder of the compactifications of (0, 1] obtained by taking
the closure of the homeomorphic copy of (0, 1] under the embeddings described
below.
(a) The embedding g : (0, 1] → ℝ3 defined by g(x) = (x, sin 1

x , sin
1
x ).

(b) The embedding h : (0, 1] → ℝ3 defined by h(x) = (x, sin 1
x , cos

1
x ).

(c) The embedding s : (0, 1] → ℝ3 defined in cylindrical coordinates by s(t) =
(r(t), θ(t), z(t)) = (1 + t, πt , sin

1
t ).
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(d) The embedding u : (0, 1] → ℝ3 defined in cylindrical coordinates by u(t) =
(r(t), θ(t), z(t)) = (sin 1

t ,
π
t , t).

7. Give an embedding f : [1,∞) → ℝ3 such that cl f ([1,∞)) is a compactification of
[1,∞) whose remainder is a sphere.

8. LetX be the subspace ((−1, 1)×{0})∪({0}×(−1, 1)) ofℝ2with the Euclidean topology.
(a) Describe 1-point, 2-point, 3-point, and 4-point compactifications of X.
(b) Prove or give a counterexample: If αX and γX are 2-point compactifications of

X, then αX is homeomorphic to γX.
(c) Prove or give a counterexample: If αX and γX are 3-point compactifications of

X, then αX is homeomorphic to γX.
9. Describe a compactification of [1,∞) obtained by adding a torus.
10. Describe compactifications of ℝ having the remainder described.

(a) A closed interval and a point.
(b) A closed interval.
(c) A point and a circle.
(d) Two intervals intersecting at their midpoints.

11. Characterize the functions f ∈ C∗(ℝ) which have a continuous extension to the
one-point compactification of the Euclidean line ℝ.

12. Consider the compactification Y of X = (0, 1] formed by taking the closure in ℝ2

of the homeomorphic copy α(X) = {(x, cos 1
x ) : x ∈ (0, 1]} of (0, 1]. The remainder

of this compactification is the interval {0} × [−1, 1]. Since α(X) is dense in Y , every
point of Y is a limit of a sequence of points in α(X). For example, the remainder
point p = (0, 1) ∈ {0} × [−1, 1] is the limit of the sequence (an)n∈ℕ = (( 1

2nπ , 1))n∈ℕ of
local maxima of the curve α(X) = {(x, cos 1

x ) : x ∈ (0, 1]}. Find two other sequences
(bn)n∈ℕ and (cn)n∈ℕ in α(X)which also converge to the remainder point p = (0, 1),
with the terms of (an)n∈ℕ, (bn)n∈ℕ, and (cn)n∈ℕ all mutually disjoint.

13. Suppose αX is a compactification of X and a, b are distinct points in the remainder
αX − X. Show that the quotient space formed by identifying a and b is a compact-
ification of X. (This shows that if X has a n-point compactification, then X has
k-point compactifications for 1 ≤ k ≤ n.)

14. Suppose αℝ = α(ℝ) ∪ {a, b} is a 2-point compactification of the real lineℝ and a is
the limit point of the set {α(−n)}∞n=1. LetUa andUb be disjoint open neighborhoods
of a and b in αℝ.
(a) Show that there existm, n ∈ ℕ with α((−∞, −m)) ∪ α((n,∞)) ⊆ Ua ∪ Ub.
(b) Show that Ua intersects the connected set α((−∞, −m)), so Ub does not inter-

sect α((−∞, −m)), and thus {a} ∪ α((−∞, −m)) ⊆ Ua and {b} ∪ α((n,∞)) ⊆ Ub.
(c) Show {a} ∪ α((−∞, −m)) and {b} ∪ α((n,∞)) are open in αℝ, so a has a neigh-

borhood base {{a} ∪ α((−∞, −m)) : m ∈ ℕ} and b has a neighborhood base
{{b} ∪ α((n,∞)) : n ∈ ℕ}.

(d) Show that for any two 2-point compactifications αℝ and α󸀠ℝ ofℝ there exists
a homeomorphism h : αℝ → α󸀠ℝ with h ∘ α = α󸀠.
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15. Prove that ℝ has no 3-point compactification. Does your proof generalize to
n-point compactifications for n > 2 in ℕ? Does your proof generalize to com-
pactifications with infinite remainders?

16. (a) Suppose that, for every i ∈ I, αiXi is a compactification of topological spaceXi.
Prove that∏i∈I αiXi is a compactification of∏i∈I Xi.

(b) Use part (a) to show that the completely regular axiom is productive.
17. If X is a completely regular space, show that X is connected if and only if βX is

connected.
18. If X and Y are completely regular spaces and f : X → Y is continuous, show that

there exists a continuous function ̂f : βX → βY with ̂f |X = f .
19. Given two compactification αX and γX of a completely regular space X, we say

αX ≥ γX if and only if there exists a continuous function f : αX → γX with γ = f ∘α.
That is, αX ≥ γX if there is a continuous function from αX to γX which leaves X
fixed, if we consider X = α(X) ⊆ αX and X = γ(X) ⊆ γX.
(a) Show that if αX ≥ γX and γX ≥ αX, then there is a homeomorphism h : αX →

γX with h ∘ α = γ. (In this case, we say αX and γX are equivalent compactifica-
tions.

(b) Show that the Stone–Čech compactification βX is the largest compactification
of X, in the sense that βX ≥ αX for every compactification αX of X.

20. With α, γ : ℕ → ℝ2 defined by α(2n) = (1/n, −1), α(2n − 1) = (1/n, 1), γ(3n) =
(1/n, −1), γ(3n − 1) = (1/(2n), 1), γ(3n − 2) = (1/(2n − 1), 1) for all n ∈ ℕ, taking the
closures inℝ2 of α(ℕ) and γ(ℕ) gives compactifications (αℕ, α) = {{1/n}∞n=1∪{0}}×
{−1, 1} = (γℕ, γ). Show that αX and γX are homeomorphic, but not equivalent in
the sense of Exercise 19(a).

21. Let [a]1 = a− ⌊a⌋ denote the fractional part of a ∈ ℝ. Complete the missing details
below to prove that, for any irrational number γ, {[nγ]1 : n ∈ ℕ} is dense in [0, 1].
Given any basic open set (x, y) ⊆ (0, 1], pick j, k ∈ ℕ such that (x, y) contains the
interval ( jk ,

j+1
k ).

(a) Show that some interval (mk ,
m+1
k ] (for m = 0, . . . , k − 1) contains two points

[aγ]1, [bγ]1 for integers a < b.
(b) Show that [(b − a)γ]1 ∈ (0,

1
k ) ∪ (

k−1
k , 1). (That is, modulo 1, |[(b − a)γ]1| ≤

1
k .)

(c) Show that, for some natural numberm, [m(b−a)γ]1 ∈ (x, y). Thus, every open
interval (x, y) contains a point of {[nγ]1 : n ∈ ℕ}.

7.4 Proof of the Tychonoff theorem

Inmathematics, onemust start with certain axioms or postulates. Euclid based his ge-
ometry on five postulates. Most mathematics courses start with the assumption that
we knowwhat the real numbers are, but some analysis coursesmay start with a formal
construction of the reals as a completion of the rationals. One much-studied axiom in
mathematics is the axiom of choice, which states that, for any collection of nonempty
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sets, it is possible to form anew set consisting of one element from eachmember of the
collection. This axiom was proposed by Ernst Zermelo in 1904. While it seems rather
innocuous and believable, it produces some rather unbelievable results. One conse-
quence of the axiom of choice appeared in a paper by Stefan Banach and Alfred Tarski
in 1924, and is now called the Banach–Tarski paradox [2]. It states that a solid ball in
ℝ3 of radius 1 can be decomposed into a finite number of subsets which can be re-
arranged through rigid motions (that is, translations, rotations, and reflections, but
no compressions or expansions) and reassembled into two disjoint solid balls of ra-
dius 1. This is certainly less believable than the statement of the axiom of choice, and
has caused some mathematicians to shun the axiom of choice and its applications.
We will freely assume the axiom of choice and its consequences.

We will start with an assumption equivalent to the axiom of choice, given by Max
Zorn (1906–1993) in 1935, and now known as Zorn’s lemma.

Theorem 7.4.1 (Zorn’s lemma). Suppose (X, ≤) is a nonempty partially ordered set and
every totally ordered subset of X has an upper bound in X. Then X has a maximal ele-
ment.

Zorn’s lemma is employed in the proof of the Alexander subbase theorem, proved
by JamesWaddell Alexander II (1888–1971). Alexander is also known for the discovery
of the first “knot polynomial”, which now bears his name, in 1923.

Theorem 7.4.2 (Alexander subbase theorem). Let X be a topological space with sub-
basis 𝒮. Then X is compact if and only if every open cover of X by subbasic sets from 𝒮
has a finite subcover.

Proof. If X is compact, then every cover by arbitrary open sets has a finite subcover,
so every cover by subbasic open sets has a finite subcover.

For the converse, we argue by contradiction. Suppose every open cover of X by
subbasic sets from 𝒮 has a finite subcover butX is not compact. Let Φ be the collection
of open covers of X which do not have a finite subcover, partially ordered by set inclu-
sion. If {𝒞i}i∈I is a totally ordered subset of Φ, then, for every j ∈ I, 𝒞j ⊆ 𝒞 = ⋃{𝒞i : i ∈ I},
so 𝒞 is an upper bound of Φ. If 𝒞 ∈ Φ, then Zorn’s lemmawould apply. Now 𝒞 is clearly
an open cover of X. If 𝒞 has a finite subcover U1, . . . ,Un ∈ 𝒞 = ⋃{𝒞i : i ∈ I}, then
each Uk is contained in some 𝒞ik (k = 1, . . . , n), and because 𝒞i1 , 𝒞i2 , . . . 𝒞in are totally or-
dered by set inclusion, their union (or maximum) is 𝒞m for some m ∈ {i1, . . . , in}. Now
U1, . . . ,Un ∈ 𝒞m, contrary to 𝒞m having no finite subcover. Thus, 𝒞 ∈ Φ, and Zorn’s
lemma implies that Φ has a maximal element𝒟.

Now𝒟 is an open cover with no finite subcover. If𝒟 ∩𝒮 covered X, as a cover of X
by subbasic elements, it would have a finite subcover, contrary to 𝒟 having no finite
subcover. Thus, 𝒟 ∩ 𝒮 does not cover X, so there exists x ∈ X − ⋃(𝒟 ∩ 𝒮). Now there
exists U ∈ 𝒟 with x ∈ U, and since 𝒮 is a subbasis, there exist S1, . . . , Sn ∈ 𝒮 with
x ∈ S1 ∩ ⋅ ⋅ ⋅ ∩ Sn ⊆ U . Since x was not covered by 𝒟 ∩ 𝒮, Si ̸∈ 𝒟 for any i = 1, . . . , n.
For any j ∈ {1, . . . , n}, 𝒟 ∪ {Sj} is an open cover of X, and by the maximality of 𝒟 in Φ,
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𝒟∪{Sj} has a finite subcoverℱj ∪{Sj}. Now⋃{ℱi}
n
i=1 ∪{S1 ∩ ⋅ ⋅ ⋅∩Sn} is a finite open cover

of X. Since S1 ∩ ⋅ ⋅ ⋅ ∩ Sn ⊆ U and U ∈ 𝒟,⋃{ℱi}
n
i=1 ∪ {U} is a finite subcover of X from𝒟,

contrary to𝒟 ∈ Φ.

Now we present the Tychonoff theorem, which was already stated as Theo-
rem 6.2.5.

Theorem 7.4.3 (The Tychonoff theorem). A product ∏i∈I Xi of topological spaces is
compact if and only if every factor Xi is compact.

Proof. If X = ∏i∈I Xi is compact, since each projection function πi : X → Xi is contin-
uous and onto, the image πi(X) = Xi is compact for every i ∈ I.

Conversely, suppose (Xi, 𝒯i) is compact for every i ∈ I, and let X = ∏i∈I Xi. Now
𝒮 = {π−1i (U) : i ∈ I ,U ∈ 𝒯i} is a subbasis for X. Suppose 𝒞 is an open cover of X by
subbasic sets from 𝒮. For each i ∈ I, let 𝒞i = {U ∈ 𝒯i : π−1i (U) ∈ 𝒞}. Next, we show that
there must exist i0 ∈ I such that 𝒞i0 covers Xi0 . If not, then, for each i ∈ I, there exists
ai ∈ Xi not covered by 𝒞i, and ⟨ai⟩i∈I ∈ X is not covered by 𝒞 = ⋃{𝒞i : i ∈ I}, contrary
to 𝒞 being a cover of X. Now if 𝒞i0 covers Xi0 , then Xi0 is covered by a finite subcover
{U1, . . . ,Un} ⊆ 𝒞i0 . The collection {π

−1
i0 (U1), . . . ,π−1i0 (Un)} ⊆ 𝒞i0 ⊆ 𝒞 is a finite subcover of

X from 𝒞. Thus, any cover of X by subbasic open sets has a finite subcover, so by the
Alexander subbase theorem, X is compact.

We have thus proved that the Tychonoff theorem follows from the axiom of choice
(in the formof Zorn’s Lemma). In 1950, JohnKelley [25] proved that the axiomof choice
follows from the Tychonoff theorem, so the Tychonoff theorem is equivalent to the
axiom of choice.

Exercises

1. Identify the exact point where the axiom of choice is used in the proof of
(a) Theorem 0.5.1(c).
(b) Exercise 19(a) of Chapter 0.
(c) Theorem 3.1.7.
(d) Theorem 1.5.11.
(e) Theorem 5.1.4.
(f) Theorem 5.1.8.

2. In the Euclidean line, (0, 1) is not compact. Find an open cover by sets from the
standard subbasis 𝒮 = {(−∞, b) : b ∈ ℝ} ∪ {(a,∞) : a ∈ ℝ} which has no finite
subcover.

3. (a) Show that 𝒮 = {(a,∞) × (b,∞) : a, b ∈ ℝ} ∪ {(−∞, a) × (−∞, b) : a, b ∈ ℝ} is a
subbasis for the Euclidean topology on ℝ2.

(b) Find an open cover of the noncompact set (0, 1)×(0, 1) by elements of 𝒮 which
has no finite subcover.
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(c) Find an open cover of the noncompact set {(x, y) ∈ ℝ2 : x2+y2 < 1} by elements
of 𝒮 which has no finite subcover.

4. (a) For a, b ∈ ℝ, let S(a, b) be the strip (a, b) × (−∞,∞) inℝ2 and let D(b, ε) be the
diagonal strip {(x, y) ∈ ℝ2 : x + b < y < x + b + ε}. Show that 𝒮 = {S(a, b) :
a, b ∈ ℝ, a < b} ∪ {D(b, ε) : b ∈ ℝ, ε > 0} is a subbasis for the Euclidean
topology on ℝ2.

(b) Find an open cover of the noncompact set [0, 1]×(0, 1) by elements of 𝒮 which
has no finite subcover.

5. Show that A = {f : [−1, 1] → [−1, 1] : |f (x)| ≤ |x|} is a compact subset of [−1, 1][−1,1]
with the product topology.

6. By Exercise 25 of Section 6.2, [0, 1]ℕ is metrizable, so by Theorem 5.2.8, it is com-
pact if and only if every sequence in [0, 1]ℕ has a convergent subsequence. Prove
that every sequence in [0, 1]ℕ has a convergent subsequence. Note that this shows
[0, 1]ℕ is compact without using the Tychonoff theorem.





8 Alexandroff spaces

Most of thematerial covered to this point wasmotivated by classical analysis, andwas
studied extensively in thefirst half of the 20th century. The fundamental concepts driv-
ing the development of the material were nearness, convergence, and continuity. In
Chapters 8–11, we present somemore recent material. The two fundamental concepts
driving the development of these topicsmight be summarized as loss of resolution aris-
ing in computer applications and topology and order.

The decimal expansion of π has an infinite number of digits, but computer arith-
meticwith π necessarily replaces π by a finite (rational) representation. The Euclidean
plane contains infinitely many points, but any computer screen representation of the
plane must be done with only a finite number of pixels. Thus, convergence, nearness,
and continuity on a computer screenmust be characterized by topologies on the finite
set of pixels. The only T1 topology on a finite set is the discrete topology, in which the
only convergent sequences are those which are eventually constant, and since each
singleton set {x} is open, nothing is “near” x other than x itself. Thus,meaningful con-
vergence on finite topological spaces can only be accomplished by non-T1 (and thus,
non-Hausdorff) topologies.

T1 topological spaces have a certain symmetry to them: If there is a neighbor-
hood of x excluding y, then there is a neighborhood of y excluding x. The study of
non-T1 spaces is thus part of asymmetric topology. Perhaps the most obvious example
of asymmetric topology is the study of quasi-metrics (Section 11.2), which are distance
functions qwhich do not require that q(x, y) = q(y, x). In amore general setting, quasi-
uniformities (Section 12.5) continue the study of asymmetric topology.

The study of spaces which are not Hausdorff has its drawbacks, such an non-
uniqueness of limits, but such problems naturally arise in the loss of resolution sit-
uations where we must represent an infinite set by a finite set. For example, two dis-
tinct points in the Euclidean plane determine a unique line, but two distinct pixels
on a screen may not determine a unique line, as suggested in Figure 8.1. Section 8.1
investigates a class of topological spaces which includes all topologies on finite sets.

Figure 8.1: Two distinct pixels do not determine a unique line.

https://doi.org/10.1515/9783110686579-009
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When using a finite set of pixels to represent a rectangular subset R of the Euclidean
plane, each pixel corresponds to infinitely many points in the rectangle. This intro-
duces an equivalence relation on the rectangle R: two points of R are equivalent if and
only if they are represented by the same pixel. Now any work on the set of pixels is ac-
tuallywork on equivalence classes ofR. In Section 8.2, we investigate partial orders on
equivalence classes on a setX, or equivalently, on the blocks of a partition ofX. In Sec-
tion 11.1, we investigatemetrics on blocks of a partition (i. e., equivalence classes) ofX.

The study of topologies on finite sets can be approached nicely with techniques
from discrete mathematics, especially including the theory of ordered sets. The rich
interaction between topology and order is investigated in the next few chapters.

8.1 Alexandroff topologies

Given a set X and a point p ∈ X, recall that the particular point topology Pp = {0} ∪
{A ⊆ X : p ∈ A} on X determined by p consists of the empty set and all subsets of X
which contain the particular point p. The closed sets in this topology are thus X and
the subsets which exclude p. That is, the closed sets in Pp are precisely the open sets
in the excluded point topology Ep = {X} ∪ {B ⊆ X : p ̸∈ B} determined by p. Thus, Pp
(and also Ep) is a topology whose collection of closed sets forms a topology. Such a
topology is called an Alexandroff topology.

By De Morgan’s laws, the closed sets of any topology on X include 0 and X are
closed under arbitrary (and thus finite) intersections. The only remaining condition
needed to ensure that the closed sets form a topology is that arbitrary unions of closed
setsmust be closed, or equivalently, arbitrary intersections of open setsmust be open.

Definition 8.1.1. AnAlexandroff topology is a topology inwhich arbitrary intersections
of open sets are open.

Alexandroff topologies are sometimes called principal topologies. When P. S.
Alexandroff introduced these spaces in 1937, he called them “Diskrete Räume”, or
“discrete spaces”.

The following theorem lists some important and immediate properties of Alexan-
droff spaces.

Theorem 8.1.2. Let X be a set.
(a) Alexandroff topologies on X occur in pairs: If 𝒯 is anAlexandroff topology onX, then

the collection {X −U : U ∈ 𝒯 } of 𝒯 -closed sets is also an Alexandroff topology on X.
(b) A topology 𝒯 on X is anAlexandroff topology if and only if every x ∈ X has a smallest

neighborhood N(x) (that is, aminimal neighborhoodwith respect to set inclusion).
(c) Every finite topology on X is Alexandroff. In particular, if X is finite, every topology

on X is Alexandroff.
(d) The only T1 Alexandroff topology on X is the discrete topology.
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Proof. (a) follows immediately from De Morgan’s laws.
(b) If (X, 𝒯 ) is an Alexandroff topological space and x ∈ X, then the intersection of

all neighborhoods of x must be a neighborhood N(x) of x, and clearly it is contained
in every neighborhood of x. Conversely, suppose every point x in (X, 𝒯 ) has a smallest
neighborhood N(x). If Ui ∈ 𝒯 for every i ∈ I, we wish to show B = ⋂i∈I Ui is open. If
B = 0, then B is open. If x ∈ B, then x ∈ Ui for each i ∈ I, and since each Ui is open, we
have {x} ⊆ N(x) ⊆ ⋂i∈I Ui = B. Taking the union over all x ∈ B gives B ⊆ ⋃x∈B N(x) ⊆ B,
so B equals a union of open sets, and thus is open.

(c) If 𝒯 is a finite topology, then there are only finitely many open sets, so “arbi-
trary” intersections of open sets are actually finite intersections, whichmust be open.

(d) If 𝒯 is a T1 Alexandroff topology on X, then, for y ̸= x, there exists a neighbor-
hood of x excluding y, so the intersection N(x) of all neighborhoods of x excludes y.
This holds for every y ̸= x, so N(x) = {x} is open for every x ∈ X and thus 𝒯 is dis-
crete.

We consider some examples of Alexandroff topologies.

Example 8.1.3. If 𝒯 is a partition topology on X, that is, if 𝒯 has a basis ℬ = {Bi}i∈I
which is a partition of X, then 𝒯 is an Alexandroff topology. The minimal neighbor-
hood of x ∈ X is the block Bi of the partition which contains x. For any j ∈ I, Bj =
X − ⋃{Bi ∈ ℬ : Bi ̸= Bj}, so each block Bj is closed. It follows that the topology of
𝒯 -closed sets is again 𝒯 . Since the discrete topology is a partition topology, the dis-
crete topology is an Alexandroff topology.

Example 8.1.4. The topology 𝒯 on ℝ generated by the basis ℬ = {[−a, a] ⊆ ℝ : a ≥ 0}
is an Alexandroff topology. Note that this topology contains the open intervals (−a, a)
as well as the closed intervals [−a, a]. We can see directly that arbitrary intersections
of open or closed intervals centered at the origin are again such intervals, or we can
see 𝒯 is Alexandroff by noting that every x ∈ ℝ has a minimal neighborhood [−a, a]
where a = |x|. The Alexandroff topology of 𝒯 -closed sets is {0} ∪ {(−∞, −a) ∪ (a,∞) :
a ≥ 0} ∪ {(−∞, −a] ∪ [a,∞) : a ≥ 0}.

As noted above, the particular point topology on X determined by a point p is
an Alexandroff topology. It consists of 0 and all the supersets of {p}. Its associated
topology of closed sets, the excluded point topology, consists of X and all sets disjoint
from {p}. Replacing the singleton set {p} in the particular point topology by an arbi-
trary set provides the foundation for other Alexandroff topologies, which we define
below.

Definition 8.1.5. Suppose X is a set and S is a fixed subset of X. The collections

Super(S) = {U ⊆ X : S ⊆ U} ∪ {0},
Disjoint(S) = {U ⊆ X : U ∩ S = 0} ∪ {X}, and

Sub(S) = {U ⊆ X : U ⊆ S} ∪ {X}
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are Alexandroff topologies on X, respectively known as the topology of supersets of S,
the topology of sets disjoint from S, and the topology of subsets of S.

It is easy to see directly that each of these collections is an Alexandroff topology
and that they are closely related.

Since U is a subset of S if and only if U is disjoint from X − S, we have Sub(S) =
Disjoint(X − S).

For any set S, the Alexandroff topology of the Super(S)-closed sets is Disjoint(S),
since X − U is a superset of S if and only if S is disjoint from U . The nonempty
Sub(S)-closed sets are sets F with X − F ⊆ S, or equivalently, with X − S ⊆ F. Thus, the
Alexandroff topology of Sub(S)-closed sets is Super(X − S).

In any Alexandroff topology on X, the collection {N(x) : x ∈ X} of minimal neigh-
borhoods of the points is a basis for the topology. In Super(S), the minimal neighbor-
hood of x is N(x) = {x} ∪ S. In Sub(S), if x ∈ S, then {x} is a subset of S, so N(x) = {x};
if x ̸∈ S, then there is no subset of S containing x, so N(x) = X. Loosely speaking, this
says that Sub(S) is discrete on S and indiscrete on X − S. The minimal neighborhoods
in Disjoint(S) = Sub(X − S) are determined similarly.

Table 8.1 shows the associated topology of closed sets and the minimal neighbor-
hoods of points in these topologies.

Table 8.1: Super(S),Disjoint(S), and Sub(S).

𝒯 𝒯 -closed sets
Super(S) Disjoint(S)
Disjoint(S) Super(S)
Sub(S) Super(X − S)

Disjoint(S) = Sub(X − S)

𝒯 minimal neighborhoods N(x)
Super(S) N(x) = {x} ∪ S

Disjoint(S) N(x) = {X if x ∈ S
{x} if x ̸∈ S

Sub(S) N(x) = {{x} if x ∈ S
X if x ̸∈ S

Example 8.1.6. Consider the Alexandroff topological space (ℝ, Super((−1, 1))). Since
(−1, 1) and [−1, 3] ∪ {π, 4} are supersets of (−1, 1), they are open sets in this space. Since
the Super((−1, 1))-closed sets are the members of Disjoint((−1, 1)), the closure cl((0, 2))
is the smallest set containing (0, 2)which is either disjoint from (−1, 1) or equal toℝ. No
set containing (0, 2) is disjoint from (−1, 1), so cl((0, 2)) = ℝ. Since this is anAlexandroff
topology, every point has a minimal neighborhood N(x). If x ̸∈ (−1, 1), the smallest
superset of (−1, 1) containing x isN(x) = (−1, 1)∪{x}and if x ∈ (−1, 1), thenN(x) = (−1, 1).
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The sequence (2 + 1
n )
∞
n=1 is not eventually in the minimal neighborhood N(x) = (−1, 1)

or (−1, 1) ∪ {x} of any x ∈ ℝ, so this sequence does not converge. The sequence ( 1n )
∞
n=1

is eventually in (−1, 1), and therefore is eventually in every open set in Super((−1, 1)).
Thus, ( 1n )

∞
n=1 converges to every point x ∈ ℝ. With non-unique limits, this topological

space is not Hausdorff. Furthermore, for the distinct points x = 0 and y = 1
2 , neither

has a neighborhood which excludes the other, so this space is not even T0. The space
is connected since any two nonempty open sets contain (−1, 1) and cannot be disjoint.
The open cover 𝒞 = {N(x) : x ̸∈ (−1, 1)} of ℝ has no finite subcover, so the space is not
compact.

The next example is a subtle extension of the Sub(S) topology.

Example 8.1.7. Let Z = ℝℝ be the collection of all functions {f : ℝ → ℝ}. Define a
topology 𝒯 on Z by saying a set U ⊆ Z of functions is open if and only if U = Z or for
each f ∈ U, the graph of f is contained in the closed upper half-plane. That is, U ̸= Z
is open if and only if

f ∈ U ⇒ Gf = {(x, f (x)) ∈ ℝ
2 : x ∈ ℝ} ⊆ ℝ × [0,∞).

Clearly Z ∈ 𝒯 , and 0 ∈ 𝒯 vacuously. Suppose Ui ∈ 𝒯 for i ∈ I where I is an arbi-
trary index set. Now⋃i∈I Ui is a union of sets Ui of functions whose graphs are in the
upper half-plane, and this union will only contain functions whose graphs are in the
upper half-plane, so the union is in 𝒯 . Similarly, ⋂i∈I Ui is either empty, Z, or a set
of functions whose graphs are in the upper half-plane, so 𝒯 is closed under arbitrary
intersections. Thus, 𝒯 is an Alexandroff topology.

The set U = {fn(x) = 3 + n + sin nx : n ∈ ℕ} is an open set in 𝒯 . The set A =
{f (x) = −x2 − 2, g(x) = 4 + x2} is not open since the graphs of the functions of A are not
all contained in the upper half-plane. Also, since Z − A is a proper subset of Z which
contains functions like h(x) = x whose graph is not in the upper half-plane, Z − A is
not open, so A is not closed.

Suppose (fn)∞n=1 is a sequence of functions inZ = ℝ
ℝ. If g is a functionwhose graph

is not contained in the closed upper half-plane, then the sequence is eventually in the
minimal neighborhood N(g) = Z, so every such g is a limit of the sequence. If g is a
function whose graph is contained in the closed upper half-plane, then the sequence
is eventually in N(g) = {g} only if the sequence is eventually constantly fn = g. Thus,
the convergence of sequences are completely characterized by saying all eventually
constant sequences converge to the constant term and every sequence converges to
every function g whose graph is not contained in the closed upper half-plane.

Another nice class of Alexandroff topologies are the functionally Alexandroff
topologies which were explicitly introduced independently in 2011 as functional
Alexandroff spaces [1] and in 2012 as primal spaces [14].

If X is a nonempty set and f : X → X is a function, let

𝒯f = {U ⊆ X : f
−1(U) ⊆ U}.
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Since f −1(0) ⊆ 0 and f −1(X) ⊆ X, we have 0,X ∈ 𝒯f . If Ui ∈ 𝒯f for all i in an arbitrary
index set I, then

f −1(⋃
i∈I

Ui) = ⋃
i∈I

f −1(Ui) ⊆ ⋃
i∈I

Ui,

so⋃i∈I Ui ∈ 𝒯f . Replacing each⋃ by⋂, these statements remain valid, so⋂i∈I Ui ∈ 𝒯f .
Thus, 𝒯f is an Alexandroff topology on X.

Definition 8.1.8. A topology on X which arises as 𝒯f = {U ⊆ X : f −1(U) ⊆ U} for some
function f : X → X is a functionally Alexandroff topology (or a primal topology).

The following results about functionally Alexandroff spaces are routine to verify,
and are left to the exercises. In what follows, f 2(x) = f (f (x)) and for n ≥ 2, f n+1(x) =
f (f n(x)).

Theorem 8.1.9. Suppose 𝒯f is the functionally Alexandroff topology on X arising from
f : X → X.
(a) C is 𝒯f -closed if and only if f (C) ⊆ C. That is, the 𝒯f -closed sets are the f -invariant

subsets of X.
(b) For x ∈ X, cl{x} = {f n(x)}∞n=0. That is, cl{x} is the orbit𝒪(x) = {f

n(x)}∞n=0 of x under f .
(c) For x ∈ X, the smallest neighborhood of x is Nf (x) = {y ∈ X : f n(y) = x for some n ∈
{0, 1, 2, . . .}}.

For example, suppose f : ℕ → ℕ is the function defined by taking f (n) to be the
sum of the digits of n. Now f (42613) = 4 + 2 + 6 + 1 + 3 = 16, f 2(42613) = f (16) = 7,
and for n ≥ 3, f n(42613) = 7. Thus, cl{42613} = {42613, 16, 7}. It is well-known that the
remainder when n is divided by 9 is the same as the remainder when f (n) is divided
by 9. Thus, Nf (4) = {m ∈ ℕ : m ≡ 4 mod 9}.

Exercises

1. Every point x in an Alexandroff topological space X has a minimal neighborhood
N(x) = ⋂{U : U is a neighborhood of x}. If (X, 𝒯 ) is an Alexandroff space, show
that ℬ = {N(x) : x ∈ X} is a basis for 𝒯 .

2. If 𝒯 is an Alexandroff topology on X, let 𝒯 ∗ denote the Alexandroff topology of
𝒯 -closed sets. For x ∈ X, describe the minimal 𝒯 ∗-neighborhood N∗(x) of x in
terms of 𝒯 .

3. Show that a collection ℬ of subsets of X is a basis for an Alexandroff topology on
X if and only if ⋃ℬ = X and whenever x is in the intersection ⋂{Bi : i ∈ I} of an
arbitrary collection of sets Bi ∈ ℬ, there exists B ∈ ℬ with x ∈ B ⊆ ⋂{Bi : i ∈ I}.

4. Show that the digital line topology 𝒯DL on ℤ is an Alexandroff topology and de-
scribe the topology of 𝒯DL-closed sets.
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5. Describe the topologies Super(S), Disjoint(S), and Sub(S) on X (a) if S = 0 and (b)
if S = X.

6. Let X = [0, 6] × [0, 2] and S = [0, 3] × [0, 2]. Give X the topology Super(S). Find the
interior, closure, and boundary of the following sets.

A = [0, 1] × [0, 1] B = [2, 4] × [0, 1] C = [5, 6] × [0, 1]
D = [0, 5] × [0, 2] E = [1, 6] × [0, 2]

7. Repeat Exercise 6 using the topology Disjoint(S) instead of Super(S).
8. Repeat Exercise 6 using the topology Sub(S) instead of Super(S).
9. Suppose X is a set and S is a fixed subset of X which is nonempty and proper.

Give X the topology Disjoint(S). For an arbitrary nonempty subset A ⊆ X, describe
intA, clA, and 𝜕A.

10. Suppose X is a set and S is a fixed subset of X which is nonempty and proper. Give
X the topology Sub(S). For an arbitrary nonempty subset A ⊆ X, describe intA,
clA, and 𝜕A.

11. Suppose X is a set and S is a fixed subset of X which is nonempty and proper. Give
X the topology Super(S). For an arbitrary subset A ⊆ X, give rules to determine
intA and clA.

12. Suppose X is a set containing distinct points p and q. Let 𝒯{p,q} = Super({p}) ∪
Disjoint({p, q}). Thus, U ∈ 𝒯{p,q} if and only if U contains p or excludes both p and
q. Show that 𝒯{p,q} is an Alexandroff topology on X and describe the topology of
𝒯{p,q}-closed sets. (In Section 9.3, we will see that the only topology on X which is
strictly finer than 𝒯{p,q} is the discrete topology.)

13. Two topologies 𝒯1 and 𝒯2 on the same set X are said to be (lattice) complements if
the only topology finer than both 𝒯1 and 𝒯2 is the discrete topology and the only
topology coarser than both 𝒯1 and 𝒯2 is the indiscrete topology.
(a) Show that topologies 𝒯1 and 𝒯2 on X are complements if and only if (i) for

every x ∈ X there exists a 𝒯1-neighborhood U of x and a 𝒯2-neighborhood V
of x with U ∩ V = {x}, and (ii) the only sets which are open in both 𝒯1 and 𝒯2
are 0 and X.

(b) If S ⊆ X, show that Sub(S) and Disjoint(S) are complements.
14. Suppose S is a nonemptyproper subset ofX. Discuss the connectedness ofX under

the topologies Super(S),Disjoint(S), and Sub(S). What if S is allowed to be 0 or X?
15. Suppose S is a nonempty proper subset of X. Discuss the compactness of X under

the topologies Super(S),Disjoint(S), and Sub(S). What if S is allowed to be 0 or X?
16. Let 𝒯 = {U ⊆ ℝ3 : π1(U) ⊆ [0, 1]} ∪ {ℝ3}, where π1 is the projection function onto

the first coordinate. Show that 𝒯 is an Alexandroff topology on X = ℝ3.
17. Suppose (X, 𝒯 ) is an Alexandroff topology and Y ⊆ X. If 𝒯Y is the subspace topol-

ogy on Y , must (Y , 𝒯Y ) be an Alexandroff space?
18. Suppose (X, 𝒯 ) is an Alexandroff space, q : X → Y is a surjection, and 𝒯 󸀠 = {V ⊆

Y : q−1(V) ∈ 𝒯 } is the quotient topology on Y . Is the quotient space (Y , 𝒯 󸀠) neces-
sarily an Alexandroff space?
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19. Prove Theorem 8.1.9.
20. If 𝒯f is the functionally Alexandroff topology arising from f : X → X, show that

f : (X, 𝒯f ) → (X, 𝒯f ) is a continuous closed mapping.
21. (a) How are the fixed points of f : X → X recognizable in the functionally Alexan-

droff topology 𝒯f ?
(b) Characterize the functions f : X → X for which 𝒯f is T1.

22. Show that the indiscrete topology on X is functionally Alexandroff if and only if X
is finite.

23. Suppose 𝒯f is the functionally Alexandroff topology arising from f : X → X. For
x, y ∈ X, define x ≈ y if and only if there exist m, n ∈ ℕ ∪ {0} with fm(x) = f n(y).
Show that ≈ is an equivalence relation onX and that the ≈-equivalence classes are
the connected components of (X, 𝒯f ).

24. Show that the Alexandroff topology depicted is not functionally Alexandroff.

? ? ?
a b c

?? ???
?

?
?

8.2 Quasiorders

In this section, we momentarily abandon topology to introduce an elementary topic
from discrete mathematics: quasiorders. Recall that a partial order on a set X is a rela-
tion ≤ on X which is reflexive, transitive, and antisymmetric, and an equivalence rela-
tion on X is a relation ∼ which is reflexive, transitive, and symmetric. An equivalence
relation ∼ on X partitions X into equivalence classes [x] = {y ∈ X : x ∼ y}, and every
partition𝒫 = {Bi : i ∈ I} of X into blocks Bi (i ∈ I) gives an equivalence relation defined
by x ∼ y if and only if x and y fall in the same block Bi of 𝒫. Equivalence relations are,
in effect, equality of some attribute of the elements of X. If a farmer sells pumpkins by
the pound, his accountant may say that pumpkin a is equivalent to pumpkin b if and
only if their weights are equal.

Everypartial order andevery equivalence relation is a reflexive, transitive relation.
Such relations are called quasiorders.

Definition 8.2.1. A quasiorder on a set X is a reflexive, transitive relation ≲ on X. That
is, a relation ≲ on set X is a quasiorder if x ≲ x for every x ∈ X, and for every x, y, z ∈ X,
if x ≲ y and y ≲ z, then x ≲ z.

Quasiorders are like partial orders without antisymmetry. If we interpret a ≲ b to
mean b is as good as or better than a, then applications abound where we could have
a ≲ b and b ≲ a with a ̸= b. To a farmer’s accountant, any two different six-pound
pumpkins a and b would satisfy a ≲ b and b ≲ a but a ̸= b. If a professor is grading
essays, two different essays a and b may each be as good as or better than the other,
even though they are different essays. Two such essays would receive the same grade,
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and thus a ≲ b and b ≲ a defines an equivalence relation based on equality of the
essay grades.

If a ≲ b and b ≲ a, then our experience with partial orders leads us to expect that
a should equal b; if ≲ is a quasiorder which is not a partial order, then they may not
be equal, but we may declare them to be equivalent. This introduces antisymmetry,
but on the equivalence classes of X instead of the points of X. Thus, a quasiorder on X
gives a partial order on the equivalence classes of an equivalence relation. Conversely,
a partial order on the blocks of a partition of X (that is, on the equivalence classes of
some equivalence relation onX) produces a quasiorder in a naturalway. The following
theorem explicitly gives this important connection.

Theorem 8.2.2.
(a) If ≲ is a quasiorder on X, the relation ≈ on X defined by a ≈ b if and only if a ≲ b and

b ≲ a is an equivalence relation on X.
(b) If [x] is the equivalence class of x ∈ X with respect to the equivalence relation ≈ as

in (a), then taking [a] ≤ [b] if and only if a ≲ b defines a partial order ≤ on the set
X/≈ of equivalence classes.

(c) If ≤ is any partial order on the blocks {Bi : i ∈ I} = {[a] : a ∈ X} of a partition 𝒫
of X, then the relation ≲ defined on X by a ≲ b if and only if [a] ≤ [b] is a quasiorder
on X.

Proof. (a) It is easy to see that ≈ as defined above is reflexive, transitive, and symmet-
ric, and thus is an equivalence relation.

(b) To see that this gives a partial order on the equivalence classes, we first note
that the definition [a] ≲ [b] if and only if a ≲ b is well-defined. If [a] = [a󸀠] and
[b] = [b󸀠], then [a] ≲ [b] if and only if [a󸀠] ≲ [b󸀠], and these two different choices for
the equivalence class representatives lead to different—and possibly contradictory—
defining conditions, namely a ≲ b and a󸀠 ≲ b󸀠. However, if [a] = [a󸀠] and [b] = [b󸀠],
then a ≲ a󸀠, a󸀠 ≲ a, b ≲ b󸀠, and b󸀠 ≲ b, so if a ≲ b, then we have a󸀠 ≲ a ≲ b ≲ b󸀠, so
a󸀠 ≲ b󸀠 by transitivity of ≲. Similarly, if a󸀠 ≲ b󸀠 then a ≲ b. Now for any equivalence
classes [a], [b], and [c], it is easy to see that reflexivity, transitivity, and symmetry fol-
low for the equivalence classes from the corresponding properties of the representa-
tive elements a, b, and c.

(c) Suppose ≤ is a partial order on the blocks {[a] : a ∈ X} of a partition 𝒫 of X,
and ≲ is defined by a ≲ b if and only if [a] ≤ [b]. For a ∈ X, [a] ≤ [a] and thus a ≲ a.
If a ≲ b and b ≲ c, then [a] ≤ [b] and [b] ≤ [c], so [a] ≤ [c] and thus a ≲ c. Thus, ≲ is
reflexive and transitive, as needed.

While an equivalence relation on X partitions X into equivalence classes based
on equality of some attribute, a quasiorder on X focuses on some attribute of the ele-
ments, partitionsX into the corresponding equivalence classes, and provides a partial
order on the equivalence classes.
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Wemay iterate the parts of Theorem 8.2.2: a quasiorder ≲ on X produces a partial
order on the blocks of a partition, which then produces a quasiorder. It is easy to see
that the resulting quasiorder is the original. Similarly, starting with a partial order
on the blocks of a partition, finding the associated quasiorder, and then the partial
order on the blocks of a partition using the process in the theorem, we cycle back to
the original partial order on blocks of the original partition. This proves the following
corollary.

Corollary 8.2.3. There is a one-to-one correspondence between quasiorders on X and
partial orders on blocks of partitions of X.

Example 8.2.4. Let Cr = {(x, y) ∈ ℝ2 : x2 + y2 = r2} be the circle of radius r centered at
the origin. Partitionℝ2 into {Cr : r ≥ 0}. Partially order the blocks of the partition (that
is, the circles) by Cr ≤ Cs if and only if r ≤ s. By Theorem 8.2.2(c), this structure gives a
quasiorder on ℝ2 defined by (a, b) ≲ (x, y) if and only if the circle Cr containing (a, b)
has radius less than or equal to the circle Cs containing (x, y). That is, (a, b) ≲ (x, y) if
and only if√a2 + b2 ≤ √x2 + y2, or equivalently, if and only if a2 + b2 ≤ x2 + y2.

Example 8.2.5. On ℝ2, define (a, b) ≲ (x, y) if and only if a ≤ x. It is easily seen that
≲ is reflexive and transitive, and thus is a quasiorder on ℝ2. The equivalence relation
(a, b) ≈ (x, y) if and only if (a, b) ≲ (x, y) and (x, y) ≲ (a, b) is (a, b) ≈ (x, y) if and only if
a = x. The ≈-equivalence class of (a, b) is [(a, b)] = {(x, y) : x = a}, which is the vertical
line La = {a} × ℝ. The partial order on set of equivalence classes {La : a ∈ ℝ} from
Theorem 8.2.2(b) is given by La ≤ Lb if and only if a ≤ b in ℝ.

Example 8.2.6. Define ≲ on ℝ by x ≲ y if and only if x = y or x ∈ ℤ. Thus, besides
the reflexivity condition that each point is below itself, we have each integer is be-
low everything. This is a quasiorder. Reflexivity follows from the definition. To show
transitivity, suppose x ≲ y and y ≲ z. If x ∈ ℤ, then x ≲ z since integers are below
everything. If x ̸∈ ℤ and x ≲ y, then x = y, so y ≲ z says x ≲ z.

To find the associated equivalence relation ≈, suppose x ≲ y and y ≲ x. If x ̸∈ ℤ,
then x ≲ y implies x = y, so the ≈-equivalence class of x ̸∈ ℤ is {x}. If x ∈ ℤ, then x ≲ y
for every y ∈ ℝ, and y ≲ x if x = y or y ∈ ℤ. Thus, for x ∈ ℤ, x ≈ y if and only if y ∈ ℤ.

Now the associated partial order≤ on the equivalence classes {ℤ}∪{{x} : x ∈ ℝ−ℤ}
includes the natural reflexivityℤ ≤ ℤ and {x} ≤ {x} for all x ∈ ℝ−ℤ, and the condition
that n ≲ x for any n ∈ ℤ and any x ∈ ℝ implies [n] ≤ [x], so we have ℤ ≤ {x} for any
x ∈ ℝ − ℤ. The Hasse diagram for this partial order is suggested in Figure 8.2.

? ? ? ? ? ? ? ? ?

? ℤ
ℝ − ℤ

Figure 8.2: The partial order on the ≈-equivalence classes for Example 8.2.6.
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Example 8.2.7. On the set of words, define a relation ≲ by word1 ≲ word2 if and only if
the set of consonants used in word1 is a subset of the set of consonants used in word2.
Now ≲ is a quasiorder since it is reflexive (the set of consonants in word1 is a subset
of the set of consonants in word1) and transitive (if the set of consonants in word1

is contained in the set of consonants in word2 and the set of consonants in word2 is
contained in the set of consonants in word3, then the set of consonants in word1 is
contained in the set of consonants in word3). The associated equivalence relation is
word1 ≈ word2 if and only if the set of consonants of each word is contained in the
set of consonants of the other, which happens if and only if they have the same set of
consonants. Then, for example,

cool ≲ calculus ≲ class ≲ calculus ≲ school

since

{c, l} ⊆ {c, l, s} ⊆ {c, l, s} ⊆ {c, l, s} ⊆ {c, l, s, h}.

Furthermore, calculus ≈ class. If we assume the set C of consonants has 21 elements,
and if we allow nonsense words like bcdfghyz, then the set of ≈-equivalence classes
with thepartial order inducedby≲ is𝒫(C), the power set ofC, orderedby set inclusion.

Example 8.2.8 (Simplex combination locks). A simplex combination lock is a push-
button lock with n buttons. To open the lock, the proper sequence of buttons must be
pressed. Buttons may be pressed simultaneously, but no button can be pressed more
than once. A standard configuration uses n = 5 buttons. One possible combination
might be ({1, 4}, {2}, {3, 5}), requiring that buttons 1 and 4 be pressed simultaneously
first, then button 2, then buttons 3 and 5 simultaneously. This combination gives a
partition of the buttons pressed, and apartial order (in fact, a total order) on the blocks
{{1, 4}, {2}, {3, 5}} of the partition, and thus a quasiorder on X = {1, 2, 3, 4, 5}.

The number of combinations Ln on an n-button lock which use all n buttons is
called the nth Fubini number. Ln is the number of total quasiorders on X, where a total
quasiorder is a quasiorderwhose associated partial order on the equivalence classes is
a total order. By convention, L0 = 1, and it is easy to see that L1 = 1. There is a recursive
formula for the numbers Ln. Having defined L0, L1, . . . , Ln−1 for n ≥ 2, on the first press,
we must press k buttons (k = 1, . . . , n). There are (nk) ways to do this. Then, we are left
with the (n − k)-button problem, which can be solved in Ln−k ways. Summing over all
k gives

Ln =
n
∑
k=1
(
n
k
)Ln−k .

The initial conditions for L0 and L1 give (Ln)5n=0 = (1, 1, 3, 13, 75, 541), and in particular,
there are 541 combinations on a 5-button lock which use all five buttons.
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Since combinations on a 5-button lock need not use all five of the buttons, to find
the total number of combinations, there are more combinations to count. If a combi-
nation uses j buttons for j = 0, . . . , 5. There are (5j) choices for which j buttons to use,
and summing over all values of j gives the total

T5 =
5
∑
j=0
(
5
j
)Lj = 1082.

