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To my students and collaborators



Preface

I am truly indebted to the authors of the graduate texts that taught me mathematics
through the years. It has long been my wish to express this gratitude by writing a
graduate textbook that would benefit generations of younger mathematicians. This
was my intention when I started working on the volumes Classical Fourier Analysis
(GTM 249) and Modern Fourier Analysis (GTM 250). But for some reason the
end result was a bit different; these books grew too big and are mostly used today
as references. Nonetheless, I hope this monograph achieves my original goal. The
present text is designed to introduce Euclidean Fourier Analysis to students who have
successfully completed first-year graduate courses in Real Analysis and Complex
Variables. The material is self-contained, thoughtfully planned out, and presented
with the intention of building a solid foundation in Fourier Analysis within two
semesters. Each section is complemented by up to a dozen exercises that range
in difficulty from “straightforward” to “fairly challenging,” in no particular order.
Better comprehension is definitely achieved by solving these exercises, and readers
are urged to do so in order to test their understanding. I hope that students will profit
from this text, and instructors will enjoy teaching from it. Above all else, I hope this
book will inspire many people to study harmonic analysis.

This book is designed to be self-contained and for this reason, many peripheral
tools needed are included in Appendices A—G; however, in a few instances, results
from Appendices A-D of [31] are also used. While this book may omit some popular
themes, it is only intended to serve the purposes of a two-semester course and is
written to contain as many topics of general interest as possible. The outline below
and the interdependence chart will assist instructors in deciding which sections/
chapters they wish to omit and/or replace with topics of their own interest without
affecting the logical flow of the exposition.

Chapter 1 begins with a section containing a summary of important results on
measure theory and Lebesgue spaces, with selected proofs. This section could be
omitted as itis usually covered in courses on real variables. The remaining sections of
this chapter focus on weak L? spaces, interpolation, maximal functions, the Lebesgue
differentiation theorem, convolutions, smooth functions, and approximate identities.
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These fundamental notions build an arsenal of indispensable tools in analysis. I
suggest they be covered in detail.

The Fourier transform is introduced in the first section of Chapter 2 as an operator
on L' and in the third section as an operator on L2, after Fourier inversion is settled
in the second section. The Hausdorff—Young inequality is obtained by means of
complex interpolation. The latter topic is presented in the entire range of Lebesgue
spaces and is based on the results in Appendices B and C. Case II in the proof of
Theorem 2.4.1 is not needed in the sequel and could be excluded. Theorem 2.5.7 in
Section 2.5 could also be skipped. Sections 2.6 and 2.7 provide the necessary tools
from distribution theory that a harmonic analyst needs to know. These sections are
sine qua non to audiences without background on distributions. Section 2.8 introduces
I? Fourier multipliers and is important in this book. Finally, Section 2.9 is optional
and is recommended to audiences with interest in oscillatory integrals.

Chapter 3 is concerned with the theory of singular integrals. The theory is intu-
itively built starting with the one-dimensional Hilbert transform (first section). The
following two sections contain higher-dimensional analogs. The L? boundedness of
singular integrals is the topic of Section 3.4 and the L” boundedness is the topic of
Section 3.6, which is established in terms of the Calderén—Zygmund decomposition
(Section 3.5). The last section of this chapter deals with maximal singular integrals,
while Section 3.7 could be skipped if there is time pressure.

The first three sections of the fourth chapter are concerned with vector-valued
extensions of the I” boundedness results of singular integrals. To simplify the presen-
tation, vectors are restricted to the finite-dimensional case while analogous results
for infinite vectors are obtained by a limiting process. The results in these sections
are obtained as in the previous chapter, the only difference being that the functions
involved here take values in a finite-dimensional Banach space. These ideas find
fruitful applications in Littlewood—Paley theory, which is studied in Sections 4.4 and
4.5. The last section of this chapter (Section 4.6) contains product-type variants of
these results that are subsequently needed only in the proof of the Marcinkiewicz
multiplier theorem (Section 5.7).

Chapter 5 is concerned with fractional integration and differentiation. The first
two sections focus on the Riesz and Bessel potentials and some of their basic prop-
erties. A version of the Miklhin—-H6rmander multiplier theorem is the focus of
Section 5.3. A short exposition of Sobolev spaces, including the Sobolev embed-
ding theorem, is given in Section 5.4. Stein’s interpolation theorem for analytic
families (Section 5.5) furnishes an elegant way to obtain estimates for fractional
derivatives. The Calderén—Torchinsky multiplier theorem provides an extension of
Miklhin—H6rmander’s theorem and is presented in Section 5.6. The chapter ends
with the study of the Marcinkiewicz multiplier theorem (Section 5.7); this requires
the results of Section 4.6.

The space of functions of bounded mean oscillation (BMO) is studied in Chapter 6.
The most important theorem in this chapter is the John—-Nirenberg theorem, which
is proved in Section 6.2. A version of BMO called dyadic BMO is investigated in
Section 6.3. A useful tool in the study of BMO is the sharp maximal function, which
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is discussed in Section 6.4. This is used in interpolation via BMO, a topic examined
in the last section of this chapter (Section 6.5).

Chapter 7 focuses on Hardy spaces H”. The first section is concerned with the
interplay of smoothness and cancellation, which is explicitly manifested in many
estimates. Although emphasis is placed on the Hardy space H !, the basic definitions,
examples, and properties of Hardy spaces are discussed for all p > 0; these include
properties of the grand maximal function. An important topic discussed in this chapter
is the atomic decomposition of H' (Section 7.6). This is based on the Whitney
decomposition of open sets in R”, contained in the previous section. The action of
singular integrals on the Hardy space H! is examined in Section 7.7. The final topic
of this section is the duality between H' and BMO.

The final chapter of this book deals with A, weights. The appearance of the A,
condition is motivated in Sections 8.1 and 8.2. Basic properties of A, weights are
discussed in Section 8.3, while weighted L” estimates are obtained in Section 8.4.
Other topics studied in this chapter are factorization (Section 8.5), reverse Holder
property (Section 8.6), and weighted estimates for singular integrals (Section 8.7).

The following chart concisely displays the interdependence of the chapters:

Chapter 1

I
Chapter 2

I
Chapter 3

Chapter 4 Chapter 6 Chapter 8

I I
Chapter 5 Chapter 7

My intention is to maintain an errata website, which can be accessed via the link:
https://grafakos.missouri.edu

I am extremely thankful to all the people who have assisted me in the preparation
of this textbook. First, I would like to express my gratitude to Jan Bouwe van den
Berg, Georgios Dosidis, and Lenka Slavikova, who used a preliminary version of the
book in the classroom and provided me with valuable feedback.

Many thanks to Nathan Bushman, Aniruddha Deshmukh, Xinyu Gao, Luigi
Fontana, Steve Goldschmidt, Wyatt Gregory, Lixin He, Kristen Kaliski, Carlo
Morpurgo, Felipe Noguera Rodriguez, Aritro Pathak, Dani Rozenbroek, Daniel
Sinambela, Gregory Slease, Derek Sparrius, Arun Suresh, Konstantinos Tselios, and
James Warta for suggesting improvements to the exposition and content.

I am deeply indebted to John Lucas for the multitude of corrections he provided
me with. I must admit that I have never encountered a more careful reader in my
career. His feedback was significant and greatly improved this book. A very special


https://grafakos.missouri.edu
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acknowledgment goes to Sean Douglas who drew almost all the pictures in the text
and provided me with an abundance of corrections and suggestions. I am also very
thankful to Springer’s Mathematics executive editor Elizabeth Loew for her support
and assistance throughout the preparation of this book. Finally, I gratefully acknowl-
edge the support of the Simons Foundation Fellowship No. 819503 which provided
me with a teaching release during the academic year 2021-2022 and precious time
to work on the manuscript.

I wish to dedicate this book to all my graduate students and collaborators who
have enriched my life throughout the years.

Columbia, Missouri Loukas Grafakos
February 2024
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Chapter 1 )
Introductory Material i

1.1 A Review of Lebesgue Spaces

In this section we review some basic facts concerning the Lebesgue spaces L”. We
state a variety of results concerning these spaces but only provide proofs selectively,
as the material can be found in many textbooks on real variables

A measure space is a set X equipped with a c-algebra .# of subsets of X, called
measurable sets, and a function p from the measurable subsets to [0,ec], called a
positive measure, that satisfies 11 (0) =0 and

u( OBJ) = iu(Bj)
j=1 j=1

for any sequence B; of pairwise disjoint elements of .%. In this situation we refer
to the triple (X,.%, 1) as a measure space, although we often do not indicate the
dependence on the o-algebra .% if this is evident. Measurable sets of measure zero
are called null sets. Measure spaces X in this text are assumed to be complete, which
means that subsets of null sets in .% also belong to .%. A measure space X is called
o -finite if there is a sequence of sets X,, € .# with u(X,) < o such that

The Borel sets form the smallest o-algebra that contains the open sets in a topolog-
ical space. A positive Borel measure is a positive measure on the Borel sets.

A real-valued function f on a measure space (X, %, 1) is called measurable if
for all real numbers A we have {x € X : f(x) > A} € .Z. A characteristic func-
tion xp of a subset B of X is measurable if and only if B € .#. A complex-valued
function g is measurable if and only if both its real part Re g and its imaginary part
Img are measurable functions. In measure spaces we identify two functions that
are equal except on a set of measure zero; we indicate this fact by saying that the

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024 1
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2 1 Introductory Material

functions are equal a.e. A simple function is a finite linear combination of character-
istic functions of sets in .%; that is f = 21}/:1 cjxg;. ¢ €C,N€ Z7.If u(Bj) < oo
for all j, then f is called finitely simple. The sets B; € % can be chosen to be pair-
wise disjoint, in which case 21}7:1 cjxs; is the standard representation of f. Every
nonnegative measurable function is the pointwise limit of an increasing sequence of
simple functions; if the space is o-finite, these simple functions can be chosen to be
finitely simple.

Definition 1.1.1. For 0 < p < e, we define the L” norm (or quasi-norm if p < 1) of
a complex-valued function f on a measure space (X, ) by

Wl = ( [iran) = ( [iran) i

For p = oo this norm is defined by

HfHLw(X’“) :essg(up|f(x)\ =inf{a>0: u({xeX:[f(x)|>a})=0}. (1.1.2)

For any 0 < p < o we define L?(X, it) to be the space of all complex-valued mea-
surable functions f with || f||z» < eo. A function is called integrable if it lies in L',

The preceding definition implies that g ({x : |f(x)| > || fllz=}) = 0.

Definition 1.1.2. For any 1 < p < o we use the notation p’ = % to indicate the
dual exponent of p. Moreover, we set 1/ = co and o' = 1.

Note that the definition of the dual exponent implies that p” = p for all p € [1,00].

Theorem 1.1.3. (Holder’s inequality) Let f,g, fi,...,fm (m > 2) be nonzero
measurable functions on a measure space (X, L). Then
(@) If 1 < g < oo, then we have

178l < 11l el o (1.1.3)
O IFO<p1y...,pmyp <ooand 1/p=1/pi+---+1/pm, then
Hfl"'meLP = HfluLPl "'HmeLPm ‘ (1.1.4)

Thus fj € LPJ for all j=1,...,m implies that fi--- f,, € LP.
(c) Suppose that no f; is identically equal to zero a.e. and that p < oo. If equality

holds in (1.1.4) then (| fil/|1 £ill 7)™ = (|5l/ |l fell )™ a.e. for all pj, px < > and
|fil = |l fill= at almost all points for which fi - - - f,, is not zero, when p; = oo.

Proof. () If g = oo, restrict the integral of fg over the set {|f]| < || f]lz=} (as its com-

plement has measure zero) to obtain the conclusion. When g = 1 reverse the roles
/

of fand g. For 1 < g < o consider the function y/(r) = ét" + %b" —tbon [0,e0) for

some fixed b > 0. This function is decreasing on [0,59/4], increasing on [b9/4, e),
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and satisfies y(¢) = 0 if and only if # = b%/9. Thus y(¢) > 0. For b = lg()1/1lgll
the integral of y(|f(x)|/||f|lze) over X is nonnegative, yielding (1.1.3). Moreover,
equality holds in (1.1.3) if and only if (|f]/||f]/re)? = (|g\/|\g||Lq/)ql a.e.

(b) When m = 2 assume that max(pj, p2) < o; otherwise the assertion is straight-
forward. Using (1.1.3) with f = |fi|’, g = |f2|?, ¢ = p1/p, and ¢ = p2/p we
obtain (1.1.4) when m = 2. Additionally, a previous observation yields that equality
holds in this case if and only if (| £1|/[| /1]l )" = (I£2l/ |l /2]lr2)"* a.e. The case of
m > 3 follows by induction, by applying the case for m — 1 functions with exponents
1/g=1/p1+---+1/pm_1 and the case m =2 with exponents 1/p =1/q+1/pp
to the functions fi - -- f;,—1 and f;,, respectively.

(c) As p < oo there is at least one index p; < oo. Let us reindex the p; such that
pj<ooforl < j<xkandp;=cowhenj>Kk+1;note k> 1. We have

1 Fllp < W elly TT Mll= < TXIA s TT Miller - 1)
Jj=Kk+1 Jj=1 Jj=Kk+1

If equality holds in (1.1.4) then equality holds in the second inequality in (1.1.5), so
we must have

- iell o = [ allr - 1]

We may assume K > 2 as the assertion about the f; when p; < oo is straightforward
when Kk = 1. Fori € {2,...,k} set 1/q; = 1/p1 + 1/p; and notice that equality must
hold in the second inequality below (all norms are nonvanishing by assumption)

e
j=1

Lrx”

o S fill TT (17l
2

<J#FI<K

K
s <TT15ls-
j=

This reduces matters to the case of equality when m = 2, from which we obtain
(1Al AN = (£l £l ) ae. for all 1 < i < k by part (a). Now set

m

F=fi-fc and H= [] (FHlfll=);

Jj=Kk+1
then H is well defined as no f; vanishes identically. Since equality holds in (1.1.4),
then equality must also hold in the first inequality in (1.1.5); this gives ||FH|}, =
|F||¥, and as |H| < 1 a.e. it follows that |F|?(1 — |[H|?) = 0 a.e. Consequently on
the set {x € X : f1(x)- - fin(x) # 0} which is contained in {x € X : F(x) # 0}, we
must have |f;| = || fi||~ a.e. when i > x + 1 (that is, when p; = o). O

The assertion in (c) may fail if p = oo; indeed, the functions fi (x) = f3(x) = ¢ M
on Rsatisty || fifall= = 1= [[fille=[l2]|= but [fi(x)] < 1 = [ fil|= when x 7# 0.

Proposition 1.1.4. Let (X, 1) be a measure space. For any g, let 29 be a dense
subspace of L1(X, ). If 1 < p < oo and f € L? then

||f||Lp:sup{’/ngdu‘: ge 7" with ||g|,, = 1}. (1.1.6)
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Also, if (X, L) is a O-finite measure space, then for any f € L™ we have

71| - :sup{‘/xfgdu’: g€ 2" with ||g| 1 = 1}. (1.1.7)

Proof. Indeed, the direction > in (1.1.6) follows by Holder’s inequality. For the
converse direEtion, if f is not the zero function in L?, we denote its complex
conjugate by f. For 1 < p < e we choose

il
112!

and we note that ||g||,» = 1 and that for this choice of g the integral in (1.1.6) is
actually equal to || f||, ,- Then (1.1.6) is obtained by the density of 2" in LV

Notice that the direction > in (1.1.7) is immediate. For the converse direction,
let X = U;,— X, where X, is an increasing sequence of measurable subsets of X
with U (X,,) < e=. Given a nonzero function f in L= (X,u) and 0 < & < || f]|z=, the
set Bs = {|f| > ||fllz= — 0} has positive u measure (which could be infinite); then
0 < u(BsNXy) < oo for some m € Z* and we define

i %Bsﬂxm
‘fl “(B(S me)

recalling that | /| does not vanish on Bg. Notice that ||gs|/;1 = 1 and

85 =

1
forsau| =| [ resau] = ops [ = sl

We now find 25 € 2! such that Hh5 —g5HL1 < 6. Letting § — 0, we obtain the
direction <in (1.1.7). O

sup
llell 1 =1

Proposition 1.1.5. Let 0 < p < oo and f, g be functions in LP = LP (X, 1t).
(a) (Minkowski’s inequality) If 1 < p < oo, then

w S HfHLP+ HgHLP' (1.1.8)
(b) When 0 < p < 1 we have
el <27 (1 + lell ). (1.1.9)
(C) Forall 0 < p < oo we have
17+l < Al + Nl (1.1.10)

Proof. Part (a) is straightforward when p = <o and can be derived from Proposition
1.1.4 when 1 < p < oo, Part (b) is based on the inequalities (a + b)? < aP + bP and
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(A+B)» <2'7" (A? +B7), which are valid for a,b,A,B > 0 when 0 < p < 1; the
second inequality is a consequence of Holder’s inequality with exponents 1/p and
1/(1 — p) applied to the functions ¢ and y defined on X = {1,2} (equipped with
discrete measure) by (1) = @(2) =1 and w(1) = A, y(2) = B. Part (c) is contained
in (a) for p > 1 and uses (a+b)? < aP 4+ bP for p < 1. O

Additionally, | f||zr(x u) = [AIf e (x,u) @and || £]|px ) = O implies that f =0
(u-a.e.), and thus the L? spaces are normed linear spaces for 1 < p < oo and quasi-
normed linear spaces when p < 1. Moreover, these spaces are complete.

Theorem 1.1.6. (Fatou’s lemma) Let g, h, f,, n=1,2,..., be real-valued measur-

able functions on a measure space (X, [L).
(@) If fn > 0 for all n then

/nminffndyguminf/ fadu. (1.1.11)
X n—ee n—eo  Jy

(b) The conclusion in (1.1.11) also holds if f, > g a.e. for all n where [y, gd > —oo.
(c) Suppose that if f, < ha.e. foralln=1,2,... with [y hdl < +oo. Then

limsup [ fpdu < | limsupf,du. (1.1.12)
n—oo X X n—oo
Proof. The cases [y gdu =eoand [y hdp = —oo are trivial. So we may assume that

—eo< / gdu and / hdy < o,
b'¢ X
Then parts (b) and (c) follow by applying (a) to f, — g and h — f;,, respectively. [

Theorem 1.1.7. (Lebesgue monotone convergence theorem') Let f be a measur-
able function on a measure space (X, 1) and let {fy};_, be a sequence of real-
valued measurable functions that converges to f.

@IFOLfi<fr<f3<--- ae, then

/anduT/deu- (1.1.13)

(b) The conclusion in (1.1.13) holds if fi < fo < f3<--- a.e. and [y fidu > —oo.
©Iffizfrp>fz>-- ae and [y fidu < +oo, then

/andul./%fdu. (1.1.14)

Proof. Part (b) follows by applying part (a) to f, — fi when [y fidu < +oo; the
case [y f1dU = o is trivial. Likewise, part (c) follows by applying part (a) to f; — f,
when [y fidp > —eo, while (1.1.14) is immediate when [y fi du = —oo. a

! Often abbreviated as LMCT.
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Theorem 1.1.8. Let f, f,, n=1,2,..., be complex-valued measurable functions on
a measure space (X, L) such that f, — f a.e. and g, g,, n=1,2,..., are nonnegative
integrable functions on X.

(a) (Lebesgue dominated convergence theorem?) If | f,| < g a.e. for all n, then

lim | |f,— fldu =0. (1.1.15)
n—oo [y

(b) (Generalized dominated convergence theorem) If | f,| < g, for alln, g, — g a.e.
and [y gndp — [y gdp, then (1.1.15) holds.

Proof. To prove part (b) consider the sequence |f, — f| — g, which satisfies
Ifi —fl—gn < gae. As 0 < [y gdu < oo, applying part (c) of Fatou’s lemma we
obtain

1iIIlSllp ¥ |fn*f| 7gnd“ < Xlimsup(|fn7f| *gn)d.u = 7/ng.u' (1116)

n—oo n—oo

But as the limit of [y g, dpt exists, we have

timsup [ [f,— |~ gndp = limsup [ £~ fldu— [ gdu.
X X X

n—o0 n—oo
Adding [y gdu to both sides in (1.1.16) we obtain limsup,_,., [y | fn — fldu =0.0

Theorem 1.1.9. Let 0 < p < oo and let (X,1l) be a measure space. Every Cauchy
sequence in LP (X, lt) is convergent in LP and has a subsequence that converges a.e.

Proof. Let {f,};_; be a Cauchy sequence in L”(X,u). We can find a sequence

of natural numbers n; < ny < --- such that [|f,, , — fnkHan,in(l’p) < 2% for all k =
1,2,.... By the Lebesgue monotone convergence theorem the function

i k—1
G= 241 |f”j+1 7f”j} :,(122241 |f"_/+| 7f”j|
J= j=

lies in L? and thus it is finite a.e. This implies that the series defining G converges
a.e. and so there is a measurable function f on X such that

k—1
fnk *fnl = z(fl’l_,ur] *fnj) Hf*fm a.c.

Jj=1

as k — oo, But |f — fu, | < supy|fu, — fu,| < G, and as G € LP, we conclude that
f—fa, €LP, hence f € LP. Now |f,, — f| < G+ |f — fu,| € L?; thus the LDCT
yields || f,, — f|l» — 0. To complete the proof, given € > 0, find N such that for

- e
mn>N = anfme‘L“,i“( P < >

2 Often abbreviated as LDCT.
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Also, as || f,, — fllr — 0, we can find ko such that

i €
k2ko = |~ A" <5
We pick ki > ko such that n;; > N. Combining these implications, we obtain
in(1, ( in(1, £ €
n2N = fo=F15" " < U= Lo I 4 g, = FI5™ < 543
These facts show that f,, — f a.e. and that f, — fin L. (]
Theorem 1.1.10. (Riesz representation theorem) Let (X, L) be a measure space.

(a) Given a nonzero complex-valued bounded linear functional T on LP(X), where
1 < p < oo, there is a unique (a.e.) function h € L” such that

T(f) = / Fhdu  forall f € LP(X),
X
and moreover the norm of T on LP (X)) equals ||h||,
(b) The assertion in part () is also valid if p =1 and (X, L) is O-finite.

Theorem 1.1.11. Let (X, ) and (Y, V) be two G-finite measure spaces and let F be
a measurable function on X x Y, equipped with product measure.
(a) (Tonelli’s theorem) We have

/)((/Y|F(xa)’)dV()’))d.U(x)—/Y(/XF(x,y)|du(x))dv(y). (1.1.17)

(b) (Fubini’s theorem) If either expression in (1.1.17) is finite, then

/X(/yF(x,y)dv(y)>dH( / </F x,y)du(x )) v(y). (1.1.18)

Theorem 1.1.12. (Minkowski integral inequality) Let (X, 1) and (Y, V) be two o-
finite measure spaces and let 1 < p < oo. Then for every nonnegative measurable
Sunction F on the product space (X, L) x (Y, V) we have

[/(/F xy)dp(x > ] /{/F (5,37 dv(y ]dﬂ()

with a suitable modification when p = oo.

In this text, Lebesgue measure is denoted by dx, dy, etc. depending on the vari-
able of integration. Lebesgue measurable subsets of R" are simply called mea-
surable. The Lebesgue measure of a Lebesgue measurable subset E of the real
line is denoted by |[E| = [ 1dx. For a measurable subset £ of R”, LP(E) denotes
LP(E,| - |), i.e., the set E equipped with the restriction of the Lebesgue measure
on it. Subsets of R" are assumed to be equipped with Lebesgue measure, unless
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indicated otherwise. Finite linear combinations of characteristic functions of cubes
with sides parallel to the axes on R” are called step functions. It is known that step
functions are dense in L?(R") for every p < eo.

A natural measure on the space Z is counting measure v defined on subsets A of
Z by v(A) = cardinality of A. For 0 < p < oo, ¢P(Z) denotes the space L?(Z, V).

Example 1.1.13. The spaces L” ([0, 1]) decrease and the spaces ¢P(Z) increase as p
increases. Indeed for 0 < p < g < oo, by Holder’s inequality, we have

11
1AW o o.ayy < 101012~ | 1] ooy = 11l ooy
so L9([0,1]) is contained in L” ([0, 1]).
Now [{b(K) }il| 1oz = (Jz [b(K)[Pav)

==

— (Skez [b(K)[P) 7 hence

@3l = (3, o)’ < l®Yll e 1wl < kel

as clearly H{b(k)}kHéw < H{ba‘)}kHép(z)' This shows that ¢7(Z) embeds in ¢9(Z).

Exercises

1.1.1. Let @ : [0,0) — [0,0) be a continuous increasing function with @(0) =0
such that for some K > 0 and all ¢,5 € [0,o0) we have @(t +5) < K(P(t) + D(s))
(quasi-subadditivity). Let f, f,,n=1,2,..., be measurable functions on (X, i) that
satisfy f, — f a.e. and [y, @(|f|)du < =. Prove that

J@h=rdu—0 < [ @(n)du— [ o)

as n — oo. Apply this result to @(r) = |¢|? and @(¢) = |¢|P In([t] +1)9,0 < p,q < oo.
[Hint: Apply Theorem 1.1.8 (b) with g, = K(@(|f,]) + @(|f])).]

1.1.2. Suppose that 1 < p < e and f is a measurable function on a measure space
(X, ) such that fg lies in L' for any g € L”". Prove that f € LP. Derive the same
conclusion if p = oo and (X, i) is o-finite. [Hint: Show by contradiction that there
is a positive finite constant C such that || fg|[;1 < Cl|g]|,, forall g € L” . Then use
Proposition 1.1.4.]

1

1
1.1.3. Let 0 < pg < e=. Show that the function h(r) = |t 70 (1 +|log|t|[) 7 ! lies
in LP(R) if and only if p = po.

1.1.4. Let f;, 1 < j < n, be real-valued measurable functions on a measure space
(X, 1) and suppose that
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110l = 12l =+ = 1 fallp = | =0

LpP

for some 1 < p < o. Prove that fj =---=f, > 0ae.or fj =---= f;, <0 ae.
[Hint: Using the case of equality in Holder’s inequality, first show that if a; € R and

Ly el =122 a;

P thena; =aj; > 0foralli,jora; =aj; <0 forall i,j.]

1.1.5. (Jensen’s inequality) A differentiable real-valued function ¢ is called convex
on an open interval / if and only if the function lies above all of its tangents, i.e.,
(1) > @(to) + ¢’ (t0)(t —to) for all 1 € 1. Suppose that (X, it) is a measure space
with 0 < p(X) < e, g is a real-valued function on X whose range lies in an open
interval /, and ¢ is a convex function on /. Prove that

1 1
(P(MX)./ng,U) < ml/x(/)(g)dﬂ-
[Hint: Start with @(r) > @(o) + ¢’ (t0) (t — o) taking t = g(x) and fo = ﬁ Jxgdu.]

1.1.6. Let 0 < pg < p < p1 < oo and let % = % + % for some 0 € [0, 1]. Prove

1-6

¢]
1Al < 1o 11

[Hint: For p < e and 0 € (0, 1) use Holder’s inequality with exponents (157(()9),,’ g—}).]

1.1.7. Let (X, i) be a measure space with (X) < e. Show that for any measurable
function f on X we have

tim || £, = (1]l -

p—roo

[Hint: We may assume that f is nonzero and lies in L0 for some pg < oo. One
Po 1-20
direction is a consequence of the inequality || f||zr < || £l I /]|~ 7 - For 0 < 6 <

lf ||z use that
1
1Al = (I lle= = &) {1 f1 > (| fll=— 6}) 7
for the other inequality. ]

1.1.8. Let (X,u) be a measure space with 0 < p(X) < o and suppose f is
measurable function on X which satisfies 0 < || f|z=(x) < o°. Prove that

p+1 2
lim ||f| Lr+l1 _ HfHLm and lim ||f||L2/’

v == |f]

= [0l

Ly

1
[Hint: Show that both ratios lie between pt(X)™ 7| f|z» and || f]| =]
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1.1.9. Let g be a measurable function on a measure space (X, 1) that satisfies:

2
/ 1\gl i <1
gl<n » +g]

foralln=1,2,.... Prove that

2
1im/ L {y—y
n—>Jjgl>n  +|g|

1.1.10. For x,r > 0 let ¢(t,x) = tsin(x) 4 cos(x). Using that 1/x = [; e dr for
x > 0, show

t.

noo o ,—t/n _ -t
/ smxdx:/ e Mot 1/n)—e (p(t,n)d
1 0

/n X 2+1

Prove that e ™|¢(z,x)| < 2 for x,7 > 0 and conclude via the LDCT that
* sinx T
—dx=—.
/0 x )
1.1.11. Let f be a continuous and integrable function on [0, ). Show that

1
lim —
e—0 &

| e rean= o).

1.1.12. Let 0 < p < oo and let f be a measurable function on a measure space (X, ).
If

E(f)={xeX: [f(x)]>2,
show that

(1-27) Y 22 u(E( ) < £, <2 3 20 u(E( 1),
keZ

kel

1.1.13. Let f; be functions on L” (X, i) for some 0 < p < 1 and let s > 0. Show that
for any 0 < € < s we have

|55
=0

SN S e
R e

1.2 The Distribution Function and Weak L? Spaces

The spaces studied in this section provide an alternative way to quantitatively mea-
sure a function. A good tool to achieve this purpose is the distribution function.
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Definition 1.2.1. The distribution function of a measurable function f on a measure
space (X, u) is the function D defined on [0, ) as follows:

Dy(2) = p({x € X : |f(x)] > A}). (.21

As A increases the set in (1.2.1) decreases, so the distribution function Dy is
decreasing.

Example 1.2.2. In Figure 1.1 the

function f: [-=,0] — [0, 1] given by 4
f(x) = |sin(x)] is plotted on [—m,0]

and its distribution function

D¢(A) =m—2arcsin(A) ! Dy

is plotted on [0,1]. Notice that
Ds(0) = m is equal to the measure

of the support of f. Also note that g0 44 Ty function £ of Example 1.2.2 and its
max(f) =1 and Df(l) =0. distribution function Dy.

The distribution function D can be used to precisely evaluate the L” norm of a
function. The following proposition contains the relevant identity.

Proposition 1.2.3. Let (X, 1) be a o-finite measure space. For any increasing, con-
tinuously differentiable function @ on [0,0) with (0) = 0 and every measurable
Sunction f on X with @(|f|) integrable on X, we have

/X@(Ifl)du = /Ow @' (M)Ds(A)dA . (1.2.2)

Proof. As X is a o-finite measure space and ¢’ > 0, we can apply Tonelli’s theorem.
We have

/0 @' (A)Dys(A)dA :/0 (P/(l)/XX{x: F)>a) AU dA

el
= [ [ e drdu
= [ o(lre)) - p(0)du.
This proves (1.2.2) since ¢(0) = 0. O

Corollary 1.2.4. Given 0 < p < o and a measurable function f on a C-finite
measure space (X, L), we have

1112, =p/0 APIDf(A)dA. (1.2.3)
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Definition 1.2.5. Given a measurable function f on a measure space (X, ), we
define the weak L” (quasi)-norm of f as follows:

£l = Sup/lDf(l)fl”- (1.2.4)
A>0

For 0 < p < o, the space weak L” (X, it), denoted by L7 (X, 1), is defined as the set
of all u-measurable functions f such that || f||Lr= < eo. We also define L™= (X, 1) =
L=(X,u). The notation LP**(R") is reserved for L7 (R",|-|).

We now explain why || f||z»= is a quasi-norm.? First one notes that
|Flpe=0=u({xeX: |f(x)| >A}) =0V A>0=f=0 p-ae (1.2.5)
Also, we have
1 1
Drss(A) < Ds(3) +De(3) = Drss(A)? <cp[Dy(3)" +D4(5)"]

where ¢, = max(1,2!/P=1). This implies

1+l <265 (1 + el (126)

Combining (1.2.5) with (1.2.6) and the simple fact that for any ¢ € C we have
llc fllLre= = |||l fllLr=, we obtain that L7 (X, i) is a quasi-normed space.
The weak L? spaces are larger than the usual L? spaces. We have the following:

Proposition 1.2.6. For any 0 < p < e and any f in LP (X, 1) we have

1A llpe < 1]
Hence the embedding LP (X, ) € LP>=(X, 1) holds.

Proof. Using Chebyshev’s inequality:

MD/IS/ OO du < If|17
i {X1\.f(X)\>/l}| O du < £z

we obtain || f||zre= < || f]|zr- -

The inclusion L?  LP* is strict as the function h(x) = |x| /7 obviously does
not lie in L”(R") but belongs to L (R"). To see this, we note that

{xeR": |77 > 2} =|[{xeR": x| <A77} =[B(0,1)]A 7,

which implies that ||| = [B(0,1)|'/? < oo. Here B(0,1) = {x € R" : |x| < 1}.

3 A quasi-norm on a vector space Z is a nonnegative function || - ||z with the properties of a norm,
but with a relaxed triangle inequality ||z+2'||z < B(||z]|z+ ||||z), for some B> 1 and all z,Z' € Z.
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Remark 1.2.7. Note that for 0 < r < oo, ||| f|"||zr = || f]|}»r- One can verify that the
same property holds for the weak L? quasi-norm, i.e., ||| f|"||zr= = || f||] pree-

Definition 1.2.8. The space L} (R",|-|) of locally integrable functions is the set of

loc
all Lebesgue-measurable functions f on R” that satisfy

/K |f(x)]dx < oo (1.2.7)

for any compact subset K of R”.

Example 1.2.9. (a) L (R") is contained in L\, .(R") for 1 < p < oo (Theorem 1.1.3).
n 7;
(b) For 0 < p < 1, L?(R") \ L}, .(R") # 0; i.c., it contains |x|  # (log ﬁ) P X<

(c) There exist functions in L'(R") \ L] .(R"), such as |x| .
(d) The function ¢¢"' lies in L] (R") but not in L”(R") for any p > 0.

loc

Theorem 1.2.10. For a measurable function f on a o-finite measure space (X, L)
define

141
[ T ey AT
O<U(E)<e E
Let 1 < p <oo. Then |||- |||Lp= is a norm on LP* that satisfies

171

p
e < WAl e < 52 W e

Proof. Let E € X such that 0 < U(E) < e and let f € LP(X,u). By Proposi-
tion 1.2.3 we write

[ \fldu= [ uis1> 230E)ar
E 0

< I Zpe
g/o mln(‘u(E), L )d/l (1.2.8)
4 17%
=, —HE) £ o=

1
which follows by splitting the integral at A = || f||zp= (E)~ 7. Therefore,

p
H’f‘HLPm < E||f| Lre"

As X is o-finite, we can write X = Uy _, Xy with X; S X, € -+ and pt(Xy) < o.
For A >0 let E;, = {|f| > A} and EY = {|f| > A} N Xy. Then we clearly have
W(EY) < pu(Xy) < oo and ijlv |fldu > Apu(EY). Letus fix A >0 and N € Z*. If

w(EY) >0, then

144 141 1
71 = sup (B [ Ul e} P AuED) = A
<U(E)<eo
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but this inequality is also trivially valid when ,u(EQ’ ) = 0. Letting N — oo we deduce

1
|H f |H e 2 AU(E;)?

for every A > 0, so taking the supremum over A > 0 we obtain ||| f|||r= > || f]|r=-
The fact that ||| - |||zr~ is @ norm on L is straightforward and is omitted. O

Taking E to be a compact subset of R” in (1.2.8), we obtain the following.
Corollary 1.2.11. For 1 < p < e we have that L"**(R") C L} (R").

loc

Proposition 1.2.12. For 0 < p < oo, LP*(R") is a complete quasi-normed space.

Proof. Let {fi }x be a Cauchy sequence in LP™. Then {f; }; is Cauchy in LI(Ey),
where Ey = B(O,N), N =1,2,..., and ¢ < p, by Exercise 1.2.6 (a). By Theo-
rem 1.1.9 for each N = 1,2,... there is a subsequence that converges a.e. on Ey.
As R" = Uy_,Ey, the diagonal subsequence {f, }x converges a.e. to a measur-
able function f on R". Given € > 0 there is an Iy € Z" such that when [,k > I
we have || fy,, — fi llr= < €. AS fo, — fuy — f — fn, a€. as [ — oo, it follows that
|f — fu,| =liminf;_... | fn, — fu,| @.c. and also | f| = liminf;_... | f, | a.e. Exercise 1.2.4
gives Dy(A) < liminf; ... Dy, (A) and Dy_y, (A) < liminf;... Dy, — 7, (A) for any
A > 0. These yield

-

supADy(A)? < supliminfADy, (k)ll’ <liminfsupADy, (),)ll’ < oo,
A>0 A>0 e ! I=e 250 !

as every Cauchy sequence is bounded. Thus f lies in L7 (R"). Also, for k > I,

=

1 1
supADy_y, (A)7 < supliminfADy, _r (A)7 <liminfsupADy, —r, (A)

<eg,
A>0 A>0 1= [= 250

hence f,, — f in L”™ as k — co. This implies f;y — f in L7, as in quasi-normed
spaces, Cauchy sequences with convergent subsequences are also convergent. [

Exercises

1.2.1. Suppose f; > 0 are measurable functions on (X, ). Prove that if f; T f as
k — oo p-ae., then Dy, T Dy as k — oo

1.2.2. (Lebesgue monotone convergence theorem for weak L” spaces) Let f;, >0
be measurable functions on a measure space (X, ) and 0 < p < oo. Suppose f; 1 f
as k — oo. Show that

fim [ il e = £

[Hint: Consider the cases || f||r= < oo and || f||z»= = eo. Use the previous exercise.]
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1.2.3. (Fatou’s lemma for weak L” spaces) Let f; > 0 be measurable functions on
a measure space (X, ) and 0 < p < co. Prove that

[[timinf fi| .. <liminf||f|

Iz~ e
[Hint: Set gy = inf{f; : | > k} and use the previous exercise. |

1.2.4. Suppose f and f; are measurable functions on R”". Prove that if |f] <
liminfy_... | fi| a.e., then Dy < liminfy_.. Dy, .

1.2.5. Let 0 < pg < p < p1 < o and let % = % + % for some 6 € (0,1). Prove

1 p < 171

1.2.6. Let (X,u) be a measure space and let E be a subset of X with y(E) < oo.
Assume that f is in L7 (X, i) for some 0 < p < eo.
(a) Show that for 0 < g < p we have

o=l -

p 1-4 q
ad < ——Uu(E) » -
Ll due) < L)L,
(b) Prove that if 4 (X) < e and 0 < g < p < o, then
LP(X,p) SL77(X, ) S LI(X, ).

(c) Conclude that L”**(R") is contained in L] .(R") when p > 1.

1.2.7. (Holder’s inequality for weak spaces) Let f; be in L”1** and f> be in L2

of a measure space X where 0 < p1, py < o. Given % = ﬁ + 171—2, prove that

[ f1f2]l e < [ 1’72/1'71)"“”2 +(p1/p2) p'ﬂ’z] 1Al v 12 2

Observe that the preceding inequality also extends to the case where p1, pa equal co.
[Hint: For || fjl| pj= =1, j = 1,2, use Dy, (A) < u({Ifi| > 2/s}) +u({| 2| > s})
< (s/A)Pt +(1/s5)P2 and minimize over s > 0.]

1.2.8. Let f € L'(]0,)) and g € L' ((—o,0]). Prove that the function
dt
x| et ngl—0%
R t

lies in L!'/%>(R) with quasi-norm bounded by 4||f||,1]gl|,1. [Hint: Control this
function pointwise by |x|~!G(x), for some G > 0 with |G|l ;1 < (£l ]1gl.1-]
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1.3 Real Interpolation

Let 0 < p < co. Given an L function f on a measure space (X,i) and A > 0 we

consider the splitting
fo S

—N—
F=rxps2+X7<a-

Let us pick po, p1 such that 0 < pg < p < p; < eo. We note that fj lies in L0 and
that fj lies in LP!. Indeed, since py — p < 0, we have

p
Ly

Iollz = [, Loy <l

and likewise, as p; — p > 0, we obtain

P
Pl
L

o <A 1]

I1:1]
Thus L”(X) is contained in L" (X)) +LP(X) = {fo+ fi: fj € LPi(X),j=0,1}.

Definition 1.3.1. Let T be an operator defined on a linear space of complex-valued
measurable functions on a measure space (X, 1) and taking values in the set of all
complex-valued finite almost everywhere measurable functions on a measure space
(Y,v). T is called subadditive if for all f, g in the domain of T we have

IT(f+ )| <IT(NI+IT ()] v-a.e. (1.3.1)

T is called quasi-subadditive, that is, if there is a constant K > 0 such that for all f,
g in the domain of 7" we have

IT(F+ | <K(T (NI +IT(2)D) v-a.e. (1.3.2)
Definition 1.3.2. An operator that maps L to LP* is called of weak type (p, p).

The next result, known as the Marcinkiewicz interpolation theorem, claims that
if a subadditive operator is of weak types (po,po) and (pi, p1), then it maps L? to
L? for p between pg and p;.

Theorem 1.3.3. (Marcinkiewicz interpolation theorem) Let (X, 1), (Y,V) be o-
finite measure spaces and 0 < pg < p1 < oo. Suppose that T is an operator defined
on LPO(X) + LP1(X), taking values in the space of measurable functions on Y, which
is quasi-subadditive, i.e., it satisfies (1.3.2). Assume there exist Ay,A1 < oo such that

HT(f)HLPO“"(Y) SAOHf’
HT(f)HLPl“’“(Y) SAle’

Then for all po < p < pi and for all f in L?(X) we have

||T(f)HLP(Y) SAHfHLP(X)’ (1.3.5)

forall f € LP°(X), (1.3.3)
forall f € LP'(X). (1.3.4)

P (X)

LP1(X)
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where

1
P e )
A:2K( P, P )qumAﬁ”h (1.3.6)
p=po pi—p

Proof. Consider first the case p; = co. Write f = f& =+ fl’l, where

Ao ) S for [f(x)]>7A,
fO(x)_{O for |f(x)| <74,

(x)
(x)
X for x)| < YA,
P C Wl <7
0 for |£(x)| > 72,
and y = (2A,K)~!; then for almost all y € ¥ we have
T < T ,- <A - <A7A =2/2K.
It follows that v({y € Y: [T(f})(y)| > }) 0=Dy (/I/ZK) hence
Dr(p(A) < DT(f&)(/'L/ZK) +DT(flx>()L/2K) = DT(f&)(ﬂL/ZK).
Since T maps L0 to LP0* with norm at most Ag, we write

(2A0K)™|[ 3l _ (240K)"

Dy (A/2K) = ——75, =" /lf‘mlf(x)l"“du. (13.7)

Using (1.3.7) and Proposition 1.2.3 [which applies as (Y, V) is o-finite], we obtain
IT(l5 =p [ 277 Drip () an
<p / 227Dy ) (2/2K) dA

p— 1 0 P
<p/ A “am /\f\> N |f(x)[Poduda

K
WKW
= p2ack)™ [ 1 [ AP~ d) dy

2A1K)P~P0(2A0K)P
” " [,
P—Ppo

having used Tonelli’s theorem, as (X, it) is o-finite. This proves the theorem with

p p 1-20 PO
A=2K A PAT (1.3.8)
p—po) 4 0

Observe that the constant in (1.3.8) coincides with that in (1.3.6) when p; = eo.
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Assume now that p; < . Fix a function f in L”(X) and A > 0. We split f =
f07L + fl’l , where f& is in LP0 and fl’l is in LP1. The splitting is obtained by cutting | f|
at height 6 for some & > 0 to be determined later. Set

_Jfx) for [f(x)]> 64,
fO(){o for |f(x)| < 82,
fx)  for [f(x)] <64,

Ji ) {o for |f(x)| > 8A.

As noted earlier, the (potentially) unbounded part f& is an LP0 function and the
bounded part of ffL is an LP! function. Using the quasi-subadditivity property (1.3.2)
of T we obtain that

IT(f) <KIT(fH)I+KIT()] v-ae.,

which implies the v-a.e. inclusion

per: IT(NOI>AYE{y e ITUOI> fIu{yer: ITHHO) > %},

and therefore
Dr(p)(A) < Dy (A/2K) + Dy 2y (A /2K). (13.9)

Hypotheses (1.3.3) and (1.3.4) together with (1.3.9) now give

APO API
W/Ifbm Mols “+()L/2K)pl /f\<8/l |f ()Pt d.

In view of the last estimate and Proposition 1.2.3 (which can be used since Y is a
o-finite measure space), we obtain that

Drp(4) <

Il <peaky [“ariamm [l duar

+p24K)" / AP-1p / (0P duda
0 JIf1<8A

LIf@)]
= pack)™ [ 15 [T 2 andy
X 0

1 e —1-p
+pAK) [ 17 /M AP dady
2A0K)
= 2R /|f Jolr P du

P—po 5‘” Po
P2AIK)P
p1L—p 6[’ P1

240K )P0 B
- (LG kel a3a0)

L@@ dy
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and the convergence of the integrals in A is justified from py < p < pj, while the
interchange of the integrals (Tonelli’s theorem) uses the hypothesis that (X, ) is a
o-finite measure space. We pick 6 > 0 such that

1

QAK)" S50

= (2A,K)P 8717
and observe that the constant in the parentheses in (1.3.10) is equal to the pth power
of the constant in (1.3.6). We have therefore proved the theorem when p; < oo. [

In some applications the operator T is not a priori defined on the entire space
LPo(X) 4+ LPL(X), but on a subspace of it. Let us suppose below that .% is a subset
of LP(X) + LP1(X) with the property that f € ¥ = fyg € %, where E is a
measurable subset of X of finite measure. For instance, .% could be the space of all
finitely simple* functions. We note that in the proof of Theorem 1.3.3 if f € .%, then
SO are fok and f{l. Thus the proof given provides the following result.

Theorem 1.3.4. Let (X, 1), (Y, V) be o-finite measure spaces and 0 < py < p; < co.
Suppose that T is defined on %, takes values in the space of measurable functions
onY, and satisfies (1.3.2). Assume there exist Ag,A| < oo such that for k =0, 1

HT(f)HLpK,m<y> S AKHfHLPK(X) forallf S ZF.

Then (1.3.5) holds for po < p < p1 and all f € F. Thus, if F is dense in LP(X)
and T is linear (or positive symmetric subadditive operator, see Appendix D), then
T admits a unique bounded extension on LP (X) that also satisfies (1.3.5).

The proof of Theorem 1.3.3 essentially contains the following result.

Proposition 1.3.5. Let (X, 1) be a o-finite measure space and let 0 < pg < p <
p1 <ooberelatedasin1/p=(1—0)/po+0/p for some 6 € (0,1). Then for any
f e LPo=(X)NLP=(X) we have

Il < (2= + L= HfHLpowal
P—pPo Pp1—p

(1.3.11)

P

Proof. Set
AT /AR (1.3.12)
which equals B = || f||z= when p; = co. Assume first that p; < . Then we have

1Ay = [, 47 Ds(2)d2

gp/()m),””min (Hf| Lo HfHLpl )dl

APo AP1

4 Finite linear combinations of characteristic functions of sets of finite measure.
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_p/ AP~ - P0||f|u,0wdl—|—p/ AP~ 1—- lefHLpl dA (1313)
= Al BT 0 LB
- (PfPOer )<Hfum ) (£ ) 0

where we use that p — p; < 0 < p— po. When p; = oo, we have Dy(4) = 0 for
A > B =||f]|1~ and thus the second integral in (1.3.13) does not appear. We obtain

1Az < inHLpowal =

which is a restatement of (1.3.11) when p; = . O

Example 1.3.6. Let 0 < ot < B < eo. Then |x|~% € L"/%=(R"), |x| P € L"/B=(R").
Let A(x) = min(|x|~%,|x|~B), x # 0. Then h € LP(R") for n/B < p < n/c.

Exercises

1.3.1. Let 0 < p,g < oo. Verify that Theorem 1.3.3 applies to operators of the form
T(f) = |S(f)|Plog(1 4+ |S(f)])?, where S is a linear operator (or another quasi-
subadditive operator) on L (X) -+ L%(X). [Hint: See Exercise 1.1.1.]

1.3.2. Let Ap,A; >0, 0 < p,qo,q1 < o, and let (X, u), (Y,v) be o-finite measure
spaces. Suppose that T is a mapping defined on LP(X, i) that satisfies

HT(f)HLqO(Y,v) SAOWHLP and HT(f)HL‘Il (¥,v) SAleHLP
forall f € LP(X,u). Let 0 < 6 < 1. Prove that

() <Ag AT Al

||Lq(Y,v)
forall f € LP(X,u), where 1/g = (1—6)/qo+ 6/qi. [Hint: Use Exercise 1.1.6.]

1.3.3. Let Ag,A; > 0, 0 < p,qo,q1 < *°, go # q1, and let (X, ), (¥,v) be o-finite
measure spaces. Suppose that 7' is a mapping defined on L” (X, i) that satisfies

||T(f)Hqu=°°(Y,v) <Ao|[f]|,, and HT(f)||L<11~°°(Y,v) <Al £l

forall f € LP(X,u). Let 0 € (0,1) and 1/g = (1 —6)/q0 + 6/q1. Show that there
is a constant C = C(qo, q1,q) such that

1T sy < €40 AT 1]y

for all f € LP(X, ). [Hint: Use Proposition 1.3.5.]
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1.3.4. Let T be a subadditive operator defined on L'(X,u) 4 L™(X,u) that takes
values in the space of measurable functions on (¥,Vv) and that satisfies |T(f)] <
T(|f]) forall f € L' + L. Suppose that T maps L' to L' with bound A and L™ to
itself with bound A; > 0. Given 1 < p < o, prove that T maps L?(X) to L?(Y) with
norm at most 1 1

P il s
[Hint: Given A >0, y € (0,1), and f measurable, write | f| = fo + f1, where fo =

max (|f]— 22,0) and f = min (|£], 22). Then {T(|f) >4} € {|T(fo)|>(1-7)A}.
Then choose a suitable 7.

1.3.5. Let (X, u), (Y, V) be o-finite measure spaces, and let 0 < py < p; < . Define
p via % + p% = %, where 0 < 6 < 1. Let T be a subadditive operator defined
on LP0(X) + LP1(X) and taking values in the space of measurable functions on Y.
Suppose T maps L0 to L™ with norm Ag and L”! to L™ with norm A;. Prove that T
maps L” to L* with norm at most 2A(1)79A(19.

1.3.6. Let (X,u) and (Y,v) be o-finite measure spaces. Let 0 < p < p; < oo,
0 < B <o, andlet @ : [0,00) — [0,00) be a measurable function such that

1
A :/ AP D (1/2)dA < .
0

Let T be a linear operator that maps LP! (X) to L1 (Y) with norm B that satisfies

vier: r(e) >4y <a [ o) 4

for all finite simple functions f on X and all A > 0. Prove that T has a bounded
extension from L”(X) to itself. [Hint: Set fr = fxipi>a and fo = fx5<1- When
p1 < oo, add the estimates

() > an < appr [ oKy

f1> A
nd £GP
AT A} < l”’le/ a
PR WIT() > A1) < p L

and integrate over A to estimate 5 ||T(f)||7,. In the case where p; = e, use
v({IT(f)>2BA}) < v({IT(f})] > BA})
to complete the proof.|

1.3.7. (Vector-valued Marcinkiewicz interpolation) Let (X,u), (Y,v) be o-
finite measure spaces and 0 < pg < p; < eo. Fix quasi-normed spaces Z,W. Define
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LP0(X,Z) to be the space of all functions f : X — Z such that x — || f(x)]|2 are -
measurable and belong to L0 (X, 1), and analogously define LP0*(X,Z). Let T be
a mapping from LP (X, Z) + L"' (X, Z) to {h:Y — W, with |||y v-measurable}.
Sup_pose T satisfies the following quasi—subgdgitivity property: fgr some K > 0 and
all £, in LM (X, Z) +LP1 (X, Z) we have | F(F+@)llw < K| T(Dllw + KIT@)lw
v-a.e. Assume there exist Ap,A; < o such that

| f)HLPO-“(Y,W) SAUHfHL!’O(X,Z) for all /'€ L (X)),

|7
||T(f)||L/’1'°°(Y,W) <A|F [l xz  forallfeLll(X).
Let A be as in (1.3.6). Prove that for all py < p < p; and all f in LP(X,Z) we have

1T oy <AlIF]

P(X,2)

[Hint: Adapt the proof of Theorem 1.3.3 by cutting || f ||z at height 52

1.4 The Hardy-Littlewood Maximal Operator

Let v, be the volume of the unit ball B(0,1) in R".

Definition 1.4.1. Let f be a measurable function on R”. The function

1
M(F)() = sup Ave |f| =sup— [ [f(x=)ldy
8>0B(x,5) §>0Vn Iyl<6

is called the centered Hardy-Littlewood maximal function of f.

A few remarks are in order. Suppose that f is not locally integrable. Then there
exists a compact set L such that [; | f|dx = eo. Then for any x € R" there is a ball
B(x,R) that contains L. It follows that M(f)(x) > Vn% Ji |f]dy = eo. Thus M(f) is
interesting only when f is a locally integrable function.

Secondly, the definition of M remains unchanged if the open ball B(x,§) is
replaced by the closed ball B(x,§). Indeed, the balls B(x,d) and B(x,d) have the
same measure, and so f has vanishing integral over the null set B(x,5) \ B(x,d).

Obviously we have M(f) = M(|f]) > 0; thus the maximal function is a positive
operator. We show later that M( f) pointwise controls f (i.e., M(f) > |f] a.e.). Note
that M maps L™ to itself; that is, we have

IV < 1] -

M is a sublinear operator; i.e., it satisfies

M(f+8) <M(f)+M(g) and M(ASf) = [AIM(f)
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for all locally integrable functions f and g and all complex constants A.
Let us compute the Hardy—Littlewood maximal function of a specific function.

Example 1.4.2. On R, let f be the characteristic function of the interval [a,b]. For
x € (a,b), clearly M(f) = 1. For x > b, a simple calculation shows that the largest
average of f over all intervals (x — §,x+ 0) is obtained when 6 = x — a. Similarly,
when x < a, the largest average is obtained when 6 = b — x. Therefore,

(b—a)/2|x—b| when x < a,
M(f)(x) =<1 when x € (a,b),
(b—a)/2|x—aq] when x> b.

Observe that M(f) has a jump at x = a and x = b equal to one-half that of f. See
Figure 1.2.

If f is locally integrable and R > 0 is given, then by considering the average of f
over the ball B(x, |x| + R), which contains the ball B(0,R), we obtain

fB(o,R) |f(v)|dy
M(f)(x) > W

(1.4.1)
for all x € R". An interesting consequence of (1.4.1) is the following: suppose that
f # 0 on a set of positive measure E, then M(f) is not in L' (R"). In other words, if
fisin LL (R") and M(f) is in L' (R"), then f = 0 a.e. To see this, integrate (1.4.1)
over the ball R" to deduce that || fxz(z)ll;1 = 0 and thus f(x) = 0 for almost all x
in the ball B(0, R). Since this is valid for all R = 1,2,3, ..., it follows that f =0 a.e.
in R™.

Another remarkable locality property of M is that if M(f)(xp) = O for some
xo in R”, then f = 0 a.e. To see this, we take x = x¢ in (1.4.1) to deduce that
If XB(O,R)H 11 = 0 and as before we have that f = 0 a.e. on every ball centered at
the origin, i.e., f =0 a.e. in R".

A related analog of M(f) is its uncentered version M(f), defined as the
supremum of all averages of f over all open balls containing a given point.

Definition 1.4.3. The uncentered Hardy-Littlewood maximal function M(f) of a
measurable function f is the supremum of the averages of |f| over all open balls
that contain a given point, i.e.,

1
MW= 90 ot fy g O
y: ly—x|<é

Clearly we have M(f) < M(f). Now, if x € B(xo, R) then B(xo,R) < B(x,2R), so

1 2n . .
T e POV < e [ 170y <2060 0
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hence taking the supremum over B(xp, R) containing x yields M(f)(x) <2"M(f)(x).
Thus the boundedness properties of M are identical to those of M.

Example 1.4.4. On R, let f be the characteristic function of the interval I = [a,b].
For x € (a,b), clearly M(f)(x) = 1. For x > b, a calculation shows that the largest
average of f over all intervals (y — 8,y + &) that contain x is obtained when 0 =
J(x—a) and y = J(x+a). Similarly, when x < a, the largest average is obtained

when 8 = 1(b—x) and y = 1(b+x). We conclude that

(b—a)/|x—b| when x < q,
M(f)(x)=<1 when x € (a,b),
(b—a)/lx—al when x > b.

Observe that M(f)(x) does not have a jump at x = @ and x = b and in fact we have

dist(x,]))*l

M@ = (1=

This function is shown in Figure 1.2 whena = —1 and b = 1.

Fig. 1.2 The centered (top) and uncentered Hardy-Littlewood maximal functions of x|y 1. The
maximum value of both functions is 1 and is attained on (—1,1).

We are now ready to obtain some basic properties of maximal functions. We need
the following covering lemma.

Lemma 1.4.5. Let {B,B,,...,By} be a finite collection of open balls in R". Then
there exists a finite subcollection {Bj, ,...,Bj, } of pairwise disjoint balls such that

L
> |B),
r=1

Proof. Let us reindex the balls so that

1 N
> §]UB,~|. (1.4.2)
=1

|Bi| > |B2| > --- > |By].

Set ji = 1. Let j, be the least index s > ji such that B; is disjoint from Bj,. This
means that for all indices m (if any) with j; <m < jo, B,, intersects B;,. Choose j3
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to be the least index s > j» such that By is disjoint from B, U Bj,. This means that
for all indices m (if any) with j, <m < j3, By, intersects B}, or Bj,.

Having chosen jy, jo,...,ji, let jiy; be the least index s > j; such that By is
disjoint from Bj, U---UBj,. As before the selection procedure ensures that if the
index m satisfies j; < m < jiy1, then B, intersects one of the balls Bj,,...,Bj,.
Since we have a finite number of balls, this process will terminate when an index jy,
is found such that for all m > j the balls B, intersect one of the B}, ,...,Bj, .

We have now selected pairwise disjoint balls Bj,,...,Bj,. If some B,, was not
selected, that is, m ¢ {ji,...,jL}, as observed before, then B,, must intersect a
selected ball B;, for some j, < m. Then B, has smaller size than B;, and we must
have B, C 3Bj,. This shows that the union of the unselected balls is contained in the
union of the triples of the selected balls. Therefore, the union of all balls is contained
in the union of the triples of the selected balls. Thus

N L L L
UBi| <|U3B;| < X BB;.[=3"3|B; |,
i=1 r=1 r=1 r=1
and the required conclusion follows. [

It was noted earlier that M(f) and M(f) are never in L' if f is not zero a.e.
However, it is true that these functions lie in L' when £ is in L'.

Theorem 1.4.6. For any measurable function f we have
3}’!
M(f)> 2} < f/ FO)ldy. (143)
i HET oo O

Consequently, the uncentered Hardy-Littlewood maximal operator M maps L' (R")
to L' (R") with constant at most 3".

Proof. We claim that the set Ey = {x € R": M(f)(x) > A} is open. Indeed, for
x € Ej,, there is an open ball B, that contains x such that B! [ |f(y)|dy > A.
Then M(f)(y) > A for any y € By, and thus B, € E; . This proves that E), is open.

Let K be a compact subset of E;. For each x € K there exists an open ball By
containing the point x such that

‘L’\f(y)\dywl\Bxl- (1.4.4)

Observe that B, C E) for all x. By compactness there exists a finite subcover
{By,,...,Bxy} of K. Using Lemma 1.4.5 we find a subcollection of pairwise dis-
joint balls Bx_,.I e 7BX./L such that (1.4.2) holds. Using (1.4.4) and (1.4.2) we obtain

n

L 3n L , 3 .
<3n Bx- < — dy < — d,
SOUAE Alzl./% FOldy< 3 [ 1)ldy

N
K| < Uy
i=1 A
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since all the balls ijl_ are disjoint and contained in Ej . Taking the supremum over
all compact K C E) and using the inner regularity of Lebesgue measure, we deduce
(1.4.3). We have now proved that M maps L! — L with bound 3”. (]

Corollary 1.4.7. Let 1 < p < oo. The uncentered Hardy—Littlewood maximal oper-
ator maps L (R") to LP(R") with constant at most 3"/P2p(p —1)~".

Proof. 1t is straightforward that M maps L™ — L™ with constant 1 and is well
defined on L' 4 L*. Applying Theorem 1.3.3 we obtain

1
M| <2(%)”3%g P 3% (1.4.5)

LP—Lp =

and this completes the proof. (]

We note that Exercise 1.3.4 yields the slightly better bound for ||M||zr—rr in
(1.4.5) without the factor of 2 on the right.

Example 1.4.8. Let R > 0 and xy € R”. Then we have

er Rn
— < M(¥p(x x)<3t—. 1.4.6
(el Ry = MWt <3 e (149
The lower estimate in (1.4.6) is an easy consequence of the fact that the ball
B(x,|x—x0|+ R) contains the ball B(xo, R). For the upper estimate, we first consider
|x —x0| < 2R, in which case we have

3" Rn

M <l < —
(%B(X(),R))(x) =1 = (|)C—.X()| +R>n

In the case where |x —xo| > 2R, if the balls B(x,r) and B(xo,R) intersect, we must
have that 7 > |x —xo| — R. But note that |x —xo| — R > 1 (|x—xo|+R), since [x—xo| >
2R. We conclude that for |x — x| > 2R we have

|B(x,r) N B(x0,R)| vuR" R"

M(X(x0.8)) (1) < sup = = "
B(O,R)) ) b |B(x, )| r>[x—xo|-R Val" (%(|x—xo\+R))

and thus the upper estimate in (1.4.6) holds. An analogous estimate is valid for
M (XB(xO,R) ).

Before ending this section we discuss an analogous situation when balls are
replaced by cubes. Let f be a measurable function. Define the uncentered maximal
function with respect to cubes by

1
c = TAl d )
M(f)(x) Qngr% 3 /Q £ dy

where the cubes are assumed to have sides parallel to the coordinate planes. Note
that it does not matter if the cubes Q in the supremum are taken to be open or closed.
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Then Lemma 1.4.5, Theorem 1.4.6, and Corollary 1.4.7 are also valid if we
replace balls by open cubes. The main feature of Lemma 1.4.5 is that if two cubes
with sides parallel to the axes intersect, then the smaller one is contained in the triple
of the larger one. Repeating the reasoning leading to (1.4.5) we obtain the following
analogous estimates for M,:

3p
<3 ||MC||LPHL!’ < 2p7_p1

M| (14.7)

—Ll=

when 1 < p < eo. Again by Exercise 1.3.4 the factor of 2 on the right can be removed.

Exercises

1.4.1. Show that for any measurable function f on R” we have

1
M = dy.
(N gwﬂLﬂywy

1.4.2. Let f; > 0 be measurable functions on R” such that f; T f pointwise a.e. as
k — eo. Show that M(f;) increases pointwise to M(f) and likewise for M.

1.4.3. Let f; > 0 be measurable functions on R". Show that
M(lilfninffk) < lilzninfM(fk).
1.4.4. Show that the set {x € R" : M(f)(x) > A} is open for any f € L} (R").

[Hint: Show that averages over small shifted balls of a given ball B are close to the
average over B

1.4.5. For a ball B with radius R > 0, let B* be any concentric multiple of B.
(a) Prove that> M(yg) ~ M(xp+).
(b) Show that for any x € R” we have

Rn
Mxe) ) ~ R G B

where dist(x, B) is the distance from x to B. [Hint: Use (1.4.6).]

1.4.6. Let f be a measurable function on R". Define the centered maximal function
of f with respect to cubes, by

1
mmm:w@@a@mmmw

>0

3 A ~ B means that for some ¢,c¢’ > 0 we have ¢ < % < ¢ uniformly in all parameters involved.
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where Q(x, €) is a cube parallel to the axes with side length 2¢ centered at x.
(a) Prove that M.(f) ~ M(f). [Hint: See Figure 8.1.]

(b) Prove that M.(f) ~ M.(f).

(c) Show that for any cube Q with side length ¢(Q) we have

£(0)"
((Q) +dy)"’

where d, is the distance from x to Q (which is zero if x € Q).
(d) Conclude that for any concentric multiple O* of O we have M.(xo) ~ M:()o+)-

Me(x0)(x) ~

1.4.7. Let h(t) = 1 (log 1) "2 ¥(0,1/2)- Prove that h € L' (R) but M(h) & L{. (R).

1.4.8. Show that for every 1 < p < e and for any f in L»*(R"), M(f) lies in
LP=(R") and we have

3"p
Mg < = 1A ne-

[Hint: First take f € L?(R") N L' (R"). Prove that
AM(f) > 3|7 <3| > A d
() > )P < 3w > [ oy

and deduce from this the claimed inequality for f € L?. For a general f € LP*(R"),
write fi = | f|X|f|<kXB(0x) @nd use Exercises 1.2.2 and 1.4.2]

1.5 The Lebesgue Differentiation Theorem

Recall that Llloc(R”) consists of all measurable functions on R" that are integrable
over every compact set.

Theorem 1.5.1. Let f be a function in L. (R"). Then
1
é{r})m/ » |f(») = f(x)|dy=0 for almost all x € R". (1.5.1)

Proof. We tile R" as the union of cubes Oy = k+[0,1)" where k € Z". 1t suffices

to show the claimed almost everywhere convergence for any such cube Q. Let us

fix such a cube O = k+ [0, 1)". In proving (1.5.1) for x € O, we can replace f by

fx = fx30,, as we may assume that 6 < 1/4 when taking the limit in (1.5.1).
Define the oscillation of an integrable function g on R” by

U,(x) =1lim sup

d 152
5105/<5‘BX6 |/x5/ )l Y ( )
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As g may only be defined almost everywhere, so is ,. Let ¢ be a continuous
function with compact support on R”. Then ¢ is uniformly continuous; hence, given
€ >0, there is a &y > 0 such that

y—z <8 = o) — o) <e.

This implies that for 6’ < 6 < & we have

1
m ~/B(x,5’) |(p(y) - (p(x)|dy <e.

Taking the supremum over all 8’ < § and then the limit as § | 0, we obtain that
Oy(x) < €. As € > 0 is arbitrary we deduce that &, (x) = 0 for all x € R".

Given our fixed compactly supported integrable function f; and given & > 0,
there is a continuous function with compact support @ such that || fy — @1 < €.
As the oscillation function is subadditive, it follows that

Op <Ofo+0p=0p_og< 05 +0p=0y a.c. (1.5.3)

Thus O, = O,y a.e. We now write

= 1
{ﬁfk>0}: U {@fk>%}' (1.5.4)
m=1

Noticing that
Of—p <M(fi — @)+ | fic — ¢ ae.,

for each m € Z*, we have

R 040> 1m}
=[{xeR": Oy o(x) > 1/m}|
[{x eR": M(fi— @) (x) + (i — 9) (x)] > 1/m}|
!{xER": M(fi — @) (x) > 1/2m}| + ’{xER": | fe(x) — @(x)| > 1/2m}|
3" 2m) || fe — ||+ 2m)|| fi— o1
(3" +1)2me’,

VAN VAN VAN VAN

having used Theorem 1.4.6 and Chebyshev’s inequality. As €’ > 0 is arbitrary, it
follows that [{x € R" : O, (x) > 1/m}| = 0. Using (1.5.4) yields that O, =0 a.e.
But Oy, = Oy a.e. on O, and thus &y = 0 a.e. on Q. As this is true for any k € Z",
it follows that &y =0 a.e. on R". This proves (1.5.1). [l

Definition 1.5.2. Let f be a locally integrable function on R”. Points x in R” for
which f(x) is defined and (1.5.1) holds are called the Lebesgue points of f. The set
of Lebesgue points is called the Lebesgue set of f and is denoted by .Z.

Theorem 1.5.1 asserts that the Lebesgue set of a locally integrable function on
R” is a set of full measure; i.e., its complement has measure zero.
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Corollary 1.5.3. (One-dimensional Lebesgue differentiation theorem) Given f in
L'(R) define F(x) = [*_ f(t)dt forx € R. Then F' = f on .%.

Proof. For xg € £y we have

. ~ Flx X0+
Flot=Flw) _ )< L il " A0~ fo)ldr =0

as h — 0. Thus F'(xo) exists and equals f(xo) whenever xg € .ZF. O

Corollary 1.5.4. (Lebesgue differentiation theorem) Let f be in LIOC( "). Then

o B
i s / gy [V =10

for every x in L, in particular for almost all x € R".
As a consequence of the preceding corollary we obtain

Corollary 1.5.5. Let f be in LIIOC(R") and let x be a Lebesgue point of f. Then
£ ()] < M(f)(x).

In particular, this inequality holds for almost all points x € R".

Corollary 1.5.6. Let f € L} .(R") and x € £. For any 8 > 0, let B, 5 be a closed
ball of radius & that contains x and shrinks down to {x} as 8 — 0. Then

R

and consequently

gg%'Bm'/ FO)dy = £(). (15.6)

The same assertions are valid if B, 5 are closed cubes of side length & that contain

x and shrink down to {x} as § — 0.

Proof. Recall B(y,r) is defined to be the open ball of radius 7 > 0 centered at y. Let
x€ .i”j Then B, 5 £ B(x,20) as B, 5 contains x, and we write

271
|Bx5| /“3 xX)|dy < s |B(x,28)| /mlf(y)—f(ﬂldyﬁo (1.5.7)

as 6 — 0 by (1.5.1) and Definition 1.5.2. This yields (1.5.5). If B, 5 are closed

cubes of side length & that contain x, then B, 5 & B(x,/nd) and (1.5.7) holds with
|B(0, /n)| on the right in place of 2. Thus (1.5.5) holds in this case as well. Finally
(1.5.6) is an immediate consequence of (1.5.5). ([
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Exercises

1.5.1. For a locally integrable function f on R", b € C\ {0}, A > 0, and xp € R"
define the operations f3 (x) = A" f(A~'x) (L! dilation), 7% f (x) = f(x —xo) (trans-

lation), and f(x) = f(—x) (reflection) for all x € R". Prove the following:
1. Ly = %5.
2. ij: _gf,: {—y: ye gf}.
3. &5 = %%, f here denotes complex conjugation.
4. gfxof ZXO—Fff ={x+y:ye gf}
5. .ﬁ,ﬂfl = lff = {ly: ye D%t}
6. Lyon =A Ly ={A7ly: y € L}, where A is an orthogonal matrix.

Moreover, if g is another locally integrable function, prove that £y N.%, & Z,.

1.5.2. Show that for every f € L\ (R") there is a set E; of measure zero such that

1 1 B
E%wgﬁnémaf@*WBwﬁﬂAw@ﬂ@“Vy_o

forall x € R"\ Ef.

1.5.3. Let f be in LP(R") for some p satisfying 1 < p < e. Show that
1
1im7/ — f(x)|Pdy=0 for almostall x € R".
1.5.4. Let g be in L”(R") for some p satisfying 0 < p < 1. Show that
1
limi/ —g(x)|?dy=0 for almost all x € R".
i B o) oo g(y) —g(x) [P dy

[Hint: For every rational number a there is a set E, of Lebesgue measure zero such
that for x € R" \ E, we have

1
lim —— —alPdy = —alP
Q%w@ﬁné@amw al? dy = |g(x) —al’,

since the function y — |f(y) —a|? is in L] (R"). By considering an enumeration
of the rationals, find a set of measure zero E such for x ¢ E the preceding limit
exists for all rationals a and by continuity for all real numbers a, in particular for
a=g(x).]

1.5.5. Given N € Z* and f € L} _(R"), define the function

loc

=3 <|é| / f(y)dy)xg,

0e9(
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where Z(N) is the set of all cubes Q of the form [T, [27Vm;, 27" (m; 4 1)) with
m; € Z and N = 1,2,3,.... Prove that Fy(f) — f a.e. as N — oo, [Hint: Use the
previous exercise.]

1.6 Convolution

Definition 1.6.1. Suppose that for given f, g in L] .(R") we have
/ [f)]1g(x—y)|dy < oo for almost all x € R". (1.6.1)
Rﬂ

Then for almost all x € R" we define the convolution of f and g as

(r8)w= [ f0)

If f,g > 0 are measurable functions on R”, then we define (f * g)(x) as the value of
the integral of the nonnegative measurable function y — f(y)g(x—y). Notice that in
this case the integral may be infinite for many values of x; see Example 1.6.5.

Changing variables y = x — y, we see that the convolution of f and g can also be
written as

(f+g)(x /g flx=y)dy' = (g* f)(x)

whenever the integral converges absolutely. Hence convolution is a commutative
operation. It is also associative, in the sense f * (g h) = (f *g) *h a.e., provided

/ [f)]|g(z—)||h(x —z)|dzdy < e for almost all x € R". (1.6.2)
R”? JR"?
But (1.6.2) is a consequence of

L L 1r0lls= ) he— )] dzdydx < =,
Rn Rn Rll

a fact that can be verified by applying Tonelli’s theorem (integrating first in x, then
in z, and finally in y).

Remark 1.6.2. If both f and g are integrable functions, then (1.6.1) holds. Indeed,

/R /R Lf)llg(x—y)|dydx
- / s S Ol =) dxdy

= [ O [ letr=y)ldxdy
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< oo,

having used Tonelli’s theorem. Thus (1.6.1) holds. Since

we conclude

33
= [ o [ el dxay
Rn _R)‘l
= 1fllr ey 8l (r)
gl <|fl*lgl,
(1.6.3)

178l oy < 111 ey 8 2t ey -

Example 1.6.3. On R consider the convolution of the two characteristic functions
X[—a,a) and X[_pp], Where 0 < a < b < eo. Then for any x € R we obtain

(X[fa,a} * %[717,/7])()6) = H_a7a] N [_b+x7b +XH

and a straightforward calculation yields that

2a when |x| < b —a,
[—a,a]ﬂ[—b+x,b+x]’= a+b—|x| whenb—a<|x|<a+b,
0 when |x| > a+b.

The following example indicates how the convolution improves smoothness.

Example 1.6.4. Let & = y_; . A cal-
culation gives that (h*h)(x) =2 — |x]
for |x| <2 and (hxh)(x) =0 for |x| > 2.
Also (hxhx*h)(x) equals

3—|x? if |x[ <1,
42|+ GED i < <3,
0 if 3 < |x].

It turns out that %~ x h is continuous
(but not continuously differentiable) and
hxhxh lies in €' but not in €>. The
graphs of i+ h+h and its derivative are
shown in Figure 1.3.

4 -3 2 -1 |21 2.3 4

T R

Fig. 1.3 The triple convolution %  h* h and its
piecewise linear derivative (dotted) are plotted.

Example 1.6.5. We compute the convolution of y[_; ;; and |x|~! on R:

W) = (g w = |

1+x Y] B

x—1

oo if [x] < 1.

gy {log Ly > 1,



34 1 Introductory Material

Notice that h(x) decays like 1/|x| as |x| — . In general, the convolution inherits
the worst decay of the two functions; see Exercise 1.8.4.

The following inequality concerning convolution is of fundamental importance.

Theorem 1.6.6. (Minkowski convolution inequality) Let 1 < p < o. For f in
L”(R") and g in L' (R") we have that g x f exists a.e. and satisfies

g+ /]

ey < lgllo @ 1F 2o ey - (1.6.4)

Proof. We may assume that 1 < p < oo, since the case p = 1 was considered in
Remark 1.6.2 and the case p = o is straightforward. We first show that

(1 +17D) = [ rx=3)llgtyldy (163)

exists a.e. Applying Holder’s inequality in (1.6.5) with respect to the measure
|g(»)| dy to the functions y — f(x—y) and 1 with exponents p and p’, respectively,
we obtain

(et < ([, 1) ([ o) aso

Taking L” norms of both sides of (1.6.6) we deduce

Il 1£lls < (el [, [ 1o leOlavar)
= (||8HZII/Rn . f(x—y)l”dXIg(y)dy>p

= (lellz* [, lreawaste >|dy)

~ (W1 el e
= HfHLPHgHLl < oo,

using Tonelli’s theorem. This shows that |g| * | f| is finite a.e. and satisfies (1.6.4).
Thus the integral in (1.6.5) converges absolutely, hence it converges. This yields that
[ g is well defined and satisfies (1.6.4) as |g* f| < |g|*|f]. O

In proving L?” estimates, it is often convenient to work with continuous functions
with compact support. As L”(R") functions can be approximated by step functions
and step functions can be approximated by trapezoidal functions in the L? norm, we
see that continuous functions with compact support are dense in L?(R"). A slightly
more general fact is proven in Proposition 1.7.4.

Theorem 1.6.7. Let 1 < p < co. For given f € LP(R") and g € L” (R") the function
f * g is uniformly continuous and bounded.
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Proof. Let us assume 1 < p < oo. The case p = o can be handled by reversing
the roles of f and g. Given € > 0, let ¢ be a continuous function with compact
support such that || f — ¢||.» < €. Let us suppose that the support of ¢ is contained
in B(0,M). Then ¢ is uniformly continuous, so there is § > 0 such that

xeR" B <8 = |p(x+h)— o) <e|B(0,M+1)|*1l7.

For |h| < min(J, 1) Holder’s inequality yields

(oraia+m—(osa)0| <[ [ lob-+1) - o0)7d] el

y|<M+1
< (elBO.M + D] 7)|BO.M+ 1|7 g]] -
Then for |k < min(J, 1) we have
|(f*8)(x+h) = (f+8)(x)]
< |(pxg)(x+h) = (9xg)(x)| +|((f — @) x &) (x+h) = ((f — @) x8) ()|
< ellglly +2[11 = oll llgll

<3ellg -
This proves the uniform continuity of f g on R". Its boundedness is a consequence
of Holder’s inequality. (]
Exercises

1.6.1. Show that the support of the convolution of two functions is contained in the
algebraic sum® of the supports of the two functions.

1.6.2. Let f,g,h be nonnegative measurable functions on R"” and let 1 < p < eo.
Prove that

1
((f*g)”*h) ? < min [f*(g”*h)%,g* (f”*h)é].
[Hint: Use the Minkowski integral inequality.]

1.6.3. Let o € R* and B € R. Consider the functions g() = e~ * y;~ and h(t) = &/
defined on the real line. Show that for any positive integer m we have

gx-xgxh=(a+if) "h.
——

m times

1.6.4. Consider the Gaussian function G(x) = ¢~ on R”. Show that (GxG)(x) =
G(x/v/2)/(v2)". [Hint: Change variables y =y’ +3.]

6 The algebraic sum of the sets A and Bis the set A+B = {a+b: a € A,b < B}.
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1.6.5. (a) Let f € L'(R") and g € L”(R") and suppose that g has compact support.
Prove that (f *g)(x) — 0 as |x| — oo.

(b) Provide examples of f € L'(R) compactly supported and g € L(R) non-
compactly supported, such that |f * g| is a constant; hence the assertion in (a) fails.

1.6.6. Let K be a positive integrable function on R” and let 1 < p < eo. Prove that
the norm of the operator 7(f) = f* K from L?(R") to itself is equal to ||K||,:.
[Hint: Clearly, ||T||z»—r» < ||K||;1. Conversely, fix 0 < & < 1 and let N be a positive
integer. Let v = Xp(o.v) and for any R > 0 let Kg = Kxp(o r), Where B(x,R) is the
ball of radius R centered at x. Observe that for |x| < (1 — &)N, we have B(0,N¢) €
B(x,N); thus [g. xn(x — y)Kne(v) dy = Jgo Kne(v) dy = || Knel| 1 Then for p < e

(K 2w || ||KN8*%N||€P(B(O.(17

lawllz,  — w7,

M > || Kne | (1)

Let N — oo first and then € — 0. The case p = oo is straightforward.}

1.6.7. Let 1 < p < eo. (a) Let K be an integrable function on R”. Show that

17 =K

p
L § ﬁ ||I(||Ll Hf‘HLp'oo

for all f in L. Thus the operator f +— f * K maps L"**(R") to LP*(R").
(b) Let K € LP°(R"). Prove that the operator f +— f * K maps L' (R") to LP(R")
with norm at most ﬁ IK || Lo

[Hint: Part (a): Use Theorem 1.2.10. Part (b): Reverse the roles of f and K in (a).}

1.6.8. Let K be a nonnegative function in LllOC (R") and let 0 < p < . Suppose that
there is a positive constant C such that the inequality

1 Kl < €]

holds for all nonnegative functions f in L”. Prove that K € L'(R"). Obtain the
same conclusion when || f||.» is replaced by || f||z»= in the hypothesis. [Hint: Use
that

>
XB(02R) * K = (/B(O’R)K(X) dx)XB(o,R)
and let R — oo. Here B(0,r) = {x: [x| < r}.]

1.6.9. Let Q2 be a measurable subset of R” and let K > 0 be an even measurable
function on R". Let Tx (f) = f * K for f measurable.
(a) Show that for 1 < p < eo we have

HTKHLP(Q)ﬂLP(R") = HFHL“’(Q)’ where  F(x) :./QK(X_YWY-
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(b) Assume p = 1. Show that [|F|[;=(q) < e if and only if || Tk ||11(q)—p1 rr) <
[Hinz: Part (b): Define Q,, = {x eR": F(x) >m, |x| <m}. Assuming ||F || ;=(0)=2°
and |€Q,,| > 0, show that [, Tk (f)(x)dx > m, where f,, = ﬁxgm.]

1.7 Smoothness and Smooth Functions with Compact Support

We begin by introducing notation relevant to several variables. We denote the mag-
nitude of x = (x1,...,%,) € R" by |x| = (x] +--- +x2)'/2. The partial derivative of
a function f on R”" with respect to the jth variable x;, if it exists, is denoted by 9, f.
The gradient of a function f is the vector Vf = (di f,...,d,f), assuming d; f exist
for all j. Higher-order partial derivatives of a function can be obtained by multiple
applications of d;. In particular, the mth partial derivative of f with respect to the
Jjth variable is denoted by 8;-” f, if it exists.

Let N € Z*. The space of functions in R” all of whose partial derivatives of
order at most N are continuous is denoted by ¢V (R") and the space of all infinitely
differentiable functions on R" by € (R"); functions in €(R") are also called
smooth. The space of ¥’ functions with compact support on R” is denoted by
€5 (R"). A multi-index o is an ordered n-tuple of nonnegative integers. For a multi-

index o = (a,...,0), || = oy + -+ o, denotes its total size (or magnitude)
and a! = oq!---o,! denotes the product of the factorials of its entries. Given a
multi-index o = (o, ..., ) and f in €1%/(R"), 9% f denotes the mixed derivative

9" -+ 9% f which remains invariant if the partial derivatives are taken in a different
order. Then || indicates the fotal number of derivatives that appear in 0% f. Finally,
for 1 < j <n, the vector ¢; is defined as the element of R" all of whose coordinates
are zero except for the jth one, which equals 1.

For x € R" and & = (e, ..., ) a multi-index, we set x* = x" ---x%. Multi-
indices will be denoted by the letters «, 3,7, 6, .... It is straightforward to verify that

%) < |« (1.7.1)

The converse inequality in (1.7.1) fails as one coordinate of x may vanish. However,
foreachk=1,2,... we have for some 0 < ¢, x <d, x < *, the following inequality:

englxF < Y X < gl (1.7.2)
B|=k
for all x € R"\ {0}. To prove (1.7.2), we notice that the function
v
|Bl=k

defined on R" has no zeros on the unit sphere and is continuous. Then it is bounded
above and below by constants on the unit sphere §"~!. These constants appear in
the double inequality (1.7.2). A related inequality is
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Cur(1+ XD < Y WP < Dus (14 ). (1.7.3)
IBI<k

This follows from (1.7.2) for |x| > 1, while for |x| < 1 both terms in (1.7.3) are at

We end the preliminaries by noting the validity of the one-dimensional Leibniz

rule ’ )
d" E (m\df d" g
o = - 1.74
am /¢) ,%(k) ik =k (1.7.4)
for all ™ functions f, g on R, and its multidimensional analog
o [0/ _
%(f8) = 2 (ﬁi) (B >(aﬁf)(a“ Pe), (1.7.5)

B<a

for f,g in CK‘O“(R") for some multi-index o, where the notation 8 < ¢ in (1.7.5)
means that § ranges over all multi-indices satisfying 0 < /3/ <ojforall1 < j<n.
We observe that identity (1.7.5) is easily deduced by repeated application of (1.7.4),
which in turn is obtained by induction.

Theorem 1.7.1. Let m € Z+, 1 < g < oo, g € LY(R"), and ¢ € €™ (R") N L7 (R").
Moreover, assume that d°¢ lies in LY (R") for all multi-indices o with |ot| < m.
Then @ * g lies in €™ (R") and 0*(pxg) = (0%@) xg € L™ for all |at| < m.

Proof. Let e; be the unit vector (0,...,1,...,0) with 1 in the jth entry and zeros in
all the other entries. If ¢ > 1 we initially make the additional assumption that g has
compact support. If ¢ = 1 this initial assumption is not necessary.

We fix an arbitrary xo € R"” and we show that ¢ * g has a jth partial derivative at
Xo, 1.e., prove the case o = e;. Using the fundamental theorem of calculus write

(g+@)(xo+1e;) — (g @) (x0)

A(g,9)(t,x0) =

p —8*0djp(xo)
1
2/0 / [(%'(P(Hfsej)—3j<P(y))g(xO—y)} dyds.  (1.7.6)
We note that the integrand in (1.7.6) tends pointwise to zero as t — 0 by the fact
that ¢ € €'; moreover it is bounded by 2(|0j@ | = (xy—suppg) | (X0 — )| which lies in
L'(R" x [0, 1],dyds). The last assertion follows by the hypotheses of the theorem
if ¢ = 1 and by the additional assumption that it lies in L7 and is supported in a
compact set, on which d;¢ is certainly bounded, if g > 1. The LDCT then yields
that A(g,)(¢,x0) — 0 as t — 0 for any fixed xp € R” when g has compact support.
‘We now remove the assumption that g has compact supportif ¢ > 1. Given g € LY,
set g (x) = g(x)X|xj<m for M > 0. Given a point xo and € > 0 we find an M such
that ||g — gum||e < € (as g < =) and we pick a § > 0 such that for || < § we have
|A (gm, ®)(t,x0)| < €. Additionally, by Holder’s inequality we obtain

1
At 000,50 = [ g sl |50 +1567) 30l 5 < 2¢ 0]
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Combining these estimates, for |¢| < J, we deduce

|A(g,0)(t,x0)| < |A(gm, 0)(t,x0)| + |A(g—gm, 0)(1,x0)| < e+2]|0;0]|, &

Thus A (g, @)(z,x0) converges to zero as t — 0; hence dj(@ * g) = (djp) *g on R™.
The continuity and boundedness of d;(¢ *g) is derived from that of (d;¢) * g by
Theorem 1.6.7. Finally, assuming 0% ¢ € L4 for all |ar| < m, we obtain the existence,
continuity, and boundedness of 9% (¢ x g) via the identity d* (@ xg) = (%) * g,
which is proved by induction on m, applying the case m = 1 repeatedly. (]

The following corollary shows that the convolution inherits the best degree of
smoothness of the two functions.

Corollary 1.7.2. Let ¢ € €= (R"), and g € L' (R"). Assume that 9* ¢ lies in L (R")
Sor all multi-indices . Then @ x g lies in €7 (R").

Proposition 1.7.3. (a) There exists a nonnegative and nonzero smooth function sup-
ported in a given ball B(xo,R) in R".

(b) Given 0 < rj < ry < oo there exists a smooth function with values in [0,1] sup-
ported in B(0,ry) and equal to 1 on B(0,ry).

Proof. (a) On the real line define the function

e /' whent >0,
gt) =
0 when t <O0.

Notice that g € (R \ {0}), while for 7 = 0 we have

t)—g(0 “1/r_o t)—g(0 0-0
1imwzlim67:07 1imM:1im:7:0,
t—0t t t—0t t t—0— t t—0— t

50 g'(0) = 0. In a similar way we can show g”(0) = 0 and in general g*)(0) =0
for all k. All these assertions make use of the fact that lim,_,+ t~Le=1/t = 0 for any

L > 0. Then the function (r) = g(1 —¢)g(1 +1¢) is smooth, nonnegative, nonzero,
and is supported in [—1, 1], and so does %(¢?); see Figure 1.4.

24 h(t?)

._/ \_.

-1 0 1

Fig. 1.4 The function h(z?).

On R” consider the function H(x) = h(|x|?), which is a composition of two
smooth functions, hence it is smooth, nonzero, and is supported in the unit ball.
Then H((x —xp)/R) is smooth, nonzero, and supported in the ball B(x, R).
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(b) Start with a nonzero smooth function f > 0 supported in the ball B(0, 3 (r, — 1))

with integral 1. Define the function ¢ = X80, (ry+r1)) ¥ f- Then ¢ is supported in

B(0,3(r2 = 1)) +B(0,5(r2 +11)) = B(0,r2),

is nonzero, and is smooth by Theorem 1.7.1. Moreover, for |x| < r; we have

- dy = dy=1,
o(x) /‘xfylg%(rwl)f(y) v= [, 0

as {y ER": [y—x| < §(ro47r1)} contains {y € R": [y| < $(ro—ry)}, which in turn
contains the support of f. Finally, notice that 0 < @ < || f||1 = 1. O

Proposition 1.7.4. For any 0 < p < e, 65°(R") is dense in L"(R").

Proof. 1t suffices to prove the assertion for nonnegative functions, as a complex-
valued function can be written as fi — fo +i(f3 — fa), where f; >0, j =1,2,3,4.
Given f > 0 in LP(R") and € > 0 we pick a step function s = Z]]y:lbijj with

If— erLn,jn(]’p) < gmin(l:P) /2 where b; > 0 and Q; are disjoint cubes. We claim that
for each j there is a ¢ function /; supported in Q; with values in [0, 1] such that

gmi“(]vl’)

J

||m1n (L,p)

X0, —hj

To construct h;, if Q; has side length ¢(Q;), by Proposition 1.7.3 we find a €

function ¢; supported in [—3, 3] with values in [0, 1] such that

gmin(l,p) 1

min(1,p)n *

1
2mein(1,p) Z ,
j 0(Q;) v

||m1n (1,p)

% (1.7.8)

11
330

Define hj(x1,...,.x,) =IT;_, @; ((xk — cj’k)/é(Qj)), where c;  is the kth coordinate
of the center ¢; of Q;. Then we derive (1.7.7) using (1.7.8), the identity

/ / /
ar - ag—y (ax — ap)dpy - a,

M=

ajay---a, —adydy---a, =

k=1
(with the obvious modifications when k = 1,n) and the the subadditivity of the
expression || - ||21pln (Lp) . Finally we obtain from (1.7.7) that

min( gmin(lAp)

N
"3 ) < S

Is- zb, i

which, combined with || — s|[Fi""7) < gmin(Lp) /2 yields || f — SV bihillw <&
so the claimed density is valid.
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Note that Proposition 1.7.4 fails when p = oo as the function 1 cannot be approx-
imated in L™ by smooth functions with compact support.

Exercises

1.7.1. Let a € R. Show that |V |x|?| = |a|[x|*~! for all x € R"\ {0}.
1.7.2. For t € (0,1) define h(t) = e~ '/"e~'/(1=") and set h(r) = 0 for ¢ ¢ (0, 1). Show

that 7 € ¢;°(R) and that
X 1 —1
xH/ h(r) dt (/ h(s)ds)
—oo 0

is a smooth increasing function that vanishes for x < 0 and equals 1 for x > 1.

1.73. LetO<ri <rm <r3<rg <oo.

(a) Prove that there is a ¢~ (R") function which vanishes when |x| < r; and is iden-
tically equal to 1 for |x| > 7.

(b) Prove that there is a %;°(R") function supported in the annulus r; < [x| < ry
which is equal to 1 on the annulus ry < |x| < r3.

1.7.4. Let a > 1 and a ¢ Z. Prove that |x|? lies in €14 (R")\ €14+ (R").

1.7.5. (Poincaré inequality) Let —co < a < b < o and let u be a smooth function
supported in 2 = (a,b) x R"~!. Prove that

/ > dx < (b—a)2/ IVl dx.
Q Q

[Hint: Start with |u(x;,x)|* = | /! 81u(t,x’)dt‘2 for x; < b, apply the Cauchy—
Schwarz inequality, and then integrate over x; € (a,b) and over x' € R"~1]

1.7.6. (Partitions of unity) Let K be a compact subset of R” and let {Uy } ¢ be an
open cover of K. Show that there are functions y;, j =1,...,L, such that

(a) y; are nonnegative and smooth forall j =1,...,L.
(b) 2?:1 y; = 1 on a neighborhood of K.
(c) For each j there is an index & € I such that y; is supported in Uj,.

Such a family of functions y; is called a partition of unity subordinate to {Uq } ;.
[Hint: For each x € K find concentric open balls By, B} such that x € B, G B, C Uy
for some o depending on x. Pass to a finite subcover By, ,...,By, of K. Choose
nonnegative smooth functions ¢; supported in Bjcj and equal to 1 on By; by Propo-
sition 1.7.3. Then set

J
yi=¢1, and w1 =0 [[(1—¢)
i=1

for1 <j<L.]
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1.8 Schwartz Functions

For a pair of multi-indices o and f8 and a function f € ¢"(R") we define the p, g
Schwartz seminorm’ of f by

Pap(f) = sup [x*9P f(x).

xeR”

Naturally, this quantity could be infinite for certain smooth functions.

Definition 1.8.1. A ¥~ complex-valued function f on R" is called a Schwartz func-
tion if for all multi-indices & and 8 we have p,, g(f) < co. The space of all Schwartz
functions on R” is denoted by . (R").

Thus a ™ function is called Schwartz if and only if for every multi-index 8 and
every N € Z* there is a constant Cy p such that for all x € R" we have

Cnp

B X T
901 <

Obviously, every smooth function with compact support is a Schwartz function, i.e.,
%, (R") is contained in ./ (R").

Example 1.8.2. The function e lies in .7 (R") but e~ does not, since the latter
fails to be differentiable at the origin. The ¥ function g(x) = (1 + |x|>)~'? is not
in Z(R"), as pg, 0(g) = o= for a; = (21,0,...,0) and 0 = (0,...,0).

Example 1.8.3. The function ¢~ /*¢~* X[0, lies in .7 (R) as e /X X[0.) 18 infinitely
differentiable at the origin with vanishing derivatives of all orders.

Proposition 1.8.4. Let f, g be in S (R") and c € C. Then f+ g, cf, fg, and fxg
liein Z(R").

Proof. The only nontrivial assertion is that 9P (f  g) has rapid decay at infinity. For
each N > 0 there are constants Cy g and Cy +nt1,0 such that

C G
B _ N.B N+n+1,0
/Rn(a f)x y)g(y)dy’ g/n T apr @ 48D

Inserting the simple estimate (1 + |x —y|)™ < (14 [y)M(1+[x])~" in (1.8.1) we
deduce that

(0P f#8)(x)] < Cy pal1+ |XI)7N/RH(1 +) " dy = C(N.Bon) (L ),

and this proves the rapid decay of oP f * g at infinity. (I

7 The Schwartz seminorm is in fact a norm (see Exercise 1.8.2).
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Next we define convergence on the space of Schwartz functions

Definition 1.8.5. Let {f; 1 be a sequence of Schwartz functions. We say that f;
converges to a Schwartz function f in the Schwartz topology, or simply in .7 (R"),
if pop(fj—f) — 0 as j — oo for all multi-indices o, B. We then write f; — f in

In particular, if f; — fin .7 as j — eo, then for all multi-indices 3, the sequence
9P f; — 9P f tends to zero uniformly on R”.

Example 1.8.6. The sequence of Schwartz functions f;(x) = e~ !/¥¢™/* X[0.-) On the
real line converges to zero in . (R) as j — oo. To verify this assertion, first we notice
that for each m € Z* there is a polynomial P,, of degree 2m such that

ar 1 _1
W(e X):Pm(%)e Ar

a fact that will be tacitly used in the sequel. Now for j > 1 and for nonnegative
integers K, L we estimate

Pi.L(f))
L I L 1
LY\ 1 K —jxd 1 L\ 1 x| d 1
< Jlsup [xte == (e )|+ j sup e |— (e x)|.
Z&(l) >l ) Z& ! 0<x<1 )
The first supremum tends to zero as j — oo since e /¥ < e /2¢7%/2 when j,x > 1.

