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Preface 

Originally, functional analysis was the study of functions. It is now considered to be 
a unifying subject that generalizes much of linear algebra and real/complex analysis, 
with emphasis on infinite dimensional spaces. This book introduces this vast topic 
from these elementary preliminaries and develops both the abstract theory and its 
applications in three parts: (I) metric spaces, (II) Banach and Hilbert spaces, and 
(III) Banach algebras. 

Especially with the digital revolution at the turn of the millennium, Hilbert spaces 
and least squares approximation have become necessary and fundamental topics for 
a mathematical education, not only just for mathematicians, but also for engineers, 
physicists, and statisticians interested in signal processing, data analysis, regression, 
quantum mechanics, etc. Banach spaces, in particular . L1 and .L∞ methods, have 
gained popularity in applications and are complementing or even supplanting the 
classical least squares approach to many optimization problems. 

Aim of This Book 

The main aim of this book is to provide the reader with an introductory textbook 
that starts from elementary linear algebra and real analysis and develops the 
theory sufficiently to understand how various applications, including least squares 
approximation, etc., are all part of a single framework. A textbook must try to 
achieve a balance between rigor and understanding: not being too elementary by 
omitting ‘hard’ proofs, but neither too advanced by using too strict a language for the 
average reader and treating theorems as mere stepping stones to yet other theorems. 
Despite the multitude of books in this area, there is still a perceived gap in learning 
difficulty between undergraduate and graduate textbooks. This book aims to be in 
the middle: it covers much material and has many exercises of varying difficulty, 
yet the emphasis is for the student to remember the theory clearly using intuitive 
language. For example, real analysis is redeveloped from the broader picture of
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viii Preface

metric spaces (including a construction of the real number space), rather than 
through the even more abstract topological spaces. 

Audience 

This book is meant for the undergraduate who is interested in mathematical analysis 
and its applications, or the research engineer/statistician who would like a more 
rigorous approach to fundamental mathematical concepts and techniques. It can also 
serve as a reference or for self-study of a subject that occupies a central place in 
modern mathematics, opening up many avenues for further study. 

The basic requirements are mainly the introductory topics of mathematics: set 
and logic notation, vector spaces, and real analysis (calculus). Apart from these, it 
would be helpful, but not necessary, to have taken elementary courses in Fourier 
series, Lebesgue integration, and complex analysis. Reviews of vector spaces and 
measurable sets are included in this book, while the other two mentioned subjects 
are developed only to the extent needed. 

Examples are included from many areas of mathematics that touch upon 
functional analysis. It would be helpful at the appropriate places, for the reader to 
have encountered these other subjects, but this is not essential. The aim is to make 
connections and describe them from the viewpoint of functional analysis. With the 
modern facilities of searching over the Internet, anyone interested in following up a 
specific topic can easily do so. 

The sections follow each other in a linear fashion, with the three parts fitting 
into three one-semester courses, although Part II is twice as long as the others. The 
following sections may be omitted without much effect on subsequent topics: 

Section 6.4 . C(X, Y )

Section 9.2 Function Spaces 
Section 11.5 Pointwise and Weak Convergence 
Sections 12.1 and 12.2 Differentiation and Integration 
Sections 14.4 and 14.5 Functional Calculus and the Gelfand Transform 
Section 15.6 Representation Theorems 
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Chapter 1 
Introduction 

Modern mathematics depends to a considerable degree upon extending the finite 
to the infinite. In this regard, imagine extending the geometric vectors that we are 
familiar with to an infinite number of components. That is, consider 

. v = a1e1 + a2e2 + · · · = (a1, a2, a3, . . .)

where . ei are unit independent vectors just like i, j and k in Cartesian geometry. It 
is not at all clear that we can do so—for starters, what do those three dots “. · · · ” on  
the right-hand side mean? Surely they signify that as more terms are taken one gets 
better approximations of . v. This immediately suggests that not every such “infinite” 
vector is allowed; for example, it might be objected that the vector 

. v = e1 + e2 + e3 + · · ·

cannot be approximated by a finite number of these unit vectors, as the remainder 
.en + · · · looks as large as . v. Instead we might allow the infinite vector 

. v = e1 + 1
2e2 + 1

3e3 + · · ·

although even here, it is unclear whether this may also grow large, just as 

. 1 + 1

2
+ 1

3
+ · · · = ∞.

To continue with our experiment, let us just say that the coefficients become 
zero rapidly enough. There are all sorts of operations we can attempt to do with 
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2 1 Introduction

these “infinite” vectors, by analogy with the usual vectors: addition of vectors and 
multiplication by a number are easily accomplished, 

. (1, 1
2 ,

1
3 , . . .) + (1, 1

2 ,
1
4 , . . .) = (2, 1, 7

12 , . . .),

2 × (0, 1,− 1
2 , . . .) = (0, 2,−1, . . .).

One can even generalize the “dot product” 

. (a1, a2, . . .) · (b1, b2, . . .) = a1b1 + a2b2 + · · · ,

assuming the series converges—and we have no guarantee that it always does. For 
example, if . x is equal to .(1, 1√

2
, 1√

3
, . . .), then .x · x = ∑∞

n=1
1
n
is infinite. Again let 

us remedy this situation by insisting that vectors have coefficients that decrease to 0 
fast enough. 

Having done this, we may go on to see what infinite matrices would look like. 
They would take an infinite vector and return another infinite one, as follows, 

. 

11 12

a21 a22

1
x2 =

1
y2 ,

where .y1 = a11x1 + a12x2 + · · · = ∑
n a1nxn, etc. Perhaps we may need to have 

the rows of the matrix vanish sufficiently rapidly as we go down and to the right of 
the matrix. 

Once again, many familiar ideas from finite matrices seem to generalize to this 
infinite setting. Not only is it possible to add and multiply these matrices without any 
inherent difficulty, but methods such as Gaussian elimination can also be applied 
in principle. There seems to be no intrinsic problem to working with infinite-
dimensional linear algebra. 

It may come as a slight surprise to the reader that in fact they have already 
encountered these infinite vectors before! When a function is expanded as a 
MacLaurin series 

. f (t) = f (0) + f '(0)t + 1
2f

''(0)t2 + · · · ,

it is in effect written as an infinite sum of the basis vectors (or functions) .1, t, t2, . . ., 
each with the numerical coefficients .f (0), f '(0), 1

2f
''(0), . . ., respectively. Adding 

two functions is the same as adding the two infinite vectors of coefficients; and 
multiplying by a number is equivalent to multiplying each coefficient by the
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same number. What about infinite matrices? Take a look at the following form of 
differentiation, here written in matrix form, 

. 

f ' =
0 2 0

0 3

⎜⎜ ⎟⎟⎟⎟
⎜⎜⎜

f '(0)
1
2f

''(0)
⎟⎟⎟ .

And just as there are various bases that can be used in geometry, so there are 
different ways to expand functions, the most celebrated being the Fourier series 

. f (t) = a0 + a1 cos t + b1 sin t + a2 cos 2t + b2 sin 2t + · · · .

The basis vectors are now 1, .cos t , .sin t , .cos 2t , etc. What matrix does differentiation 
take with respect to this basis? 

If we accept that all this is possible and makes sense, we are suddenly made 
aware of a new unification of mathematics: functions can be thought of as ‘points’ 
in a space of infinite vectors, certain differential equations are matrix equations, 
the Fourier and Laplace transforms can be thought of as generalized “matrices” 
mapping a function (vector) to another function, etc. Solving a linear differential 
equation, and finding the inverse Fourier transform, are equivalent to finding the 
inverses of their “matrices”. 

Do we gain anything by converting to a matrix picture? Apart from the practical 
matter that there are many known algorithms that deal with matrices, a deeper reason 
is that linear algebra and geometry give insights to the subject of functions that we 
may not have had before. Euclid’s theorems may possibly still be valid for functions 
if we think of them as ‘points’ in an infinite-dimensional vector space. We wake up 
to the possibility of a function being perpendicular to another, for example, and that 
a function may have a closest function in a “plane” of functions. 

Conversely, ideas from classical analysis may be transferred to linear algebra. 
Since square matrices can be multiplied with themselves, can the geometric series 
.1 + A + A2 + · · · make sense for matrices? Perhaps one can take the exponential 
of a matrix .eA := 1+ A + A2/2! + A3/3! + · · · . There’s no better way than to take 
the plunge and try it out, say on the differentiation ‘matrix’ D, 

. eDf (t) = (1+ D + D2/2+ · · · )f (t) = f (t) + f '(t) + f ''(t)/2+ · · · = f (t + 1)

(by a Taylor expansion around t). The “matrix” . eD certainly has meaning: it 
performs an unexpected, if mundane, operation—it shifts the function f one step 
to the left! Again, suppose we have the equation .y' − 2y = et ; manipulating the
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derivative blindly as if it were a number gives a correct solution (but not the general 
solution) 

. y = (D − 2)−1et = − 1
2 (1 + D/2 + D2/4 + · · · )et = −et .

(Yet repeating for the equation .y' − 2y = e2t fails to give a meaningful solution.) 
In fact, historically, the subject of functional analysis as we know it started in the 

nineteenth century when mathematicians began to notice the connections between 
differential equations and matrices. For example, the equation 

. y'(t) = a(t)y(t) + g(t)

can be written in equivalent form as 

.y(t) =
∫ t

t0

a(s)y(s) ds + g̃(t). (1.1) 

The integral .
∫ t

t0
a(s)y(s) ds is an infinitesimal version of .

∑N
n=1 anyn and can be 

thought of as a transformation of . y(t). Equation (1.1) is akin to a matrix equation 
.y = Ay + b, and we are tempted to try out the solution . y = (1 − A)−1b =
(1 + A + A2 + · · · )b. 

Nonetheless, technical problems in carrying out this generalization arise immedi-
ately: are the components of an infinite vector unique? They would be if the vectors 
. en are in some sense ‘perpendicular’ to each other. But what is this supposed to 
mean, say for the MacLaurin series? After all, there do exist non-zero functions 
whose MacLaurin coefficients are all zero. The question of whether the Fourier 
coefficients are unique took almost a century to answer! And extra care must be 
taken to handle infinite vectors. For example, let 

. 

v1 := ( 1, 0, 0, 0, . . . )

v2 := ( −1, 1, 0, 0, . . . )

v3 := ( 0, −1, 1, 0, . . . )

v4 := ( 0, 0, −1, 1, . . . )

. . .

It seems clear that 

. v1 + v2 + v3 + · · · = 0,

yet the size of the sum of the first n vectors never diminishes: 

.v := v1 + · · · + vn = (0, . . . , 0, 1, 0, . . .) ⇒ v · v = 1.
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Here’s another seeming paradox: Consider the infinite number of equations . x1 =
x2, .x2 = x3,  . . . ,  .xn = xn+1,  . . . .  Clearly  it  has  the  solutions  . x1 = x2 = · · · = λ

for any .λ ∈ R. But let us try to use infinite matrices to solve this problem. The 
equations in matrix form become .Ax = 0, 

. 

1 −1 0
0 1 −1

⎜ ⎟ x1
x2⎟⎠ =

0
0

Its inverse can be calculated using Gaussian elimination to get 

. 

A−1 =

1 1 1
0 1 1

⎜⎜⎜
⎟⎟⎟

One can verify that .AA−1 = I = A−1A. But doesn’t this then imply that . x =
A−10 = 0? What happens to the solutions we obtained above? On the other hand, if 
the non-zero vector .(1, 1, . . .) satisfies .Ax = 0, then 0 would be an eigenvalue, but 
then shouldn’t it appear on the main diagonal of A? 

Because of these trapfalls, we need to proceed with extra caution. It turns out that 
many of the equations written above are capable of different interpretations and so 
cannot be taken to be literally true. 

These considerations force us to consider the meaning of convergence. The 
reader may already be familiar with the real line . R, in which one can speak about 
convergence of sequences of numbers, and continuity of functions. Some of the 
main results in real analysis are: 

(i) Cauchy sequences converge, 
(ii) For continuous functions, if .tn → t then .f (tn) → f (t), 
(iii) Continuous real functions are bounded on intervals of type .[a, b] and have the 

intermediate value property, that is, they map intervals to intervals. 

We seek generalizations of these to . Rn and possibly to infinite dimensional 
spaces. We do seem to have an intuitive sense of what it means for vectors to 
converge .xn → x, but can it be made rigorous? Is it true that if .xn → x and . yn → y

then .f (xn, yn) → f (x, y) when f is a continuous function? Are continuous real 
functions bounded on “rectangles” .[a, b] × [c, d], and is the latter the correct 
analogue of an “interval”? Since vector functions are common in applications, it 
is important to show how these theorems apply in a much more general setting than 
. R, and this can be achieved by stripping off any inessential structure, such as its 
order (. ⩽). As we proceed to answer these questions, we will see that the real line
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is very special indeed. Intervals play several roles in real analysis, roles that are 
distinguished apart in . Rn, where we speak instead of connected sets, balls, etc. 

The book is divided into three parts: the first considers convergence, continuity, 
and related concepts, the second part treats infinite vectors and their matrices, and 
the third part tackles infinite series of matrices and more. 

Functional analysis is a rich subject because it combines two large branches 
of mathematics: the topological branch concerns itself with convergence, conti-
nuity, connectivity, boundedness, etc.; the algebraic branch concerns itself with 
operations, groups, rings, vectors, etc. Problems from such different fields as 
matrix algebras, differential equations, and approximation theory, can be unified 
in one framework. As in most of mathematics, there are two streams of study: the 
abstract theory deduces the general results, starting from axioms, while the concrete 
examples are shown to be part of this theory. Inevitably, the former appears elegant 
and powerful, and the latter full of detail and perhaps daunting. Nonetheless, both 
pedagogically and historically, it is often by examples that one understands the 
abstract, and by the theory that one makes headway with concrete problems. 

Most sections contain a number of worked out examples, notes, and exercises: 
it is suggested that a section is first read in full, including its propositions and 
exercises. These exercises are an essential part of the book; they should be worked 
out before moving to the next section (some hints and answers are provided in the 
appendix, and many worked solutions can be found in the Instructor’s solutions 
manual). To prevent the exercises from becoming a litany of “Show . . . ”  and  “Prove  
. . . ”,  these  terms  have  frequently been omitted, partly to instil an attitude of critical 
reading. As a guide, the notes and exercises have been marked as follows: 

. ▶ refers to important notes and results; 

. ✶ more advanced or difficult exercises that can be skipped on a first reading; 

. ♦ side remarks that can be skipped without losing any essential ideas. 

1.1 Preliminaries 

Familiarity with the following mathematical notions and notation is assumed: 

Logic and Sets 
The basic logical symbols are . ⇒ (implies), .NOT, .AND, . OR, as well as the quantifiers 
. ∃ (there exists) and . ∀ (for all). The reader should be familiar with the basic proof 
strategies, such as proving .φ ⇒ ψ by its contrapositive .(NOT ψ) ⇒ (NOT φ), and 
proofs by contradiction. The negation of .∀x φx is .∃x (NOT φx); and .NOT (∃x φx) is 
the same as .∀x (NOT φx). The symbol . := is used to define the left-hand symbol as 
the right-hand expression, e.g., .e := ∑∞

n=0
1
n! . 

A set consists of elements, and .x ∈ A denotes that x is an element of the set A. 
The empty set . ∅ contains no elements, so .x ∈ ∅ is a contradiction. 

The following sets of numbers are the foundational cornerstones of mathematics: 
the natural numbers .N = { 0, 1, . . . }, the integers . Z, the rational numbers . Q, the real
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numbers . R, and the complex numbers . C, the last containing the imaginary number 
i. The  induction principle applies for . N, 

. If A ⊆ N AND 0 ∈ A AND ∀n (n ∈ A ⇒ n + 1 ∈ A) then A = N.

Although variables should be quantified to make sense of statements, as in 
.∀a ∈ Q, a2 /= 2, in practice one often takes shortcuts to avoid repeating the 
obvious. This book uses the convention that if a statement mentions variables 
without accompanying quantifiers, say, .‖x + y‖ ⩽ ‖x‖+‖y‖, these are assumed to 
be . ∀x, . ∀y, etc., in the space under consideration. Natural numbers are usually, but 
not exclusively, denoted by the variables m, n, N , . . . ., real numbers by t , a, b, . . . ., 
and complex numbers by z, w, . . . .. An unspecified X or Y refers to a metric space, 
a normed space, or a Banach algebra, depending on the chapter. 

Sets are often defined in terms of a property, .A := { x ∈ X : φx }, where X 
is a given ‘universal set’ and . φx a ‘well-formed’ statement about x. For example, 
.R

+ := { x ∈ R : x ⩾ 0 }. 
.A ⊆ B denotes that A is a subset of B, i.e., .x ∈ A ⇒ x ∈ B; .A ⊂ B means 

.A ⊆ B but .A /= B. A “non-trivial” or “proper” subset of X is one which is not 

. ∅ or X. “Nested sets” are contained in each other as in .A1 ⊆ A2 ⊆ A3 ⊆ . . . or 

.A1 ⊇ A2 ⊇ . . .. 
The complement of a set A is denoted by .X\A, or by  . Ac for short; .Acc = A, 

and .A ⊆ B ⇔ Bc ⊆ Ac. .A ∩ B and .A ∪ B are the intersection and union of 
two sets, respectively. Two sets are “disjoint” when .A ∩ B = ∅, while we say “A 
intersects B” to mean .A∩B /= ∅. De Morgan’s laws state that . (A∪B)c = Ac ∩Bc

and .(A ∩ B)c = Ac ∪ Bc. The ‘symmetric difference’ of two subsets is . AΔB :=
(A ∪ B)\(A ∩ B). In general, the union and intersection of a number of sets are 
denoted by .

⋃
i Ai and .

⋂
i Ai (where the range of the index i is understood by the 

context). A “cover” of A is a collection of sets .{ Bi : i ∈ I } whose union includes 
A, i.e., .A ⊆ ⋃

i Bi ; a “partition” of X is a cover by disjoint subsets of X. 
Pairs of elements are denoted by .(x, y), or as  . 

(
x
y

)
, generalized to finite ordered 

lists .(x1, . . . , xn). The  product of two sets is the set of pairs 

. X × Y := { (x, y) : x ∈ X, y ∈ Y }

in particular .X2 := X × X = { (x, y) : x, y ∈ X }, and by analogy 

. Xn := { (x1, . . . , xn) : xi ∈ X, i = 1, . . . , n }.

An important example is the plane . R2, whose points are pairs of real numbers 
(called “coordinates”). The unit disk is .{ (x, y) ∈ R

2 : x2 + y2 ⩽ 1 }; its perimeter 
is the unit circle, .S1 := { (x, y) ∈ R

2 : x2 + y2 = 1 }. 
Functions 
A function .f : X → Y , .x I→ f (x), assigns, for every input .x ∈ X, a unique output 
element .f (x) ∈ Y . (It need not be an explicit procedure.) X is called the “domain”
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of f and Y its “codomain”. Functions are also commonly referred to as “maps” 
or “transformations”. To avoid being too pedantic, we sometimes say, for example, 
“the function .x I→ ex” without reference to the domain and codomain, when these 
are obvious from the context. 

The “image” of a subset .A ⊆ X, and the “pre-image” of a subset .B ⊆ Y are 

. f A := { f (a) ∈ Y : a ∈ A }, f −1B := { a ∈ X : f (a) ∈ B },

also denoted by .f [A] and .f −1[B] for clarity. The image of f is .im f := f X. It is  
easy to show that for any number of sets . Ai , 

. f [
⋃

i

Ai] =
⋃

i

f [Ai], f [
⋂

i

Ai] ⊆
⋂

i

f [Ai],

f −1[
⋃

i

Ai] =
⋃

i

f −1[Ai], f −1[
⋂

i

Ai] =
⋂

i

f −1[Ai].

The set of functions .f : X → Y is denoted by . YX. 
Some functions can be composed together .(f ◦ g)(x) := f (g(x)) whenever the 

image of g lies in the domain of f . Composing with the trivial identity function 
.I : X → X, .x I→ x (one for each set X), has no effect, .f ◦ I = f and .I ◦ f = f . 

The restriction of a function .f : X → Y to a subset .M ⊆ X is the function 
.f |M : M → Y which agrees with f on M , i.e., .f |M(x) = f (x) whenever .x ∈ M . 
Conversely, f is said to be an extension of .f |M . 

The reader should be familiar with the functions .t I→ −t , . tn, . |t |, for  .t ∈ R or 
. C; .(x, y) I→ x + y, xy, with domain . R2 or . C2; .(x, y) I→ x/y for .y /= 0; and 
.(x1, . . . , xn) I→ max(x1, . . . , xn) for real numbers . xi . In particular, the absolute 
value function satisfies 

. |a + b| ⩽ |a| + |b|, |a| ⩾ 0, |a| = 0 ⇔ a = 0, |ab| = |a||b|.

Conjugation is the function .̄ : C → C, .a + ib I→ a − ib; its properties are 

. z + w = z̄ + w̄, zw = z̄w̄, ¯̄z = z, z̄z = |z|2.

The Kronecker delta function is .δij :=
{
1 i = j

0 i /= j
. The  exponential function . t I→

et , .R → R, may be defined by .et := ∑∞
n=0

tn

n! ; it satisfies .e0 = 1 and .et > 0. 
Sequences are functions .x : N → X, but  .x(n) is usually written as . xn, and the 

whole sequence x is referred to by .(xn)n∈N or .(x0, x1, . . .) or even just .(xn); real or 
complex-valued sequences are denoted by bold symbols, . x. For example .(1/2n) is 
the sequence .(1, 1

2 ,
1
4 , . . .), which is shorthand for .0 I→ 1, .1 I→ 1

2 , etc. It is important 
to realize that .(xn)n∈N is a function and not a set of values, e.g. .(1,−1, 1,−1, . . .) is 
quite different from .(−1, 1, 1, 1, . . .) and .(−1, 1,−1, 1, . . .), even if they have the
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same set of values. The set of real-valued sequences is denoted by . RN := { x : N →
R }, and of the complex-valued sequences by . CN. Functions .x : Z → X are also 
sometimes called sequences and are denoted by .(xn)n∈Z. 

Polynomials (of one variable) are functions .p : C → C that are a finite number of 
compositions of additions and multiplications only; every polynomial can be written 
in the standard form .p(z) = anz

n +· · ·+a1z+a0 (.ai ∈ C, .an /= 0 unless .p = 0); n 
is called the degree of p. The set of all polynomials in the variable z, with complex 
coefficients, is denoted .C[z]. 

A function .f : X → Y is 1–1 (“one-to-one”) or injective when . f (x) = f (y) ⇒
x = y; it is  onto or surjective when .f X = Y . A  bijection is a function which is both 
1–1 and onto; every bijection has an inverse function .f −1, whereby .f −1◦f (x) = x, 
.f ◦ f −1(y) = y. 

Sets may be finite, countably infinite, or  uncountable, depending on whether there 
exists a bijection from the set to, respectively, (i) a set .{ 1, . . . , n } for some natural 
number n, or (ii) . N, or (iii) otherwise. In simple terms, a set is countable when its 
elements can be listed, and finite when the list terminates. If A, B are countable sets 
then so is .A×B; more generally, the union of the countable sets . An, .n = 0, 1, 2, . . ., 
is again countable: 

. 

. 

∞⋃

n=0

An = { a00, a01, a10, a02, . . . }

Relations and Orders 
A relation is a statement about pairs of elements taken from .X ×Y , e.g. . x = y2 + 1
for .(x, y) ∈ R

2. An  equivalence relation . ≈ on a set X is a relation on . X2 which is 

. 

reflexive : x ≈ x,

symmetric : x ≈ y ⇔ y ≈ x,

transitive : x ≈ y ≈ z ⇒ x ≈ z.

An equivalence relation induces a partition of the set X into equivalence classes 
.[a] := { x ∈ X : x ≈ a }. 

An order . ⩽ is a relation which is reflexive, transitive, and anti-symmetric: 

.x ⩽ y ⩽ x ⇒ x = y.
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One writes .x < y when .x ⩽ y but .x /= y. A  linear order is one which also satisfies 
.x ⩽ y OR y ⩽ x. A number x is positive when .x > 0, whereas “non-negative” 
means .x ⩾ 0. An  upper bound of a set A is a number b which is larger than any 
.a ∈ A. A “least upper bound”, denoted .supA, is the smallest such upper bound (if 
it exists), i.e., every upper bound of A is greater than or equal to .supA. There are 
analogous definitions of lower bound and greatest lower bound, denoted .infA. 

Groups and Fields 
A group is a set G with an associative operation and an identity element 1, such that 
each element .x ∈ G has an inverse element . x−1, 

. x(yz) = (xy)z, 1x = x = x1, xx−1 = 1 = x−1x.

A subgroup is a subset of G which is itself a group with the same operation and 
identity. A normal subgroup is a subgroup H such that .x−1Hx ⊆ H for all .x ∈ G. 
An example of a group is the set .C\{0} with the operation of multiplication; the set 
.S := { eiθ : θ ∈ R } is a subgroup since .eiθ eiφ = ei(θ+φ), .1 = ei0, . (eiθ )−1 = e−iθ

are all in S. 

A field . F is a set of numbers, such as . Q, . R, or  . C, whose elements can be added 
and multiplied together associatively, commutatively, and distributively, that is, for 
all .a, b, c ∈ F, 

. 

(a + b) + c = a + (b + c), (ab)c = a(bc),

a + b = b + a, ab = ba,

(a + b)c = ac + bc,

there is a zero 0 and an identity 1, every element a has an additive inverse, or 
negative, . −a, and every .a /= 0 has a multiplicative inverse, or reciprocal, . 1/a: 

. 
0 + a = a, 1a = a,

a + (−a) = 0, a 1
a

= 1 (a /= 0).

The real number space . R is that unique field which has a linear order . ⩽ such that 

(a) .a ⩽ b ⇒ a + c ⩽ b + c, and .0 ⩽ a, b ⇒ 0 ⩽ ab, 
(b) Every non-empty subset with an upper bound has a least upper bound. 

The intervals are the subsets 

.

[a, b] := { x ∈ R : a ⩽ x ⩽ b }, ]a, b] := { x ∈ R : a < x ⩽ b },
[a, b[ := { x ∈ R : a ⩽ x < b }, ]a, b[ := { x ∈ R : a < x < b },
[a,∞[ := { x ∈ R : a ⩽ x }, ]a,∞[ := { x ∈ R : a < x },

]−∞, a] := { x ∈ R : x ⩽ a }, ]−∞, a[ := { x ∈ R : x < a },
]−∞,∞[ := R
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where .a < b are fixed real numbers. The real numbers satisfy the Archimedean 
property 

. ∀x > 0, ∃n ∈ N, x < n.

The proof is simple: If the set . N had an upper bound in . R then it would have a least 
upper bound . α; by definition, this implies that .α −1 is not an upper bound, meaning 
there is a number .n ∈ N such that .n > α −1; yet . α is an upper bound, so .n+1 ⩽ α. 
This contradiction shows that no .x ∈ R is an upper bound of . N: there is an . n ∈ N

such that .n > x. 

The Axiom of Choice 
There is an important set principle, called the axiom of choice, that is not usually 
covered in elementary mathematics textbooks: 

If .A = { Ai : i ∈ I } is a collection of non-empty subsets of a set X, then there is 
a function .f : I → X such that .f (i) ∈ Ai . 

That is, this ‘choice’ function selects an element from each of the sets . Ai , where 
the index i ranges over some set I . The Axiom of Choice is often used to create a 
sequence .(xn)n∈N from a given list of non-empty sets . An, with .xn ∈ An. It seems  
obvious that if a set is non-empty then an element of it can be selected, but the 
existence of such a procedure for arbitrary collections of sets cannot be proved from 
the other standard set axioms.



Part I 
Metric Spaces



Chapter 2 
Distance 

Metric spaces can be thought of as very basic spaces, with only a few axioms, where 
the ideas of convergence and continuity exist. We wish to understand what it means 
in general for . xn to converge to x, whether they are real numbers, vectors, matrices 
or functions. One fundamental ingredient that makes these concepts rigorous is that 
of a distance, also called a metric, which is a measure of how close elements are to 
each other. 

Definition 2.1 

A distance (or metric) on a  metric space X is a function 

. 
d : X2 → R

+
(x, y) I→ d(x, y)

such that the following properties (called the axioms of a metric space) hold 
for all .x, y, z ∈ X, 

x 

z 
y 

(i) .d(x, y) ⩽ d(x, z) + d(z, y) Triangle Inequality, 

(ii) .d(y, x) = d(x, y) Symmetry, 

(iii) .d(x, y) = 0 ⇔ x = y Distinguishability. 

A metric space is not just a set, in which the elements have no relation to each 
other, but a set X equipped with a particular structure, its distance function d. One  
can emphasize this by denoting the metric space by the pair .(X, d), although it is 
more convenient to denote different metric spaces by different symbols such as X, 
Y , etc.  
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Maurice Fréchet (1878–1973) Fréchet studied under 
Hadamard (who had proved the prime number theorem 
and had succeeded Poincaré) and Borel at the University 
of Paris (École Normale Supérieure); his 1906 thesis 
developed “abstract analysis”, an axiomatic approach to 
abstract functions that allows the Euclidean concepts of 
convergence and distance, as well as the usual algebraic 
operations, to be applied to functions. Many terms, such 
as metric space, completeness, compactness etc., are 
due to him. 

In what follows, X will denote any abstract set with a distance, not necessarily . R

or . Rn, although these are of the most immediate interest. We still call its elements 
“points”, even if in reality they are geometric points, sequences, or functions. What 
matters, as far as metric spaces are concerned, is not the internal structure of its 
points, but their outward relation to other points. 

Although most distance functions treated in this book are of the type . d(x, y) =
|x − y|, as for . R, the point of studying metric spaces in more generality is not 
only that there are some exceptions that don’t fit this type, but also to emphasize 
that addition/subtraction is not essential, as well as to prepare the groundwork for 
even more general spaces, called topological spaces, in which pure convergence is 
studied without reference to distances (but which are not covered in this book). 

There are two additional axioms satisfied by some metric spaces that merit 
particular attention: complete metrics, which guarantee that their Cauchy sequences 
converge, and separable metric spaces whose elements can be handled by approx-
imations. Both properties are possessed by compact metric spaces, which is what 
is often meant when the term “finite” is applied in a geometric sense. These are 
considered in later chapters. 

Easy Consequences 
1. . d(x, z) ⩾ |d(x, y) − d(z, y)|.
2. If .x1, . . . , xn are points in X, then by induction on n, 

. d(x1, xn) ⩽ d(x1, x2) + · · · + d(xn−1, xn).

Examples 2.2 

1. The spaces . N, . Z, . Q, . R, and . C have the standard distance .d(a, b) := |a − b|. 
Check that the three axioms for a distance are satisfied, making use of the 
in/equalities .|s + t | ⩽ |s| + |t |, .|−s| = |s|, and .|s| = 0 ⇔ s = 0. 

2. . ▶ The vector spaces . Rn and . Cn have the standard Euclidean distance defined by 

.d(x, y) = ‖x−y‖ :=
√∑n

i=1 |ai − bi |2 for .x = (a1, . . . , an), . y = (b1, . . . , bn)

(prove this for .n = 2).
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3. One can define distances on more general spaces. For example, we will later 
show that the space of real continuous functions with domain .[0, 1] has a distance 
defined by .d(f, g) := maxx∈[0,1] |f (x) − g(x)|. 

4. . ♦ The space of ‘shapes’ in . R2 (roughly speaking, subsets that have an area) have 
a metric .d(A,B) defined as the area of the symmetric difference .AΔB. 

5. . ▶ Any subset of a metric space is itself a metric space (with the ‘inherited’ or 
‘induced’ distance). (The three axioms are such that they remain valid for points 
in a subset of a metric space.) 

6. . ▶ The product of two metric spaces, .X ×Y , can be given several distances, none 
of which have a natural preference. Two of them are the following 

. D1
((

x1
y1

)
,
(
x2
y2

)) := dX(x1, x2) + dY (y1, y2),

D∞
((

x1
y1

)
,
(
x2
y2

)) := max(dX(x1, x2), dY (y1, y2)).

For convenience, we choose . D1 as our standard metric for .X × Y , except for . Rn

and . Cn, for which we take the Euclidean distance. 
Proof for . D1: Positivity of .D1 and axiom (ii) are obvious. To prove axiom (iii), 
.D1(x1, x2) = 0 implies .dX(x1, x2) = 0 = dY (y1, y2), so .x1 = x2, .y1 = y2, and 
.x1 = (

x1
y1

) = (
x2
y2

) = x2. As for the triangle inequality, 

. D1(x1, x2) = dX(x1, x2) + dY (y1, y2)

⩽ dX(x1, x3) + dX(x3, x2) + dY (y1, y3) + dY (y3, y2)

= D1(x1, x3) + D1(x3, x2).

Exercises 2.3 

1. Show that 

(a) If .d(x, z) > d(z, y) then .x /= y; 
(b) For any z, . 12d(x, y) ⩽ max(d(x, z), d(y, z)); 
(c) If .d(u, v) = d(u, x) + d(x, v) then either .d(x, u) ⩽ d(y, u) or . d(x, v) ⩽

d(y, v). 

2. Write in mathematical language, 

(a) The subsets A, B are close to within 2 distance units; 
(b) A and B are arbitrarily close. 

3. The set of bytes, i.e., sequences of 0s and 1s (bits) of length 8 (or any length), 
has a “Hamming distance” defined as the number of bits where two bytes differ; 
e.g. the Hamming distance between 10010111 and 11001101 is 4. 

4. Any non-empty set can be given a distance function. The simplest is the discrete 

metric .d(x, y) :=
{

1, x /= y

0, x = y
. Indeed, there are infinitely many other metrics
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on the same set (except when there is only one point!); for example, if d is a 
distance function then so are 2d and .d/(1 + d). 
(. ✶ Not every function of d will do though! The function . d2 is not generally a 
metric; what properties does .f : im d → R

+ need to have in order that . f ◦ d

also be a metric?) 
5. A set may have several distances defined on it, but each has to be considered as 

a different metric space. For example, the set of positive natural numbers has a 
distance defined by .d(m, n) := |1/m−1/n| (prove!); the metric space associated 
with it has very different properties from . N with the standard Euclidean distance. 
For example, in this space, distinct natural numbers come arbitrarily close to each 
other. 

6. Let .n = ±2k3r · · · be the prime decomposition of any integer .n ∈ Z and define 
.|n|2 := 1/2k , .|0|2 := 0. Show that .| · |2 satisfies the same properties as the 
standard absolute value and hence that .d(m, n) := |m − n|2 is a distance on . Z
(called the 2-adic metric). 

7. . ✶ Given the distances between n points in . Rn, can their positions be recovered? 
Can their relative positions be recovered? 

2.1 Balls and Open Sets 

The distance function provides an idea of the “surroundings” of a point. Given a 
point a and a number .r > 0, we can distinguish between those points ‘near’ to it, 
satisfying .d(x, a) < r , and those that are not. 

Definition 2.4 

An (open) ball, with center a and radius . r > 0, is the set  

. Br(a) := { x ∈ X : d(x, a) < r }.

Despite the name, we should lay aside any preconception we may have of it being 
“round” or symmetric. We are now ready for our first, simple, proposition: 

Proposition 2.5 

Distinct points of a metric space can be separated by disjoint balls, 

.x /= y ⇒ ∃r > 0 Br(x) ∩ Br(y) = ∅.
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Proof If .x /= y then .d(x, y) > 0 by the distinguishability axiom (iii). Letting 
.r := d(x, y)/2, then .Br(x) is disjoint from .Br(y) else we get a contradiction, 

. 

z ∈ Br(x) ∩ Br(y) ⇒ d(x, z) < r AND d(y, z) < r

⇒ d(x, y) ⩽ d(x, z) + d(y, z)

< 2r = d(x, y).

⨅⨆
Examples 2.6 

1. In . R, a ball is an  open interval 

. Br(a) = { x ∈ R : |x − a| < r } = ]a − r, a + r[.
Conversely, any open interval of type .]a, b[ is a ball in . R, namely .B|b−a|/2(

a+b
2 ). 

2. In . R2, the ball .Br(a) is the disk with center . a and radius r without the circular 
perimeter. 

3. In . Z, .B2(m) = { n ∈ Z : |n − m| < 2 } = {m − 1,m,m + 1 } and .B1(m) = {m}. 
4. It is clear that balls differ depending on the context of the metric space; thus 

.B1/2(0) = ]− 1
2 , 1

2 [ in . R, but .B1/2(0) = {0} in . Z. 

Open Sets 

We can use balls to explore the relation between a point x and a given subset A. As  
the radius of the ball .Br(x) is increased, it is certain to include some points which 
are in A and some points which are not, unless .A = X or . A = ∅. So it is more  
interesting to investigate what can happen when the radius is small. There are three 
possibilities as r is decreased: either .Br(x) eventually contains (i) only points of A, 
or (ii) only points in its complement . Ac, or (iii) points of both A and . Ac, no matter 
how small we take r . 

Definition 2.7 

A point x of a set A is called an interior point of A when it can be “surrounded 
completely” by points of A, i.e., 

. ∃r > 0, Br(x) ⊆ A.

In this case, A is also said to be a neighborhood of x. 
A point x (not in A) is an  exterior point of A when 

. ∃r > 0, Br(x) ⊆ X\A.

(continued)
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All other points of X are called boundary points of A (see Fig. 2.1), that is 
when 

. ∀r > 0, ∃a, b ∈ Br(x), a ∈ A AND b ∈ Ac.

Accordingly, the set A partitions X into three parts: its interior . A◦, its exterior 
.(Ā)c, and its boundary . ∂A. The set of interior and boundary points of A is 
called the closure of A and denoted by .Ā := A◦ ∪ ∂A. 
A subset A is open in X when all its points are interior points of it, i.e., 
.A = A◦. 

Examples 2.8 

1. In . R, the intervals .]a, b[, .[a, b[, .]a, b], and .[a, b] have the same interior .]a, b[, 
exterior, and boundary .{a, b}; their closure is .]a, b[ = [a, b]. 
Proof : For any .a < x < b, let .0 < ∈ < min(x − a, b − x), then . a < x − ∈

and .x + ∈ < b, that is, .B∈(x) = ]x − ∈, x + ∈[ ⊂ ]a, b[; this makes x an interior 
point of the interval. 
For . x < a, take any .∈ < a − x so that .x ∈ B∈(x) ⊂ ]−∞, a[ ⊂ R\[a, b]. 
Similarly, any .x > b is an exterior point of the interval. 
For .x = a, any small interval .B∈(a) contains points such as .a + ∈/2, that are 
inside the interval, and points outside it, such as .a−∈/2, making a (and similarly 
b) a boundary point. 

2. . ▶ The following subsets are open in any metric space X: 

(a) .X\{x} for any point x. The reason is that any other point .y /= x is separated 
from x by disjoint balls (our first proposition); this makes y an interior point 
of .X\{x}. 

(b) The empty set is open by default, because it does not contain any point. The 
whole space X is also open because .Br(x) ⊆ X for any .r > 0 and .x ∈ X. 

A small enough ball around an exterior point 

Any ball around a boundary point 

A small enough ball around an interior point 

Fig. 2.1 The distinction between interior, boundary, and exterior points
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(c) Balls are open sets in any metric space. 

Proof : Let .x ∈ Br(a) be any point in the given ball, meaning .d(x, a) < r . 
Let .∈ := r − d(x, a) > 0; then .B∈(x) ⊆ Br(a) since for any .y ∈ B∈(x), 

. d(y, a) ⩽ d(y, x) + d(x, a) < ∈ + d(x, a) = r.

a 

x 
y 

B r (a) 

B (x )  

3. . ▶ The least upper bound of a set A in . R is a boundary point of it. 
Proof : Let . α be the least upper bound of A. For any .∈ > 0, .α + ∈/2 is an upper 
bound of A but does not belong to it (else . α would not be an upper bound). 
Even if .α /∈ A, then the interval .]α − ∈/2, α[ cannot be devoid of elements of 
A, otherwise . α would not be the least upper bound. So the neighborhood . B∈(α)

contains elements of both A and . Ac. 

Proposition 2.9 

The set of interior points . A◦ is the largest open set inside A. 

Proof If .B ⊆ A then the interior points of B are obviously interior points of A, 
so .B◦ ⊆ A◦. In particular every open subset of A lies inside .A◦ (because then 
.B = B◦), and every (open) ball in A lies in . A◦. This implies that if .Br(x) ⊆ A then 
.Br(x) ⊆ A◦, so that every interior point of A is surrounded by other interior points, 
and . A◦ is open. 

A 

B 

⨅⨆
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Proposition 2.10 

A set  A is open . ⇔ A is a union of balls. 

Proof Let A be an open set. Then every point of it is interior, and can be covered 
by a ball .Br(x)(x) ⊆ A. Taking the union of all the points of A gives 

. A =
⋃
x∈A

{x} ⊆
⋃
x∈A

Br(x)(x) ⊆ A,

forcing .A = ⋃
x∈A Br(x)(x), a union of balls. 

Now let .A := ⋃
i Bri (ai) be a union of balls, and let x be any point in A. Then 

x is in at least one of these balls, say, .Br(a). But balls are open and hence . x ∈
B∈(x) ⊆ Br(a) ⊆ A. Therefore A consists of interior points and so is open. ⨅⨆

The early years of research in metric spaces have shown that most of the basic 
theorems about metric spaces can be deduced from the following characteristic 
properties of open sets: 

Theorem 2.11 

Any union of open sets is open. 
The finite intersection of open sets is open. 

Proof (i) Consider the union of open sets, . 
⋃

i Ai . Any .x ∈ ⋃
i Ai must lie in at 

least one of the open sets, say . Aj . Therefore, 

. x ∈ Br(x) ⊆ Aj ⊆
⋃
i

Ai

shows that it must be an interior point of the union. 

(ii) It is enough, using induction (show!), to consider the intersection of two open 
sets . A ∩ B. Let .x ∈ A ∩ B, meaning .x ∈ A and .x ∈ B, with both sets being open. 
Therefore there are open balls .Br1(x) ⊆ A and .Br2(x) ⊆ B. The smaller of these 
two balls, with radius .r := min(r1, r2), must lie in .A ∩ B, 

. x ∈ Br(x) = Br1(x) ∩ Br2(x) ⊆ A ∩ B.

A 
B 

⨅⨆
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Relatively Open Sets 

The interior, boundary, and exterior of a subset depend on the metric space under 
consideration. Changing the space may change whether a subset is open or not, even 
though its elements remain the same. We thus need to specify that a subset A is open 
in X. For example, the singleton .{0} is not open in . R nor in . Q but it is open in . Z; 
in other words, if one takes any ball of small enough radius around 0, one is sure to 
find non-zero real or rational numbers, but no other integers. Thus, when the space 
is . R, the interior of .{0} is empty and the boundary is . {0}; when the space is . Z, the  
interior is .{0} and there is no boundary. Similarly, the interval .]a, b[ is open in . R, 
but not open when considered as a subset of the x-axis in . R2. 

More tricky examples arise if the metric space is already a subspace. Fortunately, 
if one is familiar with the open sets in a bigger space such as . R or . R2, then the 
following proposition gives an immediate criterion for deducing the open subsets of 
a subspace of it. In words, if .Y ⊆ X then a subset A is open in Y when it can be 
extended to an open set U in X. 

Proposition 2.12 

Let Y be a subspace of X. Then a subset A is open in Y if, and only if, 
.A = U ∩ Y for some subset U open in X. 

Proof Let .Y ⊆ X inherit X’s distance. Care must be taken to distinguish balls in Y , 
considered as a metric space in its own right, from those in X 

. BY
r (x) = { y ∈ Y : d(y, x) < r } = { y ∈ X : d(y, x) < r AND y ∈ Y }

= BX
r (x) ∩ Y.

If A is open in Y , then by Proposition 2.10, it is the union of balls of Y , 

. A =
⋃
a∈A

BY
r(a)(a) =

⋃
a∈A

BX
r(a)(a) ∩ Y = U ∩ Y,

where .U := ⋃
a∈A BX

r(a)(a) is open in X. 
For the converse, points in A are those points of an open set .U ⊆ X which 

happen to be in Y , and so are interior points of A as a subset of Y , 

. y ∈ BX
r (y) ⊆ U ⇒ y ∈ BX

r (y) ∩ Y ⊆ U ∩ Y = A,

that is, .U ∩ Y is open in Y . ⨅⨆
The same considerations apply to exterior points and to boundary points. One has 
to be careful to interpret the definitions correctly, in particular substituting .Y\A
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instead of .X\A. A point is exterior to A in Y when there is an .r > 0 such that 
.Br(x) ⊆ Y\A. The boundary of a subset A relative to a subspace Y is often denoted 
by .∂Y (A), and may differ from its boundary relative to the parent space X. 

. ∂Y (A) = { x ∈ Y : ∀r > 0, ∃a ∈ A, ∃b ∈ Y\A, a, b ∈ Br(x) ∩ Y }

Note that this boundary .∂Y (A) is not necessarily .∂X(A) ∩ Y . All that can be said in 
this regard is that, in general, .∂Y (A) ⊆ ∂X(A). 

Examples 2.13 

1. . ▶ The exterior .(Ā)c = (Ac)◦ of a subset A is open in X. 
2. .A◦ = A\∂A. So a set is open iff it does not contain any of its boundary points. 
3. (a) Let .X := R and .Y := [0, 2]; then the subset .A := [0, 1[ is open in Y : a ball 

about .x = 0 in the space .[0, 2] has the form .[0, r[, and this is therefore open 
by Example 2.8.(2c). Alternatively, and simpler, .A = U ∩ Y where . U =
]−1, 1[ is open in . R. Its boundary in Y is .∂Y (A) = {1} whereas . ∂X(A) =
{0, 1}. 

(b) In the space .Y := [0, 1] ∪ [2, 3] ⊂ R, the subset .[0, 1] is open in Y and 
has no boundary in it. Why isn’t 1 a boundary point of it? Because the ball 
.BY

∈ (1) =]1 − ∈, 1] surrounds it completely in Y ; the other points of . R are 
nonexistent as far as Y is concerned. Alternatively, .[0, 1] = ]− 1

2 , 1 1
2 [ ∩ Y . 

(c) For a more extreme example, consider the subspace . Q of . R. Then . ∂Q(Q) =
∅, whereas .∂R(Q) = R. If our world were rational, then each rational point 
would be surrounded by rationals only, but in the real world, each rational is 
close to irrationals. 

4. In the unit square .Y := [0, 1]2 ⊂ R
2, the open balls are either disks themselves 

(when the radius is small enough) or they are the intersection of a disk with Y . 
The subset .A := [0, 1

2 ]2 has interior .[0, 1
2 [2 and a boundary consisting of the 

lines .{ (t, 1
2 ) : 0 ⩽ t ⩽ 1

2 } ∪ { ( 1
2 , t) : 0 ⩽ t ⩽ 1

2 }. The origin is not a boundary 
point but an interior point of A in Y . 

Exercises 2.14 

1. In . R, the set .{a} has no interior points, a single boundary point a, and all other 
points are exterior. It is not an open set in . R. There are ever smaller open sets 
that contain a, but there is no smallest one. 

2. In . R, .{ 1/n : n ∈ N } = { 1/n : n ∈ N } ∪ {0}. 
3. The set . Q, and also its complement . Qc, the set of irrational numbers, do not 

have interior (or exterior) points in . R. Every real number is a boundary point of 
. Q. 
Similarly every complex number is a boundary point of .Q + iQ. 

4. The set .{m} does not have any boundary points in . Z; it is an open set in . Z
(.B1/2(m) = {m}). 

5. Of the proper intervals in . R, only .]a, b[, .]a,∞[, and .]−∞, a[ are open. 
6. In . R2, the half-plane .{ (x, y) ∈ R

2 : y > 0 } and the rectangles . ]a, b[×]c, d[ :=
{ (x, y) ∈ R

2 : a < x < b, c < y < d } are open sets.
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7. Describe the interior, boundary and exterior of the sets 

. { (x, y) ∈ R
2 : |x| + |y| ⩽ 1 }, { (x, y) ∈ R

2 : 1
2 < max(|x|, |y|) ⩽ 1 },

in (i) . R2, (ii) the first quadrant .(R+)2. 
8. .▶ .Ac has the same boundary as A; its interior is the exterior of A, that is, 

.(Ā)c = (Ac)◦ (and .Ā = Ac◦c); so .∂A = Ā ∩ Ac. 
9. Find an open subset of . R, apart from . R itself, without an exterior. 

So, the exterior of the exterior of A need not be the interior of A. Similarly, the 
boundary of . Ā or . A◦ need not equal the boundary of A. 

10. . ▶ An infinite intersection of open sets need not be open. For example, in . R, the  
open intervals .]−1/n, 1/n[ are nested one inside another. Their intersection is 
the non-open set . {0}. Find another example in . R2. 

11. Deduce from Theorem 2.11 that if every singleton .{x} is open in X, then every 
subset of X is open in X. This ‘extreme’ property is satisfied by . N, . Z, and any 
discrete metric space. 

12. Any point x with .d(x, a) > r is in the exterior of the open ball . Br(a). But the  
boundary of .Br(a) need not be the set .{ x : d(x, a) = r }. Illustrate this by an 
example in . Z. 

13. . ✶ Every open set in . R is a countable disjoint union of open intervals. (Hint: An 
open set in . R is the disjoint union of open intervals; take a rational interior point 
for each.) 
In contrast to this simple case, the open sets in . R2, say, can be much more 
complicated—there is no simple characterization of them, apart from the 
definition. 

2.2 Closed Sets 

An open set is one that does not contain its boundary points; the dual concept is that 
of a closed set, one that contains all its boundary points. Logically speaking, the 
terms “open” and “closed” are not mutually exclusive because a set may possibly 
not have any boundary points; in a sense, they are misnomers, but they have stuck 
in the literature, being derived from the earlier use of “open/closed intervals”. 

Definition 2.15 

A subset F is closed in a space X when .X\F is open in X. 

Proposition 2.16 

A subset F is closed . ⇔ F contains its boundary . ⇔ F̄ = F .
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Proof We have already seen that the boundary of a set F and of its complement . F c

are the same (because the interior of .F c is the exterior of F ). So F is closed, and 
. F c open, precisely when this common boundary does not belong to . F c, but belongs 
instead to .F cc = F . ⨅⨆
Examples 2.17 

1. In . R, the set .[a, b] is closed, since .R\[a, b] = ]−∞, a[ ∪ ]b,∞[ is the union of 
two open sets, hence itself open. Similarly .[a,∞[ and .]−∞, a] are closed in . R. 

2. . N and . Z are closed in . R, but . Q is not. 
3. . ▶ In any metric space X, the following sets are closed in X (by inspecting their 

complements): 

(a) the singleton sets . {x}, 
(b) the ‘closed balls’ .Br [a] = { x ∈ X : d(x, a) ⩽ r }; it contains, but need be 

equal to, .Br(a); 
(c) X and . ∅, 
(d) the boundary of any subset (the complement of .∂A is .A◦ ∪ (Ac)◦). 

4. . ▶ The complement of an open set is closed. More generally, if U is an open set 
and F a closed set in X, then .U\F is open and .F\U is closed. The reasons are 
that .U\F = U ∩ F c and .(F\U)c = F c ∪ U . 

Closed sets are complements of open sets, and their properties reflect this: 

Proposition 2.18 

The finite union of closed sets is closed. 
Any intersection of closed sets is closed. 

Proof These are the complementary results for open sets (Theorem 2.11). For . F,G

closed sets in X, the subsets . F c, . Gc are open, so the result follows from 

. (F ∪ G)c = F c ∩ Gc,
( ⋂

i

Fi

)c =
⋃
i

F c
i ,

and the definition that the complement of a closed set is open. ⨅⨆

Theorem 2.19 (Kuratowski’s Closure ‘Operator’ ) 

The closure of a subset, . Ā, is the smallest closed set containing A. 

.A ⊆ B ⇒ Ā ⊆ B̄, ¯̄A = Ā, A ∪ B = Ā ∪ B̄.
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Proof The complement of . Ā is the exterior of A, which is an open set, so . Ā is 

closed. This implies . ¯̄A = Ā by Proposition 2.16. 
If .A ⊆ B, then an exterior point of B is obviously an exterior point of A, that 

is .(B̄)c ⊆ (Ā)c; so .Ā ⊆ B̄. It follows that if F is any closed set that contains A, 
then .Ā ⊆ F̄ = F , and this shows that . Ā is the smallest closed set containing A. 
(Alternatively, Proposition 2.9 can be used: how?) 

Of course, .Ā ⊆ A ∪ B follows from .A ⊆ A ∪ B; combined with .B̄ ⊆ A ∪ B, it  
gives .Ā ∪ B̄ ⊆ A ∪ B. Moreover, .Ā ∪ B̄ is a closed set which contains .A ∪ B, and 
so must contain its closure .A ∪ B. ⨅⨆
Exercises 2.20 

1. It is easy to find sets in . R which are neither open nor closed (so contain only 
part of their boundary). Can you find any that are both open and closed? 

2. The set .{ x ∈ Q : x2 < 2 } is closed, and open, in . Q. 
3. In any metric space, a finite collection of points .{ a1, . . . , an } is a closed set. 
4. The following sets are closed in . R: .[0, 1] ∪ {5}, .⋃∞

n=0[n, n + 1
2 ]. 

5. The infinite union of closed sets may, but need not, be closed. For example, the 
set .

⋃∞
n=1{ 1

n
} is not closed in . R; which boundary point is not contained in it? 

6. Find two disjoint closed sets (in . R2 or . Q, say) that are arbitrarily close to each 
other. 

7. Start with the closed interval .[0, 1]; remove the open middle interval .] 1
3 , 2

3 [ to 
get two closed intervals .[0, 1

3 ] ∪ [ 2
3 , 1]. Remove the middle interval of each of 

these intervals to obtain four closed intervals .[0, 1
9 ] ∪ [ 2

9 , 1
3 ] ∪ [ 2

3 , 7
9 ] ∪ [ 8

9 , 1]. 
If we continue this process indefinitely we end up with the Cantor set. Show it 
is a closed subset of . R. 

8. Denote the decimal expansion of any number in [0,1] by .0.n1n2n3 . . .. Show 
that the set 

. { x ∈ [0, 1] : x = 0.n1n2n3 . . . ⇒ ∀k,
n1 + · · · + nk

k
⩽ 5 }

is closed in . R. 
9. . ▶ One can define the “distance” between a point and a subset of a metric space 

by .d(x,A) := infa∈A d(x, a). Then .x ∈ Ā exactly when .d(x,A) = 0. 
10. . ✶ More generally, the Hausdorff distance between two subsets is defined to be 

. d(A,B) := sup
a∈A

d(a, B) + sup
b∈B

d(b,A).

11. Let x be an exterior point of A, and let .y ∈ Ā have the least distance between x 
and . Ā. Do you think that y is unique? or that it must be on the boundary of A? 
Prove or disprove. For starters, take the metric space to be . R2.



28 2 Distance

12. Show .A ∩ B ⊆ Ā ∩ B̄ and prove that equality need not hold. Indeed, two 
disjoint sets may ‘touch’ at a common boundary point. 

13. Show the complementary results of the theorem: .A◦ ∩ B◦ = (A ∩ B)◦, . A◦◦ =
A◦. 

14. If .A ⊆ B̄, does it follow that .A◦ ⊆ B? 

Limit Points and Dense Subsets 

When dealing with subsets, we can see that some of their points are clustered within 
the rest, while other single points are separated or unattached to the rest; some are 
evenly spread out in space, others are sparse. Think of the difference between the 
integers and the rational numbers in . R. The concepts introduced before, of balls, 
open sets, and closure, allow us to formulate these ideas rigorously. 

Definition 2.21 

A point a in a set A is an isolated point when there is a ball which contains 
no points of A other than itself, 

. ∃∈ > 0, B∈(a) ∩ A = {a}.

A point b (not necessarily in A) is a  limit point of a set A when every ball 
around it contains other points of A, 

. ∀∈ > 0, ∃a /= b, a ∈ A ∩ B∈(b).

Thus a limit point cannot be isolated from the rest of A. Every point of . Ā is either a 
limit point or an isolated point of A, so a set that contains its limit points is closed. 

We often need to approximate an element .x ∈ X to within some small distance . ∈

by an element from some special subset .A ⊆ X. The elements of A may be simpler 
to describe, or more practical to work with, or may have nicer theoretical qualities. 
For example, computers cannot handle arbitrary real numbers and must approximate 
them by rational ones; polynomials are easier to work with than general continuous 
functions. The property that elements of a set A can be used to approximate elements 
of X to within any . ∈, namely, 

. ∀x ∈ X, ∀∈ > 0, ∃a ∈ A, d(x, a) < ∈,

is equivalent to saying that any ball .B∈(x) contains elements of A, in other words 
there are no points exterior to A, i.e., .Ā = X.
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Definition 2.22 

A set  A is dense in X when .Ā = X (so . Ā contains all balls). 
A set  A is nowhere dense in X when . Ā contains no balls. 

Exercises 2.23 

1. Can a set not have limit points? Can an infinite set not have limit points? 
2. In . R, the set of integers . Z has no limit points, but all real numbers are limit 

points of . Q. 
3. (a) 1 is an interior isolated point of .{1, 2} in . Z; 

(b) 1 is a boundary isolated point of .{1, 2} in . R; 
(c) 1 is an interior limit point of .[0, 2] in . R; 
(d) 1 is a boundary limit point of .[0, 1] in . R. 

4. In . R and . Q, an isolated point of a subset must be a boundary point, or, 
equivalently, an interior point is a limit point. 

5. . ▶ . Q is dense in . R. (This is equivalent to the Archimedean property of . R.) More 
generally, a set A is dense in . R when for any two distinct real numbers .x < y, 
there is an element .a ∈ A between them .x < a < y. 

6. The intersection of two open dense sets is again open and dense. 
7. A finite union of straight lines in . R2 is nowhere dense. . Z and the Cantor set are 

nowhere dense in . R. 
8. Nowhere dense sets have no interior points. 
9. The complement of a nowhere dense set is dense. But the complement of a 

dense set need not be nowhere dense. 
10. A is nowhere dense in .X ⇔ X\Ā is dense in .X ⇔ Ā is the boundary of an 

open set. 

Remarks 2.24 

1. If .d(x, y) = 0 does not guarantee . x = y, but  d satisfies the other two axioms, 
then it is called a pseudo-distance. In this case, let us say that points x and y 
are indistinguishable when .d(x, y) = 0 (. ⇔ ∀z, d(x, z) = d(y, z)). This is 
an equivalence relation, which induces a partition of the space into equivalence 
classes . [x]. The function .D([x], [y]) := d(x, y) is then a legitimate well-defined 
metric. 
In a similar vein, if d satisfies the triangle inequality, but is not symmetric, 
then .D(x, y) := d(x, y) + d(y, x) is symmetric and still satisfies the triangle 
inequality. 
Positivity of d follows from axioms (i) and (ii) (unless .X = {x, y}), 

.d(x, y) ⩾ |d(x, z) − d(y, z)| ⩾ 0.
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2. The axioms for a distance can be re-phrased as axioms for balls: 

(a) .B0(x) = ∅, .
⋂

r>0 Br(x) = {x}, .⋃r>0 Br(x) = X, 
(b) .{ y : x ∈ Br(y) } = Br(x), 
(c) .Bs ◦Br(x) ⊆ Br+s(x), i.e., if .y ∈ Bs(z) where .z ∈ Br(x) then .y ∈ Br+s(x). 

3. The concept of open sets is more basic than that of distance. One can give a set 
X a collection of open subsets satisfying the properties listed in Theorem 2.11 
(taken as axioms), and study them without any reference to distances. It is then 
called a topological space; most theorems about metric spaces have generaliza-
tions that hold for topological spaces. There are some important topological 
spaces that are not metric spaces, e.g. the arbitrary product of metric spaces 
.
∏

i Xi , and spaces of functions .XY := { f : Y → X }.



Chapter 3
Convergence and Continuity

3.1 Convergence

The previous chapter was primarily intended to expand our vocabulary of mathe-
matical terms in order to better describe and clarify the concepts that we will need.
Our first task is to define convergence.

Definition 3.1

A sequence .(xn)n∈N in a metric space X converges to a limit x, written

.xn → x as n → ∞,

when

.∀ϵ > 0, ∃N, n ⩾ N ⇒ xn ∈ Bϵ(x).

.

x0x1x2

A sequence which does not converge is said to diverge .

One may express this as “any neighborhood of x contains all the sequence from
some point onwards,” or “eventually, the sequence points get arbitrarily close to the
limit”.
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Felix Hausdorff (1868–1942) Hausdorff studied atmo-
spheric refraction in Bessel’s school at Leipzig in 1891.
In 1914, at 46 years of age in the University of Bonn, he
published his major work on set theory, with chapters
on partially ordered sets, measure spaces, topology and
metric spaces, where he built upon Fréchet’s abstract
spaces, using open sets and neighborhoods. Later,
in 1919, he introduced fractional dimensions. But in
the late 1930s, increasing Nazi persecution made life
impossible for him.

Proposition 3.2

In a metric space, a sequence .(xn)n∈N can only converge to one limit,
denoted . lim

n→∞ xn.

Proof Suppose .xn → x and .xn → y as .n → ∞, with .x /= y. Then x and y can be
separated by two disjoint balls .Br(x) and .Br(y) (Proposition 2.5). But convergence
means

.∃N1 n ⩾ N1 ⇒ xn ∈ Br(x),

∃N2 n ⩾ N2 ⇒ xn ∈ Br(y).

For .n ⩾ max(N1, N2) this would result in .xn ∈ Br(x)∩Br(y) = ∅, a contradiction.
⨅⨆

Examples 3.3

1. In .R, the definition of .an → a reduces to .∀ϵ, ∃N, n ⩾ N ⇒ |an − a| < ϵ.
2. In any metric space, .xn → x ⇔ d(xn, x) → 0 as .n → ∞ (because .xn ∈

Bϵ(x) ⇔ d(xn, x) < ϵ). For example, .xn → x when .d(xn, x) ⩽ 1/n holds.
3. In .R, .n/(n+1) → 1 as .n → ∞, since for any .ϵ, there is an N such that .1/N < ϵ

(Archimedean property of .R), so

.n ⩾ N ⇒
∣
∣
∣
∣
1 − n

n + 1

∣
∣
∣
∣
= 1

n + 1
<

1

N
< ϵ.

4. Given two convergent real sequences .an → a and .bn → b, then .an+bn → a+b.
Proof : For any .ϵ > 0, there are .N1, .N2, such that

.n ⩾ N1 ⇒ |an − a| < ϵ, n ⩾ N2 ⇒ |bn − b| < ϵ.
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Thus for .n ⩾ max(N1, N2),

.|(an + bn) − (a + b)| ⩽ |an − a| + |bn − b| < 2ϵ.

5. .▶A sequence .
(
xn
yn

)

in .X×Y converges to .
(
x
y

)

if, and only if, .xn → x and .yn → y.
Proof : Any distance in Example 2.2(6) can be used, but we will use the standard
metric here. The distance between .

(
xn
yn

)

and .
(
x
y

)

is

.δ := d
((

xn
yn

)

,
(
x
y

)) = d(xn, x) + d(yn, y) → 0, as n → ∞.

As both .d(xn, x) and .d(yn, y) are less than .δ, the converse follows.
6. Consider a composition of functions .N → N → X where the first function is 1–

1, and the second is a sequence. A subsequence is the case when the first function
is strictly increasing, and a rearrangement is the case when it is 1–1 and onto.
For example, .1, 1/4, 1/9, . . . is a subsequence of .(1/n), and .1/2, 1, 1/4, 1/3, . . .
is a rearrangement. Any such ‘sub-selection’ of a convergent sequence also
converges, to the same limit.
Proof : Suppose .n ⩾ N ⇒ d(xn, x) < ϵ. Let .(xni

) be a sub-selection of .(xn).
As .ni ⩽ N can only be true of a finite number of indices i, with the largest being,
say, M , it follows that

.i > M ⇒ ni > N ⇒ d(xni
, x) < ϵ.

7. A sequence converges fast (or ‘linearly’) when .d(xn, x) ⩽ Acn for some real
constants .A > 0, .0 < c < 1. Quadratic convergence, .d(xn, x) ⩽ Ac2

n
, is even

faster. Instead, .1/n and .
n
√
2 converge slowly.

There are many questions in analysis of the type: If .xn has a property A, and
.xn → x, does x still have this property? For example, if a convergent sequence
of vectors in the plane lies on a circle, will its limit also lie on the same circle?
Or, can continuous functions (or differentiable, or integrable, etc.) converge to
a discontinuous function? The following proposition answers this question in a
general setting: the ‘property’ A needs to be closed in the metric space.

Proposition 3.4

If .xn ∈ A and .xn → x, then .x ∈ Ā.

Conversely, in a metric space, for any .x ∈ Ā there is a sequence .xn ∈ A

which converges to x.

In particular, closed sets are “closed” under the process of taking the limit (since
.Ā = A by Proposition 2.16).
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Proof Take any ball .Bϵ(x) about x. If .xn converges to x, then all the sequence
points will be in the ball for n large enough. Since .xn ∈ A, x cannot be an exterior
point, and so . lim

n→∞ xn = x ∈ Ā.

For the converse, let .B1/n(x) be a decreasing sequence of nested balls around
.x ∈ Ā; whether x is a boundary or interior point of A, .B1/n(x) contains at least a
point .an in A (which could be x itself). So .d(an, x) < 1/n → 0 as .n → ∞, and
.an → x. ⨅⨆
Examples 3.5

1. If .xn → x in a metric space X, and .xn /= x for all n, then x is a limit point
of the set .{ x1, x2, x3, . . . }. However, despite the name, the limit of a converging
sequence need not be a limit point of its set of values. If .xn is eventually constant
(.n ⩾ N ⇒ xn = x), then .xn → x with x being an isolated point, not a limit
point, of .{ xn : n ∈ N }. The confusion is ultimately caused by the fact that a
sequence is a function, not the set of its values.

2. Several sequences appear to get close to more than one limit, e.g., .(−1)n or
.ein. These are not truly convergent sequences, by the proposition, but one can
introduce a new concept, a cluster point of a sequence, to denote a point which
the sequence gets arbitrarily close to infinitely many times, that is,

.∀ϵ > 0, ∀n ∈ N, ∃m ⩾ n, d(xm, x) < ϵ.

Given any cluster point of a sequence, one can find a subsequence which
converges to it. In general, any limit point of the values of a sequence is a cluster
point of the sequence; an isolated point of the values is a cluster point only if it
is visited infinitely many times.

3. If one were to list the rational numbers as a sequence, the result would have every
point of .R as a cluster point. At the other extreme, the sequence .(1, 2, 3, . . .) has
no cluster points at all.
If a real sequence .(an)n∈N has several cluster points, then the largest one, if
it exists, is called its limit superior, denoted .lim supn→∞ an, and the smallest
.lim infn→∞ xn, the limit inferior.

Exercises 3.6

1. .▶ In .R,

(a) .1/n → 0 (this is a rewording of the Archimedean property of the real
numbers: for every .a > 0, there is an .n ∈ N such that .n > a).

(b) .an → 0 when .0 < a < 1, but diverges for .a > 1. (Hint: When .1 < a =
1 + δ, then .an = 1 + nδ + · · · > nδ; otherwise consider .1/a.)

(c) .n/an → 0 when .a > 1, hence .nk/an = (n/bn)k → 0.
(d) . n

√
a → 1 for any .a > 0, and .n1/n → 1 (so .(log n)/n → 0). (Hint:

Assuming .a > 1, expand .a1/n =: 1 + an using the binomial theorem
to show that .an < a/n → 0; similarly show .a2n < 2/(n − 1) for the second
sequence.)
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(e) .✶ .(1+ 1/n)n converges to a number denoted e. This is too hard to show for
the moment. Show at least that the sequence is increasing but bounded by
3, using the binomial theorem. (This highlights the need of “convergence
tests”: how can one know that a sequence converges when the limit is
unknown?)

(f) .
n
√

n! → ∞ (what should this mean?)

2. What do the sequences .2 +
√

2 + √
2 + · · · and .1 + 1

1+ 1
1+···

converge to,

assuming they do?
3. In .R, if .an → 0 then .an

n → 0; find examples where (i) .an → 0 but .a1/n
n /→ 0,

(ii) .an → 1 but .an
n /→ 1.

4. .▶ If .an ⩽ bn for two convergent real sequences then . lim
n→∞ an ⩽ lim

n→∞ bn (Hint:

.[0,∞[ is closed). In particular, if .an converges and .an < a, then . lim
n→∞ an ⩽ a.

5. Squeezing principle: In .R, if .an ⩽ xn ⩽ bn and . lim
n→∞ an = a = lim

n→∞ bn, then

.xn converges (to a).
6. It is possible for a divergent sequence to have a convergent subsequence. Find

one in the sequence .(1,−1, 1,−1, . . .). But any rearrangement must diverge.
If a sequence has only one cluster point, need it converge to it?

7. .▶ We may occasionally encounter ‘sequences’ with two indices .(am,n) (they
are more properly called nets). The example .n/(n + m) shows that in general

. lim
m→∞ lim

n→∞ am,n /= lim
n→∞ lim

m→∞ am,n.

The same example shows that, in .R, generally, .supn infm an,m /= infm supn an,m.
But the following are true:

(a) .supn supm an,m = supm supn an,m,
(b) .supn(an + bn) ⩽ supn an + supn bn.

3.2 Continuity

One is often not particularly interested in the actual values of the distances between
points: no new theorems will result by substituting metres with feet. What matters
more, in most cases, is the relation of points to each other captured by the concept
of convergence. Accordingly, functions that preserve convergence (rather than
distance) take on a central importance.
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Definition 3.7

A function .f : X → Y between metric spaces is continuous when it
preserves convergence,

.xn → x in X ⇒ f (xn) → f (x) in Y.

In this case therefore, .f ( lim
n→∞ xn) = lim

n→∞ f (xn). Before we see any examples of

continuous functions, let us prove that the following two statements are equivalent
formulations of continuity in metric spaces, so any of them can be taken as the
definition of continuity.

Theorem 3.8

A function .f : X → Y between metric spaces is continuous if, and only
if, any of the following statements holds:

(i) .∀x ∈ X, ∀ϵ > 0, ∃δ > 0, ∀x' ∈ X,

dX(x, x') < δ ⇒ dY (f (x), f (x')) < ϵ,

(ii) For every open set V in .Y, f −1V is open in X.

Statement (i) is often written as .limx'→x f (x') = f (x) for all x.

Proof Let (d) denote the defining statement that f is continuous.
(d) . ⇒ (i): Suppose statement (i) is false; then there is a point .x ∈ X and an .ϵ > 0
such that arbitrarily small changes to x can lead to sudden variations in .f (x),

.∀δ > 0, ∃x', dX(x, x') < δ AND dY (f (x), f (x')) ⩾ ϵ

In particular, letting .δ = 1/n, there is a sequence1 .xn ∈ X satisfying .dX(x, xn) <

1/n but .dY (f (x), f (xn)) ⩾ ϵ. This means that .xn → x, but .f (xn) /→ f (x),
contradicting statement (d).
(i) . ⇒ (ii): Note that (i) can be rewritten as

.∀x ∈ X, ∀ϵ > 0, ∃δ > 0, x' ∈ Bδ(x) ⇒ f (x') ∈ Bϵ(f (x))

or even as

.∀x ∈ X, ∀ϵ > 0, ∃δ > 0, f [Bδ(x)] ⊆ Bϵ(f (x)).

1 This selection of points .xn needs the Axiom of Choice for justification.
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Let V be an open set in Y . To show that .U := f −1V = { x ∈ X : f (x) ∈ V } is
open in X, let x be any point of U ; then .f (x) ∈ V and V is open. Hence

.f (x) ∈ Bϵ(f (x)) ⊆ V,

and so

.∃δ > 0, f [Bδ(x)] ⊆ Bϵ(f (x)) ⊆ V.

In other words, x is an interior point of U :

.∃δ > 0, Bδ(x) ⊆ f −1V = U.

X Y

f

Vf−1V

x
f (x)

(ii) . ⇒ (d): Let .(xn)n∈N be a sequence converging to x. Consider any open
neighborhood .Bϵ(f (x)) of .f (x). Then .f −1[Bϵ(f (x))] contains x, and is an open
set by (ii), so

.∃δ > 0, x ∈ Bδ(x) ⊆ f −1[Bϵ(f (x))],
⇒ ∃δ > 0, f [Bδ(x)] ⊆ Bϵ(f (x)).

But eventually all the points .xn are inside .Bδ(x),

.∃N > 0, n > N ⇒ xn ∈ Bδ(x)

⇒ f (xn) ∈ f [Bδ(x)] ⊆ Bϵ(f (x))

⇒ dY (f (xn), f (x)) < ϵ.

This shows that .f (xn) → f (x) as .n → ∞. ⨅⨆
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Examples 3.9

1. The square root function on .R
+ is continuous.

Proof : Let .x, ϵ > 0, and .δ := ϵ
√

x (for .x = 0, choose .δ = ϵ2), then

.|x − y| < δ ⇒ |√x − √
y| <

δ√
x + √

y
= ϵ

1 + √
y/x

< ϵ.

2. Let X, Y , Z be metric spaces, then the function .h : X → Y × Z defined by
.h(x) := (f (x), g(x)) is continuous if, and only if, f , g are continuous. For
example, the circle path .θ I→ (cos θ, sin θ) is a continuous map .R → R

2.
Proof : The statement follows directly from Example 3.3(5),

.

(

f (xn)

g(xn)

)

→
(

f (x)

g(x)

)

⇔ f (xn) → f (x) AND g(xn) → g(x)

3. .▶ If .f : X → Y is continuous, then .f Ā ⊆ f A. So if A is dense in X, then f A

is dense in f X.
Proof : If .x ∈ Ā, then there is a sequence of elements of A that converge to x,
.xn → x (Proposition 3.4). By continuity of f , .f (xn) → f (x), so .f (x) ∈ f A. It
follows that if .Ā = X then .f X ⊆ f A ∩ f X.

The following two propositions affirm that continuity is well-behaved with
respect to composition and that the distance function is continuous. They allow us
to build up continuous functions from simpler ones.

Proposition 3.10

If .f : X → Y and .g : Y → Z are continuous, so is .g ◦ f : X → Z.

Proof Let .xn → x in X. Then by continuity of f , .f (xn) → f (x) in Y , and by
continuity of g,

.g ◦ f (xn) = g(f (xn)) → g(f (x)) = g ◦ f (x) in Z.

Alternatively, let W be any open set in Z. Then .g−1W is an open set in Y , and so
.f −1[g−1W ] is an open set in X. But this set is precisely .(g ◦ f )−1W . ⨅⨆
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Proposition 3.11

The distance function .d : X2 → R is continuous.

Proof Let .xn → x and .yn → y in X. Then, by the triangle inequality,

.|d(xn, yn) − d(x, y)| ⩽ |d(xn, yn) − d(x, yn)| + |d(x, yn) − d(x, y)|
⩽ d(xn, x) + d(yn, y) → 0,

which gives .d(xn, yn) → d(x, y) as .n → ∞. ⨅⨆

Homeomorphisms

Continuous functions preserve convergence, a central concept in metric spaces;
in this sense, they correspond to the morphisms of groups and rings, which
preserve the group and ring operations. The analogue of an isomorphism is called a
homeomorphism:

Definition 3.12

A homeomorphism between metric spacesX and Y is a mapping .J : X → Y

such that

.J is bijective (1–1 and onto),

J is continuous,

J−1 is continuous.

X is homeomorphic to Y when there exists a homeomorphism between them.
A metric space X is said to be embedded in another space Y , when there

is a subset .Z ⊆ Y such that X is homeomorphic to Z.

Like all other isomorphisms, “X is homeomorphic to Y ” is an equivalence relation
on metric spaces. When X and Y are homeomorphic, they are not only the same as
sets (the bijection part) but also with respect to convergence:

.xn → x ⇔ J (xn) → J (x),

.A is open in X ⇔ JA is open in Y.
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The elements of Y are those of X in different clothing, as far as convergence is
concerned. The most vivid picture is that of “deforming” one space continuously
and reversibly from the other. The by-now classic example is that a ‘teacup’ is
homeomorphic to a ‘doughnut’.

Exercises 3.13

1. Any constant function .f : x I→ y0 ∈ Y is continuous. The identity function
.I : X → X, .x I→ x, is always continuous.

2. The functions that map the real number t to .t + 1, 2t , .tn (.n ∈ N), .at (.a > 0),
and .|t | are all continuous.

3. In .R, addition and multiplication are continuous, i.e., if .xn → x and .yn → y

then .xn + yn → x + y and .xnyn → xy. Deduce that if .f, g : X → R are
continuous functions, then so are .f + g and fg. For example, the polynomials
on .R are continuous. The function .max : R

2 → R is also continuous, i.e.,
.max(xn, yn) → max(x, y).

4. The function .f : ]0,∞[ → ]0,∞[, defined by .f (t) := 1/t is continuous.
5. Conjugation in .C, .z I→ z̄, is continuous.

6. In .R, the characteristic function .1A(x) =
{

1, x ∈ A

0, x /∈ A
is always discontinuous

except when .A = ∅ or .A = R. Is this true for all metric spaces?
7. When .f : X → R is a continuous function, the set .{ x ∈ X : f (x) > 0 } is

open in X.
8. Any function .f : N → X is continuous, where X is any metric space.
9. The graph of a continuous function .f : X → Y , namely

.{ (x, f (x)) : x ∈ X },

is closed in .X × Y (with the .D1 metric).
10. Find examples of continuous functions f (e.g., .R → R

n), such that

(a) f is invertible but .f −1 is not continuous.
(b) .f (xn) → f (x) in Y but .(xn)n∈N does not converge at all.
(c) U is open in X but f U is not open in Y . However functions which map

open sets to open sets do exist (find one) and are called open mappings.
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11. If F is a closed set in Y and .f : X → Y is a continuous function, then .f −1F

is closed in X. But f may map a closed set to a non-closed set (even if f is an
open mapping).

12. It is not enough that .f (x, y) is continuous in x and y separately in order that f
be continuous. For example, show that the function

.f (x, y) := xy

x2 + y2 , f (0, 0) := 0,

is discontinuous at .(0, 0) even though .f (xn, 0) → 0, .f (0, yn) → 0, when
.xn → 0, .yn → 0. It needs to be “jointly continuous” in the sense that
.f (xn, yn) → f (x, y) for any .(xn, yn) → (x, y).

13. Show carefully that the function .f (t) := t2 + 5t3/2 − 3t + 4t1/2 − 1 on the
domain .R

+ is continuous. (Hint: Use Proposition 3.10.)
14. The roots of a quadratic equation .ax2 + bx + c = 0 vary continuously as the

coefficients change (but maintaining .b2 ⩾ 4ac), except at .a = 0.
15. .▶ Find a short proof that the sphere .Sr := { y : d(x, y) = r } is closed using

the continuity of d.
16. Given a set .A ⊆ X, the map .x I→ d(x,A) is continuous. (Hint: .d(y,A) ⩽

d(y, x) + d(x,A).)
17. Given disjoint non-empty closed subsets .A,B ⊆ X, find a continuous function

.f : X → [0, 1] such that .f A = 0, .f B = 1 (Hint: use .d(x,A) and .d(x, B)).
18. Every interval in .R is homeomorphic to .[0, 1], .[0,∞[, or .R.
19. .N is homeomorphic to the discrete metric space on a countable set, but .Q is

not. (Hint: The convergent sequence .1/n → 0 must correspond to a divergent
sequence in .N.)

20. .♦ A bent line in the plane, consisting of two straight line segments meeting at
their ends, is homeomorphic to the unbent line. Thus angles are meaningless
as far as homeomorphisms are concerned; triangles, squares and circles are
homeomorphic.



Chapter 4 
Completeness and Separability 

4.1 Completeness 

Our task of rigorously defining convergence in a general space has been achieved, 
but there seems to be something circular about it, because convergence is defined in 
terms of a limit. For example, take a convergent sequence .xn → x in a metric space 
X, and “artificially” remove the point x to form .X\{x} (assume .∀n, xn /= x). The 
other points . xn still form a sequence in this subspace, but it no longer converges 
(otherwise it would have converged to two points in X)—its limit is “missing”. The 
sequence .(xn)n∈N is convergent in X but divergent in .X\{x}. How are we to know 
whether a metric space has “missing” points? And if it has, is it possible to create 
them when the bigger space X is unknown? 

To be more concrete, let us take a look at the rational numbers: consider the 
sequences .(1, 2, 3, . . .), .(1,−1, 1,−1, . . .), and .(1, 1.5, 1.417, 1.414, 1.414, . . .), 
the last one defined iteratively by .a0 := 1, .an+1 := an

2 + 1
an
. It is easy to show 

that the first two do not converge, but, contrary to appearances, neither does the 
third, the reason being that were it to converge to .a ∈ Q, then .a = a/2 + 1/a, 
implying .a2 = 2, which we know cannot be satisfied by any rational number. This 
sequence seems a good candidate of one which converges to a “missing” number 
not found in . Q. Having found one missing point, there are an infinite number of 
them: .(2, 2.5, 2.417, 2.414, . . .) and .(2, 3, 2.834, 2.828, . . .) cannot converge in . Q. 

But could it be that the first two sequences also converge to “missing” numbers? 
How are we to distinguish between sequences that “truly” diverge from those 
that converge to “missing” points? There is a property that characterizes intrinsic 
convergence: suppose that .(xn)n∈N is divergent in the metric space Y , but converges 
.xn → a in a bigger space X. Then the points get close to each other (in Y ), 

. dY (xn, xm) = dX(xn, xm) ⩽ dX(xn, a) + dX(a, xm) → 0, as n,m → ∞.
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Definition 4.1 

A Cauchy sequence is one such that .d(xn, xm) → 0 as .n,m → ∞, that is, 

. ∀ϵ > 0, ∃N, n,m ⩾ N ⇒ d(xn, xm) < ϵ.

To clarify this idea further, we prove: 

Proposition 4.2 

Two sequences .(xn)n∈N, .(yn)n∈N are defined to be asymptotic when 
.d(xn, yn) → 0 as .n → ∞. 

(i) Being asymptotic is an equivalence relation. 
(ii) For .(xn)n∈N asymptotic to .(yn)n∈N, 

(a) if .(xn)n∈N is Cauchy then so is .(yn)n∈N, 
(b) if .(xn)n∈N converges to x then so does .(yn)n∈N. 

(iii) A sequence .(xn)n∈N is Cauchy if, and only if, every subsequence of 
.(xn)n∈N is asymptotic to .(xn)n∈N. 

Proof (i) Let .(xn)n∈N ∼ (yn)n∈N signify .d(xn, yn) → 0 as .n → ∞. Reflexivity 
and symmetry of . ∼ are obvious. If .(xn)n∈N ∼ (yn)n∈N ∼ (zn)n∈N then transitivity 
holds: 

. d(xn, zn) ⩽ d(xn, yn) + d(yn, zn) → 0 as n → ∞.

(ii) If .d(xn, yn) → 0 and .d(xn, xm) → 0 as .n,m → ∞, then 

. d(yn, ym) ⩽ d(yn, xn) + d(xn, xm) + d(xm, ym) → 0.

Similarly, if .d(xn, x) → 0 then .d(yn, x) ⩽ d(yn, xn) + d(xn, x) → 0. 

(iii) A Cauchy sequence satisfies 

. ∀ϵ > 0, ∃N, n,m ⩾ N ⇒ d(xn, xm) < ϵ.

Given a subsequence .(xni
), its indices satisfy .ni ⩾ i (by induction on i: .n1 ⩾ 1, 

.n2 > n1 ⩾ 1 so .n2 ⩾ 2, etc.). Thus 

. i ⩾ N ⇒ ni, i ⩾ N ⇒ d(xni
, xi) < ϵ

and .d(xni
, xi) → 0 as .i → ∞.
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Conversely, suppose .(xn)n∈N is not Cauchy. Then 

. ∃ϵ > 0, ∀i, ∃ni,mi ⩾ i, d(xni
, xmi

) ⩾ ϵ,

from which we can create the subsequences .(xn1 , xn2 , . . .) and .(xm1 , xm2 , . . .). If  
both these subsequences were asymptotic to .(xn)n∈N then there would exist an N 
such that .i > N implies .d(xi, xni

) < ϵ/2 as well as .d(xi, xmi
) < ϵ/2. Combining 

these two then gives a contradiction 

. d(xni
, xmi

) ⩽ d(xi, xni
) + d(xi, xmi

) < ϵ,

so one of the two subsequences is not asymptotic to .(xn)n∈N. ⨅⨆
Examples 4.3 

1. Convergent sequences are always Cauchy, since if .xn → x then . d(xn, xm) →
d(x, x) = 0 by continuity of the distance function. But the discussion above 
gives examples of Cauchy sequences which do not converge. 

2. In . R or . Q, any increasing sequence that is bounded above, .an ⩽ b, is Cauchy. 
Proof : Split the interval .[a0, b] into subintervals of length . ϵ. Let  I be the last 
subinterval which contains a point, say . aN . As the sequence is increasing, I 
contains all of the sequence from N onward, proving the statement. 

3. . R and . Q have the bisection property: 
Let .[a0, b0] be an interval in . R or . Q, and divide it into halves, .[a0, c] and .[c, b0], 
where .c := (a0 + b0)/2 is the midpoint. Choose .[a1, b1] to be either .[a0, c] or 
.[c, b0], randomly or according to some criterion; continue taking midpoints to 
get a nested sequence of intervals .[an, bn], whose lengths are 

. bn − an = (b0 − a0)/2
n → 0.

a0 b0 
a1 b1 
a2 b2 

a3 b3 

So, for any .ϵ > 0, there is an .N > 0 such that .bN − aN < ϵ, and for any 
.n ⩾ N , .an, bn ∈ [aN, bN ]. Hence .(an)n∈N and .(bn)n∈N are asymptotic Cauchy 
sequences. 

4. Let . Brn be a nested sequence of balls, .Brn+1 ⊆ Brn , with .rn → 0. Then choosing 
any points .xn ∈ Brn gives a Cauchy sequence. 
Proof : For any .m ⩾ n, 

. xm ∈ Brm ⊆ Brm−1 ⊆ · · · ⊆ Brn

so that .d(xm, xn) < 2rn → 0 as .n,m → ∞.
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5. . ▶ In any metric space, if .d(xn+1, xn) ⩽ acn with .c < 1 then . xn is Cauchy. 
Moreover, if .xn → x then .d(xn, x) ⩽ acn

1−c
. 

Proof : Taking .n ⩽ m, without loss of generality, 

. d(xn, xm) ⩽ d(xn, xn+1) + · · · + d(xm−1, xm)

⩽ a(cn + · · · + cm−1)

⩽ acn

1 − c
→ 0 as m, n → ∞.

For the second part, take .m → ∞ in the above. 
6. A Cauchy sequence cannot stray too far in the sense that .d(x0, xn) ⩽ R for all n, 

for some .R ⩾ 0. Hence Cauchy sequences are “bounded”. 
Proof : By the definition of a Cauchy sequence for .ϵ := 1 say, there is an N such 
that .n,m ⩾ N ⇒ d(xn, xm) < ϵ. Therefore 

. d(x0, xn) ⩽ d(x0, xN) + d(xN, xn) < d(x0, xN) + ϵ.

7. A Cauchy sequence in . Q either converges to 0, or is eventually greater than some 
.ϵ > 0 or less than some .−ϵ < 0. In each case, an asymptotic sequence behaves 
in the same manner. 
Proof : If .an /→ 0 yet is Cauchy, then 

. ∃ϵ > 0, ∀M, ∃m ⩾ M, |am| ⩾ ϵ,

∃N, m, n ⩾ N ⇒ |an − am| < ϵ/2.

Assuming, for example, .am ⩾ ϵ for some .m ⩾ N , 

. n ⩾ N ⇒ an − am ⩾ −|an − am|
⇒ an ⩾ am − |an − am| > ϵ/2.

If .(bn)n∈N is an asymptotic sequence to .(an)n∈N, then there is an M such that 
.|an − bn| < ϵ/2 whenever .n ⩾ M , and so 

. n ⩾ max(N,M) ⇒ bn ⩾ an − |an − bn| ⩾ ϵ/2.

When .am ⩽ −ϵ for .m ⩾ N , the reverse inequalities hold, for example, 

.n ⩾ N ⇒ an ⩽ am + |an − am| < −ϵ/2.
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Definition 4.4 

A metric space is complete when every Cauchy sequence in it converges. 

In a complete metric space, there are no “missing” points and any divergent 
sequence is “truly” divergent—there is no bigger metric space which makes it 
convergent. 

It follows that the space of rational numbers . Q (with the standard metric) is not 
complete, a fact that allegedly deeply troubled Pythagoras and his followers. They 
shouldn’t have worried because there is a way of creating the missing numbers (but 
skip the proof if it worries you on a first reading!): 

Theorem 4.5 

The real number space . R is complete. 

Proof (i) For this to be a theorem, we need to be clear about what constitutes . R. 
The usual definition is that it is a set with an addition . + and multiplication . · which 
satisfy the axioms of a field (see p. 10), and with a linear order relation . ⩽ that is 
compatible with these operations: 

. x ⩽ y ⇒ x + z ⩽ y + z, x, y ⩾ 0 ⇒ xy ⩾ 0,

and in addition satisfies the completeness axiom: 

Every non-empty subset A of . R with an upper bound has a least upper bound. 

Assuming all these axioms, let .(an)n∈N be a Cauchy sequence in . R, that is, for any 
.ϵ > 0, there is an N beyond which .|an − am| < ϵ. Let  

. B := { x ∈ R : ∃M, n ⩾ M ⇒ x ⩽ an }.

Its elements might be called eventual lower bounds of .{ an : n ∈ N }. The fact that 
Cauchy sequences are bounded implies that .{ an : n ∈ N } has a lower bound and 
so .B /= ∅, while any upper bound of .{ an : n ∈ N } is also one of B. Hence, by the 
completeness axiom, B has a least upper bound . α. Two facts follow: 

(a) .α + ϵ is not an element of B, so there must be an infinite number of terms 
.ani

< α + ϵ; 
(b) .α − ϵ is not an upper bound of B, so there must exist an .x ∈ B and an M such 

that .n ⩾ M ⇒ α − ϵ < x ⩽ an.
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These facts together imply that for .ni ⩾ M we have .α − ϵ ⩽ ani
⩽ α + ϵ. Then, 

given any .n ⩾ N , choose any .ni ⩾ max(M,N), so that 

. n ⩾ N ⇒ |an − α| ⩽ |an − ani
| + |ani

− α| < 2ϵ

as required to show .an → α. 
This proof is open to the criticism that we have not proved whether, in fact, there 

exists such a set with all these properties. We need to fill this logical gap by giving 
a construction of . R that satisfies these axioms. 

(ii) The whole idea is to treat the Cauchy sequences of rational numbers themselves 
as the missing numbers! How can a sequence be a number? Actually, this is not 
really that novel—the familiar decimal representation of a real number is a particular 
Cauchy sequence: .e := 2.71828 . . . is just short for .(2, 2.7, 2.71, 2.718, . . .). But  
there are several other Cauchy sequences that converge to e. For example, there 
is nothing special about the decimal system—the binary expansion . (2, 21

2 , 2 +
1
2 + 1

8 , . . .) also converges to e. We should be grouping these asymptotic Cauchy 
sequences together, and treat each class as one real number. For example, the 
asymptotic sequences .0.32999 . . . and .0.33000 . . . represent the same real number. 

Accordingly, . R is defined as the set of equivalence classes of asymptotic Cauchy 
sequences of rational numbers; each real number is here written as . x = [an]
(instead of the cumbersome .[(an)]). We now develop the structure of . R: addition 
and multiplication, its order and distance function. Define 

. x + y = [an] + [bn] := [an + bn], xy = [an][bn] := [anbn].

That addition is well-defined follows from an application of the triangle inequality in 
. Q; that it has the associative and commutative properties follows from the analogous 
properties for addition of rational numbers. The new real zero is .[0, 0, . . .], and the 
negatives are .−x = −[an] = [−an]. Similarly, multiplication is well defined and 
has all the properties that make . R a field. 

It is less straightforward to define an inequality relation on . R. Let .(an) > 0 mean 
that the Cauchy sequence .(an)n∈N is eventually strictly positive (Example 4.3(7)), 

. ∃ϵ ∈ Q
+, ∃N, n ⩾ N ⇒ an ⩾ ϵ > 0.

Any other asymptotic Cauchy sequence must also eventually be strictly positive. 
Correspondingly, let .x < y mean that .y − x > 0, or equivalently, 

. [an] < [bn] ⇔ ∃ϵ ∈ Q
+, ∃N, ∀n ⩾ N, an + ϵ ⩽ bn.

This immediately shows that .x < y ⇔ x + z < y + z. We make a few more  
observations about this relation: 

1. If .an ⩾ 0 for all n, then .[an] ⩾ 0, 
2. If .0 < x and .0 < y then .0 < xy and .0 < x + y (gives transitivity of . ⩽),
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3. .x > 0 OR x = 0 OR x < 0 (Example 4.3(7)). 
4. If .x < 0 then .−x > 0. 

Anti-symmetry of . ⩽ follows from the fact that .(bn − an)n∈N cannot eventually be 
both strictly positive and strictly negative. This makes . R a linearly ordered field. 

Given a real number .x = [an] = [bn], let .|x| := [|an|], which makes sense since 

. 
∣
∣|an| − |am|∣∣ ⩽ |an − am| → 0 as n,m → ∞,
∣
∣|an| − |bn|

∣
∣ ⩽ |an − bn| → 0 as n → ∞.

In fact .|x| = x when .x > 0 and .|x| = −x when .x < 0, so it satisfies the properties 
.|x| ⩾ 0, .|x| = 0 ⇔ x = 0, .|−x| = |x|, and .|x + y| ⩽ |x| + |y|. Thus . d(x, y) :=
|x − y| is a distance, as in Example 2.2(1). 
. Q is dense in . R: Note that a rational number a can be represented in . R by the 
constant sequence .[a, a, . . .]. The Archimedean property holds since . [an] > 0
implies that eventually .an ⩾ p > 0, for  some  .p ∈ Q, so  .[an] ⩾ [p/2] > 0. 
Also, if .x = [an] then .an → x in . R, since for any .ϵ > 0, let .p ∈ Q, .0 < p < ϵ, so  

. 

∃N, n,m ⩾ N ⇒ |an − am| < p

⇒ d(an, x) = d([an, an, . . .], [a1, a2, . . .])
= [|an − a1|, |an − a2|, . . . ] < ϵ.

The completeness axiom is satisfied: Let  A be any non-empty subset of . R that is 
bounded above. Split . R into the set B of upper bounds of A, and its complement 
. Bc, both of which are non-empty, say .a0 ∈ Bc, .b0 ∈ B; these can even be taken to 
be rational, by the Archimedean property. 

B Bc 

A α 

Divide .[a0, b0] in two using the midpoint .c := (a0 + b0)/2; if .c ∈ B then select 
.[a1, b1] = [a0, c], otherwise take .[a1, b1] = [c, b0]. Continue dividing and selecting 
sub-intervals like this, to get two asymptotic Cauchy sequences .(an)n∈N, .(bn)n∈N, 
with .bn ∈ B, .an ∈ Bc (Example 4.3(3)). Let .α := [an], so  .an → α, .bn → α, and 
(Exercise 3.6(4)) 

. (∀a ∈ A, a ⩽ bn) ⇒ (∀a ∈ A, a ⩽ α), “α is an upper bound of A”,

(∀b ∈ B, an ⩽ b) ⇒ (∀b ∈ B, α ⩽ b), “α is the least upper bound”.

A dual argument shows that every non-empty set with a lower bound has a greatest 
lower bound, denoted .infA. 

. R is complete: This now follows from part (i), but we can see this directly in this 
context. Start with any Cauchy sequence of real numbers (in decimal form, say) and
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replace each number by a rational number to an increasing number of significant 
places, for example: 

. 

xn ∈ R I→ an ∈ Q

2.6280 . . . 2
2.7087 . . . 2.7
2.7173 . . . 2.71
2.7181 . . . 2.718
. . .

The crucial point is that the two sequences are asymptotic by construction. Since the 
first one is Cauchy, so must be the second one. But a Cauchy sequence of rational 
numbers is, by definition, a real number x. Moreover, .an → x implies .xn → x. ⨅⨆
This “completion” process generalizes readily to any metric space. 

Theorem 4.6 

Every metric space X can be completed, that is, there is a complete metric 
space . ̃X, containing a dense copy of X and extending its distance function. 

Any such complete metric space . ̃X is called the completion of X. 

Proof Construction of . ̃X: Let  C be the set of Cauchy sequences of X. For any two 
Cauchy sequences .a = (xn)n∈N, .b = (yn)n∈N, the real sequence .d(xn, yn) is also 
Cauchy (Exercise 4.11(6)), and since . R is complete, it converges to a real number 
.D(a, b) := limn→∞ d(xn, yn). Symmetry and the triangle inequality of D follow 
from that of d, by taking the limit .n → ∞ in the following: 

. 
d(yn, xn) = d(xn, yn)

d(xn, yn) ⩽ d(xn, zn) + d(zn, yn)

}

⇒
{

D(b, a) = D(a, b)

D(a, b) ⩽ D(a, c) + D(c, b).

The only problem is that .D(a, b) = 0, meaning .d(xn, yn) → 0, is perfectly 
possible without .a = b. It happens when the Cauchy sequences .(xn)n∈N, . (yn)n∈N
are asymptotic. We have already seen that this is an equivalence relation, so C 
partitions into equivalence classes. Write .d̃([a], [b]) := D(a, b); it is well-defined 
since for any other representative sequences .a' ∈ [a] and .b' ∈ [b], we have  

. D(a', b') ⩽ D(a', a) + D(a, b) + D(b, b') = D(a, b);

similarly .D(a, b) ⩽ D(a', b'); so  .D(a, b) = D(a', b'). Let  . ̃X be the space of 
equivalence classes of Cauchy sequences, with the metric . d̃.
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There is a dense copy of X in . ̃X: For any .x ∈ X, there corresponds the constant 
sequence .x := (x, x, . . .) in C. Since 

. d̃([x], [y]) = D((x), (y)) = lim
n→∞ d(x, y) = d(x, y),

this set of constant sequences is a true copy of X, preserving distances between 
points. To show that this copy is dense in . ̃X, we need to show that any representative 
Cauchy sequence .a = (xn)n∈N in C has constant sequences arbitrarily close to it. 
By the definition of Cauchy sequences, for any .ϵ > 0, there is an .N ∈ N with 
.d(xn, xN) < ϵ for .n ⩾ N . Let  . x be the constant sequence .(xN). Then . D(a, x) =
limn→∞ d(xn, xN) ⩽ ϵ < 2ϵ proves that . [x] is within . 2ϵ of . [a]. 
. ̃X is complete: Let .([an]) be a Cauchy sequence in . ̃X; this means . d̃([an], [am]) =
D(an, am) → 0, as  .n,m → ∞. For each n, we can find a constant sequence . xn

which is as close to . an as needed, i.e., .D(xn, an) < ϵn; by choosing .ϵn → 0, we  
can select .(xn) to be asymptotic to .(an). As  .(an) is Cauchy, so is .(xn). In fact, 
.xn → x := (xn) since 

. lim
n→∞ D(xn, x) = lim

m,n→∞ d(xn, xm) = 0,

so that the asymptotic sequence . an also converges to . x, and .[an] to . [x]. ⨅⨆
Proving that a given metric space is complete is normally quite hard. Even 

showing that a particular Cauchy sequence converges may not be an easy matter 
because one has to identify which point it converges to, let alone doing this for 
arbitrary Cauchy sequences. But once a space is shown to be complete, one need not 
go through the same proof process to show that a subspace or a product is complete: 

Proposition 4.7 

Let .X, Y be complete metric spaces. Then, 

(i) A subspace .F ⊆ X is complete . ⇔ F is closed in X, 
(ii) .X × Y is complete. 

Proof (i) Let .F ⊆ X be complete, i.e., any Cauchy sequence in F converges to a 
limit in F . Let  .x ∈ F̄ , with a sequence .xn → x, .xn ∈ F (Proposition 3.4). Since 
convergent sequences are Cauchy and F is complete, x must be in F . Thus . F = F̄

is closed. The completeness of X has not been used, so in fact a complete subspace 
of any metric space is closed.
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Conversely, let F be a closed set in X and let .(xn)n∈N be a Cauchy sequence in 
F . Then .(xn) is a Cauchy sequence in X, which is complete. Therefore .xn → x for 
some .x ∈ X; in fact .x ∈ F̄ = F . Thus any Cauchy sequence of F converges in F . 

(ii) Let .
(
xn
yn

)

be a Cauchy sequence in .X × Y . Recall that 

. d

((

xn

yn

)

,

(

xm

ym

))

:= dX(xn, xm) + dY (yn, ym) ⩾ dX(xn, xm).

Since the left-hand term converges to 0 as .n,m → ∞, we get .dX(xn, xm) → 0, so  
that the sequence .(xn)n∈N is Cauchy in the complete space X. It therefore converges: 
.xn → x ∈ X. By similar reasoning, .yn → y ∈ Y . Consequently, 

. d

((

xn

yn

)

,

(

x

y

))

= dX(xn, x) + dY (yn, y) → 0 as n → ∞,

which is equivalent to .
(
xn
yn

) → (
x
y

)

in .X × Y . ⨅⨆
Examples 4.8 

1. The completion of a subset A in a complete metric space X is . Ā. 
Proof : The completion Y of A must satisfy two criteria: Y must be complete, and 
A must be dense in Y . Now,  . Ā is closed in X, so is complete, and A is dense in 
. Ā (by definition). 

2. Two metric spaces may be homeomorphic yet one space may be complete and 
the other not. For example, . R is homeomorphic to .]0, 1[ (Exercise 3.13(18)), but 
the latter is not closed in . R. 

3. Let .f : X → Y be a continuous function. If it can be extended to the completions 
as a continuous function .f̃ : X̃ → Ỹ , then this extension is unique. 
Proof : Any  .x ∈ X̃ has a sequence .(an)n∈N in X converging to it (Proposi-
tion 3.4). As . f̃ is continuous, we find that .f̃ (x) is uniquely determined by 

. f̃ (x) = lim
n→∞ f̃ (an) = lim

n→∞ f (an).

4. But not every continuous function .f : X → Y can be extended continuously to 
the completions .f̃ : X̃ → Ỹ . For example, the continuous function . f (t) := 1/t

on .]0,∞[ cannot be extended continuously to .[0,∞[. 
5. (Cantor) The completion of . Q to . R has come at a price: . R is not countable. Prove 

this by taking the binary expansion of a list of real numbers in .[0, 1], arranged in 
an infinite array, and creating a new number from the diagonal that is different 
from all of them. The corollary of the next theorem is a strong generalization of 
this statement.
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René-Louis Baire (1874–1932) After graduating in 
Paris around 1894, Baire tackled the problem of con-
vergence and limits of functions, namely that no space 
of functions then known was “closed” under pointwise 
convergence. His Ph.D. dissertation, under the supervi-
sion of C.E. Picard, introduced the concept of ‘nowhere 
dense’ and proved his famous theorem. Progress on this 
issue was made by his colleague Borel in the direction 
of measurable sets. 

Theorem 4.9 (Baire’s Category Theorem) 

In a complete metric space, a countable intersection of open dense subsets 
is again dense. 

Proof Let .Y := ⋂∞
n=1 Un, where . Un are open dense subsets of the complete metric 

space X, and let .Br(x) be any ball in X. To find a .y ∈ Y ∩ Br(x), we are going to 
create a nested sequence of balls of diminishing radius whose centers therefore form 
a Cauchy sequence. To start with, . U1 intersects the ball .Br1(x1) := Br(x), since it 
is dense; so the open set .U1 ∩ Br1(x1) contains a point . x2 and some neighborhood 
.Br2(x2). Now . U2 is dense, so the open set .U2 ∩ Br2(x2) is non-empty and there is a 
ball .Br3(x3) ⊆ U2 ∩ Br2(x2). 

Continuing like this, we can find a sequence of points (using the Axiom of 
Choice) 

. xn+1 ∈ Brn+1(xn+1) ⊆ Un ∩ Brn(xn).

Moreover at each stage, . rn can be chosen small enough that 

. rn → 0 (e.g., rn ⩽ 1/n),

Brn+1(xn+1) ⊆ Brn(xn) (e.g., rn+1 < rn − d(xn, xn+1)).

Thus .(xn)n∈N is a Cauchy sequence (Example 4.3(4)) which converges . xn → y

since X is complete. For all .m > n we have .xm ∈ Brn+1(xn+1) and taking the limit 
.xm → y we find .y ∈ Brn+1(xn+1) ⊆ Brn(xn). Since this holds for any n we obtain 

. y ∈
⋂

n

Brn(xn) ⊆ Br1(x1) ∩
⋂

n

Un = Br(x) ∩ Y.

Since Y intersects all balls, Y is dense in X. ⨅⨆
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Corollary 4.10 

A nonempty complete metric space cannot be covered by a countable 
number of nowhere-dense subsets. 

Proof Suppose that the metric space .X = ⋃∞
n=1 An (= ⋃∞

n=1 Ān), where . An

are nowhere dense. Then, .
⋂

n Āc
n = ∅, with .Āc

n being open dense subsets 
(Exercise 2.23(9)). This clearly contradicts the theorem. ⨅⨆
Exercises 4.11 

1. Any sequence in . Q of the type .(3.1, 3.14, 3.141, 3.1415, . . .) is Cauchy. 
2. The sequences .(1, 2, 3, . . .) and .(1,−1, 1,−1, . . .) are not Cauchy. 
3. . ✶ Try to prove that the sequence defined by .a0 := 1, .an+1 := an

2 + 1
an

is Cauchy. 

(Hint: Use the principle of induction to show that .|an+1 − an| ⩽ ( 12 )
n+1.) 

4. If a sequence .(xn)n∈N, chosen from a finite set of points, e.g., .(x, y, x, x, y, . . .), 
is Cauchy then it must eventually become constant .(x0, . . . , xN , xN , . . .). 

5. The following give sufficient conditions for Cauchy sequences: 

(a) .d(xn+1, xn) ⩽ c d(xn, xn−1) with .c < 1, 
(b) .d(xn+1, xn) ⩽ c d(xn, xn−1)

2 with .c d(x1, x0) < 1. 

But a sequence which decreases at the rate .d(xn+1, xn) ⩽ 1/n need not be 
Cauchy. 

6. If .(xn)n∈N, .(yn)n∈N are Cauchy sequences in X, then so is .dn := d(xn, yn) in 
. R. 

7. . ▶A continuous function need not map Cauchy sequences to Cauchy sequences. 
8. If .xn → x and .yn → x, then .(xn)n∈N, .(yn)n∈N are asymptotic. 
9. . 

√
n and .

√
n + 1 are asymptotic divergent sequences in . R. 

10. . ▶ A subsequence of a Cauchy sequence is itself Cauchy, and if it converges so 
does its parent sequence. 

11. If .(xn)n∈N is a Cauchy sequence, and the set of values .{xn : n ∈ N} has a limit 
point x, then .xn → x. 

12. The completion of .]0, 1[ and of .[0, 1[ is .[0, 1]. Any Cauchy sequence in the 
Cantor set C must converge in C. However a Cauchy sequence of rational 
numbers need not converge to a rational number because . Q is not closed in 
. R. 

13. . ▶ .R
n := R × · · · × R and . C are complete. 

14. Is . N complete? Any discrete metric space is complete. 
15. (Cantor) We have already seen that the centers of a nested sequence of balls 

with .rn → 0 form a Cauchy sequence (Example 4.3(4)). Show, furthermore, 
that in a complete metric space, .

⋂

n Brn(xn) = { limn→∞ xn }. 
16. The only functions .f : Q → Q satisfying .f (x + y) = f (x) + f (y) are 

.f : x I→ λx. Deduce that the only continuous functions .f̃ : R → R with this 
property are of the same type.



4.2 Uniformly Continuous Maps 55

17. . ✶ The completion of X is essentially unique, in the sense that any two such 
completions (such as the one defined in the theorem) are homeomorphic to 
each other. 

18. The Cantor set is complete and nowhere dense in . R; why doesn’t this contradict 
Baire’s theorem (corollary)? 

4.2 Uniformly Continuous Maps 

We have seen that a continuous function need not preserve completeness, or even 
Cauchy sequences. If one analyzes the root of the problem, one finds that its 
resolution lies in the following strengthening of continuity: 

Definition 4.12 

A function .f : X → Y is said to be uniformly continuous when 

. ∀ϵ > 0, ∃δ > 0, ∀x ∈ X, f [Bδ(x)] ⊆ Bϵ(f (x)).

The difference from continuity is that, here, . δ is independent of x. 

Easy Consequences 
1. Uniformly continuous functions are continuous. 
2. But not every continuous map is uniformly so; an example is .f (t) := 1/t on 

.]0,∞[. 
3. . ▶ The composition of uniformly continuous maps is again uniformly continuous. 

Proof : .∀ϵ > 0, ∃δ, δ' > 0, ∀x, g[f [Bδ(x)]] ⊆ g[Bδ'(f (x))] ⊆ Bϵ(g(f (x))). 

The key properties of uniformly continuous maps are the following two proposi-
tions: 

Proposition 4.13 

A uniformly continuous function maps any Cauchy sequence to a Cauchy 
sequence. 

Proof By definition .f : X → Y is uniformly continuous when 

.∀ϵ > 0, ∃δ > 0, ∀x, x', dX(x, x') < δ ⇒ dY (f (x), f (x')) < ϵ.
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In particular, for a Cauchy sequence .(xn)n∈N in X, with this . δ, 

. ∃N, n,m > N ⇒ dX(xn, xm) < δ

⇒ dY (f (xn), f (xm)) < ϵ,

proving that .(f (xn))n∈N is a Cauchy sequence in Y . ⨅⨆
More generally, practically the same proof shows that a uniformly continuous 
function .f : X → Y maps any asymptotic sequences .(an)n∈N, .(bn)n∈N in X to 
asymptotic sequences .(f (an))n∈N, .(f (bn))n∈N in Y . 

Theorem 4.14 

Every uniformly continuous function .f : X → Y has a unique uniformly 
continuous extension to the completions .f̃ : X̃ → Ỹ . 

Proof In order not to complicate matters unnecessarily, let us suppose that X and 
Y are dense subsets of . ̃X and . ̃Y respectively, instead of being embedded in them. 
Nothing is lost this way, except quite a few extra symbols! 

Let .xn → x ∈ X̃, with .xn ∈ X. The sequence .f (xn)n∈N is Cauchy 
in Y by the previous proposition, so must converge to some element .y ∈ Ỹ . 
Furthermore, if .an → x as well (.an ∈ X), then .(xn)n∈N and .(an)n∈N are asymptotic 
(Exercise 4.11(8)) forcing .f (xn)n∈N and .f (an)n∈N to be asymptotic in Y , hence 
.f (an) → y. This allows us to define .f̃ (x) := y without ambiguity. Moreover, this 
choice is imperative and . f̃ is unique, if it is to be continuous. 

The uniform continuity of . f̃ follows from that of f . For any .ϵ > 0, there is a 
.δ > 0 for which 

. ∀a, b ∈ X, d(a, b) < δ ⇒ d(f (a), f (b)) < ϵ.

Let .x, x' ∈ X̃ with .d(x, x') < δ, let  .an → x, .bn → x' with .an, bn ∈ X and, by the 
above, .f (an) → f̃ (x), .f (bn) → f̃ (x'). Among these terms, we can find a close to 
x and b close to . x' to within .r := (δ − d(x, x'))/2 < δ, while also .f (a) is close to 
.f̃ (x) and .f (b) is close to .f̃ (x') to within . ϵ. Then 

.d(a, b) ⩽ d(a, x) + d(x, x') + d(x', b) < 2r + d(x, x') = δ

⇒ d(f̃ (x), f̃ (x')) ⩽ d(f̃ (x), f (a)) + d(f (a), f (b)) + d(f (b), f̃ (x')) < 3ϵ.

⨅⨆
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The following are easily shown to be uniformly continuous functions: 

Definition 4.15 

A function .f : X → Y is called a Lipschitz map when 

. ∃c > 0, ∀x, x' ∈ X, dY (f (x), f (x')) ⩽ c dX(x, x').

Furthermore, it is called 

– an equivalence (or bi-Lipschitz) when f is bijective and both f and . f −1

are Lipschitz; 
– a contraction when it is Lipschitz with constant .c < 1; 
– an isometry, and .X, Y are said to be isometric, when f preserves 

distances, i.e., 

. ∀x, x' ∈ X, dY (f (x), f (x')) = dX(x, x').

Examples 4.16 

1. Any .f : [a, b] → R with continuous derivative is Lipschitz. 
Proof : As  . f ' is continuous, it is bounded on .[a, b], say  .|f '(x)| ⩽ c. The result 
then follows from the mean value theorem, 

. f (x) − f (x') = f '(ξ)(x − x'), ∃ξ ∈ ]a, b[.

2. To show .f : R2 → R
2 is Lipschitz, where .f = (f1, f2), it is enough to show 

that 

. |fi(x1, y1) − fi(x2, y2)| ⩽ c(|x1 − x2| + |y1 − y2|), i = 1, 2,

for then (using .(a + b)2 ⩽ 2(a2 + b2) for .a, b ∈ R) 

. 
∥
∥
∥

(

f1(x1, y1)

f2(x1, y1)

)

−
(

f1(x2, y2)

f2(x2, y2)

) ∥
∥
∥ ⩽ |f1(x1, y1) − f1(x2, y2)| + |f2(x1, y1) − f2(x2, y2)|

⩽ 2c(|x1 − x2| + |y1 − y2|)

⩽ 2c
√
2

∥
∥
∥

(

x1

y1

)

−
(

x2

y2

) ∥
∥
∥.

3. . ▶ Lipschitz maps are uniformly continuous, since for any .ϵ > 0, we can let 
.δ := ϵ/2c independent of x to obtain .d(x, x') < δ ⇒ d(f (x), f (x')) ⩽ cδ < ϵ.
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4. But not every uniformly continuous function is Lipschitz. For example, .
√

x on 
.[0, 1] is uniformly continuous (show!); were it also Lipschitz, it would satisfy 
.|√x − √

0| ⩽ c|x − 0| which leads to .
√

x ⩾ 1/c. 

The next theorem is one of the important unifying principles of mathematics. It 
has applications in such disparate fields as differential equations, numerical analysis, 
and fractals. 

Theorem 4.17 (The Banach Fixed Point Theorem) 

Let X be a nonempty complete metric space. Then every contraction map 
.f : X → X has a unique fixed point .x = f (x), and the iteration 

. xn+1 := f (xn)

converges to it for any . x0. 

The rate of convergence is given at least by .d(x, xn) ⩽ cn

1−c
d(x1, x0). 

Proof Consider the iteration .xn+1 := f (xn) starting with any . x0 in X. Note that 

. d(xn+1, xn) = d(f (xn), f (xn−1)) ⩽ c d(xn, xn−1).

Hence, by induction on n, 

. d(xn+1, xn) ⩽ cnd(x1, x0),

so .(xn)n∈N is Cauchy since .c < 1 (Example 4.3(5)). As X is complete, . xn converges 
to, say, x, and by continuity of f , 

. f (x) = f ( lim
n→∞ xn) = lim

n→∞ f (xn) = lim
n→∞ xn+1 = x.

Suppose there are two fixed points .x = f (x) and .y = f (y); then 

. d(x, y) = d(f (x), f (y)) ⩽ c d(x, y)

implying .d(x, y) = 0 since .c < 1.
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⨅⨆
Exercises 4.18 

1. Show that 

(a) .f : [a, b] → R, .f (t) := t + 1/t , is a contraction when .a > 2− 1
2 ; 

(b) .f : [0, 1]2 → R
2, .f (x, y) := (2−xy

x2−y

)

is Lipschitz. 

2. The composition of two Lipschitz maps is Lipschitz. 
3. . ▶ A Lipschitz map (with constant c) sends the ball .Br(a) into the ball 

.Bcr(f (a)). 
4. Isometries are necessarily 1–1. Surjective isometric maps are equivalences, and 

the latter are homeomorphisms. 
5. . ▶ Two metric spaces are said to be equivalent when there is an equivalence 

map between them. Equivalent metric spaces must be both complete or both 
incomplete. 

6. . ▶ If a space has two distances, the inequality .d1(x, y) ⩽ c d2(x, y), where 
.c > 0, states that the identity map is Lipschitz. In the same vein, two distances 
are equivalent when there are .c, c' > 0 such that 

. c' d2(x, y) ⩽ d1(x, y) ⩽ c d2(x, y).

Show that two equivalent distances have exactly the same Cauchy sequences. 
7. The unit circle has two natural distance functions, (i) the arc length . θ and (ii) 

the induced Euclidean distance .2 sin(θ/2), where . θ is the angle (at the center) 
between two points (.⩽ π ). Prove that the two are equivalent by first showing 

. 2θ/π ⩽ sin θ ⩽ θ, for 0 ⩽ θ ⩽ π/2.

8. The distances . D1 and .D∞ for .X × Y (Example 2.2(6)) are equivalent. 
9. The fixed point theorem can be generalized to the case when . f : Br(x0) → X

is a contraction map, as long as the starting point satisfies .d(x0, x1) < (1− c)r . 
Use the triangle inequality to show that . xn remain in .Br(x0).
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10. The classic example of an iteration converging to a fixed point is that provided 
by the map .tn+1 := (1 + tn)

−1, which converges to the golden ratio. Show that 
the map is a contraction on an appropriate closed interval. 

11. Any continuously differentiable function .f : R → R with .|f '(t)| < 1 is a 
contraction map in a neighborhood of t . 

12. If .f : R → R is a contraction with Lipschitz constant .c < 1, then . f (t) = t

can also be solved by iterating .tn+1 := F(tn) where .F(t) := t − α(t − f (t)), 
.0 < α < 2/(c + 1). Hence find an approximate solution of .t = sin t + 1; 
experiment by choosing different values of . α and compare with the iteration 
.tn+1 := f (tn). 

4.3 Separable Spaces 

Completeness is a “nice” property that a metric can have. A different type of prop-
erty of a metric space is whether it is, in a sense, “computable” or “constructive”. 
Starting from the simplest, and speaking non-technically, we find: 

Finite metric spaces There are a finite number of possible distances to 
compute. 

Countable metric spaces With an infinite number of points, an algorithm 
may still calculate distances precisely, but it may 
take longer and longer to do so. 

Separable metric spaces Points can be approximated by one of a countable 
number of points; in principle, any distance can be 
evaluated, not precisely, but to any accuracy. 

Non-separable metric spaces There may be no algorithm that finds the distance 
between two generic points, even approximately. 

Non-separable metric spaces are, in a sense, too large, while countable metric spaces 
leave out most spaces of interest. 

Definition 4.19 

A metric space is separable when it contains a countable dense subset, 

. ∃A ⊆ X, A is countable AND Ā = X.

Examples 4.20 

1. Countable metric spaces, such as . N, . Z, . Q, are obviously separable.
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2. .▶ . R is separable because the countable subset . Q is dense in it. By the next 
proposition, . C and . Rn are also separable.1 

Proposition 4.21 

Any subset of a separable metric space is separable. 
The product of two separable spaces is separable. 
The image of a separable space under a continuous map is separable. 

Proof (i) Let .Y ⊆ X and .Ā = X, with .A = { an : n ∈ N } countable. For each 
. an, let  .Yn,m := { y ∈ Y : d(an, y) < 1/m }, and pick a representative point from 
each, .yn,m ∈ Yn,m, whenever the set is non-empty. This array of points is certainly 
countable, and we now show that it is dense in Y . 

Fix .0 < ϵ < 1
2 ; any .y ∈ Y can be approximated by some .an ∈ A with . d(an, y) <

ϵ. Pick the smallest integer m such that .m > 1/2ϵ; then .m−1 ⩽ 1/2ϵ, so .m ⩽ 1/ϵ; 
therefore .ϵ ⩽ 1/m < 2ϵ. Then .y ∈ Yn,m /= ∅, so that there must be a representative 
.yn,m with .d(an, yn,m) < 1/m < 2ϵ. Combining the two inequalities, we get 

. d(yn,m, y) ⩽ d(yn,m, an) + d(an, y) < 3ϵ.

(ii) Let .{ a1, a2, . . . } be dense in X, and .{ b1, b2, . . . } dense in Y . Then for any 
.ϵ > 0 and any pair .

(
x
y

) ∈ X × Y , x can be approximated by some . an such that 
.dX(an, x) < ϵ/2, and y by some . bm with .dY (bm, y) < ϵ/2; then 

. d

((

an

bm

)

,

(

x

y

))

= dX(an, x) + dY (bm, y) < ϵ

shows that the countable set of points .
(an
bm

)

(.n,m ∈ N) is dense in .X × Y . 

(iii) Let .f : X → Y be continuous and let A be countable and dense in X. Then f A  
is countable because the number of elements of a set cannot increase by a mapping. 
Moreover, as f is continuous, f A  is dense in f X  (Example 3.9(3)), and f X  is 
separable. ⨅⨆
Exercises 4.22 

1. A metric space X is separable when there is a countable number of points . an

such that the set of balls .Bϵ(an) covers X for any . ϵ. 
2. . ✶ In a separable space, we can do with a countable number of balls (with say 

rational radii), in the sense that every open set is a countable union of some of

1 There is a catch here: The metric used in the proposition is not the Euclidean one. But the 
inequalities used there remain valid for the Euclidean metric, . 

√

dX(an, x)2 + dY (bn, y)2 <
√

ϵ2/4 + ϵ2/4 < ϵ. 
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these. It then follows that every cover of the space using open sets has a countable 
subcover. 

3. The union of a (countable) list of separable subsets is separable. 
4. . ▶ If there are an uncountable number of disjoint balls, then the space is non-

separable, e.g., an uncountable set with the discrete metric is non-separable. We 
shall meet some non-trivial examples of non-separable metric spaces later on 
(Theorem 9.1). 

Remarks 4.23 

1. Note that .d(f (x), f (y)) < d(x, y) does not necessarily give a contraction map. 
For example, .f (t) := 2/(

√
t2 + 4 − t). In this case, the iteration . xn+1 := f (xn)

may satisfy .d(xn+1, xn) → 0 but need not be a Cauchy sequence. 
2. The reader has most probably seen images of fractals; many of these are the fixed 

‘point’, or attractor, of a contraction on the space of shapes (Example 2.2(4)) (see 
[19]). 

3. The Banach fixed point theorem is also valid when .f n := f ◦ · · · ◦f , rather than 
f , is a contraction map; in this case the convergence is “cyclic”.



Chapter 5 
Connectedness 

5.1 Connected Sets 

We have an intuitive notion of what it means for a shape to be in one piece. The 
following definition makes this idea precise: 

Definition 5.1 

A metric space X is disconnected when it has a non-trivial partition of non-
empty open subsets. Otherwise it is called connected. 

Note that if .X = ⋃
i Ai with . Ai open, non-empty, and pairwise disjoint, then . X =

A ∪ B, where .A = A1 and .B = ⋃
i /=1 Ai , an open partition of two open sets. So a 

space X is connected when it cannot be split into two (or more) disjoint non-empty 
open subsets. To make the definition more useful we need to adapt it to the case of 
subsets of a metric space, since that is where we need it most: 

Proposition 5.2 

A subspace C of a metric space X is disconnected when it is the union of 
(at least) two disjoint non-empty subsets .C = A∪B such that each subset 
is covered exclusively by an open set, that is, 

(continued) 
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U 

V 

A 

B 

. A ⊆ U, B ∩ U = ∅, U open in X,

B ⊆ V, A ∩ V = ∅, V open in X.

Proof By definition, C is disconnected when .C = A ∪ B with .A,B disjoint and 
open relative to C. This in turn means that .A = C ∩ U , .B = C ∩ V for some 
open subsets .U,V of X (Proposition 2.12). The disjointness of .A,B means that 
.∅ = A ∩ B = C ∩ U ∩ V , which then implies .A ∩ V = ∅ = B ∩ U . 

Conversely, given the conditions in the proposition, note that 

. C ∩ U = (A ∪ B) ∩ U = (A ∩ U) ∪ (B ∩ U) = A

and similarly .C ∩ V = B. Hence .A,B are open in C, yet disjoint, thus forming an 
open partition of C. ⨅⨆
Note carefully that it is not required that U be disjoint from V ; only that they are 
disjoint in C, that is, .C ∩ U ∩ V = ∅. 

Examples 5.3 

1. Single points are always connected because they cannot be split into two non-
empty sets. Similarly the empty set is connected. 

2. . ▶ Any subset of . Z (or any discrete metric space) is disconnected except the 
single points and the empty set. Metric spaces with this property are called totally 
disconnected. 
Proof : Let  C contain more than one point, say a and b. Take  . A = U := {a}
and .B = V := C\{a} /= ∅. Then U and V are open (any subset is open) and 
respectively contain A and B exclusively. 

3. . ▶ A set  A is connected when every continuous function .f : A → {0, 1} ⊂ Z is 
constant. Otherwise the open sets .f −1{0} and .f −1{1} cover and disconnect A. 

Proposition 5.4 

A subset C is connected . ⇔ every non-trivial subset of C has a non-empty 
boundary in C, that is, 

. ∅ /= A ⊂ C ⇒ ∂CA /= ∅.

Recall the definition of the relative boundary following Proposition 2.12, . ∂CA =
{ x ∈ C : ∀ϵ > 0, ∃a ∈ A, ∃b ∈ C\A, a, b ∈ Bϵ(x) }.
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Kazimierz Kuratowski (1896–1980) The Polish math-
ematician Kuratowski started his engineering studies 
in 1913 at the University of Glasgow but returned 
to the University of Warsaw because of World War 
I, changing his degree to mathematics. He rewrote 
much of Hausdorff’s theory in 1921, introducing his 
closure axioms and expanding on topological connect-
edness. Similarly Aleksandrov and Urysohn, and later 
Tikhonov, in Moscow, built upon Hausdorff’s work with 
compactness. 

Proof Let .∅ /= A ⊂ C be without a boundary in C. Then all the points of C are 
either interior points or exterior points of A; thus A and .B := C\A are open in C. 
But then there are open sets .U,V in X, with .A = U ∩ C and .B = V ∩ C, and 

. U ∩ B = U ∩ (C\A) = U ∩ C ∩ Ac = A ∩ Ac = ∅,

V ∩ A = V ∩ C ∩ U = B ∩ U = ∅,

so .C = A ∪ (C\A) = A ∪ B is disconnected. 
Conversely, if C is disconnected, then .C = A ∪ B, with .A ⊆ U , .B ⊆ V , both 

non-empty, and .U,V open sets in X with .A ∩ V = ∅ = B ∩ U . For any point 
.a ∈ A, .a ∈ Br(a) ⊆ U ; hence 

. a ∈ { x ∈ C : d(x, a) < r } = Br(a) ∩ C ⊆ U ∩ C = A

shows that A is open in C. Similarly .B = C\A is open in C, thus leaving A without 
a boundary in C. ⨅⨆

Theorem 5.5 

The connected subsets of . R are precisely the intervals. 

