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Preface

Originally, functional analysis was the study of functions. It is now considered to be
aunifying subject that generalizes much of linear algebra and real/complex analysis,
with emphasis on infinite dimensional spaces. This book introduces this vast topic
from these elementary preliminaries and develops both the abstract theory and its
applications in three parts: (I) metric spaces, (II) Banach and Hilbert spaces, and
(IIT) Banach algebras.

Especially with the digital revolution at the turn of the millennium, Hilbert spaces
and least squares approximation have become necessary and fundamental topics for
a mathematical education, not only just for mathematicians, but also for engineers,
physicists, and statisticians interested in signal processing, data analysis, regression,
quantum mechanics, etc. Banach spaces, in particular L' and L> methods, have
gained popularity in applications and are complementing or even supplanting the
classical least squares approach to many optimization problems.

Aim of This Book

The main aim of this book is to provide the reader with an introductory textbook
that starts from elementary linear algebra and real analysis and develops the
theory sufficiently to understand how various applications, including least squares
approximation, etc., are all part of a single framework. A textbook must try to
achieve a balance between rigor and understanding: not being too elementary by
omitting ‘hard’ proofs, but neither too advanced by using too strict a language for the
average reader and treating theorems as mere stepping stones to yet other theorems.
Despite the multitude of books in this area, there is still a perceived gap in learning
difficulty between undergraduate and graduate textbooks. This book aims to be in
the middle: it covers much material and has many exercises of varying difficulty,
yet the emphasis is for the student to remember the theory clearly using intuitive
language. For example, real analysis is redeveloped from the broader picture of

vii



viii Preface

metric spaces (including a construction of the real number space), rather than
through the even more abstract topological spaces.

Audience

This book is meant for the undergraduate who is interested in mathematical analysis
and its applications, or the research engineer/statistician who would like a more
rigorous approach to fundamental mathematical concepts and techniques. It can also
serve as a reference or for self-study of a subject that occupies a central place in
modern mathematics, opening up many avenues for further study.

The basic requirements are mainly the introductory topics of mathematics: set
and logic notation, vector spaces, and real analysis (calculus). Apart from these, it
would be helpful, but not necessary, to have taken elementary courses in Fourier
series, Lebesgue integration, and complex analysis. Reviews of vector spaces and
measurable sets are included in this book, while the other two mentioned subjects
are developed only to the extent needed.

Examples are included from many areas of mathematics that touch upon
functional analysis. It would be helpful at the appropriate places, for the reader to
have encountered these other subjects, but this is not essential. The aim is to make
connections and describe them from the viewpoint of functional analysis. With the
modern facilities of searching over the Internet, anyone interested in following up a
specific topic can easily do so.

The sections follow each other in a linear fashion, with the three parts fitting
into three one-semester courses, although Part I is twice as long as the others. The
following sections may be omitted without much effect on subsequent topics:

Section 6.4 C(X,Y)

Section 9.2 Function Spaces

Section 11.5 Pointwise and Weak Convergence

Sections 12.1 and 12.2 Differentiation and Integration

Sections 14.4 and 14.5 Functional Calculus and the Gelfand Transform

Section 15.6 Representation Theorems

Acknowledgments
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Chapter 1 ®
Introduction Check for

Modern mathematics depends to a considerable degree upon extending the finite
to the infinite. In this regard, imagine extending the geometric vectors that we are
familiar with to an infinite number of components. That is, consider

v=aje +aer+---=(ay,a,as,...)

where e; are unit independent vectors just like i, j and k in Cartesian geometry. It
is not at all clear that we can do so—for starters, what do those three dots “---” on
the right-hand side mean? Surely they signify that as more terms are taken one gets
better approximations of v. This immediately suggests that not every such “infinite”

vector is allowed; for example, it might be objected that the vector
v=e t+et+e+---

cannot be approximated by a finite number of these unit vectors, as the remainder
e, + - -- looks as large as v. Instead we might allow the infinite vector

v:e1+%e2+%e3+-~-
although even here, it is unclear whether this may also grow large, just as

1 1
1+=-+=-+... = 0.
2 3
To continue with our experiment, let us just say that the coefficients become
zero rapidly enough. There are all sorts of operations we can attempt to do with
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2 1 Introduction

these “infinite” vectors, by analogy with the usual vectors: addition of vectors and
multiplication by a number are easily accomplished,

):(271717_2’)’

1,540+, 4.4,
)=(0,2,—1,...).

2x (0,1, —3,...
One can even generalize the “dot product”
(ai,az,...)- (b1, ba,...) =arby + azba + - - -,

assuming the series converges—and we have no guarantee that it always does. For
. . 1 1 0o 1. - . .
example, if x is equal to (1, AN J.thenx -x =) =, - isinfinite. Again let
us remedy this situation by insisting that vectors have coefficients that decrease to 0
fast enough.
Having done this, we may go on to see what infinite matrices would look like.

They would take an infinite vector and return another infinite one, as follows,

a1l A1 ------ z1 n
ags1 Aa22 T2 =192 ,
where yi = aiix1 + aipxa + -+ = ), dinXp, etc. Perhaps we may need to have

the rows of the matrix vanish sufficiently rapidly as we go down and to the right of
the matrix.

Once again, many familiar ideas from finite matrices seem to generalize to this
infinite setting. Not only is it possible to add and multiply these matrices without any
inherent difficulty, but methods such as Gaussian elimination can also be applied
in principle. There seems to be no intrinsic problem to working with infinite-
dimensional linear algebra.

It may come as a slight surprise to the reader that in fact they have already
encountered these infinite vectors before! When a function is expanded as a
MacLaurin series

f@) = O + f O+ O*+---,

it is in effect written as an infinite sum of the basis vectors (or functions) 1, ¢, 2.,
each with the numerical coefficients f(0), f’(0), % f(0), ..., respectively. Adding
two functions is the same as adding the two infinite vectors of coefficients; and
multiplying by a number is equivalent to multiplying each coefficient by the
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same number. What about infinite matrices? Take a look at the following form of
differentiation, here written in matrix form,

And just as there are various bases that can be used in geometry, so there are
different ways to expand functions, the most celebrated being the Fourier series

f(@) =ag+ajcost +bysint +apcos2t + bysin2t + - -- .

The basis vectors are now 1, cost, sin ¢, cos 2¢, etc. What matrix does differentiation
take with respect to this basis?

If we accept that all this is possible and makes sense, we are suddenly made
aware of a new unification of mathematics: functions can be thought of as ‘points’
in a space of infinite vectors, certain differential equations are matrix equations,
the Fourier and Laplace transforms can be thought of as generalized “matrices”
mapping a function (vector) to another function, etc. Solving a linear differential
equation, and finding the inverse Fourier transform, are equivalent to finding the
inverses of their “matrices”.

Do we gain anything by converting to a matrix picture? Apart from the practical
matter that there are many known algorithms that deal with matrices, a deeper reason
is that linear algebra and geometry give insights to the subject of functions that we
may not have had before. Euclid’s theorems may possibly still be valid for functions
if we think of them as ‘points’ in an infinite-dimensional vector space. We wake up
to the possibility of a function being perpendicular to another, for example, and that
a function may have a closest function in a “plane” of functions.

Conversely, ideas from classical analysis may be transferred to linear algebra.
Since square matrices can be multiplied with themselves, can the geometric series
1 + A+ A% + ... make sense for matrices? Perhaps one can take the exponential
of a matrix e? := 1+ A+ A%/2! 4+ A3/3! 4 ... There’s no better way than to take
the plunge and try it out, say on the differentiation ‘matrix’ D,

PfO)=0+D+D*2+ - )fO)=fO)+ O+ 02+ = fa+1)
(by a Taylor expansion around #). The “matrix” e? certainly has meaning: it
performs an unexpected, if mundane, operation—it shifts the function f one step
to the left! Again, suppose we have the equation y’ — 2y = e’; manipulating the
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derivative blindly as if it were a number gives a correct solution (but not the general
solution)

y=[D -2 =11 +D/2+D*/4+ - )e' = —¢'.

(Yet repeating for the equation y’ — 2y = e? fails to give a meaningful solution.)

In fact, historically, the subject of functional analysis as we know it started in the
nineteenth century when mathematicians began to notice the connections between
differential equations and matrices. For example, the equation

Y () =a®)y(@) +g@)

can be written in equivalent form as
t
y() = / a(s)y(s)ds + g(). (1.1)
fo

The integral f[f) a(s)y(s)ds is an infinitesimal version of ZQ’: | dnYn and can be
thought of as a transformation of y(#). Equation (1.1) is akin to a matrix equation
y = Ay + b, and we are tempted to try out the solution y = (1 — A)~!'b =
(1+A+ A%+ )b

Nonetheless, technical problems in carrying out this generalization arise immedi-
ately: are the components of an infinite vector unique? They would be if the vectors
e, are in some sense ‘perpendicular’ to each other. But what is this supposed to
mean, say for the MacLaurin series? After all, there do exist non-zero functions
whose MacLaurin coefficients are all zero. The question of whether the Fourier
coefficients are unique took almost a century to answer! And extra care must be
taken to handle infinite vectors. For example, let

v Z:( 1, O, Oa 07 )
vy =(-1, 1, 0, 0,...)
v3 :Z( 0, _1, 15 07 )
v4 :=( 07 0’ _11 17 )
It seems clear that
vi+v+vs+---=0,

yet the size of the sum of the first #n vectors never diminishes:

v=vi+---+v,=(0,...,0,1,0,...) > v-v=1.
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Here’s another seeming paradox: Consider the infinite number of equations x; =
X2, X3 = X3, ..., X = Xp41, .... Clearly it has the solutions x; = x, = --- = A
for any A € R. But let us try to use infinite matrices to solve this problem. The
equations in matrix form become Ax = 0,

1 -1 0 1
0 1 =17 x| =

Its inverse can be calculated using Gaussian elimination to get

T =
RS

One can verify that AA~! = I = A~!A. But doesn’t this then imply that x =
A~10 = 0? What happens to the solutions we obtained above? On the other hand, if
the non-zero vector (1, 1, ...) satisfies Ax = 0, then 0 would be an eigenvalue, but
then shouldn’t it appear on the main diagonal of A?

Because of these trapfalls, we need to proceed with extra caution. It turns out that
many of the equations written above are capable of different interpretations and so
cannot be taken to be literally true.

These considerations force us to consider the meaning of convergence. The
reader may already be familiar with the real line R, in which one can speak about
convergence of sequences of numbers, and continuity of functions. Some of the
main results in real analysis are:

(i) Cauchy sequences converge,
(i) For continuous functions, if t, — ¢ then f(t,) — f(¢),
(iii)) Continuous real functions are bounded on intervals of type [a, b] and have the
intermediate value property, that is, they map intervals to intervals.

We seek generalizations of these to R” and possibly to infinite dimensional
spaces. We do seem to have an intuitive sense of what it means for vectors to
converge x,, — X, but can it be made rigorous? Is it true thatif x, — x and y, — y
then f(x,, y») — f(x,y) when f is a continuous function? Are continuous real
functions bounded on “rectangles” [a, b] x [c,d], and is the latter the correct
analogue of an “interval”? Since vector functions are common in applications, it
is important to show how these theorems apply in a much more general setting than
R, and this can be achieved by stripping off any inessential structure, such as its
order (<X). As we proceed to answer these questions, we will see that the real line
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is very special indeed. Intervals play several roles in real analysis, roles that are
distinguished apart in R”, where we speak instead of connected sets, balls, etc.

The book is divided into three parts: the first considers convergence, continuity,
and related concepts, the second part treats infinite vectors and their matrices, and
the third part tackles infinite series of matrices and more.

Functional analysis is a rich subject because it combines two large branches
of mathematics: the ropological branch concerns itself with convergence, conti-
nuity, connectivity, boundedness, etc.; the algebraic branch concerns itself with
operations, groups, rings, vectors, etc. Problems from such different fields as
matrix algebras, differential equations, and approximation theory, can be unified
in one framework. As in most of mathematics, there are two streams of study: the
abstract theory deduces the general results, starting from axioms, while the concrete
examples are shown to be part of this theory. Inevitably, the former appears elegant
and powerful, and the latter full of detail and perhaps daunting. Nonetheless, both
pedagogically and historically, it is often by examples that one understands the
abstract, and by the theory that one makes headway with concrete problems.

Most sections contain a number of worked out examples, notes, and exercises:
it is suggested that a section is first read in full, including its propositions and
exercises. These exercises are an essential part of the book; they should be worked
out before moving to the next section (some hints and answers are provided in the
appendix, and many worked solutions can be found in the Instructor’s solutions
manual). To prevent the exercises from becoming a litany of “Show ...”" and “Prove
...”7, these terms have frequently been omitted, partly to instil an attitude of critical
reading. As a guide, the notes and exercises have been marked as follows:

» refers to important notes and results;
* more advanced or difficult exercises that can be skipped on a first reading;
< side remarks that can be skipped without losing any essential ideas.

1.1 Preliminaries

Familiarity with the following mathematical notions and notation is assumed:

Logic and Sets
The basic logical symbols are = (implies), NOT, AND, OR, as well as the quantifiers
3 (there exists) and V (for all). The reader should be familiar with the basic proof
strategies, such as proving ¢ = ¥ by its contrapositive (NOT ) = (NOT ¢), and
proofs by contradiction. The negation of Vx ¢, is 3x (NOT ¢y); and NOT (Ix ¢) is
the same as Vx (NOT ¢,). The symbol := is used to define the left-hand symbol as
the right-hand expression, e.g., e == Y ne .

A set consists of elements, and x € A denotes that x is an element of the set A.
The empty set & contains no elements, so x € & is a contradiction.

The following sets of numbers are the foundational cornerstones of mathematics:
the natural numbers N = {0, 1, ...}, the integers Z, the rational numbers Q, the real
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numbers R, and the complex numbers C, the last containing the imaginary number
i. The induction principle applies for N,

IfACNANDOc€ AANDVER(n€eA = n+1¢eA)then A=N.

Although variables should be quantified to make sense of statements, as in
VYa € Q, a®> # 2, in practice one often takes shortcuts to avoid repeating the
obvious. This book uses the convention that if a statement mentions variables
without accompanying quantifiers, say, [|x + y|| < |lx|| + |y, these are assumed to
be Vx, Vy, etc., in the space under consideration. Natural numbers are usually, but
not exclusively, denoted by the variables m, n, N, ..., real numbers by ¢, a, b, .. .,
and complex numbers by z, w, .... An unspecified X or Y refers to a metric space,
a normed space, or a Banach algebra, depending on the chapter.

Sets are often defined in terms of a property, A := {x € X : ¢, }, where X
is a given ‘universal set’ and ¢, a ‘well-formed’ statement about x. For example,
Rt :={xeR:x>0}.

A C B denotes that A is a subset of B,ie.,x € A = x € B; A C B means
A C Bbut A # B. A “non-trivial” or “proper” subset of X is one which is not
@ or X. “Nested sets” are contained in each other asin Ay C A € A3 C ...or
Al DA D....

The complement of a set A is denoted by X\ A, or by A° for short; A®® = A,
and A C B & B® C A®°. AN B and A U B are the intersection and union of
two sets, respectively. Two sets are “disjoint” when A N B = &, while we say “A
intersects B” to mean AN B # &. De Morgan’s laws state that (AU B)® = A°N B°
and (A N B)® = A® U B°. The ‘symmetric difference’ of two subsets is AAB =
(A U B)N(A N B). In general, the union and intersection of a number of sets are
denoted by | J; A; and (1); A; (where the range of the index i is understood by the
context). A “cover” of A is a collection of sets { B; : i € I } whose union includes
A,ie., A C |J; B;; a“partition” of X is a cover by disjoint subsets of X.

Fairs of elements are denoted by (x, y), or as (f ), generalized to finite ordered
lists (x1, ..., x,). The product of two sets is the set of pairs

XxY={x,y):xeX, yeY}
in particular X2 := X x X = { (x, y) : x, y € X }, and by analogy
X" ={(x1,...,xn):x;€X,i=1,...,n}

An important example is the plane R?, whose points are pairs of real numbers
(called “coordinates™). The unit disk is { (x, y) € R? : x> 4+ y? < 1}; its perimeter
is the unit circle, S' := { (x,y) e R : x>+ y2 =1}.

Functions
A function f : X — Y, x — f(x), assigns, for every input x € X, a unique output
element f(x) € Y. (It need not be an explicit procedure.) X is called the “domain”
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of f and Y its “codomain”. Functions are also commonly referred to as “maps”
or “transformations”. To avoid being too pedantic, we sometimes say, for example,
“the function x — e*” without reference to the domain and codomain, when these
are obvious from the context.

The “image” of a subset A C X, and the “pre-image” of a subset B C Y are

fA={f@eY:acA}), f'B={aeX:fa)eB},

also denoted by f[A] and f~![B] for clarity. The image of f isim f == fX.Itis
easy to show that for any number of sets A;,

filUan=Urran Al <) LA
A=A A=) Al

The set of functions f : X — Y is denoted by Y'X.

Some functions can be composed together (f o g)(x) := f(g(x)) whenever the
image of g lies in the domain of f. Composing with the trivial identity function
I:X — X, x + x (one for each set X), hasno effect, fol = fand I/ o f = f.

The restriction of a function f : X — Y to a subset M C X is the function
flm + M — Y which agrees with f on M, i.e., f|y(x) = f(x) whenever x € M.
Conversely, f is said to be an extension of f|y.

The reader should be familiar with the functions ¢t — —¢, ", |¢t|, for t € R or
C; (x,y) = x 4+ y, xy, with domain R? or C?; (x, y) — x/y for y # 0; and
(x1, ..., x,) > max(xy, ..., x,) for real numbers x;. In particular, the absolute
value function satisfies

la+bl < lal+bl, la| 20, la|=0 < a=0, |ab|=|al|lb|.

Conjugation is the function™: C — C, a + ib + a — ib; its properties are

=zw, z =2z, 7z =|z|%

el

z+w=z+w,

The Kronecker delta function is §;; = { (1) l ; ] . The exponential function ¢ +—
1 J
¢, R — R, may be defined by e’ := ) 2 ;—n!; it satisfies ¢ = 1 and e’ > 0.

Sequences are functions x : N — X, but x(n) is usually written as x,, and the
whole sequence x is referred to by (x,,),en or (xg, X1, . ..) or even just (x,); real or
complex-valued sequences are denoted by bold symbols, x. For example (1/2") is
the sequence (1, %, 41—1, ...), whichis shorthand forO — 1,1 %, etc. It is important
to realize that (x,),¢N is a function and not a set of values, e.g. (1, —1, 1, —1,...) is
quite different from (—1,1,1,1,...) and (—1, 1, —1, 1, ...), even if they have the
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same set of values. The set of real-valued sequences is denoted by RN := {x : N —
R}, and of the complex-valued sequences by CN. Functions x : Z — X are also
sometimes called sequences and are denoted by (x,,),ez-

Polynomials (of one variable) are functions p : C — C that are a finite number of
compositions of additions and multiplications only; every polynomial can be written
in the standard form p(z) = a,z" +---+ajz+ag (a; € C,a, # Ounless p = 0); n
is called the degree of p. The set of all polynomials in the variable z, with complex
coefficients, is denoted C[z].

A function f : X — Y is /-1 (“one-to-one”) or injective when f(x) = f(y) =
X = y; itis onto or surjective when f X = Y. A bijection is a function which is both
1-1 and onto; every bijection has an inverse function f~!, whereby f~'o f(x) = x,

fofty=y.
Sets may be finite, countably infinite, or uncountable, depending on whether there
exists a bijection from the set to, respectively, (i) aset { 1, ..., n} for some natural

number 7, or (ii) N, or (iii) otherwise. In simple terms, a set is countable when its
elements can be listed, and finite when the list terminates. If A, B are countable sets
then so is A x B; more generally, the union of the countable sets A,,,n =0, 1,2, ...,
is again countable:

Ap = { aoo,*aop ap, ... }
oS

Ay ={ apy, all,‘alz, )
p Ay

Ay={ a, a2, axn, ... }
/

L An = {a00. @01. a0, aca. . ..}
n=0

Relations and Orders
A relation is a statement about pairs of elements taken from X x ¥, e.g. x = y>+1
for (x, y) € R2. An equivalence relation ~ on a set X is a relation on X 2 which is

reflexive : X=X,
symmetric: x~Xy & y XX,
transitive: xRy z = x X Z.

An equivalence relation induces a partition of the set X into equivalence classes
[al ={xeX:x~a}.

An order < is a relation which is reflexive, transitive, and anti-symmetric:

XLYS<Xx > x=Yy.
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One writes x < y when x < y but x # y. A linear order is one which also satisfies
x < yORy < x. A number x is positive when x > 0, whereas “non-negative”
means x > 0. An upper bound of a set A is a number b which is larger than any
a € A. A “least upper bound”, denoted sup A, is the smallest such upper bound (if
it exists), i.e., every upper bound of A is greater than or equal to sup A. There are
analogous definitions of lower bound and greatest lower bound, denoted inf A.

Groups and Fields
A group is a set G with an associative operation and an identity element 1, such that

each element x € G has an inverse element x !,

x(yz) =(xy)z, Ix=x=x1, xx =1=x""x.

A subgroup is a subset of G which is itself a group with the same operation and
identity. A normal subgroup is a subgroup H such that x "' Hx C H forall x € G.
An example of a group is the set C\{0} with the operation of multiplication; the set
S :={e'? : 6 € R} is a subgroup since e/?¢/? = /019 | = ¢0, (¢/9)7! = 710
are allin S.

A field T is a set of numbers, such as Q, R, or C, whose elements can be added
and multiplied together associatively, commutatively, and distributively, that is, for
alla,b,c e,

(a+b)+c=a+ b+c), (ab)c = a(bc),
a+b=>b+a, ab = ba,
(a 4+ b)c = ac + bc,

there is a zero 0 and an identity 1, every element a has an additive inverse, or
negative, —a, and every a # 0 has a multiplicative inverse, or reciprocal, 1/a:

O+a=a, la = a,
a+ (—a) =0, at=1(@+#0).
The real number space R is that unique field which has a linear order < such that

@a<b=a+c<b+c,and0<a,b = 0<ab,
(b) Every non-empty subset with an upper bound has a least upper bound.

The intervals are the subsets

[a,b] ={xeR:a<x<b}, la,b] ={xeR:a<x <b},
l[a,b] ={xeR:a<x<b}, la,b] ={xeR:a<x<b},
[a,o0] ={xeR:a<x}, la,oo[ ={xeR:a<x},
]l—00,a] ={xeR:x<a}, ]l—o0,al ={xeR:x <a},

]—o00, 00 =R
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where a < b are fixed real numbers. The real numbers satisfy the Archimedean
property

Vx>0,d3neN, x <n.

The proof is simple: If the set N had an upper bound in R then it would have a least
upper bound «; by definition, this implies that ¢ — 1 is not an upper bound, meaning
there is a number n € N such thatn > o — 1; yet « is an upper bound, son +1 < «.
This contradiction shows that no x € R is an upper bound of N: there is ann € N
such that n > x.

The Axiom of Choice
There is an important set principle, called the axiom of choice, that is not usually
covered in elementary mathematics textbooks:

If A= {A; :i € 1}1isacollection of non-empty subsets of a set X, then there is
afunction f : I — X such that f(i) € A;.

That is, this ‘choice’ function selects an element from each of the sets A;, where
the index i ranges over some set /. The Axiom of Choice is often used to create a
sequence (x,)neN from a given list of non-empty sets A,, with x, € A,. It seems
obvious that if a set is non-empty then an element of it can be selected, but the
existence of such a procedure for arbitrary collections of sets cannot be proved from
the other standard set axioms.



Part I
Metric Spaces



Chapter 2 ®
Distance Pt

Metric spaces can be thought of as very basic spaces, with only a few axioms, where
the ideas of convergence and continuity exist. We wish to understand what it means
in general for x, to converge to x, whether they are real numbers, vectors, matrices
or functions. One fundamental ingredient that makes these concepts rigorous is that
of a distance, also called a metric, which is a measure of how close elements are to
each other.

Definition 2.1

A distance (or metric) on a metric space X is a function

d: X? > Rt
(x,y) = d(x,y)

such that the following properties (called the axioms of a metric space) hold
forall x, y,z € X,

(1) d(x,y) <d(x,z)+d(z,y) Triangle Inequality, -
(i) d(y,x) =d(x,y) Symmetry, ® ey
(ii) d(x,y) =0 & x =y Distinguishability.

X

A metric space is not just a set, in which the elements have no relation to each
other, but a set X equipped with a particular structure, its distance function d. One
can emphasize this by denoting the metric space by the pair (X, d), although it is
more convenient to denote different metric spaces by different symbols such as X,
Y, etc.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024 15
J. Muscat, Functional Analysis, https://doi.org/10.1007/978-3-031-27537-1_2
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Maurice Fréchet (1878-1973) Fréchet studied under
Hadamard (who had proved the prime number theorem
and had succeeded Poincaré) and Borel at the University
of Paris (Ecole Normale Supérieure); his 1906 thesis
developed “abstract analysis”, an axiomatic approach to
abstract functions that allows the Euclidean concepts of
convergence and distance, as well as the usual algebraic
operations, to be applied to functions. Many terms, such
as metric space, completeness, compactness etc., are
due to him.

In what follows, X will denote any abstract set with a distance, not necessarily R
or R", although these are of the most immediate interest. We still call its elements
“points”, even if in reality they are geometric points, sequences, or functions. What
matters, as far as metric spaces are concerned, is not the internal structure of its
points, but their outward relation to other points.

Although most distance functions treated in this book are of the type d(x, y) =
|[x — yl|, as for R, the point of studying metric spaces in more generality is not
only that there are some exceptions that don’t fit this type, but also to emphasize
that addition/subtraction is not essential, as well as to prepare the groundwork for
even more general spaces, called fopological spaces, in which pure convergence is
studied without reference to distances (but which are not covered in this book).

There are two additional axioms satisfied by some metric spaces that merit
particular attention: complete metrics, which guarantee that their Cauchy sequences
converge, and separable metric spaces whose elements can be handled by approx-
imations. Both properties are possessed by compact metric spaces, which is what
is often meant when the term “finite” is applied in a geometric sense. These are
considered in later chapters.

Easy Consequences
l.d(x,z) 2 |d(x,y) —d(z, y)|.
2. If x1, ..., x, are points in X, then by induction on n,

d(x1, x,) <d(x1,x2) + - +dxn—1, Xp).

Examples 2.2

1. The spaces N, Z, Q, R, and C have the standard distance d(a, b) := |a — b|.
Check that the three axioms for a distance are satisfied, making use of the
in/equalities |s + ¢| < |s| + ¢, |—s| = |s],and [s| =0 & 5 = 0.

2. » The vector spaces R” and C" have the standard Euclidean distance defined by
dx,y) = llx—yll :=/>/_ lai = bi|*forx = (a1, ...,an),y = (b1,...,bn)
(prove this for n = 2).
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. One can define distances on more general spaces. For example, we will later

show that the space of real continuous functions with domain [0, 1] has a distance
defined by d(f, g) := maxyeo.17 | f(x) — g(x)|.

. < The space of ‘shapes’ in R? (roughly speaking, subsets that have an area) have

ametric d(A, B) defined as the area of the symmetric difference AAB.

. » Any subset of a metric space is itself a metric space (with the ‘inherited’ or

‘induced’ distance). (The three axioms are such that they remain valid for points
in a subset of a metric space.)

. » The product of two metric spaces, X x Y, can be given several distances, none

of which have a natural preference. Two of them are the following

Dy ((31). (33)) :=dx (x1,x2) +dy (y1, y2),
Do ((31), (33)) = max(dx (x1, x2), dy (1, y2))-
For convenience, we choose D as our standard metric for X x Y, except for R”
and C", for which we take the Euclidean distance.

Proof for Dy: Positivity of Dy and axiom (ii) are obvious. To prove axiom (iii),

Di(x1, x2) = 0 implies dx (x1, x2) = 0 = dy(y1, ¥2), s0 X1 = x2, ¥y1 = ¥2, and

x1 = (31) = (32) = x2. As for the triangle inequality,

Di(xy, x2) = dx(x1, x2) +dy(y1, y2)
<dx(x1, x3) +dx(x3, x2) +dy(y1, y3) +dy(y3, y2)
= Di(x1,x3) + D1(x3, x2).

Exercises 2.3

1.

Show that

(a) Ifd(x,z) >d(z,y) thenx # y;

(b) Forany z, 5d(x, y) < max(d(x, 2),d(y, 2));

(c) Ifd(u,v) = d(u, x) + d(x, v) then either d(x, u) < d(y,u) ord(x,v) <
d(y,v).

. Write in mathematical language,

(a) The subsets A, B are close to within 2 distance units;
(b) A and B are arbitrarily close.

. The set of bytes, i.e., sequences of Os and 1s (bits) of length 8 (or any length),

has a “Hamming distance” defined as the number of bits where two bytes differ;
e.g. the Hamming distance between 10010111 and 11001101 is 4.

. Any non-empty set can be given a distance function. The simplest is the discrete

I, x#y

metric d(x, y) 1=
0, x=y

. Indeed, there are infinitely many other metrics
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on the same set (except when there is only one point!); for example, if d is a
distance function then so are 2d and d/(1 4 d).

(* Not every function of d will do though! The function d? is not generally a
metric; what properties does f : imd — R™ need to have in order that f o d
also be a metric?)

5. A set may have several distances defined on it, but each has to be considered as
a different metric space. For example, the set of positive natural numbers has a
distance defined by d(m, n) := |1/m—1/n| (prove!); the metric space associated
with it has very different properties from N with the standard Euclidean distance.
For example, in this space, distinct natural numbers come arbitrarily close to each
other.

6. Letn = +2K3" ... be the prime decomposition of any integer n € Z and define
Inl» := 1/2k, 10|, := 0. Show that | - |, satisfies the same properties as the
standard absolute value and hence that d(m, n) := |m — n|; is a distance on 7Z

(called the 2-adic metric).
7. % Given the distances between n points in R", can their positions be recovered?
Can their relative positions be recovered?

2.1 Balls and Open Sets

The distance function provides an idea of the “surroundings” of a point. Given a
point @ and a number r > 0, we can distinguish between those points ‘near’ to it,
satisfying d(x, a) < r, and those that are not.

Definition 2.4

An (open) ball, with center a and radius r > 0, is the set

B (a) ={xeX:dx,a) <r}.

Despite the name, we should lay aside any preconception we may have of it being
“round” or symmetric. We are now ready for our first, simple, proposition:

Proposition 2.5

Distinct points of a metric space can be separated by disjoint balls,

x#y = Ir>0 B.x)NB(y)=69.
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Proof If x # y then d(x,y) > 0 by the distinguishability axiom (iii). Letting
r :=d(x, y)/2, then B,(x) is disjoint from B, (y) else we get a contradiction,

2€B,(0)NB.(y) = d(x,2) <r ANDd(y,2) <r
= d(x,y) <d(x,z)+d(y,2)
<2r=d(x,y).

Examples 2.6

1. In R, a ball is an open interval
B(a)={xeR:|x—a|<r}=la—r,a+r[.

Conversely, any open interval of type Ja, b[ is a ball in R, namely B;_g| /2(#).
2. In R2, the ball B, (a) is the disk with center a and radius r without the circular
perimeter.
.InZ,By(m)={neZ:ln—m|<2}={m—1,m,m~+1}and B;(m) = {m}.
4. It is clear that balls differ depending on the context of the metric space; thus
Bi2(0) = -1, I in R, but By 2(0) = {0} in Z.

(O8]

Open Sets

We can use balls to explore the relation between a point x and a given subset A. As
the radius of the ball B, (x) is increased, it is certain to include some points which
are in A and some points which are not, unless A = X or A = &. So it is more
interesting to investigate what can happen when the radius is small. There are three
possibilities as r is decreased: either B, (x) eventually contains (i) only points of A,
or (ii) only points in its complement A€, or (iii) points of both A and A®, no matter
how small we take r.

Definition 2.7
A point x of a set A is called an interior point of A when it can be “surrounded
completely” by points of A, i.e.,
Ir >0, B,(x)CA.

In this case, A is also said to be a neighborhood of x.
A point x (not in A) is an exterior point of A when

Jr >0, B,(x) S X\A.

(continued)
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All other points of X are called boundary points of A (see Fig.2.1), that is
when

Vr >0, 3a,b € B,(x), acAANDD e A°.

Accordingly, the set A partitions X into three parts: its interior A°, its exterior
(A)C, and its boundary dA. The set of interior and boundary points of A is
called the closure of A and denoted by A := A° U dA.

A subset A is open in X when all its points are interior points of it, i.e.,
A= A°.

Examples 2.8

1. In R, the intervals la, b[, [a, b[, ]a, b], and [a, b] have the same interior ]a, b[,
exterior, and boundary {a, b}; their closure is ]a, b[ = [a, b].
Proof: Foranya < x < b,let0 < € < min(x —a,b — x),thena < x — ¢
and x + € < b, thatis, Bc(x) = ]x — €, x + €[ C ]a, b[; this makes x an interior
point of the interval.
For x < a, take any € < a — x so that x € B¢(x) C ]—o00,a[ C R\[a, b].
Similarly, any x > b is an exterior point of the interval.
For x = a, any small interval B(a) contains points such as a + €/2, that are
inside the interval, and points outside it, such as a — € /2, making a (and similarly
b) a boundary point.

2. » The following subsets are open in any metric space X:

(a) X~{x} for any point x. The reason is that any other point y # x is separated
from x by disjoint balls (our first proposition); this makes y an interior point
of X~ {x}.

(b) The empty set is open by default, because it does not contain any point. The
whole space X is also open because B, (x) € X forany r > 0 and x € X.

A small enough ball around an exterior point

Any ball around a boundary point

A small enough ball around an interior point

OH5

Fig. 2.1 The distinction between interior, boundary, and exterior points
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(c) Balls are open sets in any metric space.

Proof: Let x € B,(a) be any point in the given ball, meaning d(x,a) < r.
Lete :=r —d(x,a) > 0; then B.(x) € B, (a) since for any y € B¢(x),

d(y,a) <d(y,x)+d(x,a) <e+dx,a) =r.

y

‘e Be(x)

B (a)

3. » The least upper bound of a set A in R is a boundary point of it.
Proof: Let  be the least upper bound of A. For any € > 0, o + €/2 is an upper
bound of A but does not belong to it (else « would not be an upper bound).
Even if @ ¢ A, then the interval Jo — €/2, o[ cannot be devoid of elements of
A, otherwise o would not be the least upper bound. So the neighborhood B, («)
contains elements of both A and A°.

Proposition 2.9

The set of interior points A° is the largest open set inside A.

Proof 1If B C A then the interior points of B are obviously interior points of A,
so B° € A°. In particular every open subset of A lies inside A° (because then
B = B°), and every (open) ball in A lies in A°. This implies that if B,(x) € A then
B, (x) € A°, so that every interior point of A is surrounded by other interior points,
and A° is open.
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Proposition 2.10

A set A is open < A is a union of balls.

Proof Let A be an open set. Then every point of it is interior, and can be covered
by a ball B,()(x) € A. Taking the union of all the points of A gives

A=Jx e Bwm ca,

x€A x€A

forcing A = (J,c4 Br(x)(x), a union of balls.

Now let A := |J; B, (a;) be a union of balls, and let x be any point in A. Then
x is in at least one of these balls, say, B, (a). But balls are open and hence x €
Bc(x) € Br(a) € A. Therefore A consists of interior points and so is open. |

The early years of research in metric spaces have shown that most of the basic
theorems about metric spaces can be deduced from the following characteristic
properties of open sets:

Theorem 2.11

Any union of open sets is open.
The finite intersection of open sets is open.

Proof (i) Consider the union of open sets, | J; A;. Any x € [J; A; must lie in at
least one of the open sets, say A ;. Therefore,

xe B <A clJa
i

shows that it must be an interior point of the union.

(>ii) It is enough, using induction (show!), to consider the intersection of two open
sets AN B.Letx € AN B, meaning x € A and x € B, with both sets being open.
Therefore there are open balls B, (x) € A and B,,(x) € B. The smaller of these
two balls, with radius » := min(r{, r2), must liein AN B,

x € B.(x) = B, (x) N B,,(x) C AN B.

B

& 4
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Relatively Open Sets

The interior, boundary, and exterior of a subset depend on the metric space under
consideration. Changing the space may change whether a subset is open or not, even
though its elements remain the same. We thus need to specify that a subset A is open
in X. For example, the singleton {0} is not open in R nor in Q but it is open in Z;
in other words, if one takes any ball of small enough radius around 0, one is sure to
find non-zero real or rational numbers, but no other integers. Thus, when the space
is R, the interior of {0} is empty and the boundary is {O}; when the space is Z, the
interior is {0} and there is no boundary. Similarly, the interval ]a, b[ is open in R,
but not open when considered as a subset of the x-axis in R2.

More tricky examples arise if the metric space is already a subspace. Fortunately,
if one is familiar with the open sets in a bigger space such as R or R?, then the
following proposition gives an immediate criterion for deducing the open subsets of
a subspace of it. In words, if Y € X then a subset A is open in ¥ when it can be
extended to an open set U in X.

Proposition 2.12

Let Y be a subspace of X. Then a subset A is open in Y if, and only if;
A = U NY for some subset U open in X.

Proof LetY C X inherit X’s distance. Care must be taken to distinguish balls in Y,
considered as a metric space in its own right, from those in X

BYx)={yeY:d(y,x)<r}={yeX:d(y,x) <r ANDye Y}
=BX(x)NnvY.

If A is open in Y, then by Proposition 2.10, it is the union of balls of Y,

A= B @=]B,@ny=Uny,

acA acA

where U := J,c4 Brx(a)(a) is openin X.
For the converse, points in A are those points of an open set U € X which
happen to be in Y, and so are interior points of A as a subset of Y,

yeBX(y)CU = yeBX(y)nYycuny = A4,

thatis, U NY isopenin Y. m]

The same considerations apply to exterior points and to boundary points. One has
to be careful to interpret the definitions correctly, in particular substituting ¥\ A
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instead of X\ A. A point is exterior to A in ¥ when there is an » > 0 such that
B, (x) € Y~ A. The boundary of a subset A relative to a subspace Y is often denoted
by dy (A), and may differ from its boundary relative to the parent space X.

y(A)={xe€Y:Vr>0,3acA,Ibe Y A, a,be B, (x)NY}

Note that this boundary dy (A) is not necessarily dy (A) N Y. All that can be said in
this regard is that, in general, dy (A) C dx(A).

Examples 2.13

1. » The exterior (A)® = (A®)° of a subset A is open in X.

2. A° = AN0A. So a set is open iff it does not contain any of its boundary points.

3. (a) Let X := R and Y := [0, 2]; then the subset A := [0, 1[ is open in Y a ball

about x = 0 in the space [0, 2] has the form [0, r[, and this is therefore open
by Example 2.8.(2c). Alternatively, and simpler, A = U N'Y where U =
]—1, 1[ is open in R. Its boundary in Y is dy (A) = {1} whereas dx(A) =
{0, 1}.

(b) In the space Y := [0, 1] U [2,3] C R, the subset [0, 1] is open in ¥ and
has no boundary in it. Why isn’t 1 a boundary point of it? Because the ball
BGY (1) =]1 — €, 1] surrounds it completely in Y; the other points of R are
nonexistent as far as Y is concerned. Alternatively, [0, 1] = ]—%, 1%[ nY.

(c) For a more extreme example, consider the subspace Q of R. Then dg(Q) =
&, whereas dr(Q) = R. If our world were rational, then each rational point
would be surrounded by rationals only, but in the real world, each rational is
close to irrationals.

4. In the unit square ¥ := [0, 11?2 € R2, the open balls are either disks themselves
(when the radius is small enough) or they are the intersection of a disk with Y.
The subset A := [0, %]2 has interior [0, %[2 and a boundary consisting of the
lines { (¢, %) 0t < % U { (%, 1):0<r < % }. The origin is not a boundary
point but an interior point of A in Y.

Exercises 2.14

1. In R, the set {a} has no interior points, a single boundary point a, and all other
points are exterior. It is not an open set in R. There are ever smaller open sets
that contain a, but there is no smallest one.

2. mR,{1/n:neN}={1/n:neN}U{0}.

3. The set Q, and also its complement Q°, the set of irrational numbers, do not
have interior (or exterior) points in R. Every real number is a boundary point of
Q.

Similarly every complex number is a boundary point of Q + iQ.

4. The set {m} does not have any boundary points in Z; it is an open set in Z

(B1j2(m) = {m}).

Of the proper intervals in R, only ]a, b[, Ja, co[, and ]—oo, a[ are open.

6. InR?, the half-plane { (x, y) € R2: y > 0} and the rectangles ]a, b[ x]c, d[ :=
{(x,y)eR?*:a<x<bc<y < d } are open sets.

d
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10.

11.

12.

13.

Closed Sets 25

Describe the interior, boundary and exterior of the sets
() eR x|+ 1yl <1}, {(y) e R*: 1 <max(lx]. |y < 1},
in (i) R?, (ii) the first quadrant (R*)?.

>_A° has the same_boundary as A; its i_nteriir is the exterior of A, that is,
(A)° = (A%° (and A = A°°°);s0 A = AN AC.

. Find an open subset of R, apart from R itself, without an exterior.

So, the exterior of the exterior of A need not be the interior of A. Similarly, the
boundary of A or A° need not equal the boundary of A.

» An infinite intersection of open sets need not be open. For example, in R, the
open intervals |—1/n, 1/n[ are nested one inside another. Their intersection is
the non-open set {0}. Find another example in R.

Deduce from Theorem 2.11 that if every singleton {x} is open in X, then every
subset of X is open in X. This ‘extreme’ property is satisfied by N, Z, and any
discrete metric space.

Any point x with d(x, @) > r is in the exterior of the open ball B, (a). But the
boundary of B, (a) need not be the set { x : d(x, a) = r}. lllustrate this by an
example in Z.

* Every open set in R is a countable disjoint union of open intervals. (Hint: An
open set in R is the disjoint union of open intervals; take a rational interior point
for each.)

In contrast to this simple case, the open sets in R2, say, can be much more
complicated—there is no simple characterization of them, apart from the
definition.

2.2 Closed Sets

An open set is one that does not contain its boundary points; the dual concept is that
of a closed set, one that contains all its boundary points. Logically speaking, the
terms “open” and “closed” are not mutually exclusive because a set may possibly
not have any boundary points; in a sense, they are misnomers, but they have stuck
in the literature, being derived from the earlier use of “open/closed intervals”.

Definition 2.15

A subset F is closed in a space X when X\ F is open in X.

Proposition 2.16

A subset F is closed < F contains its boundary < F = F.
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Proof We have already seen that the boundary of a set F and of its complement F°
are the same (because the interior of FC is the exterior of F). So F is closed, and
FC open, precisely when this common boundary does not belong to F¢, but belongs
instead to F°° = F. i

Examples 2.17

1. In R, the set [a, b] is closed, since R\ [a, b] = ]—00, a[ U ]b, oo] is the union of
two open sets, hence itself open. Similarly [a, oo[ and ]—o0, a] are closed in R.

2. N and Z are closed in R, but Q is not.

3. » In any metric space X, the following sets are closed in X (by inspecting their
complements):

(a) the singleton sets {x},

(b) the ‘closed balls’ B.[a] = {x € X : d(x,a) < r}; it contains, but need be
equal to, B, (a);

(¢) X and @,

(d) the boundary of any subset (the complement of dA is A° U (A®)°).

4. » The complement of an open set is closed. More generally, if U is an open set
and F aclosed set in X, then U\ F is open and F\U is closed. The reasons are
that UNF =U N F®and (FN\U)® = FCUU.

Closed sets are complements of open sets, and their properties reflect this:

Proposition 2.18

The finite union of closed sets is closed.
Any intersection of closed sets is closed.

Proof These are the complementary results for open sets (Theorem 2.11). For F, G
closed sets in X, the subsets F©, G® are open, so the result follows from

(FUG)® = F°NG°, (ﬂFi)chJFf,
i

i

and the definition that the complement of a closed set is open. O

Theorem 2.19 (Kuratowski’s Closure ‘Operator’ )

The closure of a subset, A, is the smallest closed set containing A.

ACB=ACB, A=A, AUB=AUB.
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Proof The complemgnt of A is the exterior of A, which is an open set, so A is

closed. This implies A = A by Proposition 2.16.

If A C B, then an exterior point of B is obviously an exterior point of A, that
is (B)c - (A)C so A C B. It follows that if F is any closed set that contains A,
then A € F = F, and this shows that A is the smallest closed set containing A.
(Alternatively, Proposition 2.9 can be used: how?)

Of course, A € A U B follows from A € A U B; combined with B € AU B, it
gives AU B € AU B. Moreover, A U B is a closed set which contains A U B, and
so must contain its closure A U B. O

Exercises 2.20

1. It is easy to find sets in R which are neither open nor closed (so contain only

part of their boundary). Can you find any that are both open and closed?

The set {x € Q : x> < 2} is closed, and open, in Q.

In any metric space, a finite collection of points { a1, ..., a, } is a closed set.

The following sets are closed in R: [0, 1] U {5}, U,fozo[n, n—+ %].

The infinite union of closed sets may, but need not, be closed. For example, the

set Usil{,l,} is not closed in R; which boundary point is not contained in it?

6. Find two disjoint closed sets (in R? or Q, say) that are arbitrarily close to each
other.

7. Start with the closed interval [0, 1]; remove the open middle interval ]%, %[ to

A

get two closed intervals [0, %] U [%, 1]. Remove the middle interval of each of
these intervals to obtain four closed intervals [0, %] U [%, %] U [%, %] U [%, 1].
If we continue this process indefinitely we end up with the Cantor set. Show it
is a closed subset of R.

8. Denote the decimal expansion of any number in [0,1] by 0.n1n2n3 . ... Show
that the set

[x€[0.1]:x = O0mynans ... = vk, LTk sy

is closed in R.
9. » One can define the “distance” between a point and a subset of a metric space
by d(x, A) :=infsc4 d(x, a). Then x € A exactly when d(x, A) = 0.
10. » More generally, the Hausdorff distance between two subsets is defined to be

d(A, B) :=supd(a, B) +supd(b, A).
acA beB

11. Let x_be an exterior point of A, and lety € A have the least distance between x
and A. Do you think that y is unique? or that it must be on the boundary of A?
Prove or disprove. For starters, take the metric space to be R.



28 2 Distance

12. Show ANB C A N B and prove that equality need not hold. Indeed, two
disjoint sets may ‘touch’ at a common boundary point.

13. Show the complementary results of the theorem: A° N B® = (A N B)°, A*° =
A°.

14. If A € B, does it follow that A° € B?

Limit Points and Dense Subsets

When dealing with subsets, we can see that some of their points are clustered within
the rest, while other single points are separated or unattached to the rest; some are
evenly spread out in space, others are sparse. Think of the difference between the
integers and the rational numbers in R. The concepts introduced before, of balls,
open sets, and closure, allow us to formulate these ideas rigorously.

Definition 2.21

A point a in a set A is an isolated point when there is a ball which contains
no points of A other than itself,

de > 0, Be(a) N A = {a}.

A point b (not necessarily in A) is a limit point of a set A when every ball
around it contains other points of A,

Ve >0, da#b, aec AN B(b).

Thus a limit point cannot be isolated from the rest of A. Every point of A is either a
limit point or an isolated point of A, so a set that contains its limit points is closed.

We often need to approximate an element x € X to within some small distance €
by an element from some special subset A € X. The elements of A may be simpler
to describe, or more practical to work with, or may have nicer theoretical qualities.
For example, computers cannot handle arbitrary real numbers and must approximate
them by rational ones; polynomials are easier to work with than general continuous
functions. The property that elements of a set A can be used to approximate elements
of X to within any €, namely,

Vxe X, Ve >0, dac A, dix,a) <e,

is equivalent to saying that any ball B (x) contains elements of A, in other words
there are no points exterior to A, i.e., A = X.
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Definition 2.22

A set A is dense in X when A = X (so_A contains all balls).
A set A is nowhere dense in X when A contains no balls.

Exercises 2.23

1.

Can a set not have limit points? Can an infinite set not have limit points?

2. In R, the set of integers Z has no limit points, but all real numbers are limit

®©

points of Q.

. (a) 1is an interior isolated point of {1, 2} in Z;

(b) 11is aboundary isolated point of {1, 2} in R;

(c) 1is an interior limit point of [0, 2] in R;

(d) 11is aboundary limit point of [0, 1] in R.

In R and @, an isolated point of a subset must be a boundary point, or,
equivalently, an interior point is a limit point.

. » Qisdense in R. (This is equivalent to the Archimedean property of R.) More

generally, a set A is dense in R when for any two distinct real numbers x < y,
there is an element a € A between them x < a < y.

The intersection of two open dense sets is again open and dense.

A finite union of straight lines in R? is nowhere dense. Z and the Cantor set are
nowhere dense in R.

Nowhere dense sets have no interior points.

The complement of a nowhere dense set is dense. But the complement of a
dense set need not be nowhere dense.

10. A is nowhere dense in X < XA isdensein X < A is the boundary of an
open set.

Remarks 2.24

1. If d(x, y) = 0 does not guarantee x = y, but d satisfies the other two axioms,

then it is called a pseudo-distance. In this case, let us say that points x and y
are indistinguishable when d(x,y) = 0 (& Vz, d(x,z) = d(y,z)). This is
an equivalence relation, which induces a partition of the space into equivalence
classes [x]. The function D([x], [y]) := d(x, y) is then a legitimate well-defined
metric.

In a similar vein, if d satisfies the triangle inequality, but is not symmetric,
then D(x,y) := d(x,y) + d(y, x) is symmetric and still satisfies the triangle
inequality.

Positivity of d follows from axioms (i) and (ii) (unless X = {x, y}),

d(x,y) 2 |d(x,z) —d(y,2)| 2 0.
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2. The axioms for a distance can be re-phrased as axioms for balls:

(@) Bo(x) =3, (Vo0 Br(x) = {x}, Uyo0 B (x) = X,
(b) {y X E Br(y)} = B, (x),
(¢) BsoBr(x) C Brys(x),1.e.,if y € Bs(z) where z € B, (x) then y € B, 45(x).

3. The concept of open sets is more basic than that of distance. One can give a set
X a collection of open subsets satisfying the properties listed in Theorem 2.11
(taken as axioms), and study them without any reference to distances. It is then
called a topological space; most theorems about metric spaces have generaliza-
tions that hold for topological spaces. There are some important topological
spaces that are not metric spaces, e.g. the arbitrary product of metric spaces
[1; Xi, and spaces of functions XV={f: Yy > X}



Chapter 3 m)
Convergence and Continuity Qe

3.1 Convergence

The previous chapter was primarily intended to expand our vocabulary of mathe-
matical terms in order to better describe and clarify the concepts that we will need.
Our first task is to define convergence.

Definition 3.1

A sequence (x,),eN in a metric space X converges to a limit x, written
Xp —> X asn — 00,
when

Ve >0, IN, n>N = x,; € Be(x).

.21 X

A sequence which does not converge is said to diverge .

One may express this as “any neighborhood of x contains all the sequence from
some point onwards,” or “eventually, the sequence points get arbitrarily close to the
limit”.
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Felix Hausdorff (1868-1942) Hausdorff studied atmo-
spheric refraction in Bessel’s school at Leipzig in 1891.
In 1914, at 46 years of age in the University of Bonn, he
published his major work on set theory, with chapters
on partially ordered sets, measure spaces, topology and
metric spaces, where he built upon Fréchet’s abstract
spaces, using open sets and neighborhoods. Later,
in 1919, he introduced fractional dimensions. But in
the late 1930s, increasing Nazi persecution made life
impossible for him.

Proposition 3.2

In a metric space, a sequence (x,),cN can only converge to one limit,
denoted lim x,.
n—0o0

Proof Suppose x, — x and x, — y as n — 00, with x % y. Then x and y can be
separated by two disjoint balls B, (x) and B, (y) (Proposition 2.5). But convergence
means

dN1 n > Ni = x, € Br(x),

>
AN, n >Ny = x, € Br(y).

For n > max(Ny, N3) this would resultin x, € B, (x)NB,(y) = &, a contradiction.
O

Examples 3.3

1. In R, the definition of @, — a reduces to Ve, AN, n > N = |a, —al| < €.

2. In any metric space, x, — x < d(x,,x) — 0asn — oo (because x, €
Bc(x) < d(xp, x) < €). For example, x, — x when d(x,, x) < 1/n holds.

3. nR,n/(n+1) - 1 asn — oo, since for any ¢, there is an N such that I/N < €
(Archimedean property of R), so

>N = [1- 2 ! !
> — = < — <e.
" n+l| n+l N

4. Given two convergent real sequences a, — a and b,, — b, thena,+b, — a+b.
Proof: For any € > 0, there are N1, N», such that

n>=N = |la, —al| <k, n> Ny = |b, —b| <e.
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Thus for n > max(Ny, N»2),
|(an + byp) — (a + D)| < lan — al + by — b| < 2e.

5. » A sequence (y") in X x Y converges to (}) if, and only if, x, — x and y, — y.
Proof: Any distance in Example 2.2(6) can be used, but we will use the standard
metric here. The distance between (") and (}) is

§:=d((3). (3) =d @ x) +d(y, y) > 0, asn — oo.

As both d(x,, x) and d(y,, ¥) are less than §, the converse follows.

6. Consider a composition of functions N — N — X where the first function is 1—
1, and the second is a sequence. A subsequence is the case when the first function
is strictly increasing, and a rearrangement is the case when it is 1-1 and onto.
For example, 1, 1/4,1/9, ... is a subsequence of (1/n),and 1/2, 1, 1/4,1/3, ...
is a rearrangement. Any such ‘sub-selection’ of a convergent sequence also
converges, to the same limit.

Proof: Suppose n > N = d(x,,x) < €. Let (x,;) be a sub-selection of (x,).
Asn; < N can only be true of a finite number of indices i, with the largest being,
say, M, it follows that

i>M = ni >N = d(x,,x) <e.

7. A sequence converges fast (or ‘linearly’) when d(x,, x) < Ac" for some real
constants A > 0, 0 < ¢ < 1. Quadratic convergence, d(x,, x) < Aczn, is even
faster. Instead, 1/n and </2 converge slowly.

There are many questions in analysis of the type: If x, has a property A, and
x, — x, does x still have this property? For example, if a convergent sequence
of vectors in the plane lies on a circle, will its limit also lie on the same circle?
Or, can continuous functions (or differentiable, or integrable, etc.) converge to
a discontinuous function? The following proposition answers this question in a
general setting: the ‘property’ A needs to be closed in the metric space.

Proposition 3.4

If x, € A and x, — x, then x € A.
Conversely, in a metric space, for any x € A there is a sequence x,, € A

which converges to x.

In particular, closed sets are “closed” under the process of taking the limit (since
A = A by Proposition 2.16).
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Proof Take any ball B.(x) about x. If x, converges to x, then all the sequence
points will be in the ball for n large enough. Since x, € A, x cannot be an exterior

point, and so lim x, = x € A.
n—00

For the converse, let B/, (x) be a decreasing sequence of nested balls around
x € A; whether x is a boundary or interior point of A, By/,(x) contains at least a
point a, in A (which could be x itself). So d(a,,x) < 1/n — O0asn — o0, and
a, — X. O

Examples 3.5

1. If x, — x in a metric space X, and x,, # x for all n, then x is a limit point
of the set { x1, x2, x3, ... }. However, despite the name, the limit of a converging
sequence need not be a limit point of its set of values. If x;, is eventually constant
(n > N = x, = x), then x, — x with x being an isolated point, not a limit
point, of {x, : n € N}. The confusion is ultimately caused by the fact that a
sequence is a function, not the set of its values.

2. Several sequences appear to get close to more than one limit, e.g., (—1)" or
¢'™. These are not truly convergent sequences, by the proposition, but one can
introduce a new concept, a cluster point of a sequence, to denote a point which
the sequence gets arbitrarily close to infinitely many times, that is,

Ve >0, VneN, Im >n, d(x,,x) < €.

Given any cluster point of a sequence, one can find a subsequence which
converges to it. In general, any limit point of the values of a sequence is a cluster
point of the sequence; an isolated point of the values is a cluster point only if it
is visited infinitely many times.

3. If one were to list the rational numbers as a sequence, the result would have every
point of R as a cluster point. At the other extreme, the sequence (1, 2, 3, ...) has
no cluster points at all.

If a real sequence (ay),eN has several cluster points, then the largest one, if
it exists, is called its limit superior, denoted limsup,,_, ., a,, and the smallest
liminf, s o X, the limit inferior.

Exercises 3.6
1. » InR,

(a) 1/n — O (this is a rewording of the Archimedean property of the real
numbers: for every a > 0, there is an n € N such that n > a).

(b) @ — 0 when 0 < a < 1, but diverges fora > 1. (Hint: When 1 < a =
1+6,thena” =1+ né+ --- > nd; otherwise consider 1/a.)

(c) n/a™ — 0 whena > 1, hence n*/a™ = (n/b")* — 0.

(d ¥Ya — 1 forany a > 0, and n'/" — 1 (so (logn)/n — 0). (Hint:
Assuming a > 1, expand a!/" =: 1 + a, using the binomial theorem
to show that a, < a/n — 0; similarly show a,% < 2/(n —1) for the second
sequence.)
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(e) x (14 1/n)" converges to a number denoted e. This is too hard to show for
the moment. Show at least that the sequence is increasing but bounded by
3, using the binomial theorem. (This highlights the need of “convergence
tests”: how can one know that a sequence converges when the limit is
unknown?)

(f) ¥/n! = oo (what should this mean?)

2. What do the sequences 2 + 2+ +/2+--- and 1 + 1+11 converge to,

T+

assuming they do?
3. InR, if a, — Othen a), — O; find examples where (i) a, — 0 but al/"
(ii) a, — 1 butal A 1.

4. » If a, < b, for two convergent real sequences then lim a, < lim b, (Hint:
n—>oo n—>oo

7 0,

[0, oo[ is closed). In particular, if a,, converges and a,, < a, then lim a, < a.

n—>oo
5. Squeezing principle: In R, if a, < x, < b, and lim @, = a = lim b,, then
n— 00 n— 00

X, converges (to a).

6. It is possible for a divergent sequence to have a convergent subsequence. Find
one in the sequence (1, —1, 1, —1, ...). But any rearrangement must diverge.
If a sequence has only one cluster point, need it converge to it?

7. » We may occasionally encounter ‘sequences’ with two indices (a,, ,) (they
are more properly called nets). The example n/(n + m) shows that in general

lim hm amp # lim lim ay ,.
m—0o0 n— n—>00 m—> o0

The same example shows that, in R, generally, sup,, inf,, a,,, # inf,, sup,, a, .
But the following are true:

(a) sup,, sup,, dn,m = Sup,, SUp,, dn.m,
(b) sup,(an + bn) < sup, a, + sup, by.

3.2 Continuity

One is often not particularly interested in the actual values of the distances between
points: no new theorems will result by substituting metres with feet. What matters
more, in most cases, is the relation of points to each other captured by the concept
of convergence. Accordingly, functions that preserve convergence (rather than
distance) take on a central importance.
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Definition 3.7

A function f : X — Y between metric spaces is continuous when it
preserves convergence,

Xp > xin X = f(x,) > f(x)inY.

In this case therefore, f( lim x,) = lim f(x,). Before we see any examples of
n—oo n—oo

continuous functions, let us prove that the following two statements are equivalent
formulations of continuity in metric spaces, so any of them can be taken as the
definition of continuity.

Theorem 3.8

A function f : X — Y between metric spaces is continuous if, and only
if, any of the following statements holds:

(1) Vx € X, Ve >0, 38 > 0, Vx' € X,
dx(x,x') <8 = dy(f(x), f(x))) <e,

(ii) For every openset V inY, f~!V is openin X.

Statement (i) is often written as lim,/_, . f(x") = f(x) for all x.

Proof Let (d) denote the defining statement that f is continuous.
(d) = (1): Suppose statement (i) is false; then there is a point x € X and an € > 0
such that arbitrarily small changes to x can lead to sudden variations in f(x),

V8 >0, 3x, dx(x,x)<8ANDdy(f(x), f(x) =€
In particular, letting § = 1/n, there is a sequence' x,, € X satisfying dx (x, x,) <
1/n but dy(f(x), f(x,)) > €. This means that x, — x, but f(x,) ~ f(&x),
contradicting statement (d).
(i) = (ii): Note that (i) can be rewritten as
VxeX, VYe>0, 386>0, x eBsix)= f(x)eB(f(x))

or €ven as

VxeX, Ve>0, 35§>0, [f[Bs(x)] < Be(f(x)).

! This selection of points x, needs the Axiom of Choice for justification.
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Let V be an open set in Y. To show that U := f~!V = {x € X : f(x) € V}is
open in X, let x be any point of U; then f(x) € V and V is open. Hence

f(x) € B(f(x)) SV,
and so
36 >0, f[Bs(x)] S Be(f(x)) S V.
In other words, x is an interior point of U:
B>0, Bs(x)< flv=u.

X Y

(il)) = (d): Let (x;)nen be a sequence converging to x. Consider any open
neighborhood B¢ (f(x)) of f(x). Then f_l[Be(f(x))] contains x, and is an open
set by (ii), so

38 >0, x€Bs(x) S fB(fO],
= 35 >0, f[Bs(x)] C Be(f(x)).

But eventually all the points x,, are inside Bj(x),

dN >0, n>N = x, € Bs(x)
= f(xn) € fIBs(x)] € Be(f(x))
= dy(f(xn), f(x)) <e.

This shows that f(x,) — f(x)asn — oo. |
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Examples 3.9

1. The square root function on R™ is continuous.
Proof: Let x, € > 0, and § := e./x (for x = 0, choose § = 62), then

€

)
NN TV

2. Let X, Y, Z be metric spaces, then the function 4 : X — Y x Z defined by
h(x) = (f(x), g(x)) is continuous if, and only if, f, g are continuous. For
example, the circle path 6 — (cos 6, sin#) is a continuous map R — R2.
Proof: The statement follows directly from Example 3.3(5),

g(xn) g(x)

x—yl <8 = [Vx =yl <

3. »If f: X — Y is continuous, then fA C fA. So if A is dense in X, then f A
is dense in fX.
Proof: If x € A, then there is a sequence of elements of A that converge to x,
x, — x (Proposition 3.4). By continuity of f, f(x,) — f(x),s0 f(x) € fA.It
follows that if A = X then fX C fAN fX.

The following two propositions affirm that continuity is well-behaved with
respect to composition and that the distance function is continuous. They allow us
to build up continuous functions from simpler ones.

Proposition 3.10

If f: X — Yandg:Y — Z are continuous, soisgo f : X — Z.
Proof Let x,, — x in X. Then by continuity of f, f(x,) — f(x) in Y, and by
continuity of g,

go fxn) =g(f(xn) = g(f(x)) =go f(x)inZ.

Alternatively, let W be any open set in Z. Then g~!W is an open set in ¥, and so
f~ g~ 'W]is an open set in X. But this set is precisely (g o )" W. O
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Proposition 3.11

The distance function d : X* — R is continuous.

Proof Let x, — x and y, — y in X. Then, by the triangle inequality,
ld (xn, yn) — d(x, )| < |d(xn, yn) — d(x, yo)| + 1d(x, yp) — d(x, y)|
<

d(xp, x) +d(yn,y) = 0,

which gives d(x,, y,) — d(x, y) asn — oo. m|

Homeomorphisms

Continuous functions preserve convergence, a central concept in metric spaces;
in this sense, they correspond to the morphisms of groups and rings, which
preserve the group and ring operations. The analogue of an isomorphism is called a
homeomorphism:

Definition 3.12

A homeomorphism between metric spaces X and Y is amapping J : X — Y
such that

J is bijective (1-1 and onto),

J is continuous,

J~! is continuous.
X is homeomorphic to Y when there exists a homeomorphism between them.

A metric space X is said to be embedded in another space Y, when there
is a subset Z C Y such that X is homeomorphic to Z.

Like all other isomorphisms, “X is homeomorphic to Y is an equivalence relation
on metric spaces. When X and Y are homeomorphic, they are not only the same as
sets (the bijection part) but also with respect to convergence:

X —>x & J(x,) = J(x),

Aisopenin X & JAisopenin?.
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3 Convergence and Continuity

The elements of Y are those of X in different clothing, as far as convergence is
concerned. The most vivid picture is that of “deforming” one space continuously
and reversibly from the other. The by-now classic example is that a ‘teacup’ is
homeomorphic to a ‘doughnut’.

Exercises 3.13

1.

2.

10.

Any constant function f : x > yp € Y is continuous. The identity function
I:X — X, x +— x,is always continuous.

The functions that map the real number ¢ to £ + 1, 2¢, " (n € N), a’ (a > 0),
and |¢] are all continuous.

. In R, addition and multiplication are continuous, i.e., if x, - x and y, — y

then x, + y, — x + y and x,y, — xy. Deduce thatif f,g : X — R are
continuous functions, then so are f + g and fg. For example, the polynomials
on R are continuous. The function max : R? — R is also continuous, i.e.,
max(x,, y,) — max(x, y).

The function f : ]0, co[ — ]0, col, defined by f(¢) := 1/t is continuous.

. Conjugation in C, z — Z, is continuous.

. . I, xeA, . .
In R, the characteristic function 14 (x) = is always discontinuous

0,
except when A = @ or A = R. Is this true for all metric spaces?

. When f : X — R is a continuous function, the set {x € X : f(x) > 0}is

openin X.
Any function f : N — X is continuous, where X is any metric space.
The graph of a continuous function f : X — Y, namely

{(x, f(x) :x e X},

is closed in X x Y (with the D metric).
Find examples of continuous functions f (e.g., R — R"), such that

(a) f is invertible but f~! is not continuous.

() f(xp) — f(x)inY but (x,),en does not converge at all.

(c) U is open in X but fU is not open in Y. However functions which map
open sets to open sets do exist (find one) and are called open mappings.
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11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Continuity 41

If Fisaclosedsetin ¥ and f : X — Y is a continuous function, then f~'F
is closed in X. But f may map a closed set to a non-closed set (even if f is an
open mapping).

It is not enough that f(x, y) is continuous in x and y separately in order that f
be continuous. For example, show that the function

(.3) = . f(0.0):=0
f 'x’ y b xz + y2 ’ f ’ T ’

is discontinuous at (0, 0) even though f(x,,0) — 0, (0, y,) — 0, when
xn — 0, y, — 0. It needs to be “jointly continuous” in the sense that
S, yn) — f(x,y) forany (xu, yn) — (x, y).

Show carefully that the function f(¢) := t> + 5¢3/> — 3t + 4t'/2 — 1 on the
domain R is continuous. (Hint: Use Proposition 3.10.)

The roots of a quadratic equation ax? + bx + ¢ = 0 vary continuously as the
coefficients change (but maintaining 5> > 4ac), except at a = 0.

» Find a short proof that the sphere S, := {y : d(x, y) = r} is closed using
the continuity of d.

Given aset A € X, the map x — d(x, A) is continuous. (Hint: d(y, A) <
d(y,x)+d(x, A).)

Given disjoint non-empty closed subsets A, B C X, find a continuous function
f:X —[0,1]suchthat fA =0, fB =1 (Hint: use d(x, A) and d(x, B)).
Every interval in R is homeomorphic to [0, 1], [0, oo[, or R.

N is homeomorphic to the discrete metric space on a countable set, but Q is
not. (Hint: The convergent sequence 1/n — 0 must correspond to a divergent
sequence in N.)

<> A bent line in the plane, consisting of two straight line segments meeting at
their ends, is homeomorphic to the unbent line. Thus angles are meaningless
as far as homeomorphisms are concerned; triangles, squares and circles are
homeomorphic.



Chapter 4 ®
Completeness and Separability Qe

4.1 Completeness

Our task of rigorously defining convergence in a general space has been achieved,
but there seems to be something circular about it, because convergence is defined in
terms of a limit. For example, take a convergent sequence x,, — X in a metric space
X, and “artificially” remove the point x to form X\ {x} (assume Vn, x, # x). The
other points x,, still form a sequence in this subspace, but it no longer converges
(otherwise it would have converged to two points in X)—its limit is “missing”. The
sequence (x,),eN is convergent in X but divergent in X \{x}. How are we to know
whether a metric space has “missing” points? And if it has, is it possible to create
them when the bigger space X is unknown?

To be more concrete, let us take a look at the rational numbers: consider the
sequences (1,2,3,...), (1,—1,1,—1,...), and (1, 1.5,1.417,1.414,1.414,...),
the last one defined iteratively by ag := 1, a,41 = % + % It is easy to show
that the first two do not converge, but, contrary to appearances, neither does the
third, the reason being that were it to converge to a € Q, then ¢ = a/2 + 1/a,
implying a®> = 2, which we know cannot be satisfied by any rational number. This
sequence seems a good candidate of one which converges to a “missing” number
not found in Q. Having found one missing point, there are an infinite number of
them: (2,2.5,2.417,2.414,...) and (2, 3, 2.834, 2.828, .. .) cannot converge in Q.

But could it be that the first two sequences also converge to “missing” numbers?
How are we to distinguish between sequences that “truly” diverge from those
that converge to “missing” points? There is a property that characterizes intrinsic
convergence: suppose that (x,),cn is divergent in the metric space Y, but converges
X, — a in a bigger space X. Then the points get close to each other (in Y),

dy (Xp, Xp) = dx (xn, Xm) < dx(xp,a) +dx(a, xp) — 0, asn, m — oo.
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Definition 4.1

A Cauchy sequence is one such that d(x,, x,,) — 0 asn, m — oo, that is,

Ve >0, 3IN, n,m>=N = d(x,,xy) <E€.

To clarify this idea further, we prove:

Proposition 4.2

Two sequences (x,)ncN, (Vn)neNn are defined to be asymptotic when
d(xy, yn) = 0asn — oo.

(i) Being asymptotic is an equivalence relation.
(ii) For (x»)nen asymptotic to (y,)neN,

(a) if (x,)nen is Cauchy then so is (y,),eN,
(b) if (x,)neN converges to x then so does (y;,),eN.

(>iii)) A sequence (x,),cN is Cauchy if, and only if, every subsequence of
(Xn)nen is asymptotic to (x;),eN-

Proof (i) Let (xy)neN ~ (Vn)nen signify d(x,, y,) — 0 asn — oo. Reflexivity
and symmetry of ~ are obvious. If (x;),eN ~ (Vn)neN ~ (Zn)neN then transitivity
holds:

d(xp, zn) <d(xn, yo) +d(yn,z0) > 0 asn — oo.

(i) If d(xy,, yp) — O and d(x,,, x,,) — 0 asn, m — oo, then

d(Yn, ym) < dn, Xp) +d(xn, X)) +d X, ym) — 0.

Similarly, if d(x,, x) — 0 then d(y,, x) < d(yn, x) + d(x,, x) — O.

(iii) A Cauchy sequence satisfies
Ve >0, AN, n,m > N = d(x,,x,) < €.

Given a subsequence (x,,), its indices satisfy n; > i (by induction on i: n; > 1,
np >ny; = 1sony > 2, etc.). Thus

i2N=n,i>2N = dxy,x) <€

and d(xp,;, x;) — Oasi — oo.
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Conversely, suppose (x)nen is not Cauchy. Then
36 > 07 Vi7 Hnlv ml 2 iv d(xn,-»xmi) 2 6’

from which we can create the subsequences (X, Xp,, ...) and (X, Xm,, .. .). If
both these subsequences were asymptotic to (x,),eN then there would exist an N
such that i > N implies d(x;, x,,) < €/2 as well as d(x;, xp,;) < €/2. Combining
these two then gives a contradiction

d(-xn,'a xm[) < d(-xia xn,') + d(-xia xm[) < Ea

so one of the two subsequences is not asymptotic to (x,),eN- |
Examples 4.3

1. Convergent sequences are always Cauchy, since if x,, — x then d(x,, x,,) —
d(x,x) = 0 by continuity of the distance function. But the discussion above
gives examples of Cauchy sequences which do not converge.

2. In R or QQ, any increasing sequence that is bounded above, a,, < b, is Cauchy.
Proof: Split the interval [ag, b] into subintervals of length €. Let / be the last
subinterval which contains a point, say ay. As the sequence is increasing, /
contains all of the sequence from N onward, proving the statement.

3. R and Q have the bisection property:

Let [ag, bo] be an interval in R or Q, and divide it into halves, [ag, c] and [c, by],
where ¢ := (ag + bp)/2 is the midpoint. Choose [a1, b1] to be either [ag, c] or
[c, bol, randomly or according to some criterion; continue taking midpoints to
get a nested sequence of intervals [a,,, b,], whose lengths are

b, — ay = (bg — ap)/2" — 0.

ag b——— by
a1 —— by
az — by
az H b3
H
H

So, for any € > O, there is an N > 0 such that by — ay < €, and for any
n > N,ap, b, € [ay, by]. Hence (a,)nen and (by),en are asymptotic Cauchy
sequences.

4. Let By, be anested sequence of balls, B, ,, C By,, with r, — 0. Then choosing
any points x, € B,, gives a Cauchy sequence.
Proof: For any m > n,

Xm €B,, CB, ,C---CB,

m = Frm—1

so that d(x,,, x,) < 2r, — 0asn,m — oo.
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5. » In any metric space, if d(x,+1,Xx,) < ac” with ¢ < 1 then x, is Cauchy.
Moreover, if x, — x then d(x,, x) < {=.
Proof: Taking n < m, without loss of generality,

d(xn, xXm) < d(xnvxn-i-l) + o dGm—1, Xm)
<a(c"+---+c"h

ac”

N

1 — 0 asm,n — oo.
—c

For the second part, take m — oo in the above.

6. A Cauchy sequence cannot stray too far in the sense that d (xg, x,,) < R for all n,
for some R > 0. Hence Cauchy sequences are “bounded”.
Proof: By the definition of a Cauchy sequence for € := 1 say, there is an N such
thatn,m > N = d(x,, x,,) < €. Therefore

d(x0, xp) < d(xo, xn) +d(xn, xp) < d(xo, xn) + €.
7. A Cauchy sequence in Q either converges to 0, or is eventually greater than some
€ > 0 or less than some —e < 0. In each case, an asymptotic sequence behaves
in the same manner.

Proof: 1If a,, /> 0 yet is Cauchy, then

de >0, VM, 3m > M, |a,| > e,

AN, m,n >N = l|a, —an| < €/2.
Assuming, for example, a,, > € for some m > N,

nz2N = ay —apn 2 —|a, — ap|

= ay = aym — |lap — ay| > €/2.

If (bn)nen is an asymptotic sequence to (a,).eN, then there is an M such that
la, — b, | < €/2 whenever n > M, and so

n > max(N, M) = b, > a, — |an, — by| > €/2.
When a;,, < —e form > N, the reverse inequalities hold, for example,

n=2N = a, <ap—+l|a, —an| < —€/2.
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Definition 4.4

A metric space is complete when every Cauchy sequence in it converges.

In a complete metric space, there are no “missing” points and any divergent
sequence is “truly” divergent—there is no bigger metric space which makes it
convergent.

It follows that the space of rational numbers QQ (with the standard metric) is not
complete, a fact that allegedly deeply troubled Pythagoras and his followers. They
shouldn’t have worried because there is a way of creating the missing numbers (but
skip the proof if it worries you on a first reading!):

Theorem 4.5

The real number space R is complete.

Proof (i) For this to be a theorem, we need to be clear about what constitutes R.
The usual definition is that it is a set with an addition + and multiplication - which
satisfy the axioms of a field (see p. 10), and with a linear order relation < that is
compatible with these operations:

x<y=>x+z<y+zg, x,y=20= xy >0,

and in addition satisfies the completeness axiom:
Every non-empty subset A of R with an upper bound has a least upper bound.

Assuming all these axioms, let (a,),en be a Cauchy sequence in R, that is, for any
€ > 0, there is an N beyond which |a, — a,,| < €. Let

B={xeR:AM, n > M = x < a,}.

Its elements might be called eventual lower bounds of {a, : n € N}. The fact that
Cauchy sequences are bounded implies that {a, : n € N} has a lower bound and
so B # &, while any upper bound of {a, : n € N} is also one of B. Hence, by the
completeness axiom, B has a least upper bound «. Two facts follow:

(a) o + € is not an element of B, so there must be an infinite number of terms

ay, < o +€;

(b) o — € is not an upper bound of B, so there must exist an x € B and an M such
thatn > M = o — € <x < a,.
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These facts together imply that for n; > M we have @ — € < a,; < o + €. Then,
given any n > N, choose any n; > max(M, N), so that

nzN = |an_0[|<|an_ani|+|an;_a|<2€

as required to show a, — «.

This proof is open to the criticism that we have not proved whether, in fact, there
exists such a set with all these properties. We need to fill this logical gap by giving
a construction of R that satisfies these axioms.

(ii) The whole idea is to treat the Cauchy sequences of rational numbers themselves
as the missing numbers! How can a sequence be a number? Actually, this is not
really that novel—the familiar decimal representation of a real number is a particular
Cauchy sequence: e := 2.71828... is just short for (2,2.7,2.71,2.718, ...). But
there are several other Cauchy sequences that converge to e. For example, there
is nothing special about the decimal system—the binary expansion (2, 2%, 2 +
% + %, ...) also converges to e. We should be grouping these asymptotic Cauchy
sequences together, and treat each class as one real number. For example, the
asymptotic sequences 0.32999 ... and 0.33000. . . represent the same real number.

Accordingly, R is defined as the set of equivalence classes of asymptotic Cauchy
sequences of rational numbers; each real number is here written as x = [a,]
(instead of the cumbersome [(a,)]). We now develop the structure of R: addition
and multiplication, its order and distance function. Define

x+y=la,)+by] :=lay, +byl, xy=lanllby] :=lanby].

That addition is well-defined follows from an application of the triangle inequality in
Q; that it has the associative and commutative properties follows from the analogous
properties for addition of rational numbers. The new real zero is [0, 0, .. .], and the
negatives are —x = —[a,] = [—a,]. Similarly, multiplication is well defined and
has all the properties that make R a field.

It is less straightforward to define an inequality relation on R. Let (a,) > 0 mean
that the Cauchy sequence (a,),en is eventually strictly positive (Example 4.3(7)),

JeeQt, AN, n>N = a,>€>0.

Any other asymptotic Cauchy sequence must also eventually be strictly positive.
Correspondingly, let x < y mean that y — x > 0, or equivalently,

[a,] < [Pn] & Je € QT, AN, Van = N, a, + € < by,.

This immediately shows that x < y < x +z < y + z. We make a few more
observations about this relation:

1. If a, > 0O for all n, then [a,] > O,
2. f0 <xand 0 < y then 0 < xy and 0 < x + y (gives transitivity of <),
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3. x > 00R x =0 0OR x < 0 (Example 4.3(7)).
4. If x < 0then —x > 0.

Anti-symmetry of < follows from the fact that (b, — a,),eN cannot eventually be
both strictly positive and strictly negative. This makes R a linearly ordered field.

Given a real number x = [a, ]| = [b,], let |x| := [|a,|], which makes sense since
}|an| — |am|] < lap — am| — Oasn,m — oo,
lanl = 1bal| < lan — byl — O asn — oco.
In fact |[x| = x when x > 0 and |x| = —x when x < 0, so it satisfies the properties

x| > 0,|x| =0 & x =0, |—x| = |x|,and |x + y| < |x| + |y|. Thus d(x, y) :=
|x — y| is a distance, as in Example 2.2(1).

Q is dense in R: Note that a rational number a can be represented in R by the
constant sequence [a, a, ...]. The Archimedean property holds since [a,] > 0
implies that eventually a, > p > 0, for some p € Q, so [a,] > [p/2] > O.
Also, if x = [a,] then a, — x in R, since forany € > 0,let p € Q,0 < p < €, 50

AN, n,m>=2N = |a, —an| <p
= d(an,x) =d(lap, an, .. .1, a1,a2,...])
=[lap —ail, lay —azl,...]1 < €.

The completeness axiom is satisfied: Let A be any non-empty subset of R that is
bounded above. Split R into the set B of upper bounds of A, and its complement
BC, both of which are non-empty, say ag € B®, by € B; these can even be taken to
be rational, by the Archimedean property.

A «
—t —t |—
B¢ B

Divide [ag, bg] in two using the midpoint ¢ := (ag + bg)/2; if ¢ € B then select
[a1, b1] = [ao, c], otherwise take [a1, b1] = [c, bp]. Continue dividing and selecting
sub-intervals like this, to get two asymptotic Cauchy sequences (a;)neN, (Pn)neN,
with b, € B, a, € B¢ (Example 4.3(3)). Let @ := [a,], so a, — o, b, — «, and
(Exercise 3.6(4))

MaeA,a<b,) > Vae A, a<w), “oisanupperboundof A”,
<

<
(Ybe B, a, <b) = (Ybe B, a<

b), “o is the least upper bound”.
A dual argument shows that every non-empty set with a lower bound has a greatest
lower bound, denoted inf A.

R is complete: This now follows from part (i), but we can see this directly in this
context. Start with any Cauchy sequence of real numbers (in decimal form, say) and
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replace each number by a rational number to an increasing number of significant
places, for example:

m€ER —a,eQ

2.6280... 2
2.7087... 2.7
27173... 271
2.7181... 2718

The crucial point is that the two sequences are asymptotic by construction. Since the
first one is Cauchy, so must be the second one. But a Cauchy sequence of rational
numbers is, by definition, a real number x. Moreover, a,, — x implies x, — x. O

This “completion” process generalizes readily to any metric space.

Theorem 4.6

Every metric space X can be completed, that is, there is a complete metric
space X, containing a dense copy of X and extending its distance function.

Any such complete metric space X is called the completion of X.

Proof Construction of X: Let C be the set of Cauchy sequences of X. For any two
Cauchy sequences @ = (x,)neN, b = (Vn)neN, the real sequence d(x,, y,) is also
Cauchy (Exercise 4.11(6)), and since R is complete, it converges to a real number
D(a, b) := lim,_, » d(xy, y,). Symmetry and the triangle inequality of D follow
from that of d, by taking the limit # — oo in the following:

d(Yn, xn) = d(xXn, yn) } { D(b,a) = D(a, b)
d(xXp, yn) < dxn, 20) +d(2n, Yn) D(a,b) < D(a,c) + D(c, b).

The only problem is that D(a, b) = 0, meaning d(x,, y,) — 0, is perfectly
possible without @ = b. It happens when the Cauchy sequences (x;);eN, (Vn)neN
are asymptotic. We have already seen that this is an equivalence relation, so C
partitions into equivalence classes. Write d ([al, [b])) := D(a, b); it is well-defined
since for any other representative sequences a’ € [a] and b’ € [b], we have

D(@a',b) < D(@',a)+ D(a,b) + D(b,b') = D(a, b);

similarly D(a,b) < D(a’,b'); so D(a,b) = D(a’,b’). Let X be the space of
equivalence classes of Cauchy sequences, with the metric d.
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There is a dense copy of X in X : For any x € X, there corresponds the constant
sequence x := (x, x,...) in C. Since

d([x].[y]) = D((x). () = lim d(x,y) =d(x.y),

this set of constant sequences is a true copy of X, preserving distances between
points. To show that this copy is dense in X, we need to show that any representative
Cauchy sequence a = (x;),en in C has constant sequences arbitrarily close to it.
By the definition of Cauchy sequences, for any ¢ > 0, there is an N € N with
d(x,,xny) < € forn > N. Let x be the constant sequence (xy). Then D(a, x) =
limy,—, o0 d (X, x§) < € < 2€ proves that [x] is within 2¢ of [a].

X is complete: Let ([a,]) be a Cauchy sequence in X ; this means d ([a,], l[am]) =
D(a,,a,;) — 0, as n,m — oo. For each n, we can find a constant sequence x,
which is as close to a, as needed, i.e., D(x,, a,) < €,; by choosing ¢, — 0, we
can select (x,) to be asymptotic to (a,). As (a,) is Cauchy, so is (x,). In fact,
X, — X := (x,) since

lim D(x,,x)= lim d(x,,x;) =0,
n— 00 m,n— 00

so that the asymptotic sequence a,, also converges to x, and [a,] to [x]. a

Proving that a given metric space is complete is normally quite hard. Even
showing that a particular Cauchy sequence converges may not be an easy matter
because one has to identify which point it converges to, let alone doing this for
arbitrary Cauchy sequences. But once a space is shown to be complete, one need not
go through the same proof process to show that a subspace or a product is complete:

Proposition 4.7

Let X, Y be complete metric spaces. Then,

(1) A subspace F' C X is complete < F is closed in X,
(i) X x Y is complete.

Proof (i) Let F C X be complete, i.e., any Cauchy sequence in F converges to a
limit in F. Let x € F, with a sequence x, — X, x, € F (Proposition 3.4). Since
convergent sequences are Cauchy and F is complete, x must be in F. Thus F = F
is closed. The completeness of X has not been used, so in fact a complete subspace
of any metric space is closed.
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Conversely, let F' be a closed set in X and let (x,),cN be a Cauchy sequence in
F. Then (x,) is a Cauchy sequence in X, which is complete. Therefore x, — x for
some x € X;infact x € F = F. Thus any Cauchy sequence of F converges in F.

(ii) Let (fz) be a Cauchy sequence in X x Y. Recall that

¢ ((i) ’ ()ycm)) i=dx (Xn. Xm) + dy (Yn ym) = dx (X, Xm).

Since the left-hand term converges to 0 as n, m — oo, we get dx (x,, x;) — 0, so
that the sequence (x,),cN is Cauchy in the complete space X . It therefore converges:
Xp, = x € X. By similar reasoning, y, — y € Y. Consequently,

d ((’y‘) , (’y“)) = dx (xn, x) + dy (yn, y) — Oasn — oo,

which is equivalent to (3') — (}) in X x Y. O
Examples 4.8

1. The completion of a subset A in a complete metric space X is A.

Proof: The completion Y of A must satisfy two criteria: Y must be complete, and
A must be dense in Y. Now, A is closed in X, so is complete, and A is dense in
A (by definition).

2. Two metric spaces may be homeomorphic yet one space may be complete and
the other not. For example, R is homeomorphic to ]0, 1[ (Exercise 3.13(18)), but
the latter is not closed in R.

3. Let f : X — Y be a continuous function. If it can be extended to the completions
as a continuous function f : X — Y, then this extension is unique.

Proof: Any x € X has a sequence (ap)neN in X converging to it (Proposi-
tion 3.4). As f is continuous, we find that f (x) is uniquely determined by

f@) = lim fan) = lim_ f(ay).

4. But not every continuous function f : X — Y can be extended continuously to
the completions f: X — Y. For example, the continuous function f(¢) := 1/¢
on ]0, oo[ cannot be extended continuously to [0, ool.

5. (Cantor) The completion of Q to R has come at a price: R is not countable. Prove
this by taking the binary expansion of a list of real numbers in [0, 1], arranged in
an infinite array, and creating a new number from the diagonal that is different
from all of them. The corollary of the next theorem is a strong generalization of
this statement.
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ey, René-Louis Baire (1874-1932) After graduating in
Paris around 1894, Baire tackled the problem of con-
vergence and limits of functions, namely that no space
of functions then known was “closed” under pointwise
convergence. His Ph.D. dissertation, under the supervi-
sion of C.E. Picard, introduced the concept of ‘nowhere
dense’ and proved his famous theorem. Progress on this
issue was made by his colleague Borel in the direction
of measurable sets.

-

Theorem 4.9 (Baire’s Category Theorem)

In a complete metric space, a countable intersection of open dense subsets
is again dense.

Proof LetY = ﬂflil U,, where U, are open dense subsets of the complete metric
space X, and let B, (x) be any ball in X. To find a y € Y N B, (x), we are going to
create a nested sequence of balls of diminishing radius whose centers therefore form
a Cauchy sequence. To start with, U intersects the ball B, (x1) := B, (x), since it
is dense; so the open set Uy N B, (x1) contains a point x, and some neighborhood
By, (x2). Now U is dense, so the open set U N By, (x2) is non-empty and there is a
ball B,,(x3) € Uz N B, (x2).

Continuing like this, we can find a sequence of points (using the Axiom of
Choice)

Xn+1 € Brn_H (xp41) S U N Brn (xn).
Moreover at each stage, r, can be chosen small enough that

rm—>0 (eg,rp<1/n),
Br,,+1(xn+l) - Br,, (xn)  (e.grny1 <rn—dXu, Xpt1)).

Thus (x,),en is a Cauchy sequence (Example 4.3(4)) which converges x,, — y

since X is complete. For all m > n we have x,, € B, (x,+1) and taking the limit

X — ywefindy € By, (xy+1) € By, (x,). Since this holds for any n we obtain
v €[ )Br,(w) € By ) N[ \Un = B,(1) N Y.
n n

Since Y intersects all balls, Y is dense in X. m]
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Corollary 4.10

A nonempty complete metric space cannot be covered by a countable
number of nowhere-dense subsets.

Proof Suppose that the metric space X = [J,2; A, (= U, A,), where A,
are nowhere dense. Then, ﬂn Ag = @, with Ag being open dense subsets
(Exercise 2.23(9)). This clearly contradicts the theorem. m|

Exercises 4.11

1. Any sequence in Q of the type (3.1, 3.14, 3.141, 3.1415, .. .) is Cauchy.
2. The sequences (1,2, 3,...) and (1, —1, 1, —1, ...) are not Cauchy.
3. x Try to prove that the sequence defined by ag := 1, a,+1 1= %” + % is Cauchy.

(Hint: Use the principle of induction to show that |a,+1 — a,| < (%)”Jrl )

4. If asequence (x,),eN, chosen from a finite set of points, e.g., (x, y, x, x, ¥, ...),
is Cauchy then it must eventually become constant (xq, ..., Xy, XN, . ..).

5. The following give sufficient conditions for Cauchy sequences:

(@) d(xpy1,x,) < cd(xy, x,—1) withe < 1,
() d(xnt1,%n) < cd(xp, x4—1)% with cd(x1, x0) < 1.

But a sequence which decreases at the rate d(x,+1,Xx,) < 1/n need not be
Cauchy.

6. If (xn)neN, (Vn)nen are Cauchy sequences in X, then so is d,, := d(x,, y,) in

R.

» A continuous function need not map Cauchy sequences to Cauchy sequences.

If x, > x and y, — x, then (x;,)neN, (Vn)neN are asymptotic.

/1 and +/n + 1 are asymptotic divergent sequences in R.

» A subsequence of a Cauchy sequence is itself Cauchy, and if it converges so

does its parent sequence.

11. If (xp),en is a Cauchy sequence, and the set of values {x, : n € N} has a limit
point x, then x,, — x.

12. The completion of 0, 1[ and of [0, I[ is [0, 1]. Any Cauchy sequence in the
Cantor set C must converge in C. However a Cauchy sequence of rational
numbers need not converge to a rational number because Q is not closed in
R.

13. » R": =R x --- x Rand C are complete.

14. Is N complete? Any discrete metric space is complete.

15. (Cantor) We have already seen that the centers of a nested sequence of balls
with r,, — 0 form a Cauchy sequence (Example 4.3(4)). Show, furthermore,
that in a complete metric space, (), By, (xn) = {lim,— o0 Xy }.

16. The only functions f : Q — Q@ satisfying f(x + y) = f(x) + f(y) are
f : x — Ax. Deduce that the only continuous functions f : R — R with this
property are of the same type.

© 0 x© N
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17. x The completion of X is essentially unique, in the sense that any two such
completions (such as the one defined in the theorem) are homeomorphic to
each other.

18. The Cantor set is complete and nowhere dense in R; why doesn’t this contradict
Baire’s theorem (corollary)?

4.2 Uniformly Continuous Maps

We have seen that a continuous function need not preserve completeness, or even
Cauchy sequences. If one analyzes the root of the problem, one finds that its
resolution lies in the following strengthening of continuity:

Definition 4.12

A function f : X — Y is said to be uniformly continuous when

Ve >0, 36 > 0, Vx € X, f[Bs(x)] € Be(f(x)).

The difference from continuity is that, here, § is independent of x.

Easy Consequences

1. Uniformly continuous functions are continuous.

2. But not every continuous map is uniformly so; an example is f(¢) := 1/¢ on
10, ool.

3. » The composition of uniformly continuous maps is again uniformly continuous.
Proof: Ve > 0, 33,8" > 0, Vx, g[f[Bs(x)]] € g[Bs (f(x))] € Be(g(f(x))).

The key properties of uniformly continuous maps are the following two proposi-
tions:

Proposition 4.13

A uniformly continuous function maps any Cauchy sequence to a Cauchy
sequence.

Proof By definition f : X — Y is uniformly continuous when

Ve >0,35>0, Vx,x', dy(x,x) <8 = dy(f(x), f(x)) <e.
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In particular, for a Cauchy sequence (x,),eN in X, with this §,

AN, n,m >N = dx(x,, xm) <6
= dy(f(xn), f(xm)) <,

proving that ( f (x,))nen is a Cauchy sequence in Y. |

More generally, practically the same proof shows that a uniformly continuous
function f : X — Y maps any asymptotic sequences (a,)neN, (bn)nen in X to
asymptotic sequences (f (an))neN, (f (bn))nenin Y.

Theorem 4.14

Every uniformly continuous function f : X — Y has a unique uniformly
continuous extension to the completions f : X 7.

Proof In order not to complicate matters unnecessarily, let us suppose that X and
Y are dense subsets of X and ¥ respectively, instead of being embedded in them.
Nothing is lost this way, except quite a few extra symbols!

Let x, —> x € )~( with x, € X. The sequence f(x,),eny is Cauchy
in Y by the previous proposition, so must converge to some element y € Y.
Furthermore, if a, — x as well (a, € X), then (x,),eN and (a,),eN are asymptotic
(Exercise 4.11(8)) forcing f(x,)nen and f(ap)neN to be asymptotic in Y, hence
f(an) — y. This allows us to define f(x) := y without ambiguity. Moreover, this
choice is imperative and f is unique, if it is to be continuous.

The uniform continuity of f follows from that of f. For any € > 0, there is a
8 > 0 for which

Ya,be X, d(a,b) <§ = d(f(a), f(b)) <e.
Letx,x € X with~d(x,x/) <4, leta, — x, b, — x" with a,, b, € X and, by the
above, f(a,) = f(x), f(by) — f(x'). Among these terms, we can find a close to
x and b close to x’ to within r := (§ — d(x, x’))/2 < 8, while also f(a) is close to

f(x) and f(b) is close to f(x') to within €. Then

d(a,b) <d(a,x)+dx,x)+dx',b) <2r +dx,x) =6
= d(f(x), f(x") <d(f(x), f(@) +d(f(a), f(b) +d(fb), f(x)) < 3e.
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The following are easily shown to be uniformly continuous functions:

Definition 4.15

A function f : X — Y is called a Lipschitz map when
Jc >0, Vx,x' € X, dy(f(x), f(x") <cdx(x,x).

Furthermore, it is called

— an equivalence (or bi-Lipschitz) when f is bijective and both f and f~!
are Lipschitz;

— acontraction when it is Lipschitz with constant ¢ < 1;

— an isometry, and X,Y are said to be isometric, when f preserves
distances, i.e.,

Vx,x' € X, dy(f(x),f(x/)) =dx(x, x).

Examples 4.16

1. Any f : [a, b] — R with continuous derivative is Lipschitz.
Proof: As f’ is continuous, it is bounded on [a, b], say | f'(x)| < c. The result
then follows from the mean value theorem,

FO) = f&) = fE -1, 3% €la, bl

2. To show f : R? — R? is Lipschitz, where f = (fi, f»), it is enough to show
that

[fi(xt, y1) — fitxo, y)l <ce(lxi —x20 + 1yt —y2), i=1,2,

for then (using (a + b)? < 2(a® + b*) fora, b € R)

| (o) - (202 | < i) = fitan, s+ 161,30 = faoz 32
2 (e, y1) J2(x2, y2)

< 2c(lxy — x2| + [y1 — »2D)

<1()- ()1

3. » Lipschitz maps are uniformly continuous, since for any ¢ > 0, we can let
8 := €/2c independent of x to obtain d(x, x’) <8 = d(f(x), f(x)) < c§ <e.
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4. But not every uniformly continuous function is Lipschitz. For example, 1/x on
[0, 1] is uniformly continuous (show!); were it also Lipschitz, it would satisfy
|v/x — /0] < c|x — 0] which leads to \/x > 1/c.

The next theorem is one of the important unifying principles of mathematics. It
has applications in such disparate fields as differential equations, numerical analysis,
and fractals.

Theorem 4.17 (The Banach Fixed Point Theorem)

Let X be a nonempty complete metric space. Then every contraction map
f : X — X has a unique fixed point x = f(x), and the iteration

Xnt1 = f(xn)

converges to it for any x.

The rate of convergence is given at least by d(x, x;) < ICTncd (x1, x0)-

Proof Consider the iteration x, 41 := f(x,) starting with any xq in X. Note that
d(Xnt1, xp) = d(f (xn), f(xn-1)) < cd(xp, Xp—1).
Hence, by induction on n,
d(xpt1, Xp) < "d(x1, x0),

s0 (xn)neN is Cauchy since ¢ < 1 (Example 4.3(5)). As X is complete, x,, converges
to, say, x, and by continuity of f,

f(x)=f(lim x,) = lim f(x,) = lim x,4+; = x.
n— o0 n—oQ n—od
Suppose there are two fixed points x = f(x) and y = f(y); then

d(x,y) =d(f(x), f(y)) <cd(x,y)

implying d(x, y) = O since ¢ < 1.
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Exercises 4.18

1.

Show that
@ f:la,b] > R, f(t) :=1t+ 1/t, is a contraction when a > 2’%;
() f:[0,17% = R2, f(x,y) = (i;f;f) is Lipschitz.

The composition of two Lipschitz maps is Lipschitz.

. » A Lipschitz map (with constant c¢) sends the ball B,(a) into the ball

Ber (f(@)).

Isometries are necessarily 1—1. Surjective isometric maps are equivalences, and
the latter are homeomorphisms.

» Two metric spaces are said to be equivalent when there is an equivalence
map between them. Equivalent metric spaces must be both complete or both
incomplete.

» If a space has two distances, the inequality d;(x, y) < cda(x,y), where
¢ > 0, states that the identity map is Lipschitz. In the same vein, two distances
are equivalent when there are ¢, ¢’ > 0 such that

ddy(x,y) <di(x,y) < cda(x, y).

Show that two equivalent distances have exactly the same Cauchy sequences.

. The unit circle has two natural distance functions, (i) the arc length 6 and (ii)

the induced Euclidean distance 2 sin(6/2), where 6 is the angle (at the center)
between two points (< 7). Prove that the two are equivalent by first showing

20/ <sinf <6, for 0<60 < m/2.

The distances D; and D, for X x Y (Example 2.2(6)) are equivalent.

The fixed point theorem can be generalized to the case when f : B,(x9) — X
is a contraction map, as long as the starting point satisfies d(xg, x1) < (1 —c)r.
Use the triangle inequality to show that x,, remain in B, (xo).
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10.

11.

12.
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The classic example of an iteration converging to a fixed point is that provided
by the map 7,41 := (1 4 1,)~", which converges to the golden ratio. Show that
the map is a contraction on an appropriate closed interval.

Any continuously differentiable function f : R — R with |f/(r)] < lisa
contraction map in a neighborhood of ¢.

If f : R — Ris a contraction with Lipschitz constant ¢ < 1, then f(t) = ¢
can also be solved by iterating f,+1 := F(t,) where F(t) :=t — a(t — f(1)),
0 < o < 2/(c + 1). Hence find an approximate solution of + = sint + 1;
experiment by choosing different values of o and compare with the iteration

Iny1 = f(tn)-

4.3 Separable Spaces

Completeness is a “nice” property that a metric can have. A different type of prop-
erty of a metric space is whether it is, in a sense, “computable” or “constructive”.
Starting from the simplest, and speaking non-technically, we find:

Finite metric spaces There are a finite number of possible distances to
compute.
Countable metric spaces With an infinite number of points, an algorithm

may still calculate distances precisely, but it may
take longer and longer to do so.

Separable metric spaces Points can be approximated by one of a countable

number of points; in principle, any distance can be
evaluated, not precisely, but to any accuracy.