In the second supremum notice that the th derivative of ¢~'/* on [0,1) is bounded
by CyxM for any M € Z*. Choosing M = L+ 1 we bound the second term by

. C!
CijLe—jxxL-‘rl < T.LSH%)(I‘L_HE_t)
1>

)

which also tends to zero as j — oo,

Theorem 1.8.7. The space €;°(R") is dense in 7 (R") in the Schwartz topology.
Precisely, fix a smooth function @ with values in [0,1] supported in B(0,2) and
equal to 1 on the unit ball B(0,1). Then for any f € -7 (R"), the sequence fj(x) =
F(x)o(x/j) converges to f(x) in the Schwartz topology as j — oe.

Proof. For fixed multi-indices o and B we show that p, g(f@(-/j) — f) tends to
zero as j — oo. By Leibniz’s rule we estimate this Schwartz seminorm by

Ezﬁ @ ﬁ‘? X"‘@’*f)(x)(we) 1)
Ve

X (7F)(x)(9P ) (5 ) |+ sup

J xeR”

As (9P~7¢)(x/j) remains bounded for all j, the first term tends to zero as j — oo,
since |B| —|y| > 1. As ¢(x/j) — 1 =0 |x| < j, the second supremum equals



44 1 Introductory Material

sup ] (0(5) = 1) | [P0 N0l] < 5[5 X 3 pussrn(9)]

[x|>j J

which tends to 0 as j — co. In the last inequality we made use of (1.7.2) and we
set e, = (0,...,0,1,0,...,0), the multi-index with 1 in its kth coordinate and zero
elsewhere. ]

Exercises

. s X 2 3 40 .
1.8.1. Which of the following functions e”‘e_"z, e'c e"‘z, el e"‘z, e‘W lie in the
Schwartz class .7 (R)?

1.8.2. Suppose that a Schwartz function ¢ satisfies p, (@) = 0 for some multi-
indices a, 3. Prove that ¢ = 0.

1.8.3. Let ¢ € .(R") and P be a polynomial. Show that Pp € .7 (R").

1.8.4. Let M,N > n and suppose that f, g are functions on R” that satisfy the esti-
mates | f(x)| <A(1+ |x|)™ and |g(x)| < B(1+|x|)~" for all x € R". Prove that for
some C = C(n,N,M) > 0 we have

[(f%8)(x)| < CAB(1+ |x|)~™NM) o all x € R”.

1.8.5. Show that the convolution of a Schwartz function with a compactly supported
integrable function is another Schwartz function.

1.8.6. Suppose that f; — f in the Schwartz topology as j — oo. Prove for all multi-
indices yand 0, 97 f; — 97 f and (~)5fj — ()% f in the Schwartz topology, as j — oo.

1.8.7. Let f;, f, g}, & be Schwartz functions for j=1,2,.... Suppose that f; — f and
gj — gin 7 (R") as j — co. Prove that f;g; — fgin 7 (R"), as j — co.

1.8.8. Let 0 < p < oo. Prove that there is a constant C = C, ,, such that
loll,<C X Paol)

o[ <[n/p)+1

for all ¢ € .(R"). Conclude that if f; — f in the Schwartz topology, then f; — f
in L7, [Hint: Use inequality (1.7.3).]

1.8.9. Let f},f,g;,g be Schwartz functions for j = 1,2,.... Suppose that f; — f
and g; — g in 7(R") as j — oo. Show that fjxg; — fxgin 7 (R"), as j — oo,
[Hint: Using the inequality [x%| < 219 (|x — y[l*d 4 |y|l*l) and (1.7.3) prove first that

Pap(@xw) <Clpoo(w) Y, pra(@)+pos(e) D pro(w)|,

[YI<n+1+|e [7|<n+1+|o

for some constant C that depends on n and «. Use the previous exercise.]
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1.9 Approximate Identities

The futile search for a function f; in L' (R") such that fo * f = f for all f € L'(R")
leads to the notion of approximate identities.

Definition 1.9.1. An approximate identity is a family of L' functions K5 on R” with
the following three properties:

(i) There exists a constant ¢ > 0 such that || K || 1(ge) < ¢ for all § > 0.
(i) fenKs(y)dy =1 forall § > 0.

(iii) For any y > 0 we have that [}, |Ks(y)|dy — 0 as 6 — 0.

[>y

We also define approximate identities as sequences {K, };»_,, in which properties
(i) and (ii) are valid for all m = 1,2,... and property (iii) holds as m — oo.

Example 1.9.2. Let K be an integrable function on R” with integral 1. Let Kg(x) =
87"K (8~ "'x). We claim that the family {K5}s- is an approximate identity. Proper-
ties (i) and (ii) are immediate, while property (iii) follows from the fact that

/\;C\ZY\Ké(x)‘dx:/ [K(x')|dx' — 0

l¥'[>v/8
as 6 — O for y fixed.

Approximate identities can be thought of as families of positive functions K that
spike near 0 as 0 becomes smaller, in such a way that the area under the graph of
each function remains equal to 1, as shown in Figure 1.5.

An important example is provided
by the function

K(x) = (n(x*+ 1)),
which gives rise to the family

Ks(x) =8 'K(5 ')

1 6 F
“rera 070 b
called the Poisson kernel. Fig. 1.5 The Poisson kernel shown for 6 = 1,

6 =1/3, and & = 1/9 (spikiest).

Lemma 1.9.3. Given 0 < p < e and f € LP(R") we have that

=) =@ dx =0 asly| =0,
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Proof. Let m, = min(1, p) for 0 < p < eo. The proof will be based on the subaddi-
tivity of the expression f — || f||;#. Given & > 0 and f € L” we find a continuous
function with compact support / such that || f — k||;% < €7 /3. We write

[£C=y) = Fll < |1FC=y) =h(-=y)]

o G =) =hll + =17

Now suppose that & is supported in the compact ball B(0,R). Then for |y| < | the
function h(- —y) — h is supported in B(0,R+ 1) and is bounded above by the con-
stant 2||h||z=. Hence |h(x —y) — h(x)| < 2||h||L°°Xm € L'(R"). By continuity
we have that for all x € R"

h(x—y)—h(x) —0
pointwise as y — 0. The LDCT gives that ||h(- —y) — hH'L";’ — 0as |y| — 0. It follows
that there is a 6 > 0 such that
mp

3

mp €

<6 = Hh(~—y h|

Consequently, when [y| < min(1,8) we have || f(- —y) — f||;7 < 3(& ')) g™, O

Let {K§ } s-0 be an approximate identity on R™. If f lies in L” (R") for 1 < p < oo,
then Kg « f lies in LP(R") and hence it is defined almost everywhere. However,
if f lies in L*(R"), then the integral defining K * f converges absolutely; hence
(Ks * f)(x) is well defined for every x € R".

Theorem 1.9.4. Let {Ks} 5+ be an approximate identiry.

(@) If f lies in LP(R") for 1 < p < oo, then ||Ks * f — f||p(rn) — 0 as § — 0.
() If f in L= (R") then ||Ks * f — f||=(g) — 0 as § — O whenever E S R" and f is
uniformly continuous in a neighborhood of E, in the sense that

Ve>038 >0suchthatx € E, [y| <6 = |f(x—y)—f(x)] <e. (1.9.1)

Proof. (a)Let f € LP(R"), 1 < p < . Since K has integral 1, for almost all x € R"
we have

(Ks* f)(x) /fx V) Ks(y)dy — f(x /K5
= [ (flx—=y)—fx)Ks(y)dy.

Rn

(Note that when p = <o the preceding identity holds for all x € R".) Taking L” norms
in x and applying Minkowski’s integral inequality we obtain

win < [ 1C=3) =1

Let € > 0 be given. Let us first assume that 1 < p < eo. By Lemma 1.9.3, there is
a y > 0 such that

1K *f = £]

Lﬂ(Rn)|K5(y)|dy~ (1.9.2)
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<y = [[£(=9) = fllpgn < 2% (1.9.3)

where c is the constant that appears in Definition 1.9.1 (i).
In view of (1.9.3) it follows that
€

€ €
/Mqu(' =) = | ey K5 )l dy < [Ks()ldy < 5-c=3. (194

2¢ Jpyl<y

Now choose & such that for 0 < & < & we have [~ |K5(y)|dy < m by
property (iii) in Definition 1.9.1. Then for 0 < § < & we have

€
[ =)= oy Ks)ldy <2010 [ KsG)ldy< 5. (195)
yl=y =y
Combining (1.9.2), (1.9.4), and (1.9.5), we deduce that for 0 < & < & we have
K5 * f — fllprry < €. In other words, K * f — fin L7(R").

(b) Now consider the case where p = ec. The fact that f € L™ is uniformly continuous
in a neighborhood of E implies that given € > 0 there is a y > 0 such that

€
XEE, pl <y = [flx—y) = f)l < .
That is, (1.9.3) holds when L”(R") is replaced by L™ (E) and the proof proceeds as
that in part (a). O

Remark 1.9.5. Condition (1.9.1) holds in two important situations: (a) when E is
compact and f is continuous on E + B(0, &) for some & > 0, and (b) when E is a
finite set and f is continuous at every point in E. In particular, if f € L™ is continuous
at a point xp, then (Kg * f)(xo) — f(x0) as 0 — 0. Moreover, if the supports of Kg
shrink to {0} as § — 0, then (Kg * f)(xo) is well defined for & sufficiently small
without the assumption that f is globally bounded, and

(Ks + 1)) = f(x0) = | K[ (x0=3) = /() dy =0,

as long as f is merely continuous at xg (but could be unbounded near another point).

Example 1.9.6. On the line consider the
approximate identity e = i X[-eel- To
see how the family &, * f tends to a func-
tion f, we take f to be the characteristic
function of an interval [a,b]. The graph
Of %45 * he is depicted in Figure 1.6 for P o
€ small enough. It is clear from the pic- ;¢ a 41¢ bebbie
ture that Y, y * he converges to y[, ;) in
L? for p < e and also pointwise at the
points of continuity of the characteristic
function, i.e., all points but a, b.

Fig. 1.6 The graph of x|, * he for € < b%“.
The dotted lines represent the function ¥, ).
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A simple modification in the proof of Theorem 1.9.4 yields the following variant.

Theorem 1.9.7. Let K5 be a family of functions on R" that satisfies properties (i)
and (iii) of Definition 1.9.1 and also

/Rn Ks(y)dy—A (1.9.6)

for some fixed A € C and for all § > 0.

(a) If f € LP(R") for some 1 < p < oo, then ||Ks * f — Af||Lp(rny — 0as 6 — 0.
(b) If f in L= (R"), then ||Ks * f — Af|| ;=) — 0 as & — 0, provided f is uniformly
continuous in a neighborhood of a subset E of R" in the sense of (1.9.1).

A family of functions {Kjy } s~ that satisfies properties (i) and (iii) of Definition
1.9.1 and also (1.9.6) for some A # 0 is called an A-multiple of an approximate
identity. In the case where A = 0, it is called an approximate zero family.

As an application of the notion of approximate identities we show that €;°(R")
is a dense subspace of LP(R") for all 1 < p < ce.

Example 1.9.8. Given f € LP(R") and € > 0 we find a compactly supported func-
tion / such that || f — h| gy < €/2. In fact such an & can be chosen to be f | j<um
for some large M (since fx sy — f in LP(R") as M — oo by the LDCT). Next
we find a compactly supported smooth function K on R” with integral 1 and we
consider the approximate identity {Ks}g~¢. Then in view of Theorem 1.9.4, there
isa & > 0 such that ||[Ks * it — hl|p ey < €/2. Tt follows that ||Ks * h — f1|1prr) < €
and notice that K * /1 is both smooth and compactly supported.

Exercises

1.9.1. Show that for all x € R we have

lim & ycos(sin(x —y))

————>—~dy=0.
eoor Jr (2rerpr @

Moreover, the convergence is uniform in x when |x| < M, for any M > 0.

1.9.2. For m = 1,2,... let B, be balls in R” that contain the origin and whose mea-
sures shrink to 0 as m — co. Prove that the family of functions |B,| !y, is an
approximate identity. Write B,, = B;}, UB;,, where B}, B,, are disjoint and equimea-
surable. Show that the sequence |B,| ™' ¥+ — |Bu| ™' x5 is an approximate zero
family as m — oo.

1.9.3. Let Q,,(t) = c(1 —12)™ for ¢t € [—1,1] and zero elsewhere, where c, is a
constant chosen such that fll Onm(t)dt=1forallm=1,2,....
(a) Prove that ¢, < (m+1)/2. [Hint: Use (1 —*)™ > (1 —|t|)™ when |t| < 1.]
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(b) Prove that {Q,,};>_, is an approximate identity on R as m — eo.
(c) Given a continuous function f on R supported in [0, 1], show that

1
cm/O FO—@—0)2"di = (f+Qu)x),  x€0,1],
is a sequence of polynomials that converges to f uniformly on [0, 1] as m — eo.

1.9.4. (Fejér kernel) Show that the sequence of functions {F, }7_, defined on the

real line by

)
m=1

2

l =
XMSQ

2

sin(mw(m+ 1)r) Ty
i<l

sin(7t)

Fu(t) = !

T m+1 m+1

m )
2 ekat
k=0

is an approximate identity as m — oo. Also verify the preceding identity.

1.9.5. (Continuous Fejér kernel) Show that the family {F; }¢~o defined on R" by

1 & (sin(mx;/e)\ 2

Fe(tye o) = — [ | il
e(X1s ) en j1< nx;/e

forms an approximate identity. [Hint: Use Exercise 2.3.3.]

1.9.6. Let 0 < b < 1 and z be a complex number with |z| < 1/b. Let f be a continuous
function on the line. Prove that

im =5 o [ == o)
ml_rgo pm j:mZ pi+l T 1= bz ’

[Hint: Apply Theorem 1.9.7 for a suitable approximate identity sequence {K,, }»_, }

1.9.7. Let Q be an open subset of R”. Denote by 4;°(£2) the space of all smooth
functions with compact support contained in 2. Suppose that f,g are locally inte-
grable functions on € (i.e., they lie in L'(K) for any compact subset K of ).
Assume that

/f(x)(p(x)dx: /g(x)(p(x)dx for all ¢ in €y (Q2).

Prove that f = g a.e. on Q. [Hint: It will suffice to prove f = g a.e. on every ball
B(xp,r) contained in Q. Let & = dist(B(xo,r), Q) (or g = 1 if Q2 = R"). Pick a
smooth function with integral 1 supported in the unit ball of R” and define h = f — g
on B(xg,r+ %) and zero elsewhere. Then h € L'(R") and @ * h is supported in

B(xo,r+ 2%) and vanishes on B(xo, r) for € < &/3. Apply Theorem 1.9.4 (a).|
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Fourier Transforms, Tempered T
Distributions, Approximate Identities

2.1 The Fourier Transform on L'

Given the 1-periodic function

h(x) — _56—(27[1'))( _ 3 + 26(27[1'))( _|_ 1763(2ﬂi)x + 564(277:i)x _ 266(2ﬂi)x

o0

k=—oo

on the line, the sequence {ay } of coefficients

a3 a-, a-1 ay ay a ay a4 as dg ay as

lists the number of times the exponentials ¢*(2™)* appear in the function. In other

words, the constant a; “quantifies the presence” of the term (2%, Examining the
magnitude of these terms, we can determine, for instance, which frequency is the
most dominant (in our example it is the third). The number g, is called the Fourier
coefficient of h and can be isolated from the function 4 by integrating against the
conjugate exponential of eK2T)¥ j e

1 .
ak:/ h(x)e 2k,
0

Analogous examples can be written for functions of two or more variables that are 1-

periodic in each variable. Motivated by the periodic situation, we extend the notion

of “Fourier coefficient sequence” to nonperiodic functions on Euclidean spaces.
We denote the inner product of two points x = (x1,...,%,), y= (¥1,--.,y,) in R"

by x-y =31 xy;.

Definition 2.1.1. Given f in L' (R") we define its Fourier transform by

f&)= /”f(X)e’z”i""gdx. @.1.1)
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Example 2.1.2. If ¢(x) = ¢~™ defined on R, then 0(&) = (&) for all real €. To
prove this, consider the function

oo -
F(s) = / e ) gy se€R.

—oo

For A real in [—1,1] by the fundamental theorem of calculus we write

h o
(”ZL —ori | / R 0P ;s 4 ih)dBd,

and by the LDCT we can pass the limit in # — 0 inside both integrals. We obtain
that F is differentiable and

oo , oo ,
s) = —2mi(t+1is)e” dt = i— (e dt=0.
F! (t+is)? :;t n(t-+is)?

—oo

Thus F is constant and equal to F(0) = 1. Using this fact, we calculate the Fourier

—mt?

transform of the function @(¢) = ¢~ on R as follows:

e —nt? —2mits ,ms* ns?
le(O):F(s):/_ e e e dr =" p(s),

from which we conclude that ¢(s) = e = ¢(s) for any s € R.

Remark 2.1.3. Notice that if F(x1,x2) = fi(x1) f2(x2) where f; € L'(R), then
F&n&) = [ [ At pla)e 0828 dn = (&) ARG
RJR

. . . 2
An analogous calculation holds in R”. Thus the function x — ¢ ™" on R” equals
its Fourier transform, i.e., Example 2.1.2 can be extended to all dimensions.

Example 2.1.4. The Fourier transform of the function |, ) on the real line is
. —2mibE _ ,—2mia&
/befzmxgdx _ e §#0,
Ja b —da é = O
This can be expressed as sin(2wb&)/w& when b = —a > 0.

Proposition 2.1.5. Let f be in L' (R"). Then fis uniformly continuous on R" and

Moreover, if g also lies in L' (R"), then

—

fg=1g (2.1.3)
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Proof. Inequality (2.1.2) is a direct consequence of Definition 2.1.1. To prove the
uniform continuity of f let € > 0 be given. Notice that f(x)(e=2"*" — 1) — 0 as
h — 0 for all x € R"; hence by the LDCT, there is a § > 0 such that

h| < & =>/ (0] le 27" — 1| dx < e (2.1.4)
Rn

~ ~

But | f(&) — f(&)] is bounded by the integral in (2.1.4) with h = & — &’; thus when
|E —E&'| < 6 wehave |f(E)— f(E")| < &, which gives that f is uniformly continuous.
Identity (2.1.3) is proved via the following calculation:

f{*\g(é) = /n - f(x—y)g(y)e*ZTEix-& dydx
- /" R" f(x_y)g(y)eizm'(x*}')'iefzm‘y.g dydx

= / 8(y) / = y)e 20 E gy =2 gy
R” JR"

-~

= f(5)8(S),
where the application of Fubini’s theorem is justified by the absolute convergence
of the preceding double integral. (]

We now continue with some properties of the Fourier transform. Before we do
this we introduce some notation. For a measurable function f on R” and y € R” we
respectively define the translation and reflection of f by

(Pf)@) =flx=y) and  f(x)=f(-x). (2.1.5)
Also recall the L' dilation f; (x) = A~"f(x/4), A > 0, that preserves the L' norm.
Proposition 2.1.6. Given f, g in L'(R"),y € R", b € C, and A > 0, we have

) f+g=F+8

) bf=bf,
3 f=1.
@ F=7.

(5) vf=e7r0f,
©) (HOVFT=(f),
D AT =A"FA ) =(f)a

8) foAl=

—_

detA] FoA~!,ifA is a matrix with nonzero determinant,
e

©) f/c.;A = fo A, where A is an orthogonal matrix.
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Proof. Properties (1)—(4) are straightforward. Properties (5)—(7) require a suitable
change of variables but they are omitted. Property (9) follows from (8) as orthogonal
matrices satisfy A~! = A’ and |detA| = 1. Finally, we prove (8). Viewing elements
of R" as column vectors, we set y = A’x. We have dy = | detA|dx and thus we write

FoA(E) = [ riatx)e 2 dx

! ( )e*Zﬂi(A’)‘ly-é dy

~ [detA] Jrs
1 _

:7‘ detA‘ . (y)e 2mi(A yédy
1

F(y)e AT gy

~ |detA| Jre

NP
- \detA\f(A '£).

where we used that (A~!)" = (A")~!. This proves the identity in (8). O

A measurable function is called radial if foA = f a.e. for every orthogonal matrix
A. For every radial function f on R” there is a function fy on the line such that
f(x) = fo(|x|) for almost all x € R".

Corollary 2.1.7. The Fourier transform of an integrable radial function is radial.

Proof. Let A be an orthogonal matrix. Since f is radial, we have f = f oA ae.
This implies f 0A = f But in Proposition 2.1.6 (9) gives that foA = f oA. Thus
f 0A = f and this shows that f is radial. (]

Proposition 2.1.8. Let ¢ € €~ (R"), £ € R", and o be a multi-index. Then

(1) sup sup (1+[x])"*2[0P p(x)| < oo implies (9%¢) (&) = (2mi&)* H(E).

|BI<|a|x€R"

() If (1+]-))*g e L'(R") then %@ exists and equals the Fourier transform of
the function x — (—27ix)*@(x).

(3) ¢ € /(R") implies that p € .7 (R").

Proof. Property (1) is proved by integrating by parts |¢¢| times, which is justified by
the hypothesis that for all |3| < ||, @8 ¢ are integrable and vanish at oo. We have

(@%)"(5) = /R ) (0%@) (x)e S dx = /R o(x) (2mi&)%e P dx = (2miE ) H(E)
as (—1)l(—2mi&)* = (2mi&)?.

To prove (2),lete; = (0,...,1,...,0) have 1 at its jth entry, and zero elsewhere.
Since

g 2mix-(Ethej) _ ,—2mix-E

h

— (=2mix;)e 26 0, ash—0, (2.1.6)



2.1 The Fourier Transform on L! 55

and the preceding function is bounded by 47x|x| for all & and &, the Lebesgue
dominated convergence theorem implies that the integral of the function in (2.1.6)
with respect to the measure ¢@(x)dx converges to zero. This proves (2) for a = e;.
Assuming that df @ = ((—2mi-)B )™ for some |B| < ||, applying this procedure
o (—2mi(-))P ¢ in place of @, we obtain 979 = ((—2mi-)"¢)" where y = B +e;.
This process ends when |y] reaches |ar| in view of the hypothesis that (1 + |x|)/* ¢ (x)
lies in L' (R"). This inductive procedure yields (2) for the given multi-index o.
To prove (3) we employ both (1) and (2) as follows:

N m)lBl N 2 2%(
105326 . = S0P < S0Py <

where the first inequality uses (2.1.2) [Proposition 2.1.5]. (]

Exercises

2.1.1. Let f, g, h be integrable functions on the line. Prove the following:

(a) The Fourier transform of (xy,x2) — f(x; —x2)g(x2) is f(§1)§(§1 +&).
(b) The Fourier transform of (x1,x2) — f(x1 +x2)g(x] —x2) is

(&1.&) = 3 (13%)8(552).
(¢) The Fourier transform of (x,x2,x3) — f(x1 —x2 — x3)g(x2 +x3)h(x3) on R? is

(£1,62,8) = F(EDG(E +E)h(E — &).

2.1.2. (a) Compute the Fourier transform of the function X
(b) Prove that for £ € R we have

1 on the real line.

2

I\)\

[ 1= Wyeostemgnyan = T EE),

with the proper interpretation when £ = 0.
[Hint: Part (b): Use Example 1.6.3 and property (2.1.3) in Proposition 2.1.5.]

2.1.3. Prove that the convolution of two integrable radial functions on R” is radial.

2.1.4. Recall that the function ¢(x) = ¢~™ on the real line satisfies 0= 0.

(2) Prove that the Fourier transform of u(x) = x@(x) is —iu(&).

(b) Construct a nonzero function v in .%(R) such that v= —v.

(c) Construct a nonzero function w in . (R) such that w = iw.

[Hint: Parts (b) and (c): Use Proposition 2.1.8 (1) for the second and third deriva-
tives. |
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2.1.5. Let ¢j, ¢ € . (R") such that ¢; — ¢ in .. Show that ¢; — ¢ in ..
[Hint: Show that each p,, g(p; — @) is bounded by a finite sum of p, 5(¢; — ¢).]

2.1.6. Suppose that g is a nonzero integrable function on R with compact support.
Prove that there is an entire function that coincides with the Fourier transform of g.
Conclude that g cannot vanish on a convergent sequence; in particular it cannot have
compact support. Find formulas for the complex derivatives of g.

2.2 Fourier Inversion

Definition 2.2.1. Define the inverse Fourier transform of a function f in L' (R") by

@) =f(=¢), &eRr"

The inverse Fourier transform is the Fourier transform composed with the reflec-
tion & — —¢& and has properties analogous to those listed in Proposition 2.1.6. Its
name is justified by the following theorem.

Theorem 2.2.2. (1) (Jumping hat identity) For f, g in L' (R") we have
| F©s@)de= [ rwawa. @2.1)
(2) (Fourier inversion) If both f and flie in L'(R"), then

A =r=0"" ae. (2.22)
Thus f is almost everywhere equal to a uniformly continuous function.

(3) (Parseval’s identity) If f,h,h € L', then

f@hG)dx= | FE)h(E)dE (2.2.3)
R" R"

and

Fh&)dx= | Fx)h'(x)dx. (2.2.4)
Rn Rn

Proof. (1) Identity (2.2.1) immediately follows from the definition of the Fourier
transform and Fubini’s theorem. The absolute convergence of the integrals is justi-
fied from the fact that f and g lie in L™ [Proposition 2.1.5].

(2) For fixed y € R" and f 7j?in L (R"), we insert in (2.2.1) the function
§(E) = 2 mIeEl,

By Proposition 2.1.6 (6), (7) and Example 2.1.2, we have that
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N 1 2. 2
) = e o,

T

21,12 . . . . .
and we note that ée’ el isan approximate identity as € — 0. Now (2.2.1) gives

/ f)e e ™ b gy = [ F(&)e2mE v sl gg | (2.2.5)
Jre JRr

The left-hand side of (2.2.5) converges to f(y) in L! by Theorem 1.9.4 as € — 0;
thus by Theorem 1.1.9, for a subsequence €; — 0, it converges to f(y) a.e. The right-
hand side of (2.2.5) converges to (f)"(y) as € — 0 by the Lebesgue dominated
convergence theorem. We conclude that (f )" = f a.e. R". But (f)" is continuous, so

fis a.e. equal to a continuous function. Replacing fV by f in (f¥)" = (fV)V and
applying the left identity in (2.2.2) yields a.e. (f)" = f = f. Here f(&) = f(—&).

(3) Since both & and h are in L', it follows that both functions are in L*. Thus zll\l
integrals in (2.2.3) and (2.2.4) converge absolutely. Define g € L' by setting g = h.
We have that g = h by Fourier inversion. Then (2.2.3) is a consequence of (2.2.1)
and (2.2.4) follows from (2.2.3) by replacing & by h. (]

Next, we describe the behavior of the Fourier transform of integrable functions
at infinity.

Proposition 2.2.3. (Riemann-Lebesgue lemma) For a function f in L' (R") we
have that

7€) —0 s [§] =

Proof. Given ¢ >0and fin L' (R") there is ¢ € €;°(R") such that || f — @1 < €/2.
But ¢ is a Schwartz function by Proposition 2.1.8. Thus there is an M > 0 such that
for |£| > M we have |Q(&)| < €/2. Then for |&| > M we write

FE) S I1GE)+IFE) - FE) < 1FEN+f - ol <5+5 =,
which shows the claimed assertion. (I
Next, we evaluate the Fourier transform of the integrable function e~ 27l on R™,
To achieve this we need the following lemma.
Lemma 2.2.4. Let f be in L' (R). Then we have
Joo

—+oo
Fle—1/1)di = / F(w)du. (2.2.6)

— —oo

Proof. Observe that the map ¢ — u =1 — 1/t is a bijection from (0,0) onto (—oo, o)
and its inverse is u — ¢ = 1 (u+v/u? +4). Similarly the map t — ¢ — 1 /¢ is a bijection
from (—e<,0) onto (—eo,e0) and its inverse is u — ¢ = %(u —Vu? +4). Therefore



58 2 Fourier Transforms, Tempered Distributions, Approximate Identities

/)ft—lﬁ 2/] Flu) (du+dv/i +4),
/‘frﬂﬂ Z/Mf (du—d\/i2 +4).

Summing the preceding two identities, we derive (2.2.6).

Theorem 2.2.5. The following identity concerning the Fourier transform of the
function " on R™ is valid:

EER" (2.2.7)

(e~ = —2

Proof. Applying Lemma 2.2.4 to f(u) = e~ ™ for some A > 0, we get
1
VA

from which, by changing variables s = wAf>, we obtain the subordination identity

e 2 _gA e 2 _gA T 2
— -5 — —nT5 —
2 / e TAt e 2 eZn’Adt _ / e TAt e 2 eZTEAdt — / e AU du =
Jo e e

1 *° 7242 ds
—27A —s  —
e =— ele s —, A>0. 2.2.8
—2mi&-x

Setting A = |x|, multiplying (2.2.8) by e , and integrating with respect to dx

we obtain

(672n|x\)A(§) :/ efzn\x|e—2m§-xdx

n

1 © e ‘m‘ ds —2mi&-x
— = d
R <\/E/O ¢ \/§> ‘ *
1 *° —s \7['\‘2 iEx ds
\/E/o ¢ (/R" x) NG

1 " no__1VsgpR
:47/ e (V) mRER ds
VT Jo N Vs
. . 2
where we used Tonelli’s theorem and the fact that the Fourier transform of e8]

is 6"/ for § > 0; on this see Proposition 2.1.6 and Example 2.1.2 with
the subsequent remark. To properly justify the application of Tonelli’s theorem we

needed that
/ / s, _\m-\z ds
K x— < oo,
n s

a fact that can be easily checked by first evaluating the x integral (which equals a
constant multiple of s"/2) and plugging this value into the s integral. Thus,
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(e 2" Iy (&) = an /'“e,s(1+\§|2)s%7
Jo

by the definition of the I" function. This proves (2.2.7) and also proves that the
Fourier transform of the function in (2.2.7) is e’z”m, as for radial functions the
Fourier transform and its inverse coincide. O

The Poisson kernel on R" is the following integrable function:

r M) 1
P(x) = é g
T (14[x?) 2

This function plays a very important role in many areas of analysis and partial dif-
ferential equations. It often appears as part of the family {P, };~o, where P (x) =
t~"P(x/t). The normalization in terms of the Gamma function ensures that the inte-
gral of P equals 1. Indeed, identity (2.2.7) gives [ga P(x)dx = (0) e 20 =1,
Moreover, for ¢,s > 0 the Poisson kernel satisfies P; x P; = P,y which can be easily
seen by applying the Fourier transform.

Corollary 2.2.6. The family of functions P:(x) = € "P(x/¢), € > 0, is an approxi-
mate identity.

Proof. Properties (i) and (ii) of approximate identities hold as P > 0 and || P||;1 = 1.
Property (iii) holds as for y > 0, [~ Pe(x)dx = [~/ P(x)dx — 0 as € — 0t. 0O

Exercises

2.2.1. Suppose that f, f € L' (R"). Prove that f € LP(R") forall 1 < p < oo,

2.2.2. Construct a nonnegative nonzero Schwartz function f on R" whose Fourier
transform is nonnegative and compactly supported. [Hjnt: Take f = |¢ * ¢|?, where
¢ is the inverse Fourier transforms of an odd, real-valued, and compactly supported
function. Here ¢ (x) = ¢ (—x). |

2.2.3. Without computing derivatives, prove that the Poisson kernel P; satisfies

92
823+232Pt
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[Hint: Let H(¢,x) be the function on the left. As P; is homogeneous of degree —n in
(x,1) and smooth on 8", we have |H (¢,x)| < C(|t|+|x|)™"2. Thus H(z,-) € L' (R").
Show that the Fourier transform of H(z,-) is zero and then use Theorem 2.2.2 (2).]

2.2.4. For given 0 < ay,...,a; < oo, prove the identity on R"

— L2 _ 12 o 2
(e mar] P Ly o )(x)z (alf{ak)ze malx| ’

where a is the harmonic mean of a1, ...,aq; (defined by 1/a = 1/a; + -+ 1/ay).

2.2.5. Let P(x) =y~ 'P(y~'x), where P is the Poisson kernel and y > 0. Show that

Po(x—1) sin(7t) g — y(1—e ™ cos(mx)) +xe~™ sin(7x) .
. it T(x?+y?)

[Hint: Use identity (2.2.3).]

2.2.6. Let f, g, h be Schwartz functions on R”. Derive the identity

[ [ r@shteydsay = [ FEREM-E)dé.
2.2.7. Fill in the gaps in the outlined procedure to prove that

e sin (7t in(7t
/ ST gy~ i SIn() gy .
—e T 8—0t Jr<g T

(a) Let ¢ be an even smooth function supported in [—2,2] and equal to 1 on [—1,1].
Use the Riemann-Lebesgue lemma to show

lim i) o (51) e =

§—0 %Slt\ﬁ% Tt

(b) Use Fourier inversion to write
+e° sin(7t) B 1. -
[ g(6n)d = (14 4, 59(5)) (0)

and let 6 — 0.

2.2.8. Show that for 0 < y < 1 there are constants 0 < Ay < By < e such that

Ay 1 e—27ri§t By

T S < 2z
&1 I3l

for |£| sufficiently large. Notice that one direction in the double inequality also holds
when y = 0. What do these inequalities say about the Riemann—-Lebesgue lemma?

[Hjnt: Change variables and integrate by parts. Use that [; ej,mt dt # 0 in the >

tY
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e—2mtx

=0 for all

. . 2 .. .
x € R\ {0}, and integrate against xe ™" for a contradiction; use Exercise 2.1.4 (a).]

inequality. To prove this, assuming f, ¢

= 0 implies [,

2.2.9. Consider the change of variables u = %(t — %), related to that used in
Lemma 2.2.4 for f € L'(R), to derive the identity

du

=105 g

_ 2+1 f( YA

[Hmt On the left integral change variables on each half-line using 2 +1 = %ui‘fl ]

2.3 The Fourier Transform on 2

The integral defining the Fourier transform does not converge absolutely for func-
tions in L2 (R"); however, the Fourier transform has a natural definition in this space
accompanied by an elegant theory. We begin with the following proposition:

Proposition 2.3.1. Suppose that f lies in L' (R") N L2(R"). Then f lies in L*(R")
and

1702 = 112 23.1)

Proof. Given f in L'(R") N L2(R") consider the function 2 = f % f which lies in
L' [as a convolution of two L! functions; see (1.6.3)] but also lies in L™ and is
uniformly continuous (as a convolution of two L? functions; see Theorem 1.6.7).
Using Propositions 2.1.5 and 2.1.6 we write

Fr=F7f=IfP

=
|

~

~
|

~

=
| |

Then Theorem 2.2.2(1) gives
' 1 x
/ h(x)gfne*”mzdx — / (5) —mle&)? dE = / \f |2 —n|eE? dE.

If we let € — O the right-hand side tends to ||]/‘\Hi2 by the LMCT but the left-hand
side tends to 4(0) by the continuity of / at 0 [Theorem 1.9.4 (b)]. We conclude that

[ 17 @©)Pag =n(0) <
R}l

which implies that f lies in L2, and moreover

1715 =m0 = [ r01f0=ydy= [ r)70)dy=f][3

which yields identity (2.3.1). ]
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Given a function f in L?>(R") we consider the sequence of L' N L? functions
Sxson) for N € Z". We observe that as a consequence of Proposition 2.3.1, the
corresponding sequence of Fourier transforms is Cauchy in L?. Indeed, for N < N’

~ ~[12 ~12 2
| (Fasom) ™= Fasony) |2 = || (Fxsonnsom) |2 = | f 20N s0m |12
which is smaller than f\x|z NI f(x) |? dx, which tends to zero as N — oo, by the LDCT.

Definition 2.3.2. Let f € L2(R"). We define the Fourier transform f of f as the L
limit of the sequence fy, where

IN = fXBoN)- (2.3.2)
Analogously define £V to be the L? limit of the sequence (fy)" .

Remark 2.3.3. If f lies in L' N L?, then its Fourier transform as defined in (2.1.1)
coincides with that given in Definition 2.3.2. Indeed in view of the LDCT, the L-
Fourier transform of f is

&) =[ fx)e ™ dx= lim F(x)e 26 gy, (2.3.3)
R" N—eo J|x|<N

But as the sequence of integrals on the right in (2.3.3) converges in L? to the L*-
Fourier transform of f, a subsequence of it converges to it a.e. (Theorem 1.1.9),
thus the L'-Fourier transform and the L?-Fourier transform coincide a.e. For this
reason there is no ambiguity in using the same notation for the L'-Fourier transform
and L?-Fourier transform of a function in L' N L?.

Remark 2.3.4. If fy € L'(R") N L*(R") is any sequence that tends to f in L2, then

71\\; tends to fin L?. To verify this, we notice that if fy, gy are two L' NL? sequences
both converging to f in L? as N — oo, then

17— &2 = 1w = swll,2 = v = w2 < v = fll 2 + 11 =gl 2 — 0
as N — o, Picking fiy = f¥p(o.v). We have fy — fin L? and thus gy — f in L2.
In the next result, recall the operations on functions defined in (2.1.5).

Proposition 2.3.5. Let y e R", b € C, A > 0, and let A be an n X n matrix with
nonzero determinant. Then for f, g in L?(R") the following properties are valid:

(1) frg=r+% ae
Q) bf=bf ae.
G =

~ —_—

@ Ff=f ae

a.c.

N
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5) TF(E)=e e f(é)
©)  (e2F0) f) (f)
D A =A"F(A

(8) foAl=

') a

| et A| f oA 1ae, viewing elements of R" as n x 1 matrices.
e

Proof. The identities can be obtained from the corresponding assertions in Propo-
sition 2.1.6 by taking limits. For instance, if fy = f XB o) and gy = ng o,n)» then

0= fN +gn — fN gn which converges in L? to f+g f g, thus f+g f g
must be zero a.e. Likewise we prove the remaining assertions (2)—(8). For instance,
let us prove (7). The function [f (/'L -)]"is the L? limit of the sequence v
but this sequence is equal to A ™" fN(l 1) whose L2 limit is A" f(A~'- ). Thus
these two functions are equal a.e. and (7) holds. O

In some situations the sequence of functions j/f; [defined in (2.3.2)] converges
pointwise on the complement of a set of measure zero. In this case, we can identify
fwith the pointwise limit of ]/‘; This is because an L? limit coincides a.e. with a
pointwise limit. For the purposes of this section, let us denote by Lge the space! of
all functions f in LZ(R”) with the property that ]/‘; converges pointwise except on a
set of measure zero.

A shortfall of Proposition 2.3.5 is that the exceptional set that appear in the state-
ments may depend on the auxiliary parameters b,y, A, etc. However, on the space
L2, we can describe these exceptional sets.

Proposition 2.3.6. Lety € R", b € C, A > 0, and let A be an orthogonal matnx Let

f, g in L2,(R") and define fy = fxso.n)y and gn = gxp(on)- Suppose that fN —f
pointwise on R" \ Ef and gy — g pointwise on R"\ Eg as N — oo, where Ey and E,

are sets of measure zero. Then the following are valid:

(1) f+gliesinL%(R") and f+g=f+g onR"\ (E;UE,).

(2)  bf liesin L%(R") andbf =bf onR"\E;.

(3)  f lies in L2,(R") and? = ]% onR"\ (—Ey).

4) f liesin L2,(R") and?:? on R"\(—E ).

(5) 03 f lies in L2,(R") and (e20)Y £)~ = ©(F) onR"\ (y+Ey).
6) f(A-)liesin L2, and [f(A-)]"=A""F(A""-) onR"\ (LEy).

(7)  foAliesinL2 and foA=foA onR"\ (A'Ey).

(8 if f: R"\ {0} — Cisradial and E; = {0}, then f is also radial.

!'It is an important open question whether L2, (R") coincides with L?(R”") in dimensions n > 2.
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Here we used the notation —E; = {—& : £ € Ef}, y+E;r={y+&: £ € Ef},
lEfZ {lé : 6 EEf}, AtEf: {Alé : & EEf}.

Proof To prove (1), notice that O/:\ fﬂ—/\\gl\/ — ﬁ — gy converges pointwise to
f+g f g on R”\(Ef UE,), so f+g f+2 on this set. To prove property (2) we
note that (bf)N = be be but be converges to bf on R” \Ef Thus bf liesin L2,

and bf— bf. For (3) observe that (f)N = fy —fN and that fN —>f on the comple-
ment of —E. Hence so does (f) - thus f lies in L2 andf f onR"\(—E ). For
(4) notice that conjugating fN(é) — f(i) yields (f) (=¢)— f(é) when & ¢ Ey,
thus £ lies in L2 and the identity in (4) holds on the complement of —E. For (5)

we observe that (e2%0)Y fiy) (&) = fv(& —y) which converges to f(& — y) when &
lies in y + E 7. Property (6) is proved similarly except that the translation is replaced

by dilation. The proof of (7) relies on the identity m = ?1; oA [Proposition 2.1.6
(9)] and the fact that the balls B(0,N) remain invariant under rotations. To prove
(8), we note that as f is defined on R"\ {0}, then we have f = foA on R"\ {0} for
every orthogonal matrix A. The fact that Ey = {O} yields that A'Ey = {0}; on the
complement of this set we have the identity f 0A = f oA by part (7). But f = foA

implies f f oA and f 0A = f oA for every orthogonal matrix A, we deduce that f
is radial. (]

Proposition 2.3.7. For f, g, h in L* we have

(1) (Plancherel’s identity) HfHL2(R”) = HfHLZ(R")

(i) (Parseval’s identity) / fx)g(x)dx= f(é)@dé

(iii) (Fourier inversion) (]?)v = f\\/ =fae.

(iv) (Jumping hat identity) We have / FOhx)dx= | FE)(E)dE.
R" R"

Proof. Given f € L*>(R"), pick a sequence of Schwartz functions ¢y (which cer-
tainly lie in L' N L?) such that ¢y — f in L?>(R"). Proposition 2.3.1 gives that
owll,2 = [ ||,2 for all N. As the definition of f is independent of the sequence
converging to the function, gy — f in L2(R"). Thus ||¢w |2 — || f]l,2 and ||¢x ||, —
17 1l;2 as N — o and thus assertion (i) follows.

To prove (ii) we use polarization as follows: We apply (i) to f + g, we expand
both sides, and we use (i) for f and g to obtain

Re [ f(e(dx=Re [ FEFE)E.

We then apply (i) to f +ig and likewise we obtain

Re [ —if(sldx=Re [ ~if(&)7(&)d
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which implies
Im / f(x)g(x)dx = Im f(é)@dé

as Imw = Re (—iw). Thus we deduce (ii).

As @y — £ in L2, it follows that (¢y )" — (F)" in L2. Since gy € .7(R") we
have (¢y )" = ¢y, which converges to f in L*(R"). It follows that f and (f) are
equal in LZ(R”) and consequently equal almost everywhere. This proves (iii). To
prove (iv) we simply take g = n (equivalently # = g) in identity (ii). ]

Example 2.3.8. We estimate the Fourier transform of the function g(¢) =1 7)>1
for 1/2 < y < 1. This function lies in L?>(R) but does not lie in L' (R). If we can

show that the limit
N e—zﬂité oo 672nit§
lim di = / dr
N—oo J1 tY 1 124
exists for all & # 0, then g(&) can be identified with this limit. We make a few
observations. When & = 0, this limit is infinite, so it is expected that g(&) gets

worse as & — 0. We observe that |g(&)| = |2(|&|)| as g(&) = g(|&]) for & < 0. Thus
we may work with |&| instead of £ # 0. A change of variables gives

oo ,—2Tit 1 —2mi|&| oo ,— 21Tt
|5|) / e df — _ e : _ }’. e 7
Ié\1 v 1Y \E1=7 [2mil&|r 2mi Jjg) o7+

where the second identity follows by an integration by parts. From this we obtain

(& for |E] > 1, (2.3.4)
&)1 < g7 8l
in fact [g(E)| ~ |E| 7! as || — 0. For 0 < |€| < 1, writing
1672m'zd ooefzﬁild 535
8080 = s | [L S+ [, 235)
we deduce
~ 1 - &Y 1
< — f 1.
O < s [ S ro<lel<
We conclude
1— —1 —1
|§(é)|§(|7§)1j” for0 < |E| < 1. (2.3.6)

Estimates (2.3.4) and (2.3.6) explain why g € L?(R).

Having set down the basic facts concerning the action of the Fourier transform
on L' and L%, we extend its definition on L! + L?, which in particular contains L?
forl <p<2.
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Definition 2.3.9. The space L!(R") + L?(R") consists of all functions of the form
fi+ fo, where f; € L'(R") and f, € L*>(R"). Likewise the space L>(R") 4 L= (R")
consists of all functions of the form f; + f.., where f> € L? (R”) and f.. € L”(R").
Given a function f in L' (R") +L2(R”) we define f = fi + f», which is an element
of L2(R") 4+ L=(R"). Notice that f is defined a.e. as f> does so.

This definition is independent of the choice of f| and f5, for, if fi + fo =h1+h>
a.e. for fi,h € L'(R") and f>,hy € L*(R"), we have fi —hy = hy — f> a.e. and
belong to L' (R"), hence their Fourier transforms are equal. This gives

fi-m(&)=h—f2() forallE €R",

hence f1 h1 = h2 — f2 a.e., thus f1 +f2 hAl +l?2 a.e. This definition also 1mphes
thatif f = f1+ f € L' +1? satisfies f = 0 a.e., thenf 0 a.e. Indeed, if i + f> =
a.e., then f2 — f1 a.e., and as both functions lie in L?, applying the inverse Fourler
transform and using Proposition 2.3.7 (iii) yields f, = —f a.e., thatis, f =0 a.e.
Also notice that L' (R") 4 L*(R") contains L” (R") for 1 < p < 2, as given f € L”
we can express it as f = fi + f2, where fi = f¥|s>1 € L'and f» = X< € L2
Next, we compute the Fourier transform of a function in L! (R") 4- L>(R").

Example 2.3.10. We fix a complex number z satisfying —n < Rez < —5 and we

consider the function F;(x) = |x|* on R"\ {0}. We observe that F; can be written as
the sum of an L' (R") function £, and an L?(R") function F? as follows:

Fo(x) = " = X" 2m<1 + [ a1 -
N—_—— N——
Flin LY(R") F2inL2(R")

For a fixed & # 0 we claim that the limit

lim F2(x)e 2™ 5 dx = lim x|2e2"xE dx (23.7)
N—eo JIx|<N N—eo J1<|x|<N
exists. This will be shown using polar coordinates and an integration by parts. Note
that in dimension n = 1, the existence of this limit was essentially shown in Exam-
ple 2.3.8 (7 there could have been replaced by Y+ is, s real). In dimensions n > 2,
proving that the limit in (2.3.7) exists requires knowledge of the following asymp-
totic identity, which can found in Appendices B.4 and B.8 in [31]: for r|&| > 1

. 2 2 T2
—2mir€-0 _ rt5n
/snf 4o () e [ nznrlélcos(z’”'a ) *RMD]

B e il 7.1 3 S

|7 rE|"

where R is a function satisfying [R(t)] < Ct=3/% for all # > 1 and some C > 0.
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As the part of the integral in (2.3.7) over the region 1 < [x| < max(|&]7!,1)
produces a constant, we focus on the part over max(|E|~',1) < |x| < N [for
N > max(|&|",1)]. Expressing this part of the integral in (2.3.7) in terms of polar
coordinates and inserting (2.3.8), we reduce to the existence of the limit

n(n—1) w(n—1)

N rz+n—1{62mr€8_i T el +27IR(V\§|) dr

P rrET

lim
N—eo Jmax(|€|~1,1)

as N — eo. In view of the bound |R(r|E|)| < C(r|E])~3/2, the part of the integral
containing R(r|€|) converges absolutely as long as Rez+n—1— % — % <-—1,1ie.,
Rez < — %, so for this part the limit exists. In the part of the integral containing the
exponentials we write e8| = (£27i|E|) ! L 27rIE] and integrate by parts to
deduce that the limit exists if Rez+n—1—1— % < —1,1e.,Rez< —% as well.
This argument shows that the Fourier transform of FZ2 can be defined pointwise at

every point & € R"\ {0}, thus E> = {0} using the notation of Proposition 2.3.6.
As F, € L' + L2, we wish to evaluate E We begin with the observation that

F,(Ax) = A*F;(x) forany A >0 and x € R"\ {0}.

Applying the Fourier transform in this identity and using Proposition 2.1.6 (7) and
Proposition 2.3.6 (7) (combined with the fact E;> = {0}) we obtain that

ATE(ATIE) = AFF(E)  forany A >0and & € R"\ {0}.

This implies that F. is homogeneous of degree —n —z, i.e., FL(AE) = A" <F.(§)
forall A and & € R"\ {0}.
In view of Corollary 2.1.7 for F,! and Proposition 2.3.6 (8) for F> (which uses

that E;» = {0}), we obtain that F. is a radial function, i.e., it has the form g(|&|) for
some function g on the line. Then for || # 0 we have

F (&) = &I F(&/18]) = 18176 (|&/181]) = 161" (1)

It could be the case that |g(1)| = e, but in this case F. would equal infinity at every
nonzero point, and thus it could not belong to L= (R") 4 L?(R"). We conclude that
for some finite nonzero constant c¢(z,n) we have

F.(&)=c(z,n)|E| "¢ for x € R"\ {0}. (2.3.9)

Finally, notice that as —n/2 < —Rez—n < 0, the part ¢(z,1)[E| 7" Yj¢|<; of E(&)
lies in L?(R") and the part ¢(z,n)|& |7""*X|¢|>1 1s bounded.



68 2 Fourier Transforms, Tempered Distributions, Approximate Identities

Exercises

2.3.1. Let f,g € L>(R") and h € L' (R"). Show that

(a) h/:k\g = Eg a.e.

(b) fg=F+g.

2.3.2. Suppose that f € L2, (R) is associated with an exceptional set E and y € R.
Show that 7 f = e~2"() f on R\ E.

2.3.3. Use Plancherel’s identity to show that

00 ain2
sin“ ¢ T
/ 5 dt = —
0o t 2

and that

2.3.4. Let 0 < y < 1 and consider the function g in Example 2.3.8. Find the range
of indices 1 < p,g < oo for which g € L”(R") and g € LY(R).
[Hint: You may need that [§"t~Ye~™"dt # 0; on this, see Exercise 2.2.8.]

2.3.5. Let g(t) =t~ ' y,>1 defined on the real line. Prove that for || < 1 we have

N 1 1
86)1 < +1ox (7).
while [§(8)| < (x|&])~" for|&| > 1.

2.3.6. Let k be a positive integer. Consider the function

Fg)= [empdt L

t 7

defined on the open half-space Rez > 0 of the complex plane.

(a) Show that F is analytic on Rez > 0 and notice that F (x) = 0 for all x > 0.

(b) Use the identity principle in complex analysis to prove that F' = 0 identically,
and then obtain that the Fourier transform of the function ¢ — e~ 2% 1*~ 1y (1) is

(k—1)!

coiarEE o<k

(c) Derive the identity

Lot dx  (2k—2)!
E/,m (14x2)k — 22=2((k—1)!)2"
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2.3.7. For a function ¢ on [0,0) with temperate growth (say |@(¢)| < C(1+ [¢|)M
for all # > 0) define its Laplace transform by

Lols) = /Owe_“(p(t)dt.

Assuming that L, extends to an analytic function on Rez > 0, prove that the Fourier
transform of the function 7 — e~ ™ (1) 1[0 ..) () on the real line is L (27(1+i&)).
Apply this to @; (t) = sint and @, (¢) = cost, as well as @3(¢) =t for a > 0.

[Hint: Use the idea of the preceding exercise. |

2.4 Complex Interpolation and the Hausdorff-Young Inequality

In this section we discuss interpolation between different Lebesgue spaces with an
intermediate constant expressed as the geometric mean of the constants that appear
on the given bounds. The techniques are based on elements of complex analysis, in
particular on the maximum modulus principle.

Theorem 2.4.1. (Riesz-Thorin interpolation theorem) Let0 < po, p1,q0,q1 <
and let (X,u), (Y,v) be two o-finite measure spaces. Let T be a linear operator
defined on the space of finitely simple functions of X and taking values in the space
of measurable functions onY with the property® [ |T (ya)|dv < e whenever A C X
and B £ Y satisfy u(A)+v(B) < eo. For0 < 6 < 1 set

L1206 e 1.126.9 (2.4.1)
p Po P1 q q0 q1

Suppose that for all finitely simple functions f on X we have

||T(f)H1ﬂo < Mol fllzro (24.2)
T < Millf ]l - (2.4.3)

Then for all finitely simple functions f on X we have
1T ()l < Mo~ M7 | £, 24.4)
Thus, T has a unique bounded extension from L” (X, 1) to L1(Y,v) when p < eo.

Proof. As X is a o-finite measure space, we can work with a finitely simple function

K
f = z akelakxAk
k=1

2 The hypothesis [ |T(xa)|dv < o follows from (2.4.2) or (2.4.3) when max(go,q1) > 1 by
Holder’s inequality, but is needed when max(qo,q;1) < 1.
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defined on X, where a; > 0, oy are real, and Ay are pairwise disjoint subsets of X
with finite strictly positive measure. Such functions are dense in L” (X) when p < eo.

Case I: min(qo,q1) > 1 and p < . This forces g > 1, hence ¢’ < . We estimate

1T oy =sup /YT(f)(y)g(y)dV(y) :

where the supremum is taken over all finitely simple functions g on ¥ with L7 norm
equal to 1. (Here we are using that Y is o-finite in allowing g to be finitely simple,
instead of simple, and also in the case g = o0.) Write

J
g:

iB:
bje ﬁjXBj )
j=1

where b; > 0, B; are real, and B; are pairwise disjoint subsets of ¥ with finite v-
measure. Let

/ /
14 14 q q
Pz)=—(1—-2)4+—z and 0z)=—(1—-2)+—z. 2.4.5)
(2) po( ) o (z) ‘16( ) 7
For z in the closed unit strip S = {z € C: 0 < Rez < 1}, define
< P L0
fo= Y a %y, = b5 iy, (2.4.6)
k=1 j=1

and

FG) = [ TU0) 80)dv).

Notice that fy = f and gg = g. By linearity we have
S N PO, 06) o By [
F(z)=Y > a 7b; e’a"e’ﬁf/YT(xAk)(y)%Bj(y)dV(y)-
k=1,=1

Since ag,b; > 0, F is analytic in z, and the expression

/Y T () () 8, () dV ()

is a finite constant, as seen by Holder’s inequality with exponents go and gj,.
By the disjointness of the sets A; we have (even when one of pg, p; is infinity)

illoo = A0S Ml o = 171125

P r
. P(i 0 P(1+i T L
since |a, (")| =a" and \ak( | = a;' . By the disjointness of the sets B; we have
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leal, = llsllfy =1 llgvall % = llellzy = 1.
% 4 4
|bQ i) | = 0 and |bJQ(1+”>| = qu Holder’s inequality and the hypotheses give
F ()| < (T (i)l oo I8l oy < Mol fi|| oo = Monlle , 2.4.7)
F(U+in)] < |IT (i) | g 1l o < Ml fiiell oy < M| £1175 L (2.4.8)

We observe that F is analytic in the unit strip S and continuous on its closure.
Also, F is bounded on the closed unit strip (by some constant that depends on f and
g). Therefore, (2.4.7), (2.4.8), and Corollary C.0.3 give

FO)< (Mol £13) " ()1

Observe that P(6) = Q(0) = 1 and hence

- [ T(r)gav.

Taking the supremum over all finitely simple functions g on Y with L4 norm equal
to 1, we conclude the proof in the case where min(gg,q;) > 1.

0
)" =Momt 1]

Case II: min(go, ;) < 1 and p < <. In this case choose an r > max(1,¢,q/q0,9/q1)
such that r < eo. We fix an arbitrary positive finitely simple function g with |[g||,» =
1 and we write

J
8= chxEjv
=1

where ¢; > 0, and E; are pairwise disjoint measurable subsets of ¥ with v(E;) < ee.
For z € S set

& ORG)
:ZCJZXE./’
j=1
where
ro = [1-3 (55 )]
0 1
Notice that
)| v S
I, = el =1 e ) = Nl =1 @49

Now consider the following function defined for z € S:

:/Y|T(fz)(y)| W dv(y) 2/

q

rriay K
" YT a0 ave)
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By assumption each T'(4,) is integrable over a set of finite measure. Thus for each
fixed j € {1,...,J}, the mapping that takes z € S to the function

k@) 3 P(z) o,
Yy e Y @ VT () (y),  YEE),

is well defined and analytic from S to the Banach space L!(E;). Its analyticity can
be checked by considering the integral of this function against bounded functions;
see Theorem B.0.3 (Appendix B). As ¢/r < 1, it follows from Lemma B.0.5 that
log G is subharmonic on S. Using Holder’s inequality with exponents qu() > 1 and

(%o)’, and (2.4.9), we obtain that

G n|<{/|rf,l [ dv(y } Il e _<M0

Likewise, we get

Ga+<{ [ |T<f1+,»t><y>%dv<y>}’gl|| s < (13 )

S

Notice that G is continuous and bounded on S. Applying Corollary C.0.3 in
Appendix C, we obtain

q

1(1-8) N 16
L1’> (MleHfé> :

Noticing that g = g and recalling that fy = f we deduce that

[0t 0 ave) = 6(60) < (il

r
q

1Tl = | ITNF|?

r

= sup{/ |T(f)|%gdv: g >0, gis finitely simple, g, = 1}q

<My M7 f]

L
This concludes the proof in the case min(go,q1) < 1.
Case III: p = . This forces pg = p; = e. Then Exercise 1.1.6 yields

17Ol < 17O’ [T 24.10)
and so inserting ||7(f)||zs < Mi||flr= (i =0,1) in (2.4.10) yields (2.4.4). O

Proposition 2.4.2. (Young’s inequality) Fix | < r < e and g in L"(R"). Let p,q be
indices that satisfy 1 < p < ¥, r < g < e, and
1

1 1
4 l=—f-. (2.4.11)
q p o
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Then for all f € LP(R") we have

Hf*gHLq(Rn) < HfHLP(R") 8llLr(rny- (2.4.12)
/ 1

Proof, On L' UL” define the operator q
T(f) = f *g. By Minkowski’s inequal- (0, 1) (1,1)
ity 7 : L' — L with norm at most
||g|lz-. By Holder’s inequality T : L” — |
L with norm at most | g|/z-. Theo- L (1,7)
rem 2.4.1 gives that T has a bounded o
extension from L? to L9 with norm at o
most [[¢: L ® = llgllr. where

110 6 1 1-0 6 (00— (L.0)
pT 1 T TS (:0) ’

If we eliminate 6, these equations
reduce to (2.4.11). This completes the Fig. 2.1 Boundedness on the dotted line

. . is obtained by interpolation between the
proof of (2.4.12); see Figure 2.1. U endpoints (1/1',0) and (1,1/r).

Notice that Proposition 2.4.2 is also valid when r = 1 (in which case p = ¢) and
when r = e (in which case p = 1 and g = =) and both of these endpoint cases are
just a restatement of Minkowski’s convolution inequality (Theorem 1.6.6).

It turns out that for g € L™ we can obtain the stronger conclusion || f * g| 14 (r) <

Fllzrre |l gll L (rey interpolating between L! — L™ [Exercise 1.6.7 (b)] and L” ! —
(R™) (R")

L” (duality between L’ "1 and L" ) using off-diagonal Marcinkiewicz interpolation
([31, Theorem 1.4.19]).

Example 2.4.3. On the real line consider the linear operator

2x+1
L(g)(x) :/2 g(x—1)di, xER.

X
We claim that L maps L”(R) to LP/?(R) for all 1 < p < eo. Obviously L maps L™
to itself. If we show that it also maps L' (R) to L'/?(R), then the conclusion for
p € (1,00) will be a consequence of Theorem 2.4.1.

To achieve this we write a general g > 0 in L!'(R) as Y,z gk, where g =

8X[k i+ 1)- Denoting by [—x] the integer part of —x, we observe that

L(g)(x) = I{%L(gk) (%) = L(g—q) (¥) + L(g[-x-1)(x),  x€ER,

as L(gy) is supported in [—k — 2, —k]. Applying (1.1.9) we obtain
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| 2
Jeteln <2 3 ( [ gl tar) <23 edslon

i€{0,1}

Combining this inequality with the following application of the Cauchy—Schwarz
inequality,
L) |2 < 2||LCeR) | 0 <218kl (24.13)

we deduce [|L(g)||,1/» < 4||g||1; that is, L maps L' (R) to L'/?(R).

Proposition 2.4.4. (Hausdorff-Young inequality) Let 1 < p < 2. Then for every
function f in LP(R") we have the estimate

11l < [1£1- (24.14)
Proof. We apply Theorem 2.4.1 to interpolate between the estimates

I 2= < If 1l
[Estimate (2.1.2) in Proposition 2.1.5] and

£ Nz2 < 117122
to obtain (2.4.14). We conclude that, when 1 < p < 2, the Fourier transform is a
bounded operator from L?(R") to L? (R") with norm at most 1. O

Exercises
241. Let 1 <r<p<2<g<oberelated asin 1/p+1/g=1/r and fix K in
L"(R"). Prove that the linear operator f — f x K maps L”(R") to L7(R").

242. Letm>3and 1 < py,p2,...,Ppm,q < o be related as in

1 1 1
— 4+t —=—4+m—1.
P1 Pm 4

Prove the inequality
[ Fee *meLq(R") <[ Al R Hmeme(R")'

2.4.3. (Schur’s test) Let (X,u), (Y,v) be o-finite measure spaces and let K (x,y)
be a nonnegative measurable function on X x Y. Define

S(NW = [ Kwy)0)dv)

for a nonnegative measurable function f on X. Assume that
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Ao =ess.sup | K(x,y)du(x) < oo, Ap =ess.sup | K(x,y)dv(y) < ee.
yey JX xex JY

Show that S is well defined on L' (X) + L= (X) and that it maps L” (X) to L (Y) with

1 -1
bound at most AJA; * for 1 < p <.

2.5 Approximate Identities and Almost Everywhere Convergence

In this section we use the Hardy-Littlewood maximal operator to pointwise con-
trol averages with respect to approximate identities. As a result, we deduce almost
everywhere convergence properties for approximate identities convolved with cer-
tain locally integrable functions.

For an integrable function K on R” we define the L! dilations K; of K by setting
Ki(x) =t7"K(x/t) forx e R" and r > 0.

Theorem 2.5.1. Let K in L' (R") satisfy |K(x)| < A |x| ™" min(|x|?, |x|~7), A,y > 0,
and let f be in L}OC(R”). Then for some constant C,, y < e and all x € R" we have

Sug(lfl *|Ki]) (%) < Gy AM(S) (x)- (25.1)

Proof. We have

A yiTh oYY yY
(1IN @) < 5 [ 17—l [2] min (2[0)2] )
t R” t t t
i3 (1)
== min ( || ,|Z Z x—v)d
I A (1 I RSl
< é i min(2<k+l)7’72*k7’)L/ |f(x—y)|dy
A S 2kn 2kt <|y|<2k+1t
= 1
<AV 2 min( 2Ry / )l
AV k:z:,w ( )vn(z(k+1)t)n \y\g2k+lz|f(x y)ldy

< Gy AM(S)(x),

where v, is the volume of the unit ball in R" and C,y is the finite constant
V2" Y ez min (257 27KY) =y, 27 Y (1 4 277) (1 —277) L. O

Corollary 2.5.2. Let A,y > 0 and G be a measurable function on R" x R* satisfying

1 A
G(x, )| <

S — €R".
e (14 x|feyrr

Let f € L} (R"). Then for some constant C, ; < e and all x € R" we have

ililg(lG(wS)l #[f1) (x) < Gy AM(f)(x).
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Proof. Use Theorem 2.5.1 with K(x) = (1 +|x|)™" 7. O

The conditions on K in Theorem 2.5.1 are weakened in Exercise 2.5.3. Another
proof of Theorem 2.5.1 can be given which explicitly relates the value of constant
Cnyin(2.5.1) to K.

Proposition 2.5.3. Let K(x) be a nonnegative integrable function on R", which is
radial and decreasing’® on [0,) as a function of |x|. Then for f € L}, (R") and any
x € R" we have

fgg(Kz 1) () < [| Kl M (f) (x).- 252

Proof. For a simple function of the form

M M-1
L= ¢iXp0ry) = 2 (€14 +Cu-i) Xp0s.1)\B0) (23.3)
j=1 i=0
withc; > 0,70 =0 <r; <--- <ry, forx € R" and t > 0 we have

(XB (0,77) [ f])(x)

1B(0,1r))] <Ll M), @254

(Ly % | f])(x ZCJ‘B )

But an arbitrary nonnegative radially decreasing function on R” can be pointwise
approximated by an increasing sequence of functions L¥ of the form (2.5.3). We then
apply (2.5.4) to each L* and take the limit as k — oo applying the LMCT. Finally,
taking the supremum over all ¢ > 0, we deduce (2.5.2). ]

The following is an application of Theorem 2.5.1.
Proposition 2.5.4. The space
{p €. Z(R"): ¢ €65 and ¢ vanishes in a neighborhood of 0}
is dense in LP(R") for 1 < p < eo.

Proof. Start with a 6;” function @ which is equal to 1 on the unit ball and vanishes
outside the ball B(0,2). Consider the family 1 — ®(& /&) which converges pointwise
to 1 for & # 0 and the family ®(e&) — 1 as € — 0. Then (1 — @(&/e)) B(e&)
converges pointwise to ygn\ 0} (§) for all § € R” and vanishes for |§| > 2 /¢ and for
|E| < e.Lethe (R"). Applying the LDCT we obtain

tim [ B(E) (1 B(3)) Beg)e™4ag = | hE)EdE = hix)
E€—0JR" R

for any x € R". In other words the sequence hy = h* @ — h* @y ). * D¢ converges
pointwise everywhere to /& and its Fourier transform has compact support and van-
ishes in a neighborhood of the origin. Moreover, for some constant Ce we have

3 Such a function is said to be radially decreasing.
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|he| < Cop [M(h) +M(M(h))] € L”(R"),
and so, applying the LDCT again we deduce limg_,¢ ||z — h||zr = 0. O

We now derive the almost everywhere convergence of approximate identities
using the maximal function. Recall that K, (x) =t "K(¢~'x) for x € R" and ¢ > 0.

Theorem 2.5.5. Let K in L'(R") satisfy |K(x)| < A|x|™"min(|x|?, |x|~7), where
A,y>0and let c = [gn K(x)dx. Then given 1 < p < o and f € LP(R") we have

1im0 (K= f)(x) = cf(x) (2.5.5)
t—
for almost all x € R".

Proof. We note that (2.5.5) holds pointwise everywhere for functions f in %;°. We
obtain the general case by approximation. Define the oscillation of a function g in
Ui<p<e LP(R") by setting

O, =limsup |K, *g —cgl;
t—0
obviously &, is well defined at the points where g is defined, in particular, it is

defined on the Lebesgue set .Z, of g. Notice that &, = 0 everywhere if ¢ € ¢;°(R")
[Theorem 1.9.7 (b)]. Fix a function f € L”(R") where 1 < p < . Then

O < CogAM(S) +1el [f] < (CuyA+]e)M(F)  on 2,

by Theorem 2.5.1 and Corollary 1.5.5. Given £ > 0 there is a ¢ € %;;” such that
|lf — @llr < €. Then

Op<Opog+0p=0r o< Op+0,=0r on Zy=2s
thus O = Of_, on Z5. Next we prove that for any 6 > 0 we have
{xeR": Op(x)>8}| = (2.5.6)
Indeed, we have

[{x€R": Op(x) > 8} =[{x € R": Op_(x) > 5}
<|{xeR": (CuyA+[c) M(f —9)(x) > 6}

312 CiyA+|c
<(22) Al )y

p-1 v

<(3n2p) (,1YA+|C|) ,
“\p—1 114

having used Chebyshev’s inequality and Corollary 1.4.7. Letting € — 0 we derive
(2.5.6). This implies that &y = 0 a.e., and consequently (2.5.5) holds. O
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Essentially the same proof yields the same more general result.

Theorem 2.5.6. Fix 1 < p < . Let {T; };>0 and T be linear operators defined on
LP(R") such that T;(¢)(x) — T(¢)(x) ast — 0 for all ¢ € ¢;°(R") and all x € R".
Suppose that T*)(f) = sup,~ | T; (f)| is a bounded operator on LP(R"). Then for all
felP(RY), T(f) > T(f)ae ast — 0.

Proof. Adapt the proof of Theorem 2.5.5 replacing K, f by T;(f) and M by 7.0

Theorem 2.5.5 does not cover the case of p = o, in view of the lack of a nice
dense subspace of L™. A different proof of Theorem 2.5.5 can be given that not
only covers the case p = o, but also allows the function f to have moderate growth
at infinity, or even be locally integrable, if K has compact support. But the most
important ingredient of this proof is that it relates the set of almost everywhere
convergence to the Lebesgue set £ of f.

Theorem 2.5.7. LetK € L' (R") satisty |K(x)| <A|x| " min(|x|",|x|~7) whenx # 0,
where A >0 and 0 < y < n. Let f € L} _(R"). Suppose that

loc

lim If(x=¥)||K:(y)|dy =0 forall 6 >0and x € R". (2.5.7)

1—=0" J|y|>6

Then for every x € £y for which

/ [fx=y)] Iy 7dy < o (2.5.8)
<1
we have

t£%1+ (Ki = f)(x) = cf (x), (2.5.9)

where ¢ = [pn K(y)dy. Consequently, K;  f — cf a.e. ast — 0.

Proof. We fix f and K as in the statement of the theorem and xo € £ such that
(2.5.8) is satisfied. We begin with the observation that (2.5.7) with 8 = 1 and (2.5.8),
combined with the fact that |K;(y)| <t "|y/t|7"17, yield

(If] * |Ke|) (x0) < o0 for ¢ sufficiently small depending on xj.

We will prove (2.5.9) for x = xp.
Let € > 0 be given. As xg € .Z there is a 89 > 0 (which we pick to satisfy 8y < 1)
such that

Y

0 <0y =
<rs 60 40,-1A

/H< |f(xo—y) — f(xo0)|dy < €. (2.5.10)
yi<r

V1"

Here v, = |B(0,1)| and @, = [S""!]. Since [g: K;(y)dy = c for any t > 0, we write

(Ke+ £)(0) —ef () = [ Ki5) (r0=3) = f(x0)) d,
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and we bound the absolute value of the last integral by
/ |f (0 =) — f(x0)]| \Kz(y)lder/ |f(xo—y) = f(x0)| K (v)|dy. (2.5.11)
[yl<o [yI=&
We first estimate the second integral in (2.5.11). For ¢ > 0 we have
[ 1fso=3) = fGo) K0l dy
[v>8

< [ o=y KIdy+IfCo)lar [y Tay.
[y|>d0 [y[>&
We pick § > 0 such that the sum above is smaller than £/2 when 0 < ¢ < §, in view
of (2.5.7) and the appearance of ¢". Note that 6 depends on f, xo, 1, v, and &.
To handle the first integral in (2.5.11) we use polar coordinates to write

1 —l T - -
i, o=y = royiay =5 [T [ 170 —p0) — x0)d0dp
Zln rF(P)dl% (2.5.12)
r=Jo
where
Fp)=p"" [ [f0=pO)—S(x0)ld0,  p>0.

Since |f — f(xo)] is integrable over any ball centered at xo, it follows that F(p) is
defined for almost all p > 0. In view of (2.5.10), the expression in (2.5.12) is at most
42;:%; when 0 < r < &. Now set L(r) = Ar " min(r?,r~7) defined for r > 0. This
function is continuous on (0,0) and continuously differentiable on (0,1) U (1,0).

Also the integration-by-parts identity

/ObL(f) ¢'(r)dr = L(b)¢(b) - /b 7 (f) ¢(r)dr (2.5.13)

t a !t t

is valid for all # > 0, whenever ¢ is a differentiable function on (0, ) satisfying
b
0<9()<C”  and / L(;) 10/ (F)|dr < oo, (2.5.14)
0

If b > 1 this can be seen by splitting the interval of integration in (0,1) and (1,b)
and summing the outputs using that limg_,yL(6/7)¢(0) = 0. Since y < n we have
L’ <0on (0,1)U(1,e) and L is undefined at 1. Now for any # > 0 we write

/\y|<80‘f(x0 —y) = f(x0)||K: (y)|dy

< [ =) =)l (B ay
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% d r 1 /r
= |l rorae] () e
(1 oy, (% S (1 (7 1o
= (50/0 F“’)d”) () (/0 F<P>d”)mL (7)er
= Qy(x0),
having used (2.5.13) with ¢ (r) = [5 F(p)dp and b = &. Since we picked & < 1 it

follows that for any ¢ > 0

/OSOL(:)W(’)W/MO £ -3~ £ () dy < o

T
s0 (2.5.14) is valid and thus (2.5.13) is justified. Next we use (2.5.10) and the fact
—L' > 0 to obtain the estimate

. n &
e et [

TtnE FSL<6O)— OSO/tr”LI(r)dr}

Or(xo) <

- 4w, 1A | 1" t
Yvn€ &/t n—1
L(r)d
10, A [/0 r (r)dr
Yvn € ° dr
< A v N4
< Za, A" {/0 min(r?,r7Y) r}
_¢
=3

where the second equality is based on (2.5.13) with ¢ (r) = r". Then for 0 <7 < §,
combining the estimates derived for the two terms in (2.5.11), we deduce

£ €
|(Ki # f)(x0) — cf (x0)| < 5T3=8&
and this proves (2.5.9).
Finally we show that (2.5.8) is satisfied for almost all x € .Z%, and thus the
claimed almost convergence is valid. For every N € Z* we have

d d , .
/\x\<N [/y<1 =)l |y|”y‘7}dxS (/MSI IyI"y‘Y) /|x'|gzv+1 [F)ldx < oo

Consequently the integral inside the square brackets is finite for almost all points x
in the ball B(0,N), so letting N — oo through the positive integers we obtain (2.5.8)
for almost all points x in R”. O

We note that there is no restriction in assuming that y < n as the size estimate on
K deteriorates as y decreases to 0.
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Remark 2.5.8. Theorem 2.5.7 could have been stated in the following form: (2.5.9)
is valid whenever both (2.5.7) and (2.5.8) hold at a point x € Z.

Remark 2.5.9. Let K be as in Theorem 2.5.7. If K has compact support, then con-
dition (2.5.7) holds for any locally integrable function f. Indeed, if K is supported
in a ball B(0, M), then the integral in (2.5.7) is over the set 6 < |y| < Mt and this set
becomes empty when ¢ < 6 /M, so the integral is zero for ¢ sufficiently small.

We also observe that condition (2.5.7) can be derived from

EICTR
/Rn (a7 == (2.5.15)

Indeed, assuming (2.5.15), for any x € R", we obtain
[f(x=Y)l / |f(2)]

= _dy= — __dz < o 2.5.16

/m D D o (T a7 & (210

by splitting the z integral in (2.5.16) in the regions |z| < 2|x| and |z| > 2|x|; in the
latter case |z| &~ |z —x| so (2.5.15) applies. Also the integral over the region |z| < 2|x]
is finite as f is locally integrable. Then for |y| > 6 and ¢ > 0 we have

—n

A
Ko< s

Y
t

=Y t’ 1\nt+y 1
I G

< AtY .
y[rtr = 0 14 [y[)mtr

Combining this estimate with (2.5.16), we deduce (2.5.7).

Example 2.5.10. Let A > 0, 0 < ¥ < n and |K(x)| < A|x|™"min(|x|?, |x|~") when
x # 0. Then Theorem 2.5.7 applies in the following situations:

@ LR, 1< p<em
(b) [f(x)| < C(1 4 |x|)* for T < 7.

(©) |f(x)] <C(1+]x|)* for T < 1 and K is he Poisson kernel P.
@) | f(x)| < CeP® for 0 < & < 2 and K (x) = e ™HP.

(e) f € Ll (R") and K has compact support.

loc

Exercises

2.5.1. Verify that in the five cases of Example 2.5.10, condition (2.5.7) is satisfied.

2.5.2. Let 0 < y < n and let x( be a Lebesgue point of a function f in L?(R") where
% < g < eo. Prove that

limi/ Md}c*&
e—0 N Rn(

o gy
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[Hint: Let K (x) = (1+ |x|)~"~7. Show that condition (2.5.7) is valid for all x € R".]

2.5.3. Show that conditions on K in Theorem 2.5.1 can be relaxed as follows:
(a) |K(x)| < L(]x|) for some decreasing function L : (0,c0) — [0, ).
(b) L(|x|) lies in L' (R™).

[Hint: Use that (1 —27")v, Y3z 20 DL(2K) <27 [on L(|x]) dx.]

2.5.4. Under the hypotheses of Theorem 2.5.7, if additionally f lies in L (R") and
is continuous on a closed ball B(xg, ) on R”, prove that

(K; * f)(x) — cf(x0) as (x,t) — (xp,07).

2.5.5. (Borel-Cantelli lemma) Suppose that {f;},~o is a family of measurable
functions on a compact subset K of R” (or on any measure space with finite mea-
sure). Suppose that for any £ > 0 the sets A;(g) = {x € K : |f;(x)| > &} satisfy

2 Ay ()] <eo
k=1

for any sequence #; > 0 that tends to zero. Prove that f; — 0 a.e. ast — 0.
[Hint: Show first that for any sequence f, — 0" we have | Mot Ure A, (8)’ =0.]

2.6 Tempered Distributions

An integrable function g is almost everywhere uniquely determined* by the integrals
Jrr 8 @dx, where @ ranges over ;" (R"). For this reason we can identify g by the
functional L (@) = [gn & ¢ dx, acting on €;°(R"). Functionals acting on nice classes
of functions are called generalized functions or distributions. Viewing functions as
functionals allows us to perform operations to them that would normally not be pos-
sible. For instance, one can define the partial derivative of a function g € L' (R")
to be the functional diL, given by diLy(¢) = —Lg(d1¢) for all ¢ € €;°(R"). For
such reasons, the theory of distributions provides not only a mathematically sound
but also a flexible framework to work with. The theory of distributions is vast and
extensive, but here we focus only on some basic facts concerning tempered distri-
butions.

A linear functional on u on the space of Schwartz functions .(R") is a linear
mapping from .7 (R") to the complex numbers. The action u(¢@) of u on a Schwartz
function ¢ is denoted by (u, ). Recall that for ¢ € .(R") and multi-indices o,
the expressions

Pap(@) = sup [x*90P ()| 2.6.1)

xeR”

are called Schwartz seminorms of .

4 Exercise 1.9.7.
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Definition 2.6.1. A linear functional # on .(R") is a tempered distribution if and
only if there exist C > 0 and M, K nonnegative integers such that

(u,0)| <C Y Y paplep)  forallpc.”(R"). (2.6.2)

o] <M|[B|<K
The class of all tempered distributions on R” is denoted by .7’ (R").

Definition 2.6.1 implies that tempered distributions are continuous functionals
with respect to the Schwartz topology. This means that if ¢; — ¢ as j — o in
< (R") (i.e., in the Schwartz topology), then (u, ¢;) — (u, ).

Examples 2.6.2. We discuss some important examples of tempered distributions.

1. The Dirac mass &y, at a point xo € R". This is defined by
<6x07 (P> = (p(xo)

for ¢ € €=°(R"). Then &, € /' (R") since |¢(xo)| < ||@]|z= = Po,o(®)-
2. Any signed Borel measure y with total variation || (|| < e is a tempered distribu-
tion via the action

(n,0) = /R (x)du. (2.6.3)

As in the previous case we have | (i, @)| < ||i]| po,o(@).
3. A measurable function g that satisfies |g(x)| < C(1+|x|)¥ for all x € R" is called
tempered. A function g on R” that has controlled growth of the form

lg(x)] < C(1+|x)™ for all |x| > R,
for some M,C,R > 0, is called tempered at infinity. Tempered functions give

rise to tempered distributions.’ In fact, every locally integrable and tempered-at-
infinity function g gives rise to a tempered distribution L, via the correspondence

(Le,9) = | g9 dx. (2.6.4)

To verify that L, € . we use (1.7.3) to write

|<Lg,(p>|§</|x§Rg(x)dx>||(p||Lm+</x|2R m) ‘a‘g[z Paco(@):

M]+n+1

4. Let 1 < p < oo. Functions in L? also give rise to tempered distributions in terms
of (2.6.4). Indeed, given g € LP(R") (1 < p < ), Holder’s inequality gives

[(Ler0)] < [ 18I+ pCol(1-+ )" d
<l lA+1-D7 M€ 3 paole),

|| <n+1

3 Hence the terminology tempered distributions.
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and as the L' integral produces a constant, the claim follows. If we replace g by
gj — & this inequality yields thatif g; — g in L?, then Ly; — Lg in .5/ !
5. Consider the following functional acting on functions ¢ € . (R):
. dx . dx
(wo)=lim [ 9@ =lm [ (p()-p0).
e<|x|<1 e<|x|<1

We have that |(u, )| < 2||¢’||z= = 2po,1 (@) and this gives that u € .7/ (R).

Motivated by Examples 3 and 4 above, it makes sense to ignore the distinction
between g and L, with a slight abuse of terminology, explained below.

Definition 2.6.3. We say that a locally integrable function g that is tempered at
infinity coincides (or agrees) (or can be identified) with a tempered distribution u
if (2.6.4) holds for all ¢ € . (R").

We introduce the notion of convergence in .’ as follows:

Definition 2.6.4. Let uj,u € .#/(R"). We say that u; — u in the sense of tempered
distributions, or simply in ., if (uj, @) — (u, @) as j — oo for all ¢ € .. The same
definition can be given for families of the form {ug }¢~0 as € — 0.

Example 2.6.5. Let @ be an integrable function on R” with integral equal to 1. Let
@, be the L' dilations of @. Then @, (or precisely L, ) converge to the Dirac mass
at the origin & in .#/(R") as € — 0. Indeed, for ¢ € . (R"), then we have

(@e,0) = [ @clp(x)dx= | @e()FO0—)dr=(0e+5)(0)

and this converges to ¢(0) = ¢(—0) = (8, @) by Theorem 1.9.4 (b).

Having discussed important examples of distributions, we turn to some of the
operations we can perform on them. Suppose that ¢ and y are Schwartz functions
and o a multi-index. Integrating by parts || times, we obtain

[ @0 wymar= (1" [ ow@*y)war. @65
If we wanted to define the derivative of a tempered distribution u#, we would need
to give a definition that extends the definition of the derivative of a function and
satisfies the integration by parts property in (2.6.5). We just use Eq. (2.6.5) to define
the derivative of a tempered distribution.

Definition 2.6.6. Let u € .’ and o be a multi-index. The ccth derivative of u is the
element of .’/ (R") whose action on a Schwartz function ¢ is given by

(0%, ¢) = (—1)%(u,0%). (2.6.6)

Note that pg ,(d% Q) = pg ¢+y(@), so the expression on the right in (2.6.6) is con-
trolled by a finite sum of seminorms of ¢. The tempered distribution d%u is called
the distributional derivative of u or the derivative of u in the sense of distributions.
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Example 2.6.7. Let —co < a < b < co. Then ([44])" = 0 — Op. To see this, let ¢ be
in .(R). Then

b
oo @) =~ 0) = = | 0/ 3)dx = 9l@) = 9(b) = (8.~ 1. ).
Motivated by identity (2.2.1) we give the following definition.

Definition 2.6.8. Let u € .. We define the Fourier transform # and the inverse
Fourier transform u" of a tempered distribution « by the identities

(,0)=(u,@) and  (u’,0)=(u,0"), (2.6.7)
for all functions ¢ in . (R").

We explain why # and u" indeed lie in ./ (R"). Indeed, by Proposition 2.1.8 we
have pg (¢) = (27)IV-1BI | [&ﬁ((~)7’(p)]AHLM and moreover

Al < (4] A /Rn(1+|y|)7”’1dy forany h € #'(R").

Finally, by the lower inequality in (1.7.3) we have that ||(1+|-])"*'9B((-)Y@)||.~
is bounded by a constant times a finite sum of seminorms of ¢. Thus, so do the
expressions on the right in (2.6.7) and this explains why the Fourier transform and
the inverse Fourier transform of a tempered distribution lie in ./ (R").

Example 2.6.9. We have & = 1. More generally, for any multi-index o, (d%8)™
can be identified with function & — (27i&)*. To see this, observe that for all ¢ in
< (R") we have

This calculation indicates that (d%8p)~ can be identified with the function (27i§)?.

Example 2.6.10. We compute the Fourier transform of the Dirac mass at xg.

—

(80) = (60,8) = Bl0) = [ pl)e ™ 0dx, g SR,

—~

that is, &y, can be identified with the function & — e 2milxo
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Proposition 2.6.11. (Fourier inversion for distributions) For any u € ' (R") we

have iV =uV = u.

Proof. For ¢ € .7(R"), using (2.2.2), we write

—

<it\v,(p> = <1/4\7 ¢v> = <u’(PV> = <ua(P>v

Vv

and this shows " = u. Likewise we show uV = u. O

As a consequence of this result we obtain that Schwartz functions are exactly
those tempered distributions whose Fourier transforms are also Schwartz functions.

Proposition 2.6.12. If ¢ € . (R"), then ¢ and ¢" lie in . (R"). Conversely, if the
Fourier transform of a tempered distribution u on R" coincides with a Schwartz
function, then u also coincides with an element of .7 (R").

Proof. The fact that ¢ € .#(R") implies ¢ € .(R") was proven in Proposi-

tion 2.1.8 (3); consequently, ¢* = @ also lies in . (R"). Conversely, if u € .7 (R")
for some u in .#’/(R"), then the inverse Fourier transform of ¢ = & lies in ./ (R").
By Proposition 2.6.11, u = @Y but ¢" lies in .(R"), so u € .7 (R"). O

Now observe that the following are true for functions ¢, y in . (R"):

V@O —y)ds = [ ylxty)o(x)dr.
R” R”

w(1x)o(x)dx = /R 9 ), (2.6.8)

[ #o0dx = [ widtods,

R”

R

for all y € R” and r > 0. Recall now the definitions of 77 and ™ given in (2.1.5).
We also define the dilation f* of a function f by setting f*(x) = f(¢x) for ¢ > 0.
Also recall the L! dilation f;(x) = ¢~" f(¢+~'x) which is related to f’ by f =t~"f, Jt-
Motivated by (2.6.8), we give the following definition.

Definition 2.6.13. The translation 7u, the dilation u’, and the reflection u of a tem-
pered distribution u are tempered distributions defined as follows:

(Pu,0) = (uw,779), (2.6.9)
(@) = (u @), (2.6.10)
(,0) = (u,9), 2.6.11)

forally e R",t >0, and ¢ € . (R"). Let A be an invertible matrix. The composition
of u € ./(R") with an invertible matrix A is defined as the element of .

(uoA, @) = |detA| " (u,poA™"), (2.6.12)

where p oA~ (x) = (A~ lx).
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One can check that the operations of translation, dilation, reflection, and differ-
entiation are continuous on tempered distributions.

Example 2.6.14. Let xy € R". Then we have glxo = 8_y, (in particular, go = dp), also
(80)" =17"0p, and Ty = Oy,.

We now define the product of a function and a distribution.

Definition 2.6.15. Let u € .’ and let h be a € tempered function whose deriva-
tives are also tempered. This means that for all multi-indices 7y there are Cy,ky > 0
such that [97h(x)| < Cy(1+ |x|)**. We define the product of / and u by setting

(hu,@) = (u,h o), pc.s. (2.6.13)

To verify that hu is a well-defined element of .%”, we first verify that Ao lies in
; indeed, for each pair of multi-indices o/, § we have

Pap(he) < 3 C nk7<ﬂ1> (ﬁn> D Paispy(@) <o

v<P n Y/ 15|<k,

in view of Leibniz’s rule, where C,,yky are the constants in (1.7.3). This implies that

|(hu, )] is bounded by a finite sum of p,, 5(¢), thus hu lies in ./ (R").

To define the convolution of a function with a tempered distribution, we exam-
ine an identity for functions. Observe that for ¢, W in .(R") and any integrable
function® g on R” the identity holds:

[0 00vwdr= [ g@)@=y)(adx. 2.6.14)
Motivated by (2.6.14), we give the following definition:

Definition 2.6.16. Let u € .’ and ¢ € .. Define the convolution ¢ * u as follows:
(pxu,y) = (u,pxy), v e S (RY). (2.6.15)
We note that ¢  u lies in .#/(R"), since for all multi-indices o, 3 we have
pap(@+) < sup [ 16/ lo(y—0)]07y ()| dy
<2 sup [ (v bl oy~ 1Py )] dy

Sca,ﬁ,q&(l)o,ﬁ ll] + z p'}’.ﬁ ll/)’
IY=lo

using the inequality |x|/*l < 2l%l|x — y[l#l 4-2lel|y|lo] and (1.7.3).

6 In fact, any locally integrable function that is tempered at infinity.
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Example 2.6.17. Let u = §,, and ¢ € .. Then ¢ * &y, coincides with the function
x+— @(x—xp), since, for all y € ., we have

(%8s ¥) = (6.5 ¥) = @+ ¥)(x0) = | @lr—s)y(x)dx.
Thus, for xy = 0, @ * & coincides with the function ¢ for all ¢ € .(R").

Let u,v € ./(R"). Suppose that (u— v, y) = 0 for all y € €;°(R"). Given ¢ in
< (R") pick a sequence of 6§ functions y; such that p, g(y; — @) — 0 as j — oo,
by Theorem 1.8.7. Then (u —v,¢) = 0, hence u = v. In other words, two elements
of ./ coincide if and only if their actions on ¢, coincide, i.e.,

u=v < (u,y)=(vy) forall ye %y (R"). (2.6.16)

Now the integrable functions f, g coincide a.e. on an open set €2 if and only if

/f(x)(p(x) dx— /g(x)(p(x) dx  forall ¢ in 6°(Q). (2.6.17)

(See Exercise 1.9.7.) Here ¢;;°(£2) is the space of smooth functions whose support
is compact and contained in £2. Motivated by this, we give the following definition,
which, with a slight abuse of terminology, treats distributions as functions.

Definition 2.6.18. We say that a tempered distribution u coincides with a function h
on an open set €2, or alternatively, we say u agrees with h away from Q¢ if

(u, ) = - h(x)e(x)dx  forall @ in €5 (€2). (2.6.18)

Example 2.6.19. The distribution |x|> + &;,, xo € R", coincides with the function
|x|? on R™\ {xo}. Also, the distribution in Example 2.6.2 (5) agrees with the function
x~ ' %xj<1 away from the origin.

We observe that if a continuous function g is supported in a set K, then for all
f €65 (K) we have
Ff(x)g(x)dx=0. (2.6.19)
RVL

Moreover, the support of g is the intersection of all closed sets K such that (2.6.19)
holds for all f in %;°(K¢). Based on this we give the following definition:

Definition 2.6.20. Let u be in ./ (R"). The support of u (supp u) is the intersection
of all closed sets K with the property

pc% (R"), suppp CR"\K = (u,0)=0. (2.6.20)

Example 2.6.21. The support of u = &y, the Dirac mass at xo, is the set {xp}.
Indeed, {xo} is a closed set that satisfies (2.6.20) and the only proper subset of
{xo} is the empty set, which obviously does not satisfy (2.6.20) if u = Jy,.
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Exercises

2.6.1. Show that the convolution of a tempered function with a Schwartz function
is another tempered function.

2.6.2. Let a, b be real numbers.

(a) Prove that the distributional derivative of X(a,e) is 8.
(b) Prove that the distributional derivative of X(—oo,b) is —&p.
(c) Prove that |- | =28y in the sense of .#’(R).

2.6.3. Prove that the derivative of log |x| € .’/ (R) is the tempered distribution

dx
(u, @) —hm/(p

e<[x|

2.6.4. Evaluate the 0,0, ---d, distributional derivative of the function X000y 1N
S (R").

2.6.5. Show that for a given f € .7 (R") there is a unique u € . (R") such that
- 2 a}u +u=f.
=1

2.6.6. Let f,g in L*>(R"). Show that the distributional Fourier transform of f g
coincides with the integrable function f g.

2.6.7. Let z € C. A distribution in .’ (R") is called homogeneous of degree z if for
all A > 0 and for all ¢ € .(R") we have

(u,0*) = 27" *(u, ).

(a) Prove that this definition agrees with the usual definition for functions.

(b) Show that & is homogeneous of degree —n.

(¢) Prove that if u is homogeneous of degree z, then d%u is homogeneous of degree
z—lal.

(d) Show that u is homogeneous of degree z if and only if & is homogeneous of
degree —n — z. Verify this assertion for the distribution in Example 2.7.4.

2.7 Basic Operations with Tempered Distributions

Having completed the streak of required definitions concerning operations with dis-
tributions, we discuss properties of these operations.

We begin with the observation that for a given y € .%(R") and u € ./ (R") the
function x — (u, T¥y) is tempered. Indeed, for any x € R" we write
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C Y, sup [y*oPy(y—x)|
|o] <M YER"
IBI<K
C Y 2" sup |y—x| 0P y(y—x)[+2"|x|*! sup [0P w(y)|
laj<m  YER" yER"
IBI<K

Coricy (14 )Y,

[(u, 7w

IN

IN

IN

having used that |y||% < 21@l]y — x|l#l 4-21¢l|x|1#] as well as (1.7.3).

Theorem 2.7.1. Let u € ' and ¢ € .. Then @ xu coincides with the func-
tion x — {(u,7°@) for all x € R". Moreover, @ *xu is a ¢ function that satisfies
d%(@ xu) = %@ *u for any multi-index o.. Also, there is a positive constant M
such that for every multi-index o there is a constant Cy, o > 0 such that

0% (@ #u)(x)] < Coup(1+[x])M. 2.7.1)

Proof. Let v be in . (R"). We have

(9ruy) = (u.9xy)

= (i [ 7 w0
= (i [, PP w0 @72)

= [ (2o

where the last step is justified by the continuity of u and by the fact that the Riemann
sums of the inner integral in (2.7.2) converge to that integral in the topology of ., a
fact that will be justified in the subsequent Lemma 2.7.2. This calculation identifies
@ *u with the tempered function x — (@ xu)(x) = (u, T°¢), as claimed.

We now show that @ *u is a € function. Let e; = (0,...,1,...,0) with 1 in the
Jjth entry and zero elsewhere. Then
(@ru)(xtre)) = (@ru)(x) _ <u Tt —T'9

t ’ t

> (3T = (1, T(359)
where the convergence is justified by the continuity of «# and the fact that

tei(+Xm\ _ X .
T (T Q?) T — 0,79 =1(0;9) in.s

as t — 0; see Exercise 2.7.2. This gives that ¢ *u has a jth partial derivative and
precisely, dj(¢ *u) = d;¢ *u. Then we use induction to obtain ¢ *u € € and that
dY(@*u) = (07 @) xu for all multi-indices 7.

Using that 9% (@ +u) = (9%¢) xu = (u, 7°9%¢) = (—1)1*(u, 9% @), it follows
from (2.6.2) that for some C, M, and K we have
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0%(@*u)(x)] <C Y, sup y"d* P (r°g)(y)|
|yl<M YER”
|BI<K

=C Y sup |(x+)7(0*P9) ()|

ly|<m YER"
[BI<K

< ()M oM 3 sup (14 p)MI0*PH) )]

|Bl<k YER"
and this yields (2.7.1), with C¢ ¢ being the expression in the square brackets. [

Lemma 2.7.2. The Riemann sums of the integral in (2.7.2) converge to this integral
in the topology of ..