Note that the total number T5 = 1082 = 2(541) = 2L5, and in general Tn = 2Ln. Thus,
a 5-button Simplex lock has 1082 possible combinations, making it only slightly more
secure than a bike lock with three rotors with 10 possible positions for each rotor,
which has 103 = 1000 possible combinations. Further analysis of this example is given
in [49].

Given a subset B of a partially ordered set or a quasiordered set, it is natural to
consider all the points in B or above an element of B. The next definition provides our
terminology.

Definition 8.2.9. Given a subset B of a quasiordered set (X, ≲), the increasing hull of B
is i(B) = {x ∈ X : b ≲ x for some b ∈ B}, andB is an increasing set ifB = i(B). Dually, the
decreasing hull of B is d(B) = {x ∈ X : x ≲ b for some b ∈ B}, and B is a decreasing set
if B = d(B). The increasing and decreasing hulls i({x}) and d({x}) of a singleton set {x}
will be denoted i(x) and d(x), respectively. A set is monotone if it is either increasing
or decreasing.

Thus, the increasing hull of B contains everything in B and everything above any
point ofB. Ournotationand terminology follows that of the seminalmonographTopol-
ogy andOrder [38] by LeopoldoNachbin, which appeared in Portuguese in 1950 and in
English translation in 1965. Increasing sets appear in the literatureundermanynames,
including upper sets, upward closed sets, or upsets, and the increasing hull i(A) may
be called the upward closure and be denoted ↑A. In the natural dual terminology, the
decreasing hull of Amay be called the downward closure, denoted ↓A, and decreasing
sets may be called lower sets, downward closed sets, or downsets.

When we are dealing with more than one quasiorder on a set, we may need to
include the order ≲ in our terminology, sayingB is ≲-increasing if and only if B = i≲(B).
For example, a quasiorder ≲ on X always produces the dual quasiorder ≳ defined by
x ≳ y if and only if y ≲ x. Then, it is clear that i≲(B) = d≳(B).

We present some facts about monotone sets.

Theorem 8.2.10. Suppose B is a subset of a quasiordered set (X, ≲).
(a) The increasing hull of B is the smallest increasing set containing B.
(b) B is increasing if and only if B = ⋃{i(x) : x ∈ B}.
(c) The complement of an increasing set is a decreasing set.
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The dual statements about decreasing sets also hold. That is:
(a󸀠) The decreasing hull of B is the smallest decreasing set containing B.
(b󸀠) B is decreasing if and only if B = ⋃{d(x) : x ∈ B}.
(c󸀠) The complement of a decreasing set is an increasing set.

The straightforward proofs are left as exercises. We note that given a statement
about an ordered set (X, ≤), the dual statement is obtained by reversing ≤ and any
terms defined using ≤ to ≥ and the corresponding terms defined using ≥.

Example 8.2.11. Consider the quasiordered space ℝ2 of Example 8.2.4 with (a, b) ≲
(x, y) if and only if the distance from (a, b) to the origin is less than or equal to the
distance from (x, y) to the origin. Now the decreasing hull of the singleton set {(3, 4)} is
d((3, 4)) = {(x, y) ∈ ℝ2 : (x, y) ≲ (3, 4)}, which is the closed disk of radius 5 centered at
the origin. Similarly, i((3, 4)) is the set of all points in the plane 5 units or further from
the origin. Note that i((3, 4)) ∩ d((3, 4)) is the circle C5 of radius 5.

For B = {(1, 1), (2,0)}, d(B) consists of B and every point (x, y) ∈ ℝ2 with (x, y) ≲
(1, 1) or (x, y) ≲ (2,0), so d(B) = {(x, y) ∈ ℝ2 : x2 + y2 ≤ 4} is a closed disk of radius 4.
Similarly, i(B) = {(x, y) ∈ ℝ2 : (x, y) ≳ (a, b) for (a, b) = (1, 1) or (a, b) = (2,0)} = {(x, y) ∈
ℝ2 : x2 + y2 ≥ 2}, which is the complement of an open disk of radius√2.

For C = {(x, y) ∈ ℝ2 : x2 + y2 < 3}, d(C) consists of all points in the plane which
are in C or are closer to the origin than some point of C. Thus, d(C) = C, and C is a
decreasing set. Every open disk centered at the origin and every closed disk centered
at the origin is a decreasing set, and indeed, every nonempty proper decreasing set is
of this form.

Exercises

1. Define a relation ≲ on ℝ by x ≲ y if and only if x2 ≤ y2, where ≤ is the usual order
on ℝ.
(a) Show that ≲ is a quasiorder on ℝ.
(b) Describe the associated equivalence relation a ≈ b if and only if a ≲ b and

b ≲ a.
(c) Describe the partial order on the ≈-equivalence classes associated with the

quasiorder ≲.
(d) Find i(−3), i({2, 3}), d({6, 15}), i({3 + 1

n : n ∈ ℕ}), and d({x ∈ ℝ : −4 < x < 3}).
2. Define a relation ≲ on X = ℝ − {nπ : n ∈ ℤ} by x ≲ y if and only if cot x ≤ cot y,

where ≤ is the usual order on ℝ.
(a) Show that ≲ is a quasiorder on ℝ.
(b) Describe the associated equivalence relation a ≈ b if and only if a ≲ b and

b ≲ a.
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(c) Describe the partial order on the ≈-equivalence classes associated with the
quasiorder ≲.

(d) Find i( π2 ), and d((
π
4 ,

π
3 )).

3. The “divides” relation |on the setℤ−{0}of positive andnegative integers is defined
by a|b if and only if there exists n ∈ ℤ with b = na.
(a) Show that | is a quasiorder on ℤ − {0}.
(b) Describe the associated equivalence relation a ≈ b if and only if a|b and b|a.
(c) Describe the partial order on the ≈-equivalence classes associated with the

quasiorder |.
(d) Find i(3), i({2, 3}), d(12), and d({6, 15}).

4. If X is a set, (Y , ≤) is a poset, and f : X → Y is a function, show that defining x1 ≲f
x2 if and only if f (x1) ≤ f (x2) gives a quasiorder ≲f on X. Describe the associated
equivalence relation ≈f on X. Among the quasiorders of the previous exercises in
this section, which are defined in this manner?

5. Let X = {( ), (1), (2), . . . , (15)} represent a standard set of billiard balls, with their
standard colors and numbers. Define a quasiorder on X by (x) ≲ (y) if and only if
the set of colors on ball (x) is a subset of the set of colors on ball (y).
(a) Sketch the Hasse diagram for (X, ≲).
(b) Find i((8)), i({(2), (13)}), and d({(1), (7), (12)}).
(c) How many increasing sets and how many decreasing sets are there in (X, ≲)?

6. Repeat Exercise 5 using the quasiorder ≲ on X defined by (x) ≲ (y) if and only if
the number of colors on ball (x) is less than or equal to the number of colors on
ball (y).

7. In a quasiordered set X, if B ⊆ X, show that i(B) is an increasing set, and is the
smallest increasing set containing B.

8. In a quasiordered set X, show that 0 and X are increasing.
9. In a quasiordered set, show that the complement of an increasing set is a decreas-

ing set.
10. In a quasiordered set X, show that B is increasing if and only if B = ⋃{i(b) : b ∈ B}.

8.3 Alexandroff topologies as quasiorders

After having introduced quasiorders in the last section, the next theorem brings us
back to topology.

Theorem 8.3.1. Suppose (X, ≲) is a quasiordered set.
(a) 0 and X are increasing sets.
(b) Arbitrary intersections of increasing sets are increasing sets.
(c) Arbitrary unions of increasing sets are increasing sets.
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That is, the increasing sets in the quasiordered set (X, ≲) form an Alexandroff topology
𝒯 [≲] on X called the specialization topology from ≲. The smallest neighborhood of x is
the smallest increasing set containing x; that is, N(x) = i(x).

The Alexandroff topology of 𝒯 [≲]-closed sets consists of the complements of the
increasing sets, that is, the decreasing sets in (X, ≲). Since the smallest closed set con-
taining A ⊆ X is the smallest decreasing set containing A, we have clA = d(A).

The proofs are left to the exercises.

Example 8.3.2. In the spaceℝwith x ≲ y if and only if x = y or x ∈ ℤ considered in Ex-
ample 8.2.6, the open sets of the specialization topology 𝒯 [≲] are the increasing sets.
Since an integer n ∈ ℤ is below everything inℝ, i(n) = ℝ is theminimal neighborhood
N(n) of n ∈ ℤ. For x ̸∈ ℤ, i(x) = {x}, so N(x) = {x}. The minimal neighborhoods form
a basis for the Alexandroff topology, so the 𝒯 [≲]-open sets other thanℝ are unions of
singletons {x} for x ̸∈ ℤ. That is, the proper open sets are those that are disjoint fromℤ.
Thus, 𝒯 [≲] = Disjoint(ℤ).

Our previous theorem showed that any quasiorder ≲ on a set X produces an
Alexandroff topology 𝒯 [≲] consisting of the increasing sets. The theorembelow shows
that the converse holds as well. Every Alexandroff topology on X is the specialization
topology generated from some quasiorder on X. Indeed, either of the observations in
Theorem 8.3.1 that i(x) = N(x) and d(x) = cl({x}) provides a link both ways between
quasiordered sets and Alexandroff topologies, shown in Table 8.2.

Table 8.2: The link between quasiorders and Alexandroff topologies.

Order Theory Topology

x ≲ y ⇐⇒ x ∈ d(y) ⇐⇒ x ∈ cl{y}
⇕ ⇕

y ≳ x ⇐⇒ y ∈ i(x) ⇐⇒ y ∈ N(x)

For completeness, we state both directions in the theorem.

Theorem 8.3.3. Every quasiorder ≲ on X produces an Alexandroff topology 𝒯 [≲] con-
sisting of the ≲-increasing sets in (X, ≲).

EveryAlexandroff topology 𝒯 onX produces a quasiorder≲𝒯 onX defined by x ≲𝒯 y
if and only if x ∈ cl{y}; that is, defined by x ∈ d(y) if and only if x ∈ cl{y}.

Furthermore, if 𝒯 is an Alexandroff topology on X, then ≲𝒯 [≲]=≲, and if ≲ is a quasi-
order on X, then 𝒯 [≲𝒯 ] = 𝒯 .

Proof. The first statement is Theorem 8.3.1.
Suppose 𝒯 is a topology on X and ≲𝒯 is defined by x ≲𝒯 y if and only if x ∈ cl{y}.

For any x ∈ X, x ∈ cl{x}, so x ≲𝒯 x, and thus ≲𝒯 is reflexive. Suppose for x, y, z ∈ X
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we have x ≲𝒯 y and y ≲𝒯 z. Then x ∈ cl{y} and y ∈ cl{z}. Every open neighborhood
U of xmust intersect {y}, and thus is a neighborhood of y, and every neighborhood of
y must intersect {z}. It follows that every neighborhood of x intersects {z}, so x ∈ cl{z}
and thus x ≲𝒯 z, showing transitivity. Thus, ≲𝒯 is a quasiorder on X.

Ifwe startwith a quasiorder≲onX, convert to the associatedAlexandroff topology
𝒯 [≲], then convert this topology to the associated quasiorder ≲𝒯 [≲], because the con-
versions are as described in the circular loop of equivalences in Table 8.2, we return
to the original quasiorder ≲. Similarly comments apply to the situation of iterating the
conversions when starting from an Alexandroff topology.

This theorem shows that there is a one-to-one correspondence between qua-
siorders and Alexandroff topologies on a set X. In particular, if X is a finite set, every
topology onX is Alexandroff, so there is a one-to-one correspondence between topolo-
gies on a finite set X and quasiorders on X.

Just as the Alexandroff topology corresponding to a quasiorder is called the spe-
cialization topology, the quasiorder ≲𝒯 produced by topology 𝒯 is called the special-
ization order produced by 𝒯 .

In Theorem 8.3.3, the proof that an Alexandroff topology 𝒯 on X defines a qua-
siorder ≲𝒯 on X by x ≲𝒯 y if and only if x ∈ cl{y} did not require that 𝒯 be Alexan-
droff; any topology 𝒯 on X produces a quasiorder ≲𝒯 on X. We restricted our atten-
tion to Alexandroff topologies to obtain the one-to-one correspondence with qua-
siorders. Quasiorders arising from non-Alexandroff topologies are investigated in
Exercise 14.

Example 8.3.4. The Hasse diagram for a quasiordered set (X, ≲) is depicted as the
Hasse diagram for the partial order on the ≈-equivalence classes. Figure 8.3(a) shows
the Hasse diagram for a quasiordered set X = {a, b, c, d, e, f , g, h, i}. For example, we
have a ≲ b, a ≲ c, b ≲ c, c ≲ b, and thus b ≈ c. The specialization topology from
≲ is the collection of increasing sets. A basis for the specialization topology is ℬ =
{N(x) : x ∈ X} = {i(x) : x ∈ X}. For example, i(b) = {b, c} is the smallest increas-
ing set containing b and thus is the smallest neighborhood of b. Some other basic
open sets are N(a) = i(a) = {a, b, c}, N(e) = i(e) = {e}, N(d) = i(d) = {b, c, d, e}, and
N(h) = i(h) = X − {a}. The basis ℬ for the specialization topology is shown in Fig-
ure 8.3(b).

Figure 8.3: (a) The Hasse diagram for a quasiorder and (b) a basis for its specialization topology.
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In Chapter 0,wedefined several order-theoretic properties, suchasupper bounds,
minimal elements, and minimum elements, for partially ordered sets. Those defini-
tions apply to quasiordered sets as well. In particular, a function f : (X, ≲X) → (Y , ≲Y )
is increasing (or order-preserving) if for all a, b ∈ X, a ≲X b implies f (a) ≲Y f (b).

The following results reinforce the strong link between Alexandroff spaces and
quasiordered sets.

Lemma 8.3.5. A function f : (X, ≲X) → (Y , ≲Y ) between quasiordered spaces is increas-
ing if and only if for every increasing set V in Y, the inverse image f −1(V) is an increasing
set in X.

Proof. Suppose (X, ≲X) and (Y , ≲Y ) are quasiordered sets, f : (X, ≲X) → (Y , ≲Y ) is an
increasing function, and V is an increasing set in Y . To see f −1(V) is increasing in X,
suppose a ∈ f −1(V) and a ≲X b. Then f (a) ≲Y f (b). Since f (a) ∈ V and V is an increas-
ing set, f (b) ∈ V . Thus, b ∈ f −1(V). This shows f −1(V) is an increasing set in X.

Conversely, suppose f : (X, ≲X) → (Y , ≲Y ) has the property that f −1(V) is an in-
creasing set in X for every increasing set V in Y . To show f is an increasing function,
suppose a ≲X b. We want to show f (a) ≲Y f (b), or f (b) ∈ i≲Y (f (a)). Since i≲Y (f (a)) is
an increasing set in Y containing f (a), f −1(i≲Y (f (a))) is an increasing set in X contain-
ing a, and thus containing b ≳X a. Now b ∈ f −1(i≲Y (f (a))) implies f (b) ∈ i≲Y (f (a)), as
needed.

Theorem 8.3.6. Suppose (X, 𝒯X) and (Y , 𝒯Y ) are Alexandroff spaces having specializa-
tion quasiorders ≲X and ≲Y , respectively, and f : X → Y is a function. Then f : (X, 𝒯X) →
(Y , 𝒯Y ) is continuous if and only if f : (X, ≲X) → (Y , ≲Y ) is increasing.

Proof. The result follows immediately from Lemma 8.3.5 and the fact (Theorem 8.3.3)
that open sets in an Alexandroff topology are the increasing sets in the specialization
quasiorder.

In an Alexandroff space X, cl{x} = d(x), where the decreasing hull is taken in the
specialization quasiorder on X. In a functionally Alexandroff space, cl{x} = {f n(x)}∞n=0.
In particular, f (x) ∈ cl{x} = d(x), so f (x) ≤ x. Loosely, this tells us that to draw a Hasse
diagram for a functionally Alexandroff topology 𝒯f determined by f : X → X, we start
with x ∈ X, put f (x) ≤ x, and repeat.

Example 8.3.7. Consider the function f : {1, 2, . . . , 7} → {1, 2, . . . , 7} defined by f (1) =
f (2) = 3, f (3) = 4, f (4) = 5, f (5) = 4, f (6) = 7, f (7) = 7. In the specialization order for the
functionally Alexandroff topology 𝒯f , we have f (x) ≤ x, and this allows us to generate
the Hasse diagram, as shown in Figure 8.4(a). Since the smallest neighborhood of x ∈
X isNf (x) = i(x), we take the increasing hulls of singletons to get the basis for 𝒯f shown
in Figure 8.4(b).

Note that the Alexandroff topology depicted in Figure 8.3 is not functionally
Alexandroff. If it were 𝒯s for some function s, then intuitively, s(b) should be a, c,
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Figure 8.4: (a) The function diagram for f and (b) a basis for the functionally Alexandroff topology 𝒯f .

and d simultaneously, which violates the definition of function. Formally, sup-
pose the topology is 𝒯s for some function s. Since b ∈ d(c) and c ∈ d(b), we have
b = sn(c) and c = sm(b) for some m, n ∈ ℕ, so b = sn+m(b) = s0(b) and thus
cl{b} = {sk(b)}∞k=0 = {s

k(b)}n+mk=1 is a finite cycle which contains c. Since the closure
of b is the decreasing hull of b, we must have a ∈ cl{b} = {sk(b)}n+mk=1 . But if a is in this
cycle with b and c, then b and c are each of form sj(a), and thus b and c should be be-
low a in the diagram. This is false, so the topology of Figure 8.3 cannot be functionally
Alexandroff.

The argument of the preceding paragraph really only depended on the points
a, b, c from Figure 8.3, which form a subspace as depicted on the left in Figure 8.5.
This is essentially half of the proof of the following result. The other half is left to the
exercises.

Theorem 8.3.8. If a topology on a finite set X contains either of the subspaces shown in
Figure 8.5, then the topology is not functionally Alexandroff.

? ? ?
a b c

?
?

?
?

?
?

?
?

? ? ?
a b c

?
?

?
?

?
?

?
?

?
?

?
?

Figure 8.5: Forbidden subspaces for a finite functionally Alexandroff space.

In fact, the converse of Theorem 8.3.8 holds, so a topology on a finite set is func-
tionally Alexandroff if and only if it contains no subspace as shown in Figure 8.5.
Proofs of this may be found in [1] or [37]. Further connections between Alexandroff
topologies and quasiorders are surveyed in [43].

Exercises

1. In a quasiordered set, show that arbitrary intersections and arbitrary unions of
increasing sets are increasing. That is, prove Theorem 8.3.1(b) and (c).
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2. A quasiordered set (X, ≲) is totally quasiordered if for every x, y ∈ X, either x ≲
y or y ≲ x. Show that (X, ≲) is totally quasiordered if and only if the associated
Alexandroff topology is a nested topology.

3. Suppose ≲ is a quasiorder on X which produces the Alexandroff topology 𝒯 . De-
scribe the Alexandroff topology on X produced by the dual quasiorder ≳.

4. Consider the multiples topology on ℕ, having basis {Mn : n ∈ ℕ} where Mn =
{kn : k ∈ ℕ}. Show that this is an Alexandroff topology and find its specialization
quasiorder.

5. For n ∈ ℕ, let Xn = {1, 2, 3, . . . , n} and consider the subspace (Xn, 𝒯n) of the digital
line.
(a) Sketch the Hasse diagram for the specialization quasiorder for X1,X2,X3,

X4,X5, and X6.
(b) List all eight open sets in (X4, 𝒯4).
(c) Show that, for any n ∈ ℕ, |𝒯n| = Fn+2, where F1 = F2 = 1 and for k > 2,

Fk = Fk−1 + Fk−2 are the Fibonacci numbers.
6. Shown are bases for some finite (and thus Alexandroff) topologies. For each one,

draw the specialization quasiorder.

7. Determine which of the topological spaces given in Exercise 6 are functionally
Alexandroff and for those that are, give a function f generating them.

8. Suppose 𝒯 is a topology on X and ≲ is its specialization quasiorder defined by
x ≲ y if and only if x ∈ cl{y}. Show that ≲ is a partial order if and only if 𝒯 is T0.

9. Show that every finite T0 space X has at least one closed singleton set {x} and at
least one isolated point. (You may use Exercise 8.)

10. Suppose (X, 𝒯X) and (Y , 𝒯Y ) are Alexandroff spaces with specialization orders ≲X
and ≲Y , respectively. Show that X ×Y with the product topology is an Alexandroff
space. Describe the specialization order ≲ on X × Y in terms of ≲X and ≲Y .

11. Define f : {2, 3, . . . , 12} → {2, 3, . . . , 12} by taking f (n) to be the largest prime factor
of n. Draw the quasiorder diagram for the functionally Alexandroff topology 𝒯f
and give a basis for 𝒯f .

12. Define f : ℤ → ℤ by f (n) = n2. Consider the functionally Alexandroff topology 𝒯f
and its specialization quasiorder.
(a) Find all fixed points of f .
(b) Find all isolated points.
(c) Find all maximal and all minimal points in the quasiorder.
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(d) Find cl{−2}, Nf (−16), and Nf (256).
(e) Is (ℤ, 𝒯f ) connected?

13. Suppose f : X → X, n ∈ ℕ, and 𝒯 ∗f represents the Alexandroff topology of
𝒯f -closed sets.
(a) Show that 𝒯f ⊆ 𝒯f n .
(b) If f is onto, show that 𝒯f n ∩ 𝒯 ∗f ⊆ 𝒯f .

14. Let 𝒯 be a topology (not necessarily Alexandroff) on X, and let ≲𝒯 be the asso-
ciated quasiorder defined by x ≲𝒯 y if and only if x ∈ cl{y}. Show that 𝒯 is an
Alexandroff topology if and only if every ≲𝒯 -increasing set is 𝒯 -open.

15. Given a topological space X, define x ≈ y if and only if cl{x} = cl{y}. Let q de-
note the quotient map from X to X/≈. With the quotient topology, X/≈ is called
the T0-reflection (or, in older literature, the Kolmogorov quotient), denoted T0(X).
Show that T0(X) is a T0 topological space and if f : X → Y is any continuous
function from X to any arbitrary T0 space Y , there exists a continuous function
̂f : T0(X) → Y such that ̂f ∘ q = f , that is, such that the diagram below commutes.
(You may use Exercise 8.)

X X/≈ = T0(X)
?

q

?
?
?
???

Y (arbitrary T0 space)

f
?

∃ ̂f

16. Prove that if a topology 𝒯 on a finite set X contains a subspace as shown on the
right in Figure 8.5, then 𝒯 is not functionally Alexandroff.



9 Lattice properties
9.1 Lattice theory
We recall some order theoretic definitions. Suppose (X, ≤) is a poset. An element a ∈ X
ismaximum if x ≤ a for every x ∈ X, and is maximal if a ≤ x implies a = x. For A ⊆ X,
x ∈ X is an upper bound of A if x ≥ a for all a ∈ A. If the set ub(A) of upper bounds
of A has a least element y, then y is called the least upper bound of A or supremum
of A, denoted lubA, supA, or ⋁A. In discussions involving more than one poset, we
may add an identifier to the notation by writing supX A or ⋁X A. If A = {x, y} is a two-
element set, supA = sup{x, y} may be written x ∨ y and called the join of x and y. In
general, the supremum of a set may not exist.

Any partial order ≤ on a set X has a dual order ≥ defined by x ≥ y if and only if
y ≤ x. Any term or statement defined in terms of ≤ has an associated dual obtained
by replacing the partial order ≤ by ≥. The dual concepts to those of the preceding
paragraph are minimum element, minimal element, lower bound of a set, and great-
est lower bound. The greatest lower bound or infimum of a two-element set {x, y} is
denoted glb{x, y} = inf{x, y} = ⋀{x, y} = x ∧ y, and is called themeet of x and y.

Elements a, b in a poset (X, ≤) are incomparable, denoted a||b if a ̸≤ b and b ̸≤ a.
Infima and suprema may be called infs and sups. A function f : (X, ≤) → (Y , ≤Y )
between two posets is order preserving or increasing if a ≤ b implies f (a) ≤Y f (b).
An order isomorphism is a bijection f : (X, ≤) → (Y , ≤Y ) between two posets with the
property that a ≤ b if and only if f (a) ≤Y f (b).

Definition 9.1.1. A lattice is a poset (L, ≤) in which every pair of elements x, y has a
supremum and an infimum.

A complete lattice is a poset (L, ≤) in which every nonempty subset has a supre-
mum and an infimum.

If a lattice has a minimum element, it is denoted ⊥, and called the bottom ele-
ment. If a lattice has a maximum element, it is denoted ⊤ and called the top element.
A bounded lattice is a lattice with ⊤ and ⊥.

An inf-semilattice (sup-semilattice) is a poset (X, ≤) in which every pair of ele-
ments x, y has an infimum (supremum). A complete inf-semilattice (complete sup-
semilattice) is a poset (X, ≤) in which every nonempty subset has an infimum (supre-
mum). An inf-semilattice may also be called a lower semilattice, a meet semilattice,
or an ∧-semilattice. Sup-semilattices are defined dually and may be called upper
semilattices, join semilattices, or ∨-semilattices.

If (L, ≤) is a lattice, every pair of elements has a supremum and an infimum. Iter-
ating, it is easy to show that every finite subset has a supremum and infimum. Thus,
finite suprema and infima exist in a lattice, while arbitrary suprema and infima exist
in a complete lattice. (By arbitrary suprema and infima, wemean suprema and infima
of arbitrary nonempty subsets.) It is immediately clear that every totally ordered set
(X, ≤) is a lattice, but need not be a complete lattice. For example, the interval (0, 1)

https://doi.org/10.1515/9783110686579-010
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with the usual order is not a complete lattice since, for example, { 1n : n ∈ ℕ} has
no infimum, or (0, 1) has no supremum. Indeed, if (L, ≤) is a complete lattice, then L
must have an infimum and a supremum, and thus Lmust have a least element ⊥ and
a greatest element⊤. In the literature, 0 and 1 are often used for⊥ and⊤, respectively.

Example 9.1.2. Let X = {0, {a}, {b}, {c}, {a, b}, {b, c}} ordered by set inclusion as de-
picted in Figure 9.1. X is not a lattice since, for example, {a} ∨ {c} does not exist.

Figure 9.1: Posets X and Y are not lattices.

Let Y = ({0} × ([−1,0] ∪ (1, 2])) ∪ ({1} × [−1,0]) ⊆ ℝ2 have the order (a, b) ≤ (c, d) if (a = c
and b ≤ d) or (a = 1 and d ∈ (1, 2]), as suggested in Figure 9.1. Y is not a lattice since
(0,0) ∨ (1,0) does not exist. Note that (0,0) and (1,0) have upper bounds, but no least
upper bound.

If (L, ≤) is a lattice, then we have two well-defined functions ∨ : L × L → L and
∧ : L×L→ L. That is, the partial order of a lattice defines two binary operations ∨ and
∧ on L. Some properties of ∨ and ∧ are given in the next theorem.

Theorem 9.1.3. If (L, ≤) is a lattice, then, for all a, b, c ∈ L,

(a ∨ b) ∨ c = a ∨ (b ∨ c) and (a ∧ b) ∧ c = a ∧ (b ∧ c) (associativity)
a ∨ b = b ∨ a and a ∧ b = b ∧ a (commutativity)

a ∨ a = a and a ∧ a = a (idempotency)
a ∨ (a ∧ b) = a and a ∧ (a ∨ b) = a. (absorption)

Furthermore, if ∨ and ∧ are binary operations on a nonempty set L satisfying the eight
properties above, then taking x ≤ y if and only if x ∧ y = x gives a partial order ≤ on L
which makes (L, ≤) a lattice.

The details of the proof are routine and are omitted. The result says that a lattice
(L, ≤)may be viewed as an algebraic structure (L, ∨, ∧). In particular, when looking at
lattice isomorphisms and lattice substructures, rather than considering functions that
preserve the order and subsets that inherit the same order, we will require functions
that preserve suprema and infima and subsets which inherit the same suprema and
infima. Thus, it is not (merely) the order structure which characterizes a lattice, but
the sups and infs.
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If (X, ≤) is a poset and A ⊆ X, then (A, ≤), where ≤ is the order inherited from X, is
a subposet of (X, ≤). If (L, ≤) is a lattice and A ⊆ L, then the subposet (A, ≤) need not be
a lattice, and if (A, ≤) is a lattice, the suprema and infima in (A, ≤)may not agree with
those in (L, ≤). For example, consider the power set lattice (𝒫({1, 2, 3}), ⊆). The subset
A = {0, {1, 2}, {2, 3}, {1, 2, 3}}, given the order ⊆ inherited from 𝒫({1, 2, 3}), is a lattice and
is a subposet of𝒫({1, 2, 3}), but {1, 2}∧{2, 3} = 0 inAwhile {1, 2}∧{2, 3} = {2} in𝒫({1, 2, 3}).
Since the infima do not agree, the subposet (A, ⊆) is not a sublattice of (𝒫({1, 2, 3}), ⊆).

Definition 9.1.4. A sublattice (complete sublattice) of a lattice (L, ≤) is a subposet (A, ≤)
of (L, ≤)which is a latticewith the property that, for anyfinite (arbitrary) subsets S ⊆ A,
the supremum⋁A S and infimum⋀A S of S taken in A agree with the supremum⋁L S
and infimum⋀L S taken in L.

Based on this definition, the following result is immediate.

Theorem 9.1.5. If L is a lattice and A ⊆ L, then A is a sublattice (complete sublattice)
if and only if A is closed under finite (arbitrary) suprema and infima. That is, A is a
sublattice (complete sublattice) of L if and only if for any finite (arbitrary) nonempty
subset S ⊆ A,⋁L S ∈ A and⋀L S ∈ A.

Definition 9.1.6. If L and M are lattices, a lattice isomorphism is a bijective function
f : L → M which preserves ∨ and ∧, that is, with f (x ∨ y) = f (x) ∨ f (y) and f (x ∧ y) =
f (x) ∧ f (y) for all x, y, ∈ L.

To checkwhether aposetX is a complete lattice,wemust check for the existence of
arbitrary suprema and arbitrary infima. If X is a complete lattice, then it has a bottom
element⊥. If we know in advance thatX has a bottomelement, to showX is a complete
lattice, the next result shows that it suffices to check only for the existence of arbitrary
suprema.

Theorem 9.1.7. If (X, ≤) is a poset with a bottom element ⊥, then (X, ≤) is a complete
lattice if and only if supA exists for every nonempty A ⊆ X.

Proof. From the definition, if X is a complete lattice, then supA exists for every
nonempty A ⊆ X.

Suppose (X, ≤) has bottom element⊥ and arbitrary suprema exist in X. To show X
is a complete lattice, we must show arbitrary infima exists. Suppose A is a nonempty
subset of X. The set lbA of lower bounds of A is nonempty, since ⊥ is a lower bound
of A. From our hypothesis, b = sup(lbA) exists. We will show b ∈ lbA. Suppose a ∈ A.
If x ∈ lbA, then x ≤ a. Thus a is a upper bound of lbA, so b = lub(lbA) ≤ a. This holds
for all a ∈ A, so b is a lower bound of A. Since b = sup(lbA), clearly b is greater than
every other lower bound of A. Thus, b = sup(lbA) is indeed glbA = infA.

We mention that the dual statement is also true. That is, if X is a poset with top
element ⊤ in which arbitrary infima exist, then X is a complete lattice.
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Our next result is a fixed-point theorem. If f : X → X is a function from a set to
itself, a fixed point of f is a point x ∈ Xwith f (x) = x. Fixed-point theorems are an active
area of research and have broad applications. Alfred Tarski lectured on the theorem
below in 1939 and published it in 1955. He and Bronisław Knaster gave the result in
the special case of (𝒫(X), ⊆) in 1927, and the result is also called the Knaster–Tarski
fixed-point theorem.

Theorem 9.1.8 (Tarski fixed-point theorem). If (L, ≤) is a complete lattice and f :
(L, ≤) → (L, ≤) is an order-preserving function, then f has a fixed point. Furthermore, the
set of fixed points of f is a complete lattice.

Proof. To see that the set FP of fixed points of f is a complete lattice, suppose A ⊆ FP.
At this point, we do not know that FP ̸= 0. Let V = {x ∈ L : a ≤ f (x) ≤ x ∀a ∈ A}.
Whether A is empty or nonempty, ⊤ ∈ V , so V ̸= 0. Notice that V is the set of upper
bounds of Awhich satisfy f (x) ≤ x (since a ≤ x implies a = f (a) ≤ f (x) for a ∈ A ⊆ FP).
Let z = infL V . We claim that z ∈ FP and z = supFP A. For every v ∈ V , z ≤ v, so
f (z) ≤ f (v) ≤ v, and thus f (z) is a lower bound of V , so f (z) ≤ z. Furthermore, for each
a ∈ A, a is a lower bound of V , so a ≤ infL V = z, so z is an upper bound of A. As an
upper bound of A with f (z) ≤ z, we have z ∈ V . Now a ≤ z for any a ∈ A ⊆ FP, so
a = f (a) ≤ f (z) for any a ∈ A, and thus f (z) is an upper bound of A. Since f (z) ≤ z, we
have f (f (z)) ≤ f (z), so f (z) ∈ V and z = infL V ≤ f (z) ≤ z. Thus, z = f (z), so z ∈ FP,
and in particular, FP ̸= 0. It remains to show that z is the least upper bound of A in FP.
Suppose b is an upper bound of A in FP. Then, for any a ∈ A, a ≤ f (b) = b, so b ∈ V
and thus z = infL V ≤ b, so z is the least upper bound of A in FP. The dual argument
shows that infFP A exists, and is supL{x ∈ L : x ≤ f (x) ≤ a}.

Note that this theorem does not say that the fixed points form a complete sub-
lattice; generally this is not the case. The examples below illustrate this and give an
indication of the broad utility of this theorem in areas other than topology.

Example 9.1.9. Recall that the power set 𝒫(X) ordered by set inclusion is a complete
lattice.
(a) Let (X, 𝒯 ) be a topological space. Let int : (𝒫(X), ⊆) → (𝒫(X), ⊆) be the function

that maps A ⊆ X to its interior. Now A ⊆ B implies intA ⊆ intB, so int is an order-
preserving function on𝒫(X). The Tarski fixed-point theorem implies that the fixed
points of int forma complete lattice. But the fixedpoints of int are those setsAwith
A = intA, which are precisely the open sets. Thus, if 𝒯 is any topology on X, (𝒯 , ⊆)
is a complete lattice, called the complete lattice of 𝒯 -open sets.
Given any collection {Ui : i ∈ I} ⊆ 𝒯 , ⋁𝒯 {Ui : i ∈ I} = ⋃{Ui : i ∈ I} = ⋁𝒫(X){Ui :
i ∈ I}, but ⋀𝒯 {Ui : i ∈ I} need not equal ⋀𝒫(X){Ui : i ∈ I} = ⋂{Ui : i ∈ I}, since
⋂{Ui : i ∈ I}need not be open. In 𝒯 ,⋀𝒯 {Ui : i ∈ I} is the largest open set contained
in every Ui, which is int(⋂{Ui : i ∈ I}). Thus, unless 𝒯 is an Alexandroff topology,
(𝒯 , ⊆) is not a sublattice of (𝒫(X), ⊆).
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(b) Let V be a vector space. Recall that A ⊆ V is (vector-space) convex if for every
a, b ∈ A and for every scalar t ∈ [0, 1], a+ t(b−a) ∈ A. Let c : (𝒫(V), ⊆) → (𝒫(V), ⊆)
be the map that takes A ⊆ V to the smallest convex set containing A, that is, to
the convex hull of A. For example, to find the convex hull of a finite set F in ℝ2,
drive a nail at each point, and stretch a rubber band around the nails. The rubber
band encloses the convex hull of F. Now clearly A ⊆ B implies c(A) ⊆ c(B), and
the fixed points of c are the convex sets. Thus, the convex sets in a vector space
form a complete lattice ordered by ⊆.

(c) Let G be a group. Consider the function from (𝒫(G), ⊆) to itself which maps A ⊆ G
to the smallest subgroup [A] containing A. Clearly this map is order-preserving
since A ⊆ B implies [A] ⊆ [B], and the fixed points of the map are the subgroups
of G. Thus, the subgroups of a group G are a complete lattice ordered by ⊆.

If (X, ≤) is a poset, we say a covers b and b is covered by a if b < a and b ≤ x ≤ a
implies x ∈ {a, b}. In drawing the Hasse diagram for a finite poset (X, ≤), the points of
X are represented by dots, and a line is drawn downward from a to b if and only if a
covers b. In a lattice with ⊥, an atom is an element which covers ⊥. Dually, in a lattice
with ⊤, a coatom or dual atom is an element covered by ⊤. A lattice L is atomic if L has
a least element ⊥ and every other element x ̸= ⊥ is greater than or equal to an atom.
Dually atomic lattices or coatomic lattices are defined dually.

If L is a bounded lattice and a ∈ L, a (lattice) complement of a is an element b ∈ L
such that a ∨ b = ⊤ and a ∧ b = ⊥. An element of a bounded lattice may have no
complement, or may have many complements. A bounded lattice in which every ele-
ment has a complement is a complemented lattice. A bounded lattice in which every
element has a unique complement is a uniquely complemented lattice.

A lattice (L, ∨, ∧) is distributive if for any a, b, c ∈ L,

a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) and a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c).

In fact, it is enough to assumeonly one of the conditions above; each implies the other.
The next result is an important characterization of distributive lattices. The proof may
be found in any text on lattice theory, such as [13].

Theorem 9.1.10. A lattice L is distributive if and only if it contains no sublattice isomor-
phic to the “diamond lattice” or the “pentagon lattice” shown in Figure 9.2.

Figure 9.2: A lattice is distributive if and only if it contains no sublattice isomorphic to either of these
lattices.
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Exercises

1. Suppose (X, ≤) is a poset in which x ∨ y exists for every x, y ∈ X. Show that ⋁ F
exists for every finite set F ⊆ X.

2. Describe arbitrary sups and infs in the posets below.
(a) 𝒫(X), the power set of X, ordered by inclusion.
(b) P = {(a,∞) : a ∈ (0, 1) ∪ {2}}, ordered by inclusion.

3. Example 9.1.9 used the Tarski fixed-point theorem to show that a topology 𝒯 on a
set X is a complete lattice, called the lattice of 𝒯 -open sets. Show that (𝒯 , ⊆) is a
complete lattice using Theorem 9.1.7.

4. The convex subsets of a vector space V form a complete lattice. (See Exam-
ple 9.1.9.) Is this a sublattice of (𝒫(V), ⊆)?

5. A poset (X, ≤) is directed if every pair of elements ofX has an upper bound. Exhibit
a finite directed set which is not a ∨-semilattice.

6. For eachposet below,determinewhether it is a lattice, a complete lattice, a∧-semi-
lattice, a complete ∧-semilattice, a ∨-semilattice, or a complete ∨-semilattice.
(More than one may apply.)
(a) B = {A ⊆ ℝ2 : A is bounded}, ordered by ⊆.
(b) (ℕ, |), where n|m if and only ifm = nk for some k ∈ ℕ.
(c) The poset F([0, 1]) of functions f : [0, 1] → ℝ, with the order f ≤ g if and only

if f (x) ≤ g(x) for all x ∈ [0, 1].
7. With F([0, 1]) as in Exercise 6, consider the subposet C([0, 1]) = {f ∈ F([0, 1]) :

f is continuous}. If they exist, find⋀F([0,1]){xn : n ∈ ℕ} and⋀C([0,1]){xn : n ∈ ℕ}.
8. Show that every lattice isomorphism is an order isomorphism.
9. Let 𝒯 be a topology on X, and let 𝒞 = {X −U : U ∈ 𝒯 } be the collection of 𝒯 -closed

sets in X. Show that (𝒞, ⊇) is a complete lattice which is isomorphic to the lattice
(𝒯 , ⊆) of 𝒯 -open sets.

10. If X ̸= 0, show that the power set lattice (𝒫(X), ⊆) is a uniquely complemented
lattice. Identify ⊥, ⊤, and the unique complement of each A ⊆ X.

11. For the diamond and pentagon lattices shown in Figure 9.2, label the points and
find all complements of each point.

12. Suppose L is a lattice. Show that a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) for every a, b, c ∈ L
implies a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) for every a, b, c ∈ L.

13. Suppose P is a poset and ℱ is the collection of all increasing functions from P to
P which are strictly below the diagonal. That is ℱ = {f : P → P : x ≤ y ⇒ f (x) ≤
f (y) < y ∀x, y ∈ P}. Suppose there exist f , g ∈ ℱ with f (x) ≤ g ∘ g(x) for all x ∈ P.
Show that a does not cover f (a) for any a ∈ P.

14. Suppose f : ℕ → ℕ is defined by taking f (n) to be the sum of the digits of n.
In the quasiorder associated with the functionally Alexandroff topology 𝒯f onℕ,
describe the set S of integersm which cover 2.

15. Show that the diamond and pentagon lattices shown in Figure 9.2 are not distribu-
tive lattices.



9.2 Compact and Hausdorff topologies in T (X) | 207

16. Show that in a distributive lattice, any element with a complement has a unique
complement.

17. Show that every totally ordered set is a distributive lattice.
18. For the bounded lattices below, identify all atoms and coatoms and find all com-

plements of each labeled element.
X is the finite poset whose Hasse diagram is shown.
Y = ({−1}× [0, 1])∪ ({0}× (0, 2])∪ ({1}× [0, 1])∪ {(0, −1)}with the order (a, b) ≤ (c, d)
if and only if a = c and b ≤ d, together with (0, −1) ≤ (a, b) ≤ (0, 2) for all (a, b) ∈ Y .

9.2 Compact and Hausdorff topologies in T (X )
Weknow several topologies on the planeℝ2, including the Euclidean topology 𝒯ℰ , the
cofinite topology 𝒯cf, the particular point topologies, the discrete topology 𝒯D, and the
indiscrete topology 𝒯I . For any topology 𝒯 on ℝ2, we have 𝒯I ⊆ 𝒯 ⊆ 𝒯D. In ℝ2, every
finite subset is 𝒯ℰ -closed, and thus every 𝒯cf-closed set is 𝒯ℰ -closed. Taking comple-
ments shows 𝒯cf ⊆ 𝒯ℰ . Such considerations are part of the general study of the collec-
tion of all topologies on a set (like ℝ2) and how they are ordered by ⊆.

Definition 9.2.1. If X is a nonempty set, T(X)will denote the poset of all topologies on
X ordered by set inclusion ⊆.

Recall that if 𝒯C , 𝒯F ∈ T(X) and 𝒯C ⊆ 𝒯F , we say 𝒯C is coarser than 𝒯F and 𝒯F is finer
than 𝒯C.

Theorem 9.2.2. T(X) is a complete lattice.

Proof. Given a collection of topologies {𝒯i : i ∈ I} ⊆ T(X), ⋂i∈I 𝒯i is a topology, and is
the largest topology contained in every𝒯i. Thus,⋀i∈I 𝒯i = ⋂i∈I 𝒯i. The topology [⋃i∈I 𝒯i]
generatedby the subbasis⋃i∈I 𝒯i is the smallest topology containing every𝒯i, and thus
is⋁i∈I 𝒯i.

With this result, T(X) will be called the lattice of topologies on X.
Note that 𝒯1 ∨ 𝒯2, the smallest topology containing 𝒯1 and 𝒯2, has 𝒯1 ∪ 𝒯2 as a

subbasis and thus has a basis of finite intersections of elements of 𝒯1 ∪ 𝒯2. Because 𝒯1
and 𝒯2 are closed under finite intersections, it follows that 𝒯1 ∨𝒯2 has a basis {U1 ∩U2 :
U1 ∈ 𝒯1,U2 ∈ 𝒯2}.

Suppose (X, 𝒯 ) is Hausdorff (or T1, or T0). Since 𝒯 already has enough open sets
to achieve the required separation of points, any finer topology 𝒯F ⊇ 𝒯 will also be
Hausdorff (or T1, or T0). This says that the Hausdorff (or T1, or T0) topologies on X
form an increasing set in the lattice T(X).
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Similarly, if (X, 𝒯 ) is compact and 𝒯C ⊆ 𝒯 is a coarser topology on X, any 𝒯C-open
cover is a 𝒯 -open cover, and thus has a finite subcover. Thus, the compact topologies
on X form a decreasing set in T(X).

If X admits a compact Hausdorff topology, then the decreasing set of compact
topologies intersects the increasing set of Hausdorff topologies. The next result shows
that the set of compact topologies and the set of Hausdorff topologies can barely inter-
sect; the intersection contains no pair of distinct topologies 𝒯 ⊂ 𝒯 󸀠, with one strictly
finer than the other.

Theorem 9.2.3. If 𝒯 is a compact Hausdorff topology on X, then 𝒯 is maximal in the set
of compact topologies on X and is minimal in the set of Hausdorff topologies on X.

Proof. Suppose 𝒯 is a compact Hausdorff topology on X and 𝒯F ⊃ 𝒯 is a strictly finer
compact topology on X. Then there exists a 𝒯F -closed set Awhich is not 𝒯 -closed. But
since A is closed in the compact space (X, 𝒯F), it is compact relative to 𝒯F . This implies
thatA is compact relative to the coarser topology𝒯 . As a compact subset of aHausdorff
space (X, 𝒯 ), Amust be 𝒯 -closed. This contradicts our choice of A. Thus, there exists
no compact topology 𝒯F strictly finer than a compact Hausdorff topology 𝒯 .

Suppose 𝒯 is a compact Hausdorff topology on X and 𝒯C ⊂ 𝒯 is a strictly coarser
Hausdorff topology on X. Then there exists a 𝒯 -closed set A which is not 𝒯C-closed.
As a closed subspace of the compact space (X, 𝒯 ), A is compact. Thus, A is compact
as a subspace of the coarser space (X, 𝒯C). But a compact set in a Hausdorff space is
closed, so A is 𝒯C-closed, contrary to our choice of A. Thus, there exists no Hausdorff
topology 𝒯C strictly coarser than a compact Hausdorff topology 𝒯 .

Figure 9.3 suggests the intersection of the decreasing set of compact topologies
and the increasing set of Hausdorff topologies on a set X. This figure also suggests that
there are maximal compact topologies which are not Hausdorff and minimal Haus-
dorff topologies which are not compact. This is indeed the case, as seen by the Exam-
ples 9.2.7 and 9.2.8 below.

Figure 9.3: Compact Hausdorff topologies are maximal compact and minimal Hausdorff topologies in
T (X).
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To get a topology finer than 𝒯 , wemust add open sets. The smallest topology obtained
by adding a specified set A is defined below.

Definition 9.2.4. If 𝒯 is a topology on X and A ⊆ X, the simple extension of 𝒯 by A is
the topology 𝒯 (A) having subbasis 𝒯 ∪ {A}. Thus, 𝒯 (A) = {U ∪ (V ∩ A) : U ,V ∈ 𝒯 }.

Intuitively, if A is added to 𝒯 as a new open set and the result is a compact topol-
ogy, then open covers of form {A} ∪𝒞 should have finite subcovers, whichmeans open
covers 𝒞 of X − A should have finite subcovers, and thus X − Amust be compact. This
fact and its converse are our next lemma.

Lemma 9.2.5. If (X, 𝒯 ) is compact, then (X, 𝒯 (A)) is compact if and only if X − A is a
compact subspace of (X, 𝒯 ).

Proof. Suppose (X, 𝒯 ) and (X, 𝒯 (A)) are compact. Since A is open in 𝒯 (A), X − A is
closed in the compact space (X, 𝒯 (A)), and thus X − A is compact in 𝒯 (A). Since 𝒯 ⊆
𝒯 (A), it follows that X − A is compact in (X, 𝒯 ).

