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Preface to the second edition

Two new sections were added to this edition. Section 2.6, “Graph coloring”, covers that
subject in some detail and, in particular, expounds the famous four color problem. Its
current solution requires an essential computer time. We avoid any use of comput-
ers by limiting to the five colors variant, which is done in detail. Another new sec-
tion, Chapter 6, “Secondary structures of the RNA”, shows how modern applications
of graph theory lead to new classes of graphs. We have also refreshed problems and
exercises to many sections.
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Skambraks, Vilma Vaicelitiniené and the entire staff of De Gruyter, to whom the author
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Preface to the first edition

Combinatorial analysis or combinatorics, for short, deals with enumerative problems
where one must answer the question “How many ?” or “In how many ways?” Other
problems are concerned with the existence of certain combinatorial objects subject to
various constraints. These kinds of problems are considered in this book.

Combinatorial problems, methods and graphical models are abundant in many
areas ranging from engineering and financial science to humanitarian disciplines like
sociology, psychology, medicine and social sciences, not to mention mathematics and
computer science. As parts of discrete mathematics, combinatorics and graph theory
have become indispensable parts of introductory and advanced mathematical train-
ing for everyone dealing not only with quantitative but also with qualitative data.

Moreover, combinatorics and graph theory have a remarkable and uncommon
feature—to begin its study, one needs no background but elementary algebra and com-
mon sense. Even simple combinatorial problems often lead to interesting, sometimes
difficult questions and allow an instructor to introduce various important mathemat-
ical ideas and concepts and to show the nature of mathematical reasoning and proof.
These qualities make combinatorics and graph theory an excellent choice for an in-
troductory mathematical class for students of any age, level and major.

This is a text for a one-semester course in combinatorics with elements of graph
theory. It can be used in two modes. The first three chapters cover an introductory ma-
terial and can be (and have actually been) used for an undergraduate class in combi-
natorics and/or discrete mathematics, as well as for a problem-solving seminar aimed
at undergraduate and even motivated high-school students.

Chapters 4 and 5 are of more advanced level and the whole book includes enough
material for an entry-level graduate course in combinatorics. For the mathematically
inclined reader, the material has been developed systematically and includes all the
proofs. After this book, the reader can study more advanced courses, e. g. 1, 9, 10, 22,
51]. At the same time, the reader who is primarily interested in applying combinatorial
methods can skip (most of) the proofs and concentrate on problems and methods of
their solution.

In Chapter 1 we introduce basic combinatorial concepts, such as the sum and
product rules, combinations, permutations, and arrangements with and without rep-
etition. Various particular elementary methods of solving combinatorial problems are
also considered throughout the book, such as, for instance, the trajectory method in
Section 1.4 or Ferrers diagrams in Section 4.4. In Section 1.6 we apply the methods of
Sections 1.1-1.5 to develop the elementary probability theory for random experiments
with finite sample spaces. Our goal in this section is not to give a systematic expo-
sition of probability theory, but rather to show some meaningful applications of the
combinatorial methods developed earlier.

Chapter 2 contains an introduction to graph theory. After setting up the basic vo-
cabulary in Sections 2.1-2.2, in the next three sections we study properties of trees,

https://doi.org/10.1515/9783110751185-202
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Eulerian and planar graphs, and some problems of graph coloring and graphical enu-
meration. Many other graph theory problems appear in Chapters 3-5. As an applica-
tion of the methods developed in Chapters 1-2, in Chapter 3 we give an elementary in-
troduction to hierarchical clustering algorithms. This topic has likely never appeared
in textbooks before.

Chapter 4 is devoted to more advanced methods of enumerative combinatorics.
Sections 4.1-4.2 cover inversion formulas, including the Mébius inversion, and the
Principle of Inclusion-Exclusion. The method of generating functions is developed
in Section 4.3. Generating functions are introduced as analytical objects, the sums of
converging power series. In Section 4.4 we consider several applications of the method
of generating functions, in particular partitions and compositions of integer numbers
and linear recurrence relations (difference equations) with constant coefficients. The
Pélya—Redfield enumeration theory is considered in Section 4.5.

The last chapter of the book is concerned with combinatorial existence problems.
The Ramsey theorem and its applications are considered in Section 5.1. The Dirich-
let (pigeonhole) principle follows immediately. Section 5.2 treats Hall’s theorem on
systems of distinct representatives (the marriage problem) and some of its equivalent
statements, namely, Konig’s theorem on zero-one matrices and Dilworth’s theorem
on chains in partially ordered sets. An example of an extremal combinatorial problem
(the assignment problem) is also considered here.

Section 5.3 contains an introduction to the theory of balanced block designs. We
consider only recursive methods of construction of block designs since deep algebraic
results are beyond the scope of this book. Finally, Section 5.4 is devoted to the systems
of triples concluding with the proof, due to Hilton [30] of the necessary and sufficient
conditions of the existence of Steiner’s triple systems.

The author’s credo in teaching mathematics involves advancing from examples
and model problems to theory and then back to problem solving. This approach works
especially well in combinatorics. Every section of the book starts with simple model
problems. Discussing and solving these problems, we derive the basic concepts and
definitions. Then, we study essential properties of the concepts developed and again
solve problems to illustrate the ideas, methods, and their applications. In particular,
some parts of proofs are left as problems to be solved by the reader. Studying the so-
lutions of typical problems in the book, the reader can quickly grasp the methods of
solving various combinatorial problems and apply these methods to a range of similar
problems in any subject. Thus the book can be used as a self-study guide by the reader
interested in solving combinatorial problems.

More than 800 problems constitute an integral part of the text. Many problems
are drawn from literature, some are folklore, and some are original. Many problems
are solved in the text, scores of other problems and exercises are in the end of each
section. Additional problems can be found in the books cited in the list of references,
specifically, in [11, 13, 29, 38, 39, 53]. Interesting topics for further reading and individ-
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ual projects can be found in [4]. Solutions, answers or hints to selected problems and
exercises are given in the end of the book.

Combinatorial problems often provide natural intuitive motivation and models
for important mathematical ideas and concepts, such as operations on sets, various
classes of functions, classes of binary relations, and many others. Primary combina-
torial concepts, permutations, combinations and alike, can be naturally defined in
terms of set theory operations and functions. In the text, we systematically use this
approach that can be traced (at least) as far back as C. Berge’s monograph [8]. Not to
mention its conciseness and theoretical merits, this set-theory based approach is of-
ten advantageous in problem solving, and we demonstrate this in the text using many
examples. This approach removes the ambiguity that is often present in combinato-
rial problems, especially when different objects must be identified, and significantly
reduces the number of student errors.

It is the author’s experience that freshmen usually master this approach with ease
and successfully apply it to problem solving. For the reader unfamiliar with the lan-
guage and basics of set theory, Section 1.1 systematically develops some standard ter-
minology, which is used in the following sections. The reader familiar with naive set
theory can skip Section 1.1 and refer back to it as needed.

Very few non-elementary concepts are included in the text. No concept beyond
the precalculus level appears before Section 4.3. Two calculus-level concepts, those
of derivatives of elementary functions and of converging series, appear in Section 4.3
on generating functions. From this point on the book can be subtitled “Combinatorics
through the eyes of an analyst”. Even the notion of a converging series can be elim-
inated and replaced by the finitary concept of generating polynomials, that is, trun-
cated power series, and we solve a few problems to demonstrate the method. This
approach makes the method of generating functions accessible to the reader without
any calculus background at all, though calculations become more tedious.

It should be noted that these days many college students take at least one calculus
class, but afterwards they see no actual application of calculus. Therefore, some non-
trivial examples of applications of calculus ideas and methods are appropriate. The
same can be said of the few elementary algebraic concepts (groups, rings) appearing
in Chapters 4 and 5.

The book is self-contained; all the concepts and definitions used are defined
and explained by examples. The Index includes references to important groups of
problems and specific methods of their solution, such as “coloring problems” or
“method of generating functions”. Throughout the text, we use several abbreviations:
GF stands for generating function(s), EGF for exponential generating function(s), SDR
for system(s) of distinct representatives, and BIBD for balanced incomplete block de-
sign(s). Theorems, lemmas, problems, etc., have three-digit numbering, thus, Prob-
lem 1.2.3 refers to the third problem in the text of Section 1.2 of Chapter 1, while 1.2.3
means Exercise 1.2.3 in the end of Section 1.2. Figures have two-digit numbering, thus
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Fig. 2.3 refers to the third figure in Chapter 2. The symbol 0 indicates the ends of the
proofs of statements or solutions of problems.

Combinatorial problems and graphical models have been studied by many out-
standing scientists for thousands of years. The web site www.degruyter.com of de
Gruyter GmbH contains many interesting links describing the history of these devel-
opments and lives of the people involved. The coffee cup icon & indicates that there is
information available at the web site. Any remarks, corrections and suggestions about
the book can be sent to akheyfits@gc.cuny.edu.

Acknowledgments
Chapter 3 is a revised version of Module 03-1 in the DIMACS series of educational mod-
ules, written when the author participated in Reconnect 1998 and Reconnect 1999
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1 Basic counting

In this chapter we introduce some basic concepts of enumerative combinatorics. In
Section 1.1 the language is being prepared—we discuss the axiom of mathematical in-
duction and operations on sets, binary relations, important classes of functions (map-
pings). This language of sets and mappings is systematically used in Sections 1.2-1.5 to
introduce the sum and product rules, arrangements, permutations, and combinations
with and without repetition. As an important application of the methods developed,
in Section 1.6 we consider some basic notions of the probability theory in the case of
finite sample spaces.

1.1 Combinatorics of finite sets

In this introductory section we review a few fundamental set-theory notions and calcu-
late cardinalities of basic set theory objects—the unions, intersections, and Cartesian
products of sets. All proofs are based on the Principle of Mathematical Induction.

Coffee-time browsing

-  www-history.mcs.st-and.ac.uk/Biographies/Cantor.html (Cantor’s biography)

- www.socialresearchmethods.net/kb/dedind.php (Deduction & Induction)

—  http://www-history.mcs.st-and.ac.uk/Mathematicians/Nicomachus.html (Nico-
machus’ biography)

- www.gap-system.org/ history/Biographies/Al-Kashi.html (Al-Kashi’s biography)

- scienceworld.wolfram.com/biography/Abel.html (Abel’s biography)

— ecee.colorado.edu/~bart/book/stirling.htm (Stirling’s approximation for factori-
als)

- http://mathworld.wolfram.com/Factorial.html (factorials)

- http://en.wikipedia.org/wiki/George_Boole (Boole’s biography)

—  http://dimacs.rutgers.edu/ (DIMACS center)

- http://www.encyclopedia.com/doc/1E1-Hypsicle.html (Hypsicle’s biography)

Throughout we mostly deal with finite sets, thus we accept a naive point of view, do not
introduce axioms of the set theory, do not distinguish sets, classes, etc. Any collection
of different elements is called a set and is denoted by braces, {x;, x,,...}, here x;,x,, ...
are the elements of this set. A set X can also be introduced by the defining property of
its elements, that is, the property P such that every element of X has this property, but
no other element possesses it. In this case we write X = {x | P(x)}. If x is an element of
a set X, we write x € X, otherwise x ¢ X.

A set that contains no element is called the empty set and is denoted by @. A de-
tailed exposition of naive set theory can be found, for example, in [25].

https://doi.org/10.1515/9783110751185-001



4 — 1 Basiccounting

Example 1.1.1. The set D = {d | disa Hindu-Arabic digit} consists of ten elements
0,1,2,...,9,thus,0 € D,5 € D,but 10 ¢ D. The set T = {1, 2, 3} consists of the first three
positive integer numbers, 3 € ThutO ¢ T.

It is important that sets are unordered collections, that is, {a, b} = {b,a}, {a, b, c} =
{b, a,c} = {a, c, b}, and similar statements hold true for any number of elements. More-
over, a set cannot contain repeating elements, that is, {a, b, a} = {a, b}.

Thus, sets are primary, undefined objects. Another major undefined object is the
set of all natural numbers' N = {1,2,...,n,...}. The set of the first n natural numbers is
denoted by N,, = {1,2,...,n} and for brevity is called a natural segment, or more specif-
ically, a natural n-segment; thus, N5 = {1,2,3} and N; = {1}. The whole numbers W in-
clude all natural numbers and zero, thatis, W = {0,1,2,...,n,...}. The set of all integer
numbers, positive, negative, and zero, is denoted by Z. Denote also Zp ={0,1,...,p-1}
for any natural p; in particular, Z, = {0, 1}. The set of all real numbers is denoted by R,
and R, stands for the set of all nonnegative (including 0) real numbers.

We notice that two words “for all” often appear in mathematical texts. As an abbre-
viation for this expression, a special symbol V is used, called the universal quantifier.
Thus, a sentence

“A property P(x) holds true for all the elements of a set X”
can be shortened to
(Vx € X)P(x).

Likewise, the symbol 3, called the existential quantifier serves as an abbreviation for
the expression “there exists”. For example, the expression

(Ix € X)P(x)

means that there exists at least one element in the set X that possesses the property P.
These expressions are often shortened to VxP(x), 3x P(x), if it is clear what set X is
referred to.

Definition 1.1.1. A set X is called a subset of a set Y, if x € Y whenever x ¢ X, that is,>
Vx(x € X = x € Y); thisis denoted by X c Y.

Example 1.1.2.
(1) N; c N; but not vice versa.
2 NcWcZcR.

1 It is customary in computer science and mathematical logic to treat O as a natural number, that is
define N = {0, 1,2,...}. For our goals, however, it is more convenient to assume that O ¢ N.
2 In definitions = stands for the implication “if...then”.
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Basic combinatorial concepts are defined in this text in terms of functions (map-
pings) and equivalence classes. The concept of a mapping itself is also a primary, un-
defined notion; the following paragraph is not a mathematical definition rather it is an
intuitive description of mappings (functions).

Let X and Y be two sets; if to each element x € X there corresponds the uniquely
defined element y € Y, denoted by y = f(x), then it is said that a mapping (or a function
or a transformation) f is given with the domain X = dom(f) and the codomain Y =
codom(f); it is denoted by f : X — Y orx N y.

Now we can define the new concepts in terms of mappings.

Definition 1.1.2. Givenamap f : X — Y and an element x € X, then the element
y = f(x) € Y is called the image of the element x with respect to the mapping f; in
turn, x is called a preimage or an inverse image of y. Denote the total preimage of an
element x € X, that is, the set of all its preimages, by

'y =xeX|fo=yh

The set of all images is called the range of a function (mapping) f and is denoted by
Ran(f) or f(X), thus,

Ran(f) = {y € Y | 3x € X such that f(x) = y},

in particular, Ran(f) c Y.

Definition 1.1.3. Two mappings, f : X — Yand g : X, — Y, are called equal if’
X=X,Y=Y,andf(x) =g(x), Vx e X = X;.

Example 1.1.3. Consider the mappings
f:R->R, g:R,. >R, h:R->R,, k:R, >R,

all four given by the same formula f(x) = x%,g(x) = x5, h(x) = x%, k(x) = x%, but with
different domains or codomains. These four mappings are pairwise different.

Definition 1.1.4.

(1) Amappingf : X — Y is called injective (or univalent), if no element of Y has more
than one preimage.

(2) Amapping f : X — Y is called onto or surjective, if each element of Y has at least
one preimage.

(3) A mapping f : X — Y is called bijective or a one-to-one correspondence, if it is
both injective and surjective.

3 In definitions “if” always means “if and only if”.
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Problem 1.1.1. What mappings in Example 1.1.2 are injective? Surjective? Bijective?
Neither?

Definition 1.1.5. A set X is called finite if it is the empty set 0 or if it can be put in a one-
to-one correspondence with a set N; with some k = 1,2,.. ; the quantity k € Nis called
the number of elements or the cardinality of X and is denoted by |X| = k. Otherwise,
the set is called infinite. We set |0| = 0 by definition. The set of natural numbers N,
as well as any set that can be put in a one-to-one correspondence with N, is called
countable.

Problem 1.1.2. Are natural segments finite? Explain why the set of natural numbers N
is infinite. Prove that the sets of even positive integers {2, 4, 6, .. .}, odd positive integers
{1,3,5,...}, prime numbers {2,3,5,7,11,.. .} are countable.

Problem 1.1.3. Prove that the set of integers Z is infinite. Is it countable? Explain why
the set of real numbers R is infinite. Is it countable?

To introduce our next topic, the axiom of mathematical induction, we first discuss
an example. We want to find an explicit formula for the sum

1+3+5+:--+(2n-1)

of n consecutive odd numbers, which is valid for every n = 1,2,3,.... To guess the
formula, we consider the three sums,1+3 =4,1+3+5=9,1+3+5+7 = 16. We notice
that all these sums are squares of integer numbers: if n = 2 then 4 = 2%, forn = 3,
9 = 3%, and for n = 4, 16 = 4°. It is natural now to guess that all such sums are squares.
We can check a few more cases, for example, 1+3+5+7+9 = 52,1+3+5+7+9+11 = 62,
1+3+5+7+9+11+13 = 7% the shortest sum, comprising one addend, 1 = 12, also
supports the guess.
Thus, we claim that the equation

143+--+@n-1)=n’

holds true for all natural n = 1,2, 3,.... We have checked this equation for several val-
ues of n, however, by no means can we verify infinitely many numerical equations for
infinitely many natural numbers. Therefore, we have to develop a new method capable
to solve similar problems, that is, the problems involving a parameter, which can take
on infinitely many integer values. Thus, this method must reflect some fundamental
properties of the infinite set of natural numbers.

This method is called the principle (or the axiom or the postulate) of mathematical
induction.

The axiom of mathematical induction
Consider a set of statements or formulas S, , Sy, 11, Sy 12, - - » numbered by all integer
numbers n > n;. Usually n; = 10r n; = 0, but it can be any integer number.
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(1) Firstly, suppose the statement Sn,» called the basis step of induction, is valid. In ap-
plications of the method of mathematical induction the verification of S, is anin-
dependent problem. This step may be sometimes trivial, but it cannot be skipped.

(2) Secondly, suppose that for each natural n > n; we can prove a conditional state-
ment S, = S,,;, thatis, we can prove the validity of S, for each specified natural
n > n; assuming the validity of S,;, and this conditional statement is valid for all
natural n > n;. This part of the method is called the inductive step. The statement
S, is called the inductive hypothesis or inductive assumption.

(3) If we can independently show these two steps, then the principle of mathematical
induction claims that all of the statements S,,, for all natural n > n; are valid.

This method of proof is accepted as an axiom, because nobody can actually verify
infinitely many statements S,,n > ny; the method cannot be justified without using
some other, maybe even less obvious properties of the set of natural numbers. Math-
ematicians have been using this principle for centuries and never arrived at a contra-
diction. Therefore, we accept the method of mathematical induction without a proof,
as a postulate, and believe that this principle properly reflects certain fundamental
properties of the infinite set N of natural numbers. We will apply the method (axiom)
of mathematical induction many times in the sequel chapters, the method will be em-
ployed in each proof in this chapter, however, sometimes the method presents itself
only implicitly, through some known results that have been already proved by using
mathematical induction. In the following problem we give a detailed example of an
application of the method of mathematical induction.

Problem 1.1.4. Show that, for every naturaln,n =1,2,3,...,
2 2 2 1
1°+2°+--+n" = gn(n+1)(2n+1).

Solution. Here n; = 1and S,, stands for the equation above, thus, S; denotes the equa-
tion 1% = %1(1 +1)(2-1+1), which is certainly true, S, denotes 1?+2° = é2(2+ 1)(2-2+1),
which is true as well; S5 is also a valid statement ?+22+3 = é3(3 +1)(2-3+1).
Therefore, we have the basis of induction (of course, it was enough to verify only one
statement S;) and we have to validate the inductive step.

To do that, we have to prove S, assuming that S,, is valid for some unspecified
but fixed natural n = n’. In this problem we must prove the statement (the equation)
Snr+1> which reads

Sy P42+t +(n +1) = é(n' +1)(n" +2)(2n" +3)

assuming that S, is valid, that is, using the equation

Sy :P+2+.+(n) = %n'(n' +1)(2n' +1)
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as if it were correct. Its validity in general is unknown yet, however, in the procedure
we suppose it to be true. It is worth repeating that our reasoning must be valid for any
natural number n, that is, the reasoning can use only properties common to all natural
numbers. For instance, we cannot assume that n is an odd number.

To simplify notation, in the sequel we drop the apostrophe and write in all formu-
las n assuming it to be fixed. We observe that the left-hand side of

Sy P+ 4+ 4’ +m+1)’ = Z(n+ )(n+2)(2n +3)

[y

contains the left-hand side of S,,, and the latter in our inductive reasoning is considered
to be known. This observation gives us the idea of the proof. Since we assume that the
equation

Syt 12+22+-~-+(n)2 = %n(n+1)(2n+1)
holds true, we employ S, to transform the left-hand side of S, as follows,
Spp [P+ 2+ 40’ + (n+1)°

= %n(n+1)(2n+1) +(n+1)2= é(n+1)(n+2)(2n+3).

Thus we have derived the statement S,,,; from S,, for an arbitrary fixed natural n.
Since we completed both steps of the principle of mathematical induction, we claim
that S,, is valid for all natural n. O

Next we introduce a useful notation. In the preceding problem we had to deal with
sums with variable limits. To simplify many formulas, it is convenient to use the sum-
mation or sigma notation. The sum a; + a, + --- + a,, is denoted by Zﬁj a,. Here k is
called the summation index, 1 and n are the lower and upper limits of summation. Usu-
ally we simplify the upper index and write the sums as Y}_, a,. For example, Y;_, %

means

21 01 1 1 1 1
Z—:—+—+—+—+--~+—.
Zk 12 3 4 n
If n = 1, this is just
1 1_
k:lk
if n = 2, it becomes
yl_1,1
k1 2
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if n = 3, it means

le—k

>\'IH
Nlb—‘
w|>—~

31
Using the sigma-notation, Problem 1.1.4 can be stated as

n
Zkz = ln(n+l)(2n+1), n=123,....
k=1 6

The summation index is often called dummy index, for it can be replaced by any
character, which collides with no other indeterminate in the formula. For example, we
can write

but it is ambiguous to write Y, 1.
Similarly to the summation notation, we can abbreviate any other operation with
several operands. For instance, the product a; - a, - - - a,, can be written as

n

[Tac=a-a,ay

k=1

for example, [T;_, k* = 576.
The following problem shows some useful properties of the sigma notation. In the
end of this section the reader finds other problems concerning this symbol.

Problem 1.1.5. Prove that

M Zk m( a) __Zk ma

@) Ykem(ag +by) = Zk:m A+ Yo b

B) Yr_m(bay) = b Yi_, a; for any constant b;

n n+l
(4) Zk:m Ayl = Zk:m+l Q.

Problem 1.1.6. Prove by mathematical induction that, for every natural n,

_nn+1)
)

14243 +---+

n(n+1)

or using the summation notation, Yy_, k = =5

As another example, we consider an ancient Greek problem.

Problem 1.1.7. (Nicomachus &) Partition all odd numbers into groups consisting of
1,2,3,...,n,... consecutive odd numbers, namely,

N={1}uU{3,5}U{7,9,11} U {13,15,17,19} U ...
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If we add up the numbers within each group, we discover (cf. the discussion after
Problem 1.1.3) the equations 3+5=8=2>,7+9+11=27=3%,13+15+17+19 = 4>,
etc.; certainly 1 = 1. Show that this is a general pattern, that is, demonstrate that the
sum of odd numbers in the nth group is n® for any natural n.

Solution. It is convenient here to denote odd numbers by 2k — 1,k = 1,2,3,.... Since
the nth group contains n numbers, the preceding n — 1 groups altogether contain, by
Problem 1.1.6,1+2+---+(n-1) = (1/2)(n-1)n odd numbers. Thus the problem reduces
to proving the equation

ky
Y @k-1)=rn
k=k;
where we must determine the indices k; and k, so that 2k; —1is the smallest odd number
in the nth group and 2k, — 1is the largest one.
We notice that in the equation m = 2k —1 the number k means the “serial number”
of the odd number m in the series of all odd numbers. Indeed,
if 1 = 2k - 1, then k = 1, that is, 1is the first odd number;
if 3 = 2k — 1, then k = 2, which means 3 is the second odd number;
if 5 = 2k — 1, then k = 3, and 5 is the third odd number, etc.

Therefore, since the first n—1 groups contain first (n —1)n/2 odd numbers, the first odd
number in the nth group is the ((" U 4 1)st odd number, which implies k; = =)" 1)" +1.
By the same token, k, = "("“ thus to solve the problem we have to prove that

n(n+1)
2

Y @k-1)=r.

_(n=Dn
k="5"+1

It is not hard to prove this by the straightforward mathematical induction, but it is
simpler to use the properties mentioned in Problem 1.1.5 and to transform the sum on
the left side as

n(n+1) n(n+1)

2 2
2 ) k- Y 1
k=0nyg =Dy

n(n+1) (n— l)n

n(n+1) (n-1n
=2 k- k ,
{2 2o (-5

apply twice Problem 1.1.6 to the sums in braces and simplify the resulting expression.
(]

Problem 1.1.8. Where in the proof did we use the mathematical induction?

The mathematical induction is a very powerful method of proof; however, some-
times we can find an easier approach.
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Problem 1.1.9. Show that for every natural n

1 1 1 n
—_—t e — =
1-2 2.3 n-n+1) n+1

Give two proofs, by mathematical induction and by making use of telescoping sums—
which method is simpler in this problem?

Solution. We do only the second proof. A sum Zi’il a, is said to be telescoping if a; =
—0y, a5 = —Qy,...,Ay_1 = —Ay_p, thus all the addends but the first and the last one,
cancel out and the sum is a; + a,,. We remark that

1 1

1
k(k+1) k k+1

thus the sum in the problem is telescoping and we get

1 1
_+_+...+—
1-2 2-3 n-(n+1) n+l n+1

thus proving the claim. O
Remark 1.1.1. Did we really avoid mathematical induction?

It is essential that neither the first nor the second step in an inductive proof can be
omitted. For instance, consider a polynomial P(x) = x* + x + 41. Computing P(1) = 43,
P(2) = 47, P(3) = 53, we observe that all these values are prime numbers; P(0) =
41 is also prime. A reasonable hypothesis springs up that the value P(n) is prime for
any whole n. Such a conclusion is called incomplete induction, since it is based on a
finite set of observations and has not been confirmed by the inductive step. Without
this validation the incomplete induction can lead to false conclusions. Indeed, if we
continue the numerical experiment with the polynomial above, we discover that all
numbers P(0),...,P(39) are prime, but P(40) = 1681 = 41% is a composite number,
thus invalidating our guess.

The following result may look simple, although it is fundamental in solving combi-
natorial problems. It is this property that underlines, for instance, the following trivial
fact: if 25 students attend a class, and there are only 24 chairs in the classroom, then
either two students will have to share a chair or one student will have to stand. The
latter is obvious, but there are many non-obvious problems where this result is use-
ful. Even if this theorem is not mentioned explicitly, it is present in any enumerative
problem. We prove it only for finite sets.

Theorem 1.1.1. For any finite sets X and Y,

(1) |X| < |Y|if and only if there exists an injective mappingf : X — Y;
(2) 1X| = |Y|if and only if there exists a surjective mappingf : X — Y;
(3) |1X| = |Y|if and only if there exists a bijective mappingf : X — Y.



12 — 1 Basic counting

Proof. Denote X = {x;,...,x,} and Y = {y;,...,y,,}. If there exists an injective mapping
f:X — Ysuchthatf(x;) =y;,1<i<n,thenallimagesy;,1<i<n, must be different
for f is injective, thus, there are at least as many y;s as x;s, that is, n < m. On the other
hand, if n = |X| < m = |Y|, we can straightforwardly construct a required injective
mapping f : X — Y, for instance as f(x;) = y;,1 < i < n, which proves part (1) of the
problem. Part (2) can be proved likewise and part (3) follows from parts (1) and (2). O

Problem 1.1.10. To facilitate memorization of telephone numbers, they can be ex-
pressed as certain combinations of digits and relevant words; for example, it is easier
to remember 1-800-333-TOLL, than 1-800-333-8655. To this end, the dialing keys on
telephone handsets are marked by both digits and letters. What relationship between
the set of digits {0, 1, ..., 9} and the English alphabet allows us to use this approach?

Next we introduce operations on sets. Working on any problem involving sets, we
always assume, explicitly or implicitly, that all sets under consideration are subsets
of a certain ambient totality, called the universal set U. This is our universe and noth-
ing exists in the problem beyond U. This remark is important when we compute the
complement of a set.

Definition 1.1.6.
m It {X,};il is a family of sets X;, then the collection of all elements x, belonging to at

least one of the sets X;,1 = 1,2,.. ., is called the union of the sets X; and is denoted
by

w
UXI ={x|3=1xeX}
I=1
(2) The collection of all elements x belonging to each one of the sets X;,1=1,2,..., w,
is called the intersection of the sets X; and is denoted by
w
(X =xIxeX,viz1}
I=1

IfXNY =0, the sets X and Y are called disjoint.
(3) The difference of sets X and Y, denoted by X \ Y, is the set of all those elements
of X, which do not belong to Y and is denoted by

X\Y={x|xeXandx ¢ Y}

(4) The complement of a set X, denoted by)_( or X¢, is the set of all the elements of the
universal set U that do not belong to X,

X={xeU|x¢X}h

it is obvious that X = U \ X.



1.1 Combinatorics of finite sets = 13

Problem 1.1.11. Find N; U N3, N; N N3, N; \ N3, N5 \ N;—the natural segments N; were
introduced at the beginning of this section.

The following problem lists important properties of these operations, some of
them are similar to the well-familiar properties of the addition and multiplication of
numbers. These properties are also valid not only for two, but for any finite collection
of sets.

Problem 1.1.12.
(1) The union and intersection of sets are commutative,

XuY=YUXxk,
XnY=YnX,

and associative operations,
XulYuzZ)=XuY)uzZ=XuYuZz,
XnYnZ)y=XnY)nZ=XnYnNnZ
they satisfy two distributive laws,
XulinY))=XuY)nXuY,),
XnuYy)=XnY)uXnY,).

(2) The complement is connected with the union and intersection by de Morgan laws,

XnY

XuY

[
>
=l =l

U
n

>

The properties we have already considered, are useful in many enumerative prob-
lems. For instance, the definition of the union of two sets directly implies the following
statement.

Lemma 1.1.1. IfX andY are finite disjoint sets, that is, |X| < 0o, |Y| < co,and XnY = g,
then | X u Y| = |X| +|Y|.

By the axiom of mathematical induction, this lemma immediately extends to any
finite collection of sets.

Lemma1.1.2. If |X;| < c0,i = 1,2,...,m, anXm-ﬂX]- =0 foralll <i,j<mi#j,then
|X1UX2U'UXm| = |X1|+|X2|+"'+|Xm|.

We will often use the following notion.

Definition 1.1.7. It is said that non-empty and mutually disjoint sets

Xoo Xp Xy .
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make a partitionof aset X, if X = X, UXﬁ UXy U---, where the order of sets is immaterial.
The number of all partitions of an n-element set is called the Bell & number B,; see
Problem 1.1.19.

Example 1.1.4. Thus, thesetZ, = {...,-4,-2,0,2,...} of all even numbers including
zero, and the set Z, = {...,-3,-1,1,3,...} of all odd numbers form a partition of the
set of integers, Z = Z,UZ, and Z, N Z, = 0, while Z', = {...,-4,-2,2,.. .} and Z, =
{...,-3,-1,1,3,...} do not.

Problem 1.1.13. Find a set Z" such that {Z],Z,,Z"} is a partition of Z; the set Z|, was
introduced in Example 1.1.4.

Problem 1.1.14. Prove that the total preimages of all the elements in the range of any
mapping make a partition of the domain of this mapping.

The result of this problem implies immediately

Lemma 1.1.3. IfX and Y are finite sets and f : X — Y is a surjective mapping, then

IXI= Y IF ol

yeY

In particular, if all total preimages have the same cardinality n,, then
IX] = no|Y|. O

Example 1.1.5. Let a mapping f : X — Y, where X = {-3,-2,-1,0,1,2,3}and Y =
(0,1,4,9}, be given by f(x) = x*. Then f'({0}) = {0}, f ({11 = {-1.1, F({4}) = {-2.2},
£71{9}) = {-3,3}. Here

XI=Y ol ="7.

yeY

Iff, : X, —» Y.fi(x) = x>, where X; = {-3,-2,-1,1,2,3} and Y, = {1,4,9}, then
|Y,] =3,ny=2and [X;| =6=2-3.

In many problems we have to distinguish ordered and unordered totalities. The
latter are sets and as such, are denoted by braces, {a}, {a,b} = {b,a},.... However,
unlike the two-element set {a, b}, ordered pairs, denoted by parentheses, (a, b), are
characterized by the profound property

(a,b) = (b,a) ifandonlyif a=b,

and a definition must preserve this property. Such a definition can be given in terms
of mappings.

Definition 1.1.8. An ordered pair with the first element a and the second element b is
amapping f : {1,2} — {a, b}, where a = f(1) and b = f(2). This pair is denoted by (a, b).
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The next definition introduces a useful mathematical model dealing with ordered
totalities.

Definition 1.1.9. Given two sets X and Y, the set of all ordered pairs (x,y) with x €
X,y € Y is called the Cartesian & or direct product of these sets in this order and is
denoted by

XxY={(xy)|xeXandy e Y}

Problem 1.1.15. Compute N; x N3, N5 xN;, N, x N3, N3 xN,, and find the cardinal num-
bers of these sets.

An ordered totality of n elements a;, a,, ..., a, is called an n-tuple or n-vector and
is denoted by (a;, ay, . . ., a,); thus, 2-tuples are ordered pairs. To avoid confusion with
unordered sets, ordered totalities are denoted by parentheses.

Problem 1.1.16. Define n-tuples in terms of mappings. Give a definition of the Carte-
sian product of three or more sets.

In many problems it is necessary to consider not the entire Cartesian product but
only its subsets.

Definition 1.1.10. Given two sets X and Y, any subset p of their Cartesian product X x Y
is called a binary relation between elements of X and Y. If Y = X, thatis,p c X x X, g
is called a (binary) relation on the set X.

Example 1.1.6. For instance, if X x Y = N x N, we can consider g, = 0, or g; =
{(1,1),(1,2)}, or p, = {(1,3)}, or p3 = {(3,1)}; it is worth repeating that p, # p3. We
say that 1 € X = N is in the relation p, with 3 € Y = N but not vice versa, that is,
3 € Y = Nis not in the relation p, with1 € X = N.

Problem 1.1.17. How many binary relations do exist between the natural segments N;
and N5?

Definition 1.1.10 of binary relations is very general. In applications we are usually
interested in more specific classes of binary relations. In the following definitions we
consider only relations on a set X.

Definition 1.1.11.
(1) Abinary relation o ¢ X x X is called reflexive if each element of X is in this relation
with itself, that is,

(Vx € X)((x,x) € ).

(2) A binary relation g ¢ X x X is called symmetric if for all x,y € X, the element y is
in the relation p with x whenever the element x is in the relation g with y, that is,

(Vx,y € X)((x,y) € 0 = (,x) € p).
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(3) ADbinary relation p ¢ X x X is called transitive if for all x,y, z € X, the element x is
in the relation p with z whenever the element x is in the relation p with y and y is
in this relation with z, that is,

v y,z € X)(((0,y) €0 & (¥,2) € 0) = ((x,2) € )).

(4) ADbinary relation p ¢ X x X is called antisymmetric if for all x,y € X, the elements
x and y cannot simultaneously be in the relation g with one another unless x =y,
that is,

(Vx,y € X)(((,y) € 0 & (y,x) € p) = (y =X)).

An important class of binary relations is introduced in the following definition.

Definition 1.1.12. A reflexive, symmetric, and transitive binary relation p ¢ X x X is
called an equivalence relation on the set X. If p ¢ X x X is an equivalence relation on
X and an ordered pair (x,y) € g, then the elements x and y are called equivalent (with
respect to p); this equivalence is denoted by x 2 y or simply x ~ y.

If p is an equivalence relation on X, then a subset X, ¢ X consisting of all pairwise
equivalent elements of X, is called an equivalence class.

The family of all equivalence classes with respect to an equivalence relation g on
a set X is called the factor set of X with respect to this equivalence relation p and is
denoted by X/p or X/~. Examples of equivalence relations are considered in the end
of this section.

Problem 1.1.18. Prove that any equivalence class is non-empty, any two different
equivalence classes are disjoint, and the union of all the equivalence classes with re-
spect to an equivalence relation on a set X is equal to X. Thus, the equivalence classes
make up a partition of X.

The converse assertion is also true.

Problem 1.1.19. Prove that any partition of a set generates an equivalence relation on
this set such that the factor set of this equivalence relation is precisely the family of
all the parts of the partition. Therefore, there is a one-to-one correspondence between
the partitions of a set and the equivalence relations on the set and the number of the
equivalence relations on an n-set X is equal to the Bell number B,; see Definition 1.1.7.

The following class of binary relations also often occurs in applications.

Definition 1.1.13. Areflexive, antisymmetric, and transitive binary relation p ¢ XxX is
called a relation of partial order or just a partial order on the set X. If g is a partial order
and (x,y) € g, then we write x < y. If x < y or y < x, the elements x and y are called
comparable (with respect to the order g). A set with a relation of partial order on it is
called a partially ordered set (poset). If any two elements of a poset are comparable,
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that is, either x < y or y < x for all x,y € X, then the set is called a chain or a linearly
(sometimes totally) ordered set.

In the following statements we create our “combinatorial toolkit”—we compute
cardinal numbers of major set-theory constructions. The next statement directly fol-
lows from Lemma 1.1.4 and Problem 1.1.18.

Lemma 1.1.4. Let an equivalence relation be given on a finite set X such that all the
equivalence classes have the same cardinality k. Then the cardinality of the factor set,
that is, the number of the equivalence classes is

IXI
= (1.11)
O

Next we calculate the cardinality of the union of finite sets. We will need the fol-
lowing properties, whose proofs are left to the reader.

Problem 1.1.20. For any (not necessarily finite) sets X and Y,

ey

XuY=Xu(Y\X), (1.1.2)
@

Y=Y nX)u(Y\X), (1.1.3)

where the sets on the right in both (1.1.2) and (1.1.3) are disjoint, that is, X n
(Y\X)=0and (Y nX)n (Y \X) = 0.

Theorem 1.1.2. If|X| < co and |Y| < oo, then
XuY|=|Xl+|Y|-|XnY]|
Proof. It is sufficient to apply Lemma 1.1.1 to identities (1.1.2)-(1.1.3). O
We extend this statement to any finite family of sets.
Theorem 1.1.3. If|X;| < 00,1 <i <k, then
X;UuXo U UX|
=X+ Xl + - + X = Xy N X5 =+ = 1 X N X
+X XN X+ + DX N X 0 X (1.1.4)
Proof. To prove (1.1.4) for any k, we use the mathematical induction on the number k

of sets. If k = 1, then formula (1.1.4) is obvious, which already makes the basis of induc-
tion. Moreover, if k = 2, (1.1.4) reduces to Theorem 1.1.2. Suppose that the statement is
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valid for any union of k sets, and consider a union of k + 1 sets X; UX, U--- UX; UX; ;.
Now, Theorem 1.1.2with X = X; UX, U--- U X} and Y = X, implies the equation

X;U- - UXp UXpql = X UX U UX] + 1 X = IXG UX, U U X ) N Xl
By the distributive law (Problem 1.1.12)
X UX, U UXp) N Xpyq = (X N Xjy) U+ U (X N X))

Applying the inductive hypothesis to the unions X; UX, U---UX; and (X; N Xj,1)U---U
(Xi N Xp,1), we get the result. O

Consider now Cartesian products. A proof of the following proposition is left as
an exercise to the reader.

Lemma 1.1.5. For any, not necessarily finite sets X, Y,, Y,,
Xx(YJuYy) =X xY)UXxY,).

Moreover, if Y NY, =0, then X xY;) N (X x Y,) =0. O

Theorem 1.1.4. If|X| < co and |Y| < oo, then
X xY|=|X]-|Y]. (1.1.5)

Proof. It is worth mentioning that the symbol x in (1.1.5) on the left means the set-
theory operation—the Cartesian product of two sets, while the symbol - on the right
indicates the usual arithmetic multiplication of whole numbers. We customarily omit
the symbol - and write |X||Y].

To prove the assertion, we carry the mathematical induction on the cardinal num-
ber k = |Y|.If k = 1, then Y is a 1-element set, Y = {y}. Denoting X = {x;,x,,...,x,}, we
have X x Y = {(x1,¥), (X2, ¥), ..., (x5, ¥)}, hence, |X x Y| = |X| = |X]| - |Y| and the basis of
induction is valid.

To make the inductive step, we fix a set X with |X| = n, assume that (1.1.5) holds
for all k-element sets with a fixed natural k, and consider an arbitrary (k + 1)-element
set Y. Choose an element y € Y and consider two subsetsof Y, Y; = {y}and ¥, = Y\ Y;;
itis clear, that |[Y;| = 1, |Y,] = k, Y = Y, UY,, and Y; n Y, = 0. Due to the inductive
assumption, |X x Y,| = |X||Y,|, moreover, we have seen at the basis step that |[X x Y;| =
|X]. By making use of Lemmas 1.1.5 and 1.1.1 we derive the equation

X x Y] =X x Y|+ X x5 = [X|(1+[Y>]) = IX]Y],

which completes the inductive step of the proof. The statement follows by the axiom
of mathematical induction. O

Theorem 1.1.4 and the axiom of mathematical induction imply immediately the
following.
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Theorem 1.1.5. If|X;| < 00,1 <i <k, then
1Xy x Xy x - X Xl = 1Xq| - 1 X5 - - [ X

Definition 1.1.14.

(1) The class of all mappings with the domain X and codomain Y is called the power
set* and is denoted by Y*.

(2) The class of all injective mappings with the domain X and codomain Y is denoted
by Inj(Y%).

(3) The class of all surjective mappings with the domain X and codomain Y is denoted
by Surj(Y%).

(4) The class of all bijective mappings with the domain X and codomain Y is denoted
by Bij(Y%).

(5) The set of all subsets of a set X, including the empty set @ and the set X itself, is
called the set of subsets or the Boolean & of X and is denoted by 2. The set of all
k-element subsets of X is denoted by 2}.

Let us stipulate that, if X = @, then there is only one “empty” mapping, belonging
to Y, that s, |Y?| = 1. Also, it is obvious that 2 = 0 whenever k < 0 or k > |X|.

Example 1.1.7. Let X = {a,b,c} and Y = {1,2}. Then YX = {fi-f2> .- .>fg}, where the
mappings f;, 1 < i < 8, are given by the following charts:

file) =1 fHa) =1 f3(@) =1

firy iD)=1 ¢, fr:4 ib)=1 ¢, f3:9 f5b)=2 ¢,
file) =1 frlc)=2 f3(0) =1
fyla) =2 fs(@ =1 fola) =2

farq fa)=1 ¢, fi:q fs)=2 t, fo:q feb)=1 t,
fule) =1 fs(c)=2 felc) =2
f7(a) =2 fagla) =2

fr:9 FB)=2 ¢, fs:q fe(b)=2
frlo=1 falc) =2

Notice that in this example there are 8 = 2° different mappings, that is, |Y*| =
|Y|"!. This is a particular case of the subsequent Theorem 1.1.6. First we introduce a
convenient notation and prove a lemma.

Definition 1.1.15. Given a mapping f : X — Y and a subset Z c X, the mapping f|, :
Z — Y such that f|,(x) = f(x),Vx € Z, is called the restriction of f onto Z.

4 The set of all subsets of X is sometimes also called the power set.
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Lemma1.1.6. If X, X,, and Y are finite sets and X; N X, = 0, then
YA = Yy,

Proof. We establish a one-to-one correspondence between the power set Y*1“%2 and
the Cartesian product Y*' x Y*2, Consider a mapping f € Y*1Y%2 and denote its restric-
tions f|x, onto X; by f;,i =1,2. Introduce a mapping

H:Y0% | yh vk

by therule H(f) = (f;,f;); here on the right we have an ordered pair of two restrictions of
the mapping f. We prove that H is a bijection, that is, H is a one-to-one correspondence
we are looking for.

We have to prove that H is both injective and onto. To prove the former, we con-
sider two different mappings f,g € YX1%2, Since f # g, there exists an element Xo €
X = X; U X, such that f(xg) # g(xp). If xg € X;, then, by the definition of a restric-
tion, f;(xo) # g1(x,) at the point x,, thus, the restrictions are different maps, f; # g;. If
Xy € X, then f, # g, on the same basis. In both cases H(f) = (f;,f>) # (81,8) = H(g),
which proves that H is injective.

To prove that H is surjective, we pick an arbitrary ordered pair

2.2y e YA x Y™

and find its preimage with respect to H. In order for the mapping H to be onto, there
must exist a mapping f° € YXiY% guch that H(f®) = (flo, fzo ). We define this mapping
£ explicitly

P00 - { flz(x) ?fxeXl,
L x) ifxeX,.

The mapping f° is well-defined since X, and X, are disjoint sets by the assumption.
Obviously, H(f%) = (flo, fzO ), thus, H is a surjective mapping. Since all sets here are
finite, by Theorems 1.1.1 and 1.1.4 we get the equation

[YR%| = |75 v = Y8 vRe. O

The next two statements explain the choice of notation for the power set Y* and
for the Boolean 2%.

Theorem 1.1.6. If X and Y are finite non-empty sets, then

Y| = 1y X
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Proof. The conclusion follows immediately if we set X, = ¢ in Lemma 1.1.6. However,
it is useful to give here another proof by mathematical induction on the cardinality
of X. If |X| = 1, say X = {x}, then the statement is clear, for Y™ contains exactly as
many mappings as there are elements in Y. Indeed, an image for the unique element
x € X can be chosen in |Y| ways, and each choice generates exactly one mapping from
XtoY,sothat |Y¥| = |Y| = |Y|*.,

Suppose now that the statement is valid for all k-element sets, and consider a set
X with k + 1 elements. Select an element x; € X and introduce two sets, X; = {x;} and
X, = X\ X;. Since 1+ |X,| = |X|, we have by Lemma 1.1.6 and the inductive assumption

1YY = 1Y Y% =y vl = gy

which proves the theorem. O

Definition 1.1.16. Let A be an arbitrary subset of a set X, A ¢ X, thus 0 < |4] < |X|.
A functionf), € Y* given by

1 ifxeA,

fa) ={ 0 ifxeX\A,

is called the characteristic function of a subset A c X.
Theorem 1.1.7. If X is a finite set, then |2%| = 2%,

Proof. We reduce the statement to Theorem 1.1.6. Consider the 2-element set Y = {0, 1}
and the power set YX. Since |Y| = 2, to prove the theorem it is sufficient to set up a
one-to-one correspondence between the two sets Y* and 2¥. As in Lemma 1.1.6, we
will prove that the mapping

H:2X5Y* H@A=f, VAcKX,

is bijective. To prove that H is injective, we select two different subsets A,B ¢ X, A + B.
Thus, there exists an element x, € (A\B) U(B\ A).Ifx, € A\ B, thenf,(xg) =1#0 =
fp(xy) and mappings f, and fp are different. The same conclusion, f, # fg, follows if
Xo € B\ A. Thus, H(A) = f, + H(B) = fp, and H is an injective mapping.

To prove that H is onto, we consider a mapping f° € Y* and the subset Ay =
(f®7({1}) c X. We immediately see that H(4,) = f°, which proves that H is surjective
and, together with the preceding part, proves that H is bijective. Now Theorem 1.1.7
follows straightforwardly from Theorem 1.1.6. O

Example 1.1.8. Let X = {a, b, c}, |X| = 3. Then
25 =10}, 1251=1

2 = {{ah b} cl}, 121 =3,
2 = {la.bh{achiba), 2]=3,
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and |2X|=1+3+3+1=8=23.

Definition 1.1.17. We recall that the n-factorial, denoted by n!, is the function defined
for all natural numbers n € N as the product of the first n natural numbers,

We also define 0! = 1.
Example1.1.9. 1!1=1,21=1-2=2,31=1-2-3=6,41=1-2-3-4 =24,

Problem 1.1.21.
(1) Compute 11!.
(2) Compute fg;',

(n+2)!
(3) Simplifyn-(n- 1\, 555

Remark 1.1.2. Using some calculus, we can prove the Stirling & asymptotic formula

n
nl = 2nn<g> , n— oo. (1.1.6)
Here e ~ 2.7182818 is the base of natural logarithms; “asymptotic” means that the
ratio of the left-hand-side and the right-hand-side of (1.1.6) tends to 1 as n — oo. For
example, when n = 7, formula (1.1.6) computes 7! with a relative error slightly more
than 1%.

We recall that 27 is a set, not the cardinality of this set.

Theorem 1.1.8. If|X| =n< oo, thenforO<k <n

% 1.1.7

2= k),k, (1.17)
Proof. We will carry mathematical induction on n = |X]. Since the claim contains two
natural parameters, n and k, we reformulate the statement of the theorem by binding
one of them. O

Theorem 1.1.9. Equation (1.1.7) holds true for every nonnegative integer n and for all
integers k,0 < k < n.

Proof. 1t is convenient in this proof to use n = 0 as the basis of induction. Since 0 <
k < n, for n = 0 there is the only value of k, k = 0. Hence X = 0, 26‘ = {0}, |2§| =1=2°
and (1.1.7) in the case n = 0 follows.

To make the inductive step, we choose an n > 1 and assume that equation (1.1.7)
is valid for any n-element set. Consider a set X such that |X| = n+ 1. If k = n + 1, then
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2;5 = {X}, IZf | = 1, and (1.1.7) is valid. To verify (1.1.7) when k < n, we pick an element
X € X and split Zif in two subsets, 2;5 = AUB, where A consists of all k-element subsets
of X containing x, and B = 2§ \ A, thus, subsets in B do not contain x,. Therefore, these
subsets, which are elements of B, can be considered as k-element subsets of the set
X\ {xo}. Since |X \ {xy}| = n, the inductive assumption is applicable to B, and we have
|B| = n!/((n-k)!k!).

On the other hand, if any @ € A, that is, a is a k-element subset of X, then a €
Zif, la| = k, and by definition of 4, a > x,,. Therefore, a\ {x,} is a (k — 1)-element subset
of the set X \ {x,}. Hence the elements of A can be put in a one-to-one correspondence
with (k-1)-element subsets of X\ {x,}, thus |A| = |2ﬁ{lx°} |. By the inductive assumption,
|A] = n!/((n -k + 1)!(k — 1)!). Since A N B = 0, Lemma 1.1.1 implies

n! n!

2X _ . H
2l = ik - ! T ok
n! (n+1)!
=—n——(k+n-k+1)= ———.
ks <R = TR
The proof of Theorem 1.1.9 and that of Theorem 1.1.8 are complete. O

Corollary 1.1.1. Consider an n-element set X. Applying Theorems 1.1.7, 1.1.8, and Lem-
ma 1.1.2 to the Boolean 2%, we deduce the equation
nn-1 nn-1)n-2) n! on
> + 3 +--~+m+--~+n+l—2. N
Next we calculate the number of injective mappings, Inj(Y”), for finite sets X
andY.

1+n+

Theorem 1.1.10. Let X and Y be two finite sets and 0 < n = |X| < m = |Y|. Then

m!

s Y
IMWN—W_M.

(1.1.8)

Remark 1.1.3. If n = 0, then in agreement with (1.1.8) we define
| Inj(Y¥)l = 1,

assuming that there exists the unique “empty mapping” with the empty domain.
To prove (1.1.8), we first consider a special case m = n.
Lemma 1.1.7. If|X| =|Y| =n,0 < n < oo, then | Inj(YX)I =nl

Proof. We again use the mathematical induction. The conclusion is clear if n = 1,
because in this case there is the unique mapping from X = {x}to Y = {y} : x —» y, and
this mapping is certainly injective (as well as surjective and hence bijective).

Now we assume the statement to be valid for all n-element sets, and select two
(n+1)-elementsetsXand Y = {y,y5,...,¥n.1}- Pickan element x, € X. The set | Inj(YX)l
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breaks down into the union of n + 1 disjoint sets A, A,, ..., A, such that an injective
mapping f : X — Y belongs to the set 4;,1 < i < n+1, if and only if f(xy) = y;. For
a fixed image f(xy) = y € Y, the set X \ {x,} can be injectively mapped into the set
Y \ {f(x()} in n! ways due to the inductive assumption. Altogether, we have | Inj(Y*)| =
n+1)-n=m+1. O

Define now the following equivalence relation on the set Inj(Y%).
Two mappings f,g € Inj(Y”) are equivalent if and only if they have the same range,
thatis, f(X) = g(X).

Problem 1.1.22. Verify that this is an equivalence relation in the sense of Defini-
tion 1.1.12 such that |f(X)| = |X].

End of proof of Theorem 1.1.10. All mappings in any equivalence class have the same
range f(X). This range is an n-element subset of Y. Hence, there exists a one-to-one
correspondence between the factor set and the set of all n-element subsets of Y, which
is denoted by 2,{ . Lemma 1.1.7 implies that the cardinality of each equivalence class is
n!. Now by Lemma 1.1.4, |2,1: | = | Inj(Y*)|/n!, and Theorem 1.1.8 yields equation (1.1.8),
| Inj(Y*)| = m!/(m - n)!. O

Remark 1.1.4. Thus, for any finite sets X and Y we have found the numbers of injective,
bijective and arbitrary mappings from X and Y. There is no such a simple formula for
the number of surjective mappings. We will find that number in Section 4.1.

Several statements have already been proved by making use of a simple and pow-
erful method—by establishing a one-to-one correspondence between the set in ques-
tion and another set, whose cardinality can be found easier than the former, and
we will use this approach again and again—see, for instance, the solution of Prob-
lem 1.4.16.

We end this section with a notation, which is convenient in many instances. Let
the symbol b (mod p) denote the remainder after dividing b over p.

Definition 1.1.18. For integer numbers a, b and a natural p, we write a = b (mod p) if p
divides the difference a — b; in other words, the difference a — b = kp with an integer k,
or p divides both a and b with the same remainder. In this case the numbers a and b
are called congruent modulo p.

For example, 7 (mod 3) = 7 (mod 2) = 1, while 7 (mod 4) = 3; 5 and 11 are congruent
modulo 2, 5 = 11 (mod 2), but 5 and 4 are not.

Problem 1.1.23. Prove that the congruence is an equivalence relation on the set Z of
integer numbers and describe its factor sets. Does this statement remain true on the
set of natural numbers N? The same question regarding the set of whole numbers
{0,1,2,...}.
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Exercises 1.1.

Exercise 1.1.1. Compute the sums
5k
D Yoo 1
5 1
@ Yia o
3) Z,l(:5 %—here the summation index is decreasing,
1
4) Tonn=t1 Gyt

(5) The following transformation, called the Abel & transformation or discrete sum-
mation by parts, is useful in many problems involving sums. Consider two finite
or infinite sequences {a;} and {b;},k = 1,2,..., and the sequence of their pair-
wise products {a; - by}, k = 1,2, .. .. Introduce the partial sums of these sequences

B, =Y brandS, = Y;_ a;-b,k=12,....Prove that foralln > 2

n-1

Sn = Z(ak - ak+1)Bk + aan.
k=1

Use (1.1.9) to find the sums
6) Yr g, q s a constant,
() i kg,
(8) 22:1 k cos(kx) for a fixed number x.

Exercise 1.1.2. Prove the following statements by mathematical induction.

W P+2+.+n’= [%n(n+ )%, vn €N,

(2) (Al-Kashi )1*+2*+.--+n" = 5;(6n° +15n* + 100’ - n), ¥n € N,
(3) 2" < n! for any natural n > 4.

Exercise 1.1.3. Find Y}_,(2k - 1)°.

Exercise 1.1.4. Prove by mathematical induction that for any natural n

1

T —=n
1<, <iy<m<ip<n 127 e

(1.1.9)

where the sum runs over all k-tuples of natural numbers i; < i, < --- < i for each

k=12...,n

Exercise 1.1.5. A sequence {a;,a,,...,ay,...} is called an arithmetic progression or an
arithmetic sequence, if a;,; = a; + d for each j > 1, where a constant d is called the
common difference of the progression and q is its first term. Find by mathematical
induction an explicit formula for the general term a,, of an arithmetic progression and
for the sum Zil:k a, of its I + 1 consecutive terms. In particular, find the sum of the first

I terms of an arithmetic sequence.
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Exercise 1.1.6. Prove that a sequence {a,},n > 1, is an arithmetic progression if and
onlyif a,,; +a,_; = 2a,,Vn > 2.

Exercise 1.1.7. (Hypsicle from Alexandria &) Let {a,,...,a,,ap, . .., ,} be an arith-
metic progression with an even number of terms. Prove that Y2 ., @, - Yi_, a; = bn?,
where b is an integer number.

Exercise 1.1.8. A sequence {a;,a,,...,a,,...} is called a geometric progression or a ge-
ometric sequence if a;,, = q-a; for eachj > 1, where q is called the common ratio of the
progression and a; is its first term. Find an explicit formula for the general term a,, of
the geometric progression and for the sum Zi,:k a, of its I — k + 1 consecutive terms.

Exercise 1.1.9. Prove thatasequence {a,},n > 1, is a geometric progression if and only
ifa,,-a,_1= af,,Vn >2.

Exercise 1.1.10. Find a closed-form expression for the sum Y}_, (k* + k).
Exercise 1.1.11. How many zeros are in the end of the number 5!? 53!? 100!?
Exercise 1.1.12. Which is bigger, 300! or 100°°°?

Exercise 1.1.13. Use mathematical induction to prove the fundamental theorem of
arithmetic:

Any natural number n > 1 can be uniquely, up to the ordering of factors, written as
a product of prime numbers. If n is prime, then the product contains only one factor.

Exercise 1.1.14. Find a flaw in the following “inductive proof” of the claim that all girls
have sky-blue eyes:

The reader definitely knows at least one such a girl, which establishes the basis
of induction. Suppose now that in any group of n girls all the girls have sky-blue eyes
and deduce that, if so, then any group G of n + 1 girls possesses the same property.
Indeed, let g be any girl in G. Consider an n-element group G; = G\ {g} consisting of n
girls. By the inductive assumption, all girls in G; have sky-blue eyes. Choose a girl g;
in Gy; itis obvious that g and g; are two different girls. Next we remove g; from G, and
replace her with g, that is, consider a set G, = (G; \ {g;}) U {g}. The set G, also consists
of n elements, hence by the inductive assumption, all girls in G, have sky-blue eyes. In
particular, g; € G,, therefore, she also has sky-blue eyes, which in turn means that all
girls in G = G, U {g} have sky-blue eyes. Now the principle of mathematical induction
implies the claim.

Exercise 1.1.15. Compare the sequences a,, = 2" and b, = n’,n = 1,2,.... We immedi-
ately verify that a; = 2 > b; = 1, while a, = b,, a; < b3, and a4 > bg. Determine which
inequality, a, > b, or a, < b,, is valid for all n > n,, that is, for all but finitely many
subscripts n. Find the smallest such n, and prove the correct inequality, a, > b, or
a, < by, foralln > n,.
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Exercise 1.1.16. Prove the following modification of the axiom of mathematical induc-
tion: If the statements S, and S, are valid and statements S,  and S, together imply S,
for all natural n, then all the statements S,,n = 1,2,... are valid.

Exercise 1.1.17. DoesthepairofsetsZ, = {...,-4,-2,0,2,...}and Z’O ={..,-3,-1,0,1,
3,...} make up a partition of Z?

Exercise 1.1.18. Prove that

NG (o) 2 o

Exercise 1.1.19. Let |X| = |Y]| < oco. Prove that in this case f € YXis injective if and only
if it is surjective, thus, in the case |X| = |Y| < oo the three properties (to be injective,
to be surjective, and to be bijective) are equivalent.

Exercise 1.1.20. The binary relations below are given as sets of ordered pairs on ap-
propriate sets. Are they reflexive, symmetric, antisymmetric, transitive, or neither? For
the equivalence relations, describe their factor sets.
(A) The relations on the set {a, b, ¢, d}:

(1) o = {(a a),(b,b),(c,c), (d,d)},

@ o0, ={(aa)}

(3 o3 =1{(b,b),(c,c),(d,d)},

4) o, =1{(a,b),(b,a),(d,d)},

(5) o5 =1{(a,b),(b,c),(a,c),(d,d)},

(6) o6 = {(a,a),(a,b), (b,b), (b,c),(c,c),(c,d),(d, A},

(7) 07 =1{(a,a),(b,b),(c,c),(d,d), (a,b),(a,c),(a,d), (b,c), (b,d),(c,d)}.
(B) The relations on the set of real numbers R:

() og={xyeR|x+y=0}

(2 gg={x,yeR|x+y=00rx-y=0}
(C) The relations on the set of integer numbers Z:

(1) o1p={mneZ|m=2n},

() o, =1{m,n e Z| pdivides m - n, where p is a given prime number}.

Exercise 1.1.21. Find the flaw in the following “proof” of the claim: A symmetric and
transitive binary relation g on a set X is an equivalence relation.

Leta,b € X and (a,b) € p. Due to the symmetry, (b,a) € p, and by virtue of the
transitivity, (a, b) € g and (b, a) € g together imply (a, a) € p. Thus, g is reflexive.

Find a counter-example to the claim, that is, construct a symmetric and transitive
but not reflexive binary relation.

Exercise 1.1.22. Let P® stand either for the property P or for its negation. Prove that
three properties, reflexivity (R), symmetry (S), and transitivity (T) are independent in
totality, that is, for any triple of properties (R™, S®, T%) there exists a binary relation
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possessing this set of properties. By Theorem 1.1.7, to prove the claim it is enough to
provide 2° = 8 examples of binary relations.

Exercise 1.1.23. Prove that three properties, reflexivity (R), antisymmetry (AS), and
transitivity (T) are independent in totality.

Exercise 1.1.24. How many binary relations are there on the set {1,2,3,4,5}? How
many among them are reflexive? Symmetric? Antisymmetric? Transitive? How many
possess any two or any three of these properties?

Exercise 1.1.25. By the definition, binary relations are sets, therefore, one can form

their unions, intersections, etc.

(1) Let p and o be two reflexive binary relations. Is any of the relationspnoorpuo
reflexive?

(2) Letp and o be two symmetric relations. Is any of the relations p n o or p U 0 sym-
metric?

(3) Letpand o be two transitive relations. Is any of the relations pno or pua transitive?

Exercise 1.1.26. Prove Lemma 1.1.3.

Exercise 1.1.27. Isit true that 7 = -8 (mod 4)?

Exercise 1.1.28. Suppose that the binary relation of acquaintanceship on a set of peo-
ple is symmetric. Prove that in a party of n > 2, at least two people have an equal
number of acquaintances.

Exercise 1.1.29. Give an example of a binary relation g in a Cartesian product X x Y,
which is not a mapping from X to Y. What restrictions should be imposed on g to make
it a mapping?

Give a definition a mapping f : X — Y as a binary relation g in the Cartesian
product X x Y.

Exercise 1.1.30. Let Z, = {0,1} and Z} be the Cartesian product of n copies of Z,. A
Boolean function of n variables is a mapping f : Z) — Z,. How many different Boolean
functions of n variables are there?

Exercise 1.1.31. Prove the equation

o0
nl = Je*tt"dt, n=0,12,....
0

1.2 The sum and product rules

In this section we study two important results called the sum rule and the product
rule, which demonstrate themselves in many combinatorial problems. We will see that
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they are nothing but the formulas for calculating the cardinalities of the union and the
Cartesian product of finite sets. We introduce these rules by considering simple model
problems.

Coffee-time browsing

- www.math.csusbh.edu/~history/Mathematicians/Descartes.html (Descartes’ biog-
raphy)

- www.saintjoe.edu/~karend/m122/CountingSlides.ppt (Sum and Product rules)

Problem 1.2.1. In a group of students, each person studies one and only one of three
foreign languages: six people take French, eight take German, and nine students take
Spanish. How many students are there in the group?

Solution. Denote the set of all students in the group by X, the subset of students study-
ing French by Xp, the subset of students studying German by X;;, and the subset of
students studying Spanish by Xs. Since each student studies at least one language,
we can represent X as the union,

X = XF U XG U Xs.
Moreover, these subsets are pairwise disjoint,
XF ﬂXG :XF ﬂXs :XG ﬂXS = 0,

for none student studies two languages. Thus, by Lemma 1.1.2 withm = 3, |X| = 6 +
8+9=23. O

There are many similar problems where the set in question is the union of several
disjoint subsets, or this set can be put in a one-to-one correspondence with a union of
disjoint sets. Consequently, the cardinality of the set can be calculated by making use
of Lemmas 1.1.1 or 1.1.2. It is said in such situation that the solution was derived by the
sum rule; both these lemmas are referred to as the sum rule as well. Without using the
set theory terminology the rule can be stated as follows.

If one task can be performed in k ways and another task in l ways, and these tasks
cannot be done simultaneously, then one of the two tasks can be done in k + l ways. It
is clear after our analysis of Problem 1.2.1 that the latter statement is just a descriptive
formulation of Lemma 1.1.1, where |X| = kand |Y| = L

The sum rule can also be stated in other terms.

The Sum Rule. If the finite sets X;, X5, ..., X,,, form a partition of a set X, then

IX] = 1X1] + 1X5] + - + | Xyl (1.2.1)



30 — 1 Basiccounting

Evidently, (1.2.1) is equivalent to Lemma 1.1.2.
If there is a sum rule, then there likely is a product rule. To introduce it, we again
analyze a model problem.

Problem 1.2.2. Identification cards on Small Planet contain two characters, one cap-
ital Latin letter and one Hindu—Arabic digit, for example, “S — 8”. How many various
cards are there, if we can use all 26 letters and 10 digits?

Solution. First of all, we have to state unequivocally what cards must be considered
identical, and what cards are different. Since we consider a mathematical problem,
we do not take into consideration size, color, font, etc. Two cards are considered as
different, if they have different pairs of symbols, that is, if at least one symbol on either
card is distinct from the corresponding symbol on another card. In other words, to say
that two cards are identical is just to say that they have both the same letter and the
same digit. We reiterate here this statement, because clear qualification of what objects
are distinct in a combinatorial problem and which ones are the same (are identical) is a
crucial step in solving the problem; otherwise, two people can read the same words but
solve two different problems.

Another important issue is the ordering of characters. In this problem, should we
count the cards “S — 8” and “8 — S” as different or identical?

As the matter of fact, these are two different problems. Combinatorics itself does not
know whether or not the order of elements is substantial, combinatorics only provides
necessary means for solving both problems. This is the solver’s task to clarify the prob-
lem and choose the right approach. The distinction between problems where order of
elements is or is not essential, will be discussed in more detail later on in this chapter.

In Problem 1.2.2 we assume that the first character on the card is always a let-
ter and the second one is a digit. Thus from our standpoint, each card is an ordered
pair of symbols (A, §), where A may be any of 26 letters and § any of ten digits. Hav-
ing said the key words “ordered pair”, we immediately recognize that these objects
make up the Cartesian products of sets and we can use the latter as a mathematical
model in our problem. Denote the set of all characters of the English alphabet by
A = {A,B,C,...,Y,Z},|A| = 26, and the set of digits by A = {0,1,...,8,9},|A| = 10.
Our discussion implies that there is a one-to-one correspondence between the set of
various identification cards we sought for and the Cartesian product A x A. Thus, by
Theorem 1.1.4 the number of different cards is equal to |A x A| = |A] - |A] = 260. O

Henceforth, we say that a solution was derived by making use of the product rule.

The Product Rule. The product rule means that we have established a one-to-one cor-
respondence between a set under consideration and some Cartesian product, and
computed the cardinality of this product by making use of Theorems 1.1.4-1.1.5. The
latter theorems are also referred to as the product rule.

The subsequent problems illustrate the sum and product rules.



1.2 The sum and product rules = 31

Problem 1.2.3. Find the number of car license plates containing four letters and three
digits (as in the previous problem, there are 26 letters and 10 digits available).

Solution. Using the same notation and reasoning as in the preceding problem and
applying the product rule, we get the answer: there are

AxAxAxAxAxAxAl=|A*-|AP = 26" 10° = 456 976 000

license plates. O

Problem 1.2.4. Find the number of license plates containing four letters and either
one, or two, or three digits.

Solution. The desired set of license plates IT comprises objects of three types—with
one, or with two, or with three digits. Thus, we can set up the equation

=1L ull, uIl;,

where II; denotes the set of plates containing i digits, i = 1,2,3. Moreover, a claim
that a plate contains one digit, clearly distinguishes such a plate from those with two
or three digits, whence the subsets I1;,i = 1,2, 3, are pairwise disjoint. Hence we can
apply equation (1.2.1) and conclude that [TI| = |TI;| + |II,| + |TI5].

The cardinal number |II;| = 456 976 000 was found in Problem 1.2.3. In the same
way we calculate the cardinal numbers |II;| and |II,],

| = [AxAxAxAxAl=|A*-]A] = 26* - 10 = 4569 760,
Tl = [Ax AxAx AxAxAl=[A]*- AP = 26" - 10% = 45697 600,

and the total number of plates is

[IT| = |II;| + |TL,| + |II3] = 4569 760 + 45697 600 + 456 976 000 = 507 243360. [

Problem 1.2.5. Three polyhedron-shape beads having, respectfully, six faces (cube),

eight faces (octahedron), and ten faces (decahedron) are rolled simultaneously. Their

faces are numbered, respectively, from 1 through 6, from 1 through 8, and from 1

through 10. After each roll we write down the numbers on the face they landed.

(1) In how many different ways can these beads land?

(2) In how many different ways can these beads land, if at least two of them fall on
the faces marked with a 1?

Solution. (1) The result of each roll can be written as an ordered (since, for instance,
a 7 cannot occur in the first position) triple (a, b,c), where1 < a < 6,1 < b < 8
and 1 < ¢ < 10. Thus, we can directly use the product rule, implying that there are
6 x 8 x 10 = 480 variants of landing these beads.
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(2) Let P, be the set of all possible results of the landing such that the octahe-
dron and the decahedron read a 1, and the cube shows any face; obviously (or by the
product rule again), |P.,| = 6 x 1 x 1 = 6. The sets P,. and Pg, are defined in a similar
way, |P,.| = 8 and |Py.| = 10. After that we are compelled to apply the sum rule and to
compute the “answer”: 6 + 8 + 10 = 24.

However, the sum rule does not apply here and this “answer” is wrong, since the
three sets P, P,. and Py, are not mutually exclusive, they have a non-empty inter-
section, containing one element, namely the triple (1,1,1). To take this intersection
into account, it is convenient to introduce three other sets, P,,, P, and P4, where P,
stands for the set of all possible results of landing of the beads such that the octahe-
dron and the decahedron read a 1, but the cube shows any face but a 1; P, and Py, are
defined similarly. It is clear now that |P,,| = 5, since one of the six faces of a cube is
now excluded, and |P,.| = 7, [Pge| = 9.

The three “hatted” sets are disjoint, but there appears now another obstacle: these
sets do not exhaust all the ordered triples in the problem. Introduce the set P; =
{(1,1,1)} corresponding to the case when all three beads land on a 1; thus, |P;| = 1.
These four sets, P, Py, P40, and P;, partition the set of all the possible outcomes in
the problem, and by the sum rule we have the answer,5+7 + 9 + 1 = 22. O

Problem 1.2.6. In how many ways can one choose two movies in different genres out
of five different comedies, seven different thrillers, and ten different dramas?

Solution. Combining the Sum and product rules, we arrive at the answer: 5 x 7 + 5 x
10 + 7 x 10 = 155 variants. O

Problem 1.2.7. A Combi Club has 18 members. In how many ways can the members
elect the President and the Treasurer of the Club?

Solution. Let S be the set of the Club members, |S| = 18. If a student s; was elected the
Club President, then there are only 17 candidates the Treasurer can be chosen from.
Thus, there are 17 ways to elect the President and the Treasurer given that the student
51 is to be the President. If the student s, is to be the President, we also have 17 pos-
sihilities, etc. Since these 18 options do not intersect, we can apply the sum rule and
get 17 + 17 + - - - + 17 = 17 x 18 = 306 different results of the elections. O
18 addends

Remark 1.2.1. We notice in this problem another issue, important in many combina-
torial problems. In our solution we implicitly assume that one student cannot serve
simultaneously as the President and the Treasurer. In Problem 1.2.7 such repeating
choices were not allowed, but it may be another way elsewhere. Actually in the busi-
ness world we often see a person who simultaneously is the President and the CEO of a
company. To distinguish these two kinds of problems, we say that a problem allows or
does not allow repetition. It is worth emphasizing that, like the order of elements, the
assumption of (non)repetition depends on a particular problem, combinatorics only
provides the means for solving both kinds of problems.
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The end of the solution of this problem is similar to applying the product rule.
However, the number 17 here is not a cardinality of a specific set—the sets of candi-
dates to elect the Treasurer for different Presidents elected are different, even though
they all have the same cardinality. It may be convenient to model this and similar prob-
lems by a special drawing, tree of alternatives similar to one in Fig. 1.1. We study such
drawings in more detail in Chapter 2.

Py S1 0 S18 Pig

Figure 1.1: The tree of alternatives in Problem 1.2.7.

This tree represents all possible outcomes of the voting. Since any one of the 18 stu-
dents s;,S,,...,S;3 can be the Club President, 18 first-level branches, incident to the
root O and labeled by sy, s,,.. ., 513, represent 18 possible results of the President elec-
tion; Fig. 1.1 displays only few branches corresponding to s; and s;g. If the President
has been elected, there are only 17 candidates for the Treasurer, however, the sets of
candidates are all different. Indeed, if the student s; has been elected as the President
(this case is depicted by the subtree at the vertex P, in Fig. 1.1) then only the students
55,53, ...,S1g may run for the Treasurer, hence there are 17 second-level branches inci-
dent to the left vertex P and labeled by s,, ... ., si5. If the student s;5 has been elected as
the President (this case is depicted by the subtree at the vertex P;g) then only the stu-
dents s, Sy, . .., S;; may run for the Treasurer, hence there are 17 second-level branches
incident to the right vertex P and labeled by s;,...,s;;; likewise, the tree has 16 in-
termediate branches between s; and s;g. The tree has 18 x 17 = 306 pendant vertices
representing all possible results of the voting.

The tree in Fig. 1.1 is regular, that is, every vertex except for the pendant ones, has
the same number of incident second-level branches. In other problems these quanti-
ties can be different. To solve such problems, the sum rule may be of use.

Problem 1.2.8. Four people—A, B, C, and D took part in a car race. A student has only
partial information on the results of the race. It is known that B lost to A, C was not the
last one, and there were no ties. How many different results are possible in the race?

Solution. The tree of alternatives for the race is drawn in Fig. 1.2. Since B finished af-
ter A, A can finish either first, or second, or third. The first level of the tree, above
the broken line a — —a, has three branches, representing these alternatives. Next, if A
is first, then B can be either second, or third or fourth; if A is second, B can be either
third or fourth; and if A is third, B can be only the last one. The second level of the tree,
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A is 1Ist Ais 2nd Ais3rd
a . . N _ . _a
Bis 3rd Bis Ard
Bis 2nd B is 4th B is 4th B is 4th
B— —/— — — — - - /N - - _B
C is 2nd C 1s 3rd C is Ast C is Ast
C is 3rd Cis/2nd C is st C is 3rd C is 2nd
D is 4th D is 2nd Diis 3rd Dlis 2nd
D is 4th D is 3rd D is 4th D is [Ist D is 1st

Figure 1.2: The tree of alternatives in Problem 1.2.8.

above the broken line f— -8, represents these alternatives. The entire tree (Fig. 1.2) has
nine pendant vertices corresponding to nine possible results of the race. O

Exercises and Problems 1.2.

Exercise 1.2.1. Bob participates in two sweepstakes simultaneously. In the first one he
can win one out of four books, in the other—one out of five tapes. How many different
pairs of prizes can he bring home?

Exercise 1.2.2. Betty takes part in two book raffles. In the first one she can win one of
four different books. In the second raffle she can win one of five different books, but
one of them is the same as in the first drawing. If one wins the same book twice, she
may change one of them for another book distinct from any book

Exercise 1.2.3. A dogand a cat can peacefully sit and dine side by side, but if two dogs
or two cats are sitting alongside, they start fighting. In how many ways can n dogs and
n cats be peacefully seated at a round table?

Exercise 1.2.4. How many a license plates consisting of one letter and two digits are
there if at least one of these digits is to be 97

Exercise 1.2.5. How many license plates consisting of three letters and four digits are
there if at least one of these digits is 9?

Exercise 1.2.6. Four cars take part in a race. How many ways are there to finish the
race if ties between the second and the next places are allowed but the winner cannot
make a tie?
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Exercise 1.2.7. Among the following nine sets, what combinations of them make up
partitions of the set of natural numbers N?

(1) N1 = {1}’

(2 N, =1{1,2},

(3) To={n=3k|keN},

(4) T,={n=3k+1|keN},

(5) T,={n=3k+2|keN},

(6) P—the set of all prime numbers,

(7) P°—the set of all composite numbers greater than 1,
(8) N,

© 0.

Exercise 1.2.8. A gentleman has eight shirts and five ties. In how many ways can he
choose a shirt and a tie to go out, if he cannot combine a shirt S; with ties T; and T,
and also a shirt S, with ties T; and T5?

Exercise 1.2.9. A family consisting of mother, father, four daughters, and two sons
participates in a mixed doubles badminton tournament, where each team consists of a
female and a male player. How many various family teams are possible if the youngest
daughter does not want to be on a team with her elder brother?

Exercise 1.2.10. Prove the following combination of the sum and product rules, when
subsets may have different cardinalities. Let p be a subset of a direct product X x Y of
finite sets X = {a;,...,a,}and Y = {by,...,b,}. Then

m n
lol = ) card(ay,-) = ) card(- b), 1.2.2)
k=1 I=1
where card(a,-) or card(:, b;) is, respectively, the number of ordered pairs in g with
the first element a; or with the second element b,.

Thus, g is a binary relation between X and Y and equation (1.2.2) allows us to
compute the cardinality of an arbitrary binary relation.

Exercise 1.2.11. How many divisors does the number 2>3*5°7° have? Find the sum of
all divisors.

Exercise 1.2.12. A student put 5 sheets of paper in a shredder. The shredder cut some
of these sheets into 5 parts, then cut some of these pieces into 5 parts, and so on. When
the shredder stopped, the student found 2006 small pieces of paper in the shredder.
Is this count correct?

Exercise 1.2.13. In how many ways is it possible to place three rooks on the 8x8 chess-
board so that no two of them can attack one another?

Exercise 1.2.14. In the year of 2006 there were 2 006 meetings of student clubs in a Big
Club College, each meeting attended by 40 students. For any two meetings, exactly one
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student attended both of them. Prove that there was a student who attended all 2006
meetings.

Exercise 1.2.15. How many four-digit natural numbers are multiple of 7?

Exercise 1.2.16. The vertices of a triangle belong to the set of the vertices of a given
convex n-gon, but no side of the triangle is an entire side of the n-gon. How many such
triangles are there?

Exercise 1.2.17. All integer numbers from 1 through 2 222222 are written in a row. How
many times each of the digits 0, 1, 2 appears in this series of digits?

1.3 Arrangements and permutations

In this section we deal with ordered totalities of objects, called here arrangements. To
introduce them, we consider a model problem.

Coffee-time browsing
- www.usna.edu/Users/math/wdj/book/node156.html (Listing permutations)

Problem 1.3.1 (Problem 1.2.7 revisited). Combi Club has 18 members. In how many
ways can the members elect the President and the Treasurer of the Club?

Solution. The following solution is similar to the solution of this problem in Sec-
tion 1.2, but we put it in different terms. Suppose that the Election Board reports the
results of the voting, using the form

P [t

and fills in two blank spaces with the names of the students elected. To convert this
form to standard mathematical notation, we introduce two sets, the 2-element set
C = {P, T} symbolizing the positions to be filled in and the set S = {s;,...,5;g} of the
Club members. Denote the result of an election by (s(P), s(T)), where s(P) signifies the
student having been elected to preside, and s(T) stands for the student having been
elected to count money.

We see that the result of every voting can be described as a mapping v with the
domain C and the codomain S. Choosing the President of the Club, we associate with
the element P € C an element s’ = s(P) ¢ S; choosing the Treasurer, we associate an
element s” = s(T) € S with the element T ¢ C.

Suppose that a student cannot simultaneously serve as the President and the Trea-
surer, that is, different persons have to be elected for these two positions; in our nota-
tion it must be s’ = s(P) # s" = s(T). Thus the mapping v is to be injective, v € Inj(S%).
Vice versa, each injective mapping v € Inj(S®) can be interpreted as the result of some
voting in this Club. Hence, we see for ourselves that there is a one-to-one correspon-
dence between the set of all possible results of the election and the set Inj(S®) of all
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injective mappings from C into S. Now Theorem 1.1.10 with n = 2 and m = 18 implies
that there are 18!/16! = 18 - 17 = 306 different outcomes of the election, as we have
already found in Problem 1.2.7.