Proof. For each N € Z" we partition [~N,N]" into a union of (2N?)" cubes Q;
of side length 1/N and we let y; be the center of each Q;. We will show that for
multi-indices o,  the following Riemann sum minus the corresponding integral

(n2)"
DN ()C |:

S vl o)l - [ voIlat -] @73
converges to zero in L*(R") as N — . We write

[(2%2, P y(y)e(x—y)) |le—2§ / w()0P §x— y)dy}

(2N%)"

% 2/ Y0)PLF— )~ W) G| dy

1 ~
=x le /Q,-/o V[ydPo(x—)]((1-0)y+80y;) (yj—y)d8dy (2.7.4)

by the mean value theorem. Using estimates for Schwartz functions and the simple
inequality |V(FG)| < Xi_,(|okF||G| +|F||0kG]l), for y € Q; we estimate

ot ~ Cag x| 1 n
|x V[afllf‘l’(x*’)}(é)'()’f* )| < (14 |x—E&|)M/2 (2+|§|)Mﬁ

when M > 2|ot| 4 2n, where § = (1 — 0)y+ 0y;. The last expression is bounded by

Cy [x]'® I VA Cult L
(14 |x)M/2 (24+|E[)M/2 2N — (14 |x|)M/2 (1+|y|)M/2 2N’

since |§| > [y| —Oly—y;| > |y|— > ly| — 1 for N > y/n. Inserting this estimate
in (2.7.4) and using (2.7.3) and the fact that R" = U;Q; U ([—N,N]")¢, we obtain
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I+

c xlled dy
|Dy(x)] < N (3 )7 / (7M/Q+ / P o (x—y)w(y)|dy
[-N.N]" ([=N.N]")e

for N > \/n. But the second integral in the preceding expression is bounded by

/ C//|x“a| dy C//|x||oc\ / dy
T e—y)M72 (T DM = (14 xM72 MR
e FE=3D ()2 DD

Using these estimates we verify that limy_,e Sup,cgs |Dn(x)| = 0. O
We now extend the properties of the Fourier transform to tempered distributions.

Proposition 2.7.3. Lety € R*, b € C, ¢t > 0, and o« be a multi-index. Given u, v in
S'(R"), ¢ € L(R"), and h a € tempered function all of whose derivatives are
also tempered functions, we have

() utv=u+v,

(2) bu=bi,

(3) Ifuj —uin.', thenu; — uin.7",
@) ()™= (@),

(5) (Pu)"=e Ty,

(6) (eXmxvy) =

M ()= (@), =r"@)"",

(8) (9%u)"= (2mi)%u,

9) 0%u=((—2mix)%u)",

(10) pxu=ou,

(1) pu=Qxi,

(12) (Leibniz rule) 9%(hu) = 3 (5) -~ (§)(97h)(9% Tu).

y<o n

Proof. Properties (1) and (2) are straightforward while (3) is due to the identity
(itj, ) = (uj, @). Statements (4)—(11) can be obtained from related statements for
Schwartz functions; indicatively, we prove (8): for ¢ € ./(R") we have

((0%u) ) = <3M<P>

Ia‘<u 8“(,0)
1)/ u, (—27i(-)%¢)")
D@, (—2mi() %)

:< 27i(+)) %, ).
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We now prove identity (12) when & = ¢;. In this case we have

(9j(hu),y) = —(hu,d;y)

—(u,ho; )
—(u,d;(hy)) + (u, yd;h)
(9ju hy) +((9;h)u, y)
= (hdju+ (djh)u, )

for any function y € . (R"). Thus d;(hu) = hoju+ (d;h)u and this establishes (12)
when o = ¢;. The case of a general index ¢« can be obtained by induction. (]

Example 2.7.4. For z a complex number with —n < Rez < 0 we define the locally
integrable function
ztn
T2

u(x) = ED) |x[%, x € R"\ {0}.

We compute the distributional Fourier transform of u, and we show that it coincides
with the function u_,,_,, that is, we show that

U, =u_n_z, —n<Rez<O0. (2.7.5)

To prove this assertion, we temporarily fix z satisfying —n < Rez < —n/2. Then
—n/2<Re(—n—z) Zand |x| 7"~ ¢ are locally integrable (and certainly
tempered at infinity). For ¢ € .(R") we write

(it @) = (uz, @), (2.7.6)

but we choose @(x) = ¢(x) = e TRl Using the result in Example 2.3.10, which
gives i (x) = ¢(z,n)|x|7*" for every x # 0, we obtain

z+n
—n—z —7|x|? — T2 7 —mlx)?
c(z,n) /R” x| e dx 71_,(2%,1) - |x[e dx.

Switching to polar coordinates yields

< 2dr _ zdr
C(Z,i’l)/ F e T + / rz+n nr ’
0 on

r r

I\)“\L

and this is equivalent to
2 [ _z _.ds T _ztn [z _ds
clzmr? [ 572 — = ——m 2 52 e —,
0 K o) 0 s

by the change of variables s = 772. From this we obtain the value
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c(z,n) =

and justify the validity of (2.7.5) for z satisfying —n < Rez < —n/2. We now rewrite
(2.7.6) for z satisfying —n < Rez < —n/2 as

zZ ztn
il / X p(x) d = / B (x) dx. 2.7.7)
r(—%) Jre rt) Jre

If we knew that both functions in (2.7.7) are analytic on the region —n < Rez < 0,
then we appeal to the identity principle in complex analysis to deduce the validity
of (2.7.7) for all such z. But this is a consequence of the following lemma.

Lemma 2.7.5. Let B be a positive real number. Then for any 6 > 0 we have

! ) (2.7.8)

B
weC, 0<|w|<5:>’ —
B26

-1 2 25
<= B
‘_5max( ,

Proof. Let w = x+ iy, where x # 0, y # 0 are real. Suppose |w| < &. Then

BY —1
w

o

BY 1] [B*—1
x+iy X+iy

BY—1| |B*—1
Bt B

1yl [
iylogB __ 1| |exlogB _ 1|

|ylogB] |xlog B| |
< B|log B| 4+ max (e"l"gB, 1)|logB|
< 2max (B‘xl,B_lx‘) |log B

= B*|logB| le log B

< (B5 ) llog B®|

1
26
max (B 7325>’

having used that logr <t for ¢t > 1. In the cases where one of x,y (but not both) is
zero, simple modifications of the preceding argument yield (2.7.8) as well. O

Lemma 2.7.6. For v € .(R") the function

o ]y ( (2.7.9)
)

is analytic in the region Re w > —n.

Proof. The analyticity of the Gamma function (and its reciprocal) in this region
is a known fact and omitted here; in fact a simple modification of the subsequent
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argument proves this assertion. So we prove that w — [ga |x["'y/(x) dx is analytic.
We fix wg with Rewy > —n and pick & > 0 such that Rewy — 28 > —n. Then

i | [y de [ spod| = [ (togl) o ax,
R)l RVl RVl

w—0w

since lim,,_, il ‘ = log |x|. The passing of the limit inside the integral is justified
from the LDCT via the inequality in (2.7.8), which holds for 0 < |w| < &, combined
with the fact that |x|"0 max(|x|?9, |x| 29 )y(x)log |x| is integrable over R". O

It turns out that the function in (2.7.7) is entire and thus u, extends to an entire-
valued tempered distribution whose Fourier transform is u#_,_,. On this see [31].

Exercises

2.7.1. Let @ € Z(R") with [z, @(x)dx =1 and for &€ > 0 let @ (x) = e " @ (e 'x).
Show that @, — & in ./(R") and that @, * f — f in .7 for every f € ./ (R").
Conclude that @ *u — u in .’ for every u € ./ (R").

2.7.2. For ¢ € . (R") prove that ("¢ — ¢)/h — d;¢ in ¥ as h — 0.

2.7.3. On the real line consider the tempered distribution #, of Example 2.7.4. Use
the Taylor expansion at the origin of a function ¢ € .7 (R)

+1

x)—i"’“{)( F ™) (1)
A N Jo ¢

for an arbitrary even positive integer N, to write

N (k) (N+1)
, 9 Wp—1 / /‘P ) (1x) N 1,1 (e N+1
xFo(x)dx = — )N dr|x[FN .
/\x\<1| o) Z;) k! z+k+1 Ix<1J0 Vil
k even

Deduce the analyticity of the function z +— [, [x[*@(x)dx on C\ E, where E =
{-1,-3,-5,...}. Conclude from this that the function z — (u;, @) is entire.
[Hmt The functlon z— I'(%4) 7! has zeros of order 1 at —1,—3,-5,....]

2.7.4. Suppose that f is a tempered distribution on R” whose Fourier transform
coincides with an integrable and compactly supported function. Prove that f € €.
[Hint: Show first that f can be identified with the function x — [ga f(&)22¥4dE ]

2.7.5. Let a > 0. Using that the Fourier transform of e Rl g itself, show that
(a) The Fourier transform of e Tl on R” is ¢ "/2e~ 7k /a,

(b) The Fourier transform of e~ (@i is (g jt)=1/2¢=mhl*/(a+it) ; ¢ R,

(c) The distributional Fourier transform of e~/ js (it)_"/2e"”‘x|2/t, t € R\ {0}.
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[Hint: Note that (it)'/? is a well-defined complex number with argument 7t /4 if 1 > 0
and —m/4 if ¢t < 0. For part (b) use part (a) and analytic continuation. Obtain part
(c) by taking the limit in part (b) as a — 0™ using the LDCT.]

2.8 L? Fourier Multipliers

We are interested in studying L” boundedness properties of operators given by mul-
tiplication by a bounded function on R" on the Fourier transform. Such operators
are also expressed as convolution with certain tempered distributions.

Definition 2.8.1. Given 1 < p < oo, we denote by .#,(R") the space of all L™ func-
tions m on R” such that the operator

Tu(e)=(pm)" =@xm’,  @ecSR"), 28.1)

admits a bounded extension from L”(R") to LP(R"). Here m" is the distributional
inverse Fourier transform of m. The norm of m in .#,(R") is defined by

lmll.z, = HT'“HLP—U’

Notice that || - ||z, is indeed a norm on .#,(R"). It certainly satisfies the
triangle inequality and is homogeneous of degree 1; moreover if ||m|[.z, = 0, then

(me~7*)V = 0, which implies that m = 0 a.e. by (2.2.2).

Example 2.8.2. (a) Let b € R”. Then the function m(&) = > lies in ./, with
norm 1 as T,,(f)(x) = f(x+b) is bounded on L”(R") with operator norm 1.
(b) Given K € L' (R") we have that K lies in .#, with norm at most || K| ..

Proposition 2.8.3. Let my, my be in .#, and c € C. Then mi +my, cmy, and mymy
lie also in ).

Proof. Observe that mm; is the multiplier that corresponds to the operator T;,,, T, =
Tin,m, and thus

lmvmall.a, = || Ty Ty || 1o 1 < ]|z llm2|.r,-
The analogous conclusions for m +my and cm are straightforward. O
Other properties of multipliers are summarized below:

Proposition 2.8.4. Fix 1 < p < eo. For allm € M, xo € R", A >0, and all n x n
matrices A with nonzero determinant we have

[7om| , = lmll.a, . (2.8.2)

o], = llmll.a, (2.8.3)
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|7l ,, = lml.az,
[ om|[ , = limll.,
lmoAl , = lmll.a,. (2.8.4)

Proof. We first prove (2.8.3). For f a nonzero function in .(R") we have

Lo )@= [ Femaee=tag= [ Li(>)me)emtdaz =1, (3).

where we used Proposition 2.1.6 (7). This implies that

17 Dl _ 1Tl AT [T AP T
A1 A1, A 7]

Ly

s

so taking the supremum over all f € . (R"), or equivalently over all f* € .7 (R"),
with || f||Lr # O yields (2.8.3). We now prove (2.8.4). For f a nonzero function in
7 (R"), we use Proposition 2.1.6 (8) and || f o Al|z» = |detA|~"/P|| f||1» to write

[Toea (Dl _ [I[(m(Foa)) o] ||,
1711, £l
o (Foa=) o (AN,
|detal ][,
~[det(A)~1 77 || (m | detA| FoAT)"
T Jdetal oo (a)

[

Iz

[

_ldet() | 7 || (m o)
£ o], |det(ar) 1|7
_ Za(roa)],,
[foat]l,

The supremum over all f € . (R") with || f||L» # O is equal to the supremum over
all foA" € Z(R") with || f oA"||L» # 0. This proves (2.8.4). We leave the remaining
properties as exercises. (I

Theorem 2.8.5. Let u € .’ and let T(¢) = @ *u for ¢ € .. Then T admits a
bounded extension from L>(R") to L>(R") if and only if the Fourier transform i of
u coincides with an L™ function. In this case we have

T\ 22 = N (2.8.5)

Proof. Suppose @i € L. Then for f in.%(R"), we have f ii € L2; thus (f @)Y = fxu
also lies in L?. Plancherel’s theorem gives
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— . R 12
/ |f*u|2dx:/ |f*u\2d§:/ FaPde < |a|2-|| 7]
Rn Rn RI!
As . is a dense subspace of L?, we obtain the inequality
17|22 < Nl (2.8.6)

Now suppose that 7 admits a bounded extension from L?(R") to itself. We must
show that the Fourier transform of u is a bounded function. First we prove that there
is a function H in L? .(R") which coincides with & on every open ball. We begin
with the observation [using Proposition 2.7.3 (10)] that for any ¢ € €;;° we have

pi=(¢"*u)"=T(p")" € L*(R"), (2.8.7)

as T maps L? to itself. We pick @ € €= (R") equal to 1 on the closure of the unit
ball and vanishing outside the ball of radius 2 centered at the origin. We define

B {cpﬁ on B(0,1),

‘1’(-/2m+l)i{\ on W\B(()’zm) for m € Z+ U {0}, (2.8.8)

and we notice that H € L2 (R"). Also observe that H = @(-/2"*1) 7 on the entire
ball B(0,2"+1); indeed, ® = @(-/2"*!) on B(0,1) and ®(-/2K1) = ®(-/2"*1) on
B(0,2+1)\ B(0,2F) for 1 <k < m.

Given y € %5°(R") supported in a ball B(0,R), pick m € Z* such that 2"*! > R.

Then
(i) = (@, ®(-/2" " Yy) = (D(-/2" i, y) = (H,y)

and
T(y')=(yi)" = (y@(-/2" " a)" = (yH)". (2.8.9)

These facts indicate that H coincides with # on every open ball B(0,R) and that
(2.8.9) is valid for all ¥ € €;°(R"). We now show that (2.8.9) also holds for L?
functions with compact support g. Indeed, let g be an L? function supported in the
ball B(0,K). Pick y; a sequence of smooth functions supported in B(0,2K) such
that [lg — y;jll,2 — 0 as j — co. We have that (y;H)" = y xu = T(y}) which
converges to 7(g") in L? as j — oo, since T is L*-bounded. Then for a subsequence
Jji wehave (y;, H)Y — T(g") a.e. as [ — . On the other hand,

(v H)Y = (¢H)"|| - < [|(w5, =) H][ 1 < 1w —gll2 |H 20,280 — 0

as [ — oo. We conclude that T(g") = (gH)" a.e. for all L? functions with compact
support g. Plancherel’s theorem and the boundedness of T give

/Ig )[*dy = /IgH y)[*dy = /IT WPy < |72z g2

for g in L? with compact support. Thus for such g we have
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LTI = HO)P) g0 dy = 0.

Picking g(y) = [B(x, )| 2 Xp(x.e)(y) we obtain

1
[B(x, )| /B( 0 (IT (172 pp = HR)P) dy > 0. (2.8.10)
) X,
Letting € — 0 and applying Theorem 1.5.1 we deduce that ||T||i2HL2 —|H?*>0a.e.

Hence H lies in fact in L* and
|H| = < Tl 2 g2 (2.8.11)

We conclude that z coincides on any ball with the bounded function H; this implies
that u coincides with the bounded function H everywhere and hence (2.8.11) holds
with & in place of H. Combining (2.8.6) with (2.8.11), we derive (2.8.5). O

Proposition 2.8.6. Suppose 1 < p < e and m € .#,(R"). Then the operator T,,
defined in (2.8.1) satisfies

1|

L”IHLPI = HTmHLI’A;LI)' (2812)

Equivalently, we have 4,y (R") = .#,(R") with ||m|| 4, = Hm||j/p,.

Proof. Let u be the distributional inverse Fourier transform of m. We denote by T",
the transpose operator of T, (see Appendix E). For f,g € . (R") we have

/Rnf T,(g)dx = /RnTm(f)gdx
- [ s
= f(g*u)dx.

R”

Therefore the transpose operator T}, of T, is given by T, (@) = ¢ xu for ¢ € #(R").
Next observe that for ¢ € .7 (R") we have ¢ xu = @ * i, which yields

It follows from (2.8.13) that ||@ *u|,,» = || *ul|,,» and thus

o+l _ |9 =]

Tt 4 = - T =0 — T ) .
ol = e ol gy Tl 1ol
9£0 ©#0
The fact that
HYZZHLP%LP’ = HTmHU’ﬁLP

yields (2.8.12). ]
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As a consequence of the preceding result, the normed spaces ./, are nested; that
is, for 1 < p < ¢ <2 we have

My S My My =L (2.8.14)
To see this, take m € A, = My and 1 < p < g <2< p’, Theorem 2.4.1 yields

1-6
LP—LP

0

HTm 'y = HTmHLPHLp’

Ty | o

|’Lq~>Lq < H (2.8.15)

hence (2.8.14) holds; in particular, with ¢ = 2 we obtain

where 1/q = (1—6)/p+0/p'. Thus ||m||_4, < |lm||.»~, whenever 1 < p < g <2,

ml|r= < [|m|.z, (2.8.16)
forall p € (1,e0) and all m € ).

Proposition 2.8.7. Let 1 < p < c. Suppose that sup; ||m;||.z, < e and thatm; — m
pointwise a.e. Then m lies in ./, and satisfies ||\m||.., < sup;||m;|.«,-

Proof. It follows from (2.8.16) that

sup [|m;|| 1= < sup|[mj|.z, = C < eo;
J J

thus the m; are uniformly bounded. Fix ¢ € .. For every x € R" we have

Ty (9)3) = |

R”

BEME)™EdE — [ G(EM(E)™ dE = To(0)()

by the Lebesgue dominated convergence theorem, since C | | is an integrable upper
bound of all integrands on the left in the preceding expression. An application of
Fatou’s lemma yields that

[ 1Tu(@)rax = [ timinfT,, (¢))"dx
JR" Rt J—o°

< timinf [ T, (p)|? dx
Rn

J—roo
<C|ellz
which implies that m € .#),. This shows that

., < Ximinf [lm;ll.c, < C = suplim,.«,
J
proving the claimed assertion. (]

Example 2.8.8. Suppose that x| ;) lies in .#,(R), a fact that will be shown later.
We show that m = /g ..) also lies in .#,(R).
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Dilations, in particular property (2.8.3) with r = 1/, give that m; = X[o,j lie
in .#,(R) and ||mj]| 4, = |Im1|.«, for j € Z*. Proposition 2.8.7 then yields that
lmll.z, < llm1ll.a,-

Exercises

2.8.1. Let 1 < p < oo,
(a) Let m € L= (R") satisfy m" € L' (R"). Show that [l rey < ][ 1 gy
(b) If m lies in L! (R") N L2(R") prove that i lies in ., (R™").
(c) Use part (a) to conclude that .(R") is contained in .#,(R").

2.82. Let ] < p <oo,
(a) If m € #,(R") and g € L'(R"), prove that g+ m lies in .#,(R").
(b) Let g be a function on R” that satisfies |g(x)| < A |x|™" min(|x|", |x|~7) for

some ¥ > 0, [pn g(x)dx # 0, and suppose that g¢(x) = £ "g(e~ 'x) satisfies

Sup g xml|_y gy < o=

where m € L™ (R"). Prove that m € .#,(R"). [Hint: Use Theorem 2.5.7.]

2.83.Let (m @ @my)(Yi,...,Yn) =mi(y1) - -ma(yn), mj :R—C,y; €R.
(a) Verify thatif m; € .#,(R) for j=1,...,n,thenm; ®---@my, lies in .#,(R").
(b) Does the function (&1, &) + sin (3&) +4&) cos® (5&; +6&>) lie in .4, (R?)?

[Hjnt: Write T, ©---@m, = T,,(li) 0---0 T,&'), where T,,(,p acts on the jth variable only.]

2.8.4. Assume that y|o 1) lies in .#,(R)
(a) Show that for all a, b satisfying —eo < a < b < o we have

1 Xap) .z, = 20,111, -

(b) Prove that
1 X(ap) .z, < X017z,
when —ee < a < b < . Conclude that || x(o,1]]l.#,®) = I-

2.8.5. Let 1 < p < o and assume that y|o ;) lies in .#},(R). Suppose that m is a
bounded and differentiable function on the line with the properties limg _, .., m(&)=

0 and m’ € L' (R). Prove that m € .#,(R).

2.8.6. Suppose that ¥ ..) lies in ., (R).
(a) Show that the characteristic function of every half-plane lies in ./, ,,(Rz).
(b) Show that the characteristic function of every triangle lies in .#,(R?).
(c) Show that the characteristic function of every polygon lies in .#, p(Rz).
(d) Show that the characteristic function of every angle lies in .#,(R?).
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2.9 Van der Corput Lemma

We end this chapter by discussing how to obtain bounds for one-dimensional oscil-
latory integrals with phases that are not necessarily linear functions. For instance,
we study the behavior of oscillatory integrals of the type fMSl e 2mER it g & — oo,
If the function ¢ in the exponent is replaced by ¢, then the integral decays like &~!
as & — oo} however, the presence of the quadratic phase 2 is responsible for the
slower decay é’l/ 2 as € — oo. Estimates in this sort are contained in the following
lemma, which is the main result of this section.

Lemma 2.9.1. (Van der Corput lemma) Let A > 0 and —oo < a < b < oo, Consider
a real-valued function u defined on an open subset of R that contains [a,b].
(a) Suppose that u € €, u' is monotonic, and satisfies [u’| > 1 on [a,b]. Then we

have
/ b Shult) gy
a
(b) Suppose that u € €*+! for some k € Z7, k > 2, and satisfies |u(k)| > 1 on [a,b].

Then we have )
/ o) gy | <
i <

Proof. (a) Without loss of generality we may assume that ' > 1 as we can always
replace u by —u noting that in this case the integral in (2.9.1) becomes the complex
conjugate of the former. Notice that as «’ is monotonic and %', then so is 1/u’
and consequently 1/4/ is differentiable and its derivative is either strictly positive or
strictly negative. We write

b 1 .
/a oMult) gy — / ilu,(t)muf@)emv>dt

_ 1 idu(b) 1 llu (a) / idu(t
~ i (b)¢ i (a) A (0

3
< (2.9.1)

5.201-2

T (2.9.2)

via an integration by parts. Taking absolute values and using that ¥’ > 1 and that
[(1/d) | = (1/u") or |(1/u)] = —(l/u’)/ on [a,b] we conclude that
1 1 3

b
idu(r) S R
/a T Wb W@ S

(b) We will derive the case k = 2 from the case k = 1 [Case (a)], the case k = 3
from the case k = 2, etc. To argue by induction, we may suppose that for some k£ > 2
there is a positive constant C(k — 1) such that the estimate

b
/ oAV gy
a

21
<+ 4

<Clk—1)A"FT (2.9.3)
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holds for all A > 0, for all intervals [a,b], and all € functions v on an open set
containing [a, b] which satisfy [v(*~1)| > 1 on [a, b]. Then for our fixed €**! function
u which satisfies |«¥)| > 1 on [a,b] we will prove that

b
/ SAult) g
a

for some constant C(k) explicitly related to C(k — 1). To prove (2.9.4) for k =2 we
need to use (2.9.3) when k = 2, i.e., the result proved in Case (a). But when k = 2,
the hypothesis |u”| > 1 implies that " > 1 or «” < —1, thus «’ is monotonic. Thus
the additional assumption of the monotonicity of #’ in Case (a) will automatically
hold. This additional hypothesis is not needed for k > 2.

We now focus on establishing (2.9.4) assuming (2.9.3). As we may replace u
by —u, there is no loss of generality to assume that u®*) > 1. As u*~1) is strictly
increasing, the following cases are the only possibilities that appear:

(@) u*=Y(a) > 0. (See Figure 2.2.) Then for 0 < § <b—aand a+ & < x < b we
have

—

<C(k)A~ (2.9.4)

uE D (x) = u® D (x) =% V(@) + 1%V (a) = u* V(@) + u® (&) (x—a) > 8,

for some & € (a,x). Therefore, when 0 < 6 < b — a, applying (2.9.3) with v=1u/d

we obtain

b 5 b

/ Sihul) g /"+ Sihul) gy / Sihul) gy
a a a+é

Note that the same estimate is valid when § > b —a, as in thiscase ] < b—a < 6.

I= < + <5+C(k—1)(A8) FT,

a b—§6 b

)

w1 u

¥a+86 b

. . . .. Fig. 2.4 Case (iii)
Fig. 2.2 Case (i) Fig. 2.3 Case (ii)
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(i) u*1(b) < 0. (See Figure 2.3.) Then for 0 < § <b—aanda <x <b— 8 we
have

—uF D () = u* D () —u* D (x) —u* D () = —u*D () +u® (£) (b —x) > 8,

for some & € (x,b). Therefore, if 8 < b— a, applying (2.9.3) with v =u/5 we obtain

b—0 b
/ et gy | 4 / e gy
a b—§
1

This estimate also holds if 8 > b—a,as I <b—a <0 <C(k—1)(A0) =T +34.
(i) u*=Y(c) = 0 for some ¢ € (a,b). (See Figure 2.4.) For any § > 0 with
6 <min(b —c,c — a) we have

< <C(k—1)(A8) F1 +38.

u D (x) = uF D () —u D () =u® (E)(x—c) > 8, if c+8<x<b
for some & € (c,x) or
—u* D (x) = uV () —u* D (x) = u® (&) (c —x) > 8, if a<x<c—§6,
for some & € (x,c). Applying the induction hypothesis, we write
c—§8 c+6
/b o) gy | < / 2ult) gy 4 / + ) gg| 4 /b Gru0) g
a /e c—0 c+08

<Clk—1)(A8) FT +28 +C(k—1)(A8) &1
= 2C(k—1)(A8) F1 +28.

I =

This estimate is also valid when 6 > min(b — ¢,c¢ — a). For instance, in the case
¢—08 <aand c+ 0 < b we estimate the integral over [a,c+ 6] by c+ 6 —a <28 and

the integral over [c+6,b] by C(k—1)(A6)~ BT, We argue similarly whenc— 6 > a
and ¢+ 6 > b. Finally, in the case § > max(b—c,c—a) weuse I <b—a < 20.
Thus, in all three cases (i), (ii), (iii), and for any 6 > 0 we have proved

b
/ Shult) g

Choosing 6 = A"t we finally derive the estimate

/ idu(t) ;| <

where C(k) = 2C(k—1) +2. As C(1) = 3 we obtain C(k) = 5-2¢"1 —2. O

<2C(k—1)(A8) 1 +28.

=

< (2C(k—1)+2)A"F = C(k)A T,

Example 2.9.2. Let k € Z" and k > 2. We have the estimate
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b k=1 _
—2miktk 5-2
‘/0 e dt‘ < k)i |§| (2.9.5)

for all £ # 0 and any b > 0. Indeed, we apply Lemma 2.9.1 (b) with u(z) =
—(sgn&)r*/k!, which satisfies [u¥)| > 1 to deduce (2.9.5). In Exercise 2.9.2
estimate (2.9.5) is extended to noninteger values of k.

However, on an interval of the form [a,b], where 0 < a < b < o, applying
Lemma 2.9.1 (a) to —(sgn&)t*/ka*~"!, we obtain the better estimate (in |&| # 0)

b
72ﬂli§tkdt 1
/ < —M -

Clearly estimate (2.9.6) is better than (2.9.5) in terms of the decay of |§| — e, but
obviously this gets worse as a | 0" if k > 1.

(2.9.6)

As the previous example indicates, in many cases one does not have |u(k)| >1,
but |u¥)| > ¢q for some constant co. Then we have to replace u by u/co and A by
Acg. We state this situation as a corollary.

Corollary 2.9.3. Let A,co > 0 and —oo < a < b < . Let u be a continuously differ-
entiable function on an open subset of R that contains [a, b].
(a) Suppose that v’ is monotonic and satisfies |u'| > co on [a,b]. Then

b
/ Sult) gy

(b) Let k > 2. Suppose that u is of class €* and |u'®)| > co on [a,b]. Then

/ iAu(t) gy <

The proof of this corollary has already been discussed.

3
<
A,C()

5.2¢1-2
(Aco)l/k -

Exercises

2.9.1. Show that for any real & satisfying |£| > 1 and any k € Z with k > 2 we have

1
’/ 7# 7l§t dt
&I %=

1
<
~ 2k

[Hint: Use (2.9.6).]

2.9.2. Show that for any y > 1 and y ¢ Z and A,b > 0 we have

‘/ lltydt

+3
Ty
- )Ll/V
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[Hint: If A'/7 < b, split the integral over the intervals [0,A~!/7] and [A~!/7,5] and
apply Corollary 2.9.3 (a) to estimate the integral over the second interval.]

293.LetA >0,d>1,and0< b < % —c,where 0 < ¢ < % Prove the following

assertions:
b
< 8 / tltlogtdt / eiltlogtdt
o 1 0

1
iAtlogt
e dt
) i

[Hint: For the last integral use that |log(1 — ce))|

< 3
~ Ace

)

3
=4
> ce]

2.9.4. Let a,b,k, A and u be as in Lemma 2.9.1 and let ¢ be a €* function on an
open set containing the interval [a, b]. Show that

= 2;1/]/( 2[|<p(b)|+[’(p/(,)d,]

with the additional hypothesis that ' is monotonic when k = 1. (The expression in
the brackets can be replaced by ¢(a) if ¢ is positive and decreasing.)

llu dl

2.9.5. Let k € Z™. Prove that there is a positive constant ¢ such that

/ l/‘Ltk dt
e<lr|<1 T

[Hint: For |A| < 1 use the inequality |eWk — 1| <|AK IfF|A| > 1 and e < |A| 71/
split the domains of integration into the regions |¢| < |A|~'/* and |¢| > |A|~'/* and
use Exercise 2.9.4 in the second case. If € > |4 |’l/ ¥ modify the previous argument.]

sup sup < .

A€R O<e<l1

2.9.6. Show that

im [ e(1—e )% o,
A—0tJ1 t

[Hint: For A > 10 split the integral into the parts:

VA A
I = ell(l _6711311)@
J1/V61 t

)

1/Ver ,
II:/ e”(l—e*’ts}”)ﬁ,
J1 t

< i3 dt
111:/ d(1—e ™M=
1/VA t

and apply the Riemann-Lebesgue lemma and Exercise 2.9.4 for part /. Parts /7 and
111 can be handled by integrating by parts.]



Chapter 3 )
Singular Integrals st

3.1 The Hilbert Transform

Informally speaking, the Hilbert transform is given by convolution with 1/x on the
real line. But as 1/x is not integrable, some care is needed to properly define this
operation. This can be achieved by considering a tempered distribution that coin-
cides with 1/x away from the origin.

We define a linear functional Wy on . (R) as follows:

(Wo,9) = lim ' "’(’“)dx+/ 1de’ ¢ c.7(R). (3.1.1)
x|>

e=0Je<|x<1 X X

As the function 1/x has integral zero over [—1,—¢][e, 1], we replace ¢@(x) by
@ (x) — @(0) in the first integral in (3.1.1). Using the fact that (¢(x) — ¢(0))/x is
bounded by ||¢'||.~, we deduce that the limit in (3.1.1) exists. To verify that W lies
in .’'(R) we notice that

|(Wo,0)| <2||¢'||,- +2s1611g lx@(x)| =2[po,1 (@) + pro(@)]. (3.1.2)

Definition 3.1.1. The Hilbert transform of ¢ € .7 (R) is defined by

pl—1)
1

~

H(p)(x) = %((P*Wo)(x) -1 lim/M>g (3.1.3)

T e—0

Limits of integrals as the one in (3.1.3) can also be written without a limit. A prin-
cipal value integral is an improper integral of the form

p.v./@dt:hm Mdt.
R

e-0J|t|>e t

Thus the Hilbert transform of a Schwartz function is a principal value integral.
According to Definition 3.1.1, the Hilbert transform of a Schwartz function ¢ is
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_ 1 P(x—1)
Hip)() = 2 limy | = Dnner + 21 ] e (3.1.4)
_ 1 Qx—1)—(x) dHl/‘ pl—1) .
JJt|<1 t [t|>1 t
- 77/ / (x—16 d9dt+1 oL6=1) (3.1.5)
[t[<1 t|>1 t

Remark 3.1.2. H(¢) is also well defined for other classes of functions ¢.

(a) Let us assume that [ (¢)| < C(1 + [t|)~% for some C,8 > 0 so that the second
integral in (3.1.5) converges. Then H(¢)(x) is well defined if ¢ is a €' function,
since in this case the first integral in (3.1.5) also converges for all real x.

(b) More generally, if for a given x € R there is an open interval (x — &;,x+ &) on
whose closure @ is continuously differentiable, then H(¢)(x) is defined for this x.
To make sense of this, we simply replace the intervals [¢| < 1 and [¢| > 1 in (3.1.4)
and (3.1.5) by |t| < & and [t| > &, respectively. An example of such a situation is
¢ = X for some a < b, x € R\ {a,b}, and &, = min(|x —al, |x—b[)/2 > 0.

(c) Given an integrable function g and x € R such that the function ¢ — ﬁ lg(x—1)|is

integrable on the line, then the limit in (3.1.4) exists by the LDCT and thus H(g) is
well defined at this given x. For instance, this happens when g has compact support
and x lies outside the support of g. On this, see Example 3.1.4.

Remark 3.1.3. Let 1) be an even smooth function supported on [—2,2] and equal
to 1 on [—1,1]. Then the splitting 1 = |;<; + X|;|>1 in (3.1.4) can be replaced by
1 =n(t) + 1 —n(¢). This yields the following equivalent identity for H(¢):

:_7// x—10)dOn(f)dr + — /(p l%n(t)dt. (3.1.6)

Example 3.1.4. Let ¢ be a €' function on the line with compact support. Then for
some constant C (depending on ¢) one has

|H(¢)(x)] < (3.1.7)

1+ |x|

for all real x. Indeed, (3.1.5) implies that H(¢)(x) is bounded everywhere, and this
yields (3.1.7) for small x. If ¢ is supported in [—K, K] (for some K > 1), then for
|x| > 2K the first integral in (3.1.5) is zero, while the second integral in (3.1.5) can

be written as |
t
7/ o) 4.
T Jix—t|>1Xx—1

whose absolute value is bounded by 1 ||, ‘72‘, as
o=t > |x| = [t] = x| = K > [x]/2

when |x| > 2K and |t| < K. This implies (3.1.7) for large values of x.
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Definition 3.1.5. The truncated Hilbert transform (at height €) of a function f in
LP(R), 1 < p < o, is defined by

HOm =1 [ Ty, G.19)

Observe that H'€)(f) is well defined for all f € L?, 1 < p < oo. This follows from
Holder’s inequality, since 1/]x| is integrable to the power p’ on the set |x| > €.

We discuss the example f = x|, Which lies in all L” spaces. As pointed out in
Remark 3.1.2 (b), H(¥q,])(x) is defined for all x ¢ {a,b}. We calculate this value.

Example 3.1.6. We begin with the observation that if A, B are nonzero and satisfy
—oo < A < B < oo, then we have

Bdr X (1) |B|
V. — =1 : dt =log —. 3.1.9
e [l [ 1Al G19

This can be shown by considering
the cases 0 <A < B < oo, —0 <A <
B<0,and —0c <A<0<B<eo.In
the third case we consider the sub-
cases |A| < |B| and |A| > |B|. When
|A| < |B|, taking € < |A| we split the
interval of integration in (3.1.9) as
(A,—€]U[e,|A]) U[|A],|B]) and we
notice that 1/¢ has vanishing inte-
gral over (A,—€]U [g,]A]). A simi-
lar argument is valid when |A| > |B|.
Using (3.1.9) we obtain the follow-
ing identity:

Fig. 3.1 The function H (y[44)) (%)

B 1 radt 1 |x —al
H(x[a,b])(x)—p-V-ﬂ/x_b Pl rE x ¢ {a,b} (3.1.10)

and this function is plotted in Figure 3.1.
Note, in fact, that for € < min(|x — al, |x — b|) we actually have

1. |x—d
H(Xap) () = H® (fap)) () = —log—,  x¢ {a,b}.
T Zlx—b|
We now give an alternative characterization of the Hilbert transform using the
Fourier transform. To achieve this we need to compute the Fourier transform of the
distribution Wy defined in (3.1.1). Recall the signum function
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+1  whenx >0,
sgnx =140 when x =0, (3.1.11)
—1  whenx<0.

Fix a Schwartz function ¢ on R. Then

P L,
(ZW0,0) = —(W0,9) (3.1.12)

L. . dE
7 e \5|z:s(p(§) 3
_ l : —2mix€ @
a ngﬂ/gz\aze/lzq)(x)e R
: —l —2mix& ﬁ
g13<1)/11(p(x) _n/;>|5>ee 3 &

— lim / o) | = sin(27rx§)d§] dx

e—-0JR LT Jg=(E|ze

. [/ —i . d
_ ;%A¢(x) _(;lsgnx) /Zg>5l>ms1n(|x|é;)ﬂ dx. (3.1.13)

Using the result of Exercise 2.2.7 we obtain that the integral inside the square
brackets in (3.1.13) converges to 7 as € — 0, whenever x # 0 (and to 0 when x = 0).
Moreover, we have (see Exercise 3.1.1)

" sint
[ sty
a<lt|<b 1t

These observations allow us to use the Lebesgue dominated convergence theorem
to justify the passage of the limit inside the integral in (3.1.13). We obtain that

El

<8. (3.1.14)

sup
0<a<b<eo

WO, /q) —isgn(x))dx. (3.1.15)

This implies that V/VB is indeed a function given by the formula

%v’%(g)z—isgnz;. (3.1.16)

In view of identity (3.1.16) we have the following representation of H:

H(p)=—i(psen(-))’, o¢e7R). (3.1.17)

This identity produces an alternative definition of the Hilbert transform in terms of
the Fourier transform. An immediate consequence of (3.1.17) is that

|H(@)||,2= ol (3.1.18)



3.1 The Hilbert Transform 111

for all @ € .#(R). This implies that H has a unique extension on L? (still denoted
by H), which is an isometry on L?(R). Moreover, as (—isgn&)? = —1 on R\ {0},
we obtain that H satisfies on L2

H>=HoH =1,

where [ is the identity operator.
The adjoint operator H* of H is uniquely defined via the identity

[ rHGax= [ # (g fige SR
R JR

and we can obtain that H* corresponds to the multiplier —isgn& = isgn& by Parse-
val’s identity. We conclude that H* = —H, i.e., the Hilbert transform is an anti-self-
adjoint operator.

Exercises

3.1.1. Show that b o
sint
sup sup / —dt| < 4.
a>0 b>al- t
[Hint: Consider thecases 0 <a<b<1,a<1<b,and 1 <a < b. In the first case
use sint <t (when 0 < ¢ < 1), in the third case use integration by parts, and in the

second case combine the other cases.]

3.1.2. Consider the function g = ~Xja a2+ Xjash - Show that for all x ¢ [a,b] we

have '

1 (b—a)?

O0<H —_— .
<HEW < o e an=D)

Moreover, obtain that H(g)(x) is proportional to |x| =% as |x| — eo. [Hint: Use iden-

tity (3.1.10) and that log(1 +y) <y fory > 0.]

3.1.3. Let g be an integrable function supported in [—K, K] for some K > 0. Prove
that H(g)(x) is well defined for all x ¢ [—K,K] and that there is a constant C
(depending only on g) such that for |x| > 2K we have

HQW - [ sa|<chi?.

3.1.4. Let ¢ be in .7 (R). Prove that H(¢) lies in > N L* and that H(¢)") =
H(@™) for any m € Z*+. Conclude that pH (@) lies in .. [Hint: For m =1 use
identity (3.1.5) to differentiate in x. Then use induction on m]

3.1.5. Let ¢ be in . (R). Prove that for any m € Z* U {0} there is a constant C =
C(m, @) such that
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_c
(14 )t

[Hint: Integrate by parts in the second integral in (3.1.6) and use Exercise 1.8.4.}

|H (") (x)] <

3.1.6. Let @ be a Schwartz function on the line and let m € Z*. Prove that

m (k 1) (0) 1
§ ik T Gri

V=23 1 ((2mi(-))") ()

for all x € R\ {0}. Conclude that
sup(1+ [x|)™ | H () (x)] < o0 = / *o(t)dt =0 for allk € {0,...,m—1}.
xeR R

[Hint: Factor X" — ¢ in the identity

- gt () =1 [T

Alternatively, integrate by parts m times in f;” ¢(&)e>™5d€ and [°_ ¢(£)e>™EdE ]

H(g)(x)

3.2 Homogeneous Singular Integrals and Riesz Transforms

To extend the definition of the Hilbert transform to higher dimensions, we modify
the function 1/|x|" on R"\ {0} in order to have integral zero over the unit sphere.
We can draw inspiration from the one-dimensional case if we write

1

L_senx_sen(v/lxl) gy g0y, (3.2.1)

x| [

and we notice that only the values of sgn on S = {—1,1} play a role. But on
{—1,1} the function sgn maps —1to —1 and 1 to 1 and

/Sosgnxdv:—1~v({—1})—|—1~v({1}):—1-1+1-1:0,

where v here denotes counting measure on S°. This identity expresses the cancella-
tion of 1/x on the line.

To extend this idea to higher dimensions, we suppose that €2 is a bounded func-
tion of the unit sphere S"~1 with mean value zero, i.e.,

Q(0)do =0,
sn—1

where d0 here denotes surface measure on S"~ 1. Then we consider the kernel
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=2 e R\ {0}, (3.2.2)

which resembles the expression in (3.2.1) with Q playing the role of sgn. The mean
value zero property of €2 introduces cancellation to Ko and makes it have integral
zero over all annuli centered at the origin.

To be able to define a singular integral operator related to Kg, we introduce a
distribution W, in . (R") by setting

(Wa, @) = lim Ko (x)@(x)dx+ Ko (x)o(x)dx (3.2.3)

e—-0Je<|x[<1 [x[>1

for ¢ € Z(R"), where in the first integral ¢(x) can be replaced by ¢(x) — ¢(0)
justifying its convergence. To see that Wy, is a tempered distribution on R"” we write

s Q(x/b) Q(x/1x)

[(Wa.0)| = |tim [ SE 000 —pO)art [ ST g
Q(x/|x Qx/|x

<|voll,- /. |)(C,1/|1|)dx+‘§€11£1 Mo [ B g

<Gl X poe (@) + G| Q1 X Pao(9),
j=1

<1

for suitable C; and C,, where p, g is as in (2.6.1) and we used (1.7.2) in the last
estimate. The distribution W, coincides with the function K on R"\ {0}. [Here
ej=(0,...,1,...,0) is the multi-index with 1 in the jth entry and O elsewhere.]

Example 3.2.1. For 1 < j < n, the odd functions
Q;(61,...,6,) =0, (3.2.4)

on 8" ! are bounded and have mean value zero. These give rise to kernels that are
multiples of the Riesz transforms; see Definition 3.2.6.

Definition 3.2.2. Let Q be a bounded function on the sphere S"~! with mean value
zero. We denote by T, the singular integral operator whose kernel is the distribution
Wa, that is,

0/l

S oLy (3.2.3)

Ta(9)(x) = (9 + Wa)() = lim |

e—0

defined for ¢ € (R"). For € >0 and f € U;<,<..L”(R") we define the truncated
singular integral operator

0w = [ sty 20, (326

b>e y["

Then for ¢ € #(R") we have
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To(p)(x) = lin%) T_((;> (p)(x) pointwise for allx € R".
E—

We would like to compute the Fourier transform of W, in order to determine the
L? boundedness of Tq. We have the following result.

Proposition 3.2.3. Letn >2 and Q € L= (S"~") have integral zero. Then the Fourier
transform of Wq is the homogeneous-of-degree-zero function

VT/Z;(%)Z/S”19(9)(log&3 o ésgn (é-e)>d6 (3.2.7)

forall &€ € R"\ {0}.
We remark that for each & € R"\ {0}, the function

1
o Oglé 6]

is integrable over the sphere (Appendix D3 in [31]). We also notice that in identity
(3.2.7), the variable £ could be replaced by &' = &£/|&|. Before we return to the
proof of Proposition 3.2.3, we discuss the following lemma:

Lemma 3.2.4. Let a be a nonzero real number. Then for 0 < € < N < oo we have

N ,—ira __ 1 T
lim eicos(r)dr log— —i—sgna, (3.2.8)
=0 Je r la] 2

N e=ira — cos(r)
——d
e

Proof. We first prove the following assertions concerning the real parts of the
expressions in (3.2.8):

IN

1
2’log|—|’+4 forall N>e>0. (3.2.9)
a

lim Nwm — logi (3.2.10)
£—0 Je r la]’ o
N—soo
N — 1
/wm §2‘logﬂ‘ forall N>&>0. (3.2.11)
€ r a

To verify these claims, by the fundamental theorem of calculus we write!

/Ncos(ra)—cos(r) gr — /N cos(r|al) — cos(r) ir

r r

N rla| )
—/ / sin(¢r)dt dr
e J1
la| N
—/ / sin(¢tr) drdt
1 Je
N

|al ~Nla 1
! The integrals / and / are interpreted as — / and — , respectively, if 0 < |a| < 1.
1 N lal Nla|
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|al Nal
_ / cos(et) / cos(t) gt
1 t N t

lal cos(et) sin(Nla|)  sin(N) Nlal sin(t)
_— dt - d
/1 t + Nla| N +/N 2

where the last line follows from an integration by parts. The penultimate equality
yields (3.2.11) by inserting absolute values inside, while the last equality yields
(3.2.10), letting € — 0 and N — oo,
We finally derive (3.2.8) and (3.2.9) from (3.2.10) and (3.2.11). For this we need
to know that the expressions
Nlal o
/ lal sin(r) i
Jelal r

N sin(ra)
SV arl =
I

tend to Z as € — 0 and N — oo and are bounded by 4 uniformly in &, N and a. These
statements follow from Exercises 2.2.7 and 3.1.1. (]

(3.2.12)

Let us now prove Proposition 3.2.3.

Proof. Letus set &' =& /|E| when & = 0. We write

(Wo,9) = (Wa, )

: Q(x/|x[)
= lim dx
e=0Jxze " )
= lim (X/JXD & (x) dx
20 Je<pin |
Q )
= lim Rn(p(é) / %}f)e*mxfdxdg (Fubini)
N—eo e<|x|<N
N o dr
= lim Q(6) / e 2708 2L 19 dE
£—>0 n S§n—1 e r

lim | () - Q(6) /EN (e 2mIEI0E" _ cos(2mr|E])) ? dodé

S
2mEIN is0 €
— lim g)/ Q 9)/ e = eosl) s apae
£20 Jrn g0y P Jores 2migle s

Aﬂ\{o}w(é)/smg(e)[logw 0] gsgn(é’ﬂ) dode,

where we subtracted cos(27r|&|) from the r integral, as Q has mean value zero over
the sphere, and we used the LDCT to pass the limits inside. Lemma 3.2.4 provided
the value of the limits; moreover, the use of the dominated convergence theorem is
justified from (3.2.9) and the fact that
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Jor ) 2©)1 [, 120} (2102 127 9‘+4)d6d§
=l N/R"\{O}l o(@) .., (2 8 T g 9|+4)d"d5

=12l [, V@1 [, (2logm +4)ddé < oo

using the spherical change of variables 6 = A¢ ¢, where A¢ is an orthogonal matrix
with (Ag)'E' =ej, hence &'-0 = &' Az = (Ag)'E'- ¢ = e1 - ¢ = ¢1. For the con-
vergence of the last spherical integral see Appendix D3 in [31]. (I

We wonder if W?) is an essentially bounded function for every Q € L”. As the

signum function sgn is bounded by 1, Wg\) is essentially bounded if and only if

€sS.sup
é’ES"_l

Q(0)1
2008 g0

Inserting absolute values inside, and using that €2 is bounded, this assertion would
be a consequence of

€ss.sup log ———
gregn1 /8! |§/ 9|

But a rotation yields that for all £’ € S"~! we have

1
log——dO = lo
frroerggr e = g|e|

which is a finite constant. These observations lead to the following result.

Corollary 3.2.5. Let Q € L™(S"~!) have mean value zero. Then the associated Tg,
initially defined on . (R"), admits a bounded extension from L*(R") to L*(R").

Definition 3.2.6. For 1 < j <nlet Q;(0) = 0; be as in (3.2.4). The jth Riesz trans-
form R; is a constant multiple of Ty, ; precisely, it is defined by

rsh rsh
R; =—2 )(x) = —2-p. 2.1
j((p)(x) ﬂ% ((P*WQJ)(X) TL'% p.v. R ‘X y|n+1(p( )dy 3 3)
for ¢ € S(R").
Proposition 3.2.7. For every £ € R"\ {0} we have
ey .
(é )Waj(é) LT (3.2.14)
n'3 1]

Proof. We begin with the identity
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0 if k£ j,

/ﬂsgn(ﬂk) 0;d0 = (3.2.15)
s / 16,1d6 if k= .
§n—1

This is proved by noting that for k # j, sgn(6) has a constant sign on the hemi-
spheres 6; > 0 and 6 < 0, on either of which the function 6 — ; has integral zero.
It suffices to prove (3.2.14) for a unit vector £. Given £ € S"~!, pick an orthogonal
n x n matrix A = (ag )i, such that Ae; = £. Then the jth column of the matrix A is
the vector (£1,&,,...,&,)". We have

/’ %mg4n@d9:/“ sgn(Ac;-9)8;d6
Sn—1 S§n—1
:/ sgn(e;-A'0)(AA'0);dO
Sn—1

= sgn(e;-0)(A0);do
Jsn—1

= S 7lsgn(9j) (aj]01 +-~-+§j9j+-~-+ajn6n)d9

:g,»/ sgn(6,)0;d0+ a,»m/ sgn(6;)6,,d0
Sn—1 lSm#]Sn Sn—1
&

_ §i
& Jsn

0;|do+0= -+ 0,]d0,
71| J| ‘§| S"’1| 1|
by rotational invariance. The identity in [31, Appendix D.2] gives

n—1

where @,_» = [S" 72| = 277:71*(%)71; see [31, Appendix A.3]. Combining this

fact with (3.2.7) yields (3.2.14). O

Proposition 3.2.8. The Riesz transforms satisfy the identity

~I1=Y R} (3.2.16)

as operators acting on L?. Here I is the identity operator and R? denotes RjoR;.
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Proof. Use the Fourier transform and the identity

n

2(—l€//|§|)

j=1

to deduce (3.2.16) for any f in L>(R"). O

Exercises

3.2.1. Show that the nonlinear operator

90— Q(p (ZIR )1/2

satisfies [|Q(@) [l 2rr) = 19l ,2(re) for all ¢ € 7(R").
3.2.2. Prove that for ¢ in .(R") and 1 < j,k <7 and all x € R” we have
0j0kp(x) = —R;jRiA@(x).

Here Ag =3, 8jz(p is the Laplacian of ¢, given by multiplication by —472|&|?
on the Fourier transform. Conclude that

||all ."&j2)rl¢||L2(R") S ||Am(P||L2(R")

forallmeZ*, ji,...,jom € {1,...,n} and all ¢ € .7 (R").
323.Letc, =T (")n ~*3" and @ € €~(R") be supported in B(0,K) for some
K > 0. Prove that for any > 0 and any |x| > (1 + §)K we have

‘ ne 1+5 n+l

<’1‘W/ o) Iyldy.

3.2.4. Use identity (2.7.5) with z = —n 41 to obtain another proof of Proposi-
tion 3.2.7. [Hint: First show that 9;|x| ! = (1 —n)Wg, by comparing the action
of both distributions on a Schwartz function ¢ = ¢, + @,, where @, is even and @,
is odd.]

N
Rj(@)(x) *chT’H [ POy

3.2.5. For any ¢ in ./(R") and any multi-index o prove that there is a constant
Ch.0.,9 > 0 such that for all x € R" one has

R;(0%@)(x)| < Crap (1+ |x) "1,

[Hint: Use a smooth splitting as in (3.1.6) and integrate by parts to handle one term.]
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3.3 Calderon-Zygmund Singular Integrals

In the previous two sections of this chapter we discussed singular integrals given
by convolution with distributions on R” that are homogeneous of degree —n. In this
section we consider a class of singular integrals whose kernels are not necessarily
homogeneous distributions.

We make some remarks about the smoothness of the kernels of the Hilbert trans-
form and Riesz transforms. Note that

1\/ 1 1
(3) :’_ﬁ‘:\x\lﬂ’ ¥ € R\ {0}
Moreover,
Y I T TR
‘ |x|n+]’7 x| +2 < x|t (3.3.1)

and so the kernels of the Hilbert and the Riesz transforms have the common smooth-
ness property
!
Ay
- | x|n+1 ’

‘VK xeR"\ {0} (33.2)

for some positive constant A}. This smoothness is captured by the weaker condition
sup/ K(x—y) — K(x)| dx = As < oo,
y#£0 J [x|=2[y]

for some other constant A,. Indeed, assuming (3.3.2), for y € R"\ {0} we write

1
/\x\zz\y\ |K(x—y)—K(x)\dx:/M>2|y| / VK(x—0y)-ydo

A/
/ / 2| A4y
=2 Jo |x— Oy[*T

Ajlyl
ded
/\x|>2|y|/ (/21 7

rn—l

<2y AL o, / ——dr
> 2 Wp—1
r 2‘)" rn+1

=2"AS w,—1 = As,

dx

as |x — 0y| > |x| —|y| > |x|/2 when |x| > 2|y|. Here @,_1 = [S""'|.
Based on this discussion, we consider a measurable function K on R\ {0} which
satisfies the size condition

< oo, (3.3.3)

the smoothness condition
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sup/ |K(x—y) —K(x)|dx=A3 < oo, (3.34)
y#0 x| =2ly]

and the cancellation condition

K(x)dx

O<|x|<N

sup sup =A3 < oo, (3.3.5)

O0>0N>6

for some Aj,A>,A3 > 0. Such functions will give rise to kernels of general singular
integrals that are not necessarily of homogeneous type. Condition (3.3.4) is often
referred to as Hormander’s integral smoothness condition.

Taking N = 1, condition (3.3.5) implies that there are & in (0,1), k=1,2,...,
such that 6, — 0 and that

lim K(x)dx=L (3.3.6)
k=0 J1>|x|> 8

exists. Obviously, |L| < A3. We define a tempered distribution W associated with K

and the choice of sequence 6 as follows:

W.o)= | Kx)(o(x)=¢(0))dx+@(O)L+ | KX)ox)dx  (3.3.7)

<1 |x[=1

for ¢ € .. Equivalently, we write the identity in (3.3.7) as

(W, ) = lim . K(x)p(x)dx. (3.3.8)

ko J x|

Let us now show that the functional W defined in this way is an element of ./ (R").
Using (3.3.7) we obtain the estimate

(W.0)| < Vo], [ el K@ dx+ Lol + [ K@@0)]ds

Il [x[>1

- Apdx Apdx
— ||V A et Sl
< ([ ) iwol+allol ([ 2 sup ool

<A1On1 Y, Po.c;(9) +A3P00(9) +A1Gn1 Y, Pe;0(P),
= =1

recalling the definition of p, g given in (2.6.1). This shows that W lies in ./ '(R").
Finally, we notice that if @ is a Schwartz function supported in R” \ {0}, then

W.0) = [ K(p(odr
Thus W coincides with K on R"\ {0}.

Definition 3.3.1. A Calderén—Zygmund singular integral is an operator given by
convolution with a distribution W, associated as in (3.3.8) with a sequence & in
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(0, 1) that tends to zero and with a kernel K that satisfies (3.3.3), (3.3.4), and (3.3.5).
Precisely it is an operator of the form

TV(p) =@+ W, 9 €S (R

For ¢ € /(R") and x € R", we can explicitly write

TV (p)(x) = lim K(y)@(x—y)dy (3.3.9)
koo J]y[ >y
=Lo(x)+ [ KO)(ek—y)—oX)dy+ [ Ky)p(x—y)dy.
yl<t lyl=1
Example 3.3.2. Let 7 be a nonzero real number and let K(x) = W be defined

for x # 0. Notice that (3.3.3) is clearly satisfied for K and also (3.3.4) is valid, as
|VK (x)| < |n+it||x|~"~!. Finally, (3.3.5) is also satisfied, as for 0 < € < N < oo,

Nfir _ gfir
—iT

2,1
i

= As.

——dx| = 0,—
/s<\x|<N x|+ ‘ ot

Consider the following two sequences §; = e~ (**1)%/T and §? = ¢~2¥*/7 indexed
by k=1,2,...if t>0and by k = —1,-2,-3,... if T < 0. Both sequences lie in
(0,1) and tend to zero. For a Schwartz function @ on R” define distributions

Who)=Jim [ ot e (3:3.10)
and

(W2, 0) :khi?o/x>53"’(x>x|ﬁir' (33.11)
We have that
[ LG, e da,
8l <la<1 |x[r i —iT —iT T

—it _ (§2\—it  okin

/a,%<x|<1 e 4= O % - w”*‘l—e;n =0,

and as these expressions are constant for all integers k, they have limits L; =
2iw,—1/T and L, = 0 as |k| — oo, respectively. In general, note that the subsequence

& = e~ (FTOT/T yields the limit @, 1= —

<—— which varies with € [0, 1].

Notice that both W' and W? agree on R\ {0} but are not the same tempered dis-
tribution. In fact, it is not hard to see that Wl —W?2 =¢ &, where ¢ = Z'wf"" Thus the
associated Calderén—Zygmund singular integral operators are V' and TWZ, which
differ by a constant multiple of the identity operator.
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In general, the difference of two Calderén—Zygmund operators (Definition 3.3.1)
associated with the same function K on R"\ {0} and two sequences §; and &7 is c1,
where c is a constant satisfying |c| < 243.

Exercises

3.3.1. Prove the equality in (3.3.1).

3.3.2. Let F be a bounded %" function on the real line with F’ in L(R) that has
the property

B
sup / F(t)dt| < eo.
—oo<A<B<oo | JA
Prove that the kernel
F(log |x|)
K():W7 x € R*"\ {0},

satisfies (3.3.3), (3.3.4), and (3.3.5). An example of such a function is F(¢) = sint /z.
A multitude of examples arise by taking F = G/, where G, G’,G” are bounded.

3.3.3. Let § > 0 and 1 be a smooth function on the real line supported in [—2,2]
and equal to 1 on the [—1, 1]. Show that the kernels

B sin(\x\‘5)

Ki(x)=———=(1-n(x[)), K(x)

x|

_ s g,

[x"
defined on R"\ {0}, satisfy (3.3.3), (3.3.2), and (3.3.5).

3.3.4. Suppose that a function K on R"\ {0} satisfies condition (3.3.3) with con-
stant A and condition (3.3.4) with constant A;. Let A’1 =Aw,_log2.

(a) Show that the functions K(x) /> also satisfy condition (3.3.4) uniformly in
€ > 0 with constant max(A},A) in place of A».

(b) Use part (a) to obtain that the truncations K (x) x|, <y satisfy (3.3.4) uniformly in
N > 0, with constant 2max(A],A).

(¢) Deduce from parts (a), (b) that the double truncations K(€V) (x) =K(x) Xe<|x|<N
also satisfy condition (3.3.4) uniformly in N,& > 0 with constant 2max(A/,A>).
[Hint: Part (b): Write K (x) |x| <y = K (x) — K (x) Y|x/>n- Part (c): Use K (x) < || <y =

K(X)Xx>e — K(X) Xxi>n -]
3.3.5. (a) Prove that for all x,y € R” that satisfy 0 # x # y we have

x—y X

ol
x|

=yl |

(b) Let Q be a bounded function with mean value zero on the sphere S”~!. Suppose
that for some a € (0, 1), € satisfies the Lipschitz condition
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12(61) —Q2(62)| < By|6) — 62"

forall 8,6, € S"~!. Prove that K (x) = Q(x/|x|)/|x|" satisfies condition (3.3.4) with
constant at most a multiple of By + ||Q Iz
[Hint: Part (a): Add and subtract T | Part (b): Use part (a). ]

3.4 L Boundedness of Calderén-Zygmund Operators

We now turn to the issue of the L?(R") boundedness of operators given by convolu-
tion with distributions W associated with sequences & € (0, 1) that tend to zero and
with kernels K that satisfy (3.3.3), (3.3.4), and (3.3.5). We would like to compute
the Fourier transform of the distribution W. To do this, for ¢ € .7 (R"), we write

<W7 (P> = <W’ (/ﬁ>
= lim K(x)®(x)dx

koo J]x| > 8

— lim K() / (&)e > EdE d

k—oo J & <|x|<k

=1lim [ ¢(&) { / K(x)e 28 x| dE. (3.4.1)
R Se<|x|<k

koo

To be able to insert the limit inside the £ integral, we need to show that the expres-
sions inside the square brackets (a) have a limit as k — o and (b) they are bounded
(uniformly in & and k), so that we can justify using the LDCT.

Before achieving this goal we prove a lemma.

Lemma 3.4.1. Given A, B measurable subsets of R" and F,G integrable functions
on AUB, we have

/Fdx /de—/ (F=Gdxt [ Fdv / Fdx. (3.4.2)
Proof. We write

/Fdx: Fdx+ Fdx:/ Fdx+/Fdx— F dx,

A A\B ANB A\B B B\A

and subtracting [, G dx from both sides we deduce (3.4.2). O

We also make the observation that (3.3.3) implies

/ K(x)|dx < A, / x| " dx = @ 1A1log2 < 0p_1A1  (3.43)
R<|x|<2R R<|x|<2R

uniformly in all R > 0. Here @, 1 = |S"!|.
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Theorem 3.4.2. Assume that K satisfies (3.3.3), (3.3.4), and (3.3.5). Then

sup sup sup
e>0N>eEcR?

/ K(x)e 8 dx| < 9w, 1A+ Ay +As.  (344)
e<|x|<N

Moreover, let W in .’ (R") be associated with K via a sequence & — 0. Then 1%
coincides with a function on R"\ {0} which is bounded by A = 9®,_1A| + Az + As.

Proof. The integrals in (3.4.4) are bounded by A3 when & = 0, so in proving (3.4.4)
we can restrict the third supremum to R”\ {0}. Thus we fix £ 0,0 < € <N < s,
and we set

KN (x) = K(x)le<\x|<N-
We consider the following three cases.
Case 1: £ < |&|7! < N. In this case we write K(EN) (&) = I£(&) + 1Y (&), where

/ K(x)e 2™ dx.
EI7! <ll<N

(3 = x)e S gy
£ = [, KWe ™™ Ear, 2
We split IT (&) as

£ _ ' ‘ —2mix-&
I (&) /g<\x|<\§|—1 K(x) dx+/e<|x\<|.§\—' K(x) (e 1)dx. (3.4.5)

It follows that

117 (&) < Az +2m|E| lle] |x| K (x)|dx < Tw,—1A1 + A3 (3.4.6)
xX|<|S|™
uniformly in €. Let us now examine 1) (). Let z = 2é—|2 so that ¢2%#¢ = —1 and

2|z| = |&]7!. Via the change of variables x = x’ — z, we rewrite }' as
Iév(é) = _/ K(x/ —2) o 2mix' € dx':
[E]-T<|¥'—z|<N

hence averaging gives

1 i 1 '
INE) = - K(xe 2T g L / Ko 2) o200 gy
223 e TR g DTN

Now use that (3.4.2) to write
BE) = I (8)+ 5 () + 5 (§) + 4 (§) +J5(8),
where

INE) =+ (K(x) —K(x—z))efz’"x"g dx,

| —

|E| - T<|x—z|<N
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1 ;
]év(g) =4 E / K(x) 672mx-§ dx,

&1 <lx|<N

lx—z|<[&] 1

1 ;

HE =+5 [ Kweax,

&~ < x| <N

|x—z|>N

NG =-3 [ Kweria

|E|~ T <|x—z|<N
<&l

NE) = —% / K(x) e 2™ dx.

|E]~ 1 <|x—z|<N
[x[>N

Since 2|z| = |€|~!, we have

N =

) < K@) -Ka-dx=3 [ |k =) -KW@)|av

|E]1<|x—2] 2ly|<[¥|

(with y = —z and x’ = x — z), which is bounded by %Az, in view of (3.3.4).

Next observe that [&|~! < |x| < 3|&|~! in JY(&), while }|&|~! < |x| < |&| ! in
JY(€); hence either of JYY(§), JY (&) is bounded by 1@,_1A; by (3.4.3). Also we
have

1 1
§N<N—§|§\’1 <lxl<N  inJY(&) (3.4.7)
and
l —1 3 . N
N§|x|<N+§|§| <§N inJg (). (3.4.8)

Thus both JY' () and JY (&) are bounded above by 4 ®,_1A; uniformly in N. Com-
bining these facts, we deduce

1 1 1
I (&)] < EA2 +4(§a),,_1A1) =2, 1A + 5Az. (3.4.9)

Adding estimates (3.4.6) and (3.4.9), we obtain the claimed bound in Case 1.
Case 2: ¢ < N < |€|~!. Here we write

/ K(x)e 27 gy — / K(x)dx+ / K(x)(e 27 1) dx
e<|x|<N e<|x|<N e<|x|<N

which is bounded in absolute value by

A3+zn|§\/” o K@ < 2man 141 443 <A
x|<|E |~
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Case 3: || 7! < & < N. In this case we write

/ K(x)e_zmx'édx:/ K(x)e_zmx‘édx—/ K(x)e 27 dx,
€ 1 &~ < |x|<e

<Jl<N |=1<|x|<N

and the expression on the right is equal to 1)’ (£ ) — I£ (£ ) and each one of these terms
was shown to be bounded by 2,141 + ;A3 in (3.4.9). Thus we obtain the bound
4w, 1A1 +Ay <A in Case 3. Hence (3.4.4) holds in all cases.

Having proven (3.4.4), we now turn to the fact that for any & € R"\ {0}, the
expression inside the square brackets in (3.4.1) has a limit, which is of course
bounded by A. This fact, combined with the identity leading to (3.4.1), would imply
that W coincides with a bounded function on R"\ {0}.

Fix £ € R"\ {0} and pick ko such that for all k > ko we have & < |€|~! < k. We
use the decomposition in Case 1 with € = §; and N = k to show that the expressions

Ifk and 15 have limits as k — . Using (3.4.5), we see that / ]5" converges to

lim / K(x)dx+ / K(x) (e 2™¥¢ — 1) dx. (3.4.10)
koo ) <ol <[]~ x| <Ig|="!

Additionally, (3.4.7) and (3.4.8) give that

1 1 k+ 518!
3] < 541 0,1 log S (E)] < 541 @1 log —27—

)

Kk
k—3l€1

and hence these expressions tend to zero as k — co. Moreover

Jﬁ‘(é)ﬂ% / (K(x) — K(x—2z))e 2% dx (3.4.11)
1]~ <[x—z|
as k — oo, while
Jé‘(é)—é / K(x) e 2™ dx (3.4.12)
&~ <[x]
—z|<(&] !
and
Ji‘(é)ﬁ—% / K (x)e 2™ dx (3.4.13)
&7 <lx—z]
xf<g) !

as k — oo, and all of the above are absolutely convergent integrals. The bounded
function W (&) is equal to the sum of the expressions in (3.4.10), (3.4.11), (3.4.12),
and (3.4.13) when £ # 0. O

We finally observe that

/ K(x)dx
1<|x|<k
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may not have a limit as k — oo, and thus W(O) is not defined; see Example 3.3.2.

Theorem 3.4.2 yields that Calder6n—Zygmund singular integral operators are
bounded on L?.

Corollary 3.4.3. Let W be as in Theorem 3.4.2. Then the associated operator TV
given by convolution with W has a bounded extension on LZ(R”) with bound
9w, 1A +Ay +Aj.

Proof. This is a consequence of Theorems 2.8.5 and 3.4.2. (I

Exercises

3.4.1. Let f € L'(R"). Use the averaging idea in Theorem 3.4.2 to prove that

oI5 [ 170 = F(v—8/@IEP) ax, &R\ (o}

Conclude that

EN<IVAll i @Eh™
when f € €' (R")NL'(R").

3.4.2. Let W be a tempered distribution on R”". Suppose that the operator TW (¢) =
@ * W, initially defined on ¢ € .#(R"), admits a bounded extension from L?(R") to
itself. Prove that for any ¢ € .(R") we have

sup [(@ W) () < [TV 2 2|9 |-
xeR”

3.4.3. Let K satisfy (3.3.3), (3.3.4), and (3.3.5) and let W € .¥’ be an extension
of K on R" associated with a sequence 0; € (0,1) that tends to zero. Let ¢ be
a compactly supported ¢! function on R" with mean value zero. Prove that the
function TV (@) = @ * W lies in L' (R").

3.4.4. Let K and W be as in the preceding exercise and suppose that W is noncon-
stant and homogeneous of degree zero. Suppose that f € L' (R") N L?(R"). Assum-
ing that TV (f) is integrable over R”, prove that f must have integral zero.

3.4.5. Suppose that Q € S! is defined by Q(8) = y; — x;, where I is an interval®
of length less than 1/2 in S! and J = {6 € S! : —6 € I}. Prove that Q(x/|x|)|x| 2
defined on R?\ {0} satisfies Hormander’s integral smoothness condition (3.3.4).

3.4.6. Let K be a function on R\ {0} that satisfies (3.3.3). Let W be a tempered
distribution on R" that coincides with K on R"\ {0}. Suppose that operator T"

2 An interval on the unit circle is the intersection of the circle with a cone centered at the origin.
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given by convolution with W maps L*(R") to itself. Prove that K must satisfy (3.3.5).
[Hint: For 0 < € <N < o use that

/ Kdx= | K(¢" —¢%)dx+ / Kfdx— / K oV dx
R)l
e<|x|<N e<|x|<2e N<|x|<2N

where ¢'(x) = @(x/t) and ¢ is a €;° function with 0 < ¢ < 1 that equals 1 on
B(0,1) and vanishes outside B(0,2). Use Exercise 3.4.2 to estimate one term. |

3.5 The Calder6n-Zygmund Decomposition

We will obtain L? bounds for singular integrals via the Calderén-Zygmund® decom-
position. We describe this decomposition for dyadic cubes.

Definition 3.5.1. A dyadic cube in R" is a set of the form
[2%my, 2% (my +1)) x - x [26my,, 2% (m, + 1)),
where k,my,...,m, € Z.

We observe that two dyadic cubes are either disjoint or are related by inclusion.
Each dyadic cube has a unique ancestor, i.e., a dyadic cube of twice its length that
contains it. Dyadic cubes have 2" descendants, i.e., dyadic cubes of half their length.

The decomposition of a function f = g+ b described below is called its Calderon—
Zygmund decomposition at height o.. The function g is called the good function of
the decomposition, since it is both integrable and bounded. The function b is called
the bad function, since it contains the singular part of f, but it is carefully chosen to
have mean value zero.

Theorem 3.5.2. Let f € L' (R") and o > 0. Then there exist functions g and b on
R" and a collection {Q}; of disjoint dyadic cubes such that

@ f=g+b
(i) b=23;bj, where each b is supported in Q,

(i) [bjll <2 |Q],
(iv) /bj(x)dx:O,
Qj

™ 105 <atflL.

3 Occasionally abbreviated as CZ.
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D) gl < [ fllps llgllz= < 2", and

Il < ") 111
forany 1 <r < oo,
Proof. Pick a positive integer N such that
27" fllp < e, (3.5.0)

We consider all dyadic cubes of the form 2¥m + [0,2V)", where m varies over Z".
We call these cubes of generation zero and we note that their union is R”. Subdivide
each cube of generation zero into 2" congruent cubes by bisecting each of its sides.
This way we obtain a collection of dyadic cubes, which we call of generation one.
Select a cube Q of generation one if

1
[4

Let S(V be the set of all selected cubes
of generation one. Now subdivide each
unselected cube of generation one into
2" congruent subcubes by bisecting each
of its sides; call these cubes of gener-
ation two. Then select all cubes Q of + —"
generation two for which (3.5.2) holds. —
Let S@ be the set of all selected cubes |
of generation two. Repeat this proce-
dure indefinitely or until it is terminated.
See Figure 3.2. We obtain a collection
of selected cubes |J;,—; S (m). Note that Fig. 3.2 The selected cubes are shown in dark.
§m) may be empty for some m and that  The unselected ones, shown in white, keep
(3.5.1) forces all selected cubes to be of  being subdivided.

generation at least one, i.e., m > 1.

/dex > a. (3.5.2)

If the set of all selected cubes | J;,_; §0m) js empty, then we set b =0and g = f.
Otherwise, |J_; S consists of countably many cubes which we denote by {Q it
Let us observe that the selected cubes are disjoint, for otherwise some Q; would
be a proper subset of some Q;, which is impossible since the selected cube Q; was
never subdivided. Now define

1 3
b (e [ fax) v 3.5.3

For a selected cube Q; there exists a unique unselected cube Q' with twice its side
length that contains Q;. Let us call this cube the parent of Q;. Since the parent Q" of
Q; was not selected, we have |Q'|™" [, | f|dx < ct. Then
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G 1455 gy e g [y e s 7

Consequently,

[ Wilax< [ Irlax+1e;
Qj Qj

1
— d
0] /Q_,f g

which proves (iii). In particular b; is integrable over Q; and in view of (3.5.3) it has
integral zero; thus (iv) holds. To prove (v), simply observe that

1 1 1
Sl g3, dv=g [, vide< 2ol

J*

<2 [ Iflar<2 o),
0j

We define b = ¥, ; b; so that (ii) holds and also define g = f — b; finally, we turn our
attention to (vi). We obviously have

f Oan\Uij7

|Q]7/Q.fdx on Q;. (3.5.4)

On the cube Q;, g is equal to the constant |Q;|™! fQ/_ fdx, and this is bounded by
2"a. It suffices to show that g is bounded outside the union of the Q;. Indeed, for
each x € R"\ Uj Q; and for each k = 0,1,2,... there exists a unique unselected

dyadic cube QJ(rk) of generation k that contains x. Then for each k > 0, we have

‘IQ Jy FOI) < |/ Ildy < e

The intersection of the closures of the cubes Q)(ck) is the singleton {x}. Using Corol-
lary 1.5.6 we deduce that for almost all x € R"\ |J ;Qj we have

. 1
f(x) :gl_{gw/@k)f()’)dy

Since these averages are at most o, we conclude that |f| < a a.e. on R"\U; 0},
hence |g| < o a.e. on this set. Finally, (3.5.4) gives

1
lelli= [, 1f o fo 7o = |
RM\U;Q; | 0; R"\U

and this implies that ||g||;1 < ||f]|.:. This completes the proof . O

f dy’
Qj

¥

Remark 3.5.3. The cubes {Q;}; selected in the proof of Theorem 3.5.2 are exactly
the maximal (with respect to inclusion) dyadic cubes such that (3.5.2) holds. This is
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because if a cube is selected, then all of its ancestors were not selected, so this cube
is maximal (with respect to inclusion) satisfying (3.5.2).

Example 3.5.4. Let D be a dyadic cube in R" and let o > 0. We find the CZ decom-
position of yp. Let O, be the largest dyadic cube containing D such that
D 1

= = xpdy > a. (3.5.5)

|Om| |Oml| J o
If oo > 1, no such dyadic cube Q,, exists, so in this case b = 0 and g = ¥p. Suppose
now that 27" < a < 1. Then the largest dyadic cube Q,, satisfying (3.5.5) is D
itself and in this case b = yp — xp = 0 and g = yp. Now for ¢ < 27" there is a
largest dyadic cube Q,, that contains D and satisfies (3.5.5). In this case the CZ
decomposition of yp is

b=xp— 2 TA_ X0 g§= =i T 1 X0
|Qm| m? |Q | m*

Example 3.5.5. Let f be a finite linear combination of characteristic functions of
disjoint dyadic cubes. We claim that the CZ decomposition of f at height o¢ > 0
contains only finitely many cubes Q; (cf. Theorem 3.5.2).

To prove this, we pick M € Z such that the smallest cube appearing in the
definition of f has side length 27, We also pick the least integers N’ and N”
such that [—2V" 2V']" contains the support of f and that 2~V f|,1 < a. Set
N = max(N’,N") and let 9y » be the set of all dyadic cubes of side length 27"
contained in [—2",2")". There is a subset 4 ), of %y and Ap € C\ {0} for any
O € Yy yy such that

> Aoxo- (3.5.6)
09}

We consider the following list of numbers
D=0 <o <o <: <Oy <Oyt =o°

sothat {ou,...,0} = {|Ag|: Q €%y y}. Forour given & > 0, pick s € {0, 1,...,m}
such that o, < o < 0s11. No dyadic subcube R of a given Q € %{, v With [Ag] < oy
is selected as |R|~! [p|f|dy = |Ag| < 0 < . Moreover, no dyadic subcube of a
cube in Yy pr \ Gy is selected as f vanishes there. Now every Q in 9y ,, with
Aol > o1 > satisfies (3.5.2), so it is either selected, or one of its ancestors
was previously selected. So all selected cubes have side length at least 2~ and are
contained in [—2V,2V]"; thus there are finitely many selected cubes {Q;}.



132 3 Singular Integrals

Exercises

3.5.1. Let o > 0 and f € L' (R") which satisfies | f| < o a.e. What are the functions
b and g constructed in Theorem 3.5.2 in this case?

3.5.2. For a given f € L!(R"), let {09} be the cubes obtained in the CZ decompo-
sition at height & > 0. For given 0 < o < 8 < oo prove that

UJoj sUor

J

3.5.3. Show that the number of CZ cubes {Q;} in Example 3.5.5 is at most
2n2anaX |:2n£||L1 72}1N/:| ,

where [—2V / 2N /] contains the support of f and 2~ is the side length of the smallest
dyadic cube appearing in the definition of f.

3.5.4. Prove that finite linear combinations of characteristic functions of dyadic
cubes are dense in L”(R") for any 0 < p < eo.

3.55.0nR?, let Q1 = [0,5)2, and Q; = [%+-.-+é,%+-.-+%) x [0, ;) for
J = 2. Prove that (1,0) lies in U7=1 @) butnotin U7-; Q7. Here Q} is a cube with the
same center as Q; but £(Q7%) = 2£(Q;). Construct a similar example when ¢(Q}) =
2N0(Q;) fora given N € Z+.

1 0

2

(0))

3.5.6. (Calderon-Zygmund decomposition on L?) Fix a function f € LY(R") for
some 1 < g < oo and let o0 > 0. Then there exist functions g and b on R” such that

(D) f=g+0b.
@) llgllze < [[fllze and |[g]lz- <27 c.

(3) b =3%;bj, where each b; is supported in a cube Q;. Furthermore, the cubes Oy
and Q; have disjoint interiors when j # k.

@) 11bjll7g < 2" ad|Q;l.
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5) fQj bj(x)dx=0.
©) %10/ < oI Il
e I—¢q q
(D [Ibllze <27 [|f|lze and [|b][11 < 2007 9| fI|L,-

[Hint: Imitate the basic idea of the proof of Theorem 3.5.2, but select a cube Q if
(‘1@ Jolf(x)|9dx) /4 > 0. Define g and b as in the proof of Theorem 3.5.2.

3.5.7. (Calderén—-Zygmund decomposition with bounded overlap) Let f be in
L'(R") and let & > 0. Prove that there exist functions g and b on R” such that

(1) f=g+b.
@ gl < Ml gl < (10y/n)"er.

(3) b=23%;bj;, where each b; is supported in a dyadic cube Q;. Furthermore, the
interiors of Oy and Q; are disjoint when j # k.

4 bj(x)dx=0.

Qj
(S Ibjllr <2(10y/n)"a|Q;.
© 310 <o fllp-

@) Zj%Q; < 2", where Q7 has the same center as Q; and £(Q7) = (1 +€)((Q;),
forany e with0 < € < 1/4.

[Hint: Let Q = {M.(f) > o}, where M, is the uncentered maximal operator with
respect to cubes in R”. Write Q = {Q;}, in terms of the Whitney decomposition of
Theorem 7.5.2. Define

1
bj= (f_|Qj|/ijdx)XQj’

b=Y,bj,andg=f—b.]

3.6 L? Boundedness Implies L” Boundedness

This next theorem provides the most classical application of the CZ decomposition.

Theorem 3.6.1. Let K be a function on R"\ {0} that satisfies (3.3.3) and (3.3.4) for
some A1,Ay < oo. Let W be the distribution defined as in (3.3.8) with respect to a
sequence 8 | 0, and suppose that the operator T given by convolution with W has
a bounded extension that maps L>(R") to itself with norm B. Then T has a unique
bounded extension from L' (R") to L'**(R") with norm
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HTHL]~>L|=°° SCI/I(A2+B)a (361)

and T also extends to a bounded operator from LP (R") to itself for 1 < p < e with
norm

71|, <Comax (p,(p—1)"") (42 +B), (3.6.2)

where Cy,,C), are constants that depend on the dimension but not on p.

Proof. Tt will suffice to prove (3.6.1) for functions in L' N L2, which is dense in L!.
If this is known, for a given f € L, pick f; € L>NL! that converge to f in L!. Then
{ fi }x is a Cauchy sequence in L', and by (3.6.1) it follows that {T'( f;) }x is a Cauchy
sequence in L. Proposition 1.2.12 gives that this sequence is convergent in L'*;
thus 7'(f) can be defined as the L' limit of {7 (f;) }«. Note that this definition does
not depend on the choice of the sequence { f; }« as for another sequence {f; } that
also converges to f in L', it follows from (3.6.1) that T(fy) — T(f{) tends to 0 in
L. This proves that T has a unique bounded extension from L! to L.

So we fix f € L' NL? and let o > 0 be given. We apply the Calderén—Zygmund
decomposition to f at height Yo, where 7 is a positive constant to be chosen later.
That is, write the function f as the sum

f=g+b=g+3bj,
J

where conditions (i)—(vi) of Theorem 3.5.2 are satisfied with yo in place of c.
We denote by £(Q) the side length of a cube Q. Let Q} be the unique cube with
sides parallel to the axes having the same center as Q; with side length E(Q;) =
2y/nt(Q;). As f lies in L? and so does g, it follows that b lies in L?. Hence each b j
lies in L? and so T (b;) is a well-defined L? function.

We observe that for all j and all x ¢ Q}‘- the LDCT and (3.3.3) give

T(b;)(x) = lim K(x—y)bj(y)dy= /Kx v)b(y)dy,
koo Sk [x—y| >y

as the last integral converges absolutely. Moreover, we note that, since f € L' N L?

and g € L?, we must have b € L?, and thus T'(b) is a well-defined L? function. We
claim that for any o« > 0

{xeUor: [T)@)|> 5} < [{x¢ Ui iIT(bj)(X)>3‘H- (3:63)
i i Jj=

To see this,* consider an arbitrary enumeration of the b ;. Then for N € Z* we have

oo N
T(X b)) =| X b+ T S b)) ’<Z|T )| +En,
=1 =1 =1

Jj=N+1

4 One could work with functions f that are finite linear combinations of characteristic functions of
dyadic cubes. By Example 3.5.5, the CZ decompositions of such functions f contain only finitely
many cubes; so (3.6.3) would trivially hold in this case by linearity.
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where Ey = |T (X7 y41 b;)|- But
PRE
j=N+1

pointwise and is bounded by |b| = |f — g| € L?, so it converges to zero in L? as

N — oo by the LDCT. Then ||Ey||;> — O by the boundedness of T on L2. Thus

I{|Ex| > a(1—0)/2}| — 0as N — oo for any § < 1 and yields (3.6.3) letting 6 1 1.
Let y; be the center of Q;. We use the cancellation of b; in the following way:

T(b; d
/(uiQ7>lf;| (b;)(®)] dx

<3 [ [ B0IKG—y) ~ Ky ldvds

/é‘bj(y)(K(x—y)—K(x—yj))dy dx

= ;I  [K(x—y)—K(x—y))|dxdy
IR4Y (Q5)°

-3/, |bf<y>|/_yi+( K= (=y) =K ()| dxdy
ST BOI[ KG by - Klddy
< A2 3 |[b)| s

J

< A2 £

having used (3.3.4) and that —y; + (Q}‘.)C € {x: x| >2ly—yjl}-

o=

To verify the last assertion we argue
as follows: If x € —y; + (Q}) .
then it holds that

]2 00)) = Val(Q))

Asy—y;liesin —y; + Q; we must .
have 0

—Yi+Q;
N
y=yil < TK(Qj)'
Thus |x| > 2|y —y;|. These inequal-

ities have geometric interpretations
related to distances; see Figure 3.3.

-y +Q;

Fig. 3.3 The cubes —y; + Q; and —y; + Q;.



136 3 Singular Integrals
Thus we proved that
/ 01 Z|T \dX<2”+lA2Hf||L17

an inequality we use below. Appealing to (3.6.3), we write

H{xeR":|T(f)(x)| > a}]

<|frer: 11> L)+ | frer: @)1 > 2|
g%HT HN\UQ, ‘{xgéUQl.\T(Zb) > 2}

2
EHT(g)HLz—S-‘UQ,-* +Hx¢UQ;f IR =3

LA PR MRS . DIGIEE
||fHL1

| A\

IN

4
22" B (ro)|[ £l + V)" 2”“A £l

B (2”“3}/)2+ (2ﬁ)"+2n+2A m
= 2n»}/ '}/ : o .

Choosing Y= B~!, we deduce estimate (3.6.1) with C/, = (2\/n)" 4-2"+2.

By the density argument discussed at the beginning of the proof, T is well defined
on L', and thus on L? which is contained in L' + L? for 1 < p < 2. Using Theo-
rem 1.3.3 (Marcinkiewicz’s interpolation theorem) we obtain that

1l <2(525 52 )Gz en), 1<p<2 God

We now observe that the transpose operator 7* of T has kernel K’ (x) = K(—x) which
also satisfies (3.3.3) and (3.3.4) for some Aj,A, < « and moreover 7! maps LZ(R”)
to itself with the same norm B. Then T" satisfies (3.6.4), which implies

/ /
Tl <2525 52 )8, 2<p<m G

Now we employ Theorem 1.3.3 to interpolate between L5/* and L3. We obtain

1]

p p /" 5
<2l ——=+—]C,(A2+B - < 5. 3.6.6
LP—LP — <p_‘5‘+5_p> n( 2+ )a 4 p< ( )

Forl<p< %, we use (3.6.4) to obtain ||T||pr—rr < %C;I(Az +B).For3 < p < oo,
(3.6.5) yields the bound ||T'||.»—..» < 4 pC)(A> + B). Finally, for 3 < p < 3 we use

(3.6.6) to obtain the bound ||T||zr—rr < %C,’,’ (A2 + B). Combining these cases, we
deduce (3.6.2). O
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Corollary 3.6.2. Let K be a function on R" \ {0} that satisfies (3.3.3), (3.3.4), and
(3.3.5) for some A1,Az,A3 < oo. Let W be the distribution associated with K as in
(3.3.8). Then T has an extension on LP for all p € [1,) that satisfies (3.6.1) and
(3.6.2) withB=9w,_1A| +A; + Aj.

Proof. Conditions (3.3.3), (3.3.4), and (3.3.5) imply that 7 is L? bounded with
bound B < 9®,_1A; + A, + Az in view of Theorem 3.4.2. Then the L2 hypothesis in
Theorem 3.6.1 also holds and the conclusion follows. O

Corollary 3.6.3. The Hilbert transform and the Riesz transforms are bounded from
L' to L' and from LP for all 1 < p < oo with bounds C(n)max((p—1)~",p).

Proof. This is a direct consequence of Corollary 3.6.2. (]

Having established the L” boundedness of the Hilbert transform and of the Riesz
transforms for 1 < p < oo, we turn to general odd singular integrals of homogeneous
type. We begin with the observation that the Hilbert transform acting on the first
variable on R” composed with the identity operator in the remaining variables

o (f)(x1,x2,...,%,) = lim l f(xl—t7x2,...7x,,)g, (3.6.7)
e—0*T T t|>e t
defined for f € .(R"), is bounded on L?(R") with bound C, = ||H||zr—1». To
verify this, we raise the absolute values of both sides in (3.6.7) to the power p and
then integrate in x;. Using the boundedness of the Hilbert transform we estimate the
right-hand side by

C,’Z/ |f(xr,x2, 5 x0) [Py
R

Integrating over the remaining variables implies the conclusion. Next, for a unit
vector 8 € S"~! we define

AW =1im [ i) e, (3.6.8)

e—0T 0 Jjt|>e

called the directional Hilbert transform in the direction 6. We observe that the fol-
lowing identity is valid for all matrices A € O(n):

Hpe, (f)(x) = A, (foA) A ). (3.6.9)
Now given 6 € 8"~ ! pick A € O(n) such that Ae; = . This implies that
60 = 1A Ay = 7o)y <ol g0l = ol

and this yields that .7 maps L” (R") to itself L” (R") uniformly in 6. We use this to
obtain boundedness for T (Definition 3.2.2) when €2 is an odd bounded function.
Such functions clearly have vanishing integral.

Corollary 3.6.4. Let Q € L= (S"™!) be odd and let Tg be as in Definition 3.2.2. Then

Jor 1 < p < oo, Tg admits a bounded extension from LP(R") to itself with norm at
Wy

most =34\~ ||H||Lr—Lr.
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Proof. Let f € .Z(R"). We express a general singular integral T with Q odd and
bounded on the sphere as follows. For given x € R” and € > 0 we write

/Wg QOB ¢ dy—+/ Q6 /f vy —dG

[
- ./SIHQ(—G)/ f(x+re)d—de

Jr=¢

. 9(9)/ Fe+r0) ¥ ao,
Sn—1 r=¢e r

where the first identity follows by switching to polar coordinates, the second one

uses the change of variables 8 — —0, and the third one expresses that €2 is an odd

function on the sphere. Averaging the first and third identities on the right, we obtain

/\V|>e Q(y/lyl)f(x_y)dy

|y["
mf Ffx—r0)— f(x+7r0)
S NC O ;

drd@. (3.6.10)

We write 1 (f(x—r0) — f(x+r0)) = — [', Vf(x—sr8)-6ds and we note that the
first expression has rapid decay (when r > 2|x|) and that the second expression is
bounded (when r < 2|x|). Then by the Lebesgue dominated convergence theorem,
we can pass the limit as € — 0" inside the integral in (3.6.10). This yields

T 1o f(x—r0)— f(x+r0)
T, == Q(6) lim — drdf
ol =7 [ 2@ tm " . '
T 1 s dr
= — Q(0) lim — —r0)—do
- )%W M>£f(x ré)=
_ 2/ (f)(x)d6 (3.6.11)
for x € R" and f € .(R"). The boundedness of T on L”(R") to itself is then a
straightforward consequence of (3.6.11) via Minkowski’s integral inequality. (]
Exercises

3.6.1. Assume that T is a linear operator acting on measurable functions on R”
such that whenever a function f is supported in a cube Q, then 7' (f) is supported in
Q* = pQ for some p > 1. Suppose that T maps L? to L? with norm B. Prove that T
extends to a bounded operator from L' to L with norm a constant multiple of B.

3.6.2. Let K satisfy (3.3.3) and (3.3.4) for some Aj,A; > 0. Let W € ./ (R") be
associated as in (3.3.8) with a sequence §; € (0, 1) that tends to zero and let 7' be
the operator given by convolution with W. Suppose that T maps L=(R") to itself
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with constant B. Prove that T has an extension on L' + L™ that satisfies (3.6.1) and
forl <p<ee

1/
T[] r <26, (%) ! (A2 +B).

[Hint: Apply the Calderén—Zygmund decomposition f = g+ b at height oy, where
y=(2""'B)~!. Since |g| < 2"ay, observe that |{|T(f)| > o}| < [{|T(b)| > a/2}]].

3.6.3. Let —c0 < a;j < bj < +oofor j € {1,...,n}. Prove that Y|4, px...x[a.b,] 1i€S
in .#,(R") with bound independent of a; and b;. [Hint: When n = 1 express 752
as a multiplier operator. Use Exercise 2.8.3 (a).}

3.6.4. Let 1 < p < oo. Prove that the norm of the operator ¢ defined (3.6.8) from
LP(R") to itself is the same as that of the Hilbert transform from L?(R) to itself.

3.6.5. Let A" = Ao---0A be the m-fold composition of the Laplacian with itself.
Show that for any 1 < p < oo there exists an A, , > 0 such that for all f € ./(R")
and all ji,..., jom € {1,...,n} we have

Hajl "'ajsz|

< Ap.[[A" ]|

L])(Rn) Lr (R") .
[Hint: Prove first the inequality in the case m = 1 using the Riesz transforms.}

3.6.6. Prove that for all 1 < p < e there exists a constant C;, > 0 such that for every
f €.7(R?) we have

HBUCHLP(RZ) + HaZfHLP(m) = CPH(al +i82)fHLP(R2)'

Likewise, show that there exists a constant Cp, ,, > 0 such that for all f € /(R")
and all jy,..., j, € {1,2} we have

||ajl "'ajmf |LP(R2) < Cp,m”(a] +i82)mf\

LP(R2)"

3.7 The Hilbert Transform and the Poisson Kernel

We investigate connections between the Hilbert transform and the Poisson kernel.
Recall the Poisson kernel P(x) = 1 1 given in Example 1.9.2. Consider the family

T
of kernels Py(x) = 1P(2) = L -2 for y > 0. Then for a real-valued function g in

Ipx 1
Ty \y T x2+y?
LP(R), 1 < p < oo, we have

| e
B0 = [ e G

and the integral in (3.7.1) converges absolutely by Holder’s inequality, since the
function ¢ +— ((x — )% 4y*)~! belongs to L” (R) whenever y > 0.
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When z = x+iy for x € R and y > 0 we can write

11 1y 1 x
i
Tz TR T4y

which implies

(P, *g)(x) =Re (;/j’xgt(’ilydz) —Re (;/:wf(t)tdt).

On the upper half-space R = {z = x+iy: y > 0} the function

Fy(e) = %/+w@dt

—o Z—1

is analytic. To verify this, for z = x+ iy with y > 0, notice that

F, —F, J
jgﬂigéﬁzi/gggLL—— ff/ dr ash—0
h (z+h—1)(
by the LDCT; the use of this theorem is based on the fact that for || < %| yl,
t 2 t
g(1) _7|g()| e L' (dr)
(z+h=1)(z—1)| = | |z—1]

by Hélder’s inequality (g € L”(R) and |z —-| ! € L” (R)).
The real part of Fy(x+iy) is (P, * g)(x). The imaginary part of F,(x+ iy) is

m(i/mwfdﬁl/wgm“)m (+0)(¥),

oo X—1 1y ) (x—1)24)2
where Qy(x) = %xZ iyz = %Q(g) is the L' dilation of the conjugate Poisson kernel
o) =~ " (3.72)
X)=———-. 7.
Txr+1

Thus, if g is real-valued, we have

R == [T B a0 i) G

and this is analytic on the upper half-space. Hence the functions x+ iy — (g P,)(x)
and x+ iy — (g * Q) (x) are conjugate harmonic functions. This explains the choice
of name given to the conjugate Poisson kernel.
Up until this point, the function g was real-valued. We now define F for any
complex-valued function f in Uj<,<L”(R) by simply replacing g by f in (3.7.3).
The following lemma reveals an intimate relationship between the Poisson kernel
and its conjugate.



3.7 The Hilbert Transform and the Poisson Kernel 141

Lemma 3.7.1. The identity H(P) = Q holds. More generally, one has H(P;) = Q¢
Sfor any € > 0. We also have H(Q) = —P and H(Q¢) = —P; for any € > 0.