Conversely, suppose (X, 𝒯 ) is compact and X − A is compact in (X, 𝒯 ). To show
(X, 𝒯 (A)) is compact, suppose 𝒞 = {Ui ∪ (Vi ∩ A) : i ∈ I} is a 𝒯 (A)-open cover of X,
where Ui,Vi ∈ 𝒯 for all i ∈ I. Now {Ui : i ∈ I} and {Ui ∪ Vi : i ∈ I}, respectively,
are 𝒯 -open covers of X − A and X, so there exist finite index sets F1, F2 ⊆ I such that
{Ui : i ∈ F1} coversX−A and {Ui∪Vi : i ∈ F2} coversX. In particular, {Ui∪(Vi∩A) : i ∈ F2}
covers A, so {Ui ∪ (Vi ∩ A) : i ∈ F1 ∪ F2} is a finite 𝒯 (A)-subcover of X. Thus, (X, 𝒯 (A))
is compact.

Theorem 9.2.6. If (X, 𝒯 ) is a compact topological space, then the following are equiva-
lent.
(a) (X, 𝒯 ) is maximal compact.
(b) A subset of X is compact if and only if it is closed.
(c) Every continuous bijection from a compact space (W , 𝒯W ) to (X, 𝒯 ) is a homeomor-

phism.

Proof. (a)⇒ (b): Since every closed subset of the compact space (X, 𝒯 ) is compact, we
only need to show that (a) implies every compact subset of X is closed. Assuming (a),
suppose A is compact but not closed. By Lemma 9.2.5, the simple extension 𝒯 (X − A)
of 𝒯 by X−A is a strictly finer compact topology on X, contrary to themaximality of 𝒯 .

(b)⇒ (c): Assuming (b), suppose (W , 𝒯W ) is compact, and f : (W , 𝒯W ) → (X, 𝒯 )
is a continuous bijection. To see that f is a homeomorphism, it suffices to show that
f is a closed map. If K is closed in the compact spaceW , then K is compact, so f (K) is
compact and, by (b), is closed. Thus f is a closed map, as needed.

(c)⇒ (a): If (X, 𝒯 ) is not maximal compact, then there exists a strictly finer topol-
ogy 𝒯 󸀠 ⊃ 𝒯 which is compact. Now id : (X, 𝒯 󸀠) → (X, 𝒯 ) is a continuous bijection
which is not a homeomorphism.

If (X, 𝒯 ) is Hausdorff, then both (b) and (c) of Theorem 9.2.6 hold. (See Theo-
rem 5.1.6 and Exercise 14 of Section 5.1.) Thus, this provides an indirect proof that com-
pact Hausdorff spaces are maximal compact spaces, which is half of Theorem 9.2.3.
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We conclude this section with examples showing that a maximal compact topol-
ogy on X need not be Hausdorff, and a minimal Hausdorff topology need not be com-
pact.

Example 9.2.7. Maximal compact topologies need not be Hausdorff. Let X = ℕ2 ∪{a, b}
where a, b ̸∈ ℕ2. Given a sequence (an)n∈ℕ of natural numbers, define U(an) = {a} ∪
{(n, y) ∈ ℕ2 : n ∈ ℕ, y ≥ an}. Thus, U(an) consists of the point a and every point of
ℕ2 on or above the graph {(n, an) : n ∈ ℕ} of the sequence (an)n∈ℕ. Given k ∈ ℕ, let
V(k) = {b} ∪ ([k,∞) × ℕ). Let 𝒯 be the topology on X having basis

ℬ = {(m, n) : (m, n) ∈ ℕ2}
∪ {U(an) : (an)n∈ℕ is a sequence inℕ}
∪ {V(k) : k ∈ ℕ}.

Now a and b cannot be separated by open sets in X, so X is not Hausdorff. Any open
cover 𝒞 of X contains sets Wa,Wb covering a and b, and these two sets cover all but
finitely many points of X, which can be covered by finitely many members of 𝒞. Thus,
X is compact.

We will show X is maximal compact by showing that every compact set must be
closed, or equivalently, every non-closed set is non-compact. Suppose H ⊆ X is not
closed. Then clH − H ̸= 0 and, since X is T1, H is infinite. If (m, n) ∈ clH ∩ ℕ2, the
neighborhood {(m, n)} of (m, n) intersects H, so (m, n) ∈ H. Thus, the only possible
points in clH − H are a and b. Suppose a ∈ clH − H. There must be some column
{k} ×ℕwhich contains infinitely many elements of H: otherwise, with an = max({1} ∪
({n} × ℕ) ∩ H), the neighborhood U(1 + an) of a would not intersect H, contrary to
a ∈ clH. Now V(k + 1) and all the singletons of ℕ2 give an open cover of H with no
finite subcover, soH is non-compact. If b ∈ clH−H, then every neighborhoodV(k) ofb
intersectsH, so wemay choose an infinite sequence ((n, an))n∈J inH, where J ⊆ ℕ. For
n ∈ ℕ−J, takean = 1. This defines a sequence (an)n∈ℕ. NowU(1+an) and the singletons
inℕ2 form an open cover ofH with no finite subcover, so in all cases, a non-closed set
H is non-compact.

Example 9.2.8. Minimal Hausdorff topologies need not be compact. Let X = ℝ ∪ {a, b}
where a, b ̸∈ ℝ. Let 𝒯 be the topology on X having basis

ℬ = {(x − ε, x + ε) : x ∈ ℝ, ε > 0}

∪ {{a} ∪ ⋃|n|≥M(2n, 2n + 1) : n ∈ ℕ,M ∈ ℤ}
∪ {{b} ∪ ⋃|n|≥M(2n − 1, 2n) : n ∈ ℕ,M ∈ ℤ}.

It is easily seen that (X, 𝒯 ) is Hausdorff. Since A = {a, b} ∪ ⋃{(n, n + 1) : n ∈ ℤ} = X − ℤ
is open, {A} ∪ {(n − 1

4 , n +
1
4 ) : n ∈ ℤ} is an open cover of X with no finite subcover, and

thus (X, 𝒯 ) is not compact.
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To see that (X, 𝒯 ) isminimal among theHausdorff topologies onX, suppose 𝒯 󸀠 is a
Hausdorff topology on X with 𝒯 󸀠 ⊆ 𝒯 . Wewill show thatℬ ⊆ 𝒯 󸀠, and thus 𝒯 ⊆ 𝒯 󸀠 ⊆ 𝒯 .

Notice that the subspace topology 𝒯 |ℝ on ℝ as a subspace of (X, 𝒯 ) is the Eu-
clidean topology 𝒯ℰ . Thus, any closed interval [a, b] ⊆ ℝ ⊆ X is compact in 𝒯 , and
thus is compact in the coarser topology 𝒯 󸀠. Since the Hausdorff property is hered-
itary, [a, b] is compact T2 in both 𝒯 󸀠|[a,b] and 𝒯 |[a,b], and 𝒯 󸀠|[a,b] ⊆ 𝒯 |[a,b] = 𝒯ℰ |[a,b].
Since the compact T2 topologies areminimal among the Hausdorff topologies on [a, b]
(Theorem 9.2.3), 𝒯 󸀠|[a,b] = 𝒯 |[a,b] = 𝒯ℰ |[a,b]. Given an interval (c, d) in ℝ we will show
(c, d) ∈ 𝒯 󸀠. Suppose x ∈ (c, d). Since (X, 𝒯 󸀠) is Hausdorff, there exist mutually disjoint
𝒯 󸀠-open neighborhoods Nx ,Na, and Nb of x, a, and b, respectively. Now Nx ∈ 𝒯

󸀠 ⊆ 𝒯
implies there existsm ∈ ℤwith ((−∞, −m)∪(m,∞))∩Nx ⊆ ℤ. But the restriction of 𝒯 to
ℝ is the Euclidean topology, soNx can have no isolated points, and thusNx ⊆ [−m,m].
On any interval [z,w], the topologies 𝒯 , 𝒯 󸀠 and 𝒯ℰ agree, andnowhavingNx ⊆ [−m,m]
essentially tells us that nothing can go wrong outside the bounded interval. In par-
ticular, Nx ∪ (c, d) ⊆ [z,w] = [−m ∧ c,m ∨ d], so (c, d) is 𝒯 󸀠|[z,w]-open, and thus
(c, d) = U ∩ [z,w] for some U ∈ 𝒯 󸀠. Now U ∩ Nx is a 𝒯 󸀠-neighborhood of x contained
in (c, d), so (c, d) is 𝒯 󸀠-open. In particular, the sets of form (x − ε, x + ε) ∈ ℬ are in 𝒯 󸀠.

Next, suppose B = {a} ∪ ⋃|n|≥M(2n, 2n + 1) is a basic 𝒯 -open neighborhood of a.
To show B ∈ 𝒯 󸀠, for any x ∈ B we must find a 𝒯 󸀠-neighborhood of x contained in B.
This is immediate for any x ∈ B ∩ ℝ, since the paragraph above shows (c, d) ∈ 𝒯 󸀠 for
any c, d ∈ ℝ. It remains to show the existence of a 𝒯 󸀠 neighborhood of a contained
in B. Since 𝒯 󸀠 is Hausdorff, there exist disjoint 𝒯 󸀠-open neighborhoods Na and Nb of
a and b, respectively. Now 𝒯 󸀠 ⊆ 𝒯 implies that there exists M ∈ ℕ such that Na is
disjoint from ⋃{(2n − 1, 2n) : n ∈ ℕ, |n| ≥ M}. Furthermore, the open set Na cannot
contain 2n− 1 or 2n for |n| ≥ M and still be disjoint from⋃{(2n− 1, 2n) : n ∈ ℕ, |n| ≥ M}.
Thus,Na−Bmust be bounded, sayNa−B ⊆ [c, d]. Now [c, d] is compact andHausdorff
in (X, 𝒯 󸀠), and thus is 𝒯 󸀠-closed. It follows that Na ∩ (X − [c, d]) is a 𝒯 󸀠-neighborhood
of a. Since Na − B ⊆ [c, d] and Na is the disjoint union of Na − B and Na ∩ B, it follows
that Na ∩ (X − [c, d]) ⊆ Na ∩ B ⊆ B. Thus, Na ∩ (X − [c, d]) is a 𝒯 󸀠-neighborhood of a
contained in B, as needed.

A similar argument shows that any basic 𝒯 -neighborhood of b is 𝒯 󸀠 open, so
𝒯 = 𝒯 󸀠, and thus 𝒯 󸀠 is a minimal Hausdorff topology on X which is not compact.

Some of the results of this section are drawn from [7, 9, 10, 23, 24, 30, 32, 34, 44,
46].

Exercises

1. Given topologies 𝒯1, 𝒯2 on X, it follows from the definitions that 𝒯1 ∨ 𝒯2 has a basis
{U1 ∩ U2 : U1 ∈ 𝒯1,U2 ∈ 𝒯2}. Suppose ℬi is a basis for 𝒯i (i = 1, 2). Show that
{B1 ∩ B2 : B1 ∈ ℬ1,B2 ∈ ℬ2} is a basis for some topology 𝒯3 on X and 𝒯3 = 𝒯1 ∨ 𝒯2.
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2. Use the Tarski fixed-point theorem to prove that the collection T(X) of topologies
on X, ordered by inclusion, is a complete lattice.

3. Suppose (X, 𝒯1) and (X, 𝒯2) are connected. Must either of (X, 𝒯1 ∨ 𝒯2) or (X, 𝒯1 ∧ 𝒯2)
be connected? Provide proofs or counterexamples.

4. Shown below are bases for three topologies 𝒯1, 𝒯2, and 𝒯3 on X = {1, 2, 3, 4, 5}. Find
bases for 𝒯i ∨ 𝒯j and 𝒯i ∧ 𝒯j for all distinct i, j ∈ {1, 2, 3}.

𝒯1 𝒯2 𝒯3

5. Let (X, 𝒯 ) be the interval [−2, 2]with the Euclidean topology. Since this is compact
and Hausdorff, any strictly finer topology on [−2, 2] cannot be compact. Let 𝒯F be
the smallest topology on [−2, 2] for which each member of 𝒟 = {(a, b) ∩ [−2, 2] :
a, b ∈ ℝ, a < b} ∪ {(−1,0]} is open. Note that 𝒯 ⊂ 𝒯F .
(a) Is𝒟 a basis for the topology 𝒯F? If not, describe a basis for 𝒯F .
(b) Show that 𝒯F is not compact directly by exhibiting an open cover which has

no finite subcover.
6. Suppose 𝒯 , 𝒯F ∈ T(X) with 𝒯 ⊆ 𝒯F .

(a) Is the complete lattice of 𝒯 -open sets a sublattice of the complete lattice of
𝒯F -open sets? Give a proof or counterexample.

(b) Is the complete lattice of 𝒯 -open sets a complete sublattice of the complete
lattice of 𝒯F -open sets? Give a proof or counterexample.

7. Suppose 𝒯 is a topology on X and A ̸∈ 𝒯 . Show that the simple extension 𝒯 (A) of
𝒯 by A need not cover 𝒯 in T(X).

8. Suppose 𝒯 is a T1 topology on an infinite set X.
(a) Suppose A ̸∈ 𝒯 . Pick an element a ∈ A ∩ 𝜕A, and let ℬ󸀠 = {{x} : x ∈ X − {a}} ∪
{{a} ∪ (U −A) : a ∈ U ∈ 𝒯 }. Show that ℬ󸀠 is a basis for a Hausdorff topology 𝒯 󸀠
on X with 𝒯 ⊆ 𝒯 󸀠 and A ̸∈ 𝒯 󸀠.

(b) Show that 𝒯 is the intersection of all T2 topologies on X finer than 𝒯 .
9. Given a topological property P, show that the following are equivalent:

(a) Property P is preserved under continuous bijections. That is, if (X, 𝒯 ) has
property P and f : (X, 𝒯 ) → (Y , 𝒯Y ) is a continuous bijection, then (Y , 𝒯Y )
has property P.

(b) For any set X, {𝒯 ∈ T(X) : (X, 𝒯 ) has property P} is a decreasing set in T(X).
(Hint: Given a continuous bijection f : (X, 𝒯 ) → (Y , 𝒯Y ), consider 𝒯 󸀠 = {f (U) ⊆ Y :
U ∈ 𝒯 }.)

10. Show that every nonempty set X admits a compact T2 topology.
11. For X = ℝ ∪ {a, b} where a, b ̸∈ ℝ, give three non-homeomorphic minimal T2

topologies in T(X) besides the one given in Example 9.2.8.
12. Show that T(X) has a minimum T2 topology if and only if X is a nonempty finite

set.
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13. Suppose (X, 𝒯 ) is maximal connected (that is, maximal among the connected
topologies in T(X)). Show that if A and X −A are both connected in X, then either
A or X − A is open.

14. If 𝒯 is a minimal Hausdorff topology in T(X) and A ⊆ X is open and closed, show
that the subspace topology 𝒯 |A on A is minimal Hausdorff in T(A).

9.3 Sublattices and complements in T (X )

The atoms in T(X) are topologies {0,A,X} with exactly three open sets, 0 ⊂ A ⊂ X.
Every topology other than the indiscrete topology is above an atom, so T(X) is atomic.
Indeed, every 𝒯 ∈ T(X) other than⊥ is the supremumof the atoms below it. An atomic
lattice with this property is called an atomistic lattice.

We will describe some of the coatoms in T(X). For distinct elements p, q ∈ X, let
𝒯{p,q} = Super({p}) ∪ Disjoint({p, q}). Thus, the 𝒯{p,q}-open sets contain p or miss both
p and q. To see 𝒯{p,q} is a coatom, suppose 𝒯 󸀠 ⊃ 𝒯{p,q} is a strictly finer topology on X.
Then 𝒯 󸀠 contains a set U ̸∈ 𝒯{p,q}, and thus U contains q but not p. As the union of
two 𝒯 󸀠-open sets, (X − {p, q}) ∪ U = X − {p} is 𝒯 󸀠-open. Any sets containing p are
𝒯 󸀠-open and, intersecting such sets with X − {p}, we see that any sets not containing
p are 𝒯 󸀠-open. This shows 𝒯 󸀠 is the discrete topology, so 𝒯{p,q} is a coatom.

A full description of the coatoms in T(X)would require a discussion of ultrafilters
beyond the scope of our presentation. Omitting the details, we remark that coatoms in
T(X) of form 𝒯{p,q} are called principal ultratopologies, and each is generated by a prin-
cipal ultrafilter on X. All the other coatoms are called non-principal ultratopologies,
and each is generated by a non-principal ultrafilter.

We have seen that the set of T2 topologies in T(X) is an increasing set whose min-
imal elements include the compact T2 topologies on X. Every infinite set admits many
compact T2 topologies (see Exercises 10 and 11 of the previous section), and the infi-
mum of any distinct pair of these in T(X) is not a T2 topology. Thus, the T2 topologies
on X do not form a sublattice of T(X). The situation is different for T1 topologies.

Theorem 9.3.1. The set of T1 topologies in T(X) is a complete sublattice of T(X).

Proof. If 𝒯i is a T1 topology on X for all i ∈ I,⋁i∈I 𝒯i is finer than each of the T1 topolo-
gies 𝒯i, and thus is T1. For each i ∈ I and each x ∈ X, X − {x} ∈ 𝒯i, so X − {x} ∈ ⋂i∈I 𝒯i =
⋀i∈I 𝒯i, so⋀i∈I 𝒯i is T1.

Below, we find some other sublattices of T(X).

Theorem 9.3.2. The collection A(X) of Alexandroff topologies on X is a sublattice of
T(X) and a complete lattice, but not a complete sublattice of T(X).

Proof. If 𝒯i ∈ A(X) for i ∈ I, then ⋀T(X){𝒯i : i ∈ I} = ⋂{𝒯i : i ∈ I}. Since ⋂{𝒯i :
i ∈ I} ⊆ 𝒯i0 for any i0 ∈ I, it is closed under arbitrary intersections and thus is in A(X).
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If 𝒯1, 𝒯2 ∈ A(X), then 𝒯1 ∨ 𝒯2 = [𝒯1 ∪ 𝒯2] consists of unions of finite intersections of
members of 𝒯1 ∪ 𝒯2 (where ∨ is taken in T(X)). If Ni(x) is the smallest 𝒯i-neighborhood
of x, then, for every x ∈ X, N1(x) ∩ N2(x) ∈ 𝒯1 ∨ 𝒯2. Since there is no way to obtain
a smaller neighborhood of x as a union of finite intersections of members of 𝒯1 ∪ 𝒯2,
N1(x) ∩ N2(x) is the smallest 𝒯1 ∨ 𝒯2-neighborhood of x, so 𝒯1 ∨ 𝒯2 ∈ A(X). This shows
that A(X) is a lattice and a complete ∧-semilattice. Since A(X) has a largest element
(the discrete topology), A(X) is a complete lattice by (the dual of) Theorem 9.1.7.

Unless every topology on X is an Alexandroff topology, T(X) is not a complete
sublattice: If 𝒯 ∈ T(X) is not an Alexandroff topology, then it is the supremum of all
the atoms below it, and these atoms are all Alexandroff topologies. Thus, the set of
Alexandroff topologies is not closed under arbitrary suprema.

Recall that a relation R on X is a subset of X × X, and we write xRy if (x, y) ∈ R. In
particular, any set of relations on X can be partially ordered by set inclusion as sub-
sets of X × X. Thus, if QO(X) is the set of quasiorder relations on X, then (QO(X), ⊆)
is a subposet of (𝒫(X × X), ⊆). In the light of the one-to-one correspondence between
Alexandroff topologies and quasiorders (Theorem 8.3.3), the next result is not surpris-
ing.

Theorem 9.3.3. The complete lattice (A(X), ⊆) of Alexandroff topologies on X is isomor-
phic to the complete lattice (QO(X), ⊇) of quasiorders on X, ordered by reverse inclusion.

Recall that every equivalence relation is a quasiorder. The corresponding Alexan-
droff topologies are the partition topologies. Let Π(X) be the set of all partitions of X.
If 𝒫 ,ℛ ∈ Π(X), recall that 𝒫 is finer thanℛ if and only if [x]𝒫 ⊆ [x]ℛ for every x ∈ X,
so [x]ℛ = ⋃{[y]𝒫 : y ∈ [x]ℛ}. Thus, a finer partition in Π(X) produces a finer topology
in A(X).

Theorem 9.3.4. The set Π(X) of partitions of X is a complete lattice, and is isomorphic
to the complete lattice of partition topologies in T(X).

The T0 Alexandroff topologies correspond to the partial orders on X (see Exer-
cise 8 of Section 8.3). The poset of partial order relations, considered as a subposet of
(𝒫(X ×X), ⊆) fails to be a lattice. This fact and the proofs of the two previous theorems
are left to the exercises.

We now turn to the question of complementation in T(X). A complement of 𝒯 ∈
T(X) is a topology 𝒯 󸀠 with 𝒯 ∨ 𝒯 󸀠 = ⊤ = 𝒫(X) and 𝒯 ∧ 𝒯 󸀠 = ⊥ = {0,X}. Now 𝒯 ∧ 𝒯 󸀠 =
𝒯 ∩ 𝒯 󸀠 = ⊥ if and only if the only sets open in both 𝒯 and 𝒯 󸀠 are 0 andX. The condition
that 𝒯 ∨ 𝒯 󸀠 = ⊤ = 𝒫(X) occurs if and only if for every x ∈ X, there exist U ∈ 𝒯 and
U 󸀠 ∈ 𝒯 󸀠 with {x} = U ∩ U 󸀠.
Example 9.3.5 (The lattice of T1 topologies on an infinite set X is not complemented).
Let X = A ∪ B, where A and B are infinite disjoint sets, and give X the T1 topology
𝒯 = {U : U ⊆ B or A − U is finite}. Thus, X is the disjoint union of A with the cofinite
topology and Bwith the discrete topology. Suppose 𝒯 󸀠 is a complement of 𝒯 . Now 𝒯 󸀠
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restricted to A cannot be discrete, or else A ∈ 𝒯 ∧ 𝒯 󸀠 = ⊥ = {0,X}. Thus, there exists
a0 ∈ A such that {a0} ̸∈ 𝒯 󸀠. Since 𝒯 ∨ 𝒯 󸀠 = ⊤ = 𝒫(X), there exist U ∈ 𝒯 , V ∈ 𝒯 󸀠 with
U ∩ V = {a0}. As a 𝒯 -neighborhood of a0, U contains all but finitely many elements
ofA, soV contains at most finitelymany elements ofA, say {a0, a1, . . . , an}. Because 𝒯 󸀠
is T1, we may separate ai (i = 1, . . . , n) from 𝒯 󸀠-neighborhoods of a0, and intersecting
these with V gives a 𝒯 󸀠-neighborhood V 󸀠 ⊆ V of a0 with V 󸀠 ∩ A = {a0} ̸∈ 𝒯 󸀠. Thus,
V 󸀠 must contain a point b ∈ B. If V 󸀠󸀠 is the intersection of V 󸀠 with a 𝒯 󸀠-neighborhood
of b excluding a0, thenV 󸀠󸀠 ∈ 𝒯 󸀠 is a nonempty subset ofB. This gives the contradiction
that V 󸀠󸀠 ∈ 𝒯 ∧ 𝒯 󸀠 = {0,X}. Thus, 𝒯 has no T1 complement.

Next we will consider complementation in the lattice A(X) of Alexandroff topolo-
gies on X. We say a quasiordered set (X, ≲) is connected if for every pair of points
x, y ∈ X, there exists a sequence of points x = x0, x1, . . . , xn = y ∈ X with xk−1 ≲ xk or
xk ≲ xk−1 for k = 1, . . . , n. The maximal connected subsets of (X, ≲) are the connected
components. This graph-theoretic definition of connectedness of a quasiordered set
is equivalent to topological connectedness in the specialization topology on X. The
details are left as an exercise.

For the next theorem,wewill need two constructions involving quasiordered sets.
The first involves splitting points into several clones, each of which has the same po-
sition in the poset as the original. Suppose (Y , ≤) is a partially ordered set. For each
y ∈ Y , let Dy be an arbitrary nonempty index set, and consider D[y] = {(y, i) : i ∈ Dy} to
be the set of duplicates of y. LetY 󸀠 = ⋃{D[y] : y ∈ Y}, andgiveY 󸀠 the order (y, i) ≤D (z, j)
if and only if (y, i) = (z, j) or y < z in (Y , ≤). It is easy to see that (Y 󸀠, ≤D) is a poset.
If (X, ≲) is a quasiorder set, consider the associated partial order ≤ on the set Y of
≈-equivalence classes, where x ≈ y if and only if x ≲ y and y ≲ x. For each y ∈ Y , let
Dy = [y] be the ≈-equivalence class of y. Performing the duplication of points as above
results in a partially ordered set on X obtained by retaining the order ≲ between non-
equivalent points and making x||y for distinct points x and y which are ≈-equivalent.
(Recall that x||ymeans x ̸≤ y and y ̸≤ x.)We call the resulting poset the parallel division
of the quasiorder on X into a partial order on X. (Informally, this process may be called
cloudbusting.) An example of this is illustrated in Figure 9.4(a) and (b).

Figure 9.4: (a) A quasiordered set X . (b) The parallel division of X into a partial order X 󸀠. (c) The con-
nection of X 󸀠 at the indicated points from each component.
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The second construction involves gluing together quasiordered sets. Given a collection
{(Xi, ≲i) : i ∈ I} of quasiordered sets, for each i ∈ I, pick a point ai ∈ Xi. We will define a
quasiorder ≲ on the disjoint union X = ⋃{Xi : i ∈ I}which puts the points {ai : i ∈ I} in
an ≈-equivalence class, and retains transitivity. Specifically, for x, y ∈ X, define ≲ by
x ≲ y if and only if x ≲i y in some Xi or x ≲i ai and aj ≲j y for some i, j ∈ I. We call this
construction the connection of the quasiordered sets Xi at the points {ai}. Clearly, this
produces a connected quasiordered set. Figure 9.4(b) and (c) illustrate this.

Theorem 9.3.6. The lattice A(X) of Alexandroff topologies on X is a complemented lat-
tice.

Proof. Suppose 𝒯 is an Alexandroff topology on X with associated specialization
quasiorder ≲. Form the parallel division X󸀠 of (X, ≲) into a partial order ≤ on X. Let
{(Xi, ≤i)}i∈I be the set of connected components of (X, ≤). For each i ∈ I, pick ai ∈ Xi and
form the connection (X󸀠, ≲C) of the sets Xi at the points ai, as suggested in Figure 9.4.
Let 𝒯 󸀠 be the Alexandroff topology consisting of the decreasing sets of (X󸀠, ≲C). (This
is the specialization topology for Y with the dual order ≳C.) We will show that 𝒯 󸀠 is a
complement of 𝒯 .

Given x ∈ X, within the connected component of x, i≲(x) ∩ d≲(x) is the ≈-equiva-
lence class [x] of x. N𝒯 (x) = i≲(x) is contained in the component of x. Since N𝒯 󸀠 (x) =
d≲C (x) and, within the component of x, d≲C (x) = {x} ∪ (d≲(x) − [x]), it follows that
N𝒯 (x) ∩ N𝒯 󸀠 (x) = {x} for every x ∈ X.

Now suppose U ∈ 𝒯 ∩ 𝒯 󸀠, x ∈ U, and x is in the connected component Xi. For
any y in the same component Xi, there is a path from x which proceeds up and down
repeatedly in (X, ≲), reaching y, and this path can be chosen to use no more than one
point from each ≈-equivalence class. Since U is ≲-increasing and ≲C-decreasing, if
follows that y ∈ U, and thus U contains the entire component Xi containing x. But for
any other component Xj, since aj ≲C ai andU is ≲C-decreasing,U contains the point aj
and thus contains the entire component Xj of aj. Since this holds for every j ∈ I, U = X
and thus 𝒯 ∩ 𝒯 󸀠 = {0,X}.

Note that the proof abovewas constructive: given anAlexandroff topology 𝒯 onX,
it described an explicit algorithm to produce anAlexandroff complement 𝒯 󸀠. The algo-
rithm required an arbitrary choice of a point ai from each connected component of X.
Different choices will yield different complements, so generally, A(X) is not uniquely
complemented.

Corollary 9.3.7. If X is a finite set, T(X) is a complemented lattice.

Juris Hartmanis proved Corollary 9.3.7 directly in 1958. As a generalization,
Anne K. Steiner proved Theorem 9.3.6 in 1966. In the same paper, Steiner proved
the following important theorem.

Theorem 9.3.8 (A. K. Steiner). The lattice T(X) of topologies on X is complemented.
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Her proof used the 1966 result of Haim Gaifman that if every T1 topology on X
has a complement in T(X), then every topology on X has a complement, and showed
that certain spaces have complements which are Alexandroff topologies. Questions
of when a certain kind of topology has a certain kind of complement have been the
basis for much subsequent research. Alternate proofs of Theorem 9.3.8 were given by
A. C.M. van Rooij in 1968 and Paul Schnare in 1972 (with a minor correction in 1977).
Further details of this development are given in [31].

The following theorem provides a remarkable reason for studying sublattices of
T(X).

Theorem 9.3.9. Every lattice L is a sublattice of T(X) for some X.

This is a corollary to the 1946 theorem of Philip Whitman that every lattice is a
sublattice of the lattice of partitions Π(X), since the lattice of partition topologies is a
complete sublattice of T(X).

Exercises

1. Show that the coatoms in the lattice of T1 topologies are precisely the coatoms in
the lattice of T2 topologies.

2. Show that 𝒯 ∈ T(X) is not T1 if and only if 𝒯 is below a coatom of form 𝒯{p,q}.
3. If X is a nonempty set, show that T(X) has a minimum T1 topology, namely, the

cofinite topology 𝒯cf.
4. If (L, ≤) is a complete lattice and a ∈ L, show that i(a) is a complete sublattice of L.

Use this to show that the set of T1-topologies on a set X is a complete sublattice of
T(X), giving a second proof of Theorem 9.3.1.

5. Prove Theorem 9.3.3.
6. Prove Theorem 9.3.4.
7. Show that the lattice Π(X) of partitions of X is not distributive if |X| ≥ 3.
8. If PO(X) is the collection of partial orders on X ordered by set inclusion of the par-

tial order relations, as subsets of X ×X, then PO(X) corresponds to the T0 Alexan-
droff topologies. Show that PO({a, b}) is not a lattice.

9. The proof of Theorem 9.3.2 showed that A(X) is not a complete sublattice of T(X)
if A(X) ̸= T(X). State and prove a characterization of the sets X for which every
topology on X is an Alexandroff topology.

10. Show that a quasiordered set (X, ≲) is connected if and only if the associated spe-
cialization topology 𝒯≲ makes X a connected topological space.

11. Let X = {1, 2, 3, 4, 5} and define f , g : X → X by f (1) = 2, f (2) = 3, g(1) = 3, g(2) = 1,
and f (x) = g(x) = x for all other points.
(a) Sketch the functionally Alexandroff topologies 𝒯f and 𝒯g and their associated

quasiorders.
(b) Find 𝒯f ∧ 𝒯g in T(X) = A(X).
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(c) Find 𝒯f ∧ 𝒯g in the poset FA(X) of functionally Alexandroff topologies on X.
12. If 𝒯 is a minimal T0 topology in T(X) and A ⊆ X is open or closed, show that

the subspace topology 𝒯 |A on A is minimal T0 in T(A). (Compare to Exercise 14 of
Section 9.2.)

13. Find a complement of the topology whose basis is depicted in Figure 8.3.
14. Find a complement of the topology 𝒯 on X = {a, b, c, d, e, f , g, h} whose basis is
{{a, b}, {a, b, c, d}, {e, f , g, h}, {h}}.

15. Let 𝒯 be the topology on X = {a, b, c, d} having basis {{a, b, c}, {c}, {d}}.
(a) Find all complements of 𝒯 which arise from the construction given in the

proof of Theorem 9.3.6.
(b) Find other complements of 𝒯 besides those found in part (a).

16. Show that the lattice A(X) of Alexandroff topologies on a nonempty set X is
uniquely complemented if and only if |X| ≤ 2.

17. (The Hartmanis complement) Suppose 𝒯 is a topology on a finite set X. Let
≲ be the specialization quasiorder and let (X/≈, ≤) be the partial order on the
≈-equivalence classes, where a ≈ b if and only if a ≲ b and b ≲ a. Let M≈ be
the set of maximal equivalence classes in (X/≈, ≤), let M ⊆ X be the union of the
maximal equivalence classes, and let A be a complete set of equivalence class
representatives fromM≈. Let 𝒯 󸀠 be the topology on X having N(x) = {x} for x ̸∈ A,
and N(a) = A ∪ (X − M) for a ∈ A. That is, 𝒯 󸀠 is the Alexandroff topology whose
specialization order ≲󸀠 is ΔX ∪ {(a, x) : a ∈ A, x ∈ A ∪ (X −M)}.
(a) Show that 𝒯 󸀠 is a complement of 𝒯 in T(X).
(b) Using the example of (ℝ, 𝒯 )where 𝒯 = {0, ℝ} ∪ {(a,∞) : a ∈ ℝ} ∪ {[a,∞) : a ∈
ℝ}, explain why the Hartmanis complement construction does not generally
work for Alexandroff topologies on infinite sets. Find a complement of (ℝ, 𝒯 ).

(c) Find a Hartmanis complement of the Alexandroff topology whose specializa-
tion order is given in Figure 9.4(a).



10 Partially ordered topological spaces

10.1 Partially ordered topological spaces

A partially ordered topological space is a triple (X, 𝒯 , ≤) where X is a nonempty set,
𝒯 is a topology on X, and ≤ is a partial order on X. A partial order provides a means
to quantify preference, with a ≤ b meaning b is preferable to a. Thus, partially or-
dered topological spaces are useful in situations where nearness and preference are
required.

Notice than any topological space (X, 𝒯 ) canbe viewed as a partially ordered topo-
logical space (X, 𝒯 , =) ordered by the trivial order or discrete order of equality. Thus,
topological spaces may be viewed as partially ordered topological spaces having the
trivial order.

The next example shows that in general, the topology and order of a partially or-
dered topological spacemaynot interactwell. Specifically, it shows that the increasing
hull of a closed set need not be closed, and the closure of an increasing set need not
be increasing.

Example 10.1.1. Let X be the closed upper half-plane with an open ball of radius 1/2
around the origin deleted, and the origin added, as seen in Figure 10.1. Give X the Eu-
clidean topology as a subspace of plane, and the product order (a, b) ≤ (c, d) if and
only if a ≤ c and b ≤ d. Let A = {(x, −x−1) : x < 0}. Now A is closed, but i(A) is
the set of all points of X in the open upper half-plane, which is not closed. Also, i(A)
is increasing, but its closure is not increasing, since, for example, (−2,0) ∈ cl(i(A)),
(−2,0) ≤ (0,0), and (0,0) ̸∈ cl(i(A)). The set B = {(0,0)} is open, but i(B) is not open:
(0, 5) ∈ i(B) but i(B) contains no neighborhood of (0, 5). Furthermore, i(B) is increas-
ing, but its interior is not: int(i(B)) = i(B) − ({0} × [1/2,∞)) contains (0,0) but not
(0, 1) ≥ (0,0).

Figure 10.1: The interior or closure of an increasing set need not be increasing; the increasing hull of
a closed (open) set need not be closed (open).

Since the topology and order of a partially ordered topological space may not inter-
act well, frequently some forms of compatibility between the topology and order are
assumed. The first compatibility condition we will consider is convexity.

https://doi.org/10.1515/9783110686579-011
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Definition 10.1.2. In a poset (X, ≤), a set A is convex (or for emphasis, order convex)
if a, c ∈ A and a ≤ b ≤ c imply b ∈ A. Equivalently, A is convex if A = i(A) ∩ d(A).
A partially ordered topological space (X, 𝒯 , ≤) has a convex topology if 𝒯 has a basis
of convex sets.

If 𝒯 is an Alexandroff topology on (X, ≤), the convexity of 𝒯 would say that if z is
in the smallest neighborhood N(x) of x and x ≤ y ≤ z, then y ∈ N(x). That is, if z is in
every neighborhood of x and y is “closer” (in the order sense) to x than z, then ymust
also be close to x in a topological sense.

Any ordered topological space (X, 𝒯 , ≤) produces two associated topologies:

𝒯 ♯ = {U ∈ 𝒯 : U = i(U)} and
𝒯 ♭ = {U ∈ 𝒯 : U = d(U)}.

That is, 𝒯 ♯ consists of the ≤-increasing 𝒯 -open sets, and 𝒯 ♭ consists of the ≤-de-
creasing 𝒯 -open sets. It is easy to show directly that these are both topologies. For an
indirect proof that 𝒯 ♯ is a topology, recall that the ≤-increasing sets form a topology ℐ
on X, and note that 𝒯 ♯ = 𝒯 ∧ ℐ = 𝒯 ∩ ℐ.

In a poset (X, ≤), it is immediate from the definitions that the intersection of any
increasing set with any decreasing set is a convex set. In particular, every monotone
set is convex.

Theorem 10.1.3. If 𝒯 is a topology on (X, ≤) and 𝒯 = 𝒯 ♯ ∨ 𝒯 ♭, then 𝒯 is convex.

Proof. If 𝒯 = 𝒯 ♯ ∨ 𝒯 ♭, then 𝒯 has basis {U ∩ V : U ∈ 𝒯 ♯,V ∈ 𝒯 ♭}. This basis contains
only convex sets, so 𝒯 is convex.

Other compatibility conditions between the topology and order of a partially or-
dered topological space include the ordered separation axioms. Recall that a topolog-
ical space (X, 𝒯 ) is T1 if and only if for every x ̸= y in X, there exists a neighborhood of
x excluding y (and thus, with x and y interchanged, a neighborhood of y excluding x).

Definition 10.1.4. Apartially ordered topological space (X, 𝒯 , ≤) is T1-ordered if for ev-
ery x ̸≤ y, there exists an increasing neighborhood of x which excludes y and there
exists a decreasing neighborhood of y which excludes x.

Note that if x ≤ y, then it would be impossible to find an increasing neighborhood
of x which excludes y or a decreasing neighborhood of y which excludes x. Thus, the
definition says for any distinct points x and y, there is a monotone neighborhood of
one which excludes the other except when the order absolutely prohibits it.

From the definition of the terms used, Definition 10.1.4 may be rephrased to say
(X, 𝒯 , ≤) is T1-ordered if for every x ̸≤ y in X, there exists a neighborhood Ux of x with
y ̸∈ i(Ux) and there exists a neighborhood Uy of y with x ̸∈ d(Ux). Then i(Ux) is an in-
creasing neighborhood of x and d(Uy) is a decreasing neighborhood of y. In general,
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if Ux is open, i(Ux) need not be open. Thus, as stated, the separating monotone neigh-
borhoods i(Ux) and d(Uy) cannot be assumed to be open neighborhoods. However, the
next theorem says that indeed they may be assumed to be open.

Theorem 10.1.5. For a partially ordered topological space (X, 𝒯 , ≤), the following are
equivalent:
(a) X is T1-ordered.
(b) For every x ̸≤ y in X, there exists an open increasing neighborhood Ux of x with

y ̸∈ Ux and there exists an open decreasing neighborhood Uy of y with x ̸∈ Uy.
(c) For every x ∈ X, i(x) and d(x) are closed.
(d) For every x ̸≤ y in X, there exists an increasing neighborhood Ux of x with y ̸∈ Ux

and there exists a decreasing neighborhood Uy of y with x ̸∈ Ux.

The proof of the theorem is left as an exercise. Thus, for the T1-ordered prop-
erty, “strengthening” the definition to require separation by monotone open neigh-
borhoods does not give a new separation axiom.

A useful characterization of T1 topological spaces is that they are the spaces in
which every singleton is closed. Theorem 10.1.5(c) gives the ordered version of this.

If a topological space (X, 𝒯 ) is viewed as a trivially-ordered topological space
(X, 𝒯 , =), then i(x) = {x} = d(x), and thus (X, 𝒯 , =) is T1-ordered if and only if (X, 𝒯 )
is T1.

A topological space is T2 if and only if for every x ̸= y, there exist disjoint neigh-
borhoods of x and y. Ordered versions of this are given below.

Definition 10.1.6. A partially ordered topological space (X, 𝒯 , ≤) is T2-ordered if for
every x ̸≤ y, there exists an increasing neighborhoodUx of x disjoint from a decreasing
neighborhood Uy of y. (X, 𝒯 , ≤) is strongly T2-ordered if for every x ̸≤ y, there exists an
open increasing neighborhoodUx of x disjoint froman open decreasing neighborhood
Uy of y.

If (X, 𝒯 , ≤) is T2-ordered and x ̸= y, then both statements x ≤ y and y ≤ x cannot
be true, and the inequality that fails guarantees disjoint neighborhoodsUx andUy of x
and y. Thus, if (X, 𝒯 , ≤) isT2-ordered, then (X, 𝒯 ) isT2. Similarly,T1-ordered impliesT1.
Also, it is clear that strongly T2-ordered implies T2-ordered, which implies T1-ordered.

While the use of monotone neighborhoods or open monotone neighborhoods
made no difference in the definition of T1-ordered, the following example shows that
a T2-ordered topological space need not be strongly T2-ordered.

Example 10.1.7. In the plane, take a copy of the rationals at y = −1, a copy of the reals
at y = 0, and a copy of the irrationals at y = 1 with the order (a, b) ≤ (c, d) if and only if
a = c and b ≤ d. Remove (0,0) and add (0, 1), with (0, 1) incomparable to every other
element. With the Euclidean subspace topology, call this space (X, 𝒯 , ≤).

Wewill show that this space is T2-ordered, but (0,-1) and (0,1) cannot be separated
by oppositely directed open monotone neighborhoods.
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If (x,m) ̸≤ (y, n) ∈ X and x ̸= y, then there exist disjoint neighborhoods Ux and Uy
in ℝ of x and y, respectively, and since all the order present is “vertical”, there is an
increasing neighborhood of (x,m) contained inUx×ℝ and a decreasing neighborhood
of (y, n) contained in Uy × ℝ. Such neighborhoods must be disjoint.

If (x,m) ̸≤ (y, n) ∈ X and x = y, then n < m, except in the case of (0, −1) ̸≤ (0, 1).
Except for the case (0, −1) ̸≤ (0, 1), ifU is a neighborhood of x inℝ, then (U×{m,m+1})∩
X is an increasing neighborhood of (x,m) disjoint from the decreasing neighborhood
(U × {n, n − 1}) ∩ X of (y, n).

Now in the case (0, −1) ̸≤ (0, 1), letU be a neighborhood of 0 inℝ. (U∩ℚ×{−1,0})−
{(0,0)} is an increasing neighborhood of (0, −1) disjoint from the decreasing neighbor-
hood (U − ℚ × {0, 1}) ∪ {(0, 1)} of (0, 1).

This shows that X is T2-ordered. However, note that any increasing neighborhood
of (0, −1) contains (U ∩ ℚ × {0}) − {(0,0)} and any decreasing neighborhood of (0, 1)
contains (V −ℚ× {0}), where U and V are neighborhoods of 0 inℝ. By the denseness
ofℚ inℝ, any open increasing neighborhood of (0, −1)must contain irrational points
near the origin, and thus must intersect any decreasing neighborhood of (0, 1). Thus,
(0, −1) and (0, 1) cannot be separated by disjoint monotone open neighborhoods, so X
is not strongly T2-ordered.

It is a standard exercise (Exercise 9 of Section 7.1) to show that a topological space
(X, 𝒯 ) is T2 if and only if ΔX = {(x, x) : x ∈ X} is a closed subset of the product X × X.
Viewing ΔX as the graph of the trivial order =, this suggests the following result.

Theorem 10.1.8. Apartially ordered topological space (X, 𝒯 , ≤) is T2-ordered if and only
if the graph G = {(x, y) ∈ X2 : x ≤ y} of the partial order is a closed subset of the product
X × X.

Proof. Suppose (X, 𝒯 , ≤) is T2-ordered. To see X2 − G is open, suppose (x, y) ̸∈ G. Then
x ̸≤ y, so there exists an increasing neighborhood U of x disjoint from a decreasing
neighborhood V of y. Now U × V is a neighborhood of (x, y) in X2. If G ∩ (U × V) ̸= 0,
then there exists (a, b) ∈ G ∩ (U × V), so a ≤ b, a ∈ U = i(U), and b ∈ V . Thus,
b ∈ i(U) = U, contrary to U ∩ V = 0. Thus, U × V ⊆ X2 − G. This shows X2 − G is
open.

Conversely, suppose X2 − G is open. Then, for any (x, y) ̸∈ G, there exists a basic
neighborhoodU ×V of (x, y) contained in X2−G. If z ∈ i(U)∩d(V), then u0 ≤ z ≤ v0 for
some u0 ∈ U, v0 ∈ V , and thus u0 ≤ v0, so (u0, v0) ∈ (U ×V) ∩G, contrary to the choice
of U × V . Thus, i(U) ∩ d(V) = 0, so i(U) is an increasing neighborhood of x disjoint
from the decreasing neighborhood d(V) of y. This holds for any (x, y) ̸∈ G, that is, for
any x ̸≤ y, so X is T2-ordered.

Corollary 10.1.9. In a T2-ordered topological space (X, 𝒯 , ≤), if xn ≤ yn for all n ∈ ℕ and
the sequence (xn, yn)n∈ℕ converges to (x, y) in X × X, then x ≤ y.
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Proof. Suppose xn ≤ yn for all n ∈ ℕ and (xn, yn)n∈ℕ converges to (x, y). This says
(xn, yn)n∈ℕ is a convergent sequence in the closed set G ⊆ X2, and thus G contains the
limit (x, y).

The theorem below is an ordered version of the fact that a compact subset of a
Hausdorff space is closed.

Theorem 10.1.10. Suppose (X, 𝒯 , ≤) is a T2-ordered space. If K ⊆ X is compact, then i(K)
and d(K) are closed.

Proof. Suppose K is compact. To show i(K) is closed, suppose a ̸∈ i(K). Then x ̸≤ a for
all x ∈ K. By the T2-ordered condition, for each x ∈ K, there exist open neighborhoods
Nx of x and Mx of a with i(Nx) ∩ d(Mx) = 0. Let {Nxi : i = 1, . . . , n} be a finite subcover
of the open cover {Nx : x ∈ K} of K. Now M = ⋂{Mxi : i = 1, . . . , n} is a neighborhood
of a. If there exists z ∈ M ∩ i(K), then z ≥ k for some k ∈ K ⊆ ⋃{Nxi : i = 1, . . . , n}. Thus,
k ∈ Nxj for some j ∈ {1, . . . , n}, so z ∈ i(Nxj ) ∩Mxj , contrary to the choice ofMxj and Nxj .
Thus, for an arbitrary a ̸∈ i(K), we have found a neighborhood M of a contained in
X − i(K), so X − i(K) is open and thus i(K) is closed. A similar argument shows d(K) is
closed.

Theorem 10.1.11. Suppose (X, 𝒯 , ≤) is a compact T2-ordered space. For any increasing
set A ⊆ X and any open set U containing A, there exists an open increasing set V with
A ⊆ V ⊆ U. In other words, in a compact T2-ordered space (X, 𝒯 , ≤), every open neigh-
borhood of an increasing set A contains a 𝒯 ♯-neighborhood of A.