Proof Every non-trivial subset of an interval .I ⊆ R has a boundary point: Let A 
be a non-trivial subset of I ; that A is non-trivial means that there exist .a0 ∈ A and 
.b0 ∈ I\A. We can assume .a0 < b0, otherwise switch the roles of A and .I\A in 
what follows. 

Divide the interval .[a0, b0] into halves, .[a0, c] and .[c, b0], where . c := (a0+b0)/2
is the midpoint. If .c ∈ A let .[a1, b1] := [c, b0], otherwise if .c ∈ Ac let . [a1, b1] :=
[a0, c]. Continue taking midpoints to get a nested sequence of intervals .[an, bn] in 
I , with .an ∈ A, .bn ∈ I\A.
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A 

a0 b0 
a1 b1 

a2 b2 
a3 b3 

By the bisection property (Example 4.3(3)), the sequences .(an)n∈N and . (bn)n∈N
are Cauchy and asymptotic, and since . R is complete, they converge: .an → a and 
.bn → a. The consequence is that, inside any open neighborhood .Bϵ(a), there are 
points .an ∈ A and .bn ∈ I\A, making a a boundary point of A. By the preceding 
proposition, this translates as “every interval is connected”. 

Every connected subset C of . R has the interval property .a, b ∈ C ⇒ [a, b] ⊆ C: 
Let C be a connected set, and let .a, b ∈ C (say, .a < b). Any .x ∈ [a, b] which is not 
in C would disconnect C using the disjoint open sets .]−∞, x[ and .]x,∞[. 
Every subset of . R with the interval property is an interval: Let A have the interval 
property. If .A /= ∅, say  .x ∈ A, and has an upper bound, then it has a least upper 
bound b. The interval .[x, b[ is a subset of A because there are points of A arbitrarily 
close to b. Similarly if a is the greatest lower bound then .]a, x] ⊆ A. Going through 
all the possibilities of whether A has upper bounds or lower bounds or none, and 
whether these belong to A or not, results in all the possible cases of intervals. For 
example, if it contains its least upper bound b but has no lower bound, then . [x, b] ⊆
A for any .x < b, so that .A = ]−∞, b]. ⨅⨆

By contrast, the connected sets in other metric spaces may be very difficult to 
describe and imagine. Even in . R2, there are infinite connected sets such that when 
a single point is removed, the remaining set is totally disconnected! (For further 
information search for “Cantor’s teepee”.) Connectedness is an important intrinsic 
property that a set may have: it is preserved by any continuous function. Even though 
the codomain space may be very different from the domain, a connected set remains 
in ‘one piece’. 

Proposition 5.6 

Continuous functions map connected sets to connected sets, 

. f : X → Y is continuous AND C ⊆ X is connected ⇒ f C is connected.

Proof Let C be a subset of X, and suppose f C  is disconnected into the non-empty 
disjoint sets A and B, covered exclusively by the open sets U and V , that is, 

.f C = A ∪ B ⊆ U ∪ V, U ∩ B = ∅ = V ∩ A.
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Then, 

. C = f −1A∪f −1B ⊆ f −1U ∪f −1V, f −1U ∩f −1B = ∅ = f −1V ∩f −1A.

f 

f − 1 A 

f − 1 B 

A 

B 

f − 1 U 

f − 1 V 

U 

V 

X Y  

Moreover .f −1A and .f −1B are non-empty and disjoint, and .f −1U and . f −1V

are open sets (Theorem 3.8). Hence f C  disconnected implies C is disconnected. 
⨅⨆

Almost surprisingly, this simple proposition is the generalization of the classical 
“Intermediate Value Theorem” of Bolzano and Weierstraß. In effect, IVT has been 
dissected into this abstract, but transparent, statement and the previous one that 
intervals are connected. It embodies why abstraction is pursued in mathematics— 
the power of being applicable to very general spaces, with a proof that makes no use 
of irrelevant properties of some concrete space such as . R. 

Corollary 5.7 (Intermediate Value Theorem) 

Let X be a connected space, and .f : X → R a continuous function. For 
any c with .f (a) < c < f (b) there exists an .x ∈ X such that .f (x) = c. 

Proof f X  is connected in . R and so must be an interval. By the interval property, 
.f (a), f (b) ∈ f X ⇒ c ∈ f X, so .c = f (x) for some .x ∈ X. ⨅⨆
Exercises 5.8 

1. Any two distinct points of a metric space are disconnected. More generally, 
(i) any set of n points (.n ⩾ 2), (ii) the union of two disjoint closed sets, are 
disconnected. 

2. The space of rational numbers . Q is disconnected, e.g., using the open sets 
.]−∞,

√
2[ ∩ Q and .]√2,∞[ ∩ Q. In fact . Q is totally disconnected. 

3. Suppose that there is an .x ∈ X and an .r > 0 such that .d(x, y) /= r for all 
.y ∈ X, but there are points y with .d(x, y) > r . Show that X is disconnected.
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4. . ▶ An open set (such as the whole metric space) is disconnected precisely when 
it consists of (at least) two disjoint open subsets. Find a connected set whose 
interior is disconnected. 

5. . ✶ Any two disjoint non-empty closed sets A and B are completely separated in 
the sense that there are disjoint open sets .A ⊆ U , .B ⊆ V , .U ∩ V = ∅. 
(Hint: use Exercise 3.13(17).) 

6. . ▶ A path is a continuous function .I → X where I is an interval in . R. Its  
image is connected. Hence show that the parametric curves of geometry, such as 
straight line segments, circles, ellipses, parabolas, and branches of hyperbolas 
in . R2, are connected. 

7. (a) The function .f (t) := tn is continuous on . R, for  .n = 0, 1, . . .. Show that, 
for any fixed .n ⩾ 1, . tn can be made arbitrarily large. Let x be a positive 
real number; use the intermediate value theorem to show that . n

√
x exists. 

More generally every real monic polynomial .tn + · · · + a1t + a0 (.n ⩾ 1), 
where . a0 is negative or when n is odd, has a root. 

(b) Every continuous function .f : [0, 1] → [0, 1] has a fixed point. (Hint: 
consider .f (t) − t .) 

8. If .f : [0, 1]2 → R is continuous and .f (a) < c < f (b) then there is an 
.x ∈ [0, 1]2 such that .c = f (x). (Assume .[0, 1]2 is connected.) 

9. Suppose X is connected and .f : X → R is continuous and locally constant, 
that is, every .x ∈ X has a neighborhood taking the value .f (x). Then f is 
constant on X. (Hint: Show .f −1{f (a)} is closed and open in X.) 

10. . Q has non-interval subsets with the interval property (e.g. .[0,√2[ ∩ Q). 
11. Use the intermediate value theorem to show that an injective continuous 

function on .[a, b] must be increasing or decreasing 

. s ⩽ t ⇒ f (s) ⩽ f (t) OR s ⩽ t ⇒ f (s) ⩾ f (t).

5.2 Components 

It seems intuitively clear that every space is the disjoint union of connected subsets. 
To make this rigorous, let us present some more propositions that go some way in 
helping us show whether a set is connected, especially the principle that whenever 
connected sets intersect, their union is connected. This allows us to build connected 
sets from smaller ones.
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Proposition 5.9 

If C is connected then so is C with some boundary points (such as . C̄). 

Proof Let D be C with the addition of some boundary points. Suppose it separates 
as .D = A ∪ B each covered exclusively by open sets U and V . Then C would also 
split up in the same way, unless .C ⊆ U say. This cannot be the case, for if .x ∈ B is 
a boundary point covered by V , then there is a ball .Br(x) ⊆ V containing points of 
C, a contradiction. Thus D disconnected implies C is disconnected. ⨅⨆

Theorem 5.10 

If .Ai, B are connected sets and .∀i Ai ∩B /= ∅ then .B∪⋃
i Ai is connected. 

If . An are connected for .n = 1, 2, . . ., and .An ∩ An+1 /= ∅ then .
⋃

n An is 
connected. 

B 

Ai 

An 

Proof (i) Suppose the union .B ∪ ⋃
i Ai is disconnected and splits up into two parts 

covered exclusively by open sets U and V . Then B would split up into the two parts 
.B∩U and .B∩V were these to contain elements. But as B is known to be connected, 
one of these must be empty, say .B ∩ U = ∅. For any other .A := Ai that is partly 
covered by U (and there must be at least one) we get .A ∩ V = ∅ and .A ⊆ U , for  
the same reason. But then .A ∩ B ⊆ U ∩ B = ∅, contradicting the assumptions. 
In particular, note that if A, B are connected and .A ∩ B /= ∅, then .A ∪ B is also 
connected. But the statement is true even for an uncountable number of . Ai . 

(ii) If .CN := ⋃N
n=1 An is connected, then .CN+1 = CN ∪ AN+1 is also connected 

by the first part of the theorem, since .CN ∩ AN+1 /= ∅. By induction, starting from 
the connected set .C1 = A1, .CN is connected for all N . As  .A1 ⊆ CN for all N , it  
follows from (i) that .

⋃∞
N=1 CN = ⋃∞

n=1 An is also connected. ⨅⨆
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The converses of both these statements are false, but the following holds: 

Proposition 5.11 

Given non-empty connected sets A, B, 

. A ∪ B is connected ⇔ ∃x ∈ A ∪ B, {x} ∪ A and {x} ∪ B are connected.

Proof Suppose no point .x ∈ A makes .{x} ∪ B connected. That is, for each . x ∈ A

there are two open sets which separate .{x} ∪ B. Call the set which contains x, . Ux , 
and the other one . Vx . They would also separate B unless .B ⊆ Vx , and .Ux ∩B = ∅. 
So .

⋃
x Ux is an open set containing A but disjoint from B. If the same were to 

hold for points in B, then there would be an open set containing B but disjoint 
from A, making .A ∪ B disconnected. The converse is a special case of the previous 
proposition. ⨅⨆

Theorem 5.12 

A metric space partitions into disjoint closed maximal connected subsets, 
called components. Any connected subset is contained in a component. 

By a maximal connected set is meant a connected set C such that any .A ⊋ C is 
disconnected. 

Proof The relation .x ∼ y, defined by .{x, y} ⊆ C for some connected set C, is  
trivially symmetric; it is reflexive since .{x, x} = {x} is connected, and it is transitive 
because if .x, y ∈ C1 and .y, z ∈ C2 then .x, z ∈ C1 ∪ C2, which is connected by 
Theorem 5.10 as .y ∈ C1 ∩ C2. Moreover, another way of writing the relation . x ∼ y

is as 

. y ∈
⋃

{ C ⊆ X : x ∈ C, C connected },

so that the equivalence class . [x] (called the component) of  x is the union of all 
the connected sets containing x. What this implies is that any connected set C 
that contains x must be part of the component of x. In addition, the component 
is connected by Theorem 5.10 and it is maximally so, as no strictly larger connected 
set containing x can exist. In particular, since . [x] is connected (Proposition 5.9), it 
must be the case that .[x] = [x] and . [x] is closed (Proposition 2.16). ⨅⨆
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Exercises 5.13 

1. Show that . R2 is connected by considering the radial lines all intersecting the 
origin. 

2. . ▶More generally, if there exists a path between any two points, then the metric 
space is connected. (It is enough to find a path between any point and a single 
fixed point; why?) Such a space is said to be path-connected. 

3. The square .[0, 1]2 and the half-plane .]a,∞[ × R are connected. 
4. Intervals in . R, disks in . R2, and balls in . R3 are path-connected. Do balls in a 

general metric space have to be connected? 
5. . ▶ If .X, Y are connected spaces then so is .X × Y . 
6. The set .R2\{x} is connected. But .R\{x} is disconnected. Deduce that . R and 

. R2 are not homeomorphic. 
Using the same idea, show that .[a, b], .[a, b[ and .]a, b[ are not homeomorphic 
to each other, and neither is a circle to a parabola. 

7. A connected metric space, such as . R, has one component, itself. At the other 
extreme, in totally disconnected spaces, the components are the single points 
. {a}, e.g., . Q and . Z. 

8. If a subset of X has no boundary (so is closed and open) then it is the union of 
components of X. 

9. Components need not be open sets. 
10. A metric space X in which .Br(x) is connected for any x and any r sufficiently 

small is said to be locally connected. Show that for a locally connected space, 

(a) the components are open in X, 
(b) any convergent sequence converges inside some component, 
(c) if X is also separable, then the components are countable in number.



Chapter 6 
Compactness 

In this final chapter of Part I, we encounter the second major descriptive concept 
available in metric spaces, after connectedness, namely the idea of boundedness 
of a subset, which is what is normally meant when one refers to “finiteness” in 
a geometric sense. This is not meant literally, that is, when one says “a circle is 
finite”, one does not mean that it has a finite number of points, but rather that it 
does not reach out to infinity. Although this notion will be made rigorous in the first 
section, it is not even preserved by homeomorphisms, and therefore is not a proper 
metric characteristic. The concept needs to be strengthened somewhat to arrive at a 
property, called compactness, that is preserved by continuous maps. 

6.1 Bounded Sets 

Definition 6.1 

A set  B is bounded when the distance between any two points in the set has 
an upper bound, 

. ∃r > 0, ∀x, y ∈ B, d(x, y) ⩽ r.

The least such upper bound is called the diameter of the set: 

. diamB := sup
x,y∈B

d(x, y).

diam B 
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The characteristic properties of bounded sets are: 

Proposition 6.2 

Any subset of a bounded set is bounded. 
The union of a finite number of bounded sets is bounded. 

Proof (i) Let B be a bounded set with d(x, y) ⩽ r for any x, y ∈ B. In particular 
this holds for x, y in any subset A ⊆ B, so  A is bounded. 

(ii) Given a finite number of bounded sets B1,. . . ,BN , with diameters r1,. . . ,rN , 
respectively, let r := max(r1, . . . , rN ). Pick a representative point from each set, 
an ∈ Bn, and take the maximum distance between any two, r̃ := maxm,n d(am, an); 
it certainly exists as there are only a finite number of such pairs. Now, for any two 
points x, y ∈ ⋃

n Bn, that is, x ∈ Bi , y ∈ Bj , for  some  i, j , and using the triangle 
inequality twice, 

. d(x, y) ⩽ d(x, ai) + d(ai, aj ) + d(aj , y)

⩽ ri + r̃ + rj

⩽ 2r + r̃ ,

which furnishes an upper bound for the distances between points in
⋃N 

n=1 Bn. 

am 

an 

rm 

rn 

⨅⨆
Examples 6.3 

1. In any metric space, finite subsets are bounded. In N, only the finite subsets are 
bounded. N, Q, R, and C are all unbounded. 

2. In a discrete metric space, every subset is bounded. A metric space may be non-
separable (“large”) yet be bounded. 

3. ▶ A set  B is bounded ⇔ it is a subset of a ball, 

.∃r > 0, ∃a ∈ X, B ⊆ Br(a).
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Proof : Balls (and their subsets) are obviously bounded, 

. ∀x, y ∈ Br(a), d(x, y) ⩽ d(x, a) + d(y, a) < 2r.

Conversely, if a non-empty set is bounded by R >  0, fix any points a ∈ X and 
b ∈ B to conclude B ⊆ Br(a): 

. ∀x ∈ B, d(x, a) ⩽ d(x, b) + d(b, a) < R + 1 + d(b, a) =: r.

4. The set [0, 1[ ∪ ]2, 3[ ⊂  R is bounded because it can be covered by the ball 
B3(0), or because it is the union of two bounded sets. 

5. ▶ Boundedness is not necessarily preserved by continuous functions: If B is 
bounded and f is a continuous function, then f B  need not be bounded. Worse, 
a set may be bounded in one metric space X, but unbounded in a homeomorphic 
copy Y . 
For example, N with the standard metric is unbounded, but its homeomorphic 
copy, N with the discrete metric, is bounded. 

Exercises 6.4 

1. The set [−1, 1[ is bounded in R, with diameter 2; in fact, diam [a, b[ =  b − a. 
2. Show that if A ∩ B /= ∅ then diam(A ∪ B) ⩽ diam(A) + diam(B). 
3. Any closed ball  Br(a) ⊆ { x : d(x, a) ⩽ r } is bounded; hence the closure of a 

bounded set is bounded. 
4. ▶ Cauchy sequences are bounded (Example 4.3(6)). So unbounded sequences 

cannot possibly converge. 
5. ▶ Prove that Lipschitz functions map bounded sets to bounded sets (Exer-

cise 4.18(3)). So equivalent metric spaces have corresponding bounded subsets. 

6.2 Totally Bounded Sets 

We have seen that boundedness is not an intrinsic property of a set, as it is not 
necessarily preserved by continuous functions. Let us try to capture the “finiteness” 
of a set with another definition: 

Definition 6.5 

A subset .B ⊆ X is totally bounded when it can be covered by a finite number 
of .ϵ-balls, however small their radii . ϵ, 

. ∀ϵ > 0, ∃N ∈ N, ∃a1, . . . , aN ∈ X, B ⊆
N
⋃

n=1

Bϵ(an).

(continued)
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Easy Consequences 
1. Any subset of a totally bounded set is totally bounded (the same .ϵ-cover of the 

parent covers the subset). 
2. A finite union of totally bounded sets is totally bounded (the finite collection of 

.ϵ-covers remains finite). 
3. A totally bounded set is bounded (it is a subset of a finite union of bounded balls). 

Examples 6.6 

1. The interval .[0, 1] is totally bounded in . R because it can be covered by the balls 
.Bϵ(nϵ) for .n = 0, . . . , N , where .

1
ϵ

− 1 < N ⩽ 1
ϵ
. 

2. Not all bounded sets are totally bounded. For example, in a discrete metric space, 
any subset is bounded but only finite subsets are totally bounded (take .ϵ < 1). 

3. . ▶ A totally bounded space X is separable. 
Proof : For each .n = 1, 2, . . ., consider finite covers of X by balls .B1/n(ai,n) and 
let .An := {ai,n} be the finite set of the centers, so .A := ⋃∞

n=1 An is countable. 
For any .ϵ > 0 and any point .x ∈ X, let  . 1

n
< ϵ, then x is covered by some ball 

.B1/n(ai,n), i.e., .d(x, ai,n) < ϵ, thus .Ā = X. 
4. The center points . an of the definition may, without loss of generality, be assumed 

to lie in B. Otherwise cover B with balls .Bϵ/2(xn), and take representative points 
.an ∈ B ∩ Bϵ/2(xn) whenever non-empty; then 

. y ∈ B ⇒ d(y, xn) <
ϵ

2
⇒ d(y, an) ⩽ d(y, xn) + d(xn, an) < ϵ,

so .B ⊆ ⋃

n Bϵ(an). 

Proposition 6.7 

A uniformly continuous function maps totally bounded sets to totally 
bounded sets. 

Proof Let .f : X → Y be a uniformly continuous function, 

.∀ϵ > 0, ∃δ > 0, ∀x ∈ X, f [Bδ(x)] ⊆ Bϵ(f (x)).
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Let A be a totally bounded subset of X, covered by a finite number of balls of radius 
. δ, .A ⊆ ⋃N

n=1 Bδ(xn). Then 

. f A ⊆
N
⋃

n=1

f [Bδ(xn)] ⊆
N
⋃

n=1

Bϵ(f (xn)).

⨅⨆
A totally bounded set has more stringent properties than a bounded one: an 

infinite sequence of points in a totally bounded set is caged in, so to speak, with 
nowhere to escape to: 

Theorem 6.8 

A set  B is totally bounded . ⇔ every sequence in B has a Cauchy 
subsequence. 

Proof Let the totally bounded set B be covered by a finite number of balls of radius 
1, and let .{ x1, x2, . . . } be an infinite subset of B. (If  B is finite, a selected sequence 
must take some value . xi infinitely often and so has a constant subsequence.) A finite 
number of balls cannot cover an infinite set of points, unless at least one of the balls, 
.B1(a1), has an infinite number of these points, say .{ x1,1, x2,1, . . . }. 

Now cover B with a finite number of . 12 -balls. For the same reason as above, 
at least one of these balls, .B1/2(a2) covers an infinite number of points of .{xn,1}, 
say the new subset .{ x1,2, x2,2, . . . }. Continue this process forming covers of . 1

m
-

balls and infinite subsets .{xn,m} of .B1/m(am). The sequence .(xn,n) is Cauchy, since 
for .m ⩽ n, both .xm,m and .xn,n are elements of the set .{ x1,m, x2,m, . . . }, and so 
.d(xn,n, xm,m) < 2

m
→ 0 as .n,m → ∞. 

For the converse, start with any .a1 ∈ B. If .Bϵ(a1) covers B then there is a single-
element .ϵ-ball cover. If not, pick . a2 in B but not in .Bϵ(a1). Continue like this to get 
a sequence of distinct points .an ∈ B with .an /∈ ⋃n−1

i=1 Bϵ(ai), all of which are at 
least . ϵ distant from each other. This process cannot continue indefinitely else we get 
a sequence .(an)n∈N whose points are not close to each other, and so has no Cauchy 
subsequence. So after some N steps we must have .B ⊆ ⋃N

i=1 Bϵ(ai). ⨅⨆
Exercises 6.9 

1. . ▶ If X and Y are totally bounded metric spaces, then so is .X × Y . 
(Hint: If .Bϵ(xn) (.n = 1, . . . , N ) cover X and .Bϵ(ym) (.m = 1, . . . , M) cover Y , 
show that every point .(x, y) ∈ X×Y lies in .B2ϵ(xi, yj ) for some .i ⩽ N, j ⩽ M .) 

2. . ▶ In . Rn (and . Cn), a set is bounded . ⇔ it is totally bounded. 
(Hint: Show that if B is a bounded set in . Rn, with a bound .R > 0, then B is a 
subset of .[−R,R]n, which is totally bounded by the previous exercise.) 

3. The set of values of a Cauchy sequence is totally bounded. 
4. The closure of a totally bounded set is totally bounded.
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5. Let .B ⊆ Y ⊆ X, then B is totally bounded in .Y ⇔ it is totally bounded in X 
(See Proposition 2.12). 

6. Any bounded sequence in . Rn (or . Cn) contains a convergent subsequence. 
7. A continuous function .f : X → Y , with X, Y complete metric spaces, maps 

totally bounded subsets of X to totally bounded subsets of Y . (Hint: Consider a 
sequence in f B  for a totally bounded set .B ⊆ X.) 

6.3 Compact Sets 

In the presence of completeness, continuous functions preserve totally bounded sets. 
Alternatively, we can strengthen the definition of boundedness even further to a 
property that is preserved by continuous functions; such a property is compactness, 
but it will emerge that compact sets are precisely the complete and totally bounded 
subsets. 

Definition 6.10 

A set  K is said to be compact when given any cover of balls (of possibly 
unequal radii), there is a finite sub-collection of them that still cover the set (a 
subcover), 

. K ⊆
⋃

i

Bϵi
(ai) ⇒ ∃N, ∃i1, . . . , iN , K ⊆

N
⋃

n=1

Bϵin
(ain).

Examples 6.11 

1. Any finite set, including . ∅, is compact. 
2. The subset .[0, 1[ ⊂ R is totally bounded but not compact. For example, the cover 

using balls .B1−1/n(0) for .n = 2, . . . has no finite subcover. On the other hand, 
we will soon see that the closed intervals .[a, b] are compact. 

3. . ▶ Compact metric spaces are totally bounded, and so bounded and separable 
(consider the cover by all .ϵ-balls). Thus, . R and . N are not compact. 

An equivalent formulation of compactness is the following. 

Proposition 6.12 

A set is compact . ⇔ any open cover of it has a finite subcover. 

By an open cover is meant a cover consisting of open sets, .K ⊆ ⋃

i Ai (. Ai open 
subsets of X).
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Proof Let open sets . Ai cover a compact set, .K ⊆ ⋃

j Aj . Each open set . Aj consists 
of a union of balls. It follows that K is included in a union of balls. By the definition 
of compactness, there is a finite number of these balls .Bϵ1(a1), . . . , BϵN

(aN) that 
still cover the set K . Each of these balls is inside one of the open sets, say . Bϵi

(ai) ⊆
Aji

, and 

. K ⊆
N
⋃

i=1

Bϵi
(ai) ⊆

N
⋃

i=1

Aji

as claimed. 
Conversely, suppose K is such that any open cover of it has a finite subcover. 

This holds in particular for a cover of (open) balls, so K is compact. 
⨅⨆

We will soon strengthen the following proposition to show that compact sets are 
complete, but the following proof is instructive, and remains valid in more general 
topological spaces: 

Proposition 6.13 

Compact sets are closed. 

Proof Let K be compact and .x ∈ X\K . To show  x is exterior to K , we need to 
surround it by a ball outside K . We know that x can be separated from any . y ∈ K

by disjoint open balls .Bry (x) and .Bry (y) (Proposition 2.5). Since .y ∈ Bry (y), these 
latter balls cover K . But  K is compact, so there is a finite sub-collection of these 
balls that still cover K , 

. K ⊆ Br1(y1) ∪ · · · ∪ BrN (yN).

Now let .r := min{ r1, . . . , rN }; then .Br(x) ∩ K = ∅ since 

. z ∈ Br(x) ⇒ z ∈ Bri (x) for i = 1, . . . , N

⇒ z /∈ Br1(y1) ∪ · · · ∪ BrN (yN) ⊇ K.

Therefore, .x ∈ Br(x) ⊆ X\K . ⨅⨆

Proposition 6.14 

A closed subset of a compact set is compact. 
A finite union of compact sets is compact.
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Proof (i) Let F be a closed subset of a compact set K , and let the open sets . Ai

cover F ; then 

. K ⊆ F ∪ (X\F) ⊆
⋃

i

Ai ∪ (X\F).

The right-hand side is the union of open sets since .X\F is open when F is closed. 
But K is compact and therefore a finite number of these open sets are enough to 
cover it, 

. K ⊆
N
⋃

i=1

Ai ∪ (X\F), so F ⊆
N
⋃

i=1

Ai.

(ii) Let the open sets . Ai cover the finite union of compact sets .K1 ∪ · · · ∪ KN . Then 
they cover each individual . Kn, and a finite number will then suffice in each case, 
.Kn ⊆ ⋃Rn

k=1 Aik . For .n = 1, . . . , N , the collection of chosen . Aik remains finite, and 
together cover all the . Kn. ⨅⨆

Compactness is robust enough a concept that it is preserved by continuous 
functions; it is thus a truly intrinsic property of a set, as any homeomorphic copy of 
a compact set must also be compact. 

Proposition 6.15 

Continuous functions map compact sets to compact sets, 

. f : K ⊆ X → Y continuous AND K compact ⇒ f K compact.

Proof Let the sets . Ai be an open cover for f K , 

. f K ⊆
⋃

i

Ai .

From this can be deduced 

. K ⊆ f −1[
⋃

i

Ai] =
⋃

i

f −1Ai.

But .f −1Ai are open sets since f is continuous (Theorem 3.8). Therefore the right-
hand side is an open cover of K . As  K is compact, a finite number of these open
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sets will do to cover it, 

. K ⊆
N
⋃

k=1

f −1Aik .

It follows that there is a finite subcover, .f K ⊆ ⋃N
k=1 Aik , as required to show f K  

compact. ⨅⨆
To summarize some previous results, 

Continuous functions preserve compactness, 
Uniformly continuous functions preserve total boundedness, 
Lipschitz continuous functions preserve boundedness. 

An immediate corollary is this statement from classical real analysis: 

Corollary 6.16 

Let .f : K → R be a continuous function on a compact space K. Then its 
image f K  is bounded, and the function attains its bounds, 

. ∃x0, x1 ∈ K, ∀x ∈ K, f (x0) ⩽ f (x) ⩽ f (x1).

Proof The image f K  is compact, and so bounded, .f K ⊆ BR(0), i.e., . |f (x)| ⩽ R

for all .x ∈ K . Moreover compact sets are closed and so contain their boundary 
points. In particular f K  contains .inf f K and .sup f K (Example 2.8(3)), i.e., 
.inf f K = f (x0), .sup f K = f (x1) for some .x0, x1 ∈ K . ⨅⨆

A property that holds locally, i.e., in a ball around any point, will often also 
hold in a compact set by using a finite number of these balls. As an example of 
this, consider a continuous function with compact domain. By the definition of 
continuity, any x in the domain is surrounded by a small ball .Bδx (x) on which the 
function varies by at most a small fixed amount . ϵ; on a compact domain, a finite 
number of these balls and radii suffice to cover the set, so a single . δ can be chosen 
irrespective of x. More formally: 

Proposition 6.17 

Any continuous function, .f : K → Y , from a compact space to a metric 
space is uniformly continuous. 
If, moreover, f is bijective, then f is a homeomorphism.
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Proof (i) By continuity of f , every .x ∈ K has a . δx for which . f Bδx (x) ⊆ Bϵ(f (x))

(Theorem 3.8). As a preliminary step, the balls .Bδx/2(x) cover K as x varies over 
K , so it has a finite subcover, from which can be chosen the smallest value of . δ. 

Now let .a, b ∈ K be any points with .d(a, b) < δ/2. The point a is covered by a 
ball .Bδx/2(x) from the finite list. Indeed, .Bδx (x) covers b as well since 

. d(x, b) ⩽ d(x, a) + d(a, b) < δx/2 + δ/2 ⩽ δx.

As both a and b belong to .Bδx (x), their images under f satisfy . f (a), f (b) ∈
Bϵ(f (x)), so that 

. d(f (a), f (b)) ⩽ d(f (a), f (x)) + d(f (x), f (b)) < 2ϵ.

This inequality was achieved with one . δ independently of a and b, so  f is uniformly 
continuous. 

(ii) If f is continuous and onto, then .Y = f K is compact. But when in addition it 
is also 1–1, it preserves open sets: if A is open in K , then .K\A is closed, hence 
compact, in K; this is mapped 1–1 to the closed compact set .f [K\A] = Y\f A, 
implying that f A  is open in Y . This is precisely what is needed for .f −1 to be 
continuous, and thus for f to be a homeomorphism. ⨅⨆

We are now ready for some concrete examples, starting with that of . R, the  
simplest non-trivial complete space. 

Proposition 6.18 (Heine-Borel’s Theorem) 

The closed interval .[a, b] is compact in . R. 

Proof Let .
⋃

i Ai ⊇ [a, b] be an open cover of the closed interval. We seek to obtain 
a contradiction by supposing there is no finite subcover. One of the two subintervals 
.[a, (a+b)/2] and .[(a+b)/2, b] (and possibly both) does not admit a finite subcover: 
call it .[a1, b1]. Repeat this process of dividing, each time choosing a nested interval 
.[an, bn] of length .(b − a)/2n which does not admit a finite subcover. 

Now .(an)n∈N and .(bn)n∈N are asymptotic Cauchy sequences, which must 
therefore converge to the same limit, say, .an → x and .bn → x (Example 4.3(3), 
Proposition 4.2 and Theorem 4.5). This limit x is in the set .[a, b] (Proposition 3.4) 
and is therefore covered by some open set . Ai0 . As an interior point of it, x can be 
surrounded by an .ϵ-ball (in this case, an interval) 

. x ∈ Bϵ(x) ⊆ Ai0 .

But .an → x and .bn → x imply that there is an N such that .aN, bN ∈ Bϵ(x), and 
so .[aN, bN ] ⊆ Bϵ(x) ⊆ Ai0 . This contradicts how .[aN, bN ] was chosen not to be
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covered by a finite number of . Ai’s, so there must have been a finite subcover to start 
with. ⨅⨆
Combined with Proposition 6.15, Theorem 5.5, Proposition 5.6, and Proposi-
tion 6.13, this proposition implies that any continuous real function maps intervals 
of type .[a, b] to intervals of the same type. The Heine-Borel theorem generalizes 
readily to arbitrary metric spaces. 

Theorem 6.19 

A set  K is compact . ⇔ K is complete and totally bounded. 

Proof Compact sets are totally bounded: Let  K be a compact set. For any .ϵ > 0, 
cover K with the balls .Bϵ(x) for all .x ∈ K . This open cover has a finite sub-cover. 
Compact sets are complete: Let .(xn)n∈N be a Cauchy sequence which has no limit 
in K , so that for each .x ∈ K , 

. ∃ϵ > 0, ∀N, ∃n ⩾ N, d(xn, x) ⩾ ϵ.

For this . ϵ (which may depend on x), 

. ∃M, n,m ⩾ M ⇒ d(xn, xm) < ϵ/2,

∴ ϵ ⩽ d(xn, x) ⩽ d(xn, xm) + d(xm, x) < ϵ/2 + d(xm, x),

∴ m ⩾ M ⇒ d(xm, x) ⩾ ϵ/2.

For .m < M , the distances .d(xm, x) take only a finite number of values. Hence, 
for each .x ∈ K , there is a small enough ball .Br(x)(x) which contains no points . xn

unless .xn = x. This gives an open cover of K , which must have a finite sub-cover. 
But this implies that the sequence takes a finite set of values and so must eventually 
repeat and converge (Exercise 4.11(4)). In any case, there must be a limit in K . 
Complete and totally bounded sets are compact: Let K be a complete and totally 
bounded set. Suppose it to be covered by open sets . Vi , but that no finite number of 
these open sets is enough to cover K . Since K is totally bounded, 

. K ⊆
N
⋃

i=1

B1(yi)

for some .yi ∈ K (Example 6.6(4)). If each of these balls were covered by a finite 
number of the open sets . Vi , then so would K . So at least one of these balls needs an 
infinite number of . Vi’s to cover it; let us call this ball .B1(x1). 

Now consider .B1(x1)∩K , also totally bounded. Once again, it can be covered by 
a finite number of balls of radius . 1/2, one of which does not have a finite subcover,
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say .B1/2(x2). Repeat this process to get a nested sequence of balls .B1/2n(xn), with 
.xn ∈ K , none of which has a finite subcover. The sequence .(xn)n∈N is Cauchy since 
.d(xn, xm) < 1/2n (for .m > n), and K is complete, hence .xn → x in K . 

But x is covered by some open set . Vi0 . Therefore there is an .ϵ > 0 such that 

. x ∈ Bϵ(x) ⊆ Vi0 .

Moreover since .1/2n → 0 and .xn → x, an  N can be found such that . 1/2N < ϵ/2
and .d(xN, x) < ϵ/2, so that for .d(y, xN) < 1/2N , 

. d(y, x) ⩽ d(y, xN) + d(xN, x) < ϵ

i.e., B1/2N (xN) ⊆ Bϵ(x) ⊆ Vi0 ,

which contradicts the way that the balls .B1/2n(xn) were chosen. ⨅⨆

Corollary 6.20 

In a complete metric space, a subset K is compact . ⇔ K is closed and 
totally bounded. 
In . Rn, K is compact . ⇔ K is closed and bounded. 

Proof In a complete metric space, a subset is complete if, and only if, it is closed 
(Proposition 4.7). 

In the complete space . Rn, a set is totally bounded if, and only if, it is bounded 
(Exercise 6.9(2)). Note carefully that this remains true whether the distance is 
Euclidean, . D1, or .D∞ (Example 2.2(6)). ⨅⨆

Theorem 6.21 (Bolzano-Weierstraß Property) 

In a metric space, a subset K is compact 

. ⇔ every sequence in K has a subsequence that converges in K 

. ⇔ every infinite subset of K has a limit point in K . 

Proof We prove the logical equivalences in a cyclic manner. 

(i) A compact set is totally bounded, and so every sequence in it has a Cauchy 
subsequence (Theorem 6.8). But compact metric spaces are also complete, implying 
convergence of this subsequence in K . 

(ii) Let A be an infinite subset of K , and select a sequence of distinct terms 
.a1, a2, . . . in A. Assuming that every sequence in K has a convergent subsequence, 
then .ani

→ a ∈ K , as  .i → ∞. For any ball .Bϵ(a), there are an infinite number of
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points .ani
∈ Bϵ(a), making a a limit point of A (a can be equal to at most one of 

these distinct points). Thus K satisfies the Bolzano-Weierstraß property that every 
infinite subset has a limit point in K . 

(iii) Let K have the Bolzano-Weierstraß property, let .(xn)n∈N be any sequence in 
K and let A be the set of its values .{ x0, x1, x2, . . . }. If  A is infinite, then it has a 
limit point .x ∈ K and so there is a convergent subsequence .xn → x with . xn ∈ A

(Proposition 3.4). Otherwise, if A is finite, one can pick a constant subsequence. In 
either case there is a (Cauchy) convergent subsequence in K . 

This shows, firstly, that K is totally bounded, and secondly, that every Cauchy 
sequence in K converges in K (Exercise 4.11(10)), that is, K is complete. Complete 
and totally bounded subsets are compact. ⨅⨆
Exercises 6.22 

1. A compact set that consists of isolated points is finite. 
2. In . Z, and any discrete metric space, the compact subsets are finite. 
3. Show that .[0, 1] ∩Q is closed and totally bounded in . Q but not compact. (Hint: 

First show that .[0, r[ ∩ Q is not compact when r is irrational.) 
4. Every bounded real sequence has a convergent subsequence. Show this in two 

ways: (i) by bisecting intervals and choosing one that has an infinite number of 
values, (ii) using the Bolzano-Weierstraß property. 

5. (Cantor) Let . Kn be a decreasing nested sequence of non-empty compact sets. 
If .

⋂

n Kn = ∅ then .X\Kn (.n = 2, 3, . . .) form an open cover of . K1. Deduce 
that .

⋂

n Kn is compact and non-empty. Moreover, if .diamKn → 0 then . 
⋂

n Kn

consists of a single point. 
6. The Cantor set is compact, totally disconnected, and has no isolated points 

(Exercise 2.20(7)). (In fact, it is the only non-empty space with these properties, 
up to homeomorphism.) 

7. The least distance between a compact set and a disjoint closed subset of a metric 
space is strictly positive. 

8. Suppose K is a compact subset of . R2 which lies in the half-plane . { (x, y) : x >

0 }. Show that the open disks with centers .(x + x−1, 0) and radii .x > 1 cover 
the half-plane, and deduce that K is enclosed by a circle that does not meet the 
y-axis. 

9. The circle . S1 is compact; more generally, any continuous path .[0, 1] → X has 
a compact image. 

10. Show that there can be no continuous map (i) .S1 → [0, 2π [ which is onto, or 
(ii) .S

1 → R which is 1–1. 
11. A continuous function .f : R2 → R takes a maximum, and a minimum, value 

on a continuous path .γ : [0, 1] → R
2. For example, there is a maximum and a 

minimum distance between points on the path and the origin. Give an example 
to show that this is false if .[0, 1] is replaced by .] 0, 1]. 

12. If .f : X → K is bijective and continuous, and K is compact, it does not 
follow that X is compact. Show that the mapping .f (θ) := (cos θ, sin θ) for 
.0 ⩽ θ < 2π , is a counter-example.



86 6 Compactness

13. Generalize the Heine-Borel theorem to closed rectangles .[a, b]×[c, d] in . R2, by  
repeatedly dividing it into four sub-rectangles and adapting the same argument 
of the proof. Can you extend this further to . Rn? 

14. . ▶ The spheres and the closed balls in . Rn are compact. 
15. Verify that .[a, b] ∩ Q is not compact by finding an infinite set of rational 

numbers in .[a, b] that does not have a rational limit point. 
16. Let .f : RN → R

N be a continuous function; consider the following iteration 
.xn+1 := f (xn)/|f (xn)| of mapping by f and normalizing. Show that there is 
a convergent subsequence (one for each limit point), assuming .f (xn) /= 0. 

17. . ▶ If X, Y are compact metric spaces then so is .X × Y . 
18. It is instructive to find an alternative proof that a continuous function maps a 

compact set to a compact set, using the BW property. 

6.4 The Space C(X, Y) 

The last section of this chapter is, in a sense, the culmination of Part I as it brings 
many strands together to tackle problems related to convergence of functions. To 
appreciate the difficulty involved, note that if we were to define .fn → f to mean 
pointwise convergence, that is, .fn(x) → f (x) for all .x ∈ X, then no metric is 
involved and we could get an incomplete space: Even if we restrict to functions 
.[0, 1] → [0, 1], the polynomials . tn converge pointwise to a discontinuous function 
as .n → ∞. 

But there is a way to turn the set of continuous functions .f : [0, 1] → C into 
a complete metric space .C[0, 1], thereby giving one precise meaning to .fn → f . 
In fact, we consider the more general case of bounded functions from any set to a 
metric space. A bounded function is one such that .im f is bounded in the codomain 
Y , that is, 

. ∃r > 0, ∀a, b ∈ X, dY (f (a), f (b)) ⩽ r.

Theorem 6.23 

The space of bounded functions from a set X to a metric space Y is itself 
a metric space, with distance defined by 

. d(f, g) := sup
x∈X

dY (f (x), g(x)),

which is complete when Y is. 

It contains the closed subspace .Cb(X, Y ) of bounded continuous func-
tions, when X is a metric space.
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Proof Distance: The distance is well-defined because if .im f and .im g are bounded, 
then so is their union, and .dY (f (x), g(x)) ⩽ diam(im f ∪ im g) for all .x ∈ X. 

That d satisfies the distance axioms follows from the same properties for . dY ; 

. d(f, g) = 0 ⇔ ∀x ∈ X, dY (f (x), g(x)) = 0

⇔ ∀x ∈ X, f (x) = g(x)

⇔ f = g,

. d(f, g) = sup
x∈X

dY (f (x), g(x))

⩽ sup
x∈X

(

dY (f (x), h(x)) + dY (h(x), g(x))
)

⩽ sup
x∈X

dY (f (x), h(x)) + sup
x∈X

dY (h(x), g(x)) (Exercise 3.6(7b)) 

= d(f, h) + d(h, g). 

The axiom of symmetry .d(g, f ) = d(f, g) is easily verified. 

Completeness: Let .fn : X → Y be a Cauchy sequence of bounded functions, then 
for every .x ∈ X, 

. dY (fn(x), fm(x)) ⩽ d(fn, fm) → 0, as n,m → ∞

so .(fn(x)) is a Cauchy sequence in Y . When Y is complete, .fn(x) converges to, say, 
.f (x). 

Normally, this convergence would be expected to depend on x, being slower for 
some points than others. In this case however, the convergence is uniform, as the  
generic distance .d(fn, fm) := supx dY (fn(x), fm(x)) converges to 0. So given any 
.ϵ > 0 there is an N , such that .dY (fn(x), fm(x)) < ϵ/2 for any .n,m ⩾ N and any 
.x ∈ X. For each x, we can choose .m ⩾ N , dependent on x and large enough so that 
.dY (fm(x), f (x)) < ϵ/2, and this implies 

.∀x ∈ X, dY (fn(x), f (x)) ⩽ dY (fn(x), fm(x))+ dY (fm(x), f (x)) < ϵ (6.1) 

for any .n ⩾ N . Since this N is independent of x, it follows  that .d(fn, f ) → 0. 
The function f is bounded because for any .x, y ∈ X, using  (6.1), 

. dY (f (x), f (y)) ⩽ dY (f (x), fN(x)) + dY (fN(x), fN(y)) + dY (fN(y), f (y))

< ϵ + RfN
+ ϵ (6.2) 

with N independent of x and y, and where .RfN
is the diameter of .im fN .
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.Cb(X, Y ) is closed: If X is a metric space and . fn are continuous, then this same 
inequality (6.2) shows that f is also continuous: if . δN is small enough, then 

. dX(x, y) < δN ⇒ dY (fN(x), fN(y)) < ϵ

⇒ dY (f (x), f (y)) < 3ϵ,

so that .fn → f ∈ Cb(X, Y ). ⨅⨆
Any continuous function on a compact space is automatically bounded, so 

.Cb(K, Y ) = C(K, Y ), when K is compact. Moreover, we often write .C(K) for 
the complete metric space .Cb(K,C). 

The convergence .fn → f in .Cb(X, Y ) is called uniform convergence. It is much 
stronger than pointwise convergence .∀x ∈ X, fn(x) → f (x); since . d(fn, f ) =
supx d(fn(x), f (x)) is decreasing to 0, . fn approximates f for large n at all values 
of x uniformly. 

Having created these metric spaces of continuous functions, we can explore 
what properties they may have: connectedness, compactness, etc. Let us start with 
separability. Recall that continuous functions on a compact domain are uniformly 
continuous (Proposition 6.17). Thus any ball of a fixed radius . δ is mapped by 
a real-valued continuous function f into a ball of radius . ϵ. So, if . [a, b] ⊂ R

is partitioned into intervals .[xi, xi + δ[, then f maps each into an interval of 
length at most . ϵ. Letting f take a constant value .f (xi) on each interval gives a 
uniform approximation by a “step” function. Of course, step functions are usually 
discontinuous. We can improve the approximation by constructing a function 
consisting of straight-line segments from one end-point .(xi, f (xi)) to the next 
.(xi+δ, f (xi+δ)). In fact, extending this idea further, one can find quadratic or cubic 
polynomial fits, called “splines” that are widely used to approximate real continuous 
functions. Such a line of argument does give a valid proof that .C[a, b] is separable; 
in fact one can even generalize it to show that .C(K) is separable whenever K is a 
compact metric space. Stone’s theorem goes further than splines and shows that the 
complex-valued functions on any compact subset K of . C can be approximated by 
polynomials on K . 

Karl Weierstraß (1815–1897) After belatedly becom-
ing a secondary school mathematics teacher at 26 years, 
Weierstraß privately studied Abel’s exposition of inte-
grals and elliptic functions, until in 1854 he wrote a 
paper on his work and was given an honorary degree 
by the University of Königsberg. He then became 
famous with his programme of “arithmetization” of 
analysis: the construction of the real numbers, the rig-
orous derivation of calculus and calculus of variations, 
including a precise definition of uniform continuity; and 
his example of a function that is continuous but nowhere 
differentiable.
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Theorem 6.24 (Stone–Weierstraß) 

The polynomials (in z and . ̄z ) are dense in .C(K), when .K ⊂ C is compact. 

Proof The proof is in five steps. The first two steps show that if a real-valued 
function .f ∈ C(K) can be approximated by a polynomial p, then another 
polynomial can be found that approximates . |f |. Since the maximum of two 
functions .max(f, g) can be written in terms of .|f − g|, it can also be approximated 
by polynomials if f and g can. The fourth step, which is the main one, shows how 
a piecewise-linear approximation of .f ∈ C(K) can be written in terms of .max and 
. min. Together these steps prove that the polynomials .R[x, y] are dense in the space 
of real continuous functions on K . The final step extends this to complex-valued 
continuous functions. 

(i) There are real polynomials that approximate . |t | on .−1 ⩽ t ⩽ 1: For example, 
let .q1(t) := t2, .q2(t) := 2t2 − t4,  . . . ,  defined iteratively by 

. qn+1(t) := qn(t) + (t2 − qn(t)
2), starting from q0(t) := 0.

Let .yn := qn(t) for brevity, where .0 < t < 1. Notice that 

. yn+1 − t = yn − t − (yn − t)(yn + t)

= (yn − t)(1 − t − yn).

When .|yn − t | ⩽ |y1 − t | = t − t2, we get 

. 

0 < t2 ⩽ yn ⩽ 2t − t2 < 1
⇒ −t < 1 − t − yn < 1 − t

⇒ |yn+1 − t | ⩽ c|yn − t |

where .c := max(t, 1 − t) < 1. 

− 1 1 

By induction, it follows that as .n → ∞, 

.|yn+1 − t | ⩽ cn|y1 − t | → 0.
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The special cases .t = 0 and .t = 1 converge immediately to 0 and 1 respectively, 
while .qn(t) → |t | when .t ∈ [−1, 0 [ by the symmetry of the expression in the 
definition of . qn. 

Moreover, the convergence is uniform in t (certainly for .0 ⩽ t < ϵ and . 1 − ϵ <

t ⩽ 1, but for the other positive values of t it takes at most .−2 log ϵ/ϵ iterates for 
.|yn − t | ⩽ cnt < ϵ). 

(ii) Let .f ∈ C(K,R) (.f /= 0) with .c := maxx∈K |f (x)| + 1 > 0 (Corollary 6.16). 
By the above, let .q̃(u) := cq(u/c), then for .u ∈ [−c, c], 

.
∣

∣ |u| − q̃(u)
∣

∣ = ∣

∣ c|u/c| − cq(u/c)
∣

∣ < cϵ. (6.3) 

Note that . q̃ is uniformly continuous on .[−1, 1], 

. ∀ϵ > 0, ∃δ > 0, ∀u1, u2 ∈ [−c, c]
|u1 − u2| < δ ⇒ |q̃(u1) − q̃(u2)| < ϵ. (6.4) 

If the polynomial p approximates f to within . δ, it can be expected that . q̃ ◦ p

approximates . |f | on .C(K). This indeed holds since, for any .x ∈ K , 

.
∣

∣|f (x)| − q̃ ◦ p(x)
∣

∣ ⩽
∣

∣|f (x)| − q̃ ◦ f (x)
∣

∣ + |q̃ ◦ f (x) − q̃ ◦ p(x)|. (6.5)

⩽ cϵ + ϵ (by (6.3) and (6.4)), (6.6) 

∴ d(f, q̃ ◦ p) ⩽ (c + 1)ϵ

(iii) For real functions, define .max(f, g)(x) := max(f (x), g(x)) as well as 
.min(f, g)(x) := min(f (x), g(x)); a short exercise shows that 

. max(f, g) = (f + g + |f − g|)/2, min(f, g) = (f + g − |f − g|)/2.

If f and g can be approximated by polynomials, then so can their sum and 
difference, and by (ii), also .|f − g|, and hence .max(f, g) and .min(f, g). 

(iv) The real polynomials are dense among the real continuous functions .C(K,R): 
Let .f ∈ C(K,R); for any .z /= w in K , there is a linear function (a polynomial) 
.pz,w which agrees with f at the points .z,w, i.e., .pz,w(z) = f (z), .pz,w(w) = f (w). 
For a fixed z, let  

. Uz,w := { a ∈ K : pz,w(a) < f (a) + ϵ } = (f − pz,w)−1]−ϵ,∞[

a non-empty open set (since .f − pz,w is continuous and .Uz,w contains z). As . w ∈
Uz,w, we have  .K ⊆ ⋃

z /=w Uz,w; but  K is compact so it can be covered by a finite 
number of subsets of this open cover, 

.K = Uz,w1 ∪ · · · ∪ Uz,wM
.
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Let .gz := min(pz,w1 , . . . , pz,wM
) < f +ϵ; it is continuous and can be approximated 

by polynomials, from (iii). Now let 

x y 
Ux,y 

f 

px,y 

. Vz := { a ∈ K : gz(a) > f (a) − ϵ } = (f − gz)
−1]−∞, ϵ[

a non-empty open set (.f − gz is continuous, and .z ∈ Vz). Once again, .K ⊆ ⋃

z Vz, 
and so .K = Vz1 ∪ · · · ∪ VzN

. Let  .h := max(gz1 , . . . , gzN
), a continuous function 

which can be approximated by polynomials, since . gzi
can. Furthermore . f − ϵ <

h < f + ϵ; and as this holds uniformly in z, we have .d(f, h) < ϵ. 

(v) The set of polynomials in z and . ̄z is dense in .C(K): If  .f ∈ C(K) is complex-
valued, then it can be written as .f = u + iv with u, v real-valued and continuous, 
that can be approximated by real polynomials p, q, say. Then, 

. ∀z ∈ K, |(p(z) + iq(z)) − (u(z) + iv(z))| ⩽ |p(z) − u(z)| + |q(z) − v(z)|
⇒ d(p + iq, u + iv) ⩽ d(p, u) + d(q, v)

shows that .p + iq approximates f . But  is, say, .x2y + i(x3 − xy2) a polynomial in 
z? Not necessarily: for example, take the polynomial x itself and suppose . Re(z) =
x = amzm + · · · + anz

n with .am /= 0 being the first non-zero coefficient; then . am =
limz→0

x
zm , but .Re(z)/zm can be made real or imaginary, so .am = 0, a contradiction. 

Nevertheless, writing .x = (z+z̄)/2 and .y = (z−z̄)/2i shows that every polynomial 
.p(x, y) + iq(x, y) is a polynomial in z and . ̄z. ⨅⨆
An immediate corollary is that .C(K) is separable, since the polynomials with 
rational coefficients are dense in the subspace of polynomials. 

When is a subset of functions compact? The last theorem in this section 
characterizes the totally bounded sets of the space .C(K, Y ) of continuous functions 
on a compact space K . Returning to the example of the polynomials . tn not 
converging uniformly to 0 on .[0, 1], it must be the case that the set .{tn : n ∈ N} is 
not totally bounded in .C[0, 1], otherwise there would be a convergent subsequence. 
The problem appears to arise because of the large slopes that they have near to .t = 1;
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. tn is uniformly continuous in t but not in n. The next definition remediates this with 
a property of families of functions: 

Definition 6.25 

A subset .F ⊆ C(X, Y ) of continuous functions on metric spaces is said to be 
equicontinuous when 

. ∀ϵ > 0, ∃δ > 0, ∀f ∈ F, ∀x, x' ∈ X, d(x, x') < δ ⇒ d(f (x), f (x'))< ϵ.

Theorem 6.26 (Arzelà-Ascoli) 

Let K and Y be metric spaces, with K compact. Then 

.F ⊆ C(K, Y ) is totally bounded . ⇔ FK is totally bounded in Y and F is 
equicontinuous. 

FK  denotes the set .{ f (x) : f ∈ F, x ∈ K }. 
Proof (i) Let F be a totally bounded subset of .C(K, Y ). This means that for any 
.ϵ > 0, there are a finite number of continuous functions .f1, . . . , fn ∈ F that are 
close to within . ϵ of every other function in F . 

FK is totally bounded: Let .ϵ > 0 be arbitrary. Each .fiK is compact (Proposi-
tion 6.15), so .

⋃n
i=1 fiK is totally bounded (Proposition 6.14 and Theorem 6.19), 

and covered by a finite number of balls .Bϵ(yj ), .j = 1, . . . , m. This means that for 
every .x ∈ K and .i = 1, . . . , n, .fi(x) is close to some .yj ∈ Y . Combining this with 
the fact that any function .f ∈ F is close to some . fi , gives  

. d(f (x), yj ) ⩽ d(f (x), fi(x)) + d(fi(x), yj ) < 2ϵ.

Thus each .f (x), where .f ∈ F and .x ∈ K , is close to some . yj (j depends on x and 
f ), in other words the finite number of balls .B2ϵ(yj ) cover FK . 

F is equicontinuous:We have seen previously that functions .f ∈ C(K), in particular 
. fi , are uniformly continuous (Proposition 6.17): each .ϵ > 0 gives parameters . δi . 
But we can say more. Since there are only a finite number of the functions . fi , the  
minimum .δ := mini δi can be chosen such that 

.∀ϵ > 0, ∃δ > 0, ∀i, ∀x, x' ∈ K, d(x, x') < δ ⇒ d(fi(x), fi(x
')) < ϵ.



6.4 The Space C(X, Y ) 93

Marshall Stone (1903–1989) Stone studied at Harvard 
under Birkhoff (1926), with a thesis on ordinary differ-
ential equations and orthogonal expansions (Hermite, 
etc.). He then worked on spectral theory in Hilbert 
spaces, obtaining his big breakthrough in 1937 when 
he generalized the Weierstrass approximation theorem, 
which led him to the Stone-Čech compactification the-
ory. 

But indeed this works for any .f ∈ F : 

. ∀ϵ > 0, ∃δ > 0, ∀f ∈ F, ∀x, x' ∈ K, d(x, x') < δ ⇒
d(f (x), f (x')) ⩽ d(f (x), fi(x)) + d(fi(x), fi(x

')) + d(fi(x
'), f (x')) < 3ϵ.

The equi in equicontinuous refers to the fact that . δ is independent of .f ∈ F . 

(ii) Let FK  be totally bounded and F be equicontinuous. Then FK  can be covered 
by a finite number of balls .Bϵ(yj ), .j = 1, . . . , m, i.e., any value .f (x) for . f ∈ F

and .x ∈ K is close to some . yj to within . ϵ. ‘F is equicontinuous’ means that for 
any .ϵ > 0, the distance .d(f (x), f (x')) < ϵ for any .f ∈ F , whenever x and . x' are 
sufficiently close together to within some .δ > 0 that does not depend on x, . x', or  
f . We also require that K is totally bounded, so that it can be covered by a finite 
number of balls of diameter . δ. By removing any overlaps between the balls, we can 
replace them by a finite partition of subsets . Bi , .i = 1, . . . , n, each of diameter at 
most . δ. 

For any .f ∈ F and .x ∈ Bi , .f (x) is close to some . yj , .d(f (x), yj ) < ϵ. Indeed, 
for any other .x' ∈ Bi , we have  

. d(f (x'), yj ) ⩽ d(f (x'), f (x)) + d(f (x), yj ) < 2ϵ,

because .d(x, x') ⩽ δ and F is equicontinuous. In other words, the function f maps 
each . Bi into a ball .B2ϵ(yj ) (j depending on i), and the whole partitioned space K 
into some of these balls. That is, we know f to within the approximation . 2ϵ, if we  
know precisely how it maps each . Bi to which ball .B2ϵ(yj ); this is equivalent to 
an “encoding” .i I→ j from .i = 1, . . . , n to .j = 1, . . . , m. There are at most . mn

such maps, although not all need be represented by the functions in F . For those 
combinations that are in fact represented by functions in F , select one from each 
and denote it by . gk , .k = 1, . . . , N . 

Going back to .f ∈ F , with an encoding .i I→ j , pick . gk with the same encoding. 
Then for any .x ∈ K , pick . yj close to .f (x) (and .gk(x)), 

.d(f (x), gk(x)) ⩽ d(f (x), yj ) + d(yj , gk(x)) < 4ϵ
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and taking the supremum over x, we have  .d(f, gk) ⩽ 4ϵ. To summarize, the finite 
number of functions . gk are close to within . 4ϵ to any function .f ∈ F , so that F is 
totally bounded. ⨅⨆
Examples 6.27 

1. If .fn : [0, 1] → R are continuous, uniformly bounded (.|fn(x)| ⩽ c for all 
.x ∈ [0, 1], .n ∈ N) and equicontinuous, then there is a subsequence that converges 
uniformly to a continuous function. 
Proof : The sequence .(fn)n∈N belongs to .C[0, 1], a complete metric space with 
the supremum metric. The set .F := {fn : n ∈ N} is bounded by c, so  . F [0, 1] ⊆
[−c, c], a totally bounded set in . R. Since F is also equicontinuous, it follows 
by the Arzelà-Ascoli theorem, that F is totally bounded. Therefore it contains a 
Cauchy subsequence, which converges (uniformly) in .C[0, 1]. 

2. Suppose .fn : K → R
n are continuous functions on a compact space K , 

converging pointwise to f . If  . fn are equicontinuous and uniformly bounded, 
then f is also continuous. 
Proof : As in the example above, . fn has a uniformly convergent subsequence 
.fni

→ g in .C(K,Rn). But  .∀x ∈ K , .fni
(x) → f (x), so  .f = g, which is 

continuous. 

Exercises 6.28 

1. For the space .C[0, 1], (i) describe the ball .Br(f ), and (ii) show it is connected. 
(Hint: Consider .(1 − t)f + tg.) 

2. Show that .Cb(X,C) contains the closed subset .Cb(X,R). 
3. Plot the functions .f (nt), where (i) .f (t) := max(0, t (1 − t)) on .[0, 1], and (ii) 

.t I→ 1/(1+ nt) on .]0,∞[; then show they converge pointwise to 0 as .n → ∞, 
but not uniformly. 

4. .
∫

fn → ∫

f and .f '
n(t) → f '(t) need not hold if . fn converges to f pointwise. 

Show that .t I→ ntn and .
sin nt

n
are counterexamples in .C(0, 1). 

5. . ✶ (Dini) If K is compact and .fn ∈ C(K) is an increasing sequence of real-
valued functions, converging pointwise to .f ∈ C(K), then .fn → f in .C(K). 
(Hint: Cover K by balls .Bδ(x) inside which .f − ϵ < fn < f for .n > Nx .) 

6. . ✶ The space .C[a, b] is separable (using piecewise linear functions with kinks at 
rational numbers), but .Cb(R

+) is not. 
7. The subspace of polynomials in .C[a, b] is not closed (and so is incomplete): 

construct a sequence of polynomials that converges to a non-polynomial 
continuous function in .C[0, 1]. 

8. Let .yn+1(t) := 1 + ∫ t

0 yn. Show that this iteration converges in .C[0, 1 − ϵ] to 
. et , by using the fixed point theorem. 

9. If .J : X → X̃ and .L : Y → Ỹ are homeomorphisms then .f I→ L ◦ f ◦ J−1 is 
a homeomorphism between .C(X, Y ) and .C(X̃, Ỹ ). 

10. Follow the proof of the Stone-Weierstrass theorem to find a quadratic approxi-

mation to the function .f (t) :=
{

t, 0 ⩽ t ⩽ 1

0, −1 ⩽ t < 0
.



6.4 The Space C(X, Y ) 95

11. A set of Lipschitz functions .f : [a, b] → R (Definition 4.15) with the same 
Lipschitz constant c, .|f (s) − f (t)| ⩽ c|s − t |, form a totally bounded set in 
.C[a, b]. The fact that one c works for all, implies that they are equicontinuous; 
and their collective image in . R is bounded (.|s − t | ⩽ |b − a|), hence totally 
bounded. 

12. Show that the sets of functions .{ sin t, sin 2t, . . . } and .{ t, t2, t3, . . . } on . [0, 1]
are not equicontinuous.



Part II 
Banach and Hilbert Spaces



Chapter 7 
Normed Spaces 

7.1 Vector Spaces 

It is assumed that the reader has already encountered vectors and matrices before 
but a brief summary of their theory is provided here for reference purposes. 

Definition 7.1 

A vector space V over a field . F is a set on which are defined an operation 
of vector addition, .+ : V 2 → V , satisfying associativity, commutativity, 
zero and inverse axioms, and an operation of scalar multiplication, . F× V →
V , that satisfies the respective distributive laws: For every .x, y, z ∈ V and 
.λ,μ ∈ F, 

. 

x + (y + z) = (x + y) + z,

x + y = y + x,

0 + x = x,

x + (−x) = 0,

λ(x + y) = λx + λy,

(λ + μ)x = λx + μx,

(λμ)x = λ(μx),

1x = x.

0 x 

y 
x+y 

λx  

λy  
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Review 7.2 

1. .(−1)x = −x, .−(−x) = x, .0x = 0, .λ0 = 0. There is little danger that 
confusing the zero scalar with the zero vector causes errors, so no attempt is 
made to distinguish them. 

2. The field . F is itself a vector space with scalar multiplication being plain 
multiplication. The smallest vector space is . {0}, often written as 0. 

3. The product of vector spaces (over the same field), .V × W , is a vector space 
with addition and scalar multiplication defined by 

. 

(
x1

y1

)
+
(

x2

y2

)
:=
(

x1 + x2

y1 + y2

)
, λ

(
x

y

)
:=
(

λx

λy

)
.

The zero in this case is . 
(
0
0

)
and the negatives are .−(xy) = (−x−y

)
. By extension, 

.F
n := F × · · · × F is a vector space. 

4. If V is a vector space, then so is the set of functions .V A := { f : A → V } (for 
any set A) with 

. (f + g)(x) := f (x) + g(x), (λf )(x) := λf (x).

The zero of . V A is .0(x) := 0, and the negatives are .(−f )(x) := −f (x). 
5. A subset of a vector space V which is itself a vector space with respect 

to the inherited vector addition and scalar multiplication is called a linear 
subspace. Since associativity and commutativity are inherited properties, one 
need only check that the non-empty subset is “closed” under vector addition 
and scalar multiplication (then the zero .0 = 0x and inverses .−x = (−1)x are 
automatically in the set). Equivalently, one needs to verify that for .x, y ∈ W , 
.λ ∈ F, then .λx + y ∈ W . There are always the trivial linear subspaces . {0} and 
V . 

6. The intersection of linear subspaces is itself a linear subspace. 
7. An important example of a linear subspace is that generated by a set of vectors 

. [[A]] := { λ1v1 + · · · + λnvn : vi ∈ A, λi ∈ F, n ∈ N },

with the convention that .[[∅]] := {0}. It is the smallest linear subspace that 
includes A, and we say that A spans, or  generates, .[[A]]. Each element of . [[A]]
is said to be a linear combination of the vectors in A. 

8. The set A is linearly independent when any vector .v ∈ A is not generated by 
the rest, .v /∈ [[A\{v}]]. (In particular A does not contain 0.) This is equivalent 
to saying that .λv ∈ [[A\{v}]] ⇔ λ = 0, or that for distinct .vi ∈ A, 

.

n∑
i=1

λivi = 0 ⇔ λi = 0, i = 1, . . . , n.
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A vector generated by a linearly independent set A has unique coefficients . λi , 

. x =
n∑

i=1

λivi =
n∑

i=1

μivi ⇔ λi = μi, i = 1, . . . , n.

9. A basis is a minimal set of generating vectors; it must be linearly independent. 
Conversely, every generating set of linearly independent vectors is a basis. 
. Fn has the standard basis .{ e1, . . . , en }, where .ei := (0, . . . , 0, 1, 0, . . . , 0), 
with the 1 occurring in the ith position. 

10. A vector space is said to be finite-dimensional when it is generated by a finite 
number of vectors, .V = [[v1, . . . , vn]] (.:= [[{ v1, . . . , vn }]]). The smallest 
such number of generating vectors is called the dimension of the vector space, 
denoted .dimV , and is equal to the number of vectors in a basis. 
For example, . F has dimension 1, because it is generated by any non-zero 
element, while .dim{0} = 0. The linear subspace generated by two linearly 
independent vectors .[[x, y]] is 2-dimensional and is called a plane (passing 
through the origin). 

11. The space of .m × n matrices is a finite-dimensional vector space, generated by 
the mn matrices .Eij consisting of 0s everywhere with the exception of a 1 at 
row i and column j . 

12. We write .A + B := { a + b ∈ V : a ∈ A AND b ∈ B } and . λA := { λa ∈
V : a ∈ A } for any subsets .A,B ⊆ V , e.g., .Q + Q = Q, .C = R + iR. Thus 
.λ(A ∪ B) = λA ∪ λB, and .λ(A ∩ B) = λA ∩ λB (for .λ /= 0); a non-empty set 
A is a linear subspace when .λA + μA ⊆ A for all .λ,μ ∈ F. For brevity, . x + A

is written instead of .{x} + A; it is a  translation of the set A by the vector x. 
Care must be taken in interpreting these symbols: . A − A = { a − b : a, b ∈ A }
is not usually . {0}. 

13. For non-empty subsets of . R, and .λ ⩾ 0, 

. sup(A + B) ⩽ supA + supB, sup(λA) = λ supA

Proof : Let .a + b ∈ A + B, then .a ⩽ supA and .b ⩽ supB, so .supA + supB is 
an upper bound of .A + B, and hence greater than its least upper bound. 
Similarly, for all .a ∈ A, .a ⩽ supA ⇒ λa ⩽ λ supA, so  .sup(λA) ⩽ λ supA. 
Hence, .supA = sup( 1

λ
λA) ⩽ 1

λ
sup(λA) and equality holds. 

14. If V is finite-dimensional, then so is any linear subspace W , and . dimW ⩽
dimV (strictly less if it is a proper subspace). 
If .V,W are finite-dimensional, then so is .V +W , and . dim(V +W) ⩽ dimV +
dimW . 

15. In general, .[[A ∪ B]] = [[A]] + [[B]]; so for a finite-dimensional space generated 
by . v1,. . . ,. vn, .X = [[v1]] + · · · + [[vn]]. 
The space V is said to decompose as a direct sum of its subspaces M and N , 
written .V = M ⊕ N , when .V = M + N and .M ∩ N = 0. For example, 
.R

2 = [[(11)]] ⊕ [[(21)]].
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16. . ▶ For vector spaces over . R or . C, a subset C is said to be convex when it contains 
the line segment between any two of its points, 

. ∀x, y ∈ C, 0 ⩽ t ⩽ 1 ⇒ tx + (1 − t)y ∈ C,

equivalent to .sC + tC = (s + t)C for .s, t ⩾ 0. This generalizes easily to 
.t1x1 + · · · + tnxn ∈ C when .t1 + · · · + tn = 1, .ti ⩾ 0, and .xi ∈ C. Clearly, 
linear subspaces are convex. 

17. The intersection of convex sets is convex. There is a smallest convex set 
containing a subset A of a vector space, called its convex hull, defined as the 
intersection of all convex sets containing A, .Conv(A) := ⋂

A⊆C convex C, which 
equals 

. { t1x1 + · · · + tnxn : xi ∈ A, ti ⩾ 0, t1 + · · · + tn = 1, n ∈ N }.

If .A,B are convex sets, then . λA and .A + B are convex. 

Hausdorff’s Maximality Principle 
The Hausdorff Maximality Principle is a statement that can be used to possibly 
extend arguments that work in the finite or countable case to sets of arbitrary 
size. There are a few proofs in this book that make use of this principle; it is 
only needed to extend results to “uncountably infinite” dimensions. As such, it is 
mainly of theoretical value, and this section can be skipped if the main interest is in 
applications. 

Consider a collection . M of subsets .M ⊆ X that satisfy a certain property . P . A  
chain .C = {Mα}α∈I of such sets is a nested sub-collection, meaning that for any two 
sets . Mα , .Mβ ∈ C, either .Mα ⊆ Mβ or .Mβ ⊆ Mα . A chain can contain any number 
of nested subsets, even uncountable. A chain is called maximal when it cannot be 
added to by the insertion of any subset in . M. Hausdorff’s Maximality Principle 
states that 

Every chain in . M is contained in some maximal chain in . M. 

Hausdorff’s Maximality Principle is often used to show there is a maximal set 
E that satisfies some property . P as follows: The empty chain can be extended to 
a maximal chain of sets . Mα; if it can be shown that the union of this chain . E :=⋃

α Mα also satisfies . P , then there are no sets properly containing E which satisfy 
. P , by the maximality of the chain . Mα , i.e., E is a maximal set in . M. 

At the end of this chapter, it is shown that Hausdorff’s Maximality Principle 
implies the Axiom of Choice. In fact, it can be proved (using the other standard set 
axioms) that it is logically equivalent to the Axiom of Choice, as well as to a number 
of other formulations such as Zorn’s lemma and the Well-Ordering principle. These 
statements are not constructive in the sense that they give no explicit way of finding 
the choice function or the maximal chain, but simply assert their existence.



7.2 Norms 103

The purpose in introducing Hausdorff’s Maximality Principle here is to prove: 

Every vector space has a basis. 

Proof Consider the collection of all linearly independent sets of vectors in V . By  
Hausdorff’s maximality principle, there is a maximal chain . M of nested linearly 
independent sets . Aα . We show that .E := ⋃

α Aα is linearly independent and spans 
V , hence forms a basis. If .

∑n
i=1 λivi = 0 for .vi ∈ E, then each of the vectors 

. vi (.i = 1, . . . , n) belongs to some . Aαi
, and hence they all belong to some single 

. Aα because these sets are nested in each other; but as . Aα is linearly independent, 

.λi = 0 for .i = 1, . . . , n. Thus E is linearly independent. Suppose E does not span 
V , meaning there is a vector .v /∈ [[E]], so that .E ∪ {v} is linearly independent. As it 
properly contains E and every . Aα , it contradicts the maximality of the chain . M. 

⨅⨆

7.2 Norms 

With the intention of extending the operations of . Rn to infinite dimensional spaces, 
we would like to consider vector spaces having a metric space structure. Any set 
can be given a metric, so this is quite possible, but it is more interesting to have a 
metric that is related to vector addition and scalar multiplication in a natural way. 
Taking cue from Euclid’s ideas of congruence and similarity, the properties that we 
have in mind are: 

(a) translation invariance: distances between vectors should remain the same when 
they are translated by the same amount, 

. d(x + a, y + a) = d(x, y),

a 

x 

y 

(b) scaling homogeneity: distances should scale in proportion when vectors are 
scaled, 

.d(λx, λy) = |λ|d(x, y). x 

y 

λx  

λy  

d 
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These properties are valid only for special types of metric. When d is translation 
invariant, then .d(x, y) = d(x −y, y −y) = d(x −y, 0) and d becomes essentially a 
function of one variable, namely the norm function .‖x‖ := d(x, 0) with . d(x, y) =
‖x − y‖. Conversely, any such d defined this way is translation invariant because 
.d(x + a, y + a) = ‖x + a − y − a‖ = d(x, y). This function is then scaling-
homogeneous precisely when 

. ‖λx‖ = d(λx, 0) = |λ|d(x, 0) = |λ|‖x‖.

What properties does a norm need to have, for d to be a distance? It is easy to see 
that 

. 

d(x, z) ⩽ d(x, y) + d(y, z)

d(y, x) = d(x, y)

d(x, y) ⩾ 0
d(x, y) = 0 ⇔ x = y

⎫⎪⎪⎬
⎪⎪⎭

⇔

⎧⎪⎪⎨
⎪⎪⎩

‖a + b‖ ⩽ ‖a‖ + ‖b‖
‖−a‖ = ‖a‖

‖a‖ ⩾ 0
‖a‖ = 0 ⇔ a = 0

where .a = x −y, .b = y − z. Of these, the symmetry property follows from scaling-
homogeneity, while positivity follows from .0 = ‖x − x‖ ⩽ ‖x‖ + ‖−x‖ = 2‖x‖. 

Definition 7.3 

A normed space X is a vector space over .F = R or . C with a function called 
the norm .‖ · ‖ : X → R

+ such that for any .x, y ∈ X, .λ ∈ F, 

. ‖x + y‖ ⩽ ‖x‖ + ‖y‖, ‖λx‖ = |λ|‖x‖, ‖x‖ = 0 ⇔ x = 0.

If necessary, norms on different spaces are distinguished by a subscript such as 
.‖ · ‖X. A non-negative function that satisfies the first two axioms is termed a semi-
norm. 

Easy Consequences 
1. . ‖x − y‖ ⩾

∣∣‖x‖ − ‖y‖∣∣.
2. .‖x1 + · · · + xn‖ ⩽ ‖x1‖ + · · · + ‖xn‖ (by induction).
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Examples 7.4 

1. The absolute value functions, . | · |, for  . R and . C are themselves norms, making 
these the simplest normed spaces. 

2. . ▶ The spaces . Rn and . Cn of geometric vectors have a Euclidean norm defined by 

. ‖x‖2 = ‖(a1, . . . , an)‖2 :=
( n∑

i=1

|ai |2
)1/2

.

There are other possibilities, e.g., .‖x‖1 := ∑n
i=1 |ai |, or  .‖x‖∞ := maxi |ai |. 

Thus 

. ‖( 3−4

)‖1 = 3+4 = 7, ‖( 3−4

)‖2 = √
9 + 16 = 5, ‖( 3−4

)‖∞ = max(3, 4) = 4.

The different norms give the different distances already defined in Exam-
ple 2.2(6). 

3. . ▶ A sequence of vectors .xn = (a1,n, . . . , aN,n) in . FN converges, .xn → x (in 
any of these norms), precisely when each coefficient converges in . F, . ai,n → ai

for .i = 1, . . . , N . 
Proof : Using the 2-norm, for any fixed i, 

. |ai,n − ai |2 ⩽ |a1,n − a1|2 + · · · + |aN,n − aN |2 = ‖xn − x‖22
so when the latter diminishes to 0, so does the left-hand side. 
Conversely, if .ai,n → ai for .i = 1, . . . , N , then 

. ‖xn − x‖2 =
√

|a1,n − a1|2 + · · · + |aN,n − aN |2 → 0,

by continuity of the various constituent functions. 
With minor changes, the same proof works for the other norms as well. 

4. More generally, we can define the p-norm on . Fn, .‖x‖p := p

√∑n
i=1 |ai |p for . p ⩾

1. Shortly, we will see that all these norms are equivalent in finite dimensions, so 
we usually take the most convenient ones, such as .p = 1, 2,∞. 

5. . ▶ Sequences: sequences can be added and multiplied by scalars, and form a 
vector space. 

. (a0, a1, . . .) + (b0, b1, . . .) := (a0 + b0, a1 + b1, . . .),

λ(a0, a1, . . .) := (λa0, λa1, . . .).

The zero sequence is .(0, 0, . . .) and .−(a0, a1, . . .) = (−a0,−a1, . . .).
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The different norms introduced above generalize to sequences; the three most 
important normed sequence spaces are: 

(a) .𝓁1 := { (an)n∈N : ∑∞
n=0 |an| < ∞} with norm defined by 

. ‖(an)‖𝓁1 :=
∞∑

n=0

|an|.

(b) .𝓁2 := { (an)n∈N : ∑∞
n=0 |an|2 < ∞} with norm defined by 

. ‖(an)‖𝓁2 :=
( ∞∑

n=0

|an|2
)1/2

.

(c) .𝓁∞ := { (an)n∈N : ∃c, |an| ⩽ c } with norm defined by 

. ‖(an)‖𝓁∞ := sup
n∈N

|an|.

For example, for the sequence .(1/n) = (1, 1
2 ,

1
3 , . . .), 

. ‖(1/n)‖𝓁1 = ∞, ‖(1/n)‖𝓁2 = π/
√
6, ‖(1/n)‖𝓁∞ = 1.

In each case there are two versions of the spaces, depending on whether . an ∈ R

or . C; the scalar field is then, correspondingly, real or complex. By default, we 
take the complex spaces as standard, unless specified otherwise. 

Note carefully that an implicit assumption is being made here that adding two 
sequences in a space gives another sequence in the same space. This follows from 
the triangle inequality for the respective norm; it is left as an exercise for . 𝓁1 and 
. 𝓁∞, but is proved for . 𝓁2 in the next proposition. See Proposition 9.12 for . 𝓁p. 

6. These spaces are different from each other. Not only do they contain different 
sequences, but convergence is different in each. For example, the sequences 

. x1 := (1, 0, 0, . . .)

x2 := ( 12 ,
1
2 , 0, . . .)

x3 := ( 13 ,
1
3 ,

1
3 , . . .)

. . .

are all in . 𝓁1, . 𝓁2, and . 𝓁∞. They converge .xn → 0 in . 𝓁∞ and . 𝓁2 as .n → ∞, 

.‖xn‖𝓁∞ = sup{ 1
n
, 0 } = 1

n
→ 0, ‖xn‖𝓁2 =

( n∑
i=1

1

n2

)1/2 = 1√
n

→ 0.
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But they do not converge in . 𝓁1, 

. ‖xn‖𝓁1 = 1

n
+ · · · + 1

n
= 1 /→ 0.

Thus, convergence of each coefficient is necessary, but not sufficient, for the 
convergence of . xn. 

7. . ▶ Functions .A → F, where A is an interval in . R, say, also form a vector space, 
with 

. (f + g)(t) := f (t) + g(t), (λf )(t) := λf (t),

and different norms can be defined for them as well (once again, there are two 
versions of each space, depending on whether the functions are real- or complex-
valued): 

(a) The space .L1(A) := { f ∈ C
A : ∫

A
|f (t)| dt < ∞} with norm defined by 

. ‖f ‖L1 :=
∫

A

|f (t)| dt.

Or rather, this would be a norm, except that .‖f ‖L1 = ∫
A

|f (t)| dt = 0 not 
when .f = 0 but when .f = 0 a.e. (Sect. 9.2). The failure of this axiom 
is not drastic, and those functions that are equal almost everywhere can be 
identified into equivalence classes to create a proper normed space, called 
Lebesgue space (Remark 2.24(1)). But to adopt a special notation for them, 
such as . [f ], would be too pedantic to be useful; the symbol f , when used 
in the context of Lebesgue spaces, represents any function in its equivalence 
class. (The same comment holds for the next two spaces.) 

(b) The space .L2(A) := { f ∈ C
A : ∫

A
|f (t)|2 dt < ∞}, with norm defined by 

.‖f ‖L2 :=
( ∫

A

|f (t)|2 dt
) 1

2
. More generally there are the .Lp(A) spaces for 

.p ⩾ 1. 
(c) The space 

. L∞(A) := { f ∈ C
A : f is measurable AND ∃c |f (t)| ⩽ c a.e.t },

with norm defined by .‖f ‖L∞ := supt a.e. |f (t)| (i.e., the smallest c such 
that .|f (t)| ⩽ c a.e.t). The term ‘measurable’ is explained in Sect. 9.2. 

(d) The space .Cb(X, Y ) of bounded continuous functions, defined previously 
(Theorem 6.23), is a normed space when Y is, with 

.‖f ‖C := sup
x∈X

‖f (x)‖Y .
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(Check that d as defined on .Cb(X, Y ) is translation-invariant and scaling-
homogeneous.) .Cb(X) is a linear subspace of .L∞(X), with the same norm. 
Note that .Cb(N) = 𝓁∞. .Cb(R) contains the closed subspace 

. C0(R) := { f ∈ C(R) : lim
t→±∞ f (t) = 0 }.

For example, on .A := [0, 2π ], .‖ sin ‖L1 = 4, .‖ sin ‖L2 = √
π , and . ‖ sin ‖L∞ =

1. More details and proofs for the first three spaces can be found in Sect. 9.2. 
8. . ▶ When X, Y are normed spaces over the same field, .X × Y is also a normed 

space, with 

. 

(
x1

y1

)
+
(

x2

y2

)
:=
(

x1 + x2

y1 + y2

)
, λ

(
x

y

)
:=
(

λx

λy

)
,

∥∥(x

y

)∥∥ := ‖x‖X+‖y‖Y .

The induced metric is . D1, defined previously for .X × Y as metric spaces 
(Example 2.2(6)). 

9. . ▶ Suppose a vector space has two norms .‖ · ‖ and . |||·|||. Convergence with respect 
to one norm is the same as convergence with respect to the other norm when they 
are equivalent in the sense of metrics (Exercise 4.18(6)), i.e., there are positive 
constants .c, d > 0, 

. c‖x‖ ⩽ |||x||| ⩽ d‖x‖.

Proof : Suppose the inequalities hold and .‖xn − x‖ → 0, then 

. |||xn − x||| ⩽ d‖xn − x‖ → 0

as well; similarly if .|||xn − x||| → 0 then .‖xn − x‖ ⩽ c−1|||xn − x||| → 0. 
Conversely, suppose the ratios .|||x|||/‖x‖ approach 0 as x varies in X. By  
rescaling, a sequence of vectors . xn can be found such that .‖xn‖ = 1 but 
.|||xn||| ⩽ 1/n, i.e., .xn → 0 with respect to .||| · ||| but not with respect to .‖ · ‖. 
For this not to happen, .|||x|||/‖x‖ ⩾ c > 0, and similarly, .‖x‖/|||x||| ⩾ 1/d > 0. 

Let us justify the claim that . 𝓁2 is a normed space, by showing that the standard 

norm .‖(an)‖𝓁2 :=
√∑

n |an|2 satisfies the triangle inequality, even in infinite 
dimensions.
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Proposition 7.5 (Cauchy’s Inequality) 

For .an, bn ∈ C, 

. 

∣∣∣
∞∑

n=0

anbn

∣∣∣ ⩽
√√√√ ∞∑

n=0

|an|2
√√√√ ∞∑

n=0

|bn|2,
√√√√ ∞∑

n=0

|an + bn|2 ⩽
√√√√ ∞∑

n=0

|an|2 +
√√√√ ∞∑

n=0

|bn|2.

Proof (i) Let .x = (an) and .y = (bn) be sequences in . 𝓁2, and let .un := an/‖x‖𝓁2 , 
.vn := bn/‖y‖𝓁2 . Trivially, .

∑
n |un|2 = 1 = ∑

n |vn|2. It is easy to show from 
.(a − b)2 ⩾ 0 that .ab ⩽ (a2 + b2)/2 for any real numbers . a, b. Hence, 

. 

∣∣∣∑
n

unvn

∣∣∣ ⩽∑
n

|un||vn| ⩽
∑
n

|un|2 + |vn|2
2

= 1

2
+ 1

2
= 1

Substituting back .un, vn, gives the required result .|∑n anbn| ⩽ ‖x‖𝓁2‖y‖𝓁2 . 

(ii) . 
∑
n

|an + bn|2 ⩽
∑
n

(|an|2 + |bn|2 + 2|anbn|
)

⩽
∑
n

|an|2 +
∑
n

|bn|2 + 2

√∑
n

|an|2
∑
n

|bn|2

=
⎛
⎝
√∑

n

|an|2 +
√∑

n

|bn|2
⎞
⎠

2

.

⨅⨆

Thus for any two real sequences .x = (an)n∈N, .y = (bn)n∈N in . 𝓁2, one can define 
their ‘dot product’ 

. x · y :=
∞∑

n=0

anbn

whose convergence is assured by Cauchy’s inequality. The identity .‖x‖2 = x · x, 
familiar for Euclidean spaces, remains valid for . 𝓁2. Note that the two inequalities 
above can be written as .|x · y| ⩽ ‖x‖‖y‖ and .‖x + y‖ ⩽ ‖x‖ + ‖y‖, and that . x · y
or .x + y need not be finite unless both . x and . y are in . 𝓁2. 

A good strategy to adopt when tackling a question about normed spaces, is to try 
to answer it first for concrete examples such as . R or . C, then . Rn, then for a sequence



110 7 Normed Spaces

space such as . 𝓁∞ or . 𝓁2, and finally for a function space .C[0, 1], .L∞[0, 1], or .L1(R). 
Theoretically, sequence spaces are useful as model spaces that are rich enough to 
exhibit most generic properties of normed spaces. But they are also indispensable 
in practice: a real-life function .f (t) is discretized, or digitized, into a sequence of 
numbers .ai = f (ti), before it can be manipulated by algorithms. 

Since the metric of a normed space is translation invariant, it is not surprising 
that balls do not change their shape when translated. 

Proposition 7.6 

All balls in a normed space have the same convex shape: 

. 
Br(x) = x + rB1(0),

Br(x) + Bs(y) = Br+s(x + y), λBr(x) = B|λ|r (λx).

Proof The norm axioms can be recast as axioms for the shape of balls. The 
translation-invariance and scaling-homogeneity of the distance are equivalent to 

. Br(x + a) = { y : d(y, x + a) < r } = { y : d(y − a, x) < r }
= { a + z : d(z, x) < r } = Br(x) + a,

. λB1(0) = { λy : ‖y‖ < 1 } = { z : ‖z‖ < |λ| } = B|λ|(0), (λ /= 0).

Combining the two gives .Br(a) = a + rB1(0), showing that all balls have the same 
shape as the ball of radius 1 centered at the origin. 

The third norm axiom is equivalent to .
⋂

r>0 Br(0) = {0}, while the triangle 
inequality becomes .Br(0) + Bs(0) = Br+s(0) since 

. ‖x‖ < r AND ‖y‖ < s ⇒ ‖x + y‖ < r + s,

‖x‖ < r + s ⇒ x = r

r + s
x + s

r + s
x ∈ Br(0) + Bs(0).

Recasting this equation as .(r + s)B1(0) = rB1(0) + sB1(0) for .r, s ⩾ 0 shows that 
.B1(0), and hence all other balls, are convex: for .x, y ∈ B1(0) and .0 ⩽ t ⩽ 1, 

. (1 − t)x + ty ∈ (1 − t)B1(0) + tB1(0) = B1(0).

In particular, 

.Br(x) + Bs(y) = x + rB1(0) + y + sB1(0) = Br+s(x + y),

λBr(x) = λx + λrB1(0) = B|λ|r (λx).

⨅⨆



7.2 Norms 111

The unit ball is often denoted by .BX := B1(0) and takes a central role as 
representative of all other balls; its shape contains all the information about the 
norm of X. 

Examples 7.7 

1. The boundary of a ball .Br(x) is the sphere .Sr(x) := { y ∈ X : d(x, y) = r }. Any  
point on the sphere has nearby points inside and outside the ball (for example, 
.(1 − ϵ)y and .(1 + ϵ)y). Thus .Br(x) = { y ∈ X : d(x, y) ⩽ r }. 

2. . ✶ Balls can have quite counter-intuitive properties. For example, consider the 
path of functions .ft (x) := 2|x − t | − 1 in .C[0, 1], starting from the function 
.f0(x) = 2x − 1 and ending at the function .f1 = −f0. It lies on the unit sphere 
of .C[0, 1], but has a total length equal to the distance between . f0 and . f1, 

. length =
∫ 1

0
‖ d

dt
ft‖ dt =

∫ 1

0
2 dt = 2,

distance = ‖f1 − f0‖C[0,1] = 2‖f0‖C[0,1] = 2.

0 1  

f 0 

f 1 

Exercises 7.8 

1. For any vectors . x, y, either .‖x + y‖ ⩾ ‖y‖ or .‖x − y‖ ⩾ ‖y‖. 
2. (a) Prove that .‖ · ‖1 and .‖ · ‖∞ are norms on . Rn. Which norm axiom does 

.‖ · ‖p fail when .p < 1? 
(b) Show .|||f ||| := ‖f ‖C[−1,0] +‖f ‖C[0,1] is a norm on .C[−1, 1], equivalent to 

the standard supremum norm. 
3. What do the unit balls of . R2 in each norm of Example 7.4(2) look like? 
4. Show that .‖(ab)‖ := |a + b| + 2|a − b| is a norm on . R2. What is its unit ball? 
5. The sequence .(1, 1, . . . , 1, 0, 0, . . .) is not a good approximation to the constant 

sequence .(1, 1, . . .) in . 𝓁∞; but .(1 − ϵ, 1 − ϵ, . . .) is. 
6. The norm axioms for . 𝓁1 and . 𝓁∞ are, when interpreted correctly, 

. 

∑
n |an + bn| ⩽∑

n |an| +∑
n |bn|, supn |an + bn| ⩽ supn |an|+ supn |bn|,∑

n |λan| = |λ|∑n |an|, supn |λan| = |λ| supn |an|,∑
n |an| = 0 ⇔ ∀n, an = 0 supn |an| = 0 ⇔ ∀n, an = 0.

Prove these, assuming any results about series (Sect. 7.5). Write these axioms 
for . 𝓁2 and prove them.
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7. A subset A is bounded when there is a .c > 0 such that . ∀x ∈ A, ‖x‖ ⩽ c

(Sect. 6.1). A non-zero normed space is not bounded. 
8. For any subset A, and .r > 0, .A + Br(0) is an open set containing A. 
9. . ▶ The 1-, 2-, and .∞-norms are all equivalent on . Rn since (prove!) 

. ‖x‖∞ ⩽ ‖x‖2 ⩽ ‖x‖1 ⩽ n‖x‖∞.

But they are not equivalent for sequences or functions! Find sequences of 
functions that converge in .L1[0, 1] but not in .L∞[0, 1], or vice-versa. Can a 
sequence converge in . 𝓁1 but not in . 𝓁∞? 

10. . ✶ Minkowski semi-norm: Let  C be a convex set which is balanced, . eiθC = C

(.∀θ ∈ R), and such that .
⋃

r>0 rC = X. Then 

. |||x||| := inf{ r > 0 : x ∈ rC }

is a semi-norm on X. 

7.3 Metric and Vector Properties 

By construction, normed spaces are metric spaces, as well as vector spaces. We 
can apply ideas related to both, in particular open/closed sets, convergence, com-
pleteness, continuity, connectedness, and compactness, as well as linear subspaces, 
linear independence and spanning sets, convexity, linear transformations, etc. Many 
of these notions have better characterizations in normed spaces, as the following 
propositions attest. 

Proposition 7.9 

. 

Vector addition, (x, y) I→ x + y, X2 → X,

scalar multiplication, (λ, x) I→ λx, F × X → X,

and the norm x I→ ‖x‖, X → R,

are continuous.

Proof Vector addition and the norm are in fact Lipschitz maps, 

.‖(x1 + y1) − (x2 + y2)‖ ⩽ ‖x1 − x2‖ + ‖y1 − y2‖ = ‖(x1, y1) − (x2, y2)‖X2 ,∣∣‖x‖ − ‖y‖∣∣ ⩽ ‖x − y‖.
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Scalar multiplication is continuous: for any .ϵ > 0, take .|λ−μ| to be smaller than 
.ϵ/3(1 + ‖x‖) and .‖x − y‖ < min(ϵ/3(1 + |λ|), 1), to get 

. ‖λx − μy‖ ⩽ ‖λx − μx‖ + ‖μx − μy‖
= |λ − μ|‖x‖ + |μ|‖x − y‖
⩽ |λ − μ|‖x‖ + |λ|‖x − y‖ + |λ − μ|‖x − y‖
< ϵ.

⨅⨆

Corollary 7.10 

When .(xn)n∈N and .(yn)n∈N converge, 

. lim
n→∞(xn + yn) = lim

n→∞ xn + lim
n→∞ yn,

lim
n→∞ λxn = λ lim

n→∞ xn,

lim
n→∞ ‖xn‖ = ‖ lim

n→∞ xn‖.

Of particular importance are closed linear subspaces, because they are “closed” 
not only with respect to the algebraic operations of addition . + and scalar multipli-
cation . λ · , but also with respect to convergence . →. 

Proposition 7.11 

If M is a linear subspace of X, then so is . M . 

.[[A]] is the smallest closed linear space containing A. 

Proof (i) Let .x, y ∈ M , with sequences .xn ∈ M , .yn ∈ M , converging to them, 
.xn → x and .yn → y (Proposition 3.4). As .xn + yn and .λxn both belong to M , then 

. x + y = lim
n→∞ xn + lim

n→∞ yn = lim
n→∞(xn + yn) ∈ M,

λx = λ lim
n→∞ xn = lim

n→∞(λxn) ∈ M.

Thus . M is closed under vector addition and scalar multiplication. In particular this 
holds when M is generated by A.
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(ii) .[[A]] is the smallest linear subspace containing A, and .[[A]] is the smallest closed 
set containing .[[A]]. So any closed linear subspace containing A must also contain 
.[[A]], and its closure .[[A]]. ⨅⨆
Examples 7.12 

1. The following sets are closed linear subspaces of their respective spaces: 

(a) .A := { (ai)i∈N ∈ 𝓁1 : ∑∞
i=0 ai = 0 }, 

(b) .B := { f ∈ C[a, b] : f (a) = f (b) }. 
The proofs for closure (linearity is left as an exercise) depend on the following 
inequalities that hold when .xn → x in . 𝓁1, .xn = (ai,n)i∈N ∈ A, and .fn → f in 
.C[a, b], .fn ∈ B, 

. 

∣∣∣
∞∑
i=0

ai

∣∣∣ =
∣∣∣

∞∑
i=0

ai,n +
∞∑
i=0

(ai − ai,n)

∣∣∣ ⩽
∞∑
i=0

|ai − ai,n| = ‖x − xn‖𝓁1 → 0

f (a) = lim
n→∞ fn(a) = lim

n→∞ fn(b) = f (b)

2. . ✶ If M and N are closed subsets of a normed space, .M + N need not be closed 
(see also Exercise  7.15(8)). 

(a) Let .f : X → Y be a continuous function between normed spaces; let . M :=
{ (x, f (x)) : x ∈ X }, .N := { (x, 0) : x ∈ X }; they are closed subsets of 
.X × Y (prove!). But .M + N = { (x̃, f (x)) : x, x̃ ∈ X } is closed if, and only 
if, .im f is closed, which need not be the case. To take a specific example, 

. { (x, 0) : x ∈ R } + { (x, ex) : x ∈ R } = R × ]0,∞[.

(b) This is true even if .M,N are linear subspaces. Let M be the set of .𝓁2-
sequences .(a1, 0, a2, 0, . . .) whose even terms vanish, and let N consist of 
.𝓁2-sequences of the type .(a1, a1/1, a2, a2/2, a3, a3/3, . . .). They are both 
closed subspaces of . 𝓁2 (check!). Now consider 

. xn := (1, 1, 1, 1
2 , 1,

1
3 , 1,

1
4 , . . . , 1,

1
n
, 0, 0, . . .) ∈ N

yn := (1, 0, 1, 0, 1, 0, 1, 0, . . . , 1, 0, 0, 0, . . .) ∈ M

xn − yn = (0, 1, 0, 1
2 , 0,

1
3 , 0,

1
4 , . . . , 0,

1
n
, 0, 0, . . .) ∈ M + N

.xn − yn converges to the sequence .(0, 1, 0, 1
2 , . . .) ∈ 𝓁2 which cannot be 

expressed as a vector in .M + N .
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Connected and Compact Subsets 

Recall that connected sets may be complicated objects in general metric spaces. This 
is still true in normed spaces, but at least for open subsets, connectedness reduces to 
path-connectedness, which is more intuitive and usually easier to prove. 

Proposition 7.13 

An open connected set in a normed space is path-connected. 

Proof Let C be a non-empty open connected set in X. Recall that “path-connected” 
means that any two points in C can be joined by a continuous path . r : [0, 1] → C

starting at one point and ending at the other. Fix any .x ∈ C, and let P be the subset 
of C consisting of those points that are path-connected to x. We wish to show that 
.P = C. 

P has no boundary in C: Given any boundary point z of P in C, there is a ball 
.Bϵ(z) ⊆ C since C is open, and thus a point .y ∈ P in the ball. This means that 
there is a path r from x to y. In normed spaces, it is obvious that balls, like all 
convex sets, are path-connected (by straight paths). So we can extend the path r to 
one that starts from x and ends at any other .w ∈ Bϵ(z), simply by adjoining the 
straight line at the end. More rigorously, the function .r̃ : [0, 1] → C defined by 

. ̃r(t) :=
{

r(2t), t ∈ [0, 1
2 ]

y + (2t − 1)(w − y), t ∈ ] 12 , 1]

is continuous. So z is surrounded by points of P , a contradiction. 

x 

y 

z 

w 
P 

But a connected set such as C cannot contain a subset, such as P , without a 
boundary in C (Proposition 5.4), unless .P = ∅ (which is not the case here) or 
.P = C. ⨅⨆

There is quite a bit to say about bounded and totally bounded sets. As we will 
see later on, they are the same in finite dimensional normed spaces, but in infinite 
dimensional ones, no open set can be totally bounded, although balls are bounded
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sets. For now, let us show that translations and scalings of bounded and totally 
bounded sets remain so. 

Proposition 7.14 

If A, B are both bounded, totally bounded, or compact sets, then so are, 
respectively, . λA and .A + B. 

Proof Proposition 7.6 is used throughout the following. 

Boundedness: If .A ⊆ Br(x) and .B ⊆ Bs(y), then 

. λA ⊆ λBr(x) = B|λ|r (λx),

A + B ⊆ Br(x) + Bs(y) = Br+s(x + y).

Total boundedness: 

. λA ⊆ λ

n⋃
i=1

Bϵ/|λ|(xi) =
n⋃

i=1

Bϵ(λxi),

A + B ⊆
n⋃

i=1

Bϵ/2(xi) +
m⋃

j=1

Bϵ/2(yj ) =
⋃
i,j

Bϵ(xi + yj ).

Compactness: If  A is compact, then scalar multiplication, being continuous, sends it 
to the compact set . λA (Proposition 6.15). If B is also compact, then .A×B is compact 
(Exercise 6.22(17)), and vector addition, being a continuous function .X × X → X, 
maps it to the compact set .A + B. ⨅⨆
Exercises 7.15 

1. Show that the following sets are closed subspaces of their respective spaces: 

(a) .{ (an)n∈N ∈ 𝓁∞ : a0 = 0 }, 
(d) .{ (an)n∈N ∈ 𝓁2 : a1 = a3 AND a0 = ∑∞

n=1 an/n }, 
(c) .{ f ∈ C[0, 1] : ∫ 1

0 f = 0 }. 
2. The set of polynomials in t forms a linear subspace of .C[0, 1]. Its dimension is 

infinite because the elements .1, t, t2, . . . are linearly independent. Is it closed, or 
if not, what could be the closure of the polynomials in this space? 

3. Why is the example in 7.12(2)(b) not valid for the space . 𝓁∞? Let  M 
and N be the spaces of bounded sequences of type .(a1, 0, a2, 0, . . .) and 
.(a1, a1, . . . , an, an/n2, 0, . . .), respectively. Modify . xn and . yn to show that 
.M + N is not closed in . 𝓁∞. 

4. Show that .{ en : n ∈ N } is bounded but not totally bounded in . 𝓁2; and the set 
.{ 1

n
en : n ∈ N } is totally bounded in . 𝓁2.
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5. The convex hull of a closed set need not be closed; a counterexample is given by 
.(R × {0}) ∪ {(0, 1)}. But the closure of a convex set remains convex. 

6. (Mazur) The convex hull of a bounded subset is again bounded, and of a totally 
bounded subset is again totally bounded. 
(Hint: Cover B with balls .Bϵ(xi); and the finite number of line segments . xi–. xj

with .ϵ-balls.) 
7. Line segments are path-connected; so linear subspaces and convex subsets (such 

as balls) are connected. 
8. The continuity of . + and . λ · imply that .λA = λĀ and .Ā + B̄ ⊆ A + B. Find an  

example to show that equality need not necessarily hold. 

7.4 Complete and Separable Normed Vector Spaces 

Definition 7.16 

When the induced metric d(x, y) := ‖x − y‖ is complete, the normed space 
is called a Banach space. 

Examples 7.17 

1. ▶ R
n and Cn are separable Banach spaces. It is later shown that the sequence 

spaces 𝓁p and the Lebesgue function spaces Lp[0, 1], 1 ⩽ p <  ∞, are  
also separable Banach spaces, but 𝓁∞ is a non-separable Banach space. (See 
Propositions 9.14, 9.25, Exercise  9.32(8), Theorem 9.1) 

2. (a) A closed linear subspace of a Banach space is itself a Banach space. 
(b) When X, Y are Banach spaces over the same field, so is X × Y . 

(Proposition 4.7) 

Stefan Banach (1892–1945) After WW1, at 24 years, 
a chance event led Banach to meet Steinhaus, who had 
studied under Hilbert in 1911, and was then at Krakow 
university. His 1920 thesis on abstract normed real vec-
tor spaces earned him a post at the University of Lwow; 
working mostly in the “Scottish café”, he continued 
research on “linear operations”, where he introduced 
weak convergence and proved various theorems such as 
the Hahn-Banach, Banach-Steinhaus, Banach-Alaoglu, 
his fixed-point theorem, and the Banach-Tarski paradox.
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3. Cb(X, Y ) is a Banach space whenever Y is (Theorem 6.23). 
4. Not every normed space is complete (when infinite dimensional). 

(i) The set c00 of finite sequences (a0, . . . , an, 0, 0, . . .), n ∈ N, is an  
incomplete linear subspace of 𝓁∞. For example, the vectors (1, 0, 0, . . .), 
(1, 1 2 , 0, 0, . . .),  . . . ,  (1, 

1 
2 , . . . ,  1 

n , 0, 0, . . .),  . . . ,  form  a  Cauchy sequence 
which does not converge in c00. 

(ii) Take the vector space of continuous functions C[−1, 1] with the 1-norm
‖f ‖ := ∫ 1 

−1 |f (t)| dt . This is indeed a norm but it is not complete on that 
space. For consider the sequence of continuous functions defined by 

. fn(t) :=

⎧⎪⎪⎨
⎪⎪⎩
0, −1 ⩽ t < 0

nt 0 ⩽ t ⩽ 1/n

1 1/n < t ⩽ 1

.

−1 1 

f 1f 2 

It is Cauchy: 

. ‖fn − fm‖ =
∫ 1

−1
|fn − fm| = 1

2

∣∣∣∣1n − 1

m

∣∣∣∣ → 0, as n,m → ∞

but were it to converge to some f ∈ C[−1, 1], i.e., ∫ 1 
−1 |fn(t) − f (t)| dt → 

0, then 

. 

∫ 0

−1
|f (t)| dt = 0 =

∫ 1

1/n

|1 − f (t)| dt,

so that f (t)  = 0 on  [−1, 0[ and f (t)  = 1 on  ]0, 1], implying it is 
discontinuous. Similarly, the set C[a, b] is not closed as a linear subspace 
of L2[a, b].
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Proposition 7.18 

Every normed space can be completed to a Banach space. 

Proof Let X̃ be the completion of the normed space X (Theorem 4.6). We need to 
prove that vector addition, scalar multiplication and the norm on X can be extended 
to X̃. Using the notation of Theorem 4.6, let  x = [xn], y = [yn] be elements of X̃, 
with (xn)n∈N, (yn)n∈N being Cauchy sequences in X. Since 

. ‖xn + yn − xm − ym‖ ⩽ ‖xn − xm‖ + ‖yn − ym‖ → 0

‖λxn − λxm‖ = |λ|‖xn − xm‖ → 0∣∣‖xn‖ − ‖xm‖∣∣ ⩽ ‖xn − xm‖ → 0,

as n, m → ∞, we find that (xn + yn)n∈N, (λxn)n∈N and (‖xn‖)n∈N are all Cauchy 
sequences. For the same reasons, if (x'

n)n∈N is asymptotic to (xn)n∈N, and (y'
n)n∈N 

to (yn)n∈N, then the pairs (x'
n + y'

n)n∈N and (xn + yn)n∈N, (λx'
n)n∈N and (λxn)n∈N, 

and ‖x'
n‖ and ‖xn‖, are asymptotic to each other, respectively. So we can define 

. x + y := [xn + yn], λx := [λxn], ‖x‖ := lim
n→∞ ‖xn‖.

Note that d̃(x, y) = ‖x − y‖. It is easy to check that they give a legitimate vector 
addition, scalar multiplication and a norm; the required axioms follow from the 
same properties in X and the continuity of these operations, e.g., 

. ‖x + y‖ = lim
n→∞ ‖xn + yn‖ ⩽ lim

n→∞(‖xn‖ + ‖yn‖) = ‖x‖ + ‖y‖,
‖x‖ = 0 ⇒ ‖xn‖ → 0 ⇒ x = [xn] = [0] = 0.

Note that the zero can be represented by the Cauchy sequence (0), and −x by 
(−xn)n∈N. Furthermore, recall that there is a copy of X in X̃ (as constant sequences); 
the operations just defined on X̃ reduce to the given operations on X, when restricted 
to it. ⨅⨆

Proposition 7.19 

A normed space X is separable if, and only if, there is a countable subset 
A such that X = [[A]]. 

Proof If X = Ā, such as when X is separable, then X = Ā ⊆ [[A]] ⊆ X.
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Conversely, suppose X = [[A]] with A countable; this means that for any vector 
x, there is a linear combination of ai ∈ A (ai /= 0), such that 

.‖λ1a1 + · · · + λnan − x‖ < ϵ λi ∈ R or C. (7.1) 

[[A]] is not countable (unless A ⊆ {0}), but the set of (finite) linear combinations of 
vectors in A using coefficients from Q + iQ is countable (Why? Hint:

⋃
n(Q

2)n is 
countable). Choosing ri = pi + iqi ∈ Q + iQ, such that |ri − λi | < ϵ

n‖ai‖ , and 
combining with (7.1), we get 

. ‖r1a1 + · · · + rnan − x‖ ⩽ ‖(r1 − λ1)a1 + · · · + (rn − λn)an‖ + ‖λ1a1 + · · · + λnan − x‖
⩽ |r1 − λ1|‖a1‖ + · · · + |rn − λn|‖an‖ + ϵ < 2ϵ.

This shows that X is separable. ⨅⨆

7.5 Series 
Sequences and convergence play a big role in metric spaces. Normed spaces allow 
sequences to be combined with summation, thereby obtaining series .x1 + · · · + xn. 

Definition 7.20 

A series .
∑

n xn is a sequence of vectors in a normed space obtained by 
addition, .(x0, x0 + x1, x0 + x1 + x2, . . .); the general term of the sequence is 
denoted by .

∑n
k=0 xk . Therefore, a series converges when . ‖x −∑n

k=0 xk‖ →
0 for some .x ∈ X, as .n → ∞; in this case the limit x is called its sum, 

. x0 + x1 + x2 + · · · =
∑
n∈N

xn =
∞∑

n=0

xn := lim
N→∞

N∑
n=0

xn = x.

A series is said to converge absolutely when .
∑

n ‖xn‖ converges in . R. 

Examples 7.21 

1. Results about convergence of sequences can be converted to series: 

(a) .
∑

n∈N(xn + yn) = ∑
n∈N xn +∑

n∈N yn when the latter converge. 
For example, .

∑
n∈N xn = ∑

n∈N x2n +∑
n∈N x2n+1 if the latter converge. 

(b) .
∑

n∈N λxn = λ
∑

n∈N xn. 
(c) A series is Cauchy when .xn + · · · + xm → 0 as .n,m → ∞. 

2. If a series converges both normally and absolutely, then .
∥∥ ∞∑

n=0

xn

∥∥ ⩽
∞∑

n=0

‖xn‖. 
Proof : Take the limit of .‖x0 + · · · + xn‖ ⩽ ‖x0‖ + · · · + ‖xn‖ as n → ∞. 

3. There are series that converge but not absolutely. As an example, take any 
decreasing sequence of positive real numbers .an → 0, then . 

∑
n(−1)nan

converges in . R (Leibniz); yet .
∑

n an may diverge.
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Indeed, when .
∑

n an = ∞ and .0 ⩽ an → 0, the series .
∑

n ±an can converge to 
any .a ∈ R by a judicious choice of signs. Take enough terms . an to just exceed a, 
then reverse sign to lower the sum to just less than a, then reverse sign again and 
continue. 

4. A rearrangement of a series need not converge; even if it does, it need not have 
the same sum. For example, 

. 

1 − 1
2 + 1

3 − 1
4 + 1

5 − 1
6 + 1

7 − 1
8 + · · · → log 2,

1 − 1
2 + 1

3 + 1
5 + 1

7 + 1
9 − 1

4 + 1
11 + · · · → ∞,

1 − 1
2 − 1

4 + 1
3 − 1

6 − 1
8 + 1

5 − 1
10 + · · · → 1

2 log 2,

1 − 1
2 + 1

3 + 1
5 − 1

4 + 1
7 + 1

9 − 1
6 + · · · → 1.

5. The sum of a ‘sequence’ .(xn)n∈Z can also be given a meaning: 

. 
∑
n∈Z

xn =
∞∑

n=−∞
xn :=

∞∑
n=1

x−n +
∞∑

n=0

xn,

when the latter two series converge. 

In general, absolute convergence is logically independent of convergence of 
.
∑

n xn. But for Banach spaces, absolute convergence implies convergence. This can 
be very useful, as sums of real numbers are sometimes more amenable. 

Proposition 7.22 

A normed space X is complete if, and only if, any absolutely convergent 
series in X converges. 

Proof Let X be a Banach space, and suppose that .
∑

n ‖xn‖ converges. Let . yN :=∑N
n=0 xn, so that for .M > N , 

. ‖yM − yN‖ = ∥∥ M∑
n=N+1

xn

∥∥ ⩽
M∑

n=N+1

‖xn‖ → 0 as N,M → ∞.

Hence .(yN) is a Cauchy sequence in the complete space X, and so converges. 
Conversely, let X be a normed space for which every absolutely convergent series 

converges. Let .(xn)n∈N be a Cauchy sequence in X, so that for .n,m ⩾ Nϵ large 
enough, .‖xn − xm‖ < ϵ. Letting .ϵ := 1/2r , .r = 1, 2, . . ., we can find ever larger 
numbers . nr such that .‖xnr − xnr+1‖ < 1/2r . Thus, 

.

∞∑
r=1

‖xnr+1 − xnr ‖ ⩽
∞∑

r=1

1

2r
= 1.
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By assumption, since its absolute series converges, so does .
∑

r (xnr − xnr+1), i.e., 

. xn1 − xnr = (xn1 − xn2) + (xn2 − xn3) + · · · + (xnr−1 − xnr )

converges as .r → ∞. This forces the subsequence . xnr to converge, and so must the 
parent Cauchy sequence .(xn)n∈N (Proposition 4.2). ⨅⨆

Series can be used to extend the idea of a basis as follows: a fixed list of unit 
vectors . en is called a (Schauder) basis when for any .x ∈ X there are unique 
coefficients .αn ∈ F such that 

. x =
∞∑

n=1

αnen.

The set .E := { e1, e2, . . . } has to be linearly independent and dense .X = [[E]]; by  
necessity X must be separable (though not every separable space has a Schauder 
basis [31]). Note that a Schauder basis need not be a linearly independent set of 
spanning vectors; the latter is called a Hamel basis for distinction. 

Since a vector .x = ∑
n∈N αnen is identified by its sequence of coefficients 

.(αn)n∈N with respect to a Schauder basis, the space X is essentially a sequence space 
with norm .‖(αn)‖ := ‖∑n∈N αnen‖X

. Ideally, shuffling a basis should not make a 
difference, but not every basis has this property; if it does, the basis is termed uncon-
ditional. There are examples of Banach spaces which have no unconditional bases. 

Convergence Tests 

Real series are easier to handle than series of vectors, and a number of tests for 
absolute convergence have been devised: 

Comparison Test If .‖xn‖ ⩽ an then .
∑N

n=0 ‖xn‖ ⩽
∑N

n=0 an. If the latter con-
verges to .

∑∞
n=0 an, then .

∑
n ‖xn‖ is increasing and bounded above, so converges. 

An important special case is comparison with the geometric series, . ‖xn‖ ⩽ rn

with .r < 1, because .1 + r + r2 + · · · = 1/(1 − r). This leads to: 

Juliusz Schauder (1899–1943) Schauder, after fighting 
in WWI, graduated at 24 years from the University of 
Lwow under Steinhaus with a dissertation on statis-
tics. He continued researching in the Banach/Steinhaus 
school, giving the theory of compact operators its mod-
ern shape; he proved that the adjoint of a compact 
operator is compact, the Schauder fixed point theorem, 
and generalized aspects of orthonormal bases to Banach 
spaces; later he specialized to partial differential equa-
tions. Along with many other Polish academics, he was 
killed by the Nazis during WWII.



7.5 Series 123

Root Test Let .r := lim supn ‖xn‖1/n; 

(a) if .r < 1 then the series .
∑

n xn is absolutely convergent, 
(b) if .r = 1 then the series may or may not converge, 
(c) if .r > 1 then the series diverges. 

Proof : (a)  .‖xn‖ ⩽ (r + ϵ)n except for finitely many terms. Since the right-hand 
side is a convergent geometric series when .r < 1 and . ϵ is taken small enough, the 
left-hand side series also converges by comparison. 

(b) The series .
∑∞

n=1
1
n

= ∞ and .
∑∞

n=1
1
n2

< 2 both have .r = 1. 

(c) When .r > 1, .‖xn‖ ⩾ (1 + ϵ)n > 1 for infinitely many terms, so the series 
.
∑

n ‖xn‖ cannot possibly converge. 

Ratio Test (D’Alembert’s) If the ratios .‖xn+1‖/‖xn‖ → r then . ‖xn‖1/n → r

and the root test applies; it is often easier to find the first limit, if it exists, than the 
second. 

Proof : The idea is that for large n, .‖xn‖ ≈ r‖xn−1‖ ≈ rn‖x0‖, so  .‖xn‖1/n ≈ r . 
More precisely, for .n ⩾ N large enough, 

. r − ϵ < ‖xn‖/‖xn−1‖ < r + ϵ,

∴ (r − ϵ)n−N‖xN‖ < ‖xn‖ < (r + ϵ)n−N‖xN‖,
∴ r − 2ϵ < ‖xn‖1/n < r + 2ϵ,

since .(r ± ϵ)−N/n‖xN‖1/n → 1. 

Cauchy’s Test If .‖xn‖ is decreasing, then .
∑

n ‖xn‖ converges . ⇔ ∑
n 2

n‖x2n‖
converges. 

Proof : Let .rn := ‖xn‖; the test follows from two comparisons, 

. r1 + r2 + · · · + r2n+1−1 = r1 + (r2 + r3) + · · · + (r2n + · · · + r2n+1−1)

⩽ r1 + 2r2 + · · · + 2nr2n .

r1 + 2r2 + 4r4 + · · · + 2nr2n ⩽ r1 + 2r2 + 2(r3 + r4) + · · ·
+ 2(r2n−1+1 + · · · + r2n)

⩽ 2(r1 + r2 + · · · + r2n).

Kummer’s Test Let .
∑

n
1
rn

be a divergent series of positive terms and 

.
rn+1

rn

‖xn+1‖
‖xn‖ = 1 − α

rn
+ o(1/rn).
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If .α > 0, then the series .
∑

n xn converges absolutely, otherwise when .α < 0 the 
series diverges. For example, .rn := 1 gives the ratio test, .rn := n is Gauss’s or 
Raabe’s test, and .rn := n log n is Bertrand’s test. 

Proof : When .α > 0, we are given that .c‖xn‖ ⩽ rn‖xn‖ − rn+1‖xn+1‖ for . n ⩾ N

large enough, and some .0 < c < α. Summing up these inequalities results in 

. c(‖xN‖ + · · · + ‖xm‖) ⩽ rN‖xN‖ − rm+1‖xm+1‖ ⩽ rN‖xN‖

so the series converges as it is increasing but bounded above. 
When .α < 0, we have .rn‖xn‖ < rn+1‖xn+1‖ for .n ⩾ N large enough. Hence 

. ‖xn‖ >
rN‖xN‖

rn

and the series diverges by comparison with the series .
∑

n
1
rn
. 

There are yet other tests, for example, Cauchy’s inequality shows that . 
∑

n anbn

converges when .
∑

n a2n and .
∑

n b2n do. 

Exercises 7.23 

1. If a series .
∑

n xn converges, then .xn → 0 as .n → ∞. The converse is false: 

. 1 + 1

2
+ 1

3
+ 1

4
+ · · · + 1

n
→ ∞.

More generally, for any fixed k, .xm +xm+1+· · ·+xm+k → 0 and . 
∑∞

n=m xn →
0, as .m → ∞. 

2. From the geometric series, it follows that .1 − a + a2 − a3 + · · · and . 
∑

n arn

(.rn ⩾ n) converge for .|a| < 1 in . R. 
3. The series .

∑
n

1
n! , .
∑

n
n
2n , and .

∑
n
2n

n! converge by comparison with a geometric 
series (or using the ratio test). 

4. .1 + 1

22
+ 1

32
+ · · · = π2

6
. This series was too hard to sum before Euler; 

show at least that it converges, using the comparison . 1
n2

⩽ 1
n(n−1) = 1

n−1 −
1
n
. Generalize this to the case . 1

(n−1)p−1 − 1
np−1 ⩾ p−1

np to show that . 
∑

n
1
np

converges for .p > 1. Deduce that .
∑

n

√
n+1

n2−1
converges, by comparison. 

5. These last series are examples that converge slower than the geometric series; 
in fact they are not decided by the root and ratio tests. Are there series that 
converge even slower? 

6. The Cauchy or Raabe tests can also be used to show that . 1 + 1
2p + 1

3p + · · ·
converges when .p > 1. Show further that .

∑
n

1
n
, .
∑

n
1

n log n
, .
∑

n
1

n log n log log n
, 

. . . ,  diverge.
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7. Determine whether the following series converge, converge absolutely, or 
diverge in . 𝓁1, . 𝓁2, and . c0: (i)  .

∑
n en, (ii) .

∑
n

(−1)n

n
en, (iii) .

∑
n

1
n2

en, (iv)  

.
∑

n
2n

n! en. 
8. The Weierstraß M-test (comparison test for . L∞): If .‖fn‖L∞ ⩽ Mn where 

.
∑

n Mn converges, then .
∑

n fn converges in .L∞(A) (i.e., uniformly). Use it 
to show that the function .

∑
n

tn

n2
converges uniformly on .[−1, 1]. 

9. Let .fn(t) := e−nt /n, then .‖fn‖L1[0,1] ⩽ 1/n2, and so .
∑

n fn converges in 
.L1[0, 1]. 

10. If .
∑

n∈N ‖xn,m − xn‖ → 0 as .m → ∞ and .
∑

n xn converges, 

. lim
m→∞

∑
n∈N

xn,m =
∑
n∈N

lim
m→∞ xn,m =

∑
n∈N

xn

11. What is wrong with this argument: When .‖xn‖1/n → 1, then . ‖xn‖ > (1 − ϵ)n

for infinitely many terms; the right-hand side sums to . 1/ϵ, which is arbitrarily 
large; hence the series cannot converge absolutely. 

12. A rearrangement of an absolutely convergent series also converges, to the same 
sum. (Hint: Eventually, the rearranged series will contain the first n terms.) 

13. Suppose a series .x1 + x2 + · · · is split up into two subseries, say . x1 + x4 + · · ·
and .x2 + x3 + · · · , denoted by .∑i xni

and .
∑

j xn'
j
. If they both converge, to 

x and y respectively, then the original series .
∑

n xn also converges, to .x + y. 
If one converges, and the other diverges, then the series .

∑
n xn diverges. But it 

is possible for two subseries to diverge, yet the original series to converge; for 
example, .1 − 1

2 + 1
3 − 1

4 + · · · → log 2. 
14. (a) The sequences . en form an unconditional (Schauder) basis for . 𝓁1 and . c0. 

(b) The polynomials . tn, .n ∈ N, do not form a basis for .C[a, b]. (Hint: For 
.C[−1, 1], take .f (t) :=

{
0, t < 0

t, t ⩾ 0
. 

15. Cesáro limit: A sequence .(xn)n∈N is said to converge in the sense of Cesáro 
when . x1+···+xn

n
converges. Show that if .a = limn→∞ xn exists then the Cesáro 

limit is also a. Show that the divergent sequence .(−1)n is Cesáro convergent to 
0. 

Remarks 7.24 

1. Weighted spaces are defined similarly to . 𝓁p and .Lp but with a different 
measure or weight. For example, an . 𝓁1w space with weights .wn > 0 consists 
of sequences with bounded norms .‖x‖𝓁1w

:= ∑
n |an|wn. Similarly, . L2

w(A)

has norm .(
∫ |f (t)|2w(t) dt)

1
2 . In fact, weighted spaces are isomorphic to the 

unweighted spaces; for example .𝓁1w
∼= 𝓁1 via the map .(an)n∈N I→ (wnan)n∈N. 

2. The second norm axiom requires that the field be normed. A famous theorem by 
Frobenius states that the only normed fields over the reals are . R and . C.
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3. Cauchy’s inequality was known to Lagrange in the form 

. 

N∑
n=1

a2n

N∑
m=1

b2m −
( N∑

n=1

anbn

)2 =
N∑

n=1

∑
m>n

(ambn − anbm)2.

4. Hausdorff’s Maximality Principle . ⇒ Axiom of Choice. 

Proof : Let  .A = { Aα ⊆ X : α ∈ I } be a collection of non-empty subsets of a set 
X. Consider choice functions .g : J → X, i.e., .g(α) ∈ Aα for all .α ∈ J ⊆ I . To  
prove the axiom of choice we need to show that there is a choice function f with 
domain I . 
Let these choice functions be ordered by extension, that is, .g1 ⩽ g2 when . g2 extends 
. g1. By Hausdorff’s maximality principle, there exists a maximal chain of choice 
functions . gi . Let  J be the union of all their domains. For each .α ∈ J , . α must be 
in the domain of some choice function . gi ; so define .f (α) := gi(α). This function 
is well-defined since the choice functions extend one another; and it is a choice 
function itself since .f (α) = gi(α) ∈ Aα . 
Finally, if there is some set . Aβ which is missed by f , i.e., .β /∈ J , let .xβ ∈ Aβ . Then 
f can be extended further by defining .f (β) := xβ , contradicting the maximality of 
the chain . gi . Hence f is defined on all .α ∈ I .



Chapter 8 
Continuous Linear Maps 

8.1 Operators 

In every branch of mathematics which concerns itself with sets having some 
particular structure, the functions which preserve that structure, called morphisms, 
feature prominently. Such maps allow us to transfer equations from one space 
to another, to compare spaces with each other and state when two of them are 
essentially the same, or if not, whether one can be embedded in the other, etc. Even 
in applications, it is often the case that certain aspects of a process are conserved. 
For example, a rotation of geometric space yields essentially the same space, and 
rotating the axes might simplify a problem. The morphisms on normed spaces are 
formalized by the following definition. 

Definition 8.1 

An operator1 is a continuous linear transformation .T : X → Y between 
normed spaces (over the same field), that is, it preserves vector addition, scalar 
multiplication, and convergence, 

. T (x + y) = T x + Ty, T (λx) = λT x, T ( lim
n→∞ xn) = lim

n→∞ T xn.

A functional is a continuous linear map .φ : X → F from a normed space to 
its field. The set of operators from X to Y is denoted by .B(X, Y ), and the set 
of functionals, denoted by . X∗, is called the dual space of X. 

1 The use of the term operator is not standardized: it may simply mean a linear transformation, or 
even just a function, especially outside Functional Analysis. But it is standard to write T x  instead 
of .T (x). 
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Easy Consequences 
1. .T 0 = 0. 
2. Linearity is equivalent to showing .T (λx + y) = λT x + Ty. 
3. .T (

∑∞
n=0 λnxn) =∑∞

n=0 λnT xn. 
4. A linear map is determined by the values it takes on the unit sphere. 

A simple test for continuity of a linear transformation is the following Lipschitz 
property, due to Banach. 

Proposition 8.2 

A linear transformation .T : X → Y is continuous if, and only if, T is a 
Lipschitz map, 

. ∃c > 0, ∀x ∈ X, ‖T x‖Y ⩽ c‖x‖X.

Proof The definition of a Lipschitz map reads, when applied for normed spaces, 
.‖f (x) − f (y)‖ ⩽ c‖x − y‖ for some .c > 0. When f is in fact a linear map T , 
it becomes .‖T (x − y)‖ ⩽ c‖x − y‖, or equivalently, .‖T v‖ ⩽ c‖v‖ for all . v ∈
X. That Lipschitz maps are (uniformly) continuous is true in every metric space 
(Example 4.16(3)), but can easily be seen in this context. If .xn → x, then . T xn →
T x, since 

. ‖T xn − T x‖ = ‖T (xn − x)‖ ⩽ c‖xn − x‖ → 0.

Conversely, suppose the ratios .‖T x‖/‖x‖ are unbounded. Since scaling x does 
not affect this ratio (because T is linear), there must be vectors . xn such that . ‖T xn‖ =
1 but .‖xn‖ ⩽ 1/n. So .xn → 0 yet .T xn /→ 0, and T is not continuous. ⨅⨆
Equivalently, T sends bounded sets in X to bounded sets in Y , since it maps the 
ball .Br(x) into the ball .Bcr(T x) (Exercise 4.18(3)). Because of this, continuous 
operators are widely referred to as being “bounded”, but, except for the zero 
operator, their image is certainly not bounded! This usage of the word “bounded” is 
avoided in this text, in favor of the equivalent term “continuous”. 

Examples 8.3 

1. An operator T maps the linear subspace .[[A]] to .[[T A]] because 

. x =
n∑

i=1

αivi ⇒ T x =
n∑

i=1

αiT vi .

In particular it maps a straight line to another straight line (or to the origin), 
hence the name “linear” applied to operators.
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If T is 1–1, then .E ⊆ X is linearly independent iff T E  is linearly 
independent. 

2. ▶ A linear transformation from . Fn to . Fm takes the form of a matrix. Letting 
.F

n = [[e1, . . . , en]], .Fm = [[e'
1, . . . , e

'
m]], .x = ∑n

j=1 ajej = (a1, . . . , an), and 
.T ej =∑m

i=1 Tije
'
i (for some .Tij ∈ F), then 

. 

Tx = 
n∑

j=1 

ajTej = 
m∑

i=1

( n∑

j=1 

Tijaj

)
e'
i = 

T11 T1n 
a1 

. 