Proof. Recalling that P(é) e 27&l [Theorem 2.2.5] and identity (3.1.16), we
write

HE)) = [ e isgng)e e g
= 2/ £ sin(27xE) dE

7/ S sin(x&)dé&
—Im/ (1—ix)

1—ix
= 0(x).
This proves that H(P) = Q. The fact H(Q) = — P follows from the identity H> = —1.
The assertions about P and Q¢ are obtained via dilations. O

Givenany € >0and f € L”(R), | < p < oo, the function H(f) also lies in L (R),
and as P, Q¢ lie in r (R), it follows from Theorem 1.6.7 that both f x P, and
H(f) * P, are uniformly continuous functions.

Lemma 3.7.2. Let f € LP(R) for some 1 < p < oo, Then for any € > 0 we have

F*0e =H(f)*P; (3.7.4)
pointwise everywhere on the real line.

Proof. We first prove (3.7.4) for a function f € . (R). Applying the Fourier trans-
form, we see that (3.7.4) is equivalent to the identity H(P:) = Q;, proved in the
Lemma 3.7.1. So (3.7.4) holds when f € .(R). Now given f € LP(R), 1 < p < oo,
there is a sequence ¢; € .”’(R) such that || f — ¢;||z» — 0 as j — co. The bounded-
ness of the Hilbert transform on L? yields ||H (f) — H(¢;)
Also, P;, Q¢ lie in LY (R) (p' > 1 since p < ), so Holder’s inequality yields (3.7.4)
for general f € LP(R). O

As the family {P; }¢~0 is an approximate identity, it follows from Theorem 1.9.4
that P;  f — f in LP(R) as € — 0. The following question therefore arises: What is
the L” limit of f* Q¢ as € — 0? As Q ¢ L'(R), the family {Q¢ }¢~0 is not an approx-
imate identity, so this question cannot be addressed in terms of Theorem 1.9.4. It can
be answered, however, via the use of the preceding lemma which relates {Q¢ }e>0
to the approximate identity {P; }¢~o.
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Theorem 3.7.3. Let 1 < p < oo and f € LP(R). Then we have f* Q¢ — H(f) in L?
and almost everywhere as € — 0. Consequently,

Fy(-+ig) = i /ﬂo f(t)

= md;—)f—&-iH(f) in LP and a.e. (3.7.5)

as € | 0. Moreover, if f and H(f) are uniformly continuous in a neighborhood of a
subset B of the real line, then the convergence in (3.7.5) also holds uniformly on B.

Proof. Letus fix f € LP(R) for some 1 < p < . We have H(f)*P. — H(f) in L?
and a.e. in view of Theorems 1.9.7 (with A = 1) and Theorem 2.5.5 (with ¢ = 1).
But f«xQp = H(f)* P by (3.7.4), s0 f* Qs — H(f) in L” and a.e. as € — 0. We
conclude that

Fr(-4ie) = f+ (P +iQ¢) = (f+iH(f)) % Pe — f+iH(f) in L” and a.e.

Moreover, this convergence is uniform on B by Theorem 1.9.4 (b), provided f and
H(f) are uniformly continuous in a neighborhood of B in the sense of (1.9.1). O

The set of ideas we have discussed allows us to find the limits of the truncated
Hilbert transforms for general functions in L”.

Theorem 3.7.4. Let 1 < p < oo and f € LP(R). Consider the truncated Hilbert
transforms H®(f) (Definition 3.1.5). Then H'®)(f) — H(f) in L? and a.e. as
e—0.

Proof. Letus fix f € LP(R) for some 1 < p < . Using (3.7.4) we write
HO(f) = HE(f) = [ Qe+ H(f) % Pe. (3.7.6)

Next we observe that

HOWF) ) — 0= [ LDt (0w f)(0) = (£ v ),

Tze 1

where W (x) = e 'y (e 'x) and

1 t
1 ;—m Whel’l‘t|217
y(t) = — (3.7.7)
i - <1
- when |t < 1.
241
Notice that L
ly(t)| < A1 (3.7.8)

so V¥ is integrable over the line and has integral zero, as it is odd. Thus { ¥ }¢~0 is an
approximate zero family. It follows from Theorem 1.9.7 (with A = 0) that f*y, — 0
in LP. Also Theorem 2.5.5 (with ¢ = 0) implies that f * y — Oae.ase —0. O
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Returning to (3.7.6), we observe that the identity H'€) (f) = fx ye + H(f) % P,
combined with Proposition 2.5.3, gives

sup [H® ()] < M(f) +M(H(f)), (3.7.9)

>0

noting that the integral of the Poisson kernel, i.e., the function on the right in (3.7.8),
equals 1. For f € U< <. L (R) we define the operator

HY(f) = sup|HE(f)],

e>0

called the maximal Hilbert transform. As a consequence of (3.7.9) and of Theo-
rem 3.6.3 and Corollary 1.4.7 we obtain

Corollary 3.7.5. There is a constant C such that
HH(*)(f)HLP(R) < Cmax(p, (p— 1)72)HfHLP(R)
for1 < p<ooandall f € LP(R).

This bound will be improved to max(p, (p —1)~") in Corollary 3.8.2.

Exercises

3.7.1. Prove that

. /+°° dt 1 . /+°° tdt —i
1m = 1m =

W0 S (1 +12)(x+iy—1t) x+i 20 oo (1 +12)(x+iy—1t) x+i
for every real number x.

3.7.2. Prove that

o oo : 1— inx
lim / sin(rr) _, _1=e
y10 ) e mt(x+iy—t) x

for every real number x, where the function on the right is 1 when x = 0.

3.7.3. Let f, g be real-valued Schwartz functions on the real line. Show that

H(f)H(g)—fe=H(fH(g)+gH(f)),

where H is the Hilbert transform. Then prove that this identity also holds a.e. for
real-valued square-integrable functions f, g on the line.
[Hint: Consider the boundary values of the analytic function F, ng.]

374. Let P(x) = 15— and Q(x) =

w21
[Hint: Use the preceding exercise. |

. Prove that H(PQ) = ;0% — 1P

1
TTx2+1"
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3.7.5.For 1 < p <eoletA, = ||H|[pr—rr and B, = ||M||zr—1r, where H is the
Hilbert transform and M is the (centered) Hardy-Littlewood maximal function on
R. Let O be the conjugate Poisson kernel. Prove that for any f € LP(R) we have

ilil())HQS *f”Lp(R) < APHfHLI’(R)’

[[sup|Qe * 1] .y < ApByllf]
>0

LP(R)*
[Hint: Use Lemma 3.7.2 and Proposition 2.5.3.]
3.7.6. Let 2 < p < oo, Prove that for any real-valued function f € L?(R) we have

sup | (Pe % £)+1(Qe | oy < (1A | £l ey
>0

where A, = |H||z»—» and H is the Hilbert transform.
[Hint: Use the preceding exercise and the subadditivity of the Lp/? norm.}

3.7.7. On R" define the jth conjugate Poisson kernel oW by

1<j<n.

Let Qy ) be the L! dilation of Qy ) for y > 0. Prove that

() () = i el
: 14
Conclude that R;(P,) = Qy) and that for all f in LP(R"), 1 < p < e, we have
Ri(f)+Py= £+ 0% fory>0.

3.7.8. Let f € LP(R") where | < p < . Prove that the truncated Riesz transforms
R;g)(f) converge to R;(f) in L” and a.e. as € — 0.

[Hint: Using Exercise 3.7.7, write R§g> (f)= R;g) (f)—fx Qfgj) +R;(f)*Pe and then
apply the idea in Theorem 3.7.4. ]

3.7.9. Let n be an even smooth function on the real line such that n(¢) = 1 for
|#| > 1 and n vanishes for |¢| < % Define the smoothly truncated Hilbert transform
(associated with 1) acting on a function f € LP(R) (1 < p < =) by

ne/e)
t

HY ()0 = [ fa=1)

Given 1 < p <eoand f € L”(R), prove thatH,%g)(f) — H(f)inLP and a.e. as € — 0.



3.8 Maximal Singular Integrals 145

3.8 Maximal Singular Integrals

We introduce maximal singular integrals and we derive their boundedness under
the general conditions of size, smoothness and cancellations. For a function K that
satisfies (3.3.3) we define the associated truncated singular integral operator

TN = [ Ka-nf0)dy,  xeR", (3.8.1)

[x—y[>e

whenever f € Uj<,<..L?(R"). Note that as y — |x — y[™"x|,_y>¢ lies in LY (R"),
p' > 1, Holder’s inequality yields that the integral in (3.8.1) converges absolutely
for all x € R". We also set

TO(f) =sup|TE ()], fe |J LP(RY),

>0 1§p<°°
and we call this operator the maximal singular integral operator associated with K.

Theorem 3.8.1. (Cotlar’s inequality) Let 6 >0, 0 < Aj,Ay,A3 < oo, and suppose
that K is defined on R"\ {0} and satisfies the size condition (3.3.3), the smoothness
condition

K(x=y)—K@)| <Aaly|®x"7%, x> 2]y, (3.8.2)

and the cancellation condition (3.3.5). Suppose that W is a tempered distribution on
R” defined in terms of (3.3.8) (associated with a sequence & — 0) and let T be the
operator given by convolution with W. Then for 0 < r < 1 there is a constant C, s ,
such that the following inequality is valid:

1—-r 1
T (f) <37 [M(T(f)1N)]7 +Cosr (A1 +A2 +A3) M(f), (38.3)
forall f € Uj<p<o LP(R"), where M is the Hardy-Littlewood maximal operator.
Note that (3.8.2) implies the Hormander integral smoothness condition (3.3.4).

Proof. We fix r satisfying 0 < r < 1, € >0, f € Uj<p<ee LP(R"), and xo € R". We
pick a smooth radial function 1 with values in [0, 1] which equals 1 on the unit ball
and vanishes outside B(0,2). Then we define

K@ =fon(Z2) 200 = (1 -n(5))
at the points x € R” for which f is defined. We write

T ) T ) = [ Ko=) [O)dy= [} Ko=) S0 dy

_ K(xo—y)n(*52) f(y)dy,

J2e>|xo—y[>€

in view of the support properties of 7. It follows from this and (3.3.3) that



146 3 Singular Integrals
T () (x0) — T(f5) (x0)| < Ca1M(f) (x0). (3.8.4)
For z € B(xo, §) we have |xg —z| < 3 |xo — y| whenever |y —xo| > & and thus

U0 = TUE@] = | [ (Ko=)~ KG=2)70)(1 = n(5)ay

ly—xo|>¢

< / |K(xo—y—(x0—2)) = K(xo—y)| |f()|dy

[y—xo|>¢

|XO*Z|6/| A2|f(y)‘ dy

y—xo|>e X0 — Y|n+6

vs (€10 A1)
20 e T e
C5A2M(f)(x0),

where the last estimate is a consequence of Theorem 2.5.1. We conclude that for all
7 € B(xo, %), we have

T () (x0)]

IN

IN

IN

< T (f£7) (x0)| + Ca AiM () (x0)

< T (27 (x0) = T(f£70) ()| + |T (F£°) (2)| + Ca MM () (x0)
< Cos (A1 +A2) M(f)(x0) +|T(f — f57)(2)]

< Cos (A1 +A2) M(f)(x0) + T () @)+ T (f57) ()]

Raising to the power r < 1 we obtain
T () (x0)|" < Cp 5 (A1 +A2) M(f) (o) +|T(N) @ +IT(fg™ )@ (3.8.5)

for all z € B(xo, §). First we average over z € B(xo, §), then we take the supremum
over € > 0 (only) in the second term, and then we raise to the power % making use of
the inequality (a+b+c)'/" < 3U=7/7 (a7 4 bV/7 4 cV/7) for a, b, ¢ > 0. We deduce

TOF) o) <37 |G (A1 +A42) M(F) (x0) + [MUT ()] (x0)] "+

1

<B((1)2) Lo TN |

The third term in the square brackets is estimated, via Exercise 1.2.6 (a), by

1

l HTHrl_> 1,00 _ . r r
(B(XO 5 Bl )l ’||f§'x°||u) < Cur (A1 +A2+A3) M(f) (x0).
2

Inserting this estimate in the inequality bounding |T () (f)(xo)| yields (3.8.3). [
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Corollary 3.8.2. Let K, Ay, Ay, A3, W, and T be as in the preceding theorem. Then
T™) admits a bounded extension on LP for all 1 < p < oo and also maps L' to L'*.
Moreover, there are constants Cy,,C), such that

701 1 oA +42 445,
[T, < Camax(p,(p—1)"")(A1 +42+A43).

Thus, there are constants ¢, ¢’ such that the maximal Hilbert transform H) satisfies

||H(*)||L1(R)HL1‘“(R) <c,

17 -y < emaxtr (p=1)7),

(%)

and there are constants c,,c), such that the maximal Riesz transforms R i satisfy

</

HR.E'*)||L1(R”)HL1.<»(R") < ¢,

(%) -1
HRj |‘LP(R")~>LP(R") < cpmax(p,(p—1)"").
Proof. To show that T(*) maps L' to L' we need to use that the Hardy—Littlewood

maximal operator maps L”* to LP*™ for all 1 < p < o; on this see Exercise 1.4.8.
For all 0 < p, g < o note the identity

q
10 e = 111z
which can easily be deduced from Definition 1.2.5. We use (3.8.3) with r = 1/2.
The difficult term is the one involving 7'(f). We estimate this as follows:

1

[M(T ()12 1

IM(T ()2

< GITH |-

= G|IT(N)] 1

Ch (A1 + Ay +A3)HfHle

N

IN

where we made use that M maps L>* to itself (Exercise 1.4.8) and that 7 maps L' to
L' with bound a multiple of A| +A; + A3 in the last estimate; this is a consequence
of Corollary 3.6.2.

We essentially repeat the preceding argument to obtain the L? boundedness of
T for 1 < p < eo. Recall that the maximal function is bounded on L*”(R") with
norm at most
2p—17~

n
3%

by Corollary 1.4.7. We have
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[M(T (N2 o

[T ()

@331
16'3”||T(f)||LP

Cnmax(ﬁ,p)(Al +A2 +A3)HfHLp,

IN

IA

where we used the L” boundedness of 7 in the last estimate. O

Corollary 3.8.3. Let 1 < p < oo. Assume that K, W (associated with a sequence
Or — 0), and T are as in Theorem 3.8.1. Then for a given function f € LP(R") we
have T'%)(f) — T(f) a.e. as k — oo. Moreover, for p > 1, T'%)(f) — T(f) in LP.

Proof. We begin with the observation that T(%) (¢)(x) — T(¢)(x) as k — oo for
all x € R" whenever ¢ € . (R"); this is a consequence of (3.3.7) (applied to 7).
Combining Theorems 3.8.1 and 2.5.6 yields the asserted a.e. convergence for func-
tions f in L”(R"). The claimed convergence in L” for p > 1 is a consequence of the
LDCT as T (f) — T(f) a.e. and |T'%) ()| < T™)(f) € LP(R") for all k. O

We conclude this section with an analog of Corollary 3.6.4.

Corollary 3.8.4. Let Q be an odd bounded function on S"~'. Then Tg(;) is bounded
on LP(R") with norm at most "=\ Q|| 1= ||[H™|| 1r—».

Proof. Let f € . (R"). We begin with

Q/ly 14
[ 20D =2 [ 0(0)4° ()0
pize [l 2 Jsr
derived in (3.6.10). Inserting absolute values and taking the supremum over all € > 0
yields
* T *

Tf(l)(f)(x)gi - ()47 (f)(x)d6,  xeR”,
for f € . (R"). From this we obtain the claimed L? bound for Tf(;) by Minkowski’s
integral inequality (Theorem 1.1.12). Using the result in Appendix D, we extend
this operator to L? (R"). O

Exercises

3.8.1. Let Q be a bounded function on S"~! with vanishing integral and let T be as
in Definition 3.2.5. Assume that either €2 is odd or €2 satisfies the Lipschitz condition
|Q2(6)) — 2(6,)| < By|6; — 6,|* for some o € (0,1), By >0, and all 6;,6, € S"~ 1,
Prove that for any 1 < p < oo and all f € L?(R"), Tg(;)(f) — To(f) a.e. and in LP.
[Hint: Use Exercise 3.3.5, Theorem 2.5.6, and Theorem 3.8.1.]
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3.8.2. Let K be a function on R"\ {0} that satisfies |K(x)| < A]x|™". Let  be a
smooth function that equals 1 when |x| > 2 and vanishes for |x| < 1. For f € LP(R"),
1 < p < oo, define the smoothly truncated singular integral by

0= [ nO/OKG)x—y)dy,  xeR"
Show that the maximal singular integral

7)) — sup ‘T(8)|

e>0

is bounded from LP(R") to L”(R") for 1 < p < oo if and only if the smoothly trun-
cated maximal singular integral

1) = sup| 1|
e>0

is bounded from L?(R") to L”(R"). [Hint: Use Corollary 2.5.2.]

3.8.3. (Simpler form of Cotlar’s inequality) Suppose that K is a function defined
on R"\ {0} that satisfies (3.3.3), (3.8.2), and (3.3.5). Let W be a tempered distri-
bution on R" associated with K as in (3.3.8) and let 7 be the operator given by
convolution with W. Follow the steps below to prove the inequality

T (f) <eM(T(f))+Cos (A1 +A2+A3)M(f),  feLP(RY).

(a) Notice that the operator 7€) is given by convolution with K XB(0.¢)c- (b) Pick a
smooth function ¢ supported in the ball B(0,1/2) with integral 1. Write

Katboer = bW+ (Ko — 9e+W ).

(c) Show that
stilg\f*¢g*W| <eM(T(f))

for f € LP(R"). In (d), (e) prove that

1 (A1 +A2+A3)Cy 5.
e (14 |x/elym+e 7

‘(KXBO.S ¢£*W)()‘7

where C 5, depends on the indicated parameters. Then apply Corollary 2.5.2. (d)
In the case |x| > & write

KW = [ K@0oe()dy

and use (3.8.2) to obtain the inequality in (c) with Cy 5, = 2"® [ou [v[°|0 (v)| dy.
(e) To prove the inequality in (c) in the case |x| < € begin with
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(9 #W)(x) = lim K(x—y)0e(y) dy

5]~>0 ‘xfy‘ZSj

for some sequence &; € (0,1) tending to zero which defines W. Then write
(¢ *W)(x) as the sum of the following expressions:

-/‘Xfy‘>§ K(x=y)¢e(y)dy,
/\va\<§ K(x—y) [(Ps (y) — ¢ (x)] dy,
9l ‘%J‘iLno 8i<lx—y|<§ Klx=y)dy

Finally, estimate all these expressions by (A| +A3)e ""C(¢,n).



Chapter 4 )

Vector-Valued Singular Integrals and e
Littlewood—Paley Theory

4.1 The Vector-Valued Calderéon-Zygmund Theorem

Let T be a bounded operator from L?(R") to itself for some p € (1,o0). One may
wonder if a stronger estimate of the form

(S ranr) ], <c(1ne)’

might hold, where f; € LP(R") and 1 < g, s < oo (with the obvious modifications
when g or s is infinite). Naturally, we would like this estimate to hold with a constant
C independent of N, so that we can let N — . We will derive estimates of the form
(4.1.1) by introducing operators acting on finite sequences of functions.

We fix positive integers M, N and 1 < g,s < . We denote by ¢, the Banach space

1
s

@.1.1)

Lr

of all finite sequences (ay,...,ay) of complex numbers equipped with the norm
1
N Y h < oo
lar.....an)], = { (2=t 1) when g <o
sup{|aj|: j=1,...,N} wheng=co.

Bounded linear operators from ¢% to £}, can be identified with M x N matrices
Y = (yij)1<i<m,1<j<n. The norm of a such a matrix ¥ is denoted by ||YH/Z7VH%. The
precise form of ||| ¢, 1s not needed in general and can be calculated in some
instances; upper and lower estimates for ||Y | ¢ g, are given in Exercise 4.3.1.

Let0 < p<eoand 1 < g < oo. We will be working with spaces of finite sequences
{fi }1}’:] of measurable functions on R” that satisfy

HH(fh-~~afN)HMHLP(R") = (/R” (i fj(x)|q)5dx>” < oo,

j=1
with the obvious modification when p or ¢ is infinity. We define
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024 151

L. Grafakos, Fundamentals of Fourier Analysis, Graduate Texts in Mathematics 302,
https://doi.org/10.1007/978-3-031-56500-7_4


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-56500-7_4&domain=pdf
https://doi.org/10.1007/978-3-031-56500-7_4

152 4 Vector-Valued Singular Integrals and Littlewood—Paley Theory

PR ) = L 1)y <

and we note that this is a normed space when p > 1 and a quasi-normed space when
p < 1. In fact these spaces are also complete; see Exercise 4.1.2. When p > 1, we
define the integral of an element { f; }1}’:1 of L (R",¢},) over a compact subset B of

R” by setting
J U = { / fj(x)dx}

We consider the following situation. Suppose that for all x € R"\ {0} there is an
M x N matrix

N
j=1

K”(x) K]g(x) K]N(x)
K> (x) K> ()C) - Koy (x)
. . . . = (Kij(x))lgigM,lgjgN’

Ko (x) Koo (%) -+ - Knan ()

where each K;; lies in L} .(R"\ {0}), i.e., it is an integrable function on every com-

pact subset of R"\ {0}. Also suppose that K;; satisfy the size condition
Kij(x)| <A x|, x#£0, 4.12)

for some A'ij < o0 and, for some 1 < g,s < oo, the regularity condition
sup / K(x—y)—K®)|[0_, dx <Ay <eo. (4.1.3)
yeRM\ {0}/ [x[>2]y| H H[N fin

Finally, we assume that there is a sequence & in (0, 1) with 6 — 0 as k — oo and an
M x N complex matrix Ko = (K}})1<i<pm,1<j<n- such that

lim Kij(x)dx =K. (4.1.4)

k= J§<la|<1

Note that (4.1.4) would be a consequence of the assumption

sup sup sup sup / Kij(x)dx
I<i<SM1<j<N >0 R>e|Je<|x[<R

< Az < oo, (4.1.5)

For a compact set B that does not contain the origin, we define the integral of K
over B to be the matrix of the integrals of the coordinates over B, i.e.,

/I?(x)dx: (/ K,-/-(x)dx) .
B B 1<i<M,1<j<N

Using this notation we write
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lim K(y)dy=K°. (4.1.6)

koo J i <|y|<1

Given K satisfying assumptions (4.1.2), (4.1.3), and (4.1.5), we define an oper-
ator T acting on N-tuples of smooth functions with compact support {f j}]}lzl as

follows: . N . . N
T({fi}2) () = lim s K(y)({fj(x=y)}2y) dy. (4.1.7)
— Ok
This equals:
lim Ku()fix—y)dy +---+ lim Kiv(y)fn(x—y)dy
koo JIy|>§; koo JIy|>8;
lim Kn(y)filx—y)dy +---+ lim Kov(y)fv(x—y)dy
ko J]y|> 8 k= J|y|= 8 ,
lim Kvi(v)fi(x—y)dy +---+ lim Kun(y)fn(x—y)dy
koo J|y|> koo Jly[>

and each one of these limits exists and is similar to the limit in (3.3.9).

Assume r =g = s in (4.1.1) and suppose 1 < r < eo. Then (4.1.1) holds trivially
when p = r with C = ||T||zr—r»r. Thus, it is natural to consider p = r (instead of
p = 2) as the initial estimate in the following vector-valued adaptation of Theorem
3.6.1. As above, we fix below M,N € Z* and 1 < g, 5 < oo,

Theorem 4.1.1. Suppose that for each x € R"\ {0}, K(x) is a matrix that satis-
fies (4.1.2) and (4.1.3) for some A'ij,Az > 0 and (4.1.6) for some sequence 6 | 0
and some M X N complex matrix Ko. Let T be the operator associated with K as
defined in (4.1.7). Assume that T is a bounded linear operator from L'(R", 1) to
L (R",éj,,) with norm B, for some 1 < r < . Then T has well-defined extensions
on LP(R",¢%,) for all 1 < p < o and there exist constants C,, C), such that these
extensions satisfy

gy <G By @19
for all F in L'(R",¢%,) and
17 Pl e 5,y < G CPY A2+ B [l o s, (4.1.9)

for all F in LP(R",¢%,) when 1 < p < eo. Here C(p) = max (p,(p—1)7!) if r < oo
and C(p) = p(p—1)"lifr=oco.

It is remarkable that the constant C/, in (4.1.8) and C, in (4.1.9) are in fact inde-
pendent of Ay, q,N,s,M,r.

Proof. We fix F = {fi}}_,, where each f; is a finite linear combination of char-
acteristic functions of dyadic cubes. Such functions F are dense in L' (R",01)
by Exercise 4.1.3. Notice that ||F]| ¢, is also a finite linear combination of char-

acteristic functions of dyadic cubes, hence its Calderén—Zygmund decomposition
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contains only finitely many cubes, cf. Example 3.5.5. We apply the Calder6n—
Zygmund decomposition to ||F]| ¢, at height yo, where y = 27" 1Ay + B,)!
extracting a finite collection of closed dyadic cubes {Q;}; satisfying 3.;|Q;| <
(yo)"Y|F |1 (Rr¢4,)- We define the good function G of the decomposition by

F(x) for x ¢ U;0;,
G(x) = @/ij(x)dx forx e Q;.

Also define the bad function B=F —G. Then B =3 ; B;, where each B; is supported
in the cube Q; and has mean value zero over Q;. Moreover,

Gt re ey < IF L1 o ) (4.1.10)
1G]l g1 < 2" 70, (4.1.11)

and [|B;|| 1 gr, @) < 2" yar| Q). by an argument similar to that given in the proof of
Theorem 3.5.2. We only verify (4.1.11). On the cube Q;, G is equal to the constant
|0;|7! fQj F(x)dx, and this is bounded by 2"yo:. For each x € R"\ U, Q; and for

eachk=0,1,2,... there exists a unique nonselected dyadic cube Q)(Ck) of generation
k that contains x. Then for each k > 0, we have by Theorem 1.1.12

L
H 1% ~/Qik> Fly)dy

X

1
e L 1FOI gy < ye
N

The intersection of the closures of the cubes Q)(ck) is the singleton {x}. Using Corol-
lary 1.5.6, we deduce that for almost all x € R"\ |J; Q; we have

1
F(x) = lim 7/ F(y)dy.
k—so0 |Q)(Ck)‘ Q)(Ck>
Since these averages are at most ya, we conclude that || F|| ¢, < yor almost every-
where on R"\ J; Q;; hence ||GH€;1V < yo a.e. on this set. This proves (4.1.11).
We begin with the estimate concerning the good function G. Suppose first that
r < oo, Then

2N s
VIO

xR 7(@) W)y, > e/2}] < (
2B\
S ( ) ||G||Lr(Rn_[%)
2

1 1 r
(207 IF Iy e g))

NPy, @112
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where the third inequality follows from (4.1.10) and (4.1.11) (Exercise 1.1.6). Now
if r = o, we have

2 o
IT(G)ll=(re3,) < BillGll o g9y < 2"v0UBy < 5

which implies that

[{xeR": ||T(G)(x)l|gy, > a/2}| =0

Thus estimate (4.1.12) also holds when r = oo.
We now turn our attention to the bad function B. As B = ¥ ;B; we have

that T(B) = ¥ ; j T(B;), since the Calderén-Zygmund decomposition of F' contains
finitely many cubes Q ;. Let Q;‘ 2\/nQ;. We write

[{xeR":|T(B))llg, > a/2}|

<|UQj!+|{X¢UQJ ), > @/2}]
(2[) ||FHL1(R"/‘1) 2
S *E/w I7(B)(0)lg dx
F ")
< (2\{/5) I HLI R, Z/ ; ||T x)|les, dx. (4.1.13)

It suffices to estimate the last sum. Denoting by y; the center of the cube Q; and
using the fact that B; has mean value zero over Q;, for x ¢ Q%, using the LDCT and
(4.1.2), we write

7(B))(x) = | (Rex—) = Rlx=3))) (Bi() (4.1.14)

J

For the argument below refer to Figure 3.3. Using (4.1.14) we write

3 g I

-3 / ; / )~ R(e3,) (Bj(3))dy
<3/, 10y /QW.

<S80 [ IR Ryl g, deis
< Azz 1Bl (o e

J
§2n+1A2”F”L1(R”,€;’,)’ (4.1.15)

dx

[S

dx
ty

K(x—y) —I_('(x—y‘,‘)HK?VH% dxdy
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where we used the fact that [x —y;| > 2|y —y;| forall x ¢ Q7 and y € Q; and (4.1.3).
We also used Minkowski’s integral inequality in the first inequality above. Com-
bining (4.1.12), (4.1.13), (4.1.15), the estimates for the good and bad functions, we
deduce

[{xeR": [F(F))g, > o]

2(A2+B,) @) IFll gy 2
Si*”F”LI(R",é;{,)—'_ 7 o = +52”+1A2HF||L1<R",47V)

o
nAn+1 n+2 HF”L] (R™.£§)
< (2+(2vn)2"t 42 )(A2+B*)T.

Combining the estimates leading to (4.1.12), (4.1.13), and (4.1.15) yields (4.1.8)
with C}, = 2+ (24/n)"2""! +2"*2_ Thus T has an extension that maps L' (R", %)
to L(R",#5,) with constant at most C)(A; + B,). In obtaining the extension
from L'(R",¢%) to L'=(R",£},) we use the completeness of weak L! (Proposi-
tion 1.2.12).

Next we interpolate between (4.1.8) and 7 : L'(R", (%) — L' (R",¢;,). Using
Exercise 1.3.7 we obtain

p 4

||THLP(R",KZ,)HU’(R"/«";W) <2 (;fl * r—p

1
)pC,’l(A2+B*), (4.1.16)

when 1 < p < r. Taking C(p) = 2p(p — 1)~ completes the argument when r = oo
We now consider the case r < oo. Notice that 7! maps L” (R", é}‘;) to L (R",ﬁjq\;)
with constant B, (see Exercise 4.1.5). As the kernel of T' satisfies the same estimates
as that of T, it follows that 7" also admits a bounded extension from L' (R”,E‘}i;) to
L'~ (R", Ef{,/) with bound at most C},(A; + B,). By interpolation (Exercise 1.3.7) we

obtain
P I

HTI||U/<R)l,[z:1)‘>l}1/(Rn7[1qV/) <2 (p/ -1 + ’ _p/

1
)” C(A2+B,),  (41.17)

when 1 < p’ < 7. In view of Exercise 4.1.5, the dual of estimate (4.1.17) implies

/ /
P p
p—1 rF—p

/

1
— 7
||THLP(RH,£;1,)_>LP<Rn,z;4) <2 ( ) " Cy(A2+B,) (4.1.18)
when r < p < oo, Estimates (4.1.16) and (4.1.18) cover the entire region 1 < p < oo,
but in order to obtain a better constant that does not depend on r we use interpolation.
Restricting (4.1.16) and (4.1.18) to smaller regions we obtain

. 1 r+1

HTHLP(R”,[%)HLP(R",Q/I) <4C,(A2+B)(P)7, I<p< 5 (4.1.19)
. 3

1T oty oo g,y < ACh(A2+BIPY . 2r—1<p<eo.  (4120)
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These estimates prove (4.1.9) for p < ’H and for p > 2r — 1. For the remaining
values of p we interpolate between p = 1 with bound C},(A2 + B,) and p = 4r with
bound 4C.(Ay + B,)(4r)"/*"" coming from (4.1.20). Using again Exercise 1.3.7,
for 1 < p < 4r we obtain

= 14 P _\r ar\ - L
||T’|LP(R,17€;,V)HL,,<R,,%)§8C,’Z(A2+B*)(p o )" (ryer )L

For p € [r+1 2r —1], (4r—p)~' < (p—1)"" and 4r < 8p, so the quantity on the
right is bounded by 16C, (A2 +B,)(p/(p—1))"/?(8p)'~!/7. This yields

7 128C,, (A2 +B,)p r+1
H ||LP(R",£,’(,)—>LP(R”,55W) = (p— 1)1/;7 ) 2

<p<2r—1. (4.121)

Combining (4.1.19), (4.1.20), and (4.1.21) we deduce (4.1.9). (|

We remark that instead of assuming that each coordinate of F is a finite linear
combination of characteristic functions of dyadic cubes, we could have assumed that
F lies in L'(R",£%) N L"(R",¢%). In this case, one would have to show a property
analogous to (3.6.3).

Exercises

4.1.1. Let Y = (yij)1<i<m,1<j<n be a complex M x N matrix and let 1 < g,5 < co.
Prove the following:

1 M s %
. K ! ! 7
sup (|y1j|“+"'+|yMj|s> < HY”egﬁz‘;w < (Z (|Yil|q +"'+|)’iN|q>q > ,
=

I<j<N

with the obvious modification when s = o or g = 1. Notice that the (worse) estimates

sup  sup |yl/\<HYHZqH@ < 2 Z |yijl
1<i<M 1<j<N 1<i<M 1<<N

are valid for all 1 < g, s < oo,

41.2. Let 0 < p < oo, N € Z", and 1 < r < . Prove that L”(R",¢};) is a Banach
space if p > 1 and a quasi-Banach space when p < 1. Also show that L' (R", ¢},
is a quasi-Banach space.

[Hint: Supl<]<N||fJHln;n L) < HH{fJ ij=1

min(1

o IiLp 7 <ZN 1 HfJHmm lp'

4.1.3. Let Z be a dense subspace of L” (R"), where 0 < p < eo. Let 1 < g < oo. Show
that the space 2 x --- X 2 is dense in LP (R", £%,).
—_——

Ntimes
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4.14. Let {a j}]f:l be a finite sequence of complex numbers. Prove that for any ¢
satisfying 1 < g < oo we have

N
D ajbjl.

J=1

a; N_ = max
bl =, o
N

4.1.5. Prove that for any 1 < g <ee, 1 < p <eo, and f; € L”(R") we have

H{fj ]jy:l /”_Zf]g/dx

DR I{g; 1|| ,< vl

4.2 Applications of Vector-Valued Inequalities

An important consequence of Theorem 4.1.1 is the following:

Corollary 4.2.1. Fix A,B > 0, 1 < r < oo, and let K; be a sequence of functions on
R\ {0} that satisfy, for some A] < oo,

Kj(x)] <AJ[x[™",  x#0, “2.1)

lim [ Kij(x)dx=1;, (4.2.2)

§—0.J5,<x|<1

for certain complex constants L; and a sequence & € (0, 1) that tends to zero, and

sup / sup |[Kj(x—y) — Kj(x)|dx < A;. (4.2.3)
yeRM\ {0}/ |x|=2]y| jeZ

LetW;j € .7'(R") be associated with K; as in (3.3.8) and let T} be the operator given
by convolution with W;. Assume that W; coincide with bounded functions satisfying
sup; ||Wj||r= < B. Then for all 1 < p < e, T; admit bounded extensions from L” (R")

to itself and from L'(R") to L'*(R"), and there exist C,,C), > 0 such that for all
fj € LP(R") we have

|(zmer)
J
I(Smor) ], < Goman (s 5o (1

1 :
/
. < C} max (r,r_l)(Az-i-B)H<2,|fj|r) .

Yoo (S5

)

[).

p—1

Proof. The assumption sup; HVV;H 1~ < B implies that all 7; are L? bounded with
norms at most B. It follows from Theorem 3.6.1 that all 7; are of weak type (1,1)
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with bounds at most C,(A> + B) and also bounded on L" with bounds at most
C,max(r, (r— 1)~1)(A2 + B), uniformly in j.

It suffices to prove the claimed inequalities for |j| < N, where N € Z*. Then
the LMCT implies the conclusion for all j € Z (in the case of L' refer to Exer-
cise 1.2.2). We fix N € Z™ and we define

T({fi}en) = = Wibji<n

for {f;};in . (R")*¥*! which is a dense subspace of L"(R", {5, ,). It is immediate
to verify the second claimed inequality with p = r, i.e., that 7' maps L" (R" lon 1)
to itself with norm

B, < Cymax(r,(r—1)"1)(42+B).

The kernel of T is K in L(5y 1,5y ,) is a diagonal matrix defined by

Kx)({tj}1n) = {Ki(x)t5} j1<ns {ti}j1<n € Gyt
Obviously, we have .
1Ky, ey, < sup|K; ()]
This implies that
[RG=0) =KWy, g, < 0PI (x—2) =i

and therefore condition (4.1.3) holds for Kasa consequence of (4.2.3). Moreover,
(4.1.2) and (4.1.6) with Ko = {L;}; are also valid for this K, in view of assumptions
(4.2.1) and (4.2.2). The desired conclusion follows from Theorem 4.1.1. O

Remark 4.2.2. Note that in Corollary 4.2.1, if A| = sup ]-A'{ < oo, the hypothesis that
SUp ez, ||‘7V; |lz= < B < oo could have been replaced by

Ki(x)dx
/Sslxlgiv i)

In that case the constant A; + B in the conclusion of Corollary 4.2.1 should be
replaced by A| + A, + A3. This is because under assumptions (4.2.1), (4.2.3), and
(4.2.4) it follows from Theorem 3.4.2 that the operators 7; are bounded on L? by
some constant B < ¢, (A] + A, + A3z) uniformly in j.

sup sup sup
JELZS>0N>6

< As. (4.2.4)

Corollary 4.2.3. Let K be a function on R"\ {0} that satisfies

KX <A™, x#0,

lim K(x)dx=L,
8—0.J5<|x|<1

for some A} < oo, L € C, and § € (0, 1) that tend to zero as k — o, and
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sup / [K(x—y)—K(x)|dx < A;. (4.2.5)
yeR"M\ {0}/ [x[=2[y|

Let W € ./ (R") be associated with K as in (3.3.8) and let T be the operator given
by convolution with W. Let 1 < r < co and B > 0. Assume that W coincides with
a bounded function satisfying ||W||.= < B. Then for all 1 < p < e, T admits a
bounded extension from L”(R") to itself and from L'(R") to L'**(R"), and there
exist positive constants C,,C,, such that for all f; € LP(R") we have

|5y’ Jaenl| (1)

[(SIrer) |, < comax () max (5 =) (as-+8)| (S5
J J

r—1 p—1
In particular, these inequalities are valid for the Hilbert transform and the Riesz
transforms.

1
r—1

< C) max (r,

L= L’

Lp )2

Proof. Apply Corollary 4.2.1 with K; = K, W; =W, and T; =T for all j. (]

We now discuss an application of Theorem 4.1.1 when r = c. This provides
another proof of the boundedness of the maximal operator appearing in Corol-
lary 2.5.2 and of the Hardy-Littlewood maximal operator.

Example 4.2.4. Let A,y > 0 and G be a measurable function on R" x R satisfying

1 A a2 g,

G(x,1)| < —
‘ (Xa )| = n (1+|x|/t)”+7 m

for all x € R" and ¢ > 0, where
D(x) = (1+ )™
Consider the maximal operator

N(f) = sup[G(-,1) = f]

>0

defined for f in Uj<y<.L9(R"). By Corollary 2.5.2, the operator N is pointwise
controlled by a constant multiple of the Hardy—Littlewood maximal operator M,
and, for a certain function G, it essentially coincides with it. Indeed, for the choice
G(x,t) = v;lt’"xMSt we have N(|f]) = M(f). Next we note that

ATIN(|f]) < sup @, * | f| < 2" sup Dy * | f], (4.2.6)
t>0 JEL

since for 2/7! <t < 2/ (j € Z) and x € R” we have

1 1 1 1

PO = W = @ (2

= 2", ().
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For an odd positive integer M consider the vector-valued operator
F e (@a ) gy

which we think of as a mapping from L?(R") = L (R",C) to L? (R", {3;). The kernel
of this operator is the M x 1 matrix

I?(X) = ((1)2_[ M/2] ()C), ) (DQ[M/Z] (x))ta X € Rna
which acts on complex numbers a as follows:
t t
ar (@ (), -, Py (x)) @ = (@i (X)at, .., Pypuyy (x)a)

This operator maps C to £3; with norm

HI_{}(X)HC—%;‘;,: sup |¢2j(x)‘-

<)
Now (4.1.2) is valid as
sup |D,i(x)| = sup L; < L, (4.2.7)
<) i<l 2 (e /277
and likewise, for x # 0, we have
sup |[Vd,;(x)| = sup ! nty ‘(%,,%)‘ < &;;Z

j(n+1 X[ \n
<] i<ty 270D (1 By

Now given x,y € R” such that |x| > 2|y|, by the mean value theorem, for each j there
is a &; on the line segment joining y to the origin, such that

[K(x—y) = K@)l - lsu[liql%(x—y)—%(x)l
jl<ii
= sup [V@,;(x—&;)-yl
Lil<(4]
< URSYIN]

sup .
ety =Sl

|yl
|x|n+1

< (n+7y)2"! (4.2.8)
as [x—&j| > |x| —|&;| > |x| —|y| > |x|/2. This estimate implies the validity of (4.1.3)
for some constant A, that depends only on n and 7.

Also notice that (4.1.5) is valid with A3 = ||®||;1. Thus (4.1.6) holds for any
sequence O | 0. Finally, the estimate
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H sup ‘d)zf *fIH < B*HfHLw

lil<[%]

is valid with B, = | @||,1 and is obtained by inserting the L™ norm inside the supre-
mum and applying Theorem 1.6.6 (with p = o). An application of Theorem 4.1.1
(with r = o) yields the inequalities

[, ]l%*fiH <Gl 429
and
H| hori# 17l (4.2.10)

Letting M — o in (4.2.9) and (4.2.10) (through the odd integers) and using (4.2.6)
we deduce the boundedness of N from L!'(R") to L'**(R") and from L?(R") to
itself when 1 < p < oo with bounds proportional to those in (4.2.9) and (4.2.10)
times the constant A. These estimates provide a proof of Corollary 1.4.7, i.e., of
the boundedness of the Hardy-Littlewood maximal operator on L?(R") that is not
based on a covering lemma but on Calderén—Zygmund theory.

Exercises

4.2.1. Assume that in Corollary 4.2.1, the hypothesis sup; ||¥7V\,||Lm < B is replaced
by the assumption that sup; || ;|- < B. Show that the conclusion of this corol-
lary can be strengthened as follows: For any 1 < p < oo, T; admit bounded extensions
from L”(R") to itself and from L' (R") to L'=*(R"), and there exist C,,C,, > 0 such
that for all f; € L7(R") we have

l(sme) I, =cmsn(sinr],
J

H(Z‘T (i)l ) H <C, max(p,p1 1)(A2+B)H(§,|fj|r>l

4.2.2. For each j € Z let I; be an open interval in R (which could be half infinite or
the entire line) and let 7; be the operator given by convolution with ( x[j)v. Prove
that there exists a constant C > 0 such that for all 1 < p,r < eo and for all f; € L”(R)
we have

()
(i)

I

<cms (e 1) (2180

LI=(R) —

i <€ (s ) mes () (Sr)

Ll)

Lp
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[Hint: Let I be the identity operator, H be the Hilbert transform, M“(f)(x) =
f)e™, and 1 = Y(q; ;). Show that: (i) if —eo < a; < bj = +eo, then Tj =
(I +iMUTHM9); (ii) if —o =a j < bj < oo, then Tj = $(I—iMPiHMb5); (iii)
if —co<aj<bj< oo, thenTj =L (MYHM % —MPIHMi); (iv)if a; = —eo and
bj = +oo, then T; = I. Split the intervals in four groups and use Corollary 4.2.3.]

4.23. Let Rj = (a},b}) x --- x (a,b"), where —eo < @k < b% < 400, and define
an operator S; given by convolution by ( XRJ.)V. Prove that there exists a constant
C,, < eosuch that for 1 < p,r < e and all functions f; in L”(R") we have

(), g0 = Comas (25 ) s (o5 (205,

[Hint: Write S; as the composition of n one-dimensional operators and use the pre-
ceding exercise.]

n

4.2.4. For fixed 6 in 8" ! let Hy = {x € R": x-6 > 0} be a half space of R".
Let Ty, be an operator given by convolution with (), )" . Prove that there exists a
C < o (independent of n) such that for 1 < p,r < eo and all f; in L”(R") we have

1
(1) |y < max () mx (525 (S )’

Conclude the validity of this inequality when Hy is replaced by z+ Hg for any z € R”
with the same constant on the right. [Hint: Apply a rotation.]

LP(RY)

4.2.5. Let A be the set of points inside an open angle whose vertex is at zero and let
a; be a sequence of points in R?. Consider the operator T,;+4 given by convolution
with ( xu]JrA) (Here a; +A is the set obtained by translatlng the set A by a;.) Prove

that there exists a C < oo such that for 1 < p,r <eoand all f; in L? (R?) we have

H (Z|Taj+A(fj)|,)%
J

< ettt (5101)

L7 (R?) LP(R2)
[Hint: Use Exercise 4.2.4.]
4.2.6. An n-simplex is the convex hull of n+ 1 points zg,z1,...,2, in R” that are

affinely independent, which means that z; — zo, . ..,z, — zo are linearly independent.
Prove that the characteristic function of an n-simplex lies in .7, (R") for 1 < p < eo.
Use this information to show that the characteristic function of any polyhedron also
lies in .7, (R") for 1 < p < eo. (Compare with Exercise 2.8.6.) [Hint: An n-simplex
is the intersection of the characteristic functions of n+ 1 half-spaces. A polyhedron
is a finite union of n-simplices.]

4.2.7. Fix an n-simplex Q and a sequence of points a; in R". Consider the operator
Ta;+0 given by convolution with (xaj+Q)V. Prove that there is a constant C (inde-
pendent of the dimension ) such that for 1 < p,r <o and f; in L”(R") we have
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< [emats omaso 0] (S

|(Smotrir)’
J

Deduce an analogous estimate if Q is a polyhedron with an additional factor on the
right of the number of n-simplices that comprise it. [Hint: Use Exercises 4.2.4, 4.2.6
and that T, 1 o = M“ TpM~“/; here M*(f)(x) = *™ f(x).]

LP(R") LP(RY)

4.3 A Matrix-Valued Calderén-Zygmund Theorem
and Its Applications

We saw in Example 4.2.4 how to obtain L” bounds for maximal averages via
the vector-valued Calderon—Zygmund theorem. In this section we derive a matrix-
valued version of Theorem 4.1.1 and from this we deduce L” (¢") bounds for vectors
of maximal functions. To formulate this extension in a general setting, we consider
an L x M matrix
K1 Ko -+ Kin

S Ko Ko -+ Koy

K=1 . . .
K1 Kpp -+ Ky
of integrable functions defined on R”. Let F = (f;;) be an M x N matrix of L”
functions. We would like to study linear operators of the form

fir fiz o fiv K K12 -+ Kin fir fiz o fiv

f21 f22 . f21v K>1 K -+ Kom f21 f22 . sz
— . . . * 5

fM1 fM2 fMN Kii Ki2 -+ Kim fMl sz fMN

where the preceding convolution of matrices is defined as follows:

M M M
2 Klm*fml Z Klm*fmZ 2 Klm*me
m=1 m=1 m=1

M M M
D Kom*fm X Ko fu2 o0 X Ko * fun
m=1 m=1 m=1

=i
*
L
Il

M M M
Z KLm*fml Z KLm*fmZ Z KLm*me
m=1 m=1 m=1

We apply a norm on the matrices F and K  F that produces scalar-valued func-
tions whose L” norms can be evaluated. For 1 < g,r < oo we introduce the Ef(,(ﬁ,’w)
of an M X N matrix, to be the £9 norm of the vector formed by the ¢ norms of its
columns. For 1 < g,r <eoand 1 < p < e, we introduce the space L (R",%,(¢5,))
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of all M x N matrices of measurable functions F = (fm j)lgmsM’ 1<j<n on R" such
that

1

o <[ (2 15 07)

with the obvious modification when g = oo or r = . Likewise we define the space
1,e0 q
L= (R, Ly (6y))-
In this section, for 1 < p < oo, we are interested in estimates of the form

< oo,
LP(R")

1 o e = |1 et

|K=<F|,, “ <C||F| 43.1)

) Lr(6,(65))

with C independent of F, L,M,N. When 1 < p < oo, the dual space of L”(R", ¢%,(¢5;))
is L' (R”,KK,I (}))), where

Pl = (5[5 )

with the obvious modification when ¢ = 1. The dual estimate to (4.3.1) is

< oo
¥ (R")

HK *Gy

<c|é|,, (432)

L é" @) L E” eh))’
where K is the transpose of the matrix obtained by replacing each Kj,, by m Note
that estimate (4.3.2) is completely equivalent to (4.3.1) (Exercise 4.3.4), so we can
focus on either one.

We discuss two important examples of the situation just mentioned: (4.3.2) and
(4.3.1), both with M = 1.

Example 4.3.1. (a) Let K = (K,...,K;) be a 1 x L matrix of integrable functions
defined on R". Consider an operator of the form

fir fiz o fin fir fiz o fin

o1 fo o fon . f21 f22 sz L L
Do | K = (ZKl*flla---szl*le>
Do e =1 =1

Jfu fi2 o fin fL1 fL2 fLN

acting on functions {{f;; }- l}N L in LP (R, £4,(€})) for 1 < p < eo. We are interested
in obtaining bounds for this operator from L (R", ¢%,(¢})) to L (R",£%,). Whenever
x € R is such that all K;(x) are defined, K(x) = (Ki(x),...,KL(x)) is the linear
mapping acting on L X N matrices of complex numbers as follows:
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apy a2 - AN
azy azp --- Ay

L L
(Kl(x),...,KL(x)> = (l;[(l(x)all,...,I;I(Z(x)am> )
ary arp --- arN

For every x € R” for which all K; (x) are defined, K (x) maps ¢4, (¢} ) to £%, and satisfies

||I?(x)||%(ei)_% < 1sup |K; (%)) (4.3.3)

<I<L

(b) Now let K = (Ki,...,Kp)" be an L x 1 matrix of integrable functions defined on
R". For {f; }?]:1 in LP(R", 1) consider the linear operator

K| Ki*fi Kixfo - Ki*fy

K> Kyx fi Ko fo - Ky fy
(flava--wa)'_) : “(fi fa - fn) = : I

K K+ fi Kpxfo - Kpx fn

for which we are interested in obtaining bounds from L (R", ¢%) to L (R", ¢%,(¢7)).
For all x € R” for which all K;(x) are defined, K (x) is the linear mapping

Ki(x) Ki(x)a; Ki(x)ay -+ K1 (x)ay
K> (x) K>(x)a; Kz(x)ay -+ Kp(x)an
(a1 az -+ ay) = . . .

Ky (x) Ki(x)a; Kp(x)ay -+ Ki(x)an
acting on sequences of complex numbers. This maps é,q\, to K%(EZ’) with norm

| K@) i) = S, |K;(x)|. (4.3.4)

Motivated by the discussion in the preceding example, and in particular estimates
(4.3.3) and (4.3.4), it seems reasonable that the smoothness conditions of a vector
kernel (K1, ...,Ky) concern the supremum sup; ;- |K;|.

The following two conditions on the vector (Kj, ..., K} ) are analogous to (3.3.3)
and (3.3.4): suppose there are finite constants A{ Yo ,Af and A, such that

Al
|K;(x)| < ﬁ for almost all x € R"\ {0} (4.3.5)

forall/ € {l,...,L} and

/ sup |Ki(x —y) — Ki(x)] dx < As. (4.3.6)

sup
y#0 J 1X[22]y] 1<i<L
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Notice that the analog of (3.3.5) [or (4.1.5)] in this case is valid with A3 =

sup <<y ||Kpl| 1 < oe.
The next result provides an extension of Theorem 4.1.1 in the two situations of
Example 4.3.1.

Theorem 4.3.2. Let | < g <o, 1 <r <o, N,L€Z", andAl,...,AL A5 > 0. Sup-
pose that Ky, ..., Ky are L' functions defined on R”" that satisfy (4.3.5) and (4.3.6).
(a) Define a linear operator by

T(F)(x)= (Ki(x),...,KL(x)) *F,  x€R",

where F is an L x N matrix whose entries are functions in Ut<p<eo L (R"). Assume
that T is bounded from L' (R",¢%(¢})) to L"(R",£%) with norm B,. Let C(p) =
max (p, (p—1)7") ifr <eoand C(p) = p(p—1) " if r = eo. Then there exist dimen-
sional constants C,,, C;, such that

1T CF) |1 ey < CoA2 +BOIIF |3 5,01 437
for all F in L'(R",¢%,(¢})) and
HT(ﬁ” LP(R", () < C"C(p)(A2+B*)||ﬁHLP(Rn,e,‘{,(Q)) (4.3.8)

for all F in LP(R",¢%,(¢})), whenever 1 < p < .
(b) Define o B
S(G)(x) = (Ki(x),...,KL(x)) G,  x€R",

where G is a 1 x N vector whose entries are functions in Ui<p<e LP (R"). Assume
that S is a bounded linear operator from L"(R", ¢3,) to L"(R", ¢1,(¢7)) with norm B,.
Then there exist constants C,,, C,, such that

H§ 6 HLI (R22(67)) <G (A2+B HGHLI R 04) (4.3.9)
for all G in L' (R",¢%) and
S o ) < G CP) A2+ B g, @3.10)

for all G in LP(R",¢%), whenever 1 < p < oo.

Proof. We first derive (4.3.7) and (4.3.9) and use these to deduce (4.3.8) and (4.3.10)
via duality and interpolation. We discuss (4.3.7) and (4.3.9) in cases (a) and (b)
below, respectively.

(a) In this case F = { f j}N 1 18 thought of as a row vector consisting of columns

fi=(fij)k,. Then T'(F ) is the row vector (XX | Ki* fi1,..., Y5 | Ki* fiv). To obtain
(4.3.7) we repeat the proof of the corresponding estimate (4.1.8) in Theorem 4.1.1
by simply changing ¢4 in the domain by ¢%(¢}) and £, in the range by £%,.
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(b) Here G = {g j}]j\f:l is a row vector but §(G ) is now a row vector consisting of
columns of length L. The jth column of §(G) is (K; * g /)L . In this case we obtain
(4.3.9) by repeating the proof of estimate (4.1.8) and replacing any appearance of

£, in the range by ¢%,(¢7). Note that the domain ¢%(¢}) = ¢4, remains unchanged.

The transpose operator T' of T has kernel (E yeon ,IA(Z)’ and the transpose oper-
ator S’ of S has kernel (f{vl yeen ,i(vL), and these kernels obviogsly saEisfy (4.3.5) and
(4.3.6). So, modulo the reflection of the K;, the operators 7 and S are transposes
of one another. Next we interpolate between 7 : L"(R",¢%,(¢})) — L (R",¢%) and
estimate (4.3.7). Using Exercise 1.3.7, we obtain for 1 < p <r

1
gzc,’l(LJr P )"(A2+B*). @3.11)

17 o ey 000 et p—1 " r—p

If r = oo, the constant in (4.3.11) raised to the power 1/p is bounded by C(p) =
p(p—1)"". Now if r < co, notice that 7" maps L”(R”,é%) toL” (R”,E;{;(FZ’)) with
bound B,. As the kernel of T' satisfies the same estimates as that of §, it follows that
T" also admits a bounded extension from L' (R”, é%) to L'(R", é% (¢7)) with bound
at most C),(Az + B,). By interpolation (Exercise 1.3.7) we obtain for 1 < p’ < r/

’ ’
p + p

p’—l r’—p’

1
7] §2C2( )P' (A2+B,). (43.12)

L7 (R4 ) — L' (R4, (67))
Estimates (4.3.11) and (4.3.12) imply statements analogous to (4.1.19) and (4.1.20)
with £1, replaced by ¢%,(¢} ) and £3, replaced by £%,. The rest of the argument proceeds
as that in the proof of Theorem 4.1.1 A completely analogous argument is also valid
for S. Combining these ingredients completes the proof. (]

We now pass to an application which extends the discussion in Example 4.2.4.
Let @(x) = (14 |x|)~""7 be as in that example. For a fixed odd positive integer L
let {r1,... 100} = {27 WL/2 2= [L/2+1  2lL/21} We consider the L x 1 matrix K (x) =

(D, (x),..., Dy, (x))" defined on R”. This matrix can be viewed as the operator
D, (x) D, (x)a; D, (x)ay ... D (x)ay
D, (x) D, (x)a; Dy, (x)ay ... D, (x)ay
(a1,a2,...,an) — | . (a1 a2+ ay) = : : : : :
D, (x) D, (x)a; Dy (x)ay ... Dy (x)an

which maps £} to £} (¢7) with norm

-

1K)

o) = ISSI;EL | Dy, (x)].

Properties (4.1.2) and (4.1.3) are proved via the arguments yielding (4.2.7) and
(4.2.8), respectively. Additionally, for 1 < r < o, the estimate
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< B,

(4.3.13)

[(1 sup @, 15))"

j=1 1<I<L L

N 1
(1),

is valid with B, = ¢, (1 + ||@||;1) ;% and can be obtained from

H Sup|d)t *f'H , SB*Hf L
>0 L

which is a consequence of (4.2.10) (letting M — o) and (4.2.6); i.e., the L" bound-
edness of the operator N in Example 4.2.4. Applying Theorem 4.3.2 (b) we obtain

N
H<§1 illlELCDt[*‘fj ) HLI nY, 1H(2|f1 r) L (4.3.14)
and
@i} |, < IS )| - @ais
H(J 1 1illlI<)L t’*‘fjﬂ ) v r—1 max( ’ I)H(/ZII i ) 7 @3.15)

These imply analogous estimates for the Hardy—Littlewood maximal operator M.

Theorem 4.3.3. (Fefferman-Stein vector-valued maximal function inequality)
Forl < p<oeoand1 < r < e we have

H(%'M(ﬁ‘)'r)l P~ (kZ‘,Ifkl’)i . (4.3.16)
(5o, <epmso NS ], wo

keZ

Proof. We notice that 27"~ | < (1+ |x|) ™"~ = @(x); thus for this choice of

& we have

n+1 2n+1
sup @, | f| <
Vn >0 Vn

M(f) < 2" sup @y, * |, (4.3.18)
jeZ

where the second inequality is a consequence of the second inequality in (4.2.6).
Letting L T oo first (through the odd integers) and then N | e in (4.3.14) and (4.3.15)
and applying the LMCT, we deduce (4.3.16) and (4.3.17), respectively, with the aid
of (4.3.18). (]

Note that (4.3.16) and (4.3.17) are also valid when r = o (with ﬁ =1). Also,
(4.3.17) is valid when p = r = e with the understanding that -5 = 1 and that

max(p %) is replaced by —£-. These statements are left as exercises.
> p—1 p—1
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Exercises

431.Let 1 <g<eo, 1 <5<t <o and let Y = (y;)i<i<i,i<j<m be a complex
L x M matrix viewed as a linear operator acting on complex M X N matrices by
multiplication. The £%,(¢3,) norm of an M x N matrix is the £¢ norm of the vector of
the ¢* norms of its columns. Prove that

L ) A F
sup <|y1j\t+~--+\ij\> <HYH/!/ ng(/z)< (Z (|)’i1|s +-~~+|yiM|S)‘ ) )
i=1

1<j<M

with the obvious modification when s,¢ € {1,°}. Deduce the simpler estimate

sup sup |yu|<||YH/q (85— () <22|yl,\
1<i<L1<j<M i=1j=

4.3.2. Let {{a;;}, }7:1 be a doubly indexed finite sequence of complex numbers.
Prove that for any 1 < g,s < oo we have

[{antallo L =

[Hint: When g, s < oo, set b;; = 0 if a;; = 0 and

L N
2 2 aijbi
=1 ;=1

i=1

max
“ I gl Y g =1

a; 1 1
2— q -1
AP (S gl e e P

if a;; # 0. Use Exercise 4.1.4 when g or s is infinite.]

4.3.3. Show that L (R", ¢4,(£3)) is complete when 1 < g, s < eoand 0 < p < eo. Also
show that L1 (R", ¢%,(¢3)) is complete. [Hint: Use the inequalities

(1,p) N & min(1,p)
<> > Il

s Wl < e Yl
j=1li=1

1<1<L

and an analogous one with L' in place of L” with an extra factor NL on the right.]

4.3.4. Prove that for any 1 < g,s < e and 1 < p < e we have

L33 ]

i=1j=1

= max
p
Lt IIH{II{gu} il g 1 =1

(KRR o e o

[Hint: When g,s < oo, set g;;(x) = 0if f;;(x) =0 and



4.3 A Matrix-Valued Calderén—Zygmund Theorem and Its Applications 171

fl]('x) 1 1 1
WP (5 @) (S o) 8 27

if f;j(x) # 0, where Q = [[[{[I{fij }=i lles }- s lleallr ]

4.3.5. On the real line show that the following endpoint cases of estimate (4.3.17)
fail: (a) p=occ and 1 < r < eo, (b) 1 < p < e and r = 1. [Hint: Part (a): Take
fi= X[2i-12i]- Part (b): Take f; = j=12,...,N.]

gij(x) =

fii]
N °N

4.3.6. Let {Q;}; be a countable collection of cubes in R" with disjoint interiors,
with centers c¢; and side lengths d;. For € > 0, define the Marcinkiewicz function
associated with the family {Q;}; as follows:

d'7+8

Me(x) = Z

= e —cjrtedte

Prove that there are constants Cy ¢ , and G, ¢ such that

1
HMSHLP SC"7£7P<;|Qj|>p? p> n+87

n+ée

P SCn.ﬁ(Z‘QJD ’ ’
J

and consequently [p: Me (x) dx < Cye1 3,10l
[Hint : Verify that

|

dn+€

; CM(x0;)(x) ™

|x —cj|rte —l—d”“ -

n+£

and use Theorem 4.3.3.]

4.3.7. Let MU) denote the Hardy—Littlewood maximal function on R” acting only
on the jth variable and define M = M (D o...0oM™ Prove that there is constant A,
such that for all 1 < p,r < o and for all functions f; € L”(R") we have

IS ], = 2 (o) VIS0V,

The strong maximal function .4 (f)(x) is defined as the supremum of the averages
of a measurable function |f| over all rectangles with sides parallel to the axes that
contain a given x € R". Derive the same estimate for ./ .

Rn '
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4.4 Littlewood—Paley Theory

In this section we obtain a characterization of the L” norm of a function in terms of
the restrictions of its Fourier transform on dyadic annuli.

Definition 4.4.1. Let ¥ be an integrable function on R" and j € Z. We define the
Littlewood—Paley operator A;P (associated with W) as the operator given by convo-
lution with ¥, ;. Here ¥, (x) = 2/"¥(2/x) for all x in R", equivalently 'f/’zjj (&)=
W(27J&) for all £ in R". The operator A}P is well defined on U;<p<oL”(R").

In most applications we choose ¥ to be a smooth function whose Fourier trans-
form is supported in an annulus 0 < ¢; < || < ¢z < 0. Then the Fourier transform
of A;P( f) is supported in the annulus ¢;2/ < |&| < ¢22/; in other words, it is local-

ized near the frequency |&| &~ 2/. Thus A}‘V isolates frequencies near |&| =~ 2/. The
Littlewood—Paley square function associated with ¥ is the function

1
2
fe (X 1arine)’
J€Z
The next theorem concerns the Littlewood—Paley square function.

Theorem 4.4.2. (Littlewood-Paley theorem) Let B, § > 0. Suppose that ¥ is a ¢!
function on R" with mean value zero that satisfies for all x € R"

()| + [V ()] < B(1+[x)) "0 (4.4.1)

Then there exists a constant C,, 5 < o> such that for all 1 < p < o and all f in LP(R")
we have

1
AY 2)2H <C,;sB ( ) 442
H(jezz| FOP) |y < CosBmax (P ey 442)
There also exists a C!, s < oo such that for all f in L' (R") we have
1
‘P !
H( ‘A ) L1 (R0 < GBIl - “44.3)

Proof. We first prove (4.4.2) when p = 2. Using Plancherel’s theorem, we rewrite
(4.4.2) when p =2 as

S, [ [FCIOPIIPaE <CLptp [ 1) dz.

So (4.4.2) when p = 2 will be a consequence of the inequality

Y IPQ I < 5B (4.4.4)
JEZ
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for some ¢, 5 < °0. So we prove (4.4.4). As ¥ has mean value zero we write

P(E) = / e N EW(x) dx = / (e _ 1)¥(x)dx, (4.4.5)
from which, with the aid of (4.4.1), we obtain the estimate

)< [ 2TeuE) P Edr < d BEN, G4

where we set y = min(3, 2) For & = (&1,...,&,) #0, let jo be such that |, | > |&|
forall k € {1,...,n}. We integrate by parts with respect to x;, in (4.4.5) to obtain

Fe)=- /R (—2migj,) " e 2 (9, W) (x) dx, (4.4.7)

where we also used the vanishing of ¥ at infinity, a consequence of (4.4.1). From
(4.4.7) we deduce the estimate

)< @nlg, ) [ VPl BlE . @l
We obtain from (4.4.6) and (4.4.8) that

P(&)] < max(c), 5,¢) 5)B[IE 1<t + € e 11] - (4.4.9)

We now break the sum in (4.4.4) into the parts where j satisfies 27/|€| < 1 or
277|&] > 1, and use (4.4.9) to deduce (4.4.4). This proves (4.4.2) when p = 2.

We now turn our attention to the case p # 2 in (4.4.2), which we view as a vector-
valued inequality. Define an operator 7' acting on functions in Uj< p<ee L’ (R") as
follows:

= {47

for some fixed N € Z*. The inequalities (4.4.2) and (4.4.3) follow from the state-
ments that 7 is a bounded operator from L”(R",C) to LP(R", (3, +1(C)) and from
L'(R",C) to L'*(R", 63y (C)). We just proved that this statement is true when
p =2 with constant B, = C,B (which is independent of N), and therefore one
hypothesis of Theorem 4.1.1 is satisfied. We observe that 7' can be written in the
form

DY

={ [ o) = [ R

where for each x € R”, K (x) is a bounded linear operator from C to K%N 41 given by

N

a— K(x)( ={%( )

(4.4.10)

We clearly have
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Kl

N 1
— . 2?2
g, = (2 P (44.11)
j=—N
Our goal is to apply Theorem 4.1.1 with parameters N,q,M,s,r (in the notation
there)y N=1,¢g=2, M =2N+1, s =2, and r = 2. In order to verify hypotheses
(4.1.2), (4.1.3), (4.1.5), and (4.1.6), it will suffice to verify that!

1K eg,,, < cnsBRI™, (44.12)
su K(x—y)—K(x dx<c,sB, 4.4.13
up [ IRG=0 =R, dv<cng @13

sup sup sup / ¥-i(y) dy’ SA<c,5B <o, (4.4.14)
Jilil<N e>0 R>e | Je<[y|<R

. N

lim K(y)dy = { i (y) dy} (4.4.15)
810/8<]y<1 lyl<1 j=—N

for some constant ¢, 5 > 0. Of these, (4.4.14) follows immediately with A = [|'¥¥'[| .1
by passing the absolute value inside the integral and by changing variables, and
(4.4.15) is straightforward. So we focus on (4.4.12) and (4.4.13). First we note that

2B

N
IR®llc_g,., < X @I <Y, — s
ey = 2, MBI 0IS & (s

jez
The sum over the indices j with 2/|x| < 1, produces

D 2/"B < clBlx| ™.

2/ <Jx|~1
The sum over indices j with 2/|x| > 1 produces the term

> 2MBIx|) P =BT Y 2P <l s Blx| "

2J>|x| ! 2/>|x|~1

This proves (4.4.12).
We now address (4.4.13). Fix x,y in R” such that |x| > 2|y|. Since ¥ is a ¢
function, by the mean value theorem we may write

ol )
¥ (v 3) =¥ ()] <207 [V (x— 03))[y]do
ol .
ng<"+1>f/ (1+27/|x—6y]) " °Jy|d6
J0
<B2Y (1427 1) " %20y, (4.4.16)

since [x— 0y] > |x| —|8y[ > [x| — [y > 3]xl.

'In view of (4.1.2), the weaker hypothesis | (x)| < ¢, 5 B |x| ™" would have sufficed for (4.4.12).
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We also have that
W (x—y) =¥ (x)| < 2V [P (20 (x—y))|+27"|¥(27x))|
< B2/"(1 +2-’%|x|)_”_5 +B2"(1 +2f|x|)‘"‘3
<2B2 (14277 ) "0, (4.4.17)
Let € € [0,1]. A weighted geometric mean of (4.4.16) and (4.4.17) is
Py ()~ Hars ()] <2 BRI (1427 ) L @

Using this estimate, when |x| > 2|y|, we write

HK*(Xiy) HC_’ézNH
N2
< (Z ¥ (x—y) =¥ (x)| >
JEZL
< D W —y) =¥ ()]
JEZL

§23(|y| Y 2t iy Y 2"/271'(2/*1|x|)*"*5) (4.4.19)
2J'<‘%‘ 2/>W

<y sB(Iyl x| 7" 4 [y[ 122 70 (4.4.20)

having used (4.4.18) in the first sum in (4.4.19) with € = 1 and in the second sum
with € = y = min( é, 5 ). We now deduce (4.4.13) by integrating in polar coordinates
(4.4.20) over the region |x| > 2|y|.

An application of Theorem 4.1.1 concludes the proofs of (4.4.2) and (4.4.3). O

Corollary 4.4.3. Let ‘¥ be as in Theorem 4.4.2. Then there is a constant C,, 5 such
that for 1 < p < oo and for any functions f; € L”(R") we have

‘I"
[ ( 2 Y (1) ) iy < CraBma (p, - )H 2 )] gy 442D
There also exists a C;, 5 < oo such that for all f in L'(R") we have
AY (£ ) BH il (4.422)
H(E" ! L ) Cns ,ez‘ ! ) LRy

JEL

Proof. The proof follows the paradigm of Theorem 4.4.2, except that we define an
operator S acting on sequences of functions in Uj<p<.. L”(R") as follows:

SUAYE~) = {a) UYLy
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The kernel of S is the (2N + 1) x (2N + 1) matrix L(x) = (Lij(x))7N<i joy With

=Y-j(x) and L;;(x) = 0if i # j. We clearly have

Ljj(x) =
< swp G 1< (3 #wp)’

H[2N+1_’52N+1 _N<j< =N

and the last expression coincides with the norm HI? (x) HCH p2 of K (x) introduced
2N+1

in the proof of Theorem 4.4.2; see (4.4.11). The estimates for K (x) are also valid for
L(x) and another application of Theorem 4.1.1 yields the claimed conclusion. [

In many applications of Theorem 4.4.2, ¥ has the following properties:

¥ is smooth and nonnegative on R",
1
support(¥) C {& e R": 1-2 <& <2},
N 2 (4.4.23)
PE)=1 on 1<fgl<2-2
Y P2 E) =1 forall € £0.
JEZ
Such a function can be constructed as follows: Start with a smooth function ¢
with values in [0, 1] which is supported in the interval [$,2] and is equal to 1 on
[1, 2]. (Exercise 1.7.3.) Define

oe_ _ UED
YO saeTEy 570 a2

and @(0) = 0. Then 0bv10usly ¥ is a smooth function with compact support that

satisfies (4.4.23). Moreover ¥ is supported in the annulus 1 — l < |€] < 2. Also on
the annulus 1 < [£] <2—= equals 1, as all summands in (4.4.24) with k # 0 vanish.

See Figure 4.1.

Fig. 4.1 The functions ¥(2&), ¥(&), and ¥(& /2) plotted in one dimension.
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Corollary 4.4.4. If 'V is as in (4.4.23), then estimates (4.4.2) and (4.4.3) are valid.
Proof. Obviously ¥(0) = 0, which implies Jrn ¥ (y)dy = 0. Also, (4.4.1) holds. OJ

It is often desirable to group the A}P with j < 0 together. To achieve this we
define a Schwartz function @ as follows:

R D '?(2_/5) when& # 0,
(&) ={ j<0 (4.4.25)
1 when& = 0.

Note that @(&) is equal to 1 for |E] <2 — 2 Z, vanishes when |&| > 2, and satisfies
Z (27¢) =

for all £ in R". We introduce an operator S(‘)p given by convolution with @. There
is a version of Theorem 4.4.2 with S(‘)D in place of all A}F for j < 0; on this see
Exercise 4.4.3.

Exercises

4.4.1. Construct a Schwartz function ¥ that satisfies ¥jcz |¥(2/&)[? = 1 for all
& € R"\ {0} and whose Fourier transform is supported in the annulus § < [£| <2
and is equal to 1 on the annulus 1 < |€] < %

[Hint : Set P(£) = ¢(E)(Suez [0 (27E)2) "/ for a suitable ¢ € €;°(R") ]

4.4.2. Construct a smooth function ¥ supported in the unit ball of R” with integral

zero such that R .
YEIE =1, &40
JEZL

[Hint: Set ¥ (x) = @(x) — 2"®(2x), where @ is a smooth function supported in the
unit ball of R” with integral equal to 1.]

4.4.3.Let B,§ > 0. Let @, be as (4.4.23) and (4.4.25). Prove that there are con-
stants Cn757qu,C;L5 w < oo such that for all 1 < p <o andall fin L”(R") we have

|52+ X 1a¥ (nP)*
j=1
and for all f in L' (R") we have

[(step+ S 1a¥ )’

LP(R") < Crlﬁ,‘l"max (pa (p - 1)_1) HfHLP(Rn)

LI=(Rr) — Cl/1.§,‘f”|fHL1(Rn)-
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4.44. Let 'V, D be as (4.4.23) and (4.4.25). Prove the operator identities on [?

YAf=I and S§+ Y AF =1
JEZ j=1

4.4.5. Let ¥ be a Schwartz function whose Fourier transform vanishes in a neigh-
borhood of the origin and let ¢ € .(R"). Prove that for any M > 0 there is a con-
stant Cyy = Cyy ., such that

C
Z |AJ.P((P)(X)| < W

JEZ
Conclude that if ¥ is an (4.4.23), then for all 0 < p < e one has

P .
Z A (9)— o in L asN — oo.
ljI<N

[Hint: Use the estimates |(¥5—; % @) (x)| < Cyy, 2™ (1 4- 2min(0.1)n|x|)=M and
(Wi * @) (x)| < Cyrn2 (14 |x])™ for any L,M € Z" U {0}. These are con-
sequences of Theorems 7.1.1 and 3.3.5 and the second estimate uses that ¥ has
vanishing moments of all orders. Last assertion: start with p = oo.]

4.4.6. Let ¥ be a Schwartz function that satisfies (4.4.23). Let 1 < p < oo. Prove
that for g € L?(R") we have

lim || 3% Af(g) gl
lil<n

N—oo

=0.

Lr

[Hint: Use Exercise 4.4.5.]

4.4.7. Let m be a bounded function on R" that is supported in the annulus
1 < |€| <2 and define Tj(f) = (fm(27/(-)))". Suppose that the square function

Fe= (TP

jez

is bounded on L”(R") for some 1 < p < co. Show that there is a constant C,, , such
that for every finite subset S of the integers and every f € L”(R") we have

| S 70
JES

o = Cpo (] P

4.4.8. Prove the following generalization of Theorem 4.4.2. Let A, A, > 0. Suppose
that K;, j € Z are locally integrable functions on R"\ {0} that satisfy

(B K0P) <. xro0

jez
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1
(S IKi(x=9) ~ K0P ) dx <4 <=,
JEZ

e<[y|<R

sup /
yeRm\ {0}/ [x[=2]y|

sup sup sup
JEZ £>0 R>¢

and there is a sequence & | 0 and numbers L; (for each j € Z) such that

lim Ki(y)dy=L;.

&0/ g <y[<1

Suppose that the functions K; coincide with tempered distributions W; that satisfy

3 WP <B,  EeR.
JEZL

Prove that the operator
1
2
f= (2 1K)
jez
maps L?(R") to itself and is of weak type (1,1) with norms at most Cy, ,(A2 + B).
[Hint: Notice that (4.4.12), (4.4.13), (4.4.14), and (4.4.15) hold by assumption.]

4.5 Reverse Littlewood-Paley Inequalities

The focus of this section is to study the reverse inequality of that in Theorem 4.4.2.
We recall that (f, @) denotes the action of a tempered distribution f on a Schwartz
function ¢, and (f, @) coincides with the standard Lebesgue integral [, f(x)@(x)dx
if f happens to be an L? function for some 1 < p < eo.

We can extend the definition of the Littlewood—Paley operator A ;Q to tempered
distributions whenever 2 is a Schwartz function. Precisely, if 2 € .(R") and f in
' (R"), then AJ.Q (f) is well defined as the convolution €2, ; * f. This convolution
always produces a smooth function (Theorem 2.7.1).

Recall the reflection Q of a function £ is given by Q(x) = Q(—x) for x € R".
We begin by identifying the transpose operator of A JQ for a function Q.

Proposition 4.5.1. (a) IfQ liesin L! (R") and f in LP(R"), 1 < p < oo, then we have

<f,AJQ(g)> = <Aj§(f),g> WhenevergELpl(R”). (4.5.1)

(b) For any f € //(R") and 2 € . (R") we have

(f.A7(9)) = (A7(f),9)  whenever ¢ € .#(R"). (4.5.2)

Thus, in these senses, the transpose of the operator A]'»Q is A}Q .
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Proof. Fix f € LP(R"), 1 < p < oo, and g € L” (R"). By Fubini’s theorem we write
S 70 ([ g2 -9 )= [ 4) [ £ s asay
= [ g ([ £ sy ) )

Rl‘l
and this proves (4.5.1). The interchange of the integrals is justified from the fact that
the double integral converges absolutely, a consequence of Holder’s inequality; note
8,47 (g) lie in L (R") and f, AP (f) lie in LP(R").
The identity in (4.5.2) is just a restatement of the definition of the convolution of
Schwartz functions and tempered distributions (Definition 2.6.16). (]

A reformulation of Theorem 4.4.2 based on duality is as follows:

Proposition 4.5.2. Suppose that 'V is an integrable function on R" with mean value
zero that satisties (4.4.1). Then there is a constant C,, s such that for any 1 < p <o
and any N € " we have

| = aru

[iI<N

. (4.5.3)

<Cn53max p,(p—1)" H( 2 | fil )

liIsN

LP(R")
for all L? functions f;.
Proof. To verify this assertion by duality, define the operator

T(f)={A] (MY y,  FEL’RY).

The transpose operator of T is

N
T'({g) ,Z/Y:fN) = Z A;‘P(gj), {gj}ljyzfzv eLr (Rn»€%N+1)v
-

as the following identity based on (4.5.1) indicates:
N N v N,
[ X af(ngax= 3 [ ra¥iepax=[ f 3 a¥(g)ax
j=—N j=—N’R R" j—_N

Estimate (4.4.2) (with ¥in place of ¥) says that 7 maps LP(R",C)to L (R", K%NH ).
The dual statement of this is that 7/ maps L”' (R, 3y ) to LY (R",C). This is
exactly the claim in (4.5.3) if p is replaced by p’. Since p is any number in (1,0)
and max(p/, (p' —1)~" ~max(p, (p —1)7"), (4.5.3) is proved. O

We now discuss the converse of Theorem 4.4.2. Before doing so we notice that
the converse mequahty to (4.4.2) may not hold in general. In fact if ¥ is supported
in the annulus 2 < |€] < 10 and £ is supported in 22 < |&] < 2, then A¥(f) =0
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for all j € Z but f itself may not be zero. So some condition on ‘¥ is needed and it
turns out that the last condition in (4.4.23) is sufficient.

Theorem 4.5.3. Let ¥ be a Schwartz function whose Fourier transform is supported
in an annulus that does not contain the origin and satisfies

Y weE) =1, for all £ € R"\ {0}. (4.5.4)
i€t

Let 1 < p < eo. Then there is a constant C, w, such that for all f € L”(R") we have

(4.5.5)

HfHLP R") < Cyy max (p H(2|A )

LP(R)

Proof. Given ¥ as in the hypothesis of the theorem, pick 0 < ¢ < ¢z < e such
that the support of ¥ is contained in the annulus ¢ < |&| < ¢;. Pick ¢3,¢4 such
that 0 < ¢3 < ¢1 < 2 < ¢4 < o0 and fix another Schwartz function 2 whose Fourier
transform is supported in the annulus c3 < |&| < ¢4 and is equal to 1 on ¢; < |&| < c5.
See Figure 4.2.

Fig. 4.2 The function Qis equal to 1 on the support of g

Note that ¥ = ‘f’, which yields that (4.5.4) is also satisfied for ¥ in place of V.
The key observation is that

YAV ,0

as a quick examination of the Fourier transforms gives

P(27IE) = B2 IE)R(2E)

forallE e R" and all j € Z.

Let 5/’8 (R") be the subspace of Schwartz functions whose Fourier transform is
compactly supported and does not contain the origin. By Proposition 2.5.4, 5/”5 (R")
is dense in every LY(R") with 1 < g < . Notice that for every ¢ € Z (R™) we have
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'3
=247 (9),
J

where the sum contains only finitely many j. This is because any compact set that
does not contain the origin is contained in finitely many annuli of the form ¢;2/ <
|E| < €22/, for different values of j.

Now fix f in LP(R") for some 1 < p < eo. We assume that the expression on the
right in (4.5.5) is finite, otherwise there is nothing to prove. Then

(f.0) = <f,§,A}?<p>
- <f,§A}?A§2(<P)>
= Y(£,47 40 (9))
=$<A7"(f),A?(<p)>
=§ AT (H)A7 (0)dx
= o 28 (Af (9)a

where the sum consists of only finitely many j, and this justifies the interchanges
of different operations that include this sum. Next we apply the Cauchy—Schwarz
inequality and then Holder’s inequality to bound the preceding expression by

1 1
2 2
|(Z1arr) | [ (Z1af@)r)
J J
Applying Theorem 4.4.2, we conclude that

(7. 0)] < H(zm}”(f)Ff

;-

LY

)7

L, Grrmax (', (p = 1) )[lglly <o (45.6)

Finally, we note that max(p’, (p’ —1)~") ~ max(p,(p —1)~"), so taking the supre-
mum over all ¢ € #(R") with [|¢||,; = 1 in (4.5.6), we deduce (4.5.5) in view of
(1.1.6) in Proposition 1.1.4. At this point we used that f already lies in L”(R"). O

Corollary 4.5.4. Let ¥ be as in Theorem 4.5.3 and 1 < p < oo. Then for any g in
L?(R") we have

el = | (3, A¥ P’

Proof. This follows from Theorems 4.4.2 and 4.5.3. O

LP(R?)
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A delicate point of Theorem 4.5.3 is that the function f is already assumed to
lie in L and this assumption is needed in the derivation of (4.5.5); precisely it was
needed in the use of (1.1.6) (Proposition 1.1.4). One may wonder if the L” assump-
tion on f can be relaxed. For instance, could we replace L” by Ll .? But a moment’s
thought gives that the locally integrable function f = 1 satisfies A;"( 1) = l?’(O) =0
for all j, so (4.5.5) could not possibly hold. The problem with the function 1 is that
its Fourier transform is the Dirac mass at zero and identity (4.5.4) fails at zero. So in
order to extend the result of Theorem 4.5.3 to locally integrable functions, or even
to tempered distributions, we need to take into account that the Fourier transform of
this distribution could be supported at the origin.

Our next goal is to investigate which tempered distributions f satisfy

< oo (4.5.7)
Lp

&= (Z ar o)

for some 1 < p < oo, If for f € .7”(R") we have supp(f) = {0}, then A;P(f) =0
for all j € Z, as the functions ¥(27/(-)) are supported away from the origin. It turns
out that the support of f is {0} exactly when f is a polynomial (Lemma 4.5.6). So

(4.5.7) holds for distributions that are sums of L” functions and polynomials. The
next theorem says that these are all possible such distributions.

Theorem 4.5.5. Let ¥ € .(R") have Fourier transform supported in an annulus
that does not contain the origin and satisfies (4.5.4). Let 1 < p < oo. Then there is
a constant C,, w such that for any f € . '"(R™) which satisfies (4.5.7) there exists a
unique polynomial Q such that the tempered distribution f — Q coincides with an
L? function satisfying

17 = @l ey < Cuwrmax (. (0= 1)) (2147 (1)P) (458)
jez

LP(R?)
Proof. Fix f € ./(R") such that C,(f) < oo [as defined in (4.5.7)]. Proceeding as
in the proof of Theorem 4.5.3, using (4.5.2), we arrive at (4.5.6). We now define a
linear functional L on L”’ (R") as follows: For a given g in LP/(R”) pick a sequence
o € %(R”) such that @ — g in L”' (R") as k — . Applying (4.5.6) to @ — @ we
obtain that {(f, ¢x)};"_, is a Cauchy sequence and thus it converges. Set

L(g) = Jim (7., 90)

and note that L(g) is independent of the choice of ¢; indeed, if ¢ is another
sequence from .#5(R") that converges to g in L”, then applying (4.5.6) to ¢ =
O — @, we obtain that (f, @ — @) — 0 as k — co. Secondly, using again (4.5.6)
with ¢ = ¢ and letting k — o, as || @k ||,y — [|gl[,,» we deduce
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I

e <] (Ziarnp)’

Cpypmax (p,(p/ —1)71) < o (4.5.9)

Lr

Thus L is a bounded linear functional on LP/(R"). By Theorem 1.1.10 (Riesz
representation), L can be identified with an L”(R") function F such that

L(g)= [ FO)g()dy  foranygel! (R")

and
I1F e = IL]l . - (4.5.10)

Consider the tempered distribution f — F. For a compactly supported smooth func-
tion y whose support does not contain the origin we have

<f_F7W> = <f717/>_<F7{[’> :L(V/}) - RnF(y)lT/(y)dyzo,

and this yields that the support of f— F is contained in {0}. Here we made use of the
fact that L(y) = (f, ¥), which is a consequence of the definition of L considering
the constant sequence ¥ of elements of %(R”) which converges to itself in L.
Applying Lemma 4.5.6 (proved below) there is a polynomial Q such that f —F = Q.
Thus F = f — Q. Combining (4.5.9) with (4.5.10), we deduce (4.5.8).

Finally, we obtain the uniqueness of Q. If Q; is another polynomial, with f — QO
in L?, then Q — Q) must be an L? function; but the only polynomial that lies in L
is the zero polynomial. Thus Q; = Q. (I

Lemma 4.5.6. If u € ./ (R") is supported at the origin, then there exist an integer
K and complex numbers a, such that

u= 2 agd%*&,

o <K

where & is the Dirac mass at the origin. Consequently, any tempered distribution
whose Fourier transform is supported at the origin must be a polynomial.

Proof. Asu € .'(R"), there are C > 0, M, and K in Z* U {0} such that

(@) <C Y Y sup x% (9P @) (x)) for allp € .7(R").

la|<M |B|<k*ER"

We will first prove that if ¢ € . satisfies (d7¢)(0) = 0 for all |y| < K then
<u, (p> = 0. To verify this claim, first observe that such a function ¢ must satisfy

1(379) (x)| < Cylx|KH1=I when |x| < 1and|y| < K (4.5.11)

for some constant C,. This follows by noticing that the Taylor expansion of d7¢ of
order K — || at the origin has vanishing coefficients of x* for all |a| < K — |y| and
its error is O(|x[¥~171*+1) as |x| — 0.
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Let ¢ be a smooth function on R” that equals 1 when |x| > 2 and equals O when
|x| < 1. Set §&(x) = {(x/€) for x € R" and € > 0. For |ot| < M and |B] < K, we
write

paplo—Lor< 3 (D) s wet]on - 07 )] 9 ol

0<y<p xeR”

The x in the supremum is restricted in the ball |x| < 2¢ (even when y = 0) in view of
the properties of {. So using (4.5.11), we estimate the supremum by a multiple of
(2¢)lole=I11(2¢)K+1=(BI=I") < ce, when € > 0 is sufficiently small. We obtain that
Pop(Ef@— @) — 0ase— 0. Then

[(u, @) < [(u,C50) |+ |(u, 0 = E°0)| <O+C Y, 3 papl@—E59) =0

lo|<M |B|<K
as € — 0. Hence (u, ¢) = 0, and this proves our claim.
Now for a given v € . (R") write

y(x)=(1- C(x))( > waaw;c“—&-h(x)) +EX) (), (4.5.12)

lo| <K

where 1 € € and satisfies h(x) = O(|x|¥*!) as |x| — 0. Then (1 — {)h satisfies
d7((1—&)R)(0) =0 for all |y| < K and thus one has (u, (1 — {)h) =0 by the previ-
ous assertion. Also, {y is supported away from the origin, so <u, 4 l[/> =0, by our
hypothesis on u. Acting u on both sides of (4.5.12), we deduce

o

wwy= 3 PO e1-0) = Y anla s,
o] <K ’ lo| <K

with ag = (— 1)/ u, (-)*(1—&)) /). This concludes the proof of the first assertion.

If the Fourier transform of a tempered distribution v is supported at the origin,

using the fact just proved and the result of Example 2.6.9, we conclude that v must

be a polynomial. This proves the second assertion of the lemma. ([

Exercises

4.5.1. Prove that every tempered distribution # which satisfies Laplace’s equation
812u +-+-+d?u = 0 must be a polynomial. (Such polynomials are called harmonic.)
[Hint: Use Lemma 4.5.6.]

4.5.2. Let 1 < p <eo.Let @ and 'V be as in (4.4.23) and (4.4.25). Then for any g in
LP(R") we have

oo 1
- D oN\2 Y22
Il ey || (158 &) + 2147 () ) e
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[Hint: One direction follows from Exercise 4.4.3. For the other direction start with
(g,0) = (g,SO () +X71(g,A lP((p)) where ¢ € ) (R"). Pick an even smooth

function @ with compact support that equals 1 on the support of ® and a smooth
function Q with compact support in R”\ {0} that equals 1 on the support of P ]

4.5.3. Let ¥, Q2 be Schwartz functions whose Fourier transforms are supported in
compact annuli that do not contain the origin and satisfy

Y P2IER2 ) = ¢ e R"\{0}.

JEZ

Prove that for any 1 < p < o there is a constant Cy ¢ , for any g € L (R") we have

el < Cranmax (.o~ (S 47 )

In particular, this inequality is valid if ¥ ez |[¥(27/€)[2 =1, & # 0 (take Q = P).

4.5.4. Let ¥, Q2 be Schwartz functions whose Fourier transforms are supported in
compact annuli that do not contain the origin and let @,© be Schwartz functions
whose Fourier transforms are compactly supported and equal to 1 on a neighborhood
of the origin. Suppose that

i -igy=1, EeR"

Prove that for any 1 < p < eo there is a constant C = Cy 0 ¢ 0, for any g € L”(R")
one has

oo 1
-1 D o\2 Yooz 2
lll o ey < € max (p, (p— 1)) (158 (o)1 + 314 @F)" |,

4.5.5. Fix a nonzero Schwartz function 4 on the line whose Fourier transform is
supported in the interval [f 3 f] For a finite sequence of numbers {a J} i, define

8’8

N .
=y ;™ p(x) xeR.
=

Prove that for all 1 < p < o there exists a constant C,, independent of N such that

LA
£ llzr vy < Cp( Z |aj|2) HhHLP(R)

J=1

[Hint: Fix y € (R) with ¥ supported in [ — %,—%] U [g @O] and equal to 1 on
nd

[— %,—%] U [g g] Then notice f = Z A]l-”(ajezmzj() ) and use (4.5.3).]



4.6 Littlewood—Paley Theory of Product Type 187

4.5.6.Let 1 < p<oeoand 0 <cy < cp <o Let O be a Schwartz function whose
Fourier transform is supported in ¢; < |&| < ¢, and satisfies

D B(277&) 40, whenever & # 0.

jez

Show that there is a constant C, , ¢ such that for any g in L” (R") we have

sl < ool (2,476 g

[Hint: Pick m;,m; € Z such that é(é) = Yom, <k<m, §(2_k§) # 0 for every & in the

annulus % < |&| < 4. Then for ¥ as in (4.4.23) one has 7 éf), where Q is a
smooth function with compact support in R" \ {0}. Apply Corollary 4.4.3.]

4.5.7. Let 1 < p < 2. Prove that there is a constant C, , such that for all L? functions
f; on R" whose Fourier transforms are supported in the dyadic annuli 2/ < [£] <
2i+1) j € Z, we have

|25
J

[Hint: Use Corollary 4.5.2.]

p
LP(Rn) S Cn,p; Hfj”ip(Rn)

4.6 Littlewood—Paley Theory of Product Type

One may ask whether Theorems 4.4.2 and 4.5.3 still hold if the Littlewood—Paley
operators A}P are replaced by their nonsmooth versions

I Gaiepyeain 1) 4.6.1)

This question has positive answer in one dimension but negative in higher dimen-
sions. For this reason, a product-type version of a non smooth Littlewood—Paley
decomposition provides a substitute in higher dimensions.

We first look at the one-dimensional case. For j € Z we consider the interval

I =2 27Ty (=27t —27], (4.6.2)
and we introduce the one-dimensional sharp cutoff Littlewood—Paley operator
AN =(Fa)” . feSW). (4.6.3)

If ¥ is as in (4.4.23), then A? is a version of A;P with lI/}(Z_/E) being replaced
by the characteristic function of the set 2/ < || < 2/*!. We note that although
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A} is initially defined on the ./(R), it has an extension on L”(R) for any 1 <

p < o, as the operator given by multiplication by Y, on the Fourier transform
equals £ (M®HM =% — MPHM~"), where H is the Hilbert transform and M“(f)(x) =
e>™¥a f(x). A consequence of this identity is the following key inequality, whose
proof is based on Corollary 4.2.3 (with r = 2) and is omitted (see Exercise 4.2.2):

Proposition 4.6.1. There is a constant C such that for any 1 < p < e and f; in

LP(R), j € Z, we have
Lp R><Cmax( )H( ‘f’ )

|(3, ieor)
We now extend the operator A]n to n dimensions. For ji,...,j, € Z we set j =
(J15--+,Jn) € Z" and we define a union of 2" dyadic rectangles R by setting

) (4.6.4)
LP(R)

Rj:Ij1X~~~X1jn, (465)

where I} is as in (4.6.2). Observe that for different j, j' € Z" the sets R jand Ry have
disjoint interiors and that the union of all the R; is equal to R" minus the union of
all the coordinate planes x; = 0. We call this tiling the dyadic decomposition of R”".
‘We now introduce n-dimensional sharp cutoff Littlewood—Paley operators

AN = (Far) (), feSRY), jez (4.6.6)
Note that if j = (ji,...,ju) € Z", then
f_Afl fin
AJ _AJI OH'OAjn ’

where Ajt: is the one-dimensional operator A;_ acting on the rth variable, with the
remaining variables fixed. As in the one-dimensional case, Aﬁ admits a well-defined
extension on L”(R") for 1 < p < oo as it is a composition of n LP-bounded opera-

tors. The important property of these operators is the projection identity A? = A:A?,
which plays a fundamental role in the subsequent main result about them.

Theorem 4.6.2. Let Alj. be the operators defined in (4.6.6). For each 1 < p < oo there
exists a positive constant C(p,n) such that for all f € L?(R") we have

171

1
o <3 0r)

]GZ”

<C(p,n)||f] (4.6.7)

LP(R") LP(R")®
Proof. We start the proof with the one-dimensional case. Pick a Schwartz function
v on the line whose Fourier transform is supported in the set 27! < || < 22 and
is equal to 1 on the set 1 < [&] < 2. Let A}’/ be the Littlewood—Paley operators
associated with y. Observe that
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AYA = ATAY = AT

since ¥(27/-) is equal to 1 on the support of A?( f)". Proposition 4.6.1 yields the
first inequality below: ‘

(3, e’

JEZ

- H(J;Awf»zf ,

1
< Cmax(p H(ZMW )2

JEZ

Lr

< C'max(p,(p—1)"")?||f| (4.6.8)

Lp>

while the second inequality follows from Theorem 4.4.2. We have obtained the
upper inequality in (4.6.7) with C(p,1) < C'max(p, (p—1)"")>2.