Suppose now that one person may be elected for both positions. In this case we
have to take into account not only injective but all mappings from C to S, that is the
entire power set S¢. By Theorem 1.1.6, we get |S¢| = 182 = 324 different results of this
voting. O

Remark 1.3.1. The difference 324 — 306 = 18 gives the number of possible outcomes of
the voting, when one student is elected for both offices.

Considering this problem as a model, we give the following definitions. It is clear
that the answer does not depend on particular sets, like C and S in Problem 1.3.1, it
only depends upon their cardinalities, therefore, for the domains of mappings in these
definitions we always use natural segments N,, with various n. For instance, in Prob-
lem1.31n=2.

Definition 1.3.1. Let A be a finite set, |[A] = m € N. An arbitrary mapping f :
N, — A is called an n-arrangement with repetition of the elements of the set 4,
or more precisely, arrangement of m elements taken n at a time.

Let the element a; € A be the image of the element i € N, under the mapping
f,a; = f(i). Since arrangements are ordered totalities, we denote the arrangements
with repetition by (a;, a,, ..., a,), using the same notation as for n-tuples. If |A| = m,
then the number of n-arrangements with repetition is denoted by A ., (m, n).

Theorem 1.3.1. By Theorem 1.1.6, the number of n-arrangements with repetition is

Arep(m,n) = |AN] = |A]" = m". (138

This number certainly depends upon the cardinality m of the set A, but not on the
specific nature of its elements.

Definition 1.3.2. Let A be a finite set, |A| = m € N. Any injective mapping f : N, —» A
is called an n-arrangement without repetition of the elements of A, or more precisely,
arrangement of m elements without repetition, taken n at a time.

We often omit the specification “without repetition”, assuming that an “n-arrange-
ment” always means an arrangement without repetition, but “with repetition” must
be specified. Arrangements with and without repetition are denoted by the same sym-
bol (a;,ay,...,a,). If |[A] = m, the number of n-arrangements without repetition is
denoted® by A(m, n).

5 Sometimes the notations P(m,n) and ,P, are used, and these arrangements are called
n-permutations.
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Theorem 1.3.2. By Theorem 1.1.10,

m!

A(m,n) = [Inj(AN)| = momp lsnsm (13.2)
We also set by definition
A(m,0)=1 and A(mn)=0 ifn<Oorn>m. (1.3.3)

O

Remark 1.3.2. In other words, arrangements without repetition of the elements of a
set A can be considered as ordered n-subsets of A. Thus, to introduce the arrange-
ments in a proper way, we have to either accept ordered sets as a primary, undefined
concept, or define them through another notion. At the same time the arrangements
with repetition can contain several copies of the same element, although no set can
contain repeating elements. Therefore, the arrangements cannot be defined as sets.
To unify definitions, it is convenient to introduce arrangements both with and with-
out repetition as mappings, as it has been done above.

Definition 1.3.3. In the case m = n the arrangements (without repetition) are called
permutations (of n elements) or n-permutations; their number is denoted by P(n).

Theorem 1.3.3. By Lemma 1.1.7, the number of n-permutations is
P(n)=A(n,n)=n!, n>0. (1.3.4)

Remark 1.3.3. Therefore, the permutations of a set A are bijective mappings. If the
elements of A are ordered, for instance, they are numbered by natural numbers,
like A = {a;,a,,...,a,}, then any permutation gives a reordering of A, for example,
(a;»a;,,...,a; ). This sequence of elements, that is, the ordered image under the origi-
nal bijection, is also often called a permutation of the set A. We return to permutations
in Section 4.5.

Example 1.3.1. Thus, if a Board consists of seven members, they can be seated in a
row in P(7) = 7! = 5040 ways.

Problem 1.3.2. Prove a recurrence relation
P(m)=A(m,m) =A(m,n) x A(m-n,m-n), 0<n<m.

Remark 1.3.4. If formula (1.3.4) has been proven independently, say by mathematical
induction, then we can deduce (1.3.2) from (1.3.4) and Problem 1.3.2.

Problem 1.3.3. A bus route has nine stops, excluding the departure stop; there are 23
passengers in the bus. In how many ways can they get off the bus?

Solution. First of all we have to clarify which runs of the bus we treat as different. We
consider two runs to be different, if there is at least one stop such that the sets (not
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the quantity!) of passengers, leaving the bus at this stop in the first run and in the
second run, differ. Denote the set of all passengers by P, |P| = 23, and the set of the
stops by S, |S| = 9. Now we can associate a mapping r : P — S with every run of the
bus. Namely, if a passenger p gets off the bus at a stop s, then r(p) = s. Next we notice
that there is a one-to-one correspondence between the bus runs and these mappings.
By Theorem 1.3.1, there are 97 different runs of the bus. O

Exercises and Problems 1.3.

Exercise 1.3.1. Compute A(m,n) forallm,n,0 <n<m <5, and P(n) foralln,0 <n <
10.

Exercise 1.3.2 (Problem 1.2.7 revisited again). Suppose that, for certain personal rea-
sons, Ann and Alex cannot serve as officers together and Bob cannot be the treasurer.
In how many ways can the officers of the Combi Club be elected?

Exercise 1.3.3. Given 6 different balls and 4 different urns, in how many ways can we
place 4 balls in 4 urns, one ball in an urn?

Exercise 1.3.4. We have 7 tasks to do. In how many ways can we choose 5 of them to
perform one task a day during 5 consecutive weekdays?

Exercise 1.3.5. How many 9-digit natural numbers are there containing every digit
1,2,...,9 once?

Exercise 1.3.6. How many 10-digit natural numbers are there containing each digit
0,1,2,...,9 once?

Exercise 1.3.7. How many 10-digit numbers are there with the sum of digits equal 4?

Exercise 1.3.8. Find the sum of all integer numbers containing digits 1,2, 3,4, such
that any digit occurs in each number once.

Exercise 1.3.9. Find the sum of all 4-digit integers containing digits 1,2,...,9, such
that any digit occurs in each number no more than once.

Exercise 1.3.10. Town Infiniburg occupies the entire plane. It has s straight parallel
streets. In addition, it has ¢t more straight streets such that none among them is parallel
to any one among the other s + t — 1 streets. Moreover, no three streets have a common
intersection. Into how many blocks have the streets split the town?

Exercise 1.3.11.

(1) Consider the first 1000 000 natural numbers. What numbers make the majority
among them: those whose decimal representation contains a 1, or those without
al?

(2) Solve the same problem for the first 10 000 000 natural numbers.

(3) How many among the first 1000 000 natural numbers contain exactly one of the
digits 2,3, and 4?
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(4) How many among the first 1000 000 natural numbers contain exactly one digit 2
and two digits 3?

Exercise 1.3.12. How many of each of the digits 0,1,2,...,9 must be used to represent
all integer numbers from 1 through 9 999 inclusive? From 1 through 10* - 1?

Exercise 1.3.13. How many 6-digit odd numbers without repeating digits are there?
How many such numbers begin with a 1?

Exercise 1.3.14. How many permutations of the 10 digits 0, 1,...,9 contain either the
sequence 246 or the sequence 578, but not both?

Exercise 1.3.15. How many permutations of the 10 digits 0,1,...,9 contain the se-
quence 246 or the sequence 680, but not both?

Exercise 1.3.16. How many permutations of the 10 digits contain either the sequence
246, or the sequence 680, or both?

Exercise 1.3.17. How many different 10-digit natural numbers are there consisting
only of digits 1,2, and 3, if a 3 appears precisely two times?

Exercise 1.3.18. A combination lock has 5 disks with 12 different symbols on each.
Only one combination opens the lock. Assuming that it takes 10 seconds to change a
combination, what is the maximum time necessary to open the lock at random?

Exercise 1.3.19. How many different pairs of disjoint subsets does an n-element set
have?

Exercise 1.3.20. Solve the equations for integer n and k:
1) A(n,2) =20,
(2) P(n) = 5P(k).

Exercise 1.3.21. There are n traffic lights in Lighttown, each with three standard

colors—green, yellow, and red.

(1) How many different combinations of signals can they show?

(2) Answer the same question, if the lights TL, and TL, can only be either both yellow
or in opposite ‘green-red’ state, that is, if one of them is green, then another must
be red and vice versa.

Exercise 1.3.22. How many ways are there to assign 12 players to 5 coaches for prac-
tice?
Exercise 1.3.23. How many 10-digit phone numbers are there such that 0 and 9 do not

appear among the first four digits?

Exercise 1.3.24. How many 3-digit natural multiples of 3 are there which contain a
digit 9 in their decimal representation? We recall that an integer number is divisible
by 3 if and only if 3 divides the sum of all its digits.
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Exercise 1.3.25. How many 6-digit natural numbers divisible by 9 are there such that
their last digit is 9? We recall that an integer number is divisible by 9 if and only if 9
divides the sum of all its digits.

Exercise 1.3.26. Consider all 10° whole 5-digit numbers attaching, if necessary, a few
zeros in front of such a number, like 00236. How many of them contain exactly one
digit O, one 1, one 2, and one 3?

Exercise 1.3.27. Show that the elements of an n-element set can be ordered in n! ways.

Exercise 1.3.28. How many 4-arrangements of the letters a, b, ¢, d, e, f are there if they
(1) begin with an a?

(2) contain the letter a?

(3) contain two letters a, b?

(4) contain the letters a, b in this order?

Exercise 1.3.29. Find the number of arrangements of n different objects taken r at a
time, if each arrangement must contain p specified objects from the given n. When do
such arrangements exist?

Exercise 1.3.30. Find the number of arrangements of n different objects taken r at a
time, if each arrangement must contain p specified objects from the given n, but cannot
contain any of the other g specified objects (assuming p + g < n).

Exercise 1.3.31.

(1) A college prepares three-student teams for a tournament. How many such teams
can be made, if the students can be distinguished only by their standing—
freshmen, sophomores, juniors, seniors?

(2) To get the Mass Award, the college must have at least 25 teams. Is it possible to get
this award, if this year the school has no seniors? If the school has only freshmen
and sophomores?

1.4 Combinations

This section deals with unordered totalities of objects. The binomial coefficients and
Catalan numbers inevitably make their presence felt here. We also consider the trajec-
tory method.

Coffee-time browsing

- mathforum.org/dr.math/faq/faq.pascal.triangle.html (Pascal triangle)

- www-history.mcs.st-and.ac.uk/Biographies/Pascal.html (Pascal’s biography)

- www.gap-system.org/~history/Mathematicians/Catalan.html (Catalan’s biogra-
phy)

- http://en.wikipedia.org/wiki/Walther_von_Dyck (von Dyck’s biography)

—  http://en.wikipedia.org/wiki/Dyck_language (Dyck language)
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- www.answers.com/topic/leopold-kronecker (Kronecker’s biography)

—  www.gap-system.org/~history/Biographies/Vandermonde.html (Vandermonde’s
biography)

- www.gap-system.org/~history/Biographies/Kaplansky.html (Kaplansky’s biogra-
phy)

Problem 1.4.1. The same Combi Club with 18 members (see Problems 1.2.7 and 1.3.1)
has to send two of its members to a meeting. How many ways are there to select these
two delegates assuming that both have the same rights and responsibilities?

Solution. Asin Problem 1.2.7, we have to choose two different people. However, unlike
Problem 1.3.1, this problem emphasizes that the order of the members chosen makes
no difference, only the two selected names matter. We immediately recall that these are
sets, where the order of elements does not count. Thus, any 2-member delegation can
be viewed as a 2-element subset of the same set S of the Club members, |S| = 18, and we
have to compute the number of 2-element subsets in an 18-element set. Theorem 1.1.8
with n =18 and k = 2 yields |2§| =18!/(2! - 16!) = 153 delegations. O

Considering this analysis, we give the following definition.

Definition 1.4.1. Given a set X, any k-element subset of X is called a combination (a
k-combination without repetition) of the elements of X taken k at a time. The num-
ber of k-combinations of the elements of an n-element set X is hereafter denoted by
C(n, k); sometimes the symbols ,,C; and ij are also used. These quantities are also
called binomial coefficients and denoted by (}). For integer n > 0 we use both sym-
bols C(n, k) = (}) interchangeably, for other n we will write only (}).

In Section 1.1, the set of all such subsets, that is, the set of k-combinations was
denoted by 2;(( By Theorem 1.1.8, if |[X| = n, then, forany O < k < n,

n!
|2i‘(| - n-k)!- k"

Clearly, this number does not depend on a particular set X, so long as its cardinal
number is |X| = n.

Theorem 1.4.1. We immediately deduce from the latter formula the number of combi-
nations (binomial coefficients),

|
n <k<n. (1.4.1)

C(n,k) = m, O0<k<

An n-element set cannot contain k-element subsets with k > n. Thus, fork > nandk < 0
we set C(n, k) = 0. O

Corollary 1.4.1. Now Corollary 1.1.1 can be stated as

Cn,0)+Cn,1) +---+C(n, k) +--- + C(n,n) = 2". O
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The binomial coefficients with a negative upper index —n < 0, thatis, n > 0, are
defined as

( -n )_(_1)kn(n+1)...(n+k—l) _(-m)(-n-1)--(-n-k+1)
k)~ k! - k!

=(—1)k< "”;_1 )=(—1)kC(n+k—1,k).

Some important properties of the binomial coefficients are discussed in the se-
quel problems, including problems in the end of this section. Many more problems
are scattered in the literature, in addition to the references mentioned above; see, for
example, [35, Sect. 1.2.6].

Problem 1.4.2. Show that, forO <k <n,
Cnk)=C(n-1,k-1)+C(n-1k). (1.4.2)

Solution. The equation easily follows from (1.4.1), but we shall prove it using specifi-
cally combinatorial reasoning useful in many instances (cf. the proof of Theorem 1.1.9).
Choose any n-element set X and an element a € X. A k-element subset Y ¢ X either
contains this a, or does not. If a € Y, then Y\ {a} is a (k—1)-subset of the (n—1)-element
set X \ {a}, otherwise, Y itself is a k-element subset of X \ {a}. Since the sets of subsets
2;2{1“} and 2;’5\{“} are disjoint—no set can consist of k elements and k —1 elements simul-
taneously, thus by definition of combinations and the sum rule we get (1.4.2). O

In the following chart, called Pascal’s @ triangle, every number, except for the
unities at the boundary, is equal to the sum of its two upper neighbors, 2 =1+ 1,3 =
1+2=2+1,...

1 3 31
1 4 6 4 1
1 5 1 10 5 1

Since C(n,0) = 1, Problem 1.4.2 implies that all the entries in this numerical tri-
angle are consecutive binomial coefficients. Indeed, the upper-most 1 = C(0, 0), let us
call this row the zero row. The next, first row contains 1 = C(1,0) and 1 = C(1,1), after
that we have 1 = C(2,0),2 = C(2,1), 1 = C(2,2), the third row starts with 1 = C(3, 0), fol-
lowed by 3 = C(3,1), and so on. The sum of entries in the nth row is 2" by Corollary 1.1.1.
Pascal’s triangle often appears in various problems.

The following properties of the binomial coefficients are often helpful. The solu-
tions of the next two problems are left to the reader.
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Problem 1.4.3. Prove that
C(n, k) = C(n,n - k). (1.4.3)

Problem 1.4.4. Use the combinatorial interpretation of binomial coefficients to prove
the binomial formula or binomial theorem

(@+b)" =d" +nd"'b+ C(,2)d" 2B +--- + C(, )@ *b* + - + nab™™ + b". (L4.4)

Evidently, the coefficients of a" and b™ here can be written as C(n,0) = 1 and those of
a'band ab" 'as C(n,1) = n.

Problem 1.4.5. No three diagonals of a convex decagon® intersect at one point. In how
many segments are the diagonals split by the intersection points?

Solution. First, we find the number of the points of intersection. Any such point comes
from two intersecting diagonals connecting four vertices of the decagon. So that, each
4-element subset of the set of vertices generates exactly one intersection point, and we
obtain C(10, 4) = 10!/(4!(10-4)!) = 210 intersection points. Some of these points are in-
cident to the four segments we sought. However, there are segments that are incident
to only one intersection point and a vertex of the decagon. Therefore, if we multiply
210 by 4 (because an interior intersection point connects 4 segments) we count the
former segments once, but the latter segments twice. To overcome this discrepancy,
we notice that each vertex has 7 incident diagonals, therefore, there are 7 x 10 = 70
segments incident to all the vertices of decagon. Finally, the total number of segments
is %(4 x210+70) = 455. The factor % occurs here because a segment has two end points
and the expression 4 x 210 + 70 counts them separately. O

Problem 1.4.6. Where in the solution did we use the condition that three diagonals
cannot intersect at a point?

Problem 1.4.7. Prove that in the case of an n-gon there are

2¢(n,4) + =3

such segments.

Problem 1.4.8. In how many ways can one choose three different numbers in the set
N30 =1{1,2,...,299,300}, so that 3 divides their sum?

Solution. Since the three numbers chosen must be different (we will do without this
assumption in Problem 1.4.12) and their order makes no difference, each triple is a
3-element subset of the given set. But we cannot immediately apply 3-combinations,

6 A polygon with 10 sides and 10 vertices.
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for not every ordered triple verifies the problem. We notice that when we divide an
integer number by 3, there are exactly three possible remainders, 0,1, and 2, and to
satisfy the condition, the remainders for each triple either must be the same or must be
pairwise different. If the three remainders are different, that is, they are 0, 1, 2, then the
numbers themselves are also different, and we have to select one number out of 100
numbers {1,4,7,...,295,298}, another number from the set {2,5,8,...,296,299}, and
the third number from the set {3, 6,9,...,297,300}; hence, we have 100° such triples.
The reader can put this result in the formal framework of the 3-arrangements with
repetition.

Next, if each of the three remainders is 0, then there are C(100, 3) such triples. The
cases when the remainder is 1 or 2, give in addition 2C(100, 3) choices. Altogether, we
get by the sum rule 100’ + 3C(100, 3) = 1485100 triples. O

To introduce combinations with repetition, we analyze a sweet model problem.

Problem 1.4.9. A college cafeteria sells four kinds of pastries: biscuits (B), doughnuts
(D), muffins (M), and napoleons (N). In how many ways can a student buy seven pas-
tries?

Solution. A crucial point in this problem is to clarify in what way two purchases of
pastries can be distinct from one another. Certainly, they can contain different quan-
tities of similar items. For instance, one student bought three Bs and four Ms while
another student bought four Bs and three Ms; of course, we consider these two pur-
chases as different. Now, what if each of these two students bought, say, seven Bs?
As physical objects, all these pastries are different, but once again we do not consider
physical entities, rather corresponding mathematical symbols. If we think this way,
both purchases of seven biscuits have the same notation (B, B, B, B, B, B, B). There-
fore, in this problem any two symbols B are indistinguishable, and we must identify
them. The same applies to symbols D, M, and N.

Moreover, suppose a student bought seven pastries, put them on a tray and then
shuffled them up on the tray. It is natural not to consider this new ordering of the same
seven pastries as a new buy, this is exactly the same purchase. Thus, since ordering
does not count, we cannot consider strings (B, B, B, B, B, B, B), (B, B, B, B, D, D,
D), etc., as subsets of some set, for no set can contain the same element twice. This
is a typical problem about combinations with repetition, where one has to count the
number of families of the same cardinality, containing elements of different types,
provided that two families are considered to be different if and only if there is at least
one type of elements, which in these two families is represented by different quantities
of the elements. At the same time neither order of the elements, nor what elements of
any type are included, matters.

This heuristic description is actually an informal definition of the combinations
with repetition, and the reader can skip the following formal definition, which trans-
lates the description in the formal set-theory language. Before deriving the formula for
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the number of combinations with repetition in Theorem 1.4.2, to illustrate the proof,
we apply the method to solve Problem 1.4.9. O

Solution of Problem 1.4.9 (continued). Since the order of pastries (objects) is immate-
rial, we fix any order; let it be, say, B, D, M, N. Suppose we bought 3 biscuits, 2 dough-
nuts, 1 muffin and 1 napoleon. If we write B, B, B, D, D, M, N, this string represents the
buy but does not help us and we want to develop better way to represent the outcomes.
If we write just seven zeros, 0,0, 0, 0,0, 0, 0, this is much simpler but does not repre-
sent the buy, since we do not know which zeros represent biscuits, etc. But since we
know that the left-most zeros represent biscuits, we can insert a separator, say 1, which
separates the zeros representing biscuits from the zeros representing doughnuts, etc.,
therefore the string of 10 zeros and ones, 0,0,0,1,0,0,1,0,1,0, represents the buy
above in unique way. For instance, the string 0, 0, 0,0, 0,1, 1,1, 0, 0 means that the stu-
dent bought 5 biscuits and 2 napoleons. We immediately see that there is a one-to-one
correspondence between our buys and the set of all strings containing 7 zeros and 3
units in any order. The latter can be easily found to be C(10, 3) = C(10,7) = 120. O

Now we give a formal definition of combinations with repetition.

Definition 1.4.2. Consider a set X, any its n-partition
X=X,uX,U---UX,

and a natural number r. On the set 2* of all r-element subsets of X we introduce an
equivalence relation (see Problem 1.4.10) as follows:
Two subsets A, B € Zf are said to be equivalent, A ~ B, if

[AnX;| =|BnXl,
IANX,] = BN X,

|ANX,|=1BnX,l,

that is, the sets A and B are equivalent if and only if they contain an equal number
of elements of the subset X;, and an equal number of elements of the subset X,,...,
and an equal number of elements of the subset X,,. The equivalence relation parti-
tions the set Zf into disjoint equivalence classes. These equivalence classes, that is,
the elements of the factor set Zf / ~, are called r-combinations with repetition or with
identified elements from elements of n types, or more precisely, combinations with
identified elements of the subsets X;,1 < i < n, taken r at a time.

The number of r-combinations with repetition depends on n and r, but not upon
a specific set X, so that we denote this quantity by Cyep (1, 7).
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Problem 1.4.10. Verify that the binary relation in Definition 1.4.2 is an equivalence re-
lation in the sense of Definition 1.1.12.

Theorem 1.4.2. If

1<r < min X, (1.4.5)

1<i<n
then

(n+r-1!

Crep(n.7) = Cln+r=1,r) = Cln+r = Ln—1) = <=,

(1.4.6)
Proof. Consider the equivalence relation in Definition 1.4.2 and choose an element-
representative in every equivalence class. These representatives make up an r-com-
bination with repetition of the elements of n types. Associate with this r-combina-
tion a sequence of r symbols 0 and n — 1 symbols 1 as follows. First, write down as
many Os as there are elements of the first type, that is, the elements of the subset X;
in this r-combination; if there is no element of the first type, we do not write a 0. After
that write a 1, which separates two groups of Os corresponding to different types of
elements. Then write as many Os as there are elements of the second type (from the
subset X,) in this r-combination and again write a separator 1, and so on; but we do
not write a 1 after the very last, nth group of Os.

In this way, we have constructed a one-to-one correspondence between all
r-combinations with repetition from elements of n types and the sequences of r Os
and n - 11s. This one-to-one correspondence is useful, because we can easily find the
number of the latter sequences. Indeed, this number is equal to the number of ways
to choose, without ordering, r places for Os among the given n + r — 1 places and fill
out the remaining (n + r — 1) — r = n — 1 places with 1s; or, which is the same, to select
n - r places for 1s. Now formula (1.4.6) follows immediately. O

Problem 1.4.11. Where in the proof was the condition (1.4.5) used?

Second solution of Problem 1.4.9. We apply (1.4.6) with n = 4 and r = 7 and as before,
we compute Crep(4, 7) = C(10,3) = C(10,7) = 120 ways to buy seven pastries. O

Problem 1.4.12. We solve again Problem 1.4.8, allowing now the triples with two or all
three equal numbers.

Solution. This provision does not change the number of triples whose elements have
different remainders after dividing by 3, there are still 100> such triples. Consider now
the numbers with the remainder 1, that is, the elements of the set {1,4,...,298}. The
cases of numbers with the remainders 2 or 3 are similar. Since the ordering is immate-
rial, triples {1, 4,7} and {1, 7, 4} must be identified; however, now we should count also
triples with repeating elements, like {1, 4, 4} or {4, 4, 4}. This is again a typical problem
concerning the combinations with repetition. Actually, we have in the problem not
100 different elements, but 100 various types of elements and we have to select three
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elements of these types, which can be done in Crep(100, 3) = C(102, 3) ways. Allin all,
there are 100° + 3Crep(100,3) = 1515100 such triples. O

If the restriction (1.4.5), which guarantees that the entire combination can consist
of identical elements, fails, the scheme is not immediately applicable. Nonetheless,
problems with r > min,;., |X;| can be solved using Theorem 1.4.2 and the sum rule.
Consider the following modification of Problem 1.4.9.

Problem 1.4.13. A college cafeteria sells the same four kinds of pastries: biscuits (B),
doughnuts (D), muffins (M), and napoleons (N); however, only three muffins remain
in stock. In how many ways can a student buy seven pastries?

Solution. Since now there are only three objects of the M type and 3 < 7, the condition
(1.4.5) fails and we cannot immediately apply formula (1.4.6). Nevertheless, we can use
it if we partition the set of all possible purchases in four disjoint subsets.

(0) No muffin was bought.

(1) One muffin was bought.

(2) Two muffins were bought.

(3) Three muffins were bought.

By making use of Theorem 1.4.2, in case (0) we have Crep(3,7) purchases, since we have
to buy seven items of three types.

In case (1), we have Crep(3,6) purchases, since now in addition to one muffin
bought, we have to buy six more pastries of three other types. In case (2), there are
Crep(3,5) purchases, because we buy two muffins and five pastries of the other three
types. Finally, in case (3) there are C,,(3, 4) purchases.

By the sum rule, we have

Crep(3,7) + Crep(3,6) + Crep(3,5) + Crep (3, 4)
=C(9,7)+C(8,6) + C(7,5) + C(6,4) = 100 purchases. O
Problem 1.4.14. Show that, if instead of (1.4.5) we have
r =Xyl <r < min |X;], (1.4.7)
2<i<n
then the number of r-combinations with repetition of elements of n types is
Crep(n,r) =Cn+r-1L,n-1)-Cn+r-r,-2,n-1). (1.4.8)
Solution. Arguing as in Problem 1.4.13, we represent the number sought as

Cepn—=1,1) + Cep(n=Lr =) + -+ + Crep(n—1L,r —17)

=Cn+r-2n-2)+---+Cn+r-r,—-2,n-2).
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To obtain (1.4.8), we rewrite each addend here by formula (1.4.2) as
CimD=Cim+1l+1)-C(m,1+1)

and then combine like terms. O

In the rest of this section we solve various enumerative problems.

Problem 1.4.15. How many whole-number solutions (that is, consisting of nonnega-
tive integer numbers) does the equation

X + X4+ X =N (1.4.9)

have?

Solution. Introducing new unknowns y; = x; + 1,1 < i < k, we will look for positive
integer solutions of the equivalent equation y; + y, + - -+ + y; = n + k. If we represent
the number n + k on the right-hand side of the latter as the sum of n + k unities, we
immediately realize that solving the problem is equivalent to splitting n + k identical
items (in our case, 1s) into k non-empty groups such that the ith group contains y; > 1
1s. To this end, we arrange these n + k 1s in a row and observe that there are n + k — 1
spaces (gaps) between these 1s. To split the 1s into k groups, we choose k — 1 places
among these n + k — 1 gaps and insert some separators; for example, we can insert 0s
in these gaps. This insertion can be done in C(n + k - 1,k — 1) = C,,(k, n) ways, which
is the number of solutions of equation (1.4.9). O

It is worth repeating that we have established a one-to-one correspondence be-
tween the set of solutions of (1.4.9) and a set with the known cardinality, namely, the
set of all n-combinations with repetition of the elements of k types. In the following
problem we systematically exploit the same approach of the reduction of the set at
question to a set with a simpler structure, whose cardinality is known or can be found
easier.

Problem 1.4.16. Compute the sum of all natural numbers whose digits go either in
increasing order or in decreasing order.

Solution. Let us denote a k-digit natural number a with digits (from left to right)
a;, ay, ...,a; by overline, a = @ja, ... aj. The set of all natural numbers with strictly
increasing digits is denoted by INC and the set of numbers with strictly decreasing
digits is denoted, respectively, by DEC; the sum of all numbers in a set X is denoted
by SUM(X).

Denote by DEC,, the set of all numbers with decreasing digits, whose last digit is
zero and let DEC; = DEC\ DEC,; we have DEC, (1 DEC, = @ and so that SUM(DEC) =
SUM(DEC,) + SUM(DEC;). We immediately observe that there is a one-to-one corre-
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spondence between DEC, and DEC,, given by
b € DEC; © 10b € DEC,,.

Thus, SUM(DEC,)) = 10 SUM(DEC;) and SUM(DEC) = 11 SUM(DEC,).
Pick a number a’, whose digits go in increasing order, say

ad=aa...a¢cINC, a<a<-<a,
and consider the number
b' =bb,...b, (1.4.10)

where bj =10 - a;. The left-most digit of a’ cannot be 0, a; # 0, while all other digits
must be bigger than a;, thus, 1 < a; <9 for1 <j < 9. In turn, this implies

1Sbj=10—a]~59, 1Sj£9,

therefore, b’ € DEC;,. For example, if k = 3and a’ = 139, then b’ = 971; we observe
thata' + b’ = 1110 = (10/9)(10° - 1). We generalize this observation in the following
problem.

Problem 1.4.17. Prove that this observation is not a coincidence, that is, if a’ is a
k-digit number with digits going in increasing order and b’ is defined by (1.4.10), then
a +b' = (10/9)(10F - 1).

Next we notice that the pairing a’ & b’ establishes a one-to-one correspondence
between the sets INC and DEC;. For each k = 1,2,...,9, the set INC contains C(9, k) k-
digit numbers, and every number a € INC can be derived by removal of certain digits
from the string 123456789. Thus,

9
SUM(INC) + SUM(DEC)) = Y’ €(9,k)(10/9)(10" - 1)
k=1

= (10/9)((1 +10)° - (1 + 1)°) = 10/9)(11° - 2°).

Denote the latter number by x = (10/9)(11° — 2°) and let 4 DEC be a subset of the
set DEC consisting of numbers, whose left-most digit is a 9. The sets  DEC and DEC' =
DEC\ 4 DEC make a partition of DEC,

DEC = 4 DECUDEC' .

We also notice that DEC’ consists of all numbers with decreasing digits, including 0,
whose first digit is not 9 and

SUM(DEC) = SUM(y DEC) + SUM(DEC').
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Another one-to-one correspondence, now between the sets INC and DEC/, is es-
tablished by

d'=aqa,...aq € INCe b =(9-a)9-a,)...(9-a;) € DEC;

we immediately see that a’’ + b" = 10X — 1. Thus, denoting 11° - 2° = y, we have
9
SUM(INC) + SUM(DEC') = ¥ C(9,k)(10" 1) =11° - 2° = y.
k=1

Between the sets INC( J{0} and ¢ DEC there also exists a one-to-one correspondence
by virtue of the pairing

d" =(9-b)9-b,)...(9-by) € INC & b" =9b,b, ... by €g DEC

fork > 1;ifk = 0, we set9 & 0, therefore ' +b'" = 10" 1. Denoting 10-11° - 2° = z,
we derive from this that

9
SUM(INC) + SUM(,DEC) = ¥ €(9,k)(10"' -1) =10-11° - 2° =z
k=0

and

y + z = SUM(INC) + SUM(DEC') + SUM(INC) + SUM(,DEC)
= 2SUM(INC) + SUM(DEC).

Combining these linear equations for SUM(INC) and SUM(DEC), we find
SUM(INC) = (1/9)(11x -y —z) and SUM(DEC) = (11/9)(y + z — 2x).

However, the sets INC and DEC are not disjoint, their intersection consists of 9
one-digit numbers with the total sum of 45. Thus, the sum we look for is

SUM(INC) + SUM(DEC) - 45
= (80/81)11'° - (35/81)2!° - 45 = 25617 208 995. O

Definition 1.4.3. For a real number x, let [x] denote its integer part, that is, the largest
integer number not exceeding x; it is also called the floor function and is denoted by
|x]. For example, [3.14] = 3, [-3.14] = -4, [3] = 3.

Problem 1.4.18. Find the number of n-arrangements with repetition from the set A =
{0, 1}, containing an even number of Os.



52 —— 1 Basic counting

Solution. Since we have defined an arrangement as a mapping, to specify such an
arrangement (that is, a mapping) we have to choose preimages for 0s, and the number
of preimages must be an even number 2k, 0 < 2k < n. We suppose that the arrangement
(1,1,...,1) without Os satisfies the condition; this corresponds to the case k = 0. Hence,
by the sum rule there are

S=Cn,0)+Cn2) +---+C(n2n/2])
such arrangements. Setting a = 1 and b = 1in the binomial expansion (1.4.4) yields
2"=(1+1)"=C(n0)+Cn1)+C(n2) +---+ C(n,n),
and setting a = 1and b = -1in (1.4.4) yields
0=(1-1)"=Cn0)-C(n1)+Cn2) -+ (-1)"C(n,n).

Adding these two equations gives 2" = 25, thus S = 2", O

Remark 1.4.1. We know from (1.3.1), that without any parity restriction there are 2"
n-arrangements from a 2-element set A = {0, 1}. Hence, among them there are 2"}
arrangements with an even number of Os and 2" — 2! = 2"! arrangements with an
odd number of Os.

Another solution of Problem 1.4.18 is of interest. Let us denote the number of arrange-
ments we sought for by S,. All these arrangements fall into two disjoint classes:
those beginning with a 1, (1,a,,...,a,), and those beginning with a 0, (0, a,,...,a,).
In the first case an (n — 1)-arrangement (a,, ..., a,) contains an even number of Os,
therefore there are S,_; such arrangements. In the second case a; = 0, thus the
(n — 1)-arrangement (a,, ..., a,) contains an odd number of Os, that is, S,,_; less than
the total number of (n — 1)-arrangements. By the sum rule,

Sy=Spq+ (@27 -8, )=2"" O
Problem 1.4.19. Find the number of n-arrangements with repetition from the set A =

{0,1, 2}, containing an even number of 0s.

Solution. Hereafter we refer to the solution of Problem 1.4.18. If 2k preimages of 0 have
been chosen, then by virtue of (1.3.1) the images for the remaining n — 2k preimages
can be assigned in 2k ways, and these images are either 1 or 2. Using the sum and
product rules, as in Problem 1.4.18, we get the formula

2"C(n,0) +2"%C(n,2) +--- + 279C(n,q), where q = 2[n/2].
To compute this sum explicitly, we add the equations (Cf. Problem 1.4.18)

3= 2+ 1)" =2"C(n,0) + 2" 'C(n,1) +--- + 2°C(n, n)
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and
1=Q2-1)"=2"C(n,0)-2"'c(n,1) +--- + (=<1)"2°C(n, n),

which gives (1/2)(3" + 1). O

Problem 1.4.20. Find the number of n-arrangements with repetition from the set A =
{0,1, 2,3}, containing an even number of Os and an even number of 1s.

Solution. Problem 1.4.19 readily implies that there are (1/2)(3" +1) arrangements with-
out Os. If an arrangement contains two Os, then their preimages can be chosen in
C(n,2) ways. For the remaining n — 2 preimages, their n - 2 images, containing an even
number of 1s and any numbers of 2s and 3s, can be chosen in (1/ 232 +1) ways—we
again use here the result of Problem 1.4.19, with n — 2 instead of n. Continuing in the
same way and using the sum and product rules, we derive

%(3“ +1)C(n,0) + %(3“‘2 +1)C(n,2) + -+ + %(3”‘51 +1)C(n,q)
= %(C(n, 0)+---+C(n,q)) + %(3“C(n, 0)+---+3"9C(n,q)),

where g = 2[n/2]. The first sum on the right-hand side of this equation was found in
Problem 1.4.19. To find the second sum, we proceed similarly, using the expansions
(3 £ 1)". Finally, we get the answer, 4" + 2""1, O

We solve these problems again in Section 4.3 (Problem 4.3.17) using the method
of GF.

Problem 1.4.21. Consider 10" n-digit nonnegative integer numbers. Two numbers are

said to be equivalent, if one can be derived from another by permuting some digits.

For example, four-digit numbers 3213 and 3231 are equivalent. If after permuting the

left-most digit is 0, we still consider the number as having n digits.

(1) How many classes of equivalence, that is, pairwise nonequivalent numbers are
there?

(2) The same question if a number cannot contain more than one digit 0 and more
than one digit 9.

Solution. (1) If all digits in any number are different, then every equivalence class con-
tains n! numbers—obviously, in this case n < 10 and there are C(10, n) equivalence
classes. But digits may repeat, and we have to use combinations with repetition—two
numbers are equivalent, if there is at least one digit occurring a different number of
times in these two numbers. Therefore, we have n objects of 10 types, that is, there are
Crep(10, n) equivalence classes.
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(2) In this case the factor set splits into four disjoint subsets:
(a) Numbers containing neither O nor 9.
(b) Numbers containing one 9 and no O.
(c) Numbers containing one 0 and no 9.
(d) Numbers containing one 0 and one 9.

In case (a) we have C,.,(8,n) equivalence classes, in cases (b) and (c) there are
Crep(8, 1 — 1) classes, in case (d) there are Cyo,(8,n - 2) classes. Altogether we have

2(n +5)!1(2n° + 12n + 21)

Crep(& n) + 2CIep(8, n-1)+ Crep(& n-2) = i

nonequivalent numbers. O

Problem 1.4.22. Let(a;,ay, ..., ay,,,) denote (n+p)-arrangements with repetition from
the elements of the set A = {—1,1} containing n numbers -1 and p numbers 1. Denote
flk) = Z;‘zl a;. Find the number of these arrangements such that f(k) > 0 for each
k=12...,n+p.

Solution. In this problem we use the trajectory method ([18, Chap. 3], see also [22,
p. 127, No. 2.713]), which sometimes gives an easy and very transparent solution. In-
troduce an orthogonal coordinate system in the plane and consider points

Zy=1(0,0), Z=(kf(k)), 1<k<n+p.

A broken line consisting of n + p segments consecutively connecting the points Z; and
Zy, Zy and Z,, Z; and Z;,..., Zy,p4 and Zp,,,, is called the trajectory or Dyck 8 path
corresponding to the arrangement (a;, @, ..., ay,,). Among these n + p segments, p
are directed upward and have the slope +1, and n are directed downward and have
the slope -1, hence it is easy to find the coordinates of the point Z,,, ,, namely, Z,,, =
(n+ p,p —n). To determine a particular trajectory, it suffices to choose p places for the
upward segments among the given n + p places or, which is the same, n places for the
downward segments. Therefore, the total number of the trajectories is C(n + p,p) =
C(n + p,n). We have to find how many of them do not drop below the X-axis, but it is
easier to compute the number of trajectories that do drop below it, that is, which have
common points with the horizontal line y = —1. Let T be such a trajectory, and k, be
the left-most common point of T and the liney = -1.

Consider another trajectory T that coincides with T from O to k,, and is the mirror
reflection of T at the line y = -1 to the right of k,. This procedure sets a one-to-one
correspondence between the set of all trajectories joining the points 0 and Z,,,
crossing the line y = -1, on the one hand, and the set of trajectories joining the points
0and Z,,, = (n+p,n-p - 2), on the other hand.

and
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If a trajectory, connecting 0 and Zl +p» has u upward and d downward segments,
then

{u+d=n+n
u-d=n-p-2.

Solving this system of linear equations we find d = p + 1. Hence the number of tra-
jectories crossing the liney = -1is C(n + p,p + 1), and the number of trajectories in
question is

Cn+p,p)-Cn+p,p+1) = %C(n +Dp,Dp). (1.4.11)

This implies in particular that the trajectories we looked for exist only if p > n, though
this is clear from the problem without calculations. O

Remark 1.4.2. If p = n, then (1.4.11) becomes ﬁC(Zn, n); these numbers, called the
Catalan & numbers, occur in many combinatorial and other problems, see, e. g. [2, 51]
and Problem 4.4.10; we denote them Cat,,.

Exercises 1.4.

Exercise 1.4.1.

(1) An urn contains 12 different balls. In how many ways is it possible to draw 8 of
them without return?

(2) With return?

(3) An urn contains 12 identical balls. In how many ways is it possible to draw 8 of
them without ordering and without return?

(4) Without ordering but with return?

Exercise 1.4.2. Calculate the binomial coefficients C(m,n) forall-2<n<m <6.

Exercise 1.4.3. Prove that k! divides the product of any natural number n and its k — 1
successors. For example, for k = 5and n = 3, 5! = 120 divides the product3-4-5-6-7 =
2520.

Exercise 1.4.4. Prove the following properties of the binomial coefficients for any nat-

ural n and appropriate values of all other parameters.

(1) YinClk,m)y=Cn+1,m+1),

Q@ Yr kC(nk)=n2"",

) Yi,kk-1C(nk) =n(n-12"2n=>2,

(4) Extend the two preceding equations, so that the left-hand side reads Z’;o with1<
ny < n,

(5) Yrok+1)C(nk) = (n+1)2",

(6) Yioo mCnk) = @™ -1),
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ok
@) Yroo (kﬂ C(nk) = —,
(8) Yia(n+1-0k = 5Cn+1.9Cn+2.2),
(9) (Vandermonde’s & identity)

n
Y Cmk)CAn-k) = Cm+1Ln), n<miniml,
k=0

(10) Use Vandermonde’s identity above to prove the formula

>l )()-5(00)

WEmm k l s\ m

(11) ka:,(—l)kC(m, k)Ck,l) = (-1)™6,,;, where the Kronecker symbol 6, (Kro-
necker’s delta) is defined for all non-equal integers m and [ by 6,,; = 0 and for
m= lby 611 =1,

(12) for natural m and n, prove the identity

D)"C(-n,m-1) = (-)™C(-m,n-1),

(13) for 0 < k < n, find the maximum value of the binomial coefficients C(n, k), and
determine, for each n, how many binomial coefficients C(n, k),k = 0,1,...,n, are
equal to this maximym value,

k-1
(14) prove that” Y, ( 1’3 Cmk) =1+ % + % I %’
(15) prove the identity for the harmonic numbers H,,,,

n k

D
Hin = Hy = Y. 5
k=1

Exercise 1.4.5. The binary, ternary, ..., decimal, ... numerical systems represent any
natural number by making use of a fixed number of digits—for instance, the two dig-
its, 0 and 1, in the binary system, and the ten digits, 0,1,...,8,9, in decimal system.
Another representation of the integer numbers, called the combinatorial representa-
tion, uses binomial coefficients to write down any natural number as a sum of a fixed
number of addends.

(1) Prove that, given an integer number k > 1, any natural number n can be written

as

n=C(dy1) + C(dy,2) + -+ + C(dy, k),

and this representation is unique if we require, in addition, that 0 < d; < d, <
e < dk'

7 The numbers H,, =1+ % + % +oet % m=1,2,..., are called harmonic numbers.
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(2) Find the combinatorial representations of n = 1000 and n = 1000 000 with k =
5,8,10.
(3) Given nand k, estimate d; in the combinatorial representation of n.

Exercise 1.4.6. Yet another useful representation of integer numbers, called factorial
representation, uses factorials instead of powers or binomial coefficients.
(1) Prove that any whole number n can be written as

n=fi-1+5H-21+f5-31+--+,

and this representation is unique if we also assume that 0 < f; < i.
(2) Find the factorial representations of n = 1000 and n = 1000 000.
(3) Given n, estimate the number of addends in the factorial representation of n.

Exercise 1.4.7. Consider families with 5 children, without twins. If we assume that the
family composition depends on the order the kids were born, then among these fam-
ilies there is one family with all 5 girls, 5 families with one boy and 4 girls, etc. List all
families with 5 kids. The answer is 32 = 2°. Explain this answer, using a combinatorial
argument.

Exercise 1.4.8. Assuming that boys and girls have equal chances to be born, what part
of all families with 6 children have 4 girls and 2 boys?

Exercise 1.4.9. 2" people depart from the upper point of Pascal’s triangle, which was
defined after Problem 1.4.2. At each point, including the upper-most one, half of them
move to the left and another half to the right. How many people arrive at each point
of the nth row?

Exercise 1.4.10. How many functions
f:{1,2,...,2006} — {2005,2006,2 007}

are there such that the number f(1) + f(2) + --- + f(2006) is even? Is odd?

Exercise 1.4.11. The following two identities connect the Catalan numbers Cat,, de-
fined in Remark 1.4.2, and the binomial coefficients C(m, n).

(D Yroo(C k)Y = (n+1)Cy,

(2 C,=Cc@nn-C2nn-1).

Exercise 1.4.12. Find the coefficients of x'° and x* after expanding the polynomial
o+ x> +1)%° by the binomial formula (1.4.4) and combining like terms.

Exercise 1.4.13. Find the number of 2n-dimensional vectors (a;, ay, ..., &y,) such that
a=+1,1<i<2n, Y* a;>0fork=12,...,2n—-1,and ¥ a; = 0.
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Exercise 1.4.14. Given n points in the plane, how many different lines, connecting
them pairwise, can be drawn, if no three among the points are collinear, that is, lie
on the same line.

Exercise 1.4.15. Among k points in the plane, [ lie on the same line, while no three
points among the others lie on the same line.

(1) How many lines are necessary in order to connect all these points pairwise?

(2) How many triangles are there with vertices at these points?

Exercise 1.4.16. Find the largest number of parts that a plane can be divided by
(1) 7lines,

(2) llines,

(3) 3 circumferences,

(4) m circumferences.

Exercise 1.4.17. Thirteen resorts are located by the shore of a convex lake. For every 2,
and every 3,..., and for all 13 resorts there is a route connecting them. Each route is
a convex polygon (or a line segment for two ports) with vertices at the resorts and is
served by a separate ferry. How many ferries are necessary for all these routs?

Exercise 1.4.18. Among given 15 points in a plane, 6 lie on a line, however, no other 3
points are collinear. How many lines containing at least two given points are there?

Exercise 1.4.19. Given 15 pointsin a plane, 6 among them lie on a circumference, how-
ever, no other 4 points belong to a circumference. How many circumferences contain-
ing at least three given points are there?

Exercise 1.4.20. At a meeting of the Combi Club, if two attending students know each
other, they have no more mutual acquaintances. At the same time, if two partici-
pants do not know each other, then they have exactly two common acquaintances
at the meeting. Prove that every participant is familiar with the same number of
attendees.

Exercise 1.4.21. There are 10 mutually intersecting lines, such that no three of them
have a common point of intersection. How many circumferences tangent to any three
lines among the given 10 are there?

Exercise 1.4.22. Three points are said to be collinear if they lie on a line. It is known
that for any three non-collinear points in three-dimensional space there exists the
unique plane containing these three points. Suppose that among k points in space,
l are coplanar, that is, lie in the same plane, while no four points among the others are
coplanar. How many different planes do exist, such that each plane contains a triple
of given points?
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Exercise 1.4.23. Consider three non-collinear points in a plane and draw p lines
through the first point, g lines through the second one, and r lines through the third
one. No three among these p + g + r lines intersect at a common point and no two are
parallel. How many triangles are made up by the intersections of these lines?

Exercise 1.4.24. A family of | parallel lines is crossed by another family of k parallel
lines making several parallelograms. How many different parallelograms are there in
this figure?

Exercise 1.4.25. A beetle, moving in horizontal or vertical direction, can visit only
points with integer coordinates. It starts at the origin and must return back to the ori-
gin after traveling 2m units. How many different routes does the beetle have?

Exercise 1.4.26. P parentsand S students attend a school meeting. In how many ways
can they be seated in a row, if at least one parent must sit between any two students?
The same question if they sit by a round table.

Exercise 1.4.27. Prove that, for any natural p,

11
P Z( 1: Cp,r).

r=1 I’(T +p) r>1
Exercise 1.4.28. Find n and m such that
Cnym):Cnnm+1):C(n,m+2) =22:20:15,

where a : b stands for the ratio a to b.
Exercise 1.4.29 (Compare with Problem 1.4.18). Consider a polynomial

n
(T+x+x°)" = ag+ax + ax® + - + ayx™.

Prove that
n-1

Ay+0a3+ag+---=a1+a,+Aa;+--=ay+ds+ag+---=3

Exercise 1.4.30. The numbers T,, = C(n + 1,n) = @ (Fig. 1.3) are called triangular
numbers. Prove by mathematical induction that

n
(_1)n+1Tn — Z(—l)k+lk2.
k=1

Exercise 1.4.31. There are n identical black balls and n identical white balls. In how
many ways is it possible to choose n balls containing at least one ball of each color?
Extend the problem for 3, 4 and more colors.
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Figure 1.3: Triangular numbers T, — T,,.

Exercise 1.4.32. In how many ways can m + n balls be chosen among 2m identical
white and 3n identical black balls?

Exercise 1.4.33. No two students at the Even College have the same performance, that
is, every two students get different grades at least at one test. Moreover, no student
performs better than any other one, that s, for every two students s, and s,, s; performs
better than s, at some test but worse at some other test. This semester, every student
takes 2n classes. Prove that there are at most C(2n, n) students at the school.

Exercise 1.4.34. Prove that, for a prime p, C(p,n) =0 (modp)for1 <n<p-1,and
Clp-1,n) =(-1" (modp)forO<n<p-1.

Exercise 1.4.35. In how many ways is it possible to choose six different numbers from
the set Ny = {1,2,...,49}, so that the difference of two of them is 1? Such a pair of
numbers does not have to be unique.

Exercise 1.4.36. How many divisors does the number 2°3*5%7%11 have?

Exercise 1.4.37. For how many integers from 1to 9 999 is the sum of their digits equal
to 9?

Exercise 1.4.38. In how many ways can one choose 4 colors from given seven colors?
Assuming that one of the given seven colors is red, what is the answer if red must enter
the chosen combination? What is the answer to the latter question if red is not among
the given colors?

Exercise 1.4.39. A high school offers classes in English, French, German, Italian, and
Spanish. How many bilingual dictionaries must the school library buy for the stu-
dents?

Exercise 1.4.40.

(1) In how many ways is it possible to split a 20-element set into ten 2-element sets?

(2) In how many ways is it possible to split a 21-element set into ten 2-element sets
and one l-element set?

(3) Inhow many ways is it possible to split a 21-element set into seven 3-element sets?



1.4 Combinations =— 61

Exercise 1.4.41. Ata grocery store, there are five identical bottles of apple juice, seven
bottles of orange juice, and eight bottles of grape juice. In how many ways can a stu-
dent buy three bottles of juice for a party?

Exercise 1.4.42. The following statement is called the Kaplansky & lemma:
n different books are ordered on a shelf. Prove that, for k < n/2, there are # C(n-
k, k) ways to choose k books, so that no two neighboring books are chosen.

Exercise 1.4.43. A department store has 12 kinds of shoes in Kate’s size. In how many
ways can she buy 4 pairs of different shoes? What if the shoes bought can repeat?

Exercise 1.4.44. The city of Oldnewburg has the shape of arectangle, and all its streets
are parallel to the sides of the given rectangle. The City Hall is located in the South-
West corner of the city. 2* sheriffs leave the City Hall, half of them due East and another
half due North. Officers who reach any street crossing, do the same: half of them goes
to East and another half is due North. Eventually m sheriffs arrived at the crossing
of the kth and Ith streets. Is there any relation between the numbers k, 1, m, and x?
Compute x in terms of k, I, and m.

Exercise 1.4.45. 16 scouts are searching for their friend who got lost in the woods.
Among them there are only 4 boys, who know the area. In how many ways can they
make two equal groups for the search, if each group must have two guides knowing
the area?

Exercise 1.4.46. Sixteen friendsreserved 8 identical double cabins for a cruise. In how
many ways can they occupy the cabins?

Exercise 1.4.47.
(1) How many pairwise products can be made from the numbers 1,2,...,100?
(2) How many among them are a multiple of 3?

Exercise 1.4.48. How many 7-digit phone numbers are there with the same last four
digits?

Exercise 1.4.49. There are 8 banks of lights in a school hall controlled by 8 different
switches. Students decided that at a graduation dance no more than two banks of
lights are to be on. In how many ways is it possible to set these 8 switches?

Exercise 1.4.50. Draw k lines through each of the 3 given points in the plane.

(1) At how many points do these 3k lines intersect if no two of the lines are parallel
and no three intersect at a point (the intersections at the given 3 points do not
count)?

(2) Answer the same question if there are four points in the plane.
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Exercise 1.4.51. There arellines and p points on each of these lines, such that no three
points on different lines are collinear. How many triangles with vertices at these points
are there?

Exercise 1.4.52. A number of n rays in a plane have a common vertex. How many an-
gles do they make?

Exercise 1.4.53. The cafeteria in John’s school has a very stable menu, every day they
offer the same 13 tasty meals. During a day John can consume any number, from 0
to 13, of these dishes. For how many days can he buy meals at the cafeteria without
repetition, that is, no two days have the same selection of dishes? How many dishes
will he eat during this time?

Exercise 1.4.54. John’s friends Nancy and Kate also decided to have a new menu every
day, but Nancy would eat an even number of dishes every day, while Kate would eat
an odd number. Who will have to repeat her menu sooner, Nancy or Kate?

Exercise 1.4.55. Generalize Exercises 1.4.53—-1.4.54 if the cafeteria has n meals instead
of 13.

Exercise 1.4.56. Solve again Problem 1.4.9 under the additional assumption that,
among the seven pastries, the student must buy at least four donuts. Compare the
answer with the answer to Problem 1.4.13.

Exercise 1.4.57. Letn = pfl X e X p;" be the prime factorization of a natural number
n > 1, thatis, 1 < p; < --- < p; are distinct primes and ki, ..., k; are arbitrary natural
numbers. Find the number and the sum of all natural divisors of n. First solve the
problem for [ = 1,2 and 3.

Exercise 1.4.58.
(1) What is the smallest natural number with exactly 6 divisors?
(2) With no more than 6 divisors?

Exercise 1.4.59. Given a finite set X, |X| = k, find the number of pairs of subsets A, B
of X, suchthat AuB = X.

Exercise 1.4.60. A standard deck of playing cards consists of 52 cards of 4 suits;
spades and clubs are black, diamonds and hearts are red. Each suit contains cards of
13 denominations: 9 numbered cards 2,3, 4,...,9,10, and 4 face cards: J (a Jack), Q (a
Queen), K (a King), and A (an Ace). Find in how many ways it is possible to draw five
cards from a standard deck, so that among these five cards there are

(1) 10,7, Q, K, and A of the same suit (a royal flush).

(2) Five adjacent cards of the same suit not starting at 10 (a straight flush).

(3) Five (not necessarily adjacent) cards of the same suit (a flush).

(4) Four cards of the same denomination (four of a kind).
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(5) Three cards of the same denomination and two cards of two other different values
(three of a kind).

(6) Three cards of the same denomination and two cards of another denomination
(full house).

(7) Four cards of four different denominations.

Exercise 1.4.61. In how many ways can k cards, comprising cards of all 4 suits, be
dealt from a standard deck of cards if

1) k=42
(2 k=5?
) k=67

Exercise 1.4.62. Solve the previous problem if a deck consists of 4n cards of four dif-
ferent suits and cards are numbered consecutively from 1 through n.

Exercise 1.4.63. How many are (that is, with the coefficient of 1) monomials are there
of degree k in [ variables?

Exercise 1.4.64. In how many ways is it possible to distribute 25 identical coins among
4 students?

Exercise 1.4.65. How many solutions in whole numbers does the equation x; + x, +
X3 + X, = 15 have?

Exercise 1.4.66. How many solutions in positive integer numbers does the equation
Xy + X, + X3+ x4 =15 haveif x, > 2and x5 > 5?

Exercise 1.4.67. How many solutions in natural numbers does the equation x; + x;, +
X3 + X, = 15 have if, in addition, x, > 2and 1 < x3 < 5?

Exercise 1.4.68. How many solutions in whole numbers does the inequality x; + x, +
X3 + X, < 15 have?

Exercise 1.4.69. How many solutions in integer numbers does the equation x; + x; +
--- + X = n have subject to restrictions x; > ny,x, > n,...,x; > n?

Exercise 1.4.70. How many solutions in integer numbers does the inequality |x;| +
|x,] <100 have?

Exercise 1.4.71. How many natural numbers not exceeding 10 000 000 are there with
the sum of their digits equal to 9?

Exercise 1.4.72. In how many ways can six coins be chosen from an ample supply of
pennies, nickels, dimes, and quarters?

Exercise 1.4.73. Araffle ticket at the Combi Club party costs $5. In a line to the counter,
each member has either a $5 or a $10 bill. Therefore, the line would stop if the next
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student has a $10 bill but the treasurer has no change. To avoid such halts, the trea-
surer prepared t $5 bills to give change. If p students have $10 bills and g have $5
bills, in how many ways can the students make up a line to buy the tickets without
interruptions?

Exercise 1.4.74. How many diagonals does a convex 30-gon have?
Exercise 1.4.75. Find n if a convex n-gon has 35 diagonals.

Exercise 1.4.76. No three diagonals of a convex n-gon have a point in common. In how
many regions is the n-gon divided by its diagonals?

Exercise 1.4.77. This problem refers to the binomial formula (1.4.4).

(1) Compute (x +y)" forn = 1,...,5. Determine the largest coefficient(s) in these ex-
pansions.

(2) Find the coefficient of x®y° in (x — 2y)™°.

Exercise 1.4.78. In how many ways can you read the word MAGIC in the following
diagram?

M
A A
G G G
I I
C

Exercise 1.4.79. A binary string is a 0-1-sequence, for instance, 01100011 is a binary
string of length 8. A binary code, that is, a set of binary strings is designed to represent
a set of 35 objects, each object is coded by a string. Every string of the code contains
k zeros and [ unities, and k + [ = n. Find k, , n such that n has the smallest possible
value.

Exercise 1.4.80. Let us call two real numbers equivalent if they have the same integer

part.

(1) Prove that this is an equivalence relation.

(2) What is the cardinality of the factor set of this equivalence relation considered on
the set of all positive real numbers less than 10?

Boolean functions were defined in Exercise 1.1.30 where the reader has computed
that there are 2 Boolean functions with n variables. However, some of these functions
actually depend on less than n arguments in the following sense.

Definition 1.4.4. GivenaBoolean functionf(z,,...,z,),avariablez;,1 <i < n,is called
essential if there are values

0 0 0 0
Zl""’ l‘*l’Zi+l""’Zn EZZ = {0,1},
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such that
f(22,...,22,,0,22,,...,2%) # f(22,....20 , 1,20 ..., 20).

Otherwise a variable is called unessential or fictitious. For example, for the Boolean
function f(z;,2,) = z; A (2, V Z;), where Z denote the negation of z, z; is an essential
variable, while z, is a fictitious one.

Denote the number of Boolean functions with precisely n essential variables by
Bess(n).

Exercise 1.4.81. How many n-digit integers whose digits go in non-decreasing order
are there?

Exercise 1.4.82.

(1) Verify that Bess(0) = Bess(1) = 2, Bess(2) = 10 and compare these numbers with
22n, n = 0,1, 2. Find all Boolean functions with no more than 2 essential variables.

(2) Prove that

Bess(n) = 2° — C(n,n — 1) Bess(n - 1)
—C(n,n-1)Bess(n —1) —--- — C(n,1) Bess(1) — Bess(0).

(3) (G. Krylov) Prove that Bess(n) = Z,’Z:O(—l)k C(n, k)ZZH.

Exercise 1.4.83. How many Boolean functions of three variables satisfy the equation
f(z_p Z_Z: Z_3) = f(Z1> Z2> Z3)?

Exercise 1.4.84. How many integers between 0 and 10" are there which do not contain
the same two digits doing together?

Exercise 1.4.85. In how many ways can you select 6 cards out of a standard deck of 52
cards such that they contain cards of every suit?

Exercise 1.4.86. Consider a k-gon spanned by k vertices of a convex n-gon, k < n.
How many such k-gons do exist, if at least s vertices of the n-gon lie between every
two vertices of a k-gon?

Exercise 1.4.87. Ms. Matrix and Mr. Radical ran for the President of the Combi Club.
After each ballot vote was cast, Matrix has never been behind Radical. Prove that, if
each candidate received exactly n votes, then there are Cat, ways to count the votes,
where Cat,, is the nth Catalan number.

Exercise 1.4.88. A section of 41 students passed the session of the three tests, and
nobody failed any exam, i. e., all the grades were “Excellent”, “Good”, and “Satisfac-
tory”. Prove that at least five students passed the session with the same grades.

Exercise 1.4.89. Among the first 999,999 positive integers, how many include the
digit 3 in their decimal representation?
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1.5 Permutations with identified elements

Objects, considered in this section, resemble the combinations with repetition—they
involve indistinguishable elements, which must be identified; however unlike the
combinations, ordering of the elements is also important. We again begin with a
model problem.

Coffee-time browsing

- www.absoluteastronomy.com/topics/Multinomial_theorem

- http://www.gap-system.org/~history/Mathematicians/Bose.html
- www.gap-system.org/~history/Mathematicians/Dirac.html

— nobelprize.org/nobel_prizes/physics/.../einstein-bio.html

—  http://en.wikipedia.org/wiki/Enrico_Fermi#Biography

—  http://en.wikipedia.org/wiki/James_Clerk_Maxwell

—  http://en.wikipedia.org/wiki/Ludwig_Boltzmann

Problem 1.5.1. In how many ways is it possible to order the letters of the word DAD?
The same question about the words ARMADA and LETTER?

Solution. In this and similar problems “words” like DDA, which we cannot find in a
dictionary, are also acceptable sequences of characters called strings. The difficulty of
this problem is due to the presence of two identical characters D, for transpositions of
these symbols do not generate a new string. Moreover, since a set cannot contain two
repeating elements, the three characters D, A, and D of a given word do not constitute
a set. To overcome this obstacle, we make the two repeating letters distinguishable by
supplying subscripts and introducing the set X = {4, D;, D,}. Now we can consider all
3! = 6 permutations of the elements of this new set,

(A,Dy,Dy) (D1, A, Dy) (D1, D5, A)
(A,D,,Dy) (Dy,A,Dy) (Dy,D,A)

If we remove here all the subscripts, then two permutations in each of the three
columns become indistinguishable and have to be identified. Thus, we break down
P(3) = 6 permutations of the elements of set X, taken all three at a time, in three
disjoint subsets of pairs of permutations. Each subset consists of two permutations,
because two elements “D;” and “D,” can be transposed in P(2) = 2! = 2 ways, hence
the set of 6 permutations is split in three pairs. These three pairs of permutations gen-
erate three different strings ADD, DAD and DDA. Therefore, in the problem there are
31/2! = 3 essentially different permutations.

Similarly, the letters of the word ARMADA can be rearranged in 6!/3! = 120 ways,
therefore, there are 120 strings from the letters of the word ARMADA. Now, the char-
acters of the word LETTER can be reordered in 6!/(2! - 2!) = 180 ways; here we have to
make two independent identifications in the set of all permutations of the elements of
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the set {E;, E,, L, R, T}, T,}—we have to identify permutations that can be derived from
one another by transposing the symbols E; and E,, and also to identify permutations,
that can be derived from one another by transposing the symbols T; and T. O

It should be noticed that in the solution we implicitly used Lemma 1.1.4. The
method of solution presented above is quite transparent and sufficient in the most of
applications. However, it is also necessary to have a formal definition of the permuta-
tions with identified elements.

Definition 1.5.1. Given a k-partition ofaset X = X; UX,U---UX;, consider the following
equivalence relation on the set of all permutations of the elements of X:

Two permutations are called equivalent if one of them can be derived from the
other by transposing only the elements of the subset X;, or only the elements of X,, .. .,
or only the elements of X.. The elements of the factor set derived are called permuta-
tions of the elements of the set X with identified elements of the subsets X;, X5, ..., Xy;
we call them permutations with repetition if it is clear what partition of the set X gen-
erates them.

Let |X;| =n,1<i<k,and |X| =n = fozl n;. The number of permutations with
repetition is denoted by C(n; ny, .. ., ny); these numbers are also called multinomial co-
efficients.

Theorem 1.5.1. The following equation holds for the multinomial coefficients,

n!
C(n; ng, ..., nk) = m (1.51)
Proof. The result follows immediately from (1.3.4) after a k-fold application of Lem-
ma 1.1.4. ]

Problem 1.5.2. Show that for any natural [ the number (I!)! - (l!)‘(l_l)! is integer.

Solution. The following is a pure combinatorial proof. If one considers objects of (I-1)!
types, l items of each type, that is, [ - (I - 1)! = l! items in total, then the expression in
the problem is exactly the number of permutations with repetition of this set, given
by equation (1.5.1) withk = (I-1),n=1ll,andn, =n, =--- =n; = Il O

Problem 1.5.3.

(1) Small College runs four mathematical courses for the Liberal Arts students—five
sections of The History of Mathematics, four sections of Mathematics in the Arts,
three sections of Introductory Statistics, and two sections of Elementary Combina-
torics. Each section of these courses has, respectively, 28, 25, 15, and 12 seats. All
14 sections are taught by 14 different professors, and 5-28 +4-25+3-15+2-12 = 309
students satisfy prerequisites and want to take one class each. In how many ways
can these students register for the classes?

(2) Solve the same problem if one professor teaches all sections of The History of
Mathematics, another professor teaches all sections of Mathematics in the Arts,
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yet another one teaches all sections of Introductory Statistics, and another profes-
sor teaches both sections of Elementary Combinatorics.

Solution. (1) Since all the professors are different, we have 309 objects of 14 types and
by (1.5.1) there are

309!
(281)5(251)4(151)3(12!)2

ways these students can register for the classes.

(2) However, if one professor teaches all sections of The History of Mathematics,
it makes no difference for the student what particular section of a class to register for,
and the answer is now

309!
(281)5(25!)%(15!)3(12!)25!41312!

These problems and many others can be conveniently stated by using a general
model of objects, say balls, placed in urns. Both urns and balls can be either distin-
guishable or identical. Therefore, there are in general four possible cases. Two of these
cases are treated in the following theorem; we omit its proof, which is similar to the
reasoning in the solution of Problem 1.5.3. Two other cases will be considered later.

Theorem 1.5.2. Given k distinguishable groups of urns, p; urns of one type, p, urns of
another type, etc., then there are

n!
(P - - ()P

ways to place n = nyp; + - - - + by different objects into these p; + - - - + py urns if all the
urns are different, and

n!

(P (P! (P!

ways to place n = nyp; + - - - + nypy, different objects into p; + - - - + p; urns if urns within
each group are indistinguishable. O

Exercises 1.5.

Exercise 1.5.1. In how many ways is it possible to place 6 identical balls into 4 different
urns, so that

(1) No urn is empty?

(2) Exactly 2 urns are empty?

(3) At most 3 urns are empty?

(4) Atleast 3 urns are empty?
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Exercise 1.5.2. A bus with 35 passengers makes 7 stops. In how many ways can the
passengers leave the bus, so that exactly 5 of them get off at each stop?

Exercise 1.5.3. Prove that ((2n))!- 27" and ((3n))! - 6 " are integer numbers.

Exercise 1.5.4. Prove that the fraction —

L 1S aninteger number whenever n; +n,+

et <N,

Exercise 1.5.5. A student is preparing to a Spelling Bee contest. She looks for an
11-character word containing four letters s, four letters i, two letters p, and one more
consonant. How many dictionary entries should she browse at most?

Exercise 1.5.6. How many four-digit integers can be composed from the digits of num-
ber 125533227

Exercise 1.5.7. In how many ways can the letters of the word ARMADA be rearranged
so that the letters R and M remain together

(1) in the same (RM) order?

(2) inany order?

Exercise 1.5.8. In how many ways can the letters of the word MISSISSIPPI be rear-
ranged so that the first occurrence of the letter I precedes the first letter S?

Exercise 1.5.9. How many natural numbers less than one million contain only digits
7 and 8?

Exercise 1.5.10. How many 4-arrangements of 4 red, 1 green, 1 blue, 1 black, and 1
white balls are there?

Exercise 1.5.11. In how many ways can 30 boy scouts be split in 10 equal groups of 3?
In 3 equal groups of 10?

Exercise 1.5.12. In how many ways can the letters a, e, i, 0,u,z be arranged so that a
and z are adjacent?

Exercise 1.5.13. In how many ways can 13 balls be placed into 6 urns, so that urn 1
contains 3 balls, urn 2 also contains 3 balls, urn 3 contains 1 ball, urn 4 contains 2
balls, urn 5 contains 4 balls, and urn 6 is empty?

Exercise 1.5.14. How many 27-digit natural numbers are there containing the digits
1,2,...,9 if each digit appears three times?

Exercise 1.5.15. In how many ways can we partition a k-element set X in [ parts if the
first part contains k; elements, the second part contains k, elements, ..., the Ith part
contains k; elements, thus k; + - -- + k; = k?
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Exercise 1.5.16. How many r-combinations with repetition from k letters A, [ letters B,
and m other different characters are there, if each combination contains all symbols
A and B (and maybe some other symbols)?

Exercise 1.5.17. There are 15 students in the Combi Club who play ice hockey. In how
many ways can their coach make up three sets of five field players? Consider two dif-
ferent cases—when the ordering of the selected five players in mini-teams of 5 makes
or does not make difference.

Exercise 1.5.18. There are 18 students in the Combi Club. In how many ways can their
ice hockey coach assign three goalies and make up three sets of five field players?

Exercise 1.5.19. Prove the multinomial theorem,

G+t 4+ )" =Y Cny, . 1,
where C(n;ny, ny, ..., ny) are multinomial coefficients (1.5.1); the sum is taken over all
sets of whole numbers n; such thatn; + n, +--- + n = n.

Exercise 1.5.20. Use the multinomial theorem to find the expansion of (x; + X, + x3)*.

Exercise 1.5.21.

(1) How many terms does the expansion (x; + x, + x3)8 have?

(2) Use the multinomial theorem to find the coefficient of xfxzxg in (x; +x, +x3)%.

(3) Whatis the constant term (not containing x) in the expansion (x+ )1( —3)7 in powers
of x?

Exercise 1.5.22. How many four-digit multiples of 4, composed of the digits 1,2, 3, 4,
and 5 are there?

Exercise 1.5.23. How many permutations with repetition of b identical balls and ¢
identical cubes are there?

Exercise 1.5.24 (Cf. Theorem 1.5.2). In how many ways can n balls be distributed in k

different urns if

(1) All balls are different and any urn can contain any number of balls (Maxwell-
Boltzmann & statistics)?

(2) The balls are indistinguishable and any urn can contain any number of balls
(Bose—Einstein  statistics)?

(3) The balls are indistinguishable and any urn can contain no more than one ball
(Fermi-Dirac statistics)?

Exercise 1.5.25. A number Q is equal to the product of g different prime factors. Prove
that there are S(g, 1) ways to represent Q as the product of I factors.
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1.6 Probability theory on finite sets

In this section we consider probabilistic problems with finite sample spaces. If we
in addition assume the hypothesis of equally likely outcomes, then these problems
can be straightforwardly translated into combinatorial ones and vice versa. Therefore,
these probabilistic problems provide an ample field for applications of the methods we
have developed in preceding sections. In particular, we consider applications of these
results to calculating the outcomes of lotteries and other games of chance.

Coffee-time browsing

- en.wikipedia.org/wiki/Abacus (Abacus)

— interactive-genetics.hayden-mcneil.com/IG_topics_ma.htm (Genetics and Proba-
bility Theory)

- www-history.mcs.st-and.ac.uk/Biographies/Bayes.html (Bayes’ biography)

- http://en.wikipedia.org/wiki/Bernoulli_family (Bernoulli family)

- http://www.cut-the-knot.org/Probability/ChevalierDeMere.shtml (De Mere’s
paradox)

- http://www.sexratio.com/facts.htm (Gender’s ratio)

Our world is random, often unpredictable, meaning that the results, the outcomes,
of many of our actions cannot be predicted in advance. When a girl starts study at
elementary school, her parents have certain expectations, but they cannot predict for
sure her college GPA.® Another simple and popular example of randomness is tossing
a coin. The probability theory studies (some of) such random events by mathematical
methods. First we introduce some terminology.

Any operation, procedure, experiment with results that cannot be predicted in
advance, like tossing a coin, or rolling a die, or drawing a card from a deck, is referred
to as a random experiment. This is not a definition, here we just introduce a primary
notion like the concepts of a set and a function introduced in Section 1.1. When an
experiment has the only possible result, the outcome is certainly known in advance
and this experiment is not random.

Definition 1.6.1. All the possible results of a random experiment are called its out-
comes. The totality of all possible outcomes is called the sample space S of the ex-
periment. Points of the sample space, that is, outcomes of a random experiment, are
also called elementary events. Any set E of outcomes, that is, a subset of the sample
space E c S, is called an event. The empty event E = ¢ is also called impossible or
improbable, the universal event E = S is called certain.

8 Grade Point Average.
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The outcomes, belonging to a given event, are sometimes called favorable out-
comes to this event. The sample space depends upon the problem. For instance, when
we roll a coin, then in addition to two typical outcomes, heads and tails, a coin might
rest on the edge, even though this phenomenon is not easy to observe, or it can roll
away and disappear, but the latter two possibilities are practically improbable, negli-
gible. Thus, discussing experiments with flipping a coin, we always consider the sam-
ple space consisting of only two points, a head H and a tail T, in symbols S = {H, T}. If
we roll a die (a six-faced cube) with faces marked by the digits 1,2, 3, 4,5, 6, or by dots,
then the sample space of this random experiment is S = {1,2,..., 6}. However, if a die
is marked by {1, 2, 3, 4, 5, 5}, then the sample space of the experiment is S = {1,2, 3, 4,5}.

As another example, we consider a lottery with prize levels $1, $5, $100, and
$10 000. The drawing is a random experiment and if we have only one ticket, the
sample space consists of five points, S = {$0, $1, $5, $100, $10 000}. However, in some
cases we may only be interested in the very fact of winning (W) or losing (L) the game
and can choose another sample space S; = {W, L}. Depending on the issue we are in-
terested in, there are also other possible choices for the sample space in this problem.

To correctly solve a problem in the probability theory, we must explicitly specify the
sample space of the problem, otherwise different people can read the same words in
different ways and arrive at different conclusions. Hereafter we consider only random
experiments with finite sample spaces.

Problem 1.6.1. Define the sample space in the last example if
(1) You have two tickets.
(2) You have one ticket that costs $1 and are interested in the net income.

In many problems it is necessary to consider composite events, consisting of
simple ones, and combine simple sample spaces in more complex spaces. For ex-
ample, if we toss two distinguishable coins, the sample space consists of ordered
pairs of the symbols H and T; by the product rule, the new sample space con-
tains 4 points, namely, S = {(H,H),(H,T),(T,H),(T, T)}. If we roll simultaneously
3 different dice, then the sample space consists of 6> = 216 ordered triples, S =
{(1,1,1),(1,1,2),...,(6,6,6)}.

Up to this point we have discussed only sample spaces. The probability theory
originates when a certain specific number p(s), called the probability of the out-
come s,’ is assigned to each point s of the sample space S. The set of these values
is called a probability distribution on the sample space S, because we distribute a
certain given “supply” of probability among the points of S. These values cannot be

9 One can often hear in everyday talk, “It’s probable” or “That’s unlikely.” Based on such an individ-
ual judgment, some people play lotteries while the others do not, because the latter do not believe
that there are reasonable chances to win. Any discussion of such subjective probabilities is beyond
the scope of this book.



1.6 Probability theory on finite sets = 73

assigned arbitrarily, they must satisfy certain assumptions, axioms of the probability
theory; for more on that see, for example, [18]. We consider the following system of
axioms.

(PA1) p(s) = O for any point s € S,

(PA2) if E = {s;,S5,...,S,} € S, then p(E) = p(s;) + p(Sy) + -+ - + p(Sy),

(PA3) p(S) =1.

Therefore, we have assumed that probability values are nonnegative, the probability
of any event E is the sum of the probabilities of elementary events composing E, and
the total probability is 1. These axioms immediately imply that, if E,,..., E; are any
pairwise disjoint events, that is, E;,...,E, ¢ Sand E; N E; = 0,1 < i,j < k, then p(E; U
---UEy) = p(Ey) +--- + p(E}), that is, the probability is finitely additive. Moreover, for
any event E we have p(E) = p(EU®) = p(E) + p(0), thus, p(#) = 0, the empty event must
have zero probability.

In some cases we can conduct a random experiment in reality, for instance, we
can toss a coin many times and record the numbers of heads, n(H), and tails, n(T),
occurred. If the experiment was repeated n times and the favorable outcomes to an
event E were observed k(E) times among the n outcomes, then the frequency ratio
f(E) = ’@ is called the experimental or frequency probability of the event E. Clearly,
the frequency f (E) depends, among other things, on the length n of the experiment. If
with nincreasing, f(E) is stabilizing to a number p(E), we can use f (E) as an estimation
of the probability p(E) of the event E, but this is only a plausible approximation. For
example, there is nothing unusual to get two heads in a row, thus in this series n = 2,
p(H) = 1/1 = 1, and p(T) = 0. However, if we use this very short series to estimate
the probability of getting a tail, we have p(T) = f(T)/2 = 0, which obviously makes
no sense. More advanced courses in the probability theory treat in more detail this
issue—what is the appropriate length of an experiment.

Any collection of numbers, satisfying axioms (PA1)-(PA3), can be used as a prob-
ability distribution. For example, experimenting with a coin and choosing the sample
space S = {H, T}, we can assign p(H) = 1/3 and p(T) = 2/3. However, unless we have
a specifically tailored (very biased) coin, the results of our physical experiments will
likely be essentially different from the results predicted by the mathematical model.
Thus, to assign a probability distribution, we use either some previous experience (the
results of real experiments) or a theory, if it exists.

Probably, it is physically impossible to make a perfect coin, however, real experi-
ments have confirmed that, if a coin was chosen at random, then as the first approxi-
mation it is quite realistic to assign the probabilities p(H) = p(T) = 1/2. On the other
hand, the same experiments show that no real coin satisfies this probability distribu-
tion precisely, but exhibits slight deviations from the theoretical probability 1/2. Never-
theless, it is customary in theoretical studies to accept the hypothesis of equally likely
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probabilities or equal chances,'© that is, to assign equal probabilities to each point of
the sample space.

Definition 1.6.2. Itis said that the assumption of equally likely probabilities is valid for
a given problem with the sample space S = {s;,5,, ..., s,} if the probability distribution
on S is given by

p(s)) = p(sy) =+ =p(sy) = %

Whether or not this assumption holds true in any particular case, should be ver-
ified by comparing our calculations with experiments. The following well-known ex-
ample is illuminative. Our intuition might tell us that the number of girls born must on
average be the same as the number of boys, and many computations using the equal
probabilities 1/2 as the first approximation, give good results. However, many-year ob-
servations have shown that in reality the probability for a new-born baby to be a boy
is slightly bigger, namely 0.51, versus 0.49"! for a girl.

From now on we always suppose the hypothesis of equally likely probabilities to be
valid, unless the opposite is explicitly stated.

The goal of this section is to show applications of the developed combinatorial
methods and results to the probability theory. First we translate a few basic set-theory
notions to probabilistic language. Recall that an event is just a subset of the basic (uni-
versal) set, the latter is called here the sample space. All the events under considera-
tion are subsets of some fixed sample space S. Therefore, we can define the following
operations with events through their set-theory counterparts.

Definition 1.6.3.

(1) TheeventE =S\ E is called complementary to an event E.

(2) Two events are called disjoint or mutually exclusive if their set-theory intersection
is empty, that is, if they have no common favorable outcomes. Thus, if E; and E,
are disjoint events, then p(E; N E,) = 0, and by (PA2) p(E; UE,) = p(E;) + p(E;).

(3) Asystem of events {E;,..., E;} is called exhaustive if Ufle E; =S.

Example 1.6.1. Let us toss a coin and choose the sample space {H, T}. Then the events
“To get an H” and “To get a T” are disjoint, mutually complementary, and together
exhaust the sample space. The events “To get an odd number” and “To get a number
less than 3” in one rolling of a die are not mutually exclusive. The complementary
event to “To get a number less than 3” is “To get a number greater than or equal to 3”.
Any event and its complement make up an exhaustive system.

10 The terms probability or chance should not be confused with the term odds. The expression “odds
in favor of an event E” means the ratio %, while “odds against an event E” means the reciprocal ratio

p(E)

p(E)’
11 There are data indicating that this gap maybe is shrinking.
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The following properties are immediate consequences of the definitions, axioms
(PA1)-(PA3), and the results of Section 1.1. It is critical that any probability distribution
is finitely additive.

Theorem 1.6.1.
(1) For any eventE,

p(E) =1-p(E). (1.6.1)
(2) For any events E; and E,,
p(E; UE,) = p(E;) + p(E;) - p(E; N Ey). (1.6.2)

In particular, if E; and E, are disjoint, that is, E; N E, = 0, then p(E; N E,) = 0, and
p(E; UE,) = p(E;) + p(E)).

Problem 1.6.2. Two fair right tetrahedrons, a green one and a blue one, with faces
marked 1 through 4, were tossed. We record the numbers on the faces they landed.
(1) What is the probability that the sum of these numbers is 7?

(2) Whatis the probability that the sum of these numbers is greater than or equal to 7?
(3) What is the probability that the sum of these numbers is greater than 7?