Proof. Suppose X is compact T2-ordered, A ⊆ X is increasing, and U is an open set
containingA. Now X−U is closed and thus compact in X. By Theorem 10.1.10, d(X−U)
is closed and decreasing, so V = X − d(X − U) is open and increasing. Now X − U ⊆
d(X − U) implies V = X − d(X − U) ⊆ U . To see A ⊆ V , suppose not. Then there exists
a ∈ A ∩ d(X −U), so there exists x ∈ X −U with a ≤ x. Since A is increasing, x ∈ A ⊆ U,
which contradicts x ∈ X − U .

The previous theorem has a natural application to ordered separation axioms.

Theorem 10.1.12. Every compact T2-ordered space is strongly T2-ordered. That is, if x ̸≤
y in a compact T2-ordered space, then there exists an open increasing neighborhood of
x disjoint from an open decreasing neighborhood of y.

Proof. Suppose x ̸≤ y in a compact T2-ordered space (X, 𝒯 , ≤). Then i(x) and d(y)
are disjoint, and since X is T1-ordered, these sets are also closed. Now (X, 𝒯 ) is com-
pact and T2, and thus is normal, so there exist disjoint open sets Ux and Uy with
i(x) ⊆ Ux and d(y) ⊆ Uy. Now applying Theorem 10.1.11 and its dual, there exist an
open increasing set Vx and an open decreasing set Vy with i(x) ⊆ Vx ⊆ Ux and d(y) ⊆
Vy ⊆ Uy. Thus, Vx and Vy are the desired oppositely directed open monotone neigh-
borhoods of x and y.

Now we give another nice property of compact T2-ordered spaces.
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Theorem 10.1.13. If (X, 𝒯 , ≤) is a compact T2-ordered topological space, then 𝒯 is a con-
vex topology.

Proof. Suppose (X, 𝒯 , ≤) is compact and T2-ordered. To show 𝒯 is convex, it suffices
to show that every open neighborhood of a ∈ X contains a convex neighborhood of a.
Suppose U is an open neighborhood of a. Then X − U is compact. For any x ∈ X − U,
either a ̸≤ x or x ̸≤ a, so there exist disjoint setsMx and Nx, one in 𝒯 ♯ and one in 𝒯 ♭,
with a ∈ Mx and x ∈ Nx. The open cover {Nx : x ∈ X − U} of X − U has a finite
subcover {Nx : x ∈ F} where F ⊆ X − U is finite. Now W = ⋂{Mx : x ∈ F} is disjoint
from ⋃{Nx : x ∈ F}, and since X − U ⊆ ⋃{Nx : x ∈ F}, we have a ∈ W ⊆ U . But W
is a finite intersection of open monotone neighborhoods of X, and thus is a convex
neighborhood of a contained in U .

Exercises

1. Suppose (X, 𝒯 , ≤) is a partially ordered topological space. Show that 𝒯 has a basis
of convex open sets if and only if for every x ∈ X and for every neighborhood U
of x, there exists a convex open neighborhoodW of x withW ⊆ U . That is, 𝒯 is a
convex topology on (X, ≤) if and only if it is a locally convex topology on (X, ≤).

2. Given a partially ordered topological space (X, 𝒯 , ≤), let 𝒯 󸀠 be the topology on X
whose closed sets are the ≤-increasing sets. In Example 10.1.1, we noted that in a
partially ordered topological space, the increasing hull of a closed set need not be
closed and the closure of an increasing set need not be increasing. Interpret this
statement in terms of 𝒯 󸀠-closures and 𝒯 -closures, and in terms of how 𝒯 and 𝒯 󸀠

compare in the lattice T(X) of topologies on X.
3. Let (X, ≤) be [0, 1] with the usual order. For ε > 0, define U(0, ε) = {0} ∪ (1 − ε, 1),

U(1, ε) = {1} ∪ (0, ε), and for 0 < x < 1, U(x, ε) = (x − ε, x + ε). Let 𝒯 be the
topology on X having basis {U(x, ε) : x ∈ [0, 1], ε > 0}. Determine whether (X, 𝒯 , ≤)
is T1-ordered or T2-ordered, and whether 𝒯 is convex.

4. Suppose ≤ is a partial order on X, and 𝒯≤ is the associated Alexandroff (special-
ization) topology on X. Must the partially ordered topological space (X, 𝒯≤, ≤) be
T1-ordered? Must 𝒯≤ be convex?

5. If A is a subset of a partially ordered topological space (X, 𝒯 , ≤), let I(A) denote
the smallest closed increasing set containingA. I(A) is called the closed increasing
hull of A. The closed decreasing hull D(A) of A ⊆ X is defined dually. We have seen
examples to show that I(A) ̸= cl(i(A)) and I(A) ̸= i(cl(A)). Describe I(A) and D(A)
in terms of 𝒯 ♯ and 𝒯 ♭.

6. Prove Theorem 10.1.5.
7. Give a proof or counterexample: For points x, y in an ordered topological space,

there exists an open increasing neighborhood of x excluding y if and only if there
exists a neighborhood U of x with y ̸∈ i(U).
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8. Show that (X, 𝒯 , ≤) is T1-ordered if and only if i(x) = ⋂{U ∈ 𝒯 ♯ : x ∈ U} and
d(x) = ⋂{U ∈ 𝒯 ♭ : x ∈ U} for all x ∈ X.

9. Determine whether the T1-ordered and T2-ordered properties are hereditary and
productive (where a product∏{Xi : i ∈ I} carries the product topology andproduct
order ⟨xi⟩i∈I ≤ ⟨yi⟩i∈I if and only if xi ≤ yi in Xi for every i ∈ I).

10. The definitions for ordered separation axioms in a partially ordered topological
spacemay also be used to define the T2-ordered and T1-ordered properties for any
quasiordered topological space (X, 𝒯 , ≲). Of the following implicationswhichhold
for partially ordered topological spaces, which still hold for quasiordered topolog-
ical spaces? Justify your answers.

T2-ordered ⇒ T1-ordered
⇓ ⇓
T2 ⇒ T1

11. Determine whether each partially ordered topological space (X, 𝒯 , ≤) below is
T2-ordered. If it is T2-ordered, prove it. If it is not T2-ordered, then (i) find x ̸≤ y in
X which cannot be separated by monotone neighborhoods, (ii) find a sequence
(xn, yn)n∈ℕ converging to (x, y) with xn ≤ yn for every n ∈ ℕ, but x ̸≤ y, and (iii)
sketch the graph of the partial order in X2 and show that it is not closed.
(a) X = ℝ, 𝒯 is the Euclidean topology, and ≤ is the usual order on the positive

reals and is equality on (−∞,0], with positive numbers and nonpositive num-
bers not related. (Thus, x ≤ y if and only if x = y or 0 < x ≤ y.)

(b) X = ℝ, 𝒯 is the Euclidean topology, and ≤ is the usual order on the non-
negative reals and is equality on the negative reals, with negative numbers
and nonnegative numbers not related. (Thus, x ≤ y if and only if x = y or
0 ≤ x ≤ y.)

12. A bitopological space is a triple (X, 𝒯1, 𝒯2)where X is a set and 𝒯1 and 𝒯2 are topolo-
gies on X. A bitopological space (X, 𝒯1, 𝒯2) is pairwise T1 if for any pair of dis-
tinct points x, y ∈ X, either there exists a 𝒯1-neighborhood of x excluding y or
a 𝒯2-neighborhood of x excluding y.
(a) If (X, 𝒯 , ≤) is a T1-ordered topological space, show that (X, 𝒯 ♯, 𝒯 ♭) is pair-

wise T1.
(b) Let (X, 𝒯 , ≤) be the interval [0, 1] with the usual topology and order from

the real line, except with 0 noncomparable to all other points. Show that
(X, 𝒯 ♯, 𝒯 ♭) is pairwise T1 but (X, 𝒯 , ≤) is not T1-ordered.

13. Exercise 12 shows that the definition given for the T1-ordered property is not
aligned with the bitopological concept of pairwise T1. Here is an alternate defini-
tion of T1-ordered which remedies this: (X, 𝒯 , ≤) is TK1 -ordered if for every x ∈ X,
{x} = ⋂{U ∈ 𝒯 ♯ ∪ 𝒯 ♭ : x ∈ U}.
(a) Show that (X, 𝒯 , ≤) is TK1 -ordered if and only if (X, 𝒯

♯, 𝒯 ♭) is pairwise T1.
(b) Show that T1-ordered implies TK1 -ordered.



226 | 10 Partially ordered topological spaces

(c) Show that (X, 𝒯 , ≤) is a TK1 -ordered if and only if, for every x ∈ X, {x} = I(x) ∩
D(x), where I(x) and D(x) are as defined in Exercise 5.

(d) Show that if the order on (X, 𝒯 , ≤) is a total order, then X is T1-ordered if and
only if X is TK1 -ordered.

(For other shortcomings of the original definition of T1-ordered, see [28].)

10.2 Normally ordered topological spaces

Recall that a topological space is T4 if disjoint closed sets can be separated by open
sets, and is normal if it is T1 and T4. The ordered versions of T4 and normality involve
separating disjoint monotone closed sets.

Definition 10.2.1. A partially ordered topological space (X, 𝒯 , ≤) is T4-ordered if, for
any closed increasing setA and any closed decreasing setB disjoint fromA, there exist
open sets UA and UB with A ⊆ UA, B ⊆ UB, and i(UA) ∩ d(UB) = 0. A partially ordered
topological space (X, 𝒯 , ≤) is strongly T4-ordered if, for any closed increasing setA and
any closed decreasing set B disjoint from A, there exists an open increasing set UA
containingA disjoint from an open decreasing setUB containingB. A partially ordered
topological space is normally ordered (strongly normally ordered) if it isT1-ordered and
(strongly) T4-ordered.

Thus, a T4-ordered space is one in which disjoint oppositely directed monotone
closed sets canbe separated bydisjoint oppositely directedmonotoneneighborhoods,
and is stronglyT4-ordered if in addition, the separatingmonotoneneighborhoodsmay
be chosen to be open. (Here we use the convention that an open neighborhood of a set
A is an open set containing A, and a neighborhood of A is any set containing an open
neighborhood of A.)

Since any compact T2 space is normal, the following result is not surprising.

Theorem 10.2.2. Any compact T2-ordered topological space is strongly normally or-
dered.

This theorem shows that the compact T2-ordered spaces are among the best be-
haved ordered topological spaces. The proof is analogous to the proof of the corre-
sponding result Theorem 7.1.8 for (trivially ordered) topological spaces.

Total orders are particularly nice partial orders, and with the right topology de-
fined in terms of the order, they give another class of strongly normally ordered spaces.
First, we present a natural way to define a topology from any partial order.

Definition 10.2.3. If (X, ≤) is a partially ordered set, the order topology on X is the
topology generated by the subbasis of open rays (a,→) = {x ∈ X : a < x} = i(a) − {a}
and (←, b) = {x ∈ X : x < b} = d(b) − {b}. If ≤ is a total order on X, then (X, ≤) with the
order topology is called a linearly ordered topological space, or a LOTS.
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Though a linear order is another name for a total order, note that a LOTS is more
than an ordered topological space whose order is linear: a LOTS must carry the order
topology.

Clearly the collection 𝒮 = {(a,→) : a ∈ X} ∪ {(←, b) : b ∈ X} of all open rays
is a subbasis for a topology on X. If X = {x} has only one element, then the empty
intersection gives {x} and the empty union gives 0. If X has a smallest element a and
at least one other element x > a, then (a,→), (←, x) ∈ 𝒮 and thus⋃𝒮 = X. If X has no
smallest element, then, for any x ∈ X, there exists x− < x, so x ∈ (x−,→) ∈ 𝒮 and thus
⋃𝒮 = X.

The intersection of two oppositely directed open rays (a,→) ∩ (←, b) in (X, ≤)will
be denoted (a, b) and called the open interval with endpoints a and b. Open rays and
thewhole space X = (←,→) are also considered to be open intervals which have fewer
than twoendpoints. In general, the open intervals in aposet (X, ≤)arenot closedunder
finite intersections and do not form a basis for the order topology. The example below
illustrates this.

Example 10.2.4. Let X = {a, b, c, d, e, f } with the partial order depicted in Figure 10.2.
Now (a, e) = {b, c} and (a, f ) = {c, d}, but (a, e) ∩ (a, f ) = {c} is not an open interval and
contains no open interval around c. Thus, the open intervals do not form a basis for
any topology on X.

Figure 10.2: The open intervals are not a basis for a topology.

If it is surprising to find that the intersection of two intervals need not be an inter-
val, it is perhaps because most of our experience with intervals occurs in ℝ, which is
a LOTS. The next theorem addresses this situation.

Theorem 10.2.5. The order topology on a totally ordered set (X, ≤) has a basis ℬ =
{(a, b) : a, b ∈ X} ∪ {(a,→) : a ∈ X} ∪ {(←, b) : b ∈ X} ∪ {X} consisting of the open
intervals (with 0, 1, or 2 endpoints) in X.

The proof is left as an exercise. Due to this result, the order topology on a totally
ordered set (that is, the topology on a LOTS) is sometimes called the interval topology.
The proof of the next result is also left to the exercises.

Theorem 10.2.6. Every LOTS is strongly normally ordered.
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We now turn our attention to another large class of normally ordered spaces in-
troduced in [42].

Definition 10.2.7. A (partially) ordered metric space is a triple (X,m, ≤) where X is a
set, m is a metric on X, and ≤ is a partial order on X. If n is a natural number, the
ordered metric space (X,m, ≤) is 1

n -ball transitive if x ≤ y implies B(x, εn ) ⊆ d(B(y, ε))
and B(y, εn ) ⊆ i(B(x, ε)) for all ε > 0. We will say a metric space X with a partial order is
ball transitive if it is 1

n -ball transitive for some natural number n.

Example 10.2.8. Let X = ℝ × {0, 1} with the Euclidean metric m. Define ≤ by (x, y) ≤
(z,w) if and only if (x, y) = (z,w) or y = 0,w = 1, and z = 2x. Thus, besides (x, y) ≤
(x, y) for every (x, y) ∈ X, we have only (x,0) ≤ (2x, 1) for all x ∈ ℝ, as suggested in
Figure 10.3. The increasing hull of a ball B((x,0), ε) on the lower segment contains
the ball B((2x, 1), 2ε), and thus B((2x, 1), εn ) for any natural number n. The decreasing
hull of a ball B((x, 1), ε) on the upper segment contains the ball B(( x2 ,0),

ε
2 ), and thus

(X,m, ≤) is 1
2 -ball transitive (and not 1-ball transitive).

Figure 10.3: X is 1
2 -ball transitive. Y is not ball transitive.

Let Y = [−1, 1]2 − (0, 1]2 be the subset of ℝ2 shown in Figure 10.3, with the Euclidean
metric m and the product order (a, b) ≤ (x, y) if and only if a ≤ x and b ≤ y. Now
(0,0) ≤ (0, 1), but for any ε < 1, d(B((0, 1), ε)) contains no ball of positive radius around
(0,0). Thus, Y is not ball-transitive. Note that Y is compact, T2-ordered (and hence
normally ordered), and convex, so none of these properties implies ball transitivity.

Next, we will show that with the natural product construction, a product of ball
transitive spaces is ball transitive.

Theorem 10.2.9. If (X,mX , ≤X) is a
1
n -ball transitive space and (Y ,mY , ≤Y ) is a

1
k -ball

transitive space, then X × Y with the metric mX +mY and the product order is a
1

n+k -ball
transitive space.

Proof. Suppose (a, b) ≤ (s, t) in X × Y and (x, y) ∈ B((a, b), ε). Then mX(x, a) +
mY (y, b) < ε, so x ∈ BX(a, ε) and y ∈ BY (b, ε). From the hypotheses, it follows that
x ∈ d(BX(s, nε)) and y ∈ d(BY (t, kε)). Thus, there exist points s󸀠 ∈ BX(s, nε) and
t󸀠 ∈ BY (t, kε) with (x, y) ≤ (s󸀠, t󸀠). Since (s󸀠, t󸀠) ∈ BX×Y ((s, t), (n + k)ε), it follows that

B((a, b), ε) ⊆ d(B((s, t), (n + k)ε)) in X × Y .

With the dual argument, this proves X × Y is 1
n+k -ball transitive.
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Given the usual metric and order, it is easy to see that the real line ℝ is 1-ball
transitive. It may be geometrically clear that the Euclidean spacesℝ2 andℝ3 with the
product order are also 1-ball transitive. While our visualization is limited for higher
dimensions, the previous theorem shows that, for any n ∈ ℕ, the space ℝn with the
taxicab metric m((x1, . . . , xn), (y1, . . . , yn)) = ∑

n
i=1 |xi − yi| and the product order is ball

transitive. It is left as an exercise to show that this impliesℝnwith the Euclidean topol-
ogy and product order is ball transitive.

Sinceℝ2 is ball transitive, the space Y of Example 10.2.8 shows that ball transitive
is not hereditary, even to convex compact T2-ordered subspaces. In that space Y , with
ε < 1 note that B((0, 1), ε) is open but d(B((0, 1), ε)) is not open. This cannot happen in
a ball transitive space.

Theorem 10.2.10. If (X,m, ≤) is a ball transitive orderedmetric space andU is open inX,
then i(U) and d(U) are open in X.

Proof. Suppose U is open in X and x ∈ i(U). Then there exists y ∈ U such that y ≤ x.
Choose ε > 0 so that B(y, ε) ⊆ U . Since X is ball transitive, there exists a natural
number n such that B(x, εn ) ⊆ i(B(y, ε)) ⊆ i(U). Thus, i(U) is open. The dual argument
shows that d(U) is open.

If F is closed in a ball transitive space, i(F) and d(F) need not be closed, as seen
by considering F = {(−x, 1x ) ∈ ℝ

2 : x > 0} inℝ2. However, we have the following result.

Theorem 10.2.11. In a ball transitive space, the closures and interiors of decreasing sets
are decreasing, and the closures and interiors of increasing sets are increasing.

Proof. Suppose A is a decreasing set in a ball transitive space X, y ∈ cl(A), and z ≤ y.
We want to show z ∈ cl(A). Suppose there exists ε > 0 such that B(z, ε) ∩ A = 0.
Noting that A = d(A), it follows that i(B(z, ε)) ∩ A = 0. But y ∈ i(B(z, ε)), and, by The-
orem 10.2.10, i(B(z, ε)) is open. Thus, i(B(z, ε)) is an open neighborhood of y that does
not intersect A, contrary to y ∈ cl(A). This shows that the closure of a decreasing set A
is decreasing. The dual argument shows the closure of an increasing set is increasing.

If A is decreasing, X −A is increasing, and by the previous paragraph, cl(X −A) is
also increasing. Thus, int(A) = X−cl(X−A) is decreasing. Thedual argument completes
the proof.

Theorem 10.2.12. Every ball transitive ordered metric space (X,m, ≤) is strongly T4-or-
dered.

Proof. Suppose A and B are disjoint closed subsets of a 1
n -ball transitive space X, with

A increasing and B decreasing. For any a ∈ A, a is an element of the open increasing
set X − B, so there exists εa such that i(B(a, εa)) ∩ B = 0. Similarly, for any b ∈ B, there
exists εb such that d(B(b, εb)) ∩ A = 0. Put

UA = ⋃
a∈A

i(B(a, εa
2n
)), and
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UB = ⋃
b∈B

d(B(b, εb
2n
)).

By Theorem 10.2.10 and properties of open and monotone sets, UA is an open increas-
ing neighborhood of A and UB is an open decreasing neighborhood of B. To show that
UA and UB are disjoint, suppose to the contrary that x ∈ UA ∩ UB. Then there exist
points a ∈ A and b ∈ B such that x ∈ i(B(a, εa2n )) ∩ d(B(b,

εb
2n )). Thus, there exist points

a󸀠 ∈ B(a, εa2n ) and b
󸀠 ∈ B(b, εb2n ) with a

󸀠 ≤ x ≤ b󸀠. In the case εb ≥ εa, we have

a ∈ B(a󸀠, εa
2n
) ⊆ B(a󸀠, εb

2n
) ⊆ d(B(b󸀠, εb

2
)) ⊆ d(B(b, εb)),

contrary to A ∩ d(B(b, εb)) = 0. In the case εa ≥ εb, we have

b ∈ B(b󸀠, εb
2n
) ⊆ B(b󸀠, εa

2n
) ⊆ i(B(a󸀠, εa

2
)) ⊆ i(B(a, εa)),

contrary to B ∩ i(B(a, εa)) = 0. Now UA and UB are the desired monotone open sets
separating A and B.

This gives the following immediate corollary.

Corollary 10.2.13. ℝn with the Euclidean topology and product order is strongly nor-
mally ordered.

Proof. It is an easy exercise to show thatℝn with the Euclidean topology is T1-ordered.
Since the Euclidean topology is generated by the taxicab metric m, (ℝn,m, ≤) is
T1-ordered and, by the previous theorem, strongly T4-ordered. Thus, (ℝn,m, ≤) is
strongly normally ordered. But strongly normally ordered is a topological property,
independent of the metric, and since m generates the Euclidean topology, the Eu-
clidean space ℝn is strongly T4-ordered.

Exercises

1. Prove Theorem 10.2.2.
2. Show that every (strongly) normally ordered space is (strongly) T2-ordered.
3. Which of the properties T4-ordered, strongly T4-ordered, normally ordered, and

strongly normally ordered are satisfied by the space of Example 10.1.7? Justify your
answers.

4. (A subspace of a LOTSneednot be a LOTS.) Consider the subspaceY = [0, 1)∪[2, 4]
of the LOTS ℝ. Show that Y is not a LOTS, even though Y inherits the total order
fromℝ. A subspace of a LOTS is called a generalized ordered space, or aGO-space.

5. Prove Theorem 10.2.5: the order topology on a totally ordered set (X, ≤) has a basis
of open intervals (including intervals with 0, 1 or 2 endpoints).

6. Prove Theorem 10.2.6: every LOTS is strongly normally ordered.
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7. An immediate consequence of Theorem 10.2.9 is that ℝn with the product order
and taxicab metric m((x1, . . . , xn), (y1, . . . , yn)) = ∑

n
i=1 |xi − yi| is

1
n -ball transitive.

Give a detailed proof that ℝn with the product order and Euclidean metric mℰ is
ball transitive.

8. Which of the properties T1-ordered, T2-ordered, and ball transitive are satisfied by
the spaces below? Justify your answers.
(a) Let X = [0, 1] with the usual Euclidean metric and the usual order on [0, 1),

with 1 ≤ 1 and 1||x for all x ∈ [0, 1).
(b) Let Y = [0, 1] × {0, 1} ⊆ ℝ2 with the Euclidean metric and the order ΔY ∪
{((x,0), (x, 1)) : x ∈ (0, 1]}. That is, besides (x, y) ≤ (x, y) for every (x, y) ∈ Y , we
have (x,0) ≤ (x, 1) for x ∈ (0, 1].

(c) Let Z = [1,∞) × {0, 1} ⊆ ℝ2 with the Euclidean metric and the order ΔZ ∪
{((x,0), (x2, 1)) : x ∈ [1,∞)}. That is, besides (x, y) ≤ (x, y) for every (x, y) ∈ Y ,
we have (x,0) ≤ (x2, 1) for x ∈ [1,∞).

9. Show that ℝn with the Euclidean metric and product order is T1-ordered.
10. Let X = ℝ − (0, 1) with the Euclidean metric and the usual order, except 0 ̸≤ 1.

Show that X is ball transitive but not T1-ordered.
11. Let X be a copy of ℝ embedded in ℝ2 as shown, with (−∞, −1) bent to lie on the

graph of y = 1/x and (1,∞) lying on y = 0. Keep the linear order fromℝ and give X
the Euclidean metric from ℝ2. Show that this linearly ordered metric space is not
ball transitive.

12. A lattice L is ametric lattice if there exists a strictly increasing function f : L → ℝ
with f (x) + f (y) = f (x ∨ y) + f (x ∧ y) for all x, y ∈ L; thenm(x, y) = f (x ∨ y) − f (x ∧ y)
defines a metric on L. Metric lattices are discussed in Garrett Birkhoff’s Lattice
Theory [6], where it is shown that, for any a, x, y in ametric lattice,m(a∨x, a∨y)+
m(a ∧ x, a ∧ y) ≤ m(x, y). Use this to prove that every metric lattice (L,m, ≤) is ball
transitive.





11 Variations on metric spaces

11.1 Pseudometrics

In this chapter, we will consider distance functions which may not meet all of the re-
quirements of a metric. We have seen that on the set C[a, b] of continuous functions
from [a, b] to ℝ, we may define a metric d(f , g) = ∫ba |f (x) − g(x)| dx, with the distance
between f and g being the area between them. This function d is not ametric on the set
of integrable functions over [a, b]. For example, if f (x) = x on [a, b] = [0, 1], g(x) = x
on [0, 1), and g(1) = 5, then f and g are integrable, and d(f , g) = ∫10 |f (x) − g(x)| dx = 0,
but f ̸= g. Thus, the property of a metric that d(f , g) = 0 implies f = g fails. If we
relax the definition of a metric to omit this condition, then we obtain a pseudomet-
ric.

Definition 11.1.1. A pseudometric on a set X is a function d : X × X → [0,∞) such that
(a) p(x, y) ≥ 0 for all x, y ∈ X (nonnegativity);
(b) p(x, x) = 0 for all x ∈ X;
(c) p(x, y) = p(y, x) for all x, y ∈ X (symmetry);
(d) p(x, y) ≤ p(x, z) + p(z, y) for all x, y, z ∈ X (triangle inequality).

The pair (X, p) is a pseudometric space. As in a metric space, B(x, ε) = {y ∈ X :
p(x, y) < ε} is the ball of radius ε centered at x, and the collection ℬ = {B(x, ε) : x ∈ X,
ε > 0} of all balls is a basis for the pseudometric topology on X.

The proof that the collection of balls in ametric space forms a basis for a topology
remains valid for the collection of balls in a pseudometric space.

When we drop the metric condition that d(x, y) = 0 implies x = y to get a pseudo-
metric, we should askwhatwe lose. One consequence of that conditionwas that every
metric space was Hausdorff: if x ̸= y, thenwith ε = 1

2d(x, y), the balls B(x, ε) and B(y, ε)
were disjoint neighborhoods separating x and y. This proof of the Hausdorff property
is not valid in a pseudometric space, and for good reason: pseudometric spaces need
not be Hausdorff. The next example illustrates this.

Example 11.1.2. On a nonempty set X, define p : X × X → [0,∞) by p(x, y) = 0 for
all x, y ∈ X. It is easy to see that p satisfies all the conditions of a pseudometric. For
any x ∈ X and any ε > 0, we have B(x, ε) = X, so the pseudometric topology is the
indiscrete topology on X. This pseudometric is called the trivial pseudometric.

This example shows that pseudometric spaces need not be T2,T1, nor even T0.
However, pseudometric spaces satisfy the higher separation axioms which do not
require T1. We first present a useful technique. If we can measure the distance be-
tween points, there is a natural way to measure the distance between a point and a
set.

https://doi.org/10.1515/9783110686579-012



234 | 11 Variations on metric spaces

Definition 11.1.3. Suppose (X, p) is a pseudometric space, 0 ̸= A ⊆ X, and x ∈ X. The
distance from x to A is

dA(x) = inf{p(x, a) : a ∈ A}.

Theorem 11.1.4. If (X, p) is a pseudometric space and A is a nonempty subset of X, then
dA(x) = 0 if and only if x ∈ clA. Furthermore, if A ⊆ X is nonempty and closed, then
dA : X → ℝ is a continuous function.

Proof. The first statement follows since

dA(x) = 0 ⇐⇒ inf{p(a, x) : a ∈ A} = 0
⇐⇒ ∀ε > 0 ∃a ∈ A, p(x, a) < ε
⇐⇒ ∀ε > 0 B(x, ε) ∩ A ̸= 0
⇐⇒ x ∈ clA.

Suppose A is a nonempty closed subset of X. To see that dA is continuous, for any
ε > 0, we will show that, for δ = ε, y ∈ B(x, δ) implies |dA(x) − dA(y)| < ε. Suppose
y ∈ B(x, δ). By the triangle inequality,

p(a, x) ≤ p(a, y) + p(y, x) and p(a, x) ≥ p(a, y) − p(x, y).

Taking the infimum over a ∈ A, and noting that inf{p(a, y) + c : a ∈ A} = inf{p(a, y) :
a ∈ A} + c for the constant c = ±p(x, y), we have

dA(x) ≤ dA(y) + p(x, y) and dA(x) ≥ dA(y) − p(x, y).

Now y ∈ B(x, δ) = B(x, ε) implies p(x, y) < ε, which leads to

dA(x) − dA(y) < ε and dA(x) − dA(y) > −ε.

Together, this gives |dA(x) − dA(y)| < ε, as needed.

If A is closed in a pseudometric space X and x ̸∈ A, the result above implies that
dA is a continuous real-valued function which maps A to 0 and x to dA(x) > 0. Thus, X
is T3.5, and therefore is T3. The proof given in Theorem 7.1.7 that every metric space is
T4 remains valid for pseudometric spaces. This gives the following result.

Theorem 11.1.5. Every pseudometric space is T3,T3.5, and T4.

Example 11.1.6. Consider the set ℝℝ of functions f : ℝ → ℝ. Define p : ℝℝ × ℝℝ →
[0,∞)by p(f , g) = |f (0)−g(0)|, so the distance between functions f and g is the vertical
distancebetween their graphsat x = 0. In otherwords, for f , g ∈ ∏j∈ℝℝ,we takep(f , g)
to be dℰ (π0(f ),π0(g)) where dℰ is the Euclidean metric on π0(∏j∈ℝℝ) = ℝ. Since the
distance between functions is measured only in the 0th coordinate by ametric on that
factor, p clearly satisfies the conditions of a pseudometric. It is not a metric, however,
since p(sin(x), x2) = 0 even though the functions sin(x) and x2 are not equal.
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The crux of the example above is applied in the next example.

Example 11.1.7. Consider the set X = C(ℝ) ⊆ ℝℝ of continuous real-valued functions
f : ℝ → ℝ with domain ℝ, and let [a, b] be a compact subset of ℝ. Now the set C[a, b]
of continuous real-valued functions f : [a, b] → ℝ is obtained from C(ℝ) essentially by
discarding part of the graph of each f ∈ C(ℝ). Nowwe knowmetrics onC[a, b], such as
the sup-metric or the areawise metric. For f , g ∈ C(ℝ), we may use the metric distance
between their restrictions to [a, b] in any specified metric on C[a, b] as the pseudo-
metric distance between f and g as functions on ℝ. Again, because the distances are
defined in terms of an existingmetric, this gives a pseudometric p. But again, because
there are distinct functions f , g on ℝ which agree on [a, b], p(f , g) = 0 does not imply
f and g are equal.

Recalling that an equivalence relation on a set X specifies equality of some at-
tribute of the elements of X, the previous two examples suggest a connection between
pseudometrics, equivalence relations, andmetrics. In Example 11.1.6, the distance be-
tween two functions in ℝℝ is completely determined by their values at 0, so for the
purpose of finding distances, we may ignore all other values of the functions, and de-
clare two functions to be equivalent if and only if they agree at 0. Now, the metric
on ℝ = π0(∏j∈ℝℝ) gives a metric on the equivalence classes from this equivalence
relation. In terms of the pseudometric, the following are equivalent: (a) p(f , g) = 0,
(b) dℰ (f (0), g(0)) = 0, and (c) f ≡ g.

Similar remarks apply to the Example 11.1.7, using the equivalence relation on
C(ℝ) defined by f ≡ g if and only if f (x) = g(x) for all x ∈ [a, b].

We now formalize this link.

Theorem 11.1.8. Suppose p is a pseudometric on X with pseudometric topology 𝒯p.
(a) The relation onX defined by x ≡ y if and only if p(x, y) = 0 is an equivalence relation.
(b) If Y = {[x] : x ∈ X} is the set of ≡-equivalence classes, then the function d : Y × Y →
[0,∞) defined by d([x], [y]) = p(x, y) is a metric on Y.

(c) The metric topology 𝒯d on Y is the quotient topology 𝒯f where f : (X, p) → Y = {[x] :
x ∈ X} is the function defined by f (x) = [x].

Proof. (a) The reflexivity and symmetry of≡ follow fromp(x, x) = 0andp(x, y) = p(y, x)
for all x, y ∈ X. Transitivity follows from the other two defining properties of a pseu-
dometric, for if p(x, y) = 0 and p(y, z) = 0, then 0 ≤ p(x, z) ≤ p(x, y) + p(y, z) = 0 + 0, so
p(x, z) = 0.

(b) Suppose Y and d are as in the statement of (b). First, we must show that d
is well-defined. Suppose [x] = [x󸀠] and [y] = [y󸀠]. Then p(x, x󸀠) = 0 = p(y, y󸀠). To
see d([x], [y]) = d([x󸀠], [y󸀠]), we must show p(x, y) = p(x󸀠, y󸀠). Now p(x, y) ≤ p(x, x󸀠) +
p(x󸀠, y󸀠) + p(y󸀠, y) = p(x󸀠, y󸀠) and p(x󸀠, y󸀠) ≤ p(x󸀠, x) + p(x, y) + p(y, y󸀠) = p(x, y), so
p(x, y) = p(x󸀠, y󸀠), and thus d is well-defined.
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Because d([x], [y]) = p(x, y), d clearly is a pseudometric on X; the defining prop-
erties hold for d since they hold for p. To show d is a metric, it only remains to show
that d([x], [y]) = 0 implies [x] = [y]. But d([x], [y]) = p(x, y) = 0 if and only if x ≡ y, so
[x] = [y].

(c) Recalling that V ∈ 𝒯f if and only if f −1(V) ∈ 𝒯p, we want to show V ∈ 𝒯d if and
only if f −1(V) ∈ 𝒯p. Now V ∈ 𝒯d if and only if V can be written as a union⋃i∈I B([xi], εi)
of d-balls and f −1(V) ∈ 𝒯p if and only if it can be written as a union of p-balls. Now

z ∈ f −1(B([x], ε)) ⇐⇒ f (z) = [z] ∈ B([x], ε)
⇐⇒ d([x], [z]) = p(x, z) < ε
⇐⇒ z ∈ Bp(x, ε),

so f −1(B([x], ε)) = Bp(x, ε). Since f −1(⋃i∈I B([xi], εi)) = ⋃i∈I f
−1(B([xi], εi)) = ⋃i∈I Bp(xi,

εi), it follows that V ∈ 𝒯d if and only if f −1(V) ∈ 𝒯p.

By the theorem above, every pseudometric on X gives a metric on a partition of X.
Our next result shows the converse: every metric on a partition of X gives a pseudo-
metric on X. Furthermore, these operations are “inverses” in the sense that iterating
them will return the original structure.

Theorem 11.1.9. Suppose ≈ is an equivalence relation on X, Y = {[x] : x ∈ X} is the
set of ≈-equivalence classes, and d is a metric on Y. Then p : X × X → ℝ defined by
p(x, y) = d([x], [y]) is a pseudometric on X, and if f : X → Y is the map f (x) = [x], then
the d-metric topology on X is the 𝒯f quotient topology.

Proof. The pseudometric properties of p follow easily from the metric properties of d,
and the equivalence of the topologies follows from the last argument of the proof of
Theorem 11.1.8 that f −1(B([x], ε)) = Bp(x, ε).

Combined, the twoprevious results say that pseudometrics onX are preciselymet-
rics on equivalence classes (or partitions) of X. Doing mathematics on equivalence
classes is an important recurring theme that arises in loss-of-resolution situations. If
the Euclidean plane is represented by a computer screen consisting of m × n pixels,
the overlaid pixel grid provides a partition of the plane, so working with the pixels
is an example of working with equivalence classes. Similarly, if demographic data is
collected from a sampling of locations in the USA but is then summarized by state, in
effect we have a loss of resolution from the entire USA to a “pixelated” version con-
sisting of equivalence classes Alabama, Alaska, Arizona, Arkansas, . . ., Wisconsin,
Wyoming.

This situation is analogous to quasiorders on X being partial orders on equiva-
lence classes. Pseudometrics are metrics on equivalence classes. Both may be used to
model a loss of resolution.

Sometimes it is of interest to consider more than one pseudometric on a set X.
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Definition 11.1.10. A gauge on a set X is a collection 𝒫 = {pi : i ∈ I} of pseudometrics
pi on X. A gauge 𝒫 on X generates a topology 𝒯𝒫 having a subbasis consisting of all
balls from all the pseudometrics pi (i ∈ I). That is, 𝒯𝒫 = ⋁pi∈𝒫 𝒯pi where 𝒯pi is the
pseudometric topology on X generated by pi. A gauge space is a topological space
(X, 𝒯 ) where 𝒯 = 𝒯𝒫 is generated by some gauge 𝒫 on X. A gauge space (or a gauge)
is separating if for every pair of distinct points x ̸= y in X, there exists pi ∈ 𝒫 with
pi(x, y) ̸= 0. Depending on the emphasis, we may denote a gauge space by (X,𝒫),
(X, 𝒯𝒫 ), or (X, 𝒯 ).

Theorem 11.1.11. Suppose 𝒫 = {pi : i ∈ I} is a gauge on X.
(a) 𝒫 is separating if and only if 𝒯𝒫 is a Hausdorff topology on X.
(b) (X, 𝒯𝒫 ) is T3.5.
(c) If A ⊆ X, then {pi|A×A : i ∈ I} is a gauge on A which generates the subspace topology

on A, as a subspace of (X, 𝒯𝒫 ).

(a) and (c) follow easily from the definitions. (b) follows from the fact that 𝒯𝒫 =
⋁pi∈𝒫 𝒯pi , and the supremumof T3.5 topologies in the lattice of topologiesmust be T3.5.
Details are left to the exercises. While (c) shows that the property of being a gauge
space is hereditary, the next result shows that it is also productive.

Theorem 11.1.12. Suppose (Xj,𝒫j) is a gauge space for each j in an index set J. Then
∏j∈J Xj with the product topology is a gauge space.

Proof. Suppose (Xj,𝒫j) is a gauge space for each j ∈ J, with𝒫j = {pi,j : i ∈ Ij}. Eachpseu-
dometric pi,j on Xj defines a pseudometric p̂i,j on∏j∈J Xj by taking the p̂i,j-distance be-
tween twovectors in∏j∈J Xj to be thepi,j-distancebetween theprojections of those vec-
tors onto the jth coordinate Xj. Now 𝒫 = {p̂i,j : i ∈ Ij, j ∈ J} is a family of pseudometrics
on∏j∈J Xj which generates the gauge topology 𝒯𝒫 having subbasis {Bp̂i,j (⟨xj⟩j∈J , ε) : i ∈
Ij, j ∈ J, ε > 0}. But for a fixed (i, j) ∈ Ij × J, observe that Bp̂i,j (⟨xj⟩j∈J , ε) = ∏k∈J Uk, where
Uk = Xk for k ̸= j and Uj = Bpi,j (xj, ε), is a 𝒫j-subbasic neighborhood of xj. Thus, the
gauge topology 𝒯𝒫 has the same subbasis as the product topology on∏j∈J(Xj, 𝒯𝒫j

).

Theorem 11.1.13. (X, 𝒯 ) is a separating gauge space if and only if 𝒯 is completely regu-
lar.

Proof. By Theorem 11.1.11(a) and (b), a separating gauge space is T2 and T3.5, and thus
is completely regular. Suppose (X, 𝒯 ) is completely regular. Then X may be embed-
ded in its Stone–Čech compactification βX. Recall that βX is a subspace of∏{If : f ∈
C∗(X)}, where C∗(X) is the collection of bounded continuous real-valued functions on
X and If is a compact interval inℝ containing f (X). Nowℝ isT2 and pseudometrizable,
and thus is aT2 gauge space. Since subspaces, products, andhomeomorphic images of
T2 gauge spaces are T2 gauge spaces, it follows that βX and X are T2 gauge spaces.
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Exercises

1. Define p : ℝ2 × ℝ2 → ℝ by p((a, b), (x, y)) = |a − x|. Show that p is a pseudomet-
ric. Discuss the associated metric space on the equivalence classes ofℝ2 from the
equivalence relation (a, b) ≈ (x, y) if and only if p((a, b), (x, y)) = 0.

2. Suppose p is a pseudometric on X generating the topology 𝒯p. Prove that p is a
metric if and only if (X, 𝒯p) is T0. (Thus, any non-metrizable pseudometric space
is T3, T3.5, and T4, but is neither regular, completely regular, nor normal)

3. Let 𝔽 = {f : ℝ → ℝ : ∫∞−∞ f (x) dx exists and is finite}. For f , g ∈ 𝔽, taking p(f , g) =
∫
∞
−∞ |f (x) − g(x)| dx defines a pseudometric on 𝔽.
(a) If (fn)n∈ℕ is a sequence in𝔽which converges pointwise to f , must (fn)n∈ℕ con-

verge to f in (𝔽, 𝒯p)?
(b) For n ∈ ℕ, let gn(x) = sinn(x) for x ∈ [−2π, 2π] and gn(x) = 0 otherwise. In
(𝔽, 𝒯p), does (gn)n∈ℕ converge? If so, find all of its limits.

4. Suppose X is a set and f : X → ℝ is a function. Define p : X × X → ℝ by
p(x, y) = |f (x) − f (y)| for every x, y ∈ X. Show that p is a pseudometric on X and
find necessary and sufficient conditions on f to make p a metric.

5. Determine whether the topological spaces below are pseudometrizable.
(a) (X, 𝒯 ) where X = {1, 2, 3, 4} and 𝒯 = {0, {1, 2},X}.
(b) (X, 𝒯 ) where X = {1, 2, 3, 4} and 𝒯 = {0, {1, 2}, {3, 4},X}.
(c) (ℝ, 𝒯 ) where 𝒯 = {(a,∞) : a ∈ ℝ} ∪ {0, ℝ}.

6. Show that every partition topology on X is pseudometrizable.
7. If d is the Euclidean metric on ℝ2, we may define the distance between two

nonempty subsets A,B ⊆ ℝ2 by D(A,B) = inf{d(a, b) : a ∈ A, b ∈ B}.
(a) Show that D(A,B) = 0 does not imply A = B.
(b) Show that D does not satisfy the triangle inequality.
(c) Give an example of two disjoint nonempty closed sets A,B in ℝ2 with

D(A,B) = 0.
8. Prove Theorem 11.1.11(a): A gauge space (X,𝒫) is separating if and only if 𝒯𝒫 is a

Hausdorff topology on X.
9. In the lattice T(X) of topologies on X, if 𝒯i is T3.5 for each i ∈ I, show that ⋁{𝒯i :

i ∈ I} is T3.5. (Note that this proves Theorem 11.1.11(b).)
10. Prove Theorem 11.1.11(c): A subspace of a gauge space is a gauge space.

11.2 Quasi-metrics

It is not uncommon to hear an answer to “How far is it?” given in hours rather than in
kilometers ormiles. Measured in hours or in energy exerted, the distance by boat from
St. Louis downstream to New Orleans will be different from the distance upstream
from New Orleans to St. Louis. In a city with one-way streets, the driving distance
from x to y may be different from the driving distance from y to x. These examples
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can be modeled by distance functions which are not symmetric. A quasi-metric drops
the symmetry condition.

Definition 11.2.1. A quasi-metric on a set X is a function q : X × X → [0,∞) such that
(a) q(x, y) ≥ 0 for all x, y ∈ X (nonnegativity);
(b) x = y if and only if q(x, y) = q(y, x) = 0;
(c) q(x, y) ≤ q(x, z) + q(z, y) for all x, y, z ∈ X (triangle inequality).

The pair (X, q) is a quasi-metric space. As in a metric space, B(x, ε) = {y ∈ X :
q(x, y) < ε} is the ball of radius ε centered at x, and the collection ℬ = {B(x, ε) :
x ∈ X, ε > 0} of all balls is a basis for the quasi-metric topology on X.

Since distances need not be symmetric in a quasi-metric space, generally y ∈
B(x, ε) does not imply x ∈ B(y, ε). The example below is a prototypical quasi-metric.

Example 11.2.2. On ℝ, define

q(x, y) = { y − x if x ≤ y,
0 if y < x.

It is routine to confirm that q is a quasi-metric. Now q(x, y) tells how far to the right of x
the point y is, where “how far” ismeasured in the usual Euclideanmetric. Considering
ℝ as a vertical line, qmay be used to model the distance over which an external force
must be applied to move from x to y. If y < x, then no external force must be applied
since gravity will move the object downward; only upward distances require external
force. Now Bq(x, ε) = (−∞, x + ε), so the topology onℝ generated by this quasi-metric
is the left ray topology 𝒯q = {(−∞, a) : a ∈ ℝ} ∪ {0, ℝ}.

If q is a quasi-metric on X, then the opposite of q is the function qop defined by
qop(x, y) = q(y, x). It is easy to see that qop is a quasi-metric. In the example above,
q(x, y) tells how far y is to the right of x and qop(x, y) tells how far y is to the left of x.
Since at least one of these is zero, their sum will give the Euclidean distance between
x and y. The next theorem shows that this is typical.

Theorem 11.2.3. If q is a quasi-metric on X, then d : X ×X → [0,∞) defined by d(x, y) =
q(x, y) + qop(x, y) is a metric on X called the symmetrization metric from q. The sym-
metrization metric topology 𝒯d on X is finer than the quasi-metric topology 𝒯q on X.

Proof. Clearly d(x, y) ≥ 0, d(x, y) = d(y, x), and d(x, x) = 0. If d(x, y) = 0, then q(x, y) =
q(y, x) = 0, so x = y. If x, y, z ∈ X, then d(x, y) = q(x, y) + qop(x, y) ≤ q(x, z) + q(z, y) +
qop(x, z)+qop(z, y) = d(x, z)+d(z, y). From q(x, y) ≤ d(x, y), it follows that, for any x ∈ X
and any ε > 0, Bd(x, ε) ⊆ Bq(x, ε), and thus 𝒯d is finer than 𝒯q.

In the quasi-metric q of Example 11.2.2, we had qop(x, y) = 0 if and only if x ≤ y in
the usual order on ℝ. Again, this is no coincidence, as seen in the next theorem. This
theorem illustrates another striking connection between topology and order.
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Theorem 11.2.4.
(a) Every quasi-metric q on X defines a partial order ≤q on X by taking x ≤q y if and

only if q(x, y) = 0.
(b) Every partial order ≤ on X defines a quasi-metric q≤ on X by q≤(x, y) = 0 if x ≤ y and

q≤(x, y) = 1 if x ̸≤ y.

The straightforward proof is left as an exercise. Starting with a quasi-metric q,
iteratively applying parts (a) and (b) of the theoremmay not return the original quasi-
metric. Indeed, applying (b) only returns a quasi-metric with values 0 or 1, while the
original quasi-metricwas arbitrary. However, startingwith a partial order≤, iteratively
applying (b) and (a) will return the original partial order.

If ≤ is a partial order and q≤ is the associated quasi-metric given in (b) of the the-
orem above, then B(x, ε) = X if ε > 1 and B(x, ε) = i(x) if ε ≤ 1. Thus, the 𝒯q≤ -open sets
are the increasing sets in (X, ≤). That is, 𝒯q≤ is the Alexandroff specialization topology
generated by the partial order ≤.

Given thepartial order of equality ona setX, thequasi-metricq= onX isq=(x, y) = 0
if x = y and q=(x, y) = 1 if x ≠ y. This is the discretemetric on X. For an arbitrary partial
order ≤, the quasi-metric q≤ may be viewed as a generalization of the discrete metric.

We now introduce some topological properties involving cardinalities of sets.

Definition 11.2.5. Suppose (X, 𝒯 ) is a topological space.
A neighborhood base for x ∈ X is a collection ℬx of neighborhoods of x such that

every neighborhood of x contains a neighborhood from ℬx.
(X, 𝒯 ) is first countable if every point has a countable neighborhood base.
(X, 𝒯 ) is second countable if there is a countable basis ℬ for the topology 𝒯 .
(X, 𝒯 ) is separable if there exists a countable dense subset D ⊆ X.