We now turn to the higher-dimensional case of the upper inequality in (4.6.7).
A key ingredient for this is the following fundamental property of the Rademacher
functions r;, j = 0,1,2,..., which are re-indexed by j € Z (see [31, Appendix C]):

Lemma 4.6.3. Let 0 < p < « and r; be the sequence of Rademacher functions
indexed by the integers. Then there are constants 0 < A, B, < o such that for any
complex-valued sequence {c,} jcz with all but finitely many terms equal to zero, we
have

2 § ! p ) £
Bﬁ<26j| ) S/ ‘zcm(t)’ dt§A§(2|cj| > ) (4.6.9)
Jj 017 >

Moreover, for any complex-valued sequence {c;}jezr, j = (J1,---,jn), With all but
finitely many terms equal to zero, we have

P
B[Sl <[
Jjezr

With the aid of this lemma we prove the upper inequality in (4.6.7) by induction.
Assume this inequality holds when n = k with a constant C(p,k). We look at the
dimension n = k+ 1. We write an element j of Z**! as (j1,J'), where j; € Z and j'
in Z¥. Analogously we write elements of R as (x1,x’) and

)4
2

p
2 c.’ r./l tl rjll (t”) dtl dtn < Anp |: 2 |CJ‘ :|
JEZ" jezr

f_ Al AR
Aj—Alej,.

We also write
rj/ (t/) =Tj ([2) e (tk+1)7
where t’' = (tp,...,#;. 1) and we set

S =[-N,N"NZ", m=12,....

Using Lemma 4.6.3 (three times), the induction hypothesis, and (4.6.8) we justify
the sequence of inequalities:



190 4 Vector-Valued Singular Integrals and Littlewood—Paley Theory

// 1<+1 ‘At )(Xl,x')\2>%dx’dx1
k+1 //Rk/ /01

P
X 1 () () AT AL f)’ dr'didx' dx,

jr1esk j'esk,

b ! !
k+l // /Rk/()l /Zskr/ |: %1 r]l tl JI :|’ dt d.xdt]dxl
A 2 2 /
kH /// { 2 rj (11)A H } dx'dtdx;

R i Sk 651

A A C(p, k)P
k+1 / / /Rk

kp
Ap C(p, k)P »
k"’l /Rk// ‘ Z rjl(tl)Ajnll(f)‘ dl]dxldx/

j1€8}

k+1 p 14
A C(p,k ﬁl z /
< k+1 /R"/ Z 1A% ( } dxdx

(k+1)p
C(p,k)PC(p, p/ / ’ /
< X)) P dxid
B BY+1P RK R|f(x1 »)F didx

P
Y i m)Ad () ‘ dxdiydx,
J1€8%

AYTIPC(p,k)PC(p, 1)

- B;k-&-l) 171

p
L;;(Rk+l ) .

Letting Sy increase to ZX*!, the LMCT yields the case n = k+ 1 with
Ap\ Kt
Clp.k+1) <Cp.CpD(5E) -
P
This result, combined with (4.6.8), provides the upper inequality in (4.6.7) with

constant
1 2n s AN\ 2434+n
C(p,n) = Cymax (p, ) (i) :
—1 B,

We now prove the lower inequality in (4.6.7). Let f € LP(R") and ¢ be a
Schwartz function whose Fourier transform support is compact and does not inter-
sect any hyperplane of the form x; = 0; such functions are dense in L”(R"), see
Exercise 4.6.1. Then we can write

where only finitely many j € Z" appear in the sum; this explains the interchange of
summation and integration below. Using this information write
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Rnf(y)¢(y)dy‘ / fly ]gnAﬁAt ‘
SPIA Awap)(y)dy‘
jezr
= / Al(f ><>dy‘
jezr
= /R,,jgﬂﬁ‘ﬁf)(ymﬁ-«p)(y)dy\
= /nlgnw )] | A% (@) ()| dy
/ (gz’n’A |>2<j§Zrn|Aﬁ'(‘P)(y)|2)2dy

/

Ly LP

<Nz i)’ (Z o)

()

We now take the supremum over all Schwartz functions ¢ whose Fourier transform
. / . .
does not cross any axis and have L” norm equal to 1. This yields

||f|L1’R” —H(Z‘At )

jezr

< el

LP(RY)’

which is the lower inequality in (4.6.7). (]
A straightforward modification of Theorem 4.6.2 yields its smooth counterpart.

Theorem 4.6.4. Fix v € . (R) whose Fourier transform is supported in a compact
subset of R\ {0}. Define Littlewood—Paley operators A; Y= Aw Moo A;’;’("),
where j = (ji,...,jn), and where each A}’;( ) acts on the kth variable with the

remaining variables fixed. Let 1 < p < . Then there is a positive constant C, .y
such that for any f € L?(R") we have

|( 3, a5ve)’

jezn

LP(R") < CnvpawaHLP(Rn)' (4610)

Suppose additionally that Y.z, Y(27/y) = 1, when y € R\ {0}. Then there is
another positive constant c,, p, y such that for any f in LP(R") we have

)= H(j§”|A?W(f)|2)%

(4.6.11)

LP(RY)
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Proof. The proof of (4.6.10) follows the paradigm of the corresponding estimate in
Theorem 4.6.2 with only notational changes. The only difference is that in dimen-
sion n = 1 one directly uses Theorem 4.4.2. We skip the details.

So we focus on inequality (4.6.11). We pick another function § in . (R) whose
Fourier transform vanishes in a neighborhood of the origin and which equals 1 on

the support of 177 Define A?g analogously, and notice that

ATV =ATCATY forany je 2",

Let f € LP(R") and let ¢ be a Schwartz function whose Fourier transform support
is compact and does not intersect any plane of the form x; = 0; such functions are
dense in L?(R"); see Exercise 4.6.1. Then we write

=3 A7¥(p)

JEL!

where only finitely many j € Z" appear in the sum. Using this information write

.nf(y)w(y)dy =| [ f0) Y A7V (@) dy
forewa = |

JEZ!
-| 3 [ 0877 e eia
jezr
P> R,,A?Wf)(ym?C«p)(y)dy]
JEZL!

-/ njgzznA?"%f)(y)A?C((p)(y)dy]
[ X 1a7Y(0l[a7 (9 ax
Jjez"
g/Rn(;\Aw e’ (2 a7 0) as
<H< > 147 0F) I3 145wl

2 2\ 2
(3 170r)

Taking the supremum over all ¢ as above yields the desired inequality. O

IN

/

Lr Ly

I .
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Exercises

4.6.1. Prove that the set

Fo..0={pc SR : §eby and min dist [supp(@), {x € R": x; =0}] >0}
<j<n
is dense in LP(R") when 1 < p < . [Hint: Mimic the proof of Proposition 2.5.4.]

4.6.2. Let 1 < p < 0. Prove that there is a constant C, , such that for any finite
subset S of Z" and every fj in L”(R"), j € Z", we have

D=

I5450],, < el (Z156)"],
and |
H%A?(fj) Lﬂgcn’p‘(%mﬂfmz)z 7

Conclude that there is a constant C,, , such that for every f € L”(R") we have
i
|3 450, < Guoll I
Jjes

4.6.3. Suppose that {mj} jcz» is a sequence of bounded functions supported in the
sets R; defined in (4.6.5). Let Tj(f) = (fm j)v be the multiplier operator associated
with mj. Let 1 < p < co. Assume that there is a constant A, for all sequences of
functions {f;} jez» with fj € L”(R") the vector-valued inequality

I 09 <5 159

is valid. Prove there is a C,,, > 0 such that for all finite subsets S of Z we have

szH <C
jes A

LP(R)

4.6.4. Fix 6 € 8"~ For j € Z define sets $¢ = {§ e R": 2/ <[£-6] <2/*'} and
operators 7o ( = Xse) initially on .(R") and later extended on L”(R") for
1 <p<eo. Prove that for any g € LP(R") we have

=150’

[Hint: Consider first the case 8 = e and then apply a rotation.]

]

LP(R?)
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4.6.5. Show that for 1 < p < e there is a constant K(n, p) such that for any f; in
LP(R"), j€Z", we have

I( 3, s0r)

cZn

LpRn* an(z"fJ )%

Jez

Lr R"

Moreover, K(n,p) < K(1,p)"(A,/B,)*", where Ap,B, are as in Lemma 4.6.3.
Finally, construct an example to show that the reverse inequality fails. [Hint: For
with n = 1 appeal to Exercise 4.2.3. Reduce the n-dimensional result to the case
n = 1 by applying Lemma 4.6.3 multiple times.]

4.6.6. Let v and AJ.®W be as in Theorem 4.6.4. Show that for 1 < p < oo there is a
constant Cy, ,  such that for any f; € LP(R"), j € Z", we have

I3, 47760} | = o 3, 157

jezr jezr

PR
[Hint: Apply the method used in Exercise 4.6.5 starting with n = 1.]

4.6.7. Use (4.6.9) to prove the following statement: Let T be a linear operator
bounded from L”(R") to itself for some 0 < p < oo. Show that for any f; € L”(R")
we have

7

[(Zrr) [, < gl (S e)

As a consequence, derive another proof of Proposition 4.6.1 using (4.6.9).



Chapter 5 ®)
Fractional Integrability or Differentiability @
and Multiplier Theorems

5.1 Powers of the Laplacian and Riesz Potentials

The Laplacian is the operator A = 92 + --- + 92 initially defined on ?(R"). The
action of the Laplacian is also defined on tempered distributions u on R” by duality:

<A”7(P> :<M7A(p>a (pey(R”)
Let ¢ € . (R"). Applying the Fourier transform, we write

n

—A(&) =Y (—2mi&;)?p(&) = rlE|)?P(E), EER”

J=1

The exponent 2 indicates the total number of differentiations on ¢. Motivated by this
identity, it is tempting to replace the exponent 2 by a complex exponent z and define
(—A)¥? as the operator given by the multiplication with the function (27|£|) on
the Fourier transform. Then (—A)¥/?¢ represents in some sense the total derivative
of ¢ of order z. Precisely, for z € C with Rez > —n and Schwartz functions ¢ we
define

(—A)2¢ = ((2n|-)*9)". (5.1.1)

If z is an even integer, then clearly (—A)Z/ 2 is a derivative of order z. For complex
values of z, we call (—A)Z/ 2 the total derivative of order z. If z is a complex number
with real part less than —n, then the function ||? is not locally integrable on R”" and
so (5.1.1) may not be well defined. For this reason, we extend (5.1.1) to Rez < —n
only to Schwartz functions ¢ whose Fourier transform vanishes to sufficiently high
order at the origin' so that the expression |€|*@ (&) is integrable. Note that the family
of operators (—A)? satisfies the semigroup property (—A)*(—A)¥ = (—A)*Y for
all z,w € C when acting on Schwartz functions whose Fourier transform vanishes
to sufficiently high order at the origin.

! This means that sufficiently many derivatives of @ vanish at the origin.
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Recall the identity (2.7.5) in Example 2.7.4. For —n < Rez < 0, the locally inte-

grable function
=
T2

r(3E)

uz (x) = * x e R"\{0},

satisfies it = u_,_,. This implies that the inverse Fourier transform of (27| -|)? is

)V - z”i% F(M) —z—n
(@2x]-])%) " (x) = (2m) 3 r(%) x| =" (5.1.2)

When —n < Rez < 0, both |£|* and |x|*~" are locally integrable functions.

When s > 0, then(fA)_S/ 2f is not really differentiating £, but it is integrating
it. For this reason, we introduce a different notation that better reflects the nature of
this operator.

Definition 5.1.1. Let z be a complex number with 0 < Rez < n. The Riesz potential
operator of order z is
I. = (—A)2,

In view of identity (5.1.2), we could express Z as a convolution operator as follows:

r(s)
r@)
Notice that this integral is absolutely convergent for f € . (R") for all Rez > 0.
Moreover, if f is simply measurable and nonnegative and z is real, then Z,(f)(x) is
well defined, but could be infinite for some (or all) values of x € R".

() =27"n"?

/Rnf(x—y)\y\’”“dy, fe LR, (5.1.3)

We begin with a remark concerning the homogeneity of the operator Z;.

Remark 5.1.2. Let 0 < p,q < ~ and suppose that for some s € (0,n) we have the

estimate
< oo, (5.1.4)

WZell.r o
Then the following must be true:
1 1
2= and  p>1. (5.1.5)
p q n
To prove these assertions we consider the function f* = xp(q,1). Then obviously,
0 < ||| o emy < == (5.1.6)

When |x| > 2 and |y| < 1 we have |x — y| &~ ||, so
() (x) = Cs.n/ o=y 7" dy > Gyl T x> 2, G.1.7)
RIS ’

and assumption (5.1.4) yields that || Z;(f)||z¢ < e=. Combining these facts we deduce
that g(—n+s) < —n (equivalently 7 + 5 < 1) and that
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"IS(f)|‘Lq >0. (5.1.8)

Consider the dilation f*(x) = f(Ax) defined for A > 0. Changing variables, we
write

L(f*)(x) = Con /R I (Ax—Ay)ly| " dy
= AL A). (5.1.9)
As (5.1.4) is assumed to hold, we obtain

17 oy < sl al £

Lr (R”) bl

which, in view of (5.1.9), can be written as

n(l_1.s
HIS(f)HL"(R”) < HISHLPHU/A G=ptw)

Aoy - (5.1.10)

If%—%—i—% >0,thenweletl—>O,whereasif$—%+% <0 welet A — ooin
(5.1.10). In both cases, recalling (5.1.4), (5.1.6), and (5.1.8), we obtain that a positive
quantity is less than or equal to zero. Thus, é — % + 3 # 0/is not possible. It follows
that % — 1= 5~ Combining this identity with the previously obtained relationship

q
=+ é < 1, we deduce that p > 1. Thus (5.1.5) must necessarily be valid.

It turns out there is a positive estimate under hypothesis (5.1.5).

Theorem 5.1.3. (Hardy-Littlewood-Sobolev theorem on fractional integration)

Let s be a real number, with0 < s <n,andlet1 < p < % and # < g < oo be related

as in % - é = 2. Then there exist constants C(n, s, p), C(s,n) < e such that for all f

in .7 (R") we have

1 Ze(O| oy < €5, P I o e (5.1.11)

and

1 Zs(f)]| L g S C(n,s)HfHLl(R”). (5.1.12)

Thus Z; has unique bounded extensions from LP (R") to L4(R") and from L' (R") to
L= (R").

Proof. Fix a nonzero function f in the Schwartz class. Write
/Rn F=II" dy = L(f)(x) + () (),

where /| and I, are defined by
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WO = [ 7=)lbiay
BN = [ eyl

for some € = €(x) > 0 to be determined later. Begin by writing
W@ =3 [ byl
j=0 2-J-le<|y|<2 /e
< 22(’“)(”‘”8‘"“/ | f=y)ldy
j=0 lyl<27/e

< &M(f)(x)2" v, i 2 s
j=0
e M(f)(x). (5.1.13)

vnzn—S

—1-2"

Let I < p < 2. Observe that (n—s)p’ =n+ qu > n and this is valid even when
1! = oo. Let @,_1 = |8""!|. Holder’s inequality gives that

1
—(n—s)p’ v
(o7 as) e

1
Y _n
_ qWp—1 187
p'n

and note that this estimate is also valid when p =1 (in which case ¢ = ;.™), provided

IA

1L(f) ()]
(5.1.14)

/]

Lr (R”) )

q0n—1

p'n

1
the L' norm is interpreted as the L™ norm and the constant ( ) ¥ is replaced

by 1. Combining (5.1.13) and (5.1.14), we obtain that

L)) < Cps p (M) () +7 7| £]| ) - (5.1.15)

‘We choose

P _pr
e=e(x) =]z M(f))
to minimize the expression on the right-hand side in (5.1.15). We observe that if f
is nonzero, then M(f)(x) > 0 for all x € R” and thus € is well defined. This choice
of € yields the estimate

L(f)(x) < Cus p M(A) ()| £l - (5.1.16)

Now suppose that p > 1. We raise (5.1.16) to the power g, we integrate over R”, and
we use the boundedness of the Hardy-Littlewood maximal operator M on L”(R")
(Corollary 1.4.7). This yields (5.1.11).
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We are left with the case p = 1 when g = -*-. The result in this case also follows
from (5.1.16) by the weak-type (1, 1) property 0f M (Theorem 1.4.6). Indeed for all

A > 0 we have
HC"mlM(f)? Z >7LH - ’{M(f)> <’I>H

| A

/~ “2
/Q /\
= S
= =.
N~ \_”/

i
S
=

This is the claimed estimate (5.1.12). O

Example 5.1.4. It follows from (5.1.7) that Z, does not map L' (R") to L7 (R").

Additionally, Z; does not map L5 (R") to L= (R"). To see this, let 0 < s < n and

pick & such that 0 < § < "-*. Consider the function /(x) = [x|~*(log ﬁ)ﬁ(l*a) for

|x| < 1/e and zero otherwise. A straightforward substitution based on the conver-
gence of the integral [ /¢ ~1log(r~1)]~(1+9)dr indicates that / lies in L’ (R"). On
the other hand for |x| < 755 we have

. —S 1 _%<1+6) S—n
Lmw=c [ pi=(logrs) " eyl

UNESYE 1yl

-8 1 7%<1+6) S—n
cf (e ) ey
2l <ly|<1 /e Al

-5 1 7%(14"»6) Ss—n
¢ o (tog5=) " bl "y
2<hI<1/e 2[x

|
1 1 \-501+8)
= (tog 5,1 ) (toz 57 )
C(nge\x\ %8 2|

which tends to infinity as |x| — 0, since 6 is so small so that 1 — (1 +0) >
Consequently, Z;(h) & L.

v

v

Exercises

5.1.1. Let 71, 2o be complex numbers with positive real parts (or z1,z> could be zero).
Find a w € C such that for all ¢ in .(R") we have

[ T @) Tol@)dx = [ (-4)" 9|2

5.1.2. Let 1 < g < and z € C have positive real part. Prove that for ¢ € .7(R")
we have



200 5 Fractional Integrability or Differentiability and Multiplier Theorems

lollz2 < I1Z:(@) | o[l (=20 |-
5.1.3. Show that for any ¢ > 0 there is a constant c,; such that

n+t

1128 ey < €nall(=2)72

n+t
12 (R”)

i
12 (R”)

f

f

is valid for all f € L>(R"). Note that the Fourier transform of (—A)% fis well
defined when f € L? and so does its L2 norm, which could be infinite. [Hint: First
prove that [ga | f(x)|dx < C( fgn | £(x)[*(|x[""" +1) dx) 1/2, then apply this inequality
to f(Ax), and optimize over A.]

5.1.4. Let s be a real number, with 0 <s <n,andlet 1 < p < 7 and ;"= < g <oobe

related as in (5.1.5). Suppose that (—A)2 f € LP(R") for a given f € .7 (R"). Prove
that f coincides with an L7 function whose norm satisfies the estimate

HfHLq SC(”W’S)H(_A)%J(HLW
where C(n, p,s) < ec. [Hint: Use Theorem 5.1.3 and that Z; is self-adjoint.]

5.1.5. Let f be a tempered and locally integrable function on R". Suppose that either
(a) n > 2 and the distributional derivatives d;f lie in LP! (R") NLP2(R") for all j =
I,...,n, where 1 < p; <n < py < oo; or (b) n > 3 and the distributional Laplacian
Af lies in LPY(R") NLP2(R"), where 1 < p; < § < py < oo. Prove that f lies in
L=(R").

[Hint: (a) Use the identity f = X_; 71(R;(9;f)). (b) Write f = —Z5(Af).]

5.1.6. For 0 < s < n define the fractional maximal function
1
M) =sup— e [ |fyldy,  fE LR,
>0 (vpt) w St
where v, = |B(0,1)|. Show that for some finite constant C(n,s) we have

M*(f) < C(n,s) Zs(| f1)-

5.1.7. For continuous functions f on R” define the difference operator Dy, f(x) =
f(x+h)—f(x) forx,h € R". Let 0 < s <mand m € Z*. Prove that for f € ./ (R")
we have

) m times dt
Je e ot = Clmms 117 -

——
D;o---oD;

where C(m,n,s) = / |2 1P| 25 g < oo,
JR

[Hint: Use that (D, 0--- oD, f) (&) = F(&)(e2™7 — 1)m ]



5.2 Bessel Potentials 201

5.1.8. Prove that (—A)%/2¢ is a bounded function whenever
(@) Rez > —nand ¢ € S (R"); or
(b) z € C and the Fourier transform of ¢ € .’(R") vanishes in a neighborhood of 0.

5.1.9. Fix w € C with Rew > 0. Show that for every ¢ € €;°(R") there is a constant
C(n,w, @) such that

!(_A)W/2(p(x)‘ <C(n,w,@)(1+ |x|)fn7Rew.

Moreover, prove that for any s > 0 and every nonnegative and nonzero ¢ € 6;°(R"),
there are constants C,K > 0 such that for all [x| > K one has

|(=A)29(x)] = Cld ™.

[Hint: Identity (5.1.3) applied to ¢ can be extended to complex numbers z with
Rez < 0 by analytic continuation, for large values of x.]

5.2 Bessel Potentials

In this section we study an adjustment of the Riesz potentials in which we replace
—A by I—A, where [ is the identity operator. This simple modification allows one to
define the action of (I —A)¥/2 on.#(R") for all z € C. Notice that (1 +472|-|*)¥/2¢
lies in .(R"), whenever ¢ € .#(R"), thus so does (I —A)¥2¢, by Proposi-
tion 2.6.12. In fact, (I — A)¥/? is a one-to-one and onto mapping from . (R") to
S (RY).

Definition 5.2.1. Let z be a complex number satisfying 0 < Rez < eo. The Bessel
potential of order z is the operator

T(f)=(U=A)73(f) = (1 +4m[- 1) 3 F) 7,
initially acting on Schwartz functions f.
We denote by G, the kernel of 7, i.e.,
G, = ((1+4r-)73)",
which a priori is a tempered distribution. The Bessel potential is the operator
T(@) =G, @S (R").

The Bessel potential is obtained by replacing 472|&|? in the Riesz potential by
the smooth term 1 +472|&|2. This adjustment smooths the function near zero, and
this translates into rapid decay for its inverse Fourier transform at infinity.

The next result quantifies the behavior of G near zero and near infinity for s > 0.
To describe this behavior we introduce a function H; on R"\ {0} by setting
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|x|*="*  for 0<s<mn,
H(x) = ¢ log ﬁ for s =n,
1 for s > n.

Proposition 5.2.2. For s > 0, G; is a strictly positive € function on R"\ {0} that
satisfies ||Gs|| 1 = 1. Moreover, there are positive constants C(s,n), c(s,n) such that

Gy(x) < C(s,n)e % when |x| > 2 (5.2.1)
and | G.(x)
s(x

<0 < h 2. 22

o) S H) S c(s,n) when 0 < |x| < (5.2.2)

Proof. Fix s > 0. The definition of the gamma function

[(s/2) = /Me—wﬂ@

0 u

yields for A > 0 the identity

T di
—s/2 _ —tA,s/2 &0
A F(S/Z)/o ¢«

via the change of variables u = tA. Taking A = 14 4n?|&|? we obtain

S ] b S
(1+4m2|E)"2 = r(ﬁ)/o e*fe*ﬂ\zvmi\zﬁg (5.2.3)
2

Note that the preceding integral converges at both ends. Let ¢ be in . (R"). Then
(6.9) = [ Gu&w&)de= [ (1+4lEP) toE)as (524

and using (5.2.3), we rewrite (5.2.4) as

PNU S ey —r2y }df
<Gs,<p>—r(%)/O e ”URne o(&)ds| <, (5.2.5)

where the interchange of the integrals on the left in (5.2.5) is justified by the rapid
decay of the integrand. Using the fact that £ e~ 7/¢ * is the inverse Fourier trans-
form of e’”'eé‘z, we express (5.2.5) as

_ 1=,
<G5,(P>:@/O e 't

o2
As e i <Cp (41/|x|*)B for any B > 0, picking B € (*3*,5), we obtain that the
double integral in (5.2.6) converges absolutely, and so interchanging the order of

X |2
it

1 - ~ dt
[ /R N 2 <p(x>dx]t. (5.2.6)

Ble
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integration is allowed. Doing so and using that ¢ was arbitrary, we deduce that the
tempered distribution G, can be identified with the function

Gy(x) = W/:e—’e—'i'rzrsz” ? (5.2.7)
2

Note that the preceding integral is absolutely convergent for all x # 0, while for
x = 0, it converges only when s > n. Identity (5.2.7) shows that G is smooth on
R\ {0} and that G,(x) > 0 for all x € R". Consequently,

|Gyl = /R Gy(x)dx = G4(0) = 1.
2 2
Now suppose |x| > 2. Then 7 +- % > lJr% and r + % > |x|. This implies that
A el = (5.2.8)

for all > 0. From this it follows that when |x| > 2,

Gy(x) < (2}/(%)) </0°°e§e21tts2n d’)e'ﬁ _Clm 4 (500
2

proving (5.2.1).
Suppose now that 0 < |x| < 2. Write G,(x) = G! (x) + G?(x) + G (x), where

2
! _M/‘X‘ g b du
Gs(x) - F(%) o e e u »
Ny B
re) t
2\/%)7n 4 PR dt
sz = ( e le 2 =,
5 (x) ) e t
3 _ (Zﬁ)in oo —t ,% VEJ ﬂ
Gs(x) - 1—,(%) 4 e e t ; .
For 0 <7< 1and0 < x| <2 we have e~* < e/F" < 1. Thus, we write?
— 2\/E>7n U s dt -
Gi(@) ~ | (7/ T 5.2.10
o = B [t g 5210

For |x|? <t <4and |x| <2wehavee * <e " <lande 7 <e 4 <1,s0

2 We say f(x) = g(x) if there are 0 < ¢ < C < oo such that ¢ < f(x)/g(x) < C for all x.
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. U [x|"7"—=25""  for s <n,
Gf(x) %/ zt%Tz logﬁ for s =n, (5.2.11)
i 257" — |x]7"  for s >n.

x| 2
5 < 1, which yields

Gl(x) = (2{(3) A e t‘z"? ~ 1. (5.2.12)
2

Combining (5.2.10), (5.2.11), and (5.2.12), for 0 < |x| < 2 we obtain

. 1
Finally, when ¢t > 4 > \x\z we have e 4 <e

P+ (Jx =257 +1  for 0 < s <n,
Gx(x) _ Gi (x) +G?(x) +G?()C) ~ |x|s—n +10g % +1 for s = n,
1 (25— [ ) 41 for 5> .

But this function is comparable to Hs(x) when 0 < |x| < 2, so we deduce (5.2.2). O
The next proposition is concerned with estimates for the derivatives of G;.

Proposition 5.2.3. Let s > 0. For each multi-index o there is a positive constant
Co,5.n such that for every x € R"\ {0} one has

|x[*="=1l when 0 < |x| <2 and s < n+ |,

log & when 0 < |x| <2 ands =n+ |/,
0%Gy(x)| < Carm BT a e (5.2.13)

1 when 0 < |x| <2 and s > n+|a],

et when |x| > 2.

Proof. We begin by noting that for each m € Z7 U {0} there is a polynomial p,, of

degree m on the real line such that dzme - = pm(t)e”z. From this we obtain that

for each multi-index o = (¢, ..., ;) and all x € R" we have
aae_‘x‘z = pal (xl) . 'pOC” (xn)e_‘xlz.

Consequently, there is a constant By, such that |8°‘e"x‘2| < Bga(1+ \x\)‘o“e"x‘z

and thus, by the chain rule, for # > 0 and x € R" we have the estimate

e | < ) 2.14
|xe ”_Ba’n( +27\/;) e [W. (5 )

Returning to (5.2.7), for x # 0, we obtain the identity

o (2\/5)7}1 - o J— son dt
8 GS(X):W/O e ’(8 e % )t 2 7, (5215)
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interchanging differentiation and integration, which is justified by the rapid con-
vergence of the integral. For |x| > 2 we use that (1 + |x|)‘°‘|e")‘|2 < Bgte’"“‘z/2 and
(5.2.14) to obtain

L2 sn

7{ o I e , A t 2
|8 4/ ![2 <e ZBanB e 2 WSBQBa.ne 4 aa

where the last inequality is a consequence of (5.2.8). Inserting this estimate in
(5.2.15) yields (5.2.13) when |x| > 2, in analogy with (5.2.9).
For 0 < |x| < 2 we write d%G(x) = d*G!(x) + d*G%(x) + 9*G3(x), as in the
case of no derivatives. The upper estimates for d*G>(x) are similar to those for
G2 (x) [see (5.2.12)] as the extra term (1 +3 Bl )“"'( \/)“"| is bounded for ¢ € [4,0).

Now for ¢ € [|x|?,4), the extra term (1 +3 M )|“‘( )|“‘ contributes a factor of

1~11/2 to the integral in (5.2.11). Thus for O < |x| < 2 we obtain

|x[s—lal=n _ps=lal=n for s —|at| < n,
2 4 sjal-n dt
’8 Gs(x)‘ SCa,s,n/Hzt 2 7% log|| for s—|o| =n,
X
2s—led=n _|x|s—led=n for s —|ot| > n,

for some constant cg s, > 0. Now we focus on d*G!(x). In view of (5.2.14) we
write

)

Zﬁ)—n ‘x‘z |ex| B _ﬁ s—n du
il < (7/ |x] 1 u 7 au
[0%Gs ()| < rg) Jo B”‘*"<H2ﬁ) NI
@2ym)™" [k sl \ 1\ oy 2 sclalon du
ST%)/O Ban(3s)  (9)ete a5
| s=2la
< |x|5—\a\—nﬂgan(4)‘a/o oIl o2l dt

t

and as e~ < 1, we have that 109Gl (x)] < C&,Sln|x|x’|°“ , where Cy, , > 0.
The combined estimate for |9*G! (x)| + |0*G?(x)| + |8aG3( )| then gives

[slo=n - (| led=n —2s=led=my 11 for 0<s<n+ |,
10%Gy(x)| < Cpy s |x|5_‘°“_"+10gﬁ+1 for s=n+|a|,
|x[s—lel=n  (ps=lel=n _ |xjs=led=n) 4 1 for s>n+|al

when 0 < |x| < 2. In all cases, this expression is bounded by that in (5.2.13) when
0 < |x| < 2. This completes the proof. O

Corollary 5.2.4. Let 0 < s < n.
(a) J; maps L' (R") to La—"(R").
(b) J; maps L' (R") to LY(R") when 1 < g < -

( :
(¢) J; maps LP(R") to LY(R") when 1 < p < and q € |p, nfps],
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Proof. When 0 < s < n the kernel G, of J; satisfies

Gi(v) < C. [x|7"*  when |x| <2,

X) = Gy, x

’ et when x| > 2.

It follows that Gy(x) < C,, (|x|~""* for all x € R". Then Theorem 5.1.3 implies the

assertion in (a). Now notice that Gy € L' (R") and this gives that J; maps L' (R") to

L (R"). Interpolating between this estimate and the one in (a), via Exercise 1.3.3,

we obtain the claim in (b). To obtain the assertion in (c) we note: For 1 < p < %

js maps L”(R”) to L”(R") (as G, € L") and it also maps L”(R") to L% (R") Where
=1 _ 5 in view of Theorem 5. 1 3. By Exercise 1.1.6 we deduce that 7y maps

U’(R") to Lq(R”) when p < g < O

n ps’

Exercises

5.2.1. (Fractional integration by parts) Let z € C and f,g € .(R"). Show that
/ g(I—A)3 fdx = / fI—A)3gdx.
R" R"

Moreover, (I —A)? could be replaced by (—A)? if Rez > —n or if the Fourier
transform of one of f, g vanishes in a neighborhood of the origin.

5.2.2. Let 1 < p < g <oo.(a) Show that J; maps L”(R") to LZ(R") when s > n.
(b) Prove that 7, maps L?(R") to LY(R") when (p,q) # (1,%0).

523.Let 0 < s < n. Show that the Bessel potential 7, maps L!(R") to L"*(R")
when 1 <r < - and LP(R") to LY(R") when 1 < p <eoand p < ¢ < ;&

— n—s’

P
n

524.1letl <s<nandl < p,r < oo satisfy i, <1< %Jr%.Provethatthereisa
constant C = C(n, s, p.r) such that for all ¢ € Y(R ) one has

Hq)le} = CHQDHLP (

5.2.5. Prove that for any s > O there is a constant C; such that for any f,g be
Schwartz functions on R"” whose Fourier transforms are nonnegative we have

[Hint: Use (1+ | +&'[2)2 <C[(1+|E]?)3 + (1+]E'|?)3]. Note Cy = 1 if s < 1. ]

5.2.6. Let sq,...,s, > 0. Consider the operator js =(I- 82) 1 actlng on the jth
variable of a functlon on R". (ThlS is baswally the one- dlmensmnal Js; acting on

the jth variable.) Prove that \751 ) js,, maps LY (R") to itself for any 1 < g < oo,
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52.7.Fix 0 < sy <1, 51 < s9,...,5,, and let G, denote the kernel of the one-
dimensional Bessel potential. (a) Show that Gy, (x1) - - - Gy, (x,) lies in L1/ (1751 (R™),
(b) Show that T = 7.\ o0 7" (Exercise 5.2.6) maps L! (R") to L!/(1=s1)=(R").
(c)Provethat T : LP(R") — LY(R") when 1 < p < ﬁ’ 1_131 < g <oo,and % —é =5s].

[Hint: Part (a): Use that |{x € R": Gy, (x1)--- Gy, (x,) > A}| is equal to
A

/Rn—l Gy, (x2) -+~ Gy, (xn)

Part (b): Use Exercise 1.6.7. Part (c): Use the version of Young’s inequality stated
in the footnote of Proposition 2.4.2.]

{xleR: Gy, (x1) > dez-~~dx,,.

5.3 The Mikhlin and Héormander Multiplier Theorems

In this section we obtain a sufficient condition on a function ¢ in L*(R") to be an
L? Fourier multiplier. This means that the operator

Ts(f)=(fo)’, fes®,

admits a bounded extension on L”(R"). Throughout the section we fix a Schwartz
function ¥ as in (4.4.23) and we define

O(8) =P(£/2) + (&) +P(28). (5.3.1)

Then O is supported in {EeR": % < |&| <4} and © =1 on the support of V.
Recall that for j € Z, the Littlewood—Paley operator associated with the bump ¥ is

A (@)= [ fla=y)2e(@y)dy.
Analogously one defines the Littlewood—Paley operator associated with ©.
Lemma 5.3.1. Fix ¥ € .(R") as in (4.4.23) and © as in (5.3.1). Let | < p < 2,

s>n/p, and o € L=(R"). Suppose that (I — A)? [‘fA’O'(Zj -)] is an LP function for
any j € Z and that

K =sup||(1-4):[¥o(2-)]
JEZL

||LP<R"> < oo, (5.3.2)

Then, for any Schwartz function f on R" and any integer j we have

AY Ty (£)] < Conp K [M(A9 (£)P)]7 (533)

where M denotes the uncentered Hardy—Littlewood maximal operator.
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Proof. Fix f € & (R"). Since O is equal to 1 on the support of ¥, we have that
P(2IE) =02 1E)P(27IE) for all & € R™. Thus we can write

£)o(&)P(27IE)eH e

)62 IEP(27/E)o(E)e? ™ e dE
AP(F)(E)F(27E)o(E)e™ e dE
2A9(f)(2/E) P () o (278" M@ g

AP ()27 )]7 (&) [Fo(@) )™ (& )ag!

=)

A To(f)(x) =

n

Il
=)

n

n

I

—

~

= |, A7 (N [Fe@ )]0 -2V d by (2.2.1)
=2 [ AP(H0) [P o)) @y -2 dy

27"A9 (£)(y) . cre ,
:/RHWX_%S(qux—yD (% 6(27 )] (27y - 27x) dy.

Applying Holder’s inequality, we estimate

: e P
)< ([ 2 )

o (27— )P
( / oJjn
R}‘l

where the second factor of the product is to be interpreted as an L™ norm if p = 1.
Since sp > n, Corollary 2.5.2 yields the estimate

(/g”%@)p gcs,n,pM(\A?(f)|")%(x>‘ (53.5)

By a change of variables, the second factor in the product in (5.3.4) equals

o=

L (539
1 Y

(2l [P @y - 2] )
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where we used the Hausdorff—Young inequality (Proposition 2.4.4) in the last step,
as 1 < p < 2. Combining this estimate with the one in (5.3.5) and inserting them in
(5.3.4) yields the claimed conclusion. O

We now prove the main result of this section.

Theorem 5.3.2. (Mikhlin multiplier theorem) If a function o on R"\ {0} satisfies
108 a(&)] < Cple| 1Pl for all |/3|<{ }+2 (5.3.6)

for some constants CB’ then for all 1 < p < o, Tz admits a bounded extension
from L? (R") to itself with norm bounded by C(n, p) sup||< (2142 Cp, where C(n,p)
depends on p,n.

Proof. Let s be the even integer among the numbers 5]+ 1, [5] +2. Then s > 5 and
we have
I A 2= Z Cas
la|<s
for some constants ¢4 (which vanish when || is odd). Let ¥ be as in (4.4.23).
Then

|8“(‘?’(§)0(2«75))‘ =Y (g) (9 PP)(£) 2Pl (9P ) (27€)
B<a
< 3 (3 )l e cylg B

B<a

<K'( supCg)x ,
<|ﬁ\< ﬁ) b<lE|<2

having used condition (5.3.6) in the first inequality above and the fact that g <[E|I<
2 in the second inequality. It follows that

(I-A):[Po(2)]
is compactly supported and bounded by a constant. Thus for any p > 1 the constant
K in (5.3.2) is finite, i.e.,

—supHI A %[‘PG(2 )]HU, - < K" sup Cg < ee.

Jez IBI<s

As s >n/2, we choose p > 1 withn/s < p < 2, so that the hypotheses on the indices
of Lemma 5.3.1 are satisfied.

Suppose first that p > 2. In order to be able to apply Theorem 4.5.3 we need to
know that 75 (f) lies in L? (R"); this will be the case if f € Fo. 1., itis a Schwartz
function whose Fourier transform is compactly supported away from the origin.
Such functions are dense in L” (R") for any 1 < p < oo; see Proposition 2.5.4. Inte-
grating by parts, we write
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To(f)(x) = [ f(&)a(&)e?™ g

Rﬂ

) (1—"_4”12|x|2)£/nf(é)c(é)(l—A)§e2mx.§d§

_%/R Zcm [ ]é)eZEix“:dé:’

(1 +4mxP)t Jrr 2,

and we notice that hypotheses (5.3.6) combined with the fact that fhas compact
support that does not contain {0}, by Leibniz’s rule we obtain that

To(£) )] < Cr(1+]x])~°

But this function lies in LP(R") as p > 2 and s > n/2, which give ps > n. Thus
|75 (f)||lLr < oo, which allows us to use inequality (4.5.5) in Theorem 4.5.3.

Applying successively inequality (4.5.5) in Theorem 4.5.3, Lemma 5.3.1, and
(4.3.17) in Theorem 4.3.3 with r =2/p (recall n/s < p < 2), we obtain

75| ey < o) (jezz|A,;»*”<Ta<f>>|2)é

<Cp(n )C,,,,K”( sup Cg ) (Z {M(Mj@(f”p)}

IBl<s Jj€z ) LP(R")

LP(R")

o
Nl

g1
2|lp

=Cp(n)Cy, K”( sup Cﬁ> (2 {M(Mj@(fﬂp)}%)

IBI<s JEZ Lo (R
/ @
< C,(n)CupK (‘Zl‘lfscﬁ) (JG%M ) Lp/P (RN

LP(R")

=Gy (sup )| (3 a2 0)°

<Cp(n )K”(‘Zl‘lp Cp) [l o ey

where the last inequality is a consequence of Theorem 4.4.2. Here O is as in (5.3.1)
and the application of (4.3.17) makes use of the assumptions 1 < 2/p < o and
1 < p/p <eo(since p <2 < p). This proves the claimed bound for functions f € 3;0,
which is a dense subspace of L”. By density, there is a bounded extension of 7 on
LP(R") for 2 < p < e with norm bounded by C(n, p) sup|g|<,Cp-

The case p = 2 is a direct consequence of Plancherel’s theorem. Finally, we dis-
cuss the case 1 < p < 2. Notice that the transpose (75)" of Ty is equal to 75, where
(&) = o(—&). As o also satisfies (5.3.6), it follows that 75 = (T5)" is bounded
from LP(R") to itself for p > 2, and by duality it follows that T is bounded from
LP(R") toitself for 1 < p < 2. O
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Corollary 5.3.3. For any 1 < p < oo there is a constant C, , such that for any t € R
we have

H (_A)itHLP(R")HLP(R") + H (1—a)" HU'(R")HU’(R") < Cup(1+ |f|)[7]+2~
Proof. It is tedious but straightforward to verify that for any k € Z* one has
_ k=1
sup  sup |E[1*9%(|E[)| < C(n,k) [T |it — m| < Cln, k) (1 +[e])F. (5.3.7)
EERM\{0} || <k m=0

A similar bound holds for (1+47%|&|?)" in place of ||™. To see this consider the
function (&,&,41) — (|E1])>+|E]>)" on R™+!, apply (5.3.7) to a multi-index of the
form (0, ), where 3 is an multi-index with n entries, and plug in &, = 1/27.
Inserting k = 4] +2 in (5.3.7) and in its analog for (1447x2||?)" provides the
hypotheses of Theorem 5.3.2, so its conclusion yields our claim.

One may also verify (5.3.7) and the analogous version for (1+|&|?)" by applying
the Faa di Bruno formula (Appendix F). (]

In fact this corollary is a special case of a more general situation.

Example 5.3.4. Let ¢ be a smooth function on R"\ {0} that is homogeneous of
degree iT, where 7 is real. This means that for all A > 0 and all & # 0 we have

o(AE)=A"0(E). (5.3.8)

[An explicit example of such a function is 6(&) = |£|"".] Then o is an L? Fourier
multiplier for 1 < p < e. To show this we verify condition (5.3.6). Differentiating
both sides of (5.3.8) with respect to d¢*, we obtain

Mago)(28) =ATI¢a(E), & #0.
Taking A = |&|~!, we deduce condition (5.3.6) with Cy, = supjg|; [0%0(0)].

Example 5.3.5. Let z be a complex number. Then for any multi-index B there is a
constant Cg such that the function m(&) = (14 |&|?)? satisfies

0Pm(&)| <Cp1+[gR=Pl Eerm (53.9)

This shows that when Rez < 0, then m is an L” Fourier multiplier for 1 < p < o,
To verify (5.3.9), we introduce the function M(¢,&) = (|¢t|> +|£|?)2 on R™ 1\ {0}.
Then M is homogeneous of degree z and is smooth on the sphere S”. Thus,

M(At,AE) = A°M(1,E), A >0.

Differentiating with respect to (95 , we obtain

AP M) (R, 08) = AZ0f M(1,8), A >0,
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and choosing A = |(¢,&)|1, if (¢,&) # 0, yields the bound

|0Pm(1,8)| < \(r,@r‘ﬂ‘“‘“( s (@ m)(r,¢). (5.3.10)
1,E) eSt

From this, plugging in 7 = 1, we obtain (5.3.9) with Cg equal to the supremum on
the right in (5.3.10), which is finite as M is smooth on S”.

The proof of Theorem 5.3.2 provides the following more general result.

Theorem 5.3.6. (Hormander multiplier theorem) Let'Y be a Schwartz function
as defined in (4.4.23) and let s > n/2. Fix 1 <p <2 and s > n/p. Let K be as in
(5.3.2). Then T admits a bounded extension from LP (R") to itself for all 1 < p < oo
with norm bounded by C(n, p,s,p) K.

Example 5.3.7. Homogeneity and smoothness yields that for any multi-index o
0PE| < cpal& | 1P,
where cg , vanishes if B; > o; for some j. This estimate is useful in calculations.
We end this section with a couple more examples of Fourier multipliers.

Example 5.3.8. Let z be a complex number with Rez > 0 and let ¢ be a fixed multi-
index with |ot| < Rez. Then the function, defined on R”,

&Y
T+ EFP

satisfies (5.3.6) (in fact without the restriction on f3) and is therefore an L? Fourier
multiplier for 1 < p < oo. To prove this assertion we write by Leibniz’s rule

m(§) =

)| =| 3 (B) @z @ra 1))
r<B
< Zﬁ <€>|€a|—(l3—|7)(1+|§|)—Rez—Y
<
<Cp %KHBHM [1E1 1+ 1g])Res] g M < cp e 1P,
<

since the expression inside the square brackets is bounded by 1, as || < Rez.

Example 5.3.9. Let 6 € R and 1 € R". On R"” consider the function

1+ ]E+nP?
"@‘< T+ IEP ) '

Then (5.3.6) holds (without the restriction on 3) with a constant that depends on 7,
precisely,
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(1+ [n)m(p1-0.)
(1+ENP

10Pc (&) <Cpo (5.3.11)

In view of Leibniz’s rule we write

b = B\ or 2% B-r 2\-¢
Pa(&)] = Kzﬁ(y)ag(uwnn 2P 11+ |EP)
<Cuo Y, <’;>(1+|<§+n)9"7(1+§|)—9—<|/3—y>,

r<B

Using the estimates

(L+[EN* M+ )M if o~y >0,
(L+ [N (1 +|n)=¢ if 6 —[y] <0,

we deduce (5.3.11), which in fact holds for all multi-indices 3.

(1+[&+n])° M < {

Exercises

5.3.1. Prove that if 0 and o3 satisfy condition (5.3.6), then so does 0| 0>.
5.3.2. Show that if o is real-valued and satisfies (5.3.6), then so does ¢/°.

5.3.3. Let m be a function on R? which is homogeneous of degree —p < 0 and
smooth on the unit circle. Prove that the function & — m(1,|&]) lies in .#,(R") for
any 1 < p < oo,

534.Let0<c<C<oo,z€C,andmc Z". Let o : R" — C satisfy (5.3.6).

@ If |o(&)] > c for all & € R”, show that 6~ satisfies condition (5.3.6).

(b)If |o(&)| < Cforall & € R” and m > s, show that 6™ also satisfies (5.3.6).

(©) If (&) > cforall £ € R" and Rez < 0, show that 0¢ satisfies (5.3.6).
(©If0<o(&) <Cforall ¢ € R" and Rez > s, show that 0¢ also satisfies (5.3.6).

5.3.5. Suppose that ¢ is a complex-valued function on R" that satisfies (5.3.6) for all
multi-indices o (i.e., without the restriction || < s). Let 8 be a fixed multi-index.
Show that Vo (&) - & and EP 9P o satisfy (5.3.6) for all all multi-indices o

5.3.6. Prove that the functions g;(&) = £(r> + |E[*)~1/2, defined for & € R" and
indexed by ¢ > 0, lie in .#,(R") uniformly in r.

5.3.7. Let { be a smooth function on R” that is supported in a compact set that does
not contain the origin and let a; be a bounded sequence of complex numbers. Prove

that the function R .
m(&) =Y a;f(277E), EeR,
JEZL

lies in .#,(R") forall 1 < p < co.
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5.4 Sobolev Spaces

Just as Lebesgue spaces quantify the integrability of the pth power of functions,
Sobolev spaces quantify the L? integrability of functions and their derivatives.

Definition 5.4.1. Let k be a nonnegative integer, and let 1 < p < oo. The Sobolev
space L7 (R") is defined as the space of functions f in LP(R") such that for all
|| < k the distributional derivatives d” f are also L?(R") functions. This space is

normed by the quantity
||f’ Ly = z HaafHLp' (5.4.1)
lor| <k

Sobolev space norms quantify smoothness of functions in terms of the integra-
bility of their derivatives. The index k indicates the degree of smoothness of a given
function in Lf . As k increases, the functions become smoother. Equivalently, these
spaces form a decreasing sequence L? «— LY « L} « L < ... 'meaning that each
L? .1 (R") properly embeds in L (R"). This property, which coincides with our intu-
ition of smoothness, is a consequence of the definition of Sobolev norms.

Next, we extend the definition of Sobolev spaces to the case where the positive
integer k is replaced by a real number s. Before we do so, we note that for s € R
the function (1 +472|-|?)2 lies in € and has polynomial growth at infinity, so the
product (1 +472|-|?)2@ is a well-defined element of .. (Definition 2.6.15.) Thus,

its inverse Fourier transform (I — A) Zu is also a well-defined element of .7,

Definition 5.4.2. Let s be a real number and let 1 < p < . The Sobolev space
LY (R") is defined as the space of all tempered distributions # in .’ (R") for which
(I —A)2u is a function in LP(R"). For such distributions u we define

el ey = 1167 = A) 20l -

2
Remark 5.4.3. The function ( lﬁiﬁé‘é i )S/ * and its reciprocal lie in .#,(R") for any

1 < p < oo. This is because of Leibniz’s rule and Example 5.3.5. Consequently, a
tempered distribution  lies in L{ (R") if and only if ((1+|-|?)2&) Y lies in L (R");
furthermore, in this case we have || ((1 4] |2)%ﬁ)v”” ~ (= A)2u|p.

Remark 5.4.4. (a) Lg = L?. This is straightforward.
(b) For s > 0, LY embeds in L. Indeed, if f; = (I — A)%f, then we have

/= (I_A)i%fr = fs* Gy,
where Gy is as in Definition 5.2.1. Theorem 1.6.6 and the fact that ||G;||,1 = 1 yield
HfHLP(R") = HfSHLP(Rn) = Hf

(c) When s = k € Z, the space L} of Definition 5.4.2 coincides with the space L,f of
Definition 5.4.1 with equivalence of norms. Moreover, as s increases, the functions

LRy <
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in L? become smoother. Suppose that f € Lf according to Definition 5.4.2. Then for
all |a| < k we have that the distributional derivatives 0% f are equal to

2% = <<2m>f>vz<( @ni-)” <1+4n2|-|2>’2‘f). (5.42)

14412 2)%
The result in Example 5.3.8 gives that when |o¢| < k, the function

£ (2mi&)*
(1+4rm2|E[2)k/2

is an L” multiplier. By assumption (I—A)gf (1+4n2|-? ) ) lies in L7 (R"),
and thus it follows from (5.4.2) that the distributional derivatives d“f lie in L? (R")
and that .

X (0% F ]l < CpmallT=2)2 1] < oo

|o| <k

Conversely, suppose that f € Lf according to Definition 5.4.1; then the multinomial
identity applied to the expression (1 +472|&|?)F yields

0% S Y k! 2rd)*  (2mi§)*
(1—|—47'L' (& + +én)) \ongk (k—|a|)oy!--- (1—&-47‘52‘@ )% ilod

By Example 5.3.8 the functions mq (&) = (2w€)*(1 +47r2|§|2)_§ are L” Fourier

multipliers whenever |ot| < k. We have

_ el _
(I—A)if= Z J (mad®f)",

|a‘<k |a\)'oc Lo

and it follows that

10 =2)2 7], < Conie T 110%F]], <=

|a|<k

This proves the converse direction.
(d) As a consequence of the preceding result for s > 0 we deduce that

e~ 2 (oAl

ol <[s]
To see this, simply write (I —A)2 f = (I — A)[T (I—- A) f and apply the equiva-

lence in (c) with k = [s].
(e) For —oo < s <t < o we have that L (R") — L{(R"). Indeed, we show that

(=23 £l < [T =2)2 £,
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Setting g = (I —A)2f <= f=(I—A) g, this is equivalent to showing that

||‘7’*“‘(g)| = ||(17A)_%g|

which is a consequence of Theorem 1.6.6 and of the fact that ||G;_||;1 = 1.
(f) The following observation is related to (e): If f € Ly (R"), then 9% f € L” 1o (RY).
The underlying inequality here is that when 1 < p < oo one has

= HGf*S*gHU' < HgHLP’

s—|o|

l=2)="0%F||,, <l 1= 2)2 1],

By the “change of variables” g = (I — A)2 f, this is equivalent to

lo] s—|al s
o1~ 2) %], = 1 - 2)F" 91 - 2) ], <]l

Lr
a valid inequality, as (27i& )% (1 +4x2|€|?)~1%/2 lies in .#,(R") (Example 5.3.8).

We now show that, in contrast to the observation (b) in Remark 5.4.4, L¥ s does
not embed in any space of functions when s > 0.

Example 5.4.5. Consider the Dirac mass at the origin &. Then ||Go|,» g =
||Gs|lr when s > 0. For s > n, |Gs||z» < oo, in view of Proposition 5.2.2. For
0 < s < n the function Gy = ((1+4x|-|)~3)" is integrable to the power p as
long as (s —n)p > —n, that is, exactly when 1 < p < .. Thus for 0 < s < n, &
lies in L” (R") if and only if 1 < p < -~ For s > n, & lies in L” (R") for all
1< p<eoo.

Example 5.4.6. Let g be the characteristic function of [—1,1]. As g =6_; — &, it
follows that g does not lie in L7 (R) for any p > 1. However, it is conceivable that g
lies in L (R) for some s < 1. In fact, we fix s € (0, 1) and we will show that g lies in
LY (R) if and only if 1 < p < 1/s. We pick a smooth function with compact support
@ equal to 1 on [—1, 1] and vanishing on the complement of [—2,2].

Assume first that 1 < p < 1/s; we will show that g € LY (R"). We write

(1+1E1)28(8) = (1+1E1)28(6)P(E) + (1+1E1)28(E) (1 - 9(£)).  (5.43)

As g(&) = sin(2n&)/m& is smooth, the inverse Fourier transform of the function
(1+E2)28(E)P(&) lies in . and thus in L? for any p. So we focus on the other
term in the sum, which we rewrite as

s sin(2m&) ~ (1+E2)3 N |&] 2miE — g—2mit
PRS- pen = { S - | e

Notice that the function in the curly brackets is an L? Fourier multiplier in view of
Theorem 5.3.2; see Exercise 5.4.2. Likewise |€|/i& is an LP Fourier multiplier as the
corresponding operator is the Hilbert transform. It follows that the inverse Fourier
transform of the second term to the right in (5.4.3) lies in L”(R), 1 < p < oo, if the
inverse Fourier transform of

(1+1€%)
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eZn'ii: _ eme‘é
[k

does so. But this can be calculated using the result of Example 2.7.4 and property
(5) in Proposition 2.1.6, and it turns out to be ¢s(Jx — 1|~° — [x+ 1|~*) for some
constant c,. This function decays like |x| =~ as |x| — o by the mean value theorem
and blows up like [x+ 1|7 as x — £1. Clearly this function lies in L (R) if p < 1/s.
This yields that g € LY (R) if 1 < p < 1/s.

Assume now g € LY (R); we will show that 1 < p < 1/s. Then the inverse Fourier

transform of (1 + ‘é |2)% |€‘ 2mié _ ,—2mi&
{190 i g

lies in L”(R). We now write 1 — @(€) = (1 — @(&))(1 — @(2&)) and we use that

both & /i|&| and (1—@(2€))|E[*/(1+]&[?)? liein .4, (R), to obtain that the inverse

Fourier transform of
eZm‘}; _ ef2m't§

(]_a(é)) ‘§|173
must lie in LP(R). But this equals
co(le— 17" = e+ 117 — e (|- =17 = |- +1]7) x @) (x),

and as the second term lies in L”(R) when p > 1 and s < 1, then the first term must
lie in LP(R); consequently, [,y [x=£ 1|7*Pdx < e, which yields s < 1/p.

Next we show that Sobolev spaces are Banach spaces. Before we do so, we notice
that if @ € .7 (R"), then (I — A)*/?¢ also lies in . (R"), a fact that is easily seen by
examining the Fourier transforms.

Theorem 5.4.7. For any s € R and 1 < p < o, LY (R") is a complete normed vector
space, i.e., a Banach space.

Proof. Suppose that {fi}7_, is a Cauchy sequence in L{(R"). This means that
{aar, = {(I— A)*?fi}7_, is a Cauchy sequence in LP. As L is complete g
converges to an element g in LP. Now f = (I — A)_S/ 2g is well defined as a tem-
pered distribution®. We claim that f € LJ(R") and that f; — f in Lf. Obviously,
(I—A)$/2f =g e LP, thus f is an element of L?. Moreover,

| fi—f

= Hgk _gHLP —0
as k — 0. This shows that L (R") is a complete normed vector space. (]
Theorem 5.4.8. Forany s € Rand 1 < p < =, .(R") is dense in L} (R").

Proof. Let f € LY(R"). As (I — A)*/?f lies in L?, we find a sequence of Schwartz
functions y; converging to (I —A)*/?f in L as j — oo. Define @; = (I —A)~*?y;.

3 f1isin fact an L function if s > 0.
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Clearly, ; = (1 +4n?|-|?)~*/?y; is a Schwartz function, so by Proposition 2.6.12
we have @; € 7(R"). We will show that ¢; — f in LY. This is equivalent to proving

that H (I-A £(f (pj HU, —>Oasj—>oo But this is obvious by the choice of y;,
as [[(1=2)3(f = @)l = 1= 2)2 7 —

We discuss embedding of Sobolev spaces in other function spaces. If (X, || - ||x)

and (Y,]| - ||y) are normed vector spaces, we write X < Y if X can be identified with
a subspace of Y and there is a constant C such that || f||y < C||f||x for all f € X.

1» Which tends to 0 as j — oo. O

Theorem 5.4.9. (Sobolev embedding theorem) Let 0 < s < oo and 1 < p < oo.

(a) If0 <5 < %, then for any q € (%, ) satisfying % - é = £ we have
LP(R") — LY(R").

b) Ifs= %, then for any q satistying p = < q < e we have
LP(R") — LI(R").

(c) If s > 7. let M denote the largest integer strictly less than s — 7. Then LY (R")
embeds in the space of functions whose partial derivatives up to and including order
M exist, are continuous uniformly on R", and are bounded on R"; moreover there is
a constant C,, ,, s such that for all f € LY (R") it holds that

I ll= = X (10l = < Cops
lo| <M

Now, if N=s—12 happens to be an integer, then every function in LY (R") has partial
derivatives of orderN in L(R") for any g satisfying p < g < eo; precisely,

LY (R") — Lﬁ’v(R”)-

Remark 5.4.10. Part (c) essentially says: If s — 2 € R\ Z", then elements of

n

LY (R") have derivatives up to and including order [s = 2] in LT for p < g < eo;
if s — % € Z*, then they have derivatives up to and including order [s — %] —1lin L4
for ¢ < p < oo, and have derivatives of order [s — %} in L7 for p < g < oo,

Proof. (a) If f € LY, then we write
f=-A)31-A)3f =G (I-4)3,
where Gy is the Bessel potential. Since s < % < n, Proposition 5.2.2 gives that
|Gs(x)] < Clx™"

for all x € R\ {0}. This implies that | f| < C,, Zs(|(I— A)2 f|). Theorem 5.1.3 now
yields the required conclusion:
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171l0 = CallZ (10 = 2)2 1) 0 < Gl

Lé’ .
(b) Given g satisfying & = p < g < oo, there is an r in [1, o) such that

1
14—

1
q p v

Then 1 < 7+ %, which implies that (—n+-s)r > —n. Thus, the function |x| "), <,
is integrable to the rth power, which implies that Gy is in L"(R"). As f in L} can be
written G, * (I — A)2 f, Young’s inequality (Proposition 2.4.2) gives that

1] oggry < 11Gs (1= 8) fll ey = sl -

L"(R")

(c) Let s > n/p and M be the largest integer strictly less than s — %. Then for all
|| < M, by Proposition 5.2.3, d*G;(x) decays exponentially when |x| > 2 and it
is bounded by a constant multiple of max(|x| "~ log ‘%, 1) when 0 < |x] < 2.
This function lies in L”' (B(0,2)) when |et| < s —n/p and thus d%G lies in L (R")
forall || < M. Let f € LY (R"). Applying Theorem 1.7.1 (with g = (I — A)*/ f and
@ = G) we obtain that f = G * (I — A)*/%f lies in €M (R") and satisfies

0%f = 9% (Gy* (I—A)/2f) = (0°Gy) (I — A)/2f

for all |az| < M. The boundedness and uniform continuity of this function are con-
sequences of Theorem 1.6.7. Holder’s inequality now yields

2 [0%f s X (197Gl |

(=272 fllyy = (2 110°Gell ) 1]z
loe| <M lo| <M lo]<M
and thus the claimed embedding is valid.
In the event that N = s — % is an integer, for p < g < eo we notice that
Il = 0 =2)2 Allo < Clt=2)2 1], =ClI7,p-
where the preceding inequality is a consequence of the assertion in part (b). O

Exercises

54.1.Lets € Z" and f € LY (R") for 1 < p < . Suppose that g is a €* function
on R" with the property 0%g € L(R") for all |t| < s. Prove the fg € L{(R").

54.2.Let @ be a %, function on R" that equals 1 in a neighborhood of the origin.
Prove that the function & — (1+ |E[2)"2|E|7(1 — @(&)) lies in .#,(R") for all
1 <p<oo.
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54.3.Lets>0and 1 < p <eo. Let ¢ € 6;°(R") be equal to 1 on the unit ball and
vanishing outside the double of the unit ball. Let ¢¢(x) = ¢ (ex). Prove that for any
f € 7 (R"), the sequence f¢¢ converges to f in LY (R"). Then use Theorem 5.4.8
to conclude that smooth functions with compact support are dense in L (R"). [Hint:
Show that { f¢€}¢~¢ is Cauchy in Lf (R") and converges to f in L”(R") as € — 0.]

S44.Letl <p<n, <q<<>oand%
Prove that f lies in L(R").

1_1 s
— 4 = - Suppose that f, A f lie in L”(R").

545.letl < p<eoandseR.

(a) Let f € LY (R") and g € L' (R"). Prove that f * g lies in LY (R").

(b) Let f € LY (R") and let g € L"(R") for some 7 in (1,). Prove that f x g lies in
LI(R") when1 < g<oand 1+1/g=1/p+1/r.

5.4.6. (Fractional integration by parts for Sobolev spaces) Let s > 0, f € L} (R"),
and g € L} (R"), 1 < p < . Show that for any ¢ € R we have

/ g (I— A3 fdx = / FI—A)Sigdsy.
Rn Rn
[Hint: Use Exercise 5.2.1, Corollary 5.3.3, and density.]

5.4.7. Show that translations, dilations, and modulations M¢f(x) = f(x)e>™*@
preserve Lf (R") for any s € R. [Hint: Use the result of Example 5.3.9.]

548. Letgpc.”(R") and f € LY (R") for 1 < p <eoand s € R. Prove that ¢ f € L.
[Hint: Write (I — A)2 (o f)(x) as

2 2\% s i
[ Pmem U : (W) (1= A)2117(E)e™ag dn

and then use Example 5.3.9.]

5.4.9. Let u be the inverse Fourier transform of ! (log#)~!x,>, on the real line.
Show that u lies in L2(R) for all s < 1/2 but u ¢ L*(R). How is this example related
to Theorem 5.4.97

5.4.10. Let 5,7 € R. Suppose that [0%6(E)| < Co (1 + |E])*~|E| 1! for all multi-
indices o and all & € R"\ {0}. Prove that the operator T5(9) = (¢0)", initially
defined for ¢ € . (R"), admits a bounded extension from Lf (R") to LY (R").

5.5 Interpolation of Analytic Families of Operators

In this section we prove an interpolation result for families of operators indexed by
a complex parameter in which they depend analytically. We begin with a lemma that
allows us to approximate a general 6;° function by a family of 4;;” functions which
are analytic in an auxiliary variable.
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Lemma 5.5.1. Let 0 < pg < py < oo satisfy py < . Define p in terms of the identity
1/p=(1-6)/po+6/p1, where 0 < 6 < 1. Given f € ¢;°(R") and € > 0, there
exist Ng € 7", smooth functions hj, j=1,...,Ng, supported in cubes with (pair-
wise) disjoint interiors, and nonzero complex constants ci, such that the functions

& L (1-z)+Lz
fE= X N5 T (5.5.1)
j=1
satisfy
175 = Fllpn <€ if py < oo,
1176 = £l o <& (5.5.2)

176l < Il-+e  ifpr=ce,

and for any real number t they also satisfy

1
Il < 1L +€ il < (1L +€) s 653
where €’ depends on €, p, || f||L» and tends to zero as € — 0.

Proof. Given f € ¢;°(R") and € > 0, by uniform continuity, there is a mesh of cubes
of diameters at most 1, such that if x,y belong to the same cube in the mesh, then
|f(x) = f(y)| < &/C, for some C > 1 to be chosen later. Let 0%, j =1,...,N, be
those cubes in the mesh whose interior intersects the support of f. There are x; € Q§
with f(x;) # 0 and we define ¢ = f(x;). By construction we have

Ne P
7= 3 carl- < & 554
j=

and by choosing C large enough (depending on f) we ensure

min(1,py) emin(l,p,c)
—_— 0,1 5.5.5
o <5 ke{0d} (5.5.5)

= §65759§
Jj=1

and

Ne
- Exoe . 5.
Hf ,:ZIC"XQJ' L <e (5.5.6)
Now pick g% € €5 satisfying 0 < g% < X such that

min(1,py) 8min(l,p,<)
k €{0,1}, when p; <e. (5.5.7)

Ne
E(y e — o
H]ZICJ(XQf gj) Lok < 2 )
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We set hf = 0 g5, where ¢¢ is the argument of the complex number c%. Then
hg is that function claimed in (5.5.1). Combining (5.5.5) and (5.5.7) and using the

Lp)

subadditivity of the expression || - || L; we obtain that the function

fe = 2 |c5|hs = 20

satisfies (5.5.2) when p; < e. Additionally, we have

£ & € & € & € €
|fe\§2\cj\lg§: JXoE| = ZCJ'XQ;?f‘+f|§c+|f|§£+HfHLm
o = o

s0 (5.5.2) also holds when p; = e=. We now notice that

ZC jX0°

(T (e e 1f’)m,

o > Z |C |p‘Q€| =

min(1,p)

where we made use of (5.5.6) and of the subadditivity of || - ||;,

We set &' = ¢? if p<1and & = (e+|f|lr)? — || f||{» when 1 < p < . Then
€’ — 0 as € — 0 and this proves (5.5.3) for pg and analogously for p; when p; < oo;
now if py = oo, then || f{, ;[|z= < I and the right-hand side of the second inequality
in (5.5.3) is equal to 1, so the inequality is still valid. O

We discuss an extension of Theorem 2.4.1 in which the operators are allowed to
vary analytically in a complex variable in the unit strip S ={z€ C: 0 <Re(z) < 1}.

Definition 5.5.2. Suppose that for every €S = {z € C: 0 <Rez < 1} there is an
associated linear operator T, defined on ¢;°(R") and taking values in L. _(R"). We
call {7} an analytic family if for all @, y in €;°(R") the function

z— | T, (@)ydx (5.5.8)
R)l
is analytic in the open strip S = {z € C: 0 < Rez < 1} and continuous on its closure.
The analytic family {7}, is called of admissible growth if there is a constant y with
0 < y < m and an s satisfying 1 < s < e, such that for any ¢ in €;°(R") and every
compact subset K of R” there is constant C(¢@, K) such that

log||Z:(¢) <C(p,K)e™d forallzeS. (5.5.9)

L(K)

Examples of such families are given at the end of this section.

Theorem 5.5.3. (Stein’s interpolation theorem for analytic families) Forz € S,
let T, be linear operators on 6;°(R") with values in L} (R") that form an analytic
family of admissible growth. Let 0 < pg, p1 < o0, 0 < go,q1 < oo, fix0< 0 < 1, and
define p,q by the equations
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1 1-6 6 I 1-6 6
p Po D1 q q0 q1

Let By, B1 > 0 and My and M be nonnegative continuous functions on the real line
that satisfy

Mo(y) + My (y) < e (5.5.11)
for some ¢, > 0 with T < & and all y € R. Suppose that for all f € ¢;°(R") we
have

Ty ()|l a0 < BoMoO)If 1220 , (5.5.12)
Ty (N) || n < Bi M) 1 f 1l (5.5.13)

for all y € R. Then for all f in ¢;°(R") we have

(To(f)]|,0 <M (8)By °BY||£] - (5.5.14)

14
where

B sin(m@) [ logMy(y) log M (y)
M(®) = exp{ 2 /ﬁx, Losh(ny)—cos(rc@) M cosh(n’y)+cos(7r9)}dy}'

Thus, by density, Ty has a unique bounded extension from LP to L7 when p < oo,

We observe that assumption (5.5.11) guarantees the absolute convergence of the
integral defining M(0).

Proof. Case I: min(go,q1) > 1. This forces ¢(, ¢} < e and so ¢’ < e as well. Given
T; as in the statement of the theorem, for f, g € €;° one may be tempted to consider
the family of operators H(z) = Jga I3(f) gdx which is analytic in S, continuous
and bounded in S and satisfies the hypotheses of Proposition C.0.2 with bounds
|H (iy)| < BoMo(y)[|.fl|rollgll, ¢ and [H(1+iy)| < BiMi(y)[|f [l [lgll o, for all real
y. Applying the result of Proposition C.0.2 and identity (C.0.2) (withx =1— 6 and
x = 0) yields for all f,g € 65 (R")

/ To(f)gdx

Unfortunately this estimate does not provide the claimed assertion; it supplies, how-
ever, a useful continuity estimate for the operator Ty.

To improve (5.5.15), let us first consider the situation where min(pg, p1) < oo;
this forces p < co. Without loss of generality assume that pg < p;. Fix f,g € 6}
and € > 0. By Lemma 5.5.1 we can find ff and g such that

< M(6)(Bol|/]

ell, ) " Bl lel,g)’ 5515

LPo

Zlcﬂm* g Zldkl"o s

where u ,v¢ are in ¢;°(R") and (for ¢ real)
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5 — <eg if pi <o, g —g g,
Hfg—f||u’0<8, ”fe‘8 fllzn : p1 185 0 Hqu (5.5.16)
1f5ll= < I fll=+€ if pr=oo, | llgg —8ll 4 <&
P 4
150 < (11l +€) 70, lgill g < (gl +€)%, (5.5.17)
¥ < 'y T 55.18
I vllers < (IFlle +€)70, llefyall 4 < (gl +€7)° (5.5.18)
Now consider the function defined on the closure of the unit strip
Ne Mg 42 L/ 1— +‘1
9= [, TUstde= 3 S eI A ag T [
j=1k=

Applying Hélder’s inequality with exponents s and s” to [gn T; (u%)v} dx and using

condition (5.5.9) we obtain for any z in S

Ne Mg ‘7/, +q’ max- C(ue su vg)]eyumz‘
|<[Z 2 1+|C£| (1+|d,f|)q0 V|, | M CGsupp
j=lk=1

eYiimz]
’

7
<e

where C' equals max  x C(u$,supp v{) plus the logarithm of the double sum in the
square brackets. Thus F satisfies the hypothesis of Proposition C.0.2, as y < 7.
Holder’s inequality, hypothesis (5.5.12) and (5.5.17) give for y real

S \\&

|F(iy)| < BoMo()[| £5 1o 85| < BoMo(y) ([ flle +€) 7 (Il +€')%.

L =
Likewise, Holder’s inequality, the hypothesis (5.5.13) and (5.5.18) imply for y real
ql

£ b
F(1+i)| < BiMi ) || iy | o851y |y < BIdr ) (£ 1o +€7) P (Il o +€7) -

As log |F| is subharmonic in S, applying Proposition C.0.2 in Appendix C we obtain

loglF(O)] < [ 01~ 6.0)loglMo(r)Qoli + [ 2(0,1)logibs (1) 21l

where (2 is the Poisson kernel on the strip [defined in (C.0.1)] and

4
7
0

P
00 =Bo(Ifllr +) 7 (Il +€)%. 01 =Bi(|flr+€)7 (lglly +€)°
Using identity (C.0.2) (with x =1 — 6 and x = 0) and the fact that
05 07 =By By (I fllr +¢€) (llgll o +¢€)

we obtain [with M(0) as in the statement of the theorem] that

= \\a
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— |F(6)] < M(8)BY OB (|| s +€) (lglly +)- (55.19)

'/ To(f5)g5 dx
Rn
An application of the triangle inequality gives

(5.5.20)

[, Totgdx= [ To(s5)g5dx

<| [ 1o fes

+‘/RnT9(f5)(g—g§)dx.

We now apply (5.5.15) in each of the terms on the right side of this inequality and
we use (5.5.16) to deduce that (5.5.20) tends to zero as € — 0. We now return to
(5.5.19) and let € — 0. Using that &’ — 0, we conclude

’/R To(f)gdx| < M(0)By °BY||fler |18l (5.5.21)

Finally, we obtain (5.5.14) by taking the supremum in (5.5.21) over all g in €;°(R")
with LY norm equal to 1.

Suppose now that pg = p; = oo, which forces p = . In this case we work directly
with the analytic function

F@) = [ Tgtar

on S, which is continuous on S, it satisfies

4

|F(K+ly)| SBKMK(y)HfHLm(”g”Lq' +£/) q;c7 K€ {Ovl}a )’6 Ra

and is bounded by ¢C""™ for all z € S. Proposition C.0.2 yields the bound

IF(0)]=| | To(f)ghdx| <M (0)By °BY||f|-(llgll,« +€). (5522

R”

At this point we make use of the inequality

[ To(ga

<| [, g

+ ‘ [ -9d 65523

and the auxiliary estimate (5.5.15) with pg = p; = oo; this implies that the second
term on the right in (5.5.23) is bounded by a constant times €. Inserting a limsup
as € — 0 in both (5.5.22) and (5.5.23) allows one to replace F(0) by g To(f)gdx
in (5.5.22). After doing this, we take the supremum over all g in €;°(R") with L
norm equal to 1 to deduce (5.5.14).

Case II: min(go,q1) < 1. Assume first that min(pyg, p1) < e and as before suppose
po < pi, so that pg, p < e. Choose r > 1 such that r min(go,q1) > ¢. Let us fix a
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nonnegative step function g with |[g||,» = 1. Assume that g = > arxe,, where
a; > 0 and Ej are cubes of finite measure and with disjoint interiors. For z € C
define

where we set

Notice that R(0) = 1, R(it) = (17%) (1+it):/(lfrqil)forteRandthat

Is"]

We fix f € €5 and € > 0. Let ff be as in Case I obtained by Lemma 5.5.1. Define
the function

(rq1/q)

(rq0/9) = HgHL" =1. (5.5.24)

L(ra0/9)

o

/_‘

L) )| |¢°

G(z) = (5.5.25)
RI’L

<x>|dx=k§1/Ek

where

Fi(rg)=al 2,cg|,,0 TR () (v),

If we knew that each term of the sum on the right in (5.5.25) is log-subharmonic, it
would follow from Lemma B.0.2 that so is G. To achieve this we use Lemma B.0.5,
which requires knowing that for each k, the mapping z — F(-,z) is analytic from S
to the Banach space L! (Ex). To prove this, in view of Theorem B.0.3, it suffices to
show that for w € L™(E}) the function

7= | F(x,2)w(x)dx
Ey

is analytic in S and continuous on its closure; on this see? Exercise 5.5.1.
To apply Proposition C.0.2 to G we verify its hypotheses. Using Holder’s
inequality with indices rZO and (rqo) (5.5.12), (5.5.3), and (5.5.24) we obtain

q
L:)Jrg)m)

n<{]. n|n<ﬁ><x>q°dx}"’%|rg”|| e < (BoMo() (|71

when ¢ € R. Similarly, we obtain the estimate

o q

Grrin={ [ [Tt an] " 6] < (Bt 0 14

4 The condition s > 1 in Definition 5.5.2 is used here. Case I only requires s > 1.



5.5 Interpolation of Analytic Families of Operators 227

Finally, we verify condition (C.0.5) for G. Let E be a compact set that contains all
E;.. We apply Holder’s inequality with indices 2 7 5 and ( ) to obtain for z € S

G(@) < LU e I8°N 2oy
Ne K 2(Ly Ly
< [Z(l+lc£| |7 (u } [Z 1+ oo e |
j=1 k=1

Sk

< ohup,Clus, E)eﬂm[z(lﬂcﬂ) }

Jj=1

[ S0

k=1

having used (5.5.9). Taking the logarithm, we deduce condition (C.0.5) for G.
As g% = g, by Proposition C.0.2 we conclude

q N ¢
/Rn To(f§)(0)1* 8(x) dx = G(6) < (BY *BIM(O) (|| f]7, +2)7) " (5:5.26)
Inequality (5.5.26) implies that

r
q

HTG(fGE)HLq = H|T6 fe

r

q . q
sup{/|T9(f§)(x)|fg(x)dx: g >0, gstep function, g, = 1}

< By BMO)(|/], +€) " 527

We also note that a similar (but simpler) argument, applying Proposition C.0.2 to
the log-subharmonic function H(z) = Jga |T2(f)(x) |% |g%(x)| dx, yields the estimate

wMQmmm%mms@wwwmwmwﬁmy
It follows from this that
1To (£)[|,0 < BEBIMO)[| £ 100 1117 (5.5.28)

via a duality argument similar to that leading to (5.5.27).
‘We now make use of the triangle inequality

min(1, min(1, min(1,
ITo (NI < 1 To(f = £E)IE" 4 | To () i,

For the second term on the right above we use (5.5.27), while the first term is
bounded by a constant multiple of (¢!~¢)™"(19) in view of (5.5.28), and hence
it tends to zero as € — 0. We deduce (5.5.14) by letting € — 0.



228 5 Fractional Integrability or Differentiability and Multiplier Theorems

Finally, if pg = p1 = o, then we must have p = oo, and the claimed assertion is
contained in (5.5.28), which is valid even when pg = p; = oe. [l

Example 5.5.4. We examine some families for which Theorem 5.5.3 applies.

1. The family T:() (x) = [, <; @(x—y)[y| "“dy, defined for ¢ € ¢ (R"), satisfies

the analyticity condition of Definition 5.5.2 in S but is not continuous on S.
In fact, the analyticity assertion can be reduced to Lemma 2.7.6 by Fubini’s
theorem. The continuity on the boundary fails at z = 1, as this is easily seen by
an example.

2. The operators {(1 —z)T.};, where T is as in the previous example, form an
analytic family of admissible growth. To verify the continuity on S, we write

dy
|y[™=

(1-9teW=01-0 [ a(-9 [ (o) -0l)

NESHME

and we notice that the first integral on the right equals w,_1n~'(1—z)~!. So
the factor 1 — z cancels the singularity caused by this integral. Also, using that
lo(x—y) — @(x)| <||IV@|l-|y| we see that the second integral converges abso-
lutely and produces a continuous function of z on S. These calculations also
show that (1 —z)T;(¢)(x) is bounded on compact sets independently of z, so it
satisfies the admissibility condition (5.5.9).

3. The operators V, = (I — A)Zz+(“+ib)z, Z €S, a,b € R, form an analytic family
of admissible growth. The analyticity can be derived from Lemma 2.7.5 and is
omitted. To verify that V; is of admissible growth, we notice that the real part of
7>+ (a+ib)z equals x*> +ax — (y+ %)2—1— 1b? forz=x+iy €8, so for ¢ € 65
we have

IVe@|- < [ (1+4m2 6P 468 d < o,

and this constant is independent of Imz.

4.Let G be a nonnegative function in L'(R"). Then the family W,(¢)(x) =
Jre @(x—¥)G(y)*dy, z €S, @ € €5, is analytic of admissible growth. We only
verify the assertion of analyticity. To see this, we fix a point zg in the unit strip
S and we pick § > 0 such that 28 < min(Rezp, | —Rezp). Then for |z| < , by
Lemma 2.7.5, the integrand of

Wtz (@) (x) = Wey (@) (x)

)ZO G(y)Z —1 d
Z

Z

= [ ox—y)G(y y
R”

is bounded by %|qo(x —y)|G(y)Re% max (G (y)?%,G(y)~2%), which lies in L' (dy)

by the choice of 8. So the LDCT allows the passing of the limit inside the

integral and the existence of a complex derivative of W,(¢)(x) follows.
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Exercises

5.5.1. Suppose that {7} } is an analytic family of admissible growth according to
Definition 5.5.2. Prove that for any bounded function g with compact support and
any ¢ € ¢;°(R"), the mapping

z— | T(¢)gdx
R)l
is analytic in the unit strip and continuous on its closure. [Hint: Approximate g in
L* by % functions. The condition s > 1 in Definition 5.5.2 is needed here. ]

5.5.2. (Kato—Ponce inequality) Let0 <s<2N,N€Z", and y € ./ (R"™). Show
that for any 1 < p < eo there is a constant C = C), ,, s v such that for all f in .(R")
we have

1WAl < ClA ey 2 10w

|| <2N

Then extend this inequality by density to all f € L} (R") (Theorem 5.4.8).
[Hint: Note that f € . if and only if (I — A)% f €. Apply Theorem 5.5.3 to the
family of operators T;(f) = (I — A)N? [y (I —A) ™M f],z €8]

5.5.3. (Kato—Ponce-type inequality) Let 1 < p,q,r < oo satisfy 1/p+1/qg=1/r
and let s > 0. Prove that when f lies in L{ (R") and g lies in L{(R"), then fg is an
element of L} (R") and there is a constant C = C), 4 5,, such that

178l <<lls

21181114

[Hint: Prove the inequality for f,g € 6> and use density. Apply Theorem 5.5.3 to
the family 7, (f) = (I— A)N [((I-A) N f) (I—-A)"Ng) |, N = [§] + 1, for g € 65
fixed. For the density argument use Exercise 5.4.3.]

5.5.4. (Interpolation between Sobolev spaces) Let 1 < pg,qo,p1,q1 < o and
50,51,%0,#1 be real numbers. Suppose that ¢ is a tempered distribution whose Fourier
transform is a locally integrable function and tempered at infinity; cf. Example 2.6.2.
Define T(¢) = ¢ * 0, for ¢ € .7 (R"). Assume that for some constants My, M| > 0
we have ||T((p)||LZi(R”) < Mi||o| (R for all ¢ € (R") and i = 0,1. Show
that there is a constant C depending on all the preceding parameters, such that
||T((p)HL?(R,,> < C||(p||Lf<Rn) for all ¢ € .7 (R"). Here 1/p = (1—6)/po+6/p1,
1/q: (1 —6)/QQ—|—9/Q1, s = (1 —9)s0+9s1,t: (1 —6)t0+9t1, and 0 < 6 < 1.
[Hint: Apply Theorem 5.5.3 to the family 7, = (I — A)2(1=2)(o—s0)+ 3zl —s) T |

5.5.5. Let N € Z™. Suppose 0, g € L*(R") satisfy

[ 1B g dE <
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(This condition implies that 9%(c * (—A )" g) exists for all |a| < 2N and all ¢ real.)
Suppose that there is a constant B such that for any multi-index o with |¢t| = 2N we
have

i Bllgll;2 ;
‘aa(f’*(—A)lg)(xﬂé(leSw, t€R, xR

Prove that for any 0 < 6 < 2N, (fA)% (o x g) is a well-defined function and there
is a constant Cy ,, (depending only on N,n) such that

o L 1-5%
B o]l * llgll2
(I+R)e

‘(_A)g xeR".

(0+8)(x)| < Cna

[Hint: Show that the mapping z — (1 + |x|)?¥3(—A)"?(o * g)(x) is analytic on the
unit strip using (2.7.8). Then apply Corollary C.0.3.]

5.6 The Calderon-Torchinsky Multiplier Theorem

Theorem 5.3.6 improves Theorem 5.3.2 in allowing the multiplier to have fractional
derivatives. In this section we adjust the number of derivatives to depend on p.
For p = 2, naturally, no derivatives are needed of the multiplier, but this number
gradually grows as p moves away from 2.

Let ¢ be a complex-valued bounded function on R”. Associated with ¢ we define
a linear operator

To(‘P) = ((/ﬁc)v

initially defined for ¢ € .#(R"). The next result provides a weaker but more useful
formulation of Theorem 5.3.6, especially interesting when r = 2, although, for our
purposes it will be useful for r near infinity.

Theorem 5.6.1. Let ¥ € ¥ (R") be as in (4.4.23). Let | < r < oo and s be a real
number such that s > max (%, ). Suppose that ¢ € L(R") satisfies

Ko =sup||(I—4)? [0(2/)¥]
JEZL

R < (5.6.1)

Then T admits a bounded extension from L? (R") to itself for all 1 < p < eo.
Proof. As 1 and n/s are smaller than both 2 and r, we pick p such that
max (1,%) < p <min(2,r).
The statement of Theorem 5.3.6 yields
HTG((P)HLP(Rn) Scp,nKH(PHmen)a < S (R"),

where K, defined in (5.3.2) in Lemma 5.3.1, is
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—supH %[ o(2/-) A]HUJ(R")’
j€zZ

where 1 < p < 2ands > n/p. So to prove our result, it will suffice to show that

s

H(I_A>§[G(2j')@]‘|LP(R” <CH (1-A %[ (ZJ)@]

. (5.6.2)

for every j € Z. Define © as in (5.3.1), so that 2) equals 1 on the support of '
Replacing 7 by PO on the left, (5.6.2) is derived by the following lemma. ]

Lemma 5.6.2. Let O € %y’ (R") and s > 0. Suppose 1 < p < r < oo. Then there is a
constant C = C(n,p,r,s,0) such that for any @ € L} we have

[(1-4)2 [06)] <C||(1-4)20|

(5.6.3)

.6 (R") Lr(R")

[Taking ® = & (27 -)¥, we obtain (5.6.2) from (5.6.3).]

Proof. It will suffice to prove (5.6.3) for w € ¢;° (R™). Indeed, if this is known, given
o € L} pick a sequence ¢; € 6;;° converging to @ in L] (Exercise 5.4.3). Then {¢;};
is a Cauchy sequence in L] and (5.6.3) yields that {¢; @} j is a Cauchy sequence in
L? . But this sequence converges in L? (Theorem 5.4.8) and the limit coincides with
the LP limit of the sequence {¢; @} j» which is ®©. This implies (5.6.3) for @ € L.

So, in proving (5.6.3), let us work with functions @ € %;;°. We pick a positive
integer m such that s /2 < m. Consider the family of operators

T (0)=(1I-A)"[0(I-A)>"0], ©c%, (5.6.4)
defined on the strip S = {z € C: 0 <Rez < 1}. Notice that for w,g € ¢;°,

eT(@)di=[ [ E)(1+4rEP) (& ~n)(1+47nf)E "0V (m)dnd,
R" R"JR"

which converges absolutely. This function is continuous and bounded on S; it is also
analytic in S, which can be obtained by the LDCT using (2.7.8) and the rapid decay
of the integrand. Additionally, one can write

L)) = [ [ (1+4m(ER) 0(E ~n)(1-+4x )3 "0 (n)dne >4,

and from this one obtains that T;(®) is bounded on compact sets by a constant
independent of [Imz|. This verifies the admissibility condition (5.5.9).
Let C(n,t) = (1+ |¢[){2]*2. Then

IT:(@)||,, <€ Clrmi)||OG —2)3 " w]|,
<C'C(n ‘supp A)|%7% (I-A4)"
<c’c(n mt)?|supp(@)[? 7 ||(1—A)} 0|,
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having used Corollary 5.3.3 twice and Holder’s inequality. Likewise, we obtain

T3 (@) < €' Clon) | (1= )" [6(1 — 4) 7743 0]

P
< C'C(n,mt) z z Ca,[i (5a—ﬁé)aﬁ [([_A)—m—mit+%w]
la|<2mB<o P
SC//C(n,mt)]supp(é)’%*lr Y HaB(I_A)—m—minrgw L

|B|<2m

Now notice that 9P (I — A)~" is an operator with symbol (27i&)P (1 4-472|E|?)~™,
which satisfies the conditions of Theorem 5.3.2 when |B| < 2m (Example 5.3.8).
Finally, applying Corollary 5.3.3 to (I — A)~™" we obtain

[T (@] < C" Cln,me)?||(I-A)2 0

7

As the constants C(n,t) grow at most polynomially in |¢], Theorem 5.5.3 (with go =
g1 =p and po = p1 = r) yields

||Y:v/2m(w)HLp < C(”vparvsa@) ||(I*A)%w

L

which is exactly (5.6.3). 0

Example 5.6.3. Let (&) = (1 —[&|)x(—1,1](§). We show that o lies in .2, (R) for
any 1 < p < oo. Let 0 <t < 1. We have that 6’ = X[-1,0] — X[o,1) and the functions®
(I— 82)%)([,1’0] and (I — 32)%)([0,1] lie in L"(R) when 1 < r < 1/t by the work
contained in Example 5.4.6. Thus, so does (I —9%)2o’.

Using the Fourier transform one verifies the identity,

1+ t

([-9%) 7 0=(1-0%)7 c+T,((I- %0,

where T;, is the Fourier multiplier associated with m(&) = —2mi& (1+4n2|E|?)~1/2,
As T, and (I— 92)'2" preserve L', it follows that (I — 9%) '3 o lies in L' (R) when
I1<r< % So we fix rsuchthatmax(],t%l) =1<r< % < oo, sets=1+¢, and
consider the dilated and translated version

7= (18 5y (6-3)

R

of o(€). Notice that 7 is supported in [%, %] and if ¥ is as in (4.4.23), then ¥ = 7.

Moreover, 1171-(21' -)=0if j # 0. This shows that the function 7 satisfies condition
(5.6.1) for our choices of s and r, which are related as follows: % <l<r< ﬁ

Applying Theorem 5.6.1 we obtain that T € .#,(R) and so is ¢ by (2.8.2) and
(2.8.3).

3 The symbol 9 denotes the Laplacian in dimension 1, i.e., the second derivative.
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To be able to reduce the number of derivatives required of a multiplier for p near
2, we will need the following result.

Theorem 5.6.4. Fix 1 < rg,r; < o, 0 < P05 P1,90,91,50,51 < o, 0 < By,Bj < ee.
Suppose that roso > n and ris; > n. Let ¥ € €;°(R") be supported in 1/2 < || <2

and satisfy 3 jcy, W(27/E) =1 when & # 0. Assume that for k € {0,1} we have

175 () | aw ey < Bresup 0272 g 1 e e (5.6.5)
je
for all f € €;5°(R") and for all ¢ € L™ that satisfy
§1611Z3H6(2/~)‘I’ L ey < (5.6.6)

For0< 6 <1 let

1 1-6 6 1 1-6 6 1 1-6 @6
- = +—, —-= +—, -= +—, s=(1—-0)so+0s;.
p Po P1 q q0 q1 r o r

Then there is a constant C, = C,(ro,r1,50,51,n, 0) such that for all f € 6;°(R") and
all o € L*(R") that satisfy

sup [|o(2/)¥ |y < (5.6.7)
JEZ s
we have N
|75(H)l o ey < C-By~*BY SupHO' @V A ey (5.6.8)

Proof. Fix ® > 0in 6§ supported in % <€ <4and @ =1 on the support of P
Also fix 0 € L™ satisfying (5.6.7). For j € Z introduce the function

;= (-4)}[c(2))¥]

which lies in L"(R"); note that the hypotheses imply that 1 < r < e and s > 0. For
0 <Rez < 1, we define a function o; on R” by setting

0.(&)= Y (1 4) 2193 0 e 0] (27U E) B(2UE). (5.6.9)

JEZ

For any & € R”, this sum has at most four terms, in view of the support propertles

of @. Moreover, notice that Op = O since D is equal to 1 on the support of ¥, Let

us momentarily assume that o is a bounded function; this will be shown shortly.
We examine a few properties of o;. First we claim that for x € {0,1} and t € R,

(I— A)STK [GK+il(2k')@] Lk

<cU+)ER Y [1-a)i[o@)¥]|;
Jilj—k|<3

(5.6.10)

o
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where C = C(n,rg,|s1 — so|, ¥, ®). Indeed, notice first that in the sum defining
62(2"-)‘?’ contains only the terms with j € {k—3,k—2,k— 1,k,k+1,k+2,k+3}.
Then we obtain (5.6.10) using Exercise 5.5.2 and then Corollary 5.3.3 and the obser-
vation that when z = K +it, t € R, the L'* norm of the expression inside the square
brackets in (5.6.9) equals ||¢; ||2/,r’< Thus (5.6.6) holds with G in place of & when
Kk =0, 1. This implies the validity of (5.6.5) with G, in place of o when Kk =0, 1.
Combining (5.6.5) with (5.6.10) for k =0, 1 yields for all r € R

HnﬂmﬂMWSme+vwﬁ“gyW—Aﬁ[@H P\ (5.6.11)
(S

for all f € €;°(R"), where T5, is the multiplier operator associated with ©.

We now estimate the L norm of o,. Fix & € R"\ {0}. Then there is a jj such
that |£| ~ 2/0 and there are at most four terms in the sum in (5.6.9). For these terms
we estimate the L™ norm of

([—a)~F1-9-Fe]|g|0 1TITAT A 0]
Forz=t+irwith0 <t <1,lets; = (1 —1)sp+ Ts; and

1 1-7 =

rr ro r

By Theorem 5.4.9 (c) (so > n/ro, s1 > n/r1 = §; >n/r;) we have

SO _
1—A) 20 r() rl Z iArg @;
H( ) [|‘P| e ] -
< C(re,s1,m H (I—-A)" P(1-2)- U(P|ro —2)+iy etArgq),] .
ST
SC("TJT,")H(I—A)” p U(pjm 1_Z)+ﬁzeiArg¢j]

L't
SC’(}’T,ST, V(14 |so—s1]t]) % H|(p|r0 —Dt5 2 iAIg ;) )
T

(I-2)+ =+
< C"(ro,r1,50,51,T,n)(1+ |e)I2 H|q) |ro it o

= C"(ro,r1,50,51,7,m)(1+ |1]) +2H<P;

Lo
having used Corollary 5.3.3. It follows from this that |G+ ||~ < e, precisely, that

Lg)#. (5.6.12)

el < C"Gro.rv.so,s1, 7)1+ ()2 (sup o (27 ¥
JEZ

Finally, we show that {75, }. is an analytic family of operators of admissible
growth. Obviously, for ¢ € %;°(R") one has

[ To.(@)|| 12 < llocllz= | @] 125



5.6 The Calderén—Torchinsky Multiplier Theorem 235

and using (5.6.12) we obtain the admissibility condition (5.5.9). To verify the ana-
lyticity of the family, for any f,g € €;°, we must show that the function

FE) = [ ol et dx= [ o(6)7(E)e" (E)dE
is analytic on the unit strip S = {z € C: 0 <Rez < 1} and continuous on its closure.
Introduce a 6;° function £2 equal to 1 on the unit ball and vanishing outside the
double of the unit ball. Then if we can show that the functions

Fm(Z)=/Rncz(é)f(é)gv(é)(l—9(2’"5))9(27’”5)615, meZ’, (56.13)

are analytic on S and continuous on S, the same conclusion will follow for F, as
F,, — F uniformly on compact subsets of S; this last assertion follows from the
LDCT and (5.6.12). The advantage of working with F, is that only finitely many j
(depending on m) appear in the definition of o in the integral in (5.6.13) in view of
the support of 2. So we fix such a j, we set

Gi=|oj| €L,
Hj=®f(2/)g"g(27) (1 - Q27" )) @2/ ™),
s(z) = —5(1 —27)— szlz,

and matters reduce to showing the analyticity of the function

-z

Ja=ayRe T e B2 BT (6)(1-2(2"E) (g

T +V AT in
= Rn(I*A)“Z)[G,O NI (E) H ()2 dE
= [ Gy(&) T MO (1 - AYOH;] (E)27dE (Exercise 5.4.6)
RIl

Gi(E) 0 et o

= (1 +472|E2)" (2 co(—2mik) )[(1 A)POH ](5)2’"5]5

R |0¢\<2n
. ( ) ro V1 eiArg ?; (&)
o [ .
\a\<2n "R 1+47r2|§| )"
B<a

x 9P (1+4m*|n )@ (9P H;) ()™  Nandé, (5.6.14)
where, after writing

(1+4m%E?) = Y co(-2mi&)"

lo|<2n
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via the identity in Remark 5.4.4 (c), we used Fourier inversion and we expanded the
oth derivative via Leibniz’s rule. The double integral converges absolutely, and the
continuity of this function on S is straightforward. Suppose now that we wanted to
show that the function of z in (5.6.14) is analytic at a point wy € S. Pick 6 > 0 such

that . I*W() wo 17W() wo
28 < min (Re( +—),17Re( +—)). (5.6.15)

1o " o i

Note that this is possible, since by assumption we have 1 < rg,r; < oo. By
Lemma 2.7.5, when G;(§) # 0, for

we obtain o To

At L L
‘Gf@‘ : 1‘g L0 max (G5(E) 2, 1G5 (€)0). (5.6.16)

Then for

combining (5.6.16) and (5.6.15) gives

I—wog—w | wo+w I-wg | wo 1 1

’Gj@m* T —GiE) T

w

”5 " max(G;(€),1).