Notice that the column vectors of T are . T ej . 
Every matrix is continuous, 

. ‖T x‖2 ⩽
m∑

i=1

n∑

j=1

|Tij aj | ⩽
( m,n∑

i,j=1

|Tij |
)
‖x‖2

3. A functional from . Fn to . F is then a .1 × n matrix, otherwise known as a row 
vector, 

. φ

⎛

⎜
⎝

a1
...

an

⎞

⎟
⎠ = φ

(
n∑

i=1

aiei

)

=
n∑

i=1

φ(ei )ai =
n∑

i=1

biai = (b1 . . . bn

)

⎛

⎜
⎝

a1
...

an

⎞

⎟
⎠ .

4. Generalizing this to functionals on complex sequences, let . y⏉(x) = y · x :=∑
n bnan, when the series exists, where .x = (an)n∈N and .y = (bn)n∈N. Then 

. y⏉ is linear, 

. y · (x + x') =
∑

n

bn(an + a'
n) =

∑

n

bnan +
∑

n

bna
'
n = y · x + y · x',

y · (λx) =
∑

n

bnλan = λ
∑

n

bnan = λy · x,

but may or may not be continuous, depending on . y and the normed spaces 
involved. For example, to show that .φ(an) := ∑∞

n=1
(−1)nan

n2
defined on . 𝓁∞ is 

continuous, note 

.|φx| =
∣
∣
∣

∞∑

n=1

(−1)n

n2
an

∣
∣
∣ ⩽

∞∑

n=1

1

n2
sup
n

|an| ⩽ 2‖x‖𝓁∞ .
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5. When X has a Schauder basis .(en)n∈N, a functional must have the above form: 

. φx = φ
(∑

n∈N
anen

) =
∑

n∈N
anφen =

∑

n∈N
bnan, (bn := φen, an ∈ F).

6. The identity operator .I : X → X, .x I→ x, is trivially linear and continuous. 
Similarly for scalar multiplication, .λ : x I→ λx. 

7. ▶ The left-shift operator .L : 𝓁1 → 𝓁1 defined by .(an)n∈N I→ (an+1)n∈N, i.e., 

. L(a0, a1, a2, . . .) := (a1, a2, a3, . . .),

is onto, linear, continuous, and satisfies .‖Lx‖ ⩽ ‖x‖; it is not 1–1. 
Proof : That L is onto is obvious; linearity and continuity follow from 

. L(an + bn) = (a1 + b1, a2 + b2, . . .) = (a1, a2, . . .) + (b1, b2, . . .)

= L(an) + L(bn),

L(λan) = (λa1, λa2, . . .) = λ(a1, a2, . . .) = λL(an),

‖Lx‖𝓁1 =
∞∑

n=1

|an| ⩽
∞∑

n=0

|an| = ‖x‖𝓁1 .

Any two sequences, which differ in the first coefficient only, map to the same 
sequence. 

8. ▶ In general, the multiplication of sequences .x I→ yx, defined by . (bn)(an) :=
(bnan)n∈N, is linear on the vector space of sequences. When .|bn| ⩽ c, it is  
continuous as a map .𝓁p → 𝓁p (.p ⩾ 1); e.g., for .p = 1, 

. ‖yx‖𝓁1 =
∞∑

n=0

|bnan| ⩽ c

∞∑

n=0

|an| = c‖x‖𝓁1 .

In finite dimensions, this is equivalent to multiplying . x by a diagonal matrix. 
9. Integration, .f I→ ∫

A
f , is a functional on .L1(A). 

10. The ‘delta function’ .δx0(f ) := f (x0), is a functional on .Cb(X), where .x0 ∈ X. 
Proof : Linearity is immediate, 

. δx0(λf + g) = (λf + g)(x0) = λf (x0) + g(x0) = λδx0(f ) + δx0(g).

For continuity, . |δx0f | = |f (x0)| ⩽ sup
x∈X

|f (x)| = ‖f ‖C(X).

11. Differentiation of functions is linear (say on the vector space of differentiable 
functions) but it is not continuous in the .∞-norm, e.g., 

.‖D cos(nt)‖Cb(R) = ‖−n sin(nt)‖Cb(R) = n
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whereas .‖ cos(nt)‖Cb(R) = 1. Similarly, .‖Dtn‖C[0,1]/‖tn‖C[0,1] → ∞ as . n →
∞. (Here, . tn and .cos(nt) denote functions in t .) 

12. Conjugation in . C, .z I→ z̄, is continuous but not linear. It is conjugate-linear, 
because .λz = λ̄z̄ /= λz̄ in general. 

Proposition 8.4 

If .T : X → Y is an operator, 

(i) the image of a linear subspace A of X is again a linear subspace of Y , 
.T A := { T x ∈ Y : x ∈ A }, 

(ii) the pre-image of a closed linear subspace B of Y is a closed linear 
subspace of X, .T −1B := { x ∈ X : T x ∈ B }. 

The image and pre-image of convex subsets are convex. 

In particular, its image .im T := T X is a linear subspace; and its kernel . ker T :=
T −10 is a closed linear subspace. Their dimensions are called the rank and nullity of 
T , respectively. The kernel of a non-zero functional, .kerφ, is called a hyperplane. 
Proof (i) Let .T x, T y ∈ T A, then .λT x + Ty = T (λx + y) ∈ T A. 

(ii) Let .x, y, xn ∈ T −1B, that is, .T x, T y, T xn ∈ B, and let .λ ∈ F. Then 

. T (x + y) = T x + Ty ∈ B, T (λx) = λT x ∈ B,

xn → v ⇒ T v = T ( lim
n→∞ xn) = lim

n→∞ T xn ∈ B,

show that .T −1B is a closed linear subspace. 

(iii) Let A be a convex subset of X and let .T x, T y ∈ T A, where .x, y ∈ A. Then for 
any .0 ⩽ t ⩽ 1, .z := tx + (1 − t)y is in A, so  

. t T x + (1 − t)T y = T (tx + (1 − t)y) = T z ∈ T A

shows T A  is also convex. Now let .B ⊆ Y be convex, and let .x, y ∈ T −1B, i.e., T x, 
Ty  are both in B. Then, by convexity of B, 

. T (tx + (1 − t)y) = tT x + (1 − t)T y ∈ B

and .tx + (1 − t)y ∈ T −1B as required. ⨅⨆

Solving linear equations .T x = y, where T and y are given, is probably the single 
most useful application in the whole of mathematics. The key to finding the general 
solution of this equation is to know .im T and .ker T .
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• To say that .T x = y has a solution is the same as saying .y ∈ im T . Hence . T x = y

always has a solution precisely when T is surjective, .im T = Y . 
• .ker T is the set of solutions of the homogeneous equation .T v = 0. If  . v ∈ ker T

then .T (x + v) = T x = y, so both x and .x + v are solutions. Hence .T x = y has 
unique solutions (if any), and T is injective, precisely when .ker T = 0. 

• If . x0 is any individual or particular solution, .T x0 = y, then for any other solution 
of .T x = y, we get .T (x − x0) = 0 so .x − x0 ∈ ker T , called a complementary 
solution. Thus we have proved: 

. The complete set of solutions of T x = y is x0 + ker T .

Examples 8.5 

1. For a matrix, the image of T is often called its column space, since . im T =
[[T ej ]]nj=1. Gaussian column operations can be performed on the columns to 
simplify it to a basis, for example, 

. im T = ColSpace

⎛

⎝
1 3 7 −17

−4 −4 −20 36
1 1 5 −9

⎞

⎠ =
⎡

⎣

⎡

⎣
1 0 0 0

−4 8 8 −32
1 −2 −2 8

⎤

⎦

⎤

⎦ =
⎡

⎣

⎡

⎣
1 0
0 4
0 −1

⎤

⎦

⎤

⎦ .

(Column vector parentheses are suppressed for clarity.) 
Similarly, the rows can be simplified by row operations, 

. RowSpace

⎛

⎝
1 3 7 −17

−4 −4 −20 36
1 1 5 −9

⎞

⎠ = RowSpace

(
1 0 4 −5
0 1 1 −4

)

so a vector belongs to .ker T iff it is annihilated by the row-space; in this case 

they are the vectors .

⎛

⎜
⎜
⎝

5t − 4s
4t − s

s

t

⎞

⎟
⎟
⎠, so .ker T =

⎡

⎢
⎢
⎣

⎡

⎢
⎢
⎣

5 −4
4 −1
0 1
1 0

⎤

⎥
⎥
⎦

⎤

⎥
⎥
⎦. 

2. The kernel of the left-shift operator is spanned by . e0, since if .x ∈ kerL, 
.(a1, a2, . . .) = Lx = 0, so .an = 0 for all .n /= 0, i.e., .x = a0e0; in fact .Le0 = 0. 

3. An open linear mapping must be surjective. 
Proof : As  .T BX is open in Y , it contains a neighborhood .Bϵ(0) = ϵBY . But  
.X =⋃n Bn(0), so .T X =⋃n nT BX ⊇⋃n nϵBY = Y . 

4. Let V be a linear subspace of .im T ⊆ Y , with a basis E; for each element .e ∈ E, 
choose a pre-image .u ∈ X, i.e., .T u = e, and form the set . E0 of such vectors, one 
for each e; these are the particular solutions mentioned above. Then . T −1V =
[[E0]] + ker T and .dim(T −1V ) ⩽ dimV + dim ker T .
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Proof : Let  . E1 be a basis for .ker T ; then .E0 ∪ E1 is a basis for .T −1V since the 
solutions of .T x = v ∈ V are obtained as . x = x0 + w ∈ [[E0]] + [[E1]] =
[[E0 ∪ E1]]. 

In particular, taking .V = im T , the  rank-nullity formula holds: 

. rank(T ) + nullity(T ) = dimX

Note that .rank(T ) ⩽ dimX. (These formulae hold even for infinite dimensions, 
in the sense of cardinal numbers.) 

5. A finite-rank operator is one whose image is finite-dimensional. If .S, T are finite-
rank then so are .S + T and ST (when defined), with 

. rank(S + T ) ⩽ rank(S) + rank(T ),

rank(ST ) ⩽ min(rank(S), rank(T )).

Proof : The domain of S in the composition ST can be taken to be .im T , so  
.dim(im(ST )) ⩽ dim(im(T )) by the rank-nullity formula; the rest follow from 
.im(ST ) ⊆ im(S) and .im(S + T ) ⊆ im S + im T . 

6. Sylvester’s inequality: If  S and T both have finite nullity, then so does ST with 

. nullity(ST ) ⩽ nullity(S) + nullity(T ).

Proof : .ker(ST ) = T −1(ker S), so .nullity(ST ) ⩽ dim ker S + dim ker T . 

Exercises 8.6 

1. Show that the following are continuous functionals, 

(a) .φ(an) :=∑∞
n=1

1
n
an on . 𝓁2; 

(b) .φ(an) :=∑∞
n=0 einωan on . 𝓁1, (.ω ∈ R); 

(c) .δ1(an) := a1 on . 𝓁1, . 𝓁2, . 𝓁∞. 

Their best Lipschitz constants are . π√
6
, 1, and 1, respectively. 

2. If .(en)n∈N is a Schauder basis, with .x = ∑n an(x)en for each x, show that the 
map .x I→ ak(x) is linear. (That it is also continuous is true in a Banach space, 
but not obviously.) 

3. ▶ The right-shift operator is defined by .R(an) := (0, a0, a1, . . .). Show that it 
is 1–1, isometric, and has a closed image. Is the left-shift operator its inverse? 

4. Other examples of operators (on . 𝓁1 or . 𝓁∞) are  

. S(an) := (a1, a0, a3, a2, . . .), T (an) := (an+4 − an)n∈N.

5. .T [[A]] ⊆ [[T A]] for a continuous linear operator T and a subset .A ⊆ X. 
In particular, .M := [[x, T x, T 2x, . . . ]] is a T -invariant subspace of X: 
.T M ⊆ M .
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6. Solve for the functional equation .f (t + 1) = f (t) + t as follows: (i) the map 
.T : f (t) I→ f (t + 1) − f (t) is linear in f ; find (ii) .ker T ; (iii) a particular 
solution in the space of polynomials; (iv) the general solution. 

7. If a linear map is continuous at one point, say 0, then it is continuous 
everywhere. 

8. When Y is a normed space and .T : X → Y is 1–1 and linear, then the map 
.x I→ ‖T x‖ is a norm on X. 

9. Typical examples of functionals acting on functions are of the form . f I→∫
k(t)f (t) dt , where k has to satisfy some conditions for the functional to be 

continuous. For example, .φf := ∫∞
0 e−t f (t) dt is a functional on .L∞[0,∞[. 

10. If .S, T ∈ B(X) commute, .ST = T S, then S maps .ker T and .im T into 
themselves. 

8.2 Operator Norms 

Proposition 8.2 states that a linear transformation T is continuous when it satisfies 
an inequality .‖T x‖Y ⩽ c‖x‖X. The smallest such constant c is denoted by .‖T ‖, 
because it turns out to be a norm on operators. The sharp inequality 

. ‖T x‖ ⩽ ‖T ‖‖x‖

is used extensively in the rest of the text. 

Theorem 8.7 

.B(X, Y ) is a vector space with a norm defined by 

. ‖T ‖ := sup
x /=0

‖T x‖Y

‖x‖X

= sup
‖x‖=1

‖T x‖Y .

.B(X, Y ) is complete when Y is complete. In particular, . X∗ is a Banach 
space, with norm 

. ‖φ‖ = sup
x /=0

|φx|
‖x‖ .

Proof The norm is well-defined in the sense that if T is an operator, then the ratios 
.‖T x‖/‖x‖ are bounded above, and so have a supremum .‖T ‖. In fact, a linear map 
belongs to .B(X, Y ) if, and only if, .‖T ‖ < ∞. 

Addition and scalar multiplication of operators is defined by 

.(S + T )x := Sx + T x, (λT )x := λ T x.
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That .B(X, Y )with these operations is a vector space is a straightforward calculation, 
using the linearity and continuity of these operations in X and Y (Proposition 7.9). 

. (λT )(αx + y) = λ T (αx + y) = λαT x + λTy = α(λT )x + (λT )y.

More crucially, 

. ‖S + T ‖ = sup
‖x‖=1

‖Sx + T x‖ ⩽ sup
‖x‖=1

(‖Sx‖ + ‖T x‖)

⩽ sup
‖x‖=1

‖Sx‖ + sup
‖x‖=1

‖T x‖

= ‖S‖ + ‖T ‖
. ‖λT ‖ = sup

‖x‖=1
‖λT x‖ = sup

‖x‖=1
|λ|‖T x‖ = |λ|‖T ‖

‖T ‖ = 0 ⇔ ∀x ‖T x‖ = 0 ⇔ T = 0.

.B(X, Y ) is complete if Y is: Let . Tn be a Cauchy sequence of operators in .B(X, Y ), 
that is, .‖Tn − Tm‖ → 0 as .n,m → ∞. Then, for each .x ∈ X, 

. ‖Tnx − Tmx‖ ⩽ ‖Tn − Tm‖‖x‖ → 0

implies that .(Tnx)n∈N is a Cauchy sequence in Y , so that .Tnx converges to some 
vector which can be denoted by .T (x), if  Y is complete. We now show that T is 
linear: 

. 

Tn(x + y) = Tnx + Tny, Tn(λx) = λTnx,⏐
⏐
�

⏐
⏐
�

⏐
⏐
�

⏐
⏐
� as n → ∞,

T (x + y) T (x) + T (y), T (λx) λT (x),

by continuity of addition and scalar multiplication. 
Finally, for any .ϵ > 0 and any .x ∈ X, 

. ‖(Tn − T )x‖ ⩽ ‖Tn − Tm‖‖x‖ + ‖Tmx − T x‖ < ϵ‖x‖ + ϵ‖x‖,

where m is chosen large enough, depending on x, to make  .‖Tmx − T x‖ < ϵ‖x‖, 
and .n,m ⩾ N large enough to make .‖Tn − Tm‖ < ϵ. Hence .‖Tn − T ‖ < 2ϵ for 
.n ⩾ N . This shows that .Tn − T , and so T , are continuous, and furthermore that 
.Tn → T . ⨅⨆
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Proposition 8.8 

If .T : X → Y and .S : Y → Z are operators, then so is their composition 
ST , with .‖ST ‖ ⩽ ‖S‖‖T ‖. 
.B(X) := B(X,X) is closed under multiplication. 

Proof That ST is linear is obvious: .ST (x + y) = S(T x + Ty) = ST x + STy and 
.ST (λx) = S(λT x) = λST x. Also,  

. ‖ST x‖ = ‖S(T x)‖ ⩽ ‖S‖‖T x‖ ⩽ ‖S‖‖T ‖‖x‖,

and the result follows by taking the supremum for unit vectors x. ⨅⨆
Examples 8.9 

1. .‖0‖ = 0, .‖I‖ = 1; more generally, .‖λI‖ = |λ|. 
2. The norm of the functional . y⏉ is .‖y‖𝓁∞ when considered as a map .𝓁1 → F. 

Proof : Taking .x = (an)n∈N, .y = (bn)n∈N, 

. |y · x| ⩽
∑

n∈N
|bn||an| ⩽ (sup

n∈N
|bn|)

∑

n∈N
|an| = ‖y‖𝓁∞‖x‖𝓁1 ,

gives .‖y⏉‖ ⩽ ‖y‖𝓁∞ . Since the supremum .‖y‖𝓁∞ is a boundary point of the set 
.{ |bn| : n ∈ N }, there is a subsequence .|bni

| → ‖y‖𝓁∞ , so that .‖y⏉‖ ⩾ ‖y‖𝓁∞ , 

. ‖y⏉‖ ⩾ |y · eni
| = |bni

| → ‖y‖𝓁∞ (‖eni
‖ = 1).

3. .‖T ‖ ⩽ ‖S‖ /⇒ ‖T x‖ ⩽ ‖Sx‖, for example, .T = I , .S = (2 0
0 0

)
, .x = (01

)
. 

4. If S extends T , with domains .X ⊇ Y , then .‖T ‖ ⩽ ‖S‖, since 

. ‖T ‖ = sup
x∈BY

‖T x‖ ⩽ sup
x∈BX

‖T x‖ = ‖S‖, (BY ⊆ BX).

5. ▶ Any linear continuous operator on normed spaces, .T : X → Y , is Lipschitz, 
hence uniformly continuous. By Theorem 4.14, it can be extended uniquely to 
an operator on their (Banach) completion spaces, .T̃ : X̃ → Ỹ . This extension 
remains linear and continuous, and retains the same norm, .‖T̃ ‖ = ‖T ‖. 
Proof : For any vector .x ∈ X̃, there exist vectors .xn ∈ X such that .xn → x; let  
.T̃ x := lim

n→∞ T xn ∈ Ỹ . Then, for any vector .v ∈ X̃, with .vn → v, .vn ∈ X, 

. ̃T (λx + v) = lim
n→∞ T (λxn + vn) = lim

n→∞(λT xn + T vn) = λT̃ (x) + T̃ (v),

‖T̃ x‖ = lim
n→∞ ‖T xn‖ ⩽ ‖T ‖ lim

n→∞ ‖xn‖ = ‖T ‖‖x‖.

So .‖T̃ ‖ ⩽ ‖T ‖, but, as the domain of . ̃T includes that of T , equality holds.
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6. Let .φ ∈ X∗ and .y ∈ Y ; then the map .yφ : x I→ (φx)y is continuous and linear, 
with .‖yφ‖ = ‖y‖‖φ‖. 
Proof : .‖yφ‖ = sup

‖x‖=1
‖yφx‖ = ( sup

‖x‖=1
|φx|)‖y‖ = ‖φ‖‖y‖. 

7. An ‘affine’ map .f (x) := v + T x with .T ∈ B(X) is a contraction mapping when 
.‖T ‖ < 1. The iteration .xn+1 := v + T xn, starting from any . x0, converges to its 
fixed point .y = v + Ty (Theorem 4.17). Try it out as a plot with an affine map 
such as .

2
5

(
2 −1
1 2

)
x + (10

)
. 

Matrix Norms 

Every matrix .T : F
n → F

m is continuous, hence has a finite norm .‖T ‖. But  
this operator norm needs to be disabused of some notions. It is not a number that 
depends only on T ; it also depends on which norms are being used for . Fn and . Fm

and therefore it is customary to denote it by .‖T ‖p,q when the p- and q-norms are 
used in . Fn and . Fm, respectively, unless it is obvious from the context. Moreover, it 
may be hard to compute a norm in general, so any estimate for it is most welcome. 
Finally, there exist other more convenient norms that are based on specific formulas, 
foremost of which is the Frobenius norm of a matrix defined by 

. ‖T ‖F :=
( m,n∑

i,j=1

|Tij |2
)1/2

.

It is just the Euclidean norm of the matrix thought of as a vector with mn 
components. 

Proposition 8.10 

Let a matrix T have coefficients . Tij , then 

. 

‖T ‖1,∞ ⩽ maxi,j |Tij |, ‖T ‖1,1 = maxj

∑
i |Tij | =: c,

‖T ‖∞,1 ⩽
∑

i,j |Tij |, ‖T ‖∞,∞ = maxi

∑
j |Tij | =: r,

‖T ‖2,2 ⩽ ‖T ‖F , ‖T ‖2,2 ⩽
√

rc.

The numbers c and r measure the matrix’s “largest” column and row, respectively. 
Then the second inequality for .‖T ‖2,2, known as Schur’s test and sometimes an 
improvement on the first inequality, states that it is at most their geometric mean. 

Proof Let .x = (aj )
n
j=1 and .T x = (

∑n
j=1 Tij aj )

m
i=1.
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(i) .‖T x‖∞ = maxi

∣
∣
∣
∑

j Tij aj

∣
∣
∣ ⩽ (maxi maxj |Tij |)‖x‖1. 

(ii) .‖T x‖1 =∑i

∣
∣
∣
∑

j Tij aj

∣
∣
∣ ⩽
(∑

i

∑
j |Tij |

)‖x‖∞. 

(iii) By Cauchy’s inequality, .
∣
∣∑

j Tij aj

∣
∣2 ⩽

∑
j |Tij |2∑j |aj |2 for each i, so  

. ‖T x‖22 =
∑

i

∣
∣
∣
∑

j

Tij aj

∣
∣
∣
2
⩽
∑

ij

|Tij |2‖x‖22.

(iv) .‖T x‖1 = ∑
i

∣
∣
∣
∑

j Tij aj

∣
∣
∣ ⩽

∑
j

∑
i |Tij ||aj | ⩽

∑
j c|aj | = c‖x‖1. If the  

largest column is the kth one, then .‖T ek‖1 = c = c‖ek‖1, so  . ‖T ‖1,1 =
sup ‖T x‖1‖x‖1 = c. 

(v) .‖T x‖∞ = maxi

∣
∣
∣
∑

j Tij aj

∣
∣
∣ ⩽

(
maxi

∑
j |Tij |

)‖x‖∞. If the largest row is the 

kth one, consider the unit vector .x := (|Tkj |/Tkj )
n
j=1 (take 1 if .Tkj = 0); then 

.‖T x‖∞ =∑j |Tkj | = r . 
(vi) Let .y := (bi)

m
i=1; then again by Cauchy’s inequality, over . Fnm, 

. |y · T x| ⩽
∑

i,j

|Tij ||aj ||bi | =
∑

i,j

(
|Tij | 12 |aj |

) (
|Tij | 12 |bi |

)

⩽
√∑

i,j

|Tij ||aj |2
√∑

i,j

|Tij ||bi |2,

⩽
√

c
∑

j

|aj |2
√

r
∑

i

|bi |2 = √
rc ‖x‖2‖y‖2

In particular, putting .y = T x gives .‖T x‖22 ⩽
√

rc ‖x‖2‖T x‖2. 
⨅⨆

Proposition 8.11 

The .(p, q)-norm of a matrix T can only increase if 

(i) a row or column is added; or 
(ii) the coefficients . Tij are replaced by .|Tij | or larger. 

Proof (i) Adding a row increases .‖T x‖q without affecting .‖x‖p. Adding a column 
enlarges the domain, since . Fn is embedded in .Fn+1. Since all the original vectors 
are still present with a zero at the position of the new column, the supremum of 
.‖T x‖ among all the unit vectors can only increase.
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(ii) For any vector .x = (aj )
n
j=1, let  .x+ := (|aj |)nj=1, both vectors having the same 

norm. Let S be a matrix with coefficients satisfying .Sij ⩾ |Tij |. Then 

. ‖T x‖q ⩽
∥
∥
(∑

j

Tij aj

)m
i=1

∥
∥

q
⩽
∥
∥
(∑

j

|Tij ||aj |
)m
i=1

∥
∥

q
⩽ ‖Sx+‖q

⩽ ‖S‖p,q‖x‖p.

⨅⨆
Examples 8.12 

1. By deleting rows and columns, it follows that the norm of a matrix is larger than 
the norm of any submatrix, including that of any row or column, or individual 
components. 

2. The .(1, 1)- and .(∞,∞)-norms are easy to calculate and are achieved by vectors: 

. 

(
7 −7 5

−2 9 5

)
⎛

⎝
0
1
0

⎞

⎠ =
(−7

9

)

,

(
7 −7 5

−2 9 5

)
⎛

⎝
1

−1
1

⎞

⎠ =
(
19
−6

)

.

But for the .(2, 2)-norm, the above propositions only tell us that 

. 11.4 ≈ √
130 ⩽

∥
∥
∥

(
7 −7 5

−2 9 5

)∥
∥
∥
2,2

⩽
√
233 ≈ 15.3,

using columns, rows, and the Frobenius norm. 
3. If an operator .T : X → X has an eigenvector, .T x = λx, then .‖T ‖ ⩾ ‖T x‖

‖x‖ = |λ|. 
For example, the .(p, p)-norm of a square matrix is at least equal to its largest 
eigenvalue. 

4. Any norm .‖T ‖p,q depends continuously on its coefficients: changing them 
slightly by at most . ϵ does not change T drastically, e.g., 

. ‖S − T ‖∞,1 ⩽ mnmax
i,j

|Sij − Tij | ⩽ mnϵ.

5. Finite matrices have a whole set of attributes that do not generalize to operators, 
so it is important to ‘unlearn’ them for infinite dimensions, so to speak. The 
following is a list of properties that generally hold only in finite dimensions: 

(a) A matrix is injective iff surjective. 
(b) Every matrix has finite rank and nullity. 
(c) Every matrix is continuous. 
(d) The image of any matrix is closed. 
(e) Every square matrix satisfies some polynomial; that monic polynomial of 

smallest degree is called its minimal polynomial. 
(f) Every square matrix has a determinant and a trace.
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Exercises 8.13 

1. The mapping .T : 𝓁1 → 𝓁1, defined by .T (an) := (a0, a1/2, a2/3, . . .), is linear 
and continuous, with norm 1. It is 1–1, and its image, denoted .𝓁11 := im T ⊂ 𝓁1, 
is not closed in . 𝓁1. (Hint: Consider .(1, 1/2, . . . , 1/n, 0, 0, 0, . . .).) 

2. The mapping .D : 𝓁11 → 𝓁1, defined by .D(an) := (nan)n∈N, is linear and 
invertible, but not continuous. (Hint: .D(en/n) = en.) 

3. The right-shift operator satisfies .‖Rx‖ = ‖x‖ as .𝓁p → 𝓁p, so .‖R‖p,p = 1. Show 
further that .‖R‖1,∞ = 1 and .‖L‖p,p = 1 (where L is the left-shift operator). 

4. Some examples of continuous linear maps on .Cb(R) are: 

(a) .Tf (t) := (f (t) + f (−t))/2, 
(b) Translations .Taf (t) := f (t − a); they are isometries and form a group with 

.TaTb = Ta+b, .I = T0, .T −1
a = T−a , 

(c) Warping of the domain: .Tgf (t) := f ◦ g(t), where g is invertible; 
(d) Multipliers .Mgf (t) := g(t)f (t), where .g ∈ Cb(R). 

What are their kernels and image subspaces? and their norms? 
5. It is not so easy to calculate .‖T ‖ in general, even when T is a matrix. Show that, 

with the Euclidean norms, 

(a) .
∥
∥
(
λ 0
0 μ

)∥
∥ = max(|λ|, |μ|). 

(b) .
∥
∥
(
0 1
0 0

)∥
∥ = 1 = ∥∥( 0 1−1 0

)∥
∥. 

(c) If you feel up to it, show that for real .2 × 2 matrices, 

. 
∥
∥
(

a b

c d

)
∥
∥ =

√
a2+b2+c2+d2+

√
((a−d)2+(b+c)2)((a+d)2+(b−c)2)

2

(Hint: Use Lagrange multipliers to find the maximum of . (ax + by)2 + (cx +
dy)2 subject to .x2 + y2 = 1. See also Exercise 15.21(8).) 

6. Prove that if a matrix decomposes as .T = (
A 0
0 B

)
then . ‖T ‖2,2 ⩽

max(‖A‖2,2, ‖B‖2,2). Does this generalize to .‖T ‖p,p or .‖T ‖2,1? 
7. If .Tnxn → 0 for any choice of unit vectors . xn, then .Tn → 0. 
8. * A real matrix T has two norms, in principle: when considered as a matrix 

mapping .Rn → R
m, and as .Cn → C

m. The ‘complex’ norm is always larger 
than the ‘real’ norm, but need not be equal. For example, taking .T := (1 −1

1 1

)
and 

.x := (1+i
1−i

)
gives .‖T x‖1 = 2

√
2‖x‖∞, yet .‖T ‖∞,1 = 2 over the reals. Show, 

however, that the two norms are equal when the 2-norms are used in both domain 
and codomain. (Hint: .‖x + iy‖2 = ‖x‖2 + ‖y‖2.)
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8.3 Isomorphisms and Projections 

We sometimes need to show that two normed spaces are essentially the same, 
meaning that any process involving addition, scalar multiplication, or convergence, 
in one space is mirrored in precise fashion in the other space, and vice-versa. This 
is the idea of an isomorphism. 

Definition 8.14 

An isomorphism between normed vector spaces is a bijective map . T : X →
Y such that both T and .T −1 are linear and continuous. The spaces are then 
said to be isomorphic to each other, .X ∼= Y . 

An isometric isomorphism is one that preserves distance, .‖T x‖Y = ‖x‖X for 
all .x ∈ X, and isometrically isomorphic spaces are denoted by .X ≡ Y . 

We say that X is embedded in Y , denoted .X ⊂∼ Y when .X ∼= Z ⊆ Y for some 
subspace Z, and the isomorphism .X → Z is called an embedding. 

Thus, isomorphic normed spaces are isomorphic as vector spaces and homeomor-
phic (in fact equivalent) as metric spaces. Intuitively speaking, if X is embedded in 
Y , then one can treat it as if it were a subspace of Y even though its elements are not 
in Y . 

Proposition 8.15 

If .T : X → Y is a bijective linear map, then .T −1 is linear, and is 
continuous when .c‖x‖X ⩽ ‖T x‖Y for some .c > 0. 

When T is an isomorphism, .‖T −1‖ ⩾ ‖T ‖−1. 

Proof Let T be a bijective linear map, let .x, y ∈ Y , and let .u := T −1x, .v := T −1y; 
then .T (u + v) = T u + T v = x + y, so that .u + v = T −1(x + y). Similarly 
.T (λu) = λT u = λx gives .T −1(λx) = λu = λT −1(x). This shows .T −1 is linear. 

The inverse is continuous when .‖T −1y‖ ⩽ c‖y‖ for all .y ∈ Y , in particular for 
.y = T x: .‖x‖ ⩽ c‖T x‖ for all .x ∈ X. Since T is surjective, the two inequalities are 
logically equivalent. 

By Proposition 8.8, .1 = ‖I‖ = ‖T T −1‖ ⩽ ‖T ‖‖T −1‖. ⨅⨆
Isomorphisms are also important in practical applications of functional analysis, 

where linear equations of the type .T x = y, with y given, are very common. Three 
requirements are prescribed for such an equation to be well-posed: 

(i) a solution exists; in operator terminology, this means that T is onto; 
(ii) the solution is unique, that is, T is 1–1;
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(iii) the solution is stable; small variations in y do not lead to sudden large changes 
in x, in other words, x depends continuously on y, that is, .T −1 is continuous. 

Collectively, these three conditions entail that T has a continuous inverse. They 
not only have theoretical implications but practical ones as well. Existence and 
uniqueness of a solution are of obvious practical importance; stability implies that 
an algorithm can give a meaningful approximate solution, in the sense that small 
numerical errors in the initial conditions or algorithmic steps do not render the 
output completely wrong. 

To measure how well-posed an equation is, we can consider the maximum 
relative error in x given a relative error in y. That is, if an error . δy in y gives 
a corresponding fluctuation . δx in the solution x, .T (x + δx) = y + δy, then 
.T (δx) = δy. Thus combining .‖δx‖ ⩽ ‖T −1‖‖δy‖ with .‖y‖ ⩽ ‖T ‖‖x‖, gives  

. 
‖δx‖
‖x‖ ⩽ ‖T −1‖‖T ‖‖δy‖

‖y‖ .

The number .‖T −1‖‖T ‖ is called the condition number of T . If it is relatively 
large, then the equation is said to be ill-conditioned because the relative error of 
the solution could be larger than that of the data. 

Examples 8.16 

1. ▶ Suppose a vector space X is normed in two ways, giving two normed spaces 
.X‖·‖ and .X|||·|||. The two norms are equivalent if, and only if, the identity map 
.I : X‖·‖ → X|||·||| is an isomorphism (Example 7.4(9)); equivalently, there are 
constants .c, d > 0, 

. ∀x, c‖x‖ ⩽ |||x||| ⩽ d‖x‖.

For example, . Rn with the 1-norm is equivalent to . Rn with the .∞-norm. 
2. . 𝓁1 is not isomorphic to . 𝓁∞. It is not enough to exhibit a sequence, such as 

.(1, 1, . . .), which belongs to . 𝓁∞ but not to . 𝓁1, because such a sequence may, 
in principle, correspond to some other sequence in . 𝓁1. One must demonstrate 
a property that . 𝓁1 satisfies but . 𝓁∞ doesn’t; e.g., we will show later on that the 
former, but not the latter, is separable. 

3. ▶ The inequality .c‖x‖ ⩽ ‖T x‖ (.c > 0), valid for all x in a Banach space X, 
implies that .im T is closed and T is 1–1. 
Proof : If  .T x = Ty, then .c‖x − y‖ ⩽ ‖T x − Ty‖ = 0 and .x = y. Suppose 
.T xn → y in Y ; then .c‖xn − xm‖ ⩽ ‖T xn − T xm‖ → 0 as n,m → ∞, so  
.(xn)n∈N is Cauchy and converges to, say, .x ∈ X. By continuity of T , . T xn →
T x = y, hence .y ∈ im T and .im T is closed. 

4. Suppose we wish to find the solution of .T x = y (.T ∈ B(X, Y )),  but it is time-
consuming or impossible to calculate .T −1. If .S ∈ B(X, Y ) is easily inverted and 
close to T , i.e., .T = S + R and .‖R‖ < ‖S−1‖−1, then .‖S−1R‖ < 1, and the 
iteration 

. xn+1 := xn + S−1(y − T xn) = S−1(y − Rxn)

converges to the solution of the equation by the Banach fixed point theorem.
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Projections 

Our next aim is to show firstly that all n-dimensional spaces are isomorphic to 
each other (for each n), and secondly to seek an analogue of the first isomorphism 
theorem of vector spaces, namely .V/ ker T ∼= im T . Accordingly we need to 
introduce an important type of operator called a projection, and then construct 
quotient spaces. 

Definition 8.17 

A projection is a continuous linear map .P : X → X such that .P 2 = P . 

For example, shadows are the projection of objects in . R3 to shapes in a two-
dimensional plane; a flat object on the ground is its own shadow. Playing around 
with the definition gives a number of consequences: 

imP 

kerP 

x 

Px  

(I−P )x 

Examples 8.18 

1. .(I − P)2 = I − 2P + P 2 = I − P is also a projection. 
2. .(I −P)P = 0, so .x ∈ imP ⇔ x −Px = 0, and .imP = ker(I −P) is a closed 

subspace. Similarly .im(I − P) = ker(I − I + P) = kerP . 
3. Any .x ∈ X can be written as .x = Px + (I − P)x ∈ imP + kerP . If  . x ∈

imP ∩ kerP = ker(I − P) ∩ kerP , then .x = Px + (I − P)x = 0, so that 
.X = imP ⊕ kerP . 

4. Any linear map on a Banach space, which satisfies .P 2 = P , is automatically 
continuous when .imP and .kerP are closed subspaces, but more powerful results 
are needed to show this (Proposition 11.5). 

5. To create a projection onto the space M along the space K , find bases for 
these spaces and form a matrix out of their column vectors, .T := [MK]. The  
projection needs to satisfy .PM = M and .PK = 0, hence .P = [M0]T −1. For  
example to map onto .

(
1−1

)
along . 

(
1
1

)
, .P = ( 1 0−1 0

)(
1 1−1 1

)−1 = 1
2

( 1 −1
−1 1

)
. 

Exercises 8.19 

1. (a) The map .
(
a1
a2

) I→ (0, a1, a2, 0, 0, . . .) embeds . R2 in the real space . 𝓁1. 
(b) The map .J : (an)n∈N I→ (an/2n)n∈N, .𝓁∞ → 𝓁1, is injective, linear, and 

continuous, but is not an embedding (.‖x‖𝓁∞ /⩽ c‖Jx‖𝓁1 ).
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2. An infinite-dimensional space may be properly embedded in itself: for example, 
the right-shift operator .R : 𝓁∞ → imR ⊂ 𝓁∞ is an embedding. This cannot 
happen in finite dimensions. 

3. Separate each sequence .x = (an)n∈N into two parts .xe := (a0, a2, . . .) and 
.xo := (a1, a3, . . .). Then the map .x I→ (xe, xo) is an isometric isomorphism 
.𝓁1 ≡ 𝓁1 × 𝓁1. 

4. The space .𝓁1(Z) consists of ‘sequences’ .. . . , a−2, a−1, a0, a1, a2, . . . such that 
.
∑∞

n=−∞ |an| < ∞. It contains . 𝓁1 as a proper subspace, even if .𝓁1 ≡ 𝓁1(Z). 
5. Show that if .T : X → Y is an operator and .P,Q are isometric isomorphisms 

on .X, Y respectively, then .‖QT P ‖ = ‖T ‖. 
6. ✶ Let .T : 𝓁∞ → 𝓁∞ be an operator with matrix coefficients . Tij , i.e., it maps 

a sequence .(aj )j∈N ∈ 𝓁∞ to .(
∑∞

j=0 Tij aj )i∈N ∈ 𝓁∞. Suppose also that the 
matrix is dominated by its diagonal, meaning that for some .c > 0, 

. |Tii | −
∑

j /=i

|Tij | ⩾ c.

Then .‖T x‖ ⩾ c‖x‖. (Hint: use .|a + b| ⩾ |a| − |b|.) 
7. ✶ If . X1 and . X2 are isomorphic then so are their completions .X̃1 ∼= X̃2. 
8. ✶ If .X1 ∼= X2 and .Y1 ∼= Y2 then .B(X1, Y1) ∼= B(X2, Y2). 
9. Let .Ax = b be a matrix equation, where A is a square matrix. Use 

Example 8.16(4) above to describe iterative algorithms for finding the solution 
of the equation in the following cases: 

(a) (Jacobi) A is almost diagonal in the sense that .A = D + R, with D being 
the diagonal of A, and .‖R‖ < ‖D−1‖−1. 

(b) (Gauss-Seidel) A is almost a lower triangular matrix, in the sense that . A =
L + U where L is lower triangular and .‖U‖ < ‖L−1‖−1. The inverse of a 
triangular matrix is fairly easy to compute. 

10. Perturbation theory: When the solution of an invertible linear equation . Sx0 = y

is known, one can also find the solutions of ‘nearby’ equations .(S + ϵE)x = y, 
where . ϵE is a ‘perturbation’. Writing .E = −ST , the new solution satisfies . (I −
ϵT )x = x0. We might try an expansion of the type .x = x0 + ϵx1 + ϵ2x2 + · · · ; 
show that .xn+1 = T xn, and the series converges if .‖E‖ < ‖S−1‖−1 and .ϵ < 1. 

11. Show that the following are projections: 

(a) .
(
1 0
1 0

)
and . 12

(
1 1
1 1

)
; they have the same image, but different kernels, and their 

norms are . 
√
2 and 1 respectively. 

(b) .P := (0 0
0 1

)
and .Q := (1 1

0 0

)
; .kerP = imQ, so  .PQ = 0 is a projection but 

QP is not. 
(c) RL, where R and L are the shift-operators. 
(d) .xφ ∈ B(X), where .φ ∈ X∗ and .x ∈ X such that .φx = 1; in this case, 

.X = [[x]] ⊕ kerφ.
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12. If P and Q are commutative projections, then PQ  projects onto .imP ∩ imQ, 
and .P + Q − PQ projects onto .imP + imQ. 

13. By induction, if .I = P1+· · ·+Pn, with the projections . Pi satisfying . PiPj = 0
for .i /= j , then .X = imP1 ⊕ · · · ⊕ imPn. 

14. ✶ Given a closed linear subspace, is there always a projection that maps onto it? 

8.4 Quotient Spaces 

A linear subspace M of a vector space can be translated to form cosets .x + M . For  
example, a straight line .L ⊂ R

2 passing through the origin, gives the parallel copies 
.x + L. Except that with some translations, the resulting line is indistinguishable 
from L; it is easy to see that .x + L = L ⇔ x ∈ L. More generally, . x + L =
y + L ⇔ x − y ∈ L. This latter is an equivalence relation (check!), so the space 
. R2 ‘foliates’ into a stack of parallel lines, each a coset .x + L. It is obvious that 
when a line L is translated by . x, and then by . y, the result is the line .(x + y) + L; 
in fact, since translation in the direction of .v ∈ L is irrelevant to the coset, one can 
even talk about the addition of lines, .(x + L) + (y + L) as meaning .x + (y + L). 
Similarly lines can be stretched, .λ(x+L) = λx+L (unless .λ = 0), and the distance 
between lines is defined in elementary geometry as the minimum distance between 
them. This space of parallel lines is a good candidate for a normed space. 

Turning to the general case, a vector space partitions into the cosets of M to form 
a vector space .X/M , which is normed when M is closed, and complete when X is 
complete: 

Proposition 8.20 

If X is a normed space and M is a closed linear subspace, then the space 
of cosets 

. X/M := { x + M : x ∈ X }

is a normed space with addition, scalar multiplication, and norm defined 
by 

. (x + M) + (y + M) := (x + y) + M,

λ(x + M) := λx + M,

‖x + M‖ = d(x,M) := inf
v∈M

‖x − v‖.

If M is complete, then .X/M is complete . ⇔ X is complete.
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Proof That the relation .x − y ∈ M is an equivalence relation with equivalence 
classes .x+M , and that the defined addition and scalar multiplication of these classes 
satisfy the axioms of a vector space should be clear; the zero coset is M and the 
negative of .x + M is .−x + M . Let us show that we do indeed get a norm: 

. ‖(x + M) + (y + M)‖ = ‖x + y + M‖ = inf
w∈M

‖x + y − w‖

= inf
u,v∈M

‖x + y − u − v‖

⩽ inf
u,v∈M

(‖x − u‖ + ‖y − v‖)

= inf
u∈M

‖x − u‖ + inf
v∈M

‖y − v‖

= ‖x + M‖ + ‖y + M‖

‖λ(x + M)‖ = ‖λx + M‖ = inf
v∈M

‖λx − v‖

= inf
u∈M

‖λx − λu‖ (for λ /= 0)

= inf
u∈M

|λ|‖x − u‖

= |λ|‖x + M‖
‖0(x + M)‖ = ‖M‖ = d(0,M) = 0 = 0‖x + M‖

‖x + M‖ = inf
v∈M

‖x − v‖ ⩾ 0.

‖x + M‖ = 0 ⇔ d(x,M) = 0 ⇔ x ∈ M = M

⇔ x + M = 0 + M (Exercise 2.20(9)). 

Completeness Let .xn + M be an absolutely convergent series in .X/M , i.e., 
.
∑

n ‖xn + M‖ converges. Now, for each n, there is a .vn ∈ M such that 

. ‖xn − vn‖ ⩽ ‖xn + M‖ + 1/2n.

The left-hand side can be summed by comparison with the right, so . 
∑

n(xn − vn)

converges to some x, since X is complete (Proposition 7.22). Thus 

. 
∥
∥

N∑

n=1

(xn + M) − (x + M)
∥
∥ = ∥∥

N∑

n=1

xn − x + M
∥
∥ ⩽

∥
∥

N∑

n=1

(xn − vn) − x
∥
∥→ 0

since in general .‖a + M‖ ⩽ ‖a + v‖ for any .v ∈ M . Hence .
∑

n(xn+M) converges, 
along with every other absolutely summable series, and .X/M is complete.
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Conversely, let .(xn)n∈N be a Cauchy sequence in X; then 

. ‖(xn + M) − (xm + M)‖ = ‖xn − xm + M‖ ⩽ ‖xn − xm‖

implies that .(xn + M) is Cauchy in .X/M , so converges to, say, .x + M . This means 
there are .vn ∈ M such that .xn − (x + vn) → 0; but then, 

. ‖vn − vm‖ ⩽ ‖xn − xm − vn + vm‖ + ‖xn − xm‖ → 0

shows .(vn)n∈N is Cauchy in M and converges to, say, .v ∈ M . Thus .xn → x +v. ⨅⨆
If M is a linear subspace of X such that .X/M is finite dimensional, then its 
codimension is defined by .codimM := dim(X/M). 

Examples 8.21 

1. The cosets of the closed subspace .M := [[(11
)]] ⊂ R

2 are the lines parallel to M , 
and .R

2/M ∼= R. 
Proof : A vector . x belongs to .x0+M when .x = (a0b0

)+t
(
1
1

)
for some .t ∈ R, which 

is the equation of a line parallel to . 
(
1
1

)
. The  map  .a I→ (

a
0
) + M , .R → R

2/M is 
linear and continuous. It is bijective since .

(
a
b

)+ M = (a−b
0

)+ M and 

. 

(
a1

0

)

−
(

a2

0

)

∈ M ⇔ ∃λ,

(
a1 − a2

0

)

= λ

(
1
1

)

⇔ a1 = a2.

The inverse map is continuous as the distance .‖(a0
)+ M‖ equals .|a|/√2. 

2. If X is finite-dimensional, then so is .X/M , with 

. codimM = dimX/M = dimX − dimM.

Proof : Let  .e1, . . . , em be a basis for M , extended by .em+1, . . . , en to a basis for 
X. Then, for any vector .x =∑n

i=1 λiei , its coset, 

. x + M =
n∑

i=1

λiei + M =
n∑

i=m+1

λi(ei + M),

is generated by .em+1+M, . . . , en+M . Moreover, these are linearly independent, 
since 

. 

n∑

i=m+1

λiei + M = 0 + M ⇔
n∑

i=m+1

λiei =
m∑

i=1

αiei ∈ M

⇔ λi = 0, i = m + 1, . . . , n.

Hence .dimX/M = n − m.
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3. If .φ ∈ X∗ then .‖x + kerφ‖ = |φx|
‖φ‖ . 

Proof : When .φx /= 0, then .X = [[x]] ⊕ kerφ, and 

. ‖φ‖ = sup
y /=0

|φy|
‖y‖ = sup

v∈kerφ
|λ||φx|

‖λx + v‖ = |φx|
inf

v∈kerφ ‖x + v‖ = |φx|
‖x + kerφ‖

The following proposition states, in effect, that when one translates a closed 
linear subspace to any distance .c < 1 from the origin, the resulting coset intersects 
the unit sphere: 

Proposition 8.22 (Riesz’s lemma) 

For any non-trivial closed linear subspace M , and .0 ⩽ c < 1, there is a 
unit vector x such that .‖x + M‖ = c. 

Proof Let .y /∈ M so that .‖y + M‖ > 0; by re-scaling y if necessary, one can 
assume .‖y + M‖ = c. The  map  .f : M → R, defined by .f (v) := ‖y + v‖, takes 
values close to c, as well as arbitrarily large values (. ‖y + λv‖ ⩾ |λ|‖v‖−‖y‖ → ∞
as .λ → ∞, for  .M /= 0). Since M is connected, and f is continuous, its image 
must include .]c,∞[ by the intermediate value theorem (Corollary 5.7). In particular 
there is a .v ∈ M such that .‖y + v‖ = 1, so letting .x := y + v gives . ‖x + M‖ =
‖y + M‖ = c. ⨅⨆
Exercises 8.23 

1. ▶ The mapping .x I→ x + M , .X → X/M , is linear and continuous. 
2. Let .M := { f ∈ C[0, 1] : f (0) = 0 }, then .2 + M = { f ∈ C[0, 1] : f (0) = 2 }, 

and .C[0, 1]/M ∼= C. 
3. (a) .X/X ≡ 0, .X/0 ≡ X. 

(b) If .X, Y are normed spaces, then .
X × Y

X × 0
≡ Y . 

4. Let X be a finite-dimensional space generated by a set of unit vectors . E :=
{ ei : i = 1, . . . , n }, and let .Mi := [[E\{ei}]]. Then the coefficient .|αi | in 
.x = ∑n

i=1 αiei is at most .‖x‖/‖ei + Mi‖. Thus, in finding a basis for X, it is  
best to select unit vectors that are as ‘far’ from each other as possible. 

5. Let M be a closed subspace of X. If both M and .X/M are separable, then so 
is X. 

8.5 R
n and Totally Bounded Sets 

That finite-dimensional normed spaces ought to be better behaved than infinite-
dimensional ones is to be expected. What is slightly surprising is the following 
result that they allow only a unique way of defining convergence: Any norm on .Cn
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is equivalent to the complete Euclidean norm. This is an example of a mathematical 
“small is beautiful” principle, in the same league of results as “finite integral 
domains are fields”. 

Theorem 8.24 

Every n-dimensional normed space over . C is isomorphic to . Cn, and so is 
complete. 

The theorem is also true for real finite-dimensional normed spaces: they are 
isomorphic to . Rn. 

Proof Let X be an n-dimensional normed space, with a basis of unit vectors 
.v1, . . . , vn, and let . Cn be given the complete 1-norm (Example 7.17(2)). There is a 
map between them, .J : Cn → X, defined by 

. x =
⎛

⎜
⎝

α1
...

αn

⎞

⎟
⎠ I→ α1v1 + · · · + αnvn.

J is linear: This follows from the distributive laws of vectors; that it is 1–1 and onto 
follow from the linear independence and spanning of .{vi}ni=1 respectively. 

J is continuous: . ‖Jx‖X = ‖α1v1 + · · · + αnvn‖X

⩽ |α1| + · · · + |αn|
= ‖x‖1

.J−1 is continuous: Let  .f (x) := ‖Jx‖X, which is a composition of two continuous 
functions: the norm and J . The unit sphere .S := { u ∈ C

n : ‖u‖1 = 1 } is a compact 
set (since it is closed and bounded in .Cn = R

2n (Corollary 6.20)), so f S  is also 
compact (thus closed in . R). One point that is outside f S  is 0, 

. f (x) = 0 ⇔ ‖Jx‖ = 0 ⇔ Jx = 0 ⇔ x = 0.

Zero is therefore an exterior point contained in an open interval .]−c, c[ outside 
f S. This means that .c ⩽ ‖Ju‖ for any unit vector . u. Applying this to . u =
x/‖x‖1 for any (non-zero) vector .x ∈ C

n, we find .c‖x‖1 ⩽ ‖Jx‖ as required 
(Proposition 8.15). 

Clearly, the proof does not depend critically on the use of complex rather than 
real scalars. ⨅⨆
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Proposition 8.25 (Riesz’s theorem) 

A subset K of a normed space X is totally bounded . ⇔ K is bounded and 
lies arbitrarily close to finite-dimensional subspaces, meaning 

. ∀ϵ > 0, ∃Y finite-dimensional subspace of X, ∀x ∈ K, ‖x + Y‖ < ϵ.

Balls are totally bounded only in finite-dimensional normed spaces. 

Proof (i) Let .K ⊆ ⋃n
i=1 Bϵ(xi) be a totally bounded set in the normed space X, 

and let .Y := [[x1, . . . , xn]]. Any point .x ∈ K is covered by some ball .Bϵ(xi), i.e., 
.‖x − xi‖ < ϵ, so that .‖x + Y‖ = infy∈Y ‖x − y‖ < ϵ. Since . ϵ can be chosen 
arbitrarily small, this proves one implication in the first statement. 

In a finite-dimensional normed space, bounded sets are totally bounded: This is  
true for . Cn because balls (and their subsets) are totally bounded (Exercise 6.9(2)). 
Any finite-dimensional space Y has an isomorphism .J : C

n → Y by the 
previous theorem. If A is a bounded subset of Y , .J−1A is a bounded set in . Cn

(Exercise 4.18(3)), hence totally bounded; mapping back to Y , .A = JJ−1A is 
totally bounded (Proposition 6.7). 

For the converse of the proposition, suppose K is bounded by r , and lies within . ϵ

of an n-dimensional subspace Y . This means that if .x ∈ K then .‖x‖ ⩽ r , and there 
is a .y ∈ Y such that .‖x − y‖ < ϵ, so  

. ‖y‖ ⩽ ‖x‖ + ‖y − x‖ < r + ϵ.

But we have just seen that the ball .Br+ϵ(0) ∩ Y is totally bounded in Y , and can be 
covered by a finite number of .ϵ-balls, .Bϵ(yi), .i = 1, . . . , m. In particular, there is 
some . yi for which .‖y − yi‖ < ϵ, and so 

. ‖x − yi‖ ⩽ ‖x − y‖ + ‖y − yi‖ < 2ϵ,

⇒ K ⊆
m⋃

i=1

B2ϵ(yi).

K 

Yyi y 

x 

(ii) Suppose X has a totally bounded ball, which by re-scaling and translation can 
be taken to be the unit ball .BX (Proposition 7.6). It must be within .ϵ < 1

2 of a
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finite-dimensional closed subspace Y . In fact .X = Y , otherwise we can use Riesz’s 
lemma to find a vector .y ∈ BX with .d(y, Y ) = ‖y + Y‖ ⩾ 1

2 > ϵ. ⨅⨆
Examples 8.26 

1. All norms on . Cn are equivalent. 
2. Given a point .x ∈ X and a finite-dimensional subspace M , there is always a 

best approximation .v ∈ M to x. We need only look in the compact ball . B :=
B‖x‖(0)∩M , and since the function .v I→ ‖v − x‖ on it is continuous, it achieves 
the minimum (Corollary 6.16). 

For example, there is always a polynomial of degree at most n that best 
approximates a function with respect to any given norm. 

3. Every proper finite-dimensional subspace is nowhere dense since it is closed 
yet cannot contain any ball. Hence a countable union of finite-dimensional 
spaces cannot be complete, by the Baire category theorem. For example, (i) 
.c00 := [[e0, e1, . . . ]], (ii) the space of polynomials, cannot have a complete norm, 
since they are such unions. (Note that the two spaces are isomorphic as vector 
spaces.) 

4. If M , N are subspaces of a normed space, with M complete and N finite-
dimensional, then .M + N is complete (see Example 7.12(2)). 
Proof : It is enough to show that .M + [[e]] is complete when .e /∈ M; the result 
then follows by induction. For any .x ∈ M , .α ∈ C, 

. |α|‖e + M‖ = ‖αe + M‖ ⩽ ‖αe + x‖,
‖x‖ ⩽ ‖x + αe‖ + |α|‖e‖ ⩽ c‖αe + x‖.

So if .(xn + αne) is a Cauchy sequence in .M + [[e]], then so are .(αn)n∈N and 
.(xn)n∈N, in . C and M respectively. Hence, .xn + αne → x + αe ∈ M + [[e]]. 

Exercises 8.27 

1. Totally bounded sets cannot be open (or have a proper interior) in an infinite 
dimensional normed space. 

2. The set of polynomials of degree at most n forms a closed linear subspace of 
.L1[a, b] with dimension .n + 1; a basis for this space is .1, t, . . . , tn. 

3. As an illustration of Riesz’s theorem, the unit ball in the infinite-dimensional 
space . 𝓁∞ (or . 𝓁1) is not totally bounded. (Hint: Show .(en)n∈N has no Cauchy 
subsequence.) 

4. Among normed spaces, only in finite dimensions are closed and bounded subsets 
compact. 

5. Totally bounded sets need not lie in a finite-dimensional subspace, just arbitrarily 
close to them. Can you think of an infinite-dimensional totally bounded set?
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Remarks 8.28 

1. By analogy with matrices, it is customary to write T x  instead of .T (x). This is a  
slight abuse of notation; a linear map on the vector space of matrices need not 
act on the left, e.g., .A I→ AB, .A I→ AB + BA, .A I→ A⏉, and .A I→ B−1AB are 
all linear. 

2. For the initiated, the idea of continuous linear maps can be extended to 
continuous multi-linear maps (tensors); they also form a Banach space with norm 

. ‖T ‖ := sup |T (x1, . . . , φ1, . . .)|/‖x1‖ . . . ‖φ1‖ . . . .

3. .B(X, Y ) forms part of the larger space of Lipschitz functions .X → Y . For such 
functions, .‖f ‖ := supx1 /=x2∈X ‖f (x1) − f (x2)‖/‖x1 − x2‖ satisfies the norm 
axioms, except that .‖f ‖ = 0 ⇔ f is constant.



Chapter 9 
The Classical Spaces 

Having fleshed out a substantial amount of abstract theory, we turn to the concrete 
examples of normed spaces and identify which are complete and separable. 
Unavoidably, the proofs become more technical once we leave the familiarity of 
finite dimensions and enter the realm of infinite-dimensional spaces, having to deal 
as it were with sequences of sequences and limits of functions in different norms. 
However, a careful study of this chapter will be rewarded by having an armory of 
spaces, so to speak, ready to serve as examples to confirm or refute conjectured 
statements. We can barely scratch the surface of all the properties that these spaces 
possess, concentrating mostly on completeness, separability, and duality. 

9.1 Sequence Spaces 

The Space 𝓁∞ 

A sequence in . 𝓁∞ is a sequence of sequences, .xn = (an,i)i∈N. Convergence in . 𝓁∞
means uniform convergence of the components, that is, 

. xn → 0 ⇔ sup
i∈N

|an,i | → 0 as n → ∞

⇔ |an,i | → 0 as n → ∞, uniformly for all components i,

⇔ ∀ϵ > 0, ∃N, ∀n ⩾ N,∀i ∈ N, |an,i | < ϵ.
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For example, of the following three sequences of sequences, only the first converges 
to . 0, even though each component converges to 0. 

. 

(1, 1, 1, 1, . . .) (1, 1, 1, 1, 1, . . .) (1, 0, 0, 0, . . .)

( 12 ,
1
2 ,

1
2 ,

1
2 , . . .) (0, 0, 1, 1, 1, . . .) (0, 1, 0, 0, . . .)

( 13 ,
1
3 ,

1
3 ,

1
3 , . . .) (0, 0, 0, 0, 1, . . .) (0, 0, 1, 0, . . .)

...
...

...

↓ / ↓ / ↓
(0, 0, 0, 0, . . .) (0, 0, 0, 0, . . .) (0, 0, 0, 0, . . .)

Theorem 9.1 

.𝓁∞ is complete but not separable. 

Proof (i) Let .(xn)n∈N be a Cauchy sequence in . 𝓁∞, i.e., . ‖xn − xm‖𝓁∞ → 0
as .n,m → ∞. Note that .‖xn‖𝓁∞ ⩽ c since Cauchy sequences are bounded 
(Example 4.3(6)). 

. 

x0 a00 a01 a02 . . . ⩽ ‖x0‖𝓁∞

x1 a10 a11 a12 . . . ⩽ ‖x1‖𝓁∞
...

...
...

...
...

↓ ↓ ↓ ↓
x a0 a1 a2 . . . ⩽ c

(The absolute signs of .an,i are omitted in the horizontal rows.) 
For each column i, .|an,i − am,i | ⩽ ‖xn − xm‖𝓁∞ → 0, so .(an,i)n∈N is a Cauchy 

sequence in . C, which converges to, say, .ai := limn→∞ an,i . 
That .x := (ai)i∈N is in . 𝓁∞ follows from taking the limit .n → ∞ of 

. |an,i | ⩽ ‖xn‖𝓁∞ ⩽ c.

More crucially, .xn → x in . 𝓁∞ since, for any .ϵ > 0, .‖xm − xn‖𝓁∞ < ϵ for 
.m, n ⩾ N , large enough; and for any column i, one can choose an .m ⩾ N large 
enough that .|am,i − ai | < ϵ, so that 

. |ai − an,i | ⩽ |ai − am,i | + |am,i − an,i | < ϵ + ‖xm − xn‖𝓁∞ < 2ϵ,

implying .an,i → ai , independently of i. 

(ii) To show . 𝓁∞ is not separable we display an uncountable number of disjoint balls 
(Exercise 4.22(4)). Consider the sequences that consist of 1s and 0s. The distance 
between any two of them is exactly 1, so that the balls centered on them with radius
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.1/2 are disjoint. Moreover, these sequences are uncountable for the same reason 
that the real numbers are uncountable: If one were able to list them as 

. 

x0 = (a00, a01, a02, . . .)

x1 = (a10, a11, a12, . . .)

x2 = (a20, a21, a22, . . .)
...

one could take the diagonal sequence .(a00, a11, a22 . . .), and swap its 1s and 0s, 
giving a sequence .(1 − an,n)n∈N that cannot be in the list because it disagrees with 
any . xn in the nth position, as .1 − an,n /= an,n. ⨅⨆

To appreciate how large . 𝓁∞ is, consider that even if given an immense number 
of terms of a sequence .(an)n∈N ∈ 𝓁∞, one cannot tell how large are the remaining 
terms, and they cannot be ignored. Contrast this with . 𝓁1, where any sequence can 
be approximated by a finite set of values and the rest replaced by zero. Crucially, 
.(an)n⩽N → (an)n∈N, as  .N → ∞, in  . 𝓁1 but not necessarily in . 𝓁∞. However, . 𝓁∞
does have separable complete subspaces: 

Proposition 9.2 

The space of convergent complex sequences, and of those sequences that 
converge to 0, 

. c := { (an)n∈N : ∃a ∈ C, lim
n→∞ an = a },

c0 := { (an)n∈N : lim
n→∞ an = 0 },

are complete separable subspaces of . 𝓁∞. 

Proof The spaces are nested in each other as .c0 ⊂ c ⊂ 𝓁∞ since convergent 
sequences are bounded. They are easily shown to be linear subspaces: . λan + bn →
λa + b when .an → a and .bn → b as .n → ∞. 

. c0 is closed in . 𝓁∞: Let .xn → x in . 𝓁∞, with .xn ∈ c0; their components converge 
uniformly .an,i → ai as .n → ∞. 

.

x0 a00 a01 a02 . . . → 0

x1 a10 a11 a12 . . . → 0
...

...
...

↓ ↓ ↓ ↓
x a0 a1 a2 . . .

?→ 0
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Now, for any .ϵ > 0, there is an . xn in . c0 such that .‖xn − x‖𝓁∞ < ϵ, and for this 
sequence, there is an integer N , such that 

. i ⩾ N ⇒ |an,i | < ϵ.

It follows that for .i ⩾ N , 

. |ai | ⩽ |an,i | + |ai − an,i | ⩽ |an,i | + ‖x − xn‖𝓁∞ < 2ϵ

so .limi→∞ ai = 0 and .x ∈ c0. 

.c0 is separable : The vectors .en := (δn,i) = (0, . . . , 0, 1, 0, . . .), with the 1 
occurring at the nth position, form a Schauder basis for . c0: for any . x = (an)n∈N ∈
c0, 

. 
∥
∥x −

N
∑

n=0

anen

∥
∥

𝓁∞ = sup
n>N

|an| → 0, as N → ∞.

If .
∑

n anen = ∑n bnen, then .(a0 − b0, a1 − b1, . . .) = 0 hence .an = bn and the 
coefficients are unique. 

The spaces c and . c0 are isomorphic: Let .J : c → c0 ⊂ 𝓁∞ be defined by 

. J (a0, a1, a2, . . .) := (−a, a0 − a, a1 − a, . . .), where a := lim
n→∞ an.

J is 1–1 since 

. J (an) = J (bn) ⇒ a = b and ∀n ∈ N, an − a = bn − b

⇒ (an) = (bn).

J is onto . c0 for, given any .y = (bn)n∈N ∈ c0, it is clear that . x := (b1 − b0, b2 −
b0, . . .) is in c and maps to . y. In fact, writing .1 := (1, 1, . . .), 

. Jx = Rx − a1, J−1y = Ly − b01,

where R and L are the shift operators. This observation shows that both J and . J−1

are continuous and linear since .(an)n∈N I→ a1, as well as  .(bn)n∈N I→ b01, are  
operators 

.‖a1‖𝓁∞ = |a|‖1‖𝓁∞ = lim
n→∞ |an| ⩽ sup

n
|an| = ‖(an)‖𝓁∞

‖b01‖𝓁∞ = |b0|‖1‖𝓁∞ ⩽ sup
n

|bn| = ‖(bn)‖𝓁∞ .
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It follows that .c ∼= c0 and has the same properties of completeness and separability 
that . c0 enjoys. 

⨅⨆

Theorem 9.3 

Every functional on . c0 is of the type .(an)n∈N I→∑

n bnan where . (bn)n∈N ∈
𝓁1, and 

. c∗
0 ≡ 𝓁1.

Proof Given .y = (bn)n∈N ∈ 𝓁1 and .x = (an)n∈N ∈ c0, the inequality 

. |y · x| =
∣
∣
∣

∞
∑

n=0

bnan

∣
∣
∣ ⩽

∞
∑

n=0

|bn||an| ⩽ sup
n

|an|
∞
∑

n=0

|bn| = ‖x‖𝓁∞‖y‖𝓁1

shows that the linear map .y⏉ : x I→ y · x := ∑∞
n=0 bnan (Example 8.3(4)) is 

well-defined and continuous on . 𝓁∞ (including . c0), with .‖y⏉‖ ⩽ ‖y‖𝓁1 . 

Every functional on . c0 is of this type: By the linearity and continuity of any .φ ∈ c∗
0, 

. φx = φ
( ∞
∑

n=0

anen

)

=
∞
∑

n=0

anbn = y · x, where bn := φen, y := (bn)n∈N.

Also, writing .bn = |bn|eiθn in polar form, 

. 

∞
∑

n=0

|bn| =
∞
∑

n=0

e−iθnφen = lim
N→∞ φ

( N
∑

n=0

e−iθnen

)

⩽ ‖φ‖‖(e−iθn )‖𝓁∞ = ‖φ‖,

hence .y ∈ 𝓁1, with .‖y‖𝓁1 ⩽ ‖φ‖ = ‖y⏉‖. Combined with the inequality above, we 
get .‖y‖𝓁1 = ‖y⏉‖. 
Isometric isomorphism: Let .J : 𝓁1 → c∗

0 be the map .y I→ y⏉. The above 
conclusions can be summarized as stating that J is a surjective isometry. That J 
is linear is easily seen from the following statement that holds for every .x ∈ c0, 
.u, v, y ∈ 𝓁1, 

. (u + v) · x =
∞
∑

n=0

(un + vn)an =
∞
∑

n=0

unan +
∞
∑

n=0

vnan = u · x + v · x,

(λy) · x =
∞
∑

n=0

(λbn)an = λ

∞
∑

n=0

bnan = λ(y · x),

so .(u + v)⏉ = u⏉ + v⏉ and .(λy)⏉ = λy⏉.
⨅⨆
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We often make remarks like “the dual space of . c0 is . 𝓁1”—this is not literally true 
because a functional on . c0 is not a sequence, but the application of one, i.e., it is 
. y⏉ not . y. But the two are mathematically the same object in different clothing, and 
functionals on . c0 do behave like the sequences in . 𝓁1. 

Exercises 9.4 

1. The kernel of the functional .Lim : (an)n∈N I→ lim
n→∞ an on c, is . c0. 

2. Any convergent complex sequence .an → a can be written as 

. (an)n∈N =
∑

n

(an − a)en + a1,

where .1 := (1, 1, . . .). Deduce that the vectors . en together with . 1 form a 
Schauder basis for c; what is its dual space . c∗? 

3. ▶ One can multiply bounded sequences together as .(an)(bn) := (anbn)n∈N, to  
get another bounded sequence, .‖xy‖𝓁∞ ⩽ ‖x‖𝓁∞‖y‖𝓁∞ . This multiplication is 
commutative and associative, and has unity . 1. Only those sequences which are 
bounded away from 0 (i.e., .|an| ⩾ c > 0) have an inverse, .(an)

−1
n∈N = (a−1

n )n∈N. 
4. ✶ The inequality .‖xy‖𝓁1 ⩽ ‖x‖𝓁∞‖y‖𝓁1 is also true, so the map .x I→ Mx , where 

.Mxy := xy, embeds . 𝓁∞ in .B(𝓁1). 
5. The closure of . c00 in the .𝓁∞-norm is .c00 = c0. 
6. . 𝓁∞ contains the space of sequences . 𝓁∞

s := { (an)n∈N : ∃c, ∀n ⩾ 1, |an| ⩽
c/ns } (.s > 0). What is its closure? Can you think of a sequence which is in . c0
but not in any . 𝓁∞

s ? 
7. The distance between a sequence .(an)n∈N ∈ 𝓁∞ and . c0 is .lim supn |an|. 
8. ✶ .C[0, 1] can be embedded in . 𝓁∞, since .f ∈ C[0, 1] is determined by its values 

on the dense subset .Q ∩ [0, 1] which can be listed as a sequence .(qn)n∈N. Check 
that the mapping .f I→ (f (qn))n∈N is linear and isometric. 

The Space 𝓁1 

Convergence in . 𝓁1 is more stringent than in . 𝓁∞. This can be seen by the inequality 

. ∀x = (ai)i∈N ∈ 𝓁1, ‖x‖𝓁∞ = sup
i∈N

|ai | = max
i∈N

|ai | ⩽
∞
∑

i=0

|ai | = ‖x‖𝓁1

so .xn → 0 in .𝓁∞ does not guarantee .xn → 0 in . 𝓁1. For the latter to occur, 
not only must the components approximate 0 together, but their sum must also 
diminish. Fewer sequences manage to do this, and this is reflected in the fact that . 𝓁1

is separable.
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Theorem 9.5 

. 𝓁1 is complete and separable. 

Proof (i) Since .𝓁1 ≡ c∗
0, one can argue that . 𝓁

1 is complete, as are all dual spaces 
(Theorem 8.7). 

Alternatively, the following direct proof shows that every absolutely summable 
series in . 𝓁1 converges using Proposition 7.22 (Note: as . 𝓁1 is defined in terms 
of sums, it is more straight-forward to use series instead of Cauchy sequences). 
Suppose .x0+x1+x2+· · · is a series such that .∑n∈N ‖xn‖𝓁1 = s. In the following 
diagram, we will show convergence of the various vertical sums. 

. 

x0

+
x1

+
...

↓
x

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

a00 + a01 + a02 + · · ·
+ + +
a10 + a11 + a12 + · · ·
+ + +

...

↓ ↓ ↓
a0 a1 a2 · · ·

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

‖x1‖𝓁1

+
‖x2‖𝓁1

+
...

↓
s

(Note that the absolute signs of .an,i are omitted in the horizontal sums.) 
The main point of the proof is that any rectangular sum of terms in this array is 

less than the corresponding sum on the right-hand column: 

. 

∣
∣
∣

J
∑

i=I

M
∑

n=N

an,i

∣
∣
∣ ⩽

J
∑

i=I

M
∑

n=N

|an,i | ⩽
M
∑

n=N

‖xn‖𝓁1 .

In particular, taking the ith column, .|∑n an,i | ⩽ ∑n |an,i | ⩽ s shows that its sum 
converges in . C to, say, .ai := ∑∞

n=0 an,i . In fact, the whole array sum is bounded, 
.
∑

i |ai | =∑i

∣
∣
∑∞

n=0 an,i

∣
∣ ⩽ s, so that .x := (ai)i∈N belongs to . 𝓁1. 

Finally, note that any rectangular sum goes to 0 as it moves downward, because 
.
∑∞

n=N ‖xn‖𝓁1 → 0 as .N → ∞. Hence 

. 
∥
∥x −

N
∑

n=1

xn

∥
∥

𝓁1
=

∞
∑

i=0

∣
∣ai −

N
∑

n=1

an,i

∣
∣ =

∞
∑

i=0

∣
∣

∞
∑

n=N+1

an,i

∣
∣→ 0

giving .x =∑∞
n=0 xn.
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(ii) The sequences .en := (0, . . . , 0, 1, 0, . . .), with the 1 occurring at the nth 
position, is a Schauder basis because, firstly, for any vector .x = (an)n∈N ∈ 𝓁1, 

. 
∥
∥x −

N
∑

n=0

anen

∥
∥

𝓁1
= ‖(a0, a1, . . .) − (a0, . . . , aN , 0, 0, . . .)‖𝓁1

= ‖(0, . . . , 0, aN+1, . . .)‖𝓁1

=
∞
∑

n=N+1

|an| → 0 as N → ∞

since .
∑

n |an| converges. Secondly, if .x =∑∞
n=0 bnen, then .bm = em · x = am for 

each .m ∈ N, so . en form a Schauder basis. ⨅⨆

Proposition 9.6 

Every functional on . 𝓁1 is of the type .(an)n∈N I→∑

n bnan where . (bn)n∈N ∈
𝓁∞, and 

. 𝓁1∗ ≡ 𝓁∞.

Proof The proof is practically identical to the one for .c∗
0 ≡ 𝓁1, except that now 

.y = (bn)n∈N ∈ 𝓁∞ and .x = (an)n∈N ∈ 𝓁1. The inequality 

. |y · x| ⩽
∑

n

|bn||an| ⩽ sup
n

|bn|
∑

n

|an| = ‖y‖𝓁∞‖x‖𝓁1

shows that the linear mapping .y⏉ : 𝓁1 → C is well-defined and continuous with 
.‖y⏉‖ ⩽ ‖y‖𝓁∞ . 

Every functional on . 𝓁1 is of this type: Let .φ ∈ 𝓁1∗, then by linearity and continuity 
of . φ, 

. φx = φ
( ∞
∑

n=0

anen

)

=
∞
∑

n=0

anbn = y · x, where bn := φen, y := (bn)n∈N.

Moreover .|bn| = |φen| ⩽ ‖φ‖‖en‖𝓁1 = ‖φ‖ so that .y ∈ 𝓁∞, with .‖y‖𝓁∞ ⩽ ‖φ‖. 
As .φ = y⏉, .‖y‖𝓁∞ = ‖y⏉‖. 
Isomorphism: The mapping .J : 𝓁∞ → 𝓁1∗, .y I→ y⏉, is linear and the above 
assertions state that J is a surjective isometry. ⨅⨆
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Exercises 9.7 

1. Suppose each coefficient of .xn = (an,i)i∈N ∈ 𝓁1 converges, .an,i → ai as . n →
∞, and suppose .x := (ai)i∈N is in . 𝓁1; then it does not follow that .xn → x in . 𝓁1, 
e.g., .en /→ 0. But  if .|an,i − ai | is decreasing with n (for each i), then .xn → x in 
. 𝓁1. 

2. ▶ . 𝓁1 has a natural product, called convolution: 

. (an) ∗ (bn) := (a0b0, a1b0 + a0b1, a2b0 + a1b1 + a0b2, . . . ,

n
∑

i=0

an−ibi , . . .).

This is indeed in . 𝓁1 because the sum to n terms (a triangle of terms .aibj ) is less  
than .(|a0| + · · · + |an|)(|b0| + · · · + |bn|) (a square of terms), so that 

. ‖x ∗ y‖𝓁1 ⩽ ‖x‖𝓁1‖y‖𝓁1 .

Convolution is commutative and associative, and . e0 acts as the identity element 
.e0 ∗ x = x. The  inverse of  .(1, a, 0, . . .) is .(1,−a, a2,−a3, . . .), which is in . 𝓁1

only when .|a| < 1. 
3. If .x ∈ 𝓁1 and .y ∈ 𝓁∞, then .x ∗ y is a bounded sequence 

. ‖x ∗ y‖𝓁∞ ⩽ ‖x‖𝓁1‖y‖𝓁∞ .

4. The right-shift operator can be written as a convolution .Rx = e1 ∗ x. In general, 
.Rnx = en ∗ x, since .en ∗ em = en+m. The “running average” of a “time-series” 
. x is .

1
n
(1, . . . , 1
︸ ︷︷ ︸

n

, 0, . . .) ∗ x. 

5. ✶ A subset K of . 𝓁1 is totally bounded . ⇔ it is bounded and 

. ∀ϵ > 0, ∃N ∈ N, ∀(an)n∈N ∈ K, ‖(an)n⩾N‖𝓁1 < ϵ.

(Recall that K lies arbitrarily close to finite-dimensional subspaces.) 
6. . 𝓁1 has the functional .Sum(bn)n∈N := ∑∞

n=0 bn. It corresponds to the bounded 
sequence .1 = (1, 1, . . .), i.e., .Sum x = 1 · x. Hence if .

∑

n,i |an,i | < ∞ then 

. 
∑

i∈N

∑

n∈N
an,i =

∑

n∈N

∑

i∈N
an,i .

7. The functionals .δN(an)n∈N := aN correspond to .eN ∈ 𝓁∞, i.e., .δNx = eN · x. 
Similarly, the sum .SumN(an) := ∑N

n=0 an corresponds to . e0 + · · · + eN =
(1, . . . , 1, 0, . . .). Since .(1, . . . , 1, 0, . . .) /→ 1 in . 𝓁∞, we also have  . SumN /→
Sum in . 𝓁1∗, yet .SumN(x) → Sum(x) for any sequence .x ∈ 𝓁1. We’ll discuss 
this apparent paradox in Sect. 11.5.
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The Space 𝓁2 

This normed space has properties that are, in many respects, midway between . 𝓁1

and . 𝓁∞. Yet it stands out, as it has a dot product .x · y defined for any two of its 
sequences, and .x̄ · x = ‖x‖2; we will have much more to say about normed spaces 
with such dot products in the next chapter. 

Theorem 9.8 

. 𝓁2 is complete and separable. 

Proof (i) Let .xn = (an,i)i∈N be a Cauchy sequence in . 𝓁2; the terms are uniformly 
bounded .‖xn‖ ⩽ c. For each i, 

. |an,i − am,i |2 ⩽
∑

i

|an,i − am,i |2 = ‖xn − xm‖2 → 0 as n,m → ∞,

so .(an,i)n∈N is a Cauchy sequence in . F which converges to, say, .ai := limn→∞ an,i . 
The sequence .x := (ai)i∈N belongs to . 𝓁2 by taking the limit .N → ∞ of 

. 

N
∑

i=0

|ai |2 = lim
n→∞

N
∑

i=0

|an,i |2 ⩽ lim
n→∞ ‖xn‖2 ⩽ c2.

As . xn is Cauchy, for each .ϵ > 0 there is a positive integer M such that 

. n,m ⩾ M ⇒ ‖xn − xm‖ < ϵ.

Moreover, for each .i ∈ N, there exists an integer . Mi such that 

. m ⩾ Mi ⇒ |am,i − ai | <
ϵ

2i
.

Therefore, for any .N ∈ N, picking m larger than M , . M0, . M1,. . . ., . MN , gives  

. 

√
√
√
√

N
∑

i=0

|an,i − ai |2 ⩽
√
√
√
√

N
∑

i=0

|an,i − am,i |2 +
√
√
√
√

N
∑

i=0

|am,i − ai |2

< ‖xn − xm‖ +
√
√
√
√

N
∑

i=0

ϵ2

4i
< 3ϵ,

which implies .‖xn − x‖ < 3ϵ for .n ⩾ M .
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(ii) For separability, . 𝓁2 has the Schauder basis . en, since for any .x = (an)n∈N ∈ 𝓁2, 

. 
∥
∥x −

N
∑

n=0

anen

∥
∥

𝓁2
= ‖(0, . . . , 0, aN+1, . . .)‖𝓁2 =

( ∞
∑

n=N+1

|an|2
)1/2 → 0.

Uniqueness of the coefficients follows as in the proof of Theorem 9.5. ⨅⨆

Proposition 9.9 

Every functional on . 𝓁2 is of the type .(an)n∈N I→∑

n bnan where . (bn)n∈N ∈
𝓁2, and 

. 𝓁2∗ ≡ 𝓁2.

‘Proof ’: The argument is so similar to the previous ones about . c∗
0 and . 𝓁1∗ that it is 

left as an exercise (use Cauchy’s inequality at one point). 

Exercises 9.10 

1. Show that .|x · y| = ‖x‖‖y‖ if, and only if, . y is a multiple of . x (or .x = 0). 
2. The map .(a1, . . . , an) I→ (a1, . . . , an, 0, 0, . . .) embeds . Cn in . 𝓁2. 
3. . 𝓁2 contains the interesting compact convex set .{ (an)n∈N : |an| ⩽ 1/n }, called 

the Hilbert cube. It is totally bounded in . 𝓁2, as it is close within any . ϵ to a finite-
dimensional space .{ (an)n∈N : ∀n > Nϵ, an = 0 }, yet it is infinite-dimensional; 
it cannot enclose any ball (else the ball would be totally bounded). 

4. ▶ The various sequence spaces are subsets of each other as follows: 

. c00 ⊂ 𝓁1 ⊂ 𝓁2 ⊂ c0 ⊂ c ⊂ 𝓁∞, because ‖x‖𝓁∞ ⩽ ‖x‖𝓁2 ⩽ ‖x‖𝓁1 ,

but .𝓁1 ⊂ 𝓁2 ⊂ c0 are not Banach space embeddings! Show further that . c00 with 
the respective norms is dense in . 𝓁1, . 𝓁2, and . c0 (. c00 cannot be complete in any 
norm, Example 8.26(3)). 

The Space 𝓁p 

The space .𝓁p := { (an)n∈N : an ∈ C,
∑

n |an|p < ∞}, .p ⩾ 1, is endowed with 
addition and scalar multiplication like the other sequence spaces, and the norm 

.‖x‖𝓁p :=
( ∞
∑

n=0

|an|p
)1/p

.
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Our aim in this section is to prove the triangle inequality for this norm, otherwise 
known as Minkowski’s inequality, and show . 𝓁p is complete and separable. 

As the reader is probably becoming aware, it is inequalities that are at the heart 
of most proofs about continuity, including isomorphisms. They can be thought of as 
a ‘process’ transforming numbers from one form to another, perhaps more useful, 
form, but losing some information on the way. Much like tools to be chosen with 
care, some are “sharper” than others. (See [8] for much more.) The following three 
inequalities are continually used in analysis. The first is a gem, simple yet rich: 

.aαbβ ⩽ αa + βb, for α, β, a, b ⩾ 0, α + β = 1. (9.1) 

This AM-GM inequality, as it is known, states that any weighted geometric mean 
is less than or equal to the same-weighted arithmetic mean. The special case . 

√
ab ⩽

(a + b)/2 has already been encountered previously. Writing .a = ex , .b = ey gives 

. eαx+βy ⩽ αex + βey.

This is equivalent to the convexity of the exponential function, and can be taken as 
its proof (any real function with a positive second derivative is convex). 

x yαx+βy 

a 

b 

The same idea applied to the convexity of . xp, .p ⩾ 1, gives  

.(αa + βb)p ⩽ αap + βbp, for α, β, a, b ⩾ 0, α + β = 1. (9.2) 

A third inequality of importance is 

.ap + bp ⩽ (a + b)p, for p ⩾ 1, a, b ⩾ 0, (9.3) 

obtained by adding the inequalities .ap ⩽ a(a + b)p−1 and .bp ⩽ b(a + b)p−1.
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Proposition 9.11 

For .a, b, α, β ⩾ 0, .α + β = 1, .p ⩾ 1, .q > 0, 

. 

min(a, b) ⩽
(

αa−q + βb−q
)−1/q harmonic mean

⩽ aαbβ geometric mean

⩽
(

αa1/p + βb1/p
)p

⩽ αa + βb arithmetic mean

⩽ p
√

αap + βbp, root-mean-“square”

⩽ max(a, b).

Proof (i) If .a ⩽ b (without loss of generality), then .aq ⩽ bq , so  

. 
α

aq
+ β

bq
⩽ α + β

aq
= 1

aq

which is equivalent to the first inequality of the proposition. 

(ii) The second inequality is equivalent to .a−αqb−βq ⩽ αa−q +βb−q , which is (9.1) 
with .a, b replaced by . a−q , .b−q respectively. 

(iii) Similarly, the third inequality is essentially .aα/pbβ/p ⩽ αa1/p + βb1/p, which 
is (9.1) with .a, b replaced by .a1/p, .b1/p respectively. 

(iv) If .a, b in (9.2) are substituted by .a1/p and .b1/p one obtains . (αa1/p +βb1/p)p ⩽
αa + βb. 

(v) The fifth inequality is precisely (9.2), while the sixth one follows easily if we 
assume, say, .a ⩽ b; for then, .ap ⩽ bp, so .αap + βbp ⩽ (α + β)bp = bp. 
Substituting .q/p for p in (9.2), when .p ⩽ q, and . ap for a, . bp for b, yields 

. (αap + βbp)1/p ⩽ (αaq + βbq)1/q for 0 < p ⩽ q,

which is implicitly implied in the scheme of inequalities above. ⨅⨆
An induction proof generalizes all these inequalities to arbitrary sums or 

products, 

.a
α1
1 · · · aαn

n ⩽ α1a1 + · · · + αnan ⩽ p

√

α1a
p

1 + · · · + αna
p
n , (9.4) 

when .ai, αi ⩾ 0, .α1 + · · · + αn = 1, .p ⩾ 1.
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Hermann Minkowski (1864–1907) Minkowski stud-
ied under Lindemann (of .π -transcendentality fame) at 
the University of Königsberg, together with Hilbert. At 
19 years of age, 2 years before he graduated with a 
thesis on quadratic forms, he had already won the pres-
tigious French Academy’s Grand Prix. Starting 1889, he 
developed his “geometry of numbers” ideas on lattices, 
including his inequality. After teaching in Zurich (where 
Einstein was a student), he moved to Göttingen, became 
interested in physics and presented his version of special 
relativity as a unified space-time. 

Finally, substituting .q/p for p in (9.3), and . aq for a, . bq for b, gives  

. (aq + bq)1/q ⩽ (ap + bp)1/p, for 0 < p ⩽ q,

which generalizes by induction to 

. 
q

√

a
q

1 + · · · + a
q
n ⩽ p

√

a
p

1 + · · · + a
p
n , for 0 < p ⩽ q.

This last inequality remains valid for infinite sums, .‖x‖𝓁q ⩽ ‖x‖𝓁p when .p ⩽ q, 
implying .𝓁p ⊆ 𝓁q . Of course, .‖x‖𝓁∞ ⩽ ‖x‖𝓁p is true since .|an| ⩽ ‖x‖𝓁p for all 
n. Thus a bounded sequence lies in a whole range of . 𝓁p spaces, down to some 
infimum p. 

Proposition 9.12 (Minkowski’s Inequality) 

. ‖x + y‖𝓁p ⩽ ‖x‖𝓁p + ‖y‖𝓁p , where 1 ⩽ p ⩽ ∞.

Proof All norms in this proof are taken to be the .𝓁p-norm. Let .u = (an)n∈N and 
.v = (bn)n∈N be two sequences in . 𝓁p. Summing the arithmetic mean inequality 
.(α|a| + β|b|)p ⩽ α|a|p + β|b|p (.α + β = 1, .α, β ⩾ 0) for a sequence of terms 
gives 

.

∑

n∈N
|αan + βbn|p ⩽

∑

n∈N
(α|an| + β|bn|)p ⩽ α

∑

n∈N
|an|p + β

∑

n∈N
|bn|p,

that is, ‖αu + βv‖p ⩽ α‖u‖p + β‖v‖p.
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Substituting .u = x/‖x‖, .v = y/‖y‖, .α = ‖x‖/(‖x‖+‖y‖), .β = ‖y‖/(‖x‖+‖y‖), 
gives 

. 
‖x + y‖

‖x‖ + ‖y‖ = ‖αu + βv‖ ⩽ (α + β)1/p = 1.

The proof of the inequality for .p = ∞ is Exercise 7.8(6). ⨅⨆

Proposition 9.13 (Hölder’s Inequality) 

. |x · y| ⩽ ‖x‖𝓁p‖y‖
𝓁p' ,where

1

p
+ 1

p' = 1, p ⩾ 1.

Proof Substitute .a1/α and .b1/β instead of a and b in .aαbβ ⩽ αa + βb, with . α =
1/p, .β = 1/p', to get 

.ab ⩽ ap

p
+ bp'

p' . (9.5) 

Summing this for a sequence of complex numbers leads to 

. |u · v| ⩽
∑

n∈N
|anbn| ⩽

∑

n∈N

(

|an|p
p

+ |bn|p'

p'

)

= 1

p
‖u‖p

𝓁p + 1

p' ‖v‖p'
𝓁p' .

In particular, for unit vectors .u = x/‖x‖𝓁p , .v = y/‖y‖
𝓁p' , we obtain Hölder’s 

inequality, 

. 
|x · y|

‖x‖𝓁p‖y‖
𝓁p'

⩽ 1

p
+ 1

p' = 1.

⨅⨆

Proposition 9.14 

For .p ⩾ 1, . 𝓁p is a separable Banach space, with dual space .𝓁p∗ ≡ 𝓁p'
, 

where . 1
p

+ 1
p' = 1.
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Proof Minkowski’s inequality is the non-trivial part in showing that . 𝓁p is indeed 
a normed space. It is separable with the Schauder basis . en, since for any . x =
(an)n∈N ∈ 𝓁p, the series .

∑

n |an|p converges to .‖x‖p
𝓁p , so  

. 
∥
∥x −

N
∑

n=0

anen

∥
∥

p

𝓁p = ‖(0, . . . , 0, aN+1, . . .)‖p
𝓁p =

∞
∑

n=N+1

|an|p → 0,

so .x = ∑

n∈N anen. The coefficients are unique since if . x = ∑

n∈N bnen =
(b0, b1, . . .), then .bn = an. 

Dual of . 𝓁p: Any vector .y ∈ 𝓁p'
acts on . 𝓁p via .y⏉ : x I→ y · x, with the latter being 

finite by Hölder’s inequality .|y · x| ⩽ ‖y‖
𝓁p' ‖x‖𝓁p . By Exercise  2 below, there is 

an .x ∈ 𝓁p which makes this an equality. Thus .‖y⏉‖ = ‖y‖
𝓁p' . 

Conversely, let . φ be a functional on . 𝓁p; then for .x = (an)n∈N = ∑n∈N anen, 
.φx =∑∞

n=0 anbn = y · x, where .bn := φen, .y := (bn)n∈N. Writing . bn = |bn|eiθn

and noting .p(p' − 1) = p', 

. 

N
∑

n=0

|bn|p' =
N
∑

n=0

bne
−iθn |bn|p'−1 = |φ(e−iθn |bn|p'−1)Nn=0| ⩽ ‖φ‖

(
N
∑

n=0

|bn|p'
)1/p

.

Dividing the right-hand series gives .
(
∑N

n=0 |bn|p') 1/p' ⩽ ‖φ‖; as  N is arbitrary, 

.y ∈ 𝓁p'
. 

Completeness: In common with all dual spaces, .𝓁p ≡ 𝓁p'∗ is complete (or from an 
argument similar to the one for . 𝓁2). 

⨅⨆
We end this section with a couple of propositions about operators on sequence 

spaces, .T : 𝓁p → 𝓁q . They take the form of a matrix, albeit ones with an infinite 
number of rows and columns. Consider the output vector .y = (bi)i∈N := T x ∈ 𝓁q , 
where .x = (aj )j∈N ∈ 𝓁p. The coefficients . bi can be obtained as follows, by linearity 
and continuity of T and . e⏉

i , 

. bi = e⏉
i y = ei · T

(∑

j∈N
ajej

)

=
∑

j∈N
aj (e

⏉
i T ej ) =

∑

j∈N
ti,j aj ,

where .ti,j = ei · T ej . This can be thought of as a matrix equation with the matrix 
.[ti,j ] having a countable number of rows and columns: 

.

⎛

⎜
⎝

b1

b2
...

⎞

⎟
⎠ =

⎛

⎜
⎝

t11 t12 . . .

t21 t22 . . .
...

...
. . .

⎞

⎟
⎠

⎛

⎜
⎝

a1

a2
...

⎞

⎟
⎠ .
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Each column is .T ej ∈ 𝓁q , while each row is a dual vector in .𝓁p∗ ≡ 𝓁p'
, so the  

coefficients of such a matrix must eventually become small as we move down or to 
the right. 

For practical purposes, to solve .T x = y, one can truncate the matrix and vectors 
to yield a finite .N ×N matrix equation that can then be solved. This can be justified 
because the remainder terms of . y and . x, of the type .

∑∞
n=N+1 γnen, etc., converge to 

. 0 as .N → ∞. Note carefully that the above does not hold for . 𝓁∞ since . x /=∑n anen

in general. 
The next proposition makes the link between infinite and finite matrices, while 

the following one generalizes Proposition 8.10. 

Proposition 9.15 

Let .T : 𝓁p → 𝓁q be an infinite matrix with upper-left .n × n matrices . An, 
then 

. ‖T ‖ = lim
n→∞ ‖An‖p,q .

The following proof is valid even if the domain and/or codomain are . c0. 

Proof Any submatrix S of T has a diminished norm since it has both a smaller 
domain and range. The unit vectors in the domain of S are included in those of T ; 
furthermore, for such vectors, .‖Sx‖q ⩽ ‖T x‖q since . T x has the same components 
as . Sx and more. 

Let T be divided into sub-matrices .An,Bn, Cn, with . An having n rows and 
columns, and each having norm at most .‖T ‖, as follows: 

. 

(

An | Bn

Cn

)

Since . An is a sub-matrix of .An+1, .‖An‖ is increasing and bounded above by .‖T ‖, 
so it converges to the least upper bound .s := supn ‖An‖ ⩽ ‖T ‖. To show  . s = ‖T ‖
we need to prove that .‖An‖ approach .‖T ‖ arbitrarily closely. Given any unit vector 
.x ∈ 𝓁p, split both vectors .x = xn+yn and .T x = an+bn ∈ 𝓁q at the nth component. 
For n large enough, both . yn and . bn have small p- and q-norms, respectively, 

.∀ϵ > 0, ∃N, n ⩾ N ⇒ ‖yn‖p < ϵ AND ‖bn‖q < ϵ.
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Therefore, for all unit vectors . x, 

. ‖T x‖q = ‖an + bn‖q < ‖an‖q + ϵ

= ‖Anxn + Bnyn‖q + ϵ

⩽ ‖An‖‖xn‖p + ‖Bn‖ϵ + ϵ

⩽ ‖An‖ + ‖T ‖ϵ + ϵ

∴ ‖T ‖ ⩽ s + ‖T ‖ϵ + ϵ.

Thus .s ⩽ ‖T ‖ ⩽ s+ϵ
1−ϵ

and, by squeezing, .‖T ‖ = s. ⨅⨆

Proposition 9.16 

Let T be an infinite matrix with coefficients . Tij , then with . 1
p

+ 1
p' = 1, 

.c = supj

∑

i |Tij |, .r = supi

∑

j |Tij |, 

. ‖T ‖p,p' ⩽
(∑

i,j

|Tij |p')1/p'
, ‖T ‖p,p ⩽ c1/pr1/p

'
.

Proof (i) For any vector .x = (an)n∈N ∈ 𝓁p and .α = ∑

i,j |Tij |p'
, by Hölder’s 

inequality, 

. ‖T x‖p'
p' =

∑

i

∣
∣
∣

∑

j

Tij aj

∣
∣
∣

p'
⩽
∑

i

(∑

j

|Tij |p')(∑

j

|aj |p
)

p'/p = α‖x‖p'
p

so .‖T ‖ ⩽ α1/p'
, as required. (ii) In addition, for any vector .y = (bi)i∈N ∈ 𝓁p'

, 

. |y · T x| =
∣
∣
∣

∑

i,j

biTij aj

∣
∣
∣ ⩽
∑

i,j

(

|Tij |1/p|aj |
)(

|Tij |1/p' |bi |
)

⩽
(∑

i,j

|Tij ||aj |p
)
1/p
(∑

i,j

|Tij ||bi |p')1/p'

⩽ c1/pr1/p
' ‖x‖p‖y‖p'

Choose a vector . y such that .|y · T x| = ‖y‖p' ‖T x‖p to get the required result. ⨅⨆

Exercises 9.17 

1. Given .1 ⩽ q < p, find an example of a sequence which is in . 𝓁p but not in . 𝓁q .
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2. For each .x ∈ 𝓁p, find a sequence .y ∈ 𝓁p'
which makes Hölder’s inequality an 

equality. 
3. If .p ⩽ q then . 𝓁p is dense in . 𝓁q . (Hint: Consider . c00.) 
4. For an infinite matrix, .‖T ‖p,q is larger than the q-norm of any column and the 

.p'-norm of any row. 
5. Show that of the following matrices from Chap. 1, 

. 

1 1  
0 1  

⎜ ⎟ 

, 

1 −1 0  
0 1  −1 

⎜ ⎟ 

, 

0 1 0  
0 2 0  

⎜ ⎟ 

only the middle one has a finite .(2, 2)-norm. 
6. The upper left .n × n matrices . An of an infinite matrix T need not converge to 

T . Show, for example, that .In /→ I as operators .𝓁1 → 𝓁1. 
7. Generalized Hölder’s inequalities 

(a) .‖xy‖𝓁r ⩽ ‖x‖𝓁p‖y‖𝓁q , where .
1
p

+ 1
q

= 1
r
, 

(b) .
∣
∣
∣

∑

n

anbncn

∣
∣
∣ ⩽ ‖(an)‖𝓁p‖(bn)‖𝓁q ‖(cn)‖𝓁r , where .

1
p

+ 1
q

+ 1
r

= 1. 

(Hint: Apply Hölder’s inequality to the product .|an|r |bn|r .) 
8. Any two p-norms on . Rn are equivalent. Show, using Hölder’s inequality, that 

for .p ⩽ q and any .x ∈ R
n, 

. ‖x‖q ⩽ ‖x‖p ⩽ n
1
p

− 1
q ‖x‖q .

9. (a) Littlewood’s inequality: .‖x‖𝓁r ⩽ ‖x‖α
𝓁p‖x‖1−α

𝓁q , where . 1
r

= α
p

+ 1−α
q

.

(Hint: Apply the generalized Hölder’s inequality above to .|an|α|an|1−α , 
using .p/α and .q/(1 − α) instead of p and q.) 

(b) .‖x‖𝓁r → ‖x‖𝓁∞ as .r → ∞. 
(Hint: Use Littlewood’s inequality with .q = ∞, .α = p/r .) 

10. ✶ Young’s inequality: 

. ‖x ∗ y‖𝓁r ⩽ ‖x‖𝓁p‖y‖𝓁q ,

where .
1
p

+ 1
q

= 1 + 1
r
, .p, q ⩾ 1 (Exercises 9.7(2,3)). 

Justify the steps of the following proof. First note that . 1
p' + 1

q ' + 1
r

= 1

(where .
1
p' = 1− 1

p
, etc.); then using the second generalized Hölder’s inequality
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above on the positive numbers .an, bn, cn, and an exquisite juggling of indices, 
(where .k := n − m) 

. 

N
∑

n=0

n
∑

m=0

an−mbmcn =
N
∑

n=0

n
∑

m=0

(ak)
p/r (bm)q/r (ak)

p/q '
(cn)

r '/q '
(bm)q/p'

(cn)
r '/p'

⩽
(∑

n,k

a
p
k b

q
m

)1/r(∑

n,k

a
p
k cr '

n

)1/q '(∑

n,m

b
q
mcr '

n

)1/p'

=
( N
∑

n=0

a
p
n

)1/p( N
∑

n=0

b
q
n

)1/q( N
∑

n=0

cr '
n

)1/r '
.

Hence if .(an) ∈ 𝓁p, and .(bn) ∈ 𝓁q , and .(cn) ∈ 𝓁r '
, then .x ∗ y ∈ (𝓁r '

)∗ ≡ 𝓁r . 
11. ♦ Prove the reverse Minkowski inequality for .0 < p ⩽ 1, and positive real 

sequences .x = (an)n∈N, .y = (bn)n∈N, .an, bn ⩾ 0, 

. ‖x‖p + ‖y‖p ⩽ ‖x + y‖p.

(Hint: the reverse inequality has its roots in . xp being concave.) 

9.2 Function Spaces 

Even though it is function spaces that are at the heart of “functional analysis”, 
they are technically more complicated to construct. The most familiar classes of 
functions, such as continuous functions or step functions, are lacking in one way or 
another when confronted with limits or integrals. Constructing a complete space 
of integrable functions proved to be a much harder task historically than was 
anticipated by mathematicians. 

For example, the simplest convergence of functions is what’s termed pointwise 

. ∀t, fn(t) → f (t) as n → ∞.

It is not hard to find sequences of integrable functions which converge pointwise 
but whose integrals do not; for example, .ntn → 0 on .[0, 1[ yet .∫ 10 ntn dt → 1. 
Moreover, it is left as an exercise to show that pointwise convergence cannot be 
induced by any norm, so in practice little can be deduced from it. 

Another type of convergence is uniform. The space of real- or complex-valued 
bounded continuous functions .Cb(A), where .A ⊆ R, is easily seen to be closed 
under addition and scalar multiplication, and was shown in Theorem 6.23 to be a 
complete metric space, with the metric induced from the .∞-norm; so .Cb(A) is a 
Banach space in which convergence means uniform convergence. Indeed, .Cb(N) is
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just the space . 𝓁∞, since the functions .N → C are sequences. However, once again, 
the usefulness of .Cb(A) is limited when it comes to integration. For example, the 
functions .t−p are in .Cb[1,∞[ and converge to . 1

t
as .p → 1 in this space (prove!), 

but .
∫∞
1 t−p dt = 1

p−1 → ∞. 

Is there a way to generalize the Banach space . 𝓁1 to a space of functions, where 
summation .

∑

n an becomes integration .
∫

f (t) dt? This is indeed possible and much 
from the section on sequences can be repeated for functions, at least in spirit. For 
example, the proof that . 𝓁∞ is complete generalizes to the space .L∞(R), practically 
untouched. However, we do not prove all these generalizations here, as laying the 
groundwork for integration and measures would take us too far afield. Instead a 
review is provided, referring the reader to [1] for more details. On the other hand, 
we allow for vector-valued functions, .f : A → X, because it does not incur any 
extra difficulty. Note that when .f (x) is a vector, we write . |f | for the function . x I→
‖f (x)‖, in order to avoid confusion with the scalar .‖f ‖. 

Lebesgue Measure on Rn 

Review 9.18 

1. A measure μ on RN is an assignment of positive numbers or ∞ to certain 
subsets E ⊆ RN with the properties that it be 

(i) additive, μ(E ∪ F)  = μ(E) + μ(F) for E, F, disjoint; 
(ii) continuous, En → E ⇒ μ(En) → μ(E). 

It is enough for now to take En → E to mean that En is a decreasing 
sequence of sets of finite measure, with

⋂

n En = E. 
One final property that we expect μ to satisfy, at least in RN , is that it be 

(iii) translation invariant, μ(E + x) = μ(E). 

Henri Lebesgue (1875–1941) Lebesgue graduated at 
the École Normale Supérieure of Paris at 27 years. 
His thesis built upon work of Baire, Borel and Jordan, 
to generalize lengths and areas, and so an integration 
powerful enough to tackle functions too discontinuous 
for Riemann’s integration—the first complete space 
of integrable functions. After a century of attempts 
by other mathematicians, he finally proved that uni-
formly bounded series of integrable functions, such as 
the Fourier series, could be integrated term by term. 
Although his achievement was widely seen as abstract, 
in his words, “Reduced to general theories, mathematics 
would be a beautiful form without content. It would 
quickly die.”
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Examples of measures are the standard length, area, and volume of Euclidean 
geometry. 

2. Taking R as our main example, and defining μ[0, 1[ := 1, these properties 
completely determine the length of any interval, namely μ[a, b] =  b − a = 
μ[a, b[. (Hint: divide [0, 1[ into equal intervals to show μ[0,m/n] = m/n.) 

3. As a first step in constructing μ on R, therefore, the length of any interval is 
defined to be the difference of its endpoints, e.g., m[a, b] := b−a. This function 
can be extended in two ways to 

(a) the length of any countable union of disjoint intervals 

. m(
⋃

n

In) :=
∑

n

m(In),

(b) the length of the set obtained by removing a countable union of disjoint 
subintervals from a bounded interval 

. m(I�
⋃

n

In) := m(I) −
∑

n

m(In).

4. For general sets, define 

. m∗(A) := inf{ m(U) : A ⊆ U =
⋃

n

In },

m∗(A) := sup{ m(K) : A ⊇ K = I�
⋃

n

In }.

(Note that since we are taking the infimum and supremum, respectively, we 
might as well take I to be a closed and bounded interval and In to be open 
intervals, in which case U is an open set, and K a compact set.) 
It is a fact that there exist sets for which these two values do not agree (see [1]). 
A “well-behaved” set, called measurable, satisfies m∗(E) = m∗(E), which is 
then called its Lebesgue measure μ(E). 

5. m∗(
⋃

n An) ⩽
∑

n m
∗(An) and A ⊆ B ⇒ m∗(A) ⩽ m∗(B) (since open 

covers for each An provide an open cover for their union). Of course, these 
statements continue to hold for Lebesgue measure applied to measurable sets. 

6. A useful equivalent criterion of measurability of E is: 

. For any subset A, m∗(E ∩ A) + m∗(Ec ∩ A) = m∗(A).

7. Using this criterion, it follows that, for E, F , and En measurable sets, 

(a) Ec, E∪F , E∩F , E�F , and EΔF are measurable; when they are disjoint, 
μ(E ∪ F)  = μ(E) + μ(F).
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(b)
⋃∞ 

n=1 En and
⋂∞ 

n=1 En are measurable, and when En are disjoint, 

. μ(

∞
⋃

n=1

En) =
∞
∑

n=1

μ(En).

The sets that can be obtained by starting with the intervals and applying these 
constructions are called Borel sets; they include the open and closed sets. 

8. Sets with (m∗-)measure 0 are obviously measurable and are called null sets. 
For example, any countable set is null; but most null sets are uncountable, e.g., 
the Cantor set. The countable union of null sets is null. 
Adding (or removing) a null set N from a measurable set E does not affect its 
measure, 

. μ(E ∪ N) = μ(E) + μ(N) = μ(E).

Because measures don’t distinguish sets up to a null set, we say that two sets 
are equal almost everywhere, E = F a.e., when they differ by a null set. More 
generally, we qualify a statement “P(t) a.e.t” when P(t) is true for all t except 
on a null set; for example, we say f = g a.e. when f (t)  = g(t) for all t in their 
domain apart from a null set. 

9. The distance between measurable sets is defined as d(E, F) := μ(EΔF). It is  
a metric, with the proviso that d(E, F) = 0 ⇔ E = F a.e. The measure μ is 
continuous with respect to it, En → E ⇒ μ(En) → μ(E). 

10. A similar procedure gives the Lebesgue measure on Rn, with the modification 
that cuboids are used instead of intervals to generate the measurable sets. Most 
subsets of Rn that the reader is likely to have encountered are measurable, 
including balls in R3. 

Measurable Functions 

Review 9.19 

1. The characteristic function of a set is defined by 

. 1E(t) :=
{

1, t ∈ E

0, t /∈ E
.

Linear combinations of characteristic functions
∑k 

n=1 1Enxn, where En are 
bounded measurable subsets of R and xn ∈ C, are called simple functions. More 
generally, R can be replaced by a fixed measurable set A, and xn can belong to a 
Banach space X. The simple functions form a vector space S .
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2. A function f : A → X is said to be measurable when it is almost everywhere 
the pointwise limit of simple functions, sn → f a.e. For real-valued functions, 
this is equivalent to f −1[a,∞[ being measurable for all a ∈ R. 
Note that simple functions supported in E (i.e., are zero outside E) can converge 
only to measurable functions supported in E (since sn1E → f 1E a.e.). 

3. Measurable functions form a vector space: λf and f + g are measurable when 
f , g are. It follows from

∣
∣|sn| − |f |∣∣ ⩽ |sn − f | that |f | :  A → R is measurable. 

For real-valued measurable functions, fg, max(f, g), and supn(fn), are also 
measurable. Real-valued continuous functions are measurable. 

4. ▶ In fact the space of measurable functions is in a sense complete: if fn are 
measurable and fn → f a.e., then f is measurable. 

5. L∞(A) is defined as the space of (equivalence classes of) bounded measurable 
functions f : A → C, over a measurable set A, with the supremum norm
‖f ‖L∞ := supt a.e. |f (t)|, that is, the smallest real number c such that |f (t)| ⩽
c a.e.t . 

6. L∞(R) contains the closed subspace of bounded continuous functions Cb(R), 
which in turn contains C0(R) := {  f ∈ C(R) : lim 

t→±∞ 
f (t)  = 0 }. The space 

C[a, b] is embedded in C0(R). Cb(R) is not separable for the same reason that
𝓁∞ is not (Theorem 9.1); replace a 0–1 sequence by a “0–1” tent function. 

7. L∞[a, b] is not separable: the uncountable number of characteristic functions 
1[s,t], a <  s  <  t  <  b, are at unit distance from each other. 

Proposition 9.20 

L∞(A) is a Banach space. 

Proof If |f (t)| ⩽ ‖f ‖L∞ except on the null set E1, and |g(t)| ⩽ ‖g‖L∞ except on 
the null set E2, then for all t ∈ A�(E1 ∪ E2), 

. 
|f (t) + g(t)| ⩽ |f (t)| + |g(t)|, |λf (t)| = |λ||f (t)|,

so ‖f + g‖L∞ ⩽ ‖f ‖L∞ + ‖g‖L∞ , ‖λf ‖L∞ = |λ|‖f ‖L∞ .

Clearly ‖f ‖L∞ = 0 only when |f (t)| =  0 a.e. It follows that L∞(A) is a normed 
space, as long as we identify ae-equal functions into equivalence classes. 

Completeness: Let fn ∈ L∞(A) be a Cauchy sequence, where |fn(t)| ⩽ ‖fn‖L∞ 

for all t ∈ A except in some null set En. Copying the proof of the completeness of
𝓁∞ (Theorem 9.1), 

. |fn(t) − fm(t)| ⩽ ‖fn − fm‖L∞ → 0

for each t ∈ A, except possibly on the null set
⋃

n En, so  fn(t) is Cauchy and 
converges fn(t) → f (t)  a.e.t . The function f is evidently measurable, and fn → f
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uniformly away from this null set, since for any ϵ >  0 and n large enough (but 
independent of t), 

. |fn(t) − f (t)| ⩽ |fn(t) − fm(t)| + |fm(t) − f (t)|
⩽ ‖fn − fm‖L∞ + |fm(t) − f (t)| a.e.t

< 2ϵ

where m ⩾ n is chosen, depending on t , to make  |fm(t) − f (t)| < ϵ. This means 
that fn → f in L∞, and implies ‖f ‖L∞ ⩽ ‖f − fn‖L∞ + ‖fn‖L∞ < ∞, so  
f ∈ L∞(A). 

⨅⨆

Integrable Functions 

Review 9.21 

1. Given a set  E of finite measure and its characteristic function, let
∫

1E := 
μ(E). For a simple function, define its integral 

. 

∫ N
∑

n=1

1Enxn :=
N
∑

n=1

μ(En)xn.

It is well-defined, since a simple function has a unique representation in terms 
of disjoint En. It is straightforward to verify that

∫

(s + r) = ∫ s + ∫ r and
∫

λs = λ
∫

s for s, r ∈ S . 
2. The function ‖s‖ := ∫ |s| = ∑n μ(En)‖xn‖ is a norm on S . Here, |s| is the 

real-valued simple function |s| = ∑

n 1En‖xn‖ ⩾ 0. In particular, for real-
valued simple functions, r ⩽ s ⇒ ∫

r ⩽
∫

s. 
Proof : (i) ‖λs‖ =∑n μ(En)‖λxn‖ = |λ|‖s‖, 
(ii) ‖s + r‖ =∑n μ(En)‖xn + yn‖ ⩽

∑

n μ(En)(‖xn‖ + ‖yn‖) = ‖s‖ + ‖r‖, 
(iii)
∫ |s| =  0 when

∑

n μ(En)‖xn‖ =  0. This implies μ(En)‖xn‖ =  0 for all 
n, i.e., xn = 0 OR μ(En) = 0, so s = 0 a.e. 

3. The integral is a continuous functional on S , ‖ ∫ s ‖ ⩽
∫ |s|, since, 

. 
∥
∥

∫

s
∥
∥ = ∥∥

∑

n

μ(En)xn

∥
∥ ⩽
∑

n

μ(En)‖xn‖ =
∫

|s|.

4. The space of real (or complex) simple functions with this norm is separable (the 
simple functions with xn ∈ Q and En equal to intervals with rational endpoints, 
are countable and dense), but not complete. 

5. A Cauchy sequence of simple functions converges a.e. to a measurable function.
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Proof : Let  sn be a Cauchy sequence in S. Pick a subsequence such that
‖skj+1 − skj

‖ ⩽ 1 
2j . For  a fixed  α, the subsets 

. En,α := { t ∈ R :∑n
j=1 |skj+1(t) − skj

(t)| ⩾ α }

are increasing with n up to the set Eα =⋃n∈N En,α . The crucial observation is 

. α μ(En,α) ⩽
∫

En,α

n
∑

j=1

|skj+1 − skj
| ⩽

n
∑

j=1

‖skj+1 − skj
‖ ⩽

∞
∑

j=1

1

2j
= 1.

As μ(En,α) ⩽ 1 
α
, it follows that μ(Eα) ⩽ 1 

α
. The subset Eα decreases as α 

increases, so E := ⋂α>0 Eα is a null set. But this is precisely the set where∑

j |skj+1 − skj
| diverges. Thus, ∑j |skj+1 − skj

| converges a.e., as must do
∑

j (skj+1 − skj ) and sn = s1 +∑n−1 
k=1(sk+1 − sk). 

6. A function f : R → X is said to be integrable when it is the ae-limit of a 
Cauchy sequence of simple functions sn → f a.e. Its integral is given by the 
extension of the integral on S, 

. 

∫

f := lim
n→∞

∫

sn.

Note that
∫

sn is a Cauchy sequence in X (‖ ∫ sn −
∫

sm‖
X
⩽
∫ |sn−sm| →  0). 

The space of (equivalence classes of) integrable functions R → X is denoted 
by L1(R, X); it is the completion of S (Theorem 4.6). By Proposition 7.18, the  
space L1(R, X)  is a normed vector space with 

. ‖f ‖L1 := lim
n→∞ ‖sn‖ = lim

n→∞

∫

|sn| =
∫

|f |,

so f ∈ L1(R, X)  ⇔ |f | ∈  L1(R). It also follows that for real-valued 
integrable functions f ⩽ g ⇒ ∫

f ⩽
∫

g. 
7. ▶ The integral is a continuous functional on L1(R, X)  (Example 8.9(5)), 

. 

∫

f + g =
∫

f +
∫

g,

∫

λf = λ

∫

f,
∥
∥

∫

f
∥
∥ ⩽
∫

|f |.

Thus if fn → f in L1(R, X)  then
∫

fn →
∫

f in X. 
8. (a) f ∈ L1(R) ⇒ ∫

f (t)x  dt = (
∫

f )x, 
(b) T ∈ B(X, Y ) ⇒ ∫

Tf = T
∫

f . 
Proof : (a) is a special case of (b) with T : F → X, T (λ)  := λx.
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As an operator, T : X → Y acts linearly on simple functions s =∑n 1Enxn ∈ 
S , 

. T s =
N
∑

n=1

1EnT xn ⇒
∫

T s =
N
∑

n=1

μ(En)T xn = T

∫

s.

If sn → f in L1(R, X)  then T sn → Tf in L1(R, Y ), so
∫

Tf = T
∫

f . 
9. For a measurable set A ⊆ R, define L1(A) := {  f 1A : f ∈ L1(R) }, and let
∫

A f := ∫ f 1A. 
Note that

∫

A f = 0 for any null set A. Hence if f = g a.e., with g ∈ L1(R), 
and E = F a.e., then f ∈ L1(R) as well and

∫

E f = ∫
F g. 

10. For E, F disjoint measurable sets, 

. 

∫

E∪F

f =
∫

E

f +
∫

F

f

It follows that E ⊆ F ⇒ ∫

E |f | ⩽ ∫
F |f |. 

11. A signed measure is defined to be a mapping from measurable subsets of R 
to real values (possibly negative), which satisfies the axioms of a measure. 
Similarly a complex measure is one which takes values in C. 

12. Radon-Nikodym theorem: If  ν is a complex measure on R such that ν(A) = 0 
whenever A is a null set, then there is a complex-valued measurable function f 
such that 

. ν(A) =
∫

A

f.

Refer to [1] for a proof. 

Theorem 9.22 

For A ⊆ R, L1(A) is a separable Banach space. 

Proof 
Completeness: Let  fn be a Cauchy sequence in L1(A), i.e., ‖fn − fm‖ →  0. 
Choose sn ∈ S close to fn, say ‖sn − fn‖ < 1/n. Then (sn)n∈N is a Cauchy 
sequence of simple functions, asymptotic to fn. By Notes 5 and 7 above, sn 
converges to an integrable function f in L1(A). Hence, so does the asymptotic 
sequence fn. 

Separability: By construction, the separable set S of simple functions is dense 
in L1(A): Any  f ∈ L1(A) has a sequence of simple functions converging to it 
(sn)n∈N → f a.e., so ‖f − sn‖L1 → 0 as  n → ∞.

⨅⨆
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We can start reaping the immediate benefits of these Lebesgue spaces. They have 
excellent limit properties: 

Proposition 9.23 

If fn → f in L∞(R), that is, uniformly, and 

(i) fn are continuous, then f is continuous, 
(ii) fn are integrable, then f is integrable on [a, b], and 

. 

∫ b

a

fn →
∫ b

a

f,

(iii) f '
n are continuous and converge uniformly, then f '

n → f '. 

Proof (i) The first assertion is a restatement of the fact that Cb(R) is closed in 
L∞(R) (Theorem 6.23). 

(ii) The second follows from the completeness of L1[a, b] and the continuity of the 
integral 

. 

∣
∣
∣

∫ b

a

fn −
∫ b

a

f

∣
∣
∣ ⩽
∫ b

a

|fn − f | ⩽ (b − a)‖fn − f ‖L∞[a,b] → 0.

(iii) If f '
n → g uniformly, then f '

n → g in L1[a, t] by (ii), and ∫ t 
a f

'
n →

∫ t 
a g. But,  

assuming the fundamental theorem of calculus (Theorem 12.8),
∫ t 
a f

'
n = fn(t) − 

fn(a), which converge to f (t) − f (a)  uniformly and in L1[a, t]. So ∫ t 
a g = f (t) − 

f (a), showing f is differentiable, with f ' = g. ⨅⨆
Much the same analysis can be made starting with the norm ‖s‖p :=

(∫ |s|p) 1/p, 
1 ⩽ p <  ∞, on  S(A). The completion of S in this norm is denoted by Lp (A), 
which is thus complete and separable (S(A) dense in it). 

The product x · y of sequences becomes f · g := ∫ fg  for functions. Hölder’s 
inequality is valid: 

Proposition 9.24 (Generalized Hölder’s Inequality) 

For A ⊆ R, if  f ∈ Lp (A), g ∈ Lq (A), then fg  ∈ Lr (A) where 1 
r = 1 

p + 1 
q

, 
and 

.‖fg‖Lr ⩽ ‖f ‖Lp‖g‖Lq .
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Proof The AM-GM inequality, for any complex numbers a, b, yields 

. |ab|r = |a|p r
p |b|q r

q ⩽ r

p
|a|p + r

q
|a|q .

If a, b are now the values of functions, integrated over the set A, 

. 

∫

A

|a(t)b(t)|r dt ⩽ r

p

∫

A

|a(t)|p dt + r

q

∫

A

|b(t)|q dt.

Substituting a(t) = f (t)/‖f ‖p and b(t) = g(t)/‖g‖q , 

. 

∫ |f (t)g(t)|r dt
‖f ‖r

p‖g‖r
q

⩽ r

p
+ r

q
= 1.

⨅⨆

Theorem 9.25 

For 1 < p  <  ∞, Lp[a, b] is a Banach space whose dual space is 

. Lp[a, b]∗ ≡ Lp' [a, b],

where 1 
p + 1 

p' = 1. 

Proof That Lp (A) is a complete normed vector space follows from its construction 
as the completion of the vector space of simple functions with the p-norm. The 
triangle inequality for this norm can be proved in an identical fashion to the proof 
of Minkowski’s inequality for 𝓁p (Proposition 9.12). 

Given any function g ∈ Lp'
(A) and f ∈ Lp (A), let  φ(f  )  := ∫

A gf (clearly 
linear in f ). Then by Hölder’s inequality, 

. |φf | ⩽
∫

A

|gf | ⩽ ‖g‖
Lp' ‖f ‖Lp

Equality can hold if we choose f = |g|p'/p e−iθ where g = |g|eiθ ; note that

‖f ‖Lp = ‖g‖p'/p 
Lp' . Then 

. φf =
∫

|g| p'
p

+1 =
∫

|g|p' = ‖g‖p'
Lp' = ‖g‖ p'

p
+1 = ‖f ‖Lp‖g‖

Lp'

All this shows that every function g ∈ Lp'
(A) gives rise to a functional on Lp (A), 

with norm ‖φ‖ = ‖g‖
Lp' .



182 9 The Classical Spaces

Let A be a bounded interval and φ ∈ Lp (A)∗. The  map  E I→ φ(1E) can be 
seen to be a complex measure on A, which takes the value 0 on null sets since 
1E = 0 a.e. when E is null. Hence by the Radon-Nikodym theorem, there exists 
a measurable function g such that φ(1E) = ∫ g1E . This extends, by linearity, to 
any simple function, φ(s)  = ∫ gs. Let  sn be an increasing sequence of non-negative 
simple functions converging pointwise a.e. to |g| = ge−iθ . Then 

. φ(s
p'/p
n e−iθ ) =

∫

|g|sp'/p
n ⩾

∫

s
1+p'/p
n =

∫

s
p'
n

Hence 

. ‖sn‖p'
p' ⩽ ‖φ‖‖sp'/p

n ‖p = ‖φ‖‖sn‖p'/p
p' ,

that is, ‖sn‖p' ⩽ ‖φ‖. In the limit as sn → |g|, ‖g‖p' ⩽ ‖φ‖. Finally, since φ 
is Lipschitz, the identity φ(f  )  = ∫

A gf for f ∈ S must continue to hold for the 
completion space S = Lp (A) (Theorem 4.14). 

⨅⨆
Note that L2(R) is its own dual. 

Examples 9.26 

1. Convergence in L1(R) is quite different from uniform convergence. For example, 
the sequence of functions 1 

n
1[0,n] converge uniformly to 0, but not in L1(R), 

whereas the sequence 1[0, 1 
n
] converges to 0 in L

1(R) but not uniformly. 

2. ‖f ‖Lr ⩽ ‖f ‖α 
Lp‖f ‖1−α 

Lq , where 1 r = α 
p + 1−α 

q ; thus f lies in Lp (A) for p in an 
interval of values. 
Proof : ‖|f |α|f |1−α‖r ⩽ ‖|f |α‖p/α‖|f |1−α‖q/(1−α) = ‖f ‖α 

p‖f ‖1−α 
q , using  

Hölder’s inequality. 
3. ▶ When the domain of the functions is compact, the spaces are included in each 

other as sets, in the reverse order of the sequence spaces, 

. C[a, b] ⊆ L∞[a, b] ⊆ L2[a, b] ⊆ L1[a, b].

The identity maps L∞[a, b] →  L2[a, b] →  L1[a, b] are continuous, 

. ‖f ‖L1[a,b] ⩽ (b − a)
1
2 ‖f ‖L2[a,b] ⩽ (b − a)‖f ‖L∞[a,b].

Proof : By Hölder’s inequality, with p <  q, ‖f ‖p ⩽ ‖1‖s‖f ‖q where 
1 
p = 1 

s
+ 1 

q
. 

4. The notation
∫∞ 
−∞ f is capable of at least three interpretations, as (i)

∫

R f when 
f ∈ L1(R), (ii) limR,S→∞

∫ R 
−S f , (iii) limR→∞

∫ R 
−R f . It should be clear that 

the finiteness of these integrals follow (i) ⇒ (ii) ⇒ (iii), but the examples
∫ R 
−R t dt = 0 and

∫ R 
0 

sin t 
t dt → π/2 as  R → ∞  show that the converses are 

false.
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Integral Operators 

We now consider a broad class of operators that act on spaces of functions. An 
integral operator (or transform) is a mapping on functions 

. Tf (s) :=
∫

A

k(s, t)f (t) dt,

where k is called the kernel of T (not to be confused with .ker T ). To motivate this 
definition, suppose T is a linear operator that inputs a function . f : A ⊆ R → C

and outputs a function .g : B ⊆ R → C. If  A and B are partitioned into small 
subintervals, the functions f and g are discretized into vectors .(fj ) and . (gi), and 
the linear operator T becomes approximately some matrix .[Tij ]. As the partitions 

Tf  = g 

= 

are refined, one might hope that . Tij would converge to some function .k(s, t) on 
.A × B, and the finite sums involved in the matrix multiplication .

∑

j Tij fj become 
integrals .

∫

A
k(s, t)f (t) dt . (This is not necessarily the case, as the identity map 

attests.) 
An integral functional on a function space is then of the form . φf :=

∫

A
k(t)f (t) dt . 

Proposition 9.27 

An integral operator .Tf (s) := ∫
A

k(s, t)f (t) dt is linear, and is continu-
ous as .Lp(A) → Lq(B) when: 

.

‖T ‖1,1 ⩽
∫

B

sup
t∈A

|k(s, t)| ds, ‖T ‖1,∞ ⩽ sup
t∈A,s∈B

|k(s, t)|,

‖T ‖∞,1 ⩽
∫

B

∫

A

|k(s, t)| dt ds, ‖T ‖∞,∞ ⩽ sup
s∈B

∫

A

|k(s, t)| dt,

‖T ‖2,2 ⩽
( ∫

B

∫

A

|k(s, t)|2 dt ds
)1/2

.
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Proof Linearity follows easily from 

. 

∫

A

k(s, t)(λf (t) + g(t)) dt = λ

∫

A

k(s, t)f (t) dt +
∫

A

k(s, t)g(t) dt.

(i) . ‖Tf ‖L1(B) =
∫

B

∣
∣
∣

∫

A

k(s, t)f (t) dt
∣
∣
∣ ds ⩽

∫

B

sup
t∈A

|k(s, t)| ds
∫

A

|f (t)| dt.