In any metric, pseudometric, or quasi-metric space X, if U is a neighborhood of
x ∈ X, then U must contain B(x, 1n ) for some n ∈ ℕ. That is, ℬx = {B(x,

1
n ) : n ∈ ℕ} is

a countable neighborhood base at any point x ∈ X. Thus, every metric, pseudometric,
or quasi-metric space is first countable. The crucial properties guaranteeing that such
spaces are first countable are that the topologies are generated by the ε-balls B(x, ε)
where the ε’s are from (0,∞), and ( 1n )n∈ℕ is a countable sequence in (0,∞) converging
to 0.

In general, metric spaces need not be second countable nor separable. For ex-
ample, the discrete metric on an uncountable set X is neither second countable nor
separable.

Theorem 11.2.6. If (X, 𝒯 ) is metrizable and separable, then it is second countable.

Proof. Suppose (X, 𝒯 ) is metrizable and separable. Let D be a countable dense subset
of X. For every x ∈ X,ℬx = {B(x,

1
n ) : n ∈ ℕ} is a countable neighborhood base for x. Let

ℬ = ⋃{ℬx : x ∈ D}. Now as a countable union of countable collections, ℬ is countable.
To show ℬ is a basis for 𝒯 , suppose U ∈ 𝒯 . For any x ∈ U, there exists B(x, 1m ) ⊆ U .



11.2 Quasi-metrics | 241

Since D is dense in X, there exists a ∈ B(x, 12m ) ∩D. Now x ∈ B(a, 12m ), and wewill show
B(a, 12m ) ⊆ B(x,

1
m ). Suppose y ∈ B(a,

1
2m ). Then d(x, y) ≤ d(x, a)+d(a, y) ≤

1
2m +

1
2m =

1
m ,

so y ∈ B(x, 1m ). Thus, for each x ∈ U, we can find B(a,
1
2m ) ∈ ℬ with x ∈ B(a, 12m ) ⊆ U, so

ℬ is a countable basis for 𝒯 .

We will now present a familiar Hausdorff space which is quasi-metrizable but not
metrizable. Recall that the lower limit topology onℝ is the topology generated by the
basis {[x, x + ε) : x ∈ ℝ, ε > 0}.

Example 11.2.7. Let X = ℝ and define

q(x, y) = { y − x if x ≤ y,
5 if y < x.

It is routine to confirm that q is a quasi-metric. If y is to the right of x, then q(x, y) gives
the usual Euclidean distance between them. Nothing to the left of x is close to x, if we
take “close” to mean less than 5 units away. For ε ≤ 5, Bq(x, ε) = [x, x + ε) and if ε > 5,
Bq(x, ε) = (−∞, x + ε). Since the rays (−∞, x + ε) and intervals [x, x + ε) with ε > 5 are
unions of sets [y, y + ε󸀠)with radii less than 5, the collection {[x, x + ε) : x ∈ X, ε > 0} is
a basis for the topology 𝒯q on ℝ. Thus, 𝒯q is the lower limit topology on ℝ.

Since q(3,π) ≈ .14159 and q(π, 3) = 5, we have π ∈ B(3, 1) but 3 ̸∈ B(π, 1).
Every nonempty open set in (ℝ, 𝒯q) contains a rational number, so ℚ is a count-

able dense subset of (ℝ, 𝒯q), and thus the space is separable. Suppose ℬ is a basis
for 𝒯q. For each x ∈ ℝ, pick a neighborhood Bx ∈ ℬ with x ∈ Bx ⊆ [x, x + 1). Now
consider the collection ℬ󸀠 = {Bx : x ∈ ℝ} ⊆ ℬ. If a < b then a ̸∈ Bb ⊆ [b, b + 1) so
Ba ̸= Bb, and thus x ̸= y implies Bx ̸= By. Now ℬ󸀠 is indexed by an uncountable set
ℝ and contains no duplicates, so ℬ󸀠, and therefore the arbitrarily chosen basis ℬ, are
uncountable. This shows 𝒯q has no countable basis, and thus is not second countable.
Now if the separable space (ℝ, 𝒯q)were metrizable, by the previous theorem, it would
be second countable. Since it is not second countable, the lower limit topology on ℝ
is not metrizable.

Hemimetrics. If we drop the condition that q(x, y) = q(y, x) = 0 implies x = y
from the definition of a quasi-metric, we get a hemimetric.

Definition 11.2.8. A hemimetric on a set X is a function h : X × X → [0,∞) such that
(a) h(x, y) ≥ 0 for all x, y ∈ X (nonnegativity);
(b) h(x, x) = 0 for all x ∈ X;
(c) h(x, y) ≤ h(x, z) + h(z, y) for all x, y, z ∈ X (triangle inequality).

The pair (X, h) is a hemimetric space. As in ametric space, B(x, ε) = {y ∈ X : h(x, y) < ε}
is the ball of radius ε centered at x, and the collection ℬ = {B(x, ε) : x ∈ X, ε > 0} of all
balls is a basis for the hemimetric topology on X.
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Recall that a pseudometric dropped the metric condition that d(x, y) = d(y, x) = 0
implies x = y, andaquasi-metric dropped the symmetry condition. Since ahemimetric
drops both of these conditions, in the literature, hemimetrics are also called quasi-
pseudometrics or pseudo-quasi-metrics.

The theorem below was given by W.A. Wilson in 1931.

Theorem 11.2.9. Every second countable topological space is hemimetrizable.

Proof. Suppose (X, 𝒯 ) is second countable. Let ℬ be a countable basis for 𝒯 . To set up
the idea of the proof, we will first consider the case that ℬ is finite. For x, y ∈ X, define
h(x, y) to be the number of elements ofℬwhich contain x but not y. (Loosely speaking,
h(x, y) is the vote count when the elements B ∈ ℬ are asked if they think y is not close
to x.) Clearly h(x, y) ≥ 0 for all x, y ∈ X and h(x, x) = 0. Suppose x, y, z ∈ X are given. To
see h(x, y) ≤ h(x, z) + h(z, y), suppose B is one of the elements of ℬ counted by h(x, y);
that is, suppose x ∈ B and y ̸∈ B. Now either z ∈ B or z ̸∈ B. If z ∈ B then B will be
counted by h(z, y), and if z ̸∈ B then B will be counted by h(x, z). Thus, every B ∈ ℬ
counted by h(x, y) is counted either by h(x, z) or h(z, y), so h(x, y) ≤ h(x, z) + h(z, y).

Now suppose the countable basis ℬ = {Bn : n ∈ ℕ} is countably infinite. Defining
h(x, y) to be the number of elements of ℬ which contain x but not y may not give a
function h : X ×X → [0,∞), since h(x, y)might be infinite. Wewill perform aweighted
count to ensure that the result is finite. Given x, y ∈ X, let Mx,y = {n ∈ ℕ : x ∈ Bn,
y ̸∈ Bn}, and define

h(x, y) = {
∑n∈Mx,y 1

2n if x ̸= y,
0 if x = y.

It is easy to see that, for any x, y ∈ X, 0 ≤ h(x, y) ≤ ∑n∈ℕ 2
−n = 1. For any given

x, y, z ∈ X, if n ∈ Mx,y, then x ∈ Bn and y ̸∈ Bn. If z ∈ Bn, then n ∈ Mz,y and if z ̸∈ Bn then
n ∈ Mx,z . Thus,Mx,y ⊆ Mx,z ∪Mz,y, so the sums associated with h(x, z) + h(z, y) contain
all the terms included in the sum for h(x, y), so h(x, y) ≤ h(x, z) + h(z, y).

The proof of the following theorem is left to the exercises.

Theorem 11.2.10. A hemimetric h on X is a quasi-metric if and only if the hemimetric
topology is T0.

The following corollary gives a sufficient condition and a necessary condition for
a topological space to be quasi-metrizable.

Corollary 11.2.11. Every second countable T0 space is quasi-metrizable.
Every quasi-metrizable space is T0 and first countable.

Proof. By Theorem 11.2.9, second countable implies hemimetrizable, and by Theo-
rem 11.2.10, the additional T0 hypothesis implies the hemimetric is in fact a quasi-
metric. Any quasi-metrizable space X is clearly first countable, and Theorem 11.2.10
shows that it is also T0.
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Theorem 11.2.10 shows that the quasi-metrics are the T0 hemimetrics. Alexandroff
topologies arise from quasiorders ≲, and the T0 Alexandroff topologies arise from par-
tial orders. Loosely speaking, a partial order may be thought of as a T0 quasiorder.
The connections between quasi-metrics, partial orders, and their Alexandroff special-
ization topologies given in Theorem 11.2.4 and the discussion following it are thus
connections between the T0 hemimetrics, T0 quasiorders, and T0 Alexandroff topolo-
gies. Dropping the T0 hypothesis gives the analogous connection between hemimet-
rics, quasiorders, and Alexandroff topologies, stated below.

Theorem 11.2.12.
(a) Every hemimetric h on X defines a quasiorder ≲h on X by taking x ≲h y if and only if

h(x, y) = 0.
(b) Every quasiorder ≲ on X defines a hemimetric h≲ on X by h≲(x, y) = 0 if x ≲ y and

h≲(x, y) = 1 if x ̸≲ y. Furthermore, the topology generated by the hemimetric h≲ is
the Alexandroff specialization topology 𝒯≲.

Further results on quasi-metrics and hemimetrics can be found in [19, 20, 21, 29].

Exercises

1. Suppose k is a nonnegative real number. Define q : ℝ × ℝ → [0,∞) by

q(x, y) = { y − x if x ≤ y,
k(x − y) if y ≤ x.

The function q models the time required to travel between two points on the real
line if there is a constant headwind which slows travel in one direction. Show
that q is a quasi-metric on ℝ. (Note that the quasi-metric of Example 11.2.2 is of
this form, for k = 0.)

2. Suppose q and r are quasi-metrics on X and a, b are nonnegative real numbers,
not both zero. Show thatm(x, y) = aq(x, y) + br(x, y) defines a quasi-metric on X.

3. Supposeq is a quasi-metric onX anda, barepositive real numbers. Findnecessary
and sufficient conditions for the quasi-metric m = aq(x, y) + bqop(x, y) to be a
metric.

4. Suppose the points of ℤ2 are connected by the following grid of one-way streets:
for n ∈ ℤ, streets at y = 2n run east, streets at y = 2n + 1 run west, streets at x = 2n
run north, and streets at x = 2n + 1 run south. Let d((m, n), (a, b)) be the length of
the shortest route along these streets from (m, n) to (a, b). Find d((0,0), (a, b)) for
all (a, b) ∈ ℤ2.

5. Prove Theorems 11.2.4 and 11.2.12.
6. Is the continuous image of a first countable topological space first countable? Is

the continuous image of a second countable topological space second countable?
Give a proof or counterexample.
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7. Let q be the quasi-metric generating the lower limit topology on ℝ, as given in
Example 11.2.7.
(a) Confirm that q satisfies the triangle inequality.
(b) Identify themetric topology from the symmetrizationmetric d(x, y) = q(x, y)+

qop(x, y).
8. The topology 𝒯 onℝ generated by the basis ℬ = {[x, x+ε) : x ∈ ℚ, ε ∈ (0, 1)}∪ {(x−

ε, x] : x ∈ ℝ − ℚ, ε ∈ (0, 1)} suggests the distance function q : ℝ × ℝ → ℝ given by

q(x, y) =
{
{
{

y − x if y ≥ x, x ∈ ℚ,
x − y if x ≥ y, x ̸∈ ℚ,
1 otherwise.

(a) With ε ∈ (0, 1) and B(x, ε) = {y ∈ ℝ : q(x, y) < ε}, find B(x, ε) if x ∈ ℚ and if
x ̸∈ ℚ.

(b) Is q a quasi-metric that generates 𝒯 ? Prove your answer.
9. If q is a quasi-metric on X such that ≤q is a total order on X and d(x, y) = q(x, y) +

qop(x, y) is the symmetrization metric, show that

q(x, y) = { 0 if x ≤q y,
d(x, y) if x ̸≤q y,

and furthermore, x ≤q y ≤q z implies d(x, y) ∨ d(y, z) ≤ d(x, z).
10. If q is a quasi-metric on X, show that the closed ball Bq(x, ε) = {y ∈ X : q(x, y) ≤ ε}

is closed in the topology generated by qop. Give an example to show that Bq(x, ε)
need not be closed in the topology generated by q.

11. Suppose q is a quasi-metric on X. Show thatm(x, y) = q(x, y) ∨ qop(x, y) is a metric
on X which generates the same topology on X as d(x, y) = q(x, y) + qop(x, y).

12. Suppose q is a quasi-metric on X andm(x, y) = q(x, y) ∨ qop(x, y) is the metric on X
defined in Exercise 11. Show that every ball Bm(x, ε) is order convex with respect
to the order ≤q.

13. Prove Theorem 11.2.10: a hemimetric h on X is a quasi-metric if and only if the
hemimetric topology is T0.

14. Suppose h is a hemimetric on X. Show that the hemimetric topology 𝒯h is T1 if and
only if for x, y ∈ X, h(x, y) = 0 implies x = y.

15. Let ℱ be the collection of finite subsets of a set X. Determine whether or not the
functions below are metrics, pseudometrics, quasi-metrics, or hemimetrics.
(a) For A,B ∈ ℱ , define r(A,B) = |A − B|.
(b) For A,B ∈ ℱ , define s(A,B) = |A − B| + |B − A|. (Thus, s(A,B) is the cardinality

of the symmetric difference (A − B) ∪ (B − A) of A and B.)
16. Determine whether the topological spaces below are quasi-metrizable or not. For

those that are quasi-metrizable, exhibit a quasi-metric generating the topology.
(a) The digital line topology 𝒯dl, generated by the basis {{2n + 1} : n ∈ ℤ} ∪ {{2n −

1, 2n, 2n + 1} : n ∈ ℤ}, on ℤ.
(b) The cofinite topology on ℝ.
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(c) The single transmitter topology 𝒯 on X = [−1, 1], where 𝒯 has basis ℬ = {{x} :
x ∈ X − {0}} ∪ {(−1, 1)}.

17. Prove that every compact metric space is separable (and thus, second countable,
by Theorem 11.2.6). Explain whether or not the proof you give would hold if “met-
ric” is replaced by “pseudometric”, “quasi-metric”, or “hemimetric”.

18. For i = 1, 2, suppose ≲i is a quasiorder on X, 𝒯≲i is the associated specialization
topology, and hi is the associated hemimetric defined in Theorem 11.2.12(b).
(a) Show that ≲1 ∩ ≲2 is a quasiorder on X.
(b) Show that 𝒯≲1∩≲2 = 𝒯≲1 ∨ 𝒯≲2 .
(c) Show that h = h1 ∨ h2 is a hemimetric on X, and the associated quasiorder, as

in Theorem 11.2.12(a), is ≲1 ∩ ≲2.
19. It is widely known that if (X, ||⋅||) is a normed vector space, d(x, y) = ||x−y|| defines

a metric on X. An asymmetric norm on a vector space X is a function || ⋅ | : X →
[0,∞) with
(a) ||x| ≥ 0 for all x ∈ X
(b) ||x| = || − x| = 0 implies x = 0
(c) ||ax| = a||x| for all x ∈ X and all positive a ∈ [0,∞)
(d) ||x + y| ≤ ||x| + ||y| for all x, y ∈ X.
(See the book Functional Analysis in Asymmetric Normed Spaces [11] for more on
asymmetric norms.) If || ⋅ | is an asymmetric norm on the vector space X, show that
q(x, y) = ||x − y| is a quasi-metric on X.

20. One the collection F = {f ∈ ℝ[0,1] : f is continuous and ∫10 f (x) dx = 0}, define
||f | = max{f (x) : x ∈ [0, 1]}.
(a) Show that || ⋅ | is a asymmetric norm, as defined in Exercise 19.
(b) Show that it is not true that ||af | = |a| ||f | for all a ∈ ℝ, f ∈ F, so || ⋅ | is not a

norm on F.

11.3 Partial metrics

In Euclidean geometry and the theory of metric spaces, a point x has no length or
width, and the distance from x to x is zero. In practice, particularly in computer ap-
plications, we must use representations of points which are not exact, and one ap-
proximation (whether a single pixel on a screen, or a truncated decimal such as 3.14)
may represent many different exact values. The distances between these exact values
represented by a single approximation a suggest the consideration ofmetrics allowing
nonzero distances from a to a. The self-distance d(a, a) essentially gives a measure of
the ambiguity of the point a. In 1994, Steven Matthews [36] quantified these notions
by introducing partial metrics which relax the metric restriction that d(x, x) = 0 and
adjust the triangle inequality accordingly.1

1 Reprinted with permission from [22].
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Definition 11.3.1. A partial metric on a set X is a function ρ : X × X → [0,∞) such that
(a) ρ(x, y) ≥ ρ(x, x) ≥ 0 for all x, y ∈ X (small self-distances);
(b) x = y if and only if ρ(x, x) = ρ(x, y) = ρ(y, y);
(c) ρ(x, y) = ρ(y, x) for all x, y ∈ X (symmetry);
(d) ρ(x, y) ≤ ρ(x, z) + ρ(z, y) − ρ(z, z) for all x, y, z ∈ X (triangle inequality).

The pair (X, ρ) is a partial metric space. As in a metric space, B(x, ε) = {y ∈ X :
ρ(x, y) < ε} is the ball of radius ε centered at x, and the collection ℬ = {B(x, ε) : x ∈ X,
ε > 0} of all balls is a basis for the partial metric topology on X.

Note that B(x, ρ(x, x)) = {y : ρ(x, y) < ρ(x, x)} = 0, and in particular, x ∈ B(x, ε) if
and only if ε > ρ(x, x). Thus, {B(x, ε) : ε > 0}may not be a collection of neighborhoods
of x, and thus may not be a neighborhood base at x. To ensure that x ∈ B(x, ε) for all
ε > 0, we could redefine the ε-ball centered at x to be B+(x, ε) = {y ∈ X : ρ(x, y) <
ρ(x, x) + ε}.

Another important point that should immediately be addressed is that the collec-
tion ℬ of all balls really is a basis for a topology. In the topology generated by a metric
(or quasi-metric, or pseudometric) d, the proof that the balls form a basis depends
on the standard triangle inequality to show that if z ∈ B(x, ε), then B(z, ε − d(x, z)) ⊆
B(x, ε); then, for z ∈ B(x, ε) ∩ B(y, ε󸀠) and δ = min{ε − d(x, z), ε󸀠 − d(y, z)}, z ∈ B(z, δ) ⊆
B(x, ε) ∩B(y, ε󸀠). In a partial metric space, the triangle inequality has been altered and
these arguments will also need to be altered. To this end, we will show that if ρ is a
partial metric on X,

for z ∈ B(x, ε) and δ = ε − ρ(x, z) + ρ(z, z), z ∈ B(z, δ) ⊆ B(x, ε).

If z ∈ B(x, ε), then ρ(x, z) < ε, so δ = ε − ρ(x, z) + ρ(z, z) > ρ(z, z) and thus z ∈
B(z, δ). If w ∈ B(z, δ), then ρ(w, z) < δ = ε − ρ(z, x) + ρ(z, z). Rearranging terms gives
ρ(w, z)+ρ(z, x)−ρ(z, z) < ε, and by the triangle inequality for partial metrics, this gives
ρ(w, x) < ε. Thus, B(z, δ) ⊆ B(x, ε). Now as in the metric case, if z ∈ B(x, ε) ∩ B(y, ε󸀠),
then B(z, μ) ⊆ B(x, ε) ∩ B(y, ε󸀠) for μ = min{ε − ρ(x, z) + ρ(z, z), ε󸀠 − ρ(y, z) + ρ(z, z)}.

Another consequence of the fact that B(x, ε) contains a δ-ball around each of its
points is that {B(x, ε) : ε > ρ(x, x)} is a neighborhood base at x.

A partial metric in which all self-distances ρ(x, x) are zero is easily seen to be a
metric.

We present some examples of partial metrics.

Example 11.3.2. On [0,∞), define ρ(x, y) = x ∨ y. To confirm the triangle inequality,
note that for any x, y, z ∈ [0,∞) we have x ≤ (x ∨ z) and (z ∨ y) − (z ∨ z) ≥ 0, so
x ≤ (x ∨ z) + (z ∨ y) − (z ∨ z). Similarly, y ≤ (x ∨ z) + (z ∨ y) − (z ∨ z), so (x ∨ y) ≤
(x ∨ z) + (z ∨ y) − (z ∨ z), as needed. It is easily seen that ρ satisfies the other properties
of a partial metric. In this example, the self-distances are ρ(x, x) = x. The balls are

B(x, ε) = {y : x ∨ y < ε} = { 0 if x ≥ ε,
[0, ε) if x < ε.
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To a mathematician, π and 4/7 are exact numbers. Since the decimal expansions
of π and 4/7 do not terminate, computers can only approximate these numbers. If π
and 4/7 are approximated by 3.14 and 0.571, respectively, then allowing for rounding,
this really tells us that π is a number in the interval [3.135, 3.145] and 4/7 is a number in
the interval [0.5705,0.5715]. With only these approximations, we could conclude that
the distance between π and 4/7 is at most 3.145−0.5705, which is the greatest distance
between two points of [0.5705,0.5715]∪[3.135, 3.145]. Thus,machine numbers actually
represent intervals, so it is important to be able to measure the distance between two
intervals. This situation, describedmore carefully in the next example, was one of the
initial examples motivating partial metrics.

Example 11.3.3. Let ℐ be the collection of nonempty compact intervals [a, b] inℝ. De-
fine a partialmetric on ℐ by ρ([a, b], [c, d]) = max{b, d}−min{a, c}. Thus, ρ([a, b], [c, d])
is the length of the smallest interval containing [a, b] ∪ [c, d] (that is, the length of
the convex hull of [a, b] ∪ [c, d]). The verification that ρ is a partial metric is left
as an exercise. Note that the self-distance ρ([a, b], [a, b]) is the length of the in-
terval [a, b]. For example, when rounding all decimals to the nearest hundredth,
π ≈ 3.14, so π is identified as a number in an interval [3.135, 3.145] with self-distance
1/100.

The ball B([a, b], ε) consists of all the intervals [x, y] such that the distance x
extends to the left of a plus the distance y extends to the right of b is less than ε.
Note that ρ([a, b], [x, y]) = ρ([a, b], [a, b]) if and only if the length of the convex hull
of [a, b] ∪ [x, y] equals the length of [a, b]. This occurs if and only if [x, y] ⊆ [a, b].
In particular, the partial order ⊆ on the collection of nonempty compact intervals is
characterized by [x, y] ⊆ [a, b] if and only if ρ([a, b], [x, y]) = ρ([a, b], [a, b]).

Partial metrics are richly connected to many of the other structures we have stud-
ied. We have noted that in a partial metric space (X, ρ), the basis {B(x, ε) : x ∈ X, ε > 0}
generates the same topology as {B(x, ρ(x, x) + ε) : x ∈ X, ε > 0}, since the latter collec-
tion consists of the nonempty balls from the first collection. This suggests considering
q(x, y) = ρ(x, y) − ρ(x, x); then q(x, x) = 0 but q(x, y)may not equal q(y, x), and q is in
fact a quasi-metric.

Theorem 11.3.4. Suppose ρ is a partial metric on X.
(a) q(x, y) = ρ(x, y) − ρ(x, x) is a quasi-metric on X which generates the same topology

as ρ.
(b) d(x, y) = 2ρ(x, y) − ρ(x, x) − ρ(y, y) is a metric on X.
(c) Taking x ≤ρ y if and only if ρ(x, y) = ρ(x, x) defines a partial order ≤ρ on X.

Proof. The routine verification of (a) is left to the exercises. Since q is a quasi-metric,
q(x, y)+qop(x, y) = d(x, y) = 2ρ(x, y)−ρ(x, x)−ρ(y, y) is the symmetrizationmetric for q.
The relation ≤ρ is the partial order ≤q defined from the quasi-metric q by x ≤q y if and
only if 0 = q(x, y) = ρ(x, y) − ρ(x, x).
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Notice that in Example 11.3.3, we had ρ([a, b], [x, y]) = ρ([a, b], [a, b]) if and only if
[x, y] ⊆ [a, b], so ≤ρ is reverse inclusion ⊇. If these intervals represent approximations
of a fixed real number, a smaller interval (“⊆”) is a better approximation (“≥ρ”).

Partial metrics are also linked with weighted metrics.

Definition 11.3.5. A weighted metric space is a metric space (X, d) together with a
weight function | ⋅ | satisfying |x| ≥ 0 for all x ∈ X, and d(x, y) ≥ |x| − |y| for all x, y ∈ X.
If (X, d, | ⋅ |) is a weighted metric space, we may simply say d is a weighted metric.

Theorem 11.3.6. Every partial metric ρ on X gives a weighted metric space (X, d, | ⋅ |)
where d(x, y) = 2ρ(x, y) − ρ(x, x) − ρ(y, y) and |x| = ρ(x, x). Every weighted metric space
(X, d, | ⋅ |) gives a partial metric ρ(x, y) = (|x| + |y| + d(x, y))/2 with ρ(x, x) = |x|.

Proof. Suppose ρ is a partial metric on X. By the previous theorem, d(x, y) = 2ρ(x, y) −
ρ(x, x) − ρ(y, y) is a metric. With |x| = ρ(x, x), clearly |x| ≥ 0 for all x ∈ X. Since ρ(x, y) ≥
ρ(x, x), we have d(x, y) ≥ 2ρ(x, x)−ρ(x, x)−ρ(y, y) = |x|−|y|. Thus, (X, d, |⋅|) is aweighted
metric space.

Conversely, if (X, d, | ⋅ |) is a weightedmetric space and ρ(x, y) = (|x|+|y|+d(x, y))/2,
then clearly ρ(x, x) = |x| and ρ(y, x) = ρ(x, y) ≥ ρ(x, x) = |x| ≥ 0 for any x, y ∈ X.
Suppose ρ(x, y) = ρ(x, x) = ρ(y, y). The first of these equations implies |x|+|y|+d(x, y) =
|x|+|x|, so d(x, y) = |x|−|y|. Similarly, interchanging x and y shows d(x, y) = −(|x|−|y|),
and it follows that d(x, y) = 0, so x = y. Finally, for any x, y, z ∈ X, we have 2(ρ(x, z) +
ρ(z, y) − ρ(z, z)) = d(x, z) + |x| + |z| + d(z, y) + |z| + |y| − 2|z| = d(x, z) + d(z, y) + |x| + |y| ≥
d(x, y) + |x| + |y| = 2ρ(x, y), so the partial metric triangle inequality holds.

We remark that the transitions from partial metric to weighted metric and from
weighted metric to partial metric given in the theorem above are inverses; iterating
them will return the original structure. This follows since both transitions have |x| =
ρ(x, x), and then the defining equations d(x, y) = 2ρ(x, y) − ρ(x, x) − ρ(y, y) and ρ(x, y) =
(|x| + |y| + d(x, y))/2 are equivalent. Thus, the weighted metric spaces are precisely the
partial metric spaces.

Exercises

1. If d is a metric on X and k ∈ [0,∞), show that ρ = k + d is a partial metric and
describe the associated partial order ≤ρ.

2. Let ρ be the partial metric on [0,∞) defined by ρ(x, y) = x ∨ y.
(a) Describe all sequences which converge to 2.
(b) Find all limits of the constant sequence (a)n∈ℕ.
(c) Find all limits of the sequence (2 + (−1)n)n∈ℕ.
(d) Describe the non-convergent sequences in ([0,∞), ρ).
(e) If (xn, yn)n∈ℕ converges to (x, y) in ([0,∞), ρ) × ([0,∞), ρ), does (ρ(xn, yn))n∈ℕ

converge to ρ(x, y) in ℝ with the Euclidean metric?
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3. Verify that ρ defined on the set ℐ of nonempty compact intervals in ℝ by ρ([a, b],
[c, d]) = max{b, d} − min{a, c} (as in Example 11.3.3) satisfies the partial metric
triangle equality.

4. Let ρ be the partialmetric on the set ℐ of nonempty compact intervals inℝ defined
by ρ([a, b], [c, d]) = max{b, d} −min{a, c}. Describe the subspace {[a, a] : a ∈ ℝ}.

5. If C[0, 1] is the collection of continuous real-valued functions on [0, 1], define ρ̄ :
C[0, 1]×C[0, 1] → ℝ by taking ρ̄(f , g) to be the area of the smallest rectangle [0, 1]×
[a, b] which contains the graphs of f and g. Which properties of a partial metric
does ρ̄ satisfy?

6. Prove Theorem 11.3.4(a): If ρ is a partial metric on X, then q(x, y) = ρ(x, y) − ρ(x, x)
is a quasi-metric on X which generates the same topology as ρ.

7. Let ρ be a partial metric on X and let ≤ρ be the associated partial order defined by
x ≤ρ y if and only if ρ(x, y) = ρ(x, x). Let 𝒯≤ρ be the specialization topology, con-
sisting of the ≤ρ-increasing subsets of X, and let 𝒯ρ be the partial metric topology
generated by ρ.
(a) Show 𝒯ρ ⊆ 𝒯≤ρ .
(b) Show 𝒯≤ρ ⊆ 𝒯ρ if and only if for every x ∈ X, there exists ε > ρ(x, x) with

i(x) = B(x, ε).
8. If (X, ρ) is a partial metric space and k ∈ [0,∞), show that A = {x ∈ X : ρ(x, x) ≤ k}

and B = {x ∈ X : ρ(x, x) < k} are increasing sets in (X, ≤ρ).
9. From Exercise 8, if (X, ρ) is a partial metric space then M = {x ∈ X : ρ(x, x) = 0}

is an increasing set in (X, ≤ρ). Show that every point of M is a maximal point in
(X, ≤ρ).

10. Consider the function p : ℝ2 → [0,∞) defined by p(x, y) = max{|x − y|, |x + y|}.
(See Exercise 6 of Section 6.1.) Determine whether p is a partial metric.

11.4 Other variations of metrics

We end this chapter with a brief listing of some other forms of metrics.
Recall that a metric on X is a function d : X × X → [0,∞) satisfying

(M1) d(x, y) ≥ 0 for all x, y ∈ X (nonnegativity);
(M2) d(x, x) = 0 for all x ∈ X;
(M3) d(x, y) = 0 implies x = y;
(M4) d(x, y) = d(y, x) for all x, y ∈ X (symmetry);
(M5) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X (triangle inequality).

A pseudometric dropped condition (M3). A quasi-metric dropped condition (M4) and
then revised condition (M3) to d(x, y) = 0 = d(y, x) implies x = y. Dropping both
conditions (M3) and (M4) gives a hemimetric (also known as a quasi-pseudometric
or pseudo quasi-metric). There is not universal agreement on these definitions. Some
authors require quasimetrics to be T1, as characterized by Exercise 14 of Section 11.2;
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whatwe call a quasi-metric, theywould call aT0 quasi-pseudometric. Our terminology
follows that most commonly used by computer scientists.

All of the forms of metrics mentioned so far have included the triangle inequality.
Dropping the triangle inequality (M5) gives a semimetric.

A partial metric dropped condition (M2), which then required rewording of con-
ditions (M1), (M3), and (M5).

The condition (M1) is actually redundant, since a metric is a function d with
codomain [0,∞). In most practices, metrics are used to measure distances in some
sense, and distances should not be negative. However, taking distances only from
[0,∞) imposes the notable restriction that anymetric topology has a countable neigh-
borhood base {B(x, 1n ) : n ∈ ℕ} at each point. This follows since in the codomain [0,∞)
with the Euclidean topology, 0 has a countable neighborhood base. If we wish to ob-
taining any topology which is not first countable, then wemust allow the distances to
come from some set A other than [0,∞). What properties should A have? The triangle
inequality requires that A have an additive structure. Many metric arguments require
forcing things to be less than ε/2, or choosing ε to be the infimum of two values. Thus,
A should be an algebraic structure with a set of positive elements P (to serve as radii)
which is closed under finite infima and halving, among other technical properties.
Replacing the condition (M1) in the definition of a metric by d(x, y) ∈ A for a suitable
structure A (called a value semigroup, or value quantale), we get a generalized metric.
The significance of generalized metrics was made clear in Ralph Kopperman’s 1988
paper “All topologies come from generalized metrics” [27].

Thus, besides the vast amount of mathematics devoted to metric spaces, mean-
ingful research has been done in spaces in which any one of the conditions (M1)–(M5)
have been dropped. Furthermore, conditions are sometimes added, as well. We men-
tion only one.

An ultrametric on X is a metric d on X which satisfies the following strengthened
version of the triangle inequality:

d(x, y) ≤ max{d(x, z), d(z, y)} for all x, y, z ∈ X.

Thus, in an ultrametric space, the triangle inequality d(x, y) ≤ d(x, z)+d(z, y) does not
require the sumof both terms on the right; the larger term on the right already suffices.

The prefix metric on the set of binary sequences (Exercise 16 of Section 6.1) and
the discrete metric on any set X are ultrametrics. Some interesting properties of ultra-
metric spaces are given in the exercises.

Exercises
1. Prove these properties of ultrametric spaces:

(a) Every triangle has at least two equal sides.
(b) If y ∈ B(x, ε), then B(x, ε) = B(y, ε).
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(c) If two balls intersect, then they are nested, with the ball of smaller radius
contained in the other.

(d) Every ball B(x, ε) is closed.
2. Define d : ℝ × ℝ → ℝ by d(x, x) = 0 for all x ∈ ℝ, and d(x, y) = max{|x|, |y|} for all

x ̸= y in ℝ. Show that d is an ultrametric.
3. Suppose (xn) is a sequence in an ultrametric space (X, u). Show that the following

are equivalent.
(a) There exists N such thatm, n > N imply u(xn, xm) < ε.
(b) There exists N such that n > N implies u(xn, xn+1) < ε.

4. Define m : C[0, 1] × C[0, 1] → ℝ by m(f , g) = min{|f (x) − g(x)| : x ∈ [0, 1]}. Which
of the properties (M1)–(M5) of a metric are satisfied bym?

5. Let X be the closed upper half-planeℝ×[0,∞) and let p = (−1,0). Let d be the Eu-
clideanmetric onℝ2. Definem : X×X → ℝbym(x, y) = max{d(x, y), d(x, p), d(y, p)}.
Which of the properties (M1)–(M5) of a metric are satisfied by m? Is m any of the
named versions of metrics we have encountered?

6. Let θ represent the point (cos θ, sin θ) on the unit circle, and let X = {θ : θ ∈ [0,π]}
be the upper half of the unit circle inℝ2. Define the “surplus length” s : X×X → ℝ
by taking s(θ,α) to be the circular arc length in X between θ and α minus the
length of the line segment in ℝ2 between θ and α. Which of the properties (M1)–
(M5) of a metric are satisfied by s? Is s any of the named versions of metrics we
have encountered?

7. Let𝒢 be the collection of boundednonempty open subsets of the Euclidean plane.
Define d : 𝒢 × 𝒢 → ℝ by taking d(A,B) to be the percentage of B not covered by A.
(Technically, d(A,B) = m(B−A)/m(B)wherem represents the Lebesguemeasure.)
Which of the properties (M1)–(M5) of a metric are satisfied by d?

8. A function u : X × X → ℝ satisfying the properties (M1)–(M4) of a metric is a
k-ultrametric on X if there exists k ≥ 1 such that, for any x, y, z ∈ X, u(x, y) ≤
kmax{u(x, z), u(z, y)}. Show that if d is a metric on X, then d is a 2-ultrametric and
in general, for n ∈ ℕ, dn is a 2n-ultrametric.

9. A large cityC ⊆ ℝ2 has subway stations at the points of S = {s1, s2, . . . , sn} ⊆ C. Let d
be the Euclidean metric on ℝ2. Determine which of the defining properties (M1)–
(M5) of a metric are satisfied by the following functions. Justify your answers.
(a) The function D : ℱ(X) × ℱ(X) → ℝ, where ℱ(X) is the collection of all

nonempty finite subsets ofℝ2, definedbyD(A,B) = min{d(a, b) : a ∈ A, b ∈ B}.
(b) Define an equivalence relation on ℝ2 by x ≈ y if and only if x = y or {x, y} ⊆

S, and let ℝ2/≈ be the set of equivalence classes. Define m : ℝ2/≈ → ℝ by
m([x], [y]) = D([x], [y]).

(c) Thewalking distance w onℝ2 defined byw(x, y) = min{D(x, S)+D(S, y), d(x, y)}
(where D(z, S) = D(S, z) is understood to be D({z}, S)).





12 Uniform structures

12.1 Uniform continuity in metric spaces

Recall that if X and Y are metric spaces, a function f : X → Y is continuous if and only
if

∀a ∈ X ∀ε > 0 ∃δa,ε > 0 such that x ∈ B(a, δa,ε) ⇒ f (x) ∈ B(f (a), ε),

or equivalently,

∀a ∈ X ∀ε > 0 ∃δa,ε > 0 such that d(x, a) < δa,ε ⇒ d(f (x), f (a)) < ε.

This is the standard pointwise definition of continuity given in Section 3.1. The point-
wise approach says that, for each point a in the domain, given any tolerance level ε to
specify the closeness of f (x) to f (a), we may find a δ (specifying closeness of x to a) to
guarantee that if x is within δ of a, then f (x) is within ε of f (a). For a given tolerance
level ε, the choice of δ clearly depends on ε, but because we are verifying the continu-
ity of f pointwise, it also depends on the point a in the domain at which we are testing
the continuity. This dependence is emphasized in the notation δa,ε above.

For certain continuous functions, given an ε > 0 to specify the tolerance level,
there is a single δ, dependent on ε alone, which ensures that fluctuating the input
by less than δ will always guarantee that the output fluctuates less than ε, indepen-
dent of the location a of the input in the domain. Such functions are called uniformly
continuous.

Definition 12.1.1. If X and Y are metric spaces, a function f : X → Y is uniformly
continuous if and only if

∀ε > 0 ∃δε > 0 such that ∀a ∈ X, x ∈ B(a, δε) ⇒ f (x) ∈ B(f (a), ε).

Equivalently, f is uniformly continuous if and only if

∀ε > 0 ∃δε > 0 such that ∀x, y ∈ X, d(x, y) < δε ⇒ d(f (x), f (y)) < ε.

In the first definition above, notice the placement of the quantified statement
“∀a ∈ X”, which distinguishes continuity from uniform continuity. The subscripts on
δ emphasize the dependence of δ only on ε for uniform continuity, and on both ε and
the point a in the domain for continuity. Generally, these subscripts will be omitted.
Clearly, uniform continuity implies continuity. The examples below will illustrate the
distinction between continuity and uniform continuity.

Give ℝ and the interval [0,∞) the usual Euclidean metric d(x, y) = |x − y| and
consider the function f : [0,∞) → ℝ defined by f (x) = x2. We will show that f is
continuous, but not uniformly continuous.

https://doi.org/10.1515/9783110686579-013
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To show that f is continuous, given a ∈ [0,∞) and ε > 0, we must find δ > 0,
which may depend on both a and ε, such that x ∈ B(a, δ) implies f (x) ∈ B(f (a), ε), that
is, such that

|x − a| < δ ⇒ 󵄨󵄨󵄨󵄨f (x) − f (a)
󵄨󵄨󵄨󵄨 =
󵄨󵄨󵄨󵄨x
2 − a2󵄨󵄨󵄨󵄨 < ε.

Because we get to choose the δ, we control the size of |x − a|. Thus, we hope to find
a copy of |x − a| hiding in the term |x2 − a2| we wish to force to be small. By simple
factoring, |x2 −a2| = |x +a||x −a|. To know how small we should make |x −a|, we need
a bound on the remaining factor |x + a|. Recall that our choice of δ specifies closeness
of x to a ∈ [0,∞), and thus specifies closeness of |x + a| to |2a| = 2a. To get an exact
bound on |x + a|, let us stipulate that δ ≤ 1. Since |x − a| < δ, we are stipulating that x
will always be within 1 unit of a, and thus |x + a| is within 1 unit of 2a. Formally,

|x − a| < δ ≤ 1⇒ −1 < x − a < 1
⇒ 2a − 1 < x + a < 2a + 1
⇒−2a − 1 < x + a < 2a + 1 since − 2a ≤ 2a
⇒ |x + a| < 2a + 1.

Now if |x − a| < δ, we have

󵄨󵄨󵄨󵄨f (x) − f (a)
󵄨󵄨󵄨󵄨 =
󵄨󵄨󵄨󵄨x
2 − a2󵄨󵄨󵄨󵄨 = |x + a||x − a| < (2a + 1)δ.

Since we wish to have |f (x) − f (a)| < ε, from the previous line we simply choose δ so
that (2a+ 1)δ = ε; that is, we choose δ = ε

2a+1 , subject to the stipulation that δ ≤ 1. That
is, we choose δ = min{ ε

2a+1 , 1}.
We have worked backwards from the desired conclusion |x2 − a2| < ε to find a

suitable choice of δ. While this is the difficult part, onemay nowwrite a concise direct
proof working forwards, as Carl F. Gauss would have preferred. Gauss believed that
just as scaffolding used to construct a building would be unsightly after the comple-
tion, so too are the constructive tools unsightly to a proof. Niels Abel said of Gauss,
“He is like the fox, who effaces his tracks in the sand with his tail.” Historian W. W.
Rouse Ball said of Gauss, “he removes every trace of the analysis by which he reached
his results, and studies to give a proof which while rigorous shall be as concise and
synthetical as possible.” Such a proof that f : [0,∞) → ℝ defined by f (x) = x2 is
continuous is given below.

Given a ∈ [0,∞) and ε > 0, let δ = min{ ε
2a+1 , 1}. Now |x − a| < δ ≤ 1 implies

−1 < x−a < 1, so−2a−1 ≤ 2a−1 < x+a < 2a+1, and inparticular, |x+a| < 2a+1. Thus,
|x−a| < δ implies |f (x)− f (a)| = |x2−a2| = |x+a||x−a| < (2a+1)δ ≤ (2a+1) ε

2a+1 = ε,
as needed.

For f to be uniformly continuous, for any ε > 0wewould need to find a δ indepen-
dent of a which gives the desired inequalities. The dependence of δ on a was evident
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in the proof given, so our proof fails to show that f is uniformly continuous. Logically,
we have not shown that there is no way to choose δ independent of a; we have merely
shown that our first proof was not sufficient. To show that f is not uniformly continu-
ous, we need more.

We will show f (x) = x2 is not uniformly continuous by showing for ε = 1, for any
δ > 0, there exist x, a ∈ [0,∞) with |x − a| < δ, but with |f (x) − f (a)| ≥ ε = 1. Given
δ > 0, let x = 1

δ +
δ
2 and a =

1
δ . Now |x − a| < δ yet

󵄨󵄨󵄨󵄨f (x) − f (a)
󵄨󵄨󵄨󵄨 =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
(
1
δ
+
δ
2
)
2
− (

1
δ
)
2󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
= 1 + δ

2

4
> 1 = ε.

Figure 12.1 illustrates that, for a fixed tolerance level ε in the codomain, we may
find a δa,ε-ball around any a ∈ [0,∞)which maps into the ε-ball around f (a). Observe
that, as the values of a increase to infinity and the slopes f 󸀠(a) increase to infinity, the
widths of the δa,ε-balls must decrease to zero. Thus, there is no δ > 0 which will serve
for every a ∈ [0,∞).

Figure 12.1: For a fixed ε, the value of δa,ε shrinks to 0 as a→∞.
The geometric interpretation of this example should suggest that, for calculus-type
functions, that is, functionswhose domain and codomain are subsets of the Euclidean
lineℝ, there should be some connection between unbounded derivatives and uniform
continuity. Loosely speaking, a steeper slope will require a smaller δ. If the slopes are
bounded by M, then perhaps the δ which works for the steepest slopes will work for
all cases. The next theorem confirms this.

Theorem 12.1.2. If D is an interval in the Euclidean lineℝ, f : D→ ℝ is a differentiable
function, and |f 󸀠(x)| < M for all x ∈ D, then f is uniformly continuous.

Proof. By the mean value theorem from calculus, for any a, x ∈ D, there exists c be-
tween a and x in D with
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|f (x) − f (a)|
|x − a|

= 󵄨󵄨󵄨󵄨f
󸀠(c)󵄨󵄨󵄨󵄨 < M,

so |f (x) − f (a)| < M|x − a|. Take δε =
ε
M . Now

|x − a| < δε =
ε
M
⇒ 󵄨󵄨󵄨󵄨f (x) − f (a)

󵄨󵄨󵄨󵄨 < M ⋅
ε
M
= ε.

The converse is not true. That is, a uniformly continuous differentiable function
from an intervalD toℝmay have an unbounded derivative. The function g(x) = √x on
the interval (0,∞) is such a function. As x approaches zero through positive values,
g󸀠(x) approaches infinity. However, the problematic unbounded derivatives occur in
a very restricted location, and a given tolerance level ε will allow enough fluctuation
to encompass the location of the unbounded derivatives. The details are left as an
exercise.

The theoremabove gives away to recognize certain functions as uniformly contin-
uous, but they must necessarily be differentiable real-valued functions of a real vari-
able. That is, the theorem above was more of a real analysis result than a topological
one. The next theorem is an important topological result.

Theorem 12.1.3. Suppose X and Y are metric spaces and f : X → Y is a continuous
function. If X is compact, then f is uniformly continuous.

Proof. Suppose ε > 0 is given. Under the hypotheses, the continuity of f guarantees
that, for every c ∈ X, there exists δc > 0 such that x ∈ B(c, δc) implies f (x) ∈ B(f (c), ε/2).
Now {B(c, δc/2) : c ∈ X} is an open cover of the compact space X, so there exists a finite
subcover ℱ = {B(ci, δci/2) : i = 1, . . . , n} of X. Take δ = min{δci/2 : i = 1, . . . , n}.

Suppose a, x ∈ X and x ∈ B(a, δ). Since ℱ covers X, there exists j ∈ {1, . . . , n} with
a ∈ B(cj, δcj/2), so d(a, cj) < δcj/2. Since d(x, a) < δ ≤ δcj/2, the triangle inequality gives

d(x, cj) ≤ d(x, a) + d(a, cj) <
δcj
2
+
δcj
2
= δcj .

Also, d(a, cj) < δcj/2 < δcj . Thus, both x and a are in B(cj, δcj ). This implies f (x) and
f (a) are both in B(f (cj), ε/2). Again applying the triangle inequality, we get

d(f (x), f (a)) ≤ d(f (x), f (cj)) + d(f (cj), f (a)) <
ε
2
+
ε
2
= ε.

This shows that, for any a ∈ X, x ∈ B(a, δ) implies f (x) ∈ B(f (a), ε), and thus f is
uniformly continuous.

We close this section with a necessary condition for uniform continuity. Recall
that a sequence (xn) in a metric space (X, d) is Cauchy if for any ε > 0 there exists
n ∈ ℕ such that d(xj, xk) < ε for all j, k > n.

Theorem 12.1.4. If X and Y are metric spaces, (xn) is a Cauchy sequence in X, and f :
X → Y is uniformly continuous, then (f (xn)) is a Cauchy sequence in Y.
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Proof. Suppose f is uniformly continuous and (xn) is a Cauchy sequence in X. Given
ε > 0, the condition on f guarantees there exists a δ > 0 such that d(f (xj), f (xk)) < ε
for any xj, xk ∈ X with d(xj, xk) < δ. The condition on (xn) guarantees an n ∈ ℕ such
that d(xj, xk) < δ for j, k > n. Now we have

j, k > n⇒ d(xj, xk) < δ ⇒ d(f (xj), f (xk)) < ε,

and since ε > 0 was arbitrary, (fn) is a Cauchy sequence in Y .