As G = |oj|" € L', it follows that max(G;,1)(1 +4x>|-|?)~" also lies in L' (R").
So the LDCT can now be justified when the z derivative hits the term involving
G;(E). When the z derivative hits 98 (14 472|n[?)*®@, a similar (but easier) argu-
ment applies, and the rapid convergence of the 1 integral in (5.6.14) allows the use
of the LDCT. This argument yields the analyticity of the family {75, }..

Now that we know that 7. is an analytic family of operators on the strip, esti-
mates (5.6.11) and Theorem 5.5.3 allow us to deduce (5.6.8). U

We now prove a result that extends Theorem 5.3.6 to the range s < 7.

Theorem 5.6.5. (Calderon-Torchinsky multiplier theorem) Fix ¥ as in (4.4.23).
Let 1 <r,p <e and 0 <s < 7 satisfy rs > n and |%— 1| < £. Then there is a

constant C(n, p,s,r) such that for any ¢ € L”(R") that satisfies

sup H0'(2j-)‘17
JEZ

Lwy < (5.6.17)

and for every f € 65" (R") we have
HTG(f)HU,(R,,) <C(p,n,s,r) supHG(z.i.)‘P
jez

Il gy (5.6.18)
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Proof. Letusfix 1 <p<2,1<r<e,0<s<5,r>"% suchthatf—f < 5. Select
parameters as follows:

Let 5y =5 — n(% — 3) > 0. Consider the

s-axis

dotted line passing through (2,s1) and
(E,s) (see Figure 5.1) and select a point
(%,SO) on this line satisfying so > 5 and
po>1,ie.,

Jr(1 1)s—s1>n
50 = S1 —_—— ) —>=
Po 2 %—% 2
and
1 Z2—-s1/1 1 1
—+2 1(——7)<—<1.
2 s—=si\p 2/ po
Define 0 € (0, 1) as follows:
11
9:%—;:&)—5
11 o
%_j S0 — 81
As n/r < s, notice that
1 _a so 11

o
1 9 <m1n( ) ,179>.
Pick 1/g strictly between the above num-

bers and define:
1 1 o 1 1 1-9 F?g. 5.1 By construction, the point

—=—t—, —=-—— (7 s) lies on the dotted line segment

rh 1 ¢4 noor q Jommg(— s0) to (5,s1).

After selecting these parameters, we make a few observations. First of all, we
have 0 < % <% <land0< % << % Thus the conditions 1 < ry,r| < oo,
roso > n, and r;s1 > n are satisfied. Also, one has

1 1-6 6 1 1-6 6

- = +—, s=(1-06)s0+06s;, —= +—.
p Po p1 r o r

As so > max (3, "0) for any function that satisfies (5.6.6) with k¥ = O one obtains
now from Theorem 5.6.1 that (5.6.5) holds when k = 0 with gg = py.

Now fix an L function o that satisfies (5.6.6) w1th K =1. As risy > n,
Theorem 5.4.9 (c) (Sobolev embedding) gives that G(Zk )‘I’ is a bounded continu-
ous function which satisfies for any & € R”" and any k € Z

[o(25E)P(E) < C|jo (2" )P

| <o (5619

L (R) < Cj‘ég HG(Z o (R

We now replace & by 27%& in (5.6.19) and we write 6(&) = 6(E)Y, ‘1\’(2"‘5),
& # 0. But for a given & # 0, at most three terms in the sum are nonzero, so we
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obtain from (5.6.19) that

o]lz= <3Csup |o(2 )P <o,
JEL

)
As ||Tsl;2_2 < ||o||z=, it follows that any o that satisfies (5.6.6) with k¥ = 1 also
satisfies (5.6.5) with k = 1 and p; = q; = 2. We have now verified all hypotheses
of Theorem 5.6.4. An application of Theorem 5.6.4 yields (5.6.18) when 1 < p < 2.
Figure 5.1 displays pictorially the interpolation: It is between the endpoints of the
dotted line which contains (; s). In that picture the solid slanted lines represent

the equation \7 - f| = = while the region above that is the set of points (7 s) that

satisfy |f —1<s
The case 2 < p < oo follows by duality via Proposition 2.8.6, while the case p =2
is contained in the following argument

7o) ey = o= < 250p [P < Csup o2/,
JEZ JEZ N
where the last inequality is due to Theorem 5.4.9 (¢) as rs > n. ([
Exercises

5.6.1. Lets > and 1 < r < 2. Prove that there is a constant C = C(n,r,s) such that
for any p satisfying 1 < p < e we have

|7 |

LP—LP < C||GHL§~

5.6.2.Let 0 < 6 < 5, @ € 65 be supported in 3 < || < F 3 and let a; lie in a
bounded subset of R” for k € Z. Prove that the functlon

=Y 027 )27"E —ayf?

keZ
lies in .#,(R") for any 1 < p < eo. [Hint: Let N =[5]+1 and pick s such that
5 <s <N and r satisfying max(§,1) <r < 5. Let y € %O have L” norm equal

to 1. Apply Corollary C.0.4 to the function z — fR,, (I-A)T o | —a;|PNV T ydx
for 6 = 5. Note that ‘I/}(p = @ if ¥ is as in (4.4.23), and apply Theorem 5.6.1.]

5.6.3. Leta,b > Osatisfy < % Let ¢ be a smooth function supported in the interval
[—1, %] Prove that o(x) = |x|% i7" o(x) lies in . »(R) when |7 -1I< b
[Hint: Given p satlsfylng |7 —Il<4 5» choose s such that |7 —Il<s< 7 and then

pick r with 1 < r < m. Write the L" norm of (I — 82)2/2[ o (x) x| E9)(14)] as
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a supremum of integrals against % functions of L” norm 1 and use Corollary C.0.4
to prove that this norm is finite when 6 = s. Then verify condition (5.6.17).]

5.6.4. Let a,b > 0 satisfy § < 5. Let ¢ be a smooth function supported in the ball
x| < & in R". Prove that o (x) = |x\“ei‘x|7b(p(x) lies in .#,(R") when |é —3l< L.
[Hint: Construct an analytic function as in the preceding exercise.]

5.7 The Marcinkiewicz Multiplier Theorem

To motivate our discussion, let us consider the following function in R*\ {0}:

&&
& +EF+ES

This function is certainly not homogeneous of degree zero, but it is smooth away
from the origin and is invariant under the set of dilations:

(E1,8.83) — (A%E,A%6,,183), A > 0.

Let us examine this situation a bit more generally. Suppose that there exist ki, ..., k,
in R" and 7 € R such that the smooth function ¢ on R"\ {0} satisfies

o(AME .. ARE) =A"0(,... &)
forall &;,...,&, € R\ {0} and A > 0. Then differentiation gives
pckitrokigoeg ke o AkRE) = A1T9% (&,..., &)

(81,62,83) —

for every multi-index o = (i, ..., o). Now for a fixed & € R"\ {0} pick the unique
A(E) > 0such that (A(E)M1&,... A (&) E,) € 8"~ 1. Then A(&)%i%|E;|% < 1, and
it follows that

901 &) < | sup 9% [A(€) 0010k < |
Sn-

where C,, is the maximum of d%c on 8"~ !.
So functions ¢ that are homogeneous of a purely imaginary degree with respect
to general groups of dilations and are smooth on 8"~ ! satisfy

1046 (&1, E0)| < Cal&r| 7% ---|&, |~ (5.7.1)

for all multi-indices o and all (&;,...,&,) € R" with §; # 0 for all ;. In this section
we show that such functions are L? Fourier multipliers.
Next we define product-type Sobolev spaces.
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Definition 5.7.1. For s; > 0 define the operator (I — 812)7/ acting on an element
f e (R") as follows:

(- ¥ ()= (a+4m0),P) F7)

where (-); denotes the jth variable §; of & = (&1,...,&,). For sq,...,s, > 0 define
the product-type Sobolev space

LR = {f € LP(R") : |I£llg =lu=a o a=a)t s, <)

Lr

Proposition 5.7.2. For s1,...,s, in Z"|J{0} and 1 < p < e and f € LY,

we have
S1 Sn ll /
||fHL31 ____ LR~ Z Z Hal o f
L =0 1,=0

s (R")

.....

(RM)

Proof. In view of the calculation in Remark 5.4.4, we know this result when n = 1.
We now prove it for n = 2. We have

1, ey = o | fo 103002 (=303 s

g
/ {/ f (I— (92 Vf(x1,x0) | dxz}dxl

zZ/ {Z/‘&lzc?ll (x1,%2 | dxz]dxl
11=0
= Z > (el

—05,=0

This proves the assertion when n = 2 and a straightforward adaptation works in
higher dimensions. ]

Our goal in this section is to prove the following theorem.

Theorem 5.7.3. (Marcinkiewicz multiplier theorem) Let ¢ be a €" function
defined on (R\ {0})" that satisfies

O OO )| < Ayl G (572)

forallmj€{0,1} andall§; #0, j=1,...,n. Let1 < p <eo. Then © lies in .#,(R")
and there is a constant Cy, ;, such that

||GH<///[) S CnaP Sup Aml7~-~7mn'
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Before discussing the proof we set up some notation. We use y to denote
a Schwartz function on the real line whose Fourier transform is supported in
[-2,-8]U[%,2], equals 1 on [- —1]U[1,42] and satisfies Sz W(27in) =1
when 711 # 0. We define 0 as follows:

6(n)=w(n/2)+y(n)+u2n), neR.

Then 0 is supported in {% <|&| <4} and 9 = 1 on the support of Y. To simplify
the notation, if & = (&;,...,&,) e R" and J = (jy,..., jn) € Z", we write

278 = (211g,...,27E,)

and we define functions ®y and ®6 on R" by setting
n
oy =[lwx), @0(x)=[]6(x). (5.7.3)
(=1

Then we have

SH(E) = o(E) f]"’[wm 50(6)=20(E) = [T6(2).
(=1

=1

Letk € {1,...,n}. For j € Z we define the Littlewood—Paley operators associated
to the bumps ¥ and 0 by

AP0 = [ o s s w2y

and

Af’k(f)(x):/Rf(xl,...,xk,l,xk—y,xk+1,...,xn)2j9(2jy)dy.

Finally, when J = (ji,...,j), We write

oy _ awl  yan ©0 _ 401 .60n
ApT=Aj o0y, ApT =47 004 T

Then .
A7 () = =2 TTw@ ().
=1
Next we have the following lemma.
Lemma 5.7.4. Suppose that ¢ is defined on (R\ {0})" and satisfies (5.7.2) for all
m;j € {0,1}. Let @y be as in (5.7.3). Then for p satisfying 1 < p < e we have

sup [0(2/ ) @¥ll,p <Cuyp  SUp  Awmm, (5.7.4)
Jezn Ll my,...,my€{0,1}

Proof. By Proposition 5.7.2 the expression on the left in (5.7.4) is comparable to
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S Y e ) o9,

my=0 mp=0

and by Leibniz’s rule this can be estimated by

> - ZZ z||a’1 oo @ )Jor gt 2y,

mj =0 my= Oll

n

— i 21‘ z %‘ Jih .. pJnln
M1:0 = :() =0

Inserting the estimate

I (R Y R CA ] 7%

’a]l]__.aln <ZJ€)|<A11 ln|2h€1| h,. .|2]-n§n|*ln’

coming from (5.7.2), we obtain that the expression on the left in (5.7.4) is at most

my my,

DI San

my=0  m,=01=

Tl @ T ) ()

)

LP

and this is bounded by C,, y p SUp,, {0’1}Am1 ...;nn» as the function ®f/7 is supported
in ([‘L‘%]U[%Z])n U

In the following lemma we denote by M) the one-dimensional Hardy-Littlewood
maximal operator acting only in the /th coordinate.

Lemma 5.7.5. Let 1 < p <2. Let y, 0 be as above. Then, for any f € .(R") and
forallJ = (ji,...,jn) € Z" we have

AT (1)) < CK (MY -M®) (142 (£)[P)]P (5.7.5)
where

Proof. Since 6 is equal to 1 on the support of ¥, ®/6\(2’J &) is equal to 1 on the
support of @y(277&) for any J = (j1,..., j.) € Z". Using this for x € R" we write

AV Ts(f) (X1 %)
:/ F(€) @y(277E)o(E) Mo dE

:/ F(E)20(27E)o(E) W2 E) 2mixEdE
(A7 (N (E) (&) @p(2778) ™ e g

2 (AT () () 0(21E) @p(E) T g
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= [, @7 (@7 ))& [0(2) @ T 0] (Eag!
= [ a7 (@)@’ ) 070 - 2xay

2 [ A7 () [0!) @] 2Ty~ 2 dy

2j1+-.4+jr1A;§9(f)(y) n i
= J JI+2%x —ye) [0(2)) @y] 2y —2'x)dy.
R [T/ (1427¢|xp — yg|) p:l( e =yDlo@) @)@y )y

Holder’s inequality now gives that \A?WTG (f)(x)| is bounded by
A7 (NP ’
( / Qi+t g )Y dy)
" IT7y (1427 e = ye )P
N

) ) n . p
% (/ 21+ +n H(l—|—2“|w—yg|)' [6(21-) ®1/I;]A(2Jy—2"x) dy) P .
. =1
As p > 1, n consecutive applications of the one-dimensional version of Corol-
lary 2.5.2 yield the estimate

s ATC(DONP ;
1+t in J (M. ) (120
( anj : T, (1 + 27t [x, — ye])P dy) SC[M M (14; (f)|P)(x)}

We now write

</ 2j1+'~+jn
n
_ < /R n

[T+ [o@ ) ew] ()
<2% </R

o=

n

T[T +2%x =y [o(2” ) @y~ 2]y —2"x)
=1

N

dy) ?

10 42y P) [0 ) o7] ()

(=1

=1
<2 ||(1—a))r - (1-32)2 (2 ) V] " (5.7.6)
< CK.

This yields (5.7.5). O

‘We now have the ingredients needed to prove Theorem 5.7.3.

Proof. Suppose first that p > 2. For technical reasons we will need to know that
Ts(f) lies a priori in LP. To achieve this, we assume that f lies in «5/%,...,0, the space
of Schwartz functions whose Fourier transform is compact and does not intersect
any plane of the form &, = 0. Such functions are dense in LP(R") for any 1 < p < e
(Exercise 4.6.1). Fix such a function f. For fixed x = (x1,...,x,) € R" we write
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To(£)) = [ F(E)o(§)emdag
1

= WAﬂf(é)G(é)(l-k&)...(1+an)ezmx~§dé
-

= e [ a1 ) [Fo] () St

:!:1(1 +2717in) .

In view of Leibniz’s rule, hypotheses (5.7.2), and the fact that fhas compact support
that does not intersect the planes &, = 0, we obtain

| To () (xtsesin)| S Cp (TP )™ (1 )

But this function lies in L?(R") for all p > 1. Thus ||T5(f)||r < e, which allows
the use of inequality (4.6.11) in Theorem 4.6.4.

Applying first the inequality (4.6.11) of Theorem 4.6.4, then Lemma 5.7.5, then
Exercise 4.3.7 (with r = 2/p), and finally inequality (4.6.10) in Theorem 4.6.4, we
obtain

1
2

175(f)]

ey 60| (X147 T ()7)

Jez"

LP

<C,(nK (2 [M(l)"’M(n)(|Af®9(f)‘p)}ﬁ)j LP(RY)
Jezr
—C' (nK My (|A20 P % : %
! (n) JZZ (1a7°(5)1P) Lol
E n
7 ®9 2 % %
<cym|( 3 14 0r);,
ez
_ 6 2 :
_ClmK (,én 47°NP) e

< C;J//(n)KHfHIJ(R”)‘

Exercise 4.3.7 makes use of the assumptions 1 < 2/p < e and 1 < p/p < eo. This
proves the claimed bound for functions f € 5/”(; ...,0, which is a dense subspace of L.
By density, there is a bounded extension of 7z on LP(R") for 2 < p < e with norm
bounded by C,’(n)K. We recall that by Lemma 5.7.4, the constant K is bounded by
a multiple of
sup  Auym
myp,...,mp€{0,1}

as claimed.

Finally, the case 1 < p < 2 follows by a duality argument, while p = 2 is straight-
forward. (]
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Exercises

5.7.1. Suppose that 07, 0, are complex-valued functions that satisfy (5.7.1).

(a) Prove that o]0 satisfies (5.7.1).

(b) Let B be a fixed multi-index and suppose that 03 is a complex-valued function
that satisfies [0703(&)| < cp ,|&i Bi=n ... |&,|P=" for all multi-indices y. Show that
0P o3 also satisfies (5.7.1).

(c) Verify that Vo (&) - & and EP9P oy (&) satisfy (5.7.1).

5.7.2. Let o be a real-valued function that satisfies (5.7.1). Show that ¢/ also satis-
fies (5.7.1). [Hint: Use the Faa di Bruno formula (Appendix F).]

5.7.3. Let sq,...,s, > 0and 1 < p < eo. Show that the function

(1+4m2& )T - (1 +472E ) ¥
S1t++sn

(1+4m2[8)2) 2

is an L? Fourier multiplier. Conclude that Lfl 4ts, (R") continuously embeds in the
product-type Sobolev space Lf, _;, (R").

5.7.4. Letsi,...,s, >0and | < p <eo.Provethat L} _  (R")isacomplete normed
vector space and .(R") is a dense subspace of it. [Hint: Mimic the proofs of The-
orems 5.4.7 and 5.4.8.]

5.7.5. Suppose that ky, ...k, € Z™ are such that k = (% 4+ é)*l € Z*. Show
that the function
|‘§1 T én‘Zk

IREIREEEE
defined on R\ {0}, is an L” Fourier multiplier for 1 < p < .

M(‘gh---vén)

5.7.6. Let 7 be a real number and let py,...,p, be positive integers. Prove that the
following functions are L” multipliers on R" for 1 < p < ce:

o= X TI6M) . 1<men

SC{T,...n} j€S

IS|=m

5.7.7. Let 7 be a real number and let py,...,p, be positive integers. Prove that the
following function defined on (R\ {0})" lies in .#,(R") for 1 < p < oo

(1€ |—2p1 N |§n|_2Pn)i7.
[Hint: Use Exercise 5.7.6 with m = n — 1 and Exercise 5.7.1.]

5.7.8. Let b > 0. Prove that the following function lies in .#,(R") for 1 < p < ce:

&
SR SE ST

¢ =(&1,--,6n) R\ {0}
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5.7.9. Consider the differential operators
Ly =0 —(d5+---+9}),
Ly 281—‘1-822-1----—1—(9,,2.

Prove that for every 1 < p < oo there exists a constant C, < o such that for all
f€.7(R") we have

HalfHLﬂ < Cpmin (||L1(f)] L |L2(f)||LP) ‘
[Hint: Use the previous exercise.]
5.7.10. Suppose that my,...,m, are positive integers and c; > 0 if m; is even while

¢j < 0if m; is odd. Consider the differential operator L = 61812 I e
(a) Show that for any 1 < p < oo there is a constant C (that depends only on
p,n,mj,c;) such that for all Schwartz functions f on R" and 1 < j, k < n we have

my M;
Hak kaj JfHLI’(R”) = CHL(f)HLI’(R")'
(b) Let m be an odd positive integer. Prove that for any ¢ € .7 (R"*!) we have

19707 95" o

Lp(RH1) = CHL((P) + 8r:n+1(p’|Lp(Rn+l) )

where 1 < j,k < n and C depends only on p,n,mj,c; and m.



Chapter 6 ®)
Bounded Mean Oscillation Bedian

6.1 Basic Properties of Functions of Bounded Mean Oscillation

The mean (or average) of an LlloC function f over a measurable subset K of R” (with
positive measure) is

1
fie= g1 JF Oy

Let us call |f — fk| the oscillation of f over K. Then the mean oscillation of f over
K is the quantity

1
— — fx|dy.
w1 U0~ frlay
In this chapter we study functions whose mean oscillation over all cubes is bounded.

Definition 6.1.1. For f a complex-valued locally integrable function on R", define
1
Flowo =sup 5 [ 1£66) = fold.
H ||BMO o 10| Q| Q|

where the supremum is taken over all cubes Q in R” with sides parallel to the axes.!
The function f is of bounded mean oscillation if || f|| o < e and BMO(R") is the
set of all locally integrable functions f on R” with || f||gmo < °°.

If the pair (BM o, -l BMO) were a normed linear space, then we would have
HergHBMO = HfHBMo+ HgHBMO’ (6.1.1)
’M’fHBMO = |2 HfHBMO’ (6.1.2)
fllgpro =0 = f=0  ae (6.1.3)

Although properties (6.1.1) and (6.1.2) can be easily verified, one notes that
(6.1.3) fails. If || f|| so = 0, then f would have to be a constant Cp over every cube

' All cubes in this text have sides parallel to the axes, unless stated otherwise.
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Q. Covering R" by a union of overlapping cubes, we conclude that Cyp = Cyy for all
cubes Q and Q. So if || f||smo = O, then f is almost everywhere equal to a constant
(possibly nonzero). Thus | - ||pmo is only a seminorm on BMO, even though we
often refer to it as a norm. To rectify (6.1.3), instead of considering classes of func-
tions that are equal a.e., we consider equivalence classes of functions formed by the
binary relation f = g <= f — g is a constant a.e. Under this adjustment, the pair
(BMO, || - ||mo) becomes a normed linear space.

Next we observe that BM O is invariant under translations just like every L space.
But BMO is closer to L™ than all other L? spaces. The reason is that it remains
invariant under dilations, just like L= does; to verify this, let V& (x) = f(Ax), A >0,
then (f*)g = fr0-AQ ={Ax: x € O}, and so we obtain

1 1
@/Q|f’1(x)*(f’l)Q|dx: M/AQV()C)—J‘AQMX,

so taking the supremum of both sides we deduce || Vi llemo = |If |l Bmo-
Our last observation is that BMO in fact contains L. Indeed,

1 1010 =sgp|f—fQ|Q < sup [1£1o+folo] <2/ f]|,--

Although it is more natural to define BMO in terms of cubes, one can define
another BM O space, replacing cubes by balls in the definition.

Definition 6.1.2. For f a complex-valued locally integrable function on R", define

1
1m0, = 530 157 1709 ol

where the supremum is taken over all balls B in R".

The following proposition provides one of the most useful criteria to verify that
a function lies in BMO.

Proposition 6.1.3. Let f € LL (R"). Suppose that there exists an A > 0 such that

loc
for all cubes K (respectively, balls K) in R" there exists a constant ck such that

i
m/K|f(x)—c,<|dng. 6.1.4)

Then f € BMO (resp., f € BMOyas) and || f||suo < 2A (resp., || f|| Moy, < 24).

Proof. We note that
1
|f = fx| < |f — ekl +|fx —ck| < |f*CK\+m/K|f(X)*CK\dX~

Averaging over cubes K (resp., balls K) and using (6.1.4), we obtain that || || gpr0 <
2A, and analogously || f||Byoy,,, < 24, if the sets K are balls. O
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We now show that the seminorms || f|| a0y, and || f||Bamo are in fact comparable;
thus the spaces BMO(R") and || f||zmo,,,, (R") contain the same functions.

Given any cube Q in R”, we let B be the smallest ball that contains it. Let v, be
the volume of the unit ball. Then

1 B| 1 i
@/Q‘f(x)—fB‘de ||Q||B/B|f(x)—f3]dxgv 2nn HfHBMObaus‘

It follows from Proposition 6.1.3 that || f||smo < 2! 7"V v/i" || £|| MOy, - Now given
a ball B find the smallest cube Q that contains it. Then write

! 1ol 2
H/B’f( ~foldx< |B| |Q|/’f fQ’dXSEHfHBMo’

and this implies || f| gm0y, < 2" v, ' || £llamo - We conclude that the spaces BMO
and BM Oyy)1s have comparable seminorms, hence they are isomorphic.

Proposition 6.1.4. If f € BMO, then |f| € BMO. f,g are real-valued BMO func-
tions, then so are max(f, g) and min(f, g). Moreover,

1150 < 201£11sas0 (6.1.5)
3
Hmax(f’g)HBMO < §’|fHBMO+§HgHBMO’ (6.1.6)
. 3 3
Hmln(f’g)HBMO < §’|fHBMO+§HgHBMO' (6.1.7)

Proof. To prove (6.1.5), note that for each cube Q we have ||f| —|fol| < |f — fol,
which implies

1 =1fellg <1f = folo < | £l o (6.1.8)

Thus, for each cube Q there is a constant Cp = | fp| such that (6.1.8) holds. Appeal-
ing to Proposition 6.1.3 we deduce (6.1.5). Next, note that

f+e+If—zgl

f+e—1f—zgl
5 16 W5

max(f, ) = .

and min(f,g) =

Then we obtain the estimate

Hf||BMO+ HgHBMO+ H|f g|HBMO

Hmax /e HBMO— )
< Hf||BM0+HgHBM0+2||f_gHBM0
- 2
< Hf”BMoJr ’|gHBMO+2||f||BMO+2||g||BM0’

2
from which we obtain (6.1.6). Likewise we obtain (6.1.7). O
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Example 6.1.5. We show that the unbounded function log|x| lies in BMO(R").
Hence L~ (R") is a proper subspace of BMO(R").

Indeed, we will show that log |x| lies in BM Op,ys(R"). Let B(xo,R) be a ball. If
|xo| > 2R, then for |x —xo| < R we have §|x| < [x] < %|xo|, hence

1
v R

" 1
/ |log|x| —log |xo||dx = T / ‘log ‘dx

Jr—xo[|<R [x—x0|<R

%D:logZ.

3
< max (logi,

Also, if |xp| < 2R, then

1 1 |x]
log [x| — log R| dx = / [tog 5 |
VuR" / [tog| ~logR|dx =50 BRI
Jx—xo|<R Jr—xo[<R
1 ~
< — / ‘logm’dx
R . R
|x|[<3R
1 3"(nlog3—1)+2
Vn n
[x[<3

We apply Proposition 6.1.3 with Cg(, r) being log R or log |xo| to deduce that log |x|
lies in BM Op,pi5(R") and hence in BMO(R").

The function log |x| turns out to be a typical element of BMO, but we will make
this statement a bit more precise in the next section. It is interesting, however, to
notice that BM O does not remain invariant under abrupt cutoffs.

Example 6.1.6. The function /(x) = xy~olog % is notin BMO(R). Indeed, the prob-
lem is at the origin. Consider the intervals (—€, ), where 0 < € < % We have that

1 [te 1 ¢ 1 1—+—logl
h(_“):i/ﬂ3 h(x)dx:g/o log;dx:Ts.

But then

1 e I 14+1logl
g [ 10 —heaoldn o [ heolds= =35,

and the latter is clearly unbounded as € — 0. This discussion also reveals examples
of two BMO functions whose product is not in BMO (/.. and log B ‘)

Proposition 6.1.7. Under the identification of functions whose difference is a con-
stant a.e., BMO is a complete normed linear space, i.e., a Banach space.

Proof. Let {fi}y_, be a Cauchy sequence in BMO. Let Qy = [-N,N]", N =
1,2,.... Then
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1
@/QN o= Ful dx < || fi = Fll o

and this gives that { f; }7°_, is a Cauchy sequence in L' (Qy) for any N. By complete-
ness, there is a function F¥ € L' (Qy) such that f; — FN in L'(Qy) as k — oo.

As fi — FNTlin L1(Qy. 1), it follows that F¥ = FN*1 a.e. on Qy by the unique-
ness of the limit. We define a function F by setting F = F" on Qy, N € Z*. Clearly
F is well defined and lies in L] .(R"). Moreover, f; — F in L'(K) for any compact
set K. Next we show that F lies in BMO and that f; — F in BMO.

As {fi}7, is Cauchy in BMO, for any € > 0 there is a ko € Z™ such that for
k,m > ko we have

1
sup—/|fkffm\dx<€.
o 10l /o

Letting m — oo yields

1
@/ |fi —Fldx<e for any cube Q. (6.1.9)
9]

It follows from this that for any cube Q we have
1 / 1 / 1
— | |[F—Fpldx < — | |F— dx+—/ — dx+ —F
|Q‘ Q| Q| |Q| Q| fko‘ |Q| Q|fko (fk())Q| |(fk0)Q Q‘
§8+||f/<o||BM0+£'

This shows that F lies in BMO. Now taking the supremum in (6.1.9) over all cubes
QO C R" and using Proposition 6.1.3 we obtain that || fy — F||zmo < 2¢, for all k > ko;
ie., fr — F in BMO. O

‘We now examine some basic properties of BM O functions. For a ball B and a > 0,
we denote by aB the ball that is concentric with B and whose radius is a times the
radius of B.

Proposition 6.1.8. Let [ be in BM Op,is(R") and let B and B' be balls in R".
(i) If BC B, then
|B'|
|f— for| < WH}‘HBM%HS. (6.1.10)
(ii) Let B= By C By C --- C B, = B/, where B; is a ball of radius at most twice that
of the ball B;_1 for eachi=1,...,m. Then we have

’fB—fBl| S 2nm|‘f||BM0bal]s' (6'1'11)

(iii) For any & > 0 there is a constant C, 5 such that if B is centered at xo € R" and
has radius R, then we have

5 |f(x) *fB|
R /l;n de S Cn’6||f||BM0ba]]s. (6112)

An analogous estimate holds for cubes with center xo and side length R.



252 6 Bounded Mean Oscillation

Proof. (i) We write

1 1 |B|
ot < V= slax < T L lr=flax < 151 1 o
(i) By (6.1.10), for each i = 1,...,m we write
|Bil

‘fBi _fBH’ = 7|HfHBM0baus = HfHBMob.dlls
and we use this inequality to derive (6.1.11) by introducing intermediate terms:
’fB—fB'| < |f30 L] | + ’fBl _f32| ot ’me—l _f3m| < anHfHBMObaus'

(iii) In the proof below we assume xp = 0 and R = 1. Once this case is known,
given a ball B(xo,R), we replace f(x) by the function x — f(Rx+ xp) to obtain
(6.1.12) in general. Then setting B = B(0, 1), we write

i |/ I
R (1 + |x\>"+‘S

— forrig+ forrip — fB|
/ (1t \x\ n+6 drt 2 / (1t )0 dx
2k+1 \2k
< /B|f(x) — fal dxt Y 27K / <|f(x) — farrig| + |f2k+13—f3|) dx
k=0 2k+1p

<l f || gprog,. + ZO 27K (1427 (k1)) 2| g
- C/ SHfHBMOdeS

where we used (6.1.11) in the last inequality. This completes the proof. (]

Finally, we note there is a completely analogous version of Proposition 6.1.8 with
cubes in place of balls.

Exercises

6.1.1. Show that for all f € L (R") we have

loc
1 |
2o < 530 gy [ 1769 = ol < |l

6.1.2. Let f be a real-valued BMO function on R". Prove that the sequence
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N if f(x) >N,
@ =4 @) I,
N iff(x) < —-N
satisfies || fv|lsmo < 31 f|lsmo- [Hint: Write fy = max(—N,min(f,N)).]

6.1.3. Let 1 < p < co. Find functions F in L?(R") and G € BMO(R") such that FG
does not lie in L?(R").

6.1.4. Show that for all f in BMOpys(R") and all r > 0 we have
|frB 7fB| < 2n(1 +1og2max(r, %)) HfHBMoballs .

6.1.5. Let a > 0 and let f € BMO(R"). Let B and B’ be balls in R" both of radius r
whose centers have distance ar (these balls could be overlapping). Prove that

|f3— fir| <2 logy(a+2) ||f||BMObans'

Also show that supg g vais with |8|= (8| |/8 — f8'| /1| f | BMo may be unbounded.

[Hint: Pick m € Z such that 2" < a+2 < 2"*! and let xq be the midpoint of the
line segment joining the centers of B and B’. Consider the ball B” = B(xo,2"r) and
estimate | fg — fpr| and |fp — fr| via telescoping sums, using (6.1.10).}

6.1.6. Let f € BMO(R") and N € Z™. Verify the following assertions:
(a) For any two cubes Q and Q' of side length 1 contained in [0,2V]" we have

|fQ *fQ" < N2n+1H~fHBMO'

(b) Let —oo < [ < L < oo, Conclude that for any two cubes Q, Q' of side length 2!
both contained in a cube of side length 2% the following estimate is valid:

\fo—fo

[Hint: Part (a). For any interval / of length 1 contained in [O, 2N] there is a sequence
ofintervals =1y CI; C --- C Iy_1 C [0,2V] with |I;| =2/. Then use (6.1.10).]

< (=14 02| fll gy

6.1.7. Let @ be a concave strictly increasing function from [0,0) to [0, o) that sat-
isfies @(0) =0, limy e @(t) = oo, and @ (t +5) < D(¢) + D(s) for all #,s > 0. Prove
that if f € BMO, then @(|f]) lies also in BMO and

[@(£D grso < 221/ lIs10)-

Let 0 < p < 1. Two important examples of such functions @ are

D(t) =1, PD(t)=log(t+1), @(r)=[log(t+1)]".
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Conclude that | log|x||?,log(|log x||+1),log (| log(|log |x||+1)|+1) lieinBMO(R").
[Hint: Apply Proposition 6.1.3 with cp = @(|fp|) and Jensen’s inequality (Exer-
cise 1.1.5) to the convex function @~!. Note that @ o @ has similar properties.]

6.1.8. Let 0 < p < 1 and A > 0. Assume that @ is an increasing function from [0, o)
to [0, o) that satisfies @(0) = 0, limy_,.. @(¢) = o, and

|@(r) = D(s)| <A(J —s|+]r—sI")
for all #,5 > 0. Prove that if f € BMO, then @(|f]) lies also in BMO and

1@UfDllparo < 24 (1/llssso + [1/15010) -

An example of such a function is @ (¢) =" log(z + 1).

6.1.9. (a) Let z € C. Prove that the function x — log|x — z| lies in BMO(R).

(b) Let P(x) be a polynomial with complex coefficients of degree d. Show that the
function x — log |P(x)| has BMO(R) norm bounded by 7d. [Hint: Part (a). Use the
idea of Example 6.1.5. Part (b). Express P as a product of linear factors.}

6.2 The John-Nirenberg Theorem

A measurable function g is called exponentially integrable over any compact subset
K of R" if there is a positive constant ¢ such that

/ 180 gx < oo, 6.2.1)
K

In Example 6.1.5 we verified that the function g(x) = log |x| lies in BMO(R"). This
function is exponentially integrable, i.e., it satisfies (6.2.1) with any constant ¢ < n.
It turns out that exponential integrability is a general property of BMO functions, as
a consequence of the next theorem.

Theorem 6.2.1. (John—Nirenberg theorem) For all f € BMUO(R"), all cubes Q, and
all oc > 0 we have

{xe0: |fx)— fol > alfllsmo}| < e|Qle™ 7. (6.2.2)

Proof. If || fllsmo = 0, then (6.2.2) is valid as the set on the left in (6.2.2) has mea-
sure zero. So we may assume that || f||pyo # 0. As (6.2.2) remains unchanged if we
replace f by f/||f|lsmo, it suffices to assume that || f||syro = 1. We fix a closed cube
Q and we introduce the following selection criterion for a subcube R of Q:

1
" /R |f(x) = fo|dx > e. (6.2.3)

Since
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1
151 Jo 160 = ol < /o = 1 <.

the cube Q itself does not satisfy (6.2.3). Set Q° = Q and subdivide Q° into 2" equal
closed subcubes of side length equal to half of the side length of Q. Select such a
subcube R if it satisfies criterion (6.2.3). Now subdivide all unselected cubes into
2" equal subcubes of half their side length by bisecting the sides, and select among
these subcubes those that satisfy (6.2.3). Continuing this process indefinitely we
obtain a countable collection of cubes { Q}} j-We call the cubes Q}- of first genera-
tion. (We use the superscript k to denote the generation of cubes.)

We now fix a selected first-generation cube Q}- and we introduce the following

selection criterion for subcubes R of Q}:

1
" /R |f(x)— fQ_}ydx >e. (6.2.4)

Observe that Q} does not satisfy the selection criterion (6.2.4). We apply a similar
stopping time selection argument to the function f — f,i inside the cube Q]l». Subdi-
J

vide Q}. into 2" equal closed subcubes of side length equal to half of the side length
of Q}- by bisecting the sides, and select such a subcube R if it satisfies the selec-
tion criterion (6.2.4). Continue this process indefinitely. Also repeat this process for
any other cube Q} of the first generation. The collection of all selected subcubes of
all cubes of the first generation that satisfy (6.2.4) is denoted by {le}l; these are
called cubes of second generation. Every cube of second generation is contained in
a unique cube of first generation.

For a fixed selected cube le of second generation, introduce the selection crite-
rion for subcubes R of Q?

1
m/R|f(x)—fQ[z’dx>e.
We repeat the previously outlined process to obtain a collection of cubes of third
generation inside le. Repeat this procedure for any other cube Q; of the second
generation. Denote by {Q3}, the thus obtained collection of all cubes of the third
generation.

We iterate this procedure indefinitely to obtain a countable family of cubes {Q’J‘ }i
for each generation k. We claim that these cubes satisfy the following properties:

(A-k) The interior of every Q’; is contained in a unique Q]]‘.f L
(B-+) €< 04! / £ = fyit| dx < 2.
p . Q.I; g7

C-k — for | < 2.
( ) |fQ1/< fQI;,l|_ e

1 _
-k Y [0 < - X[

J J

(E-k) ’f_fQ.l;l—] ’ < e a.e. on the set Q’;,_l \Uj Q’J‘..
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We prove properties (A-k)—(E-k). Note that (A-k) and the lower inequality in
(B-k) are satisfied by construction. The upper inequality in (B-k) is a consequence
of the fact that the unique cube R, with double the side length of Q’j‘- that contains

Q’; and is contained in Q’;f I was not selected in the process. Indeed, we have

1 1
e> £ = gl dv= oo [ £~ ] dx.
Rjo| R_,-0| % | 270k Q’;-| % |

Now (C-k) follows from the upper inequality in (B-k). To prove (E-k) we note
that for every point in Qlj‘.f ! \U;, Q’j‘. there is a sequence of cubes shrinking to it and
the averages of |f *ka71| over all these cubes is at most e. Then \ffok71| <e

7 7

a.e. on Q’;f ! \U i Qlj‘- by the Lebesgue differentiation theorem (Corollary 1.5.6). It
remains to prove (D-k). By (A-k), given a cube Q’J‘. of generation k there is unique
cube Q’j‘f ! of generation k — 1 that contains it. Let us denote by I ' all indices i of
cubes of generation k such that i = j’. Then all cubes Qf.‘ with i € [; have disjoint
interiors and are contained in Q’j‘.,_ !, Using this we write

1

S0l < 3, 110~ fogalas

e
1

= 23 [ sglas

J 161/
72/Qk1 kal‘
<,
)

as the BMO norm of f equals 1. We have now established (A-k)—(E-k) and we turn
our attention to some consequences. Applying (D-k) successively k — 1 times, we
obtain

IN

Y 10jl <M. (6.2.5)
J

For a cube Q7 of generation 1 we have | f,1 — fgo| <2"e by (C-1) and |f — fu| <e
! J J
a.e.on Q} \ U le by (E-2). These two facts give

|f—fQo|§2"e+e a.e. on Q}-\UQ?,
1

which, combined with (E-1), yields
|f = foo| <2"2e ae. on Q°\|JOr. (6.2.6)
1
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For a cube le of second generation we have ‘ f— fQ]2| < e a.e. on le \ U Q? by

(E-3). Combining this with | fo =t | <2"eand |fy1 — fgo| <2"e, which follow
1 I

from (C-2) and (C-1) respectively, yields

|f = foo| <2"3e ae. on QO7\|JOi.

In view of (6.2.6), the same estimate is valid on Q° \ U Q?. Continuing this reason-
ing, we obtain by induction that for all K > 1 we have

|f = foo] < 2%e ae. on Q°\|JOk (6.2.7)
s
This proves the almost everywhere inclusion
{x €Q: |f(0)—fo| > 2"ke} <o
J

for all k =1,2,3,.... (This also holds when k = 0 with the understanding that there
is only one cube in the family on the right, the cube QO 0.) We now use (6.2.5)
and (6.2.7) to prove (6.2.2). We fix an o« > 0. If 2"ke < o0 < 2"(k+ 1) e for some
k > 0, then

H{xeQ: |f(x)—fo| > a}|

IN

[{reQ: |f(x) — fo| > 2"ke}|
Pt

J

1

=12’

[Qfee /),

IN

N

since —k < 1 — 55-. This yields (6.2.2). O

Having proven the important distribution inequality (6.2.2), we are now in a posi-
tion to deduce from it a few corollaries.

Corollary 6.2.2. Every BMO function is exponentially integrable over any cube.
Precisely, for any 0 < y < (2"e)™!, for all f € BMO(R"), and any cube Q we have

)—fol n,2
/e ”/HBMOd_x<1—|— ey
0] [—2vey

Proof. We use (1.2.2) in Proposition 1.2.3 with ¢(¢) = ¢’ — 1. Certainly (Q,dx) is a
o-finite measure space and ¢ is an increasing continuously differentiable function
on [0,c0) with ¢(0) = 0. Then we write

i g — @ Dar=14 L [T .
|Q|/ dx=1+ ‘/ 1) dx = 1+|Q| {xeQ: [h(x)| > A} dA
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for a measurable function 4 on R”. We fix y < (2"¢) ! and set h = || f|| gas0 |.f — fol-
Then

{xeQ: [h(x)| > A} =[{xe Q: |f(x) = fol > S fllsmo}]

So we apply (6.2.2) with & = A /y. Combining these inequalities gives

lfx)=fol ) 2"62}/
7m0 dx <1+ — A Tl =14 —
|/e = \QI e elCle T2y
noting that the integral converges since 1 — (2"ey)~! < 0. O

As a consequence of Corollary 6.2.2 we deduce the exponential integrability of
BMO functions.

Corollary 6.2.3. Let f € BUO(R"). Then for any compact subset K of R" we have
/ O gy < oo 6.2.8)
K

whenever ¢ < (2"||f||smo) ™"

Proof. Given acompact set K pick a cube Q that contains it. For ¢ < (2"¢|| f||sm0) ™"

set ¥ = c||f|lamo < (2"¢)~! and use that

f(x) — fQ|
£ Ba

and Corollary 6.2.2 to obtain that e°//l is integrable over Q. d

clf )l < clfol +elf(x) = fol < clfol +r=7——

Another important corollary of Theorem 6.2.1 is the following.

Corollary 6.2.4. For all 0 < p < o and for all f € L} .(R") we have

loc

1 r
p <|Q|/ny(x)_fg,ndx) < 2 (epT )| o 629

Consequently, BMO is contained in L (R") {f |f|P € L] .(R") } forall p < eo.

loc

Proof. If f € Ll .\ BMO, then (6.2.9) holds. So we assume that f € BMO. Write

1 oo
@/ pA 7 {x e Q1 17(x) — fol > A} dA

di

APe” Tlimme 4%
eelel °
pI(p )e(2ne||fHBM0) ]

having used (6.2.2) in the inequality. This proves (6.2.9). It follows that | f — fp|” is
integrable over any cube Q, thus so is |£|7. Then |f|P € L (R") for any p < co. [

loc

@/Q|f(x)*fg\pdx

IN
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Since the inequality in Corollary 6.2.4 can be reversed when p > 1 via Holder’s
inequality, we obtain the following important L? characterization of BM O norms.

Corollary 6.2.5. Forall 1 < p < oo and f in L _(R") we have

loc

1 ’
1 llnr0 < sup <|Q| /Q |f(x) _fQ|PdX> < 2p|flpgor (6:2.10)

Proof. The left inequality in (6.2.10) is obtained by Holder’s inequality and the
definition of the BMO norm of f. The other direction follows from Corollary 6.2.4,

11
which provides the constant (pI"(p))?e? "' 2. Note that

F(P):/we—t<i)”ﬂ /oo —ptp 7/ pt— logt /we (t— logt)dt -1
pP 0 p/ t —Jo t

1 1
if p > 1. This yields that I'(p)?» (pe)re2" < p-e-e2" for p > 1; thus the upper
inequality in (6.2.10) holds. U

Exercises

6.2.1. Let A,B > 0 and let f € L. (R"). Suppose that for each cube Q there is a
constant cg such that for every A > 0 it holds that

H{xeQ: |f(x)—co| >2}| < B|Qle™"*.
Prove that f lies in BM O with norm at most 2B/A.

6.2.2. Given 1 < p < e and f locally integrable on R" prove that

3o < s0p (i 5 [ 1700 =colas) " < 02

6.2.3. Let 1 < p < oo. Let Q be a cube in R" and let Q' be another cube that contains
O and has side length 2" times that of Q. Prove that for any f € BMO(R") we have

| :
(ig 10 =l ax) " <2 @pm) |l

6.2.4. Let gk be locally integrable on R" associated with a measurable subset K of
R” with positive measure. Prove that (a) = (b) = (¢) = (d) = (a).
(a) There is a constant B > 0 such that for all A > 0 and all p > 1 we have

1

sup7L<|K||{x€K lgx (x |>7L}|> <Bp.
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(b) There is a constant ¢ > 0 such that for all A > 0 we have

sup {xek: |g1<(x)|>l}|§2e_d.

1
x K|
[Hint: Try p= A /2B if A > 2B. The value ¢ = (2B)~'log2 works.]

(c) For any ¢’ satisfying 0 < ¢’ < ¢ one has

c+c

c—c

1 /
sup — [ e 18kWlgy < < oo,

K

(d) There is a constant A > 0 such that for all p > 1 we have

1
sup (/ gK(X)I”dX)p <Ap.
k \IK[/k

What does this set of equivalences say about BM O functions?

6.2.5. Let p > 1. Prove that |log |x||” and | log|log |x||| log x| are not in BMO(R").
[Hint: Otherwise estimate (6.2.8) would be violated. |

6.3 Dyadic Maximal Functions and Dyadic BMO

In this section we discuss dyadic analogs of certain ideas we have explored so far.
We begin by recalling notions related to dyadic cubes.

Definition 6.3.1. A dyadic cube is a set of the form T} [m;27%, (m; +1)27%),
where my,...,my,k € Z. A dyadic child of a dyadic cube Q is any of the 2" dyadic
cubes obtained by bisecting each of its sides by hyperplanes parallel to the faces of
the cube. We denote by Z the set of all dyadic cubes in R”. An ancestor of a dyadic
cube Q is any dyadic cube that contains it. A descendant of a dyadic cube Q is any
dyadic cube contained in it.

Naturally each dyadic cube has 2" dyadic children, 22" dyadic grandchildren,
and in general 2"% dyadic subcubes of length 2 XL, where L is the side length of
the original cube. In fact, all dyadic cubes contained in a fixed dyadic cube Qg are
dyadic descendants of it.

By construction, two dyadic cubes of the same length are disjoint. Given two
dyadic cubes of different size, there is a unique ancestor of the smaller one of the
same size as the bigger one. This ancestor is either the bigger cube or is disjoint
from it. This implies that two dyadic cubes are either disjoint or one contains the
other.

It is useful to split dyadic cubes in generations. Let us call dyadic cubes of gen-
eration zero to be all dyadic cubes of side length 1 and denote by % the set of all
such cubes. We denote by 2, the dyadic cubes of generation 1, that is, all the dyadic
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children of cubes in %. Continuing in this way, we denote by Z all dyadic cubes
of side length 27* and we call these dyadic cubes of generation k. As the cubes are
shrinking, k increases toward infinity, but we can also consider k < 0 in this termi-
nology. In specific problems, however, it is useful to set generation zero to be a fixed
dyadic cube and define the future generations in relation to this. A paradigm of this
situation appears in the dyadic Calderén—Zygmund decomposition.

Definition 6.3.2. Given a measurable function f on R”, we define the dyadic maxi-
mal function My(f) of f by

1
Mq(f)(x) = sup @/Q|f(t)|dt.
Q dyadic cube

The supremum is taken over all dyadic cubes Q in R” that contain a given point x.

The dyadic maximal function shares many properties with the classical Hardy—
Littlewood maximal function. But it is different in a significant way. It can vanish on
a portion of the space. For instance, if 4 is supported in [0, ), then M, (%) vanishes
on (—eo,0) as no dyadic cubes that contain negative numbers reach the support of .

Theorem 6.3.3. (a) For all A > 0 and all measurable functions f on R" we have
1
re R M(F)0 > 2} <5 [ F(0)]dr. 63.1)
{My(f)>2}

(b) The operator My maps L' (R") to L'**(R") with constant at most 1.
(c) For 1 < p < e, My maps LP(R") to itself with constant at most p/(p — 1).
(d) For 1 < p < e, My maps LP=(R") to itself with constant at most p/(p — 1).

Proof. (a) Fix A > 0. For a measurable function f on R” consider the set
Ef={xeR": My(f)(x) >A}.

We first prove (6.3.1) under the additional assumption that f € L' (R").

For each x € E there is a dyadic cube Q, that contains x such that the average of
|f| over Qy is strictly bigger than A. Then each Q, is contained in Ey as for every
y € O, the average of | f| over Oy gives that M;(f)(y) > A. Consequently we have
E¢ = Uxer,Ox- Now all cubes O, have measure bounded by || f]1 /4. Thus for each
x € Ey there is a unique maximal dyadic cube Q7"** of the form Q, (for some y € Ey)
that contains Q,. Say that all distinct cubes Q7** are indexed by a subset E} of Ey;

X
then Ey = Urer, Ox = Uye £, QF**. Moreover, all distinct cubes of the form Q7% are

X
disjoint as they are maximal with respect to inclusion. Let us denote by {Q;, j € Z}
the collection {Q"* : x € E}. Then we have

210 = |E;]

J
and also
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|, 1£Olay> 2yl

It follows that
1 1
Bl=Zlod< ;3 [, U0l =7 [ 170las. 632

To remove the assumption that f € L!(R"), for each N € Z* consider the trun-

cations
In = X 1<N X 2N oV (6.3.3)

We use that M,(fy) increases monotonically to M;(f) as N — oo; this fact fol-
lows from Exercise 1.4.2 for the classical Hardy-Littlewood maximal operator, but
the same proof also holds for M,. Then |Ej, | increases monotonically to |[Ey| and
XE;, | fiv] also increases monotonically to g, |f]. Letting N — = in (6.3.2) and using
the LMCT yields (6.3.1).

(b) This is a direct consequence of part (a).

(c) This assertion follows from interpolation. One may use the result of Exer-
cise 1.3.4, but here we provide a direct proof. For f € L?(R"), 1 < p < oo, we write

a5 = [ A7 1R A
<p [ a2 [ \f)ldxdz
0 Ej,
: Ma(N)
—p [ 17l [ A tana
JR 0

= P [ @M o

<2([. Md<f><x>f’dx)p”_l (L If(X)”dx)}),

where we used (6.3.2), Tonelli’s theorem, and Holder’s inequality. We would like
to divide both sides by HMd(f)HZ;l but we don’t know that 0 < ||M;(f)||Lr < .
In order to ensure this, we assume that f is nonzero and bounded and supported
in a cube of the form [—2V,2V]" for some N € Z". Then M,(f) is also bounded
by |||z~ and decays like Cy|x|™ when x ¢ [—2V,2N]" for some constant Cy > 0.

These facts imply that ||M,; 1r < oo, so we can divide by ||My P! and obtain
ply y Ly

|Ma(f)]

p
< ﬁHfHL,,. (6.3.4)

For a general function f in L” (R"), we apply (6.3.4) to the truncations fy defined in
(6.3.3). Then we make use of the LMCT in view of the fact that M,(fy) increases
monotonically to My (f) as N — oo (Exercise 1.4.2). This proves the assertion in part
(c); note that the bound obtained is better than that provided by Theorem 1.3.3.
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(d) Let 1 < p < oo. Suppose that f € LP(R"). We write (6.3.2) as
M) > 7 < [onan > 1 [ o)Ly
{My(f)>1}

As f € LP(R") we have that [{My(f) > A}| < e; thus the right-hand side is bounded
—L= || f||z»= by Theorem 1.2.10. Thus we have

[Ma(f)|

e < ﬁ £l for feLP(R), (6.3.5)

Now given f € L7, consider the increasing sequence of nonnegative functions | fy|,
where fy are defined in (6.3.3); these functions satisfy |fx| T |f| and |fy| € L.

Clearly we have || f||Le= 1 ||f||p- Exercise 1.4.2 gives that M(fy) T M(f) and
IM(fw)|lzee T |M(f)||zr+. The same proofs yield

|Ma(fw)llre T 11Ma(f)lLre as N — oo

Using estimate (6.3.5) for fy and taking the limit as N — oo we obtain the claimed
conclusion. O

We now define dyadic BMO. We do so by taking the cubes Q in Definition 6.1.1
to be dyadic.

Definition 6.3.4. For f a complex-valued locally integrable function on R", define

dx,
HfHBMOd Qdyadlccube|Q|/|f fQ| *

where the supremum is taken over all dyadic cubes Q in R". The function f is of
dyadic bounded mean oscillation if || f| pmo, < o°. The space BMOy4(R") is the set
of all locally integrable functions f on R" with || f||gpo, < e°.

Functions whose difference is a constant are identified in BMO,. Under this iden-
tification, BMO, becomes a normed vector space, which is also complete; on this
see Exercise 6.3.5. Almost all properties of BMO are also shared by its dyadic ana-
log BMO,. For instance we have the following:

Proposition 6.3.5. Ler f € L]OC( R"). Suppose that there exists an A > 0 such that
for all dyadic cubes Q there exists a constant cg such that

I
su o1 /Q 1£(x) —coldx < A. (6.3.6)

Then f € BMOgy and || f||auo, < 2A.

Proof. We note that

|f = fol <|f —col+|fo—rco| < |f—CQ\+ﬁ/Q|f(X)—CQ\dx'
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Averaging over dyadic cubes Q and using (6.3.6), we obtain that || f||gyo, < 24. O

Example 6.3.6. The function A(t) = logt );~¢ lies in BMO,4(R) but not in BMO(R).
The fact that this function does not lie in BMO(R) was shown in Example 6.1.6. So
we only show that h € BMYO,4(R). Let [a, b) be a dyadic interval with b > a > 0. We
need to choose a constant C|, ;) = logc such that for all a,b

é.
a‘ |10gt|dt

1 b
—b_a/a |logt—logc|dt =

c c

remains bounded. Now if b —a > % we choose ¢ = b. In this case 1 — % > % SO

1 1 1
/ [logldr <2 [ [logr|dr =2
1*;% JO

Ifb—a< % we choose ¢ = a. Then g < 2, and hence

1 b
L1/1
a

Thus ||4||avo, < 4 by Proposition 6.3.5.

b
“|log2|dr = |log2| < 2.
1

Proposition 6.3.7. Let f be in BMO,. Then for any dyadic cubes Q, Q' with Q C Q'
we have

121
|fQ7fQ” = |Q| HfHBMO,,
Let N € Z*. If the side length of Q' is 2V times larger than that of Q, then
|fQ *fQ’| SN2 ||f||BMod'
Proof.

- 2]
fo-fol < g 17— folax < gy [ 1= Faldx < L5 uo,

For the second assertion we fix a sequence of dyadic cubes Q=QpC Q) C---C
On = Q' such that the side length of Q; is 2/ times that of Q. Then we have

10111/10;] = 2U+ D 0] /27| Q| = 2" and we write
‘fQo _fQN’ < ‘fQo _le | + ’le _sz‘ +eeet |fQN—1 _fQN‘ < NZanHBMOd'
This concludes the proof. U

Deeper properties of BM O area also shared by BMO,.
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Theorem 6.3.8. For all f € BMO,(R"), for all Q € 9, and all o > 0 we have
{xe0: |f(x)— fo| > @l fllamo, }| < e|Qle 7. (6.3.7)

Proof. The proof of Theorem 6.2.1 in the previous section starts with a cube Q°
(of generation 0) and constructs several sequences of cubes Q’; of generation k by
subdividing the unselected cubes of the previous generation into 2" pieces. If the
original cube Q° was dyadic, then so would be all of its descendants; hence in the
proof of Theorem 6.2.1 we can replace all cubes Q’]‘» that appear with dyadic cubes.
Then we obtain (6.3.7) just as we did in the non-dyadic case. (|

Similar straightforward adaptations provide the following corollaries:

Corollary 6.3.9. Every BM O, function is exponentially integrable in the following
sense. For any 0 <y < (2"e)~!, for all f € BMO4(R"), and any Q € 9 we have
@) ~fol
! / " #a0
— [ e d dx <1+
10l Jo

2"’y
1—2tey’

(6.3.8)

Corollary 6.3.10. Let f € BMO4(R"). The for any compact subset K of R" we have

/ O] gy < oo, (6.3.9)
JK

provided ¢ < (2"¢| f|lzmo,) "

Proof. To verify (6.3.9) we simply cover a compact set by a finite sum of dyadic
cubes and we apply (6.3.8) on each such cube. U

Corollary 6.3.11. For all 0 < p < e and for all f € BMO4 we have

1
1 » . f
sup (|Q| A !f<x>—fQ|de) < 2 epT O | lpoyey  6310)

(S

Corollary 6.3.12. Forall 1 < p <eoand f in L} .(R") we have

1 ’ )
HfHBMOd < 5‘615 <|Q/Q‘f(x)—fQ’pdx> <e*-2 prHBMO,,' (6.3.11)

Exercises

6.3.1. Write R” as a union of orthants? Hy, = {(x1,...,%,) : & >0 < j € o},
indexed by subsets @ of {1,2...,n}. Show that two dyadic cubes have a common
ancestor if only if they lie in the same orthant Hy,.

2 Higher-dimensional octants.
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6.3.2. Prove that every cube of length L in R” is contained in the union of 3" dyadic
cubes, each having length less than L.

6.3.3. Let k € Z. Given a cube Q in R” of side length L satisfying 21 < L < 2% (if
Q is open, we could assume that -l << 2]‘), prove that there is a dyadic cube
Dy of side length 2% and a 6 = (01,...,0,), where o; € {0,1/2,—1/2} such that
such that O € 2¥6 + Dy.

6.3.4. Prove that HMd||L1(R”)—>L1'°°(R”) =1.
6.3.5. Show that BMO,(R") is a complete.

6.3.6. Prove that the function log |x| x>0 Xx,>0 lies in BMO,4(R") but not in
BMO(R™).

6.3.7. Prove that the function | log |x||” log (| log |x|| x>0+ 1) xx>0 lies in BMO4(R)
when 0 < p < 1. [Hint: Use Exercise 6.1.8.

6.3.8. Given a locally integrable function f on R”, consider the dyadic average
operator Ex(f)(x) = Ypeq, fo Xo(x) and the martingale maximal function G(f) =
supycz |Ex(f)|. Prove the following assertions:

(a) G is of weak type (1,1) with constant at most 1.
(b) En(f) — f ae.as N — oo forall f € L} (R"). (Relate this to Exercise 1.5.5.)
(c) EN(f) > 0as N — —ooforall f € LP(R") with 1 < p < oo,

6.4 The Sharp Maximal Function

Recall the Hardy-Littlewood maximal function with respect to cubes:

M) =5 o [ 1701y

defined for f € LloC (R™). In this section we introduce a related maximal operator
that controls the mean oscillation of a function near any point.

Definition 6.4.1. Given a locally integrable function f on R", we define its sharp
maximal function M*(f) as

MH (1) (x )—sup@ / 1£(0)— fo| dt, (6.4.1)

where the supremum is taken over all cubes Q in R” that contain the given point x.
The sharp maximal function is also related to the space BMO. In fact,
BMO(R") = {f € Ljo(R") : M(f) € L”(R")}

and || fllzmo = I|ME (f)l|=
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There is also a dyadic version of the sharp maximal function.

Definition 6.4.2. The dyadic sharp maximal function is defined as

My (f)(x) = sup |—;| /Q |£(t) — fol dt, (6.4.2)

0€7,05x
where 7 is the set of all dyadic cubes in R".

Obviously, the Mg is pointwise smaller than M*. Also, in analogy with the
non-dyadic case we have BMO4(R") = {f € L] .(R") : Mi(f) € L*(R")} and
£ laso, = 1M (£)]|L=-

Proposition 6.4.3. Let f € L\ (R"). Suppose that there exists an A > 0 such that for
all cubes Q (resp., dyadic cubes) that contain a fixed x in R" there exists a constant
cg such that

1
— —cgoldy <A.
g1 o) —coldy <
Then M (f)(x) < 2A (resp., Mi(f)(x) < 2A).

Proof. Fix x € R". For a cube Q (resp., dyadic cube) that contains x we have

1
17— Jelo <1 ~colo+ 1o~ colg <17 —colo+ gy [ 1£(5) —coldr <24

Taking the supremum over all cubes Q (resp., dyadic cubes) that contain x, we obtain
ME(f)(x) < 2A [resp., Mj(f)(x) < 24]. -

We discuss some properties of Mf, Mj and their connections with M., M.

Proposition 6.4.4. Let f, g be locally integrable functions on R". Then

(1) We have M(f +g) < M (f)+MZ(g) and Mj(f +g) < Mi(f)+M}(g).
(2) ME(f) < 2M(f) and M(f) < 2Mu(f).
(3) ME(|f]) < 2ME(f) and Mi(|f]) < 2M3(f).

Proof. We skip the proof of (1) as it is straightforward. The proof of (2) follows
directly from (6.4.1) and (6.4.2) using the inequality | f — fo| < |f]+|f]o. To prove
(3) for each cube Q (resp., dyadic cube) that contains a given x in R” we let cp =
|fol- Then the inequality || f| — | fo|| < |f — fo| implies that

o 101 = ol dy < M) 0

[or analogously with M#(f)(x) on the right if the cube Q is dyadic]. It follows from
Proposition 6.4.3 that M (| f|) < 2M?*(f) [resp., MA(| f]) < 2M%(f)]. O

The next result lays the foundation of norm comparability between M, and Mj.
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Theorem 6.4.5. (A good lambda distributional inequality for M;) For all y > 0,
all A > 0, and all locally integrable functions f on R", we have the estimate

’{x ER": My(f)(x) > 24, ME(f)(x) < YA} < 2”y|{x eR": My(f)(x) > l}‘

Proof. We may suppose that the set 2, = {x € R": M;(f)(x) > A} has finite mea-
sure; otherwise, there is nothing to prove. Then for each x € €, there is a maximal
(with respect to inclusion) dyadic cube Q" containing x such that

1
@/Qx IfO)ldy>2; (6.4.3)

otherwise, €2, would have infinite measure. Notice that the entire Q* is contained
in £,, since given z € Oy the average (6.4.3) shows that z € €2,. Let Q; be the
collection of all such maximal dyadic cubes containing all x in ,, i.e., {Q;};, =
{0": x €  }. Maximal dyadic cubes are disjoint; hence any two different Q; are
disjoint. Moreover, we note that if x,y € Q;, then Q; = Q% = Q. It follows that
€2, =, Q; and also this set contains

{x €R": My(f)(x) > 24, ME(f)(x) < YA ).

Thus, in order to prove the required estimate, it will suffice to show that for all Q;
we have

{x€Qj: My(f)(x) >2A, Mj(f)(x) <yA}| <2"7|0Q;], (6.4.4)

for once (6.4.4) is established, the conclusion follows by summing on j.
For each cube Q;, we let Q'j be the unique dyadic parent of Q}, i.e., the unique
ancestor with double side length. We will show that for each j we have

{re 0 Mu()(x)> 24} € {xe 0y Ma((f ~ fo )0 ) > A} (645)

We fix x € Q; such that M;(f)(x) > 2A. Then the supremum

sup o [ 170y = M) (646)

is taken over all dyadic cubes R that either contain Q; or are contained in Q; (since
Q;NR#0).IfR 2 Q;, the maximality of Q; implies that (6.4.3) does not hold for R;
thus the average of | f| over R is at most A. Thus, if My (f)(x) > 21, then the average
in (6.4.6) is bigger than 24 for some dyadic cube R contained (not properly) in Q;.
Therefore, if x € Q; and My(f)(x) > 2A, then we can replace f by fxo; in (6.4.6)
and we must have My(fxo,)(x) > 2A. Then for x € Q; we have

>S2A—-A=4,

Ma((f = fo ) %o, ) ) = Ma(fx0,)(x) | foy
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since | fQ}| <|f \Q;_ < A because of the maximality of Q;. This proves (6.4.5), hence

[{ve 0 Ma(n)() > 22 < {r € 0 Mu((f ~ fo)20,)(¥) > 2 }|, 64.7)

and using the fact that My is of weak type (1,1) with constant 1, by Theorem 6.3.3
(b), we control the last expression in (6.4.7) by

1 1

I/Qj |f(Y)*fQ_/,’dy = I/Rn |f(y)*fQ_//’%Q,-dy

2"MQ;] 1
A |0

< Mhine)

<

1700 foy |y (6438)

for all &; € Q;. In proving (6.4.4) we may assume that for some §; € Q; we have
M%()(Ej) < yA; otherwise, the set on the left in (6.4.4) is empty and has zero
measure. For this §;, using (6.4.7) and (6.4.8) we obtain (6.4.4). (I

We now use the distributional inequality of Theorem 6.4.5 to deduce that several
norms of My (f) are controlled by the corresponding norms of M’(f).

Theorem 6.4.6. Fix 0 < py < oo and let p satisfy po < p < o. Then for all functions
fin L (R") with the property

loc

forevery B>0 = Cp(f) = sup AP |{My(f) > A}| <o, (6.4.9)
0<A<B
we have .
||Md(f)HLP(R") <2 HMj(f)HLI’(R”) (6.4.10)
and also .
1M ()| ey < 2257 [MIC o - (6.4.11)

Proof. Fix pg < p < oo. For a positive real number N we set

N
IN:/O pAP U {x € R My(f)(x) > A }|dA.

We note that Iy is finite, as it is bounded by

pNPipO
P—"Pro

/()N1”7”77”071CN(f)d7L = Cn(f) <eo,

where Cy(f) is defined in (6.4.9). We now write

In :2”/()7p),p71‘{x€R”: My(f)(x) >2A}|dA
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and we use Theorem 6.4.5 to obtain the following sequence of inequalities:

IN

Iy

o /fpm—ll{xe R": My(f)(x) > 22, Mj(f)(x) < yA}|d

N
+2p/02 P/U’_IHXGR": Mg(f)(x) >'}’)L}|d7L

IN

22y [ *par{x e R": Ma(f)(0) > 2} dA

N
+2p/02p/'LP—1|{xeRn; M;(f)(x) >}’)L}|dl

IN

w
2”2"7/IN+%/0 oA xR ME(S) () > A} | dA.

At this point we pick a ¥ such that 272"y = 1/2. Since Iy is finite, we can subtract
from both sides of the inequality the quantity %IN to obtain

ANy
IN§2”+12”(”+”+1)/02 p?L”lexER": MA(f)(x) > A}|dA,

from which we obtain (6.4.10) by letting N — oo.
Using Theorem 6.4.5 again we write

’{xER" t My(f)(x) > 21}
< |[{x eR": My(f)(x) > 24, Mj(f)(x) < YA} + |[{x € R": MJ(f)(x) > yA }|
<2"y[{x €R": My(f)(x) > A}|+ |[{x e R": MJ(f)(x) > yA }|.

Multiplying by A and taking the supremum over A < N, we obtain

sup AP|{xeR": My(f)(x)>2A}|
0<A<N

1
<2"y sup AP{x € R": My(f)(x) > A |+ — [MG(N]|7,-
0<A<N Y

or equivalently,

277 sup tP|{x eR": My(f)(x) >t}
0<t<2N

<2"y sup N”{x eR": My(f)(x) > l}{ + %HMj(f)Hlp‘p,w

0<A<N
1
<2"y sup AP|[{xeR": My(f)(x) >A}|+ —p”Mg(f)Hip‘m.
0<A<2N Y

Notice that (6.4.9) implies that
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sup AP[{x e R": My(f)(x) > A}| < (2N)P"PCoy(f) <
0<A<2N

where Cy (f) was defined in the proof of (6.4.10). Choosing ¥ such that 2"y = %2_1’
we obtain

Lar sup 2| {x e R Mu(f)(x) > 1} < 22020 gt ()|
0<t<2N

Letting N — oo, we deduce (6.4.11). [l

Remark 6.4.7. Let 1 < pg < e. Functions in L0 satisfy condition (6.4.9), so The-
orem 6.4.6 applies to functions f in LP0>,

Exercises

6.4.1. Construct examples to show that M; and M, are not pointwise comparable.

6.4.2. Prove that for all cubes Q in R” and all points x we have

M) < supint 5 [ 11(0) —aldy < M) (5.

anaEC

6.4.3. For f € L}OC(R”) define the sharp maximal function with respect to balls

1
MU0 = sup 1z 170~ ol

where the supremum is taken over all balls that contain a given point x. Prove a
version of Proposition 6.4.3 for M¥. Deduce that M* is pointwise equivalent to M¥,

6.4.4. Let f € LL (R") and x € R". Prove that
MEN) < sup s [ 170) = 1@l dydz < 2E(1) ),
0>x |Q|

where the supremum is taken over all cubes Q that contain x. Obtain that

Lo =500 5 [, 170~ F@lavee

6.4.5. Let 0 < s < n. Show that the Riesz potential Z; maps L"/*(R") to BMO.
[Hint: Show that for any R > 0 and x € R" we have

1 1 1
- — dydz <
IBwﬂﬂ?éumZ%m‘h—ﬂ“x PEEa

CR
(|)C| +R)n—s+1
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by considering the cases |x| < 2R and |x| > 2R. Use this estimate to prove

L”/S(R")

1 1
TR oo o DO - B0z <7

by Holder’s inequality, where C’ is independent of f and R. By translation, this
estimate is valid over any ball and thus over any cube. Then use Exercise 6.4.4.]

6.4.6. Suppose fi,f € L. _(R"), and |f;| < C|f| a.e. for k = 1,2,..., where C is a

loc
positive constant. Suppose that fy — f a.e. as k — co. Show that

ME(F) < limintM? ().

6.4.7. (a) Let f, fr, k=1,2,... be functions in L (R") such that || fx — f||z~ — 0 as
k — 0. Show that M*(f;) — M?¥(f) pointwise everywhere.

(b) Let f, fi, k =1,2,..., be functions in L' (R"). Suppose that f; — f in L' (R")
and the sequence { fi};_, is equicontinuous in L' in the following sense: For every
€ > 0 there is a 0 > 0 such that

Al <6 = /|fk|dy<£ for all k.
A

Prove that M*(f,) — M*(f) pointwise everywhere.

6.5 Interpolation Using BMO

In this section we discuss an interpolation theorem in which the space L™ is replaced
by BMO. The sharp function plays a key role in this result. Before doing so, we state
a corollary of Theorem 6.4.6 that is quite useful in this type of interpolation.

Proposition 6.5.1. Let 0 < pg < oo. Then for any p with pg < p < oo and for all f in
Ll .(R") satisfying (6.4.9) [in particular if My(f) € LPO™] we have

||f||LP(R”) = HMd(f)HLP(R”)

< 2n+p+2+% ||M3(f)’

LP(R?)
M#
e

< QEp3ty |M.(f

< 2n+p+2+1—1, (6.5.1)

Moo e

Analogously, we have
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Hf||LI’>°°(R”) S ||Md(f)HLp,eo(Rn)

1
S2n+p+2+pHMj(f)Hmw(Rn) s
(6.5.2)
<2 ME ()| e ®)

<2 M) &)

If in addition p > 1, then all of the above inequalities become equivalences.

Proof. Since for every point in R” there is a sequence of dyadic cubes shrinking to
it, the Lebesgue differentiation theorem yields that for almost every point x in R”
the averages of the locally integrable function f over the dyadic cubes containing
x converge to f(x). Consequently, |f| < M,(f) a.e., hence the first inequalities in
(6.5.1) and (6.5.2) hold. Theorem 6.4.6 provides the second inequalities in both
(6.5.1) and (6.5.2). The third inequalities are trivial, while the last inequalities are
consequences of Proposition 6.4.4 (2).

Finally, if p > 1, then (1.4.7) and Exercise 1.4.8 provide the missing estimates
that reverse all inequalities in (6.5.1) and (6.5.2), respectively. U

For the purposes of the next result we set Lg to be the space of all L functions
that are supported in a set of finite measure.

Theorem 6.5.2. Let | < pg < oo. Let T be a linear operator that maps LP°(R") to
LPo>=(R") with bound Ag and L, (R") to BMO(R") with bound A;. Then for all p
with py < p < oo there is an extension of T on LP(R") and a constant C, j, ;,, such
that for all f € LP(R") we have

Po _Po
1T oy < v Ay 7 [l ooy - (6.5.3)

Proof. We consider two cases according to the value of py.

Case I: py > 1. Define the operator S(f) = M*(T(f)) for f € LP0O + L, . It is easy
to see that S is a subadditive operator. We first prove that S maps Lg, to L™. Indeed,
for f € Lg, we have

Hs(f)HLm = HMf(T(f))HLM = HT(f)HBMO SAleHL“"
Next we show that § maps L0 to Lo, For f € LP0 we have

ISCON o = [MET ()]

LPO=
< 2{|MeAT ()| o
<2 3o ||T( HLPON (by Exercise 1.4.8)
3
<2 220 pg
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Interpolating between these estimates using Theorem 1.3.4, with .# being the
space of finitely simple functions, we deduce

1 3n 20 ro
w =80l <2(5550) (25, 5540) "4 7 Il

[ME(T ()]

forall f € %, where py < p < . Consider now a function % in .%. Then h € LP° (R")
and by assumption T'(h) € LPo>=(R"). This gives that My (T (h)) € LPo=(R") by
Theorem 6.3.3 (d); then Proposition 6.5.1 [in particular (6.5.1)] is applicable and
gives

< P2y ||Mf(T

Po _Po
TR, < < CuppoAd Ay " A]|,-

)l

From this and the density of .# in L? we derive (6.5.3) for all f € L?(R").
Case II: pp = 1. We fix a 6 € (0,1) and we define the following version of S

1
Ss(f)=ML(T(H)°)3
on L' + L*. We prove that S5 maps Lg, to L”. Indeed, for f € Lg, one has

1

1S5 (Nl = M AT (A7) -

1
= [|mE(T ()] >||2

— 1T P 2o

<23||T(f) (by Exercise 6.1.7)

[P
<2541
At the other endpoint for f € L' we write
185 g1 = 2T )3 |0

= [T (O,
Ld

S(Zé‘%) Il oy (14.7)
— (22 ()
< (Z22) a0 1]

We interpolate between the estimates Ss : Lg, — L™ and S5 : : L' — LV, apply-
ing Theorem 1.3.4 with .%, the space of all finitely simple functions on R”. We
deduce that for all 1 < p < e« and all f € .% one has
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AT 5 = 1550

<o) [(22) ] ety

In order to prove (6.5.3) we fix p with 1 < p < oo and consider a function 4 in
Z. Then h € L'(R") and thus by assumption T (h) lies in L' (R"). It follows that
|T(h)|® lies in L'/%(R™) hence My (|T(h)|®) € L'/%>(R") by Theorem 6.3.3 (d).
Finally Proposition 6.5.1 applies (with po = 1/6) and gives

17 = (I ®E ] e)* < (

Inserting the estimate in (6.5.4) to (6.5.5) we obtain (6.5.3) with 4 in place of f,
where C,, , 1 also depends on & (but we could take 6 = 1/2). Finally, by the density
of .Z in LP(R") we deduce (6.5.3) for all f € LP(R"). O

(6.5.4)

Lr:

1
#(|T (h) \|U/5)5. (6.5.5)

Remark 6.5.3. Theorem 6.5.2 is also valid if BMO is replaced by the bigger space
BMO,. In fact one replaces M by M% and uses a version of Exercise 6.1.7 with
BMO, in place of BMO.

Next, we turn to an application of Theorem 6.5.2.

Theorem 6.5.4. Let K be a locally integrable function on R"\ {0} which satisfies
(3.3.3) and (3.3.4) (with constant A, ), and associated with K there isaW € . (R")
and a sequence & | 0 as in (3.3.7). Assume that the operator T given by convolution
with W admits a bounded extension from L? to L. Then for all f € Lg we have

1T garo < 2(A2+ V) 2T o p2) || ] - (6.5.6)

Proof. Let us fix a cube Q centered at a point cp and let Q* be the cube with the
same center and with sides parallel to those of Q and side length £(Q*) = 2+/nf(Q),
where ¢(Q) is the side length of Q. Given a function f bounded whose support has
finite measure we split f = fo + fe, Where fo = fxo+ and fw = f)(0+)c. For fixed
x € Q we claim that 7' (f..)(x) is well defined and is equal to

T =lim [ K000 00y = [ K ()ay

5klo |x—y|25k

and the reason is that the last integral is absolutely convergent; indeed, for y € (Q*)¢
and x € Q we have |x—y| > /nf(Q), thus

A A
K(x—y)| < — '

S S @)

and the function f is bounded and supported in a set of finite measure.
We set

Co =T (f-)(co)-
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Then we write

|Q|/ IT(f —Cpldx
1
S@/ \T(fo)(x)ldx+@/ IT(f) (x) — T(f) ()| dx
‘Q|/‘ ollx IQ/‘/* ) = K(co—y)] f(y)dy|dx

—K(co—y) |dydx

(|Q/|T |2dx)2+”’|C|Q‘L°°//*,K<x
snTanﬁLz(Ki) /Q *Ifo(X)lzd) ”@L / Avdx

< (V)T oo +A2) || £]] s

where we just need to explain why

Jiew

K(x—co+(co—y)) —K(cg—y)|dy < As.

Y

This is because

lcg =y > Vnt(Q)
asy ¢ Q" but 0

—col < L20(0) V(@)

2 <
_ 34(0)

since x € Q. Thus X

lco—y| > 2|x—co|
and condition (3.3.4) applies. See
Figure 6.1. Ox

Fig. 6.1 A cube Q and the augmented cube Q*
with £(Q*)=21/nl(Q). Here x € Q and y ¢ Q*.

Finally, we obtain (6.5.6) using Proposition 6.1.3. (]

Theorem 6.5.4 can be used to obtain L” bounds for the singular integrals dis-
cussed in Chapter 3 via an approach that is not based on Calder6n—Zygmund the-
ory. In fact, if T is a singular integral operator as in the statement of Theorem 6.5.4,
then 7 maps L? to L? and Lg, to BMO. Theorem 6.5.2 implies that 7" admits a
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bounded extension on L”(R") for 2 < p < . By duality one obtains boundedness
forl <p<2.

Exercises

6.5.1. Let 1 < g < p < oo and define 6 by 1 = 1=2_ Prove that there is a constant
Cu,p,q such that for all locally integrable functions f on R"” we have

[P et 7 e 4 po

[Hint: Assuming f € L9*(R") implies M;(f) € L**(R") and allows the use of

Proposition 6.5.1. You may also need Proposition 1.3.5.]

n l
6.5.2.Letd < p<eoandC= 2538 (p_%) 3, Prove that for all functions g such that
lg|® € L. (R") we have

loc

|‘Mf(|g|8)l/5’|u < CHgHU

and
||Mf(\g|5)l/5|‘Lp_w < CHgHLP»N'

[Hint: Use the results of Exercises 1.3.4 and 1.4.8.]

6.5.3. Let 0 < 6 < po < p < . Prove that there is a constant C = C,, 5 ,, ,, such that
for all functions g € LPo(R") we have

and
8]l < ClIME(1812) 2| e

Combine this result with the preceding exercise to deduce that for all functions
g € LPo(R") we have

~[MEl) 0l and g [IMEI) O e

lsl.»

6.5.4. (Extension of Exercise 6.5.1) Let 0 < g < p < oo and define 6 by % =1=0

q
Prove that there is a constant C,, , , such that for all f € Llloc (R™) we have

(P et 7 s [ o

[Hint: Use Exercises 6.5.1 and 6.5.3.]



Chapter 7 )
Hardy Spaces st

7.1 Smoothness and Cancellation

Hardy spaces are spaces of functions or distributions that have vanishing integral
or moments, i.e., objects that contain cancellation. To properly exploit cancellation
we need to understand how it pairs with smoothness. We achieve this by studying
the action of functions with smoothness on other ones with cancellation and assume
that these functions are scaled differently.

We denote by v, the volume of the unit ball in R”. An inequality that will appear
in the sequel is the following:

dx v M
< , when M > n. 7.1.1
/Rn<1+|x|>M—M—n (7-1.1)

To verify (7.1.1), using polar coordinates we write

/ dx /°° Pl dr < /1 nlgy g /w n—1-M ;
X — NV Y, 4r = nv, r r nvy r I,
R (14 |x|)M o (1+rM 0 1

and the conclusion follows by calculating these integrals and adding the outputs.
Theorem 7.1.1. Suppose that ® and ¥ are functions on R" that satisfy

A B
TR A AN T Ee i

where M,K > n. Then fort,s > 0 we have

|P(x)] <

CoABmax(t,s)™"
@, (x — a)¥(x — b)dx| < 0 X(t,9) e (12
R (1+max(z,s)~!|a—b|) ’
for some M,K > n and all x € R". Then fort,s > 0 we have
c M4K N K4M
=V .

0 "\M—-n K-n
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Consequently, for each y € R" we have

|(¢t*‘PS)(y)‘ < CoAB max(t,s)”

(1 +max(r,s)~ ! [y[) ™"

(7.1.3)

Proof. By symmetry we may assume that ¢ < s. In the case s~ '|a — b| < 1 we use
that

g ) s—nzmin(M,K)

(14s~Hx—b|)K =50 = (145~ !|a— b|)min(M.K)

Then (7.1.2) is a consequence of the estimate
/’ At Bs™" d
x
Jre (T+t"Hx—a|)™ (1+s Hx—b|)K
- ABS_anin(M’K) / N
T (1 +sta—b|)minM.K) Jpn (1+1=tx—a|)M
ABs™" v, M 2K
< : ,
= (s a—b)mnME) M —n

dx

where the last inequality follows from (7.1.1) and the fact that min(M,K) < K.

We now consider the case s~ !|a—b| > 1. Let H, and H,, be the two half-spaces,
containing the points a and b, respectively, formed by the hyperplane perpendicular
to the line segment [a, b] at its midpoint. Write

At™" Bs™
dX:/ dx+ d_x
/R" I+ x—a)M (1457 x—b])¥ : H,

For x € H, use that |x — b| > |a— b| to obtain

/ At™" Bs™" dx

H, (1+ 7 x—a)M (145~ x—b))K
< Bs™" / At dx
= Wrs Ta— b Jro (41 T—al)
< ABs™" v, M 2K
“(Q+sYHa—b)K M—n "~

For x € H, we use that |x—a| > §|a— b| to write

/ A" Bs™" dx
my (L1~ x—a)M (1+s~ x—b|)¥

< At™" / Bs™" d
X
T (It S |a—bM Jre (1457 x—b)K
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A" By,K

“ (@ Ya—b)MK—n
A2 (i /s)M By, K
(s Ya—b)M K—n

AB(t/s) Mg 4My, K
“(l+sa—b)M K—n
- ABs™" vy K4M
“(A+sYHa—b)M K—n "~

(as s Ya—b|>1)

Combining the estimates over H, and H, we deduce (7.1.2). Taking a =0, y = b,
and considering the reflection of ¥ about 0, we derive (7.1.3) from (7.1.2). (I

Theorem 7.1.2. Fix a,b € R" and N € Z+ U {0}. Let & € €N (R") be such that

A

B -
> 1% <

IBI=N-+1
where M > 0. Let ¥ be another function on R" that satisfies

B

[P (x)] < W’

where K >N +M +n+1 and
Y(x)xPdx=0 forall |B] <N. (7.1.4)
RVl
Then when 0 < s <t < o we have

CvC(K—N—M,n)ABr ()"

D, - II{Y - ’
(x—a)¥(x—b)dx (5 Ta—b)"

R}'I

<

(7.1.5)

where C(K — N —M,n) = % and Cy = ¥g|=N+1 ﬁ Consequently, for

all y € RY, it holds that

CnvC(K—N—M,n)ABr ()"
(T2t

(@ %) ()| < (7.1.6)

Proof. To prove this assertion, we make use of the Taylor expansion formula

F(xo+h)= Y m

lo| <N

h% 1 R(h,x0,N) , 7.1.7)
where xo,h € R", N € ZT U {0}, and

B
R(h,xo,N)=(N+1) h—'/l(l—e)N&ﬁF(xo—&-Gh)de. (7.1.8)
pisv P
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is the remainder in integral form. Here F is a V! function on R”.

We set xo = b —a and h = x — b so that xo +h = x—a. Using (7.1.7), (7.1.8), and
the cancellation property (7.1.4) (which is also valid for ¥), we write

/ D, (x—a)¥(x—Db)dx
R?

[ [otea- 3 THOZD b

ly|<N v
b—a+6(x—b)
()P 1 PR
- An |:(N+1) z 131 /0 (1_9) tn+N+ll de lIIS('x_b)dx
|B|=N+1
—n —N—1 N —n|y _ j|N+1
N+1// lt (1-96) MABs |lx b| ! Jods
\/3\ N+1 B! JreJo (14171(1—=0)b+6x—al)" (1+s~x—bl)
1 n N+1 1 N ABs"
i / /t S/tl 9) Y d6dx, (1.19)
\m N+l B! Jre 141 |§b —a|)M (14571 x—bl|)

where we set £ = (1—6)b+ 6x. Using s <t and £ — b| < |x—b| we write
L+t a—b| <1+t a— & [+17"1E), — bl
STt ta—& 45 x—b]
< (g —al)(1+s7

)s

consequently, as M > 0,

1 _ (1+s—1|x—b|)M
(1+e71E2 —ah™ = \1+17"a—b]

Inserting this estimate in (7.1.9) we obtain

(I+sx—b)M ABt=(s/t)NF1sn
D (x—a)¥(x—Db)dx| < d
t(x a) s(X ) X S N/R" (1—|—t*1|a—b|)M (1—|—s*1|x—b|)K7N71 X

AB ()" v (K-N-M-1)
I+t Ya—bMMK-N-M-n—1"

R”

<Cy

in view of the assumption K > N+ M +n+ 1, (7.1.1), and the fact that the integral
in 6 produces a factor of (N +1)~!. (Recall Cy = 2IBl=N+1 ﬁ.) This yields (7.1.5).
Finally, assertion (7.1.6) is obtained by taking a = 0, y = b, and by considering the
reflection of ¥ about the origin (which satisfies the same assumptions as ¥). (]

Example 7.1.3. Let ¢,¥ € .(R") and assume that [p, ¥ (x)x%*dx = 0 for all
multi-indices a with |a| < N (for some fixed integer N). Then for any M > n there
is a constant Cys such that for any y € R” we have
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Cm
W when r < 1,
[(P*+¥)(y)] < . (7.1.10)
Cyt "~
(72+t‘1|y|)M whent > 1.

The first of these estimates is a consequence of Theorem 7.1.1 while the second one
is due to Theorem 7.1.2, in both cases with s = 1.

Exercises

7.1.1. Fix N € ZT U{0} and a,b € R". Let @, ¥ be Schwartz functions that satisfy

Y(x)xPdr= | ox)xPdx=0
Rll Rﬂ
for all | 3| < N. Prove that for any ¢, s > 0 and any M > O there is a constant Cjs such
that

s I)N-‘rl

Cymax(t,s)"min (£,%
D (x—a)¥(x—b)dx| < A .
x—a)Fi(x—b) x‘ —  (14max(z,s) a—b|)M

Rn

7.1.2. Suppose that g is a bounded measurable function supported in a cube of side
length £ centered at ¢ € R" and let @ € .(R"). Show that for every M > 0 there is
a constant Cys such that

Cwm g~

o) < —— e hent < ¢,
|( t*g)(x)‘ — (1+€71|X—C|)M when
and if g has vanishing integral then
C w (0]t n+1
(@ g) ()| < S lglle- (E/1) when 1 > (.

(I+t71x—c|)M

7.2 Definition of Hardy Spaces and Preliminary Estimates

Several boundedness results in analysis hold on L” for p > 1 but break down on L!.
The Hardy space H! provides a good substitute for L' in several ways. The main
focus of this chapter is the study of H'! and, to a certain extent, of other Hardy spaces
HP for p < 1.

Definition 7.2.1. Let ¢ € .(R") and let f be a tempered distribution on R". We
define the nontangential maximal function of f with respect to @ as
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M*(f;@)(x) =sup sup [(D*f)(y)]- (7.2.1)
t>0‘y€1‘li
y—x|<t

The term nontangential stems from the fact that the two suprema in (7.2.1) are

taken over points (y,7) in the cone I = {(y,7) : |x—y| <} in R**!, which touches
p y y y +
R" only at the point x, i.e., it is nontangential to R".

Remark 7.2.2. Let M be the Hardy-Littlewood maximal function. We verify that
for any Schwartz function @ there is a constant Cg such that

M*(f;®) < CoM(f), (7.2.2)

when f is locally integrable on R" and tempered at infinity; the latter means that
|f(x)| <C(1+|x|)X when |x| > R for some K,R,C > 0 (Example 2.6.2). To see this
we pick N > K +n and C}, > 0 such that |@(x)| < Cjp(2+ |x|) " for all x € R". The
integral defining the convolution |f|* |®;| converges absolutely due to the choice
of N, and thus M*(f; ®)(x) is well defined for any x € R”. Then for all x € R" we
have

1 X 1 C!
&, (x)| = — q)(,) <t
‘ t(x)‘ l‘n| P |—tn (2+|th|)N

For any y € R” satisfying |y — x| <t we obtain

|z—x] |z—x]

le=x b=+ >24 S 1=

24 - d5aq
This gives that

M*(f,;®)(x) < sup sup - — <
(32 >0 yeR" JR" (24 bt;z‘)N ™0
|y—x|<t

_Colf(2)| dz <su /R (ldp ||{_(Z))|N %’
Jre (1424

and from this we obtain (7.2.2) using Corollary 2.5.2.

We define the Hardy space H” in terms of the specific nontangential maximal

function associated with the Gaussian ®(x) = e~ *1" which gives rise to the approx-
imate identity &, (x) =t "®(t 'x), 1 > 0.

Definition 7.2.3. Let 0 < p < « and ®(x) = e~ for x € R™. The Hardy space
HP(R") is the set of all tempered distributions f such that M*(f; @) lies in L (R"),
and in this case we set

||fHHP = HM*(f;iIJ)HLP.

This expression is a norm when p > 1 and a quasi-norm when p < 1 (Exer-
cise 7.2.2). It is not clear from Definition 7.2.3 whether the H” spaces coincide with
any other known spaces for some values of p. In the next theorem we show that this
is the case when 1 < p < oo,
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Theorem 7.2.4. (a) Let 1 < p < co. Then there is a constant Cy , such that for all
f € LP(R") we have

1A lle < Cunll A1l
Moreover, for all f € HP (R") we have

1Al < 17 -

In other words, HP (R") coincides with (is isomorphic to) LP (R").
(b) When p = 1, every element of H' is an integrable function. In other words,
H'(R") C LY(R") and for all f € H' we have

Il < ] - (7.2.3)

Proof. (a)Let 1 < p <o and f € H?(R"). Fix ®(x) = e ™’ for x € R". The set
{®* f: t >0} lies in a multiple of the unit ball of L”(R"), which is the dual space
of the separable Banach space L”,(R”). By the Banach—Alaoglu theorem this set is
weakly* sequentially compact. Therefore, there exists a sequence ¢; — O such that
@y, * f converges to some fy € L” in the weak™ topology of L”. This means

/ (@, f) hdx — / fohdx,  hel’ (R (7.2.4)
R” R”

On the other hand, &;; * f — f in ' (R") as t; — 0 (Exercise 2.7.1), and thus the
tempered distribution f coincides with the L? function f. Since the family {®; },~¢
is an approximate identity, Theorem 1.9.4 (a) gives that

1@ 1 = 1]

It follows from this that for any € > O there is a 7, > 0 such that for 0 <t <tz one
has || fllzr < || P * f||rr + €. As € > 0 was arbitrary, it follows that

Hf’ = H fgg@f *f|HLp < ||M*(f;(p)HLP = HfHHp' (7.2.6)

=0 ast — 0. (7.2.5)

The converse inequality is a consequence of (7.2.2) and the boundedness of the
Hardy-Littlewood maximal operator on L” (R") for p > 1.

(b) Let us denote by %po(U) the space of continuous functions g(x) that are
supported in an open set U and tend to zero as |x| — . We embed L! in the space
of complex Borel measures .# whose total variation is finite; this space is the dual
of the separable space %po(R"). By the Banach—Alaoglu theorem, the unit ball of
A is weakly” sequentially compact, and we can extract a sequence ¢; — 0 such that
&, * f converges to a complex Borel measure  in .7 in the sense

/ (cb,j*f)hdxa/ hdp,  h€ Gp(RY). (7.2.7)
R” R”
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As @+ f — fin .S '(R™) (Exercise 2.7.1), the distribution f can be identified with

the measure p. If we can show that du = fydx for some fy € L' (R"), it will follow
that f = f; a.e.; thus the given f € .’ can be identified with an L' function.

Next we prove that for all subsets E of R” we have |E| =0 = u(E) = 0. Since
sup,~q | x f| lies in L'(R"), given & > 0, there exists a § > 0 such that for any
measurable subset ' of R"” we have

|[F| <6 = /sup|<1>t*f\dx<£.
F >0

Given E with |E| = 0, we can find an open set U such that E C U and |U| < d.
Then for any g in 600(U) we have

/ gdu’ = lim

R? J—oo

Il [ supl(@ix )l dx
Ut>0

< el

[, 80 (@, <Ny
.

IN

Let |¢t| be the variation measure of measure (. Then we have {see [37] (20.49)}

@)= [ 1l =swn | [ ean|: e dm@). el <1}

which implies |u|(U) < €. Thus |u|(E) < € and as € was arbitrary, it follows that
|4|(E) =0 and thus (E) = 0. This argument shows that ( is absolutely continuous
with respect to Lebesgue measure. By the Radon—Nikodym theorem we obtain the
existence of a function fy in L' (R") such that du = fydx. Inserting this in (7.2.7)
we obtain the analog of (7.2.4) in the case p = 1. As Theorem 1.9.4 (a) also applies
when p = 1, it follows that (7.2.5) also holds when p = 1. Finally, (7.2.3) is a con-
sequence of (7.2.6), which is also valid for p = 1. (I

Remark 7.2.5. One may wonder whether H!(R") coincides with L! (R"). We pro-
vide an example showing that L” (R") is not contained in H” (R") for any p < 1. Set

D(x) = ¢~ on R”. One sees that for |x| > 1

" 1 —( \Xf)'\ )2 (374”
M*(2(0,1)> @) (x) > (XB(0,1) * Ppx) () = W/\y\él e W Tdy> VHW7

since

lx—yl

Dyl Bl
I

< <
[ [

2.

As the function |x| ™" is not integrable to any power p < 1 over B(0,1)¢, we have
XB(0,1) € LP \ HP. Thus H' is a proper subspace of L' and L”(R") is not contained
in H?(R") for any p < 1. Also, H?(R") is not contained in L”(R") when p < 1 as
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certain distributions that are not functions are members of H”(R"); see for instance
Exercise 7.3.4.

Next we show that H' functions must have integral zero.

Theorem 7.2.6. Suppose that g € H'(R"). Then [g, g(x)dx = 0.