Non-separable metric spaces  There may be no algorithm that finds the distance

between two generic points, even approximately.

Non-separable metric spaces are, in a sense, too large, while countable metric spaces
leave out most spaces of interest.

Definition 4.19

A metric space is separable when it contains a countable dense subset,

JA C X, A is countable AND A = X.

Examples 4.20

1. Countable metric spaces, such as N, Z, QQ, are obviously separable.
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2. » R is separable because the countable subset Q is dense in it. By the next
proposition, C and R” are also separable.!

Proposition 4.21

Any subset of a separable metric space is separable.
The product of two separable spaces is separable.
The image of a separable space under a continuous map is separable.

Proof (i)LetY C X and A = X, with A = {a, : n € N} countable. For each
ap,let Y, ,, :={y €Y :d(a,,y) < 1/m}, and pick a representative point from
each, y, m € Y,.m, whenever the set is non-empty. This array of points is certainly
countable, and we now show that it is dense in Y.

Fix0 < e < %; any y € Y can be approximated by some a,, € A withd(a,, y) <
€. Pick the smallest integer m such thatm > 1/2¢;thenm —1 < 1/2¢,so0m < 1/€;
thereforee < 1/m < 2¢. Theny € Y, ,, # &, so that there must be a representative
Yn.m With d(an, yn.m) < 1/m < 2e¢. Combining the two inequalities, we get

dYnm,y) < dYum,an) +d(ay, y) < 3e.

(ii) Let {aj,az, ...} be dense in X, and { by, by, ...} dense in Y. Then for any
€ > 0 and any pair (§) € X x Y, x can be approximated by some a, such that
dx(an, x) < €/2, and y by some b,, with dy (b,,,, y) < €/2; then

d ((Z) , (x)) = dx(an, x) + dy (bp, y) < €
m y

shows that the countable set of points (Z:,) (n,m € N)isdensein X x Y.

(iii) Let f : X — Y be continuous and let A be countable and dense in X. Then fA
is countable because the number of elements of a set cannot increase by a mapping.
Moreover, as f is continuous, fA is dense in fX (Example 3.9(3)), and fX is
separable. O

Exercises 4.22

1. A metric space X is separable when there is a countable number of points a,
such that the set of balls B (a,) covers X for any €.

2. % In a separable space, we can do with a countable number of balls (with say
rational radii), in the sense that every open set is a countable union of some of

! There is a catch here: The metric used in the proposition is not the Euclidean one. But the
inequalities used there remain valid for the Euclidean metric, \/dx(a,,,)c)2 +dy(b,, y)? <

Ver/d+€2/4 < e.
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these. It then follows that every cover of the space using open sets has a countable
subcover.

. The union of a (countable) list of separable subsets is separable.

4. » If there are an uncountable number of disjoint balls, then the space is non-
separable, e.g., an uncountable set with the discrete metric is non-separable. We
shall meet some non-trivial examples of non-separable metric spaces later on
(Theorem 9.1).

Remarks 4.23

[O8]

1. Note that d(f(x), f(y)) < d(x, y) does not necessarily give a contraction map.
For example, f (1) :=2/(v/t?> + 4 — t). In this case, the iteration x, | := f(x,)
may satisfy d(x,+1, x,) — 0 but need not be a Cauchy sequence.

2. The reader has most probably seen images of fractals; many of these are the fixed
‘point’, or attractor, of a contraction on the space of shapes (Example 2.2(4)) (see

[19D).

3. The Banach fixed point theorem is also valid when f" := f o---o f, rather than
f, 1s a contraction map; in this case the convergence is “cyclic”.



Chapter 5 ®
Connectedness Check for

5.1 Connected Sets

We have an intuitive notion of what it means for a shape to be in one piece. The
following definition makes this idea precise:

Definition 5.1

A metric space X is disconnected when it has a non-trivial partition of non-
empty open subsets. Otherwise it is called connected.

Note that if X = |J; A; with A; open, non-empty, and pairwise disjoint, then X =
AU B,where A = Ajand B = Ui;él Aj;, an open partition of two open sets. So a
space X is connected when it cannot be split into fwo (or more) disjoint non-empty
open subsets. To make the definition more useful we need to adapt it to the case of
subsets of a metric space, since that is where we need it most:

Proposition 5.2

A subspace C of a metric space X is disconnected when it is the union of
(at least) two disjoint non-empty subsets C = A U B such that each subset
is covered exclusively by an open set, that is,

(continued)
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ACU, BNU=2, UopeninX,
BCV, ANV =g, VopeninX.

Proof By definition, C is disconnected when C = A U B with A, B disjoint and
open relative to C. This in turn means that A = C N U, B = C NV for some
open subsets U, V of X (Proposition 2.12). The disjointness of A, B means that
g=ANB=CNUNYV,which thenimplies ANV =2 =BNU.

Conversely, given the conditions in the proposition, note that

CNU=(AUB)NU=(ANU)UBNU)=A

and similarly C NV = B. Hence A, B are open in C, yet disjoint, thus forming an
open partition of C. O

Note carefully that it is not required that U be disjoint from V'; only that they are
disjoint in C, thatis, CNU NV = @.

Examples 5.3

1. Single points are always connected because they cannot be split into two non-
empty sets. Similarly the empty set is connected.

2. » Any subset of Z (or any discrete metric space) is disconnected except the
single points and the empty set. Metric spaces with this property are called fotally
disconnected.

Proof: Let C contain more than one point, say a and b. Take A = U = {a}
and B = V := C~{a} # <. Then U and V are open (any subset is open) and
respectively contain A and B exclusively.

3. » A set A is connected when every continuous function f : A — {0, 1} C Z is
constant. Otherwise the open sets f~1{0} and f~'{1} cover and disconnect A.

Proposition 5.4

A subset C is connected < every non-trivial subset of C has a non-empty
boundary in C, that is,

PG#ACC = IcA+# 0.

Recall the definition of the relative boundary following Proposition 2.12, dcA =
{xeC:VYe>0,daec A,Ibe C~\A, a,b e B:(x) }.
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Kazimierz Kuratowski (1896-1980) The Polish math-
ematician Kuratowski started his engineering studies
in 1913 at the University of Glasgow but returned
to the University of Warsaw because of World War
I, changing his degree to mathematics. He rewrote
much of Hausdorff’s theory in 1921, introducing his
closure axioms and expanding on topological connect-
edness. Similarly Aleksandrov and Urysohn, and later
Tikhonov, in Moscow, built upon Hausdorff’s work with
compactness.

Proof Let @ # A C C be without a boundary in C. Then all the points of C are
either interior points or exterior points of A; thus A and B := C~ A are open in C.
But then there are open sets U, V in X, withA=UNCand B=V NC, and

UNB=UNCNA)=UNCNA =ANA°=g,
VNA=VNCNU=BNU =g,

soC =AU (C~A) = AU B is disconnected.

Conversely, if C is disconnected, then C = AU B, with A € U, B € V, both
non-empty, and U, V open sets in X with ANV = & = B N U. For any point
a€ A,ae B.(a) C U; hence

ae{xeC:dx,a)<r}=B,(aNCCUNC=A

shows that A is open in C. Similarly B = C~\ A is open in C, thus leaving A without
a boundary in C. O

Theorem 5.5

The connected subsets of R are precisely the intervals.

Proof Every non-trivial subset of an interval I C R has a boundary point: Let A
be a non-trivial subset of I; that A is non-trivial means that there exist ag € A and
by € I~A. We can assume ag < by, otherwise switch the roles of A and /A in
what follows.

Divide the interval [ag, bo] into halves, [ag, c] and [c, bg], where ¢ := (ag+bo)/2
is the midpoint. If ¢ € A let [ay, b1] := [c, by], otherwise if ¢ € A® let [ay, b1] :=
[ao, c]. Continue taking midpoints to get a nested sequence of intervals [a,, b, ] in
I, witha, € A, b, € INA.
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A
ap o 0o b()
a1 o———o By
a2 o—o by
a3 o—o bd

By the bisection property (Example 4.3(3)), the sequences (a,)nen and (by)neN
are Cauchy and asymptotic, and since R is complete, they converge: a, — a and
b, — a. The consequence is that, inside any open neighborhood B (a), there are
points @, € A and b, € I~ A, making a a boundary point of A. By the preceding
proposition, this translates as “every interval is connected”.

Every connected subset C of R has the interval property a,b € C = [a,b] C C:
Let C be a connected set, and leta, b € C (say, a < b). Any x € [a, b] which is not
in C would disconnect C using the disjoint open sets ]—oo, x[ and ]x, ool.

Every subset of R with the interval property is an interval: Let A have the interval
property. If A # &, say x € A, and has an upper bound, then it has a least upper
bound b. The interval [x, b[ is a subset of A because there are points of A arbitrarily
close to b. Similarly if a is the greatest lower bound then Ja, x] € A. Going through
all the possibilities of whether A has upper bounds or lower bounds or none, and
whether these belong to A or not, results in all the possible cases of intervals. For
example, if it contains its least upper bound b but has no lower bound, then [x, b] C
A for any x < b, so that A = ]—o0, b]. a

By contrast, the connected sets in other metric spaces may be very difficult to
describe and imagine. Even in R2, there are infinite connected sets such that when
a single point is removed, the remaining set is totally disconnected! (For further
information search for “Cantor’s teepee”.) Connectedness is an important intrinsic
property that a set may have: it is preserved by any continuous function. Even though
the codomain space may be very different from the domain, a connected set remains
in ‘one piece’.

Proposition 5.6

Continuous functions map connected sets to connected sets,

f X — Y is continuous AND C C X is connected = fC is connected.

Proof Let C be a subset of X, and suppose fC is disconnected into the non-empty
disjoint sets A and B, covered exclusively by the open sets U and V, that is,

fC=AUBCUUV, UNB=o=VNA.
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Then,
c=rtavufr'Bc rluusty, fTlunf'B=g=r"tvnfa.

ftu U

v 1%

Moreover f~'A and f~!'B are non-empty and disjoint, and f~'U and f~'V
are open sets (Theorem 3.8). Hence fC disconnected implies C is disconnected.
O

Almost surprisingly, this simple proposition is the generalization of the classical
“Intermediate Value Theorem” of Bolzano and Weierstral3. In effect, IVT has been
dissected into this abstract, but transparent, statement and the previous one that
intervals are connected. It embodies why abstraction is pursued in mathematics—
the power of being applicable to very general spaces, with a proof that makes no use
of irrelevant properties of some concrete space such as R.

Corollary 5.7 (Intermediate Value Theorem)

Let X be a connected space, and f : X — R a continuous function. For
any c with f(a) < ¢ < f(b) there exists an x € X such that f(x) = c.

Proof fX is connected in R and so must be an interval. By the interval property,
f(a), f(b) e fX = ce€ fX,soc= f(x) for some x € X. m|

Exercises 5.8

1. Any two distinct points of a metric space are disconnected. More generally,
(1) any set of n points (n > 2), (ii) the union of two disjoint closed sets, are
disconnected.

2. The space of rational numbers Q is disconnected, e.g., using the open sets
]—00, /2[ N Q and 14/2, co[ N Q. In fact Q is totally disconnected.

3. Suppose that there is an x € X and an r > 0 such that d(x, y) # r for all
y € X, but there are points y with d(x, y) > r. Show that X is disconnected.
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4. » An open set (such as the whole metric space) is disconnected precisely when
it consists of (at least) two disjoint open subsets. Find a connected set whose
interior is disconnected.

5. * Any two disjoint non-empty closed sets A and B are completely separated in
the sense that there are disjointopensets A C U, BV, UNV = g&.

(Hint: use Exercise 3.13(17).)

6. » A path is a continuous function / — X where I is an interval in R. Its
image is connected. Hence show that the parametric curves of geometry, such as
straight line segments, circles, ellipses, parabolas, and branches of hyperbolas
in R2, are connected.

7. (a) The function f(z) := t" is continuous on R, forn = 0, 1, .... Show that,
for any fixed n > 1, ¢ can be made arbitrarily large. Let x be a positive
real number; use the intermediate value theorem to show that /x exists.
More generally every real monic polynomial t" + -+ - + ayt +ap (n > 1),
where ag is negative or when » is odd, has a root.

(b) Every continuous function f : [0, 1] — [0, 1] has a fixed point. (Hint:
consider f(z) —t.)

8. If f :[0,11> — R is continuous and f(a) < ¢ < f(b) then there is an
x € [0, 17% such that ¢ = f(x). (Assume [0, 112 is connected.)

9. Suppose X is connected and f : X — R is continuous and locally constant,
that is, every x € X has a neighborhood taking the value f(x). Then f is
constant on X. (Hint: Show f~'{f(a)} is closed and openin X.)

10. Q has non-interval subsets with the interval property (e.g. [0, v2[ N Q).
11. Use the intermediate value theorem to show that an injective continuous
function on [a, b] must be increasing or decreasing

s<t = fO)S<f@) OR s<t = f(s)= f).

5.2 Components

It seems intuitively clear that every space is the disjoint union of connected subsets.
To make this rigorous, let us present some more propositions that go some way in
helping us show whether a set is connected, especially the principle that whenever
connected sets intersect, their union is connected. This allows us to build connected
sets from smaller ones.
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Proposition 5.9

If C is connected then so is C with some boundary points (such as C).

Proof Let D be C with the addition of some boundary points. Suppose it separates
as D = A U B each covered exclusively by open sets U and V. Then C would also
split up in the same way, unless C C U say. This cannot be the case, for if x € B is
a boundary point covered by V, then there is a ball B,(x) € V containing points of
C, a contradiction. Thus D disconnected implies C is disconnected. O

Theorem 5.10
If A;, B are connected sets and Vi A;NB # @ then BU| J; A; is connected.

If A, are connected forn = 1,2,...,and A, N A, # @ then | J, 4, is
connected.

Proof (i) Suppose the union B U | J; A; is disconnected and splits up into two parts
covered exclusively by open sets U and V. Then B would split up into the two parts
BNU and BNV were these to contain elements. But as B is known to be connected,
one of these must be empty, say B N U = &. For any other A := A; that is partly
covered by U (and there must be at least one) we get ANV = & and A C U, for
the same reason. Butthen AN B € U N B = &, contradicting the assumptions.

In particular, note that if A, B are connected and A N B # &, then A U B is also
connected. But the statement is true even for an uncountable number of A;.

) If Cy = Uflvzl A, is connected, then Cyy1 = Cny U Ay is also connected
by the first part of the theorem, since Cy N Ay # <. By induction, starting from
the connected set C; = A, Cp is connected for all N. As A; C Cy for all NV, it
follows from (i) that | J3_; Cn = U ; An is also connected. O
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The converses of both these statements are false, but the following holds:

Proposition 5.11

Given non-empty connected sets A, B,

AU B is connected <& Jx € AU B, {x}U A and {x} U B are connected.

Proof Suppose no point x € A makes {x} U B connected. That is, for each x € A
there are two open sets which separate {x} U B. Call the set which contains x, Uy,
and the other one V,. They would also separate B unless B C Vy,and Uy N B = .
So [J, Uy is an open set containing A but disjoint from B. If the same were to
hold for points in B, then there would be an open set containing B but disjoint
from A, making A U B disconnected. The converse is a special case of the previous
proposition. O

Theorem 5.12

A metric space partitions into disjoint closed maximal connected subsets,
called components. Any connected subset is contained in a component.

By a maximal connected set is meant a connected set C such that any A 2 Cis
disconnected.

Proof The relation x ~ y, defined by {x, y} € C for some connected set C, is
trivially symmetric; it is reflexive since {x, x} = {x} is connected, and it is transitive
because if x,y € Cy and y,z € C then x,z € C; U C,, which is connected by
Theorem 5.10 as y € C; N C». Moreover, another way of writing the relation x ~ y
is as

y € U{C C X :x € C, C connected },

so that the equivalence class [x] (called the component) of x is the union of all
the connected sets containing x. What this implies is that any connected set C
that contains x must be part of the component of x. In addition, the component
is connected by Theorem 5.10 and it is maximally so, as no strictly larger connected
set containing x can exist. In particular, since [x] is connected (Proposition 5.9), it
must be the case that [x] = [x] and [x] is closed (Proposition 2.16). O
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Exercises 5.13

1.

2.

w

bt

Show that R? is connected by considering the radial lines all intersecting the
origin.

» More generally, if there exists a path between any two points, then the metric
space is connected. (It is enough to find a path between any point and a single
fixed point; why?) Such a space is said to be path-connected.

The square [0, 17? and the half-plane ]a, oo[ x R are connected.

Intervals in R, disks in R?, and balls in R3 are path-connected. Do balls in a
general metric space have to be connected?

» If X, Y are connected spaces then sois X x Y.

The set R {x} is connected. But R {x} is disconnected. Deduce that R and
R? are not homeomorphic.

Using the same idea, show that [a, b], [a, b[ and ]a, b[ are not homeomorphic
to each other, and neither is a circle to a parabola.

A connected metric space, such as R, has one component, itself. At the other
extreme, in totally disconnected spaces, the components are the single points
{a}, e.g., Qand Z.

If a subset of X has no boundary (so is closed and open) then it is the union of
components of X.

Components need not be open sets.

. A metric space X in which B, (x) is connected for any x and any r sufficiently

small is said to be locally connected. Show that for a locally connected space,

(a) the components are open in X,
(b) any convergent sequence converges inside some component,
(c) if X is also separable, then the components are countable in number.



Chapter 6 ®
Compactness Qe

In this final chapter of Part I, we encounter the second major descriptive concept
available in metric spaces, after connectedness, namely the idea of boundedness
of a subset, which is what is normally meant when one refers to “finiteness” in
a geometric sense. This is not meant literally, that is, when one says “a circle is
finite”, one does not mean that it has a finite number of points, but rather that it
does not reach out to infinity. Although this notion will be made rigorous in the first
section, it is not even preserved by homeomorphisms, and therefore is not a proper
metric characteristic. The concept needs to be strengthened somewhat to arrive at a
property, called compactness, that is preserved by continuous maps.

6.1 Bounded Sets

Definition 6.1

A set B is bounded when the distance between any two points in the set has
an upper bound,

Ir >0, Vx,yeB, d(x,y) <r.
The least such upper bound is called the diameter of the set:

diam B := sup d(x,y).
x,yeB

diam B
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The characteristic properties of bounded sets are:

Proposition 6.2

Any subset of a bounded set is bounded.
The union of a finite number of bounded sets is bounded.

Proof (i) Let B be a bounded set with d(x, y) < r for any x, y € B. In particular
this holds for x, y in any subset A C B, so A is bounded.

(ii) Given a finite number of bounded sets Bj,...,By, with diameters ry,...,ry,
respectively, let » := max(r1, ..., ry). Pick a representative point from each set,
a, € By, and take the maximum distance between any two, 7 := max, , d(a, an);
it certainly exists as there are only a finite number of such pairs. Now, for any two
points x, y € Un By, thatis, x € B;, y € Bj, for some i, j, and using the triangle
inequality twice,

d(x,y) <d(x,a;) +d(a,a;)+d(aj,y)
< ~|—7+ rj
<

2r +7,

which furnishes an upper bound for the distances between points in U,],v:1 B,.

An
I'n

am

Ym

Examples 6.3

1. In any metric space, finite subsets are bounded. In N, only the finite subsets are
bounded. N, Q, R, and C are all unbounded.

2. In a discrete metric space, every subset is bounded. A metric space may be non-
separable (“large”) yet be bounded.

3. » A set B is bounded < it is a subset of a ball,

Ir >0, da e X, B C B.(a).
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Proof: Balls (and their subsets) are obviously bounded,
Vx,y € By(a), d(x,y)<d(x,a)+d(y,a) <?2r.

Conversely, if a non-empty set is bounded by R > 0, fix any points @ € X and
b € B to conclude B C B, (a):

VxeB, dix,a)<dx,b)+db,a)<R+1+db,a)=:r.

. The set [0, 1[ U ]2,3[ C R is bounded because it can be covered by the ball

B3(0), or because it is the union of two bounded sets.

. » Boundedness is not necessarily preserved by continuous functions: If B is

bounded and f is a continuous function, then f B need not be bounded. Worse,
a set may be bounded in one metric space X, but unbounded in a homeomorphic
copy Y.

For example, N with the standard metric is unbounded, but its homeomorphic
copy, N with the discrete metric, is bounded.

Exercises 6.4

1.

The set [—1, 1[ is bounded in R, with diameter 2; in fact, diam [a, b[ = b — a.

2. Show thatif AN B # & then diam(A U B) < diam(A) + diam(B).

. Any closed ball B,(a) € {x : d(x,a) < r} is bounded; hence the closure of a

bounded set is bounded.

. » Cauchy sequences are bounded (Example 4.3(6)). So unbounded sequences

cannot possibly converge.

. » Prove that Lipschitz functions map bounded sets to bounded sets (Exer-

cise 4.18(3)). So equivalent metric spaces have corresponding bounded subsets.

6.2 Totally Bounded Sets

We have seen that boundedness is not an intrinsic property of a set, as it is not
necessarily preserved by continuous functions. Let us try to capture the “finiteness”
of a set with another definition:

Definition 6.5

A subset B C X is totally bounded when it can be covered by a finite number
of e-balls, however small their radii €,

N
Ve >0, 3N eN, Ja,...,an € X, BC UBe(an).

n=1

(continued)
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Easy Consequences

1. Any subset of a totally bounded set is totally bounded (the same e-cover of the
parent covers the subset).

2. A finite union of totally bounded sets is totally bounded (the finite collection of
e-covers remains finite).

3. A totally bounded set is bounded (it is a subset of a finite union of bounded balls).

Examples 6.6

1. The interval [0, 1] is totally bounded in R because it can be covered by the balls
Be(ne) forn =O,...,N,whereé— Il <N<K é

2. Not all bounded sets are totally bounded. For example, in a discrete metric space,
any subset is bounded but only finite subsets are totally bounded (take € < 1).

3. » A totally bounded space X is separable.
Proof: Foreachn =1, 2, . . ., consider finite covers of X by balls By, (a; ,) and
let A, := {a; n} be the finite set of the centers, so A := U:oz] A, is countable.
For any € > 0 and any point x € X, let % < €, then x is covered by some ball
Bi/n(ain), i€, d(x,a;,) <€, thus A = X.

4. The center points a, of the definition may, without loss of generality, be assumed
to lie in B. Otherwise cover B with balls B¢ /2(x,), and take representative points
ay € B N Bey(x,) whenever non-empty; then

€
ye€B = d(y,x) < 3 = d(y,ap) <d(y,x,) +d(x,, ay) <€,
so B C |, Be(an).

Proposition 6.7

A uniformly continuous function maps totally bounded sets to totally
bounded sets.

Proof Let f : X — Y be a uniformly continuous function,

Ve >0, 36 >0, Vx € X, f[Bs(x)] € Be(f(x)).



6.2 Totally Bounded Sets 77

Let A be a totally bounded subset of X, covered by a finite number of balls of radius
8, A <N, Bs(xy). Then

N N
FAC FIBsGn)] S | Be(f ().

n=1 n=1
O

A totally bounded set has more stringent properties than a bounded one: an
infinite sequence of points in a totally bounded set is caged in, so to speak, with
nowhere to escape to:

Theorem 6.8

A set B is totally bounded < every sequence in B has a Cauchy
subsequence.

Proof Let the totally bounded set B be covered by a finite number of balls of radius
1, and let { x1, x3, ... } be an infinite subset of B. (If B is finite, a selected sequence
must take some value x; infinitely often and so has a constant subsequence.) A finite
number of balls cannot cover an infinite set of points, unless at least one of the balls,
Bj(ay), has an infinite number of these points, say { x1,1, x2,1, ... }.

Now cover B with a finite number of %—balls. For the same reason as above,
at least one of these balls, Bj/>(az) covers an infinite number of points of {x, 1},
say the new subset {x;2,x22,...}. Continue this process forming covers of %-
balls and infinite subsets {x; ;;} of By, (an). The sequence (x, ) is Cauchy, since
for m < n, both x,, ,, and x, , are elements of the set {x1 , X2, ...}, and so
dXpns Xmm) < % — Oasn,m — oo.

For the converse, start with any a; € B. If B¢(aj) covers B then there is a single-
element e-ball cover. If not, pick a> in B but not in B¢ (a;). Continue like this to get
a sequence of distinct points a, € B with a, ¢ U;’;ll B (a;), all of which are at
least € distant from each other. This process cannot continue indefinitely else we get
a sequence (ay),eN Whose points are not close to each other, and so has no Cauchy
subsequence. So after some N steps we must have B C UlNz 1 Be(a;). O

Exercises 6.9

1. » If X and Y are totally bounded metric spaces, then sois X x Y.
(Hint: If Be(xp,) n = 1,..., N) cover X and B¢ (yp,) (n = 1,..., M) cover Y,
show that every point (x, y) € X XY liesin By (x;, y;) forsomei < N, j < M.)
2. » InR” (and C"), a set is bounded <> it is totally bounded.
(Hint: Show that if B is a bounded set in R”, with a bound R > 0, then B is a
subset of [— R, R]", which is totally bounded by the previous exercise.)
. The set of values of a Cauchy sequence is totally bounded.
4. The closure of a totally bounded set is totally bounded.

(O8]
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5. Let B € Y C X, then B is totally bounded in ¥ < it is totally bounded in X
(See Proposition 2.12).

6. Any bounded sequence in R” (or C") contains a convergent subsequence.

7. A continuous function f : X — Y, with X, Y complete metric spaces, maps
totally bounded subsets of X to totally bounded subsets of Y. (Hint: Consider a
sequence in f B for a totally bounded set B C X.)

6.3 Compact Sets

In the presence of completeness, continuous functions preserve totally bounded sets.
Alternatively, we can strengthen the definition of boundedness even further to a
property that is preserved by continuous functions; such a property is compactness,
but it will emerge that compact sets are precisely the complete and totally bounded
subsets.

Definition 6.10

A set K is said to be compact when given any cover of balls (of possibly
unequal radii), there is a finite sub-collection of them that still cover the set (a
subcover),

N
K c|JBo@) = 3N, 3i,....ix. K| Be, (@)
i

n=1

Examples 6.11

1. Any finite set, including &, is compact.

2. The subset [0, 1[ C R is totally bounded but nof compact. For example, the cover
using balls Bi_1,,(0) forn = 2, ... has no finite subcover. On the other hand,
we will soon see that the closed intervals [a, b] are compact.

3. » Compact metric spaces are totally bounded, and so bounded and separable
(consider the cover by all e-balls). Thus, R and N are not compact.

An equivalent formulation of compactness is the following.

Proposition 6.12

A set is compact < any open cover of it has a finite subcover.

By an open cover is meant a cover consisting of open sets, K C | J; A; (A; open
subsets of X).
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Proof Letopen sets A; cover acompact set, K © | J; A;. Each open set A consists
of a union of balls. It follows that K is included in a union of balls. By the definition
of compactness, there is a finite number of these balls B¢, (a1), ..., Bey(an) that
still cover the set K. Each of these balls is inside one of the open sets, say B, (a;) €
Aj.,and

N
KCUB (a;) gU

i=1

as claimed.
Conversely, suppose K is such that any open cover of it has a finite subcover.
This holds in particular for a cover of (open) balls, so K is compact.
O

We will soon strengthen the following proposition to show that compact sets are
complete, but the following proof is instructive, and remains valid in more general
topological spaces:

Proposition 6.13

Compact sets are closed.

Proof Let K be compact and x € X\ K. To show x is exterior to K, we need to
surround it by a ball outside K. We know that x can be separated from any y € K
by disjoint open balls Br(v (x) and Bry (y) (Proposition 2.5). Since y € B, (), these
latter balls cover K. But K is compact, so there is a finite sub-collection of these
balls that still cover K,

K C Brl ()’1) Uu---uU BrN(yN)~

Now let ¥ := min{r,...,ry };then B,(x) N K = & since

z€B,(x) > z€B,(x)fori=1,...,N
= Z¢Br1(yl)UUBrN(yN)2K

Therefore, x € B, (x) C XK. m]

Proposition 6.14

A closed subset of a compact set is compact.
A finite union of compact sets is compact.
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Proof (i) Let F be a closed subset of a compact set K, and let the open sets A;
cover F; then

K C FU(X\F)C UAi U(XNF).

1

The right-hand side is the union of open sets since X\ F is open when F is closed.
But K is compact and therefore a finite number of these open sets are enough to
cover it,

N N
K c|JAaux~p, so  FclJa
i=1

i=1

(ii) Let the open sets A; cover the finite union of compact sets K1 U ---U K. Then
they cover each individual K,, and a finite number will then suffice in each case,
K, C Uk’z’l A;,.Forn=1,..., N, the collection of chosen A;, remains finite, and
together cover all the K,. O

Compactness is robust enough a concept that it is preserved by continuous
functions; it is thus a truly intrinsic property of a set, as any homeomorphic copy of
a compact set must also be compact.

Proposition 6.15

Continuous functions map compact sets to compact sets,

f: K C X — Y continuous AND K compact = fK compact.

Proof Let the sets A; be an open cover for f K,
K <A
i
From this can be deduced

kcr'tlan=Jr'a.

But f~'A; are open sets since f is continuous (Theorem 3.8). Therefore the right-
hand side is an open cover of K. As K is compact, a finite number of these open
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sets will do to cover it,
N
-1
kclJr'a,.
k=1

It follows that there is a finite subcover, f K C U,ivzl A, , as required to show fK
compact. |

To summarize some previous results,

Continuous functions preserve compactness,
Uniformly continuous functions preserve total boundedness,
Lipschitz continuous functions preserve boundedness.

An immediate corollary is this statement from classical real analysis:

Corollary 6.16

Let f : K — R be a continuous function on a compact space K. Then its
image f K is bounded, and the function attains its bounds,

Jxg, x1 € K, Vx € K, f(x0) < f(x) < f(x1).

Proof The image f K is compact, and so bounded, f K C Bg(0),i.e., |f(x)| < R
for all x € K. Moreover compact sets are closed and so contain their boundary
points. In particular fK contains inf fK and sup fK (Example 2.8(3)), i.e.,
inf fK = f(xp), sup fK = f(x1) for some x¢, x1 € K. |

A property that holds locally, i.e., in a ball around any point, will often also
hold in a compact set by using a finite number of these balls. As an example of
this, consider a continuous function with compact domain. By the definition of
continuity, any x in the domain is surrounded by a small ball Bs_(x) on which the
function varies by at most a small fixed amount €; on a compact domain, a finite
number of these balls and radii suffice to cover the set, so a single § can be chosen
irrespective of x. More formally:

Proposition 6.17

Any continuous function, f : K — Y, from a compact space to a metric
space is uniformly continuous.
If, moreover, f is bijective, then f is a homeomorphism.
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Proof (i) By continuity of f, every x € K has a é, for which fBs (x) € Be(f(x))
(Theorem 3.8). As a preliminary step, the balls Bs, /2(x) cover K as x varies over
K, so it has a finite subcover, from which can be chosen the smallest value of §.

Now let a, b € K be any points with d(a, b) < §/2. The point a is covered by a
ball B;, /> (x) from the finite list. Indeed, Bs, (x) covers b as well since

dx,b) <d(x,a)+d(a,b) <6:/245/2 < b.

As both a and b belong to Bj, (x), their images under f satisfy f(a), f(b) €
B (f(x)), so that

d(f(a), f(b)) <d(f(a), f(x)) +d(f(x), f(D)) < 2e.

This inequality was achieved with one § independently of @ and b, so f is uniformly
continuous.

(i) If f is continuous and onto, then ¥ = fK is compact. But when in addition it
is also 1-1, it preserves open sets: if A is open in K, then KA is closed, hence
compact, in K; this is mapped 1-1 to the closed compact set f[K~NA] = Y\ fA,
implying that fA is open in Y. This is precisely what is needed for f~! to be
continuous, and thus for f to be a homeomorphism. m]

We are now ready for some concrete examples, starting with that of R, the
simplest non-trivial complete space.

Proposition 6.18 (Heine-Borel’s Theorem)

The closed interval [a, b] is compact in R.

Proof Let|J; A; 2 [a, b] be an open cover of the closed interval. We seek to obtain
a contradiction by supposing there is no finite subcover. One of the two subintervals
[a, (a+b)/2] and [(a+b)/2, b] (and possibly both) does not admit a finite subcover:
call it [a1, b1]. Repeat this process of dividing, each time choosing a nested interval
[an, b, ] of length (b — a)/2" which does not admit a finite subcover.

Now (an)nen and (by),en are asymptotic Cauchy sequences, which must
therefore converge to the same limit, say, a, — x and b, — x (Example 4.3(3),
Proposition 4.2 and Theorem 4.5). This limit x is in the set [a, b] (Proposition 3.4)
and is therefore covered by some open set A;,. As an interior point of it, x can be
surrounded by an e-ball (in this case, an interval)

x € Be(x) C Ay

But a, — x and b, — x imply that there is an N such that ay, by € Bc(x), and
so [an, by] € Be(x) € Aj,. This contradicts how [ay, by] was chosen not to be
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covered by a finite number of A;’s, so there must have been a finite subcover to start
with. O

Combined with Proposition 6.15, Theorem 5.5, Proposition 5.6, and Proposi-
tion 6.13, this proposition implies that any continuous real function maps intervals
of type [a, b] to intervals of the same type. The Heine-Borel theorem generalizes
readily to arbitrary metric spaces.

Theorem 6.19

A set K is compact < K is complete and totally bounded.

Proof Compact sets are totally bounded: Let K be a compact set. For any € > 0,
cover K with the balls B (x) for all x € K. This open cover has a finite sub-cover.

Compact sets are complete: Let (x,),en be a Cauchy sequence which has no limit
in K, so that for each x € K,

>0, VN, dn > N, d(x,,x) > €.
For this € (which may depend on x),

IM, nm>2M = dx,, xn) < €/2,
€ <dxy, x) <dxp, xp) +dm, x) < €/2+d(xp, x),

m>=2M = dx,,x) > e€/2.

For m < M, the distances d(x,,, x) take only a finite number of values. Hence,
for each x € K, there is a small enough ball B, (,)(x) which contains no points x,
unless x,, = x. This gives an open cover of K, which must have a finite sub-cover.
But this implies that the sequence takes a finite set of values and so must eventually
repeat and converge (Exercise 4.11(4)). In any case, there must be a limitin K.
Complete and totally bounded sets are compact: Let K be a complete and totally
bounded set. Suppose it to be covered by open sets V;, but that no finite number of
these open sets is enough to cover K. Since K is totally bounded,

N
K< JBiw

i=1

for some y; € K (Example 6.6(4)). If each of these balls were covered by a finite
number of the open sets V;, then so would K. So at least one of these balls needs an
infinite number of V;’s to cover it; let us call this ball B (xy).

Now consider Bj(x1)N K, also totally bounded. Once again, it can be covered by
a finite number of balls of radius 1/2, one of which does not have a finite subcover,
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say Bi,2(x2). Repeat this process to get a nested sequence of balls By (x;), with
Xxn € K, none of which has a finite subcover. The sequence (x,),en is Cauchy since
d(xp, xm) < 1/2" (for m > n), and K is complete, hence x, — x in K.

But x is covered by some open set V;,. Therefore there is an € > 0 such that

X € Be(x) C V.

Moreover since 1/2" — 0 and x, — x, an N can be found such that 1/2V < ¢/2
and d(xy, x) < €/2, so that for d(y, xy) < 1/2V,

d(y,x) <d(y,xy) +d(xn,x) <€

ie., By v (xn) € Be(x) € Vi,
which contradicts the way that the balls By, (x,) were chosen. O

Corollary 6.20

In a complete metric space, a subset K is compact < K is closed and
totally bounded.
In R”, K is compact < K is closed and bounded.

Proof In a complete metric space, a subset is complete if, and only if, it is closed
(Proposition 4.7).

In the complete space R”, a set is totally bounded if, and only if, it is bounded
(Exercise 6.9(2)). Note carefully that this remains true whether the distance is
Euclidean, D1, or Dy, (Example 2.2(6)). O

Theorem 6.21 (Bolzano-Weierstrall Property)

In a metric space, a subset K is compact

& every sequence in K has a subsequence that converges in K
& every infinite subset of K has a limit point in K.

Proof We prove the logical equivalences in a cyclic manner.

(i) A compact set is totally bounded, and so every sequence in it has a Cauchy
subsequence (Theorem 6.8). But compact metric spaces are also complete, implying
convergence of this subsequence in K.

(ii)) Let A be an infinite subset of K, and select a sequence of distinct terms
ai, asz, ...1in A. Assuming that every sequence in K has a convergent subsequence,
then a,;, — a € K, asi — oo. For any ball B¢(a), there are an infinite number of
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points a,, € Be(a), making a a limit point of A (a can be equal to at most one of
these distinct points). Thus K satisfies the Bolzano-Weierstrall property that every
infinite subset has a limit point in K.

(iii) Let K have the Bolzano-Weierstrall property, let (x,),cn be any sequence in
K and let A be the set of its values { xg, x1, x2,...}. If A is infinite, then it has a
limit point x € K and so there is a convergent subsequence x,, — x withx, € A
(Proposition 3.4). Otherwise, if A is finite, one can pick a constant subsequence. In
either case there is a (Cauchy) convergent subsequence in K.

This shows, firstly, that K is totally bounded, and secondly, that every Cauchy
sequence in K converges in K (Exercise 4.11(10)), that is, K is complete. Complete
and totally bounded subsets are compact. O

Exercises 6.22

1. A compact set that consists of isolated points is finite.

2. In Z, and any discrete metric space, the compact subsets are finite.

3. Show that [0, 11N Q is closed and totally bounded in Q but not compact. (Hint:
First show that [0, »[ N Q is not compact when r is irrational.)

4. Every bounded real sequence has a convergent subsequence. Show this in two
ways: (i) by bisecting intervals and choosing one that has an infinite number of
values, (ii) using the Bolzano-Weierstral3 property.

5. (Cantor) Let K,, be a decreasing nested sequence of non-empty compact sets.
If ﬂn K, = @ then XK, (n = 2,3, ...) form an open cover of K. Deduce
that (1), K, is compact and non-empty. Moreover, if diam K,, — 0 then ), K,
consists of a single point.

6. The Cantor set is compact, totally disconnected, and has no isolated points
(Exercise 2.20(7)). (In fact, it is the only non-empty space with these properties,
up to homeomorphism.)

7. The least distance between a compact set and a disjoint closed subset of a metric
space is strictly positive.

8. Suppose K is a compact subset of R? which lies in the half-plane { (x, y) : x >
0}. Show that the open disks with centers (x + x~1,0) and radii x > 1 cover
the half-plane, and deduce that K is enclosed by a circle that does not meet the
y-axis.

9. The circle S! is compact; more generally, any continuous path [0, 1] — X has
a compact image.

10. Show that there can be no continuous map (i) sl — [0, 27r[ which is onto, or
(i) S! — R which is 1-1.

11. A continuous function f : R? — R takes a maximum, and a minimum, value
on a continuous path y : [0, 1] — R2. For example, there is a maximum and a
minimum distance between points on the path and the origin. Give an example
to show that this is false if [0, 1] is replaced by ] 0, 1].

12. If f : X — K is bijective and continuous, and K is compact, it does not
follow that X is compact. Show that the mapping f(6) := (cos#8, sin6) for
0 < 6 < 27, is a counter-example.
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13. Generalize the Heine-Borel theorem to closed rectangles [a, b]x[c, d] in R2, by
repeatedly dividing it into four sub-rectangles and adapting the same argument
of the proof. Can you extend this further to R"?

14. » The spheres and the closed balls in R" are compact.

15. Verity that [a, b] N Q is not compact by finding an infinite set of rational
numbers in [a, b] that does not have a rational limit point.

16. Let f : RY — RY be a continuous function; consider the following iteration
Xpt1 = f(x,)/|f(x,)| of mapping by f and normalizing. Show that there is
a convergent subsequence (one for each limit point), assuming f(x,) # 0.

17. » If X, Y are compact metric spaces then sois X x Y.

18. It is instructive to find an alternative proof that a continuous function maps a
compact set to a compact set, using the BW property.

6.4 The Space C(X,Y)

The last section of this chapter is, in a sense, the culmination of Part I as it brings
many strands together to tackle problems related to convergence of functions. To
appreciate the difficulty involved, note that if we were to define f, — f to mean
pointwise convergence, that is, f,(x) — f(x) for all x € X, then no metric is
involved and we could get an incomplete space: Even if we restrict to functions
[0, 1] — [0, 1], the polynomials " converge pointwise to a discontinuous function
asn — oo.

But there is a way to turn the set of continuous functions f : [0, 1] — C into
a complete metric space C[0, 1], thereby giving one precise meaning to f,, — f.
In fact, we consider the more general case of bounded functions from any set to a
metric space. A bounded function is one such that im f is bounded in the codomain
Y, that is,

Ir >0, Va,be X, dy(f(a), f(b)) <r.

Theorem 6.23

The space of bounded functions from a set X to a metric space Y is itself
a metric space, with distance defined by

d(f, g = sugdy(f(x), g(x)),
X€E

which is complete when Y is.

It contains the closed subspace C,(X,Y) of bounded continuous func-
tions, when X is a metric space.



6.4 The Space C(X,Y) 87

Proof Distance: The distance is well-defined because if im f and im g are bounded,
then so is their union, and dy (f (x), g(x)) < diam(im f Uim g) for all x € X.
That d satisfies the distance axioms follows from the same properties for dy;

d(f,g) =0 & Vxe X, dy(f(x),gx)=0
& VxeX, fx) =gk

& f=g
d(f,g) = sug dy (f(x), g(x))

< sup (dy (f (x), h(x)) + dy (h(x), g(x)))

xeX
< supdy (f(x), h(x)) + supdy(h(x), g(x)) (Exercise 3.6(7b))
xeX xeX

=d(f,h)+d(h,g).

The axiom of symmetry d(g, f) = d(f, g) is easily verified.

Completeness: Let f, : X — Y be a Cauchy sequence of bounded functions, then
forevery x € X,

dy (fn(x), fm(x)) < d(fu, fm) = 0, asn,m — oo

so (f(x)) is a Cauchy sequence in Y. When Y is complete, f,, (x) converges to, say,
().

Normally, this convergence would be expected to depend on x, being slower for
some points than others. In this case however, the convergence is uniform, as the
generic distance d(f,, fm) := sup, dy (fn(x), fm(x)) converges to 0. So given any
€ > 0 there is an N, such that dy (f,(x), fm(x)) < €/2 for any n,m > N and any
x € X. For each x, we can choose m > N, dependent on x and large enough so that
dy (fm(x), f(x)) < €/2, and this implies

Vx e X, dy(fu(x), f(x)) <dy(fu(x), fm (X)) +dy (fu(x), f(x)) <€ (6.1)

for any n > N. Since this N is independent of x, it follows that d(f,, f) — O.
The function f is bounded because for any x, y € X, using (6.1),

dy (f(x), f(y)) < dy(f(x), fn(x)) +dy (fn(x), fn(0) +dy (fnG), ()
<€+ Ry, t+e€ (6.2)

with N independent of x and y, and where R, is the diameter of im fy.
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Cp(X,Y) is closed: If X is a metric space and f, are continuous, then this same
inequality (6.2) shows that f is also continuous: if §, is small enough, then

dx(x,y) <8y = dy(fn(x), fn(y) <€
= dy(f(x), f(¥) < 3¢,

sothat f;, — f € Cp(X, 7). O

Any continuous function on a compact space is automatically bounded, so
Cp(K,Y) = C(K,Y), when K is compact. Moreover, we often write C(K) for
the complete metric space Cp (K, C).

The convergence f, — f in Cp(X, Y) is called uniform convergence. It is much
stronger than pointwise convergence Vx € X, f,(x) — f(x); since d(fy, f) =
sup, d(f(x), f(x)) is decreasing to 0, f,, approximates f for large n at all values
of x uniformly.

Having created these metric spaces of continuous functions, we can explore
what properties they may have: connectedness, compactness, etc. Let us start with
separability. Recall that continuous functions on a compact domain are uniformly
continuous (Proposition 6.17). Thus any ball of a fixed radius § is mapped by
a real-valued continuous function f into a ball of radius €. So, if [a,b] C R
is partitioned into intervals [x;, x; 4+ §[, then f maps each into an interval of
length at most €. Letting f take a constant value f(x;) on each interval gives a
uniform approximation by a “step” function. Of course, step functions are usually
discontinuous. We can improve the approximation by constructing a function
consisting of straight-line segments from one end-point (x;, f(x;)) to the next
(xi+36, f(x;+6)). In fact, extending this idea further, one can find quadratic or cubic
polynomial fits, called “splines” that are widely used to approximate real continuous
functions. Such a line of argument does give a valid proof that C[a, b] is separable;
in fact one can even generalize it to show that C(K) is separable whenever K is a
compact metric space. Stone’s theorem goes further than splines and shows that the
complex-valued functions on any compact subset K of C can be approximated by
polynomials on K.

Karl Weierstra3 (1815-1897) After belatedly becom-
ing a secondary school mathematics teacher at 26 years,
Weierstral3 privately studied Abel’s exposition of inte-
grals and elliptic functions, until in 1854 he wrote a
paper on his work and was given an honorary degree
by the University of Konigsberg. He then became
famous with his programme of “arithmetization” of
analysis: the construction of the real numbers, the rig-
orous derivation of calculus and calculus of variations,
including a precise definition of uniform continuity; and
his example of a function that is continuous but nowhere
differentiable.
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Theorem 6.24 (Stone—Weierstraf})

The polynomials (in z and 7 ) are dense in C(K), when K C C is compact.

Proof The proof is in five steps. The first two steps show that if a real-valued
function f € C(K) can be approximated by a polynomial p, then another
polynomial can be found that approximates |f|. Since the maximum of two
functions max( f, g) can be written in terms of | f — g|, it can also be approximated
by polynomials if f and g can. The fourth step, which is the main one, shows how
a piecewise-linear approximation of f € C(K) can be written in terms of max and
min. Together these steps prove that the polynomials R[x, y] are dense in the space
of real continuous functions on K. The final step extends this to complex-valued
continuous functions.

(i) There are real polynomials that approximate |t| on —1 < t < 1: For example,
let ¢1(r) := 12, g2(t) := 2t> — t*, ..., defined iteratively by

Gn+1() == g, () + (t2 — qn (t)2), starting from go(¢) := 0.
Let y, := g, (¢) for brevity, where 0 < ¢t < 1. Notice that

Y4l =t =Y —t — (Y = +1)
= (y}’l - t)(l - —= yn)'

When |y, — ] < |y1 — ] =t — 1%, we get

0<t2<yn<2t—t2<l
= —t<l—t—y,<1—t¢
= |Yns1 —t] < clyn — 1

where ¢ := max(t,1 —¢) < 1.

-1 1
By induction, it follows that as n — oo,

[Yng1 —t] < |y1 —t] = 0.
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The special cases t = 0 and ¢+ = 1 converge immediately to 0 and 1 respectively,
while g,(t) — |t| when t € [—1,0[ by the symmetry of the expression in the
definition of g,,.

Moreover, the convergence is uniform in 7 (certainly for0 <t <eand 1 — ¢ <
t < 1, but for the other positive values of ¢ it takes at most —2log € /¢ iterates for
lypn —t] < "t <€),

(i) Let f € C(K,R) (f # 0) with ¢ := maxyex |f(x)| + 1 > 0 (Corollary 6.16).
By the above, let g (1) := cq(u/c), then foru € [—c, c],

|lul — Gu) | = |clu/cl — cqu/c) | < ce. (6.3)
Note that g is uniformly continuous on [—1, 1],

Ve >0, 36 > 0, Yu,up € [—c, c]
luy —uzl <8 = |g(u1) —quz)| <e. (6.4)

If the polynomial p approximates f to within §, it can be expected that g o p
approximates | f| on C(K). This indeed holds since, for any x € K,

If @ =Gop@| <[If@I=Go f)|+Igo f(x)=Gopx)|  (65)
<cete (by (6.3) and (6.4)), (6.6)

d(f,qop) <(c+ e
(iii)) For real functions, define max(f, g)(x) := max(f(x), g(x)) as well as

min( f, g)(x) := min(f(x), g(x)); a short exercise shows that

max(f,8) = (f+g+If —gD/2. min(f. &) =(f+g—I|f —gD/2

If f and g can be approximated by polynomials, then so can their sum and
difference, and by (ii), also | f — g|, and hence max( f, g) and min(f, g).

(iv) The real polynomials are dense among the real continuous functions C (K, R):
Let f € C(K,R); for any z # w in K, there is a linear function (a polynomial)
pz.w Which agrees with f at the points z, w, i.e., p;,,»(2) = f(2), pz.w(Ww) = f(w).
For a fixed z, let

Urw i={a € K : pru@) < f(@) + €)= (f = pzw)~'1—€, o0l
a non-empty open set (since f — p; ,, is continuous and U, ,, contains z). As w €

U; v, we have K C U#w U, w; but K is compact so it can be covered by a finite
number of subsets of this open cover,

K=U;y U---UU; -
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Let g, := min(p; w,, - .., Pz,wy) < fe€;itis continuous and can be approximated
by polynomials, from (iii). Now let

U,

V.i={aecK:g(a)> fa)—e}=(f —g) '1-00, €[

a non-empty open set (f — g is continuous, and z € V). Once again, K < |J, V;,
andso K = V,; U-.-UV,,. Let h := max(g;, ..., &), a continuous function
which can be approximated by polynomials, since g, can. Furthermore f — e <
h < f + €; and as this holds uniformly in z, we have d(f, h) < €.

(v) The set of polynomials in z and 7 is dense in C(K): If f € C(K) is complex-
valued, then it can be written as f = u + iv with u, v real-valued and continuous,
that can be approximated by real polynomials p, g, say. Then,

Vze K, |(p@)+iq)— ui) +iv@)| <|pi) —u@)|+lg@) —v@)|
= d(p+iq,u+iv) <d(p,u)+d(g,v)

shows that p + ig approximates f. But is, say, x>y + i (x> — xy?) a polynomial in
z? Not necessarily: for example, take the polynomial x itself and suppose Re(z) =
x = amz + -+ a,7" with a,, # 0 being the first non-zero coefficient; then a,, =
lim, 0 2 Zw» but Re(z)/z™ can be made real or imaginary, so a,, = 0, a contradiction.
Nevertheless writing x = (z+2)/2and y = (z—2z)/2i shows that every polynomial

p(x,y)+ig(x,y)is apolynomial in z and z. O

An immediate corollary is that C(K) is separable, since the polynomials with
rational coefficients are dense in the subspace of polynomials.

When is a subset of functions compact? The last theorem in this section
characterizes the totally bounded sets of the space C (K, Y) of continuous functions
on a compact space K. Returning to the example of the polynomials " not
converging uniformly to 0 on [0, 1], it must be the case that the set {t" : n € N} is
not totally bounded in C[0, 1], otherwise there would be a convergent subsequence.
The problem appears to arise because of the large slopes that they have neartot = 1;
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t" is uniformly continuous in ¢ but not in n. The next definition remediates this with
a property of families of functions:

Definition 6.25

A subset F' C C(X, Y) of continuous functions on metric spaces is said to be
equicontinuous when

Ve>0,38 >0, VfeF, Vx,x' € X, d(x,x) <8=d(f(x), f(x)) <e.

Theorem 6.26 (Arzela-Ascoli)

Let K and Y be metric spaces, with K compact. Then

F C C(K,7Y) is totally bounded < FK is totally bounded in Y and F is
equicontinuous.

FK denotes theset { f(x): f e F,x € K}.

Proof (i) Let F be a totally bounded subset of C (K, Y). This means that for any
€ > 0, there are a finite number of continuous functions fi, ..., f, € F that are
close to within € of every other function in F'.

FK is totally bounded: Let € > 0 be arbitrary. Each f;K is compact (Proposi-
tion 6.15), so |J7_, fiK is totally bounded (Proposition 6.14 and Theorem 6.19),
and covered by a finite number of balls B¢(y;), j = 1, ..., m. This means that for
everyx € Kandi =1,...,n, fi(x) is close to some y; € Y. Combining this with
the fact that any function f € F is close to some f;, gives

d(f(x),yj) <d(fx), fi(x) +d(fi(x),yj) < 2e.

Thus each f(x), where f € F and x € K, is close to some y; (j depends on x and
Jf). in other words the finite number of balls B¢ (y;) cover FK.

F is equicontinuous: We have seen previously that functions f € C(K), in particular
fi, are uniformly continuous (Proposition 6.17): each € > 0 gives parameters &;.
But we can say more. Since there are only a finite number of the functions f;, the
minimum § := min; §; can be chosen such that

Ve >0, 38 >0, Vi, Vx,x e K, dx,x) <8 = d(fi(x), fi(x) <e.
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Marshall Stone (1903-1989) Stone studied at Harvard
under Birkhoff (1926), with a thesis on ordinary differ-
ential equations and orthogonal expansions (Hermite,
etc.). He then worked on spectral theory in Hilbert
spaces, obtaining his big breakthrough in 1937 when
he generalized the Weierstrass approximation theorem,
which led him to the Stone-Cech compactification the-
ory.

But indeed this works for any f € F:

Ve >0,35>0,VfeF,Vx,x e K, dx,x)<8=
d(f(x), f(x) <d(f ), fi(x) +d(fi(x), fi(x) +d(fix), fF(x)) < 3e.

The equi in equicontinuous refers to the fact that § is independent of f € F.

(i1) Let F K be totally bounded and F be equicontinuous. Then F K can be covered
by a finite number of balls Bc(y;), j = 1,...,m, i.e., any value f(x) for f € F
and x € K is close to some y; to within €. ‘F is equicontinuous’ means that for
any € > 0, the distance d(f(x), f(x')) < € for any f € F, whenever x and x’ are
sufficiently close together to within some § > 0 that does not depend on x, x’, or
f. We also require that K is totally bounded, so that it can be covered by a finite
number of balls of diameter §. By removing any overlaps between the balls, we can
replace them by a finite partition of subsets B;, i = 1, ..., n, each of diameter at
most 4.

Forany f € F and x € B;, f(x) is close to some y;, d(f(x),y;) < €. Indeed,
for any other x’ € B;, we have

d(f(x), y) <d(f(x), f(x) +d(f(x),y)) < 2,

because d(x, x") < § and F is equicontinuous. In other words, the function f maps
each B; into a ball By.(y;) (j depending on i), and the whole partitioned space K
into some of these balls. That is, we know f to within the approximation 2¢, if we
know precisely how it maps each B; to which ball By (y;); this is equivalent to
an “encoding” i — j fromi = 1,...,nto j = 1,..., m. There are at most m"
such maps, although not all need be represented by the functions in F. For those
combinations that are in fact represented by functions in F, select one from each
and denote itby g, k=1,..., N.

Going back to f € F, with an encoding i > j, pick g with the same encoding.
Then for any x € K, pick y; close to f(x) (and g (x)),

d(f(x), gr(x)) <d(f(x),yj) +d(yj, g(x)) < 4e
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and taking the supremum over x, we have d(f, gr) < 4€. To summarize, the finite
number of functions g; are close to within 4€ to any function f € F, so that F is
totally bounded. O

Examples 6.27

1.

If f, : [0,1] — R are continuous, uniformly bounded (| f,(x)| < c¢ for all
x € [0, 1],n € N) and equicontinuous, then there is a subsequence that converges
uniformly to a continuous function.

Proof: The sequence (f;),en belongs to C[0, 1], a complete metric space with
the supremum metric. The set F' := { f;, : n € N} is bounded by ¢, so F[0, 1] C
[—c, c], a totally bounded set in R. Since F is also equicontinuous, it follows
by the Arzela-Ascoli theorem, that F is totally bounded. Therefore it contains a
Cauchy subsequence, which converges (uniformly) in C[O, 1].

. Suppose f, : K — R" are continuous functions on a compact space K,

converging pointwise to f. If f, are equicontinuous and uniformly bounded,
then f is also continuous.

Proof: As in the example above, f, has a uniformly convergent subsequence
fu, — gin C(K,R"). But Vx € K, f;;(x) = f(x),so f = g, which is
continuous.

Exercises 6.28

1.

2.
3.

10.

For the space C[0, 1], (i) describe the ball B, (f), and (ii) show it is connected.
(Hint: Consider (1 —¢) f +tg.)

Show that C, (X, C) contains the closed subset Cp (X, R).

Plot the functions f(nt), where (i) f(¢) := max(0, (1 — ¢)) on [0, 1], and (ii)
t — 1/(1 4 nt) on ]0, oo[; then show they converge pointwise to 0 as n — oo,
but not uniformly.

[ fu — [ fand f,(t) - f'(¢t) need not hold if f, converges to f pointwise.
Show that ¢t +— nt" and “’:l—”’ are counterexamples in C(0, 1).

* (Dini) If K is compact and f, € C(K) is an increasing sequence of real-
valued functions, converging pointwise to f € C(K), then f,, — f in C(K).
(Hint: Cover K by balls Bs(x) inside which f — e < f;, < f forn > N,.)

* The space Cla, b] is separable (using piecewise linear functions with kinks at
rational numbers), but Cj,(R™) is not.

The subspace of polynomials in Cl[a, b] is not closed (and so is incomplete):
construct a sequence of polynomials that converges to a non-polynomial
continuous function in C[O0, 1].

Let yp41(®) := 1+ fot vn. Show that this iteration converges in C[0, 1 — €] to
e', by using the fixed point theorem.

IfJ:X—> XandL:Y — farehomeomorphisms then f — Lo foJ lis
a homeomorphism between C (X, Y) and C (f( , f’).

Follow the proof of the Stone-Weierstrass theorem to find a quadratic approxi-

t, 0<r«<l1

mation to the function f(¢) := .
0, —1<tr<0
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11.

12.

A set of Lipschitz functions f : [a, b] — R (Definition 4.15) with the same
Lipschitz constant ¢, | f(s) — f(¢)| < c|s — ¢|, form a totally bounded set in
Cla, b]. The fact that one ¢ works for all, implies that they are equicontinuous;
and their collective image in R is bounded (|s — #| < |b — al), hence totally
bounded.

Show that the sets of functions {sint, sin2¢, ...} and {1, 263, .. .}on [0, 1]
are not equicontinuous.
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Chapter 7 ®
Normed Spaces o

7.1 Vector Spaces

It is assumed that the reader has already encountered vectors and matrices before

but a brief summary of their theory is provided here for reference purposes.

Definition 7.1

A vector space V over a field F is a set on which are defined an operation
of vector addition, + : V> — V, satisfying associativity, commutativity,
zero and inverse axioms, and an operation of scalar multiplication, F x V —
V, that satisfies the respective distributive laws: For every x, y,z € V and
A,uel,

x+(+a=x+y +z Ax 4+ y) =2rx + Ay,

x+y=y+x, A+ pw)x = Ax + px,

0+4+x =x, (Ap)x = Apx),
x+(—x) =0, Ix = x.
Ay
x+y
y
0 e Ax
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Review 7.2

I. (-)x = —x, —(—x) = x, 0x = 0, A0 = 0. There is little danger that
confusing the zero scalar with the zero vector causes errors, so no attempt is
made to distinguish them.

2. The field T is itself a vector space with scalar multiplication being plain
multiplication. The smallest vector space is {0}, often written as 0.

3. The product of vector spaces (over the same field), V x W, is a vector space
with addition and scalar multiplication defined by

() (=G 2 0)=(0)

! v/ \n+y) v\

The zero in this case is (8) and the negatives are —(;) = (:;) By extension,
F" :=TF x --- x F is a vector space.

4. If V is a vector space, then so is the set of functions V4 := { f : A — V } (for
any set A) with

(f +9) () = fx) +gW), A (x) = Af (x).

The zero of V4 is 0(x) := 0, and the negatives are (— f)(x) := — f (x).

5. A subset of a vector space V which is itself a vector space with respect
to the inherited vector addition and scalar multiplication is called a linear
subspace. Since associativity and commutativity are inherited properties, one
need only check that the non-empty subset is “closed” under vector addition
and scalar multiplication (then the zero 0 = Ox and inverses —x = (—1)x are
automatically in the set). Equivalently, one needs to verify that for x,y € W,
A € IF, then Ax + y € W. There are always the trivial linear subspaces {0} and
V.

6. The intersection of linear subspaces is itself a linear subspace.

7. An important example of a linear subspace is that generated by a set of vectors

[AT :={  v1+---+Avp:vi €A, A €F, ne N},

with the convention that [&] := {0}. It is the smallest linear subspace that
includes A, and we say that A spans, or generates, [A]. Each element of [A]]
is said to be a linear combination of the vectors in A.

8. The set A is linearly independent when any vector v € A is not generated by
the rest, v ¢ [A~{v}]. (In particular A does not contain 0.) This is equivalent
to saying that Av € [AN{v}] <& A = 0, or that for distinct v; € A,

n
Z)\ivizo S A=0,i=1,...,n.
i=1
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10.

11.

12.

13.

14.

15.
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A vector generated by a linearly independent set A has unique coefficients A;,

n n
XZZ)»,'U,'ZZM;U,' S Ai=u,i=1,...,n.
i=1

i=1

A basis is a minimal set of generating vectors; it must be linearly independent.
Conversely, every generating set of linearly independent vectors is a basis.

" has the standard basis {ey,...,e,}, where ¢; := (0,...,0,1,0,...,0),
with the 1 occurring in the ith position.

A vector space is said to be finite-dimensional when it is generated by a finite
number of vectors, V = [vi,..., v, ¢(= [{vi,...,v,}]). The smallest
such number of generating vectors is called the dimension of the vector space,
denoted dim V, and is equal to the number of vectors in a basis.

For example, ' has dimension 1, because it is generated by any non-zero
element, while dim{O} = 0. The linear subspace generated by two linearly
independent vectors [x, y] is 2-dimensional and is called a plane (passing
through the origin).

The space of m x n matrices is a finite-dimensional vector space, generated by
the mn matrices E;; consisting of Os everywhere with the exception of a 1 at
row i and column j.

We writte A+ B :={a+b eV :ae€ AANDDb € B} and AA = {ia €
V :a € A} for any subsets A, B C V,e.g.,, Q+Q = Q, C =R +iR. Thus
MAUB) =AAUAB,and L(AN B) = AA N AB (for A # 0); a non-empty set
A is a linear subspace when AA + uA C A for all A, u € F. For brevity, x + A
is written instead of {x} + A; it is a translation of the set A by the vector x.
Care must be taken in interpreting these symbols: A — A ={a—b:a,b e A}
is not usually {0}.

For non-empty subsets of R, and A > 0,

sup(A + B) < sup A + sup B, sup(LA) = Asup A

Proof:Leta+b e A+ B,thena < sup A and b < sup B, so sup A 4 sup B is
an upper bound of A + B, and hence greater than its least upper bound.
Similarly, for alla € A,a < supA = Xta < Asup A, sosup(AA) < Asup A.
Hence, sup A = sup(%)»A) < % sup(LA) and equality holds.

If V is finite-dimensional, then so is any linear subspace W, and dim W <
dim V (strictly less if it is a proper subspace).

If V, W are finite-dimensional, then sois V 4+ W, and dim(V + W) < dimV +
dim W.

In general, [A U B]] = [A] + [ B1]; so for a finite-dimensional space generated
by vi,...,vp, X = [[vi] + - - - + [v. .

The space V is said to decompose as a direct sum of its subspaces M and N,
written V. = M @& N, when V = M + N and M N N = 0. For example,

R =11 1()1-
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16. » For vector spaces over R or C, a subset C is said to be convex when it contains
the line segment between any two of its points,

Vx,yeC, 0<t<l=ttx+({1-1t)yeC,

equivalent to sC + tC = (s + t)C for s,t > 0. This generalizes easily to
Hxy1+---+thwx, € Cwhent; +---+1¢t, = 1,4 > 0,and x; € C. Clearly,
linear subspaces are convex.

17. The intersection of convex sets is convex. There is a smallest convex set
containing a subset A of a vector space, called its convex hull, defined as the
intersection of all convex sets containing A, Conv(A) := () 4 ¢ convex C» Which
equals

{tixi+--+tywxp:x;€A, t;, 20,1 +---+t, =1, n e N}

If A, B are convex sets, then AA and A + B are convex.

Hausdorff’s Maximality Principle

The Hausdorff Maximality Principle is a statement that can be used to possibly
extend arguments that work in the finite or countable case to sets of arbitrary
size. There are a few proofs in this book that make use of this principle; it is
only needed to extend results to “uncountably infinite” dimensions. As such, it is
mainly of theoretical value, and this section can be skipped if the main interest is in
applications.

Consider a collection M of subsets M C X that satisfy a certain property P. A
chain C = {M}qc; of such sets is a nested sub-collection, meaning that for any two
sets My, Mg € C, either M, € Mg or Mg C M,. A chain can contain any number
of nested subsets, even uncountable. A chain is called maximal when it cannot be
added to by the insertion of any subset in M. Hausdorft’s Maximality Principle
states that

Every chain in M is contained in some maximal chain in M.

Hausdorff’s Maximality Principle is often used to show there is a maximal set
E that satisfies some property P as follows: The empty chain can be extended to
a maximal chain of sets My; if it can be shown that the union of this chain E :=
Uy Mo also satisfies P, then there are no sets properly containing E which satisfy
‘P, by the maximality of the chain M,, i.e., E is a maximal set in M.

At the end of this chapter, it is shown that Hausdorff’s Maximality Principle
implies the Axiom of Choice. In fact, it can be proved (using the other standard set
axioms) that it is logically equivalent to the Axiom of Choice, as well as to a number
of other formulations such as Zorn’s lemma and the Well-Ordering principle. These
statements are not constructive in the sense that they give no explicit way of finding
the choice function or the maximal chain, but simply assert their existence.



7.2 Norms 103

The purpose in introducing Hausdorff’s Maximality Principle here is to prove:

Every vector space has a basis.

Proof Consider the collection of all linearly independent sets of vectors in V. By
Hausdorff’s maximality principle, there is a maximal chain M of nested linearly
independent sets A,. We show that E := | J, Ay is linearly independent and spans
V, hence forms a basis. If Z:’:I Aiv; = 0 for v; € E, then each of the vectors
v; i = 1,...,n) belongs to some A, and hence they all belong to some single
Ay because these sets are nested in each other; but as A, is linearly independent,
A =0fori =1,...,n. Thus E is linearly independent. Suppose E does not span
V, meaning there is a vector v ¢ [ ET], so that E' U {v} is linearly independent. As it
properly contains E and every Ay, it contradicts the maximality of the chain M.

O

7.2 Norms

With the intention of extending the operations of R” to infinite dimensional spaces,
we would like to consider vector spaces having a metric space structure. Any set
can be given a metric, so this is quite possible, but it is more interesting to have a
metric that is related to vector addition and scalar multiplication in a natural way.
Taking cue from Euclid’s ideas of congruence and similarity, the properties that we
have in mind are:

(a) translation invariance: distances between vectors should remain the same when
they are translated by the same amount,

y
a

(b) scaling homogeneity: distances should scale in proportion when vectors are
scaled,

Ax
d(x, Ay) = |Ald(x, ). X
y Ay

d
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These properties are valid only for special types of metric. When d is translation
invariant, thend(x,y) =d(x —y, y—y) = d(x —y, 0) and d becomes essentially a
function of one variable, namely the norm function ||x|| := d(x, 0) with d(x, y) =
lx — y|l. Conversely, any such d defined this way is translation invariant because
dix+a,y+a) = ||x+a—y—al| = d(x,y). This function is then scaling-
homogeneous precisely when

[Ax|l = d(xx,0) = [Ald(x, 0) = [A[]lx]|.

What properties does a norm need to have, for d to be a distance? It is easy to see
that

d(x,z) <d(x,y)+d(y,2) lla+ bl < llall + 115l
d(y,x) =d(x,y) N |—all = llall
d(x,y) 20 lall =0
dx,y) =0 x=y lal =0 & a=0

where a = x —y, b = y — z. Of these, the symmetry property follows from scaling-
homogeneity, while positivity follows from 0 = ||x — x|| < ||x|| + [|—x]|| = 2]x].

Definition 7.3

A normed space X is a vector space over F = R or C with a function called
the norm | - || : X — R* such that for any x, y € X, A € F,

x4yl < llxll + llyll, A1l = 1Alllx]l, x| =0 < x=0.

If necessary, norms on different spaces are distinguished by a subscript such as
Il - Il x- A non-negative function that satisfies the first two axioms is termed a semi-
norm.

Easy Consequences
Loflx =yl = |lxl = Nyl
2. llx1 + - Fxall < llxll + - - - + llx, |l (by induction).
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Examples 7.4

1. The absolute value functions, | - |, for R and C are themselves norms, making
these the simplest normed spaces.
2. » The spaces R” and C" of geometric vectors have a Euclidean norm defined by

n N\ 172
Il = i@ anl = (Y lail?)

i=1

There are other possibilities, e.g., [|x[l; = Y7, lail, or [[X]lo = max; |a;].
Thus

G, =3+4=7. 1), =0+ 16=5 [(3)ll, = max(3,4) = 4.

The different norms give the different distances already defined in Exam-
ple 2.2(6).

3. » A sequence of vectors x, = (ai,n,...,an.,) in FN converges, X, — X (in
any of these norms), precisely when each coefficient converges in IF, a; , — a;
fori=1,...,N.

Proof: Using the 2-norm, for any fixed i,

2 2 2 2
|ai,n_ai| <layy —all”+---+lany, —anl =||xn_x”2

so when the latter diminishes to 0, so does the left-hand side.
Conversely, if a; , — a; fori =1,..., N, then

1 = %lla = /latn — a1 + -+ + lan. —axl? — 0.

by continuity of the various constituent functions.
With minor changes, the same proof works for the other norms as well.

4. More generally, we can define the p-norm on F", [|x ||, := |/ Y lailP for p >
1. Shortly, we will see that all these norms are equivalent in finite dimensions, so
we usually take the most convenient ones, such as p = 1, 2, oo.

5. » Sequences: sequences can be added and multiplied by scalars, and form a
vector space.

(ao, at, ...) + (bo, b1, ...) == (ao + bo, a1 + by, ...),
Mao, ay, ...) := (Aag, Aay, .. .).

The zero sequence is (0, 0, ...) and —(ag, a1, ...) = (—ag, —ay, ...).
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The different norms introduced above generalize to sequences; the three most
important normed sequence spaces are:

(@) €' :={(@)nen : Yoo lan| < 0o} with norm defined by

o
@)l =Y lanl.
n=0

(b) €% :={(an)nen : Yoo lan|* < 0o} with norm defined by

lanle = (Y lanl?) "
n=0

(¢) €%° := {(an)nen : Jc, |ay| < ¢} with norm defined by

[(@n)ll e := sup |ay|.
neN

For example, for the sequence (1/n) = (1, %, %, ),

Ia/mllp =00, /W)l =m/v6, (/)] = 1.

In each case there are two versions of the spaces, depending on whether a, € R
or C; the scalar field is then, correspondingly, real or complex. By default, we
take the complex spaces as standard, unless specified otherwise.

Note carefully that an implicit assumption is being made here that adding two
sequences in a space gives another sequence in the same space. This follows from
the triangle inequality for the respective norm; it is left as an exercise for £! and
£, but is proved for £2 in the next proposition. See Proposition 9.12 for £7.

6. These spaces are different from each other. Not only do they contain different
sequences, but convergence is different in each. For example, the sequences

x;:=(1,0,0,...)
x2:=(3,%,0,..)
x3:=(3.4.3...)

are all in £, ¢2, and £>°. They converge x,, — 0 in £>° and £% as n — o0,

. 1 SO N VE R
I%alli = sup(£.0} = — — 0. ||xn||ez=(;;) = =0
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But they do not converge in £!,

1 1
Ixallg = = +---+—=140.
n n

Thus, convergence of each coefficient is necessary, but not sufficient, for the
convergence of x,,.

7. » Functions A — T, where A is an interval in R, say, also form a vector space,
with

(f+)@) = f@) + g, A)(@0) = Af (D),

and different norms can be defined for them as well (once again, there are two
versions of each space, depending on whether the functions are real- or complex-
valued):

()

(b)

()

(d)

The space L'(A):={feCA: fA | f(#)|dt < oo} with norm defined by

1fll = /A ()] dr.

Or rather, this would be a norm, except that || f|;1 = f 4 1f(@®)]dr = 0 not
when f = O but when f = 0 a.e. (Sect.9.2). The failure of this axiom
is not drastic, and those functions that are equal almost everywhere can be
identified into equivalence classes to create a proper normed space, called
Lebesgue space (Remark 2.24(1)). But to adopt a special notation for them,
such as [ f], would be too pedantic to be useful; the symbol f, when used
in the context of Lebesgue spaces, represents any function in its equivalence
class. (The same comment holds for the next two spaces.)

The space L*(A) :={ f € CA: [, | f(1)|*dt < oo}, with norm defined by

1
N fllz2 = (/ |f(t)|2 dt) * More generally there are the L”(A) spaces for
A
p=1L
The space
L®A)={f¢€ cA: f is measurable AND 3¢ |f(¢)] < ca.e.t},

with norm defined by || fll;~ := sup; g |f(?)| (ie., the smallest ¢ such
that | f(¢)| < c a.e.t). The term ‘measurable’ is explained in Sect. 9.2.

The space Cp(X,Y) of bounded continuous functions, defined previously
(Theorem 6.23), is a normed space when Y is, with

I fllc == sup [l f(O)lly.
xeX
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(Check that d as defined on Cp(X, Y) is translation-invariant and scaling-
homogeneous.) Cp(X) is a linear subspace of L°°(X), with the same norm.
Note that C;(N) = £°°. Cp(R) contains the closed subspace

CoR®):={feC®: lim f@)=0}

For example, on A := [0, 27], ||sin|[;1 = 4, ||sin||;2 = /7, and || sin || ;0 =
1. More details and proofs for the first three spaces can be found in Sect. 9.2.

8. » When X, Y are normed spaces over the same field, X x Y is also a normed
space, with

(ii)%ﬁ) = (; iﬁ) g (i) = (i’;) H (;C) | = xx+iyily-

The induced metric is D, defined previously for X x Y as metric spaces
(Example 2.2(6)).

9. » Suppose a vector space has two norms || - || and || - ||. Convergence with respect
to one norm is the same as convergence with respect to the other norm when they
are equivalent in the sense of metrics (Exercise 4.18(6)), i.e., there are positive
constants ¢, d > 0,

cllxll < llxll < dlixl.
Proof: Suppose the inequalities hold and ||x;,, — x|| — O, then
llxn — xll < dllxn —x[| = 0O

as well; similarly if [|x, — x|| = O then ||x, — x|| < ¢~ '|lx, — x| = O.
Conversely, suppose the ratios ||x||/[lx]l approach 0 as x varies in X. By
rescaling, a sequence of vectors x, can be found such that |x,|| = 1 but
lx.ll < 1/m, ie., x, — 0 with respect to || - || but not with respect to || - ||.
For this not to happen, ||x||/||x]l = ¢ > 0, and similarly, ||x||/[lx|| = 1/d > O.

Let us justify the claim that £2 is a normed space, by showing that the standard

norm [[(a)lle2 = /D, |a,|? satisfies the triangle inequality, even in infinite
dimensions.
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Proposition 7.5 (Cauchy’s Inequality)

For a,, b, € C,

o0 o0 o
| ab| < [ lanl | X il
n=0 \n=0 n=0

00
Z |an + bn|2 <
n=0

o0 o0
> lanl>+ | D bl
n=0 n=0

\

Proof (i) Let x = (a,) and y = (b,) be sequences in 22, and let u, = an/x1lp2,
vy 1= by/llyllpe. Trivially, )" lua)> = 1 = > |v,|?. Tt is easy to show from
(a — b)2 > 0that ab < (a2 + bz)/Z for any real numbers a, b. Hence,

‘ E UpUp
n

=1

lun|> + lva|*> 1
<§ [un|lve| < E —:§+
n n

1
2 2

Substituting back u,, v,, gives the required result | Y, anb,| < [lx]l 211yl p2.

(i) Y lan +bal* < (lanl* + 1ba]* + 2lanbal) O
n n

< Z|an|2+2|bn|2+2\/2 lan|? ) 1bal?
n n n n

2

- \/;|an|2+\/;|bn|2

Thus for any two real sequences X = (a;);eN, ¥ = (bp)neN in £2, one can define
their ‘dot product’

o
X-y:= Zanbn

n=0

whose convergence is assured by Cauchy’s inequality. The identity ||x||> = x - x,
familiar for Euclidean spaces, remains valid for ¢2. Note that the two inequalities
above can be written as |x - y| < ||x||||y]l and ||x 4+ y|| < |lx|| + ||y, and that x - y
or x + y need not be finite unless both x and y are in £2.

A good strategy to adopt when tackling a question about normed spaces, is to try
to answer it first for concrete examples such as R or C, then R", then for a sequence
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space such as £ or 22, and finally for a function space C[0, 1], L*°[0, 1], or L! (R).
Theoretically, sequence spaces are useful as model spaces that are rich enough to
exhibit most generic properties of normed spaces. But they are also indispensable
in practice: a real-life function f(¢) is discretized, or digitized, into a sequence of
numbers a; = f(t;), before it can be manipulated by algorithms.

Since the metric of a normed space is translation invariant, it is not surprising
that balls do not change their shape when translated.

Proposition 7.6

All balls in a normed space have the same convex shape:

B, (x) = x +rB1(0),
By (x) + Bs(y) = Br+s(x + ), ABy(x) = Bjyr(Ax).

Proof The norm axioms can be recast as axioms for the shape of balls. The
translation-invariance and scaling-homogeneity of the distance are equivalent to

Bx+a)={y:dy,x+a)<r}={y:dly —a,x) <r}
={a+z:d(z,x) <r}=B(x)+a,

AB1(0) = {2y Iyl < 1} =A{z:lzll <[Al}= By (0), (A #0).
Combining the two gives B, (a) = a + r B1(0), showing that all balls have the same
shape as the ball of radius 1 centered at the origin.

The third norm axiom is equivalent to [),., B-(0) = {0}, while the triangle

inequality becomes B, (0) + B;(0) = B,4+,(0) since

xll <7 AND |lyll <5 = llx +yll <7+,

x| <r4+s = x= x € B,(0) + Bs(0).

r s
X+

r+s r+s

Recasting this equation as (r 4+ s) B1(0) = r B1(0) + s B1(0) for r, s > 0 shows that

B1(0), and hence all other balls, are convex: for x, y € B1(0) and 0 < ¢ < 1,

(1—=tx+1tye (1l —1t)B1(0)+1B1(0) = B1(0).
In particular,

By (x) + Bs(y) = x +rBi(0) + y + 5B1(0) = Brys(x +y),
AB.(x) = Ax + ArB1(0) = Bjyr(Ax).
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The unit ball is often denoted by Bx := Bj(0) and takes a central role as

representative of all other balls; its shape contains all the information about the
norm of X.

Examples 7.7

1. The boundary of a ball B, (x) is the sphere S, (x) :={y € X : d(x, y) =r}. Any
point on the sphere has nearby points inside and outside the ball (for example,
(1—¢e)yand (1 +¢€)y). Thus B,(x) ={ye X :d(x,y) <r}

2. x Balls can have quite counter-intuitive properties. For example, consider the
path of functions f;(x) := 2|x — t| — 1 in C[O0, 1], starting from the function
fo(x) = 2x — 1 and ending at the function f; = — fp. It lies on the unit sphere
of C[0, 1], but has a total length equal to the distance between f and fi,

1 d 1
length=/ ||—ﬁ||dt=f 2dr =2,
o dr 0

distance = || f1 — follcjo,17 = 2l follcjo, 17 = 2-

Jo

S

Exercises 7.8

1. For any vectors x, y, either [[x + y|| = [ly|l or [[x — y[| = [I¥]l.

2. (a) Prove that || - ||; and || - |5, are norms on R”. Which norm axiom does
I| - ||p fail when p < 1?7
() Show |l flll :== Il fllc—1,00 + Il f I cpo,17 18 @ norm on C[—1, 1], equivalent to

the standard supremum norm.
3. What do the unit balls of R? in each norm of Example 7.4(2) look like?
4. Show that ||(3)]l :=|a + b| + 2|a — b| is a norm on R?. What is its unit ball?
5. The sequence (1, 1,...,1,0,0,...)is not a good approximation to the constant
sequence (1,1,...)in€*;but (1 —¢,1 —¢,...)is.
6. The norm axioms for £! and £ are, when interpreted correctly,

Zn la, + byl < Zn lan | + Zn [bal, sup, lan + byl < sup, |an|+supn bl
Do hanl = A1), laal, sup,, |Aa,| = |A| sup,, |an|,
Yalanl =0 & Vn,a, =0 sup, lan| =0 < Vn,a, = 0.

Prove these, assuming any results about series (Sect. 7.5). Write these axioms
for £2 and prove them.
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7. A subset A is bounded when there is a ¢ > 0 such that Vx € A, x| < ¢
(Sect. 6.1). A non-zero normed space is not bounded.

For any subset A, and » > 0, A 4+ B,(0) is an open set containing A.

9. » The 1-, 2-, and co-norms are all equivalent on R” since (prove!)

®

[xlloo < llxll2 < llxlly < 2ll¥]loo-

But they are not equivalent for sequences or functions! Find sequences of
functions that converge in L0, 1] but not in L*°[0, 1], or vice-versa. Can a
sequence converge in £! but not in £>°?

10. % Minkowski semi-norm: Let C be a convex set which is balanced, ¢! C = C
(V0 € R), and such that | J,_,rC = X. Then

llx|l :=inf{r > 0:x e rC}

is a semi-norm on X.

7.3 Metric and Vector Properties

By construction, normed spaces are metric spaces, as well as vector spaces. We
can apply ideas related to both, in particular open/closed sets, convergence, com-
pleteness, continuity, connectedness, and compactness, as well as linear subspaces,
linear independence and spanning sets, convexity, linear transformations, etc. Many
of these notions have better characterizations in normed spaces, as the following
propositions attest.

Proposition 7.9
Vector addition, x,y) > x+y, X2 > X,
scalar multiplication, (A, x) > Ax, FxX— X,
and the norm x = x|, X —> R,

are continuous.

Proof Vector addition and the norm are in fact Lipschitz maps,

1 4+ y1) = (G2 + y2)ll < llxr — 220l + llyr — y2ll = 11, y1) — (2, y2) Il x2,
[lxll = Iyl < llx = yll.
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Scalar multiplication is continuous: for any € > 0, take |* — x| to be smaller than
€/3(1 + ||x|) and ||x — y|| < min(e/3(1 + |A]), 1), to get
[Ax — pyll < IAx — px|l + [|ux — pyll
= [A = wullxll + lpelllx =yl
<A = pllixll 4+ 1A lllx =yl + 12 — plllx — yll

A

€.

Corollary 7.10

When (x,,),en and (y,)nen converge,
lim (x, + y,) = lim x, + lim y,,
n—oQ n— o0 n—oo
lim Ax, = A lim x,,
n—oo n—oQ

lim x|l = || lim x,].
n—oo n—oo

Of particular importance are closed linear subspaces, because they are “closed”
not only with respect to the algebraic operations of addition + and scalar multipli-
cation X -, but also with respect to convergence — .

Proposition 7.11

If M is a linear subspace of X, then so is M.

[A] is the smallest closed linear space containing A.

Proof (i) Let x,y € M, with sequences x, € M, y, € M, converging to them,
X, — x and y, — y (Proposition 3.4). As x,, + y, and Ax, both belong to M, then

x+y= lim x, + lim y, = lim (x, + y,) € M,
n—oo n—oo n—>oo
Ax =X lim x, = lim (Ax,) € M.
n—0o0o n—>oo

Thus M is closed under vector addition and scalar multiplication. In particular this
holds when M is generated by A.
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(ii) [A] is the smallest linear subspace containing A, and [A] is the smallest closed
set containing [[A]l. So any closed linear subspace containing A must also contain
[A], and its closure [A]]. O

Examples 7.12

1. The following sets are closed linear subspaces of their respective spaces:

(@) A:={(a)iene ' :YPya; =0},
(b) B:={fe€Cla,b]: f(a)= f(b)}.

The proofs for closure (linearity is left as an exercise) depend on the following
inequalities that hold when x,, — x in o x, = (ain)ieNy € A,and f, — fin
Cla,bl, fn € B,

o0 o0 o0
‘ Zdi = ‘ Zai,n + Z(ai — ain)
i=0 i=0 i=0

f@ = lim fu(@= lim f,(b) = f(b)

o0
<Y lai —ainl =[x = xpllg > 0
i=0

2. x If M and N are closed subsets of a normed space, M + N need not be closed
(see also Exercise 7.15(8)).

(a) Let f: X — Y be a continuous function between normed spaces; let M :=
{, f(x)) :x € X}, N :={(x,0) : x € X}; they are closed subsets of
X x Y (prove!). But M + N = { (X, f(x)) : x,x € X }isclosed if, and only
if, im f is closed, which need not be the case. To take a specific example,

{(x,0):xeR}+{(x,e"):x e R} =R x]0, o0l.

(b) This is true even if M, N are linear subspaces. Let M be the set of 2
sequences (ay, 0, az, 0, ...) whose even terms vanish, and let N consist of
82-sequences of the type (a1, ai/1,as,a2/2,as3,a3/3,...). They are both
closed subspaces of 22 (check!). Now consider

xpo=(LLLE LA L g, .. 1,000,..)eN
y,=(1,0,1,0,1,0,1,0,...,1,0,0,0,...) e M
Xp—y,=0,1,0,1,0,101 .00, 1 00..)eMm+N
x, — ¥, converges to the sequence (0, 1,0, %, ...) € ¢% which cannot be
expressed as a vectorin M + N.
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Connected and Compact Subsets

Recall that connected sets may be complicated objects in general metric spaces. This
is still true in normed spaces, but at least for open subsets, connectedness reduces to
path-connectedness, which is more intuitive and usually easier to prove.

Proposition 7.13

An open connected set in a normed space is path-connected.

Proof Let C be a non-empty open connected set in X. Recall that “path-connected”
means that any two points in C can be joined by a continuous path r : [0, 1] — C
starting at one point and ending at the other. Fix any x € C, and let P be the subset
of C consisting of those points that are path-connected to x. We wish to show that
P=_C.

P has no boundary in C: Given any boundary point z of P in C, there is a ball
B:(z) € C since C is open, and thus a point y € P in the ball. This means that
there is a path r from x to y. In normed spaces, it is obvious that balls, like all
convex sets, are path-connected (by straight paths). So we can extend the path r to
one that starts from x and ends at any other w € B¢(z), simply by adjoining the
straight line at the end. More rigorously, the function 7 : [0, 1] — C defined by

r(2t), t €10, 3]

7(t) == |
Y+ Q@ = Dw—y), relh1]

is continuous. So z is surrounded by points of P, a contradiction.

P

But a connected set such as C cannot contain a subset, such as P, without a
boundary in C (Proposition 5.4), unless P = & (which is not the case here) or
P=C. a

There is quite a bit to say about bounded and totally bounded sets. As we will
see later on, they are the same in finite dimensional normed spaces, but in infinite
dimensional ones, no open set can be totally bounded, although balls are bounded
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sets. For now, let us show that translations and scalings of bounded and totally
bounded sets remain so.

Proposition 7.14

If A, B are both bounded, totally bounded, or compact sets, then so are,
respectively, LA and A + B.

Proof Proposition 7.6 is used throughout the following.
Boundedness: If A C B,(x) and B C B;(y), then

LA C AB,(x) = Bjr(Ax),
A+ B C By (x) + Bs(y) = Br4s(x + y).

Total boundedness:

n n
MA S A By i) = B,
i=1 i=1

n m
A+BC U Bepa(x;) + U Bepp(yj) = UBe(xi + y)-
i=1 j=1 i,j

Compactness: If A is compact, then scalar multiplication, being continuous, sends it
to the compact set AA (Proposition 6.15). If B is also compact, then A x B is compact
(Exercise 6.22(17)), and vector addition, being a continuous function X x X — X,
maps it to the compact set A + B. O

Exercises 7.15

1. Show that the following sets are closed subspaces of their respective spaces:

(a) {(an)neN eL>: ag = 0}’
(d) {(@)nen € €2 a1 = a3 AND ag = Y oo an/n},

(© {feCl0,1]: f) f=0).

2. The set of polynomials in ¢ forms a linear subspace of C[0, 1]. Its dimension is
infinite because the elements 1, ¢, 12, . .. are linearly independent. Is it closed, or
if not, what could be the closure of the polynomials in this space?

3. Why is the example in 7.12(2)(b) not valid for the space £>*°? Let M
and N be the spaces of bounded sequences of type (ai,0,a3,0,...) and
(al,al,...,an,an/nz,O,...), respectively. Modify x, and y, to show that
M + N is not closed in £°°.

4. Show that {e, : n € N} is bounded but not totally bounded in ¢2; and the set
{ +e, :n € N}is totally bounded in €2.
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5. The convex hull of a closed set need not be closed; a counterexample is given by
(R x {0}) U {(0, 1)}. But the closure of a convex set remains convex.

6. (Mazur) The convex hull of a bounded subset is again bounded, and of a totally
bounded subset is again totally bounded.
(Hint: Cover B with balls B¢ (x;); and the finite number of line segments x;—x
with e-balls.)

7. Line segments are path-connected; so linear subspaces and convex subsets (such
as balls) are connected.

8. The continuity of 4+ and A - imply that ALA = AA and A + B € A + B. Find an
example to show that equality need not necessarily hold.

7.4 Complete and Separable Normed Vector Spaces

Definition 7.16

When the induced metric d(x, y) := ||x — y| is complete, the normed space
is called a Banach space.

Examples 7.17

1. » R" and C" are separable Banach spaces. It is later shown that the sequence
spaces £” and the Lebesgue function spaces LP[0,1], 1 < p < oo, are
also separable Banach spaces, but ¢°° is a non-separable Banach space. (See
Propositions 9.14, 9.25, Exercise 9.32(8), Theorem 9.1)

2. (a) A closed linear subspace of a Banach space is itself a Banach space.

(b) When X, Y are Banach spaces over the same field, sois X x Y.
(Proposition 4.7)

Stefan Banach (1892-1945) After WW1, at 24 years,
a chance event led Banach to meet Steinhaus, who had
studied under Hilbert in 1911, and was then at Krakow
university. His 1920 thesis on abstract normed real vec-
tor spaces earned him a post at the University of Lwow;
working mostly in the “Scottish café”, he continued
research on “linear operations”, where he introduced
weak convergence and proved various theorems such as
the Hahn-Banach, Banach-Steinhaus, Banach-Alaoglu,
his fixed-point theorem, and the Banach-Tarski paradox.
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3. Cp(X,Y) is a Banach space whenever Y is (Theorem 6.23).
4. Not every normed space is complete (when infinite dimensional).

®

(i)

The set coo of finite sequences (ag,...,d,,0,0,...), n € N, is an
incomplete linear subspace of ¢°°. For example, the vectors (1,0,0,...),
(1, %,0,0,...), o, 1, %, e, %,0,0,...), ..., form a Cauchy sequence
which does not converge in cqg.

Take the vector space of continuous functions C[—1, 1] with the 1-norm
Il == fil | f ()| dt. This is indeed a norm but it is not complete on that

space. For consider the sequence of continuous functions defined by

0, —-1<t<0
@ =3{nt 0<t<1/n.
1 I/n<t <1
71
-1 1
It is Cauchy:
! 11 1
I fr — full = | fo— fml=z|———|— 0, asn,m — oo
1 2iln m

but were it to converge to some f € C[—1, 1], i.e., f_ll | fu(@) — f(@®)|dt —
0, then

0 1
fllf(t)ldt=0=/1/ 11— f()lde,

so that f(r) = 0 on [—1,0[ and f(#) = 1 on ]O, 1], implying it is
discontinuous. Similarly, the set C[a, b] is not closed as a linear subspace
of L?[a, b].
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Proposition 7.18

Every normed space can be completed to a Banach space.

Proof Let X be the completion of the normed space X (Theorem 4.6). We need to
prove that vector addition, scalar multiplication and the norm on X can be extended
to X. Using the notation of Theorem 4.6, let x = [x,], y = [y,] be elements of X s
with (x,)neN, (Vn)nen being Cauchy sequences in X. Since

lxn + Yo — Xm — Yl < lxp — Xl + 1y — Ymll — 0
IAxn — Axm || = [Alllxn — X |l — O
Hxall = Nl || < llxn — x| = O,
as n,m — oo, we find that (x, + yn)nen, (Axy)nen and (||x, |)sen are all Cauchy

sequences. For the same reasons, if (x),),enN is asymptotic to (x,)neN, and (¥)neN

t0 (Yn)neN, then the pairs (x;; + y;l)neN and (x, + Yn)neN, ()“xy/'l)l'lEN and (Ax,)neN,
and ||x; || and ||x, ||, are asymptotic to each other, respectively. So we can define

x+y:=[xp+yl Ax:=[Ax], x| := nlggo BB

Note that d (x,y) = |lx — y|. It is easy to check that they give a legitimate vector
addition, scalar multiplication and a norm; the required axioms follow from the
same properties in X and the continuity of these operations, e.g.,

x +yll = lim |lx, + yull < Lim ([xa ]l + e D) = x4+ [yl
n—0o0 n—o0
Ixl=0 =[xl > 0 = x =[x,] =[0] =0.
Note that the zero can be represented by the Cauchy sequence (0), and —x by
(—x;)neN. Furthermore, recalthhat there is a copy of X in X (as constant sequences);
the operations just defined on X reduce to the given operations on X, when restricted

to it. O

Proposition 7.19

A normed space X is separable if, and only if, there is a countable subset
A such that X = [A]].

Proof If X = A, such as when X is separable, then X = AC [A] € X.
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Conversely, suppose X = [A] with A countable; this means that for any vector
x, there is a linear combination of a; € A (a; # 0), such that

Aay + -+ Apa, —x|| <€ Ai€RorC. (7.1)

[[AT is not countable (unless A C {0}), but the set of (finite) linear combinations of
vectors in A using coefficients from @ + iQ is countable (Why? Hint: (_J,, Q" is
countable). Choosing r; = p; +iq; € Q + iQ, such that |r; — A;| < and
combining with (7.1), we get

_€
nlla; |

lriai + - +ray — x| < |1 —Apar + -+ u — Ap)anll + A1a;r + - - + Apan — x||
< re = Mlllatll + - - + [ — Anlllan | + € < 2e.

This shows that X is separable. O

7.5 Series

Sequences and convergence play a big role in metric spaces. Normed spaces allow
sequences to be combined with summation, thereby obtaining series xj 4 - - - 4 x,,.

Definition 7.20

A series ), x, is a sequence of vectors in a normed space obtained by
addition, (xg, xo + x1, X0 + X1 + x2, .. .); the general term of the sequence is
denoted by > "y_ xx. Therefore, a series converges when |lx — Y ) _o x| —
0 for some x € X, as n — o0; in this case the limit x is called its sum,

00 N

xo+x1+x2—|—~-=z xnzg X, := lim E X, = X.

N—o0
neN n=0 n=0

A series is said to converge absolutely when ), ||x, || converges in R.

Examples 7.21

1. Results about convergence of sequences can be converted to series:

@ D ,enCn +Yn) =D ,en*n + D,en Yo When the latter converge.

For example, ), . Xn = D ey X2n + D ,en X2n+1 if the latter converge.
(b) ZHGN )\,.xn =A ZHGN Xn-.
(c) A series is Cauchy when x,, + - -+ + x,, — Oasn,m — oo.

o o0
2. If a series converges both normally and absolutely, then || Z Xp || < Z %1l
n=0 n=0

Proof: Take the limit of ||xg + - - - + x| < [|xoll + - + ||xz]| asn — o0.

3. There are series that converge but not absolutely. As an example, take any
decreasing sequence of positive real numbers a, — 0, then Y (—1)"a,
converges in R (Leibniz); yet Zn a, may diverge.
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Indeed, when ), a, = oo and 0 < a, — 0, the series ) ., +a, can converge to
any a € R by a judicious choice of signs. Take enough terms a, to just exceed a,
then reverse sign to lower the sum to just less than a, then reverse sign again and
continue.

4. A rearrangement of a series need not converge; even if it does, it need not have
the same sum. For example,

R s
-bedadadel g oo
R o i R R RN )
-bedadodedaed-bee o

5. The sum of a ‘sequence’ (x,),ez can also be given a meaning:

00 'S} 'S}
ILTED DS SRS
n=l1 n=0

nez n=—00
when the latter two series converge.

In general, absolute convergence is logically independent of convergence of
>, Xn. But for Banach spaces, absolute convergence implies convergence. This can
be very useful, as sums of real numbers are sometimes more amenable.

Proposition 7.22

A normed space X is complete if, and only if, any absolutely convergent
series in X converges.

Proof Let X be a Banach space, and suppose that ", ||x, || converges. Let yy :=
Z,qu:() Xy, so that for M > N,

M M
||J’M—)’N||=” Z xn”< Z lx.ll >0 asN, M — oo.
n=N+1 n=N+1

Hence (yy) is a Cauchy sequence in the complete space X, and so converges.

Conversely, let X be a normed space for which every absolutely convergent series
converges. Let (x,),en be a Cauchy sequence in X, so that for n,m > N, large
enough, ||x, — x,| < €. Letting € := 1/2",r = 1,2, ..., we can find ever larger
numbers n, such that ||x,, — x,,,, || < 1/2". Thus,

o0 o 1
Dy = xn <5 =1
r=1

r=1
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By assumption, since its absolute series converges, so does Zr (Xn, — Xn,y)s 1€,
Xny — Xn, = (xnl - xnz) + (xnz - xn3) +---+ (xn,_l - xn,-)

converges as r — oo. This forces the subsequence x,, to converge, and so must the
parent Cauchy sequence (x,),en (Proposition 4.2). |

Series can be used to extend the idea of a basis as follows: a fixed list of unit
vectors e, is called a (Schauder) basis when for any x € X there are unique
coefficients «;,, € IF such that

o
x = E aney.
n=1

The set E := { ey, e, ...} has to be linearly independent and dense X = m; by
necessity X must be separable (though not every separable space has a Schauder
basis [31]). Note that a Schauder basis need not be a linearly independent set of
spanning vectors; the latter is called a Hamel basis for distinction.

Since a vector x = ) _yaue, is identified by its sequence of coefficients
(an)nen with respect to a Schauder basis, the space X is essentially a sequence space
with norm [[(at;) || == || D_, ey @nenll - Ideally, shuffling a basis should not make a

difference, but not every basis has this property; if it does, the basis is termed uncon-
ditional. There are examples of Banach spaces which have no unconditional bases.

Convergence Tests

Real series are easier to handle than series of vectors, and a number of tests for
absolute convergence have been devised:

Comparison Test If ||x,|| < a, then Zflv:o x|l < Z,Ilvzo ay. If the latter con-
verges to Z;io ap, then ), ||lx, || is increasing and bounded above, so converges.

An important special case is comparison with the geometric series, ||x,| < r”
with r < 1, because 1 +r +r2 +--- = 1/(1 — r). This leads to:

Juliusz Schauder (1899-1943) Schauder, after fighting
in WWI, graduated at 24 years from the University of
Lwow under Steinhaus with a dissertation on statis-
tics. He continued researching in the Banach/Steinhaus
school, giving the theory of compact operators its mod-
ern shape; he proved that the adjoint of a compact
operator is compact, the Schauder fixed point theorem,
and generalized aspects of orthonormal bases to Banach
spaces; later he specialized to partial differential equa-
tions. Along with many other Polish academics, he was
killed by the Nazis during WWII.
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Root Test Let r := limsup, [|x,['/";

(a) if r < 1 then the series ), x, is absolutely convergent,
(b) if r = 1 then the series may or may not converge,
(c) if r > 1 then the series diverges.

Proof: (a) ||x,]] < (r + €)" except for finitely many terms. Since the right-hand
side is a convergent geometric series when r < 1 and € is taken small enough, the
left-hand side series also converges by comparison.

(b) The series Y 00| 1 = coand 332 nl—z < 2 both have r = 1.

(¢) When r > 1, ||x,|| = (1 + €)" > 1 for infinitely many terms, so the series
>, llxn || cannot possibly converge.

Ratio Test (D’Alembert’s) If the ratios ||x,+1]|/]|x,]] — 7 then |x, |Vn - r
and the root test applies; it is often easier to find the first limit, if it exists, than the
second.