Exercises

1. Consider the function f : (0,∞) → ℝ defined by f (x) = 1
x , where the domain and

codomain have the Euclidean metric.
(a) Show that f is continuous.
(b) Show that f is not uniformly continuous.

2. Let g : (0,∞) → ℝ be defined by g(x) = √x, where the domain and codomain
have the Euclidean metric. Prove that g(x) is uniformly continuous, even though
the derivative g󸀠(x) is not bounded on (0,∞).

3. Show that f : ℝ → ℝ defined by f (x) = 3√x is uniformly continuous. Is f differen-
tiable on ℝ? Is the derivative f 󸀠(x) bounded?

4. Which of the following functions are uniformly continuous? Prove your answers
using the ε–δ definition (rather than any theorems).

(a) f : ℝ → ℝ given by f (x) = { x if x < 0
3x if x ≥ 0

(b) g : ℝ → ℝ given by g(x) = { x if x < 1
3x if x ≥ 1

(c) h : [1,∞) → [1,∞)where h is the piecewise linear function connecting (n,Δn)
to (n + 1,Δn+1) for each n ∈ ℕ, where Δn = 1 + ⋅ ⋅ ⋅ + n = n(n + 1)/2 is the nth
triangular number.

5. Suppose X is a metric space and f and g are uniformly continuous functions from
X to ℝ.
(a) Show that f + g : X → ℝ is uniformly continuous.
(b) Show that, for any constant k ∈ ℝ, kf : X → ℝ is uniformly continuous.

6. SupposeX,Y , and Z aremetric spaces, and f : X → Y and g : Y → Z are uniformly
continuous. Show that g ∘ f : X → Z is uniformly continuous.

7. For each part below, give an example satisfying the conditions, or prove that no
such example can exist.
(a) Continuous functions f , g : ℝ → ℝ which are not uniformly continuous, but

whose product fg is uniformly continuous.
(b) Continuous functions f , g : ℝ → ℝ which are not uniformly continuous, but

whose sum f + g is uniformly continuous.
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(c) Uniformly continuous functions f , g : ℝ → ℝ whose product fg is not uni-
formly continuous.

(d) A continuous function f : [0, 1] → ℝ such that g : [0, 2] → ℝ defined by
g(x) = f (2x) is not uniformly continuous.

8. Show that if f : ℝ → ℝ is continuous and is uniformly continuous on A ⊆ ℝ, then
f is uniformly continuous on clA.

9. Suppose f : ℝ → ℝ is continuous, ℝ = A ∪ B, and the restrictions f |A and f |B
are uniformly continuous. Must f be uniformly continuous? Give a proof or coun-
terexample.

10. Suppose f : ℝ → ℝ is a continuous nonnegative function with ∫∞−∞ f (x) dx =
a < ∞.
(a) Show that if f is uniformly continuous, then limx→∞ f (x) = 0.
(b) Showby example that if f is not uniformly continuous, then limx→∞ f (x)need

not be 0.
11. Find a continuous function f between two metric spaces X and Y and a Cauchy

sequence (xn) in X such that (f (xn)) is not a Cauchy sequence. That is, show that
uniform continuity is required for the result of Theorem 12.1.4.

12. Suppose f : ℝ → ℝ is defined by f (x) = x2. Show that if (xn) is a Cauchy sequence
inℝ, then (f (xn)) is a Cauchy sequence. Since we have seen that f is not uniformly
continuous, this shows that the converse of Theorem 12.1.4 fails.

13. Prove that f : (a, b) → ℝ is uniformly continuous if and only if f can be extended
to a continuous function f ∗ : [a, b] → ℝ.

12.2 Uniformities

In this section, wewill define a uniformity on a setX. A set equippedwith a uniformity
is called a uniform space. We will see that uniform spaces fall between metric spaces
and topological spaces. More precisely, everymetric gives a uniformity, and every uni-
formity gives a topology. One motivation for the development of uniform spaces was
to extend the notion of uniform continuity to a larger class of topological spaces than
the metric spaces.

Uniform continuity was defined for functions betweenmetric spacesX and Y . The
fundamental idea that made the continuity uniform was that, for a given ε > 0, there
was a single δ > 0 for which the balls B(x, δ) were of interest, for every x ∈ X. That is,
instead of considering balls around each individual point x ∈ X, uniform continuity
involves determining neighborhoods around every point of X in one fell swoop. One
way to graphically depict the δ-neighborhood of x ∈ X for every x ∈ X, as shown in
Figure 12.2(a), is to draw the neighborhood vertically over a copy of x on a horizontal
axis. (Of course, such graphical depictions work well when X ⊆ ℝ; for other sets X,
such figures are only suggestive tools.)
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The concept of uniform continuity involved giving a neighborhood of every x ∈
X all at once. If we relax our metric condition that the neighborhood of every point
x ∈ X is a ball of the same radius δ, we might consider sets such as U depicted in
Figure 12.2(b). Such a set U is a subset of X × X and thus is a relation on X. Topologies
can be defined by the collection of neighborhoods of every point. Uniformities will be
defined by a collection of relations U on X, each of which provides a neighborhood of
every point x ∈ X. We start with some terminology.

Figure 12.2: The shaded sets specify, in one fell swoop, a neighborhood of every point x ∈ X .
12.2.1 Relations

Recall that a relation from a set X to a set Y is a subset of X ×Y . If R ⊆ X ×Y is a relation
from X to Y and (x, y) ∈ R, we say x is related to y by R and write xRy. A relation from
X to X is called a relation on X. The diagonal relation ΔX on X is {(x, x) : x ∈ X}. The
diagonal relation is sometimes called the identity relation or equality: x is related to y
by ΔX if and only if x = y. Every relation R on X has an inverse relation R−1 = {(y, x) ∈
X × X : (x, y) ∈ R}.

A function f : X → Y may be viewed as the relation Gf = {(x, y) ∈ X × Y : y =
f (x)} = {(x, f (x)) ∈ X × Y : x ∈ X} from X to Y . The relation Gf may be called the graph
of the function. Just as we may compose functions f : X → Y and g : Y → Z to get
g ∘ f : X → Z with Gg∘f = {(x, z) ∈ X × Z : ∃y ∈ Y with (x, y) ∈ Gf , (y, z) ∈ Gg}, we may
compose relations. Specifically, if R is a relation from X to Y and S is a relation from Y
to Z, then their composition S ∘ R is the relation from X to Z defined by

S ∘ R = {(x, z) ∈ X × Z : ∃y ∈ Y with xRy, ySz}.

As suggested by function terminology, if R is a relation from X to Y and A ⊆ X, the
image of A under R is R(A) = {y ∈ Y : ∃a ∈ A with aRy}. If A is a singleton {x}, the
image of {x} under R is called the slice of R determined by x, and is denoted R(x). In
Figure 12.2(b), a relation U, a point x, and the slice U(x) determined by x are labeled.
If R is a relation on X, then we denote R ∘ R by R2, R ∘ R ∘ R by R3, and so on.
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Familiar properties of relations may be phrased using this terminology.

Definition 12.2.1. Let R be a relation on X.
R is reflexive if and only if ΔX ⊆ R.
R is symmetric if and only if R = R−1.
R is antisymmetric if and only if R ∩ R−1 ⊆ ΔX .
R is transitive if and only if R ∘ R ⊆ R.

Recall that a reflexive, transitive, symmetric relation is an equivalence relation and
a reflexive transitive, antisymmetric relation is a partial order.

12.2.2 Filters

Just as a topology on X is a collection of subsets of X satisfying certain properties, a
filter on X is a collection of subsets of X satisfying certain properties. Filters may be
used to study convergence and are particularly useful in topological spaces in which
some point has no countable neighborhood base, so convergence to the point cannot
be accomplished with sequences (which are countable).

Definition 12.2.2. A filter on X is a nonempty collection ℱ of subsets of X such that
(F1) 0 ̸∈ ℱ ;
(F2) A ∈ ℱ and A ⊆ B imply B ∈ ℱ , and
(F3) A1, . . . ,An ∈ ℱ implies A1 ∩ ⋅ ⋅ ⋅ ∩ An ∈ ℱ .

That is, a filter on X is a collection of nonempty subsets of X which is closed under the
formation of supersets and is closed under finite intersections.

The most common filters encountered in topology are the neighborhood filters.

Definition 12.2.3. If X is a topological space and x ∈ X, the neighborhood filter at x is
the collection

𝒱x = {V ⊆ X : x ∈ int(V)}

of all neighborhoods of x.

We have noted that some introductory textbooks require neighborhoods to be
open sets. If neighborhoods are required to be open, then the (open) neighborhoods
of x do not form a filter, since supersets of an open neighborhood of x need not be an
open neighborhood of x. Since the open neighborhoods of a point x form a neighbor-
hood basis for x, in many cases open neighborhoods are adequate. However, for filter
considerations, the more general definition of neighborhoods is required.

The traditional use of the letter 𝒱 for neighborhood filters arises from the French
word voisinage for neighborhood.



12.2 Uniformities | 261

Example 12.2.4.
(a) If 0 ̸= A ⊆ X, then the collection ℱ = {S ⊆ X : A ⊆ S} of supersets of A is easily

seen to be a filter.
(b) In ℝ, let 𝒢 = {C ⊆ ℝ : ℝ − C is finite} be the collection of cofinite subsets of ℝ.

Since ℝ − 0 is infinite, 0 ̸∈ 𝒢. If C is any cofinite set, any superset of C will have
a smaller complement, and thus is also cofinite. Since 𝒢 is a subcollection of the
cofinite topology on ℝ (indeed, 𝒢 ∪ {0} is the cofinite topology), 𝒢 is closed under
finite intersections. Thus, 𝒢 is a filter on ℝ.

(c) Letℋ = {A ∩ ℚ : A ⊆ ℝ,π ∈ intℝ A} be the collection of all neighborhoods of π in
the Euclidean line ℝ restricted toℚ. It is easy to check thatℋ is a filter onℚ.

A filterℱ on X is free if⋂ℱ = 0, and is fixed otherwise. In the example above,ℱ is
fixed, while 𝒢 andℋ are free filters. Filters must be closed under finite intersections;
free filters show that they need not be closed under arbitrary intersections.

12.2.3 Uniformities

Now let us return to the concept of a uniformity on a set X. The idea is that we will use
a single relation likeU in Figure 12.2(b) to give a neighborhood of every point of x ∈ X.
Such a set U will be called an entourage. In most topologies, every point will have
many different neighborhoods, and similarly, in most uniform space there will be a
large collection of different entourages U . The properties of neighborhoods of a point
will dictate the properties needed for the collection of entourages. The neighborhoods
of x form a filter on X, so the entourages should form a filter on X ×X. A neighborhood
of xmust contain x, so any entourage U should contain ΔX . That is, each entourage is
a reflexive relation on X. This motivates the topological aspects of a uniformity, which
we now define.

Definition 12.2.5. A uniformity (or uniform structure) on a nonempty set X is a collec-
tion 𝒰 of subsets of X × X such that
(U1) 𝒰 is a filter on X × X;
(U2) ΔX ⊆ U for every U ∈ 𝒰 ;
(U3) U ∈ 𝒰 implies U−1 ∈ 𝒰 ;
(U4) For every U ∈ 𝒰 , there exists V ∈ 𝒰 with V2 ⊆ U .

The members U of a uniformity are called entourages. If 𝒰 is a uniformity on X, the
pair (X,𝒰) is a uniform space.

An entourage U may be loosely thought of as a collection of neighborhoods U(x)
of each point x ∈ X, or as a “neighborhood of the diagonal” in X × X.

While conditions (U1) and (U2) arose from topological propertieswewould expect
of neighborhoods, conditions (U3) and (U4) arise as generalizations of metric space
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properties. If (x, y) ∈ U for some entourage U ∈ 𝒰 , we say x is U-close to y. Thus, (U3)
says x is U-close to y if and only if y is U−1-close to x. A metric version of this would
say x is ε-close to y if and only if y is ε󸀠-close to x for some ε󸀠. (Indeed, by the metric
symmetric condition that d(x, y) = d(y, x), we may take ε󸀠 = ε, that is, x ∈ B(x, ε) if
and only if y ∈ B(x, ε).) Many proofs in metric spaces involve showing a distance, say
from x to z, is less than ε by showing the distances between the pairs (x, y) and (y, z)
are each less than ε/2 and then using the triangle inequality. The condition (U4) is
a generalization of splitting a closeness measure (ε for metric spaces, U for uniform
spaces) in half and linking two parts (by the triangle inequality for metrics, by V2

for uniformities) to get something as close or closer. Condition (U4) says that given a
closeness measure U ∈ 𝒰 , we can find a V ∈ 𝒰 such that if x is V -close to y and y is
V -close to z, then x is V2-close, and thus U-close, to z.

Next, we show that every uniformity produces a topology.

Definition 12.2.6. Suppose 𝒰 is a uniformity on X. The uniform topology on X induced
by 𝒰 is

𝒯𝒰 = {A ⊆ X : ∀x ∈ A ∃U ∈ 𝒰 with U(x) ⊆ A}.

If (X, 𝒯 ) is a topological space whose topology 𝒯 equals the uniform topology 𝒯𝒰 from
some uniformity on X, then we say X is uniformizable and 𝒰 is compatible with the
topology 𝒯 .

To verify that 𝒯𝒰 is indeed a topology on X, we first note that clearly 0 and X are
members of 𝒯𝒰 . Suppose Ai ∈ 𝒯𝒰 for i ∈ I, where I is an arbitrary index set. For x ∈
⋃i∈I Ai, there exists io ∈ I with x ∈ Ai0 . Since Ai0 is open, there exists U ∈ 𝒰 with
U(x) ⊆ Ai0 ⊆ ⋃i∈I Ai, and thus ⋃i∈I Ai ∈ 𝒯𝒰 . Finally, suppose A1, . . . ,An are 𝒯𝒰 -open
and x ∈ ⋂ni=1 Ai. For each i = 1, . . . , n, there existsUi ∈ 𝒰 withUi(x) ⊆ Ai. LetU = ⋂

n
i=1 Ui.

Since𝒰 is a filter,U ∈ 𝒰 . Now for each i = 1, . . . , n, we haveU ⊆ Ui, soU(x) ⊆ Ui(x) ⊆ Ai,
and thus U(x) ⊆ ⋂ni=1 Ai. This shows that 𝒯𝒰 is closed under finite intersections.

From the definition, it is easy to see that every open set A in 𝒯𝒰 is a union of slices
U(x) ⊆ A. It does not follow that the collection ℬ = {U(x) : x ∈ X,U ∈ 𝒰} of all slices of
entourages is a basis for 𝒯𝒰 , since the slices U(x) are not all 𝒯𝒰 -open.

Next, we show that every metric produces a uniformity.

Example 12.2.7. Suppose (X, d) is a metric space. For δ > 0, let

Uδ = {(x, y) ∈ X × X : d(x, y) < δ}
= ⋃

x∈X{x} × B(x, δ).
Note that Figure 12.2(a) depicts Uδ. Then 𝒰d = {W ⊆ X × X : ∃δ > 0 with Uδ ⊆ W} is a
uniformity on X called themetric uniformity induced by d. Note that 𝒰d consists of the
supersets of the sets Uδ (δ > 0). It is easily seen that conditions (U1), (U2), and (U3)
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from the definition of a uniformity are satisfied by 𝒰d. For (U4), supposeW ∈ 𝒰d. Then
there exists δ > 0 with Uδ ⊆ W . Let V = Uδ/2. For any (x, z) ∈ V2 = U2

δ/2, there exists
y ∈ X with (x, y) ∈ Uδ/2 and (y, z) ∈ Uδ/2. Thus, d(x, y) < δ/2 and d(y, z) < δ/2. By the
triangle inequality, d(x, z) < δ, so (x, z) ∈ Uδ ⊆ W . This shows V2 = U2

δ/2 ⊆ W , so (U4)
holds. It is immediate from the definitions that the uniform topology on X generated
by themetric uniformity induced by d is simply themetric topology onX induced by d.

12.2.4 Base for a uniformity

The metric uniformity was defined to be all the supersets of the δ-neighborhoods Uδ
of the diagonal ΔX in X×X. The neighborhood filter 𝒱x at xwas defined to be all the su-
persets of open neighborhoods of x. Such constructions using supersets are common
and prompt the following definitions.

Definition 12.2.8. If ℱ is a filter on X, a subcollection ℬ of ℱ is a base (or filter base)
for the filter ℱ if ℱ consists of all supersets of elements of ℬ.

If 𝒰 is a uniformity on X, a subcollection ℬ of 𝒰 is a base for the uniformity 𝒰 if 𝒰
consists of all supersets of elements of ℬ.

Thus, the collection of open neighborhoods of x is a filter base for the neighbor-
hood filter 𝒱x, and the collection {Uδ : δ > 0} is a base for the metric uniformity 𝒰d.

Theorem 12.2.9. Every uniformity 𝒰 has a base of symmetric entourages.

Proof. Suppose 𝒰 is a uniformity on set X. For U ∈ 𝒰 , let Us = U ∩ U−1. Note that
(x, y) ∈ Us = U ∩ U−1 if and only if (y, x) ∈ U−1 ∩ U = Us, so Us is symmetric. Us

is called the symmetrization of the entourage U . Let 𝒰 s = {Us : U ∈ 𝒰}. For U ∈ 𝒰 ,
U−1 ∈ 𝒰 by (U3), and 𝒰 is closed under finite intersections by (U1), soUs ∈ 𝒰 , and thus
𝒰 s ⊆ 𝒰 . Furthermore, every entourage U ∈ 𝒰 is a superset of Us ∈ 𝒰 s. Thus, 𝒰 s is a
base for 𝒰 which consists of symmetric entourages. Indeed, 𝒰 s is the collection of all
symmetric entourages in 𝒰 .

When dealing with bases for topologies, youmay recall results to recognize when
ℬ is a basis for a given topology 𝒯 (namely, ℬ ⊆ 𝒯 and every element of 𝒯 is a union
of elements of ℬ), and results of a different flavor to determine whether a collection ℬ
of subsets of X is a basis for some unknown topology on X (namely, ⋃ℬ = X, and for
any B1,B2 ∈ ℬ and any x ∈ B1 ∩ B2, there exists B3 ∈ ℬ with x ∈ B3 ⊆ B1 ∩ B2). Similar
situations apply for filter bases and bases for uniformities.

Theorem 12.2.10. A nonempty collection ℬ of subsets of a set X is a filter base if and
only if 0 ̸∈ ℬ and whenever B1, . . . ,Bn ∈ ℬ, there exists B ∈ ℬ with B ⊆ B1 ∩ ⋅ ⋅ ⋅ ∩ Bn.

Proof. If ℬ is a base for a filter ℱ , then since ℬ ⊆ ℱ , 0 ̸∈ ℬ. Whenever B1, . . . ,Bn ∈ ℬ,
B = B1 ∩ ⋅ ⋅ ⋅ ∩ Bn ∈ ℱ , so we have B ∈ ℬ with B ⊆ B1 ∩ ⋅ ⋅ ⋅ ∩ Bn.
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Conversely, suppose ℬ satisfies the conditions given. To show that ℬ is the base
for some filter ℱ , from the definition of filter base, ℱ = {F ⊆ X : ∃B ∈ ℬ,B ⊆ F}. Thus,
it only remains to show that ℱ = {F ⊆ X : ∃B ∈ ℬ,B ⊆ F} is indeed a filter. Clearly
0 ̸∈ ℱ . Given F1, . . . , Fn ∈ ℱ , for each i = 1, . . . , n, there exist Bi ∈ ℬ with Bi ⊆ Fi. From
the assumptions, there exists B ∈ ℬ with B ⊆ B1 ∩ ⋅ ⋅ ⋅ ∩Bn, so B ⊆ F1 ∩ ⋅ ⋅ ⋅ ∩Fn, and thus
F1 ∩ ⋅ ⋅ ⋅ ∩ Fn ∈ ℱ . Thus, ℱ is a filter.

Recall that a uniformity on X is a filter on X × X and filters (uniformities) are gen-
erated from a filter base (uniformity base) by taking all supersets of the elements of
the base. Thus, it should be expected that a filter base which satisfies enough of the
properties of a uniformity should be a base for a uniformity.

Theorem 12.2.11. If X is a nonempty set, a collection ℬ of subsets of X × X is a base for
some uniformity on X if and only if
(B1) ℬ is a filter base on X × X.
(B2) Δx ⊆ B for every B ∈ ℬ.
(B3) B ∈ ℬ implies there exists C ∈ ℬ with C ⊆ B−1.
(B4) For every B ∈ ℬ, there exists C ∈ ℬ with C2 ⊆ B.

The conditions (B1)–(B4) above should be carefully compared to the defining con-
ditions (U1)–(U4) of a uniformity. The essential differences are that a base for a uni-
formity need only be a filter base, and in (B3), the symmetric relation B−1 need not
be in the base to imply B−1 is in the uniformity induced by the base. The proof of this
theorem is left to the exercises.

We end this section with some examples.

Example 12.2.12. Given X ̸= 0, let ℬ = {ΔX}. Now ℬ is a base for the uniformity 𝒰 of
all supersets of the diagonal. For every x ∈ X, the slice ΔX(x) = {x} ⊆ {x}, so from
Definition 12.2.6, {x} ∈ 𝒯𝒰 . Thus, the induced topology 𝒯𝒰 is the discrete topology
on X. Another base for this uniformity is 𝒞 = {Uε : ε > 0} where Uε = {(x, y) ∈ X × X :
d(x, y) < ε} and d is the discrete metric. In particular, ℬ and 𝒞 = {ΔX ,X ×X} are distinct
bases for the same uniformity.

Example 12.2.13. Given n ∈ ℕ, letUn = {(a, b) ∈ ℤ2 : a ≡ bmod 3n}. We will show that
ℬ = {Un : n ∈ ℕ} is a base for a uniformity onℤ. Clearly (a, a) ∈ Un for every a ∈ ℤ and
every n ∈ ℕ, so (B2) holds and 0 ̸∈ ℬ. Ifm > n inℕ and 3m divides b−a, then 3n divides
b − a, so Um ⊆ Un. Thus, ℬ is a nested collection, and is therefore closed under finite
intersections and is a filter base. Clearly Un = U−1n for each n ∈ ℕ, so (B3) holds. For
(B4), note that if (a, c) ∈ U2

n, then there exists b ∈ ℤwith (a, b) ∈ Un and (b, c) ∈ Un, so
a ≡ b ≡ cmod 3n, and thus (a, c) ∈ Un. Thus,U2

n ⊆ Un for everyUn ∈ ℬ. The prime base
3 in this example may be replaced by any prime p; the resulting uniformity is called
the p-adic uniformity on ℤ.
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Exercises

1. Suppose U and V are relations on X with V ⊆ U . Show (a) V2 ⊆ U2 and (b) for any
x ∈ X, V(x) ⊆ U(x).

2. Show that if U is a reflexive relation on X, then U ⊆ Un for any n ∈ ℕ.
3. If U and V are relations on X and a ∈ X, show that (U ∩ V)(a) = U(a) ∩ V(a).
4. Suppose U ⊆ ℝ × ℝ is a relation on ℝ and x ∈ ℝ. Describe a visual algorithm to

find the slice U2(x).
5. Suppose V is a relation on a topological space (X, 𝒯 ). Consider the statements:

(a) V is open in the product (X, 𝒯 ) × (X, 𝒯 ).
(b) For every x ∈ X, the slice V(x) is open in (X, 𝒯 ).
Are (a) and (b) equivalent, or does either statement imply the other? Justify your
answers with proofs or counterexamples.

6. Suppose (X, 𝒯 ) is a topological space,V is a relation onX, andV is open in (X, 𝒯 )2.
Show that V ∘ V = V2 is open in (X, 𝒯 )2.

7. In a poset (X, ≤), an order filter is a nonempty increasing subset F such that every
pair of elements in F has a lower bound in F. Show that ℱ is a filter on X if and
only if ℱ is an order filter in the poset (𝒫(X) − {0}, ⊆).

8. If 𝒰 is a uniformity on X and U ∈ 𝒰 , show that the symmetrization Us = U ∩ U−1
of U is the largest symmetric entourage contained in U .

9. Suppose 𝒰 is a uniformity on X. Show that⋂𝒰 is an equivalence relation on X.
10. Let X be the unit interval [0, 1] and B = (0, 1]2∪{(0,0)}. Show that ℬ = {B} is a base

for a uniformity 𝒰 . Describe the topology induced by 𝒰 .
11. For a ∈ ℝ, let Ua = Δℝ ∪ [a,∞)2. Show that ℬ = {Ua : a ∈ ℝ} is a base for a

uniformity 𝒰 . Describe the topology induced by 𝒰 .
12. Find all possible uniformities on a two-point set X = {a, b}. List all uniformizable

topologies and all non-uniformizable topologies on X = {a, b}.
13. Suppose𝒰 is a uniformity onX andU ∈ 𝒰 . Show that, for every n ∈ ℕ, there exists

V ∈ 𝒰 with Vn ⊆ U .
14. Suppose X is a topological space and x ∈ X is not an isolated point. Show that the

collection ℬdel
x = {U − {x} : U ∈ 𝒱x} of deleted neighborhoods of x is a filter base.

Is ℬdel
x every a filter? The filter generated by ℬ is called the deleted neighborhood

filter at x.
15. Show that the collection of open intervals ℬ = {(a, 1) : 0 ≤ a < 1} is a filter base on

X = (−1, 1) ⊆ ℝ. Is the filter generated by ℬ a neighborhood filter of any x ∈ X? Is
the filter generated by ℬ a deleted neighborhood filter (see Exercise 14) for any x
in the compactification Y = [−1, 1] of (−1, 1)?

16. Suppose ℬ is a base for a uniformity 𝒰 on a set X.
(a) If ℬ ⊆ 𝒞 ⊆ 𝒰 , must 𝒞 be a base for 𝒰?
(b) If ℬ ⊆ 𝒞 ⊆ 𝒫(X), must 𝒞 be a base for 𝒰?
Prove your answers.
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17. Find two uniformities 𝒰 and𝒲 on a set X such that 𝒰 ∪𝒲 is neither a uniformity
nor a base for a uniformity on X.

18. A nonempty collection 𝒮 of subsets of X × X is a subbase for a uniformity on X if
and only if the collection of finite intersections of members of 𝒮 forms a base for
a uniformity on X. Show that if 𝒰 and𝒲 are uniformities on a set X, then 𝒰 ∪𝒲
is a subbase for a uniformity on X.

19. For ε > 0, letWε be the relation on ℝ whose slices are given by

Wε(x) =
{{
{{
{

(x − ε, x + ε/2) ∪ (x + ε, x + 2ε) if 1 < x < 2
(x − 3ε, x − 2ε] ∪ (x − ε, x + 2ε) if 3 < x < 4
(x − ε, x + 2ε) otherwise,

as suggested in the figure below.

Show that 𝒲 = {Wε : ε > 0} is a base for a uniformity on ℝ which induces the
usual topology on ℝ.

20. Prove Theorem 12.2.11.
21. (Filter convergence) A filter ℱ on a topological space X is said to converge to

x ∈ X, denoted ℱ → x, if and only if 𝒱x ⊆ ℱ . In ℝ with the Euclidean topology,
let ℱ = {A ⊆ ℝ : there existsm ∈ ℕ with { 1n : n ≥ m} ⊆ A} be the collection of
supersets of tails of the sequence ( 1n )

∞
n=1. Show that ℱ is a filter converging to 0.

12.3 The uniform topology

In this section, we investigate properties of the topology induced by a uniformity.

12.3.1 Closure and interior

Theorem 12.3.1. Suppose 𝒰 is a uniformity on X and A ⊆ X. Then in the induced topol-
ogy 𝒯𝒰 on X,

intA = {a ∈ A : U(a) ⊆ A for some U ∈ 𝒰}.
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Proof. Let B = {a ∈ A : U(a) ⊆ A for some U ∈ 𝒰}.
Since intA ∈ 𝒯𝒰 , the definition of 𝒯𝒰 tells us that if x ∈ intA, there exists U ∈ 𝒰

with U(x) ⊆ intA ⊆ A, and thus x ∈ B. This shows intA ⊆ B ⊆ A. To show intA = B, we
will show B is open.

To see that B is open, from the definition of 𝒯𝒰 we must show for any a ∈ B, there
exists V ∈ 𝒰 with V(a) ⊆ B. Given a ∈ B, there exists U ∈ 𝒰 with U(a) ⊆ A. Pick V ∈ 𝒰
with V2 ⊆ U . We will show V(a) ⊆ B. Suppose y ∈ V(a). For any z ∈ V(y), we have
(a, y), (y, z) ∈ V , so (a, z) ∈ V2, or z ∈ V2(a). Thus, V(y) ⊆ V2(a). Now y ∈ V(y) ⊆
V2(a) ⊆ U(a) ⊆ A, and from the definition of B, y ∈ B. Since ywas an arbitrary element
of V(a), this shows V(a) ⊆ B, as needed.

From Theorem 12.3.1, it is easy to see that x ∈ intU(x) for any x ∈ X and U ∈ 𝒰 , so
U(x) is a neighborhood of x. Furthermore, if N is any open neighborhood of x, N ∈ 𝒯𝒰
implies that, for any y ∈ N, there exists U ∈ 𝒰 with U(y) ⊆ N . In particular, since
x ∈ N, there exists U ∈ 𝒰 with U(x) ⊆ N . Thus, every neighborhood N of x contains a
neighborhood of formU(x) for someU ∈ 𝒰 . This formally proves the entirely expected
result that {U(x) : U ∈ 𝒰} is a base for the neighborhood filter 𝒱x at x. Indeed, our
motivation for the definition of a uniformity was that the slices U(x) should form a
basis for the neighborhoods at x. We state this formally, in a strengthened form.

Corollary 12.3.2. If 𝒰 is a uniformity on X, then, for each x ∈ X, the 𝒯𝒰 -neighborhood
filter at x is 𝒱x = {U(x) : U ∈ 𝒰}.

Proof. In the discussion above, we saw that {U(x) : U ∈ 𝒰} is a basis for the neighbor-
hood filter 𝒱x, so every neighborhood V of x contains a basic neighborhood U(x) for
some U ∈ 𝒰 . But since 𝒰 is a filter, U 󸀠 = U ∪ ({x} × V) ∈ 𝒰 , and U 󸀠(x) = V . Thus, every
neighborhood V of x has form U 󸀠(x) for some U 󸀠 ∈ 𝒰 .

Note that ℬ = {U(x) : x ∈ X,U ∈ 𝒰} is the union of neighborhood bases for each
x ∈ X, but ℬ is not generally a basis for the topology 𝒯𝒰 . The problem is that members
of the neighborhood filter need not be open, while members of the topology, and thus
of anybasis,must be open.Wenote that the converse of Corollary 12.3.2 fails. Exercise 1
of Section 12.5 presents a collection 𝒰 such that, for each x ∈ X, {U(x) : U ∈ 𝒰} is a
base for the 𝒯 -neighborhood filter 𝒱x at x, where 𝒯 is a uniformizable topology but 𝒰
is not a uniformity.

With these results, the following theorem about subspaces should be expected.

Theorem 12.3.3. If 𝒰 is a uniformity on X and Y is a nonempty subset of X, then 𝒰Y =
{U ∩ (Y × Y) : U ∈ 𝒰} is a uniformity on Y, and the uniform topology 𝒯𝒰Y

from 𝒰Y is the
subspace topology which Y inherits from (X, 𝒯𝒰 ).

The proof is left to the exercises.

Theorem 12.3.4. Suppose 𝒰 is a uniformity on X and A ⊆ X. Then in the induced topol-
ogy 𝒯𝒰 on X,

clA = ⋂{U(A) : U ∈ 𝒰}.
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Proof. From the definition of a uniformity, note that U ∈ 𝒰 if and only if U−1 ∈ 𝒰 , so
for any x ∈ X, {U−1(x) : U ∈ 𝒰} is a base for the neighborhood filter 𝒱x. Now

x ∈ clA ⇐⇒ every neighborhood of x intersects A
⇐⇒ ∀U ∈ 𝒰 ,U−1(x) ∩ A ̸= 0
⇐⇒ ∀U ∈ 𝒰 , ∃a ∈ A such that (x, a) ∈ U−1
⇐⇒ ∀U ∈ 𝒰 , ∃a ∈ A such that (a, x) ∈ U
⇐⇒ ∀U ∈ 𝒰 , x ∈ U(A),

which gives the desired equality.

12.3.2 The square of a uniform space

Suppose 𝒰 is a uniformity on X. The entourages U ∈ 𝒰 are subsets of X × X. Since 𝒰
gives a topology 𝒯𝒰 on X, it is natural to consider the product space (X, 𝒯𝒰 ) × (X, 𝒯𝒰 ).
With this product topology, X × X is called the square of the uniform space X. If X is
a uniform space, we will assume X × X carries this product topology if not explicitly
stated otherwise.

Theorem 12.3.5. If 𝒰 is a uniformity on X and R ⊆ X × X is a relation on X, then the
closure of R in the product space (X, 𝒯𝒰 ) × (X, 𝒯𝒰 ) is

clR = ⋂{U ∘ R ∘ U : U ∈ 𝒰}.

Proof. First we note that if ℬ is any base for 𝒰 , then

⋂{U ∘ R ∘ U : U ∈ 𝒰} = ⋂{B ∘ R ∘ B : B ∈ ℬ}.

Indeed, “⊇” holds since every U ∈ 𝒰 contains a B ∈ ℬ, and “⊆” holds since ℬ ⊆ 𝒰 .
By Theorem 12.2.9, the collection 𝒰 s of symmetric entourages in 𝒰 is a base for 𝒰 .

Now for R ⊆ X × X, we have

(x, y) ∈ clR ⇐⇒ ∀U ∈ 𝒰 s,U(x) × U(y) intersects R
⇐⇒ ∀U ∈ 𝒰 s, ∃(r, s) ∈ (U(x) × U(y)) ∩ R
⇐⇒ ∀U ∈ 𝒰 s, ∃r, s ∈ X with (x, r) ∈ U , (y, s) ∈ U , (r, s) ∈ R
⇐⇒ ∀U ∈ 𝒰 s, ∃r, s ∈ X with (x, r) ∈ U , (r, s) ∈ R, (s, y) ∈ U−1
⇐⇒ ∀U ∈ 𝒰 s, (x, y) ∈ U−1 ∘ R ∘ U = U ∘ R ∘ U
⇐⇒ (x, y) ∈ ⋂{U ∘ R ∘ U : U ∈ 𝒰 s},

and the result follows from the observation above.
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Theorem 12.3.6. Suppose 𝒰 is a uniformity on X. Then the collections

𝒱 = {U ∈ 𝒰 : U is open in X × X} and
𝒞 = {U ∈ 𝒰 : U is closed in X × X}

of open entourages and of closed entourages are each a base for the uniformity 𝒰 .

Proof. Suppose U ∈ 𝒰 s is a symmetric entourage in 𝒰 . We claim U ⊆ int(U3). Suppose
(a, b) ∈ U . Since (a, a), (a, b), (b, b) ∈ U, (a, b) ∈ U3. To see (a, b) ∈ int(U3), we will
show that the neighborhood U(a) × U(b) of (a, b) is contained in U3. Suppose (x, y) ∈
U(a)×U(b). Then (a, x), (b, y) ∈ U = U−1, so (x, a), (a, b), (b, y) ∈ U, and thus (x, y) ∈ U3.
This shows U ⊆ int(U3).

To show that the collection𝒱 of open entourages is a base for𝒰 , given an arbitrary
U ∈ 𝒰 , we must find V ∈ 𝒱 with V ⊆ U . Given U ∈ 𝒰 , there existsW ∈ 𝒰 withW3 ⊆ U
(see Exercise 13 of Section 12.2). We may further assume W is symmetric, for if not,
replace W by W s = W ∩ W−1 and note that W s ⊆ W implies (W s)3 ⊆ W3 ⊆ U . Now
by the preceding paragraph,W ⊆ int(W3) ⊆ intU ⊆ U . Now since 𝒰 is closed under
the formation of supersets andW ∈ 𝒰 , we have intU ∈ 𝒰 . Thus, every entourage in 𝒰
contains an open entourage, so 𝒱 is a base for 𝒰 .

To show that the collection 𝒞 of closed entourages is a base for 𝒰 , suppose U ∈ 𝒰
and letW ∈ 𝒰 be an entourage withW3 ⊆ U . By Theorem 12.3.5,W ⊆ clW ⊆ W3 ⊆ U,
and as a superset of W ∈ 𝒰 , clW is a closed entourage contained in U . Thus, 𝒞 is a
base for 𝒰 .

We have two important corollaries which follow immediately.

Corollary 12.3.7. If (X,𝒰) is a uniform space, every entourage U ∈ 𝒰 is a (not necessar-
ily open) neighborhood of the diagonal. That is, for U ∈ 𝒰 , ΔX ⊆ intU and intU ∈ 𝒰 .

Corollary 12.3.8. If (X,𝒰) is a uniform space, then (X, 𝒯𝒰 ) is T3.

Proof. Recall (Theorem 7.1.9) that X is T3 if and only if for every x ∈ X, every neigh-
borhood of x contains a closed neighborhood. (That is, every neighborhood filter 𝒱x
has a filter base of closed neighborhoods, or every point has a neighborhood base of
closed neighborhoods.) The crux of the proof is that 𝒱x = {U(x) : U ∈ 𝒰}, and since 𝒰
has a base of closed entourages, 𝒱x will have a base of slices C(x) of closed entourages
C ∈ 𝒰 , and these slices will be closed. Formally, any 𝒯𝒰 -neighborhood of x ∈ X has
form U(x) where U ∈ 𝒰 . We may view the neighborhood U(x) as U ∩ ({x} × X). By
Theorem 12.3.6, there exists a closed entourage C ∈ 𝒰 with C ⊆ U . In particular, C(x)
is a neighborhood of x and C(x) ⊆ U(x). Furthermore, since C is closed in X × X, the
intersection C ∩ ({x} × X) = C(x) ⊆ U(x) is closed in the copy {x} × X of X embedded in
X × X.

The next theorem provides further connections between separation axioms in a
uniform space.
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Theorem 12.3.9. Suppose (X,𝒰) is a uniform space. Then the following are equivalent.
(a) (X, 𝒯𝒰 ) is T1.
(b) (X, 𝒯𝒰 ) is Hausdorff.
(c) (X, 𝒯𝒰 ) is regular.
(d) ⋂𝒰 = ΔX .

Proof. Since X is regular if and only if it is T3 and T1, by Corollary 12.3.8 we have (a) ⇒
(c) ⇒ (b) ⇒ (a), showing the equivalence of (a), (b), and (c). The proof that (d) is also
equivalent is left to the exercises.

The final theorem of this section is an elegant result. The proof is more intricate
than the proofs of our other results on uniform spaces.

Theorem 12.3.10. Every compact Hausdorff topological space (X, 𝒯 ) is uniformizable,
and there is a unique uniformity compatible with 𝒯 , namely the collection 𝒰 of all neigh-
borhoods of the diagonal ΔX .

Proof. Suppose (X, 𝒯 ) is a compact Hausdorff topological space. First, we show that
the collection 𝒰 = {U ⊆ X × X : ΔX ⊆ intU} of neighborhoods of the diagonal is
a uniformity compatible with 𝒯 . Clearly, 𝒰 satisfies conditions (U1) and (U2) of the
definition of a uniformity. Since the function h : X2 → X2 defined by h(x, y) = (y, x) is
a homeomorphism which maps U to U−1, (U3) is satisfied.

It remains to check (U4). Suppose U ∈ 𝒰 is a neighborhood of ΔX . Then, for any
(x, x) ∈ ΔX , there exists a basic openneighborhoodNx×Nx of (x, x) contained inU . Now
{Nx : x ∈ X} is an open cover of the compact space X, so there exists a finite subcover
{Ni : i ∈ F}, where F = {x1, x2, . . . , xn} is a finite subset of X. With U 󸀠 = ⋃{Ni ×Ni : i ∈ F},
we have U 󸀠 ⊆ U, so it suffices to show the existence of V ∈ 𝒰 with V2 ⊆ U 󸀠. For any
subset J ⊆ F, set XJ = ⋃{Ni : i ∈ J} and YJ = ⋃{Ni : i ∈ F − J}. Now XJ and YJ are open
and XJ ∪YJ = ⋃{Ni : i ∈ F} = X. Thus, X −XJ and X −YJ are disjoint closed subsets of X.
Since every compact Hausdorff space is normal, there exist disjoint open sets GJ ,HJ in
X with X − XJ ⊆ GJ and X − YJ ⊆ HJ . Taking complements, we see that XJ ⊇ X −GJ ⊇ HJ
and similarly YJ ⊇ GJ . Thus, for every J ⊆ F, 𝒞J = {GJ ,HJ ,XJ ∩ YJ} is an open cover of X.
Consider the collection

𝒟 = {⋂
J⊆F QJ : QJ ∈ 𝒞J = {GJ ,HJ ,XJ ∩ YJ}}.

Every element D ∈ 𝒟 has form ⋂{QJ : J ⊆ F}, and as a finite intersection of open sets,
is open. Furthermore, given any x ∈ X and any J ⊆ F, by choosing QJ to be an element
of the cover 𝒞J which contains x, we see that there exists an element D = ⋂{QJ : J ⊆ F}
which contains x, so 𝒟 is a finite open cover of X. Let V = ⋃{D × D : D ∈ 𝒟}. Now V is
an open neighborhood of ΔX (so V ∈ 𝒰), and we claim V2 ⊆ U 󸀠. Suppose (x, z) ∈ V2.
To see (x, z) ∈ U 󸀠 = ⋃{Ni × Ni : i ∈ F}, suppose to the contrary {x, z} ̸⊆ Ni for any i ∈ F.
Since (x, z) ∈ V2, there exists y ∈ X with (x, y) ∈ V and (y, z) ∈ V . Thus, there exist
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D1,D2 ∈ 𝒟 with (x, y) ∈ D1 × D1 and (y, z) ∈ D2 × D2. In particular, y ∈ D1 ∩ D2. For
J0 = {k ∈ F : x ∈ Nk}, we have XJ0 = ⋃{Ni : x ∈ Ni}, so x ∈ XJ0 − YJ0 and z ∈ YJ0 − XJ0 .
Now x ̸∈ XJ0 ∩ YJ0 and x ̸∈ GJ0 ⊆ YJ0 , so x ∈ D1 = ⋂{Q1

J : J ⊆ F} implies Q1
J0 = HJ0 .

Similarly, y ∈ D2 = ⋂{Q2
J : J ⊆ F} implies Q2

J0 = GJ0 . Since D1 ⊆ Q1
J0 = HJ0 ⊆ XJ0 ,

D2 ⊆ Q2
J0 = GJ0 ⊆ YJ0 , and XJ0 ∩ YJ0 = 0, we have D1 ∩ D2 = 0, contrary to y ∈ D1 ∩ D2.

This completes the proof that V2 ⊆ U 󸀠 ⊆ U, and thus 𝒰 is a uniformity.
Having shown that 𝒰 is a uniformity, we next show that it is compatible with 𝒯 ,

that is, 𝒯𝒰 = 𝒯 . Suppose A ∈ 𝒯 and x ∈ A. Then U = X2 − ({x} × (X − A)) is an open
neighborhood of ΔX in (X, 𝒯 )2 with U(x) = A. Since U ∈ 𝒰 , this shows that A ∈ 𝒯𝒰 .
Conversely, suppose A ∈ 𝒯𝒰 . Then, for any x ∈ A, there exists U ∈ 𝒰 with U(x) ⊆ A.
Without loss of generality (by Theorem 12.3.6), we may take U to be open in (X, 𝒯 )2.
Now U(x) = U ∩ ({x} × X) is open in the subspace {x} × X of (X, 𝒯 )2, and since {x} × X
is homeomorphic to (X, 𝒯 ), it follows that B = U(x) is open in 𝒯 . This shows that, for
any x ∈ A, there exists B = U(x) ∈ 𝒯 with x ∈ B ⊆ A, so A ∈ 𝒯 .

Finally, we show that 𝒰 is the unique uniformity compatible with 𝒯 . Suppose that
𝒲 is a uniformity with 𝒯𝒲 = 𝒯 . By Corollary 12.3.7,𝒲 ⊆ 𝒰 . To see 𝒰 ⊆ 𝒲, by Theo-
rem 12.3.6, it suffices to show that every openmember of𝒰 is an element of𝒲. Suppose
U ∈ 𝒰 is an open neighborhood of the diagonal. Then U and X2 − ΔX cover X2. Since
(X, 𝒯 ) = (X, 𝒯𝒲 ) is Hausdorff, we have ⋂𝒲 = ΔX , and furthermore, since 𝒲 has a
base of its closed entourages (again Theorem 12.3.6), we have ΔX = ⋂{clW : W ∈ 𝒲},
so X2 − ΔX = ⋃{X2 − clW : W ∈𝒲}. Thus, {U} ∪ {X2 − clW : W ∈𝒲} is an open cover
of the compact space X × X, so there existW1, . . . ,Wn ∈𝒲 with

X2 = U ∪ (X2 − clW1) ∪ (X
2 − clW2) ∪ ⋅ ⋅ ⋅ ∪ (X

2 − clWn).

It follows that

X2 − U ⊆ (X2 − clW1) ∪ (X
2 − clW2) ∪ ⋅ ⋅ ⋅ ∪ (X

2 − clWn)

U ⊇ clW1 ∩ clW2 ∩ ⋅ ⋅ ⋅ ∩ clWn

⊇W1 ∩W2 ∩ ⋅ ⋅ ⋅ ∩Wn ∈𝒲 .

As a superset of an entourage in𝒲, we have U ∈𝒲, as needed.

An important corollary follows.

Corollary 12.3.11. Every completely regular space is uniformizable.

Proof. This follows from the theorem since uniformizability is a hereditary property,
and every completely regular space X is a subspace of its Stone-Čech compactification
βX, which is compact and Hausdorff.

In Section 12.4, we will see that, for T1 spaces, the converse of the corollary above
holds. This gives the significant result that a T1 space is completely regular if and only
if it is uniformizable.
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Example 12.3.12. Consider the topology 𝒯 on ℝ generated by the basis ℬ = {[x,
x + ε) : x ∈ ℚ, ε > 0} ∪ {(x − ε, x] : x ∈ ℝ − ℚ, ε > 0}. It is easy to verify that (ℝ, 𝒯 ) is
completely regular (Exercise 6 of Section 7.2), and thus is uniformizable. Furthermore,
(ℝ, 𝒯 ) is separable but not second countable (Exercise 13 below). By Theorem 11.2.6,
metrizable and separable imply second countable, so this uniformizable space (ℝ, 𝒯 )
is not metrizable. (Exercise 1 of Section 12.5 also addresses this example.)

12.3.3 Uniform continuity

Suppose (X, dX) is ametric spacewithmetric uniformity𝒰 having a base {Uε : ε > 0} of
ε-neighborhoods of the diagonal, and (Y , dY ) is a metric space with metric uniformity
𝒱 having a base {Vε : ε > 0} of ε-neighborhoods of the diagonal. Recall that (x, y) ∈ Uδ
if and only if dX(x, y) < δ. Now the definition of f : (X, dX) → (Y , dY ) being uniformly
continuous between the metric spaces,

∀ε > 0 ∃δ > 0 such that dX(x, y) < δ ⇒ dY (f (x), f (y)) < ε,

can be restated as

∀ε > 0 ∃δ > 0 such that (x, y) ∈ Uδ ⇒ (f (x), f (y)) ∈ Vε.

