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To my students and collaborators



Preface

I am truly indebted to the authors of the graduate texts that taught me mathematics
through the years. It has long been my wish to express this gratitude by writing a
graduate textbook that would benefit generations of younger mathematicians. This
was my intention when I started working on the volumes Classical Fourier Analysis
(GTM 249) and Modern Fourier Analysis (GTM 250). But for some reason the
end result was a bit different; these books grew too big and are mostly used today
as references. Nonetheless, I hope this monograph achieves my original goal. The
present text is designed to introduce Euclidean Fourier Analysis to students who have
successfully completed first-year graduate courses in Real Analysis and Complex
Variables. The material is self-contained, thoughtfully planned out, and presented
with the intention of building a solid foundation in Fourier Analysis within two
semesters. Each section is complemented by up to a dozen exercises that range
in difficulty from “straightforward” to “fairly challenging,” in no particular order.
Better comprehension is definitely achieved by solving these exercises, and readers
are urged to do so in order to test their understanding. I hope that students will profit
from this text, and instructors will enjoy teaching from it. Above all else, I hope this
book will inspire many people to study harmonic analysis.

This book is designed to be self-contained and for this reason, many peripheral
tools needed are included in Appendices A–G; however, in a few instances, results
fromAppendices A–D of [31] are also used.While this book may omit some popular
themes, it is only intended to serve the purposes of a two-semester course and is
written to contain as many topics of general interest as possible. The outline below
and the interdependence chart will assist instructors in deciding which sections/
chapters they wish to omit and/or replace with topics of their own interest without
affecting the logical flow of the exposition.

Chapter 1 begins with a section containing a summary of important results on
measure theory and Lebesgue spaces, with selected proofs. This section could be
omitted as it is usually covered in courses on real variables. The remaining sections of
this chapter focus onweak Lp spaces, interpolation, maximal functions, the Lebesgue
differentiation theorem, convolutions, smooth functions, and approximate identities.

ix
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These fundamental notions build an arsenal of indispensable tools in analysis. I
suggest they be covered in detail.

The Fourier transform is introduced in the first section of Chapter 2 as an operator
on L1 and in the third section as an operator on L2, after Fourier inversion is settled
in the second section. The Hausdorff–Young inequality is obtained by means of
complex interpolation. The latter topic is presented in the entire range of Lebesgue
spaces and is based on the results in Appendices B and C. Case II in the proof of
Theorem 2.4.1 is not needed in the sequel and could be excluded. Theorem 2.5.7 in
Section 2.5 could also be skipped. Sections 2.6 and 2.7 provide the necessary tools
from distribution theory that a harmonic analyst needs to know. These sections are
sine quanon to audienceswithout backgroundondistributions. Section 2.8 introduces
Lp Fourier multipliers and is important in this book. Finally, Section 2.9 is optional
and is recommended to audiences with interest in oscillatory integrals.

Chapter 3 is concerned with the theory of singular integrals. The theory is intu-
itively built starting with the one-dimensional Hilbert transform (first section). The
following two sections contain higher-dimensional analogs. The L2 boundedness of
singular integrals is the topic of Section 3.4 and the Lp boundedness is the topic of
Section 3.6, which is established in terms of the Calderón–Zygmund decomposition
(Section 3.5). The last section of this chapter deals with maximal singular integrals,
while Section 3.7 could be skipped if there is time pressure.

The first three sections of the fourth chapter are concerned with vector-valued
extensions of the Lp boundedness results of singular integrals. To simplify the presen-
tation, vectors are restricted to the finite-dimensional case while analogous results
for infinite vectors are obtained by a limiting process. The results in these sections
are obtained as in the previous chapter, the only difference being that the functions
involved here take values in a finite-dimensional Banach space. These ideas find
fruitful applications in Littlewood–Paley theory, which is studied in Sections 4.4 and
4.5. The last section of this chapter (Section 4.6) contains product-type variants of
these results that are subsequently needed only in the proof of the Marcinkiewicz
multiplier theorem (Section 5.7).

Chapter 5 is concerned with fractional integration and differentiation. The first
two sections focus on the Riesz and Bessel potentials and some of their basic prop-
erties. A version of the Miklhin–Hörmander multiplier theorem is the focus of
Section 5.3. A short exposition of Sobolev spaces, including the Sobolev embed-
ding theorem, is given in Section 5.4. Stein’s interpolation theorem for analytic
families (Section 5.5) furnishes an elegant way to obtain estimates for fractional
derivatives. The Calderón–Torchinsky multiplier theorem provides an extension of
Miklhin–Hörmander’s theorem and is presented in Section 5.6. The chapter ends
with the study of the Marcinkiewicz multiplier theorem (Section 5.7); this requires
the results of Section 4.6.

The space of functions of boundedmean oscillation (BMO) is studied inChapter 6.
The most important theorem in this chapter is the John–Nirenberg theorem, which
is proved in Section 6.2. A version of BMO called dyadic BMO is investigated in
Section 6.3. A useful tool in the study of BMO is the sharp maximal function, which
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is discussed in Section 6.4. This is used in interpolation via BMO, a topic examined
in the last section of this chapter (Section 6.5).

Chapter 7 focuses on Hardy spaces Hp. The first section is concerned with the
interplay of smoothness and cancellation, which is explicitly manifested in many
estimates. Although emphasis is placed on the Hardy spaceH 1, the basic definitions,
examples, and properties of Hardy spaces are discussed for all p > 0; these include
properties of the grandmaximal function.An important topic discussed in this chapter
is the atomic decomposition of H 1 (Section 7.6). This is based on the Whitney
decomposition of open sets in Rn, contained in the previous section. The action of
singular integrals on the Hardy space H 1 is examined in Section 7.7. The final topic
of this section is the duality between H 1 and BMO.

The final chapter of this book deals with Ap weights. The appearance of the Ap

condition is motivated in Sections 8.1 and 8.2. Basic properties of Ap weights are
discussed in Section 8.3, while weighted Lp estimates are obtained in Section 8.4.
Other topics studied in this chapter are factorization (Section 8.5), reverse Hölder
property (Section 8.6), and weighted estimates for singular integrals (Section 8.7).

The following chart concisely displays the interdependence of the chapters:

My intention is to maintain an errata website, which can be accessed via the link:

https://grafakos.missouri.edu

I am extremely thankful to all the people who have assisted me in the preparation
of this textbook. First, I would like to express my gratitude to Jan Bouwe van den
Berg, Georgios Dosidis, and Lenka Slavíková, who used a preliminary version of the
book in the classroom and provided me with valuable feedback.

Many thanks to Nathan Bushman, Aniruddha Deshmukh, Xinyu Gao, Luigi
Fontana, Steve Goldschmidt, Wyatt Gregory, Lixin He, Kristen Kaliski, Carlo
Morpurgo, Felipe Noguera Rodriguez, Aritro Pathak, Dani Rozenbroek, Daniel
Sinambela, Gregory Slease, Derek Sparrius, Arun Suresh, Konstantinos Tselios, and
James Warta for suggesting improvements to the exposition and content.

I am deeply indebted to John Lucas for the multitude of corrections he provided
me with. I must admit that I have never encountered a more careful reader in my
career. His feedback was significant and greatly improved this book. A very special

https://grafakos.missouri.edu
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acknowledgment goes to Sean Douglas who drew almost all the pictures in the text
and provided me with an abundance of corrections and suggestions. I am also very
thankful to Springer’s Mathematics executive editor Elizabeth Loew for her support
and assistance throughout the preparation of this book. Finally, I gratefully acknowl-
edge the support of the Simons Foundation Fellowship No. 819503 which provided
me with a teaching release during the academic year 2021–2022 and precious time
to work on the manuscript.

I wish to dedicate this book to all my graduate students and collaborators who
have enriched my life throughout the years.

Columbia, Missouri
February 2024

Loukas Grafakos



Contents

1 Introductory Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 A Review of Lebesgue Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2 The Distribution Function and Weak Lp Spaces . . . . . . . . . . . . . . . . . 10
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3 Real Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.4 The Hardy–Littlewood Maximal Operator . . . . . . . . . . . . . . . . . . . . . . 22
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.5 The Lebesgue Differentiation Theorem . . . . . . . . . . . . . . . . . . . . . . . . 28
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
1.6 Convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
1.7 Smoothness and Smooth Functions with Compact Support . . . . . . . 37
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
1.8 Schwartz Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
1.9 Approximate Identities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2 Fourier Transforms, Tempered Distributions, Approximate
Identities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.1 The Fourier Transform on L1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.2 Fourier Inversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
2.3 The Fourier Transform on L2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
2.4 Complex Interpolation and the Hausdorff–Young Inequality . . . . . . 69
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

xiii



xiv Contents

2.5 Approximate Identities and Almost Everywhere Convergence . . . . . 75
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
2.6 Tempered Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
2.7 Basic Operations with Tempered Distributions . . . . . . . . . . . . . . . . . . 89
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
2.8 Lp Fourier Multipliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
2.9 Van der Corput Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

3 Singular Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
3.1 The Hilbert Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
3.2 Homogeneous Singular Integrals and Riesz Transforms . . . . . . . . . . 112
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
3.3 Calderón–Zygmund Singular Integrals . . . . . . . . . . . . . . . . . . . . . . . . . 119
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
3.4 L2 Boundedness of Calderón–Zygmund Operators . . . . . . . . . . . . . . 123
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
3.5 The Calderón–Zygmund Decomposition . . . . . . . . . . . . . . . . . . . . . . . 128
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
3.6 L2 Boundedness Implies Lp Boundedness . . . . . . . . . . . . . . . . . . . . . . 133
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
3.7 The Hilbert Transform and the Poisson Kernel . . . . . . . . . . . . . . . . . . 139
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
3.8 Maximal Singular Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

4 Vector-Valued Singular Integrals and Littlewood–Paley Theory . . . . 151
4.1 The Vector-Valued Calderón–Zygmund Theorem . . . . . . . . . . . . . . . 151
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
4.2 Applications of Vector-Valued Inequalities . . . . . . . . . . . . . . . . . . . . . 158
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
4.3 A Matrix-Valued Calderón–Zygmund Theorem and Its

Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
4.4 Littlewood–Paley Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
4.5 Reverse Littlewood–Paley Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . 179
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
4.6 Littlewood–Paley Theory of Product Type . . . . . . . . . . . . . . . . . . . . . 187
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193



Contents xv

5 Fractional Integrability or Differentiability and Multiplier
Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
5.1 Powers of the Laplacian and Riesz Potentials . . . . . . . . . . . . . . . . . . . 195
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
5.2 Bessel Potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
5.3 The Mikhlin and Hörmander Multiplier Theorems . . . . . . . . . . . . . . . 207
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
5.4 Sobolev Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
5.5 Interpolation of Analytic Families of Operators . . . . . . . . . . . . . . . . . 220
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
5.6 The Calderón–Torchinsky Multiplier Theorem . . . . . . . . . . . . . . . . . . 230
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
5.7 The Marcinkiewicz Multiplier Theorem . . . . . . . . . . . . . . . . . . . . . . . 239
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

6 Bounded Mean Oscillation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
6.1 Basic Properties of Functions of Bounded Mean Oscillation . . . . . . 247
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
6.2 The John–Nirenberg Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
6.3 Dyadic Maximal Functions and Dyadic BMO . . . . . . . . . . . . . . . . . . 260
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
6.4 The Sharp Maximal Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
6.5 Interpolation Using BMO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

7 Hardy Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
7.1 Smoothness and Cancellation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
7.2 Definition of Hardy Spaces and Preliminary Estimates . . . . . . . . . . . 283
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
7.3 Hp Atoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
7.4 Grand Maximal Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
7.5 The Whitney Decomposition of Open Sets . . . . . . . . . . . . . . . . . . . . . 303
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310
7.6 Atomic Decomposition of H 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317



xvi Contents

7.7 Singular Integrals on the Hardy Space H 1 . . . . . . . . . . . . . . . . . . . . . . 319
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
7.8 Duality Between H 1 and BMO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328

8 Weighted Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
8.1 Appearance of Weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
8.2 The Ap Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
8.3 Properties of Ap Weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
8.4 Strong-Type Ap Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
8.5 The Jones Factorization of Weights . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353
8.6 Reverse Hölder Property of Ap Weights . . . . . . . . . . . . . . . . . . . . . . . . 354
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361
8.7 Weighted Estimates for Singular Integral Operators . . . . . . . . . . . . . . 362
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367

Historical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369

Appendix A Orthogonal Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371

Appendix B Subharmonic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373

Appendix C Poisson Kernel on the Unit Strip . . . . . . . . . . . . . . . . . . . . . . . . 377

Appendix D Density for Subadditive Operators . . . . . . . . . . . . . . . . . . . . . . 383

Appendix E Transposes and Adjoints of Linear Operators . . . . . . . . . . . . 385

Appendix F Faà di Bruno Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387

Appendix G Besicovitch Covering Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . 389

Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403



Chapter 1
Introductory Material

1.1 A Review of Lebesgue Spaces

In this section we review some basic facts concerning the Lebesgue spaces Lp. We
state a variety of results concerning these spaces but only provide proofs selectively,
as the material can be found in many textbooks on real variables

A measure space is a set X equipped with a σ -algebra F of subsets of X , called
measurable sets, and a function μ from the measurable subsets to [0,∞], called a
positive measure, that satisfies μ( /0) = 0 and

μ
( ∞⋃

j=1

Bj

)
=

∞

∑
j=1

μ(Bj)

for any sequence Bj of pairwise disjoint elements of F. In this situation we refer
to the triple (X ,F ,μ) as a measure space, although we often do not indicate the
dependence on the σ -algebra F if this is evident. Measurable sets of measure zero
are called null sets. Measure spaces X in this text are assumed to be complete, which
means that subsets of null sets in F also belong to F. A measure space X is called
σ -finite if there is a sequence of sets Xn ∈ F with μ(Xn) < ∞ such that

X =
∞⋃

n=1

Xn.

The Borel sets form the smallest σ -algebra that contains the open sets in a topolog-
ical space. A positive Borel measure is a positive measure on the Borel sets.

A real-valued function f on a measure space (X ,F ,μ) is called measurable if
for all real numbers λ we have {x ∈ X : f (x) > λ} ∈ F . A characteristic func-
tion χB of a subset B of X is measurable if and only if B ∈ F . A complex-valued
function g is measurable if and only if both its real part Reg and its imaginary part
Img are measurable functions. In measure spaces we identify two functions that
are equal except on a set of measure zero; we indicate this fact by saying that the
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2 1 Introductory Material

functions are equal a.e. A simple function is a finite linear combination of character-
istic functions of sets in F ; that is f = ∑N

j=1 c jχBj , c j ∈ C, N ∈ Z+. If μ(Bj) < ∞
for all j, then f is called finitely simple. The sets Bj ∈ F can be chosen to be pair-
wise disjoint, in which case ∑N

j=1 c jχBj is the standard representation of f . Every
nonnegative measurable function is the pointwise limit of an increasing sequence of
simple functions; if the space is σ -finite, these simple functions can be chosen to be
finitely simple.

Definition 1.1.1. For 0 < p < ∞, we define the Lp norm (or quasi-norm if p < 1) of
a complex-valued function f on a measure space (X ,μ) by

∥∥ f∥∥Lp(X ,μ) =
(∫

X
| f (x)|p dμ(x)

) 1
p

=
(∫

X
| f |p dμ

) 1
p

. (1.1.1)

For p= ∞ this norm is defined by
∥∥ f∥∥L∞(X ,μ) = ess.sup

x∈X
| f (x)| = inf

{
a > 0 : μ({x ∈ X : | f (x)| > a}) = 0

}
. (1.1.2)

For any 0 < p ≤ ∞ we define Lp(X ,μ) to be the space of all complex-valued mea-
surable functions f with ‖ f‖Lp < ∞. A function is called integrable if it lies in L1.

The preceding definition implies that μ({x : | f (x)| > ‖ f‖L∞}) = 0.

Definition 1.1.2. For any 1 < p < ∞ we use the notation p′ = p
p−1 to indicate the

dual exponent of p. Moreover, we set 1′ = ∞ and ∞′ = 1.

Note that the definition of the dual exponent implies that p′′ = p for all p∈ [1,∞].

Theorem 1.1.3. (Hölder’s inequality) Let f ,g, f1, . . . , fm (m ≥ 2) be nonzero
measurable functions on a measure space (X ,μ). Then
(a) If 1 ≤ q ≤ ∞, then we have

∥∥ f g∥∥L1 ≤ ∥∥ f∥∥Lq
∥∥g∥∥Lq′ . (1.1.3)

(b) If 0 < p1, . . . , pm, p ≤ ∞ and 1/p= 1/p1+ · · ·+1/pm, then
∥∥ f1 · · · fm

∥∥
Lp ≤ ∥∥ f1

∥∥
Lp1 · · ·∥∥ fm

∥∥
Lpm . (1.1.4)

Thus f j ∈ Lpj for all j = 1, . . . ,m implies that f1 · · · fm ∈ Lp.
(c) Suppose that no fi is identically equal to zero a.e. and that p < ∞. If equality
holds in (1.1.4) then

(| f j|/‖ f j‖Lp j
)p j = (| fk|/‖ fk‖Lpk

)pk a.e. for all p j, pk < ∞ and
| fi| = ‖ fi‖L∞ at almost all points for which f1 · · · fm is not zero, when pi = ∞.

Proof. (a) If q=∞, restrict the integral of f g over the set {| f | ≤ ‖ f‖L∞} (as its com-
plement has measure zero) to obtain the conclusion. When q = 1 reverse the roles
of f and g. For 1< q< ∞ consider the function ψ(t) = 1

qt
q+ 1

q′ bq
′ − tb on [0,∞) for

some fixed b > 0. This function is decreasing on [0,bq
′/q], increasing on [bq

′/q,∞),
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and satisfies ψ(t) = 0 if and only if t = bq
′/q. Thus ψ(t) ≥ 0. For b= |g(x)|/‖g‖Lq′

the integral of ψ(| f (x)|/‖ f‖Lq) over X is nonnegative, yielding (1.1.3). Moreover,
equality holds in (1.1.3) if and only if (| f |/‖ f‖Lq)q = (|g|/‖g‖Lq′ )q

′
a.e.

(b) When m = 2 assume that max(p1, p2) < ∞; otherwise the assertion is straight-
forward. Using (1.1.3) with f = | f1|p, g = | f2|p, q = p1/p, and q′ = p2/p we
obtain (1.1.4) when m= 2. Additionally, a previous observation yields that equality
holds in this case if and only if

(| f1|/‖ f1‖Lp1
)p1 = (| f2|/‖ f2‖Lp2

)p2 a.e. The case of
m≥ 3 follows by induction, by applying the case form−1 functions with exponents
1/q = 1/p1+ · · ·+ 1/pm−1 and the case m = 2 with exponents 1/p = 1/q+ 1/pm
to the functions f1 · · · fm−1 and fm, respectively.
(c) As p < ∞ there is at least one index pi < ∞. Let us reindex the p j such that
p j < ∞ for 1 ≤ j ≤ κ and p j = ∞ when j ≥ κ +1; note κ ≥ 1. We have

∥∥ f1 · · · fm
∥∥
Lp ≤ ∥∥ f1 · · · fκ

∥∥
Lp

m

∏
j=κ+1

∥∥ f j
∥∥
L∞ ≤

κ

∏
j=1

∥∥ f j
∥∥
Lp j

m

∏
j=κ+1

∥∥ f j
∥∥
L∞ . (1.1.5)

If equality holds in (1.1.4) then equality holds in the second inequality in (1.1.5), so
we must have ∥∥ f1 · · · fκ

∥∥
Lp =

∥∥ f1
∥∥
Lp1 · · ·∥∥ fκ

∥∥
Lpκ .

We may assume κ ≥ 2 as the assertion about the f j when p j < ∞ is straightforward
when κ = 1. For i ∈ {2, . . . ,κ} set 1/qi = 1/p1+1/pi and notice that equality must
hold in the second inequality below (all norms are nonvanishing by assumption)

∥∥∥
κ

∏
j=1

f j
∥∥∥
Lp

≤ ∥∥ f1 fi
∥∥
Lqi ∏

2≤ j �=i≤κ

∥∥ f j
∥∥
Lp j ≤

κ

∏
j=1

∥∥ f j
∥∥
Lp j .

This reduces matters to the case of equality when m = 2, from which we obtain(| f1|/‖ f1‖Lp1
)p1 = (| fi|/‖ fi‖Lpi

)pi a.e. for all 1 ≤ i ≤ κ by part (a). Now set

F = f1 · · · fκ and H =
m

∏
j=κ+1

( f j‖ f j‖−1
L∞ );

then H is well defined as no f j vanishes identically. Since equality holds in (1.1.4),
then equality must also hold in the first inequality in (1.1.5); this gives ‖FH‖p

Lp =
‖F‖p

Lp and as |H| ≤ 1 a.e. it follows that |F |p(1−|H|p) = 0 a.e. Consequently on
the set {x ∈ X : f1(x) · · · fm(x) �= 0} which is contained in {x ∈ X : F(x) �= 0}, we
must have | fi| = ‖ fi‖L∞ a.e. when i ≥ κ +1 (that is, when pi = ∞). �

The assertion in (c) may fail if p= ∞; indeed, the functions f1(x) = f2(x) = e−|x|
on R satisfy ‖ f1 f2‖L∞ = 1= ‖ f1‖L∞‖ f2‖L∞ but | f1(x)| < 1= ‖ f1‖L∞ when x �= 0.

Proposition 1.1.4. Let (X ,μ) be a measure space. For any q, let Dq be a dense
subspace of Lq(X ,μ). If 1 ≤ p < ∞ and f ∈ Lp then

∥∥ f∥∥Lp = sup

{∣∣∣∣
∫

X
f gdμ

∣∣∣∣ : g ∈ D p′
with ‖g‖Lp′ = 1

}
. (1.1.6)
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Also, if (X ,μ) is a σ -finite measure space, then for any f ∈ L∞ we have

∥∥ f∥∥L∞ = sup

{∣∣∣∣
∫

X
f gdμ

∣∣∣∣ : g ∈ D1 with ‖g‖L1 = 1

}
. (1.1.7)

Proof. Indeed, the direction ≥ in (1.1.6) follows by Hölder’s inequality. For the
converse direction, if f is not the zero function in Lp, we denote its complex
conjugate by f . For 1 ≤ p < ∞ we choose

g=
f | f |p−2

‖ f‖p−1
Lp

and we note that ‖g‖Lp′ = 1 and that for this choice of g the integral in (1.1.6) is

actually equal to
∥∥ f∥∥Lp . Then (1.1.6) is obtained by the density of D p′

in Lp′
.

Notice that the direction ≥ in (1.1.7) is immediate. For the converse direction,
let X =

⋃∞
m=1Xm, where Xm is an increasing sequence of measurable subsets of X

with μ(Xm) < ∞. Given a nonzero function f in L∞(X ,μ) and 0 < δ < ‖ f‖L∞ , the
set Bδ = {| f | > ‖ f‖L∞ −δ} has positive μ measure (which could be infinite); then
0 < μ(Bδ ∩Xm) < ∞ for some m ∈ Z+ and we define

gδ =
f

| f |
χBδ ∩Xm

μ(Bδ ∩Xm)

recalling that | f | does not vanish on Bδ . Notice that ‖gδ ‖L1 = 1 and

sup
‖g‖L1=1

∣∣∣∣
∫

X
f gdμ

∣∣∣∣≥
∣∣∣∣
∫

X
f gδ dμ

∣∣∣∣=
1

μ(Bδ ∩Xm)

∫

Bδ ∩Xm
| f |dμ ≥ ‖ f‖L∞ −δ .

We now find hδ ∈ D1 such that
∥∥hδ − gδ

∥∥
L1 ≤ δ . Letting δ → 0, we obtain the

direction ≤ in (1.1.7). �

Proposition 1.1.5. Let 0 < p ≤ ∞ and f , g be functions in Lp = Lp(X ,μ).
(a) (Minkowski’s inequality) If 1 ≤ p ≤ ∞, then

∥∥ f +g
∥∥
Lp ≤ ∥∥ f∥∥Lp +

∥∥g∥∥Lp . (1.1.8)

(b)When 0 < p < 1 we have

∥∥ f +g
∥∥
Lp ≤ 2

1−p
p

(∥∥ f∥∥Lp +
∥∥g∥∥Lp

)
. (1.1.9)

(c) For all 0 < p ≤ ∞ we have

∥∥ f +g
∥∥min(1,p)
Lp ≤ ∥∥ f∥∥min(1,p)

Lp +
∥∥g∥∥min(1,p)

Lp . (1.1.10)

Proof. Part (a) is straightforward when p= ∞ and can be derived from Proposition
1.1.4 when 1 ≤ p < ∞. Part (b) is based on the inequalities (a+b)p ≤ ap+bp and
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(A+B)
1
p ≤ 2

1−p
p (A

1
p +B

1
p ), which are valid for a,b,A,B ≥ 0 when 0 < p < 1; the

second inequality is a consequence of Hölder’s inequality with exponents 1/p and
1/(1− p) applied to the functions ϕ and ψ defined on X = {1,2} (equipped with
discrete measure) by ϕ(1) =ϕ(2) = 1 and ψ(1) =A, ψ(2) =B. Part (c) is contained
in (a) for p ≥ 1 and uses (a+b)p ≤ ap+bp for p < 1. �

Additionally, ‖λ f‖Lp(X ,μ) = |λ |‖ f‖Lp(X ,μ) and ‖ f‖Lp(X ,μ) = 0 implies that f = 0
(μ-a.e.), and thus the Lp spaces are normed linear spaces for 1 ≤ p ≤ ∞ and quasi-
normed linear spaces when p < 1. Moreover, these spaces are complete.

Theorem 1.1.6. (Fatou’s lemma) Let g, h, fn, n = 1,2, . . . , be real-valued measur-
able functions on a measure space (X ,μ).
(a) If fn ≥ 0 for all n then

∫

X
liminf
n→∞

fn dμ ≤ liminf
n→∞

∫

X
fn dμ . (1.1.11)

(b) The conclusion in (1.1.11) also holds if fn ≥ g a.e. for all n where
∫
X gdμ > −∞.

(c) Suppose that if fn ≤ h a.e. for all n= 1,2, . . . with
∫
X hdμ < +∞. Then

limsup
n→∞

∫

X
fn dμ ≤

∫

X
limsup
n→∞

fn dμ . (1.1.12)

Proof. The cases
∫
X gdμ = ∞ and

∫
X hdμ =−∞ are trivial. So we may assume that

−∞ <
∫

X
gdμ and

∫

X
hdμ < ∞.

Then parts (b) and (c) follow by applying (a) to fn −g and h− fn, respectively. �

Theorem 1.1.7. (Lebesgue monotone convergence theorem1) Let f be a measur-
able function on a measure space (X ,μ) and let { fn}∞

n=1 be a sequence of real-
valued measurable functions that converges to f .
(a) If 0 ≤ f1 ≤ f2 ≤ f3 ≤ ·· · a.e., then

∫

X
fn dμ ↑

∫

X
f dμ . (1.1.13)

(b) The conclusion in (1.1.13) holds if f1 ≤ f2 ≤ f3 ≤ ·· · a.e. and ∫
X f1 dμ > −∞.

(c) If f1 ≥ f2 ≥ f3 ≥ ·· · a.e. and ∫
X f1 dμ < +∞, then

∫

X
fn dμ ↓

∫

X
f dμ . (1.1.14)

Proof. Part (b) follows by applying part (a) to fn − f1 when
∫
X f1 dμ < +∞; the

case
∫
X f1 dμ = ∞ is trivial. Likewise, part (c) follows by applying part (a) to f1− fn

when
∫
X f1 dμ > −∞, while (1.1.14) is immediate when

∫
X f1 dμ = −∞. �

1 Often abbreviated as LMCT.
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Theorem 1.1.8. Let f , fn, n= 1,2, . . . , be complex-valued measurable functions on
a measure space (X ,μ) such that fn → f a.e. and g, gn, n= 1,2, . . . , are nonnegative
integrable functions on X.
(a) (Lebesgue dominated convergence theorem2) If | fn| ≤ g a.e. for all n, then

lim
n→∞

∫

X
| fn − f |dμ = 0 . (1.1.15)

(b) (Generalized dominated convergence theorem) If | fn| ≤ gn for all n, gn → g a.e.
and

∫
X gn dμ → ∫

X gdμ , then (1.1.15) holds.

Proof. To prove part (b) consider the sequence | fn − f | − gn which satisfies
| fn − f | − gn ≤ g a.e. As 0 ≤ ∫

X gdμ < ∞, applying part (c) of Fatou’s lemma we
obtain

limsup
n→∞

∫

X
| fn − f |−gn dμ ≤

∫

X
limsup
n→∞

(| fn − f |−gn)dμ = −
∫

X
gdμ . (1.1.16)

But as the limit of
∫
X gn dμ exists, we have

limsup
n→∞

∫

X
| fn − f |−gn dμ = limsup

n→∞

∫

X
| fn − f |dμ −

∫

X
gdμ .

Adding
∫
X gdμ to both sides in (1.1.16) we obtain limsupn→∞

∫
X | fn− f |dμ = 0. �

Theorem 1.1.9. Let 0 < p ≤ ∞ and let (X ,μ) be a measure space. Every Cauchy
sequence in Lp(X ,μ) is convergent in Lp and has a subsequence that converges a.e.

Proof. Let { fn}∞
n=1 be a Cauchy sequence in Lp(X ,μ). We can find a sequence

of natural numbers n1 < n2 < · · · such that ‖ fnk+1 − fnk‖min(1,p)
Lp < 2−k for all k =

1,2, . . . . By the Lebesgue monotone convergence theorem the function

G=
∞

∑
j=1

∣∣ fn j+1 − fn j
∣∣= lim

k→∞

k−1

∑
j=1

∣∣ fn j+1 − fn j
∣∣

lies in Lp and thus it is finite a.e. This implies that the series defining G converges
a.e. and so there is a measurable function f on X such that

fnk − fn1 =
k−1

∑
j=1

( fn j+1 − fn j) → f − fn1 a.e.

as k → ∞. But | f − fn1 | ≤ supk | fnk − fn1 | ≤ G, and as G ∈ Lp, we conclude that
f − fn1 ∈ Lp, hence f ∈ Lp. Now | fnk − f | ≤ G+ | f − fn1 | ∈ Lp; thus the LDCT
yields ‖ fnk − f‖Lp → 0. To complete the proof, given ε > 0, find N such that for

m,n ≥ N =⇒ ‖ fn − fm‖min(1,p)
Lp <

ε
2
.

2 Often abbreviated as LDCT.
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Also, as ‖ fnk − f‖Lp → 0, we can find k0 such that

k ≥ k0 =⇒ ‖ fnk − f‖min(1,p)
Lp <

ε
2
.

We pick k1 ≥ k0 such that nk1 ≥ N. Combining these implications, we obtain

n ≥ N =⇒ ‖ fn − f‖min(1,p)
Lp ≤ ‖ fn − fnk1‖

min(1,p)
Lp +‖ fnk1 − f‖min(1,p)

Lp <
ε
2
+

ε
2
.

These facts show that fnk → f a.e. and that fn → f in Lp. �

Theorem 1.1.10. (Riesz representation theorem) Let (X ,μ) be a measure space.
(a) Given a nonzero complex-valued bounded linear functional T on Lp(X), where
1 < p < ∞, there is a unique (a.e.) function h ∈ Lp′

such that

T ( f ) =
∫

X
f hdμ for all f ∈ Lp(X),

and moreover the norm of T on Lp(X) equals ‖h‖Lp′ .
(b) The assertion in part (a) is also valid if p= 1 and (X ,μ) is σ -finite.

Theorem 1.1.11. Let (X ,μ) and (Y,ν) be two σ -finite measure spaces and let F be
a measurable function on X ×Y , equipped with product measure.
(a) (Tonelli’s theorem) We have

∫

X

(∫

Y
|F(x,y)|dν(y)

)
dμ(x) =

∫

Y

(∫

X
|F(x,y)|dμ(x)

)
dν(y) . (1.1.17)

(b) (Fubini’s theorem) If either expression in (1.1.17) is finite, then

∫

X

(∫

Y
F(x,y)dν(y)

)
dμ(x) =

∫

Y

(∫

X
F(x,y)dμ(x)

)
dν(y) . (1.1.18)

Theorem 1.1.12. (Minkowski integral inequality) Let (X ,μ) and (Y,ν) be two σ -
finite measure spaces and let 1 ≤ p ≤ ∞. Then for every nonnegative measurable
function F on the product space (X ,μ)× (Y,ν) we have

[∫
Y

(∫

X
F(x,y)dμ(x)

)p

dν(y)
] 1

p

≤
∫

X

[∫
Y
F(x,y)p dν(y)

] 1
p

dμ(x) ,

with a suitable modification when p= ∞.

In this text, Lebesgue measure is denoted by dx, dy, etc. depending on the vari-
able of integration. Lebesgue measurable subsets of Rn are simply called mea-
surable. The Lebesgue measure of a Lebesgue measurable subset E of the real
line is denoted by |E| = ∫

E 1dx. For a measurable subset E of Rn, Lp(E) denotes
Lp(E, | · |), i.e., the set E equipped with the restriction of the Lebesgue measure
on it. Subsets of Rn are assumed to be equipped with Lebesgue measure, unless
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indicated otherwise. Finite linear combinations of characteristic functions of cubes
with sides parallel to the axes on Rn are called step functions. It is known that step
functions are dense in Lp(Rn) for every p < ∞.

A natural measure on the space Z is counting measure ν defined on subsets A of
Z by ν(A) = cardinality of A. For 0 < p ≤ ∞, �p(Z) denotes the space Lp(Z,ν).

Example 1.1.13. The spaces Lp([0,1]) decrease and the spaces �p(Z) increase as p
increases. Indeed for 0 < p < q ≤ ∞, by Hölder’s inequality, we have

∥∥ f∥∥Lp([0,1]) ≤ |[0,1]| 1p− 1
q
∥∥ f∥∥Lq([0,1]) =

∥∥ f∥∥Lq([0,1]),

so Lq([0,1]) is contained in Lp([0,1]).

Now
∥∥{b(k)}k

∥∥
�p(Z) =

(∫
Z |b(k)|pdν

) 1
p =

(
∑k∈Z |b(k)|p) 1

p ; hence

∥∥{b(k)}k
∥∥

�q
=
(

∑
k∈Z

|b(k)|q−p+p
) 1

q ≤ ∥∥{b(k)}k
∥∥ q−p

q
�∞

∥∥{b(k)}k
∥∥ p

q
�p ≤ ∥∥{b(k)}k

∥∥
�p

as clearly
∥∥{b(k)}k

∥∥
�∞ ≤ ∥∥{b(k)}k

∥∥
�p(Z). This shows that �

p(Z) embeds in �q(Z).

Exercises

1.1.1. Let Φ : [0,∞) → [0,∞) be a continuous increasing function with Φ(0) = 0
such that for some K > 0 and all t,s ∈ [0,∞) we have Φ(t+ s) ≤ K(Φ(t)+Φ(s))
(quasi-subadditivity). Let f , fn, n= 1,2, . . . , be measurable functions on (X ,μ) that
satisfy fn → f a.e. and

∫
X Φ(| f |)dμ < ∞. Prove that

∫

X
Φ(| fn − f |)dμ → 0 ⇐⇒

∫

X
Φ(| fn|)dμ →

∫

X
Φ(| f |)dμ

as n → ∞. Apply this result to Φ(t) = |t|p and Φ(t) = |t|p ln(|t|+1)q, 0 < p,q < ∞.[
Hint: Apply Theorem 1.1.8 (b) with gn = K

(
Φ(| fn|)+Φ(| f |)).]

1.1.2. Suppose that 1 ≤ p < ∞ and f is a measurable function on a measure space
(X ,μ) such that f g lies in L1 for any g ∈ Lp′

. Prove that f ∈ Lp. Derive the same
conclusion if p = ∞ and (X ,μ) is σ -finite.

[
Hint: Show by contradiction that there

is a positive finite constant C such that ‖ f g‖L1 ≤C‖g‖Lp′ for all g ∈ Lp′
. Then use

Proposition 1.1.4.
]

1.1.3. Let 0 < p0 ≤ ∞. Show that the function h(t) = |t|− 1
p0
(
1+

∣∣ log |t|∣∣)− 1
p0

−1
lies

in Lp(R) if and only if p= p0.

1.1.4. Let f j, 1 ≤ j ≤ n, be real-valued measurable functions on a measure space
(X ,μ) and suppose that
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∥∥ f1
∥∥
Lp =

∥∥ f2
∥∥
Lp = · · · = ∥∥ fn

∥∥
Lp =

∥∥∥ f1+ · · ·+ fn
n

∥∥∥
Lp

for some 1 < p < ∞. Prove that f1 = · · · = fn ≥ 0 a.e. or f1 = · · · = fn ≤ 0 a.e.[
Hint: Using the case of equality in Hölder’s inequality, first show that if ai ∈R and
1
n ∑n

i=1 |ai|p = | 1n ∑n
i=1 ai|p, then ai = a j ≥ 0 for all i, j or ai = a j ≤ 0 for all i, j.

]

1.1.5. (Jensen’s inequality) A differentiable real-valued function ϕ is called convex
on an open interval I if and only if the function lies above all of its tangents, i.e.,
ϕ(t) ≥ ϕ(t0)+ϕ ′(t0)(t− t0) for all t, t0 ∈ I. Suppose that (X ,μ) is a measure space
with 0 < μ(X) < ∞, g is a real-valued function on X whose range lies in an open
interval I, and ϕ is a convex function on I. Prove that

ϕ
(

1
μ(X)

∫

X
gdμ

)
≤ 1

μ(X)

∫

X
ϕ(g)dμ .

[
Hint: Start with ϕ(t)≥ ϕ(t0)+ϕ ′(t0)(t−t0) taking t = g(x) and t0 = 1

μ(X)
∫
X gdμ .

]

1.1.6. Let 0 < p0 ≤ p ≤ p1 ≤ ∞ and let 1
p =

1−θ
p0

+ θ
p1

for some θ ∈ [0,1]. Prove

∥∥ f∥∥Lp ≤ ∥∥ f∥∥1−θ
Lp0

∥∥ f∥∥θ
Lp1 .

[
Hint: For p< ∞ and θ ∈ (0,1) use Hölder’s inequality with exponents p0

(1−θ)p ,
p1
θ p .

]

1.1.7. Let (X ,μ) be a measure space with μ(X) < ∞. Show that for any measurable
function f on X we have

lim
p→∞

∥∥ f∥∥Lp =
∥∥ f∥∥L∞ .

[
Hint: We may assume that f is nonzero and lies in Lp0 for some p0 < ∞. One

direction is a consequence of the inequality ‖ f‖Lp ≤ ‖ f‖
p0
p

Lp0 ‖ f‖
1− p0

p
L∞ . For 0 < δ <

‖ f‖L∞ use that

‖ f‖Lp ≥ (‖ f‖L∞ −δ )μ({| f | > ‖ f‖L∞ −δ}) 1
p

for the other inequality.
]

1.1.8. Let (X ,μ) be a measure space with 0 < μ(X) < ∞ and suppose f is
measurable function on X which satisfies 0 < ‖ f‖L∞(X) < ∞. Prove that

lim
p→∞

∥∥ f∥∥p+1
Lp+1∥∥ f∥∥p
Lp

=
∥∥ f∥∥L∞ and lim

p→∞

∥∥ f∥∥2L2p∥∥ f∥∥Lp
=
∥∥ f∥∥L∞ .

[
Hint: Show that both ratios lie between μ(X)−

1
p ‖ f‖Lp and ‖ f‖L∞ .

]
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1.1.9. Let g be a measurable function on a measure space (X ,μ) that satisfies:
∫

|g|<n

|g|2
1
n + |g| dμ ≤ 1

for all n= 1,2, . . . . Prove that

lim
n→∞

∫

|g|≥n

|g|2
1
n + |g| dμ = 0.

1.1.10. For x, t ≥ 0 let ϕ(t,x) = t sin(x) + cos(x). Using that 1/x =
∫ ∞
0 e−xtdt for

x > 0, show

∫ n

1/n

sinx
x

dx=
∫ ∞

0

e−t/nϕ(t,1/n)− e−ntϕ(t,n)
t2+1

dt.

Prove that e−tx|ϕ(t,x)| ≤ 2 for x, t ≥ 0 and conclude via the LDCT that
∫ ∞

0

sinx
x

dx=
π
2

.

1.1.11. Let f be a continuous and integrable function on [0,∞). Show that

lim
ε→0

1
ε

∫ ∞

0
f (t)e−t/ε dt = f (0).

1.1.12. Let 0< p< ∞ and let f be a measurable function on a measure space (X ,μ).
If

Ek( f ) = {x ∈ X : | f (x)| > 2k},

show that

(1−2−p) ∑
k∈Z

2kpμ(Ek( f )) ≤ ∥∥ f∥∥p
Lp ≤ 2p ∑

k∈Z
2kpμ(Ek( f )).

1.1.13. Let f j be functions on Lp(X ,μ) for some 0 < p < 1 and let s > 0. Show that
for any 0 < ε < s we have

∥∥∥
∞

∑
j=0

2− js f j
∥∥∥
Lp

≤
(
1−2− ε p

1−p

) p−1
p

∞

∑
j=0

2− j(s−ε)∥∥ f j
∥∥
Lp .

1.2 The Distribution Function and Weak Lp Spaces

The spaces studied in this section provide an alternative way to quantitatively mea-
sure a function. A good tool to achieve this purpose is the distribution function.
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Definition 1.2.1. The distribution function of a measurable function f on a measure
space (X ,μ) is the function Df defined on [0,∞) as follows:

Df (λ ) = μ({x ∈ X : | f (x)| > λ}) . (1.2.1)

As λ increases the set in (1.2.1) decreases, so the distribution function Df is
decreasing.

Example 1.2.2. In Figure 1.1 the
function f : [−π,0] → [0,1] given by
f (x) = |sin(x)| is plotted on [−π,0]
and its distribution function

Df (λ ) = π −2arcsin(λ )

is plotted on [0,1]. Notice that
Df (0) = π is equal to the measure
of the support of f . Also note that
max( f ) = 1 and Df (1) = 0.

−2−4 2

2

4

f D f

Fig. 1.1 The function f of Example 1.2.2 and its
distribution function Df .

The distribution function Df can be used to precisely evaluate the Lp norm of a
function. The following proposition contains the relevant identity.

Proposition 1.2.3. Let (X ,μ) be a σ -finite measure space. For any increasing, con-
tinuously differentiable function ϕ on [0,∞) with ϕ(0) = 0 and every measurable
function f on X with ϕ(| f |) integrable on X, we have

∫

X
ϕ(| f |)dμ =

∫ ∞

0
ϕ ′(λ )Df (λ )dλ . (1.2.2)

Proof. As X is a σ -finite measure space and ϕ ′ ≥ 0, we can apply Tonelli’s theorem.
We have

∫ ∞

0
ϕ ′(λ )Df (λ )dλ =

∫ ∞

0
ϕ ′(λ )

∫

X
χ{x: | f (x)|>λ} dμ dλ

=
∫

X

∫ | f (x)|

0
ϕ ′(λ )dλ dμ

=
∫

X
ϕ(| f (x)|)−ϕ(0)dμ .

This proves (1.2.2) since ϕ(0) = 0. �

Corollary 1.2.4. Given 0 < p < ∞ and a measurable function f on a σ -finite
measure space (X ,μ), we have

∥∥ f∥∥p
Lp = p

∫ ∞

0
λ p−1Df (λ )dλ . (1.2.3)
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Definition 1.2.5. Given a measurable function f on a measure space (X ,μ), we
define the weak Lp (quasi)-norm of f as follows:

∥∥ f∥∥Lp,∞ = sup
λ>0

λ Df (λ )
1
p . (1.2.4)

For 0< p< ∞, the spaceweak Lp(X ,μ), denoted by Lp,∞(X ,μ), is defined as the set
of all μ-measurable functions f such that ‖ f‖Lp,∞ < ∞. We also define L∞,∞(X ,μ) =
L∞(X ,μ). The notation Lp,∞(Rn) is reserved for Lp,∞(Rn, | · |).

We now explain why ‖ f‖Lp,∞ is a quasi-norm.3 First one notes that
∥∥ f∥∥Lp,∞ = 0 ⇒ μ({x ∈ X : | f (x)| > λ}) = 0 ∀ λ > 0 ⇒ f = 0 μ-a.e. (1.2.5)

Also, we have

Df+g(λ ) ≤ Df
(λ
2

)
+Dg

(λ
2

)
=⇒ Df+g(λ )

1
p ≤ cp

[
Df

(λ
2

) 1
p +Dg

(λ
2

) 1
p
]

where cp =max(1,21/p−1). This implies

∥∥ f +g
∥∥
Lp,∞ ≤ 2cp

(∥∥ f∥∥Lp,∞ +
∥∥g∥∥Lp,∞

)
. (1.2.6)

Combining (1.2.5) with (1.2.6) and the simple fact that for any c ∈ C we have
‖c f‖Lp,∞ = |c|‖ f‖Lp,∞ , we obtain that Lp,∞(X ,μ) is a quasi-normed space.

The weak Lp spaces are larger than the usual Lp spaces. We have the following:

Proposition 1.2.6. For any 0 < p < ∞ and any f in Lp(X ,μ) we have
∥∥ f∥∥Lp,∞ ≤ ∥∥ f∥∥Lp .

Hence the embedding Lp(X ,μ) � Lp,∞(X ,μ) holds.

Proof. Using Chebyshev’s inequality:

λ pDf (λ ) ≤
∫

{x: | f (x)|>λ}
| f (x)|p dμ ≤ ‖ f‖p

Lp

we obtain ‖ f‖Lp,∞ ≤ ‖ f‖Lp . �

The inclusion Lp � Lp,∞ is strict as the function h(x) = |x|−n/p obviously does
not lie in Lp(Rn) but belongs to Lp,∞(Rn). To see this, we note that

∣∣{x ∈ Rn : |x|− n
p > λ

}∣∣= ∣∣{x ∈ Rn : |x| < λ− p
n
}∣∣= |B(0,1)|λ−p ,

which implies that ‖h‖Lp,∞ = |B(0,1)|1/p < ∞. Here B(0,1) = {x ∈ Rn : |x| < 1}.

3 A quasi-norm on a vector space Z is a nonnegative function ‖ · ‖Z with the properties of a norm,
but with a relaxed triangle inequality ‖z+ z′‖Z ≤ B(‖z‖Z +‖z′‖Z), for some B ≥ 1 and all z,z′ ∈ Z.
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Remark 1.2.7. Note that for 0 < r < ∞, ‖| f |r‖Lp = ‖ f‖rLpr . One can verify that the
same property holds for the weak Lp quasi-norm, i.e., ‖| f |r‖Lp,∞ = ‖ f‖rLpr,∞ .
Definition 1.2.8. The space L1loc(R

n, | · |) of locally integrable functions is the set of
all Lebesgue-measurable functions f on Rn that satisfy

∫

K
| f (x)|dx < ∞ (1.2.7)

for any compact subset K of Rn.

Example 1.2.9. (a) Lp(Rn) is contained in L1loc(R
n) for 1≤ p≤ ∞ (Theorem 1.1.3).

(b) For 0 < p < 1, Lp(Rn)\L1loc(Rn) �= /0; i.e., it contains |x|− n
p
(
log 1

|x|
)− 2

p χ|x|≤1.

(c) There exist functions in L1,∞(Rn)\L1loc(Rn), such as |x|−n.

(d) The function ee
|x|
lies in L1loc(R

n) but not in Lp(Rn) for any p > 0.

Theorem 1.2.10. For a measurable function f on a σ -finite measure space (X ,μ)
define ⏐⏐⏐⏐⏐⏐ f

⏐⏐⏐⏐⏐⏐
Lp,∞ = sup

0<μ(E)<∞
μ(E)−1+ 1

p

∫

E
| f |dμ .

Let 1 < p < ∞. Then ||| · |||Lp,∞ is a norm on Lp,∞ that satisfies

∥∥ f∥∥Lp,∞ ≤ ⏐⏐⏐⏐⏐⏐ f
⏐⏐⏐⏐⏐⏐

Lp,∞ ≤ p
p−1

∥∥ f∥∥Lp,∞ .

Proof. Let E � X such that 0 < μ(E) < ∞ and let f ∈ Lp,∞(X ,μ). By Proposi-
tion 1.2.3 we write

∫

E
| f |dμ =

∫ ∞

0
μ({| f | > λ}∩E)dλ

≤
∫ ∞

0
min

(
μ(E),

‖ f‖p
Lp,∞

λ p

)
dλ

=
p

p−1
μ(E)1−

1
p
∥∥ f∥∥Lp,∞ ,

(1.2.8)

which follows by splitting the integral at λ = ‖ f‖Lp,∞ μ(E)−
1
p . Therefore,

⏐⏐⏐⏐⏐⏐ f
⏐⏐⏐⏐⏐⏐

Lp,∞ ≤ p
p−1

∥∥ f∥∥Lp,∞ .

As X is σ -finite, we can write X = ∪∞
N=1XN with X1 � X2 � · · · and μ(XN) < ∞.

For λ > 0 let Eλ = {| f | > λ} and EN
λ = {| f | > λ} ∩XN . Then we clearly have

μ(EN
λ ) ≤ μ(XN) < ∞ and

∫
EN

λ
| f |dμ ≥ λ μ(EN

λ ). Let us fix λ > 0 and N ∈ Z+. If

μ(EN
λ ) > 0, then

⏐⏐⏐⏐⏐⏐ f
⏐⏐⏐⏐⏐⏐

Lp,∞ = sup
0<μ(E)<∞

μ(E)−1+ 1
p

∫

E
| f |dμ ≥ μ(EN

λ )
−1+ 1

p λ μ(EN
λ ) = λ μ(EN

λ )
1
p ,
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but this inequality is also trivially valid when μ(EN
λ ) = 0. Letting N → ∞ we deduce

⏐⏐⏐⏐⏐⏐ f
⏐⏐⏐⏐⏐⏐

Lp,∞ ≥ λ μ(Eλ )
1
p

for every λ > 0, so taking the supremum over λ > 0 we obtain ||| f |||Lp,∞ ≥ ‖ f‖Lp,∞ .
The fact that ||| · |||Lp,∞ is a norm on Lp,∞ is straightforward and is omitted. �

Taking E to be a compact subset of Rn in (1.2.8), we obtain the following.

Corollary 1.2.11. For 1 < p < ∞ we have that Lp,∞(Rn) � L1loc(R
n).

Proposition 1.2.12. For 0 < p < ∞, Lp,∞(Rn) is a complete quasi-normed space.

Proof. Let { fk}k be a Cauchy sequence in Lp,∞. Then { fk}k is Cauchy in Lq(EN),
where EN = B(0,N), N = 1,2, . . . , and q < p, by Exercise 1.2.6 (a). By Theo-
rem 1.1.9 for each N = 1,2, . . . there is a subsequence that converges a.e. on EN .
As Rn = ∪∞

N=1EN , the diagonal subsequence { fnk}k converges a.e. to a measur-
able function f on Rn. Given ε > 0 there is an l0 ∈ Z+ such that when l,k ≥ l0
we have ‖ fnl − fnk‖Lp,∞ ≤ ε . As fnl − fnk → f − fnk a.e. as l → ∞, it follows that
| f − fnk |= liminfl→∞ | fnl − fnk | a.e. and also | f |= liminfl→∞ | fnl | a.e. Exercise 1.2.4
gives Df (λ ) ≤ liminfl→∞Dfnl

(λ ) and Df− fnk
(λ ) ≤ liminfl→∞Dfnl− fnk

(λ ) for any
λ > 0. These yield

sup
λ>0

λDf (λ )
1
p ≤ sup

λ>0
liminf
l→∞

λDfnl
(λ )

1
p ≤ liminf

l→∞
sup
λ>0

λDfnl
(λ )

1
p < ∞,

as every Cauchy sequence is bounded. Thus f lies in Lp,∞(Rn). Also, for k ≥ l0,

sup
λ>0

λDf− fnk
(λ )

1
p ≤ sup

λ>0
liminf
l→∞

λDfnl− fnk
(λ )

1
p ≤ liminf

l→∞
sup
λ>0

λDfnl− fnk
(λ )

1
p ≤ ε,

hence fnk → f in Lp,∞ as k → ∞. This implies fk → f in Lp,∞, as in quasi-normed
spaces, Cauchy sequences with convergent subsequences are also convergent. �

Exercises

1.2.1. Suppose fk ≥ 0 are measurable functions on (X ,μ). Prove that if fk ↑ f as
k → ∞ μ-a.e., then Dfk ↑ Df as k → ∞.

1.2.2. (Lebesgue monotone convergence theorem for weak Lp spaces) Let fk ≥ 0
be measurable functions on a measure space (X ,μ) and 0 < p < ∞. Suppose fk ↑ f
as k → ∞. Show that

lim
k→∞

∥∥ fk
∥∥
Lp,∞ =

∥∥ f∥∥Lp,∞ .

[
Hint: Consider the cases ‖ f‖Lp,∞ < ∞ and ‖ f‖Lp,∞ = ∞. Use the previous exercise.

]
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1.2.3. (Fatou’s lemma for weak Lp spaces) Let fk ≥ 0 be measurable functions on
a measure space (X ,μ) and 0 < p < ∞. Prove that

∥∥ liminf
k→∞

fk
∥∥
Lp,∞ ≤ liminf

k→∞

∥∥ fk
∥∥
Lp,∞ .

[
Hint: Set gk = inf{ fl : l ≥ k} and use the previous exercise.

]

1.2.4. Suppose f and fk are measurable functions on Rn. Prove that if | f | ≤
liminfk→∞ | fk| a.e., then Df ≤ liminfk→∞Dfk .

1.2.5. Let 0 < p0 < p < p1 ≤ ∞ and let 1
p =

1−θ
p0

+ θ
p1

for some θ ∈ (0,1). Prove

∥∥ f∥∥Lp,∞ ≤ ∥∥ f∥∥1−θ
Lp0 ,∞

∥∥ f∥∥θ
Lp1 ,∞ .

1.2.6. Let (X ,μ) be a measure space and let E be a subset of X with μ(E) < ∞.
Assume that f is in Lp,∞(X ,μ) for some 0 < p < ∞.
(a) Show that for 0 < q < p we have

∫

E
| f (x)|q dμ(x) ≤ p

p−q
μ(E)1−

q
p
∥∥ f∥∥qLp,∞ .

(b) Prove that if μ(X) < ∞ and 0 < q < p < ∞, then

Lp(X ,μ) � Lp,∞(X ,μ) � Lq(X ,μ).

(c) Conclude that Lp,∞(Rn) is contained in L1loc(R
n) when p > 1.

1.2.7. (Hölder’s inequality for weak spaces) Let f1 be in Lp1,∞ and f2 be in Lp2,∞

of a measure space X where 0 < p1, p2 < ∞. Given 1
p =

1
p1
+ 1

p2
, prove that

∥∥ f1 f2
∥∥
Lp,∞ ≤ [

(p2/p1)
p1

p1+p2 +(p1/p2)
p2

p1+p2
]∥∥ f1

∥∥
Lp1 ,∞

∥∥ f2
∥∥
Lp2 ,∞ .

Observe that the preceding inequality also extends to the case where p1, p2 equal ∞.[
Hint: For ‖ f j‖Lp j ,∞ = 1, j = 1,2, use Df1 f2(λ ) ≤ μ({| f1| > λ/s})+μ({| f2| > s})

≤ (s/λ )p1 +(1/s)p2 and minimize over s > 0.
]

1.2.8. Let f ∈ L1([0,∞)) and g ∈ L1((−∞,0]). Prove that the function

x �→
∫

R
f (x+ t)g(x− t)

dt
t

lies in L1/2,∞(R) with quasi-norm bounded by 4‖ f‖L1‖g‖L1 .
[
Hint: Control this

function pointwise by |x|−1G(x), for some G ≥ 0 with ‖G‖L1 ≤ 1
2‖ f‖L1‖g‖L1 .

]
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1.3 Real Interpolation

Let 0 < p < ∞. Given an Lp function f on a measure space (X ,μ) and λ > 0 we
consider the splitting

f =

f0︷ ︸︸ ︷
f χ| f |>λ +

f1︷ ︸︸ ︷
f χ| f |≤λ .

Let us pick p0, p1 such that 0 < p0 < p < p1 ≤ ∞. We note that f0 lies in Lp0 and
that f1 lies in Lp1 . Indeed, since p0 − p < 0, we have

∥∥ f0
∥∥p0
Lp0 =

∫

| f |>λ
| f (x)|p| f (x)|p0−p dμ ≤ λ p0−p

∥∥ f∥∥p
Lp

and likewise, as p1 − p > 0, we obtain

∥∥ f1
∥∥
Lp1 ≤ λ 1− p

p1
∥∥ f∥∥

p
p1
Lp .

Thus Lp(X) is contained in Lp0(X)+Lp1(X) = { f0+ f1 : f j ∈ Lpj(X), j = 0,1}.
Definition 1.3.1. Let T be an operator defined on a linear space of complex-valued
measurable functions on a measure space (X ,μ) and taking values in the set of all
complex-valued finite almost everywhere measurable functions on a measure space
(Y,ν). T is called subadditive if for all f , g in the domain of T we have

|T ( f +g)| ≤ |T ( f )|+ |T (g)| ν-a.e. (1.3.1)

T is called quasi-subadditive, that is, if there is a constant K > 0 such that for all f ,
g in the domain of T we have

|T ( f +g)| ≤ K(|T ( f )|+ |T (g)|) ν-a.e. (1.3.2)

Definition 1.3.2. An operator that maps Lp to Lp,∞ is called of weak type (p, p).

The next result, known as the Marcinkiewicz interpolation theorem, claims that
if a subadditive operator is of weak types (p0, p0) and (p1, p1), then it maps Lp to
Lp for p between p0 and p1.

Theorem 1.3.3. (Marcinkiewicz interpolation theorem) Let (X ,μ), (Y,ν) be σ -
finite measure spaces and 0 < p0 < p1 ≤ ∞. Suppose that T is an operator defined
on Lp0(X)+Lp1(X), taking values in the space of measurable functions on Y , which
is quasi-subadditive, i.e., it satisfies (1.3.2). Assume there exist A0,A1 < ∞ such that

∥∥T ( f )∥∥Lp0 ,∞(Y ) ≤ A0
∥∥ f∥∥Lp0 (X) for all f ∈ Lp0(X) , (1.3.3)

∥∥T ( f )∥∥Lp1 ,∞(Y ) ≤ A1
∥∥ f∥∥Lp1 (X) for all f ∈ Lp1(X) . (1.3.4)

Then for all p0 < p < p1 and for all f in Lp(X) we have
∥∥T ( f )∥∥Lp(Y ) ≤ A

∥∥ f∥∥Lp(X) , (1.3.5)
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where

A= 2K

(
p

p− p0
+

p
p1 − p

)1
p

A

1
p− 1

p1
1
p0

− 1
p1

0 A

1
p0

− 1
p

1
p0

− 1
p1

1 . (1.3.6)

Proof. Consider first the case p1 = ∞. Write f = f λ
0 + f λ

1 , where

f λ
0 (x) =

{
f (x) for | f (x)| > γλ ,

0 for | f (x)| ≤ γλ ,

f λ
1 (x) =

{
f (x) for | f (x)| ≤ γλ ,

0 for | f (x)| > γλ ,

and γ = (2A1K)−1; then for almost all y ∈ Y we have

|T ( f λ
1 )(y)| ≤

∥∥T ( f λ
1 )
∥∥
L∞ ≤ A1

∥∥ f λ
1

∥∥
L∞ ≤ A1γλ = λ/2K.

It follows that ν({y ∈ Y : |T ( f λ
1 )(y)| > λ

2K }) = 0= DT ( f λ
1 )(λ/2K), hence

DT ( f )(λ ) ≤ DT ( f λ
0 )(λ/2K)+DT ( f λ

1 )(λ/2K) = DT ( f λ
0 )(λ/2K).

Since T maps Lp0 to Lp0,∞ with norm at most A0, we write

DT ( f λ
0 )(λ/2K) ≤ (2A0K)p0

∥∥ f λ
0

∥∥p0
Lp0

λ p0
=

(2A0K)p0

λ p0

∫

| f |>γλ
| f (x)|p0 dμ . (1.3.7)

Using (1.3.7) and Proposition 1.2.3 [which applies as (Y,ν) is σ -finite], we obtain

∥∥T ( f )∥∥p
Lp = p

∫ ∞

0
λ p−1DT ( f )(λ )dλ

≤ p
∫ ∞

0
λ p−1DT ( f λ

0 )(λ/2K)dλ

≤ p
∫ ∞

0
λ p−1 (2A0K)p0

λ p0

∫

| f |> λ
2A1K

| f (x)|p0 dμ dλ

= p(2A0K)p0
∫

X
| f (x)|p0

∫ 2A1K| f (x)|

0
λ p−p0−1 dλ dμ

=
p(2A1K)p−p0(2A0K)p0

p− p0

∫

X
| f (x)|p dμ ,

having used Tonelli’s theorem, as (X ,μ) is σ -finite. This proves the theorem with

A= 2K

(
p

p− p0

) 1
p

A
1− p0

p
1 A

p0
p
0 . (1.3.8)

Observe that the constant in (1.3.8) coincides with that in (1.3.6) when p1 = ∞.
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Assume now that p1 < ∞. Fix a function f in Lp(X) and λ > 0. We split f =
f λ
0 + f λ

1 , where f λ
0 is in Lp0 and f λ

1 is in Lp1 . The splitting is obtained by cutting | f |
at height δλ for some δ > 0 to be determined later. Set

f λ
0 (x) =

{
f (x) for | f (x)| > δλ ,

0 for | f (x)| ≤ δλ ,

f λ
1 (x) =

{
f (x) for | f (x)| ≤ δλ ,

0 for | f (x)| > δλ .

As noted earlier, the (potentially) unbounded part f λ
0 is an Lp0 function and the

bounded part of f λ
1 is an Lp1 function. Using the quasi-subadditivity property (1.3.2)

of T we obtain that

|T ( f )| ≤ K|T ( f λ
0 )|+K|T ( f λ

1 )| , ν-a.e.,

which implies the ν-a.e. inclusion

{y ∈Y : |T ( f )(y)| > λ} �
{
y ∈Y : |T ( f λ

0 )(y)| > λ
2K

}∪{
y ∈Y : |T ( f λ

1 )(y)| > λ
2K

}
,

and therefore
DT ( f )(λ ) ≤ DT ( f λ

0 )(λ/2K)+DT ( f λ
1 )(λ/2K) . (1.3.9)

Hypotheses (1.3.3) and (1.3.4) together with (1.3.9) now give

DT ( f )(λ ) ≤ Ap0
0

(λ/2K)p0

∫

| f |>δλ
| f (x)|p0 dμ +

Ap1
1

(λ/2K)p1

∫

| f |≤δλ
| f (x)|p1 dμ .

In view of the last estimate and Proposition 1.2.3 (which can be used since Y is a
σ -finite measure space), we obtain that

∥∥T ( f )∥∥p
Lp ≤ p(2A0K)p0

∫ ∞

0
λ p−1λ−p0

∫

| f |>δλ
| f (x)|p0 dμ dλ

+ p(2A1K)p1
∫ ∞

0
λ p−1λ−p1

∫

| f |≤δλ
| f (x)|p1 dμ dλ

= p(2A0K)p0
∫

X
| f (x)|p0

∫ 1
δ | f (x)|

0
λ p−1−p0 dλ dμ

+ p(2A1K)p1
∫

X
| f (x)|p1

∫ ∞

1
δ | f (x)|

λ p−1−p1 dλ dμ

=
p(2A0K)p0

p− p0

1
δ p−p0

∫

X
| f (x)|p0 | f (x)|p−p0 dμ

+
p(2A1K)p1

p1 − p
1

δ p−p1

∫

X
| f (x)|p1 | f (x)|p−p1 dμ

=
(

p
p− p0

(2A0K)p0

δ p−p0
+

p
p1 − p

(2A1K)p1δ p1−p
)∥∥ f∥∥p

Lp , (1.3.10)
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and the convergence of the integrals in λ is justified from p0 < p < p1, while the
interchange of the integrals (Tonelli’s theorem) uses the hypothesis that (X ,μ) is a
σ -finite measure space. We pick δ > 0 such that

(2A0K)p0
1

δ p−p0
= (2A1K)p1δ p1−p ,

and observe that the constant in the parentheses in (1.3.10) is equal to the pth power
of the constant in (1.3.6). We have therefore proved the theorem when p1 < ∞. �

In some applications the operator T is not a priori defined on the entire space
Lp0(X)+Lp1(X), but on a subspace of it. Let us suppose below that F is a subset
of Lp0(X) + Lp1(X) with the property that f ∈ F =⇒ f χE ∈ F , where E is a
measurable subset of X of finite measure. For instance, F could be the space of all
finitely simple4 functions. We note that in the proof of Theorem 1.3.3 if f ∈F , then
so are f λ

0 and f λ
1 . Thus the proof given provides the following result.

Theorem 1.3.4. Let (X ,μ), (Y,ν) be σ -finite measure spaces and 0< p0 < p1 ≤ ∞.
Suppose that T is defined on F , takes values in the space of measurable functions
on Y , and satisfies (1.3.2). Assume there exist A0,A1 < ∞ such that for κ = 0,1

∥∥T ( f )∥∥Lpκ ,∞(Y ) ≤ Aκ
∥∥ f∥∥Lpκ (X) for all f ∈ F .

Then (1.3.5) holds for p0 < p < p1 and all f ∈ F . Thus, if F is dense in Lp(X)
and T is linear (or positive symmetric subadditive operator, see Appendix D), then
T admits a unique bounded extension on Lp(X) that also satisfies (1.3.5).

The proof of Theorem 1.3.3 essentially contains the following result.

Proposition 1.3.5. Let (X ,μ) be a σ -finite measure space and let 0 < p0 < p <
p1 ≤ ∞ be related as in 1/p= (1−θ)/p0+θ/p1 for some θ ∈ (0,1). Then for any
f ∈ Lp0,∞(X)∩Lp1,∞(X) we have

∥∥ f∥∥Lp ≤
(

p
p− p0

+
p

p1 − p

)1
p ∥∥ f∥∥1−θ

Lp0 ,∞
∥∥ f∥∥θ

Lp1 ,∞ . (1.3.11)

Proof. Set

B=
∥∥ f∥∥

p1
p1−p0
Lp1 ,∞ /

∥∥ f∥∥
p0

p1−p0
Lp0 ,∞ , (1.3.12)

which equals B= ‖ f‖L∞ when p1 = ∞. Assume first that p1 < ∞. Then we have

∥∥ f∥∥p
Lp(X ,μ) = p

∫ ∞

0
λ p−1Df (λ )dλ

≤ p
∫ ∞

0
λ p−1min

(∥∥ f∥∥p0
Lp0 ,∞

λ p0
,

∥∥ f∥∥p1
Lp1 ,∞

λ p1

)
dλ

4 Finite linear combinations of characteristic functions of sets of finite measure.
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= p
∫ B

0
λ p−1−p0

∥∥ f∥∥p0
Lp0 ,∞ dλ + p

∫ ∞

B
λ p−1−p1

∥∥ f∥∥p1
Lp1 ,∞ dλ (1.3.13)

=
p

p− p0

∥∥ f∥∥p0
Lp0 ,∞Bp−p0 +

p
p1 − p

∥∥ f∥∥p1
Lp1 ,∞Bp−p1

=
(

p
p− p0

+
p

p1 − p

)(∥∥ f∥∥p0
Lp0 ,∞

) p1−p
p1−p0

(∥∥ f∥∥p1
Lp1 ,∞

) p−p0
p1−p0 ,

where we use that p− p1 < 0 < p− p0. When p1 = ∞, we have Df (λ ) = 0 for
λ > B= ‖ f‖L∞ and thus the second integral in (1.3.13) does not appear. We obtain

∥∥ f∥∥p
Lp ≤ p

p− p0

∥∥ f∥∥p0
Lp0 ,∞

∥∥ f∥∥p−p0
L∞ ,

which is a restatement of (1.3.11) when p1 = ∞. �

Example 1.3.6. Let 0< α < β < ∞. Then |x|−α ∈ Ln/α,∞(Rn), |x|−β ∈ Ln/β ,∞(Rn).
Let h(x) =min(|x|−α , |x|−β ), x �= 0. Then h ∈ Lp(Rn) for n/β < p < n/α .

Exercises

1.3.1. Let 0 < p,q < ∞. Verify that Theorem 1.3.3 applies to operators of the form
T ( f ) = |S( f )|p log(1+ |S( f )|)q, where S is a linear operator (or another quasi-
subadditive operator) on Lp(X)+Lq(X).

[
Hint: See Exercise 1.1.1.

]

1.3.2. Let A0,A1 > 0, 0 < p,q0,q1 ≤ ∞, and let (X ,μ), (Y,ν) be σ -finite measure
spaces. Suppose that T is a mapping defined on Lp(X ,μ) that satisfies

∥∥T ( f )∥∥Lq0 (Y,ν) ≤ A0
∥∥ f∥∥Lp and

∥∥T ( f )∥∥Lq1 (Y,ν) ≤ A1
∥∥ f∥∥Lp

for all f ∈ Lp(X ,μ). Let 0 ≤ θ ≤ 1. Prove that
∥∥T ( f )∥∥Lq(Y,ν) ≤ A1−θ

0 Aθ
1

∥∥ f∥∥Lp
for all f ∈ Lp(X ,μ), where 1/q= (1−θ)/q0+θ/q1.

[
Hint: Use Exercise 1.1.6.

]

1.3.3. Let A0,A1 > 0, 0 < p,q0,q1 ≤ ∞, q0 �= q1, and let (X ,μ), (Y,ν) be σ -finite
measure spaces. Suppose that T is a mapping defined on Lp(X ,μ) that satisfies

∥∥T ( f )∥∥Lq0 ,∞(Y,ν) ≤ A0
∥∥ f∥∥Lp and

∥∥T ( f )∥∥Lq1 ,∞(Y,ν) ≤ A1
∥∥ f∥∥Lp

for all f ∈ Lp(X ,μ). Let θ ∈ (0,1) and 1/q = (1− θ)/q0+θ/q1. Show that there
is a constant C =C(q0,q1,q) such that

∥∥T ( f )∥∥Lq(Y,ν) ≤CA1−θ
0 Aθ

1

∥∥ f∥∥Lp ,

for all f ∈ Lp(X ,μ).
[
Hint: Use Proposition 1.3.5.

]
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1.3.4. Let T be a subadditive operator defined on L1(X ,μ) + L∞(X ,μ) that takes
values in the space of measurable functions on (Y,ν) and that satisfies |T ( f )| ≤
T (| f |) for all f ∈ L1+L∞. Suppose that T maps L1 to L1,∞ with bound A0 and L∞ to
itself with bound A1 > 0. Given 1 < p < ∞, prove that T maps Lp(X) to Lp(Y ) with
norm at most

p
p−1

A
1
p
0 A

1− 1
p

1 .

[
Hint: Given λ > 0, γ ∈ (0,1), and f measurable, write | f | = f0+ f1, where f0 =
max

(| f |− γλ
A1

,0
)
and f1 =min

(| f |, γλ
A1

)
. Then {T (| f |)>λ} � {|T ( f0)|>(1−γ)λ}.

Then choose a suitable γ .
]

1.3.5. Let (X ,μ), (Y,ν) be σ -finite measure spaces, and let 0< p0 < p1 ≤ ∞. Define
p via 1−θ

p0
+ θ

p1
= 1

p , where 0 < θ < 1. Let T be a subadditive operator defined
on Lp0(X)+Lp1(X) and taking values in the space of measurable functions on Y .
Suppose T maps Lp0 to L∞ with norm A0 and Lp1 to L∞ with norm A1. Prove that T
maps Lp to L∞ with norm at most 2A1−θ

0 Aθ
1 .

1.3.6. Let (X ,μ) and (Y,ν) be σ -finite measure spaces. Let 0 < p < p1 ≤ ∞,
0 < B < ∞, and let Φ : [0,∞) → [0,∞) be a measurable function such that

A=
∫ 1

0
λ p−1Φ

(
1/λ

)
dλ < ∞.

Let T be a linear operator that maps Lp1(X) to Lp1,∞(Y ) with norm B that satisfies

ν
({y ∈ Y : |T ( f )(y)| > λ}) ≤ A

∫

X
Φ
( | f (x)|

λ

)
dμ

for all finite simple functions f on X and all λ > 0. Prove that T has a bounded
extension from Lp(X) to itself.

[
Hint: Set f λ = f χ| f |>λ and fλ = f χ| f |≤λ . When

p1 < ∞, add the estimates

pλ p−1ν({|T ( f λ )| > λ}) ≤ Apλ p−1
∫

| f |>λ
Φ
( | f (x)|

λ
)
dμ

and

pλ p−1ν({|T ( fλ )| > λ}) ≤ pλ p−1Bp1
∫

| f |≤λ

| f (x)|p1
λ p1

dμ ,

and integrate over λ to estimate 1
2p ‖T ( f )‖p

Lp . In the case where p1 = ∞, use

ν({|T ( f )| > 2Bλ}) ≤ ν({|T ( f λ )| > Bλ})
to complete the proof.

]

1.3.7. (Vector-valued Marcinkiewicz interpolation) Let (X ,μ), (Y,ν) be σ -
finite measure spaces and 0 < p0 < p1 ≤ ∞. Fix quasi-normed spaces Z,W . Define
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Lp0(X ,Z) to be the space of all functions �f : X → Z such that x �→ ‖�f (x)‖Z are μ-
measurable and belong to Lp0(X ,μ), and analogously define Lp0,∞(X ,Z). Let �T be
a mapping from Lp0(X ,Z)+Lp1(X ,Z) to {�h : Y →W, with ‖�h‖W ν-measurable}.
Suppose �T satisfies the following quasi-subadditivity property: for some K > 0 and
all �f ,�g in Lp0(X ,Z)+Lp1(X ,Z) we have ‖�T (�f +�g)‖W ≤ K‖�T (�f )‖W +K‖�T (�g)‖W
ν-a.e. Assume there exist A0,A1 < ∞ such that

∥∥�T (�f )∥∥Lp0 ,∞(Y,W ) ≤ A0
∥∥�f

∥∥
Lp0 (X ,Z) for all �f ∈ Lp0(X) ,

∥∥�T (�f )∥∥Lp1 ,∞(Y,W ) ≤ A1
∥∥�f

∥∥
Lp1 (X ,Z) for all �f ∈ Lp1(X) .

Let A be as in (1.3.6). Prove that for all p0 < p < p1 and all �f in Lp(X ,Z) we have
∥∥�T (�f )∥∥Lp(Y,W ) ≤ A

∥∥�f
∥∥
Lp(X ,Z) .

[
Hint: Adapt the proof of Theorem 1.3.3 by cutting ‖�f ‖Z at height δλ .

]

1.4 The Hardy–Littlewood Maximal Operator

Let vn be the volume of the unit ball B(0,1) in Rn.

Definition 1.4.1. Let f be a measurable function on Rn. The function

M( f )(x) = sup
δ>0

Avg
B(x,δ )

| f | = sup
δ>0

1
vnδ n

∫

|y|<δ
| f (x− y)|dy

is called the centered Hardy–Littlewood maximal function of f .

A few remarks are in order. Suppose that f is not locally integrable. Then there
exists a compact set L such that

∫
L | f |dx = ∞. Then for any x ∈ Rn there is a ball

B(x,R) that contains L. It follows that M( f )(x) ≥ 1
vnRn

∫
L | f |dy= ∞. Thus M( f ) is

interesting only when f is a locally integrable function.
Secondly, the definition of M remains unchanged if the open ball B(x,δ ) is

replaced by the closed ball B(x,δ ). Indeed, the balls B(x,δ ) and B(x,δ ) have the
same measure, and so f has vanishing integral over the null set B(x,δ )\B(x,δ ).

Obviously we have M( f ) =M(| f |) ≥ 0; thus the maximal function is a positive
operator. We show later thatM( f ) pointwise controls f (i.e.,M( f )≥ | f | a.e.). Note
that M maps L∞ to itself; that is, we have

∥∥M( f )
∥∥
L∞ ≤ ∥∥ f∥∥L∞ .

M is a sublinear operator; i.e., it satisfies

M( f +g) ≤ M( f )+M(g) and M(λ f ) = |λ |M( f )



1.4 The Hardy–Littlewood Maximal Operator 23

for all locally integrable functions f and g and all complex constants λ .
Let us compute the Hardy–Littlewood maximal function of a specific function.

Example 1.4.2. On R, let f be the characteristic function of the interval [a,b]. For
x ∈ (a,b), clearly M( f ) = 1. For x ≥ b, a simple calculation shows that the largest
average of f over all intervals (x−δ ,x+δ ) is obtained when δ = x−a. Similarly,
when x ≤ a, the largest average is obtained when δ = b− x. Therefore,

M( f )(x) =

⎧
⎪⎨
⎪⎩

(b−a)/2|x−b| when x ≤ a ,

1 when x ∈ (a,b) ,
(b−a)/2|x−a| when x ≥ b .

Observe that M( f ) has a jump at x = a and x = b equal to one-half that of f . See
Figure 1.2.

If f is locally integrable and R > 0 is given, then by considering the average of f
over the ball B(x, |x|+R), which contains the ball B(0,R), we obtain

M( f )(x) ≥
∫
B(0,R) | f (y)|dy
vn(|x|+R)n

(1.4.1)

for all x ∈ Rn. An interesting consequence of (1.4.1) is the following: suppose that
f �= 0 on a set of positive measure E, thenM( f ) is not in L1(Rn). In other words, if
f is in L1loc(R

n) andM( f ) is in L1(Rn), then f = 0 a.e. To see this, integrate (1.4.1)
over the ball Rn to deduce that ‖ f χB(0,R)‖L1 = 0 and thus f (x) = 0 for almost all x
in the ball B(0,R). Since this is valid for all R= 1,2,3, . . . , it follows that f = 0 a.e.
in Rn.

Another remarkable locality property of M is that if M( f )(x0) = 0 for some
x0 in Rn, then f = 0 a.e. To see this, we take x = x0 in (1.4.1) to deduce that
‖ f χB(0,R)‖L1 = 0 and as before we have that f = 0 a.e. on every ball centered at
the origin, i.e., f = 0 a.e. in Rn.

A related analog of M( f ) is its uncentered version M( f ), defined as the
supremum of all averages of f over all open balls containing a given point.

Definition 1.4.3. The uncentered Hardy–Littlewood maximal function M( f ) of a
measurable function f is the supremum of the averages of | f | over all open balls
that contain a given point, i.e.,

M( f )(x) = sup
δ>0

y: |y−x|<δ

1
|B(y,δ )|

∫

B(y,δ )
| f (z)|dz.

Clearly we haveM( f )≤M( f ). Now, if x ∈ B(x0,R) then B(x0,R)� B(x,2R), so

1
vnRn

∫

B(x0,R)
| f (y)|dy ≤ 2n

vn(2R)n

∫

B(x,2R)
| f (y)|dy ≤ 2nM( f )(x);
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hence taking the supremum over B(x0,R) containing x yieldsM( f )(x)≤ 2nM( f )(x).
Thus the boundedness properties ofM are identical to those of M.

Example 1.4.4. On R, let f be the characteristic function of the interval I = [a,b].
For x ∈ (a,b), clearly M( f )(x) = 1. For x > b, a calculation shows that the largest
average of f over all intervals (y− δ ,y+ δ ) that contain x is obtained when δ =
1
2 (x− a) and y = 1

2 (x+ a). Similarly, when x < a, the largest average is obtained
when δ = 1

2 (b− x) and y= 1
2 (b+ x). We conclude that

M( f )(x) =

⎧
⎪⎨
⎪⎩

(b−a)/|x−b| when x ≤ a,

1 when x ∈ (a,b),
(b−a)/|x−a| when x ≥ b.

Observe that M( f )(x) does not have a jump at x= a and x= b and in fact we have

M( f )(x) =
(
1+

dist (x, I)
|I|

)−1
.

This function is shown in Figure 1.2 when a= −1 and b= 1.

−1 1

−1 1

Fig. 1.2 The centered (top) and uncentered Hardy–Littlewood maximal functions of χ[−1,1]. The
maximum value of both functions is 1 and is attained on (−1,1).

We are now ready to obtain some basic properties of maximal functions. We need
the following covering lemma.

Lemma 1.4.5. Let {B1,B2, . . . ,BN} be a finite collection of open balls in Rn. Then
there exists a finite subcollection {Bj1 , . . . ,BjL} of pairwise disjoint balls such that

L

∑
r=1

∣∣Bjr

∣∣≥ 1
3n
∣∣

N⋃
i=1

Bi
∣∣ . (1.4.2)

Proof. Let us reindex the balls so that

|B1| ≥ |B2| ≥ · · · ≥ |BN | .
Set j1 = 1. Let j2 be the least index s > j1 such that Bs is disjoint from Bj1 . This
means that for all indices m (if any) with j1 < m < j2, Bm intersects Bj1 . Choose j3
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to be the least index s > j2 such that Bs is disjoint from Bj1 ∪Bj2 . This means that
for all indices m (if any) with j2 < m < j3, Bm intersects Bj1 or Bj2 .

Having chosen j1, j2, . . . , ji, let ji+1 be the least index s > ji such that Bs is
disjoint from Bj1 ∪ ·· · ∪Bji . As before the selection procedure ensures that if the
index m satisfies ji < m < ji+1, then Bm intersects one of the balls Bj1 , . . . ,Bji .
Since we have a finite number of balls, this process will terminate when an index jL
is found such that for all m > jL the balls Bm intersect one of the Bj1 , . . . ,BjL .

We have now selected pairwise disjoint balls Bj1 , . . . ,BjL . If some Bm was not
selected, that is, m /∈ { j1, . . . , jL}, as observed before, then Bm must intersect a
selected ball Bjr for some jr < m. Then Bm has smaller size than Bjr and we must
have Bm ⊂ 3Bjr . This shows that the union of the unselected balls is contained in the
union of the triples of the selected balls. Therefore, the union of all balls is contained
in the union of the triples of the selected balls. Thus

∣∣∣∣
N⋃
i=1

Bi

∣∣∣∣ ≤
∣∣∣∣

L⋃
r=1

3Bjr

∣∣∣∣ ≤
L

∑
r=1

|3Bjr | = 3n
L

∑
r=1

|Bjr | ,

and the required conclusion follows. �

It was noted earlier that M( f ) and M( f ) are never in L1 if f is not zero a.e.
However, it is true that these functions lie in L1,∞ when f is in L1.

Theorem 1.4.6. For any measurable function f we have

∣∣{M( f ) > λ
}∣∣ ≤ 3n

λ

∫

{M( f )>λ}
| f (y)|dy . (1.4.3)

Consequently, the uncentered Hardy–Littlewood maximal operator M maps L1(Rn)
to L1,∞(Rn) with constant at most 3n.

Proof. We claim that the set Eλ = {x ∈ Rn : M( f )(x) > λ} is open. Indeed, for
x ∈ Eλ , there is an open ball Bx that contains x such that |Bx|−1 ∫

Bx | f (y)|dy > λ .
Then M( f )(y) > λ for any y ∈ Bx, and thus Bx � Eλ . This proves that Eλ is open.

Let K be a compact subset of Eλ . For each x ∈ K there exists an open ball Bx

containing the point x such that
∫

Bx
| f (y)|dy > λ |Bx| . (1.4.4)

Observe that Bx ⊂ Eλ for all x. By compactness there exists a finite subcover
{Bx1 , . . . ,BxN} of K. Using Lemma 1.4.5 we find a subcollection of pairwise dis-
joint balls Bxj1

, . . . ,BxjL
such that (1.4.2) holds. Using (1.4.4) and (1.4.2) we obtain

|K| ≤
∣∣∣

N⋃
i=1

Bxi

∣∣∣≤ 3n
L

∑
i=1

|Bxji
| ≤ 3n

λ

L

∑
i=1

∫

Bx ji

| f (y)|dy ≤ 3n

λ

∫

Eλ
| f (y)|dy ,
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since all the balls Bxji
are disjoint and contained in Eλ . Taking the supremum over

all compact K ⊆ Eλ and using the inner regularity of Lebesgue measure, we deduce
(1.4.3). We have now proved that M maps L1 → L1,∞ with bound 3n. �

Corollary 1.4.7. Let 1 < p < ∞. The uncentered Hardy–Littlewood maximal oper-
ator maps Lp(Rn) to Lp(Rn) with constant at most 3n/p2p(p−1)−1.

Proof. It is straightforward that M maps L∞ → L∞ with constant 1 and is well
defined on L1+L∞. Applying Theorem 1.3.3 we obtain

∥∥M∥∥
Lp→Lp ≤ 2

( p
p−1

) 1
p
3

n
p ≤ 2p

p−1
3

n
p , (1.4.5)

and this completes the proof. �

We note that Exercise 1.3.4 yields the slightly better bound for ‖M‖Lp→Lp in
(1.4.5) without the factor of 2 on the right.

Example 1.4.8. Let R > 0 and x0 ∈ Rn. Then we have

Rn

(|x− x0|+R)n
≤ M(χB(x0,R))(x) ≤ 3n

Rn

(|x− x0|+R)n
. (1.4.6)

The lower estimate in (1.4.6) is an easy consequence of the fact that the ball
B(x, |x−x0|+R) contains the ball B(x0,R). For the upper estimate, we first consider
|x− x0| ≤ 2R, in which case we have

M(χB(x0,R))(x) ≤ 1 ≤ 3n Rn

(|x− x0|+R)n
.

In the case where |x− x0| > 2R, if the balls B(x,r) and B(x0,R) intersect, we must
have that r> |x−x0|−R. But note that |x−x0|−R> 1

3 (|x−x0|+R), since |x−x0| >
2R. We conclude that for |x− x0| > 2R we have

M(χB(x0,R))(x) ≤ sup
r>0

|B(x,r)∩B(x0,R)|
|B(x,r)| ≤ sup

r>|x−x0|−R

vnRn

vnrn
≤ Rn

(
1
3 (|x− x0|+R)

)n ,

and thus the upper estimate in (1.4.6) holds. An analogous estimate is valid for
M(χB(x0,R)).

Before ending this section we discuss an analogous situation when balls are
replaced by cubes. Let f be a measurable function. Define the uncentered maximal
function with respect to cubes by

Mc( f )(x) = sup
Q�x

Q cube

1
|Q|

∫

Q
| f (y)|dy,

where the cubes are assumed to have sides parallel to the coordinate planes. Note
that it does not matter if the cubesQ in the supremum are taken to be open or closed.
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Then Lemma 1.4.5, Theorem 1.4.6, and Corollary 1.4.7 are also valid if we
replace balls by open cubes. The main feature of Lemma 1.4.5 is that if two cubes
with sides parallel to the axes intersect, then the smaller one is contained in the triple
of the larger one. Repeating the reasoning leading to (1.4.5) we obtain the following
analogous estimates for Mc:

∥∥Mc
∥∥
L1→L1,∞ ≤ 3n,

∥∥Mc
∥∥
Lp→Lp ≤ 2

3
n
p p

p−1
(1.4.7)

when 1< p< ∞. Again by Exercise 1.3.4 the factor of 2 on the right can be removed.

Exercises

1.4.1. Show that for any measurable function f on Rn we have

M( f )(x) = sup
r>0
r∈Q

1
vnrn

∫

|x−y|≤r
| f (y)|dy.

1.4.2. Let fk ≥ 0 be measurable functions on Rn such that fk ↑ f pointwise a.e. as
k → ∞. Show that M( fk) increases pointwise to M( f ) and likewise for M.

1.4.3. Let fk ≥ 0 be measurable functions on Rn. Show that

M(liminf
k→∞

fk) ≤ liminf
k→∞

M( fk).

1.4.4. Show that the set {x ∈ Rn : M( f )(x) > λ} is open for any f ∈ L1loc(R
n).[

Hint: Show that averages over small shifted balls of a given ball B are close to the
average over B.

]

1.4.5. For a ball B with radius R > 0, let B∗ be any concentric multiple of B.
(a) Prove that5 M(χB) ≈ M(χB∗).
(b) Show that for any x ∈ Rn we have

M(χB)(x) ≈ Rn

(R+dist(x,B))n
,

where dist(x,B) is the distance from x to B.
[
Hint: Use (1.4.6).

]

1.4.6. Let f be a measurable function on Rn. Define the centered maximal function
of f with respect to cubes, by

Mc( f )(x) = sup
ε>0

1
|Q(x,ε)|

∫

Q(x,ε)
| f (y)|dy ,

5 A ≈ B means that for some c,c′ > 0 we have c < A
B < c′ uniformly in all parameters involved.
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where Q(x,ε) is a cube parallel to the axes with side length 2ε centered at x.
(a) Prove that Mc( f ) ≈ M( f ).

[
Hint: See Figure 8.1.

]
(b) Prove that Mc( f ) ≈ Mc( f ).
(c) Show that for any cube Q with side length �(Q) we have

Mc(χQ)(x) ≈ �(Q)n

(�(Q)+dx)n
,

where dx is the distance from x to Q (which is zero if x ∈ Q).
(d) Conclude that for any concentric multiple Q∗ of Q we haveMc(χQ) ≈ Mc(χQ∗).

1.4.7. Let h(t) = 1
t (log

1
t )

−2χ(0,1/2). Prove that h ∈ L1(R) but M(h) /∈ L1loc(R).

1.4.8. Show that for every 1 < p < ∞ and for any f in Lp,∞(Rn), M( f ) lies in
Lp,∞(Rn) and we have

∥∥M( f )
∥∥
Lp,∞ ≤ 3np

p−1

∥∥ f∥∥Lp,∞ .

[
Hint: First take f ∈ Lp(Rn)∩L1(Rn). Prove that

λ
∣∣{M( f ) > λ}∣∣ 1p ≤ 3n

∣∣{M( f ) > λ}∣∣ 1p−1
∫

{M( f )>λ}
| f (y)|dy

and deduce from this the claimed inequality for f ∈ Lp. For a general f ∈ Lp,∞(Rn),
write fk = | f |χ| f |≤kχB(0,k) and use Exercises 1.2.2 and 1.4.2.

]

1.5 The Lebesgue Differentiation Theorem

Recall that L1loc(R
n) consists of all measurable functions on Rn that are integrable

over every compact set.

Theorem 1.5.1. Let f be a function in L1loc(R
n). Then

lim
δ→0

1
|B(x,δ )|

∫

B(x,δ )
| f (y)− f (x)|dy= 0 for almost all x ∈ Rn. (1.5.1)

Proof. We tile Rn as the union of cubes Qk = k+ [0,1)n where k ∈ Zn. It suffices
to show the claimed almost everywhere convergence for any such cube Qk. Let us
fix such a cube Qk = k+[0,1)n. In proving (1.5.1) for x ∈ Qk, we can replace f by
fk = f χ3Qk , as we may assume that δ < 1/4 when taking the limit in (1.5.1).

Define the oscillation of an integrable function g on Rn by

Og(x) = lim
δ↓0

sup
δ ′<δ

1
|B(x,δ ′)|

∫

B(x,δ ′)
|g(y)−g(x)|dy . (1.5.2)
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As g may only be defined almost everywhere, so is Og. Let ϕ be a continuous
function with compact support onRn. Then ϕ is uniformly continuous; hence, given
ε > 0, there is a δ0 > 0 such that

|y− z| < δ0 =⇒ |ϕ(y)−ϕ(z)| ≤ ε .

This implies that for δ ′ < δ < δ0 we have

1
|B(x,δ ′)|

∫

B(x,δ ′)
|ϕ(y)−ϕ(x)|dy ≤ ε .

Taking the supremum over all δ ′ < δ and then the limit as δ ↓ 0, we obtain that
Oϕ(x) ≤ ε . As ε > 0 is arbitrary we deduce that Oϕ(x) = 0 for all x ∈ Rn.

Given our fixed compactly supported integrable function fk and given ε ′ > 0,
there is a continuous function with compact support ϕ such that ‖ fk − ϕ‖L1 < ε ′.
As the oscillation function is subadditive, it follows that

O fk ≤ O fk−ϕ +Oϕ =O fk−ϕ ≤ O fk +Oϕ =O fk a.e. (1.5.3)

Thus O fk =O fk−ϕ a.e. We now write

{
O fk > 0

}
=

∞⋃
m=1

{
O fk >

1
m

}
. (1.5.4)

Noticing that
O fk−ϕ ≤ M( fk −ϕ)+ | fk −ϕ| a.e.,

for each m ∈ Z+, we have
∣∣{x ∈ Rn : O fk(x) > 1/m

}∣∣
=
∣∣{x ∈ Rn : O fk−ϕ(x) > 1/m

}∣∣
≤ ∣∣{x ∈ Rn : M( fk −ϕ)(x)+ |( fk −ϕ)(x)| > 1/m

}∣∣
≤ ∣∣{x ∈ Rn : M( fk −ϕ)(x) > 1/2m

}∣∣+ ∣∣{x ∈ Rn : | fk(x)−ϕ(x)| > 1/2m
}∣∣

≤ 3n(2m)
∥∥ fk −ϕ

∥∥
L1 +(2m)

∥∥ fk −ϕ
∥∥
L1

≤ (3n+1)2mε ′,

having used Theorem 1.4.6 and Chebyshev’s inequality. As ε ′ > 0 is arbitrary, it
follows that |{x ∈ Rn : O fk(x) > 1/m}| = 0. Using (1.5.4) yields that O fk = 0 a.e.
But O fk =O f a.e. on Qk, and thus O f = 0 a.e. on Qk. As this is true for any k ∈ Zn,
it follows that O f = 0 a.e. on Rn. This proves (1.5.1). �

Definition 1.5.2. Let f be a locally integrable function on Rn. Points x in Rn for
which f (x) is defined and (1.5.1) holds are called the Lebesgue points of f . The set
of Lebesgue points is called the Lebesgue set of f and is denoted byL f .

Theorem 1.5.1 asserts that the Lebesgue set of a locally integrable function on
Rn is a set of full measure; i.e., its complement has measure zero.
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Corollary 1.5.3. (One-dimensional Lebesgue differentiation theorem) Given f in
L1(R) define F(x) =

∫ x
−∞ f (t)dt for x ∈ R. Then F ′ = f onL f .

Proof. For x0 ∈ L f we have

∣∣∣F(x0+h)−F(x0)
h

− f (x0)
∣∣∣≤ 1

|h|
∫ x0+|h|

x0−|h|
| f (t)− f (x0)|dt → 0

as h → 0. Thus F ′(x0) exists and equals f (x0) whenever x0 ∈ L f . �

Corollary 1.5.4. (Lebesgue differentiation theorem) Let f be in L1loc(R
n). Then

lim
δ→0

1
|B(x,δ )|

∫

B(x,δ )
f (y)dy= f (x)

for every x inL f , in particular for almost all x ∈ Rn.

As a consequence of the preceding corollary we obtain

Corollary 1.5.5. Let f be in L1loc(R
n) and let x be a Lebesgue point of f . Then

| f (x)| ≤ M( f )(x).

In particular, this inequality holds for almost all points x ∈ Rn.

Corollary 1.5.6. Let f ∈ L1loc(R
n) and x ∈ L f . For any δ > 0, let Bx,δ be a closed

ball of radius δ that contains x and shrinks down to {x} as δ → 0. Then

lim
δ→0

1
|Bx,δ |

∫

Bx,δ
| f (y)− f (x)|dy= 0 (1.5.5)

and consequently

lim
δ→0

1
|Bx,δ |

∫

Bx,δ
f (y)dy= f (x). (1.5.6)

The same assertions are valid if Bx,δ are closed cubes of side length δ that contain
x and shrink down to {x} as δ → 0.

Proof. Recall B(y, t) is defined to be the open ball of radius t > 0 centered at y. Let
x ∈ L f . Then Bx,δ � B(x,2δ ) as Bx,δ contains x, and we write

1
|Bx,δ |

∫

Bx,δ
| f (y)− f (x)|dy ≤ 2n

|B(x,2δ )|
∫

B(x,2δ )
| f (y)− f (x)|dy → 0 (1.5.7)

as δ → 0 by (1.5.1) and Definition 1.5.2. This yields (1.5.5). If Bx,δ are closed

cubes of side length δ that contain x, then Bx,δ � B(x,
√
nδ ) and (1.5.7) holds with

|B(0,√n)| on the right in place of 2n. Thus (1.5.5) holds in this case as well. Finally
(1.5.6) is an immediate consequence of (1.5.5). �
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Exercises

1.5.1. For a locally integrable function f on Rn, b ∈ C \ {0}, λ > 0, and x0 ∈ Rn

define the operations fλ (x) = λ−n f (λ−1x) (L1 dilation), τx0 f (x) = f (x−x0) (trans-
lation), and f̃ (x) = f (−x) (reflection) for all x ∈ Rn. Prove the following:

1. Lb f =L f .
2. L f̃ = −L f = {−y : y ∈ L f }.
3. L f =L f , f here denotes complex conjugation.
4. Lτx0 f = x0+L f = {x0+ y : y ∈ L f }.
5. L fλ = λL f = {λy : y ∈ L f }.
6. L f◦A = A−1L f = {A−1y : y ∈ L f }, where A is an orthogonal matrix.

Moreover, if g is another locally integrable function, prove thatL f ∩Lg � L f+g.

1.5.2. Show that for every f ∈ L1loc(R
n) there is a set Ef of measure zero such that

lim
ε→0

1
|B(x,ε)|

∫

B(x,ε)

∣∣∣ f (y)− 1
|B(x,ε)|

∫

B(x,ε)
f (z)dz

∣∣∣dy= 0

for all x ∈ Rn \Ef .

1.5.3. Let f be in Lp(Rn) for some p satisfying 1 ≤ p < ∞. Show that

lim
δ→0

1
|B(x,δ )|

∫

B(x,δ )
| f (y)− f (x)|p dy= 0 for almost all x ∈ Rn.

1.5.4. Let g be in Lp(Rn) for some p satisfying 0 < p < 1. Show that

lim
δ→0

1
|B(x,δ )|

∫

B(x,δ )
|g(y)−g(x)|p dy= 0 for almost all x ∈ Rn.

[
Hint: For every rational number a there is a set Ea of Lebesgue measure zero such
that for x ∈ Rn \Ea we have

lim
δ→0

1
|B(x,δ )|

∫

B(x,δ )
|g(y)−a|p dy= |g(x)−a|p,

since the function y �→ | f (y)− a|p is in L1loc(R
n). By considering an enumeration

of the rationals, find a set of measure zero E such for x /∈ E the preceding limit
exists for all rationals a and by continuity for all real numbers a, in particular for
a= g(x).

]

1.5.5. Given N ∈ Z+ and f ∈ L1loc(R
n), define the function

FN( f ) = ∑
Q∈D (N)

(
1

|Q|
∫

Q
f (y)dy

)
χQ ,
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where D(N) is the set of all cubes Q of the form ∏n
i=1

[
2−Nmi,2−N(mi+ 1)

)
with

mi ∈ Z and N = 1,2,3, . . . . Prove that FN( f ) → f a.e. as N → ∞.
[
Hint: Use the

previous exercise.
]

1.6 Convolution

Definition 1.6.1. Suppose that for given f , g in L1loc(R
n) we have

∫

Rn
| f (y)| |g(x− y)|dy < ∞ for almost all x ∈ Rn. (1.6.1)

Then for almost all x ∈ Rn we define the convolution of f and g as

( f ∗g)(x) =
∫

Rn
f (y)g(x− y)dy.

If f ,g ≥ 0 are measurable functions on Rn, then we define ( f ∗g)(x) as the value of
the integral of the nonnegative measurable function y �→ f (y)g(x−y). Notice that in
this case the integral may be infinite for many values of x; see Example 1.6.5.

Changing variables y′ = x−y, we see that the convolution of f and g can also be
written as

( f ∗g)(x) =
∫

Rn
g(y′) f (x− y′)dy′ = (g∗ f )(x)

whenever the integral converges absolutely. Hence convolution is a commutative
operation. It is also associative, in the sense f ∗ (g∗h) = ( f ∗g)∗h a.e., provided

∫

Rn

∫

Rn
| f (y)| |g(z− y)| |h(x− z)|dzdy < ∞ for almost all x ∈ Rn. (1.6.2)

But (1.6.2) is a consequence of
∫

Rn

∫

Rn

∫

Rn
| f (y)| |g(z− y)| |h(x− z)|dzdydx < ∞ ,

a fact that can be verified by applying Tonelli’s theorem (integrating first in x, then
in z, and finally in y).

Remark 1.6.2. If both f and g are integrable functions, then (1.6.1) holds. Indeed,
∫

Rn

∫

Rn
| f (y)||g(x− y)|dydx

=
∫

Rn

∫

Rn
| f (y)||g(x− y)|dxdy

=
∫

Rn
| f (y)|

∫

Rn
|g(x− y)|dxdy
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=
∫

Rn
| f (y)|

∫

Rn
|g(x)|dxdy

= ‖ f‖L1(Rn)‖g‖L1(Rn)

< +∞ ,

having used Tonelli’s theorem. Thus (1.6.1) holds. Since

| f ∗g| ≤ | f | ∗ |g|,
we conclude ∥∥ f ∗g∥∥L1(Rn) ≤ ‖ f‖L1(Rn)‖g‖L1(Rn) . (1.6.3)

Example 1.6.3. On R consider the convolution of the two characteristic functions
χ[−a,a] and χ[−b,b], where 0 < a ≤ b < ∞. Then for any x ∈ R we obtain

(χ[−a,a] ∗ χ[−b,b])(x) =
∣∣[−a,a]∩ [−b+ x,b+ x]

∣∣

and a straightforward calculation yields that

∣∣∣[−a,a]∩ [−b+ x,b+ x]
∣∣∣=

⎧
⎪⎨
⎪⎩

2a when |x| ≤ b−a,

a+b−|x| when b−a < |x| ≤ a+b,

0 when |x| > a+b.

The following example indicates how the convolution improves smoothness.

Example 1.6.4. Let h = χ[−1,1]. A cal-
culation gives that (h ∗ h)(x) = 2− |x|
for |x| ≤ 2 and (h∗h)(x) = 0 for |x| > 2.
Also (h∗h∗h)(x) equals
⎧
⎪⎨
⎪⎩

3−|x|2 if |x| ≤ 1,

4−2|x|+ (|x|−1)2
2 if 1 < |x| ≤ 3,

0 if 3 < |x|.
It turns out that h ∗ h is continuous
(but not continuously differentiable) and
h ∗ h ∗ h lies in C 1 but not in C 2. The
graphs of h ∗ h ∗ h and its derivative are
shown in Figure 1.3.

−1−2−3−4 1 2 3 4

−2

2

3

4

Fig. 1.3 The triple convolution h∗h∗h and its
piecewise linear derivative (dotted) are plotted.

Example 1.6.5. We compute the convolution of χ[−1,1] and |x|−1 on R:

h(x) =
(
χ[−1,1] ∗ | · |−1)(x) =

∫ 1+x

−1+x

dy
|y| =

{
log x+1

x−1 if |x| > 1,

∞ if |x| ≤ 1.
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Notice that h(x) decays like 1/|x| as |x| → ∞. In general, the convolution inherits
the worst decay of the two functions; see Exercise 1.8.4.

The following inequality concerning convolution is of fundamental importance.

Theorem 1.6.6. (Minkowski convolution inequality) Let 1 ≤ p ≤ ∞. For f in
Lp(Rn) and g in L1(Rn) we have that g∗ f exists a.e. and satisfies

∥∥g∗ f
∥∥
Lp(Rn) ≤ ‖g‖L1(Rn)‖ f‖Lp(Rn) . (1.6.4)

Proof. We may assume that 1 < p < ∞, since the case p = 1 was considered in
Remark 1.6.2 and the case p= ∞ is straightforward. We first show that

(|g| ∗ | f |)(x) =
∫

Rn
| f (x− y)| |g(y)|dy (1.6.5)

exists a.e. Applying Hölder’s inequality in (1.6.5) with respect to the measure
|g(y)|dy to the functions y �→ f (x− y) and 1 with exponents p and p′, respectively,
we obtain

(|g| ∗ | f |)(x) ≤
(∫

Rn
| f (x− y)|p|g(y)|dy

)1
p
(∫

Rn
|g(y)|dy

)1
p′

. (1.6.6)

Taking Lp norms of both sides of (1.6.6) we deduce

∥∥|g| ∗ | f |∥∥Lp ≤
(

‖g‖p−1
L1

∫

Rn

∫

Rn
| f (x− y)|p|g(y)|dydx

)1
p

=
(∥∥g∥∥p−1

L1

∫

Rn

∫

Rn
| f (x− y)|p dx |g(y)|dy

)1
p

=
(∥∥g∥∥p−1

L1

∫

Rn

∫

Rn
| f (x)|p dx|g(y)|dy

)1
p

=
(
‖ f‖p

Lp
∥∥g∥∥L1‖g‖p−1

L1

)1
p

=
∥∥ f∥∥Lp‖g‖L1 < ∞ ,

using Tonelli’s theorem. This shows that |g| ∗ | f | is finite a.e. and satisfies (1.6.4).
Thus the integral in (1.6.5) converges absolutely, hence it converges. This yields that
f ∗g is well defined and satisfies (1.6.4) as |g∗ f | ≤ |g| ∗ | f |. �

In proving Lp estimates, it is often convenient to work with continuous functions
with compact support. As Lp(Rn) functions can be approximated by step functions
and step functions can be approximated by trapezoidal functions in the Lp norm, we
see that continuous functions with compact support are dense in Lp(Rn). A slightly
more general fact is proven in Proposition 1.7.4.

Theorem 1.6.7. Let 1 ≤ p ≤ ∞. For given f ∈ Lp(Rn) and g ∈ Lp′
(Rn) the function

f ∗g is uniformly continuous and bounded.
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Proof. Let us assume 1 ≤ p < ∞. The case p = ∞ can be handled by reversing
the roles of f and g. Given ε > 0, let ϕ be a continuous function with compact
support such that ‖ f − ϕ‖Lp < ε . Let us suppose that the support of ϕ is contained
in B(0,M). Then ϕ is uniformly continuous, so there is δ > 0 such that

x ∈ Rn, |h| < δ =⇒ ∣∣ϕ(x+h)−ϕ(x)
∣∣< ε|B(0,M+1)|− 1

p .

For |h| < min(δ ,1) Hölder’s inequality yields
∣∣∣(ϕ ∗g)(x+h)− (ϕ ∗g)(x)

∣∣∣ ≤
[∫

|y|≤M+1
|ϕ(y+h)−ϕ(y)|p dy

] 1
p ∥∥g∥∥Lp′

≤(ε|B(0,M+1)|− 1
p )|B(0,M+1)| 1p ∥∥g∥∥Lp′ .

Then for |h| < min(δ ,1) we have
∣∣( f ∗g)(x+h)− ( f ∗g)(x)∣∣

≤ ∣∣(ϕ ∗g)(x+h)− (ϕ ∗g)(x)∣∣+ ∣∣(( f −ϕ)∗g)(x+h)− (( f −ϕ)∗g)(x)∣∣
≤ ε

∥∥g∥∥Lp′ +2
∥∥ f −ϕ

∥∥
Lp

∥∥g∥∥Lp′
≤ 3ε

∥∥g∥∥Lp′ .
This proves the uniform continuity of f ∗g on Rn. Its boundedness is a consequence
of Hölder’s inequality. �

Exercises

1.6.1. Show that the support of the convolution of two functions is contained in the
algebraic sum6 of the supports of the two functions.

1.6.2. Let f ,g,h be nonnegative measurable functions on Rn and let 1 ≤ p < ∞.
Prove that (

( f ∗g)p ∗h) 1
p ≤ min

[
f ∗ (gp ∗h) 1

p ,g∗ ( f p ∗h) 1
p
]
.

[
Hint: Use the Minkowski integral inequality.

]

1.6.3. Let α ∈R+ and β ∈R. Consider the functions g(t)= e−αtχt>0 and h(t)= eiβ t

defined on the real line. Show that for any positive integer m we have

g∗ · · · ∗g︸ ︷︷ ︸
m times

∗h= (α + iβ )−m h.

1.6.4. Consider the Gaussian function G(x) = e−π|x|2 on Rn. Show that (G∗G)(x) =
G(x/

√
2)/(

√
2)n.

[
Hint: Change variables y= y′ + x

2 .
]

6 The algebraic sum of the sets A and B is the set A+B= {a+b : a ∈ A,b ∈ B}.
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1.6.5. (a) Let f ∈ L1(Rn) and g ∈ L∞(Rn) and suppose that g has compact support.
Prove that ( f ∗g)(x) → 0 as |x| → ∞.
(b) Provide examples of f ∈ L1(R) compactly supported and g ∈ L∞(R) non-
compactly supported, such that | f ∗g| is a constant; hence the assertion in (a) fails.
1.6.6. Let K be a positive integrable function on Rn and let 1 ≤ p ≤ ∞. Prove that
the norm of the operator T ( f ) = f ∗K from Lp(Rn) to itself is equal to ‖K‖L1 .[
Hint: Clearly, ‖T‖Lp→Lp ≤ ‖K‖L1 . Conversely, fix 0< ε < 1 and let N be a positive
integer. Let χN = χB(0,N) and for any R > 0 let KR = KχB(0,R), where B(x,R) is the
ball of radius R centered at x. Observe that for |x| ≤ (1− ε)N, we have B(0,Nε) �
B(x,N); thus

∫
Rn χN(x− y)KNε(y)dy=

∫
Rn KNε(y)dy= ‖KNε‖L1 . Then for p < ∞

∥∥K ∗ χN
∥∥p
Lp

‖χN‖p
Lp

≥
∥∥KNε ∗ χN

∥∥p
Lp(B(0,(1−ε)N)∥∥χN
∥∥p
Lp

≥ ∥∥KNε
∥∥p
L1(1− ε)n .

Let N → ∞ first and then ε → 0. The case p= ∞ is straightforward.
]

1.6.7. Let 1 < p < ∞. (a) Let K be an integrable function on Rn. Show that

∥∥ f ∗K∥∥Lp,∞ ≤ p
p−1

∥∥K∥∥L1
∥∥ f∥∥Lp,∞

for all f in Lp,∞. Thus the operator f �→ f ∗K maps Lp,∞(Rn) to Lp,∞(Rn).
(b) Let K ∈ Lp,∞(Rn). Prove that the operator f �→ f ∗K maps L1(Rn) to Lp,∞(Rn)
with norm at most p

p−1‖K‖Lp,∞ .[
Hint: Part (a): Use Theorem 1.2.10. Part (b): Reverse the roles of f and K in (a).

]

1.6.8. Let K be a nonnegative function in L1loc(R
n) and let 0 < p ≤ ∞. Suppose that

there is a positive constant C such that the inequality
∥∥ f ∗K∥∥Lp,∞ ≤C

∥∥ f∥∥Lp
holds for all nonnegative functions f in Lp,∞. Prove that K ∈ L1(Rn). Obtain the
same conclusion when ‖ f‖Lp is replaced by ‖ f‖Lp,∞ in the hypothesis.

[
Hint: Use

that
χB(0,2R) ∗K ≥

(∫
B(0,R)

K(x)dx
)

χB(0,R)

and let R → ∞. Here B(0,r) = {x : |x| < r}.]

1.6.9. Let Ω be a measurable subset of Rn and let K ≥ 0 be an even measurable
function on Rn. Let TK( f ) = f ∗K for f measurable.
(a) Show that for 1 ≤ p ≤ ∞ we have

∥∥TK
∥∥
Lp(Ω)→Lp(Rn) ≤ ∥∥F∥∥L∞(Ω), where F(x) =

∫

Ω
K(x− y)dy.
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(b) Assume p = 1. Show that ‖F‖L∞(Ω) < ∞ if and only if ‖TK‖L1(Ω)→L1(Rn) < ∞.[
Hint: Part (b): Define Ωm= {x∈Rn : F(x)≥m, |x| ≤m}.Assuming ‖F‖L∞(Ω)=∞
and |Ωm| > 0, show that

∫
Ω TK( fm)(x)dx ≥ m, where fm = 1

|Ωm| χΩm .
]

1.7 Smoothness and Smooth Functions with Compact Support

We begin by introducing notation relevant to several variables. We denote the mag-
nitude of x= (x1, . . . ,xn) ∈ Rn by |x| = (x21+ · · ·+ x2n)

1/2. The partial derivative of
a function f on Rn with respect to the jth variable x j, if it exists, is denoted by ∂ j f .
The gradient of a function f is the vector ∇ f = (∂1 f , . . . ,∂n f ), assuming ∂ j f exist
for all j. Higher-order partial derivatives of a function can be obtained by multiple
applications of ∂ j. In particular, the mth partial derivative of f with respect to the
jth variable is denoted by ∂m

j f , if it exists.
Let N ∈ Z+. The space of functions in Rn all of whose partial derivatives of

order at most N are continuous is denoted by C N(Rn) and the space of all infinitely
differentiable functions on Rn by C ∞(Rn); functions in C ∞(Rn) are also called
smooth. The space of C ∞ functions with compact support on Rn is denoted by
C ∞
0 (Rn). A multi-index α is an ordered n-tuple of nonnegative integers. For a multi-

index α = (α1, . . . ,αn), |α| = α1 + · · ·+αn denotes its total size (or magnitude)
and α! = α1! · · ·αn! denotes the product of the factorials of its entries. Given a
multi-index α = (α1, . . . ,αn) and f in C |α|(Rn), ∂ α f denotes the mixed derivative
∂ α1
1 · · ·∂ αn

n f which remains invariant if the partial derivatives are taken in a different
order. Then |α| indicates the total number of derivatives that appear in ∂ α f . Finally,
for 1 ≤ j ≤ n, the vector e j is defined as the element of Rn all of whose coordinates
are zero except for the jth one, which equals 1.

For x ∈ Rn and α = (α1, . . . ,αn) a multi-index, we set xα = xα1
1 · · ·xαn

n . Multi-
indices will be denoted by the letters α,β ,γ,δ , .... It is straightforward to verify that

|xα | ≤ |x||α| . (1.7.1)

The converse inequality in (1.7.1) fails as one coordinate of xmay vanish. However,
for each k= 1,2, . . . we have for some 0< cn,k < dn,k < ∞, the following inequality:

cn,k |x|k ≤ ∑
|β |=k

|xβ | ≤ dn,k |x|k (1.7.2)

for all x ∈ Rn \{0}. To prove (1.7.2), we notice that the function

y �→ ∑
|β |=k

|yβ |

defined on Rn has no zeros on the unit sphere and is continuous. Then it is bounded
above and below by constants on the unit sphere Sn−1. These constants appear in
the double inequality (1.7.2). A related inequality is
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Cn,k(1+ |x|)k ≤ ∑
|β |≤k

|xβ | ≤ Dn,k(1+ |x|)k . (1.7.3)

This follows from (1.7.2) for |x| ≥ 1, while for |x| < 1 both terms in (1.7.3) are at
least 1 as |x(0,...,0)| = 1. Here again 0 <Cn,k < Dn,k < ∞.

We end the preliminaries by noting the validity of the one-dimensional Leibniz
rule

dm

dtm
( f g) =

m

∑
k=0

(
m
k

)
dk f
dtk

dm−kg
dtm−k , (1.7.4)

for all C m functions f ,g on R, and its multidimensional analog

∂ α( f g) = ∑
β≤α

(
α1

β1

)
· · ·

(
αn

βn

)
(∂ β f )(∂ α−βg) , (1.7.5)

for f ,g in C |α|(Rn) for some multi-index α , where the notation β ≤ α in (1.7.5)
means that β ranges over all multi-indices satisfying 0 ≤ β j ≤ α j for all 1 ≤ j ≤ n.
We observe that identity (1.7.5) is easily deduced by repeated application of (1.7.4),
which in turn is obtained by induction.

Theorem 1.7.1. Let m ∈ Z+, 1 ≤ q < ∞, g ∈ Lq(Rn), and ϕ ∈ C m(Rn)∩Lq
′
(Rn).

Moreover, assume that ∂ α ϕ lies in Lq
′
(Rn) for all multi-indices α with |α| ≤ m.

Then ϕ ∗g lies in C m(Rn) and ∂ α(ϕ ∗g) = (∂ α ϕ)∗g ∈ L∞ for all |α| ≤ m.

Proof. Let e j be the unit vector (0, . . . ,1, . . . ,0) with 1 in the jth entry and zeros in
all the other entries. If q > 1 we initially make the additional assumption that g has
compact support. If q= 1 this initial assumption is not necessary.

We fix an arbitrary x0 ∈ Rn and we show that ϕ ∗g has a jth partial derivative at
x0, i.e., prove the case α = e j. Using the fundamental theorem of calculus write

Λ(g,ϕ)(t,x0) =
(g∗ϕ)(x0+ te j)− (g∗ϕ)(x0)

t
−g∗∂ jϕ(x0)

=
∫ 1

0

∫

Rn

[(
∂ jϕ(y+ tse j)−∂ jϕ(y)

)
g(x0 − y)

]
dyds. (1.7.6)

We note that the integrand in (1.7.6) tends pointwise to zero as t → 0 by the fact
that ϕ ∈ C 1; moreover it is bounded by 2‖∂ jϕ‖L∞(x0−suppg)|g(x0 −·)| which lies in
L1(Rn × [0,1],dyds). The last assertion follows by the hypotheses of the theorem
if q = 1 and by the additional assumption that it lies in Lq and is supported in a
compact set, on which ∂ jϕ is certainly bounded, if q > 1. The LDCT then yields
that Λ(g,ϕ)(t,x0) → 0 as t → 0 for any fixed x0 ∈ Rn when g has compact support.

We now remove the assumption that g has compact support if q> 1. Given g∈ Lq,
set gM(x) = g(x)χ|x|≤M for M > 0. Given a point x0 and ε > 0 we find an M such
that ‖g− gM‖Lq < ε (as q < ∞) and we pick a δ > 0 such that for |t| < δ we have
|Λ(gM,ϕ)(t,x0)| < ε . Additionally, by Hölder’s inequality we obtain

∣∣Λ(g−gM,ϕ)(t,x0)
∣∣≤

∫ 1

0

∥∥g−gM
∥∥
Lq

∥∥∂ jϕ(·+ tse j)−∂ jϕ
∥∥
Lq′ ds ≤ 2ε

∥∥∂ jϕ
∥∥
Lq′ .
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Combining these estimates, for |t| < δ , we deduce
∣∣Λ(g,ϕ)(t,x0)

∣∣ ≤ ∣∣Λ(gM,ϕ)(t,x0)
∣∣+ ∣∣Λ(g−gM,ϕ)(t,x0)

∣∣≤ ε +2
∥∥∂ jϕ

∥∥
Lq′ ε.

Thus Λ(g,ϕ)(t,x0) converges to zero as t → 0; hence ∂ j(ϕ ∗g) = (∂ jϕ)∗g on Rn.
The continuity and boundedness of ∂ j(ϕ ∗g) is derived from that of (∂ jϕ)∗g by

Theorem 1.6.7. Finally, assuming ∂ α ϕ ∈ Lq
′
for all |α| ≤m, we obtain the existence,

continuity, and boundedness of ∂ α(ϕ ∗ g) via the identity ∂ α(ϕ ∗ g) = (∂ α ϕ) ∗ g,
which is proved by induction on m, applying the case m= 1 repeatedly. �

The following corollary shows that the convolution inherits the best degree of
smoothness of the two functions.

Corollary 1.7.2. Let ϕ ∈C ∞(Rn), and g∈ L1(Rn). Assume that ∂ α ϕ lies in L∞(Rn)
for all multi-indices α . Then ϕ ∗g lies in C ∞(Rn).

Proposition 1.7.3. (a) There exists a nonnegative and nonzero smooth function sup-
ported in a given ball B(x0,R) in Rn.
(b) Given 0 < r1 < r2 < ∞ there exists a smooth function with values in [0,1] sup-
ported in B(0,r2) and equal to 1 on B(0,r1).

Proof. (a) On the real line define the function

g(t) =

{
e−1/t when t > 0,

0 when t ≤ 0.

Notice that g ∈ C ∞(R\{0}), while for t = 0 we have

lim
t→0+

g(t)−g(0)
t

= lim
t→0+

e−1/t −0
t

= 0, lim
t→0−

g(t)−g(0)
t

= lim
t→0− =

0−0
t

= 0,

so g′(0) = 0. In a similar way we can show g′′(0) = 0 and in general g(k)(0) = 0
for all k. All these assertions make use of the fact that limt→0+ t

−Le−1/t = 0 for any
L > 0. Then the function h(t) = g(1− t)g(1+ t) is smooth, nonnegative, nonzero,
and is supported in [−1,1], and so does h(t2); see Figure 1.4.

−1 1

.2 h(t2)

0

Fig. 1.4 The function h(t2).

On Rn consider the function H(x) = h(|x|2), which is a composition of two
smooth functions, hence it is smooth, nonzero, and is supported in the unit ball.
Then H((x− x0)/R) is smooth, nonzero, and supported in the ball B(x0,R).



40 1 Introductory Material

(b) Start with a nonzero smooth function f ≥ 0 supported in the ball B(0, 12 (r2 − r1))
with integral 1. Define the function ϕ = χB(0, 12 (r2+r1))

∗ f . Then ϕ is supported in

B(0, 12 (r2 − r1))+B(0, 12 (r2+ r1)) = B(0,r2),

is nonzero, and is smooth by Theorem 1.7.1. Moreover, for |x| ≤ r1 we have

ϕ(x) =
∫

|x−y|≤ 1
2 (r2+r1)

f (y)dy=
∫

supp f
f (y)dy= 1,

as {y∈Rn : |y−x| ≤ 1
2 (r2+r1)} contains {y∈Rn : |y| ≤ 1

2 (r2−r1)}, which in turn
contains the support of f . Finally, notice that 0 ≤ ϕ ≤ ‖ f‖L1 = 1. �

Proposition 1.7.4. For any 0 < p < ∞, C ∞
0 (Rn) is dense in Lp(Rn).

Proof. It suffices to prove the assertion for nonnegative functions, as a complex-
valued function can be written as f1 − f2+ i( f3 − f4), where f j ≥ 0, j = 1,2,3,4.
Given f ≥ 0 in Lp(Rn) and ε > 0 we pick a step function s = ∑N

j=1 b jχQj with

‖ f − s‖min(1,p)
Lp < εmin(1,p)/2, where b j > 0 and Qj are disjoint cubes. We claim that

for each j there is a C ∞
0 function h j supported in Qj with values in [0,1] such that

∥∥χQj −h j
∥∥min(1,p)
Lp <

εmin(1,p)

2Nbmin(1,p)
j

. (1.7.7)

To construct h j, if Qj has side length �(Qj), by Proposition 1.7.3 we find a C ∞
0

function ϕ j supported in [− 1
2 ,

1
2 ] with values in [0,1] such that

∥∥χ[− 1
2 , 12 ]

−ϕ j
∥∥min(1,p)
Lp(R) <

εmin(1,p)

2Nbmin(1,p)
j

1
n

1

�(Qj)
min(1,p)n

p

. (1.7.8)

Define h j(x1, . . . ,xn) = ∏n
k=1 ϕ j

(
(xk −c j,k)/�(Qj)

)
, where c j,k is the kth coordinate

of the center c j of Qj. Then we derive (1.7.7) using (1.7.8), the identity

a1a2 · · ·an −a′
1a

′
2 · · ·a′

n =
n

∑
k=1

a1 · · ·ak−1(ak −a′
k)a

′
k+1 · · ·a′

n

(with the obvious modifications when k = 1,n) and the the subadditivity of the

expression ‖ · ‖min(1,p)
Lp . Finally we obtain from (1.7.7) that

∥∥∥s−
N

∑
j=1

b jh j

∥∥∥
min(1,p)

Lp
≤

N

∑
j=1

bmin(1,p)
j

∥∥χQj −h j
∥∥min(1,p)
Lp <

εmin(1,p)

2
,

which, combined with ‖ f − s‖min(1,p)
Lp < εmin(1,p)/2, yields ‖ f − ∑N

j=1 b jh j‖Lp < ε;
so the claimed density is valid. �
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Note that Proposition 1.7.4 fails when p= ∞ as the function 1 cannot be approx-
imated in L∞ by smooth functions with compact support.

Exercises

1.7.1. Let a ∈ R. Show that |∇|x|a| = |a||x|a−1 for all x ∈ Rn \{0}.
1.7.2. For t ∈ (0,1) define h(t) = e−1/t e−1/(1−t) and set h(t) = 0 for t /∈ (0,1). Show
that h ∈ C ∞

0 (R) and that

x �→
∫ x

−∞
h(t)dt

(∫ 1

0
h(s)ds

)−1

is a smooth increasing function that vanishes for x ≤ 0 and equals 1 for x ≥ 1.

1.7.3. Let 0 < r1 < r2 < r3 < r4 < ∞.
(a) Prove that there is a C ∞(Rn) function which vanishes when |x| ≤ r1 and is iden-
tically equal to 1 for |x| ≥ r2.
(b) Prove that there is a C ∞

0 (Rn) function supported in the annulus r1 ≤ |x| ≤ r4
which is equal to 1 on the annulus r2 ≤ |x| ≤ r3.

1.7.4. Let a > 1 and a /∈ Z. Prove that |x|a lies in C [a](Rn)\C [a]+1(Rn).

1.7.5. (Poincaré inequality) Let −∞ < a < b < ∞ and let u be a smooth function
supported in Ω = (a,b)×Rn−1. Prove that

∫

Ω
|u|2 dx ≤ (b−a)2

∫

Ω
|∇u|2 dx.

[Hint: Start with |u(x1,x′)|2 =
∣∣∫ x1

a ∂1u(t,x′)dt
∣∣2 for x1 ≤ b, apply the Cauchy–

Schwarz inequality, and then integrate over x1 ∈ (a,b) and over x′ ∈ Rn−1.]

1.7.6. (Partitions of unity) Let K be a compact subset of Rn and let {Uα}α∈I be an
open cover of K. Show that there are functions ψ j, j = 1, . . . ,L, such that

(a) ψ j are nonnegative and smooth for all j = 1, . . . ,L.
(b) ∑L

j=1 ψ j = 1 on a neighborhood of K.
(c) For each j there is an index α ∈ I such that ψ j is supported inUα .

Such a family of functions ψ j is called a partition of unity subordinate to {Uα}α∈I .
[Hint: For each x ∈ K find concentric open balls Bx,B′

x such that x ∈ Bx � B′
x ⊂Uα

for some α depending on x. Pass to a finite subcover Bx1 , . . . ,BxL of K. Choose
nonnegative smooth functions φ j supported in B′

x j and equal to 1 on Bxj by Propo-
sition 1.7.3. Then set

ψ1 = φ1, and ψ j+1 = φ j+1

j

∏
i=1

(1−φi)

for 1 ≤ j < L.]
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1.8 Schwartz Functions

For a pair of multi-indices α and β and a function f ∈ C ∞(Rn) we define the ρα,β
Schwartz seminorm7 of f by

ρα,β ( f ) = sup
x∈Rn

|xα ∂ β f (x)|.

Naturally, this quantity could be infinite for certain smooth functions.

Definition 1.8.1. A C ∞ complex-valued function f onRn is called a Schwartz func-
tion if for all multi-indices α and β we have ρα,β ( f )< ∞. The space of all Schwartz
functions on Rn is denoted byS (Rn).

Thus a C ∞ function is called Schwartz if and only if for every multi-index β and
every N ∈ Z+ there is a constant CN,β such that for all x ∈ Rn we have

|∂ β f (x)| ≤ CN,β

(1+ |x|)N .

Obviously, every smooth function with compact support is a Schwartz function, i.e.,
C ∞
0 (Rn) is contained inS (Rn).

Example 1.8.2. The function e−|x|2 lies inS (Rn) but e−|x| does not, since the latter
fails to be differentiable at the origin. The C ∞ function g(x) = (1+ |x|2)−10 is not
inS (Rn), as ρα1,0(g) = ∞ for α1 = (21,0, . . . ,0) and 0= (0, . . . ,0).

Example 1.8.3. The function e−1/xe−xχ[0,∞) lies inS (R) as e−1/xχ[0,∞) is infinitely
differentiable at the origin with vanishing derivatives of all orders.

Proposition 1.8.4. Let f , g be in S (Rn) and c ∈ C. Then f + g, c f , f g, and f ∗ g
lie inS (Rn).

Proof. The only nontrivial assertion is that ∂ β ( f ∗g) has rapid decay at infinity. For
each N > 0 there are constants CN,β and C′

N+n+1,0 such that

∣∣∣∣
∫

Rn
(∂ β f )(x− y)g(y)dy

∣∣∣∣≤
∫

Rn

CN,β

(1+ |x− y|)N
C′
N+n+1,0

(1+ |y|)N+n+1 dy . (1.8.1)

Inserting the simple estimate (1+ |x− y|)−N ≤ (1+ |y|)N(1+ |x|)−N in (1.8.1) we
deduce that

|(∂ β f ∗g)(x)| ≤CN,β ,n(1+ |x|)−N
∫

Rn
(1+ |y|)−n−1dy=C(N,β ,n)(1+ |x|)−N ,

and this proves the rapid decay of ∂ β f ∗g at infinity. �
7 The Schwartz seminorm is in fact a norm (see Exercise 1.8.2).



1.8 Schwartz Functions 43

Next we define convergence on the space of Schwartz functions

Definition 1.8.5. Let { f j}∞
j=1 be a sequence of Schwartz functions. We say that f j

converges to a Schwartz function f in the Schwartz topology, or simply in S (Rn),
if ρα,β ( f j − f ) → 0 as j → ∞ for all multi-indices α , β . We then write f j → f in
S .

In particular, if f j → f inS as j → ∞, then for all multi-indices β , the sequence
∂ β f j −∂ β f tends to zero uniformly on Rn.

Example 1.8.6. The sequence of Schwartz functions f j(x) = e−1/xe− jxχ[0,∞) on the
real line converges to zero inS (R) as j→ ∞. To verify this assertion, first we notice
that for each m ∈ Z+ there is a polynomial Pm of degree 2m such that

dm

dxm
(e− 1

x ) = Pm( 1x )e
− 1

x ,

a fact that will be tacitly used in the sequel. Now for j ≥ 1 and for nonnegative
integers K,L we estimate

ρK,L( f j)

≤
L

∑
l=0

(
L
l

)
jL−l sup

x≥1

∣∣∣xKe− jx dl

dxl
(e− 1

x )
∣∣∣+

L

∑
l=0

(
L
l

)
jL−l sup

0≤x<1
e− jx

∣∣∣ d
l

dxl
(e− 1

x )
∣∣∣.

The first supremum tends to zero as j → ∞ since e− jx ≤ e− j/2e−x/2 when j,x ≥ 1.
In the second supremum notice that the lth derivative of e−1/x on [0,1) is bounded
byCMxM for any M ∈ Z+. Choosing M = L+1 we bound the second term by

C′
L j

Le− jxxL+1 ≤ C′
L

j
sup
t>0

(tL+1e−t) ,

which also tends to zero as j → ∞.

Theorem 1.8.7. The space C ∞
0 (Rn) is dense in S (Rn) in the Schwartz topology.

Precisely, fix a smooth function ϕ with values in [0,1] supported in B(0,2) and
equal to 1 on the unit ball B(0,1). Then for any f ∈ S (Rn), the sequence f j(x) =
f (x)ϕ(x/ j) converges to f (x) in the Schwartz topology as j → ∞.

Proof. For fixed multi-indices α and β we show that ρα,β ( fϕ(·/ j)− f ) tends to
zero as j → ∞. By Leibniz’s rule we estimate this Schwartz seminorm by

∑
γ≤β
γ �=β

(
β
γ

)
1

j|β |−|γ| sup
x∈Rn

∣∣∣xα(∂ γ f )(x)(∂ β−γ ϕ)
(x
j

)∣∣∣+ sup
x∈Rn

∣∣∣xα(∂ β f )(x)
(

ϕ
(x
j

)
−1

)∣∣∣.