Proof: The idea is that for large n, ||x,|| & rllx,_1]| & r"*|xol, so [lx,||'/" ~ r.

More precisely, for n > N large enough,

r—e < |lxall/llxn-1ll <7 +e,
-N —N
(r =" lanll < llxall < ¢+ "V lxnll,
r—2e < x|l < r + 26,

—N/n 1/n

since (r + €) lxn |l — 1.

Cauchy’s Test If ||x,| is decreasing, then ), [lx,|| converges < > 2"|xon||
CONverges.

Proof: Let r, := ||x,||; the test follows from two comparisons,
r+r+--Frpn_=r1+@+r)+-- o+ Fromi_y)
<ri+2r4+-+2"mn.
r+2r+drg+ -+ 2" <y +2r+2(r3 +rg) + -

+2(r2nfl+l ++r2”)
<21 +rp+ -+ o).

Kummer’s Test Let ), ri be a divergent series of positive terms and

Pod il _ @ +o(1/r)
= n)-
rno Xl I'n
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If « > 0, then the series Zn X converges absolutely, otherwise when o < O the
series diverges. For example, r, := 1 gives the ratio test, r, := n is Gauss’s or
Raabe’s test, and r, := n logn is Bertrand’s test.

Proof: When « > 0, we are given that c||x,|| < ryllxull — rnt1llXp+1l forn > N
large enough, and some 0 < ¢ < «. Summing up these inequalities results in

cllxnll+ -+ lxml) < rvlixnll = rmst lxmarll < rvlixwnll

so the series converges as it is increasing but bounded above.
When o < 0, we have r, || x, || < ru41llxn+1]| for n > N large enough. Hence

ryllxnl

llxnll >

n

and the series diverges by comparison with the series ) rl

There are yet other tests, for example, Cauchy’s inequality shows that ) a,b,
converges when °, a2 and 3, b2 do.

Exercises 7.23

1. If a series Zn X, converges, then x;, — 0 as n — oo. The converse is false:

1 1 1 1
1+2+3+4+-~~+n—>oo.

More generally, for any fixed k, X, + X414+ - - +Xm+k — Oand Z;:O:m Xp —>
0,as m — o0.

2. From the geometric series, it follows that 1 — a + a>—a’+ ... and Zn a™
(rn =2 n) converge for |a| < 1in R

3. The series Y, - 1> D_n 7> and Z converge by comparison with a geometric
series (or using the ratio test).

11 .
4. 1+ ) + 3 + - = ra This series was too hard to sum before Euler;
show at least that it converges, using the comparison = < ﬁ =L -

. Generalize this to the case ﬁ - 1 L

converges for p > 1. Deduce that ), f T converges, by comparison.

5. These last series are examples that converge slower than the geometric series;
in fact they are not decided by the root and ratio tests. Are there series that
converge even slower?

6. The Cauchy or Raabe tests can also be used to show that 1+ 2%, + %,, + -

converges when p > 1. Show further that Zn T Do nlogn D nlognllog o
, diverge.
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Determine whether the following series converge, converge absolutely, or

diverge in £', ¢2, and co: () Y, en. (i) 3, S e, (D) 3, Len. (iv)
. L.

The Weierstrafs M-test (comparison test for L>): If || fullp~ < M, where
>, M, converges, then ), f,, converges in L*°(A) (i.e., uniformly). Use it

to show that the function Zn % converges uniformly on [—1, 1].

Let f,(t) := e ™ /n, then I fullLio g < 1/n?, and so >, [u converges in
L'[0, 1].

If > en 1Xnm — Xull = Oas m — oo and ), x,, converges,

mhﬁm(>o Z Xnm = Z mIme Xnm = Z Xn
neN neN neN

What is wrong with this argument: When ||x, I1/" — 1, then ||lx,|| > (1 — €)"
for infinitely many terms; the right-hand side sums to 1/€, which is arbitrarily
large; hence the series cannot converge absolutely.

A rearrangement of an absolutely convergent series also converges, to the same
sum. (Hint: Eventually, the rearranged series will contain the first n terms.)
Suppose a series x| + xp + - - - is split up into two subseries, say x; + x4 + - - -
and xp + x3 + - -+, denoted by ), x», and }_; Xy - If they both converge, to

x and y respectively, then the original series ), x, also converges, to x + y.
If one converges, and the other diverges, then the series ), x, diverges. But it
is possible for two subseries to diverge, yet the original series to converge; for
example, 1 —%+%—4—11+~-~—>10g2.

(a) The sequences e, form an unconditional (Schauder) basis for 2" and ¢.
(b) The polynomials #*, n € N, do not form a basis for C[a, b]. (Hint: For

0, t<O

t, t20
Cesdro limit: A sequence (x,),eN is said to converge in the sense of Cesaro
when % converges. Show that if @ = lim,,_, » x;, exists then the Ceséro
limit is also a. Show that the divergent sequence (—1)" is Cesaro convergent to
0.

C[—1, 1], take f(¢) :=

Remarks 7.24

1.

Weighted spaces are defined similarly to ¢7 and LP but with a different
measure or weight. For example, an lev space with weights w, > 0 consists
of sequences with bounded norms [x|| o = > lan|w,. Similarly, L%U(A)

has norm ([ | f (t)|2w(t)dt)%. In fact, weighted spaces are isomorphic to the
unweighted spaces; for example E}U = ¢! via the map (an)neN > (Wpap)neN-

. The second norm axiom requires that the field be normed. A famous theorem by

Frobenius states that the only normed fields over the reals are R and C.
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3. Cauchy’s inequality was known to Lagrange in the form

N N
Za Z b2 (Zan n)2 = Z Z(ambn - anbm)z-

n=1 m=1 n=1m>n

4. Hausdorff’s Maximality Principle = Axiom of Choice.

Proof: Let A = { A, € X : o € I} be a collection of non-empty subsets of a set
X. Consider choice functions g : J — X, i.e., g(o) € Aq foralla € J C I.To
prove the axiom of choice we need to show that there is a choice function f with
domain 1.

Let these choice functions be ordered by extension, thatis, g1 < g» when g, extends
g1. By Hausdorff’s maximality principle, there exists a maximal chain of choice
functions g;. Let J be the union of all their domains. For each « € J, o must be
in the domain of some choice function g;; so define f(«) := g;(«). This function
is well-defined since the choice functions extend one another; and it is a choice
function itself since f (o) = gi(a) € Ag.

Finally, if there is some set Ag which is missed by f,i.e., 8 ¢ J,letxg € Ag. Then
f can be extended further by defining f(8) := xg, contradicting the maximality of
the chain g;. Hence f is definedonall« € I.



Chapter 8 ®
Continuous Linear Maps Qe

8.1 Operators

In every branch of mathematics which concerns itself with sets having some
particular structure, the functions which preserve that structure, called morphisms,
feature prominently. Such maps allow us to transfer equations from one space
to another, to compare spaces with each other and state when two of them are
essentially the same, or if not, whether one can be embedded in the other, etc. Even
in applications, it is often the case that certain aspects of a process are conserved.
For example, a rotation of geometric space yields essentially the same space, and
rotating the axes might simplify a problem. The morphisms on normed spaces are
formalized by the following definition.

Definition 8.1

An operator! is a continuous linear transformation 7 : X — Y between
normed spaces (over the same field), that is, it preserves vector addition, scalar
multiplication, and convergence,

T(x+y) =Tx+Ty, T(Ax) = ATx, T(lim x,) = lim Tx,.
n— o0 n—odo

A functional is a continuous linear map ¢ : X — F from a normed space to
its field. The set of operators from X to Y is denoted by B(X, Y), and the set
of functionals, denoted by X*, is called the dual space of X.

! The use of the term operator is not standardized: it may simply mean a linear transformation, or
even just a function, especially outside Functional Analysis. But it is standard to write 7x instead
of T(x).
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Easy Consequences

1. T0=0.

2. Linearity is equivalent to showing 7 (Ax + y) = ATx + Ty.

3. T o Mxn) = Y neoinTxp.

4. A linear map is determined by the values it takes on the unit sphere.

A simple test for continuity of a linear transformation is the following Lipschitz
property, due to Banach.

Proposition 8.2

A linear transformation 7 : X — Y is continuous if, and only if, 7 is a
Lipschitz map,

dc >0, Vx € X, ||Tx|y <cllx]|x-

Proof The definition of a Lipschitz map reads, when applied for normed spaces,
lfx)— fOI < cllx — y|| for some ¢ > 0. When f is in fact a linear map 7,
it becomes ||T(x — y)|| < cl|lx — y||, or equivalently, ||Tv| < c|lv]| for all v €
X. That Lipschitz maps are (uniformly) continuous is true in every metric space
(Example 4.16(3)), but can easily be seen in this context. If x, — x, then Tx,, —
T x, since

1Txp — Txll = 1T Cxp — )| < cllxn — x|l — 0.

Conversely, suppose the ratios ||Tx||/||x| are unbounded. Since scaling x does
not affect this ratio (because T is linear), there must be vectors x,, such that || T x, || =
1 but ||x,|| < 1/n.So x, - 0yet Tx, / 0, and T is not continuous. m|

Equivalently, T sends bounded sets in X to bounded sets in Y, since it maps the
ball B,(x) into the ball B.,(Tx) (Exercise 4.18(3)). Because of this, continuous
operators are widely referred to as being “bounded”, but, except for the zero
operator, their image is certainly not bounded! This usage of the word “bounded” is
avoided in this text, in favor of the equivalent term “continuous”.

Examples 8.3

1. An operator 7 maps the linear subspace [A]] to [T A] because

n n
X = Zaivi = Tx = ZaiTv,'.
i=1 i=1

In particular it maps a straight line to another straight line (or to the origin),
hence the name “linear” applied to operators.
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If T is 1-1, then E C X is linearly independent iff TE is linearly
independent.

. » A linear transformation from F” to " takes the form of a matrix. Letting

" =Tei,....e . F" =[e],....€,0,x = Z'}zlajej =(ay,...,ay), and
Tej =Y 1" T;je, (for some T;; € F), then

a
Tyy oo Tin 1

T:B—g;ajTej :Z (ZT,J(L )

i=1 j=1 ’ I
Ty e Tom an

Notice that the column vectors of T are Te;.
Every matrix is continuous,

m n

ITxl, <3 1 Tyajl < (Z|T,,|)||x||2

i=1 j=1 i,j=1

A functional from F” to [F is then a 1 x n matrix, otherwise known as a row
vector,

ai

a] n n n
ol | =9 (Zaiei> = Z(b(ei)ai = Zbiai = (b1 ... bn)

ap i=1 i=1 i=1 ap

Generalizing this to functionals on complex sequences, let y'(x) = y - x =
>, bnay, when the series exists, where x = (a,)yeny and y = (bp)nen. Then
y' is linear,
y: (x+x)—2b (an +a, )—Zb an—l-Zb a,=y-x+y-x,
y-(Ax) = Zb Aay —AZZJ an = Ay -x,

but may or may not be continuous, depending on y and the normed spaces
involved. For example, to show that ¢ (a,) = Z;il (7}1# defined on £ is
continuous, note

9x| = ]i —

(o)
1
< E — sup |a,| < 2||x]|poo.
\n_ln2 nP nl V4
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5. When X has a Schauder basis (¢;),en, a functional must have the above form:

px = ¢(Zanen) = Zan¢en = ananv (bp = ¢pen, an € F).

neN neN neN

6. The identity operator I : X — X, x — x, is trivially linear and continuous.
Similarly for scalar multiplication, A : x > Ax.
7. » The left-shift operator L : ¢! — ¢! defined by (@n)neN > (@n+1)neN, i.€.,

L(ag, a1, a2, ...) = (a,az,as,...),

is onto, linear, continuous, and satisfies ||Lx|| < [|x]|; it is not 1-1.
Proof: That L is onto is obvious; linearity and continuity follow from

L(ap +bp) = (a1 +b1,a0 + by, ...) = (a1,a2,...) + (b1, D2, ...)
= L(ay) + L(by),
L(\ay) = (Aay, Aap, ...) = Aay, ap, ...) = AL(ay,),

o o
ILxllp =) lanl <Y lanl = lIx[lp1-
n=0

n=1

Any two sequences, which differ in the first coefficient only, map to the same
sequence.

8. » In general, the multiplication of sequences x — yx, defined by (b,)(ay) :=
(bnan)nen, is linear on the vector space of sequences. When |b,| < c, it is
continuous as amap £¥ — £P (p > 1);e.g., for p =1,

oo

o
Iyxllr =Y 1bnanl <Y lan| = cllx|lp-

n=0 n=0

In finite dimensions, this is equivalent to multiplying x by a diagonal matrix.
9. Integration, f > [, f, is a functional on L'(A).
10. The ‘delta function’ 8,,(f) := f(xo), is a functional on C;(X), where xp € X.
Proof: Linearity is immediate,

Sxg(Af +8) = (Af + 8)(x0) = Af (x0) + 8(x0) = Adx(f) + x,(8)-

For continuity, |8x, f| = [ f (xo)| < sup [f () = [l fllcx)-
xeX

11. Differentiation of functions is linear (say on the vector space of differentiable
functions) but it is not continuous in the co-norm, e.g.,

| D cos(ni)|lc,wy = [I—nsin(nt)|lc,w) =n
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whereas || cos(nf)||c, gy = 1. Similarly, I Dt I cpo. 17/ 11t I cpo,17 — o0 asn —
00. (Here, t" and cos(nt) denote functions in 7.)

12. Conjugation in C, z + Z, is continuous but not linear. It is conjugate-linear,
because Az = AZ # AZ in general.

Proposition 8.4

If T : X — Y is an operator,

(i) the image of a linear subspace A of X is again a linear subspace of Y,
TA:={TxeY:xeA},

(i) the pre-image of a closed linear subspace B of Y is a closed linear
subspace of X, T 'B:={x e X : Tx € B}.

The image and pre-image of convex subsets are convex.

In particular, its image im T := T X is a linear subspace; and its kernel ker T :=
T~'0s a closed linear subspace. Their dimensions are called the rank and nullity of
T, respectively. The kernel of a non-zero functional, ker ¢, is called a hyperplane.

Proof ())LetTx, Ty e TA,thenATx +Ty=T(Ax+y) € TA.
(i) Letx, y, x, € T-!B, thatis, Tx, Ty, Tx, € B,and let A € F. Then

T(x+y)=Tx+Tye€ B, T(Ax)=ATx € B,

Xp —> v = TU:T(,,IHI;OX”)Z,,IEI;OTX”GB’

show that T~ B is a closed linear subspace.

(iii) Let A be a convex subset of X and let Tx, Ty € T A, where x, y € A. Then for
any0<r<l,z:=tx+ (1 —1t)yisin A, so

tTx+ (1 —-0Ty=Ttx+ (1 —-1t)y)=TzeTA

shows T A is also convex. Now let B C Y be convex, and let x, y € T-!'B,ie., Tx,
Ty are both in B. Then, by convexity of B,

Tx+ (1 —-0)y)=tTx+(1—-t)TyeB
andrx + (1 —1)y € T"'B as required. |

Solving linear equations 7x = y, where T and y are given, is probably the single
most useful application in the whole of mathematics. The key to finding the general
solution of this equation is to know im 7" and ker T'.
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» Tosay that Tx = y has a solution is the same as saying y € im 7. Hence Tx = y
always has a solution precisely when T is surjective, im7 =Y.

» kerT is the set of solutions of the homogeneous equation Tv = 0. If v € ker T
then T (x + v) = Tx = y, so both x and x + v are solutions. Hence Tx = y has
unique solutions (if any), and T is injective, precisely when ker T = 0.

* If x¢ is any individual or particular solution, T xo = y, then for any other solution
of Tx = y,weget T(x —xg) = 0sox —xo € kerT, called a complementary
solution. Thus we have proved:

The complete set of solutions of Tx =y isxy+ kerT.

Examples 8.5

1. For a matrix, the image of T is often called its column space, since im7T =
[Te j]];’.zl. Gaussian column operations can be performed on the columns to
simplity it to a basis, for example,

1 3 7 -17 1 00 O 10
im7T = ColSpace | -4 —4 —20 36 | = -4 8 8 =32 =0 4
1 1 5 -9 1 —2-2 8 0-1

(Column vector parentheses are suppressed for clarity.)
Similarly, the rows can be simplified by row operations,

1 3 7 -17
RowSpace | -4 —4 —20 36 | = RowSpace 104 -5
11 5 —9 0114

so a vector belongs to ker 7' iff it is annihilated by the row-space; in this case

5t —4s 5 —4
they are the vectors ar—s ,sokerT = 4-1
s 01

t 10

2. The kernel of the left-shift operator is spanned by eg, since if x € kerL,
(a1,a3,...)=Lx =0,s0a, =0foralln # 0, 1i.e.,x = agpeo; in fact Leg = 0.

3. An open linear mapping must be surjective.

Proof: As T Bx is open in Y, it contains a neighborhood B.(0) = ¢By. But
X =, Bn0),s0TX =J,nTBx 2| J,neBy =Y.

4. Let V be a linear subspace of im 7" C Y, with a basis E; for each element e € E,
choose a pre-image # € X, i.e., Tu = e, and form the set Eq of such vectors, one
for each e; these are the particular solutions mentioned above. Then T-ly =
[Eoll + ker T and dim(7~'V) < dim V + dimker 7.
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Proof: Let Eq be a basis for ker T'; then Eg U E| is a basis for TV since the
solutions of Tx = v € V are obtained as x = xg + w € [Epll + [E1] =
[Eo U Eq].

In particular, taking V = im T, the rank-nullity formula holds:

rank(7) + nullity(7) = dim X

Note that rank(7") < dim X. (These formulae hold even for infinite dimensions,
in the sense of cardinal numbers.)

5. A finite-rank operator is one whose image is finite-dimensional. If S, T are finite-
rank then so are S + T and ST (when defined), with

rank(S + T
rank(ST

rank(S) + rank(7),

)
) < min(rank(S), rank(7)).

NN

Proof: The domain of S in the composition ST can be taken to be im 7T, so
dim(im(S7T)) < dim(im(7)) by the rank-nullity formula; the rest follow from
im(ST) €Cim(S) andim(S+7) CimS +imT.

6. Sylvester’s inequality: If S and T both have finite nullity, then so does ST with

nullity(S7T") < nullity(S) + nullity(T').

Proof: ker(ST) = T~ (ker §), so nullity(S7T) < dimker S + dimker T'.
Exercises 8.6

1. Show that the following are continuous functionals,

(@) ¢ an) =32 jan on £
(b) ¢(ay) ==Y .2, e"a, on !, (w € R);
(c) 81(ay) :==ajontl, 2, ¢,

Their best Lipschitz constants are %, 1, and 1, respectively.

2. If (en)nen is a Schauder basis, with x = ) a,(x)e, for each x, show that the
map x > ag(x) is linear. (That it is also continuous is true in a Banach space,
but not obviously.)

3. » The right-shift operator is defined by R(a,) := (0, ag, ay, . ..). Show that it
is 1-1, isometric, and has a closed image. Is the left-shift operator its inverse?

4. Other examples of operators (on £! or £°°) are

S(an) = (Cl], aOv a3a a21 .. ')9 T(al’l) = (an+4 - an)neN-

5. T[A] < [T A] for a continuous linear operator 7 and a subset A C X.
In particular, M := [x,Tx,T%x,...] is a T-invariant subspace of X:
TM C M.
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6. Solve for the functional equation f(r + 1) = f(¢) + t as follows: (i) the map
T: f(t) = f(@+1)— f()is linear in f; find (ii) ker T'; (iii) a particular
solution in the space of polynomials; (iv) the general solution.

7. If a linear map is continuous at one point, say O, then it is continuous
everywhere.

8. When Y is a normed space and 7 : X — Y is 1-1 and linear, then the map
x — ||Tx| is anorm on X.

9. Typical examples of functionals acting on functions are of the form f
f k(t) f (t) dt, where k has to satisfy some conditions for the functional to be
continuous. For example, ¢f := fooo e~ f(¢)dr is a functional on L*°[0, ool.

10. If S, T € B(X) commute, ST = TS, then S maps ker7 and im7 into
themselves.

8.2 Operator Norms

Proposition 8.2 states that a linear transformation 7 is continuous when it satisfies
an inequality ||Tx|ly < cllx|lx. The smallest such constant ¢ is denoted by || T||,
because it turns out to be a norm on operators. The sharp inequality

ITxll < 1Tl
is used extensively in the rest of the text.

Theorem 8.7

B(X, Y) is a vector space with a norm defined by

_ I1Tx|y
IT] := sup = sup || Tx|ly.
20 I1xllx  jxi=t

B(X,Y) is complete when Y is complete. In particular, X* is a Banach
space, with norm

|px|
¢l = sup ~—-.
x=20 (x|l

Proof The norm is well-defined in the sense that if 7 is an operator, then the ratios
ITx]||/]lx|l are bounded above, and so have a supremum || 7'||. In fact, a linear map
belongs to B(X, Y) if, and only if, | T'|| < oo.

Addition and scalar multiplication of operators is defined by

S+T)x :=8Sx+Tx, AT)x :=ATx.
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That B(X, Y) with these operations is a vector space is a straightforward calculation,
using the linearity and continuity of these operations in X and Y (Proposition 7.9).

AT)(ax +y) =AT(ax+y) =raTx +ATy = a(AT)x + (AT)y.
More crucially,

IS+ T| = sup [[Sx+Tx| < sup (|[Sx[|+ [ Tx])
llxll=1 IlxlI=1

< sup [|Sx|[+ sup [ Tx]|

lxl=1 lxli=1
= [ISI+ 17|
IATI = sup [[ATx| = sup [A[ITx] = |A[IT]
lxf=1 lxl=1

ITI=0 < Vx |[Tx]| =0 & T =0.

B(X,Y) is complete if Y is: Let T, be a Cauchy sequence of operators in B(X, Y),
thatis, |T,, — T,»|| — 0 as n, m — oo. Then, for each x € X,

1Tx — Tpx || < 1T — T llllx]l — O
implies that (7},x),en is a Cauchy sequence in Y, so that 7,,x converges to some

vector which can be denoted by T (x), if Y is complete. We now show that T is
linear:

T.x+y) = Tyx+T,y, T,(Ax) = AT,x,
l l l l asn — 00,
T(x+y) Tx)+T(y), T(x) AT(x),

by continuity of addition and scalar multiplication.
Finally, for any € > 0 and any x € X,

(T = T)xll < 1T = T x|l + 11 Timx — Tx|| < €llx[l +€llx]l,

where m is chosen large enough, depending on x, to make ||7,,x — Tx| < €||x]||,
and n,m > N large enough to make ||7,, — T;,|| < €. Hence ||T, — T|| < 2¢ for
n > N. This shows that 7,, — T, and so T, are continuous, and furthermore that
T, —>T. a
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Proposition 8.8

IfT:X — YandS :Y — Z are operators, then so is their composition
ST, with [[ST| < ISIITl.

B(X) := B(X, X) is closed under multiplication.

Proof That ST is linear is obvious: ST (x +y) = S(Tx + Ty) = STx + STy and
ST (Ax) = S(ATx) = ASTx. Also,

ISTx|l = ISCTo) < ISIITxI < ISINT W Ix]l,

and the result follows by taking the supremum for unit vectors x. O
Examples 8.9

1. )10] =0, |II]| = 1; more generally, |Al| = |A|.
2. The norm of the functional y ' is || y|| ;. when considered as a map ¢! > F.
Proof: Taking x = (an)nen, Y = (bu)nen,

1y -xI <D Iballan] < (sup bal) D lan] = [Iyllge Il e1,
neN neN neN

gives ||yl < ||yllge- Since the supremum || y||, is a boundary point of the set
{|bn] : n € N}, there is a subsequence |by;| — ||y ||y, so that [|[y"[| = ||yl ¢,

1yl =1y - en| = lbn;| = Iyl (len ]l = D).

30T < IISI# IITx]| < [|Sx|l, for example, T =1, S = (3 9), x = (9).
4. If S extends T, with domains X D Y, then || T|| < || S|, since
ITI = sup [Tx|| < sup ITx||=[SI.  (By € Bx).
XE€By x€Bx

5. » Any linear continuous operator on normed spaces, T : X — Y, is Lipschitz,
hence uniformly continuous. By Theorem 4.14, it can be extended uniquely to
an operator on their (Banach) completion spaces, T : X — Y. This extension
remains linear and continuous, and retains the same norm, || T|| =|T].

Eroof : For any vector x € X , there exist vectors x, € X such that x,, — x; let

Tx := lim Tx, €Y. Then, for any vector v € X, with v, — v, v, € X,
n—>oo

TOx +v) = 1im T (hxy +vy) = lim (AT, + Tvy) = AT (x) + T(v),

ITxll = lm [|Tx,|| < 1T lim [lx, |l = [T llx].
n— oo n—oo

So || T|| < |||, but, as the domain of T includes that of T, equality holds.
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6. Let» € X* and y € Y; then the map y¢ : x +> (¢x)y is continuous and linear,
with [lypll = llyllli¢ll.
Proof: |ly¢ll = sup |lypx|l = (sup [pxDlyll = lollyll
=

lxll=1 llxll=1
7. An ‘affine’ map f(x) := v+ Tx with T € B(X) is a contraction mapping when
IT|| < 1. The iteration x,+1 := v + T x,, starting from any x¢, converges to its
fixed point y = v 4+ T’y (Theorem 4.17). Try it out as a plot with an affine map
suchas 2(2 5')x + (}).

Matrix Norms

Every matrix 7 : F" — F™ is continuous, hence has a finite norm ||7||. But
this operator norm needs to be disabused of some notions. It is not a number that
depends only on T it also depends on which norms are being used for F”* and ™
and therefore it is customary to denote it by [|T'||, , when the p- and g-norms are
used in F" and [F™, respectively, unless it is obvious from the context. Moreover, it
may be hard to compute a norm in general, so any estimate for it is most welcome.
Finally, there exist other more convenient norms that are based on specific formulas,
foremost of which is the Frobenius norm of a matrix defined by

m,n 12
I70e = (D2 1712)

i,j=1

It is just the Euclidean norm of the matrix thought of as a vector with mn
components.

Proposition 8.10

Let a matrix 7 have coefficients 7;;, then

1711 00 < max;,j |Tjjl, 1T, =max; ), |T;| =:c,
1T loo,1 < 22 5 17351, 17 loo,00 = max; 3_; Tij| =: 7,
17122 < Tl F, T2 < A/rc.

The numbers ¢ and r measure the matrix’s “largest” column and row, respectively.
Then the second inequality for |||l 5, known as Schur’s test and sometimes an
improvement on the first inequality, states that it is at most their geometric mean.

Proof Letx = (a;)}_; and Tx = (3_}_; Tyja))iL,;.
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@) [ITx]loo = max;

() ITxly =2,
(iii) By Cauchy’s inequality,

> Tijaj) < (max; max; |T;; )]l x]ly.
X5 Tas| < (50 X 1T ) 1o

2 .
Zj T,-jaj| < Zj |T,'j|2 Zj |czj|2 for each i, so

2
2 2 2
IT3 =32 |3 Tay| < 3 1mPRixI3,
i j ij

@) I1Txl = ¥, [%; Tyas| < %, 5 1Tyllajl < 5, claj] = clxly. IF the
largest column is the kth one, then ||Ter|l; = ¢ = cllell;, so Tl =
1715
SUP T T

V) 1Tx]log = max; [3°; T,-jaj) < (max; > IT;1) 1 || o If the largest row is the

kth one, consider the unit vector x := (|Tx;|/ Tkj)’}:] (take 1 if T; = 0); then

ITxlloe = 3 |Tij| = 1.
(vi) Let y := (b;)" .; then again by Cauchy’s inequality, over """,
y i=1 g y y q y

1 1
v Tl < 30 T llaglibid = Y (1Ti121a,1) (173512 101)
i,J

i,j

< DoITla 2 Y 1Tkl
iJj ij
< \/cDajP\/rDbiP = Jrelxlalyl,
J i

In particular, putting y = T'x gives ||Tx||% < Jre x| Tx],.

Proposition 8.11

The (p, ¢g)-norm of a matrix 7 can only increase if

(i) arow or column is added; or
(ii) the coefficients 7;; are replaced by |T;;| or larger.

Proof (i) Adding a row increases ||Tx ||q without affecting ||x || Py Adding a column
enlarges the domain, since F” is embedded in F"**!. Since all the original vectors
are still present with a zero at the position of the new column, the supremum of
|IT x| among all the unit vectors can only increase.
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(i1) For any vector x = (aj)’;zl, let x4 := (|a;j |);?=1, both vectors having the same

norm. Let S be a matrix with coefficients satisfying S;; > |T;;|. Then

1Txlly < 1Y Ta))is |, < 1 1Tllas )i [, < ISx4l,
J J

S USHp gl -

Examples 8.12

1. By deleting rows and columns, it follows that the norm of a matrix is larger than
the norm of any submatrix, including that of any row or column, or individual
components.

2. The (1, 1)- and (o0, 0o)-norms are easy to calculate and are achieved by vectors:

(7 _75> ; _<_7> (7 _75> B _(19)
-2 95 0 9 -2 95 | —6
But for the (2, 2)-norm, the above propositions only tell us that

H2  <V2B 153,

7 =75
11.4 ~ V130 < H (_2 . 5)
using columns, rows, and the Frobenius norm.

3. Ifanoperator T : X — X has an eigenvector, Tx = Ax, then ||T|| > HHTX)T\H = |Al.
For example, the (p, p)-norm of a square matrix is at least equal to its largest
eigenvalue.

4. Any norm |||, , depends continuously on its coefficients: changing them

slightly by at most € does not change T drastically, e.g.,

IS — Tlloo1 < mnmax|S;; — T;j| < mne.
i,j

5. Finite matrices have a whole set of attributes that do not generalize to operators,
so it is important to ‘unlearn’ them for infinite dimensions, so to speak. The
following is a list of properties that generally hold only in finite dimensions:

(a) A matrix is injective iff surjective.

(b) Every matrix has finite rank and nullity.

(c) Every matrix is continuous.

(d) The image of any matrix is closed.

(e) Every square matrix satisfies some polynomial; that monic polynomial of
smallest degree is called its minimal polynomial.

(f) Every square matrix has a determinant and a trace.
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Exercises 8.13

1.

The mapping T : ¢! — ¢! defined by T (a,) := (ao,a1/2,az/3,...), is linear
and continuous, with norm 1. It is 1-1, and its image, denoted E} ‘=imT C ¢!,
is not closed in ¢!, (Hint: Consider (1,1/2,...,1/n,0,0,0,...).)

. The mapping D : E{ — ¢!, defined by D(a,) = (nap)nen, is linear and

invertible, but not continuous. (Hint: D(e,/n) = e,.)

. The right-shift operator satisfies || Rx || = ||lx|| as £ — £7,s0 || R]|, , = 1. Show

further that || R|l; oo = 1 and |[L||,, , = 1 (where L is the left-shift operator).

. Some examples of continuous linear maps on Cj(R) are:

@ Tr@ =)+ f(=1))/2,

(b) Translations T, f(¢) := f(t — a); they are isometries and form a group with
TuTy = Tatps I = To, T, ' = T-q,

(c) Warping of the domain: T, f (¢) := f o g(t), where g is invertible;

(d) Multipliers M, f(t) := g(t) f (¢), where g € Cp(R).

What are their kernels and image subspaces? and their norms?

. Itis not so easy to calculate ||T|| in general, even when T is a matrix. Show that,

with the Euclidean norms,

@ |G 9] = max(al, |u)).
® [Go) =1=1]C0)l-

(c) If you feel up to it, show that for real 2 x 2 matrices,

“ <a b) | = \/a2+b2+c2+d2+¢((a—d)2+(b+c)2>((a+d)2+(b—c)2)
cd)" 2

(Hint: Use Lagrange multipliers to find the maximum of (ax + by)? + (cx +
dy)? subject to x2 + y2 = 1. See also Exercise 15.21(8).)

A0

. Prove that if a matrix decomposes as T = (0 B) then (T, <

max(|[Ally 2, [|Bll2,2). Does this generalize to || 7|, , or [IT]l2,1?

. If T,,x, — 0 for any choice of unit vectors x,, then 7,, — 0.
. * A real matrix T has two norms, in principle: when considered as a matrix

mapping R” — R™, and as C* — C™. The ‘complex’ norm is always larger
than the ‘real’ norm, but need not be equal. For example, taking T := (% _11) and
x = ({T9) gives |Tx[l; = 2v2[|x]lo0» Yet [T [loo.1 = 2 over the reals. Show,
however, that the two norms are equal when the 2-norms are used in both domain
and codomain. (Hint: ||x +iy|? = |x]?> + |yl
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8.3 Isomorphisms and Projections

We sometimes need to show that two normed spaces are essentially the same,
meaning that any process involving addition, scalar multiplication, or convergence,
in one space is mirrored in precise fashion in the other space, and vice-versa. This
is the idea of an isomorphism.

Definition 8.14

An isomorphism between normed vector spaces is a bijective map 7 : X —
Y such that both T and T~! are linear and continuous. The spaces are then
said to be isomorphic to each other, X = Y.

An isometric isomorphism is one that preserves distance, || Tx|ly = ||x| x for
all x € X, and isometrically isomorphic spaces are denoted by X =Y.

We say that X is embedded in Y, denoted X € Y when X = Z C Y for some
subspace Z, and the isomorphism X — Z is called an embedding.

Thus, isomorphic normed spaces are isomorphic as vector spaces and homeomor-
phic (in fact equivalent) as metric spaces. Intuitively speaking, if X is embedded in
Y, then one can treat it as if it were a subspace of Y even though its elements are not
inY.

Proposition 8.15

If 7 : X — Y is a bijective linear map, then 7! is linear, and is
continuous when c|x||y < ||T x|y for some ¢ > 0.

When 7 is an isomorphism, |77'|| > ||T|~".

Proof Let T be a bijective linear map, letx, y € Y, and letu := T~ 'x, v := T~ ly;
then Tu +v) = Tu+Tv = x + y,sothatu +v = T_l(x + y). Similarly
T (Au) = ATu = Ax gives T—'(Ax) = Au = AT~ (x). This shows 7! is linear.
The inverse is continuous when |7~ 'y|| < ¢|y| for all y € Y, in particular for
y=Tx:||x|| < c||Tx]| forall x € X. Since T is surjective, the two inequalities are
logically equivalent.
By Proposition 8.8, 1 = |[I|| = |TT~ < |TINT~'. O

Isomorphisms are also important in practical applications of functional analysis,
where linear equations of the type Tx = y, with y given, are very common. Three
requirements are prescribed for such an equation to be well-posed:

(i) asolution exists; in operator terminology, this means that 7 is onto;
(i1) the solution is unique, that is, 7" is 1-1;
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(iii) the solution is stable; small variations in y do not lead to sudden large changes
in x, in other words, x depends continuously on y, that is, T~ is continuous.

Collectively, these three conditions entail that 7 has a continuous inverse. They
not only have theoretical implications but practical ones as well. Existence and
uniqueness of a solution are of obvious practical importance; stability implies that
an algorithm can give a meaningful approximate solution, in the sense that small
numerical errors in the initial conditions or algorithmic steps do not render the
output completely wrong.

To measure how well-posed an equation is, we can consider the maximum
relative error in x given a relative error in y. That is, if an error 8y in y gives

a corresponding fluctuation §x in the solution x, T(x + 6x) = y + &y, then
T(8x) = 8y. Thus combining [|8x| < 71|18yl with [yl < [TIllIx[, gives
l[8x]| - I8yl

<NTHNT =
llx]] Iyl

The number |7 ||| T is called the condition number of T. If it is relatively
large, then the equation is said to be ill-conditioned because the relative error of
the solution could be larger than that of the data.

Examples 8.16

1. » Suppose a vector space X is normed in two ways, giving two normed spaces
X). and X .. The two norms are equivalent if, and only if, the identity map
I : Xy — Xy is an isomorphism (Example 7.4(9)); equivalently, there are
constants ¢, d > 0,

Vax, clixll < fixll < dlixll-

For example, R" with the 1-norm is equivalent to R" with the co-norm.

2. ¢ is not isomorphic to £°. It is not enough to exhibit a sequence, such as
(1,1, ...), which belongs to £ but not to ¢!, because such a sequence may,
in principle, correspond to some other sequence in £'. One must demonstrate
a property that ¢! satisfies but £>° doesn’t; e.g., we will show later on that the
former, but not the latter, is separable.

3. » The inequality c||x]| < ||Tx]| (¢ > 0), valid for all x in a Banach space X,

implies that im T is closed and 7 is 1-1.
Proof: If Tx = Ty, thenc|lx —y|| < |[Tx —Ty|| = 0 and x = y. Suppose
Tx, — yinY; then c|x, — x;ull < ITxp — Txp|| > Oasn,m — o0, so
(xn)nen is Cauchy and converges to, say, x € X. By continuity of T, Tx, —
Tx =y,hence y € imT and im T is closed.

4. Suppose we wish to find the solution of Tx = y (T € B(X,Y)), but it is time-
consuming or impossible to calculate 7~!. If S € B(X, Y) is easily inverted and
closeto T,ie., T = S+ Rand |R| < [IS~~", then ||[S~'R| < 1, and the
iteration

X1 1= X + STy = Txy) = STy — Rxy)

converges to the solution of the equation by the Banach fixed point theorem.



8.3 Isomorphisms and Projections 143
Projections

Our next aim is to show firstly that all n-dimensional spaces are isomorphic to
each other (for each n), and secondly to seek an analogue of the first isomorphism
theorem of vector spaces, namely V/kerT = imT. Accordingly we need to
introduce an important type of operator called a projection, and then construct

quotient spaces.

Definition 8.17

A projection is a continuous linear map P : X — X such that P> = P.

For example, shadows are the projection of objects in R3 to shapes in a two-
dimensional plane; a flat object on the ground is its own shadow. Playing around
with the definition gives a number of consequences:

ker P

x
(I-P)x -——
imP /

Px

Examples 8.18

1. (I — P)>=1—2P + P?> = [ — P is also a projection.

2. {—P)P=0,s0x eimP & x—Px =0,andim P = ker(I — P) is a closed
subspace. Similarly im(/ — P) = ker(l — I + P) = ker P.

3. Any x € X can be writtenas x = Px 4+ (I — P)x € imP + kerP. If x €
im P Nker P = ker(I — P) Nker P, then x = Px + (I — P)x = 0, so that
X =imP @ker P.

4. Any linear map on a Banach space, which satisfies P> = P, is automatically
continuous when im P and ker P are closed subspaces, but more powerful results
are needed to show this (Proposition 11.5).

5. To create a projection onto the space M along the space K, find bases for
these spaces and form a matrix out of their column vectors, T := [M K]. The

projection needs to satisfy PM = M and PK = 0, hence P = [MO]T~!. For
-1 _
example to map onto (_]1) along ({), P = (_11 8) (_]l }) = %(_11 11).
Exercises 8.19

1. (a) The map (Z;) — (0,a1,a2,0,0,...) embeds R2 in the real space el
(b) The map J : (ay)neN > (@n/2")neN, £ — 2L is injective, linear, and
continuous, but is not an embedding (||x /g0 £ c|[Jx](1).
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®

10.

11.

8 Continuous Linear Maps

An infinite-dimensional space may be properly embedded in itself: for example,
the right-shift operator R : £*° — im R C £*° is an embedding. This cannot
happen in finite dimensions.

. Separate each sequence x = (a,),eN into two parts x, = (aop, a2, ...) and

x, = (aj, as, ...). Then the map x — (x,, x,) is an isometric isomorphism
=t x el

The space KI(Z) consists of ‘sequences’ ...,a_»,a_1, agp, aj, az, ... such that
Z;’;foo lan| < oo. It contains ¢! as a proper subspace, even if o =1'2).
. Show thatif 7 : X — Y is an operator and P, Q are isometric isomorphisms

on X, Y respectively, then | QT P|| = ||T|.

x Let T : £° — {£°° be an operator with matrix coefficients 7T;;, i.e., it maps
a sequence (a;)jeN € £ to (Z?O:O Tijaj)ien € £*°. Suppose also that the
matrix is dominated by its diagonal, meaning that for some ¢ > 0,

Tl = Y 1Tyl > c.
J#L

Then | Tx|| > c||x]|. (Hint: use |a + b| = |a| — |b].) ~ ~

* If X1 and X» are isomorphic then so are their completions X| = X>.

*If X1 = Xy and Y1 = Y, then B(X{, Y1) = B(X3, 1»).

Let Ax = b be a matrix equation, where A is a square matrix. Use
Example 8.16(4) above to describe iterative algorithms for finding the solution
of the equation in the following cases:

(a) (Jacobi) A is almost diagonal in the sense that A = D + R, with D being
the diagonal of A, and ||R| < |D~'||~L.

(b) (Gauss-Seidel) A is almost a lower triangular matrix, in the sense that A =
L + U where L is lower triangular and ||U|| < ||L~'||~!. The inverse of a
triangular matrix is fairly easy to compute.

Perturbation theory: When the solution of an invertible linear equation Sxg = y
is known, one can also find the solutions of ‘nearby’ equations (S +€E)x =y,
where € E is a ‘perturbation’. Writing E = —ST, the new solution satisfies (I —
€T)x = xo. We might try an expansion of the type x = xo + €x| +€Zxp + - -+ ;
show that x,, 41 = T'x,, and the series converges if | E|| < [|S~'|"'and € < 1.
Show that the following are projections:

(@) (}9) and £(} 1); they have the same image, but different kernels, and their
norms are +/2 and 1 respectively.

(b) P := (8 ?) and Q = ((1) (1)); ker P = im Q, so PQ = 0 is a projection but
QP is not.

(¢) RL, where R and L are the shift-operators.

(d) x¢ € B(X), where ¢ € X* and x € X such that ¢x = 1; in this case,
X = [[x]] & ker ¢.
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12. If P and Q are commutative projections, then P Q projects onto im P N im Q,
and P + Q — P Q projects onto im P + im Q.

13. By induction, if I = P; +- - -+ P,, with the projections P; satisfying P; P; =0
fori # j,then X = im P; @ --- @ im P,.

14. = Given a closed linear subspace, is there always a projection that maps onto it?

8.4 Quotient Spaces

A linear subspace M of a vector space can be translated to form cosets x + M. For
example, a straight line L C R? passing through the origin, gives the parallel copies
x + L. Except that with some translations, the resulting line is indistinguishable
from L; itis easy toseethatx + L = L < x € L. More generally, x + L =
y+ L & x —y e L. This latter is an equivalence relation (check!), so the space
R2 “foliates’ into a stack of parallel lines, each a coset x + L. It is obvious that
when a line L is translated by x, and then by y, the result is the line (x 4+ y) + L;
in fact, since translation in the direction of v € L is irrelevant to the coset, one can
even talk about the addition of lines, (x + L) + (¥ + L) as meaning x + (y + L).
Similarly lines can be stretched, A(x + L) = Ax + L (unless A = 0), and the distance
between lines is defined in elementary geometry as the minimum distance between
them. This space of parallel lines is a good candidate for a normed space.

Turning to the general case, a vector space partitions into the cosets of M to form
a vector space X/M, which is normed when M is closed, and complete when X is
complete:

Proposition 8.20

If X is a normed space and M is a closed linear subspace, then the space
of cosets

X/M:={x+M:xeX}

is a normed space with addition, scalar multiplication, and norm defined
by

x+M)+(+M)=x+y)+ M,
AMx+M):=xx+ M,
lx + M| = d(x, M) i= inf |x — v].
veEM

If M is complete, then X /M is complete < X is complete.
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Proof That the relation x — y € M is an equivalence relation with equivalence
classes x + M, and that the defined addition and scalar multiplication of these classes
satisfy the axioms of a vector space should be clear; the zero coset is M and the
negative of x + M is —x + M. Let us show that we do indeed get a norm:
I +M)+ G +MI=Ilx+y+ Ml =u}211;||x4ry—wll
= inf —u—
,nf x4y —u—v

< inf ([l —ul 4+ [ly —vID
u,veM

= inf [x —ull + inf ||y — v
ueM veM

lx + Ml +lly+ M|
A + M) = llAx + M| = inf [|Ax — vl
veM
= inf |Ax — Aul  (for A #0)
ueM
= inf |All|lx — u]|
ueM
= [Alllx + M|
10(x + M)|| = [IM]| = d(0, M) =0=0l|x + M|

lx+ M| = inf |lx —v|| > 0.
veM

lx+M||=0 & dx,M)=0 & xeM=M
< x+ M =0+ M (Exercise 2.20(9)).

Completeness Let x, + M be an absolutely convergent series in X/M, i.e.,
> u llxn + M| converges. Now, for each n, there is a v, € M such that

lxn — vall < llxn + M| + 1/2n.

The left-hand side can be summed by comparison with the right, so Y, (x, — v,)
converges to some x, since X is complete (Proposition 7.22). Thus

N N N
[ D2 G+ M) =+ M) = [ 3 n —x+ M| <[ D 0 —vw) —x] >0
n=1 n=1

n=1

since in general |la + M| < |la + v| forany v € M. Hence ), (x,+M) converges,
along with every other absolutely summable series, and X/M is complete.
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Conversely, let (x,),en be a Cauchy sequence in X; then
[(en + M) — (xm + M) = llxp — 2Xm + M| < llxp — Xl

implies that (x, + M) is Cauchy in X /M, so converges to, say, x + M. This means
there are v,, € M such that x, — (x 4+ v,) — 0; but then,

lvn — vl < llXn — X — U + V|l + lx — Xl = O

shows (v,),en is Cauchy in M and converges to, say, v € M. Thus x, — x+v. 0O

If M is a linear subspace of X such that X/M is finite dimensional, then its
codimension is defined by codim M := dim(X/M).

Examples 8.21

1. The cosets of the closed subspace M := [[({)]] C R? are the lines parallel to M,
and R2/M = R.
Proof: A vector x belongs to xo+M when x = (Zg) +1(}) for some ¢ € R, which
is the equation of a line parallel to (}) The map a +— (‘6) +M,R - R?*/M is
linear and continuous. It is bijective since () + M = (“ab) + M and

ai as a —a 1
— M Ir = =a.

The inverse map is continuous as the distance || (8) + M|| equals |a|/ V2.
2. If X is finite-dimensional, then so is X /M, with

codimM = dim X/M = dim X — dim M.

Proof: Letey, ..., ey, be abasis for M, extended by e,+1, ..., e, to a basis for
X. Then, for any vector x = Z?:l Aie;, its coset,

n n
X+M=) hie+M= Y e+ M),
i=1 i=m+1

is generated by e, +1+M, . .., e, + M. Moreover, these are linearly independent,
since

n n m
Z riei+M=0+M & Z )\.ieizzaieieM
i=m+1 i=m+1 i=1

S A=0i=m+1,...,n.

Hence dim X/ M =n — m.
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3. If ¢ € X* then ||x + ker¢| = %.

Proof: When ¢x # 0, then X = [[x]] & ker ¢, and

Y |Allgx] |px| _ lex]
@1l = sup === = sup - = f = .
y#0 IVl vekerg [1Ax + vl .- Ix+vll llx +kero|

The following proposition states, in effect, that when one translates a closed
linear subspace to any distance ¢ < 1 from the origin, the resulting coset intersects
the unit sphere:

Proposition 8.22 (Riesz’s lemma)

For any non-trivial closed linear subspace M, and 0 < ¢ < 1, there is a
unit vector x such that |x + M| = c.

Proof Let y ¢ M so that ||y + M| > 0; by re-scaling y if necessary, one can
assume ||y + M|| = c¢. The map f : M — R, defined by f(v) := ||y + v, takes
values close to c, as well as arbitrarily large values (]|y + Av|| = |A|[lv||—ly]] = oo
as A — oo, for M # 0). Since M is connected, and f is continuous, its image
must include ]c, oo[ by the intermediate value theorem (Corollary 5.7). In particular
there is a v € M such that |y + v|| = 1, so letting x := y + v gives ||x + M| =
Iy + Ml =c. O

Exercises 8.23

1. » The mapping x — x + M, X — X /M, is linear and continuous.
2. LetM :={feC[0,1]: f(0O)=0},then2+ M ={f € C[0,1]: f(0) =2},
and C[0, 1]/M = C.
3. X/X=0,X/0=X.
X xY

(b) If X, Y are normed spaces, then X

X
4. Let X be a finite-dimensional space generated by a set of unit vectors E :=

{e; - i =1,...,n}, and let M; := [E~{e;}]. Then the coefficient |¢;| in
x = Y ! ,ae; is at most ||x||/|le; + M;||. Thus, in finding a basis for X, it is
best to select unit vectors that are as ‘far’ from each other as possible.

5. Let M be a closed subspace of X. If both M and X/M are separable, then so
is X.

8.5 R”" and Totally Bounded Sets

That finite-dimensional normed spaces ought to be better behaved than infinite-
dimensional ones is to be expected. What is slightly surprising is the following
result that they allow only a unique way of defining convergence: Any norm on C"
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is equivalent to the complete Euclidean norm. This is an example of a mathematical
“small is beautiful” principle, in the same league of results as “finite integral
domains are fields”.

Theorem 8.24

Every n-dimensional normed space over C is isomorphic to C", and so is
complete.

The theorem is also true for real finite-dimensional normed spaces: they are
isomorphic to R”.

Proof Let X be an n-dimensional normed space, with a basis of unit vectors
vy, ..., Uy, and let C" be given the complete 1-norm (Example 7.17(2)). There is a
map between them, J : C" — X, defined by

o]
X = = aivy + - oy,

(67}

J is linear: This follows from the distributive laws of vectors; that it is 1-1 and onto
follow from the linear independence and spanning of {v;}7_, respectively.

J is continuous: Jxllx = llegvg + -+ - +apvnllx
< o] + -+ o]
= llxll

J =V is continuous: Let f(x) = ||Jx|| x», which is a composition of two continuous
functions: the norm and J. The unit sphere S := {u € C" : ||lu||; = 1} is a compact
set (since it is closed and bounded in C"* = R%" (Corollary 6.20)), so S is also
compact (thus closed in R). One point that is outside fS is 0,

fx)=0< Vx| =0« Jx=0 < x=0.

Zero is therefore an exterior point contained in an open interval ]—c, c[ outside
fS. This means that ¢ < ||Ju| for any unit vector u. Applying this to u =
x/||x]|; for any (non-zero) vector x € C", we find c|x||; < ||Jx]| as required
(Proposition 8.15).

Clearly, the proof does not depend critically on the use of complex rather than
real scalars. |
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Proposition 8.25 (Riesz’s theorem)

A subset K of a normed space X is totally bounded < K is bounded and
lies arbitrarily close to finite-dimensional subspaces, meaning

Ve > 0, 3Y finite-dimensional subspace of X, Vx € K, |[x+ Y| <e.

Balls are totally bounded only in finite-dimensional normed spaces.

Proof (i) Let K C U?:l Bc(x;) be a totally bounded set in the normed space X,
and let Y := [[x1, ..., x,]. Any point x € K is covered by some ball B (x;), i.e.,
lx —xill < €, so that |x + Y| = infycy |[x — y|| < €. Since € can be chosen
arbitrarily small, this proves one implication in the first statement.

In a finite-dimensional normed space, bounded sets are totally bounded: This is
true for C" because balls (and their subsets) are totally bounded (Exercise 6.9(2)).
Any finite-dimensional space Y has an isomorphism J : C" — Y by the
previous theorem. If A is a bounded subset of ¥, J~'A is a bounded set in C”
(Exercise 4.18(3)), hence totally bounded; mapping back to ¥, A = JJ A is
totally bounded (Proposition 6.7).

For the converse of the proposition, suppose K is bounded by r, and lies within €
of an n-dimensional subspace Y. This means that if x € K then ||x| < r, and there
isay € Y such that |x — y|| <€, so

Iyl < llxll+ 1y — x|l <r+e.
But we have just seen that the ball B, (0) NY is totally bounded in Y, and can be
covered by a finite number of e-balls, B¢(y;), i = 1, ..., m. In particular, there is

some y; for which ||y — y;|| < €, and so

e = yill < llx =yl + 11y = yill < 2,

m
= K c|JBx(w).

i=1

7
yi‘y Y

(i) Suppose X has a totally bounded ball, which by re-scaling and translation can
be taken to be the unit ball By (Proposition 7.6). It must be within € < % of a
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finite-dimensional closed subspace Y. In fact X = Y, otherwise we can use Riesz’s
lemma to find a vector y € Bx withd(y,Y) = |ly+ Y| = % > €. O

Examples 8.26

1. All norms on C" are equivalent.

2. Given a point x € X and a finite-dimensional subspace M, there is always a
best approximation v € M to x. We need only look in the compact ball B :=
B (0)N M, and since the function v — ||[v — x|| on it is continuous, it achieves
the minimum (Corollary 6.16).

For example, there is always a polynomial of degree at most n that best
approximates a function with respect to any given norm.

3. Every proper finite-dimensional subspace is nowhere dense since it is closed
yet cannot contain any ball. Hence a countable union of finite-dimensional
spaces cannot be complete, by the Baire category theorem. For example, (i)
coo := [[eo, e1, . .. ], (ii) the space of polynomials, cannot have a complete norm,
since they are such unions. (Note that the two spaces are isomorphic as vector
spaces.)

4. If M, N are subspaces of a normed space, with M complete and N finite-
dimensional, then M + N is complete (see Example 7.12(2)).

Proof: Tt is enough to show that M + [[e]] is complete when e ¢ M; the result
then follows by induction. For any x € M, «a € C,

lallle + M| = llae + M| < llae + x|,

NN

Ixll < llx + cell + |alllell < cllee + x]|.
So if (x, + a,e) is a Cauchy sequence in M + [[e]], then so are (o,)nen and
(Xn)nen, in C and M respectively. Hence, x,, + aye — x + ae € M + [[e].

Exercises 8.27

1. Totally bounded sets cannot be open (or have a proper interior) in an infinite
dimensional normed space.

2. The set of polynomials of degree at most n forms a closed linear subspace of
Ll[a, b] with dimension n + 1; a basis for this space is 1, ¢, ..., t".

3. As an illustration of Riesz’s theorem, the unit ball in the infinite-dimensional
space £*° (or 2Y) is not totally bounded. (Hint: Show (e;,),cn has no Cauchy
subsequence.)

4. Among normed spaces, only in finite dimensions are closed and bounded subsets
compact.

5. Totally bounded sets need not lie in a finite-dimensional subspace, just arbitrarily
close to them. Can you think of an infinite-dimensional totally bounded set?
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Remarks 8.28

1. By analogy with matrices, it is customary to write 7 x instead of 7'(x). This is a
slight abuse of notation; a linear map on the vector space of matrices need not
act on the left, e.g., A+> AB, A+> AB+ BA, A+ AT,and A B~ YAB are
all linear.

2. For the initiated, the idea of continuous linear maps can be extended to
continuous multi-linear maps (tensors); they also form a Banach space with norm

ITI = sup|T(x1,...,¢1,.. )l/llxtll ... llgnll ...

3. B(X,Y) forms part of the larger space of Lipschitz functions X — Y. For such
functions, || fIl = supy,zy,ex I/ (x1) = f(x2)[I/llx1 — x2|| satisfies the norm
axioms, except that | f|| =0 < f is constant.



Chapter 9 ®
The Classical Spaces o

Having fleshed out a substantial amount of abstract theory, we turn to the concrete
examples of normed spaces and identify which are complete and separable.
Unavoidably, the proofs become more technical once we leave the familiarity of
finite dimensions and enter the realm of infinite-dimensional spaces, having to deal
as it were with sequences of sequences and limits of functions in different norms.
However, a careful study of this chapter will be rewarded by having an armory of
spaces, so to speak, ready to serve as examples to confirm or refute conjectured
statements. We can barely scratch the surface of all the properties that these spaces
possess, concentrating mostly on completeness, separability, and duality.

9.1 Sequence Spaces

The Space €*°

A sequence in £ is a sequence of sequences, X, = (ay,;)ieN. Convergence in £*°
means uniform convergence of the components, that is,

x, = 0 & suplayi| > 0asn — oo
ieN
& l|ap,i| = 0asn — oo, uniformly for all components i,

& Ve >0, IN, Vo 2 N,VieN, |a,;| <e.
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For example, of the following three sequences of sequences, only the first converges
to 0, even though each component converges to 0.

(1,1,1,1,..)) (1,1,1,1,1,...) (1,0,0,0,...)
(3.4.5.3.) 0,0,1,1,1,..) (0,1,0,0,...)
(3, %, 5. 3.0 (0,0,0,0,1,...) (0,0,1,0,...)
\ A 4
(0,0,0,0,...) (0,0,0,0,...) (0,0,0,0,...)
Theorem 9.1

£%° is complete but not separable.

Proof (i) Let (x,)nen be a Cauchy sequence in £, ie., [|x, — Xyl — O
as n,m — oo. Note that ||x,||,~ < c since Cauchy sequences are bounded
(Example 4.3(6)).

Xo|aoo ao1 ao - .. < llxollgeo

xilapai an ... < lxq|lpeo
VA

X |ay a ay ... <c

(The absolute signs of a, ; are omitted in the horizontal rows.)

For each column i, |a,; — am.i| < [|Xn — Xmllpec = 0, 50 (@n.i)nen is a Cauchy
sequence in C, which converges to, say, a; := lim,_— o an ;.

That x := (a;);en is in £%° follows from taking the limit n — oo of

|an,i| < ”xn”ZOO <c.

More crucially, x,, — x in £ since, for any € > 0, ||x,;, — Xx,|l,~ < € for
m,n > N, large enough; and for any column i, one can choose an m > N large
enough that |a,, ; — a;| < €, so that

la; — an,i| < ai — am,i| + |am,i - an,i| <€+ lxy, — xn”goo < 2k,

implying a, ; — a;, independently of i.

(i) To show £°° is not separable we display an uncountable number of disjoint balls
(Exercise 4.22(4)). Consider the sequences that consist of 1s and 0s. The distance
between any two of them is exactly 1, so that the balls centered on them with radius
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1/2 are disjoint. Moreover, these sequences are uncountable for the same reason
that the real numbers are uncountable: If one were able to list them as

xo = (ago, ao1, a2, ---.)
x1 = (a0, a1, ai2,...)
x3 = (a0, az1, axn,...)

one could take the diagonal sequence (ago, a11, a2 - ..), and swap its Is and Os,
giving a sequence (1 — a,_,),eN that cannot be in the list because it disagrees with
any x, in the nth position, as 1 — a, , # an . m|

To appreciate how large £ is, consider that even if given an immense number
of terms of a sequence (a,),en € £°°, one cannot tell how large are the remaining
terms, and they cannot be ignored. Contrast this with £!, where any sequence can
be approximated by a finite set of values and the rest replaced by zero. Crucially,
(@n)ngn — (an)nen, as N — oo, in 2! but not necessarily in £°°. However, £
does have separable complete subspaces:

Proposition 9.2

The space of convergent complex sequences, and of those sequences that
converge to 0,

c:={(@pnen :3da € C, lim a, =a},
n— 00
co '={(a@nen : lim a, =0},
n—00

are complete separable subspaces of £°°.

Proof The spaces are nested in each other as co C ¢ C £°° since convergent
sequences are bounded. They are easily shown to be linear subspaces: Aa, + b, —
Aa + b whena, — aand b, — basn — oo.

co is closed in £*°: Let x, — x in £*°, with x,, € ¢o; their components converge
uniformly a, ; — a; asn — oo.

xolago aor agy ... —> 0

Xildio aip1 a1z ... — 0

IR 2R 2R’

X|ayg ap ap ... >0
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Now, for any € > 0, there is an x,, in ¢g such that |x,, — x||;~ < €, and for this
sequence, there is an integer N, such that

i2N = |ayil <e.
It follows that fori > N,
lai| < lan,il +lai — anil < lanil + 11X — X0 < 26

so lim; oo a; = 0and x € ¢p.

co is separable : The vectors e, = (6,,;) = (0,...,0,1,0,...), with the 1
occurring at the nth position, form a Schauder basis for cg: for any x = (a,),eN €
CO?

N
Hx — Za"e"Hew = sup |a,| — 0, as N — oo.
n=0 n>N

If ), anen = >, buey, then (ag — by, ai — by, ...) = 0 hence a, = b, and the
coefficients are unique.

The spaces ¢ and co are isomorphic: Let J : ¢ — ¢y C £*° be defined by

J(ap,ay,az,...) :=(—a,ap —a,a; —a,...), where a := lim a,.
n—oo

J is 1-1 since

J(ap) =J(b,) = a=bandVneN,a, —a=bhb, —b
= (an) = (by).

J is onto ¢q for, given any y = (b,)neN € co, it is clear that x := (b1 — bo, by —
bo, ...) isin ¢ and maps to y. In fact, writing 1 := (1, 1, ...),

Jx = Rx —al, Jly =Ly —bol,
where R and L are the shift operators. This observation shows that both J and J !
are continuous and linear since (a,),en —> al, as well as (b,),en > bol, are
operators

llalllgee = lall1llgoe = lim |a,| < sup |an| = [|(@n) ¢
n—oo n

1bo1llgee = bol 11l gee < sUP [bp| = [|(Dp) [ goo-
n
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It follows that ¢ = ¢( and has the same properties of completeness and separability

that cg enjoys.
0

Theorem 9.3

Every functional on ¢ is of the type (a,),en — ), bna, where (b,),cn €
¢!, and

Proof Given y = (b,)neN € landx = (an)neN € co, the inequality

)
ly - x| = ‘anan
n=0

shows that the linear map y' : x > y -x = Z;‘;O bna, (Example 8.3(4)) is
well-defined and continuous on ¢ (including c), with ||y T || < [|y]lp-

o o
<Y Iballan| < suplanl Y 1bal = [Ix[lgwoll ¥l
n=0 n n=0

Every functional on cq is of this type: By the linearity and continuity of any ¢ € cg,
o0 o0
ox = ¢(Zanen> = Zanbn =y-x, where b, 1= ¢e,, y = (by)neN.
n=0 n=0

Also, writing b;,, = |b,, |ei9” in polar form,

00 00 N
S lbal =Y e e, = lim ¢( e en) < Bl Ml = Il
n=0 n=0

n=0

hence y € ¢!, with I¥ller < i@l = ly"|l. Combined with the inequality above, we
get [yl = ly"l.

Isometric isomorphism: Let J : ¢! — ¢y be the map y y'. The above
conclusions can be summarized as stating that J is a surjective isometry. That J

is linear is easily seen from the following statement that holds for every x € co,
1
u,v,yet,

o o0 o0
(u+v)~x=Z(un+vn)an=Zunan+2vnan=u-x+v-x,

n=0 n=0 n=0
oo oo
(0y)-x = by =4 Y buan = Ay - x),
n=0 n=0

sow+v)'=u"+v and (Ay)T = Ay".
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We often make remarks like “the dual space of cg is £!”—this is not literally true
because a functional on ¢ is not a sequence, but the application of one, i.e., it is
y' not y. But the two are mathematically the same object in different clothing, and
functionals on cq do behave like the sequences in £!.

Exercises 9.4

1. The kernel of the functional Lim : (a,),en — lim a, on ¢, is ¢p.
n—>oo

2. Any convergent complex sequence a, — a can be written as

(@n)neN = Z(an —a)e, +al,
n

where 1 := (1, 1,...). Deduce that the vectors e, together with 1 form a
Schauder basis for ¢; what is its dual space ¢*?

3. » One can multiply bounded sequences together as (a,)(b,) = (a,bn)neN, to
get another bounded sequence, ||x y|lyo0 < ||X|[go0 || ¥l goc. This multiplication is
commutative and associative, and has unity 1. Only those sequences which are
bounded away from O (i.e., |a,| = ¢ > 0) have an inverse, (a,,);elN = (an_l)neN.

4. x The inequality |x y|l;1 < [|x g ||yl is also true, so the map x +— M., where

M,y := xy, embeds £ in B(¢}).

. The closure of ¢y in the £°°-norm is cgy = ¢p.

6. £°° contains the space of sequences £;° := {(ay)nen : Ic, Vn > 1, |a,| <
c/n*} (s > 0). What is its closure? Can you think of a sequence which is in ¢y
but not in any £5°?

7. The distance between a sequence (a,),eN € £*° and ¢ is lim sup,, |ay|.

8. x C[0, 1] can be embedded in £°°, since f € C[O0, 1] is determined by its values
on the dense subset Q N [0, 1] which can be listed as a sequence (g, ),eN. Check
that the mapping f +— (f(gn))nen is linear and isometric.

9,1

The Space ¢!

Convergence in £! is more stringent than in £°°. This can be seen by the inequality

o
1
Vx = (@)ien €', Xl = supla;] = max|a;| <Y lai| = x|
ieN ieN i=0

so x, — 0 in £* does not guarantee x, — 0 in ¢!, For the latter to occur,
not only must the components approximate O together, but their sum must also
diminish. Fewer sequences manage to do this, and this is reflected in the fact that £!
is separable.
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Theorem 9.5

¢! is complete and separable.

Proof (i) Since ¢! = cy» one can argue that ¢! is complete, as are all dual spaces
(Theorem 8.7).

Alternatively, the following direct proof shows that every absolutely summable
series in ¢! converges using Proposition 7.22 (Note: as ¢! is defined in terms
of sums, it is more straight-forward to use series instead of Cauchy sequences).
Suppose xg+x1+x2+--- isaseries such that ),  [lx, ;1 = s. In the following
diagram, we will show convergence of the various vertical sums.

xo |aoo + aor + apx + -+ | lx1ll,
+|+ o+ o+ +
Xy |aw +ain +an + | lx2ll
4+ o+ 4+ +
Vi \: 2 \2
x |a ay a s

(Note that the absolute signs of a, ; are omitted in the horizontal sums.)
The main point of the proof is that any rectangular sum of terms in this array is
less than the corresponding sum on the right-hand column:
J

J M M M
‘Z D ani| <Y lanil < D Ixallpr
n=N

i=I n=N i=I n=N

In particular, taking the ith column, | Zn an,i| < Zn lan,i| < s shows that its sum
converges in C to, say, a; := Y .o ay,;. In fact, the whole array sum is bounded,

dilail =3 |Zn 0an,i| <s,s0 that x := (a;);en belongs to £'.
Finally, note that any rectangular sum goes to O as it moves downward, because
Yo v llxallr = 0as N — oo. Hence

N 00
[ =2 xall =2 lai - Zam!—Zl > auil >0
n=1 i=0

i=0 n=N+1

giving x =Y 07 x,.
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(i) The sequences e, := (0,...,0,1,0,...), with the 1 occurring at the nth
position, is a Schauder basis because, firstly, for any vector x = (a,)neN € 2,

N
|x = anen|,i = l@o. ar....) = (@o. ....an.0,0...)
n=0

||(05 "'705 AN+1, "‘)”Zl
o

Z lap] = 0 asN — oo
n=N+1

since Y, |a,| converges. Secondly, if x = Y 7 b,ey, then by, = ey, - x = ay, for
eachm € N, so e,, form a Schauder basis. m]

Proposition 9.6

Every functional on ¢! is of the type (a,),en — > n bna, where (b,),cn €
£°°, and

o =g,

Proof The proof is practically identical to the one for ¢fj = ¢!, except that now
y = (by)nen € £ and x = (ay)nen € £'. The inequality

-1 <Y Iballanl < sup (bal Y lan] = llyllg=ollxlls
n n n

shows that the linear mapping y' : ¢! — C is well-defined and continuous with
Iy < llyllgee.

Every functional on £\ is of this type: Let ¢ € £'*, then by linearity and continuity
of ¢,

) )
ox = d’(zanen) = Zanbn =y -x, whereb, :=d¢e,, y: = (by)en.
n=0 n=0

Moreover |by| = |pen| < l|llllenll = 1@l sothat y € £, with ||yl < [I9].
Asp =y Iyl = lly"l.

Isomorphism: The mapping J : £ — £ y > yT, is linear and the above

assertions state that J is a surjective isometry. O
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Exercises 9.7

1. Suppose each coefficient of x,, = (a,.;)ieN € ¢! converges, a,,; — a; as n —
00, and suppose x := (a;)ieN iS in 21 then it does not follow that x, — x in £!,
e.g., e, 7~ 0.Butif |a,; — a;| is decreasing with n (for each i), then x, — x in
gl

2. » ¢! has a natural product, called convolution:

n
(an) * (by) := (apbo, a1by + agb1, axby + a1 by + apbs, . . ., Zan_ib,’, o)
i=0

This is indeed in €' because the sum to 1 terms (a triangle of terms a;b;) is less
than (|ag| + - - - + |an])(Jbo| + - - - + |by]) (a square of terms), so that

e x yllgr < lelletllyller

Convolution is commutative and associative, and eq acts as the identity element
eo * x = x. The inverse of (1,a,0,...)1s (1, —a, at, —a3, .. .), which is in 2!
only when |a| < 1.

3. Ifx € £' and y € £°°, then x * y is a bounded sequence

[l 5 pllgoe < Mol Yl goo-

4. The right-shift operator can be written as a convolution Rx = e * x. In general,
R"'x = e, * x, since e, * e,, = €,1,,. The “running average” of a “time-series”
xis1(1,...,1,0,..) % x.

——

n
5. % A subset K of £! is totally bounded < it is bounded and
Ve >0, AN € N, V(ap)pen € K, ”(an)n}N”gl < €.

(Recall that K lies arbitrarily close to finite-dimensional subspaces.)
6. ¢! has the functional Sum(by),eyn = ZZOZO by,. It corresponds to the bounded
sequence 1 = (1, 1,...),1.e.,, Sumx =1 x. Hence if Zn’i |an,i| < oo then

2D i =) ani-

ieNneN neNieN

7. The functionals 8y (a,)nen = an correspond to ey € £, ie., Syx = ey - X.
Similarly, the sum Sumy(a,) = ZZVIO ap corresponds to eg + --- + ey =
{1,...,1,0,...). Since (1,...,1,0,...) 4 1in £°°, we also have Sumy -
Sum in £, yet Sumy (x) — Sum(x) for any sequence x € £'. We’ll discuss
this apparent paradox in Sect. 11.5.
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The Space £*

This normed space has properties that are, in many respects, midway between £!
and £°°. Yet it stands out, as it has a dot product x - y defined for any two of its
sequences, and X - x = ||x I2; we will have much more to say about normed spaces
with such dot products in the next chapter.

Theorem 9.8

% is complete and separable.

Proof (i) Let x,, = (an.i)ien be a Cauchy sequence in £2; the terms are uniformly
bounded ||x,|| < c. For each i,

2 2 2
lani = @mil> <Y lani — @il = Xy — Xnll> - 0asn,m — oo,

1

s0 (an,i)nen is a Cauchy sequence in IF which converges to, say, a; := lim, o0 @y ;.
The sequence x := (a;);cN belongs to Iz by taking the limit N — oo of

N N
2 . 2 : 2 2
D el = lim Y ay > < lim x,)* < .
n—o0 n—o00
i=0 i=0
As x, is Cauchy, for each € > 0 there is a positive integer M such that
nm>=2M = ||x, — x| <e.
Moreover, for each i € N, there exists an integer M; such that

mz=M; = |lagp,; —ai| < Tk

Therefore, for any N € N, picking m larger than M, My, My,. .., My, gives

N N N
D lani —ail? < | D lani —amil?+ | lami — ail?
i=0 i=0 i=0

< llxp —xpmll +

which implies ||x,, — x| < 3¢ forn > M.
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(i) For separability, 2 has the Schauder basis e, since for any X = (ap)neN € 02,

N oo 12

[ = Y aveull o =10, 0.ansr e = (D Janl?) >0,
n=0 n=N+1
Uniqueness of the coefficients follows as in the proof of Theorem 9.5. O
Proposition 9.9

Every functional on ¢? is of the type (a,),en — > bna, where (b,),cn €
22, and

02 = g2,

‘Proof”: The argument is so similar to the previous ones about cf; and £1* that it is
left as an exercise (use Cauchy’s inequality at one point).

Exercises 9.10

1. Show that |x - y| = ||x||||y|| if, and only if, y is a multiple of x (or x = 0).

2. The map (ay, ..., ap) — (ai,...,ay,0,0,...) embeds C" in £2.

3. ¢2 contains the interesting compact convex set { (a,)nen : |an| < 1/n}, called
the Hilbert cube. It is totally bounded in £2, as it is close within any e to a finite-
dimensional space { (a@;)neN : Vi > N, a, = 0}, yet it is infinite-dimensional;
it cannot enclose any ball (else the ball would be totally bounded).

4. » The various sequence spaces are subsets of each other as follows:

coo C Ll Cl>CeoCec ™, because x| < lxllez < llxllgn,
but ¢! c €2 C c¢g are not Banach space embeddings! Show further that coy with

the respective norms is dense in £!, £2, and ¢ (coo cannot be complete in any
norm, Example 8.26(3)).

The Space €7

The space €7 := {(ap)nen : an € C, D, |an|P? < 00}, p > 1, is endowed with
addition and scalar multiplication like the other sequence spaces, and the norm

- 1/p
Il = (3 leal?)

n=0
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Our aim in this section is to prove the triangle inequality for this norm, otherwise
known as Minkowski’s inequality, and show €7 is complete and separable.

As the reader is probably becoming aware, it is inequalities that are at the heart
of most proofs about continuity, including isomorphisms. They can be thought of as
a ‘process’ transforming numbers from one form to another, perhaps more useful,
form, but losing some information on the way. Much like tools to be chosen with
care, some are “‘sharper” than others. (See [8] for much more.) The following three
inequalities are continually used in analysis. The first is a gem, simple yet rich:

a®b? < aa + Bb, fora,B,a,b >0, a+p=1. 9.1)

This AM-GM inequality, as it is known, states that any weighted geometric mean

is less than or equal to the same-weighted arithmetic mean. The special case vab <
(a 4+ b)/2 has already been encountered previously. Writing a = e*, b = e gives

TP et + Be.

This is equivalent to the convexity of the exponential function, and can be taken as
its proof (any real function with a positive second derivative is convex).

o/

Yo oxtfy | y
The same idea applied to the convexity of x”, p > 1, gives
(axa + Bb)? < aa? + Bb?, fora, B,a,b >0, a+ B =1. (9.2)
A third inequality of importance is
al? +b? < (a+b)?, for p>1,a,b>0, (9.3)

obtained by adding the inequalities a” < a(a 4+ b)?~! and b? < b(a + byr—1,
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Proposition 9.11

Fora,b,a, > 0,a+B=1,p > 1,9 >0,

min(a, b) < (ea™ + Bb~1 )_1/ 9 harmonic mean
< a“bP geometric mean
< (aal/p + ,31,1/17)1’
< aa+ Bb arithmetic mean
< m, root-mean-*‘‘square”
< max(a, b)

Proof (i) If a < b (without loss of generality), then a9 < b7, so

o ,3<a+,8=i

al b4 a4 a4

which is equivalent to the first inequality of the proposition.

(ii) The second inequality is equivalent to a~*9hP4 < aa=94pb~9, which is (9.1)
with a, b replaced by a =7, b~ respectively.

(iii) Similarly, the third inequality is essentially a®/?b#/P < aa'/? + Bb'/P, which
is (9.1) with a, b replaced by a'/?, b!/7 respectively.

@iv) If a, b in (9.2) are substituted by a'/P and b'/? one obtains (aa'/? + b/ P)P <
aa + Bb.

(v) The fifth inequality is precisely (9.2), while the sixth one follows easily if we
assume, say, a < b; for then, a” < b?, so aa? 4+ b? < (v + B)b? = b?.
Substituting ¢/ p for p in (9.2), when p < ¢, and a? for a, b? for b, yields

(@a? + BpP)VP < (@a? + ppH'1 for0 < p < g,

which is implicitly implied in the scheme of inequalities above. O

An induction proof generalizes all these inequalities to arbitrary sums or
products,

al' -agt < ajap + -4 apay < \”/alaf+~-~+ana,’f, 9.4)

whena;,; > 0,1+ +a,=1,p > 1.
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Hermann Minkowski (1864-1907) Minkowski stud-
ied under Lindemann (of m-transcendentality fame) at
the University of Konigsberg, together with Hilbert. At
19 years of age, 2 years before he graduated with a
thesis on quadratic forms, he had already won the pres-
tigious French Academy’s Grand Prix. Starting 1889, he
developed his “geometry of numbers” ideas on lattices,
including his inequality. After teaching in Zurich (where
Einstein was a student), he moved to Gottingen, became
interested in physics and presented his version of special
relativity as a unified space-time.

Finally, substituting ¢/ p for p in (9.3), and a? for a, b? for b, gives
(a? + b1 < (aP + bP)/P, for0 < p <gq,

which generalizes by induction to

\q/aq+'-~+a,‘17<\”/ap+-~+a,f, for0 < p <g¢q.

This last inequality remains valid for infinite sums, ||x|,¢ < ||x]|l;» When p < ¢,
implying £7 C ¢49. Of course, ||x| o < ||x|l,p is true since |a,| < ||x||,» for all
n. Thus a bounded sequence lies in a whole range of £7 spaces, down to some
infimum p.

Proposition 9.12 (Minkowski’s Inequality)

lx + yllep < lIxllgr + [1¥llgp,  Where I < p < 00,

Proof All norms in this proof are taken to be the £P-norm. Let u = (a,),enN and
v = (by)nen be two sequences in £7. Summing the arithmetic mean inequality
(ala] + BIb)P < «alal? + BIb|? (@« + B = 1, a, B > 0) for a sequence of terms
gives

D laay + Bbl” <Y (@lan] + Blbal)” <o) lanl” + B Y 1bal”,

neN neN neN neN
that is, lau + Bo||” < alull” + Blv]P.
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Substitutingu = x/llx|l, v = y/lyl, e = llx|I/AxlI+1yID, B = Iyl/Axl+1yID,
gives

X+
I o+ poll < @+ )7 = 1.
lxl + Nyl
The proof of the inequality for p = oo is Exercise 7.8(6). O

Proposition 9.13 (Holder’s Inequality)

11
lx -yl < [Ixllep ¥l , where > -+ i L, p>1

Proof Substitute a'/* and b'/# instead of a and b in a®b? < aa + Bb, with @ =
l/p,B=1/p, to get

9.5)

Summing this for a sequence of complex numbers leads to

lanl? 1Bal” 1 P
WM<ZWM<Z<p4—ﬂ —ﬂmppmm

neN neN

In particular, for unit vectors u = x/|lx|l¢p, v = y/|yll,p, We obtain Holder’s
inequality,

x 1 1
eyl 1o
Ixlepllylyy ~ P P
O
Proposition 9.14
For p > 1, ¢? is a separable Banach space, with dual space ¢P* = Zp,,
where % 4= i, = 1.
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Proof Minkowski’s inequality is the non-trivial part in showing that £7 is indeed
a normed space. It is separable with the Schauder basis e,, since for any x =
(an)nen € L7, the series ), |a,|P converges to ||x||fp, SO

N 00
P
|x = anen|l, = 10.....0.an 1. )N = Y lanl” — 0.
n=0 n=N+1
SO X = ), ydne,. The coefficients are unique since if x = ), bne, =

(bo, b1, ...), then b, = a,.

Dual of £P: Any vector y € ¢ acts on £ via y' i x = y-x, with the latter being
finite by Holder’s inequality |y - x| < ||yll,» [l x]l¢». By Exercise 2 below, there is
an x € £P which makes this an equality. Thus ||y || = Illpp-

Conversely, let ¢ be a functional on £7; then for x = (a)neNy = ZneN a,e,,
¢x =3 0% anby = y - x, where by, := ¢e,, y := (by)nen. Writing by, = |by e
and noting p(p’ — 1) = p/,

N

N N 1/p
D o 1bal?” =Y bue by =1 (e [bal” ol < N9 (Z |bn|"> :

n=0 n=0 —0

Dividing the right-hand series gives (ZS’:O |bn|p/> /' < l¢ll; as N is arbitrary,
ye e

Completeness: In common with all dual spaces, 7 = P s complete (or from an
argument similar to the one for ¢2).
0

We end this section with a couple of propositions about operators on sequence
spaces, T : £ — (4. They take the form of a matrix, albeit ones with an infinite
number of rows and columns. Consider the output vector y = (b;);en 1= Tx € €4,
where x = (a;) jen € £7. The coefficients b; can be obtained as follows, by linearity
and continuity of 7 and e/,

b; = eiTy =e; - T(Zajej) = Zaj(eiTTej) = Zti,jaj,
jeN jeN jeN

where 1; j = e; - Te;. This can be thought of as a matrix equation with the matrix
[#i, ;] having a countable number of rows and columns:

by f11 fip ... ap
bhl=|titn...] |
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Each column is Te; € (9, while each row is a dual vector in £* = El’/, so the
coefficients of such a matrix must eventually become small as we move down or to
the right.

For practical purposes, to solve Tx = y, one can truncate the matrix and vectors
to yield a finite N x N matrix equation that can then be solved. This can be justified
because the remainder terms of y and x, of the type > - 11 Ynen, €tc., converge to
0as N — oo. Note carefully that the above does not hold for £*° since x # ) ane,
in general.

The next proposition makes the link between infinite and finite matrices, while
the following one generalizes Proposition 8.10.

Proposition 9.15

Let T : ¢7 — ¢4 be an infinite matrix with upper-left n» x n matrices A,,
then

IT) = lim (|4l

The following proof is valid even if the domain and/or codomain are cy.

Proof Any submatrix S of T has a diminished norm since it has both a smaller
domain and range. The unit vectors in the domain of § are included in those of T';
furthermore, for such vectors, ||Sx||, < [[Tx/||, since Tx has the same components
as Sx and more.

Let T be divided into sub-matrices A,, B,, Cy,, with A, having n rows and
columns, and each having norm at most ||T'||, as follows:

An | Bil
Chn
Since A, is a sub-matrix of A, 41, ||A, ]| is increasing and bounded above by || 7|,
so it converges to the least upper bound s := sup,, [|A,|| < ||T]|. To show s = ||T||
we need to prove that || A, || approach || T || arbitrarily closely. Given any unit vector

x € £P, splitboth vectors x = x,+y, and Tx = a,+b, € £ atthe nth component.
For n large enough, both y, and b, have small p- and g-norms, respectively,

Ve >0, IN, n=N = |ly,ll, <€AND |b,ll, <e.
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Therefore, for all unit vectors x,
1Txll, = llan +bull, < llanll, +€
= “Anxn + Bnyan +€
< AR llIxnll, + 1Balle + €

<A+ T Nle + €
AT S s+ 1T e + €.
Thus s < ||T|| < % and, by squeezing, |T| = s. |
Proposition 9.16

Let 7' be an infinite matrix with coefficients T;;, then with % + 5 =1,
¢ =Sup; Zi |Tij|9r = Sup; Z] |le|’

’ 1/p/ 1 1/p
170, < (21717) "7, 1T, , < cM/2ri/e’
i,j

Proof (i) For any vector x = (ay)peNy € £P and @ = )
inequality,

ITxlt =3 |3 Tas|” < 3 (S m ) (X layl?) " = el
i J J J

i

i.; |Tij1”", by Holder’s

so |IT) < /P as required. (ii) In addition, for any vector y = (b;);eN € v,

v Txl = | Y biTyas| < 3 (1171a51) (173077 1)
i,j i

2¥)
< P 1/p p’ I/P/
< (D_1Tllay) > 1T;11bi]
i,j i,j
1 1/p
<PV x|yl

Choose a vector y such that [y - Tx| = ||yl [ITx]|, to get the required result. O

Exercises 9.17

1. Given 1 < g < p, find an example of a sequence which is in £ but not in £9.
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. Foreach x € ¢7, find a sequence y € £7" which makes Holder’s inequality an

equality.

If p < g then £7 is dense in £9. (Hint: Consider cqg.)

For an infinite matrix, || T, , is larger than the g-norm of any column and the
p’-norm of any row.

. Show that of the following matrices from Chap. 1,

only the middle one has a finite (2, 2)-norm.

The upper left n x n matrices A, of an infinite matrix 7" need not converge to
T. Show, for example, that I,, & I as operators £! — ¢!

Generalized Holder’s inequalities

@ lxyller < Ixlepllyllea, where § + 2 =1,
®) |3 anbuca| < 1@ e 1) s el where S+ 1+ 1= 1.
n

(Hint: Apply Holder’s inequality to the product |a,|”|b,|".)

. Any two p-norms on R" are equivalent. Show, using Holder’s inequality, that

for p < ¢ and any x € R",

Q=

1
lxlly < llxll, <nv <llxll,.
q P q

(a) Littlewood’s inequality: ||x||yr < ||x||2‘,,||x||é,,_“, where % = % + 1%“
(Hint: Apply the generalized Holder’s inequality above to |a,|*|a,|' ™,
using p/a and g /(1 — «) instead of p and g.)

(b) llxller — llxlgoo as r — oo.

(Hint: Use Littlewood’s inequality with ¢ = co, @ = p/r.)

* Young’s inequality:

I s yllgr < Nxller ¥ llea

where % + % =1+1, p.q > 1 (Exercises 9.7(2,3)).
Justify the steps of the following proof. First note that # + % + % =1

(where # =1- %, etc.); then using the second generalized Holder’s inequality
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above on the positive numbers a,,, by, ¢,, and an exquisite juggling of indices,
(where k :=n —m)

N

n N n
YN nembmen =Y Y @) o) (@) ()" (b)) (cn)" 7

n=0m=0 n=0m=0

1/r N 1/4 N1/
< (otit) " (Sete)) " (Soeer)”

n,k n,k n,m

() (S ()

n=0 n=0

Hence if (a,) € €7, and (b,) € €4, and (c,) € E’,, thenx x y € (6’,)* =/{".
11. < Prove the reverse Minkowski inequality for 0 < p < 1, and positive real
sequences X = (ay)neN, ¥ = (bn)neN, an, by 2 0,

lxll, + Iy, < lI1x + yll,.

(Hint: the reverse inequality has its roots in x” being concave.)

9.2 Function Spaces

Even though it is function spaces that are at the heart of “functional analysis”,
they are technically more complicated to construct. The most familiar classes of
functions, such as continuous functions or step functions, are lacking in one way or
another when confronted with limits or integrals. Constructing a complete space
of integrable functions proved to be a much harder task historically than was
anticipated by mathematicians.

For example, the simplest convergence of functions is what’s termed pointwise

vt, f.(t) = f(t)asn — oo.

It is not hard to find sequences of integrable functions which converge pointwise
but whose integrals do not; for example, nt" — 0 on [0, 1] yet fol nt"dt — 1.
Moreover, it is left as an exercise to show that pointwise convergence cannot be
induced by any norm, so in practice little can be deduced from it.

Another type of convergence is uniform. The space of real- or complex-valued
bounded continuous functions Cp(A), where A C R, is easily seen to be closed
under addition and scalar multiplication, and was shown in Theorem 6.23 to be a
complete metric space, with the metric induced from the co-norm; so Cp(A) is a
Banach space in which convergence means uniform convergence. Indeed, C(N) is
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just the space £°°, since the functions N — C are sequences. However, once again,
the usefulness of Cj,(A) is limited when it comes to integration. For example, the
functions 17 are in Cp[1, oo[ and converge to % as p — 1 in this space (prove!),
but [P dt = p—il — 00.

Is there a way to generalize the Banach space £! to a space of functions, where
summation Zn a, becomes integration f f(t) dt? This is indeed possible and much
from the section on sequences can be repeated for functions, at least in spirit. For
example, the proof that £°° is complete generalizes to the space L°°(RR), practically
untouched. However, we do not prove all these generalizations here, as laying the
groundwork for integration and measures would take us too far afield. Instead a
review is provided, referring the reader to [1] for more details. On the other hand,
we allow for vector-valued functions, f : A — X, because it does not incur any
extra difficulty. Note that when f(x) is a vector, we write | f| for the function x

Il f (x)|l, in order to avoid confusion with the scalar || f||.

Lebesgue Measure on R"

Review 9.18

1. A measure y on R" is an assignment of positive numbers or oo to certain
subsets E C RV with the properties that it be

(i) additive, w(E U F) = w(E) + u(F) for E, F, disjoint;
(ii) continuous, E, — E = u(E,) — u(E).

It is enough for now to take E, — E to mean that E, is a decreasing

sequence of sets of finite measure, with (), E, = E.

One final property that we expect u to satisfy, at least in RY, is that it be

(iii) translation invariant, u(E + x) = u(E).

R Henri Lebesgue (1875-1941) Lebesgue graduated at
the Ecole Normale Supérieure of Paris at 27 years.
His thesis built upon work of Baire, Borel and Jordan,
to generalize lengths and areas, and so an integration
powerful enough to tackle functions too discontinuous
for Riemann’s integration—the first complete space
of integrable functions. After a century of attempts
by other mathematicians, he finally proved that uni-
formly bounded series of integrable functions, such as
the Fourier series, could be integrated term by term.
Although his achievement was widely seen as abstract,
in his words, “Reduced to general theories, mathematics
would be a beautiful form without content. It would
quickly die.”
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Examples of measures are the standard length, area, and volume of Euclidean
geometry.

. Taking R as our main example, and defining ©[0, I[ := 1, these properties

completely determine the length of any interval, namely ula,b] = b —a =
wla, b[. (Hint: divide [0, 1[ into equal intervals to show u[0, m/n] =m/n.)

. As a first step in constructing p on R, therefore, the length of any interval is

defined to be the difference of its endpoints, e.g., m[a, b] := b—a. This function
can be extended in two ways to

(a) the length of any countable union of disjoint intervals
m(_J1n) =) m(@).
n n

(b) the length of the set obtained by removing a countable union of disjoint
subintervals from a bounded interval

m(IN | L) =m) =Y m(d).

. For general sets, define

m*(A) = inf{mU): AC U = Uln 1,
my(A) :=sup{m(K): AD K = I~ U I, ).

(Note that since we are taking the infimum and supremum, respectively, we
might as well take I to be a closed and bounded interval and I, to be open
intervals, in which case U is an open set, and K a compact set.)

It is a fact that there exist sets for which these two values do not agree (see [1]).
A “well-behaved” set, called measurable, satisfies m*(E) = m,(E), which is
then called its Lebesgue measure u(E).

m*(UJ, An) < >, m*(Ay) and A € B = m*(A) < m*(B) (since open
covers for each A, provide an open cover for their union). Of course, these
statements continue to hold for Lebesgue measure applied to measurable sets.
A useful equivalent criterion of measurability of E is:

For any subset A, m*(E N A) +m*(E® N A) = m*(A).

Using this criterion, it follows that, for E, F', and E,, measurable sets,

(a) E°, EUF,ENF, ENF,and EAF are measurable; when they are disjoint,
H(EUF) = u(E) + pn(F).
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10.

() U2, Ey and (52, E, are measurable, and when E, are disjoint,
0 o0
w(J En) =) n(En).
n=1 n=1

The sets that can be obtained by starting with the intervals and applying these
constructions are called Borel sets; they include the open and closed sets.

. Sets with (m™*-)measure O are obviously measurable and are called null sets.

For example, any countable set is null; but most null sets are uncountable, e.g.,
the Cantor set. The countable union of null sets is null.

Adding (or removing) a null set N from a measurable set E does not affect its
measure,

U(EUN) = pu(E) + n(N) = pn(E).

Because measures don’t distinguish sets up to a null set, we say that two sets
are equal almost everywhere, E = F a.e., when they differ by a null set. More
generally, we qualify a statement “P(¢) a.e.t” when P(¢) is true for all # except
on a null set; for example, we say f = g a.e. when f(¢) = g(¢) for all 7 in their
domain apart from a null set.

The distance between measurable sets is defined as d(E, F) := u(EAF). Itis
a metric, with the proviso that d(E, F) = 0 <& E = F a.e. The measure u is
continuous with respectto it, £, - E = w(E,) — u(E).

A similar procedure gives the Lebesgue measure on R”, with the modification
that cuboids are used instead of intervals to generate the measurable sets. Most
subsets of R” that the reader is likely to have encountered are measurable,
including balls in R3.

Measurable Functions

Review 9.19

1.

The characteristic function of a set is defined by

15() 1= 1, teE.
0, t¢E

Linear combinations of characteristic functions Z£=1 1g,xn, where E, are
bounded measurable subsets of R and x,, € C, are called simple functions. More
generally, R can be replaced by a fixed measurable set A, and x,, can belong to a
Banach space X. The simple functions form a vector space S.
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2. A function f : A — X is said to be measurable when it is almost everywhere
the pointwise limit of simple functions, s, — f a.e. For real-valued functions,
this is equivalent to f ~![a, oo[ being measurable for all a € R.

Note that simple functions supported in E (i.e., are zero outside E) can converge
only to measurable functions supported in E (since s,1g — flga.e.).

3. Measurable functions form a vector space: Af and f + g are measurable when
f, g are. It follows from ||sn| — |f|| < |sp, — f| that|f]| : A — Ris measurable.
For real-valued measurable functions, fg, max(f, g), and sup, (f,), are also
measurable. Real-valued continuous functions are measurable.

4. » In fact the space of measurable functions is in a sense complete: if f, are
measurable and f,, — f a.e., then f is measurable.

5. L®°(A) is defined as the space of (equivalence classes of) bounded measurable
functions f : A — C, over a measurable set A, with the supremum norm
| fllpoo = sup, 40 | f(#)], that is, the smallest real number ¢ such that | f(¢)| <
ca.e.l.

6. L°°(R) contains the closed subspace of bounded continuous functions Cj(R),
which in turn contains Co(R) := { f € C(R) : t_l)igloo f(@) = 0}. The space

Cla, b] is embedded in Cy(R). Cp(R) is not separable for the same reason that
£ is not (Theorem 9.1); replace a 0—1 sequence by a “0-1" tent function.

7. L®[a, b] is not separable: the uncountable number of characteristic functions
(5,1, @ < s <t < b, are at unit distance from each other.

Proposition 9.20

L°°(A) is a Banach space.

Proof 1f | f(¢)| < || f |l except on the null set Eq, and |g(¢)| < | g|l 1~ except on
the null set E», then forall t € AN(E1 U E»),

Lf@®) +eOI < IfOI+ 8@, IAf O] = IMLf @,
SO |Lf +gllLee <N fllLee +1IgllLee, IAf oo = IAILf Il oo

Clearly || f|l;o~ = O only when |f(z)| = O a.e. It follows that L>°(A) is a normed
space, as long as we identify ae-equal functions into equivalence classes.

Completeness: Let f, € L°°(A) be a Cauchy sequence, where | f;,(#)| < || full o
for all t € A except in some null set E,. Copying the proof of the completeness of
£°° (Theorem 9.1),

| fn (@) = fmn O] < N fu = finllLe = 0

for each r € A, except possibly on the null set |, E,, so f,(t) is Cauchy and
converges f,(t) — f(¢)a.e.t. The function f is evidently measurable, and f, — f
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uniformly away from this null set, since for any € > 0 and n large enough (but
independent of 7),

|fn(t) - f(t)| < |fn(t) - fm(t)| + |fm(t) - f(t)|
SWfw = fmllpee +1fm() — fO  aet
< 2e€

where m > n is chosen, depending on ¢, to make | f;,(t) — f(¢)| < €. This means
that f,, — f in L, and implies || f|l;c < IIf — fullpeo + [ fullpeo < 00, sO
f e L®(A).

O

Integrable Functions

Review 9.21

1. Given a set E of finite measure and its characteristic function, let f 1g =
w(E). For a simple function, define its integral

N

N
/Z g, X0 = (En)xn.
n=1

n=1

It is well-defined, since a simple function has a unique representation in terms
of disjoint E,. It is straightforward to verify that [(s +r) = [s + [r and
[Ars=x[sfors,res.

2. The function ||s| := f Is| = Y, w(En)llxsl is a norm on S. Here, |s] is the
real-valued simple function |s| = ), 1g, [x,|| > 0. In particular, for real-
valued simple functions, r < s = f r< f S.

Proof: () IAsl = 3_, w(En)IAxall = [AllIs]],

i) Is +rll = 32, wEDNxn + yull < 22, w(En)(Ixnll + 1yal) = sl + 71,
(iii) f Is| = 0 when ), u(E,)llx,|l = 0. This implies s (E,)| x, || = O for all
n,i.e.,x, =00R u(E,) =0,s0s =0a.e.

3. The integral is a continuous functional on S, || fs I < f |s|, since,

||/s|| = D wEDx| <D uEDlxal =f|s|.

4. The space of real (or complex) simple functions with this norm is separable (the
simple functions with x, € Q and E, equal to intervals with rational endpoints,
are countable and dense), but not complete.

5. A Cauchy sequence of simple functions converges a.e. to a measurable function.
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Proof: Let s, be a Cauchy sequence in S. Pick a subsequence such that
sty — sk, 1l < 2% For a fixed «, the subsets

Ena = {1 €R: Y Ist,, (1) — 51, (1)] > )

are increasing with n up to the set £, = UnEN E, . The crucial observation is

n n o0
1
@ Ena) < [ 3 s = < Y s~ 1< Y 5 =

ne j—1 j=1 j=1

As u(Epq) < é, it follows that w(Ey) < é The subset E, decreases as «
increases, so E := [),-o E« is a null set. But this is precisely the set where
Zj Isk;,, — sk;| diverges. Thus, Zj Isk;,1 — Sk;| converges a.e., as must do
> (kj — Sk;) and s, = 51 + ST (k1 — s0)-

A function f : R — X is said to be integrable when it is the ae-limit of a
Cauchy sequence of simple functions s, — f a.e. Its integral is given by the
extension of the integral on S,

/ f = lim [ s,.
n—oo

Note that | s, is a Cauchy sequence in X (|| [ sp — [ smlly < [ |Sa—su| = 0).
The space of (equivalence classes of) integrable functions R — X is denoted
by L'(R, X); it is the completion of S (Theorem 4.6). By Proposition 7.18, the
space L!(R, X) is a normed vector space with

1fll = lim fisofl = lim f|sn| =/If|,
n—oo n—oo

so f € L'R,X) & |f] € L'Y(R). It also follows that for real-valued
integrable functions f < g = [ f < [g.
» The integral is a continuous functional on L'(R, X) (Example 8.9(5)),

[ree=[r+[e [ar=sfr 1[r1<[in.

Thus if f, — fin L'(R, X) then [ f, — [ fin X.

@ feL'®) = [fOxd=([fx,

(b) TeBX,Y) = fo:Tff.

Proof: (a) is a special case of (b) with T : F — X, T (A) := Ax.
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As an operator, T : X — Y acts linearly on simple functions s = ), 1g,x, €
Ss

N N
Ts =Y 1pTx, = /Ts = WE)Tx, = T/s.
n=1 n=1

Ifs, — fin L'(R, X) then T's, — Tf in L'(R,Y),s0 [Tf =T [ f.

9. For a measurable set A C R, define L'(A) := { f1a : f € L'(R)}, and let
Jaf =] fla.
Note that fA f = 0 for any null set A. Hence if f = g a.e., with g € L'(R),
and E = F ae., then f € L'(R) as welland [, f = [, g.

10. For E, F disjoint measurable sets,

Juw? = b7 0

It follows that E C F = [ |fI < [z |f].

11. A signed measure is defined to be a mapping from measurable subsets of R
to real values (possibly negative), which satisfies the axioms of a measure.
Similarly a complex measure is one which takes values in C.

12. Radon-Nikodym theorem: If v is a complex measure on R such that v(A) = 0
whenever A is a null set, then there is a complex-valued measurable function f
such that

V(A) = /A f.

Refer to [1] for a proof.

Theorem 9.22

For A C R, L'(A) is a separable Banach space.

Proof

Completeness: Let f, be a Cauchy sequence in L'(A), ie., | f, — ful — O.
Choose s, € S close to f;, say |ls, — full < 1/n. Then (s,),en is a Cauchy
sequence of simple functions, asymptotic to f,. By Notes 5 and 7 above, s,
converges to an integrable function f in L'(A). Hence, so does the asymptotic
sequence f;.

Separability: By construction, the separable set S of simple functions is dense
in L'(A): Any f € L'(A) has a sequence of simple functions converging to it
(Sn)neNy = fae,so|lf —sullpr — Oasn — oo.

0
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We can start reaping the immediate benefits of these Lebesgue spaces. They have
excellent limit properties:

Proposition 9.23

If f, — fin L°°(R), that is, uniformly, and

(i) fu are continuous, then f is continuous,
(i) f, are integrable, then f is integrable on [a, b], and

/abfﬁfabf,

(iii) f; are continuous and converge uniformly, then f, — f'.