Solution. In this and similar problems “fair” means that we accept the hypothesis of
equally likely outcomes. Since the tetrahedrons are different, the sample space con-
sists of 4 x 4 = 16 ordered pairs, S = {(1.1),(1,2),..., (4, 4)}, where the pairs (1,2) and
(2,1) are different. Hence, the probability of any outcome is 1/16. The sum of 7 can oc-
cur as either 3 + 4 or 4 + 3, and these outcomes are disjoint, since at the same throwing
of a tetrahedron we cannot observe both a 3 and a 4. Hence, the answer to part (1) is
% + % =2X % = %.

(2) Since the largest possible outcome in this part is a 4, the sum of 7 or more
means either 7 or 8, therefore, comparing with Part (1) of the problem, there is one
more favorable outcome, the pair (4, 4), which is also disjoint with the preceding ones,
and the answer to part (2) is 3 x % = %.

In part (3), the only favorable outcome is the pair (4,4), thus the answer is
p((4,4)) = 1/16. The events in parts (1) and (3) are disjoint and their union is the
event in part (2), that is why the answer in part (2) is the sum of those in parts (1) and

3). O

Problem 1.6.3. This weekend Kathy either goes to the movies, with the probability of

this event 0.7, or to the restaurant with the probability 0.5.

(1) Given this information, is it possible to conclude that these two events are mutu-
ally exclusive?

(2) What is the smallest and the largest possible probability that this weekend Kathy
will have both these pleasures?
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(3) How can we change the problem to be able to determine precisely the probability
that this weekend Kathy gets at least one of these pleasures? Both these pleasures?

Problem 1.6.4. Two dice are rolled simultaneously. What is the probability to get at
least one number greater than 4?

Consider again Problem 1.4.18, where we found the number of n-arrangements
with repetition from the set A = {0, 1}, containing an even number of Os, but now we
state the question in probabilistic terms.

Problem 1.6.5. Given all 2" n-arrangements with repetition from the set A = {0, 1}, we
choose at random one of them, assuming that every arrangement has equal chances
to occur. What is the probability to pick an arrangement containing an even number
of 0s?

Solution. The sample space consists of 2" arrangements. According to the solution of
Problem 1.4.18, 2! of them (exactly half of the sample space), are favorable outcomes
for our problem. Therefore, the probability we sought, is p = 2"71/2" = 1/2. O

Analyzing the solution, we observe an important feature of all similar problems:
To solve a probabilistic problem with the finite sample space, we have to solve two
enumerative combinatorial problems.

Problem 1.6.6. All permutations of the letters of word MISSISSIPPI are written on
balls, and one of these balls is chosen at random. What is the probability that we pick
up the ball with the word MISSISSIPPI?

Solution. The sample space consists of all permutations with repetition of the letters
of word MISSISSIPPI and by Theorem 1.5.1 contains C(11; 1, 4, 4, 2) elements. Among
them there is only one favorable outcome, thus, the probability is 1/C(11;1, 4, 4,2) =

H22 < 0.000029. O

Problem 1.6.7. Among all permutations with repetition of the letters of word DAD, one
is chosen at random. What is the probability to find the chosen combination of letters
in an English dictionary?

Solution. The sample space consists of 3!/2! = 3 permutations with repetition,
ADD, DAD, DDA, but only the first two strings are meaningful English words, that
is, are favorable outcomes in our problem. Therefore, the probability we sought, is
p=2/3 O

Any probability distribution on a sample space S puts a number p(s),0 < p(s) <1,
into a correspondence to a point s of the sample space, therefore, this distribution
constitutes a function f : S — R. Since the domain of this function consists of the
outcomes of a random experiment, the values of the function are also random. Such
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functions are called random variables. An initial probability distribution is also a ran-
dom variable. In many problems it may be advantageous to change the values of a
given probability distribution, as long as we preserve axioms (PA1)—(PA3).

Definition 1.6.4. Given a random experiment with a sample space S, any real-valued
function

f:S—>R

with the domain S is called a random variable or a random function whenever it satis-
fies the three properties similar to the probabilistic axioms (PA1)-(PA3):

(RA1) f(s) = 0 for any point s € S.

(RA2) IfE = {s1,S5,...,5¢} € S, then f(E) = f(s1) + f(S5) + -+ + f(Sp)-

(RA3) f(S) =1.

In particular, any probability distribution is a random function.

Problem 1.6.8. Consider a sample space S = {1,2,...,n}, where n is a given natural
number. Let f be a linear function, f(s) = cs, ¢ being a real constant. Find the coeffi-
cient ¢ so that the function f is a random variable on S.

Solution. We must verify the properties (RA1)—(RA3); (RA1) is clear if ¢ > 0, (RA2) is a
rule of computing f(E) through the values f(s), Vs € S, and we only have to compute
the normalization constant ¢ by making use of (RA3). We have

nn+1)

1=fS)=fO+---+f(n)=c-1+c-2+---+c-n=c 3

by Problem 1.1.6, thus, for f to be a random variable, we must have ¢ = O

_2
n(n+1)*

The equation p(E; UE,) = p(E;) + p(E,) tells us that two events are mutually exclu-
sive. Another important mutual characteristic of a pair of events E, E, is their (stochas-
tic) dependence or independence. It turns out that this property is connected with the
equation p(E; N E,) = p(E;) - p(E,), which is not always valid. Intuitively,

Two events are independent,
if the occurrence or non-occurrence of either of them (1.6.3)
does not affect the probability of the occurrence of the other event.

To define the dependence/independence in more precise analytic terms, it is con-
venient to connect it with another important concept, namely, with the conditional
probability of an event. First, we again model this notion by using an example.

Example 1.6.2. Based on many-year statistic, the probability for a freshman to gradu-
ate in four years from The Liberal College is 0.85, while for the freshman majoring in
sciences this probability is only 0.70. The sample space in this problem consists of all
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students ever graduated from the college. In the problem we have two probabilities—
for all students the probability is 0.85 while for the science majors it is 0.70. The second
number is different from the first one, because in computing it we have used some ad-
ditional information on the students’ majors, actually we reduced the sample space by
removing all non-science majors. Since the second probability was computed under
an extra condition, it is called the conditional probability.

To arrive at a definition, we sketch a computation of the conditional probability
of an event E, given another event (a condition) C, in terms of favorable outcomes.
Computing the probability p(E), we have to take into account all outcomes favorable
to E and relate them to the whole sample space S. However, when computing the con-
ditional probability we certainly know that the event C has occurred, thus, now we
consider only those favorable outcomes of E, which are favorable to C as well. More-
over, we must relate them not to the entire original sample space S, but only to the
subset of outcomes favorable to C, hence, we must reduce the original sample space.
If we express all these quantities in terms of the size |S| of the sample space and of the
probabilities p(C) and p(E n C), we derive formula (1.6.4). It is convenient to reverse
this reasoning and use (1.6.4) as a definition of the conditional probability.

Definition 1.6.5. Consider a random experiment with the sample space S, a generic
event E, and a specified event (condition) C, such that p(C) > 0. The conditional prob-
ability p(E|C) of an event E given the event C, is defined by
pENC)

p(C)

It is often convenient to rewrite this formula as

p(EIC) = (1.6.4)

P(EIC)P(C) = p(ENC).

Problem 1.6.9. What is the probability to get a 3 in one roll of a die given that the
outcome is odd?

Solution. Introduce the event E5 = {x = 3} and the condition C = {xis odd }; we know
that p(E3) = 1/6 and p(C) = 1/2. The intersection of these events is E; n C = Ej3, thus,
P(E5NC) = 1/6. By (1.6.4), the conditional probability is p(E5|C) = (1/6)/(3/6) =1/3. O

Problem 1.6.10. What is the probability to get a 2 in one roll of a die given that the
outcome is odd?

Solution. 1t is clear without computations that, if the outcome is odd, it cannot be 2,
but let us formally compute the result. Let E, = {x = 2} and C = {x is odd }, p(C) = 1/2.
The intersection of the two events is empty, E,NC = {2}n{1,3,5,} = @, thus, p(E,NC) = 0
and the conditional probability is p(E,|C) = 0/(1/2) = 0. O

Now we can define the independence of two events in terms of conditional prob-
ability.
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Definition 1.6.6. Two events E and C are called (stochastically) independent if
P(EIC) = p(E), (1.6.5)

otherwise the events are called dependent.

Comparing (1.6.4) with (1.6.5), we see that two events are independent if

P(EnC) = p(E)p(C), (1.6.6)

thus, equation (1.6.6) formalizes our “intuitive” definition (1.6.3). It is worth noting
that the independence is a symmetric property, which is obvious from (1.6.6), but not
from (1.6.3).

Problem 1.6.11. A card is drawn at random from a regular deck containing 52 cards.
Are the events A—“To pick an Ace” and C—“To pick a club” dependent or indepen-
dent?

Solution. The deck contains 4 Aces, so that p(A) = 4/52 = 1/13. Calculate the con-
ditional probability p(A|C). Obviously, p(A n C) = 1/52 and p(C) = 13/52, therefore
p(A|C) = pﬁg)c) = 1/13. Since p(A|C) = p(A), we conclude that these events are inde-
pendent. O

Problem 1.6.12. To win the jackpot in the New York Lottery Mega Millions game, one
must guess correctly 5 numbers among 1,...,56 and one more number from 1,..., 46.
What is the probability to win the jackpot if you have one ticket?

Solution. Since the order is notimportant, there are C(56, 5) = 3 819 816 ways to choose
five numbers and C(46,1) = 46 ways to select the Mega Ball number. Since the last
choice is independent from the first five numbers (Why?), there are C(56,5) - C(46,1) =
175 711 536 different tickets, and this is the cardinality of the sample space. Therefore,
the probability we look for, is 1/175711536 ~ 5.69 x 107°. O

Thus, if we have enough funds and time to buy 175 711 536 $1-tickets, we definitely
get the jackpot. Considering the appropriate taxes, not to mention a slight possibility
that someone else has a winning ticket, we can estimate how large the jackpot is to be
to pay off such an expense.

If we occasionally buy a lottery ticket, we cannot predict the future—the chances
are slim, but who knows... Sometimes people win the jackpot. However, if we play
any game of chance systematically, we may want to estimate our chances in the long
run. The mathematical instrument for such estimations is called the mathematical
expectation or the expected value of a random variable.

Definition 1.6.7. Consider a probability distribution p(s) on the sample space S and a
random function f(s), s € S. The mathematical expectation or the expected value of the
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random variable f is the sum

E(f) = ) p(s)f(s). (1.6.7)

seS

Problem 1.6.13. Find the expected value of the net gain in the preceding problem if
the jackpot was $10 000 000.

Solution. The sample space has only two points, s; = W with the probability p(s;) =
1/175711536 and s, = L with p(s,) = 1 -1/175711536. Corresponding gains are f(s;) =
$10000000 — $1 and f(s,) = —$1. Therefore,

E(f) =$9999999 - 1/175711536 — $1- (1 - 1/175711536) =~ —-$0.94,

and in the long run we should expect to lose about 94 cents from each dollar spent. [

Problem 1.6.14. Find the expected value of the net gain in the preceding problem if
the jackpot was $100 000 000.

Problem 1.6.13 gives an example of a binomial distribution, that is, a random ex-
periment with exactly two outcomes, usually called a success and a failure, whose
probabilities do not change in time. We follow the tradition and denote the probabil-
ity of success by p = p(success) and the probability of failure by g = p(failure), thus,
0 < p,q < landp +q = 1. If we repeat a binomial experiment n times, assuming all
the outcomes being independent (such series is called Bernoulli’s & trials), then a
typical problem is to compute the probability of getting r successes in these n trials.
Since there are C(n,r) ways to select r “successful” trials among n, the probability of
getting r successes is, by the product rule,

p(r,n)=C(n,np'q"". (1.6.8)

We used (1.6.8) in the solution of Problem 1.6.13 withn = 1,r = 1,p = 1/175711536 and
qg=1-1/175711536.

Consider again the definition of the conditional probability (1.6.4). Since the op-
eration of intersection of two sets is commutative, it implies the following property

P(EIC)p(C) = p(CIE)p(E). (1.6.9)

Thus, we can express the conditional probability of two events through their condi-
tional probability in reversed order, that is, as

P(EIC)p(C)

CIE) =
p(CIE) ()

if p(E) > 0. This property can easily be extended to the case of several conditions.
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Theorem 1.6.2. Let events C;,C,, ..., C, make a partition of the sample space S, that
is, all C; are non-empty, pairwise disjoint, and exhaust the sample space S. Then the
following equation, called Bayes’s & formula, is valid for any event E with p(E) > 0 and
anyj,1<j<k,

P(EIC)P(C))

== (1.6.10)
Zj:] P(EIC)p(C;)

P(GIE)

Proof. By Problem 1.1.12, we have
E=EnS=En (U]’-‘:lcj) = u}’-‘zl(E nG).

The intersections ENC;, 1 < j < k, are also mutually exclusive, thus p(E) = Z}‘:l p(ENG)).
Combining the latter with the formula for the conditional probability p(G|E) = p(E n
C;)/p(E), we deduce (1.6.10). O

Problem 1.6.15. Let us note that all p(C;) # 0, since we have assumed C; # 0. Is it
possible that the denominator in (1.6.10) is zero?

Problem 1.6.16. A die was randomly selected among a set, containing 999 999 regu-
lar dice and one die with all faces marked by 1, and was rolled 10 times. What is the
probability that the fake die was chosen, given that a 1 was observed in all 10 trials?

Solution. Consider three events,

C = {Observe a 1in 10 consecutive trials},
D = {Choose a fair die}, thusp(D)=1- 10°°,
F = {Choose a fake die}, thus p(F) = 107°.

By Bayes’s formula,

p(C|IF)p(F)
p(CID)p(D) + p(C|F)p(F)
~ 1x10°° -
T (1/6)9x(1-107%) +1x 1076

p(FIC) =

0.94.

The resultis so close to 1 that it may look counterintuitive, and it is useful to compare it
with the negligible probability to observe 10 consecutive 1s in rolling a fair die, which
is (1/6)1° ~ 1.65-1078. Compare it also with the result of Exercise 1.6.35. O

Now we consider a classical birthday problem.

Problem 1.6.17. What is the probability that among s members of the Combi Club at
least two have the same birthday?
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Solution. To simplify computations, we consider a non-leap year with 365 days and
assume that for any day of the year the probability that someone was born this day, is
the same; thus, this probability is 1/365. Moreover, as we always do in problems involv-
ing people, we suppose that the birthdays of all the people involved are independent,
in particular, any day of a year has equal probability to be someone’s birthday.

It is easier in this problem to compute the probability of the complementary
event, that is, the probability that no two members have the same birthday. First of
all we notice that for any member there are 365 options to fix the birthday, hence the
sample space contains 365° points. To find the number of favorable outcomes, we
choose s days from 365 for s birthdays—this can be done in C(365, s) ways. However,
when we distribute members’ birthdays among these s days, we can permute them
in s! ways, generating different favorable outcomes. Hence, there are s!C(365,s) =
P(365, s) favorable outcomes, so that the probability of the complementary event is
P(365,5)/365°, and the probability that at least two members have the same birthday
is 1- P(365, s)/365°. We see that, if s > 366, then this probability is 1, which is obvious.
An easy numerical experiment shows that this probability is increasing and becomes
bigger than 1/2 for s = 23. O

Remark 1.6.1. It is instructive to rephrase this problem in terms of placing balls in
urns; see Exercise 1.5.24.

Exercises 1.6.

Exercise 1.6.1. Describe the sample space if we simultaneously toss two indistinguish-
able coins, that is, the outcomes (H, T) and (T, H) must be identified. What is the sam-
ple space if we roll simultaneously 3 identical dice?

Exercise 1.6.2. Describe the sample space if we simultaneously flip a coin and roll a
die.

Exercise 1.6.3. Describe the sample space if we flip a coin six times. What is the prob-
ability that at least one head and at least two tails will appear in the six tosses? What
is the probability that a streak of at least four consecutive tails will appear in the six
tosses?

Exercise 1.6.4. Simultaneously toss a coin and roll a die. What is the probability to
get a head and a multiple of 3?

Exercise 1.6.5. Simultaneously roll a die and draw a card from a standard desk of 52
cards. What is the probability to get an even number and a red face card?

Exercise 1.6.6. A lottery ticket contains six boxes—two for letters followed by four for
digits. If there is only one winning ticket, what is the probability to win the lottery?

Exercise 1.6.7. A 9-digit natural number is chosen at random. What is the probability
that all its digits are different?
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Exercise 1.6.8. A woman can give birth to a girl, a boy, two girls, a girl and a boy, two
boys, etc. Consider this as a random experiment with outcomes to be the number of
children and the gender composition of the children born. Describe the sample space
if the order at birth is important, that is, we consider the pairs “boy-girl” and “girl-boy”
as different. What is the sample space if the order does not count?

Exercise 1.6.9. Assuming that a new-born baby has equal chances to be a girl or a boy,
what are the probabilities to have no boy, one boy, two boys, three boys, ..., n boys in
a family with n children? Compare with problems 1.4.9.

Exercise 1.6.10. A die is rolled once. Find the complementary event to the following
combined events.

(1) “To get an odd number AND To get a number less than 3”.

(2) “To get an odd number OR To get a number less than 3”.

Exercise 1.6.11. Let E be any event, E its complement, and p = p(E). What are the
events ENE, EUE, EnE, EUE, and what are their probabilities, in terms of p?

Exercise 1.6.12. 7 people get in an elevator on the first floor of an 11-story building.
What is the probability that no two of them get out of the elevator at the same floor?

Exercise 1.6.13. A 5 x 5 x 10 wooden parallelepiped with red sides cut into 250 unit
cubes. What is the probability that a randomly chosen unit cube has no red face? One
red face? Two red faces? Three red faces? Four or more red faces?

Exercise 1.6.14. A die has 4 blue and 2 red faces. What is the probability that the two
red faces have a common edge? What is the probability that the two blue faces have a
common edge?

Exercise 1.6.15. Six faces of a regular die are marked by letters A, B, A, C, U, S. Find
the probability that on six rolls of the die, the letters shown can be rearranged to spell
“ABACUS”.

Exercise 1.6.16. There are d dolphins in the ocean. d; of them were caught, marked,
and released back. Next time, d, dolphins were caught and checked. Assuming in-
dependence, compute the probability that m marked species were caught the second
time.

Exercise 1.6.17. A gentleman has 10 dress shirts and 10 ties, one matching tie to every
shirt. Preparing for a long meeting, he selects at random 2 shirts and 2 ties. What is
the probability that he gets exactly one matching pair of a shirt and a tie? At least one
matching pair? Two matching pairs? If he selects at random 5 shirts and 5 ties, what
is the probability to have exactly 2 matching pairs?

Exercise 1.6.18. What is the probability to get (at least) two consecutive tails if a fair
coin is tossed 12 times?
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Exercise 1.6.19. What is the probability that in a random permutation of numbers
1,2,3,...,1000 at least one number occupies its own place (for example, the 5 is the
5th number in the permutation)?

Exercise 1.6.20. Among the whole numbers, some can be written down without the
digit 1, like 527, while the others contain a 1, like 21 345. If you randomly pick a whole
number from 0 through 999 999 inclusive, what is more probable, to pick a number
with or without a 1 in its decimal representation? Does the probability change if we
consider numbers from 1 to 999, or from 1 through 999 999 9997

Exercise 1.6.21. The U.S. Senate consists of 100 Senators, two from each state. If 10
senators are chosen at random, what is the probability that this cohort contains a sen-
ator from New York State?

Exercise 1.6.22. An urn contains 3 black, 3 white, and 3 yellow balls. n balls are taken
at random without replacement. For each n,n = 1,2,...,9, find the probability that
among the n selected balls there are balls of all three colors?

Exercise 1.6.23. An urn contains 8 balls with the letters of the word STALLION. If 4
balls are chosen at random without replacement, what is the probability that either
the word TOLL or the word LION can be composed of these balls?

Exercise 1.6.24. Two fair right indistinguishable tetrahedrons, with faces marked 1
through 4, are tossed.

(1) What is the probability that the sum of the numbers on the bottom faces is 7?

(2) What is the probability that the sum of these numbers is greater than or equal to 7?

Exercise 1.6.25. Let m and n be natural numbers. Consider four points 0(0,0),
A(m,0), B(m,n), and C(0,n) in the coordinate plane, and choose a random rectan-
gle R with sides parallel to the coordinate axes and with vertices at points with integer
coordinates inside or at the boundary of the rectangle OABC. What is the probability
that R is a square?

Exercise 1.6.26. Let S = {1,2,...,n}, where n can be any natural number, and f(s) =
cs, c is constant. Find c so that f is a random variable on S.

Exercise 1.6.27. Let S = {1,2,...,n}, where n can be any natural number, and f(s) =
c/s, c is constant. Find c so that f is a random variable on S.

Exercise 1.6.28. Let S = {1,2,3,.. .}, that is, in this problem the sample space is infi-
nite, and f(s) = ¢/s?, c is constant. Find c so that f is a random variable on S.

Exercise 1.6.29. What is the probability to get at least one 3 in a roll of two dice if the
sum is odd?
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Exercise 1.6.30. Two hunters simultaneously shoot a wolf. Under the given condi-
tions, the probability to kill the animal for each of them is 1/3. What is the probability
for the wolf to survive?

Exercise 1.6.31. Six cards are drawn at random from a regular deck of 52 cards. What
is the probability that

(1) The Queen of spades was chosen among these 6 cards?

(2) All 4 suits will appear among these 6 cards?

Exercise 1.6.32. Several cards are drawn at random from a regular deck of 52 cards.
We want to guarantee with the probability more than 1/2 that at least 2 cards of the
same kind appear among the cards chosen. What is the smallest number of cards that
must be drawn for that?

Exercise 1.6.33. If p(A) = 0.55, p(B) = 0.75, and the events A and B are independent,
what are the conditional probabilities p(A|B) and p(B|A)?

Exercise 1.6.34. In a certain population, 30 % of men and 35 % of women have a col-
lege degree; it is also known that 52 % of the population are women. If a person chosen
atrandom in this population has a college degree, what is the probability that the per-
son is a woman?

Exercise 1.6.35. The Student Government at The Game College sold 250 lottery tickets
worth $1 each. There are one $100 prize, one $50, and three $10 prizes. If a student
bought 2 tickets, what is the expected value of her net gain?

Exercise 1.6.36. Among 10 000 coins all but one are fair, and one has tails on both
sides. A randomly chosen coin was thrown 12 times.

(1) Whatis the probability that this coin was false, if a tail was observed in all 12 trials?
(2) What is the probability that this coin was fair, if a tail was observed in all 12 trials?

Exercise 1.6.37. Every juror makes a right decision with the probability p. In a jury
of three people two jurors follow their instincts, but the third juror flips a fair coin,
and then the verdict follows the majority of jurors. What is the probability that the
jury makes the right decision? Does this probability change if the jury consists of four
jurors, and only one among them flips a coin?

Exercise 1.6.38. Assuming independence, what is the probability that at least two of
the first 43 Presidents of the USA have the same birthday?

Exercise 1.6.39. We roll a fair die 6 times. If a 1 occurs first, or if a 2 occurs second, or
if a 3 occurs third, ..., or if a 6 occurs sixth, we get $1. What is the expected value of
our gain?

Remark 1.6.2. This result illustrates an important theorem that the expected value of
the finite sum of random variables is equal to the sum of their expected values.
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Exercise 1.6.40. The President of the Combi Club introduced the following game. A
participant pays $1 and selects at random an integer number between 1 and 1000 000
inclusive. If the decimal representation of the number contains a 1, the participant
gets $2, otherwise the participant loses the game. What is the expected value of the
game?

Exercise 1.6.41. State the inclusion—exclusion formula (1.1.4) in probabilistic terms of
this section.

Exercise 1.6.42. At four class tests, a student scored 76, 81, 89, and 92. At the fifth test,
she can equally likely get scores from 75 through 95 inclusive. What is the probability
that her average will be 85? At least 85? What is the probability that her average will
be 85 if her fifth score is 85?

Exercise 1.6.43. Ina class of 20 students, each two have a common grandfather. Prove
that among them at least 14 students have the same grandfather.

Exercise 1.6.44. The spring in an old-fashioned watch breaks at a random moment.
What is the probability that the hour hand will show time after 2 A. M. but before
4A.M?

Exercise 1.6.45. The Combi Club has a round roulette table with a rotating pointer.
The table is divided in three sectors, one half-circle marked by the digit 3, and two
quarter-circles marked by 1 and by 2, respectively. You pay $1 to make a single spin
and get back the reward in $ equal to the number in the sector the pointer stops. Using
negative numbers for a loss, find a probability distribution for the net gain if the game
was played once. What is the average (expected) gain for each play? What would be
the fair price of the game? Solve this problem if you pay $2 for a spin; $1.50 for a spin.
Explore the similar problem if the table is divided in 6 equal sectors marked by the
digits 1,2,3, 4,5, 6.

Exercise 1.6.46. A multiple-choice exam consists of 20 questions, with 4 possible an-
swers for every question. If a student randomly guesses the answer to each question,
find the probabilities that she gets zero, one, two, three, four, ..., 20 correct answers.
What is the expected number of questions guessed correct? Solve the same problem if
each question has 5 possible answers.

Exercise 1.6.47. Assuming that any day has equal chances to be the birthday of a per-
son chosen at random from a very big population, find the probability that two ran-
domly selected people both have birthdays on Sunday; find the probability that at
least one of two randomly selected people will have a birthday on Sunday; find the
probability that two randomly selected people have birthdays on the same day of a
week.

Exercise 1.6.48. Each member of the Combi Club is required to take a course in Combi-
natorial Analysis (course C) and in Probability Theory (course P). The Registrar Office
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reports that 80 % pass course C, 75 % pass course P, and 90 % pass at least one of the
courses. Find the probability of passing both courses. What is the probability that a
person who passes course C will also pass course P? Are passing course C and passing
course P independent events?






2 Basic graph theory

Graphs and, in particular, trees are graphical mathematical models useful in many
problems. This chapter is devoted to a brief introduction to graph theory. The first two
sections introduce the vocabulary. Graphs are defined in terms of sets and mappings
in the spirit of Section 1.1, but we shall soon resort to more intuitive and transparent
language of geometric diagrams. In the next three sections we study important spe-
cial classes of graphs—trees, planar graphs, Eulerian graphs—and use the methods
and results of Chapter 1 to solve some problems of graphical enumeration. More such
problems are considered in Chapters 4 and 5. Our exposition was strongly influenced
by Wilson’s beautiful book [58]. For a deeper study of the subject we recommend the
course of B. Bollobas [9]; we mostly follow the latter in terminology.

2.1 Vocabulary

In this section we create the basic vocabulary of the graph theory and consider elemen-
tary properties of graphs. Recall that 2;/ denotes the set of all two-element subsets of
asetV.

Coffee-time browsing
—  http://graphjam.com/ (Drawing graphs)
- www.edu.pe.ca/kish/Grassroots/math/euclid.htm (Euclid’s biography)

Definition 2.1.1. A graph G is a triple G = (V,E.f), where V' # 0 is a non-empty set,
whose elements are called vertices of the graph G, E is a set, maybe empty, whose
elements are called edges of G, and the mapping

fE-2JuV

is called the incidence function of the graph. We write here 2Y U V instead of 2Y u 2
to simplify notations. If E = @, all vertices are said to be isolated; in this case f is the
empty mapping. The number of vertices p = |V| is called the order of the graph G and
the number of edges q = |E| is called the size of G.

Thus, for any edge e € E, its image f(e) contains either one vertex v if f(e) c V,
or two vertices v;,v, if f(e) = {vy,v,} C 2;/ ; these vertices are called the end vertices
of the edge e. If a vertex v is an end vertex of an edge e, the vertex and the edge are
called incident to one another. If two edges e and e; have the same pair of end vertices,
fle) =fle) = vi, v}, these edges are called parallel or multiple. If f(e) € V, that is,
the edge e has the only end vertex, e is called a loop. Vertices having only one incident
edge, which is not a loop, are called pendants or leaves.

https://doi.org/10.1515/9783110751185-002
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Example 2.1.1. Consider a graph G = (V,E.f) (Fig.2.1), where V = {v;,...,v5}, E =
{er,...,eq}, and

fle) ={vi,va},  fley) = f(es) = {vy,v3},

f(eq) ={vy, w4}, f(es) = {V3)V4}> f(e6) = Vg (2.1.1)
v € V)
e e; ey oVs
vy es Yy €s

Figure 2.1: Diagram g represents the graph G in Example 2.1.1.

This graph has no pendant vertex, the edges e, and e; are parallel, the edge e is a
loop, the vertex vs is isolated.

We often suppress the symbol f and denote graphs by G = (V, E). In this text we
mostly consider undirected graphs, which means that the two end vertices of an edge
are not ordered. Moreover, we deal only with finite graphs, always assuming |V| < co
and |E| < oco.

We consider graphs with parallel (multiple) edges, called sometimes multigraphs,
and/or with loops, called pseudographs. Some authors use the term “graph” only for
the so-called simple graphs, that is, for graphs without parallel edges and loops. Here-
after, we call a graph G simple if G has no parallel edges nor loops. To define simple
graphs in set-theory terms, it suffices to consider the set of edges E as a subset of 2;/ .

It is useful to visualize abstract concepts. All the more this is true in the case of
graphs. We call the graphs in the sense of Definition 2.1.1 abstract graphs and repre-
sent them by drawing geometric graphs or diagrams. These are sets of points in the
plane (one can even imagine points in R") representing the vertices of a graph, some
of them connected by smooth arcs, maybe line segments, representing the edges of the
graph. For each edge only its end points belong to V, in other words, no interior point
of any edge belongs to V. It should be noted that an actual shape of an edge makes no
difference in our considerations. For any such a diagram, we can always easily restore
the incidence function of the graph presented. Such diagrams are called embeddings
of a graph into the Euclidean plane R?. For example, Fig. 2.1 depicts diagram g corre-
sponding to graph G defined by (2.1.1).
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Definition 2.1.2. A directed graph (digraph) G is a triple G = (V,E, f), where V and E
have the same meaning as above and the incidence function is now the mapping

fE->VxV.

Iff(e) = (v;,v,) for an edge e € E, then v, is called the initial vertex of e and v, the
end vertex of e.

Let a digraph G have vertices v; and v, and edges e, and e,, such that f(e;) =
(v1,v,) and f(e;) = (v, v;). Since the ordered pairs (v;,v,) # (v,,V;), this implies that
the oriented edges e; # e,.

Example 2.1.2. Consider a digraph G = (V,E, f) shown in Fig.2.2, where V = {v,,...,
vsh, E={ey,...,e5}, and

f(e1) = (v, v2), f(ez) = (v3,v1), f(e3) = (v, v3),

f(e4) = (v, Vy)s f(es) = (V3,V4).

e, * v

v v
V3 €s 4

Figure 2.2: Digraph G.

We slightly abuse the language and do not distinguish an abstract graph and its geo-
metric realization like the graph G in (2.1.1) and the corresponding diagram g in Fig. 2.1.
Usually this does not lead to any misunderstanding. If we need to emphasize this dis-
tinction, we reserve capital letters (G) for graphs and small ones (g) for the correspond-
ing geometric diagrams. The same graph (incidence relation (2.1.1)) can be drawn in
infinitely many other ways; compare, for instance, the diagram g (Fig. 2.1) and the di-
agram g’ (Fig.2.3).

Definition 2.1.3. A graph G = (V, E) is said to be regularly embedded in R" if its edges
have no common points except for the end vertices. A graph is called planar if it can
be regularly embedded in R%.
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€
"l "
€
€6
€3
Ws
€,
W3 L4 W4

Figure 2.3: Diagram g'.

Example 2.1.3. The diagram (graph) g (Fig. 2.1) is regularly embedded in R?, but g’
(Fig.2.3) is not, since the edges €, and ¢4 intersect at a point which is not a vertex of
the graph. However, this graph is planar.

Problem 2.1.1. Draw a regular plane embedding of the graph g’ (Fig. 2.3), that is, its
embedding into R%.

Lemma 2.1.1. Every finite (and even countable) graph can be regularly embedded in R>.

Proof. Indeed, let a graph G be of order p and size g. Consider a line L in R> and a
bundle of g different half-planes bounded by L; any half-plane corresponds to one
and only one edge (Fig. 2.4). Select p different points on L, one for each vertex. If two
vertices v; and v, of the graph are incident to an edge e;, we connect the corresponding
points in L by a half-circle located in the half-plane corresponding to e;. If e, is a loop
at a vertex v3, we draw a circle in the half-plane corresponding to e,, such that this
circle is tangent to L at v5. It is obvious that these g circles and half-circles have no
points in common but maybe their end vertices. O

‘ L
=y

Figure 2.4: Regular embedding of a graph in R>.
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Definition 2.1.4. The degree, deg(v), of a vertex v € V is the total number of edges
incident to this vertex; by definition, every loop must be counted twice.! A vertex of
an even (odd) degree is for short called an even (odd) vertex. If V = {vy,...,v,}, then
the sequence (deg(v;),..., deg(vp)) is called the degree sequence of a graph; unlike the
set {deg(v}),...,deg(v,)}, this sequence depends on the numbering of the vertices.

Example 2.1.4. In diagram g (Fig.2.1), deg(v;) = deg(v3) = 3, deg(v,) = 2, deg(v,) = 4
since v, is incident to edges e,, e; and to the loop ey, and deg(vs) = O since v; is an
isolated vertex. The degree sequence is (3,2, 3,4, 0).

Definition 2.1.5. If any two vertices of a simple graph are adjacent, the graph is called
complete. A complete graph of order p is denoted by K,,.

Problem 2.1.2. What is the degree of any vertex in K,? What is the degree sequence
of K,?
p

Definition 2.1.6. A simple graph G = (V,E) is called bipartite if V = V; U V, with
V,nV, = 0, and each edge connects a vertex in V; with a vertex in V/,. A simple bipartite
graph G = (V; U V,,E) is called complete if each vertex in V; is connected with every
vertex in V,. If |[V}| = mand |V,| = n, the complete bipartite graph is denoted by K, ,

Problem 2.1.3. What are the degrees of vertices of K;,, ,?

Lemma 2.1.2. In any graph of size q,

Z deg(v) = 2q. (2.1.2)
veV

Proof. We again do double counting, computing twice the total number of the end
vertices. First, we just sum up over all the end vertices and second, we take into con-
sideration that each edge has two ends. This reasoning shows, in particular, why it is
often convenient to consider loops as having two ends. O

Lemma 2.1.2 is called the handshaking lemma, because if we depict the partici-
pants of a party by vertices of a graph such that two vertices of the graph are connected
by an edge if and only if the two corresponding people exchanged a handshake, then
the lemma just states that the total number of shaken hands is even.

Corollary 2.1.1. In any graph the number of odd vertices is even.

Proof. Indeed, if we split the left-hand side of (2.1.2) as

> deg(v) = > deg(v) + > deg(v),

veV veV:deg(v) is even veV:deg(v) is odd

1 However, there are problems where it is more convenient to count a loop just once.
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then the first sum on the right is even and the total sum is even, thus the second sum
on the right must be even. But this sum contains only odd addends, so there must be
an even number of such vertices. O

Definition 2.1.1 of abstract graphs is convenient, for it includes graphs with loops
and parallel edges. However, it implies, for example, that graphs G = (V,E,f) and
G, = (Vi,E, f;) with V # V, are different even if |V| = | V|, since the incidence functions
have different domains. Moreover, diagrams g and g’ (Figs. 2.1 and 2.3) have different
appearance, despite the fact that they realize the same incidence relationship among
five points. In many problems it is natural to identify such graphs. To this end the
following definition is useful.

Definition 2.1.7. Two graphs G = (V,E,f) and G, = (Vy, E;,f;) are called isomorphic,
denoted by G = Gy, if there are two one-to-one correspondences,

p:V-U
and

Y:E—>E
compatible with the incidence functions in the sense that

fily(e)) = p(f(e)), VecE.

Example 2.1.5. Diagrams (graphs) g and g’ (Fig. 2.1 and 2.3) are isomorphic to one an-
other; the one-to-one correspondences between them can be established as follows:

o(v)) =wy, @) =ws,  @v3) =wy  @vy) =ws, @Vs5) = w,,
Yle) =€, Yley) =€, Yles) =€, PYle,) =€, Ples) =€ Pleg) =¢€s.

Definition 2.1.8. A graph of order p is called labeled if its vertices are labeled by the
first p natural numbers, thus V = {1,2,..., p}. Labeled graphs are called isomorphic if
the bijection ¢ in Definition 2.1.7 preserves not only the incidence relation but also the
labeling, thatis @(i) =i,1<i<p.

For example, if we identify v; = iand w; = i for 1 < i < 5, then it turns out that
the diagrams g and g’ (Fig. 2.1 and 2.3), which are isomorphic in the sense of Defini-
tion 2.1.7, are not isomorphic as the labeled graphs.

We end this section by solving a few problems of enumeration of labeled graphs.
Fix a set E and consider all labeled graphs G = (V,E,f), where V = {1,2,...,p}, of
order p and size g = |E| > 0. To count all different graphs, we have to enumerate
various incidence functions E — 2;/ U V; by Lemma 1.1.2, |2¥ uvVv|= 1‘@ +p= ’@.
Then, by Theorem 1.1.6, there are

(@)q (2.13)

such graphs.
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If we want to count the graphs without loops, but with parallel edges, it is enough
to consider incidence functions f : E — 2;/ ; in this case there are (1@)‘1 (possibly
pairwise isomorphic) graphs. If we want to exclude both loops and parallel edges, we
should consider only injective mappings f : E — 2;/ ; to ensure their existence, we
assume p(p — 1)/2 > g. By Theorem 1.1.7 and Corollary 1.1.1, there are 2??~Y/2 simple

graphs of order p with any q,0 < g < p(p — 1)/2, and by Theorem 1.1.10 among them
there are

(P!

(possibly isomorphic) simple graphs of order p and size g.

However, this number counts separately graphs with different labeling of edges. If
we want to identify such graphs, that is, to make the edges indistinguishable, we must
identify incidence functions corresponding to different ordering of edges. Therefore,
instead of injective mappings we have to consider combinations of p(p —1)/2 elements
taken g at a time; by (1.4.1), there are

p-1)
(22

m (2.1.5)

such graphs.

Consider, for instance, simple graphs of order p = 3 and size g = 2;if V =
{vi,vy,v3}, E = {e;,e,}, then by (2.1.4) there are 3!/1! = 6 such abstract graphs
G;(V,E,f;),1<1i < 6, whose incidence functions are

Gy :fl(el) = {vy, v2}, fl(ez) ={v,5,v3},
G, 1f2(91) = {V2>V3}, fz(ez) = {vi, 15},
Gs 5f3(e1) ={vy,v3}, f3(ez) ={v;, v},
G, 1f4(e1) ={vi, Vb f4(ez) = {V1>V3})
Gs : fs(e)) = {vo,v3),  fi(ey) = {vy,v3),
Gg : fole) = {vy,v3), feley) = {vp, vl

Now, if we draw corresponding diagrams, omitting edge labels and using the stan-
dard vertex labels v; = j, j = 1,2,3, we get only three different diagrams (Fig. 2.5) as
given by (2.1.5) with p = 3 and q = 2—cf. also Theorem 2.3.2. These labeled graphs are
non-isomorphic since the vertices of degree 2 have different labels. If in any of these

O 000 oGO

Figure 2.5: Non-isomorphic labeled simple graphs with three vertices and two edges.
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graphs we switch the labels of two pendant vertices, we get a labeled graph isomor-
phic to the initial one.

However, if we erase the vertex labels, thus considering non-labeled graphs, all
the three diagrams in Fig. 2.5 become identical, thus, there is only one non-labeled
simple graph of order p = 3 and size g = 2. We solve more problems of graphical
enumeration in the sequel sections.

Exercises 2.1.

Exercise 2.1.1. Draw all simple graphs with 1 < p < 5verticesand 0 < g < p(p - 1)/2
edges.

Exercise 2.1.2. Draw the complete graphs K;—Kj.

Exercise 2.1.3.

(1) Isit possible to organize a tournament with 40 participating teams, if each team
must play precisely three games?

(2) Answer the same question if there are 13 teams and every team must play 5 games.

Exercise 2.1.4. Are there graphs of order p = 6 with the following degree sequences?
Draw, if there are any, all non-isomorphic diagrams with the given degree sequence.
1) (2,2,3,4,6,7),

2 (2,2,3,4,6,8).

Exercise 2.1.5. Is there a graph of order 6 with each vertex of degree 3?

Exercise 2.1.6. Prove thatif G, = (V;, E;) and G, = (V,, E,) are two isomorphic graphs,
then |V;| = |V,|, |E;| = |E,|, and the degrees of the corresponding vertices are equal.
Are these necessary conditions also sufficient for two graphs to be isomorphic?

Exercise 2.1.7. What graphs in Fig. 2.6 are pairwise isomorphic?

Figure 2.6: Are there isomorphic graphs here?—Cf. Exercises 2.1.6-2.1.7.

Exercise 2.1.8. Draw all non-isomorphic simple graphs of orders 1 through 4.

Exercise 2.1.9. 30 teams compete in a tournament, where each team must play every
other team exactly once. Prove that at any time there are two teams that have played
the same number of games.
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Exercise 2.1.10. How many are there non-isomorphic planar graphs with 2n vertices
and n edges if all edges are segments of straight lines and do not have common end
points?

Exercise 2.1.11.

(1) Every person who now lives on Earth, had pairwise discussions with several other
people. Prove that the total number of people having an odd number of conversa-
tions, is even.

(2) Prove that any polyhedron has an even number of faces with an odd number of
edges.

(3) Prove that any polyhedron has an even number of vertices where an odd number
of edges meet.

Exercise 2.1.12. Given a simple graph with v vertices each of degree d, what are re-
strictions on d and on the parity of the product d - v?

Exercise 2.1.13. At how many points do all edges of the complete bipartite graph K,,, ,
intersect, if no three edges intersect at a point?

Exercise 2.1.14. No three edges of the complete graph K,, intersect at a point, except
maybe at a vertex of the graph. In how many parts do all the edges split the interior of
the graph? Think of cutting a birthday cake.

Exercise 2.1.15. At a meeting of the Combi Club some members are friends and some
are not. Assuming that the binary relation of being friends is symmetric (Defini-
tion 1.1.11, Part (2)) prove that there are at least two people at the meeting who have
the same number of friends in the audience.

Exercise 2.1.16. The inhabitants of planet Triplan exchange handshakes only in
triples, that is, by simultaneously connecting three limbs of three inhabitants. State
and prove an analogue of the handshaking lemma (Lemma 2.1.2) for the Triplan world.

1 (pz’l) +q - 1,q) labeled graphs of order p and
size g with parallel edges but without loops, and there are C (Bt q - 1,q) labeled

2
graphs of order p and size g with parallel edges and loops.

Exercise 2.1.17. Prove that there are C(

2.2 Connectivity in graphs
In this section we study graphs as mathematical models for problems concerning with
connectivity between different objects.

Definition 2.2.1. Consider a graph G = (V,E,f), a subset V; ¢ V, V; # @, of its set
of vertices, and a subset E; c E of its set of edges, such that all end vertices of edges
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in E; belong to V;. The graph G; = (V3,E,,f;) is called a subgraph of G if its incidence
function f; is the restriction (see Definition 1.1.15) of the incidence function f, f; = fl, .

The definition means that we pick one or more vertices of the given graph and
several, maybe no, edges of the given graph, connected with the selected vertices. We
consider examples after the next definition.

Definition 2.2.2. Any subgraph G, of G with V; = V is called a spanning subgraph or
a factor of G.

A spanning subgraph always exists, for instance, the graph itself is its own span-
ning subgraph, but in general it is not unique. Subgraphs can be thought of as derived
from the given graph by removing some edges and vertices; after removal of a vertex
we must remove all edges incident to this vertex.

Example 2.2.1. This example again refers to the graph G = (V, E, f) (Example 2.1.1and
Fig. 2.1). Consider the subset

Vi=1{vvy,v3, vyt CV
and the set
E; ={ej, ey e3.e4 65,65}

of all edges of g whose end vertices belong to V;. Thus, in this example E; = E, and
the graph G, = (V,, E;, f;) with f; being the restriction of f onto Ej, is a subgraph of G.
If we consider the same subset V, = V; = {v;,v,,v3,v,} ¢ V and the empty set of edges
E, = 0, the graph G, = (V,, E,, f;) with the “empty” incidence function f, is another
subgraph of G with the same set of vertices as G;. If we choose the same subset of
vertices V3 = V; and the set of edges E5 = {e;, e,}, we get yet another subgraph of G
with the same set of vertices.

If we start with another subset of vertices, say V, = {v5;} c V, the corresponding
subgraph is G, = (V>,0,f,), where f, = f|, is the empty mapping. The subset V5 =
{vy,v,4} C V generates a subgraph G; = (V3, E3, f3), where E; = {e,, e¢}. The graph G, =
(V4 Eyf4), where V, = V, E, = {e},e5,e,, s}, and f, = flg,, is a spanning subgraph
of G.

Graph theory provides a convenient language for formalizing the concept of con-
nectivity of different objects.

Definition 2.2.3. A sequence of intermittent vertices v; and edges €,

%

)

(Vig» € Vips €15 Viys -5 €10 Vi,
is called a walk of length k connecting its end vertices v; andv; . Awalkis called a trail
if all its edges are different. If all vertices of a trail, except maybe for its end vertices,
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are different, the trail is called a path. A trail is called a circuit if v;, = v; . If the end
vertices of a path coincide, the path is called a cycle. Thus, any loop (v, e;,V,) is a
cycle.

The corresponding objects in a digraph are called a directed walk, directed trail,
etc. A directed cycle is called a contour. It is important that all edges in a directed walk
must have the same orientation, that is, the end vertex of a preceding edge must be
the initial vertex of the sequel edge.

Hence, a trail can contain repeating vertices, that is, have self-crossings, a circuit
is a closed trail, and a cycle is a closed path. If k = 0, the walk consists of one vertex
and has zero length. The edge e; isobviouslyaloopifv; =v; .Ife; =e; ,theedge
e; is passed twice. A circuit is a closed trail and we do not single out any its vertex as
an end vertex. It follows from these definitions that any open path in a simple graph of
order n contains at most n—1 edges. A path in a graph can be considered as a subgraph

of the graph.

Example 2.2.2. Consider a walk (v;,e,,v3,e3,Vy,€q, V5, €1,Vy,€3,V3)—see graph G =
(V,E,f) in Fig. 2.1. This walk is not a trail since it contains repeating edges, say, e;.
However, the walk (vy, e,,v3,€3,V,€;,V,) is a trail but not a path, because it has a
repeating vertex v;. The walk (v, es,v3,€3,vy, €1,V;, €4, V4, €4,V,) is a circuit, and the
path (v,, e5,v3, €3,v1, €1, V5, 84, V,) is a cycle. It is often possible, without any ambiguity,
to write down walks with only edges and skip some vertices. For instance, the latter
cycle can be represented as (es, €3, €;, €,).

The following simple properties of graphs are useful in many instances.

Lemma 2.2.1.

(1) Iftwo vertices of a graph are connected by a walk W of length n, then they are con-
nected by a path of length at most n.

(2) Each circuit contains a cycle.

Proof. If the walk W is not a path, then while traversing it, we must eventually arrive
at some vertex v' the second time, otherwise the graph would be infinite. Thus, W
contains a circuit starting and ending at v'. Removing from W all elements of this
circuit, except for the vertex v/, we get a walk W', which must be shorter than W,
otherwise W would be a path. Since W is finite, repeating this process several times
we remove from W all repeating edges and vertices and derive the path we look for.
The same reasoning yields the second statement of the lemma. O

Consider again the diagram g in Fig. 2.1. If we depart from vertex v; and travel
through g using its edges as roadways, we can reach any other vertex except for the
isolated vertex v5, and the same is true if we depart from the vertices v,-v,. However,
from v; we can reach only v; itself, using zero path. This observation leads to the next
definition.
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Definition 2.2.4. Given a vertex v € V, denote by C(v) the set of all vertices of a graph
G = (V,E) connected with v by a path? in G. The subgraph G’ of G, generated by C(v),
is called a connected component of G; that is, a connected component consists of all
vertices in C(v) and all edges of G whose end vertices also are in C(v).

A graph consisting of only one connected component, is called a connected graph,
thus, every connected component is a connected graph.

An edge e in a graph G is called a cut-edge or a bridge if its removal increases the
number of connected components in the graph.

We denote the number of connected components in a graph G by cc(G).

Example 2.2.3. The diagram g (Fig.2.1) has two connected components, namely, g
and g, = (V/,,0,0), where V, = {v;}—see Fig.2.7.

Vl el VZ
€ ] e, o Vs
€s
V3
& 5]

Figure 2.7: Diagrams g, and g,—see graph G;.

Lemma 2.2.2. Ifthe degree of every vertex of a finite graph is at least 2, the graph con-
tains a cycle.

Proof. Without loss of generality, we can consider a simple connected graph. Pick any
vertex v and any edge e incident to v. Another end vertex of e also has the degree at
least 2, so that it has at least one incident edge distinct from e. Continuing this way,
after several steps we must meet some vertex the second time, since the graph is finite.
The part of our walk, which starts and ends at this repeating vertex, is the cycle we
sought for. O

Problem 2.2.1. Why is the other end vertex of e distinct from v?

2 Or, which is equivalent due to Lemma 2.2.1, by a walk.



2.2 Connectivity in graphs = 101

Lemma 2.2.3. Consider a graph G = (V,E) and let G' = (V,E \ {e}) be a subgraph of G
derived by removal of an edge e < E. If the edge e is a bridge in G, then cc(G') = cc(G) +1.

Proof. The removal of a bridge e can affect only the connected components contain-
ing e. Thus without loss of generality, we can consider a connected graph G, cc(G) = 1,
and prove that cc(G') = 2. Now, if we assume that G’ has at least three connected
components, cc(G') > 3, then there are three vertices, say V1, V5,3 € V, belonging
to these three different connected components. Since G is connected, there are three
paths connecting v;,v,, and v; pairwise. Moreover, since e is a bridge, each of these
three paths must contain the edge e. Then it is easy to see for ourselves that we can
always rearrange these paths and construct a new path I', which connects two certain
vertices among the three vertices v;, v,, v3, and does not contain the bridge e, contrary
to our assumption on the existence of three connected components in G'. O

Problem 2.2.2. There is a missing step in the end of the latter proof; restore it, namely,
give a more precise construction of the path I'. Hint: consider several possible cases.

Lemma 2.2.4. For any finite graph G = (V,E) of order p and size q, the inequality p —
cc(G) < qisvalid.

Proof. We prove the inequality by mathematical induction on the size g of the graph.
If g = 0, then each vertex is isolated, so that cc(G) = p and the conclusion is clear.
Suppose now that the inequality holds for any graph of size less than g,q > 0, and
prove the statement for graphs of size q.

Consider separately two possible cases: either each edge of G is a bridge or there is
anedge e € E, whichis not a bridge. In the latter case, we remove e and get a connected
graph G’ with g - 1 edges; by the inductive assumption p — cc(G') < g - 1 and since
cc(G) = cc(G') (e is not a bridge!) we immediately derive that

p-cc(G)=p-cc(G)<qg-1<q.

In the former case, we remove an arhitrary edge e’ € E and denote the remaining
subgraph by G'. By Lemma 2.2.3, cc(G') = cc(G) + 1. Now by the inductive assumption
p-cc(G)<g-1,0orp-cc(G)-1<q-1,whencep - cc(G) <q. |

Geometrical diagrams visualize graphs; however, on many occasions, for in-
stance, to store graphs in computer memory, it is more convenient to represent them
analytically rather than geometrically. First we recall a few standard definitions.

Definition 2.2.5. An m x nmatrix M = (ajj),1<i<m,1<j<n,isa rectangular array
of m rows and n columns, where a;; stands for the entry at the crossing of the ith row
and jth column. If m = 1, a matrix consists of one row and can be considered as a row
vector (n-tuple) of length n. A matrix with m = n is called a square matrix. A square
matrix is called symmetric if a;; = a;;, Vi, j.

The matrix M* = (bij), 1 <i<m,1<j<n,with b;; = aj;, is called the transpose
of the matrix M.
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Definition 2.2.6. The dot product of two n-vectors v; = (a;;,ay,,...,a;,) and v, =
(ay1, @yy; . - . ayy) is the sum of pairwise products of their corresponding components,

VieVy =101+ A1p0p) + -+ Ay po -

Definition 2.2.7. Consider a p x g matrix A = (a;;) and a g x r matrix B = (b;;). Their
product is a p x r matrix C = A x B = (¢;;), where each entry is the dot product of a
g-vector a; = (a;3, @;5, - .., ajg) by ag-vectorb; = (by, by, ..., by;), thatis, ¢;; = a;+b; =
Y1 aixhy ;e

Problem 2.2.3. Let

A=<o 1 2)1 5
000

(1) Find the transposes A*, B*,C*.

(2) Calculate the products AxB, Bx A, and A x C. Does the matrix product C x A exist?
Is the matrix multiplication commutative?

(3) Find the transposes (AxB)* and (BxA)".Is there any relationship between A*, B*,
and (A x B)" or (B x A)*? Prove this relationship.

oS O O
O = =
a
1l
o = O
S O
S OoON

Definition 2.2.8. Let G = (V,E) be a graph of order p with the set of vertices V =
{v1,...,v,}. The adjacency matrix of G, corresponding to the given numbering of the
vertices, is a p x p square matrix

A(G) = (ay;), 1<ij<p,

where g;; is the number of edges connecting the vertices v; and v;. Thus, g;; is the
number of loops at the vertex v;. This matrix is symmetric as long as we consider only
undirected graphs.

If we compute the column sum p(v;) = Zle a;; or the row sum p(v;) = Zf.’zl ai;,
1 < j < p, in the adjacency matrix, which is the same due to the symmetry of A(G),
then we find the number of edges incident to v;, but unlike the degree of vertex v;,

each loop in this sum is counted only once. Thus,

p
deg(vj)=( Z >+2a (Z%)
i=1,i%j

Example 2.2.4. The adjacency matrix of the graph G (Fig. 2.1) is

01 2 0 O
10 010
A(G) = 2 0 01 O
01 1 10
0 0 00O
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The matrix A(G) has a 2 x 2 block structure,

A 0

o) -( . )
where A; = A(g;) is the 4 x 4 adjacency matrix of the graph g; and 4, = A(g,) is the
1 x 1 adjacency matrix of the graph g, = ({v5},0,0) (Fig. 2.7); the latter graph consists
of one isolated vertex vs;, whence 4, is the 1 x 1 matrix A, = (0). All other elements
of A(G) are zeros situated in two rectangular blocks. The two graphs g; and g, are the
two connected components of the graph G. Any adjacency matrix has such a block
structure.

Problem 2.2.4. Prove that if a graph has k connected components, then its adjacency
matrix is a k x k block matrix, these k blocks are the adjacency matrices of the con-
nected components of the graph and are situated along the main diagonal; all the
other elements of the adjacency matrix being zeros. The size of each block is equal to
the order of the corresponding connected component of the graph.

Let us take another look at the graph G (Fig. 2.1)—the vertices v; and v; have two
incident edges, e, and e;. Hence there are two walks from v, to v3, and we can read
this off from the adjacency matrix A(G), since a;3 = as; = 2. All other entries of A(G)
can be interpreted the same way. For instance, we see that v, is connected by walks
of length 1 with v,, v;, and with itself, thus there is a loop at v,. In many instances
it is necessary to count walks of lengths bigger than 1. To approach this problem, we
compute the square A?%(G) = A(G) - A(G) of the adjacency matrix A(G),

5 00 3 0
023 10
A*G)=[ o 3 5 1 0
31130
000 0O

Consider here the very first entry, a; ; = 5. By Definition 2.2.6,
a;; =(0,1,2,0,0)+(0,1,2,0,0) =1-1+2-2=5. (2.2.1)

This shows that there are five walks of length 2 starting and ending at v;. Indeed, we
can go from v, to v, and come back using the edge e;, which gives 1-1 = 1 walk; or
go from v, to v; using either e, or e; and come back using again either e, or e;, which
gives 2 - 2 = 4 more walks. We see for ourselves that each term in (2.2.1) represents a
walk of length 2 from v, to itself. The five closed walks of length 2 starting at v; and
returning back to v;, are

(Vl,esz)ez,Vl)) (V1)92>V3>92,V1)> (V1>92)V3,e3>v1)> (V1,e3>V3)ez,V1))

and (v, es, V3, €3, V). The other entries of A%(G) have the same meaning.
Obviously, this reasoning holds true in general and leads to the following state-
ment.
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Theorem 2.2.1. The number of walks of length r from v; to v; in a graph G = (V,E),
V= {v,... vk is equal to the element ag.] of the matrix (A(G))", where A(G) is the
adjacency matrix of G. The matrices (A(G)),r = 2,3,.. ., here exist since A(G) and all its
powers are square matrices.

Problem 2.2.5. Prove this theorem by mathematical induction.

The graph-theory language is often useful in solving various problems that seem
unrelated to graphs. For instance, the information in the following problem can be
conveniently represented by a graph.

Problem 2.2.6. The organizing committee of The Combi Club Annual Meeting ob-
served that among each four participants there is a person who knows three other
people in this quartet. Show that every quartet of the participants contains someone
who is familiar with all the other participants of the meeting.

Solution. Consider a graph with vertices corresponding to the participants, where two
vertices are adjacent if and only if the corresponding participants do not know one
another. We can clearly assume that the graph has at least 4 vertices. This graph has
no parallel edges nor loops. We have to prove that if the graph contains no quadruple
of vertices, such that each of these four vertices is adjacent at least with one of the
three other vertices in the quadruple, then each quadruple of vertices contains an
isolated vertex.

If the graph contains the only edge, the conclusion is obvious. So that we suppose
that there are at least two edges, say a and b. If they are not adjacent, the quadruple
of their vertices contradicts our assumptions, thus, a and b have a common vertex v,.
Similar reasoning shows that, except for a and b, the graph can have at most one
edge c, and this edge must have a common vertex with the edges a and b. Now, ¢ can-
not be incident to v, since that would imply deg(v,) = 3. Therefore, the edges a, b,
and ¢ make a triangle, and all the other vertices are isolated. O

Exercises 2.2.

Exercise 2.2.1. Find all subgraphs of the graph G, given by incidence function (2.1.1),
or which is the same, by the diagram g in Fig. 2.1. Are there isomorphic graphs among
them?

Exercise 2.2.2. Are any two of the three diagrams in Fig. 2.8 isomorphic?

Exercise 2.2.3. Find all connected components of the graphs in Fig.2.3, 2.7 and Ex-
ample 2.2.3.

Exercise 2.2.4. Does there exist a connected graph with 5 vertices, such that each of
its edges is a bridge, and moreover, removal of every edge generates exactly two con-
nected components?
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Figure 2.8: Diagrams to Exercise 2.2.2.

Exercise 2.2.5. List all walks of length 3 or less in the graphs in Fig.2.7 and Exam-
ple 2.2.3. Classify them as trails, paths, circuits, or cycles.

Exercise 2.2.6. Is it true or false that a graph of size at least 1 has walks of any finite
length?

Exercise 2.2.7. Prove that the connectivity is an equivalence relation on the set V of
the vertices of a graph. What are its equivalence classes?

Exercise 2.2.8.
(1) How many cycles are in the complete graphs K,,, Kz, K,;?
(2) How many paths of length 3 are in K5?

Exercise 2.2.9. Prove that a graph G = (V,E) of order p and size q satisfying the in-
equality g + 2 < p cannot be connected, that is, cc(G) > 2.

Exercise 2.2.10. Prove that the size of a connected graph of order p is at least p - 1.
Exercise 2.2.11. Find the adjacency matrices of the graphs in Figs. 2.1, 2.3, and 2.7.

Exercise 2.2.12.
(1) How many walks of length 2 connect any two vertices in the complete graph K,,?
(2) IngraphK;5?

Exercise 2.2.13. For the incidence matrix of the graph G (Fig.2.1) compute
z?:l(z]'s=1 a;;) and 21'5:1(2?:1 a;j)-

Exercise 2.2.14. Prove that the vertices v; and v; in a graph G of order p are connected
if and only if the (i, j)th-element of the matrix

A(G) + A%(G) +--- + APX(G)

is not zero.

Exercise 2.2.15. Prove that the vertices of a bipartite graph can be renumbered so that

its adjacency matrix is a 2 x 2 block matrix ( XZ ’?; ), where A,, A, are square matrices
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and both zero blocks represent rectangular matrices with all zero entries. What are the
sizes of the blocks A; and 4,?

Exercise 2.2.16. Prove that if two graphs have the same adjacency matrix, they are
isomorphic. Is the converse statement true?

Exercise 2.2.17. Prove that two graphs G = (V,E) and G’ = (V', E") with the adjacency
matrices (q;;) and (a{)j) are isomorphic if and only if they have the same order p and
there exists a p-permutation o such that a;; = a(',(i),g(j).

Exercise 2.2.18. Each edge of the complete graph K, is colored in one of n — 1 colors,
such that for every vertex all its incident edges have different colors. For what n is it
possible?

Exercise 2.2.19. Each student club on a campus has a two-color flag. For these flags,
the college bought fabrics of 8 different colors. It is known that every color meets on
the flags with at least four other colors. Prove that the college can select no more than
four clubs whose flags represent all the 8 colors.

Exercise 2.2.20. To connect every pair among 25 cities by a direct flight, it is neces-
sary to have C(25,2) = 300 flights. Suppose now that 25 cities are connected by only
277 direct flights with at most one direct flight between any two cities. Prove that if
transfers are allowed, then any city can be reached by air from any other city with at
most one transfer. Prove that if a graph with v vertices has at least C(v — 1, 2) + 1 edges,
then the graph is connected. This bound is very simple and crude—how far can you
improve this estimate?

Exercise 2.2.21. Prove thatif a graph of order p has a directed path of length at least p,
then this path must pass through some vertex at least twice, therefore, the graph con-
tains a circuit.

2.3 Trees

In this section we study properties of a special kind of graphs important in many ap-
plications.

Coffee-time browsing
—  http://www.neatorama.com/2007/03/21/10-most-magnificent-trees-in-the-
world/ (That’s the Tree!)
—  http://en.wikipedia.org/wiki/Joseph_Kruskal (Joseph Kruskal’s biography)
—  http://www.princeton.edu/main/news/archive/S16/79/27A47/ (Another Kruskal)
— http://en.wikipedia.org/wiki/Kruskal's_algorithm (Kruskal’s algorithm)
—  http://dictionary.reference.com/browse/algorithm (Algorithms)
— everything2.com/title/Arthur+Cayley (Cayley’s biography)
- www.gap-system.org/~history/Biographies/Prufer.html (Prufer’s biography)
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Definition 2.3.1. A graph without cycles, or acyclic graph, is called a forest.
A connected forest is called a tree (Fig. 2.9).

r S
.

/\

//

Figure 2.9: An example of a tree.

A rooted tree is a tree, which has a singled out vertex, called the root.

Thus, a forest is a family of trees and a tree is a connected graph without cycles.
The following theorem lists several important equivalent properties of the trees.

Theorem 2.3.1. Let G = (V,E) be a finite graph of order |V| = p. Then the following
statements are equivalent.

(1) Gisa tree.

(2) Gis a connected graph and each of its edges is a bridge.

(3) Gisan acyclic graph and its size is |[E| = p - 1.

(4) G is a connected graph and |E| = p - 1.

(5) For any pair of vertices of G there is the unique path connecting them.

(6) G is acyclic but any new edge added to G generates precisely one cycle.

Proof. We establish the following chain of implications,
D=2 D&@=20C)=2®=>0)=6=0.

First we prove that (1) implies (2). Since a tree is connected by definition, it suffices to
prove that every edge is a bridge. On the contrary, if we assume that some edge e € E is
not a bridge, then we can remove it and still get a connected graph G'. Hence the end
vertices of e are connected in G’ by a walk, which clearly does not contain e. Now, the
addition of e to the latter walk would generate a cycle in G, which is impossible since
G is a tree and cannot contain cycles.
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Next we prove that (1) and (2) together imply (3). Indeed, if we remove any edge
from a cycle, the remaining graph is still connected, implying that G must be acyclic.
To prove that G has p — 1 edges, we apply mathematical inductiononp = |V|. Ifp =1,
this single vertex must be isolated and the assertion is trivial. Suppose the assertion
holds true for all trees of order less than some p > 1 and consider a graph G = (V,E)
of order p. Let e € E, then e is a bridge by the assumption. Thus, if we remove e and
denote the remaining graph by G', then, by Lemma 2.2.3, cc(G') = cc(G) +1 = 2.
Let G, = (V},E;) and G, = (V,, E,) be two connected components of G'. They cannot
be empty, they cannot have cycles, and by the inductive assumption, |E;| = |V;]| - 1,
|E,| = |V,| - 1. Adding up these equations and considering that E = E; U E, U {e'},
V = V; u V,, where both unions are disjoint, we arrive at the conclusion.

To prove that (3) implies (4), we again assume that, on the contrary, G is not con-
nected, that is, it consists of k > 2 connected components. Each of these components
is a tree and by the assumption for each of them |E'| = |V'| - 1. Adding up k > 2 such
equations leads to |[E| = |V| - k = p — k < p — 1, which contradicts the premise.

The implication (4) = (5) follows readily if we notice that if there are two vertices
connected by two different paths, then these paths together make up a cycle. Remov-
ing any edge e off this cycle, we get a connected graph G'(V,E'), where E' = E \ {e},
such that |V| = pand |E'| = p - 2 in contradiction with Lemma 2.2.4.

Next we prove the implication (5) = (6). If we can add an edge and generate two
cycles, this would mean that the end vertices of the new edge were connected by two
paths in the original graph, which is impossible.

Finally, to prove that (6) = (1), we have to prove that the graph is connected,
which is obvious; indeed, a new cycle connects any two of its vertices twice, thus, one
connection must have existed before we added the edge. O

We study some other properties of trees. Compare the graphs G, (Fig.2.7) and T =
({v1, v5, v3, v}, {e1, €5, €5}, fr) (Fig. 2.10).

41 € 9]
€
V3 (3 Vy

Figure 2.10: Graph T.

Problem 2.3.1. Write down explicitly the incidence function f; of the graph T in
Fig.2.10.

Solution. From Fig.2.10 we observe immediately that fr(e;) = {vy,v,}, fr(e;) = {vy,v3},
and fr(es) = {v3, v,4}. O
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The graph T is a connected spanning subgraph of the graph g; in Fig. 2.7—it con-
tains all the vertices of g; and some of its edges.

Definition 2.3.2. If a spanning graph of a graph G is a tree, this tree is called a span-
ning tree of G.

Thus, the tree T (Fig.2.10) is a spanning tree of the graph g;. A graph may have
several spanning trees. The next statement follows immediately from Theorem 2.3.1.

Corollary 2.3.1. Every graph has a spanning forest. Every connected graph has a span-
ning tree. O

In many applications it is useful to supply edges of a graph with an additional
piece of information, usually called the weight of this edge. The weight can be a num-
ber like the length of an edge, or a symbol like a traffic sign indicating whether this
is a one-way or two-way street. If every edge of a graph carries a weight, the graph is
called weighted. Weighted graphs have weighted spanning trees.

Example 2.3.1. Consider a connected weighted graph G; (Fig. 2.11), where the weights
arew; = 2, w, = 5, w3 = 1, w, = 3. This graph has three different spanning trees shown
in Fig.2.12. These trees have different weights, namely W(T;) = w, + w3 + w, = 9,
W(T,) = w; + w3 +w, = 6, and W(T3) = w; + w, + w,, = 10; among them the tree T, has
the smallest weight—it is the minimum spanning tree of the graph G;.

Vl e, Wy Vz

€, W, €3, W3

V3 € Wy Yy

Figure 2.11: Graph G;.

There are several algorithms for finding a minimum spanning tree in a graph. We
present the well-known algorithm of Kruskal &. Connectedness of a graph is, obvi-
ously, a necessary condition for the existence of a spanning tree.

Kruskal’s algorithm for finding a minimum spanning tree

Given a connected weighted graph G = G(V, E) with n vertices, find a minimum span-

ning tree in G. We assume that all weights are nonnegative numbers.

1. Select an edge e with the smallest weight. If the graph has several edges with the
same minimum weight, we can choose any of them. The edge e and its end vertices
form the initial subgraph (subtree) T; of G.
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Vi [$)
€, W) €3, W3
®
V3 €4 Wy Vy
Vl Ps e1 5 W1 V2
93, W3
®
V3 €, W,y Vy
Vl e, Wy PY V2
€5, W,
®
V3 64, W4 V4

Figure 2.12: Spanning trees T, T, T3.

2. Form =1,2,...,n- 2, select an unused edge with the smallest weight, such that
this edge does not make a cycle with the edges selected earlier. In particular, we
can use an edge with the same weight as the one in the previous step. Append the
edge chosen and, if necessary, its end vertices to the subgraph T, generated at
the previous step, to built the next subgraph T,,,,;-

3. Repeat Step 2n-2times. The subtree T,_;, where n is the order of the given graph
G, is a minimum spanning tree of G. O

Remark 2.3.1. Not every graph among T,..., T,_, is to be a tree, some of them can be
forests, but T,,_; is a tree.

Problem 2.3.2. Prove that Kruskal’s algorithm generates a minimum spanning tree in
any connected graph.

Problem 2.3.3. Find a minimum spanning tree for the complete graph Kg, where the
weights of the edges are given in the following symmetric Table 2.1.

Solution. In this problem, the vertices are denoted by ¢;, ¢;, etc.; the (i, j)-entry of the
table is the weight, Wi = W, of the edge incident to the vertices c; and Gj- The reader
may notice that the weights are all the integer numbers from 1 through 28 inclusive.
The following figures exhibit all the consecutive steps of Kruskal’s algorithm being
applied to Problem 2.3.3. The smallest weight is w; , = 1, thus we start with the graph
with 8 isolated vertices c;, ..., cg (Fig. 2.13) and first connect the vertices c; and ¢, by
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Table 2.1: The weights of the complete graph Kg in Problem 2.3.3.

Cq Cy C3 Cy Cs Ce (4] Cg
Cy 0 5 10 7 22 27 25 13
Cy 5 0 8 12 28 23 17 6
C3 10 8 0 1 9 19 3 26
C 7 12 1 4 14 2 21
Cs 22 28 9 4 0 11 16 18
Ce 27 23 19 14 11 0 15 20
¢ 25 17 3 2 16 15 0 24
Cg 13 6 26 21 18 20 24 0
G e [ I
s @ e G
[ ([ ]
C7 C4
¢ @ ® G

Figure 2.13: The initial graph without edges. All vertices are isolated.

an edge of weight 1 (Fig. 2.14). The second smallest weight is d, ; = 2. Adding an edge
of weight 2 connecting the vertices c, and c;, we get the graph shown in Fig. 2.15.

The next smallest weight is d;; = 3. However, we cannot connect the vertices c3
and ¢;, because such an edge would form a cycle with the two previously included
edges (Fig. 2.16), which is forbidden by Part 2 of the algorithm.

Thus, we look for the next smallest weight, w, 5 = 4, and at the next step we con-
nect the vertices c, and c; by the edge of weight 4 (Fig. 2.17). Figures 2.18-2.21 show the
sequel subgraphs leading to a minimum spanning tree of weight 20 (Fig. 2.21). Keep
in mind, that not all of these graphs are trees, for example, Fig. 2.19-2.20. O

Problem 2.3.4. Find a minimum spanning tree in graph Gy (Fig. 2.22).

In the end of this section we again consider a problem of graph enumeration and
prove Cayley’s & formula on the enumeration of labeled trees.

Theorem 2.3.2. There are p?~* non-isomorphic labeled trees with p > 1 vertices.
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€ @ e G

Figure 2.14: First step of Kruskal’s algorithm. The first (non-spanning) subgraph with only one edge
is formed.

(ST o O

¢ @ o (s

Figure 2.15: A subtree with two edges.

Proof. If p = 1, then p*~? = 1, and the statement is obvious, since the unique labeled
tree with one vertex is this isolated vertex labeled by 1. Now, let p > 2 and T be a la-
beled tree of order p. Delete the end vertex with the smallest label, record the label of
the adjacent vertex, and repeat this step until only two vertices remain. This procedure
generates a sequence of p — 2 natural numbers ranging from 1 through p with possible
repetitions. The sequence is called the Priifer @ code of the tree T. By Theorem 1.1.6,
there are pP~2 such sequences, and, since there is an obvious one-to-one correspon-
dence between such codes and the labeled trees of order p, the proof is complete. [
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C @ e G

Figure 2.16: This subgraph with three edges is not a tree.

ST Y

Cc @ Cs

Figure 2.17: The subgraph with three edges.

Example 2.3.2. For instance, if p = 3, then p?~2 = 3. All non-isomorphic labeled trees
with 3 vertices are shown in Fig. 2.5.

Corollary 2.3.2. Let1 < d; < d, < --- < d, be the degree sequence of a tree of or-
der p. The number of labeled trees of order p with this degree sequence is given by the
multinomial coefficient (1.5.1),

(p-2)!
(d - Dl (d, - DI’

C(p—Z;dl—l,dz—l,...,dp—l)=

Proof. Indeed, Zf’zl d; = 2p — 2 by Lemma 2.1.2. If v; is a pendant vertex then d; = 1,
and it is clear from the proof that this label does not appear in the Priifer code at all.
If d; > 2, then together with the removal of this vertex we must remove d; — 1 adjacent



114 — 2 Basic graph theory

6 &——e0 O

Cs @ C3

& @ Cy

C @ Cs

Figure 2.18: This subgraph is not a tree, since it is not connected.

¢ %)

C @ Cs

Figure 2.19: This subgraph with 5 edges also is a forest, not a tree.

vertices, hence v; appears in the Priifer code d; - 1 times, and the same is true for any
other vertex, which proves the corollary. O

Problem 2.3.5. Label the tree in Fig. 2.9 and compute its Priifer code. Repeat this with
another labeling of the same tree and compare their Priifer codes.

Problem 2.3.6. Restore a labeled tree if its Priifer code is 133132.

Solution. We do not distinguish vertices and their labels. From the proof of Theo-
rem 2.3.2, we see that, since the length of the code is 6, the tree must have 6 + 2 = 8
vertices. The vertices (labels) 1, 2, and 3 are present in the code, thus, they were not
removed at the first deletion step, hence the very first vertex removed was 4, and this
vertex was connected to 1. The next smallest vertex was 5 and it was connected to 3.
The next vertex, which is 6, was connected to 3 again. The vertex removed after that
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Cg c3

G @ Cy

C @ Cs
Figure 2.20: Second to last step of the algorithm. Two subtrees merge into a tree with 6 edges. This
subtree is not a spanning tree yet, since the vertex ¢ is still isolated.

G G

Cs C3

7 e Cy

Ce Cs

Figure 2.21: The minimum spanning tree of the initial graph in Problem 2.3.3, its weight is w(T) =
36.

was 7, and it must have been connected to 1. The vertex 1 does not appear in the code
after that; thus now it is the smallest and we remove it, keeping in mind that it is adja-
cent to 3. At this stage only three vertices, 2, 3, and 8 remain, but we cannot remove 2
now, hence, we have to remove 3, which is, apparently, adjacent with 2. Thus, vertices
8 and 2 are connected—see Fig. 2.23. O

Exercises 2.3.

Exercise 2.3.1. Draw all non-isomorphic trees with 5 vertices and those with 6 ver-
tices.

Exercise 2.3.2. What graphs coincide with their spanning trees?
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1
Figure 2.22: Graph Gg.

Figure 2.23: This tree has the Priifer code 133132—Problem 2.3.6.

Exercise 2.3.3. Draw a diagram having only one spanning tree.

Exercise 2.3.4. Forty-one points in the plane are connected by straight segments,
such that any two points are connected by either a segment or a broken line, and for
any two points this broken line is unique. Prove that there are precisely 40 segments
connecting the points.

Exercise 2.3.5. Find all spanning trees of the graph G, (Fig. 2.7) and those of the tree
T (Fig. 2.10).

Exercise 2.3.6. How many non-isomorphic spanning trees does the bipartite graph
K33 have?

Exercise 2.3.7. There are n towns connected by highways without intersections, such
that from each town a driver can reach every other town, and there is the only route
between any two towns. Prove that the number of highways is n — 1.

Exercise 2.3.8. How many are there non-isomorphic trees with n vertices if the degree
of any vertex is no more than 2?
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Exercise 2.3.9. Prove that in any simple finite graph G = (V,E.f)
2q < (p - cc(@))(p - cc(G) +1).

Exercise 2.3.10. Draw the labeled trees with the Priifer codes 234, 3123, 4444, 7485553.
Is there a labeled tree with the Priifer code 126?

Exercise 2.3.11. Prove that there is a one-to-one correspondence between the non-
isomorphic labeled trees and Priifer codes—see Theorem 2.3.2.

Exercise 2.3.12. A tree has p vertices. What is the largest possible number of its pen-
dant vertices?

Exercise 2.3.13. Prove that in any tree of order p > 2 there are at least two pendant
vertices. Moreover, a stronger statement holds true—any acyclic graph of order p > 2
has at least two pendant vertices.

Exercise 2.3.14. Prove thata graph is a forest if and only if for any two distinct vertices
there is at most one path connecting them.

Exercise 2.3.15. Generalize Theorem 2.3.1 to forests: If a forest of ¢t trees has v vertices
and d edges, thenv =d - t.

Exercise 2.3.16. A forest has 67 vertices and 35 edges. How many connected compo-
nents does it have?

Exercise 2.3.17 (Cayley’s second formula). For1 < k < n, prove that there are k(n+k —
1)"? labeled forests with n + k — 1 vertices and k connected components, such that k
distinguished vertices belong to different connected components.

Exercise 2.3.18. Prove that1 < d; < d, < --- < d, is the degree sequence of a tree of
order p if and only if Y1  d; = 2p - 2.

Exercise 2.3.19. Prove that every sequence of integer numbers

l<dy<d,<---<d,
such that Zf’zl d; = 2p - 2k, k = 1, is the degree sequence of a forest with k connected
components.
Exercise 2.3.20. Prove that F(p), the number of forests of order p, satisfies the recur-
rence relation

n
F(n) =Y Cn-1,k-DK?F(n-k.
k=1

Exercise 2.3.21. Theorem 2.3.1 claims that a tree of order p has p — 1 edges. For non-
acyclic graphs this conclusion clearly fails. Nevertheless, prove that a connected
graph of order p must have at least p — 1 edges.
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Exercise 2.3.22. How many edges are to be removed from a connected graph with
12 vertices and 15 edges to generate a spanning tree of the graph? Does this number
depend upon the order in which the edges are being removed?

Exercise 2.3.23. There are 300 cities in a state and 3 000 highways connecting them,
such that each city is connected with at least one other city. How many of the highways
can simultaneously be closed for repair if no city should be completely isolated from
the others?

Exercise 2.3.24. Show that a graph is connected if and only if it has a spanning sub-
tree.

2.4 Eulerian graphs

This section is concerned with edge traversal problems.

Coffee-time browsing

-  www-history.mcs.st-and.ac.uk/Biographies/Euler.html (Euler’s biography)

—  http://en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6énigsberg (The Seven
Bridges of Konigsberg)

—  http://mathforum.org/kb/message.jspa?messagelD=3648262&tstart=135
(Fleury’s algorithm)

— home.att.net/~numericana/answer/graphs.htm (Who is Fleury?)

- http://www.absoluteastronomy.com/topics/Eulerian_path (Eulerian graphs)

—  www.gap-system.org/~history/Mathematicians/Hamilton.html (Hamilton’s biog-
raphy)

The next problem should remind the reader of an old puzzle.

Problem 2.4.1. Can you draw either of the two graphs in Fig. 2.24 without traversing
an edge twice and without interruption the drawing (that is, your pencil must not leave
the paper)?

Definition 2.4.1. A circuit (a trail) in a graph is called Eulerian @ if it contains all edges
of the graph. A graph is called Eulerian if it contains an Eulerian circuit. A graph is
called semi-Eulerian if it contains an Eulerian trail.

The results of this section essentially depend on the parity of the vertex degrees
of a graph, that is, whether the degree is even or odd. We call a vertex even (odd) if its
degree is even (odd).

Problem 2.4.2. Is there a graph with just one odd vertex?

Theorem 2.4.1. A connected graph is Eulerian if and only if it has only even vertices.
A connected graph is semi-Eulerian if and only if it contains exactly two odd vertices.
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Figure 2.24: Is any of these “envelopes” Eulerian? Semi-Eulerian?

Problem 2.4.3. Is any of graphs in Fig. 2.24 Eulerian? Is any of them semi-Eulerian?

Proof of Theorem 2.4.1. The necessity of these conditions, including the connected-
ness, is obvious. Indeed, if we begin to traverse an Eulerian circuit and remove every
edge traversed, after passing through any vertex its degree decreases by 2, so that the
parity of any vertex’s degree does not change. After completing the route we must ar-
rive at the initial vertex after traversing and removing behind us every edge. Thus,
the degree of each vertex gradually reduces to zero, implying that initially the de-
gree was even. In the case of semi-Eulerian graphs the same argument works if we
begin at either one of the two odd vertices; we must finally arrive at the other odd
vertex.