(ii) . ‖Tf ‖L∞(B) ⩽ sup
s∈B

∫

A

|k(s, t)f (t)| dt ⩽ sup
s,t

|k(s, t)|
∫

A

|f (t)| dt.

(iii) . ‖Tf ‖L1(B) ⩽
∫

B

∫

A

|k(s, t)f (t)| dt ds ⩽
∫

A×B

|k(s, t)| dt ds ‖f ‖L∞(A).

(iv) . ‖Tf ‖L∞(B) ⩽ sup
s∈B

∫

A

|k(s, t)f (t)| dt ⩽ sup
s∈B

∫

A

|k(s, t)| dt ‖f ‖L∞(A).

(v) .‖Tf ‖2
L2(B)

⩽
∫

B

∣
∣
∣

∫

A

k(s, t)f (t) dt
∣
∣
∣

2
ds ⩽

∫

B

∫

A

|k(s, t)|2 dt ds
∫

A

|f (t)|2 dt , 
by Cauchy’s inequality for functions. 

⨅⨆
Examples 9.28 

1. The Volterra operator on .L1[0, 1] is .Vf (t) := ∫ t

0 f . It is an integral operator 

with .k(s, t) :=
{

1, s ⩽ t

0, t < s
. 

2. For integral operators S, T , with kernels . kS , . kT respectively, 

(a) .S = T only when .kS = kT a.e., (since for all f , . (S −T )f (s) = ∫ (kS(s, t)−
kT (s, t))f (t) dt = 0); 

(b) .S + T has kernel .kS + kT , and . λT has kernel . λkT , 
(c) ST has kernel .kST (s, t) := ∫ kS(s, u)kT (u, t) du. 

The kernel acts like a “matrix” with real-valued indices, . ks,t in place of .Ai,j . The  
properties listed here are analogous to those of the addition and multiplication of 
matrices. 

3. Which integral operators on .L1(R) are translation invariant, meaning . T Taf =
TaTf , where .Taf (t) = f (t − a)? The requirement is, for all .f ∈ L1(R), 

. 

∫

k(s, t)f (t − a) dt =
∫

k(s − a, t)f (t) dt.

By changing the t-variable in the left-hand integral to .t̃ = t − a, we obtain 
.k(s, t) = k(s − a, t − a) a.e., as  f is arbitrary. Equivalently, . k(s, t) = k(s −
t, 0) =: k(s − t) a.e.(s, t) for some function .k ∈ L1(R). That is, 

.Tf = k ∗ f :=
∫

k(s − t)f (t) dt
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called the convolution of k with f . Just like the same-named operation in . 𝓁1, 
convolution is well-defined on .L1(R) and is associative and commutative. 

Approximation of Functions 

The approximation of functions by polynomials is commonly used in many 
algorithms because they are much faster to compute than many analytical functions. 
This applies to the computing of many statistical functions and several engineering 
applications, including interpolation and curve fitting, which is the approximation 
of data points by functions such as polynomials and splines. 

Proposition 9.29 

The polynomials are dense in .L1[a, b], .L2[a, b], and .C[a, b]. 

Proof By construction, the simple functions are dense in .L1(R). Now, intuitively 
speaking, any real-valued step function s can be “nudged” into a continuous function 
g by replacing its discontinuities with steep slopes, and the distance . ‖s − g‖L1

can be made as small as needed by making the slopes steeper. More precisely and 
more generally, any bounded measurable set E in . R lies between a compact set 
K and an open set U , such that .μ(U�K) < ϵ (Review 9.18(4)); also, there is a 
continuous function . gE taking values in .[0, 1] such that .gE[K] = 1, . gE[Uc] = 0
(Exercise 3.13(17)). So 

. ∀ϵ > 0, ∃gE ∈ C(R), ‖gE − 1E‖L1 =
∫

U�K

|gE − 1E | ⩽ μ(U�K) < ϵ.

Vito Volterra (1860–1940) Volterra studied hydrody-
namics at Pisa under Betti (1883); this led him over the 
next 10 years to consider integral equations of the type 
.f (x) − ∫ x

a
k(x, y)f (y) dy = g(x), which he showed 

can be solved by iteration. He applied such “function-
als” to the theory of optics and distortions, Hamilton-
Jacobi dynamics, elasticity and electro-magnetism. He 
moved from one professorship in Turin to another in 
Rome, becoming a senator in 1905, and finding the 
time to write his Volterra equations about the numbers 
of predators and prey in mathematical biology, until in 
1931 he preferred exile to the reign of Mussolini.
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Consequently, taking any non-zero simple function .s =∑N
n=1 1Enxn and replacing 

each .1En with continuous functions . gn, where .‖gn − 1En‖L1 < ϵ/
∑N

n=1 ‖xn‖, 
gives a continuous function .g :=∑N

n=1 gnxn, which approximates s in . L1, 

. ‖s − g‖L1 ⩽
N
∑

n=1

‖1En − gn‖L1‖xn‖ < ϵ.

Thus any function .f ∈ L1(R) has a simple function approximation s, which in turn 
can be approximated by a continuous function g. Combining these two facts gives 

. ‖f − g‖L1 ⩽ ‖f − s‖L1 + ‖s − g‖L1 < 2ϵ

showing that the set of (integrable) continuous functions is dense in .L1(R). Note  
further that precisely the same arguments work for .L2(R). 

We have already seen, in the Stone-Weierstraß theorem (Theorem 6.24), that the 
set of polynomials .p(z, z̄) is dense in .C[a, b]. But, in this case, .z = z̄ = t ∈ [a, b], 
so such polynomials are of the usual form .p ∈ C[t]. Combining this with the above 
result shows that .C[t] is also dense in .L1[a, b] and .L2[a, b]: for any .ϵ > 0, there is 
a polynomial .p ∈ C[t] such that 

. ‖f − p‖L1[a,b] ⩽ ‖f − g‖L1[a,b] + ‖g − p‖L1[a,b] < 3ϵ

since .‖g − p‖L1[a,b] ⩽ (b − a)‖g − p‖C[a,b] can be made arbitrarily small. ⨅⨆
More generally, the polynomial splines are dense in the real version of these 

spaces. A spline of degree N is a function .
∑

n 1Enpn, where . En are disjoint intervals 
and . pn are polynomials of degree at most N such that the first .N − 1 derivatives 
match at the endpoints of . En. They are often used in numerical techniques and 
graphics computing. 

There is another very useful way of approximating integrable functions by 
smooth functions using convolution. 

Proposition 9.30 (Approximation to the Identity) 

If .hn ∈ L1(R) are such that .hn ⩾ 0, .
∫

hn = 1, and .
∫

R�[−δ,δ] hn → 0 as 
.n → ∞, then .hn ∗ f → f in .C(R) and .L1[a, b]. 

Proof Let g be a continuous function, and let .t ∈ R; on the one hand, 

.∀ϵ > 0, ∃δ > 0, |s| < δ ⇒ |g(t + s) − g(t)| < ϵ, (9.6)
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and on the other hand, for this . δ, 

.∃N, n ⩾ N ⇒
∫

R�[−δ,δ]
|hn| < ϵ (9.7) 

hn 

Therefore, for all t and .n ⩾ N , 

. |hn ∗ g(t) − g(t)| =
∣
∣
∣

∫

hn(s)
(

g(t − s) − g(t)
)

ds
∣
∣
∣

⩽
∫

|hn(s)|
∣
∣g(t − s) − g(t)

∣
∣ ds

⩽
∫ δ

−δ

hn(s) ϵ ds + 2‖g‖C

∫

R�[−δ,δ]
hn(s) ds by (9.6)

⩽ ϵ(1 + 2‖g‖C) by (9.7) 

and .‖hn ∗ g − g‖C → 0 as required. 
In fact .hn ∗ f approximates .f ∈ L1[a, b] in the .L1-norm, for, choosing . g ∈

C[a, b] close to f , .‖f − g‖L1 < ϵ, and n large enough that . ‖hn ∗ g − g‖C < ϵ

holds, then 

. ‖hn ∗ f − f ‖L1[a,b] ⩽ ‖hn ∗ g − g‖L1[a,b] + ‖hn ∗ (f − g)‖L1[a,b]
+ ‖f − g‖L1[a,b]

< (b − a)ϵ + 2ϵ,

since .‖hn ∗ (f − g)‖L1 ⩽ ‖hn‖L1‖f − g‖L1 < ϵ. ⨅⨆
A useful way of generating an approximation of the identity is to start with 

a single integrable function .h ⩾ 0, normalized so that .
∫

h = 1, and then 
defining .hn(t) := nh(nt). The conditions of the proposition hold, in particular, 
.
∫

|t |>δ
nh(nt) dt = ∫|s|>nδ

h(s) ds → 0 as .n → ∞. 

Typical examples of approximations of the identity are (i) .hn(t) := n√
π
e−(nt)2 , 

(ii) .hn(t) = 1
π

n
1+(nt)2

, and (iii) .hn(t) := 1
cn

(1 − t2)n supported on .[−1, 1], where 
.cn = ∫ 1−1(1 − t2)n dt .
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Corollary 9.31 

For any .f ∈ L1(A), 

. ‖f (t + h) − f (t)‖L1 → 0 as h → 0.

Proof Starting from the unit function .h := 1[−1/2,1/2], the step functions . hn(t) :=
nh(nt) clearly form an approximation of the identity, and so .hn ∗ f → f in .L1(R). 
But their translations by .Tsf (t) := f (t − s), with .s = ±1/2n, namely . h+

n :=
Tshn = n1[0,1/n] and .h−

n := T−shn = n1[−1/n,0], form other approximations of the 
identity. Since .(Tsh) ∗ f = Ts(h ∗ f ) and .‖Tsf ‖L1 = ‖f ‖L1 , 

. 

∫
∣
∣f (t − s) − f (t)

∣
∣ dt = ‖Tsf − f ‖L1

⩽ ‖Tsf − (Tshn) ∗ f ‖L1 + ‖(Tshn) ∗ f − f ‖L1

= ‖f − hn ∗ f ‖L1 + ‖h±
n ∗ f − f ‖L1

→ 0 as n → ∞.

⨅⨆
Exercises 9.32 

1. If .
∑

n ‖fn‖L1 converges, then .
∑∞

n=0

∫

fn = ∫ ∑∞
n=0 fn. 

2. The map .(an)n∈N I→ f where .f (t) := ∑

n∈N an1[n,n+1[(t) isometrically 
embeds . 𝓁p into .Lp(R), .1 ⩽ p ⩽ ∞. 

3. Let .fn := 1[n,n+1]; if pointwise convergence were induced by a norm, then 
.fn/‖fn‖ would converge to zero, a contradiction. 

4. A simple function on .[0, 1] can be approximated by a step function in .L1[0, 1], 
namely a simple function .

∑

n an1In where . In are disjoint intervals. Deduce that 
the step functions are dense in .L1(R). (Hint: For . 1E , approximate E by a finite 
union of intervals using Review 9.18(4) and Exercise 2.14(13).) 

5. The map .L1(A) → C, .f I→ ∫

gf is linear, and continuous when .g ∈ L∞(A). 
Assuming surjectivity, show .L1(K)∗ ≡ L∞(K) for .K ⊆ R compact. 

6. Show that the functional .δa(f ) := f (a) on .C[a, b] is not integral, that is, it does 
not correspond to any .L1-function . δ in the sense of .δa(f ) = ∫ δf . Hence the 
dual space of .C[a, b] is not .L1[a, b]; it consists of functionals called measures 
of bounded variation. 

7. Minkowski’s inequality: Emulate the proof of Proposition 9.12 to show 

. ‖f + g‖Lp ⩽ ‖f ‖Lp + ‖g‖Lp (p ⩾ 1).

8. Show that .Lp[a, b] is a separable space for .1 ⩽ p.
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9. ✶ Show that convolution on .L1(R) is associative and commutative; but it has 
no identity, although Gibbs and Dirac audaciously added one and called it . δ. 
Young’s inequality is satisfied, 

. ‖f ∗ g‖Lr ⩽ ‖f ‖Lp‖g‖Lq ,
1

p' + 1

q ' = 1

r ' .

(Hint: .|f (t)g(x − t)| = |f (t)|p/r |g(x − t)|q/r |f (t)|1−p/r |g(x − t)|1−q/r .) 
10. Matched Filter: An electronic filter is a circuit acting on a signal . f ∈ L2(R)

and outputting the convolution .g ∗ f (.g ∈ L1(R)). Signals often have white 
noise . η(t), where .‖g ∗ η‖L2 = ϵ‖g‖L2 . The signal-to-noise ratio is . S/N :=
‖g ∗ f ‖2

L2/‖g ∗ η‖2
L2 ; show that .S/N ⩽ ‖f ‖2

L2/ϵ
2, with equality holding 

when .g(s − t) = λf (t), for  some .s, λ ∈ R. 
11. The integral operator .Tf (s) := ∫∞

1 t−(s+1)f (t) dt is continuous as 
.L∞[1,∞[ → L∞[1,∞[, satisfying .‖Tf ‖L∞ ⩽ ‖f ‖L∞ . 

12. An integral operator .T : L1[0, 1] → L∞[0, 1], with kernel .k ∈ L∞[0, 1]2, 
has .‖T ‖ ⩽ ‖k‖L∞ . So if  . Tn have kernels . kn with .kn → k in .L∞[0, 1]2, then 
.Tn → T . 

The Fourier Series 

We end this chapter with a look at one of the most important operators on .L1[0, 1]. 
Back to the days of Fourier, there arose the question of whether every periodic 
function f can be built up as a Fourier series .

∑

n an cos nt + bn sin nt . This claim 
of Fourier was disputed by Lagrange and others; Dirichlet obtained a partial result 
for the case .f ∈ C2, and Riemann later vastly extended this result. Despite these 
protests, the use of Fourier series grew, mainly because they actually worked in 
many examples. 

Definition 9.33 

The Fourier coefficients of an integrable function .f ∈ L1[0, 1] are the 
sequence of numbers defined by1 

.Ff (n) = f̂ (n) :=
∫ 1

0
e−2πintf (t) dt, n ∈ Z.

1 These are a modern version of the classical Fourier coefficients . 1
π

∫ 2π
0 cos(nt)f (t) dt and 

. 1
π

∫ 2π
0 sin(nt)f (t) dt . 
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This section cannot do justice to the immense number of results and applications 
of Fourier series. It must suffice here to present some of the main results, with the 
aim of generalizing them later on. Refer to [3] for more details. 

Theorem 9.34 

.F : L1[0, 1] → c0(Z) is a 1–1 continuous operator with 

. ‖f̂ ‖c0(Z) ⩽ ‖f ‖L1[0,1]

Here, .c0(Z) is defined as consisting of those ‘sequences’ .(an)n∈Z such that . an →
0 as .n → ±∞. 

Proof That . F is linear is easy to show. It is continuous because 

. ‖f̂ ‖𝓁∞ = sup
n∈Z

∣
∣
∣

∫ 1

0
e−2πintf (t) dt

∣
∣
∣ ⩽
∫ 1

0
|f (t)| dt = ‖f ‖L1[0,1].

The characteristic function .1[a,b], for .[a, b] ⊆ [0, 1], has Fourier coefficients 

. ̂1[a,b](n) =
∫ b

a

e−2πint dt = e−2πina − e−2πinb

2πin
→ 0 as n → ±∞.

Hence the vector space of simple functions, as well as its closure .L1[0, 1], are  
mapped into the complete space . c0 (Exercise 8.6(5)). 

. F is 1–1: If .f̂ (n) = 0 for every n, then 

. 

∫ 1

0
e−2πinsf (s) ds = 0, ∀n ∈ Z.

The aim is to show that .f = 0 a.e. Firstly, 

. 

∫ 1

0
e−2πinsf (t − s) ds =

∫ 1

0
e−2πin(t−s)f (s) dy = 0.

Secondly, since .(cosπs)2n = (e2πis + e−2πis + 2)n/22n is a linear combination 
of exponentials of various frequencies that are all multiples of . 2πs, we have,  for  
.hn(s) := (cosπs)2n/cn, 

. hn ∗ f (t) = 1

cn

∫ 1

0
(cosπs)2nf (t − s) ds = 0,

where .cn := ∫ 10 (cosπs)2n ds = (2n−1)(2n−3)···
(2n)(2n−2)··· ⩾ 1

2n .
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The functions . hn satisfy the criteria of Proposition 9.30, as they are positive and 
fall rapidly to 0 for .|s| ⩾ δ, as  .n → ∞. Thus .‖f ‖L1 = ‖hn ∗ f − f ‖L1 → 0, and 
. f = 0 a.e. ⨅⨆

Although this Fourier operator is not surjective, and hence not invertible, its 
coefficients can be used to build up the original function. Note that, in the proof, 
the convolution of periodic functions is defined by . f ∗ g(t) := ∫ 10 f (t − s)g(s) ds
where .f (t − s) = f (t − s + 1) when .t < s. 

Theorem 9.35 

The Cesáro sum of .
∞
∑

n=−∞
f̂ (n)e2πint converges to f in .C[0, 1]. 

Proof Take the finite sum 

. 

n
∑

k=−n

f̂ (k)e2πikt =
∫ 1

0

n
∑

k=−n

e2πik(t−s)f (s) ds = Dn ∗ f (t),

where . Dn is the so-called Dirichlet kernel, 

. Dn(t) =
n
∑

k=−n

e2πikt = e−2πint − e2πi(n+1)t

1 − e2πit

= (e−2πint − e2πi(n+1)t )(1 − e−2πit )

(1 − e2πit )(1 − e−2πit )

= cos(2πnt) − cos(2π(n + 1)t)

1 − cos(2πt)
.

. Dn is not an approximation of the identity, since .|Dn(
1
2 )| = 1 /→ 0. But consider 

the Cesáro sum, 

. 
1

N

N
∑

n=0

n
∑

k=−n

f̂ (n)e2πikt = 1

N

N
∑

n=0

Dn ∗ f (t) = FN ∗ f (t)

where . FN is the Fejer kernel, 

.FN = 1

N

N
∑

n=0

Dn = 1

N

N
∑

n=0

cos(2πnt) − cos(2π(n + 1)t

1 − cos(2πt)
= 1

N

1 − cos(2πNt)

1 − cos(2πt)
.
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It can be verified that .FN is an approximation of the identity: the functions are 
positive, integrate to 1, and vanish outside a neighborhood of 0, 

. 

∫ 1

0
Dn(t) dt =

n
∑

k=−n

∫ 1

0
e2πikt dt =

∑

k /=0

[e2πikt /(2πik)]10 + 1 = 1,

∴
∫ 1

0
FN(t) dt = 1

N

N
∑

n=0

∫ 1

0
Dn(t) dt = 1.

For .δ < t < 1
2 , 

. FN(t) = 1

N

1 − cos(2πNt)

1 − cos(2πt)
⩽ 1

N

1

1 − cos(2πδ)
→ 0 as N → ∞.

Hence by Proposition 9.30, .FN ∗ f → f both in .L1[0, 1] and uniformly in .C[0, 1]. 
⨅⨆

The Fourier coefficients have properties that appear remarkable: when f is 
translated the coefficients rotate in . C, at a rate proportional to n, with each 
.f̂ (n) performing n turns as f is translated one whole period; differentiation of 
f scales the coefficients by a multiple of n; and convolutions are transformed to 
multiplications. 

Proposition 9.36 

For periodic functions, with period 1, 

. T̂af (n) = e−2πianf̂ (n), f̂ '(n) = 2πinf̂ (n), f̂ ∗ g = f̂ ĝ.

Proof A translation .Taf (t) := f (t − a) has the effect 

. T̂af (n) =
∫ 1

0
e−2πintf (t − a) dt

=
∫ 1

0
e−2πin(t+a)f (t) dt = e−2πinaf̂ (n).

For the derivative, . f ', using integration by parts, 

.f̂ '(n) =
∫ 1

0
e−2πintf '(t) dt

= [e−2πintf (t)]10 + 2πin

∫ 1

0
e−2πintf (t) dt = 2πinf̂ (n),
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and the convolution of f and g becomes 

. f̂ ∗ g(n) =
∫ 1

0
e−2πint

∫ 1

0
f (t − s)g(s) ds dt

=
∫ 1

0

∫ 1

0
e−2πin(t+s)f (t) dt g(s) ds

=
∫ 1

0
e−2πintf (t) dt

∫ 1

0
e−2πinsg(s) ds = f̂ (n) ĝ(n).

⨅⨆
Exercises 9.37 

1. Show 

(a) .F : 1 I→ (. . . , 0, 0, 1, 0, 0, . . .), 
(b) .F : t I→ i

2π (. . . ,− 1
2 ,−1, π

i
, 1, 1

2 , . . . ,
1
n
, . . .), 

(c) .F : |t − 1
2 | I→ 1

π2 (. . . , 0, 1,
1
4 , 1, 0,

1
9 , 0,

1
25 , . . .), 

(d) .F : t (t − 1
2 )(t − 1) I→ −3i

4π3 (. . . ,− 1
8 ,−1, 0, 1, 1

8 , . . . ,
1
n3

, . . .). 

2. The open mapping theorem implies that a bijective operator is an isomorphism 
(Corollary 11.2). Use it to show that . F is not onto . c0. 

3. The power spectrum of a function is a plot of .|f̂ (n)|2. It displays the dominant 
frequencies of f . A better plot is the Nyquist diagram, where .f̂ (n) is graphed in 
three dimensions, with one axis representing n, and the other two representing 
.f̂ = |f̂ |eiφ . Prove that .F : Ck[0, 1] → ck(Z), where .Ck[0, 1] is the space of 
k-times continuously differentiable periodic functions, and . ck(Z) := { (an)n∈Z :
nkan → 0 }. Therefore, how fast the power spectrum decays as .n → ∞measures 
how smooth the function is. 

4. The operator .Sa : f (t) I→ a1/2f (at) (.a > 0) stretches or compresses f , while 
preserving its .L2-norm; prove .Ŝaf (n) = S1/af̂ (n). This should be familiar: 
playing a sound clip in half its normal time doubles the frequencies. 

5. ▶ The Fourier transform of a function .f ∈ L1(R) is defined to be the function 

. Ff (ξ) = f̂ (ξ) :=
∫ ∞

−∞
e−2πitξ f (t) dt.

It is an integral operator .F : L1(R) → L∞(R). Similarly to the Fourier series, 

(a) it is a continuous linear operator .F : L1(R) → C0(R), 

(b) .1̂[−a,a](ξ) = a sin(πaξ)/(πaξ) =: a sinc(πaξ) → 0 as ξ → ±∞, 

(c) .T̂af (ξ) = e−2πiaξ f̂ (ξ), 

(d) .f̂ '(ξ) = 2πiξ f̂ (ξ), 

(e) .f̂ ∗ g = f̂ ĝ.
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6. .F 1√
σ
e−πt2/σ 2 = √

σ e−πσ 2ξ2 . Deduce that the convolution of two Gaussian 
functions is another Gaussian function, 

. e−t2/2σ 2 ∗ e−t2/2τ 2 = √
2π

στ√
σ 2 + τ 2

e−t2/2(σ 2+τ 2).

Notice how there is a trade-off between the ‘width’ . σ of the original Gaussian 
and that of its Fourier transform, namely . 1/σ . 

7. Wiener-Khinchin theorem: For  .f ∈ L1(R), define .f ∗(t) := f (−t). Show . ̂f ∗ =
f̂ , and that the auto-correlation function .f ∗ ∗ f (t) = ∫

f (s)f (s + t) ds is 
transformed to the power spectrum .|f̂ (ξ)|2. More generally, .f ∗ ∗ g is called the 
cross-correlation function of f and g. 

Remarks 9.38 

1. The functionals on . 𝓁∞ are more difficult to describe. Every sequence . y ∈ 𝓁1

still acts as a functional on . 𝓁∞ via .x I→ y · x, but  .(𝓁∞)∗ is a complicated non-
separable space that includes much more than just . 𝓁1 (look up “finitely additive 
measures” for more). 

2. .𝓁∞ = Cb(N), so the completeness part of Theorem 9.1 is included in Theo-
rem 6.23. 

3. The Fibonacci iteration .an := an−1 + an−2, starting from .a0 = 1 = a1, is an  
equation on sequences. It can be expressed in any of the following ways 

. x = Rx + R2x + e1 + e0

(e0 − e1 − e2) ∗ x = e0 + e1

(1,−1,−1, 0, . . .) ∗ x = (1, 1, 0, . . .)

Convoluting with the inverse of .(1,−1,−1, 0, . . .) gives the terms of the 
Fibonacci sequence (but note that the inverse is not in . 𝓁1). Traditionally, 
“generating functions” are used to get the same results, the connection being 
elucidated in Chap. 14. 

4. . 𝓁1 contains the space of sequences .𝓁1s := { (an)n∈N : (nsan)n∈N ∈ 𝓁1 }, (s ⩾ 0), 
which in turn contains .𝓁∞

s+1+ϵ . 
5. The following are some classical criteria for determining that a sequence of 

measurable functions . fn that converges pointwise .a.e. is Cauchy in .L1(A), 

(a) .|fn| are increasing but .
∫ |fn| are bounded (Monotone Convergence Theo-

rem), 
(b) .|fn| ⩽ g ∈ L1(A) (Dominated Convergence Theorem), 
(c) .
∫

E
fn converges for all measurable sets E (Vitali’s theorem). 

6. A function on . R has both local and global integrability properties: locally about 
.t ∈ R, it may belong to some .Lp[t − δ, t + δ] space, while globally, the sequence
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of numbers .an := ‖f ‖Lp[n,n+1] may belong to . 𝓁q . For example, f is in . L1(R)

when it is locally in . L1 and globally in . 𝓁1. .Lp

loc are spaces of functions that are 
only locally in . Lp. For example, the constant function 1 is in all .Lp(R) locally, 
but its sequence of norms is only in . 𝓁∞; so .1 ∈ L∞(R). Similarly, .1/

√
t is locally 

in all the . Lp spaces for .1 ⩽ p < 2, but its norm sequence is in . 𝓁q , .2 < q. 
7. The Fourier series maps .F : Lp[0, 1] → 𝓁p'

for .1 ⩽ p ⩽ 2 (see 
Exercise 10.35(11) for .p = 2).



Chapter 10 
Hilbert Spaces 

10.1 Inner Products 

There are spaces, such as . l2, whose norms have special properties because they 
are induced from what are termed inner products. Not only do such spaces have a 
concept of length but also of orthogonality between vectors. 

Definition 10.1 

An inner product on a vector space X is a positive-definite sesquilinear 
form1 , namely a map 

. < , > : X ×X → F

such that for all .x, y, z ∈ X, .λ ∈ F, 

. 
<x, y + z> = <x, y> + <x, z>, <x, λy> = λ<x, y>,

<y, x> = <x, y>, <x, x> > 0; <x, x> = 0 ⇔ x = 0.

Two vectors are said to be orthogonal or perpendicular when .<x, y> = 0, also  
written as .x ⊥ y. More generally, two subsets are orthogonal, .A ⊥ B, when any 
two vectors .a ∈ A and .b ∈ B are orthogonal, .<a, b> = 0. 

1 In the mathematical literature, the inner product is often taken to be linear in the first variable; this 
is a matter of convention. The choice adopted here is that of the “physics” community; it makes 
many formulas, such as the definition .x∗(y) := <x, y>, more natural and conforming with function 
notation. 
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Easy Consequences 
1. If for all .x ∈ X, .<x, y> = 0, then .y = 0. 
2. .<x + y, z> = <x, z> + <y, z>, but .<λx, y> = λ̄<x, y> (conjugate-linear). 
3. .<x, x> is real (and non-negative); its square-root is denoted by .||x|| := √<x, x>. 
4. .||λx|| = |λ|||x||, and .||x|| = 0 ⇔ x = 0. 
5. .||x + y||2 = ||x||2 + 2 Re <x, y> + ||y||2. 
6. (Pythagoras) If .<x, y> = 0 then .||x + y||2 = ||x||2 + ||y||2. More generally, if 

.<xi, xj > = 0 for .i /= j then (by induction) 

. ||x1 + · · · + xn||2 = ||x1||2 + · · · + ||xn||2.

We will see next that the triangle inequality is also true, making .|| · || a norm, thus 
inner product spaces are normed spaces. 

Examples 10.2 

1. The simplest examples are the Euclidean spaces . Rn and . Cn with 

. <
⎛
⎜⎝

a1
...

an

⎞
⎟⎠ ,

⎛
⎜⎝

b1
...

bn

⎞
⎟⎠ > := (

a1 · · · an

)
⎛
⎜⎝

b1
...

bn

⎞
⎟⎠ =

nΣ
i=1

aibi .

More generally, take any basis .v1, . . . , vn of . Fn, expand any two vectors . x and . y

as .x = Σn
i=1 aivi , .y = Σn

i=1 bivi , and define .<x, y> := Σn
i=1 aibi . (The inner 

product differs depending on the choice of the basis.) 
2. The matrices of size .m× n have an inner product given by 

. <A,B> :=
mΣ

i=1

nΣ
j=1

AijBij .

The induced norm is the Frobenius norm, not the operator norm (but recall that 
all norms on a finite-dimensional Banach space are equivalent). 

3. > . l2 has the inner product .<(an), (bn)> := Σ∞
n=0 anbn. The fact that this series 

converges follows from Cauchy’s inequality .|Σn anbn| < ||(an)||||(bn)||. 
4. > .L2(A) has the inner product .<f, g> := f

A
f̄ g. That this integral has a finite 

value follows from Hölder’s inequality .| f
A

f̄ g| < ||f̄ g||L1 < ||f ||L2||g||L2 . 
5. The weighted . l2 and . L2 spaces generalize these formulae to 

. <(an), (bn)> :=
Σ
n

anbnwn, <f, g> :=
f

f (x)g(x)w(x) dx,

respectively, where . wn and .w(x) are called weights; what properties do they need 
to have for the inner product axioms to hold?
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Our first proposition generalizes Cauchy’s inequality (Proposition 7.5) from . l2

to a general inner product space. It is probably the most used inequality in analysis. 

Proposition 10.3 (Cauchy-Schwarz Inequality) 

. |<x, y>| < ||x||||y||

Proof The inequality need only be shown for y non-zero. Any other vector x can 
be decomposed uniquely into two parts, one in the direction of y, and the other 
perpendicular to it: 

. x = λy + (x − λy), with <y, x − λy> = 0.

This yields .λ = <y, x>/<y, y>. Applying Pythagoras’ theorem, we deduce that 

. ||x||2 = ||λy||2 + ||x − λy||2,

hence .||λy|| < ||x||, or .|λ| < ||x||/||y||, from which follows the assertion. 

λy 

x − λy 

y 

x 

0 

nu

Corollary 10.4 

. ||x + y|| < ||x|| + ||y||

Proof Using the Cauchy-Schwarz inequality, .Re <x, y> < |<x, y>| < ||x||||y||, so  

.||x + y||2 = ||x||2+2 Re <x, y>+||y||2 < ||x||2+2||x||||y||+||y||2 = (||x||+||y||)2.

nu
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David Hilbert (1862–1943) Hilbert studied invariant 
theory under Lindemann at Königsberg until 1885. His 
encyclopedic powers motivated him to explore much 
of mathematics; in 1899, in Göttingen, he gave rig-
orous axioms for Euclidean geometry; 1904–1909, he 
studied Fredholm’s integral equations, with his student 
Schmidt; he defined compact operators, proving they 
are limits of matrices, with their spectrum of eigenval-
ues; (Schmidt) defined . l2 with its inner product. On to 
mathematical physics, quite possibly he inspired Ein-
stein’s general relativity. His 1918 ‘formalist’ research 
programme set out to prove that set axioms are consis-
tent, “one can solve any problem by pure thought”. 

Hence .|| · || is a norm, and all the facts about normed spaces apply to inner 
product spaces. For example, the norm is continuous. 

Proposition 10.5 

The inner product is continuous. 

Proof Let .xn → x and .yn → y, then since . yn are bounded (Example 4.3(6)), 

. |<xn, yn> − <x, y>| = |<xn, yn> − <x, yn> + <x, yn> − <x, y>|
< |<xn − x, yn>| + |<x, yn − y>|
< ||xn − x||||yn|| + ||x||||yn − y|| → 0.

nu
It follows that taking limits commutes with the inner product: 

. lim
n→∞<xn, yn> = < lim

n→∞ xn, lim
n→∞ yn>.

Definition 10.6 

A Hilbert space is an inner product space which is complete as a metric space. 

In the rest of the text, the letter H denotes a Hilbert space. 

Examples 10.7 

1. . Rn, . Cn, . l2 and .L2(R) are all Hilbert spaces (Theorems 8.24, 9.8). 
2. Every inner product space can be completed to a Hilbert space. In the completion 

as a normed space (Proposition 7.18), take .<x, y> := lim
n→∞<xn, yn>, for represen-
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tative Cauchy sequences .x = [xn], .y = [yn]. Note that .<xn, yn> is a Cauchy 
sequence in . C since 

. |<xn, yn> − <xm, ym>| < |<xn, yn> − <xm, yn>| + |<xm, yn> − <xm, ym>|
< ||xn − xm||||yn|| + ||xm||||yn − ym|| → 0

as .n,m →∞, with .||xm||, .||yn|| bounded. 
3. > For an inner product space over . C, if .<x, T x> = 0 for all .x ∈ X, then .T = 0. 

Proof : The identities 

. 0 = <x + y, T (x + y)> = <x, T y> + <y, T x>,
0 = <x + iy, T (x + iy)> = i<x, T y> − i<y, T x>,

together imply .<x, T y> = 0, for any .x, y ∈ X, in particular .||Ty||2 = 0. 
4. An alternative proof of the Cauchy-Schwarz inequality is 

. 0 < ||u− λv||2 = 1− 2Re λ<u, v> + |λ|2

for .u := x/||x||, .v := y/||y|| unit vectors and all .λ ∈ F, in particular for . λ =
|<u, v>|/<u, v>. 

5. .||x|| = sup
||y||=1

|<x, y>|, with the maximum achieved when .y = x/||x||. 

Do all norms on vector spaces come from inner products, and if not, which 
property characterizes inner product spaces? The answer is given by: 

Proposition 10.8 (Parallelogram Law) 

A norm is induced from an inner product if, and only if, it satisfies, for 
all vectors . x, y, 

. ||x + y||2 + ||x − y||2 = 2(||x||2 + ||y||2).

The statement asserts that the sum of the lengths squared of the diagonals of a 
parallelogram equals that of the sides. 

x 

y 

x − y 

x + 
y 
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Proof The parallelogram law follows from adding the identities, 

. ||x + y||2 = ||x||2 + 2Re <x, y> + ||y||2,
||x − y||2 = ||x||2 − 2Re <x, y> + ||y||2.

Subtracting the two gives .4Re <x, y>. This is already sufficient to identify 
the inner product when the scalar field is . R. Over  . C, notice that . Im <x, y> =
−Re i<x, y> = Re <ix, y>, so  

.<x, y> = 1

4

(
||y + x||2 − ||y − x||2 + i||y + ix||2 − i||y − ix||2

)
. (10.1) 

This remarkable polarization identity expresses the inner product purely in terms of 
norms. Accordingly, for the converse of the proposition, define 

. 
for any normed space, <<x, y>> := 1

4 (||y + x||2 − ||y − x||2),
for a complex space, <x, y> := <<x, y>> + i<<ix, y>>.

Two of the inner product axioms follow from .<<y, x>> = <<x, y>> and . <x, x> =
<<x, x>> = ||x||2, as well as  .<x, 0> = <<x, 0>> = 0; .<y, x> = <x, y> is readily verified 
using 

. 4<<iy, x>> = ||x + iy||2 − ||x − iy||2 = ||y − ix||2 − ||y + ix||2 = −4<<ix, y>>.

To show linearity, let .u = y+z
2 , .v = y−z

2 , then by the parallelogram law, 

. ||x + y||2 + ||x + z||2 = ||u+ v + x||2 + ||u− v + x||2 = 2||u+ x||2 + 2||v||2

. ||y − x||2 + ||z− x||2 = ||u+ v − x||2 + ||u− v − x||2 = 2||u− x||2 + 2||v||2

Subtracting the two equations gives 

. <<x, y>> + <<x, z>> = 2<<x, 1
2 (y + z)>>

In particular, putting .z = 0 gives .<<x, y>> = 2<<x, 1
2y>> (for any y), reducing the 

above identity to 

.<<x, y + z>> = <<x, y>> + <<x, z>>. (10.2) 

By induction, it follows that .<<x, ny>> = n<<x, y>> for .n ∈ N. For the negative 
integers, 

.<<x,−y>> = ||−y + x||2 − ||−y − x||2 = −<<x, y>>
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while for rational numbers .p = m/n, .m, n ∈ Z, .n /= 0, 

. n<<x, m
n
y>> = <<x,my>> = m<<x, y>>

so .<<x, py>> = p<<x, y>>. Note that .<<x, y>> is continuous in x and y since the norm is 
continuous, so if the rational numbers .pn → α ∈ R, then 

. <<x, αy>> = lim
n→∞<<x, pny>> = lim

n→∞pn<<x, y>> = α<<x, y>>.

This completes the proof when the scalar field is . R. Over the complex numbers, 
.<x, λy> = λ<x, y> for .λ ∈ C is evident from (10.1), (10.2), and 

. <x, iy> = −<<ix, y>> + i<<x, y>> = i<x, y>.

nu
In a sense, it is the presence of orthogonality that distinguishes inner product 

spaces from normed ones. By the polarization identity, two vectors are perpendicular 
when .||x + y|| = ||x − y|| and .||x + iy|| = ||x − iy||. Each vector, and more 
generally each subspace, is complemented by a subspace of those vectors that are 
perpendicular to it. 

Proposition 10.9 

The orthogonal spaces of subsets .A ⊆ X, 

. A⊥ := { x ∈ X : ∀a ∈ A, <x, a> = 0 },

satisfy 

(i) .A ∩ A⊥ ⊆ 0, 
(ii) .A ⊆ B ⇒ B⊥ ⊆ A⊥, and .A ⊆ A⊥⊥, 
(iii) . A⊥ is a closed subspace of X, 
(iv) .A⊥ = [[A]]⊥. 

Proof (i) If a vector .a ∈ A is also in . A⊥, then it is orthogonal to all vectors in A, 
including itself, .<a, a> = 0, so .a = 0. 

(ii) If .a ∈ A ⊆ B and .x ∈ B⊥, then .<x, a> = 0, so  .x ∈ A⊥. For any .a ∈ A and 
.x ∈ A⊥, .<a, x> = <x, a> = 0, so .a ∈ A⊥⊥. 

(iii) If x and y are in . A⊥ and .a ∈ A, then 

.<λx, a> = λ̄<x, a> = 0, <x + y, a> = <x, a> + <y, a> = 0,
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so .λx, x + y ∈ A⊥. If  .xn ∈ A⊥ and .xn → x, then .0 = <xn, a> → <x, a>, and 
.x ∈ A⊥. 

(iv) That .[[A]]⊥ ⊆ A⊥ follows from .A ⊆ [[A]]. Conversely, let .x ∈ A⊥; for any 
.a, b ∈ A, 

. <x, a + b> = <x, a> + <x, b> = 0, <x, λa> = λ<x, a> = 0,

so x is orthogonal to the space generated by A, .x ∈ [[A]]⊥. Let  .an → y with 
.an ∈ [[A]], then .0 = <x, an> → <x, y> and .x ∈ [[A]]⊥. nu
Exercises 10.10 

1. If .T , S : X → Y are linear maps on inner product spaces such that . <y, T x> =
<y, Sx> for all .x ∈ X, .y ∈ Y , then .T = S. Example 10.7(3) is false for real 
spaces: Find a non-zero .2 × 2 real matrix T such that .<x, T x> = 0 for all 
.x ∈ R

2. 
2. The Cauchy-Schwarz inequality becomes an equality if, and only if, . x = λy

for some scalar . λ (or .y = 0). Similarly, .||x + y|| = ||x|| + ||y|| precisely when 
.x = λy, .λ > 0. More generally, .||Σ

n xn|| =Σ
n ||xn|| if, and only if, . xn = λnx

for some .λn > 0. 
3. When .T : X → Y is 1–1 and linear, .<x, y>X := <T x, T y>Y is an inner product 

on X. What properties does .S : X → X need to have to ensure that . <<x, y>> :=
<x, Sy> is also an inner product? 

4. * Every inner product on . Rn is of the type .<x, Ay> = Σ
ij Aij aibj where A is 

a positive symmetric matrix. Deduce that balls have the shape of an ellipse in 
. R2, and of an ellipsoid in . R3. 

5. > The product of two inner product spaces, .X×Y , has an inner product defined 
by 

. <
(

x1

y1

)
,

(
x2

y2

)
> := <x1, x2>X + <y1, y2>Y .

Then the maps .x |→ (
x
0
)
and .y |→ (

0
y

)
embed X and Y as orthogonal subspaces 

of .X×Y . Although the induced norm is not the same one we defined for . X×Y

as normed spaces (Example 7.4(8)), the two norms are equivalent. 
When .X, Y are complete, so is .X × Y with the induced norm (Hint: use 

.||x|| < ||||(
x
y

)||||). 
6. In any inner product space, 

(a) .||x − y||2 + ||x + y − 2z||2 = 2||x − z||2 + 2||y − z||2. 
(b) . ||x + y + z||2 + ||x + y − z||2 + ||x − y + z||2 + ||x − y − z||2

.= 4(||x||2 + ||y||2 + ||z||2). 
(c) * Generalize, by induction, to the sum of n elements, 

.
1

2n

Σ
σ

||||
nΣ

i=1
σixi

||||2 =
nΣ

i=1
||xi||2
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where . σ ranges through all . 2n possible . ± choices for . xi . Deduce that one 
can always choose the signs such that .||x1 ± x2 + · · · ± xn||2 >

Σ
i ||xi||2. 

Deduce further that a randomwalk of successive vectors . ±x±y±x±y±· · ·
has an expected root-mean-square distance of .

√
n
√
||x||2 + ||y||2. 

(d) By first showing that if .ω = e2πi/n then .
Σn

k=1 ωk = 0 = Σn
k=1 ω2k and 

.
Σn

k=1 ωk Re(ω−kz) = zn/2, prove 

. <x, y> = 1

n

nΣ
k=1

ωk||y + ωkx||2.

7. Verify that the norms for . l2 and .L2(R) satisfy the parallelogram law, and show 
that the inner product obtained from the polarization identity is the same one 
defined previously (Examples 10.2(3, 4)). 

8. The 1-norm and .∞-norm defined on . R2 are not induced by inner products. Find 
two vectors that do not satisfy the parallelogram law with these norms. 

9. > Similarly, . l1, . l∞, .L1(R) and .L∞(R) are not inner product spaces. Neither 
is .B(X, Y ) in general. 

10. A norm .|| · || that satisfies the parallelogram law gives rise to its associated 
inner product, by the polarization identity. In turn, this inner product induces 
the norm .|||x||| := √<x, x>. Show that the two norms are identical. 

11. The polynomials t and .2t2−1 are orthogonal in .L2[0, 1]. So are sine and cosine 
in the space .L2[−π, π ]; can you find a function orthogonal to both? 

12. .0⊥ = X, .X⊥ = 0. In fact, .A⊥ = X ⇔ A ⊆ {0}. Do you think it is true that 
.A⊥ = 0 ⇔ A = X? What if A is a closed linear subspace of X? 

13. Show that (i) .(A+B)⊥ = A⊥ ∩B⊥, (ii) .A⊥⊥⊥ = A⊥. (Hint: Use property (ii) 
of Proposition 10.9.) 

14. Let .d := d(x, [[y]]) = infλ ||x + λy||, where y is a unit vector; show that (i) 
.d = ||x + λ0y|| for some . λ0, (ii) .|<x, y>|2 = ||x||2−d2, and (iii) .y ⊥ (x−λ0y). 

15. To illustrate the strength of orthogonality, prove that if .M ⊥ N are orthogonal 
complete subspaces of X, then .M +N is also complete (Example 7.12(2)). 

16. Suppose a vector space X satisfies all the axioms for an inner product space 
except that it contains non-zero vectors with .<x, x> = 0. Show that if . <x, x> =
0, then .∀y, <x, y> = 0. (Hint: Expand .||y − λx||2.) 

Deduce that Pythagoras’ theorem and Cauchy-Schwarz’s inequality remain 
valid. Show that .Z := { x : <x, x> = 0 } is a closed linear subspace, and that 
there is a well-defined inner product on .X/Z, .<x + Z, y + Z> := <x, y>. 

17. A light ‘ray’ has a frequency profile .f (ω). Oversimplifying slightly, our eyes 
convert it to a color vector .(<r, f >, <g, f >, <b, f >) where .r(ω), .g(ω), .b(ω) are 
the absorption profiles of the retinal cone cells. So any two points (rays) in the 
coset .f + [[r, g, b]]⊥ are perceived to have the same color.
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10.2 Least Squares Approximation 

By Exercise 10.10(14) above, the distance between a point and a line can be 
minimized by a unique point on the line. This has a generalization with far-reaching 
consequences: 

Theorem 10.11 (Hilbert Projection Theorem) 

If M is a closed convex subset of a Hilbert space H , then any point in H 
has a unique point in M which is closest to it, 

. ∀x ∈ H, ∃!x∗ ∈ M, ∀y ∈ M, ||x − x∗|| < ||x − y||.

For any .y ∈ M , .Re <x − x∗, y − x∗> < 0. 

The mapping .H → M , .x |→ x∗, is continuous. 

Proof Existence of . x∗: Let .d := d(x,M) = infy∈M ||x − y|| be the smallest 
distance from M to x. Then there is a sequence of vectors .yn ∈ M such that 
.||x − yn|| → d. Using the parallelogram law and the convexity of M , .(yn)n∈N is 
a Cauchy sequence, 

. ||yn − ym||2 = 2||yn − x||2 + 2||ym − x||2 − ||(yn + ym)− 2x||2

= 2||yn − x||2 + 2||ym − x||2 − 4
||||yn + ym

2
− x

||||2

< 2||yn − x||2 + 2||ym − x||2 − 4d2

→ 0, as n,m →∞.

But H is complete and M is closed, so . yn converges to some .x∗ ∈ M . It follows, by 
continuity of the norm, that .||x − x∗|| = lim

n→∞||x − yn|| = d. 

Uniqueness of . x∗: Suppose .y ∈ M is another closest point to x, i.e., .||x − y|| = d. 
Then .x∗ = y since, as in the argument above, 

.||x∗ − y||2 = 2||x∗ − x||2 + 2||y − x||2 − ||(x∗ + y)− 2x||2

< 2||x∗ − x||2 + 2||y − x||2 − 4d2 = 0.
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Obtuse angle property: Consider the straight line .y(t) := x∗ + tv, where v is a 
vector pointing inside M . By convexity of M , .y(t) ∈ M for .t > 0 small enough; for 
example, take .v = y − x∗, with .y ∈ M , .0 < t < 1. Then 

. ||x − x∗||2 < ||x − y(t)||2 = ||x − x∗ − tv||2

= ||x − x∗||2 − 2t Re <x − x∗, v> + t2||v||2

∴ 2Re <x − x∗, v> < t||v||2
∴ Re <x − x∗, y − x∗> < 0 (10.3) 

since t is positive and arbitrarily close to zero. 

Continuity of .x |→ x∗: Let .x, z be any points in H , with corresponding closest 
points . x∗, . z∗ in M . Then the map is non-expansive, and thus continuous: 

. ||x − z||2 = ||x − x∗ + x∗ − z∗ + z∗ − z||2

= ||x − x∗ + z∗ − z||2 + ||x∗ − z∗||2
+ 2Re <x − x∗, x∗ − z∗> + 2Re <z∗ − z, x∗ − z∗>

> ||x∗ − z∗||2

since both inner products are non-negative by (10.3). 
nu

Let us concentrate on the special case when M is a closed subspace of H . 

Theorem 10.12 

When M is a closed linear subspace of a Hilbert space H , then .y ∈ M is 
the closest point . x∗ to .x ∈ H if, and only if, 

. x − y ∈ M⊥.

The map .P : x |→ x∗ is an ‘orthogonal’ projection of norm 1, with . imP =
M orthogonal to .kerP = M⊥, so  

. H = M ⊕M⊥.

Proof (i) Let v be any non-zero point of M and let .w := x − (x∗ + λv) where . λ is 
chosen so that .v ⊥ w, that is, .λ := <v, x − x∗>/||v||2. By Pythagoras’ theorem, we 
get 

.||x − x∗||2 = ||w + λv||2 = ||w||2 + ||λv||2 > ||w||2
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making .x∗ + λv even closer to x than the closest point . x∗, unless .λ = 0, i.e., 
.<v, x − x∗> = 0. Since v is arbitrary, this gives .x − x∗ ⊥ M . 

M 

x 

x∗λv 

w 

v'

Conversely, if .(x − y) ⊥ v' for any .v' ∈ M , then .(x − y) ⊥ (v' − y) and 
Pythagoras’ theorem implies 

. ||x − v'||2 = ||x − y||2 + ||y − v'||2,

so that .||x − y|| < ||x − v'||, making y the closest point in M to x. 

(ii) By the above, for any .x ∈ H , .P(x) is that unique vector in M such that . x −
P(x) ∈ M⊥. This characteristic property has the following consequences: 

. ◦ P is linear since 

. (x + y)− (Px + Py) = (x − Px)+ (y − Py) ∈ M⊥, P x + Py ∈ M,

λx − λPx = λ(x − Px) ∈ M⊥, λPx ∈ M,

hence .P(x + y) = Px + Py and .P(λx) = λPx. 
. ◦ The closest point in M to .v ∈ M is v itself, i.e., .Pv = v, so .imP = M . 
. ◦ When .x ∈ M⊥, then .x − 0 ∈ M⊥ and .0 ∈ M so .Px = 0, i.e., .M⊥ ⊆ kerP . 

.P 2 = P since for any x, .Px ∈ M and so .P 2x = Px. P is continuous with 
.||P|| = 1 since .||x||2 = ||x − Px||2 + ||Px||2 by Pythagoras’ theorem so that 
.||Px|| < ||x||; moreover .||Pv|| = ||v|| when .v ∈ M . 

.kerP = M⊥ since .Px = 0 implies .x = x − Px ∈ M⊥. 
Finally, .H = imP ⊕ kerP = M ⊕M⊥, since any vector can be decomposed as 

.x = Px + (x − Px), and .M ∩M⊥ = 0. nu

Corollary 10.13 

For any subset .A ⊆ H , .A⊥⊥ = [[A]].
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Proof Let M be a closed linear subspace of a Hilbert space H . By Proposition 10.9, 
.M ⊆ M⊥⊥, so we require the opposite inclusion. Let .x ∈ M⊥⊥, then . x = u + v

where .u ∈ M and .v ∈ M⊥, and 

. 0 = <v, x> = <v, u> + <v, v> = ||v||2,

forcing .v = 0 and .x ∈ M; thus .M⊥⊥ ⊆ M . In particular, .A⊥⊥ = [[A]]⊥⊥ = [[A]]. 
nu

Note that .M⊥ = 0 ⇔ M = M⊥⊥ = 0⊥ = H , answering Exercise 10.10(12) in  
the case of a closed linear subspace of a Hilbert space. 

Examples 10.14 

1. Let .M := { f ∈ L2[0, 1] : f 1
0 f = 0 }. To find that function . f0 in M which most 

closely approximates a given function g, we first note  

. M = { f ∈ L2[0, 1] : <1, f > = 0 } = {1}⊥, so M⊥ = [[1]].

Then . f0 must satisfy .f0 ∈ M and .g − f0 ∈ M⊥, i.e., .f0 = g + λ and . 0 =f 1
0 f0 =

f 1
0 g + λ, hence .f0 = g − f 1

0 g. 
2. The “affine” projection onto a plane with equation .x · n = d (. n a unit vector) is 

given by .P(x) := x + (d − x · n)n. 
Proof : Translate all points .x |→ y := x − dn, so that the plane becomes the 
subspace M with equation .y ·n = 0, i.e., .M = {n}⊥. The required point satisfies 
.(y − y0) · ỹ = 0 for all .ỹ ∈ M , so  .y0 = y + tn. Dotting with . n implies 
.t = −y · n = d − x · n, which can be substituted into .x0 = x + tn. 

3. A projection is orthogonal if, and only if, .||P || = 1 or 0. 
Proof : Using .<x − Px, Px> = 0 and the Cauchy-Schwarz inequality, 

. ||Px||2 = <x, Px> < ||x||||Px||,

so .||Px|| < ||x||; but  .Px = x for .x ∈ imP , so  .||P || = 1 (unless .P = 0). 
Conversely, let .u ∈ kerP , .v ∈ imP ; then for any . λ, 

. ||v||2 = ||P(λu+ v)||2 < ||λu+ v||2 = |λ|2||u||2 + 2Re λ<v, u> + ||v||2

and after letting .λ = |λ|eiθ with .|λ| → 0, we find .Re eiθ <v, u> > 0 for any . θ , 
hence .<v, u> = 0. 

4. > .[[A]] is dense in H if, and only if, .A⊥ = 0. 
Proof : If .A⊥ = 0, then .[[A]] = A⊥⊥ = 0⊥ = H . Conversely, if A is dense in H , 
then .A⊥ = [[A]]⊥ = H⊥ = 0.
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Least Squares Approximation 

A common problem in mathematical applications is to approximate a generic vector 
x by one which is more easily handled, such as a linear combination of simpler 
vectors .y1, . . . , yn. For Hilbert spaces, there is a guarantee that a unique closest 
approximation exists, and this lies at the heart of the method of least squares. 

Let .M := [[y1, . . . , yn]], a closed linear subspace of H ; then the closest point 
in M to x is .x∗ = Σn

j=1 αjyj such that .x − x∗ ⊥ M . Since M is generated by 
.y1, . . . , yn, this is equivalent to 

. <yi, x − x∗> = 0, i = 1, . . . , n,

∴ <yi, x> = <yi, x∗> =
nΣ

j=1
<yi, yj >αj .

These n linear equations in the n unknowns .α1, . . . , αn, can be recast in matrix 
form, 

. 

⎛
⎜⎝
<y1, y1> . . . <y1, yn>

...
...

<yn, y1> . . . <yn, yn>

⎞
⎟⎠

⎛
⎜⎝

α1
...

αn

⎞
⎟⎠ =

⎛
⎜⎝
<y1, x>

...

<yn, x>

⎞
⎟⎠ .

Given x, the coefficients . αi can be found by solving these equations. The Gram 
matrix .[<yi, yj >], and possibly its inverse, need only be calculated once, and used to 
approximate other points. 

Example The space of cubic polynomials, .a+bt+ct2+dt3, is a four-dimensional 
closed linear subspace of the Hilbert space .L2[0, 1], with basis .1, t, t2, t3. Their 
Gram matrix and inverse are given by 

. 

⎛
⎜⎜⎝

1 1
2

1
3

1
4

1
2

1
3

1
4

1
5

1
3

1
4

1
5

1
6

1
4

1
5

1
6

1
7

⎞
⎟⎟⎠

−1

=

⎛
⎜⎜⎝

16 −120 240 −140
−120 1200 −2700 1680
240 −2700 6480 −4200
−140 1680 −4200 2800

⎞
⎟⎟⎠ .

So, to approximate the sine function by a cubic polynomial over the region .[0, 1], 
we first calculate .<t i , sin t>L2[0,1], which work out to .(0.460, 0.301, 0.223, 0.177), 
and then apply the inverse of the Gram matrix to it, giving 

. p(t) ≈ −0.000253+ 1.005t − 0.0191t2 − 0.144t3.

Notice that the coefficients are close to, but not the same as, the first terms of 
the MacLaurin expansion of sine. The difference is that, whereas the MacLaurin
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expansion is accurate at 0 and becomes progressively worse away from it, the 
.L2-approximation balances out the ‘root-mean-square error’ throughout the region 
.[0, 1]. 
Exercises 10.15 

1. Find the closest point in the plane .2x + y − 3z = 0 to a point .x ∈ R
3. 

(Hint: Find . M⊥.) 
2. Let (i) .M := [[y]], or (ii) .M := {y}⊥, where y is a unit vector. The orthogonal 

projection P which maps any point x to its closest point in M is (i) . Px =
<y, x>y, (ii) .Px = x − <y, x>y. 

3. > In the decomposition .x = u + v with .u ∈ M and .v ∈ M⊥, u and v are 
unique. Deduce that if .H = M ⊕ N , where M is a closed linear subspace and 
.M ⊥ N , then .N = M⊥. 

4. Let .v + M be a coset of a closed linear subspace M . Show that there is a 
unique vector .x ∈ v+M with smallest norm. (Hint: this is equivalent to finding 
the closest vector in M to . −v.) Deduce that Riesz’s lemma (Proposition 8.22) 
continues to hold in a Hilbert space even when .c = 1. 

5. If .M ⊆ N are both closed linear subspaces, then .M ⊕ (M⊥ ∩N) = N . 
6. Let T be a square matrix, and suppose both subspaces M and .M⊥ are T -

invariant, so that T takes the schematic form .
(
A 0
0 B

)
on .M ⊕ M⊥. Show that 

.||T || = max(||A||, ||B||). (Hint: If .x = u+ v, then .||T x||2 = ||T u||2 + ||T v||2.) 
7. > There is a 1–1 correspondence between closed linear subspaces of a Hilbert 

space and orthogonal projections (onto them). Properties about subspaces are 
reflected as properties of the projections, e.g., if the orthogonal projections . PM

and . PN project onto M and N respectively, then 

(a) .M ⊆ N ⇔ PNPM = PM ⇔ PMPN = PM , 
(b) .M ⊥ N ⇔ PMPN = 0 ⇔ PNPM = 0, 
(c) .N = M⊥ ⇔ I = PM + PN , 
(d) .im T ⊆ M ⇔ T = PMT , and .M ⊆ ker T ⇔ T PM = 0, 
(e) M is T -invariant .⇔ T PM = PMT PM , 
(f) M and .M⊥ are both T -invariant .⇔ T PM = PMT , 

8. (a) Let P be a projection onto a closed linear subspace M . Since . <x, v> =
<Px, v> for .v ∈ M , it follows that .|<x, v>| < ||Px||||v||. Deduce that in a 
real Hilbert space, the angle between x and v is at least .cos−1(||Px||/||x||). 

(b) Let .H = M ⊕ N with .M,N non-zero closed subspaces. Show that there 
is a minimum distance .d > 0 between the disjoint closed sets .SH ∩M and 
.SH ∩ N , where . SH is the sphere of unit vectors. Thus for any unit vectors 
.u ∈ M , .v ∈ N , .||u− v|| > d > 0. Deduce that .Re <u, v> < α := 1− d2/2, 
and hence that 

.∀x ∈ M, ∀y ∈ N, |<x, y>| < α||x||||y||.
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9. The main theorem, which does not refer to inner products, is not true in Banach 
spaces in general. 

(a) In . R2 with the 1-norm, the vector . 
(
1
1

)
has many closest vectors in the closed 

ball .B1(0). 
(b) In . l∞, there are many sequences in . c0 that have the minimum distance to 

.(1, 1, . . .). 
(c) Show that, for a convex subset M of a normed space, the set of best 

approximations to a point x, .{ y ∈ M : ||x − y|| = d(x,M) }, is convex. 
(d) * On the other hand, in . l∞, the sequence . 0 has no closest sequence in the 

closed convex set .M := { (an)n∈N ∈ c0 :Σn an/2n = 1 }. 
10. * Consider two orthogonal projections P and Q in . RN . Show that the iteration 

.yn+1 := QPyn starting from .y0 = x converges to a point .x∗ ∈ imP ∩ imQ. 
11. Find 

(a) the best-fitting quadratic and cubic polynomials to the sine function in 
.[0, 2π ], 

(b) the linear combination of . sin and . cos which is closest to .1− t3 in .L2[0, 1]. 
12. (a) The Gram matrix of vectors .y1, . . . , yn is .G := A∗A where the columns 

of A are . yj , and the rows of . A∗ are . yTi . It is invertible when . yj are linearly 
independent. 

(b) Show that in order to write a vector . x as a linear combination of basis 
vectors .x = Σn

j=1 αjyj , given the numbers .bj := <yj , x>, then one needs 
to solve the matrix equation .Gα = b. 

(c) Given the total mass and moment of inertia of a radially symmetric planar 
object, 

. M = 2π
f R

0
ρ(r)r dr = 2π<r, ρ(r)>L2[0,R],

I = 2π
f R

0
ρ(r)r3 dr = 2π<r3, ρ(r)>L2[0,R],

find an estimate of .ρ(r) as some function .α + βr . 
13. * The symmetric Gram matrix of a set of vectors .xn ∈ R

N is useful in other 
contexts as well. Show how to recover 

(a) the vectors . xn from their Gram matrix, up to an isomorphism (use 
diagonalization to find A such that .A2 = G), 

(b) the Gram matrix of the vectors from the mutual distances between vectors 
. dij , and their norms . ri , 

(c) the Gram matrix from . dij only, assuming .
Σ

n xn = 0. 

This is essentially what is done in the Global Positioning System, when 3–4 
distances obtained by time-lags from satellites are converted to a position.
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Frigyes Riesz (1880–1956) Riesz was a Hungarian 
mathematics professor who proved that .L2(R) is com-
plete; in 1907, with E.S. Fischer, he proved that 
Hilbert’s . l2 space is equivalent to .L2(R); he defined 
compact operators abstractly for more general spaces, 
including .C[a, b] (1918); he introduced the resolvent 
projection to part of the spectrum and thus .f (T ) for 
compact operators. 

10.3 Duality H ∗ ≈ H 

An inner product is a function acting on two variables. But if one input vector is 
fixed, it becomes a scalar-valued function on vectors, indeed a continuous functional 

. x∗ : X → F

y |→ <x, y>.

This is linear by the inner product axioms, while continuity follows from the 
Cauchy-Schwarz inequality .|x∗y| = |<x, y>| < ||x||||y||. 

Are there any other functionals besides these? Not when the space is complete: 

Theorem 10.16 (Riesz Representation Theorem) 

Every continuous functional of a Hilbert space H is of the form . x∗ :=
<x, ·>, 

. ∀φ ∈ H ∗, ∃!x ∈ H, φ = <x, ·>.

The Riesz map 

. J : H → H ∗

x |→ x∗

is a bijective conjugate-linear isometry.
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Proof (i) Given .φ ∈ H ∗, first notice that for any z and y in H , 

. (φy)z− (φz)y ∈ kerφ.

Assuming .φ /= 0, pick a unit vector .z ⊥ kerφ; this is possible since .kerφ /= H , so  
.(kerφ)⊥ /= 0. Then 

. 0 = <z, (φy)z− (φz)y> = (φy)− (φz)<z, y>,
∴ φy = (φz)<z, y> = <x, y>,

where .x = (φz)z. To show that it is unique, suppose . x̃ is another such x, then 

. ∀y ∈ H, <x − x̃, y> = <x, y> − <x̃, y> = φy − φy = 0 ⇔ x = x̃.

These considerations prove that J is onto and 1–1. 
(ii) Let x and y be two vectors in H . Then for any .z ∈ H , 

. (x + y)∗(z) = <x + y, z> = <x, z> + <y, z> = x∗z+ y∗z,

(λx)∗(z) = <λx, z> = λ̄<x, z> = λ̄ x∗z,

showing that .(x + y)∗ = x∗ + y∗ and .(λx)∗ = λ̄x∗ (conjugate-linear). 

J is isometric: Note that 

. ||x∗||H ∗ = sup
y /=0

|x∗y|
||y|| = sup

y /=0
|<x, y>|
||y|| = ||x||,

using the Cauchy-Schwarz inequality, in particular with .y = x. 
nu

Examples 10.17 

1. > For .T ∈ B(X, Y ) (.X, Y Hilbert spaces), .||T || = sup
||x||=1=||y||

|<y, T x>|. 
2. The dual space of . R is (isomorphic to) . R itself. Any .φ : R → R that is linear 

must be of type .φ(t) = λt where .λ ∈ R. 
3. Functionals are simply row vectors when .H = C

n; thus . H ∗ is isometric to . Cn

and is generated by the dual basis .eT1 , . . . , eTn . 
Proof : Let  . e1,. . . ,  . en, be the standard basis for . Cn. Then every functional . φ in 
.(Cn)∗ is of the type .φ = (bi)

T, where .bi := φei (Example 8.3(3)). Thus the map 
.C

n → (Cn)∗, .y |→ yT, where .yTx := y · x, is onto; it is easily seen to be linear, 
and continuous from Cauchy’s inequality .|y · x| < ||y||||x||. In fact . ||yT|| = ||y||
(using .x = (b̄i)

n
i=1). Note that .yT =

Σn
i=1 bne

T
i , and .eTi ej = δij . 

4. It was noted previously that .l2∗ ≡ l2 and .L2(R)∗ ≡ L2(R) (Theorem 9.25). 
These are special cases of the Riesz correspondence.
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The Adjoint Map T ∗ 

We now seek to find a generalization of the transpose operation on matrices. In 
finite dimensions, we have .(A∗v)∗ = v∗A; in terms of inner products, this becomes 
.<A∗v, x> = <v, Ax>. In this form, it can be generalized to any Hilbert space: 

Definition 10.18 

The (Hilbert) adjoint of an operator .T : X → Y between Hilbert spaces, is 
the operator .T ∗ : Y → X uniquely defined by the relation 

. ∀x ∈ X, ∀y ∈ Y, <T ∗y, x>X = <y, T x>Y .

That .T ∗y is uniquely defined follows from the Riesz correspondence applied to 
the functional .x |→ <y, T x>. Linearity and continuity of . T ∗ follow from 

. <T ∗(y1 + y2), x> = <y1 + y2, T x> = <y1, T x> + <y2, T x> = <T ∗y1 + T ∗y2, x>
<T ∗(λy), x> = <λy, T x> = λ̄<y, T x> = <λT ∗y, x>

||T ∗|| = sup
||y||=1=||x||

|<T ∗y, x>| = sup
||y||=1=||x||

|<y, T x>| = ||T ||

The properties of the adjoint map are: 

Proposition 10.19 

. (S + T )∗ = S∗ + T ∗, (λT )∗ = λ̄T ∗, (ST )∗ = T ∗S∗,

I ∗ = I, T ∗∗ = T , ||T ∗T || = ||T ||2

Proof These assertions follow from the following identities, valid for all .x ∈ X, 
.y ∈ Y : 

.<(S + T )∗y, x> = <y, (S + T )x> = <y, Sx> + <y, T x> = <(S∗ + T ∗)y, x>
<(λT )∗y, x> = <y, λT x> = λ<T ∗y, x> = <λ̄T ∗y, x>
<(ST )∗y, x> = <y, ST x> = <S∗y, T x> = <T ∗S∗y, x>
<I ∗y, x> = <y, Ix> = <y, x> = <Iy, x>
<y, T ∗∗x> = <T ∗∗x, y> = <x, T ∗y> = <T ∗y, x> = <y, T x>,
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. ||T ∗T || = sup
x,y∈SX

|<y, T ∗T x>| = sup
x,y∈SX

|<Ty, T x>|

= sup
x,y∈SX

||Ty||||T x|| = ||T ||2,

where .SX := { x : ||x|| = 1 }, and the equation before the last is valid by the Cauchy-
Schwarz inequality, in particular choosing .y = x. nu

The following proposition reveals an orthogonality between subspaces of adjoint 
operators. In particular, both M and .M⊥ are T -invariant if, and only if, M is T - and 
.T ∗-invariant. 

Proposition 10.20 

For an operator T on Hilbert spaces, 

. ker T ∗ = (im T )⊥, im T ∗ = (ker T )⊥.

If .T ∈ B(H) and M is a closed linear subspace of H , 

. M is T -invariant ⇔ M⊥ is T ∗-invariant.

Proof The definition .<x, T y> = <T ∗x, y> implies that 

. x ⊥ Ty ⇔ T ∗x ⊥ y,

in particular .x ⊥ im T ⇔ T ∗x ⊥ Y ⇔ x ∈ ker T ∗. Consequently, . ker T ∗ =
(im T )⊥ and thus .ker T = ker T ∗∗ = (im T ∗)⊥; furthermore, 

. (ker T )⊥ = (im T ∗)⊥⊥ = im T ∗.

Suppose M is T -invariant, and let .x ∈ M⊥, .y ∈ M , then .<T ∗x, y> = <x, T y> = 0, 
and .T ∗x ∈ M⊥. Conversely, if .M⊥ is .T ∗-invariant then .M⊥⊥ is .T ∗∗-invariant; but 
.T ∗∗ = T and .M⊥⊥ = M for a closed subspace M . nu
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Unitary Operators 

Definition 10.21 

A unitary isomorphism .J : X → Y of inner product spaces is defined as a 
map which preserves the structure of an inner product space, namely 

. 

J is bijective (preserves the elements),
J is linear (preserves vector addition and scalar multiplication),
<Jx, Jy>Y = <x, y>X (preserves the inner product).

It is obvious that a unitary isomorphism preserves the induced norm (an isome-
try); the converse is also partly true in Hilbert spaces, because, by the polarization 
identity, the inner product can be written in terms of norms: 

Proposition 10.22 

An operator .U ∈ B(X, Y ) on Hilbert spaces preserves the inner product 
when U preserves the norm, 

. ∀x, x̃ ∈ X, <Ux,Ux̃> = <x, x̃> ⇔ U∗U = I

⇔ ||Ux|| = ||x|| ∀x ∈ X.

U is unitary when it is also surjective. 

This statement basically says that preserving the inner product (lengths and 
‘angles’) is equivalent to preserving lengths. 

Proof The first equivalence is trivial 

. ∀x, x̃, <x, x̃> = <Ux,Ux̃> = <x,U∗Ux̃> ⇔ U∗U = I.

In particular (taking .x̃ = x), U is isometric. The converse implication from the third 
statement to the first follows from the polarization identity (10.1), 

. <Ux,Uy> = 1
4 (||Ux + Uy|| + · · · ) = 1

4 (||x + y|| + · · · ) = <x, y>.

A superficially different proof of this last fact can be given for complex Hilbert 
spaces (Example 10.7(3)), 

.∀x, <x, x> = <Ux,Ux> = <x,U∗Ux> ⇔ U∗U = I.
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Since isometries are 1–1, we need only require in addition that it is onto for U to be 
invertible, in which case .U−1 = U∗. nu
Examples 10.23 

1. The adjoint of a matrix .A = [Aij ], with respect to the standard inner product, is 
the conjugate of its transpose, . ĀT, since 

. <x, Ay> =
Σ
i,j

āiAij bj =
Σ
j

(
Σ

i Āij ai)bj = <ĀTx, y>.

2. > The adjoint of the left-shift operator (on . l2) is the right-shift, .L∗ = R, since 

. <L∗y, x> = <y, Lx> =
∞Σ

n=0
b̄nan+1 =

∞Σ
n=1

b̄n−1an = <Ry, x>

and .R∗ = L∗∗ = L. 
3. The adjoint of an integral operator on .L2(R), 

. Tf (s) :=
f

k(s, t)f (t) dt is T ∗g(t) =
f

k(s, t)g(s) ds.

Proof : . <g, Tf > =
f

g(s)

f
k(s, t)f (t) dt ds

=
ff

k(s, t)g(s)f (t) ds dt

=
f f

k(s, t)g(s) ds f (t) dt = <T ∗g, f >.

4. The unitary2 isomorphisms of .R
2 are the rotations and reflections. More 

generally, those of . Cn are the matrices whose columns are orthonormal (mutually 
orthogonal and of unit norm). 
Proof : The column vectors . ui of a unitary matrix U satisfy .ui = Uei , where . ei

are the standard basis for . Cn. Then, .<ui ,uj > = <Uei , Uej > = <ei , ej > = δij . 
5. > By itself, .U∗U = I ensures that a linear operator .U : X → Y is isometric 

(and 1–1), but not that it is onto, that is, it is an isometric embedding of X into Y . 
For example, the matrix .

(0 1
1 0
0 0

)
embeds . R2 into . R3. In general, .UU∗ is not equal 

to I but is a projection of Y onto .imU ⊆ Y . 
Proof : Clearly, .UU∗UU∗ = UU∗ is a projection from Y to .imU . It is onto since 
.UU∗(Ux) = Ux.

2 More properly called orthogonal isomorphisms when the space is real. 
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Exercises 10.24 

1. The norm of . H ∗ is induced from an inner product, .<x∗, y∗>H ∗ := <y, x>H . Then 
the Riesz map is “anti-unitary”, that is, .<Jx, Jy> = <x, y>. 

2. A functional .φ ∈ H ∗ corresponds to some vector .x ∈ H ; if  M is a closed linear 
subspace of H , . φ can be restricted to act on it, .φ̃ ∈ M∗. As  M is a Hilbert space 
in its own right, what vector .v ∈ M corresponds to . φ̃? 

3. A second inner product on H which satisfies .|<<x, y>>| < c||x||||y|| must be of 
the type .<<x, y>> = <T x, y> = <x, T y>, where .T ∈ B(H), .||T || < c. 

4. Riesz’s representation theorem holds only for complete inner product spaces 
(it is false for, say, .c00 ⊂ l2). Where is completeness used in the proof of the 
theorem? 

5. If T is invertible then .(T −1)∗ = (T ∗)−1. 
6. Use .||T ∗T || = ||T ||2 to show .||T ∗|| = ||T ||. 
7. > The adjoint of the multiplier operator in . l2, .x |→ ax, is .y |→ āy. 
8. Let .a ∈ l1(Z), then Young’s inequality (Exercise 9.17(10)) shows that the 

linear map .x |→ a∗x is continuous on .l2(Z). Its adjoint is given by . y |→ a†∗y

where .(an)
† := (ā−n). 

9. The Volterra operator on .L2[0, 1], .Vf (t) := f t

0 f , has adjoint .V ∗f (t) = f 1
t

f . 
10. Let .<<x, y>> := <x, Sy> be a new inner product (.S∗ = S), then the adjoint of T 

with respect to it is .T * := S−1T ∗S. 
11. If .R ∈ B(X, Y ) then .T |→ RT R∗ is an operator .B(X) → B(Y ). 
12. For any .T ∈ B(H1,H2), .ker(T ∗T ) = ker T and .im T ∗T = im T ∗. 
13. A linear map .T : X → Y is said to be conformal when it preserves 

orthogonality, 

. ∀x, x̃ ∈ X, <x, x̃> = 0 ⇔ <T x, T x̃> = 0.

Show that this is the case if, and only if, .T = λU for some .λ > 0, U unitary. 
Moreover, angles between vectors are preserved (for .λ > 0). 
In particular, two inner products on the same vector space are conformal when 
.<<x, y>> = λ<x, y> for some .λ > 0. 

14. * Show that a map between Hilbert spaces which preserves the inner product 
must be linear. Deduce that isometries on a real Hilbert space must be of the 
type .f (x) = Ux + v where .U∗U = I and .v ∈ H . 
(Hint: Let .g(x) := f (x) − f (0), an isometry; show . <g(x + y), g(z)> =
<g(x)+ g(y), g(z)>, so .g(x + y)− g(x)− g(y) ∈ [[ im g]] ∩ (im g)⊥.)
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10.4 Inverse Problems 

When an operator .T : X → Y is not surjective, the equation .T x = y need not have 
a solution. The next best thing to ask for is a vector x which minimizes . ||T x − y||.

Proposition 10.25 

For an operator .T : H1 → H2 between Hilbert spaces and a vector . y ∈
H2, a vector .x ∈ H1 minimizes .||T x − y|| if, and only if 

. T ∗T x = T ∗y.

Proof Suppose .T ∈ B(X, Y ), and consider the closed linear subspace . M :=
im T ⊆ Y . For each .y ∈ Y , there is a unique vector .y∗ ∈ M which is closest to 
it. As proved in Theorem 10.12, a necessary and sufficient condition for .v ∈ M to 
be . y∗ is .y − v ∈ M⊥ = ker T ∗ (Proposition 10.20), that is, .T ∗v = T ∗y. If  . y∗
happens to be in .im T , i.e., .y∗ = T x, then the equation becomes .T ∗T x = T ∗y. nu

To continue this discussion, . y∗ is in .im T only when .y ∈ im T ⊕ (im T )⊥, a  
dense subspace of Y . When .im T is closed, e.g., in finite dimensions, this is the case 
for all .y ∈ Y . If  .y∗ /∈ im T then we can only conclude that there is some sequence 
of vectors .xn ∈ X such that .T xn → y∗, and so .T ∗T xn → T ∗y. Thus . ||T xn − y||
converges to .||y∗ − y||, but is never equal to it (by uniqueness of . y∗). 

In the case of finite dimensions, the above situation is typical of an overdeter-
mined system of equations, that is, a system .T x = y that represents more equations 
than there are unknowns. The least squares solution is then found to be 

. x = (T ∗T )−1T ∗y

at least in the generic case when T is 1–1. Then .T ∗T is also 1–1 since . T ∗T x =
0 ⇔ ||T x||2 = <x, T ∗T x> = 0 ⇔ x = 0, so it is invertible at least on .im T ∗. 

The dual problem is that of an underdetermined system of equations, .T x = y, 
where there are less equations than unknowns. There is an oversupply of solutions, 
namely any vector in .x0 + ker T , where . x0 is any single solution of the equation, 
and .ker(T ∗T ) = ker T /= 0. In this case, a unique . x that is closest to . 0 can be 
selected from all these solutions, i.e., has the least norm. That is, we seek . x ∈
(ker T )⊥ = im T ∗ (in finite dimensions, every subspace is closed). Thus . x = T ∗v
and .y = T x = T T ∗v, so the required least norm vector is 

. x = T ∗(T T ∗)−1y.

In the general case, an operator need be neither 1–1 nor onto, so the set of vectors 
which minimize .||T x − y|| is a coset, .x+ker T . But since .ker T is a closed subspace,
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it has a unique vector with smallest norm. The mapping from y to this . x ∈ (ker T )⊥
is then well-defined for .y ∈ im T +(im T )⊥ and is denoted by . T †, called the Moore-
Penrose pseudo-inverse. To recap, 

. T † : im T + (im T )⊥ ⊆ Y → X,

y |→ x, where T ∗T x = T ∗y, x ∈ (ker T )⊥.

In the simple case when T is invertible, so .im T = Y , it reduces to the usual inverse 
.T † = (T ∗T )−1T ∗ = T −1. For example, every .m× n matrix and every vector has a 
pseudo-inverse, e.g., .x† = x∗/||x||2, so that .x†x = 1 (except that .0† = 0). 

T 

T †b 

x 

b 

y = T x  

x + ker  T 

im T 

0 
X Y  

The equations introduced above have found an extremely fertile scope for 
applications. In many scientific or engineering contexts, an abundant number of 
measurements of a few variables in general gives an overdetermined system of 
equations. This also occurs when there is loss of information during measurement, 
so that the ‘space of measurements’ (.im T ) is a proper subspace of the space of 
variables (H ). A small sample of applications is given below: 

Regression 
To find the best-fitting (least-squares) line .y = mx+ c to N given points .

(
xn
yn

) ∈ R
2, 

minimizing the errors in . yn, we require that .mxn + c be collectively as close to . yn

as possible. In matrix form, we require 

.

⎛
⎜⎝

x1 1
...

...

xN 1

⎞
⎟⎠

(
m

c

)
=

⎛
⎜⎝

y1
...

yN

⎞
⎟⎠ ,
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written as .Am = y. As this usually has no exact solution, the best alternative is 
.A∗Am = A∗y, 

. 

(
x1 · · · xN

1 · · · 1

) ⎛
⎜⎝

x1 1
...

...

xN 1

⎞
⎟⎠

(
m

c

)
=

(
x1 · · · xN

1 · · · 1

)⎛
⎜⎝

y1
...

yN

⎞
⎟⎠ ,

(Σ
n x2

n

Σ
n xnΣ

n xn

Σ
n 1

) (
m

c

)
=

(Σ
n xnynΣ
n yn.

)

Solving for .m = (
m
c

)
gives the usual regression line as used in statistics. Moreover, 

the standard deviation of the ‘residuals’ is 

. σy =
/Σn

j=1(yj − ŷj )2

n
= 1√

n
||Am− y||.

This technique is not at all restricted to fitting straight lines. Suppose it is required 
to approximate data points .

(
xn
yn

)
by a quadratic polynomial .a+ bx + cx2. This is the  

same as trying to solve the matrix equation 

. 

⎛
⎜⎜⎜⎝

1 x1 x2
1

1 x2 x2
2

...

1 xN x2
N

⎞
⎟⎟⎟⎠

⎛
⎝

a

b

c

⎞
⎠ =

⎛
⎜⎜⎜⎝

y1

y2
...

yN

⎞
⎟⎟⎟⎠ .

Repeating the above procedure gives the solution 

. 

⎛
⎝

a

b

c

⎞
⎠ = 1

A

⎛
⎝

(S2
2−S1S3)

Σ
n x2nyn+(S1S4−S2S3)

Σ
n xnyn+(S2

3−S2S4)
Σ

n yn

(S0S3−S1S2)
Σ

n x2nyn+(S2
2−S0S4)

Σ
n xnyn+(S1S4−S2S3)

Σ
n yn

(S2
1−S0S2)

Σ
n x2nyn+(S0S3−S1S2)

Σ
n xnyn+(S2

2−S1S3)
Σ

n yn

⎞
⎠

where .Sk = Σ
n xk

n , and .A = S3
2 − 2S1S2S3 + S2

1S4 − S0S2S4 + S0S
2
3 . (Note: In  

practice, one does not need to program these formulae; multiplying out .T ∗T as a 
numerical matrix and solving .T ∗T x = T ∗y directly is usually a better option.) 

In general, one may find the best parameters . ai in the function 

.y = a1f1 + · · · + akfk
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to fit data points .(xj , yj ), .1 < j < n, where the functions . fi are given. The 
corresponding matrix equation is .Aa = y, 

. 

⎛
⎜⎝

f1(x1) · · · fk(x1)

f1(x2) · · · fk(x2)
...

⎞
⎟⎠

⎛
⎜⎝

a1
...

ak

⎞
⎟⎠ =

⎛
⎜⎝

y1

y2
...

⎞
⎟⎠

and the best fit parameters . ai found as above. 

Tikhonov Regularization 
TheMoore-Penrose pseudo-inverse is usually either not a continuous operator or has 
a large condition number; its solutions tend to fluctuate with slight changes in the 
data (e.g., errors). To address this deficiency, a number of different regularization 
techniques are employed whose aim is to improve the ill-conditioning. One of 
the more popular techniques is attributed to Tikhonov; it balances out finding the 
best approximate solution of .T x = y with x having a small norm by seeking the 
minimum of .||T x − y||2 + α||x||2, where .α > 0 is some pre-determined parameter. 

To solve this minimization problem, consider the following more general 
formulation: Let H be a real Hilbert space and suppose .A ∈ B(H), .b ∈ H , and 
.c ∈ R; to find the minimum of the quadratic function .q : H → R, 

. q(x) := <x,Ax> + <b, x> + c.

Taking small variations of the minimum point x, namely .x + tv, we deduce 

. ∀t ∈ R,∀v ∈ H, q(x) < q(x + tv) = <x + tv, Ax + tAv> + <b, x + tv> + c

∴ 0 < t<v,Ax + A∗x + b> + t2<v,Av>,
∴ ∀t > 0, −t<v,Av> < <v,Ax + A∗x + b> < t<v,Av>.

As t and v are arbitrary, it must be the case that x satisfies 

. (A+ A∗)x + b = 0.

In particular, minimizing .||T x − y||2 = <x, T ∗T x>−2<T ∗y, x>+||y||2 gives the 
equation inferred previously, .T ∗T x = T ∗y. Similarly, that x which minimizes 

. ||T x − y||2 + α||x||2 = <x, (T ∗T + αI)x> − 2<T ∗y, x> + ||y||2

solves the equation 

.(T ∗T + αI)x = T ∗y.
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This is the regularized version of the last proposition. It will be proved later that 
.T ∗T + αI is always invertible (regular) for .α > 0 (Proposition 15.44). This gives 
an excellent alternative to the Moore-Penrose solution when .y /∈ im T + (im T )⊥, 
although choosing the parameter . α may not be straightforward. 

Algebraic Reconstruction Technique 
ART is an iterative algorithm that generates a solution . x of the (real) equation 
.Ax = b. The matrix equation can be rewritten as .<an, x> = bn, .n = 1, . . . , N , 
where . an are the rows of A. The iteration is defined in terms of affine projections 
(Example 10.14(2)) 

. xn = xn−1 + bn − <an, xn−1>
||an||2

an, x0 ∈ H.

The indices of . an and . bn are to be understood as modulo N (.aN+1 = a1, etc). We  
show below that starting from any .x0 ∈ H , the iteration converges to the closest 
point . x∗ to . x0 that is a solution of .Ax∗ = b. Note that starting from .x0 = 0 results 
in the Moore-Penrose inverse solution. 

To see why this works, let .Mn := a⊥n (cycling through .n = 1, . . . , N), then 
.M := ∩

n Mn contains all the solutions of .Av = 0; let also .vn := xn − x∗. The  
iteration becomes 

. vn = vn−1 − <ân, vn−1>ân = Pnvn−1 ∈ Mn,

where .ân = an/||an||, and . Pn is the projection onto the hyperplane . Mn. Notice that 
.v0 = x0 − x∗ ∈ M⊥, as well as .vn − vn−1 ∈ M⊥, so the entire sequence . vn lies in 
. M⊥. 

Consider the operator .Q := PN · · ·P1 acting on . M⊥; its norm is bounded by 1 
because .||Pn|| < 1 for each n. If  .1 = ||Q|| = sup||w||=1 ||Qw||, then the supremum 
is achieved by some unit vector .w ∈ M⊥ since the unit ball is compact in finite 
dimensions and .w |→ ||Qw|| is a continuous function. Denote . wn := Pnwn−1 =
wn−1 − <ân,wn−1>ân, with .w0 := w; then 

. 1 = ||Qw|| = ||PNwN−1|| < ||wN−1|| < ||wN−2|| < · · · < ||w1|| < ||w|| = 1

forces all . wn to have norm 1. But, since .||wn−1||2 = ||wn||2 + |<ân,wn−1>|2, it  
follows that .<an,wn−1> = 0 and .wn = wn−1 for .n = 1, . . . , N . Hence . w ∈
M1 ∩ · · · ∩MN = M , yet .w ∈ M⊥ is a unit vector. 

This contradiction implies .||Qv|| < c||v||, .c < 1, for any .v ∈ M⊥. Hence 
.||vn+N|| = ||Qvn|| < c||vn||; combined with .||vn+1|| < ||vn||, we get .vn → 0. 
Equivalently, . xn converges to . x∗. 

The advantages of ART are that it uses less computer memory and is flexible in 
that it can be used even if there is missing data or newly available data (missing or 
new rows of A); but, being an iterative procedure, it is generally slower to converge.
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Wiener Deconvolution 
When a signal .f ∈ L2(R) passes through a linear modifier (which could be a 
circuit, some medium such as the atmosphere, say, or a measuring apparatus), it 
changes in two ways: (1) the signal is distorted slightly to .Kf := k ∗ f , where 
.k ∈ L1(R) is characteristic of the modifier (recall convolution, Example 9.28(3)), 
(2) random noise in the process adds a little error .ε ∈ L2(R) to the signal. The 
net effect is a distorted output signal .y = k ∗ f + ε. Is it possible to extract the 
original signal f back again from y? A full reconstruction by solving .Kf = y is 
impossible as lost information cannot be regained; the .imK subspace is not the full 
space .L2(R), and the error displaces the signal off this subspace. But one can use 
Tikhonov regularization and solve .(K∗K + α)f = K∗y. The simplest way to do 
this is to use the properties of the Fourier transform, which converts convolution to 
multiplication. As in Example 10.23(3), the adjoint of K is given by . K∗g = k∗ ∗ g

where .k∗(t) := k(−t), since 

. <K∗g, f > = <g,Kf > =
f f

g(s)k(s − t)f (t) dt ds

=
f f

k(s − t)g(s) ds f (t) dt.

The Fourier transform of . k∗ is 

. -k∗(ξ) =
f

e−2πiξ t k(−t) dt =
f

e2πiξ t k(t) dt =-k(ξ),

so that .(K∗K + α)f = K∗y transforms to 

. -f = -k-y
|-k|2 + α

.

This is a recipe for finding f from y, called deconvolution, that is commonly 
implemented as a computer program using the Fast Fourier Transform, or directly 
as an electrical filter circuit. 

Image Reconstruction 
An image can also be considered as a ‘signal’, this time in .L2(R2), or, when 
discretized, as a vector of numbers in the form of an array of pixels. Each 
number represents the brightness of a pixel (neglecting the color content for 
simplicity). An imaging apparatus transforms the original image . x to .y = Ax + ε, 
where A is assumed to be a linear operator, as above; examples include a slight 
spherical aberration or blurring in general. Since such modification incurs a loss of 
information, the distortion matrix A is not invertible, but the best-fit “regularized” 
solution of .x = (A∗A + αI)−1A∗y restores the image somewhat, as seen in 
Fig. 10.1.
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Fig. 10.1 Image reconstruction. (1) The original image, (2) after it passes an imaging device 
(exaggerated), (3) the best-fit image 

In practice, implementing the reconstruction encounters difficulties that are 
specific to images. Images are typically in the order of about a million pixels in size; 
the matrix A would therefore consist of about a trillion coefficients (most of which 
are zero), and finding the inverse of .A∗A + αI is prohibitively time-consuming. 
Fortunately, blurring is to a good approximation usually independent of the pixel 
positions; for example, a linear motion blur produces the same streaks everywhere 
across the picture (but note that this is not true for a rotation blur). In mathematical 
terms, the transformation A can be taken to be translation invariant, so that it is 
equivalent to the convolution by some vector .k ∈ H . With this simplification, image 
reconstruction becomes a 2-dimensional version of Wiener deconvolution; the same 
technique using the Fourier transform can be applied, 

. x = F−1
-k-y

|-k|2 + α
.

Here, . -y represents the discrete version of the Fourier transform, namely . -ym =Σ
n e−2πimnyn. The resulting . x may have negative coefficients; these are mean-

ingless and usually replaced by 0. 

Tomography 
Suppose that instead of a vector . x, one is given ‘views’ of it, .yn := <an, x>, where 
. an is a list of known vectors: Is it possible to reconstruct . x from these views? If . an

are assembled as rows of a matrix A, one obtains a matrix equation .Ax = y. In such 
problems, it may be the case that the number of views is less than the dimension of 
the vector space, so that the system is under-determined, or that there are a large 
number of views, making the equation over-determined. In either case, a least-
squares solution can be found as above, using the techniques of inverse problem 
solving (Fig. 10.2). 

CT scans: An X-ray passing through a 3-D object of density f diminishes in 
intensity by an amount .e

f
f (a+bt) dt where .a + bt is the straight line followed by 

the ray. The emitted and received intensity can be measured and, after taking logs, 
one obtains a ‘view’ of the object 

.y =
f

f (a + bt) dt = <La,b, f >,
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Fig. 10.2 Computed tomography. (1) The original image (.360×360 pixels), (2) 80 parallel ‘views’ 
of the object, (3) the best-fit reconstruction from 6400 views (80 directions) 

where .La,b is the characteristic function of the ray, i.e., a function that is 1 along 
the ray and 0 outside it (in practice, the ray has a finite width). It should be possible 
to reconstruct f from a large number of these views. A CT-scan does precisely this: 
an X-ray source coupled with a detector rotate around the object to produce these 
views. In one simple configuration, .b = (

cos θ
sin θ

)
and .a = s

(− sin θ
cos θ

)
; the collection of 

these views, as a function of . θ and s, is called the Radon transform R of f . The best-
fit f that reproduces the data is computed by solving .(R∗R + α)f = R∗y, either 
directly in the form of the optimized Filtered Back Projection (FBP) algorithm or 
by iterative algorithms such as some variants of ART. Other configurations include 
a fixed source and a rotating detector, producing a fan-shaped collection of rays. 
In yet other applications, the ‘rays’ move along curved lines; more generally, the 
output may depend non-linearly on f and the source (see [21] for an overview of 
tomography and inverse scattering theory). 

The idea obviously has lots of potential: X-ray tomography has revolution-
ized medical diagnosis, archaeology, and fossil analysis; crystal X-ray diffraction 
tomography recreates the atomic configuration of molecules in a lattice; impedance 
tomography takes output currents from input voltages to reconstruct the interior 
resistance density of an object; seismographs measure the output vibrations after the 
occurrence of earthquakes to reconstruct the interior density of the Earth; gravity, 
magnetic, or sound measurements at the Earth’s surface can determine rock densities 
underneath, aiding in the exploration for oil or minerals; ultrasound echoes or 
scattered light can be used to reconstruct 3-D images of internal organs (or of moths 
and fish/squid by bats and dolphins). The list is long and increasing! 

Exercises 10.26 

1. Find best approximate solutions for 

.(i)

⎛
⎝
1 4 7
2 5 8
3 6 9

⎞
⎠ x =

⎛
⎝

4
−1
0

⎞
⎠ , (ii)

(
1 4 7
2 5 8

)
x =

(
4
−1

)
.
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2. To find the best-fitting plane .z = ax+by+c to a number of points .(xn, yn, zn), 
where . zn is the dependent variable, least squares approximation gives 

. 

⎛
⎝

Σ
n 1

Σ
n xn

Σ
n ynΣ

n xn

Σ
n x2

n

Σ
n xnynΣ

n yn

Σ
n xnyn

Σ
n y2

n

⎞
⎠

⎛
⎝

c

a

b

⎞
⎠ =

⎛
⎝

Σ
n znΣ

n xnznΣ
n ynzn

⎞
⎠ .

3. * The method is not at all restricted to linear geometric objects. Find the best-
fitting circle .x2 + y2 + ax + by = c to a number of points .(xn, yn). 

4. Weighted Regression: Suppose, in fitting a least-squares line, that the data points 
are not equally significant and should be weighted. This can be achieved by a 
diagonal matrix of weights, S, in the inner product, that is, . <x, y> = xTSy =Σ

i wi x̄iyi . Show that the new regression equation is 

. ĀTSAm = ĀTSy.

5. The pseudo-inverse of the left-shift operator on . l2 is the right-shift operator, 
and vice versa. 

6. For any .T ∈ B(X, Y ), .T T †T = T , because both x and .T †T x belong to . x +
ker T . So .T †T and .T T † are projections; which precisely? 

7. The transformation .T † : im T ⊕ im T ⊥ → ker T ⊥ is linear but continuous only 
when .im T is closed (Hint: if .T xn → y then .T xn = T T †T xn → T T †y). 

8. Recall the Volterra 1–1 operator .Vf (t) := f t

0 f on .L2[0, 1]. If  g is differen-
tiable, then .V †g = g', and the Tikhonov regularization solves the equation 
.f − αf '' = g'. 

9. An oscillating pendulum is captured on video at 25 frames/s. The angle . θ (in 
rad) that the pendulum makes with the vertical, for 1 s worth of frames (1–26), 
is given in the table below. Theoretically, . θ satisfies 

. θ̈ + κr

m
θ̇2 + g

r
sin θ = 0,

where .g = 9.81ms−2 and .κ/m, and r are unknown numbers. From the data, 
estimate . θ̇n by .(θn+1 − θn−1)/2δt , and . θ̈n by .(θn+1 − 2θn + θn−1)/δt , thereby 
getting equations of the type .axn + byn = zn, where .xn = θ̇2n , .yn = sin θn, 
.zn = −θ̈n, and .a, b are unknown constants. Use regression to find .a, b (hence 
r and .κ/m) that best fit these data. 

1 2 3 4 5 6 7 8 9 
0.372 0.210 0.043 -0.126 -0.291 -0.447 -0.589 -0.714 -0.816 
10 11 12 13 14 15 16 17 18

-0.900 -0.957 -0.988 -0.993 -0.972 -0.923 -0.854 -0.756 -0.640 
19 20 21 22 23 24 25 26

-0.505 -0.353 -0.192 -0.025 0.144 0.308 0.462 0.600 
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10. Phylogeny: Bioinformaticians can create a score of how far apart two species 
are genetically. An example is given in the adjoining table, together with the 
suspected evolutionary tree. Assign constants to each edge in the tree which 
best match the given scores, i.e., the sum of the edge constants along the path 
from, say, A to D should be as close to 6.16 as possible. 

B 2.22 -
C 6.12 5.60 -
D 6.16 5.70 1.70 -
E 5.79 5.06 3.12 3.72 A B C D

A B C D  

E  

10.5 Orthonormal Bases 

Definition 10.27 

An orthonormal basis of a Hilbert space H is a set of orthonormal vectors 
E whose span is dense, 

. ∀ei, ej ∈ E, <ei, ej > = δij , [[E]] = H.

The second condition is equivalent to E⊥ = 0 (Example 10.14(4)), i.e., 

. ∀e ∈ E, <e, x> = 0 ⇔ x = 0.

Examples 10.28 

1. The sequences en := (0, . . . , 0, 1, 0, . . .)  are an orthonormal basis for l2. 
Proof : Orthonormality is obvious, 

. <en, em>l2 = <(0, . . . , 0, 1↑n
, 0, . . .), (0, . . . , 0, 1↑m

, 0, . . .)> = δnm.

If the sequence x = (a0, a1, . . .)  is in [[e0, e1, . . . ]]⊥, then an = <en, x>l2 = 0 
for any n; hence x = 0. 

2. In finite dimensions, orthonormal bases span the space, [[e1, . . . ,  en]] = H . 
In infinite dimensions, an orthonormal basis is not a basis in the linear algebra 
sense (Hamel basis), which requires the stronger spanning condition [[E]] = H .
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3. Gram-Schmidt orthogonalization: Any countable number of vectors {vn}n∈N can 
be replaced by a set of orthonormal vectors having the same span, using the 
Gram-Schmidt algorithm: 

. 
u0 := v0, e0 := u0/||u0||
un := vn −Σn−1

i=0 <ei, vn>ei, en := un/||un||.

It may very well happen that un = 0, in which case it and vn are discarded 
and vn+1 relabeled as vn. Clearly, the vectors en are mutually orthogonal, and 
en ∈ [[e0, . . . , en−1, vn]]; so, by induction, [[e0, . . . , en]] = [[v0, . . . , vn]], not 
taking the discarded vn into account. Hence [[e0, e1, . . . ]] = [[v0, v1, . . . ]]. 

4. Suppose x =Σ
m αmem for an orthonormal basis {e0, e1, e2, . . .}; then taking the 

inner product with en gives the simple formula αn = <en, x>. The next section 
discusses whether every x can be so written. 

5. The set of basis vectors need not be countable; when uncountable, the Hilbert 
space is not separable, because the vectors en are equally distant from each 
other ||en − em|| =  

√
2, so that the balls Bε(en) are disjoint for ε <  

√
2/2 

(Exercise 4.22(4)). Conversely, if E = {en : n ∈ N} is a countable orthonormal 
basis, then [[E]], and H = [[E]], are separable. 

6. * Every Hilbert space has an orthonormal basis. 
Proof : Consider the collection of all orthonormal sets of vectors. It is nonempty 
for a non-trivial space, so Hausdorff’s maximality principle implies that there is a 
maximal chain of orthonormal sets Eα . But  E := U

α Eα is also an orthonormal 
set, for pick any two distinct vectors eα ∈ Eα and eβ ∈ Eβ ⊆ Eα , say, then 
eα ⊥ eβ . So  E is a maximal set of orthonormal vectors. E⊥ = 0 otherwise E 
can be extended further, so [[E]] = H . 

Fourier Expansion 

The utility of orthonormal bases lies in the ease of calculation of the inner product: 

Proposition 10.29 (Parseval’s Identity) 

If .x =
Σ
n∈N

αnen and .y =
Σ
n∈N

βnen, where .{en}n∈N are orthonormal, then 

. <x, y> =
Σ
n∈N

ᾱnβn =
Σ
n∈N

<x, en><en, y>.

In particular, .||x|| = ( Σ
n∈N

|αn|2
)1/2.
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Proof A simple expansion of the two series in the inner product, making essential 
use of the linearity and continuity of .< , > as well as orthonormality, gives the result: 

. <x, y> =
Σ
n∈N

Σ
m∈N

αnβm<en, em> =
Σ
n∈N

αnβn.

nu
Parseval’s identity is the generalization of Pythagoras’ theorem to infinite 

dimensions. The question remains: when can a vector be written as a series of 
orthonormal vectors? The next proposition and theorem give an answer. 

Proposition 10.30 

Let .{ e0, e1, e2, . . . } be a countable orthonormal set of vectors in a Hilbert 
space H , then 

. 
Σ
n∈N

αnen converges in H ⇔ (αn)n∈N ∈ l2.

Proof By Pythagoras’ theorem we have 

. ||αnen + · · · + αmem||2 = |αn|2 + · · · + |αm|2.

This shows that .
ΣN

n=1 αnen is a Cauchy sequence in H if and only if .
ΣN

n=1 |αn|2 is 
Cauchy in . C (Example 7.21(1)). Since H and . l2 are complete, .

Σ
n αnen converges 

if, and only if, .(αn)n∈N is in . l2. nu
The convergence of .

Σ
n αnen need not be absolute in infinite dimensions; for the 

latter to be true requires that .
Σ

n ||αnen|| = Σ
n |αn| converges, that is, . (αn)n∈N ∈

l1 ⊂ l2. Nevertheless, a rearrangement . σ of an orthonormal basis does not affect 
the expansion, .

Σ
n αnen = Σ

n ασ(n)eσ(n), because .eσ(n) remain orthonormal and 
.(ασ(n)) ∈ l2. 

Theorem 10.31 (Bessel’s Inequality) 

If .{en}n∈N is orthonormal in an inner product space, then 

. 
Σ
n∈N

|<en, x>|2 < ||x||2.

When .{en}n∈N is an orthonormal basis of a Hilbert space, 

.x =
Σ
n∈N

<en, x>en.
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Proof (i) Fix x and let .xN :=ΣN
n=0 <en, x>en. Writing .αn := <en, x>, we have  

. 0 < ||x − xN||2 = ||x||2 − <xN, x> − <x, xN > + <xN, xN >

= ||x||2 − 2
NΣ

n=0
ᾱnαn +

NΣ
n,m=0

ᾱnαm<en, em>

= ||x||2 −
NΣ

n=0
|αn|2,

hence 

.

NΣ
n=0

|<en, x>|2 < ||x||2. (10.4) 

As a bounded increasing series, the left-hand side must converge as .N → ∞, and 
Bessel’s inequality holds. 

(ii) By the previous proposition, the series .
Σ

n <en, x>en converges in a Hilbert 
space, say to .y ∈ H . But .x − y ∈ { e0, e1, e2, . . . }⊥ = 0, since for all .N ∈ N, 

. <eN , x − y> = <eN , x> −
∞Σ

n=0
<en, x><eN , en> = 0.

A countable orthonormal basis is thus a Schauder basis. nu
As a matter of fact, even if .{ei}i∈I is an uncountable orthonormal set of vectors, 

the same analysis can be made for any finite subset of them. Inequality (10.4) then 
shows that there can be at most .N − 1 vectors . ei with .|<ei, x>|2 > ||x||2/N , for  
any positive integer N , and so only a countable number of terms with .<ei, x> /= 0. 
Therefore .

Σ
i∈I |<ei, x>|2 is in fact a countable sum, bounded above by .||x||2. 

Proposition 10.32 

Every n-dimensional Hilbert space is unitarily isomorphic to . Rn or . Cn. 

Every separable infinite-dimensional Hilbert space is unitarily isomor-
phic to . l2 (real or complex).
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Joseph Fourier (1768–1830) A Napoleonic supporter, 
almost guillotined in the aftermath of the French rev-
olution, Fourier succeeded his teacher Lagrange in 
1797. Besides being a government official and an 
accomplished Egyptologist, his mathematical work cul-
minated in his 1822 book on Fourier series: “sines and 
cosines as the atoms of all functions”; it revolutionized 
how differential equations were solved. But Lagrange 
had pointed out that the expansion might not be unique, 
or even exist. Which functions have a Fourier series? 
This question led to refined treatments of integration 
such as Riemann’s, and to Cantor’s set theory; but also 
to studies into what convergence of functions is all 
about, when it is not pointwise. 

Proof Suppose H is a separable Hilbert space, with some dense countable subset 
.A = { a0, a1, a2, . . . }. The Gram-Schmidt process converts this to a list of 
orthonormal vectors .E = { e0, e1, e2, . . . }, which is then a countable orthonormal 
basis of H since .[[E]] = [[A]] ⊇ Ā = H . Consider the map 

. 
J : H → l2

x |→ (αn)n∈N, αn := <en, x>.

Bessel’s inequality shows that .(αn)n∈N is indeed in . l2. (If H is a real Hilbert space, 
. αn are also real.) Linearity of J follows from that of the inner product. Preservation 
of the inner products and norms, .<x, y>H = <Jx, Jy>l2 , is precisely the content of 
Parseval’s identity. 

J is surjective: For any .(αn)n∈N ∈ l2, the series .
Σ

n αnen converges to some vector 
x by Proposition 10.30, if  E is countably infinite. Then .Jx = (αn)n∈N since 

. <en, Jx> = <en,
Σ
m∈N

αmem> =
Σ
m∈N

αm<en, em> = αn.

The Hilbert space is N -dimensional precisely when E has N vectors; in this case 
it is a classical basis of H . J remains a surjective isometry, with . RN or . CN replacing 
. l2. nu

Examples of Orthonormal Bases 

Orthonormal bases are widely used to approximate functions, and are indispensable 
for actual calculations. There are various orthonormal bases commonly used for the 
space of . L2 functions on different domains. Each basis has particular properties 
that are useful in specific contexts. One should treat these in the same way that
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one treats bases in finite-dimensional vector spaces—a suitable choice of basis may 
make a problem amenable. For example, for a problem that has spherical symmetry, 
it would probably make sense to use an orthonormal basis adapted to spherical 
symmetry. 

Consider the simplest domain, the real line. There are three different classes of 
non-empty closed intervals (up to a homeomorphism): .[a, b], .[a,∞[, and . R. Various 
orthonormal bases have been devised for each, with the most popular being listed 
here. 

L2[a, b]—Fourier Series 

The classical Fourier series were the original impetus for much of this theory of 
orthonormal bases. C. Sturm and J. Liouville extended the concept substantially, 
and F. Riesz showed in 1907 that there exists a function f with Fourier coefficients 
equal to a given sequence . an iff .(an)n∈Z ∈ l2. 

Proposition 10.33 

The functions .e2πint (.n ∈ Z), form an orthonormal basis for .L2[0, 1]. 

Proof Orthonormality of the functions is trivial to establish, 

. <e2πint , e2πimt > =
f 1

0
e2πit (m−n) dt = δnm.

Suppose .f ∈ {e2πint }⊥
n∈Z, i.e., .

f 1
0 e−2πintf (t) dt = 0 for all .n ∈ Z. Recall that 

the Fourier coefficients give a 1–1 operator .F : L1[0, 1] → c0(Z) (Theorem 9.34) 
(note: .L2[0, 1] ⊂ L1[0, 1]), so .Ff = 0 implies .f = 0 and hence . { e2πint : n ∈
Z }⊥ = 0. nu

Of course, there is nothing special about the interval .[0, 1]. Any other interval 
.[a, b] has a modified Fourier basis, namely . 1√

L
e2πint/L, where .L = b − a. For  

example, . 1√
2π

eint (.n ∈ Z), is an orthonormal basis for .L2[−π, π ]. 
Examples 10.34 

1. > The Fourier expansion becomes, for .f ∈ L2[0, 1], 

.f (t) =
∞Σ

n=−∞
αne

2πint



10.5 Orthonormal Bases 235

where .αn = <e2πint , f > = f 1
0 e−2πintf (t) dt are the Fourier coefficients of 

f . Note carefully that the convergence of the sum is to be understood as 
.||Σ

n αne
2πint − f ||L2[0,1] → 0, not necessarily pointwise for each .t ∈ [0, 1]. 

(However, a lengthy proof [30] shows that there is pointwise convergence a.e.; 
see also Example 11.31(5)). 

2. The classical Parseval identity is 

. 

f π

−π

|f (t)|2 dt =
∞Σ

n=−∞
|an|2 + |bn|2,

where .an − ibn = 1√
2π

f π

−π
e−intf (t) dt are the .L2[−π, π ]-Fourier coefficients. 

3. Fourier series have a wide range of applications, especially in signal processing. 
For example, the operator .F∗1[−n,n]F is called a low(frequency)-pass filter: 
Given a signal f , .1[−n,n] discards the higher-frequency terms from the Fourier 
coefficients . Ff ; .F∗ then builds a function from the remaining coefficients, 
resulting in a smoothed out low frequency band signal (for example, without 
a high frequency hiss). 

L2[−1, 1]—Legendre Polynomials 

We’ve seen that the set of polynomials is dense in the space .L2[a, b] (Proposi-
tion 9.29) but the simplest basis, namely .1, t, t2, . . ., is not orthogonal, as can be 
easily verified by calculating, say, .<1, t2> = (b3 − a3)/3. This can be rectified 
by applying the Gram-Schmidt algorithm. On the interval .[−1, 1], the resulting 
polynomials are called the (normalized) Legendre polynomials (Fig. 10.3). The first 
few are 

. 1√
2
,

/
3
2 t, 3

2

/
5
2

(
t2 − 1

3

)
, . . .

Legendre polynomials Laguerre functions Hermite functions 

Fig. 10.3 Orthonormal bases (The first ten functions of each basis are plotted as rows in each 
image; brightness is proportional to the value of the function, mid-grey being 0.)



236 10 Hilbert Spaces

with the general formula being 

. pn(t) =
(/

n+ 1
2

2nn!
)

Dn(t2 − 1)n,

where .D = d
dt . These polynomials satisfy the differential equation 

. Lpn = −n(n+ 1)pn, where L = D(1− t2)D = (1− t2)D2 − 2tD.

L2[0, ∞[—Laguerre Functions 

This Hilbert space contains, not the polynomials . tn, but their modified versions 
.tne−t/2. A Gram-Schmidt orthonormalization of them gives the Laguerre functions, 
the first few terms of which are 

. e−t/2, (1− t)e−t/2, (1− 2t + 1
2 t

2)e−t/2, . . .

and the general formula is 

. ln(t) = 1

n!e
t/2Dn(tne−t ).

The Laguerre functions satisfy (prove!) 

. Sln = −(n+ 1
2 )ln, where S := DtD − t/4.

The Laguerre polynomials (the polynomial part of . ln) can also be thought of as an 
orthonormal basis for .L2

w(R+) with the weight . e−t . 

L2(R)—Hermite Functions 

Here, orthonormalization is performed on the functions .tne−t2/2 (equivalently, take 
. tn in .L2

w(R) with the weight .e−t2 ) to get the Hermite functions, 

.
1

π1/4 e
−t2/2, 2√

2π1/4 te
−t2/2, 1√

2π1/4 (2t
2 − 1)e−t2/2, . . . .

hn(t) = (−1)n√
2nn!π1/4 e

t2/2Dne−t2 .
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To prove orthogonality, first show that .D(et2Dne−t2) = −2net2Dn−1e−t2 , and 
deduce that .<hn, hm> = 2n<hn−1, hm−1>. The Hermite functions satisfy 

. Rhn = −(2n+ 1)hn, where R := D2 − t2.

Moreover, they are eigenvectors of the Fourier transform: . 1√
2π

f∞
−∞ e−itξ hn(t) dt =

(−i)nhn(ξ). 
Some other useful orthogonal bases on .L2(A) spaces on other domains are, in 

brief: 

Circle. Since the circle . S1 is essentially the interval .[0, 2π ] as far as .L2-functions 
are concerned, the periodic Fourier functions .einθ form an orthogonal basis for it. 

The Chebyshev polynomials, .Tn(cos θ) := cos nθ , are the projection of the 
.cos nθ part of this Fourier basis, from the unit semi-circle to the x-axis .[−1, 1]. 
They are thus orthogonal on .L2

w[−1, 1] with the weight .1/
√
1− t2 (since . dθ =

− dt/
√
1− t2). 

There are many other orthonormal bases adapted to .L2
w[a, b]. Rodrigues’ 

formula describes orthogonal functions on .L2
w[a, b], 

. fn(t) := w(t)−1Dn(w(t)p(t)n)

for a quadratic polynomial p with roots at the endpoints a, b, and weight function 
w: the Legendre, Laguerre, Hermite, and Chebyshev functions are all of this type. 

Plane . R2. An orthonormal basis for the plane can be obtained by multiplying 
Hermite functions .hn(x)hm(y). In general, if .en(x) and .ẽn(y) are orthonormal bases 
for .L2(A) and .L2(Ã), then .en(x)ẽm(y) form an orthonormal basis of .L2(A× Ã). 

Disk . BC—Bessel Functions. The functions on the unit disk taking the value zero 
at the boundary have an orthogonal basis .Jn(λm,nr)e

inθ , where .λm,n are the zeros 
of the Bessel function .Jn(r) :=Σ∞

m=0
(−1)m

m!(n+m)! (r/2)
2m+n (Fig. 10.4). 

Sphere . S2—Spherical Harmonics. 

. Y l
m(θ, φ) :=

/
(2l + 1)(l −m)!

4π(l +m)! P l
m(cos θ)eimφ,

where .P l
m(t) = (−1)m(1− t2)m/2DmPl(t) are the “associated Legendre functions”. 

They depend on two indices, .l ∈ N and .m = −l, . . . ,+l. These are the spherical 
projection of the atomic orbitals. 

Exercises 10.35 

1. Orthonormal vectors must be linearly independent. 
2. Comparing coefficients: If .

Σ
n αnen =Σ

n βnen, then .αn = βn.
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Fig. 10.4 Bessel’s functions, .Jn(λm,nr) cos(nθ), . n,m = 0, 1, 2

3. If .{en}n∈N and .{ẽm}m∈N are orthonormal bases for Hilbert spaces X and Y 
respectively, then .{(en, 0)}n∈N ∪ {(0, ẽm)}m∈N form an orthonormal basis for 
.X × Y (Exercise 10.10(5)). 

4. Let .E := { e0, e1, e2, . . . } be a set of orthonormal vectors, with . [[E]] = M ⊂
H . For any .x ∈ H , the  sum  .

Σ
n∈N <en, x>en gives the closest point . x∗ in M to 

x. 
5. > An operator .U ∈ B(H1,H2) is a unitary isomorphism if, and only if, it maps 

orthonormal bases to orthonormal bases. 
6. Expand the function t on .[0, 1] as a Fourier series. 

(a) Assuming pointwise convergence, derive Gregory’s formula 

. 1− 1

3
+ 1

5
− 1

7
+ · · · = π

4
.

(b) Use Parseval’s identity to obtain Euler’s formula 

. 1+ 1

22
+ 1

32
+ · · · = π2

6
.

Deduce that .
(Σ

n∈Z
(−1)n
2n+1

)2 = π2

4 =
Σ

n∈Z 1
(2n+1)2 .
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(c) Similarly find the Fourier coefficients for the functions . t2, .4t3 − t , and 
.2t4 − t2 on .L2[− 1

2 ,
1
2 ], to obtain 

. 

∞Σ
n=1

1

n4
= π4

90
,

∞Σ
n=1

1

n6
= π6

945
,

∞Σ
n=1

1

n8
= π8

9450
.

7. When .f ∈ L2[− 1
2 ,

1
2 ] is an even function, meaning .f (−t) = f (t), then . α−n =

αn and 

. 

∞Σ
n=−∞

αne
2πint = α0 +

∞Σ
n=1

2αn cos(2πnt).

What if f is odd, or neither odd nor even? 
8. Show that .cos nπt , .n = 0, 1, . . ., is an orthogonal basis for the real space 

.L2[0, 1]. 
9. * It is quite possible for .x = Σ

n∈N <en, x>en to hold true for all x in a Hilbert  
space, without . en being orthonormal. Find three such vectors . e1, . e2, . e3, in . R2. 
But if Parseval’s identity .||x||2 =Σ

n |<en, x>|2 holds for all .x ∈ H , and . ||en|| =
1 for all n, then the vectors . en form an orthonormal basis. 

10. Show that .Uf (t) := 1√
b−a

f ( t−a
b−a

) is a unitary operator .L2[0, 1] → L2[a, b]. 
Hence find an orthonormal basis for .L2[a, b]. 

11. > The Fourier operator .F : L2[0, 1] → l2 is a unitary isomorphism between 

Hilbert spaces. Its adjoint maps .x = (an)n∈N ∈ l2 to .F∗(x) =
∞Σ

n=−∞
ane

2πint . 

12. Prove that the Legendre polynomials are orthonormal in .L2[−1, 1], as follows: 
Define .un(t) := (t2 − 1)n, and .qn := Dnun; show by induction that 

(a) .Dkun(±1) = 0, for .k < n, 
(b) .<Dnun,D

mum> = −<Dn−1un,D
m+1um>, 

(c) .<qn, qm> = 0 unless .n = m. 

13. * The Legendre polynomials .Pn := pn/

/
n+ 1

2 have the property, 

. 
1

||u− y|| =
∞Σ

n=0
rnPn(cos θ)

where u is a unit vector, .r := ||y|| < 1, and . θ is the angle between u and y. 
(Hint: Show .fr(t) := 1/

√
1+ r2 − 2rt satisfies .Lfr = r ∂2

∂r2
(rfr), then write 

.fr(t) =Σ
n αn(r)pn(t).) 

14. > A frame is a sequence of vectors .en ∈ H (not necessarily linearly 
independent) for which the mapping .J : x |→ (<en, x>)n∈N is an embedding



240 10 Hilbert Spaces

.H → M ⊆ l2. By Proposition 8.15, this is equivalent to there being positive 
constants .a, b > 0, .a||x|| < ||Jx||l2 < b||x||, i.e., 

. ∃c > 0, ∀x ∈ H,
1

c
||x||2 <

Σ
n

|<en, x>|2 < c||x||2.

Let .δk(an) := ak and .L := (J ∗)−1; then .x |→ δkLx is a continuous functional, 
hence there is a unique vector . ̃ek such that .δkLx = <ẽk, x>. 
(a) The two sets of vectors . en and . ̃en are bi-orthogonal, that is, .<ẽm, en> = δmn. 
(b) .J ∗L = I = L∗J , so  

. x =
Σ
n

<ẽn, x>en =
Σ
n

<en, x>ẽn.

Applications of Orthonormal Bases 

Frequency-Time Orthonormal Bases 
An improvement on the classical orthonormal bases for functions t |→ f (t)  in 
L2(R) are bases that give information in both ‘frequency’ and ‘time’. In contrast, the 
Fourier coefficients, for example, only give information about the frequency content 
of the function. A large nth Fourier coefficient means that there is a substantial 
amount of the term e2πint , somewhere in the function f (t)  without indicating at all 
where. The aim of frequency-time bases is to have coefficients am,n that depend on 
two parameters n and m, one of which is a frequency index, the other a “time” index. 
The am,n coefficients, much like musical notes placed on a score, indicate how much 
of the frequency corresponding to n, is “played” at the time corresponding to m; 
they are able to track the change of frequency content of f with time. Of course, the 
reference to t as time is not of relevance here; t can represent any other varying real 
quantity. 

Windowed Fourier Bases (Short Time Fourier Transform): A basic way to achieve 
this is to define the basis functions by 

. hm,n(t) := e2πinth(t −m),

where h is a carefully chosen (real) window function, with ||h||L2 = 1, such that 
hm,n are orthonormal. The simplest choice of window function is h = 1[− 1 

2 , 
1 
2 ]; 

other popular possibilities, such as the Hann window cos2(πt) (− 1 
2 < t < 1 

2 ) and 

the Gaussian cσ e−t2/2σ 2 
do not give orthonormal bases but are useful nonetheless.
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Fig. 10.5 Spectrogram of a piano piece, showing clearly the duration, frequency, and harmonics 
of each note 

One can then obtain a picture of f spread out in time and frequency, called a 
spectrogram (Fig. 10.5), by plotting the coefficients |<hm,n, f >|2 (often interpolating 
in m and n to get a smooth picture). 

Note that the coefficients <hm,n, f > are really just (am,n) = F(h(t − m)f (t)). 
So summing the coefficients in n, keeping the position m fixed, gives the windowed 
function: 

. 
Σ
n∈Z

am,ne
2πint = h(t −m)f (t)

and similarly, when
Σ

m∈Z h(t − m) = 1, 

. -f (n) =
f

e−2πint
Σ
m∈Z

h(t −m)f (t) dt =
Σ
m∈Z

am,n

The greatest disadvantage of these bases is that the window ‘width’ is predeter-
mined; it ought to be large enough to contain the low frequency oscillations, but 
then the time localization of the high frequencies is lost. The aim of the windowed 
Fourier basis is only achieved over a limited range of frequencies. To circumvent 
this, one can make the window width decrease with the frequency parameter n— 
this is the idea of wavelets. 

Wavelet Bases: The basis in this case consists of the following functions in L2[0, 1] 

. ψm,n(t) := TmS2nψ(t) = 2n/2ψ(2nt −m), (m, n ∈ Z)

where ψ is a carefully chosen ‘mother’ function in L2(R). It serves both as a 
window (ideally with compact support) and an oscillation. The basis functions 
ψm,n are thus scaled and translated versions of ψ . They have the advantage that 
the resolution in ‘time’ is better for higher frequencies than the windowed Fourier 
bases, and so require less coefficients to represent a function to the same level of 
detail. One example is the classical Haar basis, generated by ψ(t)  := 1[0,1] − 1[1,2] 
(prove orthogonality of ψm,n). Other wavelets, generated by continuous functions, 

are more popular, e.g., Mexican-hat ((1 − t2)e−t2/2), Gabor/Morlet (e2πif  t  e−t2/2,
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Fig. 10.6 Three wavelets: Haar, Mexican hat (with a translated and scaled version), and Morlet 
(real and imaginary parts) 

usually f = 1; Fig. 10.6). The analogue of the spectrogram is the scalogram, which 
is a plot of the coefficients Wf (a, b) := <ψa,b, f > where ψa,b(t) = 1√

a ψ( t−b 
a ). 

In a multi-resolution wavelet scheme, a subspace Vk of the Hilbert space L2(R) 
is split recursively into low and high resolution parts as Vn+1 = Vn ⊕ Wn, where 
Wn = V ⊥n ∩ Vn+1 

. Vk = Vk−1 ⊕Wk−1 = · · · = V0 ⊕W0 ⊕W1 ⊕ · · · ⊕Wk−1

If we suppose Vn and Wn to be spanned by orthonormal bases { φm,n : m = 
0, . . . , N  − 1 } and { ψm,n : m = 1, . . . , N  − 1 }, that are generated by scaling 
and translation from a “father” and “mother” wavelets φ and ψ respectively, then, 
by recursion, one need only ensure V1 = V0⊕ W0 = [[φ]] ⊕ [[ψ]] for this scheme to 
work. Therefore the requirements are that φ, ψ ∈ V1 be orthonormal. For N even, 
the following “refinement equations” are sufficient, 

. φ(t) = a0φ(2t)+ a1φ(2t − 1)+ · · · + aN−1φ(2t −N + 1),

ψ(t) = aN−1φ(2t)− aN−2φ(2t − 1)+ · · · − a0φ(2t −N + 1)

a20 + · · · + a2N−1 = 2.

Recall here that φ(2t −m) = 2−1/2φm,1(x) has norm 1/
√
2, so ||φ||2 =Σ

m a
2 
m/2. 

For example, the Haar basis has φ = 1[0,2] and ψ which satisfy 

. φ(t) = φ(2t)+ φ(2t − 1), ψ(t) = φ(2t)− φ(2t − 1).

The Daubechies wavelet basis of order N is a multi-resolution scheme with an 
optimal choice of coefficients ai , in which the wavelet ψ is taken to be of compact 
support and ‘smooth’ (more precisely, with N zero moments; see [27]). 

Solving Linear Equations 
Orthonormal expansions can be used to solve linear equations T x  = y, where x 
and y are elements of some (separable) Hilbert space, and T an operator on it. 
Given an orthonormal basis {en}, the vectors x and y can be written in terms of it 
as x = Σ

n anen and y = Σ
n bnen. Of these, the scalar coefficients an := <en, x>
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are unknown and to be determined, but bn := <en, y> can be calculated explicitly. 
Substituting into T x  = y we get 

. 
Σ
n∈N

anT en = T
( Σ

n∈N
anen

)
=

Σ
n∈N

bnen.

. ∴ bm = <em, y> =
Σ
n∈N

an<em, T en> =
Σ
n∈N

tm,nan,

where tm,n = <em, T  en>. This is a matrix equation in l2, representing T x  = y, 
i.e., written in terms of the coefficients of T , x and y in the orthonormal basis en. 
Effectively, the problem has been transferred from one in H to one in l2, via the 
isomorphism J : H → l2. 

Converting to matrices is especially useful if the orthonormal basis elements en 
are eigenvectors of T , that is, T en = λnen. This makes the matrix of T diagonal. 

. 

⎛
⎜⎝

λ1 0 . . .

0 λ2
...

. . .

⎞
⎟⎠

⎛
⎜⎝

a1

a2
...

⎞
⎟⎠ =

⎛
⎜⎝

b1

b2
...

⎞
⎟⎠

The equation is easily solved, an = bn/λn, unless λn = 0. If λn = 0 (i.e., T x  = 0 
has non-trivial solutions) there are no solutions of 0an = bn unless bn = 0, in which 
case the an are arbitrary. Thus there will be a solution x if, and only if, bn vanishes 
whenever λn does, or equivalently, y ⊥ ker T . Separating the vectors em that satisfy 
T em = 0 from the rest, the complete solution is 

. x =
Σ

m:λm=0
αmem +

Σ
n:λn /=0

bn

λn

en,

where αm are arbitrary constants. The first series is a solution of the “homogeneous 
equation” T x  = 0, while the second series is a “particular solution” of T x  = y. 

For the case of the Hilbert space L2(A), with en and y = f , all functions, the 
particular solution can be rewritten as 

. 
Σ
n

bn

λn

en =
Σ
n

<en, f >
λn

en =
f

A

(Σ
n

en(s)en(t)

λn

)
f (s) ds =

f
A

G(t, s)f (s) ds,

where the kernel G(t, s) := Σ
n en(s)en(t)/λn is called the Green’s function of the 

operator T .
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Gaussian Quadrature 
A central problem in numerical analysis is to find an approximation for the integral 
of a real function, in the form 

. 

f b

a

f ≈ a1f (t1)+ · · · + anf (tn) =: φ(f ),

where ai, ti are fixed numbers; note that φ is a functional acting on f . The familiar 
trapezoid rule and Simpson’s rule are of this type, where the ti are equally spaced 
along [a, b]. The question arises as to whether we can do better by choosing ti in 
some other optimal way. 

Let ei(t) be real orthonormal polynomials of degree i in the space L2[a, b], 
obtained from 1, t , t2,. . . ,  by  the  Gram-Schmidt algorithm. By orthogonality, their 
integrals vanish since

f b 
a ei = <1, ei> =  0, except for

f b 
a e0 = ||1||L2[a,b]. Certainly, 

for φ(ei) to agree with the integral
f b 
a ei for i = 0, . . . , n  − 1, we must require 

. 

⎛
⎜⎜⎜⎝

e0(t1) . . . e0(tn)

e1(t1) . . . e1(tn)
...