Proof (i) The first assertion is a restatement of the fact that Cp(R) is closed in
L*®(R) (Theorem 6.23).

(ii) The second follows from the completeness of L![a, b] and the continuity of the
integral

/abfn—/abf‘ s/ab|fn—f|<<b—a>||fn—f||m,b]+0.

(iii) If f; — g uniformly, then f; — g in L'[a, ] by (ii), and | f, — [ g. But,
assuming the fundamental theorem of calculus (Theorem 12.8), fat fo = falt) —
fn(a), which converge to (1) — f(a) uniformly and in L'[a, t]. So fat g=f@—
f(a), showing f is differentiable, with f' = g. O

Much the same analysis can be made starting with the norm ||s| , := (f |s |p) p,
1 < p < oo, on S(A). The completion of S in this norm is denoted by L?(A),
which is thus complete and separable (S(A) dense in it).

The product x - y of sequences becomes f - g := [ fg for functions. Holder’s
inequality is valid:

Proposition 9.24 (Generalized Holder’s Inequality)

For A C R,if f € LP(A),g € LY(A), then fg € L"(A) where % =
and

1,1
p+q’

gl < IfllLellgllpe-
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Proof The AM-GM inequality, for any complex numbers a, b, yields
jabl” = 1al”7 1b177 < Zjal? + Zlal?.
p
If a, b are now the values of functions, integrated over the set A,
r r
/ la(®)b(@)|" dr < —/ la()|? dr + —/ |b(8)|? dt.
A pJa q JA

Substituting a(r) = f(1)/I1f 1|, and (1) = g(®)/lIgl,.

[If0g@rd _r r

<—4-=1.

IfLlel,  ~p 4

Theorem 9.25

For 1 < p < oo, LP[a, b] is a Banach space whose dual space is

LP[a, b]* = L”'[a, b],

1 1 _
where > + = 1.

Proof That L?(A) is a complete normed vector space follows from its construction
as the completion of the vector space of simple functions with the p-norm. The
triangle inequality for this norm can be proved in an identical fashion to the proof
of Minkowski’s inequality for £” (Proposition 9.12).

Given any function g € Lp/(A) and f € LP(A), let ¢p(f) := fA gf (clearly
linear in f). Then by Holder’s inequality,

6f1 < /A 18f1 < gl 1l

Equality can hold if we choose f = [g|"'/Pe™? where g = |g|e'; note that
1flle = lgll7 Then

L’+1 / 4 i_’_l
¢f=/|g|” =/|g|p =gt = lgh?™ = 1fllLolighyy

All this shows that every function g € LP/(A) gives rise to a functional on L?(A),
with norm ||¢]l = ligll; -
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Let A be a bounded interval and ¢ € LP(A)*. The map E +— ¢(1g) can be
seen to be a complex measure on A, which takes the value 0 on null sets since
1g = 0 a.e. when E is null. Hence by the Radon-Nikodym theorem, there exists
a measurable function g such that ¢p(1g) = f glg. This extends, by linearity, to
any simple function, ¢ (s) = [ gs. Let s, be an increasing sequence of non-negative
simple functions converging pointwise a.e. to |g| = ge~'?. Then

¢(s,[://pe_i9) :/|g|s5’/.ﬂ > /Srll+p’/p :/Sr/;’
Hence

P P'/p p'/p
lsnll, < N@lHllsn "M, = li@llisall, "

that is, [Isnll,; < [I¢]l. In the limit as s, — [g|, lIgll,» < ll¢||. Finally, since ¢
is Lipschitz, the identity ¢ (f) = [ 4 &f for f € S must continue to hold for the

completion space S = L?(A) (Theorem 4.14).
O

Note that L2(R) is its own dual.
Examples 9.26

1. Convergence in L (R) is quite different from uniform convergence. For example,
the sequence of functions %I[O,n] converge uniformly to 0, but not in LY(R),
whereas the sequence 1, 1, converges to 0 in L' (R) but not uniformly.

2.0 < ||f||%,,||f||1L;“, where } = % + 1%"‘; thus f lies in L?(A) for p in an
interval of values.

Proof: Il FI%LA1 0 < 1D psa A1 Ngpa—a) = IFUSILIZ™, using
Holder’s inequality.

3. » When the domain of the functions is compact, the spaces are included in each
other as sets, in the reverse order of the sequence spaces,

Cla, b] € L®[a, b] € L*[a,b] < L'[a, b].

The identity maps L*°[a, b] — L?[a, b] — L'[a, b] are continuous,

1
Il ap < G —=a)2 I fllp2pap < (0 — O fllpspa,p-

Proof: By Holder’s inequality, with p < ¢, ||f||p < ||1||S||f||q Where% = l+%_

)
4. The notation ffooo f is capable of at least three interpretations, as (i) fR f when

f € L'R), (i) limg s o0 [ f, Gii) limg_.oo [, f. It should be clear that
the finiteness of these integrals follow (i) = (ii) = (iii), but the examples
JRetdt = 0and [ dr — 7/2 as R — oo show that the converses are
false.
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Integral Operators

We now consider a broad class of operators that act on spaces of functions. An
integral operator (or transform) is a mapping on functions

Tf(s) 1=/k(s,t)f(l)dt,
A

where k is called the kernel of T (not to be confused with ker 7). To motivate this
definition, suppose 7T is a linear operator that inputs a function f : A C R — C
and outputs a function g : B € R — C. If A and B are partitioned into small
subintervals, the functions f and g are discretized into vectors (f;) and (g;), and
the linear operator T becomes approximately some matrix [7;;]. As the partitions

_ Tf=g
v“ 1|:|
* .

A ‘| I

are refined, one might hope that 7;; would converge to some function k(s, ) on
A x B, and the finite sums involved in the matrix multiplication ) i Tij fj become
integrals [ 4 k(s, 1) f(¢)dr. (This is not necessarily the case, as the identity map
attests.)

An integral functional on a function space is then of the form ¢f :=

S k@) f(r)dr.

Proposition 9.27

An integral operator 7 f(s) := f 4 k(s 2) f(¢) dt is linear, and is continu-
ous as L”(A) — L49(B) when:

1Tl < f ool ) Tl < sup IkGs. 0,
B tecA teA,seB

1Tl < f f k(s.0ldrds, 1T loo.eo < sUP / ks, D) dr,
BJA seBJA

172
1Tl < ( /B fA s, )2 dr s
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Proof Linearity follows easily from

/k(s,t)(kf(t)+g(t))dt=k/ k(s,t)f(t)dt+/ k(s, £)g(t) dr.
A A A

O 171 = [ | [ snroa]as< [ spikoois [ 1rora.
B A B teA A
GDIHVWwa)<smg[;wwﬂﬂfaﬂdt<sqﬂk@,ﬂk£|faﬂdt
mnwmmm<ﬁfmmnﬂmww<ﬁBmmnmmwﬂwmy

V) ITf L) < Sup/ lk(s, 1) f()ldr < SUP/ [k(s, D1z 11 f 1l oo cay-

) IITfIILz(B) /‘/k(s t)f(t)dt dS //Ik(s 2] dtdS/ |f @) dt,

by Cauchy’s inequality for functions.

O
Examples 9.28
1. The Volterra operator on L'[0, 1] is Vf(t) := fot f. It is an integral operator
1, <t
withk(s,) =1 * 7,
0, t<s

2. For integral operators S, T, with kernels kg, k7 respectively,

(@) S =T only when ks = kr a.e., (since forall f, (S—T)f(s) = f(ks(s, t)—
kr (s, ) f (1) dr = 0);

(b) S+ T has kernel ks + kr, and AT has kernel Ak,

(c) ST has kernel kg7 (s, t) := fkg(s, u)kr(u, t)du.

The kernel acts like a “matrix” with real-valued indices, k;,; in place of A; ;. The
properties listed here are analogous to those of the addition and multiplication of
matrices.

3. Which integral operators on L'(R) are translation invariant, meaning 7T, f =
T,Tf, where T, f(t) = f(t — a)? The requirement is, for all f € L'(R),

/k(s,t)f(t—a)dt=/k(s—a,t)f(t)dt.

By changing the t-variable in the left-hand integral to f = t — a, we obtain
k(s,t) = k(s —a,t — a) a.e., as f is arbitrary. Equivalently, k(s, t) = k(s —
t,0) =: k(s — t) a.e.(s, r) for some function k € L'(R). That is,

szk*fzsz(s—t)f(t)dt
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called the convolution of £ with f. Just like the same-named operation in 2%
convolution is well-defined on L!(R) and is associative and commutative.

Approximation of Functions

The approximation of functions by polynomials is commonly used in many
algorithms because they are much faster to compute than many analytical functions.
This applies to the computing of many statistical functions and several engineering
applications, including interpolation and curve fitting, which is the approximation
of data points by functions such as polynomials and splines.

Proposition 9.29

The polynomials are dense in L![a, b], L*[a, b], and C|a, b].

Proof By construction, the simple functions are dense in L!(R). Now, intuitively
speaking, any real-valued step function s can be “nudged” into a continuous function
g by replacing its discontinuities with steep slopes, and the distance |ls — g||;1
can be made as small as needed by making the slopes steeper. More precisely and
more generally, any bounded measurable set £ in R lies between a compact set
K and an open set U, such that u(U~NK) < € (Review 9.18(4)); also, there is a
continuous function gg taking values in [0, 1] such that gg[K] = 1, gg[U®] = 0
(Exercise 3.13(17)). So

Ve >0, 3gp € C(R), lige — el =/ Ige — 1El < W(UNK) < €.
UNK

Vito Volterra (1860-1940) Volterra studied hydrody-
namics at Pisa under Betti (1883); this led him over the
next 10 years to consider integral equations of the type
fx) — fax k(x,y)f(y)dy = g(x), which he showed
can be solved by iteration. He applied such “function-
als” to the theory of optics and distortions, Hamilton-
Jacobi dynamics, elasticity and electro-magnetism. He
moved from one professorship in Turin to another in
Rome, becoming a senator in 1905, and finding the
time to write his Volterra equations about the numbers
of predators and prey in mathematical biology, until in
1931 he preferred exile to the reign of Mussolini.
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Consequently, taking any non-zero simple function s = 2,11\;1 1g,x, and replacing
each 1g, with continuous functions g,, where ||g, — 1g,ll;1 < €/ Zflvzl Ixal,
gives a continuous function g := Z,ILV:] gnXn, which approximates s in L!,

N
s =gl <D ME, = gall 1 lxall <€

n=1

Thus any function f € L'(R) has a simple function approximation s, which in turn
can be approximated by a continuous function g. Combining these two facts gives

If=glipr < If =slipr+lls — gl < 2e

showing that the set of (integrable) continuous functions is dense in L' (R). Note
further that precisely the same arguments work for L>(R).

We have already seen, in the Stone-Weierstral3 theorem (Theorem 6.24), that the
set of polynomials p(z, z) is dense in C[a, b]. But, in this case, z =z =t € [a, D],
so such polynomials are of the usual form p € C[t]. Combining this with the above
result shows that C[¢] is also dense in L![a, b] and L?[a, b]: for any € > 0, there is
a polynomial p € C[¢] such that

If = pleias < I —8leias + 18 — Ploiar < 3€

since [|§ — plipipa.p) < (b —a)llg — pllcia,p) can be made arbitrarily small. O

More generally, the polynomial splines are dense in the real version of these
spaces. A spline of degree N is a function ), 1g, ps, Where E,, are disjoint intervals
and p, are polynomials of degree at most N such that the first N — 1 derivatives
match at the endpoints of E,. They are often used in numerical techniques and
graphics computing.

There is another very useful way of approximating integrable functions by
smooth functions using convolution.

Proposition 9.30 (Approximation to the Identity)

If h, € L'(R) are such that i, > 0, [ h, = 1, and Jr~(_s.5)/n — Oas
n — oo, then , * f — fin C(R) and L'[a, b].

Proof Let g be a continuous function, and let ¢ € R; on the one hand,

Ve >0,36 >0, |s| <d = |gt+s)—g@)| <e, (9.6)
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and on the other hand, for this §,

AN, n>N = ol < € 9.7)
NEX)

h

AN

Therefore, forall t andn > N,
o 50 = 801 = | [ ha6)((t =)~ @) o
< / I ($)l] g — 5) — g(1)] ds

S

< / a(s) € ds + 2g I f h(s)ds by (9.6)
) R\[-6,5]

<e(l+2glle) by (9.7)

and ||, * g — gllc — 0 as required.

In fact h, x f approximates [ € L'[a, b] in the L'-norm, for, choosing g €
Cla,b] close to f, || f — gll1 < €, and n large enough that ||h, x g — gllc < €
holds, then

Nhn * f = fllipiae < a8 — 8llipijapy + 1 * (f — @l L11a.p
+ 1 F = &llpan
< (b—a)e + 2¢,

since [|hy  (f —@lpr < Mallprllf — gl < €. O

A useful way of generating an approximation of the identity is to start with
a single integrable function 2 > 0, normalized so that f h = 1, and then
defining h,(t) := nh(nt). The conditions of the proposition hold, in particular,
flt\>8 nh(nt)dt = f|s|>n8h(s) ds — 0asn — oo.

Typical examples of approximations of the identity are (i) s, (¢) := Le_(’”)z,

(i) hn(1) = b= l+( TFmn?’
Cn = f71(1 — 3 ds.

and (iii) h,(t) = ln(l — %) supported on [—1, 1], where



188 9 The Classical Spaces

Corollary 9.31

For any f € L'(A),

| f@&+h)— f@| — 0ash — 0.

Proof Starting from the unit function & := 1{_1,2,1,2), the step functions £, (¢) :=
nh(nt) clearly form an approximation of the identity, and so &, * f — f in LY(R).
But their translations by T f(t) := f(t — s), with s = £1/2n, namely h,‘f =
Tshy = nlj,1/n) and hy, := T_gh, = nl|_1/y 0], form other approximations of the
identity. Since (Tsh) x f = Ty(h * f) and | Ts fliz0 = | fll 1,

f |ft =)= f®)|dt =T f — flip

<NTof = (Tyha) % fllp + 1(Tshy) % f = fllp
= If —hn* flig + 1B % £ — £l

— Qasn — oo.

O
Exercises 9.32
L IEY, Il fullz1 converges, then Y o2 [ fu = [ 302 fu-
2. The map (ay)nen +— f where f(¢) = ZneNanl[n,nH[(z‘) isometrically
embeds £7 into LP(R), 1 < p < o0.
3. Let f; := l{nn+1; if pointwise convergence were induced by a norm, then

Jfa/ |l fn]l would converge to zero, a contradiction.

4. A simple function on [0, 1] can be approximated by a step function in L0, 17,
namely a simple function ), a, 1;, where I, are disjoint intervals. Deduce that
the step functions are dense in L' (R). (Hint: For 1z, approximate E by a finite
union of intervals using Review 9.18(4) and Exercise 2.14(13).)

5. Themap L'(A) - C, f J &f is linear, and continuous when g € L*(A).
Assuming surjectivity, show L' (K)* = L>®(K) for K € R compact.

6. Show that the functional §,(f) := f(a) on C[a, b] is not integral, that is, it does
not correspond to any L!-function § in the sense of 8,( f) = f of. Hence the
dual space of Cla, b] is not La, b]; it consists of functionals called measures
of bounded variation.

7. Minkowski’s inequality: Emulate the proof of Proposition 9.12 to show

If+gller < Iflee +lIgllr  (p=1D.

8. Show that L?[a, b] is a separable space for 1 < p.
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10.

11.

12.
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* Show that convolution on L!(R) is associative and commutative; but it has
no identity, although Gibbs and Dirac audaciously added one and called it §.
Young’s inequality is satisfied,
1 1 1
If*gly < Ifllolgl,  —+—
rq r

(Hint: | f()g(x — ) = [fO1P1gx =017 f O [g(x = D) '77)
Matched Filter: An electronic filter is a circuit acting on a signal f € L*(R)
and outputting the convolution g * f (¢ € L'(R)). Signals often have white
noise n(t), where | g *n|l;2 = €|lgll;2. The signal-to-noise ratio is S/N :=
g * £117,/1g % nll,; show that S/N < || f|Z,/€*, with equality holding
when g(s — 1) = Af(¢), for some s, A € R.

The integral operator Tf(s) := ["t TV f(t)dr is continuous as
L[1, oo — L®[1, oo, satisfying |7 [l < [/l -

An integral operator 7 : L'[0, 1] — L°°[0, 1], with kernel k € L*°[0, 1]?,
has || T|| < ||kl . So if T}, have kernels k, with k, — k in L°°[0, 1]°, then
T, —>T.

The Fourier Series

We end this chapter with a look at one of the most important operators on L'[0, 1].
Back to the days of Fourier, there arose the question of whether every periodic
function f can be built up as a Fourier series ), a, cos nt + b, sinnt. This claim
of Fourier was disputed by Lagrange and others; Dirichlet obtained a partial result
for the case f € C?, and Riemann later vastly extended this result. Despite these
protests, the use of Fourier series grew, mainly because they actually worked in
many examples.

Definition 9.33

The Fourier coefficients of an integrable function f € L0, 1] are the
sequence of numbers defined by

o~

1
Ff) = Fn) = / 2 dr ne
0

I'These are a modern version of the classical Fourier coefficients ni f()z” cos(nt) f(t)dt and
L 3% sin(nr) £ (1) dr.
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This section cannot do justice to the immense number of results and applications
of Fourier series. It must suffice here to present some of the main results, with the
aim of generalizing them later on. Refer to [3] for more details.

Theorem 9.34

F L0, 1] > co(Z) is a 1-1 continuous operator with

1 flleozy < 1 Lo,

Here, c¢o(Z) is defined as consisting of those ‘sequences’ (a, )<z such that a, —
Oasn — too.

Proof That F is linear is easy to show. It is continuous because

1 ‘ 1
17l =sup| [ e pyar| < [C1r@nar =1,

nez
The characteristic function 14 p], for [a, b] € [0, 1], has Fourier coefficients

e—2mna _ e—2mnb

b
lia,p)(n) = / e~ 2mint qp = , — 0 asn — Foo0.
a 2rin

Hence the vector space of simple functions, as well as its closure L'[0, 1], are
mapped into the complete space cg (Exercise 8.6(5)).

Fisl-1: If f(n) = 0 for every n, then

1
/ e 2T £(5)ds =0, VneZ.
0

The aim is to show that f = 0 a.e. Firstly,

1 1
/ e—ZJTlnSf(t _ S) dS — / e—2ﬂln(t—s)f(s) dy — O
0 0

Secondly, since (cos 78)2" = (e¥TS 4 ¢~ 27 4 2y /22" is a linear combination
of exponentials of various frequencies that are all multiples of 27rs, we have, for
ha(s) := (cos w5)2" /ey,

1
hy * f(f) = cifo (coss)?" f(t —s)ds =0,

1 2n—1)2n=3)--
where ¢, := [ (coss)?" ds = % > 5
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The functions #,, satisfy the criteria of Proposition 9.30, as they are positive and
fall rapidly to O for |s| > 8, as n — oo. Thus || fliz1 = llAn * f — fll;1 — 0, and
f=0a.e. O

Although this Fourier operator is not surjective, and hence not invertible, its
coefficients can be used to build up the original function. Note that, in the proof,

the convolution of periodic functions is defined by f * g(¢) := fol f@—s)g(s)ds
where f(t —s) = f(t —s+ 1) whent < s.

Theorem 9.35

(0/9)
The Cesaro sum of Z F(n)e¥™ " converges to f in C[0, 1].

n=—oo

Proof Take the finite sum

k=—n

n 1 n
> Flkemik — /0 3 k) f(5)ds = Dy % £ (1),
k=—n

where D, is the so-called Dirichlet kernel,

—2mint 2mi(n+1)t

n
: e —e
Dn(t) — Z eZHZkt —

1 — eZm't

k=—n
(e—271int _ eZJri(n+1)t)(1 _ e—271it)
(1 _ 62””)(1 _ e—2m’t)
_cos(2wnt) — cos(2m(n + 1)1)
o 1 — cos(2t)

D,, is not an approximation of the identity, since |Dn(%)| = 1 4 0. But consider
the Cesaro sum,

1 N n . ) 1 N
5 2o 2 FeT = 2% Dk f(1) = Fy % f (1)
n=0

n=0k=—n
where Fy is the Fejer kernel,

N 1 L cosrnr) — cosu(n+ 1) 11— cos(2mNt)
IEESY -
N n=0

Fy = = = .
1 —cos(2mt) N 1 —cos(2mt)

1
N n=0
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It can be verified that F is an approximation of the identity: the functions are
positive, integrate to 1, and vanish outside a neighborhood of 0,

1 n 1
/ D, (t)dt = Z/ ez’”k’dt:Z[ezmk’/(zmk)]})+l:1,
0 e JO

k£0

1 1 N 1
/0 FN(t)dt=NZfO D,(t)dt = 1.

n=0
Ford <t < %

1 1—cos(2rNt) 1 1
Fy(@) = — <

< — — 0as N — oo.
N 1 —cos(2mt) N 1 —cos(2md)

Hence by Proposition 9.30, Fy x f — f both in L'[0, 1] and uniformly in C[O, 1].
O

The Fourier coefficients have properties that appear remarkable: when f is
translated the coefficients rotate in C, at a rate proportional to n, with each

o~

f(n) performing n turns as f is translated one whole period; differentiation of
f scales the coefficients by a multiple of n; and convolutions are transformed to
multiplications.

Proposition 9.36

For periodic functions, with period 1,
Tof(n) = e ™" f(n),  f'(n)=2minf(n). fxg=T[g
Proof A translation T, f(¢) := f(t — a) has the effect
i = [ 0y
0

1
— / eonin(Ha)f(t) dr = e*Z?Tinuf/‘\(n).
0

For the derivative, f’, using integration by parts,
HOE / e (1) dr
0

1
= [e 2™ £(1)]) + Znin/ e~ £ (1) dt = 2min f(n),
0
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and the convolution of f and g becomes

1 1
Frgn) = / 6727”'”/ ft—s)g(s)dsdt
0 0
el
— / / e—2mn(l+s)f(t) dt g(s) ds
0 Jo

1 1
= f e~ 2 £ (1) dt / e~ o (s)ds = f(n) g(n).
0 0

Exercises 9.37

1.

Show
@ F:1—(..,0,0,1,0,0,...),
. 1 1 1
(b) .F.l‘f—)lan(...;—z ~1, ]1,5, YT ),
(C).F:lt_§|Hn2( 017491059’03 )
) F:e@—pe—1) > (.., L0 1, g,y ).

. The open mapping theorem implies that a bijective operator is an isomorphism

(Corollary 11.2). Use it to show that F is not onto cg.

. The power spectrum of a function is a plot of |f(n)|2. It displays the dominant

frequencies of f. A better plot is the Nyquist diagram, where f(n) is graphed in
three dimensions, with one axis representing 7, and the other two representing
F = |fle. Prove that F : CX[0, 1] — cx(Z), where C¥[0, 1] is the space of
k-times continuously differentiable periodic functions, and ¢ (Z) := { (an)nez :
n*a, — 0}. Therefore, how fast the power spectrum decays as n — oo measures

how smooth the function is.

. The operator S, : f(t) — all? f (at) (a > 0) stretches or compresses f, while

preserving its L?-norm; prove Sa f@m = Sia f (n). This should be familiar:
playing a sound clip in half its normal time doubles the frequencies.

. » The Fourier transform of a function f € L' (R) is defined to be the function

FrE) = f(&) = / =27 £ (1) dr.

It is an integral operator F : L'(R) - L®(R). Similarly to the Fourier series,

(a) itis a continuous linear operator F : L'(R) - Cy(R),

(b) 1 l[—a al§)=a s1n(rra§)/(7m§‘) sasinc(raé) — 0as & - +oo,
(©) Tof (§) = e 248 F(¢),

(d) F1(&) =2mi& f (&),

© fxg=T%
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272 242 . .
6. }"\/Lge_”’ /o7 = Jo e ™9 £ Deduce that the convolution of two Gaussian

functions is another Gaussian function,

292 29,2 oT 2 2,2
et /20 we ! [2t7 _ /27_[ et /2(0°+1 )_

Vol 412

Notice how there is a trade-off between the ‘width’ o of the original Gaussian
and that of its Fourier transform, namely 1/o.

7. Wiener-Khinchin theorem: For f € L'(R), define f*(r) := f(—t). Show F =
f, and that the auto-correlation function f* x f(1) = [ F()f(s + t)ds is
transformed to the power spectrum |f($ )|2. More generally, f* « g is called the
cross-correlation function of f and g.

Remarks 9.38

1. The functionals on £°° are more difficult to describe. Every sequence y € ¢!
still acts as a functional on £*° via x > y - x, but (£°°)* is a complicated non-
separable space that includes much more than just £! (look up “finitely additive
measures” for more).

2. £*° = Cp(N), so the completeness part of Theorem 9.1 is included in Theo-
rem 6.23.

3. The Fibonacci iteration a, := a,—1 + a,—2, starting from ap = 1 = ay, is an
equation on sequences. It can be expressed in any of the following ways

x=Rx+R>x+e +e
(ep—e1 —e) xx =ep+ e

(1,—-1,-1,0,..)%x =(1,1,0,...)

Convoluting with the inverse of (1,—1,—1,0,...) gives the terms of the
Fibonacci sequence (but note that the inverse is not in £'). Traditionally,
“generating functions” are used to get the same results, the connection being
elucidated in Chap. 14.

4. ¢! contains the space of sequences Esl = { (@n)nen : (WPa)nen € €11, (s = 0),
which in turn contains €57 .

5. The following are some classical criteria for determining that a sequence of
measurable functions f,, that converges pointwise a.e. is Cauchy in L' (A),

(a) |fu| are increasing but f | fu| are bounded (Monotone Convergence Theo-
rem),

(®) |fn| < g € L'(A) (Dominated Convergence Theorem),

(©) f  fn converges for all measurable sets E (Vitali’s theorem).

6. A function on R has both local and global integrability properties: locally about
t € R, it may belong to some LP[t — 4§, t + &] space, while globally, the sequence
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of numbers a,, := || f|lLr[y, n+1) May belong to £7. For example, f is in L' (R)

when it is locally in L' and globally in £'. Lﬁc are spaces of functions that are
only locally in L?. For example, the constant function 1 is in all L”(R) locally,
but its sequence of norms is only in £*°;s0 1 € L (R). Similarly, 1/4/7 is locally
in all the L? spaces for 1 < p < 2, but its norm sequence is in £9, 2 < q.

7. The Fourier series maps F : LP7[0,1] — P for 1 < p < 2 (see
Exercise 10.35(11) for p = 2).



Chapter 10 ®
Hilbert Spaces o

10.1 Inner Products

There are spaces, such as £2, whose norms have special properties because they
are induced from what are termed inner products. Not only do such spaces have a
concept of length but also of orthogonality between vectors.

Definition 10.1

An inner product on a vector space X is a positive-definite sesquilinear
form', namely a map

(,): XxX—>F
such that for all x, y,z € X, A € F,

(x,y+2)=({xy +{x 2), (x, Ay) = A{x, y),
(y’x)=<x7y)7 (x,x))O; (x’x>:O<:>x=0-

Two vectors are said to be orthogonal or perpendicular when (x, y) = 0, also
written as x L y. More generally, two subsets are orthogonal, A 1. B, when any
two vectors a € A and b € B are orthogonal, (a, b) = 0.

! In the mathematical literature, the inner product is often taken to be linear in the first variable; this
is a matter of convention. The choice adopted here is that of the “physics” community; it makes
many formulas, such as the definition x*(y) := (x, y), more natural and conforming with function
notation.
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Easy Consequences

. Ifforallx € X, (x,y) =0, then y =0.

C(x +y,2) = (x,2) + (¥, 2), but (Ax, y) = A(x, y) (conjugate-linear).

. (x, x) is real (and non-negative); its square-root is denoted by || x| := +/{x, x).

ax] = |Allx]l, and |lx|| =0 < x = 0.

lx 1P = 11X 42 Re (x, y) + [y

. (Pythagoras) If (x,y) = 0 then ||x + y[|*> = [|x||> + [ly||>. More generally, if
(xi, xj) = 0fori # j then (by induction)

AN N B W=

2 2 2
X1 4+ xull” = llxeI” + -+ llxall”
We will see next that the triangle inequality is also true, making || - || a norm, thus
inner product spaces are normed spaces.
Examples 10.2

1. The simplest examples are the Euclidean spaces R" and C" with

ai by by n
(: 1. :P=@a@)|:|=D ab.
an) \bn b,) =
More generally, take any basis vy, ..., v, of F", expand any two vectors x and y

asx =y ,aivi,y = Y i, biv;, and define (x, y) := Y, @;b;. (The inner
product differs depending on the choice of the basis.)
2. The matrices of size m x n have an inner product given by

m n
(A.B) =) Y A;jBjj.

i=1 j=1

The induced norm is the Frobenius norm, not the operator norm (but recall that
all norms on a finite-dimensional Banach space are equivalent).

3. » 2 has the inner product ((ay,), (b,)) = ZZOZO anby,. The fact that this series
converges follows from Cauchy’s inequality | Y, @;bu| < [[(@) I (D).

4. » L*(A) has the inner product (f, g) := fA fg. That this integral has a finite
value follows from Holder’s inequality | fA fel < ||fg||L1 <N fll2llglpe-

5. The weighted €% and L?* spaces generalize these formulae to

((@n), (b)) =Y @nbywn, (£, 8) = [ F@)g)wx) dx,

respectively, where w, and w(x) are called weights; what properties do they need
to have for the inner product axioms to hold?
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Our first proposition generalizes Cauchy’s inequality (Proposition 7.5) from ¢2
to a general inner product space. It is probably the most used inequality in analysis.

Proposition 10.3 (Cauchy-Schwarz Inequality)

[Ce, < Nl

Proof The inequality need only be shown for y non-zero. Any other vector x can
be decomposed uniquely into two parts, one in the direction of y, and the other
perpendicular to it:
x=Xxy+ (x —21y), with(y,x —2xiy)=0.
This yields A = (y, x)/(y, ¥). Applying Pythagoras’ theorem, we deduce that
Ilell? = 12312 + llx = Ay11%,

hence ||Ay]| < |lx], or [A] < |lx|I/]ly|l, from which follows the assertion.

Corollary 10.4

x4yl < llxl + [yl

Proof Using the Cauchy-Schwarz inequality, Re (x, y) < [{(x, y)| < |lx[llIy]l, so
lx + ylI* = Ixl?4+2 Re (x, y) + Iy 12 < Ix I+ 20x Iy I+ 1y 1% = (xl+ 1y 3.

O



200

10 Hilbert Spaces

David Hilbert (1862-1943) Hilbert studied invariant
theory under Lindemann at Konigsberg until 1885. His
encyclopedic powers motivated him to explore much
of mathematics; in 1899, in Goéttingen, he gave rig-
orous axioms for Euclidean geometry; 1904—1909, he
studied Fredholm’s integral equations, with his student
Schmidt; he defined compact operators, proving they
are limits of matrices, with their spectrum of eigenval-
ues; (Schmidt) defined 02 with its inner product. On to
mathematical physics, quite possibly he inspired Ein-
stein’s general relativity. His 1918 ‘formalist’ research
programme set out to prove that set axioms are consis-
tent, “one can solve any problem by pure thought”.

Hence || - || is a norm, and all the facts about normed spaces apply to inner

product spaces. For example, the norm is continuous.

Proposition 10.5

The inner product is continuous.

Proof Let x, — x and y, — y, then since y, are bounded (Example 4.3(6)),

|(xn» )’n) - (-xv y)l = |<xns J’n) - (-x’ )’n) + (-xv )’n> - (-x’ )’>|
< e — 2, yu) |+ [{x, v — D)
< lxn = xWllyell + Xl yn — yIl = 0.

It follows that taking limits commutes with the inner product:

lim (x, yp) = ( lim x,, lim y,).
n— 00 n— 00 n—00

Definition 10.6

A Hilbert space is an inner product space which is complete as a metric space.

In the rest of the text, the letter H denotes a Hilbert space.
Examples 10.7
1. R", C", ¢2 and L2(R) are all Hilbert spaces (Theorems 8.24, 9.8).

2. Every inner product space can be completed to a Hilbert space. In the completion
as a normed space (Proposition 7.18), take (x, y) := lim (x,, y,), for represen-
n—oo
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tative Cauchy sequences x = [x,], y = [y,]. Note that (x,, y,) is a Cauchy
sequence in C since

[{(Xns Yn) — Xms Ym)| [{(Xns Yn) — Xms Yud | + KXy Yn) — (Xmy Ym)|

<

< o = Xm Hlyall + 1xm 1yn = Ymll — 0
asn, m — 00, with ||x,, ||, ||y, |l bounded.

3. » For an inner product space over C, if (x, Tx) =0 forall x € X, then T = 0.
Proof: The identities

O={(x+y.,T(x+y)=(xTy) +{y, Tx),
O0=x+iy, T(x +1iy)) =il{x,Ty)—i(y, Tx),

together imply (x, Ty) = 0, for any x, y € X, in particular ITy|I> = 0.
4. An alternative proof of the Cauchy-Schwarz inequality is

0< Jlu—rv]>=1—=2Rer(u,v)+ A

for u := x/||x|l, v := y/|ly|l unit vectors and all A € F, in particular for A =

[, v)|/(u, v).
5. |lx|l = sup [{x, y)|, with the maximum achieved when y = x/||x||.
lyll=1

Do all norms on vector spaces come from inner products, and if not, which
property characterizes inner product spaces? The answer is given by:

Proposition 10.8 (Parallelogram Law)

A norm is induced from an inner product if, and only if, it satisfies, for
all vectors x, y,

I + 1%+ llx — yI> = 2% 1% + Iy l1).

The statement asserts that the sum of the lengths squared of the diagonals of a
parallelogram equals that of the sides.

Y
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Proof The parallelogram law follows from adding the identities,
Ix + ylI* = x1* + 2Re (x, y) + Iy lI*,
lx — yI* = lxI* — 2Re (x, y) + [Iy]I*.

Subtracting the two gives 4Re (x, y). This is already sufficient to identify
the inner product when the scalar field is R. Over C, notice that Im (x, y) =
—Re i(x,y) =Re (ix, y), so

1 2 2 . .2 . .2
(3) = 5 (I = lly =xI? +illy + x| = ily —ix)?) . (10.1)

This remarkable polarization identity expresses the inner product purely in terms of
norms. Accordingly, for the converse of the proposition, define

for any normed space,  {(x, y)) := +(lly +x[*> — |y — x|1%),
for a complex space, (x,p) = {x, y) +i{ix, y).

Two of the inner product axioms follow from {(y,x)) = {(x,y) and (x,x) =
(x, x) = |lx||%, as well as (x,0) = {(x,0) = 0; (y,x) = (x, y) is readily verified
using

Ay, x) = llx +iyll> — llx —iyll> = ly — ixl|® = |y + ix||> = —4{ix, y).

To show linearity, let u = Y22, v = 2%, then by the parallelogram law,

Ix + Yl + lx + 2l = llu + v+ xI” + lu — v+ x|> = 2[u + x| + 2[v]|?
ly —xI?+ e = x> = llu+v—x|> + lu— v — x> = 2flu — x||* + 2||v]|*
Subtracting the two equations gives
(. ) + (. 2) = 2(x, 3 (v + 2))

In particular, putting z = 0 gives {(x, y)) = 2(x, % y) (for any y), reducing the
above identity to

(. y +2) = (x, y) + (x. 2)). (10.2)

By induction, it follows that (x,ny)) = n{x,y) for n € N. For the negative
integers,

(x, —y) = ll=y + xII* = |-y — x|I* = —((x, )
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while for rational numbers p = m/n, m,n € Z,n # 0,

n{x, Ty) = (x, my) =m{x, y)

so {(x, py) = p{x, y)). Note that ((x, y)) is continuous in x and y since the norm is
continuous, so if the rational numbers p,, — o € R, then

{(x,ay) = lim (x, ppy) = Hm ppx, y) = afx, y).

n—oo

This completes the proof when the scalar field is R. Over the complex numbers,
(x, Ay) = A{x, y) for A € C is evident from (10.1), (10.2), and

(x,iy) = =(ix, y) +ix, y) = i(x,y).

O

In a sense, it is the presence of orthogonality that distinguishes inner product
spaces from normed ones. By the polarization identity, two vectors are perpendicular
when ||[x +y| = |lx —y]| and ||x +iy|| = ||lx —iy|l. Each vector, and more
generally each subspace, is complemented by a subspace of those vectors that are
perpendicular to it.

Proposition 10.9

The orthogonal spaces of subsets A C X,
At :={xeX:VaeA, (x,a) =0},

satisfy

i ANnAtco,

(i) ACB = Bt C Al ,and A C AL,
(iii) A~ is a closed subspace of X,
(iv) AL =TAT*.

Proof (i) If a vector a € A is also in AL, then it is orthogonal to all vectors in A,
including itself, (a,a) = 0,s0a = 0.

(ii)Ifa € A C Bandx € Bt then (x,a) = 0,50 x € A+. Forany a € A and
x € At (a,x) = {x,a) =0,50a € A*+.

(iii) If x and y are in AL and a € A, then

(Ax,a) = Mx,a) =0, (x+vy,a)=(x,a)+ (y,a) =0,
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SO AX, X +y € AL If X, € AL and X, — x,then 0 = (x,,a) — (x,a), and
xe Al

(iv) That [[A]]L C AL follows from A C [A]. Conversely, let x € A+L: for any
a,beA,

(x,a+b) ={(x,a)+ {(x,b) =0, (x,ra)=A{x,a)=0,

so x is orthogonal to the space generated by A, x € [A]*. Let a, — y with
a, € [A]l, then 0 = (x, a,) — (x, y) and x € [A]". O

Exercises 10.10

1. If T, S : X — Y are linear maps on inner product spaces such that (y, Tx) =
(v, Sx) forallx € X,y € Y,then T = S. Example 10.7(3) is false for real
spaces: Find a non-zero 2 x 2 real matrix 7 such that (x, Tx) = 0 for all

x € R%.
2. The Cauchy-Schwarz inequality becomes an equality if, and only if, x = Ay
for some scalar A (or y = 0). Similarly, ||x + y|| = ||x|| + ||y|| precisely when

x = Ay, A > 0. More generally, || Y, x,|l = >, llx,|l if, and only if, x, = A,x
for some A, > 0.

3. When T : X — Y is 1-1 and linear, (x, y)y := (Tx, Ty)y is an inner product
on X. What properties does S : X — X need to have to ensure that ((x, y)) :=
(x, Sy) is also an inner product?

4. x Every inner product on R” is of the type (x, Ay) = Zij Ajjaib; where A is
a positive symmetric matrix. Deduce that balls have the shape of an ellipse in
R2, and of an ellipsoid in R3.

5. » The product of two inner product spaces, X x Y, has an inner product defined

by
( (x‘), (x2> ) i= (x1, X2)x + (1, )y
Y1 »

Then the maps x — (6) and y (9) embed X and Y as orthogonal subspaces
of X x Y. Although the induced norm is not the same one we defined for X x Y
as normed spaces (Example 7.4(8)), the two norms are equivalent.

When X, Y are complete, so is X x Y with the induced norm (Hint: use
Il < [ G) -

6. In any inner product space,

@ llx = ylI> + lIx +y — 2z = 2|lx — zlI> + 2]y — z[%.

®) Ix+y+zlP+lx+y—zlP+lx—y+zl*>+lx —y—z|?
=4(lIx1> + Iy 1> + 1z1?).

(c) * Generalize, by induction, to the sum of n elements,

n n
SIS ol = 3 bl
i=1 i=1

(e
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where o ranges through all 2" possible &+ choices for x;. Deduce that one
can always choose the signs such that ||x; £ x; +--- £ x, ||2 = lx ||2.
Deduce further that a random walk of successive vectors £x+y+x+y+---
has an expected root-mean-square distance of /n+/||x 1%+ | y||2.

(d) By first showing that if @ = ¢>™/" then Y }_; 0% = 0 = Y 7_; »** and
Y i, o*Re(w*z) = zn/2, prove

1 « 2
(x, ) ==Y oy + x|,
nk:l

7. Verify that the norms for £2 and L?(R) satisfy the parallelogram law, and show
that the inner product obtained from the polarization identity is the same one
defined previously (Examples 10.2(3, 4)).

8. The 1-norm and oo-norm defined on R? are not induced by inner products. Find
two vectors that do not satisfy the parallelogram law with these norms.

9. » Similarly, £', £%°, L'(R) and L>°(R) are not inner product spaces. Neither
is B(X, Y) in general.

10. A norm || - || that satisfies the parallelogram law gives rise to its associated
inner product, by the polarization identity. In turn, this inner product induces
the norm ||x|| := +/{x, x). Show that the two norms are identical.

11. The polynomials ¢ and 2¢> — 1 are orthogonal in L2[0, 1]. So are sine and cosine
in the space L>[—, 77]; can you find a function orthogonal to both?

12. 0+ = X, X+ = 0.In fact, A- = X < A C {0}. Do you think it is true that
Al =0 & A= X?What if A is a closed linear subspace of X?

13. Show that (i) (A + B)* = AL N BL, (ii) A+ = AL, (Hint: Use property (ii)
of Proposition 10.9.)

14. Letd := d(x,[[y]) = inf) ||[x + Ay||, where y is a unit vector; show that (i)
d = ||x + Agy| for some Ao, (ii) |(x, y)|* = ||x||*> —d?, and (iii) y L (x —Agy).

15. To illustrate the strength of orthogonality, prove that if M L N are orthogonal
complete subspaces of X, then M + N is also complete (Example 7.12(2)).

16. Suppose a vector space X satisfies all the axioms for an inner product space
except that it contains non-zero vectors with (x, x) = 0. Show that if (x, x) =
0, then Yy, (x,y) = 0. (Hint: Expand ||y — Ax|.)

Deduce that Pythagoras’ theorem and Cauchy-Schwarz’s inequality remain
valid. Show that Z := {x : (x,x) = 0} is a closed linear subspace, and that
there is a well-defined inner producton X/Z, (x + Z, y + Z) := (x, y).

17. A light ‘ray’ has a frequency profile f(w). Oversimplifying slightly, our eyes
convert it to a color vector ((r, f), (g, f), (b, f)) where r(w), g(w), b(w) are
the absorption profiles of the retinal cone cells. So any two points (rays) in the
coset f + [[r, g, b]]l are perceived to have the same color.
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10.2 Least Squares Approximation

By Exercise 10.10(14) above, the distance between a point and a line can be
minimized by a unique point on the line. This has a generalization with far-reaching
consequences:

Theorem 10.11 (Hilbert Projection Theorem)

If M is a closed convex subset of a Hilbert space H, then any point in H
has a unique point in M which is closest to it,

Vx e H, Alx, e M, Vy e M, |x — x| < |lx —y].

Forany y € M,Re (x — x,, y — x4) < 0.

The mapping H — M, x — x,, is continuous.

Proof Existence of x.: Let d := d(x, M) = infycpy ||x — y|| be the smallest
distance from M to x. Then there is a sequence of vectors y, € M such that
lx — yull = d. Using the parallelogram law and the convexity of M, (y,),eN 1S
a Cauchy sequence,

e = yml® = 20yn = I + 2llym = x> = [0n + ym) = 2117
YntY 2
= 2y = 51+ 2y — I = 4] 222" x|

<20y — X1 4 2llym — x|I*> — 4d>

— 0, asn,m — o0.

But H is complete and M is closed, so y, converges to some x,, € M. It follows, by
continuity of the norm, that ||[x — x.|| = lim |x — y,|| =d.
n—oo

Uniqueness of x,: Suppose y € M is another closest point to x, i.e., [|[x — y|| =d.
Then x, = y since, as in the argument above,

e — yII* = 201xe — x 1% + 20y — x[1* = [ + ¥) — 2x]?
< 2w — x |2+ 2]y — x| — 4d* = 0.
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Obtuse angle property: Consider the straight line y(#) := x, + tv, where v is a
vector pointing inside M. By convexity of M, y(¢) € M for t > 0 small enough; for
example, take v = y — x,, with y € M, 0 < ¢ < 1. Then

2 2 2
Ix — x> < lx — YOI = llx — x4 — 10]|
= [lx — x4]|* — 2t Re (x — x4, v) + 17|01
2
v

0 (10.3)

co2Re (x — xy, v)

NN

o Re(x — x4, ¥y — Xy)

since t is positive and arbitrarily close to zero.

Continuity of x + x4 Let x, z be any points in H, with corresponding closest
points x., zZx in M. Then the map is non-expansive, and thus continuous:

I — zI® = I1x — xs 4 s — 24 + 24 — 2l
=[x — Xy 4 2o — zlI? + llxe — z4ll?
+2Re (x — x4, X5 — Z4) +2Re (24 — 7, X5 — Z4)
> ||xe — zll?

since both inner products are non-negative by (10.3).
Let us concentrate on the special case when M is a closed subspace of H.
Theorem 10.12
When M is a closed linear subspace of a Hilbert space H, then y € M is
the closest point x, to x € H if, and only if,
xX—yeM L

The map P : x — x, is an ‘orthogonal’ projection of norm 1, with im P =
M orthogonal to ker P = M, so

H=Mo M=

Proof (i) Let v be any non-zero point of M and let w := x — (x4 + Av) where X is
chosen so that v L w, that is, A := (v, x — x,)/||v||?>. By Pythagoras’ theorem, we
get

2 2 2 2 2
X = x: 1" = llw + A" = [lw]|” + |Av]|” = [Jwll
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making x, + Av even closer to x than the closest point x,, unless A = 0, i.e.,
(v, x — xx) = 0. Since v is arbitrary, this gives x — x, L M.

Conversely, if (x — y) L v’ for any v € M, then (x —y) L (v — y) and
Pythagoras’ theorem implies

2 2 2
lx = v'I1" = llx = yI* + lly = V'II%,

so that ||x — y|| < |lx — v||, making y the closest point in M to x.

(ii) By the above, for any x € H, P(x) is that unique vector in M such that x —
P(x) € M. This characteristic property has the following consequences:

o P islinear since

(x+y)—(Px+Py)=(x—Px)+(y— Py) e M™, Px+PyeM,

Ax — APx = A(x — Px) € M*, APx e M,

hence P(x + y) = Px + Py and P(Ax) = APx.
o The closest pointin M to v € M is v itself, i.e., Pv = v,soim P = M.
o Whenx € M+, thenx —0e Mt and0 € M so Px =0, i.e., M+ C ker P.

P2 = P since for any x, Px € M and so P2Zx = Px. P is continuous with
IP| = 1 since ||x]|> = |lx — Px|*> + | Px]|? by Pythagoras’ theorem so that
IPx|| < |lx|I; moreover || Pv| = ||v|| whenv € M.

ker P = M~ since Px = 0 implies x = x — Px € M*.

Finally, H = im P @ ker P = M @ M, since any vector can be decomposed as
x=Px+(x—Px),and M N M+ =0. O

Corollary 10.13

For any subset A C H, A+t = [A].
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Proof Let M be a closed linear subspace of a Hilbert space H. By Proposition 10.9,
M < ML so we require the opposite inclusion. Let x € ML then x = u + v
where u € M and v € M1, and

0= (v,x) = (v,u) + (v,v) = [[v]|?,

forcing v = 0 and x € M; thus M+ C M. In particular, AT+ = [A] = [A].
O

Note that M+ =0 <& M = ML = 0+ = H, answering Exercise 10.10(12) in
the case of a closed linear subspace of a Hilbert space.

Examples 10.14

1. Let M :={ f € L?[0,1] : fol f = 0}. To find that function f{ in M which most
closely approximates a given function g, we first note

M={felL*0,1]:(1, f)=0}={1}", soM*+ =T1].

Then fo must satisfy fo € M and g — fo € Mt ie., fo = g+ rand 0 =
Jo fo=Jy g+rhence fo=g— [y g

2. The “affine” projection onto a plane with equation x - n = d (n a unit vector) is
givenby P(x) :==x + (d —x - n)n.
Proof: Translate all points x +— y := x — dn, so that the plane becomes the
subspace M with equation y -n = 0, i.e., M = {n}*. The required point satisfies
(y —yp)-y=0forally € M,so y, = y + tn. Dotting with r implies
t = —y-n =d — x - n, which can be substituted into xo = x + tn.

3. A projection is orthogonal if, and only if, || P|| = 1 or 0.
Proof: Using (x — Px, Px) = 0 and the Cauchy-Schwarz inequality,

I Px||*> = (x, Px) < x|l Px],

so ||Px|| < |x||; but Px = x for x € im P, so ||P|| = 1 (unless P = 0).
Conversely, let u € ker P, v € im P; then for any A,

vl = 1P + v)I|I* < llau + v)|* = |2 [lull* + 2Re Afv, u) + [v]|?

and after letting A = |A|e!® with [A| — 0, we find Re ¢’ (v, u) > 0 for any 6,
hence (v, u) = 0.

4. » [A] is dense in H if, and only if, A+ = 0.
Proof: If A+ =0, then [A] = AL+ = 0+ = H. Conversely, if A is dense in H,
then AL = [A]*+ = H+ = 0.
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Least Squares Approximation

A common problem in mathematical applications is to approximate a generic vector
x by one which is more easily handled, such as a linear combination of simpler

vectors i, ..., ¥,. For Hilbert spaces, there is a guarantee that a unique closest
approximation exists, and this lies at the heart of the method of least squares.
Let M := [[y1, ..., yull, a closed linear subspace of H; then the closest point

in M toxisx, = Z'}zl ajy; such that x — x, L M. Since M is generated by
Y1, ..., Yn, this is equivalent to

(Vi,x—x4)=0, i=1,...,n,

n

(yi. x) = (i x) = Y (i yj)er
j=l1
These n linear equations in the n unknowns «1, ..., oy, can be recast in matrix
form,
y1) - )\ [ (y1, x)
(V> Y1)+ Vs Yn) Op (Yn» Xx)

Given x, the coefficients «; can be found by solving these equations. The Gram
matrix [(y;, y;)], and possibly its inverse, need only be calculated once, and used to
approximate other points.

Example The space of cubic polynomials, a + bt + ct? +dr3, is a four-dimensional
closed linear subspace of the Hilbert space L2[0, 1], with basis 1, 7, 12, 3. Their
Gram matrix and inverse are given by
- 16 —120 240  —140
—120 1200 —2700 1680
240 —2700 6480 —4200
—140 1680 —4200 2800

Bl =
Dl ] b —
O 0] =
Q=N == —

So, to approximate the sine function by a cubic polynomial over the region [0, 1],
we first calculate (¢', sint) ;29 1}, which work out to (0.460, 0.301, 0.223, 0.177),
and then apply the inverse of the Gram matrix to it, giving

p(1) ~ —0.000253 + 1.0057 — 0.01917% — 0.1447>.

Notice that the coefficients are close to, but not the same as, the first terms of
the MacLaurin expansion of sine. The difference is that, whereas the MacLaurin
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expansion is accurate at 0 and becomes progressively worse away from it, the
L*-approximation balances out the ‘root-mean-square error’ throughout the region
[0, 1].

Exercises 10.15

1.

2.

d

Find the closest point in the plane 2x 4+ y — 3z = 0 to a point x € R>.

(Hint: Find ML)

Let (i) M := [[y], or (ii) M := {y}*, where y is a unit vector. The orthogonal
projection P which maps any point x to its closest point in M is (i) Px =
(y,x)y, (i) Px =x — (y, x)y.

» In the decomposition x = u + v with u € M and v € ML, u and v are
unique. Deduce that if H = M & N, where M is a closed linear subspace and
M L N,then N = M+

Let v + M be a coset of a closed linear subspace M. Show that there is a
unique vector x € v+ M with smallest norm. (Hint: this is equivalent to finding
the closest vector in M to —v.) Deduce that Riesz’s lemma (Proposition 8.22)
continues to hold in a Hilbert space even when ¢ = 1.

If M C N are both closed linear subspaces, then M & (MtNN)=N.

Let T be a square matrix, and suppose both subspaces M and M. are T-
invariant, so that T takes the schematic form ({ %) on M @ M*. Show that
| T\ = max(||All, || B|)). (Hint: If x = u + v, then | Tx||?> = || Tu|® + | Tv|>.)
» There is a 1-1 correspondence between closed linear subspaces of a Hilbert
space and orthogonal projections (onto them). Properties about subspaces are
reflected as properties of the projections, e.g., if the orthogonal projections Py
and Py project onto M and N respectively, then

@ MCN & PyPy =Py & PyPy = Py,

b ML N & PyPy=0<& PyPy =0,

(c) N=M*+ & I =Py+ Py,

(d imTCM & T=PyT,andM CkerT <& TPy =0,
(e) M is T-invariant < T Py; = Py T Py,

(f) M and M~ are both T-invariant < T Py = PyT,

(a) Let P be a projection onto a closed linear subspace M. Since (x,v) =
(Px,v) for v € M, it follows that |(x, v)| < ||Px]|||v]l. Deduce that in a
real Hilbert space, the angle between x and v is at least cos ™ (|| Px|| /[l x|).

(b) Let H = M @& N with M, N non-zero closed subspaces. Show that there
is a minimum distance d > 0 between the disjoint closed sets Sy N M and
Su N N, where Sy is the sphere of unit vectors. Thus for any unit vectors
ueM,veN,|u—v| >d>0.Deduce that Re (1, v) < a :=1 —d2/2,
and hence that

Vx e M, Vy e N, [, )| < allx|fliyll.
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12.

13.

10 Hilbert Spaces

The main theorem, which does not refer to inner products, is not true in Banach
spaces in general.

(a) InR? with the 1-norm, the vector ({) has many closest vectors in the closed
ball B;(0).

(b) In £°°, there are many sequences in c( that have the minimum distance to
(1,1,...).

(c) Show that, for a convex subset M of a normed space, the set of best
approximations to a point x, {y € M : ||x — y|| = d(x, M) }, is convex.

(d) = On the other hand, in £°°, the sequence 0 has no closest sequence in the
closed convex set M := {(ap)neN € o : D, an/2" =1}

* Consider two orthogonal projections P and Q in RY. Show that the iteration
Ynt1 = QPy, starting from y, = x converges to a point x, € im P Nim Q.
Find

(a) the best-fitting quadratic and cubic polynomials to the sine function in
[0, 27],
(b) the linear combination of sin and cos which is closest to 1 — 3 in L2[0, 1].

(a) The Gram matrix of vectors y{, ..., y, is G := A*A where the columns
of A are y;, and the rows of A* are iiT. It is invertible when y ; are linearly
independent.

(b) Show that in order to write a vector x as a linear combination of basis
vectors x = 27:1 ;Y ;, given the numbers b; := (y;, x), then one needs
to solve the matrix equation Gt = b.

(c) Given the total mass and moment of inertia of a radially symmetric planar
object,

R
M= 271/0 p(ryrdr = 2w (r, p(r)) 20, g}

R
I = 271/ p(r)r dr = 27 (3, P(r)) 210,R]>
0

find an estimate of p(r) as some function o + Br.
* The symmetric Gram matrix of a set of vectors x,, € R" is useful in other
contexts as well. Show how to recover

(a) the vectors x, from their Gram matrix, up to an isomorphism (use
diagonalization to find A such that A2 = G),

(b) the Gram matrix of the vectors from the mutual distances between vectors
d;j, and their norms r;,

(c) the Gram matrix from d;; only, assuming »_, x, = 0.

This is essentially what is done in the Global Positioning System, when 3-4
distances obtained by time-lags from satellites are converted to a position.
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Frigyes Riesz (1880-1956) Riesz was a Hungarian
mathematics professor who proved that L2(R) is com-
plete; in 1907, with E.S. Fischer, he proved that
Hilbert’s £ space is equivalent to L>(R); he defined
compact operators abstractly for more general spaces,
including Cla, b] (1918); he introduced the resolvent
projection to part of the spectrum and thus f(7) for
compact operators.

10.3 Duality H* ~ H

An inner product is a function acting on two variables. But if one input vector is
fixed, it becomes a scalar-valued function on vectors, indeed a continuous functional

XX —>T
y > (X, ).
This is linear by the inner product axioms, while continuity follows from the
Cauchy-Schwarz inequality |x*y| = |{x, y)| < x|yl

Are there any other functionals besides these? Not when the space is complete:

Theorem 10.16 (Riesz Representation Theorem)

Every continuous functional of a Hilbert space H is of the form x* :=

(-x7 ')7
Vo € H*, Ax e H, ¢ = (x,-).
The Riesz map

J:H— H*

x> x*

is a bijective conjugate-linear isometry.
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Proof (i) Given ¢ € H*, first notice that for any z and y in H,

(@y)z — (p2)y € ker ¢.

Assuming ¢ # 0, pick a unit vector z _L ker ¢; this is possible since ker¢ # H, so
(ker ) £ 0. Then

0= (z, (@py)z = (@2)y) = (9y) — (¥2)(2, ),
S 9y = (92)(z, y) = (x, ),
where x = (¢z)z. To show that it is unique, suppose ¥ is another such x, then
VyeH, (x—xy =y -Ey)=¢y—9¢y=0& x=1x.

These considerations prove that J is onto and 1-1.
(i1) Let x and y be two vectors in H. Then for any z € H,

x+'@=x+y2 =&+ =x2+y"

(0x)*(2) = (Ax,2) = Ax, 2) = Ax"z,

showing that (x + y)* = x* 4+ y* and (Ax)* = Ax* (conjugate-linear).
J is isometric: Note that
| *

* Xyl [(x, y)
X7l g = sup =
y20 VIl yzo 1Yl

= [lxll,
using the Cauchy-Schwarz inequality, in particular with y = x.

Examples 10.17

1. » For T € B(X,Y) (X, Y Hilbert spaces), | T| = sup  |{y, Tx)|.
lxl=1=lyl

2. The dual space of R is (isomorphic to) R itself. Any ¢ : I{Q — R that is linear
must be of type ¢ (#) = At where A € R.

3. Functionals are simply row vectors when H = C"; thus H* is isometric to C"
and is generated by the dual basis ej, ... e, .
Proof: Let ey,. .., e,, be the standard basis for C". Then every functional ¢ in
(C™")* is of the type ¢ = (b;)", where b; := ¢e; (Example 8.3(3)). Thus the map
C" — (C"*, y—~ y', where y'x := y - x, is onto; it is easily seen to be linear,
and continuous from Cauchy’s inequality |y - x| < ||y |lllx|l. In fact |y " || = ||y
(using x = (b;)"_,). Note that y" = Y/, bye],and e[ e; = §;;.

4. It was noted previously that 2% = ¢2 and L2(R)* = L%(R) (Theorem 9.25).
These are special cases of the Riesz correspondence.
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The Adjoint Map T*

We now seek to find a generalization of the transpose operation on matrices. In
finite dimensions, we have (A*v)* = v*A; in terms of inner products, this becomes
(A*v, x) = (v, Ax). In this form, it can be generalized to any Hilbert space:

Definition 10.18

The (Hilbert) adjoint of an operator 7 : X — Y between Hilbert spaces, is
the operator 7* : Y — X uniquely defined by the relation

Vxe X, VyeY, (T*y, x)x = (v, Tx)y.

That T*y is uniquely defined follows from the Riesz correspondence applied to
the functional x — (y, Tx). Linearity and continuity of 7* follow from

(T*(y1 +y2), x) = (y1 +y2, Tx) = (y1, Tx) + (y2, Tx) = (T*y1 + T*y2, x)
(T*(y), x) = (Ay, Tx) = Ay, Tx) = (AT*y, x)

IT*l= sup KT*y,x)l= sup [y, Tx)|=|T]
Iyl=1=lix] Iyll=1=lx]

The properties of the adjoint map are:

Proposition 10.19

(S+T)*=S*+T* (AT)* = AT*, (ST)* = T*S*,
=1, T*=T, |T*T|=I|T|?

Proof These assertions follow from the following identities, valid for all x € X,
yeY:
(S+T)'y,x)=(y,(S+T)x) =(y,Sx) + (y, Tx) = (§*+ Ty, x)
(AT)*y, x) = (y, ATx) = M(T*y, x) = (AT*y, x)
((ST)*y, x) = (y, STx) = (S*y, Tx) = (T*S*y, x)
(I*y,x) =y, Ix) = (y,x) = (Iy, x)
(y. T**x) = (T, y) = (x. T*y) = (T*y,x) = (y, Tx),
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IT*T|| = sup Ky, T*Tx)|= sup [Ty, Tx)]|

x,yeSx x,yeSx

sup I TyIITxI = T3,

X,yeSx

where Sy := {x : ||x|| = 1}, and the equation before the last is valid by the Cauchy-
Schwarz inequality, in particular choosing y = x. O

The following proposition reveals an orthogonality between subspaces of adjoint
operators. In particular, both M and M L are T-invariant if, and only if, M is T- and
T*-invariant.

Proposition 10.20

For an operator 7 on Hilbert spaces,
kerT* = (imT)*, im7* = (kerT)*.
If T € B(H) and M is a closed linear subspace of H,

M is T-invariant < M is T*-invariant.

Proof The definition (x, Ty) = (T*x, y) implies that
x 1Ty & T*x Ly,

in particular x L im7 < T*x L Y < x € kerT*. Consequently, ker T* =
(im T)* and thus ker T = ker T** = (im T*); furthermore,

(ker T)* = (imT*)** =im T*.
Suppose M is T-invariant, and let x € M*, y € M, then (T*x, y) = (x, Ty) =0,

and T*x € M~*. Conversely, if M is T*-invariant then M~ is T**-invariant; but
T* = T and M+ = M for a closed subspace M. O
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Unitary Operators

Definition 10.21

A unitary isomorphism J : X — Y of inner product spaces is defined as a
map which preserves the structure of an inner product space, namely

J is bijective (preserves the elements),
J is linear (preserves vector addition and scalar multiplication),
(Jx, Jy)y = (x, ¥)x (preserves the inner product).

It is obvious that a unitary isomorphism preserves the induced norm (an isome-
try); the converse is also partly true in Hilbert spaces, because, by the polarization
identity, the inner product can be written in terms of norms:

Proposition 10.22

An operator U € B(X, Y) on Hilbert spaces preserves the inner product
when U preserves the norm,

Vx,x e X, (Ux,Ux)=(x,%) & UU=1I
S ||Ux|| = ||lx|| Vx € X.

U is unitary when it is also surjective.

This statement basically says that preserving the inner product (lengths and
‘angles’) is equivalent to preserving lengths.

Proof The first equivalence is trivial
Vx, X, (x,X) = (Ux,UX) = {x,U*UX) & U*U = I.

In particular (taking X = x), U is isometric. The converse implication from the third
statement to the first follows from the polarization identity (10.1),

(Ux,Uy) = $(1Ux + Uyl +--) = 2(Ix + yll +---) = {x, ).

A superficially different proof of this last fact can be given for complex Hilbert
spaces (Example 10.7(3)),

Vx, {(x,x) = (Ux,Ux) = (x,U*Ux) & U*U = 1.



218 10 Hilbert Spaces

Since isometries are 1-1, we need only require in addition that it is onto for U to be
invertible, in which case U~! = U*. O

Examples 10.23

1. The adjoint of a matrix A = [A;;], with respect to the standard inner product, is
the conjugate of its transpose, AT, since

(x,Ay) = ZalAl]b _Z(Z Aijaibj = (ATx, y).

2. » The adjoint of the left-shift operator (on £2) is the right-shift, L* = R, since

o0

o
(L*y, x) = (y, Lx) Z nans1 =Y bp1ay = (Ry, x)

n=0 n=1

and R* = L** = L.
3. The adjoint of an integral operator on L*(R),

Tf(s) := /k(s,t)f(t) dt is T*g(t) = /k(s,t)g(s) ds.

Proof: (g, Tf) = f 8(s) / k(s, 1) f (1) dr ds
=/f k(s,1)g(s) f(t)ds dt

_ / / k(. 0g(s)ds f(r)dr = (T*g, f).

4. The unitary®> isomorphisms of R’ are the rotations and reflections. More
generally, those of C" are the matrices whose columns are orthonormal (mutually
orthogonal and of unit norm).

Proof: The column vectors u; of a unitary matrix U satisfy u; = Ue;, where e;
are the standard basis for C". Then, (u;, u;) = (Ue;, Ue;) = (e;, ;) = &;j.

5. » By itself, U*U = I ensures that a linear operator U : X — Y is isometric
(and 1-1), but not that it is onto, that is, it is an isometric embedding of X into Y.

. 01 . .
For example, the matrix ((1) 8) embeds R? into R3. In general, UU* is not equal

to / but is a projection of Y onto imU C Y.
Proof: Clearly, UU*UU* = UU* is a projection from Y to im U. It is onto since
Uu*(Ux) =

2 More properly called orthogonal isomorphisms when the space is real.
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Exercises 10.24

1.

2.

o N W

11.
12.
13.

14.

The norm of H* is induced from an inner product, (x*, y*) g« := (y, x) . Then
the Riesz map is “anti-unitary”, that is, (Jx, Jy) = (x, y).

A functional ¢ € H* corresponds to some vector x € H; if M is a closed linear
subspace of H, ¢ can be restricted to act on it, ¢~S € M*. As M is a Hilbert space
in its own right, what vector v € M corresponds to ¢~>?

. A second inner product on H which satisfies |[{(x, y))| < c|lx]||||y|| must be of

the type (x, y)) = (Tx,y) = (x,Ty), where T € B(H), |T| < c.

Riesz’s representation theorem holds only for complete inner product spaces
(it is false for, say, coo C £%). Where is completeness used in the proof of the
theorem?

If T is invertible then (T~ 1)* = (T*)~1.

Use [T*T|| = [|IT||* to show | T*|| = |IT]I.

» The adjoint of the multiplier operator in £2, x > ax,is y — ay.

Let @ € ¢'(Z), then Young’s inequality (Exercise 9.17(10)) shows that the
linear map x — asx is continuous on £2(Z). Its adjoint is given by y > a' %y
where (a,)" 1= (a_p).

The Volterra operator on L2[0, 1], V£ (t) := fé £, has adjoint V* £ (¢) = ftl f.

. Let {x, y) := (x, Sy) be a new inner product (§* = §), then the adjoint of T

with respect to it is T* := S~ T*S.

If R € B(X,Y)then T — RTR* is an operator B(X) — B(Y).

Forany T € B(H, Hy), ker(T*T) = ker T and im T*T = im T*.

A linear map T : X — Y is said to be conformal when it preserves
orthogonality,

Vx,x € X, (x,x) =0 & (Tx,Tx) =0.

Show that this is the case if, and only if, T = AU for some A > 0, U unitary.
Moreover, angles between vectors are preserved (for A > 0).

In particular, two inner products on the same vector space are conformal when
{x, y) = A(x, y) for some A > 0.

* Show that a map between Hilbert spaces which preserves the inner product
must be linear. Deduce that isometries on a real Hilbert space must be of the
type f(x) = Ux + v where U*U = [ andv € H.

(Hint: Let g(x) = f(x) — f(0), an isometry; show (g(x + y), g(2)) =
(g(x) +8(»), g(2)),s0 g(x +y) — g(x) — g(y) € [img] N (img)+.)
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10.4 Inverse Problems

When an operator T : X — Y is not surjective, the equation Tx = y need not have
a solution. The next best thing to ask for is a vector x which minimizes |Tx — y||.

Proposition 10.25

For an operator 7 : Hy — H; between Hilbert spaces and a vector y €
H», a vector x € H| minimizes |7x — y|| if, and only if

T"Tx =T*y.

Proof Suppose T € B(X,Y), and consider the closed linear subspace M :=
imT C Y. Foreach y € Y, there is a unique vector y, € M which is closest to
it. As proved in Theorem 10.12, a necessary and sufficient condition for v € M to
be y,is y — v € Mt = ker T* (Proposition 10.20), that is, T*v = T*y. If y,
happens to be inim 7, i.e., y, = Tx, then the equation becomes T*Tx = T*y. O

To continue this discussion, y is in im 7 only when y € imT @ (imT)*, a
dense subspace of Y. When im 7 is closed, e.g., in finite dimensions, this is the case
forally € Y. If y, ¢ im T then we can only conclude that there is some sequence
of vectors x, € X such that Tx,, — vy, and so T*Tx, — T*y. Thus ||Tx, — y||
converges to ||y« — y||, but is never equal to it (by uniqueness of yy).

In the case of finite dimensions, the above situation is typical of an overdeter-
mined system of equations, that is, a system 7Tx = y that represents more equations
than there are unknowns. The least squares solution is then found to be

x = (T*T)" 'T*y

at least in the generic case when T is 1-1. Then T*T is also 1-1 since T*Tx =
0 & |Tx|> = (x,T*Tx) =0 < x =0, so it is invertible at least on im T*.

The dual problem is that of an underdetermined system of equations, Tx =y,
where there are less equations than unknowns. There is an oversupply of solutions,
namely any vector in xo + ker 7', where x¢ is any single solution of the equation,
and ker(T*T) = kerT # 0. In this case, a unique x that is closest to 0 can be
selected from all these solutions, i.e., has the least norm. That is, we seek x €
(ker T)L = im T* (in finite dimensions, every subspace is closed). Thus x = T*v
and y = Tx = TT*v, so the required least norm vector is

x=TTT" 'y.

In the general case, an operator need be neither 1-1 nor onto, so the set of vectors
which minimize ||Tx — y|| is a coset, x+ker T. But since ker T is a closed subspace,
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it has a unique vector with smallest norm. The mapping from y to this x € (ker 7')*
is then well-defined for y € im 7 + (im 7')* and is denoted by T, called the Moore-
Penrose pseudo-inverse. To recap,

T :imT + (imT)* C Y — X,

vy x, where T*"Tx =T*y, x € (ker T)™.

In the simple case when T is invertible, so im 7 = Y, it reduces to the usual inverse
TT = (T*T)~'T* = T~'. For example, every m x n matrix and every vector has a
pseudo-inverse, e.g., xT = x*/||x||?, so that xTx = 1 (except that 0T = 0).

x+ker T b
imT
T
—
0
X Y

The equations introduced above have found an extremely fertile scope for
applications. In many scientific or engineering contexts, an abundant number of
measurements of a few variables in general gives an overdetermined system of
equations. This also occurs when there is loss of information during measurement,
so that the ‘space of measurements’ (im 7') is a proper subspace of the space of
variables (H). A small sample of applications is given below:

Regression

To find the best-fitting (least-squares) line y = mx + ¢ to N given points (3/) € R,
minimizing the errors in y,, we require that mx, 4 c be collectively as close to y,
as possible. In matrix form, we require
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written as Am = y. As this usually has no exact solution, the best alternative is
A*Am = A*y,

F T () (T
(Fasn)()=(5)

Solving form = (";) gives the usual regression line as used in statistics. Moreover,
the standard deviation of the ‘residuals’ is

PR T R 7) LA
oy = | EE T L

n Vn

This technique is not at all restricted to fitting straight lines. Suppose it is required
to approximate data points ()V(Z) by a quadratic polynomial a + bx + cx?. This is the
same as trying to solve the matrix equation

2

1 xp xj V1
I xo x% a 2
b= .

o c
Ly xy YN

Repeating the above procedure gives the solution

a (82-8183) Y, x2yn+(S154—5283) 3, Xn Yn+(S2—$284) X, Y
bl =— | (S0853-518) 3, x2yn+(S2=5084) X, XnYn+(S5154—5283) 3, ¥n
c (82—8082) X,y X2 yn+(S0S3—5152) 3 Xnyn+(S3—5183) X,

where Sy = >, xk, and A = S5 — 28515,83 + S84 — 05254 + SoS3. (Note: In
practice, one does not need to program these formulae; multiplying out 7*T as a
numerical matrix and solving 7*Tx = T*y directly is usually a better option.)

In general, one may find the best parameters a; in the function

y=aifi+---+agfi
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to fit data points (x;j,y;), 1 < j < n, where the functions f; are given. The
corresponding matrix equation is Aa =y,

fix) - frlxD\ [ar i
S1(x2) -+ fi(x2) =1

Aak

and the best fit parameters a; found as above.

Tikhonov Regularization
The Moore-Penrose pseudo-inverse is usually either not a continuous operator or has
a large condition number; its solutions tend to fluctuate with slight changes in the
data (e.g., errors). To address this deficiency, a number of different regularization
techniques are employed whose aim is to improve the ill-conditioning. One of
the more popular techniques is attributed to Tikhonov; it balances out finding the
best approximate solution of Tx = y with x having a small norm by seeking the
minimum of ||Tx — y||2 + a|lx ||2, where « > 0 is some pre-determined parameter.
To solve this minimization problem, consider the following more general
formulation: Let H be a real Hilbert space and suppose A € B(H), b € H, and
¢ € R; to find the minimum of the quadratic function ¢ : H — R,

q(x) := (x, Ax) + (b, x) +c.
Taking small variations of the minimum point x, namely x + fv, we deduce

Vi e R,Vv e H, qg(x) <gx+tv) = (x +1tv, Ax +tAv) + (b, x +tv) +¢
0 < t{v, Ax + A*x + b) + 12 (v, Av),
SoVE>0, —t{v, Av) < (v, Ax + A*x + b) < t{v, Av).

As t and v are arbitrary, it must be the case that x satisfies
(A+ASx+b=0.

In particular, minimizing || Tx — y||? = (x, T*Tx) —2(T*y, x) + ||y gives the
equation inferred previously, 7*Tx = T*y. Similarly, that x which minimizes

ITx — yII* + allx)|? = (x, (T*T 4+ al)x) — 2(T*y, x) + |Iy|I?
solves the equation

(T*T +al)x = T*y.
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This is the regularized version of the last proposition. It will be proved later that
T*T + «l is always invertible (regular) for « > 0 (Proposition 15.44). This gives
an excellent alternative to the Moore-Penrose solution when y ¢ im 7 + (im ')+,
although choosing the parameter o« may not be straightforward.

Algebraic Reconstruction Technique

ART is an iterative algorithm that generates a solution x of the (real) equation
Ax = b. The matrix equation can be rewritten as {(a,,x) = b,,n = 1,..., N,
where a,, are the rows of A. The iteration is defined in terms of affine projections
(Example 10.14(2))

by —{an, xp—1)

a X0 € H.
2 n»
lla |l

Xp =Xp—1+

The indices of a, and b, are to be understood as modulo N (ay+1 = ai, etc). We
show below that starting from any xo € H, the iteration converges to the closest
point x, to x that is a solution of Ax, = b. Note that starting from xo = 0 results
in the Moore-Penrose inverse solution.

To see why this works, let M, := a,f (cycling through n = 1,..., N), then
M := (), M, contains all the solutions of Av = 0; let also v, := x, — x,. The
iteration becomes

Vy = Vy—1 — Ay, Vy_1)8y = Pyv,_1 € My,

where a,, = a,/|la,||, and P, is the projection onto the hyperplane M,,. Notice that
Vg =X0— X4 € M+, as well as v, — v,_; € ML, so the entire sequence v, lies in
M+t

Consider the operator Q := Py --- Py acting on M~; its norm is bounded by 1
because | Py|| < 1foreachn.If 1 = ||Q] = SUP|jp =1 |Qw]||, then the supremum
is achieved by some unit vector w € M+ since the unit ball is compact in finite
dimensions and w +— ||Qw]|| is a continuous function. Denote w,, := P,w,_| =
w,_1 — (@, W,_1)a,, with wy := w; then

I=[Qwl =lIPvwy-i1ll < [wy-1ll < [lwy-2ll < < flwi]l < [[w] =1
forces all w, to have norm 1. But, since |[wp—1[> = [|[wall® + [{@n, wa_1)|% it
follows that (a,, w,—;) = 0 and w, = w,—_; forn = 1,..., N. Hence w €

MiN---NMy=M,yetw € M+ is a unit vector.

This contradiction implies [|Qv|| < c|v|l, ¢ < 1, for any v € M*. Hence
lvnsn |l = [1Quall < cllvnll; combined with [[vy4+1]l < [[vall, we get v, — O.
Equivalently, x, converges to x..

The advantages of ART are that it uses less computer memory and is flexible in
that it can be used even if there is missing data or newly available data (missing or
new rows of A); but, being an iterative procedure, it is generally slower to converge.
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Wiener Deconvolution

When a signal f € L*(R) passes through a linear modifier (which could be a
circuit, some medium such as the atmosphere, say, or a measuring apparatus), it
changes in two ways: (1) the signal is distorted slightly to Kf := k * f, where
k € L'(R) is characteristic of the modifier (recall convolution, Example 9.28(3)),
(2) random noise in the process adds a little error € € L*(R) to the signal. The
net effect is a distorted output signal y = k % f + €. Is it possible to extract the
original signal f back again from y? A full reconstruction by solving Kf = y is
impossible as lost information cannot be regained; the im K subspace is not the full
space L(R), and the error displaces the signal off this subspace. But one can use
Tikhonov regularization and solve (K*K + «) f = K*y. The simplest way to do
this is to use the properties of the Fourier transform, which converts convolution to
multiplication. As in Example 10.23(3), the adjoint of K is given by K*g = k™ *x g
where k*(t) := k(—t), since

(K*g. f) = (g. Kf) = / / TOWK(s — 1) £(¢) de ds

= / f k(s —)g(s)ds f(r)dr.
The Fourier transform of k* is
() = / e k(=0 dt = / (@) dr = K (®),
so that (K*K + «) f = K™y transforms to

~ kY
f==
k= + o

This is a recipe for finding f from y, called deconvolution, that is commonly
implemented as a computer program using the Fast Fourier Transform, or directly
as an electrical filter circuit.

Image Reconstruction

An image can also be considered as a ‘signal’, this time in LZ(RZ), or, when
discretized, as a vector of numbers in the form of an array of pixels. Each
number represents the brightness of a pixel (neglecting the color content for
simplicity). An imaging apparatus transforms the original image x to y = Ax + ¢,
where A is assumed to be a linear operator, as above; examples include a slight
spherical aberration or blurring in general. Since such modification incurs a loss of
information, the distortion matrix A is not invertible, but the best-fit “regularized”
solution of x = (A*A + «l)~1A* y restores the image somewhat, as seen in
Fig. 10.1.
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Fig. 10.1 Image reconstruction. (1) The original image, (2) after it passes an imaging device
(exaggerated), (3) the best-fit image

In practice, implementing the reconstruction encounters difficulties that are
specific to images. Images are typically in the order of about a million pixels in size;
the matrix A would therefore consist of about a trillion coefficients (most of which
are zero), and finding the inverse of A*A + «l is prohibitively time-consuming.
Fortunately, blurring is to a good approximation usually independent of the pixel
positions; for example, a linear motion blur produces the same streaks everywhere
across the picture (but note that this is not true for a rotation blur). In mathematical
terms, the transformation A can be taken to be translation invariant, so that it is
equivalent to the convolution by some vector k € H. With this simplification, image
reconstruction becomes a 2-dimensional version of Wiener deconvolution; the same
technique using the Fourier transform can be applied,

kY
k2 +o

Here, y represents the discrete version of the Fourier transform, namely y,, =
>on e~2mimny The resulting x may have negative coefficients; these are mean-
ingless and usually replaced by 0.

Tomography

Suppose that instead of a vector x, one is given ‘views’ of it, y, := (a,, x), where
a, is a list of known vectors: Is it possible to reconstruct x from these views? If a,,
are assembled as rows of a matrix A, one obtains a matrix equation Ax = y. In such
problems, it may be the case that the number of views is less than the dimension of
the vector space, so that the system is under-determined, or that there are a large
number of views, making the equation over-determined. In either case, a least-
squares solution can be found as above, using the techniques of inverse problem
solving (Fig. 10.2).

CT scans: An X-ray passing through a 3-D object of density f diminishes in
intensity by an amount e/ /@904 \here g + br is the straight line followed by
the ray. The emitted and received intensity can be measured and, after taking logs,
one obtains a ‘view’ of the object

y =/f(a+bt)dt = (Lasb. [):
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Fig. 10.2 Computed tomography. (1) The original image (360 x 360 pixels), (2) 80 parallel ‘views’
of the object, (3) the best-fit reconstruction from 6400 views (80 directions)

where L, p is the characteristic function of the ray, i.e., a function that is 1 along
the ray and O outside it (in practice, the ray has a finite width). It should be possible
to reconstruct f from a large number of these views. A CT-scan does precisely this:
an X-ray source coupled with a detector rotate around the object to produce these
views. In one simple configuration, b = (°%%) and a = s(‘cginge); the collection of
these views, as a function of 6 and s, is called the Radon transform R of f. The best-
fit f that reproduces the data is computed by solving (R*R + «) f = R*y, either
directly in the form of the optimized Filtered Back Projection (FBP) algorithm or
by iterative algorithms such as some variants of ART. Other configurations include
a fixed source and a rotating detector, producing a fan-shaped collection of rays.
In yet other applications, the ‘rays’ move along curved lines; more generally, the
output may depend non-linearly on f and the source (see [21] for an overview of
tomography and inverse scattering theory).

The idea obviously has lots of potential: X-ray tomography has revolution-
ized medical diagnosis, archaeology, and fossil analysis; crystal X-ray diffraction
tomography recreates the atomic configuration of molecules in a lattice; impedance
tomography takes output currents from input voltages to reconstruct the interior
resistance density of an object; seismographs measure the output vibrations after the
occurrence of earthquakes to reconstruct the interior density of the Earth; gravity,
magnetic, or sound measurements at the Earth’s surface can determine rock densities
underneath, aiding in the exploration for oil or minerals; ultrasound echoes or
scattered light can be used to reconstruct 3-D images of internal organs (or of moths
and fish/squid by bats and dolphins). The list is long and increasing!

Exercises 10.26

1. Find best approximate solutions for

147 4

147 4
@ [258)|x=|=1], i ( )x:( )
269 0 258 -1
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To find the best-fitting plane z = ax + by + ¢ to a number of points (x,,, Yu, Z1),
where z,, is the dependent variable, least squares approximation gives

Zn 1 Z Xn Zn Yn ¢ Zn Zn
Z Xn Zn n Zn XnYn al = Zn XnZn
Zn Yn annyn Zn yr% b Zn YnZn

. * The method is not at all restricted to linear geometric objects. Find the best-

fitting circle x2 + y2 4 ax + by = ¢ to a number of points (xy, y,).

. Weighted Regression: Suppose, in fitting a least-squares line, that the data points

are not equally significant and should be weighted. This can be achieved by a
diagonal matrix of weights, S, in the inner product, that is, (x, y) = X' Sy =
Z[ w;X;yi. Show that the new regression equation is

ATSAm = A" Sy.

. The pseudo-inverse of the left-shift operator on ¢2 is the right-shift operator,

and vice versa.

. Forany T € B(X,Y), TTYT = T, because both x and T Tx belong to x +

ker7.So TTT and TTT are projections; which precisely?

The transformation 77 : im T @im T+ — ker T is linear but continuous only
when im T is closed (Hint: if Tx,, — y then Tx, = TT Tx, — TTTy).
Recall the Volterra 1-1 operator V f(¢) := fot f on L?[0, 1]. If g is differen-
tiable, then VTg = g, and the Tikhonov regularization solves the equation
f _ af// — g/'

An oscillating pendulum is captured on video at 25 frames/s. The angle 6 (in
rad) that the pendulum makes with the vertical, for 1 s worth of frames (1-26),
is given in the table below. Theoretically, 6 satisfies

é—i—ﬂéz—i—gsinezO,
m r

where ¢ = 9.81ms™2 and «/m, and r are unknown numbers. From the data,
estimate 9 by (6n+1 — 6,—1)/26t, and 9,1 by (6h,+1 — 26, + 9,, 1)/68t, thereby
getting equatlons of the type ax, + by, = z,, where x, = 0 , Yn = siné,,
n = —9,,, and a, b are unknown constants. Use regression to ﬁnd a, b (hence
r and «/m) that best fit these data.

1 2 3 4 5 6 7 8 9
0.372 | 0.210 | 0.043 | -0.126 | -0.291 | -0.447 | -0.589 | -0.714 | -0.816
10 11 12 13 14 15 16 17 18
-0.900 | -0.957 | -0.988 | -0.993 | -0.972 | -0.923 | -0.854 | -0.756 | -0.640

-0.505 | -0.353 | -0.192 | -0.025 | 0.144 | 0.308 | 0.462 | 0.600

19 20 21 22 23 24 25 26
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10. Phylogeny: Bioinformaticians can create a score of how far apart two species
are genetically. An example is given in the adjoining table, together with the
suspected evolutionary tree. Assign constants to each edge in the tree which
best match the given scores, i.e., the sum of the edge constants along the path
from, say, A to D should be as close to 6.16 as possible.

|l A B Cc D

B |222 -

C 612 560 -

D |616 570 170 -

E [579 506 312 3.72 A B ¢ D E

10.5 Orthonormal Bases

Definition 10.27

An orthonormal basis of a Hilbert space H is a set of orthonormal vectors
E whose span is dense,

Vei,ej € E, (e, ej) =&, [E] = H.
The second condition is equivalent to E L=0 (Example 10.14(4)), i.e.,

Vee E, (e,x) =0 < x=0.

Examples 10.28

1. The sequences e, := (0,...,0, 1,0, ...) are an orthonormal basis for 02,
Proof: Orthonormality is obvious,

(enrem)r = ((0,....0,1 ,0,..),(0,...,0,1 ,0,...)) = 8.

N rm
If the sequence x = (ag, ai, ...) is in [eq, ey, ... ]*, then a, = (e,, x)p2 =0
for any n; hence x = 0.

2. In finite dimensions, orthonormal bases span the space, [[eq, ..., e,]] = H.

In infinite dimensions, an orthonormal basis is not a basis in the linear algebra
sense (Hamel basis), which requires the stronger spanning condition [E] = H.
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3. Gram-Schmidt orthogonalization: Any countable number of vectors {v,},en can
be replaced by a set of orthonormal vectors having the same span, using the
Gram-Schmidt algorithm:

uo = vo, eo = uo/lluoll
. -1 .
Up = Up — § ?:() (ei, vn)ei, ey = uy/|lunll.

It may very well happen that u, = 0, in which case it and v, are discarded
and v, 4 relabeled as v,. Clearly, the vectors e, are mutually orthogonal, and
en € leo,-..,en—1,v,]; so, by induction, [eq,...,e,] = [vo, ..., v,]l, not
taking the discarded v, into account. Hence [eg, ey, ... ]| = [vo, vi, ... .

4. Suppose x = Zm a ey, for an orthonormal basis {eg, e1, €2, . . .}; then taking the
inner product with e, gives the simple formula «,, = (e,, x). The next section
discusses whether every x can be so written.

5. The set of basis vectors need not be countable; when uncountable, the Hilbert
space is not separable, because the vectors e, are equally distant from each
other |ley — em|| = /2, so that the balls Bc(e,) are disjoint for € < «/5/2
(Exercise 4.22(4)). Conversely, if E = {e, : n € N} is a countable orthonormal
basis, then [E]], and H = m are separable.

6. » Every Hilbert space has an orthonormal basis.

Proof: Consider the collection of all orthonormal sets of vectors. It is nonempty
for a non-trivial space, so Hausdorff’s maximality principle implies that there is a
maximal chain of orthonormal sets Ey. But E := o Eq 1s also an orthonormal
set, for pick any two distinct vectors e, € E, and eg € Eg C Eg, say, then
ey L eg. So E is a maximal set of orthonormal vectors. EL = 0 otherwise E
can be extended further, so [E] = H.

Fourier Expansion

The utility of orthonormal bases lies in the ease of calculation of the inner product:

Proposition 10.29 (Parseval’s Identity)

Ifx = Z ape, and y = Z Bnen, where {e,},cN are orthonormal, then

neN neN
(X, 0) =) &nBu =Y (x,exdlen, y).
neN neN

In particular, x| = (> laul?)".
neN
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Proof A simple expansion of the two series in the inner product, making essential
use of the linearity and continuity of ( , ) as well as orthonormality, gives the result:

(x,y)= Z Zmﬁm@m em) = Z@ﬂn

neNmeN neN
O

Parseval’s identity is the generalization of Pythagoras’ theorem to infinite
dimensions. The question remains: when can a vector be written as a series of
orthonormal vectors? The next proposition and theorem give an answer.

Proposition 10.30

Let { g, €1, €2, ... } be a countable orthonormal set of vectors in a Hilbert
space H, then

Zanen converges in H < (o),eN € 0.
neN

Proof By Pythagoras’ theorem we have
lonen + - -+ + Olmem”z = |05n|2 +o 4+ |am|2-

This shows that Ziv:l ape;, is a Cauchy sequence in H if and only if Zflvzl ot |? is
Cauchy in C (Example 7.21(1)). Since H and ¢? are complete, >, Oney converges
if, and only if, (aty)nen is in £2. O

The convergence of ) _, e, need not be absolute in infinite dimensions; for the
latter to be true requires that ), lase,ll = ), lon| converges, that is, (en)neN €
¢! c 02, Nevertheless, a rearrangement o of an orthonormal basis does not affect
the expansion, ), anen = ), Qo (n)€o(n), DECAUSE €4 (y) remain orthonormal and
(acr(n)) e (2

Theorem 10.31 (Bessel’s Inequality)

If {e,, },cn is orthonormal in an inner product space, then

2 2
> Hew x> < llx )%

neN

When {¢, },cn is an orthonormal basis of a Hilbert space,

X = Z (en, X)ey.

neN
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Proof (i) Fix x and let xy := 2111\1:0 (en, x)e,. Writing «,, := (e, x), we have

2 2
< e —xnll” = llx )17 = (xev, x) = (x, xn) + (ev, xn)

”x”2 2205110[11 + Z Apotm(en, en)

n,m=0
N
= x> =) lanl,
n=0
hence
N
> Hew. x)* < x> (10.4)
n=0

As a bounded increasing series, the left-hand side must converge as N — oo, and
Bessel’s inequality holds.

(ii) By the previous proposition, the series ), (e,, x)e, converges in a Hilbert
space,saytoy € H.Butx — y € {eg, e1, e2, ...}J- =0, since forall N € N,

oo
(en,x —y) = (en, x) Zen, )en, en) =0.

A countable orthonormal basis is thus a Schauder basis. O

As a matter of fact, even if {e;};<; is an uncountable orthonormal set of vectors,
the same analysis can be made for any finite subset of them. Inequality (10.4) then
shows that there can be at most N — 1 vectors ¢; with |(e;, x)|*> > ||x||2/N, for
any positive integer N, and so only a countable number of terms with (e;, x) # 0.
Therefore ), ; (e, x) |2 is in fact a countable sum, bounded above by ||x 2.

Proposition 10.32

Every n-dimensional Hilbert space is unitarily isomorphic to R" or C".

Every separable infinite-dimensional Hilbert space is unitarily isomor-
phic to % (real or complex).
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Joseph Fourier (1768-1830) A Napoleonic supporter,
almost guillotined in the aftermath of the French rev-
olution, Fourier succeeded his teacher Lagrange in
1797. Besides being a government official and an
accomplished Egyptologist, his mathematical work cul-
minated in his 1822 book on Fourier series: “sines and
cosines as the atoms of all functions’; it revolutionized
how differential equations were solved. But Lagrange
had pointed out that the expansion might not be unique,
or even exist. Which functions have a Fourier series?
This question led to refined treatments of integration
such as Riemann’s, and to Cantor’s set theory; but also
to studies into what convergence of functions is all
about, when it is not pointwise.

Proof Suppose H is a separable Hilbert space, with some dense countable subset
A = {ap,a1,a,...}. The Gram-Schmidt process converts this to a list of
orthonormal vectors E = {eg, ey, €3, ...}, which is then a countable orthonormal
basis of H since [E] = [A] 2 A = H. Consider the map

J:H — 02

X = (0tp)neN, an = (en, X).

Bessel’s inequality shows that (o), <N is indeed in ¢2. (If H is a real Hilbert space,
o, are also real.) Linearity of J follows from that of the inner product. Preservation
of the inner products and norms, (x, y)y = (Jx, Jy) 2, is precisely the content of
Parseval’s identity.

J is surjective: For any (o;)neN € 22, the series Zn ap e, converges to some vector
x by Proposition 10.30, if £ is countably infinite. Then Jx = (&), eN since

(en, Jx) = {en, Z Umen) = Z U {en, em) = oy.

meN meN

The Hilbert space is N-dimensional precisely when E has N vectors; in this case
itis a classical basis of H. J remains a surjective isometry, with RV or C" replacing
2. O

Examples of Orthonormal Bases

Orthonormal bases are widely used to approximate functions, and are indispensable
for actual calculations. There are various orthonormal bases commonly used for the
space of L? functions on different domains. Each basis has particular properties
that are useful in specific contexts. One should treat these in the same way that
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one treats bases in finite-dimensional vector spaces—a suitable choice of basis may
make a problem amenable. For example, for a problem that has spherical symmetry,
it would probably make sense to use an orthonormal basis adapted to spherical
symmetry.

Consider the simplest domain, the real line. There are three different classes of
non-empty closed intervals (up to a homeomorphism): [a, ], [a, oo[, and R. Various
orthonormal bases have been devised for each, with the most popular being listed
here.

L*[a, b]—Fourier Series

The classical Fourier series were the original impetus for much of this theory of
orthonormal bases. C. Sturm and J. Liouville extended the concept substantially,
and F. Riesz showed in 1907 that there exists a function f with Fourier coefficients
equal to a given sequence aj, iff (a,)nez € 02,

Proposition 10.33

The functions ¢*"" (n € Z), form an orthonormal basis for L2[0, 1].

Proof Orthonormality of the functions is trivial to establish,
. . 1 .
<627nnt’ emet> — / g2mt(m—n) dr = 8nm~
0

Suppose f € {27} e, fol e~ 2rint f(1)ydt = 0 for all n € Z. Recall that

nez’
the Fourier coefficients give a 1-1 operator F : L'[0, 1] — ¢o(Z) (Theorem 9.34)

(note: L?[0, 1] c L0, 1]), so Ff = 0 implies f = 0 and hence {ezni”’ 'n €
Z} =o. O

Of course, there is nothing special about the interval [0, 1]. Any other interval
[a, b] has a modified Fourier basis, namely %62”””“, where L = b — a. For

example, \/;276”” (n € Z), is an orthonormal basis for L2[—7, ].

Examples 10.34

1. » The Fourier expansion becomes, for f € L0, 1],

f(t): i O[ne2m'm

n=—0oo
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where o, = (¥ f) = fol e~2Tint £(1)dt are the Fourier coefficients of
f. Note carefully that the convergence of the sum is to be understood as
I3, ape?™int — fllz20.17 = O, not necessarily pointwise for each ¢ € [0, 1].
(However, a lengthy proof [30] shows that there is pointwise convergence a.e.;
see also Example 11.31(5)).

2. The classical Parseval identity is

8]

/ FOP =Y lanl* + bl

- n=—00

where a,, — ib, = \/LTH J™ e~ f(t)dt are the L*[—, w]-Fourier coefficients.

3. Fourier series have a wide range of applications, especially in signal processing.
For example, the operator F*1;_, ,)F is called a low(frequency)-pass filter:
Given a signal f, 1[—, ) discards the higher-frequency terms from the Fourier
coefficients F f; F* then builds a function from the remaining coefficients,
resulting in a smoothed out low frequency band signal (for example, without
a high frequency hiss).

L*[—1, 1]—Legendre Polynomials

We've seen that the set of polynomials is dense in the space L>[a, b] (Proposi-
tion 9.29) but the simplest basis, namely 1, ¢, 2, ..., is not orthogonal, as can be
easily verified by calculating, say, (1,7%) = (b3 — a’)/3. This can be rectified
by applying the Gram-Schmidt algorithm. On the interval [—1, 1], the resulting
polynomials are called the (normalized) Legendre polynomials (Fig. 10.3). The first

few are
1 \ﬁ, z\ﬁ 21
ok 25 2y 2 3)>---

RER

Legendre polynomials Laguerre functions Hermite functions

Fig. 10.3 Orthonormal bases (The first ten functions of each basis are plotted as rows in each
image; brightness is proportional to the value of the function, mid-grey being 0.)
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with the general formula being
/ 1
— 2
pa(t) = (2"—71!)Dn(t - D",
where D = %. These polynomials satisfy the differential equation

Lp, = —n(n+ 1)p,, where L =D —*)D = (1 —t*)D*> —2tD.

L*[0, co[—Laguerre Functions

This Hilbert space contains, not the polynomials ¢”, but their modified versions
"e~/2. A Gram-Schmidt orthonormalization of them gives the Laguerre functions,
the first few terms of which are

2 (=0 P (=204 4P e 2L
and the general formula is
I,(t) = %el/ZD"(t"e_t).
The Laguerre functions satisfy (prove!)
Sly = —(n+ Pl,, where S := DtD —t/4.

The Laguerre polynomials (the polynomial part of /,,) can also be thought of as an

orthonormal basis for L2 (RT) with the weight .

L?(R)—Hermite Functions

. . . . 2 .
Here, orthonormalization is performed on the functions "¢ ~""/? (equivalently, take
. . . 2 . .
t" in L%U (R) with the weight e™"") to get the Hermite functions,

2 5 2 1 2
i N o ﬁn1/4(2t2_1)e cR

ha(t) = =2 pne—t®,

T V2l /4
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To prove orthogonality, first show that D (e’ *Drey = —2ne” D"le~" and
deduce that (h,,, h,,) = 2n{h,—_1, h;y—1). The Hermite functions satisfy

Rh, = —(2n 4 1)h,, where R := D> — %,

. : .1 oo —
Mo.reover, they are eigenvectors of the Fourier transform: ird f oo @ ", (t)dt =
(=0)"hp (§).
Some other useful orthogonal bases on L?(A) spaces on other domains are, in
brief:

Circle. Since the circle S! is essentially the interval [0, 277] as far as L?-functions
are concerned, the periodic Fourier functions ¢? form an orthogonal basis for it.

The Chebyshev polynomials, T, (cos6) := cosn6, are the projection of the
cosnf part of this Fourier basis, from the unit semi-circle to the x-axis [—1, 1].
They are thus orthogonal on L%U[—l, 1] with the weight 1/+4/1 — ¢Z (since df =
—dt/v/1 —12).

There are many other orthonormal bases adapted to Lﬁ)[a, b]. Rodrigues’
formula describes orthogonal functions on L%} [a, b],

@) = w®) D" (w) p()")

for a quadratic polynomial p with roots at the endpoints a, b, and weight function
w: the Legendre, Laguerre, Hermite, and Chebyshev functions are all of this type.

Plane R?. An orthonormal basis for the plane can be obtained by multiplying
Hermite functions h~,, (x)h (y). In general, if e, (x) and e,,(y) are orthonormal bfises
for L2(A) and L?(A), then e, (x)éy, (y) form an orthonormal basis of L*(A x A).

Disk Bc—Bessel Functions. The functions on the unit disk taking the value zero
at the boundary have an orthogonal basis J, ()um,nr)e““e, where A, , are the zeros

of the Bessel function J, (r) := Y2, —W"_(;/2)2m+n (Fig. 10.4).

m=0 m!(n+m)!

Sphere S>—Spherical Harmonics.

QL+ 1D —m)!

4 (l + m)! P'il (cos )e™?,

YL, ¢) =

where P,il (1) = (—=1)"(1 —1%)"™/2 D™ Py (t) are the “associated Legendre functions”.
They depend on two indices, ! € Nand m = —I[, ..., +I. These are the spherical
projection of the atomic orbitals.

Exercises 10.35

1. Orthonormal vectors must be linearly independent.
2. Comparing coefficients: If ), ane, = Y, Buen, then o, = By.
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Fig. 10.4 Bessel’s functions, J,, (A n7) cos(nf),n,m =0,1,2

3. If {ey}nen and {€;}men are orthonormal bases for Hilbert spaces X and Y
respectively, then {(e;, 0)},en U {(0, €,)}men form an orthonormal basis for
X x Y (Exercise 10.10(5)).

4. Let E := {eg, e, €2, ...} be a set of orthonormal vectors, with [E]] = M C
H. For any x € H, the sum ZneN (en, x)e, gives the closest point x, in M to
X.

5. » Anoperator U € B(H1, H») is a unitary isomorphism if, and only if, it maps
orthonormal bases to orthonormal bases.