We prove the sufficiency by induction on the size g of the graph. Begin again with
the Eulerian case. If ¢ = 1, the graph consists of one vertex with an attached loop,
so the statement is obvious. Suppose now that, for all connected graphs of the size
|E| < g, q = 2, with all even vertices the statement is valid and consider a connected
graph G = (V,E), |E| = q. By Lemma 2.2.2, the graph G contains a cycle C. If this cycle
includes all the edges of G, there is nothing more to prove. Otherwise, we remove all
edges of the cycle C from G, which can result in decomposing G into several connected
components, Gy, ..., G;, of smaller sizes.

Since G is connected, every component G; contains some vertex v; € C, whose
degree in G must be at least 4, so that its degree in G; is at least 2. By the inductive
assumption, each of G;,1 < i < [, has an Eulerian circuit C;, and we conclude that
v; € C; as well. It is now obvious how to assemble all cycles C, C;, ..., C; in an Eulerian
cycle in the graph G.

To consider the case of semi-Eulerian graphs, we connect the two existing odd ver-
tices by an additional edge, thus making the graph Eulerian, and apply the statement
we have just proved. O
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Exercises 2.4.

Exercise 2.4.1. Examine graphs in Figs. 2.1-2.23—which of them are Eulerian? Semi-
Eulerian? Find, if any, semi-Eulerian trails or Eulerian circuits in these graphs.

Exercise 2.4.2. In the proof of Theorem 2.4.1 we claim that each component G; has a
vertex such that its degree in G is at least 4. Prove this claim.

Exercise 2.4.3. Draw the floor plans of the buildings on your campus, where you are
(were) taking your classes. Draw a graph representing each room with a vertex, such
that two vertices are connected by an edge if the corresponding rooms have a common
wall. Are these graphs Eulerian? Semi-Eulerian? Find, if there are any, semi-Eulerian
trails or Eulerian cycles in these graphs.

Exercise 2.4.4. Prove that the following procedure, called Fleury’s algorithm, returns
an Eulerian circuit in any Eulerian graph:

Start at any vertex and pass any edge incident to this vertex. Remove the edge
passed and go through any other edge incident to the vertex reached, subject to the
only restriction: a bridge can be used only if there is no other edge available.

Exercise 2.4.5. Apply Fleury’s algorithm to those graphs in Figs. 2.1-2.24, which are
Eulerian or semi-Eulerian, and find semi-Eulerian trails or Eulerian circuits in those
graphs.

To consider vertex traversal problems, we introduce Hamiltonian & graphs.

Definition 2.4.2. A path (circuit) without repeating vertices in a graph G is called
Hamiltonian if it contains every vertex of G. A graph is called Hamiltonian if it has a
Hamiltonian path.

Exercise 2.4.6. Prove the following necessary condition of the existence of a Hamilto-
nian circuit: If a graph G contains a Hamiltonian circuit, then it contains a connected
spanning subgraph H, which has the equal order and size, and the degree of every
vertex of H is 2.

In the opposite direction, prove the following sufficient condition: If in a simple
graph G = (V,E) of order p > 3,

deg(v) = p/2, VveV,

then G has a Hamiltonian circuit.
Exercise 2.4.7. Find a Hamiltonian circuit in the complete graph K.
Exercise 2.4.8. Is any of the graphs in Fig. 2.1-2.24 Hamiltonian?

Exercise 2.4.9. Extend Definition 2.4.1 and Theorem 2.4.1 to digraphs. Is the digraph G
(Fig. 2.2) Eulerian or semi-Eulerian? Find, if there are any, the corresponding directed
paths.
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2.5 Planarity

We prove in this section a remarkable property of planar graphs, also related to the
name of Euler, called Euler’s formula or Euler’s polyhedron theorem.

Coffee-time browsing

- http://thales.cica.es/rd/Recursos/rd99/ed99-0289-02/biografias/cjordan.html
(Jordan’s biography)

- www.gap-system.org/~history/.../Kuratowski.html (Kuratowski’s biography)

Definition 2.5.1. A regular embedding of a planar graph in R? is called a plane graph.
Therefore, the edges of a plane diagram cannot have common points, except maybe
for the vertices of the graph.

For example, the diagram g’ (Fig. 2.3) is not plane, since the edges €, and ¢, inter-
sect at a point, which is not a vertex of the graph, but g’ is planar because it can easily
be redrawn without this intersection.

Consider a connected plane graph consisting of two vertices connected by an
edge. If we choose two arbitrary points in the plane outside of this graph, it is pos-
sible to connect them with a smooth curve having no common point with the graph.
Consider now a connected graph with cycles, say g; (Fig. 2.7). The edges of g; split the
entire plane into four separate regions, among them there is one unbounded external
domain, and three bounded—one interior to the loop es, one between the parallel
edges e, and e;, and the last one bounded by the edges e, e, e,, e;. These regions
are called faces of the graph g;. Any two points inside a face can be connected by a
smooth curve lying completely inside the face, and it is (almost) obvious® that if two
points lie in different faces, they cannot be connected by a smooth plane curve unless
this curve intersects at least one edge of the graph.

Theorem 2.5.1 (Euler). Let G be a connected plane graph of order p and size q. If G has
f faces, including an unbounded face, then

p-q+f=2 (2.5.)

The expression p — q + f is called the Eulerian characteristic of a graph.

Proof. We carry out mathematical induction on the number of faces f. If the graph G
has at least one bounded face, then the boundary of the latter consists of edges of G,
and these edges form a cycle—cf. Figure 2.7. Thus, if f = 1, then this face must be
unbounded, therefore G is a tree, hence p = q + 1 by Theorem 2.3.1 and the conclusion
follows straightforwardlyasp-g+f=q+1-q+1=2.

3 This statement is a deep topological theorem by C. Jordan S
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Now fix f > 2, assume that (2.5.1) is valid for all plane connected graphs with less
than f faces, and consider a graph G with f faces. At least one of these faces is bounded,
thus the boundary of this face is a cycle, so that the edges making up this cycle, are not
bridges. Moreover, by virtue of planarity such an edge must belong to the boundaries
of two faces. The deletion of any such edge generates a plane connected graph G’ of
the same order p, of size g — 1, and with f — 1 faces. Applying the inductive assumption
to the graph G’, we get the equation p— (g —1) + (f —1) = 2, which immediately reduces
to (2.5.1). O

For example, if G is a tree with p vertices, theng = p—1,f = 1, thusp—-(p-1)+1 =2,
in agreement with (2.5.1).

Corollary 2.5.1. In a connected simple plane graph G of order p > 3 and size g,
q<3p-6. (2.5.2)

Proof. Since G is simple, it cannot have parallel edges, thus every face is bounded by
at least three edges, and every edge adjoins two faces, hence 3f < 2q. Combining this
inequality with (2.5.1) we deduce (2.5.2). O

Problem 2.5.1. Prove that any cycle in a bipartite graph has an even length, that is, it
consists of an even number of edges.

Corollary 2.5.2. The complete graph K and the complete bipartite graph (the Thomsen
graph) K3 5 shown in Fig. 2.25, are not planar.

Figure 2.25: Graphs K5 and K3 3.

Proof. 1f the graph K were planar, (2.5.2) would immediately lead to contradiction. As
for K3 3, every cycle in it has an even length by Problem 2.5.1, thus its length is at least
4, therefore the inequality 3f < 2q of the preceding corollary can be strengthened to
4f < 2q, which together with (2.5.1) and (2.5.2) gives q < 2p — 4 for any bipartite graph.
Inthe case of K33, p = 6, g = 9, and the latter becomes 9 < 8. This contradiction shows
that K3 ; cannot be planar. O
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It turns out that all the non-planarity in our world is due to these two simple non-
planar graphs, as follows from the following result. We state it without proof, which
can be found, for example, in [9, p. 24].

Theorem 2.5.2. (Pontryagin-Kuratowski* &) A graph G is planar if and only if it does
not contain a subgraph that can be derived from K; 3 or K5 by subdividing some of their
edges by inserting additional vertices. O

Exercises 2.5.

Exercise 2.5.1. Is there a planar graph with 6 vertices, each of them of degree 3? Of
degree 4?7 Of degree 5?

Exercise 2.5.2. A diagram with 9 vertices and 9 edges is embedded into a plane.
Each vertex has the degree of 3 and every edge is incident to 3 vertices. Draw the
diagram.

Exercise 2.5.3. A connected planar graph of order 6 has 5 vertices of degree 3 and a
vertex of degree 1. In how many regions does the graph divide the plane? Draw the
corresponding diagram.

Exercise 2.5.4. Five neighboring cities decided to build highways connecting each of
them with every other city. Is it possible to build this road network without intersec-
tions or over- and underpasses?

Exercise 2.5.5. Give an example of a connected but not complete graph.
Exercise 2.5.6. Draw complete bipartite graphs K; ; — K3 .
Exercise 2.5.7. Prove that any tree of order p > 2 is bipartite.

Exercise 2.5.8. The converse of the preceding problem is false—not every bipartite
graph is a tree. Find an example of such a bipartite graph. For which m and n the
complete bipartite graphs K,,, , are trees?

Exercise 2.5.9. Prove that a simple graph G is bipartite if and only if it does not con-
tain an odd circuit. Moreover, G is bipartite if and only if it does not contain an odd
cycle.

Exercise 2.5.10. Let § be the least vertex degree in a simple graph of order p. Prove
that if § > (p — 1)/2, then the graph is connected. Compare this conclusion with Corol-
lary 2.5.1.

Exercise 2.5.11. Is any of graphs in Fig. 2.26 planar?

4 According to some sources, this theorem was proved by Pontryagin a few years before Kuratowski,
but that proof was not published.
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Figure 2.26: Is either of these graphs planar?

Exercise 2.5.12. Prove that if several lines in a plane divide the plane in p parts, then
t -1+ p = 1, where t is the number of intersection points of these lines, and [ is the
number of pieces the lines are split by the points of intersection.

Exercise 2.5.13. Give examples of graphs whose Eulerian characteristic is not 2.

2.6 Graph coloring

This section is concerned with vertex and edge coloring of simple graphs, and some
of its applications.

Coffee-time browsing
—  http://www-history.mcs.st-and.ac.uk/Biographies/Euler.html (Euler’s biogra-

phy)

A graphis a pair of sets, the edges E and the vertices V # @, and the incidence function.
Nevertheless, there are many problems, where we want to add some more information
to edges and/or vertices. For instance, in the next chapter about the graph clustering
we supply the edges with weights, called their dissimilarities. In this chapter an ad-
ditional piece of information, added to a vertex, is called a color of the vertex. It is
possible to color the edges as well, but in this brief introduction to graph coloring we
do not consider that option.

Definition 2.6.1. Consider a graph G(V,E,f) of order |V| = k, a finite set Col =
{ci,...,cx}, whose elements are called colors, or any abstract symbols, and a map
col : V — Col, called the chromatic function of the colored graph G = (V,E,f,col),
satisfying the following condition: If two vertices v; and v; are adjacent, i. e., connected
with an edge, then col(v;) # col(v)).

For instance, different states or counties on maps are usually painted in different
colors to easier distinguish them, and a natural question occurs immediately, whether
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we have enough colors to paint a map or a globe appropriately? The latter usually
means that any two neighboring domains must be painted differently. This question
immediately translates into a graph problem. Indeed, given a map, we design the
graph, such that the every vertex corresponds to a domain on the map, and two ver-
tices are adjacent iff the corresponding domains have a common piece of a boundary,
which does not degenerate to a point.

Thus, can we color all the vertices of a graph, so that any two adjacent vertices
have different colors? Surely, it is possible if there are enough paints, and the problem
becomes: what is the minimal number of paints to be used?

Definition 2.6.2. The smallest number of the required different colors (recall that any
two adjacent vertices are painted differently), is called the chromatic number x(G) of
the graph G. Thus, for any k > x(G) the graph is k-colorable, i. e., it can be colored in
k colors.

Problem 2.6.1. Find the chromatic numbers of the graphs in Fig. 2.24 and 2.26.

Problem 2.6.2. Compute the chromatic number of a bipartite non-planar graph,
X(G3), Fig. 2.29, and of any other bipartite graph.

Problem 2.6.3. Prove that a graph is bipartite iff it is 2-colorable, and iff it contains a
cycle of even length, i. e., containing an even number of edges.

Example 2.6.1. Consider, for instance, the graph G;; see Fig.2.11. We reproduce it
in Fig.2.27, and let the vertex marks mean different colors. Since the three vertices
V1, V,, V3 are pairwise adjacent, they cannot be colored in only two colors, three colors
are necessary for a triangle, and any two of these colors, except for v, can be used for
v,. Thus, x(G;) = 3.

2 4 6

Figure 2.27: The bipartite graph K5 5.

Problem 2.6.4. Find the chromatic number of the following spanning subgraph G,
of the graph G;.

Since G;; does not contain any triangle, but contains adjacent vertices, we need 2
colors, x(G;1) = 2. O

Problem 2.6.5. Prove that, for any graph G = (V, E, f)|, x(G) < |V]|.
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Problem 2.6.6. For what graphs G, the chromatic numbers are x(G) = 1? y(G) = 2?
Problem 2.6.7. Compute the chromatic numbers y(T) for the trees and for the forests.

Problem 2.6.8. Let K, be the complete graph with n vertices. Prove that y(K,,A) =
AA-1)(A-2)--- (A —n+1). We recall that the vertices of a graph are distinguishable,
hence when we permute the colors, we get another coloring of a graph.

We have shown above that the chromatic numbers y(G,;) and y(G,) are y(G;,) = 2
and x(G;) = 3, respectively. Moreover, we see that if a graph has at least two adjacent
vertices, its chromatic number is at least 2. A natural question is for what graphs the
chromatic number is 3? Of course, at the very least, for that to be valid, a graph must
contain a loop with 3 edges. And indeed, we can simplify the graph G, in Fig. 2.30,
which has y(G) = 3, since if any two of its three vertices are painted, the remaining
vertex cannot have the same color. We have proved here half of the next problem.

Problem 2.6.9. A graph G has the chromatic number y(G) = 1 iff the graph has no
edge, only any number of isolated vertices. O

The graphs above have the chromatic numbers 1,2 and 3. Can we continue, i. e.,
can we design a graph, such that its chromatic number is any positive integer? To begin
with, we construct a graph with y(G) = 4; we will need this example later on.

Problem 2.6.10. Design a graph with y(G) = 4.

Solution. Analyzing the triangle in Fig.2.30, we can try a cycle with 4 edges; see
Fig. 2.31. However, we immediately see that the chromatic number of a square is 2.

To prevent the “diagonal-opposite” vertices of a square to have the same color, we
connect them with a diagonal; see Fig. 2.32. The intersection of the diagonals is not a
vertex of the graph.

It is now clear how to proceed. One of the possible solutions is the complete graph
K, Fig. 2.25. O

Problem 2.6.11. The complete graph K; has 5 vertices, 5 edges and x(G) = 5. Does
there exist a graph with the same chromatic number, but with smaller order or size?

Problem 2.6.12. What is the chromatic number of the complete graph K, i.e., the
graph with n vertices, such that every two of them are connected with an edge?

However, the complete graph K,, with n > 5 is not planar. To compute the chro-
matic numbers of arbitrary graphs, the next formula, which immediately follows from
the inclusion—exclusion theorem, sometimes can be useful.

Definition 2.6.3. The number of various paintings of a graph G into A distinct colors
is denoted as 71(G, A). Thus, x(G) = min{n(G,A) : A >1}.
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Theorem 2.6.1. Let G be a graph of order p = |V| and of size ¢ = |E|. Fix a certain
numbering (ey, e,,.. ., e,) of the edges of G. Then

m(GA) = A =) ule) + ) plee) = ) uleg,eep) +- -
i i# i.j,k

where every sum is taken over all the different pairs, triples, etc., of indices, and
u(e;, e, ..., e) are the numbers of the colorings of the graph G, such that the end vertices
of every of the edges e, e;, ..., e, are painted the same color (each for every edge, but
may be different for different edges). O

The formula of Theorem 2.6.1 can be transformed if we introduce the quantity
p(s, ¢) to be the number of spanning subgraphs of G of size s, i. e., with s edges and
with ¢ connected components.’

Theorem 2.6.2.

(G, A) = Z(—l)sp(s, o)AC.

Proof. Consider k edgese; ,...,e; and a spanning subgraph G, of G, containing these
and only these k edges; let it have ¢ connected components. If we paint any connected
component of G, ina certain color, then the edges e; , ..., ¢; have the same painted end
points, and vice versa, for any painting the ends of the edges e; ,..., e; are pairwise
equally colored, then every connected component of G is colored in one color. If the
number of colorings is ¢ and the color A is fixed, then there are A€ paintings, and the
generic term of formula in Theorem 2.6.1 is

Y uleee) =y pl, X,

Ljk

where the sum is taken over all the non-zero p(k, c), and this formula implies the the-
orem directly. O

To apply Theorem 2.6.1, let us note that in that theorem the number c is a natural
number, thus, the function 77(G, A) is a polynomial in A. Moreover, every graph has at
least one connected component, thus, p(s,0) = 0, therefore, every term of this poly-
nomial contains a power of A, so that A is a divisor of this polynomial. Next, if s = 0,
then, for any c, p(0,c) = 1, thus, this polynomial starts with Afnax, where ¢, is the
largest possible value of the c.

Problem 2.6.13. Compute polynomials [71(G, 1) and the chromatic number y(G) for the
triangle G in Fig. 2.28.

5 We follow here [6, Chap. 6].
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Figure 2.28: This graph has the chromatic number x(G) = 3.

Solution. For the triangle G, the appropriate subgraphs are either a graph with three
isolated vertices without edges, thus, s = 0 and ¢ = 3, or three subgraphs with one
edge and one isolated vertex, thus, s = 1and ¢ = 2, or else three subgraphs with
two adjacent edges and one isolated vertex, thus, s = 2 and ¢ = 0. Thus, non-zero
coefficients are p(0,3) = 1, p(1,2) = 3, p(2,1) = 3, p(3,1) = 1, and finally, 7(G,A) =
A% =3A% + 31 -7, which can be factorized as (G, A) = A(A - 1)(A - 2). It follows from the
latter equation that the chromatic number of the triangle is y(G) = 3, since for smaller
natural numbers, 71(G,1) = 71(G,2) = 0. O

Problem 2.6.14. Compute the polynomials 77(G,A) and the chromatic numbers y(G)
for the graph in Fig. 2.29, for the tree G;; in Fig. 2.30, and for the square, Fig. 2.31.

Vl 61, W‘l V2
62, W2 63, W3
L ]
V3 94, W4 V4
Figure 2.29: Graph G;.
Vi 15)
€)W, €3, W3
L ]
V3 94, W4 V4

Figure 2.30: Graph G;.

1 2

Figure 2.31: This graph has x(G) = 2. Itis 2, and also 3 and 4 colorable.
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1 4

Figure 2.32: This graph has x(G) = 4.

Vl € V2

Figure 2.33: Graph G.

Thus, in general the chromatic numbers are unlimited — see, for instance, the exam-
ples in Fig. 2.31-2.33, i. e., for any natural number n there exists a graph, namely, the
complete graph K,,, such that its chromatic number y(K,,) = n. However, it may not be
the case for certain special classes of graphs. For instance, the famous problem of the
graph theory, the problem of four colors states: “The chromatic number of a connected
planar graph does not exceed 4.” This has been a hypothesis for about a century, un-
til it was proved by Kenneth Appel and Wolfgang Haken in 1976. Their proof started a
vivid discussion about the validity of computer-supported proofs, because even after
essential further simplification, the proof involves the massive computer item-by-item
examination of graphs. Without entering that discussion, we end this chapter by prov-
ing less precise result, which can be done without computers. We prove the five-colors
claim, but first consider a simpler problem.

Problem 2.6.15. Prove that any planar graph can be colored in at most 6 colors.

These statements deal with planar graphs. Moreover, all the following graphs in
this chapter are assumed to be connected and to have no parallel edges nor loops. In-
deed, our proofs can be carried through any connected component of a planar graph.
Also, if a planar graph has several edges, i. e., edges with the same end points, the
presence of the parallel edges or loops is irrelevant for the painting of the end points.

To prove the main result of this section, we need the following lemma.

Lemma 2.6.1. If G is a planar graph with p vertices, then it has at least one vertex v such
that its degree deg(v) < 5.

Proof. Consider any connected component of G, and assume that every vertex of that
component has the degree at least 6. Then, by Corollary 2.5.1, ¢ < 3p — 6, but by the
Handshaking Lemma 2.1.2, 2q = 6p, or g = 3p, implying the contradiction 3q < 3g - 6.
Hence, deg(v) < 5. O
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Theorem 2.6.3. A planar graph is 5-colorable, i. e., its vertices can be painted in at most
5 colors, so that any two adjacent vertices have different colors.

Proof. We do induction over the vertices over a connected graph (connected compo-
nent) without parallel edges or loops. The base of induction is clear, since any planar
graph with p < 5is colorable in at most 5 colors. Consider a graph G with p + 1 vertices
and remove a vertex v, such that by the previous Lemma 2.6.1, deg(v) < 5. Removing
the vertex v, we conclude that the graph G - v is 5-colorable. There are two options. If
the vertices adjacent to v are colored in at most 4 colors, say, the color ¢ is not used,
we use this color ¢, to paint v, and the theorem is proven.

Assume now that the vertex v is adjacent to exactly 5 vertices v;,v,,V3,V,, Vs,
painted in 5 different colors ¢;, ¢y, ¢3, ¢4, C5, and the edges ey, e, €5, €4, €5, connecting
the initial vertex v with these 5 vertices, make no triangle. Identifying these two edges
(which do not form a triangle) and their second vertices, different from v, we have
a new graph of smaller order, and properly painted. Thus, we accomplish a step of
induction in this case either. Finally, assume that the vertex v is again adjacent to
exactly 5 vertices v;,v,, v3,V,, V5, painted in 5 different colors c;, ¢,, ¢3, ¢4, C5, however,
the vertices v;,v,,v3,V,, V5 make a convex pentagon, containing the vertex v inside.
Due to planarity, the complete graph K; cannot occur here, thus, among the five
vertices vy, V,,V3,V,, Vs, there are two non-adjacent vertices. To finish the proof, we
delete the vortex v together with the incident edges, and glue (identify) these two
non-adjacent vertices. Let us note that the new graph has less than p edges, hence, at
most p vertices. The end of the proof in this case is also clear. O

Exercises 2.6.
Exercise 2.6.1. Prove thaty(G) < |V|.
Exercise 2.6.2. Prove that)((Kp,)l) =AA-1)A-2)---A-p+1).

Exercise 2.6.3. Prove that if v and u are non-adjacent vertices of a graph G, then
X(G,A) =x(G,_;,A) +X(Gy_;, A), where in (G, _,,A) an edge from y to z is added, and in
Gy=z the vertices y and z are identified.

Exercise 2.6.4. Prove that the chromatic function of a graph of degree p is a polyno-
mial of degree p with integer coefficients.

Exercise 2.6.5. Prove that the complete graph K, is a subgraph of a graph G, then
[x(K,,A) is a divisor of the chromatic polynomial [y (G, 7).



3 Hierarchical clustering and dendrogram graphs

Given a set of objects, the cluster analysis aims at splitting this set into separate groups
according to a certain prescribed measure of the proximity of the given objects. In this
chapter we apply the graph theory to develop simple clustering algorithms. These al-
gorithms essentially use the notion of a spanning tree, which was developed in Sec-
tion 2.3.

3.1 Introduction

In this section we introduce basic terminology of hierarchical cluster analysis.

Coffee-time browsing
- home.dei.polimi.it/matteucc/Clustering/tutorial_html/ (Clustering)

A student wants to put some money in mutual funds. To make the right choice, she
considers many different funds analyzing their characteristics such as long-term and
short-term performance, the manager’s philosophy of investing, administrative costs,
and other features. Comparing various funds, she can pick up a few funds that look
suitable for her goals. The things under consideration, like mutual funds, are called
objects or entities. Certain properties of objects, like performance or attitude to risk,
are called features, or variables, or attributes. However, if every object is characterized
by several variables, it is difficult to compare different objects, and we want to have a
kind of a “common denominator” to be able to measure the similarity of the objects.

We can separate all mutual funds under consideration into several groups con-
taining similar funds. Such a classification is useful in many occasions. For instance,
if the investor learns on a new fund within a short time after its inception, it is diffi-
cult, without any information, to make a prediction of the fund’s future performance
based on its own short history. However, if the student can include the fund in a group
of similar funds, she can apply the information on the whole group to each element
of the group and make more reliable predictions. Furthermore, if we have many sim-
ilar objects, it is often just impossible to study every one of them separately, but we
can study a representative of each group of similar objects and apply the information
found to every item.!

To perform such analysis, we must first separate the objects into smaller groups,
called clusters (overlapping groups are sometimes called clumps). This process, called
clustering, is an essential part of the cluster analysis. In this chapter we discuss some
basic concepts and algorithms of this subject. For more on the cluster analysis the
reader can consult, for example, [14, 17, 21, 28, 32, 33, 41].

1 This is similar to partitioning a set into the disjoint equivalence classes and studying the represen-
tatives of these classes instead of the entire original set.

https://doi.org/10.1515/9783110751185-003
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Obviously, the objects combined in a group should be similar, should have some
common features. In the cluster analysis, however, it is often more convenient to mea-
sure the dissimilarity rather than the similarity of various objects. The more two ob-
jects have in common, the less is their dissimilarity. Ultimately, the similarity of iden-
tical objects is infinite and their dissimilarity is zero. We do not discuss here how to
assign the (dis)similarity values to multivariate objects, because it essentially depends
upon particularities of a specific problem. We assume that the dissimilarities are as-
signed in advance—given a set of objects to be explored, we are provided with a table
of their dissimilarities, called the dissimilarity table or dissimilarity matrix.

Definition 3.1.1. A square symmetric matrix (table) with non-negative elements,
whose main diagonal contains only zeros, is called a dissimilarity matrix (table).

Example 3.1.1. Table 3.1 contains the average altitudes above the sea level of 15 states
in the U. S. If we are interested in the altitudes only, we can consider the absolute val-
ues of the differences between the altitudes as a measure of the dissimilarity between
two states. Even though this difference is not the real geographical distance, similar
quantities, subject to certain conditions, are called in mathematics distances or met-
rics. In this sense, the dissimilarity between Alabama and Delaware is 50 — 6 = 44,
the dissimilarity between Florida and Georgia is [10 — 60| = 50, and the dissimilarity
between Florida and Louisiana is 0—unlike the mathematical metric, the dissimilar-
ity of two different objects can be 0. Table 3.1 can be transformed into the dissimilarity
table, Table 3.2, where the main diagonal contains only zeros since each object is ab-
solutely similar to itself. We have completed only the upper triangle, because the table
is symmetrical with respect to the main diagonal.

Table 3.1: The rounded average altitudes above the sea level of 15 southern states in the U. S. (in
tens of feet).

AL  DE FL GA Ky LA MD MO MS NC sSC TN X VA wv

50 6 10 60 75 10 35 80 30 70 35 90 170 95 150

We can construct different clusterings depending upon the level of dissimilarity we are
willing to accept—this level is called a threshold value or just a threshold. That is, we
can form different partitions (clusterings) of the 15 states. For instance, the following
is a partition of these states into ten clusters with a threshold value of 5, that is, the
maximum distance between any two objects in each of the following clusters does not
exceed 5:

{DE, FL,LA}, {MD, MS, SC}, {AL}, {GA},
{NC}, {KY,MO}, {TN}, {VA}, {TX}, {WV}.
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Table 3.2: Dissimilarity table for the average altitudes.

AL DE FL GA KY LA MD MO MS NC SC TN X VA WwWv

AL 0 44 40 10 25 40 15 30 20 20 15 40 120 45 100

DE 0 4 54 69 4 29 74 24 64 29 84 164 89 144
FL 0 50 65 0 25 70 20 60 25 80 169 85 140
GA 0 15 50 25 20 30 10 25 30 110 35 90
KY 0 65 40 5 45 5 40 15 95 20 75
LA 0 25 70 20 60 25 80 160 85 140
MD 0 45 5 35 0 55 135 60 115
Ml 0 50 40 5 60 140 65 120
Mo 0 10 45 10 90 15 70
NC 0 35 20 100 25 80
SC 0 55 135 60 115
TN 0 80 5 60
™ 0 75 20
VA 0 55
Wwv 0

We can also set up another clustering with the same dissimilarity level of 5 but now
with nine clusters,

{DE,FL,LA}, {MD,MS, SC}, {AL}, {GA},
{NC,KY}, {MO}, {TN, VA}, {TX}, {WV}.

We see that in general this procedure is not unique. If we select bigger threshold level
of 10, then the corresponding clustering may be the following one, containing just
eight clusters,

{DE,FL,LA}, {MD,MS, SC}, {AL, GA},
{NC,KY, MO}, {TN}, {VA}, {TX}, {WV}.

It is clear also and we see that in the example above that, if we increase the threshold
value, some clusters may merge (amalgamate) into bigger ones.

Compare these clusterings. While deriving the second clustering, we had to relo-
cate some objects, and the group {TN, VA} of the second clustering does not belong
completely to any cluster in the third clustering. On the other hand, every cluster of
the first clustering is contained completely in some cluster of the third one. A process
that makes a series of consecutive clusters such that every cluster of the preceding
level is a subset of a cluster on the next level, is called the hierarchical clustering. We
begin with the completely disjoint clustering, where every object forms its own single-
element cluster. Then step by step, we merge (amalgamate) two or more clusters with
the smallest dissimilarity into larger ones, until we reach a threshold value. Such al-
gorithms are called agglomerative.
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We can also proceed in the opposite direction. Namely, we can depart from a con-
joint clustering, when the initial cluster contains all the objects under consideration,
and split it repeatedly into smaller groups, until we reach either the threshold value
or the completely disjoint clustering. Such algorithms are called divisive.

Problems, involving classification of real data, cannot be reduced only to applying
a mathematical clustering algorithm. Before that, the data must be collected and con-
sistently presented, and the dissimilarity values must be assigned. After building the
clusters, they must be validated and assessed. The results have to be properly inter-
preted. All these are crucial issues, because any algorithm generates some clustering,
but without further considerations we cannot conclude whether the clusters derived
reflect the real structure of data or this is just an artifact of the algorithm. We leave out
all these issues along with the problem of computer implementation.

In this chapter we consider only agglomerative hierarchical algorithms for cluster-
ing discrete sets of data. These algorithms are based on the properties of the graph rep-
resenting the initial collection of objects. In Section 3.2, using a small model example,
we develop a simple single-link hierarchical clustering algorithm. It is called single-
link, because at every step we connect two existing clusters by a single edge (link) of
the underlying graph. Section 3.3 is devoted to Hubert's & single-link algorithm. We
discuss relations of the single-link hierarchical clustering algorithm with minimum
spanning trees. Section 3.4 is devoted to another hierarchical clustering algorithm—
Hubert’s complete-link algorithm. In Section 3.5 we apply the single-link algorithm to
a more realistic problem. We also validate the clustering derived in this example, by
making use of Pearson’s coefficient of correlation, thus demonstrating the quality of
the clustering developed.

Exercises 3.1.

Exercise 3.1.1. Construct other clusterings of these 15 states (Table 3.1) with the same
threshold levels of 10 or 5.

Exercise 3.1.2. Find a clustering of these 15 states corresponding to the threshold
value 1; corresponding to the threshold value of 164.

Exercise 3.1.3. Construct clusterings of these 15 states consisting of four or five clus-
ters. Find corresponding threshold values.

Exercise 3.1.4. Find a dissimilarity level that generates the unique clustering in this
problem.

3.2 Model example

Here we consider a simple but not simplistic model example to introduce a classical
agglomerative algorithm of hierarchical clustering.
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Coffee-time browsing
- http://www.plantbio.ohiou.edu/instruct/multivariate/Week7Lectures.PDF
(Cluster Analysis)

There are eight cities, c;, c5, . .., cg, in a region. It is necessary to connect all of them by
highways. It is possible to build a highway connecting every pair of cities. In the graph
theory terms, such a road network can be described as the complete graph Kg. This
network contains C(8,2) = 28 highways and is rather expensive. On the other hand, it
is possible to link every city with only one of the other cities, thus having a minimal
number of roads built. Even though it is less expensive to construct, this network,
which can be modeled by a spanning tree with 8 vertices and, therefore, with 7 edges,
may be inconvenient for the commuters, who will have to waste their time and fuel,
because many pairs of the cities do not have a direct connection.

Thus, a local mathematician has offered an intermediate approach, namely, to
split all the cities into several groups-clusters. The cities within each cluster are to
be connected completely, but any two different clusters should be connected by only
one road. A cluster should, obviously, include the cities that are close to each other.
However, the closeness can be measured in many various ways. A reasonable way to
measure the closeness is to use the number of commuters between the cities.

The information about the average number of commuters in both directions be-
tween the cities, in thousands of people per day, is contained in Table 3.3. For instance,
the amounts of commuters are 24 between the cities ¢; and c,, 2 between c¢; and ¢ and
6 between c, and c¢. Thus, there is a large flow of commuters between ¢, and c,—in this
sense these two cities are close, even though geographically they may be located far
away from one another. Thus, they are to be considered similar and should be placed
in one cluster. Yet, ¢, is distant from them. However, if we use these quantities, 24,
2, 6, etc., as a measure of closeness (a generalized distance), then the similarity be-
tween nearby cities may be greater than the similarity between the distant ones. In
this problem and, as we have already mentioned, in clustering analysis generally, it is
often more suitable to use the dissimilarities of objects rather than their similarities.
We can always convert the commuter data into dissimilarity values, for example, by
taking inverses or subtracting from some maximum value.

We consider the total amount of commuters in both directions, so Table 3.3 is sym-
metrical with respect to the main diagonal and we filled in only the upper triangle
of the table. Moreover, since we want to start with a simple example, all the entries
are different (the table contains no ties) and they are all natural numbers from 1 to
C(8,2) = 28. The mathematician must now solve the problem of combining the cities
into clusters according to this dissimilarity matrix.

We first develop a simple intuitive algorithm, which starts with 1-element clusters
and step-by-step combines them until we reach some goal, which should be set in
advance. At the initial step, the algorithm treats each given object as a single-element
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Table 3.3: The dissimilarity table for the model example.

Cq Cy C3 Cy Cs Ce (4] Cg
Cy 0 5 10 7 22 27 25 13
[ 0 8 12 28 23 17 6
e 0 1 9 19 3 26
C 0 4 14 2 21
cs 0 11 16 18
¢ 0 15 20
& 0 24
Cg 0

cluster. The set of these clusters is called the clustering of level zero. If we use the graph-
theory language, we can depict this clustering as a graph having only isolated vertices,
with no edge. Then, at every step, the algorithm uses only one edge to merge, agglom-
erate two closest (that is, with the smallest dissimilarity) clusters into a new cluster
of the next level. Such an edge connecting two clusters of the same level into a clus-
ter of the next level is called a link. That is why this and similar procedures are called
single-link algorithms or single linkage.

We begin with a descriptive version of an agglomerative single-link clustering al-
gorithm, then apply it to the dissimilarity table above and give a more formal treat-
ment of the algorithm. In Section 3.3 we present a version of the algorithm known as
Hubert’s single-link algorithm [31]. This algorithm is based on the notion of spanning
trees.

Denote the consecutive clusterings by boldface capital letters with one index, C,,
C,, C,, and so forth. The italic capital letters with double indices, C; ;, denote clusters—
the firstindex, k, indicates the level of clustering and the second index, I, stands for the
number of this particular cluster in the clustering of the k™ level. Thus, C3, denotes the
fourth cluster in the third-level clustering C;. Now we build clusterings for the model
example. In our notations, {c;, ¢;} is a pair (2-element set) comprising the ith city c; and
jth city ¢;, and a number d(c;, ¢;), or d(i, j) for short, at the crossing of the ith row and
jth column of the dissimilarity matrix, stands for the dissimilarity of these two cities;
due to the symmetry, d(i,j) = d(j,i). First, we rearrange all pairs of the cities in the
ascending order of their dissimilarities—see Table 3.4.

At the initial step, we derive a disjoint clustering, such that each city forms its own
cluster containing only one element. Thus, the clustering of level zero is

Co = {C0,1>C0,2-Co,3>Co.4>Co,5Co,6>Co,7- Co 8}

whereCy; = {¢;},i = 1,2,..., 8. Then at every step we must determine the dissimilarities
between all the existing clusters, both new and old.
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Table 3.4: Dissimilarity table, Table 3.3, for the model example rearranged in the ascending order of
the dissimilarities.

Pair {ci» ¢} Dissimilarity d(i,j) = Sq(i, )
{c3, ¢4} d(3,4)=1
{cs ¢} d4,7) =
{c3,¢7} d3,7)=3
{cs> €5} d(4,5) =4
{1, 65} d(1,2) =5
{cy,ca} d(2,8)=6
{cq, ¢4} d(1,4)=7
{cy, €3} d2,3)=8
{cs, 5} d@3,5)=9
{ci,¢3} d(1,3) =10
{cs, ¢} d(5,6) =11
{ca, €4} d(2,4) =12
{cq,cg} d(1,8) =13
{c4> c6} d(4,6) = 14
{ce> 7} d6,7) =15
{cs,¢7} d(5,7) =16
{cp,¢7} d2,7) =17
{cs5, cg} d(5,8) = 18
{c3, c6} d(3,6) =19
{ce> Cg} d(6,8) = 20
{cy> cs} d(4,8) =21
{cq,c5} d(1,5) =22
{ca, ¢} d(2,6) =23
{cs,cg} d(7,8) =24
{cq,¢7} d(1,7) = 25
{c3, g} d(3,8) =26
{cq,c6} d(1,6) =27
{cy,c5} d(2,5) =28

Definition 3.2.1. The dissimilarity diss(Cy;,Cy;) between two clusters of level zero is
defined as the dissimilarity between the corresponding objects, that is,

diss(Co Coy) = d(iyj)-

It is helpful to visualize the process of clustering by drawing graphs of special
kind, called threshold graphs.

Definition 3.2.2. Given a dissimilarity nxn matrix and a threshold value A, the thresh-
old graph G(A) is a simple weighted graph with n vertices corresponding to n enti-
ties under consideration, such that two vertices v; and v; are adjacent if and only if
d(i,j) < A. The weight of the edge e;; connecting two vertices v; and v; is the given
dissimilarity d(i, j).
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Thus if A = 0, two vertices are adjacent in G(0) if and only if their dissimilarity is
zero; if there is no such a pair of vertices, G(0) contains only n isolated vertices and
no edge. On the other hand, if the threshold value A is greater than or equal to the
largest entry of the dissimilarity matrix, then the threshold graph is (isomorphic to)
the complete graph K,,, and we denote it by G(co).

G e e O

¢ @ o (s

Figure 3.1: The threshold graph G(0) for the model example. It corresponds to the Cy-clustering.

The smallest dissimilarity in the problem is d(3,4) = 1. Thus, if the threshold value
(an acceptable level of dissimilarity) is less than 1, we cannot combine any two cities
in one cluster and have to stop here. In terms of our model example, this means that
no cluster has an infrastructure, and we have to build a road between all the pairs of
cities (Figure 3.2).

Suppose next that the threshold is at least 1, A > 1. Then we have to consider all
28 pairwise unions

CO,l U Co)z, CO,I U Co)g, ey CO,I U Co)g,

Co2UCp3s...,CpaUChgs...»

CO,7 U Co)g.

In the corresponding complete graph (the same Figure 3.2), its 28 edges, having the
weights d(1,2),...,d(7,8) and connecting the pairs of vertices, respectively,

{cr, b e 63}, e cgl {6o, 630, .0 {6q, C8 )

correspond to these 28 pairwise unions.
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d(2,3)=8

Cg G
d(7,8)=24 d(3,4)=1

C7 C4

Figure 3.2: The complete threshold graph G(co) for the model example; only a few edges and dissim-
ilarities are shown.

Since the lowest weight is d(c3, ¢,) = 1, the clusters Cy 3 and Cy , have the smallest dis-
similarity diss(Cy3,Cq4) = d(c3,¢,) = 1. In terms of our problem they have the largest
flow of commuters between them. Thus, we have to connect them first, and we amal-
gamate these two clusters of level zero in the cluster C; ; of the first level. All the other
clusters of level zero automatically become clusters of the first level. This way, we get
the first-level clustering

C1 = {C1,1> Cl,2> 01,3’ 01,4’ C1,5> Cl,6> 01,7}

consisting of one 2-element cluster C; ; = Cq3UCy 4 = {c3,¢,} and six I-element clusters
C1i = Coj1 = {¢iq} fori = 2,3and C;; = Cyyyq = {¢j4q} fOri = 4,5,6,7. This clustering
is shown in Fig. 3.3, where the connected component with the vertices {cs, c,} corre-
sponds to the cluster Cy ;.

To complete this step of the algorithm, we must define the dissimilarities between
new clusters. The dissimilarities between the clustersC, ,, ..., C; ; are the same as those
between the corresponding “old” clusters of level zero. The dissimilarity between C;
and any cluster {¢;},i = 1,2,5,6,7, 8, is, by Definition 3.2.1, the smaller of d(c;, ¢;) and
d(c,, ¢;). For instance,

diSS(Cl,l»ClA) = min{d(C3, Cs); d(C4, CE)} = min{9; 4} =4,

It should be repeated that while deriving C; from C,, we have used only one link—
the threshold graph corresponding to C; contains just one more edge than the graph
corresponding to C,. All the 28 pairs of vertices

{Co,ly CO)Z}) e {C0)7> CO,S})
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(ST o O

Cs @ G

& o Cy

¢ @ e (s

Figure 3.3: The threshold graph G(1) corresponds to the threshold levelA = 1and the clustering
C,—only two vertices are connected.

each pair taken together with the incident edge, represent connected two-vertex sub-
graphs of the graph in Fig. 3.2—we have selected among them a subgraph with the
minimal weight and linked two vertices of this subgraph into a cluster. Again in terms
of our model example, this means that we have to build a road between c; and c,.

Then we have to connect the other cities with either c; or ¢,, but not with both,
using roads between clusters. Given two clusters, C; ; = {c3,¢,} and Cy; = {¢;_1},1 = 2,3,
and C;; = {¢;1}, 1 = 4,5,6,7, the decision regarding which city, c3 or ¢,, should be
connected with ¢;, is based on the dissimilarity between the clusters C;; and C, ;. For
example, since

diSS(Cl’l; 61,4) = min{d(C3, C5); d(clp CS)} = d(clp CS) =4,

the cluster {c;} must be connected with the vertex c,. The corresponding road map
may look like the one in Fig. 3.4.

If the threshold A = 1, we should stop here and the road map is given by the span-
ning tree in Fig. 3.4. However, if we can accept a larger threshold, we are to continue.
To build a second-level clustering, we proceed in the same way. Namely, we consider
all pairs of the first-level clusters and look for a connecting link with the smallest dis-
similarity.

The edge {c;, c,}, which had been already utilized, cannot be used again. Among
the unused edges, the smallest dissimilarity is d(c,, c;) = 2, and we form the second-
level cluster C,; as the union of the two first-level clusters containing the cities ¢, and
¢;. To make this cluster, we have again used a single link—the edge {c,, c;}. All the
other first-level clusters move into the second-level clustering C, unchanged, just be-
ing renumbered (Fig. 3.5):

Cy =1{C21:C22:C23:C24:Co 5. Co6}

Whel‘e Cz’l = Cl,l U Cl,6 = {CB’ C4, C7}, Cz)l‘ = Cl,i’i = 2, 3, 4, 5, Ell’ld CZ,6 = 01)7.
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%)

C3

G @ Cy

Ce Cs
Figure 3.4: A road map corresponding to the first-level clustering C;, =

{C11,C12,C13,C14,Ca5,C1 6, C 7}

G o o O

C8 [ ] C3

G @ Cy

C @ ® G
Figure 3.5: The threshold graph G(2) corresponds to the second-level clustering C,—one more edge

is added to G(1); C, consists of one 3-element cluster {c5, ¢,, ¢;} and five 1-element clusters {c,},
{ca}, {es}, {cg}, and {cg}.

We can express this in terms of connected subgraphs. In addition to the same two-
vertex subgraphs with vertices other than c; and c,, which were considered before,
we have to look for connected subgraphs with three vertices. Namely, we consider the
subgraphs, which contain the two vertices c; and c¢,, the incident edge of these two
vertices, another vertex, and an edge connecting the latter with either c¢; or ¢,. The
minimal dissimilarity is now S;(4,7) = 2 and we have to connect clusters {c;} and
{cs,c,} in a cluster of the second level.

This clustering corresponds to the threshold value A = 2 and is shown in Fig. 3.5.
It is worth noting that the dissimilarity d(3,7) between the objects c; and c; in the
cluster C,; is greater than 2, but these vertices can be connected within the cluster
by the edges {c3, c,} and {c,, c;}, such that their weights do not exceed the threshold
value. This is an important feature of the single-link algorithms—for any two objects x
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and y in a cluster there always exists a sequence of objects in this cluster connecting
x and y, such that the dissimilarity of any two neighbors in this sequence does not
exceed the threshold value, even though the dissimilarity of x and y may be greater
than the threshold.

We continue the construction of the hierarchical clustering for the model example.
Suppose that we can accept a value of the threshold greater than 2. The next unused
dissimilarity d(c3, c;) gives nothing new, because the cities c; and ¢; have already been
linked in a cluster. Therefore, d(c;, c;) does not generate the next clustering (Fig. 3.6).

(ST o O

Cs @ G

¢ @ e G

Figure 3.6: The threshold graph G(3) does not generate a new clustering.

Thus, we skip d(3,7) and use the next bigger dissimilarity d(4,5) = 4, generating the
next clustering

C3 = {{CB) Clp CS’ C7}’ {Cl}) {C2}7 {CG}’ {CS}}

which corresponds to the threshold value A = 4. Five sets in C; represent all five clus-
ters of the third level (Fig.3.7). Again, the dissimilarity between some vertices in the
first cluster C;; is greater than 4, but for any two vertices there exists a connecting
path such that every edge in the path has a weight (dissimilarity) of 4 or less. In for-
mal terms, we consider all the unions C, , U C,, formed by a single edge and look for
the link with the smallest weight, which generates a new cluster.

The next smallest weight to use is d(1,2) = 5, and if we are willing to continue
and use the value of the threshold A = 5, we have to merge the cities {c;} and {c,} ina
cluster. Thus, we derive the next clustering (Fig. 3.8):

C,= {64,1,04,2,043,64,4} = {{C1)C2}> {c3, ¢4, C55 05}, {c6)s {Cg}}-

A road map corresponding to the clustering C,, is shown in Fig. 3.9.
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Cs @ G

¢ @ Cs

Figure 3.7: The threshold graph G(4) contains one new edge {c,, c5}. It corresponds to Cs-clustering
containing one 4-element cluster {cs, ¢4, ¢5, c;} and four 1-element ones {c,}, {c,}, {cg}, {cg}.

G .—.CZ

¢ @ Cs

Figure 3.8: The threshold graph G(5) generates the fourth-level clustering C, consisting of one
4-element cluster {c3, ¢,, C5, ¢/}, one 2-element cluster {cy, ¢,}, and two 1-element clusters {c¢} and
{csl.

In this way we construct the hierarchy of consecutive clusterings, corresponding to
increasing values of the threshold. Now it is the turn of d(2, 8) = 6, and the fifth-level
clustering is (Fig. 3.10)

CS = {{Cl» €y, Cgl, (€3, €4 C5, €7}, {Cé}}'

The next unused edge with the lowest weight is {c;, c,} with d(1,4) = 7, and we
come up with the clustering (Fig. 3.11)

Co = {{c1, €2, 03, €45 G5, €7, g (e}
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C3

Cg Cy
Figure 3.9: The road map corresponding to the clustering C,. The clusters C, ; and C, , are connected

by the edge {cy, ¢,}, for this edge has the smallest dissimilarity among all the edges connecting the
two clusters.

Cg G

¢ @ Cs

Figure 3.10: The threshold graph G(6) generates the fifth-level clustering Cs, which contains one
4-element cluster {c3, ¢,, C5, ¢}, one 3-element cluster {c;, ¢, cg}, and a 1-element cluster {c4}.

The edges with weights 8,9, and 10 do not generate new clusters. Finally, by making
use of the edge {cs, ¢} with the weight d(5,6) = 11, we get the one-cluster clustering
C; = {C71}, where C;; = {¢}, ¢y, C3, ¢4, G5, Cg, €7, Cg}—see Fig. 3.12; if all the objects are
merged in one cluster, the clustering is called conjoint.

It is worth noting that, in terms of our model, both C, and C; result in the road
network shown in Fig. 3.2

Problem 3.2.1. Draw road maps corresponding to all other levels of clustering, C,, Cs,
C;, C;, in the model example.
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C3

Cc @ Cs
Figure 3.11: The threshold graph G(7) generates the sixth-level clustering C4, which contains a
7-element cluster {¢;, ¢,, €3, ¢4, C5, €7, Cg} and a 1-element cluster {c4}.

&1 G

C3
Cs

C7 C4

Co Cs

Figure 3.12: The threshold graph G(11); it generates the conjoint clustering C; = {C;1}.

Analyzing our discussion of the model example, we see that the algorithm above can
be stated in the following more formal way suitable for computer realization; we have
presented it in the pseudocode form. In what follows we use the notation

a:=b,

which means that the value b must be assigned to the variable a, or to put it another
way, the current value of the variable a must be replaced by the value of b. For exam-
ple, if a = 5and b = 0, then after the command a := b is executed, the valuea = 0
while the value b remains unchanged, b = 0; the initial value of a, namely, a = 5 is
deleted.
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Problem 3.2.2. Starting with the initial value m = 2, find the value of the variable m
after repeating twice the command m := m - 1.

Agglomerative single-link algorithm

Given a set of n objects X = {x3,X,,...,X,}, their dissimilarity table, and a threshold

value A > 0.

1. Rearrange the dissimilarity table in ascending order.

2. Setm = 0 and make a completely disjoint clustering of zero level Cy = {Cy;,Cp
...»Con}> With 1-element clusters Cy; = {x;},i = 1,...,n.

3. Setm :=m+1and consider the first unused entry, say d(x, x;) in the dissimilarity
table. If d(x;, x;) > A, then stop and return the last derived clustering. Otherwise,
there are two possibilities.

3-A The 2-element set {x;, x;} is a subset of an existing cluster. Then skip d(x, x;)
and return to step 3, that is, increase m by 1.

3-B The objects x; and x; belong to different existing clusters, say x; € C,,_; , and
X; € Cpp_1p>a # b. Form a cluster of the mth level as the union C,,,; = Cjp_ 4 U
Cm-1,p» Tenumber all the other clusters of the (m - 1)th level to the mth level,
without changing their elements, and return to step 3. O

Remark 3.2.1. The conjoint clustering can occur before we achieve the threshold level
and as we have seen in the example, not every threshold graph generates a new clus-
tering.

Remark 3.2.2. Since we look only for disjoint clusters, a clustering of any level is just
a partition of the initial set of objects. Therefore, our algorithm generates a family of
nested partitions of the given set. Moreover, we know (see Problems 1.1.18-1.1.19) that
every partition of a set generates an equivalence relation on this set and vice versa.
This relationship is dealt with in Exercise 3.2.3.

Remark 3.2.3. Part 3-A of this algorithm is quite analogues to the condition of not
forming cycles in Part 2 of Kruskal’s algorithm (Section 2.3) of constructing the mini-
mum spanning trees.

Exercises 3.2.

Exercise 3.2.1. Given the initial value of the variable k = 1, what is the value of k after
the command k := (—1)" is executed 3 times? Four times?

Exercise 3.2.2. Prove that, given n objects, n levels of clustering C,...,C,_; exist,
where the last one is the conjoint clustering. Moreover, as far as the dissimilarity ta-
ble contains n(n — 1)/2 entries, there are no more than 1 + n(n — 1)/2 threshold graphs
(exactly 1 + n(n — 1)/2 if there are no ties).
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Exercise 3.2.3. Describe explicitly the equivalence relations corresponding to the par-
titions of the set C = {c;, ¢,, €3, ¢4, Cs, Cg, €7, Cg} generated by the clusterings C, ..., C;
in the model example.

Exercise 3.2.4. Construct dissimilarity tables for a set with n elements such that there
are exactly 2, or exactly 3, or exactly 1 + n(n — 1)/2 threshold graphs.

Exercise 3.2.5. Change the {c;,c;} entry in Table 3.3 to 2 and the {c,, cg} entry to 7,
respectively, so that a new table contains ties. Apply the algorithm of this section to this
new dissimilarity table and compare the resulting clusterings with the ones derived
above.

Exercise 3.2.6. Using the algorithm of this section, construct all consecutive cluster-
ings of the set X = {xy,x,,...x¢} with the dissimilarity table, Table 3.5. Which level of
clustering corresponds to the threshold level of 3? Of 2?

Table 3.5: The dissimilarity table for Exercise 3.2.6.

Xy X X3 X, X5 Xg
X1 0 6 8 3 4 8
X, 0 2 4 1 5
X3 0 6 2 3
Xy 0 9 2
Xs 0 4
Xg 0

3.3 Hubert’s single-link algorithm

In this and the following sections we consider two well-known algorithms by Hubert—
the single-link and complete-link agglomerative clustering algorithms.

Coffee-time browsing
- www.psych.uiuc.edu/people/faculty/hubert.html (L. Hubert)

In the preceding section we represented the objects and their dissimilarities by
weighted graphs. Since the dissimilarity was defined for each pair of objects, these
graphs are complete. Therefore each cluster, as a set of vertices, is represented by a
subgraph of the complete graph corresponding to the initial set of objects. Vice versa,
each connected subgraph of this complete graph can be viewed as a cluster consisting
of the vertices of this subgraph. Therefore, we will freely interchange the language
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of objects and their collections (clusters) on one hand, and the language of vertices,
graphs, and subgraphs, on the other hand.

Hubert [31] gave versions of a single-link algorithm and a complete-link algorithm
based on the concept of a threshold graph. Hubert’s single-link algorithm leads to the
same clustering as the agglomerative single-link algorithm of the preceding section.
In this section we present Hubert’s single-link algorithm in more formal pseudocode
form. First of all, more notation is in order.

As before, we denote clustering of the mth level by

Cm = {Cm,l’ Cm‘z, .o .,Cm’nm}, m= O, 1, 2,. ey

where n,,, stands for the number of clusters contained in the clustering C,, of mth level.
In particular, n, = n. After C,,, has been derived, we consider all %nm(nm - 1) pairwise
unions of these clusters

Cm,a U Cm,b

where 1 < a,b < n(m),a # b. The union C,, , U C,, , contains certain objects, say, the
elements x;, ..., ;. Given the union Cy, , U Cp,, for fixed a and b,a # b, we can form
several connected subgraphs of the threshold graph G(A) spanned by these vertices
X;, ..., X;j. Namely, to derive such a subgraph from two clusters C,, , and C,,,, we con-
sider all possible connections of a vertex from C,, , with a vertex from C,, ;, using only
one edge, called single link.

For the clusters C,, , and C,, ;, of mth level, denote the smallest dissimilarity be-
tween a vertex in Cp,, , and a vertex in Cp,, ,, by

Sp(a, b) = min{d(x;, X;) | X; € Cpg>X; € Cop}s

clearly, this function is symmetric, thatis, S, (a, b) = S,,,(b, a). If the initial dissimilarity
matrix contains ties, there may be several edges with the minimal weight, any one of
those can be selected. At every step we merge two existing clusters, thus decreasing
the number of clusters by 1.

The function S,;, = S,,(a,b) is defined on all pairs of clusters {Cy, 4,Cp,;} of the
mth level. Since we only consider finite sets, this function attains its minimum value
on a certain pair of clusters, say, C,, , and Cp, ;. Let us denote this minimum value of
the function S, (a, b) over all pairs of indices {a, b} by min, ,{S,,(a, b)} = S,;(p, ). The
subscripts p = p(m) and g = g(m) depend on m, but suppressing this dependence in
the notation does not lead to any ambiguity. We use the function S,,(a, b) to present
Hubert’s single-link algorithm.

Hubert’s single-link algorithm
Given a set of n objects X = {x;,x,,...,x,}, the dissimilarity table, and a threshold
value A.
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Set m = 0 and form the disjoint clustering of zero level,
CO = {Co’l, Co)z, ceey Co)n}

consisting of n 1-element clusters Cy ) = {x}},k = 1,...,n. Define the function S,
and the dissimilarities between the clusters of level zero by

So(a, b) = diss(Co 4, Co p) = d(Xg> Xp)-
Find the minimum value Sg‘in of the function S, (a, b) over all the pairs (a, b)

S5™ = min So(a, b) = So(p.4),
a,

attained at the pair (p, g). This pair indicates the clusters of zeroth level, C; , and
Coqs 1O be merged in a cluster of the first level,

Cl,l = CO,p U Co’p.

All the other zeroth-level clusters remain the same, we only have to renumber
them,

Ciy=Cos» r=22,s+p,Ss#4q.
Set m := m + 1, calculate the values
Sm(a,b) = min{d(x;, X;) | X; € Cpy_1.0> Xj € Cpy_y p}
for each pair of indices {a, b}, a + b, and find the minimum value

smin _ min{S,(a b)} = $,(p,q)

where (p, q) is a pair (a, b) at which the minimum is attained. To build the next
clustering C,,, we merge those two clusters C,,,_; , and Cp,_ 4, Whose second indices
are p and q from above, into the cluster

Cm,l = Cm—l,p U Cm—l,p

by making use of an edge with the weight SEi“ = Sn(p, ). If there are ties, that
is, there exist several edges with the same weight d,;,(p, q), we can use either of
them. All the other clusters of the level m—1become the clusters of level m without
any change, after just renumbering.

Update the dissimilarity table as follows. The dissimilarity between every two
“0ld” clusters (promoted from the preceding level) remains the same. The dissim-
ilarity between C,,; and any cluster C,,,, = Cpy_15,S # D, S # q, is the smaller of

Sm—l(p> r) = diSS(Cm,Lp, Cm—l,r)
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and
Sm-1(¢,1) = diss(Cpr_1,4>Cm-1,)>
thus, forany r > 1,
diss(Cp1» Cny) = min{S,, (0, 7); Spp1(q, M}

4. Return to step 2and continue until we reach the threshold value A or all the objects
are merged into one conjoint cluster, whichever occurs first. O

Remark 3.3.1. Thus to find the next clustering, it is necessary to calculate the double
minimum

S™MR(p, q) = n(}ibn{Sm(a, b)} = Izlibn{min{d(xi,xj) | X; € Cyyas Xj € Cp -

We illustrate this algorithm using the model example from the preceding section,
thus in the rest of this section we denote the objects by c;. The algorithm starts with
single-element clusters corresponding to each city ¢y, ..., cg. That is, we set m = 0 and
form the disjoint clustering

CO = {Co’l, Co)z, ceey CO,H}

where Cy = {c,}, k = 1,..., 8. This clustering corresponds to the subgraph of the graph
G(co) with no edge—every vertex is an isolated one. The function Sy(a, b) is shown in
the right column of Table 3.4, its minimum value is Sf)“i“ =5,(3,4) = 1.

Now, set m = 0 + 1 = 1. To every union Cy , U Cyj, there corresponds the unique
connected subgraph of G(co), this subgraph contains two vertices and their incident
edge. Therefore, at this step dp, = d(c3,¢,),p = 3, = 4, SS™ = Sy(p,q) = 1, and we
have to join the clusters Cy 3 and C , in a cluster C; ; of the first level. Then we upgrade
all other zeroth-level clusters to the first level, and update the dissimilarity table. For

example, since C;, = {¢}, we get

= min{diss(Cy;,Co3); diss(Co 1,Co4)}
= min{d(cy, ¢3); d(c;, ¢4)} = min{10;7} = 7.

These computations lead to the updated dissimilarity table of the first level (Table 3.6)
and to the same first level clustering as in Section 3.2, see Fig. 3.3,

C1 = {C1,1> CI,Z) 61,3) Cl,zp C1,5) Cl,6> 61,7}

where C; = Co3UCoy = {C3,¢4}, 1 = Co g = {ciq} fori=2,3and Cy; = Co 41 = {Cii1}
fori=4,5,6,7.
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Table 3.6: The updated dissimilarity table of the first level.

diss(Cy4,C1p)

diss(Cy,1,C16) = 2

diss(Cy1,C14) = 4

diss(Cy5,C13) =5
diss(Cy3,C17) =6
diss(Cy1,C15) =7
diss(Cy1,C13) = 8

diss(Cy4,Cq5) = 11
diss(Cy5,C17) =13
diss(Cy1,Cq5) = 14
diss(Cy5,C16) = 15
diss(Cy 4,C16) = 16
diss(Cy3,C16) = 17
diss(Cy4,Cq17) = 18
diss(Cy 5,Cq17) = 20
diss(Cy1,Cq7) = 21
diss(Cy2,C14) = 22
diss(Cy3,C15) = 23
diss(Cy6,C17) = 24
diss(Cy,2,C16) = 25
diss(Cy 5,Cq5) = 27
diss(C;3,C14) = 28

It is worth noting that after all these discussions, we certainly have a clear geomet-
rical picture of this procedure, but we do not need it for the computations; Hubert’s
algorithm works analytically, without any appeal to graphs.

Now, set m = 1 + 1 = 2. From Table 3.6, Sini“ = 5,(1,6) = 2, therefore, at this level
p =1,q = 6, and we have to merge the clusters C;; = {c3,¢,} and C; ¢ = {c;} in the first
cluster of the second level,

Cy1 =C11 UCy6 = {c3, €4 C7}-

We renumber all the other first level clusters as clusters of the second level and use the
same algorithm to calculate the dissimilarities between new clusters; see Table 3.7. We
reiterate that again all considerations based on the graph theory, in particular, on the
spanning trees, were left behind the scene—see Section 3.2. The whole procedure is
based completely on the dissimilarity tables and is convenient for a computer realiza-
tion.

At the next step we set m = 3. In the graph theory terms of the previous section, we
looked at the threshold graph G(2), which contained one 3-element and five 1-element
clusters. The smallest unused dissimilarity was d(3, 7) = 3, but adding the correspond-
ing edge to G(2) did not create a new cluster. Therefore, we had to leave out d(3,7) and
proceed on to d(4,5) = 4. However, now we are using the purely analytical Hubert’s
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Table 3.7: The updated dissimilarity table of the second level.

diss(Cy 4, Cap)

diss(Cy1,Crs) = 4
diss(Cy,Cr3) =5
diss(Cy3,Cp6) = 6
diss(Cy1,Crp) =7
diss(C;,1,Cy3) = 8
diss(Cy4,Cy5) = 11
diss(C;5,Cp6) = 13
diss(Cy1,Cy5) = 14
diss(Cy4,Cr6) = 18
diss(Cy5,Cy6) = 20
diss(Cy1,Cr6) = 21
diss(Cy5,Ca ) = 22
diss(Cy3,Cy5) = 23
diss(C;2,Cy5) = 27
diss(Cy3,Cy4) = 28

algorithm and are to browse Table 3.7. From that table, sgﬁn = S,(1,4) = 4, therefore, at
thislevel p = 1, q = 4, and we have to merge the clusters C,; = {c3, ¢, ¢;}and C, , = {cs}
in the first cluster of the third level,

CB,l = CZ,] u Cz,s = {C3, €4, C5, C7}.

We renumber all the other second-level clusters to the third level and use the same
algorithm to calculate the dissimilarities between new clusters; see Table 3.8.

Table 3.8: The updated dissimilarity table of the third level.

diSS(C3,a, C3,b)

diss(C55,C53) =5
diss(C33,C35) = 6
diss(C54,C35) =7
diss(C51,C33) = 8
diss(C54,C5,) = 11
diss(C3,C35) = 13
diss(C54,C35) = 18
diss(C54,C55) = 20
diss(C53,C3,) = 23
diss(C55,C34) = 27

Comparing with the algorithm of Section 3.2, we see that Hubert’s algorithm at every
step leads directly to the next-level clustering without pausing at intermediate thresh-
old graphs, which do not generate the next level of clustering. This way, we build up
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the single-link clusterings of all higher levels, which are, of course, the same as in Sec-
tion 3.2, up to the conjoint clustering C,. We show here only the updated dissimilarity
Tables 3.9, 3.10, 3.11 of the sequel fourth, fifth, and sixth levels.

Table 3.9: The updated dissimilarity table of the fourth level.

diss(Cyq> Cyp)

diss(Cy1,Cuy) = 6
diss(Cy1,Cy2) =7
diss(Cy2,Cy3) = 11
diss(Cy2,Cyy) = 18
diss(Cy3,Cy4) = 20
diss(Cy1,Cy3) = 23

Table 3.10: The updated dissimilarity table of the fifth level.

diSS(CS)a, C5,b)

diss(Cs 1,Cs55) =7
diss(Cs 5,Cs53) = 11
diss(Cs 1,C53) = 20

Table 3.11: The updated dissimilarity table of the sixth level.

diss(Cs,,,, CG,b)
diss(Ce 1,Cq2) = 11

When amalgamating, step by step, the clusters, we are increasing the threshold value
and, respectively, generating the threshold graphs. They are the same as before and
are shown in Figs. 3.1-3.3, 3.5-3.8, 3.10-3.12.

If we compare these figures with Figs. 2.13-2.21 in Section 2.3, we recognize simi-
lar graphs and easily convince ourselves that the steps of the agglomerative clustering
algorithms of this and the previous sections correspond to the steps of Kruskal’s algo-
rithm of constructing a minimum spanning tree.

To visualize the process of clustering, a special kind of tree-like graphs is use-
ful. These graphs are called dendrograms. Below we build the single-link dendrogram
corresponding to our model problem; see Fig. 3.13. It is clear from this example how to
build a dendrogram for any problem. Different horizontal levels of the dendrogram,
top to down, correspond to consecutive clusterings in the problem. Thus, the level
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A o A gives the clustering
C3 = {{Cl}, {c,), {Cs}, {C3, Cy, Cs, C7}> {C6}},
the level B « B at Fig. 3.13 generates the clustering

Cs = {{c1, ¢ g} {e5, €45 €5, €71, {6}

Figure 3.13: The dendrogram for the model example.

Exercises 3.3.

Exercise 3.3.1. Using Hubert’s single-link algorithm, build all threshold graphs and
clusterings of the set X = {x;,x,, ..., Xz}, the given dissimilarity table, Table 3.5. Which
level of clustering corresponds to the threshold levels of 27 Of 37 Of 4?

Exercise 3.3.2. Draw the dendrogram for the dissimilarity table, Table 3.5.

Exercise 3.3.3. Using Hubert’s single-link algorithm, derive a conjoint clustering of
the set X with the dissimilarities given in Table 3.12. Draw the corresponding dendro-
gram.

3.4 Hubert’s complete-link algorithm

In this section we consider a different approach to amalgamated clustering, called
complete-link clustering. An essential distinction between the single-link and comp-
lete-link algorithms is the rule of merging two existing clusters into one of a higher
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Table 3.12: The dissimilarity table for Exercise 3.3.3 and Exercise 3.4.2.

X X, Xy X3 X, Xs
Xq 0 4 1 3 8
X5 0 2 5 10
X3 6 7
Xy 0 9
Xs 0

level. Instead of connected subgraphs of the threshold graph G(co) used in the single
linkage, now we consider the maximum complete subgraphs of G(co). Examples show
that the single linkage and the complete linkage may result in different clusterings.

Coffee-time browsing
- www.sigkdd.org/explorations/issue4-1/estivill.pdf

We are concerned with another Hubert’s clustering algorithm called complete-link
clustering [31]. We use the same notations as in the previous sections, but consider
only dissimilarity matrices without ties.” We again start with an informal description
of the algorithm and then write down its pseudo-code.

Like the single linkage, the complete linkage uses the same sequence of the
threshold graphs. To avoid any ambiguity, we denote complete-link clusterings by
C."™P. Given a clustering

C™ = {Cn1>Cms - >Cn, }
of the mth level, m = 0,1, 2,..., we consider all pairwise unions
CnaYCmp ab=12,...,n, a+b.

Let the union C,, ,UC,, , contain objects x;, . . ., x;. While building the single-linkage, we
looked for an edge (a single link) with the smallest dissimilarity. Now we are adding
edges connecting a vertex in C,, , with a vertex in C,, ;,, in increasing order of their dis-
similarities, until we reach a complete subgraph of the threshold graph G(co) spanned
by all vertices x;, ..., x;. Only at that point, the union C,, , U C,, , becomes a cluster of
the next, (m + 1)st level.

To formalize this procedure, let T,,(a, b) stand for the maximal dissimilarity over
all edges used in this construction, that is,

Tyn(a, b) = max{d(x;,%;) | X; € Cppg>X; € Cppp}-

2 Clustering in the presence of ties is discussed, for example, in [32, p. 76].
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Similarly to S,,, T,, is a symmetrical function on pairs of clusters of the mth level, but
unlike S, Ty, is the maximal, not minimal dissimilarity. Let Cy, ,, C;,, , be a pair of clus-
ters where this function attains its minimum value over all the pairs of clusters of the
mth level. Denote this minimum value by

min _ Igibn{Tm(a, b)} = Tpu(0: ).

m

Tobuild the next clustering C,,,;, we merge these two clusters Cy, , and Cp,, , and update
the dissimilarity table. We give a pseudocode of this algorithm.

Hubert’s complete-link algorithm
Given a set X = {x,X,,...,x,}, the dissimilarity table, and the threshold value A.
1. Set m = 0 and form the disjoint clustering of level zero,

C(C)()mp = 1{Co,1:Co.2- - Con}

consisting of n 1-element clusters Cy = {x;},k = 1,...,n. Define the function T,
and the dissimilarities between the clusters of level zero by

To(a, b) = diss(Cp g, Cop) = d(Xg, Xp).-

Find the minimum value T(r,Ilin of the function Ty(a, b) over all the pairs (a, b)

g™ = min To(a, b) = To(p>9)
attained at the pair (p, g). This pair determines the clusters of zero level, C, , and
Coq- tO be merged in a cluster of the first level

Ci1=Cop UCop-

The other zeroth-level clusters remain the same, we only have to renumber them,

Ciy=Cos» T22,5#p,S#q.

2. Setm :=m + 1, calculate the values
Tyn(a, b) = max{d(x;, x;) | X; € Cppg> X; € Cppp}

for all pairs of clusters of the mth level, and find their minimum value

™" T, (p,q) = min T,,(a, b).

comp

mi1 » We define

To form the next clustering C

Cm+1,1 = Cm,p U Cm,q-

All the other clusters of the mth level become, after renumbering, the clusters of
level m + 1 without changes.
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3. Update the dissimilarity table as follows. The dissimilarity between every two
“0ld” clusters (promoted from the preceding level) remains the same. The dissim-
ilarity between the “new” cluster C,,; and any “old” cluster C,,, with r # p and
r # q is the larger of the two dissimilarities diss(Cy, ,, Cpn;) @and diss(Cpy,g> C,)-

4. Continue until we reach the threshold value or all the objects are merged into one
conjoint cluster, whichever occurs first. O

Remark 3.4.1. In Step 2 we combine two clusters into a new one only when we reach
an edge with the maximal dissimilarity between the entities in the two clusters; so to
say, we link them completely. In terms of graphs, we merge two complete subgraphs
G, and G, by using all edges with one end in G, and another end in G,.

Remark 3.4.2. Using the single linkage, we calculate a double minimum of the dis-
similarities, first over a fixed pair of clusters and then over all pairs of clusters—see
Remark 3.3.1. Unlike that, in the complete linkage we calculate the minimum of max-
imal values—first we calculate the maximal dissimilarity of the objects over a fixed
pair of clusters and then the minimum of these maximums over all pairs of clus-
ters.

We apply this algorithm to our model example with Dissimilarity Table 3.4. The
threshold graphs do not depend on the method used, whether it is the single- or
complete-linkage method. If some edges in the sequel figures are dashed, this means
that this new edge does not generate a new cluster. The subgraph of the threshold
graph G(1), generated by two vertices c; and ¢, is a complete graph isomorphic to
the complete subgraph K,. This is the same threshold graph G(1) as in the single
linkage—see Fig. 3.3. Therefore, first two clusterings are the same as in the single-
linkage case,

comp _
Cy " =1{Co.1,C02Co3Co.4Co5-Cos Co7>Cost
where Cy; = {¢;},i=1,...,8,and
comp _
C " =1{C11,C12,Ci3,Crs, Gy Crp Gy 7}

where C;; = Co3UCoy = {€3,¢4}, Cpj = Co g = {€iq} fori = 2,3,and Cy; = Co 41 = {C131}
fori=4,...,7.

However, the threshold graph G(2) (Fig.3.14) does not contain a complete sub-
graph—its subgraph, spanned by the vertices c;, ¢4, and ¢;, is not a complete graph,
since vertices c; and c; are not adjacent. Thus, even though G(2) generates a single-
link clustering (cf. Sections 3.2-3.3), it does not generate a complete-link cluster-
ing.

Now, the threshold graph G(3) (Fig. 3.15) contains a complete subgraph, isomor-
phic to K3, spanned by the vertices c3, ¢, ¢;. Therefore, we merge these three vertices
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(ST o O

Cs @ G

¢ @ e Cs
Figure 3.14: The threshold graph G(2). The edge {c,, c;} is dashed (cf. Fig. 3.5) for it does not gener-

ate the next level complete-link clustering.

G e e O

Cs @ C3

C7 C4

¢ @ e G

Figure 3.15: The threshold graph G(3) is the same as in Fig. 3.6. The subgraph spanned by the ver-
tices {c3, ¢4, ¢;} is complete.

into a cluster C, ;, and the next complete-link clustering is
Cgomp = {Cz,p Cz,z> Cz,3> Cz,zp Cz,s’ C2,6}

where C,; = C;;UC ¢ = {C3, ¢4, C7}. Five other clusters contain only one vertex each. We
notice that only three edges (three links) have been used here. At this step the single-
link and the complete-link clusterings still coincide.

The next threshold graph G(4) (Fig. 3.16) is generated by the edge {c,, c5}. However,
this edge does not generate a new complete subgraph, and the threshold graph G(4)
does not generate the next level of complete clustering.
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Cs @ G

e
Cc @ o s

Figure 3.16: Complete linkage: threshold graph G(4), cf. Fig. 3.7. The subgraph spanned by the ver-
tices {c3, ¢4, Cs5, ¢;} is not complete.

The threshold graph G(5) (Fig. 3.17) contains a K,-isomorphic subgraph with the ver-
tices ¢; and c,. Hence, it generates a new complete-link clustering

comp _
C3 - {CB,I’ 63,2’ C3,3’ 63,4’ CB,S}’

where C3; = {¢}, G5}, C35 = {C3, ¢4, C7}, C33 = {C5}, C3 4 = {Cg}, and C5 5 = {cg}. Starting at
this step, Hubert’s complete-link algorithm generates clusterings distinct from the sin-
gle linkage. The threshold graph G(6) (Fig. 3.18), generated by the edge {c,, cg} with the
dissimilarity d(2, 8) = 6, also does not contain a new complete subgraph. The sequel
four threshold graphs, G(7)-G(10) (Figs. 3.19-3.20) also do not contain new complete
subgraphs and generate no new clustering.

6 &o——eo O

Cs @ ]

C7 C4

e
¢ @ ./c5

Figure 3.17: Complete linkage: threshold graph G(5), cf. Fig. 3.8.
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‘. o——eo O
_—

_—
_—

s @ G

e
¢ @ o G

Figure 3.18: Complete linkage: threshold graph G(6), cf. Fig. 3.10.

However, in the threshold graph G(11) (Fig. 3.21) the vertices c; and ¢4 become con-
nected, and since they belong to no existing cluster, we have to merge them in a cluster
of the next level. Thus, we derive the fourth clustering,

CZ°mp = {(34,1» C42,Ca 3> (34,4}
where
Cop=1{csCeh, Cup ={c1,00} Cuz=A{cs¢4¢7h Cuy = {cg}

The next complete-link clustering is generated by the edge {c;, cg} with the dissim-
ilarity d(1, 8) = 13 (Fig. 3.21),

C5"™ = {C51,C5.2, Cs 3}
where
Csy ={c, 68} Csp={cs,¢h 67 Cuz3={Cs,C6}-
The threshold graphs G(14)-G(18) (Figs. 3.22-3.24) also do not generate a new cluster-
ing.
Only the threshold graph G(19) (Fig. 3.24) generates the second to the last comp-
lete-link clustering

C™ = {Co 15 Co 2}

with two clusters Cg; = {c3,¢4,Cs5,C6,C7} and Cg5 = {Cy, €y, Cg}. The final conjoint
complete-link clustering C;*"" is generated by the threshold graph G(28). We remark
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Figure 3.19: Complete linkage: threshold graphs G(7)-G(9), cf. Fig. 3.11.
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G o9 °
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¢ ¢,
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Figure 3.20: Complete linkage: threshold graph G(10).

that in this example only the first three levels of the single-linkage and complete-
linkage cases coincide. From the fourth level on, the clusters are different.

Now we translate this construction into formal analytic language and derive the
complete-link clustering by making use of the dissimilarity tables. Start with the same
dissimilarity table, Table 3.4 of zeroth level. Using the function T,, instead of S,,, we
compute the following tables.

From Table 3.13, we see that Tlmin = Ty(1,6) = 3, thus we have the same complete-
link clustering of the first level

com
C1 P = {Cl,bCl,z’Cl,3)01,4’61,5’61,6>Cl,7}

where C;; = Cy3UCoy = {C3,¢4}, C1 = Coiq = {ciq} fori=2,3,and Cy; = Co 141 = {Cii1}
fori=4,...,7.

The next dissimilarity table is Table 3.14, thus, T;“i“ = T,(2,3) = 5, and we derive
the same complete-link clustering of the second level

comp _
G =1{C31,C52,C33,Co,C5,Co6

where Cy; = C;1 UCyg = {C3,C4, C7}

From the following dissimilarity tables, Tables 3.15-3.18, we observe the corre-
sponding values of the function T,,, T;“in = T53,4) = 11, ijlin = T,2,4) = 13,
TN = T,(2,3) = 19, and TM™" = T¢(1,3) = 28.

Finally, we draw the dendrogram (Fig. 3.25) for the complete-link clustering in this
example—compare it with the one in Fig. 3.13. Are these dendrograms identical?

Exercises 3.4.

Exercise 3.4.1. Using Hubert’s complete-link algorithm, build all consecutive thresh-
old graphs and clusterings of the set X = {x;,x,,...,Xg}, given dissimilarity table, Ta-
ble 3.5. Which level of clustering corresponds to the threshold levels of 27 Of 37 Of 4?
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Figure 3.21: Complete linkage: threshold graphs G(11)-G(13), cf. Fig. 3.12.
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Figure 3.22: Complete linkage: threshold graph G(14).
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Figure 3.23: Complete linkage: threshold graphs G(15)-G(16).
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Figure 3.24: Complete linkage: threshold graphs G(17)-G(19).
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Table 3.13: Complete linkage: the updated dissimilarity table of the first level.

diss(Cy,4,C1p)

diss(Cy1,C16) =3

diss(Cy5,C13) =5

diss(Cy3,C1,7) = 6

diss(Cy1,C14) =9

diss(Cy,4,C12) = 10
diss(Cy4,C15) = 11
diss(Cy,4,C13) = 12
diss(Cy5,C17) = 13
diss(Cy5,C16) = 15
diss(Cy4,C16) = 16
diss(Cy3,C16) = 17
diss(Cy4,C17) = 18
diss(Cy4,C15) = 19
diss(Cy5,C17) = 20
diss(Cq,5,Cq4) = 22
diss(Cy3,Cy5) = 23
diss(Cy5,C16) = 25
diss(Cy4,C17) = 26
diss(Cy2,Cy5) = 27
diss(Cy3,Cq4) = 28

Table 3.14: Complete linkage: The updated dissimilarity table of the second level.

diSS(Cz,a, CZ’b)

diss(C;2,Cy3) =5

diss(C,3,Cp6) = 6

diss(Cy4,Cy5) = 11
diss(C,5,Co6) = 13
diss(Cy1,Cy4) = 16
diss(Cy,1,Cy3) = 17
diss(Cy4,Cr6) = 18
diss(C,,1,Cy5) = 19
diss(Cy5,Cp6) = 20
diss(Cy2,Cy ) = 22
diss(Cy3,Cy5) = 23
diss(Cy1,Cy2) = 25
diss(Cy,1,Cy6) = 26
diss(Cy5,Cy5) = 27
diss(Cy3,Cy ) = 28

Exercise 3.4.2. Using Hubert’s complete-link algorithm, build conjoint clustering of
the set X with the dissimilarities given in Table 3.12. Draw the corresponding dendro-
gram.
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Table 3.15: Complete linkage: the updated dissimilarity table of the third level.

diss(C3 4,C3p)

diss(C33,C54) = 11
diss(C31,C55) =13
diss(C35,C53) = 16
diss(C33,C55) = 18

diss(C35,C54) = 19
diss(C3 4,C55) = 20
diss(C31,C5,) = 25
diss(C35,C55) = 26
diss(Cs1,C5,) = 27
diss(C3,C53) = 28

Table 3.16: Complete linkage: the updated dissimilarity table of the fourth level.

diSS(C;M, C4)b)

diss(Cy2,Cyy) =13
diss(Cy1,Cy3) = 19
diss(Cy1,Cys) = 20
diss(Cy 5, Cy3) = 25
diss(Cy3,Cyy) = 26
diss(Cy1,Cy ) = 28

Table 3.17: Complete linkage: the updated dissimilarity table of the fifth level.

diss(Cs g, Cs,p)

diSS(CS)Z,Csj) =19
diss(Cs 1,Cs5) = 26
diss(Cs 1,Cs3) = 28

Table 3.18: Complete linkage: the updated dissimilarity table of the sixth level.

diss(CG,,,, Cﬁ,b)
diSS(C6)1 N CG,Z) =28

Exercise 3.4.3. Give an example of a 4-element set with different single-link and
complete-link clusterings.
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Cz C8 C3 C4 C7 C5 C6

Figure 3.25: Complete linkage: the dendrogram for the model example.