...

en−1(t1) . . . en−1(tn)

⎞
⎟⎟⎟⎠

⎛
⎜⎝

a1
...

an

⎞
⎟⎠ =

⎛
⎜⎜⎜⎝

||1||
0
...

0

⎞
⎟⎟⎟⎠ ,

which can be solved for ai when ti are known. The main point of Gaussian 
quadrature is that if ti are chosen to be the n roots of the polynomial en(t) (assuming 
they lie in [a, b]), we also get f b 

a ei = 0 = φ(ei) for i < 2n− 1. 
For consider the polynomial division of any e := em (1 < m < 2n − 1) by en, 

e = qen + r where q and r are real polynomials of degree at most n − 1. Then, as 
e0 is proportional to 1, and q ∈ [[1, t, . . . , tn−1]] = [[e0, . . . , en−1]], 

. 0 = <1, e> =
f b

a

qen + r = <q, en> + <1, r> = <1, r>.

Hence r = Σn−1 
k=1 bkek for some scalars bk . So by the choice of the coefficients ai , 

and en(ti) = 0, 

. e(ti) = q(ti)en(ti)+ r(ti) = r(ti),

so φ(e) =
nΣ

i=1
aie(ti) =

nΣ
i=1

air(ti) =
n−1Σ
k=1

bk

nΣ
i=1

aiek(ti) = 0 =
f b

a

e.

Thus the integral of any f = Σ
i αiei ∈ L2[a, b] agrees with φ(f  )  up to order 

i = 2n− 1, 

.

f b

a

f =
Σ

i

αi

f b

a

ei ≈
2n−1Σ
i=1

αiφ(ei) ≈ φ(f ).
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The residual error can be made as small as needed by taking a larger n. 
For example, using the Legendre polynomials, (prove!) 

. 

f 1

−1
f (t) dt ≈ 0.35f (−0.86)+ 0.65f (−0.34)+ 0.65f (0.34)+ 0.35f (0.86).

All of this applies equally well for weighted L2 
w(A) spaces; for example, using 

Laguerre polynomials, 

. 

f ∞

0
f (t)e−t dt ≈ 0.60f (0.32)+ 0.36f (1.75)+ 0.039f (4.5)+ 0.00054f (9.4).

In practice, the algorithm of choice of most mathematics software is currently 
the Gauss-Kronrod algorithm, which performs Gaussian quadrature but refines it 
adaptively by taking more evaluation points if necessary. 

Signal Processing 
Sounds, images, and signals in general can be thought of as vectors in L2(R), 
L2(R2), and L2(A) respectively. They can thus be decomposed into orthonormal 
sums with all the advantages that entails. Three applications are: 

(a) Storing only the “largest” coefficients αn := <en, x> of an orthonormal 
expansion leads to a useful compressed form of the vector x. Compression ratios 
of about 100 are quite typical. A close copy of x can easily be regenerated from 
these coefficients using x = Σ

n αnen. Although not identical to the original 
(because the small terms are omitted), it may be good enough for the purpose, 
especially since the smallest coefficients are usually unappreciated fine detail or 
noise. 

(b) A vector can be altered intentionally by manipulating its coefficients. For 
example, it can be improved by filtering out noise coefficients, or particular 
features in a function may be picked out, e.g., image contrast may be enhanced 
if certain coefficients are weighted more than others. 

(c) A vector may be matched with a database of other vectors, by taking the 
inner product with each of them, using Parseval’s identity <x, y> = Σ

n ᾱnβn. 
That vector with the largest correlation <x, y> gives the best match and can be 
selected for further investigation. 

Consequently, the storage, transmission, rapid retrieval, and comparison of 
images and sounds have seen a tremendous change since 1990, in part feeding the 
growth not only of the internet and mobile phones, but also of new scientific tools. 
For example, speech-, handwriting-, and face-recognition software find phonemes, 
characters, and faces that best match the given input; an E.C.G./E.K.G. or E.E.G. 
signal may be compared to a database for the early detection of cardiac arrest or 
epileptic fits; countless mobile phones perform fingerprint matches daily; satellite 
and medical imagery are usually enhanced to assist analysis, etc. 

To see one application in some detail, let us look at one popular image format— 
JPEG (1992 standard). Color images consist of an array of pixels, each digitized into
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three numbers (R,G,B)  ∈ [0, 1]3 representing the red, green, and blue content. 
In the JPEG algorithm, the three RGB color bytes for each pixel are usually first 
converted to brightness, excess red, and excess blue, 

. Y := rR + gG+ bB,

Cr := 1

2
+ 1

2(g + b)
(R − Y ),

Cb := 1

2
+ 1

2(r + g)
(B − Y ),

where r ≈ 0.25, g ≈ 0.65, b ≈ 0.1 are agreed-upon constants such that r+g+b = 
1. This is done to avoid effects due to color-shifts and because the brightness picture 
carries most of the visible information; in fact the excess red/blue pixels are reduced 
in number by a factor of 4 because the eye is not sensitive to fine detail in pure color. 

The image is then split into 8×8 blocks, and each block is expanded with respect 
to the cosine basis cos(πn(x + 1 2 )/8) cos(πm(y + 1 2 )/8) (the cosine transform 
is preferred for positive functions in general because the first few coefficients are 
larger; however it is not so good for sharp lines). The resulting 64 coefficients for 
each block are discretized (by multiplying by a user-defined weight, and taking 
the integer part). Most are now zero, and the rest are squeezed further using 
the standard Huffman compression algorithm. This way, a 4Mpixel image, that 
normally requires 12 million bytes in raw formats, can easily be reduced a 100-
fold in file-size without any visible loss of quality. JPEG 2000 uses wavelets instead 
but works in essentially the same way; MPEG is JPEG 1992 adapted to video. 

Similarly a 5 min CD-quality stereo sound clip, sampled at 44,000 times 16 bits 
a second, would normally need at least 52 Mbytes. It can be compressed to about 
10% of that by MP3, an algorithm that works in an analogous way as JPEG, but 
adapted to sound signals. 

Remarks 10.36 

1. Re <x, y> is a real-valued inner product (over the reals), but Im <x, y> fails the last 
two axioms. 

2. A real inner product on the real vector space X can be uniquely extended to its 
complexification X + iX, by  

. <x1 + ix2, y1 + iy2> := (<x1, y1> + <x2, y2>)+ i(<x1, y2> − <x2, y1>).

Thus an inner product on Rn can extend in several ways to R2n, but in only one 
way to Cn. 

3. There is an interesting analogy between linear subspaces and logic: Think of 
subspaces as “statements”, with A ⇒ B meaning A ⊆ B, and FALSE, TRUE, 
A AND B, A OR B, NOT A, corresponding to 0, X, A ∩ B, A + B, and A⊥, 
respectively. What are the logical rules that correspond to Proposition 10.9? Are  
all classical logic rules true in this sense?
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4. A normed space with a conjugate-linear “isomorphism” J : X → X∗, has a 
sesquilinear product <x, y> := (x∗y + y∗x)/2 (where x∗ := Jx). The additional 
property x∗x = ||x||2 turns it into an inner product space, compatible with the 
norm of X. 

5. The conjugate gradient method is an iteration to solve T ∗T x  = y, used  
especially when T is a very large matrix. Note that <<x, y>> := <x, T ∗Ty> is 
an inner product when T is 1–1. If ei were an orthonormal basis with respect to 
this inner product, and x =Σ

j αjej , then 

. αj = <<ej , x>> = <ej , T
∗T x> = <ej , y>,

and x can be found. The iteration is essentially the Gram-Schmidt process applied 
to the residual vectors rn = y − T ∗T xn, while calculating the approximate 
solutions xn on the go, (|||x|||2 := <<x, x>>) 

. 

e0 := y/|||y|||, un+1 := rn − <<en, rn>>en,

en+1 := un+1/|||un+1|||,
x0 = <e0, y>e0, xn+1 := xn + <en+1, y>en+1,
r0 := y − T ∗T x0, rn+1 := y − T ∗T xn+1.

6. QR decomposition: Any operator T : X → Y between Hilbert spaces maps 
an orthonormal basis ei ∈ X to a sequence of vectors T ei ∈ Y . If these are 
orthonormalized to e'i using the Gram-Schmidt process, then T ei =Σi 

j=1 αij e
'
j . 

This means that, with respect to the bases ei and e'j , T has the upper-triangular 
matrix R. If  Q represents the change of bases in Y from e'j to the original one, 
then the matrix of T is QR. 

7. A continuous function f : [0, 2π ] →  C, f (0) = f (2π), traces out a looped 
path or ‘orbit’ in the complex plane. If the Fourier coefficients are written in 
polar form, it is clear that each term αne

inθ = rnei(nθ+φn) describes a circle; and 
the sum of two terms describes the motion along a circle whose center also moves 
in a circle. The whole Fourier sum then represents a motion along regressively 
smaller circles. Ptolemy and other Greek astronomers were the first to describe a 
periodic motion in terms of these cycles within cycles. 

8. A non-separable Hilbert space is still isomorphic to an l2(A) space, one with 
an uncountable number of orthonormal basis vectors. For example every Hilbert 
space with an orthonormal basis {et }t∈[0,1] is isomorphic to the space l2[0, 1] 
consisting of functions αt for which ||α||2 := Σ

t |αt |2 < ∞ (Note: α can take 
only a countable number of non-zero values.) 

9. The first important application of the least-squares method was by Gauss. In 
1801, G. Piazzi found the long-sought ‘missing’ planet between the orbits of 
Jupiter and Mars, but could not observe it again after it went behind the Sun. 
Gauss managed to recover its orbital parameters from Piazzi’s observations, 
and Ceres was relocated almost a year after its discovery. Essentially the same 
techniques were used in 1846 to predict the location of a new planet, Neptune, 
from the irregularities in the observed positions of Uranus.



Chapter 11 
Banach Spaces 

In this chapter, we explore deeper into the properties of operators and functionals 
on general Banach spaces. We will find that several definitions and propositions that 
hold for Hilbert spaces generalize to Banach spaces. As Hilbert spaces are, in many 
ways, very special and non-typical examples of Banach spaces, these results need 
to be modified in several technical ways: There are no orthonormal bases, or Riesz 
correspondence, or orthogonal projections available in Banach spaces. 

11.1 The Open Mapping Theorem 

The following theorem holds the key to several unanswered questions that were 
raised earlier. 

Theorem 11.1 (The Open Mapping Theorem) 

A continuous linear map between Banach spaces is an open mapping if, 
and only if, it is surjective. 

Recall that an open mapping is one that maps open sets to open sets. 

Proof Let .T : X → Y be a surjective operator between the Banach spaces X and 
Y . Let  U be an open subset of X, and let .x ∈ U , so that .x ∈ Bϵ(x) ⊆ U . If it can 
be shown that the image of the unit ball .T BX contains a ball .Bδ(0), then 

. T x ∈ Bδϵ(T x) = T x + ϵBδ(0) ⊆ T x + ϵ T BX = T Bϵ(x) ⊆ T U

implies that T U  is an open set in Y , proving the theorem. 
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Now .X = ⋃∞
n=1 Bn(0), so  .T X = ⋃∞

n=1 T Bn(0). But  .T X = Y is complete, so 
by Baire’s category theorem, not all the sets .T Bn(0) are nowhere dense: there must 
be an N such that .T BN(0) contains a ball. By re-scaling we find that .T BX contains 
a ball .Br(v). It follows that for every .y ∈ Br(0) we have 

. v + y = lim
n→∞ T xn, for some xn ∈ BX,

v − y = lim
n→∞ T x'

n, for some x'
n ∈ BX,

∴ y = lim
n→∞ T

(
xn − x'

n

2

)

∈ T BX

since .‖xn − x'
n‖ < 2. Consequently we have that .Br(0) ⊆ T BX. 

.T BX ⊆ T B3(0) Let .y ∈ T BX, so that there must be an .x0 ∈ BX such that 

.‖y − T x0‖ < r/2; that is, .‖x0‖ < 1 and .y − T x0 ∈ Br/2(0) ⊆ T B1/2(0). But this 
implies that there is an .x1 ∈ B1/2(0) such that .‖y − T x0 − T x1‖ < r/4. Continuing 
in this fashion, we get a sequence . xn such that 

. ‖xn‖ <
1

2n
, ‖y − T (x1 + · · · + xn)‖ <

r

2n
.

We can conclude that .x := ∑
n∈N xn converges absolutely, with . ‖x‖ ⩽

∑∞
n=0

1
2n =

2, and that .y = T x ∈ T B2(0) ⊂ T B2+ϵ(0). 

Re-scaling the vectors in .Br(0) ⊆ T B3(0) gives .Br/3(0) ⊆ T BX and closes the 
argument. 

The converse was shown in Example 8.5(3). ⨅⨆

Corollary 11.2 

A bijective operator between Banach spaces is an isomorphism. 

With this fact, we are ready for the analogue of the first isomorphism theorem of 
vector spaces, which is a generalization of the corollary. 

Proposition 11.3 

For any operator .T : X → Y between Banach spaces, 

.X/ ker T ∼= im T ⇔ im T is closed in Y

⇔ ∃c > 0, ∀x ∈ X, ‖x + ker T ‖ ⩽ c‖T x‖.
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Proof The mapping .J : x + ker T I→ T x is well-defined and 1–1 because 

. x + ker T = y + ker T ⇔ x − y ∈ ker T ⇔ T x = Ty,

and it is obviously onto .im T . It is trivially linear, and continuous since 

. ∀u ∈ ker T , ‖T x‖ = ‖T (x + u)‖ ⩽ ‖T ‖‖x + u‖,
∴ ‖T x‖ ⩽ ‖T ‖ inf

u∈ker T ‖x + u‖ = ‖T ‖‖x + ker T ‖.

So J is an isomorphism precisely when .J−1 is continuous, i.e., when the stated 
inequality holds (Proposition 8.15). 

If the range of J , namely .im T , is closed in  Y , then it is a Banach space 
(Proposition 4.7), so that Corollary 11.2 implies that J is an isomorphism. For the 
converse, .X/ ker T is complete (Proposition 8.20), as must be any isomorphic copy 
such as .im T (Exercise 4.18(5)). ⨅⨆
Examples 11.4 

1. ▶ It is important that Y be complete for the open mapping theorem to be valid. 
The identity map .𝓁1 → 𝓁∞ is continuous and 1–1, but . 𝓁1 is not isomorphic 
to its image, because the latter is not complete (in the .∞-norm). For example, 
.xn := (1, 1

2 , . . . ,
1
n
, 0, . . .) converge in the .∞-norm, but not to an .𝓁1-sequence. 

2. ▶ Let .T : X → Y be a linear map between Banach spaces; its graph . M :=
{ (x, T x) : x ∈ X } is a linear subspace of .X × Y , and the map .J : M → X, 
defined by .J (x, T x) := x is bijective, linear, and continuous. 

Closed Graph Theorem: If  M is also closed in .X × Y , then it is a Banach 
subspace, and the open mapping theorem implies that J is an isomorphism, so 
that 

. ‖T x‖Y ⩽ ‖(x, T x)‖X×Y ⩽ c‖x‖X

and T must be continuous. 
3. If X has two complete norms, and .‖x‖ ⩽ c|||x||| for some fixed .c > 0, then 

the two norms are equivalent: the identity map .X|||||| → X‖‖ is continuous by 
hypothesis, and obviously linear and bijective; so its inverse is also continuous. 
Put differently, if two complete norms on X are inequivalent, then one can find 
vectors . xn which are unit with respect to one norm, but growing indefinitely with 
respect to the other. Clearly, this can only happen in infinite dimensions. 

4. ✶ A Banach theorem: Any separable Banach space is isomorphic to a quotient 
of . 𝓁1. 
Proof : Let  . en be dense in .BX and let .T : 𝓁1 → X be defined by . T (an) :=∑

n∈N anen; it satisfies  .‖T ‖ = 1. Moreover, .BX ⊆ T B𝓁1 since .en = T en. The  
last part of the proof of the open mapping theorem then shows that . B1/3(0) ⊆
T B𝓁1 and hence T is surjective, with .T B𝓁1 = BX. The proposition above then 
shows .𝓁1/ ker T ∼= X.
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Complementary Subspaces 

We are now in a position to answer an earlier question about projections: Unlike the 
case of Hilbert spaces, it is not always possible to project continuously to a closed 
subspace of a Banach space. The following proposition determines exactly when 
such a projection exists: 

Proposition 11.5 

There is a continuous projection P onto a closed linear subspace M of a 
Banach space X if, and only if, 

. X = M ⊕ N

for some closed linear subspace N . In this case, .M = imP , .N = kerP , 
and .M ⊕ N ∼= M × N . 

We say that .M,N are complementary closed subspaces. 

Proof The forward implication has already been proved (Example 8.18(3)). 
Conversely, suppose .X = M ⊕N , so that any .x = u+v for some .u ∈ M , .v ∈ N . 

Uniqueness of u, v follows from 

. u1 + v1 = x = u2 + v2 ⇒ u1 − u2 = v2 − v1 ∈ M ∩ N = 0,

⇒ u1 = u2 AND v1 = v2.

This allows us to define the function .P : X → X by .P(x) := u. It is linear since 

. P(λx1 + x2) = P(λu1 + λv1 + u2 + v2) = λu1 + u2 = λP (x1) + P(x2).

When x belongs to M or N , we get the special cases 

. ∀u ∈ M, Pu = P(u + 0) = u; ∀v ∈ N, Pv = P(0 + v) = 0,

so .imP = M and .N ⊆ kerP ; moreover, any .x ∈ kerP satisfies . 0 = Px = u

implying .x = v ∈ N . 
P is a continuous projection: For any .x = u+v ∈ M⊕N , .P 2x = Pu = u = Px, 
so .P 2 = P . Finally, the map .J : M × N → X, .J (u, v) := u + v, between Banach 
spaces, is 1–1, onto and continuous 

.‖u + v‖X ⩽ ‖u‖X + ‖v‖X = ‖(u, v)‖M×N
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and so is an isomorphism by the open mapping theorem. Therefore 

. ‖Px‖ = ‖u‖ ⩽ ‖u‖ + ‖v‖ = ‖(u, v)‖M×N ⩽ c‖u + v‖X = c‖x‖.

⨅⨆
Every subspace M can be extended by another subspace N such that . X = M⊕N

(by extending a basis for M to span X) but complementarity requires .M,N to be 
closed. 

Examples 11.6 

1. Finite-dimensional subspaces are always complemented. 
Proof : The projection to .M = [[e1, . . . , en]] is simply 

. x I→ δ1(x)e1 + · · · + δn(x)en,

where . δj are the dual basis for .M∗ (.δj (ei) := δin). Although . δj are defined on 
M , they can be extended to . X∗ as seen later (Theorem 11.19). 

2. Finite-codimensional closed subspaces are complemented. 
Proof : Let .e1 + M, . . . , en + M be a basis for .X/M , and let . N := [[e1, . . . , en]]
(complete). Then, for any .x ∈ X, 

. x + M =
n∑

i=1

αi(ei + M) =
n∑

i=1

αiei + M =: v + M

which shows .x−v ∈ M , .v ∈ N , so .x ∈ M +N . If .x ∈ M ∩N , then . x = ∑
i αiei

and the above identity gives .M = x +M = ∑
i αi(ei +M), so .αi = 0 (by linear 

independence of .ei + M) and .x = 0. 
3. Let .T ∈ B(X, Y ) be an operator on Banach spaces. 

(a) If .Y = im T ⊕ M for some closed linear subspace M of Y , then .im T is 
closed in Y . 

(b) If .X = ker T ⊕ M and .im T ,M are closed, then .M ∼= im T . 

Proof : (a) The mapping .X/ ker T → im T defined in the proof of Proposi-
tion 11.3 can be extended to .(X/ ker T )×M → Y by .(x+ker T , v) I→ T x+v; it  
is continuous and bijective, hence an isomorphism. The conclusion follows since 
it sends the closed set .(X/ ker T ) × {0} to .im T . 

(b) .M ∼= X/ ker T ∼= im T . 
4. If X is a separable Banach space, then there is a surjective operator . T : 𝓁1 → X

(Example 11.4(4)). By Example 3(b) above, either X is embedded in . 𝓁1 or . ker T
is not complemented.



254 11 Banach Spaces

Exercises 11.7 

1. For a continuous projection .P : X → X, .imP is closed and .X/ imP ∼= kerP , 
while .‖x + kerP ‖ ⩽ ‖Px‖. 

2. Second isomorphism theorem: If  M , N , and .M + N are closed subspaces of a 
Banach space, then .(M+N)/N ∼= M/M∩N , using the map .M → (M+N)/N , 
.x I→ x + N . 

3. Third isomorphism theorem: Let .M ⊆ N be closed subspaces of X, then . 
X/M
N/M

∼=
X
N

using the map .X/M → X/N , .x + M I→ x + N . If  M is finite-codimensional 
then .codimN ⩽ codimM . 

4. Let .T : X → Y and .S : X → Z be operators on Banach spaces. 

(a) If M is a closed linear subspace of .ker T , then .x + M I→ T x is well defined, 
linear, and continuous. 

(b) If S is onto and .Sx = 0 ⇒ T x = 0, then .Sx I→ T x is a well-defined 
operator in .B(Z, Y ). 

5. Let .M,N be closed subspaces of a Banach space, with .M ∩N = 0. Then . M +N

is closed . ⇔ P : M + N → M , .x + y I→ x, is continuous. 
6. If .φ : X → F is linear with .kerφ closed, then . φ is continuous. 
7. If M is a complemented closed subspace of X, then .X ∼= X

M
× M . 

8. If .X = M ⊕N with .M,N closed, then there is a minimum separation . ‖u − v‖ ⩾
c between any unit vectors .u ∈ M , .v ∈ N . 

9. ✶ Suppose the Banach space X has a Schauder basis . en (of unit norm). For . x =∑
n αnen, it can be shown that .|||x||| := supn ‖∑n

i=1 αiei‖ exists and is a complete 
norm. Show .‖x‖ ⩽ |||x||| and deduce that the map .φn : x I→ αn is in . X∗. These 
functionals form a Schauder basis for . X∗, called the bi-orthogonal or dual basis, 
and satisfy .φn(em) = δnm. 

11.2 Compact Operators 

A linear map is continuous when it maps bounded sets to bounded sets. There is a 
special subclass of linear maps that go further: 

Definition 11.8 

A linear mapping between Banach spaces is called compact when it maps 
bounded sets to totally bounded sets.
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Easy Consequences 
1. Compact linear maps are continuous. 
2. If T , S are compact operators, then so are .T +S and . λT (since B bounded implies 

.λT B and subsets of .T B + SB are totally bounded (Proposition 7.14)). 
3. The identity map .I : X → X is not compact when the Banach space is 

infinite dimensional (it cannot convert the unit ball to a totally bounded set 
(Proposition 8.25)). 

4. It is enough to show that T maps the unit ball to a totally bounded set for T to be 
compact (since .B ⊆ Br(0) ⇒ T B ⊆ rT BX). 

Proposition 11.9 

If T is compact and S continuous linear, then ST and T S  are compact 
(when defined). 

If . Tn are compact and .Tn → T then T is compact. 

For a compact operator T , .im T is separable, and is complete only when 
finite-dimensional. 

Proof (i) Starting from a bounded set, T maps it to a totally bounded set and 
S, being Lipschitz, maps this to another totally bounded set (Proposition 6.7); or 
starting with a bounded set, S maps it to another bounded set (Exercise 4.18(3)), 
which is then mapped by T to a totally bounded set. 

(ii) Let B be a bounded set, with its vectors having norm at most c. Then for any 
.x ∈ B, .T x = Tnx + (T − Tn)x, and 

. ‖(T − Tn)x‖ ⩽ ‖T − Tn‖‖x‖ ⩽ c‖T − Tn‖ → 0.

Hence for n large enough, independent of .x ∈ B, .‖(T − Tn)x‖ < ϵ/2; in other 
words .(T − Tn)B ⊆ Bϵ/2(0). Moreover .TnB is totally bounded and so, 

. T B ⊆ TnB + (T − Tn)B ⊆
N⋃

i=1

Bϵ/2(xi) + Bϵ/2(0) =
N⋃

i=1

Bϵ(xi).

Thus T B  is totally bounded and T is compact. 

(iii) Totally bounded sets are separable (Example 6.6(3)), so the image of T , 

. im T = T X = T [
∞⋃

n=1

Bn(0)] =
∞⋃

n=1

T [Bn(0)],

being the countable union of separable sets, is separable (Exercise 4.22(3)).
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Suppose .im T to be complete, then it would be a Banach space in its own right. 
The open mapping theorem can be used to conclude that . BX is mapped to an open 
and totally bounded set .T BX. As 0 is an interior point of it, there is a totally 
bounded ball .Br(0) ⊆ T BX. This can only be the case if .im T is finite dimensional 
(Proposition 8.25). ⨅⨆
Examples 11.10 

1. A finite rank operator, i.e., whose image has finite dimension, is compact. 
The reason is that, in a finite-dimensional space, bounded sets are necessarily 
totally bounded (Proposition 8.25, Exercise  6.9(5)). For example, matrices and 
functionals are compact operators of finite rank. 

2. ▶ A common way of showing that an operator is compact is to show that it is the 
limit of operators of finite rank. 
For example, let .T : 𝓁2 → 𝓁2 be defined by .T (an) := (an/n)∞n=1. First cleave 
the operator to . TN defined by .TN(an) := (a1/1, a2/2, . . . , aN/N, 0, 0, . . .). This  
maps . 𝓁2 linearly to an N -dimensional space. Showing it is continuous would 
imply it is compact of finite rank: 

. ‖TN(an)‖2𝓁2 =
N∑

n=1

|an/n|2 ⩽
N∑

n=1

|an|2 ⩽ ‖(an)‖2𝓁2 .

Furthermore, .TN → T : 

. ‖(T − TN)(an)‖2𝓁2 =
∞∑

n=N+1

|an/n|2 ⩽ 1
N2

∞∑

n=N+1

|an|2 ⩽ 1
N2 ‖(an)‖2𝓁2 .

Hence .‖T − TN‖ ⩽ 1/N → 0 as .N → ∞ as required. 
Note that in this example, .im T contains . c00 which is dense in . 𝓁2. 

3. .TNf (x) :=
N∑

n=−N

f̂ (n)e2πinx is an example of an operator of finite rank on 

.L1[0, 1]. 
4. ▶ An operator T on Banach spaces is compact iff for every sequence . (xn)n∈N

that is bounded, .(T xn)n∈N has a convergent subsequence. 
Proof : The sequence .(T xn)n∈N is totally bounded, hence has a Cauchy subse-
quence, which converges by virtue of the completeness of the codomain. 
Conversely, if B is bounded, then any sequence .T xn ∈ T B has a convergent, 
hence Cauchy, subsequence; thus T B  is totally bounded (Proposition 6.8).
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An important source of examples of compact operators is the following: 

Proposition 11.11 

If the kernel k is a continuous function .[c, d] × [a, b] → C, then the 
integral operator .T : C[a, b] → C[c, d], 

. Tf (s) :=
∫ b

a

k(s, t)f (t) dt

is compact. 

Proof Let F be the unit ball of functions in .C[a, b]. For any .s ∈ [c, d], and .f ∈ F , 

. |Tf (s)| ⩽ (b − a)‖k‖L∞‖f ‖L∞ ⩽ (b − a)‖k‖L∞ ,

so .(T F )[c, d] is bounded in . C, hence totally bounded. 
As k is continuous on the compact set .[a, b] × [c, d], it is uniformly continuous 

(Proposition 6.17). So for any .ϵ > 0 there is a .δ > 0 such that for .|s1 − s2| < δ, 

. |Tf (s1) − Tf (s2)| ⩽
∫ b

a

|k(s1, t) − k(s2, t)||f (t)| dt ⩽ ϵ(b − a).

This implies that Tf is continuous and, as . δ is independent of f , T F  is equicon-
tinuous. By the Arzelà-Ascoli theorem (Theorem 6.26), T F  is totally bounded in 
.C[c, d], and the integral operator T is compact. ⨅⨆

Note that without the compactness of .[a, b] and .[c, d], the proposition need not 
hold; e.g., the Fourier transform has a continuous kernel but is not compact. 

Fredholm Operators 

Recall that in the linear equation .T x = y, the image space and kernel determine 
to what extent solutions exist and are (non-)unique. In infinite dimensions, the next 
best thing to an invertible operator is one which misses out from being injective and 
surjective by finite dimensional spaces.
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Definition 11.12 

A Fredholm operator is one whose kernel is finite-dimensional and whose 
image space has finite codimension. The index of a Fredholm operator is the 
difference 

. index(T ) := dim ker T − codim im T .

Examples 11.13 

1. (a) Any invertible operator is Fredholm with index 0. 
(b) A continuous projection with a finite-dimensional null space is Fredholm 

with index 0. This follows immediately from .X = kerP ⊕ imP . 
(c) The left-shift operator is Fredholm with index .+1 (since .kerL = {e0}, 

.imL = X). 
2. Let .T : 𝓁1 → 𝓁1 be the diagonal operator defined by . T (an)n∈N := (bnan)n∈N

where .0 < c ⩽ |bn| ⩽ d except for a finite number of indices only; then T is 
Fredholm of index 0. 
Proof : Let  J be the finite set of indices for which .bn = 0. Then . 𝓁1 = M ⊕ N

where M and N consist of those sequences with non-zero coefficients in J and 
. J c respectively. Thus .ker T = M , and .im T = N since for any .(an) ∈ N , let  
.un := an/bn when .n ∈ J c and 0 otherwise; then .(un) ∈ 𝓁1 and .T (un) = (an). 

3. A Fredholm operator .T : X → Y between Banach spaces gives rise to 
decompositions 

. X = ker T ⊕ M, Y = im T ⊕ N,

for some closed linear subspaces M , N by Examples 11.6(1,2,3). The restricted 
operator .R : M → im T , .x I→ T x is then bijective and continuous, and thus an 
isomorphism by the open mapping theorem. 

Proposition 11.14 (Index Theorem) 

The composition of Fredholm operators is again Fredholm, and 

. index(ST ) = index(S) + index(T ).

Proof Let .T ∈ B(X, Y ), .S ∈ B(Y,Z), both Fredholm, with .k := dim(ker T ), 
.l := codim(im S). Y decomposes as 

.Y = N ⊕ im T = ker S ⊕ M = A ⊕ B ⊕ C ⊕ D
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where 

. A := ker S ∩ Nof dimension a,

B := im T ∩ ker S of dimension b,

C := M ∩ N of dimension c,

D := M ∩ im T .

Then .dim ker ST = k + b, .codim im ST = c + l, both finite, and the index of ST is 
.k + b − c − l = (a + b − l) + (k − a − c) = index(S) + index(T ). ⨅⨆

What is the connection with compact operators, one might ask? 

Proposition 11.15 

Let .T ,K ∈ B(X, Y ) be operators on Banach spaces, with T invertible and 
K compact, then .T + K is Fredholm. 

It is shown in Proposition 14.18 that .index(T + K) = index T (I + T −1K) = 0. 

Proof .ker(T + K) is finite-dimensional: Let  .S := T + K . On  .ker S, .K = −T , 
so .−T −1K = I , but the identity map is compact only in finite dimensions. By 
Example 11.6(1), .X = ker S ⊕ M , with M a closed subspace. The restriction map 
.R : M → Y , .x I→ Sx is injective since .ker S ∩ M = 0. 

R satisfies .c‖x‖ ⩽ ‖Rx‖: Suppose, to the contrary, that there are unit vectors 
.xn ∈ M such that .Rxn → 0. Then there is a convergent subsequence, .Kxni

→ y, 
by the compactness of K , and therefore 

. T xni
= Rxni

− Kxni
→ −y

Rxni
→ −RT −1y = 0

so .y = 0, contradicting that . xn are unit. It follows from Example 8.16(3) that . im S =
imR is closed. 

S has a finite codimensional image: Consider the map .Y → Y/ im S, 

. y I→ KT −1y + im S = (S − T )T −1y + im S = −y + im S.

It is compact (for any bounded sequence . yn, .Kyn has a convergent subsequence) 
and surjective. By Proposition 11.9, .Y/ im S is finite dimensional.

⨅⨆
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Proposition 11.16 

An operator .T : X → Y on Banach spaces is Fredholm, if and only if T 
is invertible “up to compact operators”, that is, there exist .K1 ∈ B(X), 
.K2 ∈ B(Y ) compact and .S ∈ B(Y,X), such that 

. ST = I + K1, T S = I + K2.

The operator S is also Fredholm with .index(S) = − index(T ). 

In fact, . K1, . K2 can be taken to be of finite rank. 

Proof Suppose T is Fredholm, so .X = ker T ⊕ M , .Y = im T ⊕ N , for  some  
closed subspaces M , N , with accompanying finite-rank projections P onto . ker T
with kernel M , and Q onto N along .im T . The restriction .R : M → im T is an 
isomorphism. Define .S : Y → X by .Sy := R−1(I − Q)y ∈ M ⊆ X. 

Starting with .y ∈ Y , .y = T u + v ∈ im T ⊕ N (.u, v unique), so 

. T Sy = T R−1T u = T u = (I − Q)y.

Similarly, starting with .x ∈ X, .x = w + z ∈ M ⊕ ker T (.w, z unique), then 

. ST x = R−1T x = w = (I − P)x,

so .ST = I −P , .T S = I −Q. Note that .ker S = N and .im S = M , so  S is Fredholm 
and 

. index(S) = dimN − codimM = codim(im T ) − dim ker T = −index(T )

Conversely, suppose .ST = I + K1, .T S = I + K2, then 

. ker T ⊆ ker ST = ker(I + K1).

Since .I + K1 is Fredholm, its kernel, and thus .ker T , are finite-dimensional. 
Similarly, 

. im T ⊇ im T S = im(I + K2).

Since .I + K2 is Fredholm, .Y/ im(I + K2), and by implication .Y/ im T , are finite-
dimensional. 

⨅⨆
Exercises 11.17 

1. The multiplication operator .(an)n∈N I→ (bnan)n∈N (on . 𝓁1, . 𝓁2, or . 𝓁∞) is compact 
. ⇔ bn → 0.
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2. The operator .V (an) := (0, a0, a1/2, a2/3, . . .) (on . 𝓁1, say) is compact. But the 
shift operators are not. 

3. The operator .T x := ∑N
n=1(φnx)yn, for any .φn ∈ X∗, .yn ∈ Y , is of finite rank. 

In the limit .N → ∞ it gives a compact operator if .
∑∞

n=1 ‖φn‖‖yn‖ < ∞. 
In fact, any operator of finite rank must be of this type .T x = ∑N

n=1(φnx)en with 
.φn ∈ X∗ and . en a basis for .im T . 

4. If S, T are linear of finite rank, then so are . λT and .S + T ; if  S is any linear map, 
then ST and T S  are of finite rank, when defined. 

5. If .T : X → Y is compact, then so is its restriction to a subspace .M ⊆ X, 
.T |M : M → Y . 

6. A compact operator between infinite dimensional Banach spaces is not surjective. 
Indeed, its image cannot contain an infinite dimensional complete subspace, for 
then, the operator can be restricted to a compact operator onto it. 

7. The index of an .m × n matrix is .n − m. 
8. The right-shift operator R (on . 𝓁∞ say) is Fredholm with index . −1. 

11.3 The Dual Space X∗ 

Functionals provide very useful tools in converting vectors to numbers, and vector 
sequences to more amenable numerical sequences. Thus if we are uncertain whether 
.xn → x then we might try to see if .φxn → φx for some continuous functional—if 
it does not converge, neither does . xn. Moreover, . X∗ is a sort of mirror-image, or 
dual, of X: Just as a vector in . Rn can be thought of as a one-column matrix, every 
vector in X can be represented as a linear operator .x : F → X, λ I→ λx; dually, 
functionals are linear operators .φ : X → F, .x I→ φx. It turns out that the space 
. X∗ is at least as “rich” as the normed space X, in the sense that X can be recovered 
from . X∗ as a subspace of . X∗∗. 

Examples 11.18 

1. The functionals of a Hilbert space are in 1–1 correspondence with the vectors by 
the Riesz representation theorem. 

2. Recall that .𝓁1∗ ≡ 𝓁∞, .𝓁2∗ ≡ 𝓁2, and .c∗
0 ≡ 𝓁1 (Propositions 9.3, 9.6, and 9.9). 

3. We will see later that every functional on .B(Cn) is of the type . φT = tr(ST )

where . tr S is the trace of the matrix S (Theorems 15.32 and 10.16). 
4. .(X × Y )∗ ∼= X∗ × Y ∗, via the isomorphism .(φ,ψ) I→ ω where . ω(x, y) :=

φx + ψy. 
5. For .φi, ψ ∈ X∗, .ψ[ ⋂n

i=1 kerφi] = 0 ⇔ ψ ∈ [[φ1, . . . , φn]]. 
Proof : Consider the map .(φ1x, . . . , φnx) I→ ψx, which is well defined since 
.(φix)ni=1 = 0 ⇒ ψx = 0; extend it, by linearity, to a functional .ξ : Fn → F. 
Then . ξ is some row vector .(αi)

n
i=1, that is, .

∑n
i=1 αiφix = ψx.
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One of the main questions that arise in functional analysis is to find a function f 
that satisfies 

. 

∫

A

fgn = an

where . gn are given functions and . an are given coefficients. Two important examples, 
both in practice and historically, are the following: 

The moment problem: to find a probability distribution when all the moments 
.
∫
R

p(t)tn dt = an are given. 
The Fourier coefficient problem: to find a periodic function with given Fourier 
coefficients .

1
2π

∫ 2π
0 e−intf (t) dt = an. 

The problem can be made abstract and more general and potent by thinking of f as 
a functional rather than a function: 

To find a functional . φ which satisfies .φ(xi) = ai for given linearly independent 
elements . xi and scalars . ai . 

Written this way, . φ would be determined on the linear subspace . Y = [[xi]]
by .φ(

∑n
i=1 αixi) = ∑n

i=1 αiai . So the question becomes that of extending the 
functional further to cover all of X, starting from a “fragment” of it on Y . The  
secondary issue of whether such a functional corresponds to a function or not, has 
been positively answered for several classical spaces. 

The next result is a powerful theorem which asserts the existence of such an 
extension, but like many abstract existence-type theorems, the path to construct such 
an extension is not straightforward. 

Theorem 11.19 (The Hahn-Banach Theorem) 

Let Y be a subspace of a normed space X. Then every functional . φ ∈ Y ∗
can be extended to some .φ̃ ∈ X∗, with .‖φ̃‖X∗ = ‖φ‖Y ∗ . 

Proof Let us try to extend . φ from a functional on Y to a functional . φ̃ on .Y + [[v]], 
for a vector .v /∈ Y , by selecting a number .φ̃v := c. Once c is chosen, we are forced 
to set .φ̃(y + λv) := φy + λc, for any .λv ∈ [[v]], to make  . φ̃ a linear extension of 
. φ; and to retain continuity with .‖φ̃‖ = ‖φ‖, we need, for any .y ∈ Y and . λ ∈ F

(.λ /= 0), 

. |φy + λc| = |φ̃(y + λv)| ⩽ ‖φ‖‖y + λv‖
⇔ |φ(y/λ) + c| ⩽ ‖φ‖‖y/λ + v‖
⇔ |φy + c| ⩽ ‖φ‖‖y + v‖, (11.1)
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(since the vectors .y/λ account for all of Y ). To proceed, we consider first the case 
of real scalars and then generalize to the complex field. 

Real normed space: Let us suppose that . φ is real-valued. Thus we are required to 
find a .c ∈ R that satisfies inequality (11.1) 

. − φy − ‖φ‖‖y + v‖ ⩽ c ⩽ −φy + ‖φ‖‖y + v‖, ∀y ∈ Y.

Is this possible? Yes, because for any .y1, y2 ∈ Y , 

. φy1 − φy2 ⩽ |φ(y1 − y2)| ⩽ ‖φ‖‖y1 − y2‖
⩽ ‖φ‖(‖y1 + v‖ + ‖y2 + v‖)

⇒ −φy2 − ‖φ‖‖y2 + v‖ ⩽ −φy1 + ‖φ‖‖y1 + v‖.

Since .y1, y2 are arbitrary vectors in Y , there must be a constant c separating the two 
sides of the inequality, as sought. Choosing any such c gives an extended functional 
with .‖φ̃‖ ⩽ ‖φ‖ (inequality (11.1)); but . φ̃ extends . φ, so .‖φ̃‖ = ‖φ‖. 
Complex normed space: Now consider the case when the functional is complex-
valued. It decomposes into its real and imaginary parts .φ = φ1 + iφ2, but  the two  
are not independent of each other because 

. φ1(iy) + iφ2(iy) = φ(iy) = iφy = iφ1(y) − φ2(y)

so that .φ2(y) = −φ1(iy). Being real-valued, they cannot possibly belong to . Y ∗, but  
they do qualify as functionals on Y when restricted to the real scalars, 

. φ1(y1 + y2) = Re(φ(y1) + φ(y2)) = φ1(y1) + φ1(y2),

∀λ ∈ R, φ1(λy) = Reφ(λy) = λφ1(y),

|φ1(y)| = |Reφy| ⩽ |φy| ⩽ ‖φ‖‖y‖

(for . φ2, substitute . Re with . Im ). So they have real-valued extensions . φ̃i to . Y + [[v]]
that are linear over the real scalars; actually, extending . φ1 to . φ̃1 automatically gives 
the extension for . φ2. That is, define .φ̃(x) := φ̃1(x) − iφ̃1(ix). This is obviously 
linear over the real scalars since . φ̃1 is. It is also linear over the complex scalars 
because 

. φ̃(ix) = φ̃1(ix) − iφ̃1(−x) = i(−iφ̃1(ix) + φ̃1(x)) = iφ̃(x).

Moreover it is continuous since, using the polar form .φ̃x = |φ̃x|eiθx , 

.|φ̃x| = e−iθx φ̃x = φ̃(e−iθx x) = φ̃1(e
−iθx x) ⩽ ‖φ̃1‖‖x‖ = ‖φ1‖‖x‖ ⩽ ‖φ‖‖x‖,
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so that .‖φ̃‖ ⩽ ‖φ‖; in fact, equality holds because the domain of . φ̃ includes that 
of . φ. 

Extending to X: If X can be generated from Y and a countable number of vectors 
. vn, then . φ can be extended in steps, first to some . φ1 acting on .Y + [[v1]], then to 
. φ2 acting on .Y + [[v1]] + [[v2]], etc. The final extension is then .φ̃x := φnx for 
.x ∈ X, whenever .x ∈ Y + [[v1, . . . , vn]]. If these vectors are only dense in X (e.g., 
when X is separable), . φ̃ can be extended further with the same norm via . φ̃(x) :=
limn→∞ φ̃(xn) when .xn → x, as a special case of extending a linear continuous 
function to the completion spaces (Example 8.9(5)). 

But even if X needs an uncountable number of generating vectors, then “Haus-
dorff’s maximality principle” can be applied to conclude that the extension goes 
through to X. Let . M be the collection of functionals . φM acting on linear subspaces 
M containing Y and extending . φ with the same norm 

. M := { φM ∈ M∗ : ∀y ∈ Y, φMy = φy, AND ‖φM‖ = ‖φ‖ }.

By Hausdorff’s maximality principle, . M contains a maximal chain of subspaces 
.{Mα}, where . φα extends . φβ whenever .Mβ ⊆ Mα . But  .E := ⋃

α Mα also allows 
an extension of . φ, namely .ψ(x) := φαx for .x ∈ Mα . It is well-defined because 
.x ∈ Mα ∩ Mβ implies .Mα ⊆ Mβ say, so .φαx = φβx. It is linear and continuous 
with the same norm as . φ, 

. |ψx| = |φαx| ⩽ ‖φα‖‖x‖ = ‖φ‖‖x‖.

Hence . ψ is a maximal extension in . M; in fact, .E = X, for were it to exclude 
any vector v, the first part of the proof assures us of an extension that includes v, 
contradicting the maximality of . ψ . ⨅⨆

The next proposition is used repeatedly throughout the rest of the book. 

Proposition 11.20 

For any .x /= 0, there is a unit .φ ∈ X∗ with .φx = ‖x‖. 
More generally, if M is a closed linear subspace and .x /∈ M , then there is 
a functional .φ ∈ X∗ with .‖φ‖ = 1, such that 

. φM = 0, φx /= 0.

Proof If .x /= 0, there are non-zero functionals on . [[x]], such as .ψ(λx) := λc (. c /=
0); in particular, to satisfy the requirement .‖φ‖ = 1, choose .φ(λx) := λ‖x‖. By the  
Hahn-Banach theorem, it has an extension to all of X, with the same norm.
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More generally, given .x /∈ M , form the linear subspace 

. Y := [[x]] + M = { λx + v : λ ∈ C, v ∈ M }.

. Y ∗ contains the functional defined by .ψ(λx + v) := λ‖x + M‖. It clearly satisfies 

.φM = 0 (.λ = 0) and is linear and continuous since, for .vi, v ∈ M , .λi, λ ∈ F, 

. ψ(λ1x + v1 + λ2x + v2) = (λ1 + λ2)‖x + M‖ = ψ(λ1x + v1) + ψ(λ2x + v2),

ψ(μ(λx + v)) = λμ‖x + M‖ = μψ(λx + v),

|ψ(λx + v)| = |λ|‖x + M‖ = ‖λx + M‖ ⩽ ‖λx + v‖

and in fact .‖ψ‖ = 1, 

. 
|ψ(x + vn)|
‖x + vn‖ = ‖x + M‖

‖x + vn‖ → 1

for .vn ∈ M chosen so that convergence of .‖x + vn‖ → ‖x + M‖ occurs 
(Proposition 8.20). So . ψ can be extended to a functional . φ on all of X with the 
same norm. 

⨅⨆
The Hahn-Banach theorem and its corollaries show that there is a ready supply of 

functionals on normed spaces; admittedly, this does not sound exciting, but consider 
that there are vector spaces (not normed), such as .Lp(R) with .p < 1, that have only 
trivial continuous functionals. For our purposes, its greater importance lies in its 
ability to show a certain duality between X and its space of functionals . X∗. For  
example, the dual of the statement .‖φ‖ = sup

‖x‖=1
|φx| is: 

Proposition 11.21 

. ‖x‖ = sup
‖φ‖=1

|φx|, ‖T ‖ = sup
‖φ‖=1=‖x‖

|φT x|

Proof .|φx| ⩽ ‖x‖ for all unit .φ ∈ X∗. But the functional just constructed satisfies 
.φx = ‖x‖ and .‖φ‖ = 1, so .sup‖φ‖=1 |φx| = ‖x‖. 

This in turn allows us to deduce 

.‖T ‖ = sup
‖x‖=1

‖T x‖ = sup
‖x‖=1

sup
‖φ‖=1

|φT x|.

⨅⨆
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Proposition 11.22 (Separating Hyperplane Theorem) 

If .x ∈ X does not lie in the closed ball .Br(0), then there is a hyperplane 
.φ−1α which separates the two, that is, 

. ∃φ ∈ X∗, ∃α > 0, ∀y ∈ Br(0), |φy| < α < |φx|.

Proof Let .φ : [[x]] → F, .φ(λx) := λ‖x‖; its norm is 1 and .φx = ‖x‖ > r . It can  
be extended to a functional on X with the same norm. Hence for any y in the closed 
ball, .|φy| ⩽ ‖φ‖‖y‖ ⩽ r . With .α := λ0‖x‖ and .r/‖x‖ < λ0 < 1, the hyperplane is 
then .φ−1α = λ0x + kerφ. ⨅⨆

Note: The proof remains valid when .Br(0) is replaced by a closed balanced 
convex set C since .C + Bϵ(0) determines a semi-norm in which it is the open unit 
ball (Exercise 7.8(10)). 

Examples 11.23 

1. The Hahn-Banach theorem and its corollaries are evident for Hilbert spaces: 

(a) Any functional . φ on a closed subspace M corresponds to a vector .x ∈ M , 
and hence has the obvious extension .φ̃ := 〈x, ·〉 on H . 

(b) .x = 0 ⇔ ∀y ∈ H, 〈y, x〉 = 0. 
(c) .‖x‖ = sup

‖y‖=1
|〈x, y〉| = sup

‖y∗‖=1
|y∗x|, . ‖T ‖ = sup

‖x‖=1=‖y‖
|〈y, T x〉|

(Exercise 10.17(1)). 
(d) One hyperplane separating x from .Br(0) is .αx + x⊥, . r

‖x‖ < α < 1. 

2. Operators do not extend automatically as functionals do: 

(a) If M is a complemented closed subspace of X, then every operator . T : M →
Y can be extended continuously to .X → Y . 

(b) If the identity map I on the closed subspace M can be extended to .X → M , 
then the extension is a projection and M is complemented in X. 

Proof : Let  .X = M ⊕ N with .M,N closed subspaces, and define . T̃ (u +
v) := T u for .u ∈ M , .v ∈ N . Then . ‖T̃ (u + v)‖ = ‖T u‖ ⩽ c‖T ‖‖u + v‖
(Proposition 11.5). 
If .Ĩ : X → M is an extension of .I : M → M , then .Ĩ 2x = I Ĩx = Ĩ x, so it is a  
projection in .B(X). X then splits up as .ker Ĩ ⊕ im Ĩ , where .im Ĩ = M . 

3. If X is not separable then neither is . X∗. But recall that the separable space . 𝓁1 has 
the non-separable dual . 𝓁∞. 
Proof : Assume . X∗ separable, with .φ1, φ2, . . . dense in it. By definition of their 
norm, there must be unit vectors . xn such that for a fixed .ϵ > 0, 

.|φnxn| > ‖φn‖ − ϵ.
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The claim is that .M := [[xn]] is equal to X, making X separable. For if not, then 
there is a unit functional .ψ ∈ X∗ such that .ψM = 0; and there is a . φn close to 
it, .‖ψ − φn‖ < ϵ, so  

. |φnxn| = |(ψ − φn)xn| ⩽ ‖ψ − φn‖ < ϵ.

Combining the two inequalities yields .‖φn‖ < 2ϵ, and this contradicts that . φn is 
within . ϵ of the unit functional . ψ . 

4. A Banach space, whose dual is separable, is embedded in . 𝓁∞. 
Proof : Let  . φn be dense in .BX∗ and let .T : X → 𝓁∞ be defined by . T x :=
(φnx)n∈N. It is linear, and an isometry: 

. ‖(φnx)‖∞ = sup
n

|φnx| = sup
‖φ‖⩽1

|φx| = ‖x‖.

Note: The Banach-Mazur theorem states that every real separable Banach space 
is embedded in .C[0, 1], and thus in . 𝓁∞. 

5. Banach Limits. The functional Lim on c (Exercise 9.4(1)) can be extended (non-
uniquely) to a functional on . 𝓁∞. Even better, let .Y := im(L − I ), where L is 
the left-shift operator. Note that Y contains . c00 (prove!) and hence . c0, but not . 1. 
Extend the functional .Lim 1 := 1 to Y by zero, i.e., .Lim(a1+ y) = a for .y ∈ Y , 
and then to all of . 𝓁∞ by the Hahn-Banach theorem. Such a Banach limit also 
satisfies .Lim(an+1) = Lim(an), as well as  .0 ⩽ x ⇒ 0 ⩽ Lim x. For example, 
taking .x := (0, 1, 0, 1, . . .), then .Lim x = 1

2 (Lim x + LimLx) = 1
2Lim 1 = 1

2 . 

Annihilators 

Let us explore the duality between X and . X∗ more closely. The connection between 
the two is the following construction, which allows us to shuttle between subspaces 
of X and those of . X∗. It is the generalization of the orthogonal subspaces in Hilbert 
spaces which, under the Riesz correspondence J , can be rewritten in terms of 
functionals, 

.A⊥ = { x ∈ H : ∀a ∈ A, 〈x, a〉 = 0 } J−−→ { φ ∈ H ∗ : ∀a ∈ A, φa = 0 }.
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Definition 11.24 

The annihilator of a set of vectors .A ⊆ X is the set of functionals 

. A⊥ := { φ ∈ X∗ : ∀x ∈ A, φx = 0 }.

Similarly, given a set of functionals .Ф ⊆ X∗ then the pre-annihilator is 

. 
⊥Ф := { x ∈ X : ∀φ ∈ Ф, φx = 0 }.

Easy Consequences 
1. .0⊥ = X∗, .X⊥ = 0. 
2. .A ⊆ B ⇒ B⊥ ⊆ A⊥. 
3. .A ⊆ ⊥Ф ⇔ ФA = 0 ⇔ Ф ⊆ A⊥. 

The properties of .A⊥ generalize those for Hilbert spaces, such as Proposi-
tion 10.9 and Example 10.14(4). 

Proposition 11.25 

. A⊥ is a closed linear subspace of . X∗ with the following properties: 

(i) .(A ∪ B)⊥ = A⊥ ∩ B⊥ and .A⊥ + B⊥ ⊆ (A ∩ B)⊥, 
(ii) .⊥(A⊥) = [[A]], 
(iii) .[[A]] is dense in .X ⇔ A⊥ = 0. 

Proof That . A⊥ is a linear subspace is evident from 

. ∀φ,ψ ∈ A⊥, a ∈ A, λ ∈ F, (λφ + ψ)a = λφa + ψa = 0.

Let .φn → φ with .φn ∈ A⊥; for any .a ∈ A, .0 = φna → φa, so  .φ ∈ A⊥ and . A⊥ is 
closed in . X∗. 
(i) Clearly, .(A ∪ B)⊥ is a subset of .A⊥ and . B⊥, while .φA = 0 = φB imply 
.φ(A∪B) = 0. If .φ ∈ A⊥, .ψ ∈ B⊥, and .x ∈ A∩B, then .(φ+ψ)x = φx+ψx = 0. 

(ii) .⊥(A⊥) is a closed linear subspace of X (Exercise 8 below), and it contains A, 
since for .a ∈ A and any .φ ∈ A⊥, .φa = 0, so  .a ∈ ⊥(A⊥). Thus . [[A]] ⊆ ⊥(A⊥)

(Proposition 7.11). 
Conversely, let .x /∈ [[A]]. Then by Proposition 11.20, there is a functional . φ

satisfying both .φ[[A]] = 0, hence .φ ∈ A⊥, and .φx /= 0, hence .x /∈ ⊥(A⊥). 

(iii) Consequently, .[[A]] is dense precisely when .⊥(A⊥) = [[A]] = X, and this is 
equivalent to .A⊥ = 0 (.∀x ∈ X,φx = 0 ⇔ φ = 0). ⨅⨆
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The Double Dual X∗∗ 

A functional . φ is an assignment of numbers . φx as the vectors x vary in X. Suppose 
we fix x and vary . φ instead, .φ I→ φx, what kind of object do we get? It is a mapping 
from . X∗ to . F, which is a possible candidate for a “double” functional in . X∗∗. 

Proposition 11.26 

For any .x ∈ X, the  map .x∗∗φ := φx is a functional on . X∗, and .x I→ x∗∗ is 
a linear isometry, embedding X in . X∗∗. 

The map .x∗∗ is not .(x∗)∗, as is the case in Hilbert spaces. There is no 
correspondence between X and . X∗ in general Banach spaces. 

Proof The mapping .x∗∗ : X∗ → F, .φ I→ φx, is clearly linear in . φ, and continuous 
with .|x∗∗φ| = |φx| ⩽ ‖x‖‖φ‖, i.e., .x∗∗ ∈ X∗∗ with .‖x∗∗‖ ⩽ ‖x‖. 

Hence we can form the map .J : X → X∗∗, defined by .J (x) := x∗∗. It is linear, 
since for any .φ ∈ X∗, .x, y ∈ X, .λ ∈ F, 

. (x + y)∗∗(φ) = φ(x + y) = φx + φy = x∗∗(φ) + y∗∗(φ),

(λx)∗∗(φ) = φ(λx) = λ φx = λ x∗∗(φ).

J is isometric by Proposition 11.21, .‖x∗∗‖ = sup
‖φ‖=1

|x∗∗φ| = sup
‖φ‖=1

|φx| = ‖x‖. ⨅⨆

Examples 11.27 

1. Given any normed space X, the double dual .X∗∗ is a Banach space. Hence the 
closure . JX, being a closed linear subspace of . X∗∗, is itself a Banach space. It is 
isomorphic to the completion of X, denoted by . ̃X. 

2. Several Banach spaces, called reflexive spaces, have the property that the 
mapping .x I→ x∗∗ is an isomorphism. Examples include . 𝓁p (.p > 1) and all 
Hilbert spaces (Proposition 10.16). 

3. But in general, X need not be isomorphic to . X∗∗, even if  X is complete. For 
example, some elements of .(𝓁1)∗∗ are not of the type . x∗∗ for any .x ∈ 𝓁1. 

4. In this embedding, .A ⊂∼ A⊥⊥ (since for .x ∈ A and .φ ∈ A⊥, .x∗∗φ = φx = 0, so  
.x∗∗ ∈ A⊥⊥). Note that .A⊥⊥ is always a closed linear subspace even if A isn’t. 
Question: if M is a closed linear subspace is it necessarily true that .M ∼= M⊥⊥? 

5. Since a functional is determined by its values on the unit sphere, we can think of 
the double-functional . x∗∗ as a continuous function on the unit sphere in . X∗; its 
norm is none other than its maximum value there, .‖x∗∗‖ = sup‖φ‖=1 |φx|. Hence 
the vectors of any normed space can be thought of as continuous functions on a 
(possibly infinite-dimensional) sphere.
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Exercises 11.28 

1. . X∗distinguishes points: If .x /= y then there is a .φ ∈ X∗ such that .φx /= φy. 
2. If .x /∈ [[y]], find a functional on X with .φx = 1 and .φy = 0. 
3. For normed spaces, .X∗ = 0 ⇔ X = 0. 
4. Given the functional .φx := x, .x ∈ R, find all equal-norm extensions to . R2 with 

the 1-norm. 
5. Given .x ∈ X, the  set .{ φ ∈ X∗ : φx = ‖x‖ } is non-empty and convex. 
6. In a normed space of dimension bigger than n, for any vectors .x1, . . . , xn, there 

exists a unit vector y such that .‖y − xi‖ ⩾ ‖xi‖, .i = 1, . . . , n. 
(Hint: Consider unit . φi , .φixi = ‖xi‖.) 

7. Show that if .{x}⊥ = X∗ then .x = 0, and if .{x}⊥ = 0 then .X ∼= F or .X = 0. 
8. Show .

⊥Ф is a closed linear subspace of X. 
9. .(⊥Ф)⊥ need not equal .[[Ф]]. For example, take .Ф := { δn : n ∈ N } in . 𝓁1∗. 

10. Let M be a closed subspace of a normed space X. The following maps are 
isomorphisms 

. 

M⊥ → (X/M)∗ X∗/M⊥ → M∗
φ I→ ψ φ + M⊥ I→ φ|M.

ψ(x + M) := φx,

Hence, .dimM⊥ = codimM and .codimM⊥ = dimM , when finite. 
11. ✶ Let Y be a closed subspace of the Banach space X. Let .jX : x I→ x∗∗ ∈ X∗∗, 

.jY : y I→ y∗∗ ∈ Y ∗∗ and let .J : Y ∗∗ → X∗∗ be defined by .JΨ (φ) := Ψ φ|Y . 
(a) Use the Hahn-Banach theorem to show that J is an isometry, such that 

.jX(y) = J ◦ jY (y) for .y ∈ Y . 
(b) If .x /∈ Y , then .jX(x) /∈ im J (use Proposition 11.20). 
(c) If X is reflexive then so is Y , since for any .Ψ ∈ Y ∗∗, .JΨ = jX(y). 
(d) Deduce that . 𝓁1 and . c0 are not embedded in . 𝓁2. 

11.4 The Adjoint T ⏉

Recall the adjoint of an operator on Hilbert spaces .T ∗ : Y → X defined by the 
identity .〈T ∗y, x〉 = 〈y, T x〉. Is there an analogous definition that can be applied 
to Banach spaces? First, one needs to recast the defining relation, replacing inner 
products by functionals, .(T ∗y)∗x = y∗T x. Although not exactly the same thing, 
the definition .(T ⏉φ)x := φT x captures the essentials of this identity in terms of 
functionals. The relation between them is .T ∗ : y I→ y∗ I→ T ⏉y∗ = u∗ I→ u. 
More formally, using the Riesz correspondences .JY : Y → Y ∗ and .JX : X → X∗, 
.T ∗ := J−1

X T ⏉JY .
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X Y 

X Y  
T 

T 

JX JY 
T 

. T ∗ is sometimes called the Hilbert adjoint to distinguish it from the adjoint . T ⏉. 

Definition 11.29 

The adjoint1 of an operator .T : X → Y is .T ⏉ : Y ∗ → X∗ defined by 

. (T ⏉φ)x := φ(T x) for any φ ∈ Y ∗ and x ∈ X.

That .T ⏉φ : X → F is linear and continuous can be seen from 

. (T ⏉φ)(x + y) = φT (x + y) = φT x + φTy = (T ⏉φ)(x) + (T ⏉φ)(y)

(T ⏉φ)(λx) = φT (λx) = λφT x = λ(T ⏉φ)(x)

|(T ⏉φ)x| = |φ(T x)| ⩽ ‖φ‖‖T x‖ ⩽ ‖φ‖‖T ‖‖x‖. (11.2) 

Proposition 11.30 

. T ⏉ is linear and continuous when T is, and the map .T I→ T ⏉ is a linear 
isometry from .B(X, Y ) into .B(Y ∗, X∗), 

. (S + T )⏉ = S⏉ + T ⏉, (λT )⏉ = λT ⏉, ‖T ⏉‖ = ‖T ‖.

When defined, .(ST )⏉ = T ⏉S⏉. 

Proof Linearity of . T ⏉: For all .x ∈ X, .φ,ψ ∈ Y ∗, .λ ∈ F, 

.T ⏉(φ + ψ)(x) = (φ + ψ)(T x) = φT x + ψT x = (T ⏉φ)x + (T ⏉ψ)x,

T ⏉(λφ)x = λφ T x = (λT ⏉φ)x.

1 There is no standard name or notation for the adjoint operator. It has also been called the dual or 
transpose and denoted by various symbols such as . T ', . T ∗, . T ×, . T ♯ etc. 
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That . T ⏉ is continuous follows from .‖T ⏉φ‖ ⩽ ‖T ‖‖φ‖ by (11.2). 
The other assertions are implied by the following statements, true for all . x ∈ X

and all .φ ∈ Y ∗: 

. (S + T )⏉φ x = φ(Sx + T x) = φSx + φT x = (S⏉φ + T ⏉φ)x,

(λT )⏉φ x = φ(λT x) = λφT x = (λT ⏉φ)x.

Using Proposition 11.21, 

. ‖T ‖ = sup
‖x‖=1

sup
‖φ‖=1

|φT x| = sup
‖φ‖=1

sup
‖x‖=1

|(T ⏉φ)x| = sup
‖φ‖=1

‖T ⏉φ‖ = ‖T ⏉‖.

Finally, when .T ∈ B(X, Y ), .S ∈ B(Y,Z), and any .ψ ∈ Z∗, 

. (ST )⏉ψ = ψST = (S⏉ψ)T = T ⏉S⏉ψ.

⨅⨆
Examples 11.31 

1. .0⏉ = 0, .I⏉ = I . 
2. The adjoint of a (complex) matrix is its transpose, with the columns becoming 

the rows, .φT x = y · T x = (T ⏉y) · x, e.g., 

. 

(
y1

y2

)

·
(

a b c

d e f

)
⎛

⎝
x1

x2

x3

⎞

⎠ =
⎛

⎝
a d

b e

c f

⎞

⎠
(

y1

y2

)

·
⎛

⎝
x1

x2

x3

⎞

⎠ , ∴
(

a b c

d e f

)⏉
=

⎛

⎝
a d

b e

c f

⎞

⎠ ,

and generally, .
∑

i

(
yi

∑
j Tij xj

) = ∑
j

(∑
i Tij yi

)
xj , so .T ⏉

j i = Tij . 

3. ▶ To find the adjoint of an operator T on the sequence spaces . 𝓁1, . 𝓁2, or  . c0, the  
effect of T on a vector . x needs to reevaluated as an effect on a functional . φ. But,  
identifying .(𝓁1)∗ with . 𝓁∞, etc., the adjoint . T ⏉ can be thought of as a mapping on 
sequences . y: 

. φT x = y · T x = (T ⏉y) · x.

For example, to show that the adjoint of the operator .T (an) := (a1, 0, 0, . . .) in 
.B(𝓁1) is .T ⏉(bn) = (0, b0, 0, . . .) in .B(𝓁∞), consider 

.y · T x = (b0, b1, b2, . . .) · (a1, 0, 0, . . .) = b0a1

= (0, b0, 0, . . .) · (a0, a1, a2, . . .).
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4. ▶ The adjoint of the left-shift operator is the right-shift operator, on . 𝓁p or . c0: 

. φLx = y · Lx =
∞∑

n=0

bnan+1 = (0, b0, b1, . . .) · (a0, a1, a2, . . .) = (Ry) · x.

5. The adjoint of the Fourier coefficients operator .F : L1[0, 1] → c0(Z) is . F⏉ :
𝓁1(Z) → L∞[0, 1] defined by .F⏉(an) = ∑

n ane
−2πint . (Compare with . F∗, 

Exercise 10.35(11)) 
Proof : For .y = (an)n∈Z ∈ 𝓁1(Z), 

. y · Ff =
∑

n∈Z
an

∫ 1

0
e−2πintf (t) dt

=
∫ 1

0

( ∑

n∈Z
ane

−2πint
)
f (t) dt = (F⏉y) · f

with the placement of the sum in the integral justified by . 
∑

n ane
−2πint ∈

L∞[0, 1].
✶ Note that .𝓁1 ⊂ c0, so the composition .F⏉F is not defined on all of .L1[0, 1], 

i.e., rebuilding an .L1-function from its Fourier coefficients is not guaranteed 
to converge uniformly back to the function, vividly demonstrated by the Gibbs 
phenomenon. However, with this machinery in place, it is now easy to prove part 
of Dirichlet’s assertion for periodic functions (see Exercise 9.37(3)): 

. F⏉F : C2[0, 1] → c2(Z) ⊂ 𝓁1 → L∞[0, 1].

6. ✶ If the codomain of .T : X → Y is reduced to the linear subspace .im T , the  
image of . T ⏉ remains the same. 
Proof : Let  .M := im T and let .T̃ : X → M , .T̃ x := T x, be the new operator; 
then .T̃ ⏉ : M∗ → X∗. Any functional .φ ∈ M∗ can be extended to .φ̃ ∈ Y ∗, and 
for all .x ∈ X, 

. (T ⏉φ̃)x = φ̃T x = φT x = φT̃ x = (T̃ ⏉φ)x.

Hence .im T̃ ⏉ ⊆ im T ⏉. Conversely, any .φ ∈ Y ∗ can be restricted to .im T , and 
the same reasoning shows the opposite inclusion. 

7. For a Hilbert space H , every operator .T ∈ B(H) is paired up with its adjoint 
.T ∗ ∈ B(H). This fact makes .B(H) much more special than spaces of operators 
on Banach spaces, as we shall see later in Chap. 15 on .C∗-algebras. 

The Hilbert space identity .ker T ∗ = (im T )⊥ generalizes to Banach spaces, but 
the closure of .im T ⏉ is not always .(ker T )⊥.
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Proposition 11.32 (Closed Range Theorem) 

If .X, Y are Banach spaces and .T ∈ B(X, Y ), then 

. ker T ⏉ = (im T )⊥, ker T = ⊥ im T ⏉,

im T = ⊥ ker T ⏉, im T ⏉ ⊆ (ker T )⊥.

Moreover, .im T ⏉ = (ker T )⊥ ⇔ im T is closed . ⇔ im T ⏉ is closed. 

Proof The central statement is, for .T ∈ B(X, Y ), 

. φT x = (T ⏉φ)x.

If these quantities vanish for all .x ∈ X, then the two sides of the equation state 
.φ ∈ (im T )⊥ and .φ ∈ ker T ⏉, which must therefore be logically equivalent. If they 
vanish for all .φ ∈ Y ∗, then they state .x ∈ ker T and .x ∈ ⊥ im T ⏉ respectively. 

We have already seen that .Ф ⊆ A⊥ ⇔ A ⊆ ⊥Ф; so the statements in the 
second line of the proposition follow from the identities in the top line, using first 
.Ф = ker T ⏉, .A = im T , and secondly .A = ker T , .Ф = im T ⏉. Moreover, by 
Proposition 11.25, 

. im T = ⊥(im T ⊥) = ⊥(ker T ⏉).

.im T closed . ⇒ im T ⏉ closed: To show that equality holds in .im T ⏉ ⊆ (ker T )⊥, 
let .φ ∈ (ker T )⊥, i.e., .T x = 0 ⇒ φx = 0. T can be considered as a surjective 
operator .T : X → im T , so the mapping .φ̃ : T x I→ φx is a well-defined functional 
on .im T (Exercise 11.7(4)). It can be extended to a functional .ψ ∈ Y ∗ by the Hahn-
Banach theorem. 

X 

im T 

T φ 

φ̃ 

Then, for all .x ∈ X, 

. φx = φ̃T x = ψT x = (T ⏉ψ)x,

so .φ = T ⏉ψ and .im T ⏉ is equal to the closed subspace .(ker T )⊥.



11.4 The Adjoint T ⏉ 275

.im T ⏉ closed . ⇒ im T closed: Define .T̃ : X → im T =: M , .T̃ x := T x; by  
Example 11.31(6) above and the fact that the annihilator of .im T̃ in M is 0, it follows 
that . ̃T ⏉ is 1–1 and has the closed image .im T ⏉. Hence, for all .φ ∈ M∗, . ‖T̃ ⏉φ‖ ⩾
c‖φ‖ (Proposition 11.3). Now .C := T̃ BX is a closed balanced convex subset of Y , 
so by the separating hyperplane theorem, any .y /∈ C can be separated from it by 
means of a functional .ψ ∈ Y ∗, 

. ∀x ∈ B1(0), |ψT̃ x| ⩽ r < |ψy|.

Note that .‖T̃ ⏉ψ‖ ⩽ r . Then 

. r < |ψy| ⩽ ‖ψ‖‖y‖ ⩽ 1
c
‖T̃ ⏉ψ‖‖y‖ ⩽ r

c
‖y‖

and .‖y‖ > c. This implies that .T̃ BX contains the ball .Bc(0). But we have already 
seen in the proof of the open mapping theorem that when this is the case, then . ̃T BX

contains some open ball .Bϵ(0) of M . This can only be true if . ̃T is onto, that is, 
.im T̃ = im T is equal to the closed space M . 

⨅⨆

Proposition 11.33 (Schauder’s Theorem) 

If T is compact then so is its adjoint . T ⏉. 

Proof Let .T : X → Y be a compact operator, so the image of the unit ball .T BX is 
totally bounded in Y , that is, for arbitrarily small .ϵ > 0, it can be covered by a finite 
number of balls .Bϵ(T xi) where .x1, . . . , xn ∈ BX. We want to show that . T ⏉ maps 
the unit ball of functionals .BY ∗ ⊂ Y ∗ to a totally bounded set of functionals in . X∗. 

The linear map .S : Y ∗ → F
n defined by .Sψ := (ψT x1, . . . , ψT xn) is 

continuous (because T is, and n is finite), so compact of finite rank. Hence .SBY ∗ is 
totally bounded in . Fn and can be covered by balls .Bϵ(Sψj ) for a finite number of 
.ψj ∈ BY ∗ . 

We now show that balls of radius . 4ϵ centered at .T ⏉ψj cover .T ⏉BY ∗ . For any 
.ψ ∈ BY ∗ and any .x ∈ BX, there are .T xi and .Sψj close to T x  and . Sψ respectively, 
resulting in 

. |ψT x − ψjT x| ⩽ |ψT x − ψT xi | + |ψT xi − ψjT xi | + |ψjT xi − ψjT x|
⩽ ‖ψ‖‖T x − T xi‖ + ‖Sψ − Sψj‖Fn + ‖ψj‖‖T xi − T x‖
< ‖ψ‖ϵ + ϵ + ‖ψj‖ϵ
< 3ϵ

So .‖T ⏉ψ − T ⏉ψj‖ ⩽ 3ϵ, and .T ⏉BY ∗ ⊆ ⋃
j B4ϵ(T

⏉ψj ).
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X Y 

X Y 

T 

T 

B X 

x i T x i 

T B X 

T B Y 

j 

B Y 

⨅⨆
Exercises 11.34 

1. The adjoint of a multiplier operator .My(x) := yx, where .My ∈ B(𝓁1), is  
.My ∈ B(𝓁∞). 

2. The adjoint of a finite-rank operator .T x := ∑N
n=1(φnx)en is another finite-rank 

operator .T ⏉ψ = ∑N
n=1(ψen)φn. 

3. Taking the adjoint is continuous: If .Tn → T then .T ⏉
n → T ⏉. 

4. T maps a linear subspace M onto T M; show . T ⏉ maps .(T M)⊥ into . M⊥. So, if 
M is T -invariant, i.e., .T M ⊆ M , then .M⊥ is .T ⏉-invariant. 

5. ✶ In the embedding of X in . X∗∗, show that .T ⏉⏉ : X∗∗ → Y ∗∗ is an extension 
of .T : X → Y in the sense that .T ⏉⏉x∗∗ = (T x)∗∗. 

6. . T ⏉ is 1–1 . ⇔ im T is dense in Y ; and .im T ⏉ is dense in .X∗ ⇒ T is 1–1. 
7. Let .T ∈ B(X, Y ), with .X, Y Banach spaces, 

. 

T is an embedding ⇔ T ⏉ is surjective,
T ⏉ is an embedding ⇔ T is surjective,
T is an isomorphism ⇔ T ⏉ is an isomorphism, with (T ⏉)−1 = (T −1)⏉.

8. A necessary condition for the equation .T x = y to have a solution in x is that y 
have the property .T ⏉φ = 0 ⇒ φy = 0. When is it also sufficient? 

9. If P is a projection, then so is . P ⏉, with kernel .(imP)⊥ and image .(kerP)⊥. 
Deduce that for closed complemented subspaces .M,N , 

.X = M ⊕ N ⇒ X∗ = N⊥ ⊕ M⊥.
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10. If T is a Fredholm operator, then so is . T ⏉ and 

. index(T ⏉) = − index(T ).

Moreover, .index(T ) = dim ker T − dim ker T ⏉. (Hint: Exercise  11.28(10).) 

11.5 Strong and Weak Convergence 

We have already encountered two types of convergence for operators .Tn ∈ B(X, Y ), 
to which can be added yet another, weaker, type: 

(i) Convergence in norm 

. Tn → T ⇔ ‖Tn − T ‖ → 0,

(ii) Strong, or pointwise, convergence 

. ∀x ∈ X, Tnx → T x ⇔ ∀x ∈ X, ‖Tnx − T x‖Y → 0,

(iii) Weak convergence 

. Tn ⇀ T ⇔ ∀x ∈ X, ∀φ ∈ Y ∗, φTnx → φT x.

Examples 11.35 

1. ▶ Convergence in norm is “stronger” than pointwise convergence, since for each 
.x ∈ X, 

. ‖Tnx − T x‖ = ‖(Tn − T )x‖ ⩽ ‖Tn − T ‖‖x‖ → 0.

But the converse is false: it is possible to have strong convergence without 
convergence in norm. For example, let .δk : 𝓁1 → C be defined by .δk(an) := ak; 
then .δkx → 0 as .k → ∞ for each .x ∈ 𝓁1, but .‖δk‖ = 1. 
Similarly, when defined on .c ⊂ 𝓁∞, . δk converge pointwise to .Lim yet .δk /→ Lim, 
since .δk(an) = ak → limn→∞ an, but .δk = e⏉

k can converge only if . ek converge 
in . 𝓁1. 

2. Another example is the projection operator defined by n left shifts followed by 
n right shifts, .Tn := RnLn : 𝓁1 → 𝓁1. It converges pointwise to the 0 operator, 
since for each .x = (ai)i∈N ∈ 𝓁1, .‖RnLnx‖ = ∑∞

i=n |ai | → 0. However there 
are sequences, such as .x := en, for  which .Tnx = x, so that .‖Tn‖ = 1 /→ 0. 

3. If . Tn converge pointwise, .∀x, Tnx → T x, it does not follow that . T ⏉
n converge 

pointwise, .∀φ, T ⏉
n φ → T ⏉φ. For example, in . 𝓁1, .Lnx → 0 for the left-shift 

operator L; but .Rnx /→ 0 in . 𝓁∞. Another example is .Tn(ai) := (an, 0, 0, . . .).
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It often happens that a map is defined as the pointwise limit of a sequence of 
operators, .T (x) := limn→∞ Tnx, assuming this is defined for all .x ∈ X. It is then 
natural to ask what properties does T enjoy: That it is linear is easy to prove, but 
is it also necessarily continuous? The answer is yes when X is a Banach space, 
as implied by the following stronger assertion, one of the pillars of Banach space 
theory: 

Theorem 11.36 (Uniform Boundedness Theorem) 

For a Banach space X, a normed space Y , and .Ti ∈ B(X, Y ), 

. (∀x ∈ X, ∃Cx > 0, ∀i, ‖Tix‖ ⩽ Cx) ⇒ ∀i, ‖Ti‖ ⩽ C.

The index set of i need not be countable. 
Proof Suppose that . Ti are not uniformly bounded; then there is a sequence of 
operators from this family, .(Tn)n∈N, such that .‖Tn‖ ⩾ an (.a > 1). For each such 
operator, there are unit vectors .±xn such that .‖Tnxn‖ > ‖Tn‖ − 1. Whatever signs 
are chosen for . xn, the series 

. x0 + x1

r
+ · · · + xn

rn

converges absolutely to some vector y, when .r > 1; in fact, the remainder term is 
at most 

. ‖zn‖ =
∥
∥
∥
∑

k>n

xk

rk

∥
∥
∥ ⩽

∑

k>n

1

rk
= 1

(r − 1)rn
.

Now, for any vectors . u, v, either .‖u + v‖ or .‖u − v‖ is larger than .‖v‖ (Exer-
cise 7.8(1)), so the sign of . xn can be chosen so that 

. ‖ (Tnx0 + · · · + r−(n−1)Tnxn−1)︸ ︷︷ ︸
u

+ r−nTnxn︸ ︷︷ ︸
v

‖ ⩾ ‖ r−nTnxn︸ ︷︷ ︸
v

‖.

. ∴ ‖Tny‖ = ‖Tnx0 + · · · + r−nTnxn + Tnzn‖
⩾ r−n‖Tnxn‖ − ‖Tn‖‖zn‖

⩾ ‖Tn‖ − 1

rn
− ‖Tn‖

(r − 1)rn

⩾ r − 2

r − 1

an

rn
− 1

rn
→ ∞ as n → ∞

for .r = 3 and .a = 4, say. Thus there exists a .y ∈ X such that .‖Tny‖ → ∞, which 
is the negation of the hypothesis. ⨅⨆
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Corollary 11.37 

If .Tn ∈ B(X, Y ) with X a Banach space, and .Tnx → T (x) for all x, then 
T is linear and continuous, 

. ‖T ‖ ⩽ lim inf
n

‖Tn‖.

Proof T is necessarily linear, by continuity of addition and scalar multiplication 
(see the proof of Theorem 8.7). Any convergent sequence is bounded, so . ‖Tnx‖
is bounded for each x, from which follows that .∀n, ‖Tn‖ ⩽ C, by the uniform 
boundedness theorem. 

If we now choose a subsequence of . Tn, for  which  .‖Tn‖ → α := lim infn ‖Tn‖, 
and take the limit .n → ∞ of .‖Tnx‖ ⩽ ‖Tn‖‖x‖, we get .‖T x‖ ⩽ α‖x‖ and 
.‖T ‖ ⩽ α. ⨅⨆
Examples 11.38 

1. If the coefficients . an are such that .
∑∞

n=0 anbn converges for any sequence . x =
(bn)n∈N ∈ 𝓁p, then .(an)n∈N ∈ 𝓁p'

. 
Proof : The numbers .φNx := ∑N

n=0 anbn converge to .φ(x) := (an) · (bn) as 
.N → ∞; hence by the corollary, . φ is a functional on . 𝓁p. 

2. A common error is to define or prove .T x = ∑
n∈N Tnx for all x and then deduce 

.T = ∑
n∈N Tn. It is true that two functions are the same, .f = g, when . f (x) =

g(x) for all .x ∈ X, but the point is that the meaning of the limit in the sum . 
∑

n

differs in the two expressions, the first occurring in Y and the second in .B(X, Y ). 
3. ✶ Recall the Fourier sum .Snf := ∑n

k=−n f̂ (k)e2πikt = Dn ∗ f , as an operator 
.C[0, 1] → C[0, 1], where . Dn is the Dirichlet kernel 

. Dn(t) :=
n∑

k=−n

e2πikt = sin(2n + 1)πt

sinπt
.

Let .φnf := Snf (0), which has norm .‖φn‖ = ‖Dn‖L1[0,1]. Assuming that 
.‖Dn‖L1 → ∞, then the uniform boundedness theorem shows that there is a 
continuous function f for which .Snf (0) → ∞ as .n → ∞. 

Weak Convergence 

Let us now consider weak convergence of operators 

.Tn ⇀ T ⇔ φTnx → φT x ∀x ∈ X, ∀φ ∈ Y ∗.
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For vectors (considered as operators .F → X, .λ I→ λx), weak convergence takes the 
form 

. xn ⇀ x ⇔ φxn → φx, ∀φ ∈ X∗.

For functionals (.X → F), this convergence is called weak-∗ convergence, some-
times denoted .φn

∗
⇀ φ for emphasis; it coincides with their pointwise convergence, 

. φn ⇀ φ ⇔ φnx → φx, ∀x ∈ X.

One must guard against a possible source of confusion: the weak convergence of 
functionals, when thought of as vectors in . X∗, is different: 

. φn ⇁ φ ⇔ Ψ φn → Ψ φ, ∀Ψ ∈ X∗∗,

hence the need for a new name. 

Examples 11.39 

1. Strong convergence implies weak convergence because, by continuity of . φ, 

. Tnx → T x ⇒ φTnx → φT x.

2. ▶ But the converse is false in general: For example, in . c0, .Rn ⇀ 0, since for any 
. x = (ai)i∈N ∈ c0, and y = (bi)i∈N ∈ 𝓁1 ≡ c∗

0,

. |y · Rnx| =
∣
∣
∣

∞∑

i=0

bi+nai

∣
∣
∣ ⩽

∞∑

i=n

|bi |‖x‖ → 0 as n → ∞,

yet .Rnx /→ 0, since .‖Rnx‖ = ‖x‖ /→ 0. 
3. To prove weak convergence, .xn ⇀ x, given that .(xn)n∈N is bounded in X, it is  

enough to check .ψxn → ψx for . ψ in a dense subset of . X∗. 
Proof : Any  .φ ∈ X∗ can be approximated by functionals .ψn → φ, by their 
density in . X∗. For .yn := xn −x (bounded), it is not hard to show that .ψnyn → 0, 
so 

. φyn = ψnyn + (φ − ψn)yn → 0 as n → ∞.

4. Weak convergence of vectors and operators in an inner product space become 

.xn ⇀ x ⇔ 〈y, xn〉 → 〈y, x〉 as n → ∞, ∀y ∈ X,

Tn ⇀ T ⇔ 〈y, Tnx〉 → 〈y, T x〉 as n → ∞, ∀x, y ∈ X.
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5. In an inner product space, 

. xn ⇀ x AND ‖xn‖ → ‖x‖ ⇔ xn → x.

Proof : When .xn ⇀ x, we get .〈x, xn〉 → 〈x, x〉 since . x∗ is a functional, so 

. ‖x − xn‖2 = ‖x‖2 − 2Re 〈x, xn〉 + ‖xn‖2 → 0.

Proposition 11.40 

In finite dimensions, all three convergence types are equivalent. 

Proof Let .An ⇀ A where .An,A are .M × N matrices. This means that for any 
.φ ∈ (FM)∗ and .x ∈ F

N , .φ(An − A)x → 0 as .n → ∞. In particular if we let 
.φ = ẽ⏉

i , .x = ej be basis vectors for .FM∗ and . FN respectively, then each component 
of . An converges to the corresponding component in A: 

. An,ij = ẽ⏉
i Anej → ẽ⏉

i Aej = Aij , as n → ∞.

This then implies that .‖An − A‖ ⩽ c
∑N

j=1
∑M

i=1 |An,ij − Aij | → 0 (Proposi-
tion 8.10). ⨅⨆

The analogous result of the uniform boundedness theorem for weak convergence 
is also true, but more care is needed: Although every convergent sequence is 
bounded (Example 4.3(6)), that fact was proved using a metric, whereas weak 
convergence .Tn ⇀ T is not equivalent, in general, to such a strong type of 
convergence as .d(Tn, T ) → 0 for any distance function. 

Proposition 11.41 

If .Tn ⇀ T where .Tn ∈ B(X, Y ), X a Banach space, then 

(i) .{ Tn : n ∈ N } is bounded, and 
(ii) .T ∈ B(X, Y ) with .‖T ‖ ⩽ lim inf ‖Tn‖. 

Proof (i) Let .Tn ⇀ T ; the  set  .{ T1x, T2x, . . . } is weakly bounded in the sense that 
for all .n ∈ N, .φ ∈ X∗, .|φTnx| ⩽ Cφ,x , since .(φTnx)n∈N is a convergent sequence 
in . C. But an application of the uniform boundedness theorem twice shows first that 
.‖Tnx‖ ⩽ Cx , and then that . Tn is bounded. Of course, a simplified version of this 
argument applies equally well to weakly convergent sequences of vectors . xn ⇀ x

and to weak-∗-convergent sequences of functionals .φn ⇀ φ.
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(ii) Take the limit of .φTn(x + y) = φTnx + φTny and .φTn(λx) = λφTnx to show 
linearity of T . Similarly, the bounded set .{ ‖Tn‖ : n ∈ N } possesses a smallest limit 
point . α, so taking a subsequence of .‖Tn‖ which converges to it, we obtain 

. 

∀x ∈ X,φ ∈ Y ∗, |φTnx| ⩽ ‖φ‖‖Tn‖‖x‖
↓ ↓

|φT x| α‖φ‖‖x‖

and .‖T ‖ ⩽ α follows. Thus .B(X, Y ) is closed under weak convergence. ⨅⨆
As a partial converse there is: 

Theorem 11.42 

When X is a separable Banach space, every bounded sequence in . X∗ has 
a weak-∗-convergent subsequence. 
If .x1, x2, . . . ∈ X are dense in the unit ball, then . X∗ has a norm 

. ‖φ‖w :=
∞∑

n=1

1

2n
|φxn| ⩽ ‖φ‖

such that for . φn bounded, 

. φn ⇀ φ ⇔ ‖φn − φ‖w → 0.

Thus the unit closed ball of . X∗ is a compact metric space with this norm. 

This theorem can be generalized to non-separable spaces (see [10]), when it is 
known as the Banach-Alaoglu theorem: The unit closed ball of . X∗ is a compact 
topological space. 

Proof (i) Let .{xm}m∈N be a countable dense subset of X, and suppose .‖φn‖ ⩽ c. 
Then the sequence of complex numbers .φnx1 is bounded, .|φnx1| ⩽ c‖x1‖, and 
so must have a convergent subsequence (Exercise 6.9(6)), which we shall denote 
by .φ1,nx1 → ψ(x1). This subsequence is also bounded on . x2, .|φ1,nx2| ⩽ c‖x2‖, 
and so we can extract, by the same means, a convergent sub-subsequence, .φ2,nx2. 
Notice that, not only does .φ2,nx2 → ψ(x2) but also .φ2,nx1 → ψ(x1). Continuing 
this way, we get subsequences .φm,n and numbers .ψ(xm) such that .φm,nxi → ψ(xi), 
for .i ⩽ m, and .|ψ(xm)| ⩽ c‖xm‖.
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. 

φn φ1 φ2 φ3 φ4 φ5 . . .

φ1,n φ1 φ3 φ4 φ5 . . . φ1,nx1 → ψ(x1)

φ2,n φ1 φ3 φ5 . . . φ2,nx2 → ψ(x2)

φ3,n φ5 . . . φ3,nx3 → ψ(x3)

. . .

φk,k φ1 φ3 . . . φk,kxm → ψ(xm)

Let .ψk := φk,k , a subsequence of the original sequence . φn. In fact, . ψk is a 
subsequence of every .φm,n from some point onward (.k ⩾ m), so .ψkxm → ψ(xm), 
as .k → ∞. This implies that the function . ψ is Lipschitz on the dense set .{xm}, 

. |ψ(xi) − ψ(xj )| = lim
k→∞ |ψkxi − ψkxj )| = lim

k→∞ |φk,k(xi − xj )| ⩽ c‖xi − xj‖

and so can be extended uniformly to a continuous function on X (Theorem 4.14), 
and still satisfying .|ψ(x)| ⩽ c‖x‖. It is linear, as seen by taking the limit . k → ∞
of .ψk(x + y) = ψkx + ψky and .ψk(λx) = λψkx. 

Now, for any .ϵ > 0, there is an . xm close to x, .‖xm − x‖ < ϵ, so that 

. 

∃K ∈ N, k ⩾ K ⇒ |ψkxm − ψxm| < ϵ

⇒ |ψkx − ψx| ⩽ |ψkx − ψkxm| + |ψkxm − ψxm|
+|ψxm − ψx|

⩽ (2c + 1)ϵ,

in other words .ψkx → ψx for all x, or .ψk ⇀ ψ , as .k → ∞. 

(ii) That .‖φ‖w is well-defined and bounded by .‖φ‖ follows from . |φxn| ⩽
‖φ‖‖xn‖ ⩽ ‖φ‖; that it is a norm follows from . |φxn + ψxn| ⩽ |φxn| + |ψxn|
and .|λφxn| = |λ||φxn|, as well as  

. 0 = ‖φ‖w =
∞∑

n=1

1

2n
|φxn| ⇔ ∀n, |φxn| = 0 ⇔ φ = 0

since .{xn}n∈N is dense in . BX. 

(iii) When .‖φn‖ ⩽ c, φn ⇀ φ ⇔ ‖φn − φ‖w → 0: It is enough to consider 
functionals . φn such that .φn ⇀ 0. Let  .ϵ > 0 and M large enough that .1/2M < ϵ. 
For all m, .φnxm → 0 as n → ∞; this convergence may not be uniform in m, but  it  
will be for the first M points .x1, . . . , xM , i.e., 

.∃N, n ⩾ N ⇒ |φnxm| < ϵ, ∀m = 1, . . . , M.
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So .‖φn‖w → 0, because for .n ⩾ N , 

. ‖φn‖w =
∞∑

m=1

1

2m
|φnxm| <

M∑

m=1

1

2m
ϵ +

∞∑

m=M+1

1

2m
‖φn‖‖xm‖ < (1 + c)ϵ.

Conversely, let . φn be bounded functionals such that .‖φn‖w → 0. This implies 
that for any fixed m, 

.
1

2m
|φnxm| ⩽

∞∑

m=1

1

2m
|φnxm| → 0, as n → ∞, (11.3) 

so .φnxm → 0. For any .x ∈ X, choose . xm close to within . ϵ of .y := x/‖x‖. This is  
possible because .{xm} are dense in the unit ball. Then, for n large enough, 

. |φny| ⩽ |φnxm| + |φn(xm − y)| ⩽ ϵ + cϵ

⇒ |φnx| ⩽ (1 + c)‖x‖ϵ

Hence .φnx → 0 for any x and so .φn ⇀ 0. 

(iv) .BX∗ is compact with respect to .‖ · ‖w: Every sequence . φn in .B1(0) has a weak-
∗-convergent subsequence by (i), i.e., .‖φn − φ‖w → 0. For any .x ∈ X, 

. |φx| = lim
n→∞ |φnx| ⩽ ‖φn‖‖x‖ ⩽ ‖x‖,

so .‖φ‖ ⩽ 1, and .B1(0) has the Bolzano-Weierstraß property of compactness 
(Theorem 6.21). ⨅⨆

Note carefully that the unit ball of . X∗ is not necessarily compact in the standard 
norm of . X∗ because the “unit” is measured in one norm and the “compact” in 
another; only in finite-dimensions are balls totally bounded (Proposition 8.25). 

The next proposition characterizes compact operators in terms of weak conver-
gence, at least for reflexive spaces. 

Proposition 11.43 

A linear .T : X → Y is continuous iff, .xn ⇀ x ⇒ T xn ⇀ T x. 

For any compact operator .T : X → Y , .xn ⇀ x ⇒ T xn → T x, with the 
converse being true when X is a (separable) reflexive space.
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Proof (i) Given .xn ⇀ x, and any functional .φ ∈ Y ∗, then 

. φT xn = (T ⏉φ)xn → (T ⏉φ)x = φT x.

Conversely, if .‖T x‖/‖x‖ is unbounded, then one can find vectors .xn → 0 while 
.‖T xn‖ → ∞ (prove!). But .xn ⇀ 0 implies .T xn ⇀ 0 and so .T xn are bounded, a 
contradiction. 

(ii) For any Banach space, if .yn ⇀ y and .{ yn : n ∈ N } is totally bounded, then 
.yn → y. This is because there is a convergent subsequence .yni

→ z; but  .yni
⇀ y, 

and therefore .z = y (Exercise 11.49(3)). This holds for any convergent subsequence, 
and thus .yn → y. 

Let .T : X → Y be a compact operator and suppose .xn ⇀ x in X; then . {xn}n∈N
is bounded by Proposition 11.41, and .{T xn}n∈N is totally bounded by virtue of T 
being compact. Since .T xn ⇀ T x, it follows by the above that .T xn → T x. 

Conversely, let .T xn be any sequence in T B  for a bounded subset B of a 
reflexive space. There is a weakly convergent subsequence .xn ⇀ x by the previous 
theorem, since .X ≡ X∗∗. Recall that .x∗∗φ = φx, so the weak-∗ convergence of 
. x∗∗

n is equivalent to the weak convergence of . xn. Therefore .T xn → T x for this 
subsequence and hence T B  is totally bounded. 

⨅⨆
Examples 11.44 

1. A subset .A ⊆ X is said to be weakly bounded when .∀φ ∈ X∗, . φA is bounded. It 
turns out that A is weakly bounded . ⇔ A is bounded. 
Proof : Given that .|φa| ⩽ Rφ for all .a ∈ A and .φ ∈ X∗, then .φa = a∗∗φ, so the  
uniform boundedness theorem can be used to yield .‖a‖ = ‖a∗∗‖ ⩽ C. 

The idea of using functionals to transfer sets in X to sets in . F is so convenient 
and useful that it is applied, not just to convergence, but to various other 
properties. In a general sense, we say that a set .A ⊆ X is weakly. P when for 
all .φ ∈ X∗, . φA has the property . P . 

2. A vector x is a weak limit point of a subset A when for any .φ ∈ X∗, every open 
ball in . F which contains . φx also contains another point . φa for .a ∈ A, .a /= x. 
A is said to be weakly closed when it contains all its weak limit points. Every 
weakly closed set is closed, since .xn → x ⇒ xn ⇀ x, but not conversely: 
.E := {en : n ∈ N} is closed in . 𝓁2 but .en ⇀ 0 /∈ E. 

3. If T is linear and . φT is continuous for each .φ ∈ Y ∗ (i.e., . xn → x ⇒ T xn ⇀
T x), then in fact T is continuous. 
Proof : For every bounded set B, .φT B is bounded by continuity. So T B  is weakly 
bounded, which is the same as bounded. 

4. A Hilbert space is weakly complete: if .(φxn)n∈N is Cauchy in . F for each .φ ∈ H ∗, 
then .xn ⇀ x for some x.
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Proof : Let  .f (y) := limn→∞ 〈xn, y〉; f is linear and continuous by the uniform 
boundedness theorem, so must be of the form .f = 〈x, ·〉 and . 〈xn, y〉 → 〈x, y〉
for each y. Can you extend this to reflexive spaces? 

5. Closed and bounded sets of a reflexive space are weakly sequentially compact, 
meaning any bounded sequence has a weakly convergent subsequence. 
Proof : . x∗∗

n has a weak-∗ convergent subsequence, .x∗∗
nk

⇀ x∗∗; but, as noted in the 
proof of the proposition above, this simply means .xnk

⇀ x. 
6. ✶ The “Hilbert Projection Theorem” 10.11 can be generalized to when M is 

weakly closed. (Note that closed convex subsets are weakly closed.) 
Proof : The sequence .(yn)n∈N of the theorem is bounded, hence has a weakly 
convergent subsequence .yni

⇀ y∗ ∈ M . Moreover .‖yn − x‖ → d. Taking the 
limit of .|〈yni

− x, y∗ − x〉| ⩽ ‖yni
− x‖‖y∗ − x‖ gives .‖y∗ − x‖ ⩽ d. 

Weak Convergence in 𝓁p 

We now turn our attention to the difference between weak convergence and 
convergence in norm in . 𝓁p (.p ⩾ 1). 

Proposition 11.45 

For . 𝓁p, .1 < p < ∞, a sequence .xn = (an,i)i∈N converges weakly to some 
.x = (ai)i∈N if, and only if, it is bounded and each component converges, 

. xn ⇀ x ⇔ (∃c > 0, ∀n, ‖xn‖ ⩽ c) AND (∀i ∈ N, lim
n→∞ an,i = ai).

Proof A weakly convergent sequence, .xn ⇀ x, is bounded as noted in Proposi-
tion 11.41. Consider the functional .e⏉

i ∈ 𝓁p∗; then 

. an,i = e⏉
i xn → e⏉

i x = ai.

Conversely, by subtracting .(ai)i∈N, it is enough to consider a sequence . xn in . 𝓁p

whose components converge to 0. Let .y = (bi)i∈N ∈ 𝓁p'
act as a functional on . 𝓁p. 

The proof hinges on the fact that both the tail part of . y and the leading part of . xn

are small. For any .ϵ > 0, there are integers k and . Ni for each .i ⩽ k, beyond which 

.
( ∑

i>k

|bi |p')1/p'
< ϵ AND ∀i ⩽ k, ∃Ni, n ⩾ Ni ⇒ |an,i | < ϵ.
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Then for .b := |b1| + · · · + |bk| and .n ⩾ max(N1, . . . , Nk), by Hölder’s inequality, 

. |y⏉xn| ⩽
∑

i⩽k

|bi ||an,i | +
∑

i>k

|bi ||an,i |

⩽ bϵ +
( ∑

i>k

|bi |p')1/p' ‖xn‖p

⩽ bϵ + ϵc

Hence .y⏉xn → 0; since . y⏉ is arbitrary in . 𝓁p∗, it follows  that .xn ⇀ 0. ⨅⨆
Note that the proof is still valid for the space . c0, with minor modifications. But 

the proposition is false for . 𝓁1: the bounded sequence . en converges component-wise 
to . 0 but not weakly, since .1⏉en = 1 /→ 0. 

Consider now a weakly convergent sequence, .xn ⇀ 0, which does not converge 
to . 0 in norm, in effect, .‖xn‖𝓁p ⩾ c > 0 (for a subsequence). As proved above, 
each component converges to 0, yet the sequence as a whole is not diminishing in 
size. The example sequences . en and .(0, . . . , 0, 1↑n

, . . . , 1↑n+k
, 0, . . .) turn out to be 

quite typical. The following gliding hump argument shows that there must exist a 
subsequence whose terms are approximately non-overlapping. 

Proposition 11.46 

A sequence .xn ∈ 𝓁p (.1 ⩽ p < ∞) which converges weakly to . 0, with  
norm bounded below, 

. xn ⇀ 0, ‖xn‖ ⩾ c > 0,

has a gliding hump subsequence . yn, such that 

. 

∞∑

n=0

αnyn ∈ 𝓁p ⇔ (αn)n∈N ∈ 𝓁p.

With minor modifications, the proof is also valid for the space . c0. 

Proof Let . ϵn be an arbitrary sequence of (small) positive numbers. 

(i) Starting with .y1 = x1 = (a1,i )
∞
i=0, there is some . i1 such that 

.‖(0, . . . , 0, a1,i1 , a1,i1+1, . . .)‖p < ϵ1.
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Since each of the first . i1 components are converging to 0, there must be some 
sequence, . xn1 , which we’ll relabel as .y2 = (a2,i )i∈N such that 

. ‖(a2,0, . . . , a2,i1−1, 0, . . .)‖p < ϵ2.

So the bulk of the norm occurs after . i1; as before there is some . i2 such that 

. ‖(0, . . . , 0, a2,i2 , . . .)‖p < ϵ2.

Repeating the argument we can find a sequence .yn = (an,i)i∈N such that 

. 

‖(an,0, . . . , an,in−1−1, 0, . . . , . . . , 0, 0, . . . , . . .) ‖p < ϵn

‖(0, . . . , . . . , 0, an,in−1 , . . . , an,in−1, 0, . . . , . . .) ‖p > c − 2ϵn,

‖(0, . . . , . . . , 0, 0, . . . , . . . , 0, an,in , . . .) ‖p < ϵn

By construction, the middle ‘humps’ of . yn, call them . bn, occur on consecutive and 
non-overlapping intervals .{ in−1, . . . , in − 1 }. 

y1 
y2 
y3 

(ii) The weakly convergent sequence . xn is bounded by, say, d. Let  . yn be a gliding 
hump subsequence with .ϵn = ϵn. Then 

. 
∥
∥

∑

n

αnyn −
∑

n

αnbn

∥
∥ ⩽

∑

n

|αn|‖yn − bn‖ ⩽ 2
∑

n

|αn|ϵn ⩽ 2ϵ

1 − ϵ
sup
n

|αn|.

Hence .
∑

n αnyn converges iff .
∑

n αnbn does. Now, because the sequences . bn have 
non-overlapping supports, 

. 
∥
∥

N∑

n=M

αnbn

∥
∥p

p
=

N∑

n=M

(
|αn|p

in−1∑

i=in−1

|an,i |p
)

∴ (c − 2ϵM)
( N∑

n=M

|αn|p
)
1/p ⩽

∥
∥

N∑

n=M

αnbn

∥
∥

p
⩽ d

( N∑

n=M

|αn|p
)
1/p

The result then follows: .
∑

n∈N |αn|p is Cauchy in . R iff .
∑

n αnbn is Cauchy in . 𝓁p, 
and so converges iff .

∑
n αnyn does so in . 𝓁p. ⨅⨆
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Proposition 11.47 (Schur’s Property) 

In . 𝓁1, weak convergence of sequences is equivalent to convergence in 
norm, 

. xn ⇀ x ⇔ xn → x.

Proof To obtain a contradiction, we may suppose, without loss of generality, . xn ⇀
0 but .xn /→ 0. There is a subsequence such that .‖xn‖ ⩾ c > 0, and a further gliding 
hump subsequence .yn = (an,i)i∈N with .ϵn = ϵ < c/4. Consider the sequence . z
built up from the concatenation of the humps of . yn, as  . z := (|an,i |/an,i)i∈N ∈ 𝓁∞
where, for each i, n is such that .in−1 ⩽ i < in (note: use 1 instead of .|an,i |/an,i if 
.an,i = 0). Then 

. |z · yn| ⩾
in−1∑

i=in−1

zian,i − 2ϵ =
in−1∑

i=in−1

|an,i | − 2ϵ ⩾ (c − 4ϵ) > 0,

contradicting .yn ⇀ 0. The converse follows by continuity of functionals (Exam-
ple 11.39(1)). ⨅⨆

A second application of the gliding hump argument is to compact operators on 
. 𝓁p spaces. Proposition 11.43 immediately implies that any operator .T : 𝓁p → 𝓁1 is 
compact, since if .xn ⇀ x then .T xn ⇀ T x which is equivalent to .T xn → T x in . 𝓁1. 
The following proposition is a strengthening of this result: 

Proposition 11.48 (Pitt’s Theorem) 

Any operator .T : 𝓁p → 𝓁q , with .q < p < ∞, is compact. 

Proof Let .xn ⇀ 0 in . 𝓁p; then .T xn ⇀ 0 in . 𝓁q . Suppose .T xn /→ 0, so must have a  
subsequence bounded below, .‖T xn‖ ⩾ c > 0. Since T is continuous, it follows that 
.xn /→ 0, and therefore for a further subsequence .‖xn‖ ⩾ d > 0. Hence . xn and . T xn

have joint ‘gliding hump’ subsequences, which we’ll call . yn and .T yn, such that 

. (αn)n∈N ∈ 𝓁p ⇔
∑

n

αnyn ∈ 𝓁p ⇒
∑

n

αnT yn ∈ 𝓁q ⇔ (αn)n∈N ∈ 𝓁q

But, of course, .𝓁p /⊆ 𝓁q , implying that .xn ⇀ 0 ⇒ T xn → 0 and therefore that T 
is compact, since . 𝓁p is reflexive.

⨅⨆
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Exercises 11.49 

1. Show .en ⇀ 0 in . c0 or . 𝓁p (.p > 1), yet .en /→ 0. Hence the norm is not 
continuous with respect to weak convergence; or the inner product for Hilbert 
spaces. 
In . 𝓁1, .en /⇀ 0, but when thought of as functionals on . c0, .en

∗
⇀ 0. 

2. In .L1[0, 1], the functions .fn(t) := e2πint converge weakly .fn ⇀ 0, but not in 
norm and not pointwise .fn(t) /→ 0 at any t (see Theorem 9.34). Examples of 
functions that converge weakly but not in norm are typically rapidly oscillating. 

3. ▶ The weak limit of . Tn, if it exists, is unique. A subsequence of . Tn also 
converges weakly to the same limit. 

4. The map .T : c00 → c00 defined by .(an)n∈N I→ (nan)n∈N is linear but not 
continuous; yet .‖T x‖∞ ⩽ cx . Does this contradict the uniform boundedness 
theorem? 

5. In a Hilbert space with an orthonormal basis . en, 

(a) .en ⇀ 0, 
(b) .

∑
n αnen ⇀ x ⇔ ∑

n αnen → x. 

(Hint: The series is bounded, by Proposition 11.41, i.e., . ‖α1e1 + · · · + αnen‖2 ⩽
c and so .(αn)n∈N ∈ 𝓁2; or use Example 11.39(5).) 

6. .φn ⇁ φ ⇒ φn ⇀ φ; but show that the converse is not true for .e⏉
n ∈ c∗

0. 
7. Addition and scalar multiplication are continuous with respect to weak con-

vergence, that is, if .Tn ⇀ T and .Sn ⇀ S then .Tn + Sn ⇀ T + S, and 
.λTn ⇀ λT . Of course, they are also continuous with respect to norm-wise 
and strong convergence. 

8. Continuous functions in general do not preserve weak convergence. For 
example, multiplication does not: .e2πint e−2πint = 1 though .e±2πint ⇀ 0 in 
.L1[0, 1]. 
The most that can be said regarding the multiplication of operators is: 

(a) if .Tn ⇀ T then .TnS ⇀ T S and .STn ⇀ ST , 
(b) if .Tn ⇀ T and .Snx → Sx for all x, then .TnSn ⇀ T S, 
(c) if .∀φ ∈ X∗, φSn → φS and .Tn ⇀ T then .SnTn ⇀ ST . 

9. (a) For Banach spaces, if .T ⏉
n ⇀ T ⏉ then .Tn ⇀ T (but not conversely). 

(b) For Hilbert spaces, if .Tn ⇀ T then .T ∗
n ⇀ T ∗ (weakly continuous). 

10. If .xn ⇀ x in X, then .φ I→ (φxn)n∈N maps . X∗ into .c ⊂ 𝓁∞. For example, when 
X is . 𝓁1, this map converts bounded sequences to convergent ones. 

11. Every closed linear subspace is weakly closed (by Proposition 11.20). Thus, if 
.xn ⇀ x, then there is a sequence .yn ∈ [[x1, x2, . . . ]] which converges in norm, 
.yn → x. 

12. A set  in  . X∗ is weak-∗-closed when it contains all weak-∗-limit points; for 
example, . A⊥.



11.5 Strong and Weak Convergence 291

13. The strong limit of unitary isomorphisms . Un between two Hilbert spaces is an 
isometry U . But  U need not be unitary; e.g., let . Un be defined on . 𝓁2 by 

. Un(a1, a2, . . .) := (an+1, a1, a2, . . . , an, an+2, an+3, . . .).

Then . Un converges strongly to the right-shift operator R. 
14. Use Pitt’s theorem to show that .𝓁p /∼= 𝓁q for .p /= q. 
15. Justify the following step used in the proof of Pitt’s theorem: If both . xn ∈ 𝓁p

and .yn ∈ 𝓁q converge weakly to . 0 and are bounded from below by .c > 0, 
then they have joint gliding hump subsequences, agreeing in their indices and 
gliding hump positions. 

16. The Hadamard matrices are defined recursively by .T1 :=
(
1 1
1 −1

)

, . Tn+1 :=
(

Tn Tn

Tn −Tn

)

. .Sn := Tn/2n/2 are .2n × 2n unitary matrices; they can be extended 

to unitary operators on . 𝓁2 by .Unx := Snx when .x ∈ Mn := [[e0, . . . , e2n−1]], 
and .Unx := x when .x ∈ M⊥

n , and then .Un ⇀ 0. 
17. If a sequence of unitary isomorphisms . Un converges weakly to U , then . ‖U‖ ⩽

1. If  U is known to be unitary, then the convergence is pointwise. 
(Hint: Expand .‖Unx − Ux‖2.) 

Remarks 11.50 

1. Not every closed subspace of a Banach space need be “complemented”, e.g., the 
space .𝓁∞ /= c0 ⊕ M for any closed linear subspace M (see [39]). Indeed there 
exist infinite-dimensional Banach spaces whose only complemented subspaces 
are the finite-dimensional or codimensional closed ones [34]. 

2. It is a theorem that Hilbert spaces are the only Banach spaces in which every 
closed subspace is complemented [38]. 

3. Weak convergence does not obey all the convergence properties of metric spaces. 
For example, not every weak limit point of a set M need have a sequence in M 
that converges weakly to it. 

4. There are yet other types of convergence. For example, .B(X, Y ) is itself a Banach 
space, and so there is weak convergence with respect to .B(X, Y )∗, meaning 
.ФTn → ФT for all .Ф ∈ B(X, Y )∗.



Chapter 12 
Differentiation and Integration 

12.1 Differentiation 

Although continuous linear transformations are stressed throughout the book—with 
good reason, for they are the morphisms of normed spaces—they represent, of 
course, a very special part of all the functions from one normed space to another. 
To put things in perspective, recall that the linear maps on . R are . x I→ λx, a  
very restricted set of functions in comparison with the non-linear real continuous 
functions. However, the linear maps are still relevant for one class of continuous 
functions: maps that are ‘locally linear’, meaning that they can be approximated by 
linear operators up to second-order errors: 

Definition 12.1 

A function .f : X → Y between normed spaces (over the same field) is said 
to be (Fréchet) differentiable at .x ∈ X when there is a continuous linear map 
.f '(x) ∈ B(X, Y ) such that for h in a neighborhood of 0, 

. f (x + h) = f (x) + f '(x)h + o(h)

where .‖o(h)‖/‖h‖ → 0 as .h → 0. 

Note that f need not be defined on all of X but only on a neighborhood of x. The  
set of functions .f : U ⊆ X → Y , where U is an open subset of a normed space X 
and f is differentiable at all points .x ∈ U , is here denoted .D(U, Y ). 
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Proposition 12.2 

The set .C1(Ū , Y ) := { f ∈ D(U, Y ) : f, f ' ∈ Cb(Ū) } is a vector space 
with norm 

. ‖f ‖C1 := ‖f ‖C + ‖f '‖C.

Differentiation .D : f I→ f ' is an operator .C1(Ū , Y ) → C(Ū, Y ), which 
takes composition of functions to operator products, 

. (f + g)' = f ' + g', (λf )' = λf ',

(f ◦ g)'(x) = f '(g(x))g'(x).

The last identity is called the chain rule of differentiation. 

Proof The following identities and inequalities demonstrate the closure of . C1 as a 
vector space, linearity of D, and the chain rule: 

. (f + g)(x + h) = f (x + h) + g(x + h)

= f (x) + f '(x)h + of (h) + g(x) + g'(x)h + og(h)

= f (x) + g(x) + (f ' + g')(x)h + (of (h) + og(h))

λf (x + h) = λf (x) + λf '(x)h + λo(h)

f ◦ g(x + h) = f
(
g(x + h)

)

= f
(
g(x) + g'(x)h + og(h)

)

= f
(
g(x)

) + f '(g(x)
)(

g'(x)h + og(h)
) + of (h)

= f
(
g(x)

) + f '(g(x)
)
g'(x)h + (f '(g(x))og(h) + of (h))

‖of (h) + og(h)‖ ⩽ ‖of (h)‖ + ‖og(h)‖,
‖λo(h)‖ = |λ|‖o(h)‖,

‖T og(h) + of (h)‖ ⩽ ‖T ‖‖og(h)‖ + ‖of (h)‖, for any T ∈ B(X, Y ).

The norm axioms of .‖ · ‖C1 are easy to verify: 

.‖f + g‖C1 ⩽ ‖f ‖C + ‖g‖C + ‖f '‖C + ‖g'‖C = ‖f ‖C1 + ‖g‖C1 ,

‖λf ‖C1 = ‖λf ‖C + ‖λf '‖C = |λ|‖f ‖C + |λ|‖f '‖C = |λ|‖f ‖C1 ,

0 = ‖f ‖C1 = ‖f ‖C + ‖f '‖C ⇒ ‖f ‖C = 0 ⇔ f = 0.
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The continuity of D results from the inequality: 

. ‖Df ‖C = ‖f '‖C ⩽ ‖f ‖C + ‖f '‖C = ‖f ‖C1 .

⨅⨆
Examples 12.3 

1. The constant functions .f (x) := y0 are differentiable with .f ' = 0. 
2. In . R or . C, the functions .f (x) := xn are differentiable with 

. f (x + h) = (x + h)n = xn + nxn−1h + o(h),

so .f '(x) = nxn−1. Polynomials are thus differentiable. 
3. Continuous linear maps are differentiable , .T (x+h) = T x+T h, so .T '(x) = T . 

A special case of the composition law is .(T ◦ f )' = T ◦ f ' when T is a fixed 
operator. 

4. The derivative of .F : R → R
2,F (t) := (f (t)

g(t)

) = f (t)
(

1
0

) + g(t)
(

0
1

)
is 

.F '(t) = (f '(t)
g'(t)

)
. A differentiable path .r : R → X is called a curve. The  

direction of its derivative . r ' is called its tangent. The  arclength of a curve is 
.
∫
r

ds := ∫ |r '(t)| dt . 
5. Define .f : R2 → R by .f (x, y) := x2 − y. Then .f '(x, y) : R2 → R is its 

gradient .f '(x, y) = (2x,−1) since 

. f (x + h, y + k) = (x + h)2 − (y + k) = (x2 − y) + (
2x −1

)
(

h

k

)
+ h2.

The map .(h, k) I→ (x2 − y) + 2xh − k gives the tangent plane to the surface 
.z = f (x, y) at the point .(x, y, z). 

6. A real inner product .〈·, ·〉 : X2 → R is differentiable, 

. 〈x + h, y + k〉 = 〈x, y〉 + (〈x, k〉 + 〈h, y〉) + 〈h, k〉.

The middle term is linear in .(h, k), and the last term is .o(h, k) by the Cauchy-
Schwarz inequality, 

. 
|〈h, k〉|

‖h‖ + ‖k‖ ⩽ ‖h‖‖k‖
‖h‖ + ‖k‖ ⩽ ‖h‖ → 0 as (h, k) → (0, 0).

7. We often write .Dvf (x) := f '(x)v. Note that 

. Dv+wf = Dvf + Dwf, Dλvf = λDvf.

Because of this last property, v is usually taken to be a unit vector. It is the 
directional derivative of f along v.
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When .X = R there are only two unit vectors, .v = ±1, and the notation used is 
.

d
dx

:= D1 for the derivative in the positive direction. Similarly, for . C, . d
dz

:= D1. 
In . Rn, the standard basis consists of n unit vectors . ek , and we define .∂k := Dek

. 
8. For .X = R, the derivative can be taken to be a function .f ' : R → Y , since 

.B(R, Y ) ≡ Y . 
9. . ▶ Differentiable functions are continuous in x, in fact are Lipschitz in a 

neighborhood of any point 

. ‖f (y) − f (x)‖ = ‖f '(x)(y − x) + o(y − x)‖ ⩽ c‖y − x‖.

In particular, .f (y) → f (x) as .y → x. But there are Lipschitz functions, such 
as .x I→ |x| on . R, that are not differentiable. 

10. . ✶ .C1(R) is a non-closed linear subspace of .Cb(R). 
Proof : The functions .sin nt have unit norms in .Cb(R), but their derivatives 
.n cos nt have arbitrarily large .∞-norm. Let us define 

. f (t) :=
∞∑

n=0

1

2n
sin 4nt

with the partial sums . fN converging absolutely in .Cb(R). But this is an example 
of a nowhere-differentiable function (check it is not differentiable at 0 at least), 
so although .fN ∈ C1(R) and .fN → f uniformly, .f /∈ C1(R). 

Proposition 12.4 

The kernel of D on .D(X, Y ) consists of the constant functions, 

. Df = 0 ⇒ f is constant.

Proof We first identify the kernel when the differentiable functions are real valued, 
.g : R → R. Suppose .g'(t) = 0 for all .t ∈ [a, b], and let 

. G(t) := g(t) − (t − a)g(b) + (b − t)g(a)

b − a

also differentiable, with .G(a) = 0 = G(b), and 

. G(t + h) − G(t) = G'(t)h + o(h) = −g(b) − g(a)

b − a
h + o(h), t ∈ ]a, b[.

(12.1) 

G is continuous on the compact set .[a, b], so it must have maximum and minimum 
points. We can assume one of them to be inside .]a, b[, for if they are at a and b, then 
trivially G is 0 throughout .[a, b].
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Now, on any minimum of G within . ]a, b[, as  h changes sign from negative to 
positive, .G(t0 + h) − G(t0) remains positive; on a maximum it remains negative. 
From (12.1), this can only hold if .g(a) = g(b). As  a and b are arbitrary, this shows 
that g is constant. 

For .f ' = 0 on X, we can use functionals to reduce it to a real-valued function: 
let .g(t) := φ ◦ f (tx) for any non-zero .x ∈ X and .φ ∈ Y ∗. It is differentiable, 

. g(t + h) = φ ◦ f (tx + hx) = φ
(
f (tx)

) + φ
(
f '(tx)hx

) + o(hx) = g(t) + o(hx),

with derivative .g'(t) = 0. By the first part, .g(t) = g(0) = φ ◦ f (0) constant. But 
with . φ and x arbitrary, this shows that .f = f (0), a constant function. ⨅⨆
Exercises 12.5 

1. For differentiable functions .λ : R → F, .f, g : R → X, .F : X2 → X, . T : R →
B(X, Y ), 

(a) .
d
dt

(λ(t)f (t)) = λ'(t)f (t) + λ(t)f '(t), 
(b) .〈f, g〉' = 〈f ', g〉 + 〈f, g'〉, 
(c) .

d
dt

F (f (t), g(t)) = ∂1F(f (t), g(t))f '(t) + ∂2F(f (t), g(t))g'(t), 
(d) .

d
dt

T (t)f (t) = T '(t)f (t) + T (t)f '(t). 

2. For a curve on the sphere of a real Hilbert space .r : [0, 1] → SH , the tangent t 
at any point satisfies .〈t, r〉 = 0. 

3. . ▶ For a differentiable function .y : Rn → R
m, . y' is the Jacobian matrix .[∂iyj ]. 

4. The derivative itself, .f '(x), need not be continuous in x. For example, show 
that .f (x) := x2 sin(1/x) (and .f (0) := 0) is differentiable at all points, yet its 
derivative is not continuous at 0. 

5. If .f : X → R is differentiable and has a maximum/minimum at x in some open 
set .U ⊆ X, then .f '(x) = 0. 

6. L’Hôpital’s rule: If .f : R → X, .g : R → R are differentiable functions 
satisfying .f (a) = 0, .g(a) = 0, but .g'(a) /= 0, then 

. lim
x→a

f (x)

g(x)
= f '(a)

g'(a)
.

12.2 Integration for Vector-Valued Functions 

The construction of .L1(R) can be extended to include functions .f : R → X, where 
X is a Banach space, as done in Sect. 9.2. Briefly,

• a vector-valued characteristic function .x1E maps t to .x ∈ X when . t ∈ E ⊆ R

and to 0 otherwise;
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• a simple function is a linear combination of vector characteristic functions on 
sets of finite measure, in which case, 

. 

∫ N∑

n=1

1Enxn :=
N∑

n=1

μ(En)xn.

The set of simple functions is a normed space with .‖s‖ := ∫ ‖s(t)‖X dt .
• a function .f : R → X is integrable when it is the ae-limit of a Cauchy sequence 

of simple functions .sn → f a.e., .‖sn − sm‖ → 0 a.e., .n,m → ∞; its integral is 

.

∫
f := lim

n→∞

∫
sn.

• on a measurable set .A ⊆ R, .
∫
A

f := ∫
f 1A, e.g., .

∫ b

a
f = ∫

[a,b] f for .a ⩽ b. 

Quoting the results of Sect. 9.2, 

Proposition 12.6 

For .f, g : R → X integrable, 

(i) .
∫

f + g = ∫
f + ∫

g,
∫

λf = λ
∫

f (.λ ∈ F), 
(ii) .‖ ∫

f ‖ ⩽
∫ ‖f (t)‖ dt , 

(iii) .
∫

λ(t)x dt = (
∫

λ)x for .λ ∈ L1(R), .x ∈ X, 
(iv) .

∫
Tf = T

∫
f for .T ∈ B(X, Y ). 

Examples 12.7 

1. .
∫ (

f (t)

g(t)

)
dt =

∫
f (t)

(
1
0

)
+ g(t)

(
0
1

)
dt =

(∫
f∫
g

)
, when .f, g : R → R are 

integrable. Similarly, . 
∫ 1

0

(
1 t

t2 t3

)
dt =

(
1 1

2
1
3

1
4

)
.

2. Any continuous function .f : [a, b] → X is integrable, since 

. 

∫ b

a

‖f (t)‖ dt ⩽ (b − a)‖f ‖C.

3. If .fn(t) → f (t) in X, uniformly in .t ∈ [a, b], then .
∫ b

a
fn → ∫ b

a
f in X, since 

. 
∥∥

∫ b

a

(fn − f )
∥∥ ⩽

∫ b

a

‖fn(t) − f (t)‖ dt ⩽ (b − a)‖fn − f ‖L∞[a,b].

The connection between differentiation and integration is one of the cornerstones 
of classical mathematics. It remains valid for vector-valued functions:
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Theorem 12.8 (Fundamental Theorem of Calculus) 

If .f : [a, b] → X is integrable, and continuous at .t ∈ ]a, b[, then its 
integral is differentiable at t , and 

. 
d

dt

∫ t

a

f = f (t).

If .f ' : [a, b] → X is continuous, then 

. 

∫ b

a

f ' = f (b) − f (a).

Proof (i) The first part is a consequence of 

. 

∫ t+h

a

f =
∫ t

a

f + f (t)h +
(∫ t+h

t

f − f (t)h

)

and 

. 

∥∥∥
1

h

∫ t+h

t

f (τ ) dτ − f (t)

∥∥∥ =
∥∥∥

∫ t+h

t

f (τ ) − f (t)

h
dτ

∥∥∥

⩽
∣∣
∣
∫ t+h

t

‖f (τ) − f (t)‖
|h| dτ

∣∣
∣

<
ϵ

|h|
∣
∣∣
∫ t+h

t

dτ

∣
∣∣ = ϵ

for arbitrary .ϵ > 0 and . |h| sufficiently small, since f is continuous at t . 

(ii) For the second part, let .F(t) := ∫ t

a
f '. By (i) we obtain .F ' = f ' on . ]a, b[, so  

their difference .F(t) − f (t) must be a constant c. As .F(a) = 0, .c = −f (a). 

Proposition 12.9 (Mean Value Theorem) 

For a continuous function .f : [a, b] → X, the mean value 

. 
1

b − a

∫ b

a

f (t) dt

belongs to the closed convex hull of .f [a, b].
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Proof The function is uniformly continuous (Proposition 6.17), so splitting . [a, b]
into small enough intervals .[tn, tn+1] of size .h = (b − a)/N each (.tn := a + nh), 
ensures that .‖f (t) − f (t̃)‖ < ϵ whenever .t, t̃ are in the same sub-interval. This 
means that f can be approximated uniformly by a simple function which takes the 
value .f (tn) on the interval .[tn, tn+1[, and its integral .

∫ b

a
f can be approximated to 

within .ϵ(b − a) by the sum 

. 
(
f (a) + f (t1) + · · · + f (tN−1)

)
h.

Thus .
1

b−a

∫ b

a
f is within . ϵ of .(f (a)+f (a +h)+· · ·+f (b−h))/N which belongs 

to the convex hull of .f [a, b]. Since . ϵ is arbitrarily small, the result follows. ⨅⨆

Corollary 12.10 

For a continuously differentiable function .f : [a, b] → X, 

. 
f (b) − f (a)

b − a

belongs to the closed convex hull of .f '[a, b]. 

Proof 

. 
f (b) − f (a)

b − a
= 1

b − a

∫ b

a

f '.
⨅⨆

Recall that . f ' is a function .U → B(X, Y ); it may itself be differentiable, 
with derivative denoted by .f ''(x) ∈ B(X,B(X, Y )). This Banach space is actually 
isomorphic to the space of bilinear maps .B(X2, Y ) via the identification . Tx1x2 =
T (x1, x2). Because of this, .f ''(x) is akin to an operator that converts a pair of 
vectors of X into a vector in Y ; in particular, .f ''(x)(h, h) makes sense, and is often 
shortened into the form .f ''(x)h2 (though no vectors are squared). 

More generally, .f (n) is the nth derivative of f : it takes n vectors in X and outputs 
a vector in Y . The set of  n-times differentiable functions .f : R → X, with . f (n)

continuous, is denoted by .Cn(R, X). 

Theorem 12.11 (Taylor’s Theorem) 

For .f ∈ Cn(R, X) (.n = 1, 2, . . .), 

.f (t + h) = f (t) + f '(t)h + · · · + f (n)(t)hn

n! + o(hn).
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Proof As expected the proof proceeds by induction on n. To illustrate the idea 
behind the inductive step, we only consider how the statement for .n = 2 follows 
from that for . n = 1. Let .f ∈ C2(R, X), and let 

. F(s) := f (t + s) − f (t) − f '(t)s − f ''(t)s2/2!

We wish to show .F(h) = o(h2). F is continuously differentiable in s because it 
consists of sums and products of continuously differentiable functions, in fact 

. F '(s) = f '(t + s) − f '(t) − f ''(t)s = o(s),

since . f ' is differentiable. Using the above corollary, it follows that . F(h)−F(0)
h

belongs to the closed convex hull of .F '[0, h], whose values are at most of order 
.o(h). Since .F(0) = 0, we have .F(h) = o(h2) as required. 