As (∂ β−γ ϕ)(x/ j) remains bounded for all j, the first term tends to zero as j → ∞,
since |β |− |γ| ≥ 1. As ϕ(x/ j)−1= 0 |x| < j, the second supremum equals
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sup
|x|≥ j

1
|x|2

∣∣∣
(

ϕ
(x
j

)
−1

)∣∣∣
[
|x|2∣∣xα(∂ β f )(x)

∣∣] ≤ 1
j2

[ 1
cn,2

n

∑
k=1

n

∑
l=1

ρα+ek+el ,β ( f )
]
,

which tends to 0 as j → ∞. In the last inequality we made use of (1.7.2) and we
set ek = (0, . . . ,0,1,0, . . . ,0), the multi-index with 1 in its kth coordinate and zero
elsewhere. �

Exercises

1.8.1. Which of the following functions eixe−x2 , eie
x
e−x2 , eie

x2

e−x2 , e−|x|3 lie in the
Schwartz class S (R)?

1.8.2. Suppose that a Schwartz function ϕ satisfies ρα,β (ϕ) = 0 for some multi-
indices α , β . Prove that ϕ ≡ 0.

1.8.3. Let ϕ ∈ S (Rn) and P be a polynomial. Show that Pϕ ∈ S (Rn).

1.8.4. Let M,N > n and suppose that f , g are functions on Rn that satisfy the esti-
mates | f (x)| ≤ A(1+ |x|)−M and |g(x)| ≤ B(1+ |x|)−N for all x ∈ Rn. Prove that for
some C =C(n,N,M) > 0 we have

|( f ∗g)(x)| ≤CAB(1+ |x|)−min(N,M) for all x ∈ Rn.

1.8.5. Show that the convolution of a Schwartz function with a compactly supported
integrable function is another Schwartz function.

1.8.6. Suppose that f j → f in the Schwartz topology as j → ∞. Prove for all multi-
indices γ and δ , ∂ γ f j → ∂ γ f and (·)δ f j → (·)δ f in the Schwartz topology, as j→ ∞.

1.8.7. Let f j, f ,g j,g be Schwartz functions for j= 1,2, . . . . Suppose that f j → f and
g j → g inS (Rn) as j → ∞. Prove that f jg j → f g inS (Rn), as j → ∞.

1.8.8. Let 0 < p ≤ ∞. Prove that there is a constant C =Cn,p such that
∥∥ϕ

∥∥
Lp ≤C ∑

|α|≤[n/p]+1

ρα,0(ϕ)

for all ϕ ∈ S (Rn). Conclude that if f j → f in the Schwartz topology, then f j → f
in Lp.

[
Hint: Use inequality (1.7.3).

]

1.8.9. Let f j, f ,g j,g be Schwartz functions for j = 1,2, . . . . Suppose that f j → f
and g j → g in S (Rn) as j → ∞. Show that f j ∗ g j → f ∗ g in S (Rn), as j → ∞.[
Hint: Using the inequality |xα | ≤ 2|α|(|x−y||α|+ |y||α|) and (1.7.3) prove first that

ρα,β (ϕ ∗ψ) ≤C

[
ρ0,0(ψ) ∑

|γ |≤n+1+|α|
ργ ,β (ϕ)+ρ0,β (ϕ) ∑

|γ|≤n+1+|α|
ργ ,0(ψ)

]
,

for some constant C that depends on n and α . Use the previous exercise.
]
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1.9 Approximate Identities

The futile search for a function f0 in L1(Rn) such that f0 ∗ f = f for all f ∈ L1(Rn)
leads to the notion of approximate identities.

Definition 1.9.1. An approximate identity is a family of L1 functions Kδ on Rn with
the following three properties:

(i) There exists a constant c > 0 such that ‖Kδ ‖L1(Rn) ≤ c for all δ > 0.

(ii)
∫
Rn Kδ (y)dy= 1 for all δ > 0.

(iii) For any γ > 0 we have that
∫
|y|>γ |Kδ (y)|dy → 0 as δ → 0.

We also define approximate identities as sequences {Km}∞
m=1, in which properties

(i) and (ii) are valid for all m= 1,2, . . . and property (iii) holds as m → ∞.

Example 1.9.2. Let K be an integrable function on Rn with integral 1. Let Kδ (x) =
δ−nK(δ−1x). We claim that the family {Kδ }δ>0 is an approximate identity. Proper-
ties (i) and (ii) are immediate, while property (iii) follows from the fact that

∫

|x|≥γ
|Kδ (x)|dx=

∫

|x′|≥γ/δ
|K(x′)|dx′ → 0

as δ → 0 for γ fixed.

Approximate identities can be thought of as families of positive functions Kδ that
spike near 0 as δ becomes smaller, in such a way that the area under the graph of
each function remains equal to 1, as shown in Figure 1.5.

An important example is provided
by the function

K(x) = (π(x2+1))−1,

which gives rise to the family

Kδ (x) =δ−1K(δ−1x)

=
1
π

δ
δ 2+ x2

, δ > 0,

called the Poisson kernel.

−2 −1 1 2

1

2

3

Fig. 1.5 The Poisson kernel shown for δ = 1,
δ = 1/3, and δ = 1/9 (spikiest).

Lemma 1.9.3. Given 0 < p < ∞ and f ∈ Lp(Rn) we have that
∫

Rn
| f (x− y)− f (x)|p dx → 0 as |y| → 0.
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Proof. Let mp =min(1, p) for 0 < p < ∞. The proof will be based on the subaddi-
tivity of the expression f �→ ‖ f‖mp

Lp . Given ε > 0 and f ∈ Lp we find a continuous
function with compact support h such that ‖ f −h‖mp

Lp < εmp/3. We write
∥∥ f (·− y)− f

∥∥mp

Lp ≤ ∥∥ f (·− y)−h(·− y)
∥∥mp

Lp +
∥∥h(·− y)−h

∥∥mp

Lp +
∥∥h− f

∥∥mp

Lp .

Now suppose that h is supported in the compact ball B(0,R). Then for |y| < 1 the
function h(·− y)− h is supported in B(0,R+1) and is bounded above by the con-
stant 2‖h‖L∞ . Hence |h(x− y)− h(x)| ≤ 2‖h‖L∞ χB(0,R+1) ∈ L1(Rn). By continuity
we have that for all x ∈ Rn

h(x− y)−h(x) → 0

pointwise as y→ 0. The LDCT gives that
∥∥h(·−y)−h

∥∥mp

Lp → 0 as |y| → 0. It follows
that there is a δ > 0 such that

|y| < δ =⇒ ∥∥h(·− y)−h
∥∥mp

Lp <
εmp

3
.

Consequently, when |y| < min(1,δ ) we have ‖ f (·− y)− f‖mp
Lp < 3( εmp

3 ) = εmp . �

Let {Kδ }δ>0 be an approximate identity onRn. If f lies in Lp(Rn) for 1≤ p< ∞,
then Kδ ∗ f lies in Lp(Rn) and hence it is defined almost everywhere. However,
if f lies in L∞(Rn), then the integral defining Kδ ∗ f converges absolutely; hence
(Kδ ∗ f )(x) is well defined for every x ∈ Rn.

Theorem 1.9.4. Let {Kδ }δ>0 be an approximate identity.

(a) If f lies in Lp(Rn) for 1 ≤ p < ∞, then ‖Kδ ∗ f − f‖Lp(Rn) → 0 as δ → 0.
(b) If f in L∞(Rn) then ‖Kδ ∗ f − f‖L∞(E) → 0 as δ → 0 whenever E � Rn and f is

uniformly continuous in a neighborhood of E, in the sense that

∀ε > 0 ∃δ > 0 such that x ∈ E, |y| < δ =⇒ | f (x− y)− f (x)| < ε. (1.9.1)

Proof. (a) Let f ∈ Lp(Rn), 1≤ p≤ ∞. Since Kδ has integral 1, for almost all x ∈Rn

we have

(Kδ ∗ f )(x)− f (x) =
∫

Rn
f (x− y)Kδ (y)dy− f (x)

∫

Rn
Kδ (y)dy

=
∫

Rn
( f (x− y)− f (x))Kδ (y)dy .

(Note that when p= ∞ the preceding identity holds for all x∈Rn.) Taking Lp norms
in x and applying Minkowski’s integral inequality we obtain

∥∥Kδ ∗ f − f
∥∥
Lp(Rn) ≤

∫

Rn

∥∥ f (·− y)− f
∥∥
Lp(Rn)|Kδ (y)|dy . (1.9.2)

Let ε > 0 be given. Let us first assume that 1 ≤ p < ∞. By Lemma 1.9.3, there is
a γ > 0 such that
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|y| < γ =⇒ ∥∥ f (·− y)− f
∥∥
Lp(Rn) ≤ ε

2c
(1.9.3)

where c is the constant that appears in Definition 1.9.1 (i).
In view of (1.9.3) it follows that
∫

|y|<γ

∥∥ f (·− y)− f
∥∥
Lp(Rn)|Kδ (y)|dy ≤ ε

2c

∫

|y|<γ
|Kδ (y)|dy ≤ ε

2c
c=

ε
2
. (1.9.4)

Now choose δ0 such that for 0 < δ < δ0 we have
∫
|y|≥γ |Kδ (y)|dy < ε

4(1+‖ f‖Lp ) by
property (iii) in Definition 1.9.1. Then for 0 < δ < δ0 we have

∫

|y|≥γ

∥∥ f (·− y)− f
∥∥
Lp(Rn)|Kδ (y)|dy ≤ 2‖ f‖Lp

∫

|y|≥γ
|Kδ (y)|dy <

ε
2

. (1.9.5)

Combining (1.9.2), (1.9.4), and (1.9.5), we deduce that for 0 < δ < δ0 we have
‖Kδ ∗ f − f‖Lp(Rn) < ε . In other words, Kδ ∗ f → f in Lp(Rn).

(b) Now consider the case where p=∞. The fact that f ∈L∞ is uniformly continuous
in a neighborhood of E implies that given ε > 0 there is a γ > 0 such that

x ∈ E, |y| < γ =⇒ | f (x− y)− f (x)| < ε
2c

.

That is, (1.9.3) holds when Lp(Rn) is replaced by L∞(E) and the proof proceeds as
that in part (a). �

Remark 1.9.5. Condition (1.9.1) holds in two important situations: (a) when E is
compact and f is continuous on E+B(0,ε0) for some ε0 > 0, and (b) when E is a
finite set and f is continuous at every point in E. In particular, if f ∈ L∞ is continuous
at a point x0, then (Kδ ∗ f )(x0) → f (x0) as δ → 0. Moreover, if the supports of Kδ
shrink to {0} as δ → 0, then (Kδ ∗ f )(x0) is well defined for δ sufficiently small
without the assumption that f is globally bounded, and

(Kδ ∗ f )(x0)− f (x0) =
∫

Rn
Kδ (y)[ f (x0 − y)− f (x0)]dy → 0,

as long as f is merely continuous at x0 (but could be unbounded near another point).

Example 1.9.6. On the line consider the
approximate identity hε = 1

2ε χ[−ε ,ε ]. To
see how the family hε ∗ f tends to a func-
tion f , we take f to be the characteristic
function of an interval [a,b]. The graph
of χ[a,b] ∗hε is depicted in Figure 1.6 for
ε small enough. It is clear from the pic-
ture that χ[a,b] ∗ hε converges to χ[a,b] in
Lp for p < ∞ and also pointwise at the
points of continuity of the characteristic
function, i.e., all points but a,b.

Fig. 1.6 The graph of χ[a,b] ∗ hε for ε < b−a
2 .

The dotted lines represent the function χ[a,b].
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A simple modification in the proof of Theorem 1.9.4 yields the following variant.

Theorem 1.9.7. Let Kδ be a family of functions on Rn that satisfies properties (i)
and (iii) of Definition 1.9.1 and also

∫

Rn
Kδ (y)dy= A (1.9.6)

for some fixed A ∈ C and for all δ > 0.

(a) If f ∈ Lp(Rn) for some 1 ≤ p < ∞, then ‖Kδ ∗ f −A f‖Lp(Rn) → 0 as δ → 0 .
(b) If f in L∞(Rn), then ‖Kδ ∗ f −A f‖L∞(E) → 0 as δ → 0, provided f is uniformly

continuous in a neighborhood of a subset E of Rn in the sense of (1.9.1).

A family of functions {Kδ }δ>0 that satisfies properties (i) and (iii) of Definition
1.9.1 and also (1.9.6) for some A �= 0 is called an A-multiple of an approximate
identity. In the case where A= 0, it is called an approximate zero family.

As an application of the notion of approximate identities we show that C ∞
0 (Rn)

is a dense subspace of Lp(Rn) for all 1 ≤ p < ∞.

Example 1.9.8. Given f ∈ Lp(Rn) and ε > 0 we find a compactly supported func-
tion h such that ‖ f −h‖Lp(Rn) < ε/2. In fact such an h can be chosen to be f χ| f |<M
for some large M (since f χ| f |<M → f in Lp(Rn) as M → ∞ by the LDCT). Next
we find a compactly supported smooth function K on Rn with integral 1 and we
consider the approximate identity {Kδ }δ>0. Then in view of Theorem 1.9.4, there
is a δ > 0 such that ‖Kδ ∗h−h‖Lp(Rn) < ε/2. It follows that ‖Kδ ∗h− f‖Lp(Rn) < ε
and notice that Kδ ∗h is both smooth and compactly supported.

Exercises

1.9.1. Show that for all x ∈ R we have

lim
ε→0+

ε
∫

R

ycos(sin(x− y))
(y2+ ε2)3/2

dy= 0 .

Moreover, the convergence is uniform in x when |x| ≤ M, for any M > 0.

1.9.2. For m= 1,2, . . . let Bm be balls in Rn that contain the origin and whose mea-
sures shrink to 0 as m → ∞. Prove that the family of functions |Bm|−1χBm is an
approximate identity. Write Bm = B+

m ∪B−
m , where B

+
m , B

−
m are disjoint and equimea-

surable. Show that the sequence |Bm|−1χB+m
− |Bm|−1χB−

m
is an approximate zero

family as m → ∞.

1.9.3. Let Qm(t) = cm(1− t2)m for t ∈ [−1,1] and zero elsewhere, where cm is a
constant chosen such that

∫ 1
−1Qm(t)dt = 1 for all m= 1,2, . . . .

(a) Prove that cm ≤ (m+1)/2.
[
Hint: Use (1− t2)m ≥ (1−|t|)m when |t| ≤ 1.

]
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(b) Prove that {Qm}∞
m=1 is an approximate identity on R as m → ∞.

(c) Given a continuous function f on R supported in [0,1], show that

cm

∫ 1

0
f (t)(1− (x− t)2)m dt = ( f ∗Qm)(x), x ∈ [0,1],

is a sequence of polynomials that converges to f uniformly on [0,1] as m → ∞.

1.9.4. (Fejér kernel) Show that the sequence of functions {Fm}∞
m=1 defined on the

real line by

Fm(t) =
1

m+1

∣∣∣∣
sin(π(m+1)t)

sin(πt)

∣∣∣∣
2

χ|t|≤ 1
2
=

1
m+1

∣∣∣∣
m

∑
k=0

e2πikt
∣∣∣∣
2

χ|t|≤ 1
2

is an approximate identity as m → ∞. Also verify the preceding identity.

1.9.5. (Continuous Fejér kernel) Show that the family {Fε}ε>0 defined on Rn by

Fε(x1, . . . ,xn) =
1
εn

n

∏
j=1

(
sin(πx j/ε)

πx j/ε

)2

forms an approximate identity.
[
Hint: Use Exercise 2.3.3.

]

1.9.6. Let 0< b< 1 and z be a complex number with |z| < 1/b. Let f be a continuous
function on the line. Prove that

lim
m→∞

1
bm

∞

∑
j=m

z j−m
∫ b j

b j+1
f (t)dt =

1−b
1−bz

f (0).

[
Hint:Apply Theorem 1.9.7 for a suitable approximate identity sequence {Km}∞

m=1.
]

1.9.7. Let Ω be an open subset of Rn. Denote by C ∞
0 (Ω) the space of all smooth

functions with compact support contained in Ω . Suppose that f ,g are locally inte-
grable functions on Ω (i.e., they lie in L1(K) for any compact subset K of Ω ).
Assume that

∫
f (x)ϕ(x)dx=

∫
g(x)ϕ(x)dx for all ϕ in C ∞

0 (Ω).

Prove that f = g a.e. on Ω .
[
Hint: It will suffice to prove f = g a.e. on every ball

B(x0,r) contained in Ω . Let ε0 = dist(B(x0,r),Ω c) (or ε0 = 1 if Ω = Rn). Pick a
smooth function with integral 1 supported in the unit ball of Rn and define h= f −g
on B(x0,r+

ε0
3 ) and zero elsewhere. Then h ∈ L1(Rn) and ϕε ∗ h is supported in

B(x0,r+
2ε0
3 ) and vanishes on B(x0,r) for ε < ε0/3. Apply Theorem 1.9.4 (a).

]



Chapter 2
Fourier Transforms, Tempered
Distributions, Approximate Identities

2.1 The Fourier Transform on L1

Given the 1-periodic function

h(x) = −5e−(2πi)x −3+2e(2πi)x+17e3(2πi)x+5e4(2πi)x −2e6(2πi)x

on the line, the sequence {ak}+∞
k=−∞ of coefficients

. . . a−3 a−2 a−1 a0 a1 a2 a3 a4 a5 a6 a7 a8 . . .

. . . 0 0 −5 −3 2 0 17 5 0 −2 0 0 . . .

lists the number of times the exponentials ek(2πi)x appear in the function. In other
words, the constant ak “quantifies the presence” of the term ek(2πi)x. Examining the
magnitude of these terms, we can determine, for instance, which frequency is the
most dominant (in our example it is the third). The number ak is called the Fourier
coefficient of h and can be isolated from the function h by integrating against the
conjugate exponential of ek(2πi)x, i.e.,

ak =
∫ 1

0
h(x)e−2πikxdx.

Analogous examples can be written for functions of two or more variables that are 1-
periodic in each variable. Motivated by the periodic situation, we extend the notion
of “Fourier coefficient sequence” to nonperiodic functions on Euclidean spaces.

We denote the inner product of two points x= (x1, . . . ,xn), y= (y1, . . . ,yn) in Rn

by x · y= ∑n
j=1 x jy j.

Definition 2.1.1. Given f in L1(Rn) we define its Fourier transform by

f̂ (ξ ) =
∫
Rn

f (x)e−2πix·ξ dx . (2.1.1)
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Example 2.1.2. If ϕ(x) = e−πx2 defined on R, then ϕ̂(ξ ) = ϕ(ξ ) for all real ξ . To
prove this, consider the function

F(s) =
∫ +∞

−∞
e−π(t+is)2dt, s ∈ R.

For h real in [−1,1] by the fundamental theorem of calculus we write

F(s+h)−F(s)
h

= −2πi
∫ +∞

−∞

∫ 1

0
e−π(t+is+ihθ)2(t+ is+ ihθ)dθdt ,

and by the LDCT we can pass the limit in h → 0 inside both integrals. We obtain
that F is differentiable and

F ′(s) =
∫ +∞

−∞
−2πi(t+ is)e−π(t+is)2dt =

∫ +∞

−∞
i
d
dt
(e−π(t+is)2)dt = 0 .

Thus F is constant and equal to F(0) = 1. Using this fact, we calculate the Fourier
transform of the function ϕ(t) = e−πt2 on R as follows:

1= F(0) = F(s) =
∫ +∞

−∞
e−πt2e−2πitseπs2dt = eπs2 ϕ̂(s),

from which we conclude that ϕ̂(s) = e−πs2 = ϕ(s) for any s ∈ R.

Remark 2.1.3. Notice that if F(x1,x2) = f1(x1) f2(x2) where f j ∈ L1(R), then

F̂(ξ1,ξ2) =
∫
R

∫
R
f1(x1) f2(x2)e−2πi(x1ξ1+x2ξ2)dx1dx2 = f̂1(ξ1) f̂2(ξ2).

An analogous calculation holds in Rn. Thus the function x �→ e−π|x|2 on Rn equals
its Fourier transform, i.e., Example 2.1.2 can be extended to all dimensions.

Example 2.1.4. The Fourier transform of the function χ[a,b] on the real line is

∫ b

a
e−2πixξdx=

{
e−2πibξ −e−2πiaξ

−2πiξ ξ �= 0,

b−a ξ = 0.

This can be expressed as sin(2πbξ )/πξ when b= −a> 0.

Proposition 2.1.5. Let f be in L1(Rn). Then f̂ is uniformly continuous on Rn and

‖ f̂ ∥∥L∞ ≤ ∥∥ f∥∥L1 . (2.1.2)

Moreover, if g also lies in L1(Rn), then

f̂ ∗g= f̂ ĝ. (2.1.3)
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Proof. Inequality (2.1.2) is a direct consequence of Definition 2.1.1. To prove the
uniform continuity of f̂ let ε > 0 be given. Notice that f (x)(e−2πix·h − 1) → 0 as
h → 0 for all x ∈ Rn; hence by the LDCT, there is a δ > 0 such that

|h| < δ =⇒
∫
Rn

| f (x)| |e−2πix·h −1|dx< ε. (2.1.4)

But | f̂ (ξ )− f̂ (ξ ′)| is bounded by the integral in (2.1.4) with h= ξ −ξ ′; thus when
|ξ −ξ ′|< δ we have | f̂ (ξ )− f̂ (ξ ′)|< ε , which gives that f̂ is uniformly continuous.

Identity (2.1.3) is proved via the following calculation:

f̂ ∗g(ξ ) =
∫
Rn

∫
Rn

f (x− y)g(y)e−2πix·ξ dydx

=
∫
Rn

∫
Rn

f (x− y)g(y)e−2πi(x−y)·ξ e−2πiy·ξ dydx

=
∫
Rn

g(y)
∫
Rn

f (x− y)e−2πi(x−y)·ξdx e−2πiy·ξ dy

= f̂ (ξ )ĝ(ξ ),

where the application of Fubini’s theorem is justified by the absolute convergence
of the preceding double integral. �

We now continue with some properties of the Fourier transform. Before we do
this we introduce some notation. For a measurable function f on Rn and y ∈ Rn we
respectively define the translation and reflection of f by

(τy f )(x) = f (x− y) and f̃ (x) = f (−x). (2.1.5)

Also recall the L1 dilation fλ (x) = λ−n f (x/λ ), λ > 0, that preserves the L1 norm.

Proposition 2.1.6. Given f , g in L1(Rn), y ∈ Rn, b ∈ C, and λ > 0, we have

(1) ̂f +g= f̂ + ĝ,

(2) b̂ f = b f̂ ,

(3) ̂̃f = ˜̂f ,
(4) f̂ =

˜̂
f ,

(5) τ̂y f = e−2πiy·(·) f̂ ,

(6) (e2πi(·)·y f )̂= τy( f̂ ),

(7) [ f (λ ·)]̂= λ−n f̂ (λ−1 ·) = ( f̂ )λ ,

(8) ̂f ◦At =
1

|detA| f̂ ◦A−1, if A is a matrix with nonzero determinant,

(9) f̂ ◦A= f̂ ◦A, where A is an orthogonal matrix.
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Proof. Properties (1)–(4) are straightforward. Properties (5)–(7) require a suitable
change of variables but they are omitted. Property (9) follows from (8) as orthogonal
matrices satisfy A−1 = At and |detA| = 1. Finally, we prove (8). Viewing elements
of Rn as column vectors, we set y= Atx. We have dy= |detA|dx and thus we write

̂f ◦At(ξ ) =
∫
Rn

f (Atx)e−2πix·ξ dx

=
1

|detAt |
∫
Rn

f (y)e−2πi(At )−1y·ξ dy

=
1

|detA|
∫
Rn

f (y)e−2πi(A−1)t y·ξ dy

=
1

|detA|
∫
Rn

f (y)e−2πiy·A−1ξ dy

=
1

|detA| f̂
(
A−1ξ

)
,

where we used that (A−1)t = (At)−1. This proves the identity in (8). �

Ameasurable function is called radial if f ◦A= f a.e. for every orthogonal matrix
A. For every radial function f on Rn there is a function f0 on the line such that
f (x) = f0(|x|) for almost all x ∈ Rn.

Corollary 2.1.7. The Fourier transform of an integrable radial function is radial.

Proof. Let A be an orthogonal matrix. Since f is radial, we have f = f ◦ A a.e.
This implies f̂ ◦A = f̂ . But in Proposition 2.1.6 (9) gives that f̂ ◦A = f̂ ◦A. Thus
f̂ ◦A= f̂ and this shows that f̂ is radial. �

Proposition 2.1.8. Let ϕ ∈ C ∞(Rn), ξ ∈ Rn, and α be a multi-index. Then

(1) sup
|β |≤|α|

sup
x∈Rn

(1+ |x|)n+ 1
2 |∂ β ϕ(x)| < ∞ implies (∂ α ϕ)̂(ξ ) = (2πiξ )α ϕ̂(ξ ).

(2) If (1+ | · |)|α|ϕ ∈ L1(Rn) then ∂ α ϕ̂ exists and equals the Fourier transform of
the function x �→ (−2πi x)α ϕ(x).

(3) ϕ ∈ S (Rn) implies that ϕ̂ ∈ S (Rn).

Proof. Property (1) is proved by integrating by parts |α| times, which is justified by
the hypothesis that for all |β | ≤ |α|, ∂ β ϕ are integrable and vanish at ∞. We have

(∂ αϕ)̂(ξ )=
∫
Rn
(∂ αϕ)(x)e−2πix·ξdx=

∫
Rn

ϕ(x)(2πiξ )αe−2πix·ξdx=(2πiξ )α ϕ̂(ξ )

as (−1)|α|(−2πiξ )α = (2πiξ )α .
To prove (2), let e j = (0, . . . ,1, . . . ,0) have 1 at its jth entry, and zero elsewhere.

Since

e−2πix·(ξ+he j) − e−2πix·ξ

h
− (−2πix j)e−2πix·ξ → 0, as h → 0, (2.1.6)
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and the preceding function is bounded by 4π|x| for all h and ξ , the Lebesgue
dominated convergence theorem implies that the integral of the function in (2.1.6)
with respect to the measure ϕ(x)dx converges to zero. This proves (2) for α = e j.
Assuming that ∂ β ϕ̂ = ((−2πi ·)β ϕ)̂ for some |β | < |α|, applying this procedure
to (−2πi(·))β ϕ in place of ϕ , we obtain ∂ γ ϕ̂ = ((−2πi ·)γϕ)̂ where γ = β + e j.
This process ends when |γ| reaches |α| in view of the hypothesis that (1+ |x|)|α|ϕ(x)
lies in L1(Rn). This inductive procedure yields (2) for the given multi-index α .

To prove (3) we employ both (1) and (2) as follows:

∥∥(·)α ∂ β ϕ̂
∥∥
L∞ =

(2π)|β |

(2π)|α|
∥∥[∂ α((·)β ϕ)]̂∥∥L∞ ≤ (2π)|β |

(2π)|α|
∥∥∂ α((·)β ϕ)

∥∥
L1 < ∞ ,

where the first inequality uses (2.1.2) [Proposition 2.1.5]. �

Exercises

2.1.1. Let f ,g,h be integrable functions on the line. Prove the following:

(a) The Fourier transform of (x1,x2) �→ f (x1 − x2)g(x2) is f̂ (ξ1)ĝ(ξ1+ξ2).
(b) The Fourier transform of (x1,x2) �→ f (x1+ x2)g(x1 − x2) is

(ξ1,ξ2) �→ 1
2 f̂
( ξ1+ξ2

2

)
ĝ
( ξ1−ξ2

2

)
.

(c) The Fourier transform of (x1,x2,x3) �→ f (x1 − x2 − x3)g(x2+ x3)h(x3) on R3 is

(ξ1,ξ2,ξ3) �→ f̂ (ξ1)ĝ(ξ1+ξ2)ĥ(ξ3 −ξ2).

2.1.2. (a) Compute the Fourier transform of the function χ[− 1
2 ,

1
2 ]
on the real line.

(b) Prove that for ξ ∈ R we have

∫ 1

−1
(1−|t|)cos(2πξ t)dt =

sin2(πξ )
π2ξ 2 ,

with the proper interpretation when ξ = 0.[
Hint: Part (b): Use Example 1.6.3 and property (2.1.3) in Proposition 2.1.5.

]

2.1.3. Prove that the convolution of two integrable radial functions on Rn is radial.

2.1.4. Recall that the function ϕ(x) = e−πx2 on the real line satisfies ϕ̂ = ϕ .
(a) Prove that the Fourier transform of u(x) = xϕ(x) is −iu(ξ ).
(b) Construct a nonzero function v inS (R) such that v̂= −v.
(c) Construct a nonzero function w inS (R) such that ŵ= iw.[
Hint: Parts (b) and (c): Use Proposition 2.1.8 (1) for the second and third deriva-
tives.

]
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2.1.5. Let ϕ j,ϕ ∈ S (Rn) such that ϕ j → ϕ inS . Show that ϕ̂ j → ϕ̂ inS .
[Hint: Show that each ρα,β (ϕ̂ j − ϕ̂) is bounded by a finite sum of ργ ,δ (ϕ j −ϕ).]

2.1.6. Suppose that g is a nonzero integrable function on R with compact support.
Prove that there is an entire function that coincides with the Fourier transform of g.
Conclude that ĝ cannot vanish on a convergent sequence; in particular it cannot have
compact support. Find formulas for the complex derivatives of ĝ.

2.2 Fourier Inversion

Definition 2.2.1. Define the inverse Fourier transform of a function f in L1(Rn) by

f∨(ξ ) = f̂ (−ξ ), ξ ∈ Rn.

The inverse Fourier transform is the Fourier transform composed with the reflec-
tion ξ �→ −ξ and has properties analogous to those listed in Proposition 2.1.6. Its
name is justified by the following theorem.

Theorem 2.2.2. (1) (Jumping hat identity) For f , g in L1(Rn) we have
∫
Rn

f̂ (ξ )g(ξ )dξ =
∫
Rn

f (x)ĝ(x)dx. (2.2.1)

(2) (Fourier inversion) If both f and f̂ lie in L1(Rn), then

( f̂ )∨ = f = ( f∨)̂ a.e. (2.2.2)

Thus f is almost everywhere equal to a uniformly continuous function.

(3) (Parseval’s identity) If f ,h, ĥ ∈ L1, then
∫
Rn

f (x)h(x)dx=
∫
Rn

f̂ (ξ )ĥ(ξ )dξ (2.2.3)

and ∫
Rn

f (x)h(x)dx=
∫
Rn

f̂ (x)h∨(x)dx. (2.2.4)

Proof. (1) Identity (2.2.1) immediately follows from the definition of the Fourier
transform and Fubini’s theorem. The absolute convergence of the integrals is justi-
fied from the fact that f̂ and ĝ lie in L∞ [Proposition 2.1.5].

(2) For fixed y ∈ Rn and f , f̂ in L1(Rn), we insert in (2.2.1) the function

g(ξ ) = e2πiξ ·ye−π|εξ |2 .

By Proposition 2.1.6 (6), (7) and Example 2.1.2, we have that
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ĝ(x) =
1
εn

e−πε−2|x−y|2 ,

and we note that 1
εn e

−πε−2| · |2 is an approximate identity as ε → 0. Now (2.2.1) gives
∫
Rn

f (x)ε−ne−πε−2|x−y|2 dx=
∫
Rn

f̂ (ξ )e2πiξ ·ye−π|εξ |2 dξ . (2.2.5)

The left-hand side of (2.2.5) converges to f (y) in L1 by Theorem 1.9.4 as ε → 0;
thus by Theorem 1.1.9, for a subsequence ε j → 0, it converges to f (y) a.e. The right-
hand side of (2.2.5) converges to ( f̂ )∨(y) as ε j → 0 by the Lebesgue dominated
convergence theorem.We conclude that ( f̂ )∨= f a.e.Rn. But ( f̂ )∨ is continuous, so

f is a.e. equal to a continuous function. Replacing f∨ by ̂̃f in ( f∨)∧ = ( f∨) ∨̃ and

applying the left identity in (2.2.2) yields a.e. ( f∨)∧ = ˜̃f = f . Here f̃ (ξ ) = f (−ξ ).

(3) Since both h and ĥ are in L1, it follows that both functions are in L∞. Thus all
integrals in (2.2.3) and (2.2.4) converge absolutely. Define g ∈ L1 by setting g = ĥ.
We have that ĝ = h by Fourier inversion. Then (2.2.3) is a consequence of (2.2.1)
and (2.2.4) follows from (2.2.3) by replacing h by h. �

Next, we describe the behavior of the Fourier transform of integrable functions
at infinity.

Proposition 2.2.3. (Riemann–Lebesgue lemma) For a function f in L1(Rn) we
have that

| f̂ (ξ )| → 0 as |ξ | → ∞.

Proof. Given ε > 0 and f in L1(Rn) there is ϕ ∈C ∞
0 (Rn) such that ‖ f −ϕ‖L1 < ε/2.

But ϕ̂ is a Schwartz function by Proposition 2.1.8. Thus there is anM > 0 such that
for |ξ | >M we have |ϕ̂(ξ )| ≤ ε/2. Then for |ξ | >M we write

| f̂ (ξ )| ≤ |ϕ̂(ξ )|+ | f̂ (ξ )− ϕ̂(ξ )| ≤ |ϕ̂(ξ )|+‖ f −ϕ‖L1 <
ε
2
+

ε
2
= ε,

which shows the claimed assertion. �

Next, we evaluate the Fourier transform of the integrable function e−2π|x| on Rn.
To achieve this we need the following lemma.

Lemma 2.2.4. Let f be in L1(R). Then we have
∫ +∞

−∞
f (t−1/t)dt =

∫ +∞

−∞
f (u)du . (2.2.6)

Proof. Observe that the map t �→ u= t−1/t is a bijection from (0,∞) onto (−∞,∞)
and its inverse is u→ t = 1

2 (u+
√
u2+4). Similarly the map t → t−1/t is a bijection

from (−∞,0) onto (−∞,∞) and its inverse is u �→ t = 1
2 (u−√

u2+4). Therefore
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∫ ∞

0
f (t−1/t)dt =

1
2

∫ +∞

−∞
f (u)

(
du+d

√
u2+4

)
,

∫ 0

−∞
f (t−1/t)dt =

1
2

∫ +∞

−∞
f (u)

(
du−d

√
u2+4

)
.

Summing the preceding two identities, we derive (2.2.6).

Theorem 2.2.5. The following identity concerning the Fourier transform of the
function e−2π|x| on Rn is valid:

(
e−2π| · |)̂(ξ ) = Γ ( n+1

2 )

π n+1
2

1

(1+ |ξ |2) n+1
2

, ξ ∈ Rn. (2.2.7)

Proof. Applying Lemma 2.2.4 to f (u) = e−πAu2 , for some A> 0, we get

2
∫ +∞

0
e−πAt2e−π A

t2 e2πAdt =
∫ +∞

−∞
e−πAt2e−π A

t2 e2πAdt =
∫ +∞

−∞
e−πAu2du=

1√
A

from which, by changing variables s= πAt2, we obtain the subordination identity

e−2πA =
1√
π

∫ ∞

0
e−se− π2A2

s
ds√
s
, A> 0. (2.2.8)

Setting A = |x|, multiplying (2.2.8) by e−2πiξ ·x, and integrating with respect to dx
we obtain

(e−2π|x|)̂(ξ ) =
∫
Rn

e−2π|x|e−2πiξ ·xdx

=
∫
Rn

(
1√
π

∫ ∞

0
e−s− |πx|2

s
ds√
s

)
e−2πiξ ·xdx

=
1√
π

∫ ∞

0
e−s

(∫
Rn

e− |πx|2
s e−2πiξ ·xdx

)
ds√
s

=
1√
π

∫ ∞

0
e−s

( √
s√
π

)n
e
−π|

√
s√
π ξ |2 ds√

s
,

where we used Tonelli’s theorem and the fact that the Fourier transform of e−π|δx|2

is δ−ne−π|x/δ |2 for δ > 0; on this see Proposition 2.1.6 and Example 2.1.2 with
the subsequent remark. To properly justify the application of Tonelli’s theorem we
needed that ∫ ∞

0

∫
Rn

e−se− |πx|2
s dx

ds√
s
< ∞,

a fact that can be easily checked by first evaluating the x integral (which equals a
constant multiple of sn/2) and plugging this value into the s integral. Thus,
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(e−2π| · |)̂(ξ ) = 1

π n+1
2

∫ ∞

0
e−s(1+|ξ |2)s

n
2
ds√
s

=
1

π n+1
2

1

(1+ |ξ |2) n+1
2

∫ ∞

0
e−ss

n+1
2
ds
s

=
Γ ( n+1

2 )

π n+1
2

1

(1+ |ξ |2) n+1
2

by the definition of the Γ function. This proves (2.2.7) and also proves that the
Fourier transform of the function in (2.2.7) is e−2π|x|, as for radial functions the
Fourier transform and its inverse coincide. �

The Poisson kernel on Rn is the following integrable function:

P(x) =
Γ ( n+1

2 )

π n+1
2

1

(1+ |x|2) n+1
2

.

This function plays a very important role in many areas of analysis and partial dif-
ferential equations. It often appears as part of the family {Pt}t>0, where Pt(x) =
t−nP(x/t). The normalization in terms of the Gamma function ensures that the inte-
gral of P equals 1. Indeed, identity (2.2.7) gives

∫
Rn P(x)dx = P̂(0) = e−2π·0 = 1.

Moreover, for t,s> 0 the Poisson kernel satisfies Pt ∗Ps = Pt+s which can be easily
seen by applying the Fourier transform.

Corollary 2.2.6. The family of functions Pε(x) = ε−nP(x/ε), ε > 0, is an approxi-
mate identity.

Proof. Properties (i) and (ii) of approximate identities hold as P≥ 0 and ‖P‖L1 = 1.
Property (iii) holds as for γ > 0,

∫
|x|≥γ Pε(x)dx=

∫
|x|≥γ/ε P(x)dx → 0 as ε → 0+. �

Exercises

2.2.1. Suppose that f , f̂ ∈ L1(Rn). Prove that f ∈ Lp(Rn) for all 1 ≤ p ≤ ∞.

2.2.2. Construct a nonnegative nonzero Schwartz function f on Rn whose Fourier
transform is nonnegative and compactly supported.

[
Hint: Take f = |φ ∗ φ̃ |2, where

φ is the inverse Fourier transforms of an odd, real-valued, and compactly supported
function. Here φ̃(x) = φ(−x).

]

2.2.3. Without computing derivatives, prove that the Poisson kernel Pt satisfies

∂ 2

∂ t2
Pt +

n

∑
j=1

∂ 2
j Pt = 0.
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[
Hint: Let H(t,x) be the function on the left. As Pt is homogeneous of degree −n in
(x, t) and smooth on Sn, we have |H(t,x)| ≤C(|t|+ |x|)−n−2. Thus H(t, ·)∈ L1(Rn).
Show that the Fourier transform of H(t, ·) is zero and then use Theorem 2.2.2 (2).

]

2.2.4. For given 0< a1, . . . ,ak < ∞, prove the identity on Rn

(
e−πa1| · |2 ∗ · · · ∗ e−πak| · |2)(x) = (

a
a1···ak

) n
2 e−πa|x|2 ,

where a is the harmonic mean of a1, . . . ,ak (defined by 1/a= 1/a1+ · · ·+1/ak).

2.2.5. Let Py(x) = y−1P(y−1x), where P is the Poisson kernel and y> 0. Show that

∫
R
Py(x− t)

sin(πt)
πt

dt =
y
(
1− e−πy cos(πx)

)
+ xe−πy sin(πx)

π(x2+ y2)
.

[
Hint: Use identity (2.2.3).

]

2.2.6. Let f ,g,h be Schwartz functions on Rn. Derive the identity
∫
Rn

∫
Rn

f (x)g(y)h(x+ y)dxdy=
∫
Rn

f̂ (ξ )ĝ(ξ )ĥ(−ξ )dξ .

2.2.7. Fill in the gaps in the outlined procedure to prove that
∫ +∞

−∞

sin(πt)
πt

dt = lim
δ→0+

∫
|t|≤ 1

δ

sin(πt)
πt

dt = 1.

(a) Let ϕ be an even smooth function supported in [−2,2] and equal to 1 on [−1,1].
Use the Riemann–Lebesgue lemma to show

lim
δ→0

∫
1
δ ≤|t|≤ 2

δ

sin(πt)
πt

ϕ(δ t)dt = 0.

(b) Use Fourier inversion to write
∫ +∞

−∞

sin(πt)
πt

ϕ(δ t)dt =
(

χ[− 1
2 ,

1
2 ]

∗ 1
δ

ϕ̂(
·
δ
)
)
(0)

and let δ → 0.

2.2.8. Show that for 0< γ < 1 there are constants 0< Aγ < Bγ < ∞ such that

Aγ

|ξ |1−γ ≤
∣∣∣∣
∫ 1

0

e−2πiξ t

tγ
dt

∣∣∣∣≤ Bγ

|ξ |1−γ

for |ξ | sufficiently large. Notice that one direction in the double inequality also holds
when γ = 0. What do these inequalities say about the Riemann–Lebesgue lemma?[
Hint: Change variables and integrate by parts. Use that

∫ ∞
0

e−2πit

tγ dt �= 0 in the ≥
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inequality. To prove this, assuming
∫ ∞
0

e−2πit

tγ dt = 0 implies
∫ ∞
0

e−2πitx

tγ dt = 0 for all

x∈R\{0}, and integrate against xe−πx2 for a contradiction; use Exercise 2.1.4 (a).
]

2.2.9. Consider the change of variables u = 1
2 (t − 1

t ), related to that used in
Lemma 2.2.4 for f ∈ L1(R), to derive the identity

∫ +∞

−∞
f (t−1/t)

dt
t2+1

=
∫ +∞

−∞
f (2u)

du
u2+1

.

[
Hint: On the left integral change variables on each half-line using dt

t2+1
= 1

2
du

u2+1
.
]

2.3 The Fourier Transform on L2

The integral defining the Fourier transform does not converge absolutely for func-
tions in L2(Rn); however, the Fourier transform has a natural definition in this space
accompanied by an elegant theory. We begin with the following proposition:

Proposition 2.3.1. Suppose that f lies in L1(Rn)∩L2(Rn). Then f̂ lies in L2(Rn)
and ∥∥ f̂ ∥∥L2 =

∥∥ f∥∥L2 . (2.3.1)

Proof. Given f in L1(Rn)∩L2(Rn) consider the function h = f ∗ f̃ which lies in
L1 [as a convolution of two L1 functions; see (1.6.3)] but also lies in L∞ and is
uniformly continuous (as a convolution of two L2 functions; see Theorem 1.6.7).
Using Propositions 2.1.5 and 2.1.6 we write

ĥ= f̂
̂̃
f = f̂ ( f̃ )∨ = f̂ f̃∨ = f̂ f̂ = | f̂ |2.

Then Theorem 2.2.2(1) gives
∫
Rn

h(x)
1
εn

e−π| xε |2dx=
∫
Rn

ĥ(ξ )e−π|εξ |2 dξ =
∫
Rn

| f̂ (ξ )|2e−π|εξ |2 dξ .

If we let ε → 0 the right-hand side tends to ‖ f̂ ‖2
L2

by the LMCT but the left-hand
side tends to h(0) by the continuity of h at 0 [Theorem 1.9.4 (b)]. We conclude that

∫
Rn

| f̂ (ξ )|2 dξ = h(0)< ∞,

which implies that f̂ lies in L2, and moreover

∥∥ f̂ ∥∥2L2 = h(0) =
∫
Rn

f (y) f̃ (0− y)dy=
∫
Rn

f (y) f (y)dy=
∥∥ f∥∥2L2 ,

which yields identity (2.3.1). �
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Given a function f in L2(Rn) we consider the sequence of L1 ∩ L2 functions
f χB(0,N) for N ∈ Z+. We observe that as a consequence of Proposition 2.3.1, the
corresponding sequence of Fourier transforms is Cauchy in L2. Indeed, for N < N′

∥∥( f χB(0,N))̂− ( f χB(0,N′))̂∥∥2L2 =
∥∥( f χB(0,N′)\B(0,N))̂∥∥2L2 =

∥∥ f χB(0,N′)\B(0,N)
∥∥2
L2 ,

which is smaller than
∫
|x|≥N | f (x)|2 dx, which tends to zero as N → ∞, by the LDCT.

Definition 2.3.2. Let f ∈ L2(Rn). We define the Fourier transform f̂ of f as the L2

limit of the sequence f̂N , where

fN = f χB(0,N). (2.3.2)

Analogously define f∨ to be the L2 limit of the sequence ( fN)∨.

Remark 2.3.3. If f lies in L1 ∩L2, then its Fourier transform as defined in (2.1.1)
coincides with that given in Definition 2.3.2. Indeed in view of the LDCT, the L1-
Fourier transform of f is

f̂ (ξ ) =
∫
Rn

f (x)e−2πix·ξdx= lim
N→∞

∫
|x|<N

f (x)e−2πix·ξdx. (2.3.3)

But as the sequence of integrals on the right in (2.3.3) converges in L2 to the L2-
Fourier transform of f , a subsequence of it converges to it a.e. (Theorem 1.1.9),
thus the L1-Fourier transform and the L2-Fourier transform coincide a.e. For this
reason there is no ambiguity in using the same notation for the L1-Fourier transform
and L2-Fourier transform of a function in L1 ∩L2.

Remark 2.3.4. If fN ∈ L1(Rn)∩L2(Rn) is any sequence that tends to f in L2, then
f̂N tends to f̂ in L2. To verify this, we notice that if fN , gN are two L1∩L2 sequences
both converging to f in L2 as N → ∞, then

∥∥ f̂N − ĝN
∥∥
L2 =

∥∥ ̂fN −gN
∥∥
L2 =

∥∥ fN −gN
∥∥
L2 ≤ ∥∥ fN − f

∥∥
L2 +

∥∥ f −gN
∥∥
L2 → 0

as N → ∞. Picking fN = f χB(0,N), we have f̂N → f̂ in L2 and thus ĝN → f̂ in L2.

In the next result, recall the operations on functions defined in (2.1.5).

Proposition 2.3.5. Let y ∈ Rn, b ∈ C, λ > 0, and let A be an n× n matrix with
nonzero determinant. Then for f , g in L2(Rn) the following properties are valid:

(1) ̂f +g= f̂ + ĝ a.e.

(2) b̂ f = b f̂ a.e.

(3) ̂̃f = ˜̂f a.e.

(4) f̂ =
˜̂
f a.e.
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(5) τ̂y f (ξ ) = e−2πiy·ξ f̂ (ξ ) a.e.

(6) (e2πi(·)·y f )̂= τy( f̂ ) a.e.

(7) [ f (λ · )]̂= λ−n f̂ (λ−1 · ) a.e.

(8) ̂f ◦At =
1

|detA| f̂ ◦A−1 a.e., viewing elements of Rn as n×1 matrices.

Proof. The identities can be obtained from the corresponding assertions in Propo-
sition 2.1.6 by taking limits. For instance, if fN = f χB(0,N) and gN = gχB(0,N), then

0 = ̂fN +gN − f̂N − ĝN which converges in L2 to ̂f +g− f̂ − ĝ; thus ̂f +g− f̂ − ĝ
must be zero a.e. Likewise we prove the remaining assertions (2)–(8). For instance,
let us prove (7). The function [ f (λ · )]̂ is the L2 limit of the sequence [ fN(λ · )] ,̂
but this sequence is equal to λ−n f̂N(λ−1 · ) whose L2 limit is λ−n f̂ (λ−1 · ). Thus
these two functions are equal a.e. and (7) holds. �

In some situations the sequence of functions f̂N [defined in (2.3.2)] converges
pointwise on the complement of a set of measure zero. In this case, we can identify
f̂ with the pointwise limit of f̂N . This is because an L2 limit coincides a.e. with a
pointwise limit. For the purposes of this section, let us denote by L2ae the space

1 of
all functions f in L2(Rn) with the property that f̂N converges pointwise except on a
set of measure zero.

A shortfall of Proposition 2.3.5 is that the exceptional set that appear in the state-
ments may depend on the auxiliary parameters b,y,λ , etc. However, on the space
L2ae we can describe these exceptional sets.

Proposition 2.3.6. Let y ∈ Rn, b ∈ C, λ > 0, and let A be an orthogonal matrix. Let
f , g in L2ae(R

n) and define fN = f χB(0,N) and gN = gχB(0,N). Suppose that f̂N → f̂
pointwise on Rn \Ef and ĝN → ĝ pointwise on Rn \Eg as N → ∞, where Ef and Eg

are sets of measure zero. Then the following are valid:

(1) f +g lies in L2ae(R
n) and ̂f +g= f̂ + ĝ on Rn \ (Ef ∪Eg).

(2) b f lies in L2ae(R
n) and b̂ f = b f̂ on Rn \Ef .

(3) f̃ lies in L2ae(R
n) and ̂̃f = ˜̂f on Rn \ (−Ef ).

(4) f lies in L2ae(R
n) and f̂ =

˜̂
f on Rn \ (−Ef ).

(5) e2πi(·)·y f lies in L2ae(Rn) and (e2πi(·)·y f )̂= τy( f̂ ) on Rn \ (y+Ef ).

(6) f (λ · ) lies in L2ae and [ f (λ · )]̂= λ−n f̂ (λ−1 · ) on Rn \ (λ Ef ).

(7) f ◦A lies in L2ae and f̂ ◦A= f̂ ◦A on Rn \ (At E f ).

(8) if f : Rn \{0} → C is radial and Ef = {0}, then f̂ is also radial.

1 It is an important open question whether L2ae(R
n) coincides with L2(Rn) in dimensions n ≥ 2.
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Here we used the notation −Ef = {−ξ : ξ ∈ Ef }, y+Ef = {y+ ξ : ξ ∈ Ef },
λ Ef = {λ ξ : ξ ∈ Ef }, At E f = {Atξ : ξ ∈ Ef }.

Proof. To prove (1), notice that 0 = ̂fN +gN − f̂N − ĝN converges pointwise to
̂f +g− f̂ − ĝ onRn\(Ef ∪Eg), so ̂f +g= f̂ + ĝ on this set. To prove property (2) we

note that ̂(b f )N = b̂ fN = b f̂N but b f̂N converges to b f̂ onRn \Ef . Thus b f lies in L2ae

and b̂ f = b f̂ . For (3) observe that ̂( f̃ )N = ̂̃
fN = ˜̂

fN and that
˜̂
fN → ˜̂f on the comple-

ment of −Ef . Hence so does
̂( f̃ )N , thus f̃ lies in L2ae and

̂̃f = ˜̂f onRn \(−Ef ). For

(4) notice that conjugating f̂N(ξ ) → f̂ (ξ ) yields (̂ f )N(−ξ ) → f̂ (ξ ) when ξ /∈ Ef ,
thus f lies in L2ae and the identity in (4) holds on the complement of −Ef . For (5)

we observe that (e2πi(·)·y fN) (̂ξ ) = f̂N(ξ − y) which converges to f̂ (ξ − y) when ξ
lies in y+Ef . Property (6) is proved similarly except that the translation is replaced

by dilation. The proof of (7) relies on the identity ̂fN ◦A= f̂N ◦A [Proposition 2.1.6
(9)] and the fact that the balls B(0,N) remain invariant under rotations. To prove
(8), we note that as f is defined on Rn \{0}, then we have f = f ◦A on Rn \{0} for
every orthogonal matrix A. The fact that Ef = {0} yields that AtE f = {0}; on the

complement of this set we have the identity f̂ ◦A= f̂ ◦A by part (7). But f = f ◦A
implies f̂ = f̂ ◦A and f̂ ◦A= f̂ ◦A for every orthogonal matrix A, we deduce that f̂
is radial. �

Proposition 2.3.7. For f , g, h in L2 we have

(i) (Plancherel’s identity)
∥∥ f∥∥L2(Rn) =

∥∥ f̂ ∥∥L2(Rn)

(ii) (Parseval’s identity)
∫
Rn

f (x)g(x)dx=
∫
Rn

f̂ (ξ )ĝ(ξ )dξ

(iii) (Fourier inversion) ( f̂ )∨ = f̂ ∨ = f a.e.

(iv) (Jumping hat identity) We have
∫
Rn

f (x)ĥ(x)dx=
∫
Rn

f̂ (ξ )h(ξ )dξ .

Proof. Given f ∈ L2(Rn), pick a sequence of Schwartz functions φN (which cer-
tainly lie in L1 ∩ L2) such that φN → f in L2(Rn). Proposition 2.3.1 gives that
‖φN‖L2 = ‖φ̂N ‖L2 for all N. As the definition of f̂ is independent of the sequence
converging to the function, φ̂N → f̂ in L2(Rn). Thus ‖φN‖L2 → ‖ f‖L2 and ‖φ̂N ‖L2 →
‖ f̂ ‖L2 as N → ∞ and thus assertion (i) follows.

To prove (ii) we use polarization as follows: We apply (i) to f + g, we expand
both sides, and we use (i) for f and g to obtain

Re
∫
Rn

f (x)g(x)dx= Re
∫
Rn

f̂ (ξ )ĝ(ξ )dξ .

We then apply (i) to f + ig and likewise we obtain

Re
∫
Rn

−i f (x)g(x)dx= Re
∫
Rn

−i f̂ (ξ )ĝ(ξ )dξ
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which implies

Im
∫
Rn

f (x)g(x)dx= Im
∫
Rn

f̂ (ξ )ĝ(ξ )dξ

as Imw= Re(−iw). Thus we deduce (ii).
As φ̂N → f̂ in L2, it follows that (φ̂N )∨ → ( f̂ )∨ in L2. Since φN ∈ S (Rn) we

have (φ̂N )∨ = φN , which converges to f in L2(Rn). It follows that f and ( f̂ )∨ are
equal in L2(Rn) and consequently equal almost everywhere. This proves (iii). To
prove (iv) we simply take g= ĥ (equivalently h= ĝ ) in identity (ii). �

Example 2.3.8. We estimate the Fourier transform of the function g(t) = t−γ χt≥1

for 1/2 < γ < 1. This function lies in L2(R) but does not lie in L1(R). If we can
show that the limit

lim
N→∞

∫ N

1

e−2πitξ

tγ
dt =

∫ ∞

1

e−2πitξ

tγ
dt

exists for all ξ �= 0, then ĝ(ξ ) can be identified with this limit. We make a few
observations. When ξ = 0, this limit is infinite, so it is expected that ĝ(ξ ) gets
worse as ξ → 0. We observe that |ĝ(ξ )|= |ĝ(|ξ |)| as ĝ(ξ ) = ĝ(|ξ |) for ξ < 0. Thus
we may work with |ξ | instead of ξ �= 0. A change of variables gives

ĝ(|ξ |) = 1
|ξ |1−γ

∫ ∞

|ξ |
e−2πit

tγ
dt =

1
|ξ |1−γ

[
e−2πi|ξ |

2πi|ξ |γ − γ
2πi

∫ ∞

|ξ |
e−2πit

tγ+1 dt

]
,

where the second identity follows by an integration by parts. From this we obtain

|ĝ(ξ )| ≤ 1
π|ξ | for |ξ | ≥ 1, (2.3.4)

in fact |ĝ(ξ )| ≈ |ξ |−1 as |ξ | → ∞. For 0< |ξ | < 1, writing

ĝ(|ξ |) = 1
|ξ |1−γ

[∫ 1

|ξ |
e−2πit

tγ
dt+

∫ ∞

1

e−2πit

tγ
dt

]
, (2.3.5)

we deduce

|ĝ(ξ )| ≤ 1
|ξ |1−γ

[
1−|ξ |1−γ

1− γ
+

1
π

]
for 0< |ξ | < 1.

We conclude

|ĝ(ξ )| ≤ (1− γ)−1+π−1

|ξ |1−γ for 0< |ξ | < 1. (2.3.6)

Estimates (2.3.4) and (2.3.6) explain why ĝ ∈ L2(R).

Having set down the basic facts concerning the action of the Fourier transform
on L1 and L2, we extend its definition on L1+L2, which in particular contains Lp

for 1< p< 2.
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Definition 2.3.9. The space L1(Rn)+L2(Rn) consists of all functions of the form
f1+ f2, where f1 ∈ L1(Rn) and f2 ∈ L2(Rn). Likewise the space L2(Rn)+L∞(Rn)
consists of all functions of the form f2+ f∞, where f2 ∈ L2(Rn) and f∞ ∈ L∞(Rn).
Given a function f in L1(Rn)+L2(Rn) we define f̂ = f̂1+ f̂2, which is an element
of L2(Rn)+L∞(Rn). Notice that f̂ is defined a.e. as f̂2 does so.

This definition is independent of the choice of f1 and f2, for, if f1+ f2 = h1+h2
a.e. for f1,h1 ∈ L1(Rn) and f2,h2 ∈ L2(Rn), we have f1 − h1 = h2 − f2 a.e. and
belong to L1(Rn), hence their Fourier transforms are equal. This gives

̂f1 −h1(ξ ) = ̂h2 − f2(ξ ) for all ξ ∈ Rn,

hence f̂1 − ĥ1 = ĥ2 − f̂2 a.e., thus f̂1+ f̂2 = ĥ1+ ĥ2 a.e. This definition also implies
that if f = f1+ f2 ∈ L1+L2 satisfies f̂ = 0 a.e., then f = 0 a.e. Indeed, if f̂1+ f̂2 = 0
a.e., then f̂2 = − f̂1 a.e., and as both functions lie in L2, applying the inverse Fourier
transform and using Proposition 2.3.7 (iii) yields f2 = − f1 a.e., that is, f = 0 a.e.

Also notice that L1(Rn)+L2(Rn) contains Lp(Rn) for 1< p< 2, as given f ∈ Lp

we can express it as f = f1+ f2, where f1 = f χ| f |>1 ∈ L1 and f2 = f χ| f |≤1 ∈ L2.
Next, we compute the Fourier transform of a function in L1(Rn)+L2(Rn).

Example 2.3.10. We fix a complex number z satisfying −n < Rez < − n
2 and we

consider the function Fz(x) = |x|z on Rn \{0}. We observe that Fz can be written as
the sum of an L1(Rn) function F1

z and an L2(Rn) function F2
z as follows:

Fz(x) = |x|z = |x|zχ|x|<1︸ ︷︷ ︸
F1
z in L1(Rn)

+ |x|zχ|x|≥1︸ ︷︷ ︸
F2
z in L2(Rn)

.

For a fixed ξ �= 0 we claim that the limit

lim
N→∞

∫
|x|≤N

F2
z (x)e

−2πix·ξdx= lim
N→∞

∫
1≤|x|≤N

|x|ze−2πix·ξdx (2.3.7)

exists. This will be shown using polar coordinates and an integration by parts. Note
that in dimension n= 1, the existence of this limit was essentially shown in Exam-
ple 2.3.8 (γ there could have been replaced by γ + is, s real). In dimensions n ≥ 2,
proving that the limit in (2.3.7) exists requires knowledge of the following asymp-
totic identity, which can found in Appendices B.4 and B.8 in [31]: for r|ξ | ≥ 1

∫
Sn−1

e−2πirξ ·θdσ(θ)=
2π

|rξ | n−2
2

[√
2

π2πr|ξ | cos
(
2πr|ξ |− π n−2

2

2
− π

4

)
+R(r|ξ |)

]

=
e2πir|ξ |e−i π(n−1)

4 + e−2πir|ξ |ei
π(n−1)

4

|rξ | n−1
2

+
2π R(r|ξ |)
|rξ | n−2

2

, (2.3.8)

where R is a function satisfying |R(t)| ≤Ct−3/2 for all t ≥ 1 and someC > 0.
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As the part of the integral in (2.3.7) over the region 1 ≤ |x| ≤ max(|ξ |−1,1)
produces a constant, we focus on the part over max(|ξ |−1,1) < |x| ≤ N [for
N > max(|ξ |−1,1)]. Expressing this part of the integral in (2.3.7) in terms of polar
coordinates and inserting (2.3.8), we reduce to the existence of the limit

lim
N→∞

∫ N

max(|ξ |−1,1)
rz+n−1

[
e2πir|ξ |e−i π(n−1)

4 + e−2πir|ξ |ei
π(n−1)

4

r
n−1
2 |ξ | n−1

2

+
2π R(r|ξ |)
r
n−2
2 |ξ | n−2

2

]
dr

as N → ∞. In view of the bound |R(r|ξ |)| ≤ C(r|ξ |)−3/2, the part of the integral
containing R(r|ξ |) converges absolutely as long as Rez+n−1− 3

2 − n−2
2 <−1, i.e.,

Rez<− n−1
2 , so for this part the limit exists. In the part of the integral containing the

exponentials we write e±2πir|ξ | = (±2πi|ξ |)−1 d
dr e

±2πir|ξ | and integrate by parts to
deduce that the limit exists if Rez+n−1−1− n−1

2 <−1, i.e., Rez<− n−1
2 as well.

This argument shows that the Fourier transform of F2
z can be defined pointwise at

every point ξ ∈ Rn \{0}, thus EF2
z
= {0} using the notation of Proposition 2.3.6.

As Fz ∈ L1+L2, we wish to evaluate F̂z. We begin with the observation that

Fz(λx) = λ zFz(x) for any λ > 0 and x ∈ Rn \{0}.
Applying the Fourier transform in this identity and using Proposition 2.1.6 (7) and
Proposition 2.3.6 (7) (combined with the fact EF2

z
= {0}) we obtain that

λ−nF̂z(λ−1ξ ) = λ zF̂z(ξ ) for any λ > 0 and ξ ∈ Rn \{0}.
This implies that F̂z is homogeneous of degree −n− z, i.e., F̂z(λξ ) = λ−n−zF̂z(ξ )
for all λ and ξ ∈ Rn \{0}.

In view of Corollary 2.1.7 for F1
z and Proposition 2.3.6 (8) for F2

z (which uses
that EF2

z
= {0}), we obtain that F̂z is a radial function, i.e., it has the form g(|ξ |) for

some function g on the line. Then for |ξ | �= 0 we have

F̂z(ξ ) = |ξ |−n−zF̂z(ξ/|ξ |) = |ξ |−n−zg
(∣∣ξ/|ξ |∣∣)= |ξ |−n−zg(1).

It could be the case that |g(1)| = ∞, but in this case F̂z would equal infinity at every
nonzero point, and thus it could not belong to L∞(Rn)+L2(Rn). We conclude that
for some finite nonzero constant c(z,n) we have

F̂z(ξ ) = c(z,n)|ξ |−n−z for x ∈ Rn \{0}. (2.3.9)

Finally, notice that as −n/2< −Rez−n< 0, the part c(z,n)|ξ |−n−zχ|ξ |<1 of F̂z(ξ )
lies in L2(Rn) and the part c(z,n)|ξ |−n−zχ|ξ |≥1 is bounded.
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Exercises

2.3.1. Let f ,g ∈ L2(Rn) and h ∈ L1(Rn). Show that

(a) ĥ∗g= ĥ ĝ a.e.

(b) f̂ g= f̂ ∗ ĝ .
2.3.2. Suppose that f ∈ L2ae(R) is associated with an exceptional set Ef and y ∈ R.
Show that τ̂y f = e−2πiy(·) f̂ on R\Ef .

2.3.3. Use Plancherel’s identity to show that

∫ ∞

0

sin2 t
t2

dt =
π
2

and that ∫ ∞

0

sin4 t
t4

dt =
π
3
.

2.3.4. Let 0 < γ < 1 and consider the function g in Example 2.3.8. Find the range
of indices 1 ≤ p,q ≤ ∞ for which g ∈ Lp(Rn) and ĝ ∈ Lq(R).[
Hint: You may need that

∫ ∞
0 t−γe−2πitdt �= 0; on this, see Exercise 2.2.8.

]

2.3.5. Let g(t) = t−1χt≥1 defined on the real line. Prove that for |ξ | ≤ 1 we have

|ĝ(ξ )| ≤ 1
π
+ log

( 1
|ξ |

)
,

while |ĝ(ξ )| ≤ (π|ξ |)−1 for |ξ | ≥ 1.

2.3.6. Let k be a positive integer. Consider the function

F(z) =
∫ ∞

0
e−zt tk

dt
t

− (k−1)!
zk

defined on the open half-space Rez> 0 of the complex plane.
(a) Show that F is analytic on Rez> 0 and notice that F(x) = 0 for all x> 0.
(b) Use the identity principle in complex analysis to prove that F = 0 identically,
and then obtain that the Fourier transform of the function t �→ e−2πt tk−1χ[0,∞)(t) is

(k−1)!
(2π)k(1+ iξ )k

, ξ ∈ R.

(c) Derive the identity

1
π

∫ +∞

−∞

dx
(1+ x2)k

=
(2k−2)!

22k−2((k−1)!)2
.
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2.3.7. For a function ϕ on [0,∞) with temperate growth (say |ϕ(t)| ≤ C (1+ |t|)M
for all t ≥ 0) define its Laplace transform by

Lϕ(s) =
∫ ∞

0
e−stϕ(t)dt.

Assuming thatLϕ extends to an analytic function on Rez> 0, prove that the Fourier
transform of the function t �→ e−2πtϕ(t)χ[0,∞)(t) on the real line is Lϕ(2π(1+ iξ )).
Apply this to ϕ1(t) = sin t and ϕ2(t) = cos t, as well as ϕ3(t) = tα for α > 0.[
Hint: Use the idea of the preceding exercise.

]

2.4 Complex Interpolation and the Hausdorff–Young Inequality

In this section we discuss interpolation between different Lebesgue spaces with an
intermediate constant expressed as the geometric mean of the constants that appear
on the given bounds. The techniques are based on elements of complex analysis, in
particular on the maximum modulus principle.

Theorem 2.4.1. (Riesz–Thorin interpolation theorem) Let 0< p0, p1,q0,q1 ≤ ∞
and let (X ,μ), (Y,ν) be two σ -finite measure spaces. Let T be a linear operator
defined on the space of finitely simple functions of X and taking values in the space
of measurable functions onY with the property2

∫
B |T (χA)|dν < ∞ whenever A� X

and B � Y satisfy μ(A)+ν(B)< ∞. For 0< θ < 1 set

1
p
=

1−θ
p0

+
θ
p1

and
1
q
=

1−θ
q0

+
θ
q1

. (2.4.1)

Suppose that for all finitely simple functions f on X we have
∥∥T ( f )∥∥Lq0 ≤ M0‖ f‖Lp0 , (2.4.2)∥∥T ( f )∥∥Lq1 ≤ M1‖ f‖Lp1 . (2.4.3)

Then for all finitely simple functions f on X we have
∥∥T ( f )∥∥Lq ≤ M1−θ

0 Mθ
1

∥∥ f∥∥Lp . (2.4.4)

Thus, T has a unique bounded extension from Lp(X ,μ) to Lq(Y,ν) when p< ∞.

Proof. As X is a σ -finite measure space, we can work with a finitely simple function

f =
K

∑
k=1

ake
iαkχAk

2 The hypothesis
∫
B |T (χA)|dν < ∞ follows from (2.4.2) or (2.4.3) when max(q0,q1) ≥ 1 by

Hölder’s inequality, but is needed when max(q0,q1)< 1.
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defined on X , where ak > 0, αk are real, and Ak are pairwise disjoint subsets of X
with finite strictly positive measure. Such functions are dense in Lp(X)when p< ∞.

Case I: min(q0,q1)> 1 and p< ∞. This forces q> 1, hence q′ < ∞. We estimate

∥∥T ( f )∥∥Lq(Y,ν) = sup
g

∣∣∣∣
∫
Y
T ( f )(y)g(y)dν(y)

∣∣∣∣ ,

where the supremum is taken over all finitely simple functions g on Y with Lq
′
norm

equal to 1. (Here we are using that Y is σ -finite in allowing g to be finitely simple,
instead of simple, and also in the case q= ∞.) Write

g=
J

∑
j=1

b je
iβ j χBj ,

where b j > 0, β j are real, and Bj are pairwise disjoint subsets of Y with finite ν-
measure. Let

P(z) =
p
p0

(1− z)+
p
p1

z and Q(z) =
q′

q′
0
(1− z)+

q′

q′
1
z . (2.4.5)

For z in the closed unit strip S= {z ∈ C : 0 ≤ Rez ≤ 1}, define

fz =
K

∑
k=1

aP(z)k eiαkχAk , gz =
J

∑
j=1

bQ(z)j eiβ j χBj , (2.4.6)

and
F(z) =

∫
Y
T ( fz)(y)gz(y)dν(y) .

Notice that fθ = f and gθ = g. By linearity we have

F(z) =
K

∑
k=1

J

∑
j=1

aP(z)k bQ(z)j eiαk eiβ j

∫
Y
T (χAk)(y)χBj(y)dν(y) .

Since ak,b j > 0, F is analytic in z, and the expression
∫
Y
T (χAk)(y)χBj(y)dν(y)

is a finite constant, as seen by Hölder’s inequality with exponents q0 and q′
0.

By the disjointness of the sets Ak we have (even when one of p0, p1 is infinity)

∥∥ fit∥∥Lp0 =
∥∥ f∥∥

p
p0
Lp ,

∥∥ f1+it
∥∥
Lp1 =

∥∥ f∥∥
p
p1
Lp ,

since |aP(it)k | = a
p
p0
k and |aP(1+it)

k | = a
p
p1
k . By the disjointness of the sets Bj we have
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∥∥git∥∥q′
0

Lq
′
0
=
∥∥g∥∥q′

Lq′ = 1,
∥∥g1+it

∥∥q′
1

Lq
′
1
=
∥∥g∥∥q′

Lq′ = 1,

as |bQ(it)j | = b

q′
q′0
j and |bQ(1+it)

j | = b

q′
q′1
j . Hölder’s inequality and the hypotheses give

|F(it)| ≤ ∥∥T ( fit)∥∥Lq0
∥∥git∥∥

Lq
′
0

≤ M0
∥∥ fit∥∥Lp0 =M0

∥∥ f∥∥
p
p0
Lp , (2.4.7)

|F(1+ it)| ≤ ∥∥T ( f1+it)
∥∥
Lq1

∥∥g1+it
∥∥
Lq

′
1

≤ M1
∥∥ f1+it

∥∥
Lp1 ≤ M1

∥∥ f∥∥
p
p1
Lp . (2.4.8)

We observe that F is analytic in the unit strip S and continuous on its closure.
Also, F is bounded on the closed unit strip (by some constant that depends on f and
g). Therefore, (2.4.7), (2.4.8), and Corollary C.0.3 give

|F(θ)| ≤
(
M0

∥∥ f∥∥
p
p0
Lp

)1−θ(
M1

∥∥ f∥∥
p
p1
Lp

)θ
=M1−θ

0 Mθ
1

∥∥ f∥∥Lp .
Observe that P(θ) = Q(θ) = 1 and hence

F(θ) =
∫
Y
T ( f )gdν .

Taking the supremum over all finitely simple functions g on Y with Lq
′
norm equal

to 1, we conclude the proof in the case where min(q0,q1)> 1.

Case II:min(q0,q1)≤ 1 and p<∞. In this case choose an r>max(1,q,q/q0,q/q1)
such that r< ∞. We fix an arbitrary positive finitely simple function g with ‖g‖Lr′ =
1 and we write

g=
J

∑
j=1

c jχEj ,

where c j > 0, and Ej are pairwise disjoint measurable subsets of Y with ν(Ej)< ∞.
For z ∈ S set

gz =
J

∑
j=1

cR(z)j χEj ,

where

R(z) = r′
[
1− q

r

(
1− z
q0

+
z
q1

)]
.

Notice that

∥∥git∥∥(
rq0
q )′

L
(
rq0
q )′ =

∥∥g∥∥r′Lr′ = 1,
∥∥g1+it

∥∥( rq1q )′

L
(
rq1
q )′ =

∥∥g∥∥r′Lr′ = 1. (2.4.9)

Now consider the following function defined for z ∈ S:

G(z)=
∫
Y

|T ( fz)(y)|
q
r |gz(y)| dν(y)=

J

∑
j=1

∫
Ej

∣∣∣c r
q R(z)
j

K

∑
k=1

aP(z)k eiαkT (χAk)(y)
∣∣∣
q
r
dν(y).
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By assumption each T (χAk) is integrable over a set of finite measure. Thus for each
fixed j ∈ {1, . . . ,J}, the mapping that takes z ∈ S to the function

y �→ c
r
q R(z)
j

K

∑
k=1

aP(z)k eiαkT (χAk)(y), y ∈ Ej,

is well defined and analytic from S to the Banach space L1(Ej). Its analyticity can
be checked by considering the integral of this function against bounded functions;
see Theorem B.0.3 (Appendix B). As q/r < 1, it follows from Lemma B.0.5 that
logG is subharmonic on S. Using Hölder’s inequality with exponents rq0

q > 1 and( rq0
q

)′
, and (2.4.9), we obtain that

|G(it)| ≤
{∫

Y
|T ( fit)(y)|q0dν(y)

} q
rq0 ∥∥git∥∥

L
(
rq0
q )′ ≤

(
M0

∥∥ f∥∥
p
p0
Lp

) q
r

.

Likewise, we get

|G(1+ it)| ≤
{∫

Y
|T ( f1+it)(y)|q1dν(y)

} q
rq1 ∥∥g1+it

∥∥
L
(
rq1
q )′ ≤

(
M1

∥∥ f∥∥
p
p1
Lp

) q
r

.

Notice that G is continuous and bounded on S. Applying Corollary C.0.3 in
Appendix C, we obtain

∫
Y

|T ( fθ )(y)|
q
r gθ (y) dν(y) = G(θ) ≤

(
M0

∥∥ f∥∥
p
p0
Lp

) q
r (1−θ)(

M1
∥∥ f∥∥

p
p1
Lp

) q
r θ

.

Noticing that gθ = g and recalling that fθ = f we deduce that

‖T ( f )‖Lq =
∥∥∥|T ( f )| qr

∥∥∥
r
q

Lr

= sup

{∫
|T ( f )| qr gdν : g ≥ 0, g is finitely simple, ‖g‖Lr′ = 1

} r
q

≤ M1−θ
0 Mθ

1

∥∥ f∥∥Lp .
This concludes the proof in the case min(q0,q1) ≤ 1.

Case III: p= ∞. This forces p0 = p1 = ∞. Then Exercise 1.1.6 yields

∥∥T ( f )∥∥Lq ≤ ∥∥T ( f )∥∥1−θ
Lq0

∥∥T ( f )∥∥θ
Lq1 (2.4.10)

and so inserting ‖T ( f )‖Lqi ≤ Mi‖ f‖L∞ (i= 0,1) in (2.4.10) yields (2.4.4). �

Proposition 2.4.2. (Young’s inequality) Fix 1< r< ∞ and g in Lr(Rn). Let p,q be
indices that satisfy 1 ≤ p ≤ r′, r ≤ q ≤ ∞, and

1
q
+1=

1
p
+

1
r
. (2.4.11)
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Then for all f ∈ Lp(Rn) we have
∥∥ f ∗g∥∥Lq(Rn) ≤ ∥∥ f∥∥Lp(Rn)

∥∥g∥∥Lr(Rn). (2.4.12)

Proof. On L1 ∪ Lr
′
define the operator

T ( f ) = f ∗ g. By Minkowski’s inequal-
ity T : L1 → Lr with norm at most
‖g‖Lr . By Hölder’s inequality T : Lr

′ →
L∞ with norm at most ‖g‖Lr . Theo-
rem 2.4.1 gives that T has a bounded
extension from Lp to Lq with norm at
most ‖g‖θ

Lr‖g‖1−θ
Lr = ‖g‖Lr , where

1
p
=

1−θ
1

+
θ
r′

and
1
q
=

1−θ
r

+
θ
∞
.

If we eliminate θ , these equations
reduce to (2.4.11). This completes the
proof of (2.4.12); see Figure 2.1. �

(1,0)

(1,1)

(0,0)

(0,1)

1
p

1
q

( 1r′ ,0)

(1, 1r )

Fig. 2.1 Boundedness on the dotted line
is obtained by interpolation between the
endpoints (1/r′,0) and (1,1/r).

Notice that Proposition 2.4.2 is also valid when r = 1 (in which case p= q) and
when r = ∞ (in which case p = 1 and q = ∞) and both of these endpoint cases are
just a restatement of Minkowski’s convolution inequality (Theorem 1.6.6).

It turns out that for g∈ Lr,∞ we can obtain the stronger conclusion ‖ f ∗g‖Lq(Rn) ≤
‖ f‖Lp(Rn)‖g‖Lr,∞(Rn) interpolating between L

1 →Lr,∞ [Exercise 1.6.7 (b)] and Lr
′,1 →

L∞ (duality between Lr
′,1 and Lr,∞) using off-diagonal Marcinkiewicz interpolation

([31, Theorem 1.4.19]).

Example 2.4.3. On the real line consider the linear operator

L(g)(x) =
∫ 2x+1

2x
g(x− t)dt, x ∈ R.

We claim that L maps Lp(R) to Lp/2(R) for all 1 ≤ p ≤ ∞. Obviously L maps L∞

to itself. If we show that it also maps L1(R) to L1/2(R), then the conclusion for
p ∈ (1,∞) will be a consequence of Theorem 2.4.1.

To achieve this we write a general g ≥ 0 in L1(R) as ∑k∈Z gk, where gk =
gχ[k,k+1). Denoting by [−x] the integer part of −x, we observe that

L(g)(x) = ∑
k∈Z

L(gk)(x) = L(g[−x])(x)+L(g[−x]−1)(x), x ∈ R,

as L(gk) is supported in [−k−2,−k]. Applying (1.1.9) we obtain
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∥∥L(g)∥∥L1/2 ≤ 2 ∑
i∈{0,1}

(∫
R

[
L(g[−x]−i)(x)

] 1
2 dx

)2

≤ 2 ∑
k∈Z

∥∥L(gk)∥∥L1/2 .

Combining this inequality with the following application of the Cauchy–Schwarz
inequality, ∥∥L(gk)∥∥L1/2 ≤ 2

∥∥L(gk)∥∥L1 ≤ 2
∥∥gk∥∥L1 , (2.4.13)

we deduce ‖L(g)‖L1/2 ≤ 4‖g‖L1 ; that is, L maps L1(R) to L1/2(R).

Proposition 2.4.4. (Hausdorff–Young inequality) Let 1 ≤ p ≤ 2. Then for every
function f in Lp(Rn) we have the estimate

∥∥ f̂ ∥∥Lp′ ≤ ∥∥ f∥∥Lp . (2.4.14)

Proof. We apply Theorem 2.4.1 to interpolate between the estimates

‖ f̂ ‖L∞ ≤ ‖ f‖L1
[Estimate (2.1.2) in Proposition 2.1.5] and

‖ f̂ ‖L2 ≤ ‖ f‖L2
to obtain (2.4.14). We conclude that, when 1 ≤ p ≤ 2, the Fourier transform is a
bounded operator from Lp(Rn) to Lp′

(Rn) with norm at most 1. �

Exercises

2.4.1. Let 1 ≤ r ≤ p ≤ 2 ≤ q ≤ ∞ be related as in 1/p+ 1/q = 1/r and fix K in
Lr(Rn). Prove that the linear operator f �→ f̂ ∗K maps Lp(Rn) to Lq(Rn).

2.4.2. Let m ≥ 3 and 1 ≤ p1, p2, . . . , pm,q ≤ ∞ be related as in

1
p1

+ · · ·+ 1
pm

=
1
q
+m−1.

Prove the inequality
∥∥ f1 ∗ · · · ∗ fm

∥∥
Lq(Rn) ≤ ∥∥ f1∥∥Lp1 (Rn) · · ·

∥∥ fm∥∥Lpm (Rn).

2.4.3. (Schur’s test) Let (X ,μ), (Y,ν) be σ -finite measure spaces and let K(x,y)
be a nonnegative measurable function on X ×Y . Define

S( f )(x) =
∫
Y
K(x,y) f (y)dν(y)

for a nonnegative measurable function f on X . Assume that
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A0 = ess.sup
y∈Y

∫
X
K(x,y)dμ(x)< ∞, A1 = ess.sup

x∈X

∫
Y
K(x,y)dν(y)< ∞.

Show that S is well defined on L1(X)+L∞(X) and that it maps Lp(X) to Lp(Y ) with

bound at most A
1
p
0 A

1− 1
p

1 for 1< p< ∞.

2.5 Approximate Identities and Almost Everywhere Convergence

In this section we use the Hardy–Littlewood maximal operator to pointwise con-
trol averages with respect to approximate identities. As a result, we deduce almost
everywhere convergence properties for approximate identities convolved with cer-
tain locally integrable functions.

For an integrable function K on Rn we define the L1 dilations Kt of K by setting
Kt(x) = t−nK(x/t) for x ∈ Rn and t > 0.

Theorem 2.5.1. Let K in L1(Rn) satisfy |K(x)| ≤ A |x|−nmin(|x|γ , |x|−γ), A,γ > 0,
and let f be in L1loc(R

n). Then for some constant Cn,γ < ∞ and all x ∈ Rn we have

sup
t>0

(| f | ∗ |Kt |)(x) ≤Cn,γ AM( f )(x). (2.5.1)

Proof. We have

(| f | ∗ |Kt |)(x) ≤ A
tn

∫
Rn

| f (x− y)|
∣∣∣y
t

∣∣∣−n
min

(∣∣∣y
t

∣∣∣γ ,
∣∣∣y
t

∣∣∣−γ)
dy

=
A
tn

∞

∑
k=−∞

∫
2kt<|y|≤2k+1t

min
(∣∣∣y

t

∣∣∣γ ,
∣∣∣y
t

∣∣∣−γ)∣∣∣y
t

∣∣∣−n| f (x− y)|dy

≤ A
tn

∞

∑
k=−∞

min(2(k+1)γ ,2−kγ)
1
2kn

∫
2kt<|y|≤2k+1t

| f (x− y)|dy

≤ Avn 2
n+γ

∞

∑
k=−∞

min(2kγ ,2−kγ)
1

vn(2(k+1)t)n

∫
|y|≤2k+1t

| f (x− y)|dy

≤Cn,γ AM( f )(x),

where vn is the volume of the unit ball in Rn and Cn,γ is the finite constant
vn2n+γ ∑k∈Zmin(2kγ ,2−kγ) = vn2n+γ(1+2−γ)(1−2−γ)−1. �

Corollary 2.5.2. Let A,γ > 0 andG be a measurable function onRn×R+ satisfying

|G(x,ε)| ≤ 1
εn

A
(1+ |x|/ε)n+γ , x ∈ Rn.

Let f ∈ L1loc(R
n). Then for some constant Cn,γ < ∞ and all x ∈ Rn we have

sup
ε>0

(|G(·,ε)| ∗ | f |)(x) ≤Cn,γ AM( f )(x).
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Proof. Use Theorem 2.5.1 with K(x) = (1+ |x|)−n−γ . �

The conditions on K in Theorem 2.5.1 are weakened in Exercise 2.5.3. Another
proof of Theorem 2.5.1 can be given which explicitly relates the value of constant
Cn,γ in (2.5.1) to K.

Proposition 2.5.3. Let K(x) be a nonnegative integrable function on Rn, which is
radial and decreasing3 on [0,∞) as a function of |x|. Then for f ∈ L1loc(R

n) and any
x ∈ Rn we have

sup
t>0

(Kt ∗ | f |)(x) ≤ ∥∥K‖L1M( f )(x). (2.5.2)

Proof. For a simple function of the form

L=
M

∑
j=1

c jχB(0,r j) =
M−1

∑
i=0

(c1+ · · ·+ cM−i)χB(0,ri+1)\B(0,ri) (2.5.3)

with c j > 0, r0 = 0< r1 < · · · < rM , for x ∈ Rn and t > 0 we have

(Lt ∗ | f |)(x) =
M

∑
j=1

c j|B(0,r j)|
(χB(0,tr j) ∗ | f |)(x)

|B(0, tr j)| ≤ ∥∥L∥∥L1M( f )(x). (2.5.4)

But an arbitrary nonnegative radially decreasing function on Rn can be pointwise
approximated by an increasing sequence of functions Lk of the form (2.5.3). We then
apply (2.5.4) to each Lk and take the limit as k → ∞ applying the LMCT. Finally,
taking the supremum over all t > 0, we deduce (2.5.2). �

The following is an application of Theorem 2.5.1.

Proposition 2.5.4. The space
{

ϕ ∈ S (Rn) : ϕ̂ ∈ C ∞
0 and ϕ̂ vanishes in a neighborhood of 0

}

is dense in Lp(Rn) for 1< p< ∞.

Proof. Start with a C ∞
0 function Φ̂ which is equal to 1 on the unit ball and vanishes

outside the ball B(0,2). Consider the family 1−Φ̂(ξ/ε)which converges pointwise
to 1 for ξ �= 0 and the family Φ̂(εξ ) → 1 as ε → 0. Then

(
1− Φ̂(ξ/ε)

)
Φ̂(εξ )

converges pointwise to χRn\{0}(ξ ) for all ξ ∈Rn and vanishes for |ξ | ≥ 2/ε and for
|ξ | ≤ ε . Let h ∈ S (Rn). Applying the LDCT we obtain

lim
ε→0

∫
Rn

ĥ(ξ )
(
1− Φ̂

( ξ
ε
))

Φ̂(εξ )e2πix·ξdξ =
∫
Rn

ĥ(ξ )e2πix·ξdξ = h(x)

for any x ∈ Rn. In other words the sequence hε = h∗ Φε −h∗ Φ1/ε ∗ Φε converges
pointwise everywhere to h and its Fourier transform has compact support and van-
ishes in a neighborhood of the origin. Moreover, for some constant CΦ we have

3 Such a function is said to be radially decreasing.
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|hε | ≤CΦ
[
M(h)+M(M(h))

] ∈ Lp(Rn),

and so, applying the LDCT again we deduce limε→0 ‖hε −h‖Lp = 0. �

We now derive the almost everywhere convergence of approximate identities
using the maximal function. Recall that Kt(x) = t−nK(t−1x) for x ∈ Rn and t > 0.

Theorem 2.5.5. Let K in L1(Rn) satisfy |K(x)| ≤ A |x|−nmin(|x|γ , |x|−γ), where
A,γ > 0 and let c=

∫
Rn K(x)dx. Then given 1 ≤ p< ∞ and f ∈ Lp(Rn) we have

lim
t→0

(Kt ∗ f )(x) = c f (x) (2.5.5)

for almost all x ∈ Rn.

Proof. We note that (2.5.5) holds pointwise everywhere for functions f in C ∞
0 . We

obtain the general case by approximation. Define the oscillation of a function g in
∪1≤p<∞Lp(Rn) by setting

Og = limsup
t→0

|Kt ∗g− cg|;

obviously Og is well defined at the points where g is defined, in particular, it is
defined on the Lebesgue setLg of g. Notice that Oϕ = 0 everywhere if ϕ ∈C ∞

0 (Rn)
[Theorem 1.9.7 (b)]. Fix a function f ∈ Lp(Rn) where 1 ≤ p< ∞. Then

O f ≤Cn,γ AM( f )+ |c| | f | ≤ (Cn,γ A+ |c|)M( f ) on L f ,

by Theorem 2.5.1 and Corollary 1.5.5. Given ε > 0 there is a ϕ ∈ C ∞
0 such that

‖ f −ϕ‖Lp < ε . Then

O f ≤ O f−ϕ +Oϕ =O f−ϕ ≤ O f +Oϕ = O f on L f =L f−ϕ ;

thus O f =O f−ϕ onL f . Next we prove that for any δ > 0 we have
∣∣{x ∈ Rn : O f (x)> δ

}∣∣= 0. (2.5.6)

Indeed, we have
∣∣{x ∈ Rn : O f (x)> δ

}∣∣=∣∣{x ∈ Rn : O f−ϕ(x)> δ
}∣∣

≤∣∣{x ∈ Rn : (Cn,γ A+ |c|)M( f −ϕ)(x)> δ
}∣∣

≤
(
3n2p
p−1

)p (Cn,γ A+ |c|)p
δ p

∥∥ f −ϕ
∥∥p
Lp

≤
(
3n2p
p−1

)p (Cn,γ A+ |c|)p
δ p ε p,

having used Chebyshev’s inequality and Corollary 1.4.7. Letting ε → 0 we derive
(2.5.6). This implies that O f = 0 a.e., and consequently (2.5.5) holds. �
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Essentially the same proof yields the same more general result.

Theorem 2.5.6. Fix 1 ≤ p < ∞. Let {Tt}t>0 and T be linear operators defined on
Lp(Rn) such that Tt(ϕ)(x) → T (ϕ)(x) as t → 0 for all ϕ ∈ C ∞

0 (Rn) and all x ∈ Rn.
Suppose that T (∗)( f ) = supt>0 |Tt( f )| is a bounded operator on Lp(Rn). Then for all
f ∈ Lp(Rn), Tt( f ) → T ( f ) a.e. as t → 0.

Proof. Adapt the proof of Theorem 2.5.5 replacing Kt∗ f by Tt( f ) andM by T (∗). �

Theorem 2.5.5 does not cover the case of p = ∞, in view of the lack of a nice
dense subspace of L∞. A different proof of Theorem 2.5.5 can be given that not
only covers the case p= ∞, but also allows the function f to have moderate growth
at infinity, or even be locally integrable, if K has compact support. But the most
important ingredient of this proof is that it relates the set of almost everywhere
convergence to the Lebesgue setL f of f .

Theorem 2.5.7. LetK ∈ L1(Rn) satisfy |K(x)| ≤A |x|−nmin(|x|γ , |x|−γ)when x �= 0,
where A> 0 and 0< γ < n. Let f ∈ L1loc(R

n). Suppose that

lim
t→0+

∫
|y|≥θ

| f (x− y)||Kt(y)|dy= 0 for all θ > 0 and x ∈ Rn. (2.5.7)

Then for every x ∈ L f for which
∫

|y|≤1
| f (x− y)| |y|−n+γ dy< ∞ (2.5.8)

we have
lim
t→0+

(Kt ∗ f )(x) = c f (x), (2.5.9)

where c=
∫
Rn K(y)dy. Consequently, Kt ∗ f → c f a.e. as t → 0+.

Proof. We fix f and K as in the statement of the theorem and x0 ∈ L f such that
(2.5.8) is satisfied. We begin with the observation that (2.5.7) with θ = 1 and (2.5.8),
combined with the fact that |Kt(y)| ≤ t−n|y/t|−n+γ , yield

(| f | ∗ |Kt |)(x0)< ∞ for t sufficiently small depending on x0.

We will prove (2.5.9) for x= x0.
Let ε > 0 be given. As x0 ∈L f there is a δ0 > 0 (which we pick to satisfy δ0 < 1)

such that

0< r ≤ δ0 =⇒ 1
vnrn

∫
|y|<r

| f (x0 − y)− f (x0)|dy< γ
4ωn−1A

ε. (2.5.10)

Here vn = |B(0,1)| and ωn−1 = |Sn−1|. Since ∫Rn Kt(y)dy= c for any t > 0, we write

(Kt ∗ f )(x0)− c f (x0) =
∫
Rn

Kt(y)
(
f (x0 − y)− f (x0)

)
dy,



2.5 Approximate Identities and Almost Everywhere Convergence 79

and we bound the absolute value of the last integral by
∫

|y|<δ0
| f (x0−y)− f (x0)| |Kt(y)|dy+

∫
|y|≥δ0

| f (x0−y)− f (x0)| |Kt(y)|dy. (2.5.11)

We first estimate the second integral in (2.5.11). For t > 0 we have
∫

|y|≥δ0
| f (x0 − y)− f (x0)| |Kt(y)|dy

≤
∫

|y|≥δ0
| f (x0 − y)| |Kt(y)|dy+ | f (x0)|Atγ

∫
|y|≥δ0

|y|−n−γ dy.

We pick δ > 0 such that the sum above is smaller than ε/2 when 0< t < δ , in view
of (2.5.7) and the appearance of tγ . Note that δ depends on f , x0, n, γ , and δ0.

To handle the first integral in (2.5.11) we use polar coordinates to write

1
rn

∫
|y|<r

| f (x0 − y)− f (x0)|dy= 1
rn

∫ r

0
ρn−1

∫
Sn−1

| f (x0 −ρθ)− f (x0)|dθ dρ

=
1
rn

∫ r

0
F(ρ)dρ, (2.5.12)

where
F(ρ) = ρn−1

∫
Sn−1

| f (x0 −ρθ)− f (x0)|dθ , ρ > 0.

Since | f − f (x0)| is integrable over any ball centered at x0, it follows that F(ρ) is
defined for almost all ρ > 0. In view of (2.5.10), the expression in (2.5.12) is at most

γ vn ε
4ωn−1A

when 0< r ≤ δ0. Now set L(r) = Ar−nmin(rγ ,r−γ) defined for r > 0. This
function is continuous on (0,∞) and continuously differentiable on (0,1)∪ (1,∞).
Also the integration-by-parts identity

∫ b

0
L
( r
t

)
φ ′(r)dr = L(b)φ(b)−

∫ b

a

1
t
L′
( r
t

)
φ(r)dr (2.5.13)

is valid for all t > 0, whenever φ is a differentiable function on (0,b) satisfying

0 ≤ φ(r) ≤Crn and
∫ b

0
L
( r
t

)
|φ ′(r)|dr < ∞. (2.5.14)

If b > 1 this can be seen by splitting the interval of integration in (0,1) and (1,b)
and summing the outputs using that limδ→0L(δ/t)φ(δ ) = 0. Since γ < n we have
L′ < 0 on (0,1)∪ (1,∞) and L′ is undefined at 1. Now for any t > 0 we write

∫
|y|<δ0

| f (x0 − y)− f (x0)| |Kt(y)|dy

≤
∫

|y|<δ0
| f (x0 − y)− f (x0)| 1tn L

( |y|
t

)
dy
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=
∫ δ0

0

d
dr

[∫ r

0
F(ρ)dρ

] 1
tn
L
( r
t

)
dr

=
(

1
δ n
0

∫ δ0

0
F(ρ)dρ

)
δ n
0

tn
L
(δ0
t

)
−
∫ δ0

0

(
1
rn

∫ r

0
F(ρ)dρ

)
rn

tn
1
t
L′
( r
t

)
dr

= Qf (x0),

having used (2.5.13) with φ(r) =
∫ r
0 F(ρ)dρ and b= δ0. Since we picked δ0 < 1 it

follows that for any t > 0

∫ δ0

0
L
( r
t

)
|φ ′(r)|dr =

∫
|y|<δ0

| f (x0 − y)− f (x0)|L
( |y|

t

)
dy< ∞

so (2.5.14) is valid and thus (2.5.13) is justified. Next we use (2.5.10) and the fact
−L′ > 0 to obtain the estimate

Qf (x0) ≤ γ vn ε
4ωn−1A

[
δ n
0

tn
L
(δ0
t

)
−
∫ δ0

0

rn

tn
1
t
L′
( r
t

)
dr

]

=
γ vn ε

4ωn−1A

[
δ n
0

tn
L
(δ0
t

)
−
∫ δ0/t

0
rnL′(r)dr

]

=
γ vn ε

4ωn−1A
n

[∫ δ0/t

0
rn−1L(r)dr

]

≤ γ vn ε
4ωn−1A

nvn A

[∫ ∞

0
min(rγ ,r−γ)

dr
r

]

=
ε
2
,

where the second equality is based on (2.5.13) with φ(r) = rn. Then for 0< t < δ ,
combining the estimates derived for the two terms in (2.5.11), we deduce

|(Kt ∗ f )(x0)− c f (x0)| < ε
2
+

ε
2
= ε,

and this proves (2.5.9).
Finally we show that (2.5.8) is satisfied for almost all x ∈ L f , and thus the

claimed almost convergence is valid. For every N ∈ Z+ we have

∫
|x|<N

[∫
|y|≤1

| f (x− y)| dy
|y|n−γ

]
dx ≤

(∫
|y|≤1

dy
|y|n−γ

)∫
|x′|≤N+1

| f (x′)|dx′ < ∞.

Consequently the integral inside the square brackets is finite for almost all points x
in the ball B(0,N), so letting N → ∞ through the positive integers we obtain (2.5.8)
for almost all points x in Rn. �

We note that there is no restriction in assuming that γ < n as the size estimate on
K deteriorates as γ decreases to 0.
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Remark 2.5.8. Theorem 2.5.7 could have been stated in the following form: (2.5.9)
is valid whenever both (2.5.7) and (2.5.8) hold at a point x ∈ L f .

Remark 2.5.9. Let K be as in Theorem 2.5.7. If K has compact support, then con-
dition (2.5.7) holds for any locally integrable function f . Indeed, if K is supported
in a ball B(0,M), then the integral in (2.5.7) is over the set θ ≤ |y| ≤ Mt and this set
becomes empty when t < θ/M, so the integral is zero for t sufficiently small.

We also observe that condition (2.5.7) can be derived from
∫
Rn

| f (z)|
(1+ |z|)n+γ dz< ∞. (2.5.15)

Indeed, assuming (2.5.15), for any x ∈ Rn, we obtain
∫
Rn

| f (x− y)|
(1+ |y|)n+γ dy=

∫
Rn

| f (z)|
(1+ |x− z|)n+γ dz< ∞ (2.5.16)

by splitting the z integral in (2.5.16) in the regions |z| ≤ 2|x| and |z| ≥ 2|x|; in the
latter case |z| ≈ |z−x| so (2.5.15) applies. Also the integral over the region |z| ≤ 2|x|
is finite as f is locally integrable. Then for |y| ≥ θ and t > 0 we have

|Kt(y)| ≤ A
tn

∣∣∣y
t

∣∣∣−n∣∣∣y
t

∣∣∣−γ
= A

tγ

|y|n+γ ≤ Atγ
(θ +1

θ

)n+γ 1
(1+ |y|)n+γ .

Combining this estimate with (2.5.16), we deduce (2.5.7).

Example 2.5.10. Let A > 0, 0 < γ < n and |K(x)| ≤ A |x|−nmin(|x|γ , |x|−γ) when
x �= 0. Then Theorem 2.5.7 applies in the following situations:

(a) f ∈ Lp(Rn), 1 ≤ p ≤ ∞.

(b) | f (x)| ≤C(1+ |x|)τ for τ < γ .

(c) | f (x)| ≤C(1+ |x|)τ for τ < 1 and K is he Poisson kernel P.

(d) | f (x)| ≤Ce|x|δ for 0 ≤ δ < 2 and K(x) = e−π|x|2 .

(e) f ∈ L1loc(R
n) and K has compact support.

Exercises

2.5.1. Verify that in the five cases of Example 2.5.10, condition (2.5.7) is satisfied.

2.5.2. Let 0< γ < n and let x0 be a Lebesgue point of a function f in Lq(Rn) where
n
γ < q ≤ ∞. Prove that

lim
ε→0

1
εn

∫
Rn

f (x)− f (x0)(
1+ |x−x0|

ε
)n+γ dx= 0.
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[
Hint: Let K(x) = (1+ |x|)−n−γ . Show that condition (2.5.7) is valid for all x ∈Rn.

]

2.5.3. Show that conditions on K in Theorem 2.5.1 can be relaxed as follows:
(a) |K(x)| ≤ L(|x|) for some decreasing function L : (0,∞) → [0,∞).
(b) L(|x|) lies in L1(Rn).[

Hint: Use that (1−2−n)vn ∑k∈Z 2(k+1)nL(2k) ≤ 2n
∫
Rn L(|x|)dx.

]

2.5.4. Under the hypotheses of Theorem 2.5.7, if additionally f lies in L∞(Rn) and
is continuous on a closed ball B(x0,δ0) on Rn, prove that

(Kt ∗ f )(x) → c f (x0) as (x, t) → (x0,0+).

2.5.5. (Borel–Cantelli lemma) Suppose that { ft}t>0 is a family of measurable
functions on a compact subset K of Rn (or on any measure space with finite mea-
sure). Suppose that for any ε > 0 the sets At(ε) = {x ∈ K : | ft(x)| ≥ ε} satisfy

∞

∑
k=1

|Atk(ε)| < ∞

for any sequence tk > 0 that tends to zero. Prove that ft → 0 a.e. as t → 0+.[
Hint: Show first that for any sequence tk → 0+ we have

∣∣∩∞
m=1 ∪∞

k=mAtk(ε)
∣∣= 0.

]

2.6 Tempered Distributions

An integrable function g is almost everywhere uniquely determined4 by the integrals∫
Rn gϕ dx, where ϕ ranges over C ∞

0 (Rn). For this reason we can identify g by the
functional Lg(ϕ) =

∫
Rn gϕ dx, acting on C ∞

0 (Rn). Functionals acting on nice classes
of functions are called generalized functions or distributions. Viewing functions as
functionals allows us to perform operations to them that would normally not be pos-
sible. For instance, one can define the partial derivative of a function g ∈ L1(Rn)
to be the functional ∂1Lg given by ∂1Lg(ϕ) = −Lg(∂1ϕ) for all ϕ ∈ C ∞

0 (Rn). For
such reasons, the theory of distributions provides not only a mathematically sound
but also a flexible framework to work with. The theory of distributions is vast and
extensive, but here we focus only on some basic facts concerning tempered distri-
butions.

A linear functional on u on the space of Schwartz functions S (Rn) is a linear
mapping fromS (Rn) to the complex numbers. The action u(ϕ) of u on a Schwartz
function ϕ is denoted by 〈u,ϕ〉. Recall that for ϕ ∈ S (Rn) and multi-indices α,β
the expressions

ρα,β (ϕ) = sup
x∈Rn

|xα ∂ β ϕ(x)| (2.6.1)

are called Schwartz seminorms of ϕ .

4 Exercise 1.9.7.
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Definition 2.6.1. A linear functional u on S (Rn) is a tempered distribution if and
only if there exist C > 0 and M, K nonnegative integers such that

∣∣〈u,ϕ〉∣∣≤C ∑
|α|≤M

∑
|β |≤K

ρα,β (ϕ) for all ϕ ∈ S (Rn). (2.6.2)

The class of all tempered distributions on Rn is denoted by S ′(Rn).

Definition 2.6.1 implies that tempered distributions are continuous functionals
with respect to the Schwartz topology. This means that if ϕ j → ϕ as j → ∞ in
S (Rn) (i.e., in the Schwartz topology), then 〈u,ϕ j〉 → 〈u,ϕ〉.
Examples 2.6.2. We discuss some important examples of tempered distributions.

1. The Dirac mass δx0 at a point x0 ∈ Rn. This is defined by〈
δx0 ,ϕ

〉
= ϕ(x0)

for ϕ ∈ C ∞(Rn). Then δx0 ∈ S ′(Rn) since |ϕ(x0)| ≤ ‖ϕ‖L∞ = ρ0,0(ϕ).
2. Any signed Borel measure μ with total variation ‖μ‖< ∞ is a tempered distribu-

tion via the action 〈
μ ,ϕ

〉
=
∫
Rn

ϕ(x)dμ . (2.6.3)

As in the previous case we have |〈μ ,ϕ〉| ≤ ‖μ‖ρ0,0(ϕ).
3. A measurable function g that satisfies |g(x)| ≤C(1+ |x|)M for all x ∈Rn is called

tempered. A function g on Rn that has controlled growth of the form

|g(x)| ≤C(1+ |x|)M for all |x| ≥ R,

for some M,C,R > 0, is called tempered at infinity. Tempered functions give
rise to tempered distributions.5 In fact, every locally integrable and tempered-at-
infinity function g gives rise to a tempered distribution Lg via the correspondence

〈
Lg,ϕ

〉
=
∫
Rn

g(x)ϕ(x)dx. (2.6.4)

To verify that Lg ∈ S ′ we use (1.7.3) to write
∣∣〈Lg,ϕ〉∣∣≤

(∫
|x|≤R

|g(x)|dx
)∥∥ϕ

∥∥
L∞+

(∫
|x|≥R

CC′ dx
(1+ |x|)n+1

)
∑

|α|≤[M]+n+1

ρα,0(ϕ).

4. Let 1 ≤ p ≤ ∞. Functions in Lp also give rise to tempered distributions in terms
of (2.6.4). Indeed, given g ∈ Lp(Rn) (1 ≤ p ≤ ∞), Hölder’s inequality gives

∣∣〈Lg,ϕ〉∣∣ ≤
∫
Rn

|g(x)|(1+ |x|)−n−1|ϕ(x)|(1+ |x|)n+1dx

≤ ∥∥g∥∥Lp
∥∥(1+ | · |)−n−1

∥∥
Lp′C

′ ∑
|α|≤n+1

ρα,0(ϕ),

5 Hence the terminology tempered distributions.
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and as the Lp′
integral produces a constant, the claim follows. If we replace g by

g j −g, this inequality yields that if g j → g in Lp, then Lgj → Lg inS ′.
5. Consider the following functional acting on functions ϕ ∈ S (R):

〈
u,ϕ

〉
= lim

ε→0

∫

ε≤|x|≤1

ϕ(x)
dx
x

= lim
ε→0

∫

ε≤|x|≤1

(ϕ(x)−ϕ(0))
dx
x
.

We have that |〈u,ϕ〉| ≤ 2‖ϕ ′‖L∞ = 2ρ0,1(ϕ) and this gives that u ∈ S ′(R).

Motivated by Examples 3 and 4 above, it makes sense to ignore the distinction
between g and Lg with a slight abuse of terminology, explained below.

Definition 2.6.3. We say that a locally integrable function g that is tempered at
infinity coincides (or agrees) (or can be identified) with a tempered distribution u
if (2.6.4) holds for all ϕ ∈ S (Rn).

We introduce the notion of convergence inS ′ as follows:

Definition 2.6.4. Let u j,u ∈ S ′(Rn). We say that u j → u in the sense of tempered
distributions, or simply inS ′, if 〈u j,ϕ〉 → 〈u,ϕ〉 as j → ∞ for all ϕ ∈S . The same
definition can be given for families of the form {uε}ε>0 as ε → 0.

Example 2.6.5. Let Φ be an integrable function on Rn with integral equal to 1. Let
Φε be the L1 dilations of Φ . Then Φε (or precisely LΦε ) converge to the Dirac mass
at the origin δ0 inS ′(Rn) as ε → 0. Indeed, for ϕ ∈ S (Rn), then we have

〈
Φε ,ϕ

〉
=
∫
Rn

Φε(x)ϕ(x)dx=
∫
Rn

Φε(x)ϕ̃(0− x)dx= (Φε ∗ ϕ̃)(0)

and this converges to ϕ̃(0) = ϕ(−0) = 〈δ0,ϕ〉 by Theorem 1.9.4 (b).

Having discussed important examples of distributions, we turn to some of the
operations we can perform on them. Suppose that ϕ and ψ are Schwartz functions
and α a multi-index. Integrating by parts |α| times, we obtain∫

Rn
(∂ α ϕ)(x)ψ(x)dx= (−1)|α|

∫
Rn

ϕ(x)(∂ α ψ)(x)dx. (2.6.5)

If we wanted to define the derivative of a tempered distribution u, we would need
to give a definition that extends the definition of the derivative of a function and
satisfies the integration by parts property in (2.6.5). We just use Eq. (2.6.5) to define
the derivative of a tempered distribution.

Definition 2.6.6. Let u ∈ S ′ and α be a multi-index. The αth derivative of u is the
element of S ′(Rn) whose action on a Schwartz function ϕ is given by〈

∂ αu,ϕ
〉
= (−1)|α|〈u,∂ α ϕ

〉
. (2.6.6)

Note that ρβ ,γ(∂ α ϕ) = ρβ ,α+γ(ϕ), so the expression on the right in (2.6.6) is con-
trolled by a finite sum of seminorms of ϕ . The tempered distribution ∂ αu is called
the distributional derivative of u or the derivative of u in the sense of distributions.
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Example 2.6.7. Let −∞ < a< b< ∞. Then (χ[a,b])′ = δa −δb. To see this, let ϕ be
inS (R). Then

〈χ ′
[a,b],ϕ〉 = −〈χ[a,b],ϕ ′〉 = −

∫ b

a
ϕ ′(x)dx= ϕ(a)−ϕ(b) = 〈δa −δb,ϕ〉.

Motivated by identity (2.2.1) we give the following definition.

Definition 2.6.8. Let u ∈ S ′. We define the Fourier transform û and the inverse
Fourier transform u∨ of a tempered distribution u by the identities

〈
û,ϕ

〉
=
〈
u, ϕ̂

〉
and

〈
u∨,ϕ

〉
=
〈
u,ϕ∨〉, (2.6.7)

for all functions ϕ inS (Rn).

We explain why û and u∨ indeed lie inS ′(Rn). Indeed, by Proposition 2.1.8 we
have ρβ ,γ(ϕ̂) = (2π)|γ |−|β |∥∥ [∂ β ((·)γ ϕ)]̂∥∥L∞ and moreover

‖ĥ‖L∞ ≤ ‖(1+ | · |)n+1h‖L∞

∫
Rn
(1+ |y|)−n−1dy for any h ∈ S (Rn).

Finally, by the lower inequality in (1.7.3) we have that ‖(1+ | · |)n+1∂ β ((·)γ ϕ)‖L∞

is bounded by a constant times a finite sum of seminorms of ϕ . Thus, so do the
expressions on the right in (2.6.7) and this explains why the Fourier transform and
the inverse Fourier transform of a tempered distribution lie inS ′(Rn).

Example 2.6.9. We have δ̂0 = 1. More generally, for any multi-index α , (∂ α δ0)̂
can be identified with function ξ �→ (2πiξ )α . To see this, observe that for all ϕ in
S (Rn) we have

〈
(∂ α δ0)̂, ϕ

〉
=
〈
∂ α δ0 , ϕ̂

〉
= (−1)|α|〈δ0 , ∂ α ϕ̂

〉
= (−1)|α|〈δ0 , ((−2πi(·))αϕ)̂〉
= (−1)|α|((−2πi(·))αϕ)̂(0)
= (−1)|α|

∫
Rn
(−2πix)α ϕ(x)dx

=
∫
Rn
(2πix)α ϕ(x)dx .

This calculation indicates that (∂ α δ0)̂ can be identified with the function (2πiξ )α .

Example 2.6.10. We compute the Fourier transform of the Dirac mass at x0.

〈
δ̂x0 ,ϕ

〉
=
〈
δx0 , ϕ̂

〉
= ϕ̂(x0) =

∫
Rn

ϕ(x)e−2πix·x0 dx, ϕ ∈ S (Rn) ,

that is, δ̂x0 can be identified with the function ξ �→ e−2πiξ ·x0 .
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Proposition 2.6.11. (Fourier inversion for distributions) For any u ∈ S ′(Rn) we
have û ∨ = û∨ = u.

Proof. For ϕ ∈ S (Rn), using (2.2.2), we write

〈û∨,ϕ〉 = 〈û,ϕ∨〉 = 〈u, ϕ̂∨〉 = 〈u,ϕ〉,

and this shows û∨ = u. Likewise we show û∨ = u. �

As a consequence of this result we obtain that Schwartz functions are exactly
those tempered distributions whose Fourier transforms are also Schwartz functions.

Proposition 2.6.12. If ϕ ∈ S (Rn), then ϕ̂ and ϕ∨ lie in S (Rn). Conversely, if the
Fourier transform of a tempered distribution u on Rn coincides with a Schwartz
function, then u also coincides with an element of S (Rn).

Proof. The fact that ϕ ∈ S (Rn) implies ϕ̂ ∈ S (Rn) was proven in Proposi-

tion 2.1.8 (3); consequently, ϕ∨ = ˜̂ϕ also lies in S (Rn). Conversely, if û ∈ S (Rn)
for some u in S ′(Rn), then the inverse Fourier transform of ϕ = û lies in S (Rn).
By Proposition 2.6.11, u= ϕ∨ but ϕ∨ lies inS (Rn), so u ∈ S (Rn). �

Now observe that the following are true for functions φ , ψ inS (Rn):
∫
Rn

ψ(x)φ(x− y)dx =
∫
Rn

ψ(x+ y)φ(x)dx ,
∫
Rn

ψ(tx)φ(x)dx =
∫
Rn

ψ(x)t−nφ(t−1x)dx ,
∫
Rn

ψ̃(x)φ(x)dx =
∫
Rn

ψ(x)φ̃(x)dx ,

(2.6.8)

for all y ∈ Rn and t > 0. Recall now the definitions of τy and ˜ given in (2.1.5).
We also define the dilation f t of a function f by setting f t(x) = f (tx) for t > 0.
Also recall the L1 dilation ft(x) = t−n f (t−1x) which is related to f t by f t = t−n f1/t .
Motivated by (2.6.8), we give the following definition.

Definition 2.6.13. The translation τyu, the dilation ut , and the reflection ũ of a tem-
pered distribution u are tempered distributions defined as follows:

〈
τyu,ϕ

〉
=
〈
u,τ−yϕ

〉
, (2.6.9)〈

ut ,ϕ
〉
=
〈
u,ϕt

〉
, (2.6.10)〈

ũ,ϕ
〉
=
〈
u, ϕ̃

〉
, (2.6.11)

for all y∈Rn, t > 0, and ϕ ∈S (Rn). Let A be an invertible matrix. The composition
of u ∈ S ′(Rn) with an invertible matrix A is defined as the element of S ′

〈
u◦A,ϕ〉= |det A|−1〈u,ϕ ◦A−1〉, (2.6.12)

where ϕ ◦A−1(x) = ϕ(A−1x).
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One can check that the operations of translation, dilation, reflection, and differ-
entiation are continuous on tempered distributions.

Example 2.6.14. Let x0 ∈Rn. Then we have δ̃x0 = δ−x0 (in particular, δ̃0 = δ0), also
(δ0)t = t−nδ0, and τx0δ0 = δx0 .

We now define the product of a function and a distribution.

Definition 2.6.15. Let u ∈ S ′ and let h be a C ∞ tempered function whose deriva-
tives are also tempered. This means that for all multi-indices γ there are Cγ ,kγ > 0
such that |∂ γh(x)| ≤Cγ(1+ |x|)kγ . We define the product of h and u by setting

〈
hu,ϕ

〉
=
〈
u,hϕ

〉
, ϕ ∈ S . (2.6.13)

To verify that hu is a well-defined element of S ′, we first verify that hϕ lies in
S ; indeed, for each pair of multi-indices α , β we have

ρα,β (hϕ) ≤ ∑
γ≤β

Cγ C
−1
n,kγ

(
β1

γ1

)
· · ·
(

βn

γn

)
∑

|δ |≤kγ

ρα+δ ,β−γ(ϕ)< ∞,

in view of Leibniz’s rule, where Cn,kγ are the constants in (1.7.3). This implies that
|〈hu,ϕ〉| is bounded by a finite sum of ργ ,δ (ϕ), thus hu lies inS ′(Rn).

To define the convolution of a function with a tempered distribution, we exam-
ine an identity for functions. Observe that for ϕ , ψ in S (Rn) and any integrable
function6 g on Rn the identity holds:

∫
Rn
(ϕ ∗g)(x)ψ(x)dx=

∫
Rn

g(x)(ϕ̃ ∗ψ)(x)dx . (2.6.14)

Motivated by (2.6.14), we give the following definition:

Definition 2.6.16. Let u ∈ S ′ and ϕ ∈ S . Define the convolution ϕ ∗u as follows:
〈
ϕ ∗u,ψ〉= 〈

u, ϕ̃ ∗ψ
〉
, ψ ∈ S (Rn). (2.6.15)

We note that ϕ ∗u lies inS ′(Rn), since for all multi-indices α,β we have

ρα,β (ϕ̃ ∗ψ) ≤ sup
x∈Rn

∫
Rn

|x||α||ϕ(y− x)| |∂ β ψ(y)|dy

≤ 2|α| sup
x∈Rn

∫
Rn
(|y− x||α|+ |y||α|)|ϕ(y− x)| |∂ β ψ(y)|dy

≤Cα,β ,φ
(
ρ0,β (ψ)+ ∑

|γ |=|α|
ργ ,β (ψ)

)
,

using the inequality |x||α| ≤ 2|α||x− y||α|+2|α||y||α| and (1.7.3).

6 In fact, any locally integrable function that is tempered at infinity.
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Example 2.6.17. Let u = δx0 and ϕ ∈ S . Then ϕ ∗ δx0 coincides with the function
x �→ ϕ(x− x0), since, for all ψ ∈ S , we have

〈
ϕ ∗δx0 ,ψ

〉
=
〈
δx0 , ϕ̃ ∗ψ

〉
= (ϕ̃ ∗ψ)(x0) =

∫
Rn

ϕ(x− x0)ψ(x)dx.

Thus, for x0 = 0, ϕ ∗δ0 coincides with the function ϕ for all ϕ ∈ S (Rn).

Let u,v ∈ S ′(Rn). Suppose that 〈u− v,ψ〉 = 0 for all ψ ∈ C ∞
0 (Rn). Given ϕ in

S (Rn) pick a sequence of C ∞
0 functions ψ j such that ρα,β (ψ j −ϕ) → 0 as j → ∞,

by Theorem 1.8.7. Then 〈u− v,φ〉 = 0, hence u = v. In other words, two elements
of S ′ coincide if and only if their actions on C ∞

0 coincide, i.e.,

u= v ⇐⇒ 〈u,ψ〉 = 〈v,ψ〉 for all ψ ∈ C ∞
0 (Rn). (2.6.16)

Now the integrable functions f , g coincide a.e. on an open set Ω if and only if
∫

f (x)ϕ(x)dx=
∫

g(x)ϕ(x)dx for all ϕ in C ∞
0 (Ω). (2.6.17)

(See Exercise 1.9.7.) Here C ∞
0 (Ω) is the space of smooth functions whose support

is compact and contained in Ω . Motivated by this, we give the following definition,
which, with a slight abuse of terminology, treats distributions as functions.

Definition 2.6.18. We say that a tempered distribution u coincides with a function h
on an open set Ω , or alternatively, we say u agrees with h away from Ω c if

〈
u,ϕ

〉
=
∫
Rn

h(x)ϕ(x)dx for all ϕ in C ∞
0 (Ω). (2.6.18)

Example 2.6.19. The distribution |x|2 + δx0 , x0 ∈ Rn, coincides with the function
|x|2 onRn\{x0}. Also, the distribution in Example 2.6.2 (5) agrees with the function
x−1χ|x|≤1 away from the origin.

We observe that if a continuous function g is supported in a set K, then for all
f ∈ C ∞

0 (Kc) we have ∫
Rn

f (x)g(x)dx= 0 . (2.6.19)

Moreover, the support of g is the intersection of all closed sets K such that (2.6.19)
holds for all f in C ∞

0 (Kc). Based on this we give the following definition:

Definition 2.6.20. Let u be inS ′(Rn). The support of u (suppu) is the intersection
of all closed sets K with the property

ϕ ∈ C ∞
0 (Rn), suppϕ ⊆ Rn \K =⇒ 〈

u,ϕ
〉
= 0 . (2.6.20)

Example 2.6.21. The support of u = δx0 , the Dirac mass at x0, is the set {x0}.
Indeed, {x0} is a closed set that satisfies (2.6.20) and the only proper subset of
{x0} is the empty set, which obviously does not satisfy (2.6.20) if u= δx0 .
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Exercises

2.6.1. Show that the convolution of a tempered function with a Schwartz function
is another tempered function.

2.6.2. Let a,b be real numbers.
(a) Prove that the distributional derivative of χ(a,∞) is δa.
(b) Prove that the distributional derivative of χ(−∞,b) is −δb.
(c) Prove that | · |′′ = 2δ0 in the sense of S ′(R).

2.6.3. Prove that the derivative of log |x| ∈ S ′(R) is the tempered distribution

〈u,ϕ〉 = lim
ε→0

∫

ε≤|x|
ϕ(x)

dx
x
.

2.6.4. Evaluate the ∂1∂2 · · ·∂n distributional derivative of the function χ[0,∞)n in
S ′(Rn).

2.6.5. Show that for a given f ∈ S (Rn) there is a unique u ∈ S (Rn) such that

−
n

∑
j=1

∂ 2
j u+u= f .

2.6.6. Let f ,g in L2(Rn). Show that the distributional Fourier transform of f ∗ g
coincides with the integrable function f̂ ĝ.

2.6.7. Let z ∈C. A distribution inS ′(Rn) is called homogeneous of degree z if for
all λ > 0 and for all ϕ ∈ S (Rn) we have

〈
u,ϕλ〉= λ−n−z〈u,ϕ〉 .

(a) Prove that this definition agrees with the usual definition for functions.
(b) Show that δ0 is homogeneous of degree −n.
(c) Prove that if u is homogeneous of degree z, then ∂ αu is homogeneous of degree
z−|α|.
(d) Show that u is homogeneous of degree z if and only if û is homogeneous of
degree −n− z. Verify this assertion for the distribution in Example 2.7.4.

2.7 Basic Operations with Tempered Distributions

Having completed the streak of required definitions concerning operations with dis-
tributions, we discuss properties of these operations.

We begin with the observation that for a given ψ ∈ S (Rn) and u ∈ S ′(Rn) the
function x �→ 〈u,τxψ〉 is tempered. Indeed, for any x ∈ Rn we write
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∣∣〈u,τxψ〉∣∣ ≤ C ∑
|α|≤M
|β |≤K

sup
y∈Rn

|yα ∂ β ψ(y− x)|

≤ C ∑
|α|≤M
|β |≤K

2M sup
y∈Rn

|y− x||α||∂ β ψ(y− x)|+2M|x||α| sup
y∈Rn

|∂ β ψ(y)|

≤ CM,K,ψ(1+ |x|)M,

having used that |y||α| ≤ 2|α||y− x||α|+2|α||x||α| as well as (1.7.3).

Theorem 2.7.1. Let u ∈ S ′ and ϕ ∈ S . Then ϕ ∗ u coincides with the func-
tion x �→ 〈u,τxϕ̃〉 for all x ∈ Rn. Moreover, ϕ ∗ u is a C ∞ function that satisfies
∂ α(ϕ ∗ u) = ∂ α ϕ ∗ u for any multi-index α . Also, there is a positive constant M
such that for every multi-index α there is a constant Cα,u,ϕ > 0 such that

|∂ α(ϕ ∗u)(x)| ≤Cα,u,ϕ(1+ |x|)M. (2.7.1)

Proof. Let ψ be inS (Rn). We have
〈
ϕ ∗u,ψ〉 =

〈
u, ϕ̃ ∗ψ

〉

=
〈
u,
∫
Rn

ϕ̃( · − y)ψ(y)dy
〉

=
〈
u,
∫
Rn
(τyϕ̃)( ·)ψ(y)dy

〉
(2.7.2)

=
∫
Rn

〈
u,τyϕ̃

〉
ψ(y)dy,

where the last step is justified by the continuity of u and by the fact that the Riemann
sums of the inner integral in (2.7.2) converge to that integral in the topology ofS , a
fact that will be justified in the subsequent Lemma 2.7.2. This calculation identifies
ϕ ∗u with the tempered function x �→ (ϕ ∗u)(x) = 〈

u,τxϕ̃
〉
, as claimed.

We now show that ϕ ∗u is a C ∞ function. Let e j = (0, . . . ,1, . . . ,0) with 1 in the
jth entry and zero elsewhere. Then
(ϕ ∗u)(x+ te j)− (ϕ ∗u)(x)

t
=
〈
u,

τ te jτxϕ̃ − τxϕ̃
t

〉
→ 〈

u,−∂ jτxϕ̃
〉
=
〈
u,τx(∂̃ jϕ)

〉

where the convergence is justified by the continuity of u and the fact that

τ te j(τxϕ̃)− τxϕ̃
t

→ −∂ jτxϕ̃ = τx(∂̃ jϕ) inS

as t → 0; see Exercise 2.7.2. This gives that ϕ ∗ u has a jth partial derivative and
precisely, ∂ j(ϕ ∗u) = ∂ jϕ ∗u. Then we use induction to obtain ϕ ∗u ∈ C ∞ and that
∂ γ(ϕ ∗u) = (∂ γ ϕ)∗u for all multi-indices γ .

Using that ∂ α(ϕ ∗u) = (∂ α ϕ)∗u= 〈u,τx∂̃ α ϕ〉 = (−1)|α|〈u,∂ α τxϕ̃〉, it follows
from (2.6.2) that for some C, M, and K we have
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|∂ α(ϕ ∗u)(x)| ≤C ∑
|γ|≤M
|β |≤K

sup
y∈Rn

|yγ ∂ α+β (τxϕ̃)(y)|

=C ∑
|γ|≤M
|β |≤K

sup
y∈Rn

|(x+ y)γ(∂ α+β ϕ̃)(y)|

≤ (1+ |x|)M
[
CMn ∑

|β |≤K

sup
y∈Rn

(1+ |y|)M|(∂ α+β ϕ̃)(y)|
]
,

and this yields (2.7.1), withCα,u,ϕ being the expression in the square brackets. �

Lemma 2.7.2. The Riemann sums of the integral in (2.7.2) converge to this integral
in the topology of S .

Proof. For each N ∈ Z+ we partition [−N,N]n into a union of (2N2)n cubes Qj

of side length 1/N and we let y j be the center of each Qj. We will show that for
multi-indices α,β the following Riemann sum minus the corresponding integral

DN(x) = xα
[ (2N2)n

∑
j=1

ψ(y j)∂ β
x ϕ̃(x− y j)|Qj|−

∫
Rn

ψ(y)∂ β
x ϕ̃(x− y)dy

]
(2.7.3)

converges to zero in L∞(Rn) as N → ∞. We write

xα
[ (2N2)n

∑
j=1

∂ β
x ψ(y j)ϕ̃(x− y j)|Qj|−

(2N2)n

∑
j=1

∫
Qj

ψ(y)∂ β
x ϕ̃(x− y)dy

]

= xα
(2N2)n

∑
j=1

∫
Qj

[
ψ(y j)∂ β

x ϕ̃(x− y j)−ψ(y)∂ β
x ϕ̃(x− y)

]
dy

= xα
(2N2)n

∑
j=1

∫
Qj

∫ 1

0
∇
[
ψ∂ β

x ϕ̃(x−·)]((1−θ)y+θy j
) · (y j − y)dθ dy (2.7.4)

by the mean value theorem. Using estimates for Schwartz functions and the simple
inequality |∇(FG)| ≤ ∑n

k=1(|∂kF | |G|+ |F| |∂kG|), for y ∈ Qj we estimate

∣∣xα ∇
[
∂ β
x ψϕ̃(x−·)](ξ ) · (y j − y)

∣∣≤ CM |x||α|

(1+ |x−ξ |)M/2

1
(2+ |ξ |)M

√
n

2N

whenM > 2|α|+2n, where ξ = (1−θ)y+θy j. The last expression is bounded by

CM |x||α|

(1+ |x|)M/2

1

(2+ |ξ |)M/2

√
n

2N
≤ CM |x||α|

(1+ |x|)M/2

1

(1+ |y|)M/2

√
n

2N
,

since |ξ | ≥ |y|− θ |y− y j| ≥ |y|−
√
n

2N ≥ |y|− 1 for N ≥ √
n. Inserting this estimate

in (2.7.4) and using (2.7.3) and the fact that Rn = ∪ jQ j ∪ ([−N,N]n)c, we obtain
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|DN(x)| ≤ C′

N
|x||α|

(1+ |x|)M/2

∫

[−N,N]n

dy

(1+ |y|)M/2
+

∫

([−N,N]n)c

|xα ∂ β
x ϕ̃(x− y)ψ(y)|dy

for N ≥ √
n. But the second integral in the preceding expression is bounded by

∫

([−N,N]n)c

C′′|x||α|

(1+ |x− y|)M/2

dy
(1+ |y|)M ≤ C′′|x||α|

(1+ |x|)M/2

∫

([−N,N]n)c

dy

(1+ |y|)M/2
.

Using these estimates we verify that limN→∞ supx∈Rn |DN(x)| = 0. �

We now extend the properties of the Fourier transform to tempered distributions.

Proposition 2.7.3. Let y ∈ Rn, b ∈ C, t > 0, and α be a multi-index. Given u, v in
S ′(Rn), ϕ ∈ S (Rn), and h a C ∞ tempered function all of whose derivatives are
also tempered functions, we have

(1) û+ v= û+ v̂ ,

(2) b̂u= bû ,

(3) If u j → u inS ′, then û j → û inS ′ ,

(4) (ũ)̂= (û) ,̃

(5) (τyu)̂= e−2πiy·ξ û ,

(6) (e2πix·yu)̂= τyû ,

(7) (ut)̂= (û)t = t−n(û)1/t ,

(8) (∂ αu)̂= (2πiξ )α û ,

(9) ∂ α û= ((−2πix)αu) ,̂

(10) ϕ̂ ∗u= ϕ̂ û ,

(11) ϕ̂ u= ϕ̂ ∗ û ,
(12) (Leibniz rule) ∂ α(hu) = ∑

γ≤α

(α1
γ1

) · · ·(αn
γn

)
(∂ γh)(∂ α−γu).

Proof. Properties (1) and (2) are straightforward while (3) is due to the identity
〈û j, ϕ̂〉 = 〈u j,ϕ〉. Statements (4) – (11) can be obtained from related statements for
Schwartz functions; indicatively, we prove (8): for ϕ ∈ S (Rn) we have

〈
(∂ αu) ,̂ϕ

〉
=
〈
∂ αu, ϕ̂

〉
= (−1)|α|〈u,∂ α ϕ̂

〉
= (−1)|α|〈u,((−2πi(·))αϕ)̂〉
= (−1)|α|〈û,(−2πi(·))αϕ

〉
=
〈
(2πi(·))α û,ϕ

〉
.
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We now prove identity (12) when α = e j. In this case we have
〈
∂ j(hu),ψ

〉
= −〈hu,∂ jψ

〉
= −〈u,h∂ jψ

〉
= −〈u,∂ j(hψ)〉+ 〈u,ψ∂ jh

〉
=
〈
∂ ju,hψ〉+ 〈(∂ jh)u,ψ

〉
=
〈
h∂ ju+(∂ jh)u,ψ

〉

for any function ψ ∈S (Rn). Thus ∂ j(hu) = h∂ ju+(∂ jh)u and this establishes (12)
when α = e j. The case of a general index α can be obtained by induction. �

Example 2.7.4. For z a complex number with −n < Rez < 0 we define the locally
integrable function

uz(x) =
π z+n

2

Γ ( z+n
2 )

|x|z, x ∈ Rn \{0}.

We compute the distributional Fourier transform of uz and we show that it coincides
with the function u−n−z, that is, we show that

ûz = u−n−z, −n< Rez< 0. (2.7.5)

To prove this assertion, we temporarily fix z satisfying −n < Rez < −n/2. Then
−n/2<Re(−n−z)< 0, so both |x|z and |x|−n−z are locally integrable (and certainly
tempered at infinity). For ϕ ∈ S (Rn) we write

〈
ûz,ϕ

〉
=
〈
uz, ϕ̂

〉
, (2.7.6)

but we choose ϕ(x) = ϕ̂(x) = e−π|x|2 . Using the result in Example 2.3.10, which
gives ûz(x) = c(z,n)|x|−z−n for every x �= 0, we obtain

c(z,n)
∫
Rn

|x|−n−ze−π|x|2 dx=
π z+n

2

Γ ( z+n
2 )

∫
Rn

|x|ze−π|x|2 dx.

Switching to polar coordinates yields

c(z,n)
∫ ∞

0
r−ze−πr2 dr

r
=

π z+n
2

Γ ( z+n
2 )

∫ ∞

0
rz+ne−πr2 dr

r
,

and this is equivalent to

c(z,n)π
z
2

∫ ∞

0
s−

z
2 e−s ds

s
=

π z+n
2

Γ ( z+n
2 )

π− z+n
2

∫ ∞

0
s
z+n
2 e−s ds

s
,

by the change of variables s= πr2. From this we obtain the value
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c(z,n) =
π− z

2

Γ (− z
2 )

and justify the validity of (2.7.5) for z satisfying −n<Rez<−n/2. We now rewrite
(2.7.6) for z satisfying −n< Rez< −n/2 as

π− z
2

Γ (− z
2 )

∫
Rn

|x|−n−zϕ(x)dx=
π z+n

2

Γ ( z+n
2 )

∫
Rn

|x|zϕ̂(x)dx. (2.7.7)

If we knew that both functions in (2.7.7) are analytic on the region −n < Rez < 0,
then we appeal to the identity principle in complex analysis to deduce the validity
of (2.7.7) for all such z. But this is a consequence of the following lemma.