6. Expand the function ¢ on [0, 1] as a Fourier series.

(a) Assuming pointwise convergence, derive Gregory’s formula

. 1+1 1+ 7
35 7 T4

(b) Use Parseval’s identity to obtain Euler’s formula

1 1 72
+ — 4= —,

1+ —
+22 32 6

2
(_l)n _ 2 _ 1
Deduce that (ZneZ T ) =T =2, @nr”
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(c) Similarly find the Fourier coefficients for the functions 2,413 — ¢, and
2t — 12 on L2[—%, %], to obtain

— 1 7 — 1 " — 1 8
25 LiwTom 2::_8=9450

n=1 n=1

7. When f € Lz[—%, %] is an even function, meaning f(—f) = f(¢),thena_, =
o, and

o0 o
Z e = g + Z 20, cos(2mnt).

n=—00 n=1

What if f is odd, or neither odd nor even?

8. Show that cosnrwt, n = 0,1,..., is an orthogonal basis for the real space
L?[0, 1].

9. x It is quite possible for x = )", (ex, X)e, to hold true for all x in a Hilbert
space, without e, being orthonormal. Find three such vectors ey, e3, €3, in R2.
But if Parseval’s identity Ix|? = Yo len, x x)|? holds forall x € H, and |le,| =
1 for all n, then the vectors e;, form an orthonormal basis.

10. Show that Uf(¢) := Jﬁf(b a) is a unitary operator L2[0,1] — L?[a,b].

Hence find an orthonormal basis for L2[a, b].
11. » The Fourier operator F : L?[0, 1] — ¢2 is a unitary isomorphism between
o

Hilbert spaces. Its adjoint maps x = (a,)nen € £% to F*(x) = Z ape?int,
n=—oo
12. Prove that the Legendre polynomials are orthonormal in L2[—1, 1], as follows:
Define u,(t) := (t2 — 1)", and g, := D"u,; show by induction that

(@) D¥u,(£1) =0, fork < n,
(b) (D"un, D"uy) = _<Dn_lun, Dm+lum),
(©) {gn>qm) = O0unless n = m.

13. % The Legendre polynomials P, := p,/\/n+ 5 ! have the property,

1
llu = yll

o
= Z r" P,(cos8)
n=0

where u is a unit vector, 7 := ||y|| < 1, and 0 is the angle between u and y.
(Hint: Show f,(¢) := 1/4/1 4+ r%2 — 2rt satisfies Lf, = raaTzz(rf,), then write
fr@) =3, an(r)pa(t).)

14. » A frame is a sequence of vectors e, € H (not necessarily linearly
independent) for which the mapping J : x +— ({(e;, X))neN is an embedding
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H — M C (2. By Proposition 8.15, this is equivalent to there being positive
constants a, b > 0, al|x|| < [|Jx|l,2 < blx], ie.,

1
3c > 0, Vx € H, —[1x > <) Hew %) < cllx ).
¢ n

Let 8 (ay) := ax and L := (J*)~L; then x — 8 Lx is a continuous functional,
hence there is a unique vector ¢, such that 6 Lx = (e, x).

(a) The two sets of vectors e, and ¢, are bi-orthogonal, that is, {¢,,, €,) = Sn.
(b) J*L=1=L*J,so

X = Z (en, x)e, = Z (en, x)ey.

n n

Applications of Orthonormal Bases

Frequency-Time Orthonormal Bases

An improvement on the classical orthonormal bases for functions ¢ +— f(¢) in
L?(R) are bases that give information in both ‘frequency’ and ‘time’. In contrast, the
Fourier coefficients, for example, only give information about the frequency content
of the function. A large nth Fourier coefficient means that there is a substantial
amount of the term > | somewhere in the function f () without indicating at all
where. The aim of frequency-time bases is to have coefficients a,, ,, that depend on
two parameters n and m, one of which is a frequency index, the other a “time” index.
The a;, , coefficients, much like musical notes placed on a score, indicate how much
of the frequency corresponding to n, is “played” at the time corresponding to m;
they are able to track the change of frequency content of f with time. Of course, the
reference to ¢ as time is not of relevance here; ¢ can represent any other varying real
quantity.

Windowed Fourier Bases (Short Time Fourier Transform): A basic way to achieve
this is to define the basis functions by

hm,n(t) = ezjﬁmh(t —m),

where £ is a carefully chosen (real) window function, with ||A]|;2 = 1, such that

hm n are orthonormal. The simplest choice of window function is & = l[_ 11
2°2

other popular possibilities, such as the Hann window cos?(rt) (—% <t < %) and

. 2552 .
the Gaussian c,e~/2°" do not give orthonormal bases but are useful nonetheless.
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frequency f

ek - - - - = & e e B BN

time ¢

Fig. 10.5 Spectrogram of a piano piece, showing clearly the duration, frequency, and harmonics
of each note

One can then obtain a picture of f spread out in time and frequency, called a
spectrogram (Fig. 10.5), by plotting the coefficients [(h,, ,, f) |2 (often interpolating
in m and n to get a smooth picture).

Note that the coefficients (h,, ,, f) are really just (a,.,) = F(h(t — m)f(¢)).
So summing the coefficients in n, keeping the position m fixed, gives the windowed
function:

D e = h(t —m)f (1)

nez

and similarly, when ), ., h(t —m) =1,

P = [ Y bt = mf 6 dt = Y

meZ meZ

The greatest disadvantage of these bases is that the window ‘width’ is predeter-
mined; it ought to be large enough to contain the low frequency oscillations, but
then the time localization of the high frequencies is lost. The aim of the windowed
Fourier basis is only achieved over a limited range of frequencies. To circumvent
this, one can make the window width decrease with the frequency parameter n—
this is the idea of wavelets.

Wavelet Bases: The basis in this case consists of the following functions in L2[0, 1]
Ymn(t) 1= TSy (1) = 2"y (2"t —m), (m,n € Z)

where 1 is a carefully chosen ‘mother’ function in L%(R). It serves both as a
window (ideally with compact support) and an oscillation. The basis functions
Ym.n are thus scaled and translated versions of . They have the advantage that
the resolution in ‘time’ is better for higher frequencies than the windowed Fourier
bases, and so require less coefficients to represent a function to the same level of
detail. One example is the classical Haar basis, generated by ¥ (¢) := 10,11 — 1[1,2]
(prove orthogonality of v, ,). Other wavelets, generated by continuous functions,

are more popular, e.g., Mexican-hat ((1 — tz)e_tz/ 2), Gabor/Morlet (e*7if! et/ 2
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— A\

Fig. 10.6 Three wavelets: Haar, Mexican hat (with a translated and scaled version), and Morlet
(real and imaginary parts)

usually f = 1; Fig. 10.6). The analogue of the spectrogram is the scalogram, which
is a plot of the coefficients Wf (a, b) := (Y4, f) Where ¥, p(t) = \/Latﬂ(%).

In a multi-resolution wavelet scheme, a subspace V; of the Hilbert space L?(R)
is split recursively into low and high resolution parts as V,,11 = V,, & W,,, where
W, = V.- NV

Vi=Vici®Weg=---=VyoWoe W @--- & Wiy

If we suppose V, and W, to be spanned by orthonormal bases {¢,,, : m =
0,...,N—1}and {¢¥,, : m = 1,..., N — 1}, that are generated by scaling
and translation from a “father” and “mother” wavelets ¢ and i respectively, then,
by recursion, one need only ensure V| = Vo & Wy = [¢] & [ ] for this scheme to
work. Therefore the requirements are that ¢, i € V| be orthonormal. For N even,
the following “refinement equations” are sufficient,

¢@) =aop(2t) +a1p(2t — 1) +---+any-19(2t =N + 1),

V() =an-19(2t) —an2¢ 2t — 1) +--- —aop(2t — N + 1)

a§+---+a12\,71=2.

Recall here that ¢ (2t — m) = 2’1/2¢m,1(x) has norm 1/+/2, so ||¢||? = Yom a,%l/Z.
For example, the Haar basis has ¢ = 19 2] and v which satisfy

¢t) =¢Q20)+¢ 2t —1), V@) =¢@21) —¢Q2r—1).

The Daubechies wavelet basis of order N is a multi-resolution scheme with an
optimal choice of coefficients a;, in which the wavelet v is taken to be of compact
support and ‘smooth’ (more precisely, with N zero moments; see [27]).

Solving Linear Equations

Orthonormal expansions can be used to solve linear equations Tx = y, where x
and y are elements of some (separable) Hilbert space, and 7 an operator on it.
Given an orthonormal basis {e,}, the vectors x and y can be written in terms of it
asx =), aye, and y = Y bpe,. Of these, the scalar coefficients a, = (e, x)
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are unknown and to be determined, but b, := (e, y) can be calculated explicitly.
Substituting into Tx = y we get

ZanTen = T(Zanen) = anen.

neN neN neN
by = (em, y) Zzan em, Tey) Ztm nQn,
neN neN

where t;,, = (em, Ten). This is a matrix equation in 22, representing Tx = y,
i.e., written in terms of the coefficients of 7', x and y in the orthonormal basis e;,.
Effectively, the problem has been transferred from one in H to one in 22, via the
isomorphism J : H — ¢2.

Converting to matrices is especially useful if the orthonormal basis elements e,
are eigenvectors of T, that is, T'e;, = A, e,. This makes the matrix of T diagonal.

A O ... ap by
0 A al =10

The equation is easily solved, a, = b,/A,, unless A, = 0. If 1, = 0(G.e.,Tx =0
has non-trivial solutions) there are no solutions of Oa, = b, unless b,, = 0, in which
case the a, are arbitrary. Thus there will be a solution x if, and only if, b, vanishes
whenever 1, does, or equivalently, y L ker T'. Separating the vectors e, that satisfy
T e, = 0 from the rest, the complete solution is

E Umem + E _en ,

m:dy, =0 n:in 750

where «, are arbitrary constants. The first series is a solution of the “homogeneous
equation” Tx = 0, while the second series is a “particular solution” of Tx = y.

For the case of the Hilbert space L2(A), with e, and y = f, all functions, the
particular solution can be rewritten as

by (en, f) men(t)
;Een =Xn: e =/A (ZA—) f(s)ds:/AG(t,s)f(s)ds,

where the kernel G (¢, s) 1= ), e,(s)e,(t) /Ay, is called the Green’s function of the
operator 7.
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Gaussian Quadrature
A central problem in numerical analysis is to find an approximation for the integral
of a real function, in the form

b
/ fxaf)+-+anftn) = ¢(f),

where a;, t; are fixed numbers; note that ¢ is a functional acting on f. The familiar
trapezoid rule and Simpson’s rule are of this type, where the 7; are equally spaced
along [a, b]. The question arises as to whether we can do better by choosing #; in
some other optimal way.

Let e;(r) be real orthonormal polynomials of degree i in the space L*[a, b],
obtained from 1, ¢, £2,.. ., by the Gram-Schmidt algorithm. By orthogonality, their

integrals vanish since fab e; = {1, e;) =0, except for fab o = |[1]l12(4.)- Certainly,
for ¢ (e;) to agree with the integral fab ej fori =0,...,n — 1, we must require
eo(t)) ... eo(tn) [I1]]

a@) ... et | 0

0

: : 4
en—1(t1) ... en_1(ty) "

which can be solved for a; when #; are known. The main point of Gaussian
quadrature is that if #; are chosen to be the n roots of the polynomial e, (¢) (assuming
they lie in [a, b]), we also get fah ei =0=¢(e) fori <2n—1.

For consider the polynomial division of any e := ¢,, (1 < m < 2n — 1) by e,
e = gep, + r where g and r are real polynomials of degree at most n — 1. Then, as
eo is proportional to 1, and g € [1, ¢, o " T =Teo, ..., eni],

b
0=(Le) =/ gen+r=(q.en) + (1r) = (L7).
a
Hence r = ZZ;% brey for some scalars by. So by the choice of the coefficients a;,
and e, (t;) =0,
e(ti) = q(ti)en(ti) + r(ti) = r(ti),
n n n—1 n b
s0p(e) = ) aie(t) = ) air(t) =) by _aier(t;) = 0= / e.
i=1 i=1 k=1 =l @

Thus the integral of any f = ) wje; € L?[a, b] agrees with ¢(f) up to order
i=2n—1,

2n—1

b b
f f=Zal~/ e~y aidlen) X p(f),
¢ i @ i=1



10.5 Orthonormal Bases 245

The residual error can be made as small as needed by taking a larger n.
For example, using the Legendre polynomials, (prove!)

1
/ f@®)dt = 0.35f(—0.86) + 0.65 f (—0.34) + 0.65 £ (0.34) + 0.35£(0.86).
~1

All of this applies equally well for weighted L%U(A) spaces; for example, using
Laguerre polynomials,

/ fe "dr ~ 0.60£(0.32) +0.36 £(1.75) + 0.039 £ (4.5) + 0.00054 £ (9.4).
0

In practice, the algorithm of choice of most mathematics software is currently
the Gauss-Kronrod algorithm, which performs Gaussian quadrature but refines it
adaptively by taking more evaluation points if necessary.

Signal Processing

Sounds, images, and signals in general can be thought of as vectors in LZ(R),
L?(R?), and L%(A) respectively. They can thus be decomposed into orthonormal
sums with all the advantages that entails. Three applications are:

(a) Storing only the “largest” coefficients o, := (e,,x) of an orthonormal
expansion leads to a useful compressed form of the vector x. Compression ratios
of about 100 are quite typical. A close copy of x can easily be regenerated from
these coefficients using x = ), a,e,. Although not identical to the original
(because the small terms are omitted), it may be good enough for the purpose,
especially since the smallest coefficients are usually unappreciated fine detail or
noise.

(b) A vector can be altered intentionally by manipulating its coefficients. For
example, it can be improved by filtering out noise coefficients, or particular
features in a function may be picked out, e.g., image contrast may be enhanced
if certain coefficients are weighted more than others.

(c) A vector may be matched with a database of other vectors, by taking the
inner product with each of them, using Parseval’s identity (x, y) = ), &ufBu.
That vector with the largest correlation (x, y) gives the best match and can be
selected for further investigation.

Consequently, the storage, transmission, rapid retrieval, and comparison of
images and sounds have seen a tremendous change since 1990, in part feeding the
growth not only of the internet and mobile phones, but also of new scientific tools.
For example, speech-, handwriting-, and face-recognition software find phonemes,
characters, and faces that best match the given input; an E.C.G./E.K.G. or E.E.G.
signal may be compared to a database for the early detection of cardiac arrest or
epileptic fits; countless mobile phones perform fingerprint matches daily; satellite
and medical imagery are usually enhanced to assist analysis, etc.

To see one application in some detail, let us look at one popular image format—
JPEG (1992 standard). Color images consist of an array of pixels, each digitized into
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three numbers (R, G, B) € [0, 1]3 representing the red, green, and blue content.
In the JPEG algorithm, the three RGB color bytes for each pixel are usually first
converted to brightness, excess red, and excess blue,

Y:=rR+gG +bB,

1

=5+ (R-Y),

2(g +b)

Cp = (B—-Y),

1
_+—
2 2(r+g)

where r & 0.25, g = 0.65, b &~ 0.1 are agreed-upon constants such thatr + g+b =
1. This is done to avoid effects due to color-shifts and because the brightness picture
carries most of the visible information; in fact the excess red/blue pixels are reduced
in number by a factor of 4 because the eye is not sensitive to fine detail in pure color.

The image is then split into 8 x 8 blocks, and each block is expanded with respect
to the cosine basis cos(mn(x + %)/8) cos(mm(y + %)/8) (the cosine transform
is preferred for positive functions in general because the first few coefficients are
larger; however it is not so good for sharp lines). The resulting 64 coefficients for
each block are discretized (by multiplying by a user-defined weight, and taking
the integer part). Most are now zero, and the rest are squeezed further using
the standard Huffman compression algorithm. This way, a 4 Mpixel image, that
normally requires 12 million bytes in raw formats, can easily be reduced a 100-
fold in file-size without any visible loss of quality. JPEG 2000 uses wavelets instead
but works in essentially the same way; MPEG is JPEG 1992 adapted to video.

Similarly a 5 min CD-quality stereo sound clip, sampled at 44,000 times 16 bits
a second, would normally need at least 52 Mbytes. It can be compressed to about
10% of that by MP3, an algorithm that works in an analogous way as JPEG, but
adapted to sound signals.

Remarks 10.36

1. Re (x, y) is areal-valued inner product (over the reals), but Im (x, y) fails the last
two axioms.

2. A real inner product on the real vector space X can be uniquely extended to its
complexification X + i X, by

(x1 +ix2, y1 +iy2) = ((x1, y1) + (x2, y2)) +i({x1, y2) — {x2, y1)).

Thus an inner product on R” can extend in several ways to R?", but in only one
way to C".

3. There is an interesting analogy between linear subspaces and logic: Think of
subspaces as “statements”, with A = B meaning A C B, and FALSE, TRUE,
A AND B, A OR B, NOT A, corresponding to 0, X, AN B, A + B, and A,
respectively. What are the logical rules that correspond to Proposition 10.9? Are
all classical logic rules true in this sense?
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4. A normed space with a conjugate-linear “isomorphism” J : X — X* has a
sesquilinear product (x, y) := (x*y 4+ y*x)/2 (where x* := Jx). The additional
property x*x = ||x||? turns it into an inner product space, compatible with the
norm of X.

5. The conjugate gradient method is an iteration to solve 7*Tx = vy, used
especially when T is a very large matrix. Note that {(x, y)) := (x, T*Ty) is
an inner product when 7T is 1-1. If ¢; were an orthonormal basis with respect to
this inner product, and x =} aje;, then

aj = (ej,x) = (ej, T*"Tx) = (e, y),
and x can be found. The iteration is essentially the Gram-Schmidt process applied

to the residual vectors r, = y — T*Tx,, while calculating the approximate
solutions x, on the go, (lx]|? := ((x, x)))

ep = Y/|||y|||, Upi1 =Ty — {en, rn)en,
ent1 = tpt1/Nunt1ll,

X0 = {ep, y)eo, Xn+1 = Xn + (€n+t1, Y)en+1,

ro ==y — T*Txo, g1 =y — T*Txpq1.

6. OR decomposition: Any operator T : X — Y between Hilbert spaces maps
an orthonormal basis ¢; € X to a sequence of vectors Te; € Y. If these are
orthonormalized to e; using the Gram-Schmidt process, then T'e; = Z'j: 1 Qj e;..
This means that, with respect to the bases ¢; and e}, T has the upper-triangular
matrix R. If Q represents the change of bases in ¥ from e/j to the original one,
then the matrix of 7 is QR.

7. A continuous function f : [0,27] — C, f(0) = f(2n), traces out a looped
path or ‘orbit’ in the complex plane. If the Fourier coefficients are written in
polar form, it is clear that each term a, e/’ = r,e!"+%») describes a circle; and
the sum of two terms describes the motion along a circle whose center also moves
in a circle. The whole Fourier sum then represents a motion along regressively
smaller circles. Ptolemy and other Greek astronomers were the first to describe a
periodic motion in terms of these cycles within cycles.

8. A non-separable Hilbert space is still isomorphic to an £%(A) space, one with
an uncountable number of orthonormal basis vectors. For example every Hilbert
space with an orthonormal basis {e;};c[0,1] 1S isomorphic to the space 2210, 1]
consisting of functions «; for which [la||? := > la;|> < oo (Note: o can take
only a countable number of non-zero values.)

9. The first important application of the least-squares method was by Gauss. In
1801, G. Piazzi found the long-sought ‘missing’ planet between the orbits of
Jupiter and Mars, but could not observe it again after it went behind the Sun.
Gauss managed to recover its orbital parameters from Piazzi’s observations,
and Ceres was relocated almost a year after its discovery. Essentially the same
techniques were used in 1846 to predict the location of a new planet, Neptune,
from the irregularities in the observed positions of Uranus.



Chapter 11 ®
Banach Spaces o

In this chapter, we explore deeper into the properties of operators and functionals
on general Banach spaces. We will find that several definitions and propositions that
hold for Hilbert spaces generalize to Banach spaces. As Hilbert spaces are, in many
ways, very special and non-typical examples of Banach spaces, these results need
to be modified in several technical ways: There are no orthonormal bases, or Riesz
correspondence, or orthogonal projections available in Banach spaces.

11.1 The Open Mapping Theorem

The following theorem holds the key to several unanswered questions that were
raised earlier.

Theorem 11.1 (The Open Mapping Theorem)

A continuous linear map between Banach spaces is an open mapping if,
and only if; it is surjective.

Recall that an open mapping is one that maps open sets to open sets.

Proof Let T : X — Y be a surjective operator between the Banach spaces X and
Y. Let U be an open subset of X, and let x € U, so that x € B.(x) € U. If it can
be shown that the image of the unit ball 7 By contains a ball Bs(0), then

Tx € Bse(Tx) =Tx+€Bs(0) CTx+eTBx =TB(x) CTU

implies that 7 U is an open set in Y, proving the theorem.
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Now X = o2 Bu(0),s0 TX = |2 TB,(0). But TX = Y is complete, so
by Baire’s category theorem, not all the sets 7 B,,(0) are nowhere dense: there must
be an N such that 7' By (0) contains a ball. By re-scaling we find that T By contains

aball B, (v). It follows that for every y € B,(0) we have
v+y= lim Tx,, forsomex, € By,
n—oo

v—y= lim Tx,, forsome x, € By,
n—oo

. X, — x! N
y=Jlim 7= ) e TBx

since ||x, — x,,|| < 2. Consequently we have that B,(0) C T Bx.

TBx < TB3(0) Let y € T By, so that there must be an xo € By such that
ly — Txoll < r/2;thatis, ||xoll < 1and y — Txo € B,2(0) € T B1,2(0). But this
implies that there is an x; € B1,2(0) such that ||y — Txo — T'x{|| < r/4. Continuing
in this fashion, we get a sequence x,, such that

1 r
= y=TCr+ - +x)ll < &

lxall < on omn’

We can conclude that x := ), _ x, converges absolutely, with |lx| < Y02 2L" =

2,and that y = Tx € TB2(0) C T B24<(0).

Re-scaling the vectors in B, (0) € T B3(0) gives B,/3(0) € T By and closes the
argument.
The converse was shown in Example 8.5(3). O

Corollary 11.2

A bijective operator between Banach spaces is an isomorphism.
With this fact, we are ready for the analogue of the first isomorphism theorem of
vector spaces, which is a generalization of the corollary.

Proposition 11.3

For any operator 7 : X — Y between Banach spaces,

X/kerT =imT <& imT isclosedinY
& de>0,VxeX, |x+kerT| <c||Tx|.
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Proof The mapping J : x + ker T — Tx is well-defined and 1-1 because
x+kerT =y+kerT & x—yekerT & Tx =Ty,
and it is obviously onto im 7'. It is trivially linear, and continuous since

VuekerT, ||Tx|| =T+ wl <ITllx+ ull,
SANTx| < NTI inf Al +ull = I T|{lx + ker T
ueker T

So J is an isomorphism precisely when J —1 is continuous, i.e., when the stated
inequality holds (Proposition 8.15).

If the range of J, namely im7T, is closed in Y, then it is a Banach space
(Proposition 4.7), so that Corollary 11.2 implies that J is an isomorphism. For the
converse, X/ ker T is complete (Proposition 8.20), as must be any isomorphic copy
such as im T (Exercise 4.18(5)). O

Examples 11.4

1. » It is important that ¥ be complete for the open mapping theorem to be valid.
The identity map ¢! — £ is continuous and 1-1, but £! is not isomorphic
to its image, because the latter is not complete (in the co-norm). For example,

X, = (1, %, R %, 0, ...) converge in the co-norm, but not to an El—sequence.

2.» Let T : X — Y be a linear map between Banach spaces; its graph M :=
{(x,Tx) : x € X}is alinear subspace of X x Y, and themap J : M — X,
defined by J (x, Tx) := x is bijective, linear, and continuous.

Closed Graph Theorem: If M is also closed in X x Y, then it is a Banach
subspace, and the open mapping theorem implies that J is an isomorphism, so

that
ITxlly < 1(x, TX)lxxy < cllxllx

and 7 must be continuous.

3. If X has two complete norms, and |[x|| < c||x|| for some fixed ¢ > O, then
the two norms are equivalent: the identity map Xy; — X is continuous by
hypothesis, and obviously linear and bijective; so its inverse is also continuous.
Put differently, if two complete norms on X are inequivalent, then one can find
vectors x,, which are unit with respect to one norm, but growing indefinitely with
respect to the other. Clearly, this can only happen in infinite dimensions.

4. % A Banach theorem: Any separable Banach space is isomorphic to a quotient

of £1.
Proof: Let e, be dense in By and let T : ¢! - X be defined by T(a,) =
ZneN anpey; it satisfies | T|| = 1. Moreover, By € T B, since e, = Te,. The
last part of the proof of the open mapping theorem then shows that By,3(0) €
T B, and hence T is surjective, with T B,1 = By. The proposition above then
shows ¢! /ker T = X.
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Complementary Subspaces

We are now in a position to answer an earlier question about projections: Unlike the
case of Hilbert spaces, it is not always possible to project continuously to a closed
subspace of a Banach space. The following proposition determines exactly when
such a projection exists:

Proposition 11.5

There is a continuous projection P onto a closed linear subspace M of a
Banach space X if, and only if,

X=M®N

for some closed linear subspace N. In this case, M = im P, N = ker P,
and M @ N =M x N.

We say that M, N are complementary closed subspaces.

Proof The forward implication has already been proved (Example 8.18(3)).
Conversely, suppose X = M @ N, so thatany x = u+v forsomeu € M,v € N.
Uniqueness of u, v follows from

Uy+vi=x=ur4+vy = u—up=vy—vi e MNN =0,
= U] =up AND v = v).
This allows us to define the function P : X — X by P(x) := u. It is linear since
P(Ax1 4+ x2) = P(Auy + Avy +up +v2) = Auy +upr = AP(x1) + P(x2).
When x belongs to M or N, we get the special cases
Yue M, Pu=Pu+0)=u; VveN, Pv=P0O+v)=0,
soimP = M and N C ker P; moreover, any x € Ker P satisfies 0 = Px = u
implyingx =v € N.
P is a continuous projection: Forany x = u+v € M®N, P*’x = Pu=u = Px,

so P2 =P, Finally, the map J : M x N — X, J(u, v) := u + v, between Banach
spaces, is 1-1, onto and continuous

llu +vllx < llullx + lvlix = 1@, v)llyxy
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and so is an isomorphism by the open mapping theorem. Therefore
IPxll = llull < llull + llvll = G, )l yxn < cllu+vilx =cllxll.

O

Every subspace M can be extended by another subspace N suchthat X = M &N
(by extending a basis for M to span X) but complementarity requires M, N to be
closed.

Examples 11.6

1. Finite-dimensional subspaces are always complemented.
Proof: The projection to M = [ley, ..., e,] is simply

x = 81(x)er + - -+ 8p(x)en,

where §; are the dual basis for M* (§;(e;) := 8;,). Although §; are defined on
M, they can be extended to X* as seen later (Theorem 11.19).

2. Finite-codimensional closed subspaces are complemented.
Proof:Lete1 + M, ...,e, + M be abasis for X/M, and let N := [leq, ..., ex]l
(complete). Then, for any x € X,

n n
X+M:Zai(ei+M):Zaiei+M::U+M

i=1 i=1

which showsx —v € M,v e N,sox €e M+N.Ifx e MNN,thenx =), a;e;
and the above identity gives M = x +M = ) _; ai(e; + M), so o; = 0 (by linear
independence of ¢; + M) and x = 0.

3. Let T € B(X, Y) be an operator on Banach spaces.

(@ f Y = imT & M for some closed linear subspace M of Y, then im T is
closedin Y.
(b) If X =kerT & M andim T, M are closed, then M =imT.

Proof: (a) The mapping X/kerT — imT defined in the proof of Proposi-
tion 11.3 can be extended to (X/ker T) x M — Y by (x+ker T, v) > Tx+v;it
is continuous and bijective, hence an isomorphism. The conclusion follows since
it sends the closed set (X/kerT) x {0} toimT.
O M=X/kerT =imT.

4. If X is a separable Banach space, then there is a surjective operator T : £! — X
(Example 11.4(4)). By Example 3(b) above, either X is embedded in ¢! or ker T
is not complemented.
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Exercises 11.7

1.

2.

For a continuous projection P : X — X, im P is closed and X/im P = ker P,
while ||x + ker P| < || Px]|.

Second isomorphism theorem: If M, N, and M + N are closed subspaces of a
Banach space, then (M +N)/N = M/M NN, usingthemap M — (M+N)/N,

X=X+ N.
X/M ~

. Third isomorphism theorem: Let M C N be closed subspaces of X, then &5+

N/M =
% using the map X/M — X/N,x + M +— x + N.If M is finite-codimensional
then codim N < codim M.

.LetT: X — Yand S : X — Z be operators on Banach spaces.

(a) If M is a closed linear subspace of ker 7', then x + M + Tx is well defined,
linear, and continuous.

(b) If Sisonto and Sx = 0 = Tx = 0, then Sx — Tx is a well-defined
operator in B(Z, Y).

. Let M, N be closed subspaces of a Banach space, with M NN = 0. Then M + N

isclosed & P: M+ N — M, x + y — x, is continuous.

. If ¢ : X — [Fis linear with ker ¢ closed, then ¢ is continuous.
. If M is a complemented closed subspace of X, then X = % x M.
. If X = M@ N with M, N closed, then there is a minimum separation ||u — v| >

¢ between any unit vectorsu € M, v € N.

. * Suppose the Banach space X has a Schauder basis ¢, (of unit norm). For x =

>, Cnen, it can be shown that [|x|[| := sup,, || D ;_, «;e; || exists and is a complete
norm. Show ||x|| < [lx|| and deduce that the map ¢, : x — o« is in X*. These
functionals form a Schauder basis for X*, called the bi-orthogonal or dual basis,
and satisfy ¢, (e) = Spm.-

11.2 Compact Operators

A linear map is continuous when it maps bounded sets to bounded sets. There is a
special subclass of linear maps that go further:

Definition 11.8

A linear mapping between Banach spaces is called compact when it maps
bounded sets to totally bounded sets.
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Easy Consequences

1. Compact linear maps are continuous.

2. If T, S are compact operators, then so are 74 S and AT (since B bounded implies
AT B and subsets of T B + SB are totally bounded (Proposition 7.14)).

3. The identity map / : X — X is not compact when the Banach space is
infinite dimensional (it cannot convert the unit ball to a totally bounded set
(Proposition 8.25)).

4. Tt is enough to show that 7 maps the unit ball to a totally bounded set for T to be
compact (since B € B,(0) = TB C rT By).

Proposition 11.9

If T is compact and S continuous linear, then S7 and 7'S are compact
(when defined).

If 7,, are compact and 7,, — T then T is compact.

For a compact operator 7', im 7T is separable, and is complete only when
finite-dimensional.

Proof (i) Starting from a bounded set, 7 maps it to a totally bounded set and
S, being Lipschitz, maps this to another totally bounded set (Proposition 6.7); or
starting with a bounded set, S maps it to another bounded set (Exercise 4.18(3)),
which is then mapped by T to a totally bounded set.

(i) Let B be a bounded set, with its vectors having norm at most ¢. Then for any
x€B, Tx =Tyx+ (T —T,)x, and

(T = T)x| < IIT = Tullllxll < clIT = T |l — 0.

Hence for n large enough, independent of x € B, ||(T — T,)x|| < €/2; in other
words (T — T,) B € Bc¢/2(0). Moreover T, B is totally bounded and so,

N N
TBCT,B+ (T —T,)B < | Bepa(xi) + Beya(0) = | Be(xi).
i=1

i=1
Thus T B is totally bounded and 7 is compact.
(iii) Totally bounded sets are separable (Example 6.6(3)), so the image of T,

im7T =TX =TI B.0)1 = | T[B. (0],

n=1 n=1

being the countable union of separable sets, is separable (Exercise 4.22(3)).
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Suppose im 7' to be complete, then it would be a Banach space in its own right.
The open mapping theorem can be used to conclude that By is mapped to an open
and totally bounded set T Byx. As 0 is an interior point of it, there is a totally
bounded ball B, (0) € T By. This can only be the case if im T is finite dimensional
(Proposition 8.25). |

Examples 11.10

1. A finite rank operator, i.e., whose image has finite dimension, is compact.
The reason is that, in a finite-dimensional space, bounded sets are necessarily
totally bounded (Proposition 8.25, Exercise 6.9(5)). For example, matrices and
functionals are compact operators of finite rank.

2. » A common way of showing that an operator is compact is to show that it is the

limit of operators of finite rank.
For example, let T : 02 — ¢2 be defined by T(a,) = (a,/ n)i‘; |- First cleave
the operator to Ty defined by Ty (ay) := (a1/1,a2/2,...,any/N,0,0,...). This
maps £ linearly to an N-dimensional space. Showing it is continuous would
imply it is compact of finite rank:

N N
2 2 2 2
I1Tn @) =Y lan/nl* <Y lanl* < l@)7.
n=1 n=1
Furthermore, Ty — T:
o0 o
2 2 1 2 1 2
1T = Tw@)l = D lan/nl* < 35 Y lanl* < 55ll@):
n=N+1 n=N+1

Hence |T — Ty|| < 1/N — 0as N — oo as required.

Note that in this example, im T contains cpgg which is dense in 22
N

3. Ty f(x) = Z f(n)ez’”’“‘ is an example of an operator of finite rank on
n=—N

L0, 1].

4. » An operator T on Banach spaces is compact iff for every sequence (x;),eN
that is bounded, (T x,),en has a convergent subsequence.
Proof: The sequence (T x,),en is totally bounded, hence has a Cauchy subse-
quence, which converges by virtue of the completeness of the codomain.
Conversely, if B is bounded, then any sequence Tx, € T B has a convergent,
hence Cauchy, subsequence; thus T B is totally bounded (Proposition 6.8).
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An important source of examples of compact operators is the following:

Proposition 11.11

If the kernel k is a continuous function [c, d] x [a,b] — C, then the
integral operator 7T : C[a, b] — Clc, d],

b
Tf(s) :=f k(s,t)f(t)dt

is compact.

Proof Let F be the unit ball of functions in C[a, b]. For any s € [¢,d],and f € F,

ITf$) < (b =a)lklpellfllpe < (b= a)lkll oo,

so (T F)[c, d] is bounded in C, hence totally bounded.
As k is continuous on the compact set [a, b] X [c, d], it is uniformly continuous
(Proposition 6.17). So for any € > 0 there is a § > 0 such that for |s1 — 52| < 6,

b
ITf(s1) —Tf(s2)l </ lk(s1, 1) — k(s2, DI f(D]dt < e(b—a).

This implies that T f is continuous and, as § is independent of f, T F is equicon-
tinuous. By the Arzela-Ascoli theorem (Theorem 6.26), T F is totally bounded in
Clc, d], and the integral operator T is compact. O

Note that without the compactness of [a, b] and [c, d], the proposition need not
hold; e.g., the Fourier transform has a continuous kernel but is not compact.

Fredholm Operators

Recall that in the linear equation Tx = y, the image space and kernel determine
to what extent solutions exist and are (non-)unique. In infinite dimensions, the next
best thing to an invertible operator is one which misses out from being injective and
surjective by finite dimensional spaces.



258 11 Banach Spaces

Definition 11.12

A Fredholm operator is one whose kernel is finite-dimensional and whose
image space has finite codimension. The index of a Fredholm operator is the
difference

index(7) := dimker T — codimim 7.

Examples 11.13

1.

(a) Any invertible operator is Fredholm with index 0.

(b) A continuous projection with a finite-dimensional null space is Fredholm
with index 0. This follows immediately from X = ker P @& im P.

(c) The left-shift operator is Fredholm with index +1 (since ker L = {eg},
imL = X).

.Let T : ¢! — ¢! be the diagonal operator defined by T (a,)neN = (bnan)neN

where 0 < ¢ < |b,| < d except for a finite number of indices only; then T is
Fredholm of index 0.

Proof: Let J be the finite set of indices for which b, = 0. Then £! = M ® N
where M and N consist of those sequences with non-zero coefficients in J and
JC respectively. Thus kerT = M, and imT = N since for any (a,) € N, let
u, := ay/b, when n € J° and 0 otherwise; then (u,) € ¢! and T (u,) = (a,).

. A Fredholm operator T : X — Y between Banach spaces gives rise to

decompositions
X=kerT®M, Y=imT®N,
for some closed linear subspaces M, N by Examples 11.6(1,2,3). The restricted

operator R : M — im T, x +— Tx is then bijective and continuous, and thus an
isomorphism by the open mapping theorem.

Proposition 11.14 (Index Theorem)

The composition of Fredholm operators is again Fredholm, and

index(ST) = index(S) + index(T).

Proof Let T € B(X,Y), S € B(Y, Z), both Fredholm, with k := dim(ker T'),
| := codim(im §). Y decomposes as

Y=NPimT =kerSOEM=ADBHCHD
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where

A :=ker S N Nof dimension a,

B :=im T Nker S of dimension b,

C := M N N of dimension c,

D:=MnNimT.
Then dimker ST = k + b, codimim ST = ¢ + [, both finite, and the index of ST is
k+b—c—Il=(@@+b—-1)+ (k—a—c)=index(S) + index(T). O

What is the connection with compact operators, one might ask?

Proposition 11.15

Let T, K € B(X, Y) be operators on Banach spaces, with 7" invertible and
K compact, then T + K is Fredholm.

It is shown in Proposition 14.18 that index(7 + K) = index T'({ + T-1K)=0.

Proof ker(T + K) is finite-dimensional: Let S := T + K. On ker S, K = —T,
so —T~'K = I, but the identity map is compact only in finite dimensions. By
Example 11.6(1), X = ker S @ M, with M a closed subspace. The restriction map
R:M — Y,x — Sx is injective since ker S " M = 0.

R satisfies c||x|| < ||Rx||: Suppose, to the contrary, that there are unit vectors
Xp € M such that Rx, — 0. Then there is a convergent subsequence, Kx,, — ,
by the compactness of K, and therefore
Txp, = Rxp, — Kxy; — —y
Rx,, - —RT 'y =0
so y = 0, contradicting that x,, are unit. It follows from Example 8.16(3) thatim S =
im R is closed.

S has a finite codimensional image: Consider themap Y — Y/im S,
yi> KT 'y +imS= (S —T)T"'y+imS=—y+im§.
It is compact (for any bounded sequence y,, Ky, has a convergent subsequence)

and surjective. By Proposition 11.9, Y/im § is finite dimensional.
O
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Proposition 11.16

An operator 7 : X — Y on Banach spaces is Fredholm, if and only if 7
is invertible ‘“up to compact operators”, that is, there exist K; € B(X),
K> € B(Y) compact and S € B(Y, X), such that

ST=1+4+K,, TS=1+K,.

The operator S is also Fredholm with index(S) = — index(T).

In fact, K1, K; can be taken to be of finite rank.

Proof Suppose T is Fredholm, so X = ker7T & M, Y = imT & N, for some
closed subspaces M, N, with accompanying finite-rank projections P onto ker T
with kernel M, and Q onto N along im T. The restriction R : M — im7T is an
isomorphism. Define S : ¥ — X by Sy := RYI-Q)yeMcCX.

Starting withy € Y,y =Tu +v € imT & N (u, v unique), so

TSy=TR 'Tu=Tu= (- Q)y.
Similarly, starting withx € X, x = w+z € M @ ker T (w, z unique), then
STx =R 'Tx =w= (I — P)x,

soST =1—P, TS =1—Q.Notethatker S = N andim S = M, so S is Fredholm
and

index(S) = dim N — codim M = codim(im 7') — dimker 7' = —index(T')
Conversely, suppose ST = I + K1, TS = I 4+ K>, then
kerT C ker ST = ker(I + K1).

Since I + K is Fredholm, its kernel, and thus ker 7', are finite-dimensional.
Similarly,

im7 2imTS =im(I + K»).

Since I + K3 is Fredholm, Y/im(/ 4+ K»), and by implication Y /im T, are finite-
dimensional.
O

Exercises 11.17

1. The multiplication operator (a,),eN > (bpan)neN (On eh, 02 or £%)is compact
< b, — 0.
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2. The operator V(a,) := (0, ap, a1/2,a2/3,...) (on e, say) is compact. But the
shift operators are not.

3. The operator Tx := Zfl\’:l (¢pnx)yp, for any ¢, € X*, y, € Y, is of finite rank.
In the limit N — oo it gives a compact operator if ZZOZI lDnllllvall < o0.

In fact, any operator of finite rank must be of this type Tx = Zflvzl (¢nx)e, with
¢, € X* and e, a basis forim T.

4. If S, T are linear of finite rank, then so are AT and S + T'; if S is any linear map,
then ST and TS are of finite rank, when defined.

5. IfT : X — Y is compact, then so is its restriction to a subspace M C X,
T\y:M—Y.

6. A compact operator between infinite dimensional Banach spaces is not surjective.
Indeed, its image cannot contain an infinite dimensional complete subspace, for
then, the operator can be restricted to a compact operator onto it.

7. The index of an m X n matrix is n — m.

8. The right-shift operator R (on £°° say) is Fredholm with index —1.

11.3 The Dual Space X*

Functionals provide very useful tools in converting vectors to numbers, and vector
sequences to more amenable numerical sequences. Thus if we are uncertain whether
Xxp — x then we might try to see if ¢px, — ¢x for some continuous functional—if
it does not converge, neither does x,. Moreover, X* is a sort of mirror-image, or
dual, of X: Just as a vector in R" can be thought of as a one-column matrix, every
vector in X can be represented as a linear operator x : F — X, A — Ax; dually,
functionals are linear operators ¢ : X — T, x +— ¢x. It turns out that the space
X* is at least as “rich” as the normed space X, in the sense that X can be recovered
from X* as a subspace of X™**.

Examples 11.18

1. The functionals of a Hilbert space are in 1-1 correspondence with the vectors by
the Riesz representation theorem.

2. Recall that £1* = ¢%°, ¢2* = ¢, and ¢ = €' (Propositions 9.3, 9.6, and 9.9).

3. We will see later that every functional on B(C") is of the type ¢T = tr(ST)
where tr S is the trace of the matrix S (Theorems 15.32 and 10.16).

4. (X x Y)* =2 X* x Y*, via the isomorphism (¢, ) — o where w(x,y) =
dx +py.

5. For¢;, ¥ € X*, y[(/_ kergil1 =0 & ¢ € [¢1,..., Pl
Proof: Consider the map (¢1x, ..., ¢p,x) +— Yx, which is well defined since
(q),-)c)l'.’z1 = 0 = vYx = 0; extend it, by linearity, to a functional £ : F* — F.

Then £ is some row vector (a;)!_,, thatis, Y /| ai¢pjx = ¥x.
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One of the main questions that arise in functional analysis is to find a function f

that satisfies
/ fgn =an
A

where g, are given functions and a,, are given coefficients. Two important examples,
both in practice and historically, are the following:

The moment problem: to find a probability distribution when all the moments
Jg p(Ot" dt = a, are given.

The Fourier coefficient problem: to find a periodic function with given Fourier
coefficients % fozﬂ e~ £ () dt = ay.

The problem can be made abstract and more general and potent by thinking of f as
a functional rather than a function:

To find a functional ¢ which satisfies ¢ (x;) = a; for given linearly independent
elements x; and scalars a;.

Written this way, ¢ would be determined on the linear subspace ¥ = [x;]|
by ¢(O_1_ aixi) = Y, a;a;. So the question becomes that of extending the
functional further to cover all of X, starting from a “fragment” of it on Y. The
secondary issue of whether such a functional corresponds to a function or not, has
been positively answered for several classical spaces.

The next result is a powerful theorem which asserts the existence of such an
extension, but like many abstract existence-type theorems, the path to construct such
an extension is not straightforward.

Theorem 11.19 (The Hahn-Banach Theorem)

Let Y be a subspace of a normed space X. Then every functional ¢ € Y*
can be extended to some ¢ € X*, with ||| x« = [|¢| y+-

Proof Let us try to extend ¢ from a functional on Y to a functional $onY +[v],
for a vector v ¢ Y, by selecting a number ¢v := ¢. Once ¢ is chosen, we are forced
to set ¢p(y + Av) := ¢y + Ac, for any Lv € [[v]], to make ¢ a linear extension of

¢; and to retain continuity with loll = ll¢ll, we need, for anyy € Yand A € F
* #0),
6y + Ac) = |(y + Av)| < By + Av]|
< lp(y/2) +cl < l@llly/A+vll
& ¢y +cl < llolllly + vll, (11.1)
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(since the vectors y/A account for all of Y). To proceed, we consider first the case
of real scalars and then generalize to the complex field.

Real normed space: Let us suppose that ¢ is real-valued. Thus we are required to
find a ¢ € R that satisfies inequality (11.1)

—¢y—lollly +vll <c < —dy +lollly+vl, Vyel.

Is this possible? Yes, because for any y1, y» € ¥,

dy1 — dy2 < o (y1 — y2)l < lIgllllyr — y2ll
< el iyt +vll + lly2 + vl
<

= —¢y2 = 1#lllly2 + vl < =py1 + lI@lllIy1 + vll.

Since yj, y» are arbitrary vectors in Y, there must be a constant ¢ separating the two
sides of the inequality, as sought. Choosing any such ¢ gives an extended functional
with [|¢]| < [[¢|l (inequality (11.1)); but ¢ extends ¢, so [[¢]| = [|¢].

Complex normed space: Now consider the case when the functional is complex-
valued. It decomposes into its real and imaginary parts ¢ = ¢ + ¢, but the two
are not independent of each other because

$1(iy) +iga(iy) = ¢(iy) =iy =id1(y) — $2(y)

so that ¢ (y) = —¢1 (iy). Being real-valued, they cannot possibly belong to Y*, but
they do qualify as functionals on Y when restricted to the real scalars,
$1(y1 + y2) =Re(@(y1) + ¢ (32)) = ¢1(y1) + ¢1(y2),
Vi eR, ¢1(hy) =Rep(ry) = rg1(y),
lp1(»| = |Re gyl < oyl < ll@lllIyll
(for ¢, substitute Re with Im). So they have real-valued extensions ¢; to ¥ + [v]]
that are linear over the real scalars; actually, extending ¢ to b1 automatically gives
the extension for ¢;. That is, define ¢(x) = ¢>1(x) zd)] (ix). This is obviously

linear over the real scalars since ¢; is. It is also linear over the complex scalars
because

$(ix) = G1(ix) —i1(—x) = i(=id1(ix) + $1(x)) = ip(x).
Moreover it is continuous since, using the polar form <j~>x = |¢x|ei,

x| = e % px = Gle % x) = gr(e 7% x) < NP lllxll = llprllIx] < lBllllx]l,
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so that ||q;|| < ||@|l; in fact, equality holds because the domain of ¢~$ includes that
of ¢.

Extending to X: If X can be generated from Y and a countable number of vectors
vy, then ¢ can be extended in steps, first to some ¢ acting on Y + [[v;]], then to
¢» acting on Y + [[vi]] + [[v2]l, etc. The final extension is then (;;x = ¢px for
x € X, whenever x € Y + [[vy, ..., v,]l. If these vectors are only dense in X (e.g.,
when X is separable), c]3 can be extended further with the same norm via gg(x) =
limy,—s 00 <5(x,,) when x, — x, as a special case of extending a linear continuous
function to the completion spaces (Example 8.9(5)).

But even if X needs an uncountable number of generating vectors, then “Haus-
dorff’s maximality principle” can be applied to conclude that the extension goes
through to X. Let M be the collection of functionals ¢ acting on linear subspaces
M containing Y and extending ¢ with the same norm

M:={¢y € M*:Vy €Y, pyy = dy, AND gyl = l¢ll}.

By Hausdorff’s maximality principle, M contains a maximal chain of subspaces
{M,}, where ¢, extends ¢g whenever Mg € M,. But E := [ J, M, also allows
an extension of ¢, namely ¥ (x) = ¢ux for x € M,. It is well-defined because
x € My N Mg implies My, C Mg say, so ¢pox = ¢pgx. It is linear and continuous
with the same norm as ¢,

Vx| = |gax| < lI@elllixll = ll@lllx]l.

Hence ¥ is a maximal extension in M; in fact, E = X, for were it to exclude
any vector v, the first part of the proof assures us of an extension that includes v,
contradicting the maximality of /. O

The next proposition is used repeatedly throughout the rest of the book.
Proposition 11.20

For any x # 0, there is a unit ¢ € X* with ¢x = ||x]|.

More generally, if M is a closed linear subspace and x ¢ M, then there is
a functional ¢ € X* with ||¢|| = 1, such that

oM =0, ¢x #£0.

Proof If x # 0, there are non-zero functionals on [x]], such as ¥ (Ax) := Ac (c #
0); in particular, to satisfy the requirement ||¢|| = 1, choose ¢ (Ax) := A|/x||. By the
Hahn-Banach theorem, it has an extension to all of X, with the same norm.



11.3  The Dual Space X* 265

More generally, given x ¢ M, form the linear subspace
Y =[x+ M={ x+v:2e€C,ve M}

Y* contains the functional defined by ¥ (Ax + v) := A|x + M||. It clearly satisfies
¢M = 0 (A = 0) and is linear and continuous since, for v;, v € M, A;, A € F,
Y(hix + v+ Aox +v2) = (A1 + A2)|lx + M| = Y (Aix + v1) + ¥ (dax + v2),
Y (ux +v) = Anllx + M| = uy (Ax + v),
Y (Ax +v)| = [Alllx + M| = ||Ax + M| < [|Ax + v

and in fact |y|| = 1,

W &x+v)l _ llx+ M

llx + vnll llx + vnll

for v, € M chosen so that convergence of |x +v,| — |x 4+ M| occurs
(Proposition 8.20). So ¥ can be extended to a functional ¢ on all of X with the
same norm.

O

The Hahn-Banach theorem and its corollaries show that there is a ready supply of
functionals on normed spaces; admittedly, this does not sound exciting, but consider
that there are vector spaces (not normed), such as L?(R) with p < 1, that have only
trivial continuous functionals. For our purposes, its greater importance lies in its
ability to show a certain duality between X and its space of functionals X*. For

example, the dual of the statement ||¢]| = sup |¢x] is:
lxll=1

Proposition 11.21

Xl = sup |¢x|, ITII= —sup [¢Tx|
lel=1 lol=1=llx

Proof |¢px| < ||x| for all unit ¢ € X*. But the functional just constructed satisfies

¢x = [lx]| and [[¢]l = 1, 50 supygy_; [¢x| = Ilx]l.
This in turn allows us to deduce

[T = sup [[Tx[| = sup sup [$Tx|.
lell=1 lel=1ll=1
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Proposition 11.22 (Separating Hyperplane Theorem)

If x € X does not lie in the closed ball B, (0), then there is a hyperplane
¢~ '« which separates the two, that is,

¢ € X*, dJa > 0, Vy € B, (0), |py| <a < |px|.

Proof Let ¢ : [x]] > F, ¢(Ax) := A||x||; its norm is 1 and ¢x = ||x|| > r. It can
be extended to a functional on X with the same norm. Hence for any y in the closed
ball, |¢py| < ||¢llllyll < r. Witha := Ag|lx|| and r/||x]| < Ao < 1, the hyperplane is
then ¢ 'a = Agx + ker ¢. m|

Note: The proof remains valid when B,(0) is replaced by a closed balanced
convex set C since C + B¢ (0) determines a semi-norm in which it is the open unit
ball (Exercise 7.8(10)).

Examples 11.23
1. The Hahn-Banach theorem and its corollaries are evident for Hilbert spaces:

(a) Any functional ¢ on a closed subspace M corresponds to a vector x € M,
and hence has the obvious extension ¢ := (x, -) on H.

b)) x=0<« VyeH, (y,x)=0.

© llxll = sup [{x,y)|= sup [y*x|,ITll= sup [(y,Tx)]|

llyll=1 ly*ll=1 Ixl=1=lyl
(Exercise 10.17(1)).

(d) One hyperplane separating x from B, (0) is orx + x =+ <a <l

r_
> Ixl
2. Operators do not extend automatically as functionals do:

(a) If M is a complemented closed subspace of X, then every operator 7 : M —
Y can be extended continuously to X — Y.

(b) If the identity map I on the closed subspace M can be extended to X — M,
then the extension is a projection and M is complemented in X.

Proof: Let X = M & N with M, N closed subspaces, and define Tu +
v) := Tuforu € M, v € N. Then |[T(u+v)| = |Tul < c|T|llu+ vl
(Proposmon 11.5).
If [ : X — M isanextension of I : M — M, then [%x = [Ix = Ix, soitis a
projection in B(X). X then splits up as ker [ ®im I, where im [ = M.

3. If X is not separable then neither is X*. But recall that the separable space £! has
the non-separable dual £°°.
Proof: Assume X* separable, with ¢1, ¢, ... dense in it. By definition of their
norm, there must be unit vectors x, such that for a fixed € > 0,

|nxn| > l|@nll — €.
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The claim is that M := [[x, ] is equal to X, making X separable. For if not, then
there is a unit functional ¢ € X* such that ¥+ M = 0; and there is a ¢, close to
it, | — ¢nll <€, 50

|nxn| = [(U = ) xn| < ¥ = all < €.

Combining the two inequalities yields ||¢, || < 2¢, and this contradicts that ¢,, is
within € of the unit functional .

4. A Banach space, whose dual is separable, is embedded in £°°.
Proof: Let ¢, be dense in Bx+ and let T : X — {° be defined by Tx :=
(¢nX)nen. It is linear, and an isometry:

(@) lloc = sup [nx| = sup [¢px| = x|
n lpl<1

Note: The Banach-Mazur theorem states that every real separable Banach space
is embedded in C[0, 1], and thus in £°°.

5. Banach Limits. The functional Lim on ¢ (Exercise 9.4(1)) can be extended (non-
uniquely) to a functional on £°°. Even better, let Y := im(L — I), where L is
the left-shift operator. Note that Y contains cqg (prove!) and hence cg, but not 1.
Extend the functional Lim 1 := 1 to Y by zero, i.e., Lim(al+y) =afory € Y,
and then to all of £°° by the Hahn-Banach theorem. Such a Banach limit also
satisfies Lim(a,+1) = Lim(a,), as well as 0 < x = 0 < Limx. For example,
taking x := (0, 1,0, 1,...), then Limx = §(Limx + Lim Lx) = JLim1 = J.

Annihilators

Let us explore the duality between X and X* more closely. The connection between
the two is the following construction, which allows us to shuttle between subspaces
of X and those of X*. It is the generalization of the orthogonal subspaces in Hilbert
spaces which, under the Riesz correspondence J, can be rewritten in terms of
functionals,

At —(xeH:VaecA, (x,a) =0} —L> {pc H* :Va € A, pa=0).
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Definition 11.24

The annihilator of a set of vectors A C X is the set of functionals
Al ={¢pe X" :Vxe A, ¢x=0}.
Similarly, given a set of functionals ® € X* then the pre-annihilator is

lo:={xeX:Vped, ¢x=0}.

Easy Consequences
1. 0t =Xx* Xt =0.
2.ACB = Bt c AL
3.ACLd & 0A=0 & dc AL
The properties of AL generalize those for Hilbert spaces, such as Proposi-
tion 10.9 and Example 10.14(4).

Proposition 11.25

Al is a closed linear subspace of X* with the following properties:

(i) (AUB): =A*+nBtand A+ + B+ C (ANB)*,
(i) +(AH) =[Al,
(iii) [ATisdensein X < A+ =0.

Proof That At is a linear subspace is evident from
Vo, v e At ac A AeF, (Ap+vY)a=rpa+ ya=0.

Let ¢, — ¢ with ¢, € AL;foranya € A, 0 = ¢p,a — ¢a,so¢ € AL and AL is
closed in X*.

(i) Clearly, (A U B)* is a subset of AL and B, while pA = 0 = ¢B imply
¢(AUB) =0.If¢p € A+, € B+, andx € ANB, then (p+y)x = px+x = 0.

(i) T (A1) is a closed linear subspace of X (Exercise 8 below), and it contains A,
since for a € A and any ¢ € At ¢a = 0,s0a € +(A1). Thus [A] € +(AD)
(Proposition 7.11).

Conversely, let x ¢ [A]. Then by Proposition 11.20, there is a functional ¢
satisfying both ¢[[A] = 0, hence ¢ € AL, and ¢x # 0, hence x ¢ - (A1).

(iii) Consequently, [[A]l is dense precisely when l(AL) = [[A]] = X, and this is
equivalentto AL =0 (Vx € X,px =0 < ¢ = 0). O
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The Double Dual X**

A functional ¢ is an assignment of numbers ¢x as the vectors x vary in X. Suppose
we fix x and vary ¢ instead, ¢ — ¢x, what kind of object do we get? It is a mapping
from X* to F, which is a possible candidate for a “double” functional in X**.

Proposition 11.26

For any x € X, the map x*¢ := ¢x is a functional on X*, and x — x™ is
a linear isometry, embedding X in X**.

The map x™ is not (x*)*, as is the case in Hilbert spaces. There is no
correspondence between X and X* in general Banach spaces.

Proof The mapping x™ : X* — F, ¢ > ¢x, is clearly linear in ¢, and continuous
with [x™@| = [px| < |lx[I@], i.e., x™ € X with [[x™] < |lx].

Hence we can form the map J : X — X™*, defined by J(x) := x™. It is linear,
since forany ¢ € X*, x,y € X, A € F,

(x+ %P = +y) =dx + oy =x"(d) + " ($).
(x)™ (@) = p(hx) = L px = Ax™(¢9).

J is isometric by Proposition 11.21, ||x™| = sup |x™¢| = sup |¢x| = ||x|. O
llll=1 ll¢ll=1

Examples 11.27

1. Given any normed space X, the double dual X** is a Banach space. Hence the
closure J X, being a closed linear subspace of X**, is itself a Banach space. It is
isomorphic to the completion of X, denoted by X.

2. Several Banach spaces, called reflexive spaces, have the property that the
mapping x +— x™ is an isomorphism. Examples include 7 (p > 1) and all
Hilbert spaces (Proposition 10.16).

3. But in general, X need not be isomorphic to X**, even if X is complete. For
example, some elements of (£!)** are not of the type x** for any x € £'.

4. In this embedding, A € AL (since forx € Aand ¢ € AL, x*¢ = ¢px =0, s0
x* € A1), Note that A+ is always a closed linear subspace even if A isn’t.
Question: if M is a closed linear subspace is it necessarily true that M = M-11?

5. Since a functional is determined by its values on the unit sphere, we can think of
the double-functional x*™ as a continuous function on the unit sphere in X*; its
norm is none other than its maximum value there, || x™| = supy4=1 |#x|. Hence
the vectors of any normed space can be thought of as continuous functions on a
(possibly infinite-dimensional) sphere.
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Exercises 11.28

X*distinguishes points: If x # y then there is a ¢ € X™ such that px # ¢y.
If x ¢ [[y]], find a functional on X with ¢x = 1 and ¢y = 0.

For normed spaces, X* =0 & X =0.

Given the functional ¢x := x, x € R, find all equal-norm extensions to R? with
the 1-norm.

Given x € X, theset {¢p € X* : ¢x = ||x|| } is non-empty and convex.

In a normed space of dimension bigger than n, for any vectors xp, .. ., x,, there
exists a unit vector y such that ||y — x;|| = ||xi|l,i =1,...,n.

(Hint: Consider unit ¢;, ¢;x; = ||x;||.)

Show that if {x}* = X* then x = 0, and if {x}* = 0then X = For X = 0.
Show 1@ is a closed linear subspace of X.

(+ @)+ need not equal [®]. For example, take & := {8, : n € N} in £!*.

Let M be a closed subspace of a normed space X. The following maps are
isomorphisms

Ll e

oW

SN

M+ — (X/M)* X*/ M+ — M*
¢y ¢+ MLt ply.
V(x + M) = éx,

Hence, dim M+ = codim M and codim M+ = dim M , when finite.
11. x Let Y be a closed subspace of the Banach space X. Let jx : x > x™ € X**,
Jriyr> y*eY*andlet J : Y™ — X*™* be defined by J¥ (¢p) := Uoly.

(a) Use the Hahn-Banach theorem to show that J is an isometry, such that
Jx(y)=Jojy(y)foryeY.

(b) If x ¢ Y, then jx(x) ¢ im J (use Proposition 11.20).

(c) If X is reflexive then so is Y, since for any ¥ € Y**, J¥ = jx(y).

(d) Deduce that £! and ¢ are not embedded in 22,

11.4 The Adjoint 7T

Recall the adjoint of an operator on Hilbert spaces 7* : Y — X defined by the
identity (T*y, x) = (y, Tx). Is there an analogous definition that can be applied
to Banach spaces? First, one needs to recast the defining relation, replacing inner
products by functionals, (T*y)*x = y*Tx. Although not exactly the same thing,
the definition (T T¢))x := ¢Tx captures the essentials of this identity in terms of
functionals. The relation between them is T* : y — y* — T'y* = u* — u.
More formally, using the Riesz correspondences Jy : ¥ — Y*and Jx : X — X*,
T = J ' T Jy.
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J)( JY

T* is sometimes called the Hilbert adjoint to distinguish it from the adjoint 7' T.

Definition 11.29

The adjoint! of an operator 7 : X — Y is TT : Y* — X* defined by

(T"¢)x := ¢(Tx)forany ¢ € Y* and x € X.

That T"¢) : X — F is linear and continuous can be seen from

(T'P)x+y)=¢T(x+y) =¢Tx +¢Ty = (T ¢)(x) + (T d)(y)
(TT¢)(hx) = ¢T (Ax) = ApTx = M(T " ¢)(x)
[(TT¢)x| = 1¢(T )| < IINTx < ISIITNx]]- (11.2)

Proposition 11.30

T is linear and continuous when 7 is, and the map 7 — T is a linear
isometry from B(X, Y) into B(Y*, X*),

S+D)'=S"+T7, D' =AT", |T"|I=ITI.

When defined, (ST)" =T7S".

Proof Linearity of T7: Forall x € X, ¢, € Y*, A € F,

T (p+yY)x)=(+¥)(Tx)=¢Tx+yTx = (T ¢)x + (T ¥)x,
TT(up)x = Ap Tx = AT ¢)x.

! There is no standard name or notation for the adjoint operator. It has also been called the dual or
transpose and denoted by various symbols such as T/, T*, T, T etc.
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That T is continuous follows from ||T "¢ || < ||T||||¢]| by (11.2).
The other assertions are implied by the following statements, true for all x € X
and all p € Y™

S+T)¢px=¢Sx+Tx)=¢Sx +¢Tx = (S"¢p + T ¢)x,
AD)Tpx =dp(ATx) = ApTx = (AT "¢)x.
Using Proposition 11.21,

IT|l = sup sup |¢Tx|= sup sup [(T ¢)x|= sup [T ¢ll=|T"|.
lel=1 Igl=1 Igll=1 =1 Igli=1

Finally, when T € B(X,Y), S € B(Y, Z), and any ¢ € Z*,

ST =yST =S Y)T =TSy

Examples 11.31

1.0"=0,1"T=1.
2. The adjoint of a (complex) matrix is its transpose, with the columns becoming
the rows, pTx =y -Tx = (T"y) - x, e.g.,

ab e X1 ad X1 abcT ad
<M>'(def) wf=|be <y1>' o A <def) =2
2 x3 cf y2 X3 ¢ f

and generally, ) ; (y,~ Zj Tijxj) = Zj (Zl Til,'y,')x.,', SO T].Tl. =Tjj.

3. » To find the adjoint of an operator T on the sequence spaces £!, £2, or cg, the
effect of T on a vector x needs to reevaluated as an effect on a functional ¢. But,
identifying (£')* with £°, etc., the adjoint 7T can be thought of as a mapping on
sequences y:

¢Tx =y -Tx=(T"y) x.

For example, to show that the adjoint of the operator T (a,) := (a1, 0,0, ...) in
B(YY is TT(by) = (0, by, 0, . ..) in B(£>°), consider

y-Tx = (bo,b1,bs,...)(a1,0,0,...) = boa
=(0,b0,0,...) (ao, a1, a2, ...).
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4. » The adjoint of the left-shift operator is the right-shift operator, on £7 or cp:

o0
$Lx =y-Lx =) buans1 = (0,bo,b1,...) - (g, a1, a2,...) = (Ry) - x.
n=0

5. The adjoint of the Fourier coefficients operator F : L'[0,1] — co(Z) is F' :
4(Z) — L™[0, 1] defined by F(a,) = Y, ane”>*"". (Compare with F*,
Exercise 10.35(11))

Proof: For y = (ap)nez, € £1(Z),

1
y-Ff= Zanf =27 £ (1) di
0

nez

1
— [ () swas =y 1

nez

with the placement of the sum in the integral justified by >, ape2mint ¢
L°°[0, 1].

* Note that £! C ¢, so the composition F ' F is not defined on all of L'[0, 1],
i.e., rebuilding an L'-function from its Fourier coefficients is not guaranteed
to converge uniformly back to the function, vividly demonstrated by the Gibbs
phenomenon. However, with this machinery in place, it is now easy to prove part
of Dirichlet’s assertion for periodic functions (see Exercise 9.37(3)):

FTF:C*0,11 = c2(Z) C €' — L™®[0,1].

6. x If the codomain of T : X — Y is reduced to the linear subspace im T, the
image of T'T remains the same.
Proof: Let M := im T and let T:X — M, Tx := T x, be the new operator;
then 77 : M* > X*. Any functional ¢ € M* can be extended to ¢ € Y*, and
forall x € X,

(T )x = ¢Tx = ¢Tx = ¢pTx = (T ¢)x.

Hence im 7' C imT7. Conversely, any ¢ € Y* can be restricted to im 7', and
the same reasoning shows the opposite inclusion.

7. For a Hilbert space H, every operator T € B(H) is paired up with its adjoint
T* € B(H). This fact makes B(H) much more special than spaces of operators
on Banach spaces, as we shall see later in Chap. 15 on C*-algebras.

The Hilbert space identity ker 7* = (im T') generalizes to Banach spaces, but
the closure of im T is not always (ker L.
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Proposition 11.32 (Closed Range Theorem)

If X, Y are Banach spaces and 7' € B(X, Y), then
ker7T = (imT)*, kerT =+imT7,

im7T =+ker7T", imT' C (kerT)" .

Moreover, im 7" = (ker T)~ < im T is closed < im 7" is closed.

Proof The central statement is, for T € B(X,Y),
¢Tx = (T P)x.

If these quantities vanish for all x € X, then the two sides of the equation state
¢ € (imT)* and ¢ € ker T, which must therefore be logically equivalent. If they
vanish for all ¢ € Y*, then they state x € ker T and x € ~im T respectively.

We have already seen that @ C ALt & A C 1, so the statements in the
second line of the proposition follow from the identities in the top line, using first
® = kerT", A = imT, and secondly A = kerT, ® = imT . Moreover, by
Proposition 11.25,

im7T =+(m7T%) = t(ker 7).
imT closed = imT7 closed: To show that equality holds in im 77 C (ker T)*,
let ¢ € (ker T)J-, ie, Tx =0 = ¢x = 0. T can be considered as a surjective

operator T : X — im T, so the mapping ¢ : Tx — ¢x is a well-defined functional
onim T (Exercise 11.7(4)). It can be extended to a functional ¥ € Y* by the Hahn-

Banach theorem.
X

im7 — F

[
Then, forall x € X,
¢x = ¢Tx =y Tx = (T Y)x,

so¢ =T Ty and im T is equal to the closed subspace (ker 7).
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im 77 closed = imT closed: Define T : X — imT =: M, Tx = Tx; by
Example 11.31(6) above and the fact that the annihilator of im TinMis 0, it follows
that 77 is 1-1 and has the closed image im 7. Hence, for all ¢ € M*, |[T | >
c|l¢|l (Proposition 11.3). Now C := TBX is a closed balanced convex subset of Y,

so by the separating hyperplane theorem, any y ¢ C can be separated from it by
means of a functional ¥ € Y*,

Vx € B1(0), |yTx|<r<|vyl
Note that |7 || < r. Then

r< Yyl < Iyl < STl < Zlyll

and ||y|| > c. This implies that TBX contains the ball B.(0). But we have already
seen in the proof of the open mapping theorem that when this is the case, then T Bx
contains some open ball B.(0) of M. This can only be true if T is onto, that is,
im7 =imT is equal to the closed space M.

O

Proposition 11.33 (Schauder’s Theorem)

If T is compact then so is its adjoint 7.

Proof Let T : X — Y be a compact operator, so the image of the unit ball T By is
totally bounded in Y, that is, for arbitrarily small € > 0, it can be covered by a finite
number of balls B.(Tx;) where x1,...,x, € Bx. We want to show that 7™ maps
the unit ball of functionals By« C Y* to a totally bounded set of functionals in X*.

The linear map S : Y* — [F”" defined by S¢ (= (W Txy,...,¥Tx,) is
continuous (because T is, and n is finite), so compact of finite rank. Hence S By+ is
totally bounded in F"* and can be covered by balls B, (Sv;) for a finite number of
'(ﬁj € By-.

We now show that balls of radius 4€ centered at 7"y ; cover T By+. For any
Y € By~ and any x € By, there are Tx; and Sv; close to Tx and S respectively,
resulting in

[WWTx —;Tx| < |[YTx —YTxi|+|¥Txi —;Txi|+|¥;jTxi —¥;Tx|

<
ST = Txill + 11SY = SYjllpn + 15117 x: — Tx|l
<|vle+e+vle

< 3¢

SoIT™y — Tyl < 3e,and T7By» S \J; Buae(T ")).
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Exercises 11.34

1.

»

The adjoint of a multiplier operator My(x) := yx, where M, € B(£Y, is
My € B(£*®).

The adjoint of a finite-rank operator Tx := Zfl\]:l (¢pnx)ey is another finite-rank
operator T T = Zflvzl(wen)qbn.

Taking the adjoint is continuous: If 7, — T then 7,] — T''.

T maps a linear subspace M onto 7 M; show T maps (T M)* into M. So, if
M is T-invariant, i.e., TM C M, then M=+ is T -invariant.

. * In the embedding of X in X**, show that 777 : X** — Y** is an extension

of T : X — Y inthe sense that T "x™ = (Tx)*.
TTis1-1 «& imT isdensein Y;and im 7" is dense in X* = T is 1-1.
Let T € B(X,Y), with X, Y Banach spaces,

T is an embedding < T is surjective,
TT is an embedding < T is surjective,
T is an isomorphism < 7T is an isomorphism, with (TT)~! = (T~1)T.

A necessary condition for the equation 7x = y to have a solution in x is that y
have the property T'¢ = 0 = ¢y = 0. When is it also sufficient?

If P is a projection, then so is PT, with kernel (im P)L and image (ker P)*L.
Deduce that for closed complemented subspaces M, N,

X=M®N = X*'=Nto M.
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10. If T is a Fredholm operator, then so is 7" and
index(T") = — index(T).

Moreover, index(T) = dimker T — dimker T ". (Hint: Exercise 11.28(10).)

11.5 Strong and Weak Convergence

We have already encountered two types of convergence for operators 7, € B(X, Y),
to which can be added yet another, weaker, type:

(i) Convergence in norm
,—->T <& |TI,-T|—0,
(i) Strong, or pointwise, convergence
VxeX, Twx—-Tx <& VxeX, |Tpx—Tx|y—0,
(iii) Weak convergence

T, ~T <& VxeX, VpeVY* ¢T,x— ¢Tx.

Examples 11.35

1. » Convergence in norm is “stronger” than pointwise convergence, since for each
xeX,

ITwx — Tx|l = (T, — x|l < IIT, = Tlllx]| — 0.

But the converse is false: it is possible to have strong convergence without
convergence in norm. For example, let §y : ¢! — C be defined by &k (an) = ax;
then 8xx — 0 as k — oo for each x € ¢!, but ||8|| = 1.

Similarly, when defined on ¢ C £°°, §; converge pointwise to Lim yet §; - Lim,
since &k (a,) = ay — lim,_ o a,, but §; = e,: can converge only if e; converge
inel.

2. Another example is the projection operator defined by n left shifts followed by
n right shifts, T, :== R"L" : ¢! — ¢!, It converges pointwise to the 0 operator,
since for each x = (a;)jen € £}, |R"L"x|| = Zloin |a;] — 0. However there
are sequences, such as x := e, for which T,,x = x, so that | 7, = 1 4 0.

3. If T,, converge pointwise, Vx, T,x — Tx, it does not follow that TnT converge
pointwise, V¢, TnT¢ — T7¢. For example, in ¢L, L"x — 0 for the left-shift
operator L; but R"x 4 0 in £°°. Another example is T, (a;) := (ap, 0,0, ...).
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It often happens that a map is defined as the pointwise limit of a sequence of
operators, T (x) := lim,_, T, x, assuming this is defined for all x € X. It is then
natural to ask what properties does T enjoy: That it is linear is easy to prove, but
is it also necessarily continuous? The answer is yes when X is a Banach space,
as implied by the following stronger assertion, one of the pillars of Banach space
theory:

Theorem 11.36 (Uniform Boundedness Theorem)

For a Banach space X, a normed space Y, and 7; € B(X,Y),

(Vx € X, 3C; > 0, Vi, |Tix| < Cx) = Vi, |ITi| < C.

The index set of i need not be countable.

Proof Suppose that T; are not uniformly bounded; then there is a sequence of
operators from this family, (7,),en, such that ||7,|| > a" (a > 1). For each such
operator, there are unit vectors +x,, such that ||7,x,| > ||T,|| — 1. Whatever signs
are chosen for x,,, the series

X1 Xn
x0+—+"'+—n
r r

converges absolutely to some vector y, when r > 1; in fact, the remainder term is
at most

Xk 1 1
lznll = Hzr_]‘H 2w r— D
k>n k>n

Now, for any vectors u, v, either ||u + v|| or |lu — v|| is larger than |v| (Exer-
cise 7.8(1)), so the sign of x,, can be chosen so that

I (Tnxo 4 -+ 7" "D Txu ) 4" T | = 7" T |l
N—— N ——’

u v v

STyl = 1Texo + -+ - + r " Taxy + T,za |

= r N Tuxnll = 1Tl |zl
S ITull =1 |7l
- rh (r—1Drn

r—2a" 1
> — — — > o00asn —> o0
r—1r2 rt

for r = 3 and a = 4, say. Thus there exists a y € X such that ||7,,y|| — oo, which
is the negation of the hypothesis. O
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Corollary 11.37

If T, € B(X,Y) with X a Banach space, and 7,,x — T (x) for all x, then
T is linear and continuous,

IT < liminf[|7,]|.
n

Proof T is necessarily linear, by continuity of addition and scalar multiplication
(see the proof of Theorem 8.7). Any convergent sequence is bounded, so ||7,x||
is bounded for each x, from which follows that Vn, ||T,,|| < C, by the uniform
boundedness theorem.

If we now choose a subsequence of T, for which |7, || — « := liminf, |7, ||,
and take the limit n — oo of ||T,x|| < |[Tx|llx|l, we get |[Tx| < «fx]| and
1T < c. m

Examples 11.38

1. If the coefficients a, are such that ), ; a,b, converges for any sequence x =
(bn)nen € £P, then (ap)neN € e,

Proof: The numbers ¢pyx = ZQI:O apb, converge to ¢(x) = (ay,) - (by) as
N — oo; hence by the corollary, ¢ is a functional on £7.

2. A common error is to define or prove Tx = ), .y T,,x for all x and then deduce
T =Y,y T Itis true that two functions are the same, f = g, when f(x) =
g(x) for all x € X, but the point is that the meaning of the limit in the sum ),
differs in the two expressions, the first occurring in ¥ and the second in B(X, ).

3. x Recall the Fourier sum S, f := > ;__, F(k)e*™ ik = D, % f, as an operator
C[0, 1] — C]O0, 1], where D, is the Dirichlet kernel

n .
. 2 1 ‘
D,(t) := Z orikt _ M

sint
k=—n

Let ¢, f = Snf(0), which has norm [|¢,[| = || Dnllp1[o,1}- Assuming that

|Dpll;1 — oo, then the uniform boundedness theorem shows that there is a
continuous function f for which S, f(0) — oo asn — oo.

Weak Convergence

Let us now consider weak convergence of operators

T, ~T & ¢Tox— ¢Tx Vxe X, Vo e Y™
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For vectors (considered as operators F — X, A — XAx), weak convergence takes the
form

Xp—Xx & ox, — ¢x, V¢ e X*.

For functionals (X — [F), this convergence is called weak-* convergence, some-
times denoted ¢, — ¢ for emphasis; it coincides with their pointwise convergence,

on = & Ppx — Px, Vx e X.

One must guard against a possible source of confusion: the weak convergence of
functionals, when thought of as vectors in X*, is different:

On — ¢ < U, > ¥, V¥ e X,

hence the need for a new name.
Examples 11.39

1. Strong convergence implies weak convergence because, by continuity of ¢,
Twx - Tx = ¢Tpyx — ¢Tx.

2. » But the converse is false in general: For example, in ¢y, R” — 0, since for any
x = (aj)ien € o, and y = (bj)ien € £' = ¢},

o]

oo
v RO = | 3 binai]| < Y billixl = 0asn — o,

i=0 i=n

yet R"x - 0, since |R"x|| = ||x|| &~ O.

3. To prove weak convergence, x, — x, given that (x,),cN is bounded in X, it is
enough to check yx, — x for ¥ in a dense subset of X*.
Proof: Any ¢ € X* can be approximated by functionals ¢, — ¢, by their
density in X*. For y, := x,, — x (bounded), it is not hard to show that v, y, — 0,
SO

OV = Yuyn + (@ —VY)yn — 0 asn — o0.
4. Weak convergence of vectors and operators in an inner product space become

Xn =X & (y,xy) = (y,x)asn - oo, VyelX,

T, T < (y, T,x) > (y, Tx)asn — 00, Vx,ye€ X.
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5. In an inner product space,
Xp =X AND |lxp[| = |Ix|| < x» — x.
Proof: When x,, — x, we get (x, x,) — (x, x) since x* is a functional, so

Ix — xall? = [Ix]1* — 2Re (x, x) + xa)1* — O.

Proposition 11.40

In finite dimensions, all three convergence types are equivalent.

Proof Let A, — A where A,, A are M x N matrices. This means that for any
¢ € FM)y* and x € FV, ¢(A, — A)x — 0asn — oo. In particular if we let
¢ = &/, x = e; be basis vectors for FM* and FV respectively, then each component
of A, converges to the corresponding component in A:

Anij=¢ Anej — & Aej = A;j, asn — .

This then implies that [|A, — All < X3 3L, [Anij — Aijl — 0 (Proposi-
tion 8.10). |

The analogous result of the uniform boundedness theorem for weak convergence
is also true, but more care is needed: Although every convergent sequence is
bounded (Example 4.3(6)), that fact was proved using a metric, whereas weak
convergence 7, — T is not equivalent, in general, to such a strong type of
convergence as d(7,,, T) — 0 for any distance function.

Proposition 11.41

If T, — T where 7, € B(X, Y), X a Banach space, then

(1) {T, : n € N} is bounded, and
(i) T € B(X,Y) with ||T|| < liminf ||T,||.

Proof (i) Let T,, — T; the set { T1x, Trx, ...} is weakly bounded in the sense that
foralln € N, ¢ € X*, |¢T,x| < Cy . since (¢T,,x),en is a convergent sequence
in C. But an application of the uniform boundedness theorem twice shows first that
|IT,x|| < Cy, and then that 7, is bounded. Of course, a simplified version of this
argument applies equally well to weakly convergent sequences of vectors x, — x
and to weak-x-convergent sequences of functionals ¢, — ¢.
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(ii) Take the limit of ¢T,,(x + y) = ¢Tpx + ¢T,y and ¢pT,,(Ax) = ApT,x to show
linearity of 7. Similarly, the bounded set { ||7,,|| : n € N} possesses a smallest limit
point «, so taking a subsequence of || 7, || which converges to it, we obtain

Vxe X, pel”, [pTux| < NI@NNT 1]l

\ \
T x| all@llx]

and ||T|| < « follows. Thus B(X, Y) is closed under weak convergence. O

As a partial converse there is:

Theorem 11.42

When X is a separable Banach space, every bounded sequence in X* has
a weak-x-convergent subsequence.

If x1, x2, ... € X are dense in the unit ball, then X* has a norm
1
I¢ly =D 57192l < g
n=1

such that for ¢, bounded,

¢ = ¢ < l¢n —olly — 0.

Thus the unit closed ball of X* is a compact metric space with this norm.

This theorem can be generalized to non-separable spaces (see [10]), when it is
known as the Banach-Alaoglu theorem: The unit closed ball of X* is a compact
topological space.

Proof (i) Let {x,,}nen be a countable dense subset of X, and suppose ||¢, | < c.
Then the sequence of complex numbers ¢, x| is bounded, |p,x;| < cl|lx1|, and
so must have a convergent subsequence (Exercise 6.9(6)), which we shall denote
by ¢1.,x1 — ¥ (x1). This subsequence is also bounded on x2, |¢1 ,x2| < c|x2|l,
and so we can extract, by the same means, a convergent sub-subsequence, ¢, ,x2.
Notice that, not only does ¢2 ,x2 — ¥ (x2) but also ¢ ,x1 — ¥ (x1). Continuing
this way, we get subsequences ¢, , and numbers ¥ (x,,) such that ¢, ,xi — ¥ (x;),
fori < m,and |V (x,)| < cllxmll.
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On |1 &2 D3 P4 Bs ...
Oru|d1 D3 P4 D5 ... D1 ax1 — Y(x1)
bon|P1 93 G5 ... P2ax2 = Y(X2)

3.0 @5 .| $3.0x3 = Y (x3)
Ork|P1 @3 | DX = Y (X)
Let ¥x := ¢k, a subsequence of the original sequence ¢,. In fact, ¥y is a

subsequence of every ¢, , from some point onward (k > m), so VX, — ¥ (xn),
as k — oo. This implies that the function y is Lipschitz on the dense set {x,,},

1Y (xi) — Y (x| = lim |Ygx; — Ypxj)| = lm [ (i —xj)| < cllxi — xj|
k— 00 k— 00

and so can be extended uniformly to a continuous function on X (Theorem 4.14),
and still satisfying |y (x)| < cl|x]||. It is linear, as seen by taking the limit k — oo

of Yk (x + y) = Yx + Yy and Y (Ax) = Agx.
Now, for any € > 0, there is an x,, close to x, [|x,, — x|| < €, so that

dK eN, k2 K = |Yrxm — ¥xnl <e€
= |Yx — Y| < Yrx — Vx| + [Yrxm — Y xm|
+Hxm — Yx
< Qc + 1)e,

in other words Yrx — x for all x, or ¥y — V¥, as k — oo.

(i) That ||¢|l, is well-defined and bounded by |[¢| follows from |¢x,| <
l@llllxall < li¢ll; that it is a norm follows from |px, + Yxu| < [pxn| + [Yxn]
and |[Aox,| = |M||pxn|, as well as

e ¢]

1
0=liglly =) 5105l & Y. [pxal =0 & ¢ =0

n=1
since {x;},en is dense in By.

(iil) When ||¢nll < ¢, pp — ¢ & ||dp — @, — 0: It is enough to consider
functionals ¢, such that ¢, — 0. Let ¢ > 0 and M large enough that 1/2¥ < e,
For all m, ¢, x,, — 0 as n — oo; this convergence may not be uniform in m, but it
will be for the first M points xq, ..., xpy, i.e.,

AN, n 2 N = |ppxn| <€, Vm=1,..., M.
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So ||¢nll, — O, because forn > N,

o]

1
Il =D o l9ntn] < Z —e+ Z —||¢n||||xm|| < +o)e.

m=1 ml mM—H

Conversely, let ¢, be bounded functionals such that ||¢,]||,, — 0. This implies
that for any fixed m,

I
—|¢nxm| Zz—¢nxm|—>o as n — oo, (11.3)

SO ¢uxy, — 0. For any x € X, choose x;, close to within € of y := x/||x||. This is
possible because {x,,} are dense in the unit ball. Then, for n large enough,

|Dny]| < |Pnxm| + | (X — ¥)| < € +ce
= guxI <A +0)xlle

Hence ¢,x — 0 for any x and so ¢, — 0.
(iv) By« is compact with respect to || - ||,,: Every sequence ¢, in B;(0) has a weak-
x-convergent subsequence by (i), i.e., ||¢, — ¢||,, = 0. Forany x € X,

lpx| = lim |ppx| < [nllllx]l < llx]l,
n—oo

so @]l < 1, and B1(0) has the Bolzano-Weierstrall property of compactness
(Theorem 6.21). O

Note carefully that the unit ball of X* is not necessarily compact in the standard
norm of X* because the “unit” is measured in one norm and the “compact” in
another; only in finite-dimensions are balls totally bounded (Proposition 8.25).

The next proposition characterizes compact operators in terms of weak conver-
gence, at least for reflexive spaces.

Proposition 11.43

A linear T : X — Y is continuous iff, x, — x = Tx, — Tx.

For any compact operator 7 : X — Y,x, — x = Tx, — Tx, with the
converse being true when X is a (separable) reflexive space.
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Proof (i) Given x, — x, and any functional ¢ € Y*, then
¢Txy = (T $)xy — (TTP)x = ¢Tx.

Conversely, if ||Tx||/||x]| is unbounded, then one can find vectors x, — 0 while
ITx,| — oo (prove!). But x, — 0 implies Tx, — 0 and so Tx, are bounded, a
contradiction.

(i1) For any Banach space, if y, — y and {y, : n € N} is totally bounded, then
yn — . This is because there is a convergent subsequence y,, — z; but y,, — y,
and therefore z = y (Exercise 11.49(3)). This holds for any convergent subsequence,
and thus y, — y.

Let T : X — Y be a compact operator and suppose x, — x in X; then {x,},en
is bounded by Proposition 11.41, and {Tx,},eN is totally bounded by virtue of T
being compact. Since Tx, — T'x, it follows by the above that Tx,, — Tx.

Conversely, let Tx, be any sequence in 7B for a bounded subset B of a
reflexive space. There is a weakly convergent subsequence x, — x by the previous
theorem, since X = X™*. Recall that x*¢ = ¢x, so the weak-* convergence of
X is equivalent to the weak convergence of x,. Therefore Tx, — Tx for this
subsequence and hence T B is totally bounded.

O

Examples 11.44

1. A subset A C X is said to be weakly bounded when V¢p € X*, ¢ A is bounded. It
turns out that A is weakly bounded <> A is bounded.
Proof: Given that |¢pa| < Ry foralla € A and ¢ € X*, then ¢pa = a™¢, so the
uniform boundedness theorem can be used to yield ||a| = ||la™| < C.

The idea of using functionals to transfer sets in X to sets in IF is so convenient
and useful that it is applied, not just to convergence, but to various other
properties. In a general sense, we say that a set A € X is weakly P when for
all ¢ € X*, ¢ A has the property P.

2. A vector x is a weak limit point of a subset A when for any ¢ € X*, every open
ball in F which contains ¢x also contains another point ¢a fora € A, a # x.
A is said to be weakly closed when it contains all its weak limit points. Every
weakly closed set is closed, since x, — x = x, — x, but not conversely:
E :={e, :n € N}isclosed in £2 bute, — 0 ¢ E.

3. If T is linear and ¢T is continuous for each ¢ € Y* (i.e., x, > x = Tx, —
T x), then in fact T is continuous.
Proof: For every bounded set B, ¢ T B is bounded by continuity. So 7' B is weakly
bounded, which is the same as bounded.

4. A Hilbert space is weakly complete: if (¢x;),en is Cauchy in F for each ¢ € H*,
then x,, — x for some x.



286 11 Banach Spaces

Proof: Let f(y) := lim,— o (X4, y); f is linear and continuous by the uniform
boundedness theorem, so must be of the form f = (x, -) and (x,, y) — (x,y)
for each y. Can you extend this to reflexive spaces?

5. Closed and bounded sets of a reflexive space are weakly sequentially compact,
meaning any bounded sequence has a weakly convergent subsequence.
Proof: x7* has a weak-* convergent subsequence, x,’f; — x™: but, as noted in the
proof of the proposition above, this simply means x,, — x.

6. » The “Hilbert Projection Theorem” 10.11 can be generalized to when M is
weakly closed. (Note that closed convex subsets are weakly closed.)
Proof: The sequence (y,)nen of the theorem is bounded, hence has a weakly
convergent subsequence y,, — y« € M. Moreover ||y, — x| — d. Taking the
limit of [(yn, — x, Y« — X} < llyn; — x|y — x|l gives [y« — x|l < d.

Weak Convergence in £P

We now turn our attention to the difference between weak convergence and
convergence in norm in £7 (p > 1).

Proposition 11.45

For ¢7,1 < p < 0o, a sequence x, = (a, ;)icN converges weakly to some
x = (a;)eN if, and only if, it is bounded and each component converges,

Xp =x & (Hc>0, Vn, |4l <c) AND (Vi e N, lim a,; = a;).
n— oo

Proof A weakly convergent sequence, x, — X, is bounded as noted in Proposi-
tion 11.41. Consider the functional eiT € £P*; then

ani =e;x, — e/ x = a;.

Conversely, by subtracting (a;);eN, it is enough to consider a sequence x,, in £7
whose components converge to 0. Let y = (b;);eN € 27" act as a functional on €7,
The proof hinges on the fact that both the tail part of y and the leading part of x,
are small. For any € > 0, there are integers k and N; for each i < k, beyond which

(Y 1Bil7) /" <€ AND Vi <k, 3N;, n>N;i = |ani| <e.

i>k
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Then for b := |b1| + - - - + |b| and n > max(Ny, ..., Ni), by Holder’s inequality,

1y xul <D Ibillanil + ) billan,i]

i<k i~k
’ 1 /
<be+ (2 1Bil”) 7 Ixl,
i>k

< be + €ec

Hence y"x,, — 0; since y" is arbitrary in £7*, it follows that x, — 0. m]

Note that the proof is still valid for the space ¢, with minor modifications. But
the proposition is false for £!: the bounded sequence e, converges component-wise
to 0 but not weakly, since 17e, = 1 4 0.

Consider now a weakly convergent sequence, x, — 0, which does not converge
to 0 in norm, in effect, ||x,|,» = ¢ > 0 (for a subsequence). As proved above,
each component converges to 0, yet the sequence as a whole is not diminishing in

size. The example sequences e, and (0, ..., 0, % e, % . 0, ...) turn out to be
n n—+
quite typical. The following gliding hump argument shows that there must exist a

subsequence whose terms are approximately non-overlapping.

Proposition 11.46

A sequence x, € ¢P (1 < p < oo) which converges weakly to 0, with
norm bounded below,

x, — 0, lx.ll = ¢ >0,

has a gliding hump subsequence y,,, such that

o0

Zany,, €ll & (ap)nen € £7.

n=0

With minor modifications, the proof is also valid for the space cy.
Proof Let €, be an arbitrary sequence of (small) positive numbers.

(1) Starting with y; = x1 = (al,i)?ioa there is some i1 such that

€0, ..., 0, avip, ariy+1, - ), < €1
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Since each of the first i1 components are converging to 0, there must be some
sequence, x,,, which we’ll relabel as y, = (a2,;);en such that

||(a2,01 L) az,ilfls 07 .. ')”p < 62'
So the bulk of the norm occurs after i; as before there is some i> such that
100, ..., 0,a2,, .. ), < €.

Repeating the argument we can find a sequence y,, = (ay,;)ieN such that

l(@n0,...5 ani, -1, 0, ..., 0,0, 000 lp < en
1@, ..., o Oy aniy gy ooy niy—1, 0,000, .0 ) lp > ¢ — 2ep,
o, ..., ...,0,0,..., a0, an,, )y <e
By construction, the middle ‘humps’ of y,,, call them b,, occur on consecutive and
non-overlapping intervals {i,,_1, ..., i, — 1}.
Y1
Yo
Ys

(i1) The weakly convergent sequence x, is bounded by, say, d. Let y,, be a gliding
hump subsequence with €, = €. Then

1D any, =D ewba] < Danum byl < 2Z|an|e

Hence ), o, y, converges iff ), a,b, does. Now, because the sequences b, have
non-overlapping supports,

¢ Sup lotn |-

in—1

|| Zanb > (leal” 37 lanal?”)

n=M i:infl
N N N
(e —2eM)( 3 |an|P)1/P <Y anbal, < d( > |an|”)”P
n=M n=M n=M

The result then follows: ), . |, |? is Cauchy in R iff )", «,b, is Cauchy in £7,
and so converges iff ) «,y, does so in £7. O



11.5 Strong and Weak Convergence 289

Proposition 11.47 (Schur’s Property)

In ¢!, weak convergence of sequences is equivalent to convergence in
norm,

X, —~x & x,; > X.

Proof To obtain a contradiction, we may suppose, without loss of generality, x,, —
0 but x,, / 0. There is a subsequence such that ||x,| = ¢ > 0, and a further gliding
hump subsequence y, = (a,,;)ien With €, = € < c¢/4. Consider the sequence z
built up from the concatenation of the humps of y,, as z := (lan.i|/an.i)ieny € €=
where, for each i, n is such that i,_; < i < i, (note: use 1 instead of |a, ;|/an,; if
ap,; = 0). Then

in_l iy,—l
2yl 2 Y zitni—2e= ) lani| —2€ > (c —4e) >0,

1=l 1=lp—1

contradicting y,, — 0. The converse follows by continuity of functionals (Exam-
ple 11.39(1)). O

A second application of the gliding hump argument is to compact operators on
£P spaces. Proposition 11.43 immediately implies that any operator 7 : £ — £! is
compact, since if x;, — x then Tx;, — Tx which is equivalent to Tx;, — Tx in oL
The following proposition is a strengthening of this result:

Proposition 11.48 (Pitt’s Theorem)

Any operator T : (7 — ¢4, with g < p < oo, is compact.

Proof Letx,, — 0in ¢7; then Tx,, — 0in £9. Suppose Tx, + 0, so must have a
subsequence bounded below, || Tx,|| > ¢ > 0. Since T is continuous, it follows that
x, # 0, and therefore for a further subsequence || x,| > d > 0. Hence x,, and Tx,,
have joint ‘gliding hump’ subsequences, which we’ll call y, and T'y,,, such that

@nen €67 & Y any, €7 = Y Ty, € t9 & (dp)nen € L4

n n

But, of course, £ & ¢4, implying that x,, — 0 = Tx, — 0 and therefore that T
is compact, since £” is reflexive.
O
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Exercises 11.49

1.

10.

11.

12.

Show e, — 0in ¢y or £7 (p > 1), yet e, 0. Hence the norm is not
continuous with respect to weak convergence; or the inner product for Hilbert
spaces.

In ¢!, e, - 0, but when thought of as functionals on cy, e, x00.

In L'[0, 1], the functions fa(t) == g2rint converge weakly f,, — 0, but not in
norm and not pointwise f;,(f) # 0 at any ¢ (see Theorem 9.34). Examples of
functions that converge weakly but not in norm are typically rapidly oscillating.

. » The weak limit of T,, if it exists, is unique. A subsequence of 7, also

converges weakly to the same limit.

The map T : coop — coo defined by (a,)nen = (nay)nen is linear but not
continuous; yet ||Tx| o, < cx. Does this contradict the uniform boundedness
theorem?

. In a Hilbert space with an orthonormal basis e,

(@) en =0,
(d) Y, one, = x & ), ape, — X.

(Hint: The series is bounded, by Proposition 11.41,i.e., |a¢je] + - - - + anep 1% <
c and so (&y)peN € £2; or use Example 11.39(5).)

¢n — ¢ = ¢u — ¢; but show that the converse is not true for e, € .
Addition and scalar multiplication are continuous with respect to weak con-
vergence, that is, if 7, — T and S, — Sthen T, + S, — T + S, and
AT, — AT. Of course, they are also continuous with respect to norm-wise
and strong convergence.

. Continuous functions in general do not preserve weak convergence. For

example, multiplication does not: 271 e=27int — | though ¢*>7" — ( in
Lo, 11.
The most that can be said regarding the multiplication of operators is:

(a) if T, = T then T,,S — T S and ST,, — ST,
(b) if T, = T and S,x — Sx forall x, then 7,,S, — TS,
(c) ifV¢ € X*, ¢S, > ¢Sand T;, — T then S, T, — ST.

(a) For Banach spaces, if T, — T'" then T,, — T (but not conversely).

(b) For Hilbert spaces, if 7, — T then T, — T* (weakly continuous).

If x, — x in X, then ¢ — (¢x,)nen maps X* into ¢ C £°°. For example, when
X is £!, this map converts bounded sequences to convergent ones.

Every closed linear subspace is weakly closed (by Proposition 11.20). Thus, if
Xn — x, then there is a sequence y, € [x1, x2, ...]] which converges in norm,
Vu — X.

A set in X* is weak-*-closed when it contains all weak-x-limit points; for
example, AL
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13

14.
15.

16.

17.

. The strong limit of unitary isomorphisms U, between two Hilbert spaces is an

isometry U. But U need not be unitary; e.g., let U, be defined on £> by

Un(al, a, .. ) = (an+la a,az,...,A4p,p42, Ap43, . . )

Then U, converges strongly to the right-shift operator R.

Use Pitt’s theorem to show that £ 2% ¢4 for p # q.

Justify the following step used in the proof of Pitt’s theorem: If both x, € £7
and y, € £9 converge weakly to 0 and are bounded from below by ¢ > 0,
then they have joint gliding hump subsequences, agreeing in their indices and
gliding hump positions.

The Hadamard matrices are defined recursively by T} := (i 11>, Tht1 =

T, T, . .
(T” ; ) S, = T,/2"/? are 2" x 2" unitary matrices; they can be extended
n —1in

to unitary operators on 02 by Uyx := S,x whenx € M, := [leo, ..., ex_1],
and U,x := x when x € MnL, and then U, — 0.

If a sequence of unitary isomorphisms U,, converges weakly to U, then |[U|| <
1. If U is known to be unitary, then the convergence is pointwise.

(Hint: Expand |U,x — Ux||%.)

Remarks 11.50

1.

Not every closed subspace of a Banach space need be “complemented”, e.g., the
space £>° # co @ M for any closed linear subspace M (see [39]). Indeed there
exist infinite-dimensional Banach spaces whose only complemented subspaces
are the finite-dimensional or codimensional closed ones [34].

. It is a theorem that Hilbert spaces are the only Banach spaces in which every

closed subspace is complemented [38].

. Weak convergence does not obey all the convergence properties of metric spaces.

For example, not every weak limit point of a set M need have a sequence in M
that converges weakly to it.

. There are yet other types of convergence. For example, B(X, Y) is itself a Banach

space, and so there is weak convergence with respect to B(X, Y)*, meaning
®T,, — OT forall ® € B(X,Y)*.



Chapter 12 ®
Differentiation and Integration o

12.1 Differentiation

Although continuous linear transformations are stressed throughout the book—with
good reason, for they are the morphisms of normed spaces—they represent, of
course, a very special part of all the functions from one normed space to another.
To put things in perspective, recall that the linear maps on R are x +— Ax, a
very restricted set of functions in comparison with the non-linear real continuous
functions. However, the linear maps are still relevant for one class of continuous
functions: maps that are ‘locally linear’, meaning that they can be approximated by
linear operators up to second-order errors:

Definition 12.1

A function f : X — Y between normed spaces (over the same field) is said
to be (Fréchet) differentiable at x € X when there is a continuous linear map
f'(x) € B(X,Y) such that for 4 in a neighborhood of 0,

fa+h) = fG)+ )R+ olh)
where [[o(R)||/||k]| — 0 as h — O.
Note that f need not be defined on all of X but only on a neighborhood of x. The

set of functions f : U € X — Y, where U is an open subset of a normed space X
and f is differentiable at all points x € U, is here denoted D(U, Y).
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Proposition 12.2

The set C/(U,Y) := {f € DU,Y) : f, f' € C,(U)} is a vector space
with norm

Ifllcr =1 flle +1fllc-

Differentiation D : f — f’ is an operator C!(U,Y) — C(U, Y), which
takes composition of functions to operator products,
(f+9'=f+g. A =if,
(fog) ) = f'(g(x)g'(x).

The last identity is called the chain rule of differentiation.