The reader is invited to adapt this proof to show that if the statement is correct 
for n then it is also true for .n+ 1. The case .n = 1 is, of course, part of the definition 
of the derivative. ⨅⨆
Exercises 12.12 

1. Integration by parts: .
∫ b

a
f (t)F '(t) dt = [f F ]ba − ∫ b

a
f '(t)F (t) dt , where . f :

R → F and .F : R → X have continuous derivatives. 
2. Change of variables: .

∫ b

a
f (x) dx = ∫ y(b)

y(a) F (y) dx
dy

dy, where .y : R → R has an 
invertible continuous derivative, and .F(y(x)) = f (x). 

3. If .f : [a, b] → M is continuous, where M is a closed linear subspace of X, then 
.
∫ b

a
f ∈ M . 

4. The symbol .o(h) satisfies .‖o(h)‖ ⩽ c‖h‖ for h small enough, but not necessarily 
.‖o(h)‖ ⩽ c‖h‖2. However show that the latter inequality is true if .f '(y) is 
Lipschitz in y in some ball about x, by evaluating 

. 
∥∥

∫ 1

0

d

dt
f (x + th) − f '(x)h dt

∥∥.

5. A bounded set B in .C1[a, b] is uniformly bounded and equicontinuous. 
It follows by the Arzelà-Ascoli theorem that a sequence of bounded functions in 
.C1[a, b] has a convergent subsequence. 
(Hint: Use the mean value theorem and the fact that .‖f '‖C ⩽ k.) 

Application: The Newton-Raphson Algorithm 

It would be no exaggeration to claim that a large proportion of real-world problems 
reduce to solving some (non-linear) equation .f (x) = y where x and y belong to 
some Banach spaces. From designing whole electronic circuits, finding the right
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image in some feature space, solving partial differential equations, to finding the 
right parameters in data models, such equations are ubiquitous in “continuous” 
models. 

When f is differentiable, we can hope to approximate f by some affine map, and 
thereby solve the resulting equation by inverting the operator. In detail, we might 
start with a first estimate x and find a better approximation from 

. y = f (x + h) ≈ f (x) + f '(x)h,

namely .h = f '(x)−1(y − f (x)). This suggests the following iteration: 

Proposition 12.13 (The Newton-Raphson Method) 

Let .f (x̃) = y and suppose that f is differentiable in a neighborhood of 
. x̃, with .f '(x) Lipschitz in x and .‖f '(x)−1‖ ⩽ c. Then if . x0 is sufficiently 
close to . x̃, the iteration 

. xn+1 := xn + f '(xn)
−1(y − f (xn))

converges to . x̃. 

Proof The differentiability of f at . x̃ states that for .h = xn − x̃, |h| < ϵ, 

. 

f (xn) = f (x̃ + h) = f (x̃) + f '(x̃)h + o(h),

∴ f (xn) = y + f '(xn)h + (f '(x̃) − f '(xn))h + o(h),

∴ f '(xn)
−1(f (xn) − y) = xn − x̃ + f '(xn)

−1((f '(x̃) − f '(xn))h + o(h))

∴ xn+1 − x̃ = −f '(xn)
−1((f '(x̃) − f '(xn))h + o(h))

∴ ‖xn+1 − x̃‖ ⩽ 3ck
2 ‖h‖2 = c̃‖xn − x̃‖2,

where k is the Lipschitz constant of . f ' and .‖o(h)‖ ⩽ 1
2k‖h‖2 (Exercise 12.12(4)). 

If .ϵ < 1/c̃ then it implies firstly that if . xn belongs to .Bϵ(x̃), then so does .xn+1, and 
secondly by induction it follows that .‖xn − x̃‖ ⩽ (c̃‖x0 − x̃‖)2n

/c̃ → 0 as .n → ∞. 
⨅⨆

This algorithm is very effective since it converges quadratically, as long as . x0 is 
already sufficiently close to . x̃. In practice, other algorithms are utilized to perform 
a broad search for a solution, and Newton’s method is then used to rapidly home 
in on it. Another caveat is that it may be computationally expensive: at each step, 
one has to calculate not only the derivative .f '(x) but effectively also its inverse. 
The methods that are most often used employ modified iterations like . xn+1 := xn +
Hn(y −f (xn)), where . Hn are operators that approximate .f '(xn)

−1 but are easier to 
calculate.
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Examples 12.14 

1. To solve for .eiz = 1 close to .z = 6, apply Newton’s iteration: 

. 

zn+1 := zn + i(1 − e−izn)

z0 = 6
z1 = 6.27942 + 0.03983i

z2 = 6.28334 − 0.00080i

z3 = 6.28319 − 0.0i

Examples of other equations whose solutions are routinely found using this 
method are (a) roots of polynomials, e.g., .x3 = 2, (b) transcendental equations 
such as .x − sin x = 1 or .x tan x = 1. 

2. Find the points on the orbit of Mars whose distance from Earth is 1 a.u. on 1 Jan. 
In appropriate coordinates, the problem reduces to solving the equations, 

. f (x, y) := x2 + 1.009y2 − 0.284x = 2.302,

g(x, y) := x2 + y2 + 1.11x − 1.622y = 0.0343.

Setting up the Newton-Raphson iteration gives 

. 

(
xn+1

yn+1

)
=

(
xn

yn

)
+ 1

Δ

(
2yn − 1.622 −2.018yn

−2xn − 1.11 2xn − 0.284

) (
2.302 − f (xn, yn)

0.0343 − g(xn, yn)

)
,

Δ = 0.461 − 3.244xn − 2.808yn − 0.036xnyn.

Depending on the starting point, it may converge either to .(0.153, 1.517) or to 
.(−1.365, 0.225). But most of the time it does not converge—hence the need to 
perform a rough search for solutions before zeroing in using the algorithm. 

3. The method can be used to find the minimum of a scalar differentiable function, 
which is equivalent to finding zeros of its derivative. For example, if a function 
were exactly quadratic 

. f (x) = c + b · x + 1
2x⏉Ax

(here A is a symmetric matrix) then the minimum occurs when .Ax + b = 0, 
and Newton’s method, starting from .x0 = 0, finds the minimum point in one 
step: .x1 = −A−1b. The more undulating a function is, the more demanding it 
becomes to find the true minimum. Two challenging functions that have served 
as benchmarks are the following 

(a) .(1 − x)2 + 100(y − x2)2 (Rosenbrock’s valley), 
(b) .(x2 + y − 11)2 + (x + y2 − 7)2 (Himmelblau’s function).
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4. . ✶ To align two real-valued functions f and g as best as possible, one may find a 
that minimizes .

∫
(f (t − a) − g(t))2 dt . Expanding this out, then differentiating 

in a, gives up to order .o(a2), 

. 

∫
(f (t) − g(t))2 − 2(f (t) − g(t))f '(t)a + (f '(t)a)2

+ (f (t) − g(t))f ''(t)a2 dt,

∴
∫

(f (t) − g(t))f '(t) − (
f '(t)2 + (f (t) − g(t))f ''(t)

)
a dt + o(a) = 0

The Newton-Raphson estimate of a is 

. a = 〈f − g, f '〉
‖f '‖2 + 〈f − g, f ''〉 .

Letting .fn+1(t) := fn(t − a), .f0(t) := f (t), and iterating aligns the two 
functions. (You can try this out with .f (t) = cos t and .g(t) = cos(t + 1) over the 
interval .[0, 2π ].) This method, modified to . R2, has been implemented to align 
images, for example to compensate for video camera jitter from one frame to the 
next. 

12.3 Complex Differentiation and Integration 

Let X be a complex Banach space, then a differentiable function .f : C → X is also 
called analytic, i.e., for all z, h, 

. f (z + h) = f (z) + f '(z)h + o(h).

The set of functions .f : C → C which are analytic at all points z in an open set 
.U ⊇ A, is denoted by .Cω(A). 

A function .f : C → X is integrable along a differentiable path .w : [t0, t1] → C, 
when the composition .f ◦ w : [t0, t1] → C → X is integrable. Its integral is then 

. 

∫

w

f (z) dz :=
∫ t1

t0

f (w(t))w'(t) dt.

Notice that . dz/i is along the normal to a path. Proposition 12.6 remains true, for 
example property (ii) becomes 

.

∥
∥∥

∫

w

f (z) dz

∥
∥∥ ⩽

∫
‖f (w(t))‖ ds, where ds := |w'(t)| dt.
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Examples 12.15 

1. Along any curve w which starts at .w(0) = a + bi and ends at .w(1) = c + di, 
.
∫ c+di

a+bi
1 dz = ∫ 1

0 w'(t) dt = [w(t)]1
0 = [z]c+di

a+bi . More generally, 

. 

∫ c+di

a+bi

f '(z) dz =
∫ 1

0
f '(w(t))w'(t) dt = [f (z)]c+di

a+bi

for f analytic (with . f ' continuous). Thus one can integrate complex function 
derivatives in the same manner as real-valued functions. 

2. The map .z I→ 1
z

is analytic except at .z = 0. On a circular path .w(t) := reit , 
.0 ⩽ t ⩽ 2π , 

. 

∫

◦
1

z
dz =

∫ 2π

0

1

r
e−it ireit dt = 2πi

(independent of the radius). Thus the integral .
∫ 1
−1

1
z

dz does not have a unique 
answer, but depends on whether one traverses a path that passes above or below 

the origin, and how often it loops around it. But otherwise .
∫

◦
1

zn
dz = 0. 

3. Cauchy-Riemann equations: An analytic function .f : C → C, . x + iy I→
u(x, y) + iv(x, y) satisfies the equations 

. 
∂u

∂x
= ∂v

∂y
,

∂u

∂y
= −∂v

∂x
,

since .f '(z) = ∂u
∂x

+ i ∂v
∂x

= ∂v
∂y

− i ∂u
∂y

, which can be obtained by comparing 

. f (z + h) = u(x, y) + ∂u

∂x
h + iv(x, y) + i

∂v

∂x
h + o(h)

= f (z) + f '(z)h + o(h),

f (z + ih) = u(x, y) + ∂u

∂y
h + iv(x, y) + i

∂v

∂y
h + o(h)

= f (z) + f '(z)ih + o(h).

4. The conjugate map .z I→ z̄ is not analytic, since .z + h = z̄ + h̄. Therefore, 
.Re(z) = (z + z̄)/2, .Im(z) = (z − z̄)/2i, and .|z| = zz̄, are not analytic. Indeed 
the Cauchy-Riemann equations can be written symbolically as . ∂f

∂z̄
= 0, and 

interpreted as f being independent of . ̄z. 

Analytic functions .f : C → XC are profoundly different from similar-looking 
functions .f : R2 → XR that are simply differentiable over the reals. This is borne 
out by a string of results discovered by Augustin Cauchy in the 19th century. We will 
only present here the essential theorems (See [20] for a more thorough presentation).
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Theorem 12.16 (Cauchy’s Theorem) 

Let .Ω ⊂ C be a bounded open set having a finite number of differentiable 
curves as boundary. Let f be a function from . C into a Banach space, 
which is analytic on and in . Ω, then along these boundary curves, 

. 

∮
f (z) dz = 0.

Warning: the curves must be traversed in a consistent manner, say with the region . Ω

to the left of each curve. A fully rigorous proof requires results that are too technical 
to be presented in a simplified form (see [10]). These details will be disregarded in 
favor of a more intuitive approach, both for this theorem and its corollaries. 

Proof At any analytic point, .f (z+h) = f (z)+f '(z)h+o(h), where . o(h)/h → 0
as .h → 0. So for any .ϵ > 0 and .|h| < δ small enough, we have .‖o(h)‖ < ϵδ. 
For any closed curve . □ inside a disk .Bδ(z0) ⊆ Ω we get, using Example 12.15(1) 
above, 

. 

∫

□
f (w) dw =

∫

□
f (z0 + z) dz

=
∫

□
f (z0) + f '(z0)z + o(z) dz

= f (z0)

∫

□
1 dz + f '(z0)

∫

□
z dz +

∫

□
o(z) dz

=
∫

□
o(z) dz

. ∴
∥
∥∥

∫

□
f (w) dw

∥
∥∥ ⩽

∫

□
‖o(h)‖ ds < ϵδ × Perimeter(□) (12.2) 

Each point .z0 ∈ Ω might need a different . δ, but since . Ω is compact, there is a 
minimum . δ that works at all points (as in Proposition 6.17).
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The region . Ω can be covered by an array of squares of side . δ, as shown in  
the diagram. The integral on the boundary .∂Ω can be split up into a sum of 
integrals along the squares that are within . Ω, except that when a square intersects the 
boundary . ∂Ω, the integral is partly along the square and partly along the boundary. 
Each tiny loop has perimeter at most .4δ + l, where l is the length of that part of the 
boundary curve which lies inside the square. 

If . Ω is enclosed in a square of side L, there are at most .(L/δ)2 squares in all, so 
the sum of the integrals is at most 

. 

∥
∥
∥

∫

∂Ω

f (w) dw

∥
∥
∥ ⩽

∑

i

∥
∥
∥
∫

□i

f (w) dw

∥
∥
∥

⩽
∑

i

ϵδ(4δ + li ) by (12.2 )

⩽
(

4L2 + Perimeter(Ω)δ
)

ϵ

With . ϵ arbitrarily small, the integral must vanish. ⨅⨆

Corollary 12.17 

If .f : C → X is analytic in the interior . Ω of a simple closed curve w, then 
the integral .

∫ b

a
f (z) dz is well-defined when .a, b ∈ Ω, independent of the 

path taken (within . Ω). 

Proof Any two paths inside . Ω, from a to b, together form one or more simple 
closed paths, inside which f is analytic. Hence the integral of f on this closed loop 
is 0. ⨅⨆

One of the surprising results of Cauchy’s theorem is that the value of the integral 
.
∮

f (z) dz is independent of the bounding curve itself, but only on interior “distant” 
regions! 

Corollary 12.18 (Cauchy’s Residue Theorem) 

The integral of f over a closed simple curve depends only on those regions 
inside where f is not analytic, 

.
1

2πi

∮
f (z) dz =

∑

i

Residuei (f ).
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Proof Enclose the non-analytic parts by a finite number of curves . wi—the outer 
boundary curve . γ already does this, but it may be possible to further isolate the 
non-analytic parts—to form one analytic region, around which the integral is zero, 

wi 

γ 

. 
1

2πi

∮

γ

f + 1

2πi

∑

i

∫

wi

f = 0

traversing each curve . wi in a clockwise direction. The value of the integral around 
each non-analytic region in a counter-clockwise direction may be called a ‘residue’ 
of f . ⨅⨆
Because of this, the integral around a closed simple curve is often denoted by 
.
∮

f (z) dz, without reference to the (counter-clockwise) path taken, as long as it 
is clear from the context which non-analytic regions are included. 

The simplest cases in which a function fails to be analytic are of isolated points, 
called isolated singularities. An example of an isolated singularity a is a pole 
of order n when the function is of the type .f (z)/(z − a)n with f analytic in a 
neighborhood of a and .f (a) /= 0. A  simple pole is a pole of order 1. All other 
isolated singularities are called essential singularities. We shall see later that the 
residue of a function at a pole of order .n + 1 is .f (n)(a)/n!, but what can be proved 
here is the case for a simple pole: 

Proposition 12.19 (Cauchy’s Integral Formula) 

If .f : C → X is analytic inside a simple closed path that contains a, then 

.f (a) = 1

2πi

∮
f (z)

z − a
dz.
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Agustin Louis Cauchy (1789–1857) Cauchy studied 
under Lagrange and Laplace as a military engineer, 
but decided to continue with mathematics. A staunch 
royalist, he replaced Monge at the Académie des Sci-
ences after the fall of Napoleon. Although he published 
important papers in the fields of elasticity and waves, 
he became famous for his taught courses on analysis 
and calculus in the 1820s, in which he proved the 
diagonalization of real quadratic forms and pushed for-
ward the new standards of rigor, e.g. limits, continuity, 
convergence. 

Proof The integrand .f (z)/(z − a) is analytic except at .z = a, so by Cauchy’s 
theorem the path of integration can be taken to be a small circle of radius r about a. 
As f is analytic at a, we know .f (a + w) = f (a) + f '(a)w + o(w), so  

. 
f (z)

z − a
= f (a + w)

w
= f (a)

w
+ f '(a) + o(w)

w
.

Integrating around a closed simple path eliminates the constant function .f '(a), and 

. 

∣∣∣∣
1

2πi

∮
o(w)

w
dz

∣∣∣
∣ ⩽

1

2π

∫ 2π

0

|o(w)|
|w| r dt < rϵ

if r is small enough that .|o(w)|/|w| < ϵ. Thus in the limit as we take smaller circles, 
only the term . 1

2πi

∮ f (a)
w

dw = f (a) remains. ⨅⨆
Examples 12.20 

1. Interpreting the residue theorem in actual examples often yields integration 
results that would be harder to obtain otherwise. For example, the function . eiz/z

has a simple pole at 0 with residue 1. So using a contour as shown in the diagram, 
we obtain 

r R 

. 2πi =
∫ R

r

eix

x
dx +

∫ −r

−R

eix

x
dx +

∫ π

0
e−R(sin θ−i cos θ)i dθ +

∫ 2π

π

eireiθ

i dθ

As .R → ∞ and .r → 0, the imaginary part is .2
∫ ∞

0
sin x

x
dx + π = 2π , which 

gives . lim
r→0

R→∞

∫ R

r

sin x

x
dx = π/2.
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2. Maximum modulus principle: If .f : C → C is analytic and has a local maximum 
(or minimum) at a, then f is constant in a neighborhood of a. It follows that on 
a compact subset K , .|f | attains its maximum and minimum at the boundary . ∂K . 
Proof : Using a circular path of any radius r , centered at a, 

. |f (a)| =
∣∣∣∣

1

2πi

∮
f (z)

z − a
dz

∣∣∣∣ ⩽
1

2π

∫ 2π

0
|f (a + reiθ )| dθ ⩽ |f (a)|

∴
∫ 2π

0
|f (a)| − |f (z)| dθ = 0

so .|f (z)| = |f (a)| within the disk, which in turn implies .f (z) is constant 
(Exercise 12.21(5)). Let .f −1M be the subset of the interior of K where . |f |
attains the maximum .M := maxz∈K◦ |f (z)|. It is open by the above, and closed 
in .K◦ (Exercises 3.13(11)), hence must contain whole components of . K◦, unless 
empty. By continuity, f takes the same value M on the boundary. 

3. We say that a function f has a zero of order n at a when .f (z) = (z − a)ng(z), 
with .g(a) /= 0, g analytic in a neighborhood of a. 
If .f : C → C has a zero (or pole) of order n at a, then .f '/f has a simple pole at 
a with residue n (resp. . −n) 

. 
f '(z)
f (z)

= n(z − a)n−1g(z) + (z − a)ng'(z)
(z − a)ng(z)

= n

z − a
+ g'(z)

g(z)
,

(.g'/g is analytic at a). Thus .
1

2πi

∮ f '
f

= n; more generally it equals the difference 
between the number of zeros and poles (counted with their order) inside the curve 
of integration. 

4. Rouché’s theorem: If .pn → f inside a closed simple curve . γ , with f non-zero on 
. γ , then f and . pn have the same number of zeros inside . γ , from some n onwards. 
Proof : As .|f | has a non-zero minimum on . γ , there is an n such that . |pn

f
−1| < 1

on . γ . Let .F := pn/f then .
∮
γ

F '
F

= ∮
F◦γ

1
z

dz = 0, since .F ◦ γ is a closed 
curve that excludes 0. By the previous example, this implies that F has the same 
number of zeros as poles, that is, the zeros of . pn and of f are the same in number. 

Exercises 12.21 

1. The function .x+iy I→ (x2−y2)+2xyi is analytic, but . x+iy I→ (x2−y2)+xyi

is not. 
2. Show that, along any closed curve . □ in . C, .

∫
□ 1 dz = 0 and .

∫
□ z dz = 0, but on 

a unit circle centered at the origin, .
∫
◦ Re(z) dz = πi. 

3. If .fn(z) → f (z) in X for all z on a simple closed curve w, on which . fn and f 
are continuous, then .

∫
w

fn(z) dz → ∫
w

f (z) dz.
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4. Assuming u and v are sufficiently differentiable, deduce from the Cauchy-
Riemann equations that the real and imaginary parts of an analytic function 
.f = u + iv are ‘harmonic’, 

. 
∂2u

∂x2
+ ∂2u

∂y2
= 0,

∂2v

∂x2
+ ∂2v

∂y2
= 0.

5. Let .f : C → C be analytic. Suppose .|f | is constant in some open set, then f 
is constant. (Hint: Differentiate .|f |2 = u2 + v2.) 

6. Find the poles and residues of (a) .eiz/(z2 + 1), (b) .
1

z3−1

(
ez

e−z

)
, (c) . (sin z)/z2

(First show .(sin z)/z is analytic at 0). 

7. .
1

2πi

∮
z2 + 2

z(z2 − 1)
dz = −1

2
along a simple closed counter-clockwise path that 

includes 0, 1, but not . −1. 
8. Show 

(a) .
∫ 2π

0

1

2 + cos θ
dθ = 2π√

3
using .f (z) := 1

z2 + 4z + 1
, .z(θ) = eiθ ; 

(b) .
∫ ∞

−∞
cos x

x2 + 1
dx = π

e
using .f (z) := eiz

z2 + 1
; 

(c) .
∫ ∞

0

1 − cos x

x2
dx = π

2
using .f (z) := 1 − eiz

z2
. 

9. By applying Example 12.20(3) to .f = eg , prove that the order of any of its 
poles must be zero. As this is impossible, the isolated singularities of f must 
be essential singularities. 

10. Use Rouché’s theorem to show that .cosh z− 2 cos z has 2 zeros in the unit disk, 
assuming it equals its MacLaurin series. 

Remarks 12.22 

1. The first use of the Newton-Raphson method was by the “Babylonians” who used 
the iteration .xn+1 = 1

2 (xn+n/xn) to find square roots, .x2 = n. Newton’s method 
was initially restricted to finding roots of polynomials, and it was Simpson (1740) 
who described the iteration we use today. 

2. Cauchy’s theorem for analytic functions is a special case of Green’s or Stoke’s 
theorem .

∮
F · dr = ∫∫ ∇ × F · dA. In this case, using the Cauchy-Riemann 

equations, 

.

∮
f (z) dz =

∮
(u + iv)( dx + i dy) = ∮

u dx − v dy + i
∮

v dx + u dy

= −
∫∫ (

∂v

∂x
+ ∂u

∂y

)
dA + i

∫∫ (
∂u

∂x
+ ∂v

∂y

)
dA

= 0.
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Chapter 13 
Banach Algebras 

13.1 Introduction 

We now turn our attention to the space of operators .B(X). We have seen that it is 
a Banach space when X is one, but additionally, one can compose, or multiply, 
operators in .B(X). This extra structure turns the vector space .B(X) into what 
is called an algebra. We shall mostly study these spaces as abstract algebras . X
without specific reference to them being spaces of operators, in order to include 
other examples of algebras and to make some of the proofs clearer. Nonetheless, 
.B(X) remains our primary interest, and accordingly, the elements of an algebra will 
be denoted in general by upper-case letters .T , S, . . . to remind us of operators and 
to distinguish them from mere vectors x. 

Definition 13.1 

A unital Banach algebra . X is a Banach space over . C that has an associative 
multiplication of vectors with unity 1, such that for all .R, S, T ∈ X , .λ ∈ C, 

. (R + S)T = RT + ST , R(S + T ) = RS + RT,

(λS)T = λ(ST ) = S(λT ),

‖ST ‖ ⩽ ‖S‖‖T ‖, ‖1‖ = 1.

Throughout this book, a Banach algebra will mean a unital Banach algebra over . C. 
Of course, Banach algebras over . R are also of interest, and all the results in this 
chapter apply to them in modified form; but complex scalars are necessary for an 
adequate spectral theory of . X . 
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Easy Consequences 
1. 1 is unique, because .1' = 1'1 = 1 for any other unity . 1'. 
2. T is said to be invertible (or regular) when there is an element S, called its 

inverse, such that .ST = 1 = T S. The  inverse of  T is unique when it exists, 
and is denoted .T −1. If  .AT = 1 = T B then .A = A(T B) = (AT )B = B so 
.A = T −1. 

3. .(S + T )2 = S2 + ST + T S + T 2, and more generally, 

. (S + T )n = Sn + (ST n−1 + T ST n−2 + · · · + T n−1S) + · · · + T n.

4. .‖T n‖ ⩽ ‖T ‖n. 

Proposition 13.2 

Multiplication, .(T , S) I→ T S, is a differentiable map. 

Proof In the identity 

.(T + H)(S + K) = T S + (T K + HS) + HK, (13.1) 

the map .(H,K) I→ T K + HS, .X 2 → X , is linear and continuous, and HK  is of 
lower order, since 

. ‖T K + HS‖ ⩽ ‖T ‖‖K‖ + ‖S‖‖H‖ ⩽ max(‖T ‖, ‖S‖)(‖H‖ + ‖K‖)
‖HK‖ ⩽ ‖H‖‖K‖ ⩽ (‖H‖ + ‖K‖)2 = ‖(H,K)‖2.

⨅⨆
Needless to say, every differentiable map is continuous. 

Examples 13.3 

1. . Cn with the .∞-norm and the following pointwise multiplication and unity: 

. 

⎛
⎜⎝

a1
...

an

⎞
⎟⎠

⎛
⎜⎝

b1
...

bn

⎞
⎟⎠ :=

⎛
⎜⎝

a1b1
...

anbn

⎞
⎟⎠ , 1 =

⎛
⎜⎝
1
...

1

⎞
⎟⎠ .

2. ▶ .𝓁∞ with pointwise multiplication . xy, and unity .1 = (1, 1, . . .) (Exer-
cise 9.4(3)). 

3. .C(K), the space of continuous functions on a compact set K , with pointwise 
multiplication .fg(x) := f (x)g(x), and unity being the constant function 1. For 
example, .C[0, 1] is a space of paths in the complex plane.
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4. ▶ . 𝓁1 with the convolution product; unity is .e0 = (1, 0, . . .) (Exercise 9.7(2)). 
5. The space .L1(R) with convolution as a product; although it does not have a 

unity, we can artificially add a . δ, called Dirac’s “function”, such that . δ ∗ f :=
f =: f ∗ δ. (To make this rigorous, one needs to consider .L1(R) × C with 
elements .(f, a) representing .f + aδ.) 

The above examples happen to be commutative, i.e., .ST = T S holds. But 
this is not assumed in general. For example, .T 2 − S2 /= (T − S)(T + S) in 
general. 

6. ▶ .B(X) for any Banach space X; the product is operator composition and unity 
is the identity operator I (Proposition 8.8). 

7. ▶ If . X and . Y are Banach algebras, then so is .X × Y with 

. 

(
S1

T1

) (
S2

T2

)
:=

(
S1S2

T1T2

)
, 1 =

(
1X
1Y

)
,

∥∥∥
(

S

T

)∥∥∥ := max(‖S‖X , ‖T ‖Y ).

8. Every normed algebra can be completed to a Banach algebra. 
Proof : Using the notation of Proposition 7.18, if  .T = [Tn] and .S = [Sn], let  
.ST := [SnTn] and .1 := [1]. Note that .SnTn is a Cauchy sequence by 

. ‖SnTn − SmTm‖ ⩽ ‖SnTn − SnTm‖ + ‖SnTm − SmTm‖
⩽ ‖Sn‖‖Tn − Tm‖ + ‖Sn − Sm‖‖Tm‖
⩽ c(‖Sn − Sm‖ + ‖Tn − Tm‖).

Hence 

. R(ST ) = [Rn(SnTn)] = [(RnSn)Tn] = (RS)T ,

λ(ST ) = [λ(SnTn)] = (λS)T = S(λT ),

‖ST ‖ = lim
n→∞ ‖SnTn‖ ⩽ lim

n→∞ ‖Sn‖‖Tn‖ = ‖S‖‖T ‖.

9. The polynomials .C[z] on . B̄C with the .∞-norm form an incomplete algebra. As 
we shall see shortly, its completion is the space of analytic functions .Cω(B̄C). 
More general is the tensor algebra, consisting of polynomials and series in a 
number of non-commuting variables. 

10. ▶ If .ST = 0 and S is invertible, then .T = 0. But there may exist non-zero 
non-invertible elements .S, T , called divisors of zero, for  which  .ST = 0. Note  
that T S  need not also be 0, so S and T are more precisely called left and right 
divisors of zero, respectively. 

11. ▶ The product of invertible elements is invertible, with .(ST )−1 = T −1S−1. 
Also, .(T −1)−1 = T . If . T n is invertible, for some .n ⩾ 1, then so is T . 
But it is possible for two non-invertible elements to have an invertible product, 
i.e., ST invertible ./⇒ T invertible (unless T R  is also invertible for some R). 
In particular, .ST = 1 by itself is not enough to ensure T and S are invertible.
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For example, in .B(𝓁1), the product of the (non-invertible) shift-operators is 
.LR = I . 

12. (a) .(1 + T S)−1 = 1 − T (1 + ST )−1S, 
(b) Woodbury’s formula .(A+T BS)−1 = A−1−A−1T (B−1+SA−1T )−1SA−1. 
Proof : (a) Starting from the identities .(1+T S)T = T (1+ST ) and . S(1+T S) =
(1 + ST )S, we deduce 

. 1 + (1 + T S)T (1 + ST )−1S = 1 + T S = 1 + T (1 + ST )−1S(1 + T S)

from which the result follows. 
(b) Use (a) with .(A + T BS)−1 = (1 + A−1T BS)−1A−1. 

13. Suppose an element satisfies some non-zero polynomial, .p(T ) = 0. The unique 
such polynomial of minimum degree and leading coefficient 1 is called its 
minimal polynomial . pm. It divides all other polynomials p such that .p(T ) = 0. 
Proof : There cannot be two minimal polynomials, . pm and p, otherwise . pm −p

has a lesser degree than both and .pm(T ) − p(T ) = 0. If  .p(T ) = 0, then 
.p = qpm + r by the division algorithm of polynomials. As r has a strictly 
smaller degree than . pm, yet .r(T ) = p(T ) − q(T )pm(T ) = 0, it must be the  
zero polynomial. 

14. The derivative of the map .T I→ ST is S. Similarly the derivative of .T I→ T n is 

. H I→ HT n−1 + T HT n−2 + · · · + T n−1H.

Because of commutativity, this simplifies to .(zn)' = nzn−1 in . C. Thus, any  
polynomial in T is differentiable in T . 

Subalgebras and Ideals 

Definition 13.4 

A subalgebra of an algebra X is a subset which is itself an algebra with 
the same (induced) addition, scalar multiplication, product, and unity. It is a 
Banach subalgebra when, additionally, the induced norm is complete. 

An ideal is a linear subspace I such that ST , T S ∈ I for any T ∈ X , S ∈ I. 

To show that a non-empty subsetA is a subalgebra of X , one need only show closure 
of the various operations, i.e., for any S, T ∈ A, S + T ∈ A, λT ∈ A, ST ∈ A, 
1 ∈ A. The required properties of the induced operations are obviously inherited 
from those of X .
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Examples 13.5 

1. C is embedded in every (complex) Banach algebra as C1 = {  z1 : z ∈ C }. In  
fact, it is customary to write z when we mean z1. 

2. An element T generates the subalgebra of polynomials 

. C[T ] := { a0 + a1T + · · · + anT
n : a1, . . . , an ∈ C, n ∈ N }.

More generally, a finite number of commuting elements T1, . . . , Tn generate 
the commutative algebra C[T1, . . . , Tn], which may contain, for example, the 
element 1 − 2T2 + T 2 1 T2. 

3. The algebra 𝓁∞ contains the closed ideal c0. 
Proof : That c0 is a closed linear subspace of 𝓁∞ is proved in Proposition 9.2. Let  
(an)n∈N ∈ 𝓁∞, (bn)n∈N ∈ c0, then (anbn)n∈N ∈ c0 since 

. | lim
n→∞ anbn| ⩽ sup

n
|an| lim

n→∞ |bn| = 0.

We will see later that every commutative Banach algebra, except C, has non-
trivial ideals (Example 14.5(4)). 

4. The center X ' := { T : ST = T S,  ∀S ∈ X } is a commutative closed subalgebra 
of X . 
Proof : If  Tn ∈ X ', then 

. S(T1 + λT2) = ST1 + λST2 = T1S + λT2S = (T1 + λT2)S,

S(T1T2) = T1ST2 = (T1T2)S, SI = S = IS,

Tn → T ⇒ ST = lim
n→∞ STn = lim

n→∞ TnS = T S.

The algebra is commutative by definition of X '. 
5. ▶ Proper ideals do not contain 1, or any other invertible element T , otherwise 

it would have to contain every element S = ST −1T . (However, as remarked 
in Example 13.3(11), the set of non-invertible elements need not be an ideal, or 
even a subspace.) 

6. A closed ideal gives rise to a quotient algebra X /I with multiplication and unity 
defined by 

. (S + I)(T + I) := ST + I, 1 + I.

7. A maximal ideal is a proper ideal I for which the only other ideal containing it 
is X itself, 

.I ⊆ J ⊆ X ⇒ J = I OR J = X .
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Maximal ideals are necessarily closed, assuming that the closure of a proper ideal 
is also a proper ideal (Example 13.22(3)). 

8. ✶ Every proper ideal is contained in a maximal ideal. 
Proof : Let  C be the collection of all proper ideals that contain the proper ideal 
I. By Hausdorff’s maximality principle, C contains a maximal chain of nested 
ideals Iα . Then M := ⋃

α Iα is an ideal, since if T ∈ Iα and S ∈ Iβ ⊆ Iα , say,  
then S + T ∈ Iα ⊆ M, and for any S ∈ X , both ST and T S  are in Iα ⊆ M. 
It is obvious that M is proper and contains I since 1 /∈ Iα ⊇ I for every α, and 
that M is maximal since the chain Iα is maximal. 

Morphisms 

Definition 13.6 

A morphism Ф : X → Y of Banach algebras is a continuous linear map 
(preserving limits, addition, and scaling) which preserves multiplication and 
the unity, 

. Ф(ST ) = Ф(S)Ф(T ), Ф(1X ) = 1Y .

A character is a Banach algebra morphism φ : X → C. The set of characters, 
denoted by Δ, is called the character space, or  spectrum, of X . 

Examples 13.7 

1. Invertible elements ofX are mapped by algebra morphisms to invertible elements 
of Y , 

. Ф(T )−1 = Ф(T −1),

since Ф(T )Ф(T −1) = Ф(T T −1) = Ф(1) = 1 and similarly, Ф(T −1)Ф(T ) = 1. 
2. ▶ The kernel of a Banach algebra morphism, kerФ := {  T : Ф(T ) = 0 }, is a  

closed ideal. It is maximal when Ф ∈ Δ. 
Proof : If Ф(T ) = 0, then Ф(ST ) = Ф(S)Ф(T ) = 0; similarly, Ф(T S) = 0. 
Maximality: Let Ф : X → C be a morphism, and let the ideal I contain kerФ
as well as some T /∈ kerФ. Then Ф(T ) = λ /= 0, and Ф(λ − T )  = 0; so 
λ = (λ − T ) + T ∈ I, and I must equal X (Example 13.5(5) above). 
(Every maximal ideal of a commutative Banach algebra is of the type ker φ with 
φ ∈ Δ, but the proof requires Exercise 13.10(21) and Example 14.5(4); see the 
proof of Theorem 14.39.)
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3. An isomorphism of Banach algebras is defined to be an invertible morphism Ф : 
X → Y such that Ф−1 is also a morphism. In fact, an invertible morphism is 
automatically an isomorphism. 

4. An automorphism of a Banach algebra X is an isomorphism from X to itself. 
For example, the inner automorphisms T I→ S−1T S, for any fixed invertible S. 

5. Since C is commutative, commutators [S, T ] := ST − T S  are mapped to 0 by 
characters (if they exist). 

Representation in B(X) 

Some mathematical theories contain a set of theorems stating that any abstract 
model of the theory can be represented concretely. For example, every group can 
be represented by a permutation group, and every smooth manifold is embedded as 
a smooth “surface” of a Euclidean space. In this regard, every finite-dimensional 
Banach algebra can be embedded, or “faithfully represented”, as a matrix algebra, 
and more generally, we have the following representation theorem: 

Theorem 13.8 

Every Banach algebra can be embedded as a closed subalgebra of .B(X), 
for some Banach space X. 

Proof The Banach space X can be taken to be the Banach algebra . X itself without 
the product (although there may well be ‘smaller’ Banach spaces that fit the 
job). That is, the claim is that . X is embedded in .B(X ). To avoid confusion, we 
temporarily denote elements of . X by lower-case letters, and the operators on them 
by upper-case letters. 

Let .La(x) := ax be left-multiplication by a. Then .La ∈ B(X ) since 
multiplication is distributive and continuous: 

. La(x + y) = a(x + y) = ax + ay = La(x) + La(y),

La(λx) = a(λx) = λ(ax) = λLa(x),

‖La(x)‖ = ‖ax‖ ⩽ ‖a‖‖x‖,

so that .‖La‖ ⩽ ‖a‖. Furthermore, 

.

La+b(x) = (a + b)x = ax + bx = La(x) + Lb(x), L1(x) = 1x = x = I (x),

Lλa(x) = (λa)x = λLa(x), La(1) = a1 = a,

Lab(x) = (ab)x = a(bx) = LaLb(x),
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so .‖a‖ = ‖La1‖ ⩽ ‖La‖‖1‖ = ‖La‖ and .‖La‖ = ‖a‖. These show that the 
mapping .L : X → B(X ) defined by .L : a I→ La is an isometric morphism of 
Banach algebras. In fact, the space of such operators, .imL, is a closed subalgebra 
of .B(X ) since isometries preserve completeness (Exercise 4.18(5)). Note that all 
the Banach algebra axioms have been used. ⨅⨆
As one may anticipate, .B(X) and .B(Y ) are not isomorphic as Banach algebras, 
when X and Y are not isomorphic as Banach spaces. The proof, however, is not as 
obvious as one might expect. 

Theorem 13.9 

Let X and Y be Banach spaces. A Banach algebra isomorphism . J :
B(X) → B(Y ) induces a Banach space isomorphism .L : X → Y , such 
that 

. J (T ) = LT L−1.

Thus, every automorphism of .B(X) is inner. 

Proof The idea is to establish a 1–1 correspondence between vectors .x ∈ X and 
certain projection-like operators .Px ∈ B(X), and similarly .y ↔ Ry for Y ; using  the  
given mapping .J : T I→ T̃ , the sought isomorphism would then be 

. L : x I→ Px
JI→ Ry I→ y.

The correspondence .x ↔ Px : For the remainder of the proof, fix a vector .u ∈ X, 
.u /= 0, and a functional .φ ∈ X∗ such that .φu = 1. Multiplying any .x ∈ X by . φ
gives an operator .Px := xφ : z I→ (φz)x; conversely, multiplying . Px with u gives 
back the vector .Pxu = xφu = x. The crucial characteristics of these operators are, 
for any .T ∈ B(X) (including scalar multiplication), 

. T Px = T xφ = (T x)φ = PT x, Px1+x2 = (x1 + x2)φ = Px1 + Px2 .

In particular, .PxPu = xφuφ = xφ = Px . Note that .‖Px‖ = ‖xφ‖ ⩽ ‖x‖‖φ‖ and 
.‖x‖ = ‖Pxu‖ ⩽ ‖Px‖‖u‖. Thus, .P : X → B(X), .x I→ Px is an embedding. 
The isomorphism J maps .Px ∈ B(X) to a similar operator .Ry ∈ B(Y ): The relation 
.P 2

u = Pu is preserved by J , so .P̃u := J (Pu) is a non-zero projection in .B(Y ). Pick  
.v ∈ im P̃u and .ψ ∈ Y ∗ such that .ψv = 1 and .ψ ker P̃u = 0 (Proposition 11.20), and 
define .Ry := yψ for any .y ∈ Y . . Ry satisfies analogous properties as . Px , such as 
.Ryv = y and .T̃ Ry = RT̃ y . First we show that .J (Pu) = Rv: for suppose .w ∈ im P̃u, 
and let .T ∈ B(X) correspond to .Rw ∈ B(Y ) under J ; then J transforms the identity 

.PuT Pu = u(φT u)φ = λPu, where λ = φT u,
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to .P̃uRwP̃u = λP̃u, so .im P̃u = [[v]] since 

. w = P̃uw = P̃uRwv = P̃uRwP̃uv = λP̃uv = λv.

Thus the projections . ̃Pu and . Rv have the same image and the same kernel, and we 
can conclude that they are equal to each other. 

Hence, the identity .Px = PxPv becomes, in .B(Y ), 

. J (Px) = P̃x = P̃xRv = RP̃xv = Ry, where y = P̃xv.

The map .L : x I→ y = J (Px)v is an isomorphism: That L is linear, continuous, and 
1–1 follow from: 

. L(x1 + x2) = J (Px1+x2)v = J (Px1 + Px2)v = L(x1) + L(x2),

L(λx) = J (Pλx)v = J (λPx)v = λL(x),

‖Lx‖ = ‖J (Px)v‖ ⩽ ‖J‖‖φ‖‖x‖‖v‖,
Lx = 0 ⇔ y = J (Px)v = 0 ⇔ J (Px) = Ry = 0 ⇔ Px = 0 ⇔ x = 0.

Given any .y ∈ Y , .J−1 maps the identity .Ry = RyRv to .S = SPu = PSu. So for  
.x := Su, 

. Lx = J (PSu)v = J (S)v = Ryv = y,

and L is onto. By the open mapping theorem (Theorem 11.1), L is an isomorphism. 
.T̃ = LT L−1: J maps the identity .T Px = PT x to .T̃ RL(x) = RL(T x). Multiplying 
by v to get the vector form, this reads .T̃ Lx = LT x for all .x ∈ X. 

When .X = Y , then .L ∈ B(X), and J is an inner automorphism. ⨅⨆
Exercises 13.10 

1. Banach algebras of square matrices abound: the sets of matrices of type .
(
a 0
b c

)
, 

.
(
a b
0 a

)
, .
(
a b
b a

)
, or .

(
a b−b a

)
are each closed under addition and multiplication, and are 

Banach subalgebras of .B(C2). The last three examples can be written as . a+bJ

where .J 2 = 0, 1,−1 respectively. 
2. .C := C

2 with .
(
a
b

)(
c
d

) := (
ac

ad+bc+bd

)
is a Banach algebra, with unity . 

(
1
0

)
. 

(Hint: it is a matrix algebra in disguise.) 
3. Find examples of .2 × 2 matrix divisors of zero, .ST = 0 /= T S. 
4. In an n-dimensional algebra, every element has a minimal polynomial of 

degree at most n; e.g., every square matrix A has a minimal polynomial. 
Show also how the Gram-Schmidt process (with respect to the inner product 
of Example 10.2(2)) can be applied to the sequence .I, A,A2, . . . to construct 
this minimal polynomial.
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5. An idempotent satisfies .P 2 = P . They are the projections in .B(X); what are 
they in . Cn and . 𝓁∞? The idempotents of .C[0, 1] are trivial. Show further that 
.PXP is an algebra with unity P , called a “reduced algebra”. 

6. A nilpotent satisfies .Qn = 0 for some n, e.g., .
(
0 1
0 0

)
and .

(
1 i
i −1

)
. In  . CN , . 𝓁∞, and 

.C[0, 1], there are no nilpotents except zero. Find all the .2× 2 matrix nilpotents 
of index 2, i.e., .Q2 = 0, .Q /= 0. 

7. An element is cyclic when .T n = 1 for some n, e.g., .
(
1 0
0 i

)
. In  .CN and . 𝓁∞ they 

are sequences whose terms are of the type .e2πim/n for a fixed n. 
8. The product of differentiable functions is again differentiable, with 

. (fg)'(T )H = [f '(T )H ]g(T ) + f (T )[g'(T )H ].

This can be written in short as the familiar product rule .(fg)' = f 'g + fg', 
provided it is remembered that the vector H is acted upon by each derivative. 

9. If .F : R → X is integrable and .T ∈ X , then .
∫

F(t)T dt = (
∫

F)T (First show 
it is true for simple functions). 

10. ✶ Group Algebra: Let  G be a finite group of order n, and .{ eg : g ∈ G } be an 
orthonormal basis for . Cn; define .eg ∗ eh := egh, and extend the product to all 
other vectors by distributivity. The result is a Banach algebra, denoted .CG or 
.𝓁1(G), with unity . e1 and the 1-norm. Every basis element is cyclic. 
For example, the cyclic group .{ 1, g : g2 = 1 }, gives rise to an algebra 
generated by .e1 := (

1
0

)
and .eg := (

0
1

)
, and the product 

. 

(
a

b

)
∗

(
c

d

)
:= (ae1 + beg) ∗ (ce1 + deg) =

(
ac + bd

bc + ad

)
.

11. The closure of a subalgebra is an algebra (use continuity of the product). 
12. If . I and . J are ideals, then so are .I + J and . I. 
13. The center of .B(X) is . C. (Hint: Consider projections . xφ, for any .x ∈ X, . φ ∈

X∗.) 
14. ▶ The centralizer or commutant of a subset .A ⊆ X , 

. A' := { T : AT = T A, ∀A ∈ A }

is a closed subalgebra of . X . (In fact, when .X = B(H), . A' is weakly closed by 
Exercise 11.49(8a).) Prove: 

(a) .A ⊆ B ⇒ B' ⊆ A', 
(b) .A ⊆ A'' and .A''' = A', 
(c) If .T ∈ A' is invertible in . X then .T −1 ∈ A', 
(d) If elements of . A commute, then .A ⊆ A' and . A'' is a commutative Banach 

algebra. 

15. A left-ideal is a linear subspace .I ⊆ X such that .T I ⊆ I for any .T ∈ X . 
Similarly, for a right-ideal, .IT ⊆ I. For example, .XS is a left-ideal, and . SX
is a right-ideal, but .XSX need not be an ideal. Instead, the ideal generated by 
S is .[[XSX ]].
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16. The set of compact operators in .B(X) form a closed ideal .K(X); the set of finite 
rank operators form an ideal (but note that the closure of this ideal need not be 
.K(X).) 

17. Show that any closed ideal of . c0 consists of those sequences that vanish on 
some specific set of indices. What are the maximal ideals? 

18. Let A be a closed subset of .[0, 1], then 

. IA := { f ∈ C[0, 1] : ∀x ∈ A, f (x) = 0 }

is a closed ideal of .C[0, 1]. Conversely, given a closed ideal . I of .C[0, 1], let  

. A := { x ∈ [0, 1] : ∀f ∈ I, f (x) = 0 },

then .I = IA. What are the maximal ideals? 
19. Let . IA be a closed ideal of .C[0, 1], where A is a closed subset of .[0, 1]. Then 

the mapping .f + IA I→ f |A is an isomorphism .C[0, 1]/IA ≡ C(A). 
20. An algebra morphism .Ф : X → Y ‘pulls’ ideals . I in . Y to ideals .Ф−1I in . X . 
21. If . I is a closed ideal, then .Ф(T ) := T + I gives a Banach algebra morphism 

.Ф : X → X /I with kernel .kerФ = I. 
22. The mapping .

∑
n anz

n I→ (an)n∈N from the set of power series converging 
absolutely on the closed unit disk . B̄C of . C, considered as a subspace of .C(B̄C), 
to . 𝓁1 is a 1–1 Banach algebra morphism. 

23. Let . σ be a permutation of .1, . . . , n; then the mapping defined by 
.(z1, . . . , zn) I→ (zσ(1), . . . , zσ(n)) is an automorphism of . Cn. 

24. For the group algebra . CG, let  . σ be an automorphism of the group G; then 
.eg I→ eσ(g) induces an automorphism on . CG. 

25. The algebra . Cn is embedded in .B(Cn) as diagonal matrices. . C is represented by 
the matrices .

(
a 0
b a+b

)
. The group algebra . CG is generated by the Cayley matrices 

of G. 
26. Show that every Banach algebra of dimension 2 (over . C) can be represented by 

the matrices generated from I and .
(0 α
1 β

)
, where . α is a fixed number and . β is 0 

or 1. What are . α and . β for the group algebra generated by .{ 1, g : g2 = 1 }? 
27. Let . X be a Banach algebra contained in .B(X). Its unity .P = P 2 is a projection, 

so .X = M ⊕ N where .M = imP . For every .T ∈ X , .PT = T = T P implies 
M is T -invariant and .T N = 0, hence . X acts on M . 

13.2 Power Series 

Definition 13.11 

A power series is a series
∑

n anT n where an ∈ C and T ∈ X .
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Recall that the root test can help determine whether such a series converges or not: 
If ‖anT n‖1/n = |an|1/n‖T n‖1/n converges to a number less than 1, then the power 
series converges. It is important to know that ‖T n‖1/n converges: 

Proposition 13.12 

For any T in a Banach algebra, the sequence ‖T n‖1/n converges to a 
number denoted by ρ(T ), where 

. ∀n ∈ N, ρ(T ) ⩽ ‖T n‖1/n ⩽ ‖T ‖.

Proof It is clear that 0 ⩽ ‖T n‖1/n ⩽ ‖T ‖. Let  ρ(T ) be the infimum value of
‖T n‖1/n, meaning that ‖T n‖1/n is bounded below by ρ(T ) and 

. ∀ϵ > 0, ∃N, ρ(T ) ⩽ ‖T N‖1/N < ρ(T ) + ϵ.

Although the sequence ‖T n‖1/n is not necessarily decreasing towards ρ(T ), notice 
that ‖T qm‖1/qm ⩽ ‖T m‖1/m. For any n, let  n = qnN + rn with 0 ⩽ rn < N  (by the 
remainder theorem), then 0 ⩽ rn/n < N/n → 0 and qn/n = 1 

N (1 − rn 
n ) → 1 

N as 
n → ∞, so that 

. ρ(T ) ⩽ ‖T n‖1/n = ‖T qnNT rn‖1/n ⩽ ‖T N‖qn/n‖T ‖rn/n → ‖T N‖1/N < ρ(T )+ϵ.

Since ϵ is arbitrarily small, this shows that ‖T n‖1/n → ρ(T ) from above. ⨅⨆
Examples 13.13 

1. ▶ (a) ρ(1) = 1, (b) ρ(λT ) = |λ|ρ(T ), (c)  ρ(ST ) = ρ(T S), (d)  ρ(T n ) = ρ(T )n, 
since 

. ‖1n‖1/n = 1, ‖λnT n‖1/n = |λ|‖T n‖1/n,

ρ(ST ) ⩽ ‖(ST )n‖1/n ⩽ ‖S‖1/n‖(T S)n−1‖1/n‖T ‖1/n → ρ(T S),

‖(T n)m‖1/m = ‖T nm‖ n
nm → ρ(T )n as m → ∞.

But ρ(T ) may be 0 without T = 0; and ρ(S + T ) /⩽ ρ(S) + ρ(T ) in general, 
e.g.,

(
0 1  
0 0

)
,
(
0 0  
1 0

)
. So  ρ is not usually a norm on X . 

2. ρ(T ) = ‖T ‖ ⇔ ∀n ∈ N, ‖T n‖ = ‖T ‖n, since ‖T ‖ =  ρ(T ) ⩽ ‖T n‖1/n ⩽
‖T ‖. 

3. ▶ If ρ(T ) < 1, then T n → 0 (even though ‖T ‖ may be bigger than 1). If 
ρ(T ) > 1, then T n → ∞. 
Proof : For ϵ small enough and n large enough, 

.‖T n‖1/n ⩽ ρ(T ) + ϵ < 1 ⇒ ‖T n‖ ⩽ (ρ(T ) + ϵ)n → 0, as n → ∞,
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‖T n‖1/n ⩾ ρ(T ) > 1 + ϵ ⇒ ‖T n‖ ⩾ (1 + ϵ)n → ∞. 

For example, if A := 1 3
(
0 1  
6 0

)
then ‖A(

1 
0

)‖ =  2 > 1 yet A2 = 2 3I , so  An → 0. 
On the other hand, (i) B := (

1 1  
0 −1

)
satisfies Bn = I or B, so  ρ(B) = 1 and Bn 

does not converge; (ii) C := (
1 1  
0 1

)
satisfies Cn = (

1 n 
0 1

) → ∞  as n → ∞, yet 
ρ(C) = 1; (iii) D := (1 0  

0 1/2

)
satisfies ρ(D) = 1 and Dn = (1 0  

0 1/2n

) → (
1 0  
0 0

)
as 

n → ∞. 
4. If ||| · ||| is an equivalent norm, then ρ(T ) = limn→∞ |||T n|||1/n; for example, for 

matrices, one can use the Frobenius norm, which is easier to calculate than the 
standard norm, although the convergence rate may differ. 

Theorem 13.14 (Cauchy-Hadamard Theorem) 

The power series
∑∞ 

n=0 anT n, where an ∈ C, T ∈ X , 

• converges absolutely when ρ(T ) < r , and 
• diverges when ρ(T ) > r , 

where r := 1/ lim supn |an|1/n is called the radius of convergence of the 
series. 

Proof This is a simple application of the root test. The nth root of the general term 
satisfies 

. lim sup
n

‖anT
n‖1/n = lim sup

n
|an|1/nρ(T ) = ρ(T )/r.

Thus, if ρ(T ) < r , then the series converges absolutely, while if ρ(T ) > r , 
then it diverges. Assuming X is complete, the power series converges or diverges 
accordingly. ⨅⨆
Examples 13.15 

1. Ratio test: If  |an|/|an+1| →  r then so does |an|−1/n (Sect. 7.5), hence r would 
be the radius of convergence of

∑
n anT n. 

2. Some aspects of power series may seem mysterious from the point of view of 
real numbers: The series 1 − t2 + t4 − t6 + · · ·  has a radius of convergence of 
1 yet converges to (1 + t2)−1 which takes a finite value at all t ∈ R (but not at 
t = i). Moreover the same function can also be written as (5 − (4 − t2))−1 = 
1 
5

∑∞ 
n=0

( 4−t2 

5

)n , but in this form it converges in the larger range −3 < t  <  3. 
3. The theorem also applies to power series

∑
n Anz

n, where An is a sequence of 
elements in X . The radius of convergence is then 1/ lim supn ‖An‖1/n. 

4. When |an| ⩽ c for all n, then a2T 2 + a3T 3 + · · · =  o(T ) for small T , since it is 
bounded above by c‖T ‖2/(1 − ‖T ‖).



328 13 Banach Algebras

When can a function be written as a power series? We wish to establish that being 
analytic in a neighborhood of 0 is a necessary and sufficient condition. The necessity 
part is the content of the following proposition, but sufficiency will be shown later 
(Theorem 13.26). 

Proposition 13.16 

A power series f (z)  := ∑∞ 
n=0 anz

n is analytic strictly within its radius of 
convergence, and 

. f '(z) =
∞∑

n=1

nanz
n−1.

Proof First of all, the power series
∑

n annzn−1 converges, with the same radius of 
convergence R as

∑
n anz

n, 

. lim sup
n

|nan|1/n = lim
n→∞ n1/n lim sup

n
|an|1/n = 1/R (Exercise 3.6(1d)). 

For each individual term of the given power series, 

. (z + h)n = zn + nzn−1h + on(h).

It needs to be shown that |∑n anon(h)|/|h| → 0 as  h → 0. One trick is to find an 
alternative way of expanding (z + h)n as follows: 

. (z + h)n = (z + h)n−1h + (z + h)n−1z

= (z + h)n−1h + (z + h)n−2zh + (z + h)n−2z2

= (z + h)n−1h + · · · + (z + h)n−kzk−1h + · · ·
+ zn−1h + zn

⇒ |(z + h)n − zn| ⩽ (|z + h|n−1 + · · · + |z|n−1)|h|
⩽ nrn−1|h|, (13.2) 

where r is larger than |z| + |h| but smaller than R. Now,  

.on(h) = (z + h)n − zn − nzn−1h

= (z + h)n−1h + · · · + (z + h)n−kzk−1h + · · · + zn−1h

− zn−1h − · · · − zn−kzk−1h − · · · − zn−1h
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= 
n∑

k=1

(
(z + h)n−k − zn−k

)
zk−1h 

so |on(h)| ⩽ (n − 1)rn−2|h|2 + · · · +  rn−2|h|2 by (13.2) 

= 
n(n − 1) 

2 
rn−2|h|2 

But the series c := 
∞∑

n=2 

|an|n(n − 1) 
2 

rn−2 converges for r <  R, so  

. 
∣∣

∞∑
n=0

anon(h)
∣∣ ⩽

∞∑
n=2

|an||on(h)| ⩽ c|h|2

which proves that the remainder term
∑

n anon(h) is o(h). ⨅⨆
There are two important consequences: Since differentiating a power series gives 

another power series with the same radius of convergence, then we can differentiate 
repeatedly. Secondly, we know that polynomials are distinct as functions on C when 
they have different coefficients; this property remains valid for power series: If a 
function can be written as a power series, then its coefficients are unique to it. 

Proposition 13.17 

Assuming a strictly positive radius of convergence, 

(i) a power series f (z)  := ∑∞ 
n=0 anz

n is infinitely many times differen-
tiable, and 

. an = f (n)(0)

n!
(ii) distinct power series are not equal as functions. 

Proof (i) By induction on n, f (n) has the power series 

. f (n)(z) = n!an + (n + 1)!an+1z + (n + 2)!
2

an+2z
2 + · · ·

Substituting z = 0 gives the stated formula. 

(ii) Suppose
∑

n bnT n = ∑
n cnT n for all T such that ρ(T ) < r , the smaller of 

their radii of convergence. By taking the difference of the two series, it is enough to 
show that if f (z)  := ∑

n anz
n = 0 for all z ∈ Br(0), then an = 0 for all n. But this 

is immediate from (i) since f (n) (0) = 0 in this case. ⨅⨆
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The Exponential and Logarithm Maps 

There are a couple of power series of supreme importance. As motivation, consider 
the possibility of converting addition in a Banach algebra to multiplication, 

. f (x + y) = f (x)f (y), f (0) = 1.

Apart from the constant function .f = 1, are there any others? If f exists, it would 
have to satisfy a number of properties: 

(a) .f (nx) = f (x)n, .f (−x) = f (x)−1, 
(b) When the algebra is . R, .f (m/n) = am/n where .a := f (1) > 0 (Hint: . f (n/n) =

f (1/n)n), 
(c) f is uniformly continuous on .Q ∩ [0, 1], so it can be extended to a continuous 

function on . R, usually denoted by .f (x) = ax , 
(d) .f '(x) = f '(0)f (x) if f is differentiable at 0, since . f (h) = 1 + f '(0)h + o(h)

so 

. f (x + h) = f (x)f (h) = f (x) + f (x)f '(0)h + o(h);

consequently f is infinitely many times differentiable with . f (n)(x) =
f '(0)nf (x). Taking the simplest case .f '(0) = 1 (so .f (n)(0) = 1) leads to 
the following definition: 

The exponential function is defined by 

. eT := 1 + T + T 2

2! + T 3

3! + · · · =
∞∑

n=0

1

n!T
n.

Its radius of convergence is .lim infn |an|−1/n = limn→∞ 1/n!
1/(n+1)! = ∞ by the ratio 

test, so . eT exists for any T and satisfies .‖eT ‖ ⩽ e‖T ‖. 
Similarly, starting with .f (xy) = f (x) + f (y), we are  led to the  logarithm 

function, defined by 

. log(1 + T ) := T − T 2

2
+ T 3

3
+ · · · =

∞∑
n=1

(−1)n+1

n
T n,

with radius of convergence .lim infn |an|−1/n = limn→∞ 1/n
1/(n+1) = 1. 

Proposition 13.18 

When .S, T commute, .eS+T = eSeT . For .ρ(T ) < 1, .elog(1+T ) = 1 + T .
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Proof (i) The product .eSeT can be obtained in table form as, 

eS = 1 + S + 1 
2!S

2 + · · ·  
eT 

= 

1 1 S 1 
2S

2 

+ 
T T ST 1 

2S
2T 

+ 
1 
2!T

2 1 
2T

2 1 
2ST

2 1 
4S

2T 2 

+ 
... 

The general term in this array is . 1
n!

1
m!S

nT m = 1
N !

(
N
n

)
SnT N−n where . N := n + m

is the N th diagonal from the top left corner. This is precisely the nth term of the 
expansion of .

1
N ! (S + T )N when S and T commute, so the array sum is .eS+T . 

(ii) The second part can be (tediously) proved by making a power series expansion 
as above (Exercise 13.19(8)). We defer the proof until we have better tools available 
(Example 13.30(3)). ⨅⨆
Exercises 13.19 

1. Calculate .ρ(T ) for the following matrices 

. (a)

(
0 1
0 0

)
, (b)

(
1 a

0 0

)
, (c)

(
a 0
0 b

)
, (d)

(
a 1
0 a

)
.

Only one of these examples satisfies .ρ(T ) = ‖T ‖. 
2. Every idempotent P , except 0, satisfies .ρ(P ) = 1; every nilpotent Q has 

.ρ(Q) = 0, and every cyclic element T has .ρ(T ) = 1. 
3. For any invertible S, .ρ(S−1T S) = ρ(T ), yet .‖S−1T S‖ may be much larger 

than .‖T ‖. For example, let .P := (
1 c
0 0

)
and .S := (

1 0
0 a

)
, then . S−1PS = (

1 ac
0 0

)
has norm .

√
1 + |ac|2. 

4. If .ST = T S, then .ρ(ST ) ⩽ ρ(S)ρ(T ). Deduce .ρ(T −1)−1 ⩽ ρ(T ), and find 
examples of non-commuting matrices such that .ρ(ST ) > ρ(S)ρ(T ). 

5. The equation .T −AT B = C has a solution .T = ∑∞
n=0 AnCBn if .ρ(A)ρ(B)<1.



332 13 Banach Algebras

6. The radii of convergence of 

. 

∞∑
n=0

nnT n,

∞∑
n=0

nT n,

∞∑
n=1

T n/n,

∞∑
n=0

T n/n!

are 0, 1, 1, . ∞, respectively. A quick way of estimating the radius of convergence 
r is to judge how fast the coefficients grow: if .c0rn

0 ⩽ |an| ⩽ c1r
n
1 then . 1

r1
⩽

r ⩽ 1
r0
. 

7. How are the radii of convergence of .
∑

n(an + bn)T
n and .

∑
n anbnT

n related 
to those of .

∑
n anT

n and .
∑

n bnT
n? 

8. Let .f (T ) := ∑∞
n=0 anT

n and .g(T ) := ∑∞
n=0 bnT

n. Find the first few terms of 
the power series expansions of .f + g, fg  and .f ◦ g; in particular, find .−f (T ), 
.f (T )−1, .f −1(T ). 

9. Let .f (T ) := ∑
n anT

n be a power series, and .F(T ) := ∑
n |an|T n; they have  

the same radius of convergence r . If  .‖T ‖ < r , then .‖f (T )‖ ⩽ F(‖T ‖); e.g., 
.‖eT ‖ ⩽ e‖T ‖. 

10. The convergence of a power series is uniform in T on .Bs(0), for .s < r . 
11. When T satisfies a polynomial .p(T ) = 0, then every (convergent) power series 

on T reduces to a polynomial in T . 
12. (a) .e0 = 1, (b) the inverse of . eT is . e−T , (c) .enT = (eT )n. 
13. By analogy with the complex case, define the hyperbolic and trigonometric 

functions of T as power series, and show (a) .exp
(
0 −1
1 0

)
t = (

cos t − sin t
sin t cos t

)
, (b)  

.cos
(
1 1
0 1

)
t = (

cos t −t sin t
0 cos t

)
, (c) .eT = cosh T + sinh T , (d) .eiT = cos T + i sin T . 

14. Prove that there is a non-zero complex number . τ such that .eτ = 1. Thus the 
exponential function has a period, .eT +nτ = eT . The ‘smallest’ such number is 
.6.283 . . . i =: 2πi. 

15. ✶ .(1 + T/n)n → eT as .n → ∞. 
(Hint: Each component in the series is . 1

nk

(
n
k

)
T k → 1

k!T
k , then use Exer-

cise 9.7(1).) 
16. ✶ The product of n terms, . (1+S/n)(1+T/n)(1+S/n) · · · (1+T/n) → eS+T

as .n → ∞. (At least show convergence for each power term.) 
17. ✶ Trotter formula: .eS/neT/neS/n · · · eT/n → eS+T . For example, 

. eS+T ≈ eS/2eT/2eS/2eT/2.

Find the exact coefficients used in the Trotter-Suzuki approximation 

. e0.293Se0.707T e0.707Se0.293T ,

that make it the best possible to second order. These formulas are very useful 
to approximate .eS+T whenever S and T do not commute.
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13.3 The Group of Invertible Elements 

Among the invertible elements of a Banach algebra, one finds all the exponentials 
. eT (including all non-zero complex numbers) and all their products, as well as the 
unit ball around 1, as the next key theorem proves: 

Theorem 13.20 

If .ρ(T ) < 1 then .1 − T is invertible: . (1 − T )−1 = 1 + T + T 2 + · · ·

Proof The radius of convergence of the series .
∑

n T n is 1, by Hadamard’s formula. 
For .ρ(T ) < 1, let .SN := 1 + T + · · · + T N → ∑∞

n=0 T n. Then, remembering that 
.ρ(T ) < 1 ⇒ T N → 0 as .N → ∞ (Example 13.13(3)), 

. 

SN = 1+ T + · · · + T N

T SN = T + · · · + T N + T N+1

⇒ (1 − T )SN = 1 − T N+1 → 1.

Similarly, .SN(1 − T ) → 1 as .N → ∞. This shows that .
∑∞

n=0 T n is the inverse of 
.1 − T . ⨅⨆

Theorem 13.21 

The invertible elements of a Banach algebra . X form a group .G(X ) with 
the operation of multiplication. .G(X ) is an open set in . X , and the map 
.T I→ T −1 is differentiable on it. 

Proof Multiplication in a Banach algebra is associative and has a unity .1 ∈ G(X ). 
To prove .G(X ) is a group, it needs to be shown that if .S, T ∈ G(X ), then ST and 
.T −1 are invertible, a fact that is evident from 

. (ST )−1 = T −1S−1, (T −1)−1 = T .

Let T be any invertible element of . X , and consider any neighboring element 

. T + H = T (1 + T −1H)

with .‖H‖ < ‖T −1‖−1. Then .ρ(T −1H) ⩽ ‖T −1‖‖H‖ < 1, so that .1+ T −1H , and 
by implication .T + H , are invertible. As the neighboring points of T are invertible, 
T is an interior point of .G(X ) and the group is open in . X . 
In fact, writing .T + H = T (I + T −1H),
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. (T + H)−1 = (1 + T −1H)−1T −1 = T −1 − T −1HT −1 + T −1HT −1HT −1 + · · ·

This shows that .T I→ T −1 is differentiable with derivative .H I→ −T −1HT −1, by  
verifying 

. ‖T −1HT −1‖ ⩽ ‖T −1‖2‖H‖

‖T −1HT −1HT −1 + · · · ‖ ⩽
∞∑

n=0

‖H‖n+2‖T −1‖n+3 = ‖H‖2‖T −1‖3
1 − ‖T −1‖‖H‖ = o(H).

⨅⨆
A group, for which the acts of multiplication and taking the inverse are differen-
tiable, is called a ‘Lie group’, a topic that has a vast literature devoted to it. 

A particular case of the above, for .H = z1, is the following series: 

.(T + z)−1 = T −1 − zT −2 + z2T −3 + · · · , (13.3) 

Note that the map .z I→ (T −z) I→ (T −z)−1 is analytic wherever the inverse exists; 
its derivative is .(T − z)−2. 

Examples 13.22 

1. The group of .n × n invertible complex matrices is often denoted .GL(n,C). It  
has a group-morphism, the determinant .det : GL(n,C) → C

× = G(C), 

. detAB = detA detB

whose kernel is the normal subgroup .SL(n,C) of ‘special matrices’ with 
determinant 1. 

2. In . C, when z is large, .z−1 is small. But for general Banach algebras there is no 
such relation between .‖T −1‖ and .‖T ‖, e.g., the inverse of .(10, 0.01) ∈ C

2 is 
.(0.1, 100). 

3. The set of non-invertible elements is closed in . X . So the closure of a proper ideal 
is a proper ideal. 
Proof : By Example 13.5(5), .I ⊂ G(X )c, so .I ⊆ G(X )c and .1 /∈ I. 

4. If T is invertible, then .Bϵ(T S) ⊆ T Bϵ‖T −1‖(S). Consequently, multiplication by 
T is an open mapping. 
Proof : Let  .‖A − T S‖ < ϵ; then .‖T −1A − S‖ ⩽ ‖T −1‖‖A − T S‖ < ‖T −1‖ϵ, 
as required. If U is an open set in . X and .S ∈ U , then .S ∈ Bϵ(S) ⊆ U , so  

. T S ∈ Bϵ/‖T −1‖(T S) ⊆ T Bϵ(S) ⊆ T U

and T U  is open in . X . 
5. The set of non-invertible elements is path-connected (to the origin, say), and may 

disconnect the group of invertible elements, e.g., .GL(2,R) disconnects into the
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two open sets of matrices whose determinants are strictly positive and strictly 
negative, respectively. 

The following proposition confirms that as an invertible operator R approaches 
the boundary of .G(X ), .‖R−1‖ grows to infinity, as expected. 

Proposition 13.23 

Let T be on the boundary of the group of invertible elements. 

(i) For any invertible element R, .‖R−1‖ ⩾ 1/‖R − T ‖, 
(ii) T is a topological divisor of zero, meaning there are unit elements . Sn

such that 

. T Sn → 0 AND SnT → 0, as n → ∞.

Proof (i) Since T is at the boundary of the open set of invertible elements, it cannot 
be invertible, whereas R and all elements in its surrounding ball of radius . ‖R−1‖−1

are invertible, by the proof of the previous theorem. Thus .‖R − T ‖ ⩾ ‖R−1‖−1 as 
claimed. 

(ii) Let invertible elements . Rn converge to a boundary element T , and let . Sn :=
R−1

n /‖R−1
n ‖; then 

. T Sn = T R−1
n

‖R−1
n ‖ = (T − Rn)

R−1
n

‖R−1
n ‖ + I

‖R−1
n ‖ → 0

since .Rn → T and .‖R−1
n ‖−1 ⩽ ‖Rn − T ‖ → 0. Similarly .SnT → 0 as well. ⨅⨆

As remarked earlier, the group .G(X ) need not be a connected set, but splits into 
connected components, with, say, . G1 being the component containing 1. Recall that 
a component is maximal connected, so if . G1 contains part of a connected subset of 
.G(X ), it must contain all of it (Theorem 5.12). 

Proposition 13.24 

The component of invertible elements containing 1 is an open normal 
subgroup, generated by . eT for all T . 

Proof . G1 is open in .G(X ): Any  .T ∈ G1 is an interior point of .G(X ), so  . T ∈
Bϵ(T ) ⊆ G(X ). But the ball .Bϵ(T ) is (path-)connected and intersects . G1, so  
.Bϵ(T ) ⊆ G1.
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. G1 is a subgroup of .G(X ): Multiplication by T is a continuous operation, so . T G1
is connected (Proposition 5.6). When .T ∈ G1, then .T = T 1 ∈ T G1 ⊆ G(X ), so  
. G1 contains part, and therefore all, of .T G1. Hence .T , S ∈ G1 ⇒ T S ∈ T G1 ⊆ G1. 
Similarly, inversion is a continuous mapping, so .G−1

1 is connected; it contains 1, so 
must be a subset of . G1, i.e., .T ∈ G1 ⇒ T −1 ∈ G1. 
. G1 is a normal subgroup: By the same reasoning, for any invertible T , .T −1G1T is 
a connected subset of .G(X ) and contains 1, so it is a subset of . G1 (in fact it must 
equal it). 

. G1 is generated by the exponentials: Let  . E be the group generated by the expo-
nentials . eT for all .T ∈ X ; its elements are finite products .eT · · · eS . . E is clearly 
closed under multiplication and inversion, .(eT · · · eS)−1 = e−S · · · e−T , so  .E ⊆ G. 
It contains .1 = e0, and is connected since there is a continuous path from 1 to every 
element .eT · · · eS , namely .t I→ etT · · · etS for .t ∈ [0, 1]. We can conclude that . E
lies inside . G1. 

The elements near to 1 are all exponentials, since for . H̃ small, .log(1+ H̃ ) exists 
as a power series and hence1 .1 + H̃ = elog(1+H̃ ). So a small enough neighborhood 
around .E := eT · · · eS ∈ E consists of elements 

. E + H = E(1 + E−1H) = eT · · · eSelog(1+E−1H) ∈ E

at least for .‖H‖ < e−‖S‖ · · · e−‖T ‖. This means that E is an interior point of . E , 
which is thus open. Its complement in . G1 is also open, since . G1\E = ⋃

T ∈G1\E T E
(prove!) and each . T E is open (Example 13.22(4)). . E , being open and closed in . G1, 
must equal . G1 (Proposition 5.4). ⨅⨆
Exercises 13.25 

1. The invertible elements of . Cn are .(z1, . . . , zn) such that none of the components 
are zero. 

2. In . 𝓁∞, a sequence .(an)n∈N is invertible if, and only if, it is bounded away from 
. 0, i.e., .0 < c ⩽ |an|. Paths .t I→ w(t) in .C[0, 1] are invertible when they do not 
pass through 0. 

3. In .B(X), the invertible elements are the automorphisms of X. 
4. In .B(X), .‖T −1‖ = 1/ inf‖x‖=1 ‖T x‖. 
5. In .X × Y , .(S, T ) is invertible if, and only if, both S and T are invertible. 
6. The integral operator on .C[a, b], .Tf (s) := ∫ b

a
k(s, t)f (t) dt has norm 

satisfying .‖T ‖ ⩽ ‖k‖L∞|b − a|. Deduce that when .‖k‖L∞ < 1/|b − a|, the  
equation .Tf + g = f has the unique solution .f = ∑∞

n=0 T ng. 

7. If T is invertible and .T x = y, .(T + H)(x + xϵ) = y, then .
‖xϵ‖
‖x‖ ⩽ ‖T −1‖‖H‖

1−‖T ‖‖H‖ . 
8. The map .t I→ etT is a differentiable group-morphism .R → G(X ); its derivative 

at t is .T etT . 
9. ✶ Conversely, every differentiable group-morphism .A : R → G(X ), meaning 

.At+s = AtAs , is of this type:

1 This was stated, not proved, in Proposition 13.18, but the argument is not circular. 
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(a) .∃h > 0,
∫ h

0 At dt is invertible, by the mean value theorem (Proposi-

tion 12.9), and .
∫ t+h

t
A = (

∫ h

0 A)At ; 

(b) Let .T := (Ah − 1)(
∫ h

0 A)−1, so that .At+h = At + hT At + o(h); 
(c) . ddt (Ate

−tT ) = ( d
dt At )e

−tT − AtT e−tT = 0, so .At = A0e
tT = etT . 

10. Verify Proposition 13.23 for .
(1 1
0 1

n

) → (
1 1
0 0

)
. 

11. A topological divisor of zero, also called a generalized divisor of zero, does not 
have right or left inverses. 

12. The right-shift operator R on . 𝓁∞ is a right divisor of zero but not a topological 
divisor of zero. 

13. In finite dimensions, there is no distinction between divisors of zero and 
topological ones. (Hint: .Sn ∈ BX , which is compact.) 

14. An isomorphism between Banach algebras preserves topological divisors of 
zero. 

15. If R is invertible, then .‖R−1‖ ⩾ 1/d(R, ∂G(X )). 
(Hint: By the definition of .d(μ, ∂G(X )) (Exercise 2.20(9)), there is a sequence 
.Tn ∈ ∂G(X ) such that .‖Tn − R‖ → d(R,G(X )).) 

16. Every invertible .n×nmatrix has a logarithm (over . C; see Example 14.27(1)), so 
.G = G1 for .B(Cn). But over the reals, any diagonal matrix with some negative 
components are not exponentials; they have no real logarithms. 

13.4 Analytic Functions 

There are two ways of connecting the coefficients of a power series to its function 

. f (z) = a0 + a1z + a2z
2 + · · · ,

(i) by differentiation 

. f (n)(z) = n!an + (n + 1)!an+1z + · · · ⇒ f (n)(0) = n! an.

(ii) by integration 

. 
f (z)

zn
= a0

zn
+ · · · + an−1

z
+ an + · · · ⇒

∮
f (z)

zn
dz = 2πi an−1.

These formulas raise the possibility of creating a power series from a given function, 
by defining the coefficients in these ways. The latter one is more useful because it 
does not assume f to be differentiable infinitely often.
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Theorem 13.26 (Taylor Series) 

If .f : C → C is analytic in a disk .BR(0), then it is a power series inside 
the disk. For .ρ(T ) < R, 

. f (T ) := 1

2πi

∮
f (z)(z − T )−1 dz =

∞∑
n=0

anT
n,

where for all . n ∈ N

. an = 1

2πi

∮
f (z)z−1−n dz = f (n)(0)

n! ,

and 

. ∀r < R, ∃cr , ∀n ∈ N, |an| ⩽ cr

rn
.

To justify the use of the notation .f (T ), note that when .T = a1, the  two uses of the  
symbol f agree, i.e., .f (a1) = f (a)1, by Cauchy’s integral formula. 

Proof The path of integration is along a circle with center 0 and radius r just less 
than R but larger than .ρ(T ). For  z on this circle, .ρ(T /z) = ρ(T )/r < 1, so  

. (z − T )−1 = z−1(1 − T/z)−1 =
∞∑

n=0

z−1−nT n, and

1

2πi

∮
f (z)(z − T )−1 dz =

∞∑
n=0

1

2πi

∮
f (z)z−1−n dz T n =

∞∑
n=0

anT
n.

However we need to justify the swap of the summation with the integral. Recall that 
.z I→ (z − T )−1 is continuous in z by (13.3), and the circle is a compact set, so 
.‖f (z)(z − T )−1‖ ⩽ C for z on the circle (Corollary 6.16). It follows that 

. 
∥∥

∞∑
n=N

f (z)T n/zn+1
∥∥ = ‖T Nf (z)(z − T )−1/zN+1‖ ⩽ C‖T N‖/rN+1 → 0

uniformly in z. So .
∑N

n=0

∮
f (z)T n/zn+1 dz → ∮ ∑

n f (z)T n/zn+1 dz. 
Note that 

.|an| ⩽ 1

2π

∮
c/rn+1 dt = c/rn,
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where c is the maximum value of f on the compact disk .Br(0) ⊂ C. The radius of 
convergence of this power series is at least R since for any .0 < r < R, 

. lim inf
n

|an|−1/n ⩾ lim
n→∞

r

c1/n
= r.

⨅⨆

Proposition 13.27 (Liouville’s Theorem) 

If an analytic function on . C grows polynomially .|f (z)| ⩽ c|z|n as . |z| →
∞, then f is a polynomial of degree at most n. In particular, if f is 
bounded then it is constant. 

Proof If .f : C → C were analytic on . C, and grows polynomially, then its 
maximum value on a disk of radius r is .cr ⩽ crn. So the  mth Taylor coefficient 
vanishes for .m > n, 

. |am| ⩽ cr/rm ⩽ crn−m → 0 as r → ∞.

This also applies to vector-valued analytic functions .F : C → X. For any 
functional .φ ∈ X∗, .φ ◦ F : C → C is also analytic. If F grows polynomially, 
then so does . φ ◦ F

. |φ ◦ F(z)| ⩽ ‖φ‖‖F(z)‖ ⩽ ‖φ‖c|z|n,

which implies that .φ ◦ F(z) is a polynomial .a0 + a1z + · · · + anz
n. In fact, by  

Example 12.3(3), .an = φ ◦ F (n)(0)/n!, so that 

. φ ◦ F(z) = φ ◦ (F (0) + F '(0)z + · · · + F (n)(0)zn/n!).

As . φ is arbitrary, we deduce that .F(z) is a polynomial in z. ⨅⨆

Theorem 13.28 (Laurent Series) 

If .f : C → C is analytic in a ring .BR(0)\Br(0), and . r < ρ(T −1)−1 ⩽
ρ(T ) < R, then 

. f (T ) := 1

2πi

∮
f (z)(z − T )−1 dz =

∞∑
n=−∞

anT
n,

where .an = 1
2πi

∮
f (z)z−1−n dz, for  .n ∈ Z. The residue of f in .Br(0) is 

. a−1.
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The path of integration is here understood to be just within the boundary of the ring, 
going counter-clockwise around a circle of radius just smaller than R, and clockwise 
around a circle just larger than r . Note that R is allowed to be infinite, in which case 
substitute R in the proof with any value larger than .ρ(T ). 

Proof A Laurent series can be thought of as the sum of two separate power series, 
.
∑∞

n=0 anT
n + ∑∞

n=1 a−nT
−n, one in T and the other in .T −1. If  R and . R' are 

the respective radii of convergence, then absolute convergence occurs only when 
.ρ(T ) < R and .ρ(T −1) < R'. 

For z on the bigger circle, .ρ(T /z) = ρ(T )/|z| < 1 if the radius is close enough 
to R, so just like the proof of the Taylor series, 

. 
1

2πi

∮
1
f (z)(z − T )−1 dz =

∞∑
n=0

anT
n.

For z on the smaller circle, .ρ(zT −1) = |z|ρ(T −1) < 1 when its radius is close 
enough to r , so  

. (z − T )−1 = −(1 − zT −1)−1T −1 = −
∞∑

n=0

znT −n−1,

and (along an counter-clockwise path) 

. 
1

2πi

∮
2
f (z)(z − T )−1 dz = −

∞∑
n=1

1

2πi

∮
f (z)zn−1 dz T −n = −

∞∑
n=1

a−nT
−n.

Combining the two integrals and series gives Laurent’s expansion. Note that the 
second series vanishes when f is analytic within .Br(0), by Cauchy’s theorem, so it 
is consistent with Taylor’s theorem. 

Since the Laurent series converges uniformly strictly within the annulus, we 
obtain 

. 
1

2πi

∮
f (z) dz = 1

2πi

∞∑
n=−∞

∮
anz

n dz = a−1.

⨅⨆
These two theorems of course also apply, by translating, to disks and rings with 
center . z0; the resulting series will then be .

∑
n an(T − z0)

n. 

Proposition 13.29 

The zeros of a non-zero analytic function, defined on an open connected 
subset of . C, are isolated.
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Proof Suppose an interior zero w of .f : Ω → C is a limit point of other zeros, 
.zn → w (.zn /= w). Then f can be written as a power series . f (z) = ∑

k ak(z − w)k

in some neighborhood of w. If . aK is the first non-zero coefficient, then 

. 0 = f (zn) = (zn − w)K(aK + aK+1(zn − w) + · · · ),
∴ 0 = aK + aK+1(zn − w) + · · · → aK as zn → w.

This contradiction determines that f is locally zero in . Ω. Hence it is zero in . Ω
(Exercise 5.8(9)). ⨅⨆
Examples 13.30 

1. The Fourier series .
∑∞

n=−∞ ane
inθ is a Laurent series with .T = eiθ . 

2. ▶ For polynomials (and circular paths as in the theorems), 

. p(T ) = 1

2πi

∮
p(z)(z − T )−1 dz.

For example, 

. 1 = 1

2πi

∮
(z − T )−1 dz, T = 1

2πi

∮
z(z − T )−1 dz,

T −1 = 1

2πi

∮
1

z
(z − T )−1 dz.

Proof for .T −1: We can use Laurent’s expansion on a path .z(θ) = reiθ , since . 1/z
is analytic everywhere except at 0, 

. an = 1

2πi

∮
1

zn+2
dz = 1

2π

∫ 2π

0

1

rn+1
e−i(n+1)θ dθ = 0

unless .n = −1, in which case .a−1 = 1. So .
∑

n anT
n = T −1. 

3. ▶ We can finally show .elog(1+T ) = 1 + T for .ρ(T ) < 1. 
Proof : Let  .f (z) := elog(1+z) for .|z| < 1; then .f '(z) = elog(1+z)/(1 + z) and 
.f ''(z) = 0 (check!). So the non-zero coefficients of its Taylor series are . a0 =
f (0) = e0 = 1 and .a1 = f '(0) = 1. Hence .f (T ) = 1 + T . 

4. Binomial theorem: .(1 + T )p := ep log(1+T ) = 1 + pT + (
p
2

)
T 2 + · · · provided 

.ρ(T ) < 1, .p ∈ C, and .
(
p
n

) := p(p−1)···(p−n+1)
n! . 

Proof : Define the analytic function .f (z) := (1+z)p = ep log(1+z) inside the unit 
disk . BC. Its derivatives are, by induction, 

. f (n)(z) = p(p − 1) · · · (p − n + 1)e(p−n+1) log(1+z)(1 + z)−1

= p(p − 1) · · · (p − n + 1)(1 + z)p−n,

so its power series coefficients are .an = f (n)(0)/n! = (
p
n

)
.
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5. ▶ There are versions of these series expansions valid for a vector-valued function 
.F : C → X, where X is a Banach space and F is analytic inside a ring, . r <

|z| < R, 

. F(z) = 1

2πi

∮
F(w)(w − z)−1 dw =

∑
n∈Z

Anz
n,

where An := 1

2πi

∮
F(w)w−1−n dw ∈ X.

Proof For any .φ ∈ X∗, the  map  .φ ◦ F : C → C, being the composition of 
differentiable functions, is analytic on the ring .BR(0)\Br(0), so it has a Laurent 
expansion .φ ◦F(z) = 1

2πi

∮
φ ◦F(w)(w − z)−1 dw = ∑

n bnz
n for . r < |z| < R

and .bn = φAn. But  . φ is linear and continuous, so it can be extracted out of the 
integrals and series, 

. φ ◦ F(z) = φ

(
1

2πi

∮
F(w)(w − z)−1 dw

)
= φ

∑
n∈Z

Anz
n,

and as . φ is arbitrary, the result follows. 

Exercises 13.31 

1. Let .T := (
0 1
0 0

)
; verify directly that .T = 1

2πi

∮
z(z − T )−1 dz by calculating the 

integral in a circular path around the origin. 
2. Show that there are no analytic functions in . C which grow at a fractional power 

rate .|z|m/n (.m/n /∈ N). 
3. Show that the Laurent series for .cot T , valid for .ρ(T ) < π , .ρ(T −1) > 0, is  

. cot T = T −1 − 1
3T − 1

45T
3 − 2

945T
5 − · · · ,

and find its residue at 0. (Hint: .cot z = (1−z2/2+z4/24+· · · )/z(1−z2/6+· · · ).) 
4. If an identity between analytic functions, .f (z) = g(z), holds in a complex disk 

.Br(0), then it holds for any T with .ρ(T ) < r . 
5. Justify the identity .n log(1 + T ) = log(1 + T )n, hence deduce the assertion 

. lim
n→∞(1 + T/n)n = eT . 

6. A function on . C has a pole a of order N if, and only if, it has a Laurent series 
expansion .

∑∞
n=−N an(z − a)n about a. 

7. ✶ Two analytic functions on an open connected subset of . C must be identically 
equal if they are equal on an interior disk. (Consider the interior of the set for 
which .f = g.) 

8. Suppose f is analytic on the extended complex plane, except for isolated points, 
i.e., .f (1/z) is also analytic at 0. 

a. Show that f has a finite number of zeros and poles (except when .f = 0), 
b. Using polynomials .p, q whose roots are these zeros and poles, respectively, 

deduce that f is a rational function .p/q.
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Remarks 13.32 

1. A subalgebra must have the same unity as the algebra—it is not enough that it 
has a unity. For example, . C (Exercise 13.10(2)) contains the set . { (0, a) : a ∈ C }
which is closed under addition and multiplication and has its own unity .(0, 1), 
different from . C’s unity .(1, 0); it is an algebra, but not a subalgebra of . C. Instead, 
the set .{ (a, 0) : a ∈ C } is a subalgebra of . C. 

2. The axiom .Ф1 = 1 of an algebra morphism does not follow from the other 
properties of . Ф. For example, the map .Ф : C → C defined by . Ф(z) := (0, z)
satisfies all the properties of a Banach algebra morphism, except that . Ф(1) =
(0, 1) /= (1, 0). But continuity of characters follows from their other properties 
(see the proof of Proposition 14.35). 

3. ✶ The proof of the embedding of . X into .B(X ) does not make essential use of 
the axiom .‖1‖ = 1, or of  .‖ax‖ ⩽ ‖a‖‖x‖. If instead, .‖1‖ = c and . ‖ax‖ ⩽
c'‖a‖‖x‖, one gets 

. ‖a‖ = ‖La1‖ ⩽ c‖La‖, ‖La‖ ⩽ c'‖a‖.

Thus . X has an equivalent norm defined by .|||a||| := ‖La‖, with . |||1||| = ‖I‖ = 1
and 

. |||xy||| = ‖Lxy‖ = ‖LxLy‖ ⩽ ‖Lx‖‖Ly‖ = |||x||| |||y|||.

4. In the Banach algebra .B(X), one can define .ρx(T ) := lim supn ‖T nx‖ 1
n ; so  

.0 ⩽ ρx(T ) ⩽ ρ(T ). The series .
∑

n anT
nx converges absolutely when .ρx(T ) is 

less than the radius of convergence.



Chapter 14 
Spectral Theory 

14.1 The Spectrum of T 

A moment’s reflection shows that, by Cauchy’s residue theorem, the path of 
integration in .f (T ) = 1

2πi

∮
f (z)(z − T )−1 dz can be modified, as long as f and 

.(z − T )−1 remain analytic over the swept area. We are thus led to study the region 
where .z − T is not invertible, called the spectrum of T . 

Definition 14.1 

The spectrum of an element T in a Banach algebra is defined as the set 

. σ(T ) := { λ ∈ C : T − λ is not invertible }.

Its complement .C�σ(T ) is called the resolvent of T . 

Examples 14.2 

1. .σ(z) = {z} (since .z − λ is not invertible only when .λ = z). 
2. ▶ Recall that a square matrix A is non-invertible . ⇔ A is not 1–1 . ⇔ det A = 0. 

The spectrum of an .n × n matrix consists of its eigenvalues, i.e., the roots of the 
characteristic polynomial equation .det(T − λ) = 0 of degree n. 
For example, the spectra of the .2 × 2 matrices .

(
0 1
0 0

)
, .
(

0 0
1 0

)
, .
(

0 1
1 0

)
, and . 

(
a 0
0 b

)
, are  

. {0}, . {0}, .{−1, 1}, and .{a, b} respectively. 
Note that it is possible to have different elements with the same spectrum. The 
spectrum is a sort of ‘shadow’ of T —it yields important information about T , 
but need not identify it. 

3. ▶ The spectrum of a sequence .x = (an)n∈N ∈ 𝓁∞ is . σ(x) = im x =
{ an : n ∈ N }. 
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Proof : The inverse of .x − λ = (an − λ)n∈N is bounded iff .|an − λ| ⩾ c > 0 for 
all n, hence .λ /∈ σ(x) ⇔ λ is an exterior point of .{an}n∈N. 

4. A spectral value of an operator .T ∈ B(X) is a complex number . λ for which the 
equation .(T − λ)x = y is not well-posed; one sometimes sees in practice that as 
one varies a parameter . λ of a model, some specific values have unstable solutions 
that ‘resonate’. 

5. (a) ▶ Translations, ‘rotations’ (in the sense of multiplication by . eiθ ) and scaling 
of T have corresponding actions on its spectrum: 

. σ(T + z) = σ(T ) + z, σ (zT ) = zσ (T ),

since .(T + z) − λ = T − (λ − z), so .λ ∈ σ(T + z) ⇔ λ − z ∈ σ(T ); for  
.z /= 0, .(zT ) − λ = z(T − λ/z), so .λ ∈ σ(zT ) ⇔ λ/z ∈ σ(T ). 

(b) If T is invertible, then .σ(T −1) = σ(T )−1 := { λ−1 : λ ∈ σ(T ) }, since 
.T −1 − λ = −λ T −1(T − λ−1), so .λ ∈ σ(T −1) ⇔ λ−1 ∈ σ(T ) (note that 
.λ /= 0). 

(c) The matrices .S := (
0 1
0 0

)
and .T := (

0 0
1 0

)
show that there is no simple relation 

between .σ(S + T ) or .σ(ST ) and .σ(S) and .σ(T ) in general. 
6. (a) .σ(ST ) = σ(T S) ∪ {0} OR σ(ST ) = σ(T S)�{0}. 

(b) In particular, .σ(S−1T S) = σ(T ). 
Proof : (a) For .λ /= 0 and .ST −λ invertible, . (T S −λ) = −λ−1(1−λ−1T S)−1 =
λ−1(T (ST − λ)−1S − 1), using Woodbury’s formula. Thus, . σ(T S) ⊆ σ(ST ) ∪
{0}; indeed, reversing the roles of S and T shows .σ(T S) ∪ {0} = σ(ST ) ∪ {0}. 

Application: Quadratic Forms 

Extracting the spectrum of matrices features prominently as one of the most useful 
applications of mathematics. It is used to find eigenfunctions of partial differential 
equations, in pattern recognition, stability analysis, etc. 

Quadratic forms are expressions of degree 2 in a number of variables, such as 

. q(x, y, z) = ax2 +by2 +cz2 +dxy +eyz+f zx = (x y z)

⎛

⎝
a d/2 f/2

d/2 b e/2
f/2 e/2 c

⎞

⎠

⎛

⎝
x

y

z

⎞

⎠ .

They are found in the equations of conics and quadrics, the fundamental forms of 
surface geometry, the inertia tensor and stress tensor of mechanics, the integral 
forms of number theory, the covariances of statistics, etc. A quadratic form can 
always be written as .q(x) = x⏉Ax, with A a symmetric matrix. We will see later 
that when the coefficients are real, such matrices have real eigenvalues, .λ1, . . . , λn, 
and there exists an orthogonal matrix P such that .P −1AP = D, where D consists 
solely of the eigenvalues on the main diagonal. So the orthogonal transformation 
.x I→ x̃ := P −1x gives a simplified but equivalent quadratic form 

.q(x) = x⏉Ax = x̃⏉P ⏉AP x̃ = x̃⏉Dx̃ = λ1x̃
2
1 + · · · + λnx̃

2
n =: q̃(x̃).
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These eigenvalues are intrinsic to the quadratic form, in the sense that any 
rotation of the variables gives a quadratic form with the same spectrum, and so 
represent real information about it rather than about the choice of variables. Not 
surprisingly these values were discovered before the connection with linear algebra 
became clear, and called by a variety of names such as “principal curvatures”, “prin-
cipal moments”, “principal component variances”, etc., in the different contexts. 
For example, a conic that satisfies the equation .ax2 + bxy + cy2 = 1 can also 
be represented by the equation .λx̃2 + μỹ2 = 1, where .(x̃, ỹ) are obtained by a 
rotation/reflection of .(x, y). Hence we can conclude that there result four conic 
types having this equation, depending on the signs of .λ,μ: ellipses, hyperbolas, 
parallel lines, or the empty set. 

The Spectral Radius 

Determining the exact spectral values of an element is usually a non-trivial problem. 
The fundamental theorem for the general case is: 

Theorem 14.3 

The spectrum of T is a non-empty compact subset of . C. The largest extent 
of .σ(T ), called the spectral radius of T , is  

. max{ |λ| : λ ∈ σ(T ) } = ρ(T ) = lim
n→∞ ‖T n‖ 1

n .

Proof .σ(T ) is compact: If .|λ| > ρ(T ), then .ρ(T /λ) = ρ(T )/|λ| < 1, so . T − λ =
−λ(1 − T/λ) is invertible (Theorem 13.20). Spectral values are therefore bounded 
by .ρ(T ). 

The resolvent set is none other than .f −1G(X ) where .f (z) := T − z, and . G(X )

is the set of invertible elements of . X . Since .G(X ) is open in . X and f is continuous, 
it follows that the resolvent is open (Theorem 3.8), and the spectrum is closed in . C. 
More concretely, if .T − λ is invertible, and z is close enough to . λ, then . |z − λ| =
‖(T − z) − (T − λ)‖ implies that .T − z is also invertible (Theorem 13.21). 

The spectrum .σ(T ), being a closed and bounded subset of . C, is compact 
(Corollary 6.20). 

.σ(T ) is non-empty: Applying Taylor’s Theorem (13.26), with .f (z) := 1, and a 
circular path centered at the origin with radius larger than . ρ(T ), gives  

.1 = 1

2πi

∮
(z − T )−1 dz.
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But the map .z I→ (z−T )−1 is analytic on .C�σ(T ) by (13.3). This would contradict 
Cauchy’s theorem (Theorem 12.16) were the spectrum empty. 

The spectral radius is . ρ(T ): Let . rσ be the largest extent of .σ(T ), and consider the 
function .f : z I→ (z − T )−1; it is analytic on .C�σ(T ), in particular on .C�Brσ (0). 
So it has a Laurent series .

∑
n Anz

n, valid for all .|z| > rσ (Example 13.30(5)). On 
the other hand, we know that 

. (z − T )−1 = 1

z
(1 − T/z)−1 =

∞∑

n=0

T n

z1+n
for |z| > ρ(T ).

The two series must be identical, .
∑∞

n=−∞ Anz
n = ∑∞

n=0 T n/zn+1, and 
remain valid for all .|z| > rσ . But the second series diverges when . ρ(T ) >

lim infn |z−n|−1/n = |z| by the Cauchy-Hadamard theorem, so there can be no 
.z ∈ C such that .rσ < |z| < ρ(T ), in other words, .rσ = ρ(T ). ⨅⨆
This result might appear unexpected because the formula . rσ (T ) = limn→∞ ‖T n‖1/n

for a matrix T seems to relate its eigenvalues, which are determined by a unique 
algebraic equation, with the norm, which can be changed. However, .ρ(T ) does not 
depend on which equivalent norm is used to calculate it, and in finite dimensions, 
all norms are equivalent. 

Corollary 14.4 (Fundamental Theorem of Algebra) 

Every non-constant polynomial in . C has a root. 

Proof The roots of the polynomial equation .zn + an−1z
n−1 + · · · + a0 = 0 are 

precisely the spectral values of the matrix 

. 

⨅⨆
Examples 14.5 

1. The smallest extent of .σ(T ) is .ρ(T −1)−1 when T is invertible (otherwise it is 0). 
Thus the condition .r < ρ(T −1)−1 ⩽ ρ(T ) < R for a Laurent series expansion 
to exist (Theorem 13.28) can be restated as “the spectrum of T lies inside the 
ring with radii r and R”. 

2. ▶ Every Banach division algebra is isomorphic to . C (Gelfand-Mazur theorem).
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Proof : A division algebra is defined as one in which the only non-invertible 
element is 0. Hence .T − λ is not invertible precisely when .T = λ ∈ C1. But  
.σ(T ) is non-empty, so this must be the case for some . λ. 

3. ▶ Every Banach algebra, except . C, has non-zero topological divisors of zero. 
Proof : Suppose that the only topological divisor of zero is 0. Since the spectrum 
.σ(T ) of every T has a non-empty boundary (Proposition 5.4), there is a . T − λ

which is a topological divisor of zero, so .T = λ ∈ C1. 
4. ▶ Every commutative Banach algebra, except . C, has non-trivial ideals. 

Proof : Suppose the only ideals are . {0} and . X . Then the ideal generated by .T /= 0, 
namely .XT (in a commutative algebra), must equal . X . It follows that . ST = 1
for some .S ∈ X , and T is invertible. But the only Banach division algebra is . C. 

5. A morphism .J : X → Y may only decrease the spectrum of an element, since 
a non-invertible element in . X may become invertible in . Y , but an invertible in 
. X cannot become non-invertible in . Y . If  J is an embedding, the boundary of the 
spectrum in . X , consisting of topological divisors of zero, is preserved in . Y . The  
spectrum may decrease but its boundary (and the spectral radius) does not. 

6. Recall the commutant algebra .Y := A'' ⊆ X with which the elements of . A
commute. By part (c) of Exercise 13.10(14), for any . T ∈ Y , if .T −λ is invertible 
in . X then its inverse is in . Y , so .σY (T ) = σ(T ). 

Little else can be said about spectra of general elements of an algebra. The fol-
lowing proposition shows that the spectrum .σ(T ) depends somewhat ‘continuously’ 
on T : 

Proposition 14.6 

If .Tn → T , then 

. ∀ϵ > 0, ∃N, n ⩾ N ⇒ σ(Tn) ⊆ σ(T ) + Bϵ(0).

Proof Let U be any open subset of . C containing .σ(T ), for example .σ(T ) + Bϵ(0). 
It is claimed that for all .z /∈ U , .‖(T − z)−1‖ ⩽ c. When .|z| ⩾ r > ‖T ‖, 

. ‖(T − z)−1‖ = ∥
∥

∞∑

n=0

T n

zn+1

∥
∥ ⩽

∞∑

n=0

‖T ‖n

rn+1
= 1

r − ‖T ‖ ,

Br(0) U 

σ(T ) 
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while on the remaining closed and bounded set .Br(0)�U , the continuous function 
.z I→ ‖(T − z)−1‖ is bounded (Corollary 6.16). If .‖T − S‖ < 1

c
, then when .z /∈ U , 

.‖(T − z)−1(T − S)‖ < 1. This implies that 

. S − z = (T − z) − (T − S) = (T − z)(1 − (T − z)−1(T − S))

is invertible (Theorem 13.20). Thus .σ(S) ⊆ U , and we have shown that any open 
set that contains .σ(T ) also contains .σ(S) for S close enough to T . 

For example, if .U := σ(T )+Bϵ(0) and . Tn is close enough to T , then .σ(Tn) ⊆ U . 
⨅⨆

Exercises 14.7 

1. The spectrum of .(z1, . . . , zn) ∈ C
n is .{z1, . . . , zn}. 

2. The spectrum of .f ∈ C[0, 1] is .σ(f ) = im(f ). 
3. Verify directly that for a matrix A with eigenvalue . λ, .A − λ is a divisor of zero. 
4. Prove that .σ(T 2) = σ(T )2 = { λ2 : λ ∈ σ(T ) } as follows, by considering 

.T 2 − λ2 = (T − λ)(T + λ): 

(a) If .λ2 /∈ σ(T 2) then .T − λ is invertible. 
(b) If .±λ /∈ σ(T ) then .T 2 − λ2 is invertible. 

(We will see later a broad generalization of this (Theorem 14.26)). 
5. Show that .σ(LR) = {1}, but .σ(RL) = {0, 1}, where L and R are the shift 

operators. 
6. Show that .ST −T S = z /= 0 for .S, T ∈ X implies .σ(ST ) is unbounded, which 

is impossible. (Hint: .λ ∈ σ(T S) ⇒ λ + z ∈ σ(T S).) 
7. The spectrum of .(S, T ) ∈ X × Y is .σ(S) ∪ σ(T ). 
8. If .T ∈ B(X) and .S ∈ B(Y ), let .T ⊙ S : X × Y → X × Y be defined by 

.T ⊙ S(x, y) := (T x, Sy). Then .σ(T ⊙ S) = σ(T ) ∪ σ(S). 
9. If . λ is a boundary point of the spectrum, then .T −λ is at the boundary of .G(X ), 

and so is a topological divisor of zero (Proposition 13.23). Moreover, if . T − μ

is invertible, then 

. ‖(T − μ)−1‖ ⩾ 1/d(μ, σ (T )).

10. Recall the Hausdorff distance between subsets (Exercise 2.20(10)). Show that 
if .S → T , then .d(σ (S), σ (T )) → 0. 

14.2 The Spectrum of an Operator 

An operator T on a Banach space X is invertible in .B(X) when T has a continuous 
linear inverse .T −1 ∈ B(X). By the open mapping theorem, this is automatically
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true once T is bijective. So an operator .T ∈ B(X) is not invertible when one of the 
following cases holds: 

T not invertible in B(X) 

T not 1-1 

T is 1-1 but not onto 
imT = X 

imT = X 

• T is not 1–1 (i.e., .ker T /= 0). In this case, T is a left divisor of zero as . T S = 0
for any non-zero .S ∈ B(X) with .im S ⊆ ker T .

• T is 1–1, but not onto, yet it is “almost” onto, in the sense that its image is dense, 
.im T = X. Here, it cannot be the case that .‖T x‖ ⩾ c‖x‖ for all x and some 
.c > 0, otherwise .im T would be closed (Example 8.16(3)) and T onto. This 
means that one can decrease .‖T x‖ but keep .‖x‖ fixed, i.e., there are unit vectors 
. xn such that .T xn → 0. By taking any unit operators with .im Sn = [[xn]], we get 
.T Sn → 0, so  T is a topological left divisor of zero.

• T is 1–1, and its image is not even dense in X. In this case, by Proposition 11.20, 
there exists a vector . x0 and a functional . φ such that .φx0 /= 0 and .φ[im T ] = 0. 
Then .Sx := x0φ defines a non-zero operator with kernel containing . im T , so  
.ST = 0, and T is a right divisor of zero. 

The spectrum of an operator .T ∈ B(X) thus consists of . λ in: 

. ◦ the point spectrum .σp(T ), when .T −λ is not 1–1, i.e., .T x = λx for some .x /= 0; 
we say that . λ is an eigenvalue and x an eigenvector of . λ (note that a non-zero 
multiple of an eigenvector is another eigenvector, so they are often taken to be of 
unit length); the subspace .ker(T −λ) of eigenvectors of . λ (together with the zero 
vector) is called its eigenspace. 

. ◦ the continuous spectrum .σc(T ), when .T − λ is 1–1, not onto, but . im(T − λ) =
X. 

. ◦ the residual spectrum .σr(T ), when .T − λ is 1–1, and .im(T − λ) /= X. 

In finite dimensions, a matrix is 1–1 iff it is onto, so only eigenvalues make 
up the spectrum. The direct way of finding eigenvalues and their corresponding 
eigenvectors is to solve .(T − λ)x = 0; in finite dimensions, this implies the 
‘characteristic’ polynomial equation .det(T − λ) = 0. What are the additional 
‘continuous’ and ‘residual’ spectral values in infinite dimensions? Let us take the 
right shift operator to illustrate what can happen: 

. 

0 
1 0  
0 1 0  

⎜ 
⎜ 
⎜ 
⎜ 

⎟ 
⎟ 
⎟ 
⎟ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 

1 

1 
0 
0 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ = 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 

0 
1 

1 
0 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ , 1 0  · · ·)

0 
1 0  
0 1 0  

⎜ 
⎜ 
⎜ 
⎜ 

⎟ 
⎟ 
⎟ 
⎟ = 0 · · ·)
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In the first example, although the vector is not an exact eigenvector of 1, it is 
very close to satisfying the equation .(A − 1)x ≈ 0 (when . x is scaled to unit 
length). We call such spectral values, approximate eigenvalues, which include 
the continuous spectrum. In the second example, although there are no ‘right’-
eigenvectors with eigenvalue 0, there is a left- or row eigenvector with that 
eigenvalue. Such ‘left eigenvalues’ form the residual spectrum, unless they happen 
to be ‘right eigenvalues’. The next few propositions prove these assertions. 

Proposition 14.8 

Eigenvectors of distinct eigenvalues are linearly independent. 

Proof Let .vi /= 0 be eigenvectors associated with the distinct eigenvalues . λi , . i =
1, 2, . . ., so that .(T − λ)vi = (λi − λ)vi . The sum .

∑n
i=1 αivi = 0 implies 

. 0 = (T − λ2) · · · (T − λn)

n∑

i=1

αivi

= (T − λ2) · · · (T − λn−1)

n−1∑

i=1

αi(λi − λn)vi

= · · · = α1(λ1 − λ2) · · · (λ1 − λn)v1

forcing .α1 = 0. Since the argument can be repeated for any other index i, we have  
.αi = 0. ⨅⨆
In general, it is a hard task to find the point spectrum of most operators. So any 
result that gives us approximate alternatives are welcome. 

Proposition 14.9 (Gershgorin’s Theorem) 

If .T = [Ti,j ] is an operator on . c0, then the disks .
⋃

n∈N Brn(Tn,n), where 
.rn := ∑

j /=n |Tn,j |, cover all the eigenvalues. 

Proof Let .x = (aj )j∈N be an eigenvector of T and let .|an| be its largest coefficient. 
Then rearranging .T x = λx we get 

.λan =
∑

j∈N
Tn,j aj = Tn,nan +

∑

j /=n

Tn,j aj ,

∴ |λ − Tn,n||an| ⩽
∑

j /=n

|Tn,j ||aj | ⩽ rn|an|.
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as required. Note that the row sum .
∑

j |Ti,j | converges since the dual space of . c0 is 

. 𝓁1. ⨅⨆

Proposition 14.10 

If . λ is a limit of eigenvalues, or is in .σc(T ), or is a boundary point of 
.σ(T ), then . λ is an approximate eigenvalue, meaning there are unit vectors 
. xn, such that 

. (T − λ)xn → 0 as n → ∞.

Proof If .λn → λ and .T xn = λnxn with .‖xn‖ = 1, then 

. (T − λ)xn = (λn − λ)xn → 0.

. λ is an approximate eigenvalue exactly when .T − λ is a topological left divisor 
of zero, because suppose there are unit operators . Sn with .(T − λ)Sn → 0. Let . xn

be vectors such that .‖Snxn‖ = 1 and .‖xn‖ ⩽ 2 (possible since .‖Sn‖ = 1); then 
.(T − λ)Snxn → 0, and . λ is an approximate eigenvalue. 

Conversely, given .(T − λ)xn → 0 with . xn unit vectors, let .Sn := xnφ for any 
.φ ∈ X∗ with unit norm. Then .‖Sn‖ = 1 and .(T − λ)Sn = (T − λ)xnφ → 0 as 
.n → ∞. 

This includes the case when . λ is at the boundary of .σ(T ) (Proposition 13.23), 
and when .λ ∈ σc(T ) as we have just seen at the beginning of this section. ⨅⨆
Examples 14.11 

1. ▶ The spectrum of the left-shift operator .L(an) := (an+1)n∈N, on .𝓁∞ is the unit 
closed disk. 
Proof : The norm of L is 1, so .σ(L) ⊆ B1(0). To find its eigenvalues, we need to 
solve .Lx = λx for some non-zero .x = (an)n∈N ∈ 𝓁∞, i.e., 

. ∀n ∈ N, an+1 = λan, |an| ⩽ c.

This recurrence relation gives .an = λna0, satisfying .|a0||λ|n = |an| ⩽ c. Thus 
the only possible candidates for eigenvalues are .|λ| ⩽ 1. In fact, for any such . λ, 
the sequence .(1, λ, λ2, . . .) is an eigenvector in . 𝓁∞. Hence .σ(L) = BC, and all 
spectral points are eigenvalues. 

2. ▶ The spectrum of the left-shift operator on . 𝓁1 is the unit closed disk. 
Proof : The same analysis as in Example 1 applies: .ρ(L) ⩽ ‖L‖ = 1, and 
.an = λna0. This time, the condition .x ∈ 𝓁1 is .

∑
n |an| = |a0| ∑n |λ|n < ∞. This  

is only possible when .|λ| < 1. Once again, but only for .|λ| < 1, the sequence 
.(1, λ, λ2, . . .) is an eigenvector in . 𝓁1. Still, since it is closed, bounded by 1,
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and contains . BC, the spectrum must be the closed disk. The spectral values in 
the interior are eigenvalues, and those on the circular perimeter are approximate 
eigenvalues. 

3. Let .T : 𝓁2 → 𝓁2 be the multiplier operator .T (an) := (bnan)n∈N where . bn are 
bounded. Its eigenvalues are . bn, and its spectrum is .{b1, b2, . . .}. 
Proof : For eigenvalues, .T (an) = (bnan)n∈N = λ(an)n∈N, so . (bn − λ)an = 0
for all n. This implies .λ = bn for some n, otherwise .(an)n∈N = 0. In fact, 
.T en = bnen, so . bn is indeed an eigenvalue. Now, suppose . λ is not a limit point 
of .{b1, b2, . . .}; there is then a minimum positive distance between them, i.e., 
.|λ − bn| ⩾ d > 0. So the equation .(T − λ)(an) = (cn) can be inverted, . an =
cn/(bn − λ), with .|an| ⩽ |cn|/d; .‖(T − λ)−1‖ ⩽ 1/d. The spectrum therefore 
must include the eigenvalues and their limit points, but nothing else. 

4. Let .T : L∞[0, 1] → L∞[0, 1] be defined by .Tf (s) := ∫ 1
1−s

f (t) dt . Then T is 
linear, and continuous with .‖T ‖ ⩽ 1 since 

. ‖Tf ‖L∞ = sup
s∈[0,1]

∣
∣
∣

∫ 1

1−s

f (t) dt

∣
∣
∣ ⩽ ‖f ‖L∞ sup

s∈[0,1]

∫ 1

1−s

dt = ‖f ‖L∞ .

For eigenvalues, we need to solve .
∫ 1

1−s
f (t) dt = λf (s). Differentiating twice 

gives .f ''(s) + 1
λ2 f (s) = 0 with boundary conditions .f (0) = 0 = f '(1). Thus 

the eigenvectors (or “eigenfunctions”) are .f (t) = sin(t/λ) with eigenvalues . λ =
2/kπ , k odd. The spectrum must also include 0, because it is their limit point, 
but at this stage we cannot conclude anything further about the spectrum. 

5. If .S : X → Y , .T : Y → X are operators, then ST and T S  share the same 
non-zero eigenvalues. 
Proof : If .ST x = λx (.x /= 0), then .T S(T x) = T (ST )x = λ(T x), so either 
.T x = 0, in which case . λ = 0, or  T x  is an eigenvector of T S  with the same 
eigenvalue . λ; similarly, every non-zero eigenvalue of T S  is also an eigenvalue of 
ST . (Compare with Example 14.2(6d).) 

6. Real eigenvalues of real operators have real eigenvectors. 
Proof : If  X is a real Banach space, then .T ∈ B(X) is not guaranteed to have a 
spectral element, but it will have when considered as an operator on the complex 
space .X + iX. Nevertheless if the eigenvalue is real, with eigenvector .u + iv, 
then u and v are also eigenvectors (unless 0), 

. T (u + iv) = λ(u + iv) ⇒ T u = λu, T v = λv.

The Spectrum of the Adjoint 

Let us prove our previous assertion that the residual spectrum consists of the ‘left 
eigenvalues’ of T , that is, the eigenvalues of . T ⏉:
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Proposition 14.12 

. σ(T ⏉) = σ(T ), σr(T ) = σp(T ⏉)�σp(T ), σc(T
⏉) ⊆ σc(T )

Proof (i) .T − λ is invertible in .B(X), if and only if, its adjoint is invertible 
(Exercise 11.34(7)), 

. (T ⏉ − λ)−1 = (T − λ)−1⏉.

So .λ /∈ σ(T ) ⇔ λ /∈ σ(T ⏉). 

(ii) By definition, .λ ∈ σp(T ⏉) when there is a .φ /= 0 in . X∗ such that 

. φ ◦ (T − λ) = (T ⏉ − λ)φ = 0.

This implies there is an .x ∈ X, .φx /= 0, such that .x /∈ im(T − λ). In turn, 
if .x ∈ X�im(T − λ) exists, then there is a .φ /= 0 such that . φ(T − λ) = 0
(Proposition 11.20), and we have proved 

. λ ∈ σp(T ⏉) ⇔ im(T − λ) /= X.

This condition is certainly satisfied when . λ is a residual spectral value of . σ(T ), but  
not when it is in the continuous spectrum of T , so  

. λ ∈ σr(T ) ⇒ λ ∈ σp(T ⏉) ⇒ λ /∈ σc(T ).

(iii) When .A⏉ is 1–1 but .im A⏉ = X∗, then we can infer, by Proposition 11.32, 
that (a) .(ker A)⊥ ⊇ im A⏉ = X∗, so  A is 1–1; and (b) .(im A)⊥ = ker A⏉ = 0, so  
.im A = X. Applying this to .A := T − λ when .λ ∈ σc(T

⏉), we find that .T − λ is 
1–1 and has a dense image, that is, .λ ∈ σc(T ). ⨅⨆
Examples 14.13 

1. When .T ⏉⏉ = T (e.g., on a Hilbert space) then .σr(T
⏉) = σp(T )�σp(T ⏉) as well 

as .σc(T
⏉) = σc(T ). 

2. In . c0 or . 𝓁2, the left-shift and right-shift operators have 

. 
σp(L) = BC, σr (L) = ∅, σc(L) = S

1,

σp(R) = ∅, σr (R) = BC, σc(R) = S
1.

Proof : That .σp(L⏉) = ∅ has already been shown since . L⏉ is the right shift on 
. 𝓁1; in the same way can be proved .σp(L) = BC. Applying this proposition, we 
find that .σr(L) ⊆ σp(L⏉) = ∅, leaving .σc(L) = S

1. Similarly for R, .σr(R) ⊆
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σp(R⏉) ⊆ σr(R) since .σp(R) = ∅ (prove!), hence .σr(R) = σp(R⏉) = BC and 
.σc(R) = S

1. 
3. The analogous results for the Hilbert adjoint . T ∗ are similar:1 

. σ(T ∗) = σ(T )∗, σr (T
∗) = σp(T )∗�σp(T ∗), σc(T

∗) = σc(T )∗

Proof : Let .A := T − λ, then A is invertible iff . A∗ is; and .ker A∗ = (im A)⊥, so  

. λ ∈ σr(T ) ⇒ ker A∗ = (im A)⊥ /= 0 ⇒ λ̄ ∈ σp(T ∗),

λ̄ ∈ σp(T ∗) ⇒ (im A)⊥ = ker A∗ /= 0 ⇒ λ /∈ σc(T ).

If .λ̄ ∈ σc(T
∗), then .ker A = (im A∗)⊥ = 0 and .im A = (ker A∗)⊥ = 0⊥ = H , 

so .λ ∈ σc(T ). 
4. In finite dimensions, the ‘left eigenvalues’ are the same as the ‘right eigenvalues’ 

because both A and .A⏉ satisfy the same characteristic polynomial equation; but 
the ‘left eigenvectors’ are usually different from the ‘right eigenvectors’. 

Exercises 14.14 

1. Show that the right-shift operator R (on .𝓁∞ or . 𝓁1) has no eigenvalues. 
2. The right-shift operator .R ∈ B(𝓁1) and its adjoint .L ∈ B(𝓁∞) have spectra 

. σ(L) = σp(L) = B̄C = σr(R) = σ(R).

3. The spectrum of the left-shift operator L on .𝓁1(Z) is the circle . S1. This is an  
example of the hollowing out of a spectrum when the algebra increases, in this 
case when . 𝓁1 is embedded in .𝓁1(Z). 

4. The operator .T (a0, a1, . . .) := (a0, 0, a1, a2, . . .), on . c0, has a single eigen-
value 1, but its adjoint has .σp(T ⏉) = BC ∪ {1}. Deduce that .σp(T ) = {1}, 
.σr(T ) = BC, and .σc(T ) = S

1
�{1}. 

But the same operator on . 𝓁1 has a single eigenvalue 1 and no continuous 
spectrum. 

5. The operator .T (a0, a1, . . .) := (a0, 0, a1, a2/2, a3/3, . . .), on . c0, has a single 
eigenvalue 1, and its adjoint has two eigenvalues, 1 and 0. 

6. The spectrum of the multiplier operator .T x := ax, on . 𝓁2, has no residual 
spectrum. 

7. The spectrum of .xφ ∈ B(X), where .x ∈ X and .φ ∈ X∗, consists of the 
eigenvalues . φx and 0 (unless X is 1-dimensional). 

8. Let .T : X → Y , .S : Y → X be operators and consider .R ∈ B(X × Y ) defined 
by .R(x, y) := (Sy, T x); the ‘matrix’ form of R looks like .

(
0 S
T 0

)
. Then non-zero 

eigenvalues of R come in pairs . ±λ. (Hint: consider .(x,−y).)

1 To avoid ambiguity with the closure . F̄ of a set . F ⊆ C, we use . F ∗ to denote the set of conjugate 
numbers .{ z̄ : z ∈ F }. 
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9. Let .T : C[0, 1] → C[0, 1] be defined by .Tf (t) := tf (t). Show that T is linear 
and continuous, find its norm and show that its spectrum is the line .[0, 1] in . C, 
consisting of only the residual part. 
More generally the spectrum of .Tf := gf in .C[0, 1], where .g ∈ C[0, 1], is  
.im g. 
The reader is encouraged to explore the spectrum of this operator in other 
spaces, such as .L1[0, 1] or .L2[0, 1]. 

10. Find the eigenvalues of .Tf (s) := ∫ 1
0 s2t2f (t) dt on .C[0, 1]. 

11. ✶ Let .V : C[0, 1] → C[0, 1] be the Volterra operator .Vf (t) := ∫ t

0 f . Show 
that 

. V n+1f (t) = 1

n!
∫ t

0
(t − s)nf (s) ds,

and that .‖V n‖ ⩽ 1/n!. Deduce, using the spectral radius formula, that its 
spectrum is just . {0}. Show that 0 is not an eigenvalue (hint: differentiate) but a 
residual boundary spectral value. 

12. The spectrum of an isometry T lies in . B̄C. Any eigenvalues or approximate 
eigenvalues lie in . eiR. If  T is an invertible isometry, then .σ(T ) ⊆ eiR, otherwise 
the spectrum must be the whole closed unit disk (e.g., the right-shift operator). 
(Hint: .T − λ = T (1 − λS).) 

13. Show that the set .{ T ∈ B(X) : T is 1–1 and has a closed image } is open in 
.B(X). (Hint: Proposition 11.3.) 

14.3 Spectra of Compact Operators 

Ascents and Descents 

For any operator, the eigenspace associated with an eigenvalue . λ is .ker(T − λ). 
But this is not the whole story: for example, .T := (

0 1
0 0

)
has just one eigenvalue, 

and a one-dimensional eigenspace generated by . 
(

1
0

)
; the vector .v := (

0
1

)
is mapped 

by T to . 
(

1
0

)
, and only a second application of T kills it off. We can think of it as 

a “generalized” eigenvector, with .(T − λ)2v = 0. In general, one can consider 
the spaces of vectors that vanish when .(T − λ)n is applied to them. Two nested 
sequences of spaces can be formed (here shown for .λ = 0),

• an ascending sequence 

.0 ⊆ ker T ⊆ ker T 2 ⊆ · · · ⊆ ker T n ⊆ · · · ⊆
⋃

n

ker T n,
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• a descending sequence 

. X ⊇ im T ⊇ im T 2 ⊇ · · · ⊇ im T n ⊇ · · · ⊇
⋂

n

im T n.

As usual whenever we are dealing with infinite processes, it would be interesting to 
study operators with finite ascents or descents. 

Suppose there is an n such that .ker T n = ker T n+1, i.e., for all x, 

. T nx = 0 ⇔ T n+1x = 0.

Substituting T x  instead of x gives 

. T n+1x = 0 ⇔ T n+2x = 0

and .ker T n+2 = ker T n+1 = ker T n. By induction, all the subsequent spaces in the 
ascending sequence are identical, .ker T n+k = ker T n. Operators with this property 
are said to have a finite ascent up to n, .0 ⊂ ker T ⊂ · · · ⊂ ker T n. 

Similarly, if .im T m = im T m+1 then for any .x ∈ im T m+1, 

. x = T m+1y = T (T my) = T (T m+1z) = T m+2z ∈ im T m+2.

By induction, .im T m+k = im T m. Operators with this property are said to have a 
finite descent down to m. 

Proposition 14.15 

An operator T has 

(i) finite ascent up to at most .n ⇔ ∀k ∈ N, im T n ∩ ker T k = 0, 
(ii) finite descent down to at most .m ⇔ ∀k ∈ N, X = ker T m + im T k , 

(iii) finite ascent up to n and descent down to m implies .m = n and 

. X = ker T n ⊕ im T n.

Proof (i) Let T have finite ascent and let .x ∈ im T n ∩ ker T k , that is, .x = T ny and 
.T kx = 0. Then .T n+ky = 0 and .y ∈ ker T n+k = ker T n; so .x = T ny = 0. For the  
converse, if .im T n ∩ ker T = 0, then .T n+1x = 0 ⇒ T nx ∈ im T n ∩ ker T = 0, 
and T has finite ascent up to at most n. 

(ii) Let .x ∈ X, then .T mx = T m+1y = · · · = T m+kz, assuming finite descent to m. 
So .T m(x − T kz) = 0 and .x = T kz + (x − T kz) ∈ im T k + ker T m. Conversely, 
if .X = im T + ker T m, then for any .x = Ty + z, we have .T mx = T m+1y and 
.im T m = im T m+1.
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(iii) Suppose .im T n = im T n+1, but .ker T n ⊂ ker T n+1. Then there is an . x1 such 
that .T n+1x1 = 0 but 

. 0 /= T nx1 = T n+1x2 = T n+2x3 = · · ·

so .xk ∈ ker T n+k
� ker T n+k−1, and T has an infinite ascent. This shows that a finite 

ascent cannot be longer than the descent. 
Next suppose the ascent goes up to .ker T n = ker T n+1 but the descent goes down 

to .im T m = im T m+1 with .m ⩾ n. Then for any .x ∈ X, there is a y such that 

. T mx = T m+1y ⇒ T m(x − Ty) = 0

⇒ x − Ty ∈ ker T m = ker T n

⇒ T nx = T n+1y

so a finite descent cannot be longer than the ascent. 
Combining the results of (i) and (ii) gives .X = ker T n ⊕ im T n. ⨅⨆

Proposition 14.16 (Fredholm Alternative) 

A Fredholm operator T with 

(i) finite ascent, satisfies .index(T ) ⩽ 0, 
(ii) finite descent, satisfies .index(T ) ⩾ 0, 

(iii) finite ascent and descent, satisfies .index(T ) = 0 and 

. T is 1–1 ⇔ T is onto.

Ivar Fredholm(1866–1927) Fredholm studied p.d.e.s 
under Mittag-Leffler in 1893 at the new Univer-
sity of Stockholm; he saw the connection between 
Volterra’s equation and potential theory, especially in 
1899 while working on Dirichlet’s problem; in 1903 
he analyzed the theory of general integral equations 
.f (x) − λ

∫ b

a
k(x, y)f (y) dy = g(x) covering much 

that was then known about boundary value problems 
(mostly self-adjoint), proved the Fredholm alternative 
and defined the Fredholm determinant . det(1 − K) =
e−∑

n
1
n

tr Kn
. He was then ‘distracted’ by actuarial sci-

ence and government.
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Proof Recall that the codimension of a closed subspace .Y ⊆ X is defined 
as .dim(X/Y ), that Fredholm operators have finite-dimensional kernels and finite 
codimensional images, and .index(T ) = dim ker T − codim im T (Definition 11.12). 
For T with finite ascent to n, by the index theorem, 

. 0 ⩽ codim im T k = dim ker T k − index(T k)

= dim ker T n − k index(T ), for k ⩾ n.

Since k can be arbitrarily large, it must be the case that .index(T ) ⩽ 0. 
For Fredholm operators with finite descent to m, 

. 0 ⩽ dim ker T k = codim im T k + index(T k)

= codim im T m + k index(T ), for k ⩾ m.

This time, we must have .index(T ) ⩾ 0. 
A special case is when .m = n = 0, known as the Fredholm alternative: . ker T =

0 if, and only if, .im T = X, i.e., T is 1–1 . ⇔ T is onto; in other words, T is either 
invertible or it is neither 1–1 nor onto. ⨅⨆
Examples 14.17 

1. The spaces .M := im T m and .N := ker T n are both T -invariant and such that 
.T |M is an isomorphism while .T |N is nilpotent. 