Lemma 2.7.5. Let B be a positive real number. Then for any δ > 0 we have

w ∈ C, 0< |w| < δ =⇒
∣∣∣∣B

w −1
w

∣∣∣∣≤ 2
δ
max

(
B2δ ,

1

B2δ

)
. (2.7.8)

Proof. Let w= x+ iy, where x �= 0, y �= 0 are real. Suppose |w| < δ . Then
∣∣∣∣B

w −1
w

∣∣∣∣≤ Bx

∣∣∣∣B
iy −1
x+ iy

∣∣∣∣+
∣∣∣∣B

x −1
x+ iy

∣∣∣∣
≤ Bx |Biy −1|

|y| +
|Bx −1|

|x|

= Bx| logB| |e
iy logB −1|
|y logB| +

|ex logB −1|
|x logB| | logB|

≤ Bx| logB|+max
(
ex logB,1

)| logB|
≤ 2max

(
B|x|,B−|x|)| logB|

≤ 2
δ
max

(
Bδ ,B−δ )| logBδ |

≤ 2
δ
max

(
B2δ ,

1

B2δ

)
,

having used that log t ≤ t for t ≥ 1. In the cases where one of x,y (but not both) is
zero, simple modifications of the preceding argument yield (2.7.8) as well. �

Lemma 2.7.6. For ψ ∈ S (Rn) the function

w �→ π w+n
2

Γ (w+n
2 )

∫
Rn

|x|wψ(x)dx (2.7.9)

is analytic in the region Re w> −n.

Proof. The analyticity of the Gamma function (and its reciprocal) in this region
is a known fact and omitted here; in fact a simple modification of the subsequent
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argument proves this assertion. So we prove that w �→ ∫
Rn |x|wψ(x)dx is analytic.

We fix w0 with Rew0 > −n and pick δ > 0 such that Rew0 −2δ > −n. Then

lim
w→0

1
w

[∫
Rn

|x|w+w0ψ(x)dx−
∫
Rn

|x|w0ψ(x)dx
]
=
∫
Rn

|x|w0
(
log |x|)ψ(x)dx,

since limw→0
|x|w−1

w = log |x|. The passing of the limit inside the integral is justified
from the LDCT via the inequality in (2.7.8), which holds for 0< |w|< δ , combined
with the fact that |x|w0 max(|x|2δ , |x|−2δ )ψ(x) log |x| is integrable over Rn. �

It turns out that the function in (2.7.7) is entire and thus uz extends to an entire-
valued tempered distribution whose Fourier transform is u−z−n. On this see [31].

Exercises

2.7.1. Let Φ ∈S (Rn)with
∫
Rn Φ(x)dx= 1 and for ε > 0 let Φε(x) = ε−nΦ(ε−1x).

Show that Φε → δ0 in S ′(Rn) and that Φε ∗ f → f in S for every f ∈ S (Rn).
Conclude that Φε ∗u → u inS ′ for every u ∈ S ′(Rn).

2.7.2. For ϕ ∈ S (Rn) prove that (τ−he jϕ −ϕ)/h → ∂ jϕ inS as h → 0.

2.7.3. On the real line consider the tempered distribution uz of Example 2.7.4. Use
the Taylor expansion at the origin of a function ϕ ∈ S (R)

ϕ(x) =
N

∑
k=0

ϕ(k)(0)
k!

xk+
xN+1

N!

∫ 1

0
(1− t)Nϕ(N+1)(tx)dt

for an arbitrary even positive integer N, to write

∫
|x|<1

|x|zϕ(x)dx=
N

∑
k=0
k even

ϕ(k)(0)
k!

ωn−1

z+ k+1
+
∫

|x|<1

∫ 1

0

ϕ(N+1)(tx)
N!

(1−t)Ndt|x|zxN+1dx.

Deduce the analyticity of the function z �→ ∫
|x|<1 |x|zϕ(x)dx on C \E, where E =

{−1,−3,−5, . . .}. Conclude from this that the function z �→ 〈uz,ϕ〉 is entire.[
Hint: The function z �→ Γ ( z+1

2 )−1 has zeros of order 1 at −1,−3,−5, . . . .
]

2.7.4. Suppose that f is a tempered distribution on Rn whose Fourier transform
coincides with an integrable and compactly supported function. Prove that f ∈ C ∞.[
Hint: Show first that f can be identified with the function x �→ ∫

Rn f̂ (ξ )22πix·ξdξ .
]

2.7.5. Let a> 0. Using that the Fourier transform of e−π|x|2 is itself, show that
(a) The Fourier transform of e−πa|x|2 on Rn is a−n/2e−π|x|2/a.
(b) The Fourier transform of e−π(a+it)|x|2 is (a+ it)−n/2e−π|x|2/(a+it), t ∈ R.
(c) The distributional Fourier transform of e−iπt|x|2 is (it)−n/2eiπ|x|2/t , t ∈ R\{0}.
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[Hint: Note that (it)1/2 is a well-defined complex number with argument π/4 if t > 0
and −π/4 if t < 0. For part (b) use part (a) and analytic continuation. Obtain part
(c) by taking the limit in part (b) as a → 0+ using the LDCT.]

2.8 Lp Fourier Multipliers

We are interested in studying Lp boundedness properties of operators given by mul-
tiplication by a bounded function on Rn on the Fourier transform. Such operators
are also expressed as convolution with certain tempered distributions.

Definition 2.8.1. Given 1< p< ∞, we denote byMp(Rn) the space of all L∞ func-
tions m on Rn such that the operator

Tm(ϕ) = (ϕ̂ m)∨ = ϕ ∗m∨, ϕ ∈ S (Rn), (2.8.1)

admits a bounded extension from Lp(Rn) to Lp(Rn). Here m∨ is the distributional
inverse Fourier transform of m. The norm of m inMp(Rn) is defined by

‖m‖M p =
∥∥Tm∥∥Lp→Lp .

Notice that ‖ · ‖M p is indeed a norm on Mp(Rn). It certainly satisfies the
triangle inequality and is homogeneous of degree 1; moreover if ‖m‖M p = 0, then

(me−π|·|2)∨ = 0, which implies that m= 0 a.e. by (2.2.2).

Example 2.8.2. (a) Let b ∈ Rn. Then the function m(ξ ) = e2πiξ ·b lies in Mp with
norm 1 as Tm( f )(x) = f (x+b) is bounded on Lp(Rn) with operator norm 1.
(b) Given K ∈ L1(Rn) we have that K̂ lies inMp with norm at most ‖K‖L1 .
Proposition 2.8.3. Let m1, m2 be in Mp and c ∈ C. Then m1+m2, cm1, and m1m2

lie also inMp.

Proof. Observe thatm1m2 is the multiplier that corresponds to the operator Tm1Tm2 =
Tm1m2 and thus

‖m1m2‖M p =
∥∥Tm1Tm2

∥∥
Lp→Lp ≤ ‖m1‖M p‖m2‖M p .

The analogous conclusions for m1+m2 and cm1 are straightforward. �

Other properties of multipliers are summarized below:

Proposition 2.8.4. Fix 1 < p < ∞. For all m ∈ Mp, x0 ∈ Rn, λ > 0, and all n× n
matrices A with nonzero determinant we have

∥∥τx0m
∥∥
M p

= ‖m‖M p , (2.8.2)
∥∥mλ∥∥

M p
= ‖m‖M p , (2.8.3)
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∥∥m̃∥∥
M p

= ‖m‖M p ,∥∥e2πi( ·)·x0m
∥∥
M p

= ‖m‖M p ,∥∥m◦A∥∥
M p

= ‖m‖M p . (2.8.4)

Proof. We first prove (2.8.3). For f a nonzero function inS (Rn) we have

Tmλ ( f )(x)=
∫
Rn

f̂ (ξ )m(λξ )e2πix·ξdξ=
∫
Rn

1
λ n f̂

(ξ
λ

)
m(ξ )e2πi xλ ·ξdξ =Tm( f λ )

(x
λ

)
,

where we used Proposition 2.1.6 (7). This implies that

∥∥Tmλ ( f )
∥∥
Lp∥∥ f∥∥Lp

=

∥∥Tm( f λ )
∥∥
Lpλ

n
p∥∥ f∥∥Lp
=

∥∥Tm( f λ )
∥∥
Lpλ

n
p

λ
n
p
∥∥ f λ

∥∥
Lp

=

∥∥Tm( f λ )
∥∥
Lp∥∥ f λ

∥∥
Lp

,

so taking the supremum over all f ∈ S (Rn), or equivalently over all f λ ∈ S (Rn),
with ‖ f‖Lp �= 0 yields (2.8.3). We now prove (2.8.4). For f a nonzero function in
S (Rn), we use Proposition 2.1.6 (8) and ‖ f ◦A‖Lp = |detA|−1/p‖ f‖Lp to write

∥∥Tm◦A( f )
∥∥
Lp∥∥ f∥∥Lp

=

∥∥[(m( f̂ ◦A−1)
)◦A]∨∥∥Lp∥∥ f∥∥Lp

=

∥∥(m( f̂ ◦A−1)
)∨ ◦ (At)−1

∥∥
Lp

|detA|∥∥ f∥∥Lp
=

|det(At)−1|− 1
p
∥∥(m |detA| ̂f ◦At

)∨∥∥
Lp

|detA|∥∥ f ◦At ◦ (At)−1
∥∥
Lp

=
|det(At)−1|− 1

p
∥∥(m ̂f ◦At

)∨∥∥
Lp∥∥ f ◦At

∥∥
Lp |det(At)−1|− 1

p

=

∥∥Tm( f ◦At)
∥∥
Lp∥∥ f ◦At

∥∥
Lp

.

The supremum over all f ∈ S (Rn) with ‖ f‖Lp �= 0 is equal to the supremum over
all f ◦At ∈S (Rn) with ‖ f ◦At‖Lp �= 0. This proves (2.8.4). We leave the remaining
properties as exercises. �

Theorem 2.8.5. Let u ∈ S ′ and let T (ϕ) = ϕ ∗ u for ϕ ∈ S . Then T admits a
bounded extension from L2(Rn) to L2(Rn) if and only if the Fourier transform û of
u coincides with an L∞ function. In this case we have

∥∥T∥∥L2→L2 = ‖û‖L∞ . (2.8.5)

Proof. Suppose û∈ L∞. Then for f inS (Rn), we have f̂ û∈ L2; thus ( f̂ û)∨ = f ∗u
also lies in L2. Plancherel’s theorem gives
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∫
Rn

| f ∗u|2 dx=
∫
Rn

| f̂ ∗u|2 dξ =
∫
Rn

| f̂ û |2 dξ ≤ ‖û‖2L∞
∥∥ f̂ ∥∥2L2 .

AsS is a dense subspace of L2, we obtain the inequality
∥∥T∥∥L2→L2 ≤ ‖û‖L∞ . (2.8.6)

Now suppose that T admits a bounded extension from L2(Rn) to itself. We must
show that the Fourier transform of u is a bounded function. First we prove that there
is a function H in L2loc(R

n) which coincides with û on every open ball. We begin
with the observation [using Proposition 2.7.3 (10)] that for any ϕ ∈ C ∞

0 we have

ϕ û= (ϕ∨ ∗u)̂= T (ϕ∨)̂ ∈ L2(Rn), (2.8.7)

as T maps L2 to itself. We pick Φ ∈ C ∞(Rn) equal to 1 on the closure of the unit
ball and vanishing outside the ball of radius 2 centered at the origin. We define

H =

{
Φ û on B(0,1),
Φ(·/2m+1) û on B(0,2m+1)\B(0,2m) for m ∈ Z+ ∪{0}, (2.8.8)

and we notice that H ∈ L2loc(R
n). Also observe that H = Φ(·/2m+1) û on the entire

ball B(0,2m+1); indeed, Φ = Φ(·/2m+1) on B(0,1) and Φ(·/2k+1) = Φ(·/2m+1) on
B(0,2k+1)\B(0,2k) for 1 ≤ k < m.

Given ψ ∈ C ∞
0 (Rn) supported in a ball B(0,R), pick m ∈ Z+ such that 2m+1 > R.

Then 〈
û,ψ

〉
=
〈
û,Φ(·/2m+1)ψ

〉
=
〈
Φ(·/2m+1)û,ψ

〉
= 〈H,ψ〉

and
T (ψ∨) = (ψ û)∨ = (ψ Φ(·/2m+1) û)∨ = (ψ H)∨. (2.8.9)

These facts indicate that H coincides with û on every open ball B(0,R) and that
(2.8.9) is valid for all ψ ∈ C ∞

0 (Rn). We now show that (2.8.9) also holds for L2

functions with compact support g. Indeed, let g be an L2 function supported in the
ball B(0,K). Pick ψ j a sequence of smooth functions supported in B(0,2K) such
that ‖g− ψ j‖L2 → 0 as j → ∞. We have that (ψ j H )∨ = ψ∨

j ∗ u = T (ψ∨
j ) which

converges to T (g∨) in L2 as j → ∞, since T is L2-bounded. Then for a subsequence
jl we have (ψ jl H )∨ → T (g∨) a.e. as l → ∞. On the other hand,
∥∥(ψ jl H )∨ − (gH )∨

∥∥
L∞ ≤ ∥∥(ψ jl −g)H

∥∥
L1 ≤ ‖ψ jl −g‖L2‖H‖L2(B(0,2K)) → 0

as l → ∞. We conclude that T (g∨) = (gH)∨ a.e. for all L2 functions with compact
support g. Plancherel’s theorem and the boundedness of T give
∫
Rn

|g(y)H(y)|2 dy=
∫
Rn

|(gH)∨(y)|2 dy=
∫
Rn

|T (g∨)(y)|2 dy ≤ ∥∥T∥∥2L2→L2

∥∥g∥∥2L2 ,
for g in L2 with compact support. Thus for such g we have
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∫
Rn

(‖T‖2L2→L2 −|H(y)|2)|g(y)|2 dy ≥ 0 .

Picking g(y) = |B(x,ε)|− 1
2 χB(x,ε)(y) we obtain

1
|B(x,ε)|

∫
B(x,ε)

(‖T‖2L2→L2 −|H(y)|2) dy ≥ 0 . (2.8.10)

Letting ε → 0 and applying Theorem 1.5.1 we deduce that ‖T‖2
L2→L2

−|H|2 ≥ 0 a.e.
Hence H lies in fact in L∞ and

‖H‖L∞ ≤ ‖T‖L2→L2 . (2.8.11)

We conclude that û coincides on any ball with the bounded function H; this implies
that û coincides with the bounded function H everywhere and hence (2.8.11) holds
with û in place of H. Combining (2.8.6) with (2.8.11), we derive (2.8.5). �

Proposition 2.8.6. Suppose 1 < p < ∞ and m ∈ Mp(Rn). Then the operator Tm
defined in (2.8.1) satisfies

∥∥Tm∥∥Lp′→Lp′ =
∥∥Tm∥∥Lp→Lp . (2.8.12)

Equivalently, we have Mp′(Rn) =Mp(Rn) with ‖m‖M p = ‖m‖M p′ .

Proof. Let u be the distributional inverse Fourier transform of m. We denote by Tt
m

the transpose operator of Tm (see Appendix E). For f ,g ∈ S (Rn) we have
∫
Rn

f T t
m(g)dx =

∫
Rn
Tm( f ) g dx

=
∫
Rn
( f ∗u)g dx

=
∫
Rn

f (g∗ ũ) dx.

Therefore the transpose operator Tt
m of Tm is given by Tt

m(ϕ) = ϕ ∗ ũ for ϕ ∈S (Rn).
Next observe that for ϕ ∈ S (Rn) we have ϕ̃ ∗u= ϕ̃ ∗ ũ, which yields

ϕ ∗ ũ= ˜̃ϕ ∗u. (2.8.13)

It follows from (2.8.13) that ‖ϕ ∗ ũ‖Lp′ = ‖ϕ̃ ∗u‖Lp′ and thus

∥∥Tt
m

∥∥
Lp′→Lp′ = sup

ϕ∈S (Rn)
ϕ �≡0

∥∥ϕ ∗ ũ∥∥Lp′∥∥ϕ
∥∥
Lp′

= sup
ϕ∈S (Rn)

ϕ �≡0

∥∥ϕ̃ ∗u∥∥Lp′∥∥ϕ̃
∥∥
Lp′

=
∥∥Tm∥∥Lp′→Lp′ .

The fact that ∥∥Tt
m

∥∥
Lp′→Lp′ =

∥∥Tm∥∥Lp→Lp

yields (2.8.12). �
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As a consequence of the preceding result, the normed spacesMp are nested; that
is, for 1< p ≤ q ≤ 2 we have

Mp � Mq � M2 = L∞. (2.8.14)

To see this, take m ∈ Mp =Mp′ and 1< p ≤ q ≤ 2 ≤ p′, Theorem 2.4.1 yields

∥∥Tm∥∥Lq→Lq ≤ ∥∥Tm∥∥1−θ
Lp→Lp

∥∥Tm∥∥θ
Lp′→Lp′ =

∥∥Tm∥∥Lp→Lp , (2.8.15)

where 1/q = (1− θ)/p+θ/p′. Thus ‖m‖M q ≤ ‖m‖M p whenever 1 < p ≤ q ≤ 2,
hence (2.8.14) holds; in particular, with q= 2 we obtain

‖m‖L∞ ≤ ‖m‖M p (2.8.16)

for all p ∈ (1,∞) and all m ∈ Mp.

Proposition 2.8.7. Let 1< p< ∞. Suppose that sup j ‖mj‖M p < ∞ and that mj →m
pointwise a.e. Then m lies inMp and satisfies ‖m‖M p ≤ sup j ‖mj‖M p .

Proof. It follows from (2.8.16) that

sup
j

‖mj‖L∞ ≤ sup
j

‖mj‖M p =C < ∞ ;

thus the mj are uniformly bounded. Fix ϕ ∈ S . For every x ∈ Rn we have

Tmj(ϕ)(x) =
∫
Rn

ϕ̂(ξ )mj(ξ )e2πix·ξ dξ →
∫
Rn

ϕ̂(ξ )m(ξ )e2πix·ξ dξ = Tm(ϕ)(x)

by the Lebesgue dominated convergence theorem, sinceC |ϕ̂ | is an integrable upper
bound of all integrands on the left in the preceding expression. An application of
Fatou’s lemma yields that

∫
Rn

|Tm(ϕ)|p dx =
∫
Rn

liminf
j→∞

|Tmj(ϕ)|p dx

≤ liminf
j→∞

∫
Rn

|Tmj(ϕ)|p dx

≤Cp
∥∥ϕ

∥∥p
Lp ,

which implies that m ∈ Mp. This shows that

‖m‖M p ≤ liminf
j→∞

‖mj‖M p ≤C = sup
j

‖mj‖M p

proving the claimed assertion. �

Example 2.8.8. Suppose that χ[0,1] lies in Mp(R), a fact that will be shown later.
We show that m= χ[0,∞) also lies inMp(R).
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Dilations, in particular property (2.8.3) with t = 1/ j, give that mj = χ[0, j] lie
in Mp(R) and ‖mj‖M p = ‖m1‖M p for j ∈ Z+. Proposition 2.8.7 then yields that
‖m‖M p ≤ ‖m1‖M p .

Exercises

2.8.1. Let 1< p< ∞.
(a) Let m ∈ L∞(Rn) satisfy m∨ ∈ L1(Rn). Show that ‖m‖M p(Rn) ≤ ‖m∨‖L1(Rn).

(b) If m lies in L1(Rn)∩L2(Rn) prove that m̂ lies inMp(Rn).
(c) Use part (a) to conclude that S (Rn) is contained inMp(Rn).

2.8.2. Let 1< p< ∞.
(a) If m ∈ Mp(Rn) and g ∈ L1(Rn), prove that g∗m lies inMp(Rn).
(b) Let g be a function on Rn that satisfies |g(x)| ≤ A |x|−nmin(|x|γ , |x|−γ) for

some γ > 0,
∫
Rn g(x)dx �= 0, and suppose that gε(x) = ε−ng(ε−1x) satisfies

sup
ε>0

∥∥gε ∗m∥∥
M p(Rn) < ∞ ,

where m ∈ L∞(Rn). Prove that m ∈ Mp(Rn).
[
Hint: Use Theorem 2.5.7.

]

2.8.3. Let (m1 ⊗·· ·⊗mn)(y1, . . . ,yn) = m1(y1) · · ·mn(yn), mj : R → C, y j ∈ R.
(a) Verify that ifmj ∈Mp(R) for j= 1, . . . ,n, thenm1⊗·· ·⊗mn lies inMp(Rn).
(b) Does the function (ξ1,ξ2) �→ sin7(3ξ1+4ξ2)cos8(5ξ1+6ξ2) lie inMp(R2)?[

Hint: Write Tm1⊗···⊗mn = T (1)
m1 ◦ · · · ◦T (n)

mn , where T
( j)
mj acts on the jth variable only.

]

2.8.4. Assume that χ[0,1] lies inMp(R)
(a) Show that for all a,b satisfying −∞ < a< b< ∞ we have

‖χ[a,b]‖M p = ‖χ[0,1]‖M p .

(b) Prove that
‖χ(a,b)‖M p ≤ ‖χ[0,1]‖M p

when −∞ ≤ a< b ≤ ∞. Conclude that ‖χ[0,1]‖M p(R) ≥ 1.

2.8.5. Let 1 < p < ∞ and assume that χ[0,1] lies in Mp(R). Suppose that m is a
bounded and differentiable function on the line with the properties limξ→±∞m(ξ ) =
0 and m′ ∈ L1(R). Prove that m ∈ Mp(R).

2.8.6. Suppose that χ[0,∞) lies inMp(R).
(a) Show that the characteristic function of every half-plane lies inMp(R2).
(b) Show that the characteristic function of every triangle lies in Mp(R2).
(c) Show that the characteristic function of every polygon lies inMp(R2).
(d) Show that the characteristic function of every angle lies inMp(R2).
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2.9 Van der Corput Lemma

We end this chapter by discussing how to obtain bounds for one-dimensional oscil-
latory integrals with phases that are not necessarily linear functions. For instance,
we study the behavior of oscillatory integrals of the type

∫
|t|≤1 e

−2πiξ t2dt as ξ → ∞.

If the function t2 in the exponent is replaced by t, then the integral decays like ξ −1

as ξ → ∞; however, the presence of the quadratic phase t2 is responsible for the
slower decay ξ −1/2 as ξ → ∞. Estimates in this sort are contained in the following
lemma, which is the main result of this section.

Lemma 2.9.1. (Van der Corput lemma) Let λ > 0 and −∞ < a< b< ∞. Consider
a real-valued function u defined on an open subset of R that contains [a,b].
(a) Suppose that u ∈ C 2, u′ is monotonic, and satisfies |u′| ≥ 1 on [a,b]. Then we
have ∣∣∣∣

∫ b

a
eiλu(t)dt

∣∣∣∣≤ 3
λ
. (2.9.1)

(b) Suppose that u ∈ C k+1 for some k ∈ Z+, k ≥ 2, and satisfies |u(k)| ≥ 1 on [a,b].
Then we have ∣∣∣∣

∫ b

a
eiλu(t)dt

∣∣∣∣≤ 5 ·2k−1 −2

λ 1/k
. (2.9.2)

Proof. (a) Without loss of generality we may assume that u′ ≥ 1 as we can always
replace u by −u noting that in this case the integral in (2.9.1) becomes the complex
conjugate of the former. Notice that as u′ is monotonic and C 1, then so is 1/u′
and consequently 1/u′ is differentiable and its derivative is either strictly positive or
strictly negative. We write

∫ b

a
eiλu(t)dt =

∫ b

a

1
iλu′(t)

iλu′(t)eiλu(t)dt

=
1

iλu′(b)
eiλu(b) − 1

iλu′(a)
eiλu(a) − 1

iλ

∫ b

a
eiλu(t)

( 1
u′
)′
(t)dt

via an integration by parts. Taking absolute values and using that u′ ≥ 1 and that
|(1/u′)′| = (1/u′)′ or |(1/u′)′| = −(1/u′)′ on [a,b] we conclude that

∣∣∣∣
∫ b

a
eiλu(t)dt

∣∣∣∣≤ 2
λ
+

1
λ

∫ b

a

∣∣∣
( 1
u′
)′
(t)
∣∣∣dt = 2

λ
+

1
λ

∣∣∣ 1
u′(b)

− 1
u′(a)

∣∣∣≤ 3
λ
.

(b) We will derive the case k = 2 from the case k = 1 [Case (a)], the case k = 3
from the case k= 2, etc. To argue by induction, we may suppose that for some k ≥ 2
there is a positive constant C(k−1) such that the estimate

∣∣∣∣
∫ b

a
eiλv(t)dt

∣∣∣∣≤C(k−1)λ− 1
k−1 (2.9.3)
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holds for all λ > 0, for all intervals [a,b], and all C k functions v on an open set
containing [a,b]which satisfy |v(k−1)| ≥ 1 on [a,b]. Then for our fixedC k+1 function
u which satisfies |u(k)| ≥ 1 on [a,b] we will prove that

∣∣∣∣
∫ b

a
eiλu(t)dt

∣∣∣∣≤C(k)λ− 1
k (2.9.4)

for some constant C(k) explicitly related to C(k−1). To prove (2.9.4) for k = 2 we
need to use (2.9.3) when k = 2, i.e., the result proved in Case (a). But when k = 2,
the hypothesis |u′′| ≥ 1 implies that u′′ ≥ 1 or u′′ ≤ −1, thus u′ is monotonic. Thus
the additional assumption of the monotonicity of u′ in Case (a) will automatically
hold. This additional hypothesis is not needed for k ≥ 2.

We now focus on establishing (2.9.4) assuming (2.9.3). As we may replace u
by −u, there is no loss of generality to assume that u(k) ≥ 1. As u(k−1) is strictly
increasing, the following cases are the only possibilities that appear:

(i) u(k−1)(a) ≥ 0. (See Figure 2.2.) Then for 0 < δ < b− a and a+ δ < x < b we
have

u(k−1)(x) = u(k−1)(x)−u(k−1)(a)+u(k−1)(a) = u(k−1)(a)+u(k)(ξ )(x−a)> δ ,

for some ξ ∈ (a,x). Therefore, when 0< δ < b−a, applying (2.9.3) with v= u/δ
we obtain

I =
∣∣∣∣
∫ b

a
eiλu(t)dt

∣∣∣∣≤
∣∣∣∣
∫ a+δ

a
eiλu(t)dt

∣∣∣∣+
∣∣∣∣
∫ b

a+δ
eiλu(t)dt

∣∣∣∣≤ δ +C(k−1)(λδ )−
1

k−1 .

Note that the same estimate is valid when δ ≥ b−a, as in this case I ≤ b−a ≤ δ .

Fig. 2.2 Case (i) Fig. 2.3 Case (ii)
Fig. 2.4 Case (iii)
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(ii) u(k−1)(b) ≤ 0. (See Figure 2.3.) Then for 0 < δ < b− a and a < x < b− δ we
have

−u(k−1)(x) = u(k−1)(b)−u(k−1)(x)−u(k−1)(b) = −u(k−1)(b)+u(k)(ξ )(b− x)>δ ,

for some ξ ∈ (x,b). Therefore, if δ < b−a, applying (2.9.3) with v= u/δ we obtain

I =
∣∣∣∣
∫ b

a
eiλu(t)dt

∣∣∣∣≤
∣∣∣∣
∫ b−δ

a
eiλu(t)dt

∣∣∣∣+
∣∣∣∣
∫ b

b−δ
eiλu(t)dt

∣∣∣∣≤C(k−1)(λδ )−
1

k−1 +δ .

This estimate also holds if δ ≥ b−a, as I ≤ b−a ≤ δ ≤C(k−1)(λδ )−
1

k−1 +δ .
(iii) u(k−1)(c) = 0 for some c ∈ (a,b). (See Figure 2.4.) For any δ > 0 with
δ <min(b− c,c−a) we have

u(k−1)(x) = u(k−1)(x)−u(k−1)(c) = u(k)(ξ )(x− c)> δ , if c+δ < x< b

for some ξ ∈ (c,x) or

−u(k−1)(x) = u(k−1)(c)−u(k−1)(x) = u(k)(ξ )(c− x)> δ , if a< x< c−δ ,

for some ξ ∈ (x,c). Applying the induction hypothesis, we write

I =
∣∣∣∣
∫ b

a
eiλu(t)dt

∣∣∣∣≤
∣∣∣∣
∫ c−δ

a
eiλu(t)dt

∣∣∣∣+
∣∣∣∣
∫ c+δ

c−δ
eiλu(t)dt

∣∣∣∣+
∣∣∣∣
∫ b

c+δ
eiλu(t)dt

∣∣∣∣
≤C(k−1)(λδ )−

1
k−1 +2δ +C(k−1)(λδ )−

1
k−1

= 2C(k−1)(λδ )−
1

k−1 +2δ .

This estimate is also valid when δ ≥ min(b− c,c− a). For instance, in the case
c−δ ≤ a and c+δ < bwe estimate the integral over [a,c+δ ] by c+δ −a≤ 2δ and

the integral over [c+δ ,b] byC(k−1)(λδ )−
1

k−1 . We argue similarly when c−δ > a
and c+δ ≥ b. Finally, in the case δ ≥ max(b− c,c−a) we use I ≤ b−a ≤ 2δ .

Thus, in all three cases (i), (ii), (iii), and for any δ > 0 we have proved
∣∣∣∣
∫ b

a
eiλu(t)dt

∣∣∣∣≤ 2C(k−1)(λδ )−
1

k−1 +2δ .

Choosing δ = λ− 1
k we finally derive the estimate

∣∣∣∣
∫ b

a
eiλu(t)dt

∣∣∣∣≤ (2C(k−1)+2)λ− 1
k =C(k)λ− 1

k ,

where C(k) = 2C(k−1)+2. As C(1) = 3 we obtain C(k) = 5 ·2k−1 −2. �

Example 2.9.2. Let k ∈ Z+ and k ≥ 2. We have the estimate
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∣∣∣∣
∫ b

0
e−2πiξ tkdt

∣∣∣∣≤ 5 ·2k−1 −2

(2πk!)1/k
|ξ |− 1

k (2.9.5)

for all ξ �= 0 and any b > 0. Indeed, we apply Lemma 2.9.1 (b) with u(t) =
−(sgnξ ) tk/k!, which satisfies |u(k)| ≥ 1 to deduce (2.9.5). In Exercise 2.9.2
estimate (2.9.5) is extended to noninteger values of k.

However, on an interval of the form [a,b], where 0 < a < b < ∞, applying
Lemma 2.9.1 (a) to −(sgnξ ) tk/kak−1, we obtain the better estimate (in |ξ | �= 0)

∣∣∣∣
∫ b

a
e−2πiξ tkdt

∣∣∣∣≤ 3
2πkak−1 |ξ |−1. (2.9.6)

Clearly estimate (2.9.6) is better than (2.9.5) in terms of the decay of |ξ | → ∞, but
obviously this gets worse as a ↓ 0+ if k > 1.

As the previous example indicates, in many cases one does not have |u(k)| ≥ 1,
but |u(k)| ≥ c0 for some constant c0. Then we have to replace u by u/c0 and λ by
λc0. We state this situation as a corollary.

Corollary 2.9.3. Let λ ,c0 > 0 and −∞ < a< b< ∞. Let u be a continuously differ-
entiable function on an open subset of R that contains [a,b].
(a) Suppose that u′ is monotonic and satisfies |u′| ≥ c0 on [a,b]. Then

∣∣∣∣
∫ b

a
eiλu(t)dt

∣∣∣∣≤ 3
λc0

.

(b) Let k ≥ 2. Suppose that u is of class C k and |u(k)| ≥ c0 on [a,b]. Then
∣∣∣∣
∫ b

a
eiλu(t)dt

∣∣∣∣≤ 5 ·2k−1 −2

(λc0)1/k
.

The proof of this corollary has already been discussed.

Exercises

2.9.1. Show that for any real ξ satisfying |ξ | ≥ 1 and any k ∈ Z with k ≥ 2 we have
∣∣∣∣
∫ 1

|ξ |−
1

k−1
e−iξ tkdt

∣∣∣∣≤ 1
2k

.

[
Hint: Use (2.9.6).

]

2.9.2. Show that for any γ > 1 and γ /∈ Z and λ ,b> 0 we have

∣∣∣∣
∫ b

0
eiλ t

γ
dt

∣∣∣∣≤
1+ 3

γ

λ 1/γ .
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[
Hint: If λ−1/γ < b, split the integral over the intervals [0,λ−1/γ ] and [λ−1/γ ,b] and
apply Corollary 2.9.3 (a) to estimate the integral over the second interval.

]

2.9.3. Let λ > 0, d > 1, and 0 < b ≤ 1
e − c, where 0 < c < 1

e . Prove the following
assertions:∣∣∣∣

∫ 1

0
eiλ t log t dt

∣∣∣∣≤ 8√
λ
,

∣∣∣∣
∫ d

1
eiλ t log t dt

∣∣∣∣≤ 3
λ
,

∣∣∣∣
∫ b

0
eiλ t log t dt

∣∣∣∣≤ 3
λce

,

[
Hint: For the last integral use that | log(1− ce)| ≥ ce.

]

2.9.4. Let a,b,k,λ and u be as in Lemma 2.9.1 and let ϕ be a C k function on an
open set containing the interval [a,b]. Show that

∣∣∣∣
∫ b

a
ϕ(t)eiλu(t)dt

∣∣∣∣≤ 5 ·2k−1 −2

λ 1/k

[
|ϕ(b)|+

∫ b

a
|ϕ ′(t)|dt

]

with the additional hypothesis that u′ is monotonic when k = 1. (The expression in
the brackets can be replaced by ϕ(a) if ϕ is positive and decreasing.)

2.9.5. Let k ∈ Z+. Prove that there is a positive constant ck such that

sup
λ∈R

sup
0<ε<1

∣∣∣∣
∫

ε≤|t|≤1
eiλ t

k dt
t

∣∣∣∣≤ ck.

[
Hint: For |λ | ≤ 1 use the inequality |eiλ tk −1| ≤ |λ tk|. If |λ | ≥ 1 and ε < |λ |−1/k

split the domains of integration into the regions |t| ≤ |λ |−1/k and |t| ≥ |λ |−1/k and
use Exercise 2.9.4 in the second case. If ε ≥ |λ |−1/k modify the previous argument.

]

2.9.6. Show that

lim
λ→0+

∫ ∞

1
eit
(
1− e−it3λ )dt

t
= 0.

[
Hint: For λ > 10 split the integral into the parts:

I =
∫ 1/

√
λ

1/
√
6λ

eit
(
1− e−it3λ )dt

t
,

II =
∫ 1/

√
6λ

1
eit
(
1− e−it3λ )dt

t
,

III =
∫ ∞

1/
√

λ
eit
(
1− e−it3λ )dt

t
,

and apply the Riemann–Lebesgue lemma and Exercise 2.9.4 for part I. Parts II and
III can be handled by integrating by parts.

]



Chapter 3
Singular Integrals

3.1 The Hilbert Transform

Informally speaking, the Hilbert transform is given by convolution with 1/x on the
real line. But as 1/x is not integrable, some care is needed to properly define this
operation. This can be achieved by considering a tempered distribution that coin-
cides with 1/x away from the origin.

We define a linear functionalW0 on S (R) as follows:

〈
W0,ϕ

〉
= lim

ε→0

∫

ε≤|x|≤1

ϕ(x)
x

dx+
∫

|x|≥1

ϕ(x)
x

dx, ϕ ∈ S (R). (3.1.1)

As the function 1/x has integral zero over [−1,−ε]
⋃
[ε,1], we replace ϕ(x) by

ϕ(x)− ϕ(0) in the first integral in (3.1.1). Using the fact that (ϕ(x)− ϕ(0))/x is
bounded by ‖ϕ ′‖L∞ , we deduce that the limit in (3.1.1) exists. To verify thatW0 lies
inS ′(R) we notice that

∣∣〈W0,ϕ
〉∣∣≤ 2

∥∥ϕ ′∥∥
L∞ +2sup

x∈R
|xϕ(x)| = 2

[
ρ0,1(ϕ)+ρ1,0(ϕ)

]
. (3.1.2)

Definition 3.1.1. The Hilbert transform of ϕ ∈ S (R) is defined by

H(ϕ)(x) =
1
π
(ϕ ∗W0)(x) =

1
π
lim
ε→0

∫

|t|≥ε

ϕ(x− t)
t

dt . (3.1.3)

Limits of integrals as the one in (3.1.3) can also be written without a limit. A prin-
cipal value integral is an improper integral of the form

p.v.
∫

R

ϕ(x− t)
t

dt = lim
ε→0

∫

|t|≥ε

ϕ(x− t)
t

dt .

Thus the Hilbert transform of a Schwartz function is a principal value integral.
According to Definition 3.1.1, the Hilbert transform of a Schwartz function ϕ is
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H(ϕ)(x) =
1
π

lim
ε→0

∫

|t|≥ε

ϕ(x− t)
t

[
χ|t|<1+χ|t|≥1

]
dt (3.1.4)

=
1
π

∫

|t|<1

ϕ(x− t)−ϕ(x)
t

dt+
1
π

∫

|t|≥1

ϕ(x− t)
t

dt

= − 1
π

∫

|t|<1

∫ 1

0
ϕ ′(x− tθ

)
dθ dt+

1
π

∫

|t|≥1

ϕ(x− t)
t

dt. (3.1.5)

Remark 3.1.2. H(ϕ) is also well defined for other classes of functions ϕ .
(a) Let us assume that |ϕ(t)| ≤ C(1+ |t|)−δ for some C,δ > 0 so that the second
integral in (3.1.5) converges. Then H(ϕ)(x) is well defined if ϕ is a C 1 function,
since in this case the first integral in (3.1.5) also converges for all real x.
(b) More generally, if for a given x ∈ R there is an open interval (x− δx,x+δx) on
whose closure ϕ is continuously differentiable, then H(ϕ)(x) is defined for this x.
To make sense of this, we simply replace the intervals |t| < 1 and |t| ≥ 1 in (3.1.4)
and (3.1.5) by |t| < δx and |t| ≥ δx, respectively. An example of such a situation is
ϕ = χ[a,b] for some a < b, x ∈ R\{a,b}, and δx =min(|x−a|, |x−b|)/2 > 0.
(c) Given an integrable function g and x∈R such that the function t 	→ 1

|t| |g(x−t)| is
integrable on the line, then the limit in (3.1.4) exists by the LDCT and thus H(g) is
well defined at this given x. For instance, this happens when g has compact support
and x lies outside the support of g. On this, see Example 3.1.4.

Remark 3.1.3. Let η be an even smooth function supported on [−2,2] and equal
to 1 on [−1,1]. Then the splitting 1 = χ|t|<1+ χ|t|≥1 in (3.1.4) can be replaced by
1= η(t)+1−η(t). This yields the following equivalent identity for H(ϕ):

H(ϕ)(x) = − 1
π

∫

R

∫ 1

0
ϕ ′(x− tθ

)
dθ η(t)dt+

1
π

∫

R
ϕ(x− t)

1−η(t)
t

dt. (3.1.6)

Example 3.1.4. Let ϕ be a C 1 function on the line with compact support. Then for
some constant C (depending on ϕ) one has

|H(ϕ)(x)| ≤ C
1+ |x| (3.1.7)

for all real x. Indeed, (3.1.5) implies that H(ϕ)(x) is bounded everywhere, and this
yields (3.1.7) for small x. If ϕ is supported in [−K,K] (for some K > 1), then for
|x| > 2K the first integral in (3.1.5) is zero, while the second integral in (3.1.5) can
be written as

1
π

∫

|x−t|≥1

ϕ(t)
x− t

dt ,

whose absolute value is bounded by 1
π ‖ϕ‖L1 2

|x| , as

|x− t| ≥ |x|− |t| ≥ |x|−K ≥ |x|/2
when |x| ≥ 2K and |t| ≤ K. This implies (3.1.7) for large values of x.
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Definition 3.1.5. The truncated Hilbert transform (at height ε) of a function f in
Lp(R), 1 ≤ p < ∞, is defined by

H(ε)( f )(x) =
1
π

∫

|y|≥ε

f (x− y)
y

dy . (3.1.8)

Observe that H(ε)( f ) is well defined for all f ∈ Lp, 1≤ p< ∞. This follows from
Hölder’s inequality, since 1/|x| is integrable to the power p′ on the set |x| ≥ ε .

We discuss the example f = χ[a,b] which lies in all Lp spaces. As pointed out in
Remark 3.1.2 (b), H(χ[a,b])(x) is defined for all x /∈ {a,b}. We calculate this value.

Example 3.1.6. We begin with the observation that if A,B are nonzero and satisfy
−∞ < A < B < ∞, then we have

p.v.
∫ B

A

dt
t
= lim

ε→0

∫

|t|≥ε

χ[A,B](t)
t

dt = log
|B|
|A| . (3.1.9)

This can be shown by considering
the cases 0 < A < B < ∞, −∞ < A <
B < 0, and −∞ < A < 0 < B < ∞. In
the third case we consider the sub-
cases |A| < |B| and |A| ≥ |B|. When
|A| < |B|, taking ε < |A| we split the
interval of integration in (3.1.9) as
(A,−ε]∪ [ε, |A|)∪ [|A|, |B|) and we
notice that 1/t has vanishing inte-
gral over (A,−ε]∪ [ε, |A|). A simi-
lar argument is valid when |A| ≥ |B|.
Using (3.1.9) we obtain the follow-
ing identity:

a b

Fig. 3.1 The function H(χ[a,b])(x).

H(χ[a,b])(x) = p.v.
1
π

∫ x−a

x−b

dt
t
=

1
π
log

|x−a|
|x−b| , x /∈ {a,b} (3.1.10)

and this function is plotted in Figure 3.1.

Note, in fact, that for ε < min(|x−a|, |x−b|) we actually have

H(χ[a,b])(x) = H(ε)(χ[a,b])(x) =
1
π
log

|x−a|
|x−b| , x /∈ {a,b}.

We now give an alternative characterization of the Hilbert transform using the
Fourier transform. To achieve this we need to compute the Fourier transform of the
distributionW0 defined in (3.1.1). Recall the signum function
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sgnx=

⎧
⎪⎨

⎪⎩

+1 when x > 0,

0 when x= 0,

−1 when x < 0.

(3.1.11)

Fix a Schwartz function ϕ on R. Then

〈 1
π
Ŵ0,ϕ

〉
=

1
π
〈
W0, ϕ̂

〉
(3.1.12)

=
1
π
lim
ε→0

∫

|ξ |≥ε
ϕ̂(ξ )

dξ
ξ

=
1
π
lim
ε→0

∫

1
ε ≥|ξ |≥ε

∫

R
ϕ(x)e−2πixξ dx

dξ
ξ

= lim
ε→0

∫

R
ϕ(x)

[
1
π

∫

1
ε ≥|ξ |≥ε

e−2πixξ dξ
ξ

]
dx

= lim
ε→0

∫

R
ϕ(x)

[−i
π

∫

1
ε ≥|ξ |≥ε

sin(2πxξ )
dξ
ξ

]
dx

= lim
ε→0

∫

R
ϕ(x)

[(−i
π
sgnx

)∫

2π
ε ≥|ξ |≥2πε

sin(|x|ξ ) dξ
ξ

]
dx . (3.1.13)

Using the result of Exercise 2.2.7 we obtain that the integral inside the square
brackets in (3.1.13) converges to π as ε → 0, whenever x �= 0 (and to 0 when x= 0).
Moreover, we have (see Exercise 3.1.1)

sup
0<a<b<∞

∣∣∣∣

∫

a≤|t|≤b

sin t
t

dt

∣∣∣∣ ≤ 8. (3.1.14)

These observations allow us to use the Lebesgue dominated convergence theorem
to justify the passage of the limit inside the integral in (3.1.13). We obtain that

〈 1
π
Ŵ0,ϕ

〉
=

∫

R
ϕ(x)(−isgn(x))dx . (3.1.15)

This implies that Ŵ0 is indeed a function given by the formula

1
π
Ŵ0(ξ ) = −isgnξ . (3.1.16)

In view of identity (3.1.16) we have the following representation of H:

H(ϕ) = −i
(
ϕ̂ sgn( · ))∨

, ϕ ∈ S (R). (3.1.17)

This identity produces an alternative definition of the Hilbert transform in terms of
the Fourier transform. An immediate consequence of (3.1.17) is that

∥∥H(ϕ)
∥∥
L2 =

∥∥ϕ
∥∥
L2 , (3.1.18)
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for all ϕ ∈ S (R). This implies that H has a unique extension on L2 (still denoted
by H), which is an isometry on L2(R). Moreover, as (−isgnξ )2 = −1 on R \ {0},
we obtain that H satisfies on L2

H2 = H ◦H = −I ,

where I is the identity operator.
The adjoint operator H∗ of H is uniquely defined via the identity

∫

R
f H(g)dx=

∫

R
H∗( f ) gdx, f ,g ∈ S (R),

and we can obtain that H∗ corresponds to the multiplier −isgnξ = isgnξ by Parse-
val’s identity. We conclude that H∗ = −H, i.e., the Hilbert transform is an anti-self-
adjoint operator.

Exercises

3.1.1. Show that
sup
a>0

sup
b>a

∣
∣∣∣

∫ b

a

sin t
t

dt

∣
∣∣∣ ≤ 4.

[
Hint: Consider the cases 0 < a < b ≤ 1, a ≤ 1 < b, and 1 ≤ a < b. In the first case
use sin t ≤ t (when 0 < t ≤ 1), in the third case use integration by parts, and in the
second case combine the other cases.

]

3.1.2. Consider the function g= −χ[a, a+b
2 ] + χ[ a+b

2 ,b]. Show that for all x /∈ [a,b] we
have

0 < H(g)(x) <
1
4π

(b−a)2

(x−a)(x−b)
.

Moreover, obtain that H(g)(x) is proportional to |x|−2 as |x| → ∞.
[
Hint: Use iden-

tity (3.1.10) and that log(1+ y) < y for y > 0.
]

3.1.3. Let g be an integrable function supported in [−K,K] for some K > 0. Prove
that H(g)(x) is well defined for all x /∈ [−K,K] and that there is a constant C
(depending only on g) such that for |x| ≥ 2K we have

∣∣
∣H(g)(x)− 1

πx

∫ K

−K
g(t)dt

∣∣
∣ ≤C |x|−2.

3.1.4. Let ϕ be in S (R). Prove that H(ϕ) lies in C ∞ ∩ L∞ and that H(ϕ)(m) =
H(ϕ(m)) for any m ∈ Z+. Conclude that ϕH(ϕ) lies in S .

[
Hint: For m = 1 use

identity (3.1.5) to differentiate in x. Then use induction on m.
]

3.1.5. Let ϕ be in S (R). Prove that for any m ∈ Z+ ∪{0} there is a constant C =
C(m,ϕ) such that
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|H(ϕ(m))(x)| ≤ C
(1+ |x|)m+1 .

[
Hint: Integrate by parts in the second integral in (3.1.6) and use Exercise 1.8.4.

]

3.1.6. Let ϕ be a Schwartz function on the line and let m ∈ Z+. Prove that

H(ϕ)(x) =
2
πi

m

∑
k=1

(−1)k
ϕ̂(k−1)(0)
(2πix)k

+
1

(2πix)m
H
(
(2πi( ·))mϕ

)
(x)

for all x ∈ R\{0}. Conclude that

sup
x∈R

(1+ |x|)m+1|H(ϕ)(x)| < ∞ ⇐⇒
∫

R
tkϕ(t)dt = 0 for allk ∈ {0, . . . ,m−1}.

[
Hint: Factor xm − tm in the identity

H(ϕ)(x)− 1
(2πix)m

H
(
(2πi( ·))mϕ

)
(x) =

1
π

∫

R

xm − tm

xm
ϕ(t)
x− t

dt.

Alternatively, integrate by partsm times in
∫ ∞
0 ϕ̂(ξ )e2πixξdξ and

∫ 0
−∞ ϕ̂(ξ )e2πixξdξ .

]

3.2 Homogeneous Singular Integrals and Riesz Transforms

To extend the definition of the Hilbert transform to higher dimensions, we modify
the function 1/|x|n on Rn \ {0} in order to have integral zero over the unit sphere.
We can draw inspiration from the one-dimensional case if we write

1
x
=

sgnx
|x| =

sgn(x/|x|)
|x| , x ∈ R\{0}, (3.2.1)

and we notice that only the values of sgn on S0 = {−1,1} play a role. But on
{−1,1} the function sgn maps −1 to −1 and 1 to 1 and

∫

S0
sgnxdν = −1 ·ν({−1})+1 ·ν({1}) = −1 ·1+1 ·1= 0,

where ν here denotes counting measure on S0. This identity expresses the cancella-
tion of 1/x on the line.

To extend this idea to higher dimensions, we suppose that Ω is a bounded func-
tion of the unit sphere Sn−1 with mean value zero, i.e.,

∫

Sn−1
Ω(θ)dθ = 0 ,

where dθ here denotes surface measure on Sn−1. Then we consider the kernel
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KΩ (x) =
Ω(x/|x|)

|x|n , x ∈ Rn \{0}, (3.2.2)

which resembles the expression in (3.2.1) with Ω playing the role of sgn . The mean
value zero property of Ω introduces cancellation to KΩ and makes it have integral
zero over all annuli centered at the origin.

To be able to define a singular integral operator related to KΩ , we introduce a
distributionWΩ inS ′(Rn) by setting

〈
WΩ ,ϕ

〉
= lim

ε→0

∫

ε≤|x|≤1
KΩ (x)ϕ(x)dx+

∫

|x|>1
KΩ (x)ϕ(x)dx (3.2.3)

for ϕ ∈ S (Rn), where in the first integral ϕ(x) can be replaced by ϕ(x)− ϕ(0)
justifying its convergence. To see thatWΩ is a tempered distribution on Rn we write

∣∣〈WΩ ,ϕ
〉∣∣ =

∣∣∣
∣limε→0

∫

ε≤|x|≤1

Ω(x/|x|)
|x|n (ϕ(x)−ϕ(0))dx+

∫

|x|≥1

Ω(x/|x|)
|x|n ϕ(x)dx

∣∣∣
∣

≤ ∥∥∇ϕ
∥∥
L∞

∫

|x|≤1

|Ω(x/|x|)|
|x|n−1 dx+ sup

y∈Rn
|y| |ϕ(y)|

∫

|x|≥1

|Ω(x/|x|)|
|x|n+1 dx

≤C1
∥∥Ω

∥∥
L∞

n

∑
j=1

ρ0,e j(ϕ)+C2
∥∥Ω

∥∥
L∞ ∑

|α|≤1

ρα,0(ϕ),

for suitable C1 and C2, where ρα,β is as in (2.6.1) and we used (1.7.2) in the last
estimate. The distribution WΩ coincides with the function KΩ on Rn \ {0}. [Here
e j = (0, . . . ,1, . . . ,0) is the multi-index with 1 in the jth entry and 0 elsewhere.]

Example 3.2.1. For 1 ≤ j ≤ n, the odd functions

Ω j(θ1, . . . ,θn) = θ j (3.2.4)

on Sn−1 are bounded and have mean value zero. These give rise to kernels that are
multiples of the Riesz transforms; see Definition 3.2.6.

Definition 3.2.2. Let Ω be a bounded function on the sphere Sn−1 with mean value
zero. We denote by TΩ the singular integral operator whose kernel is the distribution
WΩ , that is,

TΩ (ϕ)(x) = (ϕ ∗WΩ )(x) = lim
ε→0

∫

|y|≥ε

Ω(y/|y|)
|y|n ϕ(x− y)dy, (3.2.5)

defined for ϕ ∈ S (Rn). For ε > 0 and f ∈ ⋃
1≤p<∞Lp(Rn) we define the truncated

singular integral operator

T (ε)
Ω ( f )(x) =

∫

|y|≥ε
f (x− y)

Ω(y/|y|)
|y|n dy . (3.2.6)

Then for ϕ ∈ S (Rn) we have
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TΩ (ϕ)(x) = lim
ε→0

T (ε)
Ω (ϕ)(x) pointwise for allx ∈ Rn.

We would like to compute the Fourier transform ofWΩ in order to determine the
L2 boundedness of TΩ . We have the following result.

Proposition 3.2.3. Let n≥ 2 and Ω ∈ L∞(Sn−1) have integral zero. Then the Fourier
transform of WΩ is the homogeneous-of-degree-zero function

ŴΩ (ξ ) =
∫

Sn−1
Ω(θ)

(
log

1
|ξ ·θ | − iπ

2
sgn (ξ ·θ)

)
dθ (3.2.7)

for all ξ ∈ Rn \{0}.
We remark that for each ξ ∈ Rn \{0}, the function

θ 	→ log
1

|ξ ·θ |
is integrable over the sphere (Appendix D3 in [31]). We also notice that in identity
(3.2.7), the variable ξ could be replaced by ξ ′ = ξ/|ξ |. Before we return to the
proof of Proposition 3.2.3, we discuss the following lemma:

Lemma 3.2.4. Let a be a nonzero real number. Then for 0 < ε < N < ∞ we have

lim
ε→0
N→∞

∫ N

ε

e−ira − cos(r)
r

dr = log
1
|a| − i

π
2
sgn a , (3.2.8)

∣∣
∣∣

∫ N

ε

e−ira − cos(r)
r

dr

∣∣
∣∣ ≤ 2

∣∣
∣ log

1
|a|

∣∣
∣+4 for all N > ε > 0. (3.2.9)

Proof. We first prove the following assertions concerning the real parts of the
expressions in (3.2.8):

lim
ε→0
N→∞

∫ N

ε

cos(ra)− cos(r)
r

dr = log
1
|a| , (3.2.10)

∣∣∣∣

∫ N

ε

cos(ra)− cos(r)
r

dr

∣∣∣∣ ≤ 2
∣∣∣ log

1
|a|

∣∣∣ for all N > ε > 0. (3.2.11)

To verify these claims, by the fundamental theorem of calculus we write1

∫ N

ε

cos(ra)− cos(r)
r

dr =
∫ N

ε

cos(r|a|)− cos(r)
r

dr

= −
∫ N

ε

∫ |a|

1
sin(tr)dt dr

= −
∫ |a|

1

∫ N

ε
sin(tr)drdt

1 The integrals
∫ |a|

1
and

∫ N|a|

N
are interpreted as −

∫ 1

|a|
and −

∫ N

N|a|
, respectively, if 0 < |a| < 1.
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= −
∫ |a|

1

cos(εt)
t

dt+
∫ N|a|

N

cos(t)
t

dt

= −
∫ |a|

1

cos(εt)
t

dt+
sin(N|a|)
N|a| − sin(N)

N
+
∫ N|a|

N

sin(t)
t2

dt,

where the last line follows from an integration by parts. The penultimate equality
yields (3.2.11) by inserting absolute values inside, while the last equality yields
(3.2.10), letting ε → 0 and N → ∞.

We finally derive (3.2.8) and (3.2.9) from (3.2.10) and (3.2.11). For this we need
to know that the expressions

∣∣∣∣

∫ N

ε

sin(ra)
r

dr

∣∣∣∣=
∣∣∣∣

∫ N|a|

ε |a|
sin(r)
r

dr

∣∣∣∣ (3.2.12)

tend to π
2 as ε → 0 and N → ∞ and are bounded by 4 uniformly in ε,N and a. These

statements follow from Exercises 2.2.7 and 3.1.1. �

Let us now prove Proposition 3.2.3.

Proof. Let us set ξ ′ = ξ/|ξ | when ξ �= 0. We write

〈
ŴΩ ,ϕ

〉
=
〈
WΩ , ϕ̂

〉

= lim
ε→0

∫

|x|≥ε

Ω(x/|x|)
|x|n ϕ̂(x)dx

= lim
ε→0
N→∞

∫

ε≤|x|≤N

Ω(x/|x|)
|x|n ϕ̂(x)dx

= lim
ε→0
N→∞

∫

Rn
ϕ(ξ )

∫

ε≤|x|≤N

Ω(x/|x|)
|x|n e−2πix·ξ dx dξ (Fubini)

= lim
ε→0
N→∞

∫

Rn
ϕ(ξ )

∫

Sn−1
Ω(θ)

∫ N

ε
e−2πirθ ·ξ dr

r
dθ dξ

= lim
ε→0
N→∞

∫

Rn
ϕ(ξ )

∫

Sn−1
Ω(θ)

∫ N

ε

(
e−2πr|ξ |iθ ·ξ ′ − cos(2πr|ξ |))dr

r
dθ dξ

= lim
ε→0
N→∞

∫

Rn\{0}
ϕ(ξ )

∫

Sn−1
Ω(θ)

∫ 2π|ξ |N

2π|ξ |ε
e−isθ ·ξ ′ − cos(s)

s
dsdθ dξ

=
∫

Rn\{0}
ϕ(ξ )

∫

Sn−1
Ω(θ)

[
log

1
|ξ ′ ·θ | − iπ

2
sgn(ξ ′ ·θ)

]
dθ dξ ,

where we subtracted cos(2πr|ξ |) from the r integral, as Ω has mean value zero over
the sphere, and we used the LDCT to pass the limits inside. Lemma 3.2.4 provided
the value of the limits; moreover, the use of the dominated convergence theorem is
justified from (3.2.9) and the fact that
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∫

Rn\{0}
|ϕ(ξ )|

∫

Sn−1
|Ω(θ)|

(
2log

1
|ξ ′ ·θ | +4

)
dθdξ

≤‖Ω‖L∞

∫

Rn\{0}
|ϕ(ξ )|

∫

Sn−1

(
2log

1
|ξ ′ ·θ | +4

)
dθdξ

=‖Ω‖L∞

∫

Rn\{0}
|ϕ(ξ )|

∫

Sn−1

(
2log

1
|φ1| +4

)
dφdξ < ∞,

using the spherical change of variables θ = Aξ φ , where Aξ is an orthogonal matrix
with (Aξ )tξ ′ = e1, hence ξ ′ ·θ = ξ ′ ·Aξ φ = (Aξ )tξ ′ ·φ = e1 ·φ = φ1. For the con-
vergence of the last spherical integral see Appendix D3 in [31]. �

We wonder if ŴΩ is an essentially bounded function for every Ω ∈ L∞. As the
signum function sgn is bounded by 1, ŴΩ is essentially bounded if and only if

ess.sup
ξ ′∈Sn−1

∣∣∣
∣

∫

Sn−1
Ω(θ) log

1
|ξ ′ ·θ | dθ

∣∣∣
∣ < ∞.

Inserting absolute values inside, and using that Ω is bounded, this assertion would
be a consequence of

ess.sup
ξ ′∈Sn−1

∫

Sn−1
log

1
|ξ ′ ·θ | dθ < ∞.

But a rotation yields that for all ξ ′ ∈ Sn−1 we have
∫

Sn−1
log

1
|ξ ′ ·θ | dθ =

∫

Sn−1
log

1
|θ1| dθ ,

which is a finite constant. These observations lead to the following result.

Corollary 3.2.5. Let Ω ∈ L∞(Sn−1) have mean value zero. Then the associated TΩ ,
initially defined on S (Rn), admits a bounded extension from L2(Rn) to L2(Rn).

Definition 3.2.6. For 1 ≤ j ≤ n let Ω j(θ) = θ j be as in (3.2.4). The jth Riesz trans-
form Rj is a constant multiple of TΩ j ; precisely, it is defined by

Rj(ϕ)(x) =
Γ ( n+1

2 )

π n+1
2

(ϕ ∗WΩ j)(x) =
Γ ( n+1

2 )

π n+1
2

p.v.
∫

Rn

x j − y j
|x− y|n+1 ϕ(y)dy (3.2.13)

for ϕ ∈ S (Rn).

Proposition 3.2.7. For every ξ ∈ Rn \{0} we have

Γ ( n+1
2 )

π n+1
2

ŴΩ j(ξ ) = −i
ξ j

|ξ | . (3.2.14)

Proof. We begin with the identity
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∫

Sn−1
sgn(θk)θ j dθ =

⎧
⎪⎪⎨

⎪⎪⎩

0 if k �= j,

∫

Sn−1
|θ j|dθ if k = j.

(3.2.15)

This is proved by noting that for k �= j, sgn(θk) has a constant sign on the hemi-
spheres θk > 0 and θk < 0, on either of which the function θ 	→ θ j has integral zero.
It suffices to prove (3.2.14) for a unit vector ξ . Given ξ ∈ Sn−1, pick an orthogonal
n×n matrix A= (akl)k,l such that Ae j = ξ . Then the jth column of the matrix A is
the vector (ξ1,ξ2, . . . ,ξn)t . We have
∫

Sn−1
sgn(ξ ·θ)θ j dθ =

∫

Sn−1
sgn(Ae j ·θ)θ j dθ

=
∫

Sn−1
sgn(e j ·Atθ)(AAtθ) j dθ

=
∫

Sn−1
sgn(e j ·θ)(Aθ) j dθ

=
∫

Sn−1
sgn(θ j)(a j1θ1+ · · ·+ξ jθ j+ · · ·+a jnθn)dθ

= ξ j

∫

Sn−1
sgn(θ j)θ j dθ + ∑

1≤m�= j≤n

a jm

∫

Sn−1
sgn(θ j)θm dθ

=
ξ j

|ξ |
∫

Sn−1
|θ j|dθ +0=

ξ j

|ξ |
∫

Sn−1
|θ1|dθ ,

by rotational invariance. The identity in [31, Appendix D.2] gives

∫

Sn−1
|θ1|dθ =

∫ 1

−1
|s|

∫
√

1−s2 Sn−2
dϕ

ds√
1− s2

= ωn−2

∫ 1

−1
|s|(1− s2)

n−3
2 ds

= ωn−2

∫ 1

0
u

n−3
2 du=

2π n−1
2

Γ ( n+1
2 )

,

where ωn−2 = |Sn−2| = 2π n−1
2 Γ

(
n−1
2

)−1
; see [31, Appendix A.3]. Combining this

fact with (3.2.7) yields (3.2.14). �

Proposition 3.2.8. The Riesz transforms satisfy the identity

−I =
n

∑
j=1

R2
j (3.2.16)

as operators acting on L2. Here I is the identity operator and R2
j denotes R j ◦Rj.
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Proof. Use the Fourier transform and the identity

n

∑
j=1

(−iξ j/|ξ |)2 = −1

to deduce (3.2.16) for any f in L2(Rn). �

Exercises

3.2.1. Show that the nonlinear operator

ϕ 	→ Q(ϕ) =
( n

∑
j=1

|Rj(ϕ)|2
)1/2

satisfies ‖Q(ϕ)‖L2(Rn) = ‖ϕ‖L2(Rn) for all ϕ ∈ S (Rn).

3.2.2. Prove that for ϕ inS (Rn) and 1 ≤ j,k ≤ n and all x ∈ Rn we have

∂ j∂kϕ(x) = −RjRkΔϕ(x).

Here Δϕ = ∑n
j=1 ∂ 2

j ϕ is the Laplacian of ϕ , given by multiplication by −4π2|ξ |2
on the Fourier transform. Conclude that

∥∥∂ j1 · · ·∂ j2mϕ
∥∥
L2(Rn) ≤ ∥∥Δmϕ

∥∥
L2(Rn)

for all m ∈ Z+, j1, . . . , j2m ∈ {1, . . . ,n} and all ϕ ∈ S (Rn).

3.2.3. Let cn = Γ ( n+1
2 )π− n+1

2 and ϕ ∈ C ∞(Rn) be supported in B(0,K) for some
K > 0. Prove that for any δ > 0 and any |x| ≥ (1+δ )K we have

∣
∣∣∣Rj(ϕ)(x)− cn

x j
|x|n+1

∫

Rn
ϕ(y)dy

∣
∣∣∣ ≤ ncn ( 1+δ

δ )n+1

|x|n+1

∫

Rn
|ϕ(y)| |y|dy.

3.2.4. Use identity (2.7.5) with z = −n+ 1 to obtain another proof of Proposi-
tion 3.2.7.

[
Hint: First show that ∂ j|x|−n+1 = (1− n)WΩ j by comparing the action

of both distributions on a Schwartz function ϕ = ϕe+ϕo, where ϕe is even and ϕo

is odd.
]

3.2.5. For any ϕ in S (Rn) and any multi-index α prove that there is a constant
Cn,α,ϕ > 0 such that for all x ∈ Rn one has

|Rj(∂ α ϕ)(x)| ≤Cn,α,ϕ (1+ |x|)−n−|α|.
[
Hint:Use a smooth splitting as in (3.1.6) and integrate by parts to handle one term.

]
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3.3 Calderón–Zygmund Singular Integrals

In the previous two sections of this chapter we discussed singular integrals given
by convolution with distributions on Rn that are homogeneous of degree −n. In this
section we consider a class of singular integrals whose kernels are not necessarily
homogeneous distributions.

We make some remarks about the smoothness of the kernels of the Hilbert trans-
form and Riesz transforms. Note that

∣∣
∣
(1
x

)′∣∣
∣=

∣∣
∣− 1

x2

∣∣
∣=

1
|x|1+1 , x ∈ R\{0}.

Moreover,
∣∣∣∇

x j
|x|n+1

∣∣∣=

√
|x|2+ x2j(n2 −1)

|x|n+2 ≤ n
|x|n+1 (3.3.1)

and so the kernels of the Hilbert and the Riesz transforms have the common smooth-
ness property

∣∣∣∇K(x)
∣∣∣ ≤ A′

2

|x|n+1 , x ∈ Rn \{0} (3.3.2)

for some positive constant A′
2. This smoothness is captured by the weaker condition

sup
y �=0

∫

|x|≥2|y|
|K(x− y)−K(x)|dx= A2 < ∞ ,

for some other constant A2. Indeed, assuming (3.3.2), for y ∈ Rn \{0} we write

∫

|x|≥2|y|
|K(x− y)−K(x)|dx=

∫

|x|≥2|y|

∣∣∣∣

∫ 1

0
∇K(x−θy) · ydθ

∣∣∣∣dx

≤
∫

|x|≥2|y|

∫ 1

0

A′
2|y|

|x−θy|n+1 dθ dx

≤
∫

|x|≥2|y|

∫ 1

0

A′
2 |y|

(|x|/2)n+1 dθ dx

≤ 2n+1|y|A′
2 ωn−1

∫ ∞

r=2|y|
rn−1

rn+1 dr

= 2n A′
2 ωn−1 = A2,

as |x−θy| ≥ |x|− |y| ≥ |x|/2 when |x| ≥ 2|y|. Here ωn−1 = |Sn−1|.
Based on this discussion, we consider a measurable functionK onRn\{0}which

satisfies the size condition

|K(x)| ≤ A1

|x|n < ∞ , (3.3.3)

the smoothness condition
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sup
y �=0

∫

|x|≥2|y|
|K(x− y)−K(x)|dx= A2 < ∞ , (3.3.4)

and the cancellation condition

sup
δ>0

sup
N>δ

∣
∣∣∣

∫

δ<|x|<N

K(x)dx
∣
∣∣∣= A3 < ∞ , (3.3.5)

for some A1,A2,A3 > 0. Such functions will give rise to kernels of general singular
integrals that are not necessarily of homogeneous type. Condition (3.3.4) is often
referred to as Hörmander’s integral smoothness condition.

Taking N = 1, condition (3.3.5) implies that there are δk in (0,1), k = 1,2, . . . ,
such that δk → 0 and that

lim
k→∞

∫

1≥|x|≥δk
K(x)dx= L (3.3.6)

exists. Obviously, |L| ≤ A3. We define a tempered distributionW associated with K
and the choice of sequence δk as follows:

〈W,ϕ〉 =
∫

|x|≤1
K(x)(ϕ(x)−ϕ(0))dx+ϕ(0)L+

∫

|x|≥1
K(x)ϕ(x)dx (3.3.7)

for ϕ ∈ S . Equivalently, we write the identity in (3.3.7) as

〈W,ϕ〉 = lim
k→∞

∫

|x|≥δk
K(x)ϕ(x)dx . (3.3.8)

Let us now show that the functionalW defined in this way is an element ofS ′(Rn).
Using (3.3.7) we obtain the estimate

∣∣〈W,ϕ〉∣∣≤ ∥∥∇ϕ
∥∥
L∞

∫

|x|≤1
|x| |K(x)|dx+ |L|‖ϕ‖L∞ +

∫

|x|≥1
|K(x)ϕ(x)|dx

≤
(∫

|x|≤1

A1 dx
|x|n−1

)∥
∥∇ϕ

∥
∥
L∞ +A3

∥
∥ϕ

∥
∥
L∞ +

(∫

|x|≥1

A1 dx
|x|n+1

)
sup
x∈Rn

|x||ϕ(x)|

≤ A1ωn−1

n

∑
j=1

ρ0,e j(ϕ)+A3ρ0,0(ϕ)+A1ωn−1

n

∑
j=1

ρe j ,0(ϕ),

recalling the definition of ρα,β given in (2.6.1). This shows thatW lies in S ′(Rn).
Finally, we notice that if ϕ is a Schwartz function supported in Rn \{0}, then

〈W,ϕ〉 =
∫

Rn
K(x)ϕ(x)dx .

ThusW coincides with K on Rn \{0}.
Definition 3.3.1. A Calderón–Zygmund singular integral is an operator given by
convolution with a distribution W , associated as in (3.3.8) with a sequence δk in
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(0,1) that tends to zero and with a kernel K that satisfies (3.3.3), (3.3.4), and (3.3.5).
Precisely it is an operator of the form

TW (ϕ) = ϕ ∗W, ϕ ∈ S (Rn).

For ϕ ∈ S (Rn) and x ∈ Rn, we can explicitly write

TW (ϕ)(x) = lim
k→∞

∫

|y|≥δk
K(y)ϕ(x− y)dy (3.3.9)

= Lϕ(x)+
∫

|y|≤1
K(y)(ϕ(x− y)−ϕ(x))dy+

∫

|y|≥1
K(y)ϕ(x− y)dy.

Example 3.3.2. Let τ be a nonzero real number and let K(x) = 1
|x|n+iτ be defined

for x �= 0. Notice that (3.3.3) is clearly satisfied for K and also (3.3.4) is valid, as
|∇K(x)| ≤ |n+ iτ| |x|−n−1. Finally, (3.3.5) is also satisfied, as for 0 < ε < N < ∞,

∣∣∣∣

∫

ε<|x|<N

1
|x|n+iτ dx

∣∣∣∣= ωn−1

∣∣∣∣
N−iτ − ε−iτ

−iτ

∣∣∣∣ ≤ 2ωn−1

|τ| = A3 .

Consider the following two sequences δ 1
k = e−(2k+1)π/τ and δ 2

k = e−2kπ/τ indexed
by k = 1,2, . . . if τ > 0 and by k = −1,−2,−3, . . . if τ < 0. Both sequences lie in
(0,1) and tend to zero. For a Schwartz function ϕ on Rn define distributions

〈
W 1,ϕ

〉
= lim

k→∞

∫

|x|≥δ 1
k

ϕ(x)
dx

|x|n+iτ (3.3.10)

and
〈
W 2,ϕ

〉
= lim

k→∞

∫

|x|≥δ 2
k

ϕ(x)
dx

|x|n+iτ . (3.3.11)

We have that
∫

δ 1
k <|x|<1

1
|x|n+iτ dx= ωn−1

1−iτ − (δ 1
k )

−iτ

−iτ
= ωn−1

1− e−(2k+1)iπ

−iτ
=

2iωn−1

τ
,

∫

δ 2
k <|x|<1

1
|x|n+iτ dx= ωn−1

1−iτ − (δ 2
k )

−iτ

−iτ
= ωn−1

1− e−2kiπ

−iτ
= 0,

and as these expressions are constant for all integers k, they have limits L1 =
2iωn−1/τ and L2 = 0 as |k| → ∞, respectively. In general, note that the subsequence

εk = e−(2k+α)π/τ yields the limit ωn−1
1−e−iπα

−iτ which varies with α ∈ [0,1].
Notice that bothW 1 andW 2 agree on Rn \{0} but are not the same tempered dis-

tribution. In fact, it is not hard to see thatW 1−W 2 = cδ0,where c= 2iωn−1
τ . Thus the

associated Calderón–Zygmund singular integral operators are TW 1
and TW 2

, which
differ by a constant multiple of the identity operator.
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In general, the difference of two Calderón–Zygmund operators (Definition 3.3.1)
associated with the same function K on Rn \{0} and two sequences δ 1

k and δ 2
k is cI,

where c is a constant satisfying |c| ≤ 2A3.

Exercises

3.3.1. Prove the equality in (3.3.1).

3.3.2. Let F be a bounded C 1 function on the real line with F ′ in L∞(R) that has
the property

sup
−∞<A<B<∞

∣∣∣∣

∫ B

A
F(t)dt

∣∣∣∣< ∞.

Prove that the kernel

K(x) =
F(log |x|)

|x|n , x ∈ Rn \{0},

satisfies (3.3.3), (3.3.4), and (3.3.5). An example of such a function is F(t) = sin t/t.
A multitude of examples arise by taking F = G′, where G,G′,G′′ are bounded.

3.3.3. Let δ > 0 and η be a smooth function on the real line supported in [−2,2]
and equal to 1 on the [−1,1]. Show that the kernels

K1(x) =
sin(|x|−δ )

|x|n
(
1−η(|x|)), K2(x) =

sin(|x|δ )
|x|n η(|x|),

defined on Rn \{0}, satisfy (3.3.3), (3.3.2), and (3.3.5).

3.3.4. Suppose that a function K on Rn \ {0} satisfies condition (3.3.3) with con-
stant A1 and condition (3.3.4) with constant A2. Let A′

1 = A1ωn−1 log2.
(a) Show that the functions K(x)χ|x|≥ε also satisfy condition (3.3.4) uniformly in
ε > 0 with constant max(A′

1,A2) in place of A2.
(b) Use part (a) to obtain that the truncations K(x)χ|x|<N satisfy (3.3.4) uniformly in
N > 0, with constant 2max(A′

1,A2).
(c) Deduce from parts (a), (b) that the double truncations K(ε ,N)(x) = K(x)χε≤|x|<N
also satisfy condition (3.3.4) uniformly in N,ε > 0 with constant 2max(A′

1,A2).[
Hint: Part (b):WriteK(x)χ|x|<N =K(x)−K(x)χ|x|≥N . Part (c): UseK(x)χε≤|x|<N =
K(x)χ|x|≥ε −K(x)χ|x|≥N .

]

3.3.5. (a) Prove that for all x,y ∈ Rn that satisfy 0 �= x �= y we have
∣∣∣
∣
x− y
|x− y| − x

|x|
∣∣∣
∣ ≤ 2

|y|
|x| .

(b) Let Ω be a bounded function with mean value zero on the sphere Sn−1. Suppose
that for some α ∈ (0,1), Ω satisfies the Lipschitz condition
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|Ω(θ1)−Ω(θ2)| ≤ B0|θ1 −θ2|α

for all θ1,θ2 ∈ Sn−1. Prove that K(x) =Ω(x/|x|)/|x|n satisfies condition (3.3.4) with
constant at most a multiple of B0+‖Ω‖L∞ .[
Hint: Part (a): Add and subtract x−y

|x| . Part (b): Use part (a).
]

3.4 L2 Boundedness of Calderón–Zygmund Operators

We now turn to the issue of the L2(Rn) boundedness of operators given by convolu-
tion with distributionsW associated with sequences δk ∈ (0,1) that tend to zero and
with kernels K that satisfy (3.3.3), (3.3.4), and (3.3.5). We would like to compute
the Fourier transform of the distributionW . To do this, for ϕ ∈ S (Rn), we write

〈Ŵ ,ϕ〉 = 〈W, ϕ̂〉
= lim

k→∞

∫

|x|≥δk
K(x)ϕ̂(x)dx

= lim
k→∞

∫

δk≤|x|≤k
K(x)

∫

Rn
ϕ(ξ )e−2πix·ξdξ dx

= lim
k→∞

∫

Rn
ϕ(ξ )

[∫

δk≤|x|≤k
K(x)e−2πix·ξdx

]
dξ . (3.4.1)

To be able to insert the limit inside the ξ integral, we need to show that the expres-
sions inside the square brackets (a) have a limit as k → ∞ and (b) they are bounded
(uniformly in ξ and k), so that we can justify using the LDCT.

Before achieving this goal we prove a lemma.

Lemma 3.4.1. Given A,B measurable subsets of Rn and F,G integrable functions
on A∪B, we have

∫

A
F dx−

∫

B
Gdx=

∫

B
(F −G)dx+

∫

A\B
F dx−

∫

B\A
F dx. (3.4.2)

Proof. We write
∫

A
F dx=

∫

A\B
F dx+

∫

A∩B
F dx=

∫

A\B
F dx+

∫

B
F dx−

∫

B\A
F dx,

and subtracting
∫
BGdx from both sides we deduce (3.4.2). �

We also make the observation that (3.3.3) implies
∫

R≤|x|≤2R
|K(x)|dx ≤ A1

∫

R≤|x|≤2R
|x|−n dx= ωn−1A1 log2 < ωn−1A1 (3.4.3)

uniformly in all R > 0. Here ωn−1 = |Sn−1|.
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Theorem 3.4.2. Assume that K satisfies (3.3.3), (3.3.4), and (3.3.5). Then

sup
ε>0

sup
N>ε

sup
ξ∈Rn

∣∣∣∣

∫

ε<|x|<N
K(x)e−2πix·ξ dx

∣∣∣∣ ≤ 9ωn−1A1+ A2+A3. (3.4.4)

Moreover, let W in S ′(Rn) be associated with K via a sequence δk → 0. Then Ŵ
coincides with a function on Rn \{0} which is bounded by A= 9ωn−1A1+A2+A3.

Proof. The integrals in (3.4.4) are bounded by A3 when ξ = 0, so in proving (3.4.4)
we can restrict the third supremum to Rn \{0}. Thus we fix ξ �= 0, 0 < ε < N < ∞,
and we set

K(ε ,N)(x) = K(x)χε<|x|<N .

We consider the following three cases.

Case 1: ε < |ξ |−1 < N. In this case we write ̂K(ε ,N)(ξ ) = Iε
1 (ξ )+ IN2 (ξ ), where

Iε
1 (ξ ) =

∫

ε<|x|<|ξ |−1
K(x)e−2πix·ξ dx , IN2 (ξ ) =

∫

|ξ |−1<|x|<N
K(x)e−2πix·ξ dx .

We split Iε
1 (ξ ) as

Iε
1 (ξ ) =

∫

ε<|x|<|ξ |−1
K(x)dx+

∫

ε<|x|<|ξ |−1
K(x)(e−2πix·ξ −1)dx. (3.4.5)

It follows that

|Iε
1 (ξ )| ≤ A3+2π|ξ |

∫

|x|<|ξ |−1
|x| |K(x)|dx < 7ωn−1A1+A3 (3.4.6)

uniformly in ε . Let us now examine IN2 (ξ ). Let z =
ξ

2|ξ |2 so that e2πiz·ξ = −1 and

2|z| = |ξ |−1. Via the change of variables x= x′ − z, we rewrite IN2 as

IN2 (ξ ) = −
∫

|ξ |−1<|x′−z|<N
K(x′ − z)e−2πix′·ξ dx′ ;

hence averaging gives

IN2 (ξ ) =
1
2

∫

|ξ |−1<|x|<N
K(x)e−2πix·ξdx− 1

2

∫

|ξ |−1<|x−z|<N
K(x− z)e−2πix·ξ dx .

Now use that (3.4.2) to write

IN2 (ξ ) = JN1 (ξ )+ JN2 (ξ )+ JN3 (ξ )+ JN4 (ξ )+ JN5 (ξ ),

where

JN1 (ξ ) = +
1
2

∫

|ξ |−1<|x−z|<N

(
K(x)−K(x− z)

)
e−2πix·ξ dx ,
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JN2 (ξ ) = +
1
2

∫

|ξ |−1<|x|<N
|x−z|≤|ξ |−1

K(x)e−2πix·ξ dx ,

JN3 (ξ ) = +
1
2

∫

|ξ |−1<|x|<N
|x−z|≥N

K(x)e−2πix·ξ dx ,

JN4 (ξ ) = − 1
2

∫

|ξ |−1<|x−z|<N
|x|≤|ξ |−1

K(x)e−2πix·ξ dx ,

JN5 (ξ ) = − 1
2

∫

|ξ |−1<|x−z|<N
|x|≥N

K(x)e−2πix·ξ dx .

Since 2|z| = |ξ |−1, we have

|JN1 (ξ )| ≤
1
2

∫

|ξ |−1<|x−z|

∣∣K(x)−K(x− z)
∣∣dx=

1
2

∫

2|y|<|x′|

∣∣K(x′ − y)−K(x′)
∣∣dx′

(with y= −z and x′ = x− z), which is bounded by 1
2A2, in view of (3.3.4).

Next observe that |ξ |−1 ≤ |x| ≤ 3
2 |ξ |−1 in JN2 (ξ ), while

1
2 |ξ |−1 ≤ |x| ≤ |ξ |−1 in

JN4 (ξ ); hence either of JN2 (ξ ), J
N
4 (ξ ) is bounded by 1

2ωn−1A1 by (3.4.3). Also we
have

1
2
N < N− 1

2
|ξ |−1 < |x| < N in JN3 (ξ ) (3.4.7)

and

N ≤ |x| < N+
1
2
|ξ |−1 <

3
2
N in JN5 (ξ ). (3.4.8)

Thus both JN3 (ξ ) and JN5 (ξ ) are bounded above by 1
2ωn−1A1 uniformly in N. Com-

bining these facts, we deduce

|IN2 (ξ )| <
1
2
A2+4

(1
2

ωn−1A1
)
= 2ωn−1A1+

1
2
A2. (3.4.9)

Adding estimates (3.4.6) and (3.4.9), we obtain the claimed bound in Case 1.

Case 2: ε < N ≤ |ξ |−1. Here we write
∫

ε<|x|<N
K(x)e−2πix·ξ dx=

∫

ε<|x|<N
K(x)dx+

∫

ε<|x|<N
K(x)(e−2πix·ξ −1)dx

which is bounded in absolute value by

A3+2π|ξ |
∫

|x|≤|ξ |−1
|K(x)| |x|dx ≤ 2πωn−1A1+A3 < A.
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Case 3: |ξ |−1 ≤ ε < N. In this case we write
∫

ε<|x|<N
K(x)e−2πix·ξdx=

∫

|ξ |−1<|x|<N
K(x)e−2πix·ξdx−

∫

|ξ |−1<|x|<ε
K(x)e−2πix·ξdx,

and the expression on the right is equal to IN2 (ξ )− Iε
2 (ξ ) and each one of these terms

was shown to be bounded by 2ωn−1A1+ 1
2A2 in (3.4.9). Thus we obtain the bound

4ωn−1A1+A2 < A in Case 3. Hence (3.4.4) holds in all cases.
Having proven (3.4.4), we now turn to the fact that for any ξ ∈ Rn \ {0}, the

expression inside the square brackets in (3.4.1) has a limit, which is of course
bounded by A. This fact, combined with the identity leading to (3.4.1), would imply
that Ŵ coincides with a bounded function on Rn \{0}.

Fix ξ ∈ Rn \{0} and pick k0 such that for all k ≥ k0 we have δk < |ξ |−1 < k. We
use the decomposition in Case 1 with ε = δk and N = k to show that the expressions
Iδk
1 and Ik2 have limits as k → ∞. Using (3.4.5), we see that Iδk

1 converges to

lim
k→∞

∫

δk<|x|<|ξ |−1
K(x)dx+

∫

|x|<|ξ |−1
K(x)(e−2πix·ξ −1)dx. (3.4.10)

Additionally, (3.4.7) and (3.4.8) give that

|Jk3(ξ )| ≤
1
2
A1 ωn−1 log

k

k− 1
2 |ξ |−1

, |Jk5(ξ )| ≤
1
2
A1 ωn−1 log

k+ 1
2 |ξ |−1

k
,

and hence these expressions tend to zero as k → ∞. Moreover

Jk1(ξ ) → 1
2

∫

|ξ |−1<|x−z|

(
K(x)−K(x− z)

)
e−2πix·ξ dx (3.4.11)

as k → ∞, while

Jk2(ξ ) → 1
2

∫

|ξ |−1<|x|
|x−z|≤|ξ |−1

K(x)e−2πix·ξ dx (3.4.12)

and

Jk4(ξ ) → −1
2

∫

|ξ |−1<|x−z|
|x|≤|ξ |−1

K(x)e−2πix·ξ dx (3.4.13)

as k → ∞, and all of the above are absolutely convergent integrals. The bounded
function Ŵ (ξ ) is equal to the sum of the expressions in (3.4.10), (3.4.11), (3.4.12),
and (3.4.13) when ξ �= 0. �

We finally observe that ∫

1≤|x|≤k
K(x)dx
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may not have a limit as k → ∞, and thus Ŵ (0) is not defined; see Example 3.3.2.

Theorem 3.4.2 yields that Calderón–Zygmund singular integral operators are
bounded on L2.

Corollary 3.4.3. Let W be as in Theorem 3.4.2. Then the associated operator TW

given by convolution with W has a bounded extension on L2(Rn) with bound
9ωn−1A1+A2+A3.

Proof. This is a consequence of Theorems 2.8.5 and 3.4.2. �

Exercises

3.4.1. Let f ∈ L1(Rn). Use the averaging idea in Theorem 3.4.2 to prove that

| f̂ (ξ )| ≤ 1
2

∫

Rn

∣∣ f (x)− f
(
x−ξ/(2|ξ |2))∣∣dx, ξ ∈ Rn \{0}.

Conclude that
| f̂ (ξ )| ≤ ∥∥|∇ f |∥∥L1(4|ξ |)−1

when f ∈ C 1(Rn)∩L1(Rn).

3.4.2. LetW be a tempered distribution on Rn. Suppose that the operator TW (ϕ) =
ϕ ∗W , initially defined on ϕ ∈ S (Rn), admits a bounded extension from L2(Rn) to
itself. Prove that for any ϕ ∈ S (Rn) we have

sup
x∈Rn

|(ϕ ∗W )(x)| ≤ ∥∥TW
∥∥
L2→L2

∥∥ϕ̂
∥∥
L1 .

3.4.3. Let K satisfy (3.3.3), (3.3.4), and (3.3.5) and let W ∈ S ′ be an extension
of K on Rn associated with a sequence δ j ∈ (0,1) that tends to zero. Let ϕ be
a compactly supported C 1 function on Rn with mean value zero. Prove that the
function TW (ϕ) = ϕ ∗W lies in L1(Rn).

3.4.4. Let K andW be as in the preceding exercise and suppose that Ŵ is noncon-
stant and homogeneous of degree zero. Suppose that f ∈ L1(Rn)∩L2(Rn). Assum-
ing that TW ( f ) is integrable over Rn, prove that f must have integral zero.

3.4.5. Suppose that Ω ∈ S1 is defined by Ω(θ) = χI − χJ , where I is an interval2

of length less than 1/2 in S1 and J = {θ ∈ S1 : −θ ∈ I}. Prove that Ω(x/|x|)|x|−2

defined on R2 \{0} satisfies Hörmander’s integral smoothness condition (3.3.4).

3.4.6. Let K be a function on Rn \ {0} that satisfies (3.3.3). Let W be a tempered
distribution on Rn that coincides with K on Rn \ {0}. Suppose that operator TW

2 An interval on the unit circle is the intersection of the circle with a cone centered at the origin.
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given by convolution withW maps L2(Rn) to itself. Prove thatK must satisfy (3.3.5).[
Hint: For 0 < ε < N < ∞ use that

∫

ε<|x|<N

K dx=
∫

Rn
K (ϕN −ϕε)dx+

∫

ε<|x|<2ε

Kϕε dx−
∫

N<|x|<2N

KϕN dx

where ϕ t(x) = ϕ(x/t) and ϕ is a C ∞
0 function with 0 ≤ ϕ ≤ 1 that equals 1 on

B(0,1) and vanishes outside B(0,2). Use Exercise 3.4.2 to estimate one term.
]

3.5 The Calderón–Zygmund Decomposition

Wewill obtain Lp bounds for singular integrals via the Calderón–Zygmund3 decom-
position. We describe this decomposition for dyadic cubes.

Definition 3.5.1. A dyadic cube in Rn is a set of the form

[2km1,2
k(m1+1))×·· ·× [2kmn,2

k(mn+1)) ,

where k,m1, . . . ,mn ∈ Z.

We observe that two dyadic cubes are either disjoint or are related by inclusion.
Each dyadic cube has a unique ancestor, i.e., a dyadic cube of twice its length that
contains it. Dyadic cubes have 2n descendants, i.e., dyadic cubes of half their length.

The decomposition of a function f = g+b described below is called itsCalderón–
Zygmund decomposition at height α . The function g is called the good function of
the decomposition, since it is both integrable and bounded. The function b is called
the bad function, since it contains the singular part of f , but it is carefully chosen to
have mean value zero.

Theorem 3.5.2. Let f ∈ L1(Rn) and α > 0. Then there exist functions g and b on
Rn and a collection {Qj} j of disjoint dyadic cubes such that

(i) f = g+b,

(ii) b= ∑ j b j, where each b j is supported in Qj,

(iii) ‖b j‖L1 ≤ 2n+1α|Qj|,

(iv)
∫

Qj

b j(x)dx= 0,

(v) ∑ j |Qj| ≤ α−1‖ f‖L1 ,
3 Occasionally abbreviated as CZ.
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(vi) ‖g‖L1 ≤ ‖ f‖L1 , ‖g‖L∞ ≤ 2nα , and

‖g‖Lr ≤ (2nα)
1
r′ ‖ f‖

1
r
L1

for any 1 ≤ r ≤ ∞.

Proof. Pick a positive integer N such that

2−nN‖ f‖L1 ≤ α. (3.5.1)

We consider all dyadic cubes of the form 2Nm+[0,2N)n, where m varies over Zn.
We call these cubes of generation zero and we note that their union is Rn. Subdivide
each cube of generation zero into 2n congruent cubes by bisecting each of its sides.
This way we obtain a collection of dyadic cubes, which we call of generation one.
Select a cube Q of generation one if

1
|Q|

∫

Q
| f |dx > α. (3.5.2)

Let S(1) be the set of all selected cubes
of generation one. Now subdivide each
unselected cube of generation one into
2n congruent subcubes by bisecting each
of its sides; call these cubes of gener-
ation two. Then select all cubes Q of
generation two for which (3.5.2) holds.
Let S(2) be the set of all selected cubes
of generation two. Repeat this proce-
dure indefinitely or until it is terminated.
See Figure 3.2. We obtain a collection
of selected cubes

⋃∞
m=1 S

(m). Note that
S(m) may be empty for some m and that
(3.5.1) forces all selected cubes to be of
generation at least one, i.e., m ≥ 1.

Fig. 3.2 The selected cubes are shown in dark.
The unselected ones, shown in white, keep
being subdivided.

If the set of all selected cubes
⋃∞

m=1 S
(m) is empty, then we set b = 0 and g = f .

Otherwise,
⋃∞

m=1 S
(m) consists of countably many cubes which we denote by {Qj} j.

Let us observe that the selected cubes are disjoint, for otherwise some Qk would
be a proper subset of some Qj, which is impossible since the selected cube Qj was
never subdivided. Now define

b j =
(
f − 1

|Qj|
∫

Qj

f dx

)
χQj . (3.5.3)

For a selected cube Qj there exists a unique unselected cube Q′ with twice its side
length that contains Qj. Let us call this cube the parent of Qj. Since the parent Q′ of
Qj was not selected, we have |Q′|−1 ∫

Q′ | f |dx ≤ α . Then
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1
|Qj|

∫

Qj

| f |dx ≤ 1
|Qj|

∫

Q′
| f |dx= 2n

|Q′|
∫

Q′
| f |dx ≤ 2nα.

Consequently,

∫

Qj

|b j|dx ≤
∫

Qj

| f |dx+ |Qj|
∣∣∣∣

1
|Qj|

∫

Qj

f dx

∣∣∣∣ ≤ 2
∫

Qj

| f |dx ≤ 2n+1α|Qj| ,

which proves (iii). In particular b j is integrable over Qj and in view of (3.5.3) it has
integral zero; thus (iv) holds. To prove (v), simply observe that

∑
j

|Qj| ≤ 1
α ∑

j

∫

Qj

| f |dx= 1
α

∫

⋃
j Q j

| f |dx ≤ 1
α
∥∥ f

∥∥
L1 .

We define b= ∑ j b j so that (ii) holds and also define g= f −b; finally, we turn our
attention to (vi). We obviously have

g=

⎧
⎨

⎩

f on Rn \⋃ j Q j,

1
|Qj |

∫

Qj

f dx on Qj.
(3.5.4)

On the cube Qj, g is equal to the constant |Qj|−1 ∫
Qj

f dx, and this is bounded by
2nα . It suffices to show that g is bounded outside the union of the Qj. Indeed, for
each x ∈ Rn \⋃ j Q j and for each k = 0,1,2, . . . there exists a unique unselected

dyadic cube Q(k)
x of generation k that contains x. Then for each k ≥ 0, we have
∣∣
∣∣∣

1

|Q(k)
x |

∫

Q(k)
x

f (y)dy

∣∣
∣∣∣
≤ 1

|Q(k)
x |

∫

Q(k)
x

| f (y)|dy ≤ α.

The intersection of the closures of the cubes Q(k)
x is the singleton {x}. Using Corol-

lary 1.5.6 we deduce that for almost all x ∈ Rn \⋃ j Q j we have

f (x) = lim
k→∞

1

|Q(k)
x |

∫

Q(k)
x

f (y)dy .

Since these averages are at most α , we conclude that | f | ≤ α a.e. on Rn \⋃ j Q j,
hence |g| ≤ α a.e. on this set. Finally, (3.5.4) gives

∥∥g
∥∥
L1 =

∫

Rn\∪ jQ j

| f |dx+∑
j

∫

Qj

∣∣∣
∣

1
|Qj|

∫

Qj

f dy

∣∣∣
∣dx=

∫

Rn\∪ jQ j

| f |dx+∑
j

∣∣∣
∣

∫

Qj

f dy

∣∣∣
∣

and this implies that ‖g‖L1 ≤ ‖ f‖L1 . This completes the proof . �

Remark 3.5.3. The cubes {Qj} j selected in the proof of Theorem 3.5.2 are exactly
the maximal (with respect to inclusion) dyadic cubes such that (3.5.2) holds. This is
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because if a cube is selected, then all of its ancestors were not selected, so this cube
is maximal (with respect to inclusion) satisfying (3.5.2).

Example 3.5.4. Let D be a dyadic cube in Rn and let α > 0. We find the CZ decom-
position of χD. Let Qm be the largest dyadic cube containing D such that

|D|
|Qm| =

1
|Qm|

∫

Qm

χD dy > α. (3.5.5)

If α ≥ 1, no such dyadic cube Qm exists, so in this case b= 0 and g= χD. Suppose
now that 2−n ≤ α < 1. Then the largest dyadic cube Qm satisfying (3.5.5) is D
itself and in this case b = χD − χD = 0 and g = χD. Now for α < 2−n there is a
largest dyadic cube Qm that contains D and satisfies (3.5.5). In this case the CZ
decomposition of χD is

b= χD − |D|
|Qm|χQm , g=

|D|
|Qm|χQm .

Example 3.5.5. Let f be a finite linear combination of characteristic functions of
disjoint dyadic cubes. We claim that the CZ decomposition of f at height α > 0
contains only finitely many cubes Qj (cf. Theorem 3.5.2).

To prove this, we pick M ∈ Z such that the smallest cube appearing in the
definition of f has side length 2−M . We also pick the least integers N′ and N′′
such that [−2N

′
,2N

′
]n contains the support of f and that 2−nN′′‖ f‖L1 ≤ α . Set

N = max(N′,N′′) and let GN,M be the set of all dyadic cubes of side length 2−M

contained in [−2N ,2N)n. There is a subset G ′
N,M of GN,M and λQ ∈ C \ {0} for any

Q ∈ G ′
N,M such that

f = ∑
Q∈G ′

N,M

λQχQ. (3.5.6)

We consider the following list of numbers

0= α0 < α1 < α2 < · · · < αm < αm+1 = ∞

so that {α1, . . . ,αm}= {|λQ| : Q∈G ′
N,M}. For our given α > 0, pick s∈{0,1, . . . ,m}

such that αs ≤ α < αs+1. No dyadic subcube R of a given Q ∈ G ′
N,M with |λQ| ≤ αs

is selected as |R|−1 ∫
R | f |dy = |λQ| ≤ αs ≤ α . Moreover, no dyadic subcube of a

cube in GN,M \ G ′
N,M is selected as f vanishes there. Now every Q in G ′

N,M with
|λQ| ≥ αs+1 > α satisfies (3.5.2), so it is either selected, or one of its ancestors
was previously selected. So all selected cubes have side length at least 2−M and are
contained in [−2N ,2N ]n; thus there are finitely many selected cubes {Qj} j.
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Exercises

3.5.1. Let α > 0 and f ∈ L1(Rn) which satisfies | f | ≤ α a.e. What are the functions
b and g constructed in Theorem 3.5.2 in this case?

3.5.2. For a given f ∈ L1(Rn), let {Qα
j } j be the cubes obtained in the CZ decompo-

sition at height α > 0. For given 0 < α < β < ∞ prove that

⋃

j

Qβ
j �

⋃

i

Qα
i .

3.5.3. Show that the number of CZ cubes {Qj} in Example 3.5.5 is at most

2n2nMmax

[
2n‖ f‖L1

α
,2nN

′
]
,

where [−2N
′
,2N

′
] contains the support of f and 2−M is the side length of the smallest

dyadic cube appearing in the definition of f .

3.5.4. Prove that finite linear combinations of characteristic functions of dyadic
cubes are dense in Lp(Rn) for any 0 < p < ∞.

3.5.5. On R2, let Q1 = [0, 12 )
2, and Qj = [ 12 + · · ·+ 1

2 j−1 ,
1
2 + · · ·+ 1

2 j )× [0, 1
2 j ) for

j≥ 2. Prove that (1,0) lies in
⋃∞

j=1Qj but not in
⋃∞

j=1Q
∗
j . HereQ

∗
j is a cube with the

same center as Qj but �(Q∗
j) = 2�(Qj). Construct a similar example when �(Q∗

j) =
2N�(Qj) for a given N ∈ Z+.

1
2

0 1
2

Q1

3
4

Q2

7
8

Q3

1

3.5.6. (Calderón–Zygmund decomposition on Lq) Fix a function f ∈ Lq(Rn) for
some 1 ≤ q < ∞ and let α > 0. Then there exist functions g and b on Rn such that

(1) f = g+b.

(2) ‖g‖Lq ≤ ‖ f‖Lq and ‖g‖L∞ ≤ 2
n
q α .

(3) b = ∑ j b j, where each b j is supported in a cube Qj. Furthermore, the cubes Qk

and Qj have disjoint interiors when j �= k.

(4) ‖b j‖qLq ≤ 2n+qαq|Qj|.
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(5)
∫
Qj

b j(x)dx= 0.

(6) ∑ j |Qj| ≤ α−q‖ f‖qLq .

(7) ‖b‖Lq ≤ 2
n+q
q ‖ f‖Lq and ‖b‖L1 ≤ 2α1−q‖ f‖qLq .

[
Hint: Imitate the basic idea of the proof of Theorem 3.5.2, but select a cube Q if
(

1
|Q|

∫
Q | f (x)|q dx)1/q > α . Define g and b as in the proof of Theorem 3.5.2.

]

3.5.7. (Calderón–Zygmund decomposition with bounded overlap) Let f be in
L1(Rn) and let α > 0. Prove that there exist functions g and b on Rn such that

(1) f = g+b.

(2) ‖g‖L1 ≤ ‖ f‖L1 , ‖g‖L∞ ≤ (10
√
n)nα .

(3) b = ∑ j b j, where each b j is supported in a dyadic cube Qj. Furthermore, the
interiors of Qk and Qj are disjoint when j �= k.

(4)
∫

Qj

b j(x)dx= 0.

(5) ‖b j‖L1 ≤ 2(10
√
n)nα|Qj|.

(6) ∑ j |Qj| ≤ α−1‖ f‖L1 .
(7) ∑ j χQ∗

j
≤ 2n, where Q∗

j has the same center as Qj and �(Q∗
j) = (1+ ε)�(Qj),

for any ε with 0 < ε < 1/4.
[
Hint: Let Ω = {Mc( f ) > α}, where Mc is the uncentered maximal operator with
respect to cubes in Rn. Write Ω = {Qj} j in terms of the Whitney decomposition of
Theorem 7.5.2. Define

b j =
(
f − 1

|Qj|
∫

Qj

f dx
)
χQj ,

b= ∑ j b j, and g= f −b.
]

3.6 L2 Boundedness Implies Lp Boundedness

This next theorem provides the most classical application of the CZ decomposition.

Theorem 3.6.1. Let K be a function on Rn \{0} that satisfies (3.3.3) and (3.3.4) for
some A1,A2 < ∞. Let W be the distribution defined as in (3.3.8) with respect to a
sequence δk ↓ 0, and suppose that the operator T given by convolution with W has
a bounded extension that maps L2(Rn) to itself with norm B. Then T has a unique
bounded extension from L1(Rn) to L1,∞(Rn) with norm
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∥
∥T

∥
∥
L1→L1,∞ ≤C′

n (A2+B), (3.6.1)

and T also extends to a bounded operator from Lp(Rn) to itself for 1 < p < ∞ with
norm ∥∥T

∥∥
Lp→Lp ≤Cnmax

(
p,(p−1)−1)(A2+B), (3.6.2)

where Cn,C′
n are constants that depend on the dimension but not on p.

Proof. It will suffice to prove (3.6.1) for functions in L1 ∩L2, which is dense in L1.
If this is known, for a given f ∈ L1, pick fk ∈ L2 ∩L1 that converge to f in L1. Then
{ fk}k is a Cauchy sequence in L1, and by (3.6.1) it follows that {T ( fk)}k is a Cauchy
sequence in L1,∞. Proposition 1.2.12 gives that this sequence is convergent in L1,∞;
thus T ( f ) can be defined as the L1,∞ limit of {T ( fk)}k. Note that this definition does
not depend on the choice of the sequence { fk}k as for another sequence { f #k }k that
also converges to f in L1, it follows from (3.6.1) that T ( fk)−T ( f #k ) tends to 0 in
L1,∞. This proves that T has a unique bounded extension from L1 to L1,∞.

So we fix f ∈ L1 ∩L2 and let α > 0 be given. We apply the Calderón–Zygmund
decomposition to f at height γα , where γ is a positive constant to be chosen later.
That is, write the function f as the sum

f = g+b= g+∑
j
b j,

where conditions (i)–(vi) of Theorem 3.5.2 are satisfied with γα in place of α .
We denote by �(Q) the side length of a cube Q. Let Q∗

j be the unique cube with
sides parallel to the axes having the same center as Qj with side length �(Q∗

j) =
2
√
n�(Qj). As f lies in L2 and so does g, it follows that b lies in L2. Hence each b j

lies in L2 and so T (b j) is a well-defined L2 function.
We observe that for all j and all x /∈ Q∗

j the LDCT and (3.3.3) give

T (b j)(x) = lim
k→∞

∫

k≥|x−y|≥δk
K(x− y)b j(y)dy=

∫

Qj

K(x− y)b j(y)dy ,

as the last integral converges absolutely. Moreover, we note that, since f ∈ L1 ∩L2

and g ∈ L2, we must have b ∈ L2, and thus T (b) is a well-defined L2 function. We
claim that for any α > 0

∣∣{x /∈
⋃

i

Q∗
i :

∣∣T (b)(x)
∣∣> α

2

}∣∣ ≤ ∣∣{x /∈
⋃

i

Q∗
i :

∞

∑
j=1

|T (b j)(x)| > α
2

}∣∣. (3.6.3)

To see this,4 consider an arbitrary enumeration of the b j. Then for N ∈ Z+ we have

∣∣∣T
( ∞

∑
j=1

b j
)∣∣∣=

∣∣∣
N

∑
j=1

T (b j)+T
( ∞

∑
j=N+1

b j
)∣∣∣≤

∞

∑
j=1

|T (b j)|+EN ,

4 One could work with functions f that are finite linear combinations of characteristic functions of
dyadic cubes. By Example 3.5.5, the CZ decompositions of such functions f contain only finitely
many cubes; so (3.6.3) would trivially hold in this case by linearity.
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where EN = |T (∑∞
j=N+1 b j)|. But

∣
∣∣

∞

∑
j=N+1

b j

∣
∣∣ → 0

pointwise and is bounded by |b| = | f − g| ∈ L2, so it converges to zero in L2 as
N → ∞ by the LDCT. Then ‖EN‖L2 → 0 by the boundedness of T on L2. Thus
|{|EN | > α(1−δ )/2}| → 0 as N → ∞ for any δ < 1 and yields (3.6.3) letting δ ↑ 1.

Let y j be the center of Qj. We use the cancellation of b j in the following way:
∫

(∪iQ∗
i )

c
∑
j

∣∣T (b j)(x)
∣∣ dx

=
∫

(
⋃
i Q

∗
i )

c
∑
j

∣∣
∣∣

∫

Qj

b j(y)
(
K(x− y)−K(x− y j)

)
dy

∣∣
∣∣dx

≤ ∑
j

∫

(Q∗
j )
c

∫

Qj

|b j(y)||K(x− y)−K(x− y j)|dydx

= ∑
j

∫

Qj

|b j(y)|
∫

(Q∗
j )
c
|K(x− y)−K(x− y j)|dxdy

= ∑
j

∫

Qj

|b j(y)|
∫

−y j+(Q∗
j )
c
|K(x− (y− y j))−K(x)|dxdy

≤ ∑
j

∫

Qj

|b j(y)|
∫

|x|≥2|y−y j|
|K(x− (y− y j))−K(x)|dxdy

≤ A2∑
j

∥∥b j
∥∥
L1

≤ A22
n+1

∥∥ f
∥∥
L1 ,

having used (3.3.4) and that −y j+(Q∗
j)
c � {x : |x| ≥ 2|y− y j|}.

To verify the last assertionwe argue
as follows: If x ∈ −y j + (Q∗

j)
c,

then it holds that

|x| ≥ 1
2
�(Q∗

j) =
√
n�(Qj).

As y− y j lies in −y j+Qj we must
have

|y− y j| ≤
√
n
2

�(Qj).

Thus |x| ≥ 2|y−y j|. These inequal-
ities have geometric interpretations
related to distances; see Figure 3.3.

y− y j

0
−y j+Qj

−y j+Q∗
j

x

Fig. 3.3 The cubes −y j+Qj and −y j+Q∗
j .
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Thus we proved that
∫

(
⋃
i Q

∗
i )

c
∑
j

|T (b j)(x)|dx ≤ 2n+1A2
∥∥ f

∥∥
L1 ,

an inequality we use below. Appealing to (3.6.3), we write
∣∣{x ∈ Rn : |T ( f )(x)| > α

}∣∣

≤
∣∣∣
{
x ∈ Rn : |T (g)(x)| > α

2

}∣∣∣+
∣∣∣
{
x ∈ Rn : |T (b)(x)| > α

2

}∣∣∣

≤ 4
α2

∥∥T (g)
∥∥2
L2 +

∣∣∣
⋃

i

Q∗
i

∣∣∣+
∣∣∣
{
x /∈

⋃

i

Q∗
i : |T(∑

j
b j
)
(x)| > α

2

}∣∣∣

=
4

α2

∥∥T (g)
∥∥2
L2 +

∣∣∣
⋃

i

Q∗
i

∣∣∣+
∣∣∣
{
x /∈

⋃

i

Q∗
i : ∑

j
|T (b j)(x)| > α

2

}∣∣∣

≤ 4
α2B

2
∥∥g
∥∥2
L2 +∑

i
|Q∗

i |+
2
α

∫

(
⋃
i Q

∗
i )

c
∑
j

|T (b j)(x)|dx

≤ 4
α2 2

nB2(γα)
∥∥ f

∥∥
L1 +(2

√
n)n

∥∥ f
∥∥
L1

γα
+

2
α
2n+1A2

∥∥ f
∥∥
L1

≤
(
(2n+1Bγ)2

2nγ
+

(2
√
n)n

γ
+2n+2A2

)∥∥ f
∥∥
L1

α
.

Choosing γ = B−1, we deduce estimate (3.6.1) with C′
n = (2

√
n)n+2n+2.

By the density argument discussed at the beginning of the proof, T is well defined
on L1, and thus on Lp which is contained in L1 + L2 for 1 < p < 2. Using Theo-
rem 1.3.3 (Marcinkiewicz’s interpolation theorem) we obtain that

∥∥T
∥∥
Lp→Lp ≤ 2

(
p

p−1
+

p
2− p

)
C′
n(A2+B), 1 < p < 2. (3.6.4)

We now observe that the transpose operator Tt of T has kernelKt(x)=K(−x)which
also satisfies (3.3.3) and (3.3.4) for some A1,A2 < ∞ and moreover Tt maps L2(Rn)
to itself with the same norm B. Then Tt satisfies (3.6.4), which implies

∥∥T
∥∥
Lp→Lp ≤ 2

(
p′

p′ −1
+

p′

2− p′

)
C′
n(A2+B), 2 < p < ∞. (3.6.5)

Now we employ Theorem 1.3.3 to interpolate between L5/4 and L5. We obtain

∥∥T
∥∥
Lp→Lp ≤ 2

(
p

p− 5
4

+
p

5− p

)
C′′
n (A2+B),

5
4

< p < 5. (3.6.6)

For 1< p≤ 3
2 , we use (3.6.4) to obtain ‖T‖Lp→Lp ≤ 4p

p−1C
′
n(A2+B). For 3≤ p< ∞,

(3.6.5) yields the bound ‖T‖Lp→Lp ≤ 4 pC′
n(A2+B). Finally, for 3

2 < p < 3 we use

(3.6.6) to obtain the bound ‖T‖Lp→Lp ≤ 8p
p−1C

′′
n (A2+B). Combining these cases, we

deduce (3.6.2). �
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Corollary 3.6.2. Let K be a function on Rn \ {0} that satisfies (3.3.3), (3.3.4), and
(3.3.5) for some A1,A2,A3 < ∞. Let W be the distribution associated with K as in
(3.3.8). Then T has an extension on Lp for all p ∈ [1,∞) that satisfies (3.6.1) and
(3.6.2) with B= 9ωn−1A1+A2+A3.

Proof. Conditions (3.3.3), (3.3.4), and (3.3.5) imply that T is L2 bounded with
bound B ≤ 9ωn−1A1+A2+A3 in view of Theorem 3.4.2. Then the L2 hypothesis in
Theorem 3.6.1 also holds and the conclusion follows. �

Corollary 3.6.3. The Hilbert transform and the Riesz transforms are bounded from
L1 to L1,∞ and from Lp for all 1 < p < ∞ with bounds C(n)max((p−1)−1, p).

Proof. This is a direct consequence of Corollary 3.6.2. �

Having established the Lp boundedness of the Hilbert transform and of the Riesz
transforms for 1< p< ∞, we turn to general odd singular integrals of homogeneous
type. We begin with the observation that the Hilbert transform acting on the first
variable on Rn composed with the identity operator in the remaining variables

He1( f )(x1,x2, . . . ,xn) = lim
ε→0+

1
π

∫

|t|≥ε
f (x1 − t,x2, . . . ,xn)

dt
t

, (3.6.7)

defined for f ∈ S (Rn), is bounded on Lp(Rn) with bound Cp = ‖H‖Lp→Lp . To
verify this, we raise the absolute values of both sides in (3.6.7) to the power p and
then integrate in x1. Using the boundedness of the Hilbert transform we estimate the
right-hand side by

Cp
p

∫

R
| f (x1,x2, . . . ,xn)|pdx1.

Integrating over the remaining variables implies the conclusion. Next, for a unit
vector θ ∈ Sn−1 we define

Hθ ( f )(x) = lim
ε→0+

1
π

∫

|t|≥ε
f (x− tθ)

dt
t

, f ∈ S (Rn), (3.6.8)

called the directional Hilbert transform in the direction θ . We observe that the fol-
lowing identity is valid for all matrices A ∈ O(n):

HAe1( f )(x) =He1( f ◦A)(A−1x) . (3.6.9)

Now given θ ∈ Sn−1 pick A ∈ O(n) such that Ae1 = θ . This implies that
∥∥Hθ ( f )

∥∥
Lp =

∥∥He1( f ◦A)◦A−1
∥∥
Lp =

∥∥He1( f ◦A)
∥∥
Lp ≤Cp

∥∥ f ◦A∥∥Lp =Cp
∥∥ f

∥∥
Lp ,

and this yields thatHθ maps Lp(Rn) to itself Lp(Rn) uniformly in θ . We use this to
obtain boundedness for TΩ (Definition 3.2.2) when Ω is an odd bounded function.
Such functions clearly have vanishing integral.

Corollary 3.6.4. Let Ω ∈ L∞(Sn−1) be odd and let TΩ be as in Definition 3.2.2. Then
for 1 < p < ∞, TΩ admits a bounded extension from Lp(Rn) to itself with norm at
most πωn−1

2 ‖Ω‖L∞‖H‖Lp→Lp .
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Proof. Let f ∈ S (Rn). We express a general singular integral TΩ with Ω odd and
bounded on the sphere as follows. For given x ∈ Rn and ε > 0 we write

∫

|y|≥ε

Ω(y/|y|)
|y|n f (x− y)dy = +

∫

Sn−1
Ω(θ)

∫ ∞

r=ε
f (x− rθ)

dr
r
dθ

=
∫

Sn−1
Ω(−θ)

∫ ∞

r=ε
f (x+ rθ)

dr
r
dθ ,

= −
∫

Sn−1
Ω(θ)

∫ ∞

r=ε
f (x+ rθ)

dr
r
dθ ,

where the first identity follows by switching to polar coordinates, the second one
uses the change of variables θ 	→ −θ , and the third one expresses that Ω is an odd
function on the sphere. Averaging the first and third identities on the right, we obtain

∫

|y|≥ε

Ω(y/|y|)
|y|n f (x− y)dy

=
π
2

∫

Sn−1
Ω(θ)

1
π

∫ ∞

r=ε

f (x− rθ)− f (x+ rθ)
r

drdθ . (3.6.10)

We write 1
r

(
f (x− rθ)− f (x+ rθ)

)
= −∫ 1

−1 ∇ f (x− srθ) ·θ ds and we note that the
first expression has rapid decay (when r > 2|x|) and that the second expression is
bounded (when r ≤ 2|x|). Then by the Lebesgue dominated convergence theorem,
we can pass the limit as ε → 0+ inside the integral in (3.6.10). This yields

TΩ ( f )(x) =
π
2

∫

Sn−1
Ω(θ) lim

ε→0+

1
π

∫ ∞

r=ε

f (x− rθ)− f (x+ rθ)
r

drdθ

=
π
2

∫

Sn−1
Ω(θ) lim

ε→0+

1
π

∫

|r|≥ε
f (x− rθ)

dr
r
dθ

=
π
2

∫

Sn−1
Ω(θ)Hθ ( f )(x)dθ (3.6.11)

for x ∈ Rn and f ∈ S (Rn). The boundedness of TΩ on Lp(Rn) to itself is then a
straightforward consequence of (3.6.11) via Minkowski’s integral inequality. �

Exercises

3.6.1. Assume that T is a linear operator acting on measurable functions on Rn

such that whenever a function f is supported in a cube Q, then T ( f ) is supported in
Q∗ = ρQ for some ρ > 1. Suppose that T maps L2 to L2 with norm B. Prove that T
extends to a bounded operator from L1 to L1,∞ with norm a constant multiple of B.

3.6.2. Let K satisfy (3.3.3) and (3.3.4) for some A1,A2 > 0. Let W ∈ S ′(Rn) be
associated as in (3.3.8) with a sequence δ j ∈ (0,1) that tends to zero and let T be
the operator given by convolution with W . Suppose that T maps L∞(Rn) to itself
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with constant B. Prove that T has an extension on L1+L∞ that satisfies (3.6.1) and
for 1 < p < ∞

∥∥T
∥∥
Lp→Lp ≤ 2C′

n

( p
p−1

)1/p
(A2+B).

[
Hint: Apply the Calderón–Zygmund decomposition f = g+b at height αγ , where

γ = (2n+1B)−1. Since |g| ≤ 2nαγ , observe that |{|T ( f )| > α}| ≤ |{|T (b)| > α/2}|].
3.6.3. Let −∞ ≤ a j < b j ≤ +∞ for j ∈ {1, . . . ,n}. Prove that χ[a1,b1]×···×[an,bn] lies
in Mp(Rn) with bound independent of a j and b j.

[
Hint: When n = 1 express I+iH

2
as a multiplier operator. Use Exercise 2.8.3 (a).

]

3.6.4. Let 1 < p < ∞. Prove that the norm of the operator Hθ defined (3.6.8) from
Lp(Rn) to itself is the same as that of the Hilbert transform from Lp(R) to itself.

3.6.5. Let Δm = Δ ◦ · · · ◦ Δ be the m-fold composition of the Laplacian with itself.
Show that for any 1 < p < ∞ there exists an Ap,n > 0 such that for all f ∈ S (Rn)
and all j1, . . . , j2m ∈ {1, . . . ,n} we have

∥∥∂ j1 · · ·∂ j2m f
∥∥
Lp(Rn) ≤ Am

p,n

∥∥Δm f
∥∥
Lp(Rn).

[
Hint: Prove first the inequality in the case m= 1 using the Riesz transforms.

]

3.6.6. Prove that for all 1< p< ∞ there exists a constantCp > 0 such that for every
f ∈ S (R2) we have

∥∥∂1 f
∥∥
Lp(R2) +

∥∥∂2 f
∥∥
Lp(R2) ≤Cp

∥∥(∂1+ i∂2) f
∥∥
Lp(R2).

Likewise, show that there exists a constant Cp,m > 0 such that for all f ∈ S (Rn)
and all j1, . . . , jm ∈ {1,2} we have

∥
∥∂ j1 · · ·∂ jm f

∥
∥
Lp(R2) ≤Cp,m

∥
∥(∂1+ i∂2)m f

∥
∥
Lp(R2).

3.7 The Hilbert Transform and the Poisson Kernel

We investigate connections between the Hilbert transform and the Poisson kernel.
Recall the Poisson kernel P(x)= 1

π
1

x2+1
given in Example 1.9.2. Consider the family

of kernels Py(x) = 1
yP(

x
y ) =

1
π

y
x2+y2

for y > 0. Then for a real-valued function g in

Lp(R), 1 ≤ p < ∞, we have

(Py ∗g)(x) = 1
π

∫ +∞

−∞

y
(x− t)2+ y2

g(t)dt , (3.7.1)

and the integral in (3.7.1) converges absolutely by Hölder’s inequality, since the
function t 	→ ((x− t)2+ y2)−1 belongs to Lp′

(R) whenever y > 0.
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When z= x+ iy for x ∈ R and y > 0 we can write

i
π
1
z
=

1
π

y
x2+ y2

+ i
1
π

x
x2+ y2

,

which implies

(Py ∗g)(x) = Re

(
i
π

∫ +∞

−∞

g(t)
x− t+ iy

dt

)
= Re

(
i
π

∫ +∞

−∞

g(t)
z− t

dt

)
.

On the upper half-space R2
+ = {z= x+ iy : y > 0} the function

Fg(z) =
i
π

∫ +∞

−∞

g(t)
z− t

dt

is analytic. To verify this, for z= x+ iy with y > 0, notice that

Fg(z+h)−Fg(z)
h

=
i
π

∫

R

−g(t)dt
(z+h− t)(z− t)

→ − i
π

∫

R

g(t)
(z− t)2

dt ash → 0

by the LDCT; the use of this theorem is based on the fact that for |h| ≤ 1
2 |y|,

∣∣∣
∣

g(t)
(z+h− t)(z− t)

∣∣∣
∣ ≤ 2

|y|
|g(t)|
|z− t| ∈ L1(dt)

by Hölder’s inequality (g ∈ Lp(R) and |z−·|−1 ∈ Lp′
(R)).

The real part of Fg(x+ iy) is (Py ∗g)(x). The imaginary part of Fg(x+ iy) is

Im

(
i
π

∫ +∞

−∞

g(t)
x− t+ iy

dt

)
=

1
π

∫ +∞

−∞

g(t)(x− t)
(x− t)2+ y2

dt = (g∗Qy)(x) ,

where Qy(x) = 1
π

x
x2+y2

= 1
yQ(

x
y ) is the L

1 dilation of the conjugate Poisson kernel

Q(x) =
1
π

x
x2+1

. (3.7.2)

Thus, if g is real-valued, we have

Fg(x+ iy) =
i
π

∫ +∞

−∞

g(t)
x+ iy− t

dt = (g∗Py)(x)+ i(g∗Qy)(x) (3.7.3)

and this is analytic on the upper half-space. Hence the functions x+ iy 	→ (g∗Py)(x)
and x+ iy 	→ (g∗Qy)(x) are conjugate harmonic functions. This explains the choice
of name given to the conjugate Poisson kernel.

Up until this point, the function g was real-valued. We now define Ff for any
complex-valued function f in ∪1≤p<∞Lp(R) by simply replacing g by f in (3.7.3).

The following lemma reveals an intimate relationship between the Poisson kernel
and its conjugate.
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Lemma 3.7.1. The identity H(P) = Q holds. More generally, one has H(Pε) = Qε
for any ε > 0. We also have H(Q) = −P and H(Qε) = −Pε for any ε > 0.

Proof. Recalling that P̂(ξ ) = e−2π|ξ | [Theorem 2.2.5] and identity (3.1.16), we
write

H(P)(x) =
∫ +∞

−∞
e−2π|ξ |(−isgnξ )e2πixξ dξ

= 2
∫ ∞

0
e−2πξ sin(2πxξ )dξ

=
1
π

∫ ∞

0
e−ξ sin(xξ )dξ

=
1
π
Im

∫ ∞

0
e−ξ (1−ix) dξ

=
1
π
Im

1
1− ix

= Q(x).

This proves thatH(P) =Q. The factH(Q) =−P follows from the identityH2 =−I.
The assertions about Pε and Qε are obtained via dilations. �

Given any ε > 0 and f ∈ Lp(R), 1< p< ∞, the function H( f ) also lies in Lp(R),
and as Pε , Qε lie in Lp′

(R), it follows from Theorem 1.6.7 that both f ∗ Pε and
H( f )∗Pε are uniformly continuous functions.

Lemma 3.7.2. Let f ∈ Lp(R) for some 1 < p < ∞. Then for any ε > 0 we have

f ∗Qε = H( f )∗Pε (3.7.4)

pointwise everywhere on the real line.

Proof. We first prove (3.7.4) for a function f ∈ S (R). Applying the Fourier trans-
form, we see that (3.7.4) is equivalent to the identity H(Pε) = Qε , proved in the
Lemma 3.7.1. So (3.7.4) holds when f ∈ S (R). Now given f ∈ Lp(R), 1 < p < ∞,
there is a sequence φ j ∈ S (R) such that ‖ f − φ j‖Lp → 0 as j → ∞. The bounded-
ness of the Hilbert transform on Lp yields ‖H( f )−H(φ j)‖Lp → 0 as well as j → ∞.
Also, Pε , Qε lie in Lp′

(R) (p′ > 1 since p< ∞), so Hölder’s inequality yields (3.7.4)
for general f ∈ Lp(R). �

As the family {Pε}ε>0 is an approximate identity, it follows from Theorem 1.9.4
that Pε ∗ f → f in Lp(R) as ε → 0. The following question therefore arises: What is
the Lp limit of f ∗Qε as ε → 0? AsQ /∈ L1(R), the family {Qε}ε>0 is not an approx-
imate identity, so this question cannot be addressed in terms of Theorem 1.9.4. It can
be answered, however, via the use of the preceding lemma which relates {Qε}ε>0

to the approximate identity {Pε}ε>0.



142 3 Singular Integrals

Theorem 3.7.3. Let 1 < p < ∞ and f ∈ Lp(R). Then we have f ∗Qε → H( f ) in Lp

and almost everywhere as ε → 0. Consequently,

Ff (·+ iε) =
i
π

∫ +∞

−∞

f (t)
(·)+ iε − t

dt → f + iH( f ) in Lp and a.e. (3.7.5)

as ε ↓ 0. Moreover, if f and H( f ) are uniformly continuous in a neighborhood of a
subset B of the real line, then the convergence in (3.7.5) also holds uniformly on B.

Proof. Let us fix f ∈ Lp(R) for some 1 < p < ∞. We have H( f )∗Pε → H( f ) in Lp

and a.e. in view of Theorems 1.9.7 (with A = 1) and Theorem 2.5.5 (with c = 1).
But f ∗Qε = H( f ) ∗Pε by (3.7.4), so f ∗Qε → H( f ) in Lp and a.e. as ε → 0. We
conclude that

Ff (·+ iε) = f ∗ (Pε + iQε) = ( f + iH( f ))∗Pε → f + iH( f ) in Lp and a.e.

Moreover, this convergence is uniform on B by Theorem 1.9.4 (b), provided f and
H( f ) are uniformly continuous in a neighborhood of B in the sense of (1.9.1). �

The set of ideas we have discussed allows us to find the limits of the truncated
Hilbert transforms for general functions in Lp.

Theorem 3.7.4. Let 1 < p < ∞ and f ∈ Lp(R). Consider the truncated Hilbert
transforms H(ε)( f ) (Definition 3.1.5). Then H(ε)( f ) → H( f ) in Lp and a.e. as
ε → 0.

Proof. Let us fix f ∈ Lp(R) for some 1 < p < ∞. Using (3.7.4) we write

H(ε)( f ) = H(ε)( f )− f ∗Qε +H( f )∗Pε . (3.7.6)

Next we observe that

H(ε)( f )(x)− f ∗Qε(x) =
1
π

∫

|t|≥ε

f (x− t)
t

dt− (Qε ∗ f )(x) = ( f ∗ψε)(x),

where ψε(x) = ε−1ψ(ε−1x) and

ψ(t) =
1
π

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
t

− t
t2+1

when |t| ≥ 1,

− t
t2+1

when |t| < 1.

(3.7.7)

Notice that

|ψ(t)| ≤ 1
π

1
t2+1

(3.7.8)

so ψ is integrable over the line and has integral zero, as it is odd. Thus {ψε}ε>0 is an
approximate zero family. It follows from Theorem 1.9.7 (with A= 0) that f ∗ψε → 0
in Lp. Also Theorem 2.5.5 (with c= 0) implies that f ∗ψε → 0 a.e. as ε → 0. �
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Returning to (3.7.6), we observe that the identity H(ε)( f ) = f ∗ ψε +H( f )∗Pε ,
combined with Proposition 2.5.3, gives

sup
ε>0

|H(ε)( f )| ≤ M( f )+M(H( f )), (3.7.9)

noting that the integral of the Poisson kernel, i.e., the function on the right in (3.7.8),
equals 1. For f ∈ ⋃

1≤p<∞Lp(R) we define the operator

H(∗)( f ) = sup
ε>0

|H(ε)( f )|,

called the maximal Hilbert transform. As a consequence of (3.7.9) and of Theo-
rem 3.6.3 and Corollary 1.4.7 we obtain

Corollary 3.7.5. There is a constant C such that
∥∥H(∗)( f )

∥∥
Lp(R) ≤Cmax(p,(p−1)−2)

∥∥ f
∥∥
Lp(R)

for 1 < p < ∞ and all f ∈ Lp(R).

This bound will be improved to max(p,(p−1)−1) in Corollary 3.8.2.

Exercises

3.7.1. Prove that

lim
y↓0

∫ +∞

−∞

dt
π(1+ t2)(x+ iy− t)

=
1

x+ i
, lim

y↓0

∫ +∞

−∞

t dt
π(1+ t2)(x+ iy− t)

=
−i
x+ i

for every real number x.

3.7.2. Prove that

lim
y↓0

∫ +∞

−∞

sin(πt)
πt(x+ iy− t)

dt =
1− eiπx

x

for every real number x, where the function on the right is 1 when x= 0.

3.7.3. Let f ,g be real-valued Schwartz functions on the real line. Show that

H( f )H(g)− f g= H
(
fH(g)+gH( f )

)
,

where H is the Hilbert transform. Then prove that this identity also holds a.e. for
real-valued square-integrable functions f ,g on the line.[
Hint: Consider the boundary values of the analytic function Ff Fg.

]

3.7.4. Let P(x) = 1
π

1
x2+1

and Q(x) = 1
π

x
x2+1

. Prove that H(PQ) = 1
2Q

2 − 1
2P

2.
[
Hint: Use the preceding exercise.

]
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3.7.5. For 1 < p < ∞ let Ap = ‖H‖Lp→Lp and Bp = ‖M‖Lp→Lp , where H is the
Hilbert transform and M is the (centered) Hardy–Littlewood maximal function on
R. Let Q be the conjugate Poisson kernel. Prove that for any f ∈ Lp(R) we have

sup
ε>0

∥∥Qε ∗ f
∥∥
Lp(R) ≤ Ap

∥∥ f
∥∥
Lp(R),

∥∥sup
ε>0

|Qε ∗ f |∥∥Lp(R) ≤ ApBp
∥∥ f

∥∥
Lp(R).

[
Hint: Use Lemma 3.7.2 and Proposition 2.5.3.

]

3.7.6. Let 2 ≤ p < ∞. Prove that for any real-valued function f ∈ Lp(R) we have

sup
ε>0

∥∥(Pε ∗ f )+ i(Qε ∗ f )
∥∥
Lp(R) ≤ (1+A2

p)
1
2
∥∥ f

∥∥
Lp(R),

where Ap = ‖H‖Lp→Lp and H is the Hilbert transform.[
Hint: Use the preceding exercise and the subadditivity of the Lp/2 norm.

]

3.7.7. On Rn define the jth conjugate Poisson kernel Q( j) by

Q( j)(x) =
Γ ( n+1

2 )

π n+1
2

x j

(|x|2+1)
n+1
2

, 1 ≤ j ≤ n.

Let Q( j)
y be the L1 dilation of Q( j)

y for y > 0. Prove that

(Q( j)
y )∧ (ξ ) = −i

ξ j

|ξ |e
−2πy|ξ | .

Conclude that Rj(Py) = Q( j)
y and that for all f in Lp(Rn), 1 < p < ∞, we have

Rj( f )∗Py = f ∗Q( j)
y for y > 0.

3.7.8. Let f ∈ Lp(Rn) where 1 < p < ∞. Prove that the truncated Riesz transforms

R(ε)
j ( f ) converge to Rj( f ) in Lp and a.e. as ε → 0.

[
Hint:Using Exercise 3.7.7, write R(ε)

j ( f ) = R(ε)
j ( f )− f ∗Q( j)

ε +Rj( f )∗Pε and then

apply the idea in Theorem 3.7.4.
]

3.7.9. Let η be an even smooth function on the real line such that η(t) = 1 for
|t| ≥ 1 and η vanishes for |t| ≤ 1

2 . Define the smoothly truncated Hilbert transform
(associated with η) acting on a function f ∈ Lp(R) (1 < p < ∞) by

H(ε)
η ( f )(x) =

∫

R
f (x− t)

η(t/ε)
t

dt.

Given 1< p< ∞ and f ∈ Lp(R), prove thatH(ε)
η ( f )→H( f ) in Lp and a.e. as ε → 0.
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3.8 Maximal Singular Integrals

We introduce maximal singular integrals and we derive their boundedness under
the general conditions of size, smoothness and cancellations. For a function K that
satisfies (3.3.3) we define the associated truncated singular integral operator

T (ε)( f )(x) =
∫

|x−y|≥ε
K(x− y) f (y)dy , x ∈ Rn, (3.8.1)

whenever f ∈ ⋃
1≤p<∞Lp(Rn). Note that as y 	→ |x− y|−nχ|y−x|≥ε lies in Lp′

(Rn),
p′ > 1, Hölder’s inequality yields that the integral in (3.8.1) converges absolutely
for all x ∈ Rn. We also set

T (∗)( f ) = sup
ε>0

∣
∣T (ε)( f )

∣
∣, f ∈

⋃

1≤p<∞
Lp(Rn) ,

and we call this operator the maximal singular integral operator associated with K.

Theorem 3.8.1. (Cotlar’s inequality) Let δ > 0, 0 < A1,A2,A3 < ∞, and suppose
that K is defined on Rn \{0} and satisfies the size condition (3.3.3), the smoothness
condition

|K(x− y)−K(x)| ≤ A2|y|δ |x|−n−δ , |x| ≥ 2|y|, (3.8.2)

and the cancellation condition (3.3.5). Suppose thatW is a tempered distribution on
Rn defined in terms of (3.3.8) (associated with a sequence δk → 0) and let T be the
operator given by convolution with W. Then for 0 < r < 1 there is a constant Cn,δ ,r
such that the following inequality is valid:

T (∗)( f ) ≤ 3
1−r
r
[
M(|T ( f )|r)] 1

r +Cn,δ ,r (A1+A2+A3)M( f ) , (3.8.3)

for all f ∈ ∪1≤p<∞Lp(Rn), where M is the Hardy–Littlewood maximal operator.