Proof The following identities and inequalities demonstrate the closure of C! as a
vector space, linearity of D, and the chain rule:

(f+8&+h)=fx+h) +gx+h)
= )+ f'Oh+oph) +g(x) + g (x)h + og(h)
= f(x)+8x)+ (f + &)X + (05 (h) + 0g(h))
A (x+h) =Af(x) + Af (x)h + ro(h)

fogx+h)=f(gx+h))
= f(g(x) + & (X)h + og(h))
= f(g@) + f/(8(0)) (8" () + 0g(h) + 07 (h)
= f(g®) + £ (e(0) g @h + (f'(g(x))og(h) + 05 (h))
llof () + 0g(M)]| < llog (W] + llog()]].
x| = [Mllloh)],
ITog(h) +o0p (M) < ITllog(h)|| + llog(h)|l,  forany T € B(X,Y).

The norm axioms of || - ||-1 are easy to verify:

If+gler < Iflle +lgle + 1 e +18"lc = 1fller + gl
IAfller = Iaflic +1af e = M flle + M1 e = M fller
0=1lfllct=1flc+1fllc = Iflc =0 & f=0.
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The continuity of D results from the inequality:

IDfllc =1flle < Iflle +1f e =1flcr

Examples 12.3

1. The constant functions f(x) := yg are differentiable with f’ = 0.
2. InR or C, the functions f(x) := x" are differentiable with

fx+h) =x+h"=x"4+nx"""h+ o),

so f/(x) = nx"" 1. Polynomials are thus differentiable.

3. Continuous linear maps are differentiable , T (x +h) = Tx+Th,soT'(x) = T.
A special case of the composition law is (T o ) = T o f’ when T is a fixed
operator.

4. The derivative of F : R — R2 F(t) := ({g‘ W) = fO) + @) is

F (1) = (g) ,/((tt))) A differentiable path r : R — X is called a curve. The
direction of its derivative r’ is called its tangent. The arclength of a curve is
fr ds := [ |r'(1)| dt.

5. Define f : R* — Rby f(x,y) := x> —y. Then f'(x,y) : R> — Ris its
gradient f'(x,y) = (2x, —1) since

fx+hy+k)=&+hn>=(y+k =0y +(2x -1) <Z>+h2.

The map (h, k) — (x2—y)+2xh —k gives the rangent plane to the surface
z = f(x,y) at the point (x, y, ).
6. A real inner product (-, -) : X 2 _ Ris differentiable,

(x +h,y+k)=(x,y)+ (x, k) + (h, y)) + (h, k).

The middle term is linear in (4, k), and the last term is o(%, k) by the Cauchy-
Schwarz inequality,

[T T
< <
1Al AT+ K]

|h]| = Oas (h, k) — (0, 0).

7. We often write D, f (x) := f’(x)v. Note that

Dv+wf=va+Dwf’ Dkvfz)\va

Because of this last property, v is usually taken to be a unit vector. It is the
directional derivative of f along v.
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When X = R there are only two unit vectors, v = %1, and the notation used is
% := D for the derivative in the positive direction. Similarly, for C, d% = D;.
In R", the standard basis consists of # unit vectors ei, and we define 9y := De,.
8. For X = R, the derivative can be taken to be a function f’ : R — Y, since
BR,Y)=Y.
9. » Differentiable functions are continuous in x, in fact are Lipschitz in a
neighborhood of any point

If ) = fOOI =1 DG =x)+ oy =0 <clly —xl|.

In particular, f(y) — f(x) as y — x. But there are Lipschitz functions, such
as x — |x| on R, that are not differentiable.
10. * C1(R) is a non-closed linear subspace of Cp(R).
Proof: The functions sinnt have unit norms in Cp(R), but their derivatives
n cos nt have arbitrarily large co-norm. Let us define
1
f(@t) = Z — sin4"t

on
n=0

with the partial sums f converging absolutely in Cp (R). But this is an example
of a nowhere-differentiable function (check it is not differentiable at O at least),
so although fy € C!(R) and fy — f uniformly, f ¢ C'(R).

Proposition 12.4

The kernel of D on D(X, Y) consists of the constant functions,

Df =0 = fis constant.

Proof We first identify the kernel when the differentiable functions are real valued,
g : R — R. Suppose g'(r) =0 for all ¢ € [a, b], and let

(t—a)gb)+ (b —1)g(a)
b—a

G(1) == g(t) —

also differentiable, with G(a) = 0 = G(b), and

8O 8@ oy, reta bl
b—a

(12.1)

G(t+h)— G@) = G ()h + o(h) =

G is continuous on the compact set [a, b], so it must have maximum and minimum
points. We can assume one of them to be inside ]a, b[, for if they are at a and b, then
trivially G is O throughout [a, b].



12.2 Integration for Vector-Valued Functions 297

Now, on any minimum of G within ]a, b[, as h changes sign from negative to
positive, G(tg + h) — G(fp) remains positive; on a maximum it remains negative.
From (12.1), this can only hold if g(a) = g(b). As a and b are arbitrary, this shows
that g is constant.

For f/ = 0 on X, we can use functionals to reduce it to a real-valued function:
let g(t) := ¢ o f(tx) for any non-zero x € X and ¢ € Y*. It is differentiable,

gt +h)=¢o fltx +hx) = ¢(f(tx)) + ¢(f tx)hx) + o(hx) = g(t) + o(hx),

with derivative g’(r) = 0. By the first part, g(t) = g(0) = ¢ o f(0) constant. But
with ¢ and x arbitrary, this shows that f = £(0), a constant function. O

Exercises 12.5

1. For differentiable functions A : R - F, f,g : R — X, F : X2 > X, T:R—
B(X,Y),

@ $OOFO) =V F@) + 10 @),

) (f.8) = (.8 +(fg),

© SFEf@).8))=aF(f(1), g0 f' () +RF(f(1), gt)g (),
@ STOfO =T O fO+T@Of ).

2. For a curve on the sphere of a real Hilbert space r : [0, 1] — Sp, the tangent ¢
at any point satisfies (¢, r) = 0.

. » For a differentiable function y : R” — R™, y’ is the Jacobian matrix [9;y;].

4. The derivative itself, f’(x), need not be continuous in x. For example, show
that f(x) := x?sin(1/x) (and f(0) := 0) is differentiable at all points, yet its
derivative is not continuous at 0.

5. If f : X — Ris differentiable and has a maximum/minimum at x in some open
set U C X, then f'(x) = 0.

6. L’Hopital’s rule: If f : R — X, g : R — R are differentiable functions
satisfying f(a) = 0, g(a) = 0, but g’(a) # 0, then

(O8]

f&x)  f(a)
m = .
x—a g(x)  g'(a)

12.2 Integration for Vector-Valued Functions

The construction of L! (R) can be extended to include functions f : R — X, where
X is a Banach space, as done in Sect. 9.2. Briefly,

* a vector-valued characteristic function x1g maps ¢t tox € X whent € E C R
and to O otherwise;
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* a simple function is a linear combination of vector characteristic functions on
sets of finite measure, in which case,

N N
/ Do En =) w(En)xn.
n=1 n=1

The set of simple functions is a normed space with ||s|| := f Is ()]l x dz.
e afunction f : R — X is integrable when it is the ae-limit of a Cauchy sequence
of simple functions s, — f a.e., ||s, — su|| = Oa.e., n, m — o0; its integral is

/ f = lim [ s,.
n—oo

« onameasurableset A C R, [, f:= [ fla, eg, fabf = f[a py S fora <b.
Quoting the results of Sect. 9.2,

Proposition 12.6

For f, g : R — X integrable,

W [f+e=[f+[g [rf=r[f (eb),
G IS £l < [If@]de,

(i) [A(H)xdr = (fr)xforr € LI(R), x € X,

(v) [Tf=T/[fforT € B(X,Y).

Examples 12.7

/( (t)> dr = /f(t)( )+g(t) (0> dr = (ff>,whenf,g:]R—> R are
g(0) 1 [s
1
integrable. Similarly,/ (1 t> dr = (} ?)
o \r? 1 31

2. Any continuous function f : [a, b] — X is integrable, since
b
/ IfoOlde <G -=a)lflc.
a
3. 1f fu(r) — f(1) in X, uniformly in 7 € [a, b], then [ f, — [” f in X, since

b b
Hf Gu— 1 </ 1fa®) = FONdE < b =)l fo — Fllzgan

The connection between differentiation and integration is one of the cornerstones
of classical mathematics. It remains valid for vector-valued functions:
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Theorem 12.8 (Fundamental Theorem of Calculus)

If f : [a,b] — X is integrable, and continuous at r € ]a, b[, then its
integral is differentiable at 7, and

C%/atf=f(t).

If f': [a, b] — X is continuous, then

b
/ F = f®) - f@).

Proof (i) The first part is a consequence of

/at+hf=/atf+f(l)h+</tr+hf—f(t)h)

and
o[ s o] = [
< /’*’1 If (@) = fO dt‘
' A
< % /1+h dr‘ =€
t

for arbitrary € > 0 and |h| sufficiently small, since f is continuous at 7.

(ii) For the second part, let F(¢) := fat f’. By (i) we obtain F' = f’ on ]a, b[, so
their difference F(t) — f(¢) must be a constant c. As F(a) =0, c = — f(a).

Proposition 12.9 (Mean Value Theorem)
For a continuous function f : [a, b] — X, the mean value

1 b
mfa f(t) dr

belongs to the closed convex hull of f[a, b].
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Proof The function is uniformly continuous (Proposition 6.17), so splitting [a, b]
into small enough intervals [#,, t,+1] of size h = (b — a)/N each (¢, := a + nh),
ensures that || f(t) — f(f)|| < € whenever ¢, are in the same sub-interval. This
means that f can be approximated uniformly by a simple function which takes the

value f(z,) on the interval [¢,, #,,41[, and its integral fub f can be approximated to
within € (b — a) by the sum

(f@)+ fa)+--+ ftn—1))h.

Thus — b j fiswithine of (f(a)+ f(a+h)+---+ f(b—h))/N which belongs
to the convex hull of f[a, b]. Since € is arbltranly small, the result follows. O

Corollary 12.10

For a continuously differentiable function f : [a, b] — X,

f(®) — fla)
b—a

belongs to the closed convex hull of f'[a, b].

Proof

fb)—f@ 1 /”f,
b—a “b—all, '

O

Recall that f is a function U — B(X,Y); it may itself be differentiable,
with derivative denoted by f”(x) € B(X, B(X, Y)). This Banach space is actually
isomorphic to the space of bilinear maps B(X?, Y) via the identification Tyx2 =
T(x1, x2). Because of this, f”(x) is akin to an operator that converts a pair of
vectors of X into a vector in Y'; in particular, f”(x)(h, h) makes sense, and is often
shortened into the form f” (x)h? (though no vectors are squared).

More generally, £ is the nth derivative of f: it takes n vectors in X and outputs
a vector in Y. The set of n-times differentiable functions f : R — X, with £
continuous, is denoted by C" (R, X).

Theorem 12.11 (Taylor’s Theorem)

For f e C"(R, X) (n = 1,2,...),

) (\ "
FU+R) = FO + FOh+ oo 4 I () + o).
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Proof As expected the proof proceeds by induction on n. To illustrate the idea
behind the inductive step, we only consider how the statement for n = 2 follows
from that forn = 1. Let f € CZ(R, X), and let

F(s) = f(t+5) — f(t) — f'(t)s — £ (£)s%/2!

We wish to show F(h) = o(h?). F is continuously differentiable in s because it
consists of sums and products of continuously differentiable functions, in fact

F'(s) = f'(t +5)— f'(t) — f(t)s = o(s),

since f’ is differentiable. Using the above corollary, it follows that
belongs to the closed convex hull of F'[0, k], whose values are at most of order
o(h). Since F(0) = 0, we have F(h) = o(h?) as required.

The reader is invited to adapt this proof to show that if the statement is correct
for n then it is also true for n + 1. The case n = 1 is, of course, part of the definition
of the derivative. |

Exercises 12.12

1. Integration by parts: [7 f()F'(t)dt = [fF1 — [7 f/(t)F(t) dt, where f :
R — Fand F : R — X have continuous derivatives.

2. Change of variables: fab fx)dx = y‘((ah)) F(y)g—’y‘ dy, where y : R — R has an
invertible continuous derivative, and F(y(x)) = f(x).

3. If f: [a, b] — M is continuous, where M is a closed linear subspace of X, then
[P rem.

4. The symbol o(h) satisfies [[o(h)|| < c||k| for & small enough, but not necessarily
lo(h)|| < cl|lk||>. However show that the latter inequality is true if f/(y) is
Lipschitz in y in some ball about x, by evaluating

F(h)—F(©)
h

ld
||/ G ) = fi@hdi].
o ar

5. A bounded set B in C'[a, b] is uniformly bounded and equicontinuous.
It follows by the Arzela-Ascoli theorem that a sequence of bounded functions in
Clla, bl has a convergent subsequence.
(Hint: Use the mean value theorem and the fact that || f'||~ < k.)

Application: The Newton-Raphson Algorithm

It would be no exaggeration to claim that a large proportion of real-world problems
reduce to solving some (non-linear) equation f(x) = y where x and y belong to
some Banach spaces. From designing whole electronic circuits, finding the right
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image in some feature space, solving partial differential equations, to finding the
right parameters in data models, such equations are ubiquitous in “continuous”
models.

When f is differentiable, we can hope to approximate f by some affine map, and
thereby solve the resulting equation by inverting the operator. In detail, we might
start with a first estimate x and find a better approximation from

y=fx+h)~ fx)+ f(0)h,
namely i = f’(x)~'(y — f(x)). This suggests the following iteration:

Proposition 12.13 (The Newton-Raphson Method)

Let f(x) = y and suppose that f is differentiable in a neighborhood of
%, with f/(x) Lipschitz in x and || f’(x)~!| < c. Then if xq is sufficiently
close to x, the iteration

X1 i= X+ f )T O = fx)

converges to x.

Proof The differentiability of f at x states that for h = x,, — X, |h| < €,

fGan) = f(xE+h) = f)+ f'(Dh+oh),
S FGn) =y + f/Gh+ (f'(X) = f/Ga))h + o(h),
S L) T O = y) = o = E A ) TN E) = f )k A+ o(h)
: Xt = X = = 1) TN @) = [ @)+ o(h)

- Bck 1112 — & <12
X1 — XN < =507 = Cllxn — X7,

where k is the Lipschitz constant of f/ and ||o(h)| < %k||h||2 (Exercise 12.12(4)).
If € < 1/c then it implies firstly that if x,, belongs to B (x), then so does x;,11, and
secondly by induction it follows that || x,, — X|| < (¢|]lxg — X Hn% /¢ — Qasn — oo.

O

This algorithm is very effective since it converges quadratically, as long as xp is
already sufficiently close to X. In practice, other algorithms are utilized to perform
a broad search for a solution, and Newton’s method is then used to rapidly home
in on it. Another caveat is that it may be computationally expensive: at each step,
one has to calculate not only the derivative f’(x) but effectively also its inverse.
The methods that are most often used employ modified iterations like x,41 := x, +
H, (y — f(x,)), where H, are operators that approximate f '(xn)~ ! but are easier to
calculate.
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Examples 12.14

1. To solve for ¢/Z = 1 close to z = 6, apply Newton’s iteration:

Zngl = 2n +i(1 — e )
720 =06
z1 = 6.27942 + 0.03983i
72 = 6.28334 — 0.00080:
z3 = 6.28319 — 0.0i

Examples of other equations whose solutions are routinely found using this
method are (a) roots of polynomials, e.g., x3 =2, (b) transcendental equations
suchas x —sinx = lorxtanx = 1.

2. Find the points on the orbit of Mars whose distance from Earth is 1 a.u. on 1 Jan.
In appropriate coordinates, the problem reduces to solving the equations,

Fx,y) i=x2 +1.009y% — 0.284x = 2.302,
g(x,y) i=x>+y> + 1.11x — 1.622y = 0.0343.

Setting up the Newton-Raphson iteration gives

X1\ _ [ Xn " i 2y, —1.622 —2.018y, 2.302 — f(xn, Yn)
Yor1)  \n A \—2x, —1.11 2x, — 0.284 ) \0.0343 — g(xp, yn) /)’
A =0.461 — 3.244x, — 2.808y, — 0.036x, y,.

Depending on the starting point, it may converge either to (0.153, 1.517) or to
(—1.365, 0.225). But most of the time it does not converge—hence the need to
perform a rough search for solutions before zeroing in using the algorithm.

3. The method can be used to find the minimum of a scalar differentiable function,
which is equivalent to finding zeros of its derivative. For example, if a function
were exactly quadratic

f(x)=C+b~x+%xTAx

(here A is a symmetric matrix) then the minimum occurs when Ax + b = 0,
and Newton’s method, starting from xo = 0, finds the minimum point in one
step: x; = —A~'b. The more undulating a function is, the more demanding it
becomes to find the true minimum. Two challenging functions that have served
as benchmarks are the following

(@) (1 —x)%+100(y — x2)? (Rosenbrock’s valley),
() (x2+y—11)?% + (x + y* — 7)? (Himmelblau’s function).
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4. x To align two real-valued functions f and g as best as possible, one may find a
that minimizes f (f(t —a) — g(1)?dr. Expanding this out, then differentiating
in a, gives up to order o(az),

f (f() — g@)* =2(f(t) — @) f'(a + (f'(t)a)?
+ (f(t) — g(0) f"'(1)a* dt,
/ (f@) =g f' @O — (/O + (f6) —g®) f(®))adt +0(a) =0

The Newton-Raphson estimate of a is

_ <f_gvf/)
a = ) .
IFI+(f =g f7)

Letting f,41(t) = f,(t — a), fo(t) := f(t), and iterating aligns the two
functions. (You can try this out with f () = cost and g(#) = cos(t + 1) over the
interval [0, 27r].) This method, modified to R2, has been implemented to align
images, for example to compensate for video camera jitter from one frame to the
next.

12.3 Complex Differentiation and Integration

Let X be a complex Banach space, then a differentiable function f : C — X is also
called analytic, i.e., for all z, h,

fa+h) = f@+ f@h+oh).
The set of functions f : C — C which are analytic at all points z in an open set
U D A, is denoted by C”(A).

A function f : C — X is integrable along a differentiable path w : [y, 1;] — C,
when the composition f o w : [fg, 1] - C — X is integrable. Its integral is then

I
/f(z)dz :=/ Ffw()w'(r)de.
w to

Notice that dz/i is along the normal to a path. Proposition 12.6 remains true, for
example property (ii) becomes

H/wf(z)dzH </||f(w(t))|| ds, where ds := |w'(t)| dr.
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Examples 12.15

1.

. The map z

Along any curve w which starts at w(0) = a + bi and ends at w(l) = ¢ + di,

facizii ldz = [y w'(t)dr = [w(n)]} = [z]T¢. More generally,

c+di 1 )
[ rwe= /0 ) @) de = [F I

+bi

for f analytic (with f’ continuous). Thus one can integrate complex function
derivatives in the same manner as real-valued functions.

% is analytic except at z = 0. On a circular path w(z) := re’’,

1 2 1 ) )
f —dz = f —e Uire' dt = 2mi
o< 0 r

(independent of the radius). Thus the integral f 17 1 dz does not have a unique
answer, but depends on whether one traverses a path that passes above or below

0<t < 2m,

the origin, and how often it loops around it. But otherwise / —dz=0.

. Cauchy-Riemann equations: An analytic function f : - C,x+iy —

u(x,y) +iv(x, y) satisfies the equations

du v ou  dv
ax Ay’ ay  ax’
since f/(z) = g—z +1i g” g—; — z +» which can be obtained by comparing

u ov
f@+h) =ulx,y)+ —h+ivix,y)+i—h+o(h)
0x 0x

= f@) + f'@h+o(h),

ou ov
fz+ih) =ulx,y)+ @h +iv(x,y) + i@h +o(h)

@)+ f @ik + o(h).

. The conjugate map z + Z is not analytic, since z +h = Zz + h. Therefore,

Re(z) = (z +2)/2, Im(z) = (z — 7)/2i, and |z| = zZ, are not anjdlytic. Indeed
the Cauchy-Riemann equations can be written symbolically as % = 0, and
interpreted as f being independent of Z.

Analytic functions f : C — X are profoundly different from similar-looking

functions f : R — Xp that are simply differentiable over the reals. This is borne
out by a string of results discovered by Augustin Cauchy in the 19th century. We will
only present here the essential theorems (See [20] for a more thorough presentation).
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Theorem 12.16 (Cauchy’s Theorem)

Let 2 C C be a bounded open set having a finite number of differentiable
curves as boundary. Let f be a function from C into a Banach space,
which is analytic on and in €2, then along these boundary curves,

ff(z)dzzo.

Warning: the curves must be traversed in a consistent manner, say with the region 2
to the left of each curve. A fully rigorous proof requires results that are too technical
to be presented in a simplified form (see [10]). These details will be disregarded in
favor of a more intuitive approach, both for this theorem and its corollaries.

Proof At any analytic point, f(z+h) = f(z) + f'(z)h +o(h), where o(h)/h — 0
as h — 0. So for any € > 0 and |k| < § small enough, we have ||o(h)| < €6.
For any closed curve [ inside a disk Bs(zo) € 2 we get, using Example 12.15(1)
above,

/f(w)dw=/f(zo+z)dz
O O

=/Df(zo) + f'(z0)z + 0(z) dz
=f(zo)/ 1dz+f’(zo)/ zdz+/ o(z)dz
O 0 O

= / 0(z)dz
O

H/ f(w)de </ lo(h)|| ds < €8 x Perimeter(0) (12.2)
g ]

Each point zp € Q might need a different 8, but since € is compact, there is a
minimum § that works at all points (as in Proposition 6.17).

]
/
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The region Q2 can be covered by an array of squares of side §, as shown in
the diagram. The integral on the boundary 02 can be split up into a sum of
integrals along the squares that are within €2, except that when a square intersects the
boundary 9€2, the integral is partly along the square and partly along the boundary.
Each tiny loop has perimeter at most 48 + [, where [ is the length of that part of the
boundary curve which lies inside the square.

If Q2 is enclosed in a square of side L, there are at most (L /8)2 squares in all, so
the sum of the integrals is at most

|/ renau] < S| [, remaul

< 268(45 +1;) by (12.2)

L

< (4L2 + Perimeter(Q)S) €
With € arbitrarily small, the integral must vanish. O

Corollary 12.17

If f : C — X is analytic in the interior 2 of a simple closed curve w, then
the integral fab f(z) dz is well-defined when a, b € 2, independent of the
path taken (within <2).

Proof Any two paths inside €2, from a to b, together form one or more simple
closed paths, inside which f is analytic. Hence the integral of f on this closed loop
is 0. O

One of the surprising results of Cauchy’s theorem is that the value of the integral
§ f(z) dz is independent of the bounding curve itself, but only on interior “distant”
regions!

Corollary 12.18 (Cauchy’s Residue Theorem)

The integral of f over a closed simple curve depends only on those regions
inside where f is not analytic,

1 .
o 7{ fR)dz = lZReSIduei(f)-
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Proof Enclose the non-analytic parts by a finite number of curves w;—the outer
boundary curve y already does this, but it may be possible to further isolate the
non-analytic parts—to form one analytic region, around which the integral is zero,

SRRSOV L

traversing each curve w; in a clockwise direction. The value of the integral around
each non-analytic region in a counter-clockwise direction may be called a ‘residue’
of f. O

Because of this, the integral around a closed simple curve is often denoted by
f f(z) dz, without reference to the (counter-clockwise) path taken, as long as it
is clear from the context which non-analytic regions are included.

The simplest cases in which a function fails to be analytic are of isolated points,
called isolated singularities. An example of an isolated singularity a is a pole
of order n when the function is of the type f(z)/(z — a)" with f analytic in a
neighborhood of a and f(a) # 0. A simple pole is a pole of order 1. All other
isolated singularities are called essential singularities. We shall see later that the
residue of a function at a pole of order n + 1is £ (a)/n!, but what can be proved
here is the case for a simple pole:

Proposition 12.19 (Cauchy’s Integral Formula)

If f : C — X is analytic inside a simple closed path that contains a, then

1
f@=5— f ]
Tl Z—da
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Agustin Louis Cauchy (1789-1857) Cauchy studied
under Lagrange and Laplace as a military engineer,
but decided to continue with mathematics. A staunch
royalist, he replaced Monge at the Académie des Sci-
ences after the fall of Napoleon. Although he published
important papers in the fields of elasticity and waves,
he became famous for his taught courses on analysis
and calculus in the 1820s, in which he proved the
diagonalization of real quadratic forms and pushed for-
ward the new standards of rigor, e.g. limits, continuity,
convergence.

Proof The integrand f(z)/(z — a) is analytic except at z = a, so by Cauchy’s
theorem the path of integration can be taken to be a small circle of radius r about a.
As f is analytic at a, we know f(a + w) = f(a) + f/(@)w + o(w), so

f@ _fatw) f@

Z—a w w w

o(w)

Integrating around a closed simple path eliminates the constant function f’(a), and

1 1 2
— f o(w) dz| < —/ |O(w)|rdt <re
2mi w 27 Jo |w|

if r is small enough that |o(w)|/|w| < €. Thus in the limit as we take smaller circles,
only the term ﬁ 55 A f:z) dw = f(a) remains. O

Examples 12.20

1. Interpreting the residue theorem in actual examples often yields integration
results that would be harder to obtain otherwise. For example, the function it /z
has a simple pole at 0 with residue 1. So using a contour as shown in the diagram,
we obtain

7 R

R pix —r piX b4 . ) 2t
2mi :/ —dx—i—/ —dx+/ e*R“m‘)*”"S@)idejL/ i dg
r X -R X 0 b4

As R — oo and r — 0, the imaginary part is 2 [~ *2X dx 4+ 7 = 27, which
R .
. . sinx
gives lim —dx =m/2.
r—0 J, X
R—o0
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2.

Maximum modulus principle: If f : C — C is analytic and has a local maximum
(or minimum) at a, then f is constant in a neighborhood of a. It follows that on
a compact subset K, | f| attains its maximum and minimum at the boundary 0K .
Proof: Using a circular path of any radius r, centered at a,

1 1 2 .
@l = |5 I dz‘ <5p | 1@t < sl
wiJ z—a 27 Jo
2
. fo [f@]|—1f(z)[d6 =0
so | f(z)] = |f(a)| within the disk, which in turn implies f(z) is constant

(Exercise 12.21(5)). Let f~'M be the subset of the interior of K where | f]|
attains the maximum M := max,cko | f(z)|. It is open by the above, and closed
in K° (Exercises 3.13(11)), hence must contain whole components of K °, unless
empty. By continuity, f takes the same value M on the boundary.

. We say that a function f has a zero of order n at a when f(z) = (z — a)"g(2),

with g(a) # 0, g analytic in a neighborhood of a.
If f : C — C has a zero (or pole) of order n at a, then f’/f has a simple pole at
a with residue n (resp. —n)

'@ _nc-a)" @+ GE-a'g@ _ n  g@
f@ (z—a)g(2) z—a  g@’

(g'/g is analytic at a). Thus % 55 fT/ = n; more generally it equals the difference
between the number of zeros and poles (counted with their order) inside the curve
of integration.

. Rouché’s theorem: 1f p, — f inside a closed simple curve y, with f non-zero on

y, then f and p, have the same number of zeros inside y, from some n onwards.
Proof: As | f| has a non-zero minimum on y, there is an n such that |p7" -1 <1

on y. Let F := p,/f then Y FT, = fFOV %dz = 0, since F o y is a closed
curve that excludes 0. By the previous example, this implies that F has the same
number of zeros as poles, that is, the zeros of p,, and of f are the same in number.

Exercises 12.21

1.

2.

The function x+iy > (x2—y?)+2xyi is analytic, but x+iy > (x>—y?)+xyi
is not.

Show that, along any closed curve O in C, [ 1dz = 0 and 5z dz = 0, but on
a unit circle centered at the origin, fo Re(z)dz = mi.

If f,(z) = f(z) in X for all z on a simple closed curve w, on which f, and f
are continuous, then fw fa()dz — fw f(2)dz.
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4.

9.

. Find the poles and residues of (a) ez

Assuming u and v are sufficiently differentiable, deduce from the Cauchy-
Riemann equations that the real and imaginary parts of an analytic function
f = u + iv are ‘harmonic’,

82u+82u_0 82v+82v_0
axz  ayr T axZ gy 7

. Let f : C — C be analytic. Suppose | f| is constant in some open set, then f

is constant. (Hint: Differentiate | f|*> = u? + v2.)

(%), (© (sinz) /22
(First show (sin z)/z is analytic at 0).
1 )

i J 22— 1)
includes O, 1, but not —1.
Show

(a) / ) 4 = 2L using 1) 1 ©) = €
——df = —usi =, =e?;
2+ cosb /3 e = et

cosx T e’
(b) / Z using f(z) := 5 ;

o0 l—cosx T 1— ¢t
(c)/ —dez—usmgf(z) = 7
0 X 2 z

By applying Example 12.20(3) to f = e#, prove that the order of any of its
poles must be zero. As this is impossible, the isolated singularities of f must
be essential singularities.

1
dz = ) along a simple closed counter-clockwise path that

10. Use Rouché’s theorem to show that cosh z — 2 cos z has 2 zeros in the unit disk,

assuming it equals its MacLaurin series.

Remarks 12.22
1.

The first use of the Newton-Raphson method was by the “Babylonians” who used
the iteration x;,1 = %(x,, +n/x,) to find square roots, x> = n. Newton’s method
was initially restricted to finding roots of polynomials, and it was Simpson (1740)
who described the iteration we use today.

. Cauchy’s theorem for analytic functions is a special case of Green’s or Stoke’s

theorem ¢ F - dr = [V x F - dA. In this case, using the Cauchy-Riemann
equations,

?{f(z)dz:?g(u+iv)(dx+idy):fudx—vdy+ifvdx+udy

//(8” m) e (G 5) e
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Chapter 13 )
Banach Algebras Qe

13.1 Introduction

We now turn our attention to the space of operators B(X). We have seen that it is
a Banach space when X is one, but additionally, one can compose, or multiply,
operators in B(X). This extra structure turns the vector space B(X) into what
is called an algebra. We shall mostly study these spaces as abstract algebras X’
without specific reference to them being spaces of operators, in order to include
other examples of algebras and to make some of the proofs clearer. Nonetheless,
B(X) remains our primary interest, and accordingly, the elements of an algebra will
be denoted in general by upper-case letters 7, S, ... to remind us of operators and
to distinguish them from mere vectors x.

Definition 13.1

A unital Banach algebra X is a Banach space over C that has an associative
multiplication of vectors with unity 1, such that forall R, S, T € X, A € C,
(R+8T =RT + ST, R(S+T)=RS+RT,
AS)T = 1(ST) = S(AT),
ISTI < USHIT, 1) = 1.

Throughout this book, a Banach algebra will mean a unital Banach algebra over C.
Of course, Banach algebras over R are also of interest, and all the results in this
chapter apply to them in modified form; but complex scalars are necessary for an
adequate spectral theory of X.
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Easy Consequences

1. 1is unique, because 1’ = 1’1 = 1 for any other unity 1’.

2. T is said to be invertible (or regular) when there is an element S, called its
inverse, such that ST = 1 = TS. The inverse of T is unique when it exists,
and is denoted T-!.If AT = 1 = TBthen A = A(TB) = (AT)B = B so
A=T71

3. (S+ T)2 =82+ ST + TS+ T?, and more generally,

(S+T)" =8+ ST "+ TST" 2+ 4TS+ 4T
4. 0T < IT"

Proposition 13.2

Multiplication, (7', S) — TS, is a differentiable map.

Proof In the identity
T+H)S+K)=TS+(TK+HS)+ HK, (13.1)

the map (H,K) — TK + HS, X2 — X, is linear and continuous, and HK is of
lower order, since

ITK + HS|| < ITHKN+ISIHAI < max([[ 7], [ISHAHA N+ 1K
IHK | < IHIIK < (HI+ 1K D> = [I(H, K)]>.

Needless to say, every differentiable map is continuous.
Examples 13.3

1. C" with the co-norm and the following pointwise multiplication and unity:
ar\ (b aib; 1
dn by, anby 1

2. » £%° with pointwise multiplication xy, and unity 1 = (1,1,...) (Exer-
cise 9.4(3)).

3. C(K), the space of continuous functions on a compact set K, with pointwise
multiplication fg(x) := f(x)g(x), and unity being the constant function 1. For
example, C[0, 1] is a space of paths in the complex plane.
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4,
5

10.

11.
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» ¢! with the convolution product; unity is eg = (1,0, . ..) (Exercise 9.7(2)).
The space L!(R) with convolution as a product; although it does not have a
unity, we can artificially add a 8, called Dirac’s “function”, such that § x f :=
f =: f % 8. (To make this rigorous, one needs to consider L'(R) x C with
elements (f, a) representing f + ad.)

The above examples happen to be commutative, i.e., ST = TS holds. But
this is not assumed in general. For example, T2 — S22 £ (T — S)(T + 9) in
general.

» B(X) for any Banach space X; the product is operator composition and unity
is the identity operator / (Proposition 8.8).
» If A’ and ) are Banach algebras, then so is X x ) with

M $2\ . (152 _(1lx S\ ._
<T1> <T2> o (Tsz)’ = <1y>’ H <T> H = max(iSlae, IT)-

Every normed algebra can be completed to a Banach algebra.
Proof: Using the notation of Proposition 7.18, if T = [T,] and S = [S,], let
ST :=[S,T,] and 1 := [1]. Note that S, 7}, is a Cauchy sequence by

”SnTn_Sme” ||SnTn_SnTm||+||SnTm_Sme”

<
S NSl T = Tull + 1Sn — Sm M Tom
< cllSn = Smll + 1Tw — T D).

Hence

R(ST) = [Ra(SuTo)] = [(RuS)T,] = (RS)T,
AST) = (S, T)] = GS)T = SGT),
ISTIl = tim [IS,Tll < lim S, [IT ]l = ISINT].

The polynomials C[z] on B¢ with the co-norm form an incomplete algebra. As
we shall see shortly, its completion is the space of analytic functions C®(Bc).
More general is the fensor algebra, consisting of polynomials and series in a
number of non-commuting variables.

» If ST = 0 and S is invertible, then T = 0. But there may exist non-zero
non-invertible elements S, T, called divisors of zero, for which ST = 0. Note
that 7'S need not also be 0, so S and T are more precisely called left and right
divisors of zero, respectively.

» The product of invertible elements is invertible, with (S 7! =r1-1s L
Also, (T’l)’1 = T.If T" is invertible, for some n > 1, thensois T.

But it is possible for two non-invertible elements to have an invertible product,
i.e., ST invertible % T invertible (unless T R is also invertible for some R).
In particular, ST = 1 by itself is not enough to ensure 7 and S are invertible.
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12.

13.

14.

For example, in B(¢!), the product of the (non-invertible) shift-operators is
LR=1.

@ (1+T7T8) '=1-TA+ST)"'s,

(b) Woodbury’s formula (A+TBS)™' = A~ —A~lT(B~1+547 1)~ 154~ L.
Proof: (a) Starting from the identities (1+7S)T = T(1+ST) and S(14+TS) =
(14 8T)S, we deduce

1+ +TSHTA+ST)'S=1+TS=14+T1+ST)'SA+TS)

from which the result follows.
(b) Use (a) with (A+TBS) ' =1+ A 'TBS) 1A~

Suppose an element satisfies some non-zero polynomial, p(7') = 0. The unique
such polynomial of minimum degree and leading coefficient 1 is called its
minimal polynomial p,,. It divides all other polynomials p such that p(T) = 0.
Proof: There cannot be two minimal polynomials, p,, and p, otherwise p,, — p
has a lesser degree than both and p,,(T) — p(T) = 0. If p(T) = 0, then
p = qpm + r by the division algorithm of polynomials. As r has a strictly
smaller degree than p,,, yet r(T) = p(T) — q(T)p(T) = 0, it must be the
zero polynomial.

The derivative of the map 7+ ST is S. Similarly the derivative of T+ T" is

He HT" '+ THT" 2 +...+ 7" 'H.

n—

Because of commutativity, this simplifies to (z")’ = nz"~! in C. Thus, any

polynomial in 7 is differentiable in T'.

Subalgebras and Ideals

Definition 13.4

To

A subalgebra of an algebra X is a subset which is itself an algebra with
the same (induced) addition, scalar multiplication, product, and unity. It is a
Banach subalgebra when, additionally, the induced norm is complete.

An ideal is a linear subspace Z such that ST, TS e Zforany T € X, S € 7.

show that a non-empty subset A is a subalgebra of X', one need only show closure

of the various operations, i.e., forany S, 7T € A, S+ T € A, AT € A, ST € A,
1 € A. The required properties of the induced operations are obviously inherited
from those of X.
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Examples 13.5

1.

2.

C is embedded in every (complex) Banach algebra as C1 = {z1 : z € C}. In
fact, it is customary to write z when we mean z1.
An element T generates the subalgebra of polynomials

ClIT):={ay+a1T+---+a,T" :ay,...,a, € C,n e N}.
More generally, a finite number of commuting elements 77, ..., 7T, generate

the commutative algebra C[T1, ..., T,,], which may contain, for example, the
element 1 — 27, + T12 T>.

. The algebra £°° contains the closed ideal cy.

Proof: That ¢y is a closed linear subspace of £*° is proved in Proposition 9.2. Let
(an)nen € L%, (bn)nen € co, then (anby)nen € co since

| im a,b,| < sup|a,| lim |b,| = 0.
n—>oo n n— o0

We will see later that every commutative Banach algebra, except C, has non-
trivial ideals (Example 14.5(4)).

. The center X' :={T : ST =TS, VS € X }is a commutative closed subalgebra

of X.
Proof: If T, € X/, then

S(Ty + AT5) = STy + AST, =TS + A1S = (T + AT»)S,
S(Th') =T1ST, = (1 T)S, SI=8=18S,
T, > T = ST = lim ST, = lim 7,S=TS.

n—00 n—00

The algebra is commutative by definition of X”.

. » Proper ideals do not contain 1, or any other invertible element 7', otherwise

it would have to contain every element S = § T-IT. (However, as remarked
in Example 13.3(11), the set of non-invertible elements need not be an ideal, or
even a subspace.)

. A closed ideal gives rise to a quotient algebra A’ /Z with multiplication and unity

defined by

S+INT+1I):=8T+1I, 1+7.

. A maximal ideal is a proper ideal Z for which the only other ideal containing it

is X itself,

ICTJCX = J=Z0rRT=4X.
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Maximal ideals are necessarily closed, assuming that the closure of a proper ideal
is also a proper ideal (Example 13.22(3)).
8. x Every proper ideal is contained in a maximal ideal.

Proof: Let C be the collection of all proper ideals that contain the proper ideal
Z. By Hausdorff’s maximality principle, C contains a maximal chain of nested
ideals Z,. Then M := Ua 1y is an ideal, since if T € Z, and § € Zg C 1, say,
then S+ 7 € Z, € M, and for any S € X, both ST and T'S are in Z, € M.
It is obvious that M is proper and contains Z since 1 ¢ Z, 2 Z for every «, and
that M is maximal since the chain Z, is maximal.

Morphisms

Definition 13.6

A morphism ® : X — ) of Banach algebras is a continuous linear map
(preserving limits, addition, and scaling) which preserves multiplication and
the unity,

D(ST) = D(S)D(T), D(ly) = 1y.

A character is a Banach algebra morphism ¢ : X — C. The set of characters,
denoted by A, is called the character space, or spectrum, of X.

Examples 13.7

1. Invertible elements of X are mapped by algebra morphisms to invertible elements

of V,
(1) =oh,

since ®(T)P(T™") = &(TT!) = &(1) = 1 and similarly, &(T~ 1D (T) = 1.
2. » The kernel of a Banach algebra morphism, ker ® := {7 : ®(T) = 0},isa

closed ideal. It is maximal when @ € A.

Proof: If ®(T) = 0, then ®(ST) = ®(S)P(T) = 0; similarly, (T S) = 0.

Maximality: Let ® : X — C be a morphism, and let the ideal Z contain ker ®

as well as some T ¢ ker®. Then &(T) = X # 0,and ®(A — T) = 0; so

A=A —T)+T €Z,and Z must equal X (Example 13.5(5) above).

(Every maximal ideal of a commutative Banach algebra is of the type ker ¢ with

¢ € A, but the proof requires Exercise 13.10(21) and Example 14.5(4); see the

proof of Theorem 14.39.)
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3. An isomorphism of Banach algebras is defined to be an invertible morphism @ :
X — Y such that ®~! is also a morphism. In fact, an invertible morphism is
automatically an isomorphism.

4. An automorphism of a Banach algebra X is an isomorphism from & to itself.
For example, the inner automorphisms T +> S—ITS, for any fixed invertible S.

5. Since C is commutative, commutators [S, T] := ST — T S are mapped to 0 by
characters (if they exist).

Representation in B(X)

Some mathematical theories contain a set of theorems stating that any abstract
model of the theory can be represented concretely. For example, every group can
be represented by a permutation group, and every smooth manifold is embedded as
a smooth “surface” of a Euclidean space. In this regard, every finite-dimensional
Banach algebra can be embedded, or “faithfully represented”, as a matrix algebra,
and more generally, we have the following representation theorem:

Theorem 13.8

Every Banach algebra can be embedded as a closed subalgebra of B(X),
for some Banach space X.

Proof The Banach space X can be taken to be the Banach algebra X itself without
the product (although there may well be ‘smaller’ Banach spaces that fit the
job). That is, the claim is that X" is embedded in B(X). To avoid confusion, we
temporarily denote elements of X’ by lower-case letters, and the operators on them
by upper-case letters.

Let L,(x) := ax be left-multiplication by a. Then L, € B(X) since
multiplication is distributive and continuous:

Lo(x+y)=a(x+y) =ax+ay = Ls(x)+ La(y),

L,(Ax) = a(Ax) = Alax) = ALy (x),

[ La ()]l = llax]l < llallllx]l,
so that || L,|| < ||a||. Furthermore,

Loyp(x) =(a+b)x =ax+bx =Lys(x)+ Lp(x), Li(x)=1x=x=1(x),
Lya(x) = Aa)x = ALy (x), L,(1)=al =a,
Lap(x) = (ab)x = a(bx) = LoLp(x),
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so llall = IILalll < [ILalllTl = lILall and ||Lall = llall. These show that the
mapping L : X — B(X) defined by L : @ — L, is an isometric morphism of
Banach algebras. In fact, the space of such operators, im L, is a closed subalgebra
of B(X) since isometries preserve completeness (Exercise 4.18(5)). Note that all
the Banach algebra axioms have been used. O

As one may anticipate, B(X) and B(Y) are not isomorphic as Banach algebras,
when X and Y are not isomorphic as Banach spaces. The proof, however, is not as
obvious as one might expect.

Theorem 13.9

Let X and Y be Banach spaces. A Banach algebra isomorphism J :
B(X) — B(Y) induces a Banach space isomorphism L : X — Y, such
that

J(T)=LTL™".

Thus, every automorphism of B(X) is inner.

Proof The idea is to establish a 1-1 correspondence between vectors x € X and
certain projection-like operators Py € B(X), and similarly y <> Ry for Y’; using the
given mapping J : T +— T, the sought isomorphism would then be

L:xr—)eriRyHy.

The correspondence x <> P,: For the remainder of the proof, fix a vector u € X,
u # 0, and a functional ¢ € X™* such that ¢u = 1. Multiplying any x € X by ¢
gives an operator P, := x¢ : 7 — (¢z)x; conversely, multiplying P, with u gives
back the vector Pyu = x¢u = x. The crucial characteristics of these operators are,
for any T € B(X) (including scalar multiplication),

TP, =Tx¢ =(Tx)p = Pry, Px1+x2=(xl+x2)¢=Px1 +Px2.

In particular, P, P, = x¢u¢p = x¢ = P,. Note that || Py|| = ||[x¢|| < ||x]|||l¢]l and
lx|l = | Pxull < || Pxllllu]l. Thus, P : X — B(X), x — Py is an embedding.

The isomorphism J maps Py € B(X) to a similar operator Ry, € B(Y): The relation
PM2 = P, is preserved by J, so P,i=1J (Py) is anon-zero projection in B(Y). Pick
v € im 13;, and Y € Y* such that v = 1 and ¥ ker Igu = 0 (Proposition 11.20), and
define Ry := yy forany y € Y. R, satisfies analogous properties as Py, such as
Ryv=yand TRy = Rfy. First we show that J(P,) = R,: for suppose w € im P,,,
and let 7 € B(X) correspond to R, € B(Y) under J; then J transforms the identity

P,TP, =u(¢Tu)¢p =1P,, where A = ¢Tu,
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to ﬁuRwEl = Aﬁu, SO im P:, = [[v]] since

~

= ﬁuw = ﬁuva = ﬁuRwﬁuv = AP, v = \v.

Thus the projections P, and R, have the same image and the same kernel, and we
can conclude that they are equal to each other.
Hence, the identity P, = Py P, becomes, in B(Y),

J(Py) = P, = PR, = Rp, = Ry, where y = Pyv.

Themap L : x — y = J(Py)v is an isomorphism: That L is linear, continuous, and
1-1 follow from:

L(x1 + x2) = J(Pyy4x,)v = J(Px; + Pyy)v = L(x1) + L(x2),
L(x) = J(Pyy)v=J(APy)v = AL(x),
ILx|l = 1T (Pl < [IT1HI@lHIxIv]l,
Lx=06 y=J(PH)v=0& J(PH) =Ry, =06 P,=0% x=0.

Givenany y € Y, J! maps the identity Ry = RyR, to § = SP, = Pgs,. So for
x = Su,

Lx = J(Psy)v=J(S)v=Ryv =y,

and L is onto. By the open mapping theorem (Theorem 11.1), L is an isomorphism.
T =LTL ' J maps the identity TPx = Pry to TRL(X) = Ry(rx). Multiplying
by v to get the vector form, this reads TLx =LTxforallx € X.

When X =Y, then L € B(X), and J is an inner automorphism. |

Exercises 13.10

1. Banach algebras of square matrices abound: the sets of matrices of type (“ 0)
((“) Z) (Z Z) or ( "b b) are each closed under addition and multiplication, and are
Banach subalgebras of B(C?). The last three examples can be written as a +b.J
where J2 = 0, 1, —1 respectively.

2. C = C2 with (§)(9) := (ag+hespq) is a Banach algebra, with unity ().

(Hint: it is a matrix algebra in disguise.)

Find examples of 2 x 2 matrix divisors of zero, ST =0# T'S.

4. In an n-dimensional algebra, every element has a minimal polynomial of
degree at most n; e.g., every square matrix A has a minimal polynomial.
Show also how the Gram-Schmidt process (with respect to the inner product
of Example 10.2(2)) can be applied to the sequence I, A, A2, ... to construct
this minimal polynomial.

w
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13 Banach Algebras

An idempotent satisfies P> = P. They are the projections in B(X); what are
they in C" and £>°? The idempotents of C[0, 1] are trivial. Show further that
PX P is an algebra with unity P, called a “reduced algebra”.

. A nilpotent satisfies Q" = 0 for some n, e.g., (8 é) and (,1 _’1) In CV, ¢°°, and

CI0, 1], there are no nilpotents except zero. Find all the 2 x 2 matrix nilpotents
of index 2, i.e., 02 =0, Q # 0.

. An element is cyclic when T" = 1 for some n, e.g., (é ?) In CV and ¢ they

are sequences whose terms are of the type e>7"/" for a fixed n.

. The product of differentiable functions is again differentiable, with

(f&)'(H = [f'(TYH1g(T) + f(T)[g"(T)H].

This can be written in short as the familiar product rule (fg) = f'g + fg’,
provided it is remembered that the vector H is acted upon by each derivative.

. If F:R — Xisintegrableand T € X, then [ F(t)T dr = (/ F)T (First show

it is true for simple functions).

* Group Algebra: Let G be a finite group of order n, and {e; : g € G} be an
orthonormal basis for C"; define e, * e, := egy,, and extend the product to all
other vectors by distributivity. The result is a Banach algebra, denoted C% or
£'(G), with unity e and the 1-norm. Every basis element is cyclic.

For example, the cyclic group {1,g : g> = 1}, gives rise to an algebra

generated by e := (}) and e, := (), and the product

a c ac+ bd
(b) * <d> = (ae1 + bey) * (cey +de,) = (bc +ad> .

The closure of a subalgebra is an algebra (use continuity of the product).

If 7 and J are ideals, then so are Z + J and Z.

The center of B(X) is C. (Hint: Consider projections x¢, for any x € X, ¢ €
X*)

» The centralizer or commutant of a subset A C X,

A :={T:AT =TA, VAec A}

is a closed subalgebra of X. (In fact, when X = B(H), A’ is weakly closed by
Exercise 11.49(8a).) Prove:

(g ACB=> B cA,

(b) ACA"and A" = A,

(c) If T e A is invertible in X then T~! € A,

(d) If elements of A commute, then A € A’ and A” is a commutative Banach
algebra.

A left-ideal is a linear subspace Z € & such that TZ € 7 forany T € X.
Similarly, for a right-ideal, ZT C Z. For example, X'S is a left-ideal, and SX
is a right-ideal, but X'SX" need not be an ideal. Instead, the ideal generated by
Sis [XSXT.
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16.

17.

18.

19.

20.
21.

22.

23.

24.

25.

26.

27.

The set of compact operators in B(X) form a closed ideal IC(X); the set of finite
rank operators form an ideal (but note that the closure of this ideal need not be
K(X).)

Show that any closed ideal of cp consists of those sequences that vanish on
some specific set of indices. What are the maximal ideals?

Let A be a closed subset of [0, 1], then

Za={feC[0,1]:Vx € A, f(x) =0}
is a closed ideal of C[0, 1]. Conversely, given a closed ideal Z of C[O0, 1], let
A={xe[0,1]:VfeZ f(x)=0},

then Z = 7. What are the maximal ideals?

Let Z4 be a closed ideal of C[0, 1], where A is a closed subset of [0, 1]. Then
the mapping f + Z4 + f|4 is an isomorphism C[0, 1]/Z4 = C(A).

An algebra morphism ® : X — ) “pulls’ ideals Z in ) to ideals ®~'Z in X’
If 7 is a closed ideal, then ®(T) := T + Z gives a Banach algebra morphism
o : X — X /7 with kernel ker ® = 7.

The mapping ), a,z" +— (as)nen from the set of power series converging
absolutely on the closed unit disk Bc of C, considered as a subspace of C (Be),
to £! is a 1-1 Banach algebra morphism.

Let o0 be a permutation of 1,...,n; then the mapping defined by
(21, ..+, 2n) ¥ (Zo(1)s - - - » Zo(n)) 1S an automorphism of C".

For the group algebra CY, let o be an automorphism of the group G; then
€g > €5 (g) induces an automorphism on CS.

The algebra C" is embedded in B(C") as diagonal matrices. C is represented by
the matrices (Z a—(i)-b)' The group algebra CC is generated by the Cayley matrices
of G.

Show that every Banach algebra of dimension 2 (over C) can be represented by
the matrices generated from / and ((1) %) where « is a fixed number and 8 is 0

or 1. What are o and g for the group algebra generated by { 1, g : g% = 1}?
Let X be a Banach algebra contained in B(X). Its unity P = P2 is a projection,
soX =M ® N where M =im P. Forevery T € X, PT =T = T P implies
M is T-invariant and TN = 0, hence X acts on M.

13.2 Power Series

Definition 13.11

A power series is a series ), a,7" wherea, € Cand T € X.
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Recall that the root test can help determine whether such a series converges or not:
If la, T = |a, |/ ™| T /" converges to a number less than 1, then the power
series converges. It is important to know that || 7" | 1/n converges:

Proposition 13.12

For any 7 in a Banach algebra, the sequence ||7"||'/" converges to a
number denoted by p(7'), where

VneN, pT) <|T"|V" <|IT).

Proof 1t is clear that 0 < || T"||'/* < ||T|. Let p(T) be the infimum value of
I 77|'/", meaning that ||[7"/'/" is bounded below by p(T') and

Ve >0, AN, p(T) < TNV < p(T) +e.

Although the sequence || 7" | 1/ is not necessarily decreasing towards p(7), notice

that |79 ||1/9m < || T™||'/™. For any n, letn = ¢, N +r, with0 < r, < N (by the

remainder theorem), then 0 < r,/n < N/n — O and g, /n = %(1 — %) — Loas

N
n — 00, so that
p(T) < TV = TN T < N yainy o ¥ Y < (1) e

Since € is arbitrarily small, this shows that || 7"||'/"* — p(T’) from above. |

Examples 13.13

Lo» (@) p() =1,0) pAT) = [Alp(T), () p(ST) = p(T 5), (d) p(T") = p(T)",
simce

et =1, et = g,
p(ST) < (ST IM™ < IS 1"~ 7" — p(T'S),

LT )™ = | T"™ |35 — p(T)" as m — oo.

But p(T) may be 0 without T = 0; and p(S + T) € p(S) + p(T) in general,
e.g, (§): (19)- So p is not usually a norm on X.

2. p(T) = T & Vn e N, |T"|| = |T|", since |T|| = p(T) < |T"|'/" <
171

3.» If p(T) < 1, then T" — 0 (even though ||T|| may be bigger than 1). If
o(T) > 1,then T" — oo.
Proof: For € small enough and 7 large enough,

IT" V" < p(T) +€ <1 = |T"| < (p(T) +€)" — 0, as n — o0,
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IT" V" > p(T) > 1+€ = |T"| > (1 +6)" — .

For example, if A := $(9}) then |[A(})Il =2 > 1 yet A> = %I, 50 A" — 0.
On the other hand, (i) B := ({ ) satisfies B" = I or B, so p(B) = 1 and B"
does not converge; (i) C := ((1) }) satisfies C" = ((1) ’1’) — 00 asn — 00, yet
p(C) = 1; (iii) D := (§ ,%,) satisfies p(D) = 1 and D" = (g ) — (3 ) as
n — oo.

. If || - | is an equivalent norm, then p(7) = lim,_, o | T" I1/7; for example, for

matrices, one can use the Frobenius norm, which is easier to calculate than the
standard norm, although the convergence rate may differ.

Theorem 13.14 (Cauchy-Hadamard Theorem)

The power series > - a,T", wherea, € C,T € X,

¢ converges absolutely when p(7T) < r, and
e diverges when p(T) > r,

where » := 1/limsup, lan|'/™ is called the radius of convergence of the
series.

Proof This is a simple application of the root test. The nth root of the general term
satisfies

limsup [|a, T"||'/* = limsup |a,|"/" p(T) = p(T)/r.
n n

Thus, if p(T) < r, then the series converges absolutely, while if p(T) > r,
then it diverges. Assuming &’ is complete, the power series converges or diverges
accordingly. O

Examples 13.15

1.

2.

Ratio test: If |a,|/|ans1| — r then so does |a,|~ /" (Sect.7.5), hence r would
be the radius of convergence of ), a,T".

Some aspects of power series may seem mysterious from the point of view of
real numbers: The series 1 — t> 4+ t* — t® 4 ... has a radius of convergence of
1 yet converges to (1 + t2)~! which takes a finite value at all # € R (but not at
¢t = i). Moreover the same function can also be written as (5 — (4 — %))~} =

2 s . .
% Y (4_7’)", but in this form it converges in the larger range —3 < ¢ < 3.

. The theorem also applies to power series ), A,z", where A, is a sequence of

elements in &X'. The radius of convergence is then 1/limsup,, ||A,|| 1/n,

. When |a,| < c for all n, then aT? + a3T3 + -+ - = o(T) for small T, since it is

bounded above by c||T||2/(1 —\T.



328 13 Banach Algebras

When can a function be written as a power series? We wish to establish that being
analytic in a neighborhood of 0 is a necessary and sufficient condition. The necessity
part is the content of the following proposition, but sufficiency will be shown later
(Theorem 13.26).

Proposition 13.16

A power series f(z) 1= Y o, a,z" is analytic strictly within its radius of
convergence, and

@)= na,2""".
n=l1

Proof First of all, the power series Zn annz”*1 converges, with the same radius of
convergence R as ), a,z",

limsup [na,|'/" = lim n'/" limsup|a,|'/" = 1/R  (Exercise 3.6(1d)).
n n— 00 n

For each individual term of the given power series,
Z+ )" =7"+n"""h+ o, (h).

It needs to be shown that | ), a,0,(h)|/|h| — 0as h — 0. One trick is to find an
alternative way of expanding (z + h)" as follows:

C+h' =G+ "h+ @+h)"
=@+h"Th+ @+ h""2zh+ (z + h)" 22
=@+ ht+ o+ @+

+77
= Iz +h)" — 2" < (z+h" 4 412" DA
< nr" Yy, (13.2)

where r is larger than |z| + |/| but smaller than R. Now,
on(h) = z+h)" =" —nz""'h

=@+h" " h+ @+

—Zn_lh—"'—Zn_ka_lh—"'—Zn_lh
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n

= (@+n" =" p
=1

$0 [o,(M)| < (1 — D 2 h)? + - + r"2|h)? by (13.2)

bl

_ n(n — 1)r"72|h|2
2

o
. nn—1)
But the series ¢ := E |an| ¥r" 2 converges for r < R, so

2
n=2

o0 oo
| D awon )| <Y lanlloa()] < clhl?
n=0 n=2

which proves that the remainder term ), a,0,(h) is o(h). |

There are two important consequences: Since differentiating a power series gives
another power series with the same radius of convergence, then we can differentiate
repeatedly. Secondly, we know that polynomials are distinct as functions on C when
they have different coefficients; this property remains valid for power series: If a
function can be written as a power series, then its coefficients are unique to it.

Proposition 13.17

Assuming a strictly positive radius of convergence,
(i) a power series f(z) := Y .- a,z" is infinitely many times differen-

tiable, and

A

n!

dn

(ii) distinct power series are not equal as functions.

Proof (i) By induction on n, £ has the power series

n+2)!
( )an+222+---

FP@) = nlay + (n + Dlayy1z +

Substituting z = 0 gives the stated formula.

(ii) Suppose Y, byT" = Y, ¢, T" for all T such that p(T) < r, the smaller of
their radii of convergence. By taking the difference of the two series, it is enough to
show thatif f(z) := )", a,z" = 0 for all z € B,(0), then a,, = 0 for all n. But this
is immediate from (i) since £ (0) = 0 in this case. |
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The Exponential and Logarithm Maps

There are a couple of power series of supreme importance. As motivation, consider
the possibility of converting addition in a Banach algebra to multiplication,

fae+y=f0f», fO=L

Apart from the constant function f = 1, are there any others? If f exists, it would
have to satisfy a number of properties:

@ f(x)=f@)", f(—x) = fx)~,

(b) When the algebrais R, f(m/n) = a™/™ where a := f(1) > 0Hint: f(n/n) =
F@/n)"),

(c) f is uniformly continuous on Q@ N [0, 1], so it can be extended to a continuous
function on R, usually denoted by f(x) = a*,

(d) f'(x) = f'(0) f(x) if f is differentiable at 0, since f(h) = 1+ f'(0)h + o(h)
o)

fG+h) = fO)fh) = fO)+ fO)f (Oh + o(h);

consequently f is infinitely many times differentiable with f™(x) =
£/(0)" f(x). Taking the simplest case f'(0) = 1 (so f™(0) = 1) leads to
the following definition:

The exponential function is defined by

o T2 T3 R
el =1 4T+ —+—+-..=Y —T".
Y « n!
n=!

Its radius of convergence is liminf, |a, |_1/ T = 1lim,— 00 % = oo by the ratio

test, so e/ exists for any 7 and satisfies [’ || < el
Similarly, starting with f(xy) = f(x) + f(y), we are led to the logarithm

function, defined by

T2 T3 0 (_1)n+1
1 14Ty =T ——+ —+--- = -—T",
og(1+T) st t > p

n=1
with radius of convergence liminf,, |a,|™"/" = lim,_ % =1.

Proposition 13.18

When S, T commute, ¢577 = eSe”. For p(T) < 1, 80+ =1 4 T,
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Proof (i) The product eS¢’ can be obtained in table form as,

S=1 4+ S + 35 +--

6T
1 1 S 152

+

T T ST ST

+

%T2 %TQ %STQ 1 S2T2

+

The general term in this array is 5 -L§"T" = . (N)$*"TN=" where N := n + m

is the Nth dlagonal from the top left corner. Th1s is precisely the nth term of the
expansion of + w1(8 + 7)Y when S and T commute, so the array sum is 5+

(ii) The second part can be (tediously) proved by making a power series expansion
as above (Exercise 13.19(8)). We defer the proof until we have better tools available
(Example 13.30(3)). O

Exercises 13.19

1. Calculate p(T') for the following matrices

01 la al
® (00)’“’) (00>’(C)< ) (d)< a)

Only one of these examples satisfies p(T) = ||T'||

2. Every idempotent P, except 0, satisfies p(P) = 1; every nilpotent Q has
p(Q) = 0, and every cyclic element T has p(T) = 1.

3. For any invertible S, p(S™'TS) = p(T), yet ||[S~!T S| may be much larger
than ||T||. For example, let P := ( ) and § = ((1) 2), then S~ PS = ((1) “OC)
has norm \/m

4. If ST = TS, then p(ST) < p(S)p(T). Deduce p(T—1)~! < p(T), and find

examples of non-commuting matrices such that p(S7) > ,o(S) p(T).
5. The equation T —AT B = C has a solution T= Zf,o:o A"CB"if p(A)p(B)<]1.
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The radii of convergence of

o o0 o0 o0
Zn”T”, ZnT", ZT"/n, ZT"/n!
n=0 n=1 n=0

n=0

are 0, 1, 1, oo, respectively. A quick way of estimating the radius of convergence
r is to judge how fast the coefficients grow: if corg < ay| < clri1 then % <
r < %.
How are the radii of convergence of ), (a, + b,)T" and ), a,b,T" related
to those of ), a,T" and ), b, T"?

. Let f(T) =Y ;2 pa,T" and g(T) := Y, b, T". Find the first few terms of

the power series expansions of f + g, fg and f o g; in particular, find — f(T),
SO D).

. Let f(T) := )", a,T" be a power series, and F(T) := }_, |a,|T"; they have

the same radius of convergence r. If ||| < r, then || f(T)|| < F(|TI); e.g.,
e < el

The convergence of a power series is uniform in T on By (0), for s < r.

When T satisfies a polynomial p(T) = 0, then every (convergent) power series
on T reduces to a polynomial in 7.

(a) ¥ = 1, (b) the inverse of e” is e~ T, (c) &"T = (eT)".

By analogy with the complex case, define the hyperbolic and trigonometric
functions of T as power series, and show (a) exp (Y /)1 = (527 . 3in%), (b)

cos (3 1)r = (7 ~15m) (c) e” = coshT +sinh T, (d) e'” =cos T +isinT.
Prove that there is a non-zero complex number 7 such that e* = 1. Thus the
exponential function has a period, e’ 7"* = ¢! . The ‘smallest’ such number is
6.283...i =: 2mi.

* (1 +T/n)" — el asn — oo.

(Hint: Each component in the series is nlA(Z) T — %Tk, then use Exer-
cise 9.7(1).)

* The product of n terms, (1+S/n)(1+T/n)(1+S/n)---(1+T/n) — 517
as n — 00. (At least show convergence for each power term.)

* Trotter formula: ¢5/7eT/meS/m ... T/M s ¢S+T  For example,

SHT g o5/20T/2,5/2,T/2

Find the exact coefficients used in the Trotter-Suzuki approximation

60.293560.707T60.707560.293T

’

that make it the best possible to second order. These formulas are very useful
to approximate e+ whenever S and T do not commute.
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13.3 The Group of Invertible Elements

Among the invertible elements of a Banach algebra, one finds all the exponentials
e’ (including all non-zero complex numbers) and all their products, as well as the
unit ball around 1, as the next key theorem proves:

Theorem 13.20

If p(T) < 1 then 1 — T isinvertible: (1 — 7)) ' =14+ 7T 4+ 7%+ ...

Proof The radius of convergence of the series ) , 7" is 1, by Hadamard’s formula.
For p(T) < 1,letSy i=1+T +---+ ™V > ZZO:O T". Then, remembering that
p(T)y<1 = TV > 0as N - oo (Example 13.13(3)),

Sy=1+T+---+TV
TSy= T4+ ---4+TN 417N+
= (1-T)Sy =1 — TNt S 1.

Similarly, Sy (1 — T) — 1 as N — oo. This shows that Zi‘;o T" is the inverse of
1-T. O

Theorem 13.21
The invertible elements of a Banach algebra X form a group G(X) with

the operation of multiplication. G(X) is an open set in X', and the map
T + T~!is differentiable on it.

Proof Multiplication in a Banach algebra is associative and has a unity 1 € G(X).
To prove G(X) is a group, it needs to be shown that if S, T € G(X), then ST and
T are invertible, a fact that is evident from

S '=71"1s7l, aHl=T.
Let T be any invertible element of &X', and consider any neighboring element
T+H=T0+T 'H)
with [|[H|| < [IT~"|~". Then p(T~'H) < |T7'|||H|| < 1,sothat 1 + T~'H, and
by implication T + H, are invertible. As the neighboring points of T are invertible,

T is an interior point of G(X") and the group is open in X'.
In fact, writing T + H =T (I + T_lH),
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T+H) ' '=0+7"'"®)y 7' =7 '~ 7 '"HT T ' HT'HT ' + ...

This shows that T +— T~! is differentiable with derivative H — —T 'HT !, by
verifying

IT HT = < IT P IH)|

IH|*IT~1)°
=o(H).

o0
IT"HT ' HT 4 <Y NHI T s — =
<X L= IT-1IH]|

n=0
O

A group, for which the acts of multiplication and taking the inverse are differen-
tiable, is called a ‘Lie group’, a topic that has a vast literature devoted to it.
A particular case of the above, for H = z1, is the following series:

(T + Z)_l — T—l _ ZT—Z + ZzT_3 —+ .. s (133)

Note thatthe mapz — (T —z) — (T — 2~ Lis analytic wherever the inverse exists;
its derivative is (T — z) 2.

Examples 13.22

1. The group of n x n invertible complex matrices is often denoted GL(n, C). It
has a group-morphism, the determinant det : GL(n, C) — C* = G(C),

det AB = det Adet B

whose kernel is the normal subgroup SL(n,C) of ‘special matrices’ with
determinant 1.

2. In C, when z is large, z7* is small. But for general Banach algebras there is no
such relation between || T~!| and ||T|, e.g., the inverse of (10,0.01) € C? is
(0.1, 100).

3. The set of non-invertible elements is closed in X'. So the closure of a proper ideal
is a proper ideal.

Proof: By Example 13.5(5), Z C G(X)%,s0Z C G(X)®and 1 ¢ 7.

4. If T is invertible, then B¢ (T'S) < T B, 7-1)(S). Consequently, multiplication by
T is an open mapping.

Proof: Let |A — TS| < e;then |[T'A =S| < IT7YNA=TS| < 1T " le,
as required. If U is an open setin X and S € U, then S € B.(S) C U, so

1

and TU is open in X,
5. The set of non-invertible elements is path-connected (to the origin, say), and may
disconnect the group of invertible elements, e.g., GL(2, R) disconnects into the
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two open sets of matrices whose determinants are strictly positive and strictly
negative, respectively.

The following proposition confirms that as an invertible operator R approaches

the boundary of G(X), |R™"|| grows to infinity, as expected.

Proposition 13.23

Let T be on the boundary of the group of invertible elements.

(i) For any invertible element R, |[R~!|| > 1/|R — T,
(i) T is a topological divisor of zero, meaning there are unit elements S,
such that

TS, — 0AND S, T — 0, asn — 0.

Proof (i) Since T is at the boundary of the open set of invertible elements, it cannot
be invertible, whereas R and all elements in its surrounding ball of radius ||[R~!|| -1
are invertible, by the proof of the previous theorem. Thus |R — T'|| > IR~Y~1 as
claimed.

(i1) Let invertible elements R, converge to a boundary element 7', and let S, :=
R7/IIR, ! then

TR;! R;! I
n = 1. (T — Rn) 1 + ] -0
1Ry | IRl IRl
since R, — T and |R;'|~! < ||R, — T|| — 0. Similarly S, 7 — Oas well. O

As remarked earlier, the group G(X) need not be a connected set, but splits into
connected components, with, say, G| being the component containing 1. Recall that
a component is maximal connected, so if G| contains part of a connected subset of
G(X), it must contain all of it (Theorem 5.12).

Proposition 13.24

The component of invertible elements containing 1 is an open normal
subgroup, generated by ¢’ for all 7.

Proof G is open in G(X): Any T € G is an interior point of G(X), so T €
B(T) € G(X). But the ball B.(T) is (path-)connected and intersects Gj, so
B(T) € Gi.
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G\ is a subgroup of G(X): Multiplication by T is a continuous operation, so 7§
is connected (Proposition 5.6). When T € G|, then T = T1 € TG € G(&X), so
G contains part, and therefore all, of TG;. Hence T, S € G| = TS € TG, C Gi.
Similarly, inversion is a continuous mapping, so gl— Uis connected; it contains 1, so
must be a subset of Gy, ie., T € G, = T~ € Gy.

G is a normal subgroup: By the same reasoning, for any invertible T, T~'G T is
a connected subset of G(X) and contains 1, so it is a subset of G; (in fact it must
equal it).

G is generated by the exponentials: Let £ be the group generated by the expo-
nentials e’ for all T € X’; its elements are finite products e’ ---e5. & is clearly
closed under multiplication and inversion, (eT e eS)_l =eS...e T s0€CQg.
It contains 1 = ¢, and is connected since there is a continuous path from 1 to every
element e’ - .. ¢S, namely ¢ > /T ... ¢!S for t € [0, 1]. We can conclude that £
lies inside Gj.

The elements near to 1 are all exponentials, since for H small, log(1 + H) exists
as a power series and hence! 1 + H = ¢"°2(1+H) So a small enough neighborhood
around E :=e” ... ¢S € £ consists of elements

E+H — E(l +E_1H) =eT"'eSeIOg(1+E71H) c g

at least for ||[H| < e ISI...¢=ITI This means that E is an interior point of &,
which is thus open. Its complement in G is also open, since G| \E = UTeg. e T&
(prove!) and each T'& is open (Example 13.22(4)). £, being open and closed in Gy,
must equal G| (Proposition 5.4). O

Exercises 13.25

1. The invertible elements of C" are (z1, . . ., z,) such that none of the components
are zero.

2. In £%°, a sequence (a,),eN is invertible if, and only if, it is bounded away from

0,i.e.,0 < ¢ < |a,|. Paths t = w(¢) in C[O, 1] are invertible when they do not

pass through 0.

In B(X), the invertible elements are the automorphisms of X.

In BX), [T")| = 1/ infjxj=1 [ITx]|.

In X x Y, (S, T) is invertible if, and only if, both S and T are invertible.

The integral operator on Cla,b], Tf(s) := fab k(s,t) f(t)dt has norm

satisfying || T|| < ||k||;<|b — a|. Deduce that when ||k||;« < 1/|b — al, the

equation 7f + g = f has the unique solution f =) 77, T"g.

7. I T is invertible and Tx = y, (T + H)(x + x¢) = y, then Ll < 1T 1711
T

is a differentiable group-morphism R — G(X); its derivative

AN S

8. Themaprt > ¢’
attis Te'l.

9. » Conversely, every differentiable group-morphism A : R — G(X), meaning
Aips = Ay Ay, 1s of this type:

! This was stated, not proved, in Proposition 13.18, but the argument is not circular.
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(a) 3h > 0, foh A; dr is invertible, by the mean value theorem (Proposi-
. h h
tion 12.9), and [/ A = (f;} A)A;

(b) LetT := (A, — 1)(th A)~ ! sothat A, 1, = A; + hT A, + o(h);

© $(Ae™T) = ($A)e™T — A Te T =0,50 A, = Age'T = e'T.

10. Verify Proposition 13.23 for (5 1) — (& 8).

11. A topological divisor of zero, also called a generalized divisor of zero, does not
have right or left inverses.

12. The right-shift operator R on £°° is a right divisor of zero but not a topological
divisor of zero.

13. In finite dimensions, there is no distinction between divisors of zero and
topological ones. (Hint: S, € EX, which is compact.)

14. An isomorphism between Banach algebras preserves topological divisors of
Zero.

15. If R is invertible, then ||R_1 | = 1/d(R, 0G(X)).
(Hint: By the definition of d (i, 0G (X)) (Exercise 2.20(9)), there is a sequence
T, € 0G(X) such that ||T,, — R|| — d(R, G(X)).)

16. Every invertible n x n matrix has a logarithm (over C; see Example 14.27(1)), so
G = G for B(C"). But over the reals, any diagonal matrix with some negative
components are not exponentials; they have no real logarithms.

13.4 Analytic Functions

There are two ways of connecting the coefficients of a power series to its function

f@@) =ap+aiz+az*+---,

(i) by differentiation
™) =nlay + (n+ Dlappiz+--- = f™0) =nla,.

(i1) by integration

f(z):a_°+... a”; e = f&dz—ananl

Zl‘l Zn

These formulas raise the possibility of creating a power series from a given function,
by defining the coefficients in these ways. The latter one is more useful because it
does not assume f to be differentiable infinitely often.
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Theorem 13.26 (Taylor Series)

If f : C — C is analytic in a disk B (0), then it is a power series inside
the disk. For p(T) < R,

. L _ -1 _ - n
FT) = 2m.§£f(1)(z T) dZ—nXZ(:)a,,T,

where for all n € N

™)

n!

tl

_ L —1—n _
an=-—¢ f(2)z dz =
2mi
and

C
Vr <R, 3¢, VneN, |a,| < =
r

To justify the use of the notation f(7'), note that when T = a1, the two uses of the
symbol f agree, i.e., f(al) = f(a)l, by Cauchy’s integral formula.

Proof The path of integration is along a circle with center 0 and radius r just less
than R but larger than o (7). For z on this circle, p(T/z) = p(T)/r < 1, so

oo
@-D =1 -T/7"' =) """, and
n=0

1 - o 1 —1—n n — n
%¢f(z)(z—T) le=Z%¢f(z)z I=raz 1 ZZGnT.

n=0 n=0

However we need to justify the swap of the summation with the integral. Recall that
z + (z — T)~!is continuous in z by (13.3), and the circle is a compact set, so
Il f(z)(z — T)~!|| < C for z on the circle (Corollary 6.16). It follows that

IS F@T /4| = 1T @) — )7 /2N < TV Y 0
n=N

uniformly in z. So erz\;o $f@QT" )" dz — ¢y, fFT" /2" dz.
Note that

1
lan| < z—fc/r”"_ldt =c/r",
11
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where c is the maximum value of f on the compact disk B,(0) C C. The radius of
convergence of this power series is at least R since forany 0 < r < R,

liminf|a,|~"" > lim =r
n

n—oo cl/ n
Proposition 13.27 (Liouville’s Theorem)

If an analytic function on C grows polynomially | f (z)| < c|z|" as |z] —
oo, then f is a polynomial of degree at most n. In particular, if f is
bounded then it is constant.

Proof 1If f : C — C were analytic on C, and grows polynomially, then its
maximum value on a disk of radius r is ¢, < cr”. So the mth Taylor coefficient
vanishes for m > n,

n

|am|<Cr/rm<C'r ™ 50 asr — oo.

This also applies to vector-valued analytic functions F : C — X. For any

functional ¢ € X*, ¢ o F : C — C is also analytic. If F grows polynomially,
then so does ¢ o F

¢ o F(I < lI#IIIF @I < lIgllelzl”,

which implies that ¢ o F(z) is a polynomial ag + ajz + --- + a,z". In fact, by
Example 12.3(3), a, = ¢ o F™(0)/n!, so that

$poF(z)=¢o(FO)+FO)z+--+ F"0):z"/n!).
As ¢ is arbitrary, we deduce that F(z) is a polynomial in z. O
Theorem 13.28 (Laurent Series)

If f : C — C is analytic in a ring Bg(0)~B,(0), and r < p(T~1)~! <
p(T) < R, then

._L _ -1 _ = n
FT) = 5 '§£f(z)(z T) dz-n;ooanT,

where a, = % ¢ f(z)z7'7"dz, for n € Z. The residue of f in B, (0) is
a_j.
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The path of integration is here understood to be just within the boundary of the ring,
going counter-clockwise around a circle of radius just smaller than R, and clockwise
around a circle just larger than r. Note that R is allowed to be infinite, in which case
substitute R in the proof with any value larger than p(T).

Proof A Laurent series can be thought of as the sum of two separate power series,
Y anT" + 30 a_,T", one in T and the other in 7~'. If R and R’ are
the respective radii of convergence, then absolute convergence occurs only when
p(T) < Rand p(T~") < R'.

For z on the bigger circle, p(T/z) = p(T)/|z| < 1 if the radius is close enough
to R, so just like the proof of the Taylor series,

o0

1 —
i fi f@QGE-T)"dz= ZanT”.
n=0

For z on the smaller circle, ,o(zT_l) = |z|p(T_1) < 1 when its radius is close

enough to r, so
o0

@1 =-0 -7 HrT == T

n=0

and (along an counter-clockwise path)

1 - - 1 n— —n . —n
%if(z)(z—T)leZ—r;%ygf(z)z Yaz 1 :—;a_,,T .

Combining the two integrals and series gives Laurent’s expansion. Note that the
second series vanishes when f is analytic within B, (0), by Cauchy’s theorem, so it
is consistent with Taylor’s theorem.

Since the Laurent series converges uniformly strictly within the annulus, we
obtain

: ff( ydz = — §Oo,‘ 55 "q
P Z)a7 = — anpZ d7 =d—1.
2 2 et

O

These two theorems of course also apply, by translating, to disks and rings with
center zo; the resulting series will then be ), a, (T — z0)".

Proposition 13.29

The zeros of a non-zero analytic function, defined on an open connected
subset of C, are isolated.
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Proof Suppose an interior zero w of f : @ — C is a limit point of other zeros,
Zp = w (2, # w). Then f can be written as a power series f(z) = D ak(z — w)k
in some neighborhood of w. If ag is the first non-zero coefficient, then

0= f(zn) = (zn — w)K(aK +ag+1(zn —w)+---),

“O0=ax +ag+1(zy —w)+---—>ag asz, > w.

This contradiction determines that f is locally zero in Q2. Hence it is zero in
(Exercise 5.8(9)). O

Examples 13.30

1. The Fourier series Y oo a,e™ is a Laurent series with T = e?.

2. » For polynomials (and circular paths as in the theorems),

1
p(0) = — f p(2)(z—T) 'dz.
Tl

For example,

1 1
1=—,f(z—T)—1dz, T=—,fz(z—T)—1dz,
2 27

1 1 1 1

Prooffor T~': We can use Laurent’s expansion on a path z(9) = re'?

is analytic everywhere except at 0,

_ 1 1 d _1 o 1 7i(n+1)9d0_0
W= P =g e =

unless n = —1, in whichcasea_; = 1.S0 ), a,T" = T

3. » We can finally show €°20+7) = | 4+ T for p(T) < 1.
Proof: Let f(z) = €°20+3) for |z| < I;then f/(z) = €°20+9 /(1 + z) and
f"(z) = 0 (check!). So the non-zero coefficients of its Taylor series are ay =
f(0)=¢"=1anda; = f/(0) = 1. Hence f(T)=1+T.

4. Binomial theorem: (1 + T)P = eP1°¢0+D) = 1 4 pT 4 (5)T2 + - - provided
p(T) <1, p € C,and () := 2e=Doip=ntl),
Proof: Define the analytic function f(z) := (142z)? = e?1°20+2) inside the unit
disk Bc. Its derivatives are, by induction,

, since 1/z

@ =pp =1 (p—n+ Dl HDIIFI (1 4 57
=pp—D--(p—n+DHA+2)"",

so its power series coefficients are a, = £ (0)/n! = (5 )
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5.

» There are versions of these series expansions valid for a vector-valued function
F : C — X, where X is a Banach space and F is analytic inside a ring, r <
lz] < R,

1
F(z) = 7 % F(w)(w — 1)71 dw = ZAnz”,

nez

1
where A, := — f Fw)w '™ dw € X.
2mi

Proof For any ¢ € X*, the map ¢ o F : C — C, being the composition of
differentiable functions, is analytic on the ring Br(0) B, (0), so it has a Laurent
expansion ¢ o F(2) = 5= f po F(w)(w —2) " dw =Y, by2" forr < |z < R
and b, = ¢A,,. But ¢ is linear and continuous, so it can be extracted out of the
integrals and series,

$poF@) =0 (i. yg Fw)w —2)™! dw) =0 A,

2mi
nez

and as ¢ is arbitrary, the result follows.

Exercises 13.31

1.

2.

Let T := (J J); verify directly that 7 = 5 § z(z — T)~! dz by calculating the
integral in a circular path around the origin.

Show that there are no analytic functions in C which grow at a fractional power
rate |z|™/" (m/n ¢ N).

. Show that the Laurent series for cot 7', valid for p(T) < 7, p(T~1) > 0, is

cot T =T =17 — LT3 — 21—

and find its residue at 0. (Hint: cot z = (1—z2/24+2z%/244---)/z(1—2%/6+---).)

. If an identity between analytic functions, f(z) = g(z), holds in a complex disk

B, (0), then it holds for any 7" with p(T) < r.

. Justify the identity nlog(l + 7) = log(l + T)", hence deduce the assertion

lim (1+7/n)" =e’.
n— oo

. A function on C has a pole a of order N if, and only if, it has a Laurent series

expansion Y ooy an(z — a)" about a.

. = Two analytic functions on an open connected subset of C must be identically

equal if they are equal on an interior disk. (Consider the interior of the set for
which f = g.)

. Suppose f is analytic on the extended complex plane, except for isolated points,

i.e., f(1/z) is also analytic at 0.

a. Show that f has a finite number of zeros and poles (except when f = 0),
b. Using polynomials p, g whose roots are these zeros and poles, respectively,
deduce that f is a rational function p/q.
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Remarks 13.32

1. A subalgebra must have the same unity as the algebra—it is not enough that it
has a unity. For example, C (Exercise 13.10(2)) contains the set { (0,a) : a € C}
which is closed under addition and multiplication and has its own unity (0, 1),
different from C’s unity (1, 0); it is an algebra, but not a subalgebra of C. Instead,
the set { (a,0) : a € C} is a subalgebra of C.

2. The axiom ®1 = 1 of an algebra morphism does not follow from the other
properties of ®. For example, the map ® : C — C defined by ®(z2) := (0, 2)
satisfies all the properties of a Banach algebra morphism, except that ®(1) =
(0, 1) # (1, 0). But continuity of characters follows from their other properties
(see the proof of Proposition 14.35).

3. % The proof of the embedding of A" into B(X) does not make essential use of
the axiom ||1|| = 1, or of |lax]| < |la]/|lx]|. If instead, ||1|| = ¢ and |lax| <
c'llallllx|l, one gets

lall = ILalll < cllLall, ILall < ¢llall.

Thus X has an equivalent norm defined by ||a|| := || L4||, with ||1|| = ||I]| =1
and

eyl = Loyl = I LxLyll < ILx MLyl = Nx MWyl

4. In the Banach algebra B(X), one can define p,(7) := limsup, ||T”x||nl; SO
0 < px(T) < p(T). The series Y, a, T"x converges absolutely when p, (T) is
less than the radius of convergence.



Chapter 14 ®
Spectral Theory o

14.1 The Spectrum of T

A moment’s reflection shows that, by Cauchy’s residue theorem, the path of
integration in f(T) = % 9§ f(z)(z — T)~"dz can be modified, as long as f and
(z — T)~! remain analytic over the swept area. We are thus led to study the region
where z — T is not invertible, called the spectrum of T.

Definition 14.1

The spectrum of an element 7 in a Banach algebra is defined as the set
o(T) :={A € C: T — A is not invertible }.

Its complement C\o (T) is called the resolvent of T.

Examples 14.2

[y

. 0(2) = {z} (since z — A is not invertible only when A = 7).

2. » Recall that a square matrix A is non-invertible < Aisnot 1-1 < detA = 0.
The spectrum of an n x n matrix consists of its eigenvalues, i.e., the roots of the
characteristic polynomial equation det(7 — 1) = 0 of degree n.

For example, the spectra of the 2 x 2 matrices (34), (99), (9 1), and (4 9), are
{0}, {0}, {—1, 1}, and {a, b} respectively.

Note that it is possible to have different elements with the same spectrum. The
spectrum is a sort of ‘shadow’ of T—it yields important information about 7,
but need not identify it.

3. » The spectrum of a sequence X = (ay)peNy € £*° is o(x) = imx =
{a, :n e N}
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Proof: The inverse of x — A = (a, — A)pen is bounded iff |a, — A| > ¢ > 0 for
all n, hence A ¢ o(x) < A is an exterior point of {a,},eN.

4. A spectral value of an operator T € B(X) is a complex number A for which the
equation (7' — A)x = y is not well-posed; one sometimes sees in practice that as
one varies a parameter A of a model, some specific values have unstable solutions
that ‘resonate’.

5. (a) » Translations, ‘rotations’ (in the sense of multiplication by ¢'?) and scaling

of T have corresponding actions on its spectrum:

o(T+z2)=0(T)+z, oT)=zo(T),

since (T4+z)—A=T—-M—-2),s0re€0(T+7) & A—z¢eo(T);for
72#0,zT)—A2=2z(T —A/z),s0r€0(zT) & A/z€o(T).

(b) If T is invertible, then o(T~!) = o(T)™! := {17! : XA € o(T)}, since
Tl a=-AT T =21, s0rec(T™YH & 27! € o(T) (note that
A #0).

(¢) The matrices S := (§ }) and T := (0 J) show that there is no simple relation
between o (S + T) or 6(ST) and ¢ (S) and o (T) in general.

6. (@) o(ST) =o(TS)U{0} OR 0 (ST) = o (T S){0}.

(b) In particular, ¢ (S™'TS) = o (T).

Proof: (a) For A # 0 and ST — A invertible, (TS —A) = —A~ (1 —=1"1TS) "I =

AN (T (ST — 1)~1S — 1), using Woodbury’s formula. Thus, o (T'S) € o (ST) U

{0}; indeed, reversing the roles of S and T shows o (T'S) U {0} = o (ST) U {0}.

Application: Quadratic Forms

Extracting the spectrum of matrices features prominently as one of the most useful
applications of mathematics. It is used to find eigenfunctions of partial differential
equations, in pattern recognition, stability analysis, etc.

Quadratic forms are expressions of degree 2 in a number of variables, such as

a dJ2 f/2\ (x
q(x,y,2) = ax* +by* +cz> +dxy+eyz+fax = (xyz2) |d/2 b e2] |y
f/2e/2 ¢ z

They are found in the equations of conics and quadrics, the fundamental forms of
surface geometry, the inertia tensor and stress tensor of mechanics, the integral
forms of number theory, the covariances of statistics, etc. A quadratic form can
always be written as g(x) = x ' Ax, with A a symmetric matrix. We will see later
that when the coefficients are real, such matrices have real eigenvalues, A1, ..., Ay,
and there exists an orthogonal matrix P such that P~YAP = D, where D consists
solely of the eigenvalues on the main diagonal. So the orthogonal transformation
x — ¥ := P~ x gives a simplified but equivalent quadratic form

qx) =xTAx =¥ PTAPE =X DF = M7 + - + 1,52 = §(&).
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These eigenvalues are intrinsic to the quadratic form, in the sense that any
rotation of the variables gives a quadratic form with the same spectrum, and so
represent real information about it rather than about the choice of variables. Not
surprisingly these values were discovered before the connection with linear algebra

LEINT3

became clear, and called by a variety of names such as “principal curvatures”, “prin-
cipal moments”, “principal component variances”, etc., in the different contexts.
For example, a conic that satisfies the equation ax> 4+ bxy + ¢y?> = 1 can also
be represented by the equation Ax% 4+ u3? = 1, where (%, ¥) are obtained by a
rotation/reflection of (x, y). Hence we can conclude that there result four conic
types having this equation, depending on the signs of A, u: ellipses, hyperbolas,

parallel lines, or the empty set.

The Spectral Radius

Determining the exact spectral values of an element is usually a non-trivial problem.
The fundamental theorem for the general case is:

Theorem 14.3

The spectrum of 7 is a non-empty compact subset of C. The largest extent
of o (T), called the spectral radius of T, is

1
max{[A]: & € 0(T)} = p(T) = lim |T"]".

Proof o(T) is compact: If |A| > p(T), then p(T /L) = p(T)/|X| < 1,s0T — A =
—A(1 — T /1) is invertible (Theorem 13.20). Spectral values are therefore bounded
by p(T).

The resolvent set is none other than f_lg(X) where f(z) ;== T — z, and G(X)
is the set of invertible elements of X'. Since G(X) is open in X’ and f is continuous,
it follows that the resolvent is open (Theorem 3.8), and the spectrum is closed in C.
More concretely, if T — A is invertible, and z is close enough to A, then |z — A| =
(T —z) — (T — A)|| implies that T — z is also invertible (Theorem 13.21).

The spectrum o (T'), being a closed and bounded subset of C, is compact
(Corollary 6.20).

o (T) is non-empty: Applying Taylor’s Theorem (13.26), with f(z) := 1, and a
circular path centered at the origin with radius larger than p(T), gives

1
1= —,%(z—T)*ldz.
21
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But the map z > (z—T)~! is analytic on C\o (T) by (13.3). This would contradict
Cauchy’s theorem (Theorem 12.16) were the spectrum empty.

The spectral radius is p(T): Let r, be the largest extent of o (T"), and consider the
function f : z > (z — T)™'; it is analytic on C~o (T, in particular on C~B,, (0).
So it has a Laurent series ), A,z", valid for all |z| > r; (Example 13.30(5)). On
the other hand, we know that

o n

(c—T)"'= %(1 —T/7 =) er_+ for |z| > p(T).
n=0
The two series must be identical, Y 2 A,2" = > 22, T"/z"*!, and
remain valid for all |z| > r,. But the second series diverges when p(T) >
liminf, |z7"|~/* = |z| by the Cauchy-Hadamard theorem, so there can be no
z € Csuchthatr, < |z| < p(T), in other words, r, = p(T). |

This result might appear unexpected because the formula r, (T) = lim,— o || 7" | 1/n
for a matrix 7 seems to relate its eigenvalues, which are determined by a unique
algebraic equation, with the norm, which can be changed. However, p(T') does not
depend on which equivalent norm is used to calculate it, and in finite dimensions,
all norms are equivalent.

Corollary 14.4 (Fundamental Theorem of Algebra)

Every non-constant polynomial in C has a root.

Proof The roots of the polynomial equation z" + a,_1z"~' + -+ + a9 = 0 are
precisely the spectral values of the matrix

Q-cvon- 0 —ap
100 —a
0

0---0'1 —ay_

Examples 14.5

1. The smallest extent of o (T) is p(T~')~! when T is invertible (otherwise it is 0).
Thus the condition r < p(T~1)~! < p(T) < R for a Laurent series expansion
to exist (Theorem 13.28) can be restated as “the spectrum of 7T lies inside the
ring with radii r and R”.

2. » Every Banach division algebra is isomorphic to C (Gelfand-Mazur theorem).
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Proof: A division algebra is defined as one in which the only non-invertible
element is 0. Hence T — A is not invertible precisely when 7' = 1 € C1. But
o (T) is non-empty, so this must be the case for some A.

3. » Every Banach algebra, except C, has non-zero topological divisors of zero.
Proof: Suppose that the only topological divisor of zero is 0. Since the spectrum
o (T) of every T has a non-empty boundary (Proposition 5.4), thereisa T — A
which is a topological divisor of zero, so T' = A € C1.

4. » Every commutative Banach algebra, except C, has non-trivial ideals.
Proof: Suppose the only ideals are {0} and X'. Then the ideal generated by T # 0,
namely AT (in a commutative algebra), must equal X. It follows that ST = 1
for some S € X, and T is invertible. But the only Banach division algebra is C.

5. A morphism J : X — ) may only decrease the spectrum of an element, since
a non-invertible element in X may become invertible in ), but an invertible in
X cannot become non-invertible in ). If J is an embedding, the boundary of the
spectrum in X, consisting of topological divisors of zero, is preserved in ). The
spectrum may decrease but its boundary (and the spectral radius) does not.

6. Recall the commutant algebra ) := A” C X with which the elements of A
commute. By part (c) of Exercise 13.10(14), for any T € ), if T — A is invertible
in X then its inverse is in ), so oy (T) = o (T).

Little else can be said about spectra of general elements of an algebra. The fol-
lowing proposition shows that the spectrum o (7') depends somewhat ‘continuously’
onT:

Proposition 14.6

If 7, — T, then

Ve >0, AN, n>N = o(T;) Co(T)+ Be(0).

Proof Let U be any open subset of C containing o (T), for example o (T') + B¢ (0).
It is claimed that forall z ¢ U, |(T —z)~'|| < ¢. When |z| > r > ||T|,

o T T !
— 71 = P B TP
I =270 =1 2 el < 2 o =y

U

)
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while on the remaining closed and bounded set B, (0)~\U, the continuous function
z+ (T —z)~ " is bounded (Corollary 6.16). If |[T — S| < %, then when z ¢ U,
(T —z2)~"(T — §)|| < 1. This implies that

S—z=T-2)—T =8 =T -2 (T —2) (T - 9))

is invertible (Theorem 13.20). Thus ¢ (S) € U, and we have shown that any open
set that contains o (7') also contains o (S) for S close enough to 7.

For example, if U := o (T')+ B¢ (0) and T}, is close enoughto 7', then o (7},) C U.

O

Exercises 14.7

The spectrum of (z1,...,2,) € C"is {z1, ..., Zn}-

The spectrum of f € C[0, 1]is o (f) = im(f).

Verify directly that for a matrix A with eigenvalue A, A — A is a divisor of zero.
Prove that 0 (T%) = o(T)? = {12 : A € o(T)} as follows, by considering
T2 =3 = (T = M)(T +2):

(a) If A2 ¢ o(T?) then T — A is invertible.
(b) If A ¢ o (T) then T? — A2 is invertible.

Sl S

(We will see later a broad generalization of this (Theorem 14.26)).

5. Show that o (LR) = {1}, but 6 (RL) = {0, 1}, where L and R are the shift
operators.

6. Show that ST —TS =z # 0for S, T € X implies o (ST) is unbounded, which
is impossible. (Hint: A € (T'S) = L +z€0(TS).)

7. The spectrum of (S, T) € X x Yiso(S)Uo(T).

8. fT € B(X)and S € B(Y),letT©S : X xY — X x Y be defined by
TOSKx,y) =((Tx,Sy). Theno(T ©S) =0(T)Uoc(S).

9. If X is a boundary point of the spectrum, then T — X is at the boundary of G(X),
and so is a topological divisor of zero (Proposition 13.23). Moreover, if T —
is invertible, then

T — w7~ > 1/d(w, o (T)).

10. Recall the Hausdorff distance between subsets (Exercise 2.20(10)). Show that
if S — T,thend(c(S),o(T)) — O.
14.2 The Spectrum of an Operator

An operator T on a Banach space X is invertible in B(X) when T has a continuous
linear inverse T~! € B(X). By the open mapping theorem, this is automatically
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true once T is bijective. So an operator T € B(X) is not invertible when one of the
following cases holds:

T not 1-1

T not invertible in B(X)

(¢]

T is 1-1 but not onto

im7T # X

T isnot 1-1 (i.e., ker T # 0). In this case, T is a left divisor of zeroas TS = 0
for any non-zero S € B(X) withim § C kerT.

T is 1-1, but not onto, yet it is “almost” onto, in the sense that its image is dense,
im7 = X. Here, it cannot be the case that ||Tx|| > c|lx| for all x and some
¢ > 0, otherwise im T would be closed (Example 8.16(3)) and 7 onto. This
means that one can decrease |7 x|| but keep || x|| fixed, i.e., there are unit vectors
Xy such that Tx, — 0. By taking any unit operators with im S,, = [[x, ]|, we get
TS, — 0,s0 T is a topological left divisor of zero.

T is 1-1, and its image is not even dense in X. In this case, by Proposition 11.20,
there exists a vector xg and a functional ¢ such that ¢xg # 0 and d)[m] =0.
Then Sx := xo¢ defines a non-zero operator with kernel containing im 7', so
ST =0, and T is a right divisor of zero.

The spectrum of an operator 7 € B(X) thus consists of A in:

the point spectrum o, (7'), when T — A is not 1-1, i.e., Tx = Ax for some x # 0;
we say that A is an eigenvalue and x an eigenvector of A (note that a non-zero
multiple of an eigenvector is another eigenvector, so they are often taken to be of
unit length); the subspace ker(7T — X) of eigenvectors of A (together with the zero
vector) is called its eigenspace.

the continuous spectrum o, (7"), when T — A is 1-1, not onto, but im(7 — 1) =
X.

the residual spectrum o, (7'), when T — A is 1-1, and im(7 — A) # X.

In finite dimensions, a matrix is 1-1 iff it is onto, so only eigenvalues make
up the spectrum. The direct way of finding eigenvalues and their corresponding
eigenvectors is to solve (' — A)x = O0; in finite dimensions, this implies the
‘characteristic’ polynomial equation det(T — A) = 0. What are the additional
‘continuous’ and ‘residual’ spectral values in infinite dimensions? Let us take the
right shift operator to illustrate what can happen:

o = O
—
= o
—_
o

o o
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In the first example, although the vector is not an exact eigenvector of 1, it is
very close to satisfying the equation (A — 1)x ~ 0 (when x is scaled to unit
length). We call such spectral values, approximate eigenvalues, which include
the continuous spectrum. In the second example, although there are no ‘right’-
eigenvectors with eigenvalue 0O, there is a left- or row eigenvector with that
eigenvalue. Such ‘left eigenvalues’ form the residual spectrum, unless they happen
to be ‘right eigenvalues’. The next few propositions prove these assertions.

Proposition 14.8

Eigenvectors of distinct eigenvalues are linearly independent.

Proof Let v; # 0 be eigenvectors associated with the distinct eigenvalues X;, i =
1,2,...,sothat (T — A)v; = (A; — A)v;. The sum > ojv; = 0 implies

0= (T =) (T = hn) ) ativi
i=l

n—1

=(T =22 (T = ho1) Y ai(hi — M)

i=1
= =a1(d —22) - (A1 — AV
forcing o1 = 0. Since the argument can be repeated for any other index i, we have
o; = 0. O
In general, it is a hard task to find the point spectrum of most operators. So any

result that gives us approximate alternatives are welcome.

Proposition 14.9 (Gershgorin’s Theorem)

If T = [T; ;] is an operator on c, then the disks  J,.y B, (T,n), Where
In =2 iy |Tn,j1, cover all the eigenvalues.

Proof Letx = (a;j)jen be an eigenvector of T and let |a, | be its largest coefficient.
Then rearranging Tx = Ax we get

Aap = Z Tn,jaj = Ty nan + Z Tn,jaj,
JjeN J#n

A = Tunllan] <Y 1T jllaj] < ralag-
j#n
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as required. Note that the row sum j ITi, j| converges since the dual space of ¢y is
28 O

Proposition 14.10

If X is a limit of eigenvalues, or is in o.(7T), or is a boundary point of
o (T), then X is an approximate eigenvalue, meaning there are unit vectors
X, such that

(T —AM)x, — 0asn — oo.

Proof 1f 1,, — A and Tx, = A,x, with ||x,|| = 1, then
(T —Nxp =y —Mx, — 0.

A is an approximate eigenvalue exactly when 7' — X is a topological left divisor
of zero, because suppose there are unit operators S, with (T — A)S, — 0. Let x,

be vectors such that [|S,x,|| = 1 and ||x,|| < 2 (possible since S, || = 1); then
(T — A)S,x, — 0, and A is an approximate eigenvalue.
Conversely, given (T — X)x, — 0 with x,, unit vectors, let S, := x,¢ for any

¢ € X* with unit norm. Then ||S,|| = 1 and (T — 1)S,, = (T — A)x,¢ — 0 as
n — o0.

This includes the case when A is at the boundary of o (T) (Proposition 13.23),
and when A € o.(T) as we have just seen at the beginning of this section. O

Examples 14.11

1. » The spectrum of the left-shift operator L(ay,) := (@,+1)neN, on £°° is the unit
closed disk.
Proof: Thenorm of L is 1,s0 0 (L) C m To find its eigenvalues, we need to
solve Lx = Ax for some non-zero x = (a,),eN € £%°, i.e.,

VneN, apy1 =2ra,, |a| <c.