Proof. By Theorem 7.2.4 (b), g lies in L' and so its integral is well defined. Set
¢ = [grng(x)dx and P(x) = ¢, Then the family {ge}e>0 is a multiple of an
approximate identity, and by Theorem 1.9.7 (b) we have

(@Dz*gs)(y)—>0¢z(y) ase—0

for any y € R" and any ¢ > 0, since &; is uniformly continuous on R”. Then

. o] Yy
el 104()| = lim (@ .86) ()] = liminf | (P, %) ()],
and so for any x € R” and any ¢ > 0 we obtain
|
|c|sup sup @ (y)| <liminf —sup sup ‘(@,/E*g)(zﬂ. (7.2.8)
>0 y: ly—x|<t €0 €% 50 y: |y—x|<t €
On one hand, the right-hand side of (7.2.8) is
liminfsup sup  —|(@ % g)(y')| < liminf — " (g: &) (%)
£—0 t’>];())y’:\y’—g\<1’ en r*EVI= e—0 &" & € '

On the other hand the left-hand side of (7.2.8) satisfies

lc[e”®
e[ sup sup | Pi(y)] = [e] [P (x)| = ==
>0 y:|y—x|<t |x|

Suppose ¢ # 0. Taking L' norms and applying Fatou’s lemma, we deduce

e "dx . xydx .. x\ dx
el f S e liminfM" (g: @) () o <liminf | M"(g:®)(7) 5 = gl -
The quantity on the left equals o but ||g|| ;1 < e, a contradiction. Thusc=0. O

We end this section by showing that Schwartz functions with sufficient vanishing
moments' lie in H”.
Theorem 7.2.7. Let 0 < p<1land N = [% —n]. Then every Schwartz function ¥ on
R" with [ga W (x)x% dx = 0 for all multi-indices o with |&t| < N, lies in HP (R").

! The ath moment of a function ¥ is [g. ¥(x)x* dx, where « is a multi-index.
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Proof We will make use of (7.1.10) with @ (x) = =™/’
(a)Ift < 1 and y € R" is such that |y — x| < ¢, then

24224 e = o=y Z 2+ [ =1 2 T+ |5

Thus the variable y on the right in (7.1.10) can be replaced by x when |y — x| < ¢.
Then (7.1.10) yields

Cu
sup  sup [(DxP)(V)| < s
0<t<ly:|y—x|<t ' (l + |x|)M

where M is arbitrarily large.
(b) If > 1 and y € R" is such that |y — x| < ¢z, then

24t Ny > 24— =y > 24t x — 1 > 141 s
thus the variable y on the right in (7.1.10) can also be replaced by x. Then

—n—N-1 Cu if x| < 1,

Cyt
sup sup [(P*xP)(y)| <sup———; < grNFL
=1 yily—al<i i (1M ™ | e sup gy i ] > 1

Here we changed variables s = |x| /¢ when |x| # 0. So choosing M > n+ N + 1, we
obtain

Cl
(1+ [x] )N+
The choice of N = [% —n] implies p(n+ N+ 1) > n; hence (7.2.9) yields that the
function M*(¥; @) lies in L”(R"). O

M*(¥;@)(x) < (7.2.9)

Exercises

7.2.1. Recall the translation of a tempered distribution u is defined by (t™0u, @) =
(u,7™0@), o € S (R"), xp € R", 779¢(x) = ¢(x+x0), x € R". Show that the
HP quasi-norm is translation-invariant, meaning that for any xo € R", one has
| T0u||zp = ||u||zr When 0 < p < oo,

7.2.2. Let 0 < p < oo. Observe that for f,g € H” we have

min(1,p)

I+ alli ™ < 1Al + el

and ||A f||z» = |A||| f||z» when A € C. Conclude that the expression || - || g» is a norm
when p > 1 and a quasi-norm when 0 < p < 1.

7.2.3. Show that for 0 < p < 1, the H”(R") quasi-norm remains invariant under
dilations of distributions of the form u — A"/Pu*, A > 0, where (u*, @) = (u, ®1/2)
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and @, (x) = A7"@(A"!x), o € .7, u €., x € R". Note that for 1 < p < oo, the
H?(R") norm remains invariant under dilations of functions f — f*, where f* (x) =

A7 f(Ax), x € R,

7.2.4. Prove that H? contains the space of Schwartz functions whose Fourier trans-
forms vanish in neighborhoods of the origin.

725.Let0< p<eoandletuj € HP(R"), j=1,2,....Ifuj —uin " as j — oo,
show that
[[ullr < Timinf |Ju ]| szp-
Jj—eo

[Hint: Use Fatou’s lemma.]

7.3 H? Atoms

We have seen that Schwartz functions ¥ with vanishing moments lie in H”. A close
examination of Theorem 7.2.7 indicates that the only property used of the function
Y was its decay at infinity. This is certainly the case if ¥ has compact support. This
observation motivates the following definition.

Definition 7.3.1. Let 0 < p < 1. An H? atom® is a function A with the properties:
(i) A supported in a cube Q (with sides parallel to the axes).
(ii) |A(x)| < |Q|~'/7 for all x € Q.

(iii) / A(x)x%dx = 0 for all multi-indices o with |¢t| < [ —n].
Q

Condition (iii) is referred to as the vanishing moment property and reduces to
vanishing integral when p = 1. Condition (ii) provides only a natural normalization.

Theorem 7.3.2. H? atoms lie in HP. Precisely, there is a constant C(n,p) that
depends only on n and p such that ||A||gr < C(n, p) for any H? atom A.

Proof. 1f the claimed assertion is proven for atoms supported in cubes centered at
the origin, then it also holds for all atoms, since translations of atoms are atoms
and H? is translation invariant (Exercise 7.3.1). So we fix an atom A supported in

a cube Q of side length ¢ = ¢(Q) centered at the origin. We define the function

Y(y) = K%A(éy). Then ¥ is an atom supported on [—%, %]" and is related to A by

Alx) =07 #P(3) = 0" (x). Set (x) = e’ . Then one has
DA =0""7(DxW).

Moreover, by Definition 7.3.1 (ii) we have

2 Also called an L atom for H?.
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_ G
(1+yD¥

for any K > 0 with Cx = (1++/n/2)X. When t < ¢, Theorem 7.1.1 gives

n n _1
(PO =1 A <2101 7 x1o() = 21 1 () <

22

Cul' 10" Culr

n—2 <
@0 < G S T T

(7.3.1)

for any M > n, where in the last inequality we took x such that [y — x| <t < 4.
Notice that in view of property (iii) in Definition 7.3.1, the function ¥(y) =

L %A(éy) has vanishing moments up to and including order N = [% —n]. When > ¢,
applying Theorem 7.1.2, for |y — x| < ¢ and any L > 0, we obtain

CLfng"*%(g/t)NH Cpt~N-1-ngn=j+N+1

(@ % A)(y)| = 077 |(Br W) ()| < Crept = (Q+ria)E

where, as before, the last inequality comes from the fact that |y — x| < ¢. This gives

sup sup |(D#A)(y)| < Cpe NN — o 0h (13.2)
t>0 y: |y—x|<r

and also, by changing variables s = |x| /¢ (when |x| # 0), it also gives

(@) <ced (L) ap 7:33)
sup  sup *A) )| <CL P(—) sup ———7- 3.
t>0y: [y—x|<t ' |x| >0 (1 +S)L

Here we chose L > N+ 1+ n and so the supremum in s in (7.3.3) reduces to a
constant. Combining (7.3.2) and (7.3.3) yields

c, v
sup sup (P xA)(y)| < L : (7.3.4)
1> y: ly—x|<t ! (1+¢ l|x‘)n+N+l
Finally, (7.3.4) and (7.3.1) imply
Cul» e

KA. <
M*(A; ®)(x) < (1+€7]‘x‘)M+(]+€—l|x|)n+N+]’

and this function has L? quasi-norm bounded by a constant independent of ¢. In
fact, M and L can be chosen to depend only on n and N (thus on n and p), so the
final constant controlling the L” quasi-norm of M*(A; @) is bounded by a constant
C(n, p) depending only on n and p. O

Example 7.3.3. Every compactly supported and bounded function g with mean
value zero lies in H'(R"). Indeed, every such function is supported in a big cube
Q and is bounded by ¢|Q|~!, where ¢ = ||g||z=|Q|. Then g = cA, where A is an H'
atom, so g lies in H' (R").
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In the rest of this section we provide a strengthening of Theorem 7.3.2 that can
handle even unbounded functions with vanishing moments.
We begin with some observations regarding the derivatives of the Gaussian func-

. _ 2
tion e~k

. A straightforward calculation via induction gives that the Nth deriva-
u? equals pN(t)e_m2
degree N. Thus |L‘ft—1:,e’m2| < Bn(1+ \t|)Ne’mz for some constant By. Extending
this to n dimensions (by separation of variables), we obtain that for multi-indices

B =(Bi,...,B,) with size || = N we have

tive of the function ¢ +— e~ , where py is a polynomial of

8[367717\):\2 — Pﬁ (x)e*”Mz’ (7.3.5)

Kherex = (x1,...,%,) and Pg(x) =ITj_, pp,(x;). Thus for any B with [B| =N, one
as

19Be~ ™| < BY (14 Ve ™, xeR” (1.3.6)
These facts are useful in the calculation of H” quasi-norms.

Theorem 7.3.4. Let 0 < p < 1 and 1 < g < eo. Suppose that g lies in L1(R") and is
supported in a cube Q. Suppose moreover; that [, g(x)x% dx =0 for |a| < [% —n).

Then g lies in HP(R") and there is a constant C, , 4 such that®

1_1
HgHHP S C”7P=¢I|Q|p 4 HgHLq

Proof. As HP? is translation invariant, we may assume that Q is centered at the ori-

gin. We denote by O* the cube Q dilated 2+/n times. Let us set ®(x) = e~ For
this & we use (7.2.2) for x € Q* to write

M7 (g: @) 20+ L, <ClO* 771 [M(g)] e (7.3.7)

where in the last step we made use of Holder’s inequality (1.1.4) applied to the func-
tions Yo+ and M(g) with exponents (% — 1y=1 and ¢, respectively. Corollary 1.4.7
yields that the expression on the right in (7.3.7) is bounded by

2q
qg—1

34

C‘Q*ﬁ_% gHLq SC'I|Q|%_é||g“L‘i' (7.3.8)

We now turn to the case where x ¢ Q*. Let us fix y such that [y — x| < 7. Exploiting
the fact that g has vanishing moments up to order N = [2 — n], Taylor’s expansion
in (7.1.7) [and the expression for the remainder (7.1.8)], allow us to write

’(cb,*g)(y)‘

o) - 3 00 () g (- )] w0

|a|<N

1 1
3 The normalized function |Q| » "4 g/||g||zs is called an L? atom for H”.
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[B N+ G)Na%g_ef);%l!(_f)ﬁde] 8(2)dz

CyB 0z [\ e
= Mfll/g[/o(“‘”( HEEE) e e etz 0.3

having used (7.3.6). Notice that x ¢ Q* gives that |x| > \/n¢, where £ = £(Q) is the
side length of Q. Also, z € Q implies |z < 1/nt.
Case 1: |x| > 4¢. Then we have

N+1

1 x X
ly =0z > |y| = |z] > |x[ =[x —y] = [z] > IXI—I—E\/MZ Lzl—tz |4—|
and also
1 X
y— 02 < Iyl +12) < ol + ly—x| el < e 41 3 vae < ol + 5 Bl <oy

These two estimates imply

(1+ P8 emr < (14 22 i
t o t

Inserting this bound in (7.3.9), we obtain
CNBn 2_x| N+1 k2
(@90 < St (14 2 e [ g a:

CNB;’V+1 2|x|\ 2N+2+n 2
o (14 20) () / Nt o(2)|d
< (2|x|)n+N+1( +- e QIZI |g(z)|dz

N—H N+1
et [ e e

as the function s — (1 4 85)2V2+1-75" is bounded.
Case 2: |x| < 4¢. The function in the brackets in (7.3.9) is bounded, so we obtain

P, < C[’\l/' N+1 < C”4n+N+ N+1 d
(@ 2))] < i Q\Z| lg(z)] dz T \| lg(2)ldz,

which is the same estimate as in Case 1.

So, in both cases 1 and 2, when x ¢ Q* we proved that

M*(g:®)(x) =sup sup |(®%g)(y ’—W | @z (7310

>0 y: |y—x|<t

But

|L‘1 ’

N+1 ES R
/Q 12V g ()| dz < c|o| /Q g()ldz < el 0|7 ||s
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so for x ¢ Q* we obtain

/

C, Nt ,
M*(g;P)(x) < ||,1+7N+JQ| 101 ||l -

Since N =[5 —n], it follows that p(n+N +1) > n; hence x|~ (NP g

integrable over the set |x| > \f £(Q) and the integral produces a factor of the order
N+

of jo|-('*

1
[@*)M"@;q")”“} <Copll" 101 1017 g = CrrllF e

This estimate, together with (7.3.7) and (7.3.8), provides the required conclusion. [

Exercises

7.3.1. Prove that condition (iii) in Definition 7.3.1 is equivalent to the condition
that [, A(x)(x —x)%dx = 0 for all |a| <[5 —n] and any xo € R". Conclude that
translations of atoms are atoms.

7.3.2. Observe that H? atoms are H? atoms when 0 < g < p < 1. Then verify that
the function

n

%[0,1]” H(6X% — 6x]' + 1)
=1

is an H?(R") atom but not an H?(R") atom when 0 < ¢ < /5 < p < 1.

7.3.3. Let ¢ be a compactly supported and smooth function and let B be a multi-

index with |B| > 1. Prove that 9P ¢ lies in H?(R") for all p satisfying n+\5\ <p<l.

7.34. Let x1,x; € R” satisfy x| # xp. Prove that the difference of Dirac masses

Oy, — O, lies in HP(R") for 25 < p < 1.

7.3.5. Let x1,x € R” satisfy x| # x, and let (x be a multi- index Show that 9% &, —
9%4,, lies in H?(R") for all p satisfying n+1+|a\ <p< HHG\ [Hint: Use (7.3.5).]

7.4 Grand Maximal Function

Our goal in this section is to show that the definition of Hardy spaces does not
depend on the specific choice of the function @ (x) = e~ The following lemma
will be crucial in proving this fact.
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Lemma 7.4.1. Let m € Z and fix @ in .7 (R") with integral equal to 1 [such as

P(x) = ¢~ ] Then there exists a constant Co(P,m) such that for any function
¥ € .7 (R"), there are Schwartz functions 0Y), 0 < s < 1, with the properties

P(x) = / 1(@@ % @) (x) ds (7.4.1)
0
and
1
ﬁRp+wwmemsawnmAp+mw§;kwmmmLUAm

lot| <m+1

Proof. We start with a smooth function 1 on the real line that satisfies 0 < n <1,
n(s)=0fors> % and n(s) =1 fors < 1.

Then we define 1

s"
£s) =2 n(s)
for s € R. Then { lies in € and satisfies
§m n(s)
OSC(S)S—‘ forall 0 <s <1,
m! )
¢(s) " frallo<s<i ™ i
s) = — or a s< = L
m! A m
7
E(s) = 0 forallszg. 0 3 g 1
See Figure 7.1. Fig. 7.1 The functions s™/m! and 1(s)

plotted on [0, 1].

Next, for s € (0, 1], we define the family of functions

m+1 terms
(s) mil gy m(s) d"E
O =(-1)""L(s)E *'P—W(s) Dk ok Py kP, (7.4.3)
where Z©) is a function chosen so that
m+2 terms
dm+l —_— =(5)
Tt @y | =E0 (7.4.4)
for any s > 0. Precisely, Z(*) is equal to
ki terms kpyy  terms
m+1—(ky 4 +kyi1) terms  pm—m e
—_— dds dds a1 @ "™ @
Zcmvkl,wkmﬂ Dy k- x Dy * s ERERE s **W**W,
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where the sum is taken over all tuples (ki,...,kn41) of nonnegative integers such
that 1k; +- -+ (m+ k1 =m+1, and

(m+2)! 1 1
(m+27(k1 +~“+km+1))! 11k ~--(m—|—l)!km+1 kil k! ’

The precise expression of ) follows from the Faa di Bruno formula (Appendix F)
with g(t) = "2,

We claim that (7.4.1) holds for this choice of eb). To verify this assertion, we
apply m + 1 integration by parts to write

m+2 terms

1 1 1 dm+lc —_——
/ OV xd, ds :/ (— )m+1C( )E ) s P xWds 7/ —2(s) Pyk...x Dy xPds
0 0 0 dsm+l1

m+2 terms
¢ —
+W(O)SEI31+ (Px--x @) *W
m+2 terms

dm+1 /_H
m+1/ £(s) sm+1 ---*@s)*‘l’ds,

noting that all the boundary terms vanish except for the term at s = O in the first
integration by parts. The first and the third terms in the previous expression on the
right add up to zero, while the second term is equal to ¥, since ¢ has integral 1.
This implies that the family {(® - - - @), }~0 is an approximate identity as s — 0
(Example 1.9.2). Therefore, (7.4.1) holds.

We now prove estimate (7.4.2). Let Q be the (m+1)-fold convolution of ¢. For
the term after the minus sign in (7.4.3), we note that the (m+ 1)st derivative of {(s)
vanishes on [07 %] , so that we may write

/(1+|x|)m‘w‘|9s*‘f’(x)\dx
-

dsm+!
< me[é’]](s)/R"(lJrqu[/n |_Q (*2) ||'}1 |dy:| dx
CmX[%,l](S)/RH /Rn(l+|y+sx\)m|_(2(x)|\lP(y)|dydx
< Cutyy(5) [, [ (115712 1+ 151)" 0] dyd

Coty @) -+ bmaea ) ([ @+ bhmiwola)

Cras”™ [ (1" 90 dy:

IN

IN

IN
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as %11y (s) <2™s™. To obtain a similar estimate for the term before the minus sign
in (7.4.3), we argue as follows. A generic term in the sum defining = (*) has the form

d &, d/L g
ds/t or dsit ’

where ji,...,jL are nonnegative integers satisfying j; +---+ jp =m+ 1, in view of
the fact that 1k; + -+ 4+ (m+ 1)k,41 = m—+ 1. For j; <m+ 1 we have

dh o,
JIRCERs

i *‘P(x)’dx

dsh
dh
= [ | [ ee)w sy aydx
= [ (1+]x])™" / D(y) dh. Y(x—sy)dy|dx
R w Y gsh

< J b [ 12O 3 19—l ] avax

loe|<jy
= /nAn(l+|x+sy|)m|¢(y)| ‘ lz, |0%W (x)| (1 + |y])"' dydx
al<ji
< /Rn(lﬂﬂ)h \‘P(Y)I(1+|y|)mdy/m(1+|x|)m S |09 (x)|dx

la|<ji

<o [+ T 10°()]dx,

o<y
using j; < m+ 1. We have now proved that for some constant C,, 4 > 0 we have

dj]d)S / m o
()| <o 3 /R ()"0 () dx. (7.4.5)

o |< i

[

: . d72 &, . .
Applying (7.4.5) to the function 2 x Y in place of ¥ we obtain

dhd. did
m s s
/R |5  S ()| dx

djz(pY
<Go T [ A+

loa <

ds)2
<Ce? S Y /l;n(l+\x\)m|8°‘28“"1’(x)]dx,

o<1 loa|<ja

* MY (x)|dx

where the last estimate follows by another application of (7.4.5). Continuing in this
way, we deduce the existence of a positive constant C¥ such that
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71(1+|x|) dsjl ek dst *

dd. d/Ld
/ m| s s ‘P(x)’dng,f/R(1+\x\)m S |09%(x)|dx,

lot|<m+1

as ji +---+ jr = m+ 1. Summing these estimates over all terms that appear in the
sum defining = (%) we deduce the same estimate for Z) x .

Keeping in mind that the term before the minus sign in (7.4.3) contains the func-
tion {(s), which is pointwise bounded by s™ for 0 < s < 1, yields the desired esti-
mate. This concludes the proof of (7.4.2). O

Remark 7.4.2. We use the notation of Lemma 7.4.1. A straightforward adaptation
of the preceding proof yields that for some constant C),(®,m) one has

1

Sm

[ (1-+1a1)"]s 500 )] dr < Co(@.m) [ (141" T (9% ().

lot| <m+1

To verify this assertion, we will show that s%@w satisfies similar estimates to @9,
We first observe that for any Schwartz function @ there is another Schwartz function
& (x) = —n®(x) — VP(x) - x such that s% &, = &b, for any s > 0. Notice that if P
has integral 1, this will not be the case for ®. However, in the proof of (7.4.2),
we did not make use of the fact that @ has integral 1, just that ¢ was a Schwartz
function. Also, the proof did not depend on @ being convolved with itself it would
work with the convolution of distinct Schwartz functions. Applying s S 10 (7.4.3)
we obtain

d

d
S$®(s):( 1)+ df( VEW
—|—(—1)m+1§(s)sd§s(x> *
2 m+1 terms
—S— (5) Dy x Py W
oy ) m terms
—W(s) (m+1) Dy Dy x Py x .

We notice that both s 4 ¢ ( ) and s-<L > o = C (s) are bounded by a constant multiple of
", just like & (s) and dm -1 {(s) were. Additionally, in S%E (%) (x) one occurrence of

<I>S is replaced by &;; hence these expressions satisfy similar estimates as Z (%),

In the proof of Lemma 7.4.1 the norm-looking quantity
/ (1) S 10%% ()| dx, ¥ e 7(RY),
R" o] <m+1

appeared. It turns out that this expression plays a crucial role in the theory of Hardy
. . . 2.
spaces. In particular, it can be used to show that the function @ (x) = e~ in the
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definition of H” can be replaced by any other Schwartz function with non vanishing
integral.

Definition 7.4.3. For a fixed positive integer N we define the expression

M) = [ (14" 3, (9% dx (146

|a|<N+1

on Schwartz functions ¢@. We denote by .%y the subset of Schwartz functions
Ty = {<p e Z(R"): Ny(9) < 1} . (1.4.7)

Using this we define the grand maximal function of f € ' (R") (with respect
to N) by

AN(f)(x) = sup M*(f;9)(x).
0EIN

Theorem 7.4.4. Fix 0 < p < e and ® € ./ (R") with [ga P(x)dx #0. Let N € Z,
N> [ |+ 1. Then there is a constant C(n, p, ) such that for any f € .’ (R")

1 <C(n,p,®@)||M*(f:D)||,,- (748

1
Ny (P)
Proof. Obviously the lower inequality in (7.4.8) holds as the Schwartz function
@ /Ny (P) lies in Fy and therefore for all f € .7/ (R") we have

Le)

M (s gogay) <0

Let b > 0. A tool that will be used in the proof of the upper inequality in (7.4.8)
is the following auxiliary maximal function

(@)=

M;*(f;, D) (x) = sup sup (7.4.9)
(S R)0) = sup b ST I
We observe that
M*(f;®) <2°M;*(f: P) (7.4.10)

as for any ¢ > 0 we have
sup (@ * f)(x—y)| < sup ———=|(Pr* f)(x—)|.
yER”, |y|<t yeR? ( | |/t)

The role of M;* is apparent in the following assertions:
(A) For every b > n/p and every @ in . (R") there exists C;(n, p,b) < oo such that
forall f € ./(R") we have

M5 (f: ®)||,» < Ci(n, p,b)|[|M*(f: D), - (7.4.11)
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(B) For every b > 0 and every @ in ./(R") with [g. @(x)dx = 1 there exists a
constant C»(b, @) < oo such that if N > [b] + 1 for all f € .#/(R") we have

|- 2n ()]
We now prove these statements. It follows from the definition of

M*(f;®)(z) = sup sup [(Pf)(w)]

>0 |w—z|<r

1 S Ca(b, @) M7 (f: )| - (7.4.12)

that
[(Pr# f)x=y)| <M (fi@)(z)  if z€B(x—y,1).

But the ball B(x —y,7) is contained in the ball B(x, |y| +1); hence it follows that
n 1 n
(@cNx-yF < o [ () dz
’ [B(x—.0)| Jp(e-ys)

1 n
S Bl M (f;®)(2)b d
~ |B(x—y,1)] /B(x.,\sz) (f;P)(2)b dz

(MY war ()%,

IA

from which we conclude that for all x € R" we have
b
M (£:@)(x) < (MM (1:9)F) ()] "

Raising to the power p and using the fact that p > n/b and the boundedness of the
Hardy-Littlewood maximal operator M on LPb/" we obtain conclusion (7.4.11).

In proving (B) we may replace b by the integer by = [b] + 1. Let ® be a Schwartz
function with integral equal to 1. Applying Lemma 7.4.1 with m = by, we write any
function ¢ in . (R") as

00) = [ (O @) ()ds
for some choice of Schwartz functions ®*). Then we have
00)= [ () +0)0)ds
forall r > 0. Let f € ./(R"). We claim that
¢,*f:/0](@<s)),*db,s*fds, (7.4.13)

noting that this integral converges absolutely, in view of Theorem 2.7.1. We will
prove (7.4.13) at the end.
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Assuming (7.4.13), for a fixed x € R" and for y in B(x,r) we write
(@ F))] < /1 Rn'<@“)>r<z>\\<<I>m*f><y—z>\dzds

< [ L e (D)()(W

S./; Sbo/n|(@(S))t(z)|MZg(f;q5)(x)(|X v |+1>bodst

<POM(f; D) (x / —bO/ 10 (w)| (jw] + 1) dw ds

by
+ 1> dzds

<M [ 5, bo) T () s
0

where we applied conclusion (7.4.2) of Lemma 7.4.1. Setting N = by = [b] + 1, we
obtain for y in B(x,) and @ € .7 (R"),

(9% £)()] < 27Co (D, bo) My, () My (f5P) ().

Taking the supremum over all y in B(x,¢), over all ¢ > 0, and over all ¢ in Fy, we
obtain the pointwise estimate

M (f)(x) < 2°°Co(D,bo) My (f:P) (%), xeR’,

where N = by. This clearly yields (7.4.12) if we set C; = 220Cy (P, by).
It remains to prove (7.4.13). Let us set

H(s,x) = (0« ®y)(x), xeR".

Notice that ((@®)), % &) (x) = t"H (s,x/t). It will suffice to show that the partial
sums of fol H (s,x/t)ds converge to this integral in the topology of Schwartz func-
tions. In other words, if s; = i/N,i=1,2,...,N, we must prove that for fixed r > 0
we have

sup
xeR”

-0 (7.4.14)

i/sj [xaafH(Sifh )ljc) —xaaﬁH<u 7)] du

i=1Y5i-1

as N — oo for all multi-indices o, 3. Using the fundamental theorem of calculus we
can express the supremum in (7.4.14) as

3L et (o)

i=1v9%i—-1 i—

sup
xeR"

which is pointwise bounded by
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1
— sup
x€R" /0

0‘813 H (s 7) ‘ ds.
This expression can be rewritten as

jal p ¢
g [ (o 2o £ E o

Now the quantity inside the square brackets in (7.4.15) can be estimated by

ngll;l/l{n‘dds ’Mla‘ (of @), (**yﬂdy
2 he %@wuf—y "5 =)
+2saﬁ|1/ )1 | - (@ @) (X ) |ay
ﬁﬁ: /R 0 (y)| |y (8f¢)s(§_y)’dy
2 L1800 [ o] S @ (3 ) s
R o[ (2 )y
= % R L0 (y)|(1+ )" dy
scni(; - %@(Y)(Y)‘dy
sn+1+\ﬁ| / (L+ )"
+TW|/R 09 0)|(1+1y))"d
Cslol

v ety

Csll
Sn+1+\ﬁ|/ 0] dy

for any m > ||, where C is a constant depending on @, c, 3, m, n. Recalling (7.4.2)
and the estimate in Remark 7.4.2, picking m > || +n+2 and m > ||, we obtain
that the preceding displayed expression is bounded, so inserting this in (7.4.15)
yields a finite integral, and thus (7.4.15) tends to zero as N — oo. This concludes the
proof of (7.4.13). (I
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Exercises

74.1. Let 0 < p < 1 and N = [7] + 1. Prove that there is a constant C(p, n) such that
for any f € H”(R") and any ¢ € .(R") and all 7 > 0 we have
@15 f] - < Clp,m) 77 N (@0)]| 1]

and
Deduce that for all r satisfying p < r < oo one has

o £, < Cpm)Tn(@) "5 ||£]],0-

7.4.2. Let 0 < p < 1. Show that for all f in H”(R"), the distributional Fourier trans-

form f is a continuous function. Also prove that there exists a constant Cy,p such
that for all £ # 0

PN Cap €171 f] -
[Hint: Use the preceding exercise with r = 1, ¢ = || ™! and ¢ (x) = eFe Tk ]

74.3.Let 0 < p <1 and N = [7]+ 1. Prove that for any f € H”(R") and any
¢ € .7(R") one has

|(f,0)| <N (@) inf Ay (f)(z).

lz]<1
Use this estimate to show the existence of a constant C, ,, such that
(00 < T (@) Cop | f | 1o -
Conclude that if f; — f in H?, then f; — f in ..

7.4.4. (a) Let xo € S"~!. Prove that there is a constant C,, > 0 such that the sequence
of functions fi = Xg(kxy 1) — XB(—xg,1)- k = 12, satisfies*

1illp = Clog

(b) Show that f = ¥7 » %2 i lies in L' (R") \ H'(R") and has integral zero.

[Hint: Fix a ®@ € € supported in B(0,1) and equal to 1 on B(0, }). Prove that
(P, * fir)(x) > v, 1" for x € B(kxo, %), where t, = 2|x — kxo| 4 2.]

7.4.5. Given A a closed subset of R” and 0 < y < 1, define

. JANB(x,r)|
A= R": inff —————=>7v;.
v {xe 2o Bl <7

4 A weaker assertion is claimed in Exercise 7.8.2 via a different method.
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Show that A;‘, is a closed subset of A and that it satisfies

3n
1y

(4] <

; acl.

[Hint: Show that
(A) E{x e R": M(ac) (x) > 1 =7},
where M is the Hardy-Littlewood maximal function.]

7.4.6. (a) For a (not necessarily measurable) function F on RTI and a > 0, set

Fj(x)=sup sup |F(y1).

>0 y: [y—x|<at

Let 0 < a < b < . Prove that for A > 0 all sets below are open and satisfy
E; > A} < {F > A} < 3"a "(a+b)"{F; > A},

(b) For f € ' (R") and @ € . (R") and x € R" define

M (f:@)(x) =sup sup [(D*[f)(y)]-
>0 y: [y—x|<at
Conclude that |M;;(f;P)||rr and ||M;(f;P)||» are comparable for all a,b, p > 0.
[Hint: Apply Exercise 7.4.5 with y = % and A := {F} < A}, and prove that
(Fy > 2} € (4"

7.5 The Whitney Decomposition of Open Sets

We denote by £(Q) the side length of a cube Q. In this section we decompose a
proper open subset €2 of R" as a union of dyadic cubes with side lengths comparable
to their distance to the boundary of Q.

As usual, we denote by Z; be the collection of all dyadic cubes of the form

{1, yx) ER" s m278 <x; < (mj+1)27%),

where m; € Z. Bisecting each side, we can write each cube in Z; as a union of 2"
cubes in P, 1. We denote by Z = Uz Z the set of all dyadic cubes.

Definition 7.5.1. Two dyadic cubes in R" are called adjacent if they are disjoint and
their boundaries intersect (touch). This intersection could be a point, an edge, or a
face of dimension at most n — 1.

The closures of adjacent dyadic intervals have a common endpoint, but the clo-
sures of adjacent dyadic squares in R? could share a corner or an edge. In R? they
may share a corner, an edge or a face.
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Theorem 7.5.2. (Whitney decomposition) Let 2 be a nonempty proper open subset
of R". Then there exists a family of disjoint dyadic cubes F = {Q,}; such that

(@ U;0; = Q.
(b) For every Q; € F we have

Vil(Q;) < dist (0, 2°) < 4v/nl(Q)).

Thus there exists &; € Q€ such that |§; — center of Q;| < 3/nt(Q)).
(c) If the cubes Qj and Qy in F are adjacent, then

0(Qj)
woy =

(d) Given Qj in F there exist at most 6" —4" cubes Qi in F adjacent to Q;.

e)Let0<e< % For Q; € F define Q;f as the cube with the same center as Q;
and with £(Q}) = (1+€){(Q;). Then if Q), Q; in F are disjoint and not adjacent,
we must have that Q;‘- and Q7 are disjoint. Moreover, all Q;‘- are contained in §2 and

1
- <
1=

xo < ZXQ; <2"xa-
=0

Proof. Write the open set 2 as the union of £, k € Z, where
Q= {xeQ: 2/n27F <dist(x, Q) < 4y/n27*}.

Let
¢ ={0€P: IkeZsuchthat Q € Zand 0N #0}.

We show that the collection ¢ satisfies property (b). Let Q € 4 N Z; for some k
and pick x € ;N Q. Then we have

Vn27F < dist(x, Q) — /nl(Q) < dist(Q, Q) < dist(x, Q°) < 4/n27*.

This proves that the collection ¢ satisfies the first assertion in (b). Now, given Q € 4
there exists a point & € Q¢ whose distance from Q is at most 4,/n¢(Q). Then the
distance from & to the center of Q is at most

ave(0) + Y (o).

This proves that ¢ satisfies the second assertion in (b) as well.

We note that every Q in ¢ is contained in Q2 since it has distance at least \/nf(Q)
(which is strictly positive) from its complement. Thus Ugcy Q & Q. Now for every
x € Q there exists k € Z such that x lies in €. But this x lies in some cube Q, € %,
hence 0, N & # 0, s0 O, € ¥ and thus x € Upey Q. Then Q € Upcy Q. Combining
these facts we conclude that

Q=Jo

Qe
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The problem is that the cubes in ¢4 may not be disjoint. We then refine ¢ by elim-
inating those cubes that are contained in some other cubes in the collection. Two
dyadic cubes are disjoint or are related by inclusion. For every cube Q in ¢ we can
therefore consider the unique maximal cube Q™ in ¢ that contains it. Two different
such maximal cubes must have disjoint interiors by maximality.

Now set .7 = {Q™* : Q € 4}. The collection of cubes {Q;}; = .7 satisfies (a)
and (b) by construction, and we now turn our attention to the proof of (c). Observe
that if Q; and Qy in % are adjacent then

Vnl(Q;) < dist(Q;, Q) < dist(Q;, Q) + dist(Qx, Q) < 0+4vnt(Qy),

and, as the roles of Q; and Oy could be interchanged, this proves (c).

To prove (d), note that the largest number of dyadic cubes adjacent to a fixed
cube Q; € 7, N.% is obtained when all the cubes have the smallest possible size,
i.e., they lie in %, in view of (c). But gQ ; contains 6" subcubes of side length
27%2and Q ; itself contains 4" such subcubes. This means that 6" — 4" subcubes of
gQ ; of side length 2752 must be adjacent to Q;. This yields the assertion in (d).
[Here $Q; is concentric with Q; and £($Q;) = $4(Q;).]

R '

r--|---F--4---[---F--

r--——4

Fig. 7.2 The cube (1+2%)0; =10, o _____. .
(shown in dots) is properly contained in

the union of Q; and its adjacent cubes. . . . .
. . Fig. 7.3 If Q; i h i
This is because all adjacent cubes have ig. 7.3 If Q; is not adjacent (o either Q; or Oy

_ _ 7 10, ;
side lengths at least 1£(Q;). and £(Q;) = 46(Q;) =20(Qy). then 50,1 50k is
empty. Also %Q ; and %Qi are disjoint but their
boundaries may touch. Hence, (1 + €)-envelops
of non-adjacent cubes in .# are disjoint if € < %

For part (e) we verify first that if Q;, Q; in % are not adjacent, then Q;f and Q7
are disjoint. Without loss of generality assume that £(Q;) > €(Q;). If £(Q;) = £(Q;),
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then the distance between Q; and Q; is at least £(Q;), which forces ij and Q7
to be disjoint. Also, if £(Q;) = 2¢(Q;), then %Q ; and %Qi are disjoint. Finally, if
£(Qj) =4£(Q;), then, in the worst case, the disjoint cubes %Q ; and %Q,- share parts
of their boundaries as

1 1
ge(Qj) + gg(Qi) =/0(Q;) < dist(0;,0;);

see Figure 7.3. Thus for € < %, Q7 and Q7 are always disjoint.

Next we claim that each Q; = (14 ¢€)Q; is contained in Q if € < %; to see
this we observe that Q}f is contained in the union of Q; and its adjacent cubes (see
Figure 7.2), since %E (Q;) is smaller than the length of any adjacent cube, which is
at least %E(Qj) by part (b).

The lower inequality in (e) is a consequence of the facts that Q; & Q; and that
the union of the Q; equals £2. For the upper inequality in (e), recall that if Q% and
Q7 intersect and i # j, then Q; and Q; are adjacent. So we need to find the maxi-
mum number of pairwise adjacent dyadic cubes Q; such that the intersection of the
corresponding Q7 is non empty. A moment’s thought gives that this number is at
most 2" by the construction of dyadic cubes (and this happens exactly when these
cubes share a common corner.) This proves the upper inequality in (e). (]

Definition 7.5.3. The cubes Q; obtained in the construction of Theorem 7.5.2 are
called the Whitney cubes of Q.

Example 7.5.4. Suppose that our open set
is 2 = (0,1). Then the dyadic intervals
[4.2) and [3,3) have distance from Q¢
exactly equal to their side length. And
these are the largest dyadic intervals con-
tained in Q with distance to ¢ at least
their side length. The next generation of
dyadic intervals with the same property
are [§,2) and [§,7), the next generation
are [1—16,%) and [%,%), etc. All these
intervals form a Whitney decomposition
of (0, 1). Fig. 7.4 The Whitney decomposition
The Whitney decomposition of the unit  of the unit disk.

disc in R? is obtained via a similar pro-

cedure and is shown in Figure 7.4.

Remark 7.5.5. Let 2,2’ be nonempty open sets satisfying Q € Q" G R”. Then
every Whitney cube of £ is contained in some Whitney cube of Q’.

To verify this assertion, define ¢’ and .%' associated with £’ in the same way
that ¢ and .7 are associated with Q. For k € Z, we also define £; analogously. We
claim that

Q<o (7.5.1)
I<k
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Indeed, let x € € for some k € Z. Then —k is the largest integer with the property

27k < Z\I/ﬁdist (x,Q°). As dist(x, Q2) < dist(x, (2')°), it follows that the largest —/

such that 2~/ < ZIWdist(x, (2')¢) must satisfy —/ > —k. Then x € Q] for some [ < k.

Let Q be a cube in .%. Then Q belongs to ¢ and thus there is a k € Z such that
Q € Zx and QN # 0. It follows from (7.5.1) that QN £/ # 0 for some ! < k. Pick
a dyadic ancestor Q' of Q of length 27/, Then Q' € Z; and Q' N Q] # 0. Hence ¢/
lies in ¢’ and is therefore contained in some cube Q" in .#’. Then every Whitney
cube Q of  is contained in a Whitney cube Q" of Q'.

Next we construct a smooth partition of unity adapted to a Whitney decomposi-
tion.

Lemma 7.5.6. Let {Q;} be the Whitney decomposition of a nonempty and proper
open subset Q of R". Then there are functions {@;}; of class € such that

i 0<o@;<1forallj.
(ii) @ is supported in %Q i» which is concentric with Q; and has length %E(Q ).
(iii) For any multi-index o there is Cy > O such that for all j we have

@iv) For all j we have

1 1

o < 101 Jrr @;j(y)dy < (%)iz-

(v)  The family {@;} ; forms a partition of unity of 2, i.e.,
Z O =Xa-
J
(vi) For any multi-index o there is a constant By, such that for all i, j we have

a ) BOC
|0%(@i0))| < W

Proof. Start with an even nonnegative ¢ function @ on R such that

| oe;0)ay.
Rn

0 11> 5+ 16
olt)=1¢1 t| <1, (7.5.2)
strictly decreasing on (%, % + %) .

Such a function exists by Proposition 1.7.3 (b). Now, given a dyadic interval / on
the real line, we adapt @ to I by defining

@U)zw(thﬂ), (7.5.3)
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where ¢; is the center of I. It follows by construction that for all k € Z* there is a
constant C; such that
k _
09| < . (7.5.4)

In fact, C; = ||@®)||,~. We extend the definition of ¢ to higher dimensions as fol-
lows: for a dyadic cube Q =1; X --- X I,, we define

CDQ(xl,...,xn) :(])]1 (xl)---q)[n(xn). (7.5.5)
In view of (7.5.4), for any multi-index ¥ there is a constant ¢y such that
07| < ¢y £(0) . (7.5.6)

Let {Q;}; be the Whitney decomposition of the open set 2 and consider the
function Dy, adapted to Q; as defined in (7.5.5). Notice that Q}‘» = %Qj satisfies
Dy, < Xo:» and property (e) in Theorem 7.5.2 yields

Xo <Y P, <2"x0. (7.5.7)
J

The family {(PQj }; is not a partition of unity of Q, although it is quite close to it.
To create a partition of unity from it we define

—1
Py, (3, Po,) on £,
- : s 7.5.8
@i {O on QF€. ( )

We observe that properties (i), (ii), and (v) hold for ¢; by construction.

To prove (iii) we appeal to the Faa di Bruno formula (Appendix F) which says

that for a multi-index 7, %87 5 }DQ equals
197 S @,

(_l)ml+..-+mk(m1 ++mk)' (ﬁaﬁl 25¢Qs)ml (%aﬁk2s¢Qs)mk

by

(my,....mg) (X Do, )it rmitl my! my! ’
(Bi.-Br)
where the sum is taken over a finite set of (mp,...,my) and (Bi,...,Bx), where m;

are nonnegative integers and f3; are multi-indices related by y = m i + - - - + nmy Sy
for certain values of k. For a given x that belongs to a fixed Whitney cube Q,, if Q;
is not Q, or is not adjacent to Q,, then &Py, vanishes near x; thus if Pp_ (x) # 0, then
Q; is comparable to Q,. In view of this information, the preceding identity gives

1 1 1 Cy
s o, (x)‘ -7 z )E(Qr)ml‘ﬁl‘ .Hf(Qr)mklﬁH = 0Q)M”

(ml,...,mk

’ay (1.5.9)

Applying Leibniz’s rule to the function in (7.5.8) and using (7.5.9) and (7.5.6) yields
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“wl< 3 () rsag 0 720l < 5, (5) g g e

y<a y<a

Y

when x € Q,. Butif @; does not vanish near x, then Q, is Q; or adjacent to Q;. Then
£(Qy) = £(Q;) and this proves the claim in (iii).
We turn our attention to property (iv). Notice that by construction one has

m— (€0, )m n
\Q|,/ $o;07) II (éﬂ,/nw(y agﬁ )‘Wm55<§)

(cQj = center of Q;). These inequalities combined with (7.5.7) yield those in (iv).
To prove (vi) we argue as follows. If @;¢; = 0, then the assertion is trivial. We
therefore assume that the function ¢;¢; is not identically equal to zero. Then the
associated cubes Q; and Q; either coincide or are adjacent, and thus they have com-
parable sizes. Let us assume without loss of generality that |Q;| > |Q;|. Given a
multi-index o, we apply Leibniz’s rule and the estimates in part (iii) to obtain

(prp; a\ € Cap By
el (o) mrmm g O

It will be sufficient to prove that there is a constant B” > 0 such that

1

00" Jre @i(y)9;(v)dy > B". (7.5.11)
J

Then (vi) would follow with By, = B, /B” by combining (7.5.10) and (7.5.11). The
proof of (7.5.11) is contained in the following lemma [part (c)]. [l

In the next lemma, @; are as in Lemma 7.5.6, while ¢; and Py are introduced in
(7.5.3) and (7.5.5), respectively. These are defined in terms of @ given in (7.5.2).

Lemma 7.5.7. (a) There is a constant B such that for any two dyadic intervals I, J
with £(J) < 4L(1), if ¢19; is not identically equal to zero, we have
1
Af/@@@msz. (7.5.12)
[ /r
(b) There is a constant B' depending on the dimension such that for any two dyadic
cubes O, R with L(R) < 4((Q), if PoPr is not the zero function, one has

1

R Juo 220 2ROV dy 2 B (7.5.13)

(c) Let Q; be a Whitney cube of an open set and let Q; be a Whitney cube of another
open set such that £(Q;) < 4€(Q;). If ¢;@; is not the zero function then we have

1
@T&@wwwﬁzyzrﬂﬂ (7.5.14)
J
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Proof. (a) By a translation, we may assume that J = [0,2™) for some m € Z. Then
by applying a dilation, we reduce matters to the situation where J = [0,1) and I is a
dyadic interval of size at least 1/4. Since ¢;¢; is not the zero function, we must have
%I N %J = 0; hence one of the following is true: / is contained in J, or [ is adjacent
to J, or I contains J. Then the only possibilities for I are

[_%70)7 [07%)7 [%’%)7 [ 7%)? [%’l)v [17%)
[_%70)7 [O7l)7 [%’l)v [17%%

(-1 )[ 1), [1,2),
[—2%,0), [0,25), for some k > 1.

B IS

Then it suffices to show that for any interval I above with ¢y its center we have

/¢1(t)¢[071)(t)dt: / w(t—c’)w( 1ydt > B. (75.15)
Jr JroON |

Exploiting the fact that @(- — 1) is strictly decreasing and does not vanish on [1, {Z)
indicates that (7.5.15) is valid and in fact, the first of the listed intervals produces
the smallest possible constant; thus (7.5.12) holds.

(b)Let Q=1 x---xI, and R =J; X --- X Jy, where |[,| = --- = |I,| = ¢(Q)
and |Ji| = - = |J4| = £(R). As PpPp is not the zero function, we must have that
30N 3R # 0 which implies that g1, N 3J,, # 0 for every m € {1,...,n}. Moreover,
0(R) < 44(Q) implies that |J,,| < 4|, for every m. The definition of ®¢ given in
(7.5.5) gives that the integral in (7.5.13) is equal to a product of integrals such as
those appearing in (7.5.12). So using (7.5.12) we obtain (7.5.13) with B’ = B".

(c) In view of (7.5.7) and (7.5.8) we have that ¢; > 27"®g, and ¢@; > 2_"CDQj.
Then we use (7.5.13) to deduce (7.5.14). O

Exercises

7.5.1. Fix a dyadic cube Q. Show that there exist 3" — 1 adjacent dyadic cubes to O
of equal side length, 4" — 2" adjacent dyadic cubes to Q of half its side length, and
6" — 4" adjacent dyadic cubes to Q of one quarter its side length,

7.5.2. Let {Q;}; and {Q}; be two collections of pairwise disjoint dyadic cubes in
each collection. Suppose that Q = U;Q; € U;Q’; = Q' and that the {Q;}; as well
as the {Q';}; satisfy property (b) of Theorem 7.5.2. Prove that if Q € {Q;}; and
Qe {Q’]} ; then only one of the following three options is possible: (i) Q and Q' are

disjoint, (ii) Q € @', or (iii) Q' is a proper subset of Q and £(Q’) = %K (0).

7.5.3. Prove the following: There is a constant A,, such that if Q; and Q; are adjacent
dyadic cubes in the Whitney decomposition of an open set Q # R”, then there are
at least 2" dyadic cubes R of side length s min(¢(Q;),£(Q;)) such that
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009, 2 5% [ 000,01y

for all x € R. Here {¢;}; is the partition of unity of Lemma 7.5.7 adapted to {Q;} ;.

7.5.4. Show that for any multi-index ¢ there is a constant By such that for the
partition of unity of Lemma 7.5.7 adapted to the Whitney cubes {Q;}; of an open
set Q # R" we have

P pj, - 9;,] < Bamax(|Qj|,....1Q; )" "

7.5.5. Prove that there is a constant ¢, depending on the dimension such that for any
finite collection of distinct Whitney cubes Q;,,...,Q;, of an open set £ we have

[ 91 0)-+95,0)dy > umin((0) .-, 10 D -+ 9.

where {¢;}; is the partition of unity of Lemma 7.5.7 adapted to {Q;}.

[Hint: Note that r < 2". If Q; = I x --- x Ij and @;, (x) - - - @;, (x) # O, then all inter-
vals in the set {I{ h. ,I{’} have comparable lengths (ratio between 1 and 4) and
are either adjacent or related by inclusion. Show that for some ¢}, > 0,

900+ 0, 0)dy = elmin((1] ... 1),

Reduce matters to the case when one of the largest intervals is equal to [0,1).]

7.6 Atomic Decomposition of H'!

In this section we prove the atomic characterization of H'(R"), which says that
every element of H! can be expressed as an infinite sum of H'-atoms. The following
theorem provides a precise formulation.

Theorem 7.6.1. Given a function f in H'(R") there exists a sequence of H' atoms
ag, s =1,2,..., and a sequence of positive numbers As such that

f=2 Aas, a.e. (7.6.1)
s=1
Also, there are constants c,,,C, > 0 depending only on the dimension such that

el fllgr € 2 A <Gl £l (7.6.2)
s=1

Moreover; the series Yo | Asag converges to f in H.
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Proof. We fix a nonzero function f in H'. By Theorem 7.2.4 (b), f lies in L' (R").
We also fix an N > n—+ 1 and consider the grand maximal function .#y. If there
is a k € Z such that Q% = {x € R": .y(f)(x) > 2} is empty, we let koo be the
smallest such integer k, otherwise we set koo = oo. We observe that for each k < kg,
QF is a nonempty and proper open subset of R”. In the remainder of this proof, all
all indices k that appear will be tacitly assumed to be strictly less than k.

For k € Z apply Theorem 7.5.2 to write

k= {xeR": y(f)(x)> Zk} = OQ;(»
i=1

where {Q{‘ ., are the dyadic Whitney cubes of QK Let E{-‘ be the length of Q{-‘
and {(p,k }i be the partition of unity adapted to the Whitney cubes Qi.‘, according to
Lemma 7.5.6. Then we set

1
k k
mj = | f;idy
1@f I Jre
and .
g = [y + 2, miof. (7.6.3)

i=1

We claim that there is a constant C; (n), that depends on the dimension, such that
jmf| < Ci(n)2* (7.6.4)

for all i and k. To see this, by Theorem 7.5.2 (b) we pick a &F ¢ QF such that
|EK — ck| < 2\/ntk, where ¢! is the center of QX. Define the function

Df (x) = of (& — tix)

and notice that it is supported in the set {x € R" : [Ef — tkx —c¥| < 1 -3 /ntk},
which is contained in the ball B(0, % n ). Moreover, by Lemma 7.5.6 (iii), cbl.k has
derivatives bounded by a constant independent of i and k. These observations yield
the existence of a constant C (n) > 0 such that % @k € Fy for all i and k. Then

0
k 1 ' k ‘gik_y
k| = o | ro)at (2 )y

kyn k
=it | ((5) ) )

< C(n) 2"ty (f)(EF) [Lemma 7.5.6 (iv)]
<Cy(n)2* as (EF ¢ Q). (7.6.5)
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Next we claim that there is a constant C(n) such that |g;| < C(n)2*. Indeed, in
view of (7.6.3) and (7.6.4) this assertion holds on QF. Additionally, picking ¢ in
Fn with ¢y = [¢dy # 0, Theorem 2.5.5 yields that ¢ * f — ¢y f as t — 0. But
¢y * f| < AN(f), 50 |f] <2%/cy on (2%). Hence the assertion |gx| < C>(n) 2% also
holds on (£2%)¢. Consequently, gy — 0 as k — —oo.

On the other hand,

f—g=2.(f—mh)e}

i=1

is supported in QF, which tends to the empty set as k — oo. This implies that the
support of f — g tends to the empty set; in other words, g, — f a.e. as k — oo,
These observations allow us to conclude that

f=2 (e1—g)  ae (7.6.6)
k=—o0

We now write

=

g1 — 8= (F—g)— (f—grs1) = 2 (f—mb)of = > (f - kH)‘PfH~

i=1 =1

At this point one is tempted to consider multiples of the functions {(f —m) @}, as
the atoms appearing in the decomposition of f. These functions have 1ntegral Zero
and are supported in cubes, but the problem is that they may be unbounded. So we
introduce a further decomposition to fix this issue. Recalling that each cube Q’;H

is contained in some cube Q’? (Remark 7.5.5), we group together all (pj-<+1 whose

support intersects a given (pl Precisely, if (pk (karl is the zero function, we define

mf‘jkﬂ =0, while if ¢} (p;‘+1 is not the zero function we set

1
ekt b Kt 1
" = TR | F0)0E0)0f () dy
Then we introduce the functions
= (f—mb)gf - (Z — ik gk gf (7.6.7)
:{fxgm ~ (mt 2 k) ok, (7.6.8)
B = (el (z A e)el 069)

i=1

oo

{_f%mk)f + (m';'“ -2 kk“(Pf‘ﬂ iaas (7.6.10)
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'j‘“ and m k k“ , (7.6.7) and (7.6.9) give that orf

and BJH have integral zero. Moreover, summlng over i in (7.6.7) and over j in
(7.6.9) yields the identity

In view of the definitions of m , m

S —gk= 2.0+ 3 BT (7.6.11)
. Pt

We claim that |mf]k+]\ < C3(n) 2% for a constant C3(n) that only depends on
the dimension. Indeed, if qoik(p;‘*l #0, then 30N %Q’/‘-H # 0 which implies that
either Q’]‘.Jrl is contained in Qﬁ-‘ or in another Whitney cube QiS adjacent to Qi-‘
(Remark 7.5.5). In either case we have EI;-H < 4k, We pick a point é;‘“ € (Qk+1ye
within %\/71 E’;H units from the center of Qlj‘-+1 and we define

Kkt N kogktl _ gkl N okl gkl gkt
() =@ (6T 4 e (& 4 ).

As é’;“ < 46{»‘ , by Leibniz’s rule and Lemma 7.5.6 (iii), all derivatives of 'Pi{(]’-kﬂ are
bounded above by a constant independent of i, j, k; moreover, ‘I’i{‘j’.kH is supported
in B(0, 51% n). So, there is a constant C;(n) such that %qﬁc}kﬂ € Zy uniformly
in i, j and k. Using an argument similar to that leading to (7.6.5) and the following
fact [(7.5.14) in Lemma 7.5.7]

(gk-&-l)n 1
Jofeltlay = B’

we deduce that |mk k+1| < C3(n)2~.

Additionally, we pick a Schwartz function ¢ € Fy with ¢y = [@dy # 0, and
we notice that ¢ f — ¢y f as t — 0 (Theorem 2.5.5), but |¢; * f| < .#n(f), so
|f] < 2%/cy whenever #y(f) < 2%, ie. on (2%)¢ (and likewise |f| < 21 /cy on
(2*1)¢), These estimates inserted in (7.6.8) and (7.6.10) provide

lof | < Ca(m)2" [BFH] < Ca(m) 2!

for some constant C4(n) > 0 depending only on the dimension. Moreover, we notice
that a{‘ and B]]?H are supported in the cubes %Q{»‘ and %Qlj‘*l , respectively, and have

mean value zero. So suitable normalizations of them are H' atoms.
To create atoms, we define the constants

piE = Ca(n) 24301, pit = Cam 2 305

and the following normalizations of o* and f8 JI.‘H:
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k k+1
k% k+1 B;
Ak = L
Pk JoT k1
K M

Then A;‘, B]]‘-+l are H' atoms. In view of (7.6.11), (7.6.6) we have

oo

f= Y 3 (ubab 4 B e (7.6.12)

k=—c0i=1

We estimate the ¢! norm of the sequences of coefficients as follows:

= oo

z 2 ! +.ulk-',-l %nc4 Z 2(2k|QZ§|+2k+l‘Q£€+l|)

k=—c0i=1 1

= (§)"Ca(n) 3, (24Q4+ 21 1Q))
k=—oo

=

=2(3)"Ca(n) Y, 240"

k=—oco
=4(3)"Ca(n) i /kz71|{xeR": My (f)(x) > 2} dA

<4(3)"Ca(n / [{xeR": n(f)(x) > A}|dA (7.6.13)

=4(3)"Ca(n)||An (1) ||
< Callf]| -

This proves the upper inequality in (7.6.2) with a; being the sequence combining Af
and B*! and A, being the sequence combining [,L, and /.Lk+1

For the lower inequality in (7.6.2) we use that if f = ES 1 Asag a.e. with A, > 0
and a, being H' atoms, then

Ms

M*(f;®) <Y AM*(as; D),

s=1

where @ (x) = e TR, Applying the H' norm and using Theorem 7.3.2 we deduce
£l =M (f:@)]| 1 < XA |M* (ass )| < Cn,1) Y s
s=1 s=1

The lower inequality in (7.6.2) now follows with ¢, = 1/C(n,1).
Finally, we turn to the assertion that the series Y- | A;a; converges to f in H L
The fact that f € H' and the upper inequality in (7.6.2) gives that

> Z(ul S > (uf+ ) <

keZ i= i=1 keZ
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This implies that

oo

Jim 3 Z(M + k) = and  lim 33 () =0,
T k>M i= ke i=M+1

Setting Sy = Xk|<m Z?il ([J{‘Aé‘ + [JikHBfFH) we have

Su—f= Y, (Zul"A"+uf‘“B§‘“)+ Y (3 wiab ).

|k|>M k<M “i>M

We apply the H' norm on these expressions. Using the lower inequality in (7.6.2),
we obtain

1S3 = fll 1 < [ ) Z(uz AR W(TERS]

|k|>M i=1 keZ i>M

and this converges to zero as M — co.
We finally define {A4,}_, to be an enumeration of {u¥, u**'}; ; and analogously
we let {a,}:>, be an enumeration of {A¥, BF1}, . O

k+1

Corollary 7.6.2. For every f € H'(R") we have
Hf||H] ~ inf{ MAj: f= Ajajae., a; are H' atoms, A; > 0, and Y A< oo}.
=1 =1 =1

Proof. Given f € H', by Theorem 7.6.1 we know that there exist H' atoms a; and
A; > 0such that f = I Aja;j a.e. and moreover,

Tzl

The infimum over all such expressions 37| A is even smaller. This gives
inf{ Z%’ f= Z Ajaj, ajareHlatoms, A;>0, and Z A< oo} < C,,||fHH1.
Jj=1 j=1 j=1

For the other direction, we notice that for any representation of f as 37, A;a; we
have

1l =112 Al = 2 Al < n 22
j= j= j=

in view of Theorem 7.3.2. Taking the infimum over all such representations we
obtain the other direction of the equivalence. (I
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Exercises

7.6.1. Provide another proof of Theorem 7.2.6 using the atomic decomposition. Pre-
cisely, use Theorem 7.6.1 to show that if f € H!'(R"), then [ga f(x)dx = 0.

7.6.2. Let £ > 0. Express the function |x| ' "€sgn (x) oy < defined on the real line
as a sum of the form in (7.6.1).

7.6.3. Let € > 0. Show that the function A(x) = 1 (log ﬁ)ili‘?x‘xkl/z lies in the
Hardy space H' (R) although

1/2
| mo)togln(e)| de = .
—1/2

[Hint: For j =1,2,... define atoms a; = ¢ j'*¢(hyg; — hg,) supported in R; =
(277,277%1) and bj = ¢ j"*¢ (hyr; — hr;) supported in L;j = (=277, —27J) for a

suitable constant ¢ > 0 independent of j. Write h = > 1 = (aj+bj).]

]lcj

7.6.4. (Calderén-Zygmund decomposition on H') Fill in the steps below to
obtain the following result related to the atomic decomposition of H': Prove that
there exist constants A,,, B,,C, such that for any f € H'(R") and a > 0 there exist
functions g and b on R" and a collection of disjoint dyadic cubes {Q;}; such that

®  f=g+b
@ lgll- = Ancr.
(3) b=3%;bj, where each b; is supported in %Qj.

) bj(x)dx=0.
9;

) |Ibjllm < B /Q M (f)dx
J

© Wl <28, [ )< Coll

f)>a}

[Hint: For fixed N > n+ 1, write Q = {4 (f) > a} as a union of Whitney cubes
{Q,}; according to Theorem 7.5.2. Let @; be the associated partition of unity
according to Lemma 7.5.7. Define b; = (f - mj) ¢; where

f(pljdy/mf(y)(pj(y)dy

mj =
and

8= fAac+ 2, m;9;.
J
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Then b =73, j b; and properties (1), (3), and (4) hold by construction.

Property (2): It will be sufficient to prove that |m;| < C} o for a constant C!. Pick
a & ¢ Q such that |z — &;| < 6y/n¢; for all z € Q; [cf. Theorem 7.5.2 (b)]. Here
£;=1(Q;). Notice that .#(f)(&;) < a. Then write m; = ((®;), * f)(&;) where

n

D;i(y) = 0;j(&—1ty), yeR.

_J
@)l 11

Verify that C2 @; ¢ Fy for all j for a fixed constant C2.

Property (5): Let @ € .% have integral equal to 1 and be supported in B(0, 1). Let
Qj. = %Q ; and by a translation assume that Q; is centered at the origin. Prove

/%M*(bj;cb)( Yax+ [ MY (b ®)(x )dng,,/Q'//N(f)(x)dx.

(Q7)¢

Case I: Fix x € Q7 and y with [y —x| <. Estimate the first integral above by writing

/ D (y—2)bj(z)dz= q lJyq,(y/7z)f(z)dz—mj/Rn D (y—2)9;(z)dz,

" Jre

where ¢ = min(¢;,t). Here ¥(z) = ®(z)@;(y —tz) and y = y when t < £;, while
q J 9j j

?:
e

W(z) = cp(

when ¢; <t and &; is as in Theorem 7.5.2 (b). In both cases, show that there is a
constant Cyf such that C ¥ lies in %y and use that [m;| < C} .

Case 2: Fix x ¢ 0}, t >0, and y with [y — x| <. Then |x| > \/n{;. Notice that
(D, *bj)(y) vanishes if [x| > 4r. So we may suppose that \/n¢; < |x| < 4¢. Write

)i~z andy =g

(@) thZ L[ a0 (=50, (s - mp)zaod,

using the mean value theorem and the vanishing integral property of b;. The goal is
to prove that the preceding expression is bounded by C (n)E;?H |x|~"~!. For the term
containing m; this is straightforward. For the term containing f(z) define

n 1 _
RO =0, X o [ ae(*S7)d0, 06 =RE 1)

and notice R(z) = ;,l Q2 Si— Z) Then matters reduce to estimating ﬂ%(ﬂgl, * f)(&)).

Now show Dy (2) S (oA é’/’-“ for some constant C), and use that 1/r <4/|x|.
Property (6): Use Theorem 7.5.2 (e).]
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7.7 Singular Integrals on the Hardy Space H'!

Singular integrals map L” to L for 1 < p < o but this is not the case when p = 1.
In this section we show that singular integrals map the Hardy space H' to L'.

We begin by reviewing the definition of singular integrals. Let K be a function
defined on R"\ {0} that satisfies the size estimate (3.3.3), the smoothness estimate
(3.3.4), and the cancellation estimate (3.3.5) for some A|,A;,A3 < 0. The cancella-
tion condition (3.3.5) implies that there exists a sequence 6; | 0 as j — oo such that
the following limit exists:

lim K(x)dx = Ly.
= J8< <1

This gives that for a smooth and compactly supported function ¢ on R”, the limit

lim [ KG=)e0)dy=T(9)() .7.1)

=
[x—=y|>8;
exists and defines a linear operator T on %;;°. This operator T is called a singular
integral and is given by convolution with a tempered distribution W that coincides
with the function K on R"\ {0}.

We know that such an operator 7', initially defined on %;;°(R"), admits an exten-
sion that is L? bounded for all 1 < p < oo and is also of weak type (1, 1). All these
norms are bounded above by constant multiple of the quantity A| + A, + A3; in par-
ticular, by Corollary 3.4.3, the L? norm of T is bounded by 9w,—1A1 + Az + As.
Therefore, such a T is well defined on L' (R") and in particular on H'!(R"), which
is contained in L' (R").

Theorem 7.7.1. Let K satisfy (3.3.3), (3.3.4), and (3.3.5), and let T be defined as in
(7.7.1). Then there is a constant C,, such that for all f in H'(R") we have

1T < CalAr + A2 +A3) || f]] 1 - (172)

Proof. We start by checking the validity of (7.7.2) on H! atoms. Since T is a con-
volution operator (i.e., it commutes with translations), it suffices to take the atom f
supported in a cube Q centered at the origin. Let f = a be such an atom, supported
in cube Q centered at zero, and let

Q" =2VnQ

be a concentric cube with side length 2,/n times that of Q. We write

e T (a)(x)|dx = /Q* \T(a)(x)|dx+/(Q*)( T (a)(x)|dx (7.7.3)

and we estimate each term separately. We have
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|, I |dx<|Q|2</|T |2dx)l

< (90 1A1 +A2 +A43)[0"} ( / |a<x>|2dx)2

* % 1 -1
<9m,-1(A1+A2+A3)|0"]210|2|Q]
=9w,_ 1(2\[) (A| +A2+43),

where we used the L? boundedness of 7 (Corollary 3.4.3) and property (ii) of atoms
in Definition 7.3.1.

X

Let Q be a cube centered at the ori-
gin. We claim that if x ¢ Q* and y €
0, then |x| > 2|y| and x — y stays
away from zero; thus K (x —y) is well
defined. To see this assertion we note

that
x| > £(Q)v/n _ Vi)
and y  36(0)
1 : o
bl < 50Q)Va
imply

x| = £(Q)vn = 2|y].
See Figure 7.5.

Ox

Fig. 7.5 The situation where x ¢ Q* and y € Q.

Moreover, in this case T(a)(x) can be expressed as an absolutely convergent
integral of a against K(x — -). Exploiting the fact that atoms have mean value zero

we write
[, r@@ias= [ | [

dy’dx

oy |, (K0 = K()al) v ax

< Jofp e
0/
S// |K(x—y) — K(x)|dx|a(y)|dy

0 Jx{>2p

<Ay /Q la(y)|dy

<A.

(x)| dxla(y)|dy
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Combining this calculation with the previous one and inserting the final conclusions
in (7.7.3) we deduce that H' atoms a satisfy

|T(@)]|,1 < Ci(A1 +A2+43), (7.7.4)

where C), = 9w,_1(2/n )%. We now prove (7.7.2) for another constant C,. In view
of Theorem 7.6.1 and Corollary 7.6.2 we can write f € H' as f = I Ajaj, where

7Lj > 0, the series converges in L', the ajare H I atoms, and

S A <Gl - (71.1.5)
j=1

Since T maps L' to L' (Theorem 3.6.1), T(f) is already a well-defined L' func-
tion. We claim that

= i AT (aj) a.e., (7.7.6)

noting that the series in (7.7.6) converges in L! and produces a well-defined inte-
grable function.

To prove (7.7.6), we make use of the fact that T is of weak type (1,1). For a
given & > 0 we have

|{|T<f>—ixjr<aj>| _3

N oo
<7 - X AiT(a;)| > 8/2}+[{] % 17LjT(aj)| >§/2}|
Jj=1 Jj=N+

SR T e I e
<317l 3w, Feeaia 3 4

Jj=N+1

Obviously || X7 y+1 Ajajll 1 < X7n41 4, so both terms converge to zero as N — co.
We conclude that

HXGR": |T(f)(x)f PLjT(aj)(x)|>5}|:O

™

1

J

for all § > 0, which implies (7.7.6).
Now that (7.7.6) is established, we deduce (7.7.2) with C, = C/,C/ by taking L!
norms in (7.7.6) and using (7.7.4) and (7.7.5). U
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Exercises

7.7.1. Suppose that T is a sublinear operator that maps L' (R") to L'**(R"). Given
fin H'(R™) written in atomic decomposition as f = 2 Ajaj, Aj >0, prove that

NI < Y AT (a))] ace.
j=1
7.7.2. Let T be an operator as in the statement of Theorem 7.7.1. Let ¥ € . (R")

have Fourier transform supported in an annulus of the form 0 < ¢; < |&] < ¢z <
oo and consider the Littlewood—Paley operator A;-I' associated with ¥. Prove the

existence of a constant C,, (depending on the dimension) such that for any f € L!
we have

[AYT(f)||,1 < Ca (A1 +A2+A43)||AF (f)

s -

[Hint: Pick Q € .7 so that its Fourier transform is equal to 1 on the annulus
¢1 < || < 2 and vanishes off the annulus 1c; < |€] < 2¢;. Then € lies in H!
by Theorem 7.2.7 and we can apply Theorem 7.7.1.]

7.7.3. Fix 0 < A,B < co. Let {K; } ", be a sequence of functions on R"\ {0} that
satisfies

v !
(ZixiP)" <ab ™, xzo.

N 1
v;éo/x|>2y| (; J(x)|2> <A,

/ Ki(y) dy’ <A
e<|y|<R

Define 7; by 7;(¢)(x) = p.v. Jpn Kj(x —y)@(y) dy when ¢ € 6 and suppose that
T = {T]}]]v:l admits a bounded extension that maps L*(R") to L*(R", (%) with
bound B. Show that T' also maps H'(R") to L'(R”,£%) with norm bounded by

C. (A+ B), where C,, depends only on the dimension » (and is independent of N).
[Hint: Use Theorem 4.1.1 and the idea of the proof of Theorem 7.7.1.]

sup sup
1<j<NO<e<R

7.7.4. Let B,0 and ¥ be as in Theorem 4.4.2. Use the previous exercise to show
that the Littlewood—Paley square function of Theorem 4.4.2 satisfies

I(Z a7 or)’],

S Cn,ﬁBHfHHI

for all f € H'(R"). The constant C,.,5 depends only on the indicated parameters.
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7.8 Duality Between H' and BMO

In this section we obtain that BMO is the dual space of H!. A crucial element in
this assertion is the completeness of H' which implies the weak® compactness of
the unit ball of (H')*.

Proposition 7.8.1. Every Cauchy sequence in H' converges; thus H' is a Banach
space.

Proof. Let { fi};_, be a Cauchy sequence in H ! Then f; is Cauchy in L' and thus

it converges in L! to an integrable function f. Let ®(x) = ¢~ Then, as ® € L*,
we have for any >0 any y € R" and any m € Z+

| (S = Son) # )| = |(f = Sn) 5 D2 (¥)]-

Consequently, for |y — x| < ¢ one has
|(f = fin) * @r(y)] = liminf | (fi — fin) * D (v)] < EminfM" (fic — fon; @) (x).
So taking the supremum over all y with |y — x| < ¢ and # > 0 we obtain
M (f = fn: @) (x) < Himinf M (fi — fin: @) (x)
for all x € R". Fatou’s lemma now gives

1M = fon; )| o < Niminf [[M*(fi = fon: )| - (7.8.1)

As {fi}x is Cauchy in H', the expression on the right is finite and we deduce from
(7.8.1) that f — f,, lies in H', hence so does f. Finally, it follows from (7.8.1) that

lim sup HM*(f—fm;(P)HLl < limsuplimsup HM*(fk — fons <I>)HL1 =0,

m—oo Mm—oo k—so0
where the equality is a consequence of the fact that { f; }, is a Cauchy sequence in
H'. We conclude that f,, — fin H' as m — oo. O

Definition 7.8.2. We denote by H] (R") the space of all finite linear combinations of
H'(R") atoms. By Theorem 7.6.1, H} (R") is dense in H' (R"). Fix b € BMO(R").
Given g € H} we define a linear functional

Ly(g) = [ glx)bl)d (78.2)

as an absolutely convergent integral. Observe that the integral in (7.8.2) and thus
the definition of L; on H(} remain the same if b is replaced by b + ¢, where c is an
additive constant, as H' (R") atoms have mean value zero.

Moreover, notice that if the function b happens to lie in L™, then L; is well-
defined on the entire H', not only on Hy.
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Proposition 7.8.3. There is a constant C,, such that for any function b € L™ we have

1L 11— < || gago- (7.8.3)

Proof. Let b be a bounded BMO function. Let C,, be a constant that satisfies

inf{ S Aj: f=Y Ajajae., ajare H'atoms, A; >0, and Y, A; < oo} <Gl fllgn
=1 = j=1

for any f € H'(R"), as stated in Corollary 7.6.2. Given f in H', find a sequence of
H' atoms {a; }x supported in cubes Oy and A, >0, k= 1,..., such that

f= Jap  ae. (7.8.4)
k=1

and

2 A< Gl
k=1

where C, is any constant strictly bigger than C,,. Since the series in (7.8.4) converges
in H', it must converge in L', and then we have

Lo(Hl = | [ 7C0px)dn
= Z lk/ ar(x) (b(x) - ka) dx
= 2 k|Qk|/ ka‘dx
< Cr/z”.fHHl HbHBMO'
As C), > C, is arbitrary, this proves (7.8.3) for b in L™. O

Having established Proposition 7.8.3, we turn to the goal of extending the defini-
tion of L, on the entire H' for functions b in BMO that are not necessarily bounded.
To achieve this, we fix b € BMO and let by (x) = bypj<p for M = 1,2,3,.... Since
1bumllBmo < 1|b|lsmo (Exercise 6.1.2), the sequence of linear functionals {Lp,, }u

lies in a multiple of the unit ball of (H!)* and by the Banach—Alaoglu theorem there
is a subsequence M; — oo as j — oo such that LbM converges weakly™ to a bounded

linear functional L, on H'. In other words, for all f in H' (R") we have
Ly, () = Lo(f)  asj—eo.

If a9 is a fixed H' atom supported in a cube Q then

LbM / bM any /Q(ij — (ij)Q)any
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and analogously for Ly (a2), so
Ly, (@2) = Lo(@)] < (a9 [[|bas, ~ (b)) = (b =0) |1 )]
< 157 1w, =Bl g+ 15w, =Bl

But both terms tend to zero as j — oo by the Lebesgue dominated convergence

theorem. The same conclusion holds for any finite linear combination of the a?.

Thus for all g € H} we have Ly, (g) — Ly(g), and consequently, L, (g) = L,(g) for
J

allg € H&. Since H& is dense in H' and L, and Zb coincide on Hé , it follows that Zb
is the unique bounded extension of L, on H'. This process provides an extension of
Ly, on the entire space H' as a weak limit of bounded linear functionals.

These arguments prove that every BM O function b gives rise to a bounded linear
functional L, on H'!(R") (henceforth denoted by ;) that satisfies

[Lo| 1 . < CalIPllMO- (7.8.5)

The main contribution of the next theorem is the converse assertion.

Theorem 7.8.4. There exist finite constants C, and C), such that the following state-
ments are valid:

(a) Given b € BMO(R"), the linear functional Ly, lies in (H'(R"))* and has norm
at most C,||b||pyo- Moreover, the mapping b — Ly, from BMO to (H")* is injective.
(b) For every bounded linear functional L on H' there exists a BMO function b such
that

18/l pss0 < CallEll 1

and such that L(f) = Ly (f) for all functions f € H}(R").

Proof. (a) We already showed in (7.8.5) that for all b € BMO(R"), L, lies in
(H'(R™))* and has norm at most G, ||b||gy0- To show that the embedding b — L,
is injective, we need to prove that if L, = 0, then b is a constant function. But this
is a consequence of Exercise 7.8.5. So we focus attention on assertion (b). Fix a
bounded linear functional L on H'(R") and also fix a cube Q. Consider the space
L?(Q) of all square integrable functions supported in Q with norm

gl 20 = (/Q ‘g(x)‘zdx)lﬂ.

We denote by L3(Q) the closed subspace of L?(Q) consisting of all functions in
L*(Q) with mean value zero. In view of Theorem 7.3.4 every function g in L3(Q)
lies in H'(R") and satisfies the norm estimate

1
lgllg < enlQ2lgll2- (7.8.6)
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Since L%(Q) is a subspace of H', it follows from (7.8.6) that the linear functional
Lon H! is also a linear functional on L%(Q) and its norm satisfies

1E] 20y - < nl@1 (Ll (7.8.7)
We extend L to a linear functional L on L2(Q) by setting
L(hy=L(h—hg),  heL*Q).
We notice that for i € L*>(Q) we have
2] < 1230 -lln ol g,
< 1Ll 20y [ 1]l2¢0) + el 1013 ]
< 2Ll 30 —c 1l 20

thus B
El 10 <2l30) - 089)

Then L lies in (L2(Q))* and by the Riesz representation theorem for the Hilbert
space L%(Q), there is a function F€ € L?(Q) such that

Z(h):/hFde for all h € L2(Q),
0

and N

Restricting to L3(Q) we can write

L(g) = / gF%dx,  forall g€ L3(Q). (7.8.10)

Q
Combining (7.8.8) and (7.8.9) we obtain.
0
HF HL2(Q) < ZHLHL%(Q)HC' (7.8.11)

Thus for any cube Q in R”, there is square integrable function F€ supported in Q
such that (7.8.10) is satisfied.

We now show that if a cube Q is contained in another cube @', then F€ differs
/
a.e. from F< by a constant on Q. Indeed, for all g € L%(Q) we have

| PO e dx=L(g) = | FO(glx)d
Q 0
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and thus

/Q(FQ,(X) —F2(x))g(x)dx=0.

The result of Exercise 7.8.5 implies that F 0 _FQis equal to a constant a.e. on Q.
Let

m myn
On=[-5.5]
form=1,2,.... Then |Q;| = 1. We define b € L] .(R") by setting
1
b(x) =F9%(x)— — [ F%(y)dy (7.8.12)
Q1] Jo,

whenever x € Q,,. We check that this definition is unambiguous. Let 1 < ¢ < m.
Then for x € Qy, b(x) is also defined as in (7.8.12) with ¢ in the place of m. The
difference of these two functions is F¢n — FQt — (F&n — F20),  and we claim this
is zero a.e., since F2» — F2¢ is constant a.e. on Q; (which is contained in Q,,) and
thus it coincides with its integral over Q; (recall |Q] = 1).

Next we claim that for any cube Q there is a constant Cp such that

FC=b-Cy onQ. (7.8.13)

Indeed, given a cube Q pick the smallest m = m(Q) such that Q is contained in Q™.
Then we write

FC —FQ _ pOm +FQm_(FQm)Q1_|_ (FQm)Q1

constant on Q b(x) constant on Q

and let —Cp be the sum of the first and third expressions (constants on Q) above.
We have constructed a locally integrable function b such that for all cubes Q and
all g € L3(Q) we have

/Q b(x)g(x) dx — /Q (FO(x) + Cp)g(x) dx = /Q FO(0)g(x)dx=L(g), (7.8.14)

as follows from (7.8.10) and (7.8.13). We next show that b lies in BMO(R"). By
(7.8.13), (7.8.11), and (7.8.7) we can write

1 1
sup—/bx—C dx:SUP*/FQde
op 57, 1209~ Cola = sup 7 [ 1F2()
T
< SLle|Q| 1|Q|2HFQHL2(Q)

_1
< 2sgp|Q\ 2 HLHL(%@HC

IN

enl|[L1c
< oo,



328 7 Hardy Spaces

In view of Proposition 6.1.3 we deduce that b € BMO and

HbHBMO < ZC"HLHHMC'

Finally, (7.8.14) implies that for all g € H} (R") one has

L(g) = |, bg(x)dx =L(g).

This proves that the linear functional L coincides with L, on the dense subspace H(%
of H!. Consequently, L = L, and this concludes the proof of part (b). (]

Exercises
7.8.1. Let u; € HP have uniformly bounded quasi-norms and suppose that u; — u
in ./ (R"). Prove that u € HP. [Hint: Modify the proof of Proposition 7.8.1.]

7.8.2. Let xp € R"\ {0}. Let B(x,0) denote the ball of radius & > 0 centered at x.
Prove that the sequence of functions fx = Xp(kx,.1) = XB(—kx,.1) Satisfies

[fill g =00 ask—ee.
[Hint: Notice that k" fi (k-) — 8, — 0_y, as k — oo. Use Exercises 7.8.1 and 7.2.3.]

7.8.3. Show that H? is a complete quasi-normed space for any 0 < p < 1.
[Hint: Modify the proof of Proposition 7.8.1 and use Exercises 7.4.3 and 7.8.1.]

7.8.4. Let f, € H'(R") satisfy |f;| < F for all k, where F is integrable over R”.
Suppose that f; — f a.e. Prove that

1 e < timind | ]

7.8.5. Suppose that u € L] .(R") is supported in a cube Q and has the property

/Qu(x)g(x) dx=0

for all bounded functions g on Q with mean value zero. Show that u is almost every-
where equal to a constant. [Hint: If u were not a.e. constant on Q there would exist
real numbers ¢ < d such that the sets E = {w < c}NQand F = {w >d} NQ have
positive measure, where w is either Reu or Imu. Consider the bounded function
g=—|F|onE,g=|E|onF,and g =0 elsewhere on Q.]
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Weighted Inequalities st

8.1 Appearance of Weights

Weights are positive functions that produce useful absolutely continuous measures.
Weights, in particular, are intricately connected with the theory of the Hardy-
Littlewood maximal operator. We motivate our discussion on weights by obtaining a
weighted version of the weak-type (1,1) inequality of the Hardy-Littlewood max-
imal operator. First we adapt Lemma 1.4.5 to general measures. We recall that a
positive Borel measure is a positive measure defined on the Borel sets, that is, the
smallest c-algebra containing the open sets in R". Such a measure is called regular
if for any Borel measurable set A € R” the following properties hold:

1(A) = sup{u(K): K is compact subset of A},
u(A) = inf{u(G) : G is open set containing A }.

Lemma 8.1.1. (Covering lemma for general measures) Let {B|,Ba,...,Bn} be
a finite collection of open balls in R". Then there exists a finite subcollection
{Bj,,...,Bj,} of pairwise disjoint balls (L < N) such that

N L
v(UB,) < Y v(3Bj,) (8.1.1)
i=1 r=1

for any positive Borel measure v. Moreover, the same result is valid if B are open
cubes with sides parallel to the axes.

Proof. The proof of Lemma 1.4.5 provides a collection of balls {B;,,...,B;, } that
are pairwise disjoint and such that each ball By, in the original collection is contained
in 3B;, for some i € {1,...,L}. In other words,

N L
U Bi g U 3Bjr7
i=1 r=1
and (8.1.1) follows by the subadditivity of v.
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Finally, we note that the same argument applies if each B; is a cube. For if two
cubes intersect, then the smaller one is contained in the triple of the larger cube. [

Theorem 8.1.2. (Fefferman—Stein inequality) Let M be the uncentered Hardy—
Littlewood operator with respect to balls. Let u > 0 be a measurable function. Then
for any measurable function f on R" we have

37[
/{M(f)>)t}u(y) D=7 /{M(f)ﬂ} ()| M () (x) dx (8.1.2)

and when 1 < p < o we have

< R"M(f)(x)”u(x)dx>;} gz(;"_pl)’l’< o f(x)|PM(u)(x)dx>’]’. (8.1.3)

The same estimates are valid if M is replaced by M., the Hardy-Littlewood operator
with respect to cubes.

Proof. We introduce two positive measures it = M (u) dx and v = udx. The claimed
inequalities (8.1.2) and (8.1.3) can be restated in terms of u and v as follows:

v({M(f) > A}) < /{M fldu (8.1.4)

and, for 1 < p < oo,

% 3"p % 117
( RnM(f)”dv) gz(p_l) ( 5 |f|Pdu) (8.1.5)

for a measurable function f. We first prove these inequalities under the assumption
that u is bounded and has compact support.

We consider the set Ej = {x € R": M(f)(x) > A}. In the proof of Theorem 1.4.6
this set was shown to be open. Let K be a compact subset of £ . For each x € K there
exists an open ball B, containing the point x such that

[ 1)y > 2B, (8.1.6)

Observe that B, C E; for all x. By compactness there exists a finite subcover
{By,,...,Byy} of K. Using Lemma 8.1.1 we find a subcollection of pairwise dis-
joint balls BX_],I e 7BX./L such that (8.1.1) holds. Then by (8.1.6) we obtain

<v (U 5,)

L
<Y v(3B,,)
1

i=
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L v( .
_3121 3B, g | =1
1
3n L v( . /
<= z |fld
72T,
3 L
< d
<3 ; ) (i /B |f1dy,

where y; is an arbitrary point in 3By, . Taking the infimum over all such y; we deduce
that v(K) is bounded by

n

L
z‘i(me )/BJ |f|dy
§3n2/ /1M (u)

i=1

Thus

3"2/ 1My <5 [ 171dn

as the balls By, are disjoint and contamed in E . Taking the supremum over all com-
pact subsets K of E; we derive (8.1.4) using the regularity of the measure v, which
follows from the fact that u is compactly supported and bounded (Exercise 8.1.1).

We now prove (8.1.5). Fix I < p <eo. We split f = fo+ fe, Where fo = fX|r1<2/2
and fewo = fX|f|>a/2- Then

{M(f) > A} E{M(fo) > 1/2} UM (fe) > A/2} = {M(f) > 1/2},

since the first set is empty, by the definition of fy which forces M(fy) < A /2.
The pth power of the left-hand side of (8.1.5) can be written as

/:p/lp—lv({M(f) > A})da < /:pm—lv({M(fm) > 1/2}) dA
n ” 713
<3 [ o5 | ifeldudz
— 3 [ pAr2 duda
/p /{m a1
—3"2// A2 f()]dA dua (v
=32 Lo | dut).
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This yields (8.1.5). The use of Tonelli’s theorem in the penultimate equality is based
on the fact that du is a o-finite measure (if g is is measurable and satisfies 0 < g < oo
a.e., then gdx is a o-finite measure on R").

For a general nonnegative measurable function u, we introduce

UN = UXu<NXB(O,N)

and measures
dvy = uNdx, d,uN :M(uN)dx.
Then (8.1.4) and (8.1.5) hold for vy and iy . Letting N — oo and applying the LMCT
then yields (8.1.4) and (8.1.5) in general.
Finally, we note that a repetition of this proof yields the same inequalities for M,
(in place of M), as Lemma 8.1.1 is also valid for cubes in place of balls. ]

Remark 8.1.3. We discuss an alternative proof of (8.1.5) under the assumption that
u > 0 on a set of positive measure. Note that as M (u) never vanishes, the measures
u and dx are mutually absolutely continuous. This gives || f{|z=(y) = || f|z=. Now

we note that
inf{D >0: v({M(f)>D}) = O} < | fllz

as {M(f) > ||f]l=} is a set of Lebesgue measure zero and hence of v measure zero.
(Thus || f]|z= is one of the D that appear in the set.) This discussion leads to the

inequality
HM(f)HL“’(v) = ||fHL°° = HfHLw(u)' 8.1.7)

By considering the truncations iy and vy as in the proof of Theorem 8.1.2, we may
assume that ¢ and v are o-finite measures. Interpolating between (8.1.7) and (8.1.4)
using Theorem 1.3.3, we obtain that (8.1.5) is a direct consequence of (1.3.6). We
note, however, that a slight improvement of the constant in (8.1.5) can be obtained
via the technique suggested in Exercise 8.1.2.

This discussion motivates the study of general estimates of the form

HT(f)HLP(udx) = CHfHLP(de)’ (8.1.8)

where u,w are a.e. positive functions and 7 is an operator, such as the Hardy—
Littlewood maximal operator. If the functions u,w are locally integrable, then they
are called weights and estimates of the type (8.1.8) are called weighted inequalities.
In the remaining sections we focus on weighted inequalities of the form (8.1.8) only
when u = w, and we seek to characterize the functions u for which such estimates
hold. Note that if M (1) < cu, (i.e., if u is an A| weight according to Definition 8.2.5),
then Theorem 8.1.2 addresses this situation but does not provide a characterization.

One may wonder if there exists a weak-type estimate for the Hardy—Littlewood
maximal function with respect to a measure that is not absolutely continuous with
respect to Lebesgue measure. This is not the case, as the following result indicates.

Proposition 8.1.4. Let 1 be a regular positive Borel measure with the property
W1(K) < e whenever K is a compact subset of R". Suppose that there is a constant
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C > 0 and there exists p in [1,e0) such that for all f € LP(R") one has

1
sup 4 (M) > A1) < € g ©.19)
>

Then U is absolutely continuous with respect to Lebesgue measure.

Proof. Fix a subset E of R” with |[E| =0 and € > 0. Let K be an arbitrary compact
subset of E. As [1(K) < oo, by the regularity of u, there is an open subset U of R”
such that K C U and u(U \ K) < &. Consider the function y;\x which is equal to
Xu a.e. with respect to Lebesgue measure. Then M (x) = M ()y\ k) everywhere and

M(xy)(x) =1 for all x € U. Applying hypothesis (8.1.9), with A = %, we obtain

Lu(K)r < u({M(w) > 1})7
= Su({MUe) > 43)7
< Cu(U\K)?
< Csi

Letting € — 0 we obtain ((K) = 0. Taking the supremum over all compact subsets
K of E and using the regularity of t, we conclude u(E) = 0.

We have now proved that |[E| = 0 implies (E) = 0, and hence p is absolutely
continuous with respect to Lebesgue measure. (]

Exercises

8.1.1. Show that for any nonnegative integrable function # on R” the measure udx
is regular.

8.1.2. Fix 1 < p < e and let u > 0 be a measurable function on R". Show that
inequality (8.1.3) of Theorem 8.1.2 can be improved to

<RnM(f)l’udx>})S(:,)np),l,l)fl(/RJﬂpM(u)dx)}?.

[Hint: Split f = fo+ fe, Where fo = fX|f<er and fu = fX|f>es- Then use that
{M(f)> A} is a.e. contained in {M(f..) > (1—€)A} and optimize over € € (0,1).]

8.1.3. Let v = udx and 4 = M(u) dx be as in the proof of Theorem 8.1.2. Prove that
for 1 < p < oo and f measurable we have

3"p —1
Z’(R",dv) < HHM(JCH Z”(R",d,u)HfHLP(R’l,d/J)'

1)
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8.1.4. Let u > 0 be a measurable function on R". Define the measures dv = udx
and dy = M, (u) dx. Prove that for any measurable function f and any 0 < € < 1 we

have 3"
v({M.(f) > A}) < —on (fi>eh) |fldu

[Hll’ll Spht f = fo+ fw, where f.. = fX{\bel} and use the version of (8.1.2) for
the maximal function M. |

8.2 The A, Condition

We begin with the formal definition of a weight.

Definition 8.2.1. A weight is a nonnegative locally integrable function on R” that
vanishes or takes the value o only on a set of measure zero. Given a weight w and a
measurable set E, we denote the wdx-measure of E by

w(E) = ./Ew(x) dx.

Since weights are locally integrable functions, we have w(E) < o for all sets E
contained in some ball. Moreover w(E) > 0 for any set E with positive Lebesgue
measure. The weighted L” spaces are denoted by LP(R",w), or simply L”(w), and
consist of all measurable functions g that satisfy

1
p
rw) = </R’l |ngdx> <o

Here 0 < p < eo. Analogously one may define the weighted weak L? spaces, which
are denoted by L7 (w).

le]

It follows from this definition that the reciprocal of a weight is another weight if
and only if it is locally integrable. It is often useful to work with a dense subspace
of LP(w), and the next proposition identifies one.

Proposition 8.2.2. Let 0 < p < c. Bounded functions with compact support are
dense in LP (w) for any weight w on R".

Proof. Given f € LP(w) consider the functions fi = fX| <k Xs(ox) for k € Z*. The
assertion follows by noticing that |f; — f|Pw — 0in L! by the LDCT. O

Let M, be the Hardy—Littlewood maximal operator associated with cubes.!
Motivated by the discussion in the previous section, we seek for weights w such
that for 1 < p < o there is a constant C,, = C,,(w) with the property

1 Cubes in this text have sides parallel to the axes (unless indicated otherwise).
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/ M. (f)? wdx < c;;/ fIPwdx,  when f € LP(w). 8.2.1)
Rn Rn

Let us fix 1 < p < oo and suppose that (8.2.1) is valid for some weight w and all
f € LP(w). Applying (8.2.1) to the function fo and using that® |f|o < M.(fxo)(x)
for all x € Q, we obtain

w1} /M fo)pwdx<C1’/|f|pwdx (8.2.2)

(@/var)p_

for all cubes Q and all functions f. We could obtain a condition involving w by
eliminating the integrals in (8.2.3). We achieve this by choosing a function f such
that the two integrals are equal; indeed, pick f = wP/P_ which gives fPw= wP /P,
If we knew that infpw > 0 for all cubes Q, it would follow from (8.2.3) that

(1 / d>(1 / ‘11d>p_l<cp (8.2.4)
su _— wdax _— w P X . L
chEes |Q| 0 |Q| 0 -

This condition involves only the weight w and arbitrary cubes Q.
Now, if infy w = 0 for certain cubes Q, we take f = (w+¢€)~ 7 /P to obtain

! 1 _ Pr wdx !
<Q|/dex> (|Q|/Q(w+£) P dx> <Q|/Q(W+£)p,> <ch (825

for all € > 0. Replacing wdx by (w+ €) dx in the last integral of (8.2.5) we obtain

1 : 1 . S p—1
<|Q|/Qde) <|Q|/Q(w+8) ”dx> <cy, (8.2.6)

from which we can still deduce (8.2.4) by letting € — 0 by appealing to the Lebesgue
monotone convergence theorem. This condition motivates the following definition.

It follows that

wdx (8.2.3)

Definition 8.2.3. Let 1 < p < = and w be a weight. The expression

1 1 p-1
= wdx | | 7 r-1d 8.2.7
[W]AP chlillst” <|Q| / > <|Q| /QW x) ( )

is called the A, Muckenhoupt characteristic constant of w, or simply the A, charac-
teristic constant of w.
A weight w is said to be of class A if [w]s, < c. The class of A, weights is

A, = {w weights on R" such that [w],, < eo}.

2 Recall that |f|o denotes the average of | f| over a cube Q.
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Remark 8.2.4. It follows from (8.2.7) that if w € A, then 0 = wfl’l-l =wl 7 is

1
locally integrable, and thus it is also a weight. But then w = ¢ »'~1, thus (8.2.7)
transforms to

i (& fema) (& [ oa)
w = sup —/0‘ Y1 dx —/0' x
Ap Q cubes in R” |Q| (9] |Q| o

as (p—1)(p'—1) =1 or, equivalently, to

1
Nl 7T — [P ]
G
when 1 < p < o. The weight o is often called the dual weight to w. Notice that
condition (8.2.7) can be restated in a more symmetric form as

1

1
1 L > 7
P / w(Q)ra(Q)” 1 1
Wi, =loli, = sup —=—Zr=—=sup (wg)"(Gp)” <o,
P L4 Q cubes in R” |Q‘ Q cubes in R

where wy is the average of w over Q and oy the average of o over Q.

The argument leading to (8.2.4) does not capture the case p = 1, which we exam-
ine separately. Assume that for some weight w there is a constant C; < oo such that

w({M:(f) > a}) < % /R |flwdx,  when f e L'(w). (8.2.8)

Since M. (f)(x) > |f|o for all x € Q, it follows from (8.2.8) that for all & < |f]o
we have

C
w(Q) < w({M.(f) > a}) < EI/R |f|wx. (8.2.9)
Replacing f by fxo in (8.2.9) we deduce that
1 C
— dy < d 8.2.10
|Q‘/Q|f\ y_W(Q)/QIfIW y (8.2.10)

for all f € L'(w) and all cubes Q. Testing this condition on characteristic functions,

f = xs, we obtain

S| _ . w(S)
P« , 8.2.11
o] = 'w(Q) ®21D

where S is any measurable subset of the cube Q.
Recall that the essential infimum of a function w over a set E is defined as

essh._inf(w) =inf{h>0: [{xeE: w(x) <b}| >0}.

Then for every a > ess.infp(w) there exists a subset S, of O with positive measure
such that w(x) < a for all x € S,. Applying (8.2.11) to the set S,, we obtain
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1 / Ci
— [ wdy < wdy < Cia, (8.2.12)
|Q| Q |SL1‘ Sa

which implies that for all cubes Q and almost all x € Q
1
—/ wdy < Ciw(x). (8.2.13)
10 Jo

This means that for every cube Q there exists a null set N(Q) such that (8.2.13)
holds for all x in Q\ N(Q). Let N be the union of all the null sets N(Q) for all cubes
O with centers in Q" and rational lengths. Then N is a null set and for every x in
O\ N, (8.2.13) holds for all cubes Q with centers in Q" and rational lengths. By
density, (8.2.13) must also hold for all cubes Q that contain a fixed x in R*\ N. It
follows that for x € R" \ N we have

M.(w)(x) = 21198@ /dey <Ciw(x). (8.2.14)

Therefore the assumption (8.2.8) leads to the conclusion
M.(w) < Ciw a.e.in R", (8.2.15)
where C| is the same constant as in (8.2.13).