Note that (3.8.2) implies the Hörmander integral smoothness condition (3.3.4).

Proof. We fix r satisfying 0 < r < 1, ε > 0, f ∈ ∪1≤p<∞Lp(Rn), and x0 ∈ Rn. We
pick a smooth radial function η with values in [0,1] which equals 1 on the unit ball
and vanishes outside B(0,2). Then we define

f ε ,x0
0 (x) = f (x)η( x−x0

ε ) f ε ,x0
∞ (x) = f (x)(1−η( x−x0

ε ))

at the points x ∈ Rn for which f is defined. We write

T (ε)( f )(x0)−T ( f ε ,x0
∞ )(x0) =

∫

|x0−y|≥ε
K(x0 − y) f (y)dy−

∫

Rn
K(x0 − y) f ε ,x0

∞ (y)dy

=
∫

2ε≥|x0−y|≥ε
K(x0 − y)η( y−x0

ε ) f (y)dy ,

in view of the support properties of η . It follows from this and (3.3.3) that
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∣
∣T (ε)( f )(x0)−T ( f ε ,x0

∞ )(x0)
∣
∣≤CnA1M( f )(x0). (3.8.4)

For z ∈ B(x0, ε
2 ) we have |x0 − z| ≤ 1

2 |x0 − y| whenever |y− x0| ≥ ε and thus

|T ( f ε ,x0
∞ )(x0)−T ( f ε ,x0

∞ )(z)| =
∣∣∣∣

∫

|y−x0|≥ε

(
K(x0 − y)−K(z− y)

)
f (y)(1−η( y−x0

ε ))dy
∣∣∣∣

≤
∫

|y−x0|≥ε

∣∣K(x0 − y− (x0 − z))−K(x0 − y)
∣∣ | f (y)|dy

≤ |x0 − z|δ
∫

|y−x0|≥ε

A2 | f (y)|
|x0 − y|n+δ dy

≤ 2n+δ
(ε
2

)δ ∫

|y−x0|≥ε

A2 | f (y)|
(|y− x0|+ ε)n+δ dy

≤ Cn,δ A2M( f )(x0) ,

where the last estimate is a consequence of Theorem 2.5.1. We conclude that for all
z ∈ B(x0, ε

2 ), we have

|T (ε)( f )(x0)| ≤ |T ( f ε ,x0
∞ )(x0)|+CnA1M( f )(x0)

≤ |T ( f ε ,x0
∞ )(x0)−T ( f ε ,x0

∞ )(z)|+ |T ( f ε ,x0
∞ )(z)|+CnA1M( f )(x0)

≤ Cn,δ (A1+A2)M( f )(x0)+ |T ( f − f ε ,x0
0 )(z)|

≤ Cn,δ (A1+A2)M( f )(x0)+ |T ( f )(z)|+ |T ( f ε ,x0
0 )(z)| .

Raising to the power r < 1 we obtain

|T (ε)( f )(x0)|r ≤Cr
n,δ (A1+A2)r M( f )(x0)r+ |T ( f )(z)|r+ |T ( f ε ,x0

0 )(z)|r (3.8.5)

for all z ∈ B(x0, ε
2 ). First we average over z ∈ B(x0, ε

2 ), then we take the supremum
over ε > 0 (only) in the second term, and then we raise to the power 1

r making use of
the inequality (a+b+c)1/r ≤ 3(1−r)/r(a1/r+b1/r+c1/r) for a,b,c ≥ 0. We deduce

|T (ε)( f )(x0)| ≤ 3
1−r
r

[
Cn,δ (A1+A2)M( f )(x0)+

[
M(|T ( f )|r)(x0)

] 1
r +

(
1

|B(x0, ε
2 )|

∫

B(x0, ε
2 )

|T ( f ε ,x0
0 )(z)|rdz

)1
r
]
.

The third term in the square brackets is estimated, via Exercise 1.2.6 (a), by

(
1

|B(x0, ε
2 )|

‖T‖r
L1→L1,∞

1− r
|B(x0, ε

2 )|1−r
∥
∥ f ε ,x0

0

∥
∥r
L1

)1
r

≤Cn,r (A1+A2+A3)M( f )(x0) .

Inserting this estimate in the inequality bounding |T (ε)( f )(x0)| yields (3.8.3). �
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Corollary 3.8.2. Let K, A1, A2, A3, W , and T be as in the preceding theorem. Then
T (∗) admits a bounded extension on Lp for all 1 < p < ∞ and also maps L1 to L1,∞.
Moreover, there are constants Cn,C′

n such that
∥∥T (∗)∥∥

L1→L1,∞ ≤C′
n(A1+A2+A3) ,

∥∥T (∗)∥∥
Lp→Lp ≤Cnmax(p,(p−1)−1)(A1+A2+A3) .

Thus, there are constants c,c′ such that the maximal Hilbert transform H(∗) satisfies
∥∥H(∗)∥∥

L1(R)→L1,∞(R) ≤ c′ ,
∥∥H(∗)∥∥

Lp(R)→Lp(R) ≤ cmax(p,(p−1)−1) ,

and there are constants cn,c′
n such that the maximal Riesz transforms R(∗)

j satisfy

∥
∥R(∗)

j

∥
∥
L1(Rn)→L1,∞(Rn) ≤ c′

n ,
∥∥R(∗)

j

∥∥
Lp(Rn)→Lp(Rn) ≤ cnmax(p,(p−1)−1) .

Proof. To show that T (∗) maps L1 to L1,∞ we need to use that the Hardy–Littlewood
maximal operator maps Lp,∞ to Lp,∞ for all 1 < p < ∞; on this see Exercise 1.4.8.
For all 0 < p,q < ∞ note the identity

∥∥| f |q∥∥Lp,∞ =
∥∥ f

∥∥q
Lpq,∞

which can easily be deduced from Definition 1.2.5. We use (3.8.3) with r = 1/2.
The difficult term is the one involving T ( f ). We estimate this as follows:

∥∥M(|T ( f )| 12 )2∥∥L1,∞ =
∥∥M(|T ( f )| 12 )∥∥2L2,∞

≤ C̃n
∥∥|T ( f )| 12 ∥∥2L2,∞

= C̃n
∥∥T ( f )

∥∥
L1,∞

≤ C′
n(A1+A2+A3)

∥∥ f
∥∥
L1 ,

where we made use thatM maps L2,∞ to itself (Exercise 1.4.8) and that T maps L1 to
L1,∞ with bound a multiple of A1+A2+A3 in the last estimate; this is a consequence
of Corollary 3.6.2.

We essentially repeat the preceding argument to obtain the Lp boundedness of
T (∗) for 1 < p < ∞. Recall that the maximal function is bounded on L2p(Rn) with
norm at most

3
n
2p

2 ·2p
2p−1

≤ 4 ·3 n
2

by Corollary 1.4.7. We have
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∥∥M(|T ( f )| 12 )2∥∥Lp =
∥∥M(|T ( f )| 12 )∥∥2L2p

≤ (
4 ·3 n

2
)2∥∥|T ( f )| 12 ∥∥2L2p

= 16 ·3n∥∥T ( f )∥∥Lp
≤ Cnmax( 1

p−1 , p)(A1+A2+A3)
∥
∥ f

∥
∥
Lp ,

where we used the Lp boundedness of T in the last estimate. �

Corollary 3.8.3. Let 1 ≤ p < ∞. Assume that K, W (associated with a sequence
δk → 0), and T are as in Theorem 3.8.1. Then for a given function f ∈ Lp(Rn) we
have T (δk)( f ) → T ( f ) a.e. as k → ∞. Moreover, for p > 1, T (δk)( f ) → T ( f ) in Lp.

Proof. We begin with the observation that T (δk)(ϕ)(x) → T (ϕ)(x) as k → ∞ for
all x ∈ Rn whenever ϕ ∈ S (Rn); this is a consequence of (3.3.7) (applied to τxϕ̃).
Combining Theorems 3.8.1 and 2.5.6 yields the asserted a.e. convergence for func-
tions f in Lp(Rn). The claimed convergence in Lp for p > 1 is a consequence of the
LDCT as T (δk)( f ) → T ( f ) a.e. and |T (δk)( f )| ≤ T (∗)( f ) ∈ Lp(Rn) for all k. �

We conclude this section with an analog of Corollary 3.6.4.

Corollary 3.8.4. Let Ω be an odd bounded function on Sn−1. Then T (∗)
Ω is bounded

on Lp(Rn) with norm at most πωn−1
2 ‖Ω‖L∞‖H(∗)‖Lp→Lp .

Proof. Let f ∈ S (Rn). We begin with

∫

|y|≥ε

Ω(y/|y|)
|y|n f (x− y)dy=

π
2

∫

Sn−1
Ω(θ)H (ε)

θ ( f )(x)dθ

derived in (3.6.10). Inserting absolute values and taking the supremum over all ε > 0
yields

T (∗)
Ω ( f )(x) ≤ π

2

∫

Sn−1
|Ω(θ)|H (∗)

θ ( f )(x)dθ , x ∈ Rn,

for f ∈S (Rn). From this we obtain the claimed Lp bound for T (∗)
Ω by Minkowski’s

integral inequality (Theorem 1.1.12). Using the result in Appendix D, we extend
this operator to Lp(Rn). �

Exercises

3.8.1. Let Ω be a bounded function on Sn−1 with vanishing integral and let TΩ be as
in Definition 3.2.5. Assume that either Ω is odd or Ω satisfies the Lipschitz condition
|Ω(θ1)−Ω(θ2)| ≤ B0|θ1 −θ2|α for some α ∈ (0,1), B0 > 0, and all θ1,θ2 ∈ Sn−1.

Prove that for any 1 < p < ∞ and all f ∈ Lp(Rn), T (ε)
Ω ( f ) → TΩ ( f ) a.e. and in Lp.[

Hint: Use Exercise 3.3.5, Theorem 2.5.6, and Theorem 3.8.1.
]



3.8 Maximal Singular Integrals 149

3.8.2. Let K be a function on Rn \ {0} that satisfies |K(x)| ≤ A1|x|−n. Let η be a
smooth function that equals 1 when |x| ≥ 2 and vanishes for |x| ≤ 1. For f ∈ Lp(Rn),
1 ≤ p < ∞, define the smoothly truncated singular integral by

T (ε)
η ( f )(x) =

∫

Rn
η(y/ε)K(y) f (x− y)dy , x ∈ Rn.

Show that the maximal singular integral

T (∗) = sup
ε>0

∣∣T (ε)∣∣

is bounded from Lp(Rn) to Lp(Rn) for 1 < p < ∞ if and only if the smoothly trun-
cated maximal singular integral

T (∗)
η = sup

ε>0

∣∣T (ε)
η

∣∣

is bounded from Lp(Rn) to Lp(Rn).
[
Hint: Use Corollary 2.5.2.

]

3.8.3. (Simpler form of Cotlar’s inequality) Suppose that K is a function defined
on Rn \ {0} that satisfies (3.3.3), (3.8.2), and (3.3.5). Let W be a tempered distri-
bution on Rn associated with K as in (3.3.8) and let T be the operator given by
convolution withW . Follow the steps below to prove the inequality

T (∗)( f ) ≤ cM(T ( f ))+Cn,δ (A1+A2+A3)M( f ), f ∈ Lp(Rn).

(a) Notice that the operator T (ε) is given by convolution with KχB(0,ε)c . (b) Pick a

smooth function φ supported in the ball B(0,1/2) with integral 1. Write

KχB(0,ε)c = φε ∗W +
(
KχB(0,ε)c −φε ∗W

)
.

(c) Show that
sup
ε>0

| f ∗φε ∗W | ≤ cM(T ( f ))

for f ∈ Lp(Rn). In (d), (e) prove that

∣∣∣
(
KχB(0,ε)c −φε ∗W

)
(x)

∣∣∣ ≤ 1
εn

(A1+A2+A3)Cφ ,δ ,n

(1+ |x/ε|)n+δ ,

where Cφ ,δ ,n depends on the indicated parameters. Then apply Corollary 2.5.2. (d)
In the case |x| ≥ ε write

K(x) =
∫

Rn
K(x)φε(y)dy

and use (3.8.2) to obtain the inequality in (c) withCφ ,δ ,n = 2n+δ ∫
Rn |y|δ |φ(y)|dy.

(e) To prove the inequality in (c) in the case |x| < ε begin with
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(φε ∗W )(x) = lim
δ j→0

∫

|x−y|≥δ j

K(x− y)φε(y)dy

for some sequence δ j ∈ (0,1) tending to zero which defines W . Then write
(φε ∗W )(x) as the sum of the following expressions:

∫

|x−y|> ε
8

K(x− y)φε(y)dy,
∫

|x−y|≤ ε
8

K(x− y)
[
φε(y)−φε(x)

]
dy,

φε(x) lim
δ j→0

∫

δ j≤|x−y|≤ ε
8

K(x− y)dy.

Finally, estimate all these expressions by (A1+A3)ε−nC(φ ,n).



Chapter 4
Vector-Valued Singular Integrals and
Littlewood–Paley Theory

4.1 The Vector-Valued Calderón–Zygmund Theorem

Let T be a bounded operator from Lp(Rn) to itself for some p ∈ (1,∞). One may
wonder if a stronger estimate of the form

∥
∥
∥

( N

∑
j=1

|T ( f j)|s
) 1

s
∥
∥
∥
Lp

≤C
∥
∥
∥

( N

∑
j=1

| f j|q
) 1

q
∥
∥
∥
Lp

(4.1.1)

might hold, where f j ∈ Lp(Rn) and 1 ≤ q,s ≤ ∞ (with the obvious modifications
when q or s is infinite). Naturally, we would like this estimate to hold with a constant
C independent of N, so that we can let N → ∞. We will derive estimates of the form
(4.1.1) by introducing operators acting on finite sequences of functions.

We fix positive integersM,N and 1≤ q,s≤ ∞. We denote by �qN the Banach space
of all finite sequences (a1, . . . ,aN) of complex numbers equipped with the norm

∥
∥(a1, . . . ,aN)

∥
∥

�q
=

{
(

∑N
j=1 |a j|q

) 1
q when q < ∞,

sup{|a j| : j = 1, . . . ,N} when q= ∞.

Bounded linear operators from �qN to �sM can be identified with M ×N matrices
Y = (yi j)1≤i≤M,1≤ j≤N . The norm of a such a matrix Y is denoted by ‖Y‖�

q
N→�sM

. The

precise form of ‖Y‖�
q
N→�sM

is not needed in general and can be calculated in some

instances; upper and lower estimates for ‖Y‖�
q
N→�sM

are given in Exercise 4.3.1.
Let 0< p≤ ∞ and 1≤ q≤ ∞. We will be working with spaces of finite sequences

{ f j}Nj=1 of measurable functions on Rn that satisfy

∥
∥‖( f1, . . . , fN)‖�q

∥
∥
Lp(Rn) =

(∫

Rn

( N

∑
j=1

| f j(x)|q
) p

q
dx

) 1
p

< ∞,

with the obvious modification when p or q is infinity. We define

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
L. Grafakos, Fundamentals of Fourier Analysis, Graduate Texts in Mathematics 302,
https://doi.org/10.1007/978-3-031-56500-7 4

151

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-56500-7_4&domain=pdf
https://doi.org/10.1007/978-3-031-56500-7_4


152 4 Vector-Valued Singular Integrals and Littlewood–Paley Theory

Lp(Rn, �qN) =
{

{ f j}Nj=1 :
∥
∥‖( f1, . . . , fN)‖�q

∥
∥
Lp(Rn) < ∞

}

and we note that this is a normed space when p≥ 1 and a quasi-normed space when
p < 1. In fact these spaces are also complete; see Exercise 4.1.2. When p ≥ 1, we
define the integral of an element { f j}Nj=1 of L

p(Rn, �qN) over a compact subset B of
Rn by setting

∫

B
{ f j}Nj=1(x)dx=

{∫

B
f j(x)dx

}N

j=1
.

We consider the following situation. Suppose that for all x ∈ Rn \{0} there is an
M×N matrix

�K(x) =

⎛

⎜
⎜
⎜
⎝

K11(x) K12(x) · · · K1N(x)
K21(x) K22(x) · · · K2N(x)

...
...

...
...

KM1(x) KM2(x) · · · KMN(x)

⎞

⎟
⎟
⎟
⎠

=
(

Ki j(x)
)

1≤i≤M,1≤ j≤N ,

where each Ki j lies in L1loc(R
n \{0}), i.e., it is an integrable function on every com-

pact subset of Rn \{0}. Also suppose that Ki j satisfy the size condition

|Ki j(x)
∣
∣ ≤ Ai j

1 |x|−n, x �= 0, (4.1.2)

for some Ai j
1 < ∞ and, for some 1 ≤ q,s ≤ ∞, the regularity condition

sup
y∈Rn\{0}

∫

|x|≥2|y|

∥
∥�K(x− y)−�K(x)

∥
∥

�
q
N→�sM

dx ≤ A2 < ∞ . (4.1.3)

Finally, we assume that there is a sequence δk in (0,1) with δk → 0 as k → ∞ and an
M×N complex matrix �K0 = (K0

i j)1≤i≤M,1≤ j≤N , such that

lim
k→∞

∫

δk≤|x|≤1
Ki j(x)dx= K0

i j. (4.1.4)

Note that (4.1.4) would be a consequence of the assumption

sup
1≤i≤M

sup
1≤ j≤N

sup
ε>0

sup
R>ε

∣
∣
∣
∣

∫

ε≤|x|≤R
Ki j(x)dx

∣
∣
∣
∣
≤ A3 < ∞ . (4.1.5)

For a compact set B that does not contain the origin, we define the integral of �K
over B to be the matrix of the integrals of the coordinates over B, i.e.,

∫

B
�K(x)dx=

(∫

B
Ki j(x)dx

)

1≤i≤M,1≤ j≤N
.

Using this notation we write
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lim
k→∞

∫

δk≤|y|≤1
�K(y)dy= �K0. (4.1.6)

Given �K satisfying assumptions (4.1.2), (4.1.3), and (4.1.5), we define an oper-
ator �T acting on N-tuples of smooth functions with compact support { f j}Nj=1 as
follows:

�T
({ f j}Nj=1

)

(x) = lim
k→∞

∫

|y|≥δk
�K(y)

({ f j(x− y)}Nj=1

)

dy. (4.1.7)

This equals:
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

lim
k→∞

∫

|y|≥δk
K11(y) f1(x− y)dy + · · ·+ lim

k→∞

∫

|y|≥δk
K1N(y) fN(x− y)dy

lim
k→∞

∫

|y|≥δk
K21(y) f1(x− y)dy + · · ·+ lim

k→∞

∫

|y|≥δk
K2N(y) fN(x− y)dy

...

lim
k→∞

∫

|y|≥δk
KM1(y) f1(x− y)dy + · · ·+ lim

k→∞

∫

|y|≥δk
KMN(y) fN(x− y)dy

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

and each one of these limits exists and is similar to the limit in (3.3.9).
Assume r = q= s in (4.1.1) and suppose 1 < r < ∞. Then (4.1.1) holds trivially

when p = r with C = ‖T‖Lp→Lp . Thus, it is natural to consider p = r (instead of
p = 2) as the initial estimate in the following vector-valued adaptation of Theorem
3.6.1. As above, we fix below M,N ∈ Z+ and 1 ≤ q,s ≤ ∞.

Theorem 4.1.1. Suppose that for each x ∈ Rn \ {0}, �K(x) is a matrix that satis-
fies (4.1.2) and (4.1.3) for some Ai j

1 ,A2 > 0 and (4.1.6) for some sequence δk ↓ 0
and some M ×N complex matrix �K0. Let �T be the operator associated with �K as
defined in (4.1.7). Assume that �T is a bounded linear operator from Lr(Rn, �qN) to
Lr(Rn, �sM) with norm B� for some 1 < r ≤ ∞. Then �T has well-defined extensions
on Lp(Rn, �qN) for all 1 ≤ p < ∞ and there exist constants Cn, C′

n such that these
extensions satisfy

∥
∥�T (F)

∥
∥
L1,∞(Rn,�sM) ≤C′

n(A2+B�)
∥
∥F

∥
∥
L1(Rn,�

q
N)

(4.1.8)

for all F in L1(Rn, �qN) and
∥
∥�T (F)

∥
∥
Lp(Rn,�sM) ≤CnC(p)(A2+B�)

∥
∥F

∥
∥
Lp(Rn,�

q
N)

(4.1.9)

for all F in Lp(Rn, �qN) when 1 < p < ∞. Here C(p) = max
(

p,(p−1)−1
)

if r < ∞
and C(p) = p(p−1)−1 if r = ∞.

It is remarkable that the constant C′
n in (4.1.8) and Cn in (4.1.9) are in fact inde-

pendent of A1,q,N,s,M,r.

Proof. We fix F = { fk}Nk=1, where each fk is a finite linear combination of char-
acteristic functions of dyadic cubes. Such functions F are dense in L1(Rn, �qN)
by Exercise 4.1.3. Notice that ‖F‖�

q
N
is also a finite linear combination of char-

acteristic functions of dyadic cubes, hence its Calderón–Zygmund decomposition
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contains only finitely many cubes, cf. Example 3.5.5. We apply the Calderón–
Zygmund decomposition to ‖F‖�

q
N
at height γα, where γ = 2−n−1(A2 + B�)−1

extracting a finite collection of closed dyadic cubes {Qj} j satisfying ∑ j |Qj| ≤
(γα)−1‖F‖L1(Rn,�

q
N)
. We define the good function G of the decomposition by

G(x) =

⎧

⎨

⎩

F(x) for x /∈ ∪iQi,

1
|Qj |

∫

Qj

F(x)dx for x ∈ Qj.

Also define the bad function B=F−G. Then B=∑ j B j, where each Bj is supported
in the cube Qj and has mean value zero over Qj. Moreover,

‖G‖L1(Rn,�
q
N)

≤ ‖F‖L1(Rn,�
q
N)

, (4.1.10)

‖G‖L∞(Rn,�
q
N)

≤ 2nγα, (4.1.11)

and ‖Bj‖L1(Rn,�
q
N)

≤ 2n+1γα|Qj|, by an argument similar to that given in the proof of
Theorem 3.5.2. We only verify (4.1.11). On the cube Qj, G is equal to the constant
|Qj|−1 ∫

Qj
F(x)dx, and this is bounded by 2nγα . For each x ∈ Rn \⋃

j Q j and for

each k= 0,1,2, . . . there exists a unique nonselected dyadic cube Q(k)
x of generation

k that contains x. Then for each k ≥ 0, we have by Theorem 1.1.12
∥
∥
∥
∥
∥

1

|Q(k)
x |

∫

Q(k)
x

F(y)dy

∥
∥
∥
∥
∥

�
q
N

≤ 1

|Q(k)
x |

∫

Q(k)
x

‖F(y)‖�
q
N
dy ≤ γα.

The intersection of the closures of the cubes Q(k)
x is the singleton {x}. Using Corol-

lary 1.5.6, we deduce that for almost all x ∈ Rn \⋃

i Qi we have

F(x) = lim
k→∞

1

|Q(k)
x |

∫

Q(k)
x

F(y)dy .

Since these averages are at most γα , we conclude that ‖F‖�
q
N

≤ γα almost every-

where on Rn \⋃

j Q j; hence ‖G‖�
q
N

≤ γα a.e. on this set. This proves (4.1.11).
We begin with the estimate concerning the good function G. Suppose first that

r < ∞. Then

∣
∣
{

x ∈ Rn : ‖�T (G)(x)‖�sM
> α/2

}∣
∣ ≤

( 2
α

)r‖�T (G)‖rLr(Rn,�sM)

≤
(2B�

α

)r‖G‖rLr(Rn,�
q
N)

≤
(2B�

α
(2nαγ)

1
r′ ‖F‖

1
r
L1(Rn,�

q
N)

)r

≤ 2(A2+B�)
α

‖F‖L1(Rn,�
q
N)

, (4.1.12)
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where the third inequality follows from (4.1.10) and (4.1.11) (Exercise 1.1.6). Now
if r = ∞, we have

‖�T (G)‖L∞(Rn,�sM) ≤ B�‖G‖L∞(Rn,�
q
N)

≤ 2nγαB� <
α
2

which implies that
∣
∣
{

x ∈ Rn : ‖�T (G)(x)‖�sM
> α/2

}∣
∣= 0.

Thus estimate (4.1.12) also holds when r = ∞.
We now turn our attention to the bad function B. As B = ∑ j B j we have

that �T (B) = ∑ j
�T (Bj), since the Calderón–Zygmund decomposition of F contains

finitely many cubes Qj. Let Q∗
j = 2

√
nQj. We write

∣
∣{x ∈ Rn : ‖�T (B)(x)‖�sM

> α/2}∣∣
≤ ∣
∣
⋃

j

Q∗
j

∣
∣+

∣
∣
{

x /∈
⋃

j

Q∗
j : ‖�T (B)(x)‖�sM

> α/2
}∣
∣

≤ (2
√
n)n

γ
‖F‖L1(Rn,�

q
N)

α
+

2
α

∫

(∪ jQ∗
j )
c
‖�T (B)(x)‖�sM

dx

≤ (2
√
n)n

γ
‖F‖L1(Rn,�

q
N)

α
+

2
α ∑

j

∫

(Q∗
j )
c
‖�T (Bj)(x)‖�sM

dx. (4.1.13)

It suffices to estimate the last sum. Denoting by y j the center of the cube Qj and
using the fact that Bj has mean value zero over Qj, for x /∈ Q∗

j , using the LDCT and
(4.1.2), we write

�T (Bj)(x) =
∫

Qj

(
�K(x− y)−�K(x− y j)

)

(Bj(y))dy. (4.1.14)

For the argument below refer to Figure 3.3. Using (4.1.14) we write

∑
j

∫

(Q∗
j )
c

∥
∥�T (Bj)(x)

∥
∥

�sM
dx

= ∑
j

∫

(Q∗
j )
c

∥
∥
∥
∥

∫

Qj

(
�K(x− y)−�K(x− y j)

)

(Bj(y))dy
∥
∥
∥
∥

�sM

dx

≤ ∑
j

∫

Qj

∥
∥Bj(y)

∥
∥

�
q
N

∫

(Q∗
j )
c

∥
∥�K(x− y)−�K(x− y j)

∥
∥

�
q
N→�sM

dxdy

≤ ∑
j

∫

Qj

∥
∥Bj(y)

∥
∥

�
q
N

∫

|x−y j |≥2|y−y j|

∥
∥�K(x− y)−�K(x− y j)

∥
∥

�
q
N→�sM

dxdy

≤ A2∑
j

‖Bj‖L1(Rn,�
q
N)

≤ 2n+1A2‖F‖L1(Rn,�
q
N)

, (4.1.15)
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where we used the fact that |x−y j| ≥ 2|y−y j| for all x /∈Q∗
j and y ∈Qj and (4.1.3).

We also used Minkowski’s integral inequality in the first inequality above. Com-
bining (4.1.12), (4.1.13), (4.1.15), the estimates for the good and bad functions, we
deduce

∣
∣
{

x ∈ Rn : ‖�T (F)(x)‖�sM
> α

}∣
∣

≤ 2(A2+B�)
α

‖F‖L1(Rn,�
q
N)
+

(2
√
n)n

γ
‖F‖L1(Rn,�

q
N)

α
+

2
α
2n+1A2‖F‖L1(Rn,�

q
N)

≤ (

2+(2
√
n)n2n+1+2n+2)(A2+B�)

‖F‖L1(Rn,�
q
N)

α
.

Combining the estimates leading to (4.1.12), (4.1.13), and (4.1.15) yields (4.1.8)
with C′

n = 2+(2
√
n)n2n+1+ 2n+2. Thus �T has an extension that maps L1(Rn, �qN)

to L1,∞(Rn, �sM) with constant at most C′
n(A2 + B�). In obtaining the extension

from L1(Rn, �qN) to L1,∞(Rn, �sM) we use the completeness of weak L1 (Proposi-
tion 1.2.12).

Next we interpolate between (4.1.8) and �T : Lr(Rn, �qN) → Lr(Rn, �sM). Using
Exercise 1.3.7 we obtain

∥
∥�T

∥
∥
Lp(Rn,�

q
N)→Lp(Rn,�sM) ≤ 2

( p
p−1

+
p

r− p

) 1
p
C′
n(A2+B�) , (4.1.16)

when 1 < p < r. Taking C(p) = 2p(p−1)−1 completes the argument when r = ∞.

We now consider the case r < ∞. Notice that �Tt maps Lr
′
(Rn, �s

′
M) to Lr

′
(Rn, �q

′
N )

with constant B� (see Exercise 4.1.5). As the kernel of �Tt satisfies the same estimates
as that of �T , it follows that �Tt also admits a bounded extension from L1(Rn, �s

′
M) to

L1,∞(Rn, �q
′

N ) with bound at most C′
n(A2+B�). By interpolation (Exercise 1.3.7) we

obtain

∥
∥�Tt

∥
∥
Lp′ (Rn,�s

′
M)→Lp′ (Rn,�

q′
N )

≤ 2
( p′

p′ −1
+

p′

r′ − p′
) 1

p′C′
n(A2+B�) , (4.1.17)

when 1 < p′ < r′. In view of Exercise 4.1.5, the dual of estimate (4.1.17) implies

∥
∥�T

∥
∥
Lp(Rn,�

q
N)→Lp(Rn,�sM) ≤ 2

( p′

p′ −1
+

p′

r′ − p′
) 1

p′C′
n(A2+B�) (4.1.18)

when r < p < ∞. Estimates (4.1.16) and (4.1.18) cover the entire region 1 < p < ∞,
but in order to obtain a better constant that does not depend on rwe use interpolation.

Restricting (4.1.16) and (4.1.18) to smaller regions we obtain

∥
∥�T

∥
∥
Lp(Rn,�

q
N)→Lp(Rn,�sM) ≤ 4C′

n(A2+B�)(p′)
1
p , 1 < p <

r+1
2

, (4.1.19)

∥
∥�T

∥
∥
Lp(Rn,�

q
N)→Lp(Rn,�sM) ≤ 4C′

n(A2+B�)p
1
p′ , 2r−1 < p < ∞. (4.1.20)
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These estimates prove (4.1.9) for p < r+1
2 and for p > 2r− 1. For the remaining

values of p we interpolate between p= 1 with bound C′
n(A2+B�) and p= 4r with

bound 4C′
n(A2 +B�)(4r)1/(4r)

′
coming from (4.1.20). Using again Exercise 1.3.7,

for 1 < p < 4r we obtain

∥
∥�T

∥
∥
Lp(Rn,�

q
N)→Lp(Rn,�sM) ≤ 8C′

n(A2+B�)
( p
p−1

+
p

4r− p

) 1
p
(

(4r)
1

(4r)′
)

1− 1
p

1− 1
4r .

For p ∈ [ r+1
2 ,2r− 1], (4r− p)−1 ≤ (p− 1)−1 and 4r ≤ 8p, so the quantity on the

right is bounded by 16C′
n(A2+B�)(p/(p−1))1/p(8p)1−1/p. This yields

∥
∥�T

∥
∥
Lp(Rn,�

q
N)→Lp(Rn,�sM) ≤ 128C′

n(A2+B�)p
(p−1)1/p

,
r+1
2

≤ p ≤ 2r−1. (4.1.21)

Combining (4.1.19), (4.1.20), and (4.1.21) we deduce (4.1.9). �

We remark that instead of assuming that each coordinate of F is a finite linear
combination of characteristic functions of dyadic cubes, we could have assumed that
F lies in L1(Rn, �qN)∩Lr(Rn, �qN). In this case, one would have to show a property
analogous to (3.6.3).

Exercises

4.1.1. Let Y = (yi j)1≤i≤M,1≤ j≤N be a complex M×N matrix and let 1 ≤ q,s ≤ ∞.
Prove the following:

sup
1≤ j≤N

(

|y1 j|s+ · · ·+ |yM j|s
) 1

s ≤ ∥
∥Y

∥
∥

�
q
N→�sM

≤
( M

∑
i=1

(

|yi1|q′
+ · · ·+ |yiN |q′) s

q′
) 1

s

,

with the obvious modification when s=∞ or q= 1. Notice that the (worse) estimates

sup
1≤i≤M

sup
1≤ j≤N

|yi j| ≤
∥
∥Y

∥
∥

�
q
N→�sM

≤ ∑
1≤i≤M

∑
1≤ j≤N

|yi j|

are valid for all 1 ≤ q,s ≤ ∞.

4.1.2. Let 0 < p ≤ ∞, N ∈ Z+, and 1 ≤ r ≤ ∞. Prove that Lp(Rn, �rN) is a Banach
space if p ≥ 1 and a quasi-Banach space when p < 1. Also show that L1,∞(Rn, �rN)
is a quasi-Banach space.

[Hint: sup1≤ j≤N ‖ f j‖min(1,p)
Lp ≤ ∥

∥
∥
∥{ f j}Nj=1

∥
∥

�rN

∥
∥min(1,p)
Lp ≤ ∑N

j=1

∥
∥ f j

∥
∥min(1,p)
Lp .]

4.1.3. LetD be a dense subspace of Lp(Rn), where 0< p< ∞. Let 1≤ q≤ ∞. Show
that the space D ×·· ·×D

︸ ︷︷ ︸

N times

is dense in Lp(Rn, �qN).
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4.1.4. Let {a j}Nj=1 be a finite sequence of complex numbers. Prove that for any q
satisfying 1 ≤ q ≤ ∞ we have

∥
∥{a j}Nj=1

∥
∥

�
q
N
= max

‖{b j}Nj=1‖
�
q′
N

=1

∣
∣
∣
∣

N

∑
j=1

a jb j

∣
∣
∣
∣
.

4.1.5. Prove that for any 1 ≤ q ≤ ∞, 1 < p < ∞, and f j ∈ Lp(Rn) we have

∥
∥
∥{ f j}Nj=1

∥
∥
∥
Lp(Rn,�

q
N)

= max
‖{g j}Nj=1‖Lp′ (Rn,�

q′
N )

=1

∣
∣
∣
∣

∫

Rn

N

∑
j=1

f jg j dx

∣
∣
∣
∣
.

4.2 Applications of Vector-Valued Inequalities

An important consequence of Theorem 4.1.1 is the following:

Corollary 4.2.1. Fix A,B > 0, 1 < r < ∞, and let Kj be a sequence of functions on
Rn \{0} that satisfy, for some Aj

1 < ∞,

|Kj(x)| ≤ Aj
1 |x|−n , x �= 0, (4.2.1)

lim
δk→0

∫

δk≤|x|≤1
Kj(x)dx= Lj , (4.2.2)

for certain complex constants Lj and a sequence δk ∈ (0,1) that tends to zero, and

sup
y∈Rn\{0}

∫

|x|≥2|y|
sup
j∈Z

|Kj(x− y)−Kj(x)|dx ≤ A2 . (4.2.3)

LetWj ∈S ′(Rn) be associated with Kj as in (3.3.8) and let Tj be the operator given
by convolution withWj. Assume that Ŵj coincide with bounded functions satisfying
sup j ‖Ŵj‖L∞ ≤ B. Then for all 1< p< ∞, Tj admit bounded extensions from Lp(Rn)
to itself and from L1(Rn) to L1,∞(Rn), and there exist Cn,C′

n > 0 such that for all
f j ∈ Lp(Rn) we have

∥
∥
∥

(

∑
j

|Tj( f j)|r
)1

r
∥
∥
∥
L1,∞

≤C′
nmax

(

r,
1

r−1

)

(A2+B)
∥
∥
∥

(

∑
j

| f j|r
)1

r
∥
∥
∥
L1

,

∥
∥
∥

(

∑
j

|Tj( f j)|r
)1

r
∥
∥
∥
Lp

≤Cnmax
(

r,
1

r−1

)

max
(

p,
1

p−1

)

(A2+B)
∥
∥
∥

(

∑
j

| f j|r
)1

r
∥
∥
∥
Lp

.

Proof. The assumption sup j ‖Ŵj‖L∞ ≤ B implies that all Tj are L2 bounded with
norms at most B. It follows from Theorem 3.6.1 that all Tj are of weak type (1,1)
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with bounds at most Cn(A2 + B) and also bounded on Lr with bounds at most
Cnmax(r,(r−1)−1)(A2+B), uniformly in j.

It suffices to prove the claimed inequalities for | j| ≤ N, where N ∈ Z+. Then
the LMCT implies the conclusion for all j ∈ Z (in the case of L1,∞ refer to Exer-
cise 1.2.2). We fix N ∈ Z+ and we define

�T ({ f j}| j|≤N) = { f j ∗Wj}| j|≤N

for { f j} j inS (Rn)2N+1 which is a dense subspace of Lr(Rn, �r2N+1). It is immediate
to verify the second claimed inequality with p = r, i.e., that �T maps Lr(Rn, �r2N+1)
to itself with norm

B� ≤Cnmax(r,(r−1)−1)(A2+B).

The kernel of �T is �K in L(�r2N+1, �
r
2N+1) is a diagonal matrix defined by

�K(x)({t j}| j|≤N) = {Kj(x)t j}| j|≤N , {t j}| j|≤N ∈ �r2N+1.

Obviously, we have
∥
∥�K(x)

∥
∥

�r2N+1→�r2N+1
≤ sup

j
|Kj(x)|.

This implies that
∥
∥�K(x− y)−�K(x)

∥
∥

�r2N+1→�r2N+1
≤ sup

j
|Kj(x− y)−Kj(x)| ,

and therefore condition (4.1.3) holds for �K as a consequence of (4.2.3). Moreover,
(4.1.2) and (4.1.6) with �K0 = {Lj} j are also valid for this �K, in view of assumptions
(4.2.1) and (4.2.2). The desired conclusion follows from Theorem 4.1.1. �

Remark 4.2.2. Note that in Corollary 4.2.1, if A1 = sup j A
j
1 < ∞, the hypothesis that

sup j∈Z ‖Ŵj‖L∞ ≤ B < ∞ could have been replaced by

sup
j∈Z

sup
δ>0

sup
N>δ

∣
∣
∣
∣

∫

δ≤|x|≤N
Kj(x)dx

∣
∣
∣
∣
≤ A3. (4.2.4)

In that case the constant A2 + B in the conclusion of Corollary 4.2.1 should be
replaced by A1+A2+A3. This is because under assumptions (4.2.1), (4.2.3), and
(4.2.4) it follows from Theorem 3.4.2 that the operators Tj are bounded on L2 by
some constant B ≤ cn (A1+A2+A3) uniformly in j.

Corollary 4.2.3. Let K be a function on Rn \{0} that satisfies

|K(x)| ≤ A1 |x|−n , x �= 0,

lim
δk→0

∫

δk≤|x|≤1
K(x)dx= L ,

for some A1 < ∞, L ∈ C, and δk ∈ (0,1) that tend to zero as k → ∞, and
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sup
y∈Rn\{0}

∫

|x|≥2|y|
|K(x− y)−K(x)|dx ≤ A2 . (4.2.5)

LetW ∈ S ′(Rn) be associated with K as in (3.3.8) and let T be the operator given
by convolution with W . Let 1 < r < ∞ and B > 0. Assume that Ŵ coincides with
a bounded function satisfying ‖Ŵ‖L∞ ≤ B. Then for all 1 < p < ∞, T admits a
bounded extension from Lp(Rn) to itself and from L1(Rn) to L1,∞(Rn), and there
exist positive constants Cn,C′

n such that for all f j ∈ Lp(Rn) we have

∥
∥
∥

(

∑
j

|T ( f j)|r
)1

r
∥
∥
∥
L1,∞

≤C′
nmax

(

r,
1

r−1

)

(A2+B)
∥
∥
∥

(

∑
j

| f j|r
)1

r
∥
∥
∥
L1

,

∥
∥
∥

(

∑
j

|T ( f j)|r
)1

r
∥
∥
∥
Lp

≤Cnmax
(

r,
1

r−1

)

max
(

p,
1

p−1

)

(A2+B)
∥
∥
∥

(

∑
j

| f j|r
)1

r
∥
∥
∥
Lp

.

In particular, these inequalities are valid for the Hilbert transform and the Riesz
transforms.

Proof. Apply Corollary 4.2.1 with Kj = K,Wj =W , and Tj = T for all j. �

We now discuss an application of Theorem 4.1.1 when r = ∞. This provides
another proof of the boundedness of the maximal operator appearing in Corol-
lary 2.5.2 and of the Hardy–Littlewood maximal operator.

Example 4.2.4. Let A,γ > 0 and G be a measurable function on Rn×R+ satisfying

|G(x, t)| ≤ 1
tn

A
(1+ |x|/t)n+γ = A

Φ(x/t)
tn

= AΦt(x),

for all x ∈ Rn and t > 0, where

Φ(x) = (1+ |x|)−n−γ .

Consider the maximal operator

N( f ) = sup
t>0

|G(·, t)∗ f |

defined for f in ∪1≤q≤∞Lq(Rn). By Corollary 2.5.2, the operator N is pointwise
controlled by a constant multiple of the Hardy–Littlewood maximal operator M,
and, for a certain function G, it essentially coincides with it. Indeed, for the choice
G(x, t) = v−1

n t−nχ|x|≤t we have N(| f |) =M( f ). Next we note that

A−1N(| f |) ≤ sup
t>0

Φt ∗ | f | ≤ 2n sup
j∈Z

Φ2 j ∗ | f |, (4.2.6)

since for 2 j−1 ≤ t < 2 j ( j ∈ Z) and x ∈ Rn we have

Φt(x) =
1
tn

1
(1+ |x|/t)n+γ ≤ 1

(2 j−1)n
1

(1+ |x|/2 j)n+γ = 2nΦ2 j(x).



4.2 Applications of Vector-Valued Inequalities 161

For an odd positive integer M consider the vector-valued operator

f �→ (Φ2 j ∗ f )| j|≤[M2 ]

which we think of as a mapping from Lp(Rn) = Lp(Rn,C) to Lp(Rn, �∞
M). The kernel

of this operator is theM×1 matrix

�K(x) = (Φ2−[ M/2] (x), . . . ,Φ2[M/2] (x))t , x ∈ Rn,

which acts on complex numbers a as follows:

a �→ (

Φ2−[M/2] (x), . . . ,Φ2[M/2] (x)
)t
a=

(

Φ2−[M/2] (x)a, . . . ,Φ2[M/2] (x)a
)t

.

This operator maps C to �∞
M with norm
∥
∥�K(x)

∥
∥

C→�∞
M
= sup

| j|≤[M2 ]
|Φ2 j(x)|.

Now (4.1.2) is valid as

sup
| j|≤[M2 ]

|Φ2 j(x)| = sup
| j|≤[M2 ]

1
2 jn

1
(1+ |x|/2 j)n+γ ≤ 1

|x|n , (4.2.7)

and likewise, for x �= 0, we have

sup
| j|≤[M2 ]

|∇Φ2 j(x)| = sup
| j|≤[M2 ]

1

2 j(n+1)
n+ γ

(1+ |x|
2 j )

n+γ+1

∣
∣
∣

( x1
|x| , . . . ,

xn
|x|

)∣
∣
∣ ≤ n+ γ

|x|n+1 .

Now given x,y∈ Rn such that |x| ≥ 2|y|, by the mean value theorem, for each j there
is a ξ j on the line segment joining y to the origin, such that

∥
∥�K(x− y)−�K(x)

∥
∥

C→�∞
M
= sup

| j|≤[M2 ]
|Φ2 j(x− y)−Φ2 j(x)|

= sup
| j|≤[M2 ]

|∇Φ2 j(x−ξ j) · y|

≤ sup
| j|≤[M2 ]

(n+ γ)|y|
|x−ξ j|n+1

≤ (n+ γ)2n+1 |y|
|x|n+1 (4.2.8)

as |x−ξ j| ≥ |x|−|ξ j| ≥ |x|−|y| ≥ |x|/2. This estimate implies the validity of (4.1.3)
for some constant A2 that depends only on n and γ .

Also notice that (4.1.5) is valid with A3 = ‖Φ‖L1 . Thus (4.1.6) holds for any
sequence δk ↓ 0. Finally, the estimate
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∥
∥
∥ sup

| j|≤[M2 ]
|Φ2 j ∗ f |

∥
∥
∥
L∞

≤ B�

∥
∥ f

∥
∥
L∞

is valid with B� = ‖Φ‖L1 and is obtained by inserting the L∞ norm inside the supre-
mum and applying Theorem 1.6.6 (with p = ∞). An application of Theorem 4.1.1
(with r = ∞) yields the inequalities

∥
∥
∥ sup

| j|≤[M2 ]
|Φ2 j ∗ f |

∥
∥
∥
L1,∞

≤C′
n,γ

∥
∥ f

∥
∥
L1 (4.2.9)

and ∥
∥
∥ sup

| j|≤[M2 ]
|Φ2 j ∗ f |

∥
∥
∥
Lp

≤Cn,γ
p

p−1

∥
∥ f

∥
∥
Lp . (4.2.10)

Letting M → ∞ in (4.2.9) and (4.2.10) (through the odd integers) and using (4.2.6)
we deduce the boundedness of N from L1(Rn) to L1,∞(Rn) and from Lp(Rn) to
itself when 1 < p < ∞ with bounds proportional to those in (4.2.9) and (4.2.10)
times the constant A. These estimates provide a proof of Corollary 1.4.7, i.e., of
the boundedness of the Hardy–Littlewood maximal operator on Lp(Rn) that is not
based on a covering lemma but on Calderón–Zygmund theory.

Exercises

4.2.1. Assume that in Corollary 4.2.1, the hypothesis sup j ‖Ŵj‖L∞ ≤ B is replaced
by the assumption that sup j ‖Tj‖Lr→Lr ≤ B. Show that the conclusion of this corol-
lary can be strengthened as follows: For any 1< p< ∞, Tj admit bounded extensions
from Lp(Rn) to itself and from L1(Rn) to L1,∞(Rn), and there exist Cn,C′

n > 0 such
that for all f j ∈ Lp(Rn) we have

∥
∥
∥

(

∑
j

|Tj( f j)|r
)1

r
∥
∥
∥
L1,∞

≤C′
n(A2+B)

∥
∥
∥

(

∑
j

| f j|r
)1

r
∥
∥
∥
L1

,

∥
∥
∥

(

∑
j

|Tj( f j)|r
)1

r
∥
∥
∥
Lp

≤Cnmax
(

p,
1

p−1

)

(A2+B)
∥
∥
∥

(

∑
j

| f j|r
)1

r
∥
∥
∥
Lp

.

4.2.2. For each j ∈ Z let I j be an open interval in R (which could be half infinite or
the entire line) and let Tj be the operator given by convolution with (χI j)

∨. Prove
that there exists a constantC > 0 such that for all 1< p,r < ∞ and for all f j ∈ Lp(R)
we have

∥
∥
∥

(

∑
j

|Tj( f j)|r
)1

r
∥
∥
∥
L1,∞(R)

≤C max
(

r,
1

r−1

)∥
∥
∥

(

∑
j

| f j|r
)1

r
∥
∥
∥
L1(R)

,

∥
∥
∥

(

∑
j

|Tj( f j)|r
)1

r
∥
∥
∥
Lp(R)

≤C max
(

r,
1

r−1

)

max
(

p,
1

p−1

)∥
∥
∥

(

∑
j

| f j|r
)1

r
∥
∥
∥
Lp(R)

.
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[Hint: Let I be the identity operator, H be the Hilbert transform, Ma( f )(x) =
f (x)e2πiax, and I j = χ(a j ,b j). Show that: (i) if −∞ < a j < b j = +∞, then Tj =
1
2 (I+ iMajHM−a j); (ii) if −∞ = a j < b j < +∞, then Tj = 1

2 (I− iMbjHM−b j); (iii)
if −∞ < a j < b j <+∞, then Tj = i

2

(

MajHM−a j −MbjHM−b j
)

; (iv) if a j =−∞ and
b j =+∞, then Tj = I. Split the intervals in four groups and use Corollary 4.2.3.]

4.2.3. Let Rj = (a1j ,b
1
j)× ·· · × (anj ,b

n
j), where −∞ ≤ akj < bkj ≤ +∞, and define

an operator S j given by convolution by (χRj)
∨. Prove that there exists a constant

Cn < ∞ such that for 1 < p,r < ∞ and all functions f j in Lp(Rn) we have
∥
∥
∥

(

∑
j

|S j( f j)|r
)1

r
∥
∥
∥
Lp(Rn)

≤Cnmax
(

r,
1

r−1

)n
max

(

p,
1

p−1

)n∥∥
∥

(

∑
j

| f j|r
)1

r
∥
∥
∥
Lp(Rn)

.

[Hint: Write S j as the composition of n one-dimensional operators and use the pre-
ceding exercise.]

4.2.4. For fixed θ in Sn−1 let Hθ = {x ∈ Rn : x · θ > 0} be a half space of Rn.
Let THθ be an operator given by convolution with (χHθ )

∨. Prove that there exists a
C < ∞ (independent of n) such that for 1 < p,r < ∞ and all f j in Lp(Rn) we have
∥
∥
∥

(

∑
j

|THθ ( f j)|r
)1

r
∥
∥
∥
Lp(Rn)

≤C max
(

r,
1

r−1

)

max
(

p,
1

p−1

)∥
∥
∥

(

∑
j

| f j|r
)1

r
∥
∥
∥
Lp(Rn)

.

Conclude the validity of this inequality whenHθ is replaced by z+Hθ for any z∈ Rn

with the same constant on the right. [Hint: Apply a rotation.]

4.2.5. Let A be the set of points inside an open angle whose vertex is at zero and let
a j be a sequence of points in R2. Consider the operator Taj+A given by convolution
with (χa j+A)∨. (Here a j+A is the set obtained by translating the set A by a j.) Prove
that there exists a C < ∞ such that for 1 < p,r < ∞ and all f j in Lp(R2) we have
∥
∥
∥

(

∑
j

|Taj+A( f j)|r
)1

r
∥
∥
∥
Lp(R2)

≤
[

Cmax(r, 1
r−1 )max(p, 1

p−1 )
]2∥∥
∥

(

∑
j

| f j|r
)1

r
∥
∥
∥
Lp(R2)

.

[Hint: Use Exercise 4.2.4.]

4.2.6. An n-simplex is the convex hull of n+ 1 points z0,z1, . . . ,zn in Rn that are
affinely independent, which means that z1 − z0, . . . ,zn − z0 are linearly independent.
Prove that the characteristic function of an n-simplex lies inMp(Rn) for 1< p< ∞.
Use this information to show that the characteristic function of any polyhedron also
lies inMp(Rn) for 1 < p < ∞. (Compare with Exercise 2.8.6.) [Hint: An n-simplex
is the intersection of the characteristic functions of n+1 half-spaces. A polyhedron
is a finite union of n-simplices.]

4.2.7. Fix an n-simplex Q and a sequence of points a j in Rn. Consider the operator
Taj+Q given by convolution with (χa j+Q)∨. Prove that there is a constant C (inde-
pendent of the dimension n) such that for 1 < p,r < ∞ and f j in Lp(Rn) we have
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∥
∥
∥

(

∑
j

|Taj+Q( f j)|r
)1

r
∥
∥
∥
Lp(Rn)

≤
[

Cmax(r, 1
r−1 )max(p, 1

p−1 )
]n+1∥∥

∥

(

∑
j

| f j|r
)1

r
∥
∥
∥
Lp(Rn)

.

Deduce an analogous estimate if Q is a polyhedron with an additional factor on the
right of the number of n-simplices that comprise it. [Hint: Use Exercises 4.2.4, 4.2.6
and that Taj+Q =MajTQM−a j ; here Ma( f )(x) = e2πix·a f (x).]

4.3 A Matrix-Valued Calderón–Zygmund Theorem
and Its Applications

We saw in Example 4.2.4 how to obtain Lp bounds for maximal averages via
the vector-valued Calderón–Zygmund theorem. In this section we derive a matrix-
valued version of Theorem 4.1.1 and from this we deduce Lp(�r) bounds for vectors
of maximal functions. To formulate this extension in a general setting, we consider
an L×M matrix

�K =

⎛

⎜
⎜
⎜
⎝

K11 K12 · · · K1M

K21 K22 · · · K2M
...

... · · · ...
KL1 KL2 · · · KLM

⎞

⎟
⎟
⎟
⎠

of integrable functions defined on Rn. Let �F = ( fi j) be an M ×N matrix of Lp

functions. We would like to study linear operators of the form
⎛

⎜
⎜
⎜
⎝

f11 f12 · · · f1N
f21 f22 · · · f2N
...

... · · · ...
fM1 fM2 · · · fMN

⎞

⎟
⎟
⎟
⎠

�→

⎛

⎜
⎜
⎜
⎝

K11 K12 · · · K1M

K21 K22 · · · K2M
...

... · · · ...
KL1 KL2 · · · KLM

⎞

⎟
⎟
⎟
⎠

∗

⎛

⎜
⎜
⎜
⎝

f11 f12 · · · f1N
f21 f22 · · · f2N
...

... · · · ...
fM1 fM2 · · · fMN

⎞

⎟
⎟
⎟
⎠

,

where the preceding convolution of matrices is defined as follows:

�K ∗�F =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

M
∑

m=1
K1m ∗ fm1

M
∑

m=1
K1m ∗ fm2 · · ·

M
∑

m=1
K1m ∗ fmN

M
∑

m=1
K2m ∗ fm1

M
∑

m=1
K2m ∗ fm2 · · ·

M
∑

m=1
K2m ∗ fmN

...
... · · · ...

M
∑

m=1
KLm ∗ fm1

M
∑

m=1
KLm ∗ fm2 · · ·

M
∑

m=1
KLm ∗ fmN

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

We apply a norm on the matrices �F and �K ∗�F that produces scalar-valued func-
tions whose Lp norms can be evaluated. For 1 ≤ q,r ≤ ∞ we introduce the �qN(�

r
M)

of an M×N matrix, to be the �q norm of the vector formed by the �r norms of its
columns. For 1 ≤ q,r ≤ ∞ and 1 ≤ p < ∞, we introduce the space Lp(Rn, �qN(�

r
M))
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of all M×N matrices of measurable functions �F = ( fm j)1≤m≤M,1≤ j≤N on Rn such
that

∥
∥�F

∥
∥
Lp(Rn,�

q
N(�

r
M)) =

∥
∥
∥

∥
∥�F

∥
∥

�
q
N(�

r
M)

∥
∥
∥
Lp(Rn)

=:

∥
∥
∥
∥

( N

∑
j=1

[ M

∑
m=1

| fm j|r
] q

r
) 1

q
∥
∥
∥
∥
Lp(Rn)

< ∞,

with the obvious modification when q = ∞ or r = ∞. Likewise we define the space
L1,∞(Rn, �qN(�

r
M)).

In this section, for 1 < p < ∞, we are interested in estimates of the form
∥
∥�K ∗�F

∥
∥
Lp(�qN(�

∞
L ))

≤C
∥
∥�F

∥
∥
Lp(�qN(�

∞
M)) (4.3.1)

withC independent of �F , L,M,N. When 1< p< ∞, the dual space of Lp(Rn, �qN(�
∞
M))

is Lp′
(Rn, �q

′
N (�

1
M)), where

∥
∥�F

∥
∥
Lp′ (Rn,�

q′
N (�1M))

=
∥
∥
∥
∥

( N

∑
j=1

[ M

∑
m=1

| fm j|
]q′) 1

q′
∥
∥
∥
∥
Lp′ (Rn)

< ∞

with the obvious modification when q= 1. The dual estimate to (4.3.1) is

∥
∥�̃K

t ∗ �G
∥
∥
Lp′ (�q

′
N (�1M))

≤C
∥
∥�G

∥
∥
Lp′ (�q

′
N (�1L))

, (4.3.2)

where �̃K
t
is the transpose of the matrix obtained by replacing each Klm by K̃lm. Note

that estimate (4.3.2) is completely equivalent to (4.3.1) (Exercise 4.3.4), so we can
focus on either one.

We discuss two important examples of the situation just mentioned: (4.3.2) and
(4.3.1), both withM = 1.

Example 4.3.1. (a) Let �K = (K1, . . . ,KL) be a 1×L matrix of integrable functions
defined on Rn. Consider an operator of the form
⎛

⎜
⎜
⎜
⎝

f11 f12 · · · f1N
f21 f22 · · · f2N
...

... · · · ...
fL1 fL2 · · · fLN

⎞

⎟
⎟
⎟
⎠

�→ �K ∗

⎛

⎜
⎜
⎜
⎝

f11 f12 · · · f1N
f21 f22 · · · f2N
...

... · · · ...
fL1 fL2 · · · fLN

⎞

⎟
⎟
⎟
⎠

=

(
L

∑
l=1

Kl ∗ fl1, . . . ,
L

∑
l=1

Kl ∗ flN

)

acting on functions {{ fi j}Li=1}Nj=1 in L
p(Rn, �qN(�

1
L)) for 1< p< ∞. We are interested

in obtaining bounds for this operator from Lp(Rn, �qN(�
1
L)) to Lp(Rn, �qN). Whenever

x ∈ Rn is such that all Kl(x) are defined, �K(x) =
(

K1(x), . . . ,KL(x)
)

is the linear
mapping acting on L×N matrices of complex numbers as follows:
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(

K1(x), . . . ,KL(x)
)

⎛

⎜
⎜
⎜
⎝

a11 a12 · · · a1N
a21 a22 · · · a2N
...

... · · · ...
aL1 aL2 · · · aLN

⎞

⎟
⎟
⎟
⎠

=

(
L

∑
l=1

Kl(x)al1, . . . ,
L

∑
l=1

Kl(x)alN

)

.

For every x∈ Rn for which allKl(x) are defined, �K(x)maps �qN(�
1
L) to �qN and satisfies

∥
∥�K(x)

∥
∥

�
q
N(�

1
L)→�

q
N

≤ sup
1≤l≤L

|Kl(x)|. (4.3.3)

(b) Now let �K = (K1, . . . ,KL)t be an L×1 matrix of integrable functions defined on
Rn. For { f j}Nj=1 in L

p(Rn, �qN) consider the linear operator

(

f1, f2, . . . , fN
)

�→

⎛

⎜
⎜
⎜
⎝

K1

K2
...
KL

⎞

⎟
⎟
⎟
⎠

∗ ( f1 f2 · · · fN
)

=

⎛

⎜
⎜
⎜
⎝

K1 ∗ f1 K1 ∗ f2 · · · K1 ∗ fN
K2 ∗ f1 K2 ∗ f2 · · · K2 ∗ fN

...
... · · · ...

KL ∗ f1 KL ∗ f2 · · · KL ∗ fN

⎞

⎟
⎟
⎟
⎠

for which we are interested in obtaining bounds from Lp(Rn, �qN) to L
p(Rn, �qN(�

∞
L )).

For all x ∈ Rn for which all Kj(x) are defined, �K(x) is the linear mapping
⎛

⎜
⎜
⎜
⎝

K1(x)
K2(x)

...
KL(x)

⎞

⎟
⎟
⎟
⎠

(
a1 a2 · · · aN

)

=

⎛

⎜
⎜
⎜
⎝

K1(x)a1 K1(x)a2 · · · K1(x)aN
K2(x)a1 K2(x)a2 · · · K2(x)aN

...
... · · · ...

KL(x)a1 KL(x)a2 · · · KL(x)aN

⎞

⎟
⎟
⎟
⎠

acting on sequences of complex numbers. This maps �qN to �qN(�
∞
L ) with norm

∥
∥�K(x)

∥
∥

�
q
N→�

q
N(�

∞
L )

= sup
1≤l≤L

|Kl(x)|. (4.3.4)

Motivated by the discussion in the preceding example, and in particular estimates
(4.3.3) and (4.3.4), it seems reasonable that the smoothness conditions of a vector
kernel (K1, . . . ,KL) concern the supremum sup1≤l≤L |Kl |.

The following two conditions on the vector (K1, . . . ,KL) are analogous to (3.3.3)
and (3.3.4): suppose there are finite constants A1

1, . . . ,A
L
1 and A2 such that

|Kl(x)| ≤ Al
1

|x|n for almost all x ∈ Rn \{0} (4.3.5)

for all l ∈ {1, . . . ,L} and

sup
y �=0

∫

|x|≥2|y|
sup

1≤l≤L
|Kl(x− y)−Kl(x)|dx ≤ A2. (4.3.6)
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Notice that the analog of (3.3.5) [or (4.1.5)] in this case is valid with A3 =
sup1≤l≤L ‖Kl‖L1 < ∞.

The next result provides an extension of Theorem 4.1.1 in the two situations of
Example 4.3.1.

Theorem 4.3.2. Let 1 ≤ q ≤ ∞, 1 < r ≤ ∞, N,L ∈ Z+, and A1
1, . . . ,A

L
1 ,A2 > 0. Sup-

pose that K1, . . . ,KL are L1 functions defined on Rn that satisfy (4.3.5) and (4.3.6).
(a) Define a linear operator by

�T (�F )(x) =
(

K1(x), . . . ,KL(x)
)∗�F, x ∈ Rn,

where �F is an L×N matrix whose entries are functions in ∪1≤p<∞Lp(Rn). Assume
that �T is bounded from Lr(Rn, �qN(�

1
L)) to Lr(Rn, �qN) with norm B�. Let C(p) =

max
(

p,(p−1)−1
)

if r< ∞ andC(p) = p(p−1)−1 if r=∞. Then there exist dimen-
sional constants Cn,C′

n such that
∥
∥�T (�F )

∥
∥
L1,∞(Rn,�

q
N)

≤C′
n(A2+B�)

∥
∥�F

∥
∥
L1(Rn,�

q
N(�

1
L))

(4.3.7)

for all �F in L1(Rn, �qN(�
1
L)) and

∥
∥�T (�F )

∥
∥
Lp(Rn,�

q
N)

≤CnC(p)(A2+B�)
∥
∥�F

∥
∥
Lp(Rn,�

q
N(�

1
L))

(4.3.8)

for all �F in Lp(Rn, �qN(�
1
L)), whenever 1 < p < ∞.

(b) Define
�S(�G)(x) =

(

K1(x), . . . ,KL(x)
)t ∗ �G, x ∈ Rn,

where �G is a 1×N vector whose entries are functions in ∪1≤p<∞Lp(Rn). Assume
that �S is a bounded linear operator from Lr(Rn, �qN) to L

r(Rn, �qN(�
∞
L )) with norm B�.

Then there exist constants Cn,C′
n such that

∥
∥�S(�G)

∥
∥
L1,∞(Rn,�

q
N(�

∞
L ))

≤C′
n(A2+B�)

∥
∥�G

∥
∥
L1(Rn,�

q
N)

(4.3.9)

for all �G in L1(Rn, �qN) and
∥
∥�S(�G)

∥
∥
Lp(Rn,�

q
N(�

∞
L ))

≤CnC(p)(A2+B�)
∥
∥�G

∥
∥
Lp(Rn,�

q
N)

(4.3.10)

for all �G in Lp(Rn, �qN), whenever 1 < p < ∞.

Proof. We first derive (4.3.7) and (4.3.9) and use these to deduce (4.3.8) and (4.3.10)
via duality and interpolation. We discuss (4.3.7) and (4.3.9) in cases (a) and (b)
below, respectively.

(a) In this case �F = { f j}Nj=1 is thought of as a row vector consisting of columns

f j =( fi j)Li=1. Then �T (�F ) is the row vector (∑L
i=1Ki∗ fi1, . . . ,∑L

i=1Ki∗ fiN). To obtain
(4.3.7) we repeat the proof of the corresponding estimate (4.1.8) in Theorem 4.1.1
by simply changing �qN in the domain by �qN(�

1
L) and �sM in the range by �qN .
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(b) Here �G= {g j}Nj=1 is a row vector but �S(�G) is now a row vector consisting of

columns of length L. The jth column of �S(�G) is (Ki ∗g j)Li=1. In this case we obtain
(4.3.9) by repeating the proof of estimate (4.1.8) and replacing any appearance of
�sM in the range by �qN(�

∞
L ). Note that the domain �qN(�

1
1) = �qN remains unchanged.

The transpose operator �Tt of �T has kernel (K̃1, . . . , K̃L)t and the transpose oper-
ator �St of �S has kernel (K̃1, . . . , K̃L), and these kernels obviously satisfy (4.3.5) and
(4.3.6). So, modulo the reflection of the Kj, the operators �T and �S are transposes
of one another. Next we interpolate between �T : Lr(Rn, �qN(�

1
L)) → Lr(Rn, �qN) and

estimate (4.3.7). Using Exercise 1.3.7, we obtain for 1 < p < r

∥
∥�T

∥
∥
Lp(Rn,�

q
N(�

1
L))→Lp(Rn,�

q
N)

≤ 2C′
n

( p
p−1

+
p

r− p

) 1
p (A2+B�). (4.3.11)

If r = ∞, the constant in (4.3.11) raised to the power 1/p is bounded by C(p) =
p(p−1)−1. Now if r < ∞, notice that �Tt maps Lr

′
(Rn, �q

′
N ) to Lr

′
(Rn, �q

′
N (�

∞
L )) with

bound B�. As the kernel of �Tt satisfies the same estimates as that of �S, it follows that
�Tt also admits a bounded extension from L1(Rn, �q

′
N ) to L

1,∞(Rn, �q
′

N (�
∞
L ))with bound

at mostC′
n(A2+B�). By interpolation (Exercise 1.3.7) we obtain for 1 < p′ < r′

∥
∥�Tt

∥
∥
Lp′ (Rn,�

q′
N )→Lp′ (Rn,�

q′
N (�∞

L ))
≤ 2C′

n

( p′

p′ −1
+

p′

r′ − p′
) 1

p′ (A2+B�). (4.3.12)

Estimates (4.3.11) and (4.3.12) imply statements analogous to (4.1.19) and (4.1.20)
with �qN replaced by �qN(�

1
L) and �sM replaced by �qN . The rest of the argument proceeds

as that in the proof of Theorem 4.1.1 A completely analogous argument is also valid
for �S. Combining these ingredients completes the proof. �

We now pass to an application which extends the discussion in Example 4.2.4.
Let Φ(x) = (1+ |x|)−n−γ be as in that example. For a fixed odd positive integer L
let {t1, . . . , tL}= {2−[L/2],2−[L/2]+1, . . . ,2[L/2]}. We consider the L×1 matrix �K(x)=
(Φt1(x), . . . ,ΦtL(x))

t defined on Rn. This matrix can be viewed as the operator

(a1,a2, . . . ,aN) �→

⎛

⎜
⎜
⎜
⎝

Φt1(x)
Φt2(x)

...
ΦtL(x)

⎞

⎟
⎟
⎟
⎠

(
a1 a2 · · · aN

)

=

⎛

⎜
⎜
⎜
⎝

Φt1(x)a1 Φt1(x)a2 . . . Φt1(x)aN
Φt2(x)a1 Φt2(x)a2 . . . Φt2(x)aN

...
...

...
...

ΦtL(x)a1 ΦtL(x)a2 . . . ΦtL(x)aN

⎞

⎟
⎟
⎟
⎠

,

which maps �rN to �rN(�
∞
L ) with norm
∥
∥�K(x)

∥
∥

�rN→�rN(�
∞
L )

= sup
1≤i≤L

|Φti(x)|.

Properties (4.1.2) and (4.1.3) are proved via the arguments yielding (4.2.7) and
(4.2.8), respectively. Additionally, for 1 < r < ∞, the estimate
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∥
∥
∥

( N

∑
j=1

[

sup
1≤l≤L

Φtl ∗ | f j|
]r
)1

r
∥
∥
∥
Lr

≤ B�

∥
∥
∥

( N

∑
j=1

| f j|r
)1

r
∥
∥
∥
Lr

(4.3.13)

is valid with B� = cn(1+‖Φ‖L1) r
r−1 and can be obtained from

∥
∥
∥sup

t>0
|Φt ∗ f |

∥
∥
∥
Lr

≤ B�

∥
∥ f

∥
∥
Lr ,

which is a consequence of (4.2.10) (letting M → ∞) and (4.2.6); i.e., the Lr bound-
edness of the operator N in Example 4.2.4. Applying Theorem 4.3.2 (b) we obtain

∥
∥
∥

( N

∑
j=1

[

sup
1≤l≤L

Φtl ∗ | f j|
]r
)1

r
∥
∥
∥
L1,∞

≤C′
n,γ

r
r−1

∥
∥
∥

( N

∑
j=1

| f j|r
)1

r
∥
∥
∥
L1

(4.3.14)

and

∥
∥
∥

( N

∑
j=1

[

sup
1≤l≤L

Φtl ∗ | f j|
]r
)1

r
∥
∥
∥
Lp

≤ Cn,γ r

r−1
max

(

p,
1

p−1

)∥
∥
∥

( N

∑
j=1

| f j|r
)1

r
∥
∥
∥
Lp

. (4.3.15)

These imply analogous estimates for the Hardy–Littlewood maximal operator M.

Theorem 4.3.3. (Fefferman–Stein vector-valued maximal function inequality)
For 1 < p < ∞ and 1 < r < ∞ we have

∥
∥
∥

(

∑
k∈Z

|M( fk)|r
)1

r
∥
∥
∥
L1,∞

≤C′
n

r
r−1

∥
∥
∥

(

∑
k∈Z

| fk|r
)1

r
∥
∥
∥
L1

, (4.3.16)

∥
∥
∥

(

∑
k∈Z

|M( fk)|r
)1

r
∥
∥
∥
Lp

≤Cn
r

r−1
max

(

p,
1

p−1

)∥
∥
∥

(

∑
k∈Z

| fk|r
)1

r
∥
∥
∥
Lp

. (4.3.17)

Proof. We notice that 2−n−1χ|x|≤1 ≤ (1+ |x|)−n−1 = Φ(x); thus for this choice of
Φ we have

M( f ) ≤ 2n+1

vn
sup
t>0

Φt ∗ | f | ≤ 2n+1

vn
2n sup

j∈Z
Φ2 j ∗ | f |, (4.3.18)

where the second inequality is a consequence of the second inequality in (4.2.6).
Letting L ↑ ∞ first (through the odd integers) and then N ↑ ∞ in (4.3.14) and (4.3.15)
and applying the LMCT, we deduce (4.3.16) and (4.3.17), respectively, with the aid
of (4.3.18). �

Note that (4.3.16) and (4.3.17) are also valid when r = ∞ (with r
r−1 = 1). Also,

(4.3.17) is valid when p = r = ∞ with the understanding that r
r−1 = 1 and that

max(p, 1
p−1 ) is replaced by p

p−1 . These statements are left as exercises.
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Exercises

4.3.1. Let 1 ≤ q ≤ ∞, 1 ≤ s ≤ t ≤ ∞, and let Y = (yi j)1≤i≤L,1≤ j≤M be a complex
L×M matrix viewed as a linear operator acting on complex M ×N matrices by
multiplication. The �qN(�

s
M) norm of anM×N matrix is the �q norm of the vector of

the �s norms of its columns. Prove that

sup
1≤ j≤M

(

|y1 j|t+ · · ·+ |yL j|t
) 1

t ≤∥
∥Y

∥
∥

�
q
N(�

s
M)→�

q
N(�

t
L)

≤
( L

∑
i=1

(

|yi1|s′ + · · ·+ |yiM|s′
) s

s′
) 1

s

,

with the obvious modification when s, t ∈ {1,∞}. Deduce the simpler estimate

sup
1≤i≤L

sup
1≤ j≤M

|yi j| ≤
∥
∥Y

∥
∥

�
q
N(�

s
M)→�

q
N(�

t
L)

≤
L

∑
i=1

M

∑
j=1

|yi j|.

4.3.2. Let {{ai j}Li=1}Nj=1 be a doubly indexed finite sequence of complex numbers.
Prove that for any 1 ≤ q,s ≤ ∞ we have

∥
∥
∥

{∥
∥{ai j}Li=1

∥
∥

�s

}N

j=1

∥
∥
∥

�q
= max

‖{‖{bi j}Li=1‖�s
′ }Nj=1‖�q

′ =1

∣
∣
∣
∣

L

∑
i=1

N

∑
j=1

ai jbi j

∣
∣
∣
∣
.

[Hint: When q,s < ∞, set bi j = 0 if ai j = 0 and

bi j =
ai j

|ai j|2−s

1
(

∑L
k=1 |ak j|s

)1− q
s

1

‖{‖{ai j}Li=1‖�s}Nj=1‖q−1
�q

if ai j �= 0. Use Exercise 4.1.4 when q or s is infinite.]

4.3.3. Show that Lp(Rn, �qN(�
s
L)) is complete when 1≤ q,s≤ ∞ and 0< p≤ ∞. Also

show that L1,∞(Rn, �qN(�
s
L)) is complete. [Hint: Use the inequalities

sup
1≤ j≤N
1≤i≤L

‖ fi j‖min(1,p)
Lp ≤

∥
∥
∥

∥
∥
{‖{ fi j}Li=1‖�s

}N
j=1

∥
∥

�q

∥
∥
∥

min(1,p)

Lp
≤

N

∑
j=1

L

∑
i=1

‖ fi j‖min(1,p)
Lp

and an analogous one with L1,∞ in place of Lp with an extra factor NL on the right.]

4.3.4. Prove that for any 1 ≤ q,s ≤ ∞ and 1 < p < ∞ we have

∥
∥
∥

∥
∥
{‖{ fi j}Li=1‖�s

}N
j=1

∥
∥

�q

∥
∥
∥
Lp

= max
‖‖{‖{gi j}Li=1‖�s

′ }Nj=1‖�q
′ ‖

Lp
′ =1

∣
∣
∣
∣

∫

Rn

L

∑
i=1

N

∑
j=1

fi jgi j dx

∣
∣
∣
∣
.

[Hint: When q,s < ∞, set gi j(x) = 0 if fi j(x) = 0 and
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gi j(x) =
fi j(x)

| fi j(x)|2−s

1
(

∑L
k=1 | fk j(x)|s

)1− q
s

1
(

∑N
l=1(∑

L
k=1 | fkl(x)|s)

q
s
)1− p

q

1
Qp−1

if fi j(x) �= 0, where Q= ‖‖{‖{ fi j}Li=1‖�s}Nj=1‖�q‖Lp .]
4.3.5. On the real line show that the following endpoint cases of estimate (4.3.17)
fail: (a) p = ∞ and 1 < r < ∞. (b) 1 < p < ∞ and r = 1. [Hint: Part (a): Take
f j = χ[2 j−1,2 j ]. Part (b): Take f j = χ[ j−1

N , j
N ], j = 1,2, . . . ,N.]

4.3.6. Let {Qj} j be a countable collection of cubes in Rn with disjoint interiors,
with centers c j and side lengths d j. For ε > 0, define the Marcinkiewicz function
associated with the family {Qj} j as follows:

Mε(x) = ∑
j

dn+ε
j

|x− c j|n+ε +dn+ε
j

.

Prove that there are constants Cn,ε ,p and Cn,ε such that

∥
∥Mε

∥
∥
Lp ≤Cn,ε ,p

(

∑
j

|Qj|
) 1

p
, p >

n
n+ ε

,

∥
∥Mε

∥
∥
L

n
n+ε ,∞ ≤Cn,ε

(

∑
j

|Qj|
) n+ε

n
,

and consequently
∫

Rn Mε(x)dx ≤Cn,ε ,1 ∑ j |Qj|.
[

Hint : Verify that

dn+ε
j

|x− c j|n+ε +dn+ε
j

≤CM(χQj)(x)
n+ε
n

and use Theorem 4.3.3.]

4.3.7. Let M( j) denote the Hardy–Littlewood maximal function on Rn acting only
on the jth variable and define MMM =M(1) ◦ · · · ◦M(n). Prove that there is constant An

such that for all 1 < p,r < ∞ and for all functions f j ∈ Lp(Rn) we have

∥
∥
∥

(

∑
j

|MMM( f j)|r
)1

r
∥
∥
∥
Lp(Rn)

≤ An

(
r

r−1
max

(

p,
1

p−1

))n∥
∥
∥

(

∑
j

| f j|r
)1

r
∥
∥
∥
Lp(Rn)

.

The strong maximal function M ( f )(x) is defined as the supremum of the averages
of a measurable function | f | over all rectangles with sides parallel to the axes that
contain a given x ∈ Rn. Derive the same estimate forM .
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4.4 Littlewood–Paley Theory

In this section we obtain a characterization of the Lp norm of a function in terms of
the restrictions of its Fourier transform on dyadic annuli.

Definition 4.4.1. Let Ψ be an integrable function on Rn and j ∈ Z. We define the
Littlewood–Paley operator ΔΨ

j (associated withΨ ) as the operator given by convo-

lution withΨ2− j . HereΨ2− j(x) = 2 jnΨ(2 jx) for all x in Rn, equivalently Ψ̂2− j(ξ ) =
Ψ̂(2− jξ ) for all ξ in Rn. The operator ΔΨ

j is well defined on ∪1≤p≤∞Lp(Rn).

In most applications we choose Ψ to be a smooth function whose Fourier trans-
form is supported in an annulus 0 < c1 < |ξ | < c2 < ∞. Then the Fourier transform
of ΔΨ

j ( f ) is supported in the annulus c12 j < |ξ | < c22 j; in other words, it is local-

ized near the frequency |ξ | ≈ 2 j. Thus ΔΨ
j isolates frequencies near |ξ | ≈ 2 j. The

Littlewood–Paley square function associated withΨ is the function

f �→
(

∑
j∈Z

|ΔΨ
j ( f )|2

) 1
2
.

The next theorem concerns the Littlewood–Paley square function.

Theorem 4.4.2. (Littlewood–Paley theorem) Let B,δ > 0. Suppose thatΨ is a C 1

function on Rn with mean value zero that satisfies for all x ∈ Rn

|Ψ(x)|+ |∇Ψ(x)| ≤ B(1+ |x|)−n−δ . (4.4.1)

Then there exists a constantCn,δ < ∞ such that for all 1< p< ∞ and all f in Lp(Rn)
we have

∥
∥
∥

(

∑
j∈Z

|ΔΨ
j ( f )|2

) 1
2
∥
∥
∥
Lp(Rn)

≤Cn,δ Bmax
(

p,
1

p−1

)∥
∥ f

∥
∥
Lp(Rn). (4.4.2)

There also exists a C′
n,δ < ∞ such that for all f in L1(Rn) we have

∥
∥
∥

(

∑
j∈Z

|ΔΨ
j ( f )|2

) 1
2
∥
∥
∥
L1,∞(Rn)

≤C′
n,δB

∥
∥ f

∥
∥
L1(Rn). (4.4.3)

Proof. We first prove (4.4.2) when p = 2. Using Plancherel’s theorem, we rewrite
(4.4.2) when p= 2 as

∑
j∈Z

∫

Rn
|Ψ̂(2− jξ )|2| f̂ (ξ )|2 dξ ≤C2

n,δ4B
2
∫

Rn
| f̂ (ξ )|2 dξ .

So (4.4.2) when p= 2 will be a consequence of the inequality

∑
j∈Z

|Ψ̂(2− jξ )|2 ≤ c2n,δB
2 (4.4.4)



4.4 Littlewood–Paley Theory 173

for some cn,δ < ∞. So we prove (4.4.4). AsΨ has mean value zero we write

Ψ̂(ξ ) =
∫

Rn
e−2πix·ξΨ(x)dx=

∫

Rn
(e−2πix·ξ −1)Ψ(x)dx , (4.4.5)

from which, with the aid of (4.4.1), we obtain the estimate

|Ψ̂(ξ )| ≤
∫

Rn
21−γ(2π|ξ ||x|)γ |Ψ(x)|dx ≤ c′

n,δB|ξ |γ , (4.4.6)

where we set γ =min( 12 ,
δ
2 ). For ξ = (ξ1, . . . ,ξn) �= 0, let j0 be such that |ξ j0 | ≥ |ξk|

for all k ∈ {1, . . . ,n}. We integrate by parts with respect to x j0 in (4.4.5) to obtain

Ψ̂(ξ ) = −
∫

Rn
(−2πiξ j0)

−1e−2πix·ξ (∂ j0Ψ)(x)dx, (4.4.7)

where we also used the vanishing of Ψ at infinity, a consequence of (4.4.1). From
(4.4.7) we deduce the estimate

|Ψ̂(ξ )| ≤ (2π|ξ j0 |)−1
∫

Rn
|∇Ψ(x)|dx ≤ c′′

n,δB |ξ |−1. (4.4.8)

We obtain from (4.4.6) and (4.4.8) that

|Ψ̂(ξ )| ≤ max(c′
n,δ ,c′′

n,δ )B
[|ξ |γ χ|ξ |≤1+ |ξ |−1χ|ξ |>1

]

. (4.4.9)

We now break the sum in (4.4.4) into the parts where j satisfies 2− j|ξ | ≤ 1 or
2− j|ξ | > 1, and use (4.4.9) to deduce (4.4.4). This proves (4.4.2) when p= 2.

We now turn our attention to the case p �= 2 in (4.4.2), which we view as a vector-
valued inequality. Define an operator �T acting on functions in ∪1≤p≤∞Lp(Rn) as
follows:

�T ( f ) =
{

ΔΨ
j ( f )

}N
j=−N

for some fixed N ∈ Z+. The inequalities (4.4.2) and (4.4.3) follow from the state-
ments that �T is a bounded operator from Lp(Rn,C) to Lp(Rn, �22N+1(C)) and from
L1(Rn,C) to L1,∞(Rn, �22N+1(C)). We just proved that this statement is true when
p = 2 with constant B� = CnB (which is independent of N), and therefore one
hypothesis of Theorem 4.1.1 is satisfied. We observe that �T can be written in the
form

�T ( f )(x) =
{∫

Rn
Ψ2− j(x− y) f (y)dy

}N

j=−N
=

∫

Rn
�K(x− y)( f (y))dy,

where for each x ∈ Rn, �K(x) is a bounded linear operator from C to �22N+1 given by

a �→ �K(x)(a) =
{

Ψ2− j(x)a
}N
j=−N . (4.4.10)

We clearly have
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‖�K(x)‖C→�22N+1
=

( N

∑
j=−N

|Ψ2− j(x)|2
) 1

2
. (4.4.11)

Our goal is to apply Theorem 4.1.1 with parameters N,q,M,s,r (in the notation
there) N = 1, q = 2, M = 2N+ 1, s = 2, and r = 2. In order to verify hypotheses
(4.1.2), (4.1.3), (4.1.5), and (4.1.6), it will suffice to verify that1

∥
∥�K(x)

∥
∥

C→�22N+1
≤ cn,δ B |x|−n , (4.4.12)

sup
y �=0

∫

|x|≥2|y|

∥
∥�K(x− y)−�K(x)

∥
∥

C→�22N+1
dx ≤ cn,δ B , (4.4.13)

sup
j:| j|≤N

sup
ε>0

sup
R>ε

∣
∣
∣
∣

∫

ε≤|y|≤R
Ψ2− j(y)dy

∣
∣
∣
∣
≤ A ≤ cn,δ B < ∞ , (4.4.14)

lim
δ↓0

∫

δ≤|y|≤1
�K(y)dy=

{∫

|y|≤1
Ψ2− j(y)dy

}N

j=−N
(4.4.15)

for some constant cn,δ > 0. Of these, (4.4.14) follows immediately with A= ‖Ψ‖L1
by passing the absolute value inside the integral and by changing variables, and
(4.4.15) is straightforward. So we focus on (4.4.12) and (4.4.13). First we note that

‖�K(x)‖C→�22N+1
≤

N

∑
j=−N

|Ψ2− j(x)| ≤ ∑
j∈Z

2 jnB

(1+2 j|x|)n+δ .

The sum over the indices j with 2 j|x| ≤ 1, produces

∑
2 j≤|x|−1

2 jnB ≤ c1n B |x|−n.

The sum over indices j with 2 j|x| > 1 produces the term

∑
2 j>|x|−1

2 jnB(2 j|x|)−n−δ = B |x|−n−δ ∑
2 j>|x|−1

2− jδ ≤ c2n,δ B |x|−n.

This proves (4.4.12).
We now address (4.4.13). Fix x,y in Rn such that |x| ≥ 2|y|. Since Ψ is a C 1

function, by the mean value theorem we may write

|Ψ2− j(x− y)−Ψ2− j(x)| ≤ 2(n+1) j
∫ 1

0
|∇Ψ(2 j(x−θy))| |y|dθ

≤ B2(n+1) j
∫ 1

0

(

1+2 j|x−θy|)−n−δ |y|dθ

≤ B2n j
(

1+2 j−1|x|)−n−δ
2 j|y|, (4.4.16)

since |x−θy| ≥ |x|− |θy| ≥ |x|− |y| ≥ 1
2 |x|.

1 In view of (4.1.2), the weaker hypothesis |Ψ2− j (x)| ≤ cn,δ B |x|−n would have sufficed for (4.4.12).
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We also have that

|Ψ2− j(x− y)−Ψ2− j(x)| ≤ 2n j|Ψ(2 j(x− y))|+2 jn|Ψ(2 jx)|
≤ B2 jn(1+2 j 1

2 |x|
)−n−δ +B2n j

(

1+2 j|x|)−n−δ

≤ 2B2n j
(

1+2 j−1|x|)−n−δ
. (4.4.17)

Let ε ∈ [0,1]. A weighted geometric mean of (4.4.16) and (4.4.17) is

|Ψ2− j(x− y)−Ψ2− j(x)| ≤ 21−ε B2n j(2 j|y|)ε(1+2 j−1|x|)−n−δ
. (4.4.18)

Using this estimate, when |x| ≥ 2|y|, we write
∥
∥�K(x− y)−�K(x)

∥
∥

C→�22N+1

≤
(

∑
j∈Z

∣
∣Ψ2− j(x− y)−Ψ2− j(x)

∣
∣2
)1/2

≤ ∑
j∈Z

∣
∣Ψ2− j(x− y)−Ψ2− j(x)

∣
∣

≤ 2B
(

|y| ∑
2 j< 2

|x|

2(n+1) j+ |y|γ ∑
2 j≥ 2

|x|

2n j2γ j(2 j−1|x|)−n−δ
)

(4.4.19)

≤ c′
n,δB

(|y| |x|−n−1+ |y|γ |x|δ−γ |x|−n−δ ) , (4.4.20)

having used (4.4.18) in the first sum in (4.4.19) with ε = 1 and in the second sum
with ε = γ =min( 12 ,

δ
2 ). We now deduce (4.4.13) by integrating in polar coordinates

(4.4.20) over the region |x| ≥ 2|y|.
An application of Theorem 4.1.1 concludes the proofs of (4.4.2) and (4.4.3). �

Corollary 4.4.3. Let Ψ be as in Theorem 4.4.2. Then there is a constant Cn,δ such
that for 1 < p < ∞ and for any functions f j ∈ Lp(Rn) we have

∥
∥
∥

(

∑
j∈Z

|ΔΨ
j ( f j)|2

)1
2
∥
∥
∥
Lp(Rn)

≤Cn,δBmax
(

p,
1

p−1

)∥
∥
∥

(

∑
j∈Z

| f j|2
)1
2

∥
∥
∥
Lp(Rn)

. (4.4.21)

There also exists a C′
n,δ < ∞ such that for all f in L1(Rn) we have

∥
∥
∥

(

∑
j∈Z

|ΔΨ
j ( f j)|2

) 1
2
∥
∥
∥
L1,∞(Rn)

≤C′
n,δB

∥
∥
∥

(

∑
j∈Z

| f j|2
) 1
2

∥
∥
∥
L1(Rn)

. (4.4.22)

Proof. The proof follows the paradigm of Theorem 4.4.2, except that we define an
operator �S acting on sequences of functions in ∪1≤p≤∞Lp(Rn) as follows:

�S
({ f j}Nj=−N

)

=
{

ΔΨ
j ( f j)

}N
j=−N .
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The kernel of �S is the (2N + 1)× (2N + 1) matrix �L(x) =
(

Li j(x)
)

−N≤i, j≤N with
Lj j(x) =Ψ2− j(x) and Li j(x) = 0 if i �= j. We clearly have

∥
∥�L(x)

∥
∥

�22N+1→�22N+1
≤ sup

−N≤ j≤N
|Ψ2− j(x)| ≤

( N

∑
j=−N

|Ψ2− j(x)|2
) 1

2

and the last expression coincides with the norm
∥
∥�K(x)

∥
∥

C→�22N+1
of �K(x) introduced

in the proof of Theorem 4.4.2; see (4.4.11). The estimates for �K(x) are also valid for
�L(x) and another application of Theorem 4.1.1 yields the claimed conclusion. �

In many applications of Theorem 4.4.2,Ψ has the following properties:

Ψ̂ is smooth and nonnegative on Rn,

support(Ψ̂) �
{

ξ ∈ Rn : 1− 1
7

≤ |ξ | ≤ 2
}

,

Ψ̂(ξ ) = 1 on 1 ≤ |ξ | ≤ 2− 2
7
,

∑
j∈Z

Ψ̂(2− jξ ) = 1 for all ξ �= 0.

(4.4.23)

Such a function can be constructed as follows: Start with a smooth function φ
with values in [0,1] which is supported in the interval [ 67 ,2] and is equal to 1 on
[1, 127 ]. (Exercise 1.7.3.) Define

Ψ̂(ξ ) =
φ(|ξ |)

∑k∈Z φ(2−k|ξ |) , ξ �= 0, (4.4.24)

and Ψ̂(0) = 0. Then obviously Ψ̂ is a smooth function with compact support that
satisfies (4.4.23). Moreover Ψ̂ is supported in the annulus 1− 1

7 ≤ |ξ | ≤ 2. Also on
the annulus 1≤ |ξ | ≤ 2− 2

7 equals 1, as all summands in (4.4.24) with k �= 0 vanish.
See Figure 4.1.

3
7
1
2

6
7

1 12
7

2 24
7

4

1

Fig. 4.1 The functions Ψ̂(2ξ ), Ψ̂(ξ ), and Ψ̂(ξ/2) plotted in one dimension.
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Corollary 4.4.4. IfΨ is as in (4.4.23), then estimates (4.4.2) and (4.4.3) are valid.

Proof. Obviously Ψ̂(0) = 0, which implies
∫

RnΨ(y)dy= 0. Also, (4.4.1) holds. �

It is often desirable to group the ΔΨ
j with j ≤ 0 together. To achieve this we

define a Schwartz function Φ as follows:

Φ̂(ξ ) =

⎧

⎨

⎩

∑
j≤0

Ψ̂(2− jξ ) whenξ �= 0,

1 whenξ = 0.
(4.4.25)

Note that Φ̂(ξ ) is equal to 1 for |ξ | ≤ 2− 2
7 , vanishes when |ξ | ≥ 2, and satisfies

Φ̂(ξ )+
∞

∑
j=1

Ψ̂(2− jξ ) = 1

for all ξ in Rn. We introduce an operator SΦ
0 given by convolution with Φ . There

is a version of Theorem 4.4.2 with SΦ
0 in place of all ΔΨ

j for j ≤ 0; on this see
Exercise 4.4.3.

Exercises

4.4.1. Construct a Schwartz function Ψ that satisfies ∑ j∈Z |Ψ̂(2− jξ )|2 = 1 for all
ξ ∈ Rn \{0} and whose Fourier transform is supported in the annulus 6

7 ≤ |ξ | ≤ 2
and is equal to 1 on the annulus 1 ≤ |ξ | ≤ 12

7 .
[

Hint : Set Ψ̂(ξ ) = φ(ξ )
(

∑k∈Z |φ(2−kξ )|2)−1/2
for a suitable φ ∈ C ∞

0 (Rn) .]

4.4.2. Construct a smooth function Ψ supported in the unit ball of Rn with integral
zero such that

∑
j∈Z

Ψ̂(2− jξ ) = 1, ξ �= 0.

[Hint: SetΨ(x) = Φ(x)−2nΦ(2x), where Φ is a smooth function supported in the
unit ball of Rn with integral equal to 1.]

4.4.3. Let B,δ > 0. Let Φ ,Ψ be as (4.4.23) and (4.4.25). Prove that there are con-
stantsCn,δ ,Ψ ,C′

n,δ ,Ψ < ∞ such that for all 1 < p < ∞ and all f in Lp(Rn) we have

∥
∥
∥

(

|SΦ
0 ( f )|2+

∞

∑
j=1

|ΔΨ
j ( f )|2

) 1
2
∥
∥
∥
Lp(Rn)

≤Cn,δ ,Ψ max
(

p,(p−1)−1)
∥
∥ f

∥
∥
Lp(Rn)

and for all f in L1(Rn) we have
∥
∥
∥

(

|SΦ
0 ( f )|2+

∞

∑
j=1

|ΔΨ
j ( f )|2

) 1
2
∥
∥
∥
L1,∞(Rn)

≤C′
n,δ ,Ψ

∥
∥ f

∥
∥
L1(Rn).
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4.4.4. LetΨ ,Φ be as (4.4.23) and (4.4.25). Prove the operator identities on L2

∑
j∈Z

ΔΨ
j = I and SΦ

0 +
∞

∑
j=1

ΔΨ
j = I .

4.4.5. Let Ψ be a Schwartz function whose Fourier transform vanishes in a neigh-
borhood of the origin and let ϕ ∈ S (Rn). Prove that for any M > 0 there is a con-
stant CM =CM,n,Ψ ,ϕ such that

∑
j∈Z

|ΔΨ
j (ϕ)(x)| ≤

CM

(1+ |x|)M .

Conclude that ifΨ is an (4.4.23), then for all 0 < p ≤ ∞ one has

∑
| j|≤N

ΔΨ
j (ϕ) → ϕ in Lp asN → ∞.

[Hint: Use the estimates |(Ψ2− j ∗ ϕ)(x)| ≤ CM,n2min(0, j)n(1+ 2min(0, j)n|x|)−M and
|(Ψ2− j ∗ ϕ)(x)| ≤ CM,L,n2−L j(1+ |x|)−M for any L,M ∈ Z+ ∪ {0}. These are con-
sequences of Theorems 7.1.1 and 3.3.5 and the second estimate uses that Ψ has
vanishing moments of all orders. Last assertion: start with p= ∞.]

4.4.6. Let Ψ be a Schwartz function that satisfies (4.4.23). Let 1 < p < ∞. Prove
that for g ∈ Lp(Rn) we have

lim
N→∞

∥
∥ ∑

| j|≤N

ΔΨ
j (g)−g

∥
∥
Lp = 0.

[Hint: Use Exercise 4.4.5.]

4.4.7. Let m be a bounded function on Rn that is supported in the annulus
1 ≤ |ξ | ≤ 2 and define Tj( f ) =

(

f̂ m(2− j(·)))∨
. Suppose that the square function

f �→ (

∑
j∈Z

|Tj( f )|2
)1/2

is bounded on Lp(Rn) for some 1 < p < ∞. Show that there is a constant Cp,n such
that for every finite subset S of the integers and every f ∈ Lp(Rn) we have

∥
∥
∥∑

j∈S
Tj( f )

∥
∥
∥
Lp(Rn)

≤Cp,n
∥
∥ f

∥
∥
Lp(Rn).

4.4.8. Prove the following generalization of Theorem 4.4.2. Let A1,A2 > 0. Suppose
that Kj, j ∈ Z are locally integrable functions on Rn \{0} that satisfy

(

∑
j∈Z

|Kj(x)|2
) 1

2 ≤ A1

|x|n , x �= 0,
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sup
y∈Rn\{0}

∫

|x|≥2|y|

(

∑
j∈Z

|Kj(x− y)−Kj(x)|2
)1

2
dx ≤ A < ∞ ,

sup
j∈Z

sup
ε>0

sup
R>ε

∣
∣
∣
∣

∫

ε≤|y|≤R
Kj(y)dy

∣
∣
∣
∣
≤ A2 < ∞ ,

and there is a sequence εk ↓ 0 and numbers Lj (for each j ∈ Z) such that

lim
εk↓0

∫

εk≤|y|≤1
Kj(y)dy= Lj .

Suppose that the functions Kj coincide with tempered distributionsWj that satisfy

∑
j∈Z

|Ŵj(ξ )|2 ≤ B2 , ξ ∈ Rn.

Prove that the operator

f →
(

∑
j∈Z

|Kj ∗ f |2
)1

2

maps Lp(Rn) to itself and is of weak type (1,1) with norms at most Cn,p(A2+B).
[Hint: Notice that (4.4.12), (4.4.13), (4.4.14), and (4.4.15) hold by assumption.]

4.5 Reverse Littlewood–Paley Inequalities

The focus of this section is to study the reverse inequality of that in Theorem 4.4.2.
We recall that 〈 f ,ϕ〉 denotes the action of a tempered distribution f on a Schwartz
function ϕ , and 〈 f ,ϕ〉 coincides with the standard Lebesgue integral ∫Rn f (x)ϕ(x)dx
if f happens to be an Lp function for some 1 ≤ p ≤ ∞.

We can extend the definition of the Littlewood–Paley operator Δ Ω
j to tempered

distributions whenever Ω is a Schwartz function. Precisely, if Ω ∈ S (Rn) and f in
S ′(Rn), then Δ Ω

j ( f ) is well defined as the convolution Ω2− j ∗ f . This convolution
always produces a smooth function (Theorem 2.7.1).

Recall the reflection Ω̃ of a function Ω is given by Ω̃(x) = Ω(−x) for x ∈ Rn.
We begin by identifying the transpose operator of Δ Ω

j for a function Ω .

Proposition 4.5.1. (a) If Ω lies in L1(Rn) and f in Lp(Rn), 1≤ p≤ ∞, then we have

〈

f ,Δ Ω
j (g)

〉

=
〈

Δ Ω̃
j ( f ),g

〉

whenever g ∈ Lp′
(Rn). (4.5.1)

(b) For any f ∈ S ′(Rn) and Ω ∈ S (Rn) we have

〈

f ,Δ Ω
j (ϕ)

〉

=
〈

Δ Ω̃
j ( f ),ϕ

〉

whenever ϕ ∈ S (Rn). (4.5.2)

Thus, in these senses, the transpose of the operator Δ Ω
j is Δ Ω̃

j .
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Proof. Fix f ∈ Lp(Rn), 1 ≤ p ≤ ∞, and g ∈ Lp′
(Rn). By Fubini’s theorem we write

∫

Rn
f (x)

(∫

Rn
g(y)Ω2− j(x− y)dy

)

dx=
∫

Rn
g(y)

∫

Rn
f (x)Ω2− j(x− y)dxdy

=
∫

Rn
g(y)

(∫

Rn
f (x)Ω̃2− j(y− x)dx

)

dy,

and this proves (4.5.1). The interchange of the integrals is justified from the fact that
the double integral converges absolutely, a consequence of Hölder’s inequality; note

g,Δ Ω
j (g) lie in L

p′
(Rn) and f ,Δ Ω̃

j ( f ) lie in L
p(Rn).

The identity in (4.5.2) is just a restatement of the definition of the convolution of
Schwartz functions and tempered distributions (Definition 2.6.16). �

A reformulation of Theorem 4.4.2 based on duality is as follows:

Proposition 4.5.2. Suppose thatΨ is an integrable function on Rn with mean value
zero that satisfies (4.4.1). Then there is a constant Cn,δ such that for any 1 < p < ∞
and any N ∈ Z+ we have

∥
∥
∥ ∑

| j|≤N

ΔΨ
j ( f j)

∥
∥
∥
Lp(Rn)

≤Cn,δ Bmax
(

p,(p−1)−1)
∥
∥
∥

(

∑
| j|≤N

| f j|2
)1

2
∥
∥
∥
Lp(Rn)

(4.5.3)

for all Lp functions f j.

Proof. To verify this assertion by duality, define the operator

�T ( f ) = {ΔΨ̃
j ( f )}Nj=−N , f ∈ Lp(Rn).

The transpose operator of �T is

�Tt({g j}Nj=−N) =
N

∑
j=−N

ΔΨ
j (g j), {g j}Nj=−N ∈ Lp′

(Rn, �22N+1),

as the following identity based on (4.5.1) indicates:

∫

Rn

N

∑
j=−N

ΔΨ̃
j ( f )g j dx=

N

∑
j=−N

∫

Rn
fΔΨ

j (g j)dx=
∫

Rn
f

N

∑
j=−N

ΔΨ
j (g j)dx.

Estimate (4.4.2) (withΨ̃ in place ofΨ ) says that �T maps Lp(Rn,C) to Lp(Rn, �22N+1).
The dual statement of this is that �Tt maps Lp′

(Rn, �22N+1) to Lp′
(Rn,C). This is

exactly the claim in (4.5.3) if p is replaced by p′. Since p is any number in (1,∞)
and max(p′,(p′ −1)−1 ≈ max(p,(p−1)−1), (4.5.3) is proved. �

We now discuss the converse of Theorem 4.4.2. Before doing so we notice that
the converse inequality to (4.4.2) may not hold in general. In fact, if Ψ̂ is supported
in the annulus 9

7 ≤ |ξ | ≤ 10
7 and f̂ is supported in 12

7 ≤ |ξ | ≤ 13
7 , then ΔΨ

j ( f ) = 0
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for all j ∈ Z but f itself may not be zero. So some condition on Ψ is needed and it
turns out that the last condition in (4.4.23) is sufficient.

Theorem 4.5.3. LetΨ be a Schwartz function whose Fourier transform is supported
in an annulus that does not contain the origin and satisfies

∑
j∈Z

Ψ̂(2− jξ ) = 1, for all ξ ∈ Rn \{0}. (4.5.4)

Let 1 < p < ∞. Then there is a constant Cn,Ψ , such that for all f ∈ Lp(Rn) we have

∥
∥ f

∥
∥
Lp(Rn) ≤Cn,Ψ max

(

p,(p−1)−1)
∥
∥
∥

(

∑
j∈Z

|ΔΨ
j ( f )|2

) 1
2
∥
∥
∥
Lp(Rn)

. (4.5.5)

Proof. Given Ψ as in the hypothesis of the theorem, pick 0 < c1 < c2 < ∞ such
that the support of Ψ̂ is contained in the annulus c1 ≤ |ξ | ≤ c2. Pick c3,c4 such
that 0 < c3 < c1 < c2 < c4 < ∞ and fix another Schwartz function Ω whose Fourier
transform is supported in the annulus c3 ≤ |ξ | ≤ c4 and is equal to 1 on c1 ≤ |ξ | ≤ c2.
See Figure 4.2.

c3 c4c1 c2

1
̂Ω

̂

Fig. 4.2 The function Ω̂ is equal to 1 on the support of Ψ̂ .

Note that ˜̂Ψ = ̂̃Ψ , which yields that (4.5.4) is also satisfied for Ψ̃ in place of Ψ .
The key observation is that

ΔΨ̃
j = ΔΨ̃

j Δ Ω
j ,

as a quick examination of the Fourier transforms gives

̂̃Ψ(2− jξ ) = ̂̃Ψ(2− jξ )Ω̂(2− jξ )

for all ξ ∈ Rn and all j ∈ Z.
Let Ŝ0(Rn) be the subspace of Schwartz functions whose Fourier transform is

compactly supported and does not contain the origin. By Proposition 2.5.4, Ŝ0(Rn)
is dense in every Lq(Rn) with 1< q< ∞. Notice that for every ϕ ∈ Ŝ0(Rn) we have
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ϕ = ∑
j

ΔΨ̃
j (ϕ),

where the sum contains only finitely many j. This is because any compact set that
does not contain the origin is contained in finitely many annuli of the form c12 j <
|ξ | < c22 j, for different values of j.

Now fix f in Lp(Rn) for some 1 < p < ∞. We assume that the expression on the
right in (4.5.5) is finite, otherwise there is nothing to prove. Then

〈 f ,ϕ〉 =
〈

f ,∑
j

ΔΨ̃
j ϕ

〉

=
〈

f ,∑
j

ΔΨ̃
j Δ Ω

j (ϕ)
〉

= ∑
j

〈

f ,ΔΨ̃
j Δ Ω

j (ϕ)
〉

= ∑
j

〈

ΔΨ
j ( f ),Δ Ω

j (ϕ)
〉

= ∑
j

∫

Rn
ΔΨ

j ( f )Δ Ω
j (ϕ)dx

=
∫

Rn
∑
j

ΔΨ
j ( f )Δ Ω

j (ϕ)dx,

where the sum consists of only finitely many j, and this justifies the interchanges
of different operations that include this sum. Next we apply the Cauchy–Schwarz
inequality and then Hölder’s inequality to bound the preceding expression by

∥
∥
∥

(

∑
j

|ΔΨ
j ( f )|2

) 1
2
∥
∥
∥
Lp

∥
∥
∥

(

∑
j

|Δ Ω
j (ϕ)|2

) 1
2
∥
∥
∥
Lp′

.

Applying Theorem 4.4.2, we conclude that

∣
∣〈 f ,ϕ〉∣∣ ≤

∥
∥
∥

(

∑
j

|ΔΨ
j ( f )|2

) 1
2
∥
∥
∥
Lp
Cn,Ψ max

(

p′,(p′ −1)−1)‖ϕ‖Lp′ < ∞. (4.5.6)

Finally, we note that max(p′,(p′ −1)−1) ≈ max(p,(p−1)−1), so taking the supre-
mum over all ϕ ∈ Ŝ0(Rn) with ‖ϕ‖Lp′ = 1 in (4.5.6), we deduce (4.5.5) in view of
(1.1.6) in Proposition 1.1.4. At this point we used that f already lies in Lp(Rn). �

Corollary 4.5.4. Let Ψ be as in Theorem 4.5.3 and 1 < p < ∞. Then for any g in
Lp(Rn) we have

∥
∥g

∥
∥
Lp(Rn) ≈

∥
∥
∥

(

∑
j∈Z

|ΔΨ
j (g)|2

) 1
2
∥
∥
∥
Lp(Rn)

.

Proof. This follows from Theorems 4.4.2 and 4.5.3. �
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A delicate point of Theorem 4.5.3 is that the function f is already assumed to
lie in Lp and this assumption is needed in the derivation of (4.5.5); precisely it was
needed in the use of (1.1.6) (Proposition 1.1.4). One may wonder if the Lp assump-
tion on f can be relaxed. For instance, could we replace Lp by L1loc? But a moment’s
thought gives that the locally integrable function f = 1 satisfies ΔΨ

j (1) = Ψ̂(0) = 0
for all j, so (4.5.5) could not possibly hold. The problem with the function 1 is that
its Fourier transform is the Dirac mass at zero and identity (4.5.4) fails at zero. So in
order to extend the result of Theorem 4.5.3 to locally integrable functions, or even
to tempered distributions, we need to take into account that the Fourier transform of
this distribution could be supported at the origin.

Our next goal is to investigate which tempered distributions f satisfy

Cp( f ) =
∥
∥
∥

(

∑
j∈Z

|ΔΨ
j ( f )|2

) 1
2
∥
∥
∥
Lp

< ∞ (4.5.7)

for some 1 < p < ∞. If for f ∈ S ′(Rn) we have supp( f̂ ) = {0}, then ΔΨ
j ( f ) = 0

for all j ∈ Z, as the functions Ψ̂(2− j(·)) are supported away from the origin. It turns
out that the support of f̂ is {0} exactly when f is a polynomial (Lemma 4.5.6). So
(4.5.7) holds for distributions that are sums of Lp functions and polynomials. The
next theorem says that these are all possible such distributions.

Theorem 4.5.5. Let Ψ ∈ S (Rn) have Fourier transform supported in an annulus
that does not contain the origin and satisfies (4.5.4). Let 1 < p < ∞. Then there is
a constant Cn,Ψ such that for any f ∈ S ′(Rn) which satisfies (4.5.7) there exists a
unique polynomial Q such that the tempered distribution f −Q coincides with an
Lp function satisfying

∥
∥ f −Q

∥
∥
Lp(Rn) ≤Cn,Ψ max

(

p,(p−1)−1)
∥
∥
∥

(

∑
j∈Z

|ΔΨ
j ( f )|2

) 1
2
∥
∥
∥
Lp(Rn)

. (4.5.8)

Proof. Fix f ∈ S ′(Rn) such that Cp( f ) < ∞ [as defined in (4.5.7)]. Proceeding as
in the proof of Theorem 4.5.3, using (4.5.2), we arrive at (4.5.6). We now define a
linear functional L on Lp′

(Rn) as follows: For a given g in Lp′
(Rn) pick a sequence

ϕk ∈ Ŝ0(Rn) such that ϕk → g in Lp′
(Rn) as k → ∞. Applying (4.5.6) to ϕk −ϕl we

obtain that {〈 f ,ϕk〉}∞
k=1 is a Cauchy sequence and thus it converges. Set

L(g) = lim
k→∞

〈 f ,ϕk〉

and note that L(g) is independent of the choice of ϕk; indeed, if ϕ ′
k is another

sequence from Ŝ0(Rn) that converges to g in Lp′
, then applying (4.5.6) to ϕ =

ϕk − ϕ ′
k we obtain that 〈 f ,ϕk − ϕ ′

k〉 → 0 as k → ∞. Secondly, using again (4.5.6)
with ϕ = ϕk and letting k → ∞, as ‖ϕk‖Lp′ → ‖g‖Lp′ , we deduce
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∥
∥L

∥
∥
Lp′→C ≤

∥
∥
∥

(

∑
j

|ΔΨ
j ( f )|2

) 1
2
∥
∥
∥
Lp
Cn,Ψ max

(

p′,(p′ −1)−1) < ∞. (4.5.9)

Thus L is a bounded linear functional on Lp′
(Rn). By Theorem 1.1.10 (Riesz

representation), L can be identified with an Lp(Rn) function F such that

L(g) =
∫

Rn
F(y)g(y)dy for any g ∈ Lp′

(Rn)

and
‖F‖Lp = ‖L‖Lp′→C. (4.5.10)

Consider the tempered distribution f −F . For a compactly supported smooth func-
tion ψ whose support does not contain the origin we have

〈

f̂ − F̂,ψ
〉

=
〈

f , ψ̂
〉−〈

F, ψ̂
〉

= L(ψ̂)−
∫

Rn
F(y)ψ̂(y)dy= 0,

and this yields that the support of f̂ − F̂ is contained in {0}. Here we made use of the
fact that L(ψ̂) = 〈 f , ψ̂〉, which is a consequence of the definition of L considering
the constant sequence ψ̂ of elements of Ŝ0(Rn) which converges to itself in Lp′

.
Applying Lemma 4.5.6 (proved below) there is a polynomialQ such that f −F =Q.
Thus F = f −Q. Combining (4.5.9) with (4.5.10), we deduce (4.5.8).

Finally, we obtain the uniqueness of Q. If Q1 is another polynomial, with f −Q1

in Lp, then Q−Q1 must be an Lp function; but the only polynomial that lies in Lp

is the zero polynomial. Thus Q1 = Q. �

Lemma 4.5.6. If u ∈ S ′(Rn) is supported at the origin, then there exist an integer
K and complex numbers aα such that

u= ∑
|α|≤K

aα ∂ α δ0,

where δ0 is the Dirac mass at the origin. Consequently, any tempered distribution
whose Fourier transform is supported at the origin must be a polynomial.

Proof. As u ∈ S ′(Rn), there areC > 0, M, and K in Z+ ∪{0} such that
∣
∣
〈

u,ϕ
〉∣
∣ ≤C ∑

|α|≤M
∑

|β |≤K

sup
x∈Rn

|xα(∂ β ϕ)(x)| for allϕ ∈ S (Rn).

We will first prove that if ϕ ∈ S satisfies (∂ γ ϕ)(0) = 0 for all |γ| ≤ K then
〈

u,ϕ
〉

= 0. To verify this claim, first observe that such a function ϕ must satisfy

|(∂ γ ϕ)(x)| ≤Cγ |x|K+1−|γ |, when |x| ≤ 1and |γ| ≤ K (4.5.11)

for some constant Cγ . This follows by noticing that the Taylor expansion of ∂ γ ϕ of
order K−|γ| at the origin has vanishing coefficients of xα for all |α| ≤ K−|γ| and
its error is O(|x|K−|γ |+1) as |x| → 0.
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Let ζ be a smooth function on Rn that equals 1 when |x| ≥ 2 and equals 0 when
|x| ≤ 1. Set ζ ε(x) = ζ (x/ε) for x ∈ Rn and ε > 0. For |α| ≤ M and |β | ≤ K, we
write

ρα,β (ϕ −ζ ε ϕ) ≤ ∑
0≤γ≤β

(
β
γ

)

sup
x∈Rn

|xα |
∣
∣
∣∂ γ1− 1

ε |γ | (∂
γ ζ )( xε )

∣
∣
∣ |∂ β−γ ϕ(x)|.

The x in the supremum is restricted in the ball |x| ≤ 2ε (even when γ = 0) in view of
the properties of ζ . So using (4.5.11), we estimate the supremum by a multiple of
(2ε)|α|ε−|γ |(2ε)K+1−(|β |−|γ|) ≤ cε , when ε > 0 is sufficiently small. We obtain that
ρα,β (ζ ε ϕ −ϕ) → 0 as ε → 0. Then
∣
∣
〈

u,ϕ
〉∣
∣ ≤ ∣

∣
〈

u,ζ ε ϕ
〉∣
∣+

∣
∣
〈

u,ϕ −ζ ε ϕ
〉∣
∣ ≤ 0+C ∑

|α|≤M
∑

|β |≤K

ρα,β (ϕ −ζ ε ϕ) → 0

as ε → 0. Hence 〈u,ϕ〉 = 0, and this proves our claim.
Now for a given ψ ∈ S (Rn) write

ψ(x) =
(

1−ζ (x)
)(

∑
|α|≤K

(∂ α ψ)(0)
α!

xα +h(x)
)

+ζ (x)ψ(x), (4.5.12)

where h ∈ C ∞ and satisfies h(x) = O(|x|K+1) as |x| → 0. Then (1− ζ )h satisfies
∂ γ((1−ζ )h)(0) = 0 for all |γ| ≤ K and thus one has

〈

u,(1−ζ )h
〉

= 0 by the previ-
ous assertion. Also, ζ ψ is supported away from the origin, so

〈

u,ζ ψ
〉

= 0, by our
hypothesis on u. Acting u on both sides of (4.5.12), we deduce

〈

u,ψ
〉

= ∑
|α|≤K

(∂ α ψ)(0)
α!

〈

u,(·)α(1−ζ )
〉

= ∑
|α|≤K

aα
〈

∂ α δ0,ψ
〉

,

with aα =(−1)|α|〈u,(·)α(1−ζ )〉/α!. This concludes the proof of the first assertion.
If the Fourier transform of a tempered distribution v is supported at the origin,

using the fact just proved and the result of Example 2.6.9, we conclude that v must
be a polynomial. This proves the second assertion of the lemma. �

Exercises

4.5.1. Prove that every tempered distribution u which satisfies Laplace’s equation
∂ 2
1 u+ · · ·+∂ 2

n u= 0 must be a polynomial. (Such polynomials are called harmonic.)
[Hint: Use Lemma 4.5.6.]

4.5.2. Let 1 < p < ∞. Let Φ andΨ be as in (4.4.23) and (4.4.25). Then for any g in
Lp(Rn) we have

∥
∥g

∥
∥
Lp(Rn) ≈

∥
∥
∥

(

|SΦ
0 (g)|2+

∞

∑
j=1

|ΔΨ
j (g)|2

) 1
2
∥
∥
∥
Lp(Rn)

.
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[Hint: One direction follows from Exercise 4.4.3. For the other direction start with
〈g,ϕ〉 = 〈g,SΦ

0 (ϕ)〉+∑∞
j=1〈g,ΔΨ

j (ϕ)〉, where ϕ ∈ S0(Rn). Pick an even smooth

function Θ̂ with compact support that equals 1 on the support of Φ̂ and a smooth
function Ω̂ with compact support in Rn \{0} that equals 1 on the support of Ψ̂ . ]

4.5.3. Let Ψ , Ω be Schwartz functions whose Fourier transforms are supported in
compact annuli that do not contain the origin and satisfy

∑
j∈Z

Ψ̂(2− jξ )Ω̂(2− jξ ) = 1, ξ ∈ Rn \{0}.

Prove that for any 1 < p < ∞ there is a constantCΨ ,Ω ,n for any g ∈ Lp(Rn) we have

∥
∥g

∥
∥
Lp(Rn) ≤CΨ ,Ω ,nmax

(

p,(p−1)−1)
∥
∥
∥

(

∑
j∈Z

|ΔΨ
j (g)|2

) 1
2
∥
∥
∥
Lp(Rn)

.

In particular, this inequality is valid if ∑ j∈Z |Ψ̂(2− jξ )|2 = 1, ξ �= 0 (take Ω = ˜Ψ ).

4.5.4. Let Ψ , Ω be Schwartz functions whose Fourier transforms are supported in
compact annuli that do not contain the origin and let Φ ,Θ be Schwartz functions
whose Fourier transforms are compactly supported and equal to 1 on a neighborhood
of the origin. Suppose that

Φ̂(ξ )Θ̂(ξ )+
∞

∑
j=1

Ψ̂(2− jξ )Ω̂(2− jξ ) = 1, ξ ∈ Rn.

Prove that for any 1 < p < ∞ there is a constantC =CΨ ,Ω ,Φ ,Θ ,n for any g ∈ Lp(Rn)
one has

∥
∥g

∥
∥
Lp(Rn) ≤C max

(

p,(p−1)−1)
∥
∥
∥

(

|SΦ
0 (g)|2+

∞

∑
j=1

|ΔΨ
j (g)|2

) 1
2
∥
∥
∥
Lp(Rn)

.

4.5.5. Fix a nonzero Schwartz function h on the line whose Fourier transform is
supported in the interval

[− 1
8 ,

1
8

]

. For a finite sequence of numbers {a j}Nj=1 define

f (x) =
N

∑
j=1

a je
2πi2 jxh(x) , x ∈ R.

Prove that for all 1 < p < ∞ there exists a constant Cp independent of N such that

‖ f‖Lp(R) ≤Cp

( N

∑
j=1

|a j|2
) 1

2 ∥
∥h

∥
∥
Lp(R) .

[Hint: Fix ψ ∈ S (R) with ψ̂ supported in
[− 10

8 ,− 6
8

]∪ [
6
8 ,

10
8

]

and equal to 1 on
[− 9

8 ,− 7
8

]∪ [
7
8 ,

9
8

]

. Then notice f = ∑N
j=1 Δ ψ

j (a je2πi2 j(·)h) and use (4.5.3).]
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4.5.6. Let 1 < p < ∞ and 0 < c1 < c2 < ∞. Let θ be a Schwartz function whose
Fourier transform is supported in c1 ≤ |ξ | ≤ c2 and satisfies

∑
j∈Z

θ̂(2− jξ ) �= 0, whenever ξ �= 0.

Show that there is a constant Cp,n,θ such that for any g in Lp(Rn) we have

∥
∥g

∥
∥
Lp(Rn) ≤Cp,n,θ

∥
∥
∥

(

∑
j∈Z

|Δ θ
j (g)|2

) 1
2
∥
∥
∥
Lp(Rn)

.

[Hint: Pick m1,m2 ∈ Z such that Θ̂(ξ ) = ∑m1≤k≤m2
θ̂(2−kξ ) �= 0 for every ξ in the

annulus 3
7 ≤ |ξ | ≤ 4. Then for Ψ as in (4.4.23) one has Ψ̂ = Θ̂ Ω̂ , where Ω̂ is a

smooth function with compact support in Rn \{0}. Apply Corollary 4.4.3.]

4.5.7. Let 1< p≤ 2. Prove that there is a constantCn,p such that for all Lp functions
f j on Rn whose Fourier transforms are supported in the dyadic annuli 2 j ≤ |ξ | ≤
2 j+1, j ∈ Z, we have

∥
∥
∥∑

j
f j
∥
∥
∥

p

Lp(Rn)
≤Cn,p∑

j

∥
∥ f j

∥
∥p
Lp(Rn).

[Hint: Use Corollary 4.5.2.]

4.6 Littlewood–Paley Theory of Product Type

One may ask whether Theorems 4.4.2 and 4.5.3 still hold if the Littlewood–Paley
operators ΔΨ

j are replaced by their nonsmooth versions

f �→ (

χ2 j≤|·|<2 j+1 f̂
)∨. (4.6.1)

This question has positive answer in one dimension but negative in higher dimen-
sions. For this reason, a product-type version of a non smooth Littlewood–Paley
decomposition provides a substitute in higher dimensions.

We first look at the one-dimensional case. For j ∈ Z we consider the interval

I j = [2 j,2 j+1)∪ (−2 j+1,−2 j] , (4.6.2)

and we introduce the one-dimensional sharp cutoff Littlewood–Paley operator

Δ �
j( f ) = ( f̂ χI j)

∨ , f ∈ S (R). (4.6.3)

If Ψ is as in (4.4.23), then Δ �
j is a version of ΔΨ

j with Ψ̂(2− jξ ) being replaced

by the characteristic function of the set 2 j ≤ |ξ | < 2 j+1. We note that although
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Δ �
j is initially defined on the S (R), it has an extension on Lp(R) for any 1 <

p < ∞, as the operator given by multiplication by χ[a,b] on the Fourier transform
equals i

2 (M
aHM−a−MbHM−b), where H is the Hilbert transform andMa( f )(x) =

e2πixa f (x). A consequence of this identity is the following key inequality, whose
proof is based on Corollary 4.2.3 (with r = 2) and is omitted (see Exercise 4.2.2):

Proposition 4.6.1. There is a constant C such that for any 1 < p < ∞ and f j in
Lp(R), j ∈ Z, we have

∥
∥
∥

(

∑
j∈Z

|Δ �
j( f j)|2

)1
2
∥
∥
∥
Lp(R)

≤C max
(

p,
1

p−1

)∥
∥
∥

(

∑
j∈Z

| f j|2
)1

2
∥
∥
∥
Lp(R)

. (4.6.4)

We now extend the operator Δ �
j to n dimensions. For j1, . . . , jn ∈ Z we set jjj =

( j1, . . . , jn) ∈ Zn and we define a union of 2n dyadic rectangles Rjjj by setting

Rjjj = I j1 ×·· ·× I jn , (4.6.5)

where Ik is as in (4.6.2). Observe that for different jjj, jjj
′ ∈ Zn the sets Rjjj and Rjjj′ have

disjoint interiors and that the union of all the Rjjj is equal to Rn minus the union of
all the coordinate planes xk = 0. We call this tiling the dyadic decomposition of Rn.
We now introduce n-dimensional sharp cutoff Littlewood–Paley operators

Δ �
jjj( f )(x) = ( f̂ χRjjj)

∨(x) , f ∈ S (Rn), jjj ∈ Zn. (4.6.6)

Note that if jjj = ( j1, . . . , jn) ∈ Zn, then

Δ �
jjj = Δ �1

j1
◦ · · · ◦Δ �n

jn
,

where Δ �r
jr is the one-dimensional operator Δ �

jr acting on the rth variable, with the

remaining variables fixed. As in the one-dimensional case, Δ �
jjj admits a well-defined

extension on Lp(Rn) for 1 < p < ∞ as it is a composition of n Lp-bounded opera-
tors. The important property of these operators is the projection identity Δ �

jjj = Δ �
jjjΔ

�
jjj ,

which plays a fundamental role in the subsequent main result about them.

Theorem 4.6.2. Let Δ �
jjj be the operators defined in (4.6.6). For each 1< p< ∞ there

exists a positive constant C(p,n) such that for all f ∈ Lp(Rn) we have
∥
∥ f

∥
∥
Lp(Rn)

C(p′,n)
≤

∥
∥
∥

(

∑
jjj∈Zn

|Δ �
jjj( f )|2

)1
2
∥
∥
∥
Lp(Rn)

≤C(p,n)
∥
∥ f

∥
∥
Lp(Rn). (4.6.7)

Proof. We start the proof with the one-dimensional case. Pick a Schwartz function
ψ on the line whose Fourier transform is supported in the set 2−1 ≤ |ξ | ≤ 22 and
is equal to 1 on the set 1 ≤ |ξ | ≤ 2. Let Δ ψ

j be the Littlewood–Paley operators
associated with ψ . Observe that
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Δ ψ
j Δ �

j = Δ �
jΔ

ψ
j = Δ �

j ,

since ψ̂(2− j·) is equal to 1 on the support of Δ �
j( f ) .̂ Proposition 4.6.1 yields the

first inequality below:

∥
∥
∥

(

∑
j∈Z

|Δ �
j( f )|2

)1
2
∥
∥
∥
Lp

=
∥
∥
∥

(

∑
j∈Z

|Δ �
jΔ

ψ
j ( f )|2

)1
2
∥
∥
∥
Lp

≤Cmax(p,(p−1)−1)
∥
∥
∥

(

∑
j∈Z

|Δ ψ
j ( f )|2

)1
2
∥
∥
∥
Lp

≤C′max(p,(p−1)−1)2
∥
∥ f

∥
∥
Lp , (4.6.8)

while the second inequality follows from Theorem 4.4.2. We have obtained the
upper inequality in (4.6.7) with C(p,1) ≤C′max(p,(p−1)−1)2.

We now turn to the higher-dimensional case of the upper inequality in (4.6.7).
A key ingredient for this is the following fundamental property of the Rademacher
functions r j, j = 0,1,2, . . . , which are re-indexed by j ∈ Z (see [31, Appendix C]):

Lemma 4.6.3. Let 0 < p < ∞ and r j be the sequence of Rademacher functions
indexed by the integers. Then there are constants 0 < Ap,Bp < ∞ such that for any
complex-valued sequence {c j} j∈Z with all but finitely many terms equal to zero, we
have

Bp
p

(

∑
j

|c j|2
)p

2

≤
∫ 1

0

∣
∣
∣∑

j
c jr j(t)

∣
∣
∣

p
dt ≤ Ap

p

(

∑
j

|c j|2
)p

2

. (4.6.9)

Moreover, for any complex-valued sequence {c jjj} jjj∈Zn , jjj = ( j1, . . . , jn), with all but
finitely many terms equal to zero, we have

Bnp
p

[

∑
jjj∈Zn

|c jjj|2
]p
2 ≤

∫

[0,1]n

∣
∣
∣ ∑
jjj∈Zn

c jjjr j1(t1) · · ·r jn(tn)
∣
∣
∣

p
dt1 · · ·dtn ≤ Anp

p

[

∑
jjj∈Zn

|c jjj|2
]p
2
.

With the aid of this lemma we prove the upper inequality in (4.6.7) by induction.
Assume this inequality holds when n = k with a constant C(p,k). We look at the
dimension n= k+1. We write an element jjj of Zk+1 as ( j1, jjj′), where j1 ∈ Z and jjj′
in Zk. Analogously we write elements of Rk+1 as (x1,x′) and

Δ �
jjj = Δ �1

j1
Δ �

jjj′ .

We also write
rrr jjj′(t

′) = r j2(t2) · · ·r jk+1(tk+1),

where t ′ = (t2, . . . , tk+1) and we set

SmN = [−N,N]m ∩Zm, m= 1,2, . . . .

Using Lemma 4.6.3 (three times), the induction hypothesis, and (4.6.8) we justify
the sequence of inequalities:
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∫

R

∫

Rk

(

∑
jjj∈Sk+1

N

|Δ �
jjj( f )(x1,x

′)|2
)p

2
dx′dx1

≤ 1

B(k+1)p
p

∫

R

∫

Rk

∫ 1

0

∫

[0,1]k

∣
∣
∣
∣ ∑
j1∈S1N

∑
jjj′∈SkN

r j1(t1)rrr jjj′(t
′)Δ �1

j1
Δ �

jjj′( f )
∣
∣
∣
∣

p

dt ′dt1dx′dx1

=
1

B(k+1)p
p

∫

R

∫ 1

0

∫

Rk

∫

[0,1]k

∣
∣
∣
∣ ∑
jjj′∈SkN

rrr jjj′(t
′)Δ �

jjj′
[

∑
j1∈S1N

r j1(t1)Δ
�1
j1
( f )

]
∣
∣
∣
∣

p

dt ′dx′dt1dx1

≤ Akp
p

B(k+1)p
p

∫

R

∫ 1

0

∫

Rk

{

∑
jjj′∈SkN

∣
∣
∣Δ �

jjj′
[

∑
j1∈S1N

r j1(t1)Δ
�1
j1
( f )

]∣
∣
∣

2
} p

2

dx′dt1dx1

≤ Akp
p C(p,k)p

B(k+1)p
p

∫

R

∫ 1

0

∫

Rk

∣
∣
∣ ∑
j1∈S1N

r j1(t1)Δ
�1
j1
( f )

∣
∣
∣

p
dx′dt1dx1

=
Akp
p C(p,k)p

B(k+1)p
p

∫

Rk

∫

R

∫ 1

0

∣
∣
∣ ∑
j1∈S1N

r j1(t1)Δ
�1
j1
( f )

∣
∣
∣

p
dt1dx1dx

′

≤ A(k+1)p
p C(p,k)p

B(k+1)p
p

∫

Rk

∫

R

{

∑
j1∈S1N

|Δ �1
j1
( f )|2

} p
2
dx1dx

′

≤ A(k+1)p
p C(p,k)pC(p,1)p

B(k+1)p
p

∫

Rk

∫

R
| f (x1,x′)|p dx1dx′

=
A(k+1)p
p C(p,k)pC(p,1)p

B(k+1)p
p

∥
∥ f

∥
∥p
Lp(Rk+1).

Letting SN increase to Zk+1, the LMCT yields the case n= k+1 with

C(p,k+1) ≤C(p,k)C(p,1)
(Ap

Bp

)k+1
.

This result, combined with (4.6.8), provides the upper inequality in (4.6.7) with
constant

C(p,n) =Cnmax
(

p,
1

p−1

)2n(Ap

Bp

)2+3+···+n
.

We now prove the lower inequality in (4.6.7). Let f ∈ Lp(Rn) and ϕ be a
Schwartz function whose Fourier transform support is compact and does not inter-
sect any hyperplane of the form x j = 0; such functions are dense in Lp(Rn), see
Exercise 4.6.1. Then we can write

ϕ = ∑
jjj∈Zn

Δ �
jjj(ϕ),

where only finitely many jjj ∈ Zn appear in the sum; this explains the interchange of
summation and integration below. Using this information write
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∣
∣
∣
∣

∫

Rn
f (y)ϕ(y)dy

∣
∣
∣
∣
=

∣
∣
∣
∣

∫

Rn
f (y) ∑

jjj∈Zn

Δ �
jjjΔ

�
jjj(ϕ)(y)dy

∣
∣
∣
∣

=
∣
∣
∣
∣ ∑
jjj∈Zn

∫

Rn
f (y)Δ �

jjjΔ
�
jjj(ϕ)(y)dy

∣
∣
∣
∣

=
∣
∣
∣
∣ ∑
jjj∈Zn

∫

Rn
Δ �

jjj( f )(y)Δ
�
jjj(ϕ)(y)dy

∣
∣
∣
∣

=
∣
∣
∣
∣

∫

Rn
∑
jjj∈Zn

Δ �
jjj( f )(y)Δ

�
jjj(ϕ)(y)dy

∣
∣
∣
∣

≤
∫

Rn
∑
jjj∈Zn

∣
∣Δ �

jjj( f )(y)
∣
∣
∣
∣Δ �

jjj(ϕ)(y)
∣
∣dy

≤
∫

Rn

(

∑
jjj∈Zn

∣
∣Δ �

jjj( f )(y)
∣
∣2
) 1

2
(

∑
jjj∈Zn

∣
∣Δ �

jjj(ϕ)(y)
∣
∣2
) 1

2
dy

≤
∥
∥
∥

(

∑
jjj∈Zn

∣
∣Δ �

jjj( f )
∣
∣2
) 1

2
∥
∥
∥
Lp

∥
∥
∥

(

∑
jjj∈Zn

∣
∣Δ �

jjj(ϕ)
∣
∣2
) 1

2
∥
∥
∥
Lp′

≤C(p′,n)‖ϕ‖Lp′
∥
∥
∥

(

∑
jjj∈Zn

∣
∣Δ �

jjj( f )
∣
∣2
) 1

2
∥
∥
∥
Lp

.

We now take the supremum over all Schwartz functions ϕ whose Fourier transform
does not cross any axis and have Lp′

norm equal to 1. This yields
∥
∥ f

∥
∥
Lp(Rn)

C(p′,n)
≤

∥
∥
∥

(

∑
jjj∈Zn

∣
∣Δ �

jjj( f )
∣
∣2
) 1

2
∥
∥
∥
Lp(Rn)

,

which is the lower inequality in (4.6.7). �
A straightforward modification of Theorem 4.6.2 yields its smooth counterpart.