This recurrence relation gives a, = A"ao, satisfying |ag||A|" = |a,| < c¢. Thus
the only possible candidates for eigenvalues are |1| < 1. In fact, for any such A,
the sequence (1, A, A2 .) is an eigenvector in £°°. Hence o (L) = B_C, and all
spectral points are eigenvalues.
2. » The spectrum of the left-shift operator on £! is the unit closed disk.

Proof: The same analysis as in Example 1 applies: p(L) < ||[L|| = 1, and
a, = M'ag. This time, the condition x € ¢! is > lanl = laol X", IA|" < oo. This
is only possible when || < 1. Once again, but only for |A| < 1, the sequence
(1, x, Az .) is an eigenvector in ¢1. Still, since it is closed, bounded by 1,
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and contains Bg, the spectrum must be the closed disk. The spectral values in
the interior are eigenvalues, and those on the circular perimeter are approximate
eigenvalues.

3. Let T : £2 — ¢2 be the multiplier operator T (a,) := (b,a,)neN Where b, are
bounded. Its eigenvalues are b, and its spectrum is {b1, by, .. .}.
Proof: For eigenvalues, T (a,) = (bpan)neN = A(@n)neN, so (b, — A)a, = 0
for all n. This implies A = b, for some n, otherwise (a,),en = 0. In fact,
Te, = byey, so b, is indeed an eigenvalue. Now, suppose A is not a limit point
of {b1, by, ...}; there is then a minimum positive distance between them, i.e.,
A — by| = d > 0. So the equation (T — X)(a,) = (c,) can be inverted, a, =
cn/(by — 1), with |a,| < leal/d; (T — 1)~ < 1/d. The spectrum therefore
must include the eigenvalues and their limit points, but nothing else.

4. Let T : L*°[0, 1] — L°°[0, 1] be defined by Tf(s) := fllﬂ, f(@)dt. Then T is
linear, and continuous with ||T|| < 1 since

1 1

177l = swp | [ g@a] <ifle s [ ar =1l
s€[0,1] 1—s s€l0,1]J1—s

For eigenvalues, we need to solve f 11_5 f(@)dt = Af(s). Differentiating twice
gives f”(s) + %zf(s) = 0 with boundary conditions f(0) = 0 = f’(1). Thus
the eigenvectors (or “eigenfunctions”) are f(¢) = sin(¢/A) with eigenvalues A =
2/km, k odd. The spectrum must also include 0, because it is their limit point,
but at this stage we cannot conclude anything further about the spectrum.
5$IfS: X - Y, T :Y — X are operators, then ST and TS share the same
non-zero eigenvalues.
Proof: If STx = Ax (x # 0),then TS(Tx) = T(ST)x = ATx), so either
Tx = 0, in which case A = 0, or Tx is an eigenvector of TS with the same
eigenvalue A; similarly, every non-zero eigenvalue of 7'S is also an eigenvalue of
ST. (Compare with Example 14.2(6d).)
6. Real eigenvalues of real operators have real eigenvectors.
Proof: If X is a real Banach space, then T € B(X) is not guaranteed to have a
spectral element, but it will have when considered as an operator on the complex
space X + i X. Nevertheless if the eigenvalue is real, with eigenvector u + iv,
then u and v are also eigenvectors (unless 0),

Tw+iv)=Au+iv) = Tu=Aiu, Tv = Iv.

The Spectrum of the Adjoint

Let us prove our previous assertion that the residual spectrum consists of the ‘left
eigenvalues’ of T, that is, the eigenvalues of T'T:
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Proposition 14.12

o(T") = o(T), 0r(T) = (T 7)o p(T), 0e(T") € ae(T)

Proof (i) T — X is invertible in B(X), if and only if, its adjoint is invertible
(Exercise 11.34(7)),

(T =n"'=a-n"".

Sorg¢a(T) & A¢oa(Th).
(ii) By definition, A € 0,(T") when there is a ¢ # 0 in X* such that
po (T —1)=(T"—Np=0.
This implies there is an x € X, ¢x # 0, such that x ¢ im(7 — A). In turn,

if x € X~\im(T — X) exists, then there is a ¢ 7 0 such that ¢(T — 1) = 0
(Proposition 11.20), and we have proved

reo,(TT) & im(T — 1) # X.

This condition is certainly satisfied when A is a residual spectral value of o (T'), but
not when it is in the continuous spectrum of 7', so

rAeo (T) = reap(TT) = A ¢ou(T).

(iii) When AT is 1-1 but im AT = X*, then we can infer, by Proposition 11.32,
that (a) (ker A)X D im AT = X*, so A is 1-1; and (b) (im A)* = ker AT = 0, so
imA = X. Applying thisto A := T — A when A € o.(T"), we find that T — X is
1-1 and has a dense image, that is, A € o.(T). O

Examples 14.13

1. When T"" = T (e.g., on a Hilbert space) then 0, (T ") = 0,(T)~0o,(T ") as well
as 0. (T") = o.(T).
2. In cg or £2, the left-shift and right-shift operators have

op(L)=Bc, or(L)=2, oc(L)=S§,
op(R) =9, o,(R)=Bc, o.(R) =S

Proof: That 0,,(LT) = & has already been shown since L is the right shift on
¢'; in the same way can be proved op(L) = Bc. Applying this proposition, we
find that 0, (L) C 0,(L") = @, leaving o.(L) = S!. Similarly for R, o, (R) C
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op(R") € 0,(R) since 0, (R) = & (prove!), hence 0, (R) = 0,(R") = Bc and
oc(R) =S

. The analogous results for the Hilbert adjoint 7* are similar:'

o(T*) =a(D)*, o, (T*) =0,(T)"o,(T*), 0(T*) =0.(T)*
Proof: Let A := T — A, then A is invertible iff A* is; and ker A* = (im AL, so

A€o (T) = kerA* = (imA): #£0 = X €0,(T"),
A€ o,(T*) = (imA)" =kerA* #0 = A ¢ o.(T).

If » € 0.(T*), thenker A = (imA*)* = 0and im A = (ker A*)+ = 01 = H,
soA € o.(T).

. In finite dimensions, the ‘left eigenvalues’ are the same as the ‘right eigenvalues’

because both A and AT satisfy the same characteristic polynomial equation; but
the ‘left eigenvectors’ are usually different from the ‘right eigenvectors’.

Exercises 14.14

1.

Show that the right-shift operator R (on £ or £!) has no eigenvalues.

2. The right-shift operator R € B(¢Y) and its adjoint L € B(£*°) have spectra

o(L) = 0,(L) = Bc = 0,(R) = o (R).

. The spectrum of the left-shift operator L on £'(Z) is the circle S!. This is an

example of the hollowing out of a spectrum when the algebra increases, in this
case when ¢! is embedded in £1(Z).

The operator T (ag, ay, ...) := (ag,0,ai,az, ...), on cp, has a single eigen-
value 1, but its adjoint has ¢,(T") = Bc U {1}. Deduce that 0,(T) = {1},
o,(T) = Be, and 0.(T) = SI\{1}.

But the same operator on ¢! has a single eigenvalue 1 and no continuous
spectrum.

. The operator T (ag, ay, -..) := (ag, 0, ay,a>/2,a3/3,...), on cp, has a single

eigenvalue 1, and its adjoint has two eigenvalues, 1 and 0.

. The spectrum of the multiplier operator Tx := ax, on £2, has no residual

spectrum.

The spectrum of x¢ € B(X), where x € X and ¢ € X*, consists of the
eigenvalues ¢x and O (unless X is 1-dimensional).

LetT: X — Y,S:Y — X be operators and consider R € B(X x Y) defined
by R(x, y) := (Sy, Tx); the ‘matrix’ form of R looks like (% g) Then non-zero
eigenvalues of R come in pairs +A. (Hint: consider (x, —y).)

1'To avoid ambiguity with the closure F of a set F C C, we use F* to denote the set of conjugate
numbers {Z : z € F }.
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9. LetT : C[0, 1] — C]O, 1] be defined by T f(¢) := ¢f(¢). Show that T is linear
and continuous, find its norm and show that its spectrum is the line [0, 1] in C,
consisting of only the residual part.

More generally the spectrum of 7f := gf in CI[O0, 1], where g € C[0, 1], is
img.
The reader is encouraged to explore the spectrum of this operator in other
spaces, such as L0, 1] or L2[0, 1].

10. Find the eigenvalues of Tf(s) := fol s2t2 f(¢)dr on CJ0, 1].

11. xLet V : C[0, 1] — C[0, 1] be the Volterra operator V f () := fé f. Show
that

t
Vi =+ f (t =9)"f(s)ds,
n: Jo

and that ||V"|| < 1/n!. Deduce, using the spectral radius formula, that its
spectrum is just {0}. Show that O is not an eigenvalue (hint: differentiate) but a
residual boundary spectral value.

12. The spectrum of an isometry T lies in Bc. Any eigenvalues or approximate
eigenvalues lie in 'R If T is an invertible isometry, then o (T") C eiR, otherwise
the spectrum must be the whole closed unit disk (e.g., the right-shift operator).
Hint: T — A =T(1 - 19).)

13. Show that the set {7 € B(X) : T is 1-1 and has a closed image } is open in
B(X). (Hint: Proposition 11.3.)

14.3 Spectra of Compact Operators

Ascents and Descents

For any operator, the eigenspace associated with an eigenvalue X is ker(T — A).
But this is not the whole story: for example, 7 := () has just one eigenvalue,
and a one-dimensional eigenspace generated by (}); the vector v := (?) is mapped
by T to (}), and only a second application of T kills it off. We can think of it as
a “generalized” eigenvector, with (T — A)?>v = 0. In general, one can consider
the spaces of vectors that vanish when (7 — A)" is applied to them. Two nested

sequences of spaces can be formed (here shown for A = 0),

* an ascending sequence

0CkerT CkerT>?C .- CkerT"C ... C UkerT”,
n
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* adescending sequence

XgingimT22---QimT"2---gﬂimT”.
n

As usual whenever we are dealing with infinite processes, it would be interesting to
study operators with finite ascents or descents.
Suppose there is an n such that ker 7" = ker T+ je., forall x,

T'x =0 < T"'x =0.
Substituting T x instead of x gives
T"x =0 T"2x =0

and ker "% = ker T"*! = ker T". By induction, all the subsequent spaces in the
ascending sequence are identical, ker 7" = ker T". Operators with this property
are said to have a finite ascent upton,0 C kerT C --- C ker T".

Similarly, if im 7" = im 7" *! then for any x € im 7"+,

x=T"ty =T(@"y) =TT 'z) = 7"z € im T" 2.

By induction, im 7% = im 7", Operators with this property are said to have a
finite descent down to m.

Proposition 14.15

An operator 7 has

(i) finite ascent up to at mostn < Vk € N, im 7" N ker Tk =0,
(i) finite descent down to at most m < Vk € N, X = ker 7™ + im T* y
(iii) finite ascent up to » and descent down to m implies m = n and

X=kerT"®imT".

Proof (i) Let T have finite ascent and let x € im 7" N ker T*, thatis, x = T"y and
T*x = 0. Then T"*tky = 0 and y € ker 7"tk = ker T"; so x = T"y = 0. For the
converse, if im7” NkerT = 0, then T"tlx =0 = T"x € imT" NkerT = 0,
and T has finite ascent up to at most n.

(ii) Let x € X, then T"x = T™*!y = ... = ™%z assuming finite descent to m.
So T™(x — T¥z) = 0and x = T*z 4+ (x — T*z) € im T* + ker T™. Conversely,
if X = imT + ker 7™, then for any x = Ty + z, we have T"x = Tty and
im7" =im 7"+,
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(iii) Suppose im T" = im T"*!, but ker 7" C ker T"*!. Then there is an x1 such
that 7" x; = 0 but

O 7& Tn.x1 — TH+IX2 — Tn+2x3 — ...

so x; € ker T ker T"*~1 and T has an infinite ascent. This shows that a finite
ascent cannot be longer than the descent.

Next suppose the ascent goes up to ker 7 = ker 7" ! but the descent goes down
toim 7™ = im T™ %! with m > n. Then for any x € X, there is a y such that

T"x =T"Tly = T"(x —Ty) =0
= x—TyekerT" =kerT"

= Tnx — Tl’l+1y

so a finite descent cannot be longer than the ascent.
Combining the results of (i) and (ii) gives X = ker 7" @& im T". O

Proposition 14.16 (Fredholm Alternative)

A Fredholm operator 7 with

(i) finite ascent, satisfies index(7) < 0,
(i) finite descent, satisfies index(7") > 0,
(iii) finite ascent and descent, satisfies index(7) = 0 and

T is1-1 < T is onto.

Ivar Fredholm(1866-1927) Fredholm studied p.d.e.s
under Mittag-Leffler in 1893 at the new Univer-
sity of Stockholm; he saw the connection between
Volterra’s equation and potential theory, especially in
1899 while working on Dirichlet’s problem; in 1903
he analyzed the theory of general integral equations
fx) — Afabk(x, y)f(y)dy = g(x) covering much
that was then known about boundary value problems
(mostly self-adjoint), proved the Fredholm alternative
and defined the Fredholm determinant det(l — K) =
e~ Ln 7 "K" He was then “distracted’ by actuarial sci-
ence and government.
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Proof Recall that the codimension of a closed subspace ¥ < X is defined
as dim(X/Y), that Fredholm operators have finite-dimensional kernels and finite
codimensional images, and index (7)) = dimker 7 — codimim 7' (Definition 11.12).
For T with finite ascent to n, by the index theorem,

0 < codimim T¥ = dimker T — index(T*%)

= dimker T" — kindex(T), fork > n.

Since k can be arbitrarily large, it must be the case that index(7") < 0.
For Fredholm operators with finite descent to m,

0 < dimker 7% = codimim T* + index(T*%)

= codimim T™ + kindex(T), fork > m.

This time, we must have index(7") > 0.

A special case is when m = n = 0, known as the Fredholm alternative: ker T =
0if, and only if, im T = X, i.e., T is 1-1 < T is onto; in other words, T is either
invertible or it is neither 1-1 nor onto. m|

Examples 14.17

1. The spaces M := im 7™ and N := ker T" are both T-invariant and such that
T | is an isomorphism while 7’|y is nilpotent.

2. For matrices, the Fredholm alternative boils down to the statement that either
Ax = b has a unique solution or Ax = 0 has non-trivial solutions.

3. The Fredholm alternative only applies to (Fredholm) operators with finite ascent
and descent; e.g., the right-shift operator is 1-1 but not onto.

4. If T is Fredholm with finite ascent and descent, then dimker T = dimker T "
(Exercise 11.34(10)).

The Spectrum of a Compact Operator

The spectra of operators are usually hard to determine, with those of compact
operators often being the most tractable. The following two results are peaks in
the landscape of Operator Theory.

Proposition 14.18

Let T : X — X be compact on a Banach space X, then /47 is a Fredholm
operator with finite ascent and descent.
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Proof I + T is Fredholm by Proposition 11.15.
Suppose S := I + T has infinite ascent, so ker "' C ker §”. By Riesz’s lemma
(Proposition 8.22), choose unit vectors x, € ker S” with |x, + ker st > %

Then form < n,
ITx0 — Txmll = 1Gon — Xm) — SCon — xm) || = 3

since S"’l(xm + S(xp — xm)) = 0. So (Tx,),eN has no Cauchy subsequence,
contradicting the compactness of 7.

Suppose S has infinite descent, with im §”~! > im §". One can choose unit
vectors x,, € im S with ||x, 4+ im $" 1| > % Then for m > n,

T = Txpll = [ Gtn = Xm) — SCtw — x| > 3

since x,, + S(x, — x,,) € im §**1. Again this would contradict the hypothesis. O

It follows from the propositions and examples above, that the index of S vanishes
and dimker(S") = dimker S.

Theorem 14.19 (Riesz-Schauder)

If T € B(X) is compact, then

(i) its spectrum o (7) is a countable set, whose only possible limit point
may be 0,
(i) each non-zero A € o(T) is an eigenvalue with a finite-dimensional
eigenspace ker(7 — 1),
(iii) 7T and 7 have the same non-zero eigenvalues and eigenspace
dimensions.

Proof For . # 0, T —A = A(I —T/X) is a Fredholm operator with finite ascent and
descent, so its kernel is finite dimensional and it satisfies the Fredholm alternative,
namely it is either invertible (A ¢ o (T")) or not 1-1 (A is an eigenvalue). T — A has
index 0, so T has the same number of eigenvectors of A as T,

dimker(T" — 1) = dimim(7T — )\)J‘ = codimim(7T — A) = dimker(T — A).

Consider those eigenvalues A for which |A| > € > 0. Taking any list of them, 1,
(distinct), choose a unit eigenvector e, for each, such that ||e, + [le1, ..., en,—1 1| =
% (Propositions 8.22 and 14.8). Hence, taking n > m, say,

A 1
Te, — Tenll = llAnen — Amemll = |Anlllen — )L_mem” = §|)\n| >
n

SN
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Now the bounded set {ej,es,...} is mapped to {Tey, Tez,...}. If the first
set is infinite, the latter set would have no Cauchy subsequence, contradicting
the compactness of 7. So the number of such eigenvectors, and corresponding
eigenvalues, is finite. The rest of the eigenvalues must be within € of 0. By taking
€ = 1/n — 0, it follows that the number of non-zero eigenvalues is countable. O

To clarify, in finite dimensions, the set of eigenvalues is finite and need not include
0, but in infinite dimensions, 0 must be part of the spectrum (else I = T~!T is
compact). If there is an infinite sequence of non-zero eigenvalues, then A, — 0, and
0 is an approximate eigenvalue. What remains to complete the theory is to find the
form of T on each generalized eigenspace.

Proposition 14.20 (Jordan Canonical Form)

On each finite-dimensional space ker(7 — A)" (A # 0) of a compact
operator 7 on a Banach space X, there is a matrix of 7' consisting of
blocks on the main diagonal, each of the type

00

Proof The operator T can be split as A + (T — 1A). The latter is nilpotent on the
subspace ker(7 — 1)" (finite dimensional since (T — A)" is Fredholm), while A1 is
diagonal. This is the claimed Jordan form, once it is shown that a nilpotent operator
has the following form.

A nilpotent operator of index n on an n-dimensional space can be represented by a
matrix of Os except for Is and Os in the super-diagonal: Suppose A is a nilpotent
operator of index n, A" = 0; it has a descending sequence down to n, and an
ascending sequence up ton, 0 C ker A C --- C ker A”. For each non-zero vector
A" 1y € im A" ! there is a sequence of vectors e = A"y, ey = A2y
en := u. They are linearly independent because ¢; € ker A’ ker A’"!, so to have
em € et ..., em—1] C ker A" 1 is impossible. Since Ae; = e;_1 and Ae; = 0,
the matrix of A restricted to the space generated by these vectors is
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A remains nilpotent on the rest of the space ker A" /[[eq, .. ., e, ], with perhaps a
lower index. The same argument can be repeated to yield other sets of independent
vectors. As X = ker A" is finite-dimensional, this process ends with a finite basis
for X and the matrix of A with respect to it consists of such blocks placed on the
diagonal. O

Examples 14.21

1. The total number of As in a Jordan matrix, called its algebraic multiplicity, is
the dimension of ker(7 — X)", the largest generalized eigenspace of A. The
number of Jordan blocks associated with A is dim ker(7 —A), called the geometric
multiplicity of A. The size of the largest Jordan block is sometimes called its
(Jordan) index. For example, the matrix below has an eigenvalue 2 with algebraic
multiplicity 4, geometric multiplicity 2, and index 3; the other eigenvalue 3 has
algebraic multiplicity 2, geometric multiplicity 1, and index 2.

2
21
21
2
31
3
2. Using the appropriate basis on each eigenspace, E"!TE = J; rewritten as

T E = EJ, this shows exactly which vectors are the eigenvectors and generalized
eigenvectors of 7'. Written as E —I7 = JE~!, this shows which rows are the left
eigenvectors of T'.

3. The set of n x n matrices with distinct eigenvalues is dense and open in B(C").
Proof: Suppose a matrix A has the Jordan-form matrix A = D + C where
D is diagonal with the eigenvalues Ay, ..., A, and C is nilpotent. Alter each
eigenvalue slightly so A are all distinct and let A" := D" 4 C; then ||A" — A|| =
D" — D|| = max; |A] — A;| < €.

Because of this, the Jordan canonical form of a numerical matrix is impossible
to calculate, due to the limited accuracy of the matrix coefficients; small changes
in the coefficients result in a diagonal Jordan matrix with distinct eigenvalues.

Exercises 14.22
In these exercises, let K be a compact operator on a Banach space X.

1. When T is 1-1, the ascending sequence of spaces are all 0.
When T is onto, the descending sequence of spaces are all X.

2. For the matrix (8 (l)), the ascending and descending sequences are the same.

3. The left-shift operator L is onto and has an infinite ascending sequence; its
adjoint R is 1-1 and has an infinite descending sequence.
The operator f(t) — tf(t) acting on C[0, 1], is 1-1, and also has an infinite
descending sequence, e.g., each of the functions 1,1, 2, ... belongs to a
different image space.

4. If T has a finite descent then 7" has a finite ascent, of the same order.
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(a) Suppose that ker 7" C im T for some n. Show that Tx = 0 = x = Tz
o)

ker 7" ' <imT2,... kerT CimT".

(b) Suppose ker T C im T” for some n, then x € kerT> = x — Ty € ker T
for some y, so

kerT?> CimT""!,... kerT" CimT.

There is an eigenvalue at the spectral radius of a compact operator, except
possibly when it is 0.

In €', the multiplier map M (a,) = (cnan)nen is compact when ¢, — O0;
its eigenvalues are c,. 0 is part of the continuous spectrum, unless it is an
eigenvalue.

For example, take ¢, := 1/n (and ¢ := 1), and the shift operators L and R;
then M L is also compact but has no eigenvalues except 0; RM is compact with
no eigenvalues at all but 0 is part of the residual spectrum.

The original Fredholm alternative: For A # 0, either (K —A)x = y has a unique
solution for each y or K"y = Ay has a non-trivial solution.

The minimal polynomial of each Jordan block is (z — 1)".

. Cayley-Hamilton theorem: If p is the characteristic polynomial of a matrix 7,

then p(7) = 0. (Hint: Consider the characteristic polynomial of each Jordan
block.)

.4 The Functional Calculus

The previous definition of f(7) in Taylor’s theorem can be extended to functions

tha

t are analytic on the spectrum of T, since, by Cauchy’s theorem, the path of

integration can be swept over analytic regions of f and (z — 7).

Definition 14.23

For any function f : C — C which is analytic in a neighborhood of o (T'), let

1
f(T) = o— ff(z)(z —-7) !4,
Tl

where the path of integration is taken along simple closed curves enclosing
o (T) in a direction which keeps o (T') to its left.
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Note that the integral is defined since f(z) and ||(z — 7)~!| are continuous in z on
the selected compact path; hence

1
(DI < E/ If @Iz = T)" [l ds < oo.

Examples 14.24
1.» If TS = SR then f(T)S = Sf(R) when f is analytic on a neighborhood of
o(T)Uo (R), since
Sz—=R)=z-T)S
L @=-T)7'S=85¢C-R)!

SIS = f f@)(z—T)"'sdz = % f(@)S(z — R)"1dz = Sf(R).

In particular

(@) f(ST'TS) = S~!£(T)S; for example, &5 ' 75 = §~17s.
(b) ST = TS implies f(T)S = Sf(T) and f(T)g(S) = g(S) f(T).

2. If f € C?®(o(T)) is zero on o (T), it does not follow that f(7T) = 0, because
f(T) is defined in terms of a path-integral just outside o (T'). For example, T :=
(8 (1)) has o (T) = {0}, and f(z) := z vanishes there, yet f(T) =T # 0.

3. x f is differentiable (and continuous) at 7': for H sufficiently small, f(T + H)
is defined since o (T + H) € o(T) + B(0) (Proposition 14.6), and

f(T +H)= f(T)+ 2% f fw)(w—T)""Hw —T)""dw + o(H).

The next theorem proves that all algebraic properties of a complex function are
mirrored by properties of f(T).

Theorem 14.25 (The Functional Calculus)

Given T € X, themap f — f(T),C®(o(T)) — X, satisfies

(f +)(T) = f(T)+g(T), GKf)T)=xrf(T),
(fe)T) = f(T)g(T), WT)=1,
fog(l) = f(gT),
fu— finC(o(T) + Be(0)) (3 > 0) = f,(T) — f(T)in X.
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Proof We have already seen part of this theorem in action for power series. In
particular, the cases 1 = f(z — T ldzand 77! = 2m fz_l(z - T)ldzg

- 2711

were covered (Example 13.30(2)).

1) (f +r¢)(T) = f(T) + Ag(T) expresses the linearity property of the integral.
@11) (fg)(T) = f(T)g(T): We require the identity

C-we-T"'w-N"=w-7"-c-1""
which follows easily from z — w = (z — T) — (w — T). In the following analysis,

consider two paths around o (T'), one (with variable z) nested inside another (with
variable w).

1
ﬂnﬂnz—fjfff@gM@—n*m—TVme
2mi)

w-7" =1
(2 l)z%ff(z)g(w)< _— + — )dzdw

= _. f gw)(w — T)_l—. % f()(z— w)_l dz dw

+—y§f(2)(Z—T) ! %g(w)(u}—z) ldwdz

=—fff@@—Tr%&mL
2mi

= (fe)(T)
where we have changed the order of integration in the third line, and used the fact
that (w — z)~! leaves a residue when integrated on the outer path, but not when
integrated on the inner path (because the singularity at w would then be outside the

path of integration).
In particular, note that if f is invertible on a neighborhood of o (T'),

1
f( "= 7 7{ f@ ' z-T)"dz. (14.1)

1
(i) f(g(T)) := i f f(@)(z— g(T))_1 dz, where the right part of the integrand
i

is (z — g(T))~! = 2—71” f(z — gw))""(w — T)~ ' dw by (14.1). Combining the
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two and using Cauchy’s integral formula (Proposition 12.19), we get
f(T) = W f y{ f@@E—gw) ™ w—T1)"dwdz,

(27-[ )2 fﬁf&)(z —gw)'dz (w—T7)""dw,

=— f fogw)(w—1)""dw,
2mi
= fog(T).

Note that f has to be analytic on o (g(T)) and g[o (T)] for f(g(T)) and f o g(T)
to be defined, but the two sets are equal by the next theorem (which only uses part
(i) of this theorem).

(iv) The mapping is continuous, since ||(z — 7)™ !|| is bounded by some constant ¢
on the compact path enclosing the open set U := o (T) + B.(0):

1
ILF(T) = gD < Eyg @) = g@lIG—T)" | ds

<clf = gllew-

Theorem 14.26 (Spectral Mapping Theorem)

The spectrum of f(7) is equal to the set { f (1) : L € o(T) }, that is,

o(f(T)) = flo(T)]

Proof For any f analytic in a neighborhood of o (T):

DA ¢ flo(T)] = L2 ¢o(f(T)):Leth # f(z)forall z € o(T);since flo(T)]is
a closed set, there is a minimum distance between A and f[o (T)]. So (f(z) — A)~!
is analytic on o (T) + B(0) if € is small enough, and by the functional calculus
(f(T) — 1)~ ! exists. Thus f(T) — A is invertible.

(i) f(T) — f (X)) invertible = T — X invertible: if f(T) — f(A) has an inverse S,
we see from rewriting f(z) — f () = (z — A) F(z), and the functional calculus, that

(T —W)F(T)S = 1= SF(T)(T — )
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which implies that the factor 7 — A itself is invertible. This is justified once it is
shown that F(z) is analytic about o (T'); this is apparent when z # A, but even so,

f@Q=FfR)+ M@=+ 1 0)E@ =1 +0(z -1,

—f
= F(2) = % = ')+ 5700 — 1) + oz — 1),
meaning F is analytic at A. O

Examples 14.27

1. log T can be defined whenever there is a path, or “branch”, connecting 0 to co
without meeting o (T'), because in this case, log z can be defined and is analytic
on o (7). But note that logz, and consequently log 7', depends on the actual
branch used. Examples include, of course, invertible n x n complex matrices.
When defined, ¢'°¢7 = T. Such elements must be in G; (Proposition 13.24).

2. Similarly one can define 7% := ¢?!°¢7 (again not uniquely); then (T'/")" = T
(n=1,2,...),and T?t? = T¢T? (atleast for a, b real). By the spectral mapping
theorem, p(T%) = p(T)* fora > 0.

3. If T satisfies a polynomial p(7T) = 0, then o(T') consists of the roots of the

minimal polynomial of 7 (Example 13.3(13)).
Proof: The spectral theorem shows that p[o(T)] = 0, i.e., that the spectrum
consists of roots of p. Conversely, if A is a root of the minimal polynomial,
p(A) = 0, then p(z) = (z —1)"q(2), 300 = p(T) = (T — 1)"q(T), where
q(T) # 0 and thus T — A is not invertible.

4. » If X is an eigenvalue of T € B(X) then f(}) is an eigenvalue of f(7T), with
the same eigenvector.

Proof: When Tx = Ax,then (z—T)x = (z—X)x and (z — T)_lx =(z—M"1x
(z ¢ o(T)), s0

f(Mx = L 7{ f@GE—-T)"xdz = L y{ f@@z—2""xdz= fFx.
2mi 2mi

Conversely suppose f(7) — f(}) is not 1-1. Take an open neighborhood U D
o (T) in which f is analytic. Then, either f is constant on U, or else there are
only a finite number of A; € o(7T) satisfying f(A;) = f(A). So, for z € U,
f(@—fA) = (@Z—Xr1) - (z—Xrr)g(2) (where multiple roots are repeated) with
g analytic and non-zero on U, and consequently

JT) = fQ) =T =) (T = a)g(T).

But f(T) — f(A) is not 1-1, so there must be a A; such that T — A; is not 1-1
(g(T) is invertible), and f(A;) = f(X).
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Proposition 14.28

If o (T') disconnects into two closed sets o1 Uoy, each surrounded by simple
closed paths in open neighborhoods of them, then

1) T = TP, + TP, with Py, P, (called spectral idempotents) such that
1 = P+ P, P;P; = §;j,
(i) In the reduced algebras P; X P;, P, X P, respectively,

o(TP) =01, o(Th)=os.

Proof The disjoint closed sets o1 and o7 can be separated by disjoint open sets U1,
U, (Exercise 5.8(5)). Consider the functions x; (i = 1, 2) which take the constant
value 1 on one open set U; D o;, and 0 on the other. They are analytic on Uy U Uy,
so we can define

1 _
Pri= xi(T) = 5 f (c—T)"dz.
i J,

The path of integration is the union of the two paths surrounding o and o7, but one
of the two integrals vanishes.

P; are idempotents, P P, = 0, and P; + P, = 1, because X,.z =xi, x1x2=0
and 1+ xo=1on U UU; D a(T).

Let fi(2) = zxi(2); then fi(T) = T P; and o (fi(T)) = filo(T)] = o; U {0}.
However, if we restrict to the reduced algebra P; X P;, with unity P;, this changes
slightly. Since z — A is invertible in C®(o;) if, and only if, A ¢ o;, it follows that
there exists an S such that S(T — A)P; = P; = (T — A)S P; whenever A ¢ o;; this
means that (7T — 1) P; is invertible in P; X’ P;. Thus, o (T P;) = o; in this algebra. O

Examples 14.29

1. » When the algebra is B(X), P; are projections, and the spectral decomposition
of an operator T into T P; and T P, also gives a decomposition of X = X1 & X
where X; = im P; are T-invariant, and o (T'|x;) = o;. (Proposition 11.5)

2. If 0 is an isolated point of ¢ (T'), with spectral idempotent P, then there is a
Laurent expansion

-T)'P=Pz ' +TP; 24+ TPz 3 +....

3.1f0 ¢ oy, then P =T (% f{k} (1_?71 dz). For example, when T is a compact
operator and A # 0 is an isolated point of o (7T'), then the projection P, is also
compact, confirming that the eigenspace of X is finite-dimensional.



370 14 Spectral Theory

Exercises 14.30

1.

2.
3.

The non-trivial idempotents have spectrum {0, 1}, and the nilpotents have
spectrum {0}. What can the spectrum of a cyclic element be?

If f takes the value O inside o (T') then f(T) is not invertible.

Use the spectral mapping theorem to show that if e/ = 1 then o (T) C 27iZ. If
P is an idempotent, then "' ¥ = 1.

. If J is a Banach algebra morphism, then f(J(T)) = J(f(T)) (recallo (J(T)) <

o (T)).

. Show directly that the matrix (§ }) has no square root at all.

The shift operators on £2, say, cannot have a square root because their spectrum
encloses 0 (even on £'(Z) when L and R are invertible). Prove this directly by
showing the contradictions

(a) if T? = L, then T must be onto and ker T = ker L = [[eg]], s0 eo = aT ey =
0;

(b) if T2 = R, then T is 1-1, and im7 = imR, so TRx = RTx =
0,0, by, ...).

. A simple linear electronic circuit with feedback can be modeled as an operator,

transforming an input signal x = (x,),eN to an output signal y = (y,,)nen Such
that

Yo =bxy —aryp—1— - —aryn—r,
where b, a; are parameters determined by the circuit. Equivalently,
(14+aR+---+aR")y = bx,

where R is the right-shift operator. To avoid the once-familiar feedback loop
instability, it is desired that the values y, do not grow of their own accord,
meaning that 1 + a;R + --- + a,R" has a continuous inverse. This is the case
when the roots of the polynomial 1 +ajz+- - - +a,z" all have magnitude greater
than 1.

14.5 The Gelfand Transform

Quasinilpotents and the Radical

How much can an operator T be modified and still retain the same spectrum? That is,
whenis o (T+ Q) = o (T)?If this is to hold for all 7', including invertible ones, then
I + T~'Q would need to be invertible for all such 7', thus p(T~'Q) =0 = p(Q).
The next definition explores these ideas.
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Definition 14.31

The quasinilpotents are those elements Q € X with p(Q) = 0.
The (Jacobson) radical of X is

radX :={QeX : VT e X, p(TQ)=0}.

A Banach algebra with a trivial radical is called semi-primitive or [J-semi-
simple.

The next proposition shows that the radical is a closed ideal, which can be
factored out to leave a semi-primitive Banach algebra.

Examples 14.32

1. The prime examples of quasinilpotents are the nilpotents, defined as those
elements which satisfy Q" = 0 for some n, so p(Q) < o™/ = o; e.g.,
01
I(S()u?)the right/left shift operators are not quasinilpotent, even though their matrices
resemble nilpotent ones.

2. Every operator Tf(s) := fos k(s,t) f(t)dy on C[O, 1], where k € L*°[0, 172, is
a quasinilpotent.
Proof: |Tf(s)| < fos lk(s, D f@)|dr < k|l flls. By induction one can
conclude [T" f(s)| < Ikl [l flls"/n!,

o= | [Crsorroa

S

<f &N £ 112" /nt de
0

< kYA 1Is" /(4 1!

so [Tl < [Ik[|"/ntand p(T) < IT*IV" < |[k||/¥/n! — 0.

3. The sum and product of quasinilpotents need not be quasinilpotents, e.g., (8 (1))
and (7).

4. The quasinilpotents are topological divisors of zero since their spectrum is
a boundary point. Idempotents (except O and 1) are divisors of zero but not
quasinilpotents.
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uasi- .
4 nilpotents

nilpotents

topological divisors of zero

S.»Forany T e X, Q erad X,o0(T + Q) = o(T).
Proof: For any invertible S, the sum S + Q = S(1 + S~!Q) is also invertible,
since ,o(S_l Q) = 0 (Theorem 13.20). Thus

L¢o(T+Q) & T+ Q—Xrisinvertible < T —Aisinvertible < A ¢ o(T).

6. Radical elements are obviously quasinilpotents, p(Q) = p(1Q) = 0.

7. It is enough to show that 1 ¢ o (T Q) for all T, in order that Q € rad X.
Proof:Forany A £ 0,1 ¢ o(TQ/A) =a(TQ)/} = L ¢ o(TQ).

8. B(X) has nilpotents (except for X = C) but only a trivial radical.
Proof: For any Q # 0, an operator T can be found such that 1 — 7' Q is non-
invertible, so 1 € o (7T Q). One such operator is T := x¢, where Ox # 0,
peX* dpOx=1;then (1 —TQ)x =x —x¢pQOx = 0but x # 0.

Proposition 14.33

The radical is a closed ideal.

Proof The radical is contained in every maximal left-ideal: Recall that a maximal
left-ideal is closed and that every proper left-ideal can be enlarged to a maximal
left-ideal (Example 13.5(7,8)). Let Q € rad X, and let M be a maximal left-ideal.
Then M + X Q is a left-ideal which contains M. Either

(@ M+ XQ = X,inwhichcase ] = R+ TQ forsome R € M, T € X, so that
R =1 — T Q is invertible, contradicting R € M (Example 13.5(5)); or else,
b) M+ XQ =M, inwhichcase Q =0+ 1Q € M.

Thus rad X € M as required; an analogous argument shows that rad X" is contained
in every maximal right-ideal.

The radical is the intersection of the maximal left-ideals: Let P be an element that
is contained in every maximal left-ideal. For any T € &, the left-ideal X' (1 — T P)
cannot be proper, otherwise it would lie inside some maximal left-ideal M, forcing
PeM,andTP e M,andsol1 =TP + (1 — TP) € M, acontradiction. Hence
X(1 — TP) =X, and there is an S such that S(1 — T P) = 1.

To show 1 — T P is invertible we need to prove (1 — T P)S = 1 as well. To this
end one can substitute —S7 for T in the above argument, to conclude that there is
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an R € X such that
1=R(1+STP)=R(S+1-S(1—-TP))=RS.

ButRS=1=S8(1—TP)impliesl — TP = S~ is invertible. With 1 ¢ o(TP)
for any 7', P must be in the radical.

The radical is a closed ideal: Being the intersection of closed sets, rad X’ is also
closed (Proposition 2.18). Forany S, T € X and Q, Q' € rad X,

@ p(STQ)=0=p(SQT),s0TQ, QT €rad X,

(b) o(T(Q + Q")) = o(T Q) = {0} from Example 5 above (T Q' € rad X), so
O+ Q' crad X,

©) p(T(AQ)) =rp(TQ)=0,50A0 €rad X,

and rad X is an ideal. O

The State Space

The spectrum of an element 7 € X is a subset that gives us important information
about 7. However, it is not well behaved under addition or multiplication of
elements. There exists a set that contains the spectrum which is much better
behaved. Consider a functional ¢ on X', then ¢ (T — A) = ¢ (T) — X if we insist that
¢ (1) = 1; moreover, as it turns out, ¢ maps non-invertible elements to 0, and thus
A =¢(T) for A € o(T), if we restrict the functionals to the following definition:

Definition 14.34

The state space of a Banach algebra X’ is the set of functionals

SWX)={peX*: 9l =1=¢l}

We often write S for S(X) and S(T) := {¢T € C : ¢ € S(X)}, for example,
S(1) = {1}.

Proposition 14.35

The state space S(X) is a convex set containing the character space A(X).
For any T € X, S(T) is a compact convex subset of C, and

A(T) S o(T) € S(T).

Moreover, S(T1+ T2) € S(Th) +S8(T2), SAT) = AS(T).
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Proof (i) S(X) and S(T) are convex: For ¢, ¥ € Sand 0 <t < 1,

(tp+(1—0Y)l=t+1—1t=1, and
ltg + (A =¥l <tlloll + A =Dyl = 1.

It follows from t¢T + (1 — )Y T = (t¢p+ (1 —t)yY)T € S(T) that S(T') is convex.

S(T) is compact: S(T) is bounded since [¢pT| < ||[T]| for any ¢ € S. Now
recall that every bounded sequence in X* has a weak*-convergent subsequence
(Theorem 11.42 for X separable). So whenever ¢,7 € S(T) converges to a
limit point z, there is a subsequence of ¢, that converges in the weak* sense,
¢n; — ¢ € X'*, implying

@ ¢n, T — ¢T =zand 1 = ¢,;1 — ¢1,

(b) ll¢ll < liminf; ||¢y, || = 1 (Corollary 11.37).

Hence ¢ € S and z € S(T), that is, S(T) is closed and bounded.

(i) o(T) € S(T): If R € X is not invertible, then 1 ¢ [R]]; indeed d(1, [R]) =
1 as [R] contains no invertible elements (Theorem 13.20). So by the Hahn-
Banach theorem, there is a ¢ € X™* satisfying ¢1 = 1 = |¢| and pR = 0
(Proposition 11.20). In particular, for R = T — A, where . € o(T), there is a
¢ € S such that

0=¢(T —2) =¢T — 4,

soA = ¢T € S(T).

(iii)) A(T) <€ o(T): Recall that any character ¥ € A maps invertible elements
to invertible complex numbers (Example 13.7(1)), including ¢v1 = 1. So for any
Ago(T),yT — A =vY(T —X) #0,and A ¢ A(T). Equivalently, A(T) C o(T)
and |[YT| < p(T) < ||T|l. This means that ¥ is automatically continuous with
Il =1,and so A C S.

(iv) For any ¢ € S,

(T + 1) =¢(T1) +d(T2) € S(T1) + S(T),
dOT) = ApT = S(AT) = AS(T).

Examples 14.36

1. » The state space of ¢! consists of bounded sequences with by = 1, |b,| < 1.
The characters of £! are of the type (") en, for some |z] < 1.
Proof: Let ¢ € S(¢') C ¢ = ¢> (Proposition 9.6); then ¢ ~ (b,)nen and
the requirements ¢1 = 1 = ||¢|| become by = 1, |b,| < 1. In particular for any
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Y € A, and any x AR

00 00
x = (ap,ay,...) = E anpen = E ap(e| *---xey),
—
n=0 n=0 n

LUx =Y anpler s xe) =Y =) (@), (= e,

n=0 n=0

where the multiplicative property vy (ej * - - - x e1) = (¥eq)" is used.

2. The characters of £ (Z) are g ~ (¢/"),cz.
The proof is the same as above except szll < 1 holds additionally, that is,
z=¢% ¢S! forsome 0 < 6 < 27.

3. For L1(S1), the characters are v, (f) = f()z” e £(9)do, (n € 7).
Proof: Let ¢ € A € L'(SH* = L>®@S"), so v(f) = 02” h(0) f(8) do for
some h € L>®(S"). Recall that L' (A) does not contain a unity for convolution
(Example 13.3(5)); nevertheless, one can be added artificially, so A exists and its
characters act on L' (A). Again we require

@ L= ¥l =hlp=,so|h(@)] < 1 for almost all 0;
(b) ¥v(f xg) =¥ (f)¥(g),orequivalently,

2 27 27 27
/0 no) [ 10— memanas = fo 1) £(0) d /O h(mg () dn.

This implies that 2(6 + n) = h(0)h(n) a.e.; we’ve met this identity before in
our preliminary discussion on the exponential function in Sect. 13.2, where we
concluded that #(9) = h(1)? = %%, assuming & is continuous. That this can be
taken to be the case follows from Corollary 9.31,

|/(h(y+e)—h<y>)f(y)dy| _ I/h(y)(f(y—e)—f(y)) dy
< / 1f( =€) — FO)Idy = 0.

Moreover, h(2r) = h(0) = 1 implies that (1) = " for some n € Z.

4. For L'(R), the characters are Y (f) = [p €' f(1)dt, (£ € R).
Proof:Lety € A € L'(R)* = L®(R); so ¥ (f) = fhf. As before, [h(1)] < 1
for all ¢, while the condition ¥ (f * g) = ¥ (f)¥(g) is equivalent to A(t +
s) = h(t)h(s) a.e., so h(t) = h(1)". To avoid h(t) growing arbitrarily large as
t — 400, |h(1)| mustbe 1, and h(r) = ¢'’%.

5. Repeating for L' (R*), A = {e™¥ : Rez > 0}.
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6. x For C[0,1], A = {8; € C[0, 11* : 8;(f) = f(¢), t € [0,1]} =[O, 1].
Proof: That §; are unit functionals should be obvious. In addition,

8:(fg) = (f&)) = f()g(t) = 5:(f)d:(g), and &;(1) = 1.

Note that for s # t, 8;(f) # 8;(f) for some f € C[O0, 1].
For the converse, let ¢ be a character of C[0, 1]. Define ‘triangle’ functions,
7,.i (x), as in the accompanying plot; note that these functions overlap and sum

n
to 1 everywhere, Y7 7, = 1.

LI\

0 1—1 4 1+1 1

on s gn oy on

Then 1 = 1 = ), ¥(r,;) and at least one triangle function must give
Y (ty,i,) # 0.In fact, ¥ (t,,;) = O0fori # i, —1,i,,i, + 1, since 1,,;7,,;, = 0.
By taking larger values of n, and selected values of i,, the nested intervals

[i”2;1 , i”z—,Jfl] shrink to some point ¢. For any function f € C[O0, 1],

in+1

V=Y v @ (N =v( Y mif) > @), asn— oo

i=ip—1

The map x +— & is thus 1-1 and onto A. Furthermore t, — ¢t < &, — &,
since the latter means f(¢,) — f(¢) for all f € C[0, 1], in particular for the
identity function f(x) := x.

7. » The character space of the Banach algebra C[T1,...,T,] generated by
commuting elements, is isomorphic to a compact subset of C" (use the map
Vi (T, ..., ¢ Ty).

8. x The character space is weakly closed: ¢, € A AND ¥, =~ ¥ = ¢ € A.
Consequently, for a separable Banach algebra, A is a compact metric space.
Proof: Taking the limits of ¥, (S + T) = ¥,S + ¥ T, ¥n(AT) = Ay, T,
Y (ST) = (Y S)(WnT), and ¥, 1 = 1, shows that i is an algebraic morphism.
Also |Y,T| < ||T| becomes |YT| < ||T| in the limit n — oo, and ¥ is
continuous. For a separable Banach algebra, the unit ball in X'* is compact
with respect to the weak*-metric (Theorem 11.42), and so is its weakly closed
subset A.

The Gelfand Transform

To see why characters may be useful, consider the algebra ¢! and its characters p,.
A sequence such as x = (%, zlp é, ...) can be encoded as a complex power series in
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terms of its characters, p,(x) = Z?io 71 /2% = (2 — z)~!. Then the convolution
product x - - -xx can be evaluated using characters instead of working it out directly,

pz(x*.-.*x)=19z(x)"_ _Zn(n_l_l)lyzn(—fz—i_l )Zl.

For an example from probability theory, consider a random variable that outputs
a natural number i = 0,1,2,..., with probability 1/2/*!. The probability
distribution of the sum of n such random outputs is x * - - - * x, which can be read
off from the coefficients of p,(x)"; e.g., the probability of getting a total of, say 2,
after n trialsis n(n + 1) /2”*3. Further, the mean of such a sum of random variables
is given by differentiating (2 — z)™" at z = 1, that is n. The key step that makes all
of this work is to consider p(x) as a function of z. Its generalization leads to:

Definition 14.37

The Gelfand transform of 7 is the map T: A(X) — o(T) defined by
T(y)=yT.
The element 7 is transformed into a function on the compact space A. The algebraic

structure is preserved, but the transform is generally neither 1-1 nor onto.

Proposition 14.38

The Gelfand transform G : T — T is a Banach algebra morphism X —
c(Aa),

S+T=S+T. AT = AT,
ST=ST, 1=1, |T|<ITI.

Its kernel ker G contains the quasinilpotents and the commutators.
For any analytic function on the spectrum of 7', f € C“(a(T)),

F)=foT

Proof 1t is clear from

ITW) =T =1yT — ¢TI < Iy — $IITI,
and |T(y)| = [YT| < ||T], forall ¥, ¢ € A,

that T is a (continuous) Lipschitz and bounded function on A, with || T le < IT].
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Israel Gelfand(1913-2009) Gelfand studied functional
analysis at the University of Moscow under Kol-
mogorov in 1935, specializing in commutative normed
rings. During 1939-41 he studied Banach algebras,
introducing his transform and proving the spectral
radius formula, which gave much impetus to the subject;
in 1943, with Naimark, he proved the embedding of
special commutative *-algebras into B(H); and then in
1948 he simplified the subject-matter with the introduc-
tion of the C*-condition |lx*x| = ||x]3.

For any ¥ € A, we have:
W) =yl=1,
W) =vOT) =T = 2T ),
SHTW) =v(S+T)=yS+yT =S+ D),
ST(W) =y (ST) = ySYT =SW) T(¥) = ST)(W).

Clearly, from f(W) =yT, T=0% A(T) = 0. If Q is a quasinilpotent then
A(Q) Co(Q) ={0}. Also, [S,T] = ST — TS = 0 since C(A) is commutative.
Lastly, as Y (S™1) = (¢S)~!, forany ¥ € A, S € X,

—_— 1
FOW) =vf(T) =y <2—m f f@e-1)" dZ)

1

=5 f @G-y 'dz  WT eo())
Tl

= fWT)=foT(¥).

O

We cannot expect the Gelfand transform to be very useful for general algebras as
it loses information by representing X’ as a subspace of the special commutative

algebra C(A); for example, S-ITS = §-'TS = T. But for commutative Banach
algebras the situation is much improved:

Theorem 14.39

For a commutative Banach algebra ',

imT = A(T) =o(T), |Tllca) = p(T), kerG =rad X.
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Proof Any maximal ideal of a commutative Banach algebra is the kernel of some
character: Given a closed ideal M, the mapping ®(7) := T + M is a Banach
algebra morphism X — X /M with M = ker® (Exercise 13.10(21)). By
Exercise 13.10(20), when M is also maximal in X, then X'/ M has no non-trivial
ideals, and so is isomorphic to C (Example 14.5(4)). Hence ® : X - X/ M = C
is a character.

But any non-invertible 7' belongs to some maximal ideal M (Example 13.5(8));
so there must be some ¢ € A such that M = ker v, implying 7 = 0. Thus 7 —
is not invertible if, and only if, there isa ¢ € A, with T — X = (T — 1) = 0,
i.e., A € A(T), and therefore A(T) = o (T). (Note that this shows the existence of
characters in a commutative Banach algebra.) Since the two sets are the same, they
have the same greatest extent,

Tl =ma T| = max |A| = p(T).
ITle = max [y T] = max |3l =p(T)
The quasinilpotents are in the radical: If Q is a quasinilpotent, and T € X, then
p(TQ) = lim [(TQ)"'" = lim T"Q"|"" < p(T)p(Q) =0,
n—0o0 n—>0oo
so Q is in the radical. Moreover, ker G = rad X since

T=0& AT) ={0} & o(T) = {0}.

Proposition 14.40

A Banach algebra which satisfies, for some ¢ > 0 and all T,
171> < el T,
can be embedded in the commutative semi-simple Banach algebra C(A),

via the Gelfand map.

Proof By induction on n,
on 2 2n—l on_1 on
171" < (T D) SN V|
from which can be concluded

ITI < lim "2 7% 1> = cp(T).
n—o
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This inequality has various strong implications:

X is semi-primitive: O is clearly the only quasinilpotent.
X is commutative: Forany S, T € X,

ISTI| < cp(ST) =cp(TS) <clTS]|.

Hence, the analytic function F(z) := e~%T Se?” is bounded,

vz eC, IF @I < clSesTe T || = c||S].

By Liouville’s theorem, F must be constant, e %7 Se?” = §, that is, e?7 § = Se?T .
Comparing the second terms of their power series expansions,

(1 +2zT 4+ 0(2))S = S(1 +zT + 0(2)),

gives TS = ST.

The Gelfand map is an embedding: G has the trivial kernel rad X = {0}, and is thus
an algebra isomorphism onto X € C(A). Moreover, [T < cp(T) = c||T||¢, so
G~ is continuous. O

Exercises 14.41

L.
2.
3.

11.

In C, as well as C", £*° and C[0, 1], the only quasinilpotent is 0.
Quasinilpotents are preserved by Banach algebra morphisms.

A quasinilpotent upper triangular matrix must have Os on the main diagonal, so
is nilpotent. Deduce, using the Jordan canonical form and Theorem 13.8, that
every quasinilpotent of a finite-dimensional Banach algebra is nilpotent.

(Q, R) € X x Y is quasinilpotent (or radical) when both Q and R are.

. The operator V : £*° — ¢°° defined by V (a,) := (0, a9, a;1/2,a2/3,...) is

quasinilpotent.
Prove directly that the Volterra operator f + f(f f,on C[0, 1], is a quasinilpo-
tent.

A quasinilpotent for which ||(z — T)! | < ﬁ for all z in a neighborhood of
Z

0, must in fact be a nilpotent. (Hint: use ||T"| < % [lzI"lz = T) Y dz <
€c.)

p(TQS)=0forany S, T € X, Q € rad X. (Hint: Example 14.2(6).)

Ity € Aand f € C®(o(T)), then ¥ (£(T)) = f(¥T).

. A(T) has better properties than o (T), and may yield useful information about

it (unless A = @):
AS+T)CAWS)+AMT), AST) S AWNS)AM)

For C", A = {61, ...,6, ) where 8;(z1,...,2,) := z; are the dual basis. The
same is true for the space cp, A = {§; € cé :8i(ap,ar,...) =a;}.
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12.
13.
14.
15.

16.

17.

18.

For B(C"), A = @. (Hint: Consider products of ((1) 8), (8 (1)), etc.)

For characters of the group algebra C©, V(ey-1g,) = V(eg) and [y (eg)| = 1.
» The invertible elements of a commutative X correspond to the invertible
elements of X

The Gelfand transform on C", mapping C* — C(A) = C", is the identity map.
The same is true for C[0, 1], so o (f) = im f for f € C[0, 1].

» The Gelfand transform gathers together various classical transforms under
one theoretical umbrella:

(a) Generating functions: G : o C (BC), maps a sequence X = (dy)neN tO
a power series on the unit closed disk in C,

[e¢)
(@n)nen > Y anz".

n=0

o0
(b) G:£1(Z) — C(S") is similar, #0) := Y a,e™.
n=—0oo

It follows that o(x) = {X¥(®@) : 0 < 6 < 27}, and the sequence x is
invertible in £1(Z) (in the convolution sense) exactly when ), ane? #0
for all 6. This is essentially Wiener’s theorem: If f € C(S!) is nowhere 0
and fe ¢1(Z) then the Fourier coefficients of 1/f are also in £ (Z).

(c) Fourier coefficients: L' (S') — C,(Z) = £ (Z),

fn) = fo - e £ () do.
(d) Fourier transform: L'(R) — C(R),

f&) = /_ Ze”ffmdz.
(e) Laplace transform: L'(RT) — C(R* +iR),

Lf(s):= /Oo e f(x)dx, Res >0.
0

In all these cases, f/>:g =7z

* In any Banach algebra, if ST = TS then o (S + T) S o(S) + o(T)
and o (ST) C o(S)o(T). (Hint: Consider the commutant algebra { S, T }" of
Exercise 13.10(14) and Example 14.5(6).)

In a commutative Banach algebra, e517 = eSe”, and De” = e. The set of
exponentials e? is a connected group, so e = & = G (Proposition 13.24).
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19. A Banach algebra which satisfies 172 = T3 is isometrically isomorphic to

a subalgebra of C'(A): the condition is equivalent to || T|| = p(T) = ||f||.

20. Conversely to the proposition, a Banach algebra that can be embedded in some

C(K) (K compact) satisfies || T||> < ¢[|T?].

Remarks 14.42

1.

Given a compact set K C C, is there an element 7" with spectrum o (7)) = K? Of
course, this is false in the Banach algebra C, where all spectra consist of single
points, and in B(C"), where the spectra are finite sets of points. But in £°° there
are elements with any given compact set K for spectrum (Example 14.2(3)).

. The distinction between o, o, and o, is not of purely mathematical interest.

In quantum mechanics, a solution of Schrodinger’s time-independent equation
H+{ = Ev gives energy-eigenvalues with eigenfunctions that are “localized”
(since ¥ € L2(R?)), whereas the continuous spectrum corresponds to “free”
states.

. Among the operators in Sect. 14.2, one can find examples without point, contin-

uous or residual spectra (and any combination thereof, except all empty). Note
also that the spectra of these examples are misleadingly not hard to compute in
contrast to generic operators.

. There are various definitions of spectra of T that are subsets of o (7). The

singular spectrum is the set of A such that T — A is a topological divisor of
zero. The essential spectrum consists of A such that 7 — A is not Fredholm.

. Recalling p,(T) := limsup, ||T”x||%, defined for T € B(X) and x € X

(Remark 13.32(4)), suppose a closed subset of the spectrum of T is isolated from
the rest of the spectrum by a disk, o1 C By(a). If p(T —a) < r then x € X4
since

1 _
Pix = %il(z —T) 'xdz = anan(T —a)"x = x.



Chapter 15 ®
C*-Algebras i

B(H) is a special Banach algebra when H is a Hilbert space because there is an
adjoint operation that pairs up operators together. Its properties can be generalized
to Banach algebras as follows.

Definition 15.1

A C* -algebra is a (unital) Banach algebra with an involution map * : X —
X having the properties:

T** =T, (T+S8*=T*+S* OI)*=1T*
(ST)* =T*S*, |T*T| =TI

A x-morphism is defined as a Banach algebra morphism & which also
preserves the involution ®(7*) = (®T)*.

Easy Consequences

1. 0* =0, 1* =1, z* = 7 (by expanding (0 + 1)*, (1*1)*, and (z1)*).

2.T| = [IT*| (since T[> = |T*T| < |T*|IT|. and so |T|| < [T*|| <
I7**]); the involution map is thus continuous and bijective. But it is neither
linear ((iT)* = —iT™*), nor differentiable (since (T + H)* =T* + H*).

T =T

. (T*~! = (T~1* when T is invertible. )

5. p(T*) = p(T), o (T*) = o (T)* (since (T* — 1)~ = (T — 1)~1).

B~ W

One might expect that |T*|| = ||T| be taken as an axiom, and indeed Banach
algebras with involutions satisfying this weaker axiom are studied and called
Banach *-algebras. C*-algebras resemble C and B(H) more closely: the chosen
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axiom, which is the analogue of the familiar zz = |z|2, is much stronger and can
only be satisfied by a unique norm, if at all (Example 15.10(5)).

Examples 15.2

1. The simplest example is C with conjugacy. C" has an involution

@1z =G Zn)

This example extends to £°°.

2. C[0, 1] with conjugate functions f : t — f(1).

3. B(H) with the adjoint operator, where H is a Hilbert space (Proposition 10.19).
We will see later (Theorem 15.53) that every C*-algebra can be embedded into
B(H) for some Hilbert space H.

4. B(H) contains the closed *-subalgebra

CeK:={a+T:aeC, T € B(H)compact}

5. If X and ) are C*-algebras then so is X x Y with (S,T)* = (§*,T%)
(Example 13.3(7)).

6. < £1(Z) has an involution (an)ycn = (a—n)nen, that satisfies [|x*|| = [|x|| but
not ||x* # x|| = ||x||>. However, it can be given a new norm, [|x|| := || Ly || where
Lyy:=xxyforye? and L : x — L, embeds ¢! (Z) as a commutative C*-
subalgebra of B(¢£?). Similarly for L' (R).

7. < The group algebra C© has an involution making it a %-algebra, but not a C*-
algebra,

sk
* o =
= (Yage) = Yase, .

geG geG

Exercises 15.3

1. Polarization identity: If w is a primitive root of unity, " = 1, then

1 & . .
T*S =— Zw’ S+ &' TS + ' T),
n i=1

1 < . .
S*S + T*T =— Z(S + ' T (S +o'T).
n

i=1

2. For any real polynomial (or power series) in T, p(T)* = p(T*).

3. If T is a nilpotent, a quasinilpotent, a divisor of zero, or a topological divisor of
zero, then so is T*, respectively. If 7*T is a nilpotent, then so is 7T*; but find
an example in B(¢?) where T*T is invertible yet TT* isn’t.
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4. If T*T and TT* are both invertible then sois T,
T =TT ' =1*TT" .

5. T* has the same condition number as T'; that of T*T is squared (Sect. 8.3).

6. The inner automorphism T +> S~!T'S is a s-automorphism exactly when SS§*
belongs to the center X’ (in which case $*S = SS*).

7. % A x-isomorphism B(H;) — B(H>) is of the type T +> UTU~! where
U : Hi — H; is a Hilbert-space isomorphism.

8. A x-ideal is an ideal that is closed under involution. Examples include the
kernel of any *-morphism, rad X, and the set of compact operators of B(H).

9. If A C X is closed under involution (A* = A), then so is its commutant A4’
(which is thus a C*-subalgebra) (Exercise 13.10(14)).

10. » Suppose X has no unity but otherwise satisfies all the axioms of a C*-algebra.
Show that the embedding L : X — B(X’) (Theorem 13.8) is still isometric, and
that LX @ [[/]) with the adjoint operation (L, 4+ A)* := L+ + A is a unital C*-
algebra.

15.1 Normal Elements

It is a well-known fact in Linear Algebra that real symmetric matrices are diag-
onalizable with real eigenvalues and orthogonal eigenvectors. This makes them
particularly useful and simple to work with, e.g., if T = PDP~! then f(T) =
Pf(D)P~! can easily be calculated when D is diagonal. However, these matrices
do not exhaust the set of diagonalizable matrices via orthogonal eigenvectors: for
example, matrices such as (} ’1]) may be diagonalizable with complex eigenvalues.
As we shall see later, diagonalization is closely related to the commutativity of T
with T*.

Definition 15.4

An element T is called normal when 7*T = T'T*, unitary when 7* = T~!,
and self-adjoint when 7* = T.

Examples 15.5

1. TItis clear that self-adjoint and unitary elements are normal.

2. Any z € C is normal; it is self-adjoint only when z € R; it is unitary only when
lz| = 1.

3. A diagonal matrix is normal; it is self-adjoint when it is real, and unitary when
each diagonal element is of unit length |a;;| = 1.
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More generally, diagonalizable matrices, of the type T = U DU™* where U is
unitary and D is diagonal, are normal: T*T = UD*U*UDU* = UD*DU* =
UDD*U* =TT*.

. The operator Tf(s) := fol k(s,t)f(t)dt on L2[0, 1] is normal when (Exam-

ple 9.28(2c))

1

1
fk(u,s)k(u,t)du:/ k(s, )k(t, u)du  a.e.(s, 1)
0

0

. When T is normal, a polynomial in 7 and T* looks like

N M
pT.T) =" aymT"T*".

n=1m=1

The set of such polynomials C[7, T*] is a commutative *x-subalgebra. The
character space of its closure C[T, T*] is denoted by Ar.

. A unitary matrix is a square matrix whose column vectors are orthonormal. A

self-adjoint matrix is a square matrix [a; ;] such thata;,; = a@;,j, e.g., (; §).
Proof: If u; denotes the ith column of U, then U*U = I implies

(ui,uj) = u;“uj = 5,']'.

. The unitary operators of B(H) are the Hilbert-space automorphisms of H

(Proposition 10.22).
» If 7 is normal, then so are T*, T + z, zT, T", and T~! when it exists. But

the addition and product of normal elements need not be normal, e.g., (} 9) and

(i 8)-

Proof for T~': Taking the inverse of TT* = T*T together with (T~1)* =
(T*)~! gives the normality of 7.

» If 7,, are normal and 7,, — T, then T is also normal, i.e., the set of normal
elements is closed (as are the sets of self-adjoint and unitary elements).

Proof: The limit as n — oo of T, T, = T,, T, is T*T = T T* since the adjoint
is continuous. Similarly take the limit of 7, = T, or T = T, ' to prove the
other statements.

» If S, T are self-adjoint, then so are S + 7', AT (A € R), p(T) for any real
polynomial p, and 7! if it exists. But ST is self-adjoint iff ST = T'S.

» If T is self-adjoint, then ¢'” is unitary; in fact, letting U’ := ¢/'T,t € R, gives
a one-parameter group of unitary elements (Exercise 13.25(9) for definition).

The analogy of self-adjoint elements with real numbers and unitary elements
with unit complex numbers raises the issue of which propositions about complex
numbers generalize to C*-algebras.
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Proposition 15.6

Every element 7' can be written uniquely as A + i B with A and B self-
adjoint, called the real and imaginary parts of 7', respectively. Then T is
normal iff AB = BA.

The real and imaginary parts of T are denoted Re 7 and Im 7.

Proof Simply check that A := (T + T*)/2 and B := (T — T*)/2i are self-adjoint.
The sum A+i B is obviously 7. Uniqueness follows from the fact thatif A+iB =0
for A, B self-adjoint then A = 0 = B since

0=(A+iB)+(A+iB)*=A+iB+A—iB=2A.
T*T = (A—iB)(A+iB) = (A> + B®) +i[A, B],
TT* = (A+iB)(A—iB) = (A>+ B —i[A, B],
so T*T = TT* precisely when [A, B] = 0. |

Proposition 15.7

The set of unitary elements /(X)) is a closed subgroup of G(X),
U,V unitary = UV, U -1 unitary.

Unitary elements have unit norm, |U|| = 1.

Proof 1If U, are unitary and U, — T, then by continuity of the involution, U, —
T*. Also, the equations U, U, = | = U,U, become T*T = 1 = TT* in the limit,
thatis, T-! = T*.
For any U,V € U(X), UV and U*(= U~ are also unitary, and U is of unit
norm:
wvy =vur=viv=wv)!
Ul = lU*U|l = 1]l = 1.

O

The next theorem starts to unravel the close connection between normal elements
and their spectra.
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Proposition 15.8

For T normal, p(T) = ||T ||, and S(T) is the closed convex hull of o (7).

Proof (i) For any normal element T, 172\ = ||T||? since
ITI* = IT*T 1> = I(T*T)*(T*T)|| = I(TH*T?| = ||

But 72 itself is normal, so the doubling game can be repeated to get, by induction,
1T = 7)) and

. . k o=k
p(T) = lim |T"|'/" = Tim | T*|*" = |T].

(i) As S(T') is a closed convex set that contains o (T") (Proposition 14.35), it must
also contain the convex hull of the latter. Notice that, by (i), o (T') reaches out to the
boundary of S(T').

Conversely, suppose A is not in the closed convex hull of ¢ (7). There must be a
straight line through X not intersecting o (7") (why? Hint: join A to its closest point
in o (T)). So the spectrum can be enclosed by a ball B,(z) that does not meet the
line (Exercise 6.22(8)).

Forany ¢ € S,
9T —z| = |¢(T — )| < T —zll =p(T —2) <r < |A—2|

so A # ¢T. It follows that S(T) has the same points as the closed convex hull of
a(T). |

Proposition 15.9 (Fuglede’s Theorem)

If T is normal and ST = TS then ST* = T*S.
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Proof From f(T)S = Sf(T) (Example 14.24(1b)), we have e T ST = §.
Writing zT = A + i B and noting that 7T is normal, so AB = BA, we find

_T* * _ : .
F(Z) — e T SeZT —e A+lBSeA iB
— EZlBe_ZTSEZTE_ZlB
— eleSeleB

SAF@I< IS by Example 15.5(11).

As F is a bounded analytic function of z, by Liouville’s theorem it is constant,
F(z) = F(0) = S, ie., ¢T"S = ST, Comparing the second term of their power
series gives T*S = ST*. |

Examples 15.10

1.

If T = A+ iB, where A, B are self-adjoint, then T* = A — i B, so

(a) T is unitary if, and only if, AB = BA and A% + B> = 1;
(b) T is self-adjoint if, and only if, B = 0.

. X is commutative if, and only if, every element is normal.

Proof: If every element A + i B is normal, then AB = BA, i.e., any two self-
adjoint elements commute. But then 7S = (A + iB)(C + iD) = ST. The
converse is obvious.

. () For T normal, |T"|| = ||T||", since | T|| = p(T) < IT"|'* < |IT].

(b) Forany T, |T||*" = |(T*T)"|| and ||T|| = /o (T*T).

. » 0 is the only normal quasinilpotent and the only radical element, that is, every

C*-algebra is semi-primitive. More generally, if 7 is normal with o (T') = {z},
then T = z.

Proof: If Q is a normal quasinilpotent, then ||Q] = p(Q) =0,s0 Q = 0. If P
is a radical element, then || P||> = | P*P| = p(P*P) = 0.

. Every C*-algebra has a unique norm satisfying | 7*T|| = || T2

Proof: Suppose there is a second C*-norm. Then ||T'|| = p(T*T)% =|IT]l.

Exercises 15.11

1. What are the normal, self-adjoint and unitary elements of £ and C[0, 1]?

2. Diagonal ‘matrices’ in 0% are multiplier operators, (a;)nen > (bnap)nen-

Show they are normal, self-adjoint when b,, € R, and unitary when |b,| = 1,
for all n.

Generalize for multiplier operators on L2(R), Tf := gf, (g € Cp(R)).
11

3. Triangular matrices, such as (0 2), are not normal (unless diagonal). A real

diagonalizable matrix, such as (_01 (1)), need not be self-adjoint.
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Forany T, oT + BT* is normal when |«| = |B].

A x-morphism preserves normal, self-adjoint, and unitary elements.

If P; are normal idempotents with P; P; = §;; P; as wellas Py +---+ P, =1,
then z; Py + --- + z, P, is normal (unitary when |z;| = 1) and for any
polynomial p,

p@@iPL+ -+ zaPn) = pED)P1L+ -+ p(zn) Pa.
If S and T are commuting normal elements, then ST is also normal.

The shift-operators on 02(Z) are unitary, with (R) = o (L) = S' (but on 22,
they are not even normal).

. Translations T, f(t) := f(t — a) and stretches S, f(¢) := a%f(at) (a > 0),

acting on L2 (R), are unitary.

If U is unitary then forany 7', |UT| = |T| = ||TU].

If U € X is unitary, then T +— U*TU is an inner x-automorphism of X.

If T is an invertible normal element, then T*T 1 is unitary.

For example, the Cayley transformation U := (i — T*)(i + T)~' maps T
to a unitary element if i 4 7 is invertible. Compare with the transformation
z + (i —z)/(i+z), which takes R to the unit circle (0 — 1,1 — i, 00 > —1).
(Note that not every unitary operator U is of this form, only those such that
—1¢o(U).)

U(X) need not be a normal subgroup of G(X); when does T~UT < U hold?
The operator T f (s) := fk(s, 1) f(¢)dr on L2(R) (k € L?(R?)) is self-adjoint
when k(s, t) = k(z, s) a.e. (Hint: Examples 10.23(3), 9.28(2)).

Forany T € X, the elements T + T*, T*T and T T* are self-adjoint.

The real and imaginary parts of 7 satisfy |Re T|| < ||T||, | ImT| < ||T].
Find the real and imaginary parts of ST when S and T are self-adjoint.

For S, T normal, p(S + T) < p(S) + p(T), and p(ST) < p(S)p(T).

When 7 is normal, then || T ||’ is a spectral value for some 6.

Let Q # 0 be a quasinilpotent, then 1 + Q is not normal. More generally, if T
isnormal and TQ = QT, then T + Q is not normal.

If A*B =0 = AB*, then |A + B| = max(|| A, | B]).

(Hint: Show, by induction, |A + B||*" = ||[(A*A)" + (B*B)"|.)

If T*T is an idempotent then so is 7 T*.

A commutative C*-algebra is isometrically embedded in some C(K) (Exer-
cise 14.41(19)).

Let ® : X — ) be a x-morphism between C*-algebras with X commutative.
Then ®(T') is normal in Y for any T € X, and ® is continuous with || @] < 1
(Hint: o0 (®(T)) <€ o (T)).
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15.2 Normal Operators in B(H)

Let us see what special properties normal elements have for the most important
C*-algebra, the space of operators B(H) when H is a Hilbert space.

Proposition 15.12

For a normal operator 7 € B(H),

@ I17*x|| = 1Txl,
(ii) ker 72 = ker T = ker T*,
(iii)) im 7 is dense in X < T is 1-1,
@iv) T isinvertiblein B(H) < 3dc>0,Yxe H, c|x]| < ||Tx].

Proof (i) follows from

IT*x1? = (T*x, T*x) = (x, TT*x) = (x, T*Tx) = (Tx, Tx) = | Tx|>.

(i) kerT =kerT*isdueto T*x =0 & ||[T*x| = ||Tx|| =0 <& Tx = 0, using
(). kerT? = kerT,ie., T?x =0 < Tx = 0 follows from

ITx)? = (x, T*Tx) < Ix|IT*Tx || = Ix|IT%x].

(iii) Recall that (im T)* = ker T* (Proposition 10.20). Hence, by (ii), T is 1-1 if,
and only if im 7))L =kerT =0iffim7 = H.

(iv) If T has a continuous inverse, then |x|| = [T 'Tx|| < T YITx].
Conversely, if the given inequality is true for all x € H, then T is 1-1 and the
image of T is closed (Examples 8.16(3)). By (iii), im 7 = H and T is bijective. Its
inverse is continuous:

Ve H, T 'x|| <ITT x| = |lx]|.

Proposition 15.13

For a normal operator T € B(H),

(i) Tv = Av & T*v = Av, and eigenvectors of distinct eigenvalues of
T are orthogonal,
(i) o(T) contains no residual spectrum, o, (7T) = 2,
(iii) isolated points of o (7') are eigenvalues.
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Proof (i) is a direct application of ker(T — 1) = ker(T* — 1), as T — A is normal.
Note that the eigenvectors of 7 and T* are identical. For eigenvalues A and p with
corresponding eigenvectors x and y, we have

My, x) =y, Tx) =(T*y, x) = (iiy, x) = u(y, x),

implying either A = p or (y, x) = 0.

(i) Let A € o(T); either T — A is not 1—1, in which case X is an eigenvalue (point
spectrum); or it is 1-1, in which case its image is dense in H by the previous
proposition, and A forms part of the continuous spectrum.

(>iii) If {A} is an isolated point of o (T'), form the projection
1 -1
=-=¢ —-T) dz
2mi (A}

onto a space X, # 0 (Example 14.29(1)). Then o (T'|x,) = {A}, and since T |x, is
normal as well, |T|x, — Al = p(T|x, —A) =0,1e.,Tx = Axforanyx € X;. O

Examples 15.14

1. » A projection P € B(H) is normal < self-adjoint < orthogonal < || P||
Oorl.
Proof: If P is orthogonal, then (x — Px) L Px (Theorem 10.12), so

(x, Px) = ((I — P)x + Px, Px) = |Px|? € R

hence (x, Px) = (Px,x) = {(x,P*x) for al x € H, and P = P*
(Example 10.7(3)).

If |P|| = 1, let x € (ker P)*, sothat x L (x — Px). Then || Px|? = |Ix||*> +
|Px — x|, yet || Px|| < ||x]|,sox = Px € im P and ker P L im P. The other
implications should be obvious.

2. All spectral values of a normal operator are approximate eigenvalues (either
eigenvalues or part of the continuous spectrum) and there are no proper gen-
eralized eigenvectors (Sect. 14.3). Note that a normal operator need not have any
eigenvalues, e.g., Tf () :=tf(¢) on L2[0, 1].

Exercises 15.15

1. » Conversely to the proposition, an operator which satisfies ||7*x|| = ||Tx||, for
all x, is normal.

2. When T is a normal operator, ker 7 and im T are both T'- and T *-invariant.

3. Suppose T,x — Tx for all x € H, where T,, are normal operators in B(H).
Then T is normal if, and only if, Vx, T,;x — T*x. (Note: T is an operator by
Corollary 11.37.)

4. The eigenvalues of self-adjoint operators are real, and those of unitary operators
satisfy |A| = 1.
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5. A normal operator on a separable Hilbert space can have at most a countable
number of distinct eigenvalues.

6. Suppose H has an orthonormal basis of eigenvectors of an operator T € B(H).
Prove that T is normal. (Hint: show T*e, = A,ey.)

7. If Tx = Ax, T*y = puy, then o = A or (y, x) = 0 (T not necessarily normal).

8. An Ergodic Theorem: Consider the Cesaro sum

T,:=U+T+---+T"YHn.

If o(T) < 1thenT, = (I —T")Y(I —T)"'/n - 0asn — co. Now let T be a
normal operator with p(T) = 1.

(a) For Tx = x (i.e.,x € ker(T — 1)), we get T,x = x;
(b) Forx =y—Tyeim(T —I)wegetT,x=(y—T"y)/n — 0;
(c) Forany x € H, Ty,x — xo € ker(T — I), the closest fixed point of T'.

If T is not normal then T, may diverge, e.g., T = () 9) gives T, = ((1) (”*11>”/2).
As an application of this theorem in discrete dynamical systems, let T f(x) :=
fog(x) where g is a volume-preserving mapping RY — R¥, that is, its Jacobian
determinant is everywhere 1; so 7" f = f o g" and ||T"|| = 1; then the average
of such ‘positions’ converges to fo, where fyo g(x) = fo(x). To take a concrete
example, let g be a rotation of R?, then f; is rotationally symmetric.

15.3 The Numerical Range

To help us further with analyzing the spectra of normal operators, we turn to the
state space of B(H) (Definition 14.34). An example of a state is the map T +>
(x, Tx), when x is a fixed unit vector; it is linear on 7', has norm 1, and maps /
to 1. Furthermore, that value of A which makes Ax closest to T x, i.e., minimizes
ITx — Ax]|| can be obtained from Theorem 10.12: it satisfies (Tx — Ax) L x, or
equivalently, A = (x, Tx). This number is sometimes called the mean value of T at
x, or the Rayleigh coefficient, and denoted by (T'),. We are thus led to the following
definition:

Definition 15.16

The numerical range of an operator 7 € B(H) is the set
W(T) = {{x,Tx): [lx[| =1}

The extent of W (T') is called the numerical radius, ||T ||y := sup [(x, Tx)|.

llxlI=1
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Examples 15.17
L (), =1(T +8), = (T), + (S),, AT), = MT),, (T*), =(T),.
These are easily verified, e.g.,

(x, T*x) = (Tx,x) = (x, Tx)

2. » For operators on a complex Hilbert space,
(@) W) ={1},indeedforz e C, W(T) ={z} & T =z,
() W(T + z) = W(T) + z (translations), and W(AT) = AW(T),
(© W(S+T)< W(S)+ W),
(d) W(T™) =W()*,
(e) W(U™'TU) = W(T) when U is unitary.
3. The above properties show that || - || y is a norm; it is equivalent to the operator
norm:

HTI<ITIy < ITI

Proof: For unit x, |(x, Tx)| < ||Tx| < ||T]| by the Cauchy-Schwarz inequality,
so ||T|y < |IT||. Conversely, note that in general, |(v, Tv)| < ||T||N||v||2, so for
any unit vectors x, y, and using the parallelogram law,
[, Ty) =3[+ 3, T +3) = (x =y, T(x —y)
—i{x iy, T(x +iy)) +ifx — iy, T(x —iy))|

N

T x + 12+ llx = yIZ + llx +iyll> + llx — iyll®)
IT 0y el + 117 = 21T |y

So maximizing over x, y, | T] = SUP e =1=(yy | (X, TY) < 20T | n-
4. (a) W(T) includes the point and residual spectra of T'.

Proof : If Tx = Ax for x a unit vector, then (T), = (x, Tx) = A.
o, (T) € op(TH* € W(T*)* = W(T); more concretely, for A € o,(T),
there is a unit vector x € im(T — 1)1, so (x, (T —A)x) = 0, i.e, A =
(x, Tx).

(b) If . € W(T) has magnitude ||T'||, then it is an eigenvalue of 7.
Proof: Given A = (x, Tx) with x unit and |A| = ||T||, then

ITx —Ax|?> = | Tx||> = 2Re A{x, Tx) + |A]?
= ITx|* — |A]?

<ITIP=1A*=0

so Tx = Ax.
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(c) If » € W(T) has magnitude || T ||, then it is an approximate eigenvalue.
Proof: Given (x,, Tx,) — A, |A| = ||T||, then the same argument as above
shows that (T — A)x,, — 0.

5. In finite dimensions, W (T) is closed in C.

Proof: If A, — A with A, = (x,, Tx,), x, unit, then there is a convergent
subsequence x, — x, also unit, so taking limits, A = (x, Tx).

6. Although the quadratic form x — (x, Tx) isunique to T, i.e., {(x, Tx) = (x, Sx)
for all x if, and only if, T = S (Example 10.7(3)), the numerical range W (T)
does not identify 7 in general, e.g., W(P) = [0, 1] for any non-zero orthogonal
projection.

7. For a fixed unit x € H, one can define two semi-inner-products on B(H),

(@ (S,T):=(Sx, Tx) = (S*T), (with associated semi-norm ||T||, := || T x||),
and
(b) the covariance semi-inner-product

Cov(S,T) = (S — <S)x’ T — <T>x> = <S*T>x - <S>x<T)x’
with the associated semi-norm called the standard deviation

0’% :=Cov(T, T) = ||Tx|> — |<T>x|2~

The uncertainty principle states that
| Cov(S, T)| < osor

(essentially the Cauchy-Schwarz inequality—Exercise 10.10(16)).

The correlation is the normalized inner product Cov(S,T)/osor; T and S
are called independent when they are orthogonal, Cov(S,T) = 0, which is
equivalentto (S, T) = mx(T)x.

These definitions are usually applied to L2(A), where x corresponds to a function
p € L*(A), with |p(s)|* interpreted as a probability distribution, and the
operators are multiplication by functions Tp := fp, that is,

the mean (), = [, f(9)p(s)|*ds, the rms | fll, = |/ [ | fI*IpI%,

the covariance Cov(f, ) = [4(f — (/) (g — (g)IpI*.

We can now elucidate the connection between the spectrum of an operator, its
numerical range, and its state space values, hinted at in the examples above.
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Proposition 15.18 (Hausdorff-Toeplitz)

W(T) is a convex compact subset of C, such that
o(T) € W(T) € S(T).

When T is normal, W (T') = S(T) = Conv(c (T)).

Proof The inclusion W(T) € S(T) is obvious: for any unit vector x, the functional
¢(T) := (x, Tx) is linear in T, maps [ to 1, and |[¢p(T)| = |{x, Tx)| < ||IT], so
¢l =1and ¢ € S. As S(T) is compact (Proposition 14.35), so must be its closed
subset W (T).

The main part of the proof is to show the other inclusion o (7)) € W(T): for
x|l =1,A €C,

a:=d, W(T)) < [(x,Tx) — Al = [{x, (T — Mx)| < (T — x|,
so for any x € H,
allxll < (T — x|

When A ¢ W(T), « is strictly positive, and the inequality shows that 7 — A
is 1-1 with a closed image (Example 8.16(3)). Moreover, since W(T*) = W(T)*
and d(x, W(T)*) = d(x, W(T)),

allxll < I(T* = Mx]l.

This implies that (7 — A)* is 1-1, hence T — A is surjective (Proposition 10.20).
Thus T — A has an inverse, which is continuous (Proposition 8.15), and A ¢ o (T').

W(T) is convex: Given A, uin W(T) (A # ,u),'let X,y b;: unit vectors such that
(x,Tx) = A, (y, Ty) = u. Any vector v := ae'®'x + Be'®2y (a, B, ¢1, P> € R)
has norm

Iv]?> = & 4+ 2aB Re '@~ (x, y) + B2 = 1 4 sin 26 Re(e'® (x, y)),
fora = cosf, B =sinb, ¢ := ¢ — ¢1. Then (v, Tv) works out to
(e'® x + Be'Py, ae' P Tx + B! P2 Ty)
=L +aB(e? (x, Ty) + e (y, Tx)) + B*u
= L cos? 6 + sin 20 (w cos¢ + zsing) + ,usin26

= HTM + A_T“COS29 + (wcos ¢ + zsin¢) sin 20
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where w := %((x, Ty)+{(y, Tx)),z := %((x, Ty)—(y, Tx)).Butwy := wcos g+
zsin ¢ traces out an ellipse as ¢ varies. By choosing the correct value of ¢, wg can
be made to point in any direction in the complex plane, including that of A — . With
this choice, (v, Tv)/|v||? gives a line segment as 6 varies, a line that contains A and
u(atd =0, m/2). Thus W(T), and its closure W (T'), are convex sets.

Since W (T') is convex, the closed convex hull of o (T) lies in it. Proposition 15.8
shows S(T) = Conv(c (T)) € W(T) when T is normal. O

Two follow-up results are given next: one is a sharp refinement due to T. H. Hilde-
brandt, and another allows us to identify the self-adjoint operators among the normal
ones from their spectrum.

Proposition 15.19

The closed convex hull of the spectrum of an operator 7 € B(H) is equal
to

Conv(a(T) = [ W(SITS).
Seg

Proof We need a lemma that will be reproved later for any C*-algebra. Recall the
geometric series (1 —A)~! = Y nen A7 valid for p(A) < 1. This result, applied for
the operator A*A, has a variant:

Ri=1+A"A+ (AH* (A + (AH* (A7) + -
converges for p(A) < 1 and is self-adjoint and invertible. Convergence is justified

by the root test, lim sup,, [|(A")*(A")[|'/" = lim,_, « [|A"|*/" = p(A)?> < 1. For
any unit vector x,

(x, Rx) = [Ix|I> + |Ax)® + | A% |]> +--- > 1,

so o (R) € W(R) C [1, oo[. We can deduce (i) R is invertible with o (1 — R~!) =
1 —o(R)~! € [0, 1[; and (ii) the operators R*Z can be defined by the functional
calculus, since there is a branch line from the origin that does not meet its spectrum.
Note that, since the norm and spectral radius of a self-adjoint agree,

_ _1 _1 1 _1
1—R'=R 2(R—1)R™ 2 =R IA*RAR I,

S IRIARIZ =1 —R Y =pd—R <1
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Now we can start the main proof. For any invertible operator S,
o(T)=o(S™'TS) C W(SITS)
and since the intersection of closed convex subsets remains so, we can conclude that

Conv(c(T)) C ﬂ W(S-ITS).
Seg

Conversely, suppose A ¢ Conv(o (T)). As in the proof of Proposition 15.8, there is
a disk B (z) which covers the latter but separates it from A. By considering %, the

lemma above shows there is an operator S = R™1/2 such that ||S~ (T — 2)S|| < r,
ie, WS T = 2)S) € B-(0), so W(S~!TS) C B,(z). The conclusion is that
A ¢ W(S~ITS) and hence is not in the intersection.

O

Proposition 15.20

A normal operator T is self-adjoint < W (7T) isreal < o(7T) is real.

Proof When T € B(H) is self-adjoint, (x, Tx) = (Tx,x) = (x, Tx) for all x €
H, which implies W(T) C R. Conversely, if (x, Tx) € R for all vectors x, then

(Tx,x) = {x, Tx) = (T*x, x)

which can only hold when T* = T (Example 10.7(3)).
The spectrum o (T') is real iff W(T) is real since the latter is the convex closure
of the former. |

Exercises 15.21

1. Show that, for the shift operators on 22, W(L) = B1(0) = W(R).
2. Let T be a square matrix (é g) with respect to an orthonormal basis, where
A, D are square sub-matrices.

(a) WA)UW(D) C W().
(b) If B=C =0, then W(T) is the closed convex hull of W(A) U W (D).

3. Write a program that samples W (T) for 2 x 2 matrices (by plotting the points
x*Tx for a large number of unit complex 2-vectors x), and test it on random
matrices. Verify, and then prove, that W(T') for

(@) T :=(4Y) is the line joining a to b;
(b) T := (&) is the closed disk B, (a) (although its spectrum is {a});

() *xT := (‘C* 2) is generically an ellipse with its interior.
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4,

11.

12.

Go through the proof of Hildebrandt’s proposition for 7 = ((1) }), verify that
— 1 — — S EZEY
L=V, s=R"2=(}2).87'TS = (}9), W(S™'TS) = Bapa(D).

r 0 0
. Let T be a square matrix with positive coefficients. If x = (ay, ..., a,) € C"
and x4 := (|ail, ..., |axnl|), then

l{x, Tx)| < (x4, Tx4)

so that the largest extent of W (T") occurs at a positive real number.

An operator is called real when it is an operator acting on a real Banach space
X, extended to act linearly on the complex space X + i X. Show that a real
operator on a Hilbert space has a numerical range that is symmetric about the
real axis.

The classical proofs of some of the statements above do not use the convexity
properties of the numerical range. For a self-adjoint operator T,

(a) o(T) is real. Prove this by letting A := o + i with B8 # 0, and showing
(T — x> = (T — a)x|I* + B2Ix 12 = 18121111

(b) W(T) is the smallest interval containing o (7). Show this by taking o (T') C
[a, b], letting ¢ := (a + b)/2, and proving that for any unit vector x,

[{(x, Tx) —c|=|{(x,(T —c)x)| <b—c=c—a.

Forany T € B(Hy, Hy), W(T*T) = [a, b], wherea > O0and b = 1712
If » ¢ W(T), then |(A — T)~'|| < 1/d(x, W(T)).

. A coercive operator T € B(H) satisfies |(x, Tx)| > ¢ > O for all unitx € H.

Show that it has a continuous inverse. An elliptic operator is one which satisfies

(x, Tx) > ¢ > 0, a special case of a coercive self-adjoint operator.

Let¢ : B(H) — C be defined by T +— (x, Ty) for some fixed unit x, y € H;

show that¢p € S & x = y.

(@) Cov(I, T)=0,Cov(S,T 4+ 1) =Cov(S,T),0or+) =0T}

(b) For every A and unit x, o7 < ||(T — A)x]||, so o7 < %diama(T) for T
normal;

(¢) or =0 < x is an eigenvector of 7', with eigenvalue (T'), .

(d) If S, T are self-adjoint operators, let A := 1[S,T]and h := J(A), =
Cov(S, T), then

osor = h.
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15.4 The Spectral Theorem for Compact Normal Operators

As seen before, multiplier operators such as diagonal matrices are normal. In fact,
all normal operators are of this type in an appropriate basis; we show this first in
the simple case of compact normal operators, in a theorem due to David Hilbert and
Erhard Schmidt.

Theorem 15.22 (Spectral Theorem for Compact Normal Operators)

If T is a compact normal operator on a Hilbert space, then
o
Tx = Z)\n(en’ X)en,
n=0

where ¢, are the eigenvectors of 7 with corresponding non-zero eigenval-
ues A;.

The statement is written supposing an infinite number of eigenvectors; otherwise
the sum is finite.

Proof Let T be a compact normal operator. We show that H has an orthonormal
basis of eigenvectors.

(a) The fact that T is compact implies that o (7))~ {0} consists of a countable set
of eigenvalues, and each generalized eigenspace X, := ker(T — 1)** is finite-
dimensional (Theorem 14.19).

(b) The fact that T — A is normal implies, firstly, that X, = ker(T — A)
consists of eigenvectors, and secondly, that X, are orthogonal to each other
(Propositions 15.12, 15.13).

Note that the eigenvalues decrease to O (unless there are a finite number of them).
This is part of Theorem 14.19, but its proof in the context of a Hilbert space is
simpler: As T is compact, for any infinite set of orthonormal eigenvectors e,, T e,
(= Apep) has a Cauchy subsequence, so

2 2 2 2
[Anl” + [Am|” = lAnen — Amemll” = ITey — Tewl” — 0, asn,m — 00

implying both A, — 0 and that each eigenspace ker(7 — A) is finite-dimensional.

Thus a countable number of orthonormal eigenvectors e, (a finite number from
each X)) account for all the non-zero eigenvalues, and form an orthonormal basis
for the closed space M := [[ey, ez, ... ] generated by them. M L is T-invariant since
x € M+ implies that for all n, (e,, x) = 0, and as T*e,, = A, e,

<en7 Tx) = (T*ensx) = )‘n<envx> = O
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Thus 7 can be restricted to M+, when it remains compact (Exercises 11.17(5),
6.9(5)) and normal, yet without non-zero eigenvalues, because those are all
accounted for by the eigenvectors in M. Its spectrum must therefore be 0, implying
T\yr =0, 1ie, ML = kerT. Unless M+ = 0, there is an orthonormal basis of
eigenvectors e; for it, and collectively with e,,, form a basis for H = M & M 1,

x=Y len,X)en+ Y (ei, x)ei.

Finally, since T is linear and continuous, and Te; = 0, we find that

Tx = T(Z (en, x)en> = Z (en, x)Te, = Z (en, X)Aney.

n n n

Corollary 15.23

A normal complex matrix is diagonalizable.

The Singular Value Decomposition

There is a remarkable extension of diagonalization applicable to any compact
operator between Hilbert spaces, including rectangular matrices. The analogue of
the eigenvalues are called singular values, although they are not closely related, for
several reasons. The bases for the domain and codomain are different, even if the
spaces happen to be the same. Thus the singular values of a square matrices are
usually not the same as its eigenvalues, except when the matrix is diagonalizable by
an orthonormal basis.

Theorem 15.24 (Singular Value Decomposition)

If T : X — Y is a compact operator between Hilbert spaces, then there
are isometry operators U : Y — Yand V : X — Xsuchthat7T = UXV*
with ¥ diagonal.

The numbers o,, comprising the diagonal of X' are called the singular values of T’
and u,, v, which make up U and V are called its singular vectors (u, are also called
the principal components of T).
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Proof T*T and TT* are compact self-adjoint operators, on X and Y respectively.
They share the same non-zero eigenvalues (Example 14.11(5)), which are positive,
since if T*Tv = Av, ||v|| = 1, then

A= (v, T*Tv) = |Tv||> > 0.

By the spectral theorem there is an orthonormal set of eigenvectors v, € X of T*T
with eigenvalues A, = anz > 0. It turns out that the vectors Tv,, € Y are also
orthogonal,

(TVm, Tp) = (U, T*T V) = 028,
so u, := Tv, /o, form an orthonormal set in Y. Note that, by the above,
Tv, = oy, T*u, = o,v,.
In fact, v, form an orthonormal basis for (ker T*T)* = (ker T)* = imT*, and
similarly u, is an orthonormal basis for im T (Exercise 10.24(12) and Proposi-

tion 10.20).
It follows that forany x € X and y € Y,

XIPX‘FZ(v/z’x)Unv szzo'n(vmx)un» T*y:ZUn<uizs Y)vn
n n n

where P € B(X) is the orthogonal projection onto ker 7. Indeed a stronger
statement is true:

3k
T = E OnlinV,
n

That is, the convergence is in norm, not just pointwise, the reason being

N 00
“(T—ZO',,IA"U:)XHZI ” Z On{Un, x)unnz
n=1 n=N+1
00
= Y oil(on X)) < (maxo)|x))?
n>N
n=N+1

and max,-y 0, — 0as N — oo since 0,, — 0asn — oo.

Let U be that operator representing a change of basis in im 7' from u,, to some
arbitrary basis (leaving the perpendicular space ker 7* invariant), V a similar change
of basis in im 7* from v,. Then the ‘matrix’ of T with respect to v, and u, is
X :=U*TV;as Tv, := o,u, and Tx := 0 for x € ker T, X' is diagonal. O
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Examples 15.25

1. The spectral theorem is often stated as: If a compact normal operator has “matrix”
T with respect to a given orthonormal basis &,, then T = UDU ™!, where D is
diagonal and U is the unitary change-of-basis operator that maps (¢,) to (e,), the
orthonormal basis of eigenvectors of 7.

2. |IT|| = omax, the largest singular value.

Proof: If x = Zn oV, + Px (as in the proof) is a unit vector, then Tx =
Y p UnOnlty, SO

2 2 2 2
ITx1? =" louPlonl® < 0y
n

Moreover there is an index k such that T vy = 045Uk, SO that || T vg|| = opmax-
3. The converse of the spectral theorem is true, i.e., defining the operator

in terms of an orthonormal basis gives a normal operator, assuming A, bounded,
because | Tx[|> = 3, [Aal?[(en, x)|? = [IT*x||%. If A, — 0, then T is compact
because it is the limit of finite-rank operators (prove!).

4. Given a compact normal operator in B(H ), and any function f € C(o(T)), with
f(0) = 0, one can define the compact operator f(7T") by the formula

F(D)x =" fOn)len, X)en.

n=0

For example,

(a) ~/T is compact when T is a self-adjoint compact operator with non-negative
eigenvalues,

(b) for any A # 0, there is a projection P, := f,(T), where f; is a continuous
function which takes the value 1 around A and 0 around all other eigenvalues.

5. The projections P, to the eigenspaces X, of 7 commute and are orthogonal, so
E, := P+ .-+ P, isaprojection onto X, 4 - -+ X, (Exercise 8.19(12)). The
spectral decomposition can be rewritten as 7x = Zn MOE,x, where §E,, =
E, — E,_1 = P,. This can be seen as a breakup of T = ﬁ fU(T) 2(z=T)"1dz
into integrals on the disconnected components of the spectrum.

6. If T € B(X) is compact normal, then the singular values of T are the absolute
values of its non-zero eigenvalues.
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Proof: Clearly, if Tx = Ax then T*Tx = |A|2x. Conversely, if T*Tx = ux
(u # 0) then

0= (T*T — wx =Y (1al> = w)len. x)en.

The e, are the eigenvectors of T with non-zero eigenvalues A,, so (e,, x) # 0
for some n, and p = |A, 2.

Application: Feature Extraction

According to SVD, any matrix T can be approximated by »; o;u;v}, which
is a useful way of representing the information content of 7. Typically, data
from variables xi, ..., x, is organized in the form of an m x n matrix 7" with
the rows representing the different variables and the columns the normalized
instances; the resulting matrix U associated with the largest singular values are
linear combinations of the variables x; that account for the most variability in the
data.

To take a visual example, consider the numerical digits as images of 16 x 16
gray-level pixels; the m = 256 variables are the pixel values and the n column
vectors represent each ‘training set’ digit image, of which there would typically be
well over a hundred. An SVD results in three matrices: U, X, V. The orthogonal
matrix U consists of m x m rows and columns; X' is an m X n rectangular matrix
with the singular values on the main diagonal, and V is an n x n orthogonal matrix.
In the digits example, the training set ¢; and the first few columns u; are shown:

«- GIIFE ARAWEE -
w= | |GCIFIIACASH

Note that u is a sort of “average” of all the data vectors, u; is the most significant
correction, and so on—they are the features of the data. One can truncate the U, X,
and V matrices to sizes of m x k, k X k, and k x n respectively.

After the training is over, and the U matrix extracted, it can be used for many
tasks. One is to compress the data effectively. Given a new data instance x, one can
find its ‘coordinates’ relative to the basis u; by taking o; := (u;, x),i = 1,...,k.
The N largest coefficients «; can be retained, and the vector rebuilt as Zlai | Cilli-
In the table below, one can see the convergence of an image as more terms are
added. With as few as a hundred coefficients, instead of 256 pixel values, the image
is practically indistinguishable from the original (to the right).
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40 T T T T T T T T T T T T

35
30 |9 A typical plot of the singular values of a matrix,
arranged in decreasing order. Only the first ‘few’
singular values are the most relevant, the rest
adding little information.
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0 )
Z|a|> Qi U;

Another use of SVD is to test whether a new data point is similar to the training
set. In the following example, a number of training images representing the digit 3
are placed as columns of a matrix, its SVD extracted, and the first few columns of
U stored as Uy.

EKEIEI K EIM S
CVEHNERESRRES

Then given a new test image, its coefficients «; are computed, and the reconstructed
image can be compared with the original as

k
= Zu,, u; = (I — U Uf)x

i=1

If the ‘residual’ ||r|| is below a chosen threshold, then the test image is classified as
similar to the test data. For example, the residual of the image Bl withk =10is
3.45, while the residual of H i 1.59; the former might be rejected as a ‘three’,
while the latter is accepted.

Exercises 15.26

011
2. If S and T are commuting self-adjoint compact operators, then they are simulta-
neously diagonalizable. (Hint: consider S +iT.)

1. Find the singular values and vectors of <(2) ;) and (1 ! 0).
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3. (a) Let T be an n x n self-adjoint matrix, with eigenvalues A1 < -+ < X,
(including repeated eigenvalues), and corresponding orthonormal eigenvec-
tors vy, ..., v,. If M is a closed linear subspace, with orthogonal projection
P, then the restriction of PT P to M is also self-adjoint with eigenvalues, say,
U1 < -+ < Uy, and corresponding orthonormal eigenvectors uy, ..., Uy,.
Taking a unit vector x € [uy, ..., u; ] N[v;, ..., v,] # 0, we get

ur < {x,Tx) <p; and A < (x,Tx) < Ay

It follows that %; < p;. Similarly, take x € [u;,...,u,]l N
[vi, ..., Vign—ml # O to deduce p; < Aj4n—m. Combining the results
we get

Al S Ui < Ap—mti-

(b) Interlacing theorem: If the kth row and column of a self-adjoint matrix are
removed, the new eigenvalues p; are interlaced with the old ones A;:

=
VAN
&
VAN
>
[ ]

VAN
/AN
e
L

VAN
=
3

L

VAN

)\‘ n

4. Picard’s criterion: Suppose T € B(X, Y) is a compact operator on Hilbert spaces
X, Y, having singular values o,, and singular vectors vy, u,. In solving Tx = y,
we find for all n,

(Un, y) = on{vn, x).