2. For matrices, the Fredholm alternative boils down to the statement that either 
.Ax = b has a unique solution or .Ax = 0 has non-trivial solutions. 

3. The Fredholm alternative only applies to (Fredholm) operators with finite ascent 
and descent; e.g., the right-shift operator is 1–1 but not onto. 

4. If T is Fredholm with finite ascent and descent, then . dim ker T = dim ker T ⏉

(Exercise 11.34(10)). 

The Spectrum of a Compact Operator 

The spectra of operators are usually hard to determine, with those of compact 
operators often being the most tractable. The following two results are peaks in 
the landscape of Operator Theory. 

Proposition 14.18 

Let .T : X → X be compact on a Banach space X, then .I+T is a Fredholm 
operator with finite ascent and descent.
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Proof .I + T is Fredholm by Proposition 11.15. 
Suppose .S := I +T has infinite ascent, so .ker Sn−1 ⊂ ker Sn. By Riesz’s lemma 

(Proposition 8.22), choose unit vectors .xn ∈ ker Sn with .‖xn + ker Sn−1‖ ⩾ 1
2 . 

Then for .m < n, 

. ‖T xn − T xm‖ = ‖(xn − xm) − S(xn − xm)‖ ⩾ 1
2

since .Sn−1(xm + S(xn − xm)) = 0. So .(T xn)n∈N has no Cauchy subsequence, 
contradicting the compactness of T . 

Suppose S has infinite descent, with .im Sn−1 ⊃ im Sn. One can choose unit 
vectors .xn ∈ im Sn with .‖xn + im Sn+1‖ ⩾ 1

2 . Then for .m > n, 

. ‖T xn − T xm‖ = ‖(xn − xm) − S(xn − xm)‖ ⩾ 1
2

since .xm + S(xn − xm) ∈ im Sn+1. Again this would contradict the hypothesis. ⨅⨆
It follows from the propositions and examples above, that the index of S vanishes 
and .dim ker(S⏉) = dim ker S. 

Theorem 14.19 (Riesz-Schauder) 

If .T ∈ B(X) is compact, then 

(i) its spectrum .σ(T ) is a countable set, whose only possible limit point 
may be 0, 

(ii) each non-zero .λ ∈ σ(T ) is an eigenvalue with a finite-dimensional 
eigenspace .ker(T − λ), 

(iii) .T ⏉ and T have the same non-zero eigenvalues and eigenspace 
dimensions. 

Proof For .λ /= 0, .T −λ = λ(I −T/λ) is a Fredholm operator with finite ascent and 
descent, so its kernel is finite dimensional and it satisfies the Fredholm alternative, 
namely it is either invertible (.λ /∈ σ(T )) or not 1–1 (. λ is an eigenvalue). .T − λ has 
index 0, so . T ⏉ has the same number of eigenvectors of . λ as T , 

. dim ker(T ⏉ − λ) = dim im(T − λ)⊥ = codim im(T − λ) = dim ker(T − λ).

Consider those eigenvalues . λ for which .|λ| ⩾ ϵ > 0. Taking any list of them, . λn

(distinct), choose a unit eigenvector . en for each, such that . ‖en + [[e1, . . . , en−1]]‖ ⩾
1
2 (Propositions 8.22 and 14.8). Hence, taking . n > m, say,  

.‖T en − T em‖ = ‖λnen − λmem‖ = |λn|‖en − λm

λn

em‖ ⩾ 1

2
|λn| ⩾ ϵ

2
.
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Now the bounded set .{ e1, e2, . . . } is mapped to .{ T e1, T e2, . . . }. If the first 
set is infinite, the latter set would have no Cauchy subsequence, contradicting 
the compactness of T . So the number of such eigenvectors, and corresponding 
eigenvalues, is finite. The rest of the eigenvalues must be within . ϵ of 0. By taking 
.ϵ = 1/n → 0, it follows that the number of non-zero eigenvalues is countable. ⨅⨆
To clarify, in finite dimensions, the set of eigenvalues is finite and need not include 
0, but in infinite dimensions, 0 must be part of the spectrum (else .I = T −1T is 
compact). If there is an infinite sequence of non-zero eigenvalues, then .λn → 0, and 
0 is an approximate eigenvalue. What remains to complete the theory is to find the 
form of T on each generalized eigenspace. 

Proposition 14.20 (Jordan Canonical Form) 

On each finite-dimensional space .ker(T − λ)n (.λ /= 0) of a compact 
operator T on a Banach space X, there is a matrix of T consisting of 
blocks on the main diagonal, each of the type 

. 

Proof The operator T can be split as .λ + (T − λ). The latter is nilpotent on the 
subspace .ker(T − λ)n (finite dimensional since .(T − λ)n is Fredholm), while . λI is 
diagonal. This is the claimed Jordan form, once it is shown that a nilpotent operator 
has the following form. 

A nilpotent operator of index n on an n-dimensional space can be represented by a 
matrix of 0s except for 1s and 0s in the super-diagonal: Suppose A is a nilpotent 
operator of index n, .An = 0; it has a descending sequence down to n, and an 
ascending sequence up to n, .0 ⊂ ker A ⊂ · · · ⊂ ker An. For each non-zero vector 
.An−1u ∈ im An−1 there is a sequence of vectors .e1 := An−1u, .e2 := An−2u,  . . . ,  
.en := u. They are linearly independent because .ei ∈ ker Ai

� ker Ai−1, so to have  
.em ∈ [[e1, . . . , em−1]] ⊆ ker Am−1 is impossible. Since .Aei = ei−1 and .Ae1 = 0, 
the matrix of A restricted to the space generated by these vectors is 

.
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A remains nilpotent on the rest of the space .ker An/[[e1, . . . , en]], with perhaps a 
lower index. The same argument can be repeated to yield other sets of independent 
vectors. As .X = ker An is finite-dimensional, this process ends with a finite basis 
for X and the matrix of A with respect to it consists of such blocks placed on the 
diagonal. ⨅⨆
Examples 14.21 

1. The total number of . λs in a Jordan matrix, called its algebraic multiplicity, is  
the dimension of .ker(T − λ)n, the largest generalized eigenspace of . λ. The  
number of Jordan blocks associated with . λ is .dim ker(T −λ), called the geometric 
multiplicity of . λ. The size of the largest Jordan block is sometimes called its 
(Jordan) index. For example, the matrix below has an eigenvalue 2 with algebraic 
multiplicity 4, geometric multiplicity 2, and index 3; the other eigenvalue 3 has 
algebraic multiplicity 2, geometric multiplicity 1, and index 2. 

. 

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

2
2 1

2 1
2

3 1
3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

2. Using the appropriate basis on each eigenspace, .E−1T E = J ; rewritten as 
.T E = EJ , this shows exactly which vectors are the eigenvectors and generalized 
eigenvectors of T . Written as .E−1T = JE−1, this shows which rows are the left 
eigenvectors of T . 

3. The set of .n × n matrices with distinct eigenvalues is dense and open in .B(Cn). 
Proof : Suppose a matrix A has the Jordan-form matrix .A = D + C where 
D is diagonal with the eigenvalues .λ1, . . . , λr and C is nilpotent. Alter each 
eigenvalue slightly so . λ'

i are all distinct and let .A' := D' + C; then . ‖A' − A‖ =
‖D' − D‖ = maxi |λ'

i − λi | < ϵ. 
Because of this, the Jordan canonical form of a numerical matrix is impossible 
to calculate, due to the limited accuracy of the matrix coefficients; small changes 
in the coefficients result in a diagonal Jordan matrix with distinct eigenvalues. 

Exercises 14.22 
In these exercises, let K be a compact operator on a Banach space X. 

1. When T is 1–1, the ascending sequence of spaces are all 0. 
When T is onto, the descending sequence of spaces are all X. 

2. For the matrix .
(

0 1
0 0

)
, the ascending and descending sequences are the same. 

3. The left-shift operator L is onto and has an infinite ascending sequence; its 
adjoint R is 1–1 and has an infinite descending sequence. 
The operator .f (t) I→ tf (t) acting on .C[0, 1], is 1–1, and also has an infinite 
descending sequence, e.g., each of the functions .1, t, t2, . . . belongs to a 
different image space. 

4. If T has a finite descent then . T ⏉ has a finite ascent, of the same order.
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5. (a) Suppose that .ker T n ⊆ im T for some n. Show that . T x = 0 ⇒ x = T 2z

so 

. ker T n−1 ⊆ im T 2, . . . , ker T ⊆ im T n.

(b) Suppose .ker T ⊆ im T n for some n, then . x ∈ ker T 2 ⇒ x − Ty ∈ ker T

for some y, so  

. ker T 2 ⊆ im T n−1, . . . , ker T n ⊆ im T .

6. There is an eigenvalue at the spectral radius of a compact operator, except 
possibly when it is 0. 

7. In . 𝓁1, the multiplier map .M(an) := (cnan)n∈N is compact when .cn → 0; 
its eigenvalues are . cn. 0 is part of the continuous spectrum, unless it is an 
eigenvalue. 
For example, take .cn := 1/n (and .c0 := 1), and the shift operators L and R; 
then ML is also compact but has no eigenvalues except 0; RM is compact with 
no eigenvalues at all but 0 is part of the residual spectrum. 

8. The original Fredholm alternative: For .λ /= 0, either .(K−λ)x = y has a unique 
solution for each y or .K⏉y = λy has a non-trivial solution. 

9. The minimal polynomial of each Jordan block is .(z − λ)n. 
10. Cayley-Hamilton theorem: If  p is the characteristic polynomial of a matrix T , 

then .p(T ) = 0. (Hint: Consider the characteristic polynomial of each Jordan 
block.) 

14.4 The Functional Calculus 

The previous definition of .f (T ) in Taylor’s theorem can be extended to functions 
that are analytic on the spectrum of T , since, by Cauchy’s theorem, the path of 
integration can be swept over analytic regions of f and .(z − T )−1. 

Definition 14.23 

For any function .f : C → C which is analytic in a neighborhood of . σ(T ), let  

. f (T ) := 1

2πi

∮
f (z)(z − T )−1 dz,

where the path of integration is taken along simple closed curves enclosing 
.σ(T ) in a direction which keeps .σ(T ) to its left.
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Note that the integral is defined since .f (z) and .‖(z − T )−1‖ are continuous in z on 
the selected compact path; hence 

. ‖f (T )‖ ⩽ 1

2π

∫
|f (z)|‖(z − T )−1‖ ds < ∞.

Examples 14.24 

1. ▶ If .T S = SR then .f (T )S = Sf (R) when f is analytic on a neighborhood of 
.σ(T ) ∪ σ(R), since 

. S(z − R) = (z − T )S

∴ (z − T )−1S = S(z − R)−1

∴ f (T )S =
∮

f (z)(z − T )−1S dz =
∮

f (z)S(z − R)−1 dz = Sf (R).

In particular 

(a) .f (S−1T S) = S−1f (T )S; for example, .eS−1T S = S−1eT S. 
(b) .ST = T S implies .f (T )S = Sf (T ) and .f (T )g(S) = g(S)f (T ). 

2. If .f ∈ Cω(σ(T )) is zero on .σ(T ), it does not follow that .f (T ) = 0, because 
.f (T ) is defined in terms of a path-integral just outside .σ(T ). For example, . T :=(

0 1
0 0

)
has .σ(T ) = {0}, and .f (z) := z vanishes there, yet .f (T ) = T /= 0. 

3. ✶ f  is differentiable (and continuous) at T : for  H sufficiently small, . f (T + H)

is defined since .σ(T + H) ⊆ σ(T ) + Bϵ(0) (Proposition 14.6), and 

. f (T + H) = f (T ) + 1

2πi

∮
f (w)(w − T )−1H(w − T )−1 dw + o(H).

The next theorem proves that all algebraic properties of a complex function are 
mirrored by properties of .f (T ). 

Theorem 14.25 (The Functional Calculus) 

Given .T ∈ X , the  map .f I→ f (T ), .Cω(σ(T )) → X , satisfies 

.(f + g)(T ) = f (T ) + g(T ), (λf )(T ) = λf (T ),

(fg)(T ) = f (T )g(T ), 1(T ) = 1,

f ◦ g(T ) = f (g(T )),

fn → f in C(σ(T ) + Bϵ(0)) (∃ϵ > 0) ⇒ fn(T ) → f (T ) in X .
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Proof We have already seen part of this theorem in action for power series. In 
particular, the cases .1 = 1

2πi

∮
(z − T )−1 dz and . T −1 = 1

2πi

∮
z−1(z − T )−1 dz

were covered (Example 13.30(2)). 

(i) .(f + λg)(T ) = f (T ) + λg(T ) expresses the linearity property of the integral. 
(ii) .(fg)(T ) = f (T )g(T ): We require the identity 

. (z − w)(z − T )−1(w − T )−1 = (w − T )−1 − (z − T )−1,

which follows easily from .z − w = (z − T ) − (w − T ). In the following analysis, 
consider two paths around .σ(T ), one (with variable z) nested inside another (with 
variable w). 

. f (T )g(T ) = 1

(2πi)2

∮ ∮
f (z)g(w)(z − T )−1(w − T )−1 dz dw

= 1

(2πi)2

∮ ∮
f (z)g(w)

(
(w − T )−1

z − w
+ (z − T )−1

w − z

)

dz dw

= 1

2πi

∮
g(w)(w − T )−1 1

2πi

∮
f (z)(z − w)−1 dz dw

+ 1

2πi

∮
f (z)(z − T )−1 1

2πi

∮
g(w)(w − z)−1 dw dz

= 1

2πi

∮
f (z)(z − T )−1g(z) dz,

= (fg)(T )

where we have changed the order of integration in the third line, and used the fact 
that .(w − z)−1 leaves a residue when integrated on the outer path, but not when 
integrated on the inner path (because the singularity at w would then be outside the 
path of integration). 
In particular, note that if f is invertible on a neighborhood of .σ(T ), 

.f (T )−1 = 1

2πi

∮
f (z)−1(z − T )−1 dz. (14.1) 

(iii) .f (g(T )) := 1

2πi

∮
f (z)(z − g(T ))−1 dz, where the right part of the integrand 

is .(z − g(T ))−1 = 1

2πi

∮
(z − g(w))−1(w − T )−1 dw by (14.1). Combining the
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two and using Cauchy’s integral formula (Proposition 12.19), we get 

. f (g(T )) = 1

(2πi)2

∮ ∮
f (z)(z − g(w))−1(w − T )−1 dw dz,

= 1

(2πi)2

∮ ∮
f (z)(z − g(w))−1 dz (w − T )−1 dw,

= 1

2πi

∮
f ◦ g(w)(w − T )−1 dw,

= f ◦ g(T ).

Note that f has to be analytic on .σ(g(T )) and .g[σ(T )] for .f (g(T )) and . f ◦ g(T )

to be defined, but the two sets are equal by the next theorem (which only uses part 
(ii) of this theorem). 

(iv) The mapping is continuous, since .‖(z − T )−1‖ is bounded by some constant c 
on the compact path enclosing the open set .U := σ(T ) + Bϵ(0): 

. ‖f (T ) − g(T )‖ ⩽ 1

2π

∮
|f (z) − g(z)|‖(z − T )−1‖ ds

⩽ c‖f − g‖C(U).

⨅⨆

Theorem 14.26 (Spectral Mapping Theorem) 

The spectrum of .f (T ) is equal to the set .{ f (λ) : λ ∈ σ(T ) }, that is, 

. σ(f (T )) = f [σ(T )]

Proof For any f analytic in a neighborhood of .σ(T ): 

(i) .λ /∈ f [σ(T )] ⇒ λ /∈ σ(f (T )): Let .λ /= f (z) for all .z ∈ σ(T ); since .f [σ(T )] is 
a closed set, there is a minimum distance between . λ and .f [σ(T )]. So . (f (z) − λ)−1

is analytic on .σ(T ) + Bϵ(0) if . ϵ is small enough, and by the functional calculus 
.(f (T ) − λ)−1 exists. Thus .f (T ) − λ is invertible. 

(ii) .f (T ) − f (λ) invertible . ⇒ T − λ invertible: if .f (T ) − f (λ) has an inverse S, 
we see from rewriting .f (z)−f (λ) = (z −λ)F (z), and the functional calculus, that 

.(T − λ)F (T )S = 1 = SF(T )(T − λ)
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which implies that the factor .T − λ itself is invertible. This is justified once it is 
shown that .F(z) is analytic about .σ(T ); this is apparent when .z /= λ, but even so, 

. f (z) = f (λ) + f '(λ)(z − λ) + 1
2f ''(λ)(z − λ)2 + o((z − λ)2),

⇒ F(z) = f (z) − f (λ)

z − λ
= f '(λ) + 1

2f ''(λ)(z − λ) + o(z − λ),

meaning F is analytic at . λ. ⨅⨆
Examples 14.27 

1. .log T can be defined whenever there is a path, or “branch”, connecting 0 to . ∞
without meeting .σ(T ), because in this case, .log z can be defined and is analytic 
on .σ(T ). But note that .log z, and consequently .log T , depends on the actual 
branch used. Examples include, of course, invertible .n × n complex matrices. 
When defined, .elog T = T . Such elements must be in . G1 (Proposition 13.24). 

2. Similarly one can define .T a := ea log T (again not uniquely); then . (T 1/n)n = T

(.n = 1, 2, . . .), and .T a+b = T aT b (at least for .a, b real). By the spectral mapping 
theorem, .ρ(T a) = ρ(T )a for .a ⩾ 0. 

3. If T satisfies a polynomial .p(T ) = 0, then .σ(T ) consists of the roots of the 
minimal polynomial of T (Example 13.3(13)). 
Proof : The spectral theorem shows that .p[σ(T )] = 0, i.e., that the spectrum 
consists of roots of p. Conversely, if . λ is a root of the minimal polynomial, 
.p(λ) = 0, then .p(z) = (z − λ)nq(z), so .0 = p(T ) = (T − λ)nq(T ), where 
.q(T ) /= 0 and thus .T − λ is not invertible. 

4. ▶ If . λ is an eigenvalue of .T ∈ B(X) then .f (λ) is an eigenvalue of .f (T ), with 
the same eigenvector. 
Proof : When .T x = λx, then .(z−T )x = (z−λ)x and . (z−T )−1x = (z−λ)−1x

(.z /∈ σ(T )), so 

. f (T )x = 1

2πi

∮
f (z)(z − T )−1x dz = 1

2πi

∮
f (z)(z − λ)−1x dz = f (λ)x.

Conversely suppose .f (T ) − f (λ) is not 1–1. Take an open neighborhood . U ⊃
σ(T ) in which f is analytic. Then, either f is constant on U , or else there are 
only a finite number of .λi ∈ σ(T ) satisfying .f (λi) = f (λ). So, for .z ∈ U , 
.f (z)−f (λ) = (z−λ1) · · · (z−λk)g(z) (where multiple roots are repeated) with 
g analytic and non-zero on U , and consequently 

. f (T ) − f (λ) = (T − λ1) · · · (T − λk)g(T ).

But .f (T ) − f (λ) is not 1–1, so there must be a . λi such that .T − λi is not 1–1 
(.g(T ) is invertible), and .f (λi) = f (λ).
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Proposition 14.28 

If .σ(T ) disconnects into two closed sets .σ1∪σ2, each surrounded by simple 
closed paths in open neighborhoods of them, then 

(i) .T = T P1 + T P2, with  . P1, . P2 (called spectral idempotents) such that 
.1 = P1 + P2, .PiPj = δij , 

(ii) In the reduced algebras .P1XP1, .P2XP2 respectively, 

. σ(T P1) = σ1, σ (T P2) = σ2.

Proof The disjoint closed sets . σ1 and . σ2 can be separated by disjoint open sets . U1, 
. U2 (Exercise 5.8(5)). Consider the functions . χi (.i = 1, 2) which take the constant 
value 1 on one open set .Ui ⊃ σi , and 0 on the other. They are analytic on .U1 ∪ U2, 
so we can define 

. Pi := χi(T ) = 1

2πi

∮

σi

(z − T )−1 dz.

The path of integration is the union of the two paths surrounding . σ1 and . σ2, but one 
of the two integrals vanishes. 

. Pi are idempotents, .P1P2 = 0, and .P1 + P2 = 1, because .χ2
i = χi , . χ1χ2 = 0

and .χ1 + χ2 = 1 on .U1 ∪ U2 ⊃ σ(T ). 
Let .fi(z) := zχi(z); then .fi(T ) = T Pi and .σ(fi(T )) = fi[σ(T )] = σi ∪ {0}. 

However, if we restrict to the reduced algebra .PiXPi , with unity . Pi , this changes 
slightly. Since .z − λ is invertible in .Cω(σi) if, and only if, . λ /∈ σi , it follows that  
there exists an S such that .S(T − λ)Pi = Pi = (T − λ)SPi whenever . λ /∈ σi ; this  
means that .(T −λ)Pi is invertible in .PiXPi . Thus, .σ(T Pi) = σi in this algebra. ⨅⨆
Examples 14.29 

1. ▶ When the algebra is .B(X), . Pi are projections, and the spectral decomposition 
of an operator T into .T P1 and .T P2 also gives a decomposition of . X = X1 ⊕ X2
where .Xi = im Pi are T -invariant, and .σ(T |Xi

) = σi . (Proposition 11.5) 
2. If 0 is an isolated point of .σ(T ), with spectral idempotent P , then there is a 

Laurent expansion 

. (z − T )−1P = Pz−1 + T Pz−2 + T 2Pz−3 + · · · .

3. If .0 /∈ σ1, then .P1 = T
(

1
2πi

∮
{λ}

(z−T )−1

z
dz

)
. For example, when T is a compact 

operator and .λ /= 0 is an isolated point of .σ(T ), then the projection . Pλ is also 
compact, confirming that the eigenspace of . λ is finite-dimensional.
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Exercises 14.30 

1. The non-trivial idempotents have spectrum .{0, 1}, and the nilpotents have 
spectrum . {0}. What can the spectrum of a cyclic element be? 

2. If f takes the value 0 inside .σ(T ) then .f (T ) is not invertible. 
3. Use the spectral mapping theorem to show that if .eT = 1 then .σ(T ) ⊂ 2πiZ. If  

P is an idempotent, then .e2πiP = 1. 
4. If J is a Banach algebra morphism, then .f (J (T )) = J (f (T )) (recall . σ(J (T )) ⊆

σ(T )). 
5. Show directly that the matrix .

(
0 1
0 0

)
has no square root at all. 

The shift operators on . 𝓁2, say, cannot have a square root because their spectrum 
encloses 0 (even on .𝓁1(Z) when L and R are invertible). Prove this directly by 
showing the contradictions 

(a) if .T 2 = L, then T must be onto and .ker T = ker L = [[e0]], so . e0 = αT e0 =
0; 

(b) if .T 2 = R, then T is 1–1, and .im T = im R, so . T Rx = RT x =
(0, 0, b0, . . .). 

6. A simple linear electronic circuit with feedback can be modeled as an operator, 
transforming an input signal .x = (xn)n∈N to an output signal .y = (yn)n∈N such 
that 

. yn = bxn − a1yn−1 − · · · − aryn−r ,

where b, . ai are parameters determined by the circuit. Equivalently, 

. (1 + a1R + · · · + arR
r)y = bx,

where R is the right-shift operator. To avoid the once-familiar feedback loop 
instability, it is desired that the values . yn do not grow of their own accord, 
meaning that .1 + a1R + · · · + arR

r has a continuous inverse. This is the case 
when the roots of the polynomial .1+a1z+· · ·+arz

r all have magnitude greater 
than 1. 

14.5 The Gelfand Transform 

Quasinilpotents and the Radical 

How much can an operator T be modified and still retain the same spectrum? That is, 
when is .σ(T +Q) = σ(T )? If this is to hold for all T , including invertible ones, then 
.I + T −1Q would need to be invertible for all such T , thus .ρ(T −1Q) = 0 = ρ(Q). 
The next definition explores these ideas.
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Definition 14.31 

The quasinilpotents are those elements .Q ∈ X with .ρ(Q) = 0. 

The (Jacobson) radical of . X is 

. radX := { Q ∈ X : ∀T ∈ X , ρ(T Q) = 0 }.

A Banach algebra with a trivial radical is called semi-primitive or .J -semi-
simple. 

The next proposition shows that the radical is a closed ideal, which can be 
factored out to leave a semi-primitive Banach algebra. 

Examples 14.32 

1. The prime examples of quasinilpotents are the nilpotents, defined as those 
elements which satisfy .Qn = 0 for some n, so .ρ(Q) ⩽ ‖Qn‖1/n = 0; e.g., 
.
(

0 1
0 0

)
. 

But the right/left shift operators are not quasinilpotent, even though their matrices 
resemble nilpotent ones. 

2. Every operator .Tf (s) := ∫ s

0 k(s, t)f (t) dy on .C[0, 1], where .k ∈ L∞[0, 1]2, is  
a quasinilpotent. 
Proof : .|Tf (s)| ⩽

∫ s

0 |k(s, t)||f (t)| dt ⩽ ‖k‖‖f ‖s. By induction one can 
conclude .|T nf (s)| ⩽ ‖k‖n‖f ‖sn/n!, 

. |T n+1f (s)| =
∣
∣
∣

∫ s

0
k(s, t)T nf (t) dt

∣
∣
∣

⩽
∫ s

0
‖k‖n+1‖f ‖tn/n! dt

⩽ ‖k‖n+1‖f ‖sn+1/(n + 1)!

so .‖T n‖ ⩽ ‖k‖n/n! and .ρ(T ) ⩽ ‖T n‖1/n ⩽ ‖k‖/ n
√

n! → 0. 
3. The sum and product of quasinilpotents need not be quasinilpotents, e.g., . 

(
0 1
0 0

)

and .
(

0 0
1 0

)
. 

4. The quasinilpotents are topological divisors of zero since their spectrum is 
a boundary point. Idempotents (except 0 and 1) are divisors of zero but not 
quasinilpotents.
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topological divisors of zero 

quasi-
nilpotents 

divisors 
of zero 

nilpotents 

5. ▶ For any .T ∈ X , .Q ∈ radX , .σ(T + Q) = σ(T ). 
Proof : For any invertible S, the sum .S + Q = S(1 + S−1Q) is also invertible, 
since .ρ(S−1Q) = 0 (Theorem 13.20). Thus 

. λ /∈ σ(T +Q) ⇔ T +Q−λ is invertible ⇔ T −λ is invertible ⇔ λ /∈ σ(T ).

6. Radical elements are obviously quasinilpotents, .ρ(Q) = ρ(1Q) = 0. 
7. It is enough to show that .1 /∈ σ(T Q) for all T , in order that .Q ∈ radX . 

Proof : For any .λ /= 0, .1 /∈ σ(T Q/λ) = σ(T Q)/λ ⇒ λ /∈ σ(T Q). 
8. .B(X) has nilpotents (except for .X = C) but only a trivial radical. 

Proof : For any .Q /= 0, an operator T can be found such that .1 − T Q is non-
invertible, so .1 ∈ σ(T Q). One such operator is .T := xφ, where .Qx /= 0, 
.φ ∈ X∗, .φQx = 1; then .(1 − T Q)x = x − xφQx = 0 but .x /= 0. 

Proposition 14.33 

The radical is a closed ideal. 

Proof The radical is contained in every maximal left-ideal: Recall that a maximal 
left-ideal is closed and that every proper left-ideal can be enlarged to a maximal 
left-ideal (Example 13.5(7,8)). Let .Q ∈ radX , and let . M be a maximal left-ideal. 
Then .M + XQ is a left-ideal which contains . M. Either 

(a) .M + XQ = X , in which case .1 = R + T Q for some .R ∈ M, .T ∈ X , so that 
.R = 1 − T Q is invertible, contradicting .R ∈ M (Example 13.5(5)); or else, 

(b) .M + XQ = M, in which case .Q = 0 + 1Q ∈ M. 

Thus .radX ⊆ M as required; an analogous argument shows that .radX is contained 
in every maximal right-ideal. 

The radical is the intersection of the maximal left-ideals: Let  P be an element that 
is contained in every maximal left-ideal. For any .T ∈ X , the left-ideal . X (1 − T P )

cannot be proper, otherwise it would lie inside some maximal left-ideal . M, forcing 
.P ∈ M, and .T P ∈ M, and so .1 = T P + (1 − T P ) ∈ M, a contradiction. Hence 
.X (1 − T P ) = X , and there is an S such that .S(1 − T P ) = 1. 

To show .1 − T P is invertible we need to prove .(1 − T P )S = 1 as well. To this 
end one can substitute .−ST for T in the above argument, to conclude that there is
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an .R ∈ X such that 

. 1 = R(1 + ST P ) = R(S + 1 − S(1 − T P )) = RS.

But .RS = 1 = S(1 − T P ) implies .1 − T P = S−1 is invertible. With . 1 /∈ σ(T P )

for any T , P must be in the radical. 

The radical is a closed ideal: Being the intersection of closed sets, .radX is also 
closed (Proposition 2.18). For any .S, T ∈ X and .Q,Q' ∈ radX , 

(a) .ρ(ST Q) = 0 = ρ(SQT ), so .T Q,QT ∈ radX , 
(b) .σ(T (Q + Q')) = σ(T Q) = {0} from Example 5 above (.T Q' ∈ radX ), so 

.Q + Q' ∈ radX , 
(c) .ρ(T (λQ)) = |λ|ρ(T Q) = 0, so .λQ ∈ radX , 

and .radX is an ideal. ⨅⨆

The State Space 

The spectrum of an element .T ∈ X is a subset that gives us important information 
about T . However, it is not well behaved under addition or multiplication of 
elements. There exists a set that contains the spectrum which is much better 
behaved. Consider a functional . φ on . X , then .φ(T − λ) = φ(T ) − λ if we insist that 
.φ(1) = 1; moreover, as it turns out, . φ maps non-invertible elements to 0, and thus 
.λ = φ(T ) for .λ ∈ σ(T ), if we restrict the functionals to the following definition: 

Definition 14.34 

The state space of a Banach algebra . X is the set of functionals 

. S(X ) := { φ ∈ X ∗ : φ1 = 1 = ‖φ‖ }.

We often write . S for .S(X ) and .S(T ) := { φT ∈ C : φ ∈ S(X ) }, for example, 
.S(1) = {1}. 

Proposition 14.35 

The state space .S(X ) is a convex set containing the character space .Δ(X ). 
For any .T ∈ X , .S(T ) is a compact convex subset of . C, and 

. Δ(T ) ⊆ σ(T ) ⊆ S(T ).

Moreover, .S(T1 + T2) ⊆ S(T1) + S(T2), .S(λT ) = λS(T ).
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Proof (i) .S(X ) and .S(T ) are convex: For .φ,ψ ∈ S and .0 ⩽ t ⩽ 1, 

. (tφ + (1 − t)ψ)1 = t + 1 − t = 1, and

‖tφ + (1 − t)ψ‖ ⩽ t‖φ‖ + (1 − t)‖ψ‖ = 1.

It follows from .tφT + (1 − t)ψT = (tφ + (1 − t)ψ)T ∈ S(T ) that .S(T ) is convex. 

.S(T ) is compact: .S(T ) is bounded since .|φT | ⩽ ‖T ‖ for any . φ ∈ S . Now  
recall that every bounded sequence in .X ∗ has a weak*-convergent subsequence 
(Theorem 11.42 for . X separable). So whenever .φnT ∈ S(T ) converges to a 
limit point z, there is a subsequence of . φn that converges in the weak* sense, 
.φni

⇀ φ ∈ X ∗, implying 

(a) .φni
T → φT = z and .1 = φni

1 → φ1, 
(b) .‖φ‖ ⩽ lim infi ‖φni

‖ = 1 (Corollary 11.37). 

Hence .φ ∈ S and .z ∈ S(T ), that is, .S(T ) is closed and bounded. 

(ii) .σ(T ) ⊆ S(T ): If .R ∈ X is not invertible, then .1 /∈ [[R]]; indeed . d(1, [[R]]) =
1 as .[[R]] contains no invertible elements (Theorem 13.20). So by the Hahn-
Banach theorem, there is a .φ ∈ X ∗ satisfying .φ1 = 1 = ‖φ‖ and . φR = 0
(Proposition 11.20). In particular, for .R = T − λ, where .λ ∈ σ(T ), there is a 
.φ ∈ S such that 

. 0 = φ(T − λ) = φT − λ,

so .λ = φT ∈ S(T ). 

(iii) .Δ(T ) ⊆ σ(T ): Recall that any character .ψ ∈ Δ maps invertible elements 
to invertible complex numbers (Example 13.7(1)), including .ψ1 = 1. So for any 
.λ /∈ σ(T ), .ψT − λ = ψ(T − λ) /= 0, and .λ /∈ Δ(T ). Equivalently, . Δ(T ) ⊆ σ(T )

and .|ψT | ⩽ ρ(T ) ⩽ ‖T ‖. This means that . ψ is automatically continuous with 
.‖ψ‖ = 1, and so .Δ ⊆ S . 

(iv) For any .φ ∈ S , 

. φ(T1 + T2) = φ(T1) + φ(T2) ∈ S(T1) + S(T2),

φ(λT ) = λφT ⇒ S(λT ) = λS(T ).

⨅⨆
Examples 14.36 

1. ▶ The state space of . 𝓁1 consists of bounded sequences with .b0 = 1, .|bn| ⩽ 1. 
The characters of . 𝓁1 are of the type .(zn)n∈N, for some .|z| ⩽ 1. 
Proof : Let .φ ∈ S(𝓁1) ⊆ 𝓁1∗ ≡ 𝓁∞ (Proposition 9.6); then .φ ∼ (bn)n∈N and 
the requirements .φ1 = 1 = ‖φ‖ become .b0 = 1, .|bn| ⩽ 1. In particular for any
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.ψ ∈ Δ, and any .x ∈ 𝓁1, 

. x = (a0, a1, . . .) =
∞∑

n=0

anen =
∞∑

n=0

an(e1 ∗ · · · ∗ e1︸ ︷︷ ︸
n

),

∴ ψx =
∞∑

n=0

anψ(e1 ∗ · · · ∗ e1) =
∞∑

n=0

anz
n = (zn) · (an), (z := ψe1),

where the multiplicative property .ψ(e1 ∗ · · · ∗ e1) = (ψe1)
n is used. 

2. The characters of .𝓁1(Z) are .ψθ ∼ (einθ )n∈Z. 
The proof is the same as above except .|z−1| ⩽ 1 holds additionally, that is, 
.z = eiθ ∈ S

1 for some .0 ⩽ θ < 2π . 
3. For .L1(S1), the characters are .ψn(f ) = ∫ 2π

0 einθf (θ) dθ , (.n ∈ Z). 

Proof : Let .ψ ∈ Δ ⊆ L1(S1)∗ ≡ L∞(S1), so .ψ(f ) = ∫ 2π

0 h(θ)f (θ) dθ for 
some .h ∈ L∞(S1). Recall that .L1(A) does not contain a unity for convolution 
(Example 13.3(5)); nevertheless, one can be added artificially, so . Δ exists and its 
characters act on .L1(A). Again we require 

(a) .1 = ‖ψ‖ = ‖h‖L∞ , so .|h(θ)| ⩽ 1 for almost all . θ ; 
(b) .ψ(f ∗ g) = ψ(f )ψ(g), or equivalently, 

. 

∫ 2π

0
h(θ)

∫ 2π

0
f (θ − η)g(η) dη dθ =

∫ 2π

0
h(θ)f (θ) dθ

∫ 2π

0
h(η)g(η) dη.

This implies that .h(θ + η) = h(θ)h(η) a.e.; we’ve met this identity before in 
our preliminary discussion on the exponential function in Sect. 13.2, where we 
concluded that .h(θ) = h(1)θ = ezθ , assuming h is continuous. That this can be 
taken to be the case follows from Corollary 9.31, 

. 
∣
∣
∫

(
h(y + ϵ) − h(y)

)
f (y) dy

∣
∣ = ∣

∣
∫

h(y)
(
f (y − ϵ) − f (y)

)
dy

⩽
∫

|f (y − ϵ) − f (y)| dy → 0.

Moreover, .h(2π) = h(0) = 1 implies that .h(1) = ein for some .n ∈ Z. 
4. For .L1(R), the characters are .ψξ (f ) = ∫

R
eitξ f (t) dt , (.ξ ∈ R). 

Proof : Let .ψ ∈ Δ ⊆ L1(R)∗ ≡ L∞(R); so .ψ(f ) = ∫
hf . As before, . |h(t)| ⩽ 1

for all t , while the condition .ψ(f ∗ g) = ψ(f )ψ(g) is equivalent to . h(t +
s) = h(t)h(s) a.e., so .h(t) = h(1)t . To avoid .h(t) growing arbitrarily large as 
.t → ±∞, .|h(1)| must be 1, and .h(t) = eitξ . 

5. Repeating for .L1(R+), .Δ ∼= { e−zt : Re z ⩾ 0 }.
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6. ✶ For .C[0, 1], .Δ = { δt ∈ C[0, 1]∗ : δt (f ) = f (t), t ∈ [0, 1] } ∼= [0, 1]. 
Proof : That . δt are unit functionals should be obvious. In addition, 

. δt (fg) = (fg)(t) = f (t)g(t) = δt (f )δt (g), and δt (1) = 1.

Note that for .s /= t , .δs(f ) /= δt (f ) for some .f ∈ C[0, 1]. 
For the converse, let . ψ be a character of .C[0, 1]. Define ‘triangle’ functions, 
.τn,i(x), as in the accompanying plot; note that these functions overlap and sum 
to 1 everywhere, .

∑2n

i=0 τn,i = 1. 

0 

1 

0 i−1 
2n , 

i 
2n ,

i+1 
2n 1 

Then .1 = ψ1 = ∑
i ψ(τn,i) and at least one triangle function must give 

.ψ(τn,in) /= 0. In fact, .ψ(τn,i) = 0 for .i /= in − 1, in, in + 1, since .τn,iτn,in = 0. 
By taking larger values of n, and selected values of . in, the nested intervals 
.[ in−1

2n , in+1
2n ] shrink to some point t . For any function .f ∈ C[0, 1], 

. ψf =
∑

i

ψ(τn,i)ψ(f ) = ψ
( in+1∑

i=in−1

τn,if
)

→ f (t), as n → ∞.

The map .x I→ δt is thus 1–1 and onto . Δ. Furthermore .tn → t ⇔ δtn ⇀ δt , 
since the latter means .f (tn) → f (t) for all .f ∈ C[0, 1], in particular for the 
identity function .f (x) := x. 

7. ✶ The character space of the Banach algebra .C[T1, . . . , Tn] generated by 
commuting elements, is isomorphic to a compact subset of .Cn (use the map 
.ψ I→ (ψT1, . . . , ψTn)). 

8. ✶ The character space is weakly closed: .ψn ∈ Δ AND ψn ⇀ ψ ⇒ ψ ∈ Δ. 
Consequently, for a separable Banach algebra, . Δ is a compact metric space. 
Proof : Taking the limits of .ψn(S + T ) = ψnS + ψnT , .ψn(λT ) = λψnT , 
.ψn(ST ) = (ψnS)(ψnT ), and .ψn1 = 1, shows that . ψ is an algebraic morphism. 
Also .|ψnT | ⩽ ‖T ‖ becomes .|ψT | ⩽ ‖T ‖ in the limit .n → ∞, and . ψ is 
continuous. For a separable Banach algebra, the unit ball in .X ∗ is compact 
with respect to the weak*-metric (Theorem 11.42), and so is its weakly closed 
subset . Δ. 

The Gelfand Transform 

To see why characters may be useful, consider the algebra . 𝓁1 and its characters . pz. 
A sequence such as .x = ( 1

2 , 1
4 , 1

8 , . . .) can be encoded as a complex power series in
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terms of its characters, .pz(x) = ∑∞
i=0 zi/2i+1 = (2 − z)−1. Then the convolution 

product .x∗· · ·∗x can be evaluated using characters instead of working it out directly, 

. pz(x ∗ · · · ∗ x) = pz(x)n = 1

(2 − z)n
=

∞∑

i=0

n(n + 1) · · · (n + i − 1)

i! 2n+i
zi .

For an example from probability theory, consider a random variable that outputs 
a natural number .i = 0, 1, 2, . . . , with probability .1/2i+1. The probability 
distribution of the sum of n such random outputs is .x ∗ · · · ∗ x, which can be read 
off from the coefficients of .pz(x)n; e.g., the probability of getting a total of, say 2, 
after n trials is .n(n + 1)/2n+3. Further, the mean of such a sum of random variables 
is given by differentiating .(2 − z)−n at .z = 1, that is n. The key step that makes all 
of this work is to consider .pz(x) as a function of z. Its generalization leads to: 

Definition 14.37 

The Gelfand transform of T is the map .T̂ : Δ(X ) → σ(T ) defined by 

. ̂T (ψ) := ψT .

The element T is transformed into a function on the compact space . Δ. The algebraic 
structure is preserved, but the transform is generally neither 1–1 nor onto. 

Proposition 14.38 

The Gelfand transform .G : T I→ T̂ is a Banach algebra morphism . X →
C(Δ), 

. ̂S + T = Ŝ + T̂ , λ̂T = λT̂ ,

ŜT = Ŝ T̂ , 1̂ = 1, ‖T̂ ‖ ⩽ ‖T ‖.
Its kernel .kerG contains the quasinilpotents and the commutators. 
For any analytic function on the spectrum of T , .f ∈ Cω(σ(T )), 

. f̂ (T ) = f ◦ T̂ .

Proof It is clear from 

. |T̂ (ψ) − T̂ (φ)| = |ψT − φT | ⩽ ‖ψ − φ‖‖T ‖,
and |T̂ (ψ)| = |ψT | ⩽ ‖T ‖, for all ψ, φ ∈ Δ,

that . ̂T is a (continuous) Lipschitz and bounded function on . Δ, with .‖T̂ ‖C ⩽ ‖T ‖.
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Israel Gelfand(1913–2009) Gelfand studied functional 
analysis at the University of Moscow under Kol-
mogorov in 1935, specializing in commutative normed 
rings. During 1939-41 he studied Banach algebras, 
introducing his transform and proving the spectral 
radius formula, which gave much impetus to the subject; 
in 1943, with Naimark, he proved the embedding of 
special commutative .∗-algebras into .B(H); and then in 
1948 he simplified the subject-matter with the introduc-
tion of the .C∗-condition .‖x∗x‖ = ‖x‖2. 

For any . ψ ∈ Δ, we have:  

. ̂1(ψ) = ψ1 = 1,

λ̂T (ψ) = ψ(λT ) = λψT = λT̂ (ψ),

Ŝ + T (ψ) = ψ(S + T ) = ψS + ψT = (Ŝ + T̂ )(ψ),

ŜT (ψ) = ψ(ST ) = ψS ψT = Ŝ(ψ) T̂ (ψ) = (ŜT̂ )(ψ).

Clearly, from .T̂ (ψ) = ψT , .T̂ = 0 ⇔ Δ(T ) = 0. If  Q is a quasinilpotent then 
.Δ(Q) ⊆ σ(Q) = {0}. Also, .[̂S, T ] = ŜT̂ − T̂ Ŝ = 0 since .C(Δ) is commutative. 

Lastly, as .ψ(S−1) = (ψS)−1, for any .ψ ∈ Δ, .S ∈ X , 

. f̂ (T )(ψ) = ψf (T ) = ψ

(
1

2πi

∮
f (z)(z − T )−1 dz

)

= 1

2πi

∮
f (z)(z − ψT )−1 dz (ψT ∈ σ(T ))

= f (ψT ) = f ◦ T̂ (ψ).

⨅⨆
We cannot expect the Gelfand transform to be very useful for general algebras as 
it loses information by representing . X as a subspace of the special commutative 

algebra .C(Δ); for example, . ̂S−1T S = Ŝ−1T̂ Ŝ = T̂ . But for commutative Banach 
algebras the situation is much improved: 

Theorem 14.39 

For a commutative Banach algebra . X , 

. im T̂ = Δ(T ) = σ(T ), ‖T̂ ‖C(Δ) = ρ(T ), kerG = radX .
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Proof Any maximal ideal of a commutative Banach algebra is the kernel of some 
character: Given a closed ideal . M, the mapping .Ф(T ) := T + M is a Banach 
algebra morphism .X → X /M with .M = ker Ф (Exercise 13.10(21)). By 
Exercise 13.10(20), when . M is also maximal in . X , then .X /M has no non-trivial 
ideals, and so is isomorphic to . C (Example 14.5(4)). Hence . Ф : X → X /M ∼= C

is a character. 
But any non-invertible T belongs to some maximal ideal . M (Example 13.5(8)); 

so there must be some .ψ ∈ Δ such that .M = ker ψ , implying .ψT = 0. Thus . T −λ

is not invertible if, and only if, there is a .ψ ∈ Δ, with .ψT − λ = ψ(T − λ) = 0, 
i.e., .λ ∈ Δ(T ), and therefore .Δ(T ) = σ(T ). (Note that this shows the existence of 
characters in a commutative Banach algebra.) Since the two sets are the same, they 
have the same greatest extent, 

. ‖T̂ ‖C = max
ψ∈Δ

|ψT | = max
λ∈σ(T )

|λ| = ρ(T ).

The quasinilpotents are in the radical: If  Q is a quasinilpotent, and .T ∈ X , then 

. ρ(T Q) = lim
n→∞ ‖(T Q)n‖1/n = lim

n→∞ ‖T nQn‖1/n ⩽ ρ(T )ρ(Q) = 0,

so Q is in the radical. Moreover, .kerG = radX since 

. ̂T = 0 ⇔ Δ(T ) = {0} ⇔ σ(T ) = {0}.

⨅⨆

Proposition 14.40 

A Banach algebra which satisfies, for some .c > 0 and all T , 

. ‖T ‖2 ⩽ c‖T 2‖,

can be embedded in the commutative semi-simple Banach algebra .C(Δ), 
via the Gelfand map. 

Proof By induction on n, 

. ‖T ‖2n ⩽ (c‖T 2‖)2n−1 ⩽ · · · ⩽ c2n−1‖T 2n‖

from which can be concluded 

.‖T ‖ ⩽ lim
n→∞ c1−2−n‖T 2n‖2−n = c ρ(T ).
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This inequality has various strong implications: 

. X is semi-primitive: 0 is clearly the only quasinilpotent. 

. X is commutative: For any .S, T ∈ X , 

. ‖ST ‖ ⩽ c ρ(ST ) = c ρ(T S) ⩽ c‖T S‖.

Hence, the analytic function .F(z) := e−zT SezT is bounded, 

. ∀z ∈ C, ‖F(z)‖ ⩽ c‖SezT e−zT ‖ = c‖S‖.

By Liouville’s theorem, F must be constant, .e−zT SezT = S, that is, .ezT S = SezT . 
Comparing the second terms of their power series expansions, 

. (1 + zT + o(z))S = S(1 + zT + o(z)),

gives .T S = ST . 

The Gelfand map is an embedding: . G has the trivial kernel .radX = {0}, and is thus 
an algebra isomorphism onto .X̂ ⊆ C(Δ). Moreover, .‖T ‖ ⩽ c ρ(T ) = c‖T̂ ‖C , so  
.G−1 is continuous. ⨅⨆
Exercises 14.41 

1. In . C, as well as . Cn, .𝓁∞ and .C[0, 1], the only quasinilpotent is 0. 
2. Quasinilpotents are preserved by Banach algebra morphisms. 
3. A quasinilpotent upper triangular matrix must have 0s on the main diagonal, so 

is nilpotent. Deduce, using the Jordan canonical form and Theorem 13.8, that 
every quasinilpotent of a finite-dimensional Banach algebra is nilpotent. 

4. .(Q,R) ∈ X × Y is quasinilpotent (or radical) when both Q and R are. 
5. The operator .V : 𝓁∞ → 𝓁∞ defined by .V (an) := (0, a0, a1/2, a2/3, . . .) is 

quasinilpotent. 
6. Prove directly that the Volterra operator .f I→ ∫ x

0 f , on .C[0, 1], is a quasinilpo-
tent. 

7. A quasinilpotent for which .‖(z − T )−1‖ ⩽ c

|z|n for all z in a neighborhood of 

0, must in fact be a nilpotent. (Hint: use . ‖T n‖ ⩽ 1
2π

∫ |z|n‖(z − T )−1‖ dz ⩽
ϵc.) 

8. .ρ(T QS) = 0 for any .S, T ∈ X , .Q ∈ radX . (Hint: Example 14.2(6).) 
9. If .ψ ∈ Δ and .f ∈ Cω(σ(T )), then .ψ(f (T )) = f (ψT ). 

10. .Δ(T ) has better properties than .σ(T ), and may yield useful information about 
it (unless .Δ = ∅): 

. Δ(S + T ) ⊆ Δ(S) + Δ(T ), Δ(ST ) ⊆ Δ(S)Δ(T )

11. For . Cn, .Δ = { δ1, . . . , δn } where .δi(z1, . . . , zn) := zi are the dual basis. The 
same is true for the space . c0, .Δ = { δi ∈ c∗

0 : δi(a0, a1, . . .) = ai }.
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12. For .B(Cn), .Δ = ∅. (Hint: Consider products of .
(

1 0
0 0

)
, .
(

0 1
0 0

)
, etc.) 

13. For characters of the group algebra . CG, .ψ(eh−1gh) = ψ(eg) and .|ψ(eg)| = 1. 
14. ▶ The invertible elements of a commutative . X correspond to the invertible 

elements of . X̂ . 
15. The Gelfand transform on . Cn, mapping .C

n → C(Δ) ∼= C
n, is the identity map. 

The same is true for . C[0, 1], so .σ(f ) = im f for .f ∈ C[0, 1]. 
16. ▶ The Gelfand transform gathers together various classical transforms under 

one theoretical umbrella: 

(a) Generating functions: .G : 𝓁1 → C(B̄C), maps a sequence .x = (an)n∈N to 
a power series on the unit closed disk in . C, 

. (an)n∈N I→
∞∑

n=0

anz
n.

(b) .G : 𝓁1(Z) → C(S1) is similar, .̂x(θ) :=
∞∑

n=−∞
ane

inθ . 

It follows that .σ(x) = { x̂(θ) : 0 ⩽ θ < 2π }, and the sequence . x is 
invertible in .𝓁1(Z) (in the convolution sense) exactly when . 

∑
n ane

inθ /= 0
for all . θ . This is essentially Wiener’s theorem: If .f ∈ C(S1) is nowhere 0 
and .f̂ ∈ 𝓁1(Z) then the Fourier coefficients of . 1/f are also in .𝓁1(Z). 

(c) Fourier coefficients: .L1(S1) → Cb(Z) ≡ 𝓁∞(Z), 

. f̂ (n) :=
∫ 2π

0
e−inθf (θ) dθ.

(d) Fourier transform: .L1(R) → C(R), 

. f̂ (ξ) :=
∫ ∞

−∞
e−itξ f (t) dt.

(e) Laplace transform: .L1(R+) → C(R+ + iR), 

. Lf (s) :=
∫ ∞

0
e−sxf (x) dx, Re s ⩾ 0.

In all these cases, .f̂ ∗ g = f̂ ĝ. 
17. ✶ In any Banach algebra, if .ST = T S then . σ(S + T ) ⊆ σ(S) + σ(T )

and .σ(ST ) ⊆ σ(S)σ (T ). (Hint: Consider the commutant algebra .{ S, T }'' of 
Exercise 13.10(14) and Example 14.5(6).) 

18. In a commutative Banach algebra, .eS+T = eSeT , and .DeT = eT . The set of  
exponentials . eX is a connected group, so .eX = E = G1 (Proposition 13.24).
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19. A Banach algebra which satisfies .‖T 2‖ = ‖T ‖2 is isometrically isomorphic to 
a subalgebra of .C(Δ): the condition is equivalent to .‖T ‖ = ρ(T ) = ‖T̂ ‖. 

20. Conversely to the proposition, a Banach algebra that can be embedded in some 
.C(K) (K compact) satisfies .‖T ‖2 ⩽ c‖T 2‖. 

Remarks 14.42 

1. Given a compact set .K ⊂ C, is there an element T with spectrum .σ(T ) = K? Of  
course, this is false in the Banach algebra . C, where all spectra consist of single 
points, and in .B(Cn), where the spectra are finite sets of points. But in .𝓁∞ there 
are elements with any given compact set K for spectrum (Example 14.2(3)). 

2. The distinction between . σp, . σc and . σr is not of purely mathematical interest. 
In quantum mechanics, a solution of Schrödinger’s time-independent equation 
.Hψ = Eψ gives energy-eigenvalues with eigenfunctions that are “localized” 
(since .ψ ∈ L2(R3)), whereas the continuous spectrum corresponds to “free” 
states. 

3. Among the operators in Sect. 14.2, one can find examples without point, contin-
uous or residual spectra (and any combination thereof, except all empty). Note 
also that the spectra of these examples are misleadingly not hard to compute in 
contrast to generic operators. 

4. There are various definitions of spectra of T that are subsets of . σ(T ). The  
singular spectrum is the set of . λ such that .T − λ is a topological divisor of 
zero. The essential spectrum consists of . λ such that .T − λ is not Fredholm. 

5. Recalling .ρx(T ) := lim supn ‖T nx‖ 1
n , defined for .T ∈ B(X) and . x ∈ X

(Remark 13.32(4)), suppose a closed subset of the spectrum of T is isolated from 
the rest of the spectrum by a disk, .σ1 ⊂ Br(a). If .ρx(T − a) < r then . x ∈ X1
since 

.P1x = 1

2πi

∮

σ1

(z − T )−1x dz =
∑

n

an(T − a)nx = x.



Chapter 15 
.C∗-Algebras 

.B(H) is a special Banach algebra when H is a Hilbert space because there is an 
adjoint operation that pairs up operators together. Its properties can be generalized 
to Banach algebras as follows. 

Definition 15.1 

A .C∗ -algebra is a (unital) Banach algebra with an involution map . ∗ : X →
X having the properties: 

. T ∗∗ = T , (T + S)∗ = T ∗ + S∗, (λT )∗ = λ̄ T ∗,

(ST )∗ = T ∗S∗, ‖T ∗T ‖ = ‖T ‖2.

A .∗-morphism is defined as a Banach algebra morphism . Ф which also 
preserves the involution .Ф(T ∗) = (ФT )∗. 

Easy Consequences 
1. .0∗ = 0, .1∗ = 1, .z∗ = z̄ (by expanding .(0+ 1)∗, .(1∗1)∗, and .(z1)∗). 
2. .‖T ‖ = ‖T ∗‖ (since .‖T ‖2 = ‖T ∗T ‖ ⩽ ‖T ∗‖‖T ‖, and so . ‖T ‖ ⩽ ‖T ∗‖ ⩽
‖T ∗∗‖); the involution map is thus continuous and bijective. But it is neither 
linear (.(iT )∗ = −iT ∗), nor differentiable (since .(T +H)∗ = T ∗ +H ∗). 

3. .‖T T ∗‖ = ‖T ‖2. 
4. .(T ∗)−1 = (T −1)∗ when T is invertible. 
5. .ρ(T ∗) = ρ(T ), .σ(T ∗) = σ(T )∗ (since .(T ∗ − λ̄)−1 = (T − λ)−1∗). 

One might expect that .‖T ∗‖ = ‖T ‖ be taken as an axiom, and indeed Banach 
algebras with involutions satisfying this weaker axiom are studied and called 
Banach .∗-algebras. .C∗-algebras resemble . C and .B(H) more closely: the chosen 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024 
J. Muscat, Functional Analysis, https://doi.org/10.1007/978-3-031-27537-1_15

383

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27537-1protect T1	extunderscore 15&domain=pdf
https://doi.org/10.1007/978-3-031-27537-1_15
https://doi.org/10.1007/978-3-031-27537-1_15
https://doi.org/10.1007/978-3-031-27537-1_15
https://doi.org/10.1007/978-3-031-27537-1_15
https://doi.org/10.1007/978-3-031-27537-1_15
https://doi.org/10.1007/978-3-031-27537-1_15
https://doi.org/10.1007/978-3-031-27537-1_15
https://doi.org/10.1007/978-3-031-27537-1_15
https://doi.org/10.1007/978-3-031-27537-1_15
https://doi.org/10.1007/978-3-031-27537-1_15
https://doi.org/10.1007/978-3-031-27537-1_15


384 15 .C∗-Algebras 

axiom, which is the analogue of the familiar .z̄z = |z|2, is much stronger and can 
only be satisfied by a unique norm, if at all (Example 15.10(5)). 

Examples 15.2 

1. The simplest example is . C with conjugacy. . Cn has an involution 

. (z1, . . . , zn)
∗ := (z̄1, . . . , z̄n).

This example extends to . 𝓁∞. 
2. .C[0, 1] with conjugate functions .f̄ : t I→ f (t). 
3. .B(H) with the adjoint operator, where H is a Hilbert space (Proposition 10.19). 

We will see later (Theorem 15.53) that every .C∗-algebra can be embedded into 
.B(H) for some Hilbert space H . 

4. .B(H) contains the closed .∗-subalgebra 

. C⊕K := { a + T : a ∈ C, T ∈ B(H) compact }

5. If . X and . Y are .C∗-algebras then so is .X × Y with . (S, T )∗ := (S∗, T ∗)
(Example 13.3(7)). 

6. ♦ .𝓁1(Z) has an involution .(an)
∗
n∈N := (ā−n)n∈N, that satisfies .‖x∗‖ = ‖x‖ but 

not .‖x∗ ∗ x‖ = ‖x‖2. However, it can be given a new norm, .|||x||| := ‖Lx‖where 
.Lxy := x ∗ y for .y ∈ 𝓁2, and .L : x I→ Lx embeds .𝓁1(Z) as a commutative .C∗-
subalgebra of .B(𝓁2). Similarly for .L1(R). 

7. ♦ The group algebra . CG has an involution making it a .∗-algebra, but not a .C∗-
algebra, 

. x∗ =
( ∑

g∈G

ageg

)∗ :=
∑
g∈G

āgeg−1 .

Exercises 15.3 

1. Polarization identity: If . ω is a primitive root of unity, .ωn = 1, then 

. T ∗S =1

n

n∑
i=1

ωi(S + ωiT )∗(S + ωiT ),

S∗S + T ∗T =1

n

n∑
i=1

(S + ωiT )∗(S + ωiT ).

2. For any real polynomial (or power series) in T , .p(T )∗ = p(T ∗). 
3. If T is a nilpotent, a quasinilpotent, a divisor of zero, or a topological divisor of 

zero, then so is . T ∗, respectively. If .T ∗T is a nilpotent, then so is .T T ∗; but find 
an example in .B(𝓁2) where .T ∗T is invertible yet .T T ∗ isn’t.
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4. If .T ∗T and .T T ∗ are both invertible then so is T , 

. T −1 = (T ∗T )−1T ∗ = T ∗(T T ∗)−1.

5. . T ∗ has the same condition number as T ; that of .T ∗T is squared (Sect. 8.3). 
6. The inner automorphism .T I→ S−1T S is a .∗-automorphism exactly when . SS∗

belongs to the center . X ' (in which case .S∗S = SS∗). 
7. ✶ A .∗-isomorphism .B(H1) → B(H2) is of the type .T I→ UT U−1 where 

.U : H1 → H2 is a Hilbert-space isomorphism. 
8. A .∗-ideal is an ideal that is closed under involution. Examples include the 

kernel of any .∗-morphism, .radX , and the set of compact operators of .B(H). 
9. If .A ⊆ X is closed under involution (.A∗ = A), then so is its commutant . A'

(which is thus a .C∗-subalgebra) (Exercise 13.10(14)). 
10. ✶ Suppose . X has no unity but otherwise satisfies all the axioms of a .C∗-algebra. 

Show that the embedding .L : X → B(X ) (Theorem 13.8) is still isometric, and 
that .LX ⊕ [[I ]] with the adjoint operation .(La + λ)∗ := La∗ + λ̄ is a unital .C∗-
algebra. 

15.1 Normal Elements 

It is a well-known fact in Linear Algebra that real symmetric matrices are diag-
onalizable with real eigenvalues and orthogonal eigenvectors. This makes them 
particularly useful and simple to work with, e.g., if .T = PDP−1 then . f (T ) =
Pf (D)P−1 can easily be calculated when D is diagonal. However, these matrices 
do not exhaust the set of diagonalizable matrices via orthogonal eigenvectors: for 
example, matrices such as .

(
1 −1
1 1

)
may be diagonalizable with complex eigenvalues. 

As we shall see later, diagonalization is closely related to the commutativity of T 
with . T ∗. 

Definition 15.4 

An element T is called normal when .T ∗T = T T ∗, unitary when .T ∗ = T −1, 
and self-adjoint when .T ∗ = T . 

Examples 15.5 

1. It is clear that self-adjoint and unitary elements are normal. 
2. Any .z ∈ C is normal; it is self-adjoint only when .z ∈ R; it is unitary only when 

.|z| = 1. 
3. A diagonal matrix is normal; it is self-adjoint when it is real, and unitary when 

each diagonal element is of unit length .|aii | = 1.



386 15 .C∗-Algebras 

More generally, diagonalizable matrices, of the type .T = UDU∗ where U is 
unitary and D is diagonal, are normal: . T ∗T = UD∗U∗UDU∗ = UD∗DU∗ =
UDD∗U∗ = T T ∗. 

4. The operator .Tf (s) := ∫ 1
0 k(s, t)f (t) dt on .L2[0, 1] is normal when (Exam-

ple 9.28(2c)) 

. 

∫ 1

0
k(u, s)k(u, t) du =

∫ 1

0
k(s, u)k(t, u) du a.e.(s, t)

5. When T is normal, a polynomial in T and . T ∗ looks like 

. p(T , T ∗) =
N∑

n=1

M∑
m=1

an,mT nT ∗m.

The set of such polynomials .C[T , T ∗] is a commutative .∗-subalgebra. The 
character space of its closure .C[T , T ∗] is denoted by . ΔT . 

6. A unitary matrix is a square matrix whose column vectors are orthonormal. A 
self-adjoint matrix is a square matrix .[ai,j ] such that .aj,i = ai,j , e.g., .

(
1 i−i 0

)
. 

Proof : If . ui denotes the ith column of U , then .U∗U = I implies 

. 〈ui ,uj 〉 = u∗i uj = δij .

7. The unitary operators of .B(H) are the Hilbert-space automorphisms of H 
(Proposition 10.22). 

8. ▶ If T is normal, then so are . T ∗, .T + z, zT , . T n, and .T −1 when it exists. But 
the addition and product of normal elements need not be normal, e.g., .

(
1 0
0 2

)
and 

. 
(
i i
i i

)
. 

Proof for .T −1: Taking the inverse of .T T ∗ = T ∗T together with . (T −1)∗ =
(T ∗)−1 gives the normality of .T −1. 

9. ▶ If . Tn are normal and .Tn → T , then T is also normal, i.e., the set of normal 
elements is closed (as are the sets of self-adjoint and unitary elements). 
Proof : The limit as .n →∞ of .T

∗
n Tn = TnT

∗
n is .T ∗T = T T ∗ since the adjoint 

is continuous. Similarly take the limit of .T ∗n = Tn or .T ∗n = T
−1
n to prove the 

other statements. 
10. ▶ If .S, T are self-adjoint, then so are .S + T , . λT (.λ ∈ R), .p(T ) for any real 

polynomial p, and .T −1 if it exists. But ST is self-adjoint iff .ST = T S. 
11. ▶ If T is self-adjoint, then . eiT is unitary; in fact, letting .Ut := eitT , .t ∈ R, gives  

a one-parameter group of unitary elements (Exercise 13.25(9) for definition). 

The analogy of self-adjoint elements with real numbers and unitary elements 
with unit complex numbers raises the issue of which propositions about complex 
numbers generalize to .C∗-algebras.
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Proposition 15.6 

Every element T can be written uniquely as .A + iB with A and B self-
adjoint, called the real and imaginary parts of T , respectively. Then T is 
normal iff .AB = BA. 

The real and imaginary parts of T are denoted .Re T and .Im T . 

Proof Simply check that .A := (T + T ∗)/2 and .B := (T − T ∗)/2i are self-adjoint. 
The sum .A+iB is obviously T . Uniqueness follows from the fact that if . A+iB = 0
for A, B self-adjoint then .A = 0 = B since 

. 0 = (A+ iB)+ (A+ iB)∗ = A+ iB + A− iB = 2A.

. ∴ T ∗T = (A− iB)(A+ iB) = (A2 + B2)+ i[A,B],
T T ∗ = (A+ iB)(A− iB) = (A2 + B2)− i[A,B],

so .T ∗T = T T ∗ precisely when .[A,B] = 0. ⨅⨆

Proposition 15.7 

The set of unitary elements .U(X ) is a closed subgroup of .G(X ), 

. U,V unitary ⇒ UV, U−1 unitary.

Unitary elements have unit norm, .‖U‖ = 1. 

Proof If . Un are unitary and .Un → T , then by continuity of the involution, . U∗n →
T ∗. Also, the equations .U

∗
nUn = 1 = UnU

∗
n become .T ∗T = 1 = T T ∗ in the limit, 

that is, .T −1 = T ∗. 
For any .U,V ∈ U(X ), UV  and .U∗(= U−1) are also unitary, and U is of unit 

norm: 

. (UV )∗ = V ∗U∗ = V −1U−1 = (UV )−1

U∗∗ = U = (U−1)−1 = (U∗)−1,

‖U‖2 = ‖U∗U‖ = ‖1‖ = 1.

⨅⨆
The next theorem starts to unravel the close connection between normal elements 

and their spectra.
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Proposition 15.8 

For T normal, .ρ(T ) = ‖T ‖, and .S(T ) is the closed convex hull of .σ(T ). 

Proof (i) For any normal element T , .‖T 2‖ = ‖T ‖2 since 

. ‖T ‖4 = ‖T ∗T ‖2 = ‖(T ∗T )∗(T ∗T )‖ = ‖(T 2)∗T 2‖ = ‖T 2‖2.

But . T 2 itself is normal, so the doubling game can be repeated to get, by induction, 
.‖T 2k‖ = ‖T ‖2k

and 

. ρ(T ) = lim
n→∞‖T

n‖1/n = lim
k→∞‖T

2k‖2−k = ‖T ‖.

(ii) As .S(T ) is a closed convex set that contains .σ(T ) (Proposition 14.35), it must 
also contain the convex hull of the latter. Notice that, by (i), .σ(T ) reaches out to the 
boundary of .S(T ). 
Conversely, suppose . λ is not in the closed convex hull of .σ(T ). There must be a 
straight line through . λ not intersecting .σ(T ) (why? Hint: join . λ to its closest point 
in .σ(T )). So the spectrum can be enclosed by a ball .Br(z) that does not meet the 
line (Exercise 6.22(8)). 

λ

Conv(σ(T )) 

Br(z) 

For any .φ ∈ S , 

. |φT − z| = |φ(T − z)| ⩽ ‖T − z‖ = ρ(T − z) ⩽ r < |λ− z|

so .λ /= φT . It follows that .S(T ) has the same points as the closed convex hull of 
.σ(T ). ⨅⨆

Proposition 15.9 (Fuglede’s Theorem) 

If T is normal and .ST = T S then .ST ∗ = T ∗S.
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Proof From .f (T )S = Sf (T ) (Example 14.24(1b)), we have .e−z̄T Sez̄T = S. 
Writing .z̄T = A+ iB and noting that . ̄zT is normal, so .AB = BA, we find 

. F(z) := e−zT ∗SezT ∗ = e−A+iBSeA−iB

= e2iBe−z̄T Sez̄T e−2iB

= e2iBSe−2iB

∴ ‖F(z)‖ ⩽ ‖S‖ by Example 15.5(11). 

As F is a bounded analytic function of z, by Liouville’s theorem it is constant, 
.F(z) = F(0) = S, i.e., .ezT ∗S = SezT ∗ . Comparing the second term of their power 
series gives .T ∗S = ST ∗. ⨅⨆
Examples 15.10 

1. If .T = A+ iB, where .A,B are self-adjoint, then .T ∗ = A− iB, so  

(a) T is unitary if, and only if, .AB = BA and .A2 + B2 = 1; 
(b) T is self-adjoint if, and only if, .B = 0. 

2. . X is commutative if, and only if, every element is normal. 
Proof : If every element .A + iB is normal, then .AB = BA, i.e., any two self-
adjoint elements commute. But then .T S = (A + iB)(C + iD) = ST . The  
converse is obvious. 

3. (a) For T normal, .‖T n‖ = ‖T ‖n, since .‖T ‖ = ρ(T ) ⩽ ‖T n‖1/n ⩽ ‖T ‖. 
(b) For any T , .‖T ‖2n = ‖(T ∗T )n‖ and . ‖T ‖ = √ρ(T ∗T ).

4. ▶ 0 is the only normal quasinilpotent and the only radical element, that is, every 
.C∗-algebra is semi-primitive. More generally, if T is normal with .σ(T ) = {z}, 
then .T = z. 
Proof : If  Q is a normal quasinilpotent, then .‖Q‖ = ρ(Q) = 0, so  .Q = 0. If  P 
is a radical element, then .‖P‖2 = ‖P ∗P‖ = ρ(P ∗P) = 0. 

5. Every .C∗-algebra has a unique norm satisfying .‖T ∗T ‖ = ‖T ‖2. 
Proof : Suppose there is a second .C∗-norm. Then . ‖T ‖ = ρ(T ∗T )

1
2 = |||T |||.

Exercises 15.11 

1. What are the normal, self-adjoint and unitary elements of . 𝓁∞ and .C[0, 1]? 
2. Diagonal ‘matrices’ in . 𝓁2 are multiplier operators, .(an)n∈N I→ (bnan)n∈N. 

Show they are normal, self-adjoint when .bn ∈ R, and unitary when .|bn| = 1, 
for all n. 
Generalize for multiplier operators on .L2(R), .Tf := gf , (.g ∈ Cb(R)). 

3. Triangular matrices, such as .
(
1 1
0 2

)
, are not normal (unless diagonal). A real 

diagonalizable matrix, such as .
(
0 1−1 0

)
, need not be self-adjoint.
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4. For any T , .αT + βT ∗ is normal when .|α| = |β|. 
5. A .∗-morphism preserves normal, self-adjoint, and unitary elements. 
6. If . Pi are normal idempotents with .PiPj = δijPi as well as .P1 + · · · + Pn = 1, 

then .z1P1 + · · · + znPn is normal (unitary when .|zi | = 1) and for any 
polynomial p, 

. p(z1P1 + · · · + znPn) = p(z1)P1 + · · · + p(zn)Pn.

7. If S and T are commuting normal elements, then ST is also normal. 
8. The shift-operators on .𝓁2(Z) are unitary, with .σ(R) = σ(L) = S

1 (but on . 𝓁2, 
they are not even normal). 

9. Translations .Taf (t) := f (t − a) and stretches .Saf (t) := a
1
2 f (at) (.a > 0), 

acting on .L2(R), are unitary. 
10. If U is unitary then for any T , .‖UT ‖ = ‖T ‖ = ‖T U‖. 
11. If .U ∈ X is unitary, then .T I→ U∗T U is an inner .∗-automorphism of . X . 
12. If T is an invertible normal element, then .T ∗T −1 is unitary. 

For example, the Cayley transformation .U := (i − T ∗)(i + T )−1 maps T 
to a unitary element if .i + T is invertible. Compare with the transformation 
.z I→ (i− z̄)/(i+z), which takes . R to the unit circle (.0 I→ 1, 1 I→ i,∞ I→ −1). 
(Note that not every unitary operator U is of this form, only those such that 
.−1 /∈ σ(U).) 

13. .U(X ) need not be a normal subgroup of .G(X ); when does .T −1UT ⊆ U hold? 
14. The operator .Tf (s) := ∫

k(s, t)f (t) dt on .L2(R) (.k ∈ L2(R2)) is self-adjoint 
when .k(s, t) = k(t, s) a.e. (Hint: Examples 10.23(3), 9.28(2)). 

15. For any .T ∈ X , the elements .T + T ∗, .T ∗T and .T T ∗ are self-adjoint. 
16. The real and imaginary parts of T satisfy .‖Re T ‖ ⩽ ‖T ‖, .‖ Im T ‖ ⩽ ‖T ‖. 
17. Find the real and imaginary parts of ST when S and T are self-adjoint. 
18. For .S, T normal, .ρ(S + T ) ⩽ ρ(S)+ ρ(T ), and .ρ(ST ) ⩽ ρ(S)ρ(T ). 
19. When T is normal, then .‖T ‖eiθ is a spectral value for some . θ . 
20. Let .Q /= 0 be a quasinilpotent, then .1+Q is not normal. More generally, if T 

is normal and .T Q = QT , then .T +Q is not normal. 
21. If .A∗B = 0 = AB∗, then .‖A+ B‖ = max(‖A‖, ‖B‖). 

(Hint: Show, by induction, .‖A+ B‖2n = ‖(A∗A)n + (B∗B)n‖.) 
22. If .T ∗T is an idempotent then so is .T T ∗. 
23. A commutative .C∗-algebra is isometrically embedded in some .C(K) (Exer-

cise 14.41(19)). 
24. Let .Ф : X → Y be a .∗-morphism between .C∗-algebras with . X commutative. 

Then .Ф(T ) is normal in . Y for any .T ∈ X , and . Ф is continuous with . ‖Ф‖ ⩽ 1
(Hint: .σ(Ф(T )) ⊆ σ(T )).
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15.2 Normal Operators in B(H) 

Let us see what special properties normal elements have for the most important 
.C∗-algebra, the space of operators .B(H) when H is a Hilbert space. 

Proposition 15.12 

For a normal operator .T ∈ B(H), 

(i) .‖T ∗x‖ = ‖T x‖, 
(ii) .ker T 2 = ker T = ker T ∗, 
(iii) .im T is dense in .X ⇔ T is 1–1, 
(iv) T is invertible in . B(H) ⇔ ∃c > 0,∀x ∈ H, c‖x‖ ⩽ ‖T x‖.

Proof (i) follows from 

. ‖T ∗x‖2 = 〈T ∗x, T ∗x〉 = 〈x, T T ∗x〉 = 〈x, T ∗T x〉 = 〈T x, T x〉 = ‖T x‖2.

(ii) .ker T = ker T ∗ is due to .T ∗x = 0 ⇔ ‖T ∗x‖ = ‖T x‖ = 0 ⇔ T x = 0, using  
(i). .ker T 2 = ker T , i.e., .T 2x = 0 ⇔ T x = 0 follows from 

. ‖T x‖2 = 〈x, T ∗T x〉 ⩽ ‖x‖‖T ∗T x‖ = ‖x‖‖T 2x‖.

(iii) Recall that .(im T )⊥ = ker T ∗ (Proposition 10.20). Hence, by (ii), T is 1–1 if, 
and only if .(im T )⊥ = ker T = 0 iff .im T = H . 

(iv) If T has a continuous inverse, then .‖x‖ = ‖T −1T x‖ ⩽ ‖T −1‖‖T x‖. 
Conversely, if the given inequality is true for all .x ∈ H , then T is 1–1 and the 
image of T is closed (Examples 8.16(3)). By (iii), .im T = H and T is bijective. Its 
inverse is continuous: 

. ∀x ∈ H, c‖T −1x‖ ⩽ ‖T T −1x‖ = ‖x‖.

⨅⨆

Proposition 15.13 

For a normal operator .T ∈ B(H), 

(i) .T v = λv ⇔ T ∗v = λ̄v, and eigenvectors of distinct eigenvalues of 
T are orthogonal, 

(ii) .σ(T ) contains no residual spectrum, .σr(T ) = ∅, 
(iii) isolated points of .σ(T ) are eigenvalues.
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Proof (i) is a direct application of .ker(T − λ) = ker(T ∗ − λ̄), as  .T − λ is normal. 
Note that the eigenvectors of T and . T ∗ are identical. For eigenvalues . λ and . μ with 
corresponding eigenvectors x and y, we have  

. λ〈y, x〉 = 〈y, T x〉 = 〈T ∗y, x〉 = 〈μ̄y, x〉 = μ〈y, x〉,

implying either .λ = μ or .〈y, x〉 = 0. 

(ii) Let .λ ∈ σ(T ); either .T − λ is not 1–1, in which case . λ is an eigenvalue (point 
spectrum); or it is 1–1, in which case its image is dense in H by the previous 
proposition, and . λ forms part of the continuous spectrum. 

(iii) If . {λ} is an isolated point of .σ(T ), form the projection 

. P := 1

2πi

∮

{λ}
(z− T )−1 dz

onto a space .Xλ /= 0 (Example 14.29(1)). Then .σ(T |Xλ) = {λ}, and since .T |Xλ is 
normal as well, .‖T |Xλ − λ‖ = ρ(T |Xλ −λ) = 0, i.e., .T x = λx for any .x ∈ Xλ. ⨅⨆
Examples 15.14 

1. ▶ A projection .P ∈ B(H) is normal . ⇔ self-adjoint . ⇔ orthogonal . ⇔ ‖P ‖ =
0 or 1. 
Proof : If  P is orthogonal, then .(x − Px) ⊥ Px (Theorem 10.12), so 

. 〈x, Px〉 = 〈(I − P)x + Px, Px〉 = ‖Px‖2 ∈ R

hence .〈x, Px〉 = 〈Px, x〉 = 〈x, P ∗x〉 for all .x ∈ H , and . P = P ∗
(Example 10.7(3)). 
If .‖P‖ = 1, let  .x ∈ (kerP)⊥, so that .x ⊥ (x − Px). Then . ‖Px‖2 = ‖x‖2 +
‖Px − x‖2, yet .‖Px‖ ⩽ ‖x‖, so  .x = Px ∈ imP and .kerP ⊥ imP . The other 
implications should be obvious. 

2. All spectral values of a normal operator are approximate eigenvalues (either 
eigenvalues or part of the continuous spectrum) and there are no proper gen-
eralized eigenvectors (Sect. 14.3). Note that a normal operator need not have any 
eigenvalues, e.g., .Tf (t) := tf (t) on .L2[0, 1]. 

Exercises 15.15 

1. ▶ Conversely to the proposition, an operator which satisfies .‖T ∗x‖ = ‖T x‖, for  
all x, is normal. 

2. When T is a normal operator, .ker T and .im T are both T - and .T ∗-invariant. 
3. Suppose .Tnx → T x for all .x ∈ H , where . Tn are normal operators in .B(H). 

Then T is normal if, and only if, . ∀x, .T ∗n x → T ∗x. (Note:  T is an operator by 
Corollary 11.37.) 

4. The eigenvalues of self-adjoint operators are real, and those of unitary operators 
satisfy .|λ| = 1.
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5. A normal operator on a separable Hilbert space can have at most a countable 
number of distinct eigenvalues. 

6. Suppose H has an orthonormal basis of eigenvectors of an operator .T ∈ B(H). 
Prove that T is normal. (Hint: show .T ∗en = λ̄nen.) 

7. If .T x = λx, .T ∗y = μy, then .μ = λ̄ or .〈y, x〉 = 0 (T not necessarily normal). 
8. An Ergodic Theorem: Consider the Cesáro sum 

. Tn := (I + T + · · · + T n−1)/n.

If .ρ(T ) < 1 then .Tn = (I − T n)(I − T )−1/n → 0 as .n →∞. Now  let  T be a 
normal operator with .ρ(T ) = 1. 

(a) For .T x = x (i.e., .x ∈ ker(T − I )), we get .Tnx = x; 
(b) For .x = y − Ty ∈ im(T − I ) we get .Tnx = (y − T ny)/n → 0; 
(c) For any .x ∈ H , .Tnx → x0 ∈ ker(T − I ), the closest fixed point of T . 

If T is not normal then . Tn may diverge, e.g., .T = (
1 a
0 1

)
gives .Tn =

(1 (n−1)a/2
0 1

)
. 

As an application of this theorem in discrete dynamical systems, let . Tf (x) :=
f ◦g(x)where g is a volume-preserving mapping .R

N → R
N , that is, its Jacobian 

determinant is everywhere 1; so .T nf = f ◦ gn and .‖T n‖ = 1; then the average 
of such ‘positions’ converges to . f0, where .f0 ◦ g(x) = f0(x). To take a concrete 
example, let g be a rotation of . R2, then . f0 is rotationally symmetric. 

15.3 The Numerical Range 

To help us further with analyzing the spectra of normal operators, we turn to the 
state space of .B(H) (Definition 14.34). An example of a state is the map . T I→
〈x, T x〉, when x is a fixed unit vector; it is linear on T , has norm 1, and maps I 
to 1. Furthermore, that value of . λ which makes . λx closest to T x, i.e., minimizes 
.‖T x − λx‖ can be obtained from Theorem 10.12: it satisfies .(T x − λx) ⊥ x, or  
equivalently, .λ = 〈x, T x〉. This number is sometimes called the mean value of T at 
x, or the  Rayleigh coefficient, and denoted by .〈T 〉x . We are thus led to the following 
definition: 

Definition 15.16 

The numerical range of an operator .T ∈ B(H) is the set 

. W(T ) := { 〈x, T x〉 : ‖x‖ = 1 }.

The extent of .W(T ) is called the numerical radius, .‖T ‖N := sup
‖x‖=1

|〈x, T x〉|.
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Examples 15.17 

1. .〈I 〉x = 1, .〈T + S〉x = 〈T 〉x + 〈S〉x , .〈λT 〉x = λ〈T 〉x , .〈T ∗〉x = 〈T 〉x . 
These are easily verified, e.g., 

. 〈x, T ∗x〉 = 〈T x, x〉 = 〈x, T x〉

2. ▶ For operators on a complex Hilbert space, 

(a) .W(I) = {1}, indeed for .z ∈ C, .W(T ) = {z} ⇔ T = z, 
(b) .W(T + z) = W(T )+ z (translations), and .W(λT ) = λW(T ), 
(c) .W(S + T ) ⊆ W(S)+W(T ), 
(d) .W(T ∗) = W(T )∗, 
(e) .W(U−1T U) = W(T ) when U is unitary. 

3. The above properties show that .‖ · ‖N is a norm; it is equivalent to the operator 
norm: 

. 12‖T ‖ ⩽ ‖T ‖N ⩽ ‖T ‖

Proof : For unit x, .|〈x, T x〉| ⩽ ‖T x‖ ⩽ ‖T ‖ by the Cauchy-Schwarz inequality, 
so .‖T ‖N ⩽ ‖T ‖. Conversely, note that in general, .|〈v, T v〉| ⩽ ‖T ‖N‖v‖2, so for  
any unit vectors . x, y, and using the parallelogram law, 

. |〈x, T y〉| = 1
4

∣∣〈x + y, T (x + y)〉 − 〈x − y, T (x − y)〉
− i〈x + iy, T (x + iy)〉 + i〈x − iy, T (x − iy)〉∣∣

⩽ 1
4‖T ‖N(‖x + y‖2 + ‖x − y‖2 + ‖x + iy‖2 + ‖x − iy‖2)

= ‖T ‖N(‖x‖2 + ‖y‖2) = 2‖T ‖N
So maximizing over . x, y, .‖T ‖ = sup‖x‖=1=‖y‖ |〈x, T y〉| ⩽ 2‖T ‖N . 

4. (a) .W(T ) includes the point and residual spectra of T . 
Proof : If .T x = λx for x a unit vector, then .〈T 〉x = 〈x, T x〉 = λ. 
.σr(T ) ⊆ σp(T ∗)∗ ⊆ W(T ∗)∗ = W(T ); more concretely, for .λ ∈ σr(T ), 
there is a unit vector .x ∈ im(T − λ)⊥, so  .〈x, (T − λ)x〉 = 0, i.e., . λ =
〈x, T x〉. 

(b) If .λ ∈ W(T ) has magnitude .‖T ‖, then it is an eigenvalue of T . 
Proof : Given .λ = 〈x, T x〉 with x unit and .|λ| = ‖T ‖, then 

. ‖T x − λx‖2 = ‖T x‖2 − 2Re λ̄〈x, T x〉 + |λ|2

= ‖T x‖2 − |λ|2

⩽ ‖T ‖2 − |λ|2 = 0

so .T x = λx.
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(c) If .λ ∈ W(T ) has magnitude .‖T ‖, then it is an approximate eigenvalue. 
Proof : Given  .〈xn, T xn〉 → λ, .|λ| = ‖T ‖, then the same argument as above 
shows that .(T − λ)xn → 0. 

5. In finite dimensions, .W(T ) is closed in . C. 
Proof : If  .λn → λ with .λn = 〈xn, T xn〉, . xn unit, then there is a convergent 
subsequence .xn → x, also unit, so taking limits, .λ = 〈x, T x〉. 

6. Although the quadratic form .x I→ 〈x, T x〉 is unique to T , i.e., . 〈x, T x〉 = 〈x, Sx〉
for all x if, and only if, .T = S (Example 10.7(3)), the numerical range . W(T )

does not identify T in general, e.g., .W(P) = [0, 1] for any non-zero orthogonal 
projection. 

7. For a fixed unit .x ∈ H , one can define two semi-inner-products on .B(H), 

(a) .〈S, T 〉 := 〈Sx, T x〉 = 〈S∗T 〉x (with associated semi-norm .|||T |||x := ‖T x‖), 
and 

(b) the covariance semi-inner-product 

. Cov(S, T ) := 〈S − 〈S〉x, T − 〈T 〉x〉 = 〈S∗T 〉x − 〈S〉x〈T 〉x,

with the associated semi-norm called the standard deviation 

. σ 2
T := Cov(T , T ) = ‖T x‖2 − |〈T 〉x |2.

The uncertainty principle states that 

. |Cov(S, T )| ⩽ σSσT

(essentially the Cauchy-Schwarz inequality—Exercise 10.10(16)). 
The correlation is the normalized inner product .Cov(S, T )/σSσT ; T and S 
are called independent when they are orthogonal, .Cov(S, T ) = 0, which is 
equivalent to .〈S, T 〉 = 〈S〉x〈T 〉x . 
These definitions are usually applied to .L2(A), where x corresponds to a function 
.p ∈ L2(A), with .|p(s)|2 interpreted as a probability distribution, and the 
operators are multiplication by functions .Tp := fp, that is, 

. the mean 〈f 〉p =
∫
A

f (s)|p(s)|2 ds, the rms |||f |||p =
√∫

A
|f |2|p|2,

the covariance Cov(f, g) = ∫
A
(f − 〈f 〉)(g − 〈g〉)|p|2.

We can now elucidate the connection between the spectrum of an operator, its 
numerical range, and its state space values, hinted at in the examples above.
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Proposition 15.18 (Hausdorff-Toeplitz) 

.W(T ) is a convex compact subset of . C, such that 

. σ(T ) ⊆ W(T ) ⊆ S(T ).

When T is normal, .W(T ) = S(T ) = Conv(σ (T )). 

Proof The inclusion .W(T ) ⊆ S(T ) is obvious: for any unit vector x, the functional 
.φ(T ) := 〈x, T x〉 is linear in T , maps I to 1, and .|φ(T )| = |〈x, T x〉| ⩽ ‖T ‖, so  
.‖φ‖ = 1 and .φ ∈ S. As .S(T ) is compact (Proposition 14.35), so must be its closed 
subset .W(T ). 

The main part of the proof is to show the other inclusion .σ(T ) ⊆ W(T ): for  
.‖x‖ = 1, .λ ∈ C, 

. α := d(λ,W(T )) ⩽ |〈x, T x〉 − λ| = |〈x, (T − λ)x〉| ⩽ ‖(T − λ)x‖,

so for any .x ∈ H , 

. α‖x‖ ⩽ ‖(T − λ)x‖.

When .λ /∈ W(T ), . α is strictly positive, and the inequality shows that . T − λ

is 1–1 with a closed image (Example 8.16(3)). Moreover, since . W(T ∗) = W(T )∗
and .d(λ̄,W(T )∗) = d(λ,W(T )), 

. α‖x‖ ⩽ ‖(T ∗ − λ̄)x‖.

This implies that .(T − λ)∗ is 1–1, hence .T − λ is surjective (Proposition 10.20). 
Thus .T − λ has an inverse, which is continuous (Proposition 8.15), and .λ /∈ σ(T ). 

W(T  )  is convex: Given λ, μ in W(T  )  (λ /= μ), let x, y be unit vectors such that
〈x, T x〉 =  λ, 〈y, Ty〉 =  μ. Any vector v := αeiφ1x + βeiφ2y (α, β, φ1, φ2 ∈ R) 
has norm 

. ‖v‖2 = α2 + 2αβ Re ei(φ2−φ1)〈x, y〉 + β2 = 1+ sin 2θ Re(eiφ〈x, y〉),

for α = cos θ , β = sin θ , φ := φ2 − φ1. Then 〈v, T v〉 works out to 

.〈αeiφ1x + βeiφ2y, αeiφ1T x + βeiφ2Ty〉
= α2λ+ αβ(eiφ〈x, T y〉 + e−iφ〈y, T x〉)+ β2μ

= λ cos2 θ + sin 2θ(w cosφ + z sinφ)+ μ sin2 θ

= λ+μ
2 + λ−μ

2 cos 2θ + (w cosφ + z sinφ) sin 2θ
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where w := 1 2 (〈x, Ty〉+〈y, T x〉), z := i 
2 (〈x, Ty〉−〈y, T x〉). But  wφ := w cos φ+ 

z sin φ traces out an ellipse as φ varies. By choosing the correct value of φ, wφ can 
be made to point in any direction in the complex plane, including that of λ−μ. With 
this choice, 〈v, T v〉/‖v‖2 gives a line segment as θ varies, a line that contains λ and 
μ (at θ = 0, π/2). Thus W(T  ), and its closure W(T  ), are convex sets. 

Since W(T  )  is convex, the closed convex hull of σ(T  )  lies in it. Proposition 15.8 
shows S(T ) = Conv(σ (T )) ⊆ W(T  )  when T is normal. ⨅⨆

Two follow-up results are given next: one is a sharp refinement due to T. H. Hilde-
brandt, and another allows us to identify the self-adjoint operators among the normal 
ones from their spectrum. 

Proposition 15.19 

The closed convex hull of the spectrum of an operator .T ∈ B(H) is equal 
to 

. Conv(σ (T )) =
⋂
S∈G

W(S−1T S).

Proof We need a lemma that will be reproved later for any .C∗-algebra. Recall the 
geometric series .(1−A)−1 =∑

n∈N An valid for .ρ(A) < 1. This result, applied for 
the operator .A∗A, has a variant: 

. R := 1+ A∗A+ (A2)∗(A2)+ (A3)∗(A3)+ · · ·

converges for .ρ(A) < 1 and is self-adjoint and invertible. Convergence is justified 
by the root test, .lim supn ‖(An)∗(An)‖1/n = limn→∞ ‖An‖2/n = ρ(A)2 < 1. For  
any unit vector x, 

. 〈x,Rx〉 = ‖x‖2 + ‖Ax‖2 + ‖A2x‖2 + · · · ⩾ 1,

so .σ(R) ⊆ W(R) ⊆ [1,∞[. We can deduce (i) R is invertible with . σ(1− R−1) =
1 − σ(R)−1 ⊆ [0, 1[; and (ii) the operators .R± 1

2 can be defined by the functional 
calculus, since there is a branch line from the origin that does not meet its spectrum. 
Note that, since the norm and spectral radius of a self-adjoint agree, 

.1− R−1 = R−
1
2 (R − 1)R−

1
2 = R−

1
2 A∗RAR−

1
2 ,

∴ ‖R 1
2 AR−

1
2 ‖2 = ‖1− R−1‖ = ρ(1− R−1) < 1
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Now we can start the main proof. For any invertible operator S, 

. σ(T ) = σ(S−1T S) ⊆ W(S−1T S)

and since the intersection of closed convex subsets remains so, we can conclude that 

. Conv(σ (T )) ⊆
⋂
S∈G

W(S−1T S).

Conversely, suppose .λ /∈ Conv(σ (T )). As in the proof of Proposition 15.8, there is 
a disk .Br(z) which covers the latter but separates it from . λ. By considering .

T−z
r

, the  
lemma above shows there is an operator .S = R−1/2 such that .‖S−1(T − z)S‖ < r , 
i.e., .W(S−1(T − z)S) ⊆ Br(0), so  .W(S−1T S) ⊆ Br(z). The conclusion is that 
.λ /∈ W(S−1T S) and hence is not in the intersection. 

⨅⨆

Proposition 15.20 

A normal operator T is self-adjoint .⇔ W(T ) is real .⇔ σ(T ) is real. 

Proof When .T ∈ B(H) is self-adjoint, .〈x, T x〉 = 〈T x, x〉 = 〈x, T x〉 for all . x ∈
H , which implies .W(T ) ⊆ R. Conversely, if .〈x, T x〉 ∈ R for all vectors x, then 

. 〈T x, x〉 = 〈x, T x〉 = 〈T ∗x, x〉

which can only hold when .T ∗ = T (Example 10.7(3)). 
The spectrum .σ(T ) is real iff .W(T ) is real since the latter is the convex closure 

of the former. ⨅⨆
Exercises 15.21 

1. Show that, for the shift operators on . 𝓁2, .W(L) = B1(0) = W(R). 
2. Let T be a square matrix .

(
A B
C D

)
with respect to an orthonormal basis, where 

.A,D are square sub-matrices. 

(a) .W(A) ∪W(D) ⊆ W(T ). 
(b) If .B = C = 0, then .W(T ) is the closed convex hull of .W(A) ∪W(D). 

3. Write a program that samples .W(T ) for .2 × 2 matrices (by plotting the points 
.x∗T x for a large number of unit complex 2-vectors . x), and test it on random 
matrices. Verify, and then prove, that .W(T ) for 

(a) .T := (
a 0
0 b

)
is the line joining a to b; 

(b) .T := (
a 1
0 a

)
is the closed disk .B 1

2
(a) (although its spectrum is . {a}); 

(c) ✶ .T := (
a b
c d

)
is generically an ellipse with its interior.
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4. Go through the proof of Hildebrandt’s proposition for .T = (
1 1
0 1

)
; verify that 

.
T−1

r
= (0 1/r

0 0

)
, .S = R− 1

2 = (
1 0
0 α

)
, .S−1T S = (

1 α
0 1

)
, .W(S−1T S) = Bα/2(1). 

5. Let T be a square matrix with positive coefficients. If . x = (a1, . . . , an) ∈ C
n

and .x+ := (|a1|, . . . , |an|), then 

. |〈x, T x〉| ⩽ 〈x+, T x+〉

so that the largest extent of .W(T ) occurs at a positive real number. 
6. An operator is called real when it is an operator acting on a real Banach space 

X, extended to act linearly on the complex space .X + iX. Show that a real 
operator on a Hilbert space has a numerical range that is symmetric about the 
real axis. 

7. The classical proofs of some of the statements above do not use the convexity 
properties of the numerical range. For a self-adjoint operator T , 

(a) .σ(T ) is real. Prove this by letting .λ := α + iβ with .β /= 0, and showing 

. ‖(T − λ)x‖2 = ‖(T − α)x‖2 + β2‖x‖2 ⩾ |β|2‖x‖2.

(b) .W(T ) is the smallest interval containing .σ(T ). Show this by taking . σ(T ) ⊆
[a, b], letting .c := (a + b)/2, and proving that for any unit vector x, 

. |〈x, T x〉 − c| = |〈x, (T − c)x〉| ⩽ b − c = c − a.

8. For any .T ∈ B(H1,H2), .W(T ∗T ) = [a, b], where .a ⩾ 0 and .b = ‖T ‖2. 
9. If .λ /∈ W(T ), then .‖(λ− T )−1‖ ⩽ 1/d(λ,W(T )). 

10. A coercive operator .T ∈ B(H) satisfies .|〈x, T x〉| ⩾ c > 0 for all unit .x ∈ H . 
Show that it has a continuous inverse. An elliptic operator is one which satisfies 
.〈x, T x〉 ⩾ c > 0, a special case of a coercive self-adjoint operator. 

11. Let .φ : B(H) → C be defined by .T I→ 〈x, T y〉 for some fixed unit .x, y ∈ H ; 
show that .φ ∈ S ⇔ x = y. 

12. (a) .Cov(I, T ) = 0, .Cov(S, T + λ) = Cov(S, T ), .σT+λ = σT ; 
(b) For every . λ and unit x, .σT ⩽ ‖(T − λ)x‖, so  .σT ⩽ 1

2 diam σ(T ) for T 
normal; 

(c) .σT = 0 ⇔ x is an eigenvector of T , with eigenvalue .〈T 〉x . 
(d) If .S, T are self-adjoint operators, let .A := 1

i
[S, T ] and . h := 1

2 〈A〉x =
Cov(S, T ), then 

.σSσT ⩾ h.
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15.4 The Spectral Theorem for Compact Normal Operators 

As seen before, multiplier operators such as diagonal matrices are normal. In fact, 
all normal operators are of this type in an appropriate basis; we show this first in 
the simple case of compact normal operators, in a theorem due to David Hilbert and 
Erhard Schmidt. 

Theorem 15.22 (Spectral Theorem for Compact Normal Operators) 

If T is a compact normal operator on a Hilbert space, then 

. T x =
∞∑

n=0
λn〈en, x〉en,

where . en are the eigenvectors of T with corresponding non-zero eigenval-
ues . λn. 

The statement is written supposing an infinite number of eigenvectors; otherwise 
the sum is finite. 

Proof Let T be a compact normal operator. We show that H has an orthonormal 
basis of eigenvectors. 

(a) The fact that T is compact implies that .σ(T )�{0} consists of a countable set 
of eigenvalues, and each generalized eigenspace .Xλ := ker(T − λ)kλ is finite-
dimensional (Theorem 14.19). 

(b) The fact that .T − λ is normal implies, firstly, that . Xλ = ker(T − λ)

consists of eigenvectors, and secondly, that . Xλ are orthogonal to each other 
(Propositions 15.12, 15.13). 

Note that the eigenvalues decrease to 0 (unless there are a finite number of them). 
This is part of Theorem 14.19, but its proof in the context of a Hilbert space is 
simpler: As T is compact, for any infinite set of orthonormal eigenvectors . en, . T en

(.= λnen) has a Cauchy subsequence, so 

. |λn|2 + |λm|2 = ‖λnen − λmem‖2 = ‖T en − T em‖2 → 0, as n,m →∞

implying both .λn → 0 and that each eigenspace .ker(T − λ) is finite-dimensional. 
Thus a countable number of orthonormal eigenvectors . en (a finite number from 

each . Xλ) account for all the non-zero eigenvalues, and form an orthonormal basis 
for the closed space .M := [[e1, e2, . . . ]] generated by them. .M⊥ is T -invariant since 
.x ∈ M⊥ implies that for all n, .〈en, x〉 = 0, and as .T ∗en = λ̄nen, 

.〈en, T x〉 = 〈T ∗en, x〉 = λn〈en, x〉 = 0.
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Thus T can be restricted to . M⊥, when it remains compact (Exercises 11.17(5), 
6.9(5)) and normal, yet without non-zero eigenvalues, because those are all 
accounted for by the eigenvectors in M . Its spectrum must therefore be 0, implying 
.T |M⊥ = 0, i.e., .M⊥ = ker T . Unless .M⊥ = 0, there is an orthonormal basis of 
eigenvectors . ei for it, and collectively with . en, form a basis for .H = M ⊕M⊥, 

. x =
∑
n

〈en, x〉en +
∑

i

〈ei, x〉ei .

Finally, since T is linear and continuous, and .T ei = 0, we find that 

. T x = T
(∑

n

〈en, x〉en

)
=

∑
n

〈en, x〉T en =
∑
n

〈en, x〉λnen.

⨅⨆

Corollary 15.23 

A normal complex matrix is diagonalizable. 

The Singular Value Decomposition 

There is a remarkable extension of diagonalization applicable to any compact 
operator between Hilbert spaces, including rectangular matrices. The analogue of 
the eigenvalues are called singular values, although they are not closely related, for 
several reasons. The bases for the domain and codomain are different, even if the 
spaces happen to be the same. Thus the singular values of a square matrices are 
usually not the same as its eigenvalues, except when the matrix is diagonalizable by 
an orthonormal basis. 

Theorem 15.24 (Singular Value Decomposition) 

If .T : X → Y is a compact operator between Hilbert spaces, then there 
are isometry operators .U : Y → Y and .V : X → X such that . T = UΣV ∗
with . Σ diagonal. 

The numbers . σn comprising the diagonal of . Σ are called the singular values of T ; 
and . un, . vn which make up  U and V are called its singular vectors (. un are also called 
the principal components of T ).
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Proof .T ∗T and .T T ∗ are compact self-adjoint operators, on X and Y respectively. 
They share the same non-zero eigenvalues (Example 14.11(5)), which are positive, 
since if .T ∗T v = λv, .‖v‖ = 1, then 

. λ = 〈v, T ∗T v〉 = ‖T v‖2 > 0.

By the spectral theorem there is an orthonormal set of eigenvectors .vn ∈ X of . T ∗T
with eigenvalues .λn = σ 2

n > 0. It turns out that the vectors .T vn ∈ Y are also 
orthogonal, 

. 〈T vm, T vn〉 = 〈vm, T ∗T vn〉 = σ 2
n δnm,

so .un := T vn/σn form an orthonormal set in Y . Note that, by the above, 

. T vn = σnun, T ∗un = σnvn.

In fact, . vn form an orthonormal basis for .(ker T ∗T )⊥ = (ker T )⊥ = im T ∗, and 
similarly . un is an orthonormal basis for .im T (Exercise 10.24(12) and Proposi-
tion 10.20). 

It follows that for any .x ∈ X and .y ∈ Y , 

. x = Px +
∑
n

〈vn, x〉vn, T x =
∑
n

σn〈vn, x〉un, T ∗y =
∑
n

σn〈un, y〉vn

where .P ∈ B(X) is the orthogonal projection onto .ker T . Indeed a stronger 
statement is true: 

. T =
∑
n

σnunv
∗
n

That is, the convergence is in norm, not just pointwise, the reason being 

. 
∥∥(T −

N∑
n=1

σnunv
∗
n)x

∥∥2 = ∥∥
∞∑

n=N+1
σn〈vn, x〉un

∥∥2

=
∞∑

n=N+1
σ 2

n |〈vn, x〉|2 ⩽ (max
n>N

σ 2
n )‖x‖2

and .maxn>N σn → 0 as .N →∞ since .σn → 0 as .n→∞. 
Let U be that operator representing a change of basis in .im T from . un to some 

arbitrary basis (leaving the perpendicular space .ker T ∗ invariant), V a similar change 
of basis in .im T ∗ from . vn. Then the ‘matrix’ of T with respect to . vn and . un is 
.Σ := U∗T V ; as .T vn := σnun and .T x := 0 for .x ∈ ker T , . Σ is diagonal. ⨅⨆
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Examples 15.25 

1. The spectral theorem is often stated as: If a compact normal operator has “matrix” 
T with respect to a given orthonormal basis . ̃en, then .T = UDU−1, where D is 
diagonal and U is the unitary change-of-basis operator that maps .(ẽn) to . (en), the  
orthonormal basis of eigenvectors of T . 

2. .‖T ‖ = σmax , the largest singular value. 
Proof : If  .x = ∑

n αnvn + Px (as in the proof) is a unit vector, then . T x =∑
n αnσnun, so  

. ‖T x‖2 =
∑
n

|σn|2|αn|2 ⩽ σ 2
max.

Moreover there is an index k such that .T vk = σmaxuk , so that .‖T vk‖ = σmax . 
3. The converse of the spectral theorem is true, i.e., defining the operator 

. T x :=
∞∑

n=0
λn〈en, x〉en

in terms of an orthonormal basis gives a normal operator, assuming . λn bounded, 
because .‖T x‖2 = ∑

n |λn|2|〈en, x〉|2 = ‖T ∗x‖2. If  .λn → 0, then T is compact 
because it is the limit of finite-rank operators (prove!). 

4. Given a compact normal operator in .B(H), and any function .f ∈ C(σ(T )), with 
.f (0) = 0, one can define the compact operator .f (T ) by the formula 

. f (T )x :=
∞∑

n=0
f (λn)〈en, x〉en.

For example, 

(a) .
√

T is compact when T is a self-adjoint compact operator with non-negative 
eigenvalues, 

(b) for any .λ /= 0, there is a projection .Pλ := fλ(T ), where . fλ is a continuous 
function which takes the value 1 around . λ and 0 around all other eigenvalues. 

5. The projections . Pn to the eigenspaces .Xλn of T commute and are orthogonal, so 
.En := P1+· · ·+Pn is a projection onto .Xλ1+· · ·+Xλn (Exercise 8.19(12)). The 
spectral decomposition can be rewritten as .T x = ∑

n λnδEnx, where . δEn :=
En−En−1 = Pn. This can be seen as a breakup of . T = 1

2πi

∫
σ(T )

z(z− T )−1 dz
into integrals on the disconnected components of the spectrum. 

6. If .T ∈ B(X) is compact normal, then the singular values of T are the absolute 
values of its non-zero eigenvalues.
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Proof : Clearly, if .T x = λx then .T ∗T x = |λ|2x. Conversely, if . T ∗T x = μx

(.μ /= 0) then 

. 0 = (T ∗T − μ)x =
∑
n

(|λn|2 − μ)〈en, x〉en.

The . en are the eigenvectors of T with non-zero eigenvalues . λn, so  . 〈en, x〉 /= 0
for some n, and .μ = |λn|2. 

Application: Feature Extraction 

According to SVD, any matrix T can be approximated by .
∑

i σiuiv
∗
i , which 

is a useful way of representing the information content of T . Typically, data 
from variables .x1, . . . , xm is organized in the form of an .m × n matrix T with 
the rows representing the different variables and the columns the normalized 
instances; the resulting matrix U associated with the largest singular values are 
linear combinations of the variables . xi that account for the most variability in the 
data. 

To take a visual example, consider the numerical digits as images of . 16 × 16
gray-level pixels; the .m = 256 variables are the pixel values and the n column 
vectors represent each ‘training set’ digit image, of which there would typically be 
well over a hundred. An SVD results in three matrices: .U,Σ,V . The orthogonal 
matrix U consists of .m × m rows and columns; . Σ is an .m × n rectangular matrix 
with the singular values on the main diagonal, and V is an .n× n orthogonal matrix. 
In the digits example, the training set . t i and the first few columns . ui are shown: 

ti = 

ui = 

Note that . u1 is a sort of “average” of all the data vectors, . u2 is the most significant 
correction, and so on—they are the features of the data. One can truncate the U , . Σ , 
and V matrices to sizes of .m× k, .k × k, and .k × n respectively. 

After the training is over, and the U matrix extracted, it can be used for many 
tasks. One is to compress the data effectively. Given a new data instance . x, one can 
find its ‘coordinates’ relative to the basis . ui by taking .αi := 〈ui , x〉, .i = 1, . . . , k. 
The N largest coefficients . αi can be retained, and the vector rebuilt as .

∑
|αi |>ϵ αiui . 

In the table below, one can see the convergence of an image as more terms are 
added. With as few as a hundred coefficients, instead of 256 pixel values, the image 
is practically indistinguishable from the original (to the right).
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Another use of SVD is to test whether a new data point is similar to the training 
set. In the following example, a number of training images representing the digit 3 
are placed as columns of a matrix, its SVD extracted, and the first few columns of 
U stored as . Uk . 

Then given a new test image, its coefficients . αi are computed, and the reconstructed 
image can be compared with the original as 

. r := x −
k∑

i=1
〈ui , x〉ui = (I − UkU

∗
k )x

If the ‘residual’ .‖r‖ is below a chosen threshold, then the test image is classified as 
similar to the test data. For example, the residual of the image with .k = 10 is 
3.45, while the residual of is 1.59; the former might be rejected as a ‘three’, 
while the latter is accepted. 

Exercises 15.26 

1. Find the singular values and vectors of .

(
2 3
0 2

)
and .

(
1 1 0
0 1 1

)
. 

2. If S and T are commuting self-adjoint compact operators, then they are simulta-
neously diagonalizable. (Hint: consider .S + iT .)
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3. (a) Let T be an .n × n self-adjoint matrix, with eigenvalues . λ1 ⩽ · · · ⩽ λn

(including repeated eigenvalues), and corresponding orthonormal eigenvec-
tors .v1, . . . , vn. If  M is a closed linear subspace, with orthogonal projection 
P , then the restriction of PT  P  to M is also self-adjoint with eigenvalues, say, 
.μ1 ⩽ · · · ⩽ μm, and corresponding orthonormal eigenvectors .u1, . . . ,um. 
Taking a unit vector .x ∈ [[u1, . . . ,ui]] ∩ [[vi , . . . , vn]] /= 0, we get 

. μ1 ⩽ 〈x, T x〉 ⩽ μi and λi ⩽ 〈x, T x〉 ⩽ λn.

It follows that .λi ⩽ μi . Similarly, take . x ∈ [[ui , . . . ,um]] ∩
[[v1, . . . , vi+n−m]] /= 0 to deduce .μi ⩽ λi+n−m. Combining the results 
we get 

. λi ⩽ μi ⩽ λn−m+i .

(b) Interlacing theorem: If the  kth row and column of a self-adjoint matrix are 
removed, the new eigenvalues . μi are interlaced with the old ones . λi : 

. λ1 ⩽ μ1 ⩽ λ2 ⩽ · · · ⩽ λn−1 ⩽ μn−1 ⩽ λn

4. Picard’s criterion: Suppose .T ∈ B(X, Y ) is a compact operator on Hilbert spaces 
.X, Y , having singular values . σn and singular vectors .vn, un. In solving .T x = y, 
we find for all n, 

. 〈un, y〉 = σn〈vn, x〉.

A necessary condition is .〈un, y〉/σn ∈ 𝓁2 as well as .y ∈ (ker T ∗)⊥. Thus the 
coefficients of y must ‘diminish faster’ than . σn. 

5. Truncated Singular Value Decomposition (TSVD): The series solution 

. x =
∑
n

〈un, y〉
σn

vn

of .T ∗T x = T ∗y need not converge in general. Even if it does, any small errors 
in .〈un, y〉 are magnified as .σn → 0. In practice, the series is truncated at some 
stage to avoid this. The cutoff point is best taken when the error in y becomes 
appreciable compared to . σn. Use the Tikhonov regularization method (Sect. 10.4) 
to derive another way of doing this (for the right choice of . α), 

. x =
∑
n

σ 2
n

σ 2
n + α

〈un, y〉
σn

vn.

But any other weighting .
∑

n wn
〈un,y〉

σn
vn where . wn vanishes sufficiently rapidly 

as .σn → 0, is just as valid.
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6. It is instructive to compare with the case of solving the equation . (T − λ)x = y

where T is compact in .B(H) and .0 /= λ ∈ σ(T ) (the case .λ /∈ σ(T ) is trivial). It 
has a solution .⇔ y ∈ ker(T − λ)⊥. That solution of minimum norm is then 

. x =
∑
n

〈en, y〉
λn − λ

en − y0/λ,

where the sum is taken over .λn /= λ, 0, and . y0 is the projection of y to .ker T . 
There is no issue of convergence of the series as .|λn − λ| ⩾ c > 0. 

7. ✶ If T is a compact normal operator, then the iteration . vn+1 := T vn/‖T vn‖
(starting from a generic vector . v0) converges to an eigenvector of the largest 
eigenvalue, if this is unique and strictly positive. What happens otherwise? 

15.5 Ideals of Compact Operators 

Another way of looking at the spectral theorem (or even the singular value 
decomposition), is the following: 

Proposition 15.27 

A compact operator on a separable Hilbert space can be approximated 
in norm by a square matrix. 

A compact normal operator on a separable complex Hilbert space can be 
approximated in norm by a diagonalizable matrix. 

Proof An operator .T ∈ B(H) takes the matrix form, in terms of a countable 
orthonormal basis . ei of H , 

. 

⎛
⎜⎜⎝

PnT Pn PnT (I − Pn)

(I − Pn)T Pn (I − Pn)T (I − Pn)

⎞
⎟⎟⎠

where .Pn is the self-adjoint/orthogonal projection onto .[[e1, . . . , en]] (Exam-
ple 15.14(1)). Note that for any vector .x ∈ H , .Pnx → x as . n → ∞
(Theorem 10.31). The claim is that when T is compact, the finite square matrices 
.PnT Pn converge to T . This is the same as claiming that the other three sub-matrices 
vanish as .n→∞.
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.(I − Pn)T → 0: Suppose, for contradiction, that there is a subsequence of . Pn and 
unit vectors . xn such that .‖(I − Pn)T xn‖ ⩾ c > 0. Since T is compact, there is a 
convergent subsequence .T xn → x, hence 

. (I − Pn)T xn = (I − Pn)x + (I − Pn)(T xn − x) → 0

leads to an impossibility. 
.(I − Pn)T Pn → 0 and .(I − Pn)T (I − Pn) → 0 now follow from . ‖Pn‖ = 1 =

‖I − Pn‖. Finally, .T (I − Pn) → 0 is also true and follows from .(I − Pn)T
∗ → 0, 

since . T ∗ is also a compact operator (Proposition 11.33). 
For a compact normal operator, the orthonormal basis . ei can be chosen to consist 

of the eigenvectors of T by the Spectral Theorem, in which case .PnT Pn is a diagonal 
matrix 

. PnT Pn =
n∑

i=1
λieie

∗
i .

⨅⨆

Proposition 15.28 

The compact operators of finite rank acting on a Hilbert space H form 
a simple  .∗-ideal .KF (H), which is contained in every non-zero ideal of 
.B(H). 

Its closure in .B(H) is the .∗-ideal of compact operators .K(H). 

Proof The facts that the sum of compact operators, the product of a compact 
operator with any other operator, and the adjoint of a compact operator, are compact 
have already been proved earlier (Propositions 11.9 and 11.33), so .K(H) is a .∗-ideal 
in .B(H). 

Similarly, it is not difficult to show that the sum of two finite-rank operators, and 
the product (left or right) of a finite-rank operator with any other operator, are again 
finite-rank. The details are left to the reader. 

Let . I be an ideal in .B(H) which contains a non-zero operator S. There exist 
non-zero vectors .v,w such that .Sv = w. For any vectors . x, y, define the operator 
.Exy := xy∗, so that 

. ExwSEvy = x(w∗Sv)y∗ = ‖w‖2Exy

and .Exy ∈ I. Hence, any finite-rank operator, which is a sum of such operators, 
.T =∑N

n=1 unv
∗
n, is also in . I, that  is, we have proved .KF (H) ⊆ I.
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In particular .KF (H) contains no non-zero ideals; we say it is simple. That the 
closure of .KF (H) is .K(H) is essentially the content of the previous proposition: 
More precisely, recall that the image of a compact operator is separable, so 
.M := im T has a countable basis . (ei). Let  . Pn be the orthogonal projection onto 
.[[e1, . . . , en]]. Then, as in the proof of the previous proposition, the finite-rank 
operators .PnT converge to T . ⨅⨆
Examples 15.29 

1. The ideal of compact operators, being the closure .K(H) = KF (H), is contained 
in every closed ideal of .B(H). 

2. The algebra of square matrices .B(Cn) = KF (Cn) = K(Cn) is simple. 
3. ▶ The above argument cannot be extended to show, more generally, that compact 

operators on a Banach space can be approximated by finite-rank operators. 
Spaces for which this is true are said to have the “approximation property”; even 
separable spaces may fail to have this property [41]. 

Hilbert-Schmidt Operators 

Definition 15.30 

The trace of an operator T on a Hilbert space with an orthonormal basis en, 
is, when finite, 

. tr(T ) :=
∑
n∈N

〈en, T en〉.

A Hilbert-Schmidt operator is one such that tr(T ∗T )  = ∑
n∈N ‖T en‖2 is 

finite. 

As defined, the trace of an operator can depend on the choice of orthonormal basis. 
But for a Hilbert-Schmidt operator, tr(T ∗T )  is well-defined as the proof of the next 
proposition shows: 

Proposition 15.31 

If the right-hand traces exist, 

. tr(S + T ) = tr(S)+ tr(T ), tr(λT ) = λ tr(T ), tr(T ∗) = tr(T ).

If S, T are Hilbert-Schmidt, then tr(ST ) = tr(T S).
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Proof The identities tr(S + T )  = tr(S)+ tr(T ) and tr(λT ) = λ tr(T ) follow easily 
from the linearity of the inner product and summation, while 

. tr(T ∗) =
∑
n∈N

〈en, T
∗en〉 =

∑
n∈N

〈T ∗en, en〉 =
∑
n∈N

〈en, T en〉 = tr(T ).

Let en and ẽm be orthonormal bases for the Hilbert space H ; then T en =∑
m 〈ẽm, T  en〉ẽm and ST en =∑

m 〈ẽm, T  en〉Sẽm, so  

. tr(ST ) =
∑
n

〈en, ST en〉 =
∑
n,m

〈ẽm, T en〉〈en, Sẽm〉 =
∑
m

〈ẽm, T Sẽm〉, (15.1) 

exchanging the order of summation. This would be justified if the convergence is 
absolute, which is the case when S∗ and T are Hilbert-Schmidt, 

. 
∑
n,m

|〈ẽm, T en〉〈en, Sẽm〉| ⩽
√∑

n,m

|〈ẽm, T en〉|2
√∑

n,m

|〈en, Sẽm〉|2

=
√∑

n

‖T en‖2
∑
n

‖S∗en‖2, (15.2) 

applying the Cauchy-Schwarz inequality and Parseval’s identity. So, putting S = T ∗ 
and ẽn = en in (15.1) shows that tr(T ∗T )  = tr(T T ∗), when T is Hilbert-Schmidt, 
i.e., T ∗ is also Hilbert-Schmidt. This, in turn, implies that when S and T are Hilbert-
Schmidt, (15.2) and (15.1) are satisfied, so tr(T S) = tr(ST ) (in particular tr(T ∗T )) 
is independent of the orthonormal basis. ⨅⨆

Theorem 15.32 

The Hilbert-Schmidt operators of B(H) form a Hilbert space HS , with  
inner product 

. 〈S, T 〉F := tr(S∗T ) =
∑
n∈N

〈Sen, T en〉,

which is a ∗-ideal of compact operators, and 

. ‖T ‖ ⩽ ‖T ‖F , ‖ST ‖F ⩽ ‖S‖‖T ‖F .

Proof Let en be an orthonormal basis for H . First note that ‖T ‖F :=
√〈T ,  T 〉F =√

tr(T ∗T )  is finite for Hilbert-Schmidt operators.
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(i) We have remarked in the preceding proposition that if T ∈ HS then T ∗ ∈ HS , 
and 

. ‖T ∗‖F =
√
tr(T T ∗) = √

tr(T ∗T ) = ‖T ‖F .

The product 〈S, T 〉 :=  tr(S∗T )  is finite and independent of the choice of 
orthonormal basis when S, T ∈ HS , by (15.1) and (15.2). Moreover, both of the 
following traces are finite, 

. tr((S + T )∗(S + T )) = tr(S∗S)+ tr(S∗T )+ tr(T ∗S)+ tr(T ∗T )

tr((λT )∗(λT )) = |λ|2 tr(T ∗T ),

so that HS is a vector space. 
Linearity and ‘symmetry’ of the product follow from 

. 〈S, T1 + T2〉 = tr(S∗T1 + S∗T2) = tr(S∗T1)+ tr(S∗T2) = 〈S, T1〉 + 〈S, T2〉,
〈S, λT 〉 = tr(S∗λT ) = λ tr(S∗T ) = λ〈S, T 〉,
〈T , S〉 = tr(T ∗S) = tr(S∗T )∗ = tr(S∗T ) = 〈S, T 〉.

That ‖T ‖ ⩽ ‖T ‖F (and hence ‖T ‖F = 0 ⇒ T = 0) follows from 

.‖T x‖ = ‖
∑
n

〈en, x〉T en‖ ⩽
∑
n

|〈en, x〉|‖T en‖

⩽
√∑

n

|〈en, x〉|2
√∑

n

‖T en‖2 = ‖x‖‖T ‖F .

〈·, ·〉 is therefore a legitimate inner product onHS . 
Finally, HS is an ideal of B(H), since for any S ∈ B(H) and T ∈ HS , 

. ‖ST ‖2F =
∑
n∈N

‖ST en‖2 ⩽
∑
n∈N

‖S‖2‖T en‖2 = ‖S‖2‖T ‖2F ,

and ‖T S‖F = ‖(T S)∗‖F ⩽ ‖S∗‖‖T ∗‖F = ‖S‖‖T ‖F .

(ii) Hilbert-Schmidt operators are compact: Given  T ∈ HS , define the finite-rank 

operator TN by TNen :=
{

T en, if n ⩽ N 
0, if n > N  

. 

.‖T − TN‖2 ⩽ ‖T − TN‖2F =
∑
n∈N

‖(T − TN)en‖2

=
∞∑

n=N+1
‖T en‖2 → 0 as N →∞.
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T is thus the limit of finite-rank operators, making it compact (Proposition 11.9). 

(iii) The space HS is complete in the HS-norm: Let  (Tn)n∈N be an HS-Cauchy 
sequence 

. ‖Tn − Tm‖2F =
∑
i∈N
‖(Tn − Tm)ei‖2 → 0 as n,m →∞,

then it is a Cauchy sequence in the operator norm, and thus Tn → T in B(H). 
But writing the Cauchy condition in a slightly different way, the sequences xn := 
(‖(Tn − T )ei‖)i∈N form a Cauchy sequence in 𝓁2, 

. ‖xn − xm‖2𝓁2 =
∑
i∈N

∣∣‖(Tn − T )ei‖ − ‖(Tm − T )ei‖
∣∣2

⩽
∑
i∈N
‖(Tn − Tm)ei‖2 → 0,

as n, m →∞; so  xn converges to some sequence (ai)i∈N ∈ 𝓁2. Combining Tnei → 
T ei with ‖Tnei − T ei‖ →  ai for all i, each ai must be 0, and 

. ‖Tn − T ‖2F =
∑

i

‖(Tn − T )ei‖2 = ‖xn‖2𝓁2 → 0 as n→∞,

so Tn → T in HS , and T ∈ HS since ‖T ‖F ⩽ ‖T − Tn‖F + ‖Tn‖F < ∞. Note  
that the space HS is not necessarily complete in the operator norm. ⨅⨆
Having established a theory of Hilbert-Schmidt operators, we populate it with some 
important examples on L2(R): 

Theorem 15.33 

If k ∈ L2(R2), then the operator on L2(R) 

. Tf (s) :=
∫

k(s, t)f (t) dt,

is Hilbert-Schmidt with ‖T ‖F = ‖k‖L2 . 

Proof Let en(t) be any orthonormal basis for L2(R). Then any function of t in 
L2(R) can be written as a sum of these basis functions. Analogously any function 
of two variables t, s in L2(R2) can be written as a sum (convergent in L2(R2)) 

.k(s, t) =
∑
m,n

αn,men(t)em(s),
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(by first approximating k by simple functions
∑

i ai1Ei (t, s) =
∑

m,n am,n1Em(t) 
1E'n (s).) Write en ⊗ em for the basis functions (t, s) I→ en(t)em(s). They are  
orthonormal, since 

. 〈en ⊗ em, en' ⊗ em' 〉 =
∫∫

en(t)em(s)en'(t)em'(s) dt ds

= 〈en' , en〉〈em' , em〉 = δn'nδm'm.

By Parseval’s identity ‖k‖2 
L2 =

∫∫ |k(t, s)|2 dt ds =∑
m,n |αn,m|2. Clearly, 

. 〈em, T en〉 =
∫∫

em(t)k(t, s)en(s) dt ds = 〈en ⊗ em, k〉L2(R2) = αn,m,

so 

. ‖T ‖2F =
∑
n

‖T en‖2 =
∑
n,m

|〈em, T en〉|2 =
∑
n,m

|αn,m|2 = ‖k‖2L2 .

⨅⨆
Examples 15.34 

1. ▶ For square matrices T = [Ti,j ], S = [Si,j ], 

. tr T =∑
i Tii , ‖T ‖F =

√∑
i,j |Ti,j |2, 〈S, T 〉F =

∑
ij S̄i,j Ti,j .

2. ▶More generally, for any Hilbert-Schmidt operator on any Hilbert space, 

. ‖T ‖2F =
∑
i∈N
‖T ei‖2 =

∑
i,j

|〈ej , T ei〉|2 =
∑
i,j

σ 2
i |〈ej , ẽi〉|2 =

∑
i∈N

σ 2
i ,

where σi are the singular values of T ; Parseval’s identity is used on orthonormal 
bases such that T ei = σi ẽi . 
It is evident that ‖T ‖F ⩾ maxn |σn| = ‖T ‖. It also follows that 

. |〈S, T 〉F | ⩽ ‖σ S‖‖σ T ‖.

The fact that T = ∑
n λnene

∗
n for a Hilbert-Schmidt normal operator is one of 

Hilbert’s major theorems. 
3. Find the eigenvalues and eigenfunctions of the integral operator on L2[0, 1] with 

kernel k(s, t) :=
{

t (1 − s), 0 ⩽ t ⩽ s ⩽ 1 

s(1 − t),  0 ⩽ s ⩽ t ⩽ 1 
.
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Solution: The operator is Hilbert-Schmidt since |k(s, t)| ⩽ 1 on the bounded 
domain [0, 1]. The eigenvalue equation is 

. 

∫ s

0
t (1− s)f (t) dt +

∫ 1

s

s(1− t)f (t) dt = λf (s).

The eigenfunctions can be assumed to be differentiable, essentially because they 
are integrals. Differentiating gives 

. s(1− s)f (s)−
∫ s

0
tf (t) dt − s(1− s)f (s)+

∫ 1

s

(1− t)f (t) dy = λf '(s),

and again, 

. − sf (s)− (1− s)f (s) = λf ''(s),

f ''(s)+ 1

λ
f (s) = 0, f (0) = 0 = f (1).

The solutions of this differential equation are the eigenfunctions fn(t) = 
sin(nπt) with eigenvalues λn = 1/(n2π2). 

4. A traceless operator in B(Cn ) has a matrix with a zero diagonal, with respect to 
some orthonormal basis. 
Proof : Let  A be an n × n matrix with tr A = 0. The proof is by induction on n. 
Since the numerical range of A is convex, 

. 0 = 1

n
trA = 1

n

n∑
i=1

λi ∈ W(A)

where λi are the eigenvalues of A. So there is a unit vector u such that 〈u, Au〉 =  
0. The matrix restricted to u⊥, Ã := A|u⊥ , is still traceless 

. 0 = trA = tr Ã+ 〈u, Au〉 = tr Ã.

Therefore, by induction, there is an orthonormal basis e1, . . . ,  en−1 of u⊥ in 
which Ã has zero diagonal, i.e., 〈ei , Aei〉 = 0. This basis, together with u is the 
required basis for the whole n-dimensional space. 

5. ▶ There is a correspondence between various ideals of compact operators and 
the sequence spaces of their singular values (σn): 

.