Since every entourage in a uniformity contains a basic entourage, these statements
are equivalent to

∀V ∈ 𝒱 ∃U ∈ 𝒰 such that (x, y) ∈ U ⇒ (f (x), f (y)) ∈ V .

We will take this last statement as the definition of uniform continuity between
two uniform spaces.

Definition 12.3.13. A function f : (X,𝒰) → (Y ,𝒱) between two uniform spaces is uni-
formly continuous if for every V ∈ 𝒱, there exists U ∈ 𝒰 such that (x, y) ∈ U implies
(f (x), f (y)) ∈ V .

Our discussion above shows that if X and Y are metric spaces with the metric
uniformity, the concept of uniform continuity of f : X → Y is identical whether f is
viewed as a function between twometric spaces or as a function between two uniform
spaces. However, since not all uniform spaces are metrizable, the definition extends
the metric definition of uniform continuity.

A function between topological spaces is continuous if and only if inverse im-
ages of open sets are open. Our next result will show that a function between uni-
form spaces is uniformly continuous if and only if inverse images of entourages are
entourages. However, if f : X → Y , the entourages in question are subsets of Y × Y
and X × X, so we must adjust the function f before we can discuss images or inverse
images of entourages. For a function f : X → Y , we define

(f × f ) : X × X → Y × Y by (f × f )(x1, x2) = (f (x1), f (x2)).
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Theorem 12.3.14. f : (X,𝒰) → (Y ,𝒱) is uniformly continuous if and only if for every
V ∈ 𝒱, (f × f )−1(V) ∈ 𝒰 .
Proof. The result follows from the equivalence of the statements

(f × f )−1(V) ∈ 𝒰 ⇐⇒ ∃U ∈ 𝒰 such that U ⊆ (f × f )−1(V)
⇐⇒ ∃U ∈ 𝒰 such that (f × f )U ⊆ V
⇐⇒ ∃U ∈ 𝒰 such that (x, y) ∈ U ⇒ (f (x), f (y)) ∈ V .

Exercises

1. Prove Theorem 12.3.3.
2. Suppose ℬ is a base for a uniformity 𝒰 on a set X. In the induced topology, the

neighborhood filter of x ∈ X is 𝒱x = {U(x) : U ∈ 𝒰}. Is {B(x) : B ∈ ℬ} a filter base
for 𝒱x?

3. Suppose (X,𝒰) is a uniform space. Show that the collection 𝒱s = {U ∈ 𝒰 : U =
U−1 and U is open in X ×X} of open symmetric entourages and the collection 𝒞s =
{U ∈ 𝒰 : U = U−1 and U is closed in X × X} of closed symmetric entourages are
both bases for 𝒰 .

4. Suppose (X,𝒰) is a uniform space, U ∈ 𝒰 , and x ∈ X.
(a) Show that cl(U(x)) ⊆ U2(x).
(b) If U is symmetric, show that cl(U(x)) ⊆ U4(y) for any y ∈ U(x).

5. Suppose (X,𝒰) is a uniform space, U ∈ 𝒰 , and x ∈ X. Must cl(U(x)) = (clU)(x)?
Does either inclusion hold?

6. Suppose (X,𝒰) is a uniform space andR is a relation onX. Show thatR ⊆ ⋂{int(U ∘
R ∘ U) : U ∈ 𝒰 s}.

7. If (X,𝒰) is a uniform space, Corollary 12.3.7 shows that every entourage U ∈ 𝒰 is a
neighborhood of the diagonal. Show that the converse fails by exhibiting a neigh-
borhood of the diagonal Δℝ which is not an entourage in the metric uniformity on
ℝ induced by the Euclidean metric.

8. Suppose (X,𝒰) is a uniform space. Prove that (X, 𝒯𝒰 ) is T2 if and only if⋂𝒰 = ΔX .
9. Suppose (X,𝒰) is a uniform space. Without appealing to Theorem 12.3.9 andwith-

out using the defining condition (U4) of a uniformity, prove that (X, 𝒯𝒰 ) is T1 if and
only if⋂𝒰 = ΔX .

10. Let Dε be the diamond {(x, y) ∈ ℝ2 : |x| + |y| < ε}, Uε = {(x, y) ∈ ℝ2 : |x − y| < ε} and
Vε = D1+ε ∪ Uε. Show that ℬ = {Vε : ε > 0} is a base for a uniformity on ℝ which
generates a topology which is not T1.

11. Consider (ℝ, 𝒯c), where 𝒯c is the cofinite topology. Find a uniformity 𝒰 onℝwhich
induces 𝒯c or prove that 𝒯c is not uniformizable.

12. Give a proof or counterexample to this statement: Every compact T1 topological
space is uniformizable.
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13. Show that the topological space (ℝ, 𝒯 ) of Example 12.3.12 is separable but not sec-
ond countable.

14. Suppose ℬ is a basis for a uniformity 𝒱 on Y . Prove f : (X,𝒰) → (Y ,𝒱) is uniformly
continuous if and only if for every B ∈ ℬ, (f × f )−1(B) ∈ 𝒰 .

15. Let 𝒰 be the Euclidean metric uniformity on X = (0,∞). Show that f : (X, 𝒯𝒰 ) →
(X, 𝒯𝒰 ) defined by f (x) = 1/x is not uniformly continuous by finding Vε ∈ 𝒰 such
that (f × f )−1(Vε) ̸∈ 𝒰 .

12.4 Uniformities and pseudometrics

Given a pseudometric p on X and ε > 0, we may define the “ε-neighborhood of the
diagonal”

Uε = {(x, y) ∈ X × X : p(x, y) < ε} = ⋃
x∈X{x} × B(x, ε),

just as we did for a metric. Exactly as for the metric case given in Example 12.2.7, {Uε :
ε > 0} is a base for a uniformity on X, called the pseudometric uniformity generated
by p. The pseudometric uniformity induces the pseudometric topology on X. We have
seen in Section 6.1 that every metric d : X ×X → [0,∞) is continuous, where X carries
the metric topology, X × X the product topology, and [0,∞) the Euclidean topology.
Those proofs remain valid for pseudometrics.

If 𝒰 and𝒲 are uniformities on X and 𝒰 ⊆𝒲, then we say𝒲 is finer than 𝒰 and 𝒰
is coarser than𝒲. Clearly, a finer uniformity has more entourages and thus produces
a finer uniform topology.

If f : (X, 𝒯 ) → Y is continuous and 𝒯f is a topology on X finer than 𝒯 , then f :
(X, 𝒯f ) → Y is continuous. Combining these observations gives the following result.

Theorem 12.4.1. Suppose p is a pseudometric on X and𝒰 is a uniformity on X. If the uni-
form topology 𝒯𝒰 is finer than the pseudometric topology 𝒯p on X, then p : (X, 𝒯𝒰 )2 →
[0,∞) is continuous. In particular, if 𝒰 is finer than the pseudometric uniformity gener-
ated by p, then p : (X, 𝒯𝒰 )2 → [0,∞) is continuous.

The hypotheses of the last sentence above are commonly used and are named:
given a uniformity 𝒰 on X, a pseudometric p on X is uniform with respect to 𝒰 if and
only if𝒰 is finer than the pseudometric uniformity generated by p. That is, p is uniform
with respect to 𝒰 if and only if for every ε > 0, Uε ∈ 𝒰 .

Our next goal will be to show that every uniformizable space is T3.5. We will use
the following lemma.

Lemma 12.4.2. Suppose 𝒰 is a uniformity on X and V0,V1,V2, . . . is a nested sequence
of symmetric entourages in 𝒰 such that

⋅ ⋅ ⋅ ⊆ Vn+1 ⊆ V3
n+1 ⊆ Vn ⊆ ⋅ ⋅ ⋅ ⊆ V2 ⊆ V3

2 ⊆ V1 ⊆ V
3
1 ⊆ V0 = X × X.
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Then there exists a pseudometric p on X such that

Vn ⊆ {(x, y) ∈ X
2 : p(x, y) ≤ 2−n} ⊆ Vn−1 for every n ∈ ℕ.

Proof. For x, y ∈ X, put

f (x, y) = { 0 if (x, y) ∈ ⋂∞n=1 Vn,
2−n if (x, y) ∈ Vn − Vn+1.

In particular, if f (x, y) = 2−n, then (x, y) ∈ V0,V1, . . . ,Vn but (x, y) ̸∈ Vn+1. Thus, (x, y) ∈
Vn if and only if f (x, y) ≤ 2−n. Now for x, y ∈ X, define

p(x, y) = ⋀
x0 ,x1 ,...,xm∈X
x=x0 ,xm=y

m
∑
i=1 f (xi−1, xi).

It is easy to see that p(x, x) = 0 and p(x, y) = p(y, x). The triangle inequality follows
immediately from the definition of p(x, y) as an infimum over all paths from x to y.
Thus, p is a pseudometric. Next, we will prove

1
2
f (x, y) ≤ p(x, y) ≤ f (x, y) for all x, y ∈ X. (12.1)

The result will follow quickly from these inequalities: Assuming (12.1), (x, y) ∈ Vn im-
plies f (x, y) ≤ 2−n, so p(x, y) ≤ f (x, y) ≤ 2−n. Also, if p(x, y) ≤ 2−n, then 1

2 f (x, y) ≤ p(x, y)
implies f (x, y) ≤ 2−(n−1), so (x, y) ∈ Vn−1.

The second inequality in (12.1) is immediate from the definition of p(x, y) as an
infimum of a set containing f (x, y). For the first inequality, we will show that given
any path x = x0, x1, . . . , xm = y of lengthm from x to y in X,

1
2
f (x, y) ≤ a where a =

m
∑
i=1 f (xi−1, xi). (12.2)

If a ≥ 1
2 , then (12.2) holds since f (x, y) ≤ 1.

Next, we consider the case a = 0. Note that

a = 0⇒ f (xi−1, xi) = 0 for i = 1, . . . ,m,

⇒ (xi−1, xi) ∈ ∞⋂
n=1Vn for i = 1, . . . ,m,

⇒ (x, y) ∈ Vm
n for all n ∈ ℕ.

By the nested assumption Vj ⊆ V3
j ⊆ Vj−1, it follows that V3k

j ⊆ Vj−k, and if m = 3k − r
for r ∈ {0, 1, 2}, then

(x, y) ∈ Vm
n = V

3k−r
n ⊆ V

3k
n ⊆ Vn−k ⊆ Vn−k−1 ⊆ ⋅ ⋅ ⋅ ⊆ V1 ⊆ V0 for all n ≥ k.

Thus, (x, y) ∈ Vn for all n ∈ ℕ, so f (x, y) = 0 and (12.2) holds.
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Finally, suppose a ∈ (0, 12 ). We will use induction on m. For m = 1, we have
1
2 f (x, y) ≤ f (x, y) so the inequality holds. For m = 2 we have a = f (x, x1) + f (x1, y), so
both terms are less than or equal to a. Let k ∈ ℕ be the smallest natural number with
2−k ≤ a. If f (x, x1) = 2−n ≤ a < 1

2 , then 2 ≤ k ≤ n. The definition of f implies (x, x1) ∈ Vj
for all j ≤ n, so in particular, (x, x1) ∈ Vk . If f (x, x1) = 0, then (x, x1) ∈ Vk . Thus, in both
cases (x, x1) ∈ Vk . The same argument shows (x1, y) ∈ Vk . Thus, (x, y) ∈ V2

k ⊆ V
3
k ⊆ Vk−1,

so f (x, y) ≤ 2−(k−1), and thus 1
2 f (x, y) ≤ 2

−k ≤ a, proving (12.2) whenm = 2.
Now suppose (12.2) holds for chains of length 1, 2, . . .m − 1 and suppose x =

x0, x1, . . . , xm = y is a chain of length m ≥ 3 from x to y. In this case, we will break the
chain into three subchains x0, . . . , xj; xj, xj+1; and xj+1, . . . xm where j is the smallest nat-
ural number which makes the partial sum ∑j+1i=1 f (xi−1, xi) exceed half of the total sum
∑mi=1 f (xi−1, xi) = a. Now ∑ji=1 f (xi−1, xi) ≤ a/2 and ∑mi=j+2 f (xi−1, xi) ≤ a/2. Applying (12.2)
to these subchains of length less thanm gives 1

2 f (x, xj) ≤
a
2 and

1
2 f (xj+1, xm) ≤ a

2 . Thus
f (x, xj) ≤ a and f (xj+1, xm) ≤ a. Clearly f (xj, xj+1) ≤ a, since the sum a contains f (xj, xj+1)
as one term. Now (mirroring the case form = 2), let k ∈ ℕ be the smallest natural num-
ber with 2−k ≤ a. If f (x, xj) = 2−n ≤ a < 1

2 , then 2 ≤ k ≤ n and (x, xj) ∈ Vk . If f (x, xj) = 0,
then (x, xj) ∈ Vk . In either case, we have (x, xj) ∈ Vk . Similarly, (xj, xj+1), (xj+1, y) ∈ Vk .
Thus, (x, y) ∈ V3

k ⊆ Vk−1, so f (x, y) ≤ 2−(k−1), and thus 1
2 f (x, y) ≤ 2

−k ≤ a, proving (12.2)
for paths of lengthm. By mathematical induction, (12.2) holds for everym ∈ ℕ.

The lemma above allows us to prove the following important theorem.

Theorem 12.4.3. A T1 topological space (X, 𝒯 ) is uniformizable if and only if it is com-
pletely regular.

Proof. Corollary 12.3.11 showed that every completely regular space is uniformiz-
able. Suppose (X, 𝒯 ) is uniformizable and T1. To see X is completely regular, we
must show it is T3.5. Suppose A is a closed set in X not containing the point b.
Let 𝒰 be a uniformity on X inducing 𝒯 , and let V ∈ 𝒰 be an open symmetric en-
tourage with V(b) ∩ A = 0. Take V0 = X2 and V1 = V . From the properties of a
uniformity (see Exercise 13 of Section 12.2), we can construct a sequence of sym-
metric entourages V2,V3, . . . satisfying the hypotheses of Lemma 12.4.2. Let p be the
pseudometric guaranteed by Lemma 12.4.2. Given any ε > 0, for 2−n < ε, we have
Vn ⊆ {(x, y) : p(x, y) ≤ 2−n} ⊆ Uε = {(x, y) : p(x, y) < ε}, so Uε ∈ 𝒰 for every ε > 0. Thus,
by Theorem 12.4.1, p is continuous. Now {(x, y) : p(x, y) ≤ 2−n} ⊆ Vn−1 for any n ∈ ℕ,
and with n = 2 we have {(x, y) : p(x, y) < 1/4} ⊆ {(x, y) : p(x, y) ≤ 1/4} ⊆ V1 = V . Thus,
4p(x, y) < 1 implies (x, y) ∈ V , and thus y ̸∈ V(b) implies 4p(b, y) ≥ 1. Define g : X → ℝ
by g(y) = min{4p(b, y), 1}. Now g is continuous, and y ∈ A implies y ̸∈ V(b), so g(y) = 1.
Furthermore, g(b) = 0. Thus, g is a continuous function separating A and b.

The proof above actually shows that any uniformizable topological space is T3.5,
without the use of the T1 property. Our proof that completely regular implies uni-
formizable used the Stone–Čech compactification, which required the T2 property im-
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plied by complete regularity. Thus, in that proof, we cannot drop the T1 condition to
show that T3.5 implies uniformizable. This is a shortcoming of the proof; other proofs
can be used to show that T3.5 implies uniformizable, so the uniformizable spaces are
precisely the T3.5 spaces.

Collecting some previous results, we have the following characterization of com-
pletely regular spaces.

Theorem 12.4.4. Let (X, 𝒯 ) be a topological space. The following are equivalent.
(a) (X, 𝒯 ) is completely regular.
(b) (X, 𝒯 ) is a subspace of a compact Hausdorff space.
(c) (X, 𝒯 ) is a separating gauge space.
(d) (X, 𝒯 ) is uniformizable by a uniformity 𝒰 with⋂𝒰 = ΔX .

Proof. See Corollary 7.3.6 and Theorems 11.1.13, 12.3.9, and 12.4.3.

Exercises

1. Suppose 𝒰 and𝒲 are uniformities on X inducing the uniform topologies 𝒯𝒰 , 𝒯𝒲
onX. We have noted that if𝒲 is finer than𝒰 , then 𝒯𝒲 is finer than 𝒯𝒰 . Give proofs
or counterexamples for the following statements. (Hint: Consider the uniformity
of Exercise 11 of Section 12.2.)
(a) If𝒲 is strictly finer than 𝒰 , then 𝒯𝒲 is strictly finer than 𝒯𝒰 .
(b) If 𝒯𝒲 is finer than 𝒯𝒰 , then𝒲 is finer than 𝒰 .

2. The function p((x, y), (a, b)) = |x − a| is a pseudometric onℝ2. Determine whether
it is uniform with respect to the uniformities given below.
(a) The metric uniformity 𝒰ℰ from the Euclidean metric on ℝ2.
(b) The metric uniformity 𝒰T from the taxicab metric on ℝ2.
(c) The metric uniformity 𝒰D from the discrete metric on ℝ2.

3. Let X be the set of integrable functions from [0, 1] to ℝ. The function p(f , g) =
∫10 |f (x) − g(x)| dx is a pseudometric on X. Determine whether p is uniform with
respect to the sup-metric uniformity on X.

4. LetX be the set of integrable functions from [0, 1] toℝ. The function r(f , g) = |f (0)−
g(0)| is a pseudometric on X. Determine whether r is uniform with respect to (a)
the sup-metric uniformity on X, and (b) the pseudometric uniformity from the
pseudometric p(f , g) = ∫10 |f (x) − g(x)| dx.

5. If K = {1/n : n ∈ ℕ}, the collection ℬ = {(a, b) ⊆ ℝ : a < b} ∪ {(a, b) − K ⊆ ℝ : a < b}
is a basis for a topology onℝ called the K-topology. Determine whether or not this
topology is uniformizable.

6. Let X = [0, 1]2 with the topology having basis 𝒯ℰ ∪ {{(0,0)} ∪ (0, ε)2 : ε > 0} where
𝒯ℰ is the Euclidean topology on [0, 1]2. Determine whether or not this topology is
uniformizable.
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7. Suppose 𝒰 and𝒲 are uniformities on X. If⋂𝒰 = ⋂𝒲, is 𝒯𝒰 = 𝒯𝒲?
8. Suppose 𝒰 and𝒲 are uniformities on X. If 𝒯𝒰 = 𝒯𝒲 , is⋂𝒰 = ⋂𝒲?

12.5 Quasi-uniformities

Wehave seenapplications requiring asymmetric distances.Quasi-metrics dropped the
symmetry condition from the definition of a metric. Quasi-metrics are clearly a part of
the study of asymmetric topology. The T1 property has a certain symmetry to it: given
x ̸= y, there is a neighborhood of x excluding y and a neighborhood of y excluding x.
The T0 property did not have this symmetry: there may be a neighborhood of x ex-
cluding y but no neighborhood of y excluding x. Thus, T0 spaces and generally spaces
which are not T1 are also a part of asymmetric topology. For classical applications of
topology to real analysis, spaces are usually considered to beT2. In application to com-
puter science, spaces of machine numbers or pixels are finite, and the non-discrete
topologies on finite sets are not T1. Thus, applications of topology to computer sci-
ence constitute a significantmotivation for and a significant part of asymmetric topol-
ogy.

Uniform spaces have a built-in symmetry condition. IfU is in a uniformity 𝒰 , then
so is U−1. If we drop this condition, we get a quasi-uniformity. Quasi-uniformities are
also important for modeling asymmetric situations.

Definition 12.5.1. A quasi-uniformity on a nonempty set X is a collection 𝒰 of subsets
of X × X such that
(Q1) 𝒰 is a filter on X × X.
(Q2) ΔX ⊆ U for every U ∈ 𝒰 .
(Q3) For every U ∈ 𝒰 , there exists V ∈ 𝒰 with V2 ⊆ U .

The quasi-uniform topology on X induced by a quasi-uniformity 𝒰 is

𝒯𝒰 = {A ⊆ X : ∀x ∈ A ∃U ∈ 𝒰 with U(x) ⊆ A}.

A collection ℬ is a base for the quasi-uniformity 𝒰 if ℬ ⊆ 𝒰 and every U ∈ 𝒰 contains
some B ∈ ℬ.

The proof of Corollary 12.3.2 (and Theorem 12.3.1) did not use the symmetric prop-
erty of the uniformity, so the result holds for quasi-uniform spaces. For reference, we
state it here.

Theorem 12.5.2. If 𝒰 is a quasi-uniformity on X, then, for each x ∈ X, the 𝒯𝒰 -neighbor-
hood filter at x is 𝒱x = {U(x) : U ∈ 𝒰}.

Exercise 1 shows that the converse of Theorem 12.5.2 fails.
The proof of the following result is straightforward and is left to the exercises.
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Theorem 12.5.3. A collection ℬ of subsets of X2 is a base for some quasi-uniformity if
and only if ℬ is filter base and for every B ∈ ℬ, there exists C ∈ ℬ with ΔX ⊆ C2 ⊆ B.

Recall that a quasiorder dropped the antisymmetry condition from the definition
of a partial order. That is, a quasiorder on X is a reflexive, transitive relation R ⊆ X2.
Every quasiorder ≲ on X gives an Alexandroff topology 𝒯≲ on X consisting of the in-
creasing sets, and (see Exercise 8 of Section 8.3.) 𝒯≲ is T0 if and only if ≲ is a partial
order.

The next result includes some interesting connections between quasiorders and
quasi-uniformities.

Theorem 12.5.4.
(a) If R is a quasiorder on X, then {R} is a base for a quasi-uniformity on X.
(b) If 𝒰 is a quasi-uniformity on X, then⋂𝒰 is a quasiorder on X.
(c) A quasi-uniform topology 𝒯𝒰 is T0 if and only if⋂𝒰 is a partial order on X.
(d) A quasi-uniform topology 𝒯𝒰 is T1 if and only if⋂𝒰 = ΔX .

Proof. (a) follows directly from the definitions and Theorem 12.5.3.
(b) If 𝒰 is a quasi-uniformity on X, then ΔX ⊆ U for any U ∈ 𝒰 , so ΔX ⊆ ⋂𝒰 , so

⋂𝒰 is reflexive. To see it is transitive, suppose (x, y), (y, z) ∈ ⋂𝒰 . For any U ∈ 𝒰 , pick
V ∈ 𝒰 with V2 ⊆ U . Now (x, y), (y, z) ∈ V , so (x, z) ∈ V2 ⊆ U . Thus, (x, y) ∈ ⋂𝒰 .

(c) Suppose 𝒯𝒰 is T0 and (x, y) ∈ ⋂𝒰 −ΔX . Then x ̸= y and y ∈ U(x) for everyU ∈ 𝒰 .
By the T0 condition, there must exist V ∈ 𝒰 giving a basic neighborhood V(y) with
x ̸∈ V(y). Thus, (y, x) ̸∈ V , so (y, x) ̸∈ ⋂𝒰 . Thus, the quasiorder ⋂𝒰 is antisymmetric
and therefore a partial order.

Conversely, suppose ⋂𝒰 is a partial order and x ̸= y. If (x, y) ̸∈ ⋂𝒰 , then there
exists U ∈ 𝒰 with (x, y) ̸∈ U, so U(x) is a 𝒯𝒰 -neighborhood of x which excludes y.
If (x, y) ∈ ⋂𝒰 , then antisymmetry implies (y, x) ̸∈ ⋂𝒰 , and, as above, there exists a
neighborhood U(y) of y which excludes x. Thus, 𝒯𝒰 is T0.

(d) Suppose𝒯𝒰 isT1. Given x ̸= y, there existsU ∈ 𝒰 with y ̸∈ U(x). Thus, (x, y) ̸∈ U,
so (x, y) ̸∈ ⋂𝒰 . Since ΔX ∈ ⋂𝒰 , it follows that⋂𝒰 = ΔX .

Conversely, suppose ⋂𝒰 = ΔX . Now if x ̸= y, then (x, y) ̸∈ ⋂𝒰 , so there exists
U ∈ 𝒰 with (x, y) ̸∈ U, and U(x) is a neighborhood of y which excludes x.

Recall that every quasi-metric q on X generates a T0 topology on X and a partial
order ≤ on X defined by x ≤ y if and only if q(x, y) = 0. The connection between quasi-
metrics and quasi-uniformities is given in the theorem below. The proof is left to the
exercises.

Theorem 12.5.5. Suppose q is a quasi-metric on X. For ε > 0, let Uε = {(x, y) ∈ X × X :
q(x, y) < ε}. Then the collection ℬ = {Uε : ε > 0} is a base for a quasi-uniformity 𝒰 on X,
and⋂𝒰 is the partial order ≤ defined by x ≤ y if and only if q(x, y) = 0.
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Recall that a topology is uniformizable if and only if it is T3.5. The next theorem,
proven by William Pervin in 1962, gives us a remarkable result on which topologies
are quasi-uniformizable: Every topology is quasi-uniformizable. The quasi-uniformity
introduced in the proof is called the Pervin quasi-uniformity.

Theorem 12.5.6. Every topology is induced by a quasi-uniformity.

Proof. If 𝒯 is a topology on X, for A ∈ 𝒯 , let UA = (A × A) ∪ (X − A × X), as shown in
Figure 12.3, and let 𝒮 = {UA : A ∈ 𝒯 }. We will show that 𝒮 is a subbasis for a quasi-
uniformity 𝒰 ; that is, the collection ℬ of finite intersections of elements of 𝒮 is a basis
for a quasi-uniformity 𝒰 , and then we will see that 𝒯𝒰 = 𝒯 .

Figure 12.3: Subbasic elements of the Pervin quasi-uniformity.

Clearly ΔX ⊆ UA for every UA ∈ 𝒮, and thus ΔX ⊆ B for every B ∈ ℬ, and 0 ̸∈ ℬ. ℬ
is closed under finite intersections, since a finite intersection of finite intersections of
elements of 𝒮 is a finite intersection of elements of 𝒮. Thus, ℬ is a filter base. To see
ℬ is a base for a quasi-uniformity, by Theorem 12.5.3, it only remains to show that, for
any B ∈ ℬ, there exists C ∈ ℬ with C2 ⊆ B. We first show that if A ∈ 𝒯 , then U2

A = UA.
Every reflexive relation U has U ⊆ U2, so we only need to show U2

A ⊆ UA. Suppose
(x, y) ∈ U2

A. If x ∈ X − A, then {x} × X ⊆ UA, so (x, y) ∈ UA. If x ∈ A, then (x, y) ∈ U2
A

implies (x, z), (z, y) ∈ UA for some z ∈ X. But x ∈ A and (x, z) ∈ UA implies z ∈ A, and
then z ∈ A and (z, y) ∈ UA implies y ∈ A. Thus, (x, y) ∈ A × A ⊆ UA, and this completes
the proof that U2

A = UA. Now if B ∈ ℬ, then B = UA1
∩ ⋅ ⋅ ⋅ ∩ UAn

for A1, . . . ,An ∈ 𝒯 , and

B2 ⊆ U2
A1
∩ ⋅ ⋅ ⋅ ∩ U2

An
= UA1
∩ ⋅ ⋅ ⋅ ∩ UAn

= B.

Thus, for C = B ∈ ℬ, we have C2 ⊆ B.
Having shown that ℬ is a base for some quasi-uniformity 𝒰 (called the Pervin

quasi-uniformity), it remains to show that the topology 𝒯𝒰 induced by this quasi-
uniformity is 𝒯 . Given any nonempty A ∈ 𝒯 and any a ∈ A, UA ∈ 𝒰 so the slice
UA(a) = A is in 𝒯𝒰 . Thus, 𝒯 ⊆ 𝒯𝒰 . Now suppose A ∈ 𝒯𝒰 and a is an arbitrary point
in A. To see A ∈ 𝒯 , we must find a 𝒯 -neighborhood of a contained in A. In 𝒯𝒰 , a has
a neighborhood base {B(a) : B ∈ ℬ}, so there exists B ∈ ℬ with a ∈ B(a) ⊆ A. Now
B = UA1

∩ ⋅ ⋅ ⋅ ∩ UAn
where A1, . . . ,An ∈ 𝒯 , so B(a) = UA1

(a) ∩ ⋅ ⋅ ⋅ ∩ UAn
(a). For each

i = 1, . . . , n, the sliceUAi
(a) is either X orAi, and thus is 𝒯 -open. It follows that B(a) is a

𝒯 -neighborhood of a contained in A. Since a ∈ Awas arbitrary, A ∈ 𝒯 , so 𝒯𝒰 ⊆ 𝒯 .
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Quasi-uniformities are explored in depth in [17]. There aremany excellent sources
on uniform spaces, including [8, 16].

Exercises
1. Consider the topology 𝒯 on ℝ generated by the basis ℬ = {[x, x + ε) : x ∈ ℚ,

ε > 0}∪{(x−ε, x] : x ∈ ℝ − ℚ, ε > 0}. In Example 12.3.12,we saw that this topology is
uniformizable. Finding a uniformity (or even a quasi-uniformity) which generates
𝒯 is not as simple as one might expect. For ε > 0, define

Uε = (⋃
x∈ℚ{x} × [x, x + ε)) ∪ ( ⋃x∈ℝ−ℚ{x} × (x − ε, x]) ,

and let 𝒰 = {W ⊆ ℝ2 : ∃ε > 0 with Uε ⊆ W}. Note that {U(x) : U ∈ 𝒰} is a basis
for 𝒯 .
(a) Show that, for any ε > 0, U2

ε contains the Euclidean ε/2 neighborhood of the
diagonal⋃x∈X{x} × (x − ε/2, x + ε/2).

(b) Show that 𝒰 is not a quasi-uniformity.
(Compare to Exercise 8 of Section 11.2.)

2. Prove Theorem 12.5.3: A collection ℬ of subsets of X2 is a base for some quasi-
uniformity if and only if ℬ is filter base and for every B ∈ ℬ, there exists C ∈ ℬ
with ΔX ⊆ C2 ⊆ B.

3. Describe a quasi-uniformity onℝwhose induced topology is the lower limit topol-
ogy ℝl. Verify that this really is a quasi-uniformity.

4. Suppose 𝒰 is a quasi-uniformity on X.
(a) Show that 𝒰−1 = {U−1 : U ∈ 𝒰} is also a quasi-uniformity on X (called the

conjugate quasi-uniformity).
(b) Show that the quasi-uniformity U is a uniformity if and only if 𝒰 = 𝒰−1.
(c) Show that 𝒰 ∪ 𝒰−1 is a subbasis for a uniformity 𝒰 s on X.

5. Exercise 9 of Section 12.2 showed that if a quasi-uniformity 𝒰 is a uniformity,
then⋂𝒰 is an equivalence relation. Does the converse hold? That is, give a proof
or counterexample to the statement: If 𝒰 is a quasi-uniformity and ⋂𝒰 is an
equivalence relation, then 𝒰 is in fact a uniformity.

6. Prove Theorem 12.5.5.
7. Given a topology 𝒯 on X, with UA = (A × A) ∪ (X − A × X), the collection

𝒮 = {UA : A ∈ 𝒯 } is a subbasis for the Pervin quasi-uniformity on X. If ℬ𝒯 is
a basis for 𝒯 , is 𝒮 = {UB : B ∈ ℬ𝒯 } a subbasis for the Pervin quasi-uniformity?

8. For each topology below, draw some typical subbasic elements UA for the Pervin
quasi-uniformity, as suggested in Figure 12.3.
(a) The cofinite topology 𝒯cf on [0,∞).
(b) The discrete topology on ℝ.
(c) The right ray topology on ℝ.





13 Continuous deformation of sets and curves

13.1 Continuous deformation of closed sets inℝ2

Using some suggestive terminology we will define below, Figure 13.1 shows two dy-
namic closed sets A and B in the plane which move from being disjoint to meeting
and then to overlapping. Would it be possible for dynamic closed sets A and B in the
plane to move from being disjoint directly to overlapping, without first meeting? Such
questions require a careful definition of meeting, overlapping, and continuous defor-
mation, and the answers may depend on what kinds of sets (closed, compact, con-
nected, etc.) are permitted.

Figure 13.1: A transition from disjoint to meets to overlaps.

Applications to geography have motivated much research on how pairs of planar sets
may be related. In geographical studies, pairs of sets may represent the habitats of
a predator and of its prey, or a wheat growing region and a drought region. Keeping
with these geographical motivations, throughout this section we will mainly consider
pairs of closed sets of the plane, although many of our definitions are stated in more
generality.

The nature of the intersection between two sets A and Bmay be classified accord-
ing to whether their boundaries intersect, their interiors intersect, and whether the
boundary of either set intersects the interior of the other. (See [4, 15].)

Definition 13.1.1. For sets arbitraryX1,X2,X3,X4, define χ(X1,X2,X3,X4) = (x1, x2, x3, x4)
where xi = 0 if Xi = 0 and xi = 1 if Xi ̸= 0 (i = 1, 2, 3, 4). Given two sets A, B in a
topological space, their 4-intersection value is the binary 4-tuple

χ(𝜕A ∩ 𝜕B, intA ∩ intB, 𝜕A ∩ intB, intA ∩ 𝜕B).

The 4-intersection values realized by subsets of the Euclidean plane which are
homeomorphic to closed disks have suggestive names, given in Table 13.1.

For arbitrary closed sets A and B in the plane, all 16 possible 4-intersection values
may be realized. The 4-intersection value (0, 1, 1, 1) is realized by connected sets A =
[0, 2] × ℝ and B = [1, 3] × ℝ, and by disconnected sets C = [−2, 2]2 ∪ ([5, 7] × [−1, 1])
and D = B((6,0), 2) ∪ B((0,0), 1), where B(x, ε) = {z ∈ ℝ2 : d(x, z) ≤ ε}, as depicted in
Figure 13.2. The sets E = F = ℝ2 have 4-intersection value (0, 1,0,0).

https://doi.org/10.1515/9783110686579-014
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Table 13.1: 4-intersection values realized by homeomorphic copies of closed disks.

χ(𝜕A ∩ 𝜕B, int A ∩ int B, 𝜕A ∩ int B, int A ∩ 𝜕B)
Disjoint (0,0,0,0) Meet (1,0,0,0) Overlap (1,1,1,1) Equal (1,1,0,0)
��
��

��
��

A B ��
��

��
��

A B ��
��

��
��

A B ��
��
A=B

Covers (1,1,0,1) Covered by (1,1,1,0) Contains (0,1,0,1) Inside (0,1,1,0)
��
��mA B ��

��mA B ��
��mA B ��

��mA B

Figure 13.2:More 4-intersection values.

The 4-intersection value (1,0, 1,0) is realized with G = [−1, 1]2 ∪ ([1, 3] × {0}) and H =
[2, 4] × [−1, 1], as seen in Figure 13.2. Note that the set G has a “whisker” which intro-
duces boundary points of G which are not boundary points of intG. We may wish to
prohibit sets with whiskers.

Definition 13.1.2. A subset A of a topological space X is a regular closed set if A =
cl(intA).

A regular closed set in the plane can have no “whiskers”. It is left to the exercises
to show that, for a regular closed set A, 𝜕A = 𝜕(intA) and (1,0, 1,0) and several other
4-intersections values cannot be realized with regular closed sets A and B.

Let us return to the idea of dynamically changing closed sets A(t) and B(t) in the
Euclidean plane. Figure 13.1 shows that it is possible for disjoint sets A and B (with
value (0,0,0,0)) to morph to sets which meet (with value (1,0,0,0)) without pass-
ing through any other intermediate values. In this situation, we will say the values
(0,0,0,0) and (1,0,0,0) are adjacent. Explicitly, 4-intersection values (x, y, z,w) and
(x󸀠, y󸀠, z󸀠,w󸀠) are adjacent if there exist dynamic sets A(t) and B(t) moving continu-
ously over a time interval (a, b) containing t0, with A(t), B(t) having value (x, y, z,w)
for t ∈ (a, t0), having value (x󸀠, y󸀠, z󸀠,w󸀠) for t ∈ (t0, b), and either value (x, y, z,w)
or (x󸀠, y󸀠, z󸀠,w󸀠) at t0. Figure 13.1 also shows that the 4-intersection value (1,0,0,0)
(meets) is adjacent to (1, 1, 1, 1) (overlaps). The question presented there was whether
disjoint (0,0,0,0) is adjacent to overlaps (1, 1, 1, 1).



13.1 Continuous deformation of closed sets in ℝ2 | 285

Before we formally define what is meant by sets A(t) and B(t) moving continu-
ously, we will present some motivating examples and questions.

First, we present some dynamic sets A(t) and B(t) which move directly from dis-
joint to overlapping, skipping the meets stage.

Example 13.1.3. (a) Let A be the stationary set [−1, 1]2. For t < 0, let B(t) = [2, 4]2. For
t ≥ 0, let B(t) = [0, 2]2. Now A(t) and B(t) are disjoint for t < 0 and overlap for t ≥ 0,
but the set B(t) hardly appears to be moving continuously.

(b) Let A be the stationary set {(x, y) ∈ ℝ2 : x ≥ 1, y ≥ 1/x} and for time t ∈ ℝ,
let B(t) = ℝ × (−∞, t]. In any reasonable definition of continuous motion, we would
expect that A(t) = A and B(t) are moving continuously. For t ≤ 0, A(t) and B(t) are
disjoint. For t > 0, A(t) and B(t) overlap. There is no instant when the boundaries of
A(t) and B(t) intersect but their interiors do not.

(c) For all t ∈ ℝ, letA(t) = A = [2, 4]×[−1, 1], and letB(t) = [−1, 1]2∪([1, 3]×cl(−t, t)).
Note that, for t ≤ 0, the interval (−t, t) is empty, so B(t) = [−1, 1]2 is disjoint from
A(t). For t > 0, B(t) contains [1, 3] × [−t, t], which causes the boundary and interior
of B to intersect the boundary and interior of A. Thus, A(t) and B(t) are disjoint for
t ≤ 0 and overlap for t > 0. Note the importance of using cl(−t, t) instead of [−t, t]
in this construction. At t = 0, cl(−t, t) is empty, while [−t, t] is not. Had we used
[−t, t] in the definition of B(t), then at t = 0, B(t) would have a whisker and A(0) and
B(0) would meet. Using cl(−t, t), however, A(t) and B(t) are regular closed sets at all
times.

One might try to use continuity of the area of closed sets A(t) and B(t) to help
quantify continuous motion. However, note that in Example 13.1.3(a), the area a(t) of
A(t) and b(t) of B(t) are constantly 4 and thus are continuous functions. However,
the area ab(t) of A(t) ∩ B(t) is not continuous. It jumps from 0 for t < 0 to 1 for
t ≥ 0.

Example 13.1.3(b) clearly depends on the asymptotic unbounded nature of the
sets. That is, this example clearly depends on the non-compactness of A(t) and B(t),
and brings up the question of whether examples exist using compact sets. (Not only
are A and B unbounded, but they have infinite area.)

The sets A(t) and B(t) of Example 13.1.3(c) are regular closed and compact for all
t ∈ ℝ, and not only are the areas a(t) and b(t) of A(t) and B(t) continuous, but the area
ab(t) of A(t) ∩ B(t) is also continuous. While these areas are continuous, the sudden
appearance of the extension [1, 3] × cl(−t, t) for t > 0 suggests some form of discon-
tinuous morphing. For t = 0, B(t) is contained in the open set (−2, 2)2, but there is
no neighborhood of t = 0 over which B(t) remains in (−2, 2)2. This motivates our next
definition.

Definition 13.1.4. A function B : ℝ → 𝒫(ℝ2) is upper semicontinuous (or u. s. c., or
upper Vietoris continuous) at t0 if for every open set U ⊆ ℝ2 with B(t0) ⊆ U, there
exists δ > 0 such that |t − t0| < δ implies B(t) ⊆ U .
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A function B : ℝ → 𝒫(ℝ2) is lower semicontinuous (or l. s. c., or lower Vietoris
continuous) at t0 if for every open setU ⊆ ℝ2 with B(t0)∩U ̸= 0, there exists δ > 0 such
that |t − t0| < δ implies B(t) ∩ U ̸= 0.

If B : ℝ → 𝒫(ℝ2) is both u. s. c. and l. s. c. at t0, then it is said to be Vietoris contin-
uous at t0. A function B is upper semicontinuous (lower semicontinuous, Vietoris con-
tinuous) if it is upper semicontinuous (lower semicontinuous, Vietoris continuous) at
each point of its domain.

Now from our discussion above, the set B(t) of Example 13.1.3(c) is not u. s. c. at
t = 0.Upper semicontinuity prevents a set fromexpanding suddenly outside any given
neighborhood of the set. Lower semicontinuity prevents a set from suddenly shrink-
ing. For example, the function

B(t) = { [−3, 3]
2 if t ≤ 0,

[−1, 1]2 if t > 0,

is u. s. c. at every point t ∈ ℝ, but is not l. s. c. at t = 0. Theopen setU = (2, 4)2 intersects
B(0) but there is no neighborhood of t = 0 over which B(t) always intersects U .

Our next example shows that even if A(t) and B(t) are Vietoris continuous, they
may go directly from disjoint to overlapping without first meeting.

Example 13.1.5. A(t) will be a comb space, starting (at t = 1) with just the base of the
combA(1) = [0, 1]×{0}. As t decreases from 1 to 1

2 ,A(t) grows three teeth from the base
of the comb at x = 0, x = 1

2 , and x = 1. The heights of the teeth grow continuously from
0 to 1, so A( 12 ) = A(1) ∪ {0,

1
2 , 1} × [0, 1]. This initial step of tooth growth grows not only

the interior tooth at x = 1
2 , but also the two outer teeth at x = 0 and x = 1. As t decreases

from t = 1
2 to

1
4 , A(t) grows two new teeth from the base, at the midpoints of the bases

of the existing teeth. As t decreases from t = 1
4 to 1

8 , A(t) grows four new teeth from
the midpoints of bases of existing teeth, and so on. When t ≤ 0, set A(t) = [0, 1]2.

Formally, A(t) is given by

A(t) = [0, 1] × {0} for t ≥ 1,
A(2−n) = A(1) ∪ ({2−nm : m = 0, 1, . . . , 2n} × [0, 1]) for n ∈ ℕ,
A(t) = A(2−n) ∪ ({2−n−1m : m = 0, 1, . . . , 2n+1} × [0, 2 − 2n+1t])

for t ∈ [2−n−1, 2−n], n ∈ ℕ ∪ {0},
A(t) = [0, 1]2 for t ≤ 0.

It is easy to visualize that A(t) is both u. s. c. and l. s. c., but has a discontinuous
jump in area at t = 0.

Let B(t) be the reflection of A(t) over the line y = 7
8 translated to the left by s(t)

where s(t) is the piecewise linear function with s(t) = 0 for t ≤ 0, s(t) = 1
2 for t ≥ 1,

and s(2−n) = 2−n−1 = half the distance between existing teeth at time t = 2−n, for n ∈ ℕ.
Now A(t) and B(t) are compact-valued u. s. c. and l. s. c. functions with A(t) ∩ B(t) = 0
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for t > 0 and A(t) ∩ B(t) = [0, 1] × [ 34 , 1] for t ≤ 0. In particular, A(t) and B(t) transform
from disjoint to overlapping without “meeting” first.

For t > 0, the sets A(t) and B(t) are never regular closed, but it is easy to visualize
that by adding positive shrinking width to the base and teeth of the combs, we can
achieve the same resultswith regular closed sets, eachhomeomorphic to a closeddisk.

Another illustrative example can be constructed using spirals.

Example 13.1.6. For t ∈ [0, 1), let A(t) = {(r, θ) : r = (1 − t)θ,0 ≤ θ ≤ (1 − t)−1} and
let B(t) = {(r, θ) : r = (1 − t)(θ + π),0 ≤ θ ≤ (1 − t)−1 − π}. For t ≥ 1, put A(t) =
B(t) = {(r, θ) : r ≤ 1}. For t ∈ [0, 1), A(t) and B(t) are disjoint Archimedian spirals,
winding tighter around the origin with an increasing number of coils in the unit circle
as t approaches 1, as suggested in Figure 13.3. It is easy to see that the functions A(t)
and B(t) are u. s. c. and l. s. c. and assume compact values for t ≥ 0, with A(t) and B(t)
disjoint for t ∈ [0, 1) and equal for t ≥ 1. Thus, disjoint and equal are adjacent using
u. s. c. and l. s. c. compact-valued functions. Again, these sets are not regular closed
for t ∈ [0, 1), but it is easy to see that the spirals could be thickened slightly to make
each homeomorphic to a closed disk.

Figure 13.3: Spirals A(t) and B(t) for t = .95, .965, and .975.
In the transformations from disjoint to overlapping or equal, we pass instantly

from intA∩intB = 0 to intA∩intB ̸= 0. Twoways thismay occur are that the interior of
Bmay instantly appear inside intA, as in Example 13.1.3(c), or intAmay engulf intB as
in Examples 13.1.5 and 13.1.6. In the former case, B(t) was not upper semicontinuous,
and in the latter, the areas of A(t),B(t), and A(t) ∩ B(t) were not continuous. If A(t)
and B(t) are disjoint, upper semicontinuity will prevent intB from instantly appearing
inside intA, and continuity of the areaswill prevent intB frombeing engulfed by intA.
This is our next theorem.

Theorem 13.1.7. Suppose A and B are u. s. c. functions on ℝ, with values A(t) and B(t)
which are closed subsets of ℝ2 with finite areas, and suppose the area of A(t) ∩ B(t) is
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a continuous function of t. Then the 4-intersection value disjoint (0,0,0,0) is not adja-
cent to 4-intersection values of form (x, 1, z,w). That is, the 4-intersection value disjoint
(0,0,0,0) is not adjacent to any 4-intersection value with intA ∩ intB ̸= 0.

Proof. If (0,0,0,0) is adjacent to (x, 1, z,w) by closed subsetsA(t),B(t) changing upper
semicontinuously with the area of A(t) ∩ B(t) continuous, then, by restricting, rescal-
ing, and possibly reversing the time interval, wemay assume that one of the following
two cases hold:
(a) intA(t) ∩ intB(t) ̸= 0 for t < 0 and A(t) ∩ B(t) = 0 for t ≥ 0, or
(b) intA(t) ∩ intB(t) ̸= 0 for t ≤ 0 and A(t) ∩ B(t) = 0 for t > 0.

That is, either there is afirst instant of beingdisjoint or there is a last instant of intA(t)∩
intB(t) ̸= 0.

In case (a), since A(0) and B(0) are disjoint closed sets in the normal space ℝ2,
there exist disjoint open sets GA and GB with A ⊆ GA and B ⊆ GB. By the u. s. c. con-
dition, there exists δ > 0 such that t ∈ (−δ,0] implies A(t) ⊆ GA and B(t) ⊆ GB. This
contradicts the hypotheses of (a), so (a) cannot occur.

In case (b), if a(t) is the area of A(t) ∩ B(t), then we have a(t) = 0 for t > 0 and
a(0) ̸= 0. Thus the inverse image a−1({0}) of the closed set {0} contains (0,∞) but
not 0, and therefore is not closed. This contradicts the continuity of a, and thus case
(b) cannot occur.

Exercises

1. Find all 4-intersection values which are possible between A = ℝ2 and B ⊆ ℝ2.
Prove that your list is complete and give examples for each 4-intersection value
which is realized.

2. If A is a subset of a topological space, show that 𝜕(intA) ⊆ 𝜕A, and equality holds
if and only if A ⊆ cl(intA). In particular, note that equality holds if A is open or is
regular closed.

3. Show that 4-intersection values of form (x,0, 1,w) and (x,0, z, 1) (where x, z,w ∈
{0, 1}) cannot be realized with regular closed sets A and B.