3.5 Case study

In this section we apply the single-link algorithm developed in Sections 3.2-3.3 to a
set of real data and use Pearson’s correlation coefficient to assess the quality of the
derived clustering.

Coffee-time browsing

— www.ucl.ac.uk/stats/department/pearson.html (Carl Pearson’s biography and
work)

—  www.cmh.edu/stats/definitions/correlation.htm (What is correlation?)

Table 3.19 contains the final grades and GPA scores of 15 students in an Introductory
Statistics class. The students s;—s;; are listed in alphabetical order. The GPA scores
were calculated earlier, so that they do not reflect the grades in this class. Using the
final grades, we build single-link clusterings of this 15-element set and compare the
results with the students’ GPA scores. Our goal in doing this comparison is to assess
the validity of the presented clustering algorithm. As a measure of dissimilarity, we
have chosen the absolute value of the difference between the final grades, and used
this measure to complete the dissimilarity table, Table 3.20.

Table 3.19: The final grades and GPA scores.

Student Sq s, S3 S, S5 Se s;
Final Grade 62 54 71 60 36 81 84
GPA 1.808 2.369 3.058 2.825 2.460 3.681 3.508
Student Sg Sg S10 S11 S12 S13 S14 S15
Final Grade 69 55 70 58 61 60 40 75

GPA 2.793 2.738 3.123 3.100 2.197 2.285 2.113 2.703




Table 3.20: The dissimilarity table for the Statistics Class grades.
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S1 S22 S3 S4 S5 2S¢ S7 Sg S9 S10 S11 S12 S13  S14 Si5
Sy 0 8 9 2 26 19 22 7 8 4 1 2 22 13
S, o 17 18 27 30 15 16 4 7 6 14 21
S3 0 11 35 10 13 16 1 13 10 11 31 4
S, 0 24 21 24 5 10 2 1 0 20 15
Sg 0 45 48 33 19 34 22 25 24 4 39
Se 0 3 12 26 11 23 20 21 41 6
sz 15 29 14 26 23 24 44 9
sg 0 14 1 11 8 29 6
Sg 0 15 3 6 15 20
S10 0 12 9 10 30 5
S1q 0 3 2 18 17
512 0 1 21 14
Si3 0 20 15
S14 0 35

In this problem we have many ties, therefore, some intermediate steps are not unique,
but it does not affect our conclusions. The agglomerative single-link algorithm (Sec-
tion 3.2) gives the following results. There are two elements, whose dissimilarity is
zero, thus the first-level clustering C; contains one 2-element cluster {s,, s;3} and 13
1-element clusters. Next, if the threshold level does not exceed 1, we derive nine clus-

ters of the second level,

C, = {{s1,54> 512 S13}, {53, 53, S10} 152, So > {85}, {86}, {S7} {511} {814}, {151}

There are eight clusters at the next level,

C; = {{51, 54> S11, S12 S13}» {53, S35 510} 152, So} {85}, {86}, {87}, {514}, {5151}

Next we have six clusters

C,, = {{51:52, 54> S9, 511> S12> S13}> 153, Sg5 S10}» {S65 571 {85}, {514} {815}

At the dissimilarity level of 4, there are only four clusters,

Cs = {{S1, 52, 54> 59, S11> 12 S13}: {53, Sg> S105 S15}> 156> 571, {85, 5143}

There is no merger at level 5; however, two of these clusters amalgamate at the dissim-

ilarity level of 6,

Co = {151:52, 545 S9, 511> 512- 513} 153, S65 575 585 5105 S15}- 1S5, S14}}-
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At the level of 7 only two clusters remain,

C; = {{51, 52,53, 54> S6> 57> 58> 59> S105 S11> S125 5135 S15}> {855 514}

Ultimately, these two clusters amalgamate into conjoint clustering at the 14th level.

Now we want to assess the derived clustering. Table 3.21 represents three clusters
in C4. Every chart contains the GPA scores of the students in the corresponding clus-
ter.

Table 3.21: C4-clustering.

Ce1 Student N S, Sy So S11 S12 S13
GPA 1.808 2.369 2.825 2.738 3.100 2.197 2.285
Ce2 Student S3 S¢ s7 Sg S10 S15
GPA 3.058 3.681 3.508 2.793 3.123 2.703
Ce3 Student S5 S14
GPA 2.460 2.113

The real data always have significant variability, thus there is no perfect match. How-
ever, we see that at this threshold level the clusters C, and C¢ 3 demonstrate good
uniformity of the GPA scores contained, while Cq; shows larger variety of scores.

Next, consider the clustering Cs;, shown in Table 3.22. Again, we see that there
is a noticeable closeness of the GPA scores within the clusters Cs,,Cs 3, and Cs 4. In
particular, cluster Cs 3 contains two highest GPA scores.

Table 3.22: C5-clustering.

Cs1 Student sS4 S, Sy So S11 S12 S13
GPA 1.808 2.369 2.825 2.738 3.100 2.197 2.285
Cs> Student S3 Sg S10 Si5
GPA 3.058 2.793 3.123 2.703
Cs3 Student Sg s;
GPA 3.681 3.508
Cs, Student Ss S14
GPA 2.460 2.113

To give a quantifiable assessment of the clusterings derived, we do some statistics.
Tables 3.23-3.29 contain the averaged grades and the averaged GPA scores for each
cluster at all levels. Finally, Table 3.30 contains Pearson’s & correlation coefficients
for the GPA scores and averaged grades for every level of clustering. We see that every
next level of clustering, except for C,, increases the correlation of the final grades and
the GPA scores. This observation validates the clustering algorithm of Sections 3.2-3.3.
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Table 3.23: The grades and GPA scores over the entire class—Cq-clustering.

Clustering C, Average grade Average GPA score

Cluster Cg 4 62.4 2.717

Table 3.24: The grades and GPA scores over the entire class—C;-clustering.

Clustering C; Average grade Average GPA score
ClusterCy 4 60 2.555
ClusterCy , 62 1.808
ClusterCy 3 54 2.369
ClusterCy 4 71 3.058
ClusterCy 5 36 2.460
ClusterCy ¢ 81 3.681
Cluster C, ; 84 3.508
ClusterCy g 69 2.793
ClusterCy o 55 2.738
Cluster Cy 1 70 3.123
ClusterCy 14 58 3.100
ClusterCy 1 61 2.197
ClusterCy 43 40 2.113
ClusterCy 14 75 2.703

Table 3.25: The grades and GPA scores over the entire class—C,-clustering.

Clustering C, Average grade Average GPA score
ClusterC, 4 60.75 2.279
ClusterC, , 70 2.991
ClusterC, 3 54.5 2.554
Cluster C, 36 2.460
ClusterCy 5 81 3.681
Cluster Cy 6 84 3.508
Cluster C, ; 58 3.100
ClusterC, g 40 2.113
ClusterC, 75 2.703

Table 3.26: The grades and GPA scores over the entire class—Cs-clustering.

Clustering C3 Average grade Average GPA score
Cluster C5 4 60.2 2.443
ClusterCs 70 2.991
ClusterCs 5 54.5 2.554
ClusterCs 36 2.460
ClusterCs 5 81 3.681
ClusterCs ¢ 84 3.508
ClusterC5 7 40 2.113

ClusterCsg 75 2.703
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Table 3.27: The grades and GPA scores over the entire class—C,-clustering.

Clustering C, Average grade Average GPA score
Cluster Cy 4 58.57 2.475
Cluster Cy, 70 2.991
Cluster Cy 5 82.5 3.594
Cluster Cy 4 36 2.460
Cluster Cy 5 40 2.113
Cluster Cy ¢ 75 2.703

Table 3.28: The grades and GPA scores over the entire class—Cs-clustering.

Clustering C; Average grade Average GPA score
Cluster Cs 4 58.57 2.475
Cluster Cs , 71.25 2.919
Cluster Cs 5 82.5 3.595
Cluster Cs 38 2.287

Table 3.29: The grades and GPA scores over the entire class—Cg-clustering.

Clustering Cg Average grade Average GPA score
Cluster Cg 4 58.57 2.475
Cluster Cg 5 75 3.144
Cluster Cg 5 38 2.287

Table 3.30: Pearson’s coefficient of correlation.

Clustering level G () (#3 G C,

Cs

G

Correlation Coefficient  0.659  0.671 0.788 0.850 0.832

0.925

0.929




Part Il: Combinatorial analysis






4 Enumerative combinatorics

The methods developed in this chapter allow us to solve more advanced problems
with the same question “How many?”. Section 4.1 treats the inclusion—exclusion prin-
ciple. Inversion formulas, including the Mobius inversion and their applications, are
studied in Section 4.2. Generating functions are considered in Sections 4.3-4.4, and
Section 4.5 is devoted to the Pélya—Redfield enumeration theory.

4.1 The inclusion—exclusion principle

Coffee-time browsing

—  http://mathworld.wolfram.com/Inclusion-ExclusionPrinciple.html (Inclusion-
Exclusion Principle)

—  http://www-history.mcs.st-and.ac.uk/Mathematicians/Eratosthenes.html  (Er-
atosthenes’ biography)

- www.math.utah.edu/~pa/Eratosthenes.html (Sieve of Eratosthenes)

- http://www.1911encyclopedia.org/James_Stirling (Stirling’s biography)

- mathworld.wolfram.com/Derangement.html (Derangements)

—  http://en.wikipedia.org/wiki/Eric_Temple_Bell (Bell’s biography)

- planetmath.org/encyclopedia/BellNumber.html (Bell numbers)

- http://en.wikipedia.org/wiki/Carlo_Emilio_Bonferroni (Bonferroni)

- www.answers.com/topic/bonferroni-inequality (Bonferroni inequalities)

—  http://en.wikipedia.org/wiki/John_Napier (Napier (Neper) biography)

- http://www.absoluteastronomy.com/topics/Neper (What is neper?)

- http://www-history.mcs.st-and.ac.uk/Mathematicians/Maclaurin.html (Maclau-
rin’s biography)

-  http://en.wikipedia.org/wiki/Perfect_totient_number (Totient numbers)

Problem 4.1.1. Each member of the Combi Club plays at least one game, 5 students go
to football, 12 to basketball, and 8 to volleyball. How many members are there in the
club?

Solution. Denote by Sf, Sy, and S, the sets of students who play, respectively, football,
basketball, and volleyball, and by S the entire membership of the club. Obviously,
IS¢l = 5,ISp] = 12,1S,| = 8and S = Sf U Sp, U S,.. But we cannot apply the sum rule,
since a member can play two or three games and the subsets S¢, S}, S, do not have to
be disjoint.

Unless we have some additional information, this problem has several solutions.
For instance, if each student participates in one and only one sport, then the three
subsets are mutually disjoint and by the sum rule we have |S| = 5+12+8 = 25. However,
if all five football players and all eight volleyball players also play basketball, then the

https://doi.org/10.1515/9783110751185-004
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entire membership consists of only 12 students. Since 5 + 8 > 12, the latter option
would necessarily imply that at least one club member plays all three games. Thus, if
we have no more information, we must conclude that the quantity of club members
satisfy the bilateral inequality 12 < |S| < 25 and we cannot say anything more. O

Hence, if we want to make a more specific conclusion, we need certain additional
information about intersections of the sets given. The following assertion, which in-
volves these quantities, is equation (1.1.4), which was proved in Section 1.1. We state
it here again. Hereafter it is referred to as the Inclusion—Exclusion Principle. It is also
called the (Eratosthenes &) Sieve Formula.

Theorem 4.1.1. IfX;,1 <1i <k, are finite sets, then

X;UX, U UXgl
=X+ 1X] + - + X - Xy 0 X5 = = [Xp_g N X
+1X N XN X+ + (DX N X N N X (4.1.1)

O

The right-hand side of this equation consists of k groups of terms. The first group
contains the cardinalities of the k given sets. The second group contains C(k, 2) cardi-
nalities of their pair-wise intersections, and all the terms in this group have negative
signs. The third group contains C(k, 3) cardinalities of the triple intersections of the
sets X; with the plus sign, and so forth. Since C(k, k) = 1, the last group contains one
term (-1)¥"!|X; N X, n--- N X, |. If all sets X; are pair-wise disjoint, then the cardinal
numbers of all intersections are zero and (4.1.1) reduces to the sum rule (1.2.1). Now let
us modify Problem 4.1.1.

Problem 4.1.2. Each member of the Combi Club plays at least one game, 5 people play
football, 12 basketball, and 8 play volleyball. In addition, this time we know that two of
them are devoted to both football and volleyball, three members go to football and bas-
ketball, and four play basketball and volleyball. The best mathematician in the club
plays all three sports. How many members are there in the club? How many among
them play only volleyball?

Solution. As before, denote by Sf, S, and S, the sets of students who play, respectfully,
football, basketball, and volleyball, IS¢l = 5,1Sp = 12,15, = 8, and again S = SpUSRUS,.
However, now we are given the cardinalities of all the terms in formula (4.1.1) with
k = 3, and we can straightforwardly apply the inclusion—exclusion principle (4.1.1)
with k = 3:

ISI = IS¢ + 1Spl + 1S, 1 = ISy N Sl = 1Sp N Sy I = 1Sp N Sy +1S, N Sp N S, |
=12+5+8-3-4-2+1=17.
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Actually Theorem 4.1.1 contains more information. Thus, applying the same for-
mula (4.1.1) with k = 2, we have

I(SpNS)USNS)I=1Sp NS, I+ 1S, NS, I = 1S, NSNS, |
=4+2-1=5.

Therefore, among eight volleyball players five people also play either basketball or
football, so 8 — 5 = 3 students play only volleyball and no other game. O

We leave it to the reader to solve the two following problems.

Problem 4.1.3. In the same club, how many members play only football? Only basket-
ball?

Problem 4.1.4. Each member of the Combi Club participates in at least one sport, 5
students go to football, 12 to basketball and 8 to volleyball. Which additional infor-
mation should we have to ensure that the club has precisely 13 members? Or exactly
14, or 15, ..., or 24 members?

Problem 4.1.5. How many n-arrangements with repetition from the elements of the set
A ={0,1,2,3} contain at least one digit 1, at least one digit 2, and at least one digit 3?

Solution. With no restriction, there are 4" n-arrangements with repetition. Among
them there are 3" arrangements from the set A, = {1,2,3}, that is, the arrangements
which certainly do not contain 0 and maybe do not contain some other digits either.
Similarly, there are 2" arrangements not containing two digits and there is 1" = 1
arrangement consisting only of 0s. Now, by (4.1.1) there are 4" —3-3" +3.2" -1
n-arrangements satisfying the problem. For example, if n = 3 then there are 4° — 3 -
3® +3.2° -1 = 6 = 3! arrangements, which is clear since all eligible 3-arrangements
are precisely the permutations of the three-element set A, = {1,2,3}. If n =2orn =1,
4" -3.3"+3.2" -1 = 0, which is also obvious since any arrangement in question
must contain at least three numbers 1, 2, 3. O

Theorem 4.1.1 can be stated in other terms; see, for instance, [26, p. 18]. First we
introduce some notation. Let g properties P;, 1 < i < g, be defined for the elements of
a finite set X, |X| = n < oo, that is, each element x € X either possesses or does not
possess the property P; for every i, 1 < i < q. If an element x possesses the property P;,
we denote this by P;(x) = 1; otherwise, if x does not possess this property, we write
P;(x) = 0. Therefore, these properties are mappings P; : X — {0, 1}. Let X; be the subset
of X, whose elements have the property P;, thus these sets are the total preimages of 1,
X; = P; ({1})), and n; = |X;| be its cardinal number. Let X;; be the subset of X, whose
elements possess both properties P; and P;, and n;; = |X; | be its cardinal number, etc.
Let Xy, = X\ {X; U---UX,} be the subset of all elements of X possessing no property P;,
1<i<gq,andng = Xl

The following equation is also called the Sieve Formula.
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Theorem 4.1.2.
q
no :n—Zni+ Z nil’iz — e
i=1 i <i

+(D° Y m e (D) g (4.1.2)

i) <y <<

Proof. The conclusion follows immediately from Theorem 4.1.1 being applied to the
setX = X, UX; U---UX,, if we notice that X, is disjoint with every set X;,1<i<q. O

If all sets X; have equal cardinalities, all sets X;; also have equal cardinalities, all
sets Xk have equal cardinalities, and so forth, then (4.1.2) can be simplified.

Corollary 4.1.1. If n; = ny,Vi, n;; = ny,Vi,j,...,n; ; ;= ng for all s-tuples of sub-
scripts, and so forth for1 < s < q, then

ng =n—-qnj +C(g,2n; —---+ (-1°C(g,s)ng +--- + (-1)7n;.
This corollary immediately implies the next one.
Corollary 4.1.2. If|X| =n > |Y| = m, then there are
|Sur(Y¥)| = m" = C(m, )(m - )" + - - + (-<1)"™'C(m, m - 1)

surjective mappings from X to Y. In particular, if m = n, then a surjective mapping is si-
multaneously injective and therefore bijective, thus, | Sur(Y*)| = n! and the latter equa-
tion becomes

nt = i(—l)k Cn,ky(n-k)".
k=0

Now we can easily solve the following important problem.

Problem 4.1.6. In how many ways is it possible to place n different balls into m differ-
ent urns with no urn left empty?

Solution. Considering Definition 1.1.4 of the preimage of an element, the answer is
given by the number |Sur(YX)| with |X] = n > |Y| = m. On the other hand, if all
urns are indistinguishable, then any permutations of the urns without changes in their
enclosures lead to the same placement of different balls, hence there are

Sy(n,m) = %| Sur(Y¥)| (4.1.3)

ways to put n different balls into m identical urns with no empty urn. O

Definition 4.1.1. The numbers S,(n, m) are called Stirling numbers of the second kind.
These numbers also count partitions of sets, namely, the number S,(n, m) is equal to
the number of partitions of an n-element set with m nonempty parts, if the order of
parts is immaterial.
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Properties of the Stirling numbers of the second kind are discussed in Exer-
cises 4.1.22, 4.1.23, 4.2.3, more properties of these numbers can be found in [35]. The
Stirling numbers of the first kind, S;(n, m), are defined in the end of this section.

Problem 4.1.7. In how many ways is it possible to paint four walls of a room in three
colors, so that any two adjacent walls have different colors?

Solution. There are A.,(3,4) = 3% ways to paint the walls without any restriction.
Let us enumerate the corners of the room by digits from 1 through 4 consecutively,
starting at any fixed corner in any direction, and consider the following properties
P;,i=1,2,3,4, on the set of all possible colorings:

A coloring has a property P;,1 < i < 4, if two walls adjacent at the ith corner are of
the same color.

Thenn; =n, =ny =n, =3-3%, N3 =Ny =33, N5 =Ny3=N3,4 =Ny, =33,
N33 = Nypy4 = Ny34 = Ny3y, = 3,and ny, 3, = 3; these parameters were defined before
Theorem 4.1.2. Due to (4.1.2) we get

3" -4.3.324(4-3-3+2-3-3)-4-3+3=18

different colorings. Similarly, if only two colors are available, there are 16 — 32 + 24 —
8 + 2 = 2 colorings; though this is clear without calculations. O

Remark 4.1.1. Any coloring in this problem can be represented by a plane graph with
four vertices, corresponding to the four walls, such that two vertices are adjacent if
and only if they correspond to the neighboring walls. Now Problem 4.1.7 can be stated
as a graph coloring problem:

In how many ways is it possible to color the vertices of a cycle of length four in
three colors so that any pair of adjacent vertices has different colors?

The inclusion—exclusion principle leads to useful inequalities involving the cardi-
nal numbers of subsets. Consider again equation (4.1.1) with k = 3and X = X; UX,UX;.
In this case (4.1.1) becomes

1XI =X + 1% + 1X5] - 11X n X5 = 12X n X501 - 1X; n X5] + X n X, N X5
It is obvious from this that
IX| > 1X] + 1X,] + 1X51 - 1X; 0 X5| - 1X5 n X5] - 1X; N X5).
Moreover, since
1X: Xl + 11X, n X5+ 1X, n X351 = 1X; n X, n X,
we clearly have an opposite bound

IX] < 1X] + 1X5] + 1X5].
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Similar inequalities can be derived for any k, therefore, the inclusion—exclusion prin-
ciple produces a series of alternating upper and lower bounds for |X]|.

Problem 4.1.8 (Bonferroni’s inequalities). Let X, ..., X,, be nonempty subsets of a fi-
nite set X, and T be any subset of {1,2,...,n}. Denote

u=max{|T|: T c{1,2,...,n} such that N;.r X; # 0}

andforl=1,2,...,u-1,

n 1
=1Us-Ye0 (Y N,
i=1 j=1 Tc{l,...n}|T|=j i€T
Then (-1)'A, > 0.
It is instructive to verify these inequalities in some simple case, for example, if
n=3,X=1{1,23L X, =1{1}, X, ={1,2}, and X5 = {1,2,3}.

Theorem 4.1.2 can be further generalized if we supply the elements of the set X
with weights. Consider a mapping w : X — W, where a set W can be specified in
some convenient way. The image w(x) € W of an element x € X is called the weight
of x. To give an example of weights, let us suppose that X is the inventory of all items
in a store. Then the price of any item x € X can be viewed as the weight of x, and
the mapping w assigns to any item x in stock its price w(x). For the time being we do
not need any rich algebraic structure on W, it is enough to assume that we can add
elements of W, and the operation of addition on W is commutative and associative.
We define also the quantities

wP;,P,..,P)= > wX)
XeX; X, N-NX;,
where the properties P; and the sets X; were defined after Problem 4.1.5.
Set also

w(r) =Y w(P;,P;,...,P;)

where the sum runs over all r-element subsets of the set of properties {P;, ..., P }, that
is, w(r) is the sum of the weights of elements possessing at least r properties. Moreover,
let w(0) = Y, .x w(x) and E(r) be the sum of weights of those elements of X that have
exactly r properties.

Theorem 4.1.3. In these notations
EM)=wr) -Cr+1,nwr+1)+---+ (-1)?7"C(g, r\w(q)
for 0 <r < q. In particular, ifr = 0, then
E(0) = w(0) ~w() +--- + (-1)Tw(q),

which implies (4.1.2) if we choose here all weights w(x) = 1. O
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Next we consider a classical application of (4.1.2), called the derangement prob-
lem. For many other applications of these results see, for instance, [49].

Definition 4.1.2. A permutation (ay,...,a,) of the natural segment N,, = {1,2,...,n} is
called the derangement if a; # iforalli=1,2,...,n.

Problem 4.1.9. How many derangements are there among all n! permutations of the
natural segment N, = {1,2,...,n}?

Solution. Denote the number of derangements by D,, and let P; be the property a; =
i,1 <i < n, defined on all n-permutations. By Theorem 4.1.2, we get immediately

D,=n-Cn,)(n-N+C(n,2)(n-2)! —--- + (-1)"C(n,n)

_1\n
:n!<1—1+l—l+-~-+ﬂ>. (4.1.4)
20 3! n!

Quite similarly, the number D, (r) of n-permutations possessing exactly r out of n
properties P;, ..., P, is equal to D, (r) = C(n,r)D,_,, thus,

RLYOUTS S S G Vi
D”(r)_r!<l A TRET +(n—r)!>'

It is obvious that D,, = D,,(0). O
Remark 4.1.2. The factorials satisfy recurrence relations n! = n(n - 1)! and n! = (n -
1)[(n-1)! + (n-2)!]. The derangement numbers D, satisfy similar recurrence relations

D, =nD,_4+(-1)" = (n-1)[D,_; + D,_,]; (4.1.5)

they are called subfactorials.
Problem 4.1.10. Prove the recurrence relations (4.1.5).

Remark 4.1.3. Expanding! e in the Maclaurin & series and using the known prop-
erty of alternating series with monotone decreasing terms [52, p. 607], we get an esti-
mate |D, —nl/e| < %, that is, for any n > 2 the derangement D,, can be defined as the
nearest integer to n!/e, since ﬁ < % whenever n > 2.

Problem 4.1.11. In how many ways is it possible to place eight rooks on the chess-
board, so that none of them could attack another and none of them are on the main
white diagonal?

Solution. Formula (4.1.4) immediately gives the answer, Dg = 14 833; we note that
8!/e =~ 148329 O

1 Surely, here e =~ 2.718281828 is Napier’s number, the base of natural logarithms.
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Problem 4.1.12. The Combi Club bought 2n tickets and reserved n seats for two ball
games. The n tickets to the first game were distributed at random among n students.
Then the n tickets to the second game were distributed, also at random, among the
same n students. In how many ways is it possible to distribute these 2n tickets, so that
no student gets the same seat twice?

Solution. Without any restriction, the tickets can be distributed in (n!)> ways. How-
ever, if we want to avoid repetitions of same-seat tickets, the second distribution can
be done in D, ways. Formula (4.1.4) and the product rule result in

n
n!-Dn=n!~{n1<1—l+l—l+---+( ) >}~1(m)2
20 3! n! e

different ways to distribute the tickets. O

As another application of Theorem 4.1.2, we again derive two formulas that were
proven in Problems 1.4.18-1.4.19.

Problem 4.1.13. Demonstrate formulas
2"=C(n,0)+C(n,1) +---+ C(n,n)
and
1=C(n,02" - C(n, 12" " +--- + (-1)"C(n, m)2°.

Solution. Let us paint a ball using n different colors, not all of which have to be used.
Let a property P; mean that the ith color is applied at the ball. Then n, = 1, since there
is only one way not color the ball at all. Moreover, n; ; ; = 2"k 1 < k < n, and the
total number of colorings is 2". Now the second formula follows directly from (4.1.2).
However, if P; means the property that a coloring contains precisely i colors, then
n; = C(n,i),n;j = nyj = --- = 0, and (4.1.2) implies the first formula in the problem. [

Next we apply Theorem 4.1.2 to another graph coloring problem. Given a graph
G = (V,E) of order p, we want to paint its p vertices in y given colors.

Definition 4.1.3. A coloring is called regular if the end vertices of every edge have dif-
ferent colors. A graph G is called k-chromatic if its vertices can be regularly colored in
k colors. The smallest such a number is called the chromatic number x = x(G) of the
graph G. The number of various regular colorings of a graph G in k colors is denoted
by n1(G, k).

Theorem 1.1.6 immediately implies that for a graph of order p there are k”, not
necessarily regular, k-colorings. To exclude non-regular colorings from this number,
we denote by u(e,, eg, . . ., €5) the number of colorings such that the end vertices of the
edge e, have the same color, the end vertices of ep also have the same color (maybe
different from the color of e,), etc. Now Theorem 4.1.2 immediately yields the first state-
ment of the following result.



4.1 The inclusion—exclusion principle =— 183

Theorem 4.1.4.
(1) For any simple graph G of order p

(G, k)= kP - Zy(ea) + Z (e ep) - Z Hleg ep.ey) +---. (4.1.6)
a a+f a#fry+a

(2) IfGisatree, thenn(G, k) = k(k — 1)PL.

Proof. To prove (2), we notice that the size of the tree G is p—1, thus there are p—1ways
to select an edge whose end vertices have the same color, and this color can be chosen
in k ways. After that we can paint p — 2 remaining vertices in any of k colors, hence
Yo Hley) = kP~2k(p —1). Similarly, Z,#ﬁ u(eq, ep) = kP~2(p—1)(p - 2)/2, etc. Substituting
these expressions in (4.1.2) and using the binomial expansion (1.4.4) we complete the
proof. O

Exercises and Problems 4.1.

Exercise 4.1.1. Consider the following properties on the set of the first 13 whole num-
bers S ={0,1,2,...,12}.

P;: anumber x € Sis a multiple of 50rx = 0

P,: anumber x € Sis amultipleof 11orx =0

P5: anumber x € Sis a multiple of 10 orx = 0

P,: anumberx € S and x* + x > 5.

How many elements of the set S satisfy the following properties?
(1) PyvP,VPs

(2 P,AP,AP;

(3) PyAP,AP;

(4) Pyv (P, AP;).

Exercise 4.1.2. Prove the following modifications of the results of this section.
(1) IfX,,...,X, are subsets of a finite set X and Y = X \ Y is the complement of ¥ with
respect to X, then

n JE—
(X
k=1

where the index I runs over all the nonempty subsets of the set {1,2,...,n}.
(2) Consider finite sets Xj, ..., X, their union X = U;_, X, and a functionf : X — R.
For any set Y c X define f(Y) = } .y f(x) and f(0) = 0. Prove the equation

=xl+ Y
}

g+Ic{12,...n

ﬂXk‘,

kel

FX) = Y DM (X

1#0
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Exercise 4.1.3.

(1) If the largest among 66 consecutive odd integers is 213, what is the smallest?

(2) If the largest among several consecutive positive odd integers is 213, what is the
largest possible length (that is, the number of elements) of this sequence? Answer
the same question if the sequence can contain negative numbers.

Exercise 4.1.4. What is the cardinality of the union of five sets if their cardinalities are,
respectively, 17, 23, 41, 45, and 56, each pair of the sets contains six elements, every
triple of the sets contains four elements, and any four sets are mutually disjoint?

Exercise 4.1.5. At The Top-Rate College, a; students received at least one F grade dur-
ing a semester, a, students received at least two F grades, ..., a; students received at
least I F grades during this semester, while no student had more than I F grades. How
many F grades have all the students received during this semester?

Exercise 4.1.6. How many prime numbers do not exceed 300?

Exercise 4.1.7. Prove that there are [a/n] natural numbers not exceeding a and divis-
ible by n, where [x] is the integer part of the number x.

Exercise 4.1.8. How many natural numbers less than 777 are not divisible by 3, by 7,
and by 11? How many are not divisible by 4 and by 6?

Exercise 4.1.9. How many seven-digit telephone numbers contain each of the digits 1
and 9 at least once?

Exercise 4.1.10. A paper reports that among 1000 people surveyed, 800 have driver
licenses, 750 are from 20 through 30 years old, and 500 have never had a ticket for
speeding, while 450 are from 20 through 30 years old and have never had a ticket for
speeding. Are these data consistent?

Exercise 4.1.11. Consider three n-families of sets
{A,..., A}, {By... Bk {Ch, ..., G}
such that
AjU---UA,=B,U---UB, =CU--UC, ='M
and
|A; N Bj| +14; N Cil + IB;n Gyl 2 n, Vi j k.
Prove that |M| > ”;
Exercise 4.1.12. Let F be a forest of order p and size q. Prove that
a(F, k) = kP 9k - 1)%.

Exercise 4.1.13. A gentleman had 11 daughters. If any girl got married while at least
one of her older sisters remained unwed, then these still non-married but older sisters
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approached their father crying and complaining so bitterly that he had to double their
dowry. In how many ways could these sisters arrange their weddings if the gentleman
remarked that when the last his daughter got married, he had to double the dowry 11
times?

Exercise 4.1.14. There are 5 people and n > 5 different pairs of gloves. In how many
ways can each of these people choose a right glove and a left one so that no one gets
a complete pair of gloves?

Exercise 4.1.15. Ten couples are dining at a round table. In how many ways can they
be seated so that no two males, no two females, and no two spouses are sitting along-
side?

Exercise 4.1.16. In how many ways can we roll a fair die 12 times, so that a 1 never
appears after another 1?

Exercise 4.1.17. The membership of the Combi Club comprises 30 students of five ma-
jors. Together they composed 40 problems for the Math Fair. Any two students of the
same major composed equal number of problems, while any two students majoring in
different subjects composed different number of problems. How many students com-
posed only one problem?

Exercise 4.1.18. Solve again Problem 4.1.7 if we have to paint not only the walls, but
also the floor and the ceiling of the room; consider two different cases, if there are
three or only two paints available.

Exercise 4.1.19. Prove that, forany k = 1,2,...,9, there are
K" = Clk, )k =)™ + C(k, 2)(k = 2)" — - + (-D* C(k, k - 1)

n-digit numbers consisting only of the digits 1,2,..., k.

Exercise 4.1.20. The quantity of natural numbers that do not exceed a natural number
n and are mutually prime with n, is denoted by ¢(n) and is called the Euler (totient)
function; ¢(1) = 1 by definition.

(1) Evaluate $(2), $(3), $(4), $(5), $(6), (7).

(2) Prove that

¢(n) =nﬁ<1—pik>

k=1

where p;,...,p,, are all prime factors of n. Other properties of the totient function
are considered in problem Exercise 4.2.2.

Exercise 4.1.21. Use Corollary 4.1.2 to prove that the Stirling numbers of the second
kind S,(n,m) give the number of ways an n-element set can be partitioned into m
subsets.
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Exercise 4.1.22.
(1) Prove that the Stirling numbers of the second kind satisfy the recurrence relation

S,(n,m) =S,(n-1,m-1)+mS,(n-1,m)

assuming S,(n - 1,n) = 0 and the initial conditions S,(n, 0) = 0, Vn.
(2) Compute S,(n,m)forl<m<n<4.
(3) Prove that

1 n!
Symm) = 5, DA

where the sum runs over all positive integer solutions of the equation k; + k, +- - - +
k, =n.

(4) Verify that S,(n,n - 1) = C(n,2).

(5) Prove thatk™ =Y, _ S,(n,m)(k),,, where

k!
() =ktk-1)(k-2)---(k-m+1) = *_mr
The latter equation can be written as
n
K" =) S,(n,m)C(k,m)m!. (4.1.7)

m=1

Formula (4.1.7) represents powers of natural numbers through the binomial coef-
ficients, and the Stirling numbers of the second kind.

Exercise 4.1.23.

(1) Let |X| = 3 and |Y| = 4. How many functions f : X — Y are injective but not
surjective? Surjective but not injective ? Neither injective nor surjective?

(2) Answer the same question if |X| = 4 and |Y| = 3.

(3) Answer the same question if | X| = |Y]| = 4.

Definition 4.1.4. The Stirling numbers of the first kind S;(n, m) are the coefficients in
the inversion of formula (4.1.7), which represents the binomial coefficients through
the powers:

niC(k,n) = Y (~1)""S,(n, m)k™,
m=1

Exercise 4.1.24. Prove that the number B(n, m) = Z?:o S,(n, k) is the number of place-
ments of n different balls into m indistinguishable urns with empty urns allowed.

Exercise 4.1.25. Compute x(K,),x(K3), x(K4), x(K15), x(K53), X (K33), where x(G) is the
chromatic number of a graph G—see Definition 4.1.3.
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4.2 Inversion formulas

In this section we derive inversion formulas such as the Mébius inversion, and ap-
ply these results to enumeration of cyclic sequences and bracelets. Other families of
inversion formulas are considered in Theorem 4.3.3 and problems thereafter.

Coffee-time browsing

- www.gap-system.org/~history/Biographies/Mobius.html (Mobius’ biography)

- www.cut-the-knot.org/do_you_know/moebius.shtml (Mobius strip)

— math.about.com/library/blfermatbio.htm (Fermat’s biography)

- www.gap-system.org/~history/.../Fermat’s_last_theorem.html (Fermat Last The-
orem)

- www.gap-system.org/~history/Biographies/Gauss.html (Carl Gauss, Prince of
Mathematics)

Let us revisit Theorem 4.1.1, denoting, for the sake of brevity,
XI,Z = X1 ﬂ Xz, X1’2’3 = Xl ﬂ X2 ﬂ X3

etc. Let X;" denote the subset of elements of X possessing only the property P;,1 <i < g,
X{:‘j denote the set of elements having exactly two properties P;, P;, and so on. It is clear
that we can represent X; as

X=X/ qu*,zu---qu*,qUXl*Bu---qu*,zwq

where all sets on the right are pair-wise disjoint. Consequently,

IX;| = X[ |+ |X1*)2| +ot |X1*,q| + |X1*,2,3| +ot |X1*,2,..,,q|' (4.2.1)
At the same time we can write
Xl = Xl* U X1,2 U et U Xl,q U Xl,2,3 U et U Xl’z)“.)q.
Applying Theorem 4.1.1 to the latter, we have
X7 = 1X;] = 1 Xl = = Xy gl + 1 X5l + -0 + (—1)q71|X1,2Mq|. (4.2.2)

Equations (4.2.1)—-(4.2.2) are inverse to one another. Indeed, we can consider (4.2.1)
as the equation for the unknown cardinality |X;|. Then formula (4.2.2) solves equa-
tion (4.2.1) for |X['|, that is, expresses |X| | through |X; _;|. Vice versa, (4.2.1) represents
IX| in terms of |X]|, etc. Such transformations are useful in many problems. We now
consider the method, called the Mobius & inversion, of inverting finite sums similar
to (4.2.1)-(4.2.2). In what follows, we customarily write d|n if d is a natural divisor of
an integer n; ) ;,, means that the summation index d runs over all divisors of n.
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Definition 4.2.1. The Mébius functiony : N — {-1,0, 1} is defined as

1 ifn=1,
um)=4 0 if n > 1 has a factor p* with a prime p andan integer a > 2,
(-1)" ifn > 1and has r different prime factors.

Example 4.2.1. By the definition, u(1) = 1. Since 2, 3, and 5 are primes, we have u(2) =
uB3) =u() = -1. Next, 4 = 2%, thus u(4) = 0. From these equations we have

Y ud) =p@) +pu2) =0, Y ud) =Y ud =0

d|2 d|3 d|5

and

> u(d) = p() + u(2) + u(4) = 0.
dl4

In the next lemma we prove that these zeros persist.

Lemma 4.2.1.

[ 1 ifn=1,
dzlr;ﬂ(d)_{o ifn>1.

Proof. 1f n = 1, the statement is obvious. Otherwise, let, for any n > 1,

n:p‘lxl .pgz...pff

be its prime factorization. Set n* = p;-p,-- - --p,, thus, n* contains all the different prime
factors of n, though in n* every factor appears only once. If d divides n but does not
divide n*, then d contains a factor p* with a prime p and an integer a > 2. Therefore,
p(d) = 0 and for suchad, Y 4, u(d) = ¥ g+ H(A).

However, for any k,0 < k < r, the number n* has C(r, k) divisors d such that d can
be written as the product of k different prime factors; if k = 0, we set d = 1. Thus by
Definition 4.2.1, for these d, u(d) = (—1)" and

Y ud =) u(d) =C(r,0) - Cr,1) +--+ (-1)'C(r,r) = 0;
din d|n*

see Problem 1.4.18. O

The Mobius function appears in the following equations called the Mébius inver-
sion formulas.

Theorem 4.2.1. Let two infinite sequences {f(m)},,; and {g(m)},., satisfy countably
many equations

fim)=Y g(d), m=12.... (4.2.3)
dlm
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The system of equations (4.2.3) has the solution
gm) = Y u@yf ( ) m=12..., (4.2.4)
dim

where y is the Mobius function. Vice versa, simultaneous equations (4.2.4), m = 1,2,...,
imply (4.2.3) for all m = 1,2,.... In other words, the infinite set of simultaneous equa-
tions (4.2.3) is equivalent to the infinite set of simultaneous equations (4.2.4).

Proof. If d divides m, then, by (4.2.3),
(%)- L
81(%

hence

> uar(%)- Zu(d)( Z g(5>)

dlm dlm

If m = d- §- my, then for a fixed 8, d runs over the set of divisors of the integer m/é.
Since all sums are finite, we can change the order of summation and get

> uad( ¥ g(6>) - Yoo ¥ u@)
dim 815 8lm di(3)
If § + m, that is, % # 1, then Zdl(%) u(d) = 0 by Lemma 4.2.1, so that
> 56 Z W@ ) = gm
8lm diy
The second part of the theorem can be proved similarly. O

We apply this theorem to calculate the number of special arrangements called
cyclic sequences. To define them, we consider a set A = {a;,a,,...,a,} and all n™
m-arrangements with repetition of its elements. Let

a = (a;, ;... aq;

)
be any of them. Together with a; we consider its circular shifts, that is, m-arrangements

)?

a ,a;,a;,...,Aa;
> Y0 Y Yy > Yo

a =(a; ,q,q,...,q;

m-1

a3 = (aimfl

)S

A = (aiz

)

Two arrangements a;, ;, 1 # j, can coincide term-wise, however, we distinguish them
since they bear different indices i and j.

,ais,...,aim,a'

4
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Definition 4.2.2. The set a = {a;,a,,...,a,,} is called a cyclic sequence of length m
corresponding to the arrangement a;; of course, it also corresponds to any of the ar-
rangements @5, ... ., Qp,.

The problem of enumeration of the cyclic sequences is complicated by their peri-
odicity, since it may happen that &; = a;,1, €y = Qgia5ees Xz = Aog_1, Ag = Oyg, €tC.;
in this case we say that d is a period of the cyclic sequence a. A cyclic sequence can
have several periods. If d is the smallest period of a cyclic sequence a = {ay, y, ..., &y},
then among m arrangements a;, a,, . .., &, there are only d different n-arrangements.
Thus, d must divide m, and each a;,1 < i < m, consists of % different d-arrangements
with repetition such that each of them generates a cyclic sequence of length d with
the minimal period equal to d.

Definition 4.2.3. Given n elements, the number of cyclic sequences of length d from
these elements with the minimal period d is denoted by cyc,(n, d). The number of
cyclic sequences of length m of any period is denoted by CYC(n, m).

Theorem 4.2.2.

CYC(n,m) = dz é(Z y(a)nd/a) (4.2.5)

Im 8ld

Proof. Applying (4.2.4) with f(m) = n™, we have

1
CYCper(,d) = 5 3 u(&n

sid

and (4.2.5) follows. O

Problem 4.2.1. A bracelet consists of four geometrically identical beads of two colors.
Two bracelets are considered identical if they can be superposed (made indistinguish-
able) by rotating them on the wrist without flipping, that is, not taking them off. How
many different bracelets are there?

Solution. Formula (4.2.5) with n = 2 and m = 4 gives CYC(2,4) = 6. These six different

bracelets are shown in Fig. 4.1. O
° ° o) o) O o}

e o e o o o e O o O O o
° o) e} ° ° o)

Figure 4.1: Six different bracelets in Problem 4.2.1.

Problem 4.2.2.
(1) How many bracelets are there consisting of six beads (m = 6) of three colors
(n=3)?
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(2) How many geometrically indistinguishable bracelets with m = 6 and n = 3 do
exist if one cannot only rotate but also flip them over?

Problem 4.2.3. (The little Fermat & theorem) Show that, for any prime d and natu-
ral n,

dl(n® - n).

Solution. If d is prime, then in (4.2.5) either § = 1, leading to u(6) = 1, or else § = d,
resulting in u(6) = —1. Therefore,

Zy(S)nd/a -n?-n
sld
Since anumber cycper(n, d)isinteger, each addend in (4.2.5) must be integer, thus, d di-

vides the expression in parentheses in (4.2.5), that is, dIZM y(&)ndm, or
d|(n? - n). O

Exercises 4.2.

Exercise 4.2.1. Solve again Problem 4.2.1, assuming that two bracelets are indistin-
guishable if they can be superposed with one another by rotation or by reflection in
the bracelet plane (flipping).

Exercise 4.2.2. Euler’s totient function ¢p(n) was defined in Exercise 4.1.20.

(1) Prove that ¢(n) is multiplicative, that is ¢p(m - n) = ¢p(m) - ¢(n) if m and n are
mutually prime integers.

(2) Letd,,d,,...,d; be all divisors of n. Prove the Gauss  formula,

M~

¢(dj) =n

—.
Il
—_

(3) Prove that ¢p(n) = Y 4, u(%)d.
(4) Use the latter formula and (4.2.5) to prove the equation

CYC(n,m) = % y ¢(%)nd.

dim

Exercise 4.2.3. Prove the inversion formulas for the Stirling numbers,

Y (~D¥$,(n, 1Sk, m) = (<1)"6,,
k

and

Y (~1)*S,(n,K)8, (kM) = (=1)"6
k

where the Kronecker delta was defined in Exercise 1.4.4(11).
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Exercise 4.2.4. Consider two infinite sequences of polynomials {P,(¢t),n = 0,1,2,...}
and {Q,(t),n = 0,1,2,...} connected by the two sets of equations

n
Py(t) = ) 0ynQu(t), n=0,1,...,
m=0

and

n
Qu(®) = Y BuPi(®), n=0,1,....
k=0
For any two sequences {u,} -0 and {v,,},-o of real numbers, prove the inversion formu-
las

n

n
u, = Z ApmVin (VN20) = v, = z Bty  (Yn=0).
m=0 k=0

Exercise 4.2.5. Deduce from Exercise 4.2.4 the inversion formulas

n n
U, = Z Cnmy,, (Vn=0)=v,= Z Oty (Ynz0).
m=0 k=0

Exercise 4.2.6. Prove the following pairs of inversion formulas.

(1) The equations a, = ZZZO(—l)kC(n, k)b,_,¥n = 0,1,2,..., are equivalent to the
equations b, = Yy_, C(n,k)a,_,¥n=0,1,2,....

(2) The equations a, = ZZ:O(—I)kC(n, k)b,_r,¥n = 0,1,2,..., are equivalent to the
equations b, = Y1_o(-1)*C(n, k)ay, ¥n = 0,1,2,....

(3) The equations a, = Yy_, C(n + p,k + p)b;,¥n = 0,1,2,..., are equivalent to the
equations b, = Yi_o(-1)" *C(n + p,k + p)ay, ¥n = 0,1,2,....

(4) Apply the inversion formulas above to derive formula (4.1.7).

4.3 Generating functions I. Introduction

In many problems we have to deal with number sequences, for instance, with the com-
binations C(m, n) or the cyclic sequences CYC(m, n), whose terms, in turn, depend on
one or several integer parameters m,n, .... We have to manipulate these sequences,
which may result in cumbersome calculations. The method of generating functions (GF)
is a general way to work out such problems. This method replaces operations on se-
quences with corresponding operations on certain functions or power series, called
the GF of these sequences, which can be simpler and allows us to invoke powerful
techniques of algebra and calculus. In this section we develop the method of GF and
show on many examples how to derive GF and use them to solve various problems.
More applications of the method are considered in the sequel sections.
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Coffee-time browsing

- www.gap-system.org/~history/Biographies/Polya.html (Polya’s biography)

- www.math.utah.edu/~pa/math/polya.html (How to Solve It?)

- en.wikipedia.org/wiki/John_Howard_Redfield (Redfield’s biography)

—  http://en.wikipedia.org/wiki/Brook_Taylor (Taylor’s biography)

- www.gap-system.org/~history/Biographies/Cauchy.html (Cauchy’s biography)

- http://en.wikipedia.org/wiki/Jacques_Hadamard#Biography (Hadamard’s biog-
raphy)

—  http://scienceworld.wolfram.com/biography/Abel.html (Abel’s biography)

- en.wikipedia.org/wiki/Abel_Prize (Abel Prize)

- http://en.wikipedia.org/wiki/Johann_Heinrich_Lambert (Lambert’s biography)

—  http://planetmath.org/encyclopedia/LambertWFunction.html (Lambert W func-
tion)

In the first example of this section we use the Taylor & series of the exponential func-
tion. The reader unfamiliar with calculus can interpret the following equation as the
statement that the exponential function € can be represented for small |z| and for
anyn=123,...as€ =1+z+ 2%/21 + 22/3! + --- + 2" /n!+ terms that are smaller than
Z"/n!. For instance, e* =~ 1+ terms which are much smaller than 1; or if we need better
accuracy, € ~ 1+ z+ terms which are much smaller than |z|; or & =~ 1+ z + 22/2!+
terms which are much smaller than |z|?/2, and so forth. Such understanding is quite
adequate for all our purposes. We start with a problem that shows why the method of
generating functions (GF) is useful.

Example 4.3.1. Consider the obvious equation e*-e* = e* and expand the exponential

functions on both sides in the Taylor series?

1 1
=l x+ X+t =X
2! n!

and
e2X=1+2x+l(2x)2+~-~+l(2x)"+~~-,
2! n!

deriving the equation

<1+x+ L S lx"+-~-><1+x+ L I lx"+-~->
2! n! 2! n!
22 zn
=142+ Xk X
2! n!
Multiplying out term-wise the two series on the left, combining like terms and equating

the coefficients of % on both sides of the equation, we easily verify the equation (see

2 To justify these manipulations, some elementary calculus is needed.
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the solution of Problem 1.4.18)
2"=C(n,0)+C(n,1) +C(n,2) +--- + C(n, n).

This example demonstrates the essence of the method of GF—direct manipula-
tions with sequences are replaced by transformations of certain functions or corre-
sponding power series. Certainly in Problem 1.4.18 we derived the latter formula in
more intuitive way. However, the method of GF gives us a powerful technique for solv-
ing various combinatorial, probabilistic, and many other essentially more involved
problems, where elementary approaches may not work.

To introduce the method, we have to discuss some preliminaries. For an infinite
sequence (a finite sequence can always be augmented by infinitely many zeros on the
right)

a=1{aya;a,...,a,...} ={ay o

its GF is a formal power series
o0
fa® ~ Y a,t", (4.3.1)
n=0

where t is an indeterminate’ or a variable. The series is called formal, because we do
not discuss its convergence at all, the powers t",n = 0,1,2,..., here are just labels,
which distinguish different terms of the sequence a. When we expand, step-by-step,
the sum in (4.3.1) as

(o)
ag+ Y ayt",
n=1

(o)
ag+ayt + ) ayt",
n=2
(o)
Ay + ayt + apt® + > ayt",
n=3
etc., (4.3.1) generates, one after another, consecutive terms of the sequence a. At this
point, the noun “function” in the sentence “GF” does not signify a function (mapping)
in the sense of Section 1.1. For this reason, we used the tilde sign ~ instead of the
equality sign in (4.3.1).

To apply the formal power series, one has to develop some algebraic tools.* How-
ever, in this book we prefer to avoid the formal algebraic approach and justify the
method by making use of convergent power series only. Hereafter we suppose that the
series in (4.3.1) has a positive radius of convergence R, > 0, therefore the sum of the

3 Some authors denote the indeterminate by z and call the GF of a sequence {a,}p2, its
z-transformation.
4 See, for example, [1, 22, 48].
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series Z;’ZO a,t" exists in the disk |¢| < R, and is a function f, () defined (and holomor-
phic) in the disk. All GF appearing in this book are represented by convergent power
series. Hereafter we write

fa® =) a,t" (4.3.2)
n=0

where f (t) is a function of ¢ in some neighborhood of the point ¢ = 0. The actual value
of R, is incidental for our purpose, any positive radius does. The choice of convergent
power series narrows down the class of admissible sequences, nevertheless, this class
is broad enough for all our applications.

The reader unfamiliar with calculus, can safely skip our discussion of power se-
ries and consider the conclusions as operational rules for solving corresponding prob-
lems. Moreover, we can arrive at the same results by considering terminating series in-
stead of the infinite ones, that is, by making use of polynomials—see Problems 4.3.11
and 4.4.5 below, where we worked out this approach in detail. If we use these gen-
erating polynomials, we do not have to deal with the convergence issue at all, though
computations may be lengthier and more cumbersome, as can be seen in the examples
below. That is why hereafter we use the convergent series.

Given a sequence a = {a,},,, we need to know whether the corresponding power
series (4.3.1) is convergent or divergent. According to the Cauchy-Hadamard & crite-
rion [50, p. 195), the series in (4.3.1)-(4.3.2) has a positive radius of convergence’ R, > 0
if and only if the next quantity is finite,

1 .
— = limsup {/|a,| < co (4.3.3)
Ra r—o00

which essentially means that |a,| has at most exponential growth as n — co. Here
la,| stands for the absolute value (the modulus) of real or complex numbers a,,. For
example, the sequences {a + bn* booo and {a+bk"}°  satisfy (4.3.3) for any parameters
a, b, k. However, faster growing sequences such as {n!};>,, may have R, = 0. A simple
sufficient condition for the series (4.3.2) to have a positive radius of convergence is

la,l <A, +A5 foralln=0,12,... (4.3.4)

with some positive constants A; > O and A4, > 0.

Recall that the first derivative and indefinite integral of the power functions are
given by the formulas %(tp ) = pt? ! and jtp dt = Z% + const; the latter is valid if
p # —1. Inside the disk of convergence, the convergent series can be differentiated and
integrated term-by-term, that is if |{| < R,, then

d (o) (o)
= Y at' =y na,t"!
dt n=0 n=0

5 The meaning of this was explained at the very beginning of this section.
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and

[ee] o0 a
J(Z ant”>dt: Z n_¢" 4 const.
n=0 n=0 n+l

The term-wise differentiability and integrability of convergent power series are the
only properties beyond the precalculus level, we use hereafter in applications of the
method of GF.

Throughout we deal mainly with two well-known infinite series. These are the
power series of the exponential function

2 n ootn

et:1+t+t_+...+t_+...: —, (4.3.5)
2! n!

which is convergent for all (complex) t and the geometric series

1 2
— =1+t+t — ", 4.3.6
oLttt + +- Z (4.3.6)
which is convergent for |t| < 1. Differentiating (4.3.6) term-wise p — 1 times, we derive
the formula

1+_H_(p+1) p@+D@+D§
1-tp 1 2! 3!

p(p+1)-~(p+n—1) p+n- 1)
i n! HZ;) nl(p - 1)'

; (4.3.7)

the coefficient of ¢" in (4.3.7) is

Cp+n-1,n) = Cyp(p,n).

The same result can be derived without referring to infinite series. Indeed, let us
consider a truncated series (4.3.6), that is, a polynomial

Put)=1+t+t+---+t"

By the formula for the sum of a finite geometric progression, see Exercise 1.1.8, we
derive

1—tn+1
1-t

P,(t) = (4.3.8)

Problem 4.3.1. Prove by mathematical induction that, for p = 1,2,..., the coefficient
of t*, k < n, in the polynomial (P, (t))?, given by (4.3.8), is C(p + k — 1, k).
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Solution. Each coefficient of P,(t) is 1, and also C(1 + k — 1,k) = 1, which establishes
the basis of induction. Now suppose that the conclusion is valid for all exponents not
exceeding some p and consider

(Po(0) = (Py(6)” - Py(0).

Both factors on the right are polynomials. When we multiply them out, the power t
occurs k + 1 times—if we multiply the term t* from (P, ()P by t° = 1 from P,(t), or if
we multiply ¢! from (P,(t))P by t! from P,(t), ..., or if we multiply t° = 1 from (P, (¢))?
by t* from P, (t). Since the coefficient of ¢ in (P ()P is C(p +j - 1,j) by the inductive
assumption, the coefficient in question is

Cp+0-1,0)+---+Cp+j-1,j)+---+Cp+k-1,k)=C(p +k,k)

due to equation (1.4.3) and Exercise 1.4.4(1), thus proving the claim. O

Problem 4.3.2. Find the coefficient of X in the polynomial (P, (t))” for n < k < 2n and
p = 2, if the polynomial P,(t) is given by (4.3.8).

To proceed with the method of GF, we introduce some operations on sequences
and the corresponding operations on their GF. Linear combinations of sequences, that
is, the multiplication of a sequence by a number (a scalar) and the addition of se-
quences, are defined straightforwardly, term-wise.

Example 4.3.2. Consider the sequences
a={1,0,1,0,1,...}
and
b={0,1,0,1,0,...},

that is, a, = (1+ (-1)")/2and b, = (1 - (-1)")/2,n > 0, and their GF f,(t) and f;,(t).
The linear combination of a and b with coefficients a and f is defined as aa + b =
{a,B,a,B,a,p,...}, and the corresponding GF is the linear combination of the GF with
the same coefficients a and b, that is, fya,gb(t) = af;(t) + Bfy, (0).

Problem 4.3.3. Use formula (4.3.6) to show that in Example 4.3.2

a+ft

afa(t) + Bfy(t) = -

Problem 4.3.4. What properties (commutativity, associativity, etc.) do these opera-
tions on sequences possess? Notice that the sequence {0, 0, ...} is the neutral element
for the term-wise addition of sequences.
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To define a “multiplication” of sequences, we consider two sequences a = {a,}oc,
and b = {b,}32,, and polynomials P,(t) = YP_ a,t" and Qy(t) = Y1_, b,t", whose
coefficients are initial terms of the sequences a and b, respectively. Let

p+q

R(t) = P,()Qp(1) = ) cpt".
n=0

Problem 4.3.5. Show that the coefficients c, of the polynomial R(¢) for n < min{p, g}
are given by

Cp =aob, + a1by_q + -+ + ay_1by + ayby.

In particular, ¢y = agby, ¢; = agh; + a;by, ¢; = agh, + a;1b; + a3 by, . . ..

Taking into account the latter equation and looking for an operation on sequences
that corresponds to the multiplication of polynomials or power series, we arrive at the
following definition, which mimics the Cauchy rule of multiplication of power series.

Definition 4.3.1. Given two sequences a and b, the sequence ¢ = {c,},2,, Where ¢, =
agbp+ayby_q+- - -+ay_1b;+a,bg,n = 0,1,2,. ., is called their convolution and is denoted
byc=axbh.

Now we give the major definition of this section.

Definition 4.3.2. Let a sequence a satisfy property (4.3.3). The function f,(t) in (4.3.2)
is called the Generating Function (GF) of the sequence a.

Example 4.3.3. The GF of the finite sequence {1,0,1,0,1,0, 1} is

1-¢8

f(t)=1+O~t+1~t2+0-t3+1-t4+0-t5+1~t6=1+t2+t4+t6:1 2

the GF of the infinite sequence {1,0,1,0,1,0,...} is

fO) =1+ +t*+... =

1-¢2

When we employ the method of GF and work, instead of sequences, with their GF,
at the last step we must return from the derived GF to its sequence and we want to be
certain that this sequence is the one we looked for. The method of GF is based on the
following statement.

Theorem 4.3.1. There exists a one-to-one correspondence between the set of sequences
satisfying (4.3.3) and the set of power series G with a positive radius of convergence. This
correspondence preserves algebraic operations, which means that a linear combination
of sequences corresponds to a linear combination, with the same coefficients, of their
GF, and the convolution of sequences corresponds to the product of their GF.
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Proof. It should be mentioned that we have always considered the largest possible
value of the radius of convergence, that is, if R, is the radius of convergence of series a,
then there is no R > R, such that the series Y 2 a,t" converges in the disk [t| < R. The
statement on the one-to-one correspondence follows immediately from the unique-
ness of the Taylor series [52, pp. 651-652]. The correspondence of linear combinations
is obvious. The conclusion regarding convolution follows from Definition 4.3.1 (the
Cauchy rule of multiplication of power series). O

The set of GF has an algebraic structure of a ring; the definition can be found, for
example, in [37]. For us that means only that we can add and multiply sequences and
their corresponding GF using the standard commutative, associative and distributive
rules and keeping in mind that by the product of two sequences, we understand their
convolution.

Proposition 4.3.1. Prove that the set of sequences, satisfying (4.3.4), is a commutative
ring with the unity element 1 = {1, 0, ...} with respect to the following operations:

(1) the usual term-wise multiplication by real numbers,

(2) the usual term-wise addition of sequences as addition, and

(3) the convolution of sequences as multiplication.

Proof. Let|a,| < A; + (A,)" and |b,| < B; + (B,)" foralln > 0. Since 4, > 0,B, > 0,

n
(A, +B)" =Y C(n,k)ASBy ™ > A} + B},
k=0

so that |a, + b,| < A; + A5 + B; + By < (A; + B;) + (4, + B,)". Thus, the sum a + b also
satisfies (4.3.4).

It remains to prove that the convolution ¢ = axb satisfies (4.3.4); since the verifica-
tion of other ring axioms is straightforward we leave it to the reader. Thus, leta,b € H
and

|a;b,_;| < A\B; + A\BY" + ALB, + ALBT™.

From this

n n n
lcal < (n+1)AB; +A; Y BY ™ + By ) Ay + B3 Y (4)/B,)".
i=0 i=0 i=0

Set 6 = max{1;A;; Bj;A,; By}, thus, |c,| < 4(n + 1)8™, and since n + 1 < 2", we get
lcnl < C; + C5 with constants C; and C, foralln = 0,1,.... O

Problem 4.3.6. Prove the first part of Proposition 4.3.1 by making use of the inequality
|an + bn| < zmax{lan|; |bn|}
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Problem 4.3.7. Prove that the set of power series with a nonzero radius of convergence
is a commutative ring with the usual addition and multiplication. The unity of this ring
is a constant function f(t) =1=1+0-t +0-t> +---.

Theorem 4.3.1 explains why the method of GF is useful—instead of performing te-
dious calculations with sequences, we work with (analytic) functions and have avail-
able powerful techniques of algebra and analysis. At the end we return back to the
sequence we sought for. At that point we can use the following well-known formulas
expressing the Taylor coefficients of a function f through its derivatives [52, p. 654] or
through contour integrals [50, p. 174],

1 1 ne
a, = Ef;")(O): > (JS 2" (z)dz, n=0,1,...,

lz|=€

where € is small so as the circumference |z| = € lies inside the circle of convergence of
fa- If we know f, exactly or approximately, these formulas allow to find the numbers
a, or to estimate their asymptotic behavior.

Depending upon a particular problem, it may be suitable to use other systems of
linearly independent functions ¢ instead of the powers t". In particular, we will see that
in problems, where the ordering of elements must be taken into account, it is useful
to employ exponential generating functions (EGF) based on the system ¢ = {t"/n!};2,,.
General methods of constructing the GF are discussed in detail in [22].

Definition 4.3.3. A function

[ele] tYl

ea(t) =y i (4.3.9)
n=0 °

is called the Exponential Generating Function (EGF) of a sequence a.

Example 4.3.4. For the sequences = {1,1,...}, the GF is

1
fs(t):1+1-t+1-t2+~-~+1~t"+--~:1—t,
while its EGF is
t 2 n
es(t):1+1~—+lo—+~-~+1~—+-~~=et.
1! 2! n!

For the sequenceb = {1,1-3,1-3-5,...}, the EGF is e, (t) = (1 - 26732,
In the case of EGF, the definition of the convolution must be modified.

Definition 4.3.4. The sequence d = {d,};,, where

M=

dn = C(n, l')a,-bn,i

1

Il
o
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is called the binomial convolution (or the Hurwitz & composition) of the sequences a
and b.

Problem 4.3.8. State and prove an analogue of Theorem 4.3.1 for EGF.

In addition to algebraic operations considered in Theorem 4.3.1, some other op-
erations on sequences and the corresponding transformations of their GF are useful.
For a sequence a = {a,}n, and a fixed natural number k, we consider a sequence

= {by}rep, Where by = by = --- = by_; = 0 and b,, = a,,_; for n > k. Then clearly,

fot) = £, (0). (4.3.10)

On the other hand, if b, = a,,, foralln > 0, then

fod) = (a0 - ag - ayt = -+ = 7).
The sequences {b,}2, are called shifts of the sequence a.

The term-wise differentiation and integration of GF imply the following results.

Theorem 4.3.2. Let a = {a,},°, be a given sequence.

(1) Ifb = {b,}20, by = (N +1)ay,y, then fy(t) = Lf,(6).

(@ Ifec={cylpg Cn = nan, thenfc t) = t%fa(t)

(3) Ifd={d };1’00, d, ,n>1,and dy = O,then f4(t) = Jofa(x) dx.

%) If1= {1,120, 1, = n+1,then At =3 jo fa(x) dx. O

The proof of the following lemma is immediate.
Lemma 4.3.1. Ifs ={1,1,.. .}, thatis, s, = 1,Vn > O, then for any sequence a = {a,},_,
aO . SO = ao,

a0~Sl+a1~SO=a0+a1,

(1082+a181+(1250 =a0+a1+a2,
etc. Therefore, the convolution of sequences
axs={ayay+0a,a,+0a;+0a,...,0q+a; + -+ dy,...}

is the sequence of consecutive partial sums of the sequence a. O

Problem 4.3.9. Prove that the sequencel = {1, 0,0, ...} is the unit element for the con-
volution, that is, a * I = I = a = a for any sequence a.

Due to Lemma 4.3.1, the sequence s = {1,1,.. .} is called the summator. We know
from Theorem 4.3.1 and Example 4.3.4 that the GF for the sequencea xsis (1- t)’lfa(t).
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From this observation we can, for instance, immediately conclude that the coefficient
of, say, t>/ in the Taylor series of the rational function

(1-3% —at’ + 1267 - 5t®)1 - 1) (4.3.12)

is1-3 -4 + 12 = 6. We keep the notation for the summing sequence s = {1,1,...} for
the rest of this chapter.

Problem 4.3.10.

(1) Find the coefficients of t",n = 0, in the Taylor series of the rational function
(4.3.11).

(2) Why are there different formulas for the coefficients for n < 45 and for n > 45?

The same argument based on the summing property of the sequence s = {1,1,...}
and the identity

ﬁ:(1+t+t2+~-~+t9)><(1+t10+t20+~~-+t90)

><(1+t100+t200+~~+t900)><-~-, It] <1, (4.3.12)

which proof we leave to the reader, immediately implies that any natural number has
a base 10 representation, and this representation is unique.

In the rest of this section and in the next one we consider various applications of
the method of GF and solve problems.

Problem 4.3.11. Compute the sum 12 + 2? + - - + n’ for any natural n.

Solution. There are different ways to approach this problem. If we know the value of
this sum, we can carry out a simple inductive proof, as we have done in Problem 1.1.4.
However, we are going to apply the method of GF to demonstrate the essential ingre-
dients of the method. We do not even have to know the sum in advance—the method
allows us to find the sum explicitly.

Let us then introduce the sequence a = {a,};>,, where q,, = 12+22 4. +n’ We
immediately observe that this is a sequence of partial sums for a simpler sequence b =
{122, with b, = n?,n > 0. We also know from Lemma 4.3.1 that to find explicitly the
sequence a, we can convolve the sequence b and the summator s. Hence we conclude
that a = s x b, which is equivalent to f, (¢) = (1- t)"lfb(t). This equation tells us that, if
we find GF f;, explicitly, we will be able to calculate f, and then solve the problem by
computing its coefficients. Let us try to simplify the problem even more and reduce the
sequence of squares b to the sequence of natural numbers themselves. From calculus
we remember that d%(xz) = 2x. This observation gives us a plan of the solution.

We begin with the summator s = {1,1,1, ...} and its GF

1
fs(t)z1—t=1+t+t2+-~-+t"+t"+1+-~-;
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notice that the coefficient of t" here is 1. Differentiating both sides of this equation (if
t| < 1, we can differentiate the series term-wise) we again get (4.3.7) with p = 2,

(1_%)2:1+2t+3t2+4t3+-~- nt" e (e D (4.3.13)
hence the function ﬁ is the GF of the sequence d = {1,2,3,.. .}

We should be careful here, since the indices start at zero, and we have d,, = n + 1.
Thus, we have to shift this sequence, which in terms of GF corresponds to multiplica-
tion by t—see Theorem 4.3.2(2). Therefore, we introduce a shifted sequence ¢ = {c,}
with ¢, = n,n > 0, and derive

1
fe(t) = tfq(t) = tm«

Then, the coefficient of t" in the series f.(t) is ¢, = n. Repeating this step, that is,
differentiating f.(t) and multiplying by t, we get the GF for the sequence of squares

{nz}n 0’

fo(®) = {(1—102}

thus we know without any calculation that the coefficient of t" in the Taylor series of
the above function f,(t) is b, = n’ Finally, the GF for the sequence we want in this
problem is derived if we multiply the function f;, by the GF of the summator, that is,
we have to consider

d

fult) = (1- t)‘lt—{ !

i t)Z} =t1+ta-o™

From (4.3.7) with p = 4 we get the equation

m+Dn+2)(n+ 3)
=

4 _
1-1t 3 ,

n=0

thus,

t1+ta-6™
_ Z nm+1)(n+2)(n+3) i Z nm+1)(n+2)(n +3)tn+2

n=0 6 n=0 6
= Z n(n +1)(2n + t"
n>O

and the coefficient of ¢" here gives the required formula

1
an=12+22+-~~+n2:gn(n+1)(2n+1).



204 =— 4 Enumerative combinatorics

We will solve this problem one more time, now using the generating polynomi-
als, that is, truncated power series instead of infinite power series. Indeed, if we want
to find a,, it suffices to consider polynomials of nth degree and truncate all powers
greater than n in all computations. This approach can be traced back at least to Niven
[43, Chap. 7]. We demonstrate the method in detail here and also in Problem 4.4.5 in
Section 4.4.

Consider a polynomial (4.3.8)

l_tn+l
1-t °

Put)=1+t+t2+- +t" =

Repeating the same steps as above, we compute the functions P W), t3 P (),
t2{tLP,(t)}, and finally

ot fe L0}

A"+t - (n+ DA+ 20 + 2n - DE - ()
a-o* '

Since we are interested in the coefficient of ¢", only two terms in the numerator of the
latter fraction, namely t and ¢* can contribute to this coefficient. Using Problem 4.3.1
to compute the coefficients of ¢ and t?, we again find the same expression a, = én(n +
1)(2n + 1) as in Problem 1.1.4. O

In this problem we have used the operator t% and its square (t%)z. The following
problem® treats arbitrary natural degrees of this operator.

Problem 4.3.12.
(1) Foranyn=1,2,3,... prove that
"1

(ti) ——1t+2t +3% +-
dat/) 1-

(2) Prove that

P,(t)

1t + 2" + 3" +- s
(1 _ t)n+1

where P, is a polynomial of degree n with P,(0) = 0 and all the other coefficients
positive; moreover, P, (1) = n!.

Using GF we can derive new inversion formulas, distinct from the M&bius inver-
sion in Theorem 4.2.1.

6 See [45, Problem 1.45] where this and more general problems are considered.
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Theorem 4.3.3. Consider two sequences a = {a,},2, and b = {b,}°, related by the
infinite set of equations
n
ap =Y (-DCm, kb, 4, ¥n=0,12,..., (4.3.14)
k=0

where a natural number m is fixed. Then

n
by=)Y Cm+k-1,ka,;, VYn=0,12.... (4.3.15)
k=0

Vice versa, equations (4.3.15) imply (4.3.14).

Proof. It suffices to notice that by the binomial formula (1.4.4) witha = 1and b = —t,
fa®) = (1= O™y (), thus, fi,(t) = (1 - £)"™f,(t), which implies (4.3.15). O

The next problem demonstrates a useful method of construction of GF.

Problem 4.3.13. Find a GF for the sequence
{C(m,0),C(m,1),...,C(m,m),0,0,...}

and use it to calculate again the binomial coefficients C(m, k).

Solution. Consider a polynomial in m+1variables (indeterminates) t, x;, X5, . . ., X, and
expand it against the powers of ¢:

A+x)A+x8) - A+ xp0) =1+ X+ X+ + X))t

+ (00X + -+ Xy Xy -+ (X - X )™ (4.3.16)

The coefficient of ¢ here is the sum of all k-element products of the indetermi-
nates xi,X,,...,X,,. There is a one-to-one correspondence between these products
and k-element subsets of the set X = {x;,x,,...,x,}. By definition of combinations
without repetition, the number of such subsets is C(m, k). Thus, equation (4.3.16) gen-
erates an explicit roster of all k-combinations of the elements of an m-element set,
O<k<m.

If we do not need the complete list of combinations, it is convenient to put in

(4.3.16) x; = x; = - -+ = X, = 1, thus reducing (4.3.16) to the binomial formula (1.4.4)
m
1+0™ =Y cim k. (4.317)
k=0

Differentiating (4.3.17) k times and substituting t = 1, we again derive formula
(1.4.1), C(m, k) = m!/((m - k)'k"). O
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In the same fashion we can construct the GF
(o)
Y CrepmDt"
r=0

for the number of combinations with unlimited repetition from elements of n types.
Again, we introduce symbols for these elements and list, at least potentially, all of
these combinations:

fO)=(1+xt+X58 ) x (T4 x5t +35 +---) x - --
X (14Xt + X262 +--2)
=1+(q+x+--)t

O+ XXX e+ X Xy XaXg + -+ X X ) (4.3.18)

Setting x; = - -+ = x,, = 1, (4.3.18) becomes
FO =A+t+E+)" =1-0""= ) Cepn,t".
r=0

Differentiating this series r times and substituting ¢t = 0, we again derive equa-
tion (1.4.6), Cyep(n,7) = C(n+1-1,1).

Here as well as in the preceding problems, we can avoid operations with infinite
series by considering instead of (4.3.18) generating polynomials,

filt) = (L4 xt + 338+ + X)X x (L4 Xt + X+ -+ X0t
Problem 4.3.14. Find the generating polynomials for the sequences

I1={1,0,0,...,},
S={11,....,}.

Problem 4.3.15. Under which condition is a sequence of polynomials P (t), P;(t),...
the sequence of generating polynomials for a numerical sequence {a,};2,?

In the same way we can explicitly construct GF for combinations satisfying arbi-
trary restrictions on any of its elements. Moreover, since we usually do not need an
explicit list of all combinations or other combinatorial objects in terms of the indeter-
minates x;, X,, ..., there may be no need to employ these parameters. For example, if
we want to find the quantity considered in Problem 1.4.14, we can immediately write
downits GFas (1+t+---+ )1+t +t* +---)"1, which by differentiation returns the
same formula (1.4.8).

As another example, we compute the number C(n, ) of combinations of elements
of n types taken r at a time with unlimited repetition, under the additional restriction
that every combination must contain at least one element of each type. This number
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is also equal to the number of ways to place r identical balls in n < r different urns so
that no urn is empty. Comparing with (4.3.18), we see that to satisfy this requirement,
it is necessary to delete the term 1 from each infinite series in the product. Thus, we
immediately construct the GF as f(t) = (t + {2 +---)". From this we getf(t) =Y, C(r—
1,r — n)t’, and finally,

0, r<n,
Cr-1L,r-n), r=n.

C‘(n, r)= {

Next we consider the simplest ordered combinatorial objects—the arrangements.
If we try to find a GF for arrangements as a polynomial similar to (4.3.16), we fail, and
the reason for the failure can be easily seen. We cannot derive the complete list of all
arrangements, because the multiplication is commutative, (x; - X, + X, - X;)t* = 2x;x,t%,
etc. One way to overcome this obstacle is to use noncommutative variables to avoid
the appearance of like terms as in the example above. However, we can proceed in a
more conventional way.

Notice that formula (4.3.17) can be rewritten as

m tr
A+0)" =Y A(mr)—,
r=0 r!

which is the EGF for the number of arrangements, so that in the case of ordered total-
ities the EGF may work better.

Indeed, given p identical objects x, there exists the unique arrangement (x, x, ..., x)
containing all of these objects, therefore, the EGF for this arrangement is

P
e(t) =1 E

If an arrangement contains k < p objects, the EGF can also be formed in the unique
k
way as 1 - %, since the objects are indistinguishable. Then the EGF for arrangements
containing any number k, O < k < p, of these objects is
2 D
e(t):1+£+t—+~--+t—
2 p!
and the EGF for arrangements that may contain any finite number of indistinguishable
objects, now appears as an infinite series
2 3
e(t):l+—+t—+t—+-~-.
20 3!
We recognize here the power series for the exponential function ef, which has an infi-
nite radius of convergence.
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It is easily seen now that, if there are p indistinguishable (identical) objects of one
type and g indistinguishable objects of another type, then the EGF for arrangements
with repetition, containing any number of elements of these two types, is

t t tP t t1
e(t)=<1+—+—+~-~+—><1+—+—+-~~+—>.
1 2 p! 1 2! q!

It is clear now that the EGF for arrangements with repetition of elements of m types
without any restrictions on their repetitions is

t "
e(t) = <1+—+—+--~> =™,
1 2
The Taylor series for =1+ ’;’—f + # +oet m;fn + - -+ again recovers formula (1.3.1),

Aep(m,n) =m".

Problem 4.3.16 (Problem 4.1.5 revisited). Among n-arrangements with repetition
from the set A = {0,1,2,3}, how many contain at least one digit 1, at least one 2,
and at least one 3?

Solution. Since there are no restrictions on the symbol O, the corresponding factor in

2
the EGF is the same series 1+ % + % +--- = e'. However, to ensure the presence of each

of the three other symbols 1, 2, 3, we must delete terms 1 = 6—0! from the corresponding
series, and these series become % + 5—2, +--- = et — 1. Thus, the EGF for the quantities in
this problem is

tn

. O
n!

efle! -1 = Y (4" -3 +3.2" - 1)

n=0

Problem 4.3.17. Solve again Problems 1.4.18-1.4.20 by making use of EGF. For the
reader’s convenience we recall these problems.

Problem 1.4.18. Find the number of n-arrangements with repetition from the set A =
{0, 1}, containing an even number of Os.

Problem 1.4.19. Find the number of n-arrangements with repetition from the set A =
{0,1, 2}, containing an even number of 0s.

Problem 1.4.20. Find the number of n-arrangements with repetition from the set A =
{0,1, 2,3}, containing an even number of Os and an even number of 1s.

Solution. Since a 0 can appear only an even number of times, the corresponding factor

in the EGFis 1 + ;—Z, + % +--- = (1/2)(e' + e7"). All other factors are the same as in the
preceding problem, that is, these are e’. Thus, we get the following EGF.

In Problem 1.4.18: (1/2)(e' +e™)e' = ¥ .0 Zn‘l;—"!.

In Problem 1.4.19: (1/2)(e" + e )e* = ¥, 33" + 1)%.

In Problem 1.4.20: (e + )% =1+ 3,.,(4" " + 2" )L, -
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Problem 4.3.18. Compute the sum F(j, k,n) = Zf-‘zl C(n - i,j), where j, k,n are given
natural numbers and n > j + k.

Solution. Set a;(j) = C(n - i,j), hence, a;(j) = 0 fori > n —j. Let f;(t) be the GF of the
sequence {ai(j)}}fo; we are to find partial sums of this sequence. We will compute them
by making use of the binomial formula (4.3.17), namely,

fit) = i a;()t = i Cn-ijt =@+
j=0 j=0

Let fr be the GF of the sequence F(j, k, n), where we consider n and k as fixed parame-
ters and j as a variable:

[e) oo [k . k [ oo .
fe® =Y FG,kon)t = Z{Za&j)}t’ = Z{Zaio')t’}
j=0 j

j=0 li=1 i=1 Lj=0

x ;1 1
=Y@a+0o" = L0y 6"k,
i=1

We notice that the series here are actually finite sums and at the very last step we used
the formula for the sum of a geometric progression,

M~

i W kg -1
qn—l — qn— z q — qn—<
1=0 q-1

I
—_

with g = 1+t # 1. Applying (4.3.17) twice, we get
F(,k,n)=C(n,j+1) - Cn-k,j+1),

assuming that C(j,j + 1) = O. O
Exercises 4.3.

Exercise 4.3.1. Find explicitly the GF for the following finite or infinite sequences.
6))] a; =1{1,11,...},

(2 a, =1{0,0,0,1,1,1},

3) a; ={0,0,0,1,1,1,0,0,0,1,1,1,.. .},

(4) a, ={1,1,1,0,0,0,1,1,1,0,0,0,.. .},

(5) ag = {aytpg, a, = C(5,n),

(6) ag = {an}gcz)oyan = (_1)n’

(7) ay = {a,}ng, ay = cos(an),

(8) ag = {ay}ny a, = sin(an).

Exercise 4.3.2. This problem refers to Exercise 4.1.1. Let a,,n = 0,1,2,..., be the num-
ber of elements in the set S possessing exactly n of the properties P;,j = 1, 2,3, 4. Write
down explicitly the GF of the sequence {a,};2,-
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Exercise 4.3.3. Using the result of Exercise 1.1.31 prove that the GF f, and the EGF e,
of any sequence a are connected by the equation

fu(6) = j e e, (xt) dx.
0

Exercise 4.3.4. Introduce a sequence of complementary partial sums (tails) of the se-
quence a,

Ch=0pq+ap+---, n=0,12,....
Prove that, if the GF f,(1) is convergent, then

(1 - t)fc(t) = fa(l) _fa(t)-

Exercise 4.3.5. Prove (4.3.7) by mathematical induction.
Exercise 4.3.6. Prove identity (4.3.12).

Exercise 4.3.7. Find the coefficients of t’ and t!! in the Taylor series of the fraction
1-22+3 -3 +10¢"°
2-3t+t2

Exercise 4.3.8. Compute the sum Z,Y(”ZO C(n,k)C(m,k),n > m.
Exercise 4.3.9. Compute the sum S(m, p) = kazo(—l)kC(p, k),p>m.