Theorem 4.6.4. Fix ψ ∈ S (R) whose Fourier transform is supported in a compact

subset of R \ {0}. Define Littlewood–Paley operators Δ⊗ψ
jjj = Δ ψ,(1)

j1
◦ · · · ◦ Δ ψ,(n)

jn
,

where jjj = ( j1, . . . , jn), and where each Δ ψ,(k)
jk

acts on the kth variable with the
remaining variables fixed. Let 1 < p < ∞. Then there is a positive constant Cn,p,ψ
such that for any f ∈ Lp(Rn) we have

∥
∥
∥

(

∑
jjj∈Zn

|Δ⊗ψ
jjj ( f )|2

)1
2
∥
∥
∥
Lp(Rn)

≤Cn,p,ψ
∥
∥ f

∥
∥
Lp(Rn). (4.6.10)

Suppose additionally that ∑ j∈Z ψ̂(2− jy) = 1, when y ∈ R \ {0}. Then there is
another positive constant cn,p,ψ such that for any f in Lp(Rn) we have

1
cn,p,ψ

∥
∥ f

∥
∥
Lp(Rn) ≤

∥
∥
∥

(

∑
jjj∈Zn

|Δ⊗ψ
jjj ( f )|2

)1
2
∥
∥
∥
Lp(Rn)

. (4.6.11)
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Proof. The proof of (4.6.10) follows the paradigm of the corresponding estimate in
Theorem 4.6.2 with only notational changes. The only difference is that in dimen-
sion n= 1 one directly uses Theorem 4.4.2. We skip the details.

So we focus on inequality (4.6.11). We pick another function ζ in S (R) whose
Fourier transform vanishes in a neighborhood of the origin and which equals 1 on
the support of ̂̃ψ . Define Δ⊗ζ

jjj analogously, and notice that

Δ⊗ψ̃
jjj = Δ⊗ζ

jjj Δ⊗ψ̃
jjj for any jjj ∈ Zn.

Let f ∈Lp(Rn) and let ϕ be a Schwartz function whose Fourier transform support
is compact and does not intersect any plane of the form x j = 0; such functions are
dense in Lp(Rn); see Exercise 4.6.1. Then we write

ϕ = ∑
jjj∈Zn

Δ⊗ψ̃
jjj (ϕ),

where only finitely many jjj ∈ Zn appear in the sum. Using this information write

∣
∣
∣
∣

∫

Rn
f (y)ϕ(y)dy

∣
∣
∣
∣
=

∣
∣
∣
∣

∫

Rn
f (y) ∑

jjj∈Zn

Δ⊗ψ̃
jjj (ϕ)(y)dy

∣
∣
∣
∣

=
∣
∣
∣
∣ ∑
jjj∈Zn

∫

Rn
f (y)Δ⊗ψ̃

jjj Δ⊗ζ
jjj (ϕ)(y)dy

∣
∣
∣
∣

=
∣
∣
∣
∣ ∑
jjj∈Zn

∫

Rn
Δ⊗ψ

jjj ( f )(y)Δ⊗ζ
jjj (ϕ)(y)dy

∣
∣
∣
∣

=
∣
∣
∣
∣

∫

Rn
∑
jjj∈Zn

Δ⊗ψ
jjj ( f )(y)Δ⊗ζ

jjj (ϕ)(y)dy
∣
∣
∣
∣

≤
∫

Rn
∑
jjj∈Zn

∣
∣Δ⊗ψ

jjj ( f )
∣
∣
∣
∣Δ⊗ζ

jjj (ϕ)
∣
∣dx

≤
∫

Rn

(

∑
jjj∈Zn

∣
∣Δ⊗ψ

jjj ( f )
∣
∣2
) 1

2
(

∑
jjj∈Zn

∣
∣Δ⊗ζ

jjj (ϕ)
∣
∣2
) 1

2
dx

≤
∥
∥
∥

(

∑
jjj∈Zn

∣
∣Δ⊗ψ

jjj ( f )
∣
∣2
) 1

2
∥
∥
∥
Lp

∥
∥
∥

(

∑
jjj∈Zn

∣
∣Δ⊗ζ

jjj (ϕ)
∣
∣2
) 1

2
∥
∥
∥
Lp′

≤ 1
cn,p,ψ

‖ϕ‖Lp′
∥
∥
∥

(

∑
jjj∈Zn

∣
∣Δ⊗ψ

jjj ( f )
∣
∣2
) 1

2
∥
∥
∥
Lp

.

Taking the supremum over all ϕ as above yields the desired inequality. �
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Exercises

4.6.1. Prove that the set

Ŝ0,...,0 =
{

ϕ ∈ S (Rn) : ϕ̂ ∈ C ∞
0 and min

1≤ j≤n
dist

[

supp(ϕ̂),{x ∈ Rn : x j = 0}] > 0
}

is dense in Lp(Rn) when 1 < p < ∞. [Hint: Mimic the proof of Proposition 2.5.4.]

4.6.2. Let 1 < p < ∞. Prove that there is a constant Cn,p such that for any finite
subset S of Zn and every f jjj in Lp(Rn), jjj ∈ Zn, we have

∥
∥
∥ ∑

jjj∈S
Δ �

jjj( f jjj)
∥
∥
∥
Lp

≤ cn,p
∥
∥
∥

(

∑
jjj∈S

| f jjj|2
) 1

2
∥
∥
∥
Lp

and
∥
∥
∥ ∑

jjj∈S
Δ �

jjj( f jjj)
∥
∥
∥
Lp

≤ cn,p
∥
∥
∥

(

∑
jjj∈S

|Δ �
jjj( f jjj)|2

) 1
2
∥
∥
∥
Lp

.

Conclude that there is a constant Cn,p such that for every f ∈ Lp(Rn) we have
∥
∥
∥ ∑

jjj∈S
Δ �

jjj( f )
∥
∥
∥
Lp

≤Cn,p
∥
∥ f

∥
∥
Lp .

4.6.3. Suppose that {mjjj} jjj∈Zn is a sequence of bounded functions supported in the
sets Rjjj defined in (4.6.5). Let Tjjj( f ) = ( f̂ m jjj)∨ be the multiplier operator associated
with mjjj. Let 1 < p < ∞. Assume that there is a constant Ap for all sequences of
functions { f jjj} jjj∈Zn with f jjj ∈ Lp(Rn) the vector-valued inequality

∥
∥
∥

(

∑
jjj∈Zn

|Tjjj( f jjj)|2
)1

2
∥
∥
∥
Lp(Rn)

≤ Ap

∥
∥
∥

(

∑
jjj∈Zn

| f jjj|2
)1

2
∥
∥
∥
Lp(Rn)

is valid. Prove there is a Cp,n > 0 such that for all finite subsets S of Z we have
∥
∥
∥ ∑

jjj∈S
mjjj

∥
∥
∥
Mp

≤Cp,n Ap.

4.6.4. Fix θ ∈ Sn−1. For j ∈ Z define sets Sθ
j = {ξ ∈ Rn : 2 j ≤ |ξ ·θ | < 2 j+1} and

operators TSθ
j
( f ) = ( f̂ χSθ

j
)∨ initially on S (Rn) and later extended on Lp(Rn) for

1 < p < ∞. Prove that for any g ∈ Lp(Rn) we have

∥
∥g

∥
∥
Lp(Rn) ≈

∥
∥
∥

(

∑
j∈Z

|TSθ
j
(g)|2

) 1
2
∥
∥
∥
Lp(Rn)

.

[Hint: Consider first the case θ = e1 and then apply a rotation.]
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4.6.5. Show that for 1 < p < ∞ there is a constant K(n, p) such that for any f jjj in
Lp(Rn), jjj ∈ Zn, we have

∥
∥
∥

(

∑
jjj∈Zn

|Δ �
jjj( f jjj)|2

)1
2
∥
∥
∥
Lp(Rn)

≤ K(n, p)
∥
∥
∥

(

∑
jjj∈Zn

| f jjj|2
)1

2
∥
∥
∥
Lp(Rn)

.

Moreover, K(n, p) ≤ K(1, p)n(Ap/Bp)2n, where Ap,Bp are as in Lemma 4.6.3.
Finally, construct an example to show that the reverse inequality fails. [Hint: For
with n = 1 appeal to Exercise 4.2.3. Reduce the n-dimensional result to the case
n= 1 by applying Lemma 4.6.3 multiple times.]

4.6.6. Let ψ and Δ⊗ψ
jjj be as in Theorem 4.6.4. Show that for 1 < p < ∞ there is a

constant Cn,p,ψ such that for any f jjj ∈ Lp(Rn), jjj ∈ Zn, we have

∥
∥
∥

(

∑
jjj∈Zn

|Δ⊗ψ
jjj ( f jjj)|2

)1
2
∥
∥
∥
Lp(Rn)

≤Cn,p,ψ

∥
∥
∥

(

∑
jjj∈Zn

| f jjj|2
)1

2
∥
∥
∥
Lp(Rn)

.

[Hint: Apply the method used in Exercise 4.6.5 starting with n= 1.]

4.6.7. Use (4.6.9) to prove the following statement: Let T be a linear operator
bounded from Lp(Rn) to itself for some 0 < p < ∞. Show that for any f j ∈ Lp(Rn)
we have

∥
∥
∥

(

∑
j∈Z

|T ( f j)|2
) 1

2
∥
∥
∥
Lp

≤ Ap

Bp

∥
∥T

∥
∥
Lp→Lp

∥
∥
∥

(

∑
j∈Z

| f j|2
) 1

2
∥
∥
∥
Lp

.

As a consequence, derive another proof of Proposition 4.6.1 using (4.6.9).



Chapter 5
Fractional Integrability or Differentiability
and Multiplier Theorems

5.1 Powers of the Laplacian and Riesz Potentials

The Laplacian is the operator Δ = ∂ 21 + · · ·+ ∂ 2n initially defined on C 2(Rn). The
action of the Laplacian is also defined on tempered distributions u on Rn by duality:

〈
Δu,ϕ

〉
=

〈
u,Δϕ

〉
, ϕ ∈ S (Rn).

Let ϕ ∈ S (Rn). Applying the Fourier transform, we write

−Δ̂ϕ(ξ ) = −
n

∑
j=1

(−2πiξ j)2ϕ̂(ξ ) = (2π|ξ |)2ϕ̂(ξ ), ξ ∈ Rn

The exponent 2 indicates the total number of differentiations on ϕ . Motivated by this
identity, it is tempting to replace the exponent 2 by a complex exponent z and define
(−Δ)z/2 as the operator given by the multiplication with the function (2π|ξ |)z on
the Fourier transform. Then (−Δ)z/2ϕ represents in some sense the total derivative
of ϕ of order z. Precisely, for z ∈ C with Rez > −n and Schwartz functions ϕ we
define

(−Δ)z/2ϕ = ((2π| · |)zϕ̂ )∨ . (5.1.1)

If z is an even integer, then clearly (−Δ)z/2 is a derivative of order z. For complex
values of z, we call (−Δ)z/2 the total derivative of order z. If z is a complex number
with real part less than −n, then the function |ξ |z is not locally integrable on Rn and
so (5.1.1) may not be well defined. For this reason, we extend (5.1.1) to Rez ≤ −n
only to Schwartz functions ϕ whose Fourier transform vanishes to sufficiently high
order at the origin1 so that the expression |ξ |zϕ̂(ξ ) is integrable. Note that the family
of operators (−Δ)z satisfies the semigroup property (−Δ)z(−Δ)w = (−Δ)z+w for
all z,w ∈ C when acting on Schwartz functions whose Fourier transform vanishes
to sufficiently high order at the origin.

1 This means that sufficiently many derivatives of ϕ̂ vanish at the origin.
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Recall the identity (2.7.5) in Example 2.7.4. For −n < Rez < 0, the locally inte-
grable function

uz(x) =
π z+n

2

Γ ( z+n
2 )

|x|z, x ∈ Rn \{0} ,

satisfies ûz = u−n−z. This implies that the inverse Fourier transform of (2π| · |)z is
(
(2π| · |)z)∨(x) = (2π)z

π− z
2

π z+n
2

Γ ( n+z
2 )

Γ (−z
2 )

|x|−z−n . (5.1.2)

When −n < Rez < 0, both |ξ |z and |x|−z−n are locally integrable functions.
When s > 0, then(−Δ)−s/2 f is not really differentiating f , but it is integrating

it. For this reason, we introduce a different notation that better reflects the nature of
this operator.

Definition 5.1.1. Let z be a complex number with 0 < Rez < n. The Riesz potential
operator of order z is

Iz = (−Δ)−z/2.

In view of identity (5.1.2), we could express Iz as a convolution operator as follows:

Iz( f )(x) = 2−zπ− n
2
Γ ( n−z

2 )
Γ ( z2 )

∫

Rn
f (x− y)|y|−n+z dy , f ∈ S (Rn). (5.1.3)

Notice that this integral is absolutely convergent for f ∈ S (Rn) for all Rez > 0.
Moreover, if f is simply measurable and nonnegative and z is real, then Iz( f )(x) is
well defined, but could be infinite for some (or all) values of x ∈ Rn.

We begin with a remark concerning the homogeneity of the operator Is.
Remark 5.1.2. Let 0 < p,q ≤ ∞ and suppose that for some s ∈ (0,n) we have the
estimate ∥∥Is

∥∥
Lp→Lq < ∞. (5.1.4)

Then the following must be true:

1
p

− 1
q
=

s
n

and p > 1 . (5.1.5)

To prove these assertions we consider the function f = χB(0,1). Then obviously,

0 <
∥∥ f

∥∥
Lp(Rn) < ∞. (5.1.6)

When |x| ≥ 2 and |y| < 1 we have |x− y| ≈ |x|, so

Is( f )(x) =Cs,n

∫

|y|<1
|x− y|−n+sdy ≥C′

s,n|x|−n+s, |x| ≥ 2, (5.1.7)

and assumption (5.1.4) yields that ‖Is( f )‖Lq <∞. Combining these facts we deduce
that q(−n+ s) < −n (equivalently s

n +
1
q < 1) and that
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∥
∥Is( f )

∥
∥
Lq > 0. (5.1.8)

Consider the dilation f λ (x) = f (λx) defined for λ > 0. Changing variables, we
write

Is( f λ )(x) = Cs,n

∫

Rn
f (λx−λy)|y|−n+sdy

= Cs,n

∫

Rn
f (λx− y′)λ n−s |y′|−n+sλ−ndy′

= λ−sIs( f )(λx). (5.1.9)

As (5.1.4) is assumed to hold, we obtain
∥∥Is( f λ )

∥∥
Lq(Rn) ≤ ∥∥Is

∥∥
Lp→Lq

∥∥ f λ
∥∥
Lp(Rn) ,

which, in view of (5.1.9), can be written as

∥∥Is( f )
∥∥
Lq(Rn) ≤ ∥∥Is

∥∥
Lp→Lqλ

n( 1q− 1
p+

s
n )
∥∥ f

∥∥
Lp(Rn) . (5.1.10)

If 1
q − 1

p +
s
n > 0, then we let λ → 0, whereas if 1

q − 1
p +

s
n < 0 we let λ → ∞ in

(5.1.10). In both cases, recalling (5.1.4), (5.1.6), and (5.1.8), we obtain that a positive

quantity is less than or equal to zero. Thus, 1
q − 1

p +
s
n 
= 0 is not possible. It follows

that 1
p − 1

q = s
n . Combining this identity with the previously obtained relationship

s
n +

1
q < 1, we deduce that p > 1. Thus (5.1.5) must necessarily be valid.

It turns out there is a positive estimate under hypothesis (5.1.5).

Theorem 5.1.3. (Hardy–Littlewood–Sobolev theorem on fractional integration)
Let s be a real number, with 0< s< n, and let 1< p< n

s and
n

n−s < q<∞ be related
as in 1

p − 1
q =

s
n . Then there exist constantsC(n,s, p),C(s,n) <∞ such that for all f

inS (Rn) we have
∥∥Is( f )

∥∥
Lq(Rn) ≤C(n,s, p)

∥∥ f
∥∥
Lp(Rn) (5.1.11)

and ∥∥Is( f )
∥∥
L

n
n−s ,∞(Rn)

≤C(n,s)
∥∥ f

∥∥
L1(Rn) . (5.1.12)

Thus Is has unique bounded extensions from Lp(Rn) to Lq(Rn) and from L1(Rn) to
L

n
n−s ,∞(Rn).

Proof. Fix a nonzero function f in the Schwartz class. Write
∫

Rn
| f (x− y)| |y|s−n dy= I1( f )(x)+ I2( f )(x),

where I1 and I2 are defined by
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I1( f )(x) =
∫

|y|<ε
| f (x− y)| |y|s−n dy,

I2( f )(x) =
∫

|y|≥ε
| f (x− y)| |y|s−n dy,

for some ε = ε(x) > 0 to be determined later. Begin by writing

I1( f )(x) =
∞

∑
j=0

∫

2− j−1ε≤|y|<2− jε
|y|−n+s| f (x− y)|dy

≤
∞

∑
j=0

2( j+1)(n−s)ε−n+s
∫

|y|<2− jε
| f (x− y)|dy

≤ εsM( f )(x)2n−svn
∞

∑
j=0

2− js

≤ vn2n−s

1−2−s ε
sM( f )(x). (5.1.13)

Let 1 ≤ p < n
s . Observe that (n− s)p′ = n+ p′n

q > n and this is valid even when

1′ = ∞. Let ωn−1 = |Sn−1|. Hölder’s inequality gives that

|I2( f )(x)| ≤
(∫

|y|≥ε
|y|−(n−s)p′

dy

) 1
p′ ∥∥ f

∥∥
Lp(Rn)

=
(
qωn−1

p′n

) 1
p′
ε− n

q
∥∥ f

∥∥
Lp(Rn),

(5.1.14)

and note that this estimate is also valid when p= 1 (in which case q= n
n−s ), provided

the Lp′
norm is interpreted as the L∞ norm and the constant

( qωn−1
p′n

) 1
p′ is replaced

by 1. Combining (5.1.13) and (5.1.14), we obtain that

Is( f )(x) ≤C′
n,s,p

(
εsM( f )(x)+ ε− n

q
∥∥ f

∥∥
Lp
)
. (5.1.15)

We choose
ε = ε(x) =

∥∥ f
∥∥

p
n
Lp
(
M( f )(x)

)− p
n

to minimize the expression on the right-hand side in (5.1.15). We observe that if f
is nonzero, then M( f )(x) > 0 for all x ∈ Rn and thus ε is well defined. This choice
of ε yields the estimate

Is( f )(x) ≤Cn,s,pM( f )(x)
p
q
∥∥ f

∥∥1−
p
q

Lp . (5.1.16)

Now suppose that p> 1. We raise (5.1.16) to the power q, we integrate over Rn, and
we use the boundedness of the Hardy–Littlewood maximal operator M on Lp(Rn)
(Corollary 1.4.7). This yields (5.1.11).
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We are left with the case p= 1 when q= n
n−s . The result in this case also follows

from (5.1.16) by the weak-type (1,1) property ofM (Theorem 1.4.6). Indeed for all
λ > 0 we have

∣∣
∣
{
Cn,s,1M( f )

n−s
n
∥
∥ f

∥
∥

s
n
L1

> λ
}∣∣
∣ =

∣∣
∣
{
M( f ) >

(
λ

Cn,s,1
∥∥ f

∥∥
s
n
L1

) n
n−s}∣∣

∣

≤ 3n
(
Cn,s,1

∥∥ f
∥∥

s
n
L1

λ

) n
n−s ∥∥ f

∥∥
L1

=
(
C(n,s)

∥∥ f
∥∥
L1

λ

) n
n−s

.

This is the claimed estimate (5.1.12). �

Example 5.1.4. It follows from (5.1.7) that Is does not map L1(Rn) to L
n

n−s (Rn).
Additionally, Is does not map L

n
s (Rn) to L∞(Rn). To see this, let 0 < s < n and

pick δ such that 0< δ < n−s
s . Consider the function h(x) = |x|−s(log 1

|x| )
− s

n (1+δ ) for
|x| ≤ 1/e and zero otherwise. A straightforward substitution based on the conver-

gence of the integral
∫ 1/e
0 r−1[log(r−1)]−(1+δ )dr indicates that h lies in L

n
s (Rn). On

the other hand for |x| ≤ 1
100 we have

Is(h)(x) = c
∫

|y|≤1/e
|y|−s

(
log

1
|y|

)− s
n (1+δ )|x− y|s−n dy

≥ c
∫

2|x|≤|y|≤1/e
|y|−s

(
log

1
|y|

)− s
n (1+δ )|x− y|s−n dy

≥ c′
∫

2|x|≤|y|≤1/e
|y|−s

(
log

1
2|x|

)− s
n (1+δ )|y|s−n dy

= c′′
(
log

1
2e|x|

)(
log

1
2|x|

)− s
n (1+δ )

which tends to infinity as |x| → 0, since δ is so small so that 1− s
n (1+ δ ) > 0.

Consequently, Is(h) 
∈ L∞.

Exercises

5.1.1. Let z1,z2 be complex numbers with positive real parts (or z1,z2 could be zero).
Find a w ∈ C such that for all ϕ inS (Rn) we have

∫

Rn
Iz1(ϕ)(x) Iz2(ϕ)(x)dx=

∥∥(−Δ)wϕ∥∥2L2(Rn).

5.1.2. Let 1 ≤ q ≤ ∞ and z ∈ C have positive real part. Prove that for ϕ ∈ S (Rn)
we have
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∥∥ϕ
∥∥2
L2 ≤ ∥∥Iz(ϕ)

∥∥
Lq

∥∥(−Δ)z/2ϕ∥∥Lq′ .
5.1.3. Show that for any t > 0 there is a constant cn,t such that

∥∥ f
∥∥
L1(Rn) ≤ cn,t

∥∥(−Δ) n+t
2 f

∥∥
n

n+t
L2(Rn)

∥∥ f
∥∥

t
n+t
L2(Rn)

is valid for all f ∈ L2(Rn). Note that the Fourier transform of (−Δ) n+t
2 f is well

defined when f ∈ L2 and so does its L2 norm, which could be infinite. [Hint: First

prove that
∫
Rn | f (x)|dx≤C

(∫
Rn | f (x)|2(|x|n+t+1)dx

)1/2
, then apply this inequality

to f (λx), and optimize over λ .]

5.1.4. Let s be a real number, with 0< s< n, and let 1< p< n
s and

n
n−s < q<∞ be

related as in (5.1.5). Suppose that (−Δ) s
2 f ∈ Lp(Rn) for a given f ∈S ′(Rn). Prove

that f coincides with an Lq function whose norm satisfies the estimate
∥∥ f

∥∥
Lq ≤C(n, p,s)

∥∥(−Δ) s
2 f

∥∥
Lp ,

where C(n, p,s) < ∞. [Hint: Use Theorem 5.1.3 and that Is is self-adjoint.]
5.1.5. Let f be a tempered and locally integrable function onRn. Suppose that either
(a) n ≥ 2 and the distributional derivatives ∂ j f lie in Lp1(Rn)∩Lp2(Rn) for all j =
1, . . . ,n, where 1 < p1 < n < p2 < ∞; or (b) n ≥ 3 and the distributional Laplacian
Δ f lies in Lp1(Rn)∩ Lp2(Rn), where 1 ≤ p1 < n

2 < p2 ≤ ∞. Prove that f lies in
L∞(Rn).
[Hint: (a) Use the identity f = ∑n

j=1I1(Rj(∂ j f )). (b) Write f = −I2(Δ f ).]

5.1.6. For 0 < s < n define the fractional maximal function

Ms( f )(x) = sup
t>0

1

(vntn)
n−s
n

∫

|y|≤t
| f (x− y)|dy , f ∈ L1loc(R

n),

where vn = |B(0,1)|. Show that for some finite constant C(n,s) we have

Ms( f ) ≤C(n,s)Is(| f |).
5.1.7. For continuous functions f on Rn define the difference operator Dh f (x) =
f (x+h)− f (x) for x,h ∈ Rn. Let 0 < s < m and m ∈ Z+. Prove that for f ∈ S (Rn)
we have

∫

Rn

∫

Rn

∣∣
m times︷ ︸︸ ︷

Dt ◦ · · · ◦Dt f (x)
∣∣2dx

dt
|t|n+2s =C(m,n,s)

∥∥(| · |s f̂ )∨∥∥2L2 ,

where C(m,n,s) =
∫

Rn
|e2πit1 −1|2m|t|−n−2sdt < ∞.

[Hint: Use that (Dt ◦ · · · ◦Dt f )̂(ξ ) = f̂ (ξ )(e2πiξ ·t −1)m.]
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5.1.8. Prove that (−Δ)z/2ϕ is a bounded function whenever
(a) Rez > −n and ϕ ∈ S (Rn); or
(b) z ∈ C and the Fourier transform of ϕ ∈ S (Rn) vanishes in a neighborhood of 0.

5.1.9. Fix w∈C with Rew> 0. Show that for every ϕ ∈C ∞0 (Rn) there is a constant
C(n,w,ϕ) such that

∣∣(−Δ)w/2ϕ(x)
∣∣ ≤C(n,w,ϕ)(1+ |x|)−n−Rew.

Moreover, prove that for any s> 0 and every nonnegative and nonzero ϕ ∈C ∞0 (Rn),
there are constants C,K > 0 such that for all |x| > K one has

∣∣(−Δ)s/2ϕ(x)∣∣ ≥C |x|−n−s.

[Hint: Identity (5.1.3) applied to ϕ can be extended to complex numbers z with
Rez < 0 by analytic continuation, for large values of x.]

5.2 Bessel Potentials

In this section we study an adjustment of the Riesz potentials in which we replace
−Δ by I−Δ , where I is the identity operator. This simple modification allows one to
define the action of (I−Δ)z/2 onS (Rn) for all z∈C. Notice that (1+4π2| · |2)z/2ϕ̂
lies in S (Rn), whenever ϕ ∈ S (Rn), thus so does (I − Δ)z/2ϕ , by Proposi-
tion 2.6.12. In fact, (I −Δ)z/2 is a one-to-one and onto mapping from S (Rn) to
S (Rn).

Definition 5.2.1. Let z be a complex number satisfying 0 < Rez < ∞. The Bessel
potential of order z is the operator

Jz( f ) = (I−Δ)− z
2 ( f ) =

(
(1+4π2| · |2)− z

2 f̂
)∨

,

initially acting on Schwartz functions f .

We denote by Gz the kernel of Jz, i.e.,

Gz =
(
(1+4π2| · |2)− z

2
)∨

,

which a priori is a tempered distribution. The Bessel potential is the operator

Jz(ϕ) = ϕ ∗Gz , ϕ ∈ S (Rn).

The Bessel potential is obtained by replacing 4π2|ξ |2 in the Riesz potential by
the smooth term 1+ 4π2|ξ |2. This adjustment smooths the function near zero, and
this translates into rapid decay for its inverse Fourier transform at infinity.

The next result quantifies the behavior of Gs near zero and near infinity for s> 0.
To describe this behavior we introduce a function Hs on Rn \{0} by setting



202 5 Fractional Integrability or Differentiability and Multiplier Theorems

Hs(x) =

⎧
⎪⎨

⎪⎩

|x|s−n for 0 < s < n,

log 4
|x| for s= n,

1 for s > n.

Proposition 5.2.2. For s > 0, Gs is a strictly positive C ∞ function on Rn \{0} that
satisfies ‖Gs‖L1 = 1. Moreover, there are positive constantsC(s,n), c(s,n) such that

Gs(x) ≤C(s,n)e− |x|
2 when |x| ≥ 2 (5.2.1)

and
1

c(s,n)
≤ Gs(x)

Hs(x)
≤ c(s,n) when 0 < |x| < 2. (5.2.2)

Proof. Fix s > 0. The definition of the gamma function

Γ (s/2) =
∫ ∞

0
e−uus/2

du
u

yields for A > 0 the identity

A−s/2 =
1

Γ (s/2)

∫ ∞

0
e−tAts/2

dt
t

via the change of variables u= tA. Taking A= 1+4π2|ξ |2 we obtain

(1+4π2|ξ |2)− s
2 =

1
Γ ( s2 )

∫ ∞

0
e−t e−π|2√πt ξ |2t

s
2
dt
t

. (5.2.3)

Note that the preceding integral converges at both ends. Let ϕ be inS (Rn). Then

〈
Gs, ϕ̂

〉
=

∫

Rn
Ĝs(ξ )ϕ(ξ )dξ =

∫

Rn
(1+4π2|ξ |2)− s

2ϕ(ξ )dξ (5.2.4)

and using (5.2.3), we rewrite (5.2.4) as

〈
Gs, ϕ̂

〉
=

1
Γ ( s2 )

∫ ∞

0
e−t t

s
2

[∫

Rn
e−π|2√πt ξ |2ϕ(ξ )dξ

]
dt
t

, (5.2.5)

where the interchange of the integrals on the left in (5.2.5) is justified by the rapid
decay of the integrand. Using the fact that ε−ne−π|x/ε |2 is the inverse Fourier trans-
form of e−π|εξ |2 , we express (5.2.5) as

〈
Gs, ϕ̂

〉
=

1
Γ ( s2 )

∫ ∞

0
e−t t

s
2

[∫

Rn

1

(2
√
πt)n

e
−π| x

2
√
πt |2 ϕ̂(x)dx

]
dt
t

. (5.2.6)

As e− |x|2
4t ≤ Cβ (4t/|x|2)β for any β > 0, picking β ∈ ( n−s

2 , n2 ), we obtain that the
double integral in (5.2.6) converges absolutely, and so interchanging the order of
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integration is allowed. Doing so and using that ϕ was arbitrary, we deduce that the
tempered distribution Gs can be identified with the function

Gs(x) =
(2

√
π )−n

Γ ( s2 )

∫ ∞

0
e−t e− |x|2

4t t
s−n
2

dt
t

. (5.2.7)

Note that the preceding integral is absolutely convergent for all x 
= 0, while for
x = 0, it converges only when s > n. Identity (5.2.7) shows that Gs is smooth on
Rn \{0} and that Gs(x) > 0 for all x ∈ Rn. Consequently,

‖Gs‖L1 =
∫

Rn
Gs(x)dx= Ĝs(0) = 1.

Now suppose |x| ≥ 2. Then t+ |x|2
4t ≥ t+ 1

t and t+
|x|2
4t ≥ |x|. This implies that

−t− |x|2
4t

≤ − t
2

− 1
2t

− |x|
2

(5.2.8)

for all t > 0. From this it follows that when |x| ≥ 2,

Gs(x) ≤ (2
√
π )−n

Γ ( s2 )

(∫ ∞

0
e− t

2 e− 1
2t t

s−n
2

dt
t

)
e− |x|

2 =
C′(s,n)
Γ ( s2 )

e− |x|
2 , (5.2.9)

proving (5.2.1).
Suppose now that 0 < |x| < 2. Write Gs(x) = G1

s (x)+G2
s (x)+G3

s (x), where

G1
s (x) =

(2
√
π )−n

Γ ( s2 )

∫ |x|2

0
e−ue− |x|2

4u u
s−n
2

du
u

= |x|s−n (2
√
π )−n

Γ ( s2 )

∫ 1

0
e−t|x|2e− 1

4t t
s−n
2

dt
t

,

G2
s (x) =

(2
√
π )−n

Γ ( s2 )

∫ 4

|x|2
e−t e− |x|2

4t t
s−n
2

dt
t

,

G3
s (x) =

(2
√
π )−n

Γ ( s2 )

∫ ∞

4
e−t e− |x|2

4t t
s−n
2

dt
t

.

For 0 ≤ t ≤ 1 and 0 < |x| < 2 we have e−4 ≤ e−t|x|2 ≤ 1. Thus, we write2

G1
s (x) ≈ |x|s−n (2

√
π )−n

Γ ( s2 )

∫ 1

0
e− 1

4t t
s−n
2

dt
t

≈ |x|s−n. (5.2.10)

For |x|2 ≤ t ≤ 4 and |x| < 2 we have e−4 ≤ e−t ≤ 1 and e− 1
4 ≤ e− |x|2

4t ≤ 1, so

2 We say f (x) ≈ g(x) if there are 0 < c <C < ∞ such that c < f (x)/g(x) ≤C for all x.



204 5 Fractional Integrability or Differentiability and Multiplier Theorems

G2
s (x) ≈

∫ 4

|x|2
t
s−n
2

dt
t

≈

⎧
⎪⎨

⎪⎩

|x|s−n −2s−n for s < n,

log 2
|x| for s= n,

2s−n − |x|s−n for s > n.

(5.2.11)

Finally, when t ≥ 4 > |x|2 we have e− 1
4 ≤ e− |x|2

4t ≤ 1, which yields

G3
s (x) ≈ (2

√
π )−n

Γ ( s2 )

∫ ∞

4
e−t t

s−n
2

dt
t

≈ 1. (5.2.12)

Combining (5.2.10), (5.2.11), and (5.2.12), for 0 < |x| < 2 we obtain

Gs(x) = G1
s (x)+G2

s (x)+G3
s (x) ≈

⎧
⎪⎨

⎪⎩

|x|s−n+(|x|s−n −2s−n)+1 for 0 < s < n,

|x|s−n+ log 2
|x| +1 for s= n,

|x|s−n+(2s−n − |x|s−n)+1 for s > n.

But this function is comparable to Hs(x) when 0 < |x| < 2, so we deduce (5.2.2). �

The next proposition is concerned with estimates for the derivatives of Gs.

Proposition 5.2.3. Let s > 0. For each multi-index α there is a positive constant
Cα,s,n such that for every x ∈ Rn \{0} one has

∣∣∂αGs(x)
∣∣ ≤Cα,s,n

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

|x|s−n−|α| when 0 < |x| < 2 and s < n+ |α|,
log 4

|x| when 0 < |x| < 2 and s= n+ |α|,
1 when 0 < |x| < 2 and s > n+ |α|,
e− |x|

4 when |x| ≥ 2.

(5.2.13)

Proof. We begin by noting that for each m ∈ Z+ ∪{0} there is a polynomial pm of
degree m on the real line such that dm

dtm e
−t2 = pm(t)e−t2 . From this we obtain that

for each multi-index α = (α1, . . . ,αn) and all x ∈ Rn we have

∂αe−|x|2 = pα1(x1) · · · pαn(xn)e−|x|2 .

Consequently, there is a constant Bα,n such that |∂αe−|x|2 | ≤ Bα,n(1+ |x|)|α|e−|x|2

and thus, by the chain rule, for t > 0 and x ∈ Rn we have the estimate

∣∣∂αx e− |x|2
4t
∣∣ ≤ Bα,n

(
1+ |x|

2
√
t

)|α|
e− |x|2

4t 1
(2

√
t)|α| . (5.2.14)

Returning to (5.2.7), for x 
= 0, we obtain the identity

∂αGs(x) =
(2

√
π )−n

Γ ( s2 )

∫ ∞

0
e−t(∂αe− |x|2

4t
)
t
s−n
2

dt
t

, (5.2.15)
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interchanging differentiation and integration, which is justified by the rapid con-
vergence of the integral. For |x| ≥ 2 we use that (1+ |x|)|α|e−|x|2 ≤ B′

αe
−|x|2/2 and

(5.2.14) to obtain

e−t
∣∣∂αx e− |x|2

4t
∣∣t

s−n
2 ≤ e− t

2Bα,nB
′
αe

− 1
2

|x|2
4t t

s−n
2

(2
√
t)|α| ≤ B′

αBα,ne
− t

4− 1
4t − |x|

4 t
s−n
2

(2
√
t)|α| ,

where the last inequality is a consequence of (5.2.8). Inserting this estimate in
(5.2.15) yields (5.2.13) when |x| ≥ 2, in analogy with (5.2.9).

For 0 < |x| < 2 we write ∂αGs(x) = ∂αG1
s (x)+ ∂αG2

s (x)+ ∂αG3
s (x), as in the

case of no derivatives. The upper estimates for ∂αG3
s (x) are similar to those for

G3
s (x) [see (5.2.12)] as the extra term (1+ |x|

2
√
t
)|α|( 1

2
√
t
)|α| is bounded for t ∈ [4,∞).

Now for t ∈ [|x|2,4), the extra term (1+ |x|
2
√
t
)|α|( 1

2
√
t
)|α| contributes a factor of

t−|α|/2 to the integral in (5.2.11). Thus for 0 < |x| < 2 we obtain

∣∣∂αG2
s (x)

∣∣ ≤ cα,s,n

∫ 4

|x|2
t
s−|α|−n

2
dt
t

≈

⎧
⎪⎨

⎪⎩

|x|s−|α|−n −2s−|α|−n for s−|α| < n,

log 2
|x| for s−|α| = n,

2s−|α|−n − |x|s−|α|−n for s−|α| > n,

for some constant cα,s,n > 0. Now we focus on ∂αG1
s (x). In view of (5.2.14) we

write

∣
∣∂αG1

s (x)
∣
∣ ≤ (2

√
π )−n

Γ ( s2 )

∫ |x|2

0
Bα,n

(
1+ |x|

2
√
u

)|α|
1

(2
√
u)|α| e

−ue− |x|2
4u u

s−n
2

du
u

≤ (2
√
π )−n

Γ ( s2 )

∫ |x|2

0
Bα,n

(
5|x|
2
√
u

)|α|(
1
2

)|α|
e−ue− |x|2

4u u
s−|α|−n

2
du
u

≤ |x|s−|α|−n (2
√
π )−n

Γ ( s2 )
Bα,n

(5
4

)|α| ∫ 1

0
e−t|x|2e− 1

4t t
s−2|α|−n

2
dt
t

,

and as e−t|x|2 ≤ 1, we have that |∂αG1
s (x)| ≤C′

α,s,n|x|s−|α|−n, where C′
α,s,n > 0.

The combined estimate for |∂αG1
s (x)|+ |∂αG2

s (x)|+ |∂αG3
s (x)| then gives

∣∣∂αGs(x)
∣∣ ≤C′′

α,s,n

⎧
⎪⎨

⎪⎩

|x|s−|α|−n+(|x|s−|α|−n −2s−|α|−n)+1 for 0<s<n+ |α|,
|x|s−|α|−n+ log 2

|x| +1 for s= n+ |α|,
|x|s−|α|−n+(2s−|α|−n − |x|s−|α|−n)+1 for s>n+ |α|

when 0 < |x| < 2. In all cases, this expression is bounded by that in (5.2.13) when
0 < |x| < 2. This completes the proof. �

Corollary 5.2.4. Let 0 < s < n.
(a) Js maps L1(Rn) to L

n
n−s ,∞(Rn).

(b) Js maps L1(Rn) to Lq(Rn) when 1 ≤ q < n
n−s .

(c) Js maps Lp(Rn) to Lq(Rn) when 1 < p < n
s and q ∈ [

p, pn
n−ps

]
.
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Proof. When 0 < s < n the kernel Gs of Js satisfies

Gs(x) ≤Cn,s

{
|x|−n+s when |x| ≤ 2,

e− |x|
2 when |x| ≥ 2.

It follows that Gs(x) ≤C′
n,s|x|−n+s for all x ∈ Rn. Then Theorem 5.1.3 implies the

assertion in (a). Now notice that Gs ∈ L1(Rn) and this gives that Js maps L1(Rn) to
L1(Rn). Interpolating between this estimate and the one in (a), via Exercise 1.3.3,
we obtain the claim in (b). To obtain the assertion in (c) we note: For 1 < p < n

s ,
Js maps Lp(Rn) to Lp(Rn) (as Gs ∈ L1) and it also maps Lp(Rn) to Lq0(Rn) where
1
q0

= 1
p − s

n in view of Theorem 5.1.3. By Exercise 1.1.6 we deduce that Js maps
Lp(Rn) to Lq(Rn) when p ≤ q ≤ pn

n−ps . �

Exercises

5.2.1. (Fractional integration by parts) Let z ∈ C and f ,g ∈ S (Rn). Show that
∫

Rn
g (I−Δ) z

2 f dx=
∫

Rn
f (I−Δ) z

2 gdx.

Moreover, (I − Δ) z
2 could be replaced by (−Δ) z

2 if Rez > −n or if the Fourier
transform of one of f̂ , ĝ vanishes in a neighborhood of the origin.

5.2.2. Let 1 ≤ p ≤ q ≤ ∞. (a) Show that Js maps Lp(Rn) to Lq(Rn) when s > n.
(b) Prove that Jn maps Lp(Rn) to Lq(Rn) when (p,q) 
= (1,∞).

5.2.3. Let 0 < s < n. Show that the Bessel potential Js maps L1(Rn) to Lr,∞(Rn)
when 1 ≤ r ≤ n

n−s and Lp(Rn) to Lq(Rn) when 1 < p < ∞ and p ≤ q ≤ pn
n−s .

5.2.4. Let 1 < s < n and 1 < p,r < ∞ satisfy 1
r′ ≤ 1

p ≤ 1
r′ +

s
n . Prove that there is a

constant C =C(n,s, p.r) such that for all ϕ ∈ S (Rn) one has
∥∥ϕ

∥∥2
L2 ≤C

∥∥ϕ
∥∥
Lp

∥∥(I−Δ) s
2ϕ

∥∥
Lr .

5.2.5. Prove that for any s > 0 there is a constant Cs such that for any f ,g be
Schwartz functions on Rn whose Fourier transforms are nonnegative we have

∥∥(I−Δ) s
2 ( f g)

∥∥
L2(Rn) ≤Cs

[∥∥ f (I−Δ) s
2 g

∥∥
L2(Rn) +

∥∥g(I−Δ) s
2 f

∥∥
L2(Rn)

]
.

[Hint: Use (1+ |ξ +ξ ′|2) s
2 ≤Cs[(1+ |ξ |2) s

2 +(1+ |ξ ′|2) s
2 ]. NoteCs = 1 if s ≤ 1. ]

5.2.6. Let s1, . . . ,sn > 0. Consider the operator J ( j)
s j = (I−∂ 2j )−

s j
2 acting on the jth

variable of a function on Rn. (This is basically the one-dimensional Js j acting on

the jth variable.) Prove that J (1)
s1 ◦· · ·◦J (n)

sn maps Lq(Rn) to itself for any 1≤ q≤∞.
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5.2.7. Fix 0 < s1 < 1, s1 ≤ s2, . . . ,sn, and let Gs denote the kernel of the one-
dimensional Bessel potential. (a) Show thatGs1(x1) · · ·Gsn(xn) lies in L

1/(1−s1),∞(Rn).
(b) Show that T =J (1)

s1 ◦· · ·◦J (n)
sn (Exercise 5.2.6) maps L1(Rn) to L1/(1−s1),∞(Rn).

(c) Prove that T : Lp(Rn)→ Lq(Rn)when 1< p< 1
s1
, 1
1−s1

< q<∞, and 1
p − 1

q = s1.

[Hint: Part (a): Use that
∣∣{x ∈ Rn : Gs1(x1) · · ·Gsn(xn) > λ}∣∣ is equal to

∫

Rn−1

∣∣∣
{
x1 ∈ R : Gs1(x1) >

λ
Gs2(x2) · · ·Gsn(xn)

}∣∣∣dx2 · · ·dxn.

Part (b): Use Exercise 1.6.7. Part (c): Use the version of Young’s inequality stated
in the footnote of Proposition 2.4.2.]

5.3 The Mikhlin and Hörmander Multiplier Theorems

In this section we obtain a sufficient condition on a function σ in L∞(Rn) to be an
Lp Fourier multiplier. This means that the operator

Tσ ( f ) =
(
f̂ σ

)∨
, f ∈ S (Rn),

admits a bounded extension on Lp(Rn). Throughout the section we fix a Schwartz
functionΨ as in (4.4.23) and we define

Θ̂(ξ ) = Ψ̂(ξ/2)+Ψ̂(ξ )+Ψ̂(2ξ ). (5.3.1)

Then Θ̂ is supported in {ξ ∈ Rn : 3
7 ≤ |ξ | ≤ 4} and Θ̂ = 1 on the support of Ψ̂ .

Recall that for j ∈ Z, the Littlewood–Paley operator associated with the bumpΨ is

ΔΨj ( f )(x) =
∫

Rn
f (x− y)2 jnΨ(2 jy)dy .

Analogously one defines the Littlewood–Paley operator associated withΘ .

Lemma 5.3.1. Fix Ψ ∈ S (Rn) as in (4.4.23) and Θ as in (5.3.1). Let 1 ≤ ρ < 2,
s > n/ρ , and σ ∈ L∞(Rn). Suppose that (I−Δ) s

2
[
Ψ̂ σ

(
2 j · )] is an Lρ function for

any j ∈ Z and that

K = sup
j∈Z

∥∥(I−Δ) s
2
[
Ψ̂ σ

(
2 j · )]∥∥Lρ (Rn) < ∞ . (5.3.2)

Then, for any Schwartz function f on Rn and any integer j we have

|ΔΨj Tσ ( f )| ≤Cs,n,ρ K
[
M(|ΔΘj ( f )|ρ)

] 1
ρ , (5.3.3)

where M denotes the uncentered Hardy–Littlewood maximal operator.
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Proof. Fix f ∈ S (Rn). Since Θ̂ is equal to 1 on the support of Ψ̂ , we have that
Ψ̂(2− jξ ) = Θ̂(2− jξ )Ψ̂(2− jξ ) for all ξ ∈ Rn. Thus we can write

ΔΨj Tσ ( f )(x) =
∫

Rn
f̂ (ξ )σ(ξ )Ψ̂(2− jξ )e2πix·ξdξ

=
∫

Rn
f̂ (ξ )Θ̂(2− jξ )Ψ̂(2− jξ )σ(ξ )e2πix·ξdξ

=
∫

Rn

̂ΔΘj ( f )(ξ )Ψ̂(2− jξ )σ(ξ )e2πix·ξdξ

=
∫

Rn
2 jn ̂ΔΘj ( f )(2

jξ ′)Ψ̂(ξ ′)σ(2 jξ ′)e2πi(2
jx·ξ ′)dξ ′

=
∫

Rn

[
ΔΘj ( f )(2− j ·)]̂ (ξ ′)

[
Ψ̂σ(2 j ·)e2πi(2 jx·(·))](ξ ′)dξ ′

=
∫

Rn
ΔΘj ( f )(2− jy′)

[
Ψ̂ σ(2 j ·)]̂(y′ −2 jx)dy′ by (2.2.1)

= 2 jn
∫

Rn
ΔΘj ( f )(y)

[
Ψ̂ σ(2 j ·)]̂(2 jy−2 jx)dy

=
∫

Rn

2 jnΔΘj ( f )(y)
(1+2 j|x− y|)s (1+2 j|x− y|)s[Ψ̂ σ(2 j ·)]̂(2 jy−2 jx)dy.

Applying Hölder’s inequality, we estimate

|ΔΨj Tσ ( f )(x)| ≤
(∫

Rn
2 jn

|ΔΘj ( f )(y)|ρ
(1+2 j|x− y|)sρ dy

) 1
ρ

·
(∫

Rn
2 jn

∣∣∣(1+2 j|x− y|)s[Ψ̂ σ(2 j ·)]̂(2 jy−2 jx)
∣∣∣
ρ ′
dy

) 1
ρ ′

,

(5.3.4)

where the second factor of the product is to be interpreted as an L∞ norm if ρ = 1.
Since sρ > n, Corollary 2.5.2 yields the estimate

(∫

Rn
2 jn

|Δθj ( f )(y)|ρ
(1+2 j|x− y|)sρ dy

) 1
ρ

≤Cs,n,ρM
(∣∣Δθj ( f )

∣∣ρ
) 1
ρ (x). (5.3.5)

By a change of variables, the second factor in the product in (5.3.4) equals

(∫

Rn

∣∣
∣(1+ |y|)s · [Ψ̂ σ(2 j ·)]̂(y)

∣∣
∣
ρ ′
dy

) 1
ρ ′

≤ 2
s
2

(∫

Rn

∣∣∣(1+4π2|y|2) s
2 · [Ψ̂ σ(2 j ·)]̂(y)

∣∣∣
ρ ′
dy

) 1
ρ ′

= 2
s
2

(∫

Rn

∣∣∣
[
(I−Δ) s

2
[
Ψ̂ σ(2 j ·)]]̂(y)

∣∣∣
ρ ′
dy

) 1
ρ ′

≤ 2
s
2

∥∥
∥(I−Δ) s

2
[
Ψ̂ σ(2 j ·)]

∥∥
∥
Lρ (Rn)

,
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where we used the Hausdorff–Young inequality (Proposition 2.4.4) in the last step,
as 1 ≤ ρ < 2. Combining this estimate with the one in (5.3.5) and inserting them in
(5.3.4) yields the claimed conclusion. �

We now prove the main result of this section.

Theorem 5.3.2. (Mikhlin multiplier theorem) If a function σ onRn\{0} satisfies

|∂βσ(ξ )| ≤Cβ |ξ |−|β | for all |β | ≤
[n
2

]
+2, (5.3.6)

for some constants Cβ , then for all 1 < p < ∞, Tσ admits a bounded extension
from Lp(Rn) to itself with norm bounded by C(n, p) sup|β |≤[ n2 ]+2Cβ , where C(n, p)
depends on p,n.

Proof. Let s be the even integer among the numbers [ n2 ]+1, [ n2 ]+2. Then s> n
2 and

we have
(I−Δ) s

2 = ∑
|α|≤s

cα,s∂α

for some constants cα,s (which vanish when |α| is odd). Let Ψ be as in (4.4.23).
Then

∣∣∂α
(
Ψ̂(ξ )σ(2 jξ )

)∣∣=
∣∣∣∣ ∑
β≤α

(
α
β

)
(∂α−βΨ̂)(ξ ) 2 j|β |(∂βσ)(2 jξ )

∣∣∣∣

≤ ∑
β≤α

(
α
β

)∣∣∂α−βΨ̂(ξ )
∣∣2 j|β |Cβ |2 jξ |−|β |

≤ K′
(
sup
|β |≤s

Cβ
)
χ 6

7≤|ξ |≤2,

having used condition (5.3.6) in the first inequality above and the fact that 6
7 ≤ |ξ | ≤

2 in the second inequality. It follows that

(I−Δ) s
2
[
Ψ̂ σ(2 j ·)]

is compactly supported and bounded by a constant. Thus for any ρ ≥ 1 the constant
K in (5.3.2) is finite, i.e.,

K = sup
j∈Z

∥∥(I−Δ) s
2
[
Ψ̂ σ

(
2 j · )]∥∥Lρ (Rn) ≤ K′′ sup

|β |≤s
Cβ < ∞.

As s> n/2, we choose ρ ≥ 1 with n/s< ρ < 2, so that the hypotheses on the indices
of Lemma 5.3.1 are satisfied.

Suppose first that p > 2. In order to be able to apply Theorem 4.5.3 we need to
know that Tσ ( f ) lies in Lp(Rn); this will be the case if f ∈ Ŝ0, i.e., it is a Schwartz
function whose Fourier transform is compactly supported away from the origin.
Such functions are dense in Lp(Rn) for any 1 < p < ∞; see Proposition 2.5.4. Inte-
grating by parts, we write
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Tσ ( f )(x) =
∫

Rn
f̂ (ξ )σ(ξ )e2πix·ξdξ

=
1

(1+4π2|x|2) s
2

∫

Rn
f̂ (ξ )σ(ξ )(I−Δ) s

2 e2πix·ξdξ

=
1

(1+4π2|x|2) s
2

∫

Rn
∑

|α|≤s

cα,s∂α
[
f̂ σ

]
(ξ )e2πix·ξdξ ,

and we notice that hypotheses (5.3.6) combined with the fact that f̂ has compact
support that does not contain {0}, by Leibniz’s rule we obtain that

|Tσ ( f )(x)| ≤Cf (1+ |x|)−s.

But this function lies in Lp(Rn) as p > 2 and s > n/2, which give ps > n. Thus
‖Tσ ( f )‖Lp < ∞, which allows us to use inequality (4.5.5) in Theorem 4.5.3.

Applying successively inequality (4.5.5) in Theorem 4.5.3, Lemma 5.3.1, and
(4.3.17) in Theorem 4.3.3 with r = 2/ρ (recall n/s < ρ < 2), we obtain

∥∥Tσ ( f )
∥∥
Lp(Rn) ≤Cp(n)

∥∥∥
(
∑
j∈Z

|ΔΨj (Tσ ( f ))|2
) 1

2
∥∥∥
Lp(Rn)

≤Cp(n)Cn,pK
′′
(
sup
|β |≤s

Cβ
)∥∥∥

(
∑
j∈Z

[
M
(|ΔΘj ( f )|ρ

)] 2
ρ
) 1

2
∥∥∥
Lp(Rn)

=Cp(n)Cn,pK
′′
(
sup
|β |≤s

Cβ
)∥∥
∥
(
∑
j∈Z

[
M
(|ΔΘj ( f )|ρ

)] 2
ρ
) ρ

2
∥∥
∥

1
ρ

Lp/ρ (Rn)

≤C′
p(n)Cn,pK

′′
(
sup
|β |≤s

Cβ
)∥∥∥

(
∑
j∈Z

|ΔΘj ( f )|ρ
2
ρ
) ρ

2
∥
∥∥

1
ρ

Lp/ρ (Rn)

=C′
p(n)K

′′
(
sup
|β |≤s

Cβ
)∥∥∥

(
∑
j∈Z

|ΔΘj ( f )|2
) 1

2
∥∥∥
Lp(Rn)

≤C′′
p(n)K

′′
(
sup
|β |≤s

Cβ
)∥∥ f

∥∥
Lp(Rn),

where the last inequality is a consequence of Theorem 4.4.2. HereΘ is as in (5.3.1)
and the application of (4.3.17) makes use of the assumptions 1 < 2/ρ < ∞ and
1< p/ρ <∞ (since ρ < 2< p). This proves the claimed bound for functions f ∈ Ŝ0,
which is a dense subspace of Lp. By density, there is a bounded extension of Tσ on
Lp(Rn) for 2 < p < ∞ with norm bounded byC(n, p) sup|β |≤sCβ .

The case p= 2 is a direct consequence of Plancherel’s theorem. Finally, we dis-
cuss the case 1 < p < 2. Notice that the transpose (Tσ )t of Tσ is equal to Tσ̃ , where
σ̃(ξ ) = σ(−ξ ). As σ̃ also satisfies (5.3.6), it follows that Tσ̃ = (Tσ )t is bounded
from Lp(Rn) to itself for p > 2, and by duality it follows that Tσ is bounded from
Lp(Rn) to itself for 1 < p < 2. �
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Corollary 5.3.3. For any 1 < p < ∞ there is a constant Cn,p such that for any t ∈ R
we have

∥
∥(−Δ)it∥∥Lp(Rn)→Lp(Rn) +

∥
∥(I−Δ)it∥∥Lp(Rn)→Lp(Rn) ≤Cn,p(1+ |t|)[ n2 ]+2.

Proof. It is tedious but straightforward to verify that for any k ∈ Z+ one has

sup
ξ∈Rn\{0}

sup
|α|≤k

|ξ ||α|∣∣∂α(|ξ |i2t)∣∣ ≤C(n,k)
k−1

∏
m=0

∣∣it−m
∣∣ ≤C(n,k)(1+ |t|)k. (5.3.7)

A similar bound holds for (1+4π2|ξ |2)it in place of |ξ |i2t . To see this consider the
function (ξ ,ξn+1) �→ (|ξn+1|2+|ξ |2)it on Rn+1, apply (5.3.7) to a multi-index of the
form (0,β ), where β is an multi-index with n entries, and plug in ξn+1 = 1/2π .
Inserting k = [ n2 ] + 2 in (5.3.7) and in its analog for (1+4π2|ξ |2)it provides the
hypotheses of Theorem 5.3.2, so its conclusion yields our claim.

One may also verify (5.3.7) and the analogous version for (1+ |ξ |2)it by applying
the Faà di Bruno formula (Appendix F). �

In fact this corollary is a special case of a more general situation.

Example 5.3.4. Let σ be a smooth function on Rn \ {0} that is homogeneous of
degree iτ , where τ is real. This means that for all λ > 0 and all ξ 
= 0 we have

σ(λξ ) = λ iτσ(ξ ) . (5.3.8)

[An explicit example of such a function is σ(ξ ) = |ξ |iτ .] Then σ is an Lp Fourier
multiplier for 1 < p < ∞. To show this we verify condition (5.3.6). Differentiating
both sides of (5.3.8) with respect to ∂αξ , we obtain

λ |α|(∂αξ σ)(λξ ) = λ
iτ∂αξ σ(ξ ), ξ 
= 0.

Taking λ = |ξ |−1, we deduce condition (5.3.6) with Cα = sup|θ |=1 |∂ασ(θ)|.
Example 5.3.5. Let z be a complex number. Then for any multi-index β there is a
constant Cβ such that the function m(ξ ) = (1+ |ξ |2) z

2 satisfies

∣∣∂βm(ξ )
∣∣ ≤Cβ (1+ |ξ |)Rez−|β |, ξ ∈ Rn. (5.3.9)

This shows that when Rez ≤ 0, then m is an Lp Fourier multiplier for 1 < p < ∞.
To verify (5.3.9), we introduce the function M(t,ξ ) = (|t|2+ |ξ |2) z

2 on Rn+1 \{0}.
Then M is homogeneous of degree z and is smooth on the sphere Sn. Thus,

M(λ t,λξ ) = λ zM(t,ξ ), λ > 0.

Differentiating with respect to ∂βξ , we obtain

λ |β |(∂βξ M)(λ t,λξ ) = λ z∂βξ M(t,ξ ), λ > 0,
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and choosing λ = |(t,ξ )|−1, if (t,ξ ) 
= 0, yields the bound

∣
∣∂βξ M(t,ξ )

∣
∣ ≤ |(t,ξ )|−|β |+Rez sup

(t,ξ )′∈Sn
|(∂βξ M)(t,ξ )′|. (5.3.10)

From this, plugging in t = 1, we obtain (5.3.9) with Cβ equal to the supremum on
the right in (5.3.10), which is finite as M is smooth on Sn.

The proof of Theorem 5.3.2 provides the following more general result.

Theorem 5.3.6. (Hörmander multiplier theorem) LetΨ be a Schwartz function
as defined in (4.4.23) and let s > n/2. Fix 1 ≤ ρ < 2 and s > n/ρ . Let K be as in
(5.3.2). Then Tσ admits a bounded extension from Lp(Rn) to itself for all 1< p<∞
with norm bounded by C(n, p,s,ρ)K.

Example 5.3.7. Homogeneity and smoothness yields that for any multi-index α

|∂βξα | ≤ cβ ,α |ξ ||α|−|β | ,

where cβ ,α vanishes if β j > α j for some j. This estimate is useful in calculations.

We end this section with a couple more examples of Fourier multipliers.

Example 5.3.8. Let z be a complex number with Rez≥ 0 and let α be a fixed multi-
index with |α| ≤ Rez. Then the function, defined on Rn,

m(ξ ) =
ξα

(1+ |ξ |2)z/2

satisfies (5.3.6) (in fact without the restriction on β ) and is therefore an Lp Fourier
multiplier for 1 < p < ∞. To prove this assertion we write by Leibniz’s rule

∣∣∂βm(ξ )
∣∣=

∣
∣∣∣ ∑
γ≤β

(
β
γ

)(
∂β−γξα

)(
∂ γ(1+ |ξ |2)−z/2)

∣
∣∣∣

≤Cβ ∑
γ≤β

(
β
γ

)
|ξ ||α|−(|β |−|γ |)(1+ |ξ |)−Rez−|γ|

≤C′
β ∑
γ≤β

|ξ |−|β |+|γ |[|ξ ||α|(1+ |ξ |)−Rez]|ξ |−|γ | ≤C′′
β |ξ |−|β |,

since the expression inside the square brackets is bounded by 1, as |α| ≤ Rez.

Example 5.3.9. Let θ ∈ R and η ∈ Rn. On Rn consider the function

σ(ξ ) =
(
1+ |ξ +η |2
1+ |ξ |2

) θ
2

.

Then (5.3.6) holds (without the restriction on β ) with a constant that depends on η ,
precisely,
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|∂βσ(ξ )| ≤Cβ ,θ
(1+ |η |)max(|β |−θ ,θ)

(1+ |ξ |)|β | . (5.3.11)

In view of Leibniz’s rule we write
∣∣∂βξ σ(ξ )

∣∣ =
∣∣∣∣ ∑
γ≤β

(
β
γ

)
∂ γξ (1+ |ξ +η |2) θ2 ∂β−γ

ξ (1+ |ξ |2)− θ
2

∣∣∣∣

≤ Cn,θ ∑
γ≤β

(
β
γ

)
(1+ |ξ +η |)θ−|γ|(1+ |ξ |)−θ−(|β |−|γ |) .

Using the estimates

(1+ |ξ +η |)θ−|γ | ≤
{
(1+ |ξ |)θ−|γ |(1+ |η |)θ−|γ | if θ −|γ| ≥ 0,

(1+ |ξ |)θ−|γ |(1+ |η |)|γ|−θ if θ −|γ| < 0,

we deduce (5.3.11), which in fact holds for all multi-indices β .

Exercises

5.3.1. Prove that if σ1 and σ2 satisfy condition (5.3.6), then so does σ1σ2.

5.3.2. Show that if σ is real-valued and satisfies (5.3.6), then so does eiσ .

5.3.3. Let m be a function on R2 which is homogeneous of degree −ρ ≤ 0 and
smooth on the unit circle. Prove that the function ξ �→ m(1, |ξ |) lies in Mp(Rn) for
any 1 < p < ∞.

5.3.4. Let 0 < c <C < ∞, z ∈ C, and m ∈ Z+. Let σ : Rn → C satisfy (5.3.6).
(a) If |σ(ξ )| ≥ c for all ξ ∈ Rn, show that σ−m satisfies condition (5.3.6).
(b) If |σ(ξ )| ≤C for all ξ ∈ Rn and m ≥ s, show that σm also satisfies (5.3.6).
(c) If σ(ξ ) ≥ c for all ξ ∈ Rn and Rez ≤ 0, show that σ z satisfies (5.3.6).
(c) If 0 < σ(ξ ) ≤C for all ξ ∈ Rn and Rez ≥ s, show that σ z also satisfies (5.3.6).

5.3.5. Suppose that σ is a complex-valued function onRn that satisfies (5.3.6) for all
multi-indices α (i.e., without the restriction |α| ≤ s). Let β be a fixed multi-index.
Show that ∇σ(ξ ) ·ξ and ξβ∂βσ satisfy (5.3.6) for all all multi-indices α .

5.3.6. Prove that the functions gt(ξ ) = t(t2 + |ξ |2)−1/2, defined for ξ ∈ Rn and
indexed by t > 0, lie in Mp(Rn) uniformly in t.

5.3.7. Let ζ̂ be a smooth function on Rn that is supported in a compact set that does
not contain the origin and let a j be a bounded sequence of complex numbers. Prove
that the function

m(ξ ) = ∑
j∈Z

a jζ̂ (2− jξ ), ξ ∈ Rn,

lies inMp(Rn) for all 1 < p < ∞.
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5.4 Sobolev Spaces

Just as Lebesgue spaces quantify the integrability of the pth power of functions,
Sobolev spaces quantify the Lp integrability of functions and their derivatives.

Definition 5.4.1. Let k be a nonnegative integer, and let 1 < p < ∞. The Sobolev
space Lp

k (R
n) is defined as the space of functions f in Lp(Rn) such that for all

|α| ≤ k the distributional derivatives ∂α f are also Lp(Rn) functions. This space is
normed by the quantity ∥∥ f

∥∥
Lpk

= ∑
|α|≤k

∥∥∂α f
∥∥
Lp . (5.4.1)

Sobolev space norms quantify smoothness of functions in terms of the integra-
bility of their derivatives. The index k indicates the degree of smoothness of a given
function in Lp

k . As k increases, the functions become smoother. Equivalently, these
spaces form a decreasing sequence Lp ←↩ Lp

1 ←↩ Lp
2 ←↩ Lp

3 ←↩ · · · , meaning that each
Lp
k+1(R

n) properly embeds in Lp
k (R

n). This property, which coincides with our intu-
ition of smoothness, is a consequence of the definition of Sobolev norms.

Next, we extend the definition of Sobolev spaces to the case where the positive
integer k is replaced by a real number s. Before we do so, we note that for s ∈ R
the function (1+4π2| · |2) s

2 lies in C ∞ and has polynomial growth at infinity, so the
product (1+4π2| · |2) s

2 û is a well-defined element ofS ′. (Definition 2.6.15.) Thus,
its inverse Fourier transform (I−Δ) s

2 u is also a well-defined element of S ′.

Definition 5.4.2. Let s be a real number and let 1 < p < ∞. The Sobolev space
Lp
s (Rn) is defined as the space of all tempered distributions u in S ′(Rn) for which

(I−Δ) s
2 u is a function in Lp(Rn). For such distributions u we define

∥∥u
∥∥
Lps (Rn) =

∥∥(I−Δ) s
2 u

∥∥
Lp(Rn) .

Remark 5.4.3. The function
( 1+4π2|ξ |2

1+|ξ |2
)s/2

and its reciprocal lie inMp(Rn) for any
1 < p < ∞. This is because of Leibniz’s rule and Example 5.3.5. Consequently, a
tempered distribution u lies in Lp

s (Rn) if and only if
(
(1+ | · |2) s

2 û
)∨

lies in Lp(Rn);
furthermore, in this case we have

∥
∥((1+ | · |2) s

2 û
)∨∥∥

Lp ≈ ‖(I−Δ) s
2 u‖Lp .

Remark 5.4.4. (a) Lp
0 = Lp. This is straightforward.

(b) For s > 0, Lp
s embeds in Lp. Indeed, if fs = (I−Δ) s

2 f , then we have

f = (I−Δ)− s
2 fs = fs ∗Gs ,

where Gs is as in Definition 5.2.1. Theorem 1.6.6 and the fact that ‖Gs‖L1 = 1 yield
∥∥ f

∥∥
Lp(Rn) ≤ ∥∥ fs

∥∥
Lp(Rn) =

∥∥ f
∥∥
Lps (Rn) < ∞ .

(c) When s= k ∈Z+, the space Lp
s of Definition 5.4.2 coincides with the space L

p
k of

Definition 5.4.1 with equivalence of norms. Moreover, as s increases, the functions
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in Lp
s become smoother. Suppose that f ∈ Lp

k according to Definition 5.4.2. Then for
all |α| ≤ k we have that the distributional derivatives ∂α f are equal to

∂α f = ((2πi ·)α f̂ )∨ =
(

(2πi ·)α
(1+4π2| · |2) k

2

(1+4π2| · |2) k
2 f̂

)∨
. (5.4.2)

The result in Example 5.3.8 gives that when |α| ≤ k, the function

ξ �→ (2πiξ )α

(1+4π2|ξ |2)k/2

is an Lp multiplier. By assumption (I−Δ) k
2 f =

(
(1+4π2| · |2) k

2 f̂
)∨

lies in Lp(Rn),
and thus it follows from (5.4.2) that the distributional derivatives ∂α f lie in Lp(Rn)
and that

∑
|α|≤k

∥∥∂α f
∥∥
Lp ≤Cp,n,k

∥∥(I−Δ) k
2 f

∥∥
Lp < ∞ .

Conversely, suppose that f ∈ Lp
k according to Definition 5.4.1; then the multinomial

identity applied to the expression (1+4π2|ξ |2)k yields
(
1+4π2(ξ 21 + · · ·+ξ 2n )

) k
2 = ∑

|α|≤k

k!
(k−|α|)!α1! · · ·αn!

(2πξ )α

(1+4π2|ξ |2) k
2

(2πiξ )α

i|α| .

By Example 5.3.8 the functions mα(ξ ) = (2πξ )α(1+ 4π2|ξ |2)− k
2 are Lp Fourier

multipliers whenever |α| ≤ k. We have

(I−Δ) k
2 f = ∑

|α|≤k

k!(−i)|α|

(k−|α|)!α1! · · ·αn!
(
mα ∂̂ α f

)∨
,

and it follows that
∥
∥(I−Δ) k

2 f
∥
∥
Lp ≤Cp,n,k ∑

|α|≤k

∥
∥∂α f

∥
∥
Lp < ∞ .

This proves the converse direction.
(d) As a consequence of the preceding result for s > 0 we deduce that

∥
∥ f

∥
∥
Lps

≈ ∑
|α|≤[s]

∥
∥∂α f

∥
∥
Lps−[s]

.

To see this, simply write (I−Δ) s
2 f = (I−Δ) [s]

2 (I−Δ) s−[s]
2 f and apply the equiva-

lence in (c) with k = [s].
(e) For −∞< s < t < ∞ we have that Lp

t (Rn) ↪→ Lp
s (Rn). Indeed, we show that

∥∥(I−Δ) s
2 f

∥∥
Lp ≤ ∥∥(I−Δ) t

2 f
∥∥
Lp .
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Setting g= (I−Δ) t
2 f ⇐⇒ f = (I−Δ)− t

2 g, this is equivalent to showing that

∥∥Jt−s(g)
∥∥
Lp =

∥∥(I−Δ)− t−s
2 g

∥∥
Lp =

∥∥Gt−s ∗g
∥∥
Lp ≤ ∥∥g

∥∥
Lp ,

which is a consequence of Theorem 1.6.6 and of the fact that ‖Gt−s‖L1 = 1.
(f) The following observation is related to (e): If f ∈ Lp

s (Rn), then ∂α f ∈ Lp
s−|α|(R

n).
The underlying inequality here is that when 1 < p < ∞ one has

∥∥(I−Δ) s−|α|
2 ∂α f

∥∥
Lp ≤C

∥∥(I−Δ) s
2 f

∥∥
Lp .

By the “change of variables” g= (I−Δ) s
2 f , this is equivalent to

∥∥∂α(I−Δ)− |α|
2 g

∥∥
Lp =

∥∥(I−Δ) s−|α|
2 ∂α(I−Δ)− s

2 g
∥∥
Lp ≤C

∥∥g
∥∥
Lp ,

a valid inequality, as (2πiξ )α(1+4π2|ξ |2)−|α|/2 lies inMp(Rn) (Example 5.3.8).

We now show that, in contrast to the observation (b) in Remark 5.4.4, Lp
−s does

not embed in any space of functions when s > 0.

Example 5.4.5. Consider the Dirac mass at the origin δ0. Then ‖δ0‖Lp−s(Rn) =
‖Gs‖Lp when s > 0. For s ≥ n, ‖Gs‖Lp < ∞, in view of Proposition 5.2.2. For
0 < s < n the function Gs =

(
(1+ 4π2| · |2)− s

2
)∨

is integrable to the power p as
long as (s− n)p > −n, that is, exactly when 1 < p < n

n−s . Thus for 0 < s < n, δ0
lies in Lp

−s(R
n) if and only if 1 < p < n

n−s . For s ≥ n, δ0 lies in Lp
−s(R

n) for all
1 < p < ∞.

Example 5.4.6. Let g be the characteristic function of [−1,1]. As g′ = δ−1 − δ1, it
follows that g does not lie in Lp

1(R) for any p > 1. However, it is conceivable that g
lies in Lp

s (R) for some s< 1. In fact, we fix s ∈ (0,1) and we will show that g lies in
Lp
s (R) if and only if 1 < p < 1/s. We pick a smooth function with compact support
ϕ̂ equal to 1 on [−1,1] and vanishing on the complement of [−2,2].

Assume first that 1 < p < 1/s; we will show that g ∈ Lp
s (Rn). We write

(1+ |ξ |2) s
2 ĝ(ξ ) = (1+ |ξ |2) s

2 ĝ(ξ )ϕ̂(ξ )+(1+ |ξ |2) s
2 ĝ(ξ )(1− ϕ̂(ξ )). (5.4.3)

As ĝ(ξ ) = sin(2πξ )/πξ is smooth, the inverse Fourier transform of the function
(1+ |ξ |2) s

2 ĝ(ξ )ϕ̂(ξ ) lies in S and thus in Lp for any p. So we focus on the other
term in the sum, which we rewrite as

(1+ |ξ |2) s
2
sin(2πξ )
πξ

(1− ϕ̂(ξ )) =
{
(1+ |ξ |2) s

2

2π|ξ |s
(
1− ϕ̂(ξ ))

} |ξ |
iξ

e2πiξ − e−2πiξ

|ξ |1−s .

Notice that the function in the curly brackets is an Lp Fourier multiplier in view of
Theorem 5.3.2; see Exercise 5.4.2. Likewise |ξ |/iξ is an Lp Fourier multiplier as the
corresponding operator is the Hilbert transform. It follows that the inverse Fourier
transform of the second term to the right in (5.4.3) lies in Lp(R), 1 < p < ∞, if the
inverse Fourier transform of
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e2πiξ − e−2πiξ

|ξ |1−s

does so. But this can be calculated using the result of Example 2.7.4 and property
(5) in Proposition 2.1.6, and it turns out to be cs(|x− 1|−s − |x+ 1|−s) for some
constant cs. This function decays like |x|−1−s as |x| →∞ by the mean value theorem
and blows up like |x±1|−s as x→ ±1. Clearly this function lies in Lp(R) if p< 1/s.
This yields that g ∈ Lp

s (R) if 1 < p < 1/s.
Assume now g∈ Lp

s (R); we will show that 1< p< 1/s. Then the inverse Fourier
transform of {

(1+ |ξ |2) s
2

2π|ξ |s
(
1− ϕ̂(ξ ))

} |ξ |
iξ

e2πiξ − e−2πiξ

|ξ |1−s

lies in Lp(R). We now write 1− ϕ̂(ξ ) = (1− ϕ̂(ξ ))(1− ϕ̂(2ξ )) and we use that
both ξ/i|ξ | and (1− ϕ̂(2ξ ))|ξ |s/(1+ |ξ |2) s

2 lie inMp(R), to obtain that the inverse
Fourier transform of

(
1− ϕ̂(ξ ))e

2πiξ − e−2πiξ

|ξ |1−s

must lie in Lp(R). But this equals

cs(|x−1|−s −|x+1|−s)− cs
(
(| ·−1|−s −| ·+1|−s)∗ϕ)(x),

and as the second term lies in Lp(R) when p > 1 and s < 1, then the first term must
lie in Lp(R); consequently,

∫
|x±1|<1 |x±1|−spdx < ∞, which yields s < 1/p.

Next we show that Sobolev spaces are Banach spaces. Before we do so, we notice
that if ϕ ∈ S (Rn), then (I−Δ)s/2ϕ also lies inS (Rn), a fact that is easily seen by
examining the Fourier transforms.

Theorem 5.4.7. For any s ∈ R and 1 < p < ∞, Lp
s (Rn) is a complete normed vector

space, i.e., a Banach space.

Proof. Suppose that { fk}∞k=1 is a Cauchy sequence in Lp
s (Rn). This means that

{gk}∞k=1 = {(I − Δ)s/2 fk}∞k=1 is a Cauchy sequence in Lp. As Lp is complete gk
converges to an element g in Lp. Now f = (I −Δ)−s/2g is well defined as a tem-
pered distribution3. We claim that f ∈ Lp

s (Rn) and that fk → f in Lp
s . Obviously,

(I−Δ)s/2 f = g ∈ Lp, thus f is an element of Lp
s . Moreover,

∥∥ fk − f
∥∥
Lps

=
∥∥gk −g

∥∥
Lp → 0

as k → ∞. This shows that Lp
s (Rn) is a complete normed vector space. �

Theorem 5.4.8. For any s ∈ R and 1 < p < ∞, S (Rn) is dense in Lp
s (Rn).

Proof. Let f ∈ Lp
s (Rn). As (I−Δ)s/2 f lies in Lp, we find a sequence of Schwartz

functions ψ j converging to (I−Δ)s/2 f in Lp as j → ∞. Define ϕ j = (I−Δ)−s/2ψ j.

3 f is in fact an Lp function if s > 0.
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Clearly, ϕ̂ j = (1+4π2| · |2)−s/2ψ̂ j is a Schwartz function, so by Proposition 2.6.12
we have ϕ j ∈S (Rn). We will show that ϕ j → f in Lp

s . This is equivalent to proving
that

∥∥(I−Δ) s
2 ( f −ϕ j)

∥∥
Lp → 0 as j → ∞. But this is obvious by the choice of ψ j,

as
∥∥(I−Δ) s

2 ( f −ϕ j)
∥∥
Lp =

∥∥(I−Δ) s
2 f −ψ j

∥∥
Lp which tends to 0 as j → ∞. �

We discuss embedding of Sobolev spaces in other function spaces. If (X ,‖ · ‖X )
and (Y,‖ ·‖Y ) are normed vector spaces, we write X ↪→Y if X can be identified with
a subspace of Y and there is a constant C such that ‖ f‖Y ≤C‖ f‖X for all f ∈ X .

Theorem 5.4.9. (Sobolev embedding theorem) Let 0 < s < ∞ and 1 < p < ∞.
(a) If 0 < s < n

p , then for any q ∈ (
n

n−s ,∞
)
satisfying 1

p − 1
q =

s
n we have

Lp
s (R

n) ↪→ Lq(Rn).

(b) If s= n
p , then for any q satisfying p= n

s ≤ q < ∞ we have

Lp
s (R

n) ↪→ Lq(Rn).

(c) If s > n
p , let M denote the largest integer strictly less than s− n

p . Then Lp
s (Rn)

embeds in the space of functions whose partial derivatives up to and including order
M exist, are continuous uniformly on Rn, and are bounded on Rn; moreover there is
a constant Cn,p,s such that for all f ∈ Lp

s (Rn) it holds that
∥
∥ f

∥
∥
L∞ ≤ ∑

|α|≤M

∥
∥∂α f

∥
∥
L∞ ≤Cn,p,s

∥
∥ f

∥
∥
Lps

.

Now, if N = s− n
p happens to be an integer, then every function in L

p
s (Rn) has partial

derivatives of order N in Lq(Rn) for any q satisfying p ≤ q < ∞; precisely,

Lp
s (R

n) ↪→ LqN(R
n).

Remark 5.4.10. Part (c) essentially says: If s− n
p ∈ R+ \ Z+, then elements of

Lp
s (Rn) have derivatives up to and including order [s− n

p ] in Lq for p ≤ q ≤ ∞;
if s− n

p ∈ Z+, then they have derivatives up to and including order [s− n
p ]−1 in Lq

for q ≤ p ≤ ∞, and have derivatives of order [s− n
p ] in L

q for p ≤ q < ∞.

Proof. (a) If f ∈ Lp
s , then we write

f = (I−Δ)− s
2 (I−Δ) s

2 f = Gs ∗ (I−Δ) s
2 f ,

where Gs is the Bessel potential. Since s < n
p < n, Proposition 5.2.2 gives that

|Gs(x)| ≤Cs,n|x|s−n

for all x∈Rn \{0}. This implies that | f | ≤Cs,nIs
(|(I−Δ) s

2 f |). Theorem 5.1.3 now
yields the required conclusion:
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∥
∥ f

∥
∥
Lq ≤C′

s,n

∥
∥Is

(|(I−Δ) s
2 f |)∥∥Lq ≤C′′

s,n

∥
∥ f

∥
∥
Lps

.

(b) Given q satisfying n
s = p ≤ q < ∞, there is an r in [1,∞) such that

1+
1
q
=

1
p
+

1
r

.

Then 1< s
n+

1
r , which implies that (−n+s)r> −n. Thus, the function |x|−n+sχ|x|≤2

is integrable to the rth power, which implies that Gs is in Lr(Rn). As f in Lp
s can be

written Gs ∗ (I−Δ) s
2 f , Young’s inequality (Proposition 2.4.2) gives that

∥∥ f
∥∥
Lq(Rn) ≤ ∥∥Gs

∥∥
Lr(Rn)

∥∥(I−Δ) s
2 f

∥∥
Lp(Rn) =Cn,s

∥∥ f
∥∥
Lps

.

(c) Let s > n/p and M be the largest integer strictly less than s− n
p . Then for all

|α| ≤ M, by Proposition 5.2.3, ∂αGs(x) decays exponentially when |x| ≥ 2 and it
is bounded by a constant multiple of max(|x|−n+s−|α|, log 2

|x| ,1) when 0 < |x| < 2.

This function lies in Lp′
(B(0,2)) when |α| < s−n/p and thus ∂αGs lies in Lp′

(Rn)
for all |α| ≤M. Let f ∈ Lp

s (Rn). Applying Theorem 1.7.1 (with g= (I−Δ)s/2 f and
ϕ = Gs) we obtain that f = Gs ∗ (I−Δ)s/2 f lies in CM(Rn) and satisfies

∂α f = ∂α(Gs ∗ (I−Δ)s/2 f ) = (∂αGs)∗ (I−Δ)s/2 f
for all |α| ≤ M. The boundedness and uniform continuity of this function are con-
sequences of Theorem 1.6.7. Hölder’s inequality now yields

∑
|α|≤M

∥
∥∂α f

∥
∥
L∞ ≤ ∑

|α|≤M

∥
∥∂αGs

∥
∥
Lp′

∥
∥(I−Δ)s/2 f∥∥Lp =

(
∑

|α|≤M

∥
∥∂αGs

∥
∥
Lp′

)∥
∥ f

∥
∥
Lps

and thus the claimed embedding is valid.
In the event that N = s− n

p is an integer, for p ≤ q < ∞ we notice that

∥∥ f
∥∥
LqN

=
∥∥(I−Δ)N

2 f
∥∥
Lq ≤C

∥∥(I−Δ)N
2 f

∥∥
Lps−N

=C
∥∥ f

∥∥
Lps

,

where the preceding inequality is a consequence of the assertion in part (b). �

Exercises

5.4.1. Let s ∈ Z+ and f ∈ Lp
s (Rn) for 1 < p < ∞. Suppose that g is a C s function

on Rn with the property ∂αg ∈ L∞(Rn) for all |α| ≤ s. Prove the f g ∈ Lp
s (Rn).

5.4.2. Let Φ̂ be a C ∞
0 function on Rn that equals 1 in a neighborhood of the origin.

Prove that the function ξ �→ (1+ |ξ |2)s/2|ξ |−s
(
1− Φ̂(ξ )

)
lies in Mp(Rn) for all

1 < p < ∞.
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5.4.3. Let s > 0 and 1 < p < ∞. Let φ ∈ C ∞0 (Rn) be equal to 1 on the unit ball and
vanishing outside the double of the unit ball. Let φε(x) = φ(εx). Prove that for any
f ∈ S (Rn), the sequence fφε converges to f in Lp

s (Rn). Then use Theorem 5.4.8
to conclude that smooth functions with compact support are dense in Lp

s (Rn). [Hint:
Show that { fφε}ε>0 is Cauchy in Lp

s (Rn) and converges to f in Lp(Rn) as ε → 0.]

5.4.4. Let 1< p< n, n
n−1 < q<∞ and 1

p − 1
q =

1
n . Suppose that f ,Δ f lie in Lp(Rn).

Prove that f lies in Lq1(R
n).

5.4.5. Let 1 < p < ∞ and s ∈ R.
(a) Let f ∈ Lp

s (Rn) and g ∈ L1(Rn). Prove that f ∗g lies in Lp
s (Rn).

(b) Let f ∈ Lp
s (Rn) and let g ∈ Lr(Rn) for some r in (1,∞). Prove that f ∗ g lies in

Lqs (Rn) when 1 < q < ∞ and 1+1/q= 1/p+1/r.

5.4.6. (Fractional integration by parts for Sobolev spaces) Let s> 0, f ∈ Lp
s (Rn),

and g ∈ Lp′
s (Rn), 1 < p < ∞. Show that for any t ∈ R we have

∫

Rn
g (I−Δ) s

2+it f dx=
∫

Rn
f (I−Δ) s

2+itgdx.

[Hint: Use Exercise 5.2.1, Corollary 5.3.3, and density.]

5.4.7. Show that translations, dilations, and modulations Ma f (x) = f (x)e2πix·a
preserve Lp

s (Rn) for any s ∈ R. [Hint: Use the result of Example 5.3.9.]

5.4.8. Let ϕ ∈S (Rn) and f ∈ Lp
s (Rn) for 1< p<∞ and s∈R. Prove that ϕ f ∈ Lp

s .
[Hint: Write (I−Δ) s

2 (ϕ f )(x) as
∫

Rn
ϕ̂(η)e2πix·η

[∫

Rn

(
1+4π2|ξ +η |2
1+4π2|ξ |2

)s
2

[(I−Δ) s
2 f ]̂(ξ )e2πix·ξdξ

]
dη

and then use Example 5.3.9.]

5.4.9. Let u be the inverse Fourier transform of t−1(log t)−1χt≥2 on the real line.
Show that u lies in L2s (R) for all s≤ 1/2 but u /∈ L∞(R). How is this example related
to Theorem 5.4.9?

5.4.10. Let s, t ∈ R. Suppose that |∂ασ(ξ )| ≤ Cα(1+ |ξ |)s−t |ξ |−|α| for all multi-
indices α and all ξ ∈ Rn \ {0}. Prove that the operator Tσ (ϕ) = (ϕ̂σ)∨, initially
defined for ϕ ∈ S (Rn), admits a bounded extension from Lp

s (Rn) to Lp
t (Rn).

5.5 Interpolation of Analytic Families of Operators

In this section we prove an interpolation result for families of operators indexed by
a complex parameter in which they depend analytically. We begin with a lemma that
allows us to approximate a general C ∞0 function by a family of C ∞0 functions which
are analytic in an auxiliary variable.
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Lemma 5.5.1. Let 0< p0 ≤ p1 ≤∞ satisfy p0 <∞. Define p in terms of the identity
1/p = (1− θ)/p0+ θ/p1, where 0 < θ < 1. Given f ∈ C ∞0 (Rn) and ε > 0, there
exist Nε ∈ Z+, smooth functions hεj , j = 1, . . . ,Nε , supported in cubes with (pair-
wise) disjoint interiors, and nonzero complex constants cεj , such that the functions

f εz =
Nε

∑
j=1

|cεj |
p
p0

(1−z)+ p
p1

z
hεj (5.5.1)

satisfy

∥∥ f εθ − f
∥∥
Lp0 < ε,

⎧
⎪⎨

⎪⎩

∥∥ f εθ − f
∥∥
Lp1 < ε if p1 < ∞,

∥∥ f εθ
∥∥
L∞ ≤ ∥∥ f

∥∥
L∞ + ε if p1 = ∞,

(5.5.2)

and for any real number t they also satisfy

∥∥ f εit
∥∥p0
Lp0 ≤ ∥∥ f

∥∥p
Lp + ε

′ ,
∥∥ f ε1+it

∥∥
Lp1 ≤ (∥∥ f

∥∥p
Lp + ε

′) 1
p1 , (5.5.3)

where ε ′ depends on ε, p,‖ f‖Lp and tends to zero as ε → 0.

Proof. Given f ∈C ∞0 (Rn) and ε > 0, by uniform continuity, there is a mesh of cubes
of diameters at most 1, such that if x,y belong to the same cube in the mesh, then
| f (x)− f (y)| ≤ ε/C, for some C > 1 to be chosen later. Let Qεj , j = 1, . . . ,Nε , be
those cubes in the mesh whose interior intersects the support of f . There are x j ∈Qεj
with f (x j) 
= 0 and we define cεj = f (x j). By construction we have

∥∥ f −
Nε

∑
j=1

cεjχQεj
∥∥
L∞ ≤ ε

C
(5.5.4)

and by choosing C large enough (depending on f ) we ensure

∥∥∥ f −
Nε

∑
j=1

cεjχQεj
∥∥∥
min(1,pκ )

Lpκ
<
εmin(1,pκ )

2
, κ ∈ {0,1}, (5.5.5)

and
∥
∥∥ f −

Nε

∑
j=1

cεjχQεj
∥
∥∥
Lp

< ε. (5.5.6)

Now pick gεj ∈ C ∞
0 satisfying 0 ≤ gεj ≤ χQεj such that

∥∥∥
Nε

∑
j=1

cεj (χQεj −gεj )
∥∥∥
min(1,pκ )

Lpκ
<
εmin(1,pκ )

2
, κ ∈ {0,1}, when p1 < ∞. (5.5.7)
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We set hεj = eiφ
ε
j gεj , where φεj is the argument of the complex number cεj . Then

hεj is that function claimed in (5.5.1). Combining (5.5.5) and (5.5.7) and using the

subadditivity of the expression ‖ · ‖min(1,p)
Lp we obtain that the function

f εθ =
Nε

∑
j=1

|cεj |hεj =
Nε

∑
j=1

cεj g
ε
j

satisfies (5.5.2) when p1 < ∞. Additionally, we have

| f εθ | ≤
Nε

∑
j=1

|cεj |χQεj =
∣∣∣∣
Nε

∑
j=1

cεjχQεj

∣∣∣∣ ≤
∣∣∣∣
Nε

∑
j=1

cεjχQεj − f

∣∣∣∣+ | f | ≤ ε
C
+ | f | ≤ ε+∥∥ f

∥∥
L∞ ,

so (5.5.2) also holds when p1 = ∞. We now notice that

∥∥ f εit
∥∥p0
Lp0 ≤

Nε

∑
j=1

|cεj |p|Qεj | =
∥∥∥
∥

Nε

∑
j=1

cεjχQεj

∥∥∥
∥

p

Lp
≤

(
εmin(1,p) +

∥∥ f
∥∥min(1,p)
Lp

) p
min(1,p)

,

where we made use of (5.5.6) and of the subadditivity of ‖ · ‖min(1,p)
Lp .

We set ε ′ = ε p if p ≤ 1 and ε ′ = (ε + ‖ f‖Lp)p −‖ f‖p
Lp when 1 < p < ∞. Then

ε ′ → 0 as ε → 0 and this proves (5.5.3) for p0 and analogously for p1 when p1 <∞;
now if p1 = ∞, then ‖ f ε1+it‖L∞ ≤ 1 and the right-hand side of the second inequality
in (5.5.3) is equal to 1, so the inequality is still valid. �

We discuss an extension of Theorem 2.4.1 in which the operators are allowed to
vary analytically in a complex variable in the unit strip S= {z∈C : 0<Re(z)< 1}.

Definition 5.5.2. Suppose that for every z ∈ S = {z ∈ C : 0 ≤ Rez ≤ 1} there is an
associated linear operator Tz defined on C ∞

0 (Rn) and taking values in L1loc(R
n). We

call {Tz}z an analytic family if for all ϕ,ψ in C ∞0 (Rn) the function

z �→
∫

Rn
Tz(ϕ)ψ dx (5.5.8)

is analytic in the open strip S= {z∈C : 0<Rez< 1} and continuous on its closure.
The analytic family {Tz}z is called of admissible growth if there is a constant γ with
0 ≤ γ < π and an s satisfying 1 < s ≤ ∞, such that for any ϕ in C ∞0 (Rn) and every
compact subset K of Rn there is constant C(ϕ,K) such that

log
∥∥Tz(ϕ)

∥∥
Ls(K) ≤C(ϕ,K)eγ |Imz|, for all z ∈ S. (5.5.9)

Examples of such families are given at the end of this section.

Theorem 5.5.3. (Stein’s interpolation theorem for analytic families) For z ∈ S,
let Tz be linear operators on C ∞0 (Rn) with values in L1loc(R

n) that form an analytic
family of admissible growth. Let 0< p0, p1 ≤∞, 0 < q0,q1 ≤∞, fix 0 < θ < 1, and
define p,q by the equations
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1
p
=

1−θ
p0

+
θ
p1

and
1
q
=

1−θ
q0

+
θ
q1

. (5.5.10)

Let B0,B1 > 0 and M0 and M1 be nonnegative continuous functions on the real line
that satisfy

M0(y)+M1(y) ≤ ece
τ |y|

(5.5.11)

for some c,τ ≥ 0 with τ < π and all y ∈ R. Suppose that for all f ∈ C ∞0 (Rn) we
have

∥∥Tiy( f )
∥∥
Lq0 ≤ B0M0(y)‖ f‖Lp0 , (5.5.12)

∥∥T1+iy( f )
∥∥
Lq1 ≤ B1M1(y)‖ f‖Lp1 , (5.5.13)

for all y ∈ R. Then for all f in C ∞0 (Rn) we have
∥∥Tθ ( f )

∥∥
Lq ≤ M(θ)B1−θ

0 Bθ1
∥∥ f

∥∥
Lp , (5.5.14)

where

M(θ) = exp

{
sin(πθ)

2

∫ ∞

−∞

[
logM0(y)

cosh(πy)−cos(πθ)
+

logM1(y)
cosh(πy)+cos(πθ)

]
dy

}
.

Thus, by density, Tθ has a unique bounded extension from Lp to Lq when p < ∞.

We observe that assumption (5.5.11) guarantees the absolute convergence of the
integral defining M(θ).

Proof. Case I:min(q0,q1)> 1. This forces q′
0,q

′
1 <∞ and so q′ <∞ as well. Given

Tz as in the statement of the theorem, for f ,g ∈ C ∞0 one may be tempted to consider
the family of operators H(z) =

∫
Rn Tz( f )gdx which is analytic in S, continuous

and bounded in S and satisfies the hypotheses of Proposition C.0.2 with bounds
|H(iy)| ≤B0M0(y)‖ f‖Lp0 ‖g‖Lq′0 and |H(1+ iy)| ≤B1M1(y)‖ f‖Lp1 ‖g‖Lq′1 for all real
y. Applying the result of Proposition C.0.2 and identity (C.0.2) (with x= 1−θ and
x= θ ) yields for all f ,g ∈ C ∞0 (Rn)

∣∣∣∣

∫

Rn
Tθ ( f )gdx

∣∣∣∣ ≤ M(θ)
(
B0

∥∥ f
∥∥
Lp0

∥∥g
∥∥
Lq

′
0

)1−θ(
B1

∥∥ f
∥∥
Lp1

∥∥g
∥∥
Lq

′
1

)θ
. (5.5.15)

Unfortunately this estimate does not provide the claimed assertion; it supplies, how-
ever, a useful continuity estimate for the operator Tθ .

To improve (5.5.15), let us first consider the situation where min(p0, p1) < ∞;
this forces p < ∞. Without loss of generality assume that p0 ≤ p1. Fix f ,g ∈ C ∞

0
and ε > 0. By Lemma 5.5.1 we can find f εz and gεz such that

f εz =
Nε

∑
j=1

|cεj |
p
p0

(1−z)+ p
p1

z
uεj , gεz =

Mε

∑
k=1

|dεk |
q′
q′0

(1−z)+ q′
q′1

z
vεk ,

where uεj ,v
ε
k are in C

∞
0 (Rn) and (for t real)
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‖ f εθ − f‖Lp0<ε,
{

‖ f εθ − f‖Lp1 <ε if p1<∞,

‖ f εθ ‖L∞ ≤‖ f‖L∞ + ε if p1=∞,

{
‖gεθ −g‖

Lq
′
1
<ε,

‖gεθ −g‖
Lq

′
0
<ε,

(5.5.16)

‖ f εit ‖Lp0 ≤ (‖ f‖Lp + ε ′) p
p0 , ‖gεit‖Lq′0 ≤ (‖g‖Lq′ + ε ′)

q′
q′0 , (5.5.17)

‖ f ε1+it‖Lp1 ≤ (‖ f‖Lp + ε ′) p
p1 , ‖gε1+it‖Lq′1 ≤ (‖g‖Lq′ + ε ′)

q′
q′1 . (5.5.18)

Now consider the function defined on the closure of the unit strip

F(z) =
∫

Rn
Tz( f εz )g

ε
z dx=

Nε

∑
j=1

Mε

∑
k=1

|cεj |
p
p0

(1−z)+ p
p1

z|dεk |
q′
q′0

(1−z)+ q′
q′1

z
∫

Rn
Tz(uεj )v

ε
k dx.

Applying Hölder’s inequality with exponents s and s′ to
∫
Rn Tz(uεj )v

ε
k dx and using

condition (5.5.9) we obtain for any z in S

|F(z)| ≤
[ Nε

∑
j=1

Mε

∑
k=1

(1+ |cεj |)
p
p0

+ p
p1 (1+ |dεk |)

q′
q′0

+ q′
q′1 ‖vεk‖Ls′

]
e[max j,kC(uεj ,supp v

ε
k )]e

γ|Imz|

≤eC
′eγ|Imz|

,

where C′ equals max j,kC(uεj ,supp vεk) plus the logarithm of the double sum in the
square brackets. Thus F satisfies the hypothesis of Proposition C.0.2, as γ < π .

Hölder’s inequality, hypothesis (5.5.12) and (5.5.17) give for y real

|F(iy)| ≤ B0M0(y)
∥∥ f εiy

∥∥
Lp0

∥∥gεiy
∥∥
Lq

′
0

≤ B0M0(y)
(‖ f‖Lp + ε ′) p

p0
(‖g‖Lq′ + ε ′)

q′
q′0 .

Likewise, Hölder’s inequality, the hypothesis (5.5.13) and (5.5.18) imply for y real

|F(1+iy)| ≤ B1M1(y)
∥∥ f ε1+iy

∥∥
Lp1

∥∥gε1+iy
∥∥
Lq

′
1
≤ B1M1(y)

(‖ f‖Lp+ε ′) p
p1
(‖g‖Lq′ +ε ′)

q′
q′1 .

As log |F | is subharmonic in S, applying Proposition C.0.2 in Appendix C we obtain

log |F(θ)| ≤
∫ +∞

−∞
Ω(1−θ , t) log[M0(t)Q0]dt+

∫ +∞

−∞
Ω(θ , t) log[M1(t)Q1]dt,

where Ω is the Poisson kernel on the strip [defined in (C.0.1)] and

Q0 = B0
(‖ f‖Lp + ε ′) p

p0
(‖g‖Lq′ + ε ′)

q′
q′0 , Q1 = B1

(‖ f‖Lp + ε ′) p
p1
(‖g‖Lq′ + ε ′)

q′
q′1 .

Using identity (C.0.2) (with x= 1−θ and x= θ ) and the fact that

Q1−θ
0 Qθ1 = B1−θ

0 Bθ1
(‖ f‖Lp + ε ′)(‖g‖Lq′ + ε ′)

we obtain [with M(θ) as in the statement of the theorem] that
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∣
∣∣∣

∫

Rn
Tθ ( f εθ )g

ε
θ dx

∣
∣∣∣= |F(θ)| ≤ M(θ)B1−θ

0 Bθ1
(‖ f‖Lp + ε ′)(‖g‖Lq′ + ε ′). (5.5.19)

An application of the triangle inequality gives
∣∣∣∣

∫

Rn
Tθ ( f )gdx−

∫

Rn
Tθ ( f εθ )g

ε
θ dx

∣∣∣∣ (5.5.20)

≤
∣∣∣
∣

∫

Rn
Tθ ( f − f εθ )gdx

∣∣∣
∣+

∣∣∣
∣

∫

Rn
Tθ ( f εθ )(g−gεθ )dx

∣∣∣
∣.

We now apply (5.5.15) in each of the terms on the right side of this inequality and
we use (5.5.16) to deduce that (5.5.20) tends to zero as ε → 0. We now return to
(5.5.19) and let ε → 0. Using that ε ′ → 0, we conclude

∣∣∣∣

∫

Rn
Tθ ( f )gdx

∣∣∣∣ ≤ M(θ)B1−θ
0 Bθ1 ‖ f‖Lp‖g‖Lq′ . (5.5.21)

Finally, we obtain (5.5.14) by taking the supremum in (5.5.21) over all g in C ∞
0 (Rn)

with Lq
′
norm equal to 1.

Suppose now that p0 = p1 =∞, which forces p=∞. In this case we work directly
with the analytic function

F(z) =
∫

Rn
Tz( f )gεz dx

on S, which is continuous on S, it satisfies

∣∣F(κ+ iy)
∣∣ ≤ BκMκ(y)

∥∥ f
∥∥
L∞
(‖g‖Lq′ + ε ′) q′

q′κ , κ ∈ {0,1}, y ∈ R,

and is bounded by eC
′eγ|Imz|

for all z ∈ S. Proposition C.0.2 yields the bound

∣∣F(θ)
∣∣=

∣∣∣
∣

∫

Rn
Tθ ( f )gεθ dx

∣∣∣
∣ ≤ M(θ)B1−θ

0 Bθ1
∥∥ f

∥∥
L∞
(∥∥g

∥∥
Lq′ + ε

′). (5.5.22)

At this point we make use of the inequality
∣∣
∣∣

∫

Rn
Tθ ( f )gdx

∣∣
∣∣ ≤

∣∣
∣∣

∫

Rn
Tθ ( f )gεθ dx

∣∣
∣∣+

∣∣
∣∣

∫

Rn
Tθ ( f )(gεθ −g)dx

∣∣
∣∣ (5.5.23)

and the auxiliary estimate (5.5.15) with p0 = p1 = ∞; this implies that the second
term on the right in (5.5.23) is bounded by a constant times ε . Inserting a limsup
as ε → 0 in both (5.5.22) and (5.5.23) allows one to replace F(θ) by

∫
Rn Tθ ( f )gdx

in (5.5.22). After doing this, we take the supremum over all g in C ∞0 (Rn) with Lq
′

norm equal to 1 to deduce (5.5.14).

Case II: min(q0,q1) ≤ 1. Assume first that min(p0, p1) < ∞ and as before suppose
p0 ≤ p1, so that p0, p < ∞. Choose r > 1 such that r min(q0,q1) > q. Let us fix a
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nonnegative step function g with ‖g‖Lr′ = 1. Assume that g = ∑K
k=1 akχEk , where

ak > 0 and Ek are cubes of finite measure and with disjoint interiors. For z ∈ C
define

gz =
K

∑
k=1

aR(z)k χEk ,

where we set
R(z) = r′

[
1− q

rq0
(1− z)− q

rq1
z
]
.

Notice that R(θ) = 1, R(it) = r′(1− q
rq0

), R(1+ it) = r′(1− q
rq1

) for t ∈ R and that

∥∥git
∥∥(rq0/q)′
L(rq0/q)′ =

∥∥g1+it
∥∥(rq1/q)′
L(rq1/q)′ =

∥∥g
∥∥r′
Lr′ = 1. (5.5.24)

We fix f ∈ C ∞0 and ε > 0. Let f εz be as in Case I obtained by Lemma 5.5.1. Define
the function

G(z) =
∫

Rn

∣∣Tz( f εz )(x)
∣∣
q
r |gz(x)| dx=

K

∑
k=1

∫

Ek

∣∣Fk(x,z)
∣∣
q
r dx , (5.5.25)

where

Fk(x,z) = a
r
q R(z)
k

Nε

∑
j=1

|cεj |
p
p0

(1−z)+ p
p1

z
Tz(uεj )(x).

If we knew that each term of the sum on the right in (5.5.25) is log-subharmonic, it
would follow from Lemma B.0.2 that so is G. To achieve this we use Lemma B.0.5,
which requires knowing that for each k, the mapping z �→ Fk(·,z) is analytic from S
to the Banach space L1(Ek). To prove this, in view of Theorem B.0.3, it suffices to
show that for w ∈ L∞(Ek) the function

z �→
∫

Ek
Fk(x,z)w(x)dx

is analytic in S and continuous on its closure; on this see4 Exercise 5.5.1.
To apply Proposition C.0.2 to G we verify its hypotheses. Using Hölder’s

inequality with indices rq0
q and

( rq0
q

)′
, (5.5.12), (5.5.3), and (5.5.24) we obtain

G(it) ≤
{∫

Rn
|Tit( f εit )(x)|q0 dx

} q
rq0 ∥∥git

∥∥
L
(
rq0
q )′ ≤

(
B0M0(t)

(∥∥ f
∥∥p
Lp + ε

′) 1
p0

) q
r

when t ∈ R. Similarly, we obtain the estimate

G(1+it)≤
{∫

Rn

∣∣T1+it( f ε1+it)(x)
∣∣q1dx

} q
rq1∥∥g1+it

∥∥
L
(
rq1
q )′ ≤

[
B1M1(t)

(∥∥ f
∥∥p
Lp+ε

′) 1
p1

]q
r
.

4 The condition s > 1 in Definition 5.5.2 is used here. Case I only requires s ≥ 1.
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Finally, we verify condition (C.0.5) for G. Let E be a compact set that contains all
Ek. We apply Hölder’s inequality with indices rs

q and
(
rs
q

)′
to obtain for z ∈ S

G(z) ≤ ∥
∥Tz( f εz )

∥
∥

q
r
Ls(E)

∥
∥gz

∥
∥
L
( rsq )′

≤
[ Nε

∑
j=1

(1+|cεj |)
p
p0

+ p
p1
∥∥Tz(uεj )

∥∥
Ls(E)

] q
r
[ K

∑
k=1

(1+|ak|)r
′[1+ q

r (
1
q0

+ 1
q1

)]∥∥χEk
∥∥
L
( rsq )′

]

≤ e
q
r sup j C(u

ε
j ,E)e

γ|Imz|
[ Nε

∑
j=1

(1+|cεj |)
p
p0

+ p
p1

] q
r

·
[ K

∑
k=1

(1+|ak|)r
′[1+ q

r (
1
q0

+ 1
q1

)]∥∥χEk
∥∥
L
( rsq )′

]

having used (5.5.9). Taking the logarithm, we deduce condition (C.0.5) for G.
As gθ = g, by Proposition C.0.2 we conclude

∫

Rn
|Tθ ( f εθ )(x)|

q
r g(x) dx= G(θ) ≤

(
B1−θ
0 Bθ1M(θ)

(∥∥ f
∥∥p
Lp + ε

′) 1
p
)q

r
. (5.5.26)

Inequality (5.5.26) implies that

∥∥Tθ ( f εθ )
∥∥
Lq =

∥∥∥|Tθ ( f εθ )|
q
r

∥∥∥
r
q

Lr

= sup

{∫
|Tθ ( f εθ )(x)|

q
r g(x)dx : g ≥ 0, g step function, ‖g‖Lr′ = 1

} r
q

≤ B1−θ
0 Bθ1M(θ)

(∥∥ f
∥
∥p
Lp + ε

′) 1
p . (5.5.27)

We also note that a similar (but simpler) argument, applying Proposition C.0.2 to

the log-subharmonic function H(z) =
∫
Rn |Tz( f )(x)|

q
r |gz(x)| dx, yields the estimate

|H(θ)| =
∣∣∣∣

∫

Rn
|Tθ ( f )(x)|

q
r g(x)dx

∣∣∣∣ ≤
(
B1−θ
0 Bθ1M(θ)

∥∥ f
∥∥1−θ
Lp0

∥∥ f
∥∥θ
Lp1

)q
r
.

It follows from this that
∥∥Tθ ( f )

∥∥
Lq ≤ B1−θ

0 Bθ1M(θ)
∥∥ f

∥∥1−θ
Lp0

∥∥ f
∥∥θ
Lp1 (5.5.28)

via a duality argument similar to that leading to (5.5.27).
We now make use of the triangle inequality

‖Tθ ( f )‖min(1,q)
Lq ≤ ‖Tθ ( f − f εθ )‖min(1,q)

Lq +‖Tθ ( f εθ )‖min(1,q)
Lq .

For the second term on the right above we use (5.5.27), while the first term is
bounded by a constant multiple of (ε1−θ )min(1,q) in view of (5.5.28), and hence
it tends to zero as ε → 0. We deduce (5.5.14) by letting ε → 0.
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Finally, if p0 = p1 = ∞, then we must have p = ∞, and the claimed assertion is
contained in (5.5.28), which is valid even when p0 = p1 = ∞. �

Example 5.5.4. We examine some families for which Theorem 5.5.3 applies.

1. The family Tz(ϕ)(x)=
∫
|y|≤1ϕ(x−y)|y|−nzdy, defined for ϕ ∈C ∞

0 (Rn), satisfies
the analyticity condition of Definition 5.5.2 in S but is not continuous on S.
In fact, the analyticity assertion can be reduced to Lemma 2.7.6 by Fubini’s
theorem. The continuity on the boundary fails at z= 1, as this is easily seen by
an example.

2. The operators {(1− z)Tz}z, where Tz is as in the previous example, form an
analytic family of admissible growth. To verify the continuity on S, we write

(1− z)Tz(ϕ)(x) = ϕ(x)(1− z)
∫

|y|≤1

dy
|y|nz +(1− z)

∫

|y|≤1
(ϕ(x−y)−ϕ(x)) dy

|y|nz

and we notice that the first integral on the right equals ωn−1n−1(1− z)−1. So
the factor 1− z cancels the singularity caused by this integral. Also, using that
|ϕ(x− y)−ϕ(x)| ≤ ‖∇ϕ‖L∞ |y| we see that the second integral converges abso-
lutely and produces a continuous function of z on S. These calculations also
show that (1− z)Tz(ϕ)(x) is bounded on compact sets independently of z, so it
satisfies the admissibility condition (5.5.9).

3. The operators Vz = (I −Δ)z2+(a+ib)z, z ∈ S, a,b ∈ R, form an analytic family
of admissible growth. The analyticity can be derived from Lemma 2.7.5 and is
omitted. To verify that Vz is of admissible growth, we notice that the real part of
z2+(a+ ib)z equals x2+ax− (y+ b

2 )
2+ 1

4b
2 for z= x+ iy ∈ S, so for ϕ ∈ C ∞

0
we have

‖Vz(ϕ)
∥∥
L∞ ≤

∫

Rn
(1+4π2|ξ |2)1+|a|+b2/4|ϕ̂(ξ )|dξ < ∞,

and this constant is independent of Imz.
4. Let G be a nonnegative function in L1(Rn). Then the family Wz(ϕ)(x) =∫

Rn ϕ(x− y)G(y)z dy, z ∈ S, ϕ ∈ C ∞0 , is analytic of admissible growth. We only
verify the assertion of analyticity. To see this, we fix a point z0 in the unit strip
S and we pick δ > 0 such that 2δ < min(Rez0,1−Rez0). Then for |z| < δ , by
Lemma 2.7.5, the integrand of

Wz+z0(ϕ)(x)−Wz0(ϕ)(x)
z

=
∫

Rn
ϕ(x− y)G(y)z0

G(y)z −1
z

dy

is bounded by 2
δ |ϕ(x−y)|G(y)Rez0 max(G(y)2δ ,G(y)−2δ ), which lies in L1(dy)

by the choice of δ . So the LDCT allows the passing of the limit inside the
integral and the existence of a complex derivative ofWz(ϕ)(x) follows.
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Exercises

5.5.1. Suppose that {Tz}z is an analytic family of admissible growth according to
Definition 5.5.2. Prove that for any bounded function g with compact support and
any ϕ ∈ C ∞0 (Rn), the mapping

z �→
∫

Rn
Tz(ϕ)gdx

is analytic in the unit strip and continuous on its closure. [Hint: Approximate g in
Ls

′
by C ∞0 functions. The condition s > 1 in Definition 5.5.2 is needed here.]

5.5.2. (Kato–Ponce inequality) Let 0 < s < 2N, N ∈ Z+, and ψ ∈ S (Rn). Show
that for any 1 < p < ∞ there is a constant C =Cp,n,s,N such that for all f in S (Rn)
we have ∥∥ψ f

∥∥
Lps (Rn) ≤C

∥∥ f
∥∥
Lps (Rn) ∑

|α|≤2N

∥∥∂αψ
∥∥
L∞ .

Then extend this inequality by density to all f ∈ Lp
s (Rn) (Theorem 5.4.8).

[Hint: Note that f ∈ S if and only if (I−Δ) s
2 f ∈ S . Apply Theorem 5.5.3 to the

family of operators Tz( f ) = (I−Δ)Nz[ψ (I−Δ)−Nz f
]
, z ∈ S.]

5.5.3. (Kato–Ponce-type inequality) Let 1 < p,q,r < ∞ satisfy 1/p+1/q = 1/r
and let s > 0. Prove that when f lies in Lp

s (Rn) and g lies in Lqs (Rn), then f g is an
element of Lrs(R

n) and there is a constant C =Cp,q,s,n such that
∥∥ f g

∥∥
Lrs

≤C
∥∥ f

∥∥
Lps

∥∥g
∥∥
Lqs

.

[Hint: Prove the inequality for f ,g ∈ C ∞0 and use density. Apply Theorem 5.5.3 to
the family Tz( f ) = (I−Δ)zN[((I−Δ)−zN f

)(
(I−Δ)−zNg

)]
, N = [ s2 ]+1, for g∈C ∞

0
fixed. For the density argument use Exercise 5.4.3.]

5.5.4. (Interpolation between Sobolev spaces) Let 1 < p0,q0, p1,q1 < ∞ and
s0,s1, t0, t1 be real numbers. Suppose that σ is a tempered distribution whose Fourier
transform is a locally integrable function and tempered at infinity; cf. Example 2.6.2.
Define T (ϕ) = ϕ ∗σ , for ϕ ∈ S (Rn). Assume that for some constants M0,M1 > 0
we have

∥∥T (ϕ)
∥∥
L
qi
ti
(Rn) ≤ Mi

∥∥ϕ
∥∥
L
pi
si (R

n) for all ϕ ∈ S (Rn) and i = 0,1. Show

that there is a constant C depending on all the preceding parameters, such that∥∥T (ϕ)
∥∥
Lqt (Rn) ≤ C

∥∥ϕ
∥∥
Lps (Rn) for all ϕ ∈ S (Rn). Here 1/p = (1− θ)/p0+ θ/p1,

1/q= (1−θ)/q0+θ/q1, s= (1−θ)s0+θs1, t = (1−θ)t0+θ t1, and 0 < θ < 1.

[Hint: Apply Theorem 5.5.3 to the family Tz = (I−Δ) 1
2 (1−z)(t0−s0)+ 1

2 z(t1−s1)T .]

5.5.5. Let N ∈ Z+. Suppose σ ,g ∈ L2(Rn) satisfy
∫

Rn
|σ̂(ξ )| |ĝ(ξ )| |ξ |2N+ 1

2 dξ < ∞.
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(This condition implies that ∂α(σ ∗ (−Δ)itg) exists for all |α| ≤ 2N and all t real.)
Suppose that there is a constant B such that for any multi-index α with |α|= 2N we
have

∣∣∂α
(
σ ∗ (−Δ)itg)(x)∣∣ ≤ B‖g‖L2

(1+ |x|)2N , t ∈ R, x ∈ Rn.

Prove that for any 0 ≤ θ ≤ 2N, (−Δ) θ2 (σ ∗ g) is a well-defined function and there
is a constant CN,n (depending only on N,n) such that

∣∣(−Δ) θ2 (σ ∗g)(x)∣∣ ≤CN,n
B
θ
2N ‖σ‖1−

θ
2N

L2
‖g‖L2

(1+ |x|)θ , x ∈ Rn.

[Hint: Show that the mapping z �→ (1+ |x|)2Nz(−Δ)Nz(σ ∗ g)(x) is analytic on the
unit strip using (2.7.8). Then apply Corollary C.0.3.]

5.6 The Calderón–Torchinsky Multiplier Theorem

Theorem 5.3.6 improves Theorem 5.3.2 in allowing the multiplier to have fractional
derivatives. In this section we adjust the number of derivatives to depend on p.
For p = 2, naturally, no derivatives are needed of the multiplier, but this number
gradually grows as p moves away from 2.

Let σ be a complex-valued bounded function onRn. Associated with σ we define
a linear operator

Tσ (ϕ) =
(
ϕ̂ σ

)∨

initially defined for ϕ ∈ S (Rn). The next result provides a weaker but more useful
formulation of Theorem 5.3.6, especially interesting when r = 2, although, for our
purposes it will be useful for r near infinity.

Theorem 5.6.1. Let Ψ ∈ S (Rn) be as in (4.4.23). Let 1 < r < ∞ and s be a real
number such that s > max( n2 ,

n
r ). Suppose that σ ∈ L∞(Rn) satisfies

K0 = sup
j∈Z

∥
∥(I−Δ) s

2
[
σ
(
2 j · )Ψ̂]∥∥

Lr(Rn) < ∞. (5.6.1)

Then Tσ admits a bounded extension from Lp(Rn) to itself for all 1 < p < ∞.

Proof. As 1 and n/s are smaller than both 2 and r, we pick ρ such that

max
(
1, ns

)
< ρ < min(2,r).

The statement of Theorem 5.3.6 yields
∥∥Tσ (ϕ)

∥∥
Lp(Rn) ≤Cp,nK

∥∥ϕ
∥∥
Lp(Rn), ϕ ∈ S (Rn),

where K, defined in (5.3.2) in Lemma 5.3.1, is
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K = sup
j∈Z

∥
∥(I−Δ) s

2
[
σ
(
2 j · )Ψ̂]∥∥

Lρ (Rn),

where 1 ≤ ρ < 2 and s > n/ρ . So to prove our result, it will suffice to show that
∥∥(I−Δ) s

2
[
σ
(
2 j · )Ψ̂]∥∥

Lρ (Rn) ≤C
∥∥(I−Δ) s

2
[
σ
(
2 j · )Ψ̂]∥∥

Lr(Rn) (5.6.2)

for every j ∈ Z. Define Θ as in (5.3.1), so that Θ̂ equals 1 on the support of Ψ̂ .

Replacing Ψ̂ by Ψ̂Θ̂ on the left, (5.6.2) is derived by the following lemma. �

Lemma 5.6.2. Let Θ̂ ∈ C ∞0 (Rn) and s > 0. Suppose 1 < ρ < r <∞. Then there is a
constant C =C(n,ρ,r,s,Θ) such that for any ω ∈ Lrs we have

∥∥(I−Δ) s
2
[
ωΘ̂

]∥∥
Lρ (Rn) ≤C

∥∥(I−Δ) s
2ω

∥∥
Lr(Rn), (5.6.3)

[Taking ω = σ
(
2 j · )Ψ̂ , we obtain (5.6.2) from (5.6.3).]

Proof. It will suffice to prove (5.6.3) forω ∈C ∞
0 (Rn). Indeed, if this is known, given

ω ∈ Lrs pick a sequence ϕ j ∈C ∞
0 converging to ω in Lrs (Exercise 5.4.3). Then {ϕ j} j

is a Cauchy sequence in Lrs and (5.6.3) yields that {ϕ j Θ̂} j is a Cauchy sequence in
Lρs . But this sequence converges in L

ρ
s (Theorem 5.4.8) and the limit coincides with

the Lρ limit of the sequence {ϕ j Θ̂} j, which is ωΘ̂ . This implies (5.6.3) for ω ∈ Lrs.
So, in proving (5.6.3), let us work with functions ω ∈ C ∞0 . We pick a positive

integer m such that s/2 < m. Consider the family of operators

Tz(ω) = (I−Δ)mz[Θ̂ (I−Δ) s
2−mzω

]
, ω ∈ C ∞

0 , (5.6.4)

defined on the strip S= {z ∈ C : 0 < Rez < 1}. Notice that for ω,g ∈ C ∞0 ,
∫

Rn
gTz(ω)dx=

∫

Rn

∫

Rn
ĝ(ξ )(1+4π2|ξ |2)mzΘ(ξ−η)(1+4π2|η |2) s

2−mzω∨(η)dηdξ ,

which converges absolutely. This function is continuous and bounded on S; it is also
analytic in S, which can be obtained by the LDCT using (2.7.8) and the rapid decay
of the integrand. Additionally, one can write

Tz(ω)(x)=
∫

Rn

∫

Rn
(1+4π2|ξ |2)mzΘ(ξ−η)(1+4π2|η |2) s

2−mzω∨(η)dηe−2πix·ξdξ ,

and from this one obtains that Tz(ω) is bounded on compact sets by a constant
independent of |Imz|. This verifies the admissibility condition (5.5.9).

Let C(n, t) = (1+ |t|)[ n2 ]+2. Then
∥∥Tit(ω)

∥∥
Lρ ≤C′C(n,mt)

∥∥Θ̂(I−Δ) s
2−mitω

∥∥
Lρ

≤C′C(n,mt)
∣∣supp(Θ̂)

∣∣
1
ρ− 1

r
∥∥(I−Δ)−mit+ s

2ω
∥∥
Lr

≤C′C(n,mt)2
∣∣supp(Θ̂)

∣∣
1
ρ− 1

r
∥∥(I−Δ) s

2ω
∥∥
Lr ,
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having used Corollary 5.3.3 twice and Hölder’s inequality. Likewise, we obtain

∥∥T1+it(ω)
∥∥
Lρ ≤C′C(n,mt)

∥∥∥(I−Δ)m[Θ̂(I−Δ)−m−mit+ s
2ω

]∥∥∥
Lρ

≤C′C(n,mt)
∥∥
∥∥ ∑

|α|≤2m
∑
β≤α

Cα,β
(
∂α−βΘ̂

)
∂β

[
(I−Δ)−m−mit+ s

2ω
]
∥∥
∥∥
Lρ

≤C′′C(n,mt)
∣∣supp(Θ̂)

∣∣
1
ρ− 1

r ∑
|β |≤2m

∥∥∂β (I−Δ)−m−mit+ s
2ω

∥∥
Lr .

Now notice that ∂β (I−Δ)−m is an operator with symbol (2πiξ )β (1+4π2|ξ |2)−m,
which satisfies the conditions of Theorem 5.3.2 when |β | ≤ 2m (Example 5.3.8).
Finally, applying Corollary 5.3.3 to (I−Δ)−mit we obtain

∥∥T1+it(ω)
∥∥
Lρ ≤C′′′C(n,mt)2

∥∥(I−Δ) s
2ω

∥∥
Lr .

As the constantsC(n, t) grow at most polynomially in |t|, Theorem 5.5.3 (with q0 =
q1 = ρ and p0 = p1 = r) yields

∥∥Ts/2m(ω)
∥∥
Lρ ≤C(n,ρ,r,s,Θ)

∥∥(I−Δ) s
2ω

∥∥
Lr ,

which is exactly (5.6.3). �

Example 5.6.3. Let σ(ξ ) = (1−|ξ |)χ[−1,1](ξ ). We show that σ lies in Mp(R) for
any 1 < p < ∞. Let 0 < t < 1. We have that σ ′ = χ[−1,0] − χ[0,1] and the functions5

(I − ∂ 2) t
2 χ[−1,0] and (I − ∂ 2) t

2 χ[0,1] lie in Lr(R) when 1 < r < 1/t by the work

contained in Example 5.4.6. Thus, so does (I−∂ 2) t
2σ ′.

Using the Fourier transform one verifies the identity,

(I−∂ 2) 1+t
2 σ = (I−∂ 2) t−1

2 σ +Tm
(
(I−∂ 2) t

2σ ′),

where Tm is the Fourier multiplier associated withm(ξ ) =−2πiξ (1+4π2|ξ |2)−1/2.

As Tm and (I− ∂ 2) t−1
2 preserve Lr, it follows that (I− ∂ 2) 1+t

2 σ lies in Lr(R) when
1 < r < 1

t . So we fix r such that max(1, 1
t+1 ) = 1 < r < 1

t < ∞, set s = 1+ t, and
consider the dilated and translated version

τ(ξ ) =
(
1−8

∣∣∣ξ − 3
2

∣∣∣
)
χ[− 1

8 , 18 ]

(
ξ − 3

2

)

of σ(ξ ). Notice that τ is supported in [ 118 , 138 ] and ifΨ is as in (4.4.23), then Ψ̂τ = τ .
Moreover, Ψ̂τ(2 j ·) = 0 if j 
= 0. This shows that the function τ satisfies condition
(5.6.1) for our choices of s and r, which are related as follows: 1

s < 1 < r < 1
s−1 .

Applying Theorem 5.6.1 we obtain that τ ∈ Mp(R) and so is σ by (2.8.2) and
(2.8.3).

5 The symbol ∂ 2 denotes the Laplacian in dimension 1, i.e., the second derivative.
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To be able to reduce the number of derivatives required of a multiplier for p near
2, we will need the following result.

Theorem 5.6.4. Fix 1 < r0,r1 < ∞, 0 < p0, p1,q0,q1,s0,s1 < ∞, 0 < B0,B1 < ∞.
Suppose that r0s0 > n and r1s1 > n. Let Ψ̂ ∈ C ∞

0 (Rn) be supported in 1/2≤ |ξ | ≤ 2
and satisfy ∑ j∈ZΨ̂(2− jξ ) = 1 when ξ 
= 0. Assume that for κ ∈ {0,1} we have

∥∥Tσ ( f )
∥∥
Lqκ (Rn) ≤ Bκ sup

j∈Z

∥∥σ(2 j·)Ψ̂∥∥
Lrκsκ (Rn)

∥∥ f
∥∥
Lpκ (Rn) (5.6.5)

for all f ∈ C ∞
0 (Rn) and for all σ ∈ L∞ that satisfy

sup
j∈Z

∥∥σ(2 j·)Ψ̂∥∥
Lrκsκ (Rn) < ∞. (5.6.6)

For 0 < θ < 1 let

1
p
=

1−θ
p0

+
θ
p1

,
1
q
=

1−θ
q0

+
θ
q1

,
1
r
=

1−θ
r0

+
θ
r1

, s= (1−θ)s0+θs1.

Then there is a constantC∗ =C∗(r0,r1,s0,s1,n,θ) such that for all f ∈ C ∞0 (Rn) and
all σ ∈ L∞(Rn) that satisfy

sup
j∈Z

∥∥σ(2 j·)Ψ̂∥∥
Lrs(Rn) < ∞ (5.6.7)

we have ∥∥Tσ ( f )
∥∥
Lq(Rn) ≤C∗B1−θ

0 Bθ1 sup
j∈Z

∥∥σ(2 j·)Ψ̂∥∥
Lrs

∥∥ f
∥∥
Lp(Rn). (5.6.8)

Proof. Fix Φ̂ ≥ 0 in C ∞
0 supported in 1

4 ≤ |ξ | ≤ 4 and Φ̂ ≡ 1 on the support of Ψ̂ .
Also fix σ ∈ L∞ satisfying (5.6.7). For j ∈ Z introduce the function

ϕ j = (I−Δ) s
2 [σ(2 j·)Ψ̂ ]

which lies in Lr(Rn); note that the hypotheses imply that 1 < r < ∞ and s > 0. For
0 ≤ Rez ≤ 1, we define a function σz on Rn by setting

σz(ξ ) = ∑
j∈Z

(I−Δ)− s0
2 (1−z)− s1

2 z
[
|ϕ j|

r
r0
(1−z)+ r

r1
z
eiArg ϕ j

]
(2− jξ )Φ̂(2− jξ ). (5.6.9)

For any ξ ∈ Rn, this sum has at most four terms, in view of the support properties
of Φ̂ . Moreover, notice that σθ = σ since Φ̂ is equal to 1 on the support of Ψ̂ . Let
us momentarily assume that σz is a bounded function; this will be shown shortly.

We examine a few properties of σz. First we claim that for κ ∈ {0,1} and t ∈ R,
∥∥(I−Δ) sκ

2
[
σκ+it(2k·)Ψ̂

]∥∥
Lrκ

≤C(1+ |t|)[ n2 ]+2 ∑
j: | j−k|≤3

∥
∥(I−Δ) s

2
[
σ(2 j·)Ψ̂]∥∥

r
rκ
Lr ,

(5.6.10)
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where C = C(n,rκ , |s1 − s0|,Ψ ,Φ). Indeed, notice first that in the sum defining
σz(2k·)Ψ̂ contains only the terms with j ∈ {k−3,k−2,k−1,k,k+1,k+2,k+3}.
Then we obtain (5.6.10) using Exercise 5.5.2 and then Corollary 5.3.3 and the obser-
vation that when z= κ+ it, t ∈ R, the Lrκ norm of the expression inside the square

brackets in (5.6.9) equals ‖ϕ j‖r/rκLr . Thus (5.6.6) holds with σκ+it in place of σ when
κ = 0,1. This implies the validity of (5.6.5) with σκ+it in place of σ when κ = 0,1.
Combining (5.6.5) with (5.6.10) for κ = 0,1 yields for all t ∈ R

∥∥Tσκ+it ( f )
∥∥
Lqκ ≤ BκC(1+ |t|)[ n2 ]+2 sup

k∈Z

∥∥(I−Δ) s
2
[
σ(2k·)Ψ̂]∥∥

r
rκ
Lr

∥∥ f
∥∥
Lpκ (5.6.11)

for all f ∈ C ∞
0 (Rn), where Tσz is the multiplier operator associated with σz.

We now estimate the L∞ norm of σz. Fix ξ ∈ Rn \ {0}. Then there is a j0 such
that |ξ | ≈ 2 j0 and there are at most four terms in the sum in (5.6.9). For these terms
we estimate the L∞ norm of

(I−Δ)− s0
2 (1−z)− s1

2 z[|ϕ j|
r
r0
(1−z)+ r

r1
z
eiArg ϕ j

]
.

For z= τ+ it with 0 ≤ τ ≤ 1, let sτ = (1− τ)s0+ τs1 and
1
rτ

=
1− τ
r0

+
τ
r1

.

By Theorem 5.4.9 (c) (s0 > n/r0, s1 > n/r1 =⇒ sτ > n/rτ ) we have
∥∥∥(I−Δ)−

s0
2 (1−z)− s1

2 z[|ϕ j|
r
r0
(1−z)+ r

r1
z
eiArg ϕ j

]∥∥∥
L∞

≤C(rτ ,sτ ,n)
∥∥∥(I−Δ)−

s0
2 (1−z)− s1

2 z[|ϕ j|
r
r0
(1−z)+ r

r1
z
eiArg ϕ j

]∥∥∥
Lrτsτ

≤C(rτ ,sτ ,n)
∥∥
∥(I−Δ)it

s0−s1
2

[|ϕ j|
r
r0
(1−z)+ r

r1
z
eiArg ϕ j

]∥∥
∥
Lrτ

≤C′(rτ ,sτ ,n)(1+ |s0 − s1| |t|)[ n2 ]+2
∥∥∥|ϕ j|

r
r0
(1−z)+ r

r1
z
eiArg ϕ j

∥∥∥
Lrτ

≤C′′(r0,r1,s0,s1,τ,n)(1+ |t|)[ n2 ]+2
∥∥∥|ϕ j|

r
r0
(1−z)+ r

r1
z
∥∥∥
Lrτ

=C′′(r0,r1,s0,s1,τ,n)(1+ |t|)[ n2 ]+2
∥∥ϕ j

∥∥
r
rτ
Lr ,

having used Corollary 5.3.3. It follows from this that ‖στ+it‖L∞ <∞, precisely, that

‖στ+it‖L∞ ≤C′′(r0,r1,s0,s1,τ,n)(1+ |t|)[ n2 ]+2
(
sup
j∈Z

∥∥σ(2 j·)Ψ̂∥∥
Lrs

) r
rτ

. (5.6.12)

Finally, we show that {Tσz}z is an analytic family of operators of admissible
growth. Obviously, for ϕ ∈ C ∞

0 (Rn) one has
∥∥Tσz(ϕ)

∥∥
L2 ≤ ‖σz‖L∞

∥∥ϕ
∥∥
L2 ,
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and using (5.6.12) we obtain the admissibility condition (5.5.9). To verify the ana-
lyticity of the family, for any f ,g ∈ C ∞0 , we must show that the function

F(z) =
∫

Rn
Tσz( f )(x)g(x) dx=

∫

Rn
σz(ξ ) f̂ (ξ )g∨(ξ )dξ

is analytic on the unit strip S= {z∈C : 0<Rez< 1} and continuous on its closure.
Introduce a C ∞

0 function Ω equal to 1 on the unit ball and vanishing outside the
double of the unit ball. Then if we can show that the functions

Fm(z) =
∫

Rn
σz(ξ ) f̂ (ξ )g∨(ξ )

(
1−Ω(2mξ )

)
Ω(2−mξ )dξ , m ∈ Z+, (5.6.13)

are analytic on S and continuous on S, the same conclusion will follow for F , as
Fm → F uniformly on compact subsets of S; this last assertion follows from the
LDCT and (5.6.12). The advantage of working with Fm is that only finitely many j
(depending on m) appear in the definition of σz in the integral in (5.6.13) in view of
the support of Ω . So we fix such a j, we set

Gj = |ϕ j|r ∈ L1 ,

Hj = Φ̂ f̂ (2 j·)g∨g(2 j·)(1−Ω(2 j+m ·))Ω(2 j−m ·) ,
s(z) = − s0

2
(1− z)− s1

2
z,

and matters reduce to showing the analyticity of the function

∫

Rn
(I−Δ)s(z)[G

1−z
r0

+ z
r1

j eiArg ϕ j
]
(2− jξ )Φ̂(2− jξ ) f̂ (ξ )g∨(ξ )

(
1−Ω(2mξ )

)
Ω( ξ2m )dξ

=
∫

Rn
(I−Δ)s(z)[G

1−z
r0

+ z
r1

j eiArg ϕ j
]
(ξ )Hj(ξ )2 jndξ

=
∫

Rn
G j(ξ )

1−z
r0

+ z
r1 eiArg ϕ j(ξ )

[
(I−Δ)s(z)Hj

]
(ξ )2 jndξ (Exercise 5.4.6)

=
∫

Rn

G j(ξ )
1−z
r0

+ z
r1 eiArg ϕ j(ξ )

(1+4π2|ξ |2)n
(
∑

|α|≤2n

cα(−2πiξ )α
)[

(I−Δ)s(z)Hj
]
(ξ )2 jndξ

=2 jn ∑
|α|≤2n
β≤α

cα

(
α
β

)∫

Rn

∫

Rn

G j(ξ )
1−z
r0

+ z
r1 eiArg ϕ j(ξ )

(1+4π2|ξ |2)n ×

×∂β (1+4π2|η |2)s(z)(∂α−β Ĥ j
)
(η)e2πiξ ·ηdηdξ , (5.6.14)

where, after writing

(1+4π2|ξ |2)n = ∑
|α|≤2n

cα(−2πiξ )α
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via the identity in Remark 5.4.4 (c), we used Fourier inversion and we expanded the
αth derivative via Leibniz’s rule. The double integral converges absolutely, and the
continuity of this function on S is straightforward. Suppose now that we wanted to
show that the function of z in (5.6.14) is analytic at a point w0 ∈ S. Pick δ > 0 such
that

2δ < min
(
Re

(1−w0

r0
+

w0

r1

)
,1−Re

(1−w0

r0
+

w0

r1

))
. (5.6.15)

Note that this is possible, since by assumption we have 1 < r0,r1 < ∞. By
Lemma 2.7.5, when Gj(ξ ) 
= 0, for

0 < |w| <
∣∣∣
1
r1

− 1
r0

∣∣∣
−1
δ

we obtain

∣∣∣∣
Gj(ξ )

( 1
r1

− 1
r0
)w −1

w

∣∣∣∣ ≤
2| 1r1 − 1

r0
|

δ
max

(|Gj(ξ )|2δ , |Gj(ξ )|−2δ ). (5.6.16)

Then for

0 < |w| <
∣∣∣
1
r1

− 1
r0

∣∣∣
−1
δ ,

combining (5.6.16) and (5.6.15) gives

∣∣
∣∣
Gj(ξ )

1−w0−w
r0

+w0+w
r1 −Gj(ξ )

1−w0
r0

+w0
r1

w

∣∣
∣∣ ≤

2| 1r1 − 1
r0

|
δ

max(Gj(ξ ),1).