A necessary condition is (u,, y)/o, € €% as well as y € (ker T*)*. Thus the
coefficients of y must ‘diminish faster’ than o,.
5. Truncated Singular Value Decomposition (TSVD): The series solution

_ Z (un, y) v,

0,
n n

of T*Tx = T*y need not converge in general. Even if it does, any small errors
in (u,, y) are magnified as o, — 0. In practice, the series is truncated at some
stage to avoid this. The cutoff point is best taken when the error in y becomes
appreciable compared to o,,. Use the Tikhonov regularization method (Sect. 10.4)
to derive another way of doing this (for the right choice of «),

2
o, (un, y)
x = Un.
Zcr,,2+oz on

n

(Un,y)
On

But any other weighting )", w,
as o, — 0, is just as valid.

v, where w, vanishes sufficiently rapidly
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6. It is instructive to compare with the case of solving the equation (7 — A)x = y
where T is compactin B(H) and 0 # A € o(T) (the case A ¢ o (T) is trivial). It
has a solution < y € ker(T — A)". That solution of minimum norm is then

(en, y)
X = E e, — A,
. )\n — n yO/

where the sum is taken over A, # A, 0, and yg is the projection of y to ker 7.
There is no issue of convergence of the series as [A, — A| > ¢ > 0.

7. = If T is a compact normal operator, then the iteration v,y = Tv,/||Tv,|
(starting from a generic vector vg) converges to an eigenvector of the largest
eigenvalue, if this is unique and strictly positive. What happens otherwise?

15.5 Ideals of Compact Operators

Another way of looking at the spectral theorem (or even the singular value
decomposition), is the following:

Proposition 15.27

A compact operator on a separable Hilbert space can be approximated
in norm by a square matrix.

A compact normal operator on a separable complex Hilbert space can be
approximated in norm by a diagonalizable matrix.

Proof An operator T € B(H) takes the matrix form, in terms of a countable
orthonormal basis e; of H,

P, TP, P,T(I — P,)

(I —=P)TP, | (I—P)TU — Pp)

where P, is the self-adjoint/orthogonal projection onto [ey,...,e,]] (Exam-
ple 15.14(1)). Note that for any vector x € H, P,x — x as n — OO
(Theorem 10.31). The claim is that when T is compact, the finite square matrices
P, T P, converge to T. This is the same as claiming that the other three sub-matrices
vanish as n — oo.
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(I — P,)T — 0: Suppose, for contradiction, that there is a subsequence of P, and
unit vectors x, such that ||[(I/ — P,)Tx,|| = ¢ > 0. Since T is compact, there is a
convergent subsequence 7'x, — x, hence

(I—-—P)Txp,=U—-P)x+U—-P)(Tx, —x)— 0

leads to an impossibility.

(I—-P)TP, - 0Oand (I — P,)T(I — P,) — 0 now follow from ||P,]| =1 =
Il — P,|. Finally, T(I — P,) — 0is also true and follows from (I — P,)T* — 0,
since T* is also a compact operator (Proposition 11.33).

For a compact normal operator, the orthonormal basis e; can be chosen to consist
of the eigenvectors of T by the Spectral Theorem, in which case P, T P, is a diagonal
matrix

n
P,TP, =) Jiee}.

i=1

Proposition 15.28

The compact operators of finite rank acting on a Hilbert space H form
a simple x-ideal /Cr(H), which is contained in every non-zero ideal of
B(H).

Its closure in B(H) is the x-ideal of compact operators /C(H).

Proof The facts that the sum of compact operators, the product of a compact
operator with any other operator, and the adjoint of a compact operator, are compact
have already been proved earlier (Propositions 11.9 and 11.33), so KC(H) is a *-ideal
in B(H).

Similarly, it is not difficult to show that the sum of two finite-rank operators, and
the product (left or right) of a finite-rank operator with any other operator, are again
finite-rank. The details are left to the reader.

Let Z be an ideal in B(H) which contains a non-zero operator S. There exist
non-zero vectors v, w such that Sv = w. For any vectors x, y, define the operator
Eyy 1= xy*, so that

ErySEyy = x(w*Sv)y* = |w|*Ey,

and Ey, € Z. Hence, any finite-rank operator, which is a sum of such operators,
T = Zflv:l u, v, is also in Z, that is, we have proved Kr(H) C 7.
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In particular /Cp(H) contains no non-zero ideals; we say it is simple. That the
closure of ICp(H) is KC(H) is essentially the content of the previous proposition:
More precisely, recall that the image of a compact operator is separable, so

M := imT has a countable basis (e;). Let P, be the orthogonal projection onto
[ei, ..., ey]l. Then, as in the proof of the previous proposition, the finite-rank
operators P, T converge to T. O

Examples 15.29

1. The ideal of compact operators, being the closure IC(H) = Kr(H), is contained
in every closed ideal of B(H).

2. The algebra of square matrices B(C") = g (C") = K(C") is simple.

3. » The above argument cannot be extended to show, more generally, that compact
operators on a Banach space can be approximated by finite-rank operators.
Spaces for which this is true are said to have the “approximation property”; even
separable spaces may fail to have this property [41].

Hilbert-Schmidt Operators

Definition 15.30

The trace of an operator 7' on a Hilbert space with an orthonormal basis e,
is, when finite,

tr(T) := Z (en, Tep).

neN
A Hilbert-Schmidt operator is one such that tr(7*7T) = ) I Tenl? is

finite.

As defined, the trace of an operator can depend on the choice of orthonormal basis.
But for a Hilbert-Schmidt operator, tr(7*T') is well-defined as the proof of the next
proposition shows:

Proposition 15.31

If the right-hand traces exist,
tr(S + T) = we(S) + tr(T), tr(AT) = A te(T), tr(T*) = te(T).

If S, T are Hilbert-Schmidt, then tr(S7) = tr(TS).
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Proof The identities tr(S + T) = tr(S) + tr(T) and tr(AT) = A tr(T) follow easily
from the linearity of the inner product and summation, while

w(T*) =) en, T*en) = ) (TFen, ea) = ) (en, Tey) = te(T).

neN neN neN

Let e, and ¢, be orthonormal bases for the Hilbert space H; then Te, =
Y om(m.Tey)ey and STe, =), (ém, Te,)Sem, so

w(ST) = (en. STen) = Y (m. Ten)len. Sen) = Y _ (&m. TSEn).  (15.1)

n n,m m

exchanging the order of summation. This would be justified if the convergence is
absolute, which is the case when S* and T are Hilbert-Schmidt,

D em, Ten)len, Sen)l < [ 1Em, Ten)? [ len, Sem)I?
n,m n,m

n,m

= \/Z ITenl® " lIS*enll®. (15.2)
n n

applying the Cauchy-Schwarz inequality and Parseval’s identity. So, putting S = T*
and ¢, = e, in (15.1) shows that tr(7*T) = tr(T'T*), when T is Hilbert-Schmidt,
i.e., T* is also Hilbert-Schmidt. This, in turn, implies that when S and T are Hilbert-
Schmidt, (15.2) and (15.1) are satisfied, so tr(7'S) = tr(ST) (in particular tr(7*7T))
is independent of the orthonormal basis. O

Theorem 15.32

The Hilbert-Schmidt operators of B(H) form a Hilbert space HS, with
inner product

(S, T)p :=tr(S*T) = ) _ (Sen, Ten),

neN

which is a x-ideal of compact operators, and

ITI < 1T, I1STllp < IISINT || p-

Proof Let ¢, be an orthonormal basis for H. First note that | T ||z := (T, T)f =
Jtr(T*T) is finite for Hilbert-Schmidt operators.
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(i) We have remarked in the preceding proposition that if T € HS then T* € HS,
and

IT*lp = V(TT*) = Yue(T*T) = | T .

The product (S,T) := tr(S*T) is finite and independent of the choice of
orthonormal basis when S, T € HS, by (15.1) and (15.2). Moreover, both of the
following traces are finite,

tr((S + T)*(S + 7)) = tr(S*S) + tr(S*T) + te(T*S) + tr(T*T)
tr((AT)*(WT)) = A2 e(T*T),

so that HS is a vector space.
Linearity and ‘symmetry’ of the product follow from

(S, Ty + Tp) = tu(S*Ty + S*T») = tr(S*T}) + tr(S*T2) = (S, Ty) + (S, T»),
(S, AT) = tr(S*AT) = A tr(S*T) = A(S, T),
(T, S) = t(T*S) = tr(S*T)* = (S*T) = (S, T).

That |T|| < ||T||r (and hence || T || =0 = T = 0) follows from

1Tl =11 (en. X)Tenll <D ew. )| Ten]
n n

< \/Z|<en,x>|2\/z ITenll? = 1N .

(-, ) is therefore a legitimate inner product on HS.
Finally, HS is an ideal of B(H), since forany S € B(H) and T € HS,

ISTF =D ISTenl®> < YIS N Tenll* = ISIPIT 17

neN neN

and |TS|lp =T r < ISTMT*NE = ISIITI £

(ii) Hilbert-Schmidt operators are compact: Given T € HS, define the finite-rank
Te,, ifn<N

operator Ty by Tye, 1= .

0, ifn >N

1T = Twl* < IT = TwllF = D 1T = Tw)enl)?
neN

e¢]

= Z ITen]|> = 0as N — oo.
n=N+1
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T is thus the limit of finite-rank operators, making it compact (Proposition 11.9).

(iii) The space HS is complete in the HS-norm: Let (T,),cN be an HS-Cauchy
sequence

170 = TullF =Y _I(Tw — Tweil> > 0 asn,m — oo,
ieN

then it is a Cauchy sequence in the operator norm, and thus 7, — T in B(H).
But writing the Cauchy condition in a slightly different way, the sequences x, :=
(I(T,, — T)eil)ien form a Cauchy sequence in 22,

2 2
e — xXml2 = >[I = Deill — 1T — Teill]
ieN
2
<Y T = Twei|* — 0,
ieN
asn, m — 00; SO X, converges to some sequence (a;);eN € 02, Combining Ty,e; —

Te; with || T,e; — Te;|| — a; for all i, each a; must be 0, and

1Ty = TIF =D (T — Dei|* = xal, > 0 asn — oo,

1

soT, »> TinHS,and T € HS since |T|r < [T — Tullr + IIT, |l < oo. Note
that the space HS is not necessarily complete in the operator norm. O

Having established a theory of Hilbert-Schmidt operators, we populate it with some
important examples on L?(R):

Theorem 15.33

If k € L?(R?), then the operator on L2(R)

Tf(s) :=/k(s,t)f(t)dt,
is Hilbert-Schmidt with ||T'|| » = [|k|| 2.
Proof Let ¢,(t) be any orthonormal basis for L%(R). Then any function of ¢ in

L*(R) can be written as a sum of these basis functions. Analogously any function
of two variables 7, s in L?(R?) can be written as a sum (convergent in L?(R?))

k(s,t) = Zan,men_(t)em(s)»

m,n
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(by first approximating k by simple functions }_; a;1g,(t,8) = _, , GmulE, (1)
1g; (s).) Write €, ® ey, for the basis functions (7,5) + en(f)en(s). They are
orthonormal, since

(en @ em, &y @ eyy) = // en(t)em(s)ey (t)ey (s)dr ds
= (en', en){em’s €m) = Sunbp/m-

By Parseval’s identity [|k[|2, = [[ [k(z,s)|?dtds = Y, , lotn,m|*. Clearly,

(em, Tey) = /f enm(Dk(t, s)e,(s)dt ds = (e, @ e, k)LZ(R2) = Qn,m,

SO

717 =Y ITeall> = lem. Ten)* =D lotnml® = [IKII7..
n

n,m n,m

Examples 15.34

1. » For square matrices T = [T; ;], § = [5; 1,

ul =3, Ti. ITlr=/>; IT; 12, (S, T)p = i SiiTij-

2. » More generally, for any Hilbert-Schmidt operator on any Hilbert space,

ITIF =) ITeil> =) lej, Ten)l> =Y _ofllej. é)l> =Y o7,
i,J i,j

ieN ieN

where o; are the singular values of T'; Parseval’s identity is used on orthonormal
bases such that Te; = o;¢;.
Itis evident that ||T'|| p > max, |o,| = ||T||. It also follows that

I(S. T)pl < lloslllior].

The fact that T = ), A,eue); for a Hilbert-Schmidt normal operator is one of
Hilbert’s major theorems.
3. Find the eigenvalues and eigenfunctions of the integral operator on L?[0, 1] with

t(1—s), 0<r<s<1
s(l—1), 0<s<t<1

/

kernel k(s, t) := {

N
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Solution: The operator is Hilbert-Schmidt since |k(s, )] < 1 on the bounded
domain [0, 1]. The eigenvalue equation is

K 1
/ t(l—s)f(t)dt+/ s(1—=1)f@&)dt = Af(s).
0 K

The eigenfunctions can be assumed to be differentiable, essentially because they
are integrals. Differentiating gives

s(1 = 5)7(s) /0 () dt = 5(1—5)f(5) + [(1 —0f0dy = 0f(s),
and again,
—5f ) = (1= ) £(5) = A (s),
SO+ f© =0, fO=0=f).

The solutions of this differential equation are the eigenfunctions f,(#) =
sin(nmt) with eigenvalues A, = 1/(n27t2).

4. A traceless operator in B(C") has a matrix with a zero diagonal, with respect to
some orthonormal basis.
Proof: Let A be an n x n matrix with tr A = 0. The proof is by induction on 7.
Since the numerical range of A is convex,

1 l &
O0=—-trA=— rie W(A
SwA=-3 i€ W(A)

i=1

where A; are the eigenvalues of A. So there is a unit vector u such that (u, Au) =
0. The matrix restricted to ut, A := Al, 1, is still traceless

0O=trA=trA+ (u, Au) =tr A.

Therefore, by induction, there is an orthonormal basis ey, ..., e,_1 of ut in
which A has zero diagonal, i.e., (e;, Ae;) = 0. This basis, together with u is the
required basis for the whole n-dimensional space.

5. » There is a correspondence between various ideals of compact operators and
the sequence spaces of their singular values (oy,):

Finite-rank operators Kr(H) (o) € coo
Trace-class operators Tr(H) (oy) € £!
Hilbert-Schmidt operators HS(H) (o,,) € £>
Compact operators K(H) (0,) €co

Bounded operators B(H) (o,) €™
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where the set of frace-class operators has been added to complete the picture
(Exercise 15.51(11)). More generally, the Schatten-von Neumann class of oper-
ators C,, corresponds to (0,)nen € €. The analogy goes deeper than this:
K(H)* = Tr(H) and Tr(H)* = B(H) (via the functionals T +> tr(ST)).

Exercises 15.35

1.

2.

@) (5*, T*)p = (T, ),
(b) (RT*,S)p = (R, ST)p = (S*R, T) .
The closest number to an n x n matrix T (in the HS-norm) is tr(7)/n. (Hint:
A—T L1)
The map x — M,, where M,y := xy, embeds 02 into HS(£?) (isometrically).
More generally, if x, € H satisfy ), x> < oo, then T := D onXney is
Hilbert-Schmidt with | T3 = 3, x>
Let A be a normal matrix and P any orthogonal (self-adjoint) projection of rank
r. Using the eigenbasis of A, (P, AP) = (P, A) = ) ; ajA; where A; are the
eigenvalues of A, o; = P;;, and Zi o; = (I, P) = tr(P) = r. It follows that
the largest value of (P, AP), as P is varied, is the largest sum of r eigenvalues
of A.

. The Volterra operator on L2[0,1], V f@) = fot f is Hilbert-Schmidt with

singular values (n + $)7,n € N, and | V|| = %fz v =2

If k(s, t) = k(s — t) for a real function k(¢) € LZ[Ql 1] (Example 9.28(3)), then
Tf :=k x f is Hilbert-Schmidt, with eigenvalues k(n).

. Find the eigenfunctions and eigenvalues of the HS-compact self-adjoint opera-

tors Tf(s) := fol k(s,t) f(t)dt (on L2[0, 1]), where

(a) k(s,t) :==s5+1t,
I, 1—-s<t<l1
® k=1 ° ,
0, 0<r«1
4

. 4
(c) k(s, 1) := min(s, r); deduce that ZneN m =fgand ) 2 n% =55

. In the original Fredholm theory, it was proved under certain hypotheses that the

equation

b
@) +/ k(t,s)f(s)ds = g(1)

either has a unique solution, or else the same equation with g = 0 admits a
finite number of linearly independent solutions. Show this for f, g € LZ(R),
k € L?(R?), using Proposition 14.18.
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15.6 Representation Theorems

We return to a general unital C*-algebra X and recover some of the previous
propositions that were proved in the special case of B(H) to the general setting.
We will see that the functional calculus can be widened considerably for normal
elements, allowing us to define square roots and absolute values of certain operators.
The final aim and fitting end to the chapter is to prove that a C* algebra is embedded
in B(H) for some Hilbert space H.

Proposition 15.36

For any ¢ € S(X), T € X,

¢T* =T, T*=T"

Proof 1f A is self-adjoint and ¢ € R, then
IA +it]> = (A +in) (A +in)]
= | A% + 2| < A)? + 1

(As a matter of fact, equality holds as the accompanying diagram shows.)

o(A+it)
————— -
it
———— -
0 p(4)

Writing A = a + ib, we find
b+t <la+ib+it]| = |p(A+it)] <||A+it] </ |A]*+ 12
VieR, (Qi+bb<|Al

sob = 0and ¢A € R. More generally, forany T = A +iB € X, with A, B
self-adjoint,

¢T* =¢p(A—iB) =pA —i¢pB =9pA+i¢pB = ¢T.

In particular, every ¥ € A is automatically a x-morphism, and

T*(Y) =yT* =yT =TW)*
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Note that, for A self-adjoint, A(A) € o(A) € S(A) C R. The proposition above
opens the path to dramatic results: not only are the commutative unital C*-algebras
completely characterised as C(K) where K is a compact space, but even for non-
commutative algebras, it allows an extension of the functional calculus to normal
elements.

Corollary 15.37 (Gelfand-Naimark Theorem)

Every commutative unital C*-algebra is isometrically *-isomorphic to
C(A) via the Gelfand map.

Proof Recall that the Gelfand map G is a Banach algebra morphism (Proposi-
tion 14.38). In a commutative C*-algebra, every element T is normal, so ||f||c =
p(T) = ||T|| (Theorem 14.39); furthermore T* = T*, and the Gelfand transform is
an isometric *-embedding. Moreover,

1T = p(T?) = p(T)* = IT%,
so by Proposition 14.40 and Exercise 14.41(19), X is isomorphic to C(A). |

Theorem 15.38 (The Functional Calculus for Normal Elements)

When 7T is normal, 7 := C[T, T*] is a commutative closed x-subalgebra
of X, isometrically *-isomorphic to C (o (T)).

The identity f/(T\) = fo T defines a normal element f(T) whenever
f € C(o(T)); theno (f(T)) = flo(T)].

Proof T is a commutative closed *-subalgebra of X: Since T is normal,
T"(T*)™ = (T*)™T" (by induction), so it should be obvious that (i) any polynomial
in T and T* can be written uniquely in the form Zn’m anmTH(T*)™, (ii) the
product (and addition) of two polynomials in 7" and 7* is another polynomial, (iii)
this product commutes, and (iv) the involute of a polynomial p(7, T*) remains in

’7—9

P T = (D ann T”(T*)’")* = G T(T*)" € CIT, T*].

n,m

CI[T, T*] is thus a commutative x-subalgebra. The closure of such a subalgebra in
A remains a commutative *-subalgebra (Prove!). Note that 7" = [T"T*"]|(,, ;)en2
is obviously separable.
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The spectrum of S € Y, with respect to a closed x-subalgebra ) C X, is 0(S):
Clearly, if S (or S — A) is invertible in ), it remains so in X. Conversely, if S is
invertible in X, then so are S$*, $*S and SS*. But $*S is self-adjoint, with a real
spectrum (in ) and X'), hence S*S + i/n is invertible in ). As ) is closed and
(S*S +i/n)~" — ($*S)"'in X, as n — oo, we can deduce (S*S)"! € ).
Similarly (S5*)~! € ), implying S is invertible in ) (Exercise 15.3(4)).

T: At — o(T) is a homeomorphism: (A7 is the character space of T.) Tis 1-1
since suppose f(lh) = T(xpz) for some V1, ¥» € Ar,i.e., Y1 T = Y T. Then

nT* =T = Yol = YoT*

T T = i (Y ann T T™)

n,m

=Y apm W2 T)" W T)" = Yap(T, T*)

n,m

for any polynomial p; finally, by continuity of ¥y and Y2, ¥1S = S forall § € T,
proving ;1 = ¥». That T is onto was proved in Theorem 14.39. It is continuous
because

Yo =¥ = TWn) = VT — yT =TW).

SoTisa homeomorphism since A7 is a compact metric space (Proposition 6.17 and
Example 14.36(8)). Hence any z € o (T) corresponds uniquely to some ¢ € Ar
viaz=TW)=yT.

The Gelfand transform G : T — C(Ar) = C(o(T)) is an isometric
x-isomorphism: Since T is a commutative C*-algebra, it is *-isometric to C(A7).
The continuous function calculus: The correspondence between elements in 7 and
functions in C (A7) allows us to extend the analytic function calculus established

earlier. For any continuous function f € C(o(T)), the composition f oT : Ar - C
corresponds to some (normal) element in 7 which is denoted by f(T). By this

definition, f/(T\) =fo T. The following identities are true because they mirror the
same properties in C(Ar),

(f + (1) = f(T) +&(T), Af)NT) = rf(T),
(fe)(T) = f(T)g(T), f(T) = f(T)".

Finally || f(T)]l = | fll¢c is due to G being an isometry and g o f(T) = g(f(T))
follows after

o(fT) =imf(T)=imfol =fimT = f(o(T)).
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Examples 15.39

1. To take a simple example, consider a 2 x 2 diagonalizable matrix 7 with
distinct eigenvalues A; and corresponding orthonormal eigenvectors v;,i = 1, 2.
Its character space A7 consists of the two morphisms ;S := (v;, Sv;) for
S € T. The Gelfand transform takes T to (A, A2); any other matrix f(7T) is
simultaneously ‘diagonalized’ to (f (A1), f(X2)).

2. » For any elements S, S, € T,

o(S1+8) Co(S1)+0(8), 0(85182) Ca(S1)o(S).

Proof: As T is commutative, Theorem 14.39 shows that o (S) = ArS for any
S € T. Hence the statements follow from Exercise 14.41(10)).

3. If S, T are commuting normal elements, and f € C(c(S)), g € C(o(T)), then
F(8)g(T) =g(T) f(S).
Proof: For polynomials p and ¢ in z and z*, p(S,S*q(T,T*) =
q(T, T*)p(S, S*) since they are sums of terms of the form

aSnS*mTiT*j — aTiTj*SnS*m

by an application of Fuglede’s theorem. Taking the limit of polynomials converg-
ing to f, g (by the Stone-Weierstrass theorem) gives the required result.

4. The self-adjoint elements of 7 correspond to the real-valued functions f €
C (A7) and form a real Banach algebra, while the unitary elements correspond
to functions with unit absolute value, | f| = 1.

Proposition 15.40

For T normal,

T is unitary < o(T) C e’

T is self-adjoint < o (7) C R.

Proof (i) The spectrum of a unitary element U must lie in the unit closed ball since
Ul = 1.Now, U — A = Ul — AU*) and |AU*|| = |A|||U*|| = |A]; so [A] < 1
implies 1 — AU*, and thus U — A, are invertible (Theorem 13.20).

(Equivalently, if . € o(U) then ™! € 6(U™") = o(U*) = o (U)* and so both |1
and 1/|A| are less than 1.)

(ii) We have already seen that S(7T") C R when T is self-adjoint, and S(T') includes
o (T). Alternatively, ¢/” is unitary (Example 15.5(11)) and the spectral mapping
theorem gives /1) = o (¢!T) C ¢'R. But |¢/@ti)| = ¢=? is 1 only when b = 0,
from which follows that o (T) C R.
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(ii1) For the converses, let 7 be normal with o (7)) C R. Writing it as A + i B with
A, B commuting self-adjoint, we see thatiB =T — A, so

0(iB)Co(T)4+o0(—A) CR, by Example 2 above,

yeto(iB) =io(B) CiR. Thuso(B) = {0}, B =0,and T = A is self-adjoint.
(Alternatively, we can work with S: if T is normal and o (T') is real, then S(T) CR;
forany ¢ € S, ¢p(T — T*) = ¢pT — ¢T =0,hence T — T* = 0.)

(iv) If T is normal with o (T') C ¢'R, then
o (T*T) C o(T*o(T) = o(T) o (T) C 'K,

As T*T is self-adjoint and has a real spectrum, that leaves only +1 as possible
spectral values. But 1 4+ T*T is invertible, otherwise there is a ¢ € Ar such that

—1=y(T*T) =y T*YT = [y T|?,

a contradiction. So o (T*T) = {1}, 1 = T*T = TT* and T is unitary. O
Exercises 15.41

1. Find an example of an operator 7 having a real spectrum, without 7' being
self-adjoint.

2. If J is a x-morphism and 7 is normal, then J(f(T)) = f(J(T)) (first prove,
for any polynomial p, J(p(T, T*)) = p(J(T), J(T)*)).

3. »InaC*-algebra, S(T) =0 = T = 0 (write T = A+iB). We say that S(X)
separates points of X: if T # S, then there is a ¢ € S such that ¢T # ¢S.

4. Suppose a C*-algebra has two involutions, * and % (with the same norm). Show
that T* = T* for all T—the involution is unique. (Hint: ¢(T*) = ¢T =
¢(T*).)

5. Every normal cyclic element is unitary. In particular, the normal elements of a
finite subgroup of G(X') are unitary.

6. The Fourier transform F : LZ(R) — L%(R) is unitary; in fact it is cyclic
F* = 1, so that it has four eigenvalues &1, #i. Verify that the following are
eigenfunctions: e et (4nt? — 1)e’7”2, (4nt3 — 3t)e’7”2.

7. A normal T such that || T|| = 1 = ||T~!| is unitary.

8. Normal idempotents are self-adjoint. A normal element 7" with o (T") < {0, 1}
is an idempotent, e.g., when T is normal and 7"*! = T" for some integer 7.

9. Suppose M is a closed subspace of a Hilbert space which is invariant under a
group of unitary operators. Show that M~ is also invariant.

10. If T,, are self-adjoint operators and 7,, — T then T is self-adjoint.
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15.7 Positive Self-Adjoint Elements

For T, S self-adjoint, let T < S be defined to mean o (S — T) < [0, oo[. Equiva-
lently, since S(S — T) is the closed convex hull of o (S — T') (Proposition 15.8),

T <S & Vo eSWX), ¢T < $S.

Proposition 15.42

The self-adjoint elements form an ordered real Banach space, such that

T<SANDR<Q = T+R<S+0,
T<S = R'TR<KR*SR VReX.

Proof First note that, by the definition, 7 < § & 0< S—-T & T -85S <0
(& —8 < —T),sowemightas well consider A := S—T > 0and B:=Q0—R >0
in proving some of the assertions.

(i) It is trivially true that self-adjoint elements form a real vector subspace
S+ =S"+T*=S+T, AD)* =AT* = AT, VieR.

If T,, - T with T,} = T, then in the limit, 7* = T, so the subspace is closed.

(i) That T < T is immediate from o (0) = {0}. For anti-symmetry, note that
0<SA<0=0(A)={0} = Al =p(A)=0= A=0,
so SKTLLS=T=-.
(iii) To facilitate the rest of the proof, we demonstrate
a<T<b <& o(T)Cla,b] (15.3)
in two parts,

a<T & o(T)—a=0(T —a) C[0,00[< o(T) C [a, oo
T<b<x o()—b=oc(T —b)C]-00,0] & o(T) C]—00,b].

In particular, note that T < p(T') = ||T|| and thatif —b < T < b then p(T) < b.
iv) A,B >0 = A+ B > 0: In general,

C+D<ICH+D[<ICI+ DI = p(C)+ p(D).
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Leta := p(A)and b := p(B),then0 < A < acanberewrittenas 0 <a— A < a
and hence p(a — A) < a. Similarly p(b — B) < b,so(a— A)+ (b — B) <a+b,
or equivalently, A + B > 0.

(v) A special case of this shows transitivity of the order relation,

T<S<R=0<(R-S5)4+S-T)=R-T = T <R

(vi) We are not at this stage able to prove the full product-inequality rule as claimed
in the proposition. The proof is deferred to the next proposition. Here we show
only the simple case when R is scalar, i.e., if A > 0and A = S — T > 0, then
o(AA) = Ao (A) € RT, meaning AT < AS. O

The continuous functional calculus allows us to extend the domain of all
continuous real functions f : R — R to the set of self-adjoint elements. Two
functions in particular stand out:

(i) the positive square root ~/A when A > 0, satisfying (v/A)? = A = v/ A2,

t, whent>0 . |
(ii)) A for all A self-adjoint, from the function 74 := when ; similarly
0, whent <0

A_ from t_ := (—t)4. Their sum then gives |A|, which corresponds to the
function ¢ — |¢].

Examples 15.43

1. (@) If =T < S T then ||S|| < |IT].
(b) If0 <a < T < bthen T is invertible and ! < T~ < a1,
(c) f ST >0then TS > 0.
(d) If S, T > 0 and ST is self-adjoint, then ST > 0. In particular, 7T > 0 =
T" > 0.
e IfS, <T,and S,, > S,T, > T,then S < T.
Proof:

@ =TI <S<ITl,s00(S) S[=ITI, IT(Tand [|S]| = p(S) < IT].

(b) o(T) C [a, b] does not include 0; o (T~ ) = o(T)"L C b7, a!].

(c) o(TS) is the same as o (ST) except possibly for the inclusion or exclusion
of 0. In any case 0 (ST) C Rt & o(TS) C RT.

(d) Recall that ST is self-adjoint exactly when ST = TS. So, by Exer-
cise 14.41(17)), o (ST) C o(S)o(T) C RT.

(e) LetA, =T, — S, >20and A, > A:=T — S.Then 0 < ¢pA,, —> @A for
any ¢ € §,50S5(A) C [0, oo].

2. The set of positive elements is a closed convex ‘cone’ (meaning 7' > 0 AND A >
0 = AT > 0), with non-empty interior in the real Banach space of self-adjoints.
Proof: The only non-trivial statement is that the cone contains an open set of
self-adjoints, namely the unit ball around 1: If A is self-adjoint and ||A]| < 1
then -1 < A<1,s0l1+A>0.
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3. Positive continuous functions f : R — RT give positive elements f(A) > 0
for A self-adjoint. For example, A4, A_, |A], Az, and e? are all positive. More
generally, for any normal operator T and f € C(C,R"), f(T) > 0.

Proof: By the functional calculus, o (f(T)) = flo(T)] < [0, ool.

4. Every self-adjoint element decomposes into two positive elements

(@ A=Ay —A_|A|=AL + A,

(b) ALA_ =0, AL|A| = A%, ALA = +A%, and A, A_, A and |A] all
commute with each other,

(©) —A_<A<AL <AL AL

Proof: The identities t = t4 —t_, |t| =ty +t_, 11t =0, to|t| = 13, tat = 13
imply (a) and (b). Moreover, A+A_ = A4 > 0,|A|-Ay = Ay —A=A_=0.
Finally, o (JA]) = {|\] : . € 0(A) } is bounded above by p(A) = ||A]l.

5. By the spectral mapping theorem, the spectral values of +/A are the positive
square roots of those of A > 0. Overall there may be an infinite number of
square roots of A, e.g., for any z € C, (lfz 1_+ZZ)2 = ((1) (1))

6. If S, T are invertible positive self-adjoints, then
@ (T3~ =773,
b 0<S<T = T <57,
(©) 0<S<T = V/S<VT.
Proof: (a) follows from the same identity that holds in C(R™). For (b), (c), note
that 0 < T-1ST? < 1 (Proposition 15.42); using example 1(b) then gives

2

T3S'T% > 1, and hence S~' > T-1T~3 = T-'. Also, |S2T2|| =
IT=2ST~2|| < 1, from which follows 7~¥S27~% < 1 and §2 < T'2.

7. If p(T) < 1 then

S:=14T*T + (TH*(TH + (TH*(T3) + - -

converges and is positive invertible; |1 — S~!|| = ||S%TS_% I < 1.

Proof: Applying the root test, [(T")*(T™)|[* = |T"|* — p(T)? < 1.
Assuming the next proposition that each term is non-negative, (7")*(T") > 0,
it follows that S > 1, and thus invertible. Moreover, 0 < s-! < 1 and
0<1-S51<1,s0

1 _1 _1 - _1
1—S ' =852(S—1)S 2 =8 2T*STS 2

S ISITS T2 = [(SITS 2)*(SITS )| =1 -S| < 1
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Proposition 15.44

Forany T € X and ¢ € S(X),

1) T*T >0,

(i) T >0 < T = R*R, for some R € X,
(iii) (S, T) := ¢(S*T) gives a semi-inner product,
(V) [¢(S*T)? < p(S*S)p(T*T), |¢T|*> < ¢(T*T),
V) [§(S*TS| < P S* T

Proof (i) T*T is certainly self-adjoint, and can be decomposed as T*T = A — B
where A, B > 0, AB = BA = 0 (Example 4b above). Now

(TB)*(TB) = BT*TB = B(A— B)B=—-B><0

and hence (T B)(T B)* < 0 (Examples 15.43(1c)). Writing TB = C + i D, with
C, D self-adjoint, we find
0<2(C*+ D% = (TB)*(TB)+ (TB)(TB)* <0
0<C?=-D*<0
C=0=D
so TB = 0. But then, 0 = (TB)*(TB) = —B?3 forces B=0and T*T = A > 0.
This allows us to conclude part (vi) of the proof of Proposition 15.42. If T < §

let A:=S—T > 0,so0forany R € X, R*AR = (v/AR)*(v/AR) > 0, ie.,
R*TR < R*SR.

(ii) Conversely, if T is positive, let R := JT >0,s0 R*R=R*=T.

(iii) The product satisfies the following inner-product axioms,

(S, ATy + uTz) = ¢(AST1 + uST2) = A(S, T1) + (S, I2),

(T, S) =¢(T*S) =p(S*T)* = (S, T),
(T,T)=¢(T*T) >0  since T*T > 0.

However, it need not be definite, i.e., ¢(T*T) = 0 may be possible without 7 = 0.

(iv) This is the Cauchy-Schwarz inequality, which is valid even for semi-definite
inner products (Exercise 10.10(16)). In particular, taking S = 1 gives the second
inequality.
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(v) As ¢ preserves inequalities,
T*T < |T*T| = |T|* = S*T*TS < |T|I’S*S
= $(S*T*TS) < p(S* T
6 (S*(T ) < $(S*)(S*T*TS) by (iv),
< ¢S T

Proposition 15.45

If J : X — ) is an algebraic *-morphism between C*-algebras, then it is
continuous with ||J|| = 1, and preserves <.

If J is also injective, then it is isometric.

By an algebraic *-morphism is meant a map which preserves +, -, 1, and .

Proof If A > 0, then A = R*R and J(A) = J(R)*J(R) > 0. Thus J preserves
the order of self-adjoint elements,

ST = JT-520= J©)<JD).
Now for any T (noting that J(1) = 1),
0<T*T <|ITI1%,
0 < J(T*T) < ITI

1D = 1T I D2 = [JT D2 < T

If J is 1-1, then one can form the ‘inverse’ J~! :imJ — X.Itis automatically
an algebraic x-morphism (check!), for example, for any S € im J,

JUsH =7 'uny =T =T = ' UT) = JLS)*,

and so |71 (S)|| < ISII. Thus |71 < [|/(T)]| < IIT || as required.

(Alternatively, defining ||T'|| := ||J(T)|y gives a C*-norm on X'. But there can
only be one C*-norm (Exercise 15.10(5)), so J is an isometry and im J is closed.)
O

Examples 15.46

1. Characters are extremal points of S(X): If € A lies between ¢, ¢po € S, then
vV =¢1 = ¢
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Proof: By convexity of S, we can assume ¢ = Mzm Then
lp1(T)1> + |p2(D)* < ¢1(T*T) + ¢2(T*T)
= 2y(T*T) =2y (1)
= 311(T) + $o(D)?

from which follows that ¢ (T) = ¢ (T).

. Consider ¢ € X* which preserves inequalities, 0 < A = 0 < ¢A,; it satisfies

Proposition 15.44 except that [¢T|> < ¢p1¢(T*T) < (¢1)?||T . Such positive
functionals, as they are called, are positive multiples of states.

Proof: The proofs of 15.44 (iii)—(v) are still valid: the only assumption that needs
justification is ¢(T*) = ¢(T)*. For any self-adjoint A, A = Ay — A_, so
PA = pAL —PpA_ € R. So

¢T =¢p(A+iB) =pA++i¢B,
¢T* = p(A—iB) = pA —i¢pB = (¢T)".
Consider qAS = ¢/(¢1); obviously ¢ € X* and <f>1 = 1. By the proposition,

$T| = |¢T|/(@1) < |T|; combined with ¢1 = 1, we find [|¢] = 1. Thus
¢ € S(X) and ¢ = (¢1)¢. Note that ¢1 > O since 1 > 0.

Exercises 15.47

1.

2.
3.

0 < 1 (as self-adjoint elements), and the order relation of R is subsumed in that

of the self-adjoint elements. Similarly, in C[0, 1], f < g < V¢, f() < g(@).

(131‘ =) < (1 ))- Note that 7 < S does not mean “o(T) < o'(S)” in general.

(a) A diagonal matrix is positive when all its diagonal coefficients are real and
positive.

(b) If the coefficients of a real symmetric matrix are positive, it does not follow
that it is positive: Vi, j, A;; 2 0% A > 0.

(c) But if a real symmetric matrix is dominated by its positive diagonal,
meaning A;; > Z#i |A;ijl, then A > 0 (Gershgorin’s theorem, Propo-
sition 14.9).

ShowRe(T) >0 & ReS(T) CRT; T >0 & S(T) CR™.

The similarity between self-adjoints and real numbers is striking. But not every

property about inequalities of real numbers carries through to self-adjoints:

(a) Not every two self-adjoints S and T are comparable, e.g., T := ((1) _01)

satisfies neither 7 < Onor T > 0,
(b) 0 < § < T does not imply §2 <12 (unless S, T commute), e.g., S :=

(D) 7= G0
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6.

11.
12.

13.

14.

InB(H), S <T & (x,Sx) < {x,Tx) for all x € H. In particular, $*S <
T*T & ||Sx|| < ||ITx| forallx € H (e.g., T*T > 0); deduce

(a) If T is compact then so is S,

(b) If T is Hilbert-Schmidt, then so is S,

(c) For self-adjoint projections in B(H), P < Q whenim P C im Q,

(d) The ‘ellipsoid’ associated with S*S, namely Bg := {x : ||Sx| < 1}
satisfies By C Bg.

Prove directly S < T = R*SR < R*TR forall R, in B(H).

In B(H), if T > 0 then (x, y)) := (x, Ty) is “almost” an inner product on
H, except that it need not be definite; it still satisfies the Cauchy-Schwarz
inequality though,

l(x, Ty) 1> < (x, Tx)(y, Ty).

Conversely, every inner product ((, )) on H that is bounded, in the sense that
[{x, YN < cllx]|lllyvll, is of this type. Use Exercise 10.17(1) to deduce that, for
allx € H,

ITx]l < VITIV(x, Tx).

In particular, (x, Tx) =0 <& Tx =0.
If f:R— Risincreasinganda < T < bthen f(a) < f(T) < f(b).

. To calculate f(A) for a positive self-adjoint matrix A, first diagonalize it as

A = PDP~!, then work out f(A) = Pf(D)P_l. For example,

<01> _1(111) (54)_(21)

10 L 2 \£1 1 4 12

There exists A% > 0 for @ > 0 when A > 0, for which (A%)"/* = A.

If -1 < A < 1then A +i+/1 — A? is unitary. Hence any T € X is the linear

combination of at most four unitary elements. (Hint: A = (U + U™*)/2.)
Solve the equation TAT = B for the unknown 7 > 0, given A, B > 0

invertible (Hint: A2TATA? = (A2TA?)?).
If J : X — )Y is an algebraic *-morphism, then

X/kerJ =imJ < imJ is closed.
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Polar Decomposition

An important application of the use of square roots of positive self-adjoint elements
is the following generalization of the polar decomposition of complex numbers to
B(H):

Proposition 15.48 (Polar Decomposition)

Every operator 7 € B(H) has a decomposition 7 = U|T|,in which |T| :=
~VT*T > 0and U : im |T| — im T is an isometry.

Proof T*T is non-negative, so its square root R := +/T*T > 0 can be defined. R
reduces to the previous definition of |7'| when 7 is normal, so it is common to write
|T| for R. Then |||T|x|| = ||Tx|| forall x € H, as

(IT)x, IT1y) = (x,|TI?y) = (x, T*Ty) = (Tx, Ty). (15.4)
Let U : im|T| — im T be defined by U (|T |x) := Tx; it is well-defined by (15.4),
IT|(x—y)=0 << T(x—-y)=0,

and isometric, so can be extended isometrically to im [T| — im T (Example 8.9(5)).
It can be extended further to the whole of the Hilbert space H by letting Ux = 0
whenever x belongs to the orthogonal space ker |T'|, in which case it is called a
partial isometry. O

Examples 15.49

1. If the SVD of a compact operator is given by 7 = UX V™, then its polar
decomposition is T = (UV*)(VZV*), since T*T = VX?V* and |T| =
VXV

2. When T is normal and U is extended to a partial isometry, T = |T|U is also
true: ker |T'| = ker T by (15.4) and since ker T* = ker T (Proposition 15.12),

im|7T| = (ker |T|)*" = (kerT)* = (ker T*)* =im 7.
In fact,

for x € ker |T|, |TIUx =0=Tx,
forx = |T|lyeim|T|, |T|Ux=|T|U|T|y=I|T|Ty=T|T|y="Tx,

and by extension |T|Ux = Tx for x € im|T| as well.
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3. If T is invertible, then it implies, in succession, that 7%, T*T, and |T| are
invertible; thus U is an onto isometry on H, hence unitary, and can be written as
an exponential. Then T = ¢!©|T'| for some self-adjoint operator ®, analogous to
the polar decomposition of complex numbers.

Proposition 15.50

Every unitary operator in B(H) is of the type ¢/7 with T € B(H) self-
adjoint.

The group of invertible operators G(H) < B(H) is connected and
generated by the exponentials.

Proof (i) The polar decomposition of any self-adjoint operator B € B(H) is B =
V|B| where

X, x € ker B_
Vx .= _
—x, x € (ker B_)L =imB_

since By x € ker B_ (B_B, = 0). Note that V> = I. Hence
VIBlx=VByx+VB_x =Bix — B_x = Bx.

Let U be any unitary operator on H. It equals U = A + iB where A, B are
commuting self-adjoint operators such that A> + B?> = [. It follows that A
commutes with B_ (Example 15.39(3)) and thus preserves ker B_ and im B_
(Exercise 8.6(10)). Accordingly, if B = V/|B] is the polar decomposition of B,
as above, then V commutes with A: forallx =u +v € ker B_ & im B_,

VAx =VAu+v) =Au — Av =A(u —v) = AVx.

The function arccos : [—1, 1] — [0, r] is a continuous function, and —1 < A < 1,
so we can define C := arccos A € B(H), and this commutes with V.Let T := VC,
so that 72 = V2C? = C2. Hence,

eiT:(1_%T2+...)+,'T(1_3_1!T2...)
= —$C*+--)+iV(C - $C+ )
=cosC+iVsinC

= A+iV|B| (sinoarccos(A) = v/1 — A2 = |B|)
=U.
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(i1) Consider the polar decomposition of an invertible operator T = U |T |, where U
is unitary and |T'| is invertible. By the above, U = ¢ A while |T| has a logarithm,
IT| = e® (Example 14.27(1)). Hence T = e'4¢® lies in the connected component
of I (Proposition 13.24), which must therefore equal G(H). |

Exercises 15.51

1. Examples of polar decompositions are ((1) _02) = 7 (8 ?) ((1) (2)) and ((1) {) ~

(Cobas 0:89) (033 942)-

2. If T is a compact operator in B(H) with singular values o, and singular vectors
ey, en, then |Tle, = 0,e, and U : e, — ¢,.

3. The polar decomposition of the right-shift operator in £ is trivial: [R| = I.
What is it for the left-shift operator?

4. T* = |T\U* |T| = U*T = T*U, and |T*| = UT* = TU*, since U*U is a
projection onto im |T'| and UU* is a projection onto im 7. |||T[|| = || T||.

5. (a) T isnormal & |T* = |T|,

(b) T is positive self-adjoint < T = |T|,

(c) T isunitary < |T| =1 AND T is invertible.

If |S| = |T| and T is invertible then ST~ is unitary.

7. When T is compact normal, with polar decomposition T = |T|U = U|T|, then
U and |T| are simultaneously diagonalizable, U = P~ 1¢!®P,|T| = P~'DP,
sothat T = P~!Del®P.

8. Adapt the proof of the Polar Decomposition theorem to show that if 7*T <
S*S thenthemap U : im S — im T, Sx — Tx, is a well-defined operator with
U <1land T = US.

9. Every ideal in B(H) is a x-ideal since

o

Tel = |T|=UTel =T*=|T|U"eT.

10. Every invertible element 7" of a C*-algebra can be written uniquely as 7 =
U|T| where U is unitary.

11. Trace-class Operators: Let Tr := {T € B(H) : tr|T| < oo} with norm
IT ||t := tr|T| (Proposition 15.31 and Example 15.34(5)).

@ Tl =ITI2 13, and T € Tr & [T|2 € HS,

(b) tr(T) is independent of the orthonormal basis,

© (ST < ISIIT llgy; in particular |7l p < 17T gy,

(d) Tris a closed *-ideal in B(H),

() TeTr & T = AB where A, B €¢ HS,

(f) tr|T| =), on, where o, are the singular values of 7' (repeated according
to their multiplicities). tr 7 = Zn A, holds when T is normal and A, are
its eigenvalues.
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15.8 Spectral Theorem for Normal Operators

There is one further extension of the functional calculus of the C*-algebra B(H):
when T is a normal operator, f(7) may be defined even for bounded measurable
functions.

Let 1 be the characteristic function defined on a bounded open subset 2 C C.
To find an operator that corresponds to 1g, we will be needing the following lemma:

Monotone Convergence Theorem for Self-Adjoint Operators: If A, > 0 is
a decreasing sequence of commuting self-adjoint operators in B(H) then A,
converges strongly to some operator A > 0.

Proof 1t is easy to show that when 0 < § < T commute,
2L H(T -8 =T>-28(T -85 < T*.

From this it follows that A,zl is also a decreasing sequence, as is ||A,x]| by
Example 15.43(6¢). Also |Ayx — Apx||> < [[Anx]> — [Aux|?| > Oasn,m —
00, since A, Ay = A,% forn > m, so (A,x) is a Cauchy sequence in H. Now apply
the corollary of the uniform boundedness theorem (Corollary 11.37). O

It follows easily from this that an increasing sequence of bounded self-adjoint
operators A, < ¢ converges strongly to some operator A < c.

There exist increasing sequences of positive continuous functions f, : C — R*
which converge pointwise to 1q; for example, take f,(z) := min(1, nd(z, Q°)).
Using the continuous functional calculus defined in Theorem 15.38, f,(T) exist as
positive self-adjoint operators on H with norm equal to || £, (T) || = || fullc = 1.

We can therefore define 1q(T)x := lim,— fu(T)x for all x € H. This
definition can be extended to closed subsets F' of C: there are nested open sets U,
such that F = (), Uy, so 17 (T) can be defined by 17(T)x := lim,— o 1y, (T)x
by the monotone convergence theorem above. Some properties of 1o (7") are:

1. 1q(T) is an orthogonal projection; so 1o(7) > 0.
Proof: Write A, := f,(T) and A := 1q(T). Then

(Ay,x) = lim (A,y,x) = lim (y, Apx) = (y, Ax),
n—0oo n—0o0
(A2 — A%)x|| = [|(Ay + A)(Ay — Ax] < (1 + [AD (A, — A)x]| — O.

Thus 1o(T)? = 1o(T) is self-adjoint, and hence othogonal (Example 15.14(1)).
2. (a) If U,V are disjoint open sets, then 1y (T) + 1y (T) = lyuv(T),
) 1ynv(T) = 1y(T)1v(T).
Proof: If f,(z) — 1y(2) and g,(z) — 1ly(z) for z € C then f,(2) +
gn(2) = ly@@) + lyb(z) = lyuv(z). So by the continuous functional
calculus and the strong convergence of f,, and g, it follows that f,(T)x +
gn(T)x — lyyy(T)x forany x € H.
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John von Neumann(1903-1957) Originally from
Budapest, von Neumann studied in Berlin, under Weyl
and Polya, but graduated at 23 years under Fejér in
Budapest with a thesis on ordinal numbers. A young
party-going genius, in 1926-30 he defined Hilbert
spaces axiomatically as foundation for the brand new
quantum mechanics and generalized the spectral theo-
rem to unbounded self-adjoint operators. In the 1930s
he went to the Princeton Institute, proved the ergodic
theorem, and studied rings of operators and group
representations; only turbulent fluid dynamics proved
too hard (it remains unsolved today); in 1944 he started
game theory, proving the mini-max theorem, then on to
computers and automata theory.

Similarly, the second statement results from f,(z)g,(z) — ly(@)1y(z) =
Lynv (2).
3. 15(T) =0, 15 (T) = I (since if o (T) C U and f, — 1y, then fls1) =1
for n large enough).

The projections 1£(7T") for Borel sets E are defined by the same procedure and
are said to be the spectral measure associated with T. We gloss over the details of
the exact definition (see [10]).

One can now follow the same steps of creating the space of simple functions
through to L'(C), but starting from the projections 1£(T) as ‘indicator func-
tions’. The end result is a functional calculus in which f(7T) is defined for any
complex-valued f € L*(o(T)): If f is approximated by Y, a;1y,, then f(T) is
approximately ) ; a; 1y, (T). Indeed, f(T) is still meaningful evenif f € L'(o(T))
but need not be a “bounded” (i.e., continuous) operator.

Theorem 15.52 (von Neumann’s Spectral Theorem)

For any normal operator 7 and f € L*(c(T)), there is a spectral
measure E; such that

f(T) = f ) dE;

o(T)

Proof For any x,y € H, define u, y(U) := (x, 1y (T)y) for any open bounded
subset U C C. By the properties proved above, 1, , can be extended to a measure
with support equal to o (T). (It is not a Lebesgue measure on C as it is not translation
invariant, but Borel sets are jiy y-measurable.) It has the additional properties:

B — 2
Mox,yi+y2 = Mx,yp T MUx,yps  Hxdy = )Lﬂx,y, My x = Hx,y, 0 < py,x < Xl
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It follows that for any f € L*(o(T)), {(x,y) := o (T) Sfduyy is a semi-
inner-product which is bounded in the sense |{(x, y))| < || fll e llx|llly]l. Thus, by
Exercise 15.47(8), {(x, y) = (x, Sy) for some continuous operator S which we
henceforth call f(T),

(x. f(T)y) = / Fdie.
o(T)

f(T) agrees with the earlier definition for f € C(c(T)): Any such f is uniformly
continuous, so for § small enough f Bs(z) € B<(f(z)), independently of z € o (T).
Let B; be squares, with centers X; and diameter less than §, which partition o (T);
one can find slightly smaller closed squares A; C B; and slightly larger open
squares C; D B, such that ), tx,y(Ci~A;) < €. Moreover, one can find
continuous functions A; such that 14, < h; < l¢, and ), h; = 1; for example, let
hi(s,t) := h(s)h(t) where h(t) = min(l, r d(¢, I®)) is a continuous real function
with support equal to I and taking the value 1 justinside it. Then (writing u = [ty y)

(x, F(D)y) =D (x, fhi(T)y) = fO)x, hi(T)y) =Y fO)(Bi).

i
More rigorously, (it is enough to consider real-valued functions)

(x, fRi(T)y) < (f (i) +€)u(Ci)
= (f() +uBi) + (f (ki) + €)(u(Ci) — u(Bi))
x, fhi(T)y) < —fAi)u(Bi) + en(Bi) + (f (&) — €)(u(Bi) — 1(Ai))

1, fRi(T)y) = fODRB)| < €(B) + 1 f (ki) + €l (1(Ci) — 11(A)
x, f(T)y) - Zf(k)u(B)l—IZ L Fhi(T)y) =Y fO) (B
Z| , fhi(T)y) = fO)(B)

< Z(If(ki)l + ) (u(Ci) — u(Aj)) + en(B;)

SUfllc+ee+e
Hence, in the limit € — 0, {x, f(T)y) = fU(T) fdpgy.

The map f + f(T) is a *-morphism from L*°(c(T)) to B(H): Linearity is
immediate,

(f +28)(T) = /(T)(f+kg) dpx,y = f(T) + 2g(T).
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f(T) = f(T)* since

(x, f(T)y) = /fdux,y = /f dux,y = (v, f(D)x) = (f(D)x, y)=(x, f(T)*y).

f8(T) = f(T)g(T) follows from

/ d:ux,f(T)y = (x, f(T)Y> = fd/va,y
o(T) a(T)

= (x, fe(My) =/fg dpty,y =/fdux,g(r>y = (x, f(T)g(T)y).

O

In particular, T = fa A dE,. This result, and the next one, are often claimed to
be the pinnacle of the subject of functional analysis.

Embedding in B(H)

Theorem 15.53 (Gelfand-Naimark)

Every C*-algebra is isometrically embedded in B(H), for some Hilbert
space H.

Proof We have already seen that every Banach algebra X' is embedded in B(X)
(Theorem 13.8); as in the proof of that theorem, we will again denote elements of
X by lower-case letters. The main difficulty is that there is no natural inner product
defined on X or B(X'). Rather there are many semi-inner-products, one for each
$ €S, (x, 1)y = S0y,

Let My := {x : ¢(x*x) = 0}; it is a closed left-ideal, since for any ¢ € A’ and
x € M, thenax € My

0 < p(x*a*ax) < p(x*x)lall* =0.
This allows us to turn X'/ M, into an inner product space, which can be completed
to a Hilbert space Hy (Examples 10.7(2) and 13.10(21). The inner product on
X /My is given by

(X + Mg,y + Mg) = p(x*y).
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The x-morphism L : X — B(Hgy): For any a € X, consider the linear map defined
by Ly (x + My) 1= ax + My on X'/ My; this is well-defined since aMy C M.
It is continuous with || L, || < ||a]| since,

ILa(x+ M)l = llax+Mg |l = V¢ (x*a*ax) < Vo (x*x)|all=lalllx + Myll.

This map extends uniquely to one in B(Hy) (Example 8.9(5)).
Clearly L, is linear in a, Ly, = LysLp, and L1 = I, but it also preserves the
involution Ly« = L7,

(x + Mg, Lo(y + My)) = ¢p(xay) = ¢((a*x)*y) = (Larx + Mg, y + My).

It remains a *-morphism when extended to B(Hy), by continuity of the adjoint.

The final Hilbert space: However L need not be 1-1. To remedy this deficiency,
let H := H¢e s Hg be the Hilbert space of “sequences” x := (xg)gpes such that
Xy € Hy and Z¢e s (X, xg) Hy < 00; it has the inner product

(o y) =) (5. Yo)p,-
PeS

It is straightforward to show that H is indeed a Hilbert space, by analogy with £2.
Let Jox = (LaXp)ges, so that J, : H — H is obviously linear, and also
continuous since

ax1? =) I Laxgll® < llal* Y lxpl? = lal* x>
¢ ¢

The mapping a — J,;, X — B(H) is an algebraic *-morphism,

(3. Jax) =Y (pr LaXp) = Y (Liyg. xg) = (Jary. X).
¢ ¢

Moreover it is 1-1, for if J, = 0 then L, x4 = O for any x4 and ¢ € S, in particular
a+ Mgy = L,1 = 0. But this means that forall ¢ € S, a € My, i.e, p(a*a) =0,

and this can only hold when o (a*a) € S(a*a) = 0, so |a||> = |la*al = 0 and
a=0.

Since every such x-morphism between C*-algebras is isometric, the theorem is
proved. O

Note that in the above GNS construction, when X is represented in B(H), every
state ¢ € S(X) is associated with a unit vector x € H, such that ¢y = (x, Jyx).
Proof: The vector in question is x := (xy)yes Where xy = 1 + My and xy = 0
otherwise. For every y € X,

d(y) = (1+ My, )’+M¢>H¢ = (xp, LyXg)y, = Z ey, Lyxy )y, =(x, Jyx) .
14
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Remarks 15.54

1. The Banach algebra axiom ||1|| = 1 is redundant for C*-algebras as it follows
from |T*T|| = ||T|| (assuming X % 0).

2. The use of A < B is best avoided: it may either mean A < B but A # B or that
o(B — A) C ]0, oo[. However the use of A > 0 in the latter sense is standard.



Hints to Selected Problems

2.2

2.3

2.14

2.20

2.23

3.6

(1) Writing s :== a — ¢, t := ¢ — b, and substituting into |s + | < |s| + ||
gives the triangle inequality.

2) (@) 3a € A,3b € B, d(a,b) < 2, (b) Ve > 0,3a € A,Ib €
B, d(a,b) < e.

(7) (1) The two sets have, respectively, the shapes of a diamond, and a square
with a smaller concentric square removed (the outer boundary is included
but the inner one is not). (ii) The shapes are the same but intersected with the
first quadrant.

(9) For example, R~ {a}.

(2) The complement of the setis {x € Q : x2 > 2} since +/2 is irrational.
To prove the set is open, one needs to find a small enough € such that

2<(x—6)2=x2—26x+62.

(6) Try the graph of the exponential function and the x-axis in R.

(7) The Cantor set is the intersection of all of these closed intervals.

(8) First show the set {x € [0, 1] : "% < 5} for fixed k is closed.

(11) The answer to the first question is of course no: all points on a circle
are equally close to the center; the second is also false e.g., in Z; it is true
however in R? because the line joining an interior point to x contains closer
points. What properties does the metric space need to have for this statement
to be true?

(14) No. Take the subsets A := [—1, 1] and B := R~{0} in R.

(6) Any ball B, (x) will contain a point a of the dense open set A. There will
therefore be a small ball B.(a) € A N B,(x) which contains a point b € B.
(7) The complement of the Cantor set is open and dense.

(10) 9U = U~U contains no balls.
(Ieyn/a" =n/(1+8)" < n(nfl'w .
(o) ay == L+ )" =2+ 301 =D+ 31— DA =+ + ;5. So
ap+1 > ay, yetay, <2+%—|—%+~-~ <2+%+‘1—1+-~-=3.

41
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3.13

4.11

Hints to Selected Problems

(1f)a, - comeans Ve > 0, AN, n > N = a, > €.
(2) The limits must satisfy x = 2 4+ /x and x = 1 + 1/x respectively.
(3) Eventually, |a,| < ¢ < 1, s0 |a,|" < c".
(3) See Proposition 7.9
@) Ift, —> tthent # 0and |t,| > ¢ > 0, so that [1/#, — 1/t] = |t —
tnl/ltnllt] = 0.
(10a) The map f(r) = (cost,sint) is a continuous bijective map from
[0, 27 [ to the circle. The inverse map is discontinuous at (—1, 0).
(10b) Take f to be a constant function, and ¢, = n.
(10c) Take f (1) := t?> and U := ]—1, 1[. Examples of open mappings on R
are polynomials which have no local maxima/minima.
(11) (f~'F)¢ = f~'FC is open. The identity map [0, 1[ — [0,2] is a
continuous open mapping whose image is not closed.
A7) dx, A)/(d(x, A) +d(x, B)).
(18) The map ¢ +— IIJ_TL; (a # b) is a homeomorphism between (i) Ja, b[
and ]0, 1[, (i) [a, b] and [0, 1], (iii) ]Ja, b] and ]0, 1], (iv) [a, b[ and [O, 1].
Translations make (v) ] — 0o, a[ homeomorphic to ] — oo, O[, and (vi) | —
00, a] with ] — oo, 0], (vii) [a, oo[ with [0, oo[, and (viii) ]a, oo[ with ]0, ool.
Reflections ¢ — —t (followed by a translation) then show that the intervals
in (iii) and (iv) are homeomorphic, as well as (v) and (viii), and (vi) with
(vii). Finally ]0, 1] is homeomorphic to [0, oo[ via the map ¢ +— % -1
this same map shows ]O, 1[ is homeomorphic to ]0, oo[, and this in turn, is
homeomorphicto R via t +— ¢ — %
(19) Points {x} are open in N but not in Q.
(1) The difference between the nth and mth terms of decimal approximations
is at most 10~ min(7.m)
(4) The finite number of values have a minimum distance € between them.
(5) Note that ), 1/n — oo.
(6) |d(xn, yn) — d&my Yl < 1d&ny Yn) — d(Yns Xm)|
+1d Xy Yu) +dXms ym)l

<dxn, Xm) +d(Yn, ym)
(7) For example, the continuous function f(¢) := 1/t, defined on 0, 1] —
[1, oo[, maps the Cauchy sequence (1/n) to the unbounded sequence (n).
OV + T == a1 +1/m? —1) = 51m 4
(11) If {x,} are the values of a Cauchy sequence, and x is a boundary point,
then there is a subsequence x,, — x (by Proposition 3.4). If all points are
isolated, then the sequence is eventually constant.
(14) Any Cauchy sequence in a discrete metric space must eventually be
constant.
(15) The intersection of the balls can contain at most one point, since r, — 0.
In fact, if x, — x, then x € B,, [x,] for all n, since the balls are nested.
(16) First show that f(n) = f(14---+1) = nf (1), then f(m/n) =7 f(1).
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4.18

4.22

5.8

5.13

6.4
6.9

6.22

6.28

(1b) [(x2 —x1)y2 +x1(y2 — yO| < (y2llx1r — x2| + [x1lly2 — y1l)

NN

(Ix1 = x2] + ly2 — y1D),

[(x1 + x2)(x1 — x2) + (y2 — yDI < 2[x1 — x2| + [y1 — y2l.
(5) Let f : X — Y be an equivalence; then every Cauchy sequence
(xn)neN in X corresponds to a Cauchy sequence in Y, by uniform continuity
and Proposition 4.13. Since equivalences are homeomorphisms, (x);eN
converges precisely when (f(x;)),eny does. So X is complete < Y is
complete.
(2) Repeat the proof of Proposition 2.10, using B,, (a,) instead of B,(x)(x),
where a,, is an approximation of x.
(4) Let X be an uncountable set with the discrete metric. Then By/2(x), for
each x € X, form an uncountable collection of disjoint sets.
(1) Take X~{x1} and X{x2} as the open sets; alternatively take small
enough balls. For (b), take X\ Fj and X\ F>.
(2) To show that every subset of Q with at least two points, is disconnected,
use the same idea with some other irrational.
(5) Consider the open sets f~1{0} and f~1{1}.
(11) Suppose f(a) < f(y); f(x) > f(y) is impossible else there is some
z € [a, x] such that f(z) = f(y).
(2) The metric space is the union of the path images, whose intersection
contains the fixed point.
(5) Use Theorem 5.10 with Ay, := X x {y} and B := {xo} x Y.
(6) Without loss of generality, take x = 0; then R>~\{x} is connected using
the unit circle and radial lines e for ¢ > 0 and unit vectors e.
(8) Otherwise, the interior and exterior of the set would disconnect a
component.
(10a) If a component C has a boundary point a ¢ C, then C U B (a) would
be a strictly larger connected set.
(3) If B is bounded, so B C B,(x), then B C B, (x).
(3) From some N onwards, x, € Bc(xy); cover the rest of the values x,,
with B (xy,).
@) Let B € U, Bpxi), then B € UL, BonG) S UPL, Be(xi)
(Theorem 2.19).
(7) Suppose d(K, F) = 0, then there are asymptotic sequences a, € K, b, €
F; (ay)nen has a convergent subsequence, and therefore (b,),cN converges
to the same limit. But then K N F # &.
(8) After showing K C B,(r,0), use the fact that there is a pointa € K
which has maximum distance from (7, 0) less than r.
(14) The unit sphere is a closed subset of the cube [—1, 1]".
(17) X x Y is complete and totally bounded by Proposition 4.7 and
Exercise 6.9(1).
) If f, — f with f, € C(X,R), then f,(x) — f(x)in C, and taking the
imaginary parts shows that f(x) € R.
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7.8

7.15

7.21

7.23

Hints to Selected Problems

G) ) = < fO)= NG < IFO) = FOI+ 1) — fnG)l +
|fo(x) — fn(¥)| < € where N depends on x, and |x — y| < §, small enough
but independent of x (Proposition 6.17). So f —e < f, < f on Bs(x) for
n > N. By compactness, one N will suffice.

(6) Convert any binary sequence (of Os and 1s) into a “tent” function in
C(R™); there are uncountably many such functions and their distance from
each other is at least 1.

(10) (z + |t])/2 =~ t(t + 1)/2.

(3) Balls look like circles, squares and diamonds in the 2-norm, co-norm,
and 1-norm respectively.

(6) Let A := {la,|}, B := {|b,|}. Then from Review 7.2(13), sup |ra,| =
sup |A|A = |A|sup A, sup |a, + b,| < sup(A + B) < sup A + sup B, and if
sup A = 0, then 0 < |a,| < 0 implying a, = 0 for all n.

(9) The functions f,, := 1{9,1/,] converge to 0 in L'[0, 1] but not in L*°[0, 1].
The inequality ||x|[g« < [lx]l,1 remains true for sequences, so convergence
in ¢! implies that in £°°.

(10) For r > ||x||, x € rC, so Ax € ArC = |A|rC, i.e., [IAx|| < |A]llx]l; but
then ||x|| < %|||)»x|||. Ifs > |lyll, thenx +y € rC +sC = (r + s)C, hence
llx + il < lixll + Myl

(5) Let x, y € C; then there are points a, b € C within € of x and y. So any
point on the line 7x 4+ (1 —t)y is also close to a point on the line ta + (1 —1)b
which lies in C because

[tx+ (A =0y —ta— A —-0b|| <tllx —all+ A -0)lly — bl <e.

(7) A convex set C is the union of line segments that start from a fixed point
xg € C, then use Theorem 5.10.

®) If ha, — x, a, € A, thena, — x/A (for A # 0) and x/1 € A.
Conversely, if x € LA, ie., x = Aa with a, — a, then Aa, — Aa = x and
x € AA.

Similarly, when a,, — a,a, € A,and b, — b, b, € B, thena,+b, — a+b,
soa+be A+ B. AnexampleinRisA ={n+1/n:n=2,3,...}and
B:={-n:n=1,2,.

(lc) ZlN:k xi = Z?V_T)k Z 0 x; — 0as N — oo, since convergent
sequences are Cauchy.

(3) The odd sub-sums a; — (ap — a3) — (a4 — as) + - - - are decreasing, and
bounded below by the increasing even sub sums (a; —ar) + (a3 —aq) + -

(6) Applying the Cauchy test to Zn —5: the series ) 2"/ (2"1’ ) converges
only when p—1<0forp=173%, rll diverges; ), W becomes

Zn 2ﬂ which diverges; etc.
(12) For N large enough |x;+---4+xy —x|]] < € as well as
Zf,iNH x|l < €. So for k large enough that ny, ..., niinclude 1, ..., N,

Py 4+ X = [ < i+ xw = x4+ D [ Xexial
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8.6

8.13

8.19

8.23

8.27

94

9.7

9.10

9.17

(3) im R is closed since for Rx, — y, the first components give 0 — yp, so
y= (O,yl,...) = R(yl,...).

HT=L*—1.

(MNIfx, > xthenx, —x > 0and Tx, — Tx =T(x, —x) —> T0=0.
(1) Proof that im T is not closed: Let v,, := (1,1/2,...,1/n,0,0,0,...),
then Tv, = (1,1/4,..., 1/n2,0,...) converges to (1,1/4,...) € 2! as
n — o0 since

e ¢]

1
2
10.....0. 1/ + D> . )l = Y = =0

n=N+1

Yet, there is no sequence in £! which maps to this sequence as
(1,1/2,1/3,...) ¢ £

(2) e,/n — 0 in 2! because |0, ..., 0, 1/n,0,..)|l;f = 1/n — 0, but
e, /> Osince [|(0,...,0,1,0,..)|[p =1.

DITI =1 Tall = L, I Tell = L, IMgll = llgllc

(5) Proof for first matrix. Assuming, without loss of generality, that || < |A[,

1GOOI = 1GNP = P1x 4+ 1Py < RPAx + [yP)

so [|Tx|| < [A]]|x]l. However for x = ({), Tx = Ax, so |A| < IT|| < |Al.
(7) Choose unit x,, such that || T,x,|| = ||T,] — 1/2".
(6) For x = (a;), take the supremum over i of

|T;ia; + E Tija;l > (|Tiilla;| — E IT;; lx11)
J#i J#i
=z cllx|l — (sup [T (llx |l — lai ) =~ cllx]|.
1

8)If Jx : X1 — X»and Jy : Y| — Y; are the isomorphisms, then J(T) :=
JyTJ;1 gives the required isomorphism; note that J~1(S) = JY_ISJX.
(3b) Show y — (0, y) + X x 0 is an isometry.

(5) Let {a,} be dense in M and {b,, + M} dense in X/M. Then {a, + by} is
dense in X.

(5) See the Hilbert cube Exercise 9.10(3).

(2) The functionals on c are y” (y € £!) and Lim.

(6) coo C £5°, 50 £3° = cp; 1/ logn does not belong to any £5°.

(D Lety, :=x, —x € £ then 32\ Ivnil < Y52 n4 Iviil < € for
some N and all n. But |y, 1|4+ |y.n| = 0asn — 00,80 >, |ynil < 2e.
(4) It is required to show ||x —a|,1 < € fora = (aop, ...,an.0,...) € coo,
N large enough.

(2) Try |ay|P/Pe=ifn.

(9b) Take r — oo in [|x] o < X1, < ”xng/r 1=p/r

1% 100
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9.37

10.10

10.15

Hints to Selected Problems

(2) Look at the dual spaces of L'[0,1] and ¢ to see why they are not
isomorphic.

(6) Write ’;—tzz +2mité = (%(t +i02%€)? + mo?£? to simplify the integral.
(2) In Pythagoras’ theorem, ||y + z|I? = ||y||2 exactly when z = 0.
Consider

1>l = | 3 tonxmd| < 3 Nt )

n,m

2

<Dl = (3 lall) ™
n,m n

This can only be an equality when |{x,,, X;,)| = ||x,||||x5 || for each n, m.
(4) Writingx = >, a,v,andy = ), b, vy, forabasis vy, ..., vy, we find

(x,y)= Zanbm“)n» Vi)

“ (1,1,0,...) and (1,—1,0,...) do not satisfy the parallelogram law;
write these as step functions for L' and L.

(11) ™ sin(t)cos(t)dt = % [T sin(2r)dt = [—cos2t]", = 0, and
fi2 —rde =4t =2l = 0.

(14) Substitute & = « + iB, then find the minimum by differentiating in «, 8
togetA = —(x,y).

(15) lxn = Xl < % + Yo — X — Y|l — O since (xy — X, Yo — Ym) =
0.

(16) The ‘inner product’ remains continuous, so Z is closed.

(1) Answer ﬁ(le — 2y 46z, —2x + 13y 4+ 3z, 6x + 3y + 52).

(2i)) Px € M so Px = Ay, and x — Px € M=+, so (y,x —Ay) = 0.
Expanding gives A = (y, x).

(3) Consider x € M+, and x = u + v whereu € M, v € N;since N C M+
it follows that u = 0.

(5) Any vector x € N can be written x = u + v where u € M, v € M*t.
Since M € N,thenv=x —u € N as well.

O)Letx =u+v,ueM,v € Mt thenTx = Tu+ Tv, Tu = Au € M,
Tv=BveM.

T = sup 1THIE U212
el + [[v])?

by Pythagoras’ theorem. But ||Tu| < ||A|l|l#] and ||Tv] < ||B]l|lv]|, so
ITI1> < ¢ A7+ (1 — 0| BII% where t = [[ul|®/(|lul* + [[v]|*). Now take
t = 0ort = 1 depending on which is the maximum of the two.

(8b) Expand d? < ||x — y||> =2 — 2Re (x, y) with y = ¢%v.
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10.24

10.26

10.35

(9¢) If ||x — a|| = d = ||x — b|| is the shortest distance from x to M, then
ltx + (1 —1t)x —ta— (1 —1)b|| =d.

(9d) The closest sequence would be 1 ¢ cy.

(10) IPyn+1ll < lyns1ll < llynlls so [lynll converges. But in general, as
Py L (y = Py), IyI* = IPYI*> + lly = Pyl*, 50 llya — Pysll — 0, and
similarly Py, — Q Py, — 0. In finite dimensions, the bounded sequence y,
has a convergent subsequence, y,, — y,so0y = Py = QPy, and y is in
im P Nim Q.

(11) sint & 0.955 — 0.304t ~ —0.20 + 1.91¢ — 0.88¢> +0.09313; 1 — 13 ~
1.13cost — 0.43sint.

2 3MR*-51 15 2I-MR>
(12¢c) Answer: o = 25—, B = 22 55—
(1) Check that ||x*|| g+ satisfies the parallelogram law, then use the polariza-
tion identity, noting that (ix)* = —ix*

(2) ¢ corresponds to Px.

(3) The map x +— ((x, )) is a functional so corresponds to some vector 7 x.
O) ITII> = IT*T| < IT*NT N, so 1T < IT* < T = |IT|I.

(7) For x = (an)neN, ¥ = (bp)neN, 2 = (Cn)neN,

(z, yx) = Zznbnan = Zl;ncnan = (yz, x)
n

n

) fy gV f(s)ds = [} [3 g f()dids = [ [ g(s)f()dsdr.
(I12)T*Tx =0 = 0= (x, T*Tx) = (Tx, Tx).

(13) Fix aunit vectoru € X, A := (Tu, Tu) > 0, and let v be any orthogonal
unit vector; then (Tu, Tv) = (u, v) = 0; similarly, (T (u +v), T (u — v)) =
(u+v,u—v) =0,s0 (Tv, Tv) = A > 0 constant. For vectors x = «u,
y=piu+ pov, (Tx, Ty) =apfir = Alx, y).

(1) Answers: (—=5/2,-2/3,7/6), (—=17, =5,7)/3.

(6) T'T is the projection onto ker 7-; T T is the projection onto im 7.

®) V*Vf =V*gis fl f(jc f@®)dtdx = f}l g(x)dx.

(9) Answer: r = 0.499 m and «/m = 0.008 m~! (the actual values used to
generate the data were » = 0.5m and «/m = 0.003m~!).

(1) Take the inner product of ) a,e, = 0 with e,,.

(3) ((en, 0), (0, ey)) = (en, 0)+ (0, &,,) = 0; if x and y can be approximated
by xy = Zfl\]:l ane, and yyy = Z,]lel Bmem respectively, then

2
IGes ) = Gy vl = 11— xn, y = ya) |l =V lx —xnll” + NIy — ymll?

can be made small; note that (xy,yym) = (xn,0) + O0,yy) =

SN @n(en, 0) + M0, E).
4) (en, x —x4) =0
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11.7

11.17

11.28

11.34

11.49

Hints to Selected Problems

(5) Suppose e, and Ue, are both orthonormal bases. Then, by Parseval’s
identity,

(Ux,Uy) =Y @nBu(Uen, Uen) = (x, y).

Uisontobecause y = )" o, Ue, = U(D_, aney).

Conversely, if {e, } is an orthonormal basis for Hy,and y € {U en}J-, then 0 =
(y,Ue,) = (U*y, e,) foralln,so U*y € {e,}* = 0and ||y|| = |U*y| = 0.
The column vectors of the matrix of U are Ue,, so (Ue,, Uey,) = (en, em) =
Snm -

(6) Show ¢ = % + % Zn?go ﬁehi”’, then take r = 1/4. It is interesting to
generate other series using other points and functions (e.g., |¢], ¢/|t], | sin¢]).
(7) For f odd, ¢—;, = —o,. In general, every f is the sum of an even and an
odd function.

(9) For example, take A((l)), %( i_\}3)~ For the second part, substitute e,, instead

of x, and deduce orthogonality; if x € {ex}*, then ||x|| = 0.

(4b) Continuity of T(Sx) = Tx:Foranyv € kerSand y € Y, ||Ty|| =
ITx]l =T+ vl <clTlx + vll, then use |lx + ker S|| < c[|Sx]|.

9) letal = llotmen |l < | Y0y e — Y= cies|| < 2cflx]].

(5) If x,, € M is bounded then T|yx, = Tx, has a Cauchy subsequence,
which converges.

(4) The requirement is ¢ (x, y) = x + Ay, |[x +Ay| < |x| + [y], so [A] < 1.
(6) Consider unit functionals such that ¢; (x;) = ||x;[|; let y € (1), ker ¢;; then

lxill = 1oi (y — x| < lly — xill.

(9) L® = 0, so (t®)L = £*. Now in the correspondence of £!* with £>°,
we get [P]] = coo and so [D] = cp.

10) |¢px| = |p(x+v)| < ||@]lllx + v| for any v € M in fact this approaches
equality for certain v € M, so || = ||¢]|. Onto: for any ¥ € (X/M)*,
let gx := Y (x + M). Hint for the second part: the norm of ||¢ + M*| =
infy cprt [l + Y|l is the same as [|¢]am .

G)(TTTx*)p =x(T"¢) = (T"$)x = ¢Tx.

(7)If T7 is onto, then T is 1-1 by (1) and has a closed image; if T T is also
1-1, then im T is dense, hence T is onto. If T is onto, use the open mapping
theorem.

(1) For cg, a functional is of the type y' where y = (b,)nen € 2!, Now
y-e, =3 b8y =b, > 0asn— oo since £! C ¢y.

8b) (¢ (T Sp — T x| < NQINTR N (Sn — S)xll + [¢ (TS — T S)x| — 0.
(1D If x ¢ M, there is a ¢ € X™* such that px = 1, M = 0, so x is not
a weak limit point of M. More generally, every closed convex set is weakly
closed, because a hyperplane (so a functional) separates it from any point not
1n 1t.
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1212 (4) llom)|l = I f (x +h) — f(x) — f Al

1
=H/dqu+ﬂo—fummu
0

1
< /0 L'+ th) = £/ o)l IRl de < Sk[A]>.

12.21 (6) Poles and residues are (a) i: 1/2ie, and —i : ie/2; (b) 1 : (e, e")/3, and

w:(e? e ) /3w?, and w? : (e“’z, e""z)/3w; ©0:1
13.3 (11) If TR is invertible, then P(ST) =1 = (T R)Q, so T is invertible.

13.10 (2) Each vector (a, b) corresponds to the matrix (¢ ,2,).
4) 1, A, ..., AN cannot be linearly independent, so A” = p(A) must be
true for some polynomial p.
(10) This is a generalization of the convolution operation on £!. The proofs
are very similar to that case; see Exercise 9.7(2).
(13) For any ¢, Tx¢px = x¢Tx, i.e., Tx = iyx. So if x, y are linearly
dependent then Ty = Ay, implying Tx = Ayx and A, = A,; if not, then
Ay = hyty = Ay
(14d)If S, T € A”,then TR = RT forany R € A’ 2 A”,including R = S.
(18) Toshow Z4 C 7, let f € T4 and let K be a closed subset of [0, 1]\ A;
then for any x € K, one can find a function g, € Z such that g,(x) > lina
neighborhood of x. By compactness of K, a finite number of such functions
“cover” K,s0 g := gy, + -+ gx, € Tis greater than 1 on K. Let h(x) :=

r, g(x) > 1

g(x), g(x) <1
(h = gk). By making K larger, one can find a sequence of functions such
that h,g — g,s0 g € 7.
(19) To show || f + Zall = || flall, it is required to find functions g, € Z4
such that || f — gull — | flall. This can be done as follows: take B :=
[0, 1]N\U, where U = A + B.(0), and let & be a function such that #1|A = 0,
h|B=1;s0 fh e Zyyet f — fh =0on B,and || f — fh| — || flA]| as
e —> 0.
21 Multlphcatlon is well deﬁned forif S — S € I, T — T e Z, then
ST—ST = (S— S)T+S (T — T) € 7. Associativity and distributivity follow
from those of X. Suppose ||S + A,ll = IS+ ZI, IT + B, = T +ZJ,
for some A,,, B, € Z, then

, a continuous function with 4|x = 1 and belonging to 7

IST +ZII < IS+ A)(T + Bl < IS+ AnlllIT + Ball
—> IS+ ZIIT + Z|
Finally, ||[1 +Z| < |1 + 0] = 1 yet ||[1 +Z| # O; but also in any normed

algebra in which | ST < |IS|IIT]l holds, 1 < ||1], since |[1]] = 1] <
(B
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13.19

13.25

13.31

Hints to Selected Problems

(26) X has a basis of two vectors, which can be taken to be 1 = ((1)) and (?)
Multiplication by 1 acts of course as the identity matrix; if (?) ((1)) = (%) then
M6) = () = (1 5)6).

(1) Answers (a) 0, (b) 1, (c) max(|al, [b]), (d) (a # 0)
at1)" _fa" na""! _ nfln/a
0a) \O0 a" ) 01 )"

Now (] M) = (). so1 < | (] ") < /24 n?/a? (Proposition 8.10).
Taking the nth root gives (2 +n?/a*)'/?* — 1, s0 p(T) = |a|. Note how, in
this case, | 7" first increases then decreases to 0. Only (c¢) has p(T) = ||T||.
(3) Use the Cauchy inequality for |x 4+ ay| < /1 + |a|2V/|x]2 + |y|2.

(7) Let R and S be the radii of convergence of ), a,z" and ), b,z".
Then ) ,(a, + by)Z" = Y ,an2" + Y, by2" has radius of conver-
gence at least min(R, §). Zn anb,z" has radius of convergence RS since
lim inf |a, b, |~'/" = liminf |a, |~ /" |b,|~1/".

(8) f 4+ g and fg have coefficients a, + b,, apb, + a1by,—1 + - - - + anby.

fog(I) =ag+aig(T) +axg(T)* + -+
= (ao—i—albo—i—azb(%—i—-”)-}-(albl +2ab1 + -+ )T
+ (a1by + axbi + -+ )T?

O 1T = XN g aa T = | 20yt an Tl < X0y lanl 1T — 0
when ||T] < r.

(14) cos0 = ¢ = 1, but cos 2 = (cos 1 — sin 1)(cos 1 + sin 1) < 0, so there
is a number 0 < B < 2, cos B = 0. Since the conjugate of ¢/? is e~ it
follows that |¢!?| = 1, so sin 8 = 1; hence ¢/ =i and e*#! = 1.

(17) Expand e®15¢%27T 7T ¢4T to second order, and equate with 517 ~
1+S+T)+(S+ T)2/2, to get wpv3 = 1/2; the two values can be chosen
to be equal.

2) f(Hgt) =1 & f@) = 1/g(t) # 0,Vt € [0, 1]. g has a minimum
distance to the origin Exercise 6.22(11), so f = 1/g is also bounded.

@ I = sup, 1T~ xll/ x| = sup, [yI/1Tyl.-

(8) e+ = o THsT — o!T 5T since (tT)(sT) = (sT)(tT).

T — T hT — ot T (| L T 4 o(h))

so the derivative at ¢ is e'T T'.

(12) SR = 0 for S(ag, a1, ...) := (ap,0,...). But |RT| = ||T|| for all T,
so RT, # 0 when T, are unit elements.

Q) If | f(z)] < clz]™" < clz|¥, then f is still a polynomial.
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14.7

14.14

14.22

14.30

14.41

(8) If a is a zero or pole of order £N, then (z — a)*N f(z) is analytic and
non-zero at a. Thus ¢ f/p is bounded analytic on C, so must be constant.

(2) f(r) — A is not invertible precisely when f(f9) — A = 0 for some #y €
[0, 11.

W T?—22=(T—2)(T+2),50z2:=r€0(T? = A==z €0o(T) (one
of them). Conversely, if T2 — 72 has an inverse S, then S(T + 2)(T — z) =
1=(T —2)(T +z2)S,so T — zis invertible.

NS, T)—A2(1,1)=(S— A, T — 1) isnotinvertible iff S — A or T — A is
not invertible.

(8) Themap T © S — A : (x,y) — (Tx — Ax, Sy — Ay) is invertible exactly
when T — X and § — A are invertible.

(1) Rx = Ax means a, = Ada,+1, SO a, = ap/\"*; but also 0 = Aag. There
are no solutions to these algebraic equations.

(3) ¢! is embedded in £!(Z), so o (L) decreases from the first case to the
second. In fact, in EI(Z), there are no eigenvalues, because Zf;o:_oo [x]"
cannot converge for any A. Yet the boundary of o (T) in £', consisting of
generalized eigenvalues, is preserved in £!(Z).

4) T"x = (ag, az, az, ...) on £1.

(5) T"x = (ag, ar, az/2,...) on £},

(9) The operator (T —21) f(t) = (t—A) f(¢) is invertible only when A ¢ [0, 1].
There are no eigenvalues because ¢ f () = Af (¢) for all r implies f = 0. The
image of T — L is asubset of { g € C[0, 1] : g(A) = 0}; as this set is closed
and not C[0, 1], all » € [0, 1] are residual spectral values.

(11) Induction on n: Expand V V" f as a double integral and change the order
of integration.

A2) 1 — A < | Txn —Axpll > 0; T —A=T(A —AT M, s0 Al <1 =
A ¢ o(T). The boundary of o (T') must be part of the circle.

(13) T is 1-1 with a closed image < ||[Tx|| > c|/x], so

(T + H)x|| 2 ITx|| = [|Hx]| = (¢ = [[H]D]lx]]

shows T is an interior point of the set.

(7) The eigenvalue equation for M L is a,+| = niay, so a, = n!A"xg — oo.
For RM, {0} = O'p((RM)T) C o, (RM).

(3) e’ D =g (eT) = o (1) = {1}, so o(T) € 2miZ. For an idempotent P,
P = 14 PQri+ EE 4 =14 P — ) = 1.

(11) C" is generated by e;, where eie; =0wheni # j,and e;e; = 1.S0a
character satisfies §e;de; = 0 and de; = £1. If e; = %1, say, then de; =0
fori # 1. Infact 1 =8(1) =), 5(ei) = 8(ey).

(12) B(C?) is generated by (} 9), (34). (99). and (39). A character § maps
them to wy,..., wa, which must satisfy w% =0, w% =0, wawz = wy,
w3wy = wy, for which there are no non-zero solutions.

(15) X acts on the n points in A as (§;x) = (x;) = x.
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15.3

15.11

15.15

15.21

Hints to Selected Problems

(17) In the commutative Banach algebra ) := { S, T }”, the spectra remain
the same, 0y (A) = 0(A), so A(A) = o(A) and the inclusions follow from
AS+T)CAS)+ A(T) and A(ST) C AS)A(T).

(4) T is left- and right-invertible: TT*R =1 = R'T*T.

(7) Use Theorem 13.9; note that L*L = o € R, soa = A2,

(5) What is meant is that if 7 € X is normal, and J is a * -morphism, then
J(T) € Y is also normal, etc.

(9) The inverse of T, is T—,, which is the adjoint:

/@Tafmdx = /mf(x —a)dx = /g(z +a)f(t)dt
_ f Toag@) /(1) d1.

QD) I(T*T)" |12 = ||[(A*A)" + (B*B)" |12 < (JAI** + || B>/ —
max(||All, | BI|)

(22) If T*T is idempotent, then o (TT*) C o (T*T) U {0} C {0, 1}. Hence
o(TT*TT* — TT*) = {0}.

(1) (x, TT*x) = | T*x|> = | Tx||® = (x, T*Tx) and use Example 10.7(3).
Q) ITfx — T*x|| = (T, — T)*x|| = |T,x — Tx|| — 0. Conversely, take
the limit of ||7,*x|| = ||7,x|| and use Exercise 1.

@ ARl = ax]? = [ Ux]* = [1x]*.

(5) Each distinct eigenvalue comes with an orthogonal eigenvector. In a
separable space, there can only be a countable number of these.

(_6) (em,T*en) = (Tem,en) = Aubum,» s0 T* e, = Zm (em, T*en)em
Anen. Then show | T*x| = || Tx]|.

(8) For (b), note that c(I — T") = 1 — o(T)"* C Bi(1),so ||[I —T"||
p(I — T"™) < 2.For (c) use H = ker(T* — I) @ ker(T* — )+ = ker(T —
I ®im(T —1I).

(2b) Let M, M+ be the domains of A and D. For anyx =a+beM® ML,

(x,Tx)=(a+b,Ta+Tb) = {(a, Ta)+ (b, Th),

(x,x) = (a+b,a+b)=al*+ |Ib]*

As (a,Ta) = |la|®>x with A € W(A), and similarly (b, Th) = ||b]*u,
w € W(D), the values of (x, Tx)/|x||? includes the line between A and .
The collection of these lines is the convex hull of W(A) U W (D).

(3b) For T := (4 1), letx = (), then (x, Tx) = |a[*a + @B + |B|?a = a +
@8, because of the condition 1 = ||x||> = |e|>+|B|*>. But@B = cost sint e'?
takes the value of any complex number in the closed ball By,2(0). In general,
the sum )| o4 is a disk of radius cos n”? by Lagrange multipliers.
(12c) Let A := (T),, 500 =02 =02 _, = |T — A|*.
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15.26

15.35

1541

1547

15.51

(1) The singular values are (i) 4 with singular vectors proportional to (;), (%),
and 1 with (2,), (1): Gi) /3 with (3), (1), and 1 with (0, ().

(7) Let S := T/A where X is the largest eigenvalue (in the sense of
magnitude); it has the same eigenvectors e, as T except with eigenvalues
Hn == Ap/A. M vy = ), ane, + y, where y € ker(T — A) then Skvg =
don wkaze, +y. So

2
1500 = y1I” =Y 1unl*lanl* < Hlwol>,  O<e <)

A TRug S¥ug
2 = =220 _ , and
Ak ”TkUOH HSkUOH y/”)’”

and S¥vg — y as k — oo. Hence

ky
Ukl ~ ”;‘,{ﬁ; the sequence does not converge unless A = |A| but behaves

like "y y]|.
(7) Answers: (b) eigenvalues 1/(n + %)rr, eigenvectors sin(n + %)nx; (©)
1/(n+ %)2712, sin(n + %)nx; SO

1 1 pl
Z (n+ 1)47_[4 2/0 /(; min(x, y)zdydx = 1/6
2

n

3)IfpA =0 forall p € S and A is self-adjoint, then 0 (A) € S(A) = {0}
and A = 0.

(D) o(T) € Bi(0),and o(T) ™" = o(T™") < B1(0).

(8) By the spectral mapping theorem {0} = o(P2—P)={\2—xr:1rc€
o(P)},sor=0,1.

(4)Let T = A+ iB with A, B self-adjoint. Then A > 0 implies S(T) C
S(A) +iS(B) € R*T +iR. Conversely, if 0 > A € o (A), then A = ¢A for
some ¢ € S. If ¢T = pA +i¢pB > 0 for all ¢, then B = 0,50 B = 0.

@) |T*|?> =T|T|\U* = TU*U|T|\U* = (TU*)2.

(10) |T| is invertible, so let U := T|T|7'; it is unitary, e.g., UU* =
TIT|2r*TT- ! = 1.

(11) (b) T = U|T| = S|T|?, where := U|T|? € HS, so te(T) = tr(S|T|?)
is independent of the basis.

(©) 1te(ST)| = [«(SUIT | = (UIT?, S*|T|%>H8|

1 1 12
<NUITZ lysIS*IT 12 s < USTINNT 12 s = ST Il
2
(d) The norm axioms are satisfied because |7 ||, = |||T|% lls and

tr|S+T|=tU*S+T)= (U, S)ys + (U. T)ys < IISlIlys + 1T lxs-
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Also,
I T*|ly =0 UT* = e T*U = tr|T]|.
(e) |T| = U*T = CB where C := U*A € HS. Sotr|T| = (C* B) <

IAllxsIBllys-
(f) If e,, e, are the singular vectors of T, then IT|%ep = |An|%ey,. Take the

polar decomposition of (e/,, Te,) = ¢ |(e}, Te,)|, and let Ue, := e'%e].
Then

Y ey Tea)l =Y fen. U*Tey) = te(U*T) < | Tl
n n

If Te, = Ape), then || T |l = >, (€, Ten) =D, An.



Glossary of Symbols

— Converges to, Definition 3.1

— Weak convergence, Section 11.5

I-Ilx Norm of space X, Definition 7.3

(-,-)x  Inner product of space X, Definition 10.1

1g Characteristic function on E, Review 9.19(1)

>ou A series of terms, Definition 7.20

[a,] Equivalence class of sequence (a;),eN, Theorem 4.5

T* Hilbert adjoint of an operator 7', or the Definitions 10.18 and 15.1

involute of an algebra element,

T" Adjoint of an operator T, Definition 11.29

x' Dual of a sequence x, Example 8.3(4)

T Gelfand/Fourier transform of T, Definitions 9.33, 14.37, and
Exercise 9.37(5)

[AT Span of vectors in A, Review 7.2(7)

AC Complement of set A, Page 7

A Commutant algebra of A, Exercise 13.10(14)

A° Interior of set A, Definition 2.7

A+ Annihilator or orthogonal complement of A, Proposition 10.9 and Definition 11.24

1A Pre-annihilator of A, Definition 11.24

X* Dual space of X, Definition 8.1

0A Boundary of set A, Definition 2.7

A Closure of set A, Definition 2.7

xy Multiplication of sequences, Exercise 9.4(3)

xX-y Dot product of sequences, Example 8.3(4)

X xy Convolution of sequences or functions, Exercise 9.7(2)

A+ B Addition of sets, Review 7.2(12)

A @® B Direct sum of subspaces, Review 7.2(15)

X ZY Isomorphic spaces, Definition 8.14
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A

8)(

dim X

F

G(X)

1

imT
index(T")
ker T

L

or
LP(A)

lim,, oo

S(X)

Isometric spaces,

X is embedded in Y,
Quotient space of X by M,
Space B(X, X),

Space of continuous linear operators X — Y,

Ball of radius r, center x,

Closed ball,

Unit ball of X,

Space of convergent sequences,

Space of sequences that converge to zero,

Space of sequences with a finite number of non-zero

components,
Space Cp(X, C),

Space of bounded continuous functions f : X — Y,
Space of n-times continuously differentiable functions,

Space of analytic functions on A,
Space of polynomials in x, y,
Codimension of subspace A,
Distance function,
Differentiation operator,

Set of differentiable functions,
“Taxicab” distance on X x Y,
Max distance on X x Y,
Character space of X,

Dirac functional,

Dimension of space X,

A field, usually R or C,

Group of invertibles of X,
Identity operator,

Image of a linear map 7,

Index of an operator T,

Kernel space of a linear map 7',
Left-shift operator,

Space of sequences with the p-norm,
Space of functions on A with the p-norm,
Limitas n — oo,

Lebesgue measure on R”,
Multiplication operator by a,
State space of an algebra,
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R
rad X
p(T)

o(T)

tr(T)
W(T)

Right-shift operator,
Radical of an algebra,
Spectral radius of T,

Spectrum of T,
Translation by a,
Trace of T,
Numerical range of T,

Example 8.6(3)
Definition 14.31

Proposition 13.12 and
Theorem 14.3

Definition 14.1

Exercise 8.13(4)
Definition 15.30
Definition 15.16
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Further Reading

Functional analysis impinges upon a wide range of mathematical branches, from lin-
ear algebra to differential equations, probability, number theory, and optimization,
to name just a few, as well as such varied applications as financial investment/risk
theory, bioinformatics, control engineering, quantum physics, etc.

As an example of how functional analysis techniques can be used to simplify
classical theorems consider Picard’s theorem for ordinary differential equations. The
differential equation y' = F(x, y), y(a) = yq, is equivalent to the integral equation
yx)=T(Q) =y, + fax F (s, y(s)) ds. It is not hard to show that if F is Lipschitz
in y and continuous in x, then 7 is a contraction map on C[a — h, a + h] for some
h > 0, and the Banach fixed point theorem then implies that the equation has a
unique solution locally.

However, the classical derivative operator is in many ways inadequate: its domain
is not complete and it is unbounded on several norms of interest. But there is a
way to extend differentiation to much larger spaces, namely Sobolev spaces and
Distributions. The former are Banach spaces L! of functions that have certain
grades of integrability (p) and differentiability (s), while the latter are spaces of
functionals that act on them with weak*-convergence. Distributions include all the
familiar functions in Llloc, but also other ‘singular’ ones, such as Dirac’s delta
‘function’ § and 1/x". Differentiation can be extended as a continuous operator
on these spaces, e.g., LY — Lf_ |- Moreover, distributions can be differentiated
infinitely many times; for example, the derivative of the discontinuous Heaviside
function Ig+ is 8. But, in general, ‘singular’ distributions cannot be multiplied

together. A central result is the Sobolev inequality, ||u |l o®ry < cn,pllDutll Lrweys

forn >2,1 = % — L which implies that the identity map L} (R") — L{(R"),

along the arrows in Fig. 1, is continuous. The study of operators on such generalized
spaces is of fundamental importance: from extensions of the convolution and the
Fourier transform, to pseudo-differential operators of the type f(x, D), singular
integrals, and various other transforms (see [12, 26, 28]).
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Fig. 1 Sobolev spaces

Although unbounded, classical differential operators are normal ‘closed opera-
tors’: these have a graph { (x, Tx) : x € X } which is closed in X x X. Quite a lot
of the spectral theory extends in modified form to them. For example their spectrum
remains closed but not necessarily bounded. So, if one inverts in a point A ¢ o (T)
then (T —1) ! becomes a regular continuous operator, which can often be expressed
as an integral operator, whose kernel is called its Green’s function. Indeed, it turns
out that ‘elliptic’ differential operators become Fredholm self-adjoint operators
under this inversion. This immediately gives certain results, usually falling under
the heading of Sturm-Liouville theory, such as that the spectrum of the Laplace
operator —A on a compact shape in R” is an unbounded sequence of isolated
positive eigenvalues, called the “resonant frequencies” or “harmonics” of the shape.
Deeper results include the Atiyah-Singer index theorem: the Fredholm index of an
elliptic differential operator is equal to a certain topological invariant of the domain.

The concept of a Banach space can be generalized to a topological vector space,
namely a vector space with a topology that makes its operations continuous. Many
theorems continue to hold at least for “locally convex topological vector spaces”,
including the Hahn-Banach theorem, the open mapping theorem, and the uniform
boundedness theorem. Other important results are Schauder’s fixed point theorem,
the Krein-Milman theorem, the analytic Fredholm index theorem, and the Hille-
Yosida theorem.

Harmonic analysis is the study of general (but usually locally compact) group
algebras, especially the Fourier transform. The central results are the Pontryagin
duality theorem, which asserts that the character space of L!(G) is itself a group
that is ‘dual’ to G, and the Peter-Weyl theorem. von Neumann algebras are *-
algebras that arise as double commutators of C*-algebras; equivalently, they are
the weakly closed subspaces of B(H). The spectral theorem holds for them. There
is a lot of theory devoted to their structure, and a complete classification is still an
open problem.
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One must also include some outstanding conjectures: whether every operator on
a separable Hilbert space has a non-trivial closed invariant subspace; whether every
infinite-dimensional Banach space admits a quotient which is infinite-dimensional
and separable; Selberg’s conjecture about the first eigenvalue of a specific Laplace-
Beltrami operator on Maass waveforms; the Hilbert-Pdlya conjecture that the non-
trivial zeros of the Riemann zeta function are the eigenvalues of some unbounded
operator % + i A with A self-adjoint; etc.
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