Exercise 4.3.10. There are 10 married couples living at a townhouse. In how many
ways is it possible to select a committee out of these people, consisting of 2 men and
3 women?

Exercise 4.3.11. Solve the preceding problem if no person can serve on the committee
together with her/his spouse.

Exercise 4.3.12. In how many ways can one buy 2 different books if a bookstore has 3
bestsellers?

Exercise 4.3.13. Solve the preceding problem if one can also buy two copies of the
same title.

Exercise 4.3.14. How many ways are there to buy for gifts 20 copies of these 3 best-
sellers? We can buy 20 copies of the same title.

Exercise 4.3.15. How many ways are there to buy for gifts 20 copies of these 3 best-
sellers if we want to buy at least one and no more than 10 copies of the same title?

Exercise 4.3.16. How many 10-letter words are there composed of 5 vowels and the
letter “z”, which contain each vowel at least once?
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Exercise 4.3.17. Use the identity (1 + )™ - (1 + t)’ = (1 + t)™*" and GF to prove the
equation

Cm+p,n) =) C(mk)C(p,n- k).
k=0

Exercise 4.3.18. Use GF and the identity

-1-n

Q-1+ =(1-19)

to prove the equation

2m .
Z(—l)’C(n +j,n)C(n +2m—j,n) = C(n+m, m).
=0

Exercise 4.3.19. Find the sum of the third powers and the sum of the fourth powers
of the first n natural numbers.

Exercise 4.3.20. A bookstore has four novels, in English, French, German, and Rus-
sian, 100 copies of each. In how many ways is it possible to buy 50 books so that you
have even numbers of English, French, and German books and an odd number of Rus-
sian books? Answer the same question if the number of English and French titles to-
gether does not exceed 4. Answer the same question if the quantity of German books
is twice or more than that of Russian books.

Exercise 4.3.21. Let f be the GF of a sequence {a,, a;,...}. Which sequence is gener-
ated by the function f2?

Exercise 4.3.22. Find appropriate analogues of (4.3.12) and use them to prove that
each natural number has the unique binary (that is, base 2), ternary (base 3), quater-
nary (base 4), etc., representation.

Exercise 4.3.23. Use GF or EGF to prove, similarly to Theorem 4.3.3, the following

pairs of inversion formulas.

(1) The equations a, = ZLO(—l)kC(n, k)b,_,¥n = 0,1,2,..., are equivalent to b,
Yoo CnK)a,_,¥n=0,1,2,....

(2) The equations a, = Y_, C(n +p,k + p)b;,¥n = 0,1,2,..., are equivalent to b,
i o(-1)"KC(n+p,k+pa,vn=0,1,2,....

Exercise 4.3.24. Does Theorem 4.3.3 remain valid if the equation

Ny
ay, = Y (-D*C(m, k)b, 4
k=0

fails for only one natural n,? The same question with regard Exercise 4.3.23.
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Exercise 4.3.25. Show that the assertion u, = Z"m=0 C(n,m)v,, (vn = 0), of Exer-
cise 4.2.5 is equivalent to the equation £, (t) = e'f, (t) between the EGF of the sequences
u={u,}andv = {v,}.

Exercise 4.3.26. Restore all computations in Problem 4.3.12.

Exercise 4.3.27. Find again the number of combinations with and without repetition
using generating polynomials, that is, truncated GF.

Exercise 4.3.28. To facilitate performance of the participants of a contest, the Combi
Club bought 15 identical chocolate bars. In how many ways is it possible to distribute
them among five participants of the contest, so that each contestant receives at least
two but no more than four chocolates?

Exercise 4.3.29. How many three-term geometric progressions (a, ag, ag®) like 2, 6,18,
and four-term geometric progressions (a, ag, aq’, ag’) like 3,9,27, 81, are there in the
set{1,2,3,...,99,100}?

Exercise 4.3.30. Prove that, if f,,f;.f..fq are the GF of sequences a,b, c,d, respec-
tively, and fq = f, - fp - fc» then

dn = z aib]‘Ck

i+j+k=n
where the sum runs over all nonnegative integer solutions of the equationi+j+k = n.

Exercise 4.3.31. Use equations (2.1.3)—(2.1.5) and the result of Exercise 2.1.17 to derive

the following GF:

(1) (1+PP2 = Y420 C0(® - 1)/2,g)t? for the number of simple labeled graphs of
order p and size q.

() 1+ t)PP2 = Y20 Cl( +1)/2, q)t? for the number of labeled graphs of order p
and size g with loops but without multiple edges.

(3) (1-t) PPV’ for the number of labeled graphs of order p and size g without loops
but with multiple edges.

(4) (1-t)PP*/2 for the number of labeled graphs of order p and size g with loops
and multiple edges.

Exercise 4.3.32.
(1) Use the method of undetermined coefficients and the equation

1 +x)1/2 x (1 +x)1/2 =1+x
to compute the coefficients of

(1+x)1/2=a0+a1x+a2x2+~--,
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namely,

(1+X)1/2=1+%x+...+ (1/2)(1/2_1)(1/2’;2)“'(1/2_H+1))("+....

(2) Use the same method to derive the equation

D"

22n

A+x) ™2 =1- 2—12(:(2, Dx + 214C(4, p)) Gl e cnn)x" +---.

(3) Which property of the binomial coefficients can be deduced from the equation

-1/292 _ 1
[(T+x)7) = 57

Exercise 4.3.33. Let 7(p) be the number of rooted labeled trees of order p and

90 =Y 1)~
p=1 p'
be the corresponding EGF. Prove that
) = -w(),

where W(t) is the Lambert & W function, that is, the (many-valued) solution of the
transcendental equation We" = —t. A rooted tree is a tree with a singled out vertex.

Exercise 4.3.34. Prove that the convolution of sequences is commutative and associa-
tive, thatis,a*b=b+aanda=(bxc)=(a=*b) = c.

Exercise 4.3.35. Prove that the binomial convolution of sequences is commutative
and associative.

Exercise 4.3.36. Derive the EGF for the Stirling numbers of the second kind S, (k, n),

Lt 0" 3 samb
E(e —1) = z 2( ,n)ﬁ.

k>n+1
Exercise 4.3.37. Use (4.3.13) to prove the equation
[ee]
k
Z z_k = 2
k=1

The latter implies immediately that Y 2, kz;kl =1

Exercise 4.3.38. What is the probability to get a heads at the first flip of a fair coin? At
the second flip? At the third? ... At the nth flip? Use the previous problem to find the
expected value of the number of flips before the first head occurs.

Exercise 4.3.39. Compute the generating function of the sequence f(n) = a"/n! for
even n, and O for odd n.

Exercise 4.3.40. Express the generating function of the sequence g(n) = f(n+1) - f(n)
through the generating sequence of the sequence f(n).
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4.4 Generating functions Il. Applications

In this section we employ the method of GF to study partitions and compositions of
natural numbers. Then we take up linear difference equations (or recurrence relations)
with constant coefficients and solve more problems.

Coffee-time browsing

— en.allexperts.com/e/n/no/norman_macleod_ferrers.htm (N. M. Ferrers)

—  http://en.wikipedia.org/wiki/Partition_(number_theory)#Ferrers_diagram (Par-
titions in Number Theory)

- en.allexperts.com/e/y/yo/Young_tableau.htm (Young Tableaus (diagrams))

- www.gap-system.org/~history/Mathematicians/Fibonacci.html (Fibonacci sum-
mary)

—  http://images.google.com/images?q=fibonacci+sequence&rls=com.microsoft:
en-us:IE-SearchBox&oe=UTF-8&sourceid=ie7&rlz=117DKUS&um=1&ie=UTF-
8&ei=Rh0jS7SP0c3jlAeLz9XzCQ&sa=X&oi=image_result_group&ct=title&
resnum=4&ved=0CB4QsAQwAw (Fibonacci numbers)

- www.answers.com/topic/godfrey-harold-hardy (Hardy’s biography)

—  http://en.wikipedia.org/wiki/Fran%C3%A70is_%C3%89douard_Anatole_Lucas
(Lucas’ biography)

- www.gap-system.org/~history/Biographies/Jacobi.html (Jacobi’s) biography

— http://images.google.com/images?q=jacobian&rls=com.microsoft:en-us:IE-
SearchBox&oe=UTF-8&sourceid=ie7&rlz=117DKUS&um=1&ie=UTF-8&ei=
7qQjS63CLMXHIAfnl6nzCQ&sa=X&oi=image_result_group&ct=title&resnum=
4&ved=0CCIQsAQwAw (Jacobians)

Problem 4.4.1. The postage for a letter is 84 cents. In how many ways can one buy
stamps to send the letter if the post office has only 42-cent and 1-cent stamps?

Solution. The simplest way is to buy two 42-cent stamps. However, it is also possible
to buy one 42-cent stamp and 42 penny stamps, or to buy 84 penny stamps. Therefore,
there are three ways to pay the postage, namely,

84 (cents) = 1 (cent) x 84
=1 (cent) x 42 + 42 (cents) x 1
= 42 (cents) x 2. O

In this problem we represent the integer number 84 as a sum of integer numbers
in several ways. It should be also noticed that stamps can be put in any order, while
in other problems the order of addends can be essential. Similar problems’ occur in
many applications. In this section we study them using the method of GF. We start
with a formal definition.

7 These problems are discussed in detail by G. Andrews [3].
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Definition 4.4.1. A set of ordered pairs of natural numbers
H(n, k) = {(nl, kl)’ (nz, kz), cees (nl, kl)}

where k;+- - -+k; = kand njk; +- - -+n;k; = n, is called a partition of a natural number nin
k terms (or addends) ny, n,, ..., n;. Since the addition is commutative, without loss of
generality we will always list the terms of partitions in increasing order of their terms,
that is, we always assume that1<n; <n, <--- < n,.

For instance, the partition I1(15,8) = {(1,4),(2,3),(5,1)}, wherel =3, n; = 1,n, =
2ny =5k =4,k;=3k3=1,4+3+1=8and1-4+2-3+5-1= 15, corresponds to the
following representation of 15 as a sum of 8 terms: 15 = (1+1+1+1)+ (2+2+2)+(5).In
Problem 4.4.1 we found three partitions of the number 84, [](84,84) = {(1, 84)}, that s,
84 =1-84,1](84,42) = {(1,42), (42,1)}, thatis, 84 = 1-42+42-1,and [[(84,2) = {(42,2)},
thatis, 84 = 42- 2.

Theorem 4.4.1. The GF for the number of partitions is

Q+t+2+C+)x A+ +t 5+ )x-o

x (1t 4% )%

-1

={1-HA-)x-x(1-t)x--} (4.4.1)

Proof. If we multiply out all the series in (4.4.1), the power t" appears as the product

1k

! 21!
" = 7K 2 R

Here the exponent 1 - k] indicates that the number n contains k; of units, that is, k]
of the infinitely many infinite series in (4.4.1) contributed the term 1 = ¢° as a factor
to t". Next, the exponent 2 - kj shows that n contains k} of 2s, etc.; some k] may be
equal to zero. Leaving out zero exponents, denoting nonzero terms by k;, and using
the geometrical series (4.3.6) we deduce (4.4.1). O

Problem 4.4.2. Solve again Problem 4.4.1 by making use of GF (4.4.1).

Problem 4.4.3. Show that the GF for the number of partitions with different addends,
thatis, with k; = k, = --- = k; = 1 (no term repeats), is (1+¢) x A+) % x 1+t x- -
The GF of partitions with all terms not exceeding a given number g, that is, withn; < g
for every i, is

Q+t+2+ L+ )x A+ 2+t 460+ )x-
x(1+t9+22+6%4..) = {1-0(1-£2) - (1-t)} (4.4.2)

The coefficient of " in (4.4.1) depends only on n and counts all the partitions of n
with any k = 1,2,.... However, if we consider the number of partitions of n, contain-
ing precisely k parts, this quantity depends on two integer parameters n and k. If the



216 —— 4 Enumerative combinatorics

quantities we sought depend on several parameters, it may be useful to employ GF
of two or more variables. In the next theorem we find a GF for partitions of integers,
taking also into account both n and the number k of terms in a partition.

Theorem 4.4.2. The GF of the partitions containing exactly k terms is
Ptk = {1-t(1-£)---1- ). (4.4.3)

Proof. To consider both parameters, n and k of I(n, k), we introduce a function of two
variables

Ftu) = (1+ut + 1 + 136 + ) x L+ ut? + 2t + 130 + )

-1

><(1+uti+u2t2i+u3t3i+--~) x - ={(1-ut)x (l—utz)x-n} (4.4.4)

Multiplying out the series in (4.4.4), we get the addends (cf. the proof of Theorem 4.4.3)

! ! k

ukl % l‘k1 < U kK k! _ uk1’+k£+---tk{+2k§+---

! !
ZthkZX"'Xu'Xt’X"'

that is the exponent of the factor ¢ contains k; of units, k; of twos, and so on, totaling
to k| + k) + - - - addends. Therefore, expanding F(¢, u) in powers of u, we derive

F(t,u) = iP(t, ku’ (4.4.5)
k=0

where the coefficient P(t, k) includes only powers t" such that the corresponding par-
tition of n contains exactly k terms. Hence, if we expand P(t, k) against the powers of ¢,
the coefficient of t" will give the number of partitions of n consisting exactly of k parts.
Thus, P(t, k) is the GF we are looking for, since it lists partitions with precisely k > 1
parts.

Now we find P(t, k) explicitly. First we remark that by (4.4.4) and (4.4.5), P(t,0) =
F(t,0) = 1. Moreover, one can directly verify the equation

(1-ut)F(t,u) = F(t, ut).
Inserting series (4.4.5) in this equation, we get
P(t,k) - tP(t,k - 1) = t*P(t, k), k=1,2,...

so that (1 - {P(¢t, k) = tP(t, k - 1),k > 1. If we replace here k with k — 1, we get (1 —
t“NP(t,k - 1) = tP(t, k - 2). From these two equations

(1- 1 - Dt k) = 2Ptk -2), k=2

Repeating this process, that is, reducing the latter to P(¢, k — 3), then to P(t,k — 4),...,
and eventually to P(t, 0), we get (4.4.3). O
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Problem 4.4.4. Show that the number of partitions of number 2r + k in r + k parts does
not depend on k.

Solution. By Theorem 4.4.2, this number is the coefficient of K in P(¢,r + k). Since
(2r + k) — (r + k) = r, this coefficient is equal to the coefficient of t" in the Taylor series
of the function {(1-t)(1 - 3 a-t +k)}‘1. However, the latter coefficient depends
only on the first r factors
(A-0a-2)--a-) "

Then, due to (4.4.2) this coefficient is equal to the number of partitions of r into ad-
dends not exceeding r. Since a partition of r cannot contain a term bigger than r itself,
the latter condition (“addends not exceeding r”) imposes no restriction on partitions,
thus the quantity we want is the total number of the partitions of r, which does not
depend on k. O

This problem and some others can be easily solved by making use of special dia-
grams.

Definition 4.4.2. Letbe k; +--- + k; = k and n;k; + --- + njk; = n. The Ferrers & (or
Young) diagram of a partition

H(n, k) = {(nl, kl)’ (nz, kz), ey (nl, kl)}

isaset of n = njk; + - - - + mjk; dots in the plane, situated in k = k; + - - - + k; rows such
that foranyi = 1,2,...,1 there are k; rows containing n; dots each.

We always consider normalized diagrams, such that the left-most dots of all rows
form a vertical column and the numbers of points in consecutive rows, from top to
bottom, do not increase. Thus, diagrams explicitly display the terms of a partition as
horizontal rows of dots, from largest to smallest. For example, the Ferrers diagram in
Fig. 4.2 depicts the partition I1(13, 6) = {(1, 3), (3, 2), (4, 1)}.

Figure 4.2: The Ferrers diagram of the partition (13, 6).

Another solution of Problem 4.4.4. Since a partition I1(2r + k, r + k) contains r + k parts,
the left-most column of its normalized Ferrers diagram consists of r + k dots. Hence,
the complementary part of the diagram contains (2r + k) — (r + k) = r dots, so that this
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part corresponds to a partition of the number r. Vice versa, if we append a column,
consisting of r + k dots, on the left to the normalized diagram of any partition of a
number r, we derive the diagram of some partition I1(2r + k,r + k), which proves the
statement. O

Next we consider the compositions, or ordered partitions of integer numbers. To
formalize ordering, we again use the language of mappings. We recall the notation of
anatural segmentN,, = {1,2,...,m}.

Definition 4.4.3. A composition of a natural number n € N, containing m patrts, is a
mapping f : N, » Nsuch that f(1) + f(2) +--- + f(m) = n.

Example 4.4.1. The partition (Fig. 4.2)
1(13,6) = {(1,3),(3,2), (4, 1)}

thatis13 = (1+1+1) + (3 + 3) + (4), generates a composition 13 = {1,1,1, 3, 3, 4}. This
composition can be realized as a mapping

fl : {1)2)3)4)5)6} _>N

such that f;(1) = f,(2) = fi(3) = 1,fi(4) = f1(5) = 3, and f;(6) = 4. However, the mapping
with the same domain and codomain,

f:{1,2,3,4,5,6} - N,

such that £,(1) = f5,(2) = £(5) = Lf,(4) = £,(6) = 3, and f,(3) = 4, corresponds
to another composition with the same parameters n = 13 and m = 6, namely, 13 =
{1,1,4,3,1,3}.

Using the same reasoning as before, we see for ourselves that the GF for the com-
positions of a number n, consisting of m parts, is

(t+2+- )" =t"a-H™

To find the coefficient of t" in this series, we have to compute the coefficient of t" ™ in
the series (1 — t) ™ —see (4.3.7). Hence, we have proved the next statement.

Theorem 4.4.3. There are
Cn-1,m-1) (4.4.6)
compositions of a number n containing m parts. O

Remark 4.4.1. Formula (4.4.6) simultaneously counts combinations with unlimited
repetitions from elements of m types containing at least one element of each type.

Corollary 4.4.1. There are C(n+m -1, m-1) compositions if a composition can contain
zero terms. To prove this, we can just replace each term x; of a composition with x; - 1,
thus increasing n by m. O
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Problem 4.4.5. In how many ways is it possible to get the sum of n after rolling a fair
die several times, if after each roll we add up the numbers it landed on?

Solution. The question, as it is stated, is ambiguous because the answer depends on
whether or not we consider the order, in which the outcomes occur. For instance, we
can get the sum of 4 as the result of rolling a 3 followed by a 1, or as the result of rolling
a 1followed by a 3—are these two outcomes different or do we consider them the same
and identify such results?

These are two different problems. First we assume that the result depends on the
order of addends. Thus, we have to compute the number of compositions of a natural
number n, such that any part of a composition does not exceed 6, and there is no
restriction on the number of parts. If the number m of rollings, that is, the number of
parts of a composition, is given, we have a one-to-one correspondence between the
compositions we sought and mappings

f:{l,Z,...,m} - {1>2>3>4>5>6}

such that f(1) + f(2) + - - - + f(m) = n. Since any composition has at least one part, such
mappings are listed by the polynomial

(t+E+ -+t ="t + 4+ )

and the GF for such mappings is

1 2 4P
tm(1+t+t2+~--+t5)m=t( +t+t°+ +t)

: 447
) 1—t—t2—-- o el

D18

3
I

If we want to avoid operations with infinite series, we can do that by specifying
an n and truncating all series, keeping in mind that m cannot exceed n—even if a
die shows a 1 every time, it is sufficient to roll the die n times to accumulate the sum
of n.

For example, if n = 4, we can consider a polynomial

(t+82 4+ + )"

M=

1

3
I

Moreover, if n = 4, the faces with 5 and 6 are irrelevant for the problem, and we can
even consider a polynomial of a smaller degree,

(t+2+6+t9"

M=

1

3
I
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After simple calculation we find the coefficient of t* in the latter polynomial to be 8,
that is, the sum of 4 can be obtained in 8 ways shown in equation (4.4.8):
[ 4
1+3
3+1
s 4 2%2 (4.4.8)
1+1+2
1+2+1
2+1+1
| 1+1+1+1

Let us return to an arbitrary n. If we allow m to be equal to 0, assuming by defini-
tion that there exists the unique composition consisting of zero parts, then the GF is
simpler:

e 2 5\m 1
"Al+t+tt ) = ————
2 ) 1-t-t2—-.. -6

m=0

but obviously, the latter has the same coefficient of t", Vn > 1, as the former one given
by (4.4.7).

If we specify the number m of rollings, then the GF is (t + et té)m, where by
the multinomial theorem Exercise 1.5.19 the coefficient of t" is

C(m; kl’ kl’ PPN k6)

ky+ky+-+kg=m, k;+2ky+--+6kg=n

and C(m;ky, ky, ..., k) are multinomial coefficients (1.5.1). Here k; can be any whole
numbers including zero. For example, if n = 4 and m = 3, the latter sum contains the
only addend with k; = 2and k, = 1 and reduces to C(3;1,2) = 3. Indeed, among the
eight terms in (4.4.8) exactly three terms, 1+ 1+ 2,1+2+1,and 2 + 1 + 1, contain 3
addends.

Now we solve Problem 4.4.5 assuming that the result does not depend on the
order of faces. Therefore, we have to find the number of partitions with all parts not
exceeding 6, and the GF is given by (4.4.2) with g = 6,

Q+t+2 4+ ) xQ+ B+t + 0+ ) x (Lt + 24840,

In particular, the coefficient of t* here is 5, consequently, an unordered sum of 4 can
be obtained in five ways, including a 4 itself, namely,

4,
3+1,
4 = 2+2, O
2+1+1,
1+1+1+1.
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In the end of this section we apply the method of GF for solving linear recurrence
relations (called also linear difference equations) with constant coefficients.

Definition 4.4.4. A sequence {a,};2, satisfies a linear (non-homogeneous) difference
equation of order r if foralln = 0,1,2,.. ., the equations

Apir =€ Apiy 1 T 6 Apypp + 0+ G Ay + dn+r (44.9)

hold where c;,...,c, are given constant coefficients, ¢, # 0, and {d,};, is a given
sequence. If all d,, = 0, then (4.4.9) is called homogeneous.

A well-known example of such a sequence is the sequence of the Fibonacci &
numbers

{1,1,2,3,5,8,.. }

satisfying the difference equation a,,, = a,,; + a, for all n > 0. The theory of lin-
ear difference equations is in many instances similar to the theory of linear ordinary
differential equations. In particular, the reader can readily prove the following super-
position principle for linear difference equations.

Proposition 4.4.1.

(1) If two sequences satisfy a linear homogeneous difference equation, then any linear
combination of these sequences also satisfies this equation.

(2) A linear difference equation of order r has r linearly independent solutions; to spec-
ify a solution, one must assign r additional conditions O

To develop the theory of linear difference equations, we prove in Theorem 4.4.4
that, ifa sequence {a,}-, satisfies a difference equation (4.4.9), then its GF is arational
function. First we give one more definition.

Definition 4.4.5. The polynomial

r-2

gt)y=t -t -t —c, -,

is called the characteristic polynomial of difference equation (4.4.9).

Let the characteristic polynomial g(t) have the roots a, aj, ... ., &g with multiplici-
tiesl;, b, ..., L, I, + L + -+ + I = r. Introduce another polynomial

k(t) = t'g(1/t).

It is well known that, if all coefficients c; in (4.4.9) are real numbers (we consider only
this case), then complex roots of g, if there are any, must appear in pairs of complex
conjugate numbers, that is, if « = a + b: is a root, where a, b are real numbers and 1 is
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the imaginary unit, * = -1, then & = a — bz also must be a root of the same multiplicity
[37]. Moreover, g can be factored as

gt) = (t—a) - x (t - a)
therefore
k(t) = (1-agt) x -+ x (1 - agt)s. (4.4.10)

We use these observations to find the general solution of any linear homogeneous
difference equation with constant coefficients. As before, the GF of the sequence a =
{a,}y2, is denoted by f,(t) = Y020 a,t".

Theorem 4.4.4. The GF f, of a sequence a, satisfying a homogeneous equation (4.4.9),

is a rational function,

h(t)

fa® = k(t)

(4.4.12)

where the polynomial k of degree r was defined in (4.4.10) and h is a polynomial of degree
at most r — 1. Moreover,

JAGEDY {ZPi(n)a?}t"

n=0 li=1

Thus, the general term of the sequence a is given by the expression

Pi(n)al, n>0, (4.4.12)

2
=
I
e

I
-

where each polynomial P; has degree l; - 1, in particular, P; = const whenever q; is a
simple root.

Vice versa, if a, are given by (4.4.12), then the sequence {a,},., satisfies the homo-
geneous equation (4.4.9).

Proof. Multiplying the GF f,(t) = Y2, a,t" by the polynomial k(t) = t'g(1/t), and
making use of equation (4.4.9), we readily verify that h(t) = f,(¢) - k(¢t) is a polynomial
of degree at most r — 1, which immediately implies (4.4.11).

To prove (4.4.12), we decompose the rational function (4.4.11) in the sum of partial
fractions,

s L

fa(t) = ZZﬁz} 1 (Xt) K

i=1j=1

where f; are constants. Now (4.3.7) implies the expansion

(1-at? =) Cn+j-1,j-Da't".
n=0
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Note also that

;
Y BiCn+j—-1j-1af = P,(m)a]
j=1

where P;(n) is a polynomial of degree at most [; — 1; moreover, any such polynomial
can be obtained by an appropriate choice of the constants ;. This proves (4.4.12).
Each polynomial P;(n) has at most /; nonzero coefficients, since its degree does
not exceed [; — 1. Hence, these polynomials altogether have [; + - -- + I; = r coefficients
and to find them we need r additional conditions; for example, we can assign the first
r terms {ay, a, .. .,a,_;} of the sequence a. O

Remark 4.4.2. We immediately see that, if a root is simple, then the corresponding
polynomial is a constant, hence it follows from (4.4.12) that, if all roots are simple, then
every a, is a linear combination of the nth powers of the s roots of the characteristic
polynomial.

Problem 4.4.6. How many n-arrangements are there with repetition from the two-
element set A = {a, b}, such that no two symbols a are situated next to one another?

Solution. Denote the number of these arrangements by f(n). We define f(0) = 1, for
there is a unique empty arrangement; it is also clear that f(1) = 2 since there are
two such 1-element arrangements, namely (a) and (b). If n > 2, we can split all such
arrangements into two disjoint subsets—those beginning with an a and beginning
with a b. The second subset contains f(n — 1) arrangements because the first char-
acter b puts no restriction on the second symbol. However, the first subset contains
f(n-2) arrangements, since the first a must be followed by a b to avoid two repeating
symbols a. By the sum rule

f=fn-D+f(n-2), n=2 (4.4.13)

Consequently, the sequence f(n) satisfies the homogeneous second order difference
equation (4.4.13) with the characteristic polynomial g(t) = t* — t — 1. The quadratic
equation g(t) = 0 has two different roots a; = %(1 ++V5)and a, = %(1 - +/5), hence
their multiplicities are [; = I, = 1. Thus, P;,i = 1,2, are zero-degree polynomials, that

is, constants. Denoting P, = p and P, = g, we get by (4.4.12)

fn) =p<1+2\/§>n+q<1_2\/§>n, n>o0.

The initial conditions f(0) = 1 and f(1) = 2 give the system of two linear algebraic
equations

{ p+q=1
la+Vop+ia-vog=2
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which results in p = ‘f/*; ,q= ‘2@—\}53, and finally
n n
f(n):\/§+3<l+\/§> +\/§_3<1_\/§>, n>o0. (4.4.14)
245 2 245 2
O

The terms of the sequence {1,2,3,5,8,13,...} are called the Fibonacci numbers;
they can also be defined by the same difference equation but with the initial condi-
tions f(0) = f(1) = 1, leading to the sequence {1,1,2,3,5, 8,13, ...}—see Exercise 4.4.2.

Problem 4.4.7. How many directed paths are there in the directed graph in Fig. 4.3,
which start either at the vertex A or at B and arrive at the vertex C,?

B C2 Cn 2 Cn

Figure 4.3: A graph in Problem 4.4.7.

Solution. Denote the number of paths from A to C, by a, and from Bto C, by b,. It is
clear that whether we start at A or at B, there are two ways to reach the vertex C,—
either through C,_; and then down to C,,, or through C,_, and then directly to C, by
the horizontal edge. Thus, we immediately derive the system of two decoupled linear
difference equations

{ ap = Apq + Ay
by = byy + by s

with the initial conditions a; = a, = 1and b; = 1, b, = 2. Therefore, a,, are the Fibonacci
numbers, a, = f(n), and b, are the shifted Fibonacci numbers, b, = f(n + 1), and the
total number of paths is (cf. Exercise 4.4.2)

an+bn=f(n)+f<n+1>:f<n+z>=\%[(%g)"ﬂ-(%g)m]. 0

One of many applications of the difference equations is the evaluation of determi-
nants. Recall here a few definitions, also needed in subsequent sections. Consider a



4.4 Generating functions Il. Applications = 225

permutation® g = (X;,X,,...,x,,) of the first m natural numbers. The permutation g is
said to have an inversion if there are indices i < j such that x; > x;. A permutation is
called even (odd) if it has an even (odd) number of inversions.

Definition 4.4.6. The determinant of an n x n matrix

al’l a1’2 e al,n

az)l a2,2 e az)n
M = .

ap1 Apy - Qup

is the alternating sum of n! products, such that each product contains one element
from every row and from each column of the matrix. Here “alternating” means that the
product a,; ay;, - - ap; has the sign (~1)0Urkrtn) swhere o (i, iy, .. ., i,) is the number of
inversions in the permutation (i;, iy, . . ., i,,). The determinant of the matrix M is denoted
by

al)l al’z cee al)n

(12’1 (12’2 e (12’"
det(M) =

Ay Any ... Qpy

For instance, if M = (a) is a 1 x 1 matrix, its determinant is the unique entry of
the matrix M, det(M) = a; if M = (95) is a 2 x 2 matrix, then det(M) = ad - bc. The
determinant of an n x n matrix can be computed by using the expansion across the
first row,

det(M) = al’l det(Ml’l) - al’z det(Ml)z)
+ a5 det(My3) — -+ + (-1)"ay , det(M, ,,)

where M, ;,1< i< n,are (n-1) x (n- 1) matrices obtained from M by deleting its first
row and ith column. The determinant det(M ;) is called the minor of a matrix element
ay;. Quite similarly, one can expand a determinant along any row or column. This is
a recursive procedure: we reduce, step-by-step, the order of a determinant to be com-
puted, until we reach 2 x 2 determinants that can be calculated straightforwardly, and
then we work backward, computing minors of third, fourth, etc., orders. The proce-
dure described is lengthy and there are different ways to speed up the computations;
see, e. g. [42]. In the following problem we show that some determinants can be effi-
ciently computed by making use of difference equations.

8 Permutations are studied in more detail in Section 4.5.
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Problem 4.4.8. Compute a three-diagonal determinant (a special case of the Jacobi &
determinant) of order n,

1 0 O 0
1 1 0 0
d, = 1 1 0
0O ... 00 1 1

Solution. Expanding d, along the first row (or the first column), we immediately derive
arecurrence relation d, = d,,_, - d,,_,. Its characteristic polynomial g(t) = t* -t + 1 has
simple complex roots exp{i%i}, sod, = pe"3 +ge™3, where p and g are constants,
that is, polynomials of zero degree. The values of the determinants d; = |1| = 1 and
d, = |11| = 0 are immediate, and we use them to set up a system of algebraic linear
equations

{ pei% + qe‘ig =1
pe"% + qe"'%n =0.

i

Solving this system, we find p = (¢35 + 1), g = (¢7'5 + 1)), and finally d, =

2 sin (n+1)m
3t 3 .
Similarly, a determinant of order n,
2 1 0 0 ... 0
1 2 1 O 0
d, = 1 1 0|,
O ... 00 1 2

satisfies the equation d,, = 2d,,_; — d,,_,. However, in this case the characteristic equa-
tion t? — 2t + 1 = (t - 1)> = 0 has a multiple root a = 1 of multiplicity I = 2, there-
fore, the general solution of the equation d, = 2d,_; — d,_, should be looked at as
d, = (p-n+q)a" = p-n+q. Again, we immediately compute the determinants of orders
land 2,d; = 12| =2and d, = I% %I = 3, and use these values to set up an algebraic
system of two linear equations

{p+q:2)
2p+q=3.

From thisp =g =1,and we find d,, = n + 1. O

Problem 4.4.9. In how many parts do n convex closed curves divide the plane if any
two curves have two common points, but no three have a common point?
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Solution. Denote by a, the number of parts generated by n curves. If we add one more,
(n + 1)st curve to the existing n curves, it has two intersection points with each of the
initial n curves, totaling to 2n points. These 2n points split the new, (n + 1)st curve
into 2n pieces, and each of these pieces divides exactly one of the initial a,, parts of
the plane into two pieces. Therefore, the new curve increases the number of parts, the
plane was decomposed to by n curves, by 2n resulting in the difference equation

Apy1 — Ay =21 (4.4.15)

Unlike the preceding ones, this difference equation is non-homogeneous, therefore,
its general solution is the sum of the general solution of the corresponding homoge-
neous equation and a particular solution of non-homogeneous equation (4.4.15). The
homogeneous equation a,,; —a, = 0 has a linear characteristic polynomial g(¢) = t -1
with one simple root a = 1, thus the general solution of the homogeneous equation is
a®™ = pa™ = p, where p is an arbitrary constant.

The right-hand side of (4.4.15) is 2n—this is a polynomial in n, therefore we look
for a particular solution of the non-homogeneous equation as a polynomial as well.
However, 2n is a first-degree polynomial in n, and its degree, which is 1, is a root of
the characteristic polynomial g(t), so that we must look for a particular solution as a
second-degree polynomial @™ = gn? + rn + s. Inserting this into (4.4.15) we get

n
q = 1,r = —1; s may be any number, we choose s = 0. Thus, @™ "™ = n? _ n and

a, = @ Om 4 gh°™ — 24 p. Next, a, = 2 because one convex closed curve divides
the plane in two parts, cf. Theorem 2.5.1. Using this initial condition, we find p = 2and
a, = n-n+2. O

The next problem deals with a sequence {c,}n., satisfying a nonlinear difference
equation. Such equations, like their differential counterparts, can be explicitly solved
only in rare occasions. In this problem we are able to solve a nonlinear equation by

using the GF of the sequence sought.

Problem 4.4.10. In how many ways can one compute the product of n + 1 quantities
ay, &y, . .., Ay, taken in this fixed order, if the multiplication is non-associative?

Solution. Associativity means that (ab)c = a(bc), thus, the question is, in how many
ways can we insert parentheses among n + 1 factors a;, a5, . . ., a,,,1 taken in this order?
Denote the number of possible products by c,,. For example, if n = 1, there is only one
way to multiply two elements a;, a,, namely, a; X a5, hence ¢; = 1. However, forn = 2
there are two possibilities, (a; x a,) x a3 and a; x (a, x a3), thus, ¢, = 2. We leave it to
the reader to verify that c; = 5. It is convenient to define ¢, = 1.

To derive the GF

fo®) =co+cyt+-- +cpt" +--

let us notice that it is always possible to determine the position of the very last multi-
plication, that is, we can find an element a, such that in order to compute the entire
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product, we multiply the left-most r elements, and independently multiply the other
rightmost n + 1 — r elements, and only after that multiply the two partial products; in
the example with two factors above r = 1, and in the example with three factors either
r = 2orr = 1. Now let us notice that there are c,_; ways to multiply the left-most r
elements and c,_, ways to multiply the other n + 1 — r elements. By the product rule,
there are c,_; - ¢,_, ways to calculate this product with the last multiplication after the
a,. Since r runs from 1 through n, we have by the sum rule

Ch=Co Cn1+Ci-Chgt " +Crq Cpy+ -+Chq-Cyp n=1 (4.4.16)

Comparing (4.4.16) with the convolution ¢ * ¢, we see that the right-hand side of
(4.4.16) is the coefficient of t" in the power series of (fc(t))z. Computing fcz(t) and using
the condition ¢, = 1, we derive a quadratic equation for f(t),

H2(6) ~ fo(t) +1=0,
which has roots %(1 + V1 - 4t). Since f.(0) = ¢, = 1, we see that

1+ V1-4t
2t

is an extraneous root, so that we must set

o= 1T

By making use of the result of Exercise 4.3.32

1,1 1 1
1 M-DG-2d-n+1)
A+ =1+ =x+--+ 22 2 2 X"t
2 n!
with x = —4t, we expand (1 — 4t)/? in the power series and get again the Catalan
numbers (Remark 1.4.2) Cat,, = ﬁC(Zn, n. O

Recurrence relations allow us to find certain sums explicitly, in closed form. Let
us compute again the sum found in Problems 1.1.4 and 4.3.11.

Problem 4.4.11. Evaluate anew the sum s(n) = ¥}_, k%, now by making use of a recur-
rence relation.

Solution. The equation s(n + 1) — s(n) = (n + 1)? is obvious. This is a first-order linear
non-homogeneous recurrence equation with the characteristic polynomial t -1 = 0
and with a quadratic polynomial on the right. Hence, we look for a particular solution
of the non-homogeneous equation as a polynomial of third degree, s(n) = an® + bn® +
cn+d. Inserting this polynomial in the equation and equating the coefficients of n?, n?,
and n, we find a = 1/3,b = 1/2,c = 1/6,d remains undetermined. We set d = 0, since
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after all we have to add the general solution of the corresponding homogeneous equa-
tion, which is p(1)" = p, hence, it is a constant p as well. Satisfying the obvious initial
condition s(1) = 1, we find that p = 0 and finally we again derive the formula

15 1 1 1

s(n) = §n + 5 + gn = gn(n +1)(2n +1). O

The last problem of this section employs some elementary complex analysis. GF,

used in this text, have converging Taylor series, therefore their sums are analytic func-

tions within the circle of convergence and the powerful techniques of complex anal-

ysis may be used in applications of this method. We consider one typical example,
referring the reader to [15] for a detailed treatment of the topic.

Problem 4.4.12. (Hardy S) Compute the sum

m/2) _qyk
Hm) = ) ——Cm-kk), m=12,...
(=0 m-K

where [m/2] is the integer part of m/2.

Solution. Applying (1.4.2) we readily verify the identity
L cm-kk = Licm-k i)+ Cm—-k-1k-1)
m-k m
or
LC(m -k, k) = l{C(m —k,m-2k)+C(m-k-1,m-2k)}. (4.4.17)
m-k m

Consider the contour integral

I(m,n) = ﬁ (j) w1+ w)™ dw.
lwi=3

2

The integrand has two singular points, w = 0 and w = -1, but only the first one lies
inside the contour |w| = % Computing the residue at the (n + 1)-fold pole w = 0, we
deduce the formula I(m, n) = C(m, n). From this and (4.4.17),

;C(m -kk = L cj) w Ly R gy,

m-k 2mim

=3

Therefore, for k > [m/2] the integrand is a holomorphic function in the disk |w| < 1
and

(m/2) (_q\k
Hm)= ) C

k=0

‘ 4; W—m+2k—l(1 +W)m—k—1 dw
2mim

_1
wl=3

v (—1)k -m+2k-1 m-k-1
= Z ~ (j) w (1+w) dw.
= 2mim

_1
wi=1
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2
The geometric series Zﬁo(%)k converges uniformly for |w| < g < 1; hence, the order

of summation and integration can be interchanged, yielding

_ L -m-1 m-1 = 2 k
H(m) = S SB w2+ w)(1+w) LZ;)( wo/(1+w)) ]»dw
Iwi=1 -

dw

1 -m-1 m
= — w 2+w)(1l+w) —
2mim ﬂg ( i ) 1+w+w?

1
[wi=3

where we have used the formula for the sum of geometric series. Instead of calculating
the residue at a multiple pole w = 0, it is more convenient to change the direction
we traverse the contour and consider this integral over the boundary of the exterior

domain |[w| > %, where the integrand has only two simple poles at w = —% +1 ?, since

the residue at infinity is equal to zero. Computing residues at these points, we get

2-)" (2 { (-)™2  ifm=0 (mod3),
H(m)= ——— cos(—mn) = N O
m 3 (-D)™'Lifm = +1 (mod 3).

Exercises 4.4.
Exercise 4.4.1. Prove Proposition 4.4.1.
Exercise 4.4.2. Solve again equation (4.4.13) for the Fibonacci numbers,

f)=fn-1)+f(n-2),

now with the initial conditions f(0) = f(1) = 1, and derive the formula
1

(22) -(57) ]

\5 2 2 '

Calculate the first six Fibonacci numbers by making use of this formula.
The number %(1 + /5) is called the golden ratio.

f(n) =

Exercise 4.4.3. Prove that the Fibonacci numbers f,, satisfy the equations
() fm+n)=fmf(n) +fm-1f(n-1),

@ fO+fB) +-+f@2n+1)=f2n+2),

B) 1+f@)+f4) +---+f2n) =f(2n+1),

4) fm+1)=Cn,0)+Cn-1,1) +---+ C(n -k, k), k = [n/2],

() f(n+2)=1=£(0)+f(1) +---+f(n);

(6) the latter equation is a special instance of the identity

i Cm+k-1,kf(n-k)+ i Cn+k-1,nf2m+1-2k)=f(n+2m).
k=0 k=1
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Exercise 4.4.4. Prove that the sum of any 8 consecutive Fibonacci numbers is not a
Fibonacci number.
Exercise 4.4.5. Let a sequence {g(n)};2, satisfy the difference equation

g(n) =ag(n-1)

where a is a constant number and g(0) = a. Prove that the EGF of this sequence, g(t),
satisfies the functional equation

e g(t) - eg(~t) = 0.
Exercise 4.4.6. Prove that, for any solution of the difference equation
niz = Ay + 0y

independently from the initial data, both absolute values |a,,;a,_; —aﬁl and |a,,,a, ;-
a,.1ay,| do not depend on n. For the Fibonacci numbers, each of these values is 1.

Exercise 4.4.7. Prove that the nth Fibonacci number f(n) is equal to the continuant (a
special three-diagonal determinant)

1 1 0 0 ... 0
-1 1 1 0 ... O
f(n) = o -1 11 ... 0
0O ... 00 -1 1

Exercise 4.4.8. Prove that for every natural n the number

an:<3+2\/§>"+<3—2\/§>n_2

is equal to m? for some natural m if n is odd, or else it is equal to 5m” for some natural
mif nis even.

Exercise 4.4.9. A frog sits initially at the point of the number line marked by 1. From
any point k,k = 1,2,..., it can jump for one or two steps to the right, either to k + 1 or
to k + 2. In how many ways can the frog reach the point n from its initial location? Two
ways are identical if the frog visits the same points.

Exercise 4.4.10. How many 12-digit natural numbers are there, containing only digits
3 and 9, such that no two digits 3 come together?

Exercise 4.4.11. Consider all bit strings of length n, that is, n-permutations

B = (B1 B Bn)

where each ; is either a 0 or a 1. How many of these permutations are there such that
Bi = Bi (mod ny+1 = O forevery i,1 <i<n?
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Exercise 4.4.12. Prove that the GF for the Fibonacci numbers f(n), is

t
DE+fQE++f) o= ————.

f)t+£Q) f(n) —

Exercise 4.4.13. Prove that the nth Fibonacci number f(n) is the closest integer to the
power %(%g)”.
Exercise 4.4.14. The Lucas & numbers L, satisfy the same difference equation (4.4.13)
as the Fibonacci numbers f(n), L,, = L,_; + L,_,; however, with the initial conditions
Ly = 2and L; = 1. Find an explicit formula for the Lucas numbers. Compare the first
six Lucas and Fibonacci numbers.

Exercise 4.4.15. ProvethatL, =f(n—-1)+f(n+1).

Exercise 4.4.16. Try to find a particular solution of the non-homogeneous difference
equation (4.4.15) using a first-degree polynomial pn + g and see for yourself why this
approach does not work and we had to use a second-degree polynomial.

Exercise 4.4.17. Find the general solutions of difference equations
(D) Xpiz +Xp41 — 26, = 0,

(2) xpp+4x, =0,

B) Xni3 = Xy + 341 — X, = 0,

(4) Xppy + 21 = 3%, =5-2",x5 = 0,x, = 1,

(5) Xpuo + 22X — 3%, =5,%5=0,x; = 1.

Exercise 4.4.18. Prove that, if a, = b, + b,_,Vn > 1, and a, = by, then f(t) = (1 +
Ofp (8).

Exercise 4.4.19. An arithmetic progression can be defined as a solution of the recur-
rence relation a,,; — a, = d. Find the general term q,, of the arithmetic progression as
a function of d and a; by solving this recurrence relation.

Exercise 4.4.20. A geometric progression can be defined as a solution of the recur-
rence relation a,,; = q - a,. Find the general term a,, of the geometric progression by
solving this recurrence relation.

Exercise 4.4.21. Kate invested $1200 at 6 % interest rate compounded monthly. If af-
ter every month she withdraws $50, find the balance in her account after one year.

Exercise 4.4.22. Prove that the Catalan numbers Cat,, satisfy the recurrence relation

_ _4n’-1)
Catml = mcatn,p n>1.

Exercise 4.4.23. Find a sequence a such that its GF is

(D) fa®=v2-t,
(2) fa(t) =log(1+¢).
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Exercise 4.4.24. The characteristic equation of a linear homogeneous recurrence re-
lation has roots 0, 1, -1, 3. Find the general solution of this recurrence relation and
write the relation explicitly.

Exercise 4.4.25. The ratio of a geometric progression is “T‘@ Prove that each term of
the sequence, starting from the second one, is the difference of the two its neighbors.

Exercise 4.4.26. Solve the following systems of difference equations

@

{ Xn41 =Vn—2
Va1 =Xp 3,

@

{ Xn =Yn1—Vn2 t 4

x1=3x%=5y =1
Yn=Yn-1 1 Xp-1> ! !

Exercise 4.4.27. Find the GF for the number a,, of whole (nonnegative integer) solu-
tions {x, y, z, t} of the equation

X+2y+5z+7t=n.

Exercise 4.4.28. In how many ways can a natural number n be written as a sum of
three natural addends?

Exercise 4.4.29. In how many ways can a natural number be represented as a sum of
certain natural addends?

Exercise 4.4.30. Use formula (1.2.2) in Exercise 1.2.10 to prove that the number of par-
titions of n with k terms is the same as the number of partitions of n with each term
not exceeding k.

Exercise 4.4.31. Denote by Comp(m, n; k) the number of compositions of a natural
number m with n parts not exceeding k. Prove the recurrence relations

Comp(m, n; k) = Comp(m — 1, n; k)
+ Comp(m-1,n-1;k) - Comp(m -k -1,n-1k)

and

n
Comp(m, n; k) = Z C(n,j)Comp(m - jk,n — k; k — 1).
j=0

Exercise 4.4.32. How many ways are there to pay 90 cents using quarters, dimes, and
nickels? First set up the GF for this quantity.
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Exercise 4.4.33. Is it possible to change a silver dollar using exactly 50 coins? If yes,
in how many ways?

Exercise 4.4.34. The postage for a letter is 97 cents. In how many ways is it possible to
buy stamps if the post office has 42-cent, 20-cent, 3-cent, and 1-cent stamps? Consider
two cases, when the order of stamps does or does not matter.

Exercise 4.4.35. Together, 30 members of the Combi Club have composed 40 prob-
lems for the Club contest. Among the members there are freshmen, sophomores, ju-
niors, seniors, and graduate students. Any two students of the same rank composed
the same number of problems, while any two students of different ranks composed
different numbers of problems. How many students composed one problem?

Exercise 4.4.36. In how many ways can a number 1000 000 be represented as a prod-
uct of three natural numbers, if the order of factors does not count?

Exercise 4.4.37. Find the number of terms in an expansion (x +y +z)" after combining
like terms. For example, the expansion (x + y)? = x> + 2xy + y* contains three terms.

Exercise 4.4.38. Which is larger, the number of all partitions of a natural number n
or the number of partitions of 2n in n parts?

Exercise 4.4.39. In how many parts is a sphere divided by n planes containing the
center of the spheres, if no three planes contain the same diameter of the sphere?

Exercise 4.4.40. At a hot dog eating contest, everyone of n participants ate no more
than m hot dogs. Denote by ¢;,1 < i < n, the number of frankfurters consumed by the
ith contestant, and by d;, 0 < d; < m, the number of contestants consumed at least k
hot dogs. Prove that

CG+C+-+Cp=dy+dy+---+dp.

Exercise 4.4.41. Find closed-form formulas for the following sums
1) Y, k2,

@ i, k2,

B) Y, k2K

Exercise 4.4.42. Compute a three-diagonal determinant of order n

1 -1 0 0 ... 0O O
1 1 -1 0 O 0
1 1 -1 0 0
d, = .
0O O o o0 1 -1
0O O 0O 0 1 1
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Exercise 4.4.43. For every integer n > 0, compute the determinant of order k + 1

C(n,0) C(n,1) .. C(n, k)
Cn+1,0) Cn+11) ... Cn+1k)
dnk = . . . .
Cn+k0) Cn+k1) ... Cn+kk)

Definition 4.4.7. If we drop the sign (-1)° of each term in Definition 4.4.6 of the deter-
minant of a matrix, the resulting number is called the permanent of this matrix.

Exercise 4.4.44. Compute the permanents of the square matrices leading to the de-
terminants in Exercises 4.4.7, 4.4.8, 4.4.42, 4.4.43.

Exercise 4.4.45. Prove that, if a, = c,a,_; + d,, where {c,} and {d,} are given se-
quences, ¢y = 0, and a, = d, then

n n
a, = z< H Cj>dk'

k=0 \j=k+1
Assume that [T7L,,,; = 1.

Exercise 4.4.46. In how many parts do n lines split a plane, if no two lines are parallel
and no three of them intersect at a point?

Exercise 4.4.47. In how many ways can a convex n-gon be split in n — 2 triangles by
n-3nonintersecting diagonals? Derive the GF and compare it with that for the Catalan
numbers Cat,,.

Exercise 4.4.48. Recall that the Bell numbers B, (Definition 1.1.7) count the number
of partitions of an n-element set. Derive a difference equation for the Bell numbers,
B, =Y}_; C(n-1,k - 1)B,_;. This is a linear difference equation of variable order.

Exercise 4.4.49. Let Cat(t) be the GF for the Catalan numbers Cat,, and a be a whole

number. Prove that % is the GF for the sequence of binomial coefficients {C(2k +

a, k)} and (Cat(t))? for {=%_C(2k + a, k)} [40].

a+2k

Exercise 4.4.50. Use EGF to prove the inversion formulas

ap =Y Cnk)(x+ k)" by, vn,
k

i}
bp=Y C D" (x+ )" x + ey, vn.
k

Exercise 4.4.51. Prove that the permanent of the permutation matrix of order n is
equal to 1.

Exercise 4.4.52. Compute the permanent of the matrix (1 $19J).
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4.5 Enumeration of equivalence classes

This section is devoted to the Pélya—Redfield enumeration theory, which gives a gen-
eral method of deriving GF in various problems, in particular, in the problems where
one has to find the number of equivalence classes. We have already solved such prob-
lems when all the equivalence classes had the same cardinality and it was enough
to apply Lemma 1.1.4 or some equivalent statements. However, simple examples like
Problem 4.5.1 show that equivalence classes can have different cardinalities.

Moreover, not only can equivalence classes have different cardinalities, but the
elements of sets under consideration may have various weights. Pélya’s theory applies
to such problems as well. The subsequent exposition of the main Pélya theorem [44]
follows N. G. De Bruijn [5, pp. 144-184]. Other approaches to this theory can be found,
for example, in [47] or in [7, Appendix by J. Riget].

Coffee-time browsing

—  http://en.wikipedia.org/wiki/Nicolaas_Govert_de_Bruijn (De Bruijn’s biography
and work)

—  http://en.wikipedia.org/wiki/Plato (Plato)

- www.georgehart.com/virtual-polyhedra/platonic-info.html (Platonic Solids)

—  http://en.wikipedia.org/wiki/William_Burnside (Burnside’s biography)

—  http://en.wikipedia.org/wiki/Ferdinand_Georg_Frobenius (Frobenius’ biogra-
phy)

— chemistry.about.com/od/chemistryglossary/a/valencedef.htm (Valence)

The next problem illustrates some basic ideas of the theory.

Problem 4.5.1. Consider ten Hindu—Arabic numerals 0,1,...,,9. Some of them, like 7,
after rotating upside down through 180° in their plane become meaningless symbols.
However, some others after this rotation interchange with another digit, for example,
6 becomes 9 and vice versa; moreover, the digits 0, 1, 8 do not change at all.

Denote by D the set of the whole numbers with five digits, if a number consists of
less than five digits, we add a few zeros in front of such a number, like 00236; thus
ID| = 10°. Two such five-digit numbers are said to be equivalent if one of them can be
transformed into another by rotating through the angle of 180° or 0° without removing
off the plane. How many non-equivalent numbers are there?

Solution. To solve the problem, we consider two mappings g; : D — D,i = 0,1, where
8o : D — Dis the identical mapping of D, which clearly does not change any number,
while the mapping g; : D — D rotates a number upside down if the result is a number
in D, and leaves the number unchanged if the number cannot be rotated. For example,
£1(19806) = 90861 and g;(12880) = 12880. The reader can readily verify that the
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binary relation on the set of all whole five-digit numbers described in this problem is
an equivalence relation. Thus, Problem 4.5.1 can be stated as follows.

Consider the following binary relation g on the set D, which is easily seen to be an
equivalence relation.

Twonumbersd,,d, € Darein the binaryrelation p if and only if either d; = d,, that
is, d, = go(d;), or d, = g;(d;). How many equivalence classes exist in D with respect to
this equivalence relation?

We finish the solution of Problem 4.5.1 after the proof of Lemma 4.5.1.

Hereafter, bijections of a set D onto itself are called substitutions or permutations
of the elements of D. The discussion in Problem 4.5.1 suggests that two elements d,
and d, of a given set D should be considered indistinguishable (identical, equivalent)
if there exists a substitution g of the elements of D such that g(d;) = d,. Any set G of
substitutions generates the following binary relation p on D.

Two elements d;,d, € D are p-equivalent if and only if there exists a substitution
g € G such that g(d,) = d,.

We want to find conditions that guaranty that this binary relation g is an equiva-
lence relation on D, that is, it is reflexive, symmetric, and transitive. It is clear that in
order for the binary relation p to be reflexive it is sufficient if G contains the identical
substitution. For p to be symmetric, it is enough if along with each substitution g, its
inverse g ! also belongs to G. To guarantee the transitivity of the binary relation p, the
set of substitutions G must contain the superposition g; - g, of any two of its elements
81,8 € G.Thus, to generate an equivalence relation on D, it suffices for G to have a spe-
cial algebraic structure, namely, to be a group of substitutions with the superposition
of substitutions as the group operation. We recall the definition. O

Definition 4.5.1. A set X with a binary operation - defined on the Cartesian product

X x X is called a group if

(1) X has the neutral element e such thateox = xoce = x,Vx € X,

(2) the operation o is associative, that is, x o (y o 2) = (x o ¥) 0 2, VX, y,z € X,

(3) each element x € X is invertible, that is, for any x € X there exists an element
x'eXsuchthatxox!=xTlox=e.

The cardinality of a group is called the order of the group.

Example 4.5.1. For instance, all n! substitutions of an n-element set D make a group,
called the symmetric group Sym,; it follows from Lemma 1.1.7 that the order of this
group is n!.

Thus, in this section we consider an m-element set D = {d;,d,, ..., d,,} and a group
of substitutions G acting on D. The group operation is the superposition of substitu-
tions. This group may be the entire symmetric group Sym = Sym,, of all substitutions
of D, in which case |G| = m!, or it may be any subgroup of Sym, for example, a trivial
group {e} of order 1 consisting of the only neutral element (substitution) e € G.



238 = 4 Enumerative combinatorics

We study certain properties of substitutions. Any substitution g € G splits D into
disjoint subsets called cycles or orbits. Namely, fix an element d € D and consider a
sequence of elements

g(d), g(g(d)) =g*(d), g(g(g@d))=g*@,...

where we have used a standard notation g(gk ) = gk”, g' = g. Since the set D is finite,
after a several steps some element in this sequence must repeat. Suppose that for a
given d € D all k elements d,g(d),gz(d), . ,gk‘l(d) are different, but gk(d) = d. Then
these k elements

D, = {d.g(d),g*@),...,g" ()}

are said to form a cycle of length k.

If a cycle D; # D, that is k < m, then there exists an element d; € D \ D;, which
generates another cycle starting with d; and disjoint with D,, and so on. After a finite
number of steps each element of D will get into one and only one cycle. It is possible
that each element forms its own 1-element cycle; this is the case for the neutral (iden-
tical) substitution e. As another extreme, it is possible that all elements of D belong to
one cycle.

Definition 4.5.2. If a substitution g splits D in b; cycles of length 1 (1-element cy-
cles), b, cycles of length 2, b; cycles of length 3, etc., g is said to have the cycle type
(bl’ bz, b3, .o .).

Since D is finite, all but a finite number of entries of the cycle type sequence are
zeros; more specifically, it is obvious that b,,,,; = b,,,,» = --- = 0. It is also clear that
by + by + b3 + --- = |D|. Thus we write cycle type sequences as m-element sequences
(b1, by, bs, ..., by,). Consequently, any substitution gives rise to a partition of the integer
number |D|, however, different substitutions can yield the same partition.

Substitutions acting on an m-element set D = {x;,...,x,,}, can be conveniently
represented by 2 x m matrices (we use the same symbol for a substitution and for its

matrix)
Xl X2 .. Xm
g
X, X, ... X
1

T2 Im

where x; = g(x;). For example, the identical substitution e is given by the matrix

Xl X2 .. Xm
8o = <
Xp Xy ... Xp

clearly exhibiting its structure—every element remains unmoved and makes its own
cycle, the cycle type of e is (m, 0,0, ..., 0). On the other hand, a substitution g, given
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by the matrix

Xp Xy ... Xp
= 451
& ( X, X3 ... X ) (4.51)

consists of the only cycle of length m, because g, moves x; to x,, then x, to xs,..., X,
to x;; hence it has the cycle type (0,...,0,1), where all elements, but a 1 at the mth
place, are zeros.

Definition 4.5.3. Let a group of substitutions G act on an m-element set D and a sub-
stitution g € G have the cycle type (by, by, bs, ..., b,;). A monomial

_ b, b
De(Xp, Xa, 05 X)) = X157 L. X

where x;, X5, . .., X, are indeterminates, is called the cycle index of a substitution g.
A polynomial (the group average of the cycle indices of substitutions)

1 1 by b
Po(X, X9 o, X)) = Gl Z P X0, X)) = Gl Z X' % -~-x,l:{" (4.5.2)

8eG geG
is called the cycle index of the group G acting on the set D.
Example 4.5.2. Theidentical (neutral) substitution e has the cycle type (m, 0,0, ..., 0),

hence

PeXi Xos s X)) = X].
If G, = {e},1G,| = 1, then

PG (X1 X, .5 Xp) = X[ (4.53)
Remark 4.5.1. In polynomial (4.5.3) only x; is an essential variable, all others are fic-
titious.

Problem 4.5.2. Consider three sets of substitutions G, = {e},G. = {g.}, and G, =
{e,g.}, where the substitution g, was defined by matrix (4.5.1). Does any of G, G,
and G, make up a group?

Problem 4.5.3. Find the cycle index of the group of rotations of a square” in the plane,
when this group acts on the set D of the vertices of the square.

Solution. Here [D| = 4 and G = {8,858 83}, where g is a rotation of the square
over the angle of kr/2,k = 0,1,2,3; the identical substitution is g, = g,. By (4.5.3),
the cycle index of the identical rotation g is xi’ . With regard to the substitutions g;

9 See Exercise 4.5.10.
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and g3, all the vertices make one cycle of length 4, hence their cycle type is (0,0, 0,1)
and corresponding monomials are x,. In particular,

X7 X, X3 X X1 X, X3 X
g1=< 1 X X3 4) and g3=< 1 X X3 4>.

This is an example of two different substitutions with the same cycle structure. Under
the action of g, the set of vertices breaks up into two cycles, each consisting of two
nonadjacent vertices, hence g, = (3! 2 X’ X ) has the type (0, 2,0,0) and its index is x3.

Averaging these four monomials, we have by (4.5.2)
14
Pi(x1, X5, X3, X,) = Z(X1 +X5 + 2X,). (4.5.4)

O

Problem 4.5.4. Find the cycle index of the group of rotations of a right tetrahedron!®
with an equilateral base, when this group acts on the set D of faces of the tetrahedron.

Solution. Here |D| = 4 and the group G contains only three substitutions: the identical
substitution e and two rotations over the angles +120° about the height of the pyramid,
that is, about the axis perpendicular to the base. Thus,

1
P, X3, X3, X,) = 5(}(? + 2X,X3). (4.5.5)

O

Problem 4.5.5. A tetrahedron is called regular if all its faces are equilateral triangles.
Find the cycle index of the group of rotations of a regular tetrahedron,!! when this
group acts on the set D of faces (or vertices, which is equivalent) of the tetrahedron.

Solution. Now we can rotate the tetrahedron about the axes perpendicular to each
face, thus we have eight rotations over +120° angles about these axes. However, for a
regular tetrahedron there is another kind of rotations—after rotating such a tetrahe-
dron through the angle of 180° about the axis connecting the midpoints of two skew
edges, the tetrahedron coincides with itself. Since a pair of edges can be chosen in
C(3,2) = 3 ways, there are three such substitutions. In total,

1
Pg(x, X5, X3, %) = E(Xf +8x.x5 + 3x§). (4.5.6)

O

10 See Exercise 4.5.10.
11 See Exercise 4.5.10.
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Problem 4.5.6. Find the cycle index of the group of rotations of a cube!? acting on the
set of

(1) wvertices,

(2) edges,

(3) faces of the cube.

Solution. ltisreadily seen that there are 24 different rotations of a cube splitting in the

following five types.

(A) Identical rotation (= neutral substitution) e.

(B) Three 180° rotations about the lines connecting the centers of opposite parallel
faces.

(C) Six +90° rotations about the same lines as in (B).

(D) Six 180° rotations about the lines connecting the midpoints of opposite parallel
edges.

(E) Eight +120° rotations about the lines connecting the opposite vertices.

(1) A cube has 8 vertices, thus in this case |D| = 8 and the (A)-type substitutions have
the cycle type (8,0,0,...), (B)-type substitutions have the cycle type (0,4,0,...),
(C)-type substitutions have the cycle type (0, 0,0, 2,0,...), (D)-type substitutions
have the same cycle type (0,4,0,...) as the (B)-type ones, and (E)-type substitu-
tions have the cycle type (2,0,2,0,...). Therefore,

1
Ps(xy, X5, ..., Xg) = Z(xf +9X) + 6X; + 8XX3). (4.5.7)
(2) A cube has 12 edges, therefore now |D| = 12 and the substitutions of the same
five kinds have cycle types, respectively, (12,0,0,...), (0,6,0,...), (0,0,0,3,0,...),
(2,5,0,...),and (0,0,4,0,...). Hence,

1
Po(x1, X5, .., Xqp) = 2—4(x%2 +3x5 +6x; + 6x56 + 8x5).

(3) Now |D| = 6 and we deduce, in the same way as before,
1
Po(X1, X5, Xg) = ﬂ(xf +3X00 + 6X7X,, + 6X3 + 8X3). (4.5.8)

O

Consider again a finite set D and a group G of substitutions, acting on the ele-
ments of D. This group generates the following equivalence relation on D—two ele-
ments d;, d, € D are said to be equivalent if there exists a substitution g € G such that
g(d;) = d,. As we have already noted, group axioms of G imply that this binary rela-
tion is an equivalence relation. Next we derive an important formula for the number

12 See Exercise 4.5.10.
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of classes of equivalence, which is traditionally called the Burnside lemma. To state
it, we need a definition.

Definition 4.5.4. By 1)(g) we denote the number of fixed elements of the substitution
g € G, that is, the number of elements d € D such that g(d) = d.

Lemma 4.5.1. (Burnside & or Cauchy-Frobenius  lemma [9, p.278]) If a group of
substitutions G generates an equivalence relation on a finite set D, then the number of
the equivalence classes is

1
n=im > (). (4.5.9)

geG

Remark 4.5.2. Therefore, the number of the equivalence classes is the average over
the group G of the numbers of fixed elements of the substitution g € G.

Proof. We calculate twice the cardinal number of the set of ordered pairs of substitu-
tions and their fixed elements,

X={@gd|geGdeDgd -=d}.

On the one hand, if a substitution g € G is fixed, then the number of these ordered
pairs is P(g); summing up over all g € G, we have

X1 =) 9.
geG
On the other hand, let n(d) be the number of substitutions g € G such that g(d) = d
for a particular element d. Thus,

X = ) n(d

deD

and we derive the equation

Y ) =Y ¥e.

deD geG

For a fixed d € D let us consider aset G; = {g € G | g(d) = d}. Thisis a subgroup13
of G of order |G,4| = n(d).

Let d; € D be equivalent to d in the above sense, hence, there exists a substitution
h € G such that h(d;) = d. If g(d) = d;, then h(g(d)) = h(d;) = dand hog € G,.
Therefore, to each substitution g € G with the property g(d;) = d there corresponds a

13 Exercise 4.5.11.
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substitution g; € G4. Vice versa, if g; € G4, then g(d) = d;, where g = h™'og,. Whence
the number of elements g such that g(d) = d, is equal to |G].

Now, let K(d) denote the equivalence class containing an element d. Any substi-
tution g € G shifts d to an element of the same equivalence class. We have also shown
that for every element d,; equivalent to d, d; ~ d, the number of substitutions g such
that g(d) = d,, is the same and is equal to |G,|. Thus,

n(d) = 1G4l = 1GI/IK(a)!.
Summing up these equations over all d’ € K(d) yields the equation

Y n(d)=lal.

d'eK(d)

To complete the proof of the Burnside lemma, we have to add up all these equations
over all the equivalence classes. O

The Burnside lemma will be essentially used in the proof of P6lya’s theorem, how-
ever, we can immediately apply it to solve Problem 4.5.1.

Solution of Problem 4.5.1. Since the identity substitution does not move any element
of D, Y(gy) = 10°. To compute 1(g;), we notice that 10° - 5° numbers contain a digit,
which does not turn over, these digits being 2, 3, 4, 5, 7. Moreover, there are 3 x 52 “sym-
metric” numbers, which do not change after the rotation. Indeed, to determine such
a number, one has to select the middle digit, which is either O, or 1, or 8, and then to
choose the first two digits of the number from the set 0, 1, 6, 8, 9; these three digits de-
termine the number completely. Therefore, 1(g;) = 10° - 5° + 3 x 5°. By formula (4.5.9)
there are

%(105 +10° - 5° + 3 x 5%) = 98475

non-equivalent numbers. O

Using the Burnside lemma, we can straightforwardly solve more problems on
bracelets and similar things.

Problem 4.5.7. A bracelet consists of five beads of the same size and shape, but of
three different colors. Two bracelets are considered to be identical (equivalent) if we
cannot distinguish them after rotating about the wrist without flipping (not taking
them off the wrist). How many different bracelets are there?

Solution. Let D be the set of all possible placements of these five beads in the ver-
tices of a regular pentagon, and G = {g,, 81,8 8384} be the group of rotations of this
pentagon; here g; is the rotation of the pentagon through the angle of %kﬂ radians,
k=0,1,2,3,4, g, = e being the identical rotation. Assuming all five beads to be differ-
ent physical entities, we identify the elements of D with arrangements with repetition,
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that s, |D| = 3° = 243. Thus, Y(gy) = 243 and Y(gy) = P(8,) = P(g3) = Y(g,) = 3, since
a bracelet is a fixed element with respect to a nontrivial rotation only if all beads are of
the same color. By (4.5.9), the number of the equivalence classes, that is, the number
of different bracelets, is é(243 +3x4)=>51.

If a bracelet consists of n distinguishable beads, the answer is %(n!+0+~ --+0) = (n-
1)!. Similarly, n people can be arranged in a dancing circle in %(n! +0+---4+0) =(n-1)!
ways. We assume that a bracelet (or a dancing circle) is located in a plane and rotate
it in this plane about the axis perpendicular to the plane. However, if we can put the
bracelet off the wrist, turn it over and then put it back on the wrist—imagine all dancers
standing upside down, then there are only %(n —1)! indistinguishable bracelets. [

Remark 4.5.3. Compare this problem with Problem 4.2.1.

Problem 4.5.8. Solve Problem 4.5.7 for other numbers of beads and colors, for exam-
ple, if there are 6 beads and 3 or 4 colors.

To develop a higher power theory, we introduce another set R and consider the
power set R? (Definition 1.1.14). The group G generates a certain equivalence relation
on the power set R”.

Definition 4.5.5. Two mappings, f; : D — Rand f, : D — R are called equivalent if
there exists a substitution g € G such that f; - g = f,; the equivalence of mappings is
denoted by f; ~ f5. Since G is a group, the group axioms induce the fact that this is an
equivalence relation.

Problem 4.5.9. Verify that the binary relation described in this definition is an equiv-
alence relation.

Problem 4.5.10.

(1) Given six different colors and assuming that not all of them must be used, in how
many geometrically distinct ways is it possible to paint faces of a cube?
Two colorings are called geometrically distinct if it is impossible to transfer one
coloring to another by rotating a cube.

(2) In how many geometrically distinct ways is it possible to paint faces of a cube in
two colors, blue and green.

Solution. (1) In general, there are P(6) = 6! = 720 colorings, but many of them should
be identified. We know (Problem 4.5.6) that there are 24 rotations of the cube, thus
any equivalence class in this problem consists of 24 elements, and the number of non-
equivalent colorings is 720 + 24 = 30.

(2) Now the equivalence classes have different cardinalities. First we solve the sec-
ond part of the problem by a direct enumeration. Later on we solve it by making use
of Theorem 4.5.1. Let D be the set of faces, |D| = 6, and R = {blue, green}, |R| = 2. When
we paint a cube, we assign a color to each face of the cube, thus each coloring ¢ can
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be viewed as a mapping ¢ : D — R, that is an element of the power set R”. By The-
orem 1.1.6, IRD | = 20 = 64, but some of these functions are equivalent and must be
identified.

Namely, there is the unique coloring if all faces are blue. If there are five blue faces
and one green face, then any of six faces can be chosen as this unique green face
and all of these six colorings are equivalent. In the case of four blue faces and two
green ones, these green faces can be opposite to one another, thus generating three
different colorings, or these two green faces can be adjacent, that is, incident to the
same edge, so that giving 12 equivalent colorings. If there are three blue and three
green faces, then there are eight equivalent colorings, when the three faces of the same
color are incident to the same vertex. In addition, there are 12 more colorings, when
two faces of the same color are parallel (opposite to one another) and the third face
of the same color is adjacent to both of them—indeed, there are three ways to pick an
axis perpendicular to two parallel faces, and after that there are four ways to place a
connecting face, thus, 3-4 = 12. Similarly, one can count colorings containing two blue
faces, one blue face, and no blue face. Allin all, we have 1+6+3+12+8+12+12+3+6+1 =
64 colorings splitting into 10 different equivalence classes. O

It is useful to endow the elements of R with weights by considering one more set W
and a mapping w : R — W. We will have to multiply the weights, and for this purpose
we assume that W is a commutative ring as discussed before Proposition 4.3.1.

Definition 4.5.6. The image w(r) of an element r € R is called the weight of r and the
product

w(f) = [Tw(f(@)

deD
is called the weight of a function f € R".

Lemma 4.5.2. Equivalent functions have the same weight.

Proof. Iff; ~ f5, then there exists a substitution g € G such that f; - g = f,. Therefore,

w(f,) = H w(fy(d) = H w(fi(g(@)) = H w(fi(d")) = w(f)

deD deD d'eD

since [Jgep = [la—gayeps this equation holds because the substitution g is bijective.
a

Whence the following definition is well-posed.

Definition 4.5.7. The weight W (F) of an equivalence class F ¢ R? is the weight w(f) of
any mapping f in the equivalence class F.

In particular, if for any r € R its weight is w(r) = 1, then also w(f) = 1 for any
function f € R and so that W(F) = 1 for each equivalence class F.
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Definition 4.5.8. The set R here is called a reserve. The sum of weights of all elements
of the reserve R is called the inventory and is denoted by

Inv(R) = ) w(n).
reR

Depending on our choice of weights, the inventory gives more or less detailed de-
scription of a reserve. For instance, if a student has three books and the weight of each
of them includes its title and the author’s name, the inventory is a formal sum, noth-
ing but a list of three entries, giving a certain description of student’s books. If she
has two books in mathematics and one in physics and we assign weights M and P,
respectively, to these books, the inventory becomes 2M + P—from this inventory we
see only subjects but not the titles of the books. If these books have 342, 229, and 400
pages, respectively, totaling to 971 pages, and we use these numbers as weights, then
the inventory becomes 971, giving us only the idea of the total thickness of these books.
Next, if we use the prices of books, say, $99.95, $125, and $129, then the inventory is
$353.95, representing only the total price of these books and nothing else.

Lemma 4.5.3. Let D and R be finite sets and D = D, U --- U Dy, be a partition of D. If a
subset S ¢ R consists of all mappings that are constant on each set D;,1 < j < k, then

k
Inv(S) = ]‘[{ Y (wir)™! } (4.5.10)

j=1 “reR

Proof. Define a function ¥ : D — {1,2,...,k} by the equation (d) = j whenever d ¢
Dj c D, that s, (d) is the index of the subset Dj in the partition, such that the element
d € Dj; obviously, d € Dy Any mapping f € S can be represented as a composite
function f = ¢ o 1, where a function ¢ : {1,2,...,k} — R. The mapping ¢ = ¢y is
uniquely defined by f because the latter is constant on all subsets D;,1 < j < k. Vice
versa, given any function ¢ : {1,2,...,k} — R, the superposition f = ¢-1) is a piece-wise
constant function, therefore, this function f = f, € S. Hence, there exists a one-to-
one correspondence between S and the power set RB2-K which proves the equation
ISI = RI¥.
Expand now the right-hand side of (4.5.10),

{Z(w(r))lDll} x {Z(w(r))lDﬂ} o x {Z(w(r))'Dk'}.

reR reR reR
Multiplying these sums out, we derive a set of products each containing one addend
from every sum. There are IR = |S| such products, a generic one being

1D, 1Dl

D
(w(rl-l))| 1y (w(r,-z)) oo x (w(rik)) . (4.5.11)
Considering product (4.5.11), it is natural to introduce a function

?:{1,2....k} >R



4.5 Enumeration of equivalence classes =—— 247

as follows: @(j) = r,1<j< k. This shows that product (4.5.11) is equal to the weight
w(f), where the function f = @ o 1. Indeed,

k
w(P = [[wF@) = 1‘[1‘[w(f(d> = [ JiwGF@™

deD Jj=1 deD; j=1

because f is constant on any D;. It is easily seen that starting at different products
(4.5.11), this construction leads to different functions @, and thus to different func-
tions f. Since there are as many products (4.5.11) as functions @, we conclude that
by multiplying out all terms in (4.5.10) we get the sum of the weights of all functions
in S. However, this sum is precisely the inventory Inv(S), which completes the proof
of Lemma 4.5.3. O

Corollary 4.5.1. If a partition of D contains only 1-element sets, then S is the power set
RP and (4.5.10) simplifies to

DI

Inv(R") = (Inv(S))" . (4.5.12)

Problem 4.5.11. In how many ways can three people distribute m tokens among them-
selves, so that the first and the second persons get an equal number of tokens?

Solution. We give two solutions of this problem, one straightforward and elementary,
and another based on Lemma 4.5.3.

First solution of Problem 4.5.11. We have to find in how many ways it is possible to split
the number m into two whole addends, such that any addend or even two of them may
be O because one or two of these people may get nothing If mis even, this can be done
in  + 1 ways, and if m is odd, then there are ™ ways to split the number.

Second solution of Problem 4.5.11. We use the problem to demonstrate the machinery
of applying Lemma 4.5.3. In this particular problem the following solution is obvi-
ously longer than the first one, however, we introduce in this solution an important
technique, which has much broader applications.

Consider two sets, D = {p;,p,,p3} and R = {0,1,2,...,m}, and a partition D =
D,uD,, where D; = {p;,p,} and D, = {p3}. Let S have the same sense as in Lemma 4.5.3,
that is, a function f € S if and only if the images of p; and p, are the same, f € S ¢
R —f (p1) = f(p,). To solve the problem, we have to find the number of functions
f € S satisfying an additional restriction

fo) +f) +f(p3) =m

Assign the weights w(i) = x',i = 0,1,...,m, where x is indeterminate, to the ele-
ments of R.If f € RP , then

w(f) = [T w(f@) = wif 1) - w(f () - w(f (p3) =/ P70,

deD
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Therefore, the functions we sought after, have the weight x™, and the number of such
functions is the coefficient of x™ in Inv(S). It should be noted that in this case the
inventory is the GF of the reserve. By (4.5.10) with k = 2,

v(S) = (1+xX° +x* + -+ X)L+ x + X7+ +x™)

1- X2m+2 1- Xm+l

== T =(1-x)"1-0" +gK)

1 41 501 »
Z(1+X) +§(1—x) +Z(1—x) +8(x).

Here we separated the function g, because in the problem we are interested in the
coefficient of x™, and the function g has a power series, which begins with the term
x™1 therefore, g contributes nothing in the coefficient of x™. Using equation (4.3.7),
we straightforwardly verify that the latter expression leads to the same answer as the

first solution, namely, ”’T” + ﬁ O

Remark 4.5.4. We have simultaneously found in this problem the number of compo-
sitions consisting of two parts, such that one part is even.

The proof of Lemma 4.5.3 carries out without any change if |R| = oo, so long as
all occurring series are convergent. In this case (4.5.10) and (4.5.12) read that the cor-
responding series are equal. This remark often allows one to simplify computations.
For instance, in Problem 4.5.11 it is convenient to use R = {0, 1, 2,...}; then

1
mv(S) =(1+x*+x* +- - )Q+x+x>+--2) = B
®=( X i
and the latter expression has, certainly, the same coefficient of x™ as the preceding
one.
Now we state the main result of this section.

Theorem 4.5.1. Let D and R be finite sets, |D| < co, |R| < co.& Let a group of permuta-
tions G act on D and P;(xy, X, . ..) be the cycle index of G. Then the inventory Inv(RP),
that is, the complete list of the weights of all equivalence classes generated in the power
set RP by the group G, is

N W(F) = PG< Y w), Y (wm): Y wn)’... ) (4.5.13)
F

reR reR reR

Corollary 4.5.2. In particular, if w(r) = 1,Vr € R, then as it was mentioned, W(F) =
1,VF € R, and the left-hand side of (4.5.13) is equal to the number of the equivalence
classes, which is, therefore,

n=Pg(R.R...). (4.5.14)

O
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Before proving Theorem 4.5.1, we apply it to solve again Problem 4.5.10.

Another solution of Problem 4.5.10. In this problem D is the set of faces of a cube,
|D| = 6, G is the group of rotations of a cube, whose cycle index was found in Prob-
lem 4.5.6(3), and R = {blue, green}, |R| = 2. Inserting x; = x, = - = x4 = 2 into formula
(4.5.8), we find again

n:%(26+3-24+6-23+6-23+8~22)=10. O
Proof of Theorem 4.5.1. Let w be an arbitrary possible value of the weightand S, = {f €
R? : w(f) = w}. Lemma 4.5.2 implies that, if an equivalence class intersects with Sus
then this entire classis a subset of S,,. Thus, we can restrict the action of the group G on
Sy; let n,, denote the number of equivalence classes belonging to S,,. By Lemma 4.5.1
being applied to S,,, we conclude

1
M= G Y () (4.5.15)

geG

where ¥, (g) is the number of functions f € RP such thatf =f o gand w(f) = w.
The quantity

w-n,=wW+w+---+w
n, addends

is the inventory of all equivalence classes having the weight w. Therefore, if we multi-
ply (4.5.15) by w and sum up these equations over all possible values of w, we get the
inventory of all the equivalence classes,

SWE ==Y Y 0y (®)
F 6l & g6

where the order of summation can be interchanged since all sums are finite. However,
Yo WPy(8) = ZfERD:f:fog w(f); hence

ZW(F):% ( D w(f)).
F 161 466\ rent s

Considering now the definition of the cycle index (4.5.2), we see that to prove the
theorem, it remains to prove the following claim. O

Proposition 4.5.1. Given a permutation g with the cycle type (b,, b, ..., by,), the expres-
sion

Y w)

feRPf=fog
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comes out of the monomial

by b b
X)X X? X X X

after replacing the indeterminate x; with Y ,.p w(r), then replacing x, with . R(w(r))z,
then x5 with Z,ER(w(r))3, «ees K With Z,ER(W(r))k, and so forth.

Proof. We observe that when g acts on D, the latter breaks down into disjoint cycles
Dy, D,,...,Dy, and the condition f = f - g implies

f(d) =f(g@d) = f(g(d) = ---

therefore, f is constant on any cycle D;, 1 <j < k.