4. Illustrate pairs of sets in the plane which have 4-intersection values (0,0,0, 1),
(0,0, 1,0), (0,0, 1, 1), (1,0,0, 1), and (1,0, 1, 1).

5. Describe modifications of the spiral spaces given in Example 13.1.6 to show the
4-intersection value (0,0,0,0) (disjoint) is adjacent to the 4-intersection values
(1, 1,0, 1) (covers) and (0, 1,0, 1) (contains) using compact sets A(t) and B(t)which
are Vietoris continuous.

6. Show that if A(t) and B(t) are regular closed sets for all t ∈ ℝ and the areas of
A(t),B(t), andA(t)∩B(t)are continuous, positive functions, then the4-intersection
values (0,0,0,0) (disjoint) and (1, 1,0, 1) (covers) are not adjacent.
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7. In any topological space X, show that if C is connected and C ∩ 𝜕A = 0, then
C ⊆ intA or C ∩ clA = 0.

8. Use Exercise 7 to show that if A and B are nonempty connected subsets of the
plane, then they have 4-intersection value (0, 1,0, 1) if and only if B ⊂ intA.

9. (a) Use Exercise 7 to show that if A and B are subsets of ℝ2 which are homeo-
morphic to the closed unit disk and have 4-intersection value (1, 1,0,0), then
A = B.

(b) Give an example of distinct closed sets A,B of ℝ2 with 4-intersection value
(1, 1,0,0).

13.2 Continuous deformation of planar curves

In Examples 13.1.3(c) and 13.1.5 of dynamically changing sets which go directly from
disjoint to overlapping, the lengths of the boundaries of the sets are discontinuous.
The length of the boundary of a set may not be a good measure of the convergence
of the sets. The triangular region A = {(x, y) ∈ [0, 1]2 : y ≤ x} may be approximated
by the region An obtained by replacing the diagonal side of A by a staircase of n steps
with height andwidth 1/n. It is reasonable to say that in some sense, (An)∞n=1 converges
to A, but the length of the boundary of An is 4 for every n ∈ ℕ, while the length of the
boundary of A is 2 + √2.

We now introduce a method for describing continuous deformation of curves in
the plane.

Definition 13.2.1. The interval [0, 1] with the Euclidean topology will be denoted by
I. In a topological space (X, 𝒯 ), a path (or curve) from a to b is a continuous function
f : I → X with f (0) = a and f (1) = b. A path from a to a is called a closed curve or loop
based at a. A curve f is a simple curve if f is one-to-one. A closed curve f is a simple
closed curve if f is one-to-one on [0, 1). A simple closed curve in the Euclidean plane
is a Jordan curve.

In practice, a curve or path in (X, 𝒯 )maybe thought of either as the function f from
I to X or as the image f (I) as a subset of X. Simple curves do not intersect themselves.
An important theorem about simple closed planar curves was given by Camille Jordan
in 1887. While the result is entirely expected, the proof is surprisingly difficult and is
omitted.

Theorem 13.2.2 (Jordan curve theorem). A simple closed curve in ℝ2 divides the plane
into three regions: the curve C, the bounded region In(C) inside the curve, and the un-
bounded region Out(C) outside the curve. Furthermore, the region In(C) is homeomor-
phic to an open ball in ℝ2.

Jordan only gave the first sentence of the theorem above. The second sentence
was shown by Arthur Schönflies in 1906. The combined results are often called the
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Jordan–Schönflies theorem. In particular, note that the region inside a Jordan curve is
open and path connected. A Jordan curve together with the region inside (or outside)
of it is a regular closed set.

If F : I2 → ℝ2 is a continuous function, then, for each fixed t0 ∈ I, F(t0, x) : I → ℝ2

is continuous, and thus is a path in ℝ2. As t0 ranges from 0 to 1, the paths F(t0, x)
move continuously in the plane, since F is continuous. Thus, a function F : I2 → ℝ2

provides a continuousmorphing of the path F(0, x) to the path F(1, x). Such a function
F is a homotopy between the paths.

Definition 13.2.3. Suppose Y is a topological space. Two paths f , g : I → Y in Y are
path homotopic if there exists a continuous function F : I2 → Y with F(0, x) = f (x)
and F(1, x) = g(x) for all x ∈ I. The function F is a path homotopy from f to g. More
generally, if X and Y are topological spaces and f and g are continuous functions from
X to Y , then f is homotopic to g if there exists a continuous function F : I × X → Y
(called a homotopy) with F(0, x) = f (x) and F(1, x) = g(x) for all x.

Clearly, path homotopies are special cases of homotopies; since we will only con-
sider path homotopies, we refer to them as simply as homotopies. Figure 13.4 depicts
a homotopy between two paths.

Figure 13.4: A homotopy.

In the plane, any paths f and g are homotopic. This can be shown by the straight-line
homotopy H : I2 → ℝ2 definedbyH(t, x) = (1−t)f (x)+tg(x). Note that, for a fixed x0 ∈ I,
H(t, x0) traces the straight line from f (x0) to g(x0)as t goes from0 to 1. Figure 13.5 shows
the straight-line homotopy from the unit circle f (x) = (cos(2πx), sin(2πx)) to the line
segment g(x) = (2 − 4x, 2) for x ∈ I.

The next theorem is a fundamental result on homotopies.

Theorem 13.2.4. On the set 𝒞 of paths in a topological space (Y , 𝒯 ), the relation f ≈ g
if and only if f is homotopic to g is an equivalence relation.

Proof. Note that f ∈ 𝒞 if and only if f : I → (Y , 𝒯 ) is continuous. Define F : I2 → Y by
F(t, x) = f (x). For any open set V ⊆ Y , F−1(V) = I × f −1(V), which is open in I2, so F is
a homotopy from f to f , and thus ≈ is reflexive.

If F : I2 → Y is a homotopy with F(0, x) = f (x) and F(1, x) = g(x), then G(t, x) =
F(1 − t, x) is a homotopy with G(0, x) = g(x) and G(1, x) = f (x), so ≈ is symmetric.
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Figure 13.5: The straight-line homotopy from the unit circle to a line segment.

Suppose f ≈ g and g ≈ h. Then there exist homotopies F from f to g and G from
g to h. To get a homotopy H : I2 → Y from f to h, we should trace the homotopy F for
t ∈ [0,0.5] and trace G for t ∈ [0.5, 1]. The function that does this is

H(t, x) = { F(2t, x) if t ∈ [0,0.5],
G(2t − 1, x) if t ∈ [0.5, 1].

As the composition of continuous functions, F(2t, x) and G(2t − 1, x) are continuous,
and H is continuous by the pasting lemma. Thus, f ≈ h, so ≈ is transitive.

With the “is homotopic to” equivalence relation, the equivalence class of a curve
f : I → Y in Y is called the homotopy class of f .

If F : I2 → ℝ2 is a homotopy from f (x) = F(0, x) to g(x) = F(1, x) and F(t,0) = F(t, 1)
for all t ∈ I, then each slice t = t0 defines a closed curve F(t0, x), which bounds a region
A(t0) in the plane. If additionally F is one-to-one on each {t0} × [0, 1), then each slice
t = t0 defines a simple closed curve, which by the Jordan curve theorem, bounds a
well-defined region homeomorphic to an open ball. The union of the bounding curve
and the enclosed region gives a closed and bounded region in the plane. Such sets are
Lebesgue measurable, so they have a well-defined finite area. Thus, such a homotopy
provides a continuous deformation of planar sets whose boundaries are simple closed
curves.

Definition 13.2.5. If A : I → 𝒫(ℝ2) and A(t) is compact and 𝜕A(t) is a simple closed
curve for every t ∈ I, we say the sets A(t) are changing homotopically if there is a ho-
motopy F : I2 → ℝ2 with F(t, x) = 𝜕A(t) for every t ∈ I.

Our next result says that if setsA(t) are changing homotopically, x is in the interior
of A(0), and x never intersects the boundary of any A(t), then x is in the interior of all
the sets A(t).
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Lemma 13.2.6. If A : I → 𝒫(ℝ2) is changing homotopically, x is inside A(t0), and x ̸∈
𝜕A(t) for t ∈ (t0 − δ, t0 + δ), then x is inside A(t) for all t ∈ (t0 − δ, t0 + δ). Thus, if a
set S is inside A(t0) and S ∩ 𝜕A(t) = 0 for t ∈ (t0 − δ, t0 + δ), then S is inside A(t) for all
t ∈ (t0 − δ, t0 + δ).

Proof. A transition from x inside A(t0) to outside A(t) on an interval is possible if and
only if a transition from outside to inside is possible on an interval, so it suffices to
show that a point starting outside A(t0) remains outside. Suppose F : I2 → ℝ2 is a
homotopy with F(t, x) = 𝜕A(t) for all t ∈ I, x is outside A(t0), and x ̸∈ F(t, I) = 𝜕A(t)
for t ∈ (t0 − δ, t0 + δ). Let U be a neighborhood of x contained in Out(𝜕A(t0)). Now
ℝ2 is a subspace of its one-point compactification ℝ2 ∪ {∞}, which, by stereographic
projection, is homeomorphic to the sphere S2 = {(x, y, z) ∈ ℝ3 : x2 + y2 + z2 = 1}, where
∞ corresponds to the north pole p = (0,0, 1) ∈ S2. Thus, we may view F as a map from
I2 to S2. Compose F : I2 → S2 with a homeomorphism h on S2 which translates x to
the pole p and note that h preserves the set of outside points of each boundary curve.
Now the neighborhood h(U) of the point p at infinity avoids the boundaries h(𝜕A(t))
for t ∈ (t0 − δ, t0 + δ), and thus is contained in the unbounded outside of those curves.
Translating back through h−1 shows that x remains outside all the curves 𝜕A(t) = F(t, I)
for t ∈ (t0 − δ, t0 + δ).

For the following result, wewill use the fact that if C is a closed subset of the plane
ℝ2 and ε > 0 is given, then there exists an open set G with C ⊆ G such that the area of
G −C is less than ε. This believable result follows from the fact that every closed set in
ℝ2 is Lebesgue measurable, and a set C ⊆ ℝ2 is Lebesgue measurable if and only if for
every ε > 0, there exist a closed set F and an open set G with F ⊆ C ⊆ G such that the
measure of G − F is less than ε. We may apply this result to any Jordan curve C, since
the continuous image C ⊆ ℝ2 of the compact set I is compact and thus closed.

Theorem 13.2.7. If sets A(t) in the plane are changing homotopically, then A is u. s. c.
and l. s. c., and has continuous area.

Proof. Suppose F : I2 → ℝ2 is a homotopy with F(t, x) = 𝜕A(t) for every t ∈ I. To
see A is u. s. c., suppose U ⊆ ℝ2 is an open set containing A(t0). By the hypotheses,
A is compact-valued, so we may assume U is bounded, for otherwise, we may replace
U by U ∩ B((0,0),N) where A ⊆ B((0,0),N). Now F(t0, I) = 𝜕A(t0) ⊆ A(t0) ⊆ U, so
V = F−1(U) is an open set in I2 containing the slice {t0} × I. By the compactness of I,
the tube lemma implies V contains an open tube (t0 − ε, t0 + ε) × I around the slice
{t0} × I. Thus, for t ∈ (t0 − ε, t0 + ε), F(t, I) = 𝜕A(t) ⊆ U . Since 𝜕A(t) ⊆ U is bounded
and Out(𝜕A(t)) is unbounded, it follows that In(𝜕A(t)) ⊆ U . That is, if the boundary of
A(t) remains in the bounded open setU, then the closed bounded region A(t) remains
inside U for t ∈ (t0 − ε, t0 + ε). Thus, A is u. s. c.

The proof that A is l. s. c. is left to the exercises.
To show that the area a(t) of A(t) is continuous at each t0 ∈ I, suppose a neigh-

borhood (a(t0) − ε, a(t0) + ε) of a(t0) is given. Let Uε be an open set of area less than
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ε which contains 𝜕A(t0) = F(t0, I). Now F−1(Uε) is open in I2 and, as above, contains
a tube (t0 − δ, t0 + δ) × I. For t ∈ (t0 − δ, t0 + δ), we have 𝜕A(t) = F(t, I) ⊆ Uε, so
A(t0) − Uε ⊆ A(t) ⊆ A(t0) ∪ Uε, and thus |a(t) − a(t0)| < ε.

Our next result shows that setsmoving homotopically cannot go directly fromdis-
joint to overlapping.

Theorem 13.2.8. If A and B are changing homotopically, then the 4-intersection value
(0,0,0,0) (disjoint) is not adjacent to any 4-intersection value of form (x, 1, z,w).

Proof. The proof is similar to that of Theorem 13.1.7. Suppose to the contrary that dis-
joint is adjacent to (x, 1, z,w). With a restriction, rescaling, and possible reversing of
the time interval, we reduce the problem to one of the two following cases:
(a) intA(t) ∩ intB(t) ̸= 0 for t ∈ [0, 1/2) and A(t) ∩ B(t) = 0 for t ∈ [1/2, 1]
(b) intA(t) ∩ intB(t) ̸= 0 for t ∈ [0, 1/2] and A(t) ∩ B(t) = 0 for t ∈ (1/2, 1].

That is, either there is a first instant t = 1/2 when A(t) and B(t) are disjoint or there
is a last instant t = 1/2 of intA ∩ intB ̸= 0. The case (a) follows as in the proof of
Theorem 13.1.7, using the normality of ℝ2 and the upper semicontinuity of A and B.
In case (b), since intA(1/2) ∩ intB(1/2) ̸= 0, there exists x ∈ intA(1/2) ∩ intB(1/2).
Since x is not in the closed set 𝜕A(1/2) ∪ 𝜕B(1/2), by regularity of the plane, there exist
disjoint open sets U and V with x ∈ U and 𝜕A(1/2) ∪ 𝜕B(1/2) ⊆ V . If F is a homotopy
withF(t, I) = 𝜕A(t), sinceV is an openneighborhoodof 𝜕A(1/2) = F(1/2, I),F−1(V) is an
open set in I2 containing {1/2}×I, and thus containing a tube (1/2−δ, 1/2+δ)×I. Hence,
for t ∈ (1/2 − δ, 1/2 + δ), F(t, I) = 𝜕A(t) ⊆ V and it follows that 𝜕A(t) is disjoint from U .
Since U starts in the interior of A(1/2) and does not cross 𝜕A(t) for t ∈ [1/2, 1/2 + δ), U
remains in the interior of A(t) for t ∈ [1/2, 1/2 + δ). The same argument applies for B,
showing thatU remains in the interior of B(t) for t ∈ [1/2, 1/2+δ󸀠) for some δ󸀠 > 0. Now
for all t strictly between 1/2 and 1/2 + min{δ, δ󸀠}, we have 0 ̸= U ⊆ intA(t) ∩ intB(t),
contrary to the choice of t = 1/2 as the last instant when the interiors intersected.

Exercises

1. The depiction of the straight-line homotopy in Figure 13.5 suggests that the point
(1,0) is mapped by straight lines to both (−2, 2) and (2, 2). Explain why this does
not contradict the definition of the homotopy being a function.

2. Consider the unit circle f (x) = (cos(2πx), sin(2πx)) and the line segment g(x) =
(2− 4x, 2) for x ∈ I, as depicted in Figure 13.5. If f and g are considered to be paths
inℝ2 − {(0, 1.5)}, explain why the straight-line homotopy from f to g inℝ2 is not a
homotopy F : I2 → ℝ2 − {(0, 1.5)} from f to g in ℝ2 − {(0, 1.5)}. Prove that f and g
are homotopic in ℝ2 − {(0, 1.5)} by exhibiting a homotopy.
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3. Show that the boundary of the square [0, 1]2 is homotopic to the boundary of the
triangle having vertices (0,0), (1,0), (1, 1).

4. Suppose f and g are paths in (X, 𝒯 ) from a to b. Show that f and g are homotopic.
(Compare with Exercise 4 of Section 13.3.)

5. Suppose F : I2 → ℝ is a homotopy.
(a) Define G : I2 → I × ℝ by G(t, x) = (x, F(t, x)). Thus, G(t0, x) maps I onto the

graph of F(t0, x). Show that G is continuous.
(b) Show that the sequence of functions fn = F(1/n, x) converges uniformly to

F(0, x).
6. Suppose F : I2 → ℝ is a homotopy and for t0 ∈ I, A(t0) = ∫

1
0 F(t0, x) dx. Show that

this defines a continuous function A : I → ℝ.
7. Suppose C is a rectifiable Jordan curve of length L parametrized by arc length, so

C = f ([0, L]) for a continuous length-preserving function f : [0, L] → ℝ2. Without
appealing to Lebesgue measure, show that, for any ε > 0, there exists an open set
G of area less than ε with C ⊆ G.

8. Exhibit homotopies which show that the sets A(t) and B(t) of Figure 13.1 are mov-
ing homotopically.

9. Suppose a unit circle is moving in the plane so that its center traces a semicircular
arc of radius 4 units. Exhibit a homotopy showing that the unit circles are moving
homotopically.

10. Prove that if setsA(t) are changing homotopically, thenA : [0, 1] → 𝒫(ℝ2) is lower
semicontinuous.

13.3 The fundamental group

In this section,wewill associate to any given topological space a group, called the fun-
damental group. Homeomorphic topological spaces will produce isomorphic funda-
mental groups, so the fundamental group is a topological property. In particular, two
topological spaces whose fundamental groups are not isomorphic cannot be homeo-
morphic. The fundamental group is based on curves in the topological space.

Suppose X is a topological space and a ∈ X. Recall that a loop in X based at a is a
continuous function f : I → X with f (0) = f (1) = a. We say two loops f , g based at a
are homotopic with fixed base point if there is a homotopy F : I2 → X from f to g with
F(t,0) = F(t, 1) = a for all t ∈ I. As in Theorem 13.2.4, it is easy to show that among
the loops in X based at a, “homotopic with fixed base” is an equivalence relation. An
equivalence class in this relation will be called a homotopy class of loops based at a,
or simply a homotopy class. The collection of all homotopy classes of loops in X based
at a will be denoted π1(X, a).

If f , g : I → X are loops in X based at a, we define the product fg : I → X by

fg(t) = { f (2t) if t ∈ [0,0.5],
g(2t − 1) if t ∈ [0.5, 1].

(13.1)
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Thus, fg traces f at double speed for t ∈ [0,0.5], then traces g at double speed for
t ∈ [0.5, 1]. By the pasting lemma, fg is continuous, and thus is a loop in X based at
a. It is easy to show that, for any loops f , g, h based at a, (fg)h is homotopic (with the
same fixed base) to f (gh).

Recall that a group is a set G with an operation ⋅ such that
(a) (a ⋅ b) ⋅ c = a ⋅ (b ⋅ c) for all a, b, c ∈ G (associativity);
(b) there exists e ∈ G such that a ⋅ e = e ⋅ a = a for all a ∈ G (existence of an identity

element);
(c) for every a ∈ G, there exists a−1 ∈ G such that a ⋅ a−1 = a−1 ⋅ a = e (existence of

inverses).

Two groups (G, ⋅) and (H , ∗) are isomorphic, denoted G ≅ H, if there exists a bijection
h : G → H which preserves the operation, that is, such that h(a ⋅ b) = h(a) ∗ h(b) for all
a, b ∈ G. The trivial group is the group {e} consisting of one element. A group (G, ⋅) is
abelian if and only if the operation is commutative (that is, a ⋅b = b ⋅ a for all a, b ∈ G).

Theorem 13.3.1. The collection π1(X, a) of homotopy classes of loops in X based at a,
with the operation [f ] ⋅ [g] = [fg], is a group, called the fundamental group of X based
at a.

Proof. First we will show that the operation [f ] ⋅ [g] = [fg] is a well-defined operation
on π1(X, a). Suppose [f ] = [f 󸀠] and [g] = [g󸀠]. Then there is a homotopy F based at a
from f to f 󸀠 and a homotopy G based at a from g to g󸀠. Define H : I2 → X by

H(t, x) = { F(t, 2x) if x ∈ [0,0.5],
G(t, 2x − 1) if x ∈ [0.5, 1].

Note thatH restricted to I×[0,0.5] traces the homotopy F with each path F(t0, x) traced
at double speed, whileH restricted to I×[0.5, 1] similarly provides a copy ofG. SinceH
is a homotopy based at a from fg to f 󸀠g󸀠, we have [fg] = [f 󸀠g󸀠]. Now ([f ] ⋅ [g]) ⋅ [h] traces
f and g for t ∈ [0,0.5], and h for t ∈ [0.5, 1], while [f ] ⋅ ([g] ⋅ [h]) trace f for t ∈ [0,0.5],
then g and h for t ∈ [0.5, 1]. It is straightforward to rescale the time parameters to show
that the two resulting loops based at a are homotopic, and thus determine the same
homotopy class in π1(X, a).

The identity element in π1(X, a) is the homotopy class of the constant path e(x) =
a. Given [f ] ∈ π1(X, a), fe traces f in the first half second and remains constant for the
last half second. The homotopy

F(t, x) = {
f ( 2x1+t ) if x ∈ [0, 1+t2 ],
a if x ∈ [ 1+t2 , 1],

traces f for the first half second and a for the last half second when t = 0, and as t
increases, it traces f on a longer interval and a on a shorter interval until t = 1, when
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it traces f once for t ∈ [0, 1]. This homotopy based at a shows [fe] = [f ]. Similarly,
[ef ] = [f ].

Given a loop f : I → X based at a, we claim that the inverse of [f ] ∈ π1(X, a)
is the homotopy class of f←(t) = f (1 − t). Note that f← is simply f traced in reverse.
Now ff← traces the loop f from a to a then retraces that path in reverse direction back
to a. To see the constant function e(x) = a is homotopic to ff←, we use the continuous
function F : I2 → X such that, for t ∈ I, the loop F(t, I) traces the first 100t% of
f for x ∈ [0,0.5], then retraces that path in reverse for x ∈ [0.5, 1], as suggested in
Figure 13.6. The homotopy that does this is

F(t, x) = { f (2tx) if x ∈ [0,0.5],
f (2t(1 − x)) if x ∈ [0.5, 1].

Figure 13.6: A homotopy from a to ff←.
If f ∈ π1(X, a) is a loop in X based at a, observe that the straight-line “homotopy”
from ff← to a will not generally show that ff← is homotopic to a. If f is as shown in
Figure 13.6 and X is a subset ofℝ2 which excludes some points inside the loop f , then
the straight lines from f (x) to a are not all contained in X, and thus the straight-line
“homotopy” is not a function from I2 to X, and thus not a homotopy into X. Since
[f←] = [f ]−1 in π1(X, a), f← is sometimes denoted f −1.

Paths, such as ff← for f ∈ π1(X, a), which can be continuously shrunk to a point
have a special name.

Definition 13.3.2. A path in (X, 𝒯 ) which is homotopic to a constant path e(x) = a is
said to be null homotopic. In particular, f ∈ π1(X, a) is null homotopic if and only if [f ]
is the identity element [e] in π1(X, a).

Example 13.3.3.
(a) Any two paths in ℝ2 are homotopic by the straight-line homotopy, so every loop

based at a ∈ ℝ2 is null homotopic, and thus π1(ℝ2, a) is the trivial group {[e]}.
(b) If A = {(x, y) ∈ ℝ2 : 1 ≤ x2 + y2 ≤ 3}, and a = (2,0) ∈ X, it is not the case that every

loop in A based at a is null homotopic. The path f1(x) = (2 cos(2πx), 2 sin(2πx))
loops once around the hole of the annulus A, and cannot be shrunk to the base
point a, staying in A. Figure 13.7 shows three members of [f1], that is, three loops
in A based at a = (2,0)which are homotopic to f1. Any two loops in Awhich circle
the origin exactly n times in the same orientation are homotopic. The homotopy
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classes of π1(A, a) are characterized by the orientation (positive is counterclock-
wise, negative is clockwise) and howmany times the loops circles around the ori-
gin. Thus, π1(A, a) is the additive group of integers (ℤ, +). For any choice of the
base point a in the annulus, the fundamental group based at a will be ℤ. We can
conclude that the annulusA is not homeomorphic toℝ2 since, for every base point
a ∈ ℝ2, π1(ℝ2, a) is the trivial group and is not ℤ.

Figure 13.7: The loop (2 cos(2πx), 2 sin(2πx)) and two paths homotopic to it in the annulus.
(c) If S1 = {(x, y) ∈ ℝ2 : x2 + y2 = 1}, then as in (b), for any a ∈ S1, π1(S1, a) = (ℤ, +).

Clearly S1 is not homeomorphic to the annulus, even though they have the same
fundamental group.

(d) Recall that a torus is a surface homeomorphic to S1 × S1. If a is any point on a
torus T, then the homotopy classes of paths based at a are determined by how
may radial and how many axial loops are made, and in which orientation. To see
that π1(T , a) is an abelian group, it suffices to show that an axial loop a and a
radial loop r commute. A homotopy from ar to ra is easily seen when viewing T
as a quotient of [0, 2] × [0, 1], as suggested in Figure 13.8. Thus, π1(T , a) = ℤ × ℤ.

Figure 13.8: The fundamental group of the torus is Abelian.

In the examples above, the base point of the fundamental group was not im-
portant: any base point gave the same fundamental group. This is not always the
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case. For example, let X be the union of an annulus A and a unit disk D in the plane,
with A ∩ D = 0. Now for any a ∈ A, loops based at A must be contained in A, and
π1(X, a) = (ℤ, +). However, for any d ∈ D, π1(X, d) is the trivial group. The base point
chosen is significant in this example since loops based at a ∈ A cannot reach points
in D and loops based at d ∈ D cannot reach points in A. This suggests the following
result.

Theorem 13.3.4. If there is a path from a to b in the topological space X, then π1(X, a) ≅
π1(X, b).

Proof. Let p : I → X be a path from a to b. If f is a loop in X based at a, tracing p←
from b to a, then tracing f , then tracing p from a to b gives a loop based at b. This
suggests the isomorphism needed. Define h : π1(X, a) → π1(X, b) by h([f ]) = [p←(fp)].
By associativity, we may define h([f ]) = [p←][f ][p] = [p]−1[f ][p]. Given [g] ∈ π1(X, b),
[g] = h([pgp←]), so h is onto. If h([f ]) = h([g]), then [p]−1[f ][p] = [p]−1[g][p], and
multiplying by [p] on the left and [p]−1 on the right gives [f ] = [g] and thus h is one-
to-one. To see that h preserves the operation, note that h([f ][g]) = [p]−1[f ][g][p] =
[p]−1[f ][p][p]−1[g][p] = h([f ])h([g]).
Corollary 13.3.5. If (X, 𝒯 ) is path connected and a, b ∈ X, then π1(X, a) is isomorphic to
π1(X, b).

As a consequence, in a path connected topological space (X, 𝒯 ), we may speak of
the fundamental group π1(X), omitting any reference to the base point for the loops.

The following definition is frequently used in complex analysis.

Definition 13.3.6. A topological space (X, 𝒯 ) is simply connected if it is path connected
and every loop is null homotopic.

Thus, a simply connected space is a path connected space with trivial fundamen-
tal group. The trivial fundamental group condition is loosely described as “having no
holes”.

Exercises

1. Provide explicit details to show that the operation ⋅ on the fundamental group
π1(X, a) is associative.

2. For an arbitrary n ∈ ℕ, give a parametrization of a loop fn(θ) based at (2,0) in
the annulus X = {(x, y) ∈ ℝ2 : 1 ≤ x2 + y2 ≤ 3} which circles the origin n times
counterclockwise and crosses itself no more than n times.

3. Does the converse of Theorem 13.3.4 hold? That is, if a and b are points in a topo-
logical space (X, 𝒯 ) with π1(X, a) ≅ π1(X, b), then is there a path from a to b in X?
Prove your answer.
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4. Paths f and g in (X, 𝒯 ) from a to b are said to be homotopic by based paths if there
is a homotopy F from f to g with F(t,0) = a and F(t, 1) = b for all t ∈ I. Show that
if for every a, b ∈ X, every pair of paths f , g from a to b in (X, 𝒯 ) are homotopic by
based paths, then every loop in (X, 𝒯 ) is null homotopic. Does the result hold if
for every a ̸= b in X, every pair of paths f , g from a to b in (X, 𝒯 ) are homotopic by
based paths? (Compare to Exercise 4 of Section 13.2.)

5. Is the fundamental group of the figure-eight space Y = {(x, y) : x2+y2 = 1}∪{(x, y) :
(x − 2)2 + y2 = 1} isomorphic to the fundamental group of the torus? Justify your
answer.

6. Discuss the fundamental groups of the following path connected subsets of the
Euclidean plane.
(a) X = {(x, y) : x2 + y2 ≤ 1} ∪ {(x, y) : (x − 2)2 + y2 ≤ 1}
(b) Y = {(x, y, z) ∈ ℝ3 : x2 + y2 + z2 = 1}
(c) Z = {(x, y, z) ∈ ℝ3 : x2 + y2 + z2 ≤ 1}
(d) W = {(x, y, z) ∈ ℝ3 : 1 ≤ x2 + y2 + z2 ≤ 4}
(e) C = {(x, y, z) ∈ ℝ3 : x2 + y2 = 1,0 ≤ z ≤ 1}

7. Suppose X and Y are topological spaces, x ∈ X, and y ∈ Y . Show that π1(X × Y ,
(x, y)) ≅ π1(X, x)×π1(Y , y). Recall that, for groups (G, ⋅) and (H , ∗),G×H has group
operation (g1, h1)(g2, h2) = (g1 ⋅ g2, h1 ∗ h2).

13.4 The Vietoris topology and the Hausdorff metric

In Section 13.2, we discussed ways to quantify continuous deformation of nonempty
closed sets A(t) ⊆ 𝒫(ℝ2). A dynamically changing set A(t) is a function A : I → 𝒫(ℝ2),
where the time interval I ⊆ ℝ carries the Euclidean topology. To formally define con-
tinuity of the function A, we must define a topology on the codomain 𝒫(ℝ2) of the
function A.

Dynamically changing sets are examples of set-valued functions ormultifunctions,
that is, functions f : X → 𝒫(Y) for some sets X,Y . For example, if 𝒰 is a uniformity
on X, then every entourage U ∈ 𝒰 defines a set-valued function U : X → 𝒫(X) where
U(x) = {y ∈ X : (x, y) ∈ U}; that is, U(x) is the slice of U determined by x.

If (X, 𝒯 ) is a topological space and 𝒞 ⊆ 𝒫(X) is a collection of subsets of X, a topol-
ogy on 𝒞 is called a hyperspace topology.

Here we introduce one of the most common hyperspace topologies, the Vietoris
topology. Extensions of the results in this section can be found in the books Theory of
Correspondences by E. Klein andA. C. Thompson [26], Topologies on Closed and Closed
Convex Sets by G. Beer [5], and Hyperspaces of Sets by S. Nadler [39].

Definition 13.4.1. Given a set X,𝒫0(X) is the collection𝒫(X)−{0} of nonempty subsets
of X. If (X, 𝒯 ) is a topological space, ℱ0(X) is the set of nonempty closed subsets of X,
and 𝒦0(X) is the collection of nonempty compact subsets of X.



300 | 13 Continuous deformation of sets and curves

Recall that a function A : ℝ → 𝒫(ℝ2) is Vietoris continuous if and only if it is
simultaneously upper Vietoris continuous and lower Vietoris continuous (that is, si-
multaneously upper semicontinuous and lower semicontinuous). This suggests that
the Vietoris topology on 𝒫0(X) will be defined in terms of an upper topology and a
lower topology.

A : ℝ → 𝒫(ℝ2) is upper Vietoris continuous at t0 ∈ ℝ if for every open set U ⊆ ℝ2

with A(t0) ⊆ U, there exists a neighborhood of t0 over which the values of A remain
inside U . This suggests that the collection {B ⊆ ℝ2 : 0 ̸= B ⊆ U} of nonempty subsets
of ℝ2 which are contained in an open set U ⊆ ℝ2 should be an open set in the upper
Vietoris topology on 𝒫0(ℝ

2).
Similarly, the definition of lower Vietoris continuity suggests that collections {B ⊆

ℝ2 : B ∩ U ̸= 0} for any open set U ⊆ ℝ2 should be open sets in the lower Vietoris
topology on 𝒫0(ℝ

2).
This motivates the following definition.

Definition 13.4.2. If (X, 𝒯 ) is a topological space, the upper Vietoris topology 𝒯𝒰 on
𝒫0(X) is the coarsest topology on 𝒫0(X) in which each collection

{B ∈ 𝒫0(X) : B ⊆ U}, U ∈ 𝒯 ,

is 𝒯𝒰 -open. The lower Vietoris topology 𝒯ℒ on 𝒫0(X) is the coarsest topology on 𝒫0(X)
in which each collection

{B ∈ 𝒫0(X) : B ∩ U ̸= 0}, U ∈ 𝒯 ,

is 𝒯ℒ-open. The Vietoris topology 𝒯𝒱 on 𝒫0(X) is the supremum 𝒯𝒰 ∨ 𝒯ℒ of the upper
and lower Vietoris topologies.

Thus, 𝒯𝒰 has a subbasis

𝒮𝒰 = {{B ∈ 𝒫0(X) : B ⊆ U} : U ∈ 𝒯 },

and 𝒯ℒ has a subbasis

𝒮ℒ = {{B ∈ 𝒫0(X) : B ∩ U ̸= 0} : U ∈ 𝒯 }.

Since being contained in each of U1,U2, . . . ,Un ∈ 𝒯 is equivalent to being contained in
U1∩⋅ ⋅ ⋅∩Un ∈ 𝒯 ,𝒮𝒰 is closed under the formation of finite intersections, so𝒮𝒰 is in fact
already a basis ℬ𝒰 for the upper Vietoris topology 𝒯𝒰 . However, B intersecting each of
U1, . . . ,Un ∈ 𝒯 is a weaker condition than B intersecting U1 ∩ ⋅ ⋅ ⋅ ∩ Un and is stronger
thanB intersectingU1∪⋅ ⋅ ⋅∪Un, so the subbasis 𝒮ℒ is not a basis for a topology. A basis
for 𝒯ℒ is given by

ℬℒ = {{B ∈ 𝒫0(X) : B ∩ Ui ̸= 0 (i = 1, . . . , n)} : U1, . . . ,Un ∈ 𝒯 }.
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The Vietoris topology 𝒯𝒱 = 𝒯𝒰 ∨ 𝒯ℒ has subbasis ℬ𝒰 ∪ ℬℒ. Because ℬℒ and
ℬ𝒰 = 𝒮𝒰 are each closed under finite intersections, 𝒯𝒱 has basis elements of the
form

[U ;V1,V2, . . . ,Vn] = {B ∈ 𝒫0(X) : B ⊆ U}
∩ {B ∈ 𝒫0(X) : B ∩ Vi ̸= 0 (i = 1, . . . , n)}
= {B ∈ 𝒫0(X) : B ⊆ U ,B ∩ Vi ̸= 0 (i = 1, . . . , n)},

where U ,V1, . . . ,Vn ∈ 𝒯 . Thus,

ℬ = {[U ;V1, . . . ,Vn] : U ,V1, . . . ,Vn ∈ 𝒯 }

is a basis for the Vietoris topology 𝒯𝒱 .
Another basis for 𝒯𝒱 is

ℬ󸀠 = {⟨V1, . . . ,Vn⟩ : V1, . . . ,Vn ∈ 𝒯 }
where

⟨V1, . . . ,Vn⟩ = {B ∈ 𝒫0(X) : B ⊆
n
⋃
i=1 Vn,B ∩ Vi ̸= 0 (i = 1, . . . , n)}.

It is left to the exercises to verify that ℬ󸀠 really is a basis for a topology on 𝒫0(X). To
see that ℬ and ℬ󸀠 generate the same topology, note that

⟨V1, . . . ,Vn⟩ = [X;V1] ∩ ⋅ ⋅ ⋅ ∩ [X;Vn] ∩ [
n
⋃
i=1 Vi; n⋃i=1 Vi] ∈ 𝒯ℬ

and

[U ;V1, . . . ,Vn] = ⟨U⟩ ∩ ⟨X,V1, . . . ,Vn⟩ ∈ 𝒯ℬ󸀠 .

Thus, ℬ󸀠 ⊆ 𝒯ℬ and ℬ ⊆ 𝒯ℬ󸀠 , so 𝒯ℬ = 𝒯ℬ󸀠 .
Using the basis ℬ󸀠 for the Vietoris topology 𝒯𝒱 , a basic open neighborhood of A ∈

𝒫0(X) is determined by a finite open cover 𝒞 = {V1, . . . ,Vn} of A such that each Vi
intersects A. The basic neighborhood of A is then the collection of all sets B ∈ 𝒫0(X)
covered by 𝒞 such that B intersects each Vi ∈ 𝒞.

The Vietoris topology was introduced in 1922 in one of the first publications of
the Austrian mathematician Leopold Vietoris. Vietoris continued to publish papers
for over 70 years, to the age of 103. Before his death at the age of 110 in 2002, he was
the oldest man in Austria.

Most applications of the Vietoris topology occur when X is a metric space and
𝒫0(X) is replaced by ℱ0(X) or 𝒦0(X).
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We will show that if (X, d) is a metric space, the Vietoris topology on 𝒦0(X) is
metrizable.

The Hausdorff metric. In his 1914 text Grundzüge der Mengenlehre, Felix Haus-
dorff introduced a distance function on the collection ℱ0(X) of nonempty closed sub-
sets of a metric space (X, d).

Definition 13.4.3. Let (X, d) be a metric space.
(a) For a ∈ X and B ∈ ℱ0(X), d(a,B) = infb∈B d(a, b).
(b) For A,B ∈ ℱ0(X), d(A,B) = supa∈A d(a,B).
(c) The Hausdorff metric on ℱ0(X) is the function h : ℱ0(X)2 → ℝ ∪ {∞} defined by

h(A,B) = max{d(A,B), d(B,A)}.

The next definition and theoremprovide a geometric characterization of theHaus-
dorff metric.

Definition 13.4.4. Let (X, d) be a metric space. For ε ≥ 0, the ε-enlargement (or the
ε-fattening, or the ε-collar) of B ∈ ℱ0(X) is

Bε = {x ∈ X : ∃b ∈ B with d(x, b) ≤ ε} = ⋃
b∈BB(b, ε),

where B(b, ε) = {x ∈ X : d(b, x) ≤ ε}.

Theorem 13.4.5. If (X, d) is ametric space and A,B ∈ ℱ0(X), then d(A,B) ≤ ε if and only
if A ⊆ Bε. Thus,

h(A,B) = inf{ε ≥ 0 : A ⊆ Bε,B ⊆ Aε}.

This result is suggested by a careful consideration of Figure 13.9. The proof is left
to the exercises.

Figure 13.9: h(A,B) = d(A,B);h(A,C) = ∞ = d(C,A).
Since the Hausdorff metric may assume the value∞, it does not officially satisfy the
definition of a metric. There are two approaches to remedy this. One could consider
the Hausdorff metric only on closed subsets of a bounded metric space so h(A,B) is
never ∞, or one could allow distances to be infinite. An extended metric on Y is a
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function h : Y → ℝ∪ {∞} satisfying all the properties of a metric. Given any extended
metric h, ĥ(x, y) = max{h(x, y), 1} defines a bounded metric which produces the same
topology as h, so there is little harm in allowing extended metrics.

Theorem 13.4.6. If (X, d) is a metric space, the Hausdorff metric h on ℱ0(X) is an ex-
tended metric.

Proof. Since the other properties are straightforward, we will only verify the triangle
inequality. Suppose A,B,C ∈ ℱ0(X). Given a ∈ A, c ∈ C, we have

d(a,B) = inf
b∈B d(a, b)
≤ inf

b∈B(d(a, c) + d(c, b))
= d(a, c) + inf

b∈B d(c, b)
= d(a, c) + d(c,B)
≤ d(a, c) + sup

c∈C d(c,B)

= d(a, c) + d(C,B).

Since this holds for every c ∈ C, we have

d(a,B) ≤ inf
c∈C d(a, c) + d(C,B)
= d(a,C) + d(C,B)
≤ sup

a∈A d(a,C) + d(C,B)
= d(A,C) + d(C,B).

Since this holds for every a ∈ A, d(A,B) = supa∈A d(a,B) ≤ d(A,C) + d(C,B). Now it
is easy to show that if d satisfies the triangle inequality, then h defined by h(A,B) =
max{d(A,B), d(B,A)} satisfies the triangle inequality.

Lemma 13.4.7. If A is a compact subset of a metric space (X, d) and U is an open set
containing A, then there exists ε > 0 such that Aε ⊆ U.

Proof. For each a ∈ A, there exists εa > 0 such that B(a, εa) ⊆ U . The open cover
{B(a, εa/2) : a ∈ A} has a finite subcover {B(ai, εai/2) : i = 1, . . . , n}. Let ε = min{εai/2 :
i = 1, . . . , n}. Now if b ∈ Aε, there exists a ∈ A such that d(b, a) ≤ ε. Pick ai such that
a ∈ B(ai, εai/2). Now d(b, ai) ≤ d(b, a) + d(a, ai) < ε + εai/2 ≤ εai . Thus, b ∈ B(ai,
εai ) ⊆ U .

Theorem 13.4.8. On the collection 𝒦0(X) of nonempty compact subsets of a metric
space (X, d), the metric topology 𝒯h from the Hausdorff metric h is the Vietoris topol-
ogy 𝒯𝒱 .

Proof. First we will show that each 𝒯h ball Bh(A, ε) around A ∈ 𝒦0(X) contains a 𝒯𝒱
neighborhood of A. Suppose A ∈ 𝒦0(X) and ε > 0 is given. The open cover {B(a, ε/4) :
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a ∈ A} of A has a finite subcover {B(a1, ε/4), . . . ,B(an, ε/4)}, and ⟨B(a1, ε/4), . . . ,B(an,
ε/4)⟩ ∈ 𝒯𝒱 . NowclearlyA ∈ ⟨B(a1, ε/4), . . . ,B(an, ε/4)⟩. IfB ∈ ⟨B(a1, ε/4), . . . ,B(an, ε/4)⟩
and b ∈ B, then b ∈ B(ai, ε/4) for some i ∈ {1, 2, . . . , n}, so d(b, ai) < ε/4 and
thus b ∈ Aε/4. This shows B ⊆ Aε/4 ⊆ Aε/2. Furthermore, if a ∈ A, there exists
j ∈ {1, . . . , n} with a ∈ B(aj, ε/4), and since B ∈ ⟨B(a1, ε/4), . . . ,B(an, ε/4)⟩, there exists
b ∈ B(aj, ε/4) ∩ B. Now {a, b} ⊆ B(aj, ε/4) implies d(a, b) < ε/2, so A ⊆ Bε/2. Thus,
h(A,B) = inf{ε ≥ 0 : A ⊆ Bε,B ⊆ Aε} ≤ ε/2 < ε, so B ∈ Bh(A, ε). Thus, ⟨B(a1, ε/4), . . .,
B(an, ε/4)⟩ ⊆ Bh(A, ε), so 𝒯𝒱 is finer than 𝒯h.

Now suppose ⟨U1, . . . ,Un⟩ ∈ 𝒯𝒱 and A ∈ ⟨U1, . . . ,Un⟩. For each i = 1, . . . , n, pick
ai ∈ A ∩ Ui and pick εi > 0 such that B(ai, εi) ⊆ Ui. By Lemma 13.4.7, we may choose
ε0 > 0 such that Aε0 ⊆ U1 ∪ ⋅ ⋅ ⋅ ∪ Un. Let ε = min{ε0, ε1/2, . . . , εn/2}. We will show
Bh(A, ε) ⊆ ⟨U1, . . . ,Un⟩. To this end, suppose B ∈ Bh(A, ε). Then h(A,B) = inf{γ ≥ 0 :
A ⊆ Bγ ,B ⊆ Aγ} < ε. In particular, B ⊆ Aε ⊆ Aε0 ⊆ U1 ∪ ⋅ ⋅ ⋅ ∪ Un. Now it only remains
to show B ∩ Ui ̸= 0 for each i = 1, . . . , n. Given i, A ⊆ Bε ⊆ Bεi/2, so for every a ∈ A,
there exists b ∈ B with d(a, b) ≤ εi/2. In particular, for ai ∈ A there exists b ∈ B with
d(ai, b) ≤ εi/2 < εi. Now b ∈ B ∩ B(ai, εi) ⊆ B ∩ Ui, showing B ∩ Ui ̸= 0, as needed.

Exercises

1. Verify that ℬ󸀠 given after Definition 13.4.2 really is a basis for a topology on 𝒫0(X).
2. Given A,B ∈ ℱ0 and ε ≥ 0, verify that d(A,B) ≤ ε if and only if A ⊆ Bε.
3. If f : ℝ2 → ℝ2 is continuous, define ̂f : (𝒦0(ℝ

2), 𝒯𝒱 ) → (𝒦0(ℝ
2), 𝒯𝒱 ) by ̂f (A) =

f (A). Show that ̂f is continuous.
4. In ℝ2, let U1 = B((0,0), 2) and U2 = B((2,0), 2). Suppose the rectangle A = [a, b] ×
[c, d] is in the 𝒯𝒱 -open set ⟨U1,U2⟩. How many corners of A can lie in U1? More
specifically, for which k ∈ {0, 1, 2, 3, 4} is it possible to find a rectangle A = [a, b] ×
[c, d] in ⟨U1,U2⟩ with exactly k of its corners in U1? Justify your answers.

5. Suppose A is a closed set in a metric space and ε, δ > 0. Show that (Aε)δ ⊆ Aε+δ
and that equality need not hold.

6. Under what conditions does⋂ε>0 Aε = A0?
7. (a) If A is a compact subset of a metric space (X, d) and 𝒞 is an open cover of A,

prove that there exists a number δ > 0 such that, for any a ∈ A, the ball B(a, δ)
is contained in some U ∈ 𝒞. The number δ is called the Lebesgue number of
the cover.

(b) Show that (a) implies Lemma 13.4.7.
8. Let h be the Hausdorffmetric onℱ0(ℝ

2). For the pairs of sets A and B given below,
find d(A,B), d(B,A), and h(A,B).
(a) A = [0, 1]2,B = [4, 1] × [5, 3]
(b) A = {(x, y) ∈ ℝ2 : x2 + (y − 2)2 = 1},B = {(x, y) ∈ ℝ2 : x2 + y2 = 16}
(c) A = {(x, y) ∈ ℝ2 : x2 + y2 ≤ 1},B = ([−4, −3] × [−1, 1]) ∪ ([1, 2] × [−1, 1])

9. Complete the following characterizations. Justify your answers.
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(a) The Hausdorff distance between two lines L andM in the Euclidean planeℝ2

is finite if and only if . . ..
(b) The Hausdorff distance between two closed half-planes A and B in the Eu-

clidean plane ℝ2 is finite if and only if . . ..
10. If (X, d) is a metric space, show that f : (X, d) → (ℱ0(X), h) defined by f (x) = {x} is

an isometry, so (by Exercise 17 of Section 6.1), X is homeomorphic to the subspace
{{x} : x ∈ X} of (ℱ0(X), h).

11. If (X, d) is a metric space, the Hausdorff metric on ℱ0(X) is defined by h(A,B) =
max{d(A,B), d(B,A)}, where d(A,B) = supa∈A d(a,B). Show that d : ℱ0(X) ×
ℱ0(X) → ℝ is a hemimetric. (Hint: See the proof of Theorem 13.4.6.)

12. If (X, d) is a metric space and h : ℱ0(X) × ℱ0(X) → ℝ is the Hausdorff metric
h(A,B) = max{d(A,B), d(B,A)}, the proof of Theorem 13.4.6 showed that d satisfies
the triangle inequality. Complete the missing steps there to show that h satisfies
the triangle inequality.
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