Finite-rank operators KF (H) (σn) ∈ c00

Trace-class operators Tr(H) (σn) ∈ 𝓁1

Hilbert-Schmidt operators HS(H) (σn) ∈ 𝓁2

Compact operators K(H) (σn) ∈ c0

Bounded operators B(H) (σn) ∈ 𝓁∞
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where the set of trace-class operators has been added to complete the picture 
(Exercise 15.51(11)). More generally, the Schatten-von Neumann class of oper-
ators Cp corresponds to (σn)n∈N ∈ 𝓁p. The analogy goes deeper than this: 
K(H)∗ ∼= Tr(H) and Tr(H)∗ ∼= B(H) (via the functionals T I→ tr(ST )). 

Exercises 15.35 

1. (a) 〈S∗, T  ∗〉F = 〈T ,  S〉F , 
(b) 〈RT ∗, S〉F = 〈R, ST 〉F = 〈S∗R, T 〉F . 

2. The closest number to an n × n matrix T (in the HS-norm) is tr(T )/n. (Hint:  
λ− T ⊥ I .) 

3. The map x I→ Mx , where Mxy := xy, embeds 𝓁2 intoHS(𝓁2) (isometrically). 
More generally, if xn ∈ H satisfy

∑
n ‖xn‖2 < ∞, then T := ∑

n xne
∗
n is 

Hilbert-Schmidt with ‖T ‖2 F =
∑

n ‖xn‖2. 
4. Let A be a normal matrix and P any orthogonal (self-adjoint) projection of rank 

r . Using the eigenbasis of A, 〈P,  AP 〉 = 〈P,  A〉 = ∑
i αiλi where λi are the 

eigenvalues of A, αi = Pii , and
∑

i αi = 〈I, P 〉 =  tr(P ) = r . It follows that 
the largest value of 〈P,  AP 〉, as  P is varied, is the largest sum of r eigenvalues 
of A. 

5. The Volterra operator on L2[0, 1], Vf (t) := ∫ t 
0 f is Hilbert-Schmidt with 

singular values (n+ 1 2 )π , n ∈ N, and ‖V ‖F = 1√
2 
, ‖V ‖ =  2 

π . 

6. If k(s, t) = k(s − t)  for a real function k(t) ∈ L2[0, 1] (Example 9.28(3)), then 
Tf := k ∗ f is Hilbert-Schmidt, with eigenvalues k̂(n). 

7. Find the eigenfunctions and eigenvalues of theHS-compact self-adjoint opera-
tors Tf (s) := ∫ 1 

0 k(s, t)f (t) dt (on L2[0, 1]), where 
(a) k(s, t) := s + t , 

(b) k(s, t) :=
{
1, 1 − s ⩽ t ⩽ 1 

0, 0 ⩽ t ⩽ 1 − s 
, 

(c) k(s, t) := min(s, t); deduce that
∑

n∈N 
1 

(2n+1)4 = π4 

96 and
∑∞ 

n=1 1 n4 
= π4 

90 . 

8. In the original Fredholm theory, it was proved under certain hypotheses that the 
equation 

. f (t)+
∫ b

a

k(t, s)f (s) ds = g(t)

either has a unique solution, or else the same equation with g = 0 admits a 
finite number of linearly independent solutions. Show this for f, g ∈ L2(R), 
k ∈ L2(R2), using Proposition 14.18.
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15.6 Representation Theorems 

We return to a general unital .C∗-algebra . X and recover some of the previous 
propositions that were proved in the special case of .B(H) to the general setting. 
We will see that the functional calculus can be widened considerably for normal 
elements, allowing us to define square roots and absolute values of certain operators. 
The final aim and fitting end to the chapter is to prove that a . C∗ algebra is embedded 
in .B(H) for some Hilbert space H . 

Proposition 15.36 

For any .φ ∈ S(X ), .T ∈ X , 

. φT ∗ = φT , T̂ ∗ = T̂ ∗.

Proof If A is self-adjoint and .t ∈ R, then 

. ‖A+ it‖2 = ‖(A+ it)∗(A+ it)‖
= ‖A2 + t2‖ ⩽ ‖A‖2 + t2

(As a matter of fact, equality holds as the accompanying diagram shows.) 

ρ(A) 

σ(A + it) 

it

0 

Writing .φA = a + ib, we find 

. |b + t | ⩽ |a + ib + it | = |φ(A+ it)| ⩽ ‖A+ it‖ ⩽
√
‖A‖2 + t2

∴ ∀t ∈ R, (2t + b)b ⩽ ‖A‖2

so .b = 0 and .φA ∈ R. More generally, for any .T = A + iB ∈ X , with A, B 
self-adjoint, 

. φT ∗ = φ(A− iB) = φA− iφB = φA+ iφB = φT .

In particular, every .ψ ∈ Δ is automatically a .∗-morphism, and 

.T̂ ∗(ψ) = ψT ∗ = ψT = T̂ (ψ)∗.
⨅⨆
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Note that, for A self-adjoint, .Δ(A) ⊆ σ(A) ⊆ S(A) ⊂ R. The proposition above 
opens the path to dramatic results: not only are the commutative unital .C∗-algebras 
completely characterised as .C(K) where K is a compact space, but even for non-
commutative algebras, it allows an extension of the functional calculus to normal 
elements. 

Corollary 15.37 (Gelfand-Naimark Theorem) 

Every commutative unital .C∗-algebra is isometrically *-isomorphic to 
.C(Δ) via the Gelfand map. 

Proof Recall that the Gelfand map . G is a Banach algebra morphism (Proposi-
tion 14.38). In a commutative .C∗-algebra, every element T is normal, so . ‖T̂ ‖C =
ρ(T ) = ‖T ‖ (Theorem 14.39); furthermore .T̂ ∗ = T̂ ∗, and the Gelfand transform is 
an isometric .∗-embedding. Moreover, 

. ‖T 2‖ = ρ(T 2) = ρ(T )2 = ‖T ‖2,

so by Proposition 14.40 and Exercise 14.41(19), . X is isomorphic to .C(Δ). ⨅⨆

Theorem 15.38 (The Functional Calculus for Normal Elements) 

When T is normal, .T := C[T , T ∗] is a commutative closed .∗-subalgebra 
of . X , isometrically .∗-isomorphic to .C(σ(T )). 

The identity .f̂ (T ) = f ◦ T̂ defines a normal element .f (T ) whenever 
.f ∈ C(σ(T )); then .σ(f (T )) = f [σ(T )]. 

Proof . T is a commutative closed .∗-subalgebra of . X : Since T is normal, 
.T n(T ∗)m = (T ∗)mT n (by induction), so it should be obvious that (i) any polynomial 
in T and . T ∗ can be written uniquely in the form .

∑
n,m an,mT n(T ∗)m, (ii) the 

product (and addition) of two polynomials in T and . T ∗ is another polynomial, (iii) 
this product commutes, and (iv) the involute of a polynomial .p(T , T ∗) remains in 
. T , 

. p(T , T ∗)∗ =
(∑

n,m

an,mT n(T ∗)m
)∗ =

∑
n,m

an,m T m(T ∗)n ∈ C[T , T ∗].

.C[T , T ∗] is thus a commutative .∗-subalgebra. The closure of such a subalgebra in 

. X remains a commutative .∗-subalgebra (Prove!). Note that . T = [[T nT ∗m]](n,m)∈N2

is obviously separable.
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The spectrum of .S ∈ Y , with respect to a closed .∗-subalgebra .Y ⊆ X , is .σ(S): 
Clearly, if S (or .S − λ) is invertible in . Y , it remains so in . X . Conversely, if S is 
invertible in . X , then so are . S∗, .S∗S and . SS∗. But  .S∗S is self-adjoint, with a real 
spectrum (in . Y and . X ), hence .S∗S + i/n is invertible in . Y . As  . Y is closed and 
.(S∗S + i/n)−1 → (S∗S)−1 in . X , as  .n → ∞, we can deduce .(S∗S)−1 ∈ Y . 
Similarly .(SS∗)−1 ∈ Y , implying S is invertible in . Y (Exercise 15.3(4)). 

.T̂ : ΔT → σ(T ) is a homeomorphism: (.ΔT is the character space of . T .) . ̂T is 1–1 
since suppose .T̂ (ψ1) = T̂ (ψ2) for some .ψ1, ψ2 ∈ ΔT , i.e., .ψ1T = ψ2T . Then 

. ψ1T
∗ = ψ1T = ψ2T = ψ2T

∗

∴ ψ1p(T , T ∗) = ψ1

( ∑
n,m

an,mT n(T m)∗
)

=
∑
n,m

an,m(ψ2T )n(ψ2T )m = ψ2p(T , T ∗)

for any polynomial p; finally, by continuity of . ψ1 and . ψ2, .ψ1S = ψ2S for all .S ∈ T , 
proving .ψ1 = ψ2. That . ̂T is onto was proved in Theorem 14.39. It is continuous 
because 

. ψn ⇀ ψ ⇒ T̂ (ψn) = ψnT → ψT = T̂ (ψ).

So . ̂T is a homeomorphism since . ΔT is a compact metric space (Proposition 6.17 and 
Example 14.36(8)). Hence any .z ∈ σ(T ) corresponds uniquely to some . ψ ∈ ΔT

via .z = T̂ (ψ) = ψT . 

The Gelfand transform .G : T → C(ΔT ) ∼= C(σ(T )) is an isometric 
.∗-isomorphism: Since . T is a commutative .C∗-algebra, it is *-isometric to .C(ΔT ). 

The continuous function calculus: The correspondence between elements in . T and 
functions in .C(ΔT ) allows us to extend the analytic function calculus established 
earlier. For any continuous function .f ∈ C(σ(T )), the composition . f ◦T̂ : ΔT → C

corresponds to some (normal) element in . T which is denoted by .f (T ). By this  
definition, .f̂ (T ) = f ◦ T̂ . The following identities are true because they mirror the 
same properties in .C(ΔT ), 

. (f + g)(T ) = f (T )+ g(T ), (λf )(T ) = λf (T ),

(fg)(T ) = f (T )g(T ), f̄ (T ) = f (T )∗.

Finally .‖f (T )‖ = ‖f ‖C is due to . G being an isometry and . g ◦ f (T ) = g(f (T ))

follows after 

.σ(f (T )) = im f̂ (T ) = im f ◦ T̂ = f im T̂ = f (σ(T )).

⨅⨆
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Examples 15.39 

1. To take a simple example, consider a .2 × 2 diagonalizable matrix T with 
distinct eigenvalues . λi and corresponding orthonormal eigenvectors . vi , .i = 1, 2. 
Its character space .ΔT consists of the two morphisms .ψiS := 〈vi, Svi〉 for 
.S ∈ T . The Gelfand transform takes T to .(λ1, λ2); any other matrix .f (T ) is 
simultaneously ‘diagonalized’ to .(f (λ1), f (λ2)). 

2. ▶ For any elements .S1, S2 ∈ T , 

. σ(S1 + S2) ⊆ σ(S1)+ σ(S2), σ (S1S2) ⊆ σ(S1)σ (S2).

Proof : As  . T is commutative, Theorem 14.39 shows that .σ(S) = ΔT S for any 
.S ∈ T . Hence the statements follow from Exercise 14.41(10)). 

3. If S, T are commuting normal elements, and .f ∈ C(σ(S)), .g ∈ C(σ(T )), then 
.f (S)g(T ) = g(T )f (S). 
Proof : For polynomials p and q in z and . z∗, . p(S, S∗)q(T , T ∗) =
q(T , T ∗)p(S, S∗) since they are sums of terms of the form 

. aSnS∗mT iT ∗j = aT iT j∗SnS∗m

by an application of Fuglede’s theorem. Taking the limit of polynomials converg-
ing to f , g (by the Stone-Weierstrass theorem) gives the required result. 

4. The self-adjoint elements of . T correspond to the real-valued functions . f ∈
C(ΔT ) and form a real Banach algebra, while the unitary elements correspond 
to functions with unit absolute value, .|f | = 1. 

Proposition 15.40 

For T normal, 

. T is unitary ⇔ σ(T ) ⊆ eiR,

T is self-adjoint ⇔ σ(T ) ⊆ R.

Proof (i) The spectrum of a unitary element U must lie in the unit closed ball since 
.‖U‖ = 1. Now,  .U − λ = U(1 − λU∗) and .‖λU∗‖ = |λ|‖U∗‖ = |λ|; so  . |λ| < 1
implies .1− λU∗, and thus .U − λ, are invertible (Theorem 13.20). 
(Equivalently, if .λ ∈ σ(U) then .λ−1 ∈ σ(U−1) = σ(U∗) = σ(U)∗ and so both . |λ|
and .1/|λ| are less than 1.) 
(ii) We have already seen that .S(T ) ⊂ R when T is self-adjoint, and .S(T ) includes 
.σ(T ). Alternatively, .eiT is unitary (Example 15.5(11)) and the spectral mapping 
theorem gives .eiσ(T ) = σ(eiT ) ⊆ eiR. But .|ei(a+ib)| = e−b is 1 only when .b = 0, 
from which follows that .σ(T ) ⊆ R.
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(iii) For the converses, let T be normal with .σ(T ) ⊂ R. Writing it as .A + iB with 
A, B commuting self-adjoint, we see that .iB = T − A, so  

. σ(iB) ⊆ σ(T )+ σ(−A) ⊂ R, by Example 2 above,

yet .σ(iB) = iσ (B) ⊂ iR. Thus .σ(B) = {0}, .B = 0, and .T = A is self-adjoint. 
(Alternatively, we can work with . S: if  T is normal and .σ(T ) is real, then .S(T ) ⊂ R; 
for any .φ ∈ S , .φ(T − T ∗) = φT − φT = 0, hence .T − T ∗ = 0.) 

(iv) If T is normal with .σ(T ) ⊆ eiR, then 

. σ(T ∗T ) ⊆ σ(T ∗)σ (T ) = σ(T )∗σ(T ) ⊆ eiR.

As .T ∗T is self-adjoint and has a real spectrum, that leaves only . ±1 as possible 
spectral values. But .1+ T ∗T is invertible, otherwise there is a .ψ ∈ ΔT such that 

. −1 = ψ(T ∗T ) = ψT ∗ψT = |ψT |2,

a contradiction. So .σ(T ∗T ) = {1}, .1 = T ∗T = T T ∗ and T is unitary. ⨅⨆
Exercises 15.41 

1. Find an example of an operator T having a real spectrum, without T being 
self-adjoint. 

2. If J is a .∗-morphism and T is normal, then .J (f (T )) = f (J (T )) (first prove, 
for any polynomial p, .J (p(T , T ∗)) = p(J (T ), J (T )∗)). 

3. ▶ In a .C∗-algebra, .S(T ) = 0 ⇒ T = 0 (write .T = A+iB). We say that . S(X )

separates points of . X : if .T /= S, then there is a .φ ∈ S such that .φT /= φS. 
4. Suppose a .C∗-algebra has two involutions, . ∗ and . ✶ (with the same norm). Show 

that .T ∗ = T ✶ for all T —the involution is unique. (Hint: . φ(T ∗) = φT =
φ(T ✶).) 

5. Every normal cyclic element is unitary. In particular, the normal elements of a 
finite subgroup of .G(X ) are unitary. 

6. The Fourier transform .F : L2(R) → L2(R) is unitary; in fact it is cyclic 
.F4 = 1, so that it has four eigenvalues .±1,±i. Verify that the following are 
eigenfunctions: .e−πt2 , .te−πt2 , .(4πt2 − 1)e−πt2 , .(4πt3 − 3t)e−πt2 . 

7. A normal T such that .‖T ‖ = 1 = ‖T −1‖ is unitary. 
8. Normal idempotents are self-adjoint. A normal element T with . σ(T ) ⊆ {0, 1}

is an idempotent, e.g., when T is normal and .T n+1 = T n for some integer n. 
9. Suppose M is a closed subspace of a Hilbert space which is invariant under a 

group of unitary operators. Show that .M⊥ is also invariant. 
10. If . Tn are self-adjoint operators and .Tn ⇀ T then T is self-adjoint.
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15.7 Positive Self-Adjoint Elements 

For T , S self-adjoint, let .T ⩽ S be defined to mean .σ(S − T ) ⊆ [0,∞[. Equiva-
lently, since .S(S − T ) is the closed convex hull of .σ(S − T ) (Proposition 15.8), 

. T ⩽ S ⇔ ∀φ ∈ S(X ), φT ⩽ φS.

Proposition 15.42 

The self-adjoint elements form an ordered real Banach space, such that 

. T ⩽ S AND R ⩽ Q ⇒ T + R ⩽ S +Q,

T ⩽ S ⇒ R∗T R ⩽ R∗SR ∀R ∈ X .

Proof First note that, by the definition, . T ⩽ S ⇔ 0 ⩽ S − T ⇔ T − S ⩽ 0
(.⇔ −S ⩽ −T ), so we might as well consider .A := S−T ⩾ 0 and . B := Q−R ⩾ 0
in proving some of the assertions. 

(i) It is trivially true that self-adjoint elements form a real vector subspace 

. (S + T )∗ = S∗ + T ∗ = S + T , (λT )∗ = λ̄T ∗ = λT , ∀λ ∈ R.

If .Tn → T with .T ∗n = Tn, then in the limit, .T ∗ = T , so the subspace is closed. 

(ii) That .T ⩽ T is immediate from .σ(0) = {0}. For anti-symmetry, note that 

. 0 ⩽ A ⩽ 0 ⇒ σ(A) = {0} ⇒ ‖A‖ = ρ(A) = 0 ⇒ A = 0,

so S ⩽ T ⩽ S ⇒ T = S.

(iii) To facilitate the rest of the proof, we demonstrate 

.a ⩽ T ⩽ b ⇔ σ(T ) ⊆ [a, b] (15.3) 

in two parts, 

. a ⩽ T ⇔ σ(T )− a =σ(T − a) ⊆ [0,∞[⇔ σ(T ) ⊆ [a,∞[
T ⩽ b ⇔ σ(T )− b =σ(T − b) ⊆ ]−∞, 0] ⇔ σ(T ) ⊆ ]−∞, b].

In particular, note that .T ⩽ ρ(T ) = ‖T ‖ and that if .−b ⩽ T ⩽ b then .ρ(T ) ⩽ b. 

(iv) .A,B ⩾ 0 ⇒ A+ B ⩾ 0: In general, 

.C +D ⩽ ‖C +D‖ ⩽ ‖C‖ + ‖D‖ = ρ(C)+ ρ(D).



422 15 .C∗-Algebras 

Let .a := ρ(A) and .b := ρ(B), then .0 ⩽ A ⩽ a can be rewritten as . 0 ⩽ a − A ⩽ a

and hence .ρ(a −A) ⩽ a. Similarly .ρ(b− B) ⩽ b, so .(a −A)+ (b− B) ⩽ a + b, 
or equivalently, .A+ B ⩾ 0. 

(v) A special case of this shows transitivity of the order relation, 

. T ⩽ S ⩽ R ⇒ 0 ⩽ (R − S)+ (S − T ) = R − T ⇒ T ⩽ R

(vi) We are not at this stage able to prove the full product-inequality rule as claimed 
in the proposition. The proof is deferred to the next proposition. Here we show 
only the simple case when R is scalar, i.e., if .λ ⩾ 0 and .A = S − T ⩾ 0, then 
.σ(λA) = λσ(A) ⊆ R

+, meaning .λT ⩽ λS. ⨅⨆
The continuous functional calculus allows us to extend the domain of all 

continuous real functions .f : R → R to the set of self-adjoint elements. Two 
functions in particular stand out: 

(i) the positive square root .
√

A when .A ⩾ 0, satisfying .(
√

A)2 = A = √A2, 

(ii) . A+ for all A self-adjoint, from the function .t+ :=
{

t, when t ⩾ 0

0, when t < 0
; similarly 

.A− from .t− := (−t)+. Their sum then gives . |A|, which corresponds to the 
function .t I→ |t |. 

Examples 15.43 

1. (a) If .−T ⩽ S ⩽ T then .‖S‖ ⩽ ‖T ‖. 
(b) If .0 < a ⩽ T ⩽ b then T is invertible and .b−1 ⩽ T −1 ⩽ a−1. 
(c) If .ST ⩾ 0 then .T S ⩾ 0. 
(d) If .S, T ⩾ 0 and ST is self-adjoint, then .ST ⩾ 0. In particular, . T ⩾ 0 ⇒

T n ⩾ 0. 
(e) If .Sn ⩽ Tn and .Sn → S, .Tn → T , then .S ⩽ T . 
Proof : 

(a) .−‖T ‖ ⩽ S ⩽ ‖T ‖, so .σ(S) ⊆ [−‖T ‖, ‖T ‖] and .‖S‖ = ρ(S) ⩽ ‖T ‖. 
(b) .σ(T ) ⊆ [a, b] does not include 0; .σ(T −1) = σ(T )−1 ⊆ [b−1, a−1]. 
(c) .σ(T S) is the same as .σ(ST ) except possibly for the inclusion or exclusion 

of 0. In any case .σ(ST ) ⊆ R
+ ⇔ σ(T S) ⊆ R

+. 
(d) Recall that ST is self-adjoint exactly when .ST = T S. So, by Exer-

cise 14.41(17)), .σ(ST ) ⊆ σ(S)σ (T ) ⊆ R
+. 

(e) Let .An := Tn − Sn ⩾ 0 and .An → A := T − S. Then .0 ⩽ φAn → φA for 
any .φ ∈ S, so .S(A) ⊆ [0,∞]. 

2. The set of positive elements is a closed convex ‘cone’ (meaning . T ⩾ 0 AND λ ⩾
0 ⇒ λT ⩾ 0), with non-empty interior in the real Banach space of self-adjoints. 
Proof : The only non-trivial statement is that the cone contains an open set of 
self-adjoints, namely the unit ball around 1: If A is self-adjoint and . ‖A‖ < 1
then .−1 ⩽ A ⩽ 1, so .1+ A ⩾ 0.
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3. Positive continuous functions .f : R → R
+ give positive elements . f (A) ⩾ 0

for A self-adjoint. For example, . A+, . A−, . |A|, . A2, and . eA are all positive. More 
generally, for any normal operator T and .f ∈ C(C,R+), .f (T ) ⩾ 0. 
Proof : By the functional calculus, .σ(f (T )) = f [σ(T )] ⊆ [0,∞[. 

4. Every self-adjoint element decomposes into two positive elements 

(a) .A = A+ − A−, .|A| = A+ + A−, 
(b) .A+A− = 0, .A±|A| = A2±, .A±A = ±A2±, and . A+, . A−, A and .|A| all 

commute with each other, 
(c) .−A− ⩽ A ⩽ A+ ⩽ |A| ⩽ ‖A‖. 
Proof : The identities .t = t+− t−, .|t | = t++ t−, .t+t− = 0, .t±|t | = t2±, . t±t = ±t2±
imply (a) and (b). Moreover, .A+A− = A+ ⩾ 0, .|A|−A+ = A+−A = A− ⩾ 0. 
Finally, .σ(|A|) = { |λ| : λ ∈ σ(A) } is bounded above by .ρ(A) = ‖A‖. 

5. By the spectral mapping theorem, the spectral values of .
√

A are the positive 
square roots of those of .A ⩾ 0. Overall there may be an infinite number of 
square roots of A, e.g., for any .z ∈ C, .

(
z 1+z

1−z −z

)
2 = (

1 0
0 1

)
. 

6. If .S, T are invertible positive self-adjoints, then 

(a) .(T
1
2 )−1 = T − 1

2 , 
(b) .0 ⩽ S ⩽ T ⇒ T −1 ⩽ S−1, 
(c) .0 ⩽ S ⩽ T ⇒ √

S ⩽
√

T . 

Proof : (a) follows from the same identity that holds in .C(R+). For (b), (c), note 

that .0 ⩽ T − 1
2 ST − 1

2 ⩽ 1 (Proposition 15.42); using example 1(b) then gives 

.T
1
2 S−1T 1

2 ⩾ 1, and hence .S−1 ⩾ T − 1
2 T − 1

2 = T −1. Also,  . ‖S 1
2 T − 1

2 ‖2 =
‖T − 1

2 ST − 1
2 ‖ ⩽ 1, from which follows .T − 1

4 S
1
2 T − 1

4 ⩽ 1 and .S
1
2 ⩽ T

1
2 . 

7. If .ρ(T ) < 1 then 

. S := 1+ T ∗T + (T 2)∗(T 2)+ (T 3)∗(T 3)+ · · ·

converges and is positive invertible; .‖1− S−1‖ = ‖S 1
2 T S− 1

2 ‖ < 1. 

Proof : Applying the root test, .‖(T n)∗(T n)‖ 1
n = ‖T n‖ 2

n → ρ(T )2 < 1. 
Assuming the next proposition that each term is non-negative, .(T n)∗(T n) ⩾ 0, 
it follows that .S ⩾ 1, and thus invertible. Moreover, .0 < S−1 ⩽ 1 and 
.0 ⩽ 1− S−1 < 1, so  

.1− S−1 = S−
1
2 (S − 1)S−

1
2 = S−

1
2 T ∗ST S−

1
2

∴ ‖S 1
2 T S−

1
2 ‖2 = ‖(S 1

2 T S−
1
2 )∗(S

1
2 T S−

1
2 )‖ = ‖1− S−1‖ < 1
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Proposition 15.44 

For any .T ∈ X and .φ ∈ S(X ), 

(i) .T ∗T ⩾ 0, 
(ii) .T ⩾ 0 ⇔ T = R∗R, for some .R ∈ X , 
(iii) .〈S, T 〉 := φ(S∗T ) gives a semi-inner product, 
(iv) .|φ(S∗T )|2 ⩽ φ(S∗S)φ(T ∗T ), .|φT |2 ⩽ φ(T ∗T ), 
(v) .|φ(S∗T S)| ⩽ φ(S∗S)‖T ‖. 

Proof (i) .T ∗T is certainly self-adjoint, and can be decomposed as . T ∗T = A − B

where .A,B ⩾ 0, .AB = BA = 0 (Example 4b above). Now 

. (T B)∗(T B) = BT ∗T B = B(A− B)B = −B3 ⩽ 0

and hence .(T B)(T B)∗ ⩽ 0 (Examples 15.43(1c)). Writing .T B = C + iD, with 
.C,D self-adjoint, we find 

. 0 ⩽ 2(C2 +D2) = (T B)∗(T B)+ (T B)(T B)∗ ⩽ 0

∴ 0 ⩽ C2 = −D2 ⩽ 0

∴ C = 0 = D

so .T B = 0. But then, .0 = (T B)∗(T B) = −B3 forces .B = 0 and .T ∗T = A ⩾ 0. 
This allows us to conclude part (vi) of the proof of Proposition 15.42. If  . T ⩽ S

let .A := S − T ⩾ 0, so for any .R ∈ X , .R∗AR = (
√

AR)∗(
√

AR) ⩾ 0, i.e., 
.R∗T R ⩽ R∗SR. 

(ii) Conversely, if T is positive, let .R := √T ⩾ 0, so .R∗R = R2 = T . 

(iii) The product satisfies the following inner-product axioms, 

. 〈S, λT1 + μT2〉 = φ(λST1 + μST2) = λ〈S, T1〉 + μ〈S, T2〉,
〈T , S〉 = φ(T ∗S) = φ(S∗T )∗ = 〈S, T 〉,
〈T , T 〉 = φ(T ∗T ) ⩾ 0 since T ∗T ⩾ 0.

However, it need not be definite, i.e., .φ(T ∗T ) = 0 may be possible without .T = 0. 

(iv) This is the Cauchy-Schwarz inequality, which is valid even for semi-definite 
inner products (Exercise 10.10(16)). In particular, taking .S = 1 gives the second 
inequality.
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(v) As . φ preserves inequalities, 

. T ∗T ⩽ ‖T ∗T ‖ = ‖T ‖2 ⇒ S∗T ∗T S ⩽ ‖T ‖2S∗S
⇒ φ(S∗T ∗T S) ⩽ φ(S∗S)‖T ‖2.

∴ |φ(S∗(T S))|2 ⩽ φ(S∗S)φ(S∗T ∗T S) by (iv),

⩽ φ(S∗S)2‖T ‖2

⨅⨆

Proposition 15.45 

If .J : X → Y is an algebraic .∗-morphism between .C∗-algebras, then it is 
continuous with .‖J‖ = 1, and preserves . ⩽. 

If J is also injective, then it is isometric. 

By an algebraic .∗-morphism is meant a map which preserves . +, . ·, 1, and . ∗. 
Proof If .A ⩾ 0, then .A = R∗R and .J (A) = J (R)∗J (R) ⩾ 0. Thus J preserves 
the order of self-adjoint elements, 

. S ⩽ T ⇒ J (T − S) ⩾ 0 ⇒ J (S) ⩽ J (T ).

Now for any T (noting that .J (1) = 1), 

. 0 ⩽ T ∗T ⩽ ‖T ‖2,
∴ 0 ⩽ J (T ∗T ) ⩽ ‖T ‖2,

∴ ‖J (T )‖ = ‖J (T )∗J (T )‖ 1
2 = ‖J (T ∗T )‖ 1

2 ⩽ ‖T ‖.

If J is 1–1, then one can form the ‘inverse’ .J−1 : im J → X . It is automatically 
an algebraic .∗-morphism (check!), for example, for any .S ∈ im J , 

. J−1(S∗) = J−1(JT )∗ = J−1J (T ∗) = T ∗ = (J−1(JT ))∗ = (J−1S)∗,

and so .‖J−1(S)‖ ⩽ ‖S‖. Thus .‖T ‖ ⩽ ‖J (T )‖ ⩽ ‖T ‖ as required. 
(Alternatively, defining .|||T ||| := ‖J (T )‖Y gives a .C∗-norm on . X . But there can 

only be one .C∗-norm (Exercise 15.10(5)), so J is an isometry and .im J is closed.) 
⨅⨆

Examples 15.46 

1. Characters are extremal points of .S(X ): If .ψ ∈ Δ lies between .φ1, φ2 ∈ S , then 
.ψ = φ1 = φ2.
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Proof : By convexity of . S , we can assume .ψ = φ1+φ2
2 . Then 

. |φ1(T )|2 + |φ2(T )|2 ⩽ φ1(T
∗T )+ φ2(T

∗T )

= 2ψ(T ∗T ) = 2|ψ(T )|2

= 1
2 |φ1(T )+ φ2(T )|2

from which follows that .φ1(T ) = φ2(T ). 
2. Consider .φ ∈ X ∗ which preserves inequalities, .0 ⩽ A ⇒ 0 ⩽ φA; it satisfies  

Proposition 15.44 except that .|φT |2 ⩽ φ1φ(T ∗T ) ⩽ (φ1)2‖T ‖2. Such positive 
functionals, as they are called, are positive multiples of states. 
Proof : The proofs of 15.44 (iii)–(v) are still valid: the only assumption that needs 
justification is .φ(T ∗) = φ(T )∗. For any self-adjoint A, .A = A+ − A−, so  
.φA = φA+ − φA− ∈ R. So  

. φT = φ(A+ iB) = φA++iφB,

φT ∗ = φ(A− iB) = φA− iφB = (φT )∗.

Consider .φ̂ := φ/(φ1); obviously .φ̂ ∈ X ∗ and .φ̂1 = 1. By the proposition, 
.|φ̂T | = |φT |/(φ1) ⩽ ‖T ‖; combined with .φ̂1 = 1, we find .‖φ̂‖ = 1. Thus 
.φ̂ ∈ S(X ) and .φ = (φ1)φ̂. Note that .φ1 ⩾ 0 since .1 ⩾ 0. 

Exercises 15.47 

1. .0 ⩽ 1 (as self-adjoint elements), and the order relation of . R is subsumed in that 
of the self-adjoint elements. Similarly, in .C[0, 1], .f ⩽ g ⇔ ∀t, f (t) ⩽ g(t). 

2. .
( 0 1−i
1+i −1

)
⩽

(
1 1
1 0

)
. Note that .T ⩽ S does not mean “.σ(T ) ⩽ σ(S)” in general. 

3. (a) A diagonal matrix is positive when all its diagonal coefficients are real and 
positive. 

(b) If the coefficients of a real symmetric matrix are positive, it does not follow 
that it is positive: .∀i, j, Aij ⩾ 0 /⇒ A ⩾ 0. 

(c) But if a real symmetric matrix is dominated by its positive diagonal, 
meaning .Aii ⩾

∑
j /=i |Aij |, then .A ⩾ 0 (Gershgorin’s theorem, Propo-

sition 14.9). 
4. Show .Re(T ) ⩾ 0 ⇔ ReS(T ) ⊆ R

+; .T ⩾ 0 ⇔ S(T ) ⊆ R
+. 

5. The similarity between self-adjoints and real numbers is striking. But not every 
property about inequalities of real numbers carries through to self-adjoints: 

(a) Not every two self-adjoints S and T are comparable, e.g., . T := (
1 0
0 −1

)
satisfies neither .T ⩽ 0 nor .T ⩾ 0; 

(b) .0 ⩽ S ⩽ T does not imply .S2 ⩽ T 2 (unless .S, T commute), e.g., . S :=(
2 1
1 1

)
, .T := (

3 1
1 1

)
.
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6. In .B(H), .S ⩽ T ⇔ 〈x, Sx〉 ⩽ 〈x, T x〉 for all .x ∈ H . In particular, . S∗S ⩽
T ∗T ⇔ ‖Sx‖ ⩽ ‖T x‖ for all .x ∈ H (e.g., .T ∗T ⩾ 0); deduce 

(a) If T is compact then so is S, 
(b) If T is Hilbert-Schmidt, then so is S, 
(c) For self-adjoint projections in .B(H), .P ⩽ Q when .imP ⊆ imQ, 
(d) The ‘ellipsoid’ associated with . S∗S, namely . BS := { x : ‖Sx‖ ⩽ 1 }

satisfies .BT ⊆ BS . 

7. Prove directly .S ⩽ T ⇒ R∗SR ⩽ R∗T R for all R, in .B(H). 
8. In .B(H), if  .T ⩾ 0 then .〈〈x, y〉〉 := 〈x, T y〉 is “almost” an inner product on 

H , except that it need not be definite; it still satisfies the Cauchy-Schwarz 
inequality though, 

. |〈x, T y〉|2 ⩽ 〈x, T x〉〈y, T y〉.

Conversely, every inner product .〈〈, 〉〉 on H that is bounded, in the sense that 
.|〈〈x, y〉〉| ⩽ c‖x‖‖y‖, is of this type. Use Exercise 10.17(1) to deduce that, for 
all .x ∈ H , 

. ‖T x‖ ⩽ √‖T ‖√〈x, T x〉.

In particular, .〈x, T x〉 = 0 ⇔ T x = 0. 
9. If .f : R→ R is increasing and .a ⩽ T ⩽ b then .f (a) ⩽ f (T ) ⩽ f (b). 

10. To calculate .f (A) for a positive self-adjoint matrix A, first diagonalize it as 
.A = PDP−1, then work out .f (A) = Pf (D)P−1. For example, 

. 

(
0 1
1 0

)

±
= 1

2

(
1 ±1
±1 1

)
,

√(
5 4
4 5

)
=

(
2 1
1 2

)
.

11. There exists .Aα ⩾ 0 for .α > 0 when .A ⩾ 0, for  which .(Aα)1/α = A. 
12. If .−1 ⩽ A ⩽ 1 then .A + i

√
1− A2 is unitary. Hence any .T ∈ X is the linear 

combination of at most four unitary elements. (Hint: .A = (U + U∗)/2.) 
13. Solve the equation .T AT = B for the unknown .T ⩾ 0, given  . A,B ⩾ 0

invertible (Hint: .A
1
2 T AT A

1
2 = (A

1
2 T A

1
2 )2). 

14. If .J : X → Y is an algebraic .∗-morphism, then 

.X / ker J ∼= im J ⇔ im J is closed.
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Polar Decomposition 

An important application of the use of square roots of positive self-adjoint elements 
is the following generalization of the polar decomposition of complex numbers to 
.B(H): 

Proposition 15.48 (Polar Decomposition) 

Every operator .T ∈ B(H) has a decomposition .T = U |T |, in which . |T | :=√
T ∗T ⩾ 0 and .U : im |T | → im T is an isometry. 

Proof .T ∗T is non-negative, so its square root .R := √T ∗T ⩾ 0 can be defined. R 
reduces to the previous definition of . |T | when T is normal, so it is common to write 
. |T | for R. Then .‖|T |x‖ = ‖T x‖ for all .x ∈ H , as  

.〈|T |x, |T |y〉 = 〈x, |T |2y〉 = 〈x, T ∗Ty〉 = 〈T x, T y〉. (15.4) 

Let .U : im |T | → im T be defined by .U(|T |x) := T x; it is well-defined by (15.4), 

. |T |(x − y) = 0 ⇔ T (x − y) = 0,

and isometric, so can be extended isometrically to .im |T | → im T (Example 8.9(5)). 
It can be extended further to the whole of the Hilbert space H by letting . Ux = 0
whenever x belongs to the orthogonal space .ker |T |, in which case it is called a 
partial isometry. ⨅⨆
Examples 15.49 

1. If the SVD of a compact operator is given by .T = UΣV ∗, then its polar 
decomposition is .T = (UV ∗)(V ΣV ∗), since .T ∗T = V Σ2V ∗ and . |T | =
V ΣV ∗. 

2. When T is normal and U is extended to a partial isometry, .T = |T |U is also 
true: .ker |T | = ker T by (15.4) and since .ker T ∗ = ker T (Proposition 15.12), 

. im |T | = (ker |T |)⊥ = (ker T )⊥ = (ker T ∗)⊥ = im T .

In fact, 

. 
for x ∈ ker |T |, |T |Ux = 0 = T x,

for x = |T |y ∈ im |T |, |T |Ux = |T |U |T |y = |T |Ty = T |T |y = T x,

and by extension .|T |Ux = T x for .x ∈ im |T | as well.
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3. If T is invertible, then it implies, in succession, that . T ∗, .T ∗T , and .|T | are 
invertible; thus U is an onto isometry on H , hence unitary, and can be written as 
an exponential. Then .T = eiΘ|T | for some self-adjoint operator . Θ, analogous to 
the polar decomposition of complex numbers. 

Proposition 15.50 

Every unitary operator in .B(H) is of the type . eiT with .T ∈ B(H) self-
adjoint. 

The group of invertible operators .G(H) ⊆ B(H) is connected and 
generated by the exponentials. 

Proof (i) The polar decomposition of any self-adjoint operator .B ∈ B(H) is . B =
V |B| where 

. V x :=
{

x, x ∈ kerB−
−x, x ∈ (kerB−)⊥ = imB−

since .B+x ∈ kerB− (.B−B+ = 0). Note that .V 2 = I . Hence 

. V |B|x = V B+x + V B−x = B+x − B−x = Bx.

Let U be any unitary operator on H . It equals .U = A + iB where .A,B are 
commuting self-adjoint operators such that .A2 + B2 = I . It follows that A 
commutes with .B− (Example 15.39(3)) and thus preserves .kerB− and . imB−
(Exercise 8.6(10)). Accordingly, if .B = V |B| is the polar decomposition of B, 
as above, then V commutes with A: for all .x = u+ v ∈ kerB− ⊕ imB−, 

. V Ax = V A(u+ v) = Au− Av = A(u− v) = AV x.

The function .arccos : [−1, 1] → [0, π ] is a continuous function, and .−1 ⩽ A ⩽ 1, 
so we can define .C := arccosA ∈ B(H), and this commutes with V . Let .T := V C, 
so that .T 2 = V 2C2 = C2. Hence, 

.eiT = (I − 1
2!T

2 + · · · )+ iT (I − 1
3!T

2 · · · )
= (I − 1

2!C
2 + · · · )+ iV (C − 1

3!C
3 + · · · )

= cosC + iV sinC

= A+ iV |B| (sin ◦ arccos(A) =
√
1− A2 = |B|)

= U.
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(ii) Consider the polar decomposition of an invertible operator .T = U |T |, where U 
is unitary and . |T | is invertible. By the above, .U = eiA, while . |T | has a logarithm, 
.|T | = eB (Example 14.27(1)). Hence .T = eiAeB lies in the connected component 
of I (Proposition 13.24), which must therefore equal .G(H). ⨅⨆
Exercises 15.51 

1. Examples of polar decompositions are .
(
1 0
0 −2

) = e
iπ

(
0 0
0 1

)(
1 0
0 2

)
, and . 

(
1 1
0 1

) ≈(
0.89 0.45−0.45 0.89

) (
0.89 0.45
0.45 1.34

)
. 

2. If T is a compact operator in .B(H) with singular values . σn and singular vectors 
.en, ẽn, then .|T |en = σnen and .U : en I→ ẽn. 

3. The polar decomposition of the right-shift operator in . 𝓁2 is trivial: .|R| = I . 
What is it for the left-shift operator? 

4. .T ∗ = |T |U∗, .|T | = U∗T = T ∗U , and .|T ∗| = UT ∗ = T U∗, since .U∗U is a 
projection onto .im |T | and .UU∗ is a projection onto .im T . .‖|T |‖ = ‖T ‖. 

5. (a) T is normal .⇔ |T ∗| = |T |, 
(b) T is positive self-adjoint .⇔ T = |T |, 
(c) T is unitary .⇔ |T | = I AND T is invertible. 

6. If .|S| = |T | and T is invertible then .ST −1 is unitary. 
7. When T is compact normal, with polar decomposition .T = |T |U = U |T |, then 

U and . |T | are simultaneously diagonalizable, .U = P−1eiΘP , .|T | = P−1DP , 
so that .T = P−1DeiΘP . 

8. Adapt the proof of the Polar Decomposition theorem to show that if . T ∗T ⩽
S∗S then the map .U : im S → im T , .Sx I→ T x, is a well-defined operator with 
.‖U‖ ⩽ 1 and .T = US. 

9. Every ideal in .B(H) is a .∗-ideal since 

. T ∈ I ⇒ |T | = U∗T ∈ I ⇒ T ∗ = |T |U∗ ∈ I.

10. Every invertible element T of a .C∗-algebra can be written uniquely as . T =
U |T | where U is unitary. 

11. Trace-class Operators: Let .Tr := { T ∈ B(H) : tr |T | < ∞} with norm 
.‖T ‖Tr := tr |T | (Proposition 15.31 and Example 15.34(5)). 

(a) .‖T ‖Tr = ‖|T | 12 ‖2F , and .T ∈ Tr ⇔ |T | 12 ∈ HS , 
(b) .tr(T ) is independent of the orthonormal basis, 
(c) .| tr(ST )| ⩽ ‖S‖‖T ‖Tr; in particular .‖T ‖F ⩽ ‖T ‖Tr, 
(d) . Tr is a closed .∗-ideal in .B(H), 
(e) .T ∈ Tr ⇔ T = AB where .A,B ∈ HS , 
(f) .tr |T | = ∑

n σn, where . σn are the singular values of T (repeated according 
to their multiplicities). .tr T = ∑

n λn holds when T is normal and . λn are 
its eigenvalues.
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15.8 Spectral Theorem for Normal Operators 

There is one further extension of the functional calculus of the .C∗-algebra .B(H): 
when T is a normal operator, .f (T ) may be defined even for bounded measurable 
functions. 

Let . 1Ω be the characteristic function defined on a bounded open subset .Ω ⊆ C. 
To find an operator that corresponds to . 1Ω, we will be needing the following lemma: 

Monotone Convergence Theorem for Self-Adjoint Operators: If .An ⩾ 0 is 
a decreasing sequence of commuting self-adjoint operators in .B(H) then . An

converges strongly to some operator .A ⩾ 0. 

Proof It is easy to show that when .0 ⩽ S ⩽ T commute, 

. S2 ⩽ S2 + (T − S)2 = T 2 − 2S(T − S) ⩽ T 2.

From this it follows that .A2
n is also a decreasing sequence, as is .‖Anx‖ by 

Example 15.43(6c). Also .‖Anx − Amx‖2 ⩽
∣∣‖Amx‖2 − ‖Anx‖2

∣∣ → 0 as . n,m →
∞, since .AnAm ⩾ A2

n for .n ⩾ m, so .(Anx) is a Cauchy sequence in H . Now apply 
the corollary of the uniform boundedness theorem (Corollary 11.37). ⨅⨆
It follows easily from this that an increasing sequence of bounded self-adjoint 
operators .An ⩽ c converges strongly to some operator .A ⩽ c. 

There exist increasing sequences of positive continuous functions . fn : C→ R
+

which converge pointwise to . 1Ω; for example, take .fn(z) := min(1, n d(z,Ωc)). 
Using the continuous functional calculus defined in Theorem 15.38, .fn(T ) exist as 
positive self-adjoint operators on H with norm equal to .‖fn(T )‖ = ‖fn‖C = 1. 

We can therefore define .1Ω(T )x := limn→∞ fn(T )x for all .x ∈ H . This  
definition can be extended to closed subsets F of . C: there are nested open sets . Un

such that .F = ⋂
n Un, so  .1F (T ) can be defined by . 1F (T )x := limn→∞ 1Un(T )x

by the monotone convergence theorem above. Some properties of .1Ω(T ) are: 

1. .1Ω(T ) is an orthogonal projection; so .1Ω(T ) ⩾ 0. 
Proof : Write .An := fn(T ) and .A := 1Ω(T ). Then 

. 〈Ay, x〉 = lim
n→∞〈Any, x〉 = lim

n→∞〈y,Anx〉 = 〈y,Ax〉,

‖(A2
n − A2)x‖ = ‖(An + A)(An − A)x‖ ⩽ (1+ ‖A‖)‖(An − A)x‖ → 0.

Thus .1Ω(T )2 = 1Ω(T ) is self-adjoint, and hence othogonal (Example 15.14(1)). 
2. (a) If U ,V are disjoint open sets, then .1U(T )+ 1V (T ) = 1U∪V (T ), 

(b) .1U∩V (T ) = 1U(T )1V (T ). 
Proof : If  .fn(z) → 1U(z) and .gn(z) → 1V (z) for .z ∈ C then . fn(z) +
gn(z) → 1U(z) + 1V b(z) = 1U∪V (z). So by the continuous functional 
calculus and the strong convergence of . fn and . gn, it follows that . fn(T )x +
gn(T )x → 1U∪V (T )x for any .x ∈ H .



432 15 .C∗-Algebras 

John von Neumann(1903–1957) Originally from 
Budapest, von Neumann studied in Berlin, under Weyl 
and Polya, but graduated at 23 years under Fejér in 
Budapest with a thesis on ordinal numbers. A young 
party-going genius, in 1926-30 he defined Hilbert 
spaces axiomatically as foundation for the brand new 
quantum mechanics and generalized the spectral theo-
rem to unbounded self-adjoint operators. In the 1930s 
he went to the Princeton Institute, proved the ergodic 
theorem, and studied rings of operators and group 
representations; only turbulent fluid dynamics proved 
too hard (it remains unsolved today); in 1944 he started 
game theory, proving the mini-max theorem, then on to 
computers and automata theory. 

Similarly, the second statement results from . fn(z)gn(z) → 1U(z)1V (z) =
1U∩V (z). 

3. .1∅(T ) = 0, .1σ(T )(T ) = I (since if .σ(T ) ⊆ U and .fn → 1U , then . fn|σ(T ) = 1
for n large enough). 

The projections .1E(T ) for Borel sets E are defined by the same procedure and 
are said to be the  spectral measure associated with T . We gloss over the details of 
the exact definition (see [10]). 

One can now follow the same steps of creating the space of simple functions 
through to .L1(C), but starting from the projections .1E(T ) as ‘indicator func-
tions’. The end result is a functional calculus in which .f (T ) is defined for any 
complex-valued .f ∈ L∞(σ (T )): If  f is approximated by .

∑
i ai1Ui

, then .f (T ) is 
approximately .

∑
i ai1Ui

(T ). Indeed, .f (T ) is still meaningful even if . f ∈ L1(σ (T ))

but need not be a “bounded” (i.e., continuous) operator. 

Theorem 15.52 (von Neumann’s Spectral Theorem) 

For any normal operator T and .f ∈ L∞(σ (T )), there is a spectral 
measure . Eλ such that 

. f (T ) =
∫

σ(T )

f (λ) dEλ

Proof For any .x, y ∈ H , define .μx,y(U) := 〈x, 1U(T )y〉 for any open bounded 
subset .U ⊆ C. By the properties proved above, .μx,y can be extended to a measure 
with support equal to .σ(T ). (It is not a Lebesgue measure on . C as it is not translation 
invariant, but Borel sets are .μx,y-measurable.) It has the additional properties: 

.μx,y1+y2 = μx,y1 + μx,y2 , μx,λy = λμx,y, μy,x = μx,y, 0 ⩽ μx,x ⩽ ‖x‖2.
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It follows that for any .f ∈ L∞(σ (T )), .〈〈x, y〉〉 := ∫
σ(T )

f dμx,y is a semi-
inner-product which is bounded in the sense .|〈〈x, y〉〉| ⩽ ‖f ‖L∞‖x‖‖y‖. Thus, by 
Exercise 15.47(8), .〈〈x, y〉〉 = 〈x, Sy〉 for some continuous operator S which we 
henceforth call .f (T ), 

. 〈x, f (T )y〉 =
∫

σ(T )

f dμx,y.

.f (T ) agrees with the earlier definition for .f ∈ C(σ(T )): Any such f is uniformly 
continuous, so for . δ small enough .f Bδ(z) ⊆ Bϵ(f (z)), independently of .z ∈ σ(T ). 
Let . Bi be squares, with centers . λi and diameter less than . δ, which partition .σ(T ); 
one can find slightly smaller closed squares .Ai ⊂ Bi and slightly larger open 
squares .Ci ⊃ Bi , such that .

∑
i μx,y(Ci�Ai) < ϵ. Moreover, one can find 

continuous functions . hi such that .1Ai
⩽ hi ⩽ 1Ci

and .
∑

i hi = 1; for example, let 
.hi(s, t) := h(s)h(t) where .h(t) = min(1, r d(t, I c)) is a continuous real function 
with support equal to I and taking the value 1 just inside it. Then (writing .μ = μx,y) 

. 〈x, f (T )y〉 =
∑

i

〈x, f hi(T )y〉 ≈ f (λi)〈x, hi(T )y〉 ≈
∑

i

f (λi)μ(Bi).

More rigorously, (it is enough to consider real-valued functions) 

. 〈x, f hi(T )y〉 ⩽ (f (λi)+ ϵ)μ(Ci)

= (f (λi)+ ϵ)μ(Bi)+ (f (λi)+ ϵ)(μ(Ci)− μ(Bi))

−〈x, f hi(T )y〉 ⩽ −f (λi)μ(Bi)+ ϵμ(Bi)+ (f (λi)− ϵ)(μ(Bi)− μ(Ai))

. ∴ |〈x, f hi(T )y〉 − f (λi)μ(Bi)| ⩽ ϵμ(Bi)+ |f (λi)+ ϵ|(μ(Ci)− μ(Ai))

∴ |〈x, f (T )y〉 −
∑

i

f (λi)μ(Bi)| =
∣∣∑

i

〈x, f hi(T )y〉 −
∑

i

f (λi)μ(Bi)
∣∣

⩽
∑

i

|〈x, f hi(T )y〉 − f (λi)μ(Bi)|

⩽
∑

i

(|f (λi)| + ϵ)(μ(Ci)− μ(Ai))+ ϵμ(Bi)

⩽ (‖f ‖C + ϵ)ϵ + ϵ

Hence, in the limit .ϵ → 0, .〈x, f (T )y〉 = ∫
σ(T )

f dμx,y . 
The map .f I→ f (T ) is a .∗-morphism from .L∞(σ (T )) to .B(H): Linearity is 
immediate, 

.(f + λg)(T ) =
∫

σ(T )

(f + λg) dμx,y = f (T )+ λg(T ).
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.f̄ (T ) = f (T )∗ since 

. 〈x, f̄ (T )y〉 =
∫

f̄ dμx,y =
∫

f dμx,y = 〈y, f (T )x〉 = 〈f (T )x, y〉=〈x, f (T )∗y〉.

.fg(T ) = f (T )g(T ) follows from 

. 

∫

σ(T )

dμx,f (T )y = 〈x, f (T )y〉 =
∫

σ(T )

f dμx,y

⇒ 〈x, fg(T )y〉 =
∫

fg dμx,y =
∫

f dμx,g(T )y = 〈x, f (T )g(T )y〉.

⨅⨆
In particular, .T = ∫

σ(T )
λ dEλ. This result, and the next one, are often claimed to 

be the pinnacle of the subject of functional analysis. 

Embedding in B(H) 

Theorem 15.53 (Gelfand-Naimark) 

Every C∗-algebra is isometrically embedded in B(H), for some Hilbert 
space H . 

Proof We have already seen that every Banach algebra X is embedded in B(X ) 
(Theorem 13.8); as in the proof of that theorem, we will again denote elements of 
X by lower-case letters. The main difficulty is that there is no natural inner product 
defined on X or B(X ). Rather there are many semi-inner-products, one for each 
φ ∈ S, 〈x, y〉φ := φ(x∗y). 

Let Mφ := { x : φ(x∗x) = 0 }; it is a closed left-ideal, since for any a ∈ X and 
x ∈M, then ax ∈Mφ 

. 0 ⩽ φ(x∗a∗ax) ⩽ φ(x∗x)‖a‖2 = 0.

This allows us to turn X /Mφ into an inner product space, which can be completed 
to a Hilbert space Hφ (Examples 10.7(2) and 13.10(21). The inner product on 
X /Mφ is given by 

.〈x +Mφ, y +Mφ〉 := φ(x∗y).
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The ∗-morphism L : X → B(Hφ): For any a ∈ X , consider the linear map defined 
by La(x +Mφ) := ax +Mφ on X /Mφ ; this is well-defined since aMφ ⊆Mφ . 
It is continuous with ‖La‖ ⩽ ‖a‖ since, 

. ‖La(x+Mφ)‖ = ‖ax+Mφ‖ =
√

φ(x∗a∗ax) ⩽
√

φ(x∗x)‖a‖=‖a‖‖x +Mφ‖.

This map extends uniquely to one in B(Hφ) (Example 8.9(5)). 
Clearly La is linear in a, Lab = LaLb, and L1 = I , but it also preserves the 

involution La∗ = L∗a , 

. 〈x +Mφ, La(y +Mφ)〉 = φ(x∗ay) = φ((a∗x)∗y) = 〈La∗x +Mφ, y +Mφ〉.

It remains a ∗-morphism when extended to B(Hφ), by continuity of the adjoint. 

The final Hilbert space: However L need not be 1–1. To remedy this deficiency, 
let H := ∏

φ∈S Hφ be the Hilbert space of “sequences” x := (xφ)φ∈S such that 
xφ ∈ Hφ and

∑
φ∈S 〈xφ, xφ〉Hφ 

< ∞; it has the inner product 

. 〈x, y〉 :=
∑
φ∈S

〈xφ, yφ〉Hφ
.

It is straightforward to show that H is indeed a Hilbert space, by analogy with 𝓁2. 
Let Jax := (Laxφ)φ∈S , so that Ja : H → H is obviously linear, and also 

continuous since 

. ‖Jax‖2 =
∑
φ

‖Laxφ‖2 ⩽ ‖a‖2
∑
φ

‖xφ‖2 = ‖a‖2‖x‖2.

The mapping a I→ Ja , X I→ B(H) is an algebraic ∗-morphism, 

. 〈y, Jax〉 =
∑
φ

〈yφ, Laxφ〉 =
∑
φ

〈L∗ayφ, xφ〉 = 〈Ja∗y, x〉.

Moreover it is 1–1, for if Ja = 0 then Laxφ = 0 for any xφ and φ ∈ S , in particular 
a +Mφ = La1 = 0. But this means that for all φ ∈ S , a ∈Mφ , i.e., φ(a∗a) = 0, 
and this can only hold when σ(a∗a) ⊆ S(a∗a) = 0, so ‖a‖2 = ‖a∗a‖ =  0 and 
a = 0. 

Since every such ∗-morphism between C∗-algebras is isometric, the theorem is 
proved. ⨅⨆
Note that in the above GNS construction, when X is represented in B(H), every  
state φ ∈ S(X ) is associated with a unit vector x ∈ H , such that φy = 〈x, Jyx〉. 
Proof : The vector in question is x := (xψ)ψ∈S where xφ = 1 +Mφ and xψ = 0 
otherwise. For every y ∈ X , 

.φ(y) = 〈1+Mφ, y+Mφ〉Hφ
= 〈xφ, Lyxφ〉Hφ

=
∑
ψ

〈xψ,Lyxψ 〉Hψ
=〈x, Jyx〉H .



436 15 .C∗-Algebras 

Remarks 15.54 

1. The Banach algebra axiom ‖1‖ =  1 is redundant for C∗-algebras as it follows 
from ‖T ∗T ‖ = ‖T ‖2 (assuming X /= 0). 

2. The use of A < B  is best avoided: it may either mean A ⩽ B but A /= B or that 
σ(B  − A) ⊂ ]0,∞[. However the use of A >  0 in the latter sense is standard.



Hints to Selected Problems 

2.2 (1) Writing .s := a − c, .t := c − b, and substituting into . |s + t | ⩽ |s| + |t |
gives the triangle inequality. 

2.3 (2) (a) .∃a ∈ A, ∃b ∈ B, d(a, b) ⩽ 2, (b)  . ∀ϵ > 0, ∃a ∈ A, ∃b ∈
B, d(a, b) ⩽ ϵ.

2.14 (7) (i) The two sets have, respectively, the shapes of a diamond, and a square 
with a smaller concentric square removed (the outer boundary is included 
but the inner one is not). (ii) The shapes are the same but intersected with the 
first quadrant. 
(9) For example, .R\{a}. 

2.20 (2) The complement of the set is .{ x ∈ Q : x2 > 2 } since . √2 is irrational. 
To prove the set is open, one needs to find a small enough . ϵ such that 

. 2 < (x − ϵ)2 = x2 − 2ϵx + ϵ2.

(6) Try the graph of the exponential function and the x-axis in . R2. 
(7) The Cantor set is the intersection of all of these closed intervals. 
(8) First show the set .{ x ∈ [0, 1] : n1+···+nk

k
⩽ 5 } for fixed k is closed. 

(11) The answer to the first question is of course no: all points on a circle 
are equally close to the center; the second is also false e.g., in . Z; it is true  
however in . R2 because the line joining an interior point to x contains closer 
points. What properties does the metric space need to have for this statement 
to be true? 
(14) No. Take the subsets .A := [−1, 1] and .B := R\{0} in . R. 

2.23 (6) Any ball .Br(x) will contain a point a of the dense open set A. There will 
therefore be a small ball .Bϵ(a) ⊆ A ∩ Br(x) which contains a point .b ∈ B. 
(7) The complement of the Cantor set is open and dense. 
(10) .∂U = Ū\U contains no balls. 

3.6 (1c) .n/an = n/(1 + δ)n ⩽ n
n(n−1)δ2/2

⩽ 4
δ2

1
n

→ 0. 

(1e) .an := (1 + 1
n
)n = 2 + 1

2 (1 − 1
n
) + 1

3! (1 − 1
n
)(1 − 2

n
) + · · · + 1

nn . So  
.an+1 > an, yet .an < 2 + 1

2 + 1
3! + · · · < 2 + 1

2 + 1
4 + · · · = 3. 
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(1f) .an → ∞ means .∀ϵ > 0, ∃N, n ⩾ N ⇒ an > ϵ. 
(2) The limits must satisfy .x = 2 + √

x and .x = 1 + 1/x respectively. 
(3) Eventually, .|an| < c < 1, so .|an|n < cn. 

3.13 (3) See Proposition 7.9 
(4) If .tn → t then .t /= 0 and .|tn| ⩾ c > 0, so that . |1/tn − 1/t | = |t −
tn|/|tn||t | → 0. 
(10a) The map .f (t) = (cos t, sin t) is a continuous bijective map from 
.[0, 2π [ to the circle. The inverse map is discontinuous at .(−1, 0). 
(10b) Take f to be a constant function, and .tn = n. 
(10c) Take .f (t) := t2 and .U := ]−1, 1[. Examples of open mappings on . R
are polynomials which have no local maxima/minima. 
(11) .(f −1F)c = f −1F c is open. The identity map .[0, 1[ → [0, 2] is a 
continuous open mapping whose image is not closed. 
(17) .d(x,A)/(d(x,A) + d(x, B)). 
(18) The map .t I→ t−a

b−a
(.a /= b) is a homeomorphism between (i) . ]a, b[

and .]0, 1[, (ii) .[a, b] and .[0, 1], (iii) .]a, b] and .]0, 1], (iv)  .[a, b[ and .[0, 1[. 
Translations make (v) .] − ∞, a[ homeomorphic to .] − ∞, 0[, and (vi) . ] −
∞, a] with .]−∞, 0], (vii) .[a,∞[ with .[0,∞[, and (viii) .]a,∞[ with .]0,∞[. 
Reflections .t I→ −t (followed by a translation) then show that the intervals 
in (iii) and (iv) are homeomorphic, as well as (v) and (viii), and (vi) with 
(vii). Finally .]0, 1] is homeomorphic to .[0,∞[ via the map .t I→ 1

t
− 1; 

this same map shows .]0, 1[ is homeomorphic to .]0,∞[, and this in turn, is 
homeomorphic to . R via .t I→ t − 1

t
. 

(19) Points . {x} are open in . N but not in . Q. 
4.11 (1) The difference between the nth and mth terms of decimal approximations 

is at most .10−min(m,n). 
(4) The finite number of values have a minimum distance . ϵ between them. 
(5) Note that .

∑
n 1/n → ∞. 

(6) 
. 

|d(xn, yn) − d(xm, ym)| ⩽ |d(xn, yn) − d(yn, xm)|
+|d(xm, yn) + d(xm, ym)|

⩽ d(xn, xm) + d(yn, ym)

(7) For example, the continuous function .f (t) := 1/t , defined on . ]0, 1] →
[1,∞[, maps the Cauchy sequence .(1/n) to the unbounded sequence . (n). 
(9) . 

√
n + 1 − √

n = √
n((1 + 1/n)1/2 − 1) = 1

2
√

n
+ · · ·

(11) If .{xn} are the values of a Cauchy sequence, and x is a boundary point, 
then there is a subsequence .xm → x (by Proposition 3.4). If all points are 
isolated, then the sequence is eventually constant. 
(14) Any Cauchy sequence in a discrete metric space must eventually be 
constant. 
(15) The intersection of the balls can contain at most one point, since .rn → 0. 
In fact, if .xn → x, then .x ∈ Brn[xn] for all n, since the balls are nested. 
(16) First show that .f (n) = f (1+· · ·+1) = nf (1), then .f (m/n) = m

n
f (1).
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4.18 (1b) . |(x2 − x1)y2 + x1(y2 − y1)| ⩽ (|y2||x1 − x2| + |x1||y2 − y1|)
⩽ (|x1 − x2| + |y2 − y1|),

|(x1 + x2)(x1 − x2) + (y2 − y1)| ⩽ 2|x1 − x2| + |y1 − y2|.
(5) Let .f : X → Y be an equivalence; then every Cauchy sequence 
.(xn)n∈N in X corresponds to a Cauchy sequence in Y , by uniform continuity 
and Proposition 4.13. Since equivalences are homeomorphisms, . (xn)n∈N
converges precisely when .(f (xn))n∈N does. So X is complete . ⇔ Y is 
complete. 

4.22 (2) Repeat the proof of Proposition 2.10, using  .Brn(an) instead of .Br(x)(x), 
where . an is an approximation of x. 
(4) Let X be an uncountable set with the discrete metric. Then .B1/2(x), for  
each .x ∈ X, form an uncountable collection of disjoint sets. 

5.8 (1) Take .X\{x1} and .X\{x2} as the open sets; alternatively take small 
enough balls. For (b), take .X\F1 and .X\F2. 
(2) To show that every subset of . Q with at least two points, is disconnected, 
use the same idea with some other irrational. 
(5) Consider the open sets .f −1{0} and .f −1{1}. 
(11) Suppose .f (a) < f (y); .f (x) > f (y) is impossible else there is some 
.z ∈ [a, x] such that .f (z) = f (y). 

5.13 (2) The metric space is the union of the path images, whose intersection 
contains the fixed point. 
(5) Use Theorem 5.10 with .Ay := X × {y} and .B := {x0} × Y . 
(6) Without loss of generality, take .x = 0; then .R2

\{x} is connected using 
the unit circle and radial lines . te for .t > 0 and unit vectors . e. 
(8) Otherwise, the interior and exterior of the set would disconnect a 
component. 
(10a) If a component C has a boundary point .a /∈ C, then .C ∪ Bϵ(a) would 
be a strictly larger connected set. 

6.4 (3) If B is bounded, so .B ⊆ Br(x), then .B ⊆ Br(x). 
6.9 (3) From some N onwards, .xn ∈ Bϵ(xN); cover the rest of the values . xm

with .Bϵ(xm). 
(4) Let .B ⊆ ⋃N

i=1 Bϵ/2(xi), then . B ⊆ ⋃N
i=1 Bϵ/2(xi) ⊆ ⋃N

i=1 Bϵ(xi)

(Theorem 2.19). 
6.22 (7) Suppose .d(K, F ) = 0, then there are asymptotic sequences . an ∈ K, bn ∈

F ; .(an)n∈N has a convergent subsequence, and therefore .(bn)n∈N converges 
to the same limit. But then .K ∩ F /= ∅. 
(8) After showing .K ⊂ Br(r, 0), use the fact that there is a point . a ∈ K

which has maximum distance from .(r, 0) less than r . 
(14) The unit sphere is a closed subset of the cube .[−1, 1]n. 
(17) .X × Y is complete and totally bounded by Proposition 4.7 and 
Exercise 6.9(1). 

6.28 (2) If .fn → f with .fn ∈ C(X,R), then .fn(x) → f (x) in . C, and taking the 
imaginary parts shows that .f (x) ∈ R.
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(5) . f (y) − fn(y) ⩽ f (y) − fN(y) ⩽ |f (y) − f (x)| + |f (x) − fN(x)| +
|fN(x)− fN(y)| < ϵ where N depends on x, and .|x − y| < δ, small enough 
but independent of x (Proposition 6.17). So .f − ϵ ⩽ fn ⩽ f on .Bδ(x) for 
.n ⩾ N . By compactness, one N will suffice. 
(6) Convert any binary sequence (of 0s and 1s) into a “tent” function in 
.C(R+); there are uncountably many such functions and their distance from 
each other is at least 1. 
(10) .(t + |t |)/2 ≈ t (t + 1)/2. 

7.8 (3) Balls look like circles, squares and diamonds in the 2-norm, .∞-norm, 
and 1-norm respectively. 
(6) Let .A := {|an|}, .B := {|bn|}. Then from Review 7.2(13), . sup |λan| =
sup |λ|A = |λ| supA, .sup |an + bn| ⩽ sup(A + B) ⩽ supA + supB, and if 
.supA = 0, then .0 ⩽ |an| ⩽ 0 implying .an = 0 for all n. 
(9) The functions .fn := 1[0,1/n] converge to 0 in .L1[0, 1] but not in .L∞[0, 1]. 
The inequality .‖x‖𝓁∞ ⩽ ‖x‖𝓁1 remains true for sequences, so convergence 
in . 𝓁1 implies that in . 𝓁∞. 
(10) For .r > |||x|||, .x ∈ rC, so  .λx ∈ λrC = |λ|rC, i.e., .|||λx||| ⩽ |λ||||x|||; but  
then .|||x||| ⩽ 1

λ
|||λx|||. If  .s > |||y|||, then .x + y ∈ rC + sC = (r + s)C, hence 

.|||x + y||| ⩽ |||x||| + |||y|||. 
7.15 (5) Let x, .y ∈ C̄; then there are points .a, b ∈ C within . ϵ of x and y. So any  

point on the line .tx + (1− t)y is also close to a point on the line . ta + (1− t)b

which lies in C because 

. ‖tx + (1 − t)y − ta − (1 − t)b‖ ⩽ t‖x − a‖ + (1 − t)‖y − b‖ < ϵ.

(7) A convex set C is the union of line segments that start from a fixed point 
.x0 ∈ C, then use Theorem 5.10. 
(8) If .λan → x, .an ∈ A, then .an → x/λ (for .λ /= 0) and .x/λ ∈ Ā. 
Conversely, if .x ∈ λĀ, i.e., .x = λa with .an → a, then .λan → λa = x and 
.x ∈ λA. 
Similarly, when .an → a, .an ∈ A, and .bn → b, .bn ∈ B, then .an+bn → a+b, 
so .a + b ∈ A + B. An example in . R is .A := { n + 1/n : n = 2, 3, . . . } and 
.B := { −n : n = 1, 2, . . . }. 

7.21 (1c) .
∑N+k

i=N xi = ∑N+k
i=0 xi − ∑N−1

i=0 xi → 0 as .N → ∞, since convergent 
sequences are Cauchy. 
(3) The odd sub-sums .a1 − (a2 − a3) − (a4 − a5) + · · · are decreasing, and 
bounded below by the increasing even sub-sums .(a1 −a2)+ (a3 −a4)+· · · . 

7.23 (6) Applying the Cauchy test to .
∑

n
1
np : the series .

∑
n 2

n/(2np) converges 
only when .p − 1 < 0; for  .p = 1, .

∑
n

1
n
diverges; .

∑
n

1
n log2 n

becomes 

.
∑

n
2n

2nn
which diverges; etc. 

(12) For N large enough .‖x1 + · · · + xN − x‖ < ϵ as well as 
.
∑∞

n=N+1 ‖xn‖ < ϵ. So for  k large enough that .n1, . . . , nk include .1, . . . , N , 

.‖xn1 + · · · + xnk
− x‖ ⩽ ‖x1 + · · · + xN − x‖ +

∑
‖xextra‖
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8.6 (3) .imR is closed since for .Rxn → y, the first components give .0 → y0, so  
.y = (0, y1, . . .) = R(y1, . . .). 
(4) .T = L4 − I . 
(7) If .xn → x then .xn − x → 0 and .T xn − T x = T (xn − x) → T 0 = 0. 

8.13 (1) Proof that .im T is not closed: Let .vn := (1, 1/2, . . . , 1/n, 0, 0, 0, . . .), 
then .T vn = (1, 1/4, . . . , 1/n2, 0, . . .) converges to .(1, 1/4, . . .) ∈ 𝓁1 as 
.n → ∞ since 

. ‖(0, . . . , 0, 1/(n + 1)2, . . .)‖𝓁1 =
∞∑

n=N+1

1

n2
→ 0

Yet, there is no sequence in . 𝓁1 which maps to this sequence as 
.(1, 1/2, 1/3, . . .) /∈ 𝓁1. 
(2) .en/n → 0 in . 𝓁1 because .‖(0, . . . , 0, 1/n, 0, . . .)‖𝓁1 = 1/n → 0, but  
.en /→ 0 since .‖(0, . . . , 0, 1, 0, . . .)‖𝓁1 = 1. 
(4) .‖T ‖ = 1, .‖Ta‖ = 1, .‖Tg‖ = 1, . ‖Mg‖ = ‖g‖C

(5) Proof for first matrix. Assuming, without loss of generality, that .|μ| ⩽ |λ|, 

. 
∥
∥
(
λ 0
0 μ

)(
x
y

)∥
∥2 = ∥

∥
(
λx
μy

)∥
∥2 = |λ|2|x|2 + |μ|2|y|2 ⩽ |λ|2(|x|2 + |y|2)

so .‖T x‖ ⩽ |λ|‖x‖. However for .x = (
1
0

)
, .T x = λx, so .|λ| ⩽ ‖T ‖ ⩽ |λ|. 

(7) Choose unit . xn such that .‖Tnxn‖ ⩾ ‖Tn‖ − 1/2n. 
8.19 (6) For .x = (ai), take the supremum over i of 

. |Tiiai +
∑

j /=i

Tij aj | ⩾ (|Tii ||ai | −
∑

j /=i

|Tij |‖x‖)

⩾ c‖x‖ − (sup
i

|Tii |)(‖x‖ − |ai |) ≈ c‖x‖.

(8) If .JX : X1 → X2 and .JY : Y1 → Y2 are the isomorphisms, then . J (T ) :=
JY T J−1

X gives the required isomorphism; note that .J−1(S) = J−1
Y SJX. 

8.23 (3b) Show .y I→ (0, y) + X × 0 is an isometry. 
(5) Let .{an} be dense in M and .{bn + M} dense in .X/M . Then .{an + bm} is 
dense in X. 

8.27 (5) See the Hilbert cube Exercise 9.10(3). 
9.4 (2) The functionals on c are . y⏉ (.y ∈ 𝓁1) and Lim. 

(6) .c00 ⊂ 𝓁∞
s , so .𝓁∞

s = c0; .1/ log n does not belong to any . 𝓁∞
s . 

9.7 (1) Let .yn := xn − x ∈ 𝓁1; then .
∑∞

i=N+1 |yni | ⩽ ∑∞
i=N+1 |y1i | < ϵ for 

some N and all n. But .|yn1|+ · · ·+|ynN | → 0 as .n → ∞, so .
∑

i |yni | < 2ϵ. 
9.10 (4) It is required to show .‖x − a‖𝓁1 < ϵ for .a = (a0, . . . , aN , 0, . . .) ∈ c00, 

N large enough. 
9.17 (2) Try .|an|p'/pe−iθn . 

(9b) Take .r → ∞ in .‖x‖∞ ⩽ ‖x‖r ⩽ ‖x‖p/r
p ‖x‖1−p/r∞ .
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9.37 (2) Look at the dual spaces of .L1[0, 1] and . c0 to see why they are not 
isomorphic. 

(6) Write .
πt2

σ 2 + 2πitξ = π
σ 2 (t + iσ 2ξ)2 + πσ 2ξ2 to simplify the integral. 

10.10 (2) In Pythagoras’ theorem, .‖y + z‖2 = ‖y‖2 exactly when .z = 0. 
Consider 

. 
∥
∥
∑

n

xn

∥
∥2 =

∣
∣
∣
∑

n,m

〈xn, xm〉
∣
∣
∣ ⩽

∑

n,m

|〈xn, xm〉|

⩽
∑

n,m

‖xn‖‖xm‖ =
( ∑

n

‖xn‖
)2

.

This can only be an equality when .|〈xn, xm〉| = ‖xn‖‖xm‖ for each .n,m. 
(4) Writing .x = ∑

n anvn and .y = ∑
m bmvm for a basis . v1,  . . . , . vN , we find 

. 〈x, y〉 =
∑

nm

anbm〈vn, vm〉

(9) .(1, 1, 0, . . .) and .(1,−1, 0, . . .) do not satisfy the parallelogram law; 
write these as step functions for . L1 and . L∞. 
(11) .

∫ π

−π
sin(t) cos(t) dt = 1

2

∫ π

−π
sin(2t) dt = [− cos 2t]π−π = 0, and 

.
∫ 1
0 2t3 − t dt = 1

2 [t4 − t2]10 = 0. 
(14) Substitute .λ = α + iβ, then find the minimum by differentiating in . α, β

to get .λ = −〈x, y〉. 
(15) .‖xn − xm‖ ⩽ ‖xn + yn − xm − ym‖ → 0 since . 〈xn − xm, yn − ym〉 =
0. 
(16) The ‘inner product’ remains continuous, so Z is closed. 

10.15 (1) Answer .
1
14 (10x − 2y + 6z,−2x + 13y + 3z, 6x + 3y + 5z). 

(2i) .Px ∈ M so .Px = λy, and .x − Px ∈ M⊥, so  .〈y, x − λy〉 = 0. 
Expanding gives .λ = 〈y, x〉. 
(3) Consider .x ∈ M⊥, and .x = u + v where .u ∈ M , .v ∈ N ; since . N ⊆ M⊥
it follows that .u = 0. 
(5) Any vector .x ∈ N can be written .x = u + v where .u ∈ M , .v ∈ M⊥. 
Since .M ⊆ N , then .v = x − u ∈ N as well. 
(6) Let .x = u + v, .u ∈ M , .v ∈ M⊥; then .T x = T u + T v, .T u = Au ∈ M , 
.T v = Bv ∈ M⊥. 

. ‖T ‖2 = sup
‖T u‖2 + ‖T v‖2

‖u‖2 + ‖v‖2

by Pythagoras’ theorem. But .‖T u‖ ⩽ ‖A‖‖u‖ and .‖T v‖ ⩽ ‖B‖‖v‖, so  
.‖T ‖2 ⩽ t‖A‖2 + (1 − t)‖B‖2, where .t = ‖u‖2/(‖u‖2 + ‖v‖2). Now  take  
.t = 0 or .t = 1 depending on which is the maximum of the two. 
(8b) Expand .d2 ⩽ ‖x − y‖2 = 2 − 2Re 〈x, y〉 with .y = eiθ v.
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(9c) If .‖x − a‖ = d = ‖x − b‖ is the shortest distance from x to M , then 
.‖tx + (1 − t)x − ta − (1 − t)b‖ = d. 
(9d) The closest sequence would be .1 /∈ c0. 
(10) .‖Pyn+1‖ ⩽ ‖yn+1‖ ⩽ ‖yn‖, so  .‖yn‖ converges. But in general, as 
.Py ⊥ (y − Py), .‖y‖2 = ‖Py‖2 + ‖y − Py‖2, so  .‖yn − Pyn‖ → 0, and 
similarly .Pyn − QPyn → 0. In finite dimensions, the bounded sequence . yn

has a convergent subsequence, .yni
→ y, so  .y = Py = QPy, and y is in 

.imP ∩ imQ. 
(11) .sin t ≈ 0.955 − 0.304t ≈ −0.20 + 1.91t − 0.88t2 + 0.093t3; . 1 − t3 ≈
1.13 cos t − 0.43 sin t . 
(12c) Answer: .α = 2

π
3MR2−5I

R4 , .β = 15
2π

2I−MR2

R5 . 
10.24 (1) Check that .‖x∗‖H ∗ satisfies the parallelogram law, then use the polariza-

tion identity, noting that .(ix)∗ = −ix∗. 
(2) . φ̃ corresponds to Px. 
(3) The map .x I→ 〈〈x, 〉〉 is a functional so corresponds to some vector T x. 
(6) .‖T ‖2 = ‖T ∗T ‖ ⩽ ‖T ∗‖‖T ‖, so .‖T ‖ ⩽ ‖T ∗‖ ⩽ ‖T ∗∗‖ = ‖T ‖. 
(7) For .x = (an)n∈N, y = (bn)n∈N, z = (cn)n∈N, 

. 〈z, yx〉 =
∑

n

cnbnan =
∑

n

b̄ncnan = 〈ȳz, x〉

(9) .
∫ 1
0 g(s)Vf (s) ds = ∫ 1

0

∫ s

0 g(s)f (t) dt ds = ∫ 1
0

∫ 1
t

g(s)f (t) ds dt . 
(12) .T ∗T x = 0 ⇒ 0 = 〈x, T ∗T x〉 = 〈T x, T x〉. 
(13) Fix a unit vector .u ∈ X, .λ := 〈T u, T u〉 > 0, and let v be any orthogonal 
unit vector; then .〈T u, T v〉 = 〈u, v〉 = 0; similarly, . 〈T (u + v), T (u − v)〉 =
〈u + v, u − v〉 = 0, so  .〈T v, T v〉 = λ > 0 constant. For vectors .x = αu, 
.y = β1u + β2v, .〈T x, T y〉 = ᾱβ1λ = λ〈x, y〉. 

10.26 (1) Answers: .(−5/2,−2/3, 7/6), .(−17,−5, 7)/3. 
(6) .T †T is the projection onto .ker T ⊥; .T T † is the projection onto .im T . 
(8) .V ∗Vf = V ∗g is .

∫ 1
y

∫ x

0 f (t) dt dx = ∫ 1
y

g(x) dx. 

(9) Answer: .r = 0.499 m and .κ/m = 0.008m−1 (the actual values used to 
generate the data were .r = 0.5m and .κ/m = 0.003m−1). 

10.35 (1) Take the inner product of .
∑

n αnen = 0 with . em. 
(3) .〈(en, 0), (0, ẽm)〉 = 〈en, 0〉+〈0, ẽm〉 = 0; if  x and y can be approximated 
by .xN := ∑N

n=1 αnen and .yM := ∑M
m=1 βmẽm respectively, then 

. ‖(x, y) − (xN , yM)‖ = ‖(x − xN, y − yM)‖ = √‖x − xN‖2 + ‖y − yM‖2

can be made small; note that . (xN , yM) = (xN , 0) + (0, yM) =∑N
n=1 αn(en, 0) + ∑M

m=1(0, ẽm). 
(4) .〈en, x − x∗〉 = 0
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(5) Suppose . en and .Uen are both orthonormal bases. Then, by Parseval’s 
identity, 

. 〈Ux,Uy〉 =
∑

n,m

ᾱnβm〈Uen,Uem〉 = 〈x, y〉.

U is onto because .y = ∑
n αnUen = U(

∑
n αnen). 

Conversely, if .{en} is an orthonormal basis for . H1, and .y ∈ {Uen}⊥, then . 0 =
〈y,Uen〉 = 〈U∗y, en〉 for all n, so .U∗y ∈ {en}⊥ = 0 and .‖y‖ = ‖U∗y‖ = 0. 
The column vectors of the matrix of U are .Uen, so . 〈Uen,Uem〉 = 〈en, em〉 =
δnm. 
(6) Show .t = 1

2 + 1
π

∑
n /=0

1
2πn

e2πint , then take .t = 1/4. It is interesting to 
generate other series using other points and functions (e.g., .|t |, t/|t |, | sin t |). 
(7) For f odd, .α−n = −αn. In general, every f is the sum of an even and an 
odd function. 
(9) For example, take .λ

(
1
0

)
, .λ2

( −1
±√

3

)
. For the second part, substitute . em instead 

of x, and deduce orthogonality; if .x ∈ {en}⊥, then .‖x‖ = 0. 
11.7 (4b) Continuity of .T̃ (Sx) := T x: For any .v ∈ ker S and .y ∈ Y , . ‖T̃ y‖ =

‖T x‖ = ‖T (x + v)‖ ⩽ c‖T ‖‖x + v‖, then use .‖x + ker S‖ ⩽ c‖Sx‖. 
(9) .|αn| = ‖αnen‖ ⩽ ‖∑n

i=1 αiei − ∑n−1
i=1 αiei‖ ⩽ 2c|||x|||. 

11.17 (5) If .xn ∈ M is bounded then .T |Mxn = T xn has a Cauchy subsequence, 
which converges. 

11.28 (4) The requirement is .φ(x, y) = x + λy, .|x + λy| ⩽ |x| + |y|, so .|λ| ⩽ 1. 
(6) Consider unit functionals such that .φi(xi) = ‖xi‖; let .y ∈ ⋂

i kerφi ; then 

. ‖xi‖ = |φi(y − xi)| ⩽ ‖y − xi‖.

(9) .⊥Ф = 0, so  .(⊥Ф)⊥ = 𝓁1∗. Now in the correspondence of . 𝓁1∗ with . 𝓁∞, 
we get .[[Ф]] ≡ c00 and so .[[Ф]] ≡ c0. 
(10) .|φx| = |φ(x+v)| ⩽ ‖φ‖‖x + v‖ for any .v ∈ M; in fact this approaches 
equality for certain .v ∈ M , so  .‖ψ‖ = ‖φ‖. Onto: for any .ψ ∈ (X/M)∗, 
let .φx := ψ(x + M). Hint for the second part: the norm of . ‖φ + M⊥‖ =
infψ∈M⊥ ‖φ + ψ‖ is the same as .‖φ|M‖. 

11.34 (5) . (T ⏉⏉x∗∗)φ = x∗∗(T ⏉φ) = (T ⏉φ)x = φT x.

(7) If . T ⏉ is onto, then T is 1–1 by (1) and has a closed image; if . T ⏉ is also 
1–1, then .im T is dense, hence T is onto. If T is onto, use the open mapping 
theorem. 

11.49 (1) For . c0, a functional is of the type . y⏉ where .y = (bn)n∈N ∈ 𝓁1. Now  
.y · en = ∑

i biδni = bn → 0 as .n → ∞ since .𝓁1 ⊂ c0. 
(8b) .|φ(TnSn − T S)x| ⩽ ‖φ‖‖Tn‖‖(Sn − S)x‖ + |φ(TnS − T S)x| → 0. 
(11) If .x /∈ M , there is a .φ ∈ X∗ such that .φx = 1, .φM = 0, so  x is not 
a weak limit point of M . More generally, every closed convex set is weakly 
closed, because a hyperplane (so a functional) separates it from any point not 
in it.
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12.12 (4) . ‖o(h)‖ = ‖f (x + h) − f (x) − f '(x)h‖

= ∥
∥

∫ 1

0
dtf (x + th) − f '(x)h dt

∥
∥

⩽
∫ 1

0
‖f '(x + th) − f '(x)‖‖h‖ dt ⩽ 1

2k‖h‖2.

12.21 (6) Poles and residues are (a) i: .1/2ie, and .−i : ie/2; (b) .1 : (e, e−1)/3, and 
.ω : (eω, e−ω)/3ω2, and .ω2 : (eω2

, e−ω2
)/3ω; (c) .0 : 1. 

13.3 (11) If T R  is invertible, then .P(ST ) = 1 = (T R)Q, so  T is invertible. 
13.10 (2) Each vector .(a, b) corresponds to the matrix .

(
a 0
b a+b

)
. 

(4) .1, A, . . . , AN cannot be linearly independent, so .Am = p(A) must be 
true for some polynomial p. 
(10) This is a generalization of the convolution operation on . 𝓁1. The proofs 
are very similar to that case; see Exercise 9.7(2). 
(13) For any . φ, .T xφx = xφT x, i.e., .T x = λxx. So if  .x, y are linearly 
dependent then .Ty = λyy, implying .T x = λyx and .λy = λx ; if not, then 
.λy = λx+y = λx . 
(14d) If .S, T ∈ A'', then .T R = RT for any .R ∈ A' ⊇ A'', including .R = S. 
(18) To show .IA ⊆ I , let  .f ∈ IA and let K be a closed subset of .[0, 1]\A; 
then for any .x ∈ K , one can find a function .gx ∈ I such that .gx(x) > 1 in a 
neighborhood of x. By compactness of K , a finite number of such functions 
“cover” K , so .g := gx1 + · · · + gxn ∈ I is greater than 1 on K . Let . h(x) :={
1, g(x) > 1

g(x), g(x) ⩽ 1
, a continuous function with .h|K = 1 and belonging to . I

(.h = gk). By making K larger, one can find a sequence of functions such 
that .hng → g, so .g ∈ I . 
(19) To show .‖f + IA‖ = ‖f |A‖, it is required to find functions . gn ∈ IA

such that .‖f − gn‖ → ‖f |A‖. This can be done as follows: take . B :=
[0, 1]\U , where .U = A + Bϵ(0), and let h be a function such that .h|A = 0, 
.h|B = 1; so  .f h ∈ IA yet .f − f h = 0 on B, and .‖f − f h‖ → ‖f |A‖ as 
.ϵ → 0. 
(21) Multiplication is well-defined, for if .S − S̃ ∈ I, .T − T̃ ∈ I, then 
.ST −S̃T̃ = (S−S̃)T +S̃(T −T̃ ) ∈ I . Associativity and distributivity follow 
from those of . X . Suppose .‖S + An‖ → ‖S + I‖, .‖T + Bn‖ → ‖T + I‖, 
for some .An,Bn ∈ I , then 

. ‖ST + I‖ ⩽ ‖(S + An)(T + Bn)‖ ⩽ ‖S + An‖‖T + Bn‖
→ ‖S + I‖‖T + I‖

Finally, .‖1 + I‖ ⩽ ‖1 + 0‖ = 1 yet .‖1 + I‖ /= 0; but also in any normed 
algebra in which .‖ST ‖ ⩽ ‖S‖‖T ‖ holds, .1 ⩽ ‖1‖, since . ‖1‖ = ‖12‖ ⩽
‖1‖2.
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(26) . X has a basis of two vectors, which can be taken to be .1 = (
1
0

)
and . 

(
0
1

)
. 

Multiplication by 1 acts of course as the identity matrix; if .
(
0
1

)(
0
1

) = (α
β

)
, then 

.
(
0
1

)(
x
y

) = ( αy
x+βy

) = (0 α
1 β

)(
x
y

)
. 

13.19 (1) Answers (a) 0, (b) 1, (c) .max(|a|, |b|), (d)  (.a /= 0) 

. 

(
a 1
0 a

)n

=
(

an nan−1

0 an

)

= an

(
1 n/a

0 1

)

.

Now .
(1 n/a
0 1

)(
1
0

) = (
1
0

)
, so  .1 ⩽

∥
∥
(1 n/a
0 1

)∥
∥ ⩽

√
2 + n2/a2 (Proposition 8.10). 

Taking the nth root gives .(2+ n2/a2)1/2n → 1, so .ρ(T ) = |a|. Note how, in  
this case, .‖T n‖ first increases then decreases to 0. Only (c) has .ρ(T ) = ‖T ‖. 
(3) Use the Cauchy inequality for .|x + ay| ⩽ √

1 + |a|2√|x|2 + |y|2. 
(7) Let R and S be the radii of convergence of .

∑
n anz

n and .
∑

n bnz
n. 

Then .
∑

n(an + bn)z
n = ∑

n anz
n + ∑

n bnz
n has radius of conver-

gence at least .min(R, S). .
∑

n anbnz
n has radius of convergence RS since 

.lim inf |anbn|−1/n = lim inf |an|−1/n|bn|−1/n. 
(8) .f + g and fg  have coefficients .an + bn, .a0bn + a1bn−1 + · · · + anb0. 

. f ◦ g(T ) = a0 + a1g(T ) + a2g(T )2 + · · ·
= (a0 + a1b0 + a2b

2
0 + · · · ) + (a1b1 + 2a2b1 + · · · )T

+ (a1b2 + a2b
2
1 + · · · )T 2

(9) . ‖f (T ) − ∑N
n=0 anT

n‖ = ‖∑∞
n=N+1 anT

n‖ ⩽
∑∞

n=N+1 |an|‖T ‖n → 0
when .‖T ‖ < r . 
(14) .cos 0 = e0 = 1, but .cos 2 = (cos 1 − sin 1)(cos 1 + sin 1) < 0, so there 
is a number .0 < β < 2, .cosβ = 0. Since the conjugate of . eiθ is .e−iθ , it  
follows that .|eiθ | = 1, so .sinβ = 1; hence .eiβ = i and .e4βi = 1. 
(17) Expand .eα1Seα2T eα3T eα4T to second order, and equate with . eS+T ≈
1+ (S + T ) + (S + T )2/2, to get .α2α3 = 1/2; the two values can be chosen 
to be equal. 

13.25 (2) .f (t)g(t) = 1 ⇔ f (t) = 1/g(t) /= 0,∀t ∈ [0, 1]. g has a minimum 
distance to the origin Exercise 6.22(11), so .f = 1/g is also bounded. 
(4) .‖T −1‖ = supx ‖T −1x‖/‖x‖ = supy ‖y‖/‖Ty‖. 
(8) .e(t+s)T = etT +sT = etT esT since .(tT )(sT ) = (sT )(tT ). 

. ∴ e(t+h)T = etT ehT = etT (1 + hT + o(h))

so the derivative at t is .etT T . 
(12) .SR = 0 for .S(a0, a1, . . .) := (a0, 0, . . .). But  .‖RT ‖ = ‖T ‖ for all T , 
so .RTn /→ 0 when . Tn are unit elements. 

13.31 (2) If .|f (z)| ⩽ c|z|m/n ⩽ c|z|k , then f is still a polynomial.
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(8) If a is a zero or pole of order . ±N , then .(z − a)±Nf (z) is analytic and 
non-zero at a. Thus .qf/p is bounded analytic on . C, so must be constant. 

14.7 (2) .f (t) − λ is not invertible precisely when .f (t0) − λ = 0 for some . t0 ∈
[0, 1]. 
(4) .T 2−z2 = (T −z)(T +z), so .z2 := λ ∈ σ(T 2) ⇒ λ = ±z ∈ σ(T ) (one 
of them). Conversely, if .T 2 − z2 has an inverse S, then . S(T + z)(T − z) =
1 = (T − z)(T + z)S, so .T − z is invertible. 
(7) .(S, T ) − λ(1, 1) = (S − λ, T − λ) is not invertible iff .S − λ or .T − λ is 
not invertible. 
(8) The map .T ⊙ S − λ : (x, y) I→ (T x − λx, Sy − λy) is invertible exactly 
when .T − λ and .S − λ are invertible. 

14.14 (1) .Rx = λx means .an = λan+1, so  .an = a0/λ
n; but also .0 = λa0. There 

are no solutions to these algebraic equations. 
(3) . 𝓁1 is embedded in .𝓁1(Z), so  .σ(L) decreases from the first case to the 
second. In fact, in .𝓁1(Z), there are no eigenvalues, because . 

∑∞
n=−∞ |λ|n

cannot converge for any . λ. Yet the boundary of .σ(T ) in . 𝓁1, consisting of 
generalized eigenvalues, is preserved in .𝓁1(Z). 
(4) .T ⏉x = (a0, a2, a3, . . .) on . 𝓁1. 
(5) .T ⏉x = (a0, a2, a3/2, . . .) on . 𝓁1. 
(9) The operator .(T −λ)f (t) = (t−λ)f (t) is invertible only when .λ /∈ [0, 1]. 
There are no eigenvalues because .tf (t) = λf (t) for all t implies .f = 0. The  
image of .T − λ is a subset of .{ g ∈ C[0, 1] : g(λ) = 0 }; as this set is closed 
and not .C[0, 1], all .λ ∈ [0, 1] are residual spectral values. 
(11) Induction on n: Expand .V V nf as a double integral and change the order 
of integration. 
(12) .1 − |λ| ⩽ ‖T xn − λxn‖ → 0; .T − λ = T (1 − λT −1), so  . |λ| < 1 ⇒
λ /∈ σ(T ). The boundary of .σ(T ) must be part of the circle. 
(13) T is 1–1 with a closed image . ⇔ ‖T x‖ ⩾ c‖x‖, so  

. ‖(T + H)x‖ ⩾ ‖T x‖ − ‖Hx‖ ⩾ (c − ‖H‖)‖x‖

shows T is an interior point of the set. 
14.22 (7) The eigenvalue equation for ML is .an+1 = nλan, so .an = n!λnx0 → ∞. 

For RM , .{0} = σp((RM)⏉) ⊆ σr(RM). 
14.30 (3) .eσ(T ) = σ(eT ) = σ(1) = {1}, so  .σ(T ) ⊆ 2πiZ. For an idempotent P , 

.e2πP = 1 + P(2πi + (2πi)2

2! + · · · ) = 1 + P(e2πi − 1) = 1. 
14.41 (11) . Cn is generated by . ei , where .eiej = 0 when .i /= j , and .eiei = 1. So a  

character satisfies .δeiδej = 0 and .δei = ±1. If .δe1 = ±1, say, then . δei = 0
for .i /= 1. In fact .1 = δ(1) = ∑

i δ(ei ) = δ(e1). 
(12) .B(C2) is generated by .

(
1 0
0 0

)
, .
(
0 1
0 0

)
, .
(
0 0
1 0

)
, and .

(
0 0
0 1

)
. A character . δ maps 

them to . w1,. . . ,  . w4, which must satisfy .w2
2 = 0, .w2

3 = 0, .w2w3 = w1, 
.w3w2 = w4, for which there are no non-zero solutions. 
(15) . ̂x acts on the n points in . Δ as .(δix) = (xi) = x.
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(17) In the commutative Banach algebra .Y := { S, T }'', the spectra remain 
the same, .σY (A) = σ(A), so  .Δ(A) = σ(A) and the inclusions follow from 
.Δ(S + T ) ⊆ Δ(S) + Δ(T ) and .Δ(ST ) ⊆ Δ(S)Δ(T ). 

15.3 (4) T is left- and right-invertible: .T T ∗R = 1 = R'T ∗T . 
(7) Use Theorem 13.9; note that .L∗L = α ∈ R, so .α = λ2. 

15.11 (5) What is meant is that if .T ∈ X is normal, and J is a .∗ -morphism, then 
.J (T ) ∈ Y is also normal, etc. 
(9) The inverse of . Ta is . T−a , which is the adjoint: 

. 

∫

g(x)Taf (x) dx =
∫

g(x)f (x − a) dx =
∫

g(t + a)f (t) dt

=
∫

T−ag(t)f (t) dt.

(21) . ‖(T ∗T )n‖1/2n = ‖(A∗A)n + (B∗B)n‖1/2n ⩽ (‖A‖2n + ‖B‖2n)1/2n →
max(‖A‖, ‖B‖)

(22) If .T ∗T is idempotent, then .σ(T T ∗) ⊆ σ(T ∗T ) ∪ {0} ⊆ { 0, 1 }. Hence 
.σ(T T ∗T T ∗ − T T ∗) = {0}. 

15.15 (1) .〈x, T T ∗x〉 = ‖T ∗x‖2 = ‖T x‖2 = 〈x, T ∗T x〉 and use Example 10.7(3). 
(3) .‖T ∗

n x − T ∗x‖ = ‖(Tn − T )∗x‖ = ‖Tnx − T x‖ → 0. Conversely, take 
the limit of .‖T ∗

n x‖ = ‖Tnx‖ and use Exercise 1. 
(4) .|λ|2‖x‖2 = ‖λx‖2 = ‖Ux‖2 = ‖x‖2. 
(5) Each distinct eigenvalue comes with an orthogonal eigenvector. In a 
separable space, there can only be a countable number of these. 
(6) .〈em, T ∗en〉 = 〈T em, en〉 = λ̄nδnm, so  . T ∗en = ∑

m 〈em, T ∗en〉em =
λ̄nen. Then show .‖T ∗x‖ = ‖T x‖. 
(8) For (b), note that .σ(I − T n) = 1 − σ(T )n ⊆ B1(1), so  . ‖I − T n‖ =
ρ(I − T n) ⩽ 2. For (c) use . H = ker(T ∗ − I ) ⊕ ker(T ∗ − I )⊥ = ker(T −
I ) ⊕ im(T − I ). 

15.21 (2b) Let .M,M⊥ be the domains of A and D. For any .x = a +b ∈ M ⊕M⊥, 

. 〈x, T x〉 = 〈a + b, T a + T b〉 = 〈a, T a〉 + 〈b, T b〉,
〈x, x〉 = 〈a + b, a + b〉 = ‖a‖2 + ‖b‖2.

As .〈a, T a〉 = ‖a‖2λ with .λ ∈ W(A), and similarly .〈b, T b〉 = ‖b‖2μ, 
.μ ∈ W(D), the values of .〈x, T x〉/‖x‖2 includes the line between . λ and . μ. 
The collection of these lines is the convex hull of .W(A) ∪ W(D). 
(3b) For .T := (

a 1
0 a

)
, let .x = (α

β

)
, then . 〈x, T x〉 = |α|2a + ᾱβ + |β|2a = a +

ᾱβ, because of the condition .1 = ‖x‖2 = |α|2+|β|2. But . ̄αβ = cos t sin t eiθ

takes the value of any complex number in the closed ball .B1/2(0). In general, 
the sum .

∑n
i=1 αiαi+1 is a disk of radius .cos π

n+1 by Lagrange multipliers. 

(12c) Let .λ := 〈T 〉x , so .0 = σ 2
T = σ 2

T −λ = ‖T − λ‖2.
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15.26 (1) The singular values are (i) 4 with singular vectors proportional to . 
(
1
2

)
, . 
(
2
1

)
, 

and 1 with .
(
2−1

)
, .
(
1−2

)
; (ii) . 

√
3 with . 

(1
2
1

)
, . 
(
1
1

)
, and 1 with .

( 1
0−1

)
, .
(
1−1

)
. 

(7) Let .S := T/λ where . λ is the largest eigenvalue (in the sense of 
magnitude); it has the same eigenvectors . en as T except with eigenvalues 
.μn := λn/λ. If  .v0 = ∑

n anen + y, where .y ∈ ker(T − λ) then . Skv0 =∑
n μk

nanen + y. So  

. ‖Skv0 − y‖2 =
∑

|μn|2k|an|2 ⩽ c2k‖v0‖2, (0 ⩽ c < 1)

and .Skv0 → y as .k → ∞. Hence . |λ|k
λk

T kv0
‖T kv0‖ = Skv0

‖Skv0‖ → y/‖y‖, and 
.vk+1 ≈ λky

‖λky‖ ; the sequence does not converge unless .λ = |λ| but behaves 
like .eikθ y/‖y‖. 

15.35 (7) Answers: (b) eigenvalues .1/(n + 1
2 )π , eigenvectors .sin(n + 1

2 )πx; (c)  
.1/(n + 1

2 )
2π2, .sin(n + 1

2 )πx; so  

. 
∑

n

1

(n + 1
2 )

4π4
=

∫ 1

0

∫ 1

0
min(x, y)2 dy dx = 1/6.

15.41 (3) If .φA = 0 for all .φ ∈ S and A is self-adjoint, then . σ(A) ⊆ S(A) = {0}
and .A = 0. 
(7) .σ(T ) ⊆ B1(0), and .σ(T )−1 = σ(T −1) ⊆ B1(0). 
(8) By the spectral mapping theorem . {0} = σ(P 2 − P) = { λ2 − λ : λ ∈
σ(P ) }, so .λ = 0, 1. 

15.47 (4) Let .T = A + iB with .A,B self-adjoint. Then .A ⩾ 0 implies . S(T ) ⊆
S(A) + iS(B) ⊆ R

+ + iR. Conversely, if .0 > λ ∈ σ(A), then .λ = φA for 
some .φ ∈ S . If .φT = φA + iφB ⩾ 0 for all . φ, then .φB = 0, so .B = 0. 

15.51 (4) .|T ∗|2 = T |T |U∗ = T U∗U |T |U∗ = (T U∗)2. 
(10) .|T | is invertible, so let .U := T |T |−1; it is unitary, e.g., . UU∗ =
T |T |−2T ∗T T −1 = 1. 
(11) (b) .T = U |T | = S|T | 12 , where .:= U |T | 12 ∈ HS , so  . tr(T ) = tr(S|T | 12 )
is independent of the basis. 

(c) . | tr(ST )| = | tr(SU |T |)| = |〈U |T | 12 , S∗|T | 12 〉HS |

⩽ ‖U |T | 12 ‖HS‖S∗|T | 12 ‖HS ⩽ ‖S∗‖‖|T | 12 ‖2HS = ‖S‖‖T ‖Tr

(d) The norm axioms are satisfied because .‖T ‖Tr = ‖|T | 12 ‖2HS and 

. tr |S + T | = trU∗(S + T ) = 〈U, S〉HS + 〈U, T 〉HS ⩽ ‖S‖HS + ‖T ‖HS .
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Also, 

. ‖T ∗‖Tr = trUT ∗ = tr T ∗U = tr |T |.

(e) .|T | = U∗T = CB where .C := U∗A ∈ HS . So  . tr |T | = 〈C∗, B〉 ⩽
‖A‖HS‖B‖HS . 
(f) If .en, e

'
n are the singular vectors of T , then .|T |2en = |λn|2en. Take the 

polar decomposition of .〈e'
n, T en〉 = eiθn |〈e'

n, T en〉|, and let .Uen := eiθne'
n. 

Then 

. 
∑

n

|〈e'
n, T en〉| =

∑

n

〈en, U
∗T en〉 = tr(U∗T ) ⩽ ‖T ‖Tr

If .T en = λne
'
n, then .‖T ‖Tr = ∑

n 〈e'
n, T en〉 = ∑

n λn.



Glossary of Symbols 

.→ Converges to, Definition 3.1 

.⇀ Weak convergence, Section 11.5 

.‖ · ‖X Norm of space X, Definition 7.3 

.〈·, ·〉X Inner product of space X, Definition 10.1 

.1E Characteristic function on E, Review 9.19(1) 

.
∑

n A series of terms, Definition 7.20 

.[an] Equivalence class of sequence .(an)n∈N, Theorem 4.5 

.T ∗ Hilbert adjoint of an operator T , or the  
involute of an algebra element, 

Definitions 10.18 and 15.1 

.T ⏉ Adjoint of an operator T , Definition 11.29 

.x⏉ Dual of a sequence . x, Example 8.3(4) 

.T̂ Gelfand/Fourier transform of T , Definitions 9.33, 14.37, and  
Exercise 9.37(5) 

.[[A]] Span of vectors in A, Review 7.2(7) 

.Ac Complement of set A, Page 7 

.A' Commutant algebra of . A, Exercise 13.10(14) 

.A◦ Interior of set A, Definition 2.7 

.A⊥ Annihilator or orthogonal complement of A, Proposition 10.9 and Definition 11.24 

.⊥A Pre-annihilator of A, Definition 11.24 

.X∗ Dual space of X, Definition 8.1 

.∂A Boundary of set A, Definition 2.7 

. Ā Closure of set A, Definition 2.7 

.xy Multiplication of sequences, Exercise 9.4(3) 

.x · y Dot product of sequences, Example 8.3(4) 

.x ∗ y Convolution of sequences or functions, Exercise 9.7(2) 

.A + B Addition of sets, Review 7.2(12) 

.A ⊕ B Direct sum of subspaces, Review 7.2(15) 

.X ∼= Y Isomorphic spaces, Definition 8.14 
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452 Glossary of Symbols

.X ≡ Y Isometric spaces, Definition 8.14 

.X ⊂∼ Y X is embedded in Y , Definition 8.14 

.X/M Quotient space of X by M , Proposition 8.20 

.B(X) Space .B(X, X), Proposition 8.8 

.B(X, Y ) Space of continuous linear operators .X → Y , Definition 8.1 

.Br(x) Ball of radius r , center x, Definition 2.4 

.Br(x) Closed ball, Example 2.17(3) 

.BX Unit ball of X, ff. Proposition 7.6 

c Space of convergent sequences, Proposition 9.2 

.c0 Space of sequences that converge to zero, Proposition 9.2 

.c00 Space of sequences with a finite number of non-zero 
components, 

Example 7.17(4) 

.C(X) Space .Cb(X, C), Theorem 6.23 

.Cb(X, Y ) Space of bounded continuous functions .f : X → Y , Theorem 6.23 

.Cn (R, X)  Space of n-times continuously differentiable functions, Page 300 

.Cω (A) Space of analytic functions on A, Page 304 

.C[x, y] Space of polynomials in . x, y, Page 9 

.codimA Codimension of subspace A, ff. Proposition 8.20 

d Distance function, Definition 2.1 

D Differentiation operator, Proposition 12.2 

.D(U, Y ) Set of differentiable functions, ff. Definition 12.1 

.D1 “Taxicab” distance on .X × Y , Example 2.2(6) 

.D∞ Max distance on .X × Y , Example 2.2(6) 

.Δ Character space of . X , Definition 13.6 

.δx Dirac functional, Example 8.3(10) 

.dim X Dimension of space X, Review 7.2(10) 

.F A field, usually . R or . C, Page 10 

.G(X ) Group of invertibles of . X , Theorem 13.21 

I Identity operator, Page 8 

.im T Image of a linear map T , Page 8 

.index(T ) Index of an operator T , Definition 11.12 

.ker T Kernel space of a linear map T , Proposition 8.4 

L Left-shift operator, Example 8.3(7) 

.𝓁p Space of sequences with the p-norm, Example 7.4(5) 

.Lp (A) Space of functions on A with the p-norm, Example 7.4(7) 

.limn→∞ Limit as .n → ∞, Proposition 3.2 

.μ Lebesgue measure on . Rn, Review 9.18(4) 

.Ma Multiplication operator by a, Exercise 9.4(4) 

.S(X ) State space of an algebra, Definition 14.34 
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R Right-shift operator, Example 8.6(3) 

.radX Radical of an algebra, Definition 14.31 

.ρ(T ) Spectral radius of T , Proposition 13.12 and 
Theorem 14.3 

.σ(T  )  Spectrum of T , Definition 14.1 

.Ta Translation by a, Exercise 8.13(4) 

.tr(T ) Trace of T , Definition 15.30 

.W(T  )  Numerical range of T , Definition 15.16 



Further Reading 

Functional analysis impinges upon a wide range of mathematical branches, from lin-
ear algebra to differential equations, probability, number theory, and optimization, 
to name just a few, as well as such varied applications as financial investment/risk 
theory, bioinformatics, control engineering, quantum physics, etc. 

As an example of how functional analysis techniques can be used to simplify 
classical theorems consider Picard’s theorem for ordinary differential equations. The 
differential equation .y' = F(x, y), .y(a) = ya , is equivalent to the integral equation 
.y(x) = T (y) := ya + ∫ x

a
F (s, y(s)) ds. It is not hard to show that if F is Lipschitz 

in y and continuous in x, then T is a contraction map on .C[a − h, a + h] for some 
.h > 0, and the Banach fixed point theorem then implies that the equation has a 
unique solution locally. 

However, the classical derivative operator is in many ways inadequate: its domain 
is not complete and it is unbounded on several norms of interest. But there is a 
way to extend differentiation to much larger spaces, namely Sobolev spaces and 
Distributions. The former are Banach spaces . Lp

s of functions that have certain 
grades of integrability (p) and differentiability (s), while the latter are spaces of 
functionals that act on them with weak*-convergence. Distributions include all the 
familiar functions in .L1

loc, but also other ‘singular’ ones, such as Dirac’s delta 
‘function’ . δ and .1/xn. Differentiation can be extended as a continuous operator 
on these spaces, e.g., .Lp

s → L
p

s−1. Moreover, distributions can be differentiated 
infinitely many times; for example, the derivative of the discontinuous Heaviside 
function .1R+ is . δ. But, in general, ‘singular’ distributions cannot be multiplied 
together. A central result is the Sobolev inequality, .‖u‖Lq(Rn) ⩽ cn,p‖Du‖Lp(Rn), 
for .n ⩾ 2, . 1

q
= 1

p
− 1

n
, which implies that the identity map .Lp

s (Rn) → L
q
t (Rn), 

along the arrows in Fig. 1, is continuous. The study of operators on such generalized 
spaces is of fundamental importance: from extensions of the convolution and the 
Fourier transform, to pseudo-differential operators of the type .f (x,D), singular 
integrals, and various other transforms (see [12, 26, 28]). 
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1 − 1 p 

s 

ytilibaitnereffid 
Lp 
s 

L1 
s 

Lp integrability 

L2 

L1 C 

distributions 

Cs 
slope of line 
equals n 

Fig. 1 Sobolev spaces 

Although unbounded, classical differential operators are normal ‘closed opera-
tors’: these have a graph .{ (x, T x) : x ∈ X } which is closed in .X × X. Quite a lot  
of the spectral theory extends in modified form to them. For example their spectrum 
remains closed but not necessarily bounded. So, if one inverts in a point . λ /∈ σ(T )

then .(T −λ)−1 becomes a regular continuous operator, which can often be expressed 
as an integral operator, whose kernel is called its Green’s function. Indeed, it turns 
out that ‘elliptic’ differential operators become Fredholm self-adjoint operators 
under this inversion. This immediately gives certain results, usually falling under 
the heading of Sturm-Liouville theory, such as that the spectrum of the Laplace 
operator .−Δ on a compact shape in . Rn is an unbounded sequence of isolated 
positive eigenvalues, called the “resonant frequencies” or “harmonics” of the shape. 
Deeper results include the Atiyah-Singer index theorem: the Fredholm index of an 
elliptic differential operator is equal to a certain topological invariant of the domain. 

The concept of a Banach space can be generalized to a topological vector space, 
namely a vector space with a topology that makes its operations continuous. Many 
theorems continue to hold at least for “locally convex topological vector spaces”, 
including the Hahn-Banach theorem, the open mapping theorem, and the uniform 
boundedness theorem. Other important results are Schauder’s fixed point theorem, 
the Krein-Milman theorem, the analytic Fredholm index theorem, and the Hille-
Yosida theorem. 

Harmonic analysis is the study of general (but usually locally compact) group 
algebras, especially the Fourier transform. The central results are the Pontryagin 
duality theorem, which asserts that the character space of .L1(G) is itself a group 
that is ‘dual’ to G, and the Peter-Weyl theorem. von Neumann algebras are *-
algebras that arise as double commutators of .C∗-algebras; equivalently, they are 
the weakly closed subspaces of .B(H). The spectral theorem holds for them. There 
is a lot of theory devoted to their structure, and a complete classification is still an 
open problem.
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One must also include some outstanding conjectures: whether every operator on 
a separable Hilbert space has a non-trivial closed invariant subspace; whether every 
infinite-dimensional Banach space admits a quotient which is infinite-dimensional 
and separable; Selberg’s conjecture about the first eigenvalue of a specific Laplace-
Beltrami operator on Maass waveforms; the Hilbert-Pólya conjecture that the non-
trivial zeros of the Riemann zeta function are the eigenvalues of some unbounded 
operator .

1
2 + iA with A self-adjoint; etc. 
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Index 

A 
Absolute convergence, 120, 231, 327 
Adjoint 

operator, 215, 271, 275, 384 
Algebra 

division, 348 
simple, 408 

Algebraic Reconstruction Technique, 224 
AM-GM inequality, 165 
Analytic function, 304, 338, 364 
Annihilator, 268 
Approximate eigenvalue, 353, 392 
Approximation to the identity, 186 
Archimedean property, 11, 29, 34 
Arzela-Ascoli theorem, 92 
Ascending sequence of eigenspaces, 357 
Auto-correlation, 194 
Automorphism, 321, 322, 336, 386 
Axiom of choice, 11, 126 

B 
Baire 

category theorem, 53, 250 
René Louis, 53 

Ball, 18, 74, 110, 150, 204 
closed, 26, 282 

Banach 
algebra, 315 

commutative, 319, 349, 378 
morphism, 320 
semi-simple, 371 

fixed point theorem, 58 
space, 117, 249 
Stefan, 117 

Banach-Alaoglu theorem, 282 

Banach limit, 267 
Banach-Mazur theorem, 267 
Banach-Steinhaus’s theorem, 278 
Basis, 101 

dual, 214, 253, 254, 380 
Hamel, 229 
orthonormal, 229, 401 
Schauder, 122, 130 

Bertrand’s convergence test, 124 
Bessel 

functions, 237 
inequality, 231 

Binomial theorem, 341 
Bolzano-Weierstrass property, 84 
Boundary, 20, 64, 69, 111, 335 
Bounded set, 73, 112, 116 

totally, 75, 116, 150 
Bounded variation, 188 

C 
.C∗-algebra, 383 

commutative, 417 
Cantor 

nested set theorem, 85 
set, 27, 29, 85 

Cauchy 
Augustin Louis, 309 
convergence test, 123 
inequality, 109, 199 
integral formula, 308 
residue theorem, 307 
sequence, 44, 55, 77 
theorem, 306 

Cauchy-Hadamard’s theorem, 327 
Cauchy-Riemann equations, 305 
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Cauchy-Schwarz inequality, 199, 394 
Cayley-Hamilton theorem, 364 
Cayley transformation, 390 
Center of an algebra, 319 
Centralizer, 324 
Cesaro limit, 125, 191 
Chain, 102 

rule, 294 
Character, 320, 373 
Characteristic 

function, 40 
polynomial, 345 

Chebyshev polynomials, 237 
Closed graph theorem, 251 
Closed range theorem, 274 
Closed set, 25, 33, 51, 79 
Closure, 26, 113 
Cluster point, 34 
Codimension, 147 
Coercive operator, 399 
Commutant, 324 
Commutator, 321, 377 
Compact 

operator, 254, 325, 360, 410 
set, 78, 82, 116, 347 

Compact operator 
normal, 400, 407 

Comparison test, 122 
Complementary subspace, 207, 252 
Complete metric space, 47 
Completeness of 

.C(X, Y ), 86 

. L1, 179 

. 𝓁1, 159 

. 𝓁2, 162 

. 𝓁∞, 154 

. 𝓁p , 167 

. Cn, 149 
Completion, 50, 55, 56, 119, 200, 269 
Complexification, 246 
Complex numbers, 16, 384 
Component, 70, 335 
Condition number, 142 
Conformal, 219 
Conjugate 

gradient algorithm, 247 
Connected set, 63 

of . R, 65 
path-connected, 71, 115, 334 
on product space, 71 

Continuity, 36 
of inner product, 200 
of norm, 112 

Continuous functions, 86, 316 

Continuous spectrum, 351 
Contraction map, 57, 58 
Convergence, 31 

linear, 33 
in norm, 277 
pointwise, 86, 277 
product space, 33 
quadratic, 33 
strong, 277 
uniform, 88 
weak, 277, 279 
weak*, 280 

Convex 
hull, 102, 299 

Convex set, 102, 110, 131, 206, 396 
Convolution, 161, 171, 185, 189, 317, 381 
Correlation, 395 
Coset, 145, 211 
Covariance, 395 
Cross-correlation, 194 
Curve, 295 

D 
D’Alembert’s convergence test, 123 
Deconvolution, 225 
Delta function, 130, 188 
Dense set, 29, 38, 50, 60, 185, 209 
Descending sequence of eigenspaces, 358 
Determinant, 334 
Diameter, 73 
Differentiable function, 316 
Differentiation, 130, 293, 329 

product rule, 324 
Dimension, 101 
Directional derivative, 295 
Direct sum, 101 
Dirichlet kernel, 191, 279 
Disconnected set, 63 

totally, 64, 71 
Discrete metric space, 17, 25, 64, 74, 76 
Distance, 15, 39 

between sets, 27 
inherited, 17 

Divisor of zero, 317, 351 
topological, 335, 351 

Dual 
space, 127, 134, 213, 261 

double dual, 269, 276 

E 
Eigenspace, 351 
Eigenvalue, 351, 361, 368, 391
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Eigenvector, 351, 357, 391 
Elliptic operator, 399 
Embedding, 39, 141, 269, 321, 434 
Equicontinuous functions, 92 
Ergodic theorem, 393 
Essential singularity, 308 
Euclidean distance, 16 
Euclidean norm, 105 
Euclidean space, 149, 198, 384 
Exponential function, 330 
Exterior, 20 

F 
Feature extraction, 404 
Fejer kernel, 191 
Fibonacci sequence, 194 
Filter, 189 
Finite-dimensional space, 281 
Finite-dimensional vector space, 101 
First isomorphism theorem, 250 
Fixed point, 58 
Fourier 

coefficients, 189, 381 
Joseph, 233 
series, 234, 273 
transform, 193, 381, 420 

Fourier series, 189 
Frame, 239 
Fréchet Maurice, 16 
Fredholm 

alternative, 359, 364 
Ivar, 359 
operator, 258 

Frequency-time orthonormal bases, 240 
Frobenius norm, 137 
Fuglede’s theorem, 388 
Function 

bounded, 86 
composition of, 38 
equivalence or bi-Lipschitz, 57 
Lipschitz, 57, 81, 128 
open, 40 
space, 107, 172 

Functional, 127 
Functional calculus, 364, 417 
Function space 

. L2, 198 

. L∞, 176 
Fundamental theorem of 

algebra, 348 
calculus, 299 

G 
Gauss’s convergence test, 124 
Gauss-Seidel algorithm, 144 
Gaussian quadrature, 244 
Gelfand 

Israel, 378 
transform, 377, 418 

Gelfand-Mazur theorem, 348 
Gelfand-Naimark-Segal theorem, 434 
Gelfand-Naimark theorem, 417 
Generating function, 381 
Gershgorin’s theorem, 352 
Gibbs phenomenon, 273 
Gliding hump sequence, 287 
Gram matrix, 210 
Gram-Schmidt orthogonalization, 230 
Graph, 40 
Green’s function, 243 
Group algebra, 324, 384 

H 
Haar basis, 241 
Hadamard matrix, 291 
Hahn-Banach theorem, 262, 266 
Hamming distance, 17 
Hausdorff 

distance between sets, 27 
Felix, 32 
maximality principle, 102, 126 

Hausdorff-Toeplitz theorem, 396 
Heine-Borel theorem, 82 
Hermite functions, 236 
Hilbert 

adjoint, 215 
projection theorem, 206 
space, 200, 410, 434 

Hilbert cube, 163 
Hilbert-Schmidt operator, 409 
Holder’s inequality, 167, 171, 180 
Homeomorphism, 39, 81 
Hyperplane, 131 

I 
Ideal, 318, 319, 334, 408 

maximal, 319, 372, 379 
Idempotent, 324, 331, 420 
Ill-conditioned equation, 142 
Image 

of a function, 8, 131 
reconstruction, 225
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Imaginary part, 387 
Index 

of a Fredholm operator, 258 
theorem, 258 

Inner product, 197, 200, 410 
Integers, 16, 29, 64 
Integral operator, 412 
Integration, 130, 177, 297 

change of variables, 301 
complex, 304 
by parts, 301 

Interior, 20, 151 
Interlacing theorem, 406 
Intermediate value theorem, 67 
Interval, 65 
Inverse problem, 220 
Invertible elements, 316 

group of, 333, 335 
Involution, 383 
Isolated point, 28 
Isolated singularity, 308 
Isometry, 57, 141, 213 

partial, 428 
Isomorphism, 141, 217, 250, 385, 417 

of Banach algebras, 321 

J 
Jacobi algorithm, 144 
Jacobian matrix, 297 
Jacobson radical, 371 
Jordan canonical form, 362 
JPEG, 245 

K 
Kernel, 183 

of an operator, 131 
Kummer’s convergence test, 123 
Kuratowski 

closure, 26 
Kazimierz, 65 

L 
Laguerre functions, 236 
Laplace transform, 381 
Laurent series, 339 
Least squares approximation, 206, 210 
Least upper bound, 21 
Lebesgue 

measure, 173 
space, 107, 178 

Legendre polynomials, 235 

Leibniz test, 120 
L’Hopital’s rule, 297 
Liminf, 34 
Limit, 31 
Limit point, 28, 285 
Limsup, 34 
Linearly independent vectors, 100, 352 
Linear subspace, 113 
Linear transformation, 127, 293 
Liouville’s theorem, 339 
Lipschitz function, 296 
Littlewood’s inequality, 171 
Locally connected, 71 
Logarithm function, 330 

M 
Matrix, 129, 132, 139, 323, 407 

norm, 137, 169 
Maximum modulus principle, 310 
Mean value theorem, 299 
Measurable function, 176 
Measurable set, 174 
Metric space, 15 

equivalent, 59, 108 
Minimal polynomial, 318, 323 
Minkowski 

Hermann, 166 
semi-norm, 112 

Minkowski’s inequality, 166, 188 
reverse, 172 

Moore-Penrose pseudo-inverse, 221 
Morphism, 383, 425 
Multiplication operator, 158, 260, 276, 354, 

364, 389 
Multi-resolution scheme, 242 

N 
Neighborhood, 19 
Net, 35 
Newton-Raphson method, 302 
Nilpotent, 324, 331, 362 
Norm, 104 

equivalent, 108 
Normal element, 385 
Normal operator, 391 
Nowhere dense, 29, 54 
Nullity, 131 
Null set, 175 
Numerical 

radius, 393 
range, 393
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O 
Open 

cover, 78 
mapping theorem, 249 
set, 20 

relative, 23 
Operator 

continuous, 127 
finite-rank, 133, 256 
integral, 183, 257 
norm, 134 
shift, 130, 133, 273, 337, 353 
trace-class, 415, 430 

Orthogonal, 197 
projection, 207, 209 
space, 203 

P 
Parallelogram law, 201 
Parseval’s identity, 230, 235 
Path, 68 
Perturbation theory, 144 
Phylogeny, 229 
Pitt’s theorem, 289 
Point spectrum, 351 
Polar decomposition, 428 
Polarization identity, 202, 384 
Pole, 308 
Polynomial, 9, 89, 116, 185, 319, 348 

minimal, 139 
Positive functional, 426 
Power series, 325 
Power spectrum, 193, 194 
Pre-annihilator, 268 
Pre-image of a function, 131 
Principal components, 401 
Product space 

.C∗-algebras, 384 
Banach algebras, 317 
Banach spaces, 117 
inner products, 204 
metric spaces, 17 
normed spaces, 108 
vector spaces, 100 

Projection, 143, 206, 252 
orthogonal, 392 

Pseudo-distance, 29 
Pythagoras’ theorem, 198, 231 

Q 
QR decomposition, 247 
Quadratic form, 346 

Quasinilpotent, 371, 389 
Quotient space, 145, 319 

R 
Raabe’s convergence test, 124 
Radical of algebra, 371 
Radius of convergence, 327 
Rank, 131, 133 
Rank-nullity formula, 133 
Ratio test, 123, 327 
Rayleigh coefficient, 393 
Real number space, 47 
Real part, 387 
Rearrangement, 33 
Reflexive space, 269, 284 
Regression, 221, 228 
Residual spectrum, 351, 391 
Residue, 308, 339 
Resolvent set, 345 
Riesz 

lemma, 148 
map, 213, 270 
representation theorem, 213 
theorem, 150 

Riesz-Schauder theorem, 361 
Rodrigues’ formula, 237 
Root test, 123 
Rouche’s theorem, 310 
Row vector, 129 

S 
Scalar multiplication, 99, 112 
Scalogram, 242 
Schauder 

basis, 156 
Juliusz, 122 
theorem, 275 

Schrodinger’s equation, 382 
Schur’s property, 289 
Schur’s test, 137 
Second isomorphism theorem, 254 
Self-adjoint element, 385 

positive, 421 
Semi-norm, 104 
Separable, 60, 76 

normed space, 119 
Separating hyperplane theorem, 266 
Sequence 

asymptotic, 44 
increasing, 45 
rearrangement, 121
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Sequence space, 106, 153 
c, 155 
. 𝓁1, 158 
. 𝓁2, 162, 198 
. 𝓁∞, 153 
. 𝓁p , 163 
. c0, 155 

Series, 120 
convergence tests, 122 

Simple function, 175 
Singular value decomposition, 401 
Spanning set, 100 
Spectral 

idempotent, 369 
mapping theorem, 367 
radius, 326, 347, 388 
theorem, 400, 401 

Spectral theorem, 431 
Spectrogram, 241 
Spectrum, 345 

of an algebra, 320 
of an operator, 350, 360 

Sphere, 41 
Spherical harmonics, 237 
Spline, 88, 186 
Square root operator, 422 
Squeezing principle, 35 
Standard deviation, 395 
State space, 373 
Stone Marshall, 93 
Stone-Weierstrass theorem, 89 
Subalgebra, 318 
Subsequence, 33 
Subspace linear, 100 
Sylvester’s inequality, 133 

T 
Tangent, 295 
Taylor 

series, 338 
theorem, 300 

Third isomorphism theorem, 254 
Tikhonov regularization, 223, 406 
Tomography, 226 
Topological space, 16 
Trace, 409 
Translation, 101, 140, 390 

invariant, 103, 184 

Triangle inequality, 15, 104 
Trotter formula, 332 

U 
Uncertainty principle, 395 
Uniform boundedness theorem, 278 
Uniformly continuous, 56, 76, 81 
Uniformly continuous function, 55 
Unitary 

element, 385, 387 
operator, 217, 386 

V 
Vector 

addition, 99, 112 
space, 99 

Volterra 
operator, 184, 219, 357 
Vito, 185 

von Neumann John, 432 

W 
Wavelet bases, 241 
Weakly 

bounded, 281, 285 
closed, 285 

Weierstrass 
Karl, 88 
M-test, 125 

Weighted space, 125, 198 
Well-ordering principle, 102 
Wiener deconvolution, 225 
Wiener-Khinchin theorem, 194 
Wiener’s theorem, 381 
Windowed Fourier basis, 240 
Woodbury’s formula, 318 

Y 
Young’s inequality, 171 

Z 
Zorn’s lemma, 102
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