Vice versa, if f is constant on every cycle contained in g, then f - g = f, which
means g(d) always belongs to the same cycle as d. Thus, one can apply Lemma 4.5.3,
yielding

k
Z w(f) = l_[ Z(w(r))lD’I. (4.5.16)

feRP:f=fog j=1reR

Given a substitution g with the cycle type (by, by, ..., b,;,), @l occurs b; times among the

cardinalities |D, |, |Ds|,...,|Dy|, a 2 appears b, times, etc. Hence (4.5.16) can be written
as
b, b
Y wi)= {Z W(r)} x {Z(W(r)) } X
fERP:f=fog reR reR
b b by,
= Xll X X22 X oo X Xm |X,‘:ZreR(W(T))i,1SiSm’
which proves Proposition 4.5.1 and consequently, Theorem 4.5.1. O

In the rest of the section we consider various applications of the Pélya—Redfield
enumeration theory.

Problem 4.5.12. In how many geometrically distinct ways is it possible to paint the
vertices of a square in blue and green colors? Two colorings are said to be geometrically
identical if they can be made indistinguishable by rotating the square in the plane
about its center.

Solution. Given a vertex, we choose a color for that vertex, therefore, a coloring is a
mapping from the set D = {v;,v,,v3,v,} of the vertices of the square to the set R =
{blue, green}. The equivalence relation on the set of colorings is generated by the group
of rotations of a square acting on vertices D of the square. The cycle index of this group
is given by equation (4.5.4),

1
P (X1, X0, X3, X4) = Z(X? X +2X,).
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Choosing all weights to be 1 and setting in (4.5.14) x; = X, = x, = |R| = 2, we get
n="P;2,222) =6. O

Problem 4.5.13. In how many geometrically distinct ways can one paint the faces of a
regular tetrahedron in two colors? Two colorings are said to be geometrically identical
(equivalent) if they can be made indistinguishable by rotating the tetrahedron in space
about its center.

Solution. The cycle index of the group of rotations is given by equation (4.5.6). Com-
bining it with (4.5.14) and substituting there x; = |R| = 2, we compute n = 5, that
is, there are five different ways to color the regular tetrahedron, which can be easily
verified by inspection. O

1

Problem 4.5.14. For any natural n, 5-(n® + 17n* + 6n°) is an integer number.

Solution. Formulas (4.5.7) and (4.5.14) imply that this is the number of geometrically
different colorings of the vertices of a cube in n colors. O

The next problem was solved by Pdlya in his original article [44].

Problem 4.5.15. In how many geometrically distinct ways can we place three blue
balls, two green balls, and a pink ball at the vertices of a regular octahedron?

Solution. The group of rotations of a regular octahedron acts on the set D of its vertices,
|D| = 6. It is clear that the cycle index of this group is the same as that of the group
of rotations of a cube acting on the set of the faces of the latter. The cycle index of the
latter group of substitutions is given by (4.5.8). Since we have three different colors,
we select a reserve R = {blue, green, pink}.

To distinguish different colors, we introduce weights on R as indeterminates
w(blue) = b, w(green) = g and w(pink) = p, hence

Zw(r)=b+g+p

reR

Z w () = b +g° +p’
reR

Z w3(r) =p +g3 +p3
reR

etc. Then, by (4.5.13) and (4.5.8), we derive the complete list of all possible colorings,

Y W) = PG<Z w(n), Y W), Y (wn)’,.. )
F reR reR reR

1
= 51 +g+p)°+3(b+g+pP(b?+ g +p?)

+6(b+g +p)2(b4 +g" +p4) + 6(b2 +g° +pz)3 + 8(b3 +g° +p3)2}.
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The equivalence classes we are looking for, have weight b>g’p. Multiplying out all
factors in the expression for P;, we see that this monomial appears in the sum three
times, so that there are three geometrically different colorings in this problem. O

Problem 4.5.16. How many different molecules are there (see Fig. 4.4), which contain
a four-valent atom of the carbon C in the center with four endings X, where X may be
either the hydrogen H, or the chlorine Cl, or the methyl group CHj;, or the ethyl group
C,Hs5?

&

()

&

Figure 4.4: Molecules in Problem 4.5.16.

Solution. Put into a correspondence to each molecule a regular tetrahedron, whose
vertices are labeled by the symbols X. We have to calculate the number of equivalence
classes in the power set R”, where D is the set of vertices of the tetrahedron, |D| = 4,
and R = {H, Cl, CH;, C,H;}. The cycle index of this group of rotations is given by (4.5.6).
Thus, the number of molecules is equal to P;(4, 4,4, 4) = 36.

If we want to list these molecules with regard to the number of the hydrogen atoms
contained, it is convenient to choose weights w(H) = h and

w(Cl) = w(CH;) = w(C,Hs) = 1.

Then the sum of the squares of the weights is K +12+12+1% = K + 3, etc., and we
deduce from (4.5.13)

Pg(h+3,h* +3,h° +3,h* +3) = h* + 30 + 60> + 11h + 15,

The coefficients in the latter tell us that there is the unique molecule containing
four atoms of hydrogen, there are three molecules with three hydrogen atoms, six
molecules with two hydrogen atoms, 11 molecules with one hydrogen atom, and 15
molecules do not contain hydrogen at all. We note that 15 = P;(3,3,3,3), since the
latter molecules can have only three possible endings. O
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In the following problems we apply the techniques of this section to compute once
again the number of permutations and combinations.

Problem 4.5.17. Find the number of n-permutations with repetition from an m-3ele-
ment set A.

Solution. Since the permutations were defined as special mappings, we set D =
{1,2,...,n} and R = A. We do not have to identify any mappings, therefore, we can
use the trivial 1-element group of substitutions G = {gy}, where g, is the identical
substitution, and all weights w = 1. Combining (4.5.3) and (4.5.14), we arrive again at
(1.3.1),

Arep(m,1) = P(IRL, IR, ...) = m". 0

Problem 4.5.18. Find the number of r-combinations with repetition from elements of
n types.

Solution. These combinations can be put in a one-to-one correspondence'* with map-
pingsf :{1,2,...,n} — {1,2,...,r}, such that

fO+f@Q+--+fn) =1,

where f(i),1 < i < n, stands for the number of elements of the ith type in this combina-
tion. Introduce weights on R as in the second solution of Problem 4.5.11, by w(i) = x',
and set D = {1,2,...,n}. The mappings we look after are listed by the term x" in the
inventory Inv(R”), hence by means of (4.5.12) we get

|D|
Inv(RP) = {z W(i)} =(l+x+xX2+-+x)"
ieR
which yields again formula (1.4.6), Cep(n, 1) = ((’:ltrﬁ!lr)!!'

Calculations are simpler if we take the infinite reserve R = {0, 1, 2,.. .}, leading to
Inv(R?) = (1+x+x>+---)",

Similarly, by making use of (4.5.12) one can find the formula for the number of com-
positions of integer numbers (cf. Section 4.4). The distinction between the latter and
the combinations with repetition is that a combination may omit elements of certain
types, but a composition cannot contain zero elements. Thus, in the case of composi-
tions we must use the reserve R = {1,2,3,...}. O

The last problem in this section deals with colorings of binary trees.

14 This means, in particular, that the combinations with repetition can be defined as such mappings.
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Problem 4.5.19. Consider a binary tree with seven vertices (Fig. 4.5), which have to be
painted in two colors. Two colorings are called equivalent if one can be derived from
the other by rotating either the entire tree through 180° about the vertical symmetry
axis or any of its subtrees through 180° about the horizontal symmetry axis. For exam-
ple, the coloring in Fig. 4.4(a) is equivalent to that in Fig. 4.4(b), but is not equivalent
to the one in Fig. 4.4(c). How many non-equivalent colorings are there?

(a) (b) (©

Figure 4.5: Three binary trees in Problem 4.5.19.

Solution. Let D be the set of the vertices of the tree, |D| = 7, and R the set of available
colors, |R| = 2. To each coloring there corresponds a mapping f € R”, and this is
easily seen to be a one-to-one correspondence. Let G = {g,8;,...,87} be the group
of substitutions acting on D, where g, is the identical rotation, g; is rotation about
the vertex v,, g, is rotation about the vertex v,, g3 is rotation about the vertex v;, and
84, =87°8385=81°82 8¢ = 81°83 87 = 8 ° 8§ ° 83. Itis readily verified that the cycle
indices of permutations g,—g; are, respectively,

7 3 .5 5 3.2 3
X1> X1X5, XX, X7 X, X1X5, X1XpXys X1XoXy X1 X5

thus the cycle index of the group G is
1
Po(x1, X5, .., X7) = g(XZ + lexg + 2xfx2 + x13x§ + 2X1XXy).

By (4.5.14), the number of colorings is P;(2,2,2,2,2,2,2) = 42. O
Exercises 4.5.

Exercise 4.5.1. Verify that the binary relation in Problem 4.5.1 satisfies the axioms of
the binary relation.

Exercise 4.5.2.

(1) Extend Problem 4.5.1, computing now the number of non-equivalent 6-digit and
7-digit numbers.

(2) What is the sum of all these numbers?

(3) How many of them are multiple of 4?

(4) Solve Problem 4.5.1 assuming that digit 1 cannot be rotated upside down.
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Exercise 4.5.3. Find the cycle type and cycle index of the substitution

g=<X1 X X3 X4 X5 Xg X7 Xg  Xg X10>
X2 X3 X3 X4 Xe X5 X7 Xg X9 X9

Exercise 4.5.4. Find the coefficient of £° in the expansion of [T;_, (t + a).

Exercise 4.5.5. A diskis divided in p equal sectors by p radii, where p is a prime num-
ber. In how many different ways is it possible to paint the disk in n colors, if two colors
cannot be used on the same sector? Two colorings are to be identified if they can be
made indistinguishable by a rotation of the disk in the plane about its center.

Exercise 4.5.6. A family of substitutions F = {g,, gy, 8,}, where

_(1234) _<1z34> _<1234>
07\ 123 4) 887\ 2143) 527234 1)

actson a set X = {1,2,3,4}. Can we apply Lemma 4.5.1 to the family F?

Exercise 4.5.7. Prove that the number of fixed elements of a substitution acting on an
n-element set is n! ZZZO(—l)k /k!. Compare with Problem 4.1.9.

Exercise 4.5.8. Find the number of equivalence classes induced onaset X = {1, 2, 3, 4}
by the group of substitutions {gy, g, 8>, 83}, where

_<1234> _(1234)
0=\1 23 4) 857 \214 3)
_<1234> _(1234)
5 213 4) 57 \1 24 3)

Exercise 4.5.9.

(1) A 2x 2square is divided in four 1 x 1 squares. Using 6 colors, in how many geo-
metrically distinct ways is it possible to paint the big square so that neighboring
(having a common side) small squares have different colors?

(2) Solve the same problem for a 3 x 3 square split in nine 1 x 1 squares.

Exercise 4.5.10. Verify that rotations of a cube, acting on its vertices or on its sides, or
faces, form groups with the superposition of rotations as the group operation. Answer
the same question regarding the rotations of a square or a regular tetrahedron. The
cycle indices of these groups were found in Problems 4.5.3-4.5.6.

Exercise 4.5.11. Prove that the set G, in the proof of Lemma 4.5.1is a subgroup of order
n(d) of the original group of permutations G.

Exercise 4.5.12. Draw explicitly all six different colorings of the vertices of a square in
two colors—see Problem 4.5.12.
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Exercise 4.5.13. In how many geometrically distinct ways can we paint the 2 x 2
checker-board in two colors? The same question for the 3 x 3 checker-board.

Exercise 4.5.14.

(1) Inhow many geometrically distinct ways can we paint the faces of a cube in three
colors? In no more than six colors?

(2) Solve the same problems for edge coloring. Answer the same question if there are
four or five colors available.

(3) Solve the same problems for a right tetrahedron.

Exercise 4.5.15. Using the six digits 1,2,..., 6, the faces of a die can be marked in ge-
ometrically different ways. For instance, 1 and 2 can be on two opposite or on two
adjoint faces. How many differently labeled dice are there?

Exercise 4.5.16. In how many geometrically distinct ways can we paint the edges or
faces of a regular tetrahedron in two colors? The same question if there are three colors
available.

Exercise 4.5.17. In how many geometrically distinct ways can 12 friends, 6 girls and
6 boys, ride a carousel with 12 seats, if all boys are considered to be indistinguishable
and all girls are indistinguishable either?

Exercise 4.5.18. There are 999 students in the Small College and each of them has
recently passed four tests with scores 7, 8, 9, or 10. What is the largest possible number
of students such that any two of them have different sets of scores and the sum of the
four grades is odd? Is an even number?

Exercise 4.5.19. Represent the substitutions defined in Exercises 4.5.6 and 4.5.8 as
products of transpositions; which of them are odd and which of them are even?

Exercise 4.5.20. Compute the cycle index of the symmetric group Sym; (see Exam-
ple 4.5.1) acting on 2-element subsets of the set {1, 2, 3, 4, 5}.

Exercise 4.5.21. Compare the parity (odd/even), that is, the number of cycles of a sub-
stitution (permutation) with the parity of the number of inversions in the substitution
(Definition 4.4.6 and before)—is it the same?

Exercise 4.5.22. In how many ways a party of n friends can be sitting around the
round table, if two ways are considered identical, if one can be derived from another
by a shift of the whole party around the table clock-wise the same for every person?



5 Existence theorems in combinatorics

Three topics considered in this chapter have one essential feature in common—the
existence of combinatorial configurations in question is not obvious at all and must
be proved. In Section 5.1 we prove Ramsey’s theorem—a far-reaching extension of the
Dirichlet or pigeonhole principle. Section 5.2 is devoted to the famous Philip Hall’s
marriage theorem. Its quantitative version on a lower estimate of the number of sys-
tems of distinct representatives is given as well as a few equivalent statements, in par-
ticular, Denés K6nig’s and Dilworth’s theorems. Section 5.3 gives an introduction to
the theory of combinatorial block designs. Finally in Section 5.4 we consider in more
detail the systems of triples including the proof, due to Hilton [30], of the necessary
and sufficient conditions of the existence of the Steiner triple systems.

5.1 Ramsey’s theorem

Coffee-time browsing

- http://en.wikipedia.org/wiki/Frank_P._Ramsey (Ramsey life and work)

- www.cs.umd.edu/~gasarch/ramsey/ramsey.html (Applications of Ramsey the-
ory)

-  www-history.mcs.st-andrews.ac.uk/Biographies/Dirichlet.html (Dirichlet life and
work)

- www-history.mcs.st-and.ac.uk/Biographies/Schur.html (Schur’s biography)

- http://en.wikipedia.org/wiki/Paul_Erd%C5%91s#Biography (Erdos’ biography)

- http://www.oakland.edu/enp/ (What is Erdos number?)

- http://www-history.mcs.st-and.ac.uk/Biographies/Szekeres.html (George and
Esther Szekeres summary)

- http://en.wikipedia.org/wiki/Erd%C5%91s%E2%80%93Szekeres_theorem
(Erdos-Szekeres theorem)

Problem 5.1.1. There are six pairs of socks of six different colors in a drawer. Which is
the smallest number of separate socks that must be drawn at random to ensure that
the owner gets at least one complete pair?

Solution. Let us consider the worst-case scenario. This case occurs if one gets six socks
of six different colors. After that, any seventh sock makes a complete pair of socks. It
suffices, therefore, to draw seven socks, and moreover, the number seven cannot be
reduced to six. O

The problem can be stated in set-theory terms as follows.

A set A is partitioned in six subsets, A = A; U --- U Ag, with every |A;| 22,1 <i<6.
Which is the smallest cardinality of a subset B c A such that the intersection of B with
at least one of the subsets A; contains two or more elements?

It is said that these two or more elements represent the sets 4; in B.

https://doi.org/10.1515/9783110751185-005
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The existence of a solution to Problem 5.1.1 is clear. Ramsey’s theorem treats sig-
nificantly more general situations, when even the existence of a solution is far from
obvious, whereas the cardinality of the solution in most cases is unknown yet. To state
the theorem, we have to formalize a concept of a collection of elements containing
several identical copies of the same element, for such a collection! is not a set in the
standard set-theory meaning. In particular, we must consider families of subsets con-
taining several copies of the same subset.

Definition 5.1.1. For a set S, a mapping
U:{1,2,...,t} 2

is called a family of subsets of S containing t terms, or just a t-family of subsets. The
family U is denoted by U = (S;,S,,...,S;), where S; = U(i),1 < i < t. The mapping U
does not have to be injective, thus some of the sets S; can coincide with one another.

We again use mappings to distinguish certain objects. Even if two terms, S; and
Sj» of a family are equal as sets, we consider them as different terms of the family,
because they have different subscripts, that is, different preimages with respect to the
mapping U.

Example5.1.1. Lett = 3,S = {1,2,3}, S; = S, = {1,2}, and S5 = {2,3}. Then U =
(51> S5, S3) is an example of a 3-family.

Definition 5.1.2. If S = S, US, U---U S, where §;n'S; = 0,i # j,1 < i,j,< t, then
the t-family U = (S;,S,, ..., S;) is called an (improper) ordered partition of the set S in t
parts, or a t-partition of S. It is called improper because ¢ ¢ S and so that U can contain
empty terms.

Example 5.1.2. Letagaint = 3,5 = {1,2,3}, butnow S; = 0, S, = {1,2}, and S5 = {3}.
Then U = (S;,S,, S3) is an example of an improper 3-family.

Theorem 5.1.1. (Ramsey ﬂ) Consider a set X, natural numbers p and t, and any ordered
t-partition of the set 2;,( of all p-subsets of X,

2 =AUA U UA, (5.1.1)

where t subsets A; are the parts of this partition. Then, for arbitrary natural numbers
D919 --.>q; Suchthat1 < p < g; foralll < i < t, there exists the smallest natural
number R = R,(q;, 45, - - -, q;) with the following property:

If1X| = R, then there exists anindexi,1 < i < t, and a subset B c X such that |B| = g;
and 25 C A,

The numbers R,(q;, 4>, - - -, q;) are called Ramsey numbers.

It is useful to restate Theorem 5.1.1 in terms of colorings of graphs.

1 “Sets” with repeating objects are sometimes called multisets.
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Theorem 5.1.2. For arbitrary natural numbers p,q,,q,,...,q; such that1 < p < g; for
1 <i < t, there exists the smallest natural number R = R,(qy, 4, - - -, q;) with the following
property.

Let G be a graph of size q = q; > R, that is, with q edges. Consider all subgraphs
of G of size p and color each of their edges in one of the given t colors. Then, for some
i,1<i<t, G has a monochromatic subgraph G' of size g;, that is all subgraphs of G' of
size p have the same color.

Ramsey’s theorem gives a precise meaning to the following intuitively clear state-
ment:

For an arbitrary subdivision of a set in a prescribed number of parts, all these parts
cannot simultaneously be small if the set is sufficiently large.

First we consider the special case p = 1 of Theorem 5.1.1. In this case, the set 2;,( =
2{ of the 1-element subsets of X can be identified with the set X itself and (5.1.1) can
be thought of as a t-partition of X. Now the theorem claims that, for any ¢-partition
X = A; U--- UA4; of the set X and for any integers g¢; > 1,...,¢; > 1, there is an index
i,1 <1i<t, and asubset B ¢ X such that |B| = g; and B ¢ A;, whenever |X] is large
enough. Similarly to Problem 5.1.1, in the case p = 1 we have

R, 9 -->q) =(q -+ +(q-D)+1=q; +--+q -t +1 (5.1.2)

In Problem 51.1¢t =6,9; =---=qg¢ =2, p=1and R;(2,2,2,2,2,2) = 7.
Ifp=1andg; = 2,1 < 2 < t, we derive the following Dirichlet 8 or pigeonhole
principle.

Proposition 5.1.1. If R objects (for example, pigeons) are placed in t boxes (cages) and
R > t+1, then at least one box (cage) must contain two or more of these objects (pigeons).
Moreover, if R objects are placed in t boxes, then there is a box containing at least [}¥ ]+1
objects.

Before taking up the proof, we solve a few problems by making use of the Dirichlet
principle to show a variety of its applications.

Problem 5.1.2. How many numbers should be chosen from the set {1, 2, 3, 4} to ensure
that at least one pair of these numbers adds up to 5?

Solution. Among all 6 = C(4,2) 2-element subsets of the given set, only two pairs, {1, 4}
and {2, 3} satisfy the condition. Thus, if we select only two numbers, a and b, it may
happen that a € {1,4} and b € {2, 3}, therefore, a + b # 5. However, any third number
chosen completes either the pair {1, 4} or the pair {2, 3}. Consequently, it is enough to
choose three numbers. In a more formal language of Theorem 5.1.1, we set t = 2 (two
pairs-cages), q; = g, = 2, and by (5.1.2) we have R;(2,2) = 3. O

Problem 5.1.3. How many numbers are to be chosen from the set {1, 2, 3, 4, 5} to ensure
that at least one pair of these numbers adds up to 57
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Solution. We still have two favorable pairs {1, 4} and {2, 3}. However, if we select two
numbers, representing these two pairs, then the third number may happen to be 5.
Consequently, now we have to select at least 4 numbers. In the formal language, in
this problem ¢t = 3 (two pairs and a singleton 5), g; = ¢, = g3 = 2, so that by (5.1.2),
Ri(2,2,2) = 4. O

Problem 5.1.4. Which is the smallest number of integers that one has to choose from
theset T = {1,2,...,30} in order to ascertain that there are three numbers among the
chosen, whose sum is multiple of 3?

Solution. The sum of three integers is a multiple of 3 if and only if 3 divides the sum of
the remainders after dividing these numbers by 3. Consider three subsets of the set T,

To =1{3,6,9,...,30}, Ty=1{1,47,...,28}, T,={258,...,29}.

Obviously we can select three numbers, say one number in T; and two in T,, whose
sum is not divisible by 3. Moreover, we can choose two integers in T, and two in T;
(orin T,), and this quadruple also does not satisfy the problem. However, any other
number from T being combined with these four numbers, solves the problem. Thus,
we have to choose at least five numbers. O

Remark 5.1.1. It is instructive to translate this solution to the language of the Dirichlet
principle, similarly to Problems 5.1.2-5.1.3.

Problem 5.1.5. A box has the shape of a cube with the side of one meter. There are
2001 flies in the box. Prove that at least three of them are in a ball of radius 53 cm.

Solution. Divide the box into 10> = 1000 small cubes of side 10 cm. A diagonal of
each such cube is 10v/3 cm. Since 2 x 1000 < 2001, there is at least one small cube C
with three flies inside—in the problem we suppose that a fly is a mathematical dimen-
sionless point and exclude surfaces of the small cubes from consideration. The cube C
together with its three flies lies completely in the ball of radius 5v/3 cm circumscribed
about C. O

In the following lemma we consider another special case of Theorem 5.1.1 with
p=t=2.

Lemma 5.1.1. For any integer q > 2,
RZ(q) 2) = R2(2) q) =dq.

Proof. The equation R,(q,p) = R,(p,q) is obvious due to symmetry, therefore, it is
enough to prove that R,(2,q) = q. This equation says that, for any set X with [X| > g
and for any partition of its 2-element subsets into two groups, .4; and .A,, one of which
may be empty, either there exists a 2-element subset A c X, |A| = 2, such that A € A;,
or there exists a g-element subset A ¢ X, |A| = g, such that 2‘; c A,. Moreover, g is the
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smallest cardinal number with this property. It is important to keep in mind that we
consider ordered partitions of 25.

Thus, to proceed with the proof, let X be an arbitrary g-element set and 2§ =AU
A, be any 2-partition of the set of the 2-element subsets of X. If A; # @, which means
that A, contains at least one pair {a, b}, then we can set A = {a, b}—this 2-element set
A c X solves the problem. Otherwise, that is, if A; = 0, we set A = X. That establishes
the inequality R,(2,q) < gq.

To prove that the strict inequality R,(2,q) < g cannot hold, we consider a set X
with |X| < g — 1. Then for the ordered 2-partition 2§ = @ U A, there is no subset A c X
with the properties we sought. Indeed, here .4; = 0, hence there is no 2-element subset
of A belonging to .4;, and also A cannot contain a g-element subset since |X| < g - 1.
This yields the equation R,(2,q) = gq. O

We shall prove Theorem 5.1.1 only in the case p = t = 2 following [16]. A proof of
the general case can be found, for example, in [24, p. 73-74]. Restate the theorem in
thecasep =t =2.

Theorem 5.1.3. (Erds—Szekeres &) For arbitrary integer numbers k,1 > 2 there exists
the smallest number R = R,(k,l) = Ry(1, k) such that for any set X with |X| > R and for
any ordered 2-partition 2§ = A; U A, of all 2-element subsets of X either there exists a
subset T c X, such that |T| = k and 22T C A,, or there exists a subset U c X such that
Ul =land 2¥ c A,.

Proof. We will prove the theorem by mathematical induction on both k and [, using
Lemma 5.1.1 as the basis of induction. Let k, l > 2. By the inductive assumption, there
exist numbers R,(k — 1,1) and R,(k,l — 1) defined in the statement of Theorem 5.1.3.
We will prove that there exists a number R,(k, 1) with the required property and this
number satisfies the inequality

Ry(k,1) < Ry(k-1,1) + Ry(k, 1 -1).
Denote
p=Ry(k-1,1) +Ry(k,1-1)

and consider a set X with |X| > p and any partition 2§ = A; U A,. Choose an arbitrary
x € X and introduce two sets, A = {y e X | {x,y} € Aj}and B={y e X | {x,y} € A,}.
Since |A| + |B| = p — 1, then either |A| > R,(k — 1,1) or |B| = R,(k,l — 1), otherwise
we would have had |A| + |B| < p — 2. These two cases are symmetric and it is sufficient
to consider only one of them; suppose that |A| > R,(k —1,1). Assuming this inequality,
we construct a 2-partition 2 = A4; U A,, where A; = A; N 25,1 = 1,2. By the inductive
assumption, either there exists T € 24, such that ZZT c A, or else there exists U € 2!
such that 25’ c A,. However, A c X\ {x} and A; c A;,i = 1,2. In the first case, since the
set T exists, we let T = T U {x} € 2§, therefore 2] ¢ 4; U A; = A;. In the second case,
when a nonempty set U exists, it is immediately clear that U ¢ 2f and 2%’ C A,. O
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Corollary 5.1.1. The numbers R,(k, 1) are finite for all k,1 > 2.

Corollary 5.1.2.

Rz(k,l)s< kel-2 >

k-1

Consider two applications of Ramsey’s theorem.

Theorem 5.1.4. Let k,1 be two arbitrary natural numbers and {x,,...,x,} be any set of
distinct real numbers. There exists a number R = R(k, 1) such that ifn > R then in the se-
quence {xy, ..., x,} there s either an increasing subsequence of length k, or a decreasing
subsequence of length L.

Proof. Introduce the set of indices X = {1,2,...,n} and split all ordered pairs (i,j) of
indices from X withi < jas 2§ = Ajnc U Agecs Where (i, ) € Ay if x; < x5and (i, )) € Agec
if x; > x;. It is clear now that the statement follows from Theorem 5.1.1. O

The next statement can be proved quite similarly.

Corollary 5.1.3. (Schur &) For every positive integer k there is a (large enough) natural
number n = n(k) such that for any partition of the set {1,2,...,n} in k subsets at least
one of these subsets contains three numbers x,y, z, such that z = x +y.

Problem 5.1.6. Assuming that any two people either are familiar with one another or
are not, prove that among any six people either there are three who are familiar with
one another or there are three who do not know each other.

Proof. Let X be any 6-element set. Consider a 2-partition 2§ = A UA,, assigning to A,
all pairs of people familiar with one another and to .4, all remaining pairs. If T is a set
of pairwise familiar people, then 22T c Ajy; on the other hand, if U is a set of pairwise
unfamiliar people, then 251 c A,. We have to prove that we can find either a set T such
that |T| = 3, or a set U such that |U| = 3.

Hence, to solve the problem it is sufficient to prove that R,(3,3) < 6. We actually
prove a stronger statement R, (3, 3) = 6, which in particular solves Exercise 5.1.20. [

Lemma 5.1.2. R,(3,3) = 6.

Proof. The following well-known proof uses graph-theory language. Consider a com-
plete graph K, modeling this party of six. If two people are familiar with one another,
then the edge, connecting the vertices corresponding to these two people, is marked
by Y; all other edges are marked by N—in the example in Fig. 5.1 some irrelevant for
the prooflabels Y and N are omitted.

Consider any vertex of the graph, say, the vertex F in Fig.5.1. Among five edges
incident to F, at least three edges must have the same labels—in Fig. 5.1 three edges
are labeled by Y. The three end-vertices of these three edges, which are different from
the F, make a triangle—in Fig. 5.1 this is AABC. If all the three sides of this triangle
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E Y D

Figure 5.1: Proof of Lemma 5.1.2.

bear the same label, then these vertices form a triple of elements we look for. If these
sides have different labels, then there exists a side s of this triangle with the same
label as that marking three initial edges (incident to F)—the side s and the two edges
connecting its end-vertices with the initial vertex form the triangle we seek. In Fig. 5.1,
the edge AC is labeled by Y, as well as AF and CF, hence, the triangle AACF has the
same marks on all the three of its sides.

We have proved that R,(3,3) < 6. The following example shows that the right-
hand side 6 in this inequality cannot be decreased to 5, that is, the conclusion cannot
be claimed for all 5-element sets. Indeed, let X = {a, b, ¢, d, e}, thus,

2% = {{a, b}, {a, ¢}, {a, d}, {a, €}, {b, c}, b, d}, b, e}, {c, d}, {c, e}, {d, e}}.
Consider two sets of pairs,
A, = {{a, ¢}, {a, e}, {b, d}, {b, e}, {c, d}}
and
A, = {{a, b}, {a,d}, b, c}, {c, e}, {d, e}}.

It is obvious that there is no 3-element set ¥ c X such that either 2} c A; or2} c A,.
g

Problem 5.1.7. Where in the proof was the pigeonhole principle used with ¢t = 2?

Remark 5.1.2. Lemma 5.1.2 can be stated as follows: If edges of the complete graph K,
are colored in two colors, then the graph contains a triangle with edges of the same
color. Exercise 5.1.19 can be restated similarly if one considers a three-coloring of the
edges of K.

Problem 5.1.8. Is it true or false that among any six natural numbers either there are
three pairwise mutually prime or there are three numbers whose common divisor is
greater than one?
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Problem 5.1.9 (Cf. Exercise 1.1.28). Consider a simple graph of order k > 2. Show that
this graph has at least two vertices of the same degree.

Solution. If the graph has two isolated vertices, they have the same (zero) degree. Oth-
erwise, let X be the set of non-isolated vertices and |X| = t+1,t > 0. Simple graphs have
no parallel edges nor loops, thus, a vertex in X can have any degree from 1 through ¢;
we denote by A; the subset of vertices of degree i,1 < i < t. Since |X| > t, by (5.1.2)
withgq; =--- = q; = 2wehave R(2,...,2) = t + 1. Therefore, there exists an i such that
1<i<tandl|4; =2 O

Problem 5.1.10. Consider the complete graph K,, and an arbitrary coloring of its edges
in two colors A and B. Show that for any natural numbers p and q there is a natural
number ny(p, q) such that for any n > ny(p, q) the graph either contains an A-colored
subgraph of order p or a B-colored subgraph of order g.

Solution. It suffices to apply Theorem 5.1.2 to the set of vertices of the graph, decom-
posing all pairs of vertices in two subsets depending upon the color of the edge con-
necting these two vertices. O

The following, almost obvious, statement is equivalent to the Dirichlet principle.

Problem 5.1.11. Consider two finite sets X and Y and a function f : X — Y. If for any
y € Y its preimage f’l({y}) contains at most k elements, then |X| < k|Y]|. O

Exercises 5.1.

Exercise 5.1.1. A family has eight siblings. Prove that at least two of them were born
the same day of week.

Exercise 5.1.2. There are 12 red, 10 blue, 10 green, and 8 yellow pencils. Which is the
smallest number of pencils that we must pick at random if we need

(1) atleast 6 pencils of the same color?

(2) atleast 6 green pencils?

(3) atleast 1 pencil of each color?

(4) atleast 4 pencils of the same color?

Exercise 5.1.3.

(1) Inaclass of 37 students, are there 4 of them who celebrate their birthday the same
month?

(2) Answer the same question for a class with 36 students.

Exercise 5.1.4. A student claims that at least 4 people in her class were born in the
same month. Which is the smallest size of the class?

Exercise 5.1.5. Among given 11 lines in a plane no two are parallel. Prove that we can
find two lines among them, such that the angle between them is less than 17°.
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Exercise 5.1.6. How many are there key chains with 7 identical apartment keys and 3
identical lobby keys?

Exercise 5.1.7. Prove that among any 6 integers there are two numbers such that 5
divides their difference.

Exercise 5.1.8. Which is the largest cardinality of a set of natural numbers not exceed-
ing 10, if no number among them is twice another number?

Exercise 5.1.9. There are three identical pairs of black socks and three pairs of white
socks in a drawer. Which is the smallest number of separate socks that must be drawn
at random to ensure that one gets at least one complete pair of black socks?

Exercise 5.1.10. There are 70 balls of the same size but of different colors in a box,
among them 20 red, 20 green and 20 yellow balls; the others are black and white balls.
Which is the smallest number of balls to be chosen at random from the box to ensure
that at least 10 same-color balls are selected?

Exercise 5.1.11. Consider n-digit natural numbers with n > 3, whose decimal repre-
sentations contain only three digits 1,2,3. How many of such numbers contain each of
these digits at least once?

Exercise 5.1.12. How many are there natural numbers less than 84 900 000 and mu-
tually prime with that number?

Exercise 5.1.13. A high school rented 11 buses for the senior prom. The maximal load
of every bus is 40 students. Which are the smallest and the largest number of seniors
in the school this year, if at least three buses carry the same number of students?

Exercise 5.1.14.

(1) Prove that any 6-element sequence of natural numbers contains either three num-
bers going in increasing order or three numbers going in decreasing order.

(2) Is this conclusion true for 5-element sequences?

(3) Is this conclusion true for 9-element sequences and 4-element subsequences?

Exercise 5.1.15.

(1) Arrange the integers from 1 through 100 inclusive, so that this ordering does not
contain an increasing subsequence of length 11, nor a decreasing subsequence of
length 11.

(2) Prove that no such arrangement is possible for the first 101 natural numbers, that
is, prove that any permutation of the integers from 1 through 101 inclusive either
contains an increasing subsequence of length 11, or a decreasing subsequence of
length 11.
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Exercise 5.1.16. A test consists of five problems. Five students took the test and each
of them solved at least two problems. Prove that at least two students solved the same
number of problems.

Exercise 5.1.17. The conclusion of Problem 5.1.8 is false. How to change its statement
to make it true?

Exercise 5.1.18. Prove that among any nine people there are either three pairwise fa-
miliar with one another or four pairwise unfamiliar, that is, prove that R,(3,4) < 9.
Moreover, in a party of eight this property fails. In other words, prove that the Ramsey
number R,(3,4) = 9.

Exercise 5.1.19. Among 17 students there are people collecting stamps, postcards, and
coins. Each pair of students has one and only one common hobby. Prove that there are
at least three students with a mutual hobby. Is it always possible to find four people
with a mutual hobby among these 17 students? Rephrase this problem in terms of the
Ramsey numbers and in terms of colorings of the complete graph K;,.

Exercise 5.1.20. In Theorem 5.1.3 we have proved that
Ry(k,l) < Ry(k - 1,1) + Ry(k, 1 - 1).

Show that if both R,(k — 1,1) and R,(k, [ - 1) are even, then this inequality is strict, that
is, the equality case cannot occur here.

Exercise 5.1.21. Prove that R,(3,5) = 14 and R,(4,4) = R,(3,6) = 18.
Exercise 5.1.22. Prove that R,(k,l) < C(k+1-2,k-1),k,1> 2.

Exercise 5.1.23. Given 20 pairwise distinct natural numbers less than 65, prove that
among the pairwise differences of these numbers there are at least four equal num-
bers.

Exercise 5.1.24. There are white, black, and brawn gloves in a drawer, at least two
pairs of each color. Which is the smallest number of gloves that one has to pick at
random in order to get two pairs (four gloves) of the same color?

Exercise 5.1.25. Which is the smallest number of integers to be chosen from the set
T ={1,2,...,15} so that the difference of two of the numbers chosen is 6?

Exercise 5.1.26. Prove thatamong any 101integer numbers there are at least two num-
bers such that 100 divides their difference.

Exercise 5.1.27. In a small town there are 10 000 cars, whose license plates are num-
bered by 4-digit numbers. If a number has less than 4 digits, we append in front of it
a few zeros like 0012. More than half of the cars are registered in the central district of
the town. Prove that there is a car in the central district, whose number is the sum of
numbers of two other cars from this district.
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Exercise 5.1.28. Show that if 6 points are selected at random inside a square of side
1cm., then at least two of them are less than 0.5 cm apart.

Exercise 5.1.29. All edges of a complete graph with 17 vertices are colored in three
colors. Prove that there is a triangle in the graph whose edges have the same color.

Exercise 5.1.30. The 6-element set T = {1,12, 23,34, 45,56} possesses the following
property: for any two numbers in T the last digits of their sum and of their difference
are not 0. Prove that 6 is the biggest number with this property, that is, prove that any
7-element set of integers contains a pair of numbers such that 10 divides either their
sum or their difference.

Exercise 5.1.31. If six different numbers are chosen from theset T = {1,2,...,10}, then
there are at least two consecutive numbers among the six.

Exercise 5.1.32. Eight numbers are chosen from the set T = {1,2,...,10}. Show that
there are at least three pairs of these numbers with the sum 11. Is this conclusion true
if only seven numbers are chosen?

Exercise 5.1.33. 22 people gathered at the alumni reunion at a Small College, among
them engineers, chemists, and business people. Show that at least one major was rep-
resented by eight or more alumni.

Exercise 5.1.34. A set of integers contains at least two numbers congruent modulo 11
(Definition 1.1.18). Which is the smallest cardinality of such a set of integers?

Exercise 5.1.35. Find a coloring of the edges of the complete graph K;; in two colors,
blue and green, so that no subgraph of order 3 has only blue edges and no subgraph
of order 5 has only green edges.

Exercise 5.1.36. Find a coloring of the edges of the complete graph K;; in two colors,
so that no subgraph of order 4 is monochromatic.

Exercise 5.1.37. Prove that for any two mutually prime integers m and n there is a nat-
ural number k such that n divides m* - 1.

Exercise 5.1.38. The sum of all entries of a 10 x 10 zero-one matrix is 81. Prove that the
matrix contains a row and a column such that the sum of elements in these two lines
is at least 17.

Exercise 5.1.39. A township of 51 houses occupies a square of 1 mile side. Prove that

at least three houses are inside a circle of radius % mi.

Exercise 5.1.40. Prove Corollaries 5.1.2 and 5.1.3.

Exercise 5.1.41. Prove that for every integer [ > 1 there is the smallest natural number
n = n(l) such that for any partition of the set {1,2, ..., n} in two subsets at least one of
these subsets contains [ + 1 numbers x, ... ., X;, X;,; satisfying the equation x; +---+x; =
X;,1- Prove in particular that n(2) = 5.
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Exercise 5.1.42. Prove that a decimal expansion of any non-zero rational number is a
periodic (repeating) decimal; it can start with a finite pre-period. For example, 2/15 =
0.133...—here the period is 3 and the pre-period is 1.

Exercise 5.1.43. How many integers are there between 0 and 10" which do not contain
the same two digits going together?

Exercise 5.1.44. Prove that R,(k, k) > const k - 2k/2.

5.2 Systems of distinct representatives

Several statements considered in this section are equivalent to each other as well as
to some other results such as Menger’s theorem on disjoint chains in graphs or the
maximal flow theorem—see, for instance, [19, p.11 and p. 55]. They have numerous
applications. Hereafter we systematically use ordered families of sets U = (S;,...,S,)
in the sense of Definitions 5.1.1 and 5.1.2. In the end of the section we consider match-
ings in bipartite graphs.

Coffee-time browsing

—  http://www-history.mcs.st-and.ac.uk/Biographies/Halmos.html (Halmos’ biog-
raphy)

- http://www.youtube.com/watch?v=0NvYPldXoZs (I Want To Be A Mathemati-
cian)

- http://www-history.mcs.st-and.ac.uk/Mathematicians/Menger.html

—  http://www.iit.edu/csl/am/about/menger/about.shtml (Carl Menger)

—  www.gap-system.org/~history/Mathematicians/Hall.html (Ph. Hall’s life and
work)

—  http://www.gap-system.org/~history/Biographies/Hall_Marshall.html (M. Hall’s
life and work)

—  http://robertborgersen.info/Presentations/GS-05R-1.pdf (Equivalence of Seven
Major Combinatorial Theorems)

—  http://www.viswiki.com/en/D%C3%A9nes_K%C5%91nig (Konig’s biography)

- http://www.viswiki.com/en/Robert_P._Dilworth (Dilworth’s biography)

- http://myweb.Isbu.ac.uk/~whittyr/MathSci/TheoremOfTheDay/
CombinatorialTheory/Dilworth/TotDDilworth.pdf (Dilworth’s Theorem)

—  http://russell.lums.edu.pk/~cs211bs08/slides/proofsfrombookthreethms.pdf
(More on the Marriage Theorem)

Definition 5.2.1. Given a set S and a family U = (S;,...,S,) of its subsets, a set D =
{a;,...,a,} c Sis called a system of distinct representatives (SDR) or a transversal of
the family U, if there exists a permutation (j;, j,,...,j,) of indices 1,2,...,n such that

a]-i Esi,lﬁiﬁn.
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This definition becomes transparent from the following example.

Example 5.2.1. Let S = {1,2}. The 3-family ({1}, {2}, {1, 2}) cannot have a SDR, since the
two available elements, 1 and 2, cannot represent the three subsets {1}, {2}, and {1, 2}
of the family. However, the 2-family ({1}, {1, 2}) has one SDR D = {1, 2}.

It is clear from this example, that in order to have a SDR, the family of subsets
cannot contain more terms than the cardinality of the union of these subsets. It turns
out that this simple necessary condition is also sufficient for the existence of a SDR.

Definition 5.2.2. A family U = (S,,...,S,) of subsets of a set S satisfies Hall’s & con-
dition (H) if the inequality

IS; US;, u---US; |2k (5.2.1)

holds for each k,1 < k < n, and for any set of indices (i;, iy, .. ., if)-

Theorem 5.2.1. An ordered family U = (S,,...,S,) of subsets of a finite set S has a SDR
if and only if U satisfies the condition (H).

Proof. The necessity of the condition is clear. Indeed, if the family U has a SDR
{a;,...,ay}, then for any set of indices (i;, 1,,..., i) the k-element set {g; ,...,q; } is a
SDR for a sub-family (S; ,...,S;, ), thus the union §; U---US; contains at least these k
elements ai>-..»qj and the condition (H) is valid. O

The sufficiency of the condition (H) follows from the next theorem of M. Hall,
which gives also a lower bound of the number of SDR. It is convenient to introduce
the following notation.

Fora family U = (S;,...,S,) of subsets of a finite set S denote

M= py = min |S;|.
1<isn
Theorem 5.2.2. If the family U = (S;,...,S,) of subsets of a finite set S satisfies the

condition (H)  then U has at least p! SDR if u < n and at least (y’_‘—'n), SDRifu > n.

Proof. We will prove the statement by mathematical induction on the number of terms
n of the family. If n = 1, then the family U consists of one set S;, and the inequality
|S;] = 1 = n = 1is true for any natural . Since in this case any element of S; makes a
SDR, there are exactly

wo W
(w-m!  (u-1!

=H

SDR, and this establishes the basis of induction.
To make an inductive step, we pick a natural n and assume that the conclusion of
the theorem is valid for all families with less than n terms, that is, under the condition
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(H) any family of less than n terms has at least the above-mentioned number of SDR.
To prove the same conclusion for any n-family of subsets, we proceed in two steps.

First, introduce a strengthened condition (ff) Say that a family U satisfies the
condition (H) if the inequality

1S;, US, U---US; [ 2k+1

holds for all k and for all sets of indices (i}, i,...,i;) with1 < k <n -1, whilefork = n
we still assume (5.2.1) as in (H).

Consider a family U satisfying the strengthened condition (H). Choose an element
a € S;and considersets S = S;\{a},2 < i < n. Anewfamily U’ = (S}, ..., S,) satisfies the
original condition (H), since it consists of less than n subsets, and by the strengthened
condition (Tﬁ

ISt uSi u---uSi [ 218, US, U US| -12 k.

It is obvious that, for any i, |S{| >pu—-1.1fu < n,then u -1 < n- 1. However, the size
of the new family U’ is n - 1, and by the inductive assumption, the new family U’ has
at least (u — 1)! of SDR. If u > n, then u — 1 > n - 1and U’ has at least ((}’j:rll))', of SDR.
Since the element a € S; was excluded from all of the sets in the new family U ' this
element, being appended to any SDR for U’, makes up a SDR for the original family U.
Now, the element a can be chosen at least in 4 ways, thus, multiplying the assumed
number of SDR for the new family U’ by p, we arrive at the conclusion of Theorem 5.2.2

under the strengthened condition (A}f)

Suppose now that the condition (I?Ij fails but the original condition (H) holds true.
Hence, for some k,1 < k < n -1, and for some set of indices (i}, i, . .., i) the equality

IS; US, U---US; | =k
holds good. Without loss of generality we assume that i; = j, that s,
[S;US,U---U S| =k.
We notice that now the parameter u satisfies
u=minlS;| < [S] < IS;US U--- US| =k,
where k is the size of the family Uy = (S, S,, . . ., Si). It follows by the inductive assump-

tion that this family U, has at least u! of SDR; let D = {a;, ..., a;} be any of them. To

complete the proof, we now show that the shortened family U” = (S},,,...,S)), where
S]f’ = 5;\ D, also satisfies the condition (H).
Suppose on the contrary, that the family U" does not satisfy the condition (H).

Then one can find a sub-family (S}',...,S;), k +1 < j; < n, such that

IS/ U US| =1 <
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However, the families U; and U" were constructed mutually disjoint, so that

I "
[S;uSu--uSUS U US|

=ISUS U USUS; U US =k+1" <k+1

Thus, the condition (5.2.1) fails also for the original family U, which contradicts the
premise. Hence, the family U"' satisfies the condition (H) and by the inductive assump-
tion has at least one SDR. Combining this SDR with any of u! SDR for the family U, as
we did with the element a above, we derive u! SDR for the original family U. The proof
of Theorem 5.2.2 is now complete. Simultaneously we proved Theorem 5.2.1. O

A constructive proof of the existence of SDR can be found, for instance, in [24,
Section 5.1]. Theorem 5.2.1 is sometimes called the marriage theorem or the theorem on
village weddings due to the following its reformulation &.

Problem 5.2.1. Among young people attending a party, each boy is familiar with at
least m of the attending girls, however, every girl knows no more than m boys. Demon-
strate that every boy can marry a girl he has been familiar with.

Solution. Denote the number of boys by p and let G; be the set of girls familiar with
the ith boy. We prove that the family (G;, ..., G,) satisfies the condition (H). Otherwise,
there would existed a set of indices iy, i, ..., i, k < p, such that |G; U---UG; | <k -1,
which means that k boys, say, bl-l, biz, ... b,-k, together have at most k — 1 familiar girls;
let us denote these girls by g; . gj,. ... 8j,, where I < k — 1.

Consider all pairs (by,8p),a € {iy,.... i1 B € {ji,....Ji}, such that the boy b, is
familiar with the girl gg—obviously, this is a symmetric binary relation. Denote by Y
the total number of such pairs. By assumption, for a fixed 8 there are no more than m
such pairs, and since I < k — 1, all in all we have Y < m(k —1). On the other hand, for a
fixed a there are no less than m such pairs, thus, Y > mk implying that mk < m(k - 1).
This contradiction proves that the family (G;, ..., Gp) satisfies the Hall condition, con-
sequently, it has a SDR, say, {g; 8- gl-p}. The latter exactly means that a boy b; is
familiar with the girl 8ip1< j<p. O

Analyzing this solution, we immediately derive the following sufficient condition
for the existence of a SDR.

Problem 5.2.2. Let U = (S, ...,S,) be a family of subsets of a finite set S. Prove that if
all the subsets S; have the same cardinality k, |S;| = k,1 < i < n, and each element of
the set S belongs to exactly k of the subsets S;, then the family U has a SDR.

SDR have many applications. Let (4) and (B) denote two m-partitions, in the sense
of Definition 1.1.7, of a finite set T,

T=AUAU---UA,=B;UB,uU---UB,,.
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Consider an m-element subset E ¢ T, |E| = m, such that A; N E # 0 and B; n E # 0 for
each i,1 < i < m. Then obviously

[A;NE|=|B;nE|=1 1<i<m.

Definition 5.2.3. The set E is called a system of mutual representatives of the partitions
(A) and (B).

Clearly, a system of mutual representatives exists if and only if one can renumber
setsin the partitions so that |4;nB;| # 0,1 < i < m. We prove a criterion for the existence
of a system of mutual representatives analogous to the condition (H).

Theorem 5.2.3. Two m-partitions (A) and (B) have a system of mutual representatives
if and only if for every k,1 < k < m, and for any set of indices i,,1,,...,i the union
A; U---UA; contains no more than k of the sets By, B,, ..., By,

Proof. The necessity is obvious, as in Theorem 5.2.1. For, if
AU---UA,>DB;UB,U---UB;

then k elements a, ..., ay, a; € A;,1 < i < k, cannot represent k + 1sets By, B,, ..., By,;-

To establish the sufficiency, we consider a set S = {4;,...,A,,} and introduce the
family U = (S;,...,Sy), where S; is the totality of sets A; such that A;nB; # 0,1 <i <m.
We prove that the family U satisfies the Hall condition (H). On the contrary, if for some
k the union S; U -+ U Sy,; would contain at most k elements (sets) 4; ,...,4; , then it
were

Aj U--+UA; DBUB,U - UByy,

notwithstanding the assumption. Hence due to Theorem 5.2.1, the family U has a SDR.
Now we can renumber the components of the partition (A) so that this SDR becomes
D = {A,,...,A,;} and arrive at the conclusion by making use of the remark before the
theorem. O

Theorem 5.2.3 can be reformulated as follows.

Theorem 5.2.4. Two m-partitions (A) and (B) have a system of mutual representatives
if and only if for any k = 1,2,...,m no k of the sets A; are contained in the union of less
than k of the sets B;.

Problem 5.2.3. m x p couples attend a party. The gentlemen belong to m professions,
p men in each trade. The attending ladies belong to m clubs, p women in each club.
Show that it is possible to select m pairs for a dance representing all clubs and all
professions.
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Solution. Introduce a set C, whose elements are m x p couples at the party, and con-
sider two of its partitions:

C=AUAU---UA,, =B;UB,U---UB,,.

Here each 4;,i = 1,2,...,m, stands for the set of all pairs where gentlemen have the
same profession, and every B; stands for the set of all pairs where the ladies belong to
the same club. Since

|Ajl =--- = 1Ayl =Byl = -+ = [By| = p.

Theorem 5.2.4 certainly applies, and the partitions (4) and (B) have a system of mutual
representatives—they form a set of m pairs we need. O

As another demonstration of the power of Hall’s theorem, we consider its appli-
cation to counting bases in finite-dimensional vector spaces. Recall that a basis in a
vector space V is a linearly-independent set of vectors, which spans the whole space,
meaning that any vector of the space can be expanded through the basis vectors.

Theorem 5.2.5. Any two bases of a finite-dimensional vector space consist of the same
number of vectors.

Proof. Let {x;,%,,...,x,} and {y;,¥5,...,¥Ym} be two bases of a vector space V. Expand
the vectors x; against y;,

m;
X = Zﬁkyjk) where m; < mand allf; +0,
k=1

and consider the family U = (S;,...,S,) of sets S; = {yjl, .. ’yfm,-} c V. Thus, for each
i,1 <i<n, the set §; consists of the basis vectors y; spanning the vector x;.

We claim that this family satisfies the condition (H). Otherwise, we would be
able to express certain k basis vectors x; through less than k vectors y;, which means
that these basis vectors x; are linearly dependent. This contradiction implies that
the n-family U has a SDR. Since these n distinct representatives belong to the set
S = {y1,¥2--->¥m}> we must have n < m. The reversed inequality follows the same
lines due to symmetry, so that m = n. O

Problem 5.2.4. For the latter theorem to hold true, it is sufficient that the vectors {y;}
span the entire space and the vectors {x;} are linearly independent. Then the invari-
ance of the dimension of the vector space follows.

The next application of Hall’s theorem deals with extremal combinatorial prob-
lems. For detailed exposition of this topic see, for example, [23], here we consider only
the assignment problem. Suppose that there are n jobs that must be assigned to n em-
ployees on a one-to-one basis. The utility (usefulness or uselessness) of the ith worker
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at the jth position is measured by the entry ¢;; of the utility matrix T. Any assignment
is given by a permutation
1 2 ... n
ne(P2 )
h 2 -+ In

where the first row lists the employees and j; = II(i) denotes a job the ith worker is
assigned to. To improve performance, we have to maximize the sum

n
> ting)
i=1

over all permutations II. A direct solution of the problem by the brute force enumer-
ation of all n! permutations is unfeasible even for moderate values of n. However, the
problem has an effective algorithmic solution.

Theorem 5.2.6. Let T = (&) be an n x n matrix with real entries. Then

n n n
max ) t;i = min Wi+ ) V; 5.2.2
i 1; i,I1(7) (; i ]; ]) ( )

where the maximum on the left is taken over all n-permutations of the set S = {1,2,...,n}
and the minimum on the right is taken over all numbers w; and Vj, such that

w;+v; 2t forall1 <ij<n.

This common extreme value of (5.2.2) is attained for certain values j; = I1* (i) such
that

Wi+V1'I*(i) = ti,l'[*(i)’ i= 1,...,n,
and the permutation I1* solves the assignment problem.

Proof. We prove the theorem only for the integer-valued utilities ¢;;. The general case
can be found, for example, in [24, Sect. 7.1].

For a given integer-valued matrix T we can always find the integer numbers w;, v;,
such that w; + v; > ;;,1 < i,j < n. It suffices, for example, to set all v; = 0 and w; =
maxyc, t;;. Then w; + vy > tp;) for any permutation II, and summing up over i =

1,2,...,n, we deduce

w; +

n n
i=1 j=1

n
=1

This readily yields the inequality m > M, where m and M are, respectively, the mini-
mum and the maximum appearing in (5.2.2). We use Hall’s theorem to prove that ac-
tually m = M. The subsequent proof is constructive, that is, it gives an algorithmic
solution of the assignment problem.
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For the given entries ¢;;, we have already shown the existence of integers w; and
Vi such that w; + Vi 2t Fix a subscript i and a number w;, and try, if it is possible,
to increase v; as long as the latter inequality holds true. This way, for each i we find at
least one j such that w; + v; = t;;. Denote by S;,1 < i < n, the set of subscripts j such
that w; + v; = t;;, where w; and v; were chosen as described above. Introduce also the
n-family U = (S;,...,Sy). If the family U has a SDR {ji, ..., j,}, then w; + v; = ¢;; and
the permutation IT*, such that IT* (i) = j;, solves the problem. Therefore, to complete
the proof of Theorem 5.2.6, we have to construct a SDR for U.

Suppose that the family U does not have a SDR. Then, by Theorem 5.2.1, the con-
dition (H) fails for U. In turn, this means that there are subscripts i;,...,i;, where
1 < k < n, such that the union §; U---US; contains at most k — 1 different subscripts j.
Denote K = {iy,..., i} and Sg = S; U---US; ; by the assumption, |Sg| = I < k-1. Denote
also

_ { w;—1 ifiek,
Wi=

w,  ifi¢K,
S _ vi+1 ifjek, 523
K { v, ifjek. 623)

Clearly, if i ¢ K, thenw; +V; > ¢;;. If i € Kandj € Sg, then w; +V; = (w; = 1) + (v; + 1) =
w; +V; > t;; as well. Finally, if i € K and j ¢ Sk, then due to the definition of S;,
w; +V; # b, thatis, w; +v; > £;; + 1; hence w; + V; = w; +v; — 1 > ¢t;;. Thus, we have
proved that w; +V; > t;;,1 < i,j < n, in all possible cases. The following equation is
also obvious:

g

n
wi+2vj—k+l
j=1

w; +

n n
V. =
i=1 j=1

J

I

that is, when we replace w; and v; with, respectively, w; and v;, this sum decreases by
an integer k - 1 > 0.

However, this sum is bounded from below by M. Therefore, after finitely many
such steps the sum Y, w; + Y1 v; cannot be decreased any more, which means that
after a finite number of steps the modified family U satisfies the condition (H), and so
that it has a SDR. The corresponding permutation, as at the beginning of the proof,
solves the assignment problem. O

Problem 5.2.5. Solve the assignment problem for the 4 x 4 utility matrix

N B W =
= o= WN
w NN D
N~ W o n
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Solution. We illustrate here the algorithm of Theorem 5.2.6. Set initially v; = v, = v =
v, = 0. Since we need

w; +0 =max{t;; | 1<j< 4}

we choose w; = 5. Similarly we find w, = 6, w; = 4, w, = 4. Now we observe that these
w; and the corresponding v; have the pairs of indices (1,4), (2,4), (3,1), (4, 4), leading
to the first set K = {1, 2,3, 4} and the corresponding set Sy = {1, 4}—let us recall that Sy
comprises all the second indices from the index pairs above. The family of three sets
({4}, {4}, {1, 4}) contains only two distinct elements and obviously does not have a SDR,
therefore, we have to change K and Sg. For each index i € K we decrease w; by 1 and for
each index j € Sy we increase v; by 1. The new values are w; = 4,w, = 5,w3 = 3,w, =3
andv;=v,=1Lv,=v3=0.

We are torecalculate K and Sk with these new w; and vj, so that w;+v; = t; ;. Now we
have pairs of indices (1, 3), (1, 4), (2, 4), (3,1), (4, 3), (4, 4) and the corresponding family
of four sets ({3, 4}, {4}, {1}, {3, 4}), comprising only three elements. This family also does
not have a SDR and we have to repeat the basic step of the algorithm. It is clear that
i = 3 can only be represented by j = 1, thus, we define the second set K = {1,2,4}
and the corresponding Sy = {3,4}. These K and Si tell us to decrease w;, w,, w, by 1
and to increase v3,v, by 1, leading to new values w; = 3,w, = 4,w3 = 3,w, = 2and
vi =1,v, =0,v3 = 1,v, = 2. These values result in the same K = {1,2,4} and Sk = {3,4},
thus, we have to repeat the basic step one more time. After this step, the family of sets
(of subscripts) derived is (S;, S, S5, S;), where

S1=123,4}, S,={24}, S3={1}, S,=1{1,23,4},

which obviously has SDR, for example, (3,2, 1, 4). Thus, the permutation

oI* = ( 1 2 3 4 )
3214
solves the problem and gives the maximum value t; 3 + t,, + t3; + t , = 15. To compute

the extreme value of the utility, we also can, due to the duality relation (5.2.2), use the
last values of w; and v;; these values are (check that!) 2+3+3+1)+(1+0+2+3) = 15. [

The next application of Hall’s theorem is concerned with zero-one matrices, that
is, the matrices consisting of Os or 1s. In what follows a line means either a row or a col-
umn of a matrix. Evidently, we can consider not only zero-one matrices but those with
elements of arbitrary nature and separate all the elements into two disjoint classes.
Moreover, zeros and ones in this theory are symmetric as well as rows and columns.

Definition 5.2.4. A set of rows, containing all 1s in a zero-one matrix is called a cov-
ering of the matrix. A collection of 1s in a zero-one matrix, such that no two 1s among
them belong to the same line, is called an independent set of 1s.
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Theorem 5.2.7. (Konig &) The minimum number of lines in any covering of a zero-one
matrix is equal to the maximum number of independent 1s in the matrix.

Proof. Let mbe the cardinality of a minimal covering and M be the maximum number
of independent 1s in a zero-one matrix A = (a;). To cover all 1s, one should at the very
least cover these M independent 1s. By virtue of the independence condition, no pair
of 1s among these M 1s can be covered by a line, hence at least M lines are needed and
m= M.

We use Theorem 5.2.1 to prove the opposite inequality. Let the minimum covering
consist of r rows and ¢ columns, r + ¢ = m. The numbers m and M certainly do not
change when we rearrange rows or columns. Therefore, by changing the order of rows
and columns, we can assume that the r rows appearing in the covering, are r upper-
most rows of the matrix, and similarly the ¢ columns appearing in the covering are ¢
leftmost columns.

Introduce sets S; = {j | ;; = 1,j > shi=1,...,r, thatis, S; contains the numbers
of columns to the right of the sth column, such that the element at the intersection of
such a column and the ith row is a 1. We show that a family U = (S;,...,S,) satisfies
the condition (H). Otherwise, it would be possible to find among these S; sets k sets,
such that their union contains at most k — 1 elements. Considering the construction of
these sets, this would mean that in the corresponding k rows, in the columns to the
right of the sth column there are altogether only k — 1 1s.

But the 1s, located at the intersection of these k rows with leftmost s columns
are covered by these columns—recall that the first s columns belong to the covering.
Hence, if we remove these k rows from the covering, we can uncover at most k — 1 of
1s in these rows to the right of the sth column. Now, to cover these 1s, we need at most
k — 1 columns, and by adding such k — 1 columns to the covering instead of the k rows
removed, we derive a new covering consisting of at most m -1 lines, which contradicts
the minimality of m. By Theorem 5.2.1, the family U has a SDR—namely, r 1s in the up-
per r rows, such that no two of them are in the same row and all these 1s are in the
columns with numbers greater than s.

In exactly the same way, we can choose s 1s in the leftmost s columns, such that
no two 1s among them are covered by one column and all are in the rows with indices
greater than r. Obviously, no two 1s among the chosen r +s = m 1s are in the same line,
thus, m < M. O

Many other applications of Hall’s  theorem, such as for instance, the calculation
of permanents or construction of the Latin squares, can be found in [24] or [49]. We
only prove the following beautiful theorem of Frobenius dealing with determinants.
The latter were introduced in Section 4.4, Definition 4.4.6. We recall here that the de-
terminant of an n x n matrix is an alternating sum of n! products, called here the terms
of the determinant.

Theorem 5.2.8. In order for each of the n! terms of the determinant of an n x n matrix
A to be equal to zero it is necessary and sufficient that there are k rows and n — k + 1
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columns in A, with 1 < k < n, not necessarily in succession, such that all entries a;; at
the intersection of these rows and columns are zeros.

Proof. Since a product (in our case a term of the determinant) vanishes if and only
if it contains at least one vanishing factor, we can consider only zero-one matrices,
replacing all non-zero elements of A with 1s. Let m and M have the same meaning as
in the preceding theorem. If M > n, then A contains at least n independent (in the
sense of Definition 5.2.4) non-zero elements, that is, independent 1s. Thus they form a
non-zero term of the determinant det(4), and if all terms of det(A) vanish, then M < n.
By Theorem 5.2.7, m = M < n, and if this m-covering of all 1s in A consists of r rows
and s columns, then all other elements, which are Os, are situated in complementary
n —r rows and n — s columns. The intersection of these lines is a zero (n —r) x (n — s)
matrix, and sinces=m-r,wehaven-r+n-s=2n-m>n.

To complete the proof, it suffices now to notice that this reasoning is word-by-word
reversible. O

The next statement, Dilworth’s theorem, is concerned with properties of partially
ordered sets (posets)—see Definition 1.1.13. Notice that if a poset is not a chain, that
is, not all of its elements are pairwise comparable, then it can be decomposed in the
union of disjoint chains, and this decomposition generally is not unique.

Example 5.2.2. Consider a poset X = {a, b, c,d,f}, where a binary relation of partial
order is given by

0 = {(a,c),(a,d),(b,d), (b,f)},

thatis,a < c,a < d,b < d, and b < f. Then we can represent X as the union of chains
in several ways, for instance, as

X ={a,ctuib,duff}
oras
X ={a,diu{b,fiufc}
or else as
X ={a,c}u{b}u{diuff}.

Theorem 5.2.9. (Dilworth &) Let X = {x1, %5, ..., X,} be a finite poset. The minimum
number of disjoint chains containing all elements of X is equal to the maximum number
of pairwise noncomparable elements of X.

Proof. Let m be the minimal number of chains covering the set X and M be the maxi-
mal number of pairwise noncomparable elements in X. Since a chain cannot contain
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two noncomparable elements, it is obvious that m > M. We use Konig’s theorem, The-
orem 5.2.7, to prove the opposite inequality. Consider a matrix A = (a;;), where g;; = 1
ifand only if x; < x; and i # j; otherwise a;; = 0. First we prove two lemmas. O

Lemma 5.2.1. For any independent set F of 1s in the matrix A there exists a partition A
of the n-element set X into disjoint chains such that

|F| +|A| = n.
Proof. Let
F= {aiviz’ ais»ia’ e aizkfl’izk}
which means that x; < x;,..., X; < X; . Thus, the elements x;,...,x; can be
I ) k-1 1574 , bk

grouped in chains containing two or more elements each. These chains are mutually
disjoint due to the independence of F. If in addition to these chains, we consider all
other elements of X as 1-element chains, we derive a partition of X into disjoint chains;
call this partition A. Denote by [; the number of elements in the jth chain. Since these
chains contain all elements of X and are disjoint, we have

Al 1A

n=1li=Y -1 +IA=F| +Al

j=1 j=1

because the [; - 1 1s in F correspond to J; elements of X, which make the jth chain
inA. O

Definition 5.2.5. A covering of a matrix is called irreducible if it fails to be a covering
after removal of any line from it.

Lemma 5.2.2. Let a zero-one matrix A correspond to a poset X,|X| = n, and T be an
irreducible covering of 1s in A. Then there exists a subset U C X such that

Ul +1T| =n

and U consists of pairwise incomparable elements.

Proof. Let the covering T consist of rows iy, ..., and columnsj,...,j,,. First we prove
that all these indices are different.

On the contrary, if i; = j;, then due to the irreducibility of the covering T there
is an element a,; =1 such that the rth row does not belong to T, and also there is
an element a; ; = 1 such that the sth column does not belong to T. The transitivity
of a partial order and the equation i; = j; imply x, < x,. Suppose that r = s. Then
we have x; < X = X, < x; = x; and the antisymmetry of a partial order leads to
the equation x; = x;, meaning that the element q; ; = 1is located on the principal
diagonal, contrary to the definition of A. Thus, r # s and x, < x;, implying a,s = 1.
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We have noticed, however, that no line of the covering T can cover this unity. This
contradiction shows that all indices in T are distinct.

Wedenote U = X\ {x; ,...,X;,,X;,...,x; } Since T is a covering, the elements of U
are pairwise incomparable and n = |U| + |T|. O
Completion of the proof of the Dilworth theorem. We have to establish the inequality
m < M. Let F be a maximal set of independent 1s in A. By Lemma 5.2.1, there exists
the corresponding partition A; clearly, m < IEI. On the other hand, let T be a mini-
mal covering of 1s in A. By Lemma 5.2.2, there is a subset UcXx corresponding to T;
clearly, |U| < M. Theorem 5.2.7 implies the equation |F| = |T|. Thus, |A| = |U| and
finally |U| < M < m < |A| = |U|, that is, m = M. O

Now we establish the equivalence of the three major results of this section.
Theorem 5.2.10. The theorems of Hall, Konig, and Dilworth are equivalent.

Proof. We only have to deduce Hall’s Theorem 5.2.1 from Dilworth’s Theorem 5.2.9.
GivenasetS = {xi,..., Xy}, letus consider a family U = (S;,...,S,) of its subsets. Hall’s
theorem asserts that (H) is a necessary and sufficient condition for the existence of a
SDR. Since the necessity is immediate—see the proof of Theorem 5.2.1, we assume that
the family U satisfies the condition (H) and shall prove that U has a SDR.

Introduce a poset X = {Ry,..., Ry, Gy, ..., C,}, where the partial ordering is defined
by the following three conditions:
(1) R; <G ifandonlyifx; € S,
@ G<Cyvjl<j<n,
(3) R;<R,Vi,1<i<m.

If all elements of a subset {R; ,..., R;,Cj ..., C; } are pairwise incomparable, this sig-
nifies that no elementamong x; , ..., x; belongs to any of the subsets S; , ..., S;, . Hence,
the condition (H) yields the inequality k + I < m. Therefore, no subset in X, consist-
ing of pairwise incomparable elements, can have the cardinality greater than m. This
can be rephrased as follows: The maximum number of pairwise incomparable ele-
ments in X does not exceed m. Moreover, there is a subset in X, namely {R;,..., R},
consisting of exactly m pairwise incomparable elements, thus this maximal number
is m. By Theorem 5.2.9, the set X can be decomposed in m disjoint chains. There may be
three kinds of chains: 2-element chains {Rip, qu}, 1-element chains {Rip }, and 1-element
chains {C]-q}. After some renumbering, this decomposition can be written as

R, Cibs 5 AR Gy ARpabs s (R {Cia s 5 {C

Since any chain contains at most one element R;, every R; must belong to a chain,
and there are exactly as many chains as there are elements R;,1 < i < m. Thus, no
l-element chain {C;} can exist and we must have ¢ = n < m. Therefore, the above chain
decomposition actually is

{R1,Ci}, .. o {Rp Cih AR 1) - - AR )
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This shows that x; € S;,...,x,, € S,, and we constructed a SDR {xi,...,x,} for the
family U. O

In the end of this section we apply Hall’s theorem to study matchings in bipartite
graphs.

Definition 5.2.6. Consider a bipartite graph G = (V; U V5, E). Any set of its edges is
called a matching from V; to V,. A matching M in a bipartite graph G is called complete
if there is a one-to-one correspondence between V; and a subset of V, such that the
corresponding vertices are connected by the M-edges. A matching M in a bipartite
graph G is called maximal if no other matching in G contains more edges than M.

A matching can be described as a (nonsymmetric) binary relation between the
sets V; and V,. If X c V is a set of vertices, we denote by I'(X) the set of all vertices
adjacent with some vertex in X. We again immediately observe a necessary condition
of the existence of a complete matching in a bipartite graph G = (V; U V5, E), namely,
the inequality |T'(X)| > |X| for any subset X c V;. Similarly to other results in this
section, the following theorem asserts that this natural necessary condition is also
sufficient.

Theorem 5.2.11. A complete matching in a bipartite graph G = (V, u V,, E) exists if and
only if |IT(X)| = |X| for every subset X c V.

Proof. We prove that the statement is equivalent to Hall’s theorem, Theorem 5.2.1. Let S
be a finite set. To any family of sets U = (S;,...,S,),S; ¢ S,1 <j < n, there corresponds
its bipartite incidence graph G = (V; U V,, E), where V; and V, are arbitrary sets with
|V1l = n,|V,| = |S|, and a point in V; is connected with a point in V, if and only if the
corresponding subset in U contains the corresponding element in S. Vice versa, to any
bipartite graph we can quite similarly put in a correspondence a family of sets U. It is
obvious that a complete matching in G exists if and only if the family U hasa SDR. [

Exercises 5.2.

Exercise 5.2.1.

(1) A clothing store has suits of two designs and two colors. Is it possible to choose
two suits for display representing both designs and both colors?

(2) If there are suits of three designs and three colors, can the display show all the
three designs and three colors using only two suits?

Exercise 5.2.2. Prove Theorem 5.2.6 for non-integer utilities ¢; ;.

Exercise 5.2.3. Revisit Problem 5.2.5 and find all other possible SDR and all other so-
lutions of the assignment problem. Make sure that they return the same maximum
value as in the solution above.
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Exercise 5.2.4. Solve the assignment problem with the utility matrix

3 2 2 5 4
5 6 2 6 1
T = 312 46
2 3 3 5 4
4 2 1 1 3

Exercise 5.2.5. In addition to the three chain decompositions presented in Exam-
ple 5.2.2, find all other possible decompositions of the set X in the example.

Exercise 5.2.6. Consider all 3-element families of subsets of the set X = {a, b, c,d}
without repeating subsets. Which of them have SDR? Find them.

Exercise 5.2.7. Prove that if a family U = (S;,...,S,) of subsets of a finite set S =
{x1, ..., Xy} satisfies Hall’s condition (H), then U has the unique SDR if and only if
[S;U---US,l=n.

Exercise 5.2.8. How many are there n x n zero-one matrices that have exactly one 1in
each line (row or column)?

Exercise 5.2.9. How many are there m x n zero-one matrices such that the sum of all
its elements is k?

Exercise 5.2.10. Prove that if a 2nx2n zero-one matrix contains 3n 1s, then it is possible
to find n rows and n columns, which cover all 1s in the matrix. However, there exists a
zero-one 2n x 2n matrix with 3n +11s, such that no set of n rows and n columns covers
all of the 1s.

Exercise 5.2.11. An edge-cover in a graph is a set S of vertices such that every edge
is incident to a vertex in S. Prove that K6nig’s theorem can be stated as follows: The
maximum size of a matching in a bipartite graph is equal to the minimum size of an
edge-cover in the graph.

Exercise 5.2.12. The next problem represents another kind of problems on systems of
(not necessarily distinct) representatives.

In Really Fraternal College there are 2 006 fraternities and sororities each of which
comprises more than half of all college students. Many of the students belong to sev-
eral sororities or fraternities. Prove that it is possible to find at most 10 students at
the college that represent every sorority and fraternity, that is, for each sorority and
fraternity there is someone among these 10 students who belongs to this sorority or
fraternity.

Exercise 5.2.13. Let a square matrix A of order n contains a zero sub-matrix of order
p x q. Prove that if p + g > n, then both the determinant and the permanent of A are
zero.
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Exercise 5.2.14. Consider the complete graph K. Paint its edges in two colors, so that
the graph does not have 3-subgraphs of only one color and does not have 5-subgraphs
of another color.

5.3 Block designs

In this section we are concerned with methods of selecting subsets in a given set sub-
ject to various restrictions on the elements of these subsets. Such methods are impor-
tant in scheduling, planning of experiments, and many other problems.

Coffee-time browsing

- http://en.wikipedia.org/wiki/Bruck%E2%80%93Chowla%E2%80%93Ryser_
theorem (Bruck-Ryser—-Chowla Theorem)

- http://en.wikipedia.org/wiki/Sarvadaman_Chowla (Chowla’s biography)

—  http://en.wikipedia.org/wiki/Herbert_John_Ryser (Ryser’s biography)

- www.gap-system.org/~history/Biographies/Diophantus.html (Diophantus’ biog-
raphy)

- http://www-history.mcs.st-and.ac.uk/Biographies/Diophantus.html (Diophan-
tus’ biography)

- http://www.gap-system.org/~history/Biographies/Lagrange.html (Lagrange’s
biography)

Problem 5.3.1. Organizers of a football tournament invited nine teams and rented
three stadiums. Each team must play any other exactly once. How should the organiz-
ers schedule the games to finish the tournament as soon as possible?

Solution. All in all, C(9,2) = 36 games are necessary. Therefore, each stadium should
host 36+ 3 = 12 games, because if one field hosts less than 12 games, then another field
must do more than 12, which would make the tournament longer. The organizers can
split all nine teams into groups, called hereafter blocks, of three, assign each block
to a stadium and schedule mini-series within each group. Any such mini-tournament
consists of C(3,2) = 3 games. When the first series of the three simultaneous mini-
tournaments within blocks is over, the organizers reshuffle all teams in new blocks of
three, making sure that no pair of the teams meets again, and repeat this procedure
until each team plays all others. Since it is necessary to have 12 games at each field
and any mini-series consists of three games, we expect at least 12 + 3 = 4 shulffles of
three blocks with each block consisting of three teams.

Itis not at all clear that this procedure works, and to finish the solution, we have to
present all blocks explicitly. Denoting the participating teams by ¢;,.. ., ty, we arrange
them in blocks as follows. The first shuffle is

B1 = {tptz, t3}, Bz = {tlp t5>t6}» Bg = {t7,t3,t9}-



284 =— 5 Existence theorems in combinatorics

The second shulffle is
B, = {tyty 17}, Bs = {ty,ts, g}, Bg = {t3, 16, o}
The third shuffle is
B; ={t;,ts,to}, Bg={t3,t,,ts}, Bg={t,ts t;}.
And the last, fourth shuffle is
BlO = {t3’t5>t7}> B11 = {t1>t6’t8}> Blz = ‘{t2> t4>t9}-

We observe that, for each pair {¢;, ;},1 < i,j < 9,1 # j, the teams ¢; and ¢; play each other
exactly once. O

Solving this problem, we selected 12 subsets-blocks of the given set. In the exam-
ple, these 12 blocks, B, ..., By, satisfy the following obvious conditions:
—  Each block consists of three elements.
— Each element of the given set appears in exactly four blocks.
— Each pair of elements meets precisely in one block.

Such configurations are called (combinatorial) block designs. They are useful in many
problems, like scheduling, experiment planning and many others. Formalizing the
conditions above, we arrive at the following definition.

Definition 5.3.1. Let X = {x;,...,x,} be a finite set, whose subsets are hereafter called
blocks. A family (in the sense of Definition 5.1.1) of blocks B = (B, ...,By) is called
a balanced incomplete block design (BIBD) with parameters (v, b, k,r,A), denoted by
S, b, k,1,A), if

— Each block contains k elements, |B;| = --- = |By| = k.

— Each element of the set X belongs to exactly r blocks.

— Each pair of elements of X appears in precisely A blocks.

These configurations are called balanced, because of the uniformity of the preced-
ing conditions. They are called incomplete, because a block design does not necessar-
ily contain all the 2; k-element subsets of X. It is worth recalling that by Definition 5.1.1
of a family of subsets, some or even all blocks B; can coincide as sets. The solution of
Problem 5.3.1 gives an example of the BIBD S(9, 12, 3, 4, 1). Here are two more examples
of BIBD:

BIBD §(7,7,3,3,1):

Bl = {1’ 3) 7}) BZ = {1) 2) 4}) B3 = {2) 3> 5}) B4 = {3’ 4’ 6}’
B5 = {4) 5) 7}) B6 = {1) 5) 6}) B7 = {2) 6> 7})
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BIBD S(13,26,3,6,1):

B, ={1,2,5}, B,=1{23,6}, By=1{3,47, B,=1{45.8]}

Bs =1{5,6,9}, B¢ =16,7,10}, B,=1{7,8,11}, Bg=1{8,9,12},

By =1{9,10,13}, By, =1{1,10,11}, By =1{211,12}, By, ={3,12,13},
B;3 = {1,4,13}, By, =1{1,3,8}, Bj5s=1{249}, Bjs=1{3,510},

By; = {4,6,11}, Bjg=157,12}, By =1{6,8,13}, By =1{17,9}

By ={2,8,10}, By ={3,9,11}, By =1{4,10,12}, B, = (511,13},
By =1{1,6,12}, Bys =1{2,7,13}.

As we will see, the existence of a BIBD S(v, b, k,r,A) imposes certain restrictions
on the parameters v, b, k,r, A. To this end it is convenient to introduce the incidence
matrix of a block design.

Definition 5.3.2. Consider a BIBD S(v, b, k, 1, A) built on a v-element set X and consist-
ing of b blocks. The incidence matrix of S(v, b, k,r,A) is a zero-one bxv matrix M = (m,-,]-)
with the entries

1 ifx; € B,
Mij = { 0 ifx; ¢ B;. (31)
To find necessary conditions which the parameters of a BIBD S(v, b, k,r, 1) must
satisfy, we calculate the number of 1s in M in two different ways. On the one hand,
each element belongs to r blocks, hence, each row in the matrix contains r 1s, thus,
the matrix containsin total r-v 1s. On the other hand, each block consists of k elements,
therefore, each one of b columns, representing b blocks, contains k 1s, totaling to b - k.
Thus, we get a necessary condition for a BIBD S(v, b, k, 1, A) to exist,

b-k=r-v. (5.3.2)

To derive another necessary condition of the existence of a BIBD S(v, b, k,1,A),
we choose an element, say x;, and compute how many times all the ordered pairs
(x1,%;),1 # i, appear in all blocks. The element x; appears in r blocks and in each of
the blocks it makes up pairs with k — 1 other elements, altogether generating r(k — 1)
such pairs. On the other hand, since |X| = v, there are v — 1 different pairs (x;, x;) with
i # 1and each of them appears A times, adding up to A(v — 1). Thus we get another
necessary condition,

rtk-1)=Av-1). (5.3.3)

Conditions (5.3.2) and (5.3.3) are necessary but as we will see, are not sufficient for
the existence of BIBD S(v, b, k, 1, A).
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To study BIBD, we need a few simple properties of their incidence matrices. Let M
be the incidence matrix of the BIBD S(v, b, k,r,A). Introduce av x vmatrix N = M - M T
where M is the transpose of M, that is, the matrix M flipped about its main diago-
nal. We compute the matrix N in the next lemma. Hereafter, subscripts indicate the
dimensions of a matrix or a vector.

Lemma 5.3.1.

r A A
N[ AT A e A oL, (5.3.4)
A .. ... A r

Moreover, w,M = kw,, which is equivalent to
M =1IJ (5.3.5)

where I is the unit matrix, that is, all of its diagonal elements are 1s and all off-diagonal
elements are Os, ] is a v x v matrix and w is a vector all of whose elements are 1s.