As Gj = |ϕ j|r ∈ L1, it follows that max(Gj,1)(1+ 4π2| · |2)−n also lies in L1(Rn).
So the LDCT can now be justified when the z derivative hits the term involving
Gj(ξ ). When the z derivative hits ∂β (1+ 4π2|η |2)s(z), a similar (but easier) argu-
ment applies, and the rapid convergence of the η integral in (5.6.14) allows the use
of the LDCT. This argument yields the analyticity of the family {Tσz}z.

Now that we know that Tσz is an analytic family of operators on the strip, esti-
mates (5.6.11) and Theorem 5.5.3 allow us to deduce (5.6.8). �

We now prove a result that extends Theorem 5.3.6 to the range s ≤ n
2 .

Theorem 5.6.5. (Calderón–Torchinsky multiplier theorem) FixΨ as in (4.4.23).
Let 1 < r, p < ∞ and 0 < s ≤ n

2 satisfy rs > n and | 1p − 1
2 | < s

n . Then there is a
constant C(n, p,s,r) such that for any σ ∈ L∞(Rn) that satisfies

sup
j∈Z

∥∥σ(2 j·)Ψ̂∥∥
Lrs(Rn) < ∞ (5.6.17)

and for every f ∈ C ∞0 (Rn) we have
∥∥Tσ ( f )

∥∥
Lp(Rn) ≤C(p,n,s,r)sup

j∈Z

∥∥σ(2 j·)Ψ̂∥∥
Lrs

∥∥ f
∥∥
Lp(Rn). (5.6.18)
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Proof. Let us fix 1< p< 2, 1< r <∞, 0< s≤ n
2 , r > n

s such that
1
p − 1

2 < s
n . Select

parameters as follows:

Let s1 = s− n( 1p − 1
2 ) > 0. Consider the

dotted line passing through ( 12 ,s1) and
( 1p ,s) (see Figure 5.1) and select a point

( 1
p0

,s0) on this line satisfying s0 > n
2 and

p0 > 1, i.e.,

s0 = s1+
( 1
p0

− 1
2

) s− s1
1
p − 1

2

>
n
2

and
1
2
+

n
2 − s1
s− s1

( 1
p

− 1
2

)
<

1
p0

< 1.

Define θ ∈ (0,1) as follows:

θ =
1
p0

− 1
p

1
p0

− 1
2

=
s0 − s
s0 − s1

.

As n/r < s, notice that
1
r − s1

n

1−θ < min
( s0

n − 1
r

θ
,

1
r

1−θ
)
.

Pick 1/q strictly between the above num-
bers and define:

1
r0

=
1
r
+
θ
q

,
1
r1

=
1
r

− 1−θ
q

.

1

(1, n2 )

0

n
2

1
p -axis

s-axis

1
p

1
p0

1
2

( 1
p0
,s0)

( 12 ,s1)

( 1p ,s)

Fig. 5.1 By construction, the point
( 1p ,s) lies on the dotted line segment

joining ( 1
p0

,s0) to ( 12 ,s1).

After selecting these parameters, we make a few observations. First of all, we
have 0 < 1

r0
< s0

n < 1 and 0 < 1
r1

< s1
n < 1

2 . Thus the conditions 1 < r0,r1 < ∞,
r0s0 > n, and r1s1 > n are satisfied. Also, one has

1
p
=

1−θ
p0

+
θ
p1

, s= (1−θ)s0+θs1, 1
r
=

1−θ
r0

+
θ
r1

.

As s0 > max( n2 ,
n
r0
), for any function that satisfies (5.6.6) with κ = 0 one obtains

now from Theorem 5.6.1 that (5.6.5) holds when κ = 0 with q0 = p0.
Now fix an L∞ function σ that satisfies (5.6.6) with κ = 1. As r1s1 > n,

Theorem 5.4.9 (c) (Sobolev embedding) gives that σ(2k ·)Ψ̂ is a bounded continu-
ous function which satisfies for any ξ ∈ Rn and any k ∈ Z

|σ(2kξ )Ψ̂(ξ )| ≤C
∥∥σ(2k ·)Ψ̂∥∥

L
r1
s1 (R

n) ≤C sup
j∈Z

∥∥σ(2 j ·)Ψ̂∥∥
L
r1
s1 (R

n) < ∞. (5.6.19)

We now replace ξ by 2−kξ in (5.6.19) and we write σ(ξ ) = σ(ξ )∑kΨ̂(2−kξ ),
ξ 
= 0. But for a given ξ 
= 0, at most three terms in the sum are nonzero, so we
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obtain from (5.6.19) that

‖σ‖L∞ ≤ 3C sup
j∈Z

∥∥σ(2 j ·)Ψ̂∥∥
L
r1
s1 (R

n) < ∞.

As ‖Tσ‖L2→L2 ≤ ‖σ‖L∞ , it follows that any σ that satisfies (5.6.6) with κ = 1 also
satisfies (5.6.5) with κ = 1 and p1 = q1 = 2. We have now verified all hypotheses
of Theorem 5.6.4. An application of Theorem 5.6.4 yields (5.6.18) when 1< p< 2.
Figure 5.1 displays pictorially the interpolation: It is between the endpoints of the
dotted line which contains ( 1p ,s). In that picture the solid slanted lines represent

the equation | 1p − 1
2 | = s

n while the region above that is the set of points ( 1p ,s) that
satisfy | 1p − 1

2 | < s
n .

The case 2< p<∞ follows by duality via Proposition 2.8.6, while the case p= 2
is contained in the following argument

∥∥Tσ
∥∥
Lp(Rn)→Lp(Rn) = ‖σ‖L∞ ≤ 2sup

j∈Z

∥∥σ(2 j·)Ψ̂∥∥
L∞ ≤C sup

j∈Z

∥∥σ(2 j·)Ψ̂∥∥
Lrs

,

where the last inequality is due to Theorem 5.4.9 (c) as rs > n. �

Exercises

5.6.1. Let s > n
r and 1 < r ≤ 2. Prove that there is a constantC=C(n,r,s) such that

for any p satisfying 1 ≤ p ≤ ∞ we have
∥∥Tσ

∥∥
Lp→Lp ≤C‖σ‖Lrs .

5.6.2. Let 0 < δ < n
2 , ϕ ∈ C ∞0 be supported in 11

8 < |ξ | < 13
8 and let ak lie in a

bounded subset of Rn for k ∈ Z. Prove that the function

σ(ξ ) = ∑
k∈Z
ϕ(2−kξ )|2−kξ −ak|δ

lies in Mp(Rn) for any 1 < p < ∞. [Hint: Let N = [ n2 ] + 1 and pick s such that
n
2 < s < N and r satisfying max( ns ,1) < r < n

s−δ . Let ψ ∈ C ∞0 have Lr
′
norm equal

to 1. Apply Corollary C.0.4 to the function z �→ ∫
Rn(I−Δ)Nz

2
[
ϕ | · −a j|δ+Nz−s

]
ψdx

for θ = s
N . Note that Ψ̂ϕ = ϕ ifΨ is as in (4.4.23), and apply Theorem 5.6.1.]

5.6.3. Let a,b> 0 satisfy a
b < 1

2 . Let ϕ be a smooth function supported in the interval

[− 1
8 ,

1
8 ]. Prove that σ(x) = |x|aei|x|−bϕ(x) lies inMp(R) when | 1p − 1

2 | < a
b .

[Hint: Given p satisfying | 1p − 1
2 | < a

b , choose s such that | 1p − 1
2 | < s < a

b and then

pick r with 1
s < r < 1

s(1+b)−a . Write the Lr norm of (I−∂ 2)z/2[σ(x)|x|(z−s)(1+b)] as
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a supremum of integrals against C ∞0 functions of Lr
′
norm 1 and use Corollary C.0.4

to prove that this norm is finite when θ = s. Then verify condition (5.6.17).]

5.6.4. Let a,b > 0 satisfy a
b < n

2 . Let ϕ be a smooth function supported in the ball

|x| ≤ 1
8 in Rn. Prove that σ(x) = |x|aei|x|−bϕ(x) lies inMp(Rn) when | 1p − 1

2 | < a
nb .

[Hint: Construct an analytic function as in the preceding exercise.]

5.7 The Marcinkiewicz Multiplier Theorem

To motivate our discussion, let us consider the following function in R3 \{0}:

(ξ1,ξ2,ξ3) �→ ξ2ξ 33
iξ1+ξ 22 +ξ

6
3

.

This function is certainly not homogeneous of degree zero, but it is smooth away
from the origin and is invariant under the set of dilations:

(ξ1,ξ2,ξ3) �→ (λ 6ξ1,λ 3ξ2,λξ3), λ > 0.

Let us examine this situation a bit more generally. Suppose that there exist k1, . . . ,kn
in R+ and τ ∈ R such that the smooth function σ on Rn \{0} satisfies

σ(λ k1ξ1, . . . ,λ knξn) = λ iτσ(ξ1, . . . ,ξn)

for all ξ1, . . . ,ξn ∈ R\{0} and λ > 0. Then differentiation gives

λα1k1+···+αnkn∂ασ(λ k1ξ1, . . . ,λ knξn) = λ iτ∂ασ(ξ1, . . . ,ξn)

for every multi-index α = (α1, . . . ,αn). Now for a fixed ξ ∈Rn\{0} pick the unique
λ (ξ ) > 0 such that (λ (ξ )k1ξ1, . . . ,λ (ξ )knξn) ∈ Sn−1. Then λ (ξ )k jα j |ξ j|α j ≤ 1, and
it follows that

|∂ασ(ξ1, . . . ,ξn)| ≤
[
sup
Sn−1

|∂ασ |
]
λ (ξ )α1k1+···+αnkn ≤Cα |ξ1|−α1 · · · |ξn|−αn ,

where Cα is the maximum of ∂ασ on Sn−1.
So functions σ that are homogeneous of a purely imaginary degree with respect

to general groups of dilations and are smooth on Sn−1 satisfy
∣∣∂ασ(ξ1, . . . ,ξn)

∣∣ ≤Cα |ξ1|−α1 · · · |ξn|−αn (5.7.1)

for all multi-indices α and all (ξ1, . . . ,ξn) ∈ Rn with ξ j 
= 0 for all j. In this section
we show that such functions are Lp Fourier multipliers.

Next we define product-type Sobolev spaces.
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Definition 5.7.1. For s j ≥ 0 define the operator (I − ∂ 2j )
s j
2 acting on an element

f ∈ S ′(Rn) as follows:

(I−∂ 2j )
s j
2 ( f ) =

(
(1+4π2|(·) j|2)

s j
2 f̂

)∨
,

where (·) j denotes the jth variable ξ j of ξ = (ξ1, . . . ,ξn). For s1, . . . ,sn > 0 define
the product-type Sobolev space

Lp
s1,...,sn(R

n) =
{
f ∈ Lp(Rn) : ‖ f‖Lps1 ,...,sn

=
∥∥(I−∂ 21 )

s1
2 . . .(I−∂ 2n )

sn
2 f

∥∥
Lp < ∞

}
.

Proposition 5.7.2. For s1, . . . ,sn in Z+⋃{0} and 1 < p < ∞ and f ∈ Lp
s1,...,sn(R

n)
we have

‖ f‖Lps1 ,...,sn (Rn) ≈
s1

∑
l1=0

· · ·
sn

∑
ln=0

∥∥∂ l11 · · ·∂ lnn f
∥∥
Lp(Rn).

Proof. In view of the calculation in Remark 5.4.4, we know this result when n= 1.
We now prove it for n= 2. We have

‖ f‖p
Lps1 ,s2 (R

2)
=

∫

R

[∫

R

∣∣(I−∂ 21 )
s1
2 (I−∂ 22 )

s2
2 f (x1,x2)

∣∣pdx1

]
dx2

≈
∫

R

[ s1

∑
l1=0

∫

R

∣∣∂ l11 (I−∂ 22 )
s2
2 f (x1,x2)

∣∣pdx1

]
dx2

≈
s1

∑
l1=0

∫

R

[∫

R

∣∣(I−∂ 22 )
s2
2 ∂ l11 f (x1,x2)

∣∣pdx2

]
dx1

≈
s1

∑
l1=0

∫

R

[ s2

∑
l2=0

∫

R

∣
∣∂ l22 ∂

l1
1 f (x1,x2)

∣
∣pdx2

]
dx1

=
s1

∑
l1=0

s2

∑
l2=0

∥∥∂ l11 ∂
l2
2 f

∥∥p
Lp(R2).

This proves the assertion when n = 2 and a straightforward adaptation works in
higher dimensions. �

Our goal in this section is to prove the following theorem.

Theorem 5.7.3. (Marcinkiewicz multiplier theorem) Let σ be a C n function
defined on (R\{0})n that satisfies

∣∣∂m1
1 · · ·∂mn

n σ(ξ1, . . . ,ξn)
∣∣ ≤ Am1,...,mn |ξ1|−m1 · · · |ξn|−mn (5.7.2)

for allmj ∈ {0,1} and all ξ j 
= 0, j= 1, . . . ,n. Let 1< p<∞. Then σ lies inMp(Rn)
and there is a constant Cn,p such that

‖σ‖M p ≤Cn,p sup
m1,...,mn∈{0,1}

Am1,...,mn .
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Before discussing the proof we set up some notation. We use ψ to denote
a Schwartz function on the real line whose Fourier transform is supported in
[−2,− 6

7 ]∪ [ 67 ,2], equals 1 on [− 12
7 ,−1]∪ [1, 127 ] and satisfies ∑ j∈Z ψ̂(2− jη) = 1

when η 
= 0. We define θ as follows:

θ̂(η) = ψ̂(η/2)+ ψ̂(η)+ ψ̂(2η), η ∈ R.

Then θ̂ is supported in { 3
7 ≤ |ξ | ≤ 4} and θ̂ = 1 on the support of ψ̂ . To simplify

the notation, if ξ = (ξ1, . . . ,ξn) ∈ Rn and JJJ = ( j1, . . . , jn) ∈ Zn, we write

2JJJξ =
(
2 j1ξ1, . . . ,2 jnξn

)

and we define functions ⊗ψ and ⊗θ on Rn by setting

⊗ψ(x) =
n

∏
�=1

ψ(x�), ⊗θ(x) =
n

∏
�=1

θ(x�). (5.7.3)

Then we have

⊗̂ψ(ξ ) = ⊗ψ̂(ξ ) =
n

∏
�=1

ψ̂(ξ�), ⊗̂θ(ξ ) = ⊗θ̂(ξ ) =
n

∏
�=1

θ̂(ξ�).

Let k∈ {1, . . . ,n}. For j ∈Zwe define the Littlewood–Paley operators associated
to the bumps ψ and θ by

Δψ,k
j ( f )(x) =

∫

R
f (x1, . . . ,xk−1,xk − y,xk+1, . . . ,xn)2 jψ(2 jy)dy

and
Δθ ,k

j ( f )(x) =
∫

R
f (x1, . . . ,xk−1,xk − y,xk+1, . . . ,xn)2 jθ(2 jy)dy.

Finally, when JJJ = ( j1, . . . , jn), we write

Δ⊗ψ
JJJ = Δψ,1

j1
◦ · · · ◦Δψ,n

jn
, Δ⊗θ

JJJ = Δθ ,1
j1

◦ · · · ◦Δθ ,n
jn

.

Then

Δ⊗ψ
JJJ ( f ) = f ∗2|JJJ|

n

∏
�=1

ψ(2 j�(·)�).

Next we have the following lemma.

Lemma 5.7.4. Suppose that σ is defined on (R \ {0})n and satisfies (5.7.2) for all
mj ∈ {0,1}. Let ⊗ψ be as in (5.7.3). Then for ρ satisfying 1 < ρ < ∞ we have

sup
JJJ∈Zn

∥∥σ
(
2JJJ · ) ⊗ ψ̂ ∥∥

Lρ1,...,1
≤Cn,ψ,ρ sup

m1,...,mn∈{0,1}
Am1,...,mn . (5.7.4)

Proof. By Proposition 5.7.2 the expression on the left in (5.7.4) is comparable to
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1

∑
m1=0

· · ·
1

∑
mn=0

∥∥∂m1
1 · · ·∂mn

n

[
σ
(
2JJJ · )⊗ψ̂ ]∥∥

Lρ

and by Leibniz’s rule this can be estimated by

1

∑
m1=0

· · ·
1

∑
mn=0

m1

∑
l1=0

· · ·
mn

∑
ln=0

∥
∥∂ l11 · · ·∂ lnn

[
σ
(
2JJJ · )]∂m1−l1

1 · · ·∂mn−ln
n ⊗ψ̂∥∥Lρ

=
1

∑
m1=0

· · ·
1

∑
mn=0

m1

∑
l1=0

· · ·
mn

∑
ln=0

2 j1l1 · · ·2 jnln
∥
∥(∂ l11 · · ·∂ lnn σ)

(
2JJJ · )(∂m1−l1

1 ψ̂) · · ·(∂mn−ln
n ψ̂)

∥
∥
Lρ .

Inserting the estimate
∣∣∂ l11 · · ·∂ lnn σ

(
2JJJξ

)| ≤ Al1,...,ln |2 j1ξ1|−l1 · · · |2 jnξn|−ln ,

coming from (5.7.2), we obtain that the expression on the left in (5.7.4) is at most

1

∑
m1=0

· · ·
1

∑
mn=0

m1

∑
l1=0

· · ·
mn

∑
ln=0

Al1,...,ln

∥∥∥ |(·)1|−l1 · · · |(·)n|−ln(∂m1−l1
1 ψ̂) · · ·(∂mn−ln

n ψ̂)
∥∥∥
Lρ

,

and this is bounded by Cn,ψ,ρ supmi∈{0,1}Am1,...,mn , as the function ⊗ψ̂ is supported

in ([−2,− 6
7 ]∪ [ 67 ,2])

n. �

In the following lemmawe denote byM(�) the one-dimensional Hardy–Littlewood
maximal operator acting only in the �th coordinate.

Lemma 5.7.5. Let 1 < ρ < 2. Let ψ,θ be as above. Then, for any f ∈ S (Rn) and
for all JJJ = ( j1, . . . , jn) ∈ Zn we have

|Δ⊗ψ
JJJ Tσ ( f )| ≤CK

[
M(1) · · ·M(n)(|Δ⊗θ

JJJ ( f )|ρ)] 1
ρ , (5.7.5)

where
K = sup

JJJ∈Zn

∥∥σ(2JJJ ·)⊗ψ̂ ∥∥
Lρ1,...,1

.

Proof. Since θ̂ is equal to 1 on the support of ψ̂ , ⊗θ̂(2−JJJξ ) is equal to 1 on the
support of ⊗ψ̂(2−JJJξ ) for any JJJ = ( j1, . . . , jn) ∈ Zn. Using this for x ∈ Rn we write

Δ⊗ψ
JJJ Tσ ( f )(x1, . . . ,xn)

=
∫

Rn
f̂ (ξ ) ⊗ψ̂(2−JJJξ )σ(ξ )e2πix·ξdξ

=
∫

Rn
f̂ (ξ ) ⊗θ̂(2−JJJξ )σ(ξ ) ⊗ψ̂(2−JJJξ )e2πix·ξdξ

=
∫

Rn
(Δ⊗θ

JJJ ( f ))̂(ξ )σ(ξ ) ⊗ψ̂(2−JJJξ )e2πix·ξdξ

=
∫

Rn
2 j1+···+ jn(Δ⊗θ

JJJ ( f ))̂(2JJJξ ′)σ(2JJJξ ′) ⊗ψ̂(ξ ′)e2πi(2
JJJx)·ξ ′

dξ ′
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=
∫

Rn

(
Δ⊗θ
JJJ ( f )(2−JJJ ·))̂(ξ ′)

[
σ(2JJJ ·) ⊗ψ̂ e2πi(2

JJJx)·(·)](ξ ′)dξ ′

=
∫

Rn
Δ⊗θ
JJJ ( f )(2−JJJy′)

[
σ(2JJJ ·) ⊗ψ̂ ]

̂(y′ −2JJJx)dy′

= 2 j1+···+ jn
∫

Rn
Δ⊗θ
JJJ ( f )(y)

[
σ(2JJJ ·) ⊗ψ̂ ]

̂(2JJJy−2JJJx)dy

=
∫

Rn

2 j1+···+ jnΔ⊗θ
JJJ ( f )(y)

∏n
�=1(1+2 j� |x� − y�|) ·

n

∏
�=1

(1+2 j� |x� − y�|)
[
σ(2JJJ ·) ⊗ψ̂ ]

̂(2JJJy−2JJJx)dy.

Hölder’s inequality now gives that |Δ⊗ψ
JJJ Tσ ( f )(x)| is bounded by

(∫

Rn
2 j1+···+ jn

|Δ⊗θ
JJJ ( f )(y)|ρ

∏n
�=1(1+2 j� |x� − y�|)ρ dy

) 1
ρ

×
(∫

Rn
2 j1+···+ jn

∣∣
∣∣

n

∏
�=1

(1+2 j� |x� − y�|) ·
[
σ(2JJJ ·) ⊗ψ̂ ]

̂(2JJJy−2JJJx)
∣∣
∣∣

ρ ′

dy

) 1
ρ ′

.

As ρ > 1, n consecutive applications of the one-dimensional version of Corol-
lary 2.5.2 yield the estimate

(∫

Rn
2 j1+···+ jn

|Δ⊗θ
JJJ ( f )(y)|ρ

∏n
�=1(1+2 j� |x� − y�|)ρ dy

) 1
ρ

≤C
[
M(1) · · ·M(n)(|Δ⊗θ

JJJ ( f )|ρ)(x)
] 1
ρ
.

We now write

(∫

Rn
2 j1+···+ jn

∣∣∣
∣

n

∏
�=1

(1+2 j� |x� − y�|)
[
σ(2JJJ ·) ⊗ψ̂ ]

̂(2JJJy−2JJJx)
∣∣∣
∣

ρ ′

dy

) 1
ρ ′

=
(∫

Rn

∣∣
∣∣

n

∏
�=1

(1+ |y�|)
[
σ(2JJJ ·) ⊗ψ̂ ]

̂(y)
∣∣
∣∣

ρ ′

dy

) 1
ρ ′

≤ 2
n
2

(∫

Rn

∣∣
∣∣

n

∏
�=1

(1+4π2|y�|2)
1
2
[
σ(2JJJ ·) ⊗ψ̂ ]

̂(y)
∣∣
∣∣

ρ ′

dy

) 1
ρ ′

≤ 2
n
2

∥
∥∥(I−∂ 21 )

1
2 · · ·(I−∂ 2n )

1
2
[
σ
(
2JJJ · ) ⊗ψ̂ ]∥∥∥

Lρ
(5.7.6)

≤CK.

This yields (5.7.5). �

We now have the ingredients needed to prove Theorem 5.7.3.

Proof. Suppose first that p > 2. For technical reasons we will need to know that
Tσ ( f ) lies a priori in Lp. To achieve this, we assume that f lies in Ŝ0,...,0, the space
of Schwartz functions whose Fourier transform is compact and does not intersect
any plane of the form ξk = 0. Such functions are dense in Lp(Rn) for any 1< p<∞
(Exercise 4.6.1). Fix such a function f . For fixed x= (x1, . . . ,xn) ∈ Rn we write
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Tσ ( f )(x) =
∫

Rn
f̂ (ξ )σ(ξ )e2πix·ξdξ

=
1

∏n
j=1(1+2πix j)

∫

Rn
f̂ (ξ )σ(ξ )(I+∂1) · · ·(I+∂n)e2πix·ξdξ

=
1

∏n
j=1(1+2πix j)

∫

Rn
(I−∂1) · · ·(I−∂n)

[
f̂σ

]
(ξ )e2πix·ξdξ .

In view of Leibniz’s rule, hypotheses (5.7.2), and the fact that f̂ has compact support
that does not intersect the planes ξk = 0, we obtain

|Tσ ( f )(x1, . . . ,xn)| ≤Cf (1+ |x1|)−1 · · ·(1+ |xn|)−1.

But this function lies in Lp(Rn) for all p > 1. Thus ‖Tσ ( f )‖Lp < ∞, which allows
the use of inequality (4.6.11) in Theorem 4.6.4.

Applying first the inequality (4.6.11) of Theorem 4.6.4, then Lemma 5.7.5, then
Exercise 4.3.7 (with r = 2/ρ), and finally inequality (4.6.10) in Theorem 4.6.4, we
obtain

∥
∥Tσ ( f )

∥
∥
Lp(Rn) ≤Cp(n)

∥
∥∥
(
∑
JJJ∈Zn

|Δ⊗ψ
JJJ (Tσ ( f ))|2

) 1
2
∥
∥∥
Lp

≤C′
p(n)K

∥
∥∥
(
∑
JJJ∈Zn

[
M(1) · · ·M(n)(|Δ⊗θ

JJJ ( f )|ρ)
] 2
ρ
) 1

2
∥
∥∥
Lp(Rn)

=C′
p(n)K

∥
∥∥
(
∑
JJJ∈Zn

[
M(1) · · ·M(n)(|Δ⊗θ

JJJ ( f )|ρ)
] 2
ρ
) ρ

2
∥
∥∥

1
ρ

Lp/ρ

≤C′′
p(n)K

∥
∥∥
(
∑
JJJ∈Zn

|Δ⊗θ
JJJ ( f )|2

) ρ
2
∥
∥∥

1
ρ

Lp/ρ

=C′′
p(n)K

∥
∥∥
(
∑
JJJ∈Zn

|Δ⊗θ
JJJ ( f )|2

) 1
2
∥
∥∥
Lp(Rn)

≤C′′′
p (n)K

∥
∥ f

∥
∥
Lp(Rn).

Exercise 4.3.7 makes use of the assumptions 1 < 2/ρ < ∞ and 1 < p/ρ < ∞. This
proves the claimed bound for functions f ∈ Ŝ0,...,0, which is a dense subspace of Lp.
By density, there is a bounded extension of Tσ on Lp(Rn) for 2 < p < ∞ with norm
bounded by C′′′

p (n)K. We recall that by Lemma 5.7.4, the constant K is bounded by
a multiple of

sup
m1,...,mn∈{0,1}

Am1,...,mn ,

as claimed.
Finally, the case 1< p< 2 follows by a duality argument, while p= 2 is straight-

forward. �
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Exercises

5.7.1. Suppose that σ1, σ2 are complex-valued functions that satisfy (5.7.1).
(a) Prove that σ1σ2 satisfies (5.7.1).
(b) Let β be a fixed multi-index and suppose that σ3 is a complex-valued function
that satisfies |∂ γσ3(ξ )| ≤ cβ ,γ |ξ1|β1−γ1 · · · |ξn|βn−γn for all multi-indices γ . Show that
∂βσ3 also satisfies (5.7.1).
(c) Verify that ∇σ1(ξ ) ·ξ and ξβ∂βσ2(ξ ) satisfy (5.7.1).

5.7.2. Let σ be a real-valued function that satisfies (5.7.1). Show that eiσ also satis-
fies (5.7.1). [Hint: Use the Faà di Bruno formula (Appendix F).]

5.7.3. Let s1, . . . ,sn > 0 and 1 < p < ∞. Show that the function

(1+4π2|ξ1|2)
s1
2 · · ·(1+4π2|ξn|2) sn

2

(1+4π2|ξ |2) s1+···+sn
2

is an Lp Fourier multiplier. Conclude that Lp
s1+···+sn(R

n) continuously embeds in the
product-type Sobolev space Lp

s1,...,sn(R
n).

5.7.4. Let s1, . . . ,sn > 0 and 1< p<∞. Prove that Lp
s1,...,sn(R

n) is a complete normed
vector space and S (Rn) is a dense subspace of it. [Hint: Mimic the proofs of The-
orems 5.4.7 and 5.4.8.]

5.7.5. Suppose that k1, . . . ,kn ∈ Z+ are such that k = ( 1
k1
+ · · ·+ 1

kn
)−1 ∈ Z+. Show

that the function
M(ξ1, . . . ,ξn) =

|ξ1 · · ·ξn|2k
|ξ1|2k1 + · · ·+ |ξn|2kn ,

defined on Rn \{0}, is an Lp Fourier multiplier for 1 < p < ∞.

5.7.6. Let τ be a real number and let ρ1, . . . ,ρn be positive integers. Prove that the
following functions are Lp multipliers on Rn for 1 < p < ∞:

σm(ξ1, . . . ,ξn) =
(

∑
S�{1,...,n}

|S|=m

∏
j∈S

|ξ j|2ρ j
)iτ

, 1 ≤ m ≤ n.

5.7.7. Let τ be a real number and let ρ1, . . . ,ρn be positive integers. Prove that the
following function defined on (R\{0})n lies inMp(Rn) for 1 < p < ∞:

(|ξ1|−2ρ1 + · · ·+ |ξn|−2ρn)iτ .

[Hint: Use Exercise 5.7.6 with m= n−1 and Exercise 5.7.1.]

5.7.8. Let b > 0. Prove that the following function lies inMp(Rn) for 1 < p < ∞:

ξ1
iξ1+(|ξ |2 −|ξ1|2)b , ξ = (ξ1, . . . ,ξn) ∈ Rn \{0}.
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5.7.9. Consider the differential operators

L1 = ∂1 − (∂ 22 + · · ·+∂ 2n ) ,
L2 = ∂1+∂ 22 + · · ·+∂ 2n .

Prove that for every 1 < p < ∞ there exists a constant Cp < ∞ such that for all
f ∈ S (Rn) we have

∥∥∂1 f
∥∥
Lp ≤ Cpmin

(∥∥L1( f )
∥∥
Lp ,

∥∥L2( f )
∥∥
Lp
)
.

[Hint: Use the previous exercise.]

5.7.10. Suppose that m1, . . . ,mn are positive integers and c j > 0 if mj is even while
c j < 0 if mj is odd. Consider the differential operator L= c1∂ 2m1

1 + · · ·+ cn∂ 2mn
n .

(a) Show that for any 1 < p < ∞ there is a constant C (that depends only on
p,n,mj,c j) such that for all Schwartz functions f on Rn and 1 ≤ j,k ≤ n we have

∥∥∂mk
k ∂

mj
j f

∥∥
Lp(Rn) ≤C

∥∥L( f )
∥∥
Lp(Rn).

(b) Let m be an odd positive integer. Prove that for any ϕ ∈ S (Rn+1) we have
∥∥∂mk

k ∂
mj
j ∂

m−1
n+1 ϕ

∥∥
Lp(Rn+1) ≤C

∥∥L(ϕ)+∂mn+1ϕ
∥∥
Lp(Rn+1) ,

where 1 ≤ j,k ≤ n and C depends only on p,n,mj,c j and m.



Chapter 6
Bounded Mean Oscillation

6.1 Basic Properties of Functions of Bounded Mean Oscillation

The mean (or average) of an L1loc function f over a measurable subset K of Rn (with
positive measure) is

fK =
1

|K|
∫
K
f (y)dy.

Let us call | f − fK | the oscillation of f over K. Then the mean oscillation of f over
K is the quantity

1
|K|

∫
K

| f (y)− fK |dy.

In this chapter we study functions whose mean oscillation over all cubes is bounded.

Definition 6.1.1. For f a complex-valued locally integrable function on Rn, define

∥∥ f∥∥BMO = sup
Q

1
|Q|

∫
Q

∣∣ f (x)− fQ
∣∣dx,

where the supremum is taken over all cubes Q in Rn with sides parallel to the axes.1

The function f is of bounded mean oscillation if ‖ f‖BMO < ∞ and BMO(Rn) is the
set of all locally integrable functions f on Rn with ‖ f‖BMO < ∞.

If the pair
(
BMO,‖ · ‖BMO

)
were a normed linear space, then we would have

∥∥ f +g
∥∥
BMO ≤ ∥∥ f∥∥BMO+

∥∥g∥∥BMO , (6.1.1)∥∥λ f
∥∥
BMO = |λ |∥∥ f∥∥BMO , (6.1.2)∥∥ f∥∥BMO = 0 =⇒ f = 0 a.e. (6.1.3)

Although properties (6.1.1) and (6.1.2) can be easily verified, one notes that
(6.1.3) fails. If ‖ f‖BMO = 0, then f would have to be a constantCQ over every cube

1 All cubes in this text have sides parallel to the axes, unless stated otherwise.
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Q. Covering Rn by a union of overlapping cubes, we conclude thatCQ =CQ′ for all
cubes Q and Q′. So if ‖ f‖BMO = 0, then f is almost everywhere equal to a constant
(possibly nonzero). Thus ‖ · ‖BMO is only a seminorm on BMO, even though we
often refer to it as a norm. To rectify (6.1.3), instead of considering classes of func-
tions that are equal a.e., we consider equivalence classes of functions formed by the
binary relation f ≡ g ⇐⇒ f − g is a constant a.e. Under this adjustment, the pair(
BMO,‖ · ‖BMO

)
becomes a normed linear space.

Next we observe that BMO is invariant under translations just like every Lp space.
But BMO is closer to L∞ than all other Lp spaces. The reason is that it remains
invariant under dilations, just like L∞ does; to verify this, let f λ (x) = f (λx), λ > 0,
then ( f λ )Q = fλQ, λQ= {λx : x ∈ Q}, and so we obtain

1
|Q|

∫
Q

∣∣ f λ (x)− ( f λ )Q
∣∣dx= 1

|λQ|
∫

λQ

∣∣ f (x)− fλQ
∣∣dx,

so taking the supremum of both sides we deduce ‖ f λ ‖BMO = ‖ f‖BMO.
Our last observation is that BMO in fact contains L∞. Indeed,

∥∥ f∥∥BMO = sup
Q

| f − fQ|Q ≤ sup
Q

[| f |Q+ | fQ|Q
] ≤ 2

∥∥ f∥∥L∞ .

Although it is more natural to define BMO in terms of cubes, one can define
another BMO space, replacing cubes by balls in the definition.

Definition 6.1.2. For f a complex-valued locally integrable function on Rn, define

∥∥ f∥∥BMOballs
= sup

B

1
|B|

∫
B

∣∣ f (x)− fB
∣∣dx,

where the supremum is taken over all balls B in Rn.

The following proposition provides one of the most useful criteria to verify that
a function lies in BMO.

Proposition 6.1.3. Let f ∈ L1loc(R
n). Suppose that there exists an A > 0 such that

for all cubes K (respectively, balls K) in Rn there exists a constant cK such that

1
|K|

∫
K

| f (x)− cK |dx ≤ A . (6.1.4)

Then f ∈ BMO (resp., f ∈ BMOballs) and ‖ f‖BMO ≤ 2A (resp., ‖ f‖BMOballs ≤ 2A).

Proof. We note that

∣∣ f − fK
∣∣ ≤ | f − cK |+ ∣∣ fK − cK

∣∣ ≤ | f − cK |+ 1
|K|

∫
K

| f (x)− cK |dx .

Averaging over cubes K (resp., balls K) and using (6.1.4), we obtain that ‖ f‖BMO ≤
2A, and analogously ‖ f‖BMOballs ≤ 2A, if the sets K are balls. �
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We now show that the seminorms ‖ f‖BMOballs and ‖ f‖BMO are in fact comparable;
thus the spaces BMO(Rn) and ‖ f‖BMOballs(R

n) contain the same functions.
Given any cube Q in Rn, we let B be the smallest ball that contains it. Let vn be

the volume of the unit ball. Then

1
|Q|

∫
Q

∣∣ f (x)− fB
∣∣dx ≤ |B|

|Q|
1

|B|
∫
B

∣∣ f (x)− fB
∣∣dx ≤ vn

√
nn

2n
∥∥ f∥∥BMOballs

.

It follows from Proposition 6.1.3 that ‖ f‖BMO ≤ 21−nvn
√
nn ‖ f‖BMOballs . Now given

a ball B find the smallest cube Q that contains it. Then write

1
|B|

∫
B

∣∣ f (x)− fQ
∣∣dx ≤ |Q|

|B|
1

|Q|
∫
Q

∣∣ f (x)− fQ
∣∣dx ≤ 2n

vn

∥∥ f∥∥BMO ,

and this implies ‖ f‖BMOballs ≤ 2n+1v−1
n ‖ f‖BMO . We conclude that the spaces BMO

and BMOballs have comparable seminorms, hence they are isomorphic.

Proposition 6.1.4. If f ∈ BMO, then | f | ∈ BMO. f ,g are real-valued BMO func-
tions, then so are max( f ,g) and min( f ,g). Moreover,

∥∥| f |∥∥BMO ≤ 2
∥∥ f∥∥BMO , (6.1.5)

∥∥max( f ,g)
∥∥
BMO ≤ 3

2

∥∥ f∥∥BMO+
3
2

∥∥g∥∥BMO , (6.1.6)

∥∥min( f ,g)
∥∥
BMO ≤ 3

2

∥∥ f∥∥BMO+
3
2

∥∥g∥∥BMO . (6.1.7)

Proof. To prove (6.1.5), note that for each cube Q we have
∣∣| f |− | fQ|∣∣ ≤ | f − fQ| ,

which implies ∣∣| f |− | fQ|∣∣Q ≤ | f − fQ|Q ≤ ∥∥ f∥∥BMO. (6.1.8)

Thus, for each cube Q there is a constantCQ = | fQ| such that (6.1.8) holds. Appeal-
ing to Proposition 6.1.3 we deduce (6.1.5). Next, note that

max( f ,g) =
f +g+ | f −g|

2
and min( f ,g) =

f +g−| f −g|
2

.

Then we obtain the estimate

∥∥max( f ,g)
∥∥
BMO ≤

∥∥ f∥∥BMO+
∥∥g∥∥BMO+

∥∥| f −g|∥∥BMO

2

≤
∥∥ f∥∥BMO+

∥∥g∥∥BMO+2
∥∥ f −g

∥∥
BMO

2

≤
∥∥ f∥∥BMO+

∥∥g∥∥BMO+2
∥∥ f∥∥BMO+2

∥∥g∥∥BMO

2
,

from which we obtain (6.1.6). Likewise we obtain (6.1.7). �
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Example 6.1.5. We show that the unbounded function log |x| lies in BMO(Rn).
Hence L∞(Rn) is a proper subspace of BMO(Rn).

Indeed, we will show that log |x| lies in BMOballs(Rn). Let B(x0,R) be a ball. If
|x0| > 2R, then for |x− x0| ≤ R we have 1

2 |x0| ≤ |x| ≤ 3
2 |x0|, hence

1
vnRn

∫

|x−x0|≤R

∣∣ log |x|− log |x0|
∣∣dx = 1

vnRn

∫

|x−x0|≤R

∣∣∣ log |x|
|x0|

∣∣∣dx

≤ max
(
log

3
2
,
∣∣∣ log 1

2

∣∣∣
)
= log2 .

Also, if |x0| ≤ 2R, then

1
vnRn

∫

|x−x0|≤R

∣∣ log |x|− logR
∣∣dx= 1

vnRn

∫

|x−x0|≤R

∣∣∣ log |x|
R

∣∣∣dx

≤ 1
vnRn

∫

|x|≤3R

∣∣∣ log |x|
R

∣∣∣dx

=
1
vn

∫

|x|≤3

∣∣ log |x|∣∣dx= 3n(n log3−1)+2
n

.

We apply Proposition 6.1.3 withCB(x0,R) being logR or log |x0| to deduce that log |x|
lies in BMOballs(Rn) and hence in BMO(Rn).

The function log |x| turns out to be a typical element of BMO, but we will make
this statement a bit more precise in the next section. It is interesting, however, to
notice that BMO does not remain invariant under abrupt cutoffs.

Example 6.1.6. The function h(x) = χx>0 log 1
x is not in BMO(R). Indeed, the prob-

lem is at the origin. Consider the intervals (−ε,ε), where 0 < ε < 1
2 . We have that

h(−ε ,ε) =
1
2ε

∫ +ε

−ε
h(x)dx=

1
2ε

∫ ε

0
log

1
x
dx=

1+ log 1
ε

2
.

But then

1
2ε

∫ +ε

−ε

∣∣h(x)−h(−ε ,ε)
∣∣dx ≥ 1

2ε

∫ 0

−ε

∣∣h(−ε ,ε)
∣∣dx= 1+ log 1

ε
4

,

and the latter is clearly unbounded as ε → 0. This discussion also reveals examples
of two BMO functions whose product is not in BMO (χ(0,∞) and log 1

|x| ).

Proposition 6.1.7. Under the identification of functions whose difference is a con-
stant a.e., BMO is a complete normed linear space, i.e., a Banach space.

Proof. Let { fk}∞
k=1 be a Cauchy sequence in BMO. Let QN = [−N,N]n, N =

1,2, . . . . Then
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1
|QN |

∫
QN

| fk − fm|dx ≤ ∥∥ fk − fm
∥∥
BMO,

and this gives that { fk}∞
k=1 is a Cauchy sequence in L

1(QN) for any N. By complete-
ness, there is a function FN ∈ L1(QN) such that fk → FN in L1(QN) as k → ∞.

As fk → FN+1 in L1(QN+1), it follows that FN = FN+1 a.e. on QN by the unique-
ness of the limit. We define a function F by setting F = FN on QN , N ∈ Z+. Clearly
F is well defined and lies in L1loc(R

n). Moreover, fk → F in L1(K) for any compact
set K. Next we show that F lies in BMO and that fk → F in BMO.

As { fk}∞
k=1 is Cauchy in BMO, for any ε > 0 there is a k0 ∈ Z+ such that for

k,m ≥ k0 we have

sup
Q

1
|Q|

∫
Q

| fk − fm|dx < ε.

Letting m → ∞ yields
1

|Q|
∫
Q

| fk −F |dx ≤ ε for any cube Q. (6.1.9)

It follows from this that for any cube Q we have
1

|Q|
∫
Q

|F −FQ|dx ≤ 1
|Q|

∫
Q

|F − fk0 |dx+
1

|Q|
∫
Q

| fk0 − ( fk0)Q|dx+ |( fk0)Q −FQ|

≤ ε +
∥∥ fk0

∥∥
BMO+ ε.

This shows that F lies in BMO. Now taking the supremum in (6.1.9) over all cubes
Q⊂Rn and using Proposition 6.1.3 we obtain that ‖ fk−F‖BMO ≤ 2ε, for all k≥ k0;
i.e., fk → F in BMO. �

We now examine some basic properties of BMO functions. For a ball B and a> 0,
we denote by aB the ball that is concentric with B and whose radius is a times the
radius of B.

Proposition 6.1.8. Let f be in BMOballs(Rn) and let B and B′ be balls in Rn.
(i) If B ⊂ B′, then ∣∣ fB − fB′

∣∣ ≤ |B′|
|B|

∥∥ f∥∥BMOballs
. (6.1.10)

(ii) Let B= B0 ⊂ B1 ⊂ ·· · ⊂ Bm = B′, where Bi is a ball of radius at most twice that
of the ball Bi−1 for each i= 1, . . . ,m. Then we have

∣∣ fB − fB′
∣∣ ≤ 2nm

∥∥ f∥∥BMOballs
. (6.1.11)

(iii) For any δ > 0 there is a constant Cn,δ such that if B is centered at x0 ∈ Rn and
has radius R, then we have

Rδ
∫
Rn

∣∣ f (x)− fB
∣∣

(R+ |x− x0|)n+δ dx ≤Cn,δ
∥∥ f∥∥BMOballs

. (6.1.12)

An analogous estimate holds for cubes with center x0 and side length R.
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Proof. (i) We write

∣∣ fB − fB′
∣∣ ≤ 1

|B|
∫
B

∣∣ f − fB′
∣∣dx ≤ 1

|B|
∫
B′

∣∣ f − fB′
∣∣dx ≤ |B′|

|B|
∥∥ f∥∥BMOballs

.

(ii) By (6.1.10), for each i= 1, . . . ,m we write

∣∣ fBi − fBi−1

∣∣ ≤ |Bi|
|Bi−1|

∥∥ f∥∥BMOballs
≤ 2n

∥∥ f∥∥BMOballs

and we use this inequality to derive (6.1.11) by introducing intermediate terms:
∣∣ fB − fB′

∣∣ ≤ ∣∣ fB0 − fB1
∣∣+ ∣∣ fB1 − fB2

∣∣+ · · ·+ ∣∣ fBm−1 − fBm
∣∣ ≤ 2nm

∥∥ f∥∥BMOballs
.

(iii) In the proof below we assume x0 = 0 and R = 1. Once this case is known,
given a ball B(x0,R), we replace f (x) by the function x 
→ f (Rx+ x0) to obtain
(6.1.12) in general. Then setting B= B(0,1), we write

∫
Rn

∣∣ f (x)− fB
∣∣

(1+ |x|)n+δ dx

=
∫
B

∣∣ f (x)− fB
∣∣

(1+ |x|)n+δ dx+
∞

∑
k=0

∫

2k+1B\2kB

∣∣ f (x)− f2k+1B+ f2k+1B − fB
∣∣

(1+ |x|)n+δ dx

≤
∫
B

∣∣ f (x)− fB
∣∣dx+ ∞

∑
k=0

2−k(n+δ )
∫

2k+1B

(∣∣ f (x)− f2k+1B

∣∣+ ∣∣ f2k+1B − fB
∣∣)dx

≤ vn
∥∥ f∥∥BMOballs

+
∞

∑
k=0

2−k(n+δ )(1+2n(k+1)
)
(2k+1)nvn

∥∥ f∥∥BMOballs

=C′
n,δ

∥∥ f∥∥BMOballs
,

where we used (6.1.11) in the last inequality. This completes the proof. �

Finally, we note there is a completely analogous version of Proposition 6.1.8 with
cubes in place of balls.

Exercises

6.1.1. Show that for all f ∈ L1loc(R
n) we have

1
2

∥∥ f∥∥BMO ≤ sup
Q

1
|Q| infcQ

∫
Q

| f (x)− cQ|dx ≤ ∥∥ f∥∥BMO.

6.1.2. Let f be a real-valued BMO function on Rn. Prove that the sequence
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fN(x) =

⎧⎪⎨
⎪⎩
N if f (x) > N,

f (x) if | f (x)| ≤ N,

−N if f (x) < −N

satisfies ‖ fN‖BMO ≤ 9
4‖ f‖BMO.

[
Hint:Write fN =max(−N,min( f ,N)).

]

6.1.3. Let 1 ≤ p ≤ ∞. Find functions F in Lp(Rn) and G ∈ BMO(Rn) such that FG
does not lie in Lp(Rn).

6.1.4. Show that for all f in BMOballs(Rn) and all r > 0 we have
∣∣ frB − fB

∣∣ ≤ 2n
(
1+ log2max(r, 1r )

)∥∥ f∥∥BMOballs
.

6.1.5. Let a > 0 and let f ∈ BMO(Rn). Let B and B′ be balls in Rn both of radius r
whose centers have distance ar (these balls could be overlapping). Prove that

∣∣ fB − fB′
∣∣ ≤ 2n+1 log2(a+2)

∥∥ f∥∥BMOballs
.

Also show that supB,B′ balls with |B|=|B′| | fB − fB′ |/‖ f‖BMO may be unbounded.[
Hint: Pick m ∈ Z such that 2m ≤ a+ 2 < 2m+1 and let x0 be the midpoint of the
line segment joining the centers of B and B′. Consider the ball B′′ = B(x0,2mr) and
estimate | fB − fB′′ | and | fB′ − fB′′ | via telescoping sums, using (6.1.10).

]

6.1.6. Let f ∈ BMO(Rn) and N ∈ Z+. Verify the following assertions:
(a) For any two cubes Q and Q′ of side length 1 contained in [0,2N ]n we have

∣∣ fQ − fQ′
∣∣ ≤ N2n+1

∥∥ f∥∥BMO .

(b) Let −∞ < l < L < ∞. Conclude that for any two cubes Q, Q′ of side length 2l

both contained in a cube of side length 2L the following estimate is valid:
∣∣ fQ − fQ′

∣∣ ≤ (L− l+1)2n+1
∥∥ f∥∥BMO .

[
Hint: Part (a). For any interval I of length 1 contained in [0,2N ] there is a sequence
of intervals I = I0 ⊂ I1 ⊂ ·· · ⊂ IN−1 ⊂ [0,2N ] with |I j| = 2 j. Then use (6.1.10).

]

6.1.7. Let Φ be a concave strictly increasing function from [0,∞) to [0,∞) that sat-
isfies Φ(0) = 0, limt→∞ Φ(t) = ∞, and Φ(t+s)≤ Φ(t)+Φ(s) for all t,s≥ 0. Prove
that if f ∈ BMO, then Φ(| f |) lies also in BMO and

∥∥Φ(| f |)∥∥BMO ≤ 2Φ(‖ f‖BMO).

Let 0 < p < 1. Two important examples of such functions Φ are

Φ(t) = t p, Φ(t) = log(t+1), Φ(t) = [log(t+1)]p.
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Conclude that | log |x||p, log(| log |x||+1), log
(∣∣ log(| log |x||+1)

∣∣+1
)
lie inBMO(Rn).[

Hint: Apply Proposition 6.1.3 with cQ = Φ(| fQ|) and Jensen’s inequality (Exer-
cise 1.1.5) to the convex function Φ−1. Note that Φ ◦Φ has similar properties.

]

6.1.8. Let 0< p< 1 and A> 0. Assume that Φ is an increasing function from [0,∞)
to [0,∞) that satisfies Φ(0) = 0, limt→∞ Φ(t) = ∞, and

|Φ(t)−Φ(s)| ≤ A
(|t− s|+ |t− s|p)

for all t,s ≥ 0. Prove that if f ∈ BMO, then Φ(| f |) lies also in BMO and
∥∥Φ(| f |)∥∥BMO ≤ 2A

(∥∥ f∥∥BMO+
∥∥ f∥∥p

BMO

)
.

An example of such a function is Φ(t) = t p log(t+1).

6.1.9. (a) Let z ∈ C. Prove that the function x 
→ log |x− z| lies in BMO(R).
(b) Let P(x) be a polynomial with complex coefficients of degree d. Show that the
function x 
→ log |P(x)| has BMO(R) norm bounded by 7d.

[
Hint: Part (a). Use the

idea of Example 6.1.5. Part (b). Express P as a product of linear factors.
]

6.2 The John–Nirenberg Theorem

A measurable function g is called exponentially integrable over any compact subset
K of Rn if there is a positive constant c such that

∫
K
ec|g(x)| dx < ∞. (6.2.1)

In Example 6.1.5 we verified that the function g(x) = log |x| lies in BMO(Rn). This
function is exponentially integrable, i.e., it satisfies (6.2.1) with any constant c < n.
It turns out that exponential integrability is a general property of BMO functions, as
a consequence of the next theorem.

Theorem 6.2.1. (John–Nirenberg theorem) For all f ∈BMO(Rn), all cubes Q, and
all α > 0 we have

∣∣{x ∈ Q :
∣∣ f (x)− fQ

∣∣ > α‖ f‖BMO
}∣∣ ≤ e |Q|e− α

2ne . (6.2.2)

Proof. If ‖ f‖BMO = 0, then (6.2.2) is valid as the set on the left in (6.2.2) has mea-
sure zero. So we may assume that ‖ f‖BMO �= 0. As (6.2.2) remains unchanged if we
replace f by f/‖ f‖BMO, it suffices to assume that ‖ f‖BMO = 1. We fix a closed cube
Q and we introduce the following selection criterion for a subcube R of Q:

1
|R|

∫
R

∣∣ f (x)− fQ
∣∣dx > e. (6.2.3)

Since
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1
|Q|

∫
Q

∣∣ f (x)− fQ
∣∣dx ≤ ∥∥ f∥∥BMO = 1 < e ,

the cube Q itself does not satisfy (6.2.3). Set Q0 =Q and subdivide Q0 into 2n equal
closed subcubes of side length equal to half of the side length of Q. Select such a
subcube R if it satisfies criterion (6.2.3). Now subdivide all unselected cubes into
2n equal subcubes of half their side length by bisecting the sides, and select among
these subcubes those that satisfy (6.2.3). Continuing this process indefinitely we
obtain a countable collection of cubes {Q1

j} j.We call the cubes Q1
j of first genera-

tion. (We use the superscript k to denote the generation of cubes.)
We now fix a selected first-generation cube Q1

j and we introduce the following
selection criterion for subcubes R of Q1

j :
1
|R|

∫
R

∣∣ f (x)− fQ1
j

∣∣dx > e. (6.2.4)

Observe that Q1
j does not satisfy the selection criterion (6.2.4). We apply a similar

stopping time selection argument to the function f − fQ1
j
inside the cube Q1

j . Subdi-

vide Q1
j into 2

n equal closed subcubes of side length equal to half of the side length
of Q1

j by bisecting the sides, and select such a subcube R if it satisfies the selec-
tion criterion (6.2.4). Continue this process indefinitely. Also repeat this process for
any other cube Q1

j of the first generation. The collection of all selected subcubes of
all cubes of the first generation that satisfy (6.2.4) is denoted by {Q2

l }l ; these are
called cubes of second generation. Every cube of second generation is contained in
a unique cube of first generation.

For a fixed selected cube Q2
l of second generation, introduce the selection crite-

rion for subcubes R of Q2
l

1
|R|

∫
R

∣∣ f (x)− fQ2
l

∣∣dx > e.

We repeat the previously outlined process to obtain a collection of cubes of third
generation inside Q2

l . Repeat this procedure for any other cube Q2
j of the second

generation. Denote by {Q3
s}s the thus obtained collection of all cubes of the third

generation.
We iterate this procedure indefinitely to obtain a countable family of cubes {Qk

j} j

for each generation k. We claim that these cubes satisfy the following properties:

(A-k) The interior of every Qk
j is contained in a unique Qk−1

j′ .

(B-k) e < |Qk
j|−1

∫
Qk

j

∣∣ f (x)− fQk−1
j′

∣∣dx ≤ 2ne.

(C-k)
∣∣ fQk

j
− fQk−1

j′

∣∣ ≤ 2ne.

(D-k) ∑
j

∣∣Qk
j

∣∣ ≤ 1
e ∑

j′

∣∣Qk−1
j′

∣∣.
(E-k)

∣∣ f − fQk−1
j′

∣∣ ≤ e a.e. on the set Qk−1
j′ \⋃

j Q
k
j.
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We prove properties (A-k)–(E-k). Note that (A-k) and the lower inequality in
(B-k) are satisfied by construction. The upper inequality in (B-k) is a consequence
of the fact that the unique cube Rj0 with double the side length of Qk

j that contains

Qk
j and is contained in Qk−1

j′ was not selected in the process. Indeed, we have

e ≥ 1
|Rj0 |

∫
Rj0

∣∣ f (x)− fQk−1
j′

∣∣dx ≥ 1

2n|Qk
j|

∫
Qk

j

∣∣ f (x)− fQk−1
j′

∣∣dx .

Now (C-k) follows from the upper inequality in (B-k). To prove (E-k) we note
that for every point in Qk−1

j′ \⋃
j Q

k
j there is a sequence of cubes shrinking to it and

the averages of | f − fQk−1
j′

| over all these cubes is at most e. Then | f − fQk−1
j′

| ≤ e

a.e. on Qk−1
j′ \ ⋃

j Q
k
j by the Lebesgue differentiation theorem (Corollary 1.5.6). It

remains to prove (D-k). By (A-k), given a cube Qk
j of generation k there is unique

cube Qk−1
j′ of generation k− 1 that contains it. Let us denote by I j′ all indices i of

cubes of generation k such that i′ = j′. Then all cubes Qk
i with i ∈ I j′ have disjoint

interiors and are contained in Qk−1
j′ . Using this we write

∑
j

|Qk
j| <

1
e ∑

j

∫
Qk

j

∣∣ f (x)− fQk−1
j′

∣∣dx

=
1
e ∑

j′
∑
i∈I j′

∫
Qk
i

∣∣ f (x)− fQk−1
j′

∣∣dx

≤ 1
e ∑

j′

∫
Qk−1

j′

∣∣ f (x)− fQk−1
j′

∣∣dx

≤ 1
e ∑

j′

∣∣Qk−1
j′

∣∣ ,

as the BMO norm of f equals 1. We have now established (A-k)–(E-k) and we turn
our attention to some consequences. Applying (D-k) successively k− 1 times, we
obtain

∑
j

∣∣Qk
j

∣∣ ≤ e−k
∣∣Q0

∣∣ . (6.2.5)

For a cube Q1
j of generation 1 we have

∣∣ fQ1
j
− fQ0

∣∣ ≤ 2ne by (C-1) and
∣∣ f − fQ1

j

∣∣ ≤ e

a.e. on Q1
j \

⋃
l Q

2
l by (E-2). These two facts give

∣∣ f − fQ0

∣∣ ≤ 2n e+ e a.e. on Q1
j \

⋃
l

Q2
l ,

which, combined with (E-1), yields
∣∣ f − fQ0

∣∣ ≤ 2n2e a.e. on Q0 \
⋃
l

Q2
l . (6.2.6)
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For a cube Q2
l of second generation we have

∣∣ f − fQ2
l

∣∣ ≤ e a.e. on Q2
l \ ⋃

s Q
3
s by

(E-3). Combining this with
∣∣ fQ2

l
− fQ1

l′

∣∣ ≤ 2n e and
∣∣ fQ1

l′
− fQ0

∣∣ ≤ 2n e, which follow

from (C-2) and (C-1) respectively, yields
∣∣ f − fQ0

∣∣ ≤ 2n3e a.e. on Q2
l \

⋃
s

Q3
s .

In view of (6.2.6), the same estimate is valid on Q0 \⋃
s Q

3
s . Continuing this reason-

ing, we obtain by induction that for all k ≥ 1 we have
∣∣ f − fQ0

∣∣ ≤ 2nk e a.e. on Q0 \
⋃
s

Qk
s . (6.2.7)

This proves the almost everywhere inclusion
{
x ∈ Q :

∣∣ f (x)− fQ
∣∣ > 2nk e

}
⊆

⋃
j

Qk
j

for all k = 1,2,3, . . . . (This also holds when k = 0 with the understanding that there
is only one cube in the family on the right, the cube Q0 = Q.) We now use (6.2.5)
and (6.2.7) to prove (6.2.2). We fix an α > 0. If 2nk e < α ≤ 2n(k+ 1)e for some
k ≥ 0, then

∣∣{x ∈ Q :
∣∣ f (x)− fQ

∣∣ > α
}∣∣ ≤ ∣∣{x ∈ Q :

∣∣ f (x)− fQ
∣∣ > 2nk e

}∣∣
≤ ∑

j

∣∣Qk
j

∣∣

≤ 1
ek

∣∣Q0
∣∣

≤ |Q|ee−α/(2ne),

since −k ≤ 1− α
2ne . This yields (6.2.2). �

Having proven the important distribution inequality (6.2.2), we are now in a posi-
tion to deduce from it a few corollaries.

Corollary 6.2.2. Every BMO function is exponentially integrable over any cube.
Precisely, for any 0 < γ < (2ne)−1, for all f ∈ BMO(Rn), and any cube Q we have

1
|Q|

∫
Q
e

γ
| f (x)− fQ|
‖ f‖BMO dx ≤ 1+

2ne2 γ
1−2neγ

.

Proof. We use (1.2.2) in Proposition 1.2.3 with ϕ(t) = et −1. Certainly (Q,dx) is a
σ -finite measure space and ϕ is an increasing continuously differentiable function
on [0,∞) with ϕ(0) = 0. Then we write

1
|Q|

∫
Q
e|h| dx= 1+

1
|Q|

∫
Q
(e|h| −1)dx= 1+

1
|Q|

∫ ∞

0
eλ |{x ∈ Q : |h(x)| > λ}|dλ
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for a measurable function h onRn. We fix γ < (2ne)−1 and set h= γ ‖ f‖−1
BMO| f − fQ|.

Then
∣∣{x ∈ Q : |h(x)| > λ

}∣∣ = ∣∣{x ∈ Q : | f (x)− fQ| > λ
γ ‖ f‖BMO

}∣∣.
So we apply (6.2.2) with α = λ/γ . Combining these inequalities gives

1
|Q|

∫
Q
e

γ
| f (x)− fQ|
‖ f‖BMO dx ≤ 1+

1
|Q|

∫ ∞

0
eλ e |Q|e− 1

2ne
λ
γ dλ = 1+

2ne2 γ
1−2neγ

,

noting that the integral converges since 1− (2neγ)−1 < 0. �

As a consequence of Corollary 6.2.2 we deduce the exponential integrability of
BMO functions.

Corollary 6.2.3. Let f ∈ BMO(Rn). Then for any compact subset K of Rn we have∫
K
ec| f (x)| dx < ∞ , (6.2.8)

whenever c < (2ne‖ f‖BMO)−1.

Proof. Given a compact setK pick a cubeQ that contains it. For c< (2ne‖ f‖BMO)−1

set γ = c‖ f‖BMO < (2ne)−1 and use that

c| f (x)| ≤ c| fQ|+ c| f (x)− fQ| ≤ c| fQ|+ γ
| f (x)− fQ|
‖ f‖BMO

and Corollary 6.2.2 to obtain that ec| f | is integrable over Q. �

Another important corollary of Theorem 6.2.1 is the following.

Corollary 6.2.4. For all 0 < p < ∞ and for all f ∈ L1loc(R
n) we have

sup
Q

(
1

|Q|
∫
Q

∣∣ f (x)− fQ
∣∣p dx

)1
p

≤ e2n (e pΓ (p))
1
p
∥∥ f∥∥BMO(Rn). (6.2.9)

Consequently, BMO is contained in Lp
loc(R

n) =
{
f : | f |p ∈ L1loc(R

n)
}
for all p< ∞.

Proof. If f ∈ L1loc \BMO, then (6.2.9) holds. So we assume that f ∈ BMO. Write

1
|Q|

∫
Q

∣∣ f (x)− fQ
∣∣p dx =

1
|Q|

∫ ∞

0
pλ p−1|{x ∈ Q : | f (x)− fQ| > λ}|dλ

≤ p
|Q| e |Q|

∫ ∞

0
λ pe

− λ
2ne‖ f‖BMO

dλ
λ

= pΓ (p) e
(
2ne

∥∥ f∥∥BMO

)p
,

having used (6.2.2) in the inequality. This proves (6.2.9). It follows that | f − fQ|p is
integrable over any cube Q, thus so is | f |p. Then | f |p ∈ L1loc(R

n) for any p < ∞. �
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Since the inequality in Corollary 6.2.4 can be reversed when p > 1 via Hölder’s
inequality, we obtain the following important Lp characterization of BMO norms.

Corollary 6.2.5. For all 1 ≤ p < ∞ and f in L1loc(R
n) we have

∥∥ f∥∥BMO ≤ sup
Q

(
1

|Q|
∫
Q

∣∣ f (x)− fQ
∣∣p dx

)1
p

≤ e2 ·2n p∥∥ f∥∥BMO. (6.2.10)

Proof. The left inequality in (6.2.10) is obtained by Hölder’s inequality and the
definition of the BMO norm of f . The other direction follows from Corollary 6.2.4,

which provides the constant (pΓ (p))
1
p e

1
p+1 2n. Note that

Γ (p)
pp

=
∫ ∞

0
e−t

( t
p

)p dt
t
=

∫ ∞

0
e−ptt p

dt
t
=

∫ ∞

0
e−p(t−logt) dt

t
≤

∫ ∞

0
e−(t−logt) dt

t
= 1

if p ≥ 1. This yields that Γ (p)
1
p (pe)

1
p e2n ≤ p · e · e2n for p ≥ 1; thus the upper

inequality in (6.2.10) holds. �

Exercises

6.2.1. Let A,B > 0 and let f ∈ L1loc(R
n). Suppose that for each cube Q there is a

constant cQ such that for every λ > 0 it holds that

∣∣{x ∈ Q :
∣∣ f (x)− cQ

∣∣ > λ
}∣∣ ≤ B |Q|e−Aλ .

Prove that f lies in BMO with norm at most 2B/A.

6.2.2. Given 1 ≤ p < ∞ and f locally integrable on Rn prove that

1
2

∥∥ f∥∥BMO ≤ sup
Q

(
inf
cQ

1
|Q|

∫
Q

| f (x)− cQ|p dx
) 1

p

≤ e2p2n
∥∥ f∥∥BMO.

6.2.3. Let 1< p< ∞. Let Q be a cube in Rn and let Q′ be another cube that contains
Q and has side length 2m times that of Q. Prove that for any f ∈ BMO(Rn) we have

(
1

|Q|
∫
Q

| f (y)− fQ′ |p dx
) 1

p

≤ 2n
(
e2p+m

)∥∥ f∥∥BMO.

6.2.4. Let gK be locally integrable on Rn associated with a measurable subset K of
Rn with positive measure. Prove that (a) =⇒ (b) =⇒ (c) =⇒ (d) =⇒ (a).
(a) There is a constant B > 0 such that for all λ > 0 and all p ≥ 1 we have

sup
K

λ
(

1
|K|

∣∣{x ∈ K : |gK(x)| > λ
}∣∣

) 1
p

≤ B p.
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(b) There is a constant c > 0 such that for all λ > 0 we have

sup
K

1
|K|

∣∣{x ∈ K :
∣∣gK(x)∣∣ > λ

}∣∣ ≤ 2e−cλ .

[
Hint: Try p= λ/2B if λ ≥ 2B. The value c= (2B)−1 log2 works.

]
(c) For any c′ satisfying 0 < c′ < c one has

sup
K

1
|K|

∫
K
ec

′|gK(x)|dx ≤ c+ c′

c− c′ < ∞.

(d) There is a constant A > 0 such that for all p ≥ 1 we have

sup
K

(
1

|K|
∫
K

|gK(x)|pdx
) 1

p

< A p.

What does this set of equivalences say about BMO functions?

6.2.5. Let p > 1. Prove that
∣∣ log |x|∣∣p and ∣∣ log | log |x||∣∣ log |x| are not in BMO(Rn).[

Hint: Otherwise estimate (6.2.8) would be violated.
]

6.3 Dyadic Maximal Functions and Dyadic BMO

In this section we discuss dyadic analogs of certain ideas we have explored so far.
We begin by recalling notions related to dyadic cubes.

Definition 6.3.1. A dyadic cube is a set of the form ∏n
j=1[mj2−k,(mj + 1)2−k),

where m1, . . . ,mn,k ∈ Z. A dyadic child of a dyadic cube Q is any of the 2n dyadic
cubes obtained by bisecting each of its sides by hyperplanes parallel to the faces of
the cube. We denote by D the set of all dyadic cubes in Rn. An ancestor of a dyadic
cube Q is any dyadic cube that contains it. A descendant of a dyadic cube Q is any
dyadic cube contained in it.

Naturally each dyadic cube has 2n dyadic children, 22n dyadic grandchildren,
and in general 2nk dyadic subcubes of length 2−kL, where L is the side length of
the original cube. In fact, all dyadic cubes contained in a fixed dyadic cube Q0 are
dyadic descendants of it.

By construction, two dyadic cubes of the same length are disjoint. Given two
dyadic cubes of different size, there is a unique ancestor of the smaller one of the
same size as the bigger one. This ancestor is either the bigger cube or is disjoint
from it. This implies that two dyadic cubes are either disjoint or one contains the
other.

It is useful to split dyadic cubes in generations. Let us call dyadic cubes of gen-
eration zero to be all dyadic cubes of side length 1 and denote by D0 the set of all
such cubes. We denote byD1 the dyadic cubes of generation 1, that is, all the dyadic
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children of cubes in D0. Continuing in this way, we denote by Dk all dyadic cubes
of side length 2−k and we call these dyadic cubes of generation k. As the cubes are
shrinking, k increases toward infinity, but we can also consider k < 0 in this termi-
nology. In specific problems, however, it is useful to set generation zero to be a fixed
dyadic cube and define the future generations in relation to this. A paradigm of this
situation appears in the dyadic Calderón–Zygmund decomposition.

Definition 6.3.2. Given a measurable function f on Rn, we define the dyadic maxi-
mal function Md( f ) of f by

Md( f )(x) = sup
Q�x

Q dyadic cube

1
|Q|

∫
Q

| f (t)|dt.

The supremum is taken over all dyadic cubes Q in Rn that contain a given point x.

The dyadic maximal function shares many properties with the classical Hardy–
Littlewood maximal function. But it is different in a significant way. It can vanish on
a portion of the space. For instance, if h is supported in [0,∞), then Md(h) vanishes
on (−∞,0) as no dyadic cubes that contain negative numbers reach the support of h.

Theorem 6.3.3. (a) For all λ > 0 and all measurable functions f on Rn we have

|{x ∈ Rn : Md( f )(x) > λ}| ≤ 1
λ

∫
{Md( f )>λ}

| f (t)|dt . (6.3.1)

(b) The operator Md maps L1(Rn) to L1,∞(Rn) with constant at most 1.
(c) For 1 < p < ∞, Md maps Lp(Rn) to itself with constant at most p/(p−1).
(d) For 1 < p < ∞, Md maps Lp,∞(Rn) to itself with constant at most p/(p−1).

Proof. (a) Fix λ > 0. For a measurable function f on Rn consider the set

Ef = {x ∈ Rn : Md( f )(x) > λ}.

We first prove (6.3.1) under the additional assumption that f ∈ L1(Rn).
For each x ∈ Ef there is a dyadic cube Qx that contains x such that the average of

| f | over Qx is strictly bigger than λ . Then each Qx is contained in Ef as for every
y ∈ Qx, the average of | f | over Qx gives that Md( f )(y) > λ . Consequently we have
Ef =∪x∈Ef Qx. Now all cubesQx have measure bounded by ‖ f‖L1/λ . Thus for each
x∈ Ef there is a unique maximal dyadic cubeQmax

x of the formQy (for some y∈ Ef )
that contains Qx. Say that all distinct cubes Qmax

x are indexed by a subset E ′
f of Ef ;

then Ef = ∪x∈Ef Qx = ∪x∈E ′
f
Qmax
x . Moreover, all distinct cubes of the form Qmax

x are

disjoint as they are maximal with respect to inclusion. Let us denote by {Qj, j ∈Z}
the collection {Qmax

x : x ∈ E ′
f }. Then we have

∑
j

|Qj| = |Ef |

and also
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∫
Qj

| f (y)|dy > λ |Qj| .

It follows that

|Ef | = ∑
j

|Qj| ≤ 1
λ ∑

j

∫
Qj

| f (y)|dy= 1
λ

∫
Ef

| f (y)|dy . (6.3.2)

To remove the assumption that f ∈ L1(Rn), for each N ∈ Z+ consider the trun-
cations

fN = f χ| f |≤Nχ[−2N ,2N ]n . (6.3.3)

We use that Md( fN) increases monotonically to Md( f ) as N → ∞; this fact fol-
lows from Exercise 1.4.2 for the classical Hardy–Littlewood maximal operator, but
the same proof also holds for Md . Then |EfN | increases monotonically to |Ef | and
χEfN

| fN | also increases monotonically to χEf | f |. Letting N → ∞ in (6.3.2) and using
the LMCT yields (6.3.1).

(b) This is a direct consequence of part (a).
(c) This assertion follows from interpolation. One may use the result of Exer-

cise 1.3.4, but here we provide a direct proof. For f ∈ Lp(Rn), 1 < p < ∞, we write

∥∥Md( f )
∥∥p
Lp = p

∫ ∞

0
λ p−1|Eλ |dλ

≤ p
∫ ∞

0
λ p−2

∫
Eλ

| f (x)|dxdλ

= p
∫
Rn

| f (x)|
∫ Md( f )(x)

0
λ p−2 dλ dx

=
p

p−1

∫
Rn

| f (x)|Md( f )(x)p−1 dx

≤ p
p−1

(∫
Rn

Md( f )(x)p dx
)p−1

p
(∫

Rn
| f (x)|p dx

)1
p

,

where we used (6.3.2), Tonelli’s theorem, and Hölder’s inequality. We would like
to divide both sides by ‖Md( f )‖p−1

Lp but we don’t know that 0 < ‖Md( f )‖Lp < ∞.
In order to ensure this, we assume that f is nonzero and bounded and supported
in a cube of the form [−2N ,2N ]n for some N ∈ Z+. Then Md( f ) is also bounded
by ‖ f‖L∞ and decays like Cf |x|−n when x /∈ [−2N ,2N ]n for some constant Cf > 0.

These facts imply that ‖Md( f )‖Lp < ∞, so we can divide by ‖Md( f )‖p−1
Lp and obtain

∥∥Md( f )
∥∥
Lp ≤ p

p−1

∥∥ f∥∥Lp . (6.3.4)

For a general function f in Lp(Rn), we apply (6.3.4) to the truncations fN defined in
(6.3.3). Then we make use of the LMCT in view of the fact that Md( fN) increases
monotonically toMd( f ) as N → ∞ (Exercise 1.4.2). This proves the assertion in part
(c); note that the bound obtained is better than that provided by Theorem 1.3.3.
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(d) Let 1 < p < ∞. Suppose that f ∈ Lp(Rn). We write (6.3.2) as

λ
∣∣{Md( f ) > λ}∣∣ 1

p ≤ ∣∣{Md( f ) > λ}∣∣ 1
p−1

∫
{Md( f )>λ}

| f (y)|dy.

As f ∈ Lp(Rn)we have that
∣∣{Md( f )> λ}∣∣ < ∞; thus the right-hand side is bounded

by p
p−1‖ f‖Lp,∞ by Theorem 1.2.10. Thus we have

∥∥Md( f )
∥∥
Lp,∞ ≤ p

p−1

∥∥ f∥∥Lp,∞ for f ∈ Lp(Rn). (6.3.5)

Now given f ∈ Lp,∞, consider the increasing sequence of nonnegative functions | fN |,
where fN are defined in (6.3.3); these functions satisfy | fN | ↑ | f | and | fN | ∈ Lp.

Clearly we have ‖ fN‖Lp,∞ ↑ ‖ f‖Lp,∞ . Exercise 1.4.2 gives thatM( fN) ↑ M( f ) and
‖M( fN)‖Lp,∞ ↑ ‖M( f )‖Lp,∞ . The same proofs yield

‖Md( fN)‖Lp,∞ ↑ ‖Md( f )‖Lp,∞ as N → ∞.

Using estimate (6.3.5) for fN and taking the limit as N → ∞ we obtain the claimed
conclusion. �

We now define dyadic BMO. We do so by taking the cubes Q in Definition 6.1.1
to be dyadic.

Definition 6.3.4. For f a complex-valued locally integrable function on Rn, define

∥∥ f∥∥BMOd
= sup

Q dyadic cube

1
|Q|

∫
Q

∣∣ f (x)− fQ
∣∣dx,

where the supremum is taken over all dyadic cubes Q in Rn. The function f is of
dyadic bounded mean oscillation if ‖ f‖BMOd < ∞. The space BMOd(Rn) is the set
of all locally integrable functions f on Rn with ‖ f‖BMOd < ∞.

Functions whose difference is a constant are identified in BMOd . Under this iden-
tification, BMOd becomes a normed vector space, which is also complete; on this
see Exercise 6.3.5. Almost all properties of BMO are also shared by its dyadic ana-
log BMOd . For instance we have the following:

Proposition 6.3.5. Let f ∈ L1loc(R
n). Suppose that there exists an A > 0 such that

for all dyadic cubes Q there exists a constant cQ such that

sup
Q

1
|Q|

∫
Q

| f (x)− cQ|dx ≤ A . (6.3.6)

Then f ∈ BMOd and ‖ f‖BMOd ≤ 2A.

Proof. We note that

∣∣ f − fQ
∣∣ ≤ | f − cQ|+ ∣∣ fQ − cQ

∣∣ ≤ | f − cQ|+ 1
|Q|

∫
Q

| f (x)− cQ|dx .
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Averaging over dyadic cubes Q and using (6.3.6), we obtain that ‖ f‖BMOd ≤ 2A. �

Example 6.3.6. The function h(t) = log t χt>0 lies in BMOd(R) but not in BMO(R).
The fact that this function does not lie in BMO(R) was shown in Example 6.1.6. So
we only show that h ∈ BMOd(R). Let [a,b) be a dyadic interval with b > a > 0. We
need to choose a constant C[a,b) = logc such that for all a,b

1
b−a

∫ b

a

∣∣ log t− logc
∣∣dt = 1

b
c − a

c

∫ b
c

a
c

∣∣ log t∣∣dt

remains bounded. Now if b−a ≥ b
2 we choose c= b. In this case 1− a

b ≥ 1
2 so

1
1− a

b

∫ 1

a
b

∣∣ log t∣∣dt ≤ 2
∫ 1

0
| log t|dt = 2.

If b−a < b
2 we choose c= a. Then b

a < 2, and hence

1
b
a −1

∫ b
a

1
| log t|dt ≤ 1

b
a −1

∫ b
a

1
| log2|dt = | log2| ≤ 2.

Thus ‖h‖BMOd ≤ 4 by Proposition 6.3.5.

Proposition 6.3.7. Let f be in BMOd. Then for any dyadic cubes Q, Q′ with Q⊂Q′
we have ∣∣ fQ − fQ′

∣∣ ≤ |Q′|
|Q|

∥∥ f∥∥BMOd
.

Let N ∈ Z+. If the side length of Q′ is 2N times larger than that of Q, then
∣∣ fQ − fQ′

∣∣ ≤ N 2n
∥∥ f∥∥BMOd

.

Proof.

∣∣ fQ − fQ′
∣∣ ≤ 1

|Q|
∫
Q

∣∣ f − fQ′
∣∣dx ≤ 1

|Q|
∫
Q′

∣∣ f − fQ′
∣∣dx ≤ |Q′|

|Q|
∥∥ f∥∥BMOd

.

For the second assertion we fix a sequence of dyadic cubes Q = Q0 ⊂ Q1 ⊂ ·· · ⊂
QN = Q′ such that the side length of Qj is 2 j times that of Q. Then we have
|Qj+1|/|Qj| = 2( j+1)n|Q|/2 jn|Q| = 2n and we write

∣∣ fQ0 − fQN

∣∣ ≤ ∣∣ fQ0 − fQ1

∣∣+ ∣∣ fQ1 − fQ2

∣∣+ · · ·+ ∣∣ fQN−1 − fQN

∣∣ ≤ N 2n
∥∥ f∥∥BMOd

.

This concludes the proof. �

Deeper properties of BMO area also shared by BMOd .
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Theorem 6.3.8. For all f ∈ BMOd(Rn), for all Q ∈ D , and all α > 0 we have∣∣{x ∈ Q :
∣∣ f (x)− fQ

∣∣ > α‖ f‖BMOd

}∣∣ ≤ e |Q|e− α
2ne . (6.3.7)

Proof. The proof of Theorem 6.2.1 in the previous section starts with a cube Q0

(of generation 0) and constructs several sequences of cubes Qk
j of generation k by

subdividing the unselected cubes of the previous generation into 2n pieces. If the
original cube Q0 was dyadic, then so would be all of its descendants; hence in the
proof of Theorem 6.2.1 we can replace all cubes Qk

j that appear with dyadic cubes.
Then we obtain (6.3.7) just as we did in the non-dyadic case. �

Similar straightforward adaptations provide the following corollaries:

Corollary 6.3.9. Every BMOd function is exponentially integrable in the following
sense. For any 0 < γ < (2ne)−1, for all f ∈ BMOd(Rn), and any Q ∈ D we have

1
|Q|

∫
Q
e

γ
| f (x)− fQ|
‖ f‖BMOd dx ≤ 1+

2ne2 γ
1−2neγ

. (6.3.8)

Corollary 6.3.10. Let f ∈ BMOd(Rn). The for any compact subset K of Rn we have∫
K
ec| f (x)| dx < ∞ , (6.3.9)

provided c < (2ne‖ f‖BMOd )
−1.

Proof. To verify (6.3.9) we simply cover a compact set by a finite sum of dyadic
cubes and we apply (6.3.8) on each such cube. �

Corollary 6.3.11. For all 0 < p < ∞ and for all f ∈ BMOd we have

sup
Q∈D

(
1

|Q|
∫
Q

∣∣ f (x)− fQ
∣∣p dx

)1
p

≤ e2n (e pΓ (p))
1
p
∥∥ f∥∥BMOd(Rn). (6.3.10)

Corollary 6.3.12. For all 1 ≤ p < ∞ and f in L1loc(R
n) we have

∥∥ f∥∥BMOd
≤ sup

Q∈D

(
1

|Q|
∫
Q

∣∣ f (x)− fQ
∣∣p dx

)1
p

≤ e2 ·2n p∥∥ f∥∥BMOd
. (6.3.11)

Exercises

6.3.1. Write Rn as a union of orthants2 Hω = {(x1, . . . ,xn) : ξ j ≥ 0 ⇐⇒ j ∈ ω},
indexed by subsets ω of {1,2 . . . ,n}. Show that two dyadic cubes have a common
ancestor if only if they lie in the same orthant Hω .

2 Higher-dimensional octants.
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6.3.2. Prove that every cube of length L in Rn is contained in the union of 3n dyadic
cubes, each having length less than L.

6.3.3. Let k ∈ Z. Given a cube Q in Rn of side length L satisfying 2k−1 ≤ L < 2k (if
Q is open, we could assume that 2k−1 ≤ L ≤ 2k), prove that there is a dyadic cube
DQ of side length 2k and a σ = (σ1, . . . ,σn), where σ j ∈ {0,1/2,−1/2} such that
such that Q � 2kσ +DQ.

6.3.4. Prove that ‖Md‖L1(Rn)→L1,∞(Rn) = 1.

6.3.5. Show that BMOd(Rn) is a complete.

6.3.6. Prove that the function log |x| χx1>0 · · ·χxn>0 lies in BMOd(Rn) but not in
BMO(Rn).

6.3.7. Prove that the function
∣∣ log |x|∣∣p log(∣∣ log |x|∣∣χx>0+1

)
χx>0 lies in BMOd(R)

when 0 < p < 1.
[
Hint: Use Exercise 6.1.8.

]

6.3.8. Given a locally integrable function f on Rn, consider the dyadic average
operator Ek( f )(x) = ∑Q∈Dk

fQ χQ(x) and the martingale maximal function G( f ) =
supk∈Z |Ek( f )|. Prove the following assertions:

(a) G is of weak type (1,1) with constant at most 1.
(b) EN( f ) → f a.e. as N → ∞ for all f ∈ L1loc(R

n). (Relate this to Exercise 1.5.5.)
(c) EN( f ) → 0 as N → −∞ for all f ∈ Lp(Rn) with 1 ≤ p < ∞.

6.4 The Sharp Maximal Function

Recall the Hardy–Littlewood maximal function with respect to cubes:

Mc( f )(x) = sup
Q�x

1
|Q|

∫
Q

| f (y)|dy

defined for f ∈ L1loc(R
n). In this section we introduce a related maximal operator

that controls the mean oscillation of a function near any point.

Definition 6.4.1. Given a locally integrable function f on Rn, we define its sharp
maximal function M#

c ( f ) as

M#
c ( f )(x) = sup

Q�x
1

|Q|
∫
Q

∣∣ f (t)− fQ
∣∣dt, (6.4.1)

where the supremum is taken over all cubes Q in Rn that contain the given point x.

The sharp maximal function is also related to the space BMO. In fact,

BMO(Rn) = { f ∈ L1loc(R
n) : M#

c ( f ) ∈ L∞(Rn)}
and ‖ f‖BMO = ‖M#

c ( f )‖L∞ .
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There is also a dyadic version of the sharp maximal function.

Definition 6.4.2. The dyadic sharp maximal function is defined as

M#
d( f )(x) = sup

Q∈D ,Q�x
1

|Q|
∫
Q

∣∣ f (t)− fQ
∣∣dt, (6.4.2)

where D is the set of all dyadic cubes in Rn.

Obviously, the M#
d is pointwise smaller than M#

c . Also, in analogy with the
non-dyadic case we have BMOd(Rn) = { f ∈ L1loc(R

n) : M#
d( f ) ∈ L∞(Rn)} and

‖ f‖BMOd = ‖M#
d( f )‖L∞ .

Proposition 6.4.3. Let f ∈ L1loc(R
n). Suppose that there exists an A> 0 such that for

all cubes Q (resp., dyadic cubes) that contain a fixed x in Rn there exists a constant
cQ such that

1
|Q|

∫
Q

| f (y)− cQ|dy ≤ A.

Then M#
c ( f )(x) ≤ 2A (resp., M#

d( f )(x) ≤ 2A).

Proof. Fix x ∈ Rn. For a cube Q (resp., dyadic cube) that contains x we have

∣∣ f − fQ
∣∣
Q ≤ | f − cQ|Q+

∣∣ fQ − cQ
∣∣
Q ≤ | f − cQ|Q+

1
|Q|

∫
Q

| f (x)− cQ|dx ≤ 2A.

Taking the supremum over all cubesQ (resp., dyadic cubes) that contain x, we obtain
M#

c ( f )(x) ≤ 2A [resp.,M#
d( f )(x) ≤ 2A]. �

We discuss some properties of M#
c , M

#
d and their connections withMc,Md .

Proposition 6.4.4. Let f ,g be locally integrable functions on Rn. Then

(1) We have M#
c ( f +g) ≤ M#

c ( f )+M#
c (g) and M#

d( f +g) ≤ M#
d( f )+M#

d(g).
(2) M#

c ( f ) ≤ 2Mc( f ) and M#
d( f ) ≤ 2Md( f ).

(3) M#
c (| f |) ≤ 2M#

c ( f ) and M#
d(| f |) ≤ 2M#

d( f ).

Proof. We skip the proof of (1) as it is straightforward. The proof of (2) follows
directly from (6.4.1) and (6.4.2) using the inequality | f − fQ| ≤ | f |+ | f |Q. To prove
(3) for each cube Q (resp., dyadic cube) that contains a given x in Rn we let cQ =
| fQ|. Then the inequality | | f |− | fQ| | ≤ | f − fQ| implies that

1
|Q|

∫
Q

∣∣| f (y)|− | fQ|∣∣dy ≤ M#
c ( f )(x)

[or analogously withM#
d( f )(x) on the right if the cube Q is dyadic]. It follows from

Proposition 6.4.3 that M#
c (| f |) ≤ 2M#

c ( f ) [resp.,M
#
d(| f |) ≤ 2M#

d( f )]. �

The next result lays the foundation of norm comparability between Md and M#
d .
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Theorem 6.4.5. (A good lambda distributional inequality for Md) For all γ > 0,
all λ > 0, and all locally integrable functions f on Rn, we have the estimate
∣∣{x ∈ Rn : Md( f )(x) > 2λ , M#

d( f )(x) ≤ γλ
}∣∣ ≤ 2n γ

∣∣{x ∈ Rn : Md( f )(x) > λ
}∣∣.

Proof. We may suppose that the set Ωλ = {x ∈Rn : Md( f )(x)> λ} has finite mea-
sure; otherwise, there is nothing to prove. Then for each x ∈ Ωλ there is a maximal
(with respect to inclusion) dyadic cube Qx containing x such that

1
|Qx|

∫
Qx

| f (y)|dy > λ ; (6.4.3)

otherwise, Ωλ would have infinite measure. Notice that the entire Qx is contained
in Ωλ , since given z ∈ Qx the average (6.4.3) shows that z ∈ Ωλ . Let Qj be the
collection of all such maximal dyadic cubes containing all x in Ωλ , i.e., {Qj} j =
{Qx : x ∈ Ωλ }. Maximal dyadic cubes are disjoint; hence any two different Qj are
disjoint. Moreover, we note that if x,y ∈ Qj, then Qj = Qx = Qy. It follows that
Ωλ =

⋃
j Q j and also this set contains

{x ∈ Rn : Md( f )(x) > 2λ , M#
d( f )(x) ≤ γλ

}
.

Thus, in order to prove the required estimate, it will suffice to show that for all Qj

we have
∣∣{x ∈ Qj : Md( f )(x) > 2λ , M#

d( f )(x) ≤ γλ
}∣∣ ≤ 2nγ

∣∣Qj
∣∣ , (6.4.4)

for once (6.4.4) is established, the conclusion follows by summing on j.
For each cube Qj, we let Q′

j be the unique dyadic parent of Qj, i.e., the unique
ancestor with double side length. We will show that for each j we have

{
x ∈ Qj :Md( f )(x) > 2λ

}
�

{
x ∈ Qj :Md

((
f − fQ′

j

)
χQj

)
(x) > λ

}
. (6.4.5)

We fix x ∈ Qj such that Md( f )(x) > 2λ . Then the supremum

sup
R�x

1
|R|

∫
R
| f (y)|dy=Md( f )(x) (6.4.6)

is taken over all dyadic cubes R that either contain Qj or are contained in Qj (since
Qj∩R �= /0). If R�Qj, the maximality ofQj implies that (6.4.3) does not hold for R;
thus the average of | f | over R is at most λ . Thus, ifMd( f )(x)> 2λ , then the average
in (6.4.6) is bigger than 2λ for some dyadic cube R contained (not properly) in Qj.
Therefore, if x ∈ Qj and Md( f )(x) > 2λ , then we can replace f by f χQj in (6.4.6)
and we must have Md( f χQj)(x) > 2λ . Then for x ∈ Qj we have

Md

((
f − fQ′

j

)
χQj

)
(x) ≥ Md

(
f χQj)(x)−

∣∣ fQ′
j

∣∣ > 2λ −λ = λ ,
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since | fQ′
j
| ≤ | f |Q′

j
≤ λ because of the maximality of Qj. This proves (6.4.5), hence

∣∣{x ∈ Qj :Md( f )(x) > 2λ
}∣∣ ≤

∣∣∣
{
x ∈ Qj :Md

((
f − fQ′

j

)
χQj

)
(x) > λ

}∣∣∣ , (6.4.7)

and using the fact that Md is of weak type (1,1) with constant 1, by Theorem 6.3.3
(b), we control the last expression in (6.4.7) by

1
λ

∫
Qj

∣∣ f (y)− fQ′
j

∣∣dy =
1
λ

∫
Rn

∣∣ f (y)− fQ′
j

∣∣χQj dy

≤ 2n|Qj|
λ

1
|Q′

j|
∫
Q′

j

∣∣ f (y)− fQ′
j

∣∣dy

≤ 2n|Qj|
λ

M#
d( f )(ξ j)

(6.4.8)

for all ξ j ∈ Qj. In proving (6.4.4) we may assume that for some ξ j ∈ Qj we have
M#

d( f )(ξ j) ≤ γλ ; otherwise, the set on the left in (6.4.4) is empty and has zero
measure. For this ξ j, using (6.4.7) and (6.4.8) we obtain (6.4.4). �

We now use the distributional inequality of Theorem 6.4.5 to deduce that several
norms of Md( f ) are controlled by the corresponding norms of M#

d( f ).

Theorem 6.4.6. Fix 0< p0 < ∞ and let p satisfy p0 < p< ∞. Then for all functions
f in L1loc(R

n) with the property

for every B > 0 =⇒ CB( f ) = sup
0<λ≤B

λ p0
∣∣{Md( f ) > λ

}∣∣ < ∞, (6.4.9)

we have ∥∥Md( f )
∥∥
Lp(Rn) ≤ 2n+p+2+ 1

p
∥∥M#

d( f )
∥∥
Lp(Rn) (6.4.10)

and also ∥∥Md( f )
∥∥
Lp,∞(Rn) ≤ 2n+p+2+ 1

p
∥∥M#

d( f )
∥∥
Lp,∞(Rn). (6.4.11)

Proof. Fix p0 < p < ∞. For a positive real number N we set

IN =
∫ N

0
pλ p−1

∣∣{x ∈ Rn : Md( f )(x) > λ
}∣∣dλ .

We note that IN is finite, as it is bounded by

∫ N

0
pλ p−p0−1CN( f )dλ =

pNp−p0

p− p0
CN( f ) < ∞,

where CN( f ) is defined in (6.4.9). We now write

IN = 2p
∫ N

2

0
pλ p−1

∣∣{x ∈ Rn : Md( f )(x) > 2λ
}∣∣dλ
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and we use Theorem 6.4.5 to obtain the following sequence of inequalities:

IN ≤ 2p
∫ N

2

0
pλ p−1

∣∣{x ∈ Rn : Md( f )(x) > 2λ , M#
d( f )(x) ≤ γλ

}∣∣dλ

+2p
∫ N

2

0
pλ p−1

∣∣{x ∈ Rn : M#
d( f )(x) > γλ

}∣∣dλ

≤ 2p2nγ
∫ N

2

0
pλ p−1

∣∣{x ∈ Rn : Md( f )(x) > λ
}∣∣dλ

+2p
∫ N

2

0
pλ p−1

∣∣{x ∈ Rn : M#
d( f )(x) > γλ

}∣∣dλ

≤ 2p2nγ IN +
2p

γ p

∫ Nγ
2

0
pλ p−1

∣∣{x ∈ Rn : M#
d( f )(x) > λ

}∣∣dλ .

At this point we pick a γ such that 2p2nγ = 1/2. Since IN is finite, we can subtract
from both sides of the inequality the quantity 1

2 IN to obtain

IN ≤ 2p+12p(n+p+1)
∫ Nγ

2

0
pλ p−1

∣∣{x ∈ Rn : M#
d( f )(x) > λ

}∣∣dλ ,

from which we obtain (6.4.10) by letting N → ∞.
Using Theorem 6.4.5 again we write

∣∣{x ∈ Rn : Md( f )(x) > 2λ
}∣∣

≤ ∣∣{x ∈ Rn : Md( f )(x) > 2λ , M#
d( f )(x) ≤ γλ

}∣∣+ ∣∣{x ∈ Rn : M#
d( f )(x) > γλ

}∣∣
≤ 2n γ

∣∣{x ∈ Rn : Md( f )(x) > λ
}∣∣+ ∣∣{x ∈ Rn : M#

d( f )(x) > γλ
}∣∣.

Multiplying by λ p and taking the supremum over λ ≤ N, we obtain

sup
0<λ≤N

λ p
∣∣{x ∈ Rn : Md( f )(x) > 2λ

}∣∣

≤ 2n γ sup
0<λ≤N

λ p
∣∣{x ∈ Rn : Md( f )(x) > λ

}∣∣+ 1
γ p

∥∥M#
d( f )

∥∥p
Lp,∞ ,

or equivalently,

2−p sup
0<t≤2N

t p
∣∣{x ∈ Rn : Md( f )(x) > t

}∣∣

≤ 2n γ sup
0<λ≤N

λ p
∣∣{x ∈ Rn : Md( f )(x) > λ

}∣∣+ 1
γ p

∥∥M#
d( f )

∥∥p
Lp,∞

≤ 2n γ sup
0<λ≤2N

λ p
∣∣{x ∈ Rn : Md( f )(x) > λ

}∣∣+ 1
γ p

∥∥M#
d( f )

∥∥p
Lp,∞ .

Notice that (6.4.9) implies that
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sup
0<λ≤2N

λ p
∣∣{x ∈ Rn : Md( f )(x) > λ

}∣∣ ≤ (2N)p−p0C2N( f ) < ∞,

whereCN( f )was defined in the proof of (6.4.10). Choosing γ such that 2nγ = 1
22

−p,
we obtain

1
2
2−p sup

0<t≤2N
t p

∣∣{x ∈ Rn : Md( f )(x) > t
}∣∣ ≤ 2p(n+p+1)∥∥M#

d( f )
∥∥p
Lp,∞ .

Letting N → ∞, we deduce (6.4.11). �

Remark 6.4.7. Let 1< p0 < ∞. Functions in Lp0,∞ satisfy condition (6.4.9), so The-
orem 6.4.6 applies to functions f in Lp0,∞.

Exercises

6.4.1. Construct examples to show that Md and Mc are not pointwise comparable.

6.4.2. Prove that for all cubes Q in Rn and all points x we have

1
2
M#

c ( f )(x) ≤ sup
Q�x

inf
a∈C

1
|Q|

∫
Q

| f (y)−a|dy ≤ M#
c ( f )(x).

6.4.3. For f ∈ L1loc(R
n) define the sharp maximal function with respect to balls

M#( f )(x) = sup
B

1
|B|

∫
B
| f (y)− fB|dy,

where the supremum is taken over all balls that contain a given point x. Prove a
version of Proposition 6.4.3 for M#. Deduce that M# is pointwise equivalent toM#

c .

6.4.4. Let f ∈ L1loc(R
n) and x ∈ Rn. Prove that

M#
c ( f )(x) ≤ sup

Q�x
1

|Q|2
∫
Q

∫
Q

| f (y)− f (z)|dydz ≤ 2M#
c ( f )(x),

where the supremum is taken over all cubes Q that contain x. Obtain that

∥∥ f∥∥BMO ≈ sup
Q

1
|Q|2

∫
Q

∫
Q

| f (y)− f (z)|dydz.

6.4.5. Let 0 < s < n. Show that the Riesz potential Is maps Ln/s(Rn) to BMO.[
Hint: Show that for any R > 0 and x ∈ Rn we have

1
|B(0,R)|2

∫
B(0,R)

∫
B(0,R)

∣∣∣ 1
|x− y|n−s − 1

|x− z|n−s

∣∣∣dydz ≤ CR
(|x|+R)n−s+1
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by considering the cases |x| ≤ 2R and |x| > 2R. Use this estimate to prove

1
|B(0,R)|2

∫
B(0,R)

∫
B(0,R)

∣∣Is( f )(y)−Is( f )(z)
∣∣dydz ≤C′∥∥ f∥∥Ln/s(Rn)

by Hölder’s inequality, where C′ is independent of f and R. By translation, this
estimate is valid over any ball and thus over any cube. Then use Exercise 6.4.4.

]

6.4.6. Suppose fk, f ∈ L1loc(R
n), and | fk| ≤C | f | a.e. for k = 1,2, . . . , where C is a

positive constant. Suppose that fk → f a.e. as k → ∞. Show that

M#
c ( f ) ≤ liminf

k→∞
M#

c ( fk).

6.4.7. (a) Let f , fk, k= 1,2, . . . be functions in L∞(Rn) such that ‖ fk − f‖L∞ → 0 as
k → ∞. Show that M#

c ( fk) → M#
c ( f ) pointwise everywhere.

(b) Let f , fk, k = 1,2, . . . , be functions in L1(Rn). Suppose that fk → f in L1(Rn)
and the sequence { fk}∞

k=1 is equicontinuous in L1 in the following sense: For every
ε > 0 there is a δ > 0 such that

|A| < δ =⇒
∫
A
| fk|dy < ε for all k.

Prove that M#
c ( fk) → M#

c ( f ) pointwise everywhere.

6.5 Interpolation Using BMO

In this section we discuss an interpolation theorem in which the space L∞ is replaced
by BMO. The sharp function plays a key role in this result. Before doing so, we state
a corollary of Theorem 6.4.6 that is quite useful in this type of interpolation.

Proposition 6.5.1. Let 0< p0 < ∞. Then for any p with p0 < p< ∞ and for all f in
L1loc(R

n) satisfying (6.4.9) [in particular if Md( f ) ∈ Lp0,∞] we have
∥∥ f∥∥Lp(Rn) ≤ ∥∥Md( f )

∥∥
Lp(Rn)

≤ 2n+p+2+ 1
p
∥∥M#

d( f )
∥∥
Lp(Rn)

≤ 2n+p+2+ 1
p
∥∥M#

c ( f )
∥∥
Lp(Rn)

≤ 2n+p+3+ 1
p
∥∥Mc( f )

∥∥
Lp(Rn).

(6.5.1)

Analogously, we have
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∥∥ f∥∥Lp,∞(Rn) ≤ ∥∥Md( f )
∥∥
Lp,∞(Rn)

≤ 2n+p+2+ 1
p
∥∥M#

d( f )
∥∥
Lp,∞(Rn)

≤ 2n+p+2+ 1
p
∥∥M#

c ( f )
∥∥
Lp,∞(Rn)

≤ 2n+p+3+ 1
p
∥∥Mc( f )

∥∥
Lp,∞(Rn).

(6.5.2)

If in addition p > 1, then all of the above inequalities become equivalences.

Proof. Since for every point in Rn there is a sequence of dyadic cubes shrinking to
it, the Lebesgue differentiation theorem yields that for almost every point x in Rn

the averages of the locally integrable function f over the dyadic cubes containing
x converge to f (x). Consequently, | f | ≤ Md( f ) a.e., hence the first inequalities in
(6.5.1) and (6.5.2) hold. Theorem 6.4.6 provides the second inequalities in both
(6.5.1) and (6.5.2). The third inequalities are trivial, while the last inequalities are
consequences of Proposition 6.4.4 (2).

Finally, if p > 1, then (1.4.7) and Exercise 1.4.8 provide the missing estimates
that reverse all inequalities in (6.5.1) and (6.5.2), respectively. �

For the purposes of the next result we set L∞
fin to be the space of all L∞ functions

that are supported in a set of finite measure.

Theorem 6.5.2. Let 1 ≤ p0 < ∞. Let T be a linear operator that maps Lp0(Rn) to
Lp0,∞(Rn) with bound A0 and L∞

fin(R
n) to BMO(Rn) with bound A1. Then for all p

with p0 < p < ∞ there is an extension of T on Lp(Rn) and a constant Cn,p,p0 such
that for all f ∈ Lp(Rn) we have

∥∥T ( f )∥∥Lp(Rn) ≤Cn,p,p0 A
p0
p
0 A

1− p0
p

1

∥∥ f∥∥Lp(Rn) . (6.5.3)

Proof. We consider two cases according to the value of p0.
Case I: p0 > 1. Define the operator S( f ) =M#

c (T ( f )) for f ∈ Lp0 +L∞
fin. It is easy

to see that S is a subadditive operator. We first prove that S maps L∞
fin to L∞. Indeed,

for f ∈ L∞
fin we have∥∥S( f )∥∥L∞ =

∥∥M#
c (T ( f ))

∥∥
L∞ =

∥∥T ( f )∥∥BMO ≤ A1
∥∥ f∥∥L∞ .

Next we show that S maps Lp0 to Lp0,∞. For f ∈ Lp0 we have
∥∥S( f )∥∥Lp0 ,∞ =

∥∥M#
c (T ( f ))

∥∥
Lp0 ,∞

≤ 2
∥∥Mc(T ( f ))

∥∥
Lp0 ,∞

≤ 2
3np0
p0 −1

∥∥T ( f )∥∥Lp0 ,∞ (by Exercise 1.4.8)

≤ 2
3np0
p0 −1

A0
∥∥ f∥∥Lp0 .
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Interpolating between these estimates using Theorem 1.3.4, with F being the
space of finitely simple functions, we deduce

∥∥M#
c (T ( f ))

∥∥
Lp =

∥∥S( f )∥∥Lp ≤ 2
( p
p− p0

) 1
p
(
2

3np0
p0 −1

A0

) p0
p
A
1− p0

p
1

∥∥ f∥∥Lp

for all f ∈F , where p0 < p< ∞. Consider now a function h inF . Then h∈ Lp0(Rn)
and by assumption T (h) ∈ Lp0,∞(Rn). This gives that Md(T (h)) ∈ Lp0,∞(Rn) by
Theorem 6.3.3 (d); then Proposition 6.5.1 [in particular (6.5.1)] is applicable and
gives

∥∥T (h)∥∥Lp ≤ 2n+p+2+ 1
p
∥∥M#

c (T (h))
∥∥
Lp ≤Cn,p,p0 A

p0
p
0 A

1− p0
p

1

∥∥h∥∥Lp .

From this and the density ofF in Lp we derive (6.5.3) for all f ∈ Lp(Rn).
Case II: p0 = 1. We fix a δ ∈ (0,1) and we define the following version of S

Sδ ( f ) =M#
c (|T ( f )|δ )

1
δ

on L1+L∞. We prove that Sδ maps L∞
fin to L

∞. Indeed, for f ∈ L∞
fin one has

∥∥Sδ ( f )
∥∥
L∞ =

∥∥M#
c (|T ( f )|δ )

1
δ
∥∥
L∞

=
∥∥M#

c (|T ( f )|δ )
∥∥ 1

δ
L∞

=
∥∥|T ( f )|δ ∥∥ 1

δ
BMO

≤ 2
1
δ
∥∥T ( f )∥∥BMO (by Exercise 6.1.7)

≤ 2
1
δ A1

∥∥ f∥∥L∞ .

At the other endpoint for f ∈ L1 we write

∥∥Sδ ( f )
∥∥
L1,∞ =

∥∥M#
c (|T ( f )|δ )

1
δ
∥∥
L1,∞

=
∥∥M#

c (|T ( f )|δ )
∥∥ 1

δ

L
1
δ ,∞

≤
( 3nδ 2

δ
1
δ −1

) 1
δ ∥∥|T ( f )|δ ∥∥ 1

δ

L
1
δ ,∞

[by (1.4.7)]

=
( 3nδ2
1−δ

) 1
δ ∥∥T ( f )∥∥L1,∞

≤
( 3nδ2
1−δ

) 1
δ
A0

∥∥ f∥∥L1 .

We interpolate between the estimates Sδ : L∞
fin → L∞ and Sδ : L1 → L1,∞, apply-

ing Theorem 1.3.4 with F , the space of all finitely simple functions on Rn. We
deduce that for all 1 < p < ∞ and all f ∈ F one has
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∥∥M#
c (|T ( f )|δ )

∥∥ 1
δ
Lp/δ =

∥∥Sδ ( f )
∥∥
Lp

≤ 2
( p
p−1

) 1
p
[( 3nδ2

1−δ

) 1
δ
A0

]1
p (
2

1
δ A1

)1− 1
p
∥∥ f∥∥Lp .

(6.5.4)

In order to prove (6.5.3) we fix p with 1 < p < ∞ and consider a function h in
F . Then h ∈ L1(Rn) and thus by assumption T (h) lies in L1,∞(Rn). It follows that
|T (h)|δ lies in L1/δ ,∞(Rn) hence Md(|T (h)|δ ) ∈ L1/δ ,∞(Rn) by Theorem 6.3.3 (d).
Finally Proposition 6.5.1 applies (with p0 = 1/δ ) and gives

∥∥T (h)∥∥Lp =
(∥∥|T (h)|δ ∥∥

Lp/δ

) 1
δ ≤

(
2n+

p
δ +2+ δ

p
∥∥M#

c (|T (h)|δ )
∥∥
Lp/δ

) 1
δ
. (6.5.5)

Inserting the estimate in (6.5.4) to (6.5.5) we obtain (6.5.3) with h in place of f ,
whereCn,p,1 also depends on δ (but we could take δ = 1/2). Finally, by the density
of F in Lp(Rn) we deduce (6.5.3) for all f ∈ Lp(Rn). �

Remark 6.5.3. Theorem 6.5.2 is also valid if BMO is replaced by the bigger space
BMOd . In fact one replaces M#

c by M#
d and uses a version of Exercise 6.1.7 with

BMOd in place of BMO.

Next, we turn to an application of Theorem 6.5.2.

Theorem 6.5.4. Let K be a locally integrable function on Rn \ {0} which satisfies
(3.3.3) and (3.3.4) (with constant A2), and associated with K there is aW ∈S ′(Rn)
and a sequence δk ↓ 0 as in (3.3.7). Assume that the operator T given by convolution
with W admits a bounded extension from L2 to L2. Then for all f ∈ L∞

fin we have

∥∥T ( f )∥∥BMO ≤ 2
(
A2+(2

√
n)

n
2 ‖T‖L2→L2

)∥∥ f∥∥L∞ . (6.5.6)

Proof. Let us fix a cube Q centered at a point cQ and let Q∗ be the cube with the
same center and with sides parallel to those of Q and side length �(Q∗) = 2

√
n�(Q),

where �(Q) is the side length of Q. Given a function f bounded whose support has
finite measure we split f = f0+ f∞, where f0 = f χQ∗ and f∞ = f χ(Q∗)c . For fixed
x ∈ Q we claim that T ( f∞)(x) is well defined and is equal to

T ( f∞)(x) = lim
δk↓0

∫
|x−y|≥δk

K(x− y) f (y)χ(Q∗)c(y)dy=
∫
(Q∗)c

K(x− y) f (y)dy,

and the reason is that the last integral is absolutely convergent; indeed, for y∈ (Q∗)c
and x ∈ Q we have |x− y| ≥ √

n�(Q), thus

|K(x− y)| ≤ A1

|x− y|n ≤ A1(√
n�(Q)

)n
and the function f is bounded and supported in a set of finite measure.

We set
CQ = T ( f∞)(cQ).
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Then we write
1

|Q|
∫
Q

|T ( f )(x)−CQ|dx

≤ 1
|Q|

∫
Q

|T ( f0)(x)|dx+ 1
|Q|

∫
Q

|T ( f∞)(x)−T ( f∞)(cQ)|dx

=
1

|Q|
∫
Q

|T ( f0)(x)|dx+ 1
|Q|

∫
Q

∣∣∣∣
∫
(Q∗)c

[
K(x− y)−K(cQ − y)

]
f (y)dy

∣∣∣∣dx

≤
(

1
|Q|

∫
Q

|T ( f0)(x)|2 dx
) 1

2

+

∥∥ f∥∥L∞

|Q|
∫
Q

∫
(Q∗)c

∣∣K(x− y)−K(cQ − y)
∣∣dydx

≤ ‖T‖L2→L2

(
1

|Q|
∫
Q∗

| f0(x)|2 dx
) 1

2

+

∥∥ f∥∥L∞

|Q|
∫
Q
A2 dx

≤ (
(2

√
n)

n
2 ‖T‖L2→L2 +A2

)∥∥ f∥∥L∞ ,

where we just need to explain why
∫
(Q∗)c

∣∣K(x− cQ+(cQ − y))−K(cQ − y)
∣∣dy ≤ A2.

This is because

|cQ − y| ≥ √
n�(Q)

as y /∈ Q∗ but

|x− cQ| ≤
√
n
2

�(Q)

since x ∈ Q. Thus

|cQ − y| ≥ 2|x− cQ|
and condition (3.3.4) applies. See
Figure 6.1.

x

Q

Q∗

y

√
n�(Q)

1
2 �(Q)

Fig. 6.1 A cube Q and the augmented cube Q∗
with �(Q∗)=2

√
n�(Q). Here x ∈ Q and y /∈ Q∗.

Finally, we obtain (6.5.6) using Proposition 6.1.3. �

Theorem 6.5.4 can be used to obtain Lp bounds for the singular integrals dis-
cussed in Chapter 3 via an approach that is not based on Calderón–Zygmund the-
ory. In fact, if T is a singular integral operator as in the statement of Theorem 6.5.4,
then T maps L2 to L2 and L∞

fin to BMO. Theorem 6.5.2 implies that T admits a
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bounded extension on Lp(Rn) for 2 < p < ∞. By duality one obtains boundedness
for 1 < p < 2.

Exercises

6.5.1. Let 1 < q < p < ∞ and define θ by 1
p = 1−θ

q . Prove that there is a constant
Cn,p,q such that for all locally integrable functions f on Rn we have

∥∥ f∥∥Lp ≤Cn,p,q
∥∥ f∥∥1−θ

Lq,∞

∥∥ f∥∥θ
BMO .

[
Hint: Assuming f ∈ Lq,∞(Rn) implies Md( f ) ∈ Lq,∞(Rn) and allows the use of
Proposition 6.5.1. You may also need Proposition 1.3.5.

]

6.5.2. Let δ < p< ∞ andC= 2
1
δ 3

n
δ
( p
p−δ

) 1
δ . Prove that for all functions g such that

|g|δ ∈ L1loc(R
n) we have

∥∥M#
c (|g|δ )1/δ ∥∥

Lp ≤C
∥∥g∥∥Lp

and ∥∥M#
c (|g|δ )1/δ ∥∥

Lp,∞ ≤C
∥∥g∥∥Lp,∞ .

[
Hint: Use the results of Exercises 1.3.4 and 1.4.8.

]

6.5.3. Let 0< δ < p0 < p< ∞. Prove that there is a constantC=Cp,δ ,n,p0 such that
for all functions g ∈ Lp0,∞(Rn) we have

∥∥g∥∥Lp ≤C
∥∥M#

c (|g|δ )1/δ ∥∥
Lp

and ∥∥g∥∥Lp,∞ ≤C
∥∥M#

c (|g|δ )1/δ ∥∥
Lp,∞ .

Combine this result with the preceding exercise to deduce that for all functions
g ∈ Lp0,∞(Rn) we have

∥∥g∥∥Lp ≈ ∥∥M#
c (|g|δ )1/δ ∥∥

Lp and
∥∥g∥∥Lp,∞ ≈ ∥∥M#

c (|g|δ )1/δ ∥∥
Lp,∞ .

6.5.4. (Extension of Exercise 6.5.1) Let 0 < q < p < ∞ and define θ by 1
p = 1−θ

q .

Prove that there is a constant Cn,p,q such that for all f ∈ L1loc(R
n) we have

∥∥ f∥∥Lp ≤Cn,p,q
∥∥ f∥∥1−θ

Lq,∞

∥∥ f∥∥θ
BMO .

[
Hint: Use Exercises 6.5.1 and 6.5.3.

]



Chapter 7
Hardy Spaces

7.1 Smoothness and Cancellation

Hardy spaces are spaces of functions or distributions that have vanishing integral
or moments, i.e., objects that contain cancellation. To properly exploit cancellation
we need to understand how it pairs with smoothness. We achieve this by studying
the action of functions with smoothness on other ones with cancellation and assume
that these functions are scaled differently.

We denote by vn the volume of the unit ball in Rn. An inequality that will appear
in the sequel is the following:

∫
Rn

dx
(1+ |x|)M ≤ vnM

M−n
, when M > n. (7.1.1)

To verify (7.1.1), using polar coordinates we write

∫
Rn

dx
(1+ |x|)M = nvn

∫ ∞

0

rn−1

(1+ r)M
dr ≤ nvn

∫ 1

0
rn−1dr+nvn

∫ ∞

1
rn−1−Mdr,

and the conclusion follows by calculating these integrals and adding the outputs.

Theorem 7.1.1. Suppose that Φ andΨ are functions on Rn that satisfy

|Φ(x)| ≤ A
(1+ |x|)M , |Ψ(x)| ≤ B

(1+ |x|)K

where M,K > n. Then for t,s > 0 we have
∣∣∣∣
∫
Rn

Φt(x−a)Ψs(x−b)dx
∣∣∣∣ ≤ C0ABmax(t,s)−n

(
1+max(t,s)−1|a−b|)min(M,K) , (7.1.2)

for some M,K > n and all x ∈ Rn. Then for t,s > 0 we have

C0 = vn

(
M4K

M−n
+

K4M

K−n

)
.
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Consequently, for each y ∈ Rn we have

∣∣(Φt ∗Ψs)(y)
∣∣ ≤ C0ABmax(t,s)−n

(
1+max(t,s)−1|y|)min(M,K) . (7.1.3)

Proof. By symmetry we may assume that t ≤ s. In the case s−1|a− b| ≤ 1 we use
that

s−n

(1+ s−1|x−b|)K ≤ s−n ≤ s−n2min(M,K)

(1+ s−1|a−b|)min(M,K) .

Then (7.1.2) is a consequence of the estimate

∫
Rn

At−n

(1+ t−1|x−a|)M
Bs−n

(1+ s−1|x−b|)K dx

≤ ABs−n2min(M,K)

(1+ s−1|a−b|)min(M,K)

∫
Rn

t−n

(1+ t−1|x−a|)M dx

≤ ABs−n

(1+ s−1|a−b|)min(M,K)
vnM 2K

M−n
,

where the last inequality follows from (7.1.1) and the fact that min(M,K) ≤ K.
We now consider the case s−1|a−b| ≥ 1. Let Ha and Hb be the two half-spaces,

containing the points a and b, respectively, formed by the hyperplane perpendicular
to the line segment [a,b] at its midpoint. Write

∫
Rn

At−n

(1+ t−1|x−a|)M
Bs−n

(1+ s−1|x−b|)K dx=
∫
Ha

· · · dx+
∫
Hb

· · · dx.

For x ∈ Ha use that |x−b| ≥ 1
2 |a−b| to obtain

∫
Ha

At−n

(1+ t−1|x−a|)M
Bs−n

(1+ s−1|x−b|)K dx

≤ Bs−n

(1+ s−1 1
2 |a−b|)K

∫
Rn

At−n

(1+ t−1|x−a|)M dx

≤ ABs−n

(1+ s−1|a−b|)K
vnM 2K

M−n
.

For x ∈ Hb we use that |x−a| ≥ 1
2 |a−b| to write

∫
Hb

At−n

(1+ t−1|x−a|)M
Bs−n

(1+ s−1|x−b|)K dx

≤ At−n

(1+ t−1 1
2 |a−b|)M

∫
Rn

Bs−n

(1+ s−1|x−b|)K dx
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≤ At−n2M

(t−1|a−b|)M
BvnK
K−n

=
At−n2M(t/s)M

(s−1|a−b|)M
BvnK
K−n

≤ AB(t/s)(M−n)s−n

(1+ s−1|a−b|)M
4M vnK
K−n

(as s−1|a−b| ≥ 1)

≤ ABs−n

(1+ s−1|a−b|)M
vnK 4M

K−n
.

Combining the estimates over Ha and Hb we deduce (7.1.2). Taking a = 0, y = b,
and considering the reflection ofΨ about 0, we derive (7.1.3) from (7.1.2). �

Theorem 7.1.2. Fix a,b ∈ Rn and N ∈ Z+ ∪{0}. Let Φ ∈ C N+1(Rn) be such that

∑
|β |=N+1

|∂ β Φ(x)| ≤ A
(1+ |x|)M ,

where M ≥ 0. LetΨ be another function on Rn that satisfies

|Ψ(x)| ≤ B
(1+ |x|)K ,

where K > N+M+n+1 and
∫
Rn

Ψ(x)xβ dx= 0 for all |β | ≤ N. (7.1.4)

Then when 0 < s ≤ t < ∞ we have

∣∣∣∣
∫
Rn

Φt(x−a)Ψs(x−b)dx
∣∣∣∣ ≤ CNC(K−N−M,n)ABt−n

(
s
t

)N+1

(1+ t−1|a−b|)M , (7.1.5)

where C(K −N −M,n) = vn(K−N−M−1)
K−N−M−n−1 and CN = ∑|β |=N+1

1
β ! . Consequently, for

all y ∈ Rn, it holds that

∣∣(Φt ∗Ψs)(y)
∣∣ ≤ CNC(K−N−M,n)ABt−n

(
s
t

)N+1

(1+ t−1|y|)M . (7.1.6)

Proof. To prove this assertion, we make use of the Taylor expansion formula

F(x0+h) = ∑
|α|≤N

∂ αF(x0)
α!

hα +R(h,x0,N) , (7.1.7)

where x0,h ∈ Rn, N ∈ Z+ ∪{0}, and

R(h,x0,N) = (N+1) ∑
|β |=N+1

hβ

β !

∫ 1

0
(1−θ)N∂ βF(x0+θh)dθ . (7.1.8)
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is the remainder in integral form. Here F is a C N+1 function on Rn.
We set x0 = b−a and h= x−b so that x0+h= x−a. Using (7.1.7), (7.1.8), and

the cancellation property (7.1.4) (which is also valid forΨs), we write∣∣∣∣
∫
Rn

Φt(x−a)Ψs(x−b)dx
∣∣∣∣

=
∣∣∣∣
∫
Rn

[
Φt(x−a)− ∑

|γ|≤N

∂ γ Φt(b−a)
γ!

(x−b)γ
]
Ψs(x−b)dx

∣∣∣∣

=
∣∣∣∣
∫
Rn

[
(N+1) ∑

|β |=N+1

(x−b)β

β !

∫ 1

0
(1−θ)N

∂ β Φ( b−a+θ(x−b)
t )

tn+N+1 dθ
]
Ψs(x−b)dx

∣∣∣∣

≤ ∑
|β |=N+1

N+1
β !

∫
Rn

∫ 1

0

t−nt−N−1(1−θ)N

(1+ t−1|(1−θ)b+θx−a|)M
ABs−n|x−b|N+1

(1+ s−1|x−b|)K dθ dx

≤ ∑
|β |=N+1

N+1
β !

∫
Rn

∫ 1

0

t−n(s/t)N+1(1−θ)N

(1+ t−1|ξ θ
b,x −a|)M

ABs−n

(1+ s−1|x−b|)K−N−1 dθ dx, (7.1.9)

where we set ξ θ
b,x = (1−θ)b+θx. Using s ≤ t and |ξ θ

b,x −b| ≤ |x−b| we write

1+ t−1|a−b| ≤ 1+ t−1|a−ξ θ
b,x|+ t−1|ξ θ

b,x −b|
≤ 1+ t−1|a−ξ θ

b,x|+ s−1|x−b|
≤ (1+ t−1|ξ θ

b,x −a|)(1+ s−1|x−b|) ;
consequently, asM ≥ 0,

1

(1+ t−1|ξ θ
b,x −a|)M ≤

(
1+ s−1|x−b|
1+ t−1|a−b|

)M

.

Inserting this estimate in (7.1.9) we obtain
∣∣∣∣
∫
Rn

Φt(x−a)Ψs(x−b)dx
∣∣∣∣ ≤CN

∫
Rn

(1+ s−1|x−b|)M
(1+ t−1|a−b|)M

ABt−n(s/t)N+1s−n

(1+ s−1|x−b|)K−N−1 dx

≤CN
ABt−n

(
s
t

)N+1

(1+ t−1|a−b|)M
vn(K−N−M−1)
K−N−M−n−1

,

in view of the assumption K > N+M+n+1, (7.1.1), and the fact that the integral
in θ produces a factor of (N+1)−1. (RecallCN = ∑|β |=N+1

1
β ! .) This yields (7.1.5).

Finally, assertion (7.1.6) is obtained by taking a= 0, y= b, and by considering the
reflection ofΨ about the origin (which satisfies the same assumptions asΨ ). �

Example 7.1.3. Let Φ ,Ψ ∈ S (Rn) and assume that
∫
RnΨ(x)xα dx = 0 for all

multi-indices α with |α| ≤ N (for some fixed integer N). Then for any M > n there
is a constant CM such that for any y ∈ Rn we have
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|(Φt ∗Ψ)(y)| ≤

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

CM

(2+ |y|)M when t < 1,

CMt−n−N−1

(2+ t−1|y|)M when t ≥ 1.

(7.1.10)

The first of these estimates is a consequence of Theorem 7.1.1 while the second one
is due to Theorem 7.1.2, in both cases with s= 1.

Exercises

7.1.1. Fix N ∈ Z+∪{0} and a,b ∈Rn. Let Φ ,Ψ be Schwartz functions that satisfy
∫
Rn

Ψ(x)xβ dx=
∫
Rn

Φ(x)xβ dx= 0

for all |β | ≤N. Prove that for any t,s> 0 and anyM > 0 there is a constantCM such
that

∣∣∣∣
∫
Rn

Φt(x−a)Ψs(x−b)dx
∣∣∣∣ ≤ CMmax(t,s)−nmin

(
s
t ,

t
s

)N+1

(1+max(t,s)−1|a−b|)M .

7.1.2. Suppose that g is a bounded measurable function supported in a cube of side
length � centered at c ∈ Rn and let Φ ∈ S (Rn). Show that for every M > 0 there is
a constant CM such that

|(Φt ∗g)(x)| ≤ CM ‖g‖L∞

(1+ �−1|x− c|)M when t < �,

and if g has vanishing integral then

|(Φt ∗g)(x)| ≤ CM ‖g‖L∞ (�/t)n+1

(1+ t−1|x− c|)M when t ≥ �.

7.2 Definition of Hardy Spaces and Preliminary Estimates

Several boundedness results in analysis hold on Lp for p > 1 but break down on L1.
The Hardy space H1 provides a good substitute for L1 in several ways. The main
focus of this chapter is the study ofH1 and, to a certain extent, of other Hardy spaces
Hp for p < 1.

Definition 7.2.1. Let Φ ∈ S (Rn) and let f be a tempered distribution on Rn. We
define the nontangential maximal function of f with respect to Φ as
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M∗( f ;Φ)(x) = sup
t>0

sup
y∈Rn

|y−x|<t

|(Φt ∗ f )(y)| . (7.2.1)

The term nontangential stems from the fact that the two suprema in (7.2.1) are
taken over points (y, t) in the cone Γx = {(y, t) : |x− y| < t} in Rn+1

+ , which touches
Rn only at the point x, i.e., it is nontangential to Rn.

Remark 7.2.2. Let M be the Hardy–Littlewood maximal function. We verify that
for any Schwartz function Φ there is a constant CΦ such that

M∗( f ;Φ) ≤CΦ M( f ), (7.2.2)

when f is locally integrable on Rn and tempered at infinity; the latter means that
| f (x)| ≤C (1+ |x|)K when |x| ≥ R for some K,R,C > 0 (Example 2.6.2). To see this
we pick N >K+n andC′

Φ > 0 such that |Φ(x)| ≤C′
Φ(2+ |x|)−N for all x∈Rn. The

integral defining the convolution | f | ∗ |Φt | converges absolutely due to the choice
of N, and thus M∗( f ;Φ)(x) is well defined for any x ∈ Rn. Then for all x ∈ Rn we
have

|Φt(x)| = 1
tn

|Φ
(x
t

)
| ≤ 1

tn
C′

Φ
(2+ | xt |)N

.

For any y ∈ Rn satisfying |y− x| < t we obtain

2+
|y− z|

t
≥ 2+

|z− x|
t

− |y− x|
t

≥ 2+
|z− x|

t
−1= 1+

|z− x|
t

.

This gives that

M∗( f ;Φ)(x) ≤ sup
t>0

sup
y∈Rn

|y−x|<t

∫
Rn

C′
Φ | f (z)|

(2+ |y−z|
t )N

dz
tn

≤ sup
t>0

∫
Rn

C′
Φ | f (z)|

(1+ |x−z|
t )N

dz
tn

,

and from this we obtain (7.2.2) using Corollary 2.5.2.

We define the Hardy space Hp in terms of the specific nontangential maximal
function associated with the Gaussian Φ(x) = e−π|x|2 which gives rise to the approx-
imate identity Φt(x) = t−nΦ(t−1x), t > 0.

Definition 7.2.3. Let 0 < p < ∞ and Φ(x) = e−π|x|2 for x ∈ Rn. The Hardy space
Hp(Rn) is the set of all tempered distributions f such thatM∗( f ;Φ) lies in Lp(Rn),
and in this case we set

∥∥ f∥∥Hp =
∥∥M∗( f ;Φ)

∥∥
Lp .

This expression is a norm when p ≥ 1 and a quasi-norm when p < 1 (Exer-
cise 7.2.2). It is not clear from Definition 7.2.3 whether the Hp spaces coincide with
any other known spaces for some values of p. In the next theorem we show that this
is the case when 1 < p < ∞.
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Theorem 7.2.4. (a) Let 1 < p < ∞. Then there is a constant Cn,p such that for all
f ∈ Lp(Rn) we have

∥∥ f∥∥Hp ≤Cn,p
∥∥ f∥∥Lp .

Moreover, for all f ∈ Hp(Rn) we have
∥∥ f∥∥Lp ≤ ∥∥ f∥∥Hp .

In other words, Hp(Rn) coincides with (is isomorphic to) Lp(Rn).
(b) When p = 1, every element of H1 is an integrable function. In other words,

H1(Rn) ⊆ L1(Rn) and for all f ∈ H1 we have
∥∥ f∥∥L1 ≤ ∥∥ f∥∥H1 . (7.2.3)

Proof. (a) Let 1 < p < ∞ and f ∈ Hp(Rn). Fix Φ(x) = e−π|x|2 for x ∈ Rn. The set
{Φt ∗ f : t > 0} lies in a multiple of the unit ball of Lp(Rn), which is the dual space
of the separable Banach space Lp′

(Rn). By the Banach–Alaoglu theorem this set is
weakly∗ sequentially compact. Therefore, there exists a sequence t j → 0 such that
Φt j ∗ f converges to some f0 ∈ Lp in the weak∗ topology of Lp. This means

∫
Rn
(Φt j ∗ f )hdx →

∫
Rn

f0 hdx, h ∈ Lp′
(Rn). (7.2.4)

On the other hand, Φt j ∗ f → f in S ′(Rn) as t j → 0 (Exercise 2.7.1), and thus the
tempered distribution f coincides with the Lp function f0. Since the family {Φt}t>0

is an approximate identity, Theorem 1.9.4 (a) gives that
∥∥Φt ∗ f − f

∥∥
Lp → 0 as t → 0. (7.2.5)

It follows from this that for any ε > 0 there is a tε > 0 such that for 0 < t < tε one
has ‖ f‖Lp ≤ ‖Φt ∗ f‖Lp + ε . As ε > 0 was arbitrary, it follows that

∥∥ f∥∥Lp ≤ ∥∥sup
t>0

|Φt ∗ f |∥∥Lp ≤ ∥∥M∗( f ;Φ)
∥∥
Lp =

∥∥ f∥∥Hp . (7.2.6)

The converse inequality is a consequence of (7.2.2) and the boundedness of the
Hardy–Littlewood maximal operator on Lp(Rn) for p > 1.

(b) Let us denote by C00(U) the space of continuous functions g(x) that are
supported in an open set U and tend to zero as |x| → ∞. We embed L1 in the space
of complex Borel measures M whose total variation is finite; this space is the dual
of the separable space C00(Rn). By the Banach–Alaoglu theorem, the unit ball of
M is weakly∗ sequentially compact, and we can extract a sequence t j → 0 such that
Φt j ∗ f converges to a complex Borel measure μ inM in the sense

∫
Rn
(Φt j ∗ f )hdx →

∫
Rn

hdμ , h ∈ C00(Rn). (7.2.7)
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As Φt j ∗ f → f inS ′(Rn) (Exercise 2.7.1), the distribution f can be identified with
the measure μ . If we can show that dμ = f0 dx for some f0 ∈ L1(Rn), it will follow
that f = f0 a.e.; thus the given f ∈ S ′ can be identified with an L1 function.

Next we prove that for all subsets E of Rn we have |E|= 0 =⇒ μ(E) = 0. Since
supt>0 |Φt ∗ f | lies in L1(Rn), given ε > 0, there exists a δ > 0 such that for any
measurable subset F of Rn we have

|F | < δ =⇒
∫
F
sup
t>0

|Φt ∗ f |dx < ε .