Definition 8.2.5. A nonnegative function w is called an A; weight if there is a con-
stant C; € (0,0) such that

M.(w)<Ciw a.e. (8.2.16)
We define the class A; as follows:
Al = {w weights on R” such that (8.2.16) is valid for some constant C; }

If w is a weight, then the finite quantity

Wig, = sup wdy) W[ (8.2.17)
[ ]Al QCubest” (|Q|/ || HL (Q)

is called the A| Muckenhoupt characteristic constant of w, or simply the A| charac-
teristic constant of w. Note that the smallest constant C; in (8.2.16) is exactly [wl4,,
and in this case

1
— [ wdy < [w|a, ess.infw 8.2.18
‘Q|4 y—[ ]Al yEQ (y) ( )
for all cubes Q in R". Also [w]y, is the smallest constant such that (8.2.18) is valid.

Remark 8.2.6. We define the A| characteristic constant (with respect to balls) by

I
Wi = sup (|B| /wdy>!|w o[ (8.2.19)

Bballs in R"
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We leave as an exercise the fact that [w]}?{}“s and [w]s, are in fact equivalent.

We also define [w]zius as in (8.2.7) with balls in place of cubes. Then we have

e Wa, 2 A—n\P
(2™’ < [W]baﬁs < (n"?v,27m)?’, (8.2.20)
AP
as cubes have size comparable to those of the inscribed and circumscribed balls. See
Figure 8.1 and Exercise 8.2.1.

We have now shown that the

validity of (8.2.1) implies that the
weight is of class A, and that
(8.2.8) implies that the weight is
of class A;. In the next result we
prove the converse when p = 1
and a weaker version of the con-
verse when p > 1. The full ver-

sion of the converse for p > 1 is Fig. 8.1 The measure of a cube is com-

shown later in Theorem 8.4.3. parable to those of the inscribed and cir-
cumscribed balls.

Theorem 8.2.7. Let M, be the Hardy-Littlewood maximal operator (with respect to
cubes). Letw € Ap and 1 < p < oo. Then we have

1
1Mel| ) 1pmuy < 3" WA - (8.2.21)
Proof. This result is essentially contained in Theorem 8.1.2. For instance, when
p = 1 we restate (8.1.2) (with M, in place of M) as

n

w({Mc(f) > A}) < % " |f| Mc(w) dx (8.2.22)

{Me(f)
and as M.(w) < [w]a,w a.e., we deduce (8.2.21).

When 1 < p < o we do not restate (8.1.3) but we revisit its proof. The dual weight
o = w!=7 plays a key role in this inequality. Let E, = {xeR": M.(f)(x) > A}
and let K be a compact subset of £, . For each x € K select an open cube Q" such
that |Q¥|~! Jor |f|dx > A. By the compactness of K, we can work with only finitely
many such cubes Q*.

We let {Q;}; be the finite subcollection of the finite collection of Q, given by
Lemma 8.1.1 (adapted to cubes). Then we write

1

Mojl< [ 1flar= [ (1flwr) (e ) dx< (/Q.Ifl”wdxyo(Qj);Z
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in view of Holder’s inequality. This estimate in conjunction with Lemma 8.1.1 yields

APw(K <Zw 30/)A

=33 M52 g
J

|3Qj|”
P
= 3,,,,2 |3Q v ( 'f'dx>
(3 »
g
i)

3"1’{ |3(Q,|P 30;)7 ]Z/If"wdx

But notice that

”a\'—-

W(3Qj)
30,7

w(3Q))
30,1

» IRL
5(30,)7 = [sjp 5(30,)7 } < ol

Combining these facts, we deduce
APw(K) < 3" [w / f1P wdx,

and from this we derive (8.2.21) after taking the supremum over all compact subsets
Kof E A O

Remark 8.2.8. Theorem 8.2.7 is also valid for the maximal operators M, .#, and
M, which are pointwise equivalent to M,.

Exercises

8.2.1. Verify the validity of (8.2.20).

8.2.2. Suppose Aw < u < Bw, where A,B are positive constants and u,w are
weights. Show that

< =<

8.2.3. Suppose that 0 < 6 < 1 and w € A; where 1 < g <eo.Let p—1=258(g—1).
Show that w® € A, and
‘]

o
[W Ap S [W]Aq

8.2.4. Show that the weight u(x) = (1+ [x|) ™" does not lie in A, for any p > 1.
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8.2.5. Let v be a real-valued locally integrable function on R" and let 1 < p < oo.
(a) If " is an A, weight, show that

1 v—v 1 —(v=vp) =1 p-1 v
maxq sup —/e 2dx, sup —/e @1 dx <le"]a,-
Q cubes |Q| 0] Q cubes |Q| 0]

(b) Conversely, if

1 1 T
Ci= sup —/eV_Vde<oo, C, = sup —/e (=) 55T iy < oo,
Q cubes ‘Q| 0 Q cubes |Q‘ 9]

then e lies in A, and [e"]4 , <Ci Cg -1 [Hint.' Use Jensen’s inequality.]
8.2.6. (a) Show that if ¢ € Ay, then log € BMO and ||log ¢||zmo < [@]a,-
(b) Conclude that if ¢ € A, with p > 2, then log ¢ € BMO and

1020 0 < (r— DIIL."-

1

[Hint: Part (a) Use Exercise 8.2.5 (a) with p = 2. Part (b) Use that ¢~ 7T € A,.]
8.2.7. Let f € BMO be nonconstant and let ¢ = 27"~ || f|| 510 Show that
cf 2
e ]Az <(1+e)".

[Hint: Use Exercise 8.2.5 (b) and Corollary 6.2.2 with y = 1 5|

8.3 Properties of A, Weights

Cubes in this text have sides parallel to the axes, unless indicated otherwise. Given
a cube Q, we denote by AQ the cube with the same center as Q and side length A
times the side length of Q.

Definition 8.3.1. A positive Borel measure y is called doubling if there is constant
A € (0,00) such that
1(20) < Au(Q) 8.3.1)

for all cubes Q in R”. In this case, the constant A is called the doubling constant of
the measure .

Lebesgue measure is certainly doubling but the measure elldx is not doubling on
any Euclidean space R". Next we summarize some basic properties of A, weights
and among them we show that the measure wdx is doubling whenever w € A,,.
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Proposition 8.3.2. Let w € A, for some 1 < p < oo and A > 0. Then

(1) [W)L}AP = [Wla,, where wh (x) = w(Ax).

(2) [T*W]a, = [W]a,, where T9w(x) = w(x—z), z€ R".

(3) [Awla, = [Wla, for all & > 0.

(4) [wla, > 1 for all w € Ap. Equality holds if and only if w is a constant.

(5) For p > 1, the A, characteristic constant of w can be expressed as:

(Té\ fQ |f|d)’)[7

sup sup {}
Qcubes feLP(Q,wdy) @ fQ |f‘dey
inR" Jo lfIPwdy>0

Wla, =

(6) The measure wdx is doubling. More generally, for A > 1 and cubes Q we have
w(AQ) < A" wla, w(Q).

Proof. The proofs of (1), (2), and (3) are left as exercises. Property (4) follows by
an application of Ho6lder’s inequality with exponents p and p’ as in

1 1 _1 1
l:—/dx:—/w%w /l’dxg[wu’ ,
Q[ Jo 0l /e ’

1 1
with equality holding only when w?» = cw 7 a.e. for some ¢ > 0 (i.e., when w is

a.e. equal to a constant). To prove (5), we apply Holder’s inequality with exponents
p and p’ to obtain
(g L) = (g fiswiwras)
— X — wPw Pdx
0l Jo 0] Jo
P
1 / r o
— |f|pwdx> (/W de)
QIP< 0 0
1 / 1 1o o\
— |f”wdx> (/ wa’x) (/ 1% Pldx)
(W(Q) 0 [ [

i, (g o 17w

This argument proves the > inequality in (5) when p > 1. The reverse inequality
follows by taking f = (w+ 8)’1’//1’ as in (8.2.5) and letting € — 0.

To prove (6), we apply (5) to the function f = o and place AQ in the place of O
in (5). We obtain

w(AQ) < A" [wls,w(Q),

which implies that wdx is a doubling measure with doubling constant A = 2"7[w] Ap-
This proves (6). (I
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Two additional properties of the A, characteristic constants are listed below; note
that the only assumption needed in the following proposition is that w is a weight.

Proposition 8.3.3. For any weight w we have

Wla, < [Wla, (8.3.2)
when 1 < p < g < e. Moreover,
qlirﬂ[W}A" = [Wa,. (8.3.3)

Proof. The hypothesis 1 < p < g < o can be expressed as 0 < g’ —1 < p' —1 < oo,
Then statement (8.3.2) is a consequence of

||W_1||L[]/,1(Q dx) < ”W_IHLP’*I(Q dx ) (83.3.4)

10l “lol

which is a consequence of Holder’s inequality.

We now turn to (8.3.3). The sequence [w]4 , 1s increasing as g decreases, so it has
a limit, which could be infinite.

We consider first the case [w]4, < eo. Given € > 0, there is a cube Q such that

Wla, —& <wo W™l =(g)-

As g | 1, we have ¢ — 1 T oo and thus, by Exercise 1.1.7, we have

wolw™ -1 10y = wolw ™ le()

where the expressions on the left are monotonically increasing by (8.3.4). Then there
is a go(Q) > 1 such that for all ¢ satisfying 1 < g < go(Q) one has

[W}Al —&€<wg ||W71 HLq’fl(Q)-
As the expression on the right is bounded by [w]a,, it follows that

[W]Al < liminf[w]A .
g—1 !

The reverse inequality
limsup[w]a, < [Wla,
g—1

is a consequence of the monotonicity of the characteristic constants, i.e., (8.3.2).
Now if [w]a, = oo, then given M > O there is a cube Q such that

M <wo W™ |1=(0)-
Then, by Exercise 1.1.7, there is g1 (Q) > 1 such that when 1 < ¢ < ¢1(Q) one has
M <o 1 ) < Dol

This shows that [w]s, — o0 asq | 1. O
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Corollary 8.3.4. Suppose that sup . [Wla, < e. Then w € Ay.
Proof. This assertion follows by combining (8.3.2) and (8.3.3). (I

Example 8.3.5. Let 1 < p < e and @ > —n. We investigate for which real numbers
a, the locally integrable function |x|* is an A, weight, that is, when

P

1 1 4 P

aiballs a —at-

. = su — [ |x[*dx —/ x| “rdx < oo, 8.3.5
H | ]A" Bballjls<|B|~/B| | >(|B| B| | ) ( )

We split balls B = B(xg,R) in R” into two categories: of type I which means
|xo| > 3R and type II which means |xg| < 3R. If B = B(xo,R) is of type L, then
for x satisfying |x — xo| < R we must have

2 4
§|x0| < |xo| =R < |x| < |xo| +R < §|X0|7

thus the expression inside the supremum in (8.3.5) is comparable to

/
|x0|”(|x0|*“%)ﬁ —1.

If B(xo,R) is a ball of type II, then B(0,5R) has size comparable to B(xo,R) and
contains it. Since the measure |x|* dx is doubling, the integrals of the function |x|
over B(xg,R) and over B(0,5R) are comparable. It suffices therefore to estimate the
expression inside the supremum in (8.3.5), in which we have replaced B(xo,R) by
B(0,5R). But this is

r
7

1 1 17, P
_— agy / iy
(vn(SR)” /B(o,sR) o x) (vn(SR)n Joosm) [ 7 x>
P

= " 5Ier"Jr’Hld}’ S Sera%/Jrnildr ?7
(5R)" Jo (5R)" Jo

which is seen easily to be finite and independent of R exactly when —n < a < n%.

We conclude that |x|* is an A, weight, 1 < p < es, if and only if —n <a <n(p—1).
The previous proof can be suitably modified to include the case p = 1; in this
case we obtain that |x|* is an A| weight if and only if —n < a <0.

Thus, given 1 < p, g < e with ¢ > p, the weight |x|* lies in A, but not in A, when
nlp—1)<a<n(g—1).
Exercises

83.1.Let 1 < p<eanda > n(p—1). Show that the measure |x|?dx is doubling
but [x|* is notin A,,.
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8.3.2. (a) Let wi, w2 € A, where 1 < p < 0. Prove that
[wi+wala, < [Wila, +W2la,-
(b) If w; € Ap, and wa €A, then
w1 +wala, < [wila,, +W2la,,;
where 1 < py, py < eoand p = max(pi, p2). [Hint: Part (b). Use (8.3.2).]

8.3.3. Letw; € A, and wy € A, where 1 < py, pr < oo and let p = max(py, p2).
(a) Prove that

[max(wi,w2)la, < [wila,, +[w2la,, -

(b) Let ¢, = 1 when p < 2 and ¢, = 27~ % when p > 2. Prove that
[min(wi,wa)la, < cp(lwila,, +[w2a,,)
[Hint: Consider first the case where p; = p> = p. Then use (8.3.2).]

834. (a)Let1 < p<oo,w; €Apand wy €A, and 0; > 0 satisfy 0; + 6, = 1. Prove

that

o1, 0 0
[t w?la, < (wily! [wz}gi.

(b) Use (8.3.2) to conclude that

0

0 0 0
[wy W22]Ap < [Wl}A;l [wal 2

Apy
where 1 < py, py < o and p = max(py, p2).

8.3.5. Show that the function

u(x) = logﬁ when |x| < 1,
1 otherwise

is an A| weight on R". [Hint: Consider balls of type I and II (Example 8.3.5).]

8.3.6. ([19]) Letw € A), and v € A . Prove that for any cube O we have

1 1
L (] 7 sy (1 1
(|Q./dex> <Q|/dex> < [W]An[v]f‘p/ (|Q|/QW v dx).
1 1 1

(@vadx)P (@wif%vfi dx) < [WL]ZP [v]/’?;/ ]

==

[Hint: Prove (ﬁ Jowdx)
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8.4 Strong-Type A, Estimates

In this section we obtain a version of Theorem 8.2.7 in which the weak L” quasi-
norm (with respect to w) is replaced by the strong L? norm. To achieve this goal we
work with a maximal function associated with a general positive Borel measure p.

Definition 8.4.1. Let f be a measurable function on R". We define the centered
maximal function with respect to cubes associated with [L of f as follows:

AW =sup s [ RO dn).

e>0 U

where Q(x, €) is the open cube centered at x of side length 2¢. Likewise, the uncen-
tered maximal function with respect to cubes associated with U is defined by

P /If )du(y)

M (f)(x) =sup o

where the supremum is taken over all open cubes containing the given point x. Here
f is a u-measurable function.

Theorem 8.4.2. Let f be a measurable function and let 1 < p < oo,
(a) Let 1 be a doubling regular positive Borel measure and let A < oo be a constant
such that u(3Q) < Au(Q) for all cubes Q in R". Then we have

sup Ap ({ME(f) >A}) <A (s Iflu (8.4.1)
A>0 {Me

Additionally, if U is G-finite, then

M2 (f)]

1
Ap \»
) 2 (l,_1> 1] o - (8.4.2)

(b) Let  be a regular positive Borel measure with the properties [L(K) < oo for all
compact sets K in R" and 1(G) > 0 for all nonempty open sets G in R". Then we
have

suplu({%f(f)>l})§4”/ |fldu (8.4.3)
A>0 R"
and
4
o Dy <2 (0 ”) Wl 844)

Proof. (a) We obtain (8.4.1) by modifying the proof leading to (8.1.4). We consider
the open set E;, = {x € R": MY (f)(x) > A}. Let K be a compact subset of E; . For
each x € K there exists an open cube O, containing the point x such that

/Q |fldu > Au(Ox) - (8.4.5)
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Observe that Q, C E; for all x. By compactness there exists a finite subcover
{Ox,,--.,0xy} of K. Lemma 8.1.1 yields a subcollection of pairwise disjoint cubes
ijl . .,ijL such that (8.1.1) holds. Using (8.4.5) we obtain

N L L A L A
K) < ) < 30, )< A )<= du <= d
® <u(U0s) < Xu(0s) <AZu@) k;/ijifl ps ), lan

as the cubes O, are disjoint and contained in Ej . Taking the supremum over all
compact subsets K of E ,, and using the regularity of u, we derive (8.4.1).
We now turn to assertion (8.4.2). Fix 1 < p < oo. We split f = fo + f., where

Jo=75xy<a/2 and feo = [ 752 /2- Then
{ME(f) > A} E{ME(fo) > A /2 U{ME (f) > A/2} = {M} () > A /2},

since the first set is empty by the definition of fy. We prove this estimate just as we
proved (8.1.5). The pth power of the left-hand side of (8.4.2) is

/()wpkp‘lu({Mé‘(f) >A})dA < /prfv"lu({Mé‘(fw) > A/2})dA

<a [ par 2 [ flduar
0 A JRe

_ 2A/°°p/lp—2/ \f| ddA
0 (1152/2}
Al
—2a [ [T par? p )l dadut)
R" JO
_op L/ P
2L [ 101 duty),

The o-finiteness of u was used in the application of Tonelli’s theorem.
(b) We first prove (8.4.3) for f € L'(R", ). We begin by showing that the set

E) ={AE(f) > 2}

is open. If we knew that for any fixed r > 0O the function

X

1
d 8.4.6
u(Q(x,r)) /Qw) Fldn o) (840

were continuous, then ¢ ( f) would be lower semicontinuous as the supremum of
continuous functions and then £, would be open. To establish the continuity, if x,, —
o, then 1(Q(xr, ) — 1(Q(x0,)) and also fy, 714 (y) = Jopuy | £1die(y) by
the Lebesgue dominated convergence theorem. As ((Q(xy,7)) # 0 # u(Q(xo,r)),
it follows that the function in (8.4.6) is continuous.

Given a compact subset K of E , for any x € K select an open cube Q. = Q(x, &)
of length 24, centered at x such that
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1
d A
109 Jo. [fldu(y) >

Applying Lemma G.0.1 (Appendix G) we extract a sequence of points {x J} ', inK
and a subfamily {Q,; }, of the family of the cubes {Q : x € K} such that

kS o
j=1

and that for all y € R"” we have

D X0, (v) <4". (8.4.7)

=1
Then . m

SENCRED ;L/ flant) <5 [ 17laue)
j=1

where the last inequality is a consequence of (8.4.7). Taking the supremum over all
compact subsets K of £, and using the regularity of du we deduce (8.4.3).

Now we remove the assumption that f € L'(R", ). To do so, given a general
measurable function f we define the sequence

v = X r1<NXBON) N=1.2,....

Then fy € L! (R", i) and thus (8.4.3) holds for fy in place of f. The LMCT yields
the conclusion for a general f.
Finally assertion (8.4.4) is obtained just like (8.4.2). (]

Theorem 8.4.3. Ler w € A, (R") for some 1 < p < eo. Then we have

1 1
i)z <37 (16" 90 ) 7 17, (8.4.8)

|-

Remark 8.4.4. If one opted to use conclusion (a) instead of (b) in Theorem 8.4.2,
the constant 4” in (8.4.8) should be replaced by 3"7[w] , [cf. Proposition 8.3.2 (6)].

Proof. Recall the dual weight 0 = w!=P" which lies in Ay . (Equivalently we have
_ ~l=p
w=0'"7")

We fix a measurable function f on R” 30
and a cube Q with sides parallel to
the axes. For every x € O, we denote 1 1
by QF the smallest cube (also with 3 X 3

sides parallel to the axes) centered at
x, contained in 3Q, and containing Q. LE |
See Figure 8.2.

Fig. 8.2 The cubes Q, 0%, and 30.
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Then for any x € Q we have

0 1< i g Jp 1 o0 < St

As this estimate is valid for all x € Q, we average it over Q after raising it to the
power p — 1. This gives

1 p—1 p—1
— d ) 14
<|Q|/Qf| y) << 0] > IQI/ cfo y

O Ty

- (cr(sQ)>’”w(3Q>

w c -1\ 1 1
= o (e o) ) o),

where ¢ is the center of Q. Expressing |Q] in terms of |3Q| we deduce the estimate

(|;|/Q|fdy>pl = 3np[W]Ap///J”((///f(fo—l))pﬂWq) (co)

which implies, for any x € R”,
np' w o —1y\P—1 —1 plTl
A0 <37l (o) @)
It follows that
' P

Mo <3705 | [, (jfcw((///co(fo'_l))plw_l)>plwdx} ””.

We now apply (8.4.4) in Theorem 8.4.2 first with respect to the measure wdx on
L? (w) and then with respect to the measure 6 dx on L? (o). We obtain

L
7

| 2(f

/

e i < 3708 )15 | [ (o))

N
~ S

= 3 [T 2(4p) 7] " [/Rn (///Cc(fol))l’odx] »

¥ ) [ [ o troa]’

— 3% (16" pp' ) 7 W]} IHf”L"

This proves (8.4.8). O
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Exercises

8.4.1. Let w € A, for some 1 < p < eo. Let i be a regular positive Borel measure
with the property that the space (R", it) is o-finite. Show that the sublinear operator

f A o | {0
maps L” (w,dt) to itself with norm bounded by 2(;%”1) e,
8.4.2. Letw € A, for some 1 < p < oo and let 0 < g < e. Show that the operator
1
[ (M(|f|Pw)w 1)
1

maps Lp,q(w) to itself with norm bounded by C, , 4[] A{) 7, C, p.4 being a constant.

8.4.3. Let u be a regular doubling positive Borel measure such that (R”, i) is o-
finite and let A < o be a constant such that u(3Q) <A u(Q) for all cubes Q in R".
Prove that M maps L7 (u) to itself with norm at most ;f” 1 < p<eo.

1 b
[Hint: Use (8.4.1) and Theorem 1.2.10.]

8.5 The Jones Factorization of Weights

We begin by building an A, weight from two A; weights.

Proposition 8.5.1. Let wi, wy be two Ay weights and let 1 < p < oo, Then w wé_p
is an A, weight which satisfies

wiwy la, < [wila, walf (8.5.1)

Proof. For any cube Q we have

( 1 / I*Pd ) ( 1 /( l*l’)f%d )pl
— [ ww X || 7= | (wiw P=tax
0] Jo™ 2 0] Jo 2
< (1/WIWZ1||Pm(1Q>dx> (1/ |w11||g;<'Q>sz)pl
101 Jo 101 Jo

1 1o !
=(— [ widx)|w;'= (/w dx) wy S
(17 o) it (5 fownc) sl

Taking the supremum over all cubes Q, we deduce (8.5.1) O

It is rather remarkable that the converse of Proposition 8.5.1 is also valid.
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Theorem 8.5.2. Suppose that w is an A, weight for some 1 < p < oo. Then there
exist A1 weights wy and wy such that

1—
w=wiw, ¢

and moreover, there exist finite constants ¢ (n, p), ca(n, p) such that
1

wila, <ci(n, p)[Wla,, (wala, < ca(n,p) [w]/f. (8.5.2)

Proof. We are seeking weights wy and wy such that w = wy wh 7. Setting u = w’ ",

we express wy and wy in terms of u as follows: w; = wu and wy = u? =1, We are

. . / . .
therefore looking for a weight u such that both wu and u” ~! are A| weights, i.e.,
they satisfy

Me(wu) < Cuw and ///C(MPL]) <cu’' !,
for some constant C, or equivalently,
wldwu)<Cu  and A ()P <Cu (8.5.3)

We would like to find a sub-eigenvector of a positive operator T, which means a
positive function u that satisfies T(u) < Cu. In our case, T could be one of the
operators

f— w_l//lc(wf)

or

f oo (7
But as these are positive operators, it will be sufficient to take 7 to be their sum, i.e.,
T(f)=w " e(w )+ (7).
At this point, we make the assumption 1 < p < 2. This restriction on p is crucial
/ / 1

in making the positive operator f +— #.(f? ~1)P~! = #.(f? ~1)7/1 sublinear and
countably subadditive.> Moreover, the operator 7 maps L (w) to itself. To see this,
let s

Cln.p) =32 (4'v/pp' )"

be the constant that appears in (8.4.8). Then

1
< Cln, w715 1]

(./Rn [Wl//fc(wf)]ﬂwdx) >

LP (w)

and

3 A positive operator T is called countably subadditive if T(X70fj) £ X7 T(f;) when f; > 0.
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1
7

< e (<///c(|f"/_1)"_1)p/de) '

and a combination of these estimates yields

1 L

< [cpmiz, (] n(lfl”"l)”de)ﬂ 7

ya
B=IT | )y < [0+ Clot, p)7 | i, < .
We now fix a nonzero function f in L” (w) and we define the function

< T(f)
Z 2B)k

u=
= (

which is positive everywhere. This series converges in L? (w) and so it defines a
. . / . . . .

function u in L” (w). Moreover, this construction ensures that u is a sub-eigenvector

of 7', in the aforementioned sense, as

_ & TH(f)
Tl = T(,Zo <2B>k>
S T
= Z o)
e THS)
= 23121 (25

< 2Bu,

having used that T (A f) = |A|T(f) for A € C. So now we have found a function u
such that both inequalities in (8.5.3) are valid with C = 2B. These inequalities imply
that ) .

wula, <2B and [’ ~'a, < (2B)7T

and directly translate into the estimates claimed in (8.5.2), given that w; = wu and
wa = u” ! and that B is bounded by a constant multiple of [w] Ap-

We now turn to the case p > 2. Given a weight w € A, for p > 2, we factor its
dual weight 0 = w!=P', which lies in A » and p’ < 2. By the previous case we are
able to write

1

, where [vi]4, < cl(n,p)[G]Ap,, [vala, < CZ(n’p)[G]X;;l'

17/
O =ViV, P

Then w = 6177 satisfies

e
W= v}f”vz, where  [vi]4, < cl(n,p)[w]j{;l . [nla, < cz(n,p)[w]Ap,

and the claimed conclusion follows with w; = vy, wy = v; and the constants ¢ (n, p)
and c¢;(n, p) interchanged. O
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We have managed to obtain a description of A, weights in terms of A; weights.
But it remains to understand the structure of A; weights. In particular, we would
like to have ways to build A; weights. We implicitly saw such a way in the proof of
Theorem 8.5.2. Let us recap it. Let f € L?(R", ) for some 1 < p < eo. Define

o M(f)
& @M+

u =

where ||M|| < e is the norm of the Hardy-Littlewood maximal operator M on
LP(R™, i) (Theorem 8.4.2). Then u is a well-defined function in LP(R", i) and
satisfies

T
M) = M(Z <2||M||>'<)

= M(f)
= 2 G

= MH()
) M)
M1 2 iy

<2[M|u,

so u is an A weight.
This process of construction is more or less abstract, but there is a more concrete
way to build A; weights.

Theorem 8.5.3. Let f be a measurable function such that M.(f) < o a.e. Then for
0 < e < 1, the function M ()€ is an A| weight that satisfies

[Mc(f)S]A < 9" +3"

. 5.4
1 1—¢ &.5.4)

Proof. Fix x € R". Given a measurable function f such that M.(f) < o a.e. and a
cube Q that contains x, we will show that

|16\./§Mc<f J0)Fdy < T MAPEE+IMNEE B55)

To prove (8.5.5), we fix a cube Q and split f = fx30 + fX(30)c- Then

1—¢
9 mers0) -

8@4 /f”>

3"83"8
e M), (8.5.6)

1
— [ M, €d < —
3 /Q (F130) 00 dy < 1515

S 9
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where we made use of the inequality of Exercise 1.2.6 (a) (Kolmogorov’s inequality)
and the weak-type (1, 1) boundedness of M, (with constant 3").
For f(30)c we only need to notice that for all y in Q

Mc(fx30)) () < 3"Mc(f)(x). (85.7)
The reason for the validity of (8.5.7)
is that any cube R that contains the
point y in Q and meets (3Q)¢ must y &
have side length at least that of Q, R
hence 3R contains x; see Figure 8.3. ) 240)
Thus %(/(Q)
1 Q
— cd
7| /R|f\7((3g) y
311
< d
_|3R|/3R|f| y 0
<3"Mc(f)(%)-

Fig. 8.3 A cube R that contains a point y € Q and
meets (30)°.

Averaging the eth power of (8.5.7) over Q, we obtain

TaAWM@MW@SWMm@?

Combining the estimates for fx(30)c and f 3¢ and using the subadditivity property
M(f)E < Mc(fx30) )¢ +Me(fx30)F, we deduce (8.5.5). O

We show in Theorem 8.6.5 that Theorem 8.5.3 can essentially be reversed.

Exercises

8.5.1. Let 0 < o, < 1 and a,b € R". Prove that the weight

(1-+ a1
(1+ |x—b|)"B

liesin A, for 1 < p < eo. In particular, (14 |x|)"Y € Ay when —1 <y < 1.
[Hint: Use Proposition 8.5.1 and Theorem 8.5.3.]
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8.5.2. Find a measurable bounded function f on R" and a constant ¢, such that

(M), = T2

for any 0 < € < 1, i.e., the reverse inequality to (8.5.4) holds.

8.53. Let 1 < py < p < oo. If w; €A, and w; € Ay, then prove that wiwh* 7 lies
inA, and

Po=P)

wiwh P=po_

4, < [wila,, waly,
8.5.4. Let 1 < pg < p < oo. Given a weight w € A, obtain the existence of weights

u; € Ap, and up € Ay such that the factorization w = u;u5° " holds and, moreover,

20l 41 -
14,y < ct(mpea(mp)~ Wl (s S ea(mp) W]

where ¢ (n,p), c2(n, p) are the constants in Theorem 8.5.2. [Hint: Pick uy = w,
where w» is the weight obtained in the factorization of w in Theorem 8.5.2.]

85.5. Let 1 < p < pg <oo If w €Ay, and wy € Ay, then prove that the weight

1
P=1 P0=P\po=T Tieq i
(wi w5" 7)1 lies in A, and

I L ST et
— —P\ 5T Po— Po—
W WPy R T < [WI]A20 wa]a) -

8.6 Reverse Holder Property of A, Weights

Holder’s inequality on the probability space (Q, ‘—é‘dx) yields

‘—;|/dex§ <|;|/Qw’dx)r

for 1 < r < eo. The interesting fact is that this inequality can be reversed for A,
weights. In fact one has the so-called reverse-Holder property

1
1/ ..\ _Kk

for some constant K uniformly over all cubes Q.

Definition 8.6.1. Let 1 < r < 0. We define RH, to be the space of all weights w on
R” that satisfy (8.6.1). For w € RH, we set [w]|gp, to be the smallest constant K such
that (8.6.1) holds for all cubes Q.
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Before we embark into the proof of the reverse Holder property, we discuss the
reverse weak-type (1,1) inequality for the Hardy-Littlewood maximal operator.

Theorem 8.6.2. For each f € L'(R"), cube* Q, and A > 0 we have

1
214 Jixeo: |52}

[fldx < |{x € Q: Mc(f) > A}. (8.6.2)

Proof. Although (8.6.2) is stated in terms of M, it will be convenient to work with
its dyadic counterpart M. So we fix a function f € L'(R") and consider the set
E, ={xe€Q: My(f)(x) > A}. For each x € E, there is a maximal dyadic cube Q*

such that |
— fldy > A.
‘Qx|/QX‘ |

As the dyadic ancestor of @ is not maximal, this implies that

1
o /@ fldy < 2"A.

We denote by {Q;}; the collection of all maximal dyadic cubes Q*, where x € E; .
Then the Q; are pairwise disjoint and U;Q; = Ej. As |f| < My(f) a.e., it follows
that

1 1

fldx < — fldx
27 Jixeo: |f\>/1}| | 272 {er:Md(f>>/1}| |
)
= — fldx
< 210l
J
= |Ea|
<[{xeQ: Mc(f) > A},
since My < M,. Then (8.6.2) is proved. U

Theorem 8.6.3. For any w € Ay, any K > 1, and any r satisfying

K—1 1
1<r<ti4+——

_ 8.6.3
K el/epn [W]A] ( )

we have [wlgny, < K.

Proof. Applying (8.6.2) to f = w we obtain

1

R < : ¢ .
27 Jpeo w>l}wdx_ {xeQ: M.(w)> A1}

4 The cube Q could have infinite side length or could be the whole space.
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It follows from this that

S ({re s w>2)) <[fre Qs w4/l )l

as wis an Ay weight. In view of (1.2.3), we write
widx = | wwdx
Jore= 1,
— (- 1)/ A w({fxe Q1 w(x) > A})dA
0
— (r—1) {/Oa—k/:}l’_zw({xe 0: wix) > A})dA

< d'w(Q)+(r—1) /:Wz"ll({xe Q: w(x) > A/[wla, }|d2

IA

a1 w(Q) + 2wl (r— 1)/0°°7u*1\{x €Q: w(x) > A}|dA

—1
a='w(Q) + 2wy, / W dx.
r o

Choosing a = wg = @ Jowdx we obtain

(1—2"[w];‘l%)|1@/Qwrdx§ (|é|/dex>r.

‘We now examine for which » > 1 we have

r—1 1
>77
r T K’

1 —2”[w]g1

or equivalently,
_ 1 r__ %
2'(r 1)’§u L (8.6.4)
r K [W]Al

It may be difficult to exactly determine these r, but as K > 1, note that (8.6.4) is a
consequence of

n

K—1 1
0<2er(r—1)< ——
K [wla,

, (8.6.5)

in view of the inequality (1 —1/r)!/" < e'/¢(r—1) for r > 1. This last inequality
can be obtained by setting s = 1 — 1/r and observing that the minimum of s* over
[0,1] is e~ 1/¢. Now as (8.6.5) is equivalent to (8.6.3), (8.6.1) is proven. O

Remark 8.6.4. The constant ¢'/¢ in (8.6.3) could be replaced by the smallest con-
stant ¢ that satisfies the inequality (1 —1/¢)"/" <¢(t—1) forall > 1.

A consequence of the reverse Holder property of A, weights is the following
characterization of A; weights. This provides a converse to Theorem 8.5.3.
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Theorem 8.6.5. Let w be an A weight. Then there exist 0 < € < 1, a nonnegative
measurable function g such that g,1/g € L, and a nonnegative locally integrable
Sunction f that satisfies M.(f) < oo a.e. such that

w=gM.(f)® a.e. (8.6.6)

Proof. By Theorem 8.6.3, there is y > 0 such that the reverse Holder condition

1
i 1+Yd>1”<2 wd 8.6.7
<Q|/QW Y —|Q\/wa ®.6.7)

holds for all cubes Q. We set
£=—r and  f=w7

so that f€ = w.
There is a null subset E¢ of each cube Q such that

é/wdySZ[w}Alw(x) forall x € Q\ Ep.
0

Let N be the union of Eg over all Q with rational side lenghts and centers in Q". It
follows from this and from (8.6.7) that M, satisfies

Me(f)(x) <27 [w], T () for x € R\ N.

That is, M.(f) < 21+7[w];1r7f a.e. or M.(f)® <2[wjs,w < o a.e. But the Lebesgue
differentiation theorem also gives M. (f)¢ > f& = w a.e. We now set

w
ST M
and we observe that ﬁ < g <1 a.e. Finally, we point out that (8.6.7) implies that
1
f = w!t7is locally integrable, so the functions f and g are as claimed. (I

Lemma 8.6.6. Let 1 < p < oo, w€ Aj, and 0 < 8 < 1. Then [w5]RH1/5 < [w]gp, ie.,

1
1 1[5 \?
@/deyg [W]AP(|Q/QW dy> (8.6.8)

for any cube Q in R".

Proof. Let oo > 0 and r € (1,0) to be determined later. By Holder’s inequality we
have

1

1
1 1 " G 1 " / ”
1=— Gy Oy < | — ord — —or g . 8.6.9
ol b y_<Q|/QW y) <Q|/QW y) (669
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We now pick o and r satisfying orr = & and or = % Solving the system we find
the values r=8(p—1)+1and o = ) . Then (8.6.9) transforms to

3(p—

(o) o)
10| 0|
or equivalently to
1<( / 5dy>é( /W Plldy>p_l.
[ 0]

Multiplying by ﬁw(Q) and using the definition of [w]4, we obtain (8.6.8). O

Remark 8.6.7. By Holder’s inequality, the reverse inequality to (8.6.8) trivially
holds with constant 1. So condition (8.6.8) is in fact a reverse Holder property. Then
(8.6.8) essentially says that the normalized L' norm of an A p weight over a cube is

comparable to its normalized LS quasi-norm over the same cube.

Next we derive another consequence of Lemma 8.6.6.

Lemma 8.6.8. Let 1 < p < eo. Then for any § € (0,1), any weight w € A,, any cube
0, and any x € Q we have

[
Mc(wio) () < [wh, (Mc(w 20)(x))'°. (8.6.10)
Proof. Fix a cube Q and a point x € Q. Then
1
M.(wxp)(x) = sup —// wxody, (8.6.11)
' cube |Q | o
Q'>x

where the supremum is taken over all cubes Q' containing x. Now if Q' is not con-
tained in Q, then the estimate

_leng| 1 1
dy< ——
0 / VXY= 0 10n 0] Jore "0 = 1010 Jore

shows that the average of wyp over Q' is smaller than the average of wyo over the
cube QN Q' which is contained in Q and contains x. Thus the supremum in (8.6.11)
can be restricted to cubes Q' contained in Q. Now it follows from (8.6.8) that

1
1oy 1oy 5
o Qlwdyg[w]Ap(|Ql|/Q/w5dy) (8.6.12)

for all cubes Q' contained in Q that contain the point x. For all such cubes Q' we can
then replace w by wy in (8.6.12) and obtain

wxody
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|Q,|/ wxody < (|Q,|/ Qdy) < [w]Ap(Mc(w‘st)(x))%. (8.6.13)

Taking the supremum on the left side of (8.6.13) over all cubes Q' that contain the
fixed point x and are contained in Q, and using the observation that the supremum
in (8.6.11) can be restricted to such cubes Q', we deduce the validity of (8.6.10). [J

We now suitably adapt the argument in the proof of Theorem 8.6.3 to obtain the
reverse Holder property of A, weights.

Theorem 8.6.9. For any w € Ap, 1 < p <o, and K > 1, and any r satisfying

K—1 1
K 23/2 el/e6n[W]Ap

1<r<li+ (8.6.14)

we have [w|gn, < K, i.e., for any cube Q in R",

17,0\ K
(|Q|/QW dx> < @/dex. (8.6.15)

Proof. Fix a cube Q and 0 < § < 1. Applying first (8.6.2) to f = wyo we obtain

(1€ 02 W) > A1) < Ifre @: Mclwrg)(x) > 211,

Next we apply (8.6.10) to write
[{x € 0 Mc(wyo)(x) > A}| < [{x € Q1 Mc(wio)(x) > 2°/ (w3, }]
0
<2. 3”[/1] "({xeQ: wP(x)>2°/2w3 }),

where the second inequality is a consequence of Exercise 8.1.4 (with e =1/2, f =
w5xQ, and u = 1). Thus we have

W(lr €05 wle) > 1)) <273 3 (1 0: ) > 4% 20 ).
Let > 1. We use (1.2.3) and the preceding estimate to write
/waflwdx
:(r_1){/0 Q+/WJ7N2W({er: w(x) > A}) dA
g @)+ (1) [ Wi, H 2 et ([ 02w T })

wo
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r 1 < r
< g’ w(Q) + 2" 53, g<r—1> |50 (fre 0 Wi > 1)) a

\QI( |(Q|)) 1256w 5‘175 : / 8)51,8 iy,

where we made use of the change of variables r = A%/ Z[W]gp. Thus

(12860, =) g (IQI/de)r'

We examine for which » > 1 we have

r r—1 1
23611 > _
[l Ar—8 = K"
or equivalently,
w1 r—1\7 (K’—l)lr 1
6723 < 8.6.16
(=) =" % s, (8.6.16)

Making use of the inequality below (8.6.5), we see that when 0 < § < 1 < r one has

(55) = () (Z5) <ee-itp

)'/’ is decreasing in r on [1, ). Then (8.6.16) is a consequence of

since (=5

=

2
-0

K—1 1
K W

0<6" ee(r—1)< : (8.6.17)

P

which is derived in (8.6.5). Obviously % tends to infinity as § — 0T or § — 17,
so it is advantageous to choose an intermediate value of 8, such as 6 = 1/2. For this
choice of 8, (8.6.17) is equivalent to (8.6.14), and so the assertion of the theorem is
proved. (]

Taking f = xs in Proposition 8.3.2 (5) yields that

(8.6.18)

for any cube Q and any measurable subset S of Q. The reverse Holder inequality
allows us to essentially reverse this inequality.

Corollary 8.6.10. There is a constant c, such that for any 1 < p < o, any w € A,
any cube Q, and any measurable subset S of Q we have
w($) S|

o Sz(@)m (8.6.19)
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Proof. An application of Holder’s inequality gives

w(S):/éwadxg (/éw’dx) 155 = (|Q| / rdx)ﬂg\%\sﬁ‘ (8.6.20)

for any r > 1. We choose r =1+ o ] where ¢, = 25/2¢!/¢6". Then (8.6.15) in
Ap
Theorem 8.6.9 (with K = 2) combined with (8.6.20) yields

w(s) <25 o | wa)iol s,

which is a restatement of (8.6.19). U
Corollary 8.6.11. Let 1 < p <oo. Givenw € Ap thereisaq € (1,p) such thatw € A,.
Moreover, q satisfies p—1=(g—1)(1+ (cn[w]ﬁp_l)’l), where ¢, =2%/%¢'/¢6", and

Wla, <277 [Wla,. (8.6.21)

P

Proof. Letw € Ap. Then wi P e A - The reverse Holder condition on the weight

wl=r' yields
1 )
— [ W=y ) < = / =r'g (8.6.22)
w X < w X .6.
(IQ / 10| Jo

where r =14 1/c,[w ] 4, ! Let us set (p'—1)r=¢ —1 for some 1 < g < p. Then
—1=r(g—1) and (8.6.22) translates to

q-1 p=1
T

Multiplying by w¢ and taking the supremum over cubes Q, we derive (8.6.21). [
Corollary 8.6.12. For any 1 < p < oo we have A, = Uj<4<pAy.

Proof. As the classes A, are increasing, it follows that A, contains all the classes
A, with g < p. Conversely, if w € Ap, then by Corollary 8.6.11 there is a g € (1, p)
such that w € A,. This shows that A, is contained in Uj<4<pAy. O

Exercises

8.6.1. Show that the RH, classes decrease as r increases. Precisely, show that when
1 <s <rwehave [w]gn, < [w|gn, for w € RH,.

8.6.2. Let 1 < p <oo. If we A, prove that 1/w € RH,y_; and

[1/Wlgn, | < [W]a,-
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8.6.3. Let w € A, where p > 1. Show that there is an s > 1 (depending on [w]4,,)
such that w® € A,. [Hint: Use Theorems 8.5.2, 8.5.3, 8.6.5, and Proposition 8.5.1.}

8.6.4. ([14]) Let 1 < p < oo. Given w € A, and a cube Q show that there is a mea-
surable subset E of Q (that also depends on w) such that [Eg| > 10| and
1
—/ wdeZP*][w]pr(y) forally € Eg.
10 Jo
[Hint: When p > 1 choose Eg = {w > Bwo}NQ, where B! = 27"1[w]4,. Show
that |Q\ Eg| < |Q| using the definition of [w]4,. When p = 1 choose Eg = Q.]

8.6.5. ([102]) Let 1 < p,g,s < ooberelated by g— 1 =s(p—1).
(a) Let w € A, N RH,. Show that w* € A, and

Wa, < Wi, Wlke, -

(b) Conversely, given w® € A, prove that w € A, N RHy; precisely show that

1 1
Wl <05 and  [wles, <2705

[Hint: Part (b). Apply Exercises 8.2.3 and 8.6.4 to w* }

8.7 Weighted Estimates for Singular Integral Operators

We begin by verifying the necessity of the A, condition for basic singular integrals.

Theorem 8.7.1. Let w be a weight in R", n > 2, and let 1 < p < oo. Suppose that
each of the Riesz transforms R is of weak type (p, p) with respect to w. Then w must
be an A, weight.

Proof. Let Q be a cube and let f be a nonnegative function on R” supported in Q
that satisfies fp > 0. Let Q' be the cube that shares a corner with Q, has the same
length as Q, and satisfies x; > y; for all 1 < j <n whenever x € Q' and y € Q. Then
for x € Q' we have

/Mf(ymyzr 51)/ f0)
0

0 |x—y|"t! T Jx —y|"

But if x € Q' and y € Q we must have that [x —y| < 24/n¢(Q), which implies that
x—y|™" > (2y/n)7"|Q| . Let C, = F(%)(Z\/ﬁ)’”n_%l. It follows that for all
0 < a<C,fp we have

n

0 cC {xER”: |2Rj(f)(x)‘ >a}.

Jj=1
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Since the operator Z;f: | Rj is of weak type (p,p) with respect to w (with constant
C), we must have

Cl’
o)< o /Q Pwdx

for all o < C,, fp, which implies that

c,’cr
fb< / fPwdx. (8.7.1)
€= w(@) Jo
We observe that we can reverse the roles of Q and Q’ and obtain
c,’cr
p n p
g < 7/ gPwdx (8.7.2)
2= wQ) Jo

for all g supported in Q'. In particular, taking g = x in (8.7.2) gives that
w(Q) <C,"C’w(Q).

Using this estimate and (8.7.1), we obtain

(G ey
5 < 7/ fPwdx. (8.7.3)
°7 w@) Jo
Using the characterization of [w]4, in Proposition 8.3.2 (5), it follows that
W], < (G PCP)? < oo
hence w € A,. U

We now show that a singular integral operator is bounded from L”(w) to itself
when 1 < p < o and w € A,. We need two lemmas to achieve this. Recall the
operators M of Definition 6.4.1 and M of Definition 6.4.2.

Lemma 8.7.2. Let 0 < A1,A,,A3 < o and suppose that K is defined on R"\ {0} and
satisfies the size condition |K(x)| < A1]x|™", x # 0, the smoothness condition

K(x—y) —Kx)| <Ay« "%,  |x]>2[y| (8.7.4)

and the cancellation condition (3.3.5). Suppose that W is a tempered distribution on
R" defined in terms of (3.3.8) and let T be the operator given by convolution with
W. Then for any s > 1 there is a constant C, 5 such that

1
MI(T(f)) < Cps.5(A1 + A2 +A3) Mc (1)
for any bounded function f on R" with compact support.

Proof. Let us fix a bounded function f on R” with compact support, a cube Q, and
x € Q. It will be enough to show that there is a constant Cgp such that
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1 1
o [ IT() = Coldy < Gy s MelI 1)} (3. (87.5)
10 Jo
As we have done on various occasions, we estimate separately the contribution of

f near the cube and far from it. So we write f = fy + f.., where fy = fxo+ and
Q" = (4y/n+1) Q. We chose the constant Cyp = T'( f.)(x). Then

5 L0 =Coldy < o [1Gmlay+ [ 1702)0) =T ()l

By the boundedness of T on L* (Corollary 3.6.2) the first term on the right satisfies

f@ /QlT(fo>(y>|dy < ( ﬁ /Q |T(f0)<y)|de>l

<Culara (g [ 10D
< LM f1)* (x).

Now observe that if x,y € Q and z € (Q*)¢, then

o2l > M o) 2a0) = 2vi(0) 2 2k,

and hence (8.7.4) implies

A T
K(r=2) - Kx—2)] = K((r—2) — (=) - Ko < 2220
Moreover, if w € {x,y}, then T(f..)(w / K(w —z) fw(z) dz by (3.3.3) and the
LDCT. Thus we may write
1
— oo - dzd
o LU0 Ty < o [ K0 - K2l @)l dzay

Ay x—y°[£(2)]
|Q|//Q* P Z|”+5 dzdy

) 1@
St f, (el + @)™
< &, s A2 Me(f) (x)
< &, s A M| f1F) ()5,

having made use of Corollary 2.5.2. Thus (8.7.5) holds with C,, s 5 = C; s+ ¢;, 5. O

Lemma 8.7.3. Suppose that 1 < po < p <o andw € Ap. Then for every function f
in L. .(R") with the property

loc
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sup APow({My(f)>A}) <eo  forevery N >0 (8.7.6)
0<A<N

we have

1
( Md(f)dex> d < 2]+%+(H+P+2)(l+cn[W]Ap) < Mf(f)de.x) r . (877)
Rn Rn

Proof. Let £ = {M,(f) > A} and let Q; be the maximal dyadic cubes that appear
in the proof of Theorem 6.4.5 which satisfy U;Q; = £, . Estimate (6.4.4) says

S| <2"v|0j|

where S; = {x € Q;: My(f)(x) >2A, M#(f)(x) < yA} and y > 0. Combining this
fact with (8.6.19), we obtain

%
W(S ) < 2< |S ‘ > T+cn[ wAp 2(2ny) l+7ln1 ]Ap < 2n+1/yl+zn[w]
w(Qj) [y

Multiplying by w(Q;) and adding over j (using the notation of Theorem 6.4.5), we
arrive at the estimate

w({Mu(f) > 24, Mi(f) <vA})
= ZW({x €Qj: My(f)(x)>2A, Mj(f)(x) < yA})
J

1
1., I+cnw
< on+ y Fenwla, ZW(QJ,)
J
1

_2n+1,ym ({Ma(f) > 1}). (8.7.8)

We now adapt the proof of (6.4.10) to account for the presence of the weight w.
For a positive real number N we set

N
Iy = /O pAP Yw({x € R My(f)(x) > A}) dA

We note that Iy is finite, as it is bounded by

(/Np),ppoldl> sup APw({My(f) > A}) <ee.
J0 0<A<N

We now write

Iy = 21’/012V pAP w({x €R": My(f)(x) > 24 }) dA

and we use (8.7.8) to obtain the following sequence of inequalities:
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IN

b€ 2 [Fpar (xR M) > 20, B < 72)) a2

+2P/07 pAP hw({x e R : MA(F)(x) > yA}) dA

IN

2P2"“7W /()Tpfl”‘lw({xeR": Ma(f)(x) > A})dA
_|_217/07 plp_lw({XG R": Mj(f)(x) > YA}) d2

1 po
22y 1y 2 [ (e R M) > 2))

IN

I
We pick 7 so that 272+1y"" ™4y — 1 "Since Iy is finite, we subtract from both

sides of the inequality the number %IN to obtain
I Ny
A <orplramip(irabiy) / LA w({x € R MA(S)(x) > A}) dA.
0

From this we deduce (8.7.7) by letting N — o and using that M < M?. O

Theorem 8.7.4. Let T be a singular integral operator as in Lemma 8.7.2 and let
w € Ay for some 1 < p < oo. Then there is a constant C(n, p,w) such that for any
bounded and compactly supported function f we have

I7(1)]

(8.7.9)

Loy < Cpw) (A1 +A2+A43)| ] -

Thus T admits a unique bounded extension on L? (w) (by Proposition 8.2.2).

Proof. Fix 1 < p <eandw € A,. Let f be bounded and compactly supported. By
Corollary 8.6.11 we pick ¢ such that 1 < ¢ < p and w € A,. We claim that T'(f) lies
in L7(w). Assuming this claim, by the boundedness of M, on L7(w), it follows that
My(T(f)) € L1(w). Then (8.7.6) holds with py = g; then Lemma 8.7.3 gives

</R" |T(f)dex>!l’ < (/RnMd(T(f))”wdx); < C(/Ran(T(f))”wdx> P

An application of Lemma 8.7.2 now yields that

(Mt was)” < Cuusttr+azean ([ w1 wax)”
R” R

for any s > 1. Picking s € (1, p) and applying Theorem 8.4.3 (with p/s in place of
p), we obtain
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[(fomtsmnas) ] = [Commlistlye] = ommiilg,

This concludes the proof of (8.7.9) and it remains to establish the claim that 7'(f)
lies in L4(w). To achieve this, let f be bounded and supported in the ball B(0,R).
Then for some r with 1 < r < g, Holder’s inequality gives

/B(o,zm|T(f>|quxS </RnT(f " dx) </B<o,zR) Wrdx) :

and this expression is finite by the boundedness of 7 on L?" l (Corollary 3.6.2), pro-
vided r is chosen small enough so that the reverse Holder property (8.6.15) is valid.
We now show the finiteness of the L?(w) norm outside B(0,2R). First we note that
for [x| > 2R one has [x—y| > %|x| when |y| < R and so

CAFY)] 2"| fllz= _ Cr
T(f)(x)| < / dy < Ay|B(0,R)| =12 =T
| (f)( )|— B(O.R) ‘X—y|n y= 1| ( )| ‘X‘n |)C|n
Then
Ciw (0,R2%+2
/ I7(f)]wdx < Z/ A Z %
B(0,2R)° 2Rk <|x| <2R2KH |x|”q (2k+1R)ng

Notice that the cube Q(0,R2%+3) contains B(0, R2¥*2). Appealing to (8.6.18), we
write

|0(0,R2kF3

w(B(0,R2"2)) < w(B(0,R))[W]a < ) )P = constant 2-"P
’ B 7 "\ [B(O,R)] ’

where p € (1,q) is suitably picked so that w € A,. In view of this estimate the series

i (2k+1R)—an (B(O,R2k+2))
k=0

converges and so || 7' (f)||za () < o O

Exercises

8.7.1. The transpose T' of a linear operator T is defined by

<T(f)7g> = <f,T’(g)>

for all f, g in a range subspace of the domain and range of T, respectively. Suppose
that 7' is a linear operator that maps L” (R",vdx) to itself for some 1 < p < oo and
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some v € Aj,. Show that the transpose operator 7" maps L7 (R", wdx) to itself with
the same norm, where w = vi=r' ¢ Ay

8.7.2. Let K, T, and T™) be as in Theorem 3.8.1 and let 1 < p < . Prove that T
is bounded from L” (w) to itself for any w € A,,.

8.7.3.Let @ >0, w € Ay, and f € L'(R*,w)NL'(R"). Let f = g+ b be the
Calderén—Zygmund decomposition of f at height o« > 0 given in Theorem 3.5.2,
suchthat b =3 ;b;, where each b is supported in a dyadic cube Q. [, bj(x)dx =0,
and Q; and QO have disjoint interiors when j # k. Prove that

@) [lgllzr oy < ]ay 1A N2r ) and llgll=(w) = llgllz= < 2"e,

®) [1bjllz1 vy < L+ Wla)F |1 (@) and 1611wy < (1 Dw]a) 1A 1121 ()

© Zw(Q) < P £l -

8.7.4. Let 0, K, and T be as Lemma 8.7.2. Prove that there is a constant C, 5 such
that for any weight w, for any cube Q, and any function F € L!(w) supported in Q
and with [, F(x)dx = 0 we have

[ M@ @Iwdx < Gz [ 1FG)MO0)0)dy.
(@) R

Here 0* = (4/n+1)Q is a fixed concentric multiple of Q.

8.7.5. Let §, K, and T be as in Lemma 8.7.2. Fix w € A. Suppose that T maps
L*(w) to L*(w) with bound B,, > 0. Prove that there is a constant C, 5 such that

||T||L1(W)—>L1~°°(w) <Cus (A +BW) [W]il :

[Hint: Apply the idea of the proof of Theorem 3.6.1 using the Calderén—Zygmund
decomposition f = g+ b of Exercise 8.7.3 at height ya for a suitable y. The bad
function can be handled via Exercise 8.7.4.}
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The weak L” spaces were introduced in [63], [64] as natural endpoints of the scale of Lorentz
spaces. An early treatment of Lorentz spaces appeared in the article by Hunt [41]. The normability
of the weak spaces L” for 1 < p < oo can be traced back to general principles obtained by Kol-
mogorov [52]. Theorem 1.3.3 first appeared without proof in Marcinkiewicz’s note [67] and was
reintroduced by Zygmund in [124].

Theorem 2.4.1 (Riesz—Thorin interpolation theorem) can be traced back to Riesz [84] in the
context of bilinear forms. Riesz’s student Thorin [104], [105] developed an approach in the study
of this result based on the maximum modulus principle. Tamarkin and Zygmund [103] provided a
more efficient approach to Thorin’s method. The one-dimensional maximal function originated in
the work of Hardy and Littlewood [34]. Its n-dimensional analog was introduced and shown to be
bounded by Wiener [119].

The Fourier transform can be traced back to Fourier [27]. The theory of distributions was
developed by Schwartz [90], [91]. For a concise introduction to this theory one may consult
Hormander [40]. Lemma 2.9.1 is due to van der Corput [114].

The L? boundedness of the Hilbert transform for 1 < p < <o is due to M. Riesz but was obtained
for the related conjugate function [83], [85] and was based on interpolation [84]. The weak-type
(1,1) property of the Hilbert transform is due to Kolmogorov [51]. The inequality in Exercise 3.8.3
is due to Cotlar [17]. Operators of the kind Ty, and the stopping-time argument of Theorem 3.5.2 are
due to Calderén and Zygmund [9]. In the same article, Calderén and Zygmund used this decom-
position to prove Theorem 3.6.1 for T when €2 is a Lipschitz function on the unit sphere. The
more general condition (3.3.4) first appeared in Hérmander [39]. The method of rotations (Corol-
lary 3.6.4) appeared in the article of Calderén and Zygmund [10]. Example 3.3.2 is taken from
Muckenhoupt [74].

The development of the theory of singular integrals in the vector-valued setting originated in the
article of Benedek, Calderén, and Panzone [3]. This reference contains a general theorem which
covers both Theorems 4.1.1 and 4.3.2. Theorem 4.3.3 is due to Fefferman and Stein [25]. Early ver-
sions of Theorem 4.4.2 can be found in [60], [61], [62]. These works depend on complex-analysis
techniques and contain one-dimensional results. The real-variable treatment of the Littlewood—
Paley theorem which allowed its higher-dimensional extension was pioneered by Stein [95].

The one-dimensional version of the Riesz potentials appeared in work of Weyl [117], but they
were later systematically studied by Riesz [86] on R". The Bessel potentials were introduced
by Aronszajn and Smith [2] and by Calder6n [7]. The strong type estimates in Theorem 5.1.3
were obtained by Hardy and Littlewood [33] in one dimension and by Sobolev [92] in higher
dimensions, while the weak-type estimate first appeared in Zygmund [124]. The proof of Theo-
rem 5.1.3 is taken from Hedberg [35]. Theorem 5.4.9 is due to Sobolev [92] when s is a positive
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integer. Theorem 5.3.2 is due to Mikhlin [73] and Theorem 5.3.6 to Hormander [39], although
both references contain slightly different formulations. A version of Theorem 5.7.3 in the con-
text of one-dimensional Fourier series can be found in Marcinkiewicz’s article [68]. Calderén and
Torchinsky [8] obtained Theorem 5.6.5; the underlying Theorem 5.6.4 is also due to them. Inter-
polation of analytic families of operators (Theorem 5.5.3) is due to Stein [94]; the critical Propo-
sition C.0.2 was previously established by Hirschman [38]. Estimates of the type that appear in
Exercises 5.5.2, 5.5.3 can be traced back to the article of Kato and Ponce [47].

The pioneering article of Fefferman and Stein [26] provided the foundation of the theory of
Hardy spaces. The decomposition of open sets given in Theorem 7.5.2 is due to Whitney [118].
The one-dimensional atomic decomposition of Hardy spaces is due to Coifman [13] and its higher-
dimensional extension to Latter [56]. A simplification of some of the technical details in Latter’s
proof was subsequently obtained by Latter and Uchiyama [57].

The space of functions of bounded mean oscillation and Theorem 6.2.1 first appeared in the
work of John and Nirenberg [43]. The duality of H' and BMO (Theorem 7.8.4) was announced by
Fefferman in [24], but its first proof appeared in the article of Fefferman and Stein [26]. The proof
of Theorem 7.8.4 is based on the atomic decomposition of H', which was obtained subsequently.
Dyadic BMO is studied in Garnett and Jones [30]. The sharp maximal function was introduced by
Fefferman and Stein [26] in interpolation when one endpoint space is BMO. Theorem 6.5.4 was
independently obtained by Peetre [78], Spanne [93], and Stein [96].

The A, condition first appeared in a paper of Rosenblum [87] in a somewhat different form.
The characterization of A, when n = 1 in terms of the boundedness of the Hardy-Littlewood max-
imal operator was obtained by Muckenhoupt [75]. The estimate in (8.4.8) can also be reversed, as
shown by Buckley [6]. The proof of Theorem 8.2.7 is based on that in Lerner [58]. The partic-
ular version of Lemma G.0.1 is adapted from that in de Guzman [21]. The fact that A, weights
satisfy the reverse Holder condition is due to Coifman and Fefferman [14]. The characterization
of A; weights (Theorem 8.5.3) is due to Coifman and Rochberg [15]. The necessity and suffi-
ciency of the A, condition for the boundedness of the Hilbert transform on weighted L? spaces was
obtained by Hunt, Muckenhoupt, and Wheeden [42]. Weighted L” estimates controlling Calderén—
Zygmund operators by the Hardy-Littlewood maximal operator were obtained by Coifman [12].
The factorization of A, weights was conjectured by Muckenhoupt and proved by Jones [45]. The
proof in the text is one of several ones given afterwards, based on the so-called Rubio de Francia
algorithm, i.e., the series of iterates of an operator that create a sub-eigenvector of it. Parts of the
exposition in Chapter 8 was based on the notes of Duoandikoetxea [23].

General reference texts on Fourier Analysis include: Duoandikoetxea [22], Garcia-Cuerva and
Rubio de Francia [29], Grafakos [31], [32], Katznelson [48], Korner [53], Meyer [70], [71],
Meyer and Coifman [72], Muscalu and Schlag [76], [77], Pereyra and Ward [81], Pinsky [82],
Stein [97], [98], Stein and Shakarchi [99], Stein and Weiss [100], Torchinsky [107], Wolff [122],
Zygmund [125]. More specialized books include: de Guzman [20], [21] on covering lemmas;
Bennett and Sharpley [4], Bergh and Lofstrom [5], Kislyakov and Kruglyak [49], Krein, Petunin,
and Semenov [55] on interpolation; Cruz-Uribe, Martell, and Pérez [18], Kokilashvili [50],
Stromberg and Torchinsky [101], Wilson [121] on weighted estimates; Frazier, Jawerth, and
Weiss [28], Peetre [79], Sawano [88], Schmeisser and Triebel [89], Triebel [109], [110], [111],
[112], Yuan, Sickel, and Yang [120] on different types of function spaces; Adams and Fournier [1],
Lieb and Loss [59], Maz’ya [69], Ziemer [123] for topics on Sobolev spaces; Lu [65], Uchiyama
[113], Weisz [116] on Hardy spaces; Christ [11], Journé [46], Lu, Ding, and Yan [66], Tolsa [106],
Torres [108], Volberg [115] on singular integrals. The proof of Besicovitch’s lemma in
Appendix G follows the exposition in Jones [44].

Finally, several aspects of dyadic harmonic analysis can be found in Pereyra [80]. Many topics
in this book can be studied in terms of wavelets; on this the reader may consult Hérnandez and
Weiss [36].



Appendix A
Orthogonal Matrices

An n x n matrix A is called orthogonal if AA” = I. This implies that A~ = A’. Tt
follows that detA = 1 or detA = —1. Let

aip a2 - Adin app azy --- dpl

az) az -+ ayp ‘ app ax -+ ap2
A= L s then A =

Aapl Ap2 " Qpp Alp A2p " *° App

In view of the property AA” = I, it follows that
a?1+a52+~~-—|—a§n:1, je{l,2,...,n},

ajiag +apap + - +ajag, =0, k#j.

In other words, the set of rows of A is an orthonormal basis of R”, and so is the set
of columns of A.
Then for x = (x1,...,x,) € R” we have |Ax| = |x|. Indeed,

n

Ax? = 3 (ajix + -+ ajnxa)?

n n
= z a?kx,% + Z z ajkajixXiX|

j=lk=I j=11<k#I<n
n
2
SAYdr 3 oo
k=1 j=1 1<k#I<n
n
= zxil + Y xx0= |x[%.
k=1 1<k£l<n
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Appendix B
Subharmonic Functions

A locally integrable function f on an open subset O of R" with values in [—eo, o) is
called subharmonic if it is upper semicontinuous, which means

limsup f(y) < f(x)

y—x
for every x € O and

1
flx) < Bor /B ) f(y)dy (B.0.1)

for any x € O and every r > 0 such that B(x,r) C O. If f € €, then the above
condition is equivalent to Af > 0. A function is called log-subharmonic if it is
nonnegative and its logarithm is subharmonic.

An interesting property of subharmonic functions is the following maximum
modulus principle. For simplicity we state this result only in the case n = 2 using
complex number notation.

Lemma B.0.1. Let O be an open connected subset of the complex plane with com-
pact closure O. Let V be a subharmonic function on O and U be a harmonic function
on O. Assume that for every zo € O\ O we have

limsup (V(z) —U(z)) <0. (B.0.2)

7—20

Then for all z € O we have
V(z)-U(z) <0.

Proof. Let M = sup_.o(V(z) —U(z)). Suppose that M > 0 to obtain a contradiction.
Let z; be a sequence in O such that (V — U)(z;) — M. In view of (B.0.2), z; can-
not accumulate near the boundary of O, thus {z; }; has a limit point z € O. By the
semicontinuity we must have (V —U)(z) = M. Then the set

E={we0: (V-U)w) =M}
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374 Appendix B Subharmonic Functions

is nonempty. But for an upper semicontinuous function g, sets of the form {g > o}
are closed; thus E must be closed by taking o = M.

To show that E is open, let w € E. The mean value property (B.0.1) yields that
V —U =M a.e. on an open disk B(w, r) contained in O. Hence E is dense in B(w, r),
but E is closed, implying that B(w,r) € E. This shows that E is also open. As O
is connected, we must have £ = O. So, unless U = V, in which case the claim is
obvious, we have a contradiction. Thus M cannot be positive, which means that we
should have M < 0. [l

Lemma B.0.2. The sum of two log-subharmonic functions is log-subharmonic.

Proof. Let @(x,y) = log(e* +¢”) defined on R?. Then ¢ is obviously increasing in
each variable. Also ¢ is a convex function of both variables, i.e., it satisfies

@((1—0)(x1,y1)+60(x2,52)) < (1—0)9(x1,y1) + 09(x2,y2)
for all (x1,y1), (x2,y2) in R and all 8 € [0, 1]. Indeed, writing
o(x,y) =x+log(1+€&™)

and using the convexity of the function 7 — log(1+ ¢) on the real line, we can easily
obtain this assertion.

Suppose that F,G are subharmonic functions on R”. Then the fact that ¢ is
increasing in each variable and Jensen’s inequality (which can be used since ¢ is
convex) gives

1 1
o(F().609) <o( s [ POy o [ Go)ay)
1
B o OF ) GO

which implies that ¢(F (x),G(x)) is subharmonic.

Now let f,g be log-subharmonic functions. Writing f = ¢/ and g = €C, then
log(f+g) = ¢(F,G). But ¢(F,G) was shown to be subharmonic, thus log(f + g)
is also subharmonic. O

We need a few facts from the theory of analytic functions with values in Banach
spaces. Let 2 be a Banach space with norm || - || and let f be a mapping from an
open subset U of C to 8. We say that f is analytic from U to 4 if for every zg in U
there is an element f'(z9) in % such that

f(z) —f(z)
-2

=0.
L@

lim
720

f'(z0) —

Theorem B.0.3. Let U be an open subset of C and let £ be a mapping from U to a
Banach space B. Then t is analytic if and only if for every bounded linear functional
A on 2B we have
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i A (f(z) —f(z0) >

) 7—20

exists in C.

Theorem B.0.4. Let U be an open subset of C, let B(zo,r) be a disk contained in
U, and let f be an analytic mapping from U to 9. Then £ has a unique power series

expansion
= z an(Z - ZO)n>
n=0

where a, € 9 and the series converges in the norm of B for any |z —zo| < r and
uniformly in the norm of % on any subdisk |z —zo| </, where ¥ <.

We denote by S the open unit strip, i.e., the set of all points z in the plane with
0<Rez<1.

Lemma B.0.5. Let (X,1t) be a measure space with (X) < oo and let V be a
complex-valued function defined on X X S such that the mapping z — V (-,2) from S
to the Banach space L' (X) is analytic. Then the function

2 F(z /|sz|"du()
is log-subharmonic for any 0 < g < 1.

Proof. Given zg in S, there is an r > 0 such that the closed disk B(zo,r) of radius r
centered at zq is contained in S and there exist functions @, (x) such that

Zakm (z—20)F,

where the series converges in L' (X) uniformly in z € B(zg, ). We claim that

N »
B /x ’kg()akio(x)(z_zo) du

converges uniformly [in z € B(zo,r)] to F(z) as N — co. Indeed, using the inequality

[lal? — |b|9] < |a—b|? we obtain

|Fy(z) |</’ z Ay z,(x)(z—z20) ‘ du

k=N+1

<u(Xx 1"(/‘ Z akz() Y(z—z20) ‘d,u)

k=N+1

and this tends to zero (as N — o) uniformly in z € B(zg,r).
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To show that log |F(z)| is subharmonic in B(zp,r), it will suffice to prove that
log |Fy(z)| are subharmonic in B(zg,r), as log|Fy(z)| converge to log|F(z)| uni-

formly on B(zp, r). _
For each k there is a sequence of simple functions {a,]c_zo};"zl such that

llar,z —ai’ZOHLl(X) — 0as j— oo, Let

S J Pk
:./)()jgz)ak7ZO(X)(z_ZO) ’ du.

Then, as before we have
: q
|Fn(z) G] (2)] </ ‘ Z Ay 7 (x a,](,ZO(x))(Z*Zo)k’ du

SZ |Z—Z()|kq/ |ak,z0( ) asz |q
k=0 X

and this tends to zero as j — o uniformly in z € B(zo,r). We may now replace each

Fy(z) by a suitable GJN It will now suffice to show that log G4, is subharmonic for
any N and j. To achleve this we write

N
z aiu,l() ('x) zpl xE )
k=0
where p;(z) are polynomials and E; are pairwise disjoint measurable subsets of X.

Then
/‘Zakm (z—20) ‘d/.t 2’]91 ’q

and as each function ‘ pi(z)] is log-subharmonic, the same is true for the finite sum
of these functions by Lemma B.0.2. ]



Appendix C
Poisson Kernel on the Unit Strip

We denote by S the unit strip S = {x+iy: 0 <x < 1,y € R} and by D the unit disk
{x+iy€ C: x> +y* < 1}. Consider the conformal mapping

i—em™w

o(w) =

1 —demw

from S to D which has a continuous bijective extension from S to D\ {i, —i}. Notice
that 9(0) = —1, ¢(1) = 1, (%) = 0 and the image of the line {} +if: —oo <t <o}
is the open segment {is: s € (—1,1)}, preserving orientation. Consider the Poisson

kernel Re %ﬁ, defined for z € D\ {1}, composed with ¢, i.e., the function
(x.3) — Re 1+o(x+ ly) _ sin(7x)
1—@(x+iy) cosh(my)+ cos(mx)

defined on S\ {1}. Being the harmonic image of a conformal mapping, this function
is harmonic on S; i.e., for all (x,y) € S we have

0? sin(7x) N 9? sin(7x) 0
dx2 \ cosh(my) + cos(7mx) dy2 \ cosh(my) +cos(mx) )
As the boundary of S has two disjoint pieces and integration over each piece will
be written separately, we introduce the “half” Poisson kernel Q2 on S\ {1} via
sin(7x) cot(%)

1 1
Qlx,y) =~ _1
&) 2 cosh(my) +cos(mx) 2 [cot?(Z*) +tanh?(%)] cosh?( %)

, (C.0.1)

where 0 <x <1 and —eo < y < oo but (x,y) # (1,0). This function is nonnegative

and satisfies oo
Q(x,t)dt =x (C.0.2)

—oo

for all 0 < x < 1; thus
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378 Appendix C Poisson Kernel on the Unit Strip

oo 4o
Q(x,t)dt+/ Q1 —-xt)dt=x+(1-x) =1, O<x<1.

J —oo

Proposition C.0.1. Suppose that My and M, are continuous functions defined on
the real line that satisfy

oo oo
/ Mo(t)| e dr + / My (1) e ™t < oo. (C.0.3)

Then the function
Foo Foo
u(x,y) = Q1 —x,y—1)My(t)dr + Q(x,y—t)M;(r)dt

is harmonic on the unit strip and satisfies u(x,y) — Mo(yo) as (x,y) — (0%, y0) and
u(x,y) = Mi(y1) as (x,y) = (17,1).

Proof. The harmonicity of u is verified by passing the derivatives inside the integral
via the Lebesgue dominated convergence theorem, taking into account (C.0.3). We
show that u(x,y) — Mp(yo) as (x,y) — (0T, y0), for yo € R. An analogous argument
works for the other boundary line.

Let us fix yo € R. Given € > 0 there is a 6 > 0 such that

|t—y0| <0 = |M0(l) —Mo(y())| < E. (C.04)
Using (C.0.2) we write
|u(x,y) — Mo (yo)|

oo oo
g[m Q(l—x,y—t)‘Mo(t)—Mo(y0)|dt+[m Q(x,y—1)|Mi(1) — Mo(y0)| dt.

We now take (x,y) € S with

o1
|X*O| + |y7y0| < 6/ = min <§7 5787 %)7
where s
_ cosh(%2)
cosh(%‘s) -1
The integral

+o0
[ @ty =M - Molyo) | ds
is at most a constant multiple of €, as we can verify from the observation

| sin(7x)| | sin(7x)| el e™ole/3
< < <em

1
Qx,y—1)| < = T
‘ ( y )‘ = 2005h(n|y—t|)+% = eyt — | |e”"| — el
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and hypothesis (C.0.3). For the other integral we note that
/ Q(1—x,y—1)|Mo(r) — Mo(yo) | dr < e(1 —x) < &,
[t—yo|<é

in view of (C.0.2) and (C.0.4). Now, if | —yp| > & then |t —y| > & /2 (since [y —yo| <
0/2); hence

I|sin(mx)| 1 |sin(mx)| < C(5)|sin(7rx)\.

cosh(m|y—1t]) — emly=|

Q(1— NN < —=
[ ~xy )‘_cosh(n|y7t|)71

<C(9)
Thus, one has
/ Q(1 —x,y—1)|Mo(t) — Mo(yo)| dt
Jt=yo|>6
<C(9) |x|7f€”|y°|€”/3/ f”'”(\Mo(tﬂ+‘M0(y0)|)df,
R

and this expression is at most a constant multiple of € in view of the choice of §’. [J

Proposition C.0.2. Fix C,a > 0 with a < . Let F be a continuous function on the
closed unit strip S whose logarithm is subharmonic in S and satisfies

sup log|F (x+iy)| < Ce, —o0 <y < oo, (C.0.5)
0<x<1

If My, My are continuous functions on the line that satisfy Mo(y) > log|F (iy)| and
M, (y) > log|F(1+iy)| for all y € (—eo,0) and also

Mo(y)] < CePl, —oo <y < oo,
M ()] <CePl, —o <y < oo,

Then for any 6 € (0,1) we have

log|F(0)] < +wQ(1—9,t)Mo(t)dt+ +MQ(9,I)M1(t)dt. (C.0.6)

— —oo

Proof. Consider the rectangle Dy = (0,1) X (=T,T) for some T > 0 and choose
d € (a,m) and € > 0. For k € {0, 1} define continuous functions

Mi(y) ify|<T,
MEG) =S Le(y) T <|y|<T+1,
0 if [y| > T +1,

where L (y) is a line segment joining M (T) to O fory € [T, T+ 1] and 0 to My.(—T)
forye [-T—1,-T].
Now define a harmonic function Ur on Dy by setting
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~+o0

Ur(x,y) :/ Q1 —x7y—t)MOT(t)dt+[:w9(x,y—t)M{(t)dt

1
gcosh(d (’ —7)
+gcosh(d'y)cos (d(x 2)

for (x,y) € Dr. Identifying z with x + iy, we claim that for T sufficiently large, the
function
log|F(z)| = Ur(z)

is negative on the boundary of Dr. To prove this assertion we first notice that by
Proposition C.0.1, Ur(x,y) is harmonic on D7 and on {iy: |y| < T} it coincides

with ,

a
My (y) + ecosh(d’y) cos (§> :

which is bigger than log |F (iy)|, while on {1 +iy: |y| < T} it coincides with

/

/ @
M, (y) +ecosh(a’y) cos ( 3 ) :

which is bigger than log |[F (1 + iy)|; hence the assertion is valid on the vertical parts
of the boundary of D7. On the horizontal boundary pieces of Dr, i.e., for z = x+iT,
first notice that

1 1 1 |
cosh(a'y) cos (a’ (x— 5)) > Ee“ Tcos (a’(x— 5)) > Ee“ Tcos (%)

and then observe that

/

T T E a
UT(z)z/ Q(l—x,y—t)Mo(t)dt+/ Q(xy—1)My (1) dr + £ cos ()
T T 2 2

- / [Q(1 —x,y— 1)+ Q(x,y — )] max (|Mo(T)|, [My (£T))dr
JT<|t|<T+1

oo oo
> Q(1—x,y—1)(—Ce ) drt + Q(x,y—1)(—CeT)dr

/

—Ce™T(1—x) —CeTx+ ge“/Tcos (%)

/

=—2CeT (1 —x)—2Ce T x + ge‘ﬂ cos (%)

!
=-20CeT + %ealT cos (%)

>Ce!
>log|F(z)],
where the strict inequality holds for all T > Ty(d’, €), where Ty(d',€) depends on

€>0and on d € (a,m). Thus Ur —log|F] is positive on the horizontal boundary
pieces of Dr. Consequently, Ur —log|F| is positive on the boundary of Dr.
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By Proposition C.0.1, the function Uz is harmonic on D7 and by assumption
log|F| is subharmonic on S. Applying the maximum principle for subharmonic
functions (Lemma B.0.1) to the functions V = log|F| and U = Ur on the domain
Dr (which has compact closure) we obtain that

Ay (2) log |F(2)] < 2y (2) Ur (2).-

We now take the limit as 7 — oo on both sides of this inequality and we use the
LDCT to prove (C.0.6) with the extra term & cosh(a’y) cos(a’ (x — 1)) on the right.
As & > (0 was arbitrary, the conclusion follows by letting € — 0. (]

Corollary C.0.3. Let F be a bounded continuous function on the closed unit strip
S such that log |F| is subharmonic in S. Suppose that for some By,B; > 0 we have
|F(it)| < By and |F(1+it)| < By for all t real. Then for any 6 € (0,1) we have

|F(6)] < By °BY.
In particular, this is the case if F is continuous and bounded on S and analytic in S.

Proof. This is a straightforward consequence of Proposition C.0.2 with My =log By,
M, =log B, and identity (C.0.2). Notice that condition (C.0.5) is obviously satisfied
in this case.

Corollary C.0.4. Let F be a continuous function on the closed unit strip S that
satisfies (C.0.5) and such that log |F| is subharmonic in S. Suppose that for some
positive constants M, By, By we have |F (it)| < Bo(1+ |t|)™ for all t real and also

|[F(1+it)| < By (1+|t|)™ for all t real. Then for any 6 € (0,1) we have
|[F(6)] < CuoBy °BY,
where Cy g is a positive constant that depends only on M and 0.

Obviously, the subharmonicity of log|F| is satisfied if F is analytic in S.



Appendix D
Density for Subadditive Operators

It is well known that it suffices to obtain quantitative estimates for linear operators
on a dense subspace of its domain. Something analogous is valid for subadditive
operators.

Theorem D.0.1. Suppose that T is a positive symmetric subadditive operator defined
on a dense subspace V of a quasi-Banach space X that takes values in the space of
measurable functions on a measure space Y. This means that T (@) is real for all
peV,

T(—p)=T(9)>0  forallpeV

and
T(o+vy)<T(p)+T(y) forall o, w €V.

Let 0 < p < eo. Suppose that for some C € (0,0) we are given the estimate

IT(@)||,, <Clloll  forallgpeV.

Then there is a unique positive subadditive operator T defined on X such that T
coincides with T on'V and satisfies

T, < CI7
forall feX.

Proof. Given f € X, let ¢, be a Cauchy sequence converging to f in X. Then

T((Pn) - T((pm) < T((Pn - (Pm)

and likewise
T(@n) —T(0n) ST (P —@n) =T (P — Q).

It follows that
T(n) =T ()| < T(0n— @)

and consequently
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384 Appendix D Density for Subadditive Operators

HT((Pn) (Om HLp < HT (Pm)‘ 1 SCllon— ol

which indicates that the sequence {7 (¢,)}, is Cauchy in LP(Y) and thus it con-
verges to an element which we call T(f). We note that the definition of T(f) does
not depend on ¢@,. Indeed, if y, is another sequence from V that converges to f in
X, then the preceding argument gives

HT((Pn) _T(‘Vn)| w S Cll@n—ynl — 0;

thus the sequences {7 (¢,)}, and {T (y,)}, tend to the same limit in L”. Note that
T(f) is positive and symmetric since it is the L” limit of positive and symmetric
operators. Moreover, T(f) is subadditive as it is a limit of subadditive operators.
Finally, 7 is an extension of T as it coincides with T on V, for given ¢ € V we take
the constant sequence in V converging to itself.

We need to show that 7(f) is bounded. Given f pick ¢, — f in X and write

1T < |7 =Tl + [T (o) [
< HT(f _T((Pn)| Irj;n(hp)_’_cmm 1,p) H(anmm(l,p)7

so letting n — o we obtain that

Tl < Cllfl
as @, — finX and T(f)—T(¢,) — 0in L”.

Note: The same argument works if the range is L”* equipped with a norm
under which it is g-normable for some g. For instance, L”>* is normable if p > 1,
p-normable if p < 1, and (1 — €)-normable if p =1 (0 < & < 1).



Appendix E
Transposes and Adjoints of Linear Operators

The notion of the transpose of a linear operator is compatible with that of the trans-
pose of a matrix. The transpose A’ of an n x n matrix A has the fundamental property

x-Ay=A'x-y,

where x,y are column vectors in R” and x-y is the usual inner product on R". Replac-
ing the inner product by an integral and x,y by functions essentially yields the def-
inition of the transpose of a linear operator. Let 1 < p,g < o. For a bounded linear
operator T from LP(X,u) to L4(Y,v) we define the transpose of T as the unique
linear operator 7" that satisfies

(T(1).8) = [ T()edv = [ 1T (9)du = (£.7'(9))

for all £ € LP(X,u) and all g € L9 (Y, v). We notice that the real inner product
(f,8) — (f,g) also coincides with the action of the distribution f on the function g
(if g is a Schwartz function) or vice versa.
Looking at matrices again, we notice that the complex inner product (z, w) — z-w
satisfies the identity
- Aw=A%z-w,

where A* is the conjugate transpose of A, i.e., the matrix whose coefficients are
the complex conjugates of the coefficients of A’. Analogously, for f,g measurable
functions on R”, we consider the complex inner product

(f.9) [ fx)gtdx,
whenever the integral converges absolutely.

Let 1 < p,g < oo. For a bounded linear operator 7 from L” (X, u) to L4(Y,v) we
define the adjoint operator T* of T as the unique linear operator that satisfies

/YT(f)gdv:/XfT*(g)dy forall £ € LP(X,u),g € L (Y, V).
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386 Appendix E Transposes and Adjoints of Linear Operators

Examples.
(a) If T is an integral operator of the form

TN = [ K@) 70)duo),

then T* and T’ are also integral operators with kernels K*(x,y) = K(y,x) and
K'(x,y) = K(y,x), respectively.

(b) If T(f) = T,u(f) = (fm)Y, then T/, = Tj;. This was essentially shown in the

proof of Proposition 2.8.6. We also have T = Tg. To verify this for f,g in . (R")
we write

ST dx = | T()gdx
- | T(f) 5z
- | Fga

= [ r@me)dx.
JR"

R

Consequently, if m(&) is real-valued, then T, is self-adjoint (i.e., T,, = T,}) while
if m(&) is even, then T,, is self-transpose (i.e., T,, = T}).



Appendix F
Faa di Bruno Formula

This formula provides an identity for a high-order derivative of the composition of
two functions.

Suppose that f € €’V is defined on an open subset U of the line and takes values
in another open subset V of R. Let g € ¢’V be complex-valued function defined on
V. Let N be a positive integer. Then for x € U we have

(go )M (x) Z g<m1+"'+'"N)(f(x)) (%f(l)(x))m. (%f(N)(x))mN

N! my! my!

where the sum is taken over all decompositions of N=my-14+---+my-N, where
m;j are nonnegative integers. Here f (/) indicates the Jjth derivative of f. For a proof
of this we refer to [54].

The higher-dimensional extension of this formula is a bit more involved. Suppose
that F : U — V, where U is an open subset of R” and V is an open subset of R. Let
g be complex-valued function defined on V. Suppose that both functions are of class
&N, N € Z*. Then for any multi-index & with 1 < || < N and all x € U one has

9%(go F)(x)

o!

(0" FE)™  (ga0PF @)™

ml! mk!

)

=Y glmT I (F(x))

F

where the sum is taken over the following finite set:

32:{(ml,...,mk;ﬁl,...,ﬁk)e(Z+U{0})kx((Z+U{O})")k: k=l
such that there is ans € Z1 with 1 < s < k so that
mi=0 and B;=0 foralliwithl <i<k-—s
and m; >0 foralliwithk—s+1<i<k

k k
and 0= B g1 < <P 1< Y mi <k, Zmiﬁi:a}.
i=1 i=1
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We explain the meaning of the ordering < on multi-indices. We say that two
multi-indices o = (@, ..., 0) and B = (B1,...,B,) satisfy a < B if and only if

(i) o] <|B]; or
(ii) || = |B| and 0 < By or
(iii) || = |B| and there is a k such that o;; = ; when i < k while 0441 < Brt1.

This version of the multivariate version of the Faa di Bruno formula can be found
in [16, Corollary 2.10].



Appendix G
Besicovitch Covering Lemma

Lemma G.0.1. Let K be a bounded set in R" and suppose that for every x € K there
is an open cube Q, centered at x with sides parallel to the axes. Then there is an
m € Z" U{e} and there exists a sequence of points {xj}iy in K such that

K

N

U ey (G.0.1)
j=1

and for all y € R" one has
> xo, () <4 (G.02)
j=1

Proof. Let so = sup{{(Qy) : x € K}. If sy = oo, then there exists x; € K such that
£(Qx,) > 4L, where [—L,L]" contains K. Then K is contained in Q,, and the state-
ment of the lemma is valid with m = 1.

Suppose now that so < ee. Select x; € K such that £(Qy, ) > so/2. Then define

K1 =K\ Oy, s1=sup{{(Q.): x€ K1},
and select x, € K such that £(Q,,) > s1/2. Next define
K2 :K\(Qxl UQX2)7 S2 :Sup{‘g(QX) : XGKZ},

and select x3 € K> such that £(Qy,) > s/2. Continue until the first integer m is
found such that K, is an empty set. If no such integer exists, continue this process
indefinitely and set m = oo,

We claim that for all i # j we have %Qx,- N %ij = (. Indeed, suppose that i > j.
Thenx; € Ki—1 =K\ (Qx,U---UQy,_,); thusx; ¢ Oy;. Alsox; € Ki— € K;_, which
implies that £(Qy,) <sj—1 < 2¢(Qx;). Since x; & Qx; and £(Qx;) > 10(0y,), it easily
follows that 10\, N 10, = 0.

Next we claim that ¢ (ij) — 0 as j — oo. Indeed, if this was not the case, then
there would be an & > 0 and a subsequence { .}, of the positive integers such
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that £(Qy;,) > & for all r =1,2,.... The cubes %ijr, r=1,2,..., are infinitely
many and disjoint. But all of these cubes are contained in a bounded set, as their
centers lie in K (which is bounded) and their side lengths are at most sy < oo, and
this is a contradiction. This shows that £(Qy;) — 0 and also shows that 5; — 0 as
Jj — o, since 57 < 20(Qy;,,) for all j.

We now prove (G.0.1). If m < e, then K;,, = @ and therefore K € U?’:l Oy Ifm=
oo, then there is an infinite number of selected cubes ij. As shown, the sequence of
their lengths converges to zero. If there exists ay € K \ U7 Qx;, this y would belong
toall K;, j=1,2,..., and then s; > ¢(Q,) for all j. But as s; — 0, then it must be
that £(Q,) = 0, which would force the open cube Q, to be empty, a contradiction.
Thus (G.0.1) holds.

We now prove (G.0.2) via a general argument concerning a sequence of open
cubes Oy, i=1,2,..., satisfying two properties (valid in our setting):

Pl J<i= e(Qx,‘) < 2£(ij)-
P2 If j < i, then x; (the center of Qy,) is not contained in ij.

We claim that under properties P1 and P2, no point in R” belongs to more than 4"
of these cubes. This certainly implies (G.0.2).

To prove this claim we argue by contradiction. Suppose that some point in R”
belongs to more than 4" of the cubes Q,,. By translating all the cubes we may assume
that this point is the origin. Extracting from the sequence Qy,,0Qx,,... those cubes
which contain the origin and renumbering the remaining, we may assume that

4"+1

0€ () Qu-

i=1
We now write R" as a union of 2" higher-dimensional closed quadrants each char-
acterized by the signs of the coordinates of the points it contains. One of these
quadrants must contain more than (4" + 1)/2" of the xj,...,x441. By a change of
notation we may assume that the quadrant E = [0,e0) X - -- X [0, 00) that contains at
least 2" 4-1 of the x;. We now renumber the Q,, whose centers belong to E in such
a way so that P1 and P2 are preserved; then we may suppose that

2"4+1

0e m QX,'> XlyeeoyX2ny] €E.
i=1

In the sequel we use the notation |z|¢~ = sup; ;- |z;| for points z = (z1,...,z,) in

R". For simplicity, we also denote by ¢; = £(Qy,)/2 half the side length of Q,,. Then
the cube Q,, equals the set {y € R" : |y —xi|p~ < {4}

Next, we prove the following facts. All indices i, j below lie in {2,3,...,2" +1}.
(A) ENJ0,£1)" is contained in Qy,.

Indeed, as 0 € Qy,, it follows that |xi | < ¢;. Thus, if y € EN[0,£)", then
[v1]|e= < €1 and as all coordinates of y and x; are nonnegative, it follows that
[y —x1]= < €1, 1e., y lies in Qy, .
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(B)

©)

D)

(E)

If2<i<2"41,then ¢; > {;.

Since x; does not belong to Q,, by property P2 and x; € E, it follows from fact
(A) that x; ¢ [0,¢1)". But 0 € Q,, and this gives ¢ < |x;]p= < {;.

If2<i<2"+1,thenx; € [0,20,)"\ [0, ;)"

The fact that |x;|~ < ¢; < 2¢; implies that x; € (—2¢;,2¢;)" but as x; € E
we have x; € [0,2¢;)". Also in (B) it was proved that ¢; > ¢; which implies
xi & (—01,01)" thus x; ¢ [0,¢;)".

Let Ry,...,Ry:_ be disjoint cubes of length ¢ obtained by bisecting all of the
sides of [0,2¢1)" and ignoring the cube [0, £;)". Then there exist indices i, j such
that 1 < j <i<2"+1 and such that x;, x; belong to the same cube Ry.

We subdivide the cube [0,2¢;)" into 2" disjoint subcubes by bisecting all of its
sides. Removing the cube [0,¢;)" we are left with 2" — 1 subcubes of [0,2¢;)"
each of length /. These cubes are named Ry,...,Ry:—; and each one of them
has the form [a1,b1) X -+ X [an, by), Where [ay,by) € {[0,£1),[¢1,2¢,)} but not
all @ = 0. A point belongs to one Ry, if and only if all of its coordinates are in
[0,2¢1) and at least one of them is in [¢;,2¢;). Fact (C) gives that the centers
X2,X3,...,Xon41 lie in the union of Ry. By the pigeonhole principle, one R; must
contain at least two points among the x»,x3,...,xon1. Thus there exist i, j with
1 < j<i<2"+1 such that x;,x; belong to the same Ry.

If 1 <j<i<2"+1andx;,x; € Ry (for the same k), then Ry is contained in Ox;.

Suppose that y € R;. Then for each «, the xth coordinate of both y and x; lie
in the same interval [0,¢;) or [¢,2¢;). This implies that |y — x|~ < {1 < £},
where the last inequality follows by part (B). Thus y lies in Qy;.

Having established facts (A)—(E), we now arrive at a contradiction by noting that

(E) yields that x; € Q; which refutes P2. [l



Glossary

LMCT Lebesgue monotone convergence theorem
LDCT Lebesgue dominated convergence theorem
ACB A is a subset of B (also denoted by A C B)
ACB A is a proper subset of B
ADB B is a proper subset of A
A€ the complement of a set A
XE the characteristic function of the set £
Dy the distribution function of a function f
fu T f f» increases monotonically to a function f
Z the set of all integers
VA the set of all positive integers {1,2,3,...}
VA the n-fold product of the integers
R the set of real numbers
R* the set of positive real numbers
R” the Euclidean n-space
Q the set of rationals
C the set of complex numbers
S the unit strip {z€ C: 0 <Rez < 1}
|x] VIxi P44 2 when x = (xq,...,x,) €R”
s the unit sphere {x € R" : |x| =1}
ej the vector (0,...,0,1,0,...,0) with 1 in the jth entry and 0 elsewhere
logt the logarithm with base e of > 0
7] the largest integer less than or equal to a real number ¢
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[[]] the largest integer strictly less than a real number ¢
x-y the inner product 3;_; x;y; when x = (X1ye ey Xn)s y= 1y s0n)
B(x,R) the ball of radius R centered at x in R”

W,_1 the surface area of the unit sphere S|

Vin the volume of the unit ball {x € R": |x| < 1}

|A| the Lebesgue measure of the set A C R”

dx Lebesgue measure

/B the average ﬁ J5 f(x)dx of f over the set B

(f.8) the real inner product [g. f(x)g(x)dx

(u, f) the action of a distribution « on a function f

P the number p/(p — 1), whenever 1 < p < oo

1 the number o

oo the number 1

f=0(g) means |f(x)| < M|g(x)| for some M for x near x,
f=o(g) means | f(x)||g(x)]~! — 0 as x — xo

Al the transpose of the matrix A

A* the conjugate transpose of a complex matrix A

Al the inverse of the matrix A

O(n) the space of real matrices satisfying A~! = A’ (orthogonal matrices)
IT]x—y the norm of the (bounded) operator 7 : X — ¥

A~xB means that there exists a ¢ > 0 such that ¢~! < g <c

|| indicates the size |0y | + - - - + || of a multi-index o = (o, ..., 0)
I'f the mth partial derivative of f(xi,...,x,) with respect to x;

2% f ot o f

c* the space of functions f with % f continuous for all |ot| < k

(A the space of smooth functions (;_; €*

by the space of smooth functions with compact support

6o the space of continuous functions with compact support

%00 the space of continuous functions that tend to zero at infinity

5 the space of Schwartz functions

540 the space of Schwartz functions ¢ with the property [g. x7@(x)dx=0

for all multi-indices 7.
S (R") the space of tempered distributions on R"
Q) the side length of a cube Q in R”



Glossary

20

LP(X, 1)
LP(R")
LP=(X,u)
Li,(R")
|

]
M (R")

Ap(R")
M

395

the boundary of a cube Q in R"
the Lebesgue space over the measure space (X, 1)
the space LP(R",|-]),0 < p < oo
the weak L” space over the measure space (X, 1)
the space of functions that lie in L' (K) for any compact set K in R”
the variation (measure) of a signed Borel measure ¢ on R”
the total variation of a signed Borel measure t on R”, i.e., [pnd|1t|.

the space of all signed Borel measures on R” with finite total varia-
tion.

the space of L” Fourier multipliers, 1 < p < oo

the centered Hardy-Littlewood maximal operator with respect
to balls

the uncentered Hardy-Littlewood maximal operator with respect to
balls

the centered Hardy-Littlewood maximal operator with respect to
cubes

the uncentered Hardy-Littlewood maximal operator with respect to
cubes

the centered maximal operator with respect to a measure
the uncentered maximal operator with respect to a measure U
the strong maximal operator

the dyadic maximal operator

the sharp maximal operator

the dyadic sharp maximal operator
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