Proof. An element n;; of the matrix N is the dot product of the ith and jth rows of the
incidence matrix M. Therefore, n;; is equal to the number of 1s in the ith row of M,
whichisr. Ifi #j, thenn;; = my;m;; +--- + m;m; ;, and the addend m; gm; ; = 1ifand
only if m;; = m;; = 1, which means that g; € B and a; € B;. However, each pair a;, ;
meets in A blocks, thus each pair contributes A unities to n;-. This proves (5.3.4).

To prove the second statement of the lemma, it suffices to notice that each column

of M contains exactly k 1s, which is expressed by (5.3.5). O

The converse of Lemma 5.3.1 is also true—see Exercise 5.3.5.
We will also use equation (5.3.4) rewritten in other terms. Introduce linear forms

14
L]'(Xl, - ’XV) = z mi’le', 1 Sj < b, (5.3.6)
i=1

where m;; are elements of the matrix M. Then (5.3.4) can be written as

Lt t L= =N0G +-+X2) + A0 + -+ +x,)2 (5.3.7)
To compute the determinant of the matrix N = M-M T, we subtract its first column from
all the subsequent columns and then add the 2nd, 3rd, ..., vth rows to the first one.

The resulting matrix is triangular, hence its determinant is the product of the diagonal
elements,

det(N) = r = )" *wA - A +1). (5.3.8)

Ifr = A, then A(k - 1) = A(v - 1) by (5.3.3), thus, v = k and the block design is trivial
in the sense that it consists of several identical repeating blocks—copies of the basic
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set X. The strict inequality r < A is impossible, for it would imply r(k — 1) < A(k - 1),
hence A(v—1) < A(k - 1) by (5.3.3), therefore, v < k. The latter would mean that a block
contains more elements than the entire basic set.

Thus, hereafter we assume that r > A. Hence

VA-A+r=vA+(@r-A)>0

and (5.3.8) implies the inequality det(N) > 0. We have proved that N is a non-singular
matrix and since N is a v x v matrix, its rank is v.

The rank of a product of matrices cannot exceed the rank of any factor in the prod-
uct. In addition, the rank of M cannot exceed the number of its columns, which is b.
Hence, we deduce the Fisher & inequality,

v<h (5.3.9)

valid for any BIBD S(v, b, k, 1, A). Moreover, (5.3.9) and (5.3.2) imply an inequality k < r
for any such BIBD.

Definition 5.3.3. A BIBD S(v, b, k, 1, ) is called symmetric if v = b; in this case equa-
tion (5.3.2) implies also that for symmetric BIBD k = r. Therefore, the symmetric block
designs have only three independent parameters and will be denoted by S(v, k, A).

For example, the BIBD 5(7,7,3,3,1) = S(7, 3, 1) presented above is symmetric. Sym-
metric block designs are dealt with in the following statement.

Theorem 5.3.1. The incidence matrix of a symmetric block design S(v, k, A) satisfies the
relations

MMT = (k-MNI+ A = M™M (5.3.10)
and
JM = k] = MJ. (5.3.11)

Proof. Only the right equations require proofs, since the left ones are, respectively,
(5.3.4) and (5.3.5) rewritten for the symmetric case v = band k = r. Theright equation in
(5.3.11) follows immediately from symmetry, since it tells that every row in M contains
k = r 1s, that is, each element belongs to r = k blocks. Thus, we have to prove only the
right equation in (5.3.10).

To prove it, we multiply (5.3.4) on the left by the inverse matrix M~', which exists
due to the non-singularity of N = MM”, and get the equation

MP = (k-2)M L+ AMY. (5.3.12)

Similarly, the equation kJ = MJ implies kM~'J = J, which together with (5.3.12) gives
MT = (k- )M + (A/k)J. Multiplying the latter on the left by M and using (5.3.11) we
complete the proof. O
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Remark 5.3.1. This theorem is a particular case of a more general theorem by Ryser &
[24, p.130].

Studying the combinatorial block designs we are concerned with two problems.
— Does there exist a design S(v, b, k, 1, A) with the given parameters v, b, k,r,A?
— Ifadesign S(v, b, k,r,A) does exist, how may one construct it explicitly?

The following theorem gives necessary conditions for the existence of symmetric block
designs.

Theorem 5.3.2. (Bruck-Ryser—-Chowla ) Let there exist a symmetric BIBD S(v, k, 7).
(1) If the number of elements v is even, then the difference a = k — A is a perfect square.
(2) Ifvisodd, then the Diophantine equation

2= (k=2 + (1) T Ny

has a non-trivial solution in integer numbers x,y,z. The triple x =y = z = 0 ob-
viously satisfies this equation; non-trivial means that at least one of the numbers
X, Y,z is non-zero, in other words x* + y* + z* > 0.

Proof. (1) It follows from (5.3.3) that in the symmetric case k(k — 1) = A(v — 1), hence
VA = A + k = k%. Therefore, we deduce from (5.3.8) the equation

(det(M))2 =det(N) = (k- )" " A - A+ k) = (k- )"

The latter implies that (k — 1)"~! must be a square, which is impossible for an odd
number v — 1 unless the base k — 1 is a square.

(2) To prove the theorem in the case of odd v, we need the following lemma. We
leave it to the reader to verify this claim by direct calculation. O

Lemma5.3.2. If

Y1 = bixy = box; = bsxs — byxy,

y2 = ble + b1X2 - b4X3 + b3X4,

(5.3.13)
)/3 = b3X1 + b4X2 + b1X3 - bzXQ,
y4 = b4X1 - b3X2 + b2X3 + b1X4,
then
yf + y% + y% + yz = a(xf + xﬁ + xg + xf,) (5.3.14)

where a = b3 + b3 + b3 + b;.

Let us notice that the determinant of system (5.3.13) is equal to «’. Thus, if
by, by, b3, b, are integers, then the solutions x; — x, of (5.3.13) can be expressed as
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linear forms with rational coefficients through y; - y,, and the common denominator
of all these coefficients is a®. Moreover, in the symmetric case equation (5.3.7) becomes

Lt tL=a(C + -+ X)) + A0 + - +x,)°. (5.3.15)

We will use the following theorem (see, for example, [27, p. 302]).

Lagrange’s & Theorem on Four Squares. If zero addends are allowed, then every nat-
ural number can be written as a sum of four squares.

For example, 9 = 3> + 02+ 0%+ 02,10 = 32+ 12+ 02+ 0%, 11 = 32 + 12 + 1 + 0%,
R2=3+12+1?+1%

Proof of Theorem 5.3.2 when v is odd. Letv = 1(mod 4), that is, v — 1is a multiple of 4.
Applying Lagrange’s theorem to number & = k — A, we can write

a= b} +b+b5+bj (5.3.16)
Next, we split the variables x;, ..., x,_; into quadruples
(X1, X25 X3, X4)5 - > (Xy g5 X3, Xy, X,y 1)
Considering (5.3.16), we apply formula (5.3.14) to each quadruple,
2 2 2 2 2 2 2 2
AX; + X + Xip +Xi13) = Vi + Vi Vi + Viess
thus (5.3.15) becomes

Lt d L=yl 4t yl  + 00+ A0+ +X,) (5.3.17)

The rest of the proof is based on the observation that (5.3.17) is an identity with
rational coefficients in indeterminates x;,...,x,, or which is equivalent, in y;,...,y,,
and we use these indeterminates to derive the Diophantine equation we sought after.

First, we sety, = x, and eliminate all x;,1 < i < v, from (5.3.17) by considering sys-
tem (5.3.13) for each quadruple x;, x;,1, X5, X;,3 With the same coefficients by, b,, bs, by,
and solving all these systems for x;,1 < i < v. After this elimination (5.3.17) becomes

Ltow L=yl 4yl +ays+Aw? (5.3.18)

where L,...,L, and w = x; + - - + x,, are linear forms of indeterminates y;, ..., y, with
rational coefficients.

LetL, = iy +--- + ¢,y,. lf ¢; # 1, then the equation L; = y,; allows us to express
y; through y,,...,y, as a linear form with rational coefficients. Otherwise, that is, if
¢; = 1, we consider the equation L; = —y;. In either case Lf = yf, thus (5.3.18) becomes

2 2_.2 2 2 2
L+ +L,=y;+- 4y, +ay, + Aw".
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The latter identity depends onlyony,,...,y,. Continuing in the same fashion and elim-
inating, one by one, the indeterminates y,, ...,¥,_;, we end up with the equation

L} = ay? + Ww?

where L, and w are rational multiples of the last remaining variable y,. Setting here
y, to be equal to an integer multiple x # O of the denominators of L, and w, we derive
a relation between three integer numbers x # 0,y,z:

22 = ax® +y~ (5.3.19)

Therefore, we have proved the theorem in the case v = 1 (mod 4). The case v =
3 (mod 4) is treated similarly, but to apply Lagrange’s theorem in this case, we have to
introduce a new variable x,,; and add the term axZ,, to both sides of (5.3.15). Similar
calculations lead to equations ax? = ys T Aw? and

2=’ - )lyz. (5.3.20)

Diophantine equations (5.3.19) and (5.3.20) together complete the proof of Theo-
rem 5.3.2. 0

Theorem 5.3.2 implies, in particular, that the necessary conditions (5.3.2)-(5.3.3),
which in the symmetric case reduce to one equation

k(k-1)=A(v-1)

are not sufficient. For example, it is readily verified that the valuesv = 43,k =7,A =1
satisfy the latter equation. However, Theorem 5.3.2 gives in this case the equation z* =
6x° — y2, which has no non-trivial solution.

Exercises 5.3.

Exercise 5.3.1. A teacher arranges her 4 first-graders in a 2 x 2 square. For how many
days can she make these arrangements so that every child has a new neighbor in her
row?

Exercise 5.3.2. Solve the previous problem if 40 kids must be arranged in a 10 x 4
rectangle.

Exercise 5.3.3. There are 20 students in a class. In the classroom, there are 10 desks
with two seats each. On the first day of each week a teacher rearranges the students,
so that any two students seat at the same desk if and only if they have never seated
together before. For how many weeks can the teacher do that?

Exercise 5.3.4. Arrange several pennies, nickels, dimes, quarters, and half-dollars in
a 4 x 4 square, so that each row, each column, and each of two diagonals consist of
different coins and the total sum of all 16 coins is the largest.
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Exercise 5.3.5. Prove the converse of Lemma 5.3.1, that is, prove that, given a zero-one
matrix M, whose elements satisfy (5.3.4)—(5.3.5), there exists a BIBD S(v, b, k, r, A) with
the incidence matrix M.

Exercise 5.3.6. Deduce equation (5.3.7) from (5.3.4).

Exercise 5.3.7. Restore details of the calculation of the determinant leading to equa-
tion (5.3.8).

Exercise 5.3.8. Compute the determinant of system (5.3.13).

Exercise 5.3.9. Prove Lemma 5.3.2.

Exercise 5.3.10. Derive in detail equation (5.3.20).

Exercise 5.3.11. Prove that the equation z* = 6x — y? has no non-trivial solution.

Exercise 5.3.12. Do there exist BIBD S(43,43,7,7,1) and S(15,21,5,7,2)?

5.4 Systems of triples
In the last section we study systems of triples, that is, the block designs with 3-element

blocks. In particular, we find for what values of v the systems of triples exist.

Coffee-time browsing
- http://en.wikipedia.org/wiki/Kirkman%?27s_schoolgirl_problem (Kirkman’s

schoolgirl problem)

—  www-history.mcs.st-andrews.ac.uk/Biographies/Kirkman.html (Kirkman’s biog-
raphy)

—  http://www-history.mcs.st-and.ac.uk/Mathematicians/Steiner.html  (Steiner’s
biography)

- http://en.wikipedia.org/wiki/E._H._Moore (E. H. Moore)

- http://images.google.com/images?q=Fano+plane&rls=com.microsoft:en-us:IE-
SearchBox&oe=UTF-8&sourceid=ie7&rlz=117DKUS&um=1&ie=UTF-8&ei=
j90jS8SGO8rUIAfBzMWLCg&sa=X&oi=image_result_group&ct=title&resnum=
4&ved=0CCIQsAQwAw (Many Fano Planes)

If k = 3, equations (5.3.2) and (5.3.3) read
3b=rv, 2r=A(v-1),
leading to

1 1
r= EA(V -1), b= g)lv(v -1). (5.4.1)
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Since r and b are integer numbers, equations (5.4.1) give the following necessary con-
ditions for a system of triples to exist.

Proposition 5.4.1. If a system of triples S(v, b, 3,1, A) exists, then the product A(v - 1) is
even and the product Av(v — 1) is divisible by 6, that is,

Av-1)=0(mod2), Av(v-1)=0 (mod 6) (5.4.2)

It turns out that these necessary conditions are also sufficient for the existence of
systems of triples. Moreover, similar conditions, which follow from (5.3.2)—(5.3.3), are
also necessary and sufficient for the existence of block designs with k = 4 and any A,
but are not sufficient if k > 5[24, Chap. 15]. Itis, however, known [59] that for any given
k and A there exists a number v, such that for all v > v, conditions (5.3.2)-(5.3.3) are
not only necessary but also sufficient for the existence of a block design S(v, b, k, 1, A).

We consider in more detail the systems of triples with A = 1. They are called Steiner
& triple systems. If k = 3 and A = 1, then for a given v two other parameters, b and 7,
are uniquely determined from (5.4.1), thus, we denote the Steiner triple systems by S(v)
and call v the order of the system.

When A = 1, (5.4.2) implies v — 1 = 0 (mod 2) and v(v — 1) = 0 (mod 6). Therefore, v
isodd and v(v-1) = 6t, where t is an integer; thus, there are only three possible cases,

v=6t+1, v=6t+3, v=6f+5.

However, if v = 6t + 5, then v(v — 1) = (6t + 5)(6t + 4) = 6(6t> + 9t) + 20, which is
not divisible by 6, hence for v = 5 (mod 6) systems S(v) do not exist, and we have
only two possibilities left, v = 1 (mod 6) and v = 3 (mod 6). Such values of v are
called admissible. It turns out that for each admissible v Steiner triple systems S(v) do
exist. The proof below follows Hilton [30] and is recursive. First we prove two theorems
of Moore, which give algorithms for constructing a system S(v) from given systems
with smaller values of the parameter v, and then we prove that each admissible value
v = 6t +1orv = 6t + 3 can be expressed through smaller admissible values of v, such
that those algorithms can be applied.

Definition 5.4.1. Let two block designs, S’ and S”, be built on the sets X’ and X", re-
spectively, and B', B" stand for the families of their blocks. The designs S’ and S" are
called isomorphic if there exist two one-to-one correspondences

(p:X’ o x"
and
E B B

compatible with the incidence relations in these designs. The latter means that, for
any blocks B; € B' and B, € B, and for any elements x; € B; and x, € B,, the equality
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X, = @(x;) holds ifand only if B, = (B,).If S’ = S” = S, then an isomorphism is called
an automorphism of S.

Since superposition of mappings is associative, it is (almost) obvious that all the
automorphisms of a block design make a multiplicative group with respect to the su-
perposition.

Problem 5.4.1. Prove this statement. O

Theorem 5.4.1. (Moore &) If there are Steiner triple systems S (v1) and S(v,), then there
exists also a Steiner triple system S(v) withv = v;-v,, containing a subsystem isomorphic
to S(v1) and a subsystem isomorphic to S(v,).

Proof. Consider any two sets X = {x,... ,xvl} andY = {y;,... ,yVZ}, such that [X| = v,
and |Y| = v,. To simplify notation, we consider, without loss of generality, the sets X =
N, ={L....,viJand Y =N, = {1,...,v,}. By the assumption, there exist Steiner triple
systems S(v;) and S(v,) on these sets, respectively. We construct a system S(v;-v,) on the
Cartesian product Z = X x Y, |Z| = v; - v,. The set Z consists of ordered pairs of natural
numbers, and the following algorithm determines which triples of the elements of Z,
that is, which triples of these ordered pairs make blocks in S(v).

Letz;; = (x;,;) € Z. A triple {z;,, 2, 2z ¢} is a block in S(v) if and only if one of the
following three mutually-exclusive conditions holds true.
(1) The triple {x;, x;, x;} isablockin S(v;) and r = s = t.
(2) The triple {y,,y,,y;} is a block in S(v,) and i = j = k.
(3) The triple {x;, x;, X} is a block in S(v;) and the triple {y,,y,,y,} is a block in S(v5).

We have to verify that this system of triples satisfies the definition of Steiner triple
system S(v) with v = v; - v,. First we check that each pair of elements meets in exactly
one block. Let {z;,, z; s} be an arbitrary pair in Z. If i = j, then the pair {y,,y,} meets in
the unique block {y,,y, y,} of S(v,), since S(v,) is a Steiner triple system. Thus, the pair
{zi,.zjs} uniquely determines the block {z;,, z;, z; , }. Moreover, the pair {z;,,z;;} does
not appear in two other parts of the algorithm and cannot generate any more triples.
The same argument works if r = s.

Next, ifi # jandr # s, then the pair {x;, x;} uniquely determines the block {x;, x;, x; }
in S(v;), that is, we found the index k. Similarly, the pair {y,,y,} uniquely determines
the block {y,,ys, y,,} in S(v,), thus, we found the index u. If a pair {z;,, ; ;} were to meet
in two blocks {z;,, zj,, 2., } and {z;,, zj 5, z; .}, this would mean that the system S(v,) con-
tained two different blocks {x;, x;, x,} and {x;, x;, x,} with p # g, contrary to the defini-
tion.

We still have to verify that any element z;, of Z belongs to r = "—;1 blocks. The
element z;, enters r, = "ZT_I blocks together with x;, and it appearsinr; = '“T_l blocks
together with y,. We compute now how many blocks in S(v) contain z;, and do not
contain x; or y,. We have just shown that two elements z;, and z; ; determine the block



294 — 5 Existence theorems in combinatorics

uniquely, thus it suffices to calculate in how many ways it is possible to find a pair z;
for a given element z;, withj # iand s # r. To this end we compute the total number of
elements v, - v, in Z less the number of elements containing x; or y, save the z;, itself,
and take a half of that amount, since the order of elements in a pair does not matter.
This calculation yields %(vlvz —v; —Vv,+1). Thus, the total number of blocks containing
z;, is

v1—1+v2—

1 1 1 1
3 3 +§(v1v2—v1—v2+1)=E(vlvz—l):z(v—l).

r =

We have proved that the algorithm returns the Steiner triple system we sought.
The triples with r = s = ¢t = 1 form a subsystem isomorphic to S(v;), and the triples
with i = j = k = 1 form a subsystem isomorphic to S(v,). O

Theorem 5.4.2 (Moore). Given three natural numbers vy, v,,vs. If there exist systems
S(v;) and S(v,), and either v3 = 1 or there exists a system S(v3) such that the system
S(v,) contains a subsystem isomorphic to S(v3), then there exists a system S(v) of order
v = v3 + v4(v, — v3), containing a subsystem of order vy, a subsystem of order v, and v,
subsystems of order v,.

Proof. If v, = v3, then v = v, and there is nothing to prove, for the given system S(v,)
contains a subsystem isomorphic to S(v;). Thus, we assume v, —v3 > 1, sets = v, — v3,
and use the union of the following v; + 1 sets:

X={xpx.. x5

Yi={y,uy12--Vish

le = {yv1,1>yv1,2) oo >yv1,s}a

as the set of elements of the system S(v) under construction. We describe now an algo-

rithm generating the system S(v). A triple of elements from the union XuY; u---UY, is

a block in S(v) if and only if one of the following three mutually exclusive conditions

holds true.

(1) Atriple {x;, Xj, Xt is a block in S(v) if this triple is a block in a system S(v3) derived
from the base set X. If v; = 1, then this case is vacuous.

(2) Foreachi,1 < i < v;, we construct a system S(v,) from the elements of the set
X UY;; this system exists by the assumption and contains a system S(v3) built from
X. The system S(v) will include all blocks of S(v,) except for those that belong to
S(v3) and are listed in step (1) of the algorithm. These blocks contain no more than
one element x; € X and are either {x;, y; 1, yi 1} Of {¥; 1 Vip> Viym}-

(3) Finally, we construct a system S(v;) on the set of numbers {1,2,...,v;}. If {i,j, k} is
a block of this system, we include in S(v) all triples {y;,y;,, Vi,}, such that the
second subscripts satisfy the congruence x + y + t = 0 (mod s).
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To prove that this system is a Steiner triple system S(v), the reader can carry over the
argument similar to the proof of Theorem 5.4.1. O

Now we can prove a criterion of the existence of the Steiner triple systems.

Theorem 5.4.3. A Steiner triple system S(v), v € N, exists if and only if v > 3 is admissi-
ble, thatis,v =3,0orv==6t+1,0rv =6t +3withanyt € N.

Proof. The necessity of these conditions has been already proven. To prove their suf-
ficiency, we follow the recurrent argument of A. Hilton [30] and start by constructing
S(v) with all admissible v < 36, that is, with v = 3,7, 9, 13, 15, 19, 21, 25, 27, 31, 33.
Indeed, S(3) is a trivial system with one block, the systems S(7), S(9), and S(13) were
presented in Section 5.3, the existence of systems S(15), S(19), S(21), S(25), S(27), S(31),
and S(33) follows from Theorems 5.4.1-5.4.2 by virtue of the equations

15=1+73-1),
19=1+93-1),
20=7-3,
25=1+309-1),
27=3-9,
31=1+153-1),
33=3+3(13-3),

if one takes into consideration the demonstrated existence of S(3), S(7), S(9), S(13).

Next we present formulas, expressing all bigger admissible values of v, that is,
v =6t+1andv = 6t + 3 with v > 36 through smaller admissible values of v, hence one
can straightforwardly apply Theorem 5.4.2. If an admissible v # 36t + 13, then we have
the following 11 cases:

v=36t+1=1+3((12t +1)-1),
v=36t+3=1+18t+1)3-1),
v=36t+7=1+(6t+1)(7-1),
v=36t+9 =3+ (6t+1)(9-3),
v=36t+15=1+(18t+7)3-1),
v=36t+19=1+(6t+3)(7-1),
v=36t+21=3+(6t+3)(9-3),
v=36t+25=1+3((12t +9) - 1),
v=36t+27=1+(18t+13)3-1),
v=36t+31=1+ (18t +15)(3-1),
v =36t +33=3+3((12t + 13) - 3).
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If v = 36t + 13, a tempting simple approach would be to write v = 7+ (6t +1)(13-7);
however, this does not work, since by Exercise 5.4.8 the system S(13) cannot contain
a subsystem of order 7, thus we cannot apply Theorem 5.4.2. Therefore, the case v =
36t + 13 must be split into several subcases. If t is even, say t = 2k, then

v=36t+13=1+(6k+1)(13-1)

and Theorem 5.4.2 is again applicable. Suppose now that ¢ is odd and there existsr > 1
such that

t=2"21 27 s 224 20

If herer = 1, thenv = 49 = 7 -7 and Theorem 5.4.1 works. If r > 1 is odd, that is,
r=2s+3,s >0, then

v=36t+13=9+ (182" +---+2°) + 1)(49 - 9),
while if r is even, that is, r = 2s + 2,s > 0, then
v=36t+13=3+(18(2" +---+2°) +1)(13 - 3).

Therefore, in all these cases v can be expressed through smaller admissible values of
v, so that Moore’s theorems can be applied.
Finally we have to consider the case of an odd ¢t with a representation

t:22r+as+.”+22r+a0+22r—2+22r—4+._'+22+1

22r+a1 ,

wherer > 1,0 < ag < a; < --- < & ; among the terms ..., 2%*% there also may be

powers of 4, but 2% is not such a power. Thus,
v=36t+13=1+3t+1)-3-22=1+(3x+1)-3-2""

where x = 2% +...+2%_ Since a, > 0, x must be an even number, hence the remainder
after dividing x by 4 is either O or 2. Therefore, if t = 4n + 1, then

v=36t+13=1+(6n+1)((3-27"2+1)-1),
and if t = 4n + 3, then
v =36t +13=1+(18n+15)((2"" +1) - 1).
To complete the proof, it only remains to notice that in the latter case
PP 41=6-4"+23+1)" +1=6l+3.

Thus, any admissible v can be expressed through smaller admissible values of v and
Theorems 5.4.1-5.4.2 apply. O
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Problem 5.4.2. Construct a system S(7) by making use of Moore’s theorems.

Solution. 1f we divide the order v = 7 by 36, the remainder is 7, so that by the general
algorithm of Theorem 5.4.3 we can use the representation

v=36t+7=1+(6t+1)(7-1)

with t = 0. However, it is more instructive here to write 7 = 1 + 3(3 — 1) and use the
algorithm of Theorem 54.2 withv; =v, =3 andv; = 1.
As in the proof of this theorem, we introduce the four sets

X = {x},

Yy =y y2h
Y, = {21 ¥22h
Y3 ={y31¥32}

The set X itself does not make a 3-element block; however, the unions XuY;, XUY,
and X U Y3 generate three blocks {x, y; 1,y 5} X, ¥21, Y25} and {x,y3 1, ¥3,}. To work out
the third part of the algorithm of Theorem 5.4.2, one must consider theset {1,2,...,v;} =
{1,2,3}. This set generates the only 3-element set {1, 2, 3}. Thus, we must consider all
possible triples {y; ;¥ ¥3m} and solve the congruence k + I + m = 0 (mod 2). This is
equivalent to solving a Diophantine equation k + l + m = 2s in integers k, I, m, where s
is any integer number and 1 < k,I,m < 2. Subject to the latter restrictions, the equation
can be readily solved; it has four solutions, (1,1,2),(1,2,1),(2,1,1), (2,2,2). These four
triples generate four more blocks, in addition to the initial blocks, namely,

V1Yo Y320 W11:Y22 V31 V125 V21:V31b V125V, Y32}

Settlng here X = 1, yl,l = 2, yl’z = 4, y2,1 = 3, y2)2 = 7, y3,l = 6, and y3’2 = 5, we arrive at
the system S(7,7, 3, 3,1) considered above. Other choices of the parameters give other,
but isomorphic block designs. O

Problem 5.4.3. Construct Steiner system S(631).

Solution. Since v = 631 = 6t + 1 with ¢t = 105, the value v = 631 is admissible and
system S(631) exists. First we find what smaller admissible values are required by the
algorithm. The algorithm depends upon the divisibility by 36; therefore, we divide v =
631 by 36, 631 = 17 - 36 + 19 with the remainder equal to 19, and use an appropriate
representation from the chart, v = 36t + 19 = 1 + (6t + 3)(7 — 1), with t = 17; thus,
v =1+105- (7 — 1). We want to apply now Theorem 5.4.2 withv = 631,v3 = 1,v, = 7,
and v; = 105. The case v; = 1is trivial, the system S(7) was presented above; thus, to
apply Theorem 5.4.2, we need a system S(105). By the same token, 105 = 36 - 2 + 33
with the remainder 33, that is we have to use the representation 105 = 3 + 3(37 - 3).
Keeping in mind the existence of the trivial system S(3), to apply Theorem 5.4.2 we
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need to construct a system S(37). However, 37 = 36 - 1 + 1 with the remainder 1, hence
to get a system S(37), we use the representation 37 = 1+3(13-1), where the components
S(3) and S(13) have been already proven to exist.

To construct S(631), we now work backward. First we use the systems S(3) and
S(13) to construct S(37) by Theorem 5.4.2—cf. the preceding problem. Using S(3) and
S(37), we construct S(105), and finally from S(7) and S(105) we derive S(631). O

Exercises 5.4.

Exercise 5.4.1.

(1) Write down all ordered triples from eight digits 1,2,...,7, 8.

(2) Find the number of triples consisting of three different digits (without repetition).

(3) Find the number of triples consisting of two different digits, like (1, 2,1).

(4) Find the number of triples consisting of the same digit, similar to (3, 3, 3).

(5) Which is the largest set of triples such that any pair of digits belongs to at most
one triple?

(6) Which is the smallest set of triples such that any pair of digits belongs to at least
one triple?

Exercise 5.4.2. Write down all triples of the elements of the set X = {1,2, 3, 4, 5}

(1) Such that each pair of elements of X belongs to at most one triple and the number
of triples is the largest.

(2) Such that each pair of elements of X belongs to at least one triple and the number
of triples is the smallest.

Exercise 5.4.3. Consider a system of triples
S={{1,2,3L{1,4,5},,{1,6,7},{2,4,6},{2,5,7}}.
Which triples from the list
{2,3,4},{5,6,7},{3,4,6},{3,5,7},{3,4,7},{3,6,7}, {4,5,6},{1,2,3}

should be added to S to make it a Steiner system S(7)?

Exercise 5.4.4. Complete the solution of Problem 5.4.3 by constructing explicitly all
blocks of S(631). How many blocks does this BIBD contain?

Exercise 5.4.5. Figure 5.2 called the Fano S plane, has occurred in various areas of
mathematics. How does it represent the Steiner triple system S(7,7,1)?

Exercise 5.4.6. Show that the Steiner triple systems can be generated by decomposi-
tions of a complete graph K,, in triangles without common edges.



5.4 Systems of triples —— 299

Figure 5.2: The Fano plane.

Exercise 5.4.7. There are 100 professors at a college. Every day three of them have a
lunch together at the college cafeteria. Is it possible to schedule their visits during
some period of time so that every two of them lunch together exactly once?

Exercise 5.4.8. Let S(w) be a Steiner subsystem of the Steiner system of triples S(v).
Prove that w < %(v -1).

Exercise 5.4.9. Prove that if two Steiner subsystems of a Steiner system of triples have
a nonempty intersection, then the intersection also is a Steiner system of triples.

Exercise 5.4.10. Find the necessary conditions, similar to (5.4.2), of the existence of
systems of quadruples S(v, b, 4,1, A). Specialize these conditions when A = 1.

Exercise 5.4.11. DoBIBD S(7,7,4,4,1) and S(13, 13, 4, 4,1) exist? If either of them exists,
construct it.

Exercise 5.4.12. Nine professors must proctor 12 exams in 4 days, so that each test
must be observed by a committee of 3 professors. Compose a schedule of the exams
such that every pair and every triple of the professors do not meet more than once
during the exams.

Exercise 5.4.13. At the Test College students have four exams every day during seven
days in a row. Is it possible to arrange eight professors to proctor these exams in pairs
so that the same pair of professors does not proctor two exams?

Exercise 5.4.14. An ice hockey team has nine forwards. The team plays four games
in a row. Prove that it is possible to set up the triples of field players, so that no two
forwards play twice in the same triple.

Exercise 5.4.15. Every year the Combi Club holds a meeting where each member of
the Club must present his or her results for the past year to every other member of
the club. However, the Club has a very small classroom, where only 3 people can be
at a time. If every such small meeting of 3 members lasts 30 minutes without a break
between 3-party meetings, and this year there are 15 club members, then how many
these meetings are necessary and for how long will the room be occupied?

Exercise 5.4.16. Solve the previous problem if the club has (a) 14, (b) 16 members.






6 Secondary structures of the RNA

6.1 RNAs, graphs, and the Cauchy-Hadamard formula

Graph theory has endless applications, which sometimes lead to new kinds of graphs.
In this chapter we show a simple biological application of the graph theory. Since M.
Waterman [56] defined the Ribonucleic Acid (RNA) secondary structure in graph-
theoretical terms, the derivation of the upper bounds or of the precise asymptotic
formulas for the various structures became an important problem; the number of
relevant papers is growing; see, e. g., [12, 20] and the references therein. Derivation
of these estimates in the current literature is invariably based on the deep result
of complex analysis that can be traced back to G. Darboux. However, the Darboux
theorem and its modern analogs are well beyond the current undergraduate curricu-
lum.

The goal of this chapter is to show that precise upper bounds for the number of
secondary structures in many cases can be derived quite elementary, well within the
power of an undergraduate student taking an introductory complex analysis class.
The method is based on the well-known Cauchy-Hadamard formula for the radius
of convergence of Taylor series, or even on its real-valued relative—the root-test for
convergence of the power series.!

For the reader’s convenience, we review a few simple biological notions, funda-
mental to the RNA and relevant to our topic here. We expound them in terms of the
elementary concepts of graph theory as in Chapter 2. Then we explain our method,
and in Section 6.5 we consider examples of its application.

All living organisms consist of cells. A cell is a hull (membrane) filled with the
chemical “bullion”, containing different molecules. Some cells can split, giving rise
to other cells. During this process, the biological molecules can also split and repli-
cate themselves. However, our world is not perfect, and this process can introduce
changes (mutations), errors, thus leading to new cells, maybe with different features.
This process can lead to the biological evolution, but also to certain negative changes,
like illnesses.

Some cells contain important (macro)molecules, called ribonucleic acids (RNA).
These acids contain essential genetic information, for example, about viruses, thus,
it is important to know their structure. Biologists distinguish primary, secondary, and
tertiary structures of RNA; below we consider only the first two of them. Unlike the
double helix of the DNA, each RNA is a linearly ordered strand, or just a string, con-
sisting of other molecules, called ribonucleotides. This string is the backbone of any

1 These issues were, in particular, discussed at the workshop Teaching Discrete and Algebraic Mathe-
matical Biology to Undergraduates at the Mathematical Biosciences Institute at Ohio State University,
Columbus, OH, 7/29/2013-8/02/2013.

https://doi.org/10.1515/9783110751185-006
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RNA. Traditionally, it is represented by a horizontal straight segment with nodes oc-
cupied by the nucleotides. If the RNA contains n ribonucleotides, we select n points of
the segment and number them consecutively from the left to the right by the natural
numbers 1,2,...,n; thus, in Fig. 6.1 n = 6. These dots represent the ribonucleotides in
the RNA. For more information the reader can consult, for example, [46] or [54].

@ © © © @ ©

Figure 6.1: A string (primary structure) A-G-G-U-A-C.

When we start studying new objects, it is often necessary to know their quantity. In
particular, it is important to know the number of the primary and secondary struc-
tures of RNA. It is not always possible to find a precise formula for the number of the
secondary structures subject to various restrictions. And even if such a formula is de-
rived, it can be very cumbersome, and therefore useless. That is why a lot of work
has been done to derive different asymptotic formulas for the numbers of various sec-
ondary structures; see, e. g., [46, 54] and the references therein. A formula is called
asymptotic, if it gives better and better relative approximation of a quantity under con-
sideration, when an important parameter (like time or size) is approaching a crucial
threshold; for example, if time tends to infinity.

There are four different ribonucleotides, called adenine (denoted hereafter A), cy-
tosine (C), guanine (G), and uracil (/). The linear ordering of these four nucleotides in
either order, where each of them can repeat indefinitely, is called the primary structure
of the RNA. Thus, the primary structure of an RNA can be depicted by drawings like
this:

Pictures like this are called graphs; we studied them in Chapter 2. The graph in
Fig. 6.1 is labeled—its vertices are labeled by the symbols of the nucleotides. Graph
theory is a mathematical theory, and even though mathematics by itself cannot solve
biological problems, it can give useful insights and help people to solve biological
problems [57].

An RNA molecule is not rigid like a metal bar; it is flexible and can be conveniently
thought of as a smooth flexible string, which can be crumpled, and then stretched
again without any noticeable change.

Imagine now that we attached small pieces of velcro tape at some places of this
string. If we now fold it over, then these pieces of velcro tape can hook one another,
and we cannot easily stretch the tape in a linear structure as before. In real molecules
instead of velcro tape there are certain pairs of nucleotides. If they happen to be close
enough one to another, they are capable of forming chemical bonds. According to
Watson—Crick and their non-named assistants, three pairs of the nucleotides, namely,
A-U, G-C, and U-G, in either order, can make these bonds. For example, the string
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in Fig. 6.1 can fold over, like the one in Fig. 6.2, where the new ties are pairs C—G and
G-C.

@ ©

Figure 6.2: A secondary structure built on the primary string A-G-G-U-A-C.

&

This folding is called the secondary structure of the RNA molecule. Since different nu-
cleotides can come close to each other, a primary structure can generate many sec-
ondary structures, which drastically complicates the analysis of the RNA. It is sup-
posed that the secondary structure is a two-dimensional object, thus it can be drawn
in the plane.

The secondary structure of the RNA describes the ordering and location of these
base pairs of the nucleotides. The secondary structure is responsible for many crucial
biological phenomena, and the graph theory is helpful in discovering these structures.
To this end, special graphs, called diagrams are useful [46]. The diagrams visualize the
primary structure and possible ways to generate the corresponding secondary struc-
tures. In the next section we consider the primary and secondary structures of the RNA
and these diagrams in more detail.

6.2 Counting the primary structures

It is often useful to know the number of the objects studied. We begin by solving an
easy problem of the calculating the number of the RNA primary structures. If an RNA
can contain infinitely long strains of the nucleotides, then there clearly are infinitely
many primary structures. Therefore, we consider the RNA of some specified length, say
n. We denote as R(n) the number of different linear strings, containing n nucleotides,
without any restrictions on the neighboring ones. Since every string starts with one of
the four nucleotides, either A, or C, or G, or U, followed by a string of length n — 1, we
can immediately produce the basic equation,

R(n)=4xR(n-1).

Such equations are called recurrence relations or difference equations; see in particular
Sections 4.3-4.4. In the same fashion,

Rn-1)=4xRn-2),
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and we can iterate this equation, getting the equation
R(n) =4R(n-1) = 4’Rn-2) = ’R(n-3) = --- = 4" 'R(1).

Since we have an obvious initial condition R(1) = 4, the total number of primary struc-
tures without any restriction is

R(n) = 4"

We can notice that this is just the number of permutations (or arrangements) with
repetitions of n elements of four different kinds of elements.?

Thus, the number of the RNA grows exponentially, as 4". Therefore, the number
of the secondary structures in the literature is usually compared with the exponential
function b, b < 4.

Exercise 6.2.1. List and sketch all RNA withn = 1,2, 3.

Now we take up the RNA with restrictions on the neighboring nucleotides. Of
course, in real molecules there are always small deviations from the basic rules, that
is, certain “forbidden” pairs can occur, even though very infrequently, with a small
probability. We neglect these “outliers” and consider only RNA, where all the pairs are
only of these three types, allowed by Nature:

A-U; C-G; G-C. (6.2.1)

The other pairs are forbidden by certain biological considerations. We compute the
number of the primary structures satisfying these restrictions.

Let us denote the number of strings of length n and starting with A, as R4(n), and
similarly, R-(n), Rg(n), Ry (n). If the very first nucleotide is a ¢/, this puts no restriction
on the second element, thus,

Ry(n) = R(n-1).
However, if the first nucleotide is a A, then the second element must be ¢/, thus
R,(n) =Ry(n-1).
Similarly,
Rc(n) =Rg(n-1) and R;(n) =Rc(n-1),
and since an RNA must start with a nucleotide,

R(n) = R4(n) + Rc(n) + Rz(n) + Ry(n).

2 For all the basic information from combinatorics and graph theory see for example Chapters 1and 2.
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Collecting all these equations, we deduce the equation
R(n)=Ry(n-1)+R;(n-1)+Rc(n—1) + R(n - 1). (6.2.2)

This is a fundamental equation; it tells that if the first element is A, then the second
one must be U, but its length is n—1; if the first element is C, then the second one must
be G, and its length is n—1 also; if the first element is G, then the second one must be C,
and again its length is n—1; finally, if the first element is U, then there is no restriction
on the second position.

The initial conditions are the same,

Ry(1) =Rc(1) =R;(1) =Ry(1) =1;  RQ) = 4. (6.2.3)

Using equations (6.2.2)-(6.2.3), we can easily compute the number R(n) for any
given n; for large n we should probably use computers. For example, if n = 2, we get
R(2) =1+1+1+4 =7.Indeed, we can list these strands explicitly,

A-U; C-G; G-C; U-A; U-C; U-G; U-U.

Exercise 6.2.2. Compute the number of R(3) and R(4) strands and draw them explic-
itly.

Expositions of the graph theory can be found in many books. However, applica-
tions of the graph theory are so abundant that researchers often introduce new special
kinds of graphs. For example, a new kind of graphs, called dendrograms, was intro-
duced, to study clustering algorithms; see, e. g., [34, p. 152] or Chapter 3 above.

6.3 Diagrams

A diagram (more precisely, n-diagram) is a graph with n vertices, which are drawn as n
equidistant points on a line L. This line divides the plane into two half-planes, and the
diagrams are situated in one of these half-planes, including the boundary line L, say,
in the upper half-plane. The vertices are labeled by the natural numbers {1,2,...,n}.
Some of the vertices are connected by smooth arcs, each of which is situated in the
upper half-plane. The degree of every vertex, i. e., the number of arcs incident to this
vertex, is one.

The arcs can intersect one another or can go without an intersection. A set of k
distinct arcs, (iy,jq), (i2,2), - - - (k- ji) is called a k-crossing, if

L <by<- <l <jp<jp<--<ji (6.3.1)

The definition, clearly, makes sense only if k > 2; the 2-crossing and the 3-crossing
are shown in Fig. 6.3 and Fig. 6.4, respectively. We see that a k-crossing diagram has
exactly k pairwise intersecting arcs. Moreover, a k-crossing diagram has I-crossing for
anyl,2<l<k.
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1 2 3 4 5 6 7

Figure 6.3: 2-crossing.

1 2 3 4 ) 6 7 8 9

Figure 6.4: 3-crossing.

Exercise 6.3.1. Sketch examples of 4- and 5-crossings.
Exercise 6.3.2. Can three or more arcs intersect at the same point?

Exercise 6.3.3. If no 3 or more arcs intersect at the same point, how many intersec-
tions does a k-diagram have?

Exercise 6.3.4. Let a k-diagram have [ points where exactly 3 arcs intersect, and no
point where more than 3 arcs intersect. How many intersections does this diagram
have?

Exercise 6.3.5. Extend the previous problem to diagrams with intersections of any
multiplicity.

The point, where two arcs intersect, is stable in the sense that if we slightly move
any end-point of the arcs, the arcs are still intersecting. However, it is not the case for
the intersection of three or more arcs. One can easily see that such a triple intersection
point splits into three double intersections.

It is also useful to consider diagrams without certain crossings. More specifically,
a diagram is said to be k-noncrossing, or k-noncrossing partial matching. A diagram
is called k-noncrossing matching, if it has no isolated nodes. A set of k distinct arcs is
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called a k-nesting, if their vertices satisfy the condition (compare with (3))
i <ly < <l <Jx <Jpe1 <+ <J; (6.3.2)

A k-nonnesting diagram, obviously, is one without any k-nestings, see Fig. 6.5.

VRN -~

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 6.5: A 2-noncrossing case, which is also a 3-nesting structure on the left, and a 3-noncrossing
structure on the right.

It is clear that a k-noncrossing is also an I-noncrossing for every [ > k, and a k-nesting
contains I-nestings forall , 2 < I < k.

6.4 Secondary structures

In what follows, the secondary structure ia also a graph, defined by M. Waterman [56].
We consider hereafter only simple graphs, i. e., graphs without loops or parallel edges.
To a simple graph, there corresponds a zero-one n x n square matrix, such that its
element ai,j = 1if and only if the vertices v; and v; are connected with an edge; this
matrix is called the incidence matrix. The secondary structure is a horizontal backbone
of length n, i. e., just a primary structure, enriched by several arcs in the upper half-
plane, whose end-points are the nodes of the backbone. In notation we follow [46].
The arcs of the secondary structure are subject to certain restrictions. The arc with
ends at the nodes i and j > i is denoted as (i, j), the length of the arcis j —i > 1. Not
every family of arcs corresponds to a secondary structure.

A secondary structure is a diagram, i. e., a simple graph on the backbone of the
length n, such that the adjacency matrix A = (g;;) possesses the following three prop-
erties.

(1) For the basic string to be a backbone, we require that a;, = a,3 =--- = a1, = 1.
(2) Next, not counting the neighbors, every point can be adjacent to at most one other
point of the backbone. In terms of the incidence matrix, this means that, for any

i,1 <1 < n, there exists at most one j with j # i + 1, such that a;; = 1.
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(3) Finally, it is assumed that if the vertices q; and a;, i < j, are adjacent and i < k < j,
then the vertex a; cannot be adjacent with any vertex to the left of g; or to the right
of a;. In terms of the adjacency matrix this means thatif a;; = 1andi < k <, then
alsoi<l<j.

It follows that the arcs of a secondary structure do not intersect, it is a noncrossing
structure.

Let us consider the secondary structures with n = 5. We start with the basic pri-
mary structure with 5 nods, Fig. 6.6.

@ @ ® ® ®

Figure 6.6: The simplest, with no arc, secondary structure; here n = 5 and the allowable connections
1-2-3-4-5.

The basic rules (1)—(3) forbid the immediate connection of the neighboring nodes 1-2,
but allow connections, by arcs, 1-3, 1-4, and 1-5. In the cases 1-3 and 1-4 there is no
room for another arc, but in the case 1-5 the connection 2-4 is possible, see Figures 6.7,
6.8, 6.9, 6.10, 6.11, 6.12, and 6.13.

O O O O O
1 2 3 4 5

Figure 6.7: The secondary structure with n = 5 and the arc 1-3.

O O O O O
1 2 3 4 )

Figure 6.8: The secondary structure with n = 5 and the arc 1-4.
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O O O O O
1 2 3 4 5

Figure 6.9: The secondary structure with n = 5 and the arc 1-5.

O O O O O
1 2 3 4 5

Figure 6.10: The secondary structure with n = 5 and the arcs 1-5 and 2-4.

O O O O O
1 2 3 4 5

Figure 6.11: The secondary structure with n = 5 and the arc 2-4.

Thus, we listed all possible secondary structures, when node (2) is involved. Next, we
consider the structures, not involving this nod. If the external arc starts at (2), it can
arrive at (4) or (5), generating the arcs 2-4 and 2-5.
Moving further to the right of (2), we have only the possibility 3-5. Therefore, there are
8 secondary structures with n = 5.

The 17 possible secondary structures with n = 6 are shown in [56].
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O O O O O
1 2 3 4 5

Figure 6.12: The secondary structure with n = 5 and the arc 2-5.

O O O O O
1 2 3 4 5

Figure 6.13: The secondary structure with n = 5 and the arc 3-5.

Exercise 6.4.1. Sketch the secondary structures with n = 4 and n = 7; there are 4 and
37 of them, respectively.

6.5 Asymptotic enumeration of the secondary structures.
Examples

Even if n is about 10, the total listing of all the secondary structures is unfeasible, so
that we want to estimate their quantity. A convenient device for this is their generating
function—see Sections 4.3-4.4, that is, the power series

P00 =) Sn)x".
0

To proceed, we give an equivalent representation of the secondary structures through
piecewise linear graphs, called Motzkin paths, lying in the first quadrant x > 0,y > 0
of the coordinate plane and connecting the origin (0, 0) with the point (n, 0), where
n is the length of the secondary structure. This subsection is necessary here only to
explain the derivation of the major recursive relation for the secondary structures and
can be omitted at the first reading. It is important that the secondary structures are
noncrossing. We introduce the Motzkin paths on the example of the secondary struc-
ture in Fig. 6.10, i. e., the secondary structure with n = 5 and arcs 1-5 and 2-4.
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Place the backbone on the x-axis, so that its nodes occupy the points with inte-
ger coordinates 1,2,3,4,5. The node 1 of the backbone is the initial point of an arc.
Hence, we connect the origin and the point (1, 1) with a straight segment; its slope is
tan 45° = 1. Since the node 2is also an initial point of an arc, we draw another segment
with the same slope from the point(1, 1) to the point (2, 2). The next node, 3, is isolated
(unpaired nucleotide), therefore, we draw a horizontal segment (the slope is 1) from
(2,2) to the point (3,2). The length of this horizontal segment is equal to the number
of unpaired nucleotides, in the example the length is 1. The next node, 4, is the final
point of an arc. Because of that, we draw a segment with the slope of -1 from the point
(3,2) to (4,1). Since the node 5 is also the terminal point of an arc, the next and last
segment goes from (4, 1) to the last node (5, 0) (Fig. 6.14).

Figure 6.14: The secondary structure with n = 5 and the arcs 1-5 and 2-4, and the corresponding
Motzkin path.

The description in the previous paragraph exhibits a well-defined algorithm for con-
structing the Motzkin path, corresponding to a given (noncrossing!) secondary struc-
ture.

Exercise 6.5.1. Trace the algorithm and explain, why the condition of noncrossing is
important.

Exercise 6.5.2. Draw the Motzkin paths for all other secondary structures in Fig. 6.14.

Exercise 6.5.3. Prove that a Motzkin path cannot have picks,’ i.e., vertices where
merge a side with the positive slope and a side with the negative slope.

Exercise 6.5.4. Prove that the algorithm above is invertible, that is, given a Motzkin
path, we can construct the unique (noncrossing) secondary structure. Therefore, there

3 The paths with picks but without horizontal segments are called Dyck paths; see, e. g., [34, p.57].
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is a one-to-one correspondence between the secondary structures and the Motzkin
paths.

Exercise 6.5.5. Find the secondary structure corresponding to the Motzkin path in
Fig. 6.14.

Motzkin paths can be concatenated, i. e., combined together, so that one path, of
length, k, say, starts at the origin as before, and then the second path, of the length,
1, say, starts at the last nod of the first path. Thus, the new path, the concatenation of
the two original paths, has the length n = k + [; see Fig. 6.14.

Denote the number of secondary structures on n nods with the arc lengths at least
A as S*(n). Exercise 6.5.4 implies that instead of counting the number of these struc-
tures we can count the number of corresponding Motzkin paths.

If we consider secondary structures with arc lengths at least A > 2, then the con-
catenation nod can be at any of the pointsj = 0,1,2,...,n - (1 +1). Moreover, concate-
nating any Motzkin path between 0 and j with any Motzkin path between j and n, we
get a Motzkin path between 0 and n. Adding the S (n - 1) direct’ paths between 1 and
n, we derive the nonlinear recurrent relation (or finite-dimensional equation)

n-1-A
Sy =s'n-1+ Y Sn-2-1sG). (6.5.1)
j=0

If A = 2, this recurrent relation was derived by Waterman [56]; we follow Reidys
[46]. To solve it, we must supply A + 1 initial conditions. We assume

sfo)y=s') =---=5*) =1.

The crucial observation is that recurrent relation (6.5.1) contains a sum of pairwise
products quite similar to equation in Problem 4.3.5 for the convolutions. First, consider
the case A = 2. Multiplying that equation by x", after some simple algebra we derive
the following equation for the generating function:

xX2s00) + (x-1- x2)s(x) +1=0. (6.5.2)

Another important observation is that the latter is a quadratic equation® for the
generating function we sought for. Solving it by the quadratic formula, we find

1
s(x) = E(xz—x+li V1-2x—x2 - 23 +x*).

From the previous equation we see that s(0) = 1, therefore, we have to choose the

sign “~” above, and finally get

_1e 2 34 x4
s(x)—ﬁ(x —x+1-V1-20-x2 - 23 +x%).

4 However, the method has the broader scope. In the end we consider an example, where the method
is successfully applied to the generating function satisfying a cubic equation.
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It is worth noting that we are able to derive equation (6.5.2) because the Motzkin
paths can be concatenated, and many other important quantities possess this prop-
erty.

We need the following simple facts from elementary complex analysis. If a power
series f(z) = Y, a,2z" has a positive radius of convergence R, then its sum f(z) is
an analytic function in the open disc |z| < R, R is the distance from the z = 0 to
the nearest singular point, which must be located on the boundary |z| = R, and the

Cauchy-Hadamard formula
= limsup {|a, (6.5.3)

is valid. We can even (with some reservations!) refer to the root test, which is more-or-
less real-valued version of the latter.

Example 6.5.1. Consider the generating function s(x) above. The origin x = 0 is a re-
movable singularity, as can be straightforwardly seen by rationalizing the numerator;
indeed,

2
XR-x+1+VI- -2 -2C +x*

s(x) =

Theradicand 1-2x - x> - 2x> +x*isa symmetric polynomial of fourth degree, which
can be explicitly solved by dividing over x* and substituting ¢t = x + 1/x; it has two
real roots, 3+‘f , and two complex roots, *“"F . The root, closest to the origin, is 3= ‘f

whence, s(x) is analytic in the open disc |x| <R = 3T‘f Finally, from the prev10us
equations we get the estimate

s (57) - (5%

which s, up to the pre-exponential factor, the estimate derived in [46, p, 65] by making
use of certain sophisticated tools of complex analysis.

Example 6.5.2. In the general case, that is, for the secondary structures with any arc
length A > 2, the difference equation is ([46])

n-1-A
Sy =s'n-+ Y $'n-2-5)s\G), (6.5.4)
j=0
leading again to a quadratic equation for the generating function,
x*(s™ (x))2 ~(1-x+2++xN)sM) +1=0, (6.5.5)

which can be explicitly solved for s by the quadratic formula. For example, if A = 3,
the radicand is the polynomial 1 — 2x — x? — x* + 2x° + x®, which can be factored,

1= - =x*+2¢ +x% = (1- 2 - x)(1-x"),
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with the smallest root V2 — 1. Repeating the same reasoning as above, we get the esti-
mate

) < (V2+ D"

If A = 4, the radicand is a polynomial of 8th degree, whose roots are to be evaluated
numerically; the smallest one is 0.436911, leading to the estimate

S*(n) < 2.28879".

Example 6.5.3. The secondary structures were considered under many various re-
strictions; see, for example, [54, 55, 36] and the references therein. The approach
above works for these results, even if the equation for the generating function is not
quadratic, as in the next example. First, we consider so-called saturated secondary
structures. In this case the generating function S = S(z) = Y., S — nz" satisfies the
system of two nonlinear equations (see, e. g., [36] and the references therein)

S(z)=z+ z2+ zT(z) + 22T + 2°S + 2°8?
and

T(z) = 2°S + 2°TS.
Eliminating T, we derive the cubic equation for S,

'SP+ (2 -2+ (1-2°)S-2z(1+2) = 0.

To apply our method, we solve the cubic equation by the classical Cardano formula.
When the parameter z is within the range of interest, the equation has one real root,

S,—(Z) =

2-7? 1 [ R -22+1)
3 T 2.3 13 )
3z 32z 3A

where

A= -22°430z + 27122 + 322 -2

+ (32)*2 V=427 — 426 + 3225 + 60z% + 3523 + 622 — 52 — 4.

The equation A = 0 simplifies to (z* — z? + 1)> = 0 with all the roots on the unit circle.
The radicand in the A has the smallest root at z, =~ 0.424687310, which is the radius
of convergence, R, of S(z). It should be mentioned that we choose the branch of the
radical which is positive in a right neighborhood of z,. Hence, we get the bound

S, < -(1/R)™ = const -2.354673"

in complete agreement with [36]).
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Example 6.5.4. In the case of saturated secondary structures, its generating function
S also satisfies a system of the two nonlinear equations

S(z) = z + 28(2) + 22Q(2) + 2°5(2)Q(2)
and
Q2) = 22 + 2°Q(2) + 2*S(2)Q2) + 28 (2).
Eliminating Q, we get the quadratic equation for S with the discriminant
A(z) =2'0-42° -2+ 627 +32° -8 -+ 4 - -2z +1=0.

Its smallest root in absolute value is ~ 0.5081360362, which is closest to the origin
singular point of S(z), and the upper bound for the number of the saturated secondary
structures on n nucleotides is its reciprocal 1.967977, again in perfect agreement with
[36]. It should be mentioned that we have used only tools from first-year calculus.

Example 6.5.5. Finally, we consider an example from [20, Theor. 2, p. 352], where the
authors derived the generating function for some class of secondary structures,

So(z) = m(l -z-2"(1+2)° - VP(@2)),
where
P(z) = (z4 +220 424z - 1)2 — 4221 +2)°.
Here z = 0 is a removal singularity and z = -1 is beyond the disc of convergence,

since the closest to the origin singular point is the branching point of the radical at
the smallest root of the polynomial P. This root is z, =~ 0.32471796, thus the radius of
convergence is R =~ 3.0795963 and the upper bound of the number of the secondary
structures at question is -3.0795963, again in agreement with [20].
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Answers/solutions to selected problems

I.J.K means problem K within a Section L.J or exercise K in Exercises and Problems LJ.

Section 1.1

1.1.1.
1.1.9.
1.1.10.
1.1.11.
1.1.13.

1.1.17.
1.1.21.

f is neither, g injective, h surjective, k bijective.

Hints i = & - 2.

Hint: There are fewer digits than English characters.

N;UN; =N3;, N; nN; =N, N; \N; = 2, N; \ N, = {2,3).

Any set Z' containing zero, satisfies Z, UZ, U Z' = Z, but only set Z" = {0}
makes Z!, U Z, U Z" a partition of Z.

8

(1) 39916 800, (2) 40 200.

Exercises 1.1

L. (123, ()28, @)1

1.1.11. One zero; 12 zeros; 23 zeros.
1.1.27. N,.

1.1.30. 2%

1.1.31. Hint: Integrate by parts.
Section 1.2

1.2.1. 20.

Exercises 1.2

1.2.2.
1.2.3.
1.2.6.
1.2.7.
1.2.11.

1.2.15.
1.2.16.

3xt+1x4=19.

(n!)>—Assuming that circular shifts do not generate a new sitting.
4x(3'+3+3+1) =52

(@) Tou T, U Ty; (b) N UP U PC.

The number of divisors is 4 x 5 x 6 x 7 = 840, their sum is (2* - 1)(3°> - 1)(5° -
)77 -1).

[(9999 —1000)/7] +1 =1286.

225) 4 o100 9(2n - 10).

Exercises 1.3

1.3.3.
1.3.5.
1.3.6.
1.3.7.

A(6,4) = 360.
9l
101-9!=9.9!,

Hint: Such numbers must contain either one 4, or one 3 and one 1, or two 2s, or
one 2 and two 1, or four 1s, and a complementary number of zeros; the answer
is 220.

https://doi.org/10.1515/9783110751185-007
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1.3.8.

1.3.10.

1.3.14.
1.3.15.
1.3.19.

1.3.20.

Thus, the numbers are 24 permutations of these four digits, and each digit
appears at every position 6 times; the answer is 66660.

s parallel streets divide the town into s+1 infinite strips. The first slanted street
adds s + 1 blocks, the second one adds s + 2, etc. In general, we have (¢ +1)(s +
1)+ %t(t —1) blocks.

2-8!-6L
2-8!-6!
Hint: In how many ways can you place n different objects, without ordering,

in either 2 or three different boxes?
(2) After canceling by P(k), the equation becomes n---(k + 1) = 5, thus k = 4
andn = 5.

Exercises 1.4

1.4.1.
1.4.3.
1.4.5.
1.4.8.

1.4.10.
1.4.12.

1.4.14.
1.4.23.
1.4.28.
1.4.43.
1.4.52.
1.4.74.
1.4.75.
1.4.78.

(1) A(12,8); (2) A(12,8); 3) 1; (4) 1.
Hint: The ratio %ﬂ"*k*” =Cn+k-1k).
Hint: Set d, to be the largest integer such that C(d,, k) < n.
Hint: Find the largest integer i such that i! < n.
C64) _ 15

2 T 64°
Let 2005 have k; preimages, 2006—k,, and 2007—ks, then k; + k, + k3 = 2006,
and the number 2005k; + 2006k, + 2007k; must be even. The latter implies
that k; and k; must have the same parity, while the parity of k, is immaterial.
Therefore, we have to find how many ways there exist to partition the differ-
ence 2006 - k,,k; = 0,1,...,2006, into two addends, which are, necessarily,
of the same parity. The answer is 1004 - 1003. The number of such functions

with an odd sum is 32°°° - 1004 - 1003.

C(n,2).

C(10,3).

P'C(P+1,S),thusP+1>S;or (P-1)C(P,S), thusP > S.
(1) C(12,4); (2) C(12, 4).

C(n,2).

33027 = 405.

The equation %n(n —3) =35gives n = 10.

6.

Exercises 1.5

1.5.1.

1.5.2.

(1) Place a ball in every urn—there is only one way to do that—and then put
the two remaining balls in any way, thus C(4.2) + C(4,1) = 10.

(2) 5C(4,2) = 30.

(3) 4+5C(4,2)+4-10+10 = 84.

4) 4.

35/(51)".
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1.5.7. (1) 5!/3%(2)2-5!/3.

1 11
1.5.8. 2Ty
30, 30!
1.5.11. ()10’ (101331
8!
1.5.21. 21.11.51°

1.5.24. The last two digits must be 12, 24, 32, 44, 52, 64, 72, 84, 92; for each of these
pairs the first two digits can be chosen in P(3,2) = 6 ways. Thus, there are
9 - 6 = 54 numbers.

1.5.26. () k™; (2) C(n+ k - 1,n); 3) C(k, n) (if k = n).

Section 1.6
1.6.1. (2)S={-$1(Loss),0,...,$9999}.
1.6.3. (1) These events are not disjoint.
(2) The largest probability is 1 if P(Movie AND Restaurant) = 0.3, the smallest
probability is 0.7 if P(Movie AND Restaurant) = 0.6.
(3) We must assign the probability P(Movie AND Restaurant).

Exercises 1.6

1 2_1
1-6-4- i * § —_ 5.
1
1.6.6. W-

1.6.7. P(9)+8-A(9,8) =99

16.30. 2-3-2+(3)° = 2.

1.6.42. To make the average 85, the fifth score must be 87. Thus, the first probability is
1/21, the second one is 9/21, and the third one is O.

Exercises 2.1
2.1.3. (1) Yes, it is possible to partition the graph in 10 disjoint subgraphs isomor-
phic to K,,.
(2) No, due to Lemma 2.1.2.
2.1.4. (1) Yes. (2) No, again by Lemma 2.1.2.

2.1.5. Yes.
2.1.10. Hint: In how many ways is it possible to split 2n vertices into n unordered
pairs?

2.1.11. Hint: Use again Lemma 2.1.2.

21.12. d <v-1andd:vmustbe an even number.

2.1.16. If two Triplanians exchange a handshake, there must be a third Triplanian
exchanging handshakes with both of them, thus we have a triangle of ver-
tices with the sum of degrees equal 6. Therefore, the handshaking lemma says
that the sum of degrees of all the vertices for any graph on Triplan is multiple
of 6.
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Section 2.2
22.2. (1)
0 0
A* = 0
2 0

axe-(100).
0 0 O

The product C x A is undefined.

Exercises 2.2
2.2.1. Hint: The five-element set of vertices of g has 2° — 1 = 31 non-empty subsets.
2.2.2. The first and the second diagrams are isomorphic.
2.2.3. G’ consists of two connected components, G, and G,.
228. (1) C(n,3)+C(n,4)+---+Cn,n)=2"-1-n-n(n-1)/2.
(2) C(5,3)+C(5,4) =15.
2.212. (1) n-2.
(2) Three walks if the vertices are in the opposite components of the graph, 0
otherwise.
2.2.21. Hint: Split the graph in two or more connected components.

Section 2.3

2.3.2. Hint: You can argue by contradiction and use Lemma 2.2.3.

2.3.4. Since the order of Gy is 5, its spanning tree must have 4 edges. We start with
any edge of weight 1 but cannot include all four such edges for three of them
make a cycle. Hence we select any three edges of weight 1 and append any of
the two edges of weight 2. There are (C(4,3) — 1) - 2 = 6 minimum spanning
tree, each of weight 5.

Exercises 2.3

2.3.2. The trees.

2.3.4. Hint: Apply Theorem 2.3.1.

2.3.5. {e, ey 65}, {e, ey 651, {e, e3,e5), {6y, e5,e,), {e3, e5,e4}.
2.3.8. 1.

2312, p-1.

2.3.16. By EP 2.3.15, 67 — 35 = 32 trees.

2.3.23. 3000 - (300 - 1) = 2701.
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Section 2.4

2.4.1. Such a graph does not exist by Corollary 2.1.1.

2.4.2. The graph on theright (“an open envelope”) is semi-Eulerian but not Eulerian,
the left graph is neither.

Exercises 2.4

2.4.2. Hint: Count passes through a vertex.

2.4.7. 1f we number the vertices of K5 consecutively in either order by v,,v,,v3,v,, vs,
then a possible Hamiltonian circuit goes consecutively through vertices v;, vs,
Vs, Va, Vg Vi

Exercises 2.5

2.5.1. The answer to all three questions is positive.

2.5.3. Herep =6, thusq = 3(5-3+1) = 8.By (25.1), f = 2+ 8 — 6 = 4 including the
unbounded component.

2.5.4. No, the road map for this area must be isomorphic to the complete graph K,
which is not planar.

2.5.10. Any connected component of the graph must have atleast (p-1)/2+1 = (p+1)/2
edges, thus if the graph has at least two components, then the complement
cannot have more than p — (p + 1)/2 = (p — 1)/2 edges—a contradiction.

Exercises 3.1

3.1.3. Four clusters: DE, FL, LA, MD, MI, SC, AL, GA, KY, MO, NC, TN, VA, WV, TX.
Five clusters: DE, FL, LA, AL, MD, MI, SC, GA, KY, MO, NC, TN, VA, WV, TX.

3.1.4. This dissimilarity value is 3.

Exercises 3.2

3.2.6. The problem contains the ties starting from the dissimilarity of 2. Hence,
the first-level clustering is unique: {{x,, x5}, {x;}, {x3}, {x,}, {x¢}}; however, the
second-level clustering depends upon what edge with the dissimilarity of 2
is chosen first. This clustering may be {{x,, x3, x5}, {x1}, (x4}, {xg}} or {{x5, x5},
{x4, %6}, {x1}, {x3}}. In turn, these clusterings lead to different clusterings of the
next level. After that, the coming conjoint clustering is, of course, unique.

Exercises 4.1
4.1.3. (1) The smallest number is 83.
(2) The longest such sequence of positive numbers consists of 107 numbers,
and is infinite if negative numbers are allowed.
4.1.4. By Theorem 4.1.1, the union contains

17+23+41+45+56-6-C(5,2) +4-(5,3)—0-C(5,4) = 162 elements.
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4.1.24. (1) The power-set contains 43 =64 maps, among them there are A(4,3) = 24
injective and (since 3 < 4) no surjective or bijective maps; thus 64 — 24 = 40
are neither injective nor surjective.

Exercises 4.2

4.2.2. (4)Hint: Insert the latter formula in (4.2.5) and change the order of summation.

4.2.4. Hint: straightforward substitution.

4.2.5. Hint: Choose in EP 4.2.4 Q,,(t) = t™,m = 0,1,..., compute the corresponding
polynomials P,,(t), and use the binomial theorem.

Section 4.3
4.3.2.

p{Cp+k-n-2p-2)+Cp+k-n-L,p-2)+---+C(p+2n-k-2,p-2)}

4.3.8. Hint: Use the binomial convolution (Definition 4.3.3) and replace </a,| in

(4.3.3) by {/&.

439. ay=a;=1a,=- =0y =-2,0; = =0y = 6,0y = =0ay =6,
(145:"':1.

4314, Py(I,t) = Py(I,t) = - = L Pp(S,t) = 1+t + 2+ -+ tK = 1 - )/t - 1),
k=0,1,...

4.3.16. We have to compute the coefficient of t° in the series
(t+t2+~-)5(1+t+t2+~--) = t5(1+t+t2~-~)6,

that is, the coefficient of ¢° in (1 + t + ¢2--)°, which is C(10, 5).

Exercises 4. 3
2
431. (1) -L1;0) t3(1+t+t) () LUt 4y Lt 5y 4 4 51 1 102 + 1063 + 54 + £5;
-t t 1-t 1-t
(6) 1+t, (7) —(cos a)t (8) (sin )t

1- 2(coszx Vt+t2 ; 1-2(cos a)t+t* "

Section 4.4
442, 1-7'A-0T=1+---+3t"%+

Exercises 4.4

4.4.2. The solution of equation (4.4.13) with the initial values f(0) = f(1) = 1is
fQQ)=1f(3)=2f(4) =3,f(5 =5.f(6) =

4.4.3. These equations follow either from equation (4.4.13) or from the preceding
problem. For example, to derive the equation in (5), we can rewrite its left-hand
sideas f(n) + 2f(n — 1) + f(n — 2) — 1. Comparing the latter with the right-hand
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side, we get the equation
fM-1=fn-1)+f(n-2)-1=f(0) +---+f(n-2),

which is the equation in (5) with n instead of n + 2.

4.4.5. By induction, g(n) = aa™,n = 0,1,2,..., thus g(t) = ae™, and the conclusion
follows.

4.4.7. Hint: Expand the determinant over the first column.

4.49. f(n).

4.4.10. Hint: Compose a recurrent equation for the number in question.

4.4.13. Hint: Estimate the number \ZFS—E

4.414. L, = (BEO) 4 (SO 1 =2 Ly =1,1,=3,L3 = 4,1, =7,Ls = 11.
4.4.15. Follows from EPs 4.4.2 and 4.4.14.

4.417. (4)x(n) = a+b(-3)" + 22",

4.4.25. Hint: Notice that the sequence satisfies equation (4.4.13).

4.4.41. (1) n2"? - (n+1)2"1 + 2.

Section 4.5
4.5.2. G,ifm=2andG,.

Exercises 4.5

4.5.2. (3,2,1,0,0,0,0,0,0,0), X;x3x;.

4.5.7. No, since F is not a group.

4.5.16. The ride is unique.

4.5.17. Inboth cases,2-4-2-2° =128.

4.5.21. g, = (1,2)(3,4), 8, = (1,L2)(1,3)(1, 4), 83 = (1,2)(3,3)(4, 4), 84 = (L1)(2,2)(3, 4).

Section 5.1

5.1.7. Since degF = 5, at least three incident vertices must have the same label.

5111 |X| = Y,y F "Dl < KIY|, since for different y the preimages f~({y}) are
disjoint.

Exercises 5.1

5.1.1. A week consists of 7 days.

5.1.2. (1) 21; (2) 36; (3) 33; (4) 13.

5.1.3. (1) Yes, since 37 = 3-12 + 1. (2) No.

5.1.5. Parallel translation does not change the angles between the lines, hence we
can assume that these lines intersect at a point. Thus, 11 lines make 22 an-
gles,and if each angle is at leat 17°, then the total angle would be at least
22-17° =374° > 360°.

5.111. 6-3"7°.
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5.1.16. There are only four different outcomes of the test.

5.1.25. There are 14 differences, 1,2,...,14, and the 9-element set 1,2,3,4,5,6,13,14,15
generates all the differences but the 6. Thus we need to select at least 10 num-
bers.

5.1.34. There are only 11 different remainders after dividing any integer by 11.

Exercises 5.2

5.2.1. (1) Yes, by Theorem 5.2.3 with m = 2.

5.2.8. nl.

5.29. C(m-n,k)if m-n > k and O otherwise.

5.2.10. The simplest example is the case n = 1 and the 2 x 2 matrix containing only 1s;
these four 1s cannot be covered by one row and one column.

Exercises 5.3

5.3.3. We must build the block design S(20, b, 2,19, 1), which clearly exists by (5.3.2)
with b = 190 blocks.

5.3.5. Hint: Reconstruct a BIBD from M.

5.3.8. Hint: Multiply the ith row of the determinant by b; and add the rows.

5.3.9. Hint: Prove that y and z must have the same parity, that is, either both are odd
or both are even, and consider these cases separately.

5.3.10. S(43,43,7,7,1) does not exist due to Theorem 5.3.2 and the previous problem;
for S(15,21,5,7,2), condition (5.3.2) fails.

Exercises 5.4

5.4.3. Triples {3,4,7} and {3, 5, 6}.

5.4.4. The six segments and the circumference represent seven blocks of S(7).
5.4.7. 100 is not an admissible value for S(v).

5.4.10.

{A(v -1) =0 (mod 3),
Av(v —1) = 0 (mod 12).

IfA=1,thenv =1 (mod12) orv = 4 (mod 12).

5.411. S(13,13,4,4,1) exists, however, S(7,7, 4, 4,1) does not, since for these values of
parameters the necessary condition (5.3.3) fails.

5.4.12. Hint: Consider S(9,12,3,4,1).

5.4.17. Hint: Fix a point outside S(v) and count all the triples where this point meets
elements of S(v) and also other elements.
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Abel transformation 25
antisymmetric see binary relations
arrangements

—with repetition 37

—without repetition 37
assignment operator 145
assignment problem 273

backbone 311
balls in urns model 39, 55, 68, 69, 84, 178, 186,
207
Bayes’s formula 81
Bell numbers 14
—difference equation 235
Bernoulli’s trials 80
bijective see mappings
binary relations 15
—antisymmetric 16
—equivalence relations 16
—equivalence classes 16
—factor-set 16
—number of equivalence classes 17
— partial order 16
—chain 17
- reflexive 15
—symmetric 15
—transitive 16
binomial coefficients 42, 55, 57, 59, 185, 213,
230, 235
binomial convolution (Hurwitz composition) 201
binomial distribution 80
binomial formula 44
binomial theorem 44
birthday problem 81
bit string 231
block designs 284
—incidence matrix 285
—incomplete, balanced (BIBD) 284
—isomorphism 292
—automorphism 293
—necessary conditions of existence 285
—symmetric 287
Bonferroni inequalities 180
Boolean see sets
Boolean functions 64, 65
Bose-Einstein statistics 70
bracelet 243

Bruck-Ryser—Chowla theorem 288
Burnside (Cauchy-Frobenius) lemma 242

cardinality of unions see sets
Cartesian (direct) product see sets
Cartesian product, cardinality 18
Catalan numbers 55, 57, 65, 228, 235
—recurrence relation 232
Cauchy rule 198
Cauchy-Hadamard criterion 195
Cauchy-Hadamard formula 301
Cayley
—first formula 111
-second formula 117
chain (linearly or totally ordered set) see poset
characteristic function see sets
chromatic number see graphs
circuit see graphs
clustering 131
—algorithms
- agglomerative 133
- agglomerative single-link 136, 146
—divisive 134
— hierarchical 133
- Hubert’s complete-link 155, 156
- Hubert’s single-link 148
—single-link 134
—amalgamated 133
—clumps 131
—clusters 131
- completely disjoint 133
—dendrogram 154
- (dis)similarity 132
— dissimilarity matrix (table) 132
—link 136
—threshold 132
—threshold graph 137
coloring problems 179, 244, 250, 251, 253, 255,
256, 259, 264
combinations
—with repetition 45, 46, 253
—without repetition 42
complement see sets
compositions 218, 233, 248, 253
—generating function 218
conditional probability 78
congruence modulo p see natural numbers
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connected graph, component see graphs
cycle see graphs
cyclic sequences 189

de Morgan laws 13

dendrogram see clustering

derangement 181

determinant 225

—continuant 231

—expansion across a line 225

—Jacobi determinant 226

—minor 225

Diagram 305

difference see sets

difference equations 221

- characteristic polynomial 221

— generating function 222

- superposition principle 221

digraph see graphs

Dilworth theorem 278

Diophantine equations 49, 63, 212, 233, 288,
290

Dirichlet principle 259, 264

dot product 102

Dyck path see trajectory method

EGF see exponential generating function

equivalence relations see binary relations

Erdos-Szekeres theorem 261

Euler (totient) function 185

Eulerian circuit (trail) 118

Eulerian graph 118

Euler’s theorem 121

events 71

—complementary 74

- disjoint (mutually exclusive) 74

—elementary 71

- exhaustive 74

—independent 77,79

expected value see mathematical expectation

exponential generating function (EGF) see
method of generating functions

factorial 22

- Stirling asymptotic formula 22
family of subsets 258

Fano plane 298

favorable outcome 72

Fermat little theorem 191

Fermi-Dirac statistics 70
Ferrers diagram 217
—normalized 217

Fibonacci numbers 224, 230
—generating function 232
Fisher’s inequality 287
Fleury’s algorithm 120

floor function see integer part
forest see graphs

Frobenius theorem 277
function see mappings
Fundamental Theorem of Arithmetic 26

Gauss formula 191
generating polynomials see method of
generating functions
geometrically identical colorings 244
GF see method of generating functions
golden ratio 230
graphs 89
—acyclic 107
—adjacency matrix 102
—bipartite 93
- bipartite graphs
—matching 281
— chromatic number 182, 186
—coloring problems 106, 179, 182, 212, 258,
263, 267
- complete graph K, 93
—connected 100
—connected component 100
- contour 99
- cut-edge (bridge) 100
—degree sequence 93
—diagram 90
—directed 90
—edge 89
—initial (end) vertex 91
—loop 89
—edge-cover 282
—embedding 91
—regular 91
-embedding in R" 90
—enumeration problems 94
- Eulerian characteristic 121
—forest 107
—incidence function 89
—incidence of edges and vertices 89
—isomorphism 94



—labelled 94, 212
—order 89
—planar 91
—plane 121
—regular coloring 182
—-simple 90
—size 89
- spanning subgraph (factor) 98
—subgraph 98
—Thomsen graph 122
—tree 107
—rooted 107
—spanning tree 109
—vertex 89
—isolated 89
—odd (even) 93
- pendant (leaf) 89
—vertex degree 93
—walks, trails, paths, circuits, cycles 98
—weighted 109
group 237
—cycle index 239
—order 237
—symmetric 237

Hall’s condition 269

—strengthened 270

Hall’s theorem 269

Hamiltonian graph 120

Hamiltonian path 120

handshaking lemma 93

harmonic numbers 56

hypothesis of equally likely probabilities 74

image see mappings

Inclusion—Exclusion Principle 176

injective see mappings

integer part 51

intersection see sets

inventory 246

inverse image, total preimage see preimage
inversion formulas 187, 191, 192, 205, 211, 235
—Mébius inversion 187, 188

inversions in permutations 225

—even (odd) 225

Jordan’s theorem 121

Kaplansky lemma 61
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Ko6nig’s theorem 277
Kronecker delta 56
Kruskal’s algorithm 109, 146

Lagrange’s theorem on four squares 289
Lambert W function 213

loop see graphs

Lucas numbers 232

- generating function 232

mappings
- bijective 5
—-codomain 5
—domain 5
—-equal 5
—equivalent 244
—image 5
—injective 5
- number of
—arbitrary mappings 24
- bijective mappings 24
—injective mappings 24
— preimage 5
—-range 5
—restriction 19
—surjective
- cardinality 178
- surjective (onto) 5
—weight 245
mathematical expectation 79
matrix 101
- product 102
- symmetric 101
—transpose 101
—zero-one matrix 276
—covering 276
—independent set of entries 276
—irreducible covering 279
Maxwell-Boltzmann statistics 70
method of generating functions 194, 198
- convolution of sequences 198
—examples 193
- exponential generating function 200
- generating polynomials 195, 196, 204, 206,
212, 219
- problems 202, 205, 207-209, 231
- shifts of sequences 201
Mobius function 188
Moore theorems 293, 294



330 — Index

Motzkin path 310
multigraph 90

multinomial

- coefficients 67

—theorem 70

multinomial coefficients 220
multiset 258

natural numbers N 4

- combinatorial representation 56

—congruence 24

—factorial representation 57

-natural segmentN,, 4

number of equivalence classes see binary
relations

ordered pairs 14

partial order see binary relations
partitions
—of integers 215, 233

—generating function 215
—of sets 14

—number of 178

—ordered 258

—Schur’s lemma 262
Pascal’s triangle 43
path see graphs
permanent 235
permutations 37
—with identified elements (with repetition) 67
pigeonhole principle see Dirichlet principle
planar, plane graph see graphs
P6lya—Redfield theorem 248
Pontryagin—Kuratowski theorem 123
poset see partial order
power set see sets
preimage see mappings
Principle of Mathematical Induction 6
probability axioms 73
probability distribution 72
probability experimental (frequency) 73
product notation 9
Product Rule 30
progression
—arithmetic 25
—geometric 26
Priifer code 112
pseudograph 90

quantifier
—existential 4
—universal 4

Ramsey

—numbers 258

—theorem 258

random experiment 71

random variables (functions) 77

range see mappings

recurrence relations see difference equations
reflexive see binary relations

reserve 246

RNA secondary structure 301

sample space 71
secondary structure 303
semi-Eulerian graph 118
sets
—Boolean 19
- Cartesian (direct) product 15
— characteristic function 21
—complement 12
—countable 6
—difference 12
—disjoint 12
—empty set 3
—finite 6
—intersection 12
- power set 19
—subset 4
—union 12
—cardinality 17
—universal set 12
Sieve Formula see Inclusion-Exclusion Principle
sigma (summation) notation 8
spanning tree see graphs
—minimum 109
—weighted 109
Stirling numbers 191
- of the first kind 186
- of the second kind 178, 186, 213
subfactorial 181
substitutions 237
—cycle index 239
—cycle (orbit) 238
—cycle type 238
- fixed elements 242
— matrix representation 238



sum rule 29

—modified 35

summing sequence (summator) 201
surjective see mappings

symmetric see binary relations
system of mutual representatives 272
systems of distinct representatives (SDR) 269
systems of quadruples 299

systems of triples 292

—admissible values 292

— Steiner systems 292

telescoping sums 11

totient function see Euler (totient) function

trails see graphs

trajectory method 54

transitive see binary relations

transversal see systems of distinct
representatives

Index = 331

tree see graphs
tree of alternatives 33
triangular numbers 59
tuple (vector) 15

union see sets

Vandermonde’s identity 56
village weddings (marriage) theorem see Hall’s
theorem

walks see graphs

weight

-of a function 245

—of an element 245

—of an equivalence class 245
whole numbers W 4
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