Given E with |E| = 0, we can find an open setU such that E ⊆U and |U | < δ .
Then for any g in C00(U) we have

∣∣∣∣
∫
Rn

gdμ
∣∣∣∣ = lim

j→∞

∣∣∣∣
∫
Rn

g(x)(Φt j ∗ f )(x)dx
∣∣∣∣

≤ ∥∥g∥∥L∞

∫
U
sup
t>0

|(Φt ∗ f )(x)|dx

< ε
∥∥g∥∥L∞ .

Let |μ | be the variation measure of measure μ . Then we have {see [37] (20.49)}

|μ |(U) =
∫
U
1d|μ | = sup

{∣∣∣∣
∫
Rn

gdμ
∣∣∣∣ : g ∈ C00(U),

∥∥g∥∥L∞ ≤ 1

}
,

which implies |μ |(U) < ε . Thus |μ |(E) < ε and as ε was arbitrary, it follows that
|μ |(E) = 0 and thus μ(E) = 0. This argument shows that μ is absolutely continuous
with respect to Lebesgue measure. By the Radon–Nikodym theorem we obtain the
existence of a function f0 in L1(Rn) such that dμ = f0 dx. Inserting this in (7.2.7)
we obtain the analog of (7.2.4) in the case p= 1. As Theorem 1.9.4 (a) also applies
when p= 1, it follows that (7.2.5) also holds when p= 1. Finally, (7.2.3) is a con-
sequence of (7.2.6), which is also valid for p= 1. �

Remark 7.2.5. One may wonder whether H1(Rn) coincides with L1(Rn). We pro-
vide an example showing that Lp(Rn) is not contained in Hp(Rn) for any p≤ 1. Set
Φ(x) = e−π|x|2 on Rn. One sees that for |x| ≥ 1

M∗(χB(0,1);Φ)(x) ≥ (χB(0,1) ∗Φ|x|)(x) =
1

|x|n
∫

|y|≤1
e
−π( |x−y|

|x| )2
dy ≥ vn

e−4π

|x|n ,

since

|x− y|
|x| ≤ |x|+ |y|

|x| ≤ |x|+1
|x| ≤ 2.

As the function |x|−n is not integrable to any power p ≤ 1 over B(0,1)c, we have
χB(0,1) ∈ Lp \Hp. Thus H1 is a proper subspace of L1 and Lp(Rn) is not contained
in Hp(Rn) for any p < 1. Also, Hp(Rn) is not contained in Lp(Rn) when p < 1 as
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certain distributions that are not functions are members of Hp(Rn); see for instance
Exercise 7.3.4.

Next we show that H1 functions must have integral zero.

Theorem 7.2.6. Suppose that g ∈ H1(Rn). Then
∫
Rn g(x)dx= 0.

Proof. By Theorem 7.2.4 (b), g lies in L1 and so its integral is well defined. Set
c =

∫
Rn g(x)dx and Φ(x) = e−π|x|2 . Then the family {gε}ε>0 is a multiple of an

approximate identity, and by Theorem 1.9.7 (b) we have

(Φt ∗gε)(y) → cΦt(y) as ε → 0

for any y ∈ Rn and any t > 0, since Φt is uniformly continuous on Rn. Then

|c| |Φt(y)| = lim
ε→0

|(Φt ∗gε)(y)| = liminf
ε→0

1
εn

∣∣(Φt/ε ∗g)( y
ε
)∣∣,

and so for any x ∈ Rn and any t > 0 we obtain

|c| sup
t>0

sup
y: |y−x|<t

|Φt(y)| ≤ liminf
ε→0

1
εn

sup
t>0

sup
y: |y−x|<t

∣∣(Φt/ε ∗g)( y
ε
)∣∣. (7.2.8)

On one hand, the right-hand side of (7.2.8) is

liminf
ε→0

sup
t ′>0

sup
y′: |y′− x

ε |<t ′

1
εn

|(Φt ′ ∗g)(y′)| ≤ liminf
ε→0

1
εn

M∗(g;Φ)
( x

ε
)
.

On the other hand the left-hand side of (7.2.8) satisfies

|c| sup
t>0

sup
y: |y−x|<t

|Φt(y)| ≥ |c| |Φ|x|(x)| =
|c|e−π

|x|n .

Suppose c �= 0. Taking L1 norms and applying Fatou’s lemma, we deduce

|c|
∫
Rn

e−πdx
|x|n ≤

∫
Rn

liminf
ε→0

M∗(g;Φ)
( x

ε
)dx

εn
≤ liminf

ε→0

∫
Rn

M∗(g;Φ)
( x

ε
)dx

εn
=
∥∥g∥∥H1 .

The quantity on the left equals ∞ but ‖g‖H1 < ∞, a contradiction. Thus c= 0. �

We end this section by showing that Schwartz functions with sufficient vanishing
moments1 lie in Hp.

Theorem 7.2.7. Let 0< p≤ 1 and N = [ np −n]. Then every Schwartz functionΨ on
Rn with

∫
RnΨ(x)xα dx= 0 for all multi-indices α with |α| ≤ N, lies in Hp(Rn).

1 The αth moment of a functionΨ is
∫
Rn Ψ(x)xα dx, where α is a multi-index.
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Proof. We will make use of (7.1.10) with Φ(x) = e−π|x|2 .
(a) If t < 1 and y ∈ Rn is such that |y− x| < t, then

2+ |y| ≥ 2+ |x|− |x− y| ≥ 2+ |x|− t ≥ 1+ |x| ;
Thus the variable y on the right in (7.1.10) can be replaced by x when |y− x| < t.
Then (7.1.10) yields

sup
0<t<1

sup
y: |y−x|<t

|(Φt ∗Ψ)(y)| ≤ CM

(1+ |x|)M ,

where M is arbitrarily large.
(b) If t ≥ 1 and y ∈ Rn is such that |y− x| < t, then

2+ t−1|y| ≥ 2+ t−1|x|− t−1|x− y| ≥ 2+ t−1|x|−1 ≥ 1+ t−1|x| ;
thus the variable y on the right in (7.1.10) can also be replaced by x. Then

sup
t≥1

sup
y: |y−x|<t

|(Φt ∗Ψ)(y)| ≤ sup
t≥1

CM t−n−N−1

(1+ t−1|x|)M ≤
⎧⎨
⎩
CM if |x| ≤ 1,

CM
|x|n+N+1 sup

s>0

sn+N+1

(1+ s)M
if |x| > 1.

Here we changed variables s= |x|/t when |x| �= 0. So choosing M > n+N+1, we
obtain

M∗(Ψ ;Φ)(x) ≤ C′
M

(1+ |x|)n+N+1 . (7.2.9)

The choice of N = [ np − n] implies p(n+N+ 1) > n; hence (7.2.9) yields that the
function M∗(Ψ ;Φ) lies in Lp(Rn). �

Exercises

7.2.1. Recall the translation of a tempered distribution u is defined by 〈τx0u,ϕ〉 =
〈u,τ−x0ϕ〉, ϕ ∈ S (Rn), x0 ∈ Rn, τ−x0ϕ(x) = ϕ(x+ x0), x ∈ Rn. Show that the
Hp quasi-norm is translation-invariant, meaning that for any x0 ∈ Rn, one has
‖τx0u‖Hp = ‖u‖Hp when 0 < p < ∞.

7.2.2. Let 0 < p < ∞. Observe that for f ,g ∈ Hp we have

∥∥ f +g
∥∥min(1,p)
Hp ≤ ∥∥ f∥∥min(1,p)

Hp +
∥∥g∥∥min(1,p)

Hp

and ‖λ f‖Hp = |λ |‖ f‖Hp when λ ∈C. Conclude that the expression ‖·‖Hp is a norm
when p ≥ 1 and a quasi-norm when 0 < p < 1.

7.2.3. Show that for 0 < p < 1, the Hp(Rn) quasi-norm remains invariant under
dilations of distributions of the form u �→ λ n/puλ , λ > 0, where 〈uλ ,ϕ〉 = 〈u,ϕ1/λ 〉



7.3 Hp Atoms 289

and ϕλ (x) = λ−nϕ(λ−1x), ϕ ∈ S , u ∈ S ′, x ∈ Rn. Note that for 1 ≤ p < ∞, the
Hp(Rn) norm remains invariant under dilations of functions f �→ f λ , where f λ (x) =
λ

n
p f (λx), x ∈ Rn.

7.2.4. Prove that Hp contains the space of Schwartz functions whose Fourier trans-
forms vanish in neighborhoods of the origin.

7.2.5. Let 0 < p < ∞ and let u j ∈ Hp(Rn), j = 1,2, . . . . If u j → u in S ′ as j → ∞,
show that

‖u‖Hp ≤ liminf
j→∞

‖u j‖Hp .

[Hint: Use Fatou’s lemma.]

7.3 Hp Atoms

We have seen that Schwartz functionsΨ with vanishing moments lie in Hp. A close
examination of Theorem 7.2.7 indicates that the only property used of the function
Ψ was its decay at infinity. This is certainly the case ifΨ has compact support. This
observation motivates the following definition.

Definition 7.3.1. Let 0 < p ≤ 1. An Hp atom2 is a function A with the properties:

(i) A supported in a cube Q (with sides parallel to the axes).

(ii) |A(x)| ≤ |Q|−1/p for all x ∈ Q.

(iii)
∫
Q
A(x)xαdx= 0 for all multi-indices α with |α| ≤ [ np −n].

Condition (iii) is referred to as the vanishing moment property and reduces to
vanishing integral when p= 1. Condition (ii) provides only a natural normalization.

Theorem 7.3.2. Hp atoms lie in Hp. Precisely, there is a constant C(n, p) that
depends only on n and p such that ‖A‖Hp ≤C(n, p) for any Hp atom A.

Proof. If the claimed assertion is proven for atoms supported in cubes centered at
the origin, then it also holds for all atoms, since translations of atoms are atoms
and Hp is translation invariant (Exercise 7.3.1). So we fix an atom A supported in
a cube Q of side length � = �(Q) centered at the origin. We define the function
Ψ(y) = �

n
p A(�y). Then Ψ is an atom supported on [− 1

2 ,
1
2 ]

n and is related to A by

A(x) = �n−
n
p 1

�nΨ( x� ) = �n−
n
pΨ�(x). Set Φ(x) = e−π|x|2 . Then one has

Φt ∗A= �n−
n
p (Φt ∗Ψ�).

Moreover, by Definition 7.3.1 (ii) we have

2 Also called an L∞ atom for Hp.
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|Ψ(y)| = |� n
p A(�y)| ≤ �

n
p |Q|− 1

p χ 1
� Q
(y) = χ[− 1

2 , 12 ]
n(y) ≤ CK

(1+ |y|)K

for any K > 0 with CK = (1+
√
n/2)K . When t ≤ �, Theorem 7.1.1 gives

�n−
n
p |(Φt ∗Ψ�)(y)| ≤ CM �n−

n
p �−n

(2+ �−1|y|)M ≤ CM �− n
p

(1+ �−1|x|)M , (7.3.1)

for any M > n, where in the last inequality we took x such that |y− x| < t ≤ �.
Notice that in view of property (iii) in Definition 7.3.1, the function Ψ(y) =

�
n
p A(�y) has vanishing moments up to and including order N = [ np −n]. When t > �,

applying Theorem 7.1.2, for |y− x| < t and any L > 0, we obtain

|(Φt ∗A)(y)| = �n−
n
p |(Φt ∗Ψ�)(y)| ≤ CL t−n�n−

n
p (�/t)N+1

(2+ t−1|y|)L ≤ CL t−N−1−n�n−
n
p+N+1

(1+ t−1|x|)L ,

where, as before, the last inequality comes from the fact that |y− x| < t. This gives

sup
t>�

sup
y: |y−x|<t

|(Φt ∗A)(y)| ≤CL �−N−1−n�n−
n
p+N+1 =CL�

− n
p (7.3.2)

and also, by changing variables s= |x|/t (when |x| �= 0), it also gives

sup
t>�

sup
y: |y−x|<t

|(Φt ∗A)(y)| ≤CL �− n
p

( �

|x|
)n+N+1

sup
s>0

sN+1+n

(1+ s)L
. (7.3.3)

Here we chose L > N + 1+ n and so the supremum in s in (7.3.3) reduces to a
constant. Combining (7.3.2) and (7.3.3) yields

sup
t>�

sup
y: |y−x|<t

|(Φt ∗A)(y)| ≤ C′
L �− n

p

(1+ �−1|x|)n+N+1 . (7.3.4)

Finally, (7.3.4) and (7.3.1) imply

M∗(A;Φ)(x) ≤ CM �− n
p

(1+ �−1|x|)M +
C′
L �− n

p

(1+ �−1|x|)n+N+1 ,

and this function has Lp quasi-norm bounded by a constant independent of �. In
fact, M and L can be chosen to depend only on n and N (thus on n and p), so the
final constant controlling the Lp quasi-norm of M∗(A;Φ) is bounded by a constant
C(n, p) depending only on n and p. �

Example 7.3.3. Every compactly supported and bounded function g with mean
value zero lies in H1(Rn). Indeed, every such function is supported in a big cube
Q and is bounded by c |Q|−1, where c= ‖g‖L∞ |Q|. Then g= cA, where A is an H1

atom, so g lies in H1(Rn).
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In the rest of this section we provide a strengthening of Theorem 7.3.2 that can
handle even unbounded functions with vanishing moments.

We begin with some observations regarding the derivatives of the Gaussian func-
tion e−π|x|2 . A straightforward calculation via induction gives that the Nth deriva-
tive of the function t �→ e−πt2 equals pN(t)e−πt2 , where pN is a polynomial of

degree N. Thus | dN
dtN

e−πt2 | ≤ BN(1+ |t|)Ne−πt2 for some constant BN . Extending
this to n dimensions (by separation of variables), we obtain that for multi-indices
β = (β1, . . . ,βn) with size |β | = N we have

∂ β e−π|x|2 = Pβ (x)e
−π|x|2 , (7.3.5)

where x= (x1, . . . ,xn) and Pβ (x) = ∏n
j=1 pβ j

(x j). Thus for any β with |β | = N, one
has

|∂ β e−π|x|2 | ≤ Bn
N(1+ |x|)Ne−π|x|2 , x ∈ Rn. (7.3.6)

These facts are useful in the calculation of Hp quasi-norms.

Theorem 7.3.4. Let 0 < p ≤ 1 and 1 < q ≤ ∞. Suppose that g lies in Lq(Rn) and is
supported in a cube Q. Suppose moreover, that

∫
Q g(x)x

α dx = 0 for |α| ≤ [ np − n].
Then g lies in Hp(Rn) and there is a constant Cn,p,q such that3

∥∥g∥∥Hp ≤Cn,p,q|Q| 1p− 1
q
∥∥g∥∥Lq .

Proof. As Hp is translation invariant, we may assume that Q is centered at the ori-
gin. We denote by Q∗ the cube Q dilated 2

√
n times. Let us set Φ(x) = e−π|x|2 . For

this Φ we use (7.2.2) for x ∈ Q∗ to write
∥∥M∗(g;Φ)χQ∗

∥∥
Lp ≤C

∥∥M(g)χQ∗
∥∥
Lp ≤C |Q∗| 1p− 1

q
∥∥M(g)

∥∥
Lq , (7.3.7)

where in the last step we made use of Hölder’s inequality (1.1.4) applied to the func-
tions χQ∗ and M(g) with exponents ( 1p − 1

q )
−1 and q, respectively. Corollary 1.4.7

yields that the expression on the right in (7.3.7) is bounded by

C |Q∗| 1p− 1
q

2q
q−1

3
n
q
∥∥g∥∥Lq ≤C′ |Q| 1p− 1

q
∥∥g∥∥Lq . (7.3.8)

We now turn to the case where x /∈Q∗. Let us fix y such that |y−x| < t. Exploiting
the fact that g has vanishing moments up to order N = [ np − n], Taylor’s expansion
in (7.1.7) [and the expression for the remainder (7.1.8)], allow us to write
∣∣(Φt ∗g)(y)

∣∣
=

∣∣∣∣ 1tn
∫
Q

[
Φ
(y− z

t

)
− ∑

|α|≤N

∂ α Φ
(y
t

) 1
α!

(
− z

t

)α
]
g(z)dz

∣∣∣∣
3 The normalized function |Q|− 1

p+
1
q g/‖g‖Lq is called an Lq atom for Hp.
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=
N+1
tn

∣∣∣∣
∫
Q

[
∑

|β |=N+1

∫ 1

0
(1−θ)N∂ β Φ

(y
t

−θ
z
t

) 1
β !

(
− z

t

)β
dθ

]
g(z)dz

∣∣∣∣

≤ CNBn
N+1

tn+N+1

∫
Q

[∫ 1

0
(1−θ)N

(
1+

∣∣∣y−θz
t

∣∣∣
)N+1

e−π| y−θz
t |2dθ

]
|z|N+1|g(z)|dz, (7.3.9)

having used (7.3.6). Notice that x /∈ Q∗ gives that |x| ≥ √
n�, where � = �(Q) is the

side length of Q. Also, z ∈ Q implies |z| ≤ 1
2

√
n�.

Case 1: |x| ≥ 4t. Then we have

|y−θz| ≥ |y|− |z| ≥ |x|− |x− y|− |z| ≥ |x|− t− 1
2

√
n� ≥ |x|

2
− t ≥ |x|

4

and also

|y−θz| ≤ |y|+ |z| ≤ |x|+ |y− x|+ |z| ≤ |x|+ t+
1
2

√
n� ≤ |x|+ |x|

4
+

|x|
2

≤ 2|x|.

These two estimates imply

(
1+

∣∣∣y−θz
t

∣∣∣
)N+1

e−π| y−θz
t |2 ≤

(
1+

2|x|
t

)N+1
e−π( |x|

4t )
2
.

Inserting this bound in (7.3.9), we obtain

|(Φt ∗g)(y)| ≤ CNBn
N+1

tn+N+1

(
1+

2|x|
t

)N+1
e−π( |x|

4t )
2
∫
Q

|z|N+1|g(z)|dz

≤ CN Bn
N+1

(2|x|)n+N+1

(
1+

2|x|
t

)2N+2+n
e−π( |x|

4t )
2
∫
Q

|z|N+1|g(z)|dz

≤ C′
N B

n
N+1

|x|n+N+1

∫
Q

|z|N+1|g(z)|dz,

as the function s �→ (1+8s)2N+2+ne−πs2 is bounded.
Case 2: |x| < 4t. The function in the brackets in (7.3.9) is bounded, so we obtain

∣∣(Φt ∗g)(y)
∣∣ ≤ C′′

N

tn+N+1

∫
Q

|z|N+1|g(z)|dz ≤ C′′
N4

n+N+1

|x|n+N+1

∫
Q

|z|N+1|g(z)|dz,

which is the same estimate as in Case 1.

So, in both cases 1 and 2, when x /∈ Q∗ we proved that

M∗(g;Φ)(x) = sup
t>0

sup
y: |y−x|<t

∣∣(Φt ∗g)(y)
∣∣ ≤ C′

n,N

|x|n+N+1

∫
Q

|z|N+1|g(z)|dz. (7.3.10)

But
∫
Q

|z|N+1|g(z)|dz ≤ c |Q|N+1
n

∫
Q

|g(z)|dz ≤ c |Q|N+1
n |Q|

1
q′
∥∥g∥∥Lq ,
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so for x /∈ Q∗ we obtain

M∗(g;Φ)(x) ≤ C′
n,N

|x|n+N+1 |Q|N+1
n |Q|

1
q′
∥∥g∥∥Lq .

Since N = [ np − n], it follows that p(n + N + 1) > n; hence |x|−(n+N+1)p is
integrable over the set |x| ≥ √

n�(Q) and the integral produces a factor of the order

of |Q|−(1+N+1
n )p+1. Thus we derive the estimate

[∫
(Q∗)c

M∗(g;Φ)pdx
] 1

p

≤Cn,p|Q|−(1+N+1
n )+ 1

p |Q|N+1
n |Q|

1
q′
∥∥g∥∥Lq =Cn,p|Q| 1p− 1

q
∥∥g∥∥Lq .

This estimate, together with (7.3.7) and (7.3.8), provides the required conclusion. �

Exercises

7.3.1. Prove that condition (iii) in Definition 7.3.1 is equivalent to the condition
that

∫
QA(x)(x− x0)αdx = 0 for all |α| ≤ [ np − n] and any x0 ∈ Rn. Conclude that

translations of atoms are atoms.

7.3.2. Observe that Hq atoms are Hp atoms when 0 < q < p ≤ 1. Then verify that
the function

χ[0,1]n
n

∏
j=1

(6x2j −6x j+1)

is an Hp(Rn) atom but not an Hq(Rn) atom when 0 < q ≤ n
n+2 < p ≤ 1.

7.3.3. Let φ be a compactly supported and smooth function and let β be a multi-
index with |β | ≥ 1. Prove that ∂ β φ lies in Hp(Rn) for all p satisfying n

n+|β | < p≤ 1.

7.3.4. Let x1,x2 ∈ Rn satisfy x1 �= x2. Prove that the difference of Dirac masses
δx1 −δx2 lies in Hp(Rn) for n

n+1 < p < 1.

7.3.5. Let x1,x2 ∈ Rn satisfy x1 �= x2 and let α be a multi-index. Show that ∂ α δx1 −
∂ α δx2 lies in Hp(Rn) for all p satisfying n

n+1+|α| < p < n
n+|α| . [Hint: Use (7.3.5).]

7.4 Grand Maximal Function

Our goal in this section is to show that the definition of Hardy spaces does not
depend on the specific choice of the function Φ(x) = e−π|x|2 . The following lemma
will be crucial in proving this fact.
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Lemma 7.4.1. Let m ∈ Z+ and fix Φ in S (Rn) with integral equal to 1 [such as

Φ(x) = e−π|x|2]. Then there exists a constant C0(Φ ,m) such that for any function
Ψ ∈ S (Rn), there are Schwartz functions Θ (s), 0 < s ≤ 1, with the properties

Ψ(x) =
∫ 1

0
(Θ (s) ∗Φs)(x)ds (7.4.1)

and

1
sm

∫
Rn
(1+ |x|)m|Θ (s)(x)|dx ≤C0(Φ ,m)

∫
Rn
(1+ |x|)m ∑

|α|≤m+1

|∂ αΨ(x)|dx. (7.4.2)

Proof. We start with a smooth function η on the real line that satisfies 0 ≤ η ≤ 1,
η(s) = 0 for s ≥ 7

8 and η(s) = 1 for s ≤ 1
2 .

Then we define

ζ (s) =
sm

m!
η(s)

for s ∈ R. Then ζ lies in C ∞ and satisfies

0 ≤ ζ (s) ≤ sm

m!
for all 0 ≤ s ≤ 1,

ζ (s) =
sm

m!
for all 0 ≤ s ≤ 1

2
,

ζ (s) = 0 for all s ≥ 7
8
.

See Figure 7.1.

1
2

7
8

1

1

1
m!

0

sm
m!

η (s)

Fig. 7.1 The functions sm/m! and η(s)
plotted on [0,1].

Next, for s ∈ (0,1], we define the family of functions

Θ (s) = (−1)m+1ζ (s)Ξ (s) ∗Ψ − dm+1ζ
dsm+1 (s)

m+1 terms︷ ︸︸ ︷
Φs ∗ · · · ∗Φs ∗Ψ , (7.4.3)

where Ξ (s) is a function chosen so that

dm+1

dsm+1

( m+2 terms︷ ︸︸ ︷
Φs ∗ · · · ∗Φs

)
= Ξ (s) ∗Φs (7.4.4)

for any s > 0. Precisely, Ξ (s) is equal to

∑cm,k1,...,km+1

m+1−(k1+···+km+1) terms︷ ︸︸ ︷
Φs ∗ · · · ∗Φs ∗

k1 terms︷ ︸︸ ︷
dΦs

ds
∗ · · · ∗ dΦs

ds
∗· · · ∗

km+1 terms︷ ︸︸ ︷
dm+1Φs

dsm+1 ∗ · · · ∗ dm+1Φs

dsm+1 ,
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where the sum is taken over all tuples (k1, . . . ,km+1) of nonnegative integers such
that 1k1+ · · ·+(m+1)km+1 = m+1, and

cm,k1,...,km+1 =
(m+2)!

(m+2− (k1+ · · ·+ km+1))!
1

1!k1 · · ·(m+1)!km+1

1
k1! · · ·km+1!

.

The precise expression of Ξ (s) follows from the Faà di Bruno formula (Appendix F)
with g(t) = tm+2.

We claim that (7.4.1) holds for this choice of Θ (s). To verify this assertion, we
apply m+1 integration by parts to write

∫ 1

0
Θ (s)∗Φs ds=

∫ 1

0
(−1)m+1ζ (s)Ξ (s)∗Φs∗Ψds−

∫ 1

0

dm+1ζ
dsm+1 (s)

m+2 terms︷ ︸︸ ︷
Φs∗. . .∗Φs ∗Ψds

=
∫ 1

0
(−1)m+1ζ (s)Ξ (s) ∗Ψ ∗Φs ds

+
dmζ
dsm

(0) lim
s→0+

( m+2 terms︷ ︸︸ ︷
Φ ∗ · · · ∗Φ

)
s ∗Ψ

− (−1)m+1
∫ 1

0
ζ (s)

dm+1

dsm+1

( m+2 terms︷ ︸︸ ︷
Φs ∗ · · · ∗Φs

)
∗Ψ ds ,

noting that all the boundary terms vanish except for the term at s = 0 in the first
integration by parts. The first and the third terms in the previous expression on the
right add up to zero, while the second term is equal to Ψ , since Φ has integral 1.
This implies that the family {(Φ ∗ · · · ∗Φ)s}s>0 is an approximate identity as s → 0
(Example 1.9.2). Therefore, (7.4.1) holds.

We now prove estimate (7.4.2). Let Ω be the (m+1)-fold convolution of Φ . For
the term after the minus sign in (7.4.3), we note that the (m+1)st derivative of ζ (s)
vanishes on

[
0, 12

]
, so that we may write

∫
Rn
(1+ |x|)m

∣∣∣dm+1ζ (s)
dsm+1

∣∣∣ |Ωs ∗Ψ(x)|dx

≤ Cm χ[ 12 ,1](s)
∫
Rn
(1+ |x|)m

[∫
Rn

1
sn
∣∣Ω( x−y

s )
∣∣ |Ψ(y)|dy

]
dx

≤ Cm χ[ 12 ,1](s)
∫
Rn

∫
Rn
(1+ |y+ sx|)m|Ω(x)| |Ψ(y)|dydx

≤ Cm χ[ 12 ,1](s)
∫
Rn

∫
Rn
(1+ |sx|)m|Ω(x)|(1+ |y|)m|Ψ(y)|dydx

≤ Cm χ[ 12 ,1](s)
(∫

Rn
(1+ |x|)m|Ω(x)|dx

)(∫
Rn
(1+ |y|)m|Ψ(y)|dy

)

≤ Cm,Φ sm
∫
Rn
(1+ |y|)m|Ψ(y)|dy,
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as χ[ 12 ,1](s) ≤ 2msm. To obtain a similar estimate for the term before the minus sign

in (7.4.3), we argue as follows. A generic term in the sum defining Ξ (s) has the form

d j1Φs

ds j1
∗ · · · ∗ d jLΦs

ds jL
,

where j1, . . . , jL are nonnegative integers satisfying j1+ · · ·+ jL =m+1, in view of
the fact that 1k1+ · · ·+(m+1)km+1 = m+1. For j1 ≤ m+1 we have

∫
Rn
(1+ |x|)m

∣∣∣d j1Φs

ds j1
∗Ψ(x)

∣∣∣dx
=

∫
Rn
(1+ |x|)m

∣∣∣∣ d
j1

ds j1

∫
Rn

Φ(y)Ψ(x− sy)dy
∣∣∣∣dx

=
∫
Rn
(1+ |x|)m

∣∣∣∣
∫
Rn

Φ(y)
d j1

ds j1
Ψ(x− sy)dy

∣∣∣∣dx
≤

∫
Rn
(1+ |x|)m

∫
Rn

|Φ(y)|
[

∑
|α|≤ j1

|∂ αΨ(x− sy)| |y||α|
]
dydx

≤
∫
Rn

∫
Rn
(1+ |x+ sy|)m|Φ(y)| ∑

|α|≤ j1

|∂ αΨ(x)|(1+ |y|) j1 dydx

≤
∫
Rn
(1+ |y|) j1 |Φ(y)|(1+ |y|)m dy

∫
Rn
(1+ |x|)m ∑

|α|≤ j1

|∂ αΨ(x)|dx

≤C′
m,Φ

∫
Rn
(1+ |x|)m ∑

|α|≤ j1

|∂ αΨ(x)|dx,

using j1 ≤ m+1. We have now proved that for some constant C′
m,Φ > 0 we have

∫
Rn
(1+ |x|)m

∣∣∣d j1Φs

ds j1
∗Ψ(x)

∣∣∣dx ≤C′
m,Φ ∑

|α1|≤ j1

∫
Rn
(1+ |x|)m|∂ α1Ψ(x)|dx. (7.4.5)

Applying (7.4.5) to the function d j2Φs
ds j2

∗Ψ in place ofΨ we obtain

∫
Rn
(1+ |x|)m

∣∣∣d j1Φs

ds j1
∗ d j2Φs

ds j2
∗Ψ(x)

∣∣∣dx
≤C′

m,Φ ∑
|α1|≤ j1

∫
Rn
(1+ |x|)m

∣∣∣∣d
j2Φs

ds j2
∗∂ α1Ψ(x)

∣∣∣∣dx

≤ (C′
m,Φ)2 ∑

|α1|≤ j1

∑
|α2|≤ j2

∫
Rn
(1+ |x|)m∣∣∂ α2∂ α1Ψ(x)

∣∣dx,

where the last estimate follows by another application of (7.4.5). Continuing in this
way, we deduce the existence of a positive constant CΦ

m such that
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∫
Rn
(1+ |x|)m

∣∣∣d j1Φs

ds j1
∗· · ·∗ d jLΦs

ds jL
∗Ψ(x)

∣∣∣dx≤CΦ
m

∫
Rn
(1+ |x|)m ∑

|α|≤m+1

∣∣∂ αΨ(x)
∣∣dx,

as j1+ · · ·+ jL = m+1. Summing these estimates over all terms that appear in the
sum defining Ξ (s), we deduce the same estimate for Ξ (s) ∗Ψ .

Keeping in mind that the term before the minus sign in (7.4.3) contains the func-
tion ζ (s), which is pointwise bounded by sm for 0 < s ≤ 1, yields the desired esti-
mate. This concludes the proof of (7.4.2). �

Remark 7.4.2. We use the notation of Lemma 7.4.1. A straightforward adaptation
of the preceding proof yields that for some constant C′

0(Φ ,m) one has

1
sm

∫
Rn
(1+ |x|)m

∣∣∣s d
ds

Θ (s)(x)
∣∣∣dx ≤C′

0(Φ ,m)
∫
Rn
(1+ |x|)m ∑

|α|≤m+1

|∂ αΨ(x)|dx.

To verify this assertion, we will show that s d
dsΘ

(s) satisfies similar estimates toΘ (s).
We first observe that for any Schwartz function Φ there is another Schwartz function
Φ̆(x) = −nΦ(x)− ∇Φ(x) · x such that s d

dsΦs = Φ̆s for any s > 0. Notice that if Φ
has integral 1, this will not be the case for Φ̆ . However, in the proof of (7.4.2),
we did not make use of the fact that Φ has integral 1, just that Φ was a Schwartz
function. Also, the proof did not depend on Φs being convolved with itself; it would
work with the convolution of distinct Schwartz functions. Applying s d

ds to (7.4.3)
we obtain

s
d
ds

Θ (s) = (−1)m+1s
dζ
ds

(s)Ξ (s) ∗Ψ

+(−1)m+1ζ (s)s
dΞ (s)

ds
∗Ψ

− s
dm+2ζ
dsm+2 (s)

m+1 terms︷ ︸︸ ︷
Φs ∗ · · · ∗Φs ∗Ψ

− dm+1ζ
dsm+1 (s) (m+1)Φ̆s ∗

m terms︷ ︸︸ ︷
Φs ∗ · · · ∗Φs ∗Ψ .

We notice that both s d
dsζ (s) and s dm+2

dsm+2 ζ (s) are bounded by a constant multiple of

sm, just like ζ (s) and dm+1

dsm+1 ζ (s) were. Additionally, in s d
dsΞ (s)(x) one occurrence of

Φs is replaced by Φ̆s; hence these expressions satisfy similar estimates as Ξ (s).

In the proof of Lemma 7.4.1 the norm-looking quantity
∫
Rn
(1+ |x|)m ∑

|α|≤m+1

|∂ αΨ(x)|dx, Ψ ∈ S (Rn),

appeared. It turns out that this expression plays a crucial role in the theory of Hardy
spaces. In particular, it can be used to show that the function Φ(x) = e−π|x|2 in the
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definition of Hp can be replaced by any other Schwartz function with non vanishing
integral.

Definition 7.4.3. For a fixed positive integer N we define the expression

NN(ϕ) =
∫
Rn
(1+ |x|)N ∑

|α|≤N+1

|∂ α ϕ(x)|dx (7.4.6)

on Schwartz functions ϕ . We denote by FN the subset of Schwartz functions

FN =
{

ϕ ∈ S (Rn) : NN(ϕ) ≤ 1
}

. (7.4.7)

Using this we define the grand maximal function of f ∈ S ′(Rn) (with respect
to N) by

MN( f )(x) = sup
ϕ∈FN

M∗( f ;ϕ)(x) .

Theorem 7.4.4. Fix 0 < p < ∞ and Φ ∈ S (Rn) with
∫
Rn Φ(x)dx �= 0. Let N ∈ Z+,

N ≥ [ np ]+1. Then there is a constant C(n, p,Φ) such that for any f ∈ S ′(Rn)

1
NN(Φ)

∥∥M∗( f ;Φ)
∥∥
Lp ≤ ∥∥MN( f )

∥∥
Lp ≤C(n, p,Φ)

∥∥M∗( f ;Φ)
∥∥
Lp . (7.4.8)

Proof. Obviously the lower inequality in (7.4.8) holds as the Schwartz function
Φ/NN(Φ) lies inFN and therefore for all f ∈ S ′(Rn) we have

M∗
(
f ;

Φ
NN(Φ)

)
≤ MN( f ) .

Let b > 0. A tool that will be used in the proof of the upper inequality in (7.4.8)
is the following auxiliary maximal function

M∗∗
b ( f ;Φ)(x) = sup

t>0
sup
y∈Rn

|(Φt ∗ f )(x− y)|
(1+ |y|/t)b . (7.4.9)

We observe that
M∗( f ;Φ) ≤ 2bM∗∗

b ( f ;Φ) (7.4.10)

as for any t > 0 we have

sup
y∈Rn, |y|<t

|(Φt ∗ f )(x− y)| ≤ sup
y∈Rn

2b

(1+ |y|/t)b |(Φt ∗ f )(x− y)|.

The role of M∗∗
b is apparent in the following assertions:

(A) For every b > n/p and every Φ inS (Rn) there existsC1(n, p,b) < ∞ such that
for all f ∈ S ′(Rn) we have

∥∥M∗∗
b ( f ;Φ)

∥∥
Lp ≤C1(n, p,b)

∥∥M∗( f ;Φ)
∥∥
Lp . (7.4.11)
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(B) For every b > 0 and every Φ in S (Rn) with
∫
Rn Φ(x)dx = 1 there exists a

constant C2(b,Φ) < ∞ such that if N ≥ [b]+1 for all f ∈ S ′(Rn) we have
∥∥MN( f )

∥∥
Lp ≤C2(b,Φ)

∥∥M∗∗
b ( f ;Φ)

∥∥
Lp . (7.4.12)

We now prove these statements. It follows from the definition of

M∗( f ;Φ)(z) = sup
t>0

sup
|w−z|<t

|(Φt ∗ f )(w)|

that

|(Φt ∗ f )(x− y)| ≤ M∗( f ;Φ)(z) if z ∈ B(x− y, t) .

But the ball B(x− y, t) is contained in the ball B(x, |y|+ t); hence it follows that

|(Φt ∗ f )(x− y)| nb ≤ 1
|B(x− y, t)|

∫
B(x−y,t)

M∗( f ;Φ)(z)
n
b dz

≤ 1
|B(x− y, t)|

∫
B(x,|y|+t)

M∗( f ;Φ)(z)
n
b dz

≤
( |y|+ t

t

)n
M
(
M∗( f ;Φ)

n
b
)
(x),

from which we conclude that for all x ∈ Rn we have

M∗∗
b ( f ;Φ)(x) ≤

[
M
(
M∗( f ;Φ)

n
b
)
(x)

] b
n
.

Raising to the power p and using the fact that p > n/b and the boundedness of the
Hardy–Littlewood maximal operator M on Lpb/n, we obtain conclusion (7.4.11).

In proving (B) we may replace b by the integer b0 = [b]+1. Let Φ be a Schwartz
function with integral equal to 1. Applying Lemma 7.4.1 with m= b0, we write any
function ϕ inS (Rn) as

ϕ(y) =
∫ 1

0
(Θ (s) ∗Φs)(y)ds

for some choice of Schwartz functions Θ (s). Then we have

ϕt(y) =
∫ 1

0
((Θ (s))t ∗Φts)(y)ds

for all t > 0. Let f ∈ S ′(Rn). We claim that

ϕt ∗ f =
∫ 1

0
(Θ (s))t ∗Φts ∗ f ds , (7.4.13)

noting that this integral converges absolutely, in view of Theorem 2.7.1. We will
prove (7.4.13) at the end.
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Assuming (7.4.13), for a fixed x ∈ Rn and for y in B(x, t) we write

|(ϕt ∗ f )(y)| ≤
∫ 1

0

∫
Rn

|(Θ (s))t(z)| |(Φts ∗ f )(y− z)|dz ds

≤
∫ 1

0

∫
Rn

|(Θ (s))t(z)|M∗∗
b0 ( f ;Φ)(x)

( |x− (y− z)|
st

+1

)b0
dz ds

≤
∫ 1

0
s−b0

∫
Rn

|(Θ (s))t(z)|M∗∗
b0 ( f ;Φ)(x)

( |x− y|
t

+
|z|
t
+1

)b0
dz ds

≤ 2b0M∗∗
b0 ( f ;Φ)(x)

∫ 1

0
s−b0

∫
Rn

|Θ (s)(w)|(|w|+1
)b0 dw ds

≤ 2b0M∗∗
b0 ( f ;Φ)(x)

∫ 1

0
s−b0C0(Φ ,b0)sb0 Nb0(ϕ)ds ,

where we applied conclusion (7.4.2) of Lemma 7.4.1. Setting N = b0 = [b]+1, we
obtain for y in B(x, t) and ϕ ∈ S (Rn),

|(ϕt ∗ f )(y)| ≤ 2b0C0(Φ ,b0)Nb0(ϕ)M
∗∗
b0 ( f ;Φ)(x) .

Taking the supremum over all y in B(x, t), over all t > 0, and over all ϕ in FN , we
obtain the pointwise estimate

MN( f )(x) ≤ 2b0C0(Φ ,b0)M∗∗
b0 ( f ;Φ)(x) , x ∈ Rn,

where N = b0. This clearly yields (7.4.12) if we set C2 = 2b0C0(Φ ,b0).
It remains to prove (7.4.13). Let us set

H(s,x) = (Θ (s) ∗Φs)(x), x ∈ Rn.

Notice that ((Θ (s))t ∗ Φts)(x) = t−nH(s,x/t). It will suffice to show that the partial
sums of

∫ 1
0 H(s,x/t)ds converge to this integral in the topology of Schwartz func-

tions. In other words, if si = i/N, i= 1,2, . . . ,N, we must prove that for fixed t > 0
we have

sup
x∈Rn

∣∣∣∣
N

∑
i=1

∫ si

si−1

[
xα ∂ β

x H
(
si−1,

x
t

)
− xα ∂ β

x H
(
u,

x
t

)]
du

∣∣∣∣ → 0 (7.4.14)

as N → ∞ for all multi-indices α,β . Using the fundamental theorem of calculus we
can express the supremum in (7.4.14) as

sup
x∈Rn

∣∣∣∣
N

∑
i=1

∫ si

si−1

[∫ u

si−1

xα ∂ β
x
d
ds

H
(
s,
x
t

)
ds
]
du

∣∣∣∣ ,

which is pointwise bounded by
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1
N

sup
x∈Rn

∫ 1

0

∣∣∣xα ∂ β
x
d
ds

H
(
s,
x
t

)∣∣∣ds.
This expression can be rewritten as

t |α|

t |β |N
sup
x∈Rn

∫ 1

0

[(x
t

)α( d
ds

Θ (s) ∗ (∂ β
x Φ)s
s|β | +Θ (s) ∗ d

ds
(∂ β

x Φ)s
s|β |

)(x
t

)]
ds. (7.4.15)

Now the quantity inside the square brackets in (7.4.15) can be estimated by

2|α|−1

s|β |

∫
Rn

∣∣∣ d
ds

Θ (s)(y)
∣∣∣ |y||α|

∣∣∣(∂ β
x Φ)s

(x
t

− y
)∣∣∣dy

+
2|α|−1

s|β |

∫
Rn

∣∣∣ d
ds

Θ (s)(y)
∣∣∣
∣∣∣x
t

− y
∣∣∣|α| ∣∣∣(∂ β

x Φ)s
(x
t

− y
)∣∣∣dy

+
2|α|−1

s|β |

∫
Rn

∣∣Θ (s)(y)
∣∣ |y||α|

∣∣∣ d
ds

(∂ β
x Φ)s

(x
t

− y
)∣∣∣dy

+
|β |2|α|−1

s|β |+1

∫
Rn

∣∣Θ (s)(y)
∣∣ |y||α|

∣∣∣(∂ β
x Φ)s

(x
t

− y
)∣∣∣dy

+
2|α|−1

s|β |

∫
Rn

∣∣Θ (s)(y)
∣∣ ∣∣∣x
t

− y
∣∣∣|α| ∣∣∣ d

ds
(∂ β

x Φ)s
(x
t

− y
)∣∣∣dy

+
|β |2|α|−1

s|β |+1

∫
Rn

∣∣Θ (s)(y)
∣∣ ∣∣∣x
t

− y
∣∣∣|α| ∣∣∣(∂ β

x Φ)s
(x
t

− y
)∣∣∣dy

≤ C

sn+|β |

∫
Rn

∣∣∣ d
ds

Θ (s)(y)
∣∣∣(1+ |y|)m dy

+
Cs|α|

sn+|β |

∫
Rn

∣∣∣ d
ds

Θ (s)(y)
∣∣∣dy

+
C

sn+1+|β |

∫
Rn

∣∣Θ (s)(y)
∣∣(1+ |y|)m dy

+
C

sn+1+|β |

∫
Rn

∣∣Θ (s)(y)
∣∣(1+ |y|)m dy

+
Cs|α|

sn+1+|β |

∫
Rn

∣∣Θ (s)(y)
∣∣dy

+
Cs|α|

sn+1+|β |

∫
Rn

∣∣Θ (s)(y)
∣∣dy

for any m≥ |α|, whereC is a constant depending on Φ ,α,β ,m,n. Recalling (7.4.2)
and the estimate in Remark 7.4.2, picking m ≥ |β |+ n+ 2 and m ≥ |α|, we obtain
that the preceding displayed expression is bounded, so inserting this in (7.4.15)
yields a finite integral, and thus (7.4.15) tends to zero as N → ∞. This concludes the
proof of (7.4.13). �
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Exercises

7.4.1. Let 0< p≤ 1 and N = [ np ]+1. Prove that there is a constantC(p,n) such that
for any f ∈ Hp(Rn) and any ϕ ∈ S (Rn) and all t > 0 we have

∥∥ϕt ∗ f
∥∥
L∞ ≤C(p,n) t−

n
p NN(ϕt)

∥∥ f∥∥Hp

and ∥∥ϕt ∗ f
∥∥
Lp ≤C(p,n)NN(ϕt)

∥∥ f∥∥Hp .

Deduce that for all r satisfying p ≤ r ≤ ∞ one has

∥∥ϕt ∗ f
∥∥
Lr ≤C(p,n)NN(ϕt) t

−n( 1p− 1
r )
∥∥ f∥∥Hp .

7.4.2. Let 0< p≤ 1. Show that for all f in Hp(Rn), the distributional Fourier trans-
form f̂ is a continuous function. Also prove that there exists a constant Cn,p such
that for all ξ �= 0

| f̂ (ξ )| ≤Cn,p |ξ | np−n∥∥ f∥∥Hp .

[Hint: Use the preceding exercise with r = 1, t = |ξ |−1 and ϕ(x) = eπe−π|x|2 .]

7.4.3. Let 0 < p ≤ 1 and N = [ np ] + 1. Prove that for any f ∈ Hp(Rn) and any
ϕ ∈ S (Rn) one has

∣∣〈 f ,ϕ〉∣∣ ≤ NN(ϕ) inf
|z|≤1

MN( f )(z) .

Use this estimate to show the existence of a constant Cn,p such that∣∣〈 f ,ϕ〉∣∣ ≤ NN(ϕ)Cn,p
∥∥ f∥∥Hp .

Conclude that if f j → f in Hp, then f j → f inS ′.

7.4.4. (a) Let x0 ∈ Sn−1. Prove that there is a constantCn > 0 such that the sequence
of functions fk = χB(kx0,1) − χB(−kx0,1), k ≥ 12, satisfies4

∥∥ fk∥∥H1 ≥Cn log k
4 .

(b) Show that f = ∑∞
j=2

1
j2
f
22 j

lies in L1(Rn)\H1(Rn) and has integral zero.

[Hint: Fix a Φ ∈ C ∞ supported in B(0,1) and equal to 1 on B(0, 12 ). Prove that
(Φtx ∗ fk)(x) ≥ vn t−n

x for x ∈ B(kx0, k4 ), where tx = 2|x− kx0|+2.]

7.4.5. Given A a closed subset of Rn and 0 < γ < 1, define

A∗
γ =

{
x ∈ Rn : inf

r>0

|A∩B(x,r)|
|B(x,r)| ≥ γ

}
.

4 A weaker assertion is claimed in Exercise 7.8.2 via a different method.



7.5 The Whitney Decomposition of Open Sets 303

Show that A∗
γ is a closed subset of A and that it satisfies

|(A∗
γ)

c| ≤ 3n

1− γ
|Ac| .

[Hint: Show that

(A∗
γ)

c � {x ∈ Rn :M(χAc)(x) > 1− γ},

where M is the Hardy–Littlewood maximal function.]

7.4.6. (a) For a (not necessarily measurable) function F on Rn+1
+ and a > 0, set

F∗
a (x) = sup

t>0
sup

y: |y−x|<at
|F(y, t)| .

Let 0 < a < b < ∞. Prove that for λ > 0 all sets below are open and satisfy

|{F∗
a > λ}| ≤ |{F∗

b > λ}| ≤ 3na−n(a+b)n|{F∗
a > λ}|.

(b) For f ∈ S ′(Rn) and Φ ∈ S (Rn) and x ∈ Rn define

M∗
a( f ;Φ)(x) = sup

t>0
sup

y: |y−x|<at
|(Φt ∗ f )(y)|.

Conclude that ‖M∗
a( f ;Φ)‖Lp and ‖M∗

b( f ;Φ)‖Lp are comparable for all a,b, p > 0.

[Hint: Apply Exercise 7.4.5 with γ = (a+b)n−an

(a+b)n and A := {F∗
a ≤ λ}, and prove that

{F∗
b > λ} � (A∗

γ)
c.]

7.5 The Whitney Decomposition of Open Sets

We denote by �(Q) the side length of a cube Q. In this section we decompose a
proper open subset Ω ofRn as a union of dyadic cubes with side lengths comparable
to their distance to the boundary of Ω .

As usual, we denote by Dk be the collection of all dyadic cubes of the form

{(x1, . . . ,xn) ∈ Rn : mj2
−k ≤ x j < (mj+1)2−k} ,

where mj ∈ Z. Bisecting each side, we can write each cube in Dk as a union of 2n

cubes in Dk+1. We denote by D = ∪k∈ZDk the set of all dyadic cubes.

Definition 7.5.1. Two dyadic cubes in Rn are called adjacent if they are disjoint and
their boundaries intersect (touch). This intersection could be a point, an edge, or a
face of dimension at most n−1.

The closures of adjacent dyadic intervals have a common endpoint, but the clo-
sures of adjacent dyadic squares in R2 could share a corner or an edge. In R3 they
may share a corner, an edge or a face.
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Theorem 7.5.2. (Whitney decomposition) Let Ω be a nonempty proper open subset
of Rn. Then there exists a family of disjoint dyadic cubes F = {Qj} j such that
(a)

⋃
j Q j = Ω .

(b) For every Qj ∈ F we have
√
n�(Qj) ≤ dist (Qj,Ω c) < 4

√
n�(Qj).

Thus there exists ξ j ∈ Ω c such that |ξ j − center of Qj| ≤ 9
2

√
n�(Qj).

(c) If the cubes Qj and Qk inF are adjacent, then

1
4

≤ �(Qj)
�(Qk)

≤ 4.

(d) Given Qj inF there exist at most 6n −4n cubes Qk inF adjacent to Qj.
(e) Let 0 < ε < 2

5 . For Qj ∈ F define Q∗
j as the cube with the same center as Qj

and with �(Q∗
j) = (1+ ε)�(Qj). Then if Q j, Qi in F are disjoint and not adjacent,

we must have that Q∗
j and Q

∗
i are disjoint. Moreover, all Q∗

j are contained in Ω and

χΩ ≤ ∑
j

χQ∗
j
≤ 2nχΩ .

Proof. Write the open set Ω as the union of Ωk, k ∈ Z, where

Ωk =
{
x ∈ Ω : 2

√
n2−k ≤ dist(x,Ω c) < 4

√
n2−k}.

Let
G =

{
Q ∈ D : ∃ k ∈ Z such that Q ∈ Dk and Q∩Ωk �= /0

}
.

We show that the collection G satisfies property (b). Let Q ∈ G ∩Dk for some k
and pick x ∈ Ωk ∩Q. Then we have

√
n2−k ≤ dist(x,Ω c)−√

n�(Q) ≤ dist(Q,Ω c) ≤ dist(x,Ω c) < 4
√
n2−k.

This proves that the collection G satisfies the first assertion in (b). Now, givenQ∈ G
there exists a point ξ ∈ Ω c whose distance from Q is at most 4

√
n�(Q). Then the

distance from ξ to the center of Q is at most

4
√
n�(Q)+

√
n
2

�(Q).

This proves that G satisfies the second assertion in (b) as well.
We note that every Q in G is contained in Ω since it has distance at least

√
n�(Q)

(which is strictly positive) from its complement. Thus ∪Q∈GQ � Ω . Now for every
x ∈ Ω there exists k ∈ Z such that x lies in Ωk. But this x lies in some cube Qx ∈Dk,
hence Qx ∩Ωk �= /0, so Qx ∈ G and thus x ∈ ∪Q∈GQ. Then Ω � ∪Q∈GQ. Combining
these facts we conclude that

Ω =
⋃
Q∈G

Q.
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The problem is that the cubes in G may not be disjoint. We then refine G by elim-
inating those cubes that are contained in some other cubes in the collection. Two
dyadic cubes are disjoint or are related by inclusion. For every cube Q in G we can
therefore consider the uniquemaximal cubeQmax in G that contains it. Two different
such maximal cubes must have disjoint interiors by maximality.

Now set F = {Qmax : Q ∈ G }. The collection of cubes {Qj} j =F satisfies (a)
and (b) by construction, and we now turn our attention to the proof of (c). Observe
that if Qj and Qk inF are adjacent then

√
n�(Qj) ≤ dist(Qj,Ω c) ≤ dist(Qj,Qk)+dist(Qk,Ω c) < 0+4

√
n�(Qk),

and, as the roles of Qj and Qk could be interchanged, this proves (c).
To prove (d), note that the largest number of dyadic cubes adjacent to a fixed

cube Qj ∈ Dk ∩F is obtained when all the cubes have the smallest possible size,
i.e., they lie in Dk+2 in view of (c). But 6

4Qj contains 6n subcubes of side length
2−k−2 and Qj itself contains 4n such subcubes. This means that 6n −4n subcubes of
6
4Qj of side length 2−k−2 must be adjacent to Qj. This yields the assertion in (d).
[Here 6

4Qj is concentric with Qj and �( 64Qj) = 6
4�(Qj).]

Qj

Fig. 7.2 The cube (1+ 2
5 )Qj = 7

5Qj

(shown in dots) is properly contained in
the union of Qj and its adjacent cubes.
This is because all adjacent cubes have
side lengths at least 1

4 �(Qj).

Qj
7
5Qj

Qk

7
5Qk

Qi

7
5Qi

Fig. 7.3 If Qj is not adjacent to either Qi or Qk

and �(Qj) = 4�(Qi) = 2�(Qk), then 7
5Qj ∩ 7

5Qk is
empty. Also 7

5Qj and 7
5Qi are disjoint but their

boundaries may touch. Hence, (1+ ε)-envelops
of non-adjacent cubes inF are disjoint if ε < 2

5 .

For part (e) we verify first that if Qj, Qi in F are not adjacent, then Q∗
j and Q∗

i
are disjoint. Without loss of generality assume that �(Qj)≥ �(Qi). If �(Qj) = �(Qi),
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then the distance between Qj and Qi is at least �(Qj), which forces Q∗
j and Q∗

i

to be disjoint. Also, if �(Qj) = 2�(Qi), then 7
5Qj and 7

5Qi are disjoint. Finally, if
�(Qj) = 4�(Qi), then, in the worst case, the disjoint cubes 7

5Qj and 7
5Qi share parts

of their boundaries as

1
5
�(Qj)+

1
5
�(Qi) = �(Qi) ≤ dist (Qi,Qj);

see Figure 7.3. Thus for ε < 2
5 , Q

∗
j and Q∗

i are always disjoint.

Next we claim that each Q∗
j = (1+ ε)Qj is contained in Ω if ε < 2

5 ; to see
this we observe that Q∗

j is contained in the union of Qj and its adjacent cubes (see

Figure 7.2), since 1
5�(Qj) is smaller than the length of any adjacent cube, which is

at least 1
4�(Qj) by part (b).

The lower inequality in (e) is a consequence of the facts that Qj � Q∗
j and that

the union of the Qj equals Ω . For the upper inequality in (e), recall that if Q∗
j and

Q∗
i intersect and i �= j, then Qj and Qi are adjacent. So we need to find the maxi-

mum number of pairwise adjacent dyadic cubes Qi such that the intersection of the
corresponding Q∗

i is non empty. A moment’s thought gives that this number is at
most 2n by the construction of dyadic cubes (and this happens exactly when these
cubes share a common corner.) This proves the upper inequality in (e). �

Definition 7.5.3. The cubes Qj obtained in the construction of Theorem 7.5.2 are
called theWhitney cubes of Ω .

Example 7.5.4. Suppose that our open set
is Ω = (0,1). Then the dyadic intervals
[ 14 ,

2
4 ) and [ 24 ,

3
4 ) have distance from Ω c

exactly equal to their side length. And
these are the largest dyadic intervals con-
tained in Ω with distance to Ω c at least
their side length. The next generation of
dyadic intervals with the same property
are [ 18 ,

2
8 ) and [ 68 ,

7
8 ), the next generation

are [ 116 ,
2
16 ) and [ 1416 ,

15
16 ), etc. All these

intervals form a Whitney decomposition
of (0,1).
The Whitney decomposition of the unit
disc in R2 is obtained via a similar pro-
cedure and is shown in Figure 7.4.

Fig. 7.4 TheWhitney decomposition
of the unit disk.

Remark 7.5.5. Let Ω ,Ω ′ be nonempty open sets satisfying Ω � Ω ′ � Rn. Then
every Whitney cube of Ω is contained in some Whitney cube of Ω ′.

To verify this assertion, define G ′ and F ′ associated with Ω ′ in the same way
that G andF are associated with Ω . For k ∈ Z, we also define Ω ′

k analogously. We
claim that

Ωk �
⋃
l≤k

Ω ′
l . (7.5.1)
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Indeed, let x ∈ Ωk for some k ∈ Z. Then −k is the largest integer with the property
2−k ≤ 1

2
√
ndist (x,Ω

c). As dist(x,Ω c) ≤ dist(x,(Ω ′)c), it follows that the largest −l

such that 2−l ≤ 1
2
√
ndist(x,(Ω

′)c)must satisfy−l ≥ −k. Then x∈ Ω ′
l for some l ≤ k.

Let Q be a cube in F . Then Q belongs to G and thus there is a k ∈ Z such that
Q ∈Dk and Q∩Ωk �= /0. It follows from (7.5.1) that Q∩Ω ′

l �= /0 for some l ≤ k. Pick
a dyadic ancestor Q′ of Q of length 2−l . Then Q′ ∈ Dl and Q′ ∩ Ω ′

l �= /0. Hence Q′
lies in G ′ and is therefore contained in some cube Q′′ in F ′. Then every Whitney
cube Q of Ω is contained in a Whitney cube Q′′ of Ω ′.

Next we construct a smooth partition of unity adapted to a Whitney decomposi-
tion.

Lemma 7.5.6. Let {Qj} j be the Whitney decomposition of a nonempty and proper
open subset Ω of Rn. Then there are functions {ϕ j} j of class C ∞ such that

(i) 0 ≤ ϕ j ≤ 1 for all j.
(ii) ϕ j is supported in 9

8Qj, which is concentric with Qj and has length 9
8�(Qj).

(iii) For any multi-index α there is Cα > 0 such that for all j we have

|∂ α ϕ j| ≤ Cα

�(Qj)|α| .

(iv) For all j we have

1
2n

≤ 1
|Qj|

∫
Rn

ϕ j(y)dy ≤
(9
8

)n
.

(v) The family {ϕ j} j forms a partition of unity of Ω , i.e.,

∑
j

ϕ j = χΩ .

(vi) For any multi-index α there is a constant Bα such that for all i, j we have

|∂ α(ϕiϕ j)| ≤ Bα

�(Qj)|α|+n

∫
Rn

ϕi(y)ϕ j(y)dy.

Proof. Start with an even nonnegative C ∞ function ω on R such that

ω(t) =

⎧⎪⎨
⎪⎩
0 |t| ≥ 1

2 +
1
16 ,

1 |t| ≤ 1
2 ,

strictly decreasing on ( 12 ,
1
2 +

1
16 ) .

(7.5.2)

Such a function exists by Proposition 1.7.3 (b). Now, given a dyadic interval I on
the real line, we adapt ω to I by defining

φI(t) = ω
( t− cI

|I|
)
, (7.5.3)
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where cI is the center of I. It follows by construction that for all k ∈ Z+ there is a
constant Ck such that ∣∣φ (k)

I

∣∣ ≤Ck|I|−k. (7.5.4)

In fact, Ck = ‖ω(k)‖L∞ . We extend the definition of φI to higher dimensions as fol-
lows: for a dyadic cube Q= I1 ×·· ·× In we define

ΦQ(x1, . . . ,xn) = φI1(x1) · · ·φIn(xn). (7.5.5)

In view of (7.5.4), for any multi-index γ there is a constant cγ such that

∣∣∂ γ ΦQ
∣∣ ≤ cγ �(Q)−|γ |. (7.5.6)

Let {Qj} j be the Whitney decomposition of the open set Ω and consider the
function ΦQj adapted to Qj as defined in (7.5.5). Notice that Q∗

j =
9
8Qj satisfies

ΦQj ≤ χQ∗
j
, and property (e) in Theorem 7.5.2 yields

χΩ ≤ ∑
j

ΦQj ≤ 2nχΩ . (7.5.7)

The family {ΦQj} j is not a partition of unity of Ω , although it is quite close to it.
To create a partition of unity from it we define

ϕ j =

{
ΦQj

(
∑s ΦQs

)−1
on Ω ,

0 on Ω c.
(7.5.8)

We observe that properties (i), (ii), and (v) hold for ϕ j by construction.
To prove (iii) we appeal to the Faà di Bruno formula (Appendix F) which says

that for a multi-index γ , 1
γ!∂

γ 1
∑s ΦQs

equals

∑
(m1,...,mk)
(β1,...,βk)

(−1)m1+···+mk(m1+ · · ·+mk)!
(∑s ΦQs)m1+···+mk+1

(
1

β1!
∂ β1 ∑s ΦQs

)m1

m1!
· · ·

(
1

βk!
∂ βk ∑s ΦQs

)mk

mk!
,

where the sum is taken over a finite set of (m1, . . . ,mk) and (β1, . . . ,βk), where mj

are nonnegative integers and β j are multi-indices related by γ = m1β1+ · · ·+mkβk

for certain values of k. For a given x that belongs to a fixed Whitney cube Qr, if Qs

is not Qr or is not adjacent to Qr, then ΦQs vanishes near x; thus if ΦQs(x) �= 0, then
Qs is comparable to Qr. In view of this information, the preceding identity gives

∣∣∣∂ γ 1

∑s ΦQs

(x)
∣∣∣ ≤C′

γ ∑
(m1,...,mk)
(β1,...,βk)

1

�(Qr)m1|β1| · · · 1

�(Qr)mk|βk| ≤ C′′
γ

�(Qr)|γ| . (7.5.9)

Applying Leibniz’s rule to the function in (7.5.8) and using (7.5.9) and (7.5.6) yields
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|∂ α ϕ j(x)| ≤ ∑
γ≤α

(
α
γ

)∣∣∣∂ γ 1

∑s ΦQs

(x)
∣∣∣ ∣∣∂ α−γ ΦQj

∣∣ ≤ ∑
γ≤α

(
α
γ

)
C′′

γ

�(Qr)|γ|
cα−γ

�(Qj)|α|−|γ | ,

when x ∈Qr. But if ϕ j does not vanish near x, then Qr is Qj or adjacent to Qj. Then
�(Qr) ≈ �(Qj) and this proves the claim in (iii).

We turn our attention to property (iv). Notice that by construction one has

1 ≤ 1
|Qj|

∫
Rn

ΦQj(y)dy=
n

∏
m=1

1
�(Qj)

∫
Rn

ω
(ym − (cQj)m

�(Qj)

)
dym ≤

(9
8

)n

(cQj = center of Qj). These inequalities combined with (7.5.7) yield those in (iv).
To prove (vi) we argue as follows. If ϕiϕ j ≡ 0, then the assertion is trivial. We

therefore assume that the function ϕiϕ j is not identically equal to zero. Then the
associated cubes Qi and Qj either coincide or are adjacent, and thus they have com-
parable sizes. Let us assume without loss of generality that |Qi| ≥ |Qj|. Given a
multi-index α , we apply Leibniz’s rule and the estimates in part (iii) to obtain

∣∣∂ α(ϕiϕ j)
∣∣ ≤ ∑

β≤α

(
α
β

)
Cβ

�(Qi)|β |
Cα−β

�(Qj)|α|−|β | ≤ B′
α

�(Qj)|α| . (7.5.10)

It will be sufficient to prove that there is a constant B′′ > 0 such that

1
�(Qj)n

∫
Rn

ϕi(y)ϕ j(y)dy ≥ B′′. (7.5.11)

Then (vi) would follow with Bα = B′
α/B′′ by combining (7.5.10) and (7.5.11). The

proof of (7.5.11) is contained in the following lemma [part (c)]. �

In the next lemma, ϕ j are as in Lemma 7.5.6, while φI and ΦQ are introduced in
(7.5.3) and (7.5.5), respectively. These are defined in terms of ω given in (7.5.2).

Lemma 7.5.7. (a) There is a constant B such that for any two dyadic intervals I, J
with �(J) ≤ 4�(I), if φIφJ is not identically equal to zero, we have

1
|J|

∫
R

φI(t)φJ(t)dt ≥ B. (7.5.12)

(b) There is a constant B′ depending on the dimension such that for any two dyadic
cubes Q, R with �(R) ≤ 4�(Q), if ΦQΦR is not the zero function, one has

1
|R|

∫
Rn

ΦQ(y)ΦR(y)dy ≥ B′. (7.5.13)

(c) Let Qi be a Whitney cube of an open set and let Q j be a Whitney cube of another
open set such that �(Qj) ≤ 4�(Qi). If ϕiϕ j is not the zero function then we have

1
|Qj|

∫
Rn

ϕi(y)ϕ j(y)dy ≥ B′′ = 2−2nB′. (7.5.14)
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Proof. (a) By a translation, we may assume that J = [0,2m) for some m ∈ Z. Then
by applying a dilation, we reduce matters to the situation where J = [0,1) and I is a
dyadic interval of size at least 1/4. Since φIφJ is not the zero function, we must have
9
8 I∩ 9

8J �= /0; hence one of the following is true: I is contained in J, or I is adjacent
to J, or I contains J. Then the only possibilities for I are

[− 1
4 ,0), [0,

1
4 ), [

1
4 ,

2
4 ), [

2
4 ,

3
4 ), [

3
4 ,1), [1,

5
4 )

[− 1
2 ,0), [0,

1
2 ), [

1
2 ,1), [1,

3
2 ),

[−1,0), [0,1), [1,2),

[−2k,0), [0,2k), for some k ≥ 1.

Then it suffices to show that for any interval I above with cI its center we have
∫
R

φI(t)φ[0,1)(t)dt =
∫
R

ω
( t− cI

|I|
)

ω(t− 1
2 )dt ≥ B. (7.5.15)

Exploiting the fact that ω(·− 1
2 ) is strictly decreasing and does not vanish on [1,

17
16 )

indicates that (7.5.15) is valid and in fact, the first of the listed intervals produces
the smallest possible constant; thus (7.5.12) holds.

(b) Let Q = I1 × ·· · × In and R = J1 × ·· · × Jn, where |I1| = · · · = |In| = �(Q)
and |J1| = · · · = |Jn| = �(R). As ΦQΦR is not the zero function, we must have that
9
8Q∩ 9

8R �= /0 which implies that 9
8 Im ∩ 9

8Jm �= /0 for every m ∈ {1, . . . ,n}. Moreover,
�(R) ≤ 4�(Q) implies that |Jm| ≤ 4|Im| for every m. The definition of ΦQ given in
(7.5.5) gives that the integral in (7.5.13) is equal to a product of integrals such as
those appearing in (7.5.12). So using (7.5.12) we obtain (7.5.13) with B′ = Bn.

(c) In view of (7.5.7) and (7.5.8) we have that ϕi ≥ 2−nΦQi and ϕ j ≥ 2−nΦQj .
Then we use (7.5.13) to deduce (7.5.14). �

Exercises

7.5.1. Fix a dyadic cube Q. Show that there exist 3n −1 adjacent dyadic cubes to Q
of equal side length, 4n −2n adjacent dyadic cubes to Q of half its side length, and
6n −4n adjacent dyadic cubes to Q of one quarter its side length,

7.5.2. Let {Qi}i and {Q′
j} j be two collections of pairwise disjoint dyadic cubes in

each collection. Suppose that Ω = ∪iQi � ∪ jQ′
j = Ω ′ and that the {Qi}i as well

as the {Q′
j} j satisfy property (b) of Theorem 7.5.2. Prove that if Q ∈ {Qi}i and

Q′ ∈ {Q′
j} j then only one of the following three options is possible: (i) Q and Q′ are

disjoint, (ii) Q � Q′, or (iii) Q′ is a proper subset of Q and �(Q′) = 1
2�(Q).

7.5.3. Prove the following: There is a constant An such that ifQi andQj are adjacent
dyadic cubes in the Whitney decomposition of an open set Ω �= Rn, then there are
at least 2n dyadic cubes R of side length 1

26
min(�(Qi), �(Qj)) such that



7.6 Atomic Decomposition of H1 311

ϕi(x)ϕ j(x) ≥ An

|Qj|
∫
Rn

ϕi(y)ϕ j(y)dy

for all x ∈ R. Here {ϕ j} j is the partition of unity of Lemma 7.5.7 adapted to {Qj} j.

7.5.4. Show that for any multi-index α there is a constant Bα such that for the
partition of unity of Lemma 7.5.7 adapted to the Whitney cubes {Qj} j of an open
set Ω �= Rn we have

∂ β [ϕ j1 · · ·ϕ jr

] ≤ Bα max(|Qj1 |, . . . , |Qjr |)−
|β |
n .

7.5.5. Prove that there is a constant cn depending on the dimension such that for any
finite collection of distinct Whitney cubes Qj1 , . . . ,Qjr of an open set Ω we have

∫
Rn

ϕ j1(y) · · ·ϕ jr(y)dy ≥ cnmin(|Qj1 |, . . . , |Qjr |)ϕ j1 · · ·ϕ jr ,

where {ϕ j} j is the partition of unity of Lemma 7.5.7 adapted to {Qj} j.
[Hint: Note that r ≤ 2n. If Qj = I j1 ×·· ·× I jn and ϕ j1(x) · · ·ϕ jr(x) �= 0, then all inter-
vals in the set {I j11 , . . . , I jr1 } have comparable lengths (ratio between 1

4 and 4) and
are either adjacent or related by inclusion. Show that for some c1n > 0,

∫
R

φ
I
j1
1
(y) · · ·φ

I jr1
(y)dy ≥ c1nmin(|I j11 |, . . . , |I jr1 |).

Reduce matters to the case when one of the largest intervals is equal to [0,1).]

7.6 Atomic Decomposition of H1

In this section we prove the atomic characterization of H1(Rn), which says that
every element ofH1 can be expressed as an infinite sum ofH1-atoms. The following
theorem provides a precise formulation.

Theorem 7.6.1. Given a function f in H1(Rn) there exists a sequence of H1 atoms
as, s= 1,2, . . . , and a sequence of positive numbers λs such that

f =
∞

∑
s=1

λs as, a.e. (7.6.1)

Also, there are constants cn,Cn > 0 depending only on the dimension such that

cn
∥∥ f∥∥H1 ≤

∞

∑
s=1

λs ≤Cn
∥∥ f∥∥H1 . (7.6.2)

Moreover, the series ∑∞
s=1 λs as converges to f in H1.
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Proof. We fix a nonzero function f in H1. By Theorem 7.2.4 (b), f lies in L1(Rn).
We also fix an N ≥ n+ 1 and consider the grand maximal function MN . If there
is a k ∈ Z such that Ω k = {x ∈ Rn : MN( f )(x) > 2k} is empty, we let k00 be the
smallest such integer k, otherwise we set k00 = ∞. We observe that for each k < k00,
Ω k is a nonempty and proper open subset of Rn. In the remainder of this proof, all
all indices k that appear will be tacitly assumed to be strictly less than k00.

For k ∈ Z apply Theorem 7.5.2 to write

Ω k =
{
x ∈ Rn : MN( f )(x) > 2k

}
=

∞⋃
i=1

Qk
i ,

where {Qk
i }∞

i=1 are the dyadic Whitney cubes of Ω k. Let �ki be the length of Qk
i

and {ϕk
i }i be the partition of unity adapted to the Whitney cubes Qk

i , according to
Lemma 7.5.6. Then we set

mk
i =

1

‖ϕk
i ‖L1

∫
Rn

fϕk
i dy

and

gk = f χ(Ω k)c +
∞

∑
i=1

mk
i ϕk

i . (7.6.3)

We claim that there is a constant C1(n), that depends on the dimension, such that

|mk
i | ≤C1(n)2k (7.6.4)

for all i and k. To see this, by Theorem 7.5.2 (b) we pick a ξ k
i /∈ Ω k such that

|ξ k
i − cki | ≤ 9

2

√
n�ki , where c

k
i is the center of Q

k
i . Define the function

Φk
i (x) = ϕk

i (ξ k
i − �ki x)

and notice that it is supported in the set
{
x ∈ Rn : |ξ k

i − �ki x− cki | ≤ 1
2 · 9

8

√
n�ki

}
,

which is contained in the ball B(0, 8216
√
n). Moreover, by Lemma 7.5.6 (iii), Φk

i has
derivatives bounded by a constant independent of i and k. These observations yield
the existence of a constant C′

1(n) > 0 such that 1
C′
1(n)

Φk
i ∈ FN for all i and k. Then

|mk
i | =

1

‖ϕk
i ‖L1

∣∣∣
∫
Rn

f (y)

ϕk
i (y)︷ ︸︸ ︷

Φk
i

(ξ k
i − y

�ki

)
dy

∣∣∣

=C′
1(n)

(�ki )
n

‖ϕk
i ‖L1

∣∣∣
((Φk

i

C′
1

)
�ki

∗ f
)
(ξ k

i )
∣∣∣

≤C′
1(n)2

nMN( f )(ξ k
i ) [Lemma 7.5.6 (iv)]

≤C1(n)2k as (ξ k
i /∈ Ω k). (7.6.5)
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Next we claim that there is a constant C2(n) such that |gk| ≤ C2(n)2k. Indeed, in
view of (7.6.3) and (7.6.4) this assertion holds on Ω k. Additionally, picking φ in
FN with cφ =

∫
φ dy �= 0, Theorem 2.5.5 yields that φt ∗ f → cφ f as t → 0. But

|φt ∗ f | ≤MN( f ), so | f | ≤ 2k/cφ on (Ω k)c. Hence the assertion |gk| ≤C2(n)2k also
holds on (Ω k)c. Consequently, gk → 0 as k → −∞.

On the other hand,

f −gk =
∞

∑
i=1

( f −mk
i )ϕk

i

is supported in Ω k, which tends to the empty set as k → ∞. This implies that the
support of f − gk tends to the empty set; in other words, gk → f a.e. as k → ∞.
These observations allow us to conclude that

f =
∞

∑
k=−∞

(gk+1 −gk) a.e. (7.6.6)

We now write

gk+1 −gk = ( f −gk)− ( f −gk+1) =
∞

∑
i=1

( f −mk
i )ϕk

i −
∞

∑
j=1

( f −mk+1
j )ϕk+1

j .

At this point one is tempted to consider multiples of the functions {( f −mk
i )ϕk

i }i,k as
the atoms appearing in the decomposition of f . These functions have integral zero
and are supported in cubes, but the problem is that they may be unbounded. So we
introduce a further decomposition to fix this issue. Recalling that each cube Qk+1

j

is contained in some cube Qk
i (Remark 7.5.5), we group together all ϕk+1

j whose

support intersects a given ϕk
i . Precisely, if ϕk

i ϕk+1
j is the zero function, we define

mk,k+1
i, j = 0, while if ϕk

i ϕk+1
j is not the zero function we set

mk,k+1
i, j =

1∫
ϕk
i ϕk+1

j dy

∫
Rn

f (y)ϕk
i (y)ϕk+1

j (y)dy.

Then we introduce the functions

αk
i = ( f −mk

i )ϕk
i −

( ∞

∑
j=1

( f −mk,k+1
i, j )ϕk+1

j

)
ϕk
i (7.6.7)

=
[
f χ(Ω k+1)c −

(
mk
i −

∞

∑
j=1

mk,k+1
i, j ϕk+1

j

)]
ϕk
i , (7.6.8)

β k+1
j = −( f −mk+1

j )ϕk+1
j +

( ∞

∑
i=1

( f −mk,k+1
i, j )ϕk

i

)
ϕk+1
j (7.6.9)

=
[
− f χ(Ω k)c +

(
mk+1

j −
∞

∑
i=1

mk,k+1
i, j ϕk

i

)]
ϕk+1
j . (7.6.10)
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In view of the definitions of mk
i , m

k+1
j , and mk,k+1

i, j , (7.6.7) and (7.6.9) give that αk
i

and β k+1
j have integral zero. Moreover, summing over i in (7.6.7) and over j in

(7.6.9) yields the identity

gk+1 −gk =
∞

∑
i=1

αk
i +

∞

∑
j=1

β k+1
j . (7.6.11)

We claim that |mk,k+1
i, j | ≤ C3(n)2k for a constant C3(n) that only depends on

the dimension. Indeed, if ϕk
i ϕk+1

j �= 0, then 9
8Q

k
i ∩ 9

8Q
k+1
j �= /0 which implies that

either Qk+1
j is contained in Qk

i or in another Whitney cube Qk
i′ adjacent to Qk

i

(Remark 7.5.5). In either case we have �k+1
j ≤ 4�ki . We pick a point ξ k+1

j ∈ (Ω k+1)c

within 9
2

√
n�k+1

j units from the center of Qk+1
j and we define

Ψ k,k+1
i, j (x) = ϕk

i (ξ k+1
j − �k+1

j x)ϕk+1
j (ξ k+1

j − �k+1
j x).

As �k+1
j ≤ 4�ki , by Leibniz’s rule and Lemma 7.5.6 (iii), all derivatives ofΨ k,k+1

i, j are

bounded above by a constant independent of i, j,k; moreover, Ψ k,k+1
i, j is supported

in B(0, 8216
√
n). So, there is a constant C′

3(n) such that 1
C′
3(n)

Ψ k,k+1
i, j ∈ FN uniformly

in i, j and k. Using an argument similar to that leading to (7.6.5) and the following
fact [(7.5.14) in Lemma 7.5.7]

(�k+1
j )n∫

ϕk
i ϕk+1

j dy
≤ 1

B′′ ,

we deduce that |mk,k+1
i, j | ≤C3(n)2k.

Additionally, we pick a Schwartz function φ ∈ FN with cφ =
∫

φ dy �= 0, and
we notice that φt ∗ f → cφ f as t → 0 (Theorem 2.5.5), but |φt ∗ f | ≤ MN( f ), so
| f | ≤ 2k/cφ whenever MN( f ) ≤ 2k, i.e. on (Ω k)c (and likewise | f | ≤ 2k+1/cφ on
(Ω k+1)c). These estimates inserted in (7.6.8) and (7.6.10) provide

|αk
i | ≤C4(n)2k |β k+1

j | ≤C4(n)2k+1

for some constantC4(n)> 0 depending only on the dimension. Moreover, we notice
that αk

i and β k+1
j are supported in the cubes 9

8Q
k
i and

9
8Q

k+1
j , respectively, and have

mean value zero. So suitable normalizations of them are H1 atoms.
To create atoms, we define the constants

μk
i =C4(n)2k | 98Qk

i | , μk+1
j =C4(n)2k+1 | 98Qk+1

j |

and the following normalizations of αk
i and β k+1

j :
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Ak
i =

αk
i

μk
i

, Bk+1
j =

β k+1
j

μk+1
j

.

Then Ak
i , B

k+1
j are H1 atoms. In view of (7.6.11), (7.6.6) we have

f =
∞

∑
k=−∞

∞

∑
i=1

(
μk
i A

k
i +μk+1

i Bk+1
i

)
a.e. (7.6.12)

We estimate the �1 norm of the sequences of coefficients as follows:

∞

∑
k=−∞

∞

∑
i=1

(μk
i +μk+1

i ) = ( 98 )
nC4(n)

∞

∑
k=−∞

∞

∑
i=1

(2k|Qk
i |+2k+1|Qk+1

i |)

= ( 98 )
nC4(n)

∞

∑
k=−∞

(2k|Ω k|+2k+1|Ω k+1|)

= 2( 98 )
nC4(n)

∞

∑
k=−∞

2k|Ω k|

= 4( 98 )
nC4(n)

∞

∑
k=−∞

∫ 2k

2k−1

∣∣{x ∈ Rn : MN( f )(x) > 2k}∣∣dλ

≤ 4( 98 )
nC4(n)

∫ ∞

0

∣∣{x ∈ Rn : MN( f )(x) > λ}∣∣dλ (7.6.13)

= 4( 98 )
nC4(n)‖MN( f )

∥∥
L1

≤Cn‖ f
∥∥
H1 .

This proves the upper inequality in (7.6.2) with as being the sequence combining Ak
i

and Bk+1
j and λs being the sequence combining μk

i and μk+1
j .

For the lower inequality in (7.6.2) we use that if f = ∑∞
s=1 λs as a.e. with λs > 0

and as being H1 atoms, then

M∗( f ;Φ) ≤
∞

∑
s=1

λsM
∗(as;Φ),

where Φ(x) = e−π|x|2 . Applying the H1 norm and using Theorem 7.3.2 we deduce

∥∥ f∥∥H1 =
∥∥M∗( f ;Φ)

∥∥
L1 ≤

∞

∑
s=1

λs
∥∥M∗(as;Φ)

∥∥
L1 ≤C(n,1)

∞

∑
s=1

λs.

The lower inequality in (7.6.2) now follows with cn = 1/C(n,1).
Finally, we turn to the assertion that the series ∑∞

s=1 λsas converges to f in H1.
The fact that f ∈ H1 and the upper inequality in (7.6.2) gives that

∑
k∈Z

∞

∑
i=1

(
μk
i +μk+1

i

)
=

∞

∑
i=1

∑
k∈Z

(
μk
i +μk+1

i

)
< ∞.
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This implies that

lim
M→∞ ∑

|k|>M

∞

∑
i=1

(
μk
i +μk+1

i

)
= 0 and lim

M→∞ ∑
k∈Z

∞

∑
i=M+1

(
μk
i +μk+1

i

)
= 0.

Setting SM = ∑|k|≤M ∑M
i=1(μk

i A
k
i +μk+1

i Bk+1
i ) we have

SM − f = ∑
|k|>M

( ∞

∑
i=1

μk
i A

k
i +μk+1

i Bk+1
i

)
+ ∑

|k|≤M

(
∑
i>M

μk
i A

k
i +μk+1

i Bk+1
i

)
.

We apply the H1 norm on these expressions. Using the lower inequality in (7.6.2),
we obtain

∥∥SM − f
∥∥
H1 ≤ 1

cn

[
∑

|k|>M

∞

∑
i=1

(
μk
i +μk+1

i

)
+ ∑

k∈Z
∑
i>M

(
μk
i +μk+1

i

)]
,

and this converges to zero as M → ∞.
We finally define {λs}∞

s=1 to be an enumeration of {μk
i ,μk+1

i }i,k and analogously
we let {as}∞

s=1 be an enumeration of {Ak
i ,B

k+1
i }i,k. �

Corollary 7.6.2. For every f ∈ H1(Rn) we have

∥∥ f∥∥H1 ≈ inf
{ ∞

∑
j=1

λ j : f =
∞

∑
j=1

λ ja j a.e., a j are H
1 atoms, λ j > 0, and

∞

∑
j=1

λ j < ∞
}

.

Proof. Given f ∈ H1, by Theorem 7.6.1 we know that there exist H1 atoms a j and
λ j > 0 such that f = ∑∞

j=1 λ ja j a.e. and moreover,

∞

∑
j=1

λ j ≤Cn
∥∥ f∥∥H1 .

The infimum over all such expressions ∑∞
j=1 λ j is even smaller. This gives

inf
{ ∞

∑
j=1

λ j : f =
∞

∑
j=1

λ ja j, a j are H
1 atoms, λ j > 0, and

∞

∑
j=1

λ j < ∞
}

≤Cn
∥∥ f∥∥H1 .

For the other direction, we notice that for any representation of f as ∑∞
j=1 λ ja j we

have

∥∥ f∥∥H1 =
∥∥ ∞

∑
j=1

λ ja j
∥∥
H1 ≤

∞

∑
j=1

λ j
∥∥a j

∥∥
H1 ≤ cn

∞

∑
j=1

λ j

in view of Theorem 7.3.2. Taking the infimum over all such representations we
obtain the other direction of the equivalence. �
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Exercises

7.6.1. Provide another proof of Theorem 7.2.6 using the atomic decomposition. Pre-
cisely, use Theorem 7.6.1 to show that if f ∈ H1(Rn), then

∫
Rn f (x)dx= 0.

7.6.2. Let ε > 0. Express the function |x|−1+εsgn(x)χ0<|x|≤1 defined on the real line
as a sum of the form in (7.6.1).

7.6.3. Let ε > 0. Show that the function h(x) = 1
x

(
log 1

|x|
)−1−ε χ|x|<1/2 lies in the

Hardy space H1(R) although
∫ 1/2

−1/2
|h(t)| log |h(t)|dt = ∞.

[Hint: For j = 1,2, . . . define atoms a j = c j1+ε(hχRj − hRj

)
supported in Rj =

(2− j,2− j+1) and b j = c j1+ε(hχL j − hLj

)
supported in Lj = (−2− j+1,−2− j) for a

suitable constant c > 0 independent of j. Write h= ∑∞
j=1

1
c j1+ε (a j+b j).]

7.6.4. (Calderón–Zygmund decomposition on H1) Fill in the steps below to
obtain the following result related to the atomic decomposition of H1: Prove that
there exist constants An,Bn,Cn such that for any f ∈ H1(Rn) and α > 0 there exist
functions g and b on Rn and a collection of disjoint dyadic cubes {Qj} j such that

(1) f = g+b.

(2) ‖g‖L∞ ≤ An α .

(3) b= ∑ j b j, where each b j is supported in 9
8Qj.

(4)
∫
Qj

b j(x)dx= 0.

(5) ‖b j‖H1 ≤ Bn

∫
Q∗

j

MN( f )dx.

(6) ‖b‖H1 ≤ 2nBn

∫
{MN( f )>α}

MN( f )dx ≤Cn ‖ f‖H1 .

[Hint: For fixed N ≥ n+1, write Ω = {MN( f ) > α} as a union of Whitney cubes
{Qj} j according to Theorem 7.5.2. Let ϕ j be the associated partition of unity
according to Lemma 7.5.7. Define b j =

(
f −mj

)
ϕ j where

mj =
1∫

ϕ j dy

∫
Rn

f (y)ϕ j(y)dy

and

g= f χΩ c +∑
j
m jϕ j.
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Then b= ∑ j b j and properties (1), (3), and (4) hold by construction.

Property (2): It will be sufficient to prove that |mj| ≤C1
n α for a constant C1

n . Pick
a ξ j /∈ Ω such that |z− ξ j| < 6

√
n� j for all z ∈ Qj [cf. Theorem 7.5.2 (b)]. Here

� j = �(Qj). Notice that M ( f )(ξ j) ≤ α . Then write mj = ((Φ j)� j ∗ f )(ξ j) where

Φ j(y) =
�nj

‖ϕ j‖L1
ϕ j(ξ j − � jy), y ∈ Rn.

Verify that C2
n Φ j ∈ FN for all j for a fixed constant C2

n .

Property (5): Let Φ ∈ S have integral equal to 1 and be supported in B(0,1). Let
Q∗

j =
9
8Qj and by a translation assume that Qj is centered at the origin. Prove

∫
Q∗

j

M∗(b j;Φ)(x)dx+
∫
(Q∗

j )
c
M∗(b j;Φ)(x)dx ≤ Bn

∫
Q∗

j

MN( f )(x)dx.

Case 1: Fix x∈Q∗
j and ywith |y−x| < t. Estimate the first integral above by writing

∫
Rn

Φt(y− z)b j(z)dz=
qn

tn

∫
Rn

Ψq(y′ − z) f (z)dz−mj

∫
Rn

Φt(y− z)ϕ j(z)dz,

where q=min(� j, t). HereΨ(z) = Φ(z)ϕ j(y− tz) and y′ = y when t ≤ � j, while

Ψ(z) = Φ
(� j
t
z− ξ j − y

t

)
ϕ j(ξ j − � jz) and y′ = ξ j

when � j < t and ξ j is as in Theorem 7.5.2 (b). In both cases, show that there is a
constant C4

n such that C4
nΨ lies inFN and use that |mj| ≤C1

n α .
Case 2: Fix x /∈ Q∗

j , t > 0, and y with |y− x| < t. Then |x| ≥ √
n� j. Notice that

(Φt ∗b j)(y) vanishes if |x| > 4t. So we may suppose that
√
n� j ≤ |x| ≤ 4t. Write

(Φt ∗b j)(y) =
1

tn+1

n

∑
k=1

∫
Rn

∫ 1

0
∂kΦ

(y−θz
t

)
ϕ j(z)

(
f (z)−mj

)
zk dθdz ,

using the mean value theorem and the vanishing integral property of b j. The goal is
to prove that the preceding expression is bounded byC(n)�n+1

j |x|−n−1. For the term
containing mj this is straightforward. For the term containing f (z) define

R(z) = ϕ j(z)
n

∑
k=1

zk

∫ 1

0
∂kΦ

(y−θz
t

)
dθ , Ω(z) = �nj R(ξ j − � jz),

and notice R(z) = 1
�nj

Ω( ξ j−z
� j

). Then matters reduce to estimating 1
tn+1 (Ω� j ∗ f )(ξ j).

Now show NN(Ω) ≤C′
n �n+1

j for some constant C′
n and use that 1/t ≤ 4/|x|.

Property (6): Use Theorem 7.5.2 (e).]
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7.7 Singular Integrals on the Hardy Space H1

Singular integrals map Lp to Lp for 1 < p < ∞ but this is not the case when p = 1.
In this section we show that singular integrals map the Hardy space H1 to L1.

We begin by reviewing the definition of singular integrals. Let K be a function
defined on Rn \{0} that satisfies the size estimate (3.3.3), the smoothness estimate
(3.3.4), and the cancellation estimate (3.3.5) for some A1,A2,A3 < ∞. The cancella-
tion condition (3.3.5) implies that there exists a sequence δ j ↓ 0 as j → ∞ such that
the following limit exists:

lim
j→∞

∫
δ j≤|x|≤1

K(x)dx= L0.

This gives that for a smooth and compactly supported function ϕ on Rn, the limit

lim
j→∞

∫

|x−y|>δ j

K(x− y)ϕ(y)dy= T (ϕ)(x) (7.7.1)

exists and defines a linear operator T on C ∞
0 . This operator T is called a singular

integral and is given by convolution with a tempered distributionW that coincides
with the function K on Rn \{0}.

We know that such an operator T , initially defined on C ∞
0 (Rn), admits an exten-

sion that is Lp bounded for all 1 < p < ∞ and is also of weak type (1,1). All these
norms are bounded above by constant multiple of the quantity A1+A2+A3; in par-
ticular, by Corollary 3.4.3, the L2 norm of T is bounded by 9ωn−1A1 +A2 +A3.
Therefore, such a T is well defined on L1(Rn) and in particular on H1(Rn), which
is contained in L1(Rn).

Theorem 7.7.1. Let K satisfy (3.3.3), (3.3.4), and (3.3.5), and let T be defined as in
(7.7.1). Then there is a constant Cn such that for all f in H1(Rn) we have

∥∥T ( f )∥∥L1 ≤Cn(A1+A2+A3)
∥∥ f∥∥H1 . (7.7.2)

Proof. We start by checking the validity of (7.7.2) on H1 atoms. Since T is a con-
volution operator (i.e., it commutes with translations), it suffices to take the atom f
supported in a cube Q centered at the origin. Let f = a be such an atom, supported
in cube Q centered at zero, and let

Q∗ = 2
√
nQ

be a concentric cube with side length 2
√
n times that of Q. We write

∫
Rn

|T (a)(x)|dx=
∫
Q∗

|T (a)(x)|dx+
∫
(Q∗)c

|T (a)(x)|dx (7.7.3)

and we estimate each term separately. We have
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∫
Q∗

|T (a)(x)|dx ≤ |Q∗| 12
(∫

Q∗
|T (a)(x)|2 dx

) 1
2

≤ (9ωn−1A1+A2+A3)|Q∗| 12
(∫

Q
|a(x)|2 dx

) 1
2

≤ 9ωn−1(A1+A2+A3)|Q∗| 12 |Q| 12 |Q|−1

= 9ωn−1(2
√
n)

n
2 (A1+A2+A3) ,

where we used the L2 boundedness of T (Corollary 3.4.3) and property (ii) of atoms
in Definition 7.3.1.

Let Q be a cube centered at the ori-
gin. We claim that if x /∈ Q∗ and y ∈
Q, then |x| ≥ 2|y| and x − y stays
away from zero; thus K(x− y) is well
defined. To see this assertion we note
that

|x| ≥ �(Q)
√
n

and

|y| ≤ 1
2
�(Q)

√
n

imply

|x| ≥ �(Q)
√
n ≥ 2|y|.

See Figure 7.5.

y
Q

Q∗

x

√
n�(Q)

1
2 �(Q)

Fig. 7.5 The situation where x /∈ Q∗ and y ∈ Q.

Moreover, in this case T (a)(x) can be expressed as an absolutely convergent
integral of a against K(x−·). Exploiting the fact that atoms have mean value zero
we write

∫
(Q∗)c

|T (a)(x)|dx =
∫
(Q∗)c

∣∣∣
∫
Q
K(x− y)a(y)dy

∣∣∣dx
=

∫
(Q∗)c

∣∣∣
∫
Q

(
K(x− y)−K(x)

)
a(y)dy

∣∣∣dx
≤

∫
Q

∫
(Q∗)c

∣∣K(x− y)−K(x)
∣∣dx |a(y)|dy

≤
∫
Q

∫
|x|≥2|y|

∣∣K(x− y)−K(x)
∣∣dx |a(y)|dy

≤ A2

∫
Q

|a(y)|dy
≤ A2 .



7.7 Singular Integrals on the Hardy Space H1 321

Combining this calculation with the previous one and inserting the final conclusions
in (7.7.3) we deduce that H1 atoms a satisfy

∥∥T (a)∥∥L1 ≤C′
n(A1+A2+A3) , (7.7.4)

where C′
n = 9ωn−1(2

√
n)

n
2 . We now prove (7.7.2) for another constant Cn. In view

of Theorem 7.6.1 and Corollary 7.6.2 we can write f ∈H1 as f = ∑∞
j=1 λ ja j, where

λ j > 0, the series converges in L1, the a j are H1 atoms, and

∞

∑
j=1

λ j ≤C′′
n

∥∥ f∥∥H1 . (7.7.5)

Since T maps L1 to L1,∞ (Theorem 3.6.1), T ( f ) is already a well-defined L1,∞ func-
tion. We claim that

T ( f ) =
∞

∑
j=1

λ jT (a j) a.e., (7.7.6)

noting that the series in (7.7.6) converges in L1 and produces a well-defined inte-
grable function.

To prove (7.7.6), we make use of the fact that T is of weak type (1,1). For a
given δ > 0 we have

∣∣{∣∣T ( f )− ∞

∑
j=1

λ jT (a j)
∣∣ > δ

}∣∣

≤ ∣∣{∣∣T ( f )− N

∑
j=1

λ jT (a j)
∣∣ > δ/2

}∣∣+ ∣∣{∣∣ ∞

∑
j=N+1

λ jT (a j)
∣∣ > δ/2

}∣∣

≤ 2
δ
∥∥T∥∥L1→L1,∞

∥∥∥ f −
N

∑
j=1

λ ja j

∥∥∥
L1
+

2
δ

∥∥∥
∞

∑
j=N+1

λ jT (a j)
∥∥∥
L1

≤ 2
δ
∥∥T∥∥L1→L1,∞

∥∥∥
∞

∑
j=N+1

λ ja j

∥∥∥
L1
+

2
δ
C′
n (A1+A2+A3)

∞

∑
j=N+1

λ j .

Obviously ‖∑∞
j=N+1 λ ja j‖L1 ≤ ∑∞

j=N+1 λ j, so both terms converge to zero asN → ∞.
We conclude that

∣∣{x ∈ Rn :
∣∣T ( f )(x)− ∞

∑
j=1

λ jT (a j)(x)
∣∣ > δ

}∣∣= 0

for all δ > 0, which implies (7.7.6).
Now that (7.7.6) is established, we deduce (7.7.2) with Cn =C′

nC
′′
n by taking L1

norms in (7.7.6) and using (7.7.4) and (7.7.5). �
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Exercises

7.7.1. Suppose that T is a sublinear operator that maps L1(Rn) to L1,∞(Rn). Given
f in H1(Rn) written in atomic decomposition as f = ∑∞

j=1 λ ja j, λ j > 0, prove that

|T ( f )| ≤
∞

∑
j=1

λ j|T (a j)| a.e.

7.7.2. Let T be an operator as in the statement of Theorem 7.7.1. Let Ψ ∈ S (Rn)
have Fourier transform supported in an annulus of the form 0 < c1 < |ξ | < c2 <
∞ and consider the Littlewood–Paley operator ΔΨ

j associated with Ψ . Prove the
existence of a constant Cn (depending on the dimension) such that for any f ∈ L1

we have
∥∥ΔΨ

j T ( f )
∥∥
L1 ≤Cn (A1+A2+A3)

∥∥ΔΨ
j ( f )

∥∥
L1 .

[Hint: Pick Ω ∈ S so that its Fourier transform is equal to 1 on the annulus
c1 < |ξ | < c2 and vanishes off the annulus 1

2c1 < |ξ | < 2c2. Then Ω lies in H1

by Theorem 7.2.7 and we can apply Theorem 7.7.1.]

7.7.3. Fix 0 < A,B < ∞. Let {Kj}Nj=1 be a sequence of functions on Rn \ {0} that
satisfies ( N

∑
j=1

|Kj(x)|2
) 1

2 ≤ A|x|−n, x �= 0,

sup
y �=0

∫
|x|≥2|y|

( N

∑
j=1

|Kj(x− y)−Kj(x)|2
) 1

2 ≤ A,

sup
1≤ j≤N

sup
0<ε<R

∣∣∣∣
∫

ε<|y|<R
Kj(y)dy

∣∣∣∣ ≤ A.

Define Tj by Tj(ϕ)(x) = p.v.
∫
Rn Kj(x− y)ϕ(y)dy when ϕ ∈ C ∞

0 and suppose that
�T =

{
Tj
}N
j=1 admits a bounded extension that maps L2(Rn) to L2(Rn, �2N) with

bound B. Show that �T also maps H1(Rn) to L1(Rn, �2N) with norm bounded by
Cn (A+B), where Cn depends only on the dimension n (and is independent of N).
[Hint: Use Theorem 4.1.1 and the idea of the proof of Theorem 7.7.1.]

7.7.4. Let B,δ and Ψ be as in Theorem 4.4.2. Use the previous exercise to show
that the Littlewood–Paley square function of Theorem 4.4.2 satisfies

∥∥∥
(

∑
j∈Z

|ΔΨ
j ( f )|2

) 1
2
∥∥∥
L1

≤Cn,δ B
∥∥ f∥∥H1

for all f ∈ H1(Rn). The constant Cn,δ depends only on the indicated parameters.
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7.8 Duality Between H1 and BMO

In this section we obtain that BMO is the dual space of H1. A crucial element in
this assertion is the completeness of H1 which implies the weak∗ compactness of
the unit ball of (H1)∗.

Proposition 7.8.1. Every Cauchy sequence in H1 converges; thus H1 is a Banach
space.

Proof. Let { fk}∞
k=1 be a Cauchy sequence in H1. Then fk is Cauchy in L1 and thus

it converges in L1 to an integrable function f . Let Φ(x) = e−π|x|2 . Then, as Φ ∈ L∞,
we have for any t > 0 any y ∈ Rn and any m ∈ Z+

|( fk − fm)∗Φt(y)| → |( f − fm)∗Φt(y)|.
Consequently, for |y− x| < t one has

|( f − fm)∗Φt(y)| = liminf
k→∞

|( fk − fm)∗Φt(y)| ≤ liminf
k→∞

M∗( fk − fm;Φ)(x).

So taking the supremum over all y with |y− x| < t and t > 0 we obtain

M∗( f − fm;Φ)(x) ≤ liminf
k→∞

M∗( fk − fm;Φ)(x)

for all x ∈ Rn. Fatou’s lemma now gives
∥∥M∗( f − fm;Φ)

∥∥
L1 ≤ liminf

k→∞

∥∥M∗( fk − fm;Φ)
∥∥
L1 . (7.8.1)

As { fk}k is Cauchy in H1, the expression on the right is finite and we deduce from
(7.8.1) that f − fm lies in H1, hence so does f . Finally, it follows from (7.8.1) that

limsup
m→∞

∥∥M∗( f − fm;Φ)
∥∥
L1 ≤ limsup

m→∞
limsup
k→∞

∥∥M∗( fk − fm;Φ)
∥∥
L1 = 0,

where the equality is a consequence of the fact that { fk}k is a Cauchy sequence in
H1. We conclude that fm → f in H1 as m → ∞. �

Definition 7.8.2. We denote byH1
0 (R

n) the space of all finite linear combinations of
H1(Rn) atoms. By Theorem 7.6.1, H1

0 (R
n) is dense in H1(Rn). Fix b ∈ BMO(Rn).

Given g ∈ H1
0 we define a linear functional

Lb(g) =
∫
Rn

g(x)b(x)dx (7.8.2)

as an absolutely convergent integral. Observe that the integral in (7.8.2) and thus
the definition of Lb on H1

0 remain the same if b is replaced by b+ c, where c is an
additive constant, as H1(Rn) atoms have mean value zero.

Moreover, notice that if the function b happens to lie in L∞, then Lb is well-
defined on the entire H1, not only on H1

0 .
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Proposition 7.8.3. There is a constant Cn such that for any function b ∈ L∞ we have
∥∥Lb∥∥H1→C ≤Cn

∥∥b∥∥BMO. (7.8.3)

Proof. Let b be a bounded BMO function. Let Cn be a constant that satisfies

inf
{ ∞

∑
j=1

λ j : f =
∞

∑
j=1

λ ja j a.e., a j are H
1atoms, λ j > 0, and

∞

∑
j=1

λ j < ∞
}

≤Cn‖ f‖H1

for any f ∈ H1(Rn), as stated in Corollary 7.6.2. Given f in H1, find a sequence of
H1 atoms {ak}k supported in cubes Qk and λk > 0, k = 1, . . . , such that

f =
∞

∑
k=1

λkak a.e. (7.8.4)

and
∞

∑
k=1

λk ≤C′
n

∥∥ f∥∥H1 ,

whereC′
n is any constant strictly bigger thanCn. Since the series in (7.8.4) converges

in H1, it must converge in L1, and then we have

|Lb( f )| =
∣∣∣∣
∫
Rn

f (x)b(x)dx
∣∣∣∣

=
∣∣∣∣

∞

∑
k=1

λk

∫
Qk

ak(x)
(
b(x)−bQk

)
dx

∣∣∣∣
≤

∞

∑
k=1

λk
1

|Qk|
∫
Qk

∣∣b(x)−bQk

∣∣dx
≤ C′

n

∥∥ f∥∥H1

∥∥b∥∥BMO .

AsC′
n >Cn is arbitrary, this proves (7.8.3) for b in L∞. �

Having established Proposition 7.8.3, we turn to the goal of extending the defini-
tion of Lb on the entire H1 for functions b in BMO that are not necessarily bounded.
To achieve this, we fix b ∈ BMO and let bM(x) = bχ|b|≤M forM = 1,2,3, . . . . Since
‖bM‖BMO ≤ 9

4‖b‖BMO (Exercise 6.1.2), the sequence of linear functionals {LbM}M
lies in a multiple of the unit ball of (H1)∗ and by the Banach–Alaoglu theorem there
is a subsequenceMj → ∞ as j → ∞ such that LbMj

converges weakly∗ to a bounded

linear functional L̃b on H1. In other words, for all f in H1(Rn) we have

LbMj
( f ) → L̃b( f ) as j → ∞.

If aQ is a fixed H1 atom supported in a cube Q then

LbMj
(aQ) =

∫
Q
bMja

Q dy=
∫
Q
(bMj − (bMj)Q)a

Q dy
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and analogously for Lb(aQ), so

|LbMj
(aQ)−Lb(aQ)| ≤

∥∥aQ∥∥L∞

[∥∥(bMj − (bMj)Q)− (b−bQ)
∥∥
L1(Q)

]

≤ 1
|Q|

∥∥bMj −b
∥∥
L1(Q) + |(bMj −b)Q|.

But both terms tend to zero as j → ∞ by the Lebesgue dominated convergence
theorem. The same conclusion holds for any finite linear combination of the aQ.
Thus for all g ∈ H1

0 we have LbMj
(g) → Lb(g), and consequently, Lb(g) = L̃b(g) for

all g ∈H1
0 . Since H

1
0 is dense in H1 and Lb and L̃b coincide on H1

0 , it follows that L̃b
is the unique bounded extension of Lb on H1. This process provides an extension of
Lb on the entire space H1 as a weak limit of bounded linear functionals.

These arguments prove that every BMO function b gives rise to a bounded linear
functional L̃b on H1(Rn) (henceforth denoted by Lb) that satisfies∥∥Lb∥∥H1→C ≤Cn ‖b‖BMO. (7.8.5)

The main contribution of the next theorem is the converse assertion.

Theorem 7.8.4. There exist finite constants Cn and C′
n such that the following state-

ments are valid:
(a) Given b ∈ BMO(Rn), the linear functional Lb lies in (H1(Rn))∗ and has norm
at most Cn‖b‖BMO. Moreover, the mapping b �→ Lb from BMO to (H1)∗ is injective.
(b) For every bounded linear functional L on H1 there exists a BMO function b such
that

∥∥b∥∥BMO ≤C′
n

∥∥L∥∥H1→C

and such that L( f ) = Lb( f ) for all functions f ∈ H1
0 (R

n).

Proof. (a) We already showed in (7.8.5) that for all b ∈ BMO(Rn), Lb lies in
(H1(Rn))∗ and has norm at most Cn‖b‖BMO. To show that the embedding b �→ Lb
is injective, we need to prove that if Lb = 0, then b is a constant function. But this
is a consequence of Exercise 7.8.5. So we focus attention on assertion (b). Fix a
bounded linear functional L on H1(Rn) and also fix a cube Q. Consider the space
L2(Q) of all square integrable functions supported in Q with norm

∥∥g∥∥L2(Q) =
(∫

Q
|g(x)|2 dx

)1/2
.

We denote by L20(Q) the closed subspace of L2(Q) consisting of all functions in
L2(Q) with mean value zero. In view of Theorem 7.3.4 every function g in L20(Q)
lies in H1(Rn) and satisfies the norm estimate

‖g‖H1 ≤ cn|Q| 12 ‖g‖L2 . (7.8.6)
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Since L20(Q) is a subspace of H
1, it follows from (7.8.6) that the linear functional

L on H1 is also a linear functional on L20(Q) and its norm satisfies

∥∥L∥∥L20(Q)→C ≤ cn|Q| 12 ∥∥L∥∥H1→C. (7.8.7)

We extend L to a linear functional L̃ on L2(Q) by setting

L̃(h) = L
(
h−hQ

)
, h ∈ L2(Q).

We notice that for h ∈ L2(Q) we have

|L̃(h)| ≤ ∥∥L∥∥L20(Q)→C

∥∥h−hQ
∥∥
L2(Q)

≤ ∥∥L∥∥L20(Q)→C

[∥∥h∥∥L2(Q) + |hQ| |Q| 12
]

≤ 2
∥∥L∥∥L20(Q)→C

∥∥h∥∥L2(Q),
thus ∥∥L̃∥∥L2(Q)→C ≤ 2

∥∥L∥∥L20(Q)→C. (7.8.8)

Then L̃ lies in (L2(Q))∗ and by the Riesz representation theorem for the Hilbert
space L2(Q), there is a function FQ ∈ L2(Q) such that

L̃(h) =
∫
Q
hFQ dx for all h ∈ L2(Q),

and ∥∥FQ
∥∥
L2 =

∥∥L̃∥∥L2(Q)→C. (7.8.9)

Restricting to L20(Q) we can write

L(g) =
∫
Q
gFQ dx, for all g ∈ L20(Q). (7.8.10)

Combining (7.8.8) and (7.8.9) we obtain.
∥∥FQ

∥∥
L2(Q) ≤ 2

∥∥L∥∥L20(Q)→C. (7.8.11)

Thus for any cube Q in Rn, there is square integrable function FQ supported in Q
such that (7.8.10) is satisfied.

We now show that if a cube Q is contained in another cube Q′, then FQ differs
a.e. from FQ′

by a constant on Q. Indeed, for all g ∈ L20(Q) we have
∫
Q
FQ′

(x)g(x)dx= L(g) =
∫
Q
FQ(x)g(x)dx
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and thus
∫
Q
(FQ′

(x)−FQ(x))g(x)dx= 0 .

The result of Exercise 7.8.5 implies that FQ′ −FQ is equal to a constant a.e. on Q.
Let

Qm =
[
− m

2
,
m
2

]n

for m= 1,2, . . . . Then |Q1| = 1. We define b ∈ L1loc(R
n) by setting

b(x) = FQm(x)− 1
|Q1|

∫
Q1

FQm(y)dy (7.8.12)

whenever x ∈ Qm. We check that this definition is unambiguous. Let 1 ≤ � < m.
Then for x ∈ Q�, b(x) is also defined as in (7.8.12) with � in the place of m. The
difference of these two functions is FQm −FQ� − (FQm −FQ�)Q1 , and we claim this
is zero a.e., since FQm −FQ� is constant a.e. on Q� (which is contained in Qm) and
thus it coincides with its integral over Q1 (recall |Q1| = 1).

Next we claim that for any cube Q there is a constant CQ such that

FQ = b−CQ on Q. (7.8.13)

Indeed, given a cube Q pick the smallest m= m(Q) such that Q is contained in Qm.
Then we write

FQ = FQ −FQm︸ ︷︷ ︸
constant on Q

+FQm − (FQm)Q1︸ ︷︷ ︸
b(x)

+ (FQm)Q1︸ ︷︷ ︸
constant on Q

and let −CQ be the sum of the first and third expressions (constants on Q) above.
We have constructed a locally integrable function b such that for all cubes Q and

all g ∈ L20(Q) we have
∫
Q
b(x)g(x)dx=

∫
Q
(FQ(x)+CQ)g(x)dx=

∫
Q
FQ(x)g(x)dx= L(g) , (7.8.14)

as follows from (7.8.10) and (7.8.13). We next show that b lies in BMO(Rn). By
(7.8.13), (7.8.11), and (7.8.7) we can write

sup
Q

1
|Q|

∫
Q

|b(x)−CQ|dx = sup
Q

1
|Q|

∫
Q

|FQ(x)|dx

≤ sup
Q

|Q|−1|Q| 12 ∥∥FQ
∥∥
L2(Q)

≤ 2sup
Q

|Q|− 1
2
∥∥L∥∥L20(Q)→C

≤ cn
∥∥L∥∥H1→C

< ∞ .
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In view of Proposition 6.1.3 we deduce that b ∈ BMO and
∥∥b∥∥BMO ≤ 2cn

∥∥L∥∥H1→C.

Finally, (7.8.14) implies that for all g ∈ H1
0 (R

n) one has

L(g) =
∫
Rn

b(x)g(x)dx= Lb(g).

This proves that the linear functional L coincides with Lb on the dense subspace H1
0

of H1. Consequently, L= Lb, and this concludes the proof of part (b). �

Exercises

7.8.1. Let uk ∈ Hp have uniformly bounded quasi-norms and suppose that uk → u
inS ′(Rn). Prove that u ∈ Hp. [Hint: Modify the proof of Proposition 7.8.1.]

7.8.2. Let x0 ∈ Rn \ {0}. Let B(x,δ ) denote the ball of radius δ > 0 centered at x.
Prove that the sequence of functions fk = χB(kx0,1) − χB(−kx0,1) satisfies∥∥ fk∥∥H1 → ∞ as k → ∞.

[Hint: Notice that kn fk(k ·) → δx0 −δ−x0 as k → ∞. Use Exercises 7.8.1 and 7.2.3.]

7.8.3. Show that Hp is a complete quasi-normed space for any 0 < p ≤ 1.
[Hint:Modify the proof of Proposition 7.8.1 and use Exercises 7.4.3 and 7.8.1.]

7.8.4. Let fk ∈ H1(Rn) satisfy | fk| ≤ F for all k, where F is integrable over Rn.
Suppose that fk → f a.e. Prove that

∥∥ f∥∥H1 ≤ liminf
k→∞

∥∥ fk∥∥H1 .

7.8.5. Suppose that u ∈ L1loc(R
n) is supported in a cube Q and has the property
∫
Q
u(x)g(x)dx= 0

for all bounded functions g on Q with mean value zero. Show that u is almost every-
where equal to a constant. [Hint: If u were not a.e. constant on Q there would exist
real numbers c < d such that the sets E = {w ≤ c}∩Q and F = {w ≥ d}∩Q have
positive measure, where w is either Reu or Imu. Consider the bounded function
g= −|F| on E, g= |E| on F , and g= 0 elsewhere on Q.]



Chapter 8
Weighted Inequalities

8.1 Appearance of Weights

Weights are positive functions that produce useful absolutely continuous measures.
Weights, in particular, are intricately connected with the theory of the Hardy–
Littlewood maximal operator. We motivate our discussion on weights by obtaining a
weighted version of the weak-type (1,1) inequality of the Hardy–Littlewood max-
imal operator. First we adapt Lemma 1.4.5 to general measures. We recall that a
positive Borel measure is a positive measure defined on the Borel sets, that is, the
smallest σ -algebra containing the open sets in Rn. Such a measure is called regular
if for any Borel measurable set A � Rn the following properties hold:

μ(A) = sup
{

μ(K) : K is compact subset of A
}
,

μ(A) = inf
{

μ(G) : G is open set containing A
}
.

Lemma 8.1.1. (Covering lemma for general measures) Let {B1,B2, . . . ,BN} be
a finite collection of open balls in Rn. Then there exists a finite subcollection
{Bj1 , . . . ,BjL} of pairwise disjoint balls (L ≤ N) such that

ν
( N⋃

i=1

Bi

)
≤

L

∑
r=1

ν(3Bjr) (8.1.1)

for any positive Borel measure ν . Moreover, the same result is valid if B j are open
cubes with sides parallel to the axes.

Proof. The proof of Lemma 1.4.5 provides a collection of balls {Bj1 , . . . ,BjL} that
are pairwise disjoint and such that each ball Bk in the original collection is contained
in 3Bji for some i ∈ {1, . . . ,L}. In other words,

N⋃

i=1

Bi �
L⋃

r=1

3Bjr ,

and (8.1.1) follows by the subadditivity of ν .
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Finally, we note that the same argument applies if each Bj is a cube. For if two
cubes intersect, then the smaller one is contained in the triple of the larger cube. �

Theorem 8.1.2. (Fefferman–Stein inequality) Let M be the uncentered Hardy–
Littlewood operator with respect to balls. Let u ≥ 0 be a measurable function. Then
for any measurable function f on Rn we have

∫

{M( f )>λ}
u(y)dy ≤ 3n

λ

∫

{M( f )>λ}
| f (x)|M(u)(x)dx (8.1.2)

and when 1 < p < ∞ we have

(∫

Rn
M( f )(x)pu(x)dx

) 1
p

≤ 2
( 3np
p−1

) 1
p
(∫

Rn
| f (x)|pM(u)(x)dx

) 1
p

. (8.1.3)

The same estimates are valid if M is replaced by Mc, the Hardy–Littlewood operator
with respect to cubes.

Proof. We introduce two positive measures μ =M(u)dx and ν = udx. The claimed
inequalities (8.1.2) and (8.1.3) can be restated in terms of μ and ν as follows:

ν
({M( f ) > λ}) ≤ 3n

λ

∫

{M( f )>λ}
| f |dμ (8.1.4)

and, for 1 < p < ∞,

(∫

Rn
M( f )pdν

) 1
p

≤ 2
( 3np
p−1

) 1
p
(∫

Rn
| f |p dμ

) 1
p

(8.1.5)

for a measurable function f . We first prove these inequalities under the assumption
that u is bounded and has compact support.

We consider the set Eλ = {x∈Rn : M( f )(x)> λ}. In the proof of Theorem 1.4.6
this set was shown to be open. Let K be a compact subset of Eλ . For each x∈K there
exists an open ball Bx containing the point x such that

∫

Bx
| f (y)|dy > λ |Bx| . (8.1.6)

Observe that Bx ⊂ Eλ for all x. By compactness there exists a finite subcover
{Bx1 , . . . ,BxN} of K. Using Lemma 8.1.1 we find a subcollection of pairwise dis-
joint balls Bxj1

, . . . ,BxjL
such that (8.1.1) holds. Then by (8.1.6) we obtain

ν(K) ≤ ν
( N⋃

i=1

Bxi

)

≤
L

∑
i=1

ν(3Bxji
)
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= 3n
L

∑
i=1

ν(3Bxji
)

|3Bxji
| |Bxji

|

≤ 3n

λ

L

∑
i=1

ν(3Bxji
)

|3Bxji
|

∫

Bx ji

| f |dy

≤ 3n

λ

L

∑
i=1

M(u)(yi)
∫

Bx ji

| f |dy,

where yi is an arbitrary point in 3Bxji
. Taking the infimum over all such yi we deduce

that ν(K) is bounded by

3n

λ

L

∑
i=1

(
inf

3Bx ji

M(u)
)∫

Bx ji

| f |dy ≤ 3n

λ

L

∑
i=1

(
inf
Bx ji

M(u)
)∫

Bx ji

| f |dy

≤ 3n

λ

L

∑
i=1

∫

Bx ji

| f |M(u)dy.

Thus

ν(K) ≤ 3n

λ

L

∑
i=1

∫

Bx ji

| f |M(u)dy ≤ 3n

λ

∫

Eλ
| f |dμ ,

as the balls Bxji
are disjoint and contained in Eλ . Taking the supremum over all com-

pact subsets K of Eλ we derive (8.1.4) using the regularity of the measure ν , which
follows from the fact that u is compactly supported and bounded (Exercise 8.1.1).

We now prove (8.1.5). Fix 1 < p< ∞. We split f = f0+ f∞, where f0 = f χ| f |≤λ/2
and f∞ = f χ| f |>λ/2. Then

{M( f ) > λ} � {M( f0) > λ/2}∪{M( f∞) > λ/2} = {M( f∞) > λ/2},

since the first set is empty, by the definition of f0 which forces M( f0) ≤ λ/2.
The pth power of the left-hand side of (8.1.5) can be written as

∫ ∞

0
pλ p−1ν

({M( f ) > λ})dλ ≤
∫ ∞

0
pλ p−1ν

({M( f∞) > λ/2})dλ

≤ 3n
∫ ∞

0
pλ p−1 2

λ

∫

Rn
| f∞|dμ dλ

= 3n2
∫ ∞

0
pλ p−2

∫

{| f |>λ/2}
| f |dμ dλ

= 3n2
∫

Rn

∫ 2| f (x)|

0
pλ p−2| f (x)|dλ dμ(x)

= 3n2p p
p−1

∫

Rn
| f (x)|p dμ(x).
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This yields (8.1.5). The use of Tonelli’s theorem in the penultimate equality is based
on the fact that dμ is a σ -finite measure (if g is is measurable and satisfies 0 ≤ g< ∞
a.e., then gdx is a σ -finite measure on Rn).

For a general nonnegative measurable function u, we introduce

uN = uχu≤NχB(0,N)

and measures
dνN = uNdx, dμN =M(uN)dx.

Then (8.1.4) and (8.1.5) hold for νN and μN . Letting N → ∞ and applying the LMCT
then yields (8.1.4) and (8.1.5) in general.

Finally, we note that a repetition of this proof yields the same inequalities for Mc

(in place of M), as Lemma 8.1.1 is also valid for cubes in place of balls. �

Remark 8.1.3. We discuss an alternative proof of (8.1.5) under the assumption that
u > 0 on a set of positive measure. Note that as M(u) never vanishes, the measures
μ and dx are mutually absolutely continuous. This gives ‖ f‖L∞(μ) = ‖ f‖L∞ . Now
we note that

inf
{
D > 0 : ν

({M( f ) > D}) = 0
}

≤ ‖ f‖L∞

as {M( f )> ‖ f‖L∞} is a set of Lebesgue measure zero and hence of ν measure zero.
(Thus ‖ f‖L∞ is one of the D that appear in the set.) This discussion leads to the
inequality ∥

∥M( f )
∥
∥
L∞(ν) ≤ ∥

∥ f
∥
∥
L∞ =

∥
∥ f

∥
∥
L∞(μ). (8.1.7)

By considering the truncations μN and νN as in the proof of Theorem 8.1.2, we may
assume that μ and ν are σ -finite measures. Interpolating between (8.1.7) and (8.1.4)
using Theorem 1.3.3, we obtain that (8.1.5) is a direct consequence of (1.3.6). We
note, however, that a slight improvement of the constant in (8.1.5) can be obtained
via the technique suggested in Exercise 8.1.2.

This discussion motivates the study of general estimates of the form
∥
∥T ( f )

∥
∥
Lp(udx) ≤C

∥
∥ f

∥
∥
Lp(wdx), (8.1.8)

where u,w are a.e. positive functions and T is an operator, such as the Hardy–
Littlewood maximal operator. If the functions u,w are locally integrable, then they
are called weights and estimates of the type (8.1.8) are called weighted inequalities.
In the remaining sections we focus on weighted inequalities of the form (8.1.8) only
when u = w, and we seek to characterize the functions u for which such estimates
hold. Note that if M(u)≤ cu, (i.e., if u is an A1 weight according to Definition 8.2.5),
then Theorem 8.1.2 addresses this situation but does not provide a characterization.

One may wonder if there exists a weak-type estimate for the Hardy–Littlewood
maximal function with respect to a measure that is not absolutely continuous with
respect to Lebesgue measure. This is not the case, as the following result indicates.

Proposition 8.1.4. Let μ be a regular positive Borel measure with the property
μ(K) < ∞ whenever K is a compact subset of Rn. Suppose that there is a constant
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C > 0 and there exists p in [1,∞) such that for all f ∈ Lp(Rn) one has

sup
λ>0

λ μ
({

M( f ) > λ
}) 1

p ≤C
∥
∥ f

∥
∥
Lp(Rn,dμ). (8.1.9)

Then μ is absolutely continuous with respect to Lebesgue measure.

Proof. Fix a subset E of Rn with |E| = 0 and ε > 0. Let K be an arbitrary compact
subset of E. As μ(K) < ∞, by the regularity of μ , there is an open subset U of Rn

such that K ⊂U and μ(U \K) < ε . Consider the function χU\K which is equal to
χU a.e. with respect to Lebesgue measure. Then M(χU ) =M(χU\K) everywhere and
M(χU )(x) = 1 for all x ∈U . Applying hypothesis (8.1.9), with λ = 1

2 , we obtain

1
2 μ(K)

1
p ≤ 1

2 μ
({

M(χU ) > 1
2

}) 1
p

= 1
2 μ

({
M(χU\K) > 1

2

}) 1
p

≤ Cμ(U \K) 1
p

≤ C ε
1
p .

Letting ε → 0 we obtain μ(K) = 0. Taking the supremum over all compact subsets
K of E and using the regularity of μ , we conclude μ(E) = 0.

We have now proved that |E| = 0 implies μ(E) = 0, and hence μ is absolutely
continuous with respect to Lebesgue measure. �

Exercises

8.1.1. Show that for any nonnegative integrable function u on Rn the measure udx
is regular.

8.1.2. Fix 1 < p < ∞ and let u ≥ 0 be a measurable function on Rn. Show that
inequality (8.1.3) of Theorem 8.1.2 can be improved to

(∫

Rn
M( f )p udx

) 1
p

≤ (
3np

) 1
p

p
p−1

(∫

Rn
| f |pM(u)dx

) 1
p

.

[
Hint: Split f = f0 + f∞, where f0 = f χ| f |≤ελ and f∞ = f χ| f |>ελ . Then use that

{M( f )> λ} is a.e. contained in {M( f∞)> (1−ε)λ} and optimize over ε ∈ (0,1).
]

8.1.3. Let ν = udx and μ =M(u)dx be as in the proof of Theorem 8.1.2. Prove that
for 1 < p < ∞ and f measurable we have

∥
∥M( f )

∥
∥p
Lp(Rn,dν) ≤ 3np

p−1

∥
∥M( f )

∥
∥p−1
Lp(Rn,dμ)

∥
∥ f

∥
∥
Lp(Rn,dμ).
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8.1.4. Let u ≥ 0 be a measurable function on Rn. Define the measures dν = udx
and dμ =Mc(u)dx. Prove that for any measurable function f and any 0 < ε < 1 we
have

ν
({Mc( f ) > λ}) ≤ 3n

(1− ε)λ

∫

{| f |>ελ}
| f |dμ .

[
Hint: Split f = f0 + f∞, where f∞ = f χ{| f |>ελ} and use the version of (8.1.2) for

the maximal function Mc.
]

8.2 The Ap Condition

We begin with the formal definition of a weight.

Definition 8.2.1. A weight is a nonnegative locally integrable function on Rn that
vanishes or takes the value ∞ only on a set of measure zero. Given a weight w and a
measurable set E, we denote the wdx-measure of E by

w(E) =
∫

E
w(x)dx.

Since weights are locally integrable functions, we have w(E) < ∞ for all sets E
contained in some ball. Moreover w(E) > 0 for any set E with positive Lebesgue
measure. The weighted Lp spaces are denoted by Lp(Rn,w), or simply Lp(w), and
consist of all measurable functions g that satisfy

∥
∥g

∥
∥
Lp(w) =

(∫

Rn
|g|pwdx

) 1
p

< ∞.

Here 0 < p < ∞. Analogously one may define the weighted weak Lp spaces, which
are denoted by Lp,∞(w).

It follows from this definition that the reciprocal of a weight is another weight if
and only if it is locally integrable. It is often useful to work with a dense subspace
of Lp(w), and the next proposition identifies one.

Proposition 8.2.2. Let 0 < p < ∞. Bounded functions with compact support are
dense in Lp(w) for any weight w on Rn.

Proof. Given f ∈ Lp(w) consider the functions fk = f χ| f |≤kχB(0,k) for k ∈ Z+. The
assertion follows by noticing that | fk − f |pw → 0 in L1 by the LDCT. �

Let Mc be the Hardy–Littlewood maximal operator associated with cubes.1

Motivated by the discussion in the previous section, we seek for weights w such
that for 1 < p < ∞ there is a constant Cp =Cp(w) with the property

1 Cubes in this text have sides parallel to the axes (unless indicated otherwise).
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∫

Rn
Mc( f )p wdx ≤Cp

p

∫

Rn
| f |p wdx, when f ∈ Lp(w). (8.2.1)

Let us fix 1 < p < ∞ and suppose that (8.2.1) is valid for some weight w and all
f ∈ Lp(w). Applying (8.2.1) to the function f χQ and using that2 | f |Q ≤Mc( f χQ)(x)
for all x ∈ Q, we obtain

w(Q)| f |pQ ≤
∫

Q
Mc( f χQ)p wdx ≤Cp

p

∫

Q
| f |p wdx . (8.2.2)

It follows that (
1

|Q|
∫

Q
| f |dt

)p

≤ Cp
p

w(Q)

∫

Q
| f |p wdx (8.2.3)

for all cubes Q and all functions f . We could obtain a condition involving w by
eliminating the integrals in (8.2.3). We achieve this by choosing a function f such
that the two integrals are equal; indeed, pick f =w−p′/p, which gives f pw=w−p′/p.
If we knew that infQw > 0 for all cubes Q, it would follow from (8.2.3) that

sup
Q cubes

(
1

|Q|
∫

Q
wdx

)(
1

|Q|
∫

Q
w− 1

p−1 dx

)p−1

≤Cp
p . (8.2.4)

This condition involves only the weight w and arbitrary cubes Q.
Now, if infQw= 0 for certain cubes Q, we take f = (w+ ε)−p′/p to obtain

(
1

|Q|
∫

Q
wdx

)(
1

|Q|
∫

Q
(w+ ε)−

p′
p dx

)p( 1
|Q|

∫

Q

wdx

(w+ ε)p′

)−1

≤Cp
p (8.2.5)

for all ε > 0. Replacing wdx by (w+ ε)dx in the last integral of (8.2.5) we obtain

(
1

|Q|
∫

Q
wdx

)(
1

|Q|
∫

Q
(w+ ε)−

p′
p dx

)p−1

≤Cp
p , (8.2.6)

from which we can still deduce (8.2.4) by letting ε → 0 by appealing to the Lebesgue
monotone convergence theorem. This condition motivates the following definition.

Definition 8.2.3. Let 1 < p < ∞ and w be a weight. The expression

[w]Ap = sup
Q cubes in Rn

(
1

|Q|
∫

Q
wdx

)(
1

|Q|
∫

Q
w− 1

p−1 dx

)p−1

(8.2.7)

is called the Ap Muckenhoupt characteristic constant of w, or simply the Ap charac-
teristic constant of w.

A weight w is said to be of class Ap if [w]Ap < ∞. The class of Ap weights is

Ap =
{
w weights on Rn such that [w]Ap < ∞

}
.

2 Recall that | f |Q denotes the average of | f | over a cube Q.
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Remark 8.2.4. It follows from (8.2.7) that if w ∈ Ap then σ = w− 1
p−1 = w1−p′

is

locally integrable, and thus it is also a weight. But then w = σ− 1
p′−1 , thus (8.2.7)

transforms to

[w]p
′−1

Ap
= sup

Q cubes in Rn

(
1

|Q|
∫

Q
σ− 1

p′−1 dx

)p′−1( 1
|Q|

∫

Q
σ dx

)

as (p−1)(p′ −1) = 1 or, equivalently, to

[σ ]Ap′ = [w]
1

p−1
Ap

= [w]p
′−1

Ap

when 1 < p < ∞. The weight σ is often called the dual weight to w. Notice that
condition (8.2.7) can be restated in a more symmetric form as

[w]
1
p
Ap

= [σ ]
1
p′
Ap′

= sup
Q cubes in Rn

w(Q)
1
p σ(Q)

1
p′

|Q| = sup
Q cubes in Rn

(wQ)
1
p (σQ)

1
p′ < ∞,

where wQ is the average of w over Q and σQ the average of σ over Q.

The argument leading to (8.2.4) does not capture the case p= 1, which we exam-
ine separately. Assume that for some weight w there is a constant C1 < ∞ such that

w
({Mc( f ) > α}) ≤ C1

α

∫

Rn
| f |wdx, when f ∈ L1(w). (8.2.8)

Since Mc( f )(x) ≥ | f |Q for all x ∈ Q, it follows from (8.2.8) that for all α < | f |Q
we have

w(Q) ≤ w
({Mc( f ) > α}) ≤ C1

α

∫

Rn
| f |wdx . (8.2.9)

Replacing f by f χQ in (8.2.9) we deduce that

1
|Q|

∫

Q
| f |dy ≤ C1

w(Q)

∫

Q
| f |wdy (8.2.10)

for all f ∈ L1(w) and all cubes Q. Testing this condition on characteristic functions,
f = χS, we obtain

|S|
|Q| ≤C1

w(S)
w(Q)

, (8.2.11)

where S is any measurable subset of the cube Q.
Recall that the essential infimum of a function w over a set E is defined as

ess.inf
E

(w) = inf
{
b > 0 : |{x ∈ E : w(x) < b}| > 0

}
.

Then for every a > ess.infQ(w) there exists a subset Sa of Q with positive measure
such that w(x) < a for all x ∈ Sa. Applying (8.2.11) to the set Sa, we obtain
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1
|Q|

∫

Q
wdy ≤ C1

|Sa|
∫

Sa
wdy ≤C1a, (8.2.12)

which implies that for all cubes Q and almost all x ∈ Q

1
|Q|

∫

Q
wdy ≤C1w(x). (8.2.13)

This means that for every cube Q there exists a null set N(Q) such that (8.2.13)
holds for all x in Q\N(Q). Let N be the union of all the null sets N(Q) for all cubes
Q with centers in Qn and rational lengths. Then N is a null set and for every x in
Q \N, (8.2.13) holds for all cubes Q with centers in Qn and rational lengths. By
density, (8.2.13) must also hold for all cubes Q that contain a fixed x in Rn \N. It
follows that for x ∈ Rn \N we have

Mc(w)(x) = sup
Q
x

1
|Q|

∫

Q
wdy ≤C1w(x) . (8.2.14)

Therefore the assumption (8.2.8) leads to the conclusion

Mc(w) ≤C1w a.e. in Rn, (8.2.15)

where C1 is the same constant as in (8.2.13).

Definition 8.2.5. A nonnegative function w is called an A1 weight if there is a con-
stant C1 ∈ (0,∞) such that

Mc(w) ≤C1w a.e. (8.2.16)

We define the class A1 as follows:

A1 =
{
w weights on Rn such that (8.2.16) is valid for some constant C1

}
.

If w is a weight, then the finite quantity

[w]A1 = sup
Q cubes in Rn

(
1

|Q|
∫

Q
wdy

)
‖w−1‖L∞(Q) (8.2.17)

is called the A1 Muckenhoupt characteristic constant of w, or simply the A1 charac-
teristic constant of w. Note that the smallest constantC1 in (8.2.16) is exactly [w]A1 ,
and in this case

1
|Q|

∫

Q
wdy ≤ [w]A1 ess.inf

y∈Q
w(y) (8.2.18)

for all cubes Q in Rn. Also [w]A1 is the smallest constant such that (8.2.18) is valid.

Remark 8.2.6. We define the A1 characteristic constant (with respect to balls) by

[w]balls
A1

= sup
B balls in Rn

(
1
|B|

∫

B
wdy

)∥
∥w−1

∥
∥
L∞(B). (8.2.19)
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We leave as an exercise the fact that [w]balls
A1

and [w]A1 are in fact equivalent.

We also define [w]balls
Ap

as in (8.2.7) with balls in place of cubes. Then we have

(
vn2−n)p ≤ [w]Ap

[w]balls
Ap

≤ (
nn/2vn2−n)p , (8.2.20)

as cubes have size comparable to those of the inscribed and circumscribed balls. See
Figure 8.1 and Exercise 8.2.1.

We have now shown that the
validity of (8.2.1) implies that the
weight is of class Ap and that
(8.2.8) implies that the weight is
of class A1. In the next result we
prove the converse when p = 1
and a weaker version of the con-
verse when p > 1. The full ver-
sion of the converse for p > 1 is
shown later in Theorem 8.4.3.

Fig. 8.1 The measure of a cube is com-
parable to those of the inscribed and cir-
cumscribed balls.

Theorem 8.2.7. Let Mc be the Hardy–Littlewood maximal operator (with respect to
cubes). Let w ∈ Ap and 1 ≤ p < ∞. Then we have

∥
∥Mc

∥
∥
Lp(w)→Lp,∞(w) ≤ 3n[w]

1
p
Ap

. (8.2.21)

Proof. This result is essentially contained in Theorem 8.1.2. For instance, when
p= 1 we restate (8.1.2) (with Mc in place of M) as

w
({Mc( f ) > λ}) ≤ 3n

λ

∫

{Mc( f )>λ}
| f |Mc(w)dx (8.2.22)

and as Mc(w) ≤ [w]A1w a.e., we deduce (8.2.21).
When 1 < p< ∞ we do not restate (8.1.3) but we revisit its proof. The dual weight

σ = w1−p′
plays a key role in this inequality. Let Eλ = {x ∈ Rn : Mc( f )(x) > λ}

and let K be a compact subset of Eλ . For each x ∈ K select an open cube Qx such
that |Qx|−1 ∫

Qx | f |dx > λ . By the compactness of K, we can work with only finitely
many such cubes Qx.

We let {Qj} j be the finite subcollection of the finite collection of Qx, given by
Lemma 8.1.1 (adapted to cubes). Then we write

λ |Qj| <
∫

Qj

| f |dx=
∫

Qj

(| f |w 1
p
)(
w

1−p′
p′

)
dx ≤

(∫

Qj

| f |pwdx

) 1
p

σ(Qj)
1
p′ ,
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in view of Hölder’s inequality. This estimate in conjunction with Lemma 8.1.1 yields

λ pw(K) ≤ ∑
j
w(3Qj)λ p

= 3np∑
j

w(3Qj)
|3Qj|p (λ |Qj|)p

≤ 3np∑
j

w(3Qj)
|3Qj|p

(∫

Qj

| f |dx
)p

≤ 3np∑
j

w(3Qj)
|3Qj|p

(∫

Qj

| f |pwdx

)
σ(Qj)

p
p′

≤ 3np
[

sup
j

w(3Qj)
|3Qj|p σ(3Qj)

p
p′

]

∑
j

∫

Qj

| f |pwdx.

But notice that

sup
j

w(3Qj)
|3Qj|p σ(3Qj)

p
p′ =

[
sup
j

w(3Qj)
1
p

|3Qj| σ(3Qj)
1
p′

]p

≤ [w]Ap .

Combining these facts, we deduce

λ pw(K) ≤ 3np[w]Ap

∫

Rn
| f |p wdx,

and from this we derive (8.2.21) after taking the supremum over all compact subsets
K of Eλ . �

Remark 8.2.8. Theorem 8.2.7 is also valid for the maximal operators M, M , and
Mc which are pointwise equivalent to Mc.

Exercises

8.2.1. Verify the validity of (8.2.20).

8.2.2. Suppose Aw ≤ u ≤ Bw, where A,B are positive constants and u,w are
weights. Show that

A
B

≤ [w]Ap

[u]Ap

≤ B
A

.

8.2.3. Suppose that 0 < δ < 1 and w ∈ Aq where 1 ≤ q < ∞. Let p−1 = δ (q−1).
Show that wδ ∈ Ap and

[wδ ]Ap ≤ [w]δAq .

8.2.4. Show that the weight u(x) = (1+ |x|)−n does not lie in Ap for any p ≥ 1.
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8.2.5. Let v be a real-valued locally integrable function on Rn and let 1 < p < ∞.
(a) If ev is an Ap weight, show that

max

{
sup

Q cubes

1
|Q|

∫

Q
ev−vQ dx , sup

Q cubes

(
1

|Q|
∫

Q
e−(v−vQ) 1

p−1 dx

)p−1}
≤ [ev]Ap .

(b) Conversely, if

C1 = sup
Q cubes

1
|Q|

∫

Q
ev−vQ dx < ∞, C2 = sup

Q cubes

1
|Q|

∫

Q
e−(v−vQ) 1

p−1 dx < ∞,

then ev lies in Ap and [ev]Ap ≤C1C
p−1
2 .

[
Hint: Use Jensen’s inequality.

]

8.2.6. (a) Show that if ϕ ∈ A2, then logϕ ∈ BMO and ‖ logϕ‖BMO ≤ [ϕ]A2 .
(b) Conclude that if ϕ ∈ Ap with p > 2, then logϕ ∈ BMO and

∥
∥ logϕ

∥
∥
BMO ≤ (p−1)[ϕ]

1
p−1
Ap

.

[
Hint: Part (a) Use Exercise 8.2.5 (a) with p= 2. Part (b) Use that ϕ− 1

p−1 ∈ Ap′ .
]

8.2.7. Let f ∈ BMO be nonconstant and let c= 2−n−1‖ f‖−1
BMO. Show that

[
ec f

]
A2

≤ (1+ e)2.

[
Hint: Use Exercise 8.2.5 (b) and Corollary 6.2.2 with γ = 1

2
1

2ne .
]

8.3 Properties of Ap Weights

Cubes in this text have sides parallel to the axes, unless indicated otherwise. Given
a cube Q, we denote by λQ the cube with the same center as Q and side length λ
times the side length of Q.

Definition 8.3.1. A positive Borel measure μ is called doubling if there is constant
A ∈ (0,∞) such that

μ(2Q) ≤ Aμ(Q) (8.3.1)

for all cubes Q in Rn. In this case, the constant A is called the doubling constant of
the measure μ .

Lebesgue measure is certainly doubling but the measure e|x|dx is not doubling on
any Euclidean space Rn. Next we summarize some basic properties of Ap weights
and among them we show that the measure wdx is doubling whenever w ∈ Ap.
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Proposition 8.3.2. Let w ∈ Ap for some 1 ≤ p < ∞ and λ > 0. Then

(1) [wλ ]Ap = [w]Ap , where w
λ (x) = w(λx).

(2) [τzw]Ap = [w]Ap , where τzw(x) = w(x− z), z ∈ Rn.

(3) [λw]Ap = [w]Ap for all λ > 0.

(4) [w]Ap ≥ 1 for all w ∈ Ap. Equality holds if and only if w is a constant.

(5) For p > 1, the Ap characteristic constant of w can be expressed as:

[w]Ap = sup
Qcubes
in Rn

sup
f∈Lp(Q,wdy)∫
Q | f |pwdy>0

{ (
1

|Q|
∫
Q | f |dy)p

1
w(Q)

∫
Q | f |p wdy

}
.

(6) The measure wdx is doubling. More generally, for λ > 1 and cubes Q we have

w(λQ) ≤ λ np[w]Ap w(Q).

Proof. The proofs of (1), (2), and (3) are left as exercises. Property (4) follows by
an application of Hölder’s inequality with exponents p and p′ as in

1 =
1

|Q|
∫

Q
dx=

1
|Q|

∫

Q
w

1
p w− 1

p dx ≤ [w]
1
p
Ap

,

with equality holding only when w
1
p = cw− 1

p a.e. for some c > 0 (i.e., when w is
a.e. equal to a constant). To prove (5), we apply Hölder’s inequality with exponents
p and p′ to obtain
(

1
|Q|

∫

Q
| f |dx

)p

=
(

1
|Q|

∫

Q
| f |w 1

p w− 1
p dx

)p

≤ 1
|Q|p

(∫

Q
| f |p wdx

)(∫

Q
w− p′

p dx

) p
p′

=
(

1
w(Q)

∫

Q
| f |p wdx

)(
1

|Q|
∫

Q
wdx

)(
1

|Q|
∫

Q
w− 1

p−1 dx

)p−1

≤ [w]Ap

(
1

w(Q)

∫

Q
| f |p wdx

)
.

This argument proves the ≥ inequality in (5) when p > 1. The reverse inequality
follows by taking f = (w+ ε)−p′/p as in (8.2.5) and letting ε → 0.

To prove (6), we apply (5) to the function f = χQ and place λQ in the place of Q
in (5). We obtain

w(λQ) ≤ λ np[w]Apw(Q) ,

which implies that wdx is a doubling measure with doubling constant A= 2np[w]Ap .
This proves (6). �
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Two additional properties of the Ap characteristic constants are listed below; note
that the only assumption needed in the following proposition is that w is a weight.

Proposition 8.3.3. For any weight w we have

[w]Aq ≤ [w]Ap (8.3.2)
when 1 ≤ p < q < ∞. Moreover,

lim
q→1+

[w]Aq = [w]A1 . (8.3.3)

Proof. The hypothesis 1 ≤ p < q < ∞ can be expressed as 0 < q′ −1 < p′ −1 ≤ ∞.
Then statement (8.3.2) is a consequence of

‖w−1‖Lq′−1(Q, dx|Q| )
≤ ‖w−1‖Lp′−1(Q, dx|Q| )

, (8.3.4)

which is a consequence of Hölder’s inequality.
We now turn to (8.3.3). The sequence [w]Aq is increasing as q decreases, so it has

a limit, which could be infinite.
We consider first the case [w]A1 < ∞. Given ε > 0, there is a cube Q such that

[w]A1 − ε < wQ ‖w−1‖L∞(Q).

As q ↓ 1, we have q′ −1 ↑ ∞ and thus, by Exercise 1.1.7, we have

wQ‖w−1‖Lq′−1(Q) → wQ‖w−1‖L∞(Q),

where the expressions on the left are monotonically increasing by (8.3.4). Then there
is a q0(Q) > 1 such that for all q satisfying 1 < q ≤ q0(Q) one has

[w]A1 − ε < wQ ‖w−1‖Lq′−1(Q).

As the expression on the right is bounded by [w]Aq , it follows that

[w]A1 ≤ liminf
q→1

[w]Aq .

The reverse inequality
limsup
q→1

[w]Aq ≤ [w]A1

is a consequence of the monotonicity of the characteristic constants, i.e., (8.3.2).
Now if [w]A1 = ∞, then given M > 0 there is a cube Q such that

M < wQ ‖w−1‖L∞(Q).

Then, by Exercise 1.1.7, there is q1(Q) > 1 such that when 1 < q ≤ q1(Q) one has

M < wQ ‖w−1‖Lq′−1(Q) ≤ [w]Aq .

This shows that [w]Aq → ∞ as q ↓ 1. �
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Corollary 8.3.4. Suppose that supq>1[w]Aq < ∞. Then w ∈ A1.

Proof. This assertion follows by combining (8.3.2) and (8.3.3). �

Example 8.3.5. Let 1 < p < ∞ and a > −n. We investigate for which real numbers
a, the locally integrable function |x|a is an Ap weight, that is, when

[| · |a]balls
Ap

= sup
B balls

(
1
|B|

∫

B
|x|a dx

)(
1
|B|

∫

B
|x|−a p′

p dx

) p
p′

< ∞ . (8.3.5)

We split balls B = B(x0,R) in Rn into two categories: of type I which means
|x0| ≥ 3R and type II which means |x0| < 3R. If B = B(x0,R) is of type I, then
for x satisfying |x− x0| ≤ R we must have

2
3
|x0| ≤ |x0|−R ≤ |x| ≤ |x0|+R ≤ 4

3
|x0| ,

thus the expression inside the supremum in (8.3.5) is comparable to

|x0|a
(|x0|−a p′

p
) p

p′ = 1.

If B(x0,R) is a ball of type II, then B(0,5R) has size comparable to B(x0,R) and
contains it. Since the measure |x|a dx is doubling, the integrals of the function |x|a
over B(x0,R) and over B(0,5R) are comparable. It suffices therefore to estimate the
expression inside the supremum in (8.3.5), in which we have replaced B(x0,R) by
B(0,5R). But this is

(
1

vn(5R)n

∫

B(0,5R)
|x|a dx

)(
1

vn(5R)n

∫

B(0,5R)
|x|−a p′

p dx

) p
p′

=
(

n
(5R)n

∫ 5R

0
ra+n−1dr

)(
n

(5R)n

∫ 5R

0
r−a p′

p +n−1dr

) p
p′

,

which is seen easily to be finite and independent of R exactly when −n < a < n p
p′ .

We conclude that |x|a is an Ap weight, 1 < p < ∞, if and only if −n < a < n(p−1).
The previous proof can be suitably modified to include the case p = 1; in this

case we obtain that |x|a is an A1 weight if and only if −n < a ≤ 0.

Thus, given 1 ≤ p,q< ∞ with q> p, the weight |x|a lies in Aq but not in Ap when
n(p−1) < a < n(q−1).

Exercises

8.3.1. Let 1 < p < ∞ and a ≥ n(p− 1). Show that the measure |x|a dx is doubling
but |x|a is not in Ap.
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8.3.2. (a) Let w1,w2 ∈ Ap where 1 ≤ p < ∞. Prove that

[w1 +w2]Ap ≤ [w1]Ap +[w2]Ap .

(b) If w1 ∈ Ap1 and w2 ∈ Ap2 then

[w1 +w2]Ap ≤ [w1]Ap1
+[w2]Ap2

,

where 1 ≤ p1, p2 < ∞ and p= max(p1, p2).
[
Hint: Part (b). Use (8.3.2).

]

8.3.3. Let w1 ∈ Ap1 and w2 ∈ Ap2 where 1 ≤ p1, p2 < ∞ and let p= max(p1, p2).
(a) Prove that

[max(w1,w2)]Ap ≤ [w1]Ap1
+[w2]Ap2

.

(b) Let cp = 1 when p ≤ 2 and cp = 2p−2 when p > 2. Prove that

[min(w1,w2)]Ap ≤ cp
(
[w1]Ap1

+[w2]Ap2

)

[
Hint: Consider first the case where p1 = p2 = p. Then use (8.3.2).

]

8.3.4. (a) Let 1 ≤ p< ∞, w1 ∈ Ap and w2 ∈ Ap and θ j ≥ 0 satisfy θ1+θ2 = 1. Prove
that

[wθ1
1 wθ2

2 ]Ap ≤ [w1]
θ1
Ap
[w2]

θ2
Ap

.

(b) Use (8.3.2) to conclude that

[wθ1
1 wθ2

2 ]Ap ≤ [w1]
θ1
Ap1

[w2]
θ2
Ap2

where 1 ≤ p1, p2 < ∞ and p= max(p1, p2).

8.3.5. Show that the function

u(x) =

{
log 1

|x| when |x| < 1
e ,

1 otherwise

is an A1 weight on Rn.
[
Hint: Consider balls of type I and II (Example 8.3.5).

]

8.3.6. ([19]) Let w ∈ Ap and v ∈ Ap′ . Prove that for any cube Q we have

(
1

|Q|
∫

Q
wdx

) 1
p
(

1
|Q|

∫

Q
vdx

) 1
p′ ≤ [w]

1
p
Ap
[v]

1
p′
Ap′

(
1

|Q|
∫

Q
w

1
p v

1
p′ dx

)
.

[
Hint: Prove

(
1

|Q|
∫
Qwdx

) 1
p
(

1
|Q|

∫
Q vdx

) 1
p′

(
1

|Q|
∫
Qw

− 1
p v

− 1
p′ dx

) ≤ [w]
1
p
Ap
[v]

1
p′
Ap′

.
]
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8.4 Strong-Type Ap Estimates

In this section we obtain a version of Theorem 8.2.7 in which the weak Lp quasi-
norm (with respect to w) is replaced by the strong Lp norm. To achieve this goal we
work with a maximal function associated with a general positive Borel measure μ .

Definition 8.4.1. Let f be a measurable function on Rn. We define the centered
maximal function with respect to cubes associated with μ of f as follows:

M μ
c ( f )(x) = sup

ε>0

1
μ(Q(x,ε))

∫

Q(x,ε)
| f (y)|dμ(y),

where Q(x,ε) is the open cube centered at x of side length 2ε . Likewise, the uncen-
tered maximal function with respect to cubes associated with μ is defined by

Mμ
c ( f )(x) = sup

Q
x
1

μ(Q)

∫

Q
| f (y)|dμ(y),

where the supremum is taken over all open cubes containing the given point x. Here
f is a μ-measurable function.

Theorem 8.4.2. Let f be a measurable function and let 1 < p < ∞.
(a) Let μ be a doubling regular positive Borel measure and let A < ∞ be a constant
such that μ(3Q) ≤ Aμ(Q) for all cubes Q in Rn. Then we have

sup
λ>0

λ μ
({Mμ

c ( f ) > λ}) ≤ A
∫

{Mμ
c ( f )>λ}

| f |dμ . (8.4.1)

Additionally, if μ is σ -finite, then

∥
∥Mμ

c ( f )
∥
∥
Lp(μ) ≤ 2

(
Ap
p−1

) 1
p ∥
∥ f

∥
∥
Lp(μ). (8.4.2)

(b) Let μ be a regular positive Borel measure with the properties μ(K) < ∞ for all
compact sets K in Rn and μ(G) > 0 for all nonempty open sets G in Rn. Then we
have

sup
λ>0

λ μ
({M μ

c ( f ) > λ}) ≤ 4n
∫

Rn
| f |dμ (8.4.3)

and
∥
∥M μ

c ( f )
∥
∥
Lp(μ) ≤ 2

(
4np
p−1

) 1
p ∥
∥ f

∥
∥
Lp(μ). (8.4.4)

Proof. (a) We obtain (8.4.1) by modifying the proof leading to (8.1.4). We consider
the open set Eλ = {x ∈ Rn : Mμ

c ( f )(x) > λ}. Let K be a compact subset of Eλ . For
each x ∈ K there exists an open cube Qx containing the point x such that

∫

Qx

| f |dμ > λ μ(Qx) . (8.4.5)



346 8 Weighted Inequalities

Observe that Qx ⊂ Eλ for all x. By compactness there exists a finite subcover
{Qx1 , . . . ,QxN} of K. Lemma 8.1.1 yields a subcollection of pairwise disjoint cubes
Qxj1

, . . . ,QxjL
such that (8.1.1) holds. Using (8.4.5) we obtain

μ(K) ≤ μ
( N⋃

i=1

Qxi

)
≤

L

∑
i=1

μ(3Qxji
) ≤ A

L

∑
i=1

μ(Qxji
) ≤ A

λ

L

∑
i=1

∫

Qx ji

| f |dμ ≤ A
λ

∫

Eλ
| f |dμ

as the cubes Qxji
are disjoint and contained in Eλ . Taking the supremum over all

compact subsets K of Eλ and using the regularity of μ , we derive (8.4.1).
We now turn to assertion (8.4.2). Fix 1 < p < ∞. We split f = f0 + f∞, where

f0 = f χ| f |≤λ/2 and f∞ = f χ| f |>λ/2. Then

{Mμ
c ( f ) > λ} � {Mμ

c ( f0) > λ/2}∪{Mμ
c ( f∞) > λ/2} = {Mμ

c ( f∞) > λ/2},

since the first set is empty by the definition of f0. We prove this estimate just as we
proved (8.1.5). The pth power of the left-hand side of (8.4.2) is

∫ ∞

0
pλ p−1μ

({Mμ
c ( f ) > λ})dλ ≤

∫ ∞

0
pλ p−1μ

({Mμ
c ( f∞) > λ/2})dλ

≤ A
∫ ∞

0
pλ p−1 2

λ

∫

Rn
| f∞|dμ dλ

= 2A
∫ ∞

0
pλ p−2

∫

{| f |>λ/2}
| f |dμ dλ

= 2A
∫

Rn

∫ 2| f (x)|

0
pλ p−2| f (x)|dλ dμ(x)

= 2pA
p

p−1

∫

Rn
| f (x)|p dμ(x).

The σ -finiteness of μ was used in the application of Tonelli’s theorem.
(b) We first prove (8.4.3) for f ∈ L1(Rn,μ). We begin by showing that the set

Eλ = {M μ
c ( f ) > λ}

is open. If we knew that for any fixed r > 0 the function

x 
→ 1
μ(Q(x,r))

∫

Q(x,r)
| f |dμ(y) (8.4.6)

were continuous, then M μ
c ( f ) would be lower semicontinuous as the supremum of

continuous functions and then Eλ would be open. To establish the continuity, if xn →
x0, then μ(Q(xn,r))→ μ(Q(x0,r)) and also

∫
Q(xn,r) | f |dμ(y)→ ∫

Q(x0,r) | f |dμ(y) by
the Lebesgue dominated convergence theorem. As μ(Q(xn,r)) �= 0 �= μ(Q(x0,r)),
it follows that the function in (8.4.6) is continuous.

Given a compact subset K of Eλ , for any x∈K select an open cube Qx =Q(x,δx)
of length 2δx centered at x such that
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1
μ(Qx)

∫

Qx

| f |dμ(y) > λ .

Applying Lemma G.0.1 (Appendix G) we extract a sequence of points {x j}mj=1 in K
and a subfamily {Qxj}mj=1 of the family of the cubes {Qx : x ∈ K} such that

K �
m⋃

j=1

Qxj

and that for all y ∈ Rn we have

m

∑
j=1

χQx j
(y) ≤ 4n. (8.4.7)

Then

μ(K) ≤
m

∑
j=1

μ(Qxj) ≤
m

∑
j=1

1
λ

∫

Qx j

| f |dμ(y) ≤ 4n

λ

∫

Rn
| f |dμ(y),

where the last inequality is a consequence of (8.4.7). Taking the supremum over all
compact subsets K of Eλ and using the regularity of dμ we deduce (8.4.3).

Now we remove the assumption that f ∈ L1(Rn,μ). To do so, given a general
measurable function f we define the sequence

fN = f χ| f |≤NχB(0,N), N = 1,2, . . . .

Then fN ∈ L1(Rn,μ) and thus (8.4.3) holds for fN in place of f . The LMCT yields
the conclusion for a general f .

Finally assertion (8.4.4) is obtained just like (8.4.2). �

Theorem 8.4.3. Let w ∈ Ap(Rn) for some 1 < p < ∞. Then we have

∥
∥Mc

∥
∥
Lp(w)→Lp(w) ≤ 3(n+1)p′(

16npp′ ) 1
p [w]

1
p−1
Ap

. (8.4.8)

Remark 8.4.4. If one opted to use conclusion (a) instead of (b) in Theorem 8.4.2,
the constant 4n in (8.4.8) should be replaced by 3np[w]Ap [cf. Proposition 8.3.2 (6)].

Proof. Recall the dual weight σ = w1−p′
which lies in Ap′ . (Equivalently we have

w= σ1−p.)

We fix a measurable function f on Rn

and a cube Q with sides parallel to
the axes. For every x ∈ Q, we denote
by Qx the smallest cube (also with
sides parallel to the axes) centered at
x, contained in 3Q, and containing Q.
See Figure 8.2.

Q

3Q

x

Qx

Fig. 8.2 The cubes Q, Qx, and 3Q.
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Then for any x ∈ Q we have

1
|Q|

∫

Q
| f |dy ≤ σ(Qx)

|Q|
1

σ(Qx)

∫

Qx
| f |σ−1 σ dy ≤ σ(3Q)

|Q| M σ
c ( fσ−1)(x).

As this estimate is valid for all x ∈ Q, we average it over Q after raising it to the
power p−1. This gives

(
1

|Q|
∫

Q
| f |dy

)p−1

≤
(

σ(3Q)
|Q|

)p−1 1
|Q|

∫

Q

(
M σ

c ( fσ−1)
)p−1

dy

=
(

σ(3Q)
|Q|

)p−1w(Q)
|Q|

1
w(Q)

∫

Q

(
M σ

c ( fσ−1)
)p−1

w−1wdy

≤
(

σ(3Q)
|Q|

)p−1w(3Q)
|Q| M w

c

((
M σ

c ( fσ−1)
)p−1

w−1
)
(cQ),

where cQ is the center of Q. Expressing |Q| in terms of |3Q| we deduce the estimate

(
1

|Q|
∫

Q
| f |dy

)p−1

≤ 3np[w]ApM
w
c

((
M σ

c ( fσ−1)
)p−1

w−1
)
(cQ)

which implies, for any x ∈ Rn,

Mc( f )(x) ≤ 3np
′
[w]

1
p−1
Ap

(
M w

c

((
M σ

c ( fσ−1)
)p−1

w−1
)
(x)

) 1
p−1

.

It follows that

∥
∥Mc( f )

∥
∥
Lp(w) ≤ 3np

′
[w]

1
p−1
Ap

[∫

Rn

(
M w

c

((
M σ

c ( fσ−1)
)p−1

w−1
))p′

wdx

] 1
p′

p′
p

.

We now apply (8.4.4) in Theorem 8.4.2 first with respect to the measure wdx on
Lp′

(w) and then with respect to the measure σ dx on Lp(σ). We obtain

∥
∥Mc( f )

∥
∥
Lp(w) ≤ 3np

′
[w]

1
p−1
Ap

[
2(4np)

1
p′

] p′
p

[∫

Rn

((
M σ

c ( fσ−1)
)p−1

w−1
)p′

wdx

] 1
p′

p′
p

= 3np
′
[w]

1
p−1
Ap

[
2(4np)

1
p′

] p′
p

[∫

Rn

(
M σ

c ( fσ−1)
)pσ dx

] 1
p

≤ 3np
′
[w]

1
p−1
Ap

[
2(4np)

1
p′

] p′
p
[
2(4np′)

1
p
]
[∫

Rn
( fσ−1)pσ dx

] 1
p

= 3np
′
2p′(

16npp′ ) 1
p [w]

1
p−1
Ap

∥
∥ f

∥
∥
Lp(w).

This proves (8.4.8). �
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Exercises

8.4.1. Let w ∈ Ap for some 1 < p < ∞. Let μ be a regular positive Borel measure
with the property that the space (Rn,μ) is σ -finite. Show that the sublinear operator

f 
→ M μ
c (w

1
p | f |)w− 1

p

maps Lp(w,dμ) to itself with norm bounded by 2
( 4n p
p−1

)1/p
.

8.4.2. Let w ∈ Ap for some 1 < p < ∞ and let 0 < q < ∞. Show that the operator

f 
→ (
M(| f |qw)w−1) 1

q

maps Lp′q(w) to itself with norm bounded by Cn,p,q[w]
1/q
Ap

, Cn,p,q being a constant.

8.4.3. Let μ be a regular doubling positive Borel measure such that (Rn,μ) is σ -
finite and let A < ∞ be a constant such that μ(3Q) ≤ Aμ(Q) for all cubes Q in Rn.
Prove that Mμ

c maps Lp,∞(μ) to itself with norm at most A p
p−1 , 1 < p < ∞.

[
Hint: Use (8.4.1) and Theorem 1.2.10.]

8.5 The Jones Factorization of Weights

We begin by building an Ap weight from two A1 weights.

Proposition 8.5.1. Let w1, w2 be two A1 weights and let 1 < p < ∞. Then w1w
1−p
2

is an Ap weight which satisfies

[w1w
1−p
2 ]Ap ≤ [w1]A1 [w2]

p−1
A1

. (8.5.1)

Proof. For any cube Q we have

(
1

|Q|
∫

Q
w1w

1−p
2 dx

)(
1

|Q|
∫

Q
(w1w

1−p
2 )−

1
p−1 dx

)p−1

≤
(

1
|Q|

∫

Q
w1‖w−1

2 ‖p−1
L∞(Q)dx

)(
1

|Q|
∫

Q
‖w−1

1 ‖
1

p−1

L∞(Q)w2 dx

)p−1

=
(

1
|Q|

∫

Q
w1 dx

)
‖w−1

1 ‖L∞(Q)

(
1

|Q|
∫

Q
w2 dx

)p−1

‖w−1
2 ‖p−1

L∞(Q).

Taking the supremum over all cubes Q, we deduce (8.5.1) �

It is rather remarkable that the converse of Proposition 8.5.1 is also valid.
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Theorem 8.5.2. Suppose that w is an Ap weight for some 1 < p < ∞. Then there
exist A1 weights w1 and w2 such that

w= w1w
1−p
2

and moreover, there exist finite constants c1(n, p), c2(n, p) such that

[w1]A1 ≤ c1(n, p) [w]Ap , [w2]A1 ≤ c2(n, p) [w]
1

p−1
Ap

. (8.5.2)

Proof. We are seeking weights w1 and w2 such that w=w1w
1−p
2 . Setting u=wp−1

2 ,
we express w1 and w2 in terms of u as follows: w1 = wu and w2 = up

′−1. We are
therefore looking for a weight u such that both wu and up

′−1 are A1 weights, i.e.,
they satisfy

Mc(wu) ≤Cuw and Mc(up
′−1) ≤Cup

′−1,

for some constant C, or equivalently,

w−1Mc(wu) ≤Cu and Mc(up
′−1)p−1 ≤Cu. (8.5.3)

We would like to find a sub-eigenvector of a positive operator T , which means a
positive function u that satisfies T (u) ≤ Cu. In our case, T could be one of the
operators

f 
→ w−1Mc(w f )

or
f 
→ Mc( f p

′−1)p−1.

But as these are positive operators, it will be sufficient to take T to be their sum, i.e.,

T ( f ) = w−1Mc(w f )+Mc( f p
′−1)p−1.

At this point, we make the assumption 1 < p ≤ 2. This restriction on p is crucial

in making the positive operator f 
→Mc( f p
′−1)p−1 =Mc( f p

′−1)
1

p′−1 sublinear and
countably subadditive.3 Moreover, the operator T maps Lp′

(w) to itself. To see this,
let

C(n, p) = 3np
′
2p

(
4n

√
pp′

) 2
p

be the constant that appears in (8.4.8). Then

(∫

Rn
[w−1Mc(w f )]p

′
wdx

) 1
p′ ≤C(n, p′)[w1−p′

]
1

p′−1
Ap′

∥
∥ f

∥
∥
Lp′ (w)

and

3 A positive operator T is called countably subadditive if T (∑∞
j=0 f j) ≤ ∑∞

j=0 T ( f j) when f j ≥ 0.
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(∫

Rn

(
Mc(| f |p′−1)p−1)p′

wdx

) 1
p′ ≤

[
C(n, p)[w]

1
p−1
Ap

(∫

Rn
(| f |p′−1)pwdx

) 1
p
] p

p′
,

and a combination of these estimates yields

B=
∥
∥T

∥
∥
Lp′ (w)→Lp′ (w) ≤

[
C(n, p′)+C(n, p)

p
p′

]
[w]Ap < ∞.

We now fix a nonzero function f in Lp′
(w) and we define the function

u=
∞

∑
k=0

Tk( f )
(2B)k

which is positive everywhere. This series converges in Lp′
(w) and so it defines a

function u in Lp′
(w). Moreover, this construction ensures that u is a sub-eigenvector

of T , in the aforementioned sense, as

T (u) = T

( ∞

∑
k=0

Tk( f )
(2B)k

)

≤
∞

∑
k=0

Tk+1( f )
(2B)k

= 2B
∞

∑
k=1

Tk( f )
(2B)k

≤ 2Bu,

having used that T (λ f ) = |λ |T ( f ) for λ ∈ C. So now we have found a function u
such that both inequalities in (8.5.3) are valid withC= 2B. These inequalities imply
that

[wu]A1 ≤ 2B and [up
′−1]A1 ≤ (2B)

1
p−1

and directly translate into the estimates claimed in (8.5.2), given that w1 = wu and
w2 = up

′−1 and that B is bounded by a constant multiple of [w]Ap .
We now turn to the case p > 2. Given a weight w ∈ Ap for p > 2, we factor its

dual weight σ = w1−p′
, which lies in Ap′ and p′ < 2. By the previous case we are

able to write

σ = v1v
1−p′
2 , where [v1]A1 ≤ c1(n, p)[σ ]Ap′ , [v2]A1 ≤ c2(n, p)[σ ]

1
p′−1
Ap′

.

Then w= σ1−p satisfies

w= v1−p
1 v2, where [v1]A1 ≤ c1(n, p)[w]

1
p−1
Ap

, [v2]A1 ≤ c2(n, p)[w]Ap ,

and the claimed conclusion follows with w1 = v2, w2 = v1 and the constants c1(n, p)
and c2(n, p) interchanged. �
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We have managed to obtain a description of Ap weights in terms of A1 weights.
But it remains to understand the structure of A1 weights. In particular, we would
like to have ways to build A1 weights. We implicitly saw such a way in the proof of
Theorem 8.5.2. Let us recap it. Let f ∈ Lp(Rn,μ) for some 1 < p < ∞. Define

u=
∞

∑
k=0

Mk( f )
(2‖M‖)k ,

where ‖M‖ < ∞ is the norm of the Hardy–Littlewood maximal operator M on
Lp(Rn,μ) (Theorem 8.4.2). Then u is a well-defined function in Lp(Rn,μ) and
satisfies

M(u) = M

( ∞

∑
k=0

Mk( f )
(2‖M‖)k

)

≤
∞

∑
k=0

Mk+1( f )
(2‖M‖)k

= 2‖M‖
∞

∑
k=1

Mk( f )
(2‖M‖)k

≤ 2‖M‖u,
so u is an A1 weight.

This process of construction is more or less abstract, but there is a more concrete
way to build A1 weights.

Theorem 8.5.3. Let f be a measurable function such that Mc( f ) < ∞ a.e. Then for
0 ≤ ε < 1, the function Mc( f )ε is an A1 weight that satisfies

[
Mc( f )ε]

A1
≤ 9n+3n

1− ε
. (8.5.4)

Proof. Fix x ∈ Rn. Given a measurable function f such that Mc( f ) < ∞ a.e. and a
cube Q that contains x, we will show that

1
|Q|

∫

Q
Mc( f )(y)ε dy ≤ 9n

1− ε
Mc( f )(x)ε +3nMc( f )(x)ε . (8.5.5)

To prove (8.5.5), we fix a cube Q and split f = f χ3Q+ f χ(3Q)c . Then

1
|Q|

∫

Q
Mc( f χ3Q)(y)ε dy ≤ 1

|Q|
|Q|1−ε

1− ε
∥
∥Mc( f χ3Q)

∥
∥ε
L1,∞

≤ 1
1− ε

1
|Q|ε

(
3n

∫

3Q
| f (y)|dy

)ε

≤ 3nε 3nε

1− ε
Mc( f )(x)ε , (8.5.6)
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where we made use of the inequality of Exercise 1.2.6 (a) (Kolmogorov’s inequality)
and the weak-type (1,1) boundedness of Mc (with constant 3n).

For f χ(3Q)c we only need to notice that for all y in Q

Mc( f χ(3Q)c)(y) ≤ 3nMc( f )(x). (8.5.7)

The reason for the validity of (8.5.7)
is that any cube R that contains the
point y in Q and meets (3Q)c must
have side length at least that of Q,
hence 3R contains x; see Figure 8.3.
Thus

1
|R|

∫

R
| f |χ(3Q)c dy

≤ 3n

|3R|
∫

3R
| f |dy

≤3nMc( f )(x).

Q

3Q

3
2 �(Q)

1
2 �(Q)

y
R

Fig. 8.3 A cube R that contains a point y∈Q and
meets (3Q)c.

Averaging the εth power of (8.5.7) over Q, we obtain

1
|Q|

∫

Q
Mc( f χ(3Q)c)(y)

ε dy ≤ 3nεMc( f )(x)ε .

Combining the estimates for f χ(3Q)c and f χ3Q and using the subadditivity property
Mc( f )ε ≤ Mc( f χ(3Q)c)ε +Mc( f χ3Q)ε , we deduce (8.5.5). �

We show in Theorem 8.6.5 that Theorem 8.5.3 can essentially be reversed.

Exercises

8.5.1. Let 0 ≤ α,β < 1 and a,b ∈ Rn. Prove that the weight

(1+ |x−a|)nα(p−1)

(1+ |x−b|)nβ

lies in Ap for 1 < p < ∞. In particular, (1+ |x|)nγ ∈ A2 when −1 < γ < 1.[
Hint: Use Proposition 8.5.1 and Theorem 8.5.3.

]
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8.5.2. Find a measurable bounded function f on Rn and a constant cn such that

[
M( f )ε]

A1
≥ cn

1− ε

for any 0 < ε < 1, i.e., the reverse inequality to (8.5.4) holds.

8.5.3. Let 1 ≤ p0 < p < ∞. If w1 ∈ Ap0 and w2 ∈ A1, then prove that w1w
p0−p
2 lies

in Ap and
[w1w

p0−p
2 ]Ap ≤ [w1]Ap0

[w2]
p−p0
A1

.

8.5.4. Let 1 ≤ p0 < p < ∞. Given a weight w ∈ Ap obtain the existence of weights
u1 ∈ Ap0 and u2 ∈ A1 such that the factorization w= u1u

p0−p
2 holds and, moreover,

[u1]Ap0
≤ c1(n, p)c2(n, p)p0−1 [w]

p0−1
p−1 +1

Ap
, [u2]A1 ≤ c2(n, p) [w]

1
p−1
Ap

,

where c1(n, p), c2(n, p) are the constants in Theorem 8.5.2.
[
Hint: Pick u2 = w2,

where w2 is the weight obtained in the factorization of w in Theorem 8.5.2.
]

8.5.5. Let 1 < p < p0 < ∞. If w1 ∈ Ap0 and w2 ∈ A1, then prove that the weight

(wp−1
1 wp0−p

2 )
1

p0−1 lies in Ap and

[
(wp−1

1 wp0−p
2 )

1
p0−1

]

Ap
≤ [w1]

p−1
p0−1

Ap0
[w2]

p0−p
p0−1

A1
.

8.6 Reverse Hölder Property of Ap Weights

Hölder’s inequality on the probability space (Q, 1
|Q|dx) yields

1
|Q|

∫

Q
wdx ≤

(
1

|Q|
∫

Q
wr dx

) 1
r

for 1 < r < ∞. The interesting fact is that this inequality can be reversed for Ap

weights. In fact one has the so-called reverse-Hölder property

(
1

|Q|
∫

Q
wr dx

) 1
r

≤ K
|Q|

∫

Q
wdx, (8.6.1)

for some constant K uniformly over all cubes Q.

Definition 8.6.1. Let 1 < r < ∞. We define RHr to be the space of all weights w on
Rn that satisfy (8.6.1). For w ∈ RHr we set [w]RHr to be the smallest constant K such
that (8.6.1) holds for all cubes Q.
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Before we embark into the proof of the reverse Hölder property, we discuss the
reverse weak-type (1,1) inequality for the Hardy–Littlewood maximal operator.

Theorem 8.6.2. For each f ∈ L1(Rn), cube4 Q, and λ > 0 we have

1
2nλ

∫

{x∈Q: | f |>λ}
| f |dx ≤ |{x ∈ Q : Mc( f ) > λ}|. (8.6.2)

Proof. Although (8.6.2) is stated in terms of Mc it will be convenient to work with
its dyadic counterpart Md . So we fix a function f ∈ L1(Rn) and consider the set
Eλ = {x ∈ Q : Md( f )(x) > λ}. For each x ∈ Eλ there is a maximal dyadic cube Qx

such that
1

|Qx|
∫

Qx
| f |dy > λ .

As the dyadic ancestor of Qx is not maximal, this implies that

1
|Qx|

∫

Qx
| f |dy ≤ 2nλ .

We denote by {Qj} j the collection of all maximal dyadic cubes Qx, where x ∈ Eλ .
Then the Qj are pairwise disjoint and ∪ jQ j = Eλ . As | f | ≤ Md( f ) a.e., it follows
that

1
2nλ

∫

{x∈Q: | f |>λ}
| f |dx ≤ 1

2nλ

∫

{x∈Q: Md( f )>λ}
| f |dx

=
1

2nλ ∑
j

∫

Qj

| f |dx

≤ ∑
j

|Qj|

= |Eλ |
≤ |{x ∈ Q : Mc( f ) > λ}|,

since Md ≤ Mc. Then (8.6.2) is proved. �

Theorem 8.6.3. For any w ∈ A1, any K > 1, and any r satisfying

1 ≤ r ≤ 1+
K−1
K

1

e1/e2n[w]A1

(8.6.3)

we have [w]RHr ≤ K.

Proof. Applying (8.6.2) to f = w we obtain

1
2nλ

∫

{x∈Q: w>λ}
wdx ≤ |{x ∈ Q : Mc(w) > λ}|.

4 The cube Q could have infinite side length or could be the whole space.
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It follows from this that

1
2nλ

w
({x ∈ Q : w > λ}) ≤ |{x ∈ Q : w > λ/[w]A1}|,

as w is an A1 weight. In view of (1.2.3), we write
∫

Q
wrdx =

∫

Q
wr−1wdx

= (r−1)
∫ ∞

0
λ r−2w

({x ∈ Q : w(x) > λ})dλ

= (r−1)
[∫ a

0
+

∫ ∞

a

]
λ r−2w

({x ∈ Q : w(x) > λ})dλ

≤ ar−1w(Q)+(r−1)
∫ ∞

a
λ r−22nλ

∣
∣({x ∈ Q : w(x) > λ/[w]A1}

∣
∣dλ

≤ ar−1w(Q)+2n[w]rA1
(r−1)

∫ ∞

0
λ r−1

∣
∣{x ∈ Q : w(x) > λ}∣∣dλ

= ar−1w(Q)+2n[w]rA1

r−1
r

∫

Q
wrdx.

Choosing a= wQ = 1
|Q|

∫
Qwdx we obtain

(
1−2n[w]rA1

r−1
r

) 1
|Q|

∫

Q
wrdx ≤

(
1

|Q|
∫

Q
wdx

)r

.

We now examine for which r ≥ 1 we have

1−2n[w]rA1

r−1
r

≥ 1
Kr ,

or equivalently,

2
n
r

( r−1
r

) 1
r ≤ (Kr −1)

1
r

K
1

[w]A1

. (8.6.4)

It may be difficult to exactly determine these r, but as K > 1, note that (8.6.4) is a
consequence of

0 ≤ 2ne
1
e (r−1) ≤ K−1

K
1

[w]A1

, (8.6.5)

in view of the inequality (1 − 1/r)1/r ≤ e1/e (r− 1) for r ≥ 1. This last inequality
can be obtained by setting s = 1 − 1/r and observing that the minimum of ss over
[0,1] is e−1/e. Now as (8.6.5) is equivalent to (8.6.3), (8.6.1) is proven. �

Remark 8.6.4. The constant e1/e in (8.6.3) could be replaced by the smallest con-
stant c that satisfies the inequality (1−1/t)1/t ≤ c(t−1) for all t > 1.

A consequence of the reverse Hölder property of Ap weights is the following
characterization of A1 weights. This provides a converse to Theorem 8.5.3.
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Theorem 8.6.5. Let w be an A1 weight. Then there exist 0 < ε < 1, a nonnegative
measurable function g such that g,1/g ∈ L∞, and a nonnegative locally integrable
function f that satisfies Mc( f ) < ∞ a.e. such that

w= gMc( f )ε a.e. (8.6.6)

Proof. By Theorem 8.6.3, there is γ > 0 such that the reverse Hölder condition

(
1

|Q|
∫

Q
w1+γ dy

) 1
1+γ

≤ 2
|Q|

∫

Q
wdy (8.6.7)

holds for all cubes Q. We set

ε =
1

1+ γ
and f = w1+γ

so that f ε = w.
There is a null subset EQ of each cube Q such that

2
|Q|

∫

Q
wdy ≤ 2 [w]A1w(x) for all x ∈ Q\EQ.

Let N be the union of EQ over all Q with rational side lenghts and centers in Qn. It
follows from this and from (8.6.7) that Mc satisfies

Mc( f )(x) ≤ 21+γ [w]1+γ
A1

f (x) for x ∈ Rn \N.

That is, Mc( f ) ≤ 21+γ [w]1+γ
A1

f a.e. or Mc( f )ε ≤ 2[w]A1w < ∞ a.e. But the Lebesgue
differentiation theorem also gives Mc( f )ε ≥ f ε = w a.e. We now set

g=
w

Mc( f )ε ,

and we observe that 1
2[w]A1

≤ g≤ 1 a.e. Finally, we point out that (8.6.7) implies that

f = w1+γ is locally integrable, so the functions f and g are as claimed. �

Lemma 8.6.6. Let 1 < p < ∞, w ∈ Ap, and 0 < δ < 1. Then [wδ ]RH1/δ ≤ [w]δAp
, i.e.,

1
|Q|

∫

Q
wdy ≤ [w]Ap

(
1

|Q|
∫

Q
wδ dy

) 1
δ

(8.6.8)

for any cube Q in Rn.

Proof. Let α > 0 and r ∈ (1,∞) to be determined later. By Hölder’s inequality we
have

1 =
1

|Q|
∫

Q
wαw−αdy ≤

(
1

|Q|
∫

Q
wαr dy

) 1
r
(

1
|Q|

∫

Q
w−αr′ dy

) 1
r′
. (8.6.9)
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We now pick α and r satisfying αr = δ and αr′ = 1
p−1 . Solving the system we find

the values r = δ (p−1)+1 and α = δ
δ (p−1)+1 . Then (8.6.9) transforms to

1 ≤
(

1
|Q|

∫

Q
wδ dy

) 1
δ (p−1)+1

(
1

|Q|
∫

Q
w− 1

p−1 dy

) δ (p−1)
δ (p−1)+1

or equivalently to

1 ≤
(

1
|Q|

∫

Q
wδ dy

) 1
δ
(

1
|Q|

∫

Q
w− 1

p−1 dy

)p−1

.

Multiplying by 1
|Q|w(Q) and using the definition of [w]Ap we obtain (8.6.8). �

Remark 8.6.7. By Hölder’s inequality, the reverse inequality to (8.6.8) trivially
holds with constant 1. So condition (8.6.8) is in fact a reverse Hölder property. Then
(8.6.8) essentially says that the normalized L1 norm of an Ap weight over a cube is
comparable to its normalized Lδ quasi-norm over the same cube.

Next we derive another consequence of Lemma 8.6.6.

Lemma 8.6.8. Let 1 < p< ∞. Then for any δ ∈ (0,1), any weight w ∈ Ap, any cube
Q, and any x ∈ Q we have

Mc(wχQ)(x) ≤ [w]Ap

(
Mc(wδ χQ)(x)

)1/δ
. (8.6.10)

Proof. Fix a cube Q and a point x ∈ Q. Then

Mc(wχQ)(x) = sup
Q′ cube
Q′
x

1
|Q′|

∫

Q′
wχQ dy, (8.6.11)

where the supremum is taken over all cubes Q′ containing x. Now if Q′ is not con-
tained in Q, then the estimate

1
|Q′|

∫

Q′
wχQ dy=

|Q∩Q′|
|Q′|

1
|Q∩Q′|

∫

Q∩Q′
wχQ dy ≤ 1

|Q∩Q′|
∫

Q∩Q′
wχQ dy

shows that the average of wχQ over Q′ is smaller than the average of wχQ over the
cube Q∩Q′ which is contained in Q and contains x. Thus the supremum in (8.6.11)
can be restricted to cubes Q′ contained in Q. Now it follows from (8.6.8) that

1
|Q′|

∫

Q′
wdy ≤ [w]Ap

(
1

|Q′|
∫

Q′
wδ dy

) 1
δ

(8.6.12)

for all cubes Q′ contained in Q that contain the point x. For all such cubes Q′ we can
then replace w by wχQ in (8.6.12) and obtain
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1
|Q′|

∫

Q′
wχQ dy ≤ [w]Ap

(
1

|Q′|
∫

Q′
wδ χQ dy

) 1
δ ≤ [w]Ap

(
Mc(wδ χQ)(x)

) 1
δ . (8.6.13)

Taking the supremum on the left side of (8.6.13) over all cubes Q′ that contain the
fixed point x and are contained in Q, and using the observation that the supremum
in (8.6.11) can be restricted to such cubes Q′, we deduce the validity of (8.6.10). �

We now suitably adapt the argument in the proof of Theorem 8.6.3 to obtain the
reverse Hölder property of Ap weights.

Theorem 8.6.9. For any w ∈ Ap, 1 < p < ∞, and K > 1, and any r satisfying

1 ≤ r ≤ 1+
K−1
K

1

23/2 e1/e 6n[w]Ap

(8.6.14)

we have [w]RHr ≤ K, i.e., for any cube Q in Rn,

(
1

|Q|
∫

Q
wr dx

) 1
r

≤ K
|Q|

∫

Q
wdx. (8.6.15)

Proof. Fix a cube Q and 0 < δ < 1. Applying first (8.6.2) to f = wχQ we obtain

1
2nλ

w
({x ∈ Q : w(x) > λ}) ≤ |{x ∈ Q : Mc(wχQ)(x) > λ}|.

Next we apply (8.6.10) to write

|{x ∈ Q : Mc(wχQ)(x) > λ}| ≤ |{x ∈ Q : Mc(wδ χQ)(x) > λ δ /[w]δAp
}|

≤ 2 ·3n
[w]δAp

λ δ wδ ({x ∈ Q : wδ (x) > λ δ /2[w]δAp
})

,

where the second inequality is a consequence of Exercise 8.1.4 (with ε = 1/2, f =
wδ χQ, and u= 1). Thus we have

w
({x ∈ Q : w(x) > λ}) ≤ 2n+13n

[w]δAp

λ δ−1
wδ ({x ∈ Q : wδ (x) > λ δ /2[w]δAp

})
.

Let r ≥ 1. We use (1.2.3) and the preceding estimate to write
∫

Q
wr−1wdx

= (r−1)
[∫ wQ

0
+

∫ ∞

wQ

]
λ r−2w

({x ∈ Q : w(x) > λ})dλ

≤ wQ
r−1w(Q)+(r−1)

∫ ∞

wQ

[w]δAp

λ r−2

λ δ−1
2n+13nwδ

({
x ∈ Q : wδ (x)>

λ δ

2[w]δAp

})
dλ
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≤ wQ
r−1w(Q)+2n+

r
δ 3n[w]rAp

1
δ
(r−1)

∫ ∞

0
t
r
δ −2wδ ({x ∈ Q : wδ (x) > t})dt

= |Q|
(w(Q)

|Q|
)r

+2
r
δ 6n[w]rAp

1
δ
r−1
r
δ −1

∫

Q
(wδ )

r
δ −1wδ dx,

where we made use of the change of variables t = λ δ /2[w]δAp
. Thus

(
1−2

r
δ 6n[w]rAp

r−1
r−δ

) 1
|Q|

∫

Q
wrdx ≤

(
1

|Q|
∫

Q
wdx

)r

.

We examine for which r ≥ 1 we have

1−2
r
δ 6n[w]rAp

r−1
r−δ

≥ 1
Kr ,

or equivalently,

6
n
r 2

1
δ

( r−1
r−δ

) 1
r ≤ (Kr −1)

1
r

K
1

[w]Ap

. (8.6.16)

Making use of the inequality below (8.6.5), we see that when 0 < δ < 1 ≤ r one has

( r−1
r−δ

) 1
r =

( r−1
r

) 1
r
( r
r−δ

) 1
r ≤ e

1
e (r−1)

1
1−δ

,

since ( r
r−δ )

1/r is decreasing in r on [1,∞). Then (8.6.16) is a consequence of

0 ≤ 6n
2

1
δ

1−δ
e

1
e (r−1) ≤ K−1

K
1

[w]Ap

, (8.6.17)

which is derived in (8.6.5). Obviously 21/δ

1−δ tends to infinity as δ → 0+ or δ → 1−,
so it is advantageous to choose an intermediate value of δ , such as δ = 1/2. For this
choice of δ , (8.6.17) is equivalent to (8.6.14), and so the assertion of the theorem is
proved. �

Taking f = χS in Proposition 8.3.2 (5) yields that

w(S)
w(Q)

≥ 1
[w]Ap

( |S|
|Q|

)p
(8.6.18)

for any cube Q and any measurable subset S of Q. The reverse Hölder inequality
allows us to essentially reverse this inequality.

Corollary 8.6.10. There is a constant cn such that for any 1 < p < ∞, any w ∈ Ap,
any cube Q, and any measurable subset S of Q we have

w(S)
w(Q)

≤ 2
( |S|

|Q|
) 1

1+cn[w]Ap . (8.6.19)
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Proof. An application of Hölder’s inequality gives

w(S) =
∫

Q
wχS dx ≤

(∫

Q
wrdx

) 1
r |S| r−1

r =
( 1

|Q|
∫

Q
wrdx

) 1
r |Q| 1

r |S| r−1
r (8.6.20)

for any r > 1. We choose r = 1+ 1
cn[w]Ap

where cn = 25/2e1/e6n. Then (8.6.15) in

Theorem 8.6.9 (with K = 2) combined with (8.6.20) yields

w(S) ≤ 2
( 1

|Q|
∫

Q
wdx

)
|Q| 1

r |S| r−1
r ,

which is a restatement of (8.6.19). �

Corollary 8.6.11. Let 1 < p< ∞. Given w∈Ap there is a q∈ (1, p) such that w∈Aq.

Moreover, q satisfies p−1= (q−1)
(
1+(cn[w]

p′−1
Ap

)−1
)
, where cn = 25/2e1/e6n, and

[w]Aq ≤ 2p−1[w]Ap . (8.6.21)

Proof. Let w ∈ Ap. Then w1−p′ ∈ Ap′ . The reverse Hölder condition on the weight

w1−p′
yields

(
1

|Q|
∫

Q
w(1−p′)rdx

) 1
r

≤ 2
|Q|

∫

Q
w1−p′

dx (8.6.22)

where r = 1+1/cn[w]
p′−1
Ap

. Let us set (p′ − 1)r = q′ − 1 for some 1 < q < p. Then

p−1 = r(q−1) and (8.6.22) translates to

(
1

|Q|
∫

Q
w1−q′

dx

)q−1

≤
(

2
|Q|

∫

Q
w1−p′

dx

)p−1

. (8.6.23)

Multiplying by wQ and taking the supremum over cubes Q, we derive (8.6.21). �

Corollary 8.6.12. For any 1 < p < ∞ we have Ap = ∪1≤q<pAq.

Proof. As the classes Ap are increasing, it follows that Ap contains all the classes
Aq with q < p. Conversely, if w ∈ Ap, then by Corollary 8.6.11 there is a q ∈ (1, p)
such that w ∈ Aq. This shows that Ap is contained in ∪1≤q<pAq. �

Exercises

8.6.1. Show that the RHr classes decrease as r increases. Precisely, show that when
1 ≤ s ≤ r we have [w]RHs ≤ [w]RHr for w ∈ RHr.

8.6.2. Let 1 < p < ∞. If w ∈ Ap prove that 1/w ∈ RHp′−1 and

[1/w]RHp′−1
≤ [w]Ap .
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8.6.3. Let w ∈ Ap, where p ≥ 1. Show that there is an s > 1 (depending on [w]Ap )
such that ws ∈ Ap.

[
Hint: Use Theorems 8.5.2, 8.5.3, 8.6.5, and Proposition 8.5.1.

]

8.6.4. ([14]) Let 1 ≤ p < ∞. Given w ∈ Ap and a cube Q show that there is a mea-
surable subset EQ of Q (that also depends on w) such that |EQ| ≥ 1

2 |Q| and

1
|Q|

∫

Q
wdx ≤ 2p−1[w]Ap w(y) for all y ∈ EQ.

[
Hint: When p > 1 choose EQ = {w ≥ βwQ}∩Q, where β−1 = 2p−1[w]Ap . Show

that |Q\EQ| ≤ 1
2 |Q| using the definition of [w]Ap . When p= 1 choose EQ = Q.

]

8.6.5. ([102]) Let 1 < p,q,s < ∞ be related by q−1 = s(p−1).
(a) Let w ∈ Ap ∩RHs. Show that ws ∈ Aq and

[ws]Aq ≤ [w]sAp
[w]sRHs

.

(b) Conversely, given ws ∈ Aq prove that w ∈ Ap ∩RHs; precisely show that

[w]Ap ≤ [ws]
1
s
Aq

and [w]RHs ≤ 2p[ws]
1
s
Aq

.

[
Hint: Part (b). Apply Exercises 8.2.3 and 8.6.4 to ws.

]

8.7 Weighted Estimates for Singular Integral Operators

We begin by verifying the necessity of the Ap condition for basic singular integrals.

Theorem 8.7.1. Let w be a weight in Rn, n ≥ 2, and let 1 ≤ p < ∞. Suppose that
each of the Riesz transforms Rj is of weak type (p, p) with respect to w. Then w must
be an Ap weight.

Proof. Let Q be a cube and let f be a nonnegative function on Rn supported in Q
that satisfies fQ > 0. Let Q′ be the cube that shares a corner with Q, has the same
length as Q, and satisfies x j ≥ y j for all 1 ≤ j ≤ n whenever x ∈ Q′ and y ∈ Q. Then
for x ∈ Q′ we have

∣
∣
∣
∣

n

∑
j=1

Rj( f )(x)
∣
∣
∣
∣ =

Γ ( n+1
2 )

π n+1
2

n

∑
j=1

∫

Q

x j − y j
|x− y|n+1 f (y)dy ≥ Γ ( n+1

2 )

π n+1
2

∫

Q

f (y)
|x− y|n dy .

But if x ∈ Q′ and y ∈ Q we must have that |x− y| ≤ 2
√
n�(Q), which implies that

|x− y|−n ≥ (2
√
n)−n|Q|−1. Let Cn = Γ ( n+1

2 )(2
√
n)−nπ− n+1

2 . It follows that for all
0 < α <Cn fQ we have

Q′ ⊆
{
x ∈ Rn :

∣
∣

n

∑
j=1

Rj( f )(x)
∣
∣ > α

}
.
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Since the operator ∑n
j=1Rj is of weak type (p, p) with respect to w (with constant

C), we must have

w(Q′) ≤ Cp

α p

∫

Q
f p wdx

for all α <Cn fQ, which implies that

f pQ ≤ C−p
n Cp

w(Q′)

∫

Q
f p wdx . (8.7.1)

We observe that we can reverse the roles of Q and Q′ and obtain

gpQ′ ≤ C−p
n Cp

w(Q)

∫

Q′
gpwdx (8.7.2)

for all g supported in Q′. In particular, taking g= χQ′ in (8.7.2) gives that

w(Q) ≤C−p
n Cpw(Q′) .

Using this estimate and (8.7.1), we obtain

f pQ ≤ (C−p
n Cp)2

w(Q)

∫

Q
f p wdx . (8.7.3)

Using the characterization of [w]Ap in Proposition 8.3.2 (5), it follows that

[w]Ap ≤ (C−p
n Cp)2 < ∞ ;

hence w ∈ Ap. �

We now show that a singular integral operator is bounded from Lp(w) to itself
when 1 < p < ∞ and w ∈ Ap. We need two lemmas to achieve this. Recall the
operators M#

c of Definition 6.4.1 and M#
d of Definition 6.4.2.

Lemma 8.7.2. Let 0 < A1,A2,A3 < ∞ and suppose that K is defined onRn \{0} and
satisfies the size condition |K(x)| ≤ A1|x|−n, x �= 0, the smoothness condition

|K(x− y)−K(x)| ≤ A2|y|δ |x|−n−δ , |x| ≥ 2|y| (8.7.4)

and the cancellation condition (3.3.5). Suppose thatW is a tempered distribution on
Rn defined in terms of (3.3.8) and let T be the operator given by convolution with
W. Then for any s > 1 there is a constant Cn,s,δ such that

M#
c (T ( f )) ≤Cn,s,δ (A1 +A2 +A3)Mc(| f |s) 1

s

for any bounded function f on Rn with compact support.

Proof. Let us fix a bounded function f on Rn with compact support, a cube Q, and
x ∈ Q. It will be enough to show that there is a constant CQ such that
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1
|Q|

∫

Q
|T ( f )−CQ|dy ≤Cn,s,δ Mc(| f |s) 1

s (x). (8.7.5)

As we have done on various occasions, we estimate separately the contribution of
f near the cube and far from it. So we write f = f0 + f∞, where f0 = f χQ∗ and
Q∗ = (4

√
n+1)Q. We chose the constant CQ = T ( f∞)(x). Then

1
|Q|

∫

Q
|T ( f )(y)−CQ|dy≤ 1

|Q|
∫

Q
|T ( f0)(y)|dy+ 1

|Q|
∫

Q
|T ( f∞)(y)−T ( f∞)(x)|dy.

By the boundedness of T on Ls (Corollary 3.6.2) the first term on the right satisfies

1
|Q|

∫

Q
|T ( f0)(y)|dy ≤

(
1

|Q|
∫

Q
|T ( f0)(y)|s dy

) 1
s

≤ C′
n,s(A1 +A2 +A3)

(
1

|Q|
∫

Q∗
| f (y)|s dy

) 1
s

≤ C′′
n,sMc(| f |s) 1

s (x).

Now observe that if x,y ∈ Q and z ∈ (Q∗)c, then

|x− z| ≥ 4
√
n+1
2

�(Q)− 1
2
�(Q) = 2

√
n�(Q) ≥ 2|x− y|,

and hence (8.7.4) implies

|K(y− z)−K(x− z)| = |K((x− z)− (x− y))−K(x− z)| ≤ A2|x− y|δ
|x− z|n+δ .

Moreover, if w ∈ {x,y}, then T ( f∞)(w) =
∫

Rn
K(w− z) f∞(z)dz by (3.3.3) and the

LDCT. Thus we may write

1
|Q|

∫

Q
|T ( f∞)(y)−T ( f∞)(x)|dy ≤ 1

|Q|
∫

Q

∫

(Q∗)c
|K(y− z)−K(x− z)| | f (z)|dzdy

≤ 1
|Q|

∫

Q

∫

(Q∗)c
A2 |x− y|δ | f (z)|

|x− z|n+δ dzdy

≤ cn,δ A2

∫

Rn

�(Q)δ | f (z)|
(|x− z|+ �(Q)

)n+δ dz

≤ c′
n,δ A2Mc( f )(x)

≤ c′
n,δ A2Mc(| f |s)(x) 1

s ,

having made use of Corollary 2.5.2. Thus (8.7.5) holds with Cn,s,δ =C′′
n,s+ c′

n,δ . �

Lemma 8.7.3. Suppose that 1 < p0 < p < ∞ and w ∈ Ap. Then for every function f
in L1

loc(R
n) with the property
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sup
0<λ≤N

λ p0w
({

Md( f ) > λ
})

< ∞ for every N > 0 (8.7.6)

we have

(∫

Rn
Md( f )pwdx

) 1
p

≤ 21+ 1
p+(n+p+2)(1+cn[w]Ap )

(∫

Rn
M#

c ( f )
pwdx

) 1
p

. (8.7.7)

Proof. Let Ωλ = {Md( f ) > λ} and let Qj be the maximal dyadic cubes that appear
in the proof of Theorem 6.4.5 which satisfy ∪ jQ j = Ωλ . Estimate (6.4.4) says

∣
∣S j

∣
∣ ≤ 2nγ

∣
∣Qj

∣
∣

where S j = {x ∈ Qj : Md( f )(x) > 2λ , M#
d( f )(x) ≤ γλ} and γ > 0. Combining this

fact with (8.6.19), we obtain

w(S j)
w(Qj)

≤ 2

( |S j|
|Qj|

) 1
1+cn[w]Ap ≤ 2

(
2nγ

) 1
1+cn[w]Ap ≤ 2n+1γ

1
1+cn[w]Ap .

Multiplying by w(Qj) and adding over j (using the notation of Theorem 6.4.5), we
arrive at the estimate

w
({

Md( f ) > 2λ , M#
d( f ) ≤ γλ

})

= ∑
j
w

({
x ∈ Qj : Md( f )(x) > 2λ , M#

d( f )(x) ≤ γλ
})

≤ 2n+1γ
1

1+cn[w]Ap ∑
j
w(Qj)

= 2n+1γ
1

1+cn[w]Ap w
({

Md( f ) > λ
})

. (8.7.8)

We now adapt the proof of (6.4.10) to account for the presence of the weight w.
For a positive real number N we set

IN =
∫ N

0
pλ p−1w

({
x ∈ Rn : Md( f )(x) > λ

})
dλ .

We note that IN is finite, as it is bounded by
(∫ N

0
pλ p−p0−1dλ

)
sup

0<λ≤N
λ p0w

({
Md( f ) > λ

})
< ∞.

We now write

IN = 2p
∫ N

2

0
pλ p−1w

({
x ∈ Rn : Md( f )(x) > 2λ

})
dλ

and we use (8.7.8) to obtain the following sequence of inequalities:
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IN ≤ 2p
∫ N

2

0
pλ p−1w

({
x ∈ Rn : Md( f )(x) > 2λ , M#

d( f )(x) ≤ γλ
})

dλ

+2p
∫ N

2

0
pλ p−1w

({
x ∈ Rn : M#

d( f )(x) > γλ
})

dλ

≤ 2p2n+1γ
1

1+cn[w]Ap

∫ N
2

0
pλ p−1w

({
x ∈ Rn : Md( f )(x) > λ

})
dλ

+2p
∫ N

2

0
pλ p−1w

({
x ∈ Rn : M#

d( f )(x) > γλ
})

dλ

≤ 2p2n+1γ
1

1+cn[w]Ap IN +
2p

γ p

∫ Nγ
2

0
pλ p−1w

({
x ∈ Rn : M#

d( f )(x) > λ
})

dλ .

We pick γ so that 2p2n+1γ
1

1+cn[w]Ap = 1
2 . Since IN is finite, we subtract from both

sides of the inequality the number 1
2 IN to obtain

IN
2

≤ 2p2(p+n+2)p(1+cn[w]Ap )
∫ Nγ

2

0
pλ p−1w

({
x ∈ Rn : M#

d( f )(x) > λ
})

dλ .

From this we deduce (8.7.7) by letting N → ∞ and using that M#
d ≤ M#

c . �

Theorem 8.7.4. Let T be a singular integral operator as in Lemma 8.7.2 and let
w ∈ Ap for some 1 < p < ∞. Then there is a constant C(n, p,w) such that for any
bounded and compactly supported function f we have

∥
∥T ( f )

∥
∥
Lp(w) ≤C(n, p,w)(A1 +A2 +A3)

∥
∥ f

∥
∥
Lp(w). (8.7.9)

Thus T admits a unique bounded extension on Lp(w) (by Proposition 8.2.2).

Proof. Fix 1 < p < ∞ and w ∈ Ap. Let f be bounded and compactly supported. By
Corollary 8.6.11 we pick q such that 1 < q < p and w ∈ Aq. We claim that T ( f ) lies
in Lq(w). Assuming this claim, by the boundedness of Md on Lq(w), it follows that
Md(T ( f )) ∈ Lq(w). Then (8.7.6) holds with p0 = q; then Lemma 8.7.3 gives

(∫

Rn
|T ( f )|p wdx

) 1
p

≤
(∫

Rn
Md(T ( f ))p wdx

) 1
p

≤C

(∫

Rn
M#

c (T ( f ))
p wdx

) 1
p

.

An application of Lemma 8.7.2 now yields that

(∫

Rn
M#

c (T ( f ))
p wdx

) 1
p

≤Cn,s,δ (A1 +A2 +A3)
(∫

Rn
Mc(| f |s)

p
s wdx

) 1
p

for any s > 1. Picking s ∈ (1, p) and applying Theorem 8.4.3 (with p/s in place of
p), we obtain
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[(∫

Rn
Mc(| f |s)

p
s wdx

) s
p
] 1

s

≤
[
C′(n, p,w)

∥
∥| f |s∥∥

L
p
s (w)

] 1
s =C′′(n, p,w)

∥
∥ f

∥
∥
Lp(w).

This concludes the proof of (8.7.9) and it remains to establish the claim that T ( f )
lies in Lq(w). To achieve this, let f be bounded and supported in the ball B(0,R).
Then for some r with 1 < r < q, Hölder’s inequality gives

∫

B(0,2R)
|T ( f )|qwdx ≤

(∫

Rn
|T ( f )|qr′dx

) 1
r′
(∫

B(0,2R)
wrdx

) 1
r

,

and this expression is finite by the boundedness of T on Lqr
′

(Corollary 3.6.2), pro-
vided r is chosen small enough so that the reverse Hölder property (8.6.15) is valid.
We now show the finiteness of the Lq(w) norm outside B(0,2R). First we note that
for |x| ≥ 2R one has |x− y| ≥ 1

2 |x| when |y| ≤ R and so

|T ( f )(x)| ≤
∫

B(0,R)

A1| f (y)|
|x− y|n dy ≤ A1|B(0,R)|2n‖ f‖L∞

|x|n =
Cf

|x|n .

Then

∫

B(0,2R)c
|T ( f )|qwdx ≤

∞

∑
k=0

∫

2R2k≤|x|≤2R2k+1

Cq
f w(x)

|x|nq dx ≤Cq
f

∞

∑
k=0

w
(
B(0,R2k+2)

)

(2k+1R)nq
.

Notice that the cube Q(0,R2k+3) contains B(0,R2k+2). Appealing to (8.6.18), we
write

w
(
B(0,R2k+2)

) ≤ w(B(0,R))[w]Aρ

( |Q(0,R2k+3)|
|B(0,R)|

)ρ
= constant 2knρ ,

where ρ ∈ (1,q) is suitably picked so that w∈ Aρ . In view of this estimate the series

∞

∑
k=0

(2k+1R)−nqw
(
B(0,R2k+2)

)

converges and so ‖T ( f )‖Lq(w) < ∞. �

Exercises

8.7.1. The transpose T t of a linear operator T is defined by
〈
T ( f ),g

〉
=

〈
f ,Tt(g)

〉

for all f , g in a range subspace of the domain and range of T , respectively. Suppose
that T is a linear operator that maps Lp(Rn,vdx) to itself for some 1 < p < ∞ and
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some v ∈ Ap. Show that the transpose operator Tt maps Lp′
(Rn,wdx) to itself with

the same norm, where w= v1−p′ ∈ Ap′ .

8.7.2. Let K, T , and T (∗) be as in Theorem 3.8.1 and let 1 < p < ∞. Prove that T (∗)
is bounded from Lp(w) to itself for any w ∈ Ap.

8.7.3. Let α > 0, w ∈ A1, and f ∈ L1(Rn,w) ∩ L1(Rn). Let f = g+ b be the
Calderón–Zygmund decomposition of f at height α > 0 given in Theorem 3.5.2,
such that b=∑ j b j, where each b j is supported in a dyadic cube Qj,

∫
Qj

b j(x)dx= 0,

and Qj and Qk have disjoint interiors when j �= k. Prove that

(a) ‖g‖L1(w) ≤ [w]A1‖ f‖L1(w) and ‖g‖L∞(w) = ‖g‖L∞ ≤ 2nα ,

(b) ‖b j‖L1(w) ≤ (1+[w]A1)‖ f‖L1(Qj ,w) and ‖b‖L1(w) ≤ (1+[w]A1)‖ f‖L1(w),

(c) ∑ j w(Qj) ≤ [w]A1
α ‖ f‖L1(w).

8.7.4. Let δ , K, and T be as Lemma 8.7.2. Prove that there is a constant Cn,δ such
that for any weight w, for any cube Q, and any function F ∈ L1(w) supported in Q
and with

∫
QF(x)dx= 0 we have

∫

(Q∗)c
|T (F)(x)|w(x)dx ≤Cn,δA2

∫

Rn
|F(y)|M(w)(y)dy.

Here Q∗ = (4
√
n+1)Q is a fixed concentric multiple of Q.

8.7.5. Let δ , K, and T be as in Lemma 8.7.2. Fix w ∈ A1. Suppose that T maps
L2(w) to L2(w) with bound Bw > 0. Prove that there is a constant Cn,δ such that

‖T‖L1(w)→L1,∞(w) ≤Cn,δ (A+Bw) [w]2A1
.

[
Hint: Apply the idea of the proof of Theorem 3.6.1 using the Calderón–Zygmund

decomposition f = g+ b of Exercise 8.7.3 at height γα for a suitable γ . The bad
function can be handled via Exercise 8.7.4.

]



Historical Notes

The weak Lp spaces were introduced in [63], [64] as natural endpoints of the scale of Lorentz
spaces. An early treatment of Lorentz spaces appeared in the article by Hunt [41]. The normability
of the weak spaces Lp for 1 < p ≤ ∞ can be traced back to general principles obtained by Kol-
mogorov [52]. Theorem 1.3.3 first appeared without proof in Marcinkiewicz’s note [67] and was
reintroduced by Zygmund in [124].

Theorem 2.4.1 (Riesz–Thorin interpolation theorem) can be traced back to Riesz [84] in the
context of bilinear forms. Riesz’s student Thorin [104], [105] developed an approach in the study
of this result based on the maximum modulus principle. Tamarkin and Zygmund [103] provided a
more efficient approach to Thorin’s method. The one-dimensional maximal function originated in
the work of Hardy and Littlewood [34]. Its n-dimensional analog was introduced and shown to be
bounded by Wiener [119].

The Fourier transform can be traced back to Fourier [27]. The theory of distributions was
developed by Schwartz [90], [91]. For a concise introduction to this theory one may consult
Hörmander [40]. Lemma 2.9.1 is due to van der Corput [114].

The Lp boundedness of the Hilbert transform for 1 < p< ∞ is due to M. Riesz but was obtained
for the related conjugate function [83], [85] and was based on interpolation [84]. The weak-type
(1,1) property of the Hilbert transform is due to Kolmogorov [51]. The inequality in Exercise 3.8.3
is due to Cotlar [17]. Operators of the kind TΩ and the stopping-time argument of Theorem 3.5.2 are
due to Calderón and Zygmund [9]. In the same article, Calderón and Zygmund used this decom-
position to prove Theorem 3.6.1 for TΩ when Ω is a Lipschitz function on the unit sphere. The
more general condition (3.3.4) first appeared in Hörmander [39]. The method of rotations (Corol-
lary 3.6.4) appeared in the article of Calderón and Zygmund [10]. Example 3.3.2 is taken from
Muckenhoupt [74].

The development of the theory of singular integrals in the vector-valued setting originated in the
article of Benedek, Calderón, and Panzone [3]. This reference contains a general theorem which
covers both Theorems 4.1.1 and 4.3.2. Theorem 4.3.3 is due to Fefferman and Stein [25]. Early ver-
sions of Theorem 4.4.2 can be found in [60], [61], [62]. These works depend on complex-analysis
techniques and contain one-dimensional results. The real-variable treatment of the Littlewood–
Paley theorem which allowed its higher-dimensional extension was pioneered by Stein [95].

The one-dimensional version of the Riesz potentials appeared in work of Weyl [117], but they
were later systematically studied by Riesz [86] on Rn. The Bessel potentials were introduced
by Aronszajn and Smith [2] and by Calderón [7]. The strong type estimates in Theorem 5.1.3
were obtained by Hardy and Littlewood [33] in one dimension and by Sobolev [92] in higher
dimensions, while the weak-type estimate first appeared in Zygmund [124]. The proof of Theo-
rem 5.1.3 is taken from Hedberg [35]. Theorem 5.4.9 is due to Sobolev [92] when s is a positive
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integer. Theorem 5.3.2 is due to Mikhlin [73] and Theorem 5.3.6 to Hörmander [39], although
both references contain slightly different formulations. A version of Theorem 5.7.3 in the con-
text of one-dimensional Fourier series can be found in Marcinkiewicz’s article [68]. Calderón and
Torchinsky [8] obtained Theorem 5.6.5; the underlying Theorem 5.6.4 is also due to them. Inter-
polation of analytic families of operators (Theorem 5.5.3) is due to Stein [94]; the critical Propo-
sition C.0.2 was previously established by Hirschman [38]. Estimates of the type that appear in
Exercises 5.5.2, 5.5.3 can be traced back to the article of Kato and Ponce [47].

The pioneering article of Fefferman and Stein [26] provided the foundation of the theory of
Hardy spaces. The decomposition of open sets given in Theorem 7.5.2 is due to Whitney [118].
The one-dimensional atomic decomposition of Hardy spaces is due to Coifman [13] and its higher-
dimensional extension to Latter [56]. A simplification of some of the technical details in Latter’s
proof was subsequently obtained by Latter and Uchiyama [57].

The space of functions of bounded mean oscillation and Theorem 6.2.1 first appeared in the
work of John and Nirenberg [43]. The duality of H1 and BMO (Theorem 7.8.4) was announced by
Fefferman in [24], but its first proof appeared in the article of Fefferman and Stein [26]. The proof
of Theorem 7.8.4 is based on the atomic decomposition of H1, which was obtained subsequently.
Dyadic BMO is studied in Garnett and Jones [30]. The sharp maximal function was introduced by
Fefferman and Stein [26] in interpolation when one endpoint space is BMO. Theorem 6.5.4 was
independently obtained by Peetre [78], Spanne [93], and Stein [96].

The Ap condition first appeared in a paper of Rosenblum [87] in a somewhat different form.
The characterization of Ap when n= 1 in terms of the boundedness of the Hardy–Littlewood max-
imal operator was obtained by Muckenhoupt [75]. The estimate in (8.4.8) can also be reversed, as
shown by Buckley [6]. The proof of Theorem 8.2.7 is based on that in Lerner [58]. The partic-
ular version of Lemma G.0.1 is adapted from that in de Guzmán [21]. The fact that Ap weights
satisfy the reverse Hölder condition is due to Coifman and Fefferman [14]. The characterization
of A1 weights (Theorem 8.5.3) is due to Coifman and Rochberg [15]. The necessity and suffi-
ciency of the Ap condition for the boundedness of the Hilbert transform on weighted Lp spaces was
obtained by Hunt, Muckenhoupt, and Wheeden [42]. Weighted Lp estimates controlling Calderón–
Zygmund operators by the Hardy–Littlewood maximal operator were obtained by Coifman [12].
The factorization of Ap weights was conjectured by Muckenhoupt and proved by Jones [45]. The
proof in the text is one of several ones given afterwards, based on the so-called Rubio de Francia
algorithm, i.e., the series of iterates of an operator that create a sub-eigenvector of it. Parts of the
exposition in Chapter 8 was based on the notes of Duoandikoetxea [23].

General reference texts on Fourier Analysis include: Duoandikoetxea [22], Garcı́a-Cuerva and
Rubio de Francia [29], Grafakos [31], [32], Katznelson [48], Körner [53], Meyer [70], [71],
Meyer and Coifman [72], Muscalu and Schlag [76], [77], Pereyra and Ward [81], Pinsky [82],
Stein [97], [98], Stein and Shakarchi [99], Stein and Weiss [100], Torchinsky [107], Wolff [122],
Zygmund [125]. More specialized books include: de Guzmán [20], [21] on covering lemmas;
Bennett and Sharpley [4], Bergh and Löfström [5], Kislyakov and Kruglyak [49], Krein, Petunin,
and Semenov [55] on interpolation; Cruz-Uribe, Martell, and Pérez [18], Kokilashvili [50],
Strömberg and Torchinsky [101], Wilson [121] on weighted estimates; Frazier, Jawerth, and
Weiss [28], Peetre [79], Sawano [88], Schmeisser and Triebel [89], Triebel [109], [110], [111],
[112], Yuan, Sickel, and Yang [120] on different types of function spaces; Adams and Fournier [1],
Lieb and Loss [59], Maz’ya [69], Ziemer [123] for topics on Sobolev spaces; Lu [65], Uchiyama
[113], Weisz [116] on Hardy spaces; Christ [11], Journé [46], Lu, Ding, and Yan [66], Tolsa [106],
Torres [108], Volberg [115] on singular integrals. The proof of Besicovitch’s lemma in
Appendix G follows the exposition in Jones [44].

Finally, several aspects of dyadic harmonic analysis can be found in Pereyra [80]. Many topics

in this book can be studied in terms of wavelets; on this the reader may consult Hérnandez and

Weiss [36].



Appendix A
Orthogonal Matrices

An n× n matrix A is called orthogonal if AAt = I. This implies that A−1 = At . It
follows that detA= 1 or detA= −1. Let

A=

⎡
⎢⎢⎢⎣

a11 a12 · · · a1n

a21 a22 · · · a2n
...

... · · · ...
an1 an2 · · · ann

⎤
⎥⎥⎥⎦ ; then At =

⎡
⎢⎢⎢⎣

a11 a21 · · · an1

a12 a22 · · · an2
...

... · · · ...
a1n a2n · · · ann

⎤
⎥⎥⎥⎦ .

In view of the property AAt = I, it follows that

a2
j1 +a2

j2 + · · ·+a2
jn = 1, j ∈ {1,2, . . . ,n},

a j1ak1 +a j2ak2 + · · ·+a jnakn = 0, k �= j.

In other words, the set of rows of A is an orthonormal basis of Rn, and so is the set
of columns of A.

Then for x= (x1, . . . ,xn) ∈ Rn we have |Ax| = |x|. Indeed,

|Ax|2 =
n

∑
j=1

(a j1x1 + · · ·+a jnxn)2

=
n

∑
j=1

n

∑
k=1

n

∑
l=1

a jkxka jlxl

=
n

∑
j=1

n

∑
k=1

a2
jkx

2
k +

n

∑
j=1

∑
1≤k �=l≤n

a jka jlxkxl

=
n

∑
k=1

x2
k

n

∑
j=1

a2
jk+ ∑

1≤k �=l≤n

xkxl
n

∑
j=1

a jka jl

=
n

∑
k=1

x2
k1+ ∑

1≤k �=l≤n

xkxl0 = |x|2.
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Appendix B
Subharmonic Functions

A locally integrable function f on an open subset O of Rn with values in [−∞,∞) is
called subharmonic if it is upper semicontinuous, which means

limsup
y→x

f (y) ≤ f (x)

for every x ∈ O and

f (x) ≤ 1
|B(x,r)|

∫

B(x,r)
f (y)dy (B.0.1)

for any x ∈ O and every r > 0 such that B(x,r) ⊂ O. If f ∈ C 2, then the above
condition is equivalent to Δ f ≥ 0. A function is called log-subharmonic if it is
nonnegative and its logarithm is subharmonic.

An interesting property of subharmonic functions is the following maximum
modulus principle. For simplicity we state this result only in the case n = 2 using
complex number notation.

Lemma B.0.1. Let O be an open connected subset of the complex plane with com-
pact closure O. Let V be a subharmonic function on O andU be a harmonic function
on O. Assume that for every z0 ∈ O\O we have

limsup
z→z0

(
V (z)−U(z)

)≤ 0. (B.0.2)

Then for all z ∈ O we have
V (z)−U(z) ≤ 0.

Proof. Let M= supz∈O(V (z)−U(z)). Suppose that M > 0 to obtain a contradiction.
Let zk be a sequence in O such that (V −U)(zk) → M. In view of (B.0.2), zk can-
not accumulate near the boundary of O, thus {zk}k has a limit point z ∈ O. By the
semicontinuity we must have (V −U)(z) =M. Then the set

E = {w ∈ O : (V −U)(w) =M}
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374 Appendix B Subharmonic Functions

is nonempty. But for an upper semicontinuous function g, sets of the form {g ≥ α}
are closed; thus E must be closed by taking α =M.

To show that E is open, let w ∈ E. The mean value property (B.0.1) yields that
V −U =M a.e. on an open disk B(w,r) contained in O. Hence E is dense in B(w,r),
but E is closed, implying that B(w,r) � E. This shows that E is also open. As O
is connected, we must have E = O. So, unless U = V , in which case the claim is
obvious, we have a contradiction. Thus M cannot be positive, which means that we
should have M ≤ 0. �

Lemma B.0.2. The sum of two log-subharmonic functions is log-subharmonic.

Proof. Let ϕ(x,y) = log(ex+ ey) defined on R2. Then ϕ is obviously increasing in
each variable. Also ϕ is a convex function of both variables, i.e., it satisfies

ϕ
(
(1−θ)(x1,y1)+θ(x2,y2)

)≤ (1−θ)ϕ(x1,y1)+θϕ(x2,y2)

for all (x1,y1), (x2,y2) in R2 and all θ ∈ [0,1]. Indeed, writing

ϕ(x,y) = x+ log(1+ ey−x)

and using the convexity of the function t �→ log(1+et) on the real line, we can easily
obtain this assertion.

Suppose that F,G are subharmonic functions on Rn. Then the fact that ϕ is
increasing in each variable and Jensen’s inequality (which can be used since ϕ is
convex) gives

ϕ(F(x),G(x)) ≤ϕ
(

1
|B(x,r)|

∫

B(x,r)
F(y)dy ,

1
|B(x,r)|

∫

B(x,r)
G(y)dy

)

≤ 1
|B(x,r)|

∫

B(x,r)
ϕ(F(y),G(y))dy,

which implies that ϕ(F(x),G(x)) is subharmonic.
Now let f ,g be log-subharmonic functions. Writing f = eF and g = eG, then

log( f + g) = ϕ(F,G). But ϕ(F,G) was shown to be subharmonic, thus log( f + g)
is also subharmonic. �

We need a few facts from the theory of analytic functions with values in Banach
spaces. Let B be a Banach space with norm ‖ · ‖B and let f be a mapping from an
open subset U of C to B. We say that f is analytic from U to B if for every z0 in U
there is an element f′(z0) in B such that

lim
z→z0

∥∥∥f′(z0)− f(z)− f(z0)
z− z0

∥∥∥
B
= 0.

Theorem B.0.3. Let U be an open subset of C and let f be a mapping from U to a
Banach spaceB. Then f is analytic if and only if for every bounded linear functional
Λ on B we have
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lim
z→z0

Λ
(
f(z)− f(z0)

z− z0

)

exists in C.

Theorem B.0.4. Let U be an open subset of C, let B(z0,r) be a disk contained in
U, and let f be an analytic mapping from U toB. Then f has a unique power series
expansion

f(z) =
∞

∑
n=0

an(z− z0)n,

where an ∈ B and the series converges in the norm of B for any |z− z0| < r and
uniformly in the norm ofB on any subdisk |z− z0| ≤ r′, where r′ < r.

We denote by S the open unit strip, i.e., the set of all points z in the plane with
0 < Rez < 1.

Lemma B.0.5. Let (X ,μ) be a measure space with μ(X) < ∞ and let V be a
complex-valued function defined on X ×S such that the mapping z �→V (·,z) from S
to the Banach space L1(X) is analytic. Then the function

z �→ F(z) =
∫

X
|V (x,z)|q dμ(x)

is log-subharmonic for any 0 < q ≤ 1.

Proof. Given z0 in S, there is an r > 0 such that the closed disk B(z0,r) of radius r
centered at z0 is contained in S and there exist functions ak,z0(x) such that

V (x,z) =
∞

∑
k=0

ak,z0(x)(z− z0)k,

where the series converges in L1(X) uniformly in z ∈ B(z0,r). We claim that

FN(z) =
∫

X

∣∣∣
N

∑
k=0

ak,z0(x)(z− z0)k
∣∣∣
q
dμ

converges uniformly [in z ∈ B(z0,r)] to F(z) as N → ∞. Indeed, using the inequality

||a|q −|b|q| ≤ |a−b|q we obtain

|FN(z)−F(z)| ≤
∫

X

∣∣∣
∞

∑
k=N+1

ak,z0(x)(z− z0)k
∣∣∣
q
dμ

≤μ(X)1−q
(∫

X

∣∣∣
∞

∑
k=N+1

ak,z0(x)(z− z0)k
∣∣∣dμ
)q

,

and this tends to zero (as N → ∞) uniformly in z ∈ B(z0,r).
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To show that log |F(z)| is subharmonic in B(z0,r), it will suffice to prove that
log |FN(z)| are subharmonic in B(z0,r), as log |FN(z)| converge to log |F(z)| uni-

formly on B(z0,r).
For each k there is a sequence of simple functions {a j

k,z0
}∞
j=1 such that

‖ak,z0 −a j
k,z0

‖L1(X) → 0 as j → ∞. Let

Gj
N(z) =

∫

X

∣∣∣
N

∑
k=0

a j
k,z0

(x)(z− z0)k
∣∣∣
q
dμ .

Then, as before we have

|FN(z)−Gj
N(z)| ≤

∫

X

∣∣∣
N

∑
k=0

(
ak,z0(x)−a j

k,z0
(x)
)
(z− z0)k

∣∣∣
q
dμ

≤
N

∑
k=0

|z− z0|kq
∫

X

∣∣ak,z0(x)−a j
k,z0

(x)
∣∣q dμ

and this tends to zero as j → ∞ uniformly in z ∈ B(z0,r). We may now replace each
FN(z) by a suitable GjN

N . It will now suffice to show that logGj
N is subharmonic for

any N and j. To achieve this we write

N

∑
k=0

a j
k,z0

(x)(z− z0)k =
m

∑
i
pi(z)χEi ,

where pi(z) are polynomials and Ei are pairwise disjoint measurable subsets of X .
Then ∫

X

∣∣∣
N

∑
k=0

a j
k,z0

(x)(z− z0)k
∣∣∣
q
dμ(x) =

m

∑
i

∣∣pi(z)
∣∣qμ(Ei)

and as each function
∣∣pi(z)

∣∣q is log-subharmonic, the same is true for the finite sum
of these functions by Lemma B.0.2. �



Appendix C
Poisson Kernel on the Unit Strip

We denote by S the unit strip S= {x+ iy : 0 < x < 1,y ∈ R} and by D the unit disk
{x+ iy ∈ C : x2 + y2 < 1}. Consider the conformal mapping

ϕ(w) =
i− eπiw

1− ieπiw

from S to D which has a continuous bijective extension from S to D\{i,−i}. Notice

that ϕ(0) =−1, ϕ(1) = 1, ϕ( 1
2 ) = 0 and the image of the line { 1

2 + it : −∞ < t < ∞}
is the open segment {is : s ∈ (−1,1)}, preserving orientation. Consider the Poisson

kernel Re 1+z
1−z , defined for z ∈ D\{1}, composed with ϕ , i.e., the function

(x,y) �→ Re
1+ϕ(x+ iy)
1−ϕ(x+ iy)

=
sin(πx)

cosh(πy)+ cos(πx)

defined on S\{1}. Being the harmonic image of a conformal mapping, this function
is harmonic on S; i.e., for all (x,y) ∈ S we have

∂ 2

∂x2

(
sin(πx)

cosh(πy)+ cos(πx)

)
+

∂ 2

∂y2

(
sin(πx)

cosh(πy)+ cos(πx)

)
= 0.

As the boundary of S has two disjoint pieces and integration over each piece will
be written separately, we introduce the “half ” Poisson kernel Ω on S\{1} via

Ω(x,y) =
1
2

sin(πx)
cosh(πy)+ cos(πx)

=
1
2

cot(πx
2 )[

cot2(πx
2 )+ tanh2(πy

2 )
]

cosh2(πy
2 )

, (C.0.1)

where 0 ≤ x ≤ 1 and −∞ < y < ∞ but (x,y) �= (1,0). This function is nonnegative
and satisfies ∫ +∞

−∞
Ω(x, t)dt = x (C.0.2)

for all 0 ≤ x < 1; thus
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∫ +∞

−∞
Ω(x, t)dt+

∫ +∞

−∞
Ω(1− x, t)dt = x+(1− x) = 1, 0 < x < 1.

Proposition C.0.1. Suppose that M0 and M1 are continuous functions defined on
the real line that satisfy

∫ +∞

−∞
|M0(t)|e−π|t|dt+

∫ +∞

−∞
|M1(t)|e−π|t|dt < ∞. (C.0.3)

Then the function

u(x,y) =
∫ +∞

−∞
Ω(1− x,y− t)M0(t)dt+

∫ +∞

−∞
Ω(x,y− t)M1(t)dt

is harmonic on the unit strip and satisfies u(x,y) → M0(y0) as (x,y) → (0+,y0) and
u(x,y) → M1(y1) as (x,y) → (1−,y1).

Proof. The harmonicity of u is verified by passing the derivatives inside the integral
via the Lebesgue dominated convergence theorem, taking into account (C.0.3). We
show that u(x,y)→M0(y0) as (x,y)→ (0+,y0), for y0 ∈R. An analogous argument
works for the other boundary line.

Let us fix y0 ∈ R. Given ε > 0 there is a δ > 0 such that

|t− y0| < δ =⇒ |M0(t)−M0(y0)| < ε. (C.0.4)

Using (C.0.2) we write

|u(x,y)−M0(y0)|
≤
∫ +∞

−∞
Ω(1− x,y− t)

∣∣M0(t)−M0(y0)
∣∣dt+

∫ +∞

−∞
Ω(x,y− t)

∣∣M1(t)−M0(y0)
∣∣dt.

We now take (x,y) ∈ S with

|x−0|+ |y− y0| < δ ′ = min
(δ

2
,

1
3
,ε,

ε
C(δ )

)
,

where

C(δ ) =
cosh(πδ

2 )

cosh(πδ
2 )−1

.

The integral ∫ +∞

−∞
Ω(x,y− t)

∣∣M1(t)−M0(y0)
∣∣dt

is at most a constant multiple of ε , as we can verify from the observation

∣∣Ω(x,y− t)
∣∣≤ 1

2
|sin(πx)|

cosh(π|y− t|)+ 1
2

≤ |sin(πx)|
eπ|y−t| ≤ π|x|e

π|y|

eπ|t| ≤ ε π
eπ|y0|eπ/3

eπ|t|
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and hypothesis (C.0.3). For the other integral we note that
∫

|t−y0|<δ
Ω(1− x,y− t)

∣∣M0(t)−M0(y0)
∣∣dt ≤ ε(1− x) < ε,

in view of (C.0.2) and (C.0.4). Now, if |t−y0| ≥ δ then |t−y| ≥ δ/2 (since |y−y0| <
δ/2); hence

∣∣Ω(1− x,y− t)
∣∣≤

1
2 |sin(πx)|

cosh(π|y− t|)−1
≤C(δ )

1
2 |sin(πx)|

cosh(π|y− t|) ≤ C(δ )|sin(πx)|
eπ|y−t| .

Thus, one has
∫

|t−y0|≥δ
Ω(1− x,y− t)

∣∣M0(t)−M0(y0)
∣∣dt

≤C(δ ) |x|π eπ|y0|eπ/3
∫

R
e−π|t|(∣∣M0(t)

∣∣+ ∣∣M0(y0)
∣∣)dt,

and this expression is at most a constant multiple of ε in view of the choice of δ ′. �

Proposition C.0.2. Fix C,a > 0 with a < π . Let F be a continuous function on the
closed unit strip S whose logarithm is subharmonic in S and satisfies

sup
0≤x≤1

log |F(x+ iy)| ≤Cea |y|, −∞ < y < ∞. (C.0.5)

If M0, M1 are continuous functions on the line that satisfy M0(y) ≥ log |F(iy)| and
M1(y) ≥ log |F(1+ iy)| for all y ∈ (−∞,∞) and also

|M0(y)| ≤Cea |y|, −∞ < y < ∞,

|M1(y)| ≤Cea |y|, −∞ < y < ∞.

Then for any θ ∈ (0,1) we have

log |F(θ)| ≤
∫ +∞

−∞
Ω(1−θ , t)M0(t)dt+

∫ +∞

−∞
Ω(θ , t)M1(t)dt. (C.0.6)

Proof. Consider the rectangle DT = (0,1)× (−T,T ) for some T > 0 and choose
a′ ∈ (a,π) and ε > 0. For κ ∈ {0,1} define continuous functions

MT
κ (y) =

⎧
⎪⎨
⎪⎩

Mκ(y) if |y| ≤ T,

Lκ(y) if T < |y| ≤ T +1,

0 if |y| > T +1,

where Lκ(y) is a line segment joining Mκ(T ) to 0 for y∈ [T,T+1] and 0 to Mκ(−T )
for y ∈ [−T −1,−T ].

Now define a harmonic function UT on DT by setting
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UT (x,y) =
∫ +∞

−∞
Ω(1− x,y− t)MT

0 (t)dt+
∫ +∞

−∞
Ω(x,y− t)MT

1 (t)dt

+ ε cosh(a′y)cos
(
a′(x− 1

2

))

for (x,y) ∈ DT . Identifying z with x+ iy, we claim that for T sufficiently large, the
function

log |F(z)|−UT (z)

is negative on the boundary of DT . To prove this assertion we first notice that by
Proposition C.0.1, UT (x,y) is harmonic on DT and on {iy : |y| ≤ T} it coincides
with

M0(y)+ ε cosh(a′y)cos
(a′

2

)
,

which is bigger than log |F(iy)|, while on {1+ iy : |y| ≤ T} it coincides with

M1(y)+ ε cosh(a′y)cos
(a′

2

)
,

which is bigger than log |F(1+ iy)|; hence the assertion is valid on the vertical parts
of the boundary of DT . On the horizontal boundary pieces of DT , i.e., for z= x± iT ,
first notice that

cosh(a′y)cos
(
a′(x− 1

2

))≥ 1
2
ea

′T cos
(
a′(x− 1

2

))≥ 1
2
ea

′T cos
(a′

2

)

and then observe that

UT (z) ≥
∫ T

−T
Ω(1− x,y− t)M0(t)dt+

∫ T

−T
Ω(x,y− t)M1(t)dt+

ε
2
ea

′T cos
(a′

2

)

−
∫

T≤|t|≤T+1

[
Ω(1− x,y− t)+Ω(x,y− t)

]
max
(|M0(±T )|, |M1(±T )|)dt

≥
∫ +∞

−∞
Ω(1− x,y− t)(−CeaT )dt+

∫ +∞

−∞
Ω(x,y− t)(−CeaT )dt

−CeaT (1− x)−CeaT x+
ε
2
ea

′T cos
(a′

2

)

=−2CeaT (1− x)−2CeaT x+
ε
2
ea

′T cos
(a′

2

)

=−2CeaT +
ε
2
ea

′T cos
(a′

2

)

>CeaT

≥ log |F(z)| ,
where the strict inequality holds for all T ≥ T0(a′,ε), where T0(a′,ε) depends on
ε > 0 and on a′ ∈ (a,π). Thus UT − log |F| is positive on the horizontal boundary
pieces of DT . Consequently, UT − log |F | is positive on the boundary of DT .
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By Proposition C.0.1, the function UT is harmonic on DT and by assumption
log |F | is subharmonic on S. Applying the maximum principle for subharmonic
functions (Lemma B.0.1) to the functions V = log |F | and U =UT on the domain
DT (which has compact closure) we obtain that

χDT (z) log |F(z)| ≤ χDT (z)UT (z).

We now take the limit as T → ∞ on both sides of this inequality and we use the
LDCT to prove (C.0.6) with the extra term ε cosh(a′y)cos(a′(x− 1

2 )) on the right.
As ε > 0 was arbitrary, the conclusion follows by letting ε → 0. �

Corollary C.0.3. Let F be a bounded continuous function on the closed unit strip
S such that log |F | is subharmonic in S. Suppose that for some B0,B1 > 0 we have
|F(it)| ≤ B0 and |F(1+ it)| ≤ B1 for all t real. Then for any θ ∈ (0,1) we have

|F(θ)| ≤ B1−θ
0 Bθ

1 .

In particular, this is the case if F is continuous and bounded on S and analytic in S.

Proof. This is a straightforward consequence of Proposition C.0.2 with M0 = logB0,
M1 = logB1 and identity (C.0.2). Notice that condition (C.0.5) is obviously satisfied
in this case.

Corollary C.0.4. Let F be a continuous function on the closed unit strip S that
satisfies (C.0.5) and such that log |F | is subharmonic in S. Suppose that for some
positive constants M,B0,B1 we have |F(it)| ≤ B0(1+ |t|)M for all t real and also

|F(1+ it)| ≤ B1(1+ |t|)M for all t real. Then for any θ ∈ (0,1) we have

|F(θ)| ≤CM,θB
1−θ
0 Bθ

1 ,

where CM,θ is a positive constant that depends only on M and θ .

Obviously, the subharmonicity of log |F | is satisfied if F is analytic in S.



Appendix D
Density for Subadditive Operators

It is well known that it suffices to obtain quantitative estimates for linear operators
on a dense subspace of its domain. Something analogous is valid for subadditive
operators.

Theorem D.0.1. Suppose that T is a positive symmetric subadditive operator defined
on a dense subspace V of a quasi-Banach space X that takes values in the space of
measurable functions on a measure space Y . This means that T (ϕ) is real for all
ϕ ∈V,

T (−ϕ) = T (ϕ) ≥ 0 for all ϕ ∈V

and
T (ϕ +ψ) ≤ T (ϕ)+T (ψ) for all ϕ,ψ ∈V.

Let 0 < p < ∞. Suppose that for some C ∈ (0,∞) we are given the estimate
∥∥T (ϕ)∥∥Lp ≤C‖ϕ‖ for all ϕ ∈V.

Then there is a unique positive subadditive operator T defined on X such that T
coincides with T on V and satisfies

∥∥T ( f )∥∥Lp ≤C‖ f‖
for all f ∈ X.

Proof. Given f ∈ X , let ϕn be a Cauchy sequence converging to f in X . Then

T (ϕn)−T (ϕm) ≤ T (ϕn −ϕm)

and likewise
T (ϕm)−T (ϕn) ≤ T (ϕm −ϕn) = T (ϕn −ϕm).

It follows that ∣∣T (ϕn)−T (ϕm)
∣∣≤ T (ϕn −ϕm)

and consequently
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384 Appendix D Density for Subadditive Operators

∥∥T (ϕn)−T (ϕm)
∥∥
Lp ≤ ∥∥T (ϕn −ϕm)

∥∥
Lp ≤C‖ϕn −ϕm‖ ,

which indicates that the sequence {T (ϕn)}n is Cauchy in Lp(Y ) and thus it con-
verges to an element which we call T ( f ). We note that the definition of T ( f ) does
not depend on ϕn. Indeed, if ψn is another sequence from V that converges to f in
X , then the preceding argument gives

∥∥T (ϕn)−T (ψn)
∥∥
Lp ≤C‖ϕn −ψn‖ → 0;

thus the sequences {T (ϕn)}n and {T (ψn)}n tend to the same limit in Lp. Note that
T ( f ) is positive and symmetric since it is the Lp limit of positive and symmetric
operators. Moreover, T ( f ) is subadditive as it is a limit of subadditive operators.
Finally, T is an extension of T as it coincides with T on V , for given ϕ ∈V we take
the constant sequence in V converging to itself.

We need to show that T ( f ) is bounded. Given f pick ϕn → f in X and write

∥∥T ( f )∥∥min(1,p)
Lp ≤ ∥∥T ( f )−T (ϕn)

∥∥min(1,p)
Lp +

∥∥T (ϕn)
∥∥min(1,p)
Lp

≤ ∥∥T ( f )−T (ϕn)
∥∥min(1,p)
Lp +Cmin(1,p)∥∥ϕn

∥∥min(1,p)
,

so letting n → ∞ we obtain that
∥∥T ( f )∥∥Lp ≤C‖ f‖

as ϕn → f in X and T ( f )−T (ϕn) → 0 in Lp.

Note: The same argument works if the range is Lp,∞ equipped with a norm
under which it is q-normable for some q. For instance, Lp,∞ is normable if p > 1,
p-normable if p < 1, and (1− ε)-normable if p= 1 (0 < ε < 1).



Appendix E
Transposes and Adjoints of Linear Operators

The notion of the transpose of a linear operator is compatible with that of the trans-
pose of a matrix. The transpose At of an n×n matrix A has the fundamental property

x ·Ay= Atx · y,
where x,y are column vectors in Rn and x ·y is the usual inner product on Rn. Replac-
ing the inner product by an integral and x,y by functions essentially yields the def-
inition of the transpose of a linear operator. Let 1 ≤ p,q ≤ ∞. For a bounded linear
operator T from Lp(X ,μ) to Lq(Y,ν) we define the transpose of T as the unique
linear operator Tt that satisfies

〈
T ( f ),g

〉
=
∫

Y
T ( f )gdν =

∫

X
f T t(g)dμ =

〈
f ,Tt(g)

〉

for all f ∈ Lp(X ,μ) and all g ∈ Lq
′
(Y,ν). We notice that the real inner product

( f ,g) �→ 〈 f ,g〉 also coincides with the action of the distribution f on the function g
(if g is a Schwartz function) or vice versa.

Looking at matrices again, we notice that the complex inner product (z,w) �→ z ·w
satisfies the identity

z ·Aw= A∗z ·w,

where A∗ is the conjugate transpose of A, i.e., the matrix whose coefficients are
the complex conjugates of the coefficients of At . Analogously, for f ,g measurable
functions on Rn, we consider the complex inner product

( f ,g) �→
∫

Rn
f (x)g(x)dx,

whenever the integral converges absolutely.
Let 1 ≤ p,q ≤ ∞. For a bounded linear operator T from Lp(X ,μ) to Lq(Y,ν) we

define the adjoint operator T ∗ of T as the unique linear operator that satisfies
∫

Y
T ( f )gdν =

∫

X
f T ∗(g)dμ for all f ∈ Lp(X ,μ),g ∈ Lq

′
(Y,ν).
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Examples.
(a) If T is an integral operator of the form

T ( f )(x) =
∫

X
K(x,y) f (y)dμ(y),

then T ∗ and Tt are also integral operators with kernels K∗(x,y) = K(y,x) and
Kt(x,y) = K(y,x), respectively.

(b) If T ( f ) = Tm( f ) = ( f̂ m)∨ , then Tt
m = Tm̃. This was essentially shown in the

proof of Proposition 2.8.6. We also have T ∗
m = Tm. To verify this for f ,g in S (Rn)

we write
∫

Rn
f T ∗(g)dx =

∫

Rn
T ( f ) gdx

=
∫

Rn

̂T ( f ) ĝdξ

=
∫

Rn
f̂ m ĝdξ

=
∫

Rn
f (mĝ)∨ dx .

Consequently, if m(ξ ) is real-valued, then Tm is self-adjoint (i.e., Tm = T ∗
m) while

if m(ξ ) is even, then Tm is self-transpose (i.e., Tm = Tt
m).



Appendix F
Faà di Bruno Formula

This formula provides an identity for a high-order derivative of the composition of
two functions.

Suppose that f ∈ C N is defined on an open subset U of the line and takes values
in another open subset V of R. Let g ∈ C N be complex-valued function defined on
V . Let N be a positive integer. Then for x ∈U we have

(g◦ f )(N)(x)
N!

= ∑
(m1,...,mN)

g(m1+···+mN)( f (x))

(
1
1! f

(1)(x)
)m1

m1!
· · ·
(

1
N! f

(N)(x)
)mN

mN!

where the sum is taken over all decompositions of N = m1 ·1+ · · ·+mN ·N, where
mj are nonnegative integers. Here f ( j) indicates the jth derivative of f . For a proof
of this we refer to [54].

The higher-dimensional extension of this formula is a bit more involved. Suppose
that F : U →V, where U is an open subset of Rn and V is an open subset of R. Let
g be complex-valued function defined onV. Suppose that both functions are of class
C N , N ∈ Z+. Then for any multi-index α with 1 ≤ |α| ≤ N and all x ∈U one has

∂ α(g◦F)(x)
α!

= ∑
F

g(m1+···+mk)(F(x))

(
1

β1! ∂ β1F(x)
)m1

m1!
· · ·
(

1
βk! ∂ βkF(x)

)mk

mk!
,

where the sum is taken over the following finite set:

F =
{
(m1, . . . ,mk;β1, . . . ,βk) ∈ (Z+ ∪{0})k × ((Z+ ∪{0})n)k : k = |α|

such that there is ans ∈ Z+ with 1 ≤ s ≤ k so that

mi = 0 and βi = 0 for all i with 1 ≤ i ≤ k− s

and mi > 0 for all i with k− s+1 ≤ i ≤ k

and 0 ≺ βk−s+1 ≺ ·· · ≺ βk, 1 ≤
k

∑
i=1

mi ≤ k,
k

∑
i=1

miβi = α
}

.
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We explain the meaning of the ordering ≺ on multi-indices. We say that two
multi-indices α = (α1, . . . ,αn) and β = (β1, . . . ,βn) satisfy α ≺ β if and only if

(i) |α| < |β | ; or

(ii) |α| = |β | and α1 < β1; or

(iii) |α| = |β | and there is a k such that αi = βi when i ≤ k while αk+1 < βk+1.

This version of the multivariate version of the Faà di Bruno formula can be found
in [16, Corollary 2.10].



Appendix G
Besicovitch Covering Lemma

Lemma G.0.1. Let K be a bounded set in Rn and suppose that for every x ∈K there
is an open cube Qx centered at x with sides parallel to the axes. Then there is an
m ∈ Z+ ∪{∞} and there exists a sequence of points {x j}mj=1 in K such that

K �
m⋃
j=1

Qxj (G.0.1)

and for all y ∈ Rn one has
m

∑
j=1

χQx j
(y) ≤ 4n . (G.0.2)

Proof. Let s0 = sup{�(Qx) : x ∈ K}. If s0 = ∞, then there exists x1 ∈ K such that
�(Qx1) > 4L, where [−L,L]n contains K. Then K is contained in Qx1 and the state-
ment of the lemma is valid with m= 1.

Suppose now that s0 < ∞. Select x1 ∈ K such that �(Qx1) > s0/2. Then define

K1 = K \Qx1 , s1 = sup{�(Qx) : x ∈ K1} ,

and select x2 ∈ K1 such that �(Qx2) > s1/2. Next define

K2 = K \ (Qx1 ∪Qx2) , s2 = sup{�(Qx) : x ∈ K2} ,

and select x3 ∈ K2 such that �(Qx3) > s2/2. Continue until the first integer m is
found such that Km is an empty set. If no such integer exists, continue this process
indefinitely and set m= ∞.

We claim that for all i �= j we have 1
3Qxi ∩ 1

3Qxj = /0. Indeed, suppose that i > j.
Then xi ∈Ki−1 =K \(Qx1 ∪·· ·∪Qxi−1); thus xi /∈Qxj . Also xi ∈Ki−1 �Kj−1, which

implies that �(Qxi) ≤ s j−1 < 2�(Qxj). Since xi /∈ Qxj and �(Qxj) > 1
2�(Qxi), it easily

follows that 1
3Qxi ∩ 1

3Qxj = /0.
Next we claim that �(Qxj) → 0 as j → ∞. Indeed, if this was not the case, then

there would be an ε0 > 0 and a subsequence { jr}∞
r=1 of the positive integers such
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that �(Qxjr ) ≥ ε0 for all r = 1,2, . . . . The cubes 1
3Qxjr , r = 1,2, . . . , are infinitely

many and disjoint. But all of these cubes are contained in a bounded set, as their
centers lie in K (which is bounded) and their side lengths are at most s0 < ∞, and
this is a contradiction. This shows that �(Qxj) → 0 and also shows that s j → 0 as
j → ∞, since s j < 2�(Qxj+1) for all j.

We now prove (G.0.1). If m< ∞, then Km = /0 and therefore K �⋃m
j=1Qxj . If m=

∞, then there is an infinite number of selected cubes Qxj . As shown, the sequence of
their lengths converges to zero. If there exists a y∈K\⋃∞

j=1Qxj , this y would belong
to all Kj, j = 1,2, . . . , and then s j ≥ �(Qy) for all j. But as s j → 0, then it must be
that �(Qy) = 0, which would force the open cube Qy to be empty, a contradiction.
Thus (G.0.1) holds.

We now prove (G.0.2) via a general argument concerning a sequence of open
cubes Qxi , i= 1,2, . . . , satisfying two properties (valid in our setting):

P1 j < i =⇒ �(Qxi) < 2�(Qxj).
P2 If j < i, then xi (the center of Qxi ) is not contained in Qxj .

We claim that under properties P1 and P2, no point in Rn belongs to more than 4n

of these cubes. This certainly implies (G.0.2).
To prove this claim we argue by contradiction. Suppose that some point in Rn

belongs to more than 4n of the cubes Qxi . By translating all the cubes we may assume
that this point is the origin. Extracting from the sequence Qx1 ,Qx2 , . . . those cubes
which contain the origin and renumbering the remaining, we may assume that

0 ∈
4n+1⋂
i=1

Qxi .

We now write Rn as a union of 2n higher-dimensional closed quadrants each char-
acterized by the signs of the coordinates of the points it contains. One of these
quadrants must contain more than (4n+ 1)/2n of the x1, . . . ,x4n+1. By a change of
notation we may assume that the quadrant E = [0,∞)×·· ·× [0,∞) that contains at
least 2n+1 of the xi. We now renumber the Qxi whose centers belong to E in such
a way so that P1 and P2 are preserved; then we may suppose that

0 ∈
2n+1⋂
i=1

Qxi , x1, . . . ,x2n+1 ∈ E.

In the sequel we use the notation |z|�∞ = sup1≤i≤n |zi| for points z = (z1, . . . ,zn) in

Rn. For simplicity, we also denote by �i = �(Qxi)/2 half the side length of Qxi . Then
the cube Qxi equals the set {y ∈ Rn : |y− xi|�∞ < �i}.

Next, we prove the following facts. All indices i, j below lie in {2,3, . . . ,2n+1}.

(A) E ∩ [0, �1)n is contained in Qx1 .

Indeed, as 0 ∈ Qx1 , it follows that |x1|�∞ < �1. Thus, if y ∈ E ∩ [0, �1)n, then
|y1|�∞ < �1 and as all coordinates of y and x1 are nonnegative, it follows that
|y− x1|�∞ < �1, i.e., y lies in Qx1 .
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(B) If 2 ≤ i ≤ 2n+1, then �i > �1.

Since xi does not belong to Qx1 by property P2 and xi ∈ E, it follows from fact
(A) that xi /∈ [0, �1)n. But 0 ∈ Qxi and this gives �1 ≤ |xi|�∞ < �i.

(C) If 2 ≤ i ≤ 2n+1, then xi ∈ [0,2�1)n \ [0, �1)n.

The fact that |xi|�∞ < �i < 2�1 implies that xi ∈ (−2�1,2�1)n but as xi ∈ E
we have xi ∈ [0,2�1)n. Also in (B) it was proved that �i > �1 which implies
xi /∈ (−�1, �1)n thus xi /∈ [0, �1)n.

(D) Let R1, . . . ,R2n−1 be disjoint cubes of length �1 obtained by bisecting all of the
sides of [0,2�1)n and ignoring the cube [0, �1)n. Then there exist indices i, j such
that 1 < j < i ≤ 2n+1 and such that xi,x j belong to the same cube Rk.

We subdivide the cube [0,2�1)n into 2n disjoint subcubes by bisecting all of its
sides. Removing the cube [0, �1)n we are left with 2n − 1 subcubes of [0,2�1)n

each of length �1. These cubes are named R1, . . . ,R2n−1 and each one of them
has the form [a1,b1)×·· ·× [an,bn), where [ak,bk) ∈ {[0, �1), [�1,2�1)} but not
all ak = 0. A point belongs to one Rk if and only if all of its coordinates are in
[0,2�1) and at least one of them is in [�1,2�1). Fact (C) gives that the centers
x2,x3, . . . ,x2n+1 lie in the union of Rk. By the pigeonhole principle, one Rk must
contain at least two points among the x2,x3, . . . ,x2n+1. Thus there exist i, j with
1 < j < i ≤ 2n+1 such that xi,x j belong to the same Rk.

(E) If 1< j< i≤ 2n+1 and xi,x j ∈ Rk (for the same k), then Rk is contained in Qxj .

Suppose that y ∈ Rk. Then for each κ , the κth coordinate of both y and x j lie
in the same interval [0, �1) or [�1,2�1). This implies that |y− x j|�∞ < �1 < � j,
where the last inequality follows by part (B). Thus y lies in Qxj .

Having established facts (A)–(E), we now arrive at a contradiction by noting that
(E) yields that xi ∈ Qxj which refutes P2. �



Glossary

LMCT Lebesgue monotone convergence theorem

LDCT Lebesgue dominated convergence theorem

A � B A is a subset of B (also denoted by A ⊆ B)

A � B A is a proper subset of B

A ⊃ B B is a proper subset of A

Ac the complement of a set A

χE the characteristic function of the set E

Df the distribution function of a function f

fn ↑ f fn increases monotonically to a function f

Z the set of all integers

Z+ the set of all positive integers {1,2,3, . . .}
Zn the n-fold product of the integers

R the set of real numbers

R+ the set of positive real numbers

Rn the Euclidean n-space

Q the set of rationals

C the set of complex numbers

S the unit strip {z ∈ C : 0 < Rez < 1}
|x|

√
|x1|2 + · · ·+ |xn|2 when x= (x1, . . . ,xn) ∈ Rn

Sn−1 the unit sphere {x ∈ Rn : |x| = 1}
e j the vector (0, . . . ,0,1,0, . . . ,0) with 1 in the jth entry and 0 elsewhere

log t the logarithm with base e of t > 0

[t] the largest integer less than or equal to a real number t
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[[t]] the largest integer strictly less than a real number t

x · y the inner product ∑n
j=1 x jy j when x= (x1, . . . ,xn), y= (y1, . . . ,yn)

B(x,R) the ball of radius R centered at x in Rn

ωn−1 the surface area of the unit sphere Sn−1

vn the volume of the unit ball {x ∈ Rn : |x| < 1}
|A| the Lebesgue measure of the set A ⊆ Rn

dx Lebesgue measure

fB the average 1
|B|
∫
B f (x)dx of f over the set B

〈
f ,g
〉

the real inner product
∫
Rn f (x)g(x)dx〈

u, f
〉

the action of a distribution u on a function f

p′ the number p/(p−1), whenever 1 < p < ∞
1′ the number ∞
∞′ the number 1

f = O(g) means | f (x)| ≤ M|g(x)| for some M for x near x0

f = o(g) means | f (x)| |g(x)|−1 → 0 as x → x0

At the transpose of the matrix A

A∗ the conjugate transpose of a complex matrix A

A−1 the inverse of the matrix A

O(n) the space of real matrices satisfying A−1 = At (orthogonal matrices)

‖T‖X→Y the norm of the (bounded) operator T : X → Y

A ≈ B means that there exists a c > 0 such that c−1 ≤ B
A ≤ c

|α| indicates the size |α1|+ · · ·+ |αn| of a multi-index α = (α1, . . . ,αn)

∂m
j f the mth partial derivative of f (x1, . . . ,xn) with respect to x j

∂ α f ∂ α1
1 · · ·∂ αn

n f

C k the space of functions f with ∂ α f continuous for all |α| ≤ k

C ∞ the space of smooth functions
⋂∞

k=1C
k

C ∞
0 the space of smooth functions with compact support

C0 the space of continuous functions with compact support

C00 the space of continuous functions that tend to zero at infinity

S the space of Schwartz functions

S0 the space of Schwartz functions ϕ with the property
∫
Rn xγ ϕ(x)dx=0

for all multi-indices γ .

S ′(Rn) the space of tempered distributions on Rn

�(Q) the side length of a cube Q in Rn
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∂Q the boundary of a cube Q in Rn

Lp(X ,μ) the Lebesgue space over the measure space (X ,μ)
Lp(Rn) the space Lp(Rn, | · |), 0 < p ≤ ∞
Lp,∞(X ,μ) the weak Lp space over the measure space (X ,μ)
L1

loc(R
n) the space of functions that lie in L1(K) for any compact set K in Rn

|μ | the variation (measure) of a signed Borel measure μ on Rn

‖μ‖ the total variation of a signed Borel measure μ on Rn, i.e.,
∫
Rn d|μ |.

M (Rn) the space of all signed Borel measures on Rn with finite total varia-
tion.

Mp(Rn) the space of Lp Fourier multipliers, 1 < p < ∞
M the centered Hardy–Littlewood maximal operator with respect

to balls

M the uncentered Hardy–Littlewood maximal operator with respect to
balls

Mc the centered Hardy–Littlewood maximal operator with respect to
cubes

Mc the uncentered Hardy–Littlewood maximal operator with respect to
cubes

Mμ the centered maximal operator with respect to a measure μ
Mμ the uncentered maximal operator with respect to a measure μ
Ms the strong maximal operator

Md the dyadic maximal operator

M#
c the sharp maximal operator

M#
d the dyadic sharp maximal operator
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86. Riesz, Marcel, L’ intégrale de Riemann–Liouville et le problème de Cauchy. (French) Acta

Math. 81 (1949), 1–222.
87. Rosenblum, Marvin, Summability of Fourier series in Lp(dμ). Trans. Amer. Math. Soc. 105

(1962), 32–42.
88. Sawano, Yoshihiro, Theory of Besov spaces. Developments in Mathematics, 56. Springer,

Singapore, 2018. xxiii+945 pp.
89. Schmeisser, Hans-Jürgen; Triebel, Hans, Topics in Fourier analysis and function spaces. A

Wiley-Interscience Publication. John Wiley & Sons, Ltd., Chichester, 1987. 300 pp.



References 401
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Birkhäuser/Springer, Cham, [2020], ©2020. 160 pp.

113. Uchiyama, Akihito, Hardy spaces on the Euclidean space. With a foreword by Nobuhiko
Fujii, Akihiko Miyachi and Kozo Yabuta and a personal recollection of Uchiyama by Peter
W. Jones. Springer Monographs in Mathematics. Springer-Verlag, Tokyo, 2001. xiv+305 pp.



402 References

114. van der Corput, J. G., Zahlentheoretische Abschätzungen. [German] Math. Ann. 84 (1921),
no. 1–2, 53–79.

115. Volberg, Alexander, Calderón-Zygmund capacities and operators on nonhomogeneous
spaces. CBMS Regional Conference Series in Mathematics, 100. Published for the Confer-
ence Board of the Mathematical Sciences, Washington, DC; by the American Mathematical
Society, Providence, RI, 2003. iv+167 pp.

116. Weisz, Ferenc, Summability of multi-dimensional Fourier series and Hardy spaces. Mathe-
matics and its Applications, 541. Kluwer Academic Publishers, Dordrecht, 2002. xvi+332
pp.

117. Weyl, H., Bemerkungen zum Begriff der Differentialquotienten gebrochener Ordnung. Viertel
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BMO, 247
dyadic, 263
properties of, 249

H1, 285, 311
atomic decomposition of, 311, 316

Hp atom, 289
L∞, 2
Lp, 2
Lp Fourier multiplier, 207
σ -finite measure space, 1

A
adjacent dyadic cubes, 303
adjoint of a linear operator, 385
adjoint operator, 111
admissible growth, 222
affinely independent, 163
analytic family of operators, 222
ancestor of a dyadic cube, 260
anti-self-adjoint operator, 111
A1 condition, 337
Ap condition, 335

necessity of, 362
approximate identity, 45
associative property of convolution, 32
atom in Hp, 289
atomic decomposition of H1, 311, 316
average of a function, 247

B
Besicovitch covering lemma, 389
Bessel potential, 201, 206

one-dimensional, 207
Borel measure, 1, 83, 285, 329
Borel sets, 1
Borel–Cantelli lemma, 82

bounded mean oscillation, 247
dyadic, 263

C
Calderón–Torchinsky multiplier theorem,

236
Calderón–Zygmund decomposition, 128

on H1, 317
on Lq, 132
weighted, 368
with bounded overlap, 133

cancellation condition
for a kernel, 120

centered Hardy–Littlewood maximal func-
tion, 22

characteristic constant of a weight
A1, 337
Ap, 335

characterization
of A1 weights, 357

Chebyshev’s inequality, 12
class of A1 weights, 337
class of Ap weights, 335
commutative property of convolution, 32
complete measure space, 1
completeness of Lp, 0 < p < ∞, 6
conjugate harmonic, 140
conjugate Poisson kernel, 140, 144
continuous Fejér kernel, 49
continuously differentiable function

of order N, 37
convex function, 9
convolution, 32

of a function with a tempered distribu-
tion, 87

Cotlar’s inequality, 145
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simpler form, 149
counting measure, 8
covering lemma, 24, 329, 389

D
derivative

of a distribution, 85
of a function (partial), 37

descendant of a dyadic cube, 260
difference operator, 200
dilation

of a function, 86
of a tempered distribution, 86, 288

dilation invariance of Hp, 288
Dirac mass, 83
directional Hilbert transform, 137
distribution

homogeneous, 89
distributional derivative, 84
distributional inequality

for the sharp maximal function, 268
distribution function, 11
doubling constant, 340
doubling measure, 340
dual exponent, 2
duality H1-BMO, 325
dual weight, 336
dyadic average operator, 266
dyadic bounded mean oscillation, 263
dyadic child, 260
dyadic cube, 128, 260
dyadic decomposition, 188
dyadic John–Nirenberg theorem, 265
dyadic maximal function, 261

sharp, 267
dyadic sharp maximal function, 267

E
essential infimum, 336
essentially bounded function, 2
exponential integrability, 257, 260, 265
exponentially integrable function, 254

F
factorization of Ap weights, 349
Fatou’s lemma, 5

for weak Lp spaces, 15
Fefferman–Stein inequality, 330
Fefferman–Stein vector-valued maximal

function inequality, 169
Fejér kernel, 49

continuous, 49
finitely simple function, 2
Fourier coefficient, 51

Fourier inversion, 56
for distributions, 86
on L2, 64

Fourier transform
of a Schwartz function, 51
on L1 +L2, 66
on L2, 62
properties of, 53, 62, 63

fractional integration by parts, 206, 220
fractional integration theorem, 197
fractional maximal function, 200
Fubini’s theorem, 7

G
gamma function, 202
generalized functions, 82
generalized Lebesgue dominated conver-

gence theorem, 6
good lambda inequality

for the sharp maximal function, 268
gradient, 37
grand maximal function, 298

H
H1-BMO duality, 325
Hölder’s inequality, 2

for weak Lp spaces, 15
Hörmander multiplier theorem, 212
Hörmander’s integral smoothness condi-

tion, 120
Hardy space, 284
Hardy space characterizations, 298
Hardy–Littlewood maximal function

centered, 22
uncentered, 23

Hardy–Littlewood–Sobolev theorem, 197
harmonic polynomial, 185
Hausdorff–Young inequality, 74
Hilbert transform, 107

maximal, 143
smoothly truncated, 144
truncated, 107, 109, 142

Hilbert transform identity, 143
homogeneous distribution, 89

I
infinitely differentiable function, 37
inhomogeneous singular integral, 120
inner product

complex, 385
integrable function, 2
integration by parts

fractional, 206
for Sobolev spaces, 220
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interpolation
between Sobolev spaces, 229
Marcinkiewicz theorem, 16

vector-valued, 21
of analytic families of operators, 222
Riesz–Thorin, 69
using BMO, 273
using BMOd , 275

inverse Fourier transform, 56

J
Jensen’s inequality, 9
John–Nirenberg theorem, 254
Jumping hat identity, 56, 64

K
Kato–Ponce inequality, 229

L
Laplace transform, 69
Laplace’s equation, 185
Laplacian, 118, 195

powers of, 195
Lebesgue differentiation theorem, 30

one dimensional, 30
Lebesgue dominated convergence theorem,

6
Lebesgue measure, 7
Lebesgue monotone convergence theorem,

5
for weak Lp spaces, 14

Lebesgue points, 29
Lebesgue set, 29
Leibniz rule, 38

for distributions, 92
linear functional, 82
linear operator, 16
Lipschitz condition, 122, 148
Littlewood–Paley operator, 172, 322

sharp cutoff, 187
Littlewood–Paley square function, 172
Littlewood–Paley theorem, 172, 322
locally integrable functions, 13

M
Marcinkiewicz function, 171
Marcinkiewicz interpolation theorem, 16
Marcinkiewicz multiplier theorem, 240
martingale maximal function, 266
maximal function

auxiliary M∗∗
b , 298

centered
with respect to cubes, 27

dyadic, 261

dyadic sharp, 267
fractional, 200
grand, 298, 312
Hardy–Littlewood centered, 22
Hardy–Littlewood uncentered, 23
nontangential, 283
sharp, 266
sharp with respect to balls, 271
uncentered

with respect to cubes, 26
maximal function associated with a mea-

sure, 345
maximal Hilbert transform, 143, 147
maximal Riesz transform, 147
maximal singular integral, 113, 149
maximal singular integral operator, 145
maximal singular integrals

weighted bounds, 368
mean of a function, 247
mean oscillation, 247
Mikhlin multiplier theorem, 209
Minkowski convolution inequality, 34
Minkowski inequality, 4
Minkowski integral inequality, 7
Muckenhoupt characteristic constant

of an A1 weight, 337
of an Ap weight, 335

multi-index, 37
multiplier theorem

of Calderón and Torchinsky, 236
of Hörmander, 212
of Marcinkiewicz, 240
of Mikhlin, 209

N
n-simplex, 163
necessity of Ap condition, 362
nonsmooth Littlewood–Paley theorem, 188
nontangential maximal function, 283
null set, 1

O
Operator

of weak type (p, p), 16
Oscillation of a function, 77, 247

P
Parseval’s identity, 56, 64
partial derivative, 37
partition of unity, 41, 307
Plancherel’s identity, 64
Poincaré inequality, 41
Poisson kernel, 45, 59, 139

conjugate, 140
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polarization, 64
polynomial

harmonic, 185
positive Borel measure, 1, 329
potential

Bessel Jz, 201
Riesz Is, 196

power weights, 343
powers of Laplacian, 195
principal value integral, 107
product of a function and a tempered distri-

bution, 87

Q
quasi-normed space, 12, 14
quasi-subadditive operator, 16
quasi-subadditivity, 8

R
radial function, 54
radially decreasing function, 76
reflection, 179

of a function, 53
of a tempered distribution, 86

regular measure, 329
reverse-Hölder property, 354
reverse wea-type (1,1) inequality

for the Hardy–Littlewood maximal oper-
ator, 355

Riemann–Lebesgue lemma, 57
Riesz potential, 271
Riesz potential operator Is, 196
Riesz representation theorem, 7
Riesz transform, 113, 116

truncated, 144
Riesz–Thorin interpolation theorem, 69

S
Schur’s test, 74
Schwartz function, 42
Schwartz seminorm, 42
self-adjoint operator, 386
self-transpose operator, 386
semigroup property, 195
sharp maximal function, 266
sharp maximal function with respect to

balls, 271
simple function, 2
simplex, 163
singular integral, 319
size condition

for a kernel, 119
smooth function, 37
smooth function with compact support, 37

smoothly truncated Hilbert transform, 144
smoothly truncated maximal singular inte-

gral, 149
smoothly truncated singular integral, 149
smoothness condition

for a kernel, 119
Sobolev embedding theorem, 218
Sobolev space, 214

of product type, 240
space

BMO, 247
H1, 285, 311
L∞, 2
Lp, 2
Lp,∞, 12
CN , 37
C∞, 37
C∞

0 , 37
Mp(Rn), 96
dyadic BMO, 263

square function, 172
Stein’s interpolation theorem for analytic

families, 222
step function, 8
stopping-time argument, 128
strong maximal function, 171
subadditive operator, 16
subordination identity, 58
support of a distribution, 88

T
Taylor formula, 281
tempered distributions, 82
tempered function, 83

at infinity, 83
Tonelli’s theorem, 7
translation

of a function, 53
of a tempered distribution, 86, 288

translation invariance of Hp, 288
transpose of a linear operator, 367, 385
truncated Hilbert transform, 107, 109, 142
truncated Riesz transform, 144
truncated singular integral operator, 113,

145, 149

U
uncentered Hardy–Littlewood maximal

function, 23

V
Van der Corput lemma, 102
vanishing moment property, 289
vector-valued
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Hardy–Littlewood maximal inequality,
169, 171

vector-valued inequalities, 158, 159, 162,
322

vector-valued Marcinkiewicz interpolation,
21

vector-valued singular integral, 151

W
weak Lp, 12
weak type (1,1), 25
weak type (p, p), 16

weight, 332, 334
of class A1, 337
of class Ap, 335

weighted Lp space, 334
weighted bounds for maximal singular inte-

grals, 368
weighted inequalities, 332
Whitney cube, 306
Whitney decomposition, 304

Y
Young’s inequality